diff --git "a/11997/metadata.json" "b/11997/metadata.json" new file mode 100644--- /dev/null +++ "b/11997/metadata.json" @@ -0,0 +1,73647 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11997", + "quality_score": 0.8801, + "per_segment_quality_scores": [ + { + "start": 26.5, + "end": 28.0, + "probability": 0.8439 + }, + { + "start": 28.26, + "end": 29.98, + "probability": 0.7919 + }, + { + "start": 30.02, + "end": 30.7, + "probability": 0.7185 + }, + { + "start": 31.56, + "end": 33.84, + "probability": 0.4436 + }, + { + "start": 33.84, + "end": 37.66, + "probability": 0.6679 + }, + { + "start": 38.22, + "end": 40.84, + "probability": 0.9965 + }, + { + "start": 41.74, + "end": 44.12, + "probability": 0.6886 + }, + { + "start": 45.26, + "end": 47.98, + "probability": 0.1902 + }, + { + "start": 48.94, + "end": 51.8, + "probability": 0.8416 + }, + { + "start": 52.44, + "end": 56.76, + "probability": 0.8818 + }, + { + "start": 56.76, + "end": 60.58, + "probability": 0.9775 + }, + { + "start": 60.84, + "end": 63.72, + "probability": 0.9667 + }, + { + "start": 73.12, + "end": 76.2, + "probability": 0.749 + }, + { + "start": 77.5, + "end": 79.12, + "probability": 0.7787 + }, + { + "start": 79.94, + "end": 81.88, + "probability": 0.9147 + }, + { + "start": 83.3, + "end": 86.5, + "probability": 0.9823 + }, + { + "start": 86.5, + "end": 90.14, + "probability": 0.9983 + }, + { + "start": 90.64, + "end": 93.18, + "probability": 0.9866 + }, + { + "start": 93.92, + "end": 94.86, + "probability": 0.5132 + }, + { + "start": 95.38, + "end": 98.24, + "probability": 0.9468 + }, + { + "start": 99.8, + "end": 102.24, + "probability": 0.8367 + }, + { + "start": 103.18, + "end": 103.79, + "probability": 0.834 + }, + { + "start": 105.38, + "end": 106.72, + "probability": 0.741 + }, + { + "start": 109.08, + "end": 110.34, + "probability": 0.7124 + }, + { + "start": 111.84, + "end": 116.12, + "probability": 0.6401 + }, + { + "start": 117.22, + "end": 120.3, + "probability": 0.8698 + }, + { + "start": 121.96, + "end": 122.88, + "probability": 0.8048 + }, + { + "start": 124.12, + "end": 124.82, + "probability": 0.7453 + }, + { + "start": 124.92, + "end": 127.84, + "probability": 0.7934 + }, + { + "start": 128.04, + "end": 129.64, + "probability": 0.894 + }, + { + "start": 130.4, + "end": 132.92, + "probability": 0.9879 + }, + { + "start": 133.4, + "end": 134.5, + "probability": 0.9956 + }, + { + "start": 134.68, + "end": 138.0, + "probability": 0.9678 + }, + { + "start": 138.72, + "end": 144.96, + "probability": 0.9734 + }, + { + "start": 145.98, + "end": 150.14, + "probability": 0.9895 + }, + { + "start": 150.3, + "end": 151.36, + "probability": 0.5123 + }, + { + "start": 151.88, + "end": 152.42, + "probability": 0.0434 + }, + { + "start": 152.42, + "end": 154.7, + "probability": 0.3998 + }, + { + "start": 154.82, + "end": 157.6, + "probability": 0.6301 + }, + { + "start": 157.62, + "end": 161.74, + "probability": 0.4344 + }, + { + "start": 162.0, + "end": 164.74, + "probability": 0.8603 + }, + { + "start": 165.12, + "end": 165.6, + "probability": 0.2321 + }, + { + "start": 165.7, + "end": 166.14, + "probability": 0.3079 + }, + { + "start": 166.18, + "end": 171.22, + "probability": 0.9722 + }, + { + "start": 171.58, + "end": 173.32, + "probability": 0.3027 + }, + { + "start": 173.8, + "end": 173.98, + "probability": 0.5437 + }, + { + "start": 173.98, + "end": 174.56, + "probability": 0.1359 + }, + { + "start": 174.56, + "end": 176.76, + "probability": 0.7042 + }, + { + "start": 176.98, + "end": 179.82, + "probability": 0.8306 + }, + { + "start": 180.16, + "end": 180.62, + "probability": 0.4578 + }, + { + "start": 181.54, + "end": 183.88, + "probability": 0.9741 + }, + { + "start": 183.96, + "end": 186.14, + "probability": 0.9128 + }, + { + "start": 186.5, + "end": 186.86, + "probability": 0.9418 + }, + { + "start": 187.76, + "end": 188.56, + "probability": 0.9064 + }, + { + "start": 188.72, + "end": 191.4, + "probability": 0.8467 + }, + { + "start": 191.76, + "end": 194.22, + "probability": 0.6618 + }, + { + "start": 195.06, + "end": 199.68, + "probability": 0.989 + }, + { + "start": 200.44, + "end": 203.6, + "probability": 0.9739 + }, + { + "start": 203.76, + "end": 205.52, + "probability": 0.7783 + }, + { + "start": 206.1, + "end": 207.46, + "probability": 0.952 + }, + { + "start": 207.96, + "end": 210.46, + "probability": 0.9554 + }, + { + "start": 211.32, + "end": 214.18, + "probability": 0.9342 + }, + { + "start": 214.32, + "end": 219.92, + "probability": 0.5666 + }, + { + "start": 220.2, + "end": 222.18, + "probability": 0.8172 + }, + { + "start": 222.38, + "end": 225.02, + "probability": 0.9706 + }, + { + "start": 225.18, + "end": 229.34, + "probability": 0.9355 + }, + { + "start": 229.6, + "end": 230.28, + "probability": 0.7373 + }, + { + "start": 230.9, + "end": 235.28, + "probability": 0.9597 + }, + { + "start": 235.68, + "end": 236.3, + "probability": 0.8943 + }, + { + "start": 236.52, + "end": 237.28, + "probability": 0.9653 + }, + { + "start": 237.48, + "end": 238.8, + "probability": 0.619 + }, + { + "start": 239.22, + "end": 243.54, + "probability": 0.9933 + }, + { + "start": 243.6, + "end": 245.02, + "probability": 0.3376 + }, + { + "start": 245.12, + "end": 249.42, + "probability": 0.605 + }, + { + "start": 249.68, + "end": 251.32, + "probability": 0.9199 + }, + { + "start": 251.54, + "end": 254.6, + "probability": 0.6832 + }, + { + "start": 254.8, + "end": 255.7, + "probability": 0.6572 + }, + { + "start": 255.88, + "end": 257.12, + "probability": 0.5524 + }, + { + "start": 257.4, + "end": 260.24, + "probability": 0.7837 + }, + { + "start": 260.8, + "end": 262.96, + "probability": 0.9795 + }, + { + "start": 262.96, + "end": 266.56, + "probability": 0.9746 + }, + { + "start": 266.8, + "end": 273.18, + "probability": 0.7695 + }, + { + "start": 273.36, + "end": 275.42, + "probability": 0.7407 + }, + { + "start": 276.04, + "end": 279.78, + "probability": 0.636 + }, + { + "start": 280.32, + "end": 280.74, + "probability": 0.399 + }, + { + "start": 280.74, + "end": 282.26, + "probability": 0.7372 + }, + { + "start": 282.42, + "end": 285.82, + "probability": 0.9575 + }, + { + "start": 286.18, + "end": 287.06, + "probability": 0.629 + }, + { + "start": 287.2, + "end": 291.18, + "probability": 0.6585 + }, + { + "start": 291.32, + "end": 291.9, + "probability": 0.4095 + }, + { + "start": 292.08, + "end": 293.02, + "probability": 0.7108 + }, + { + "start": 293.88, + "end": 295.46, + "probability": 0.9167 + }, + { + "start": 295.52, + "end": 296.56, + "probability": 0.7186 + }, + { + "start": 296.8, + "end": 300.49, + "probability": 0.97 + }, + { + "start": 301.66, + "end": 303.14, + "probability": 0.7747 + }, + { + "start": 303.34, + "end": 306.76, + "probability": 0.7284 + }, + { + "start": 307.78, + "end": 309.84, + "probability": 0.0844 + }, + { + "start": 309.84, + "end": 309.84, + "probability": 0.0182 + }, + { + "start": 309.84, + "end": 311.48, + "probability": 0.5347 + }, + { + "start": 311.84, + "end": 314.1, + "probability": 0.8833 + }, + { + "start": 314.62, + "end": 316.54, + "probability": 0.6224 + }, + { + "start": 316.58, + "end": 317.42, + "probability": 0.732 + }, + { + "start": 317.64, + "end": 318.48, + "probability": 0.9065 + }, + { + "start": 318.5, + "end": 319.82, + "probability": 0.8532 + }, + { + "start": 320.32, + "end": 325.2, + "probability": 0.964 + }, + { + "start": 325.5, + "end": 326.74, + "probability": 0.8515 + }, + { + "start": 326.94, + "end": 331.74, + "probability": 0.9731 + }, + { + "start": 332.0, + "end": 335.68, + "probability": 0.9956 + }, + { + "start": 335.98, + "end": 340.82, + "probability": 0.9965 + }, + { + "start": 340.94, + "end": 343.12, + "probability": 0.9194 + }, + { + "start": 343.36, + "end": 345.88, + "probability": 0.9976 + }, + { + "start": 346.38, + "end": 347.4, + "probability": 0.9733 + }, + { + "start": 347.56, + "end": 348.32, + "probability": 0.8521 + }, + { + "start": 348.4, + "end": 350.18, + "probability": 0.975 + }, + { + "start": 350.2, + "end": 357.58, + "probability": 0.948 + }, + { + "start": 357.86, + "end": 359.98, + "probability": 0.821 + }, + { + "start": 360.58, + "end": 362.4, + "probability": 0.7775 + }, + { + "start": 362.6, + "end": 363.7, + "probability": 0.9523 + }, + { + "start": 363.76, + "end": 366.96, + "probability": 0.979 + }, + { + "start": 367.6, + "end": 372.36, + "probability": 0.9401 + }, + { + "start": 373.3, + "end": 376.81, + "probability": 0.9607 + }, + { + "start": 377.02, + "end": 379.68, + "probability": 0.9083 + }, + { + "start": 379.88, + "end": 382.12, + "probability": 0.8559 + }, + { + "start": 382.8, + "end": 383.42, + "probability": 0.5732 + }, + { + "start": 383.56, + "end": 383.98, + "probability": 0.8625 + }, + { + "start": 384.1, + "end": 388.92, + "probability": 0.8774 + }, + { + "start": 388.98, + "end": 391.22, + "probability": 0.8308 + }, + { + "start": 391.3, + "end": 392.84, + "probability": 0.7442 + }, + { + "start": 394.0, + "end": 398.28, + "probability": 0.9863 + }, + { + "start": 398.82, + "end": 400.88, + "probability": 0.8011 + }, + { + "start": 401.26, + "end": 406.12, + "probability": 0.9688 + }, + { + "start": 406.36, + "end": 409.5, + "probability": 0.9964 + }, + { + "start": 409.76, + "end": 413.44, + "probability": 0.617 + }, + { + "start": 413.64, + "end": 415.62, + "probability": 0.9856 + }, + { + "start": 415.68, + "end": 415.86, + "probability": 0.683 + }, + { + "start": 415.96, + "end": 416.28, + "probability": 0.1972 + }, + { + "start": 416.38, + "end": 417.44, + "probability": 0.8097 + }, + { + "start": 417.82, + "end": 418.54, + "probability": 0.6876 + }, + { + "start": 421.05, + "end": 428.62, + "probability": 0.9822 + }, + { + "start": 428.8, + "end": 430.6, + "probability": 0.8712 + }, + { + "start": 431.9, + "end": 434.98, + "probability": 0.9063 + }, + { + "start": 437.72, + "end": 442.7, + "probability": 0.9806 + }, + { + "start": 443.86, + "end": 443.88, + "probability": 0.0625 + }, + { + "start": 443.88, + "end": 446.08, + "probability": 0.9881 + }, + { + "start": 446.16, + "end": 448.0, + "probability": 0.9849 + }, + { + "start": 448.96, + "end": 450.98, + "probability": 0.5232 + }, + { + "start": 451.06, + "end": 452.5, + "probability": 0.9544 + }, + { + "start": 452.92, + "end": 454.94, + "probability": 0.9905 + }, + { + "start": 455.5, + "end": 456.9, + "probability": 0.8804 + }, + { + "start": 457.0, + "end": 459.42, + "probability": 0.9882 + }, + { + "start": 460.24, + "end": 463.9, + "probability": 0.5604 + }, + { + "start": 464.42, + "end": 465.5, + "probability": 0.958 + }, + { + "start": 465.68, + "end": 465.68, + "probability": 0.4341 + }, + { + "start": 465.68, + "end": 465.68, + "probability": 0.7189 + }, + { + "start": 465.68, + "end": 466.56, + "probability": 0.9104 + }, + { + "start": 467.28, + "end": 469.7, + "probability": 0.9962 + }, + { + "start": 469.88, + "end": 471.48, + "probability": 0.9658 + }, + { + "start": 471.64, + "end": 478.3, + "probability": 0.9857 + }, + { + "start": 478.46, + "end": 482.44, + "probability": 0.9246 + }, + { + "start": 483.06, + "end": 487.37, + "probability": 0.7489 + }, + { + "start": 489.04, + "end": 489.3, + "probability": 0.2746 + }, + { + "start": 489.3, + "end": 489.3, + "probability": 0.0114 + }, + { + "start": 489.3, + "end": 493.16, + "probability": 0.7606 + }, + { + "start": 493.26, + "end": 494.48, + "probability": 0.7016 + }, + { + "start": 494.76, + "end": 498.35, + "probability": 0.9766 + }, + { + "start": 499.62, + "end": 503.08, + "probability": 0.5899 + }, + { + "start": 503.54, + "end": 506.58, + "probability": 0.4662 + }, + { + "start": 506.62, + "end": 509.96, + "probability": 0.9554 + }, + { + "start": 510.76, + "end": 512.34, + "probability": 0.2013 + }, + { + "start": 512.44, + "end": 514.08, + "probability": 0.397 + }, + { + "start": 515.08, + "end": 518.96, + "probability": 0.9614 + }, + { + "start": 519.06, + "end": 524.1, + "probability": 0.9792 + }, + { + "start": 524.34, + "end": 526.0, + "probability": 0.9779 + }, + { + "start": 526.0, + "end": 530.78, + "probability": 0.8276 + }, + { + "start": 531.88, + "end": 533.2, + "probability": 0.7566 + }, + { + "start": 533.32, + "end": 535.12, + "probability": 0.8046 + }, + { + "start": 535.64, + "end": 536.6, + "probability": 0.9746 + }, + { + "start": 537.04, + "end": 538.36, + "probability": 0.8988 + }, + { + "start": 538.44, + "end": 542.8, + "probability": 0.994 + }, + { + "start": 542.94, + "end": 546.14, + "probability": 0.9349 + }, + { + "start": 547.6, + "end": 548.18, + "probability": 0.8066 + }, + { + "start": 549.99, + "end": 554.98, + "probability": 0.6907 + }, + { + "start": 555.48, + "end": 556.3, + "probability": 0.8928 + }, + { + "start": 556.58, + "end": 558.0, + "probability": 0.8549 + }, + { + "start": 558.4, + "end": 561.48, + "probability": 0.7964 + }, + { + "start": 561.48, + "end": 565.06, + "probability": 0.8103 + }, + { + "start": 565.26, + "end": 568.84, + "probability": 0.9655 + }, + { + "start": 568.84, + "end": 571.98, + "probability": 0.4993 + }, + { + "start": 572.68, + "end": 574.01, + "probability": 0.6758 + }, + { + "start": 574.7, + "end": 576.62, + "probability": 0.6467 + }, + { + "start": 579.36, + "end": 582.38, + "probability": 0.9244 + }, + { + "start": 582.42, + "end": 583.66, + "probability": 0.746 + }, + { + "start": 584.26, + "end": 586.12, + "probability": 0.8449 + }, + { + "start": 586.38, + "end": 590.94, + "probability": 0.5474 + }, + { + "start": 591.1, + "end": 592.0, + "probability": 0.7477 + }, + { + "start": 595.12, + "end": 596.92, + "probability": 0.9204 + }, + { + "start": 597.0, + "end": 598.24, + "probability": 0.8262 + }, + { + "start": 598.26, + "end": 600.44, + "probability": 0.6566 + }, + { + "start": 600.44, + "end": 601.18, + "probability": 0.8746 + }, + { + "start": 601.32, + "end": 602.22, + "probability": 0.8303 + }, + { + "start": 603.18, + "end": 604.02, + "probability": 0.8793 + }, + { + "start": 604.98, + "end": 609.18, + "probability": 0.9418 + }, + { + "start": 609.18, + "end": 613.46, + "probability": 0.9051 + }, + { + "start": 614.0, + "end": 617.18, + "probability": 0.7703 + }, + { + "start": 617.18, + "end": 619.9, + "probability": 0.9523 + }, + { + "start": 621.4, + "end": 623.1, + "probability": 0.9813 + }, + { + "start": 623.68, + "end": 628.11, + "probability": 0.9974 + }, + { + "start": 629.48, + "end": 629.96, + "probability": 0.6013 + }, + { + "start": 630.2, + "end": 630.38, + "probability": 0.6495 + }, + { + "start": 630.38, + "end": 638.22, + "probability": 0.7254 + }, + { + "start": 638.96, + "end": 643.12, + "probability": 0.7945 + }, + { + "start": 643.82, + "end": 647.86, + "probability": 0.9189 + }, + { + "start": 648.54, + "end": 650.32, + "probability": 0.7836 + }, + { + "start": 650.38, + "end": 657.76, + "probability": 0.9526 + }, + { + "start": 657.78, + "end": 661.72, + "probability": 0.7915 + }, + { + "start": 662.0, + "end": 665.42, + "probability": 0.9906 + }, + { + "start": 665.5, + "end": 667.2, + "probability": 0.9868 + }, + { + "start": 667.78, + "end": 671.86, + "probability": 0.9731 + }, + { + "start": 672.2, + "end": 673.78, + "probability": 0.7444 + }, + { + "start": 674.18, + "end": 675.88, + "probability": 0.654 + }, + { + "start": 676.12, + "end": 679.5, + "probability": 0.9463 + }, + { + "start": 680.12, + "end": 681.2, + "probability": 0.6374 + }, + { + "start": 681.34, + "end": 682.0, + "probability": 0.6647 + }, + { + "start": 682.56, + "end": 687.32, + "probability": 0.7228 + }, + { + "start": 687.88, + "end": 690.32, + "probability": 0.7575 + }, + { + "start": 690.9, + "end": 692.14, + "probability": 0.8747 + }, + { + "start": 692.46, + "end": 697.26, + "probability": 0.9675 + }, + { + "start": 697.36, + "end": 698.88, + "probability": 0.0774 + }, + { + "start": 698.96, + "end": 699.51, + "probability": 0.9106 + }, + { + "start": 699.86, + "end": 700.9, + "probability": 0.3112 + }, + { + "start": 701.48, + "end": 702.74, + "probability": 0.6646 + }, + { + "start": 702.8, + "end": 703.9, + "probability": 0.8169 + }, + { + "start": 704.38, + "end": 708.64, + "probability": 0.8793 + }, + { + "start": 709.5, + "end": 714.94, + "probability": 0.9946 + }, + { + "start": 716.16, + "end": 721.38, + "probability": 0.9946 + }, + { + "start": 721.98, + "end": 725.8, + "probability": 0.7329 + }, + { + "start": 726.52, + "end": 733.1, + "probability": 0.9773 + }, + { + "start": 733.26, + "end": 734.95, + "probability": 0.4912 + }, + { + "start": 736.0, + "end": 739.14, + "probability": 0.9869 + }, + { + "start": 739.14, + "end": 743.5, + "probability": 0.8672 + }, + { + "start": 744.16, + "end": 745.88, + "probability": 0.7295 + }, + { + "start": 746.08, + "end": 747.46, + "probability": 0.0868 + }, + { + "start": 747.88, + "end": 749.44, + "probability": 0.9661 + }, + { + "start": 749.54, + "end": 750.5, + "probability": 0.4868 + }, + { + "start": 750.68, + "end": 753.06, + "probability": 0.7432 + }, + { + "start": 753.24, + "end": 754.31, + "probability": 0.9844 + }, + { + "start": 755.56, + "end": 759.7, + "probability": 0.6326 + }, + { + "start": 760.16, + "end": 763.94, + "probability": 0.9093 + }, + { + "start": 764.08, + "end": 771.56, + "probability": 0.9175 + }, + { + "start": 772.34, + "end": 773.4, + "probability": 0.7676 + }, + { + "start": 773.54, + "end": 775.62, + "probability": 0.8934 + }, + { + "start": 775.68, + "end": 775.88, + "probability": 0.6187 + }, + { + "start": 775.88, + "end": 777.3, + "probability": 0.5998 + }, + { + "start": 777.62, + "end": 780.21, + "probability": 0.9788 + }, + { + "start": 781.08, + "end": 782.38, + "probability": 0.6477 + }, + { + "start": 783.1, + "end": 787.2, + "probability": 0.9606 + }, + { + "start": 787.26, + "end": 788.74, + "probability": 0.9668 + }, + { + "start": 789.1, + "end": 792.66, + "probability": 0.8882 + }, + { + "start": 792.84, + "end": 798.76, + "probability": 0.9839 + }, + { + "start": 799.98, + "end": 806.46, + "probability": 0.9966 + }, + { + "start": 807.26, + "end": 809.38, + "probability": 0.7163 + }, + { + "start": 810.04, + "end": 813.6, + "probability": 0.9736 + }, + { + "start": 813.6, + "end": 816.3, + "probability": 0.9814 + }, + { + "start": 816.42, + "end": 816.82, + "probability": 0.7271 + }, + { + "start": 816.88, + "end": 820.32, + "probability": 0.9316 + }, + { + "start": 820.7, + "end": 822.56, + "probability": 0.9745 + }, + { + "start": 823.24, + "end": 826.66, + "probability": 0.6821 + }, + { + "start": 827.02, + "end": 830.58, + "probability": 0.9946 + }, + { + "start": 830.58, + "end": 834.52, + "probability": 0.9913 + }, + { + "start": 835.34, + "end": 839.54, + "probability": 0.9744 + }, + { + "start": 840.12, + "end": 844.76, + "probability": 0.985 + }, + { + "start": 845.02, + "end": 846.52, + "probability": 0.8249 + }, + { + "start": 846.84, + "end": 850.75, + "probability": 0.9964 + }, + { + "start": 851.5, + "end": 852.88, + "probability": 0.9961 + }, + { + "start": 853.18, + "end": 854.6, + "probability": 0.9792 + }, + { + "start": 854.94, + "end": 855.85, + "probability": 0.8506 + }, + { + "start": 856.54, + "end": 858.36, + "probability": 0.6137 + }, + { + "start": 858.44, + "end": 859.52, + "probability": 0.5703 + }, + { + "start": 859.64, + "end": 861.39, + "probability": 0.9622 + }, + { + "start": 861.78, + "end": 861.96, + "probability": 0.3094 + }, + { + "start": 861.96, + "end": 862.6, + "probability": 0.7323 + }, + { + "start": 862.64, + "end": 863.98, + "probability": 0.7125 + }, + { + "start": 864.0, + "end": 864.66, + "probability": 0.9388 + }, + { + "start": 864.72, + "end": 865.6, + "probability": 0.8674 + }, + { + "start": 865.88, + "end": 866.08, + "probability": 0.6578 + }, + { + "start": 866.12, + "end": 870.04, + "probability": 0.8917 + }, + { + "start": 870.12, + "end": 871.6, + "probability": 0.6674 + }, + { + "start": 871.7, + "end": 872.88, + "probability": 0.9086 + }, + { + "start": 872.96, + "end": 873.1, + "probability": 0.7896 + }, + { + "start": 873.2, + "end": 873.7, + "probability": 0.6331 + }, + { + "start": 873.78, + "end": 874.64, + "probability": 0.9155 + }, + { + "start": 874.76, + "end": 875.42, + "probability": 0.8973 + }, + { + "start": 875.88, + "end": 877.81, + "probability": 0.6544 + }, + { + "start": 878.08, + "end": 880.66, + "probability": 0.9814 + }, + { + "start": 880.78, + "end": 884.76, + "probability": 0.959 + }, + { + "start": 884.76, + "end": 888.68, + "probability": 0.7384 + }, + { + "start": 889.12, + "end": 891.64, + "probability": 0.769 + }, + { + "start": 892.86, + "end": 896.86, + "probability": 0.958 + }, + { + "start": 896.88, + "end": 897.8, + "probability": 0.5187 + }, + { + "start": 897.92, + "end": 899.02, + "probability": 0.486 + }, + { + "start": 899.74, + "end": 902.62, + "probability": 0.9849 + }, + { + "start": 902.94, + "end": 904.06, + "probability": 0.9646 + }, + { + "start": 904.18, + "end": 906.06, + "probability": 0.9498 + }, + { + "start": 906.18, + "end": 906.96, + "probability": 0.353 + }, + { + "start": 907.42, + "end": 908.02, + "probability": 0.7646 + }, + { + "start": 908.2, + "end": 911.84, + "probability": 0.9093 + }, + { + "start": 912.14, + "end": 914.31, + "probability": 0.9867 + }, + { + "start": 916.28, + "end": 919.56, + "probability": 0.9721 + }, + { + "start": 920.86, + "end": 921.32, + "probability": 0.6369 + }, + { + "start": 921.32, + "end": 922.6, + "probability": 0.9695 + }, + { + "start": 922.96, + "end": 923.36, + "probability": 0.4152 + }, + { + "start": 923.42, + "end": 924.92, + "probability": 0.5661 + }, + { + "start": 926.2, + "end": 926.54, + "probability": 0.8077 + }, + { + "start": 926.56, + "end": 927.18, + "probability": 0.8506 + }, + { + "start": 927.2, + "end": 930.4, + "probability": 0.8625 + }, + { + "start": 930.4, + "end": 932.12, + "probability": 0.5213 + }, + { + "start": 932.12, + "end": 932.91, + "probability": 0.9409 + }, + { + "start": 933.36, + "end": 934.21, + "probability": 0.9417 + }, + { + "start": 934.98, + "end": 935.68, + "probability": 0.8569 + }, + { + "start": 936.68, + "end": 937.0, + "probability": 0.5562 + }, + { + "start": 937.3, + "end": 940.14, + "probability": 0.5708 + }, + { + "start": 940.14, + "end": 940.8, + "probability": 0.8287 + }, + { + "start": 941.24, + "end": 945.1, + "probability": 0.925 + }, + { + "start": 945.82, + "end": 950.51, + "probability": 0.9966 + }, + { + "start": 951.24, + "end": 953.98, + "probability": 0.991 + }, + { + "start": 954.1, + "end": 959.14, + "probability": 0.9874 + }, + { + "start": 959.64, + "end": 960.82, + "probability": 0.7681 + }, + { + "start": 960.9, + "end": 962.1, + "probability": 0.9442 + }, + { + "start": 962.26, + "end": 967.24, + "probability": 0.9834 + }, + { + "start": 968.06, + "end": 971.24, + "probability": 0.9355 + }, + { + "start": 971.24, + "end": 974.86, + "probability": 0.996 + }, + { + "start": 975.32, + "end": 979.2, + "probability": 0.9954 + }, + { + "start": 979.26, + "end": 982.44, + "probability": 0.7294 + }, + { + "start": 982.6, + "end": 983.84, + "probability": 0.9467 + }, + { + "start": 984.08, + "end": 985.28, + "probability": 0.846 + }, + { + "start": 985.5, + "end": 988.78, + "probability": 0.5819 + }, + { + "start": 989.36, + "end": 993.3, + "probability": 0.9866 + }, + { + "start": 993.34, + "end": 993.74, + "probability": 0.9029 + }, + { + "start": 993.88, + "end": 997.86, + "probability": 0.5107 + }, + { + "start": 998.4, + "end": 999.94, + "probability": 0.8247 + }, + { + "start": 1000.32, + "end": 1002.8, + "probability": 0.7426 + }, + { + "start": 1002.94, + "end": 1004.25, + "probability": 0.9707 + }, + { + "start": 1004.34, + "end": 1005.66, + "probability": 0.9566 + }, + { + "start": 1005.8, + "end": 1006.96, + "probability": 0.8409 + }, + { + "start": 1007.2, + "end": 1009.22, + "probability": 0.6366 + }, + { + "start": 1009.58, + "end": 1012.92, + "probability": 0.6657 + }, + { + "start": 1013.02, + "end": 1015.22, + "probability": 0.3617 + }, + { + "start": 1015.32, + "end": 1019.64, + "probability": 0.8577 + }, + { + "start": 1019.64, + "end": 1021.74, + "probability": 0.9964 + }, + { + "start": 1021.8, + "end": 1022.2, + "probability": 0.8608 + }, + { + "start": 1022.32, + "end": 1025.22, + "probability": 0.9919 + }, + { + "start": 1025.52, + "end": 1028.48, + "probability": 0.9946 + }, + { + "start": 1028.48, + "end": 1031.98, + "probability": 0.9985 + }, + { + "start": 1032.02, + "end": 1033.82, + "probability": 0.735 + }, + { + "start": 1034.06, + "end": 1037.74, + "probability": 0.9638 + }, + { + "start": 1037.86, + "end": 1039.76, + "probability": 0.9136 + }, + { + "start": 1040.24, + "end": 1045.56, + "probability": 0.9874 + }, + { + "start": 1045.56, + "end": 1049.94, + "probability": 0.9928 + }, + { + "start": 1050.38, + "end": 1051.04, + "probability": 0.6665 + }, + { + "start": 1051.32, + "end": 1057.86, + "probability": 0.9971 + }, + { + "start": 1057.86, + "end": 1064.26, + "probability": 0.9959 + }, + { + "start": 1064.32, + "end": 1064.76, + "probability": 0.5383 + }, + { + "start": 1065.12, + "end": 1066.36, + "probability": 0.5059 + }, + { + "start": 1072.44, + "end": 1073.02, + "probability": 0.5498 + }, + { + "start": 1073.1, + "end": 1073.54, + "probability": 0.7732 + }, + { + "start": 1073.62, + "end": 1074.28, + "probability": 0.73 + }, + { + "start": 1074.6, + "end": 1078.92, + "probability": 0.9414 + }, + { + "start": 1079.5, + "end": 1083.1, + "probability": 0.9211 + }, + { + "start": 1084.18, + "end": 1087.7, + "probability": 0.9827 + }, + { + "start": 1087.7, + "end": 1090.5, + "probability": 0.8382 + }, + { + "start": 1091.4, + "end": 1092.8, + "probability": 0.7179 + }, + { + "start": 1093.1, + "end": 1094.34, + "probability": 0.753 + }, + { + "start": 1094.44, + "end": 1096.58, + "probability": 0.9752 + }, + { + "start": 1096.58, + "end": 1101.4, + "probability": 0.977 + }, + { + "start": 1101.9, + "end": 1105.02, + "probability": 0.9836 + }, + { + "start": 1105.02, + "end": 1109.48, + "probability": 0.9888 + }, + { + "start": 1110.06, + "end": 1112.1, + "probability": 0.9961 + }, + { + "start": 1112.48, + "end": 1116.54, + "probability": 0.789 + }, + { + "start": 1116.54, + "end": 1119.34, + "probability": 0.8738 + }, + { + "start": 1119.56, + "end": 1119.9, + "probability": 0.6042 + }, + { + "start": 1119.98, + "end": 1120.4, + "probability": 0.6322 + }, + { + "start": 1120.46, + "end": 1121.98, + "probability": 0.9633 + }, + { + "start": 1122.28, + "end": 1126.24, + "probability": 0.9156 + }, + { + "start": 1126.26, + "end": 1126.58, + "probability": 0.8651 + }, + { + "start": 1127.16, + "end": 1127.6, + "probability": 0.9492 + }, + { + "start": 1128.0, + "end": 1128.9, + "probability": 0.9275 + }, + { + "start": 1128.94, + "end": 1129.9, + "probability": 0.9828 + }, + { + "start": 1130.36, + "end": 1132.44, + "probability": 0.9873 + }, + { + "start": 1132.64, + "end": 1133.54, + "probability": 0.9211 + }, + { + "start": 1134.84, + "end": 1138.66, + "probability": 0.8352 + }, + { + "start": 1139.52, + "end": 1141.13, + "probability": 0.9884 + }, + { + "start": 1141.34, + "end": 1142.28, + "probability": 0.9189 + }, + { + "start": 1142.61, + "end": 1143.46, + "probability": 0.9351 + }, + { + "start": 1143.56, + "end": 1145.34, + "probability": 0.9119 + }, + { + "start": 1145.38, + "end": 1146.36, + "probability": 0.8392 + }, + { + "start": 1147.22, + "end": 1152.28, + "probability": 0.7701 + }, + { + "start": 1152.42, + "end": 1155.92, + "probability": 0.9866 + }, + { + "start": 1156.56, + "end": 1159.16, + "probability": 0.9917 + }, + { + "start": 1159.4, + "end": 1161.18, + "probability": 0.9929 + }, + { + "start": 1162.06, + "end": 1165.96, + "probability": 0.9967 + }, + { + "start": 1166.08, + "end": 1168.68, + "probability": 0.8577 + }, + { + "start": 1168.8, + "end": 1170.14, + "probability": 0.4006 + }, + { + "start": 1170.22, + "end": 1171.17, + "probability": 0.9177 + }, + { + "start": 1171.58, + "end": 1172.98, + "probability": 0.8095 + }, + { + "start": 1173.4, + "end": 1174.25, + "probability": 0.6424 + }, + { + "start": 1174.4, + "end": 1175.62, + "probability": 0.9681 + }, + { + "start": 1175.96, + "end": 1177.18, + "probability": 0.979 + }, + { + "start": 1178.12, + "end": 1180.32, + "probability": 0.988 + }, + { + "start": 1180.38, + "end": 1183.72, + "probability": 0.9983 + }, + { + "start": 1183.76, + "end": 1185.62, + "probability": 0.9578 + }, + { + "start": 1185.66, + "end": 1186.86, + "probability": 0.9635 + }, + { + "start": 1186.98, + "end": 1191.36, + "probability": 0.9811 + }, + { + "start": 1191.56, + "end": 1192.66, + "probability": 0.9718 + }, + { + "start": 1192.76, + "end": 1196.44, + "probability": 0.9932 + }, + { + "start": 1197.02, + "end": 1201.34, + "probability": 0.9385 + }, + { + "start": 1201.42, + "end": 1202.4, + "probability": 0.8671 + }, + { + "start": 1202.46, + "end": 1202.8, + "probability": 0.7284 + }, + { + "start": 1202.92, + "end": 1203.66, + "probability": 0.7461 + }, + { + "start": 1204.18, + "end": 1205.52, + "probability": 0.5586 + }, + { + "start": 1205.6, + "end": 1206.16, + "probability": 0.5821 + }, + { + "start": 1206.2, + "end": 1207.18, + "probability": 0.9598 + }, + { + "start": 1207.28, + "end": 1207.89, + "probability": 0.8503 + }, + { + "start": 1208.36, + "end": 1208.97, + "probability": 0.9255 + }, + { + "start": 1209.64, + "end": 1211.95, + "probability": 0.9799 + }, + { + "start": 1212.32, + "end": 1214.76, + "probability": 0.8913 + }, + { + "start": 1214.92, + "end": 1216.28, + "probability": 0.9618 + }, + { + "start": 1216.72, + "end": 1218.38, + "probability": 0.9351 + }, + { + "start": 1218.54, + "end": 1218.9, + "probability": 0.5538 + }, + { + "start": 1219.08, + "end": 1219.78, + "probability": 0.7307 + }, + { + "start": 1219.82, + "end": 1220.52, + "probability": 0.573 + }, + { + "start": 1220.88, + "end": 1221.72, + "probability": 0.7164 + }, + { + "start": 1221.8, + "end": 1222.1, + "probability": 0.3643 + }, + { + "start": 1222.96, + "end": 1225.46, + "probability": 0.5979 + }, + { + "start": 1226.2, + "end": 1227.48, + "probability": 0.3971 + }, + { + "start": 1227.58, + "end": 1228.18, + "probability": 0.6378 + }, + { + "start": 1228.4, + "end": 1230.7, + "probability": 0.7513 + }, + { + "start": 1230.76, + "end": 1237.34, + "probability": 0.9851 + }, + { + "start": 1237.76, + "end": 1241.04, + "probability": 0.9732 + }, + { + "start": 1241.38, + "end": 1242.64, + "probability": 0.839 + }, + { + "start": 1242.8, + "end": 1244.14, + "probability": 0.7621 + }, + { + "start": 1244.22, + "end": 1244.92, + "probability": 0.797 + }, + { + "start": 1244.92, + "end": 1245.1, + "probability": 0.2608 + }, + { + "start": 1245.32, + "end": 1245.66, + "probability": 0.4704 + }, + { + "start": 1246.56, + "end": 1248.2, + "probability": 0.9497 + }, + { + "start": 1248.24, + "end": 1252.82, + "probability": 0.995 + }, + { + "start": 1252.9, + "end": 1253.06, + "probability": 0.4656 + }, + { + "start": 1253.14, + "end": 1253.46, + "probability": 0.6343 + }, + { + "start": 1253.52, + "end": 1254.74, + "probability": 0.8951 + }, + { + "start": 1254.8, + "end": 1256.14, + "probability": 0.9873 + }, + { + "start": 1256.62, + "end": 1257.88, + "probability": 0.7002 + }, + { + "start": 1258.61, + "end": 1259.94, + "probability": 0.9949 + }, + { + "start": 1260.06, + "end": 1261.66, + "probability": 0.8332 + }, + { + "start": 1261.96, + "end": 1263.36, + "probability": 0.8881 + }, + { + "start": 1264.24, + "end": 1265.02, + "probability": 0.9848 + }, + { + "start": 1267.58, + "end": 1270.16, + "probability": 0.8589 + }, + { + "start": 1271.34, + "end": 1271.9, + "probability": 0.9902 + }, + { + "start": 1272.62, + "end": 1279.2, + "probability": 0.9807 + }, + { + "start": 1280.54, + "end": 1281.26, + "probability": 0.2511 + }, + { + "start": 1281.4, + "end": 1284.68, + "probability": 0.9119 + }, + { + "start": 1284.68, + "end": 1290.44, + "probability": 0.9972 + }, + { + "start": 1290.62, + "end": 1292.22, + "probability": 0.8296 + }, + { + "start": 1293.44, + "end": 1295.26, + "probability": 0.9956 + }, + { + "start": 1296.36, + "end": 1301.9, + "probability": 0.9717 + }, + { + "start": 1302.1, + "end": 1305.02, + "probability": 0.9638 + }, + { + "start": 1305.78, + "end": 1308.34, + "probability": 0.9954 + }, + { + "start": 1308.42, + "end": 1308.54, + "probability": 0.2864 + }, + { + "start": 1308.68, + "end": 1310.67, + "probability": 0.7845 + }, + { + "start": 1311.52, + "end": 1313.8, + "probability": 0.6637 + }, + { + "start": 1314.0, + "end": 1315.8, + "probability": 0.781 + }, + { + "start": 1316.08, + "end": 1319.5, + "probability": 0.9401 + }, + { + "start": 1320.88, + "end": 1322.92, + "probability": 0.9961 + }, + { + "start": 1323.06, + "end": 1326.94, + "probability": 0.9959 + }, + { + "start": 1327.44, + "end": 1327.98, + "probability": 0.4871 + }, + { + "start": 1328.08, + "end": 1328.76, + "probability": 0.9114 + }, + { + "start": 1328.82, + "end": 1331.16, + "probability": 0.7928 + }, + { + "start": 1331.74, + "end": 1335.84, + "probability": 0.9902 + }, + { + "start": 1335.84, + "end": 1337.76, + "probability": 0.9246 + }, + { + "start": 1337.76, + "end": 1338.64, + "probability": 0.5441 + }, + { + "start": 1339.02, + "end": 1341.8, + "probability": 0.9634 + }, + { + "start": 1342.38, + "end": 1343.06, + "probability": 0.4147 + }, + { + "start": 1344.57, + "end": 1347.32, + "probability": 0.9622 + }, + { + "start": 1347.84, + "end": 1348.28, + "probability": 0.0148 + }, + { + "start": 1349.46, + "end": 1350.27, + "probability": 0.3801 + }, + { + "start": 1350.94, + "end": 1351.1, + "probability": 0.5616 + }, + { + "start": 1351.2, + "end": 1353.06, + "probability": 0.6852 + }, + { + "start": 1353.4, + "end": 1357.46, + "probability": 0.9026 + }, + { + "start": 1357.46, + "end": 1360.6, + "probability": 0.7593 + }, + { + "start": 1360.72, + "end": 1363.12, + "probability": 0.9945 + }, + { + "start": 1364.8, + "end": 1366.5, + "probability": 0.6848 + }, + { + "start": 1366.7, + "end": 1367.93, + "probability": 0.9065 + }, + { + "start": 1368.78, + "end": 1371.76, + "probability": 0.9928 + }, + { + "start": 1371.76, + "end": 1375.32, + "probability": 0.9949 + }, + { + "start": 1376.48, + "end": 1378.36, + "probability": 0.9832 + }, + { + "start": 1379.06, + "end": 1380.6, + "probability": 0.6414 + }, + { + "start": 1381.28, + "end": 1382.54, + "probability": 0.9036 + }, + { + "start": 1382.62, + "end": 1384.04, + "probability": 0.9868 + }, + { + "start": 1384.18, + "end": 1384.9, + "probability": 0.7146 + }, + { + "start": 1385.66, + "end": 1389.87, + "probability": 0.9917 + }, + { + "start": 1390.06, + "end": 1391.44, + "probability": 0.9673 + }, + { + "start": 1391.84, + "end": 1392.84, + "probability": 0.9937 + }, + { + "start": 1394.88, + "end": 1396.98, + "probability": 0.5032 + }, + { + "start": 1397.56, + "end": 1401.92, + "probability": 0.7568 + }, + { + "start": 1402.98, + "end": 1407.24, + "probability": 0.9962 + }, + { + "start": 1407.3, + "end": 1408.64, + "probability": 0.9515 + }, + { + "start": 1408.78, + "end": 1410.03, + "probability": 0.7289 + }, + { + "start": 1410.9, + "end": 1413.84, + "probability": 0.7847 + }, + { + "start": 1414.66, + "end": 1417.32, + "probability": 0.919 + }, + { + "start": 1418.96, + "end": 1422.82, + "probability": 0.9893 + }, + { + "start": 1423.46, + "end": 1424.1, + "probability": 0.7177 + }, + { + "start": 1424.16, + "end": 1424.9, + "probability": 0.5108 + }, + { + "start": 1425.04, + "end": 1425.86, + "probability": 0.5175 + }, + { + "start": 1426.04, + "end": 1427.14, + "probability": 0.9894 + }, + { + "start": 1427.26, + "end": 1429.66, + "probability": 0.9858 + }, + { + "start": 1431.28, + "end": 1433.3, + "probability": 0.9946 + }, + { + "start": 1433.48, + "end": 1435.46, + "probability": 0.9874 + }, + { + "start": 1435.56, + "end": 1438.0, + "probability": 0.986 + }, + { + "start": 1438.68, + "end": 1441.18, + "probability": 0.9875 + }, + { + "start": 1441.28, + "end": 1443.7, + "probability": 0.962 + }, + { + "start": 1445.02, + "end": 1449.76, + "probability": 0.9958 + }, + { + "start": 1449.82, + "end": 1450.56, + "probability": 0.8551 + }, + { + "start": 1450.96, + "end": 1451.74, + "probability": 0.7915 + }, + { + "start": 1451.94, + "end": 1454.88, + "probability": 0.705 + }, + { + "start": 1455.44, + "end": 1458.16, + "probability": 0.7649 + }, + { + "start": 1458.28, + "end": 1459.64, + "probability": 0.223 + }, + { + "start": 1459.8, + "end": 1460.96, + "probability": 0.7402 + }, + { + "start": 1461.8, + "end": 1464.22, + "probability": 0.9014 + }, + { + "start": 1464.24, + "end": 1465.3, + "probability": 0.9391 + }, + { + "start": 1466.26, + "end": 1467.98, + "probability": 0.9907 + }, + { + "start": 1468.5, + "end": 1472.0, + "probability": 0.824 + }, + { + "start": 1472.68, + "end": 1476.13, + "probability": 0.9542 + }, + { + "start": 1476.96, + "end": 1478.25, + "probability": 0.9958 + }, + { + "start": 1479.04, + "end": 1481.09, + "probability": 0.998 + }, + { + "start": 1481.22, + "end": 1484.28, + "probability": 0.9812 + }, + { + "start": 1484.46, + "end": 1488.14, + "probability": 0.9457 + }, + { + "start": 1488.9, + "end": 1494.66, + "probability": 0.9892 + }, + { + "start": 1494.66, + "end": 1501.05, + "probability": 0.9963 + }, + { + "start": 1502.98, + "end": 1503.22, + "probability": 0.0424 + }, + { + "start": 1503.22, + "end": 1503.22, + "probability": 0.0511 + }, + { + "start": 1503.22, + "end": 1503.22, + "probability": 0.1823 + }, + { + "start": 1503.22, + "end": 1509.1, + "probability": 0.7071 + }, + { + "start": 1509.4, + "end": 1513.64, + "probability": 0.6344 + }, + { + "start": 1514.18, + "end": 1517.08, + "probability": 0.7717 + }, + { + "start": 1517.18, + "end": 1522.1, + "probability": 0.9653 + }, + { + "start": 1522.48, + "end": 1523.52, + "probability": 0.8949 + }, + { + "start": 1523.82, + "end": 1524.75, + "probability": 0.9146 + }, + { + "start": 1525.1, + "end": 1526.34, + "probability": 0.9686 + }, + { + "start": 1526.68, + "end": 1530.96, + "probability": 0.9837 + }, + { + "start": 1531.0, + "end": 1533.21, + "probability": 0.8031 + }, + { + "start": 1533.46, + "end": 1534.56, + "probability": 0.9459 + }, + { + "start": 1534.96, + "end": 1536.66, + "probability": 0.9203 + }, + { + "start": 1536.7, + "end": 1538.1, + "probability": 0.7467 + }, + { + "start": 1538.46, + "end": 1539.68, + "probability": 0.997 + }, + { + "start": 1539.74, + "end": 1543.7, + "probability": 0.9766 + }, + { + "start": 1543.74, + "end": 1544.7, + "probability": 0.6743 + }, + { + "start": 1544.72, + "end": 1545.1, + "probability": 0.581 + }, + { + "start": 1545.2, + "end": 1548.8, + "probability": 0.7969 + }, + { + "start": 1549.02, + "end": 1551.68, + "probability": 0.9138 + }, + { + "start": 1551.74, + "end": 1555.12, + "probability": 0.9712 + }, + { + "start": 1555.6, + "end": 1557.5, + "probability": 0.9801 + }, + { + "start": 1557.88, + "end": 1560.46, + "probability": 0.5461 + }, + { + "start": 1561.14, + "end": 1561.7, + "probability": 0.7253 + }, + { + "start": 1561.76, + "end": 1562.52, + "probability": 0.6108 + }, + { + "start": 1562.56, + "end": 1563.1, + "probability": 0.5093 + }, + { + "start": 1563.22, + "end": 1565.95, + "probability": 0.6501 + }, + { + "start": 1566.91, + "end": 1569.0, + "probability": 0.9193 + }, + { + "start": 1569.56, + "end": 1571.45, + "probability": 0.7684 + }, + { + "start": 1573.05, + "end": 1577.38, + "probability": 0.9429 + }, + { + "start": 1577.86, + "end": 1580.98, + "probability": 0.9849 + }, + { + "start": 1582.18, + "end": 1583.6, + "probability": 0.9751 + }, + { + "start": 1584.58, + "end": 1585.94, + "probability": 0.9766 + }, + { + "start": 1586.56, + "end": 1592.39, + "probability": 0.9961 + }, + { + "start": 1593.06, + "end": 1593.6, + "probability": 0.7589 + }, + { + "start": 1594.14, + "end": 1598.64, + "probability": 0.7516 + }, + { + "start": 1598.94, + "end": 1602.04, + "probability": 0.9514 + }, + { + "start": 1603.46, + "end": 1605.58, + "probability": 0.9749 + }, + { + "start": 1613.0, + "end": 1616.38, + "probability": 0.4026 + }, + { + "start": 1616.92, + "end": 1619.8, + "probability": 0.9824 + }, + { + "start": 1619.8, + "end": 1625.22, + "probability": 0.8787 + }, + { + "start": 1625.64, + "end": 1627.58, + "probability": 0.9985 + }, + { + "start": 1627.58, + "end": 1631.2, + "probability": 0.8547 + }, + { + "start": 1631.26, + "end": 1632.08, + "probability": 0.6432 + }, + { + "start": 1633.2, + "end": 1634.54, + "probability": 0.6492 + }, + { + "start": 1635.0, + "end": 1636.58, + "probability": 0.5665 + }, + { + "start": 1637.64, + "end": 1639.12, + "probability": 0.7988 + }, + { + "start": 1639.12, + "end": 1639.88, + "probability": 0.611 + }, + { + "start": 1640.24, + "end": 1640.98, + "probability": 0.6845 + }, + { + "start": 1647.24, + "end": 1647.98, + "probability": 0.2613 + }, + { + "start": 1648.0, + "end": 1648.46, + "probability": 0.4812 + }, + { + "start": 1648.48, + "end": 1649.44, + "probability": 0.5625 + }, + { + "start": 1649.64, + "end": 1653.48, + "probability": 0.9727 + }, + { + "start": 1653.68, + "end": 1658.2, + "probability": 0.4207 + }, + { + "start": 1658.84, + "end": 1663.6, + "probability": 0.9288 + }, + { + "start": 1664.48, + "end": 1668.32, + "probability": 0.9946 + }, + { + "start": 1669.0, + "end": 1669.92, + "probability": 0.941 + }, + { + "start": 1670.62, + "end": 1672.71, + "probability": 0.8427 + }, + { + "start": 1673.28, + "end": 1677.28, + "probability": 0.9698 + }, + { + "start": 1677.62, + "end": 1679.48, + "probability": 0.9248 + }, + { + "start": 1679.52, + "end": 1680.6, + "probability": 0.5898 + }, + { + "start": 1680.66, + "end": 1680.92, + "probability": 0.6779 + }, + { + "start": 1681.06, + "end": 1681.72, + "probability": 0.4899 + }, + { + "start": 1682.02, + "end": 1685.22, + "probability": 0.8698 + }, + { + "start": 1685.42, + "end": 1689.04, + "probability": 0.9151 + }, + { + "start": 1689.04, + "end": 1694.88, + "probability": 0.9693 + }, + { + "start": 1695.36, + "end": 1698.5, + "probability": 0.9336 + }, + { + "start": 1698.5, + "end": 1703.6, + "probability": 0.9799 + }, + { + "start": 1703.6, + "end": 1704.38, + "probability": 0.4345 + }, + { + "start": 1704.5, + "end": 1706.7, + "probability": 0.9815 + }, + { + "start": 1707.72, + "end": 1709.36, + "probability": 0.7066 + }, + { + "start": 1709.72, + "end": 1712.68, + "probability": 0.9856 + }, + { + "start": 1712.9, + "end": 1713.68, + "probability": 0.5665 + }, + { + "start": 1714.47, + "end": 1717.46, + "probability": 0.9553 + }, + { + "start": 1717.62, + "end": 1719.7, + "probability": 0.8723 + }, + { + "start": 1719.7, + "end": 1722.78, + "probability": 0.8436 + }, + { + "start": 1723.76, + "end": 1724.62, + "probability": 0.6509 + }, + { + "start": 1725.02, + "end": 1726.04, + "probability": 0.514 + }, + { + "start": 1726.12, + "end": 1727.8, + "probability": 0.8399 + }, + { + "start": 1728.2, + "end": 1732.68, + "probability": 0.8611 + }, + { + "start": 1733.36, + "end": 1735.62, + "probability": 0.791 + }, + { + "start": 1736.06, + "end": 1736.92, + "probability": 0.8759 + }, + { + "start": 1737.16, + "end": 1738.38, + "probability": 0.9355 + }, + { + "start": 1738.7, + "end": 1740.85, + "probability": 0.9844 + }, + { + "start": 1741.06, + "end": 1743.0, + "probability": 0.7795 + }, + { + "start": 1744.22, + "end": 1750.66, + "probability": 0.8875 + }, + { + "start": 1750.86, + "end": 1756.06, + "probability": 0.9713 + }, + { + "start": 1756.26, + "end": 1759.52, + "probability": 0.9263 + }, + { + "start": 1760.28, + "end": 1760.66, + "probability": 0.565 + }, + { + "start": 1760.76, + "end": 1762.4, + "probability": 0.7641 + }, + { + "start": 1762.4, + "end": 1767.24, + "probability": 0.8069 + }, + { + "start": 1767.38, + "end": 1768.94, + "probability": 0.8316 + }, + { + "start": 1769.4, + "end": 1773.2, + "probability": 0.9874 + }, + { + "start": 1773.4, + "end": 1774.5, + "probability": 0.9676 + }, + { + "start": 1774.66, + "end": 1775.77, + "probability": 0.7337 + }, + { + "start": 1776.68, + "end": 1778.54, + "probability": 0.8733 + }, + { + "start": 1779.34, + "end": 1782.46, + "probability": 0.9866 + }, + { + "start": 1782.6, + "end": 1787.78, + "probability": 0.9938 + }, + { + "start": 1787.98, + "end": 1792.8, + "probability": 0.9857 + }, + { + "start": 1793.28, + "end": 1794.2, + "probability": 0.4081 + }, + { + "start": 1794.62, + "end": 1795.08, + "probability": 0.6944 + }, + { + "start": 1795.18, + "end": 1804.18, + "probability": 0.7733 + }, + { + "start": 1804.74, + "end": 1809.94, + "probability": 0.9938 + }, + { + "start": 1809.94, + "end": 1815.04, + "probability": 0.9936 + }, + { + "start": 1815.5, + "end": 1821.92, + "probability": 0.9164 + }, + { + "start": 1825.64, + "end": 1827.24, + "probability": 0.4727 + }, + { + "start": 1827.68, + "end": 1830.62, + "probability": 0.5109 + }, + { + "start": 1830.68, + "end": 1835.8, + "probability": 0.669 + }, + { + "start": 1835.8, + "end": 1838.44, + "probability": 0.7785 + }, + { + "start": 1838.54, + "end": 1841.34, + "probability": 0.7923 + }, + { + "start": 1841.4, + "end": 1842.22, + "probability": 0.7302 + }, + { + "start": 1843.56, + "end": 1847.26, + "probability": 0.9005 + }, + { + "start": 1847.26, + "end": 1850.26, + "probability": 0.8986 + }, + { + "start": 1850.52, + "end": 1854.42, + "probability": 0.7856 + }, + { + "start": 1854.64, + "end": 1860.72, + "probability": 0.9785 + }, + { + "start": 1860.72, + "end": 1865.82, + "probability": 0.7805 + }, + { + "start": 1866.2, + "end": 1868.28, + "probability": 0.7531 + }, + { + "start": 1869.38, + "end": 1869.72, + "probability": 0.5049 + }, + { + "start": 1869.96, + "end": 1872.9, + "probability": 0.7932 + }, + { + "start": 1880.37, + "end": 1887.01, + "probability": 0.7246 + }, + { + "start": 1887.13, + "end": 1892.31, + "probability": 0.9881 + }, + { + "start": 1892.51, + "end": 1893.7, + "probability": 0.7087 + }, + { + "start": 1894.47, + "end": 1901.39, + "probability": 0.9923 + }, + { + "start": 1901.47, + "end": 1902.26, + "probability": 0.3601 + }, + { + "start": 1902.71, + "end": 1906.99, + "probability": 0.9539 + }, + { + "start": 1907.89, + "end": 1910.03, + "probability": 0.4813 + }, + { + "start": 1910.19, + "end": 1914.57, + "probability": 0.8635 + }, + { + "start": 1914.57, + "end": 1919.35, + "probability": 0.9604 + }, + { + "start": 1919.55, + "end": 1919.81, + "probability": 0.6849 + }, + { + "start": 1920.15, + "end": 1921.59, + "probability": 0.7797 + }, + { + "start": 1921.91, + "end": 1925.19, + "probability": 0.9866 + }, + { + "start": 1925.31, + "end": 1930.51, + "probability": 0.9979 + }, + { + "start": 1930.51, + "end": 1934.61, + "probability": 0.8993 + }, + { + "start": 1936.31, + "end": 1940.25, + "probability": 0.6307 + }, + { + "start": 1941.65, + "end": 1944.47, + "probability": 0.821 + }, + { + "start": 1944.57, + "end": 1949.87, + "probability": 0.9427 + }, + { + "start": 1949.97, + "end": 1951.21, + "probability": 0.5097 + }, + { + "start": 1952.19, + "end": 1953.51, + "probability": 0.6544 + }, + { + "start": 1953.65, + "end": 1955.89, + "probability": 0.7876 + }, + { + "start": 1955.99, + "end": 1957.67, + "probability": 0.9656 + }, + { + "start": 1958.37, + "end": 1960.07, + "probability": 0.6793 + }, + { + "start": 1960.61, + "end": 1961.69, + "probability": 0.6414 + }, + { + "start": 1961.95, + "end": 1968.05, + "probability": 0.9692 + }, + { + "start": 1968.21, + "end": 1971.02, + "probability": 0.718 + }, + { + "start": 1973.34, + "end": 1975.81, + "probability": 0.4488 + }, + { + "start": 1976.07, + "end": 1979.21, + "probability": 0.6931 + }, + { + "start": 1979.35, + "end": 1979.65, + "probability": 0.6515 + }, + { + "start": 1979.81, + "end": 1983.68, + "probability": 0.7655 + }, + { + "start": 1984.63, + "end": 1986.95, + "probability": 0.7513 + }, + { + "start": 1987.11, + "end": 1989.99, + "probability": 0.2396 + }, + { + "start": 1990.13, + "end": 1990.97, + "probability": 0.4627 + }, + { + "start": 1991.03, + "end": 1991.91, + "probability": 0.5568 + }, + { + "start": 1992.05, + "end": 1996.09, + "probability": 0.9583 + }, + { + "start": 1996.09, + "end": 1999.07, + "probability": 0.9991 + }, + { + "start": 2002.53, + "end": 2007.19, + "probability": 0.9902 + }, + { + "start": 2007.21, + "end": 2010.04, + "probability": 0.9723 + }, + { + "start": 2010.41, + "end": 2016.49, + "probability": 0.8131 + }, + { + "start": 2016.49, + "end": 2018.07, + "probability": 0.9497 + }, + { + "start": 2018.69, + "end": 2019.97, + "probability": 0.757 + }, + { + "start": 2020.07, + "end": 2021.53, + "probability": 0.5723 + }, + { + "start": 2021.71, + "end": 2023.33, + "probability": 0.9526 + }, + { + "start": 2023.47, + "end": 2029.99, + "probability": 0.9694 + }, + { + "start": 2030.03, + "end": 2032.37, + "probability": 0.914 + }, + { + "start": 2032.39, + "end": 2033.33, + "probability": 0.7796 + }, + { + "start": 2034.01, + "end": 2038.85, + "probability": 0.6769 + }, + { + "start": 2039.31, + "end": 2041.47, + "probability": 0.7845 + }, + { + "start": 2041.97, + "end": 2042.63, + "probability": 0.7158 + }, + { + "start": 2042.73, + "end": 2047.27, + "probability": 0.9376 + }, + { + "start": 2047.85, + "end": 2053.59, + "probability": 0.9639 + }, + { + "start": 2053.65, + "end": 2057.75, + "probability": 0.9902 + }, + { + "start": 2058.61, + "end": 2062.01, + "probability": 0.989 + }, + { + "start": 2062.89, + "end": 2067.25, + "probability": 0.9343 + }, + { + "start": 2067.91, + "end": 2072.24, + "probability": 0.9813 + }, + { + "start": 2072.59, + "end": 2073.41, + "probability": 0.5219 + }, + { + "start": 2074.69, + "end": 2079.11, + "probability": 0.9565 + }, + { + "start": 2079.19, + "end": 2085.51, + "probability": 0.9924 + }, + { + "start": 2085.87, + "end": 2086.97, + "probability": 0.9813 + }, + { + "start": 2087.43, + "end": 2088.07, + "probability": 0.7101 + }, + { + "start": 2088.33, + "end": 2088.77, + "probability": 0.6635 + }, + { + "start": 2088.83, + "end": 2090.63, + "probability": 0.9354 + }, + { + "start": 2090.9, + "end": 2094.35, + "probability": 0.8663 + }, + { + "start": 2094.69, + "end": 2096.51, + "probability": 0.7801 + }, + { + "start": 2098.01, + "end": 2099.25, + "probability": 0.5398 + }, + { + "start": 2099.45, + "end": 2101.51, + "probability": 0.8613 + }, + { + "start": 2101.59, + "end": 2102.17, + "probability": 0.7735 + }, + { + "start": 2102.23, + "end": 2104.85, + "probability": 0.8846 + }, + { + "start": 2105.07, + "end": 2110.33, + "probability": 0.9532 + }, + { + "start": 2110.39, + "end": 2114.33, + "probability": 0.9672 + }, + { + "start": 2114.51, + "end": 2116.07, + "probability": 0.6356 + }, + { + "start": 2116.13, + "end": 2116.55, + "probability": 0.0484 + }, + { + "start": 2118.47, + "end": 2120.83, + "probability": 0.9321 + }, + { + "start": 2121.01, + "end": 2123.13, + "probability": 0.989 + }, + { + "start": 2123.76, + "end": 2128.69, + "probability": 0.9797 + }, + { + "start": 2128.79, + "end": 2129.33, + "probability": 0.5885 + }, + { + "start": 2129.73, + "end": 2132.56, + "probability": 0.9694 + }, + { + "start": 2133.73, + "end": 2139.69, + "probability": 0.9583 + }, + { + "start": 2139.69, + "end": 2144.37, + "probability": 0.6915 + }, + { + "start": 2145.53, + "end": 2149.25, + "probability": 0.6747 + }, + { + "start": 2149.79, + "end": 2150.94, + "probability": 0.6605 + }, + { + "start": 2151.11, + "end": 2153.84, + "probability": 0.9152 + }, + { + "start": 2154.49, + "end": 2156.53, + "probability": 0.8872 + }, + { + "start": 2156.75, + "end": 2156.75, + "probability": 0.2798 + }, + { + "start": 2156.75, + "end": 2158.93, + "probability": 0.7483 + }, + { + "start": 2159.19, + "end": 2162.75, + "probability": 0.825 + }, + { + "start": 2163.13, + "end": 2164.65, + "probability": 0.8875 + }, + { + "start": 2165.03, + "end": 2166.72, + "probability": 0.8246 + }, + { + "start": 2167.11, + "end": 2169.55, + "probability": 0.7117 + }, + { + "start": 2170.25, + "end": 2172.57, + "probability": 0.2794 + }, + { + "start": 2172.63, + "end": 2174.77, + "probability": 0.7952 + }, + { + "start": 2175.03, + "end": 2179.29, + "probability": 0.5141 + }, + { + "start": 2179.89, + "end": 2184.51, + "probability": 0.6641 + }, + { + "start": 2184.81, + "end": 2188.3, + "probability": 0.915 + }, + { + "start": 2189.13, + "end": 2191.93, + "probability": 0.9465 + }, + { + "start": 2191.93, + "end": 2196.97, + "probability": 0.9695 + }, + { + "start": 2199.43, + "end": 2205.05, + "probability": 0.9401 + }, + { + "start": 2207.27, + "end": 2209.85, + "probability": 0.9917 + }, + { + "start": 2209.85, + "end": 2214.19, + "probability": 0.9884 + }, + { + "start": 2215.07, + "end": 2221.47, + "probability": 0.9668 + }, + { + "start": 2221.61, + "end": 2225.91, + "probability": 0.9713 + }, + { + "start": 2226.67, + "end": 2228.65, + "probability": 0.9211 + }, + { + "start": 2228.87, + "end": 2232.21, + "probability": 0.9959 + }, + { + "start": 2232.69, + "end": 2237.77, + "probability": 0.9619 + }, + { + "start": 2239.37, + "end": 2241.51, + "probability": 0.6497 + }, + { + "start": 2241.75, + "end": 2249.95, + "probability": 0.9537 + }, + { + "start": 2250.67, + "end": 2254.03, + "probability": 0.9615 + }, + { + "start": 2254.87, + "end": 2259.99, + "probability": 0.933 + }, + { + "start": 2259.99, + "end": 2264.41, + "probability": 0.9917 + }, + { + "start": 2265.65, + "end": 2270.11, + "probability": 0.7574 + }, + { + "start": 2270.19, + "end": 2271.59, + "probability": 0.9139 + }, + { + "start": 2271.95, + "end": 2273.01, + "probability": 0.9887 + }, + { + "start": 2276.27, + "end": 2278.37, + "probability": 0.7118 + }, + { + "start": 2279.09, + "end": 2282.13, + "probability": 0.7554 + }, + { + "start": 2282.13, + "end": 2285.95, + "probability": 0.6748 + }, + { + "start": 2285.95, + "end": 2290.99, + "probability": 0.9683 + }, + { + "start": 2291.87, + "end": 2295.41, + "probability": 0.5764 + }, + { + "start": 2295.71, + "end": 2296.47, + "probability": 0.6631 + }, + { + "start": 2296.69, + "end": 2297.99, + "probability": 0.9575 + }, + { + "start": 2298.05, + "end": 2302.61, + "probability": 0.992 + }, + { + "start": 2303.91, + "end": 2308.59, + "probability": 0.7824 + }, + { + "start": 2308.75, + "end": 2309.25, + "probability": 0.3012 + }, + { + "start": 2309.55, + "end": 2311.85, + "probability": 0.6392 + }, + { + "start": 2312.55, + "end": 2314.77, + "probability": 0.9697 + }, + { + "start": 2314.85, + "end": 2317.3, + "probability": 0.9636 + }, + { + "start": 2318.23, + "end": 2320.91, + "probability": 0.9918 + }, + { + "start": 2321.31, + "end": 2326.71, + "probability": 0.9914 + }, + { + "start": 2326.79, + "end": 2327.63, + "probability": 0.9585 + }, + { + "start": 2328.37, + "end": 2332.11, + "probability": 0.9919 + }, + { + "start": 2332.39, + "end": 2334.17, + "probability": 0.9183 + }, + { + "start": 2334.45, + "end": 2337.69, + "probability": 0.9744 + }, + { + "start": 2340.11, + "end": 2345.29, + "probability": 0.9933 + }, + { + "start": 2345.41, + "end": 2347.29, + "probability": 0.7617 + }, + { + "start": 2347.87, + "end": 2356.23, + "probability": 0.8652 + }, + { + "start": 2356.23, + "end": 2360.91, + "probability": 0.7908 + }, + { + "start": 2361.85, + "end": 2362.33, + "probability": 0.2918 + }, + { + "start": 2362.77, + "end": 2368.37, + "probability": 0.9969 + }, + { + "start": 2370.07, + "end": 2372.13, + "probability": 0.9444 + }, + { + "start": 2372.31, + "end": 2372.93, + "probability": 0.8645 + }, + { + "start": 2373.27, + "end": 2377.29, + "probability": 0.9944 + }, + { + "start": 2378.01, + "end": 2379.99, + "probability": 0.8257 + }, + { + "start": 2381.13, + "end": 2382.51, + "probability": 0.3401 + }, + { + "start": 2382.79, + "end": 2384.07, + "probability": 0.5325 + }, + { + "start": 2384.19, + "end": 2386.25, + "probability": 0.9906 + }, + { + "start": 2386.45, + "end": 2388.29, + "probability": 0.9707 + }, + { + "start": 2388.79, + "end": 2389.37, + "probability": 0.7969 + }, + { + "start": 2389.65, + "end": 2390.35, + "probability": 0.7836 + }, + { + "start": 2390.79, + "end": 2391.61, + "probability": 0.6657 + }, + { + "start": 2391.91, + "end": 2392.73, + "probability": 0.9005 + }, + { + "start": 2392.83, + "end": 2397.55, + "probability": 0.6973 + }, + { + "start": 2397.61, + "end": 2401.35, + "probability": 0.7882 + }, + { + "start": 2401.73, + "end": 2402.29, + "probability": 0.8794 + }, + { + "start": 2402.45, + "end": 2405.09, + "probability": 0.9735 + }, + { + "start": 2405.39, + "end": 2408.15, + "probability": 0.9741 + }, + { + "start": 2408.91, + "end": 2409.71, + "probability": 0.4822 + }, + { + "start": 2410.15, + "end": 2416.29, + "probability": 0.9447 + }, + { + "start": 2417.01, + "end": 2418.09, + "probability": 0.407 + }, + { + "start": 2418.19, + "end": 2423.66, + "probability": 0.8848 + }, + { + "start": 2425.01, + "end": 2425.27, + "probability": 0.5479 + }, + { + "start": 2425.39, + "end": 2426.67, + "probability": 0.9697 + }, + { + "start": 2426.67, + "end": 2430.45, + "probability": 0.958 + }, + { + "start": 2430.95, + "end": 2434.29, + "probability": 0.7275 + }, + { + "start": 2434.35, + "end": 2436.83, + "probability": 0.9762 + }, + { + "start": 2437.15, + "end": 2441.45, + "probability": 0.6487 + }, + { + "start": 2443.35, + "end": 2448.89, + "probability": 0.8554 + }, + { + "start": 2450.33, + "end": 2450.45, + "probability": 0.2946 + }, + { + "start": 2450.47, + "end": 2450.77, + "probability": 0.8408 + }, + { + "start": 2450.89, + "end": 2454.33, + "probability": 0.9957 + }, + { + "start": 2454.33, + "end": 2457.99, + "probability": 0.8753 + }, + { + "start": 2458.05, + "end": 2460.07, + "probability": 0.9215 + }, + { + "start": 2460.65, + "end": 2464.65, + "probability": 0.9225 + }, + { + "start": 2464.97, + "end": 2465.63, + "probability": 0.2811 + }, + { + "start": 2465.71, + "end": 2466.17, + "probability": 0.8934 + }, + { + "start": 2466.47, + "end": 2467.31, + "probability": 0.9156 + }, + { + "start": 2467.57, + "end": 2474.07, + "probability": 0.8908 + }, + { + "start": 2474.07, + "end": 2480.65, + "probability": 0.8152 + }, + { + "start": 2481.11, + "end": 2487.91, + "probability": 0.9858 + }, + { + "start": 2489.29, + "end": 2493.97, + "probability": 0.9761 + }, + { + "start": 2495.01, + "end": 2499.87, + "probability": 0.8827 + }, + { + "start": 2500.15, + "end": 2504.39, + "probability": 0.9198 + }, + { + "start": 2504.41, + "end": 2505.09, + "probability": 0.8803 + }, + { + "start": 2505.11, + "end": 2509.01, + "probability": 0.9614 + }, + { + "start": 2509.11, + "end": 2511.57, + "probability": 0.9795 + }, + { + "start": 2512.07, + "end": 2513.43, + "probability": 0.8343 + }, + { + "start": 2514.99, + "end": 2518.03, + "probability": 0.9724 + }, + { + "start": 2518.19, + "end": 2521.63, + "probability": 0.9382 + }, + { + "start": 2522.77, + "end": 2524.21, + "probability": 0.9619 + }, + { + "start": 2525.19, + "end": 2529.89, + "probability": 0.998 + }, + { + "start": 2531.57, + "end": 2533.39, + "probability": 0.6049 + }, + { + "start": 2533.69, + "end": 2537.81, + "probability": 0.9653 + }, + { + "start": 2538.01, + "end": 2539.39, + "probability": 0.9053 + }, + { + "start": 2539.87, + "end": 2541.83, + "probability": 0.9709 + }, + { + "start": 2542.47, + "end": 2544.57, + "probability": 0.8174 + }, + { + "start": 2544.65, + "end": 2546.73, + "probability": 0.8584 + }, + { + "start": 2546.73, + "end": 2547.91, + "probability": 0.9376 + }, + { + "start": 2548.01, + "end": 2549.11, + "probability": 0.9443 + }, + { + "start": 2549.15, + "end": 2549.31, + "probability": 0.5769 + }, + { + "start": 2551.99, + "end": 2554.65, + "probability": 0.6229 + }, + { + "start": 2555.75, + "end": 2560.63, + "probability": 0.9783 + }, + { + "start": 2560.63, + "end": 2567.27, + "probability": 0.9761 + }, + { + "start": 2568.25, + "end": 2572.89, + "probability": 0.9895 + }, + { + "start": 2573.0, + "end": 2577.29, + "probability": 0.9962 + }, + { + "start": 2577.41, + "end": 2578.51, + "probability": 0.6331 + }, + { + "start": 2578.67, + "end": 2583.09, + "probability": 0.9465 + }, + { + "start": 2583.63, + "end": 2587.83, + "probability": 0.9897 + }, + { + "start": 2588.37, + "end": 2590.81, + "probability": 0.9807 + }, + { + "start": 2591.23, + "end": 2593.65, + "probability": 0.9053 + }, + { + "start": 2593.81, + "end": 2595.37, + "probability": 0.9727 + }, + { + "start": 2596.43, + "end": 2597.53, + "probability": 0.6697 + }, + { + "start": 2597.75, + "end": 2600.27, + "probability": 0.9865 + }, + { + "start": 2600.27, + "end": 2603.67, + "probability": 0.9755 + }, + { + "start": 2603.83, + "end": 2604.39, + "probability": 0.9897 + }, + { + "start": 2605.07, + "end": 2608.65, + "probability": 0.9963 + }, + { + "start": 2608.69, + "end": 2609.63, + "probability": 0.6409 + }, + { + "start": 2609.77, + "end": 2611.15, + "probability": 0.9307 + }, + { + "start": 2611.23, + "end": 2616.13, + "probability": 0.9433 + }, + { + "start": 2616.25, + "end": 2620.61, + "probability": 0.9673 + }, + { + "start": 2621.21, + "end": 2622.87, + "probability": 0.9969 + }, + { + "start": 2623.29, + "end": 2624.95, + "probability": 0.5707 + }, + { + "start": 2629.88, + "end": 2631.81, + "probability": 0.5162 + }, + { + "start": 2631.87, + "end": 2632.11, + "probability": 0.7253 + }, + { + "start": 2632.29, + "end": 2636.11, + "probability": 0.9486 + }, + { + "start": 2636.13, + "end": 2638.73, + "probability": 0.848 + }, + { + "start": 2639.53, + "end": 2644.65, + "probability": 0.7972 + }, + { + "start": 2644.85, + "end": 2649.05, + "probability": 0.8442 + }, + { + "start": 2649.55, + "end": 2652.17, + "probability": 0.7861 + }, + { + "start": 2652.49, + "end": 2652.51, + "probability": 0.4377 + }, + { + "start": 2652.63, + "end": 2654.11, + "probability": 0.9491 + }, + { + "start": 2654.65, + "end": 2658.63, + "probability": 0.9844 + }, + { + "start": 2658.85, + "end": 2660.91, + "probability": 0.9587 + }, + { + "start": 2661.69, + "end": 2663.03, + "probability": 0.5745 + }, + { + "start": 2663.03, + "end": 2664.73, + "probability": 0.6757 + }, + { + "start": 2664.81, + "end": 2666.23, + "probability": 0.8926 + }, + { + "start": 2666.33, + "end": 2671.29, + "probability": 0.9667 + }, + { + "start": 2671.37, + "end": 2672.99, + "probability": 0.7176 + }, + { + "start": 2673.15, + "end": 2674.73, + "probability": 0.7435 + }, + { + "start": 2675.23, + "end": 2677.17, + "probability": 0.9302 + }, + { + "start": 2677.49, + "end": 2678.26, + "probability": 0.9111 + }, + { + "start": 2678.91, + "end": 2680.67, + "probability": 0.554 + }, + { + "start": 2681.05, + "end": 2683.53, + "probability": 0.9077 + }, + { + "start": 2683.57, + "end": 2685.04, + "probability": 0.8962 + }, + { + "start": 2685.61, + "end": 2688.95, + "probability": 0.8294 + }, + { + "start": 2688.95, + "end": 2691.61, + "probability": 0.9323 + }, + { + "start": 2691.95, + "end": 2695.65, + "probability": 0.9811 + }, + { + "start": 2695.75, + "end": 2696.48, + "probability": 0.8314 + }, + { + "start": 2696.95, + "end": 2698.45, + "probability": 0.7101 + }, + { + "start": 2698.53, + "end": 2699.45, + "probability": 0.7645 + }, + { + "start": 2699.83, + "end": 2703.01, + "probability": 0.9929 + }, + { + "start": 2703.15, + "end": 2706.19, + "probability": 0.0591 + }, + { + "start": 2706.19, + "end": 2707.55, + "probability": 0.7472 + }, + { + "start": 2707.71, + "end": 2708.99, + "probability": 0.7235 + }, + { + "start": 2709.37, + "end": 2711.89, + "probability": 0.6218 + }, + { + "start": 2712.09, + "end": 2712.91, + "probability": 0.4792 + }, + { + "start": 2713.36, + "end": 2716.23, + "probability": 0.9821 + }, + { + "start": 2716.33, + "end": 2717.85, + "probability": 0.6945 + }, + { + "start": 2717.95, + "end": 2722.35, + "probability": 0.6599 + }, + { + "start": 2722.59, + "end": 2723.05, + "probability": 0.7 + }, + { + "start": 2723.89, + "end": 2725.37, + "probability": 0.8058 + }, + { + "start": 2726.03, + "end": 2730.17, + "probability": 0.9941 + }, + { + "start": 2731.39, + "end": 2737.11, + "probability": 0.9072 + }, + { + "start": 2737.97, + "end": 2738.37, + "probability": 0.7753 + }, + { + "start": 2738.49, + "end": 2742.97, + "probability": 0.9937 + }, + { + "start": 2743.79, + "end": 2745.37, + "probability": 0.9517 + }, + { + "start": 2745.39, + "end": 2747.39, + "probability": 0.9759 + }, + { + "start": 2747.47, + "end": 2748.89, + "probability": 0.9424 + }, + { + "start": 2748.91, + "end": 2749.9, + "probability": 0.3388 + }, + { + "start": 2752.77, + "end": 2752.77, + "probability": 0.0152 + }, + { + "start": 2752.77, + "end": 2752.77, + "probability": 0.1864 + }, + { + "start": 2752.77, + "end": 2756.01, + "probability": 0.7485 + }, + { + "start": 2756.77, + "end": 2757.77, + "probability": 0.9498 + }, + { + "start": 2758.39, + "end": 2760.27, + "probability": 0.973 + }, + { + "start": 2760.79, + "end": 2763.99, + "probability": 0.5986 + }, + { + "start": 2764.49, + "end": 2767.91, + "probability": 0.7203 + }, + { + "start": 2768.23, + "end": 2771.74, + "probability": 0.9457 + }, + { + "start": 2774.27, + "end": 2778.79, + "probability": 0.997 + }, + { + "start": 2778.89, + "end": 2779.25, + "probability": 0.9328 + }, + { + "start": 2779.33, + "end": 2782.35, + "probability": 0.9834 + }, + { + "start": 2783.21, + "end": 2783.55, + "probability": 0.296 + }, + { + "start": 2783.61, + "end": 2791.51, + "probability": 0.9831 + }, + { + "start": 2791.97, + "end": 2793.47, + "probability": 0.9284 + }, + { + "start": 2793.59, + "end": 2796.24, + "probability": 0.9126 + }, + { + "start": 2797.13, + "end": 2802.91, + "probability": 0.9304 + }, + { + "start": 2805.33, + "end": 2809.77, + "probability": 0.9985 + }, + { + "start": 2810.45, + "end": 2814.17, + "probability": 0.999 + }, + { + "start": 2814.17, + "end": 2818.49, + "probability": 0.9824 + }, + { + "start": 2818.81, + "end": 2821.89, + "probability": 0.8507 + }, + { + "start": 2822.07, + "end": 2823.99, + "probability": 0.899 + }, + { + "start": 2824.69, + "end": 2827.13, + "probability": 0.9973 + }, + { + "start": 2827.13, + "end": 2829.69, + "probability": 0.9868 + }, + { + "start": 2829.77, + "end": 2830.89, + "probability": 0.9854 + }, + { + "start": 2831.11, + "end": 2832.09, + "probability": 0.9779 + }, + { + "start": 2832.49, + "end": 2836.11, + "probability": 0.985 + }, + { + "start": 2836.27, + "end": 2836.79, + "probability": 0.9731 + }, + { + "start": 2837.97, + "end": 2839.39, + "probability": 0.7241 + }, + { + "start": 2839.45, + "end": 2845.07, + "probability": 0.99 + }, + { + "start": 2845.65, + "end": 2848.07, + "probability": 0.8521 + }, + { + "start": 2848.59, + "end": 2850.57, + "probability": 0.884 + }, + { + "start": 2850.95, + "end": 2858.05, + "probability": 0.9822 + }, + { + "start": 2858.05, + "end": 2865.17, + "probability": 0.9735 + }, + { + "start": 2865.35, + "end": 2871.15, + "probability": 0.8873 + }, + { + "start": 2871.31, + "end": 2873.29, + "probability": 0.4118 + }, + { + "start": 2873.61, + "end": 2875.91, + "probability": 0.9595 + }, + { + "start": 2876.41, + "end": 2878.19, + "probability": 0.6726 + }, + { + "start": 2878.79, + "end": 2881.79, + "probability": 0.9431 + }, + { + "start": 2882.37, + "end": 2884.05, + "probability": 0.7725 + }, + { + "start": 2884.05, + "end": 2886.71, + "probability": 0.8362 + }, + { + "start": 2886.85, + "end": 2888.08, + "probability": 0.9194 + }, + { + "start": 2888.65, + "end": 2889.83, + "probability": 0.9838 + }, + { + "start": 2889.91, + "end": 2892.94, + "probability": 0.8786 + }, + { + "start": 2893.09, + "end": 2895.27, + "probability": 0.8638 + }, + { + "start": 2895.53, + "end": 2898.81, + "probability": 0.5835 + }, + { + "start": 2899.15, + "end": 2900.71, + "probability": 0.8306 + }, + { + "start": 2901.53, + "end": 2906.33, + "probability": 0.9971 + }, + { + "start": 2906.63, + "end": 2907.53, + "probability": 0.9547 + }, + { + "start": 2907.59, + "end": 2908.59, + "probability": 0.9482 + }, + { + "start": 2908.73, + "end": 2910.99, + "probability": 0.8385 + }, + { + "start": 2911.07, + "end": 2911.77, + "probability": 0.7484 + }, + { + "start": 2911.81, + "end": 2912.73, + "probability": 0.991 + }, + { + "start": 2912.89, + "end": 2913.91, + "probability": 0.9736 + }, + { + "start": 2913.99, + "end": 2914.91, + "probability": 0.606 + }, + { + "start": 2915.13, + "end": 2916.31, + "probability": 0.9941 + }, + { + "start": 2916.81, + "end": 2919.67, + "probability": 0.8521 + }, + { + "start": 2920.21, + "end": 2922.3, + "probability": 0.922 + }, + { + "start": 2922.67, + "end": 2923.63, + "probability": 0.9839 + }, + { + "start": 2923.63, + "end": 2924.21, + "probability": 0.7559 + }, + { + "start": 2924.31, + "end": 2927.37, + "probability": 0.9971 + }, + { + "start": 2927.85, + "end": 2934.69, + "probability": 0.9683 + }, + { + "start": 2934.69, + "end": 2938.09, + "probability": 0.998 + }, + { + "start": 2938.39, + "end": 2945.41, + "probability": 0.9941 + }, + { + "start": 2945.41, + "end": 2949.37, + "probability": 0.9719 + }, + { + "start": 2949.53, + "end": 2950.17, + "probability": 0.6455 + }, + { + "start": 2950.47, + "end": 2953.71, + "probability": 0.769 + }, + { + "start": 2954.13, + "end": 2957.45, + "probability": 0.9608 + }, + { + "start": 2957.45, + "end": 2962.09, + "probability": 0.785 + }, + { + "start": 2962.45, + "end": 2963.07, + "probability": 0.8586 + }, + { + "start": 2963.15, + "end": 2963.83, + "probability": 0.6189 + }, + { + "start": 2964.17, + "end": 2965.71, + "probability": 0.5174 + }, + { + "start": 2965.81, + "end": 2967.29, + "probability": 0.8954 + }, + { + "start": 2967.29, + "end": 2970.21, + "probability": 0.8317 + }, + { + "start": 2970.49, + "end": 2973.43, + "probability": 0.9574 + }, + { + "start": 2974.03, + "end": 2979.09, + "probability": 0.9932 + }, + { + "start": 2981.49, + "end": 2990.29, + "probability": 0.7317 + }, + { + "start": 2990.29, + "end": 2994.61, + "probability": 0.9815 + }, + { + "start": 2994.83, + "end": 2999.79, + "probability": 0.9631 + }, + { + "start": 3000.63, + "end": 3006.03, + "probability": 0.5726 + }, + { + "start": 3006.75, + "end": 3009.71, + "probability": 0.7686 + }, + { + "start": 3010.33, + "end": 3015.57, + "probability": 0.9705 + }, + { + "start": 3016.05, + "end": 3016.43, + "probability": 0.5412 + }, + { + "start": 3016.57, + "end": 3017.53, + "probability": 0.7838 + }, + { + "start": 3018.03, + "end": 3023.69, + "probability": 0.8402 + }, + { + "start": 3024.31, + "end": 3027.63, + "probability": 0.1523 + }, + { + "start": 3027.93, + "end": 3028.23, + "probability": 0.6104 + }, + { + "start": 3028.49, + "end": 3029.05, + "probability": 0.725 + }, + { + "start": 3029.43, + "end": 3030.59, + "probability": 0.8176 + }, + { + "start": 3030.63, + "end": 3032.25, + "probability": 0.7131 + }, + { + "start": 3032.39, + "end": 3033.27, + "probability": 0.6616 + }, + { + "start": 3033.47, + "end": 3034.11, + "probability": 0.7964 + }, + { + "start": 3034.23, + "end": 3037.47, + "probability": 0.9605 + }, + { + "start": 3038.07, + "end": 3041.99, + "probability": 0.9709 + }, + { + "start": 3042.81, + "end": 3046.67, + "probability": 0.9727 + }, + { + "start": 3046.83, + "end": 3049.45, + "probability": 0.9987 + }, + { + "start": 3049.55, + "end": 3055.77, + "probability": 0.9707 + }, + { + "start": 3056.43, + "end": 3059.55, + "probability": 0.668 + }, + { + "start": 3060.49, + "end": 3065.67, + "probability": 0.9286 + }, + { + "start": 3066.23, + "end": 3070.23, + "probability": 0.9952 + }, + { + "start": 3070.93, + "end": 3072.95, + "probability": 0.9611 + }, + { + "start": 3073.05, + "end": 3075.49, + "probability": 0.9969 + }, + { + "start": 3075.87, + "end": 3081.35, + "probability": 0.9941 + }, + { + "start": 3081.73, + "end": 3083.29, + "probability": 0.9748 + }, + { + "start": 3084.01, + "end": 3091.73, + "probability": 0.953 + }, + { + "start": 3092.41, + "end": 3097.95, + "probability": 0.9985 + }, + { + "start": 3099.27, + "end": 3100.41, + "probability": 0.2636 + }, + { + "start": 3100.71, + "end": 3101.43, + "probability": 0.6911 + }, + { + "start": 3101.61, + "end": 3103.87, + "probability": 0.9885 + }, + { + "start": 3103.95, + "end": 3106.85, + "probability": 0.9893 + }, + { + "start": 3107.59, + "end": 3111.31, + "probability": 0.9324 + }, + { + "start": 3112.68, + "end": 3116.9, + "probability": 0.9968 + }, + { + "start": 3117.85, + "end": 3118.71, + "probability": 0.7563 + }, + { + "start": 3119.45, + "end": 3122.27, + "probability": 0.9968 + }, + { + "start": 3122.79, + "end": 3124.25, + "probability": 0.9895 + }, + { + "start": 3124.35, + "end": 3128.05, + "probability": 0.9958 + }, + { + "start": 3128.05, + "end": 3132.79, + "probability": 0.9817 + }, + { + "start": 3132.91, + "end": 3135.97, + "probability": 0.6894 + }, + { + "start": 3136.17, + "end": 3138.69, + "probability": 0.8527 + }, + { + "start": 3139.11, + "end": 3142.29, + "probability": 0.8481 + }, + { + "start": 3142.29, + "end": 3145.77, + "probability": 0.9857 + }, + { + "start": 3146.93, + "end": 3151.67, + "probability": 0.9196 + }, + { + "start": 3152.21, + "end": 3153.37, + "probability": 0.9863 + }, + { + "start": 3153.41, + "end": 3156.77, + "probability": 0.9482 + }, + { + "start": 3157.15, + "end": 3158.97, + "probability": 0.7214 + }, + { + "start": 3159.75, + "end": 3164.61, + "probability": 0.9712 + }, + { + "start": 3164.67, + "end": 3170.37, + "probability": 0.9925 + }, + { + "start": 3170.53, + "end": 3171.39, + "probability": 0.8306 + }, + { + "start": 3171.53, + "end": 3172.19, + "probability": 0.7405 + }, + { + "start": 3172.27, + "end": 3176.25, + "probability": 0.942 + }, + { + "start": 3176.95, + "end": 3179.31, + "probability": 0.6677 + }, + { + "start": 3180.61, + "end": 3183.43, + "probability": 0.9681 + }, + { + "start": 3183.87, + "end": 3184.71, + "probability": 0.5243 + }, + { + "start": 3184.81, + "end": 3185.41, + "probability": 0.4486 + }, + { + "start": 3186.37, + "end": 3190.73, + "probability": 0.6681 + }, + { + "start": 3191.13, + "end": 3196.89, + "probability": 0.959 + }, + { + "start": 3196.89, + "end": 3200.53, + "probability": 0.9323 + }, + { + "start": 3200.95, + "end": 3203.65, + "probability": 0.9878 + }, + { + "start": 3203.65, + "end": 3205.99, + "probability": 0.9959 + }, + { + "start": 3206.51, + "end": 3210.67, + "probability": 0.9873 + }, + { + "start": 3210.97, + "end": 3211.73, + "probability": 0.8181 + }, + { + "start": 3211.79, + "end": 3215.43, + "probability": 0.9914 + }, + { + "start": 3216.05, + "end": 3219.37, + "probability": 0.9309 + }, + { + "start": 3219.49, + "end": 3220.03, + "probability": 0.769 + }, + { + "start": 3220.15, + "end": 3221.25, + "probability": 0.9867 + }, + { + "start": 3222.2, + "end": 3226.4, + "probability": 0.969 + }, + { + "start": 3226.51, + "end": 3228.85, + "probability": 0.8129 + }, + { + "start": 3229.43, + "end": 3233.77, + "probability": 0.9956 + }, + { + "start": 3233.77, + "end": 3237.69, + "probability": 0.9762 + }, + { + "start": 3237.81, + "end": 3239.31, + "probability": 0.9231 + }, + { + "start": 3239.71, + "end": 3242.43, + "probability": 0.9248 + }, + { + "start": 3242.43, + "end": 3245.99, + "probability": 0.9583 + }, + { + "start": 3246.11, + "end": 3250.07, + "probability": 0.9521 + }, + { + "start": 3250.21, + "end": 3254.57, + "probability": 0.6621 + }, + { + "start": 3255.25, + "end": 3257.35, + "probability": 0.9557 + }, + { + "start": 3257.87, + "end": 3259.47, + "probability": 0.9453 + }, + { + "start": 3259.51, + "end": 3263.31, + "probability": 0.9315 + }, + { + "start": 3264.1, + "end": 3266.65, + "probability": 0.8466 + }, + { + "start": 3266.85, + "end": 3269.87, + "probability": 0.9925 + }, + { + "start": 3270.65, + "end": 3274.79, + "probability": 0.8914 + }, + { + "start": 3275.53, + "end": 3276.13, + "probability": 0.641 + }, + { + "start": 3276.17, + "end": 3278.49, + "probability": 0.9639 + }, + { + "start": 3278.75, + "end": 3280.25, + "probability": 0.7397 + }, + { + "start": 3280.93, + "end": 3283.91, + "probability": 0.9724 + }, + { + "start": 3283.91, + "end": 3289.49, + "probability": 0.979 + }, + { + "start": 3290.13, + "end": 3294.43, + "probability": 0.9651 + }, + { + "start": 3294.99, + "end": 3300.33, + "probability": 0.9698 + }, + { + "start": 3300.93, + "end": 3301.97, + "probability": 0.7266 + }, + { + "start": 3302.05, + "end": 3303.49, + "probability": 0.8571 + }, + { + "start": 3303.73, + "end": 3313.41, + "probability": 0.9391 + }, + { + "start": 3313.41, + "end": 3316.95, + "probability": 0.3495 + }, + { + "start": 3317.23, + "end": 3320.81, + "probability": 0.8591 + }, + { + "start": 3321.59, + "end": 3324.85, + "probability": 0.7397 + }, + { + "start": 3325.75, + "end": 3327.17, + "probability": 0.5832 + }, + { + "start": 3327.37, + "end": 3329.57, + "probability": 0.7494 + }, + { + "start": 3329.61, + "end": 3332.45, + "probability": 0.9681 + }, + { + "start": 3333.03, + "end": 3333.35, + "probability": 0.8065 + }, + { + "start": 3333.45, + "end": 3334.92, + "probability": 0.9966 + }, + { + "start": 3335.37, + "end": 3337.51, + "probability": 0.8969 + }, + { + "start": 3337.59, + "end": 3338.03, + "probability": 0.6635 + }, + { + "start": 3338.11, + "end": 3338.61, + "probability": 0.3849 + }, + { + "start": 3339.29, + "end": 3341.49, + "probability": 0.9211 + }, + { + "start": 3341.63, + "end": 3342.17, + "probability": 0.619 + }, + { + "start": 3342.29, + "end": 3343.07, + "probability": 0.9485 + }, + { + "start": 3343.23, + "end": 3345.19, + "probability": 0.9366 + }, + { + "start": 3345.37, + "end": 3345.61, + "probability": 0.7072 + }, + { + "start": 3345.75, + "end": 3348.09, + "probability": 0.8613 + }, + { + "start": 3349.47, + "end": 3351.45, + "probability": 0.9822 + }, + { + "start": 3352.07, + "end": 3354.11, + "probability": 0.9481 + }, + { + "start": 3354.35, + "end": 3355.31, + "probability": 0.8867 + }, + { + "start": 3355.37, + "end": 3356.57, + "probability": 0.8422 + }, + { + "start": 3356.75, + "end": 3358.61, + "probability": 0.9372 + }, + { + "start": 3358.89, + "end": 3359.41, + "probability": 0.5267 + }, + { + "start": 3359.49, + "end": 3362.89, + "probability": 0.7843 + }, + { + "start": 3363.55, + "end": 3366.03, + "probability": 0.6792 + }, + { + "start": 3366.03, + "end": 3368.61, + "probability": 0.9495 + }, + { + "start": 3371.89, + "end": 3375.07, + "probability": 0.992 + }, + { + "start": 3376.17, + "end": 3383.35, + "probability": 0.9988 + }, + { + "start": 3383.73, + "end": 3386.97, + "probability": 0.9957 + }, + { + "start": 3386.97, + "end": 3391.03, + "probability": 0.9976 + }, + { + "start": 3392.19, + "end": 3393.95, + "probability": 0.9941 + }, + { + "start": 3394.55, + "end": 3398.59, + "probability": 0.9866 + }, + { + "start": 3399.11, + "end": 3400.67, + "probability": 0.6803 + }, + { + "start": 3400.91, + "end": 3403.77, + "probability": 0.981 + }, + { + "start": 3403.95, + "end": 3409.48, + "probability": 0.994 + }, + { + "start": 3409.67, + "end": 3410.93, + "probability": 0.6143 + }, + { + "start": 3411.15, + "end": 3414.89, + "probability": 0.8383 + }, + { + "start": 3415.31, + "end": 3416.99, + "probability": 0.8073 + }, + { + "start": 3417.01, + "end": 3419.2, + "probability": 0.9619 + }, + { + "start": 3419.35, + "end": 3422.89, + "probability": 0.9594 + }, + { + "start": 3422.89, + "end": 3426.79, + "probability": 0.9918 + }, + { + "start": 3428.15, + "end": 3431.17, + "probability": 0.9985 + }, + { + "start": 3431.21, + "end": 3434.29, + "probability": 0.9688 + }, + { + "start": 3434.59, + "end": 3435.5, + "probability": 0.9897 + }, + { + "start": 3435.69, + "end": 3436.69, + "probability": 0.9794 + }, + { + "start": 3436.75, + "end": 3437.47, + "probability": 0.6811 + }, + { + "start": 3437.97, + "end": 3439.81, + "probability": 0.9297 + }, + { + "start": 3440.21, + "end": 3443.91, + "probability": 0.9929 + }, + { + "start": 3444.33, + "end": 3445.43, + "probability": 0.5399 + }, + { + "start": 3445.47, + "end": 3446.15, + "probability": 0.7855 + }, + { + "start": 3451.47, + "end": 3454.79, + "probability": 0.6084 + }, + { + "start": 3454.91, + "end": 3458.69, + "probability": 0.9341 + }, + { + "start": 3459.37, + "end": 3461.23, + "probability": 0.726 + }, + { + "start": 3461.84, + "end": 3467.2, + "probability": 0.7618 + }, + { + "start": 3467.37, + "end": 3472.57, + "probability": 0.9702 + }, + { + "start": 3472.63, + "end": 3473.19, + "probability": 0.7324 + }, + { + "start": 3474.17, + "end": 3480.61, + "probability": 0.7226 + }, + { + "start": 3480.81, + "end": 3482.53, + "probability": 0.599 + }, + { + "start": 3482.53, + "end": 3484.69, + "probability": 0.8458 + }, + { + "start": 3485.29, + "end": 3488.49, + "probability": 0.9088 + }, + { + "start": 3488.83, + "end": 3495.13, + "probability": 0.9858 + }, + { + "start": 3495.13, + "end": 3498.25, + "probability": 0.6257 + }, + { + "start": 3498.27, + "end": 3502.49, + "probability": 0.8327 + }, + { + "start": 3502.63, + "end": 3505.79, + "probability": 0.9969 + }, + { + "start": 3505.79, + "end": 3508.25, + "probability": 0.8223 + }, + { + "start": 3508.69, + "end": 3510.01, + "probability": 0.7812 + }, + { + "start": 3510.43, + "end": 3512.03, + "probability": 0.9575 + }, + { + "start": 3512.31, + "end": 3512.59, + "probability": 0.9279 + }, + { + "start": 3512.69, + "end": 3515.15, + "probability": 0.9151 + }, + { + "start": 3515.55, + "end": 3520.41, + "probability": 0.9942 + }, + { + "start": 3520.87, + "end": 3523.53, + "probability": 0.8327 + }, + { + "start": 3523.57, + "end": 3529.83, + "probability": 0.8594 + }, + { + "start": 3530.03, + "end": 3530.33, + "probability": 0.474 + }, + { + "start": 3530.59, + "end": 3530.93, + "probability": 0.6514 + }, + { + "start": 3531.15, + "end": 3535.45, + "probability": 0.9124 + }, + { + "start": 3535.99, + "end": 3537.29, + "probability": 0.9575 + }, + { + "start": 3537.43, + "end": 3538.34, + "probability": 0.7651 + }, + { + "start": 3538.99, + "end": 3539.87, + "probability": 0.3899 + }, + { + "start": 3540.53, + "end": 3543.01, + "probability": 0.6199 + }, + { + "start": 3543.15, + "end": 3543.65, + "probability": 0.5902 + }, + { + "start": 3543.91, + "end": 3547.61, + "probability": 0.8186 + }, + { + "start": 3547.77, + "end": 3550.33, + "probability": 0.8842 + }, + { + "start": 3550.47, + "end": 3550.97, + "probability": 0.4992 + }, + { + "start": 3551.09, + "end": 3553.61, + "probability": 0.866 + }, + { + "start": 3554.35, + "end": 3556.27, + "probability": 0.7797 + }, + { + "start": 3556.43, + "end": 3561.73, + "probability": 0.8401 + }, + { + "start": 3562.11, + "end": 3562.69, + "probability": 0.6639 + }, + { + "start": 3562.87, + "end": 3570.09, + "probability": 0.9136 + }, + { + "start": 3570.09, + "end": 3573.97, + "probability": 0.7483 + }, + { + "start": 3574.21, + "end": 3575.13, + "probability": 0.6694 + }, + { + "start": 3575.37, + "end": 3576.91, + "probability": 0.7807 + }, + { + "start": 3576.97, + "end": 3581.01, + "probability": 0.9545 + }, + { + "start": 3581.43, + "end": 3583.45, + "probability": 0.9634 + }, + { + "start": 3583.83, + "end": 3586.03, + "probability": 0.9587 + }, + { + "start": 3586.29, + "end": 3587.19, + "probability": 0.9664 + }, + { + "start": 3587.27, + "end": 3591.09, + "probability": 0.8488 + }, + { + "start": 3591.35, + "end": 3592.55, + "probability": 0.7929 + }, + { + "start": 3592.73, + "end": 3593.97, + "probability": 0.5966 + }, + { + "start": 3594.07, + "end": 3596.11, + "probability": 0.9256 + }, + { + "start": 3596.33, + "end": 3598.33, + "probability": 0.7202 + }, + { + "start": 3598.43, + "end": 3598.83, + "probability": 0.7448 + }, + { + "start": 3600.63, + "end": 3602.51, + "probability": 0.7035 + }, + { + "start": 3602.57, + "end": 3605.11, + "probability": 0.8723 + }, + { + "start": 3605.25, + "end": 3605.71, + "probability": 0.7172 + }, + { + "start": 3605.81, + "end": 3606.89, + "probability": 0.9833 + }, + { + "start": 3606.89, + "end": 3609.15, + "probability": 0.4636 + }, + { + "start": 3609.23, + "end": 3612.67, + "probability": 0.7093 + }, + { + "start": 3614.25, + "end": 3614.99, + "probability": 0.5428 + }, + { + "start": 3615.05, + "end": 3616.03, + "probability": 0.6838 + }, + { + "start": 3616.49, + "end": 3617.15, + "probability": 0.9216 + }, + { + "start": 3617.39, + "end": 3622.45, + "probability": 0.9907 + }, + { + "start": 3622.69, + "end": 3628.53, + "probability": 0.9918 + }, + { + "start": 3629.47, + "end": 3631.09, + "probability": 0.8857 + }, + { + "start": 3631.27, + "end": 3632.29, + "probability": 0.82 + }, + { + "start": 3632.47, + "end": 3638.07, + "probability": 0.9976 + }, + { + "start": 3638.13, + "end": 3638.59, + "probability": 0.8929 + }, + { + "start": 3638.77, + "end": 3639.65, + "probability": 0.5696 + }, + { + "start": 3639.79, + "end": 3641.65, + "probability": 0.9836 + }, + { + "start": 3641.85, + "end": 3644.69, + "probability": 0.8526 + }, + { + "start": 3644.75, + "end": 3647.11, + "probability": 0.9718 + }, + { + "start": 3647.63, + "end": 3649.33, + "probability": 0.9587 + }, + { + "start": 3649.43, + "end": 3653.51, + "probability": 0.9772 + }, + { + "start": 3653.63, + "end": 3655.22, + "probability": 0.9939 + }, + { + "start": 3655.97, + "end": 3657.11, + "probability": 0.8212 + }, + { + "start": 3657.25, + "end": 3660.11, + "probability": 0.8925 + }, + { + "start": 3660.53, + "end": 3663.81, + "probability": 0.9992 + }, + { + "start": 3664.35, + "end": 3666.06, + "probability": 0.9732 + }, + { + "start": 3666.65, + "end": 3668.85, + "probability": 0.9429 + }, + { + "start": 3668.99, + "end": 3671.67, + "probability": 0.8211 + }, + { + "start": 3671.71, + "end": 3671.83, + "probability": 0.3517 + }, + { + "start": 3671.89, + "end": 3672.05, + "probability": 0.7402 + }, + { + "start": 3672.17, + "end": 3673.85, + "probability": 0.7743 + }, + { + "start": 3674.31, + "end": 3676.05, + "probability": 0.8715 + }, + { + "start": 3676.31, + "end": 3679.85, + "probability": 0.9948 + }, + { + "start": 3680.37, + "end": 3682.35, + "probability": 0.99 + }, + { + "start": 3682.47, + "end": 3683.21, + "probability": 0.6577 + }, + { + "start": 3683.33, + "end": 3685.99, + "probability": 0.9819 + }, + { + "start": 3687.37, + "end": 3692.97, + "probability": 0.9786 + }, + { + "start": 3693.43, + "end": 3695.93, + "probability": 0.9922 + }, + { + "start": 3695.93, + "end": 3700.67, + "probability": 0.9871 + }, + { + "start": 3701.17, + "end": 3702.65, + "probability": 0.993 + }, + { + "start": 3702.81, + "end": 3705.11, + "probability": 0.9906 + }, + { + "start": 3705.25, + "end": 3705.43, + "probability": 0.6201 + }, + { + "start": 3705.57, + "end": 3705.83, + "probability": 0.9275 + }, + { + "start": 3705.89, + "end": 3710.19, + "probability": 0.939 + }, + { + "start": 3710.51, + "end": 3714.71, + "probability": 0.9742 + }, + { + "start": 3714.71, + "end": 3718.71, + "probability": 0.987 + }, + { + "start": 3719.27, + "end": 3721.09, + "probability": 0.992 + }, + { + "start": 3721.39, + "end": 3723.41, + "probability": 0.978 + }, + { + "start": 3723.63, + "end": 3724.98, + "probability": 0.9797 + }, + { + "start": 3725.35, + "end": 3726.47, + "probability": 0.9507 + }, + { + "start": 3726.75, + "end": 3728.33, + "probability": 0.9567 + }, + { + "start": 3728.47, + "end": 3729.61, + "probability": 0.9783 + }, + { + "start": 3729.87, + "end": 3731.21, + "probability": 0.8807 + }, + { + "start": 3731.57, + "end": 3733.79, + "probability": 0.968 + }, + { + "start": 3733.83, + "end": 3734.39, + "probability": 0.5343 + }, + { + "start": 3734.39, + "end": 3734.47, + "probability": 0.396 + }, + { + "start": 3734.47, + "end": 3734.97, + "probability": 0.6054 + }, + { + "start": 3735.75, + "end": 3735.75, + "probability": 0.1394 + }, + { + "start": 3735.75, + "end": 3737.3, + "probability": 0.3803 + }, + { + "start": 3743.23, + "end": 3743.93, + "probability": 0.5517 + }, + { + "start": 3743.99, + "end": 3744.39, + "probability": 0.7705 + }, + { + "start": 3744.53, + "end": 3745.49, + "probability": 0.7168 + }, + { + "start": 3745.49, + "end": 3745.93, + "probability": 0.7371 + }, + { + "start": 3746.03, + "end": 3749.83, + "probability": 0.9772 + }, + { + "start": 3750.91, + "end": 3756.23, + "probability": 0.9847 + }, + { + "start": 3756.89, + "end": 3759.31, + "probability": 0.5013 + }, + { + "start": 3760.17, + "end": 3762.85, + "probability": 0.9902 + }, + { + "start": 3762.91, + "end": 3765.84, + "probability": 0.9825 + }, + { + "start": 3766.53, + "end": 3771.75, + "probability": 0.9196 + }, + { + "start": 3771.93, + "end": 3774.01, + "probability": 0.9847 + }, + { + "start": 3774.15, + "end": 3777.25, + "probability": 0.873 + }, + { + "start": 3777.69, + "end": 3779.97, + "probability": 0.6931 + }, + { + "start": 3780.51, + "end": 3782.87, + "probability": 0.8679 + }, + { + "start": 3783.39, + "end": 3783.91, + "probability": 0.7083 + }, + { + "start": 3784.05, + "end": 3784.67, + "probability": 0.4355 + }, + { + "start": 3785.07, + "end": 3786.91, + "probability": 0.7536 + }, + { + "start": 3787.35, + "end": 3791.01, + "probability": 0.9238 + }, + { + "start": 3791.11, + "end": 3794.61, + "probability": 0.684 + }, + { + "start": 3796.21, + "end": 3801.45, + "probability": 0.6771 + }, + { + "start": 3802.13, + "end": 3808.93, + "probability": 0.7524 + }, + { + "start": 3809.75, + "end": 3811.07, + "probability": 0.6758 + }, + { + "start": 3811.43, + "end": 3813.13, + "probability": 0.9644 + }, + { + "start": 3813.71, + "end": 3818.01, + "probability": 0.9482 + }, + { + "start": 3818.33, + "end": 3820.27, + "probability": 0.9641 + }, + { + "start": 3820.59, + "end": 3821.65, + "probability": 0.7551 + }, + { + "start": 3821.73, + "end": 3822.41, + "probability": 0.8754 + }, + { + "start": 3822.69, + "end": 3824.19, + "probability": 0.9153 + }, + { + "start": 3824.31, + "end": 3826.87, + "probability": 0.9462 + }, + { + "start": 3827.07, + "end": 3830.85, + "probability": 0.9245 + }, + { + "start": 3830.95, + "end": 3831.11, + "probability": 0.7538 + }, + { + "start": 3831.25, + "end": 3831.55, + "probability": 0.6253 + }, + { + "start": 3831.67, + "end": 3832.74, + "probability": 0.7351 + }, + { + "start": 3833.27, + "end": 3833.29, + "probability": 0.286 + }, + { + "start": 3833.29, + "end": 3834.29, + "probability": 0.4438 + }, + { + "start": 3834.39, + "end": 3836.73, + "probability": 0.9019 + }, + { + "start": 3837.01, + "end": 3838.67, + "probability": 0.9489 + }, + { + "start": 3840.39, + "end": 3845.43, + "probability": 0.9904 + }, + { + "start": 3845.95, + "end": 3850.23, + "probability": 0.9756 + }, + { + "start": 3850.23, + "end": 3854.03, + "probability": 0.9985 + }, + { + "start": 3856.3, + "end": 3862.69, + "probability": 0.978 + }, + { + "start": 3862.85, + "end": 3864.31, + "probability": 0.9633 + }, + { + "start": 3864.95, + "end": 3867.89, + "probability": 0.9846 + }, + { + "start": 3868.39, + "end": 3872.87, + "probability": 0.9829 + }, + { + "start": 3873.97, + "end": 3880.87, + "probability": 0.9188 + }, + { + "start": 3880.97, + "end": 3882.49, + "probability": 0.9898 + }, + { + "start": 3883.19, + "end": 3888.39, + "probability": 0.9163 + }, + { + "start": 3889.13, + "end": 3891.09, + "probability": 0.85 + }, + { + "start": 3891.19, + "end": 3892.25, + "probability": 0.7075 + }, + { + "start": 3892.35, + "end": 3893.89, + "probability": 0.8751 + }, + { + "start": 3894.47, + "end": 3898.03, + "probability": 0.9867 + }, + { + "start": 3898.63, + "end": 3901.45, + "probability": 0.979 + }, + { + "start": 3901.45, + "end": 3904.49, + "probability": 0.9216 + }, + { + "start": 3905.23, + "end": 3908.81, + "probability": 0.8086 + }, + { + "start": 3908.89, + "end": 3909.19, + "probability": 0.5056 + }, + { + "start": 3909.33, + "end": 3915.37, + "probability": 0.9912 + }, + { + "start": 3915.45, + "end": 3915.99, + "probability": 0.9592 + }, + { + "start": 3917.83, + "end": 3918.37, + "probability": 0.6841 + }, + { + "start": 3919.99, + "end": 3922.83, + "probability": 0.8013 + }, + { + "start": 3924.27, + "end": 3927.27, + "probability": 0.9854 + }, + { + "start": 3927.55, + "end": 3928.57, + "probability": 0.8631 + }, + { + "start": 3928.69, + "end": 3929.95, + "probability": 0.729 + }, + { + "start": 3930.79, + "end": 3938.29, + "probability": 0.9859 + }, + { + "start": 3938.29, + "end": 3942.32, + "probability": 0.9526 + }, + { + "start": 3942.61, + "end": 3949.01, + "probability": 0.9832 + }, + { + "start": 3949.51, + "end": 3956.93, + "probability": 0.9852 + }, + { + "start": 3957.25, + "end": 3958.27, + "probability": 0.7809 + }, + { + "start": 3958.43, + "end": 3958.93, + "probability": 0.8306 + }, + { + "start": 3959.35, + "end": 3961.11, + "probability": 0.9039 + }, + { + "start": 3961.65, + "end": 3962.23, + "probability": 0.4536 + }, + { + "start": 3962.35, + "end": 3963.41, + "probability": 0.8784 + }, + { + "start": 3963.91, + "end": 3965.61, + "probability": 0.6889 + }, + { + "start": 3965.71, + "end": 3967.85, + "probability": 0.7495 + }, + { + "start": 3968.69, + "end": 3971.13, + "probability": 0.9902 + }, + { + "start": 3971.13, + "end": 3974.89, + "probability": 0.9272 + }, + { + "start": 3975.47, + "end": 3978.95, + "probability": 0.9595 + }, + { + "start": 3979.51, + "end": 3980.31, + "probability": 0.5636 + }, + { + "start": 3980.93, + "end": 3983.91, + "probability": 0.9558 + }, + { + "start": 3984.15, + "end": 3987.11, + "probability": 0.9851 + }, + { + "start": 3987.11, + "end": 3990.81, + "probability": 0.9988 + }, + { + "start": 3990.89, + "end": 3994.37, + "probability": 0.8586 + }, + { + "start": 3994.43, + "end": 3998.51, + "probability": 0.972 + }, + { + "start": 3998.55, + "end": 4003.05, + "probability": 0.9591 + }, + { + "start": 4003.51, + "end": 4004.27, + "probability": 0.5359 + }, + { + "start": 4004.53, + "end": 4007.33, + "probability": 0.9788 + }, + { + "start": 4007.69, + "end": 4010.91, + "probability": 0.8052 + }, + { + "start": 4011.31, + "end": 4014.53, + "probability": 0.9019 + }, + { + "start": 4014.63, + "end": 4016.41, + "probability": 0.9844 + }, + { + "start": 4016.91, + "end": 4017.46, + "probability": 0.6004 + }, + { + "start": 4017.73, + "end": 4019.37, + "probability": 0.9517 + }, + { + "start": 4019.75, + "end": 4021.69, + "probability": 0.9847 + }, + { + "start": 4022.07, + "end": 4024.19, + "probability": 0.8953 + }, + { + "start": 4024.23, + "end": 4025.51, + "probability": 0.9504 + }, + { + "start": 4025.69, + "end": 4027.49, + "probability": 0.9917 + }, + { + "start": 4028.05, + "end": 4029.05, + "probability": 0.9388 + }, + { + "start": 4029.17, + "end": 4032.33, + "probability": 0.9931 + }, + { + "start": 4032.87, + "end": 4035.52, + "probability": 0.9963 + }, + { + "start": 4035.89, + "end": 4037.65, + "probability": 0.9295 + }, + { + "start": 4037.71, + "end": 4041.15, + "probability": 0.9837 + }, + { + "start": 4042.37, + "end": 4044.79, + "probability": 0.9802 + }, + { + "start": 4045.07, + "end": 4046.99, + "probability": 0.9448 + }, + { + "start": 4047.13, + "end": 4048.35, + "probability": 0.9579 + }, + { + "start": 4048.39, + "end": 4050.75, + "probability": 0.9564 + }, + { + "start": 4051.21, + "end": 4051.71, + "probability": 0.8744 + }, + { + "start": 4051.71, + "end": 4058.47, + "probability": 0.9976 + }, + { + "start": 4058.85, + "end": 4065.47, + "probability": 0.9899 + }, + { + "start": 4065.87, + "end": 4068.03, + "probability": 0.9996 + }, + { + "start": 4068.03, + "end": 4071.75, + "probability": 0.9674 + }, + { + "start": 4072.31, + "end": 4074.09, + "probability": 0.5255 + }, + { + "start": 4074.49, + "end": 4077.68, + "probability": 0.9805 + }, + { + "start": 4078.49, + "end": 4082.21, + "probability": 0.9719 + }, + { + "start": 4082.37, + "end": 4086.73, + "probability": 0.9523 + }, + { + "start": 4087.11, + "end": 4092.79, + "probability": 0.5133 + }, + { + "start": 4093.51, + "end": 4095.81, + "probability": 0.9696 + }, + { + "start": 4096.59, + "end": 4100.63, + "probability": 0.9175 + }, + { + "start": 4100.73, + "end": 4105.37, + "probability": 0.8504 + }, + { + "start": 4105.59, + "end": 4108.65, + "probability": 0.9551 + }, + { + "start": 4109.15, + "end": 4114.25, + "probability": 0.7175 + }, + { + "start": 4114.41, + "end": 4117.91, + "probability": 0.7992 + }, + { + "start": 4118.11, + "end": 4120.07, + "probability": 0.7314 + }, + { + "start": 4120.43, + "end": 4124.01, + "probability": 0.5257 + }, + { + "start": 4124.89, + "end": 4131.61, + "probability": 0.8655 + }, + { + "start": 4132.15, + "end": 4133.63, + "probability": 0.555 + }, + { + "start": 4133.89, + "end": 4135.99, + "probability": 0.9817 + }, + { + "start": 4136.63, + "end": 4142.03, + "probability": 0.931 + }, + { + "start": 4142.57, + "end": 4144.47, + "probability": 0.9624 + }, + { + "start": 4145.19, + "end": 4150.07, + "probability": 0.9439 + }, + { + "start": 4150.59, + "end": 4152.59, + "probability": 0.3483 + }, + { + "start": 4152.91, + "end": 4153.63, + "probability": 0.5674 + }, + { + "start": 4153.71, + "end": 4159.09, + "probability": 0.9958 + }, + { + "start": 4159.17, + "end": 4159.87, + "probability": 0.9406 + }, + { + "start": 4160.13, + "end": 4163.89, + "probability": 0.98 + }, + { + "start": 4164.39, + "end": 4166.27, + "probability": 0.9925 + }, + { + "start": 4166.33, + "end": 4168.23, + "probability": 0.7369 + }, + { + "start": 4168.51, + "end": 4169.01, + "probability": 0.61 + }, + { + "start": 4169.67, + "end": 4170.91, + "probability": 0.938 + }, + { + "start": 4171.23, + "end": 4178.67, + "probability": 0.9879 + }, + { + "start": 4179.09, + "end": 4180.67, + "probability": 0.998 + }, + { + "start": 4180.87, + "end": 4182.26, + "probability": 0.7717 + }, + { + "start": 4182.67, + "end": 4183.51, + "probability": 0.8517 + }, + { + "start": 4183.91, + "end": 4184.71, + "probability": 0.8008 + }, + { + "start": 4184.75, + "end": 4186.75, + "probability": 0.9896 + }, + { + "start": 4187.05, + "end": 4191.17, + "probability": 0.9368 + }, + { + "start": 4191.45, + "end": 4195.81, + "probability": 0.8188 + }, + { + "start": 4196.21, + "end": 4196.95, + "probability": 0.8665 + }, + { + "start": 4197.05, + "end": 4198.03, + "probability": 0.8185 + }, + { + "start": 4198.43, + "end": 4199.25, + "probability": 0.7637 + }, + { + "start": 4199.67, + "end": 4200.55, + "probability": 0.8633 + }, + { + "start": 4200.57, + "end": 4202.49, + "probability": 0.9746 + }, + { + "start": 4202.57, + "end": 4203.65, + "probability": 0.8589 + }, + { + "start": 4203.69, + "end": 4206.91, + "probability": 0.9865 + }, + { + "start": 4207.45, + "end": 4212.69, + "probability": 0.9004 + }, + { + "start": 4213.11, + "end": 4219.33, + "probability": 0.9909 + }, + { + "start": 4219.45, + "end": 4222.05, + "probability": 0.9863 + }, + { + "start": 4222.23, + "end": 4224.4, + "probability": 0.9879 + }, + { + "start": 4224.91, + "end": 4226.21, + "probability": 0.9834 + }, + { + "start": 4226.87, + "end": 4226.99, + "probability": 0.2867 + }, + { + "start": 4227.23, + "end": 4228.95, + "probability": 0.5125 + }, + { + "start": 4229.05, + "end": 4229.13, + "probability": 0.8022 + }, + { + "start": 4229.13, + "end": 4232.91, + "probability": 0.9929 + }, + { + "start": 4233.33, + "end": 4237.19, + "probability": 0.8989 + }, + { + "start": 4237.43, + "end": 4240.75, + "probability": 0.995 + }, + { + "start": 4240.97, + "end": 4242.75, + "probability": 0.8916 + }, + { + "start": 4243.09, + "end": 4246.25, + "probability": 0.9971 + }, + { + "start": 4246.33, + "end": 4247.99, + "probability": 0.8965 + }, + { + "start": 4248.41, + "end": 4250.55, + "probability": 0.9754 + }, + { + "start": 4250.55, + "end": 4252.77, + "probability": 0.9863 + }, + { + "start": 4253.47, + "end": 4254.69, + "probability": 0.7542 + }, + { + "start": 4254.87, + "end": 4256.09, + "probability": 0.8853 + }, + { + "start": 4256.51, + "end": 4262.75, + "probability": 0.9784 + }, + { + "start": 4262.75, + "end": 4268.71, + "probability": 0.8521 + }, + { + "start": 4268.85, + "end": 4271.53, + "probability": 0.7524 + }, + { + "start": 4272.27, + "end": 4276.77, + "probability": 0.7179 + }, + { + "start": 4286.95, + "end": 4287.17, + "probability": 0.2919 + }, + { + "start": 4287.33, + "end": 4290.89, + "probability": 0.4864 + }, + { + "start": 4292.15, + "end": 4298.41, + "probability": 0.803 + }, + { + "start": 4299.21, + "end": 4301.65, + "probability": 0.844 + }, + { + "start": 4303.05, + "end": 4307.53, + "probability": 0.9766 + }, + { + "start": 4308.33, + "end": 4312.81, + "probability": 0.6888 + }, + { + "start": 4313.51, + "end": 4316.53, + "probability": 0.8102 + }, + { + "start": 4316.53, + "end": 4320.33, + "probability": 0.9871 + }, + { + "start": 4320.93, + "end": 4325.55, + "probability": 0.5105 + }, + { + "start": 4326.13, + "end": 4327.41, + "probability": 0.4357 + }, + { + "start": 4327.63, + "end": 4328.25, + "probability": 0.5621 + }, + { + "start": 4328.55, + "end": 4329.81, + "probability": 0.3536 + }, + { + "start": 4330.05, + "end": 4330.89, + "probability": 0.5474 + }, + { + "start": 4332.15, + "end": 4334.85, + "probability": 0.572 + }, + { + "start": 4335.81, + "end": 4342.95, + "probability": 0.8743 + }, + { + "start": 4344.21, + "end": 4348.07, + "probability": 0.9868 + }, + { + "start": 4348.25, + "end": 4352.45, + "probability": 0.9366 + }, + { + "start": 4352.53, + "end": 4355.59, + "probability": 0.9973 + }, + { + "start": 4355.81, + "end": 4359.87, + "probability": 0.7811 + }, + { + "start": 4360.83, + "end": 4366.81, + "probability": 0.8781 + }, + { + "start": 4367.49, + "end": 4375.31, + "probability": 0.9442 + }, + { + "start": 4376.23, + "end": 4377.17, + "probability": 0.964 + }, + { + "start": 4377.85, + "end": 4382.25, + "probability": 0.963 + }, + { + "start": 4383.01, + "end": 4388.73, + "probability": 0.9958 + }, + { + "start": 4389.33, + "end": 4391.25, + "probability": 0.766 + }, + { + "start": 4391.47, + "end": 4394.19, + "probability": 0.9969 + }, + { + "start": 4394.19, + "end": 4398.93, + "probability": 0.9858 + }, + { + "start": 4399.61, + "end": 4403.75, + "probability": 0.8838 + }, + { + "start": 4404.67, + "end": 4409.37, + "probability": 0.9945 + }, + { + "start": 4410.23, + "end": 4416.75, + "probability": 0.981 + }, + { + "start": 4417.61, + "end": 4425.09, + "probability": 0.6683 + }, + { + "start": 4425.09, + "end": 4428.09, + "probability": 0.7919 + }, + { + "start": 4428.91, + "end": 4432.89, + "probability": 0.8802 + }, + { + "start": 4433.45, + "end": 4434.61, + "probability": 0.9131 + }, + { + "start": 4435.75, + "end": 4440.57, + "probability": 0.9454 + }, + { + "start": 4441.11, + "end": 4441.61, + "probability": 0.4697 + }, + { + "start": 4441.65, + "end": 4445.79, + "probability": 0.8615 + }, + { + "start": 4446.15, + "end": 4449.59, + "probability": 0.975 + }, + { + "start": 4450.25, + "end": 4450.63, + "probability": 0.6849 + }, + { + "start": 4450.75, + "end": 4455.93, + "probability": 0.9313 + }, + { + "start": 4456.33, + "end": 4459.29, + "probability": 0.9229 + }, + { + "start": 4459.91, + "end": 4462.21, + "probability": 0.6901 + }, + { + "start": 4462.95, + "end": 4464.29, + "probability": 0.3427 + }, + { + "start": 4467.87, + "end": 4469.67, + "probability": 0.5528 + }, + { + "start": 4469.79, + "end": 4475.57, + "probability": 0.7917 + }, + { + "start": 4475.65, + "end": 4478.95, + "probability": 0.9324 + }, + { + "start": 4479.69, + "end": 4482.77, + "probability": 0.9897 + }, + { + "start": 4483.17, + "end": 4485.09, + "probability": 0.9723 + }, + { + "start": 4485.73, + "end": 4487.93, + "probability": 0.9984 + }, + { + "start": 4488.11, + "end": 4488.57, + "probability": 0.858 + }, + { + "start": 4488.65, + "end": 4489.43, + "probability": 0.8062 + }, + { + "start": 4489.71, + "end": 4490.31, + "probability": 0.81 + }, + { + "start": 4490.37, + "end": 4491.28, + "probability": 0.9175 + }, + { + "start": 4491.79, + "end": 4493.61, + "probability": 0.938 + }, + { + "start": 4493.71, + "end": 4494.56, + "probability": 0.7472 + }, + { + "start": 4494.73, + "end": 4495.73, + "probability": 0.6955 + }, + { + "start": 4495.77, + "end": 4496.41, + "probability": 0.8115 + }, + { + "start": 4496.49, + "end": 4497.47, + "probability": 0.9494 + }, + { + "start": 4498.15, + "end": 4503.43, + "probability": 0.8232 + }, + { + "start": 4503.57, + "end": 4509.79, + "probability": 0.8703 + }, + { + "start": 4509.89, + "end": 4512.89, + "probability": 0.9863 + }, + { + "start": 4513.99, + "end": 4515.49, + "probability": 0.9985 + }, + { + "start": 4518.71, + "end": 4519.93, + "probability": 0.4652 + }, + { + "start": 4520.73, + "end": 4521.71, + "probability": 0.5379 + }, + { + "start": 4522.27, + "end": 4523.89, + "probability": 0.9946 + }, + { + "start": 4524.03, + "end": 4528.53, + "probability": 0.9761 + }, + { + "start": 4529.31, + "end": 4530.55, + "probability": 0.9744 + }, + { + "start": 4531.07, + "end": 4531.85, + "probability": 0.7151 + }, + { + "start": 4531.93, + "end": 4532.37, + "probability": 0.8393 + }, + { + "start": 4532.37, + "end": 4533.87, + "probability": 0.9731 + }, + { + "start": 4534.87, + "end": 4537.37, + "probability": 0.8656 + }, + { + "start": 4537.65, + "end": 4541.75, + "probability": 0.9338 + }, + { + "start": 4541.81, + "end": 4543.43, + "probability": 0.9849 + }, + { + "start": 4543.51, + "end": 4545.12, + "probability": 0.8848 + }, + { + "start": 4546.03, + "end": 4546.79, + "probability": 0.937 + }, + { + "start": 4546.91, + "end": 4547.55, + "probability": 0.602 + }, + { + "start": 4547.71, + "end": 4551.01, + "probability": 0.9875 + }, + { + "start": 4551.87, + "end": 4553.05, + "probability": 0.9273 + }, + { + "start": 4553.13, + "end": 4556.05, + "probability": 0.9753 + }, + { + "start": 4556.57, + "end": 4556.69, + "probability": 0.4887 + }, + { + "start": 4556.81, + "end": 4558.15, + "probability": 0.9752 + }, + { + "start": 4558.29, + "end": 4559.51, + "probability": 0.9377 + }, + { + "start": 4559.85, + "end": 4561.79, + "probability": 0.8058 + }, + { + "start": 4561.91, + "end": 4563.29, + "probability": 0.8358 + }, + { + "start": 4564.21, + "end": 4566.13, + "probability": 0.9026 + }, + { + "start": 4566.29, + "end": 4567.03, + "probability": 0.787 + }, + { + "start": 4567.11, + "end": 4567.89, + "probability": 0.9382 + }, + { + "start": 4568.07, + "end": 4569.83, + "probability": 0.9339 + }, + { + "start": 4569.97, + "end": 4571.37, + "probability": 0.952 + }, + { + "start": 4571.67, + "end": 4573.53, + "probability": 0.6998 + }, + { + "start": 4573.67, + "end": 4579.19, + "probability": 0.9866 + }, + { + "start": 4579.69, + "end": 4586.23, + "probability": 0.9941 + }, + { + "start": 4587.19, + "end": 4590.49, + "probability": 0.8101 + }, + { + "start": 4590.89, + "end": 4593.09, + "probability": 0.9982 + }, + { + "start": 4593.19, + "end": 4595.41, + "probability": 0.7903 + }, + { + "start": 4595.47, + "end": 4596.33, + "probability": 0.6517 + }, + { + "start": 4596.51, + "end": 4597.29, + "probability": 0.8683 + }, + { + "start": 4597.55, + "end": 4603.83, + "probability": 0.9806 + }, + { + "start": 4604.11, + "end": 4606.65, + "probability": 0.9919 + }, + { + "start": 4606.87, + "end": 4610.37, + "probability": 0.993 + }, + { + "start": 4610.69, + "end": 4614.15, + "probability": 0.8589 + }, + { + "start": 4614.75, + "end": 4619.01, + "probability": 0.9915 + }, + { + "start": 4619.35, + "end": 4620.39, + "probability": 0.6743 + }, + { + "start": 4620.73, + "end": 4620.81, + "probability": 0.9058 + }, + { + "start": 4621.37, + "end": 4627.97, + "probability": 0.9712 + }, + { + "start": 4628.97, + "end": 4630.81, + "probability": 0.717 + }, + { + "start": 4631.01, + "end": 4632.89, + "probability": 0.9163 + }, + { + "start": 4632.97, + "end": 4634.11, + "probability": 0.4663 + }, + { + "start": 4634.17, + "end": 4635.91, + "probability": 0.2971 + }, + { + "start": 4635.91, + "end": 4635.91, + "probability": 0.2655 + }, + { + "start": 4635.91, + "end": 4641.17, + "probability": 0.9966 + }, + { + "start": 4641.33, + "end": 4642.31, + "probability": 0.4745 + }, + { + "start": 4642.89, + "end": 4642.89, + "probability": 0.4753 + }, + { + "start": 4643.11, + "end": 4644.81, + "probability": 0.5901 + }, + { + "start": 4645.29, + "end": 4645.29, + "probability": 0.6873 + }, + { + "start": 4645.29, + "end": 4647.87, + "probability": 0.9071 + }, + { + "start": 4648.35, + "end": 4650.99, + "probability": 0.9945 + }, + { + "start": 4651.13, + "end": 4653.25, + "probability": 0.7114 + }, + { + "start": 4653.31, + "end": 4657.41, + "probability": 0.9924 + }, + { + "start": 4657.41, + "end": 4659.4, + "probability": 0.9971 + }, + { + "start": 4659.73, + "end": 4663.97, + "probability": 0.9341 + }, + { + "start": 4664.21, + "end": 4664.83, + "probability": 0.2715 + }, + { + "start": 4664.95, + "end": 4665.35, + "probability": 0.7621 + }, + { + "start": 4665.47, + "end": 4669.48, + "probability": 0.9882 + }, + { + "start": 4669.71, + "end": 4674.13, + "probability": 0.9758 + }, + { + "start": 4674.25, + "end": 4674.77, + "probability": 0.6847 + }, + { + "start": 4674.93, + "end": 4676.62, + "probability": 0.3596 + }, + { + "start": 4678.11, + "end": 4684.15, + "probability": 0.981 + }, + { + "start": 4684.15, + "end": 4690.05, + "probability": 0.9751 + }, + { + "start": 4691.03, + "end": 4693.79, + "probability": 0.9382 + }, + { + "start": 4694.35, + "end": 4699.67, + "probability": 0.9707 + }, + { + "start": 4700.13, + "end": 4701.75, + "probability": 0.9783 + }, + { + "start": 4701.79, + "end": 4705.15, + "probability": 0.933 + }, + { + "start": 4705.41, + "end": 4711.21, + "probability": 0.9948 + }, + { + "start": 4711.75, + "end": 4717.43, + "probability": 0.9907 + }, + { + "start": 4717.43, + "end": 4722.39, + "probability": 0.9118 + }, + { + "start": 4722.39, + "end": 4729.61, + "probability": 0.7097 + }, + { + "start": 4730.19, + "end": 4732.65, + "probability": 0.9597 + }, + { + "start": 4732.73, + "end": 4735.43, + "probability": 0.8104 + }, + { + "start": 4735.51, + "end": 4736.75, + "probability": 0.3356 + }, + { + "start": 4736.89, + "end": 4740.2, + "probability": 0.6525 + }, + { + "start": 4740.57, + "end": 4743.77, + "probability": 0.662 + }, + { + "start": 4744.17, + "end": 4745.91, + "probability": 0.3284 + }, + { + "start": 4746.15, + "end": 4746.67, + "probability": 0.8077 + }, + { + "start": 4747.19, + "end": 4748.43, + "probability": 0.6048 + }, + { + "start": 4748.47, + "end": 4750.13, + "probability": 0.744 + }, + { + "start": 4750.21, + "end": 4758.61, + "probability": 0.8916 + }, + { + "start": 4759.31, + "end": 4764.35, + "probability": 0.9815 + }, + { + "start": 4764.35, + "end": 4768.45, + "probability": 0.8092 + }, + { + "start": 4769.47, + "end": 4775.13, + "probability": 0.955 + }, + { + "start": 4776.19, + "end": 4777.43, + "probability": 0.5418 + }, + { + "start": 4778.05, + "end": 4779.51, + "probability": 0.9116 + }, + { + "start": 4779.81, + "end": 4781.83, + "probability": 0.9698 + }, + { + "start": 4782.19, + "end": 4783.53, + "probability": 0.3543 + }, + { + "start": 4783.53, + "end": 4785.05, + "probability": 0.722 + }, + { + "start": 4785.07, + "end": 4786.35, + "probability": 0.8656 + }, + { + "start": 4786.59, + "end": 4788.29, + "probability": 0.7769 + }, + { + "start": 4788.31, + "end": 4789.49, + "probability": 0.4527 + }, + { + "start": 4789.71, + "end": 4790.86, + "probability": 0.592 + }, + { + "start": 4791.07, + "end": 4792.25, + "probability": 0.5186 + }, + { + "start": 4792.69, + "end": 4794.91, + "probability": 0.9954 + }, + { + "start": 4794.91, + "end": 4797.39, + "probability": 0.9768 + }, + { + "start": 4798.61, + "end": 4801.29, + "probability": 0.78 + }, + { + "start": 4801.53, + "end": 4802.31, + "probability": 0.5962 + }, + { + "start": 4802.55, + "end": 4803.97, + "probability": 0.8757 + }, + { + "start": 4804.41, + "end": 4807.51, + "probability": 0.9088 + }, + { + "start": 4808.03, + "end": 4809.97, + "probability": 0.8976 + }, + { + "start": 4810.27, + "end": 4811.37, + "probability": 0.7591 + }, + { + "start": 4811.55, + "end": 4812.13, + "probability": 0.8801 + }, + { + "start": 4812.23, + "end": 4813.75, + "probability": 0.9739 + }, + { + "start": 4814.45, + "end": 4818.51, + "probability": 0.9828 + }, + { + "start": 4818.69, + "end": 4820.07, + "probability": 0.9678 + }, + { + "start": 4820.35, + "end": 4821.53, + "probability": 0.9056 + }, + { + "start": 4822.47, + "end": 4828.01, + "probability": 0.8889 + }, + { + "start": 4828.89, + "end": 4833.29, + "probability": 0.9385 + }, + { + "start": 4834.05, + "end": 4837.79, + "probability": 0.9704 + }, + { + "start": 4838.31, + "end": 4842.07, + "probability": 0.9575 + }, + { + "start": 4842.93, + "end": 4844.31, + "probability": 0.9283 + }, + { + "start": 4844.57, + "end": 4845.41, + "probability": 0.4715 + }, + { + "start": 4845.41, + "end": 4846.23, + "probability": 0.6569 + }, + { + "start": 4846.43, + "end": 4847.39, + "probability": 0.9689 + }, + { + "start": 4848.75, + "end": 4849.65, + "probability": 0.9761 + }, + { + "start": 4849.75, + "end": 4855.51, + "probability": 0.8098 + }, + { + "start": 4857.55, + "end": 4858.81, + "probability": 0.8327 + }, + { + "start": 4859.85, + "end": 4864.53, + "probability": 0.9077 + }, + { + "start": 4865.11, + "end": 4866.15, + "probability": 0.5553 + }, + { + "start": 4866.25, + "end": 4867.09, + "probability": 0.7379 + }, + { + "start": 4867.39, + "end": 4870.65, + "probability": 0.8042 + }, + { + "start": 4870.99, + "end": 4874.19, + "probability": 0.799 + }, + { + "start": 4875.11, + "end": 4878.75, + "probability": 0.7123 + }, + { + "start": 4879.53, + "end": 4881.31, + "probability": 0.8486 + }, + { + "start": 4881.81, + "end": 4886.75, + "probability": 0.4083 + }, + { + "start": 4887.01, + "end": 4888.75, + "probability": 0.7434 + }, + { + "start": 4889.31, + "end": 4890.25, + "probability": 0.7061 + }, + { + "start": 4891.65, + "end": 4892.65, + "probability": 0.6104 + }, + { + "start": 4892.75, + "end": 4894.87, + "probability": 0.8371 + }, + { + "start": 4895.03, + "end": 4897.0, + "probability": 0.6794 + }, + { + "start": 4897.57, + "end": 4902.39, + "probability": 0.989 + }, + { + "start": 4902.81, + "end": 4903.51, + "probability": 0.7729 + }, + { + "start": 4904.57, + "end": 4905.27, + "probability": 0.8672 + }, + { + "start": 4907.57, + "end": 4908.15, + "probability": 0.2908 + }, + { + "start": 4908.19, + "end": 4909.49, + "probability": 0.9636 + }, + { + "start": 4909.73, + "end": 4911.77, + "probability": 0.7534 + }, + { + "start": 4912.39, + "end": 4912.97, + "probability": 0.7692 + }, + { + "start": 4913.47, + "end": 4917.61, + "probability": 0.8826 + }, + { + "start": 4917.93, + "end": 4920.6, + "probability": 0.9172 + }, + { + "start": 4921.71, + "end": 4926.15, + "probability": 0.9209 + }, + { + "start": 4926.73, + "end": 4931.65, + "probability": 0.877 + }, + { + "start": 4931.93, + "end": 4933.97, + "probability": 0.7746 + }, + { + "start": 4935.39, + "end": 4938.55, + "probability": 0.6889 + }, + { + "start": 4938.93, + "end": 4940.47, + "probability": 0.6463 + }, + { + "start": 4940.49, + "end": 4946.79, + "probability": 0.9733 + }, + { + "start": 4947.67, + "end": 4951.05, + "probability": 0.8977 + }, + { + "start": 4951.59, + "end": 4952.15, + "probability": 0.4986 + }, + { + "start": 4952.21, + "end": 4955.69, + "probability": 0.4521 + }, + { + "start": 4956.05, + "end": 4960.23, + "probability": 0.9502 + }, + { + "start": 4960.55, + "end": 4962.49, + "probability": 0.7906 + }, + { + "start": 4962.87, + "end": 4964.05, + "probability": 0.9043 + }, + { + "start": 4964.53, + "end": 4968.16, + "probability": 0.9727 + }, + { + "start": 4969.21, + "end": 4973.03, + "probability": 0.8357 + }, + { + "start": 4973.55, + "end": 4976.83, + "probability": 0.7794 + }, + { + "start": 4977.09, + "end": 4980.21, + "probability": 0.8661 + }, + { + "start": 4981.33, + "end": 4989.87, + "probability": 0.9429 + }, + { + "start": 4990.53, + "end": 4991.21, + "probability": 0.9396 + }, + { + "start": 4992.45, + "end": 4992.91, + "probability": 0.8812 + }, + { + "start": 5005.07, + "end": 5008.59, + "probability": 0.9628 + }, + { + "start": 5009.57, + "end": 5014.77, + "probability": 0.9539 + }, + { + "start": 5015.21, + "end": 5017.83, + "probability": 0.9453 + }, + { + "start": 5017.83, + "end": 5023.11, + "probability": 0.7419 + }, + { + "start": 5023.67, + "end": 5026.71, + "probability": 0.8264 + }, + { + "start": 5027.25, + "end": 5029.93, + "probability": 0.9912 + }, + { + "start": 5030.27, + "end": 5031.65, + "probability": 0.9739 + }, + { + "start": 5032.07, + "end": 5036.53, + "probability": 0.8193 + }, + { + "start": 5037.27, + "end": 5040.23, + "probability": 0.8377 + }, + { + "start": 5041.19, + "end": 5041.97, + "probability": 0.7859 + }, + { + "start": 5042.59, + "end": 5046.26, + "probability": 0.7852 + }, + { + "start": 5046.83, + "end": 5048.71, + "probability": 0.9368 + }, + { + "start": 5049.87, + "end": 5053.67, + "probability": 0.9927 + }, + { + "start": 5053.67, + "end": 5057.11, + "probability": 0.8741 + }, + { + "start": 5058.11, + "end": 5058.95, + "probability": 0.6462 + }, + { + "start": 5059.95, + "end": 5063.27, + "probability": 0.8346 + }, + { + "start": 5063.27, + "end": 5066.27, + "probability": 0.9033 + }, + { + "start": 5066.95, + "end": 5067.41, + "probability": 0.7867 + }, + { + "start": 5068.27, + "end": 5071.32, + "probability": 0.7203 + }, + { + "start": 5071.87, + "end": 5075.93, + "probability": 0.8287 + }, + { + "start": 5077.31, + "end": 5078.85, + "probability": 0.9952 + }, + { + "start": 5079.87, + "end": 5085.17, + "probability": 0.98 + }, + { + "start": 5085.63, + "end": 5088.87, + "probability": 0.9222 + }, + { + "start": 5089.67, + "end": 5090.63, + "probability": 0.4006 + }, + { + "start": 5090.81, + "end": 5095.01, + "probability": 0.9845 + }, + { + "start": 5095.25, + "end": 5098.49, + "probability": 0.8211 + }, + { + "start": 5099.11, + "end": 5101.45, + "probability": 0.9736 + }, + { + "start": 5101.55, + "end": 5104.95, + "probability": 0.9517 + }, + { + "start": 5105.23, + "end": 5107.35, + "probability": 0.7505 + }, + { + "start": 5107.41, + "end": 5109.67, + "probability": 0.8028 + }, + { + "start": 5110.21, + "end": 5113.43, + "probability": 0.642 + }, + { + "start": 5114.81, + "end": 5115.67, + "probability": 0.6962 + }, + { + "start": 5115.83, + "end": 5119.21, + "probability": 0.9047 + }, + { + "start": 5119.35, + "end": 5120.57, + "probability": 0.9392 + }, + { + "start": 5120.75, + "end": 5124.29, + "probability": 0.9803 + }, + { + "start": 5125.95, + "end": 5129.53, + "probability": 0.9646 + }, + { + "start": 5129.71, + "end": 5130.31, + "probability": 0.9019 + }, + { + "start": 5130.41, + "end": 5130.91, + "probability": 0.7325 + }, + { + "start": 5130.97, + "end": 5131.84, + "probability": 0.8545 + }, + { + "start": 5132.73, + "end": 5138.21, + "probability": 0.849 + }, + { + "start": 5138.35, + "end": 5141.39, + "probability": 0.8982 + }, + { + "start": 5141.81, + "end": 5144.91, + "probability": 0.9708 + }, + { + "start": 5145.81, + "end": 5146.75, + "probability": 0.6333 + }, + { + "start": 5147.31, + "end": 5148.95, + "probability": 0.9651 + }, + { + "start": 5149.23, + "end": 5152.92, + "probability": 0.6918 + }, + { + "start": 5153.63, + "end": 5155.67, + "probability": 0.984 + }, + { + "start": 5156.51, + "end": 5157.11, + "probability": 0.4012 + }, + { + "start": 5158.11, + "end": 5161.23, + "probability": 0.9308 + }, + { + "start": 5161.83, + "end": 5163.73, + "probability": 0.8965 + }, + { + "start": 5164.23, + "end": 5165.39, + "probability": 0.7014 + }, + { + "start": 5165.97, + "end": 5166.71, + "probability": 0.9466 + }, + { + "start": 5167.13, + "end": 5169.35, + "probability": 0.9409 + }, + { + "start": 5169.35, + "end": 5170.01, + "probability": 0.7864 + }, + { + "start": 5171.01, + "end": 5172.57, + "probability": 0.7449 + }, + { + "start": 5172.77, + "end": 5173.07, + "probability": 0.5307 + }, + { + "start": 5173.51, + "end": 5174.35, + "probability": 0.9127 + }, + { + "start": 5174.35, + "end": 5174.77, + "probability": 0.8093 + }, + { + "start": 5176.37, + "end": 5177.03, + "probability": 0.7397 + }, + { + "start": 5177.07, + "end": 5179.61, + "probability": 0.9503 + }, + { + "start": 5179.77, + "end": 5183.19, + "probability": 0.9873 + }, + { + "start": 5183.81, + "end": 5188.27, + "probability": 0.9318 + }, + { + "start": 5188.35, + "end": 5189.73, + "probability": 0.6277 + }, + { + "start": 5190.19, + "end": 5192.85, + "probability": 0.782 + }, + { + "start": 5192.87, + "end": 5195.33, + "probability": 0.9038 + }, + { + "start": 5195.39, + "end": 5196.05, + "probability": 0.8657 + }, + { + "start": 5196.73, + "end": 5197.31, + "probability": 0.6853 + }, + { + "start": 5197.87, + "end": 5200.77, + "probability": 0.333 + }, + { + "start": 5200.77, + "end": 5201.05, + "probability": 0.6822 + }, + { + "start": 5201.15, + "end": 5201.99, + "probability": 0.6036 + }, + { + "start": 5202.07, + "end": 5203.75, + "probability": 0.4656 + }, + { + "start": 5204.07, + "end": 5205.55, + "probability": 0.4396 + }, + { + "start": 5205.61, + "end": 5206.15, + "probability": 0.8384 + }, + { + "start": 5206.23, + "end": 5206.57, + "probability": 0.6843 + }, + { + "start": 5207.55, + "end": 5213.79, + "probability": 0.9977 + }, + { + "start": 5214.33, + "end": 5215.35, + "probability": 0.6099 + }, + { + "start": 5215.47, + "end": 5218.31, + "probability": 0.907 + }, + { + "start": 5218.45, + "end": 5218.86, + "probability": 0.8831 + }, + { + "start": 5219.41, + "end": 5220.11, + "probability": 0.8789 + }, + { + "start": 5220.27, + "end": 5223.67, + "probability": 0.8379 + }, + { + "start": 5223.79, + "end": 5225.14, + "probability": 0.9094 + }, + { + "start": 5225.65, + "end": 5226.83, + "probability": 0.9762 + }, + { + "start": 5227.75, + "end": 5228.27, + "probability": 0.5196 + }, + { + "start": 5228.35, + "end": 5231.31, + "probability": 0.8828 + }, + { + "start": 5233.02, + "end": 5235.39, + "probability": 0.7515 + }, + { + "start": 5235.45, + "end": 5236.55, + "probability": 0.8898 + }, + { + "start": 5236.83, + "end": 5239.78, + "probability": 0.9614 + }, + { + "start": 5240.19, + "end": 5241.33, + "probability": 0.8555 + }, + { + "start": 5241.71, + "end": 5243.57, + "probability": 0.8709 + }, + { + "start": 5243.61, + "end": 5247.59, + "probability": 0.9746 + }, + { + "start": 5247.63, + "end": 5247.99, + "probability": 0.2035 + }, + { + "start": 5248.07, + "end": 5250.81, + "probability": 0.9465 + }, + { + "start": 5251.31, + "end": 5253.47, + "probability": 0.8459 + }, + { + "start": 5253.59, + "end": 5255.39, + "probability": 0.9922 + }, + { + "start": 5255.53, + "end": 5256.65, + "probability": 0.7372 + }, + { + "start": 5257.25, + "end": 5259.49, + "probability": 0.9521 + }, + { + "start": 5259.63, + "end": 5263.41, + "probability": 0.9907 + }, + { + "start": 5263.73, + "end": 5265.41, + "probability": 0.8468 + }, + { + "start": 5265.57, + "end": 5268.25, + "probability": 0.9963 + }, + { + "start": 5268.25, + "end": 5271.03, + "probability": 0.9478 + }, + { + "start": 5271.29, + "end": 5272.59, + "probability": 0.4366 + }, + { + "start": 5273.89, + "end": 5275.77, + "probability": 0.6875 + }, + { + "start": 5275.93, + "end": 5276.59, + "probability": 0.5659 + }, + { + "start": 5276.61, + "end": 5277.57, + "probability": 0.7481 + }, + { + "start": 5277.79, + "end": 5279.95, + "probability": 0.9321 + }, + { + "start": 5280.81, + "end": 5285.65, + "probability": 0.808 + }, + { + "start": 5285.65, + "end": 5286.43, + "probability": 0.8023 + }, + { + "start": 5286.95, + "end": 5289.07, + "probability": 0.9186 + }, + { + "start": 5289.49, + "end": 5290.98, + "probability": 0.6729 + }, + { + "start": 5291.13, + "end": 5292.34, + "probability": 0.7411 + }, + { + "start": 5292.57, + "end": 5299.61, + "probability": 0.8013 + }, + { + "start": 5299.87, + "end": 5301.47, + "probability": 0.9257 + }, + { + "start": 5301.65, + "end": 5302.49, + "probability": 0.9937 + }, + { + "start": 5303.13, + "end": 5303.9, + "probability": 0.8175 + }, + { + "start": 5304.05, + "end": 5304.75, + "probability": 0.955 + }, + { + "start": 5305.07, + "end": 5305.39, + "probability": 0.8249 + }, + { + "start": 5305.53, + "end": 5307.11, + "probability": 0.7466 + }, + { + "start": 5307.17, + "end": 5307.87, + "probability": 0.8748 + }, + { + "start": 5307.97, + "end": 5310.33, + "probability": 0.9116 + }, + { + "start": 5310.53, + "end": 5315.89, + "probability": 0.9094 + }, + { + "start": 5316.01, + "end": 5316.89, + "probability": 0.7473 + }, + { + "start": 5317.13, + "end": 5318.11, + "probability": 0.9485 + }, + { + "start": 5318.47, + "end": 5321.81, + "probability": 0.922 + }, + { + "start": 5321.93, + "end": 5322.73, + "probability": 0.3991 + }, + { + "start": 5322.77, + "end": 5323.05, + "probability": 0.7594 + }, + { + "start": 5323.15, + "end": 5324.79, + "probability": 0.7217 + }, + { + "start": 5324.93, + "end": 5326.71, + "probability": 0.9268 + }, + { + "start": 5326.79, + "end": 5332.53, + "probability": 0.8558 + }, + { + "start": 5332.73, + "end": 5337.21, + "probability": 0.5631 + }, + { + "start": 5337.41, + "end": 5338.17, + "probability": 0.3186 + }, + { + "start": 5338.2, + "end": 5340.81, + "probability": 0.999 + }, + { + "start": 5341.15, + "end": 5343.55, + "probability": 0.9198 + }, + { + "start": 5343.71, + "end": 5348.93, + "probability": 0.644 + }, + { + "start": 5349.43, + "end": 5351.17, + "probability": 0.9036 + }, + { + "start": 5351.31, + "end": 5354.19, + "probability": 0.6337 + }, + { + "start": 5354.39, + "end": 5358.39, + "probability": 0.9828 + }, + { + "start": 5358.59, + "end": 5359.31, + "probability": 0.4523 + }, + { + "start": 5359.35, + "end": 5363.67, + "probability": 0.9183 + }, + { + "start": 5363.83, + "end": 5367.09, + "probability": 0.9724 + }, + { + "start": 5367.15, + "end": 5368.13, + "probability": 0.8638 + }, + { + "start": 5371.03, + "end": 5373.05, + "probability": 0.7129 + }, + { + "start": 5373.55, + "end": 5377.11, + "probability": 0.9899 + }, + { + "start": 5377.31, + "end": 5379.69, + "probability": 0.9939 + }, + { + "start": 5379.77, + "end": 5380.57, + "probability": 0.8632 + }, + { + "start": 5380.87, + "end": 5381.75, + "probability": 0.8903 + }, + { + "start": 5381.89, + "end": 5383.47, + "probability": 0.9506 + }, + { + "start": 5383.73, + "end": 5384.41, + "probability": 0.7813 + }, + { + "start": 5384.53, + "end": 5386.07, + "probability": 0.8906 + }, + { + "start": 5386.17, + "end": 5387.39, + "probability": 0.598 + }, + { + "start": 5387.59, + "end": 5389.77, + "probability": 0.9678 + }, + { + "start": 5390.17, + "end": 5392.63, + "probability": 0.9124 + }, + { + "start": 5392.97, + "end": 5395.43, + "probability": 0.9938 + }, + { + "start": 5396.37, + "end": 5402.37, + "probability": 0.98 + }, + { + "start": 5402.47, + "end": 5404.11, + "probability": 0.5664 + }, + { + "start": 5404.63, + "end": 5405.67, + "probability": 0.8178 + }, + { + "start": 5405.83, + "end": 5409.39, + "probability": 0.9615 + }, + { + "start": 5409.39, + "end": 5414.27, + "probability": 0.9956 + }, + { + "start": 5414.53, + "end": 5414.57, + "probability": 0.4438 + }, + { + "start": 5414.57, + "end": 5415.81, + "probability": 0.6542 + }, + { + "start": 5415.95, + "end": 5417.11, + "probability": 0.6982 + }, + { + "start": 5417.41, + "end": 5419.85, + "probability": 0.5565 + }, + { + "start": 5420.11, + "end": 5421.95, + "probability": 0.9409 + }, + { + "start": 5421.95, + "end": 5423.21, + "probability": 0.7927 + }, + { + "start": 5424.21, + "end": 5424.91, + "probability": 0.9097 + }, + { + "start": 5425.05, + "end": 5427.23, + "probability": 0.6687 + }, + { + "start": 5427.45, + "end": 5431.13, + "probability": 0.8486 + }, + { + "start": 5431.25, + "end": 5433.83, + "probability": 0.7614 + }, + { + "start": 5434.91, + "end": 5436.23, + "probability": 0.5972 + }, + { + "start": 5436.37, + "end": 5436.77, + "probability": 0.8977 + }, + { + "start": 5436.79, + "end": 5440.79, + "probability": 0.9821 + }, + { + "start": 5441.1, + "end": 5445.35, + "probability": 0.7655 + }, + { + "start": 5445.49, + "end": 5447.23, + "probability": 0.7261 + }, + { + "start": 5447.27, + "end": 5450.51, + "probability": 0.8055 + }, + { + "start": 5451.11, + "end": 5453.85, + "probability": 0.9703 + }, + { + "start": 5454.11, + "end": 5456.67, + "probability": 0.9563 + }, + { + "start": 5456.95, + "end": 5459.02, + "probability": 0.8022 + }, + { + "start": 5459.83, + "end": 5460.47, + "probability": 0.3926 + }, + { + "start": 5460.57, + "end": 5461.45, + "probability": 0.3355 + }, + { + "start": 5461.67, + "end": 5463.31, + "probability": 0.7896 + }, + { + "start": 5467.73, + "end": 5468.71, + "probability": 0.4579 + }, + { + "start": 5469.11, + "end": 5469.13, + "probability": 0.3019 + }, + { + "start": 5469.13, + "end": 5469.97, + "probability": 0.6471 + }, + { + "start": 5470.17, + "end": 5470.85, + "probability": 0.6649 + }, + { + "start": 5471.07, + "end": 5475.15, + "probability": 0.692 + }, + { + "start": 5475.35, + "end": 5477.35, + "probability": 0.9227 + }, + { + "start": 5477.75, + "end": 5482.95, + "probability": 0.9619 + }, + { + "start": 5483.41, + "end": 5489.37, + "probability": 0.9036 + }, + { + "start": 5489.37, + "end": 5494.25, + "probability": 0.9954 + }, + { + "start": 5494.41, + "end": 5497.29, + "probability": 0.8139 + }, + { + "start": 5498.07, + "end": 5501.47, + "probability": 0.9614 + }, + { + "start": 5502.31, + "end": 5506.53, + "probability": 0.9554 + }, + { + "start": 5506.85, + "end": 5508.55, + "probability": 0.6124 + }, + { + "start": 5508.81, + "end": 5512.53, + "probability": 0.8449 + }, + { + "start": 5512.53, + "end": 5516.41, + "probability": 0.8969 + }, + { + "start": 5517.09, + "end": 5524.71, + "probability": 0.9837 + }, + { + "start": 5524.91, + "end": 5525.47, + "probability": 0.7441 + }, + { + "start": 5525.53, + "end": 5526.17, + "probability": 0.6144 + }, + { + "start": 5526.25, + "end": 5528.75, + "probability": 0.988 + }, + { + "start": 5528.75, + "end": 5531.19, + "probability": 0.9597 + }, + { + "start": 5531.25, + "end": 5531.89, + "probability": 0.7908 + }, + { + "start": 5532.19, + "end": 5532.89, + "probability": 0.762 + }, + { + "start": 5533.83, + "end": 5536.33, + "probability": 0.949 + }, + { + "start": 5536.65, + "end": 5537.67, + "probability": 0.9167 + }, + { + "start": 5537.85, + "end": 5538.67, + "probability": 0.7704 + }, + { + "start": 5538.83, + "end": 5540.11, + "probability": 0.5477 + }, + { + "start": 5540.11, + "end": 5543.53, + "probability": 0.9551 + }, + { + "start": 5543.69, + "end": 5544.59, + "probability": 0.3976 + }, + { + "start": 5544.75, + "end": 5549.71, + "probability": 0.9191 + }, + { + "start": 5549.83, + "end": 5551.45, + "probability": 0.9661 + }, + { + "start": 5552.39, + "end": 5556.89, + "probability": 0.8956 + }, + { + "start": 5557.05, + "end": 5560.19, + "probability": 0.5728 + }, + { + "start": 5560.59, + "end": 5565.95, + "probability": 0.6109 + }, + { + "start": 5566.05, + "end": 5567.35, + "probability": 0.8062 + }, + { + "start": 5574.53, + "end": 5577.47, + "probability": 0.6204 + }, + { + "start": 5577.87, + "end": 5577.87, + "probability": 0.1088 + }, + { + "start": 5578.11, + "end": 5580.33, + "probability": 0.1307 + }, + { + "start": 5580.59, + "end": 5581.89, + "probability": 0.042 + }, + { + "start": 5582.01, + "end": 5583.31, + "probability": 0.175 + }, + { + "start": 5593.49, + "end": 5594.01, + "probability": 0.1785 + }, + { + "start": 5594.27, + "end": 5601.91, + "probability": 0.9385 + }, + { + "start": 5602.97, + "end": 5604.81, + "probability": 0.5461 + }, + { + "start": 5605.01, + "end": 5608.57, + "probability": 0.847 + }, + { + "start": 5608.73, + "end": 5610.19, + "probability": 0.7716 + }, + { + "start": 5610.51, + "end": 5611.83, + "probability": 0.7214 + }, + { + "start": 5611.83, + "end": 5612.21, + "probability": 0.4199 + }, + { + "start": 5612.55, + "end": 5613.21, + "probability": 0.9689 + }, + { + "start": 5614.31, + "end": 5615.39, + "probability": 0.8475 + }, + { + "start": 5616.03, + "end": 5617.23, + "probability": 0.6213 + }, + { + "start": 5617.31, + "end": 5618.39, + "probability": 0.728 + }, + { + "start": 5618.49, + "end": 5619.89, + "probability": 0.979 + }, + { + "start": 5620.05, + "end": 5620.51, + "probability": 0.3399 + }, + { + "start": 5620.61, + "end": 5625.95, + "probability": 0.9745 + }, + { + "start": 5626.71, + "end": 5629.27, + "probability": 0.9189 + }, + { + "start": 5630.07, + "end": 5634.44, + "probability": 0.9663 + }, + { + "start": 5635.43, + "end": 5640.09, + "probability": 0.9857 + }, + { + "start": 5640.27, + "end": 5644.61, + "probability": 0.9956 + }, + { + "start": 5645.89, + "end": 5649.63, + "probability": 0.8503 + }, + { + "start": 5649.63, + "end": 5654.51, + "probability": 0.9982 + }, + { + "start": 5655.37, + "end": 5657.11, + "probability": 0.856 + }, + { + "start": 5657.59, + "end": 5660.27, + "probability": 0.7503 + }, + { + "start": 5660.31, + "end": 5661.43, + "probability": 0.6514 + }, + { + "start": 5661.67, + "end": 5664.93, + "probability": 0.9646 + }, + { + "start": 5665.07, + "end": 5665.65, + "probability": 0.8166 + }, + { + "start": 5666.45, + "end": 5671.29, + "probability": 0.9623 + }, + { + "start": 5671.39, + "end": 5676.63, + "probability": 0.9902 + }, + { + "start": 5676.95, + "end": 5681.69, + "probability": 0.983 + }, + { + "start": 5681.79, + "end": 5687.83, + "probability": 0.916 + }, + { + "start": 5689.95, + "end": 5691.93, + "probability": 0.384 + }, + { + "start": 5692.81, + "end": 5697.33, + "probability": 0.6931 + }, + { + "start": 5697.83, + "end": 5698.61, + "probability": 0.5876 + }, + { + "start": 5698.85, + "end": 5699.19, + "probability": 0.524 + }, + { + "start": 5699.29, + "end": 5699.97, + "probability": 0.7905 + }, + { + "start": 5700.15, + "end": 5701.37, + "probability": 0.641 + }, + { + "start": 5701.69, + "end": 5705.27, + "probability": 0.6973 + }, + { + "start": 5705.63, + "end": 5705.93, + "probability": 0.8989 + }, + { + "start": 5706.03, + "end": 5709.05, + "probability": 0.5914 + }, + { + "start": 5709.45, + "end": 5712.07, + "probability": 0.7165 + }, + { + "start": 5712.47, + "end": 5714.17, + "probability": 0.9588 + }, + { + "start": 5714.27, + "end": 5716.72, + "probability": 0.9306 + }, + { + "start": 5717.27, + "end": 5719.97, + "probability": 0.9409 + }, + { + "start": 5720.63, + "end": 5723.01, + "probability": 0.8341 + }, + { + "start": 5723.21, + "end": 5724.49, + "probability": 0.8529 + }, + { + "start": 5724.53, + "end": 5725.61, + "probability": 0.5563 + }, + { + "start": 5725.75, + "end": 5726.29, + "probability": 0.6098 + }, + { + "start": 5726.39, + "end": 5726.87, + "probability": 0.5973 + }, + { + "start": 5726.87, + "end": 5727.29, + "probability": 0.7133 + }, + { + "start": 5727.39, + "end": 5728.15, + "probability": 0.6809 + }, + { + "start": 5729.26, + "end": 5732.29, + "probability": 0.1089 + }, + { + "start": 5739.43, + "end": 5740.53, + "probability": 0.6386 + }, + { + "start": 5753.91, + "end": 5759.31, + "probability": 0.3976 + }, + { + "start": 5760.24, + "end": 5763.05, + "probability": 0.2809 + }, + { + "start": 5763.69, + "end": 5765.39, + "probability": 0.0615 + }, + { + "start": 5767.17, + "end": 5770.05, + "probability": 0.155 + }, + { + "start": 5770.63, + "end": 5771.61, + "probability": 0.0 + }, + { + "start": 5773.08, + "end": 5773.91, + "probability": 0.1209 + }, + { + "start": 5774.25, + "end": 5775.97, + "probability": 0.1079 + }, + { + "start": 5777.39, + "end": 5778.77, + "probability": 0.0858 + }, + { + "start": 5778.77, + "end": 5781.11, + "probability": 0.0435 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5847.0, + "end": 5847.0, + "probability": 0.0 + }, + { + "start": 5872.64, + "end": 5877.06, + "probability": 0.0357 + }, + { + "start": 5883.02, + "end": 5883.72, + "probability": 0.0013 + }, + { + "start": 5884.35, + "end": 5892.9, + "probability": 0.0338 + }, + { + "start": 5892.9, + "end": 5894.08, + "probability": 0.0599 + }, + { + "start": 5895.06, + "end": 5896.6, + "probability": 0.0305 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5971.0, + "end": 5971.0, + "probability": 0.0 + }, + { + "start": 5973.08, + "end": 5973.08, + "probability": 0.0484 + }, + { + "start": 5973.08, + "end": 5974.78, + "probability": 0.868 + }, + { + "start": 5974.82, + "end": 5980.02, + "probability": 0.9016 + }, + { + "start": 5980.86, + "end": 5990.04, + "probability": 0.8422 + }, + { + "start": 5992.82, + "end": 5997.98, + "probability": 0.9133 + }, + { + "start": 6000.56, + "end": 6007.06, + "probability": 0.9955 + }, + { + "start": 6008.48, + "end": 6012.2, + "probability": 0.9035 + }, + { + "start": 6013.52, + "end": 6018.76, + "probability": 0.8795 + }, + { + "start": 6022.62, + "end": 6028.88, + "probability": 0.9816 + }, + { + "start": 6028.91, + "end": 6033.18, + "probability": 0.9917 + }, + { + "start": 6034.08, + "end": 6039.14, + "probability": 0.9582 + }, + { + "start": 6040.02, + "end": 6041.56, + "probability": 0.96 + }, + { + "start": 6041.68, + "end": 6042.68, + "probability": 0.8994 + }, + { + "start": 6043.12, + "end": 6046.66, + "probability": 0.9796 + }, + { + "start": 6048.02, + "end": 6054.98, + "probability": 0.8558 + }, + { + "start": 6055.8, + "end": 6057.56, + "probability": 0.969 + }, + { + "start": 6058.42, + "end": 6061.76, + "probability": 0.9179 + }, + { + "start": 6062.36, + "end": 6068.62, + "probability": 0.9406 + }, + { + "start": 6069.26, + "end": 6077.58, + "probability": 0.9516 + }, + { + "start": 6077.58, + "end": 6085.42, + "probability": 0.7553 + }, + { + "start": 6087.34, + "end": 6090.38, + "probability": 0.9654 + }, + { + "start": 6091.28, + "end": 6092.86, + "probability": 0.9116 + }, + { + "start": 6092.94, + "end": 6095.56, + "probability": 0.9976 + }, + { + "start": 6095.62, + "end": 6098.2, + "probability": 0.9151 + }, + { + "start": 6098.68, + "end": 6101.7, + "probability": 0.6153 + }, + { + "start": 6102.14, + "end": 6106.73, + "probability": 0.9918 + }, + { + "start": 6107.6, + "end": 6108.66, + "probability": 0.8207 + }, + { + "start": 6110.86, + "end": 6112.72, + "probability": 0.8156 + }, + { + "start": 6113.24, + "end": 6116.56, + "probability": 0.991 + }, + { + "start": 6117.54, + "end": 6120.16, + "probability": 0.9929 + }, + { + "start": 6121.48, + "end": 6126.66, + "probability": 0.9487 + }, + { + "start": 6127.74, + "end": 6133.82, + "probability": 0.9993 + }, + { + "start": 6133.82, + "end": 6140.08, + "probability": 0.9985 + }, + { + "start": 6140.56, + "end": 6142.04, + "probability": 0.9351 + }, + { + "start": 6142.94, + "end": 6146.72, + "probability": 0.9197 + }, + { + "start": 6148.02, + "end": 6149.02, + "probability": 0.5125 + }, + { + "start": 6149.14, + "end": 6150.46, + "probability": 0.9861 + }, + { + "start": 6150.62, + "end": 6154.14, + "probability": 0.9418 + }, + { + "start": 6154.72, + "end": 6157.26, + "probability": 0.9859 + }, + { + "start": 6157.38, + "end": 6161.91, + "probability": 0.9905 + }, + { + "start": 6163.0, + "end": 6163.98, + "probability": 0.4163 + }, + { + "start": 6164.5, + "end": 6165.46, + "probability": 0.978 + }, + { + "start": 6165.58, + "end": 6167.62, + "probability": 0.9779 + }, + { + "start": 6167.96, + "end": 6170.86, + "probability": 0.9684 + }, + { + "start": 6171.32, + "end": 6173.24, + "probability": 0.9097 + }, + { + "start": 6173.94, + "end": 6176.0, + "probability": 0.95 + }, + { + "start": 6176.64, + "end": 6178.19, + "probability": 0.8923 + }, + { + "start": 6178.7, + "end": 6182.84, + "probability": 0.9326 + }, + { + "start": 6182.96, + "end": 6184.09, + "probability": 0.9066 + }, + { + "start": 6184.68, + "end": 6187.34, + "probability": 0.8356 + }, + { + "start": 6187.4, + "end": 6188.86, + "probability": 0.9915 + }, + { + "start": 6190.96, + "end": 6192.48, + "probability": 0.9858 + }, + { + "start": 6193.52, + "end": 6198.86, + "probability": 0.9409 + }, + { + "start": 6199.4, + "end": 6200.54, + "probability": 0.9657 + }, + { + "start": 6201.48, + "end": 6204.72, + "probability": 0.9424 + }, + { + "start": 6204.76, + "end": 6208.52, + "probability": 0.9074 + }, + { + "start": 6208.61, + "end": 6212.58, + "probability": 0.9231 + }, + { + "start": 6213.44, + "end": 6217.32, + "probability": 0.8846 + }, + { + "start": 6218.02, + "end": 6222.84, + "probability": 0.9935 + }, + { + "start": 6222.84, + "end": 6225.68, + "probability": 0.769 + }, + { + "start": 6225.68, + "end": 6228.84, + "probability": 0.9838 + }, + { + "start": 6229.48, + "end": 6233.36, + "probability": 0.9681 + }, + { + "start": 6233.92, + "end": 6236.96, + "probability": 0.944 + }, + { + "start": 6237.64, + "end": 6241.68, + "probability": 0.9901 + }, + { + "start": 6242.24, + "end": 6243.4, + "probability": 0.968 + }, + { + "start": 6243.56, + "end": 6244.55, + "probability": 0.9366 + }, + { + "start": 6245.16, + "end": 6253.34, + "probability": 0.9668 + }, + { + "start": 6254.24, + "end": 6256.18, + "probability": 0.9971 + }, + { + "start": 6256.82, + "end": 6259.9, + "probability": 0.9764 + }, + { + "start": 6260.58, + "end": 6264.48, + "probability": 0.9514 + }, + { + "start": 6264.74, + "end": 6266.82, + "probability": 0.865 + }, + { + "start": 6268.26, + "end": 6272.32, + "probability": 0.9829 + }, + { + "start": 6273.04, + "end": 6275.5, + "probability": 0.9846 + }, + { + "start": 6275.6, + "end": 6276.86, + "probability": 0.3058 + }, + { + "start": 6277.06, + "end": 6278.08, + "probability": 0.9069 + }, + { + "start": 6278.18, + "end": 6279.62, + "probability": 0.8661 + }, + { + "start": 6279.76, + "end": 6284.32, + "probability": 0.9307 + }, + { + "start": 6285.54, + "end": 6288.38, + "probability": 0.9455 + }, + { + "start": 6288.56, + "end": 6293.72, + "probability": 0.9549 + }, + { + "start": 6294.14, + "end": 6294.84, + "probability": 0.8735 + }, + { + "start": 6294.96, + "end": 6296.3, + "probability": 0.4088 + }, + { + "start": 6296.74, + "end": 6297.02, + "probability": 0.0706 + }, + { + "start": 6298.18, + "end": 6299.88, + "probability": 0.602 + }, + { + "start": 6300.12, + "end": 6301.46, + "probability": 0.3546 + }, + { + "start": 6302.52, + "end": 6303.78, + "probability": 0.0491 + }, + { + "start": 6304.32, + "end": 6306.02, + "probability": 0.2989 + }, + { + "start": 6307.24, + "end": 6311.88, + "probability": 0.8498 + }, + { + "start": 6312.04, + "end": 6314.18, + "probability": 0.9688 + }, + { + "start": 6315.18, + "end": 6316.28, + "probability": 0.8529 + }, + { + "start": 6317.34, + "end": 6319.24, + "probability": 0.9931 + }, + { + "start": 6319.46, + "end": 6321.58, + "probability": 0.9919 + }, + { + "start": 6322.58, + "end": 6329.08, + "probability": 0.9948 + }, + { + "start": 6329.96, + "end": 6331.52, + "probability": 0.9873 + }, + { + "start": 6332.18, + "end": 6334.55, + "probability": 0.9105 + }, + { + "start": 6335.3, + "end": 6340.02, + "probability": 0.719 + }, + { + "start": 6340.6, + "end": 6341.96, + "probability": 0.9729 + }, + { + "start": 6342.84, + "end": 6345.54, + "probability": 0.9631 + }, + { + "start": 6346.08, + "end": 6349.16, + "probability": 0.9377 + }, + { + "start": 6349.86, + "end": 6352.58, + "probability": 0.9221 + }, + { + "start": 6352.86, + "end": 6354.2, + "probability": 0.5749 + }, + { + "start": 6354.68, + "end": 6356.98, + "probability": 0.8879 + }, + { + "start": 6357.78, + "end": 6363.4, + "probability": 0.9511 + }, + { + "start": 6364.12, + "end": 6365.14, + "probability": 0.8664 + }, + { + "start": 6365.96, + "end": 6372.54, + "probability": 0.9079 + }, + { + "start": 6372.66, + "end": 6375.74, + "probability": 0.9927 + }, + { + "start": 6375.84, + "end": 6376.7, + "probability": 0.9761 + }, + { + "start": 6376.82, + "end": 6377.79, + "probability": 0.8805 + }, + { + "start": 6378.02, + "end": 6383.9, + "probability": 0.8493 + }, + { + "start": 6384.92, + "end": 6391.4, + "probability": 0.9852 + }, + { + "start": 6392.35, + "end": 6396.04, + "probability": 0.7356 + }, + { + "start": 6396.64, + "end": 6401.06, + "probability": 0.9602 + }, + { + "start": 6401.64, + "end": 6403.43, + "probability": 0.8993 + }, + { + "start": 6403.94, + "end": 6405.8, + "probability": 0.9811 + }, + { + "start": 6406.62, + "end": 6413.54, + "probability": 0.9819 + }, + { + "start": 6414.18, + "end": 6417.58, + "probability": 0.9688 + }, + { + "start": 6419.08, + "end": 6422.36, + "probability": 0.5652 + }, + { + "start": 6423.08, + "end": 6426.08, + "probability": 0.7492 + }, + { + "start": 6426.62, + "end": 6428.88, + "probability": 0.8643 + }, + { + "start": 6429.24, + "end": 6433.96, + "probability": 0.9881 + }, + { + "start": 6434.68, + "end": 6435.44, + "probability": 0.8239 + }, + { + "start": 6436.28, + "end": 6439.28, + "probability": 0.9937 + }, + { + "start": 6439.3, + "end": 6441.68, + "probability": 0.8926 + }, + { + "start": 6441.76, + "end": 6442.54, + "probability": 0.6993 + }, + { + "start": 6443.5, + "end": 6451.12, + "probability": 0.9272 + }, + { + "start": 6451.14, + "end": 6452.24, + "probability": 0.2258 + }, + { + "start": 6452.64, + "end": 6459.7, + "probability": 0.9836 + }, + { + "start": 6460.58, + "end": 6462.6, + "probability": 0.9878 + }, + { + "start": 6463.18, + "end": 6465.74, + "probability": 0.6004 + }, + { + "start": 6466.16, + "end": 6467.0, + "probability": 0.7044 + }, + { + "start": 6467.08, + "end": 6469.16, + "probability": 0.862 + }, + { + "start": 6469.51, + "end": 6476.34, + "probability": 0.9946 + }, + { + "start": 6476.34, + "end": 6480.8, + "probability": 0.9946 + }, + { + "start": 6481.0, + "end": 6482.28, + "probability": 0.4636 + }, + { + "start": 6483.66, + "end": 6484.54, + "probability": 0.5185 + }, + { + "start": 6484.88, + "end": 6486.14, + "probability": 0.1293 + }, + { + "start": 6486.3, + "end": 6490.16, + "probability": 0.3489 + }, + { + "start": 6490.78, + "end": 6492.24, + "probability": 0.0687 + }, + { + "start": 6493.74, + "end": 6494.6, + "probability": 0.7072 + }, + { + "start": 6497.7, + "end": 6499.9, + "probability": 0.6624 + }, + { + "start": 6500.43, + "end": 6505.45, + "probability": 0.9688 + }, + { + "start": 6506.86, + "end": 6510.32, + "probability": 0.8135 + }, + { + "start": 6510.5, + "end": 6516.34, + "probability": 0.9917 + }, + { + "start": 6516.54, + "end": 6520.9, + "probability": 0.9685 + }, + { + "start": 6521.4, + "end": 6522.98, + "probability": 0.963 + }, + { + "start": 6524.16, + "end": 6527.59, + "probability": 0.7617 + }, + { + "start": 6528.36, + "end": 6529.4, + "probability": 0.851 + }, + { + "start": 6529.64, + "end": 6537.96, + "probability": 0.9748 + }, + { + "start": 6538.62, + "end": 6539.72, + "probability": 0.8776 + }, + { + "start": 6540.1, + "end": 6541.92, + "probability": 0.9932 + }, + { + "start": 6542.72, + "end": 6546.66, + "probability": 0.783 + }, + { + "start": 6546.98, + "end": 6548.0, + "probability": 0.6566 + }, + { + "start": 6548.56, + "end": 6550.66, + "probability": 0.9805 + }, + { + "start": 6550.76, + "end": 6553.81, + "probability": 0.9677 + }, + { + "start": 6554.34, + "end": 6557.46, + "probability": 0.743 + }, + { + "start": 6558.1, + "end": 6563.24, + "probability": 0.9632 + }, + { + "start": 6563.34, + "end": 6565.26, + "probability": 0.9975 + }, + { + "start": 6565.34, + "end": 6566.48, + "probability": 0.802 + }, + { + "start": 6567.84, + "end": 6568.98, + "probability": 0.9829 + }, + { + "start": 6569.56, + "end": 6574.44, + "probability": 0.9897 + }, + { + "start": 6575.64, + "end": 6577.72, + "probability": 0.0634 + }, + { + "start": 6577.84, + "end": 6580.22, + "probability": 0.6597 + }, + { + "start": 6580.22, + "end": 6582.74, + "probability": 0.782 + }, + { + "start": 6583.2, + "end": 6584.18, + "probability": 0.1915 + }, + { + "start": 6585.46, + "end": 6587.72, + "probability": 0.6581 + }, + { + "start": 6587.86, + "end": 6589.98, + "probability": 0.9816 + }, + { + "start": 6591.15, + "end": 6594.48, + "probability": 0.3173 + }, + { + "start": 6595.02, + "end": 6596.78, + "probability": 0.8689 + }, + { + "start": 6598.3, + "end": 6600.08, + "probability": 0.4875 + }, + { + "start": 6600.98, + "end": 6601.82, + "probability": 0.894 + }, + { + "start": 6602.32, + "end": 6606.96, + "probability": 0.9921 + }, + { + "start": 6607.1, + "end": 6611.54, + "probability": 0.913 + }, + { + "start": 6612.36, + "end": 6615.5, + "probability": 0.9172 + }, + { + "start": 6616.32, + "end": 6621.4, + "probability": 0.9321 + }, + { + "start": 6621.94, + "end": 6624.86, + "probability": 0.9463 + }, + { + "start": 6625.4, + "end": 6628.74, + "probability": 0.9977 + }, + { + "start": 6629.32, + "end": 6632.5, + "probability": 0.9941 + }, + { + "start": 6632.96, + "end": 6634.96, + "probability": 0.951 + }, + { + "start": 6635.36, + "end": 6638.64, + "probability": 0.9974 + }, + { + "start": 6639.3, + "end": 6640.58, + "probability": 0.7156 + }, + { + "start": 6640.58, + "end": 6643.06, + "probability": 0.998 + }, + { + "start": 6643.14, + "end": 6643.74, + "probability": 0.669 + }, + { + "start": 6644.28, + "end": 6645.48, + "probability": 0.423 + }, + { + "start": 6645.48, + "end": 6645.84, + "probability": 0.8338 + }, + { + "start": 6645.9, + "end": 6646.34, + "probability": 0.8245 + }, + { + "start": 6646.54, + "end": 6647.78, + "probability": 0.8123 + }, + { + "start": 6648.2, + "end": 6653.14, + "probability": 0.746 + }, + { + "start": 6653.14, + "end": 6656.26, + "probability": 0.86 + }, + { + "start": 6656.78, + "end": 6659.8, + "probability": 0.9854 + }, + { + "start": 6659.8, + "end": 6662.72, + "probability": 0.9412 + }, + { + "start": 6667.74, + "end": 6673.84, + "probability": 0.7132 + }, + { + "start": 6676.88, + "end": 6680.06, + "probability": 0.6544 + }, + { + "start": 6680.6, + "end": 6682.52, + "probability": 0.8285 + }, + { + "start": 6682.6, + "end": 6685.96, + "probability": 0.8558 + }, + { + "start": 6686.32, + "end": 6687.82, + "probability": 0.4717 + }, + { + "start": 6688.2, + "end": 6691.46, + "probability": 0.5741 + }, + { + "start": 6691.7, + "end": 6695.4, + "probability": 0.925 + }, + { + "start": 6695.4, + "end": 6700.26, + "probability": 0.9983 + }, + { + "start": 6701.0, + "end": 6701.54, + "probability": 0.0089 + }, + { + "start": 6701.9, + "end": 6703.34, + "probability": 0.6958 + }, + { + "start": 6706.84, + "end": 6708.28, + "probability": 0.1241 + }, + { + "start": 6708.28, + "end": 6711.8, + "probability": 0.1389 + }, + { + "start": 6711.8, + "end": 6711.8, + "probability": 0.2994 + }, + { + "start": 6712.06, + "end": 6715.65, + "probability": 0.1235 + }, + { + "start": 6716.1, + "end": 6717.01, + "probability": 0.1617 + }, + { + "start": 6720.02, + "end": 6721.9, + "probability": 0.3773 + }, + { + "start": 6722.1, + "end": 6726.08, + "probability": 0.5786 + }, + { + "start": 6726.12, + "end": 6730.32, + "probability": 0.6193 + }, + { + "start": 6731.01, + "end": 6736.84, + "probability": 0.5773 + }, + { + "start": 6737.18, + "end": 6739.0, + "probability": 0.6447 + }, + { + "start": 6739.24, + "end": 6740.46, + "probability": 0.6233 + }, + { + "start": 6740.54, + "end": 6741.55, + "probability": 0.7839 + }, + { + "start": 6747.28, + "end": 6751.5, + "probability": 0.8146 + }, + { + "start": 6752.52, + "end": 6757.78, + "probability": 0.8053 + }, + { + "start": 6758.56, + "end": 6760.68, + "probability": 0.8243 + }, + { + "start": 6760.76, + "end": 6761.64, + "probability": 0.8043 + }, + { + "start": 6761.7, + "end": 6763.28, + "probability": 0.7067 + }, + { + "start": 6763.56, + "end": 6765.02, + "probability": 0.992 + }, + { + "start": 6765.18, + "end": 6766.5, + "probability": 0.6267 + }, + { + "start": 6766.52, + "end": 6770.04, + "probability": 0.7465 + }, + { + "start": 6770.56, + "end": 6775.26, + "probability": 0.4879 + }, + { + "start": 6776.54, + "end": 6780.14, + "probability": 0.2763 + }, + { + "start": 6780.62, + "end": 6781.6, + "probability": 0.2176 + }, + { + "start": 6781.78, + "end": 6782.4, + "probability": 0.4829 + }, + { + "start": 6782.48, + "end": 6782.9, + "probability": 0.8142 + }, + { + "start": 6783.62, + "end": 6786.12, + "probability": 0.456 + }, + { + "start": 6786.4, + "end": 6787.74, + "probability": 0.3801 + }, + { + "start": 6790.38, + "end": 6791.48, + "probability": 0.7841 + }, + { + "start": 6791.48, + "end": 6792.26, + "probability": 0.6195 + }, + { + "start": 6792.4, + "end": 6793.42, + "probability": 0.8068 + }, + { + "start": 6793.78, + "end": 6795.86, + "probability": 0.9323 + }, + { + "start": 6795.86, + "end": 6801.36, + "probability": 0.9027 + }, + { + "start": 6802.1, + "end": 6805.64, + "probability": 0.6549 + }, + { + "start": 6806.02, + "end": 6807.72, + "probability": 0.6355 + }, + { + "start": 6807.78, + "end": 6810.66, + "probability": 0.0737 + }, + { + "start": 6810.74, + "end": 6812.54, + "probability": 0.6355 + }, + { + "start": 6812.68, + "end": 6813.6, + "probability": 0.9043 + }, + { + "start": 6814.64, + "end": 6817.2, + "probability": 0.6807 + }, + { + "start": 6817.24, + "end": 6817.86, + "probability": 0.9229 + }, + { + "start": 6818.04, + "end": 6822.08, + "probability": 0.8888 + }, + { + "start": 6822.22, + "end": 6823.08, + "probability": 0.818 + }, + { + "start": 6823.6, + "end": 6825.82, + "probability": 0.9317 + }, + { + "start": 6826.02, + "end": 6832.0, + "probability": 0.9973 + }, + { + "start": 6832.18, + "end": 6837.59, + "probability": 0.7639 + }, + { + "start": 6838.7, + "end": 6842.44, + "probability": 0.9331 + }, + { + "start": 6842.44, + "end": 6845.34, + "probability": 0.886 + }, + { + "start": 6846.38, + "end": 6847.02, + "probability": 0.3875 + }, + { + "start": 6847.36, + "end": 6848.86, + "probability": 0.7551 + }, + { + "start": 6848.86, + "end": 6850.84, + "probability": 0.5918 + }, + { + "start": 6851.02, + "end": 6852.6, + "probability": 0.8573 + }, + { + "start": 6852.78, + "end": 6854.16, + "probability": 0.7673 + }, + { + "start": 6854.34, + "end": 6855.66, + "probability": 0.962 + }, + { + "start": 6855.72, + "end": 6856.46, + "probability": 0.6296 + }, + { + "start": 6856.56, + "end": 6857.98, + "probability": 0.7479 + }, + { + "start": 6859.68, + "end": 6862.02, + "probability": 0.6258 + }, + { + "start": 6862.6, + "end": 6863.48, + "probability": 0.6866 + }, + { + "start": 6863.64, + "end": 6865.46, + "probability": 0.8577 + }, + { + "start": 6865.92, + "end": 6866.92, + "probability": 0.5938 + }, + { + "start": 6867.18, + "end": 6868.0, + "probability": 0.6965 + }, + { + "start": 6868.08, + "end": 6868.86, + "probability": 0.6792 + }, + { + "start": 6868.96, + "end": 6869.68, + "probability": 0.9119 + }, + { + "start": 6869.74, + "end": 6872.04, + "probability": 0.957 + }, + { + "start": 6872.28, + "end": 6872.84, + "probability": 0.9305 + }, + { + "start": 6872.94, + "end": 6877.68, + "probability": 0.9902 + }, + { + "start": 6878.06, + "end": 6879.72, + "probability": 0.826 + }, + { + "start": 6880.52, + "end": 6881.92, + "probability": 0.9434 + }, + { + "start": 6882.91, + "end": 6887.26, + "probability": 0.6984 + }, + { + "start": 6888.74, + "end": 6889.4, + "probability": 0.7977 + }, + { + "start": 6889.96, + "end": 6891.56, + "probability": 0.8671 + }, + { + "start": 6891.68, + "end": 6892.72, + "probability": 0.4111 + }, + { + "start": 6892.84, + "end": 6894.26, + "probability": 0.9619 + }, + { + "start": 6895.8, + "end": 6896.68, + "probability": 0.7524 + }, + { + "start": 6896.74, + "end": 6902.1, + "probability": 0.8342 + }, + { + "start": 6902.4, + "end": 6902.6, + "probability": 0.4252 + }, + { + "start": 6903.78, + "end": 6906.5, + "probability": 0.9662 + }, + { + "start": 6908.06, + "end": 6909.76, + "probability": 0.986 + }, + { + "start": 6910.22, + "end": 6911.98, + "probability": 0.9626 + }, + { + "start": 6911.98, + "end": 6913.8, + "probability": 0.6042 + }, + { + "start": 6914.52, + "end": 6919.16, + "probability": 0.9659 + }, + { + "start": 6920.28, + "end": 6924.63, + "probability": 0.8735 + }, + { + "start": 6925.64, + "end": 6928.14, + "probability": 0.5855 + }, + { + "start": 6928.32, + "end": 6929.84, + "probability": 0.585 + }, + { + "start": 6930.04, + "end": 6931.07, + "probability": 0.6978 + }, + { + "start": 6931.5, + "end": 6932.64, + "probability": 0.7972 + }, + { + "start": 6932.66, + "end": 6933.05, + "probability": 0.522 + }, + { + "start": 6933.18, + "end": 6933.54, + "probability": 0.7509 + }, + { + "start": 6933.8, + "end": 6935.3, + "probability": 0.7679 + }, + { + "start": 6935.72, + "end": 6938.38, + "probability": 0.5064 + }, + { + "start": 6939.08, + "end": 6941.91, + "probability": 0.9912 + }, + { + "start": 6942.08, + "end": 6943.04, + "probability": 0.9816 + }, + { + "start": 6943.12, + "end": 6943.98, + "probability": 0.8064 + }, + { + "start": 6944.32, + "end": 6946.02, + "probability": 0.9446 + }, + { + "start": 6947.9, + "end": 6950.74, + "probability": 0.973 + }, + { + "start": 6951.28, + "end": 6953.32, + "probability": 0.9139 + }, + { + "start": 6954.16, + "end": 6954.68, + "probability": 0.5472 + }, + { + "start": 6955.34, + "end": 6956.16, + "probability": 0.9132 + }, + { + "start": 6956.34, + "end": 6959.86, + "probability": 0.6924 + }, + { + "start": 6960.56, + "end": 6962.0, + "probability": 0.3441 + }, + { + "start": 6962.6, + "end": 6966.24, + "probability": 0.7619 + }, + { + "start": 6966.56, + "end": 6968.98, + "probability": 0.7416 + }, + { + "start": 6969.74, + "end": 6972.12, + "probability": 0.4157 + }, + { + "start": 6972.22, + "end": 6974.1, + "probability": 0.767 + }, + { + "start": 6974.94, + "end": 6976.04, + "probability": 0.2941 + }, + { + "start": 6976.26, + "end": 6978.19, + "probability": 0.9253 + }, + { + "start": 6978.36, + "end": 6978.62, + "probability": 0.6355 + }, + { + "start": 6978.62, + "end": 6979.04, + "probability": 0.8025 + }, + { + "start": 6979.16, + "end": 6981.46, + "probability": 0.7616 + }, + { + "start": 6981.52, + "end": 6982.36, + "probability": 0.5574 + }, + { + "start": 6982.4, + "end": 6983.94, + "probability": 0.9446 + }, + { + "start": 6985.56, + "end": 6986.86, + "probability": 0.8981 + }, + { + "start": 6986.86, + "end": 6987.84, + "probability": 0.5415 + }, + { + "start": 6988.24, + "end": 6988.98, + "probability": 0.5649 + }, + { + "start": 6989.08, + "end": 6989.66, + "probability": 0.8727 + }, + { + "start": 6989.88, + "end": 6990.28, + "probability": 0.458 + }, + { + "start": 6990.52, + "end": 6990.74, + "probability": 0.5927 + }, + { + "start": 6991.26, + "end": 6992.46, + "probability": 0.8218 + }, + { + "start": 6994.54, + "end": 6995.94, + "probability": 0.887 + }, + { + "start": 6996.23, + "end": 6997.12, + "probability": 0.4448 + }, + { + "start": 6997.3, + "end": 6998.0, + "probability": 0.939 + }, + { + "start": 6998.5, + "end": 7000.16, + "probability": 0.9033 + }, + { + "start": 7000.74, + "end": 7005.33, + "probability": 0.5216 + }, + { + "start": 7006.62, + "end": 7013.48, + "probability": 0.8151 + }, + { + "start": 7014.1, + "end": 7015.56, + "probability": 0.8477 + }, + { + "start": 7015.66, + "end": 7017.0, + "probability": 0.5154 + }, + { + "start": 7017.32, + "end": 7019.58, + "probability": 0.9767 + }, + { + "start": 7020.14, + "end": 7021.22, + "probability": 0.6446 + }, + { + "start": 7021.5, + "end": 7026.72, + "probability": 0.7045 + }, + { + "start": 7026.98, + "end": 7027.33, + "probability": 0.756 + }, + { + "start": 7028.58, + "end": 7030.44, + "probability": 0.9594 + }, + { + "start": 7030.96, + "end": 7032.42, + "probability": 0.7063 + }, + { + "start": 7040.22, + "end": 7041.44, + "probability": 0.5953 + }, + { + "start": 7042.54, + "end": 7043.16, + "probability": 0.4936 + }, + { + "start": 7043.18, + "end": 7044.22, + "probability": 0.6779 + }, + { + "start": 7044.34, + "end": 7046.18, + "probability": 0.6394 + }, + { + "start": 7046.36, + "end": 7047.16, + "probability": 0.864 + }, + { + "start": 7047.26, + "end": 7048.72, + "probability": 0.3882 + }, + { + "start": 7048.86, + "end": 7049.42, + "probability": 0.1873 + }, + { + "start": 7050.42, + "end": 7052.46, + "probability": 0.724 + }, + { + "start": 7052.84, + "end": 7060.7, + "probability": 0.9364 + }, + { + "start": 7061.0, + "end": 7064.5, + "probability": 0.8052 + }, + { + "start": 7064.9, + "end": 7068.18, + "probability": 0.7082 + }, + { + "start": 7068.88, + "end": 7073.02, + "probability": 0.8515 + }, + { + "start": 7073.66, + "end": 7075.66, + "probability": 0.7426 + }, + { + "start": 7075.8, + "end": 7080.12, + "probability": 0.6702 + }, + { + "start": 7080.56, + "end": 7082.06, + "probability": 0.6311 + }, + { + "start": 7082.18, + "end": 7084.86, + "probability": 0.6547 + }, + { + "start": 7084.88, + "end": 7086.14, + "probability": 0.7681 + }, + { + "start": 7086.48, + "end": 7090.32, + "probability": 0.9597 + }, + { + "start": 7090.4, + "end": 7090.9, + "probability": 0.7805 + }, + { + "start": 7091.34, + "end": 7091.34, + "probability": 0.2668 + }, + { + "start": 7091.4, + "end": 7093.74, + "probability": 0.6381 + }, + { + "start": 7094.34, + "end": 7094.64, + "probability": 0.4206 + }, + { + "start": 7094.88, + "end": 7098.0, + "probability": 0.895 + }, + { + "start": 7098.44, + "end": 7100.66, + "probability": 0.7181 + }, + { + "start": 7100.82, + "end": 7101.08, + "probability": 0.5372 + }, + { + "start": 7101.18, + "end": 7106.74, + "probability": 0.9945 + }, + { + "start": 7107.04, + "end": 7110.2, + "probability": 0.9971 + }, + { + "start": 7110.3, + "end": 7112.87, + "probability": 0.8604 + }, + { + "start": 7113.0, + "end": 7113.92, + "probability": 0.686 + }, + { + "start": 7114.16, + "end": 7115.5, + "probability": 0.9507 + }, + { + "start": 7115.74, + "end": 7117.92, + "probability": 0.96 + }, + { + "start": 7118.32, + "end": 7120.04, + "probability": 0.9365 + }, + { + "start": 7121.1, + "end": 7126.1, + "probability": 0.9918 + }, + { + "start": 7127.06, + "end": 7127.56, + "probability": 0.1053 + }, + { + "start": 7127.56, + "end": 7132.66, + "probability": 0.8915 + }, + { + "start": 7133.14, + "end": 7135.18, + "probability": 0.3329 + }, + { + "start": 7135.36, + "end": 7138.06, + "probability": 0.9291 + }, + { + "start": 7138.58, + "end": 7140.48, + "probability": 0.5767 + }, + { + "start": 7140.56, + "end": 7141.16, + "probability": 0.6173 + }, + { + "start": 7141.26, + "end": 7142.12, + "probability": 0.7271 + }, + { + "start": 7142.44, + "end": 7143.44, + "probability": 0.558 + }, + { + "start": 7143.96, + "end": 7148.0, + "probability": 0.0948 + }, + { + "start": 7162.98, + "end": 7166.86, + "probability": 0.8377 + }, + { + "start": 7166.86, + "end": 7170.64, + "probability": 0.7876 + }, + { + "start": 7170.88, + "end": 7172.36, + "probability": 0.3675 + }, + { + "start": 7172.94, + "end": 7176.52, + "probability": 0.3421 + }, + { + "start": 7176.68, + "end": 7179.72, + "probability": 0.8409 + }, + { + "start": 7182.54, + "end": 7185.3, + "probability": 0.0616 + }, + { + "start": 7185.32, + "end": 7193.12, + "probability": 0.0495 + }, + { + "start": 7193.12, + "end": 7195.78, + "probability": 0.0773 + }, + { + "start": 7197.16, + "end": 7198.56, + "probability": 0.0194 + }, + { + "start": 7203.26, + "end": 7203.98, + "probability": 0.0222 + }, + { + "start": 7206.54, + "end": 7210.38, + "probability": 0.0771 + }, + { + "start": 7210.4, + "end": 7211.68, + "probability": 0.1505 + }, + { + "start": 7211.68, + "end": 7213.48, + "probability": 0.1532 + }, + { + "start": 7213.72, + "end": 7215.76, + "probability": 0.2806 + }, + { + "start": 7218.5, + "end": 7219.7, + "probability": 0.1233 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.0, + "end": 7233.0, + "probability": 0.0 + }, + { + "start": 7233.24, + "end": 7234.74, + "probability": 0.1047 + }, + { + "start": 7234.74, + "end": 7236.2, + "probability": 0.4861 + }, + { + "start": 7236.2, + "end": 7242.78, + "probability": 0.9391 + }, + { + "start": 7244.06, + "end": 7249.27, + "probability": 0.9955 + }, + { + "start": 7249.6, + "end": 7255.28, + "probability": 0.9912 + }, + { + "start": 7256.12, + "end": 7256.52, + "probability": 0.7172 + }, + { + "start": 7256.58, + "end": 7258.26, + "probability": 0.816 + }, + { + "start": 7258.28, + "end": 7259.26, + "probability": 0.3691 + }, + { + "start": 7259.5, + "end": 7261.14, + "probability": 0.8933 + }, + { + "start": 7262.02, + "end": 7265.44, + "probability": 0.8555 + }, + { + "start": 7266.04, + "end": 7271.2, + "probability": 0.9854 + }, + { + "start": 7272.54, + "end": 7274.0, + "probability": 0.768 + }, + { + "start": 7274.86, + "end": 7275.56, + "probability": 0.8004 + }, + { + "start": 7275.68, + "end": 7278.1, + "probability": 0.96 + }, + { + "start": 7278.6, + "end": 7279.7, + "probability": 0.9764 + }, + { + "start": 7280.24, + "end": 7281.68, + "probability": 0.9805 + }, + { + "start": 7282.32, + "end": 7282.74, + "probability": 0.4687 + }, + { + "start": 7283.22, + "end": 7285.1, + "probability": 0.8965 + }, + { + "start": 7285.48, + "end": 7287.08, + "probability": 0.9659 + }, + { + "start": 7287.52, + "end": 7289.94, + "probability": 0.7031 + }, + { + "start": 7290.58, + "end": 7293.62, + "probability": 0.8738 + }, + { + "start": 7294.16, + "end": 7297.92, + "probability": 0.7453 + }, + { + "start": 7297.98, + "end": 7300.72, + "probability": 0.7033 + }, + { + "start": 7300.86, + "end": 7302.44, + "probability": 0.8435 + }, + { + "start": 7302.68, + "end": 7304.24, + "probability": 0.7642 + }, + { + "start": 7305.34, + "end": 7306.89, + "probability": 0.8254 + }, + { + "start": 7307.62, + "end": 7314.2, + "probability": 0.9836 + }, + { + "start": 7314.6, + "end": 7317.56, + "probability": 0.9975 + }, + { + "start": 7318.0, + "end": 7318.98, + "probability": 0.5132 + }, + { + "start": 7319.08, + "end": 7322.28, + "probability": 0.9838 + }, + { + "start": 7322.48, + "end": 7324.75, + "probability": 0.9447 + }, + { + "start": 7325.14, + "end": 7326.08, + "probability": 0.5779 + }, + { + "start": 7326.48, + "end": 7330.44, + "probability": 0.9939 + }, + { + "start": 7330.5, + "end": 7332.58, + "probability": 0.9587 + }, + { + "start": 7333.1, + "end": 7333.58, + "probability": 0.5981 + }, + { + "start": 7333.6, + "end": 7334.34, + "probability": 0.6268 + }, + { + "start": 7334.42, + "end": 7335.88, + "probability": 0.7569 + }, + { + "start": 7336.64, + "end": 7339.64, + "probability": 0.9846 + }, + { + "start": 7340.7, + "end": 7343.4, + "probability": 0.9694 + }, + { + "start": 7343.5, + "end": 7344.64, + "probability": 0.3393 + }, + { + "start": 7344.92, + "end": 7346.1, + "probability": 0.5498 + }, + { + "start": 7347.08, + "end": 7350.84, + "probability": 0.928 + }, + { + "start": 7351.86, + "end": 7354.44, + "probability": 0.6949 + }, + { + "start": 7355.32, + "end": 7355.46, + "probability": 0.1344 + }, + { + "start": 7355.62, + "end": 7357.63, + "probability": 0.8004 + }, + { + "start": 7358.76, + "end": 7360.88, + "probability": 0.9842 + }, + { + "start": 7361.32, + "end": 7364.62, + "probability": 0.913 + }, + { + "start": 7365.2, + "end": 7368.66, + "probability": 0.5876 + }, + { + "start": 7369.34, + "end": 7369.96, + "probability": 0.3082 + }, + { + "start": 7370.26, + "end": 7372.02, + "probability": 0.934 + }, + { + "start": 7372.1, + "end": 7373.96, + "probability": 0.9922 + }, + { + "start": 7374.46, + "end": 7375.98, + "probability": 0.8434 + }, + { + "start": 7376.86, + "end": 7380.48, + "probability": 0.7762 + }, + { + "start": 7380.9, + "end": 7382.38, + "probability": 0.7769 + }, + { + "start": 7382.8, + "end": 7383.66, + "probability": 0.9458 + }, + { + "start": 7384.17, + "end": 7388.93, + "probability": 0.9923 + }, + { + "start": 7389.06, + "end": 7390.26, + "probability": 0.95 + }, + { + "start": 7391.21, + "end": 7393.08, + "probability": 0.4335 + }, + { + "start": 7393.12, + "end": 7395.72, + "probability": 0.9714 + }, + { + "start": 7396.56, + "end": 7399.1, + "probability": 0.8036 + }, + { + "start": 7399.24, + "end": 7404.42, + "probability": 0.8366 + }, + { + "start": 7404.42, + "end": 7408.46, + "probability": 0.9639 + }, + { + "start": 7408.96, + "end": 7410.42, + "probability": 0.8182 + }, + { + "start": 7410.54, + "end": 7412.41, + "probability": 0.6681 + }, + { + "start": 7413.06, + "end": 7416.04, + "probability": 0.7374 + }, + { + "start": 7416.04, + "end": 7419.24, + "probability": 0.85 + }, + { + "start": 7419.84, + "end": 7421.62, + "probability": 0.8223 + }, + { + "start": 7421.72, + "end": 7422.32, + "probability": 0.6791 + }, + { + "start": 7422.56, + "end": 7426.98, + "probability": 0.9013 + }, + { + "start": 7426.98, + "end": 7430.24, + "probability": 0.9585 + }, + { + "start": 7430.4, + "end": 7431.36, + "probability": 0.75 + }, + { + "start": 7432.3, + "end": 7437.86, + "probability": 0.8263 + }, + { + "start": 7438.04, + "end": 7438.76, + "probability": 0.3394 + }, + { + "start": 7438.86, + "end": 7441.7, + "probability": 0.8776 + }, + { + "start": 7441.72, + "end": 7441.98, + "probability": 0.0837 + }, + { + "start": 7442.12, + "end": 7442.56, + "probability": 0.7546 + }, + { + "start": 7442.92, + "end": 7443.36, + "probability": 0.6191 + }, + { + "start": 7443.72, + "end": 7447.29, + "probability": 0.7544 + }, + { + "start": 7448.02, + "end": 7451.0, + "probability": 0.854 + }, + { + "start": 7451.72, + "end": 7452.6, + "probability": 0.9395 + }, + { + "start": 7452.7, + "end": 7453.83, + "probability": 0.9906 + }, + { + "start": 7454.2, + "end": 7454.72, + "probability": 0.675 + }, + { + "start": 7454.86, + "end": 7458.04, + "probability": 0.7894 + }, + { + "start": 7458.54, + "end": 7459.2, + "probability": 0.269 + }, + { + "start": 7459.58, + "end": 7460.2, + "probability": 0.7239 + }, + { + "start": 7461.02, + "end": 7463.46, + "probability": 0.8029 + }, + { + "start": 7463.88, + "end": 7465.46, + "probability": 0.9906 + }, + { + "start": 7465.98, + "end": 7468.64, + "probability": 0.9108 + }, + { + "start": 7469.02, + "end": 7469.76, + "probability": 0.7977 + }, + { + "start": 7470.16, + "end": 7472.16, + "probability": 0.9596 + }, + { + "start": 7473.16, + "end": 7476.7, + "probability": 0.5596 + }, + { + "start": 7477.38, + "end": 7477.92, + "probability": 0.7786 + }, + { + "start": 7478.24, + "end": 7480.56, + "probability": 0.9415 + }, + { + "start": 7481.02, + "end": 7486.9, + "probability": 0.9475 + }, + { + "start": 7487.16, + "end": 7489.22, + "probability": 0.6821 + }, + { + "start": 7489.94, + "end": 7493.04, + "probability": 0.8595 + }, + { + "start": 7493.28, + "end": 7493.56, + "probability": 0.5795 + }, + { + "start": 7493.6, + "end": 7494.74, + "probability": 0.9136 + }, + { + "start": 7494.82, + "end": 7496.93, + "probability": 0.9652 + }, + { + "start": 7497.48, + "end": 7498.2, + "probability": 0.7555 + }, + { + "start": 7498.32, + "end": 7500.72, + "probability": 0.9565 + }, + { + "start": 7501.12, + "end": 7504.62, + "probability": 0.9339 + }, + { + "start": 7504.74, + "end": 7505.84, + "probability": 0.8831 + }, + { + "start": 7505.96, + "end": 7506.6, + "probability": 0.4724 + }, + { + "start": 7508.73, + "end": 7510.2, + "probability": 0.7519 + }, + { + "start": 7510.68, + "end": 7511.1, + "probability": 0.8062 + }, + { + "start": 7511.18, + "end": 7514.54, + "probability": 0.9741 + }, + { + "start": 7515.1, + "end": 7516.54, + "probability": 0.3086 + }, + { + "start": 7517.46, + "end": 7519.15, + "probability": 0.9959 + }, + { + "start": 7520.04, + "end": 7526.04, + "probability": 0.8167 + }, + { + "start": 7526.04, + "end": 7531.22, + "probability": 0.8009 + }, + { + "start": 7531.38, + "end": 7532.32, + "probability": 0.4953 + }, + { + "start": 7532.46, + "end": 7536.42, + "probability": 0.8966 + }, + { + "start": 7536.48, + "end": 7536.82, + "probability": 0.7361 + }, + { + "start": 7536.96, + "end": 7537.45, + "probability": 0.6906 + }, + { + "start": 7538.2, + "end": 7543.78, + "probability": 0.9788 + }, + { + "start": 7543.78, + "end": 7550.74, + "probability": 0.9141 + }, + { + "start": 7551.44, + "end": 7552.98, + "probability": 0.747 + }, + { + "start": 7553.0, + "end": 7553.28, + "probability": 0.6751 + }, + { + "start": 7553.36, + "end": 7554.14, + "probability": 0.7138 + }, + { + "start": 7554.14, + "end": 7555.68, + "probability": 0.9035 + }, + { + "start": 7556.0, + "end": 7556.52, + "probability": 0.5445 + }, + { + "start": 7556.58, + "end": 7557.42, + "probability": 0.9271 + }, + { + "start": 7558.06, + "end": 7560.36, + "probability": 0.8979 + }, + { + "start": 7561.3, + "end": 7562.18, + "probability": 0.9599 + }, + { + "start": 7562.18, + "end": 7562.98, + "probability": 0.9718 + }, + { + "start": 7563.12, + "end": 7564.32, + "probability": 0.9175 + }, + { + "start": 7564.6, + "end": 7564.66, + "probability": 0.381 + }, + { + "start": 7564.76, + "end": 7565.0, + "probability": 0.319 + }, + { + "start": 7565.06, + "end": 7565.56, + "probability": 0.7845 + }, + { + "start": 7566.1, + "end": 7568.34, + "probability": 0.9901 + }, + { + "start": 7568.48, + "end": 7569.4, + "probability": 0.5983 + }, + { + "start": 7569.9, + "end": 7572.32, + "probability": 0.9468 + }, + { + "start": 7572.32, + "end": 7576.38, + "probability": 0.6431 + }, + { + "start": 7576.4, + "end": 7576.58, + "probability": 0.5504 + }, + { + "start": 7576.74, + "end": 7578.08, + "probability": 0.8003 + }, + { + "start": 7578.44, + "end": 7579.08, + "probability": 0.5209 + }, + { + "start": 7579.68, + "end": 7581.22, + "probability": 0.584 + }, + { + "start": 7581.98, + "end": 7585.52, + "probability": 0.6871 + }, + { + "start": 7585.6, + "end": 7585.72, + "probability": 0.2613 + }, + { + "start": 7585.74, + "end": 7585.88, + "probability": 0.8038 + }, + { + "start": 7585.94, + "end": 7588.68, + "probability": 0.8247 + }, + { + "start": 7589.12, + "end": 7595.66, + "probability": 0.9419 + }, + { + "start": 7595.74, + "end": 7596.53, + "probability": 0.6476 + }, + { + "start": 7597.28, + "end": 7598.34, + "probability": 0.687 + }, + { + "start": 7598.44, + "end": 7603.64, + "probability": 0.9478 + }, + { + "start": 7603.88, + "end": 7604.67, + "probability": 0.9517 + }, + { + "start": 7605.02, + "end": 7606.06, + "probability": 0.468 + }, + { + "start": 7606.1, + "end": 7607.94, + "probability": 0.9909 + }, + { + "start": 7608.16, + "end": 7614.8, + "probability": 0.9743 + }, + { + "start": 7615.54, + "end": 7617.76, + "probability": 0.6336 + }, + { + "start": 7618.4, + "end": 7619.98, + "probability": 0.8333 + }, + { + "start": 7620.06, + "end": 7620.84, + "probability": 0.9778 + }, + { + "start": 7620.96, + "end": 7621.4, + "probability": 0.8405 + }, + { + "start": 7621.64, + "end": 7621.96, + "probability": 0.6628 + }, + { + "start": 7622.06, + "end": 7624.02, + "probability": 0.7643 + }, + { + "start": 7624.02, + "end": 7624.34, + "probability": 0.0775 + }, + { + "start": 7625.12, + "end": 7625.6, + "probability": 0.8976 + }, + { + "start": 7625.82, + "end": 7627.82, + "probability": 0.6704 + }, + { + "start": 7628.52, + "end": 7629.5, + "probability": 0.6054 + }, + { + "start": 7630.16, + "end": 7631.5, + "probability": 0.9513 + }, + { + "start": 7631.94, + "end": 7632.22, + "probability": 0.7815 + }, + { + "start": 7632.24, + "end": 7634.92, + "probability": 0.8966 + }, + { + "start": 7635.9, + "end": 7638.2, + "probability": 0.9246 + }, + { + "start": 7639.1, + "end": 7639.94, + "probability": 0.7091 + }, + { + "start": 7639.94, + "end": 7647.7, + "probability": 0.7216 + }, + { + "start": 7648.36, + "end": 7649.28, + "probability": 0.626 + }, + { + "start": 7649.96, + "end": 7651.86, + "probability": 0.9399 + }, + { + "start": 7651.92, + "end": 7652.88, + "probability": 0.953 + }, + { + "start": 7653.06, + "end": 7654.52, + "probability": 0.3352 + }, + { + "start": 7654.7, + "end": 7655.93, + "probability": 0.9192 + }, + { + "start": 7656.34, + "end": 7656.64, + "probability": 0.7602 + }, + { + "start": 7656.72, + "end": 7657.4, + "probability": 0.378 + }, + { + "start": 7657.5, + "end": 7659.08, + "probability": 0.7308 + }, + { + "start": 7659.76, + "end": 7664.06, + "probability": 0.7097 + }, + { + "start": 7664.7, + "end": 7665.56, + "probability": 0.9288 + }, + { + "start": 7665.96, + "end": 7668.01, + "probability": 0.7769 + }, + { + "start": 7668.12, + "end": 7669.0, + "probability": 0.6787 + }, + { + "start": 7669.36, + "end": 7669.36, + "probability": 0.1772 + }, + { + "start": 7669.36, + "end": 7673.82, + "probability": 0.6835 + }, + { + "start": 7674.48, + "end": 7675.42, + "probability": 0.7639 + }, + { + "start": 7675.72, + "end": 7678.48, + "probability": 0.8647 + }, + { + "start": 7678.6, + "end": 7680.31, + "probability": 0.9922 + }, + { + "start": 7681.2, + "end": 7684.0, + "probability": 0.8137 + }, + { + "start": 7684.16, + "end": 7686.08, + "probability": 0.5455 + }, + { + "start": 7686.62, + "end": 7690.46, + "probability": 0.8887 + }, + { + "start": 7690.94, + "end": 7692.12, + "probability": 0.7253 + }, + { + "start": 7692.7, + "end": 7693.36, + "probability": 0.9507 + }, + { + "start": 7694.4, + "end": 7700.92, + "probability": 0.7871 + }, + { + "start": 7702.1, + "end": 7707.52, + "probability": 0.8618 + }, + { + "start": 7708.38, + "end": 7709.52, + "probability": 0.5625 + }, + { + "start": 7710.18, + "end": 7714.24, + "probability": 0.9001 + }, + { + "start": 7714.98, + "end": 7717.36, + "probability": 0.9103 + }, + { + "start": 7717.48, + "end": 7718.86, + "probability": 0.9634 + }, + { + "start": 7719.0, + "end": 7721.24, + "probability": 0.7719 + }, + { + "start": 7721.76, + "end": 7724.48, + "probability": 0.6905 + }, + { + "start": 7725.6, + "end": 7726.34, + "probability": 0.4605 + }, + { + "start": 7726.4, + "end": 7727.54, + "probability": 0.6596 + }, + { + "start": 7727.68, + "end": 7732.44, + "probability": 0.8301 + }, + { + "start": 7732.84, + "end": 7735.14, + "probability": 0.9027 + }, + { + "start": 7735.5, + "end": 7738.55, + "probability": 0.9935 + }, + { + "start": 7739.22, + "end": 7740.18, + "probability": 0.9001 + }, + { + "start": 7740.4, + "end": 7741.18, + "probability": 0.7312 + }, + { + "start": 7741.24, + "end": 7741.78, + "probability": 0.557 + }, + { + "start": 7741.78, + "end": 7742.3, + "probability": 0.8361 + }, + { + "start": 7742.4, + "end": 7743.36, + "probability": 0.9506 + }, + { + "start": 7743.36, + "end": 7744.08, + "probability": 0.6124 + }, + { + "start": 7744.12, + "end": 7748.64, + "probability": 0.9919 + }, + { + "start": 7749.44, + "end": 7750.24, + "probability": 0.7969 + }, + { + "start": 7750.34, + "end": 7754.23, + "probability": 0.8906 + }, + { + "start": 7754.42, + "end": 7755.32, + "probability": 0.9575 + }, + { + "start": 7755.48, + "end": 7757.42, + "probability": 0.9946 + }, + { + "start": 7757.7, + "end": 7758.32, + "probability": 0.6527 + }, + { + "start": 7758.66, + "end": 7760.28, + "probability": 0.9659 + }, + { + "start": 7760.52, + "end": 7763.26, + "probability": 0.974 + }, + { + "start": 7763.6, + "end": 7765.59, + "probability": 0.9591 + }, + { + "start": 7766.12, + "end": 7769.38, + "probability": 0.9692 + }, + { + "start": 7769.88, + "end": 7771.18, + "probability": 0.0557 + }, + { + "start": 7771.72, + "end": 7771.96, + "probability": 0.1287 + }, + { + "start": 7773.24, + "end": 7776.74, + "probability": 0.0619 + }, + { + "start": 7776.74, + "end": 7779.16, + "probability": 0.0823 + }, + { + "start": 7781.58, + "end": 7784.06, + "probability": 0.0833 + }, + { + "start": 7784.06, + "end": 7786.6, + "probability": 0.0316 + }, + { + "start": 7788.34, + "end": 7790.34, + "probability": 0.027 + }, + { + "start": 7795.28, + "end": 7797.36, + "probability": 0.1427 + }, + { + "start": 7815.04, + "end": 7815.14, + "probability": 0.18 + }, + { + "start": 7825.56, + "end": 7828.16, + "probability": 0.9767 + }, + { + "start": 7833.24, + "end": 7833.28, + "probability": 0.0595 + }, + { + "start": 7833.28, + "end": 7833.28, + "probability": 0.0445 + }, + { + "start": 7833.28, + "end": 7834.08, + "probability": 0.7099 + }, + { + "start": 7834.58, + "end": 7840.32, + "probability": 0.9851 + }, + { + "start": 7841.7, + "end": 7842.12, + "probability": 0.4922 + }, + { + "start": 7842.22, + "end": 7843.26, + "probability": 0.6095 + }, + { + "start": 7843.74, + "end": 7845.31, + "probability": 0.8236 + }, + { + "start": 7845.78, + "end": 7846.29, + "probability": 0.756 + }, + { + "start": 7847.06, + "end": 7848.72, + "probability": 0.896 + }, + { + "start": 7848.8, + "end": 7851.08, + "probability": 0.8658 + }, + { + "start": 7851.1, + "end": 7851.94, + "probability": 0.7376 + }, + { + "start": 7852.12, + "end": 7852.82, + "probability": 0.6289 + }, + { + "start": 7852.88, + "end": 7853.8, + "probability": 0.2261 + }, + { + "start": 7853.9, + "end": 7854.5, + "probability": 0.5487 + }, + { + "start": 7854.78, + "end": 7854.92, + "probability": 0.255 + }, + { + "start": 7854.94, + "end": 7855.5, + "probability": 0.7679 + }, + { + "start": 7855.6, + "end": 7858.66, + "probability": 0.923 + }, + { + "start": 7858.86, + "end": 7858.86, + "probability": 0.0244 + }, + { + "start": 7858.86, + "end": 7860.32, + "probability": 0.7612 + }, + { + "start": 7860.38, + "end": 7860.96, + "probability": 0.7982 + }, + { + "start": 7861.24, + "end": 7862.36, + "probability": 0.8577 + }, + { + "start": 7863.42, + "end": 7864.9, + "probability": 0.7034 + }, + { + "start": 7865.18, + "end": 7867.22, + "probability": 0.9043 + }, + { + "start": 7867.32, + "end": 7868.62, + "probability": 0.8169 + }, + { + "start": 7869.44, + "end": 7872.18, + "probability": 0.8345 + }, + { + "start": 7872.18, + "end": 7876.26, + "probability": 0.9626 + }, + { + "start": 7876.72, + "end": 7877.42, + "probability": 0.5377 + }, + { + "start": 7877.64, + "end": 7877.76, + "probability": 0.1366 + }, + { + "start": 7877.76, + "end": 7878.4, + "probability": 0.5434 + }, + { + "start": 7878.8, + "end": 7883.16, + "probability": 0.953 + }, + { + "start": 7883.64, + "end": 7885.8, + "probability": 0.4431 + }, + { + "start": 7885.98, + "end": 7887.38, + "probability": 0.7644 + }, + { + "start": 7887.54, + "end": 7893.04, + "probability": 0.9004 + }, + { + "start": 7893.44, + "end": 7894.16, + "probability": 0.6287 + }, + { + "start": 7894.24, + "end": 7897.36, + "probability": 0.9052 + }, + { + "start": 7897.6, + "end": 7897.8, + "probability": 0.4157 + }, + { + "start": 7897.92, + "end": 7898.92, + "probability": 0.6072 + }, + { + "start": 7899.02, + "end": 7899.86, + "probability": 0.9453 + }, + { + "start": 7900.08, + "end": 7900.45, + "probability": 0.4539 + }, + { + "start": 7900.7, + "end": 7901.5, + "probability": 0.8989 + }, + { + "start": 7901.66, + "end": 7902.43, + "probability": 0.6836 + }, + { + "start": 7902.56, + "end": 7903.2, + "probability": 0.7147 + }, + { + "start": 7903.4, + "end": 7904.08, + "probability": 0.7713 + }, + { + "start": 7904.62, + "end": 7908.18, + "probability": 0.9754 + }, + { + "start": 7908.26, + "end": 7909.14, + "probability": 0.8736 + }, + { + "start": 7909.74, + "end": 7911.3, + "probability": 0.6815 + }, + { + "start": 7911.76, + "end": 7911.76, + "probability": 0.1019 + }, + { + "start": 7911.76, + "end": 7913.02, + "probability": 0.5596 + }, + { + "start": 7913.38, + "end": 7917.26, + "probability": 0.9902 + }, + { + "start": 7919.48, + "end": 7923.56, + "probability": 0.8137 + }, + { + "start": 7923.74, + "end": 7924.36, + "probability": 0.9393 + }, + { + "start": 7924.48, + "end": 7927.06, + "probability": 0.9696 + }, + { + "start": 7927.68, + "end": 7932.88, + "probability": 0.9971 + }, + { + "start": 7933.86, + "end": 7942.64, + "probability": 0.9802 + }, + { + "start": 7942.64, + "end": 7950.18, + "probability": 0.9928 + }, + { + "start": 7950.2, + "end": 7951.12, + "probability": 0.7902 + }, + { + "start": 7951.18, + "end": 7952.52, + "probability": 0.9152 + }, + { + "start": 7952.68, + "end": 7957.06, + "probability": 0.9941 + }, + { + "start": 7957.2, + "end": 7959.58, + "probability": 0.9906 + }, + { + "start": 7959.76, + "end": 7962.8, + "probability": 0.9862 + }, + { + "start": 7962.8, + "end": 7965.86, + "probability": 0.9984 + }, + { + "start": 7966.18, + "end": 7969.32, + "probability": 0.9375 + }, + { + "start": 7969.32, + "end": 7974.6, + "probability": 0.9056 + }, + { + "start": 7975.04, + "end": 7977.16, + "probability": 0.884 + }, + { + "start": 7977.16, + "end": 7977.52, + "probability": 0.5193 + }, + { + "start": 7977.66, + "end": 7977.88, + "probability": 0.5092 + }, + { + "start": 7978.1, + "end": 7979.5, + "probability": 0.4739 + }, + { + "start": 7980.18, + "end": 7980.78, + "probability": 0.3136 + }, + { + "start": 7980.98, + "end": 7982.6, + "probability": 0.7036 + }, + { + "start": 7982.68, + "end": 7982.98, + "probability": 0.0529 + }, + { + "start": 7982.98, + "end": 7987.34, + "probability": 0.9922 + }, + { + "start": 7988.24, + "end": 7992.22, + "probability": 0.9877 + }, + { + "start": 7992.36, + "end": 7995.62, + "probability": 0.996 + }, + { + "start": 7995.62, + "end": 7999.6, + "probability": 0.9809 + }, + { + "start": 7999.72, + "end": 8003.3, + "probability": 0.8925 + }, + { + "start": 8003.3, + "end": 8007.18, + "probability": 0.9957 + }, + { + "start": 8007.48, + "end": 8009.22, + "probability": 0.8417 + }, + { + "start": 8009.5, + "end": 8012.18, + "probability": 0.9592 + }, + { + "start": 8012.96, + "end": 8017.6, + "probability": 0.985 + }, + { + "start": 8017.8, + "end": 8019.9, + "probability": 0.4625 + }, + { + "start": 8020.24, + "end": 8022.96, + "probability": 0.9523 + }, + { + "start": 8023.26, + "end": 8027.12, + "probability": 0.9711 + }, + { + "start": 8027.44, + "end": 8028.12, + "probability": 0.5103 + }, + { + "start": 8028.18, + "end": 8033.6, + "probability": 0.9184 + }, + { + "start": 8034.14, + "end": 8037.64, + "probability": 0.8026 + }, + { + "start": 8038.42, + "end": 8039.46, + "probability": 0.0826 + }, + { + "start": 8039.46, + "end": 8043.42, + "probability": 0.9823 + }, + { + "start": 8047.3, + "end": 8050.06, + "probability": 0.9985 + }, + { + "start": 8050.34, + "end": 8054.42, + "probability": 0.683 + }, + { + "start": 8054.98, + "end": 8059.16, + "probability": 0.9304 + }, + { + "start": 8059.6, + "end": 8062.96, + "probability": 0.7468 + }, + { + "start": 8063.52, + "end": 8066.42, + "probability": 0.9512 + }, + { + "start": 8067.0, + "end": 8070.36, + "probability": 0.7369 + }, + { + "start": 8070.76, + "end": 8071.98, + "probability": 0.322 + }, + { + "start": 8072.3, + "end": 8073.84, + "probability": 0.1706 + }, + { + "start": 8074.22, + "end": 8080.24, + "probability": 0.9932 + }, + { + "start": 8080.44, + "end": 8084.04, + "probability": 0.991 + }, + { + "start": 8085.04, + "end": 8088.26, + "probability": 0.9773 + }, + { + "start": 8088.38, + "end": 8090.38, + "probability": 0.9958 + }, + { + "start": 8090.38, + "end": 8095.98, + "probability": 0.9962 + }, + { + "start": 8095.98, + "end": 8102.78, + "probability": 0.9653 + }, + { + "start": 8103.24, + "end": 8104.86, + "probability": 0.5104 + }, + { + "start": 8105.38, + "end": 8106.98, + "probability": 0.9337 + }, + { + "start": 8107.12, + "end": 8109.64, + "probability": 0.163 + }, + { + "start": 8110.06, + "end": 8113.16, + "probability": 0.8317 + }, + { + "start": 8113.42, + "end": 8115.72, + "probability": 0.9895 + }, + { + "start": 8115.78, + "end": 8119.38, + "probability": 0.9276 + }, + { + "start": 8119.4, + "end": 8122.7, + "probability": 0.9574 + }, + { + "start": 8122.7, + "end": 8126.38, + "probability": 0.9743 + }, + { + "start": 8126.86, + "end": 8131.74, + "probability": 0.9814 + }, + { + "start": 8131.9, + "end": 8133.28, + "probability": 0.7859 + }, + { + "start": 8133.34, + "end": 8135.86, + "probability": 0.8091 + }, + { + "start": 8136.22, + "end": 8138.16, + "probability": 0.917 + }, + { + "start": 8138.98, + "end": 8141.87, + "probability": 0.2156 + }, + { + "start": 8142.68, + "end": 8143.7, + "probability": 0.0537 + }, + { + "start": 8143.7, + "end": 8144.34, + "probability": 0.2052 + }, + { + "start": 8144.48, + "end": 8145.88, + "probability": 0.5578 + }, + { + "start": 8146.08, + "end": 8147.44, + "probability": 0.9441 + }, + { + "start": 8147.72, + "end": 8152.6, + "probability": 0.9904 + }, + { + "start": 8152.76, + "end": 8156.36, + "probability": 0.9846 + }, + { + "start": 8156.44, + "end": 8158.4, + "probability": 0.2849 + }, + { + "start": 8158.6, + "end": 8161.18, + "probability": 0.9959 + }, + { + "start": 8161.42, + "end": 8165.88, + "probability": 0.9177 + }, + { + "start": 8166.26, + "end": 8168.48, + "probability": 0.98 + }, + { + "start": 8168.64, + "end": 8171.92, + "probability": 0.9925 + }, + { + "start": 8172.16, + "end": 8174.28, + "probability": 0.84 + }, + { + "start": 8174.46, + "end": 8177.4, + "probability": 0.9583 + }, + { + "start": 8177.54, + "end": 8181.2, + "probability": 0.9199 + }, + { + "start": 8181.5, + "end": 8186.16, + "probability": 0.9926 + }, + { + "start": 8186.56, + "end": 8189.24, + "probability": 0.9899 + }, + { + "start": 8189.46, + "end": 8190.84, + "probability": 0.9918 + }, + { + "start": 8191.14, + "end": 8192.56, + "probability": 0.9902 + }, + { + "start": 8192.7, + "end": 8195.9, + "probability": 0.9927 + }, + { + "start": 8196.36, + "end": 8200.36, + "probability": 0.9913 + }, + { + "start": 8200.36, + "end": 8205.78, + "probability": 0.9956 + }, + { + "start": 8206.2, + "end": 8210.96, + "probability": 0.9825 + }, + { + "start": 8211.28, + "end": 8214.1, + "probability": 0.9899 + }, + { + "start": 8214.1, + "end": 8216.88, + "probability": 0.7647 + }, + { + "start": 8217.3, + "end": 8220.51, + "probability": 0.5401 + }, + { + "start": 8221.1, + "end": 8221.7, + "probability": 0.5896 + }, + { + "start": 8221.76, + "end": 8222.84, + "probability": 0.9134 + }, + { + "start": 8223.32, + "end": 8225.66, + "probability": 0.5473 + }, + { + "start": 8225.84, + "end": 8227.76, + "probability": 0.6048 + }, + { + "start": 8227.96, + "end": 8230.96, + "probability": 0.9673 + }, + { + "start": 8231.04, + "end": 8231.54, + "probability": 0.7771 + }, + { + "start": 8231.62, + "end": 8232.46, + "probability": 0.7892 + }, + { + "start": 8232.72, + "end": 8233.88, + "probability": 0.8894 + }, + { + "start": 8233.9, + "end": 8236.26, + "probability": 0.9757 + }, + { + "start": 8236.64, + "end": 8239.64, + "probability": 0.9443 + }, + { + "start": 8239.98, + "end": 8240.86, + "probability": 0.7599 + }, + { + "start": 8241.02, + "end": 8243.02, + "probability": 0.8332 + }, + { + "start": 8243.52, + "end": 8245.82, + "probability": 0.9822 + }, + { + "start": 8246.04, + "end": 8249.18, + "probability": 0.943 + }, + { + "start": 8249.24, + "end": 8250.68, + "probability": 0.96 + }, + { + "start": 8250.9, + "end": 8253.56, + "probability": 0.9942 + }, + { + "start": 8253.72, + "end": 8256.14, + "probability": 0.943 + }, + { + "start": 8256.24, + "end": 8256.78, + "probability": 0.6593 + }, + { + "start": 8256.84, + "end": 8259.6, + "probability": 0.9393 + }, + { + "start": 8259.9, + "end": 8262.1, + "probability": 0.923 + }, + { + "start": 8262.26, + "end": 8265.44, + "probability": 0.8055 + }, + { + "start": 8265.5, + "end": 8266.22, + "probability": 0.5495 + }, + { + "start": 8267.0, + "end": 8270.78, + "probability": 0.9351 + }, + { + "start": 8275.46, + "end": 8277.78, + "probability": 0.7814 + }, + { + "start": 8277.98, + "end": 8278.7, + "probability": 0.4289 + }, + { + "start": 8278.76, + "end": 8284.68, + "probability": 0.9098 + }, + { + "start": 8284.82, + "end": 8286.37, + "probability": 0.9087 + }, + { + "start": 8287.14, + "end": 8290.39, + "probability": 0.9344 + }, + { + "start": 8291.44, + "end": 8293.24, + "probability": 0.9954 + }, + { + "start": 8293.54, + "end": 8295.5, + "probability": 0.9913 + }, + { + "start": 8295.76, + "end": 8297.4, + "probability": 0.8418 + }, + { + "start": 8297.54, + "end": 8298.9, + "probability": 0.8853 + }, + { + "start": 8299.22, + "end": 8300.64, + "probability": 0.6036 + }, + { + "start": 8300.8, + "end": 8301.3, + "probability": 0.5528 + }, + { + "start": 8301.4, + "end": 8303.56, + "probability": 0.6125 + }, + { + "start": 8304.04, + "end": 8304.52, + "probability": 0.4022 + }, + { + "start": 8304.66, + "end": 8307.28, + "probability": 0.7579 + }, + { + "start": 8307.38, + "end": 8310.86, + "probability": 0.7437 + }, + { + "start": 8311.04, + "end": 8312.7, + "probability": 0.9775 + }, + { + "start": 8313.06, + "end": 8314.89, + "probability": 0.7357 + }, + { + "start": 8315.24, + "end": 8316.4, + "probability": 0.8188 + }, + { + "start": 8316.56, + "end": 8317.06, + "probability": 0.7503 + }, + { + "start": 8317.28, + "end": 8318.18, + "probability": 0.7196 + }, + { + "start": 8318.18, + "end": 8318.34, + "probability": 0.3611 + }, + { + "start": 8318.5, + "end": 8320.94, + "probability": 0.4915 + }, + { + "start": 8321.0, + "end": 8322.7, + "probability": 0.2935 + }, + { + "start": 8322.7, + "end": 8324.16, + "probability": 0.486 + }, + { + "start": 8324.16, + "end": 8326.14, + "probability": 0.9736 + }, + { + "start": 8326.56, + "end": 8329.57, + "probability": 0.7584 + }, + { + "start": 8330.16, + "end": 8331.86, + "probability": 0.9927 + }, + { + "start": 8331.98, + "end": 8332.3, + "probability": 0.3178 + }, + { + "start": 8332.34, + "end": 8333.54, + "probability": 0.5485 + }, + { + "start": 8334.32, + "end": 8337.03, + "probability": 0.7804 + }, + { + "start": 8337.4, + "end": 8337.68, + "probability": 0.8123 + }, + { + "start": 8337.7, + "end": 8339.02, + "probability": 0.8447 + }, + { + "start": 8339.34, + "end": 8340.3, + "probability": 0.7668 + }, + { + "start": 8340.62, + "end": 8345.42, + "probability": 0.8207 + }, + { + "start": 8345.5, + "end": 8345.92, + "probability": 0.6587 + }, + { + "start": 8346.6, + "end": 8347.84, + "probability": 0.7486 + }, + { + "start": 8347.9, + "end": 8349.02, + "probability": 0.5642 + }, + { + "start": 8349.44, + "end": 8350.52, + "probability": 0.9097 + }, + { + "start": 8350.62, + "end": 8351.53, + "probability": 0.9368 + }, + { + "start": 8352.18, + "end": 8352.52, + "probability": 0.374 + }, + { + "start": 8352.68, + "end": 8355.9, + "probability": 0.7736 + }, + { + "start": 8356.02, + "end": 8356.85, + "probability": 0.8881 + }, + { + "start": 8357.42, + "end": 8358.04, + "probability": 0.7085 + }, + { + "start": 8358.18, + "end": 8359.7, + "probability": 0.5346 + }, + { + "start": 8359.76, + "end": 8360.31, + "probability": 0.5677 + }, + { + "start": 8361.67, + "end": 8363.58, + "probability": 0.5487 + }, + { + "start": 8363.94, + "end": 8365.52, + "probability": 0.2304 + }, + { + "start": 8366.4, + "end": 8369.62, + "probability": 0.3775 + }, + { + "start": 8370.18, + "end": 8374.36, + "probability": 0.7263 + }, + { + "start": 8374.98, + "end": 8376.62, + "probability": 0.8086 + }, + { + "start": 8376.7, + "end": 8377.42, + "probability": 0.8308 + }, + { + "start": 8377.48, + "end": 8378.57, + "probability": 0.8415 + }, + { + "start": 8379.18, + "end": 8381.34, + "probability": 0.4781 + }, + { + "start": 8381.38, + "end": 8382.54, + "probability": 0.6689 + }, + { + "start": 8383.36, + "end": 8386.94, + "probability": 0.9867 + }, + { + "start": 8386.94, + "end": 8390.21, + "probability": 0.6742 + }, + { + "start": 8390.58, + "end": 8395.36, + "probability": 0.9318 + }, + { + "start": 8396.76, + "end": 8398.24, + "probability": 0.1958 + }, + { + "start": 8398.32, + "end": 8400.02, + "probability": 0.391 + }, + { + "start": 8400.92, + "end": 8404.68, + "probability": 0.5918 + }, + { + "start": 8404.72, + "end": 8406.9, + "probability": 0.5198 + }, + { + "start": 8407.48, + "end": 8408.44, + "probability": 0.9486 + }, + { + "start": 8409.0, + "end": 8410.08, + "probability": 0.4527 + }, + { + "start": 8422.88, + "end": 8425.22, + "probability": 0.0005 + }, + { + "start": 8428.08, + "end": 8434.48, + "probability": 0.5162 + }, + { + "start": 8434.62, + "end": 8436.56, + "probability": 0.517 + }, + { + "start": 8436.56, + "end": 8438.52, + "probability": 0.6271 + }, + { + "start": 8438.58, + "end": 8439.18, + "probability": 0.4739 + }, + { + "start": 8439.26, + "end": 8442.26, + "probability": 0.9153 + }, + { + "start": 8443.0, + "end": 8444.53, + "probability": 0.8003 + }, + { + "start": 8445.32, + "end": 8446.84, + "probability": 0.9406 + }, + { + "start": 8447.08, + "end": 8449.2, + "probability": 0.9359 + }, + { + "start": 8450.08, + "end": 8453.04, + "probability": 0.9462 + }, + { + "start": 8453.08, + "end": 8455.86, + "probability": 0.8364 + }, + { + "start": 8455.86, + "end": 8457.12, + "probability": 0.6838 + }, + { + "start": 8457.46, + "end": 8458.28, + "probability": 0.902 + }, + { + "start": 8459.56, + "end": 8460.86, + "probability": 0.7672 + }, + { + "start": 8461.48, + "end": 8463.8, + "probability": 0.5962 + }, + { + "start": 8463.8, + "end": 8466.6, + "probability": 0.8918 + }, + { + "start": 8467.1, + "end": 8469.48, + "probability": 0.9351 + }, + { + "start": 8470.16, + "end": 8470.58, + "probability": 0.4964 + }, + { + "start": 8470.92, + "end": 8475.99, + "probability": 0.984 + }, + { + "start": 8476.04, + "end": 8481.66, + "probability": 0.9537 + }, + { + "start": 8482.42, + "end": 8483.3, + "probability": 0.4163 + }, + { + "start": 8483.48, + "end": 8488.09, + "probability": 0.8042 + }, + { + "start": 8489.6, + "end": 8492.42, + "probability": 0.7576 + }, + { + "start": 8492.5, + "end": 8497.08, + "probability": 0.9233 + }, + { + "start": 8497.16, + "end": 8499.28, + "probability": 0.9926 + }, + { + "start": 8499.6, + "end": 8502.88, + "probability": 0.8801 + }, + { + "start": 8502.88, + "end": 8507.46, + "probability": 0.9222 + }, + { + "start": 8507.84, + "end": 8508.14, + "probability": 0.4135 + }, + { + "start": 8508.32, + "end": 8508.66, + "probability": 0.8432 + }, + { + "start": 8508.76, + "end": 8509.96, + "probability": 0.6571 + }, + { + "start": 8510.04, + "end": 8512.04, + "probability": 0.9424 + }, + { + "start": 8512.64, + "end": 8517.28, + "probability": 0.9611 + }, + { + "start": 8517.5, + "end": 8521.15, + "probability": 0.981 + }, + { + "start": 8521.82, + "end": 8524.64, + "probability": 0.976 + }, + { + "start": 8524.64, + "end": 8529.64, + "probability": 0.5073 + }, + { + "start": 8529.8, + "end": 8530.2, + "probability": 0.1064 + }, + { + "start": 8530.56, + "end": 8531.54, + "probability": 0.7338 + }, + { + "start": 8531.92, + "end": 8535.2, + "probability": 0.8766 + }, + { + "start": 8536.44, + "end": 8537.96, + "probability": 0.8958 + }, + { + "start": 8538.36, + "end": 8541.56, + "probability": 0.5845 + }, + { + "start": 8542.93, + "end": 8544.84, + "probability": 0.4347 + }, + { + "start": 8547.34, + "end": 8547.38, + "probability": 0.0153 + }, + { + "start": 8547.38, + "end": 8547.52, + "probability": 0.1768 + }, + { + "start": 8547.52, + "end": 8547.96, + "probability": 0.0123 + }, + { + "start": 8548.9, + "end": 8550.38, + "probability": 0.0561 + }, + { + "start": 8550.96, + "end": 8551.38, + "probability": 0.3614 + }, + { + "start": 8551.74, + "end": 8551.98, + "probability": 0.7399 + }, + { + "start": 8552.04, + "end": 8552.98, + "probability": 0.9118 + }, + { + "start": 8553.32, + "end": 8554.03, + "probability": 0.3447 + }, + { + "start": 8554.3, + "end": 8555.42, + "probability": 0.4615 + }, + { + "start": 8556.2, + "end": 8557.89, + "probability": 0.688 + }, + { + "start": 8558.28, + "end": 8560.8, + "probability": 0.8339 + }, + { + "start": 8561.4, + "end": 8564.68, + "probability": 0.8306 + }, + { + "start": 8565.54, + "end": 8567.92, + "probability": 0.7171 + }, + { + "start": 8568.64, + "end": 8571.52, + "probability": 0.945 + }, + { + "start": 8572.0, + "end": 8574.11, + "probability": 0.8384 + }, + { + "start": 8574.56, + "end": 8575.62, + "probability": 0.683 + }, + { + "start": 8575.76, + "end": 8576.78, + "probability": 0.8154 + }, + { + "start": 8576.86, + "end": 8578.34, + "probability": 0.9712 + }, + { + "start": 8578.9, + "end": 8581.54, + "probability": 0.8834 + }, + { + "start": 8581.72, + "end": 8583.05, + "probability": 0.6597 + }, + { + "start": 8584.12, + "end": 8588.6, + "probability": 0.9625 + }, + { + "start": 8588.68, + "end": 8589.94, + "probability": 0.8548 + }, + { + "start": 8590.02, + "end": 8590.86, + "probability": 0.6843 + }, + { + "start": 8591.06, + "end": 8593.77, + "probability": 0.4517 + }, + { + "start": 8594.44, + "end": 8596.0, + "probability": 0.6556 + }, + { + "start": 8596.42, + "end": 8596.58, + "probability": 0.2755 + }, + { + "start": 8596.72, + "end": 8598.18, + "probability": 0.727 + }, + { + "start": 8598.38, + "end": 8603.52, + "probability": 0.9883 + }, + { + "start": 8603.7, + "end": 8604.6, + "probability": 0.7049 + }, + { + "start": 8604.74, + "end": 8607.4, + "probability": 0.7421 + }, + { + "start": 8607.56, + "end": 8608.26, + "probability": 0.7205 + }, + { + "start": 8608.32, + "end": 8609.14, + "probability": 0.8307 + }, + { + "start": 8610.08, + "end": 8611.18, + "probability": 0.113 + }, + { + "start": 8611.5, + "end": 8612.82, + "probability": 0.9548 + }, + { + "start": 8613.28, + "end": 8615.78, + "probability": 0.7362 + }, + { + "start": 8619.42, + "end": 8620.92, + "probability": 0.7083 + }, + { + "start": 8621.34, + "end": 8623.2, + "probability": 0.8943 + }, + { + "start": 8623.52, + "end": 8626.46, + "probability": 0.9208 + }, + { + "start": 8626.58, + "end": 8628.18, + "probability": 0.6484 + }, + { + "start": 8628.32, + "end": 8629.02, + "probability": 0.7238 + }, + { + "start": 8629.34, + "end": 8633.36, + "probability": 0.75 + }, + { + "start": 8633.74, + "end": 8637.14, + "probability": 0.9287 + }, + { + "start": 8637.28, + "end": 8644.38, + "probability": 0.9409 + }, + { + "start": 8644.5, + "end": 8644.9, + "probability": 0.6862 + }, + { + "start": 8645.0, + "end": 8648.68, + "probability": 0.9961 + }, + { + "start": 8648.74, + "end": 8653.34, + "probability": 0.9112 + }, + { + "start": 8654.04, + "end": 8659.3, + "probability": 0.999 + }, + { + "start": 8659.3, + "end": 8663.24, + "probability": 0.6541 + }, + { + "start": 8663.34, + "end": 8664.8, + "probability": 0.2842 + }, + { + "start": 8664.8, + "end": 8666.58, + "probability": 0.9533 + }, + { + "start": 8666.78, + "end": 8667.44, + "probability": 0.7542 + }, + { + "start": 8667.52, + "end": 8669.36, + "probability": 0.8409 + }, + { + "start": 8669.64, + "end": 8670.32, + "probability": 0.8823 + }, + { + "start": 8670.7, + "end": 8672.44, + "probability": 0.9445 + }, + { + "start": 8673.08, + "end": 8676.92, + "probability": 0.8302 + }, + { + "start": 8677.24, + "end": 8679.7, + "probability": 0.9906 + }, + { + "start": 8680.02, + "end": 8680.6, + "probability": 0.5607 + }, + { + "start": 8681.18, + "end": 8681.68, + "probability": 0.8517 + }, + { + "start": 8681.86, + "end": 8683.51, + "probability": 0.9387 + }, + { + "start": 8683.98, + "end": 8685.78, + "probability": 0.6705 + }, + { + "start": 8685.98, + "end": 8687.02, + "probability": 0.7916 + }, + { + "start": 8687.12, + "end": 8693.72, + "probability": 0.8361 + }, + { + "start": 8693.88, + "end": 8696.92, + "probability": 0.9528 + }, + { + "start": 8696.92, + "end": 8700.72, + "probability": 0.9436 + }, + { + "start": 8700.72, + "end": 8709.04, + "probability": 0.7965 + }, + { + "start": 8709.6, + "end": 8710.3, + "probability": 0.0512 + }, + { + "start": 8711.72, + "end": 8713.18, + "probability": 0.5907 + }, + { + "start": 8713.32, + "end": 8714.62, + "probability": 0.8267 + }, + { + "start": 8715.12, + "end": 8720.44, + "probability": 0.9954 + }, + { + "start": 8721.14, + "end": 8722.84, + "probability": 0.6594 + }, + { + "start": 8723.02, + "end": 8725.1, + "probability": 0.6456 + }, + { + "start": 8725.69, + "end": 8728.3, + "probability": 0.9202 + }, + { + "start": 8728.58, + "end": 8732.7, + "probability": 0.8277 + }, + { + "start": 8732.86, + "end": 8733.71, + "probability": 0.8643 + }, + { + "start": 8733.96, + "end": 8736.56, + "probability": 0.6793 + }, + { + "start": 8739.74, + "end": 8742.6, + "probability": 0.0993 + }, + { + "start": 8744.52, + "end": 8746.66, + "probability": 0.2425 + }, + { + "start": 8746.66, + "end": 8750.56, + "probability": 0.0366 + }, + { + "start": 8750.9, + "end": 8753.94, + "probability": 0.0413 + }, + { + "start": 8753.94, + "end": 8755.94, + "probability": 0.4666 + }, + { + "start": 8756.28, + "end": 8757.02, + "probability": 0.1858 + }, + { + "start": 8758.1, + "end": 8758.6, + "probability": 0.0052 + }, + { + "start": 8759.32, + "end": 8762.48, + "probability": 0.1058 + }, + { + "start": 8762.84, + "end": 8762.84, + "probability": 0.0619 + }, + { + "start": 8762.84, + "end": 8766.48, + "probability": 0.1407 + }, + { + "start": 8766.48, + "end": 8770.58, + "probability": 0.9977 + }, + { + "start": 8771.16, + "end": 8776.52, + "probability": 0.9988 + }, + { + "start": 8776.52, + "end": 8782.0, + "probability": 0.9989 + }, + { + "start": 8782.52, + "end": 8784.0, + "probability": 0.7414 + }, + { + "start": 8784.26, + "end": 8786.16, + "probability": 0.9917 + }, + { + "start": 8786.56, + "end": 8790.36, + "probability": 0.9922 + }, + { + "start": 8790.58, + "end": 8796.43, + "probability": 0.9745 + }, + { + "start": 8796.86, + "end": 8799.62, + "probability": 0.7573 + }, + { + "start": 8799.98, + "end": 8804.16, + "probability": 0.9952 + }, + { + "start": 8804.62, + "end": 8807.08, + "probability": 0.9648 + }, + { + "start": 8807.34, + "end": 8809.38, + "probability": 0.9451 + }, + { + "start": 8809.64, + "end": 8813.46, + "probability": 0.9637 + }, + { + "start": 8813.78, + "end": 8815.08, + "probability": 0.7712 + }, + { + "start": 8815.32, + "end": 8817.16, + "probability": 0.895 + }, + { + "start": 8817.4, + "end": 8818.48, + "probability": 0.7339 + }, + { + "start": 8818.62, + "end": 8823.34, + "probability": 0.9961 + }, + { + "start": 8823.48, + "end": 8826.74, + "probability": 0.9554 + }, + { + "start": 8827.18, + "end": 8830.6, + "probability": 0.9952 + }, + { + "start": 8830.6, + "end": 8835.04, + "probability": 0.8566 + }, + { + "start": 8835.4, + "end": 8839.92, + "probability": 0.9632 + }, + { + "start": 8840.32, + "end": 8843.26, + "probability": 0.9634 + }, + { + "start": 8843.84, + "end": 8843.88, + "probability": 0.0035 + }, + { + "start": 8843.88, + "end": 8846.04, + "probability": 0.9092 + }, + { + "start": 8846.26, + "end": 8849.26, + "probability": 0.9906 + }, + { + "start": 8849.48, + "end": 8853.42, + "probability": 0.97 + }, + { + "start": 8853.66, + "end": 8859.38, + "probability": 0.9968 + }, + { + "start": 8859.6, + "end": 8860.42, + "probability": 0.7412 + }, + { + "start": 8860.58, + "end": 8864.44, + "probability": 0.957 + }, + { + "start": 8864.56, + "end": 8867.46, + "probability": 0.0821 + }, + { + "start": 8867.46, + "end": 8867.7, + "probability": 0.2061 + }, + { + "start": 8873.9, + "end": 8874.7, + "probability": 0.1615 + }, + { + "start": 8874.7, + "end": 8874.7, + "probability": 0.5007 + }, + { + "start": 8874.7, + "end": 8875.7, + "probability": 0.0553 + }, + { + "start": 8876.02, + "end": 8876.87, + "probability": 0.6979 + }, + { + "start": 8877.84, + "end": 8879.5, + "probability": 0.1677 + }, + { + "start": 8880.6, + "end": 8883.02, + "probability": 0.4462 + }, + { + "start": 8884.08, + "end": 8885.8, + "probability": 0.7943 + }, + { + "start": 8887.34, + "end": 8887.58, + "probability": 0.4318 + }, + { + "start": 8889.26, + "end": 8890.26, + "probability": 0.1608 + }, + { + "start": 8890.44, + "end": 8891.54, + "probability": 0.0551 + }, + { + "start": 8892.2, + "end": 8895.58, + "probability": 0.5219 + }, + { + "start": 8898.58, + "end": 8898.84, + "probability": 0.3158 + }, + { + "start": 8898.84, + "end": 8899.88, + "probability": 0.0776 + }, + { + "start": 8899.88, + "end": 8900.13, + "probability": 0.0572 + }, + { + "start": 8903.76, + "end": 8904.8, + "probability": 0.0216 + }, + { + "start": 8905.62, + "end": 8906.4, + "probability": 0.0523 + }, + { + "start": 8906.52, + "end": 8908.7, + "probability": 0.0209 + }, + { + "start": 8908.7, + "end": 8909.62, + "probability": 0.0657 + }, + { + "start": 8909.82, + "end": 8913.34, + "probability": 0.5208 + }, + { + "start": 8913.6, + "end": 8915.24, + "probability": 0.5338 + }, + { + "start": 8915.34, + "end": 8915.68, + "probability": 0.0808 + }, + { + "start": 8915.92, + "end": 8916.71, + "probability": 0.978 + }, + { + "start": 8917.26, + "end": 8918.44, + "probability": 0.9503 + }, + { + "start": 8918.72, + "end": 8920.13, + "probability": 0.6646 + }, + { + "start": 8920.54, + "end": 8923.76, + "probability": 0.9323 + }, + { + "start": 8924.52, + "end": 8926.03, + "probability": 0.9901 + }, + { + "start": 8926.16, + "end": 8928.01, + "probability": 0.5743 + }, + { + "start": 8928.66, + "end": 8928.74, + "probability": 0.1068 + }, + { + "start": 8928.74, + "end": 8928.74, + "probability": 0.3123 + }, + { + "start": 8928.74, + "end": 8929.34, + "probability": 0.5928 + }, + { + "start": 8929.38, + "end": 8930.23, + "probability": 0.6635 + }, + { + "start": 8930.8, + "end": 8933.46, + "probability": 0.8511 + }, + { + "start": 8933.68, + "end": 8935.66, + "probability": 0.908 + }, + { + "start": 8935.82, + "end": 8937.18, + "probability": 0.426 + }, + { + "start": 8937.28, + "end": 8937.78, + "probability": 0.638 + }, + { + "start": 8937.84, + "end": 8938.76, + "probability": 0.8404 + }, + { + "start": 8940.82, + "end": 8941.52, + "probability": 0.0088 + }, + { + "start": 8961.14, + "end": 8965.4, + "probability": 0.0204 + }, + { + "start": 8965.4, + "end": 8965.86, + "probability": 0.0232 + }, + { + "start": 8966.72, + "end": 8968.14, + "probability": 0.0172 + }, + { + "start": 8969.26, + "end": 8970.76, + "probability": 0.0466 + }, + { + "start": 8977.0, + "end": 8978.62, + "probability": 0.195 + }, + { + "start": 8982.44, + "end": 8984.64, + "probability": 0.0712 + }, + { + "start": 8986.6, + "end": 8987.48, + "probability": 0.0432 + }, + { + "start": 8987.48, + "end": 8989.08, + "probability": 0.1131 + }, + { + "start": 8990.14, + "end": 8994.06, + "probability": 0.0217 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.0, + "end": 9081.0, + "probability": 0.0 + }, + { + "start": 9081.22, + "end": 9081.4, + "probability": 0.1851 + }, + { + "start": 9081.4, + "end": 9081.4, + "probability": 0.1911 + }, + { + "start": 9081.4, + "end": 9082.18, + "probability": 0.157 + }, + { + "start": 9082.32, + "end": 9085.86, + "probability": 0.6546 + }, + { + "start": 9086.0, + "end": 9090.22, + "probability": 0.855 + }, + { + "start": 9091.54, + "end": 9093.1, + "probability": 0.8808 + }, + { + "start": 9094.04, + "end": 9095.94, + "probability": 0.7035 + }, + { + "start": 9096.8, + "end": 9098.77, + "probability": 0.9902 + }, + { + "start": 9099.48, + "end": 9101.13, + "probability": 0.7865 + }, + { + "start": 9102.78, + "end": 9104.22, + "probability": 0.4708 + }, + { + "start": 9104.28, + "end": 9107.12, + "probability": 0.7803 + }, + { + "start": 9107.24, + "end": 9108.64, + "probability": 0.814 + }, + { + "start": 9109.26, + "end": 9112.02, + "probability": 0.9846 + }, + { + "start": 9112.6, + "end": 9116.38, + "probability": 0.7964 + }, + { + "start": 9116.96, + "end": 9117.68, + "probability": 0.7041 + }, + { + "start": 9117.82, + "end": 9120.74, + "probability": 0.78 + }, + { + "start": 9121.28, + "end": 9122.5, + "probability": 0.8167 + }, + { + "start": 9123.26, + "end": 9127.34, + "probability": 0.8596 + }, + { + "start": 9127.7, + "end": 9128.3, + "probability": 0.5219 + }, + { + "start": 9128.38, + "end": 9128.96, + "probability": 0.5263 + }, + { + "start": 9129.12, + "end": 9133.72, + "probability": 0.9785 + }, + { + "start": 9133.72, + "end": 9138.2, + "probability": 0.9927 + }, + { + "start": 9139.38, + "end": 9146.62, + "probability": 0.9287 + }, + { + "start": 9147.7, + "end": 9152.0, + "probability": 0.8892 + }, + { + "start": 9152.58, + "end": 9154.68, + "probability": 0.9888 + }, + { + "start": 9155.36, + "end": 9158.6, + "probability": 0.8204 + }, + { + "start": 9159.32, + "end": 9160.18, + "probability": 0.7986 + }, + { + "start": 9160.76, + "end": 9165.96, + "probability": 0.7607 + }, + { + "start": 9165.96, + "end": 9171.1, + "probability": 0.7538 + }, + { + "start": 9172.04, + "end": 9175.82, + "probability": 0.812 + }, + { + "start": 9176.42, + "end": 9180.4, + "probability": 0.9645 + }, + { + "start": 9180.99, + "end": 9185.3, + "probability": 0.9788 + }, + { + "start": 9185.3, + "end": 9186.32, + "probability": 0.6469 + }, + { + "start": 9186.54, + "end": 9187.74, + "probability": 0.9682 + }, + { + "start": 9187.74, + "end": 9189.86, + "probability": 0.9764 + }, + { + "start": 9189.98, + "end": 9191.22, + "probability": 0.9678 + }, + { + "start": 9191.94, + "end": 9193.46, + "probability": 0.6006 + }, + { + "start": 9193.98, + "end": 9197.9, + "probability": 0.9729 + }, + { + "start": 9197.9, + "end": 9202.5, + "probability": 0.9527 + }, + { + "start": 9203.34, + "end": 9211.38, + "probability": 0.86 + }, + { + "start": 9211.42, + "end": 9216.6, + "probability": 0.9966 + }, + { + "start": 9217.7, + "end": 9222.36, + "probability": 0.9964 + }, + { + "start": 9222.36, + "end": 9226.48, + "probability": 0.9741 + }, + { + "start": 9226.72, + "end": 9231.64, + "probability": 0.7151 + }, + { + "start": 9232.38, + "end": 9235.24, + "probability": 0.8426 + }, + { + "start": 9235.62, + "end": 9237.08, + "probability": 0.8054 + }, + { + "start": 9237.86, + "end": 9240.82, + "probability": 0.6612 + }, + { + "start": 9240.82, + "end": 9243.76, + "probability": 0.9948 + }, + { + "start": 9244.1, + "end": 9244.34, + "probability": 0.6674 + }, + { + "start": 9244.5, + "end": 9244.94, + "probability": 0.7326 + }, + { + "start": 9245.0, + "end": 9245.53, + "probability": 0.9386 + }, + { + "start": 9246.22, + "end": 9250.32, + "probability": 0.9746 + }, + { + "start": 9250.44, + "end": 9250.74, + "probability": 0.304 + }, + { + "start": 9250.82, + "end": 9251.92, + "probability": 0.6614 + }, + { + "start": 9252.02, + "end": 9256.5, + "probability": 0.9054 + }, + { + "start": 9256.9, + "end": 9265.28, + "probability": 0.8018 + }, + { + "start": 9265.28, + "end": 9271.26, + "probability": 0.9854 + }, + { + "start": 9271.72, + "end": 9274.45, + "probability": 0.7837 + }, + { + "start": 9274.9, + "end": 9276.63, + "probability": 0.9858 + }, + { + "start": 9277.26, + "end": 9279.48, + "probability": 0.9844 + }, + { + "start": 9280.04, + "end": 9282.74, + "probability": 0.8497 + }, + { + "start": 9282.92, + "end": 9285.5, + "probability": 0.9919 + }, + { + "start": 9285.5, + "end": 9287.84, + "probability": 0.8398 + }, + { + "start": 9287.96, + "end": 9289.2, + "probability": 0.8932 + }, + { + "start": 9289.56, + "end": 9289.68, + "probability": 0.6799 + }, + { + "start": 9289.7, + "end": 9294.0, + "probability": 0.8926 + }, + { + "start": 9294.34, + "end": 9298.14, + "probability": 0.9797 + }, + { + "start": 9298.38, + "end": 9301.72, + "probability": 0.929 + }, + { + "start": 9303.08, + "end": 9305.7, + "probability": 0.8984 + }, + { + "start": 9306.48, + "end": 9309.34, + "probability": 0.9818 + }, + { + "start": 9309.66, + "end": 9311.62, + "probability": 0.8449 + }, + { + "start": 9313.4, + "end": 9315.6, + "probability": 0.8757 + }, + { + "start": 9315.6, + "end": 9317.42, + "probability": 0.989 + }, + { + "start": 9318.24, + "end": 9320.52, + "probability": 0.7413 + }, + { + "start": 9320.86, + "end": 9324.34, + "probability": 0.9098 + }, + { + "start": 9324.86, + "end": 9327.38, + "probability": 0.826 + }, + { + "start": 9327.7, + "end": 9331.56, + "probability": 0.774 + }, + { + "start": 9331.94, + "end": 9332.7, + "probability": 0.6393 + }, + { + "start": 9332.9, + "end": 9335.26, + "probability": 0.8779 + }, + { + "start": 9336.18, + "end": 9339.8, + "probability": 0.9515 + }, + { + "start": 9340.18, + "end": 9341.12, + "probability": 0.5156 + }, + { + "start": 9341.8, + "end": 9345.54, + "probability": 0.5223 + }, + { + "start": 9345.6, + "end": 9350.68, + "probability": 0.4732 + }, + { + "start": 9351.94, + "end": 9358.92, + "probability": 0.8179 + }, + { + "start": 9358.92, + "end": 9362.82, + "probability": 0.7479 + }, + { + "start": 9363.5, + "end": 9365.77, + "probability": 0.8926 + }, + { + "start": 9366.12, + "end": 9368.37, + "probability": 0.8779 + }, + { + "start": 9368.6, + "end": 9371.7, + "probability": 0.7351 + }, + { + "start": 9371.74, + "end": 9375.18, + "probability": 0.751 + }, + { + "start": 9375.94, + "end": 9379.22, + "probability": 0.8718 + }, + { + "start": 9379.22, + "end": 9382.54, + "probability": 0.9017 + }, + { + "start": 9383.44, + "end": 9387.2, + "probability": 0.9213 + }, + { + "start": 9387.2, + "end": 9391.2, + "probability": 0.9377 + }, + { + "start": 9392.44, + "end": 9394.4, + "probability": 0.6659 + }, + { + "start": 9394.4, + "end": 9399.0, + "probability": 0.7413 + }, + { + "start": 9400.42, + "end": 9402.12, + "probability": 0.6743 + }, + { + "start": 9402.28, + "end": 9403.62, + "probability": 0.7095 + }, + { + "start": 9404.06, + "end": 9404.4, + "probability": 0.4838 + }, + { + "start": 9404.48, + "end": 9404.72, + "probability": 0.8173 + }, + { + "start": 9404.76, + "end": 9405.96, + "probability": 0.9492 + }, + { + "start": 9406.34, + "end": 9407.66, + "probability": 0.6619 + }, + { + "start": 9407.8, + "end": 9413.66, + "probability": 0.9866 + }, + { + "start": 9413.66, + "end": 9417.98, + "probability": 0.8872 + }, + { + "start": 9418.04, + "end": 9419.34, + "probability": 0.8059 + }, + { + "start": 9419.84, + "end": 9421.32, + "probability": 0.8931 + }, + { + "start": 9421.62, + "end": 9423.5, + "probability": 0.9827 + }, + { + "start": 9424.32, + "end": 9427.44, + "probability": 0.8577 + }, + { + "start": 9427.82, + "end": 9429.62, + "probability": 0.7274 + }, + { + "start": 9430.3, + "end": 9433.24, + "probability": 0.958 + }, + { + "start": 9433.82, + "end": 9437.86, + "probability": 0.6053 + }, + { + "start": 9439.0, + "end": 9445.16, + "probability": 0.9937 + }, + { + "start": 9445.76, + "end": 9446.9, + "probability": 0.8633 + }, + { + "start": 9446.94, + "end": 9451.62, + "probability": 0.9902 + }, + { + "start": 9452.26, + "end": 9453.34, + "probability": 0.7159 + }, + { + "start": 9454.12, + "end": 9458.08, + "probability": 0.6511 + }, + { + "start": 9458.76, + "end": 9460.8, + "probability": 0.9376 + }, + { + "start": 9461.38, + "end": 9463.04, + "probability": 0.5298 + }, + { + "start": 9463.18, + "end": 9464.18, + "probability": 0.4866 + }, + { + "start": 9464.94, + "end": 9467.72, + "probability": 0.937 + }, + { + "start": 9468.2, + "end": 9469.49, + "probability": 0.9951 + }, + { + "start": 9470.48, + "end": 9471.64, + "probability": 0.8733 + }, + { + "start": 9472.36, + "end": 9473.1, + "probability": 0.73 + }, + { + "start": 9473.96, + "end": 9476.94, + "probability": 0.96 + }, + { + "start": 9477.86, + "end": 9479.17, + "probability": 0.8926 + }, + { + "start": 9480.32, + "end": 9480.96, + "probability": 0.9934 + }, + { + "start": 9481.68, + "end": 9483.57, + "probability": 0.9351 + }, + { + "start": 9484.22, + "end": 9486.32, + "probability": 0.9842 + }, + { + "start": 9486.58, + "end": 9488.86, + "probability": 0.7499 + }, + { + "start": 9489.5, + "end": 9492.12, + "probability": 0.9752 + }, + { + "start": 9492.12, + "end": 9496.45, + "probability": 0.9779 + }, + { + "start": 9496.98, + "end": 9500.22, + "probability": 0.9919 + }, + { + "start": 9500.68, + "end": 9501.74, + "probability": 0.9829 + }, + { + "start": 9502.72, + "end": 9503.7, + "probability": 0.7203 + }, + { + "start": 9504.04, + "end": 9506.66, + "probability": 0.9955 + }, + { + "start": 9507.16, + "end": 9507.44, + "probability": 0.854 + }, + { + "start": 9507.94, + "end": 9511.73, + "probability": 0.8014 + }, + { + "start": 9512.52, + "end": 9515.46, + "probability": 0.9408 + }, + { + "start": 9516.5, + "end": 9517.52, + "probability": 0.681 + }, + { + "start": 9518.06, + "end": 9518.76, + "probability": 0.9639 + }, + { + "start": 9518.88, + "end": 9519.67, + "probability": 0.6293 + }, + { + "start": 9519.76, + "end": 9520.28, + "probability": 0.5257 + }, + { + "start": 9520.66, + "end": 9521.17, + "probability": 0.8232 + }, + { + "start": 9521.34, + "end": 9522.18, + "probability": 0.7154 + }, + { + "start": 9522.26, + "end": 9523.86, + "probability": 0.9139 + }, + { + "start": 9524.72, + "end": 9526.8, + "probability": 0.9501 + }, + { + "start": 9527.5, + "end": 9529.96, + "probability": 0.9494 + }, + { + "start": 9530.12, + "end": 9531.24, + "probability": 0.7711 + }, + { + "start": 9531.96, + "end": 9533.15, + "probability": 0.7886 + }, + { + "start": 9533.6, + "end": 9538.14, + "probability": 0.9004 + }, + { + "start": 9538.22, + "end": 9539.04, + "probability": 0.7026 + }, + { + "start": 9539.12, + "end": 9541.21, + "probability": 0.5112 + }, + { + "start": 9541.62, + "end": 9543.31, + "probability": 0.4597 + }, + { + "start": 9543.44, + "end": 9545.17, + "probability": 0.8376 + }, + { + "start": 9545.8, + "end": 9547.9, + "probability": 0.9297 + }, + { + "start": 9548.62, + "end": 9550.51, + "probability": 0.9155 + }, + { + "start": 9554.36, + "end": 9555.34, + "probability": 0.7847 + }, + { + "start": 9555.38, + "end": 9556.48, + "probability": 0.9345 + }, + { + "start": 9556.66, + "end": 9560.64, + "probability": 0.7134 + }, + { + "start": 9560.88, + "end": 9565.86, + "probability": 0.9481 + }, + { + "start": 9566.42, + "end": 9568.1, + "probability": 0.6966 + }, + { + "start": 9568.18, + "end": 9568.76, + "probability": 0.3721 + }, + { + "start": 9568.94, + "end": 9572.18, + "probability": 0.8987 + }, + { + "start": 9572.52, + "end": 9574.16, + "probability": 0.9807 + }, + { + "start": 9574.58, + "end": 9575.34, + "probability": 0.4619 + }, + { + "start": 9575.44, + "end": 9577.62, + "probability": 0.7542 + }, + { + "start": 9577.72, + "end": 9578.64, + "probability": 0.6851 + }, + { + "start": 9579.82, + "end": 9580.96, + "probability": 0.7939 + }, + { + "start": 9581.68, + "end": 9584.66, + "probability": 0.5652 + }, + { + "start": 9585.1, + "end": 9585.22, + "probability": 0.3683 + }, + { + "start": 9585.24, + "end": 9585.36, + "probability": 0.8342 + }, + { + "start": 9585.46, + "end": 9586.76, + "probability": 0.9828 + }, + { + "start": 9586.9, + "end": 9587.85, + "probability": 0.8701 + }, + { + "start": 9588.22, + "end": 9590.38, + "probability": 0.5329 + }, + { + "start": 9590.84, + "end": 9591.85, + "probability": 0.6611 + }, + { + "start": 9592.36, + "end": 9593.9, + "probability": 0.9296 + }, + { + "start": 9594.68, + "end": 9595.36, + "probability": 0.2659 + }, + { + "start": 9595.5, + "end": 9596.06, + "probability": 0.5254 + }, + { + "start": 9596.12, + "end": 9596.92, + "probability": 0.5747 + }, + { + "start": 9596.94, + "end": 9598.4, + "probability": 0.5167 + }, + { + "start": 9598.48, + "end": 9598.8, + "probability": 0.5217 + }, + { + "start": 9598.84, + "end": 9599.76, + "probability": 0.5804 + }, + { + "start": 9599.82, + "end": 9600.32, + "probability": 0.6533 + }, + { + "start": 9600.74, + "end": 9603.96, + "probability": 0.7744 + }, + { + "start": 9604.04, + "end": 9605.1, + "probability": 0.7573 + }, + { + "start": 9605.48, + "end": 9606.82, + "probability": 0.7849 + }, + { + "start": 9607.66, + "end": 9608.78, + "probability": 0.8356 + }, + { + "start": 9615.63, + "end": 9617.14, + "probability": 0.8616 + }, + { + "start": 9620.26, + "end": 9621.52, + "probability": 0.7054 + }, + { + "start": 9621.88, + "end": 9621.88, + "probability": 0.0553 + }, + { + "start": 9621.88, + "end": 9624.68, + "probability": 0.7709 + }, + { + "start": 9625.38, + "end": 9627.06, + "probability": 0.7086 + }, + { + "start": 9627.18, + "end": 9627.9, + "probability": 0.7866 + }, + { + "start": 9628.1, + "end": 9629.98, + "probability": 0.6881 + }, + { + "start": 9630.02, + "end": 9631.94, + "probability": 0.9598 + }, + { + "start": 9632.12, + "end": 9632.34, + "probability": 0.8548 + }, + { + "start": 9633.98, + "end": 9635.32, + "probability": 0.7386 + }, + { + "start": 9636.08, + "end": 9637.06, + "probability": 0.7877 + }, + { + "start": 9638.98, + "end": 9644.96, + "probability": 0.9364 + }, + { + "start": 9644.96, + "end": 9647.84, + "probability": 0.9902 + }, + { + "start": 9649.34, + "end": 9655.32, + "probability": 0.9928 + }, + { + "start": 9656.82, + "end": 9663.74, + "probability": 0.9976 + }, + { + "start": 9663.74, + "end": 9670.4, + "probability": 0.9731 + }, + { + "start": 9671.98, + "end": 9677.6, + "probability": 0.8157 + }, + { + "start": 9677.6, + "end": 9682.8, + "probability": 0.9988 + }, + { + "start": 9683.7, + "end": 9685.62, + "probability": 0.6452 + }, + { + "start": 9686.24, + "end": 9690.84, + "probability": 0.7007 + }, + { + "start": 9691.4, + "end": 9698.76, + "probability": 0.9363 + }, + { + "start": 9699.76, + "end": 9701.37, + "probability": 0.8025 + }, + { + "start": 9702.32, + "end": 9704.96, + "probability": 0.2791 + }, + { + "start": 9706.32, + "end": 9709.92, + "probability": 0.9891 + }, + { + "start": 9710.5, + "end": 9714.64, + "probability": 0.9497 + }, + { + "start": 9714.98, + "end": 9717.54, + "probability": 0.8204 + }, + { + "start": 9718.02, + "end": 9726.52, + "probability": 0.6781 + }, + { + "start": 9727.0, + "end": 9730.16, + "probability": 0.9463 + }, + { + "start": 9730.6, + "end": 9733.98, + "probability": 0.0421 + }, + { + "start": 9733.98, + "end": 9734.68, + "probability": 0.0317 + }, + { + "start": 9735.26, + "end": 9739.21, + "probability": 0.5581 + }, + { + "start": 9739.54, + "end": 9740.1, + "probability": 0.9081 + }, + { + "start": 9740.28, + "end": 9745.98, + "probability": 0.9888 + }, + { + "start": 9745.98, + "end": 9751.3, + "probability": 0.9521 + }, + { + "start": 9752.48, + "end": 9760.1, + "probability": 0.7791 + }, + { + "start": 9760.44, + "end": 9763.18, + "probability": 0.6447 + }, + { + "start": 9764.0, + "end": 9771.98, + "probability": 0.9866 + }, + { + "start": 9772.66, + "end": 9777.7, + "probability": 0.9884 + }, + { + "start": 9777.7, + "end": 9782.92, + "probability": 0.7387 + }, + { + "start": 9784.58, + "end": 9786.5, + "probability": 0.0783 + }, + { + "start": 9786.86, + "end": 9788.34, + "probability": 0.028 + }, + { + "start": 9790.82, + "end": 9794.88, + "probability": 0.0587 + }, + { + "start": 9795.78, + "end": 9798.38, + "probability": 0.0237 + }, + { + "start": 9800.08, + "end": 9802.54, + "probability": 0.6077 + }, + { + "start": 9802.78, + "end": 9804.22, + "probability": 0.0753 + }, + { + "start": 9804.94, + "end": 9812.68, + "probability": 0.9109 + }, + { + "start": 9813.22, + "end": 9817.64, + "probability": 0.9931 + }, + { + "start": 9817.74, + "end": 9820.62, + "probability": 0.9945 + }, + { + "start": 9820.88, + "end": 9822.14, + "probability": 0.9749 + }, + { + "start": 9823.86, + "end": 9827.5, + "probability": 0.9636 + }, + { + "start": 9828.66, + "end": 9829.43, + "probability": 0.0106 + }, + { + "start": 9830.78, + "end": 9831.62, + "probability": 0.1474 + }, + { + "start": 9831.62, + "end": 9834.0, + "probability": 0.0234 + }, + { + "start": 9836.98, + "end": 9837.94, + "probability": 0.1698 + }, + { + "start": 9837.94, + "end": 9839.2, + "probability": 0.1275 + }, + { + "start": 9840.78, + "end": 9841.74, + "probability": 0.7325 + }, + { + "start": 9841.78, + "end": 9842.18, + "probability": 0.4488 + }, + { + "start": 9842.28, + "end": 9842.44, + "probability": 0.6317 + }, + { + "start": 9842.48, + "end": 9843.88, + "probability": 0.9114 + }, + { + "start": 9843.88, + "end": 9844.2, + "probability": 0.0255 + }, + { + "start": 9844.38, + "end": 9846.12, + "probability": 0.7762 + }, + { + "start": 9848.14, + "end": 9857.06, + "probability": 0.6948 + }, + { + "start": 9857.78, + "end": 9860.92, + "probability": 0.6662 + }, + { + "start": 9861.22, + "end": 9864.44, + "probability": 0.8016 + }, + { + "start": 9864.82, + "end": 9866.82, + "probability": 0.3255 + }, + { + "start": 9866.82, + "end": 9866.82, + "probability": 0.1254 + }, + { + "start": 9866.82, + "end": 9869.8, + "probability": 0.4881 + }, + { + "start": 9871.48, + "end": 9873.8, + "probability": 0.1008 + }, + { + "start": 9874.28, + "end": 9875.24, + "probability": 0.1138 + }, + { + "start": 9875.24, + "end": 9875.9, + "probability": 0.16 + }, + { + "start": 9876.96, + "end": 9880.26, + "probability": 0.1253 + }, + { + "start": 9880.58, + "end": 9882.35, + "probability": 0.1916 + }, + { + "start": 9888.58, + "end": 9888.84, + "probability": 0.036 + }, + { + "start": 9888.84, + "end": 9889.83, + "probability": 0.1667 + }, + { + "start": 9891.2, + "end": 9891.68, + "probability": 0.2547 + }, + { + "start": 9893.2, + "end": 9899.72, + "probability": 0.074 + }, + { + "start": 9905.52, + "end": 9910.44, + "probability": 0.1691 + }, + { + "start": 9910.66, + "end": 9910.66, + "probability": 0.2749 + }, + { + "start": 9911.92, + "end": 9912.06, + "probability": 0.0191 + }, + { + "start": 9912.06, + "end": 9912.06, + "probability": 0.1319 + }, + { + "start": 9912.06, + "end": 9912.06, + "probability": 0.0489 + }, + { + "start": 9912.06, + "end": 9912.06, + "probability": 0.311 + }, + { + "start": 9912.06, + "end": 9912.06, + "probability": 0.0912 + }, + { + "start": 9912.06, + "end": 9913.84, + "probability": 0.3895 + }, + { + "start": 9913.92, + "end": 9914.8, + "probability": 0.3365 + }, + { + "start": 9915.16, + "end": 9916.74, + "probability": 0.7998 + }, + { + "start": 9916.8, + "end": 9917.74, + "probability": 0.6819 + }, + { + "start": 9918.34, + "end": 9920.42, + "probability": 0.9416 + }, + { + "start": 9920.94, + "end": 9924.12, + "probability": 0.8206 + }, + { + "start": 9924.8, + "end": 9928.26, + "probability": 0.9346 + }, + { + "start": 9928.52, + "end": 9930.3, + "probability": 0.9552 + }, + { + "start": 9930.6, + "end": 9932.36, + "probability": 0.8729 + }, + { + "start": 9933.02, + "end": 9936.42, + "probability": 0.8711 + }, + { + "start": 9943.22, + "end": 9946.36, + "probability": 0.496 + }, + { + "start": 9947.14, + "end": 9947.92, + "probability": 0.6339 + }, + { + "start": 9948.06, + "end": 9949.38, + "probability": 0.3258 + }, + { + "start": 9949.74, + "end": 9954.58, + "probability": 0.8814 + }, + { + "start": 9955.02, + "end": 9957.12, + "probability": 0.8794 + }, + { + "start": 9957.86, + "end": 9961.24, + "probability": 0.8082 + }, + { + "start": 9961.34, + "end": 9963.72, + "probability": 0.9409 + }, + { + "start": 9964.26, + "end": 9966.34, + "probability": 0.9728 + }, + { + "start": 9967.4, + "end": 9967.84, + "probability": 0.7156 + }, + { + "start": 9968.06, + "end": 9970.24, + "probability": 0.9111 + }, + { + "start": 9970.32, + "end": 9972.72, + "probability": 0.3938 + }, + { + "start": 9973.04, + "end": 9974.32, + "probability": 0.2422 + }, + { + "start": 9974.64, + "end": 9975.91, + "probability": 0.4414 + }, + { + "start": 9977.9, + "end": 9979.66, + "probability": 0.2703 + }, + { + "start": 9981.46, + "end": 9982.06, + "probability": 0.169 + }, + { + "start": 9983.0, + "end": 9983.28, + "probability": 0.2481 + }, + { + "start": 9983.28, + "end": 9983.75, + "probability": 0.0195 + }, + { + "start": 9985.7, + "end": 9985.92, + "probability": 0.0168 + }, + { + "start": 9985.92, + "end": 9986.66, + "probability": 0.4939 + }, + { + "start": 9987.34, + "end": 9988.6, + "probability": 0.2902 + }, + { + "start": 9990.42, + "end": 9994.78, + "probability": 0.5311 + }, + { + "start": 9994.9, + "end": 9995.16, + "probability": 0.3555 + }, + { + "start": 9995.18, + "end": 9996.58, + "probability": 0.7734 + }, + { + "start": 9996.9, + "end": 9997.26, + "probability": 0.7012 + }, + { + "start": 9997.34, + "end": 9998.78, + "probability": 0.5021 + }, + { + "start": 9998.92, + "end": 9999.74, + "probability": 0.6421 + }, + { + "start": 9999.84, + "end": 10001.8, + "probability": 0.8236 + }, + { + "start": 10001.96, + "end": 10002.18, + "probability": 0.0802 + }, + { + "start": 10002.18, + "end": 10002.56, + "probability": 0.5557 + }, + { + "start": 10002.64, + "end": 10003.26, + "probability": 0.6987 + }, + { + "start": 10003.44, + "end": 10004.68, + "probability": 0.4998 + }, + { + "start": 10004.94, + "end": 10006.94, + "probability": 0.1293 + }, + { + "start": 10006.94, + "end": 10006.94, + "probability": 0.1324 + }, + { + "start": 10006.94, + "end": 10007.22, + "probability": 0.5789 + }, + { + "start": 10007.8, + "end": 10009.96, + "probability": 0.7536 + }, + { + "start": 10012.94, + "end": 10015.48, + "probability": 0.5634 + }, + { + "start": 10017.6, + "end": 10018.68, + "probability": 0.826 + }, + { + "start": 10018.74, + "end": 10020.06, + "probability": 0.7195 + }, + { + "start": 10020.16, + "end": 10022.4, + "probability": 0.5533 + }, + { + "start": 10022.46, + "end": 10026.96, + "probability": 0.929 + }, + { + "start": 10027.62, + "end": 10028.72, + "probability": 0.9218 + }, + { + "start": 10028.8, + "end": 10032.6, + "probability": 0.6611 + }, + { + "start": 10032.88, + "end": 10034.44, + "probability": 0.8028 + }, + { + "start": 10034.6, + "end": 10035.72, + "probability": 0.5658 + }, + { + "start": 10036.1, + "end": 10037.46, + "probability": 0.9833 + }, + { + "start": 10037.68, + "end": 10039.58, + "probability": 0.9321 + }, + { + "start": 10039.88, + "end": 10044.12, + "probability": 0.8574 + }, + { + "start": 10044.38, + "end": 10045.44, + "probability": 0.9321 + }, + { + "start": 10045.74, + "end": 10048.88, + "probability": 0.1464 + }, + { + "start": 10048.88, + "end": 10049.12, + "probability": 0.2381 + }, + { + "start": 10049.18, + "end": 10049.96, + "probability": 0.4955 + }, + { + "start": 10050.1, + "end": 10055.64, + "probability": 0.8817 + }, + { + "start": 10056.32, + "end": 10059.16, + "probability": 0.9062 + }, + { + "start": 10059.64, + "end": 10061.64, + "probability": 0.9554 + }, + { + "start": 10062.0, + "end": 10063.28, + "probability": 0.9714 + }, + { + "start": 10064.92, + "end": 10065.48, + "probability": 0.0879 + }, + { + "start": 10065.48, + "end": 10066.84, + "probability": 0.6482 + }, + { + "start": 10067.2, + "end": 10067.98, + "probability": 0.5187 + }, + { + "start": 10068.2, + "end": 10071.99, + "probability": 0.8075 + }, + { + "start": 10072.4, + "end": 10074.66, + "probability": 0.7783 + }, + { + "start": 10074.88, + "end": 10076.06, + "probability": 0.7638 + }, + { + "start": 10077.36, + "end": 10078.86, + "probability": 0.5443 + }, + { + "start": 10079.06, + "end": 10084.2, + "probability": 0.9832 + }, + { + "start": 10084.34, + "end": 10087.94, + "probability": 0.9532 + }, + { + "start": 10088.36, + "end": 10089.88, + "probability": 0.548 + }, + { + "start": 10090.1, + "end": 10092.38, + "probability": 0.9348 + }, + { + "start": 10093.12, + "end": 10098.78, + "probability": 0.9216 + }, + { + "start": 10099.06, + "end": 10101.96, + "probability": 0.7755 + }, + { + "start": 10102.32, + "end": 10104.2, + "probability": 0.9939 + }, + { + "start": 10104.48, + "end": 10105.46, + "probability": 0.8051 + }, + { + "start": 10105.58, + "end": 10109.34, + "probability": 0.9155 + }, + { + "start": 10109.5, + "end": 10110.4, + "probability": 0.6632 + }, + { + "start": 10111.0, + "end": 10113.87, + "probability": 0.5096 + }, + { + "start": 10114.12, + "end": 10116.78, + "probability": 0.8731 + }, + { + "start": 10117.0, + "end": 10121.5, + "probability": 0.9811 + }, + { + "start": 10122.04, + "end": 10125.35, + "probability": 0.9739 + }, + { + "start": 10125.56, + "end": 10126.38, + "probability": 0.9783 + }, + { + "start": 10126.84, + "end": 10127.12, + "probability": 0.5447 + }, + { + "start": 10127.4, + "end": 10130.42, + "probability": 0.4535 + }, + { + "start": 10130.58, + "end": 10131.88, + "probability": 0.8207 + }, + { + "start": 10131.96, + "end": 10132.4, + "probability": 0.4605 + }, + { + "start": 10132.42, + "end": 10134.0, + "probability": 0.8918 + }, + { + "start": 10136.32, + "end": 10136.52, + "probability": 0.0361 + }, + { + "start": 10136.52, + "end": 10136.52, + "probability": 0.5074 + }, + { + "start": 10136.52, + "end": 10139.48, + "probability": 0.5855 + }, + { + "start": 10140.4, + "end": 10142.12, + "probability": 0.1017 + }, + { + "start": 10142.66, + "end": 10144.28, + "probability": 0.053 + }, + { + "start": 10144.28, + "end": 10144.78, + "probability": 0.5362 + }, + { + "start": 10145.4, + "end": 10146.04, + "probability": 0.3411 + }, + { + "start": 10146.04, + "end": 10146.18, + "probability": 0.0997 + }, + { + "start": 10150.06, + "end": 10150.54, + "probability": 0.0158 + }, + { + "start": 10152.6, + "end": 10153.86, + "probability": 0.0131 + }, + { + "start": 10154.7, + "end": 10156.14, + "probability": 0.1029 + }, + { + "start": 10158.26, + "end": 10159.98, + "probability": 0.3341 + }, + { + "start": 10162.02, + "end": 10163.5, + "probability": 0.2498 + }, + { + "start": 10164.06, + "end": 10165.18, + "probability": 0.1225 + }, + { + "start": 10166.5, + "end": 10169.3, + "probability": 0.4086 + }, + { + "start": 10169.44, + "end": 10170.38, + "probability": 0.7487 + }, + { + "start": 10170.48, + "end": 10172.96, + "probability": 0.9331 + }, + { + "start": 10173.42, + "end": 10174.54, + "probability": 0.8892 + }, + { + "start": 10174.76, + "end": 10180.28, + "probability": 0.9297 + }, + { + "start": 10180.84, + "end": 10182.5, + "probability": 0.9248 + }, + { + "start": 10183.22, + "end": 10184.54, + "probability": 0.9289 + }, + { + "start": 10184.72, + "end": 10189.54, + "probability": 0.8145 + }, + { + "start": 10189.66, + "end": 10192.98, + "probability": 0.7059 + }, + { + "start": 10193.7, + "end": 10197.04, + "probability": 0.8926 + }, + { + "start": 10197.1, + "end": 10198.2, + "probability": 0.4101 + }, + { + "start": 10198.64, + "end": 10201.52, + "probability": 0.7633 + }, + { + "start": 10201.82, + "end": 10202.38, + "probability": 0.9336 + }, + { + "start": 10202.92, + "end": 10204.76, + "probability": 0.7365 + }, + { + "start": 10213.14, + "end": 10214.16, + "probability": 0.1581 + }, + { + "start": 10221.46, + "end": 10222.06, + "probability": 0.3456 + }, + { + "start": 10225.46, + "end": 10225.82, + "probability": 0.0003 + }, + { + "start": 10226.18, + "end": 10230.12, + "probability": 0.2767 + }, + { + "start": 10231.06, + "end": 10231.44, + "probability": 0.3192 + }, + { + "start": 10231.44, + "end": 10234.32, + "probability": 0.0615 + }, + { + "start": 10236.88, + "end": 10237.94, + "probability": 0.212 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.0, + "end": 10386.0, + "probability": 0.0 + }, + { + "start": 10386.52, + "end": 10386.94, + "probability": 0.5284 + }, + { + "start": 10388.06, + "end": 10389.92, + "probability": 0.8677 + }, + { + "start": 10391.3, + "end": 10393.62, + "probability": 0.971 + }, + { + "start": 10394.68, + "end": 10398.98, + "probability": 0.8883 + }, + { + "start": 10400.2, + "end": 10402.42, + "probability": 0.9804 + }, + { + "start": 10403.18, + "end": 10407.12, + "probability": 0.9586 + }, + { + "start": 10409.1, + "end": 10417.28, + "probability": 0.8241 + }, + { + "start": 10420.4, + "end": 10422.96, + "probability": 0.8547 + }, + { + "start": 10423.62, + "end": 10425.56, + "probability": 0.7055 + }, + { + "start": 10426.48, + "end": 10429.04, + "probability": 0.9844 + }, + { + "start": 10429.9, + "end": 10433.7, + "probability": 0.9754 + }, + { + "start": 10434.46, + "end": 10436.34, + "probability": 0.985 + }, + { + "start": 10436.98, + "end": 10441.62, + "probability": 0.7635 + }, + { + "start": 10442.38, + "end": 10444.46, + "probability": 0.9272 + }, + { + "start": 10445.26, + "end": 10447.38, + "probability": 0.8796 + }, + { + "start": 10448.24, + "end": 10450.06, + "probability": 0.9767 + }, + { + "start": 10451.06, + "end": 10453.24, + "probability": 0.9803 + }, + { + "start": 10454.16, + "end": 10456.24, + "probability": 0.9723 + }, + { + "start": 10461.98, + "end": 10468.5, + "probability": 0.5891 + }, + { + "start": 10469.44, + "end": 10471.86, + "probability": 0.8879 + }, + { + "start": 10472.48, + "end": 10473.6, + "probability": 0.5781 + }, + { + "start": 10480.0, + "end": 10486.0, + "probability": 0.4535 + }, + { + "start": 10487.14, + "end": 10488.28, + "probability": 0.3438 + }, + { + "start": 10489.54, + "end": 10491.52, + "probability": 0.8668 + }, + { + "start": 10492.2, + "end": 10493.78, + "probability": 0.9161 + }, + { + "start": 10494.32, + "end": 10495.88, + "probability": 0.9351 + }, + { + "start": 10497.4, + "end": 10499.38, + "probability": 0.951 + }, + { + "start": 10500.18, + "end": 10502.02, + "probability": 0.9758 + }, + { + "start": 10502.54, + "end": 10504.4, + "probability": 0.7778 + }, + { + "start": 10504.44, + "end": 10506.7, + "probability": 0.7651 + }, + { + "start": 10507.08, + "end": 10508.82, + "probability": 0.9095 + }, + { + "start": 10509.32, + "end": 10511.92, + "probability": 0.8994 + }, + { + "start": 10512.72, + "end": 10518.62, + "probability": 0.9466 + }, + { + "start": 10519.42, + "end": 10521.3, + "probability": 0.9696 + }, + { + "start": 10522.7, + "end": 10525.12, + "probability": 0.9842 + }, + { + "start": 10525.68, + "end": 10530.68, + "probability": 0.813 + }, + { + "start": 10531.26, + "end": 10533.54, + "probability": 0.7251 + }, + { + "start": 10533.76, + "end": 10534.02, + "probability": 0.1296 + }, + { + "start": 10534.7, + "end": 10535.34, + "probability": 0.284 + }, + { + "start": 10535.34, + "end": 10537.7, + "probability": 0.2158 + }, + { + "start": 10538.88, + "end": 10538.88, + "probability": 0.134 + }, + { + "start": 10538.88, + "end": 10538.88, + "probability": 0.0143 + }, + { + "start": 10538.88, + "end": 10541.34, + "probability": 0.6231 + }, + { + "start": 10541.9, + "end": 10549.92, + "probability": 0.8799 + }, + { + "start": 10550.78, + "end": 10552.84, + "probability": 0.851 + }, + { + "start": 10553.42, + "end": 10557.74, + "probability": 0.8375 + }, + { + "start": 10558.28, + "end": 10560.52, + "probability": 0.8887 + }, + { + "start": 10561.14, + "end": 10563.16, + "probability": 0.9535 + }, + { + "start": 10563.74, + "end": 10565.58, + "probability": 0.9798 + }, + { + "start": 10566.88, + "end": 10569.0, + "probability": 0.9577 + }, + { + "start": 10570.5, + "end": 10573.14, + "probability": 0.9662 + }, + { + "start": 10573.92, + "end": 10575.96, + "probability": 0.9877 + }, + { + "start": 10577.22, + "end": 10581.52, + "probability": 0.586 + }, + { + "start": 10582.26, + "end": 10584.48, + "probability": 0.9605 + }, + { + "start": 10585.34, + "end": 10587.68, + "probability": 0.7995 + }, + { + "start": 10588.64, + "end": 10590.98, + "probability": 0.8976 + }, + { + "start": 10590.98, + "end": 10593.7, + "probability": 0.8789 + }, + { + "start": 10594.06, + "end": 10596.54, + "probability": 0.8938 + }, + { + "start": 10597.24, + "end": 10601.8, + "probability": 0.9678 + }, + { + "start": 10602.46, + "end": 10604.16, + "probability": 0.8004 + }, + { + "start": 10604.64, + "end": 10607.42, + "probability": 0.8953 + }, + { + "start": 10607.86, + "end": 10610.42, + "probability": 0.8818 + }, + { + "start": 10610.94, + "end": 10612.94, + "probability": 0.9653 + }, + { + "start": 10613.88, + "end": 10616.22, + "probability": 0.9285 + }, + { + "start": 10617.22, + "end": 10619.62, + "probability": 0.9683 + }, + { + "start": 10620.36, + "end": 10625.24, + "probability": 0.7387 + }, + { + "start": 10625.92, + "end": 10627.5, + "probability": 0.855 + }, + { + "start": 10628.98, + "end": 10633.4, + "probability": 0.9623 + }, + { + "start": 10634.42, + "end": 10637.6, + "probability": 0.9504 + }, + { + "start": 10638.02, + "end": 10640.16, + "probability": 0.9557 + }, + { + "start": 10640.16, + "end": 10642.76, + "probability": 0.973 + }, + { + "start": 10642.76, + "end": 10645.3, + "probability": 0.9659 + }, + { + "start": 10645.3, + "end": 10648.32, + "probability": 0.9759 + }, + { + "start": 10648.84, + "end": 10653.04, + "probability": 0.6765 + }, + { + "start": 10654.04, + "end": 10658.22, + "probability": 0.8288 + }, + { + "start": 10660.44, + "end": 10662.54, + "probability": 0.9077 + }, + { + "start": 10663.34, + "end": 10666.5, + "probability": 0.9438 + }, + { + "start": 10670.18, + "end": 10670.92, + "probability": 0.5853 + }, + { + "start": 10671.02, + "end": 10672.26, + "probability": 0.602 + }, + { + "start": 10672.36, + "end": 10674.08, + "probability": 0.7675 + }, + { + "start": 10674.29, + "end": 10676.6, + "probability": 0.8649 + }, + { + "start": 10676.64, + "end": 10677.4, + "probability": 0.779 + }, + { + "start": 10678.64, + "end": 10681.06, + "probability": 0.1887 + }, + { + "start": 10682.0, + "end": 10683.62, + "probability": 0.5475 + }, + { + "start": 10684.6, + "end": 10686.56, + "probability": 0.8477 + }, + { + "start": 10687.2, + "end": 10689.42, + "probability": 0.9359 + }, + { + "start": 10690.48, + "end": 10692.6, + "probability": 0.9778 + }, + { + "start": 10693.64, + "end": 10695.46, + "probability": 0.9817 + }, + { + "start": 10696.1, + "end": 10697.8, + "probability": 0.9899 + }, + { + "start": 10698.48, + "end": 10700.28, + "probability": 0.8783 + }, + { + "start": 10702.66, + "end": 10705.88, + "probability": 0.565 + }, + { + "start": 10706.76, + "end": 10709.28, + "probability": 0.9529 + }, + { + "start": 10710.04, + "end": 10711.76, + "probability": 0.9518 + }, + { + "start": 10712.44, + "end": 10714.4, + "probability": 0.9818 + }, + { + "start": 10715.9, + "end": 10719.72, + "probability": 0.6731 + }, + { + "start": 10720.34, + "end": 10721.18, + "probability": 0.9904 + }, + { + "start": 10722.0, + "end": 10725.64, + "probability": 0.5276 + }, + { + "start": 10726.42, + "end": 10728.32, + "probability": 0.8341 + }, + { + "start": 10729.22, + "end": 10732.06, + "probability": 0.9859 + }, + { + "start": 10732.76, + "end": 10734.92, + "probability": 0.8056 + }, + { + "start": 10735.74, + "end": 10738.08, + "probability": 0.9092 + }, + { + "start": 10738.8, + "end": 10743.76, + "probability": 0.8558 + }, + { + "start": 10744.38, + "end": 10749.4, + "probability": 0.1537 + }, + { + "start": 10751.28, + "end": 10754.02, + "probability": 0.6486 + }, + { + "start": 10754.92, + "end": 10757.52, + "probability": 0.8368 + }, + { + "start": 10758.7, + "end": 10760.58, + "probability": 0.988 + }, + { + "start": 10761.12, + "end": 10762.62, + "probability": 0.9669 + }, + { + "start": 10763.18, + "end": 10765.34, + "probability": 0.9862 + }, + { + "start": 10766.36, + "end": 10767.1, + "probability": 0.9928 + }, + { + "start": 10770.24, + "end": 10771.06, + "probability": 0.2789 + }, + { + "start": 10772.14, + "end": 10776.62, + "probability": 0.8768 + }, + { + "start": 10777.3, + "end": 10779.24, + "probability": 0.9427 + }, + { + "start": 10779.74, + "end": 10781.46, + "probability": 0.9606 + }, + { + "start": 10781.96, + "end": 10783.86, + "probability": 0.9451 + }, + { + "start": 10784.52, + "end": 10786.64, + "probability": 0.8801 + }, + { + "start": 10787.38, + "end": 10789.38, + "probability": 0.9839 + }, + { + "start": 10789.74, + "end": 10791.88, + "probability": 0.8807 + }, + { + "start": 10792.32, + "end": 10794.24, + "probability": 0.9537 + }, + { + "start": 10794.74, + "end": 10796.54, + "probability": 0.9567 + }, + { + "start": 10797.38, + "end": 10799.64, + "probability": 0.988 + }, + { + "start": 10800.28, + "end": 10806.7, + "probability": 0.9734 + }, + { + "start": 10807.46, + "end": 10810.18, + "probability": 0.6158 + }, + { + "start": 10811.08, + "end": 10813.18, + "probability": 0.9081 + }, + { + "start": 10813.54, + "end": 10816.78, + "probability": 0.6265 + }, + { + "start": 10817.38, + "end": 10823.8, + "probability": 0.6611 + }, + { + "start": 10824.08, + "end": 10825.4, + "probability": 0.6833 + }, + { + "start": 10825.6, + "end": 10830.24, + "probability": 0.0099 + }, + { + "start": 10830.32, + "end": 10831.0, + "probability": 0.2272 + }, + { + "start": 10832.66, + "end": 10834.42, + "probability": 0.6221 + }, + { + "start": 10835.16, + "end": 10835.62, + "probability": 0.534 + }, + { + "start": 10835.9, + "end": 10837.28, + "probability": 0.4284 + }, + { + "start": 10837.56, + "end": 10838.62, + "probability": 0.4573 + }, + { + "start": 10840.5, + "end": 10842.18, + "probability": 0.7568 + }, + { + "start": 10843.3, + "end": 10844.95, + "probability": 0.6895 + }, + { + "start": 10845.14, + "end": 10846.1, + "probability": 0.8732 + }, + { + "start": 10846.48, + "end": 10848.34, + "probability": 0.9683 + }, + { + "start": 10848.44, + "end": 10854.38, + "probability": 0.0326 + }, + { + "start": 10854.44, + "end": 10855.78, + "probability": 0.3083 + }, + { + "start": 10855.96, + "end": 10856.94, + "probability": 0.7971 + }, + { + "start": 10857.04, + "end": 10862.02, + "probability": 0.9064 + }, + { + "start": 10862.12, + "end": 10862.98, + "probability": 0.5264 + }, + { + "start": 10863.32, + "end": 10865.78, + "probability": 0.964 + }, + { + "start": 10866.16, + "end": 10868.15, + "probability": 0.9417 + }, + { + "start": 10868.68, + "end": 10870.38, + "probability": 0.9924 + }, + { + "start": 10870.56, + "end": 10872.34, + "probability": 0.7786 + }, + { + "start": 10872.58, + "end": 10873.16, + "probability": 0.5306 + }, + { + "start": 10873.24, + "end": 10874.04, + "probability": 0.7892 + }, + { + "start": 10874.12, + "end": 10876.62, + "probability": 0.9386 + }, + { + "start": 10876.72, + "end": 10877.56, + "probability": 0.4518 + }, + { + "start": 10877.58, + "end": 10878.4, + "probability": 0.947 + }, + { + "start": 10882.2, + "end": 10882.66, + "probability": 0.5163 + }, + { + "start": 10884.1, + "end": 10886.44, + "probability": 0.898 + }, + { + "start": 10887.22, + "end": 10890.4, + "probability": 0.0714 + }, + { + "start": 10893.26, + "end": 10895.22, + "probability": 0.0094 + }, + { + "start": 10957.26, + "end": 10958.74, + "probability": 0.0231 + }, + { + "start": 10959.61, + "end": 10960.88, + "probability": 0.0624 + }, + { + "start": 10963.1, + "end": 10963.26, + "probability": 0.0932 + }, + { + "start": 10963.73, + "end": 10965.36, + "probability": 0.3266 + }, + { + "start": 10966.07, + "end": 10968.06, + "probability": 0.012 + }, + { + "start": 10975.7, + "end": 10980.48, + "probability": 0.0116 + }, + { + "start": 10980.48, + "end": 10983.14, + "probability": 0.2077 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11090.0, + "end": 11090.0, + "probability": 0.0 + }, + { + "start": 11102.12, + "end": 11106.2, + "probability": 0.0458 + }, + { + "start": 11106.88, + "end": 11108.76, + "probability": 0.1509 + }, + { + "start": 11113.78, + "end": 11114.6, + "probability": 0.001 + }, + { + "start": 11117.8, + "end": 11121.66, + "probability": 0.0427 + }, + { + "start": 11121.66, + "end": 11121.66, + "probability": 0.085 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11222.0, + "end": 11222.0, + "probability": 0.0 + }, + { + "start": 11231.64, + "end": 11236.52, + "probability": 0.0638 + }, + { + "start": 11236.52, + "end": 11236.98, + "probability": 0.0529 + }, + { + "start": 11236.98, + "end": 11241.92, + "probability": 0.0542 + }, + { + "start": 11242.52, + "end": 11246.4, + "probability": 0.1137 + }, + { + "start": 11249.77, + "end": 11249.84, + "probability": 0.011 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.0, + "end": 11350.0, + "probability": 0.0 + }, + { + "start": 11350.26, + "end": 11350.42, + "probability": 0.0248 + }, + { + "start": 11350.42, + "end": 11350.42, + "probability": 0.0643 + }, + { + "start": 11350.42, + "end": 11350.42, + "probability": 0.0907 + }, + { + "start": 11350.42, + "end": 11354.02, + "probability": 0.6137 + }, + { + "start": 11354.02, + "end": 11357.7, + "probability": 0.9006 + }, + { + "start": 11357.92, + "end": 11363.28, + "probability": 0.8857 + }, + { + "start": 11363.28, + "end": 11368.58, + "probability": 0.9945 + }, + { + "start": 11369.28, + "end": 11372.78, + "probability": 0.9991 + }, + { + "start": 11373.28, + "end": 11376.16, + "probability": 0.9814 + }, + { + "start": 11376.54, + "end": 11379.66, + "probability": 0.8745 + }, + { + "start": 11379.66, + "end": 11383.82, + "probability": 0.9138 + }, + { + "start": 11384.42, + "end": 11384.9, + "probability": 0.7194 + }, + { + "start": 11385.18, + "end": 11388.9, + "probability": 0.9659 + }, + { + "start": 11388.9, + "end": 11392.68, + "probability": 0.9941 + }, + { + "start": 11393.48, + "end": 11395.82, + "probability": 0.9907 + }, + { + "start": 11395.82, + "end": 11399.36, + "probability": 0.9204 + }, + { + "start": 11399.6, + "end": 11400.52, + "probability": 0.5713 + }, + { + "start": 11401.14, + "end": 11402.34, + "probability": 0.447 + }, + { + "start": 11402.34, + "end": 11403.18, + "probability": 0.4985 + }, + { + "start": 11404.26, + "end": 11406.42, + "probability": 0.7948 + }, + { + "start": 11406.94, + "end": 11406.94, + "probability": 0.2166 + }, + { + "start": 11406.94, + "end": 11409.22, + "probability": 0.2242 + }, + { + "start": 11409.62, + "end": 11411.56, + "probability": 0.9284 + }, + { + "start": 11411.62, + "end": 11413.6, + "probability": 0.6737 + }, + { + "start": 11414.08, + "end": 11416.62, + "probability": 0.9769 + }, + { + "start": 11416.7, + "end": 11421.44, + "probability": 0.9609 + }, + { + "start": 11422.4, + "end": 11422.88, + "probability": 0.8399 + }, + { + "start": 11423.12, + "end": 11423.76, + "probability": 0.6346 + }, + { + "start": 11423.82, + "end": 11427.94, + "probability": 0.929 + }, + { + "start": 11428.1, + "end": 11428.64, + "probability": 0.8631 + }, + { + "start": 11428.68, + "end": 11429.28, + "probability": 0.7778 + }, + { + "start": 11429.36, + "end": 11429.72, + "probability": 0.9248 + }, + { + "start": 11429.78, + "end": 11430.06, + "probability": 0.3834 + }, + { + "start": 11430.14, + "end": 11430.66, + "probability": 0.6688 + }, + { + "start": 11430.96, + "end": 11434.5, + "probability": 0.5846 + }, + { + "start": 11434.5, + "end": 11438.66, + "probability": 0.8273 + }, + { + "start": 11438.72, + "end": 11439.7, + "probability": 0.7385 + }, + { + "start": 11440.2, + "end": 11442.98, + "probability": 0.7679 + }, + { + "start": 11443.16, + "end": 11444.02, + "probability": 0.7743 + }, + { + "start": 11444.14, + "end": 11445.68, + "probability": 0.5798 + }, + { + "start": 11445.72, + "end": 11446.66, + "probability": 0.9445 + }, + { + "start": 11446.76, + "end": 11448.48, + "probability": 0.9907 + }, + { + "start": 11448.56, + "end": 11448.86, + "probability": 0.7174 + }, + { + "start": 11450.04, + "end": 11450.16, + "probability": 0.381 + }, + { + "start": 11450.34, + "end": 11452.3, + "probability": 0.845 + }, + { + "start": 11452.3, + "end": 11456.38, + "probability": 0.9379 + }, + { + "start": 11456.52, + "end": 11458.82, + "probability": 0.8558 + }, + { + "start": 11459.24, + "end": 11462.78, + "probability": 0.9605 + }, + { + "start": 11462.92, + "end": 11467.14, + "probability": 0.9951 + }, + { + "start": 11468.7, + "end": 11469.96, + "probability": 0.6101 + }, + { + "start": 11470.16, + "end": 11472.68, + "probability": 0.9819 + }, + { + "start": 11473.16, + "end": 11476.74, + "probability": 0.9858 + }, + { + "start": 11477.0, + "end": 11481.1, + "probability": 0.8344 + }, + { + "start": 11481.1, + "end": 11484.72, + "probability": 0.9922 + }, + { + "start": 11485.12, + "end": 11487.2, + "probability": 0.8313 + }, + { + "start": 11487.26, + "end": 11490.88, + "probability": 0.915 + }, + { + "start": 11491.3, + "end": 11494.64, + "probability": 0.8372 + }, + { + "start": 11494.96, + "end": 11497.12, + "probability": 0.7729 + }, + { + "start": 11497.44, + "end": 11503.12, + "probability": 0.8651 + }, + { + "start": 11503.4, + "end": 11504.5, + "probability": 0.7674 + }, + { + "start": 11505.9, + "end": 11511.04, + "probability": 0.7196 + }, + { + "start": 11511.38, + "end": 11514.02, + "probability": 0.9534 + }, + { + "start": 11514.8, + "end": 11518.08, + "probability": 0.9559 + }, + { + "start": 11518.32, + "end": 11521.4, + "probability": 0.8989 + }, + { + "start": 11522.0, + "end": 11524.92, + "probability": 0.9494 + }, + { + "start": 11525.36, + "end": 11527.18, + "probability": 0.6322 + }, + { + "start": 11527.18, + "end": 11527.78, + "probability": 0.7625 + }, + { + "start": 11528.82, + "end": 11529.98, + "probability": 0.9086 + }, + { + "start": 11530.1, + "end": 11536.5, + "probability": 0.609 + }, + { + "start": 11536.7, + "end": 11537.88, + "probability": 0.8767 + }, + { + "start": 11538.0, + "end": 11543.52, + "probability": 0.9463 + }, + { + "start": 11543.72, + "end": 11546.9, + "probability": 0.9811 + }, + { + "start": 11547.06, + "end": 11548.4, + "probability": 0.9664 + }, + { + "start": 11548.58, + "end": 11552.7, + "probability": 0.9522 + }, + { + "start": 11553.12, + "end": 11553.36, + "probability": 0.4759 + }, + { + "start": 11553.48, + "end": 11554.46, + "probability": 0.577 + }, + { + "start": 11554.64, + "end": 11554.84, + "probability": 0.3413 + }, + { + "start": 11555.0, + "end": 11555.8, + "probability": 0.7232 + }, + { + "start": 11556.14, + "end": 11557.28, + "probability": 0.8891 + }, + { + "start": 11557.6, + "end": 11560.22, + "probability": 0.9142 + }, + { + "start": 11560.48, + "end": 11563.4, + "probability": 0.9887 + }, + { + "start": 11563.5, + "end": 11566.96, + "probability": 0.9915 + }, + { + "start": 11566.96, + "end": 11570.4, + "probability": 0.9932 + }, + { + "start": 11570.4, + "end": 11575.32, + "probability": 0.9932 + }, + { + "start": 11580.56, + "end": 11582.84, + "probability": 0.7389 + }, + { + "start": 11583.78, + "end": 11588.32, + "probability": 0.8439 + }, + { + "start": 11589.08, + "end": 11591.76, + "probability": 0.6835 + }, + { + "start": 11591.84, + "end": 11595.92, + "probability": 0.8938 + }, + { + "start": 11596.66, + "end": 11599.42, + "probability": 0.3904 + }, + { + "start": 11600.16, + "end": 11600.22, + "probability": 0.5471 + }, + { + "start": 11600.22, + "end": 11600.4, + "probability": 0.7061 + }, + { + "start": 11600.48, + "end": 11602.3, + "probability": 0.9238 + }, + { + "start": 11602.3, + "end": 11602.82, + "probability": 0.4857 + }, + { + "start": 11603.1, + "end": 11610.28, + "probability": 0.8895 + }, + { + "start": 11610.38, + "end": 11611.44, + "probability": 0.4837 + }, + { + "start": 11611.46, + "end": 11616.42, + "probability": 0.9224 + }, + { + "start": 11616.7, + "end": 11618.64, + "probability": 0.5012 + }, + { + "start": 11618.64, + "end": 11619.42, + "probability": 0.321 + }, + { + "start": 11620.04, + "end": 11620.16, + "probability": 0.3716 + }, + { + "start": 11620.26, + "end": 11620.84, + "probability": 0.9236 + }, + { + "start": 11620.92, + "end": 11621.4, + "probability": 0.7126 + }, + { + "start": 11621.4, + "end": 11628.28, + "probability": 0.8564 + }, + { + "start": 11628.68, + "end": 11629.58, + "probability": 0.3339 + }, + { + "start": 11629.8, + "end": 11632.16, + "probability": 0.953 + }, + { + "start": 11632.2, + "end": 11633.12, + "probability": 0.7774 + }, + { + "start": 11633.18, + "end": 11634.5, + "probability": 0.9254 + }, + { + "start": 11634.82, + "end": 11637.86, + "probability": 0.9062 + }, + { + "start": 11638.1, + "end": 11640.5, + "probability": 0.6863 + }, + { + "start": 11640.76, + "end": 11640.78, + "probability": 0.1667 + }, + { + "start": 11640.78, + "end": 11640.96, + "probability": 0.1657 + }, + { + "start": 11640.98, + "end": 11645.12, + "probability": 0.9756 + }, + { + "start": 11645.12, + "end": 11648.38, + "probability": 0.981 + }, + { + "start": 11648.54, + "end": 11653.06, + "probability": 0.8302 + }, + { + "start": 11653.06, + "end": 11658.42, + "probability": 0.8582 + }, + { + "start": 11658.54, + "end": 11658.54, + "probability": 0.3561 + }, + { + "start": 11658.54, + "end": 11658.54, + "probability": 0.4 + }, + { + "start": 11658.54, + "end": 11662.06, + "probability": 0.8014 + }, + { + "start": 11662.14, + "end": 11663.56, + "probability": 0.6978 + }, + { + "start": 11663.62, + "end": 11664.84, + "probability": 0.5665 + }, + { + "start": 11665.0, + "end": 11666.02, + "probability": 0.887 + }, + { + "start": 11666.36, + "end": 11666.36, + "probability": 0.1558 + }, + { + "start": 11666.36, + "end": 11666.78, + "probability": 0.5351 + }, + { + "start": 11666.86, + "end": 11667.64, + "probability": 0.492 + }, + { + "start": 11667.66, + "end": 11668.94, + "probability": 0.9805 + }, + { + "start": 11668.98, + "end": 11669.22, + "probability": 0.3537 + }, + { + "start": 11669.24, + "end": 11673.22, + "probability": 0.5356 + }, + { + "start": 11673.22, + "end": 11675.74, + "probability": 0.7968 + }, + { + "start": 11675.88, + "end": 11677.4, + "probability": 0.8879 + }, + { + "start": 11677.56, + "end": 11682.94, + "probability": 0.7194 + }, + { + "start": 11683.0, + "end": 11685.12, + "probability": 0.8597 + }, + { + "start": 11685.22, + "end": 11686.16, + "probability": 0.7135 + }, + { + "start": 11686.4, + "end": 11690.5, + "probability": 0.923 + }, + { + "start": 11690.84, + "end": 11694.53, + "probability": 0.9658 + }, + { + "start": 11694.88, + "end": 11699.72, + "probability": 0.8977 + }, + { + "start": 11699.74, + "end": 11700.54, + "probability": 0.4913 + }, + { + "start": 11700.94, + "end": 11700.94, + "probability": 0.2729 + }, + { + "start": 11700.94, + "end": 11701.72, + "probability": 0.3175 + }, + { + "start": 11702.04, + "end": 11702.52, + "probability": 0.5434 + }, + { + "start": 11702.62, + "end": 11703.94, + "probability": 0.9526 + }, + { + "start": 11704.34, + "end": 11708.14, + "probability": 0.8037 + }, + { + "start": 11708.2, + "end": 11711.36, + "probability": 0.9734 + }, + { + "start": 11712.18, + "end": 11712.18, + "probability": 0.0299 + }, + { + "start": 11712.18, + "end": 11713.12, + "probability": 0.4772 + }, + { + "start": 11713.74, + "end": 11715.0, + "probability": 0.337 + }, + { + "start": 11715.06, + "end": 11716.68, + "probability": 0.5313 + }, + { + "start": 11716.68, + "end": 11717.76, + "probability": 0.2989 + }, + { + "start": 11718.06, + "end": 11718.62, + "probability": 0.7869 + }, + { + "start": 11719.36, + "end": 11723.98, + "probability": 0.5388 + }, + { + "start": 11725.32, + "end": 11725.94, + "probability": 0.2724 + }, + { + "start": 11725.94, + "end": 11727.12, + "probability": 0.5263 + }, + { + "start": 11727.12, + "end": 11727.34, + "probability": 0.0455 + }, + { + "start": 11727.34, + "end": 11728.18, + "probability": 0.7439 + }, + { + "start": 11728.36, + "end": 11728.82, + "probability": 0.8651 + }, + { + "start": 11728.92, + "end": 11733.08, + "probability": 0.8217 + }, + { + "start": 11733.2, + "end": 11736.0, + "probability": 0.9829 + }, + { + "start": 11736.16, + "end": 11737.26, + "probability": 0.96 + }, + { + "start": 11737.56, + "end": 11743.0, + "probability": 0.948 + }, + { + "start": 11743.0, + "end": 11749.22, + "probability": 0.9966 + }, + { + "start": 11749.62, + "end": 11749.96, + "probability": 0.4865 + }, + { + "start": 11750.12, + "end": 11755.02, + "probability": 0.9975 + }, + { + "start": 11755.38, + "end": 11759.98, + "probability": 0.9463 + }, + { + "start": 11761.57, + "end": 11767.96, + "probability": 0.9927 + }, + { + "start": 11768.2, + "end": 11770.64, + "probability": 0.8872 + }, + { + "start": 11771.28, + "end": 11774.98, + "probability": 0.9518 + }, + { + "start": 11774.98, + "end": 11780.09, + "probability": 0.998 + }, + { + "start": 11780.6, + "end": 11781.76, + "probability": 0.9585 + }, + { + "start": 11782.62, + "end": 11785.32, + "probability": 0.6688 + }, + { + "start": 11785.42, + "end": 11790.98, + "probability": 0.9803 + }, + { + "start": 11791.34, + "end": 11793.52, + "probability": 0.9914 + }, + { + "start": 11793.58, + "end": 11795.48, + "probability": 0.9955 + }, + { + "start": 11795.48, + "end": 11798.04, + "probability": 0.9905 + }, + { + "start": 11798.68, + "end": 11800.82, + "probability": 0.9237 + }, + { + "start": 11801.28, + "end": 11803.66, + "probability": 0.7694 + }, + { + "start": 11803.8, + "end": 11804.62, + "probability": 0.8102 + }, + { + "start": 11804.8, + "end": 11809.66, + "probability": 0.9619 + }, + { + "start": 11810.06, + "end": 11811.94, + "probability": 0.8464 + }, + { + "start": 11812.16, + "end": 11813.54, + "probability": 0.6665 + }, + { + "start": 11813.74, + "end": 11816.14, + "probability": 0.876 + }, + { + "start": 11816.78, + "end": 11819.8, + "probability": 0.967 + }, + { + "start": 11819.8, + "end": 11823.82, + "probability": 0.9517 + }, + { + "start": 11824.56, + "end": 11828.5, + "probability": 0.9785 + }, + { + "start": 11828.5, + "end": 11831.86, + "probability": 0.9975 + }, + { + "start": 11832.6, + "end": 11833.36, + "probability": 0.7184 + }, + { + "start": 11833.5, + "end": 11838.14, + "probability": 0.9971 + }, + { + "start": 11838.56, + "end": 11839.22, + "probability": 0.4869 + }, + { + "start": 11839.34, + "end": 11840.78, + "probability": 0.9789 + }, + { + "start": 11841.1, + "end": 11843.41, + "probability": 0.9907 + }, + { + "start": 11843.8, + "end": 11845.02, + "probability": 0.8841 + }, + { + "start": 11845.34, + "end": 11847.78, + "probability": 0.9808 + }, + { + "start": 11847.86, + "end": 11849.16, + "probability": 0.9434 + }, + { + "start": 11849.52, + "end": 11850.4, + "probability": 0.9329 + }, + { + "start": 11850.68, + "end": 11854.58, + "probability": 0.9927 + }, + { + "start": 11854.58, + "end": 11858.64, + "probability": 0.9957 + }, + { + "start": 11859.32, + "end": 11861.7, + "probability": 0.9919 + }, + { + "start": 11862.52, + "end": 11865.64, + "probability": 0.9695 + }, + { + "start": 11865.64, + "end": 11869.36, + "probability": 0.9989 + }, + { + "start": 11869.96, + "end": 11871.3, + "probability": 0.8732 + }, + { + "start": 11871.54, + "end": 11873.46, + "probability": 0.9458 + }, + { + "start": 11873.68, + "end": 11877.04, + "probability": 0.9849 + }, + { + "start": 11877.38, + "end": 11880.64, + "probability": 0.9974 + }, + { + "start": 11881.92, + "end": 11882.7, + "probability": 0.5117 + }, + { + "start": 11883.02, + "end": 11884.44, + "probability": 0.8277 + }, + { + "start": 11884.52, + "end": 11886.96, + "probability": 0.9837 + }, + { + "start": 11887.28, + "end": 11890.68, + "probability": 0.8735 + }, + { + "start": 11890.68, + "end": 11893.44, + "probability": 0.9863 + }, + { + "start": 11893.82, + "end": 11898.44, + "probability": 0.995 + }, + { + "start": 11898.56, + "end": 11904.32, + "probability": 0.9698 + }, + { + "start": 11904.98, + "end": 11905.28, + "probability": 0.2953 + }, + { + "start": 11905.3, + "end": 11909.52, + "probability": 0.9463 + }, + { + "start": 11909.88, + "end": 11911.1, + "probability": 0.7925 + }, + { + "start": 11911.28, + "end": 11911.92, + "probability": 0.9449 + }, + { + "start": 11912.3, + "end": 11915.72, + "probability": 0.9795 + }, + { + "start": 11916.18, + "end": 11917.1, + "probability": 0.7017 + }, + { + "start": 11917.16, + "end": 11920.98, + "probability": 0.9752 + }, + { + "start": 11921.04, + "end": 11926.7, + "probability": 0.9963 + }, + { + "start": 11927.2, + "end": 11927.28, + "probability": 0.2729 + }, + { + "start": 11927.3, + "end": 11927.3, + "probability": 0.4233 + }, + { + "start": 11927.3, + "end": 11927.86, + "probability": 0.6961 + }, + { + "start": 11928.02, + "end": 11929.66, + "probability": 0.8711 + }, + { + "start": 11929.76, + "end": 11930.74, + "probability": 0.4219 + }, + { + "start": 11930.74, + "end": 11932.84, + "probability": 0.7536 + }, + { + "start": 11933.56, + "end": 11934.38, + "probability": 0.7897 + }, + { + "start": 11935.3, + "end": 11937.1, + "probability": 0.8216 + }, + { + "start": 11939.48, + "end": 11940.36, + "probability": 0.1181 + }, + { + "start": 11947.96, + "end": 11948.14, + "probability": 0.0373 + }, + { + "start": 11957.58, + "end": 11958.98, + "probability": 0.2387 + }, + { + "start": 11959.02, + "end": 11960.24, + "probability": 0.585 + }, + { + "start": 11960.36, + "end": 11961.98, + "probability": 0.5133 + }, + { + "start": 11962.68, + "end": 11962.68, + "probability": 0.0326 + }, + { + "start": 11962.68, + "end": 11962.68, + "probability": 0.1508 + }, + { + "start": 11962.68, + "end": 11962.68, + "probability": 0.0275 + }, + { + "start": 11962.68, + "end": 11962.68, + "probability": 0.0203 + }, + { + "start": 11962.68, + "end": 11962.68, + "probability": 0.1811 + }, + { + "start": 11962.68, + "end": 11963.66, + "probability": 0.6142 + }, + { + "start": 11963.88, + "end": 11965.06, + "probability": 0.5057 + }, + { + "start": 11965.22, + "end": 11965.7, + "probability": 0.5513 + }, + { + "start": 11965.7, + "end": 11966.68, + "probability": 0.6122 + }, + { + "start": 11967.08, + "end": 11971.76, + "probability": 0.0463 + }, + { + "start": 11971.86, + "end": 11972.42, + "probability": 0.3343 + }, + { + "start": 11972.6, + "end": 11972.96, + "probability": 0.5082 + }, + { + "start": 11972.96, + "end": 11975.22, + "probability": 0.7389 + }, + { + "start": 11975.38, + "end": 11977.28, + "probability": 0.1887 + }, + { + "start": 11977.32, + "end": 11978.26, + "probability": 0.8768 + }, + { + "start": 11978.56, + "end": 11980.66, + "probability": 0.9167 + }, + { + "start": 11981.12, + "end": 11983.04, + "probability": 0.9004 + }, + { + "start": 11983.62, + "end": 11986.94, + "probability": 0.655 + }, + { + "start": 11986.96, + "end": 11988.12, + "probability": 0.5982 + }, + { + "start": 11988.72, + "end": 11988.98, + "probability": 0.4743 + }, + { + "start": 11990.16, + "end": 11992.49, + "probability": 0.2698 + }, + { + "start": 11993.46, + "end": 11993.86, + "probability": 0.2085 + }, + { + "start": 11994.62, + "end": 11998.16, + "probability": 0.9673 + }, + { + "start": 11998.26, + "end": 12001.0, + "probability": 0.7581 + }, + { + "start": 12001.06, + "end": 12001.68, + "probability": 0.3308 + }, + { + "start": 12002.0, + "end": 12002.7, + "probability": 0.8355 + }, + { + "start": 12002.7, + "end": 12002.91, + "probability": 0.0481 + }, + { + "start": 12003.26, + "end": 12005.39, + "probability": 0.8993 + }, + { + "start": 12010.01, + "end": 12012.08, + "probability": 0.6632 + }, + { + "start": 12012.18, + "end": 12014.24, + "probability": 0.342 + }, + { + "start": 12014.24, + "end": 12015.42, + "probability": 0.06 + }, + { + "start": 12015.6, + "end": 12020.04, + "probability": 0.9915 + }, + { + "start": 12020.2, + "end": 12022.65, + "probability": 0.98 + }, + { + "start": 12023.32, + "end": 12023.74, + "probability": 0.6582 + }, + { + "start": 12023.78, + "end": 12027.43, + "probability": 0.8975 + }, + { + "start": 12027.96, + "end": 12029.54, + "probability": 0.7999 + }, + { + "start": 12029.96, + "end": 12034.0, + "probability": 0.8468 + }, + { + "start": 12034.84, + "end": 12037.26, + "probability": 0.9359 + }, + { + "start": 12037.76, + "end": 12039.56, + "probability": 0.7091 + }, + { + "start": 12039.76, + "end": 12040.44, + "probability": 0.553 + }, + { + "start": 12040.54, + "end": 12045.0, + "probability": 0.9116 + }, + { + "start": 12046.44, + "end": 12050.44, + "probability": 0.9707 + }, + { + "start": 12050.5, + "end": 12051.72, + "probability": 0.7978 + }, + { + "start": 12052.3, + "end": 12056.32, + "probability": 0.9435 + }, + { + "start": 12056.54, + "end": 12059.34, + "probability": 0.7166 + }, + { + "start": 12059.4, + "end": 12061.22, + "probability": 0.8898 + }, + { + "start": 12061.96, + "end": 12067.02, + "probability": 0.9839 + }, + { + "start": 12067.08, + "end": 12070.44, + "probability": 0.8628 + }, + { + "start": 12070.54, + "end": 12071.68, + "probability": 0.4032 + }, + { + "start": 12072.0, + "end": 12072.68, + "probability": 0.7849 + }, + { + "start": 12073.28, + "end": 12080.98, + "probability": 0.9715 + }, + { + "start": 12082.04, + "end": 12087.68, + "probability": 0.9644 + }, + { + "start": 12087.76, + "end": 12090.18, + "probability": 0.9829 + }, + { + "start": 12090.72, + "end": 12095.84, + "probability": 0.9855 + }, + { + "start": 12096.3, + "end": 12097.24, + "probability": 0.5625 + }, + { + "start": 12097.32, + "end": 12098.3, + "probability": 0.9395 + }, + { + "start": 12098.32, + "end": 12103.34, + "probability": 0.8964 + }, + { + "start": 12103.68, + "end": 12106.75, + "probability": 0.993 + }, + { + "start": 12107.06, + "end": 12110.9, + "probability": 0.9961 + }, + { + "start": 12111.24, + "end": 12113.01, + "probability": 0.9858 + }, + { + "start": 12113.76, + "end": 12115.8, + "probability": 0.6377 + }, + { + "start": 12118.41, + "end": 12120.9, + "probability": 0.9708 + }, + { + "start": 12121.02, + "end": 12121.4, + "probability": 0.8745 + }, + { + "start": 12121.5, + "end": 12125.88, + "probability": 0.9702 + }, + { + "start": 12126.72, + "end": 12129.8, + "probability": 0.9924 + }, + { + "start": 12130.98, + "end": 12132.38, + "probability": 0.8472 + }, + { + "start": 12132.86, + "end": 12135.5, + "probability": 0.7013 + }, + { + "start": 12135.5, + "end": 12138.77, + "probability": 0.9937 + }, + { + "start": 12139.48, + "end": 12140.34, + "probability": 0.9561 + }, + { + "start": 12140.46, + "end": 12142.34, + "probability": 0.97 + }, + { + "start": 12142.96, + "end": 12144.5, + "probability": 0.7061 + }, + { + "start": 12145.24, + "end": 12147.26, + "probability": 0.7761 + }, + { + "start": 12147.36, + "end": 12148.26, + "probability": 0.7837 + }, + { + "start": 12148.4, + "end": 12150.49, + "probability": 0.9722 + }, + { + "start": 12151.04, + "end": 12151.54, + "probability": 0.6767 + }, + { + "start": 12151.58, + "end": 12153.9, + "probability": 0.9937 + }, + { + "start": 12153.98, + "end": 12154.84, + "probability": 0.7325 + }, + { + "start": 12154.9, + "end": 12157.5, + "probability": 0.9804 + }, + { + "start": 12157.88, + "end": 12159.98, + "probability": 0.7836 + }, + { + "start": 12160.0, + "end": 12162.9, + "probability": 0.8727 + }, + { + "start": 12163.26, + "end": 12165.04, + "probability": 0.9854 + }, + { + "start": 12165.04, + "end": 12165.54, + "probability": 0.8294 + }, + { + "start": 12166.27, + "end": 12168.62, + "probability": 0.8767 + }, + { + "start": 12168.84, + "end": 12169.7, + "probability": 0.7537 + }, + { + "start": 12169.72, + "end": 12170.56, + "probability": 0.9765 + }, + { + "start": 12170.64, + "end": 12172.42, + "probability": 0.9702 + }, + { + "start": 12172.58, + "end": 12173.12, + "probability": 0.7217 + }, + { + "start": 12173.16, + "end": 12173.22, + "probability": 0.1024 + }, + { + "start": 12173.22, + "end": 12177.42, + "probability": 0.9756 + }, + { + "start": 12177.5, + "end": 12178.02, + "probability": 0.8948 + }, + { + "start": 12178.44, + "end": 12180.62, + "probability": 0.9873 + }, + { + "start": 12180.7, + "end": 12182.3, + "probability": 0.6813 + }, + { + "start": 12182.32, + "end": 12185.06, + "probability": 0.8158 + }, + { + "start": 12185.44, + "end": 12189.58, + "probability": 0.8945 + }, + { + "start": 12190.46, + "end": 12195.2, + "probability": 0.9962 + }, + { + "start": 12195.3, + "end": 12198.38, + "probability": 0.9958 + }, + { + "start": 12198.64, + "end": 12198.98, + "probability": 0.7131 + }, + { + "start": 12199.18, + "end": 12199.74, + "probability": 0.9124 + }, + { + "start": 12199.84, + "end": 12200.76, + "probability": 0.7664 + }, + { + "start": 12200.84, + "end": 12202.09, + "probability": 0.8651 + }, + { + "start": 12202.84, + "end": 12203.46, + "probability": 0.6606 + }, + { + "start": 12203.58, + "end": 12203.92, + "probability": 0.7786 + }, + { + "start": 12204.4, + "end": 12205.18, + "probability": 0.0209 + }, + { + "start": 12205.18, + "end": 12205.3, + "probability": 0.3134 + }, + { + "start": 12205.6, + "end": 12207.8, + "probability": 0.8616 + }, + { + "start": 12208.96, + "end": 12209.76, + "probability": 0.5389 + }, + { + "start": 12209.82, + "end": 12211.76, + "probability": 0.9887 + }, + { + "start": 12211.92, + "end": 12215.38, + "probability": 0.9752 + }, + { + "start": 12215.78, + "end": 12216.58, + "probability": 0.8695 + }, + { + "start": 12216.92, + "end": 12217.7, + "probability": 0.9273 + }, + { + "start": 12217.8, + "end": 12218.34, + "probability": 0.8999 + }, + { + "start": 12218.42, + "end": 12222.1, + "probability": 0.8456 + }, + { + "start": 12222.3, + "end": 12224.7, + "probability": 0.91 + }, + { + "start": 12225.18, + "end": 12227.08, + "probability": 0.9771 + }, + { + "start": 12227.2, + "end": 12227.44, + "probability": 0.3294 + }, + { + "start": 12227.5, + "end": 12228.28, + "probability": 0.8195 + }, + { + "start": 12228.56, + "end": 12229.9, + "probability": 0.8482 + }, + { + "start": 12229.9, + "end": 12231.76, + "probability": 0.6068 + }, + { + "start": 12231.98, + "end": 12236.68, + "probability": 0.9658 + }, + { + "start": 12236.84, + "end": 12241.24, + "probability": 0.983 + }, + { + "start": 12241.66, + "end": 12243.02, + "probability": 0.842 + }, + { + "start": 12243.22, + "end": 12245.54, + "probability": 0.8824 + }, + { + "start": 12245.6, + "end": 12246.42, + "probability": 0.7915 + }, + { + "start": 12247.02, + "end": 12247.72, + "probability": 0.5886 + }, + { + "start": 12247.86, + "end": 12248.88, + "probability": 0.7156 + }, + { + "start": 12249.16, + "end": 12250.04, + "probability": 0.4111 + }, + { + "start": 12250.1, + "end": 12251.04, + "probability": 0.5851 + }, + { + "start": 12251.6, + "end": 12251.94, + "probability": 0.5432 + }, + { + "start": 12252.06, + "end": 12252.64, + "probability": 0.4043 + }, + { + "start": 12252.78, + "end": 12253.52, + "probability": 0.6394 + }, + { + "start": 12253.6, + "end": 12254.04, + "probability": 0.8154 + }, + { + "start": 12254.06, + "end": 12254.82, + "probability": 0.894 + }, + { + "start": 12254.9, + "end": 12255.54, + "probability": 0.2804 + }, + { + "start": 12255.74, + "end": 12257.96, + "probability": 0.815 + }, + { + "start": 12257.96, + "end": 12261.02, + "probability": 0.9025 + }, + { + "start": 12261.34, + "end": 12262.18, + "probability": 0.1902 + }, + { + "start": 12262.7, + "end": 12264.2, + "probability": 0.7134 + }, + { + "start": 12265.12, + "end": 12267.08, + "probability": 0.4921 + }, + { + "start": 12267.22, + "end": 12269.2, + "probability": 0.8325 + }, + { + "start": 12269.42, + "end": 12272.6, + "probability": 0.7662 + }, + { + "start": 12272.7, + "end": 12276.86, + "probability": 0.6778 + }, + { + "start": 12276.94, + "end": 12279.2, + "probability": 0.9335 + }, + { + "start": 12279.64, + "end": 12280.14, + "probability": 0.6137 + }, + { + "start": 12283.14, + "end": 12288.0, + "probability": 0.7552 + }, + { + "start": 12289.02, + "end": 12294.42, + "probability": 0.9783 + }, + { + "start": 12295.84, + "end": 12307.18, + "probability": 0.9218 + }, + { + "start": 12307.44, + "end": 12314.06, + "probability": 0.9401 + }, + { + "start": 12314.84, + "end": 12320.96, + "probability": 0.9741 + }, + { + "start": 12321.32, + "end": 12330.1, + "probability": 0.8418 + }, + { + "start": 12332.1, + "end": 12339.22, + "probability": 0.9963 + }, + { + "start": 12339.22, + "end": 12346.3, + "probability": 0.9958 + }, + { + "start": 12346.84, + "end": 12352.36, + "probability": 0.8269 + }, + { + "start": 12352.36, + "end": 12358.86, + "probability": 0.9457 + }, + { + "start": 12359.52, + "end": 12360.64, + "probability": 0.2809 + }, + { + "start": 12361.64, + "end": 12363.7, + "probability": 0.7935 + }, + { + "start": 12364.08, + "end": 12366.92, + "probability": 0.8268 + }, + { + "start": 12367.16, + "end": 12368.04, + "probability": 0.9084 + }, + { + "start": 12368.92, + "end": 12369.86, + "probability": 0.9359 + }, + { + "start": 12370.08, + "end": 12374.1, + "probability": 0.9565 + }, + { + "start": 12374.22, + "end": 12377.84, + "probability": 0.9656 + }, + { + "start": 12378.1, + "end": 12380.92, + "probability": 0.6405 + }, + { + "start": 12381.12, + "end": 12381.84, + "probability": 0.4077 + }, + { + "start": 12381.98, + "end": 12388.58, + "probability": 0.9954 + }, + { + "start": 12388.66, + "end": 12389.78, + "probability": 0.8073 + }, + { + "start": 12390.02, + "end": 12392.32, + "probability": 0.9819 + }, + { + "start": 12392.54, + "end": 12393.36, + "probability": 0.6263 + }, + { + "start": 12393.54, + "end": 12396.12, + "probability": 0.9956 + }, + { + "start": 12397.08, + "end": 12405.22, + "probability": 0.9988 + }, + { + "start": 12405.66, + "end": 12408.16, + "probability": 0.9284 + }, + { + "start": 12408.3, + "end": 12412.12, + "probability": 0.9238 + }, + { + "start": 12412.5, + "end": 12414.24, + "probability": 0.9519 + }, + { + "start": 12414.34, + "end": 12420.7, + "probability": 0.9882 + }, + { + "start": 12420.8, + "end": 12426.36, + "probability": 0.8769 + }, + { + "start": 12426.6, + "end": 12428.84, + "probability": 0.8384 + }, + { + "start": 12430.04, + "end": 12435.1, + "probability": 0.975 + }, + { + "start": 12435.2, + "end": 12438.76, + "probability": 0.9969 + }, + { + "start": 12438.76, + "end": 12442.54, + "probability": 0.8853 + }, + { + "start": 12442.98, + "end": 12446.06, + "probability": 0.897 + }, + { + "start": 12446.52, + "end": 12447.32, + "probability": 0.8323 + }, + { + "start": 12447.74, + "end": 12448.54, + "probability": 0.6964 + }, + { + "start": 12448.62, + "end": 12454.16, + "probability": 0.8482 + }, + { + "start": 12454.64, + "end": 12461.4, + "probability": 0.9482 + }, + { + "start": 12461.52, + "end": 12466.1, + "probability": 0.8477 + }, + { + "start": 12466.12, + "end": 12470.84, + "probability": 0.9551 + }, + { + "start": 12471.42, + "end": 12475.34, + "probability": 0.9932 + }, + { + "start": 12475.5, + "end": 12478.08, + "probability": 0.9456 + }, + { + "start": 12478.6, + "end": 12483.2, + "probability": 0.8782 + }, + { + "start": 12483.8, + "end": 12488.33, + "probability": 0.984 + }, + { + "start": 12489.72, + "end": 12500.02, + "probability": 0.9336 + }, + { + "start": 12500.96, + "end": 12506.22, + "probability": 0.9643 + }, + { + "start": 12506.48, + "end": 12508.68, + "probability": 0.9384 + }, + { + "start": 12509.44, + "end": 12512.76, + "probability": 0.8575 + }, + { + "start": 12512.98, + "end": 12513.14, + "probability": 0.2838 + }, + { + "start": 12513.18, + "end": 12513.74, + "probability": 0.851 + }, + { + "start": 12513.82, + "end": 12515.5, + "probability": 0.6676 + }, + { + "start": 12515.88, + "end": 12517.48, + "probability": 0.9022 + }, + { + "start": 12517.78, + "end": 12519.92, + "probability": 0.9813 + }, + { + "start": 12520.08, + "end": 12522.16, + "probability": 0.9194 + }, + { + "start": 12522.16, + "end": 12526.28, + "probability": 0.9362 + }, + { + "start": 12526.58, + "end": 12527.84, + "probability": 0.9893 + }, + { + "start": 12527.98, + "end": 12532.04, + "probability": 0.9104 + }, + { + "start": 12532.56, + "end": 12533.96, + "probability": 0.8594 + }, + { + "start": 12534.14, + "end": 12538.84, + "probability": 0.6306 + }, + { + "start": 12539.02, + "end": 12539.86, + "probability": 0.8228 + }, + { + "start": 12540.32, + "end": 12541.54, + "probability": 0.6748 + }, + { + "start": 12542.0, + "end": 12544.06, + "probability": 0.9934 + }, + { + "start": 12544.36, + "end": 12547.38, + "probability": 0.9512 + }, + { + "start": 12548.0, + "end": 12550.1, + "probability": 0.9956 + }, + { + "start": 12550.58, + "end": 12554.68, + "probability": 0.9922 + }, + { + "start": 12554.68, + "end": 12557.94, + "probability": 0.7859 + }, + { + "start": 12558.28, + "end": 12560.66, + "probability": 0.8617 + }, + { + "start": 12561.64, + "end": 12563.72, + "probability": 0.7479 + }, + { + "start": 12564.32, + "end": 12567.52, + "probability": 0.9858 + }, + { + "start": 12567.52, + "end": 12570.6, + "probability": 0.9697 + }, + { + "start": 12571.11, + "end": 12574.16, + "probability": 0.9642 + }, + { + "start": 12574.36, + "end": 12575.3, + "probability": 0.5848 + }, + { + "start": 12575.74, + "end": 12578.86, + "probability": 0.9977 + }, + { + "start": 12578.9, + "end": 12584.0, + "probability": 0.8999 + }, + { + "start": 12584.2, + "end": 12585.99, + "probability": 0.9166 + }, + { + "start": 12586.42, + "end": 12589.94, + "probability": 0.9588 + }, + { + "start": 12590.2, + "end": 12593.18, + "probability": 0.9878 + }, + { + "start": 12593.28, + "end": 12596.22, + "probability": 0.9778 + }, + { + "start": 12597.48, + "end": 12601.0, + "probability": 0.7181 + }, + { + "start": 12601.26, + "end": 12603.14, + "probability": 0.8825 + }, + { + "start": 12603.52, + "end": 12609.0, + "probability": 0.9871 + }, + { + "start": 12609.66, + "end": 12610.66, + "probability": 0.7128 + }, + { + "start": 12610.98, + "end": 12618.34, + "probability": 0.9548 + }, + { + "start": 12618.5, + "end": 12619.12, + "probability": 0.8556 + }, + { + "start": 12619.42, + "end": 12621.24, + "probability": 0.8417 + }, + { + "start": 12621.78, + "end": 12627.8, + "probability": 0.9869 + }, + { + "start": 12627.88, + "end": 12629.74, + "probability": 0.673 + }, + { + "start": 12630.44, + "end": 12634.2, + "probability": 0.9937 + }, + { + "start": 12634.88, + "end": 12639.96, + "probability": 0.9749 + }, + { + "start": 12639.96, + "end": 12647.52, + "probability": 0.9623 + }, + { + "start": 12648.48, + "end": 12655.22, + "probability": 0.9873 + }, + { + "start": 12655.4, + "end": 12656.44, + "probability": 0.883 + }, + { + "start": 12656.86, + "end": 12658.58, + "probability": 0.6013 + }, + { + "start": 12658.9, + "end": 12661.24, + "probability": 0.946 + }, + { + "start": 12661.32, + "end": 12663.0, + "probability": 0.9643 + }, + { + "start": 12663.1, + "end": 12666.96, + "probability": 0.9932 + }, + { + "start": 12667.14, + "end": 12673.34, + "probability": 0.9686 + }, + { + "start": 12674.52, + "end": 12678.0, + "probability": 0.998 + }, + { + "start": 12679.14, + "end": 12682.8, + "probability": 0.9634 + }, + { + "start": 12682.86, + "end": 12684.06, + "probability": 0.5519 + }, + { + "start": 12684.62, + "end": 12688.04, + "probability": 0.9738 + }, + { + "start": 12688.04, + "end": 12692.77, + "probability": 0.7877 + }, + { + "start": 12694.23, + "end": 12699.04, + "probability": 0.9925 + }, + { + "start": 12699.5, + "end": 12703.82, + "probability": 0.9985 + }, + { + "start": 12703.82, + "end": 12707.16, + "probability": 0.8532 + }, + { + "start": 12707.26, + "end": 12710.16, + "probability": 0.9921 + }, + { + "start": 12710.42, + "end": 12714.6, + "probability": 0.9782 + }, + { + "start": 12715.85, + "end": 12719.92, + "probability": 0.8741 + }, + { + "start": 12720.0, + "end": 12721.22, + "probability": 0.7713 + }, + { + "start": 12721.64, + "end": 12725.7, + "probability": 0.9697 + }, + { + "start": 12725.82, + "end": 12732.24, + "probability": 0.973 + }, + { + "start": 12732.24, + "end": 12738.74, + "probability": 0.9971 + }, + { + "start": 12738.84, + "end": 12740.24, + "probability": 0.5139 + }, + { + "start": 12741.08, + "end": 12743.24, + "probability": 0.9769 + }, + { + "start": 12743.36, + "end": 12745.28, + "probability": 0.7359 + }, + { + "start": 12745.86, + "end": 12749.8, + "probability": 0.7648 + }, + { + "start": 12750.22, + "end": 12757.54, + "probability": 0.7603 + }, + { + "start": 12757.72, + "end": 12765.22, + "probability": 0.9977 + }, + { + "start": 12765.56, + "end": 12768.36, + "probability": 0.9827 + }, + { + "start": 12768.48, + "end": 12769.2, + "probability": 0.7285 + }, + { + "start": 12769.44, + "end": 12774.76, + "probability": 0.9493 + }, + { + "start": 12775.18, + "end": 12775.38, + "probability": 0.5416 + }, + { + "start": 12775.5, + "end": 12778.83, + "probability": 0.9674 + }, + { + "start": 12779.14, + "end": 12783.2, + "probability": 0.978 + }, + { + "start": 12783.56, + "end": 12786.54, + "probability": 0.9855 + }, + { + "start": 12786.68, + "end": 12790.78, + "probability": 0.9922 + }, + { + "start": 12791.62, + "end": 12792.62, + "probability": 0.36 + }, + { + "start": 12793.22, + "end": 12796.96, + "probability": 0.8831 + }, + { + "start": 12798.26, + "end": 12800.24, + "probability": 0.4717 + }, + { + "start": 12800.32, + "end": 12801.72, + "probability": 0.8158 + }, + { + "start": 12801.74, + "end": 12804.68, + "probability": 0.6127 + }, + { + "start": 12804.68, + "end": 12805.6, + "probability": 0.4266 + }, + { + "start": 12806.12, + "end": 12808.78, + "probability": 0.4238 + }, + { + "start": 12808.82, + "end": 12810.88, + "probability": 0.8342 + }, + { + "start": 12810.98, + "end": 12811.79, + "probability": 0.8971 + }, + { + "start": 12812.32, + "end": 12814.66, + "probability": 0.6948 + }, + { + "start": 12814.86, + "end": 12817.02, + "probability": 0.9741 + }, + { + "start": 12817.02, + "end": 12819.76, + "probability": 0.8209 + }, + { + "start": 12819.88, + "end": 12821.24, + "probability": 0.6417 + }, + { + "start": 12821.3, + "end": 12824.02, + "probability": 0.0919 + }, + { + "start": 12824.26, + "end": 12825.2, + "probability": 0.4128 + }, + { + "start": 12825.3, + "end": 12828.6, + "probability": 0.8255 + }, + { + "start": 12828.9, + "end": 12831.12, + "probability": 0.9565 + }, + { + "start": 12831.2, + "end": 12832.22, + "probability": 0.8323 + }, + { + "start": 12832.72, + "end": 12834.58, + "probability": 0.4419 + }, + { + "start": 12834.78, + "end": 12836.48, + "probability": 0.9401 + }, + { + "start": 12837.46, + "end": 12837.68, + "probability": 0.5996 + }, + { + "start": 12837.82, + "end": 12839.06, + "probability": 0.9502 + }, + { + "start": 12839.76, + "end": 12843.58, + "probability": 0.9712 + }, + { + "start": 12843.58, + "end": 12847.28, + "probability": 0.9884 + }, + { + "start": 12847.34, + "end": 12849.66, + "probability": 0.9443 + }, + { + "start": 12849.74, + "end": 12849.84, + "probability": 0.2998 + }, + { + "start": 12849.98, + "end": 12850.82, + "probability": 0.8303 + }, + { + "start": 12850.82, + "end": 12852.28, + "probability": 0.7612 + }, + { + "start": 12852.42, + "end": 12853.62, + "probability": 0.9792 + }, + { + "start": 12853.82, + "end": 12854.12, + "probability": 0.6206 + }, + { + "start": 12854.16, + "end": 12855.0, + "probability": 0.8634 + }, + { + "start": 12855.16, + "end": 12855.92, + "probability": 0.9316 + }, + { + "start": 12856.06, + "end": 12856.74, + "probability": 0.6798 + }, + { + "start": 12856.92, + "end": 12861.98, + "probability": 0.9104 + }, + { + "start": 12862.02, + "end": 12863.02, + "probability": 0.8726 + }, + { + "start": 12887.08, + "end": 12889.77, + "probability": 0.6616 + }, + { + "start": 12893.4, + "end": 12901.16, + "probability": 0.9834 + }, + { + "start": 12904.32, + "end": 12909.36, + "probability": 0.9641 + }, + { + "start": 12909.7, + "end": 12918.96, + "probability": 0.9799 + }, + { + "start": 12919.88, + "end": 12924.48, + "probability": 0.6557 + }, + { + "start": 12925.5, + "end": 12930.74, + "probability": 0.7709 + }, + { + "start": 12931.76, + "end": 12934.12, + "probability": 0.8972 + }, + { + "start": 12935.84, + "end": 12936.0, + "probability": 0.3141 + }, + { + "start": 12936.0, + "end": 12936.36, + "probability": 0.4255 + }, + { + "start": 12940.09, + "end": 12948.76, + "probability": 0.9631 + }, + { + "start": 12950.74, + "end": 12955.25, + "probability": 0.8792 + }, + { + "start": 12956.82, + "end": 12957.38, + "probability": 0.5381 + }, + { + "start": 12957.38, + "end": 12960.2, + "probability": 0.9578 + }, + { + "start": 12961.18, + "end": 12965.84, + "probability": 0.99 + }, + { + "start": 12965.84, + "end": 12973.04, + "probability": 0.9286 + }, + { + "start": 12975.04, + "end": 12978.02, + "probability": 0.6308 + }, + { + "start": 12980.72, + "end": 12984.2, + "probability": 0.9763 + }, + { + "start": 12986.46, + "end": 12994.06, + "probability": 0.9753 + }, + { + "start": 12995.08, + "end": 13000.68, + "probability": 0.7006 + }, + { + "start": 13002.26, + "end": 13007.66, + "probability": 0.9474 + }, + { + "start": 13010.6, + "end": 13015.62, + "probability": 0.9537 + }, + { + "start": 13018.32, + "end": 13019.98, + "probability": 0.8411 + }, + { + "start": 13020.8, + "end": 13023.42, + "probability": 0.8885 + }, + { + "start": 13024.2, + "end": 13029.82, + "probability": 0.992 + }, + { + "start": 13030.4, + "end": 13033.38, + "probability": 0.5813 + }, + { + "start": 13033.44, + "end": 13035.74, + "probability": 0.7656 + }, + { + "start": 13036.46, + "end": 13043.82, + "probability": 0.9749 + }, + { + "start": 13045.73, + "end": 13048.94, + "probability": 0.9575 + }, + { + "start": 13049.24, + "end": 13054.88, + "probability": 0.9771 + }, + { + "start": 13055.26, + "end": 13057.14, + "probability": 0.719 + }, + { + "start": 13057.76, + "end": 13063.32, + "probability": 0.9702 + }, + { + "start": 13063.78, + "end": 13066.74, + "probability": 0.74 + }, + { + "start": 13066.88, + "end": 13067.5, + "probability": 0.8457 + }, + { + "start": 13069.94, + "end": 13074.56, + "probability": 0.7901 + }, + { + "start": 13074.56, + "end": 13079.52, + "probability": 0.9678 + }, + { + "start": 13079.52, + "end": 13080.1, + "probability": 0.6607 + }, + { + "start": 13080.26, + "end": 13080.4, + "probability": 0.2671 + }, + { + "start": 13080.4, + "end": 13084.58, + "probability": 0.9899 + }, + { + "start": 13084.64, + "end": 13087.9, + "probability": 0.893 + }, + { + "start": 13088.58, + "end": 13091.44, + "probability": 0.4651 + }, + { + "start": 13092.06, + "end": 13093.56, + "probability": 0.8177 + }, + { + "start": 13093.8, + "end": 13096.2, + "probability": 0.5116 + }, + { + "start": 13096.2, + "end": 13096.76, + "probability": 0.6752 + }, + { + "start": 13096.88, + "end": 13098.46, + "probability": 0.7478 + }, + { + "start": 13098.5, + "end": 13099.14, + "probability": 0.3408 + }, + { + "start": 13099.74, + "end": 13102.0, + "probability": 0.9946 + }, + { + "start": 13102.84, + "end": 13105.7, + "probability": 0.2184 + }, + { + "start": 13105.7, + "end": 13106.16, + "probability": 0.0476 + }, + { + "start": 13106.38, + "end": 13107.72, + "probability": 0.6529 + }, + { + "start": 13108.24, + "end": 13108.68, + "probability": 0.4942 + }, + { + "start": 13108.9, + "end": 13112.09, + "probability": 0.8217 + }, + { + "start": 13112.5, + "end": 13114.76, + "probability": 0.8822 + }, + { + "start": 13115.16, + "end": 13119.5, + "probability": 0.8005 + }, + { + "start": 13119.62, + "end": 13121.8, + "probability": 0.5282 + }, + { + "start": 13122.56, + "end": 13123.6, + "probability": 0.8955 + }, + { + "start": 13124.77, + "end": 13130.02, + "probability": 0.6853 + }, + { + "start": 13130.44, + "end": 13131.21, + "probability": 0.8131 + }, + { + "start": 13131.42, + "end": 13131.81, + "probability": 0.9447 + }, + { + "start": 13132.34, + "end": 13134.36, + "probability": 0.9797 + }, + { + "start": 13134.88, + "end": 13140.2, + "probability": 0.9694 + }, + { + "start": 13140.2, + "end": 13144.76, + "probability": 0.9971 + }, + { + "start": 13145.48, + "end": 13146.44, + "probability": 0.8037 + }, + { + "start": 13146.5, + "end": 13146.98, + "probability": 0.891 + }, + { + "start": 13147.48, + "end": 13151.86, + "probability": 0.9868 + }, + { + "start": 13151.86, + "end": 13155.46, + "probability": 0.9982 + }, + { + "start": 13155.7, + "end": 13156.06, + "probability": 0.532 + }, + { + "start": 13156.16, + "end": 13156.98, + "probability": 0.292 + }, + { + "start": 13157.8, + "end": 13159.64, + "probability": 0.9637 + }, + { + "start": 13159.72, + "end": 13159.74, + "probability": 0.2482 + }, + { + "start": 13159.74, + "end": 13163.14, + "probability": 0.9611 + }, + { + "start": 13163.24, + "end": 13164.98, + "probability": 0.9603 + }, + { + "start": 13166.72, + "end": 13169.18, + "probability": 0.0539 + }, + { + "start": 13169.4, + "end": 13170.3, + "probability": 0.7171 + }, + { + "start": 13171.52, + "end": 13172.3, + "probability": 0.1183 + }, + { + "start": 13172.36, + "end": 13172.86, + "probability": 0.0804 + }, + { + "start": 13173.02, + "end": 13173.02, + "probability": 0.0076 + }, + { + "start": 13173.02, + "end": 13173.02, + "probability": 0.0173 + }, + { + "start": 13173.02, + "end": 13176.8, + "probability": 0.5277 + }, + { + "start": 13177.96, + "end": 13179.24, + "probability": 0.3663 + }, + { + "start": 13179.54, + "end": 13184.24, + "probability": 0.5245 + }, + { + "start": 13185.6, + "end": 13186.46, + "probability": 0.0361 + }, + { + "start": 13187.05, + "end": 13187.12, + "probability": 0.0486 + }, + { + "start": 13187.34, + "end": 13187.34, + "probability": 0.4244 + }, + { + "start": 13187.34, + "end": 13189.02, + "probability": 0.3047 + }, + { + "start": 13189.96, + "end": 13190.61, + "probability": 0.5254 + }, + { + "start": 13191.2, + "end": 13191.32, + "probability": 0.0559 + }, + { + "start": 13191.32, + "end": 13196.84, + "probability": 0.5296 + }, + { + "start": 13197.0, + "end": 13199.9, + "probability": 0.9937 + }, + { + "start": 13199.98, + "end": 13203.46, + "probability": 0.9355 + }, + { + "start": 13203.98, + "end": 13204.12, + "probability": 0.1159 + }, + { + "start": 13205.06, + "end": 13207.84, + "probability": 0.2431 + }, + { + "start": 13209.56, + "end": 13213.74, + "probability": 0.9825 + }, + { + "start": 13213.74, + "end": 13218.48, + "probability": 0.8853 + }, + { + "start": 13218.8, + "end": 13220.9, + "probability": 0.8101 + }, + { + "start": 13221.02, + "end": 13224.54, + "probability": 0.9667 + }, + { + "start": 13225.7, + "end": 13229.7, + "probability": 0.9659 + }, + { + "start": 13230.28, + "end": 13232.96, + "probability": 0.9917 + }, + { + "start": 13233.62, + "end": 13235.66, + "probability": 0.988 + }, + { + "start": 13236.8, + "end": 13243.36, + "probability": 0.9052 + }, + { + "start": 13243.58, + "end": 13246.58, + "probability": 0.9728 + }, + { + "start": 13246.7, + "end": 13249.43, + "probability": 0.9883 + }, + { + "start": 13249.96, + "end": 13252.16, + "probability": 0.7702 + }, + { + "start": 13253.54, + "end": 13253.54, + "probability": 0.1688 + }, + { + "start": 13253.54, + "end": 13254.78, + "probability": 0.4882 + }, + { + "start": 13255.12, + "end": 13258.34, + "probability": 0.3444 + }, + { + "start": 13258.58, + "end": 13258.6, + "probability": 0.3983 + }, + { + "start": 13259.2, + "end": 13260.72, + "probability": 0.5683 + }, + { + "start": 13260.9, + "end": 13266.68, + "probability": 0.9915 + }, + { + "start": 13266.68, + "end": 13270.6, + "probability": 0.999 + }, + { + "start": 13270.94, + "end": 13274.5, + "probability": 0.9673 + }, + { + "start": 13274.7, + "end": 13278.02, + "probability": 0.9913 + }, + { + "start": 13278.02, + "end": 13280.82, + "probability": 0.9955 + }, + { + "start": 13281.62, + "end": 13284.02, + "probability": 0.902 + }, + { + "start": 13284.44, + "end": 13286.14, + "probability": 0.9629 + }, + { + "start": 13286.3, + "end": 13289.66, + "probability": 0.796 + }, + { + "start": 13290.1, + "end": 13293.26, + "probability": 0.9149 + }, + { + "start": 13293.26, + "end": 13296.5, + "probability": 0.999 + }, + { + "start": 13297.04, + "end": 13300.86, + "probability": 0.9858 + }, + { + "start": 13301.3, + "end": 13303.54, + "probability": 0.5407 + }, + { + "start": 13303.6, + "end": 13304.08, + "probability": 0.7973 + }, + { + "start": 13304.08, + "end": 13304.92, + "probability": 0.8984 + }, + { + "start": 13305.0, + "end": 13305.42, + "probability": 0.815 + }, + { + "start": 13305.78, + "end": 13306.96, + "probability": 0.8472 + }, + { + "start": 13307.2, + "end": 13311.7, + "probability": 0.9956 + }, + { + "start": 13311.7, + "end": 13317.6, + "probability": 0.999 + }, + { + "start": 13318.44, + "end": 13319.28, + "probability": 0.7526 + }, + { + "start": 13319.88, + "end": 13322.5, + "probability": 0.4568 + }, + { + "start": 13322.5, + "end": 13323.5, + "probability": 0.6454 + }, + { + "start": 13324.14, + "end": 13329.78, + "probability": 0.9917 + }, + { + "start": 13329.96, + "end": 13332.56, + "probability": 0.9679 + }, + { + "start": 13332.74, + "end": 13336.36, + "probability": 0.9917 + }, + { + "start": 13336.36, + "end": 13336.48, + "probability": 0.5607 + }, + { + "start": 13336.48, + "end": 13337.06, + "probability": 0.8925 + }, + { + "start": 13338.66, + "end": 13340.68, + "probability": 0.5745 + }, + { + "start": 13357.04, + "end": 13362.04, + "probability": 0.9238 + }, + { + "start": 13362.76, + "end": 13367.2, + "probability": 0.9807 + }, + { + "start": 13368.36, + "end": 13373.5, + "probability": 0.9812 + }, + { + "start": 13374.35, + "end": 13380.46, + "probability": 0.8825 + }, + { + "start": 13381.28, + "end": 13385.32, + "probability": 0.907 + }, + { + "start": 13386.24, + "end": 13391.38, + "probability": 0.9522 + }, + { + "start": 13391.44, + "end": 13394.32, + "probability": 0.8641 + }, + { + "start": 13394.48, + "end": 13397.67, + "probability": 0.8639 + }, + { + "start": 13398.44, + "end": 13400.32, + "probability": 0.927 + }, + { + "start": 13400.62, + "end": 13404.32, + "probability": 0.7628 + }, + { + "start": 13404.64, + "end": 13408.17, + "probability": 0.7488 + }, + { + "start": 13410.78, + "end": 13413.75, + "probability": 0.804 + }, + { + "start": 13414.04, + "end": 13417.18, + "probability": 0.995 + }, + { + "start": 13417.7, + "end": 13420.78, + "probability": 0.9982 + }, + { + "start": 13421.7, + "end": 13423.8, + "probability": 0.9097 + }, + { + "start": 13426.56, + "end": 13431.62, + "probability": 0.9934 + }, + { + "start": 13431.78, + "end": 13438.06, + "probability": 0.9839 + }, + { + "start": 13438.2, + "end": 13438.4, + "probability": 0.2646 + }, + { + "start": 13438.4, + "end": 13438.66, + "probability": 0.5818 + }, + { + "start": 13438.74, + "end": 13439.08, + "probability": 0.8184 + }, + { + "start": 13439.18, + "end": 13440.2, + "probability": 0.8943 + }, + { + "start": 13440.2, + "end": 13441.08, + "probability": 0.8983 + }, + { + "start": 13441.26, + "end": 13442.54, + "probability": 0.7308 + }, + { + "start": 13443.8, + "end": 13446.84, + "probability": 0.7907 + }, + { + "start": 13446.84, + "end": 13450.2, + "probability": 0.9438 + }, + { + "start": 13450.28, + "end": 13452.4, + "probability": 0.4828 + }, + { + "start": 13452.52, + "end": 13454.5, + "probability": 0.4554 + }, + { + "start": 13454.8, + "end": 13455.82, + "probability": 0.7118 + }, + { + "start": 13456.16, + "end": 13458.58, + "probability": 0.0971 + }, + { + "start": 13461.8, + "end": 13463.46, + "probability": 0.0377 + }, + { + "start": 13463.46, + "end": 13464.18, + "probability": 0.1673 + }, + { + "start": 13466.3, + "end": 13466.92, + "probability": 0.0483 + }, + { + "start": 13472.3, + "end": 13476.68, + "probability": 0.6116 + }, + { + "start": 13476.78, + "end": 13481.14, + "probability": 0.7946 + }, + { + "start": 13482.54, + "end": 13486.76, + "probability": 0.9046 + }, + { + "start": 13486.86, + "end": 13488.36, + "probability": 0.8169 + }, + { + "start": 13488.6, + "end": 13490.06, + "probability": 0.9616 + }, + { + "start": 13490.06, + "end": 13492.76, + "probability": 0.6591 + }, + { + "start": 13493.02, + "end": 13495.52, + "probability": 0.7766 + }, + { + "start": 13495.74, + "end": 13496.44, + "probability": 0.6817 + }, + { + "start": 13496.92, + "end": 13497.68, + "probability": 0.1345 + }, + { + "start": 13508.28, + "end": 13512.34, + "probability": 0.0255 + }, + { + "start": 13513.27, + "end": 13513.66, + "probability": 0.0751 + }, + { + "start": 13513.66, + "end": 13513.68, + "probability": 0.1591 + }, + { + "start": 13513.68, + "end": 13513.9, + "probability": 0.0336 + }, + { + "start": 13513.9, + "end": 13517.06, + "probability": 0.3015 + }, + { + "start": 13517.3, + "end": 13518.32, + "probability": 0.9159 + }, + { + "start": 13518.72, + "end": 13521.68, + "probability": 0.989 + }, + { + "start": 13521.78, + "end": 13523.52, + "probability": 0.8226 + }, + { + "start": 13523.74, + "end": 13524.92, + "probability": 0.3529 + }, + { + "start": 13525.2, + "end": 13528.6, + "probability": 0.9749 + }, + { + "start": 13529.1, + "end": 13531.54, + "probability": 0.8623 + }, + { + "start": 13531.66, + "end": 13534.88, + "probability": 0.8914 + }, + { + "start": 13547.68, + "end": 13549.7, + "probability": 0.5635 + }, + { + "start": 13550.48, + "end": 13550.48, + "probability": 0.4297 + }, + { + "start": 13550.48, + "end": 13556.08, + "probability": 0.9304 + }, + { + "start": 13556.16, + "end": 13557.48, + "probability": 0.894 + }, + { + "start": 13558.02, + "end": 13558.7, + "probability": 0.6292 + }, + { + "start": 13559.48, + "end": 13560.12, + "probability": 0.901 + }, + { + "start": 13560.16, + "end": 13561.26, + "probability": 0.9712 + }, + { + "start": 13561.26, + "end": 13563.83, + "probability": 0.9962 + }, + { + "start": 13564.42, + "end": 13565.16, + "probability": 0.5884 + }, + { + "start": 13565.16, + "end": 13566.08, + "probability": 0.6261 + }, + { + "start": 13566.18, + "end": 13569.05, + "probability": 0.6345 + }, + { + "start": 13569.52, + "end": 13572.12, + "probability": 0.2324 + }, + { + "start": 13572.12, + "end": 13572.12, + "probability": 0.0522 + }, + { + "start": 13572.26, + "end": 13572.84, + "probability": 0.398 + }, + { + "start": 13573.48, + "end": 13574.68, + "probability": 0.6032 + }, + { + "start": 13575.16, + "end": 13578.88, + "probability": 0.7509 + }, + { + "start": 13579.96, + "end": 13581.16, + "probability": 0.5643 + }, + { + "start": 13583.36, + "end": 13587.14, + "probability": 0.8582 + }, + { + "start": 13589.26, + "end": 13590.4, + "probability": 0.9001 + }, + { + "start": 13590.5, + "end": 13591.72, + "probability": 0.8419 + }, + { + "start": 13591.86, + "end": 13593.8, + "probability": 0.712 + }, + { + "start": 13595.38, + "end": 13600.2, + "probability": 0.8511 + }, + { + "start": 13604.52, + "end": 13606.4, + "probability": 0.6818 + }, + { + "start": 13607.04, + "end": 13614.22, + "probability": 0.5112 + }, + { + "start": 13615.88, + "end": 13616.58, + "probability": 0.3425 + }, + { + "start": 13617.6, + "end": 13618.61, + "probability": 0.7551 + }, + { + "start": 13619.76, + "end": 13624.62, + "probability": 0.7628 + }, + { + "start": 13624.86, + "end": 13626.6, + "probability": 0.7646 + }, + { + "start": 13626.68, + "end": 13627.74, + "probability": 0.6628 + }, + { + "start": 13627.94, + "end": 13632.22, + "probability": 0.9946 + }, + { + "start": 13632.68, + "end": 13635.26, + "probability": 0.2715 + }, + { + "start": 13635.38, + "end": 13636.46, + "probability": 0.7844 + }, + { + "start": 13636.46, + "end": 13640.48, + "probability": 0.8499 + }, + { + "start": 13640.52, + "end": 13641.32, + "probability": 0.6649 + }, + { + "start": 13642.18, + "end": 13642.9, + "probability": 0.8685 + }, + { + "start": 13643.6, + "end": 13645.62, + "probability": 0.9915 + }, + { + "start": 13646.3, + "end": 13648.63, + "probability": 0.7448 + }, + { + "start": 13649.12, + "end": 13652.82, + "probability": 0.7509 + }, + { + "start": 13652.98, + "end": 13654.14, + "probability": 0.877 + }, + { + "start": 13654.4, + "end": 13656.28, + "probability": 0.8983 + }, + { + "start": 13656.38, + "end": 13656.72, + "probability": 0.377 + }, + { + "start": 13656.78, + "end": 13657.86, + "probability": 0.9583 + }, + { + "start": 13660.18, + "end": 13661.76, + "probability": 0.3889 + }, + { + "start": 13661.78, + "end": 13663.7, + "probability": 0.6637 + }, + { + "start": 13664.16, + "end": 13664.7, + "probability": 0.7092 + }, + { + "start": 13664.94, + "end": 13667.06, + "probability": 0.8189 + }, + { + "start": 13667.42, + "end": 13669.04, + "probability": 0.8225 + }, + { + "start": 13669.84, + "end": 13670.44, + "probability": 0.7977 + }, + { + "start": 13674.44, + "end": 13674.44, + "probability": 0.0643 + }, + { + "start": 13674.44, + "end": 13675.12, + "probability": 0.23 + }, + { + "start": 13675.26, + "end": 13677.9, + "probability": 0.5871 + }, + { + "start": 13677.94, + "end": 13678.08, + "probability": 0.0617 + }, + { + "start": 13678.08, + "end": 13679.02, + "probability": 0.2404 + }, + { + "start": 13679.18, + "end": 13685.06, + "probability": 0.5732 + }, + { + "start": 13685.24, + "end": 13685.48, + "probability": 0.0443 + }, + { + "start": 13685.48, + "end": 13685.82, + "probability": 0.1196 + }, + { + "start": 13685.82, + "end": 13686.4, + "probability": 0.3767 + }, + { + "start": 13686.44, + "end": 13693.16, + "probability": 0.9564 + }, + { + "start": 13693.36, + "end": 13694.1, + "probability": 0.9207 + }, + { + "start": 13694.16, + "end": 13694.92, + "probability": 0.7597 + }, + { + "start": 13694.94, + "end": 13695.76, + "probability": 0.8278 + }, + { + "start": 13697.18, + "end": 13698.3, + "probability": 0.6658 + }, + { + "start": 13699.52, + "end": 13700.5, + "probability": 0.7559 + }, + { + "start": 13701.5, + "end": 13705.28, + "probability": 0.856 + }, + { + "start": 13707.68, + "end": 13708.78, + "probability": 0.7363 + }, + { + "start": 13708.96, + "end": 13709.44, + "probability": 0.7389 + }, + { + "start": 13709.58, + "end": 13714.8, + "probability": 0.9521 + }, + { + "start": 13715.22, + "end": 13718.52, + "probability": 0.9863 + }, + { + "start": 13719.12, + "end": 13720.18, + "probability": 0.8617 + }, + { + "start": 13720.64, + "end": 13721.63, + "probability": 0.7428 + }, + { + "start": 13722.32, + "end": 13723.12, + "probability": 0.829 + }, + { + "start": 13724.36, + "end": 13726.36, + "probability": 0.7975 + }, + { + "start": 13727.18, + "end": 13729.18, + "probability": 0.7751 + }, + { + "start": 13729.3, + "end": 13730.06, + "probability": 0.8784 + }, + { + "start": 13730.1, + "end": 13731.61, + "probability": 0.8809 + }, + { + "start": 13733.62, + "end": 13733.76, + "probability": 0.0507 + }, + { + "start": 13733.8, + "end": 13737.7, + "probability": 0.4123 + }, + { + "start": 13737.92, + "end": 13739.5, + "probability": 0.5447 + }, + { + "start": 13739.6, + "end": 13742.9, + "probability": 0.9507 + }, + { + "start": 13743.3, + "end": 13744.16, + "probability": 0.9529 + }, + { + "start": 13744.24, + "end": 13745.72, + "probability": 0.9769 + }, + { + "start": 13745.9, + "end": 13746.64, + "probability": 0.8975 + }, + { + "start": 13746.74, + "end": 13749.94, + "probability": 0.7986 + }, + { + "start": 13750.22, + "end": 13752.04, + "probability": 0.4922 + }, + { + "start": 13752.32, + "end": 13754.17, + "probability": 0.7775 + }, + { + "start": 13755.14, + "end": 13755.56, + "probability": 0.9158 + }, + { + "start": 13755.6, + "end": 13756.6, + "probability": 0.9745 + }, + { + "start": 13756.62, + "end": 13757.18, + "probability": 0.6932 + }, + { + "start": 13757.57, + "end": 13762.83, + "probability": 0.8724 + }, + { + "start": 13763.94, + "end": 13767.04, + "probability": 0.9856 + }, + { + "start": 13767.04, + "end": 13770.22, + "probability": 0.9916 + }, + { + "start": 13770.46, + "end": 13771.64, + "probability": 0.6434 + }, + { + "start": 13771.86, + "end": 13776.2, + "probability": 0.9457 + }, + { + "start": 13777.66, + "end": 13779.8, + "probability": 0.493 + }, + { + "start": 13781.08, + "end": 13781.1, + "probability": 0.1806 + }, + { + "start": 13781.3, + "end": 13782.15, + "probability": 0.1598 + }, + { + "start": 13782.58, + "end": 13783.7, + "probability": 0.3518 + }, + { + "start": 13784.02, + "end": 13785.54, + "probability": 0.08 + }, + { + "start": 13785.54, + "end": 13787.31, + "probability": 0.3945 + }, + { + "start": 13787.94, + "end": 13789.89, + "probability": 0.8457 + }, + { + "start": 13791.7, + "end": 13792.12, + "probability": 0.3439 + }, + { + "start": 13792.12, + "end": 13792.12, + "probability": 0.0885 + }, + { + "start": 13792.12, + "end": 13792.56, + "probability": 0.2507 + }, + { + "start": 13792.64, + "end": 13793.48, + "probability": 0.846 + }, + { + "start": 13794.46, + "end": 13802.72, + "probability": 0.8999 + }, + { + "start": 13803.56, + "end": 13804.04, + "probability": 0.8251 + }, + { + "start": 13804.12, + "end": 13806.2, + "probability": 0.9917 + }, + { + "start": 13806.66, + "end": 13809.9, + "probability": 0.9752 + }, + { + "start": 13811.54, + "end": 13816.56, + "probability": 0.9629 + }, + { + "start": 13816.78, + "end": 13818.18, + "probability": 0.725 + }, + { + "start": 13818.74, + "end": 13819.96, + "probability": 0.8802 + }, + { + "start": 13820.44, + "end": 13823.52, + "probability": 0.6154 + }, + { + "start": 13824.54, + "end": 13829.0, + "probability": 0.9852 + }, + { + "start": 13830.24, + "end": 13832.48, + "probability": 0.9824 + }, + { + "start": 13832.62, + "end": 13834.24, + "probability": 0.917 + }, + { + "start": 13834.28, + "end": 13835.51, + "probability": 0.9082 + }, + { + "start": 13835.72, + "end": 13836.46, + "probability": 0.6705 + }, + { + "start": 13836.56, + "end": 13837.79, + "probability": 0.7865 + }, + { + "start": 13837.92, + "end": 13840.46, + "probability": 0.933 + }, + { + "start": 13840.62, + "end": 13842.04, + "probability": 0.8344 + }, + { + "start": 13842.08, + "end": 13843.14, + "probability": 0.9085 + }, + { + "start": 13843.34, + "end": 13845.2, + "probability": 0.9642 + }, + { + "start": 13846.6, + "end": 13848.26, + "probability": 0.9739 + }, + { + "start": 13849.02, + "end": 13854.78, + "probability": 0.809 + }, + { + "start": 13855.14, + "end": 13858.54, + "probability": 0.7863 + }, + { + "start": 13858.66, + "end": 13860.02, + "probability": 0.9678 + }, + { + "start": 13860.4, + "end": 13862.76, + "probability": 0.6443 + }, + { + "start": 13864.38, + "end": 13865.28, + "probability": 0.6359 + }, + { + "start": 13865.54, + "end": 13869.24, + "probability": 0.853 + }, + { + "start": 13870.04, + "end": 13871.2, + "probability": 0.8422 + }, + { + "start": 13872.54, + "end": 13874.02, + "probability": 0.735 + }, + { + "start": 13874.16, + "end": 13875.02, + "probability": 0.6046 + }, + { + "start": 13875.66, + "end": 13877.64, + "probability": 0.9726 + }, + { + "start": 13878.0, + "end": 13879.16, + "probability": 0.6403 + }, + { + "start": 13880.12, + "end": 13882.44, + "probability": 0.9974 + }, + { + "start": 13883.12, + "end": 13885.6, + "probability": 0.8943 + }, + { + "start": 13885.7, + "end": 13886.62, + "probability": 0.8519 + }, + { + "start": 13886.74, + "end": 13888.4, + "probability": 0.838 + }, + { + "start": 13889.14, + "end": 13891.56, + "probability": 0.9038 + }, + { + "start": 13892.28, + "end": 13894.34, + "probability": 0.6703 + }, + { + "start": 13895.24, + "end": 13895.54, + "probability": 0.8724 + }, + { + "start": 13895.66, + "end": 13898.62, + "probability": 0.9845 + }, + { + "start": 13899.14, + "end": 13900.84, + "probability": 0.9658 + }, + { + "start": 13900.9, + "end": 13901.71, + "probability": 0.9287 + }, + { + "start": 13901.88, + "end": 13902.42, + "probability": 0.9869 + }, + { + "start": 13903.24, + "end": 13904.46, + "probability": 0.4125 + }, + { + "start": 13905.66, + "end": 13906.96, + "probability": 0.7955 + }, + { + "start": 13907.94, + "end": 13909.44, + "probability": 0.7878 + }, + { + "start": 13909.96, + "end": 13912.86, + "probability": 0.102 + }, + { + "start": 13912.86, + "end": 13912.86, + "probability": 0.0807 + }, + { + "start": 13912.86, + "end": 13914.61, + "probability": 0.0429 + }, + { + "start": 13916.2, + "end": 13916.46, + "probability": 0.0827 + }, + { + "start": 13917.86, + "end": 13918.32, + "probability": 0.0856 + }, + { + "start": 13918.32, + "end": 13918.32, + "probability": 0.1953 + }, + { + "start": 13918.32, + "end": 13918.56, + "probability": 0.3135 + }, + { + "start": 13918.58, + "end": 13920.62, + "probability": 0.5436 + }, + { + "start": 13921.12, + "end": 13921.22, + "probability": 0.6732 + }, + { + "start": 13921.32, + "end": 13922.26, + "probability": 0.9161 + }, + { + "start": 13922.36, + "end": 13925.36, + "probability": 0.8382 + }, + { + "start": 13925.46, + "end": 13926.88, + "probability": 0.4966 + }, + { + "start": 13926.92, + "end": 13930.36, + "probability": 0.9954 + }, + { + "start": 13932.28, + "end": 13933.28, + "probability": 0.3006 + }, + { + "start": 13933.86, + "end": 13935.44, + "probability": 0.3522 + }, + { + "start": 13935.58, + "end": 13936.82, + "probability": 0.6274 + }, + { + "start": 13937.04, + "end": 13938.02, + "probability": 0.2102 + }, + { + "start": 13938.08, + "end": 13938.48, + "probability": 0.3009 + }, + { + "start": 13938.58, + "end": 13939.8, + "probability": 0.5178 + }, + { + "start": 13939.88, + "end": 13940.66, + "probability": 0.9469 + }, + { + "start": 13940.98, + "end": 13942.08, + "probability": 0.9404 + }, + { + "start": 13942.4, + "end": 13944.1, + "probability": 0.8674 + }, + { + "start": 13944.36, + "end": 13945.34, + "probability": 0.8436 + }, + { + "start": 13945.44, + "end": 13945.98, + "probability": 0.5444 + }, + { + "start": 13947.01, + "end": 13949.14, + "probability": 0.6074 + }, + { + "start": 13949.2, + "end": 13949.88, + "probability": 0.8435 + }, + { + "start": 13950.18, + "end": 13954.9, + "probability": 0.8736 + }, + { + "start": 13955.48, + "end": 13956.7, + "probability": 0.9751 + }, + { + "start": 13957.14, + "end": 13958.02, + "probability": 0.9882 + }, + { + "start": 13958.1, + "end": 13959.6, + "probability": 0.9897 + }, + { + "start": 13959.78, + "end": 13961.18, + "probability": 0.9385 + }, + { + "start": 13961.32, + "end": 13963.54, + "probability": 0.7777 + }, + { + "start": 13963.68, + "end": 13965.48, + "probability": 0.9502 + }, + { + "start": 13965.48, + "end": 13965.94, + "probability": 0.0403 + }, + { + "start": 13965.98, + "end": 13968.8, + "probability": 0.4712 + }, + { + "start": 13968.86, + "end": 13971.38, + "probability": 0.3481 + }, + { + "start": 13971.6, + "end": 13971.6, + "probability": 0.0228 + }, + { + "start": 13971.6, + "end": 13973.62, + "probability": 0.2994 + }, + { + "start": 13973.8, + "end": 13975.26, + "probability": 0.6685 + }, + { + "start": 13975.28, + "end": 13977.64, + "probability": 0.3921 + }, + { + "start": 13977.64, + "end": 13977.64, + "probability": 0.1758 + }, + { + "start": 13977.64, + "end": 13978.02, + "probability": 0.4072 + }, + { + "start": 13978.22, + "end": 13978.44, + "probability": 0.256 + }, + { + "start": 13981.8, + "end": 13981.94, + "probability": 0.0224 + }, + { + "start": 13984.2, + "end": 13984.78, + "probability": 0.008 + }, + { + "start": 13984.78, + "end": 13985.06, + "probability": 0.0527 + }, + { + "start": 13985.06, + "end": 13986.9, + "probability": 0.1353 + }, + { + "start": 13986.9, + "end": 13987.46, + "probability": 0.5564 + }, + { + "start": 13987.56, + "end": 13987.72, + "probability": 0.0603 + }, + { + "start": 13987.72, + "end": 13988.2, + "probability": 0.1723 + }, + { + "start": 13988.2, + "end": 13991.53, + "probability": 0.1218 + }, + { + "start": 13993.06, + "end": 13996.5, + "probability": 0.0866 + }, + { + "start": 13996.96, + "end": 13998.26, + "probability": 0.1202 + }, + { + "start": 13998.26, + "end": 13998.8, + "probability": 0.4593 + }, + { + "start": 13998.8, + "end": 14000.36, + "probability": 0.18 + }, + { + "start": 14001.44, + "end": 14003.04, + "probability": 0.1315 + }, + { + "start": 14003.48, + "end": 14004.28, + "probability": 0.1008 + }, + { + "start": 14004.8, + "end": 14004.8, + "probability": 0.0665 + }, + { + "start": 14004.8, + "end": 14011.52, + "probability": 0.1578 + }, + { + "start": 14011.52, + "end": 14012.46, + "probability": 0.5768 + }, + { + "start": 14012.46, + "end": 14012.94, + "probability": 0.0129 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.0, + "end": 14013.0, + "probability": 0.0 + }, + { + "start": 14013.24, + "end": 14013.38, + "probability": 0.0679 + }, + { + "start": 14013.38, + "end": 14013.38, + "probability": 0.2368 + }, + { + "start": 14013.38, + "end": 14013.38, + "probability": 0.4823 + }, + { + "start": 14013.38, + "end": 14013.38, + "probability": 0.1583 + }, + { + "start": 14013.38, + "end": 14016.21, + "probability": 0.5853 + }, + { + "start": 14016.6, + "end": 14016.6, + "probability": 0.2427 + }, + { + "start": 14016.6, + "end": 14017.44, + "probability": 0.5775 + }, + { + "start": 14017.56, + "end": 14018.42, + "probability": 0.5371 + }, + { + "start": 14019.32, + "end": 14019.32, + "probability": 0.1679 + }, + { + "start": 14019.32, + "end": 14021.38, + "probability": 0.503 + }, + { + "start": 14021.38, + "end": 14023.02, + "probability": 0.6092 + }, + { + "start": 14023.06, + "end": 14024.26, + "probability": 0.4546 + }, + { + "start": 14024.59, + "end": 14027.88, + "probability": 0.0168 + }, + { + "start": 14027.88, + "end": 14028.38, + "probability": 0.082 + }, + { + "start": 14028.38, + "end": 14028.96, + "probability": 0.5356 + }, + { + "start": 14029.02, + "end": 14029.04, + "probability": 0.2645 + }, + { + "start": 14029.04, + "end": 14029.4, + "probability": 0.776 + }, + { + "start": 14029.4, + "end": 14033.08, + "probability": 0.6796 + }, + { + "start": 14033.84, + "end": 14034.66, + "probability": 0.6062 + }, + { + "start": 14034.74, + "end": 14035.34, + "probability": 0.7207 + }, + { + "start": 14035.34, + "end": 14035.98, + "probability": 0.4427 + }, + { + "start": 14036.08, + "end": 14036.82, + "probability": 0.5206 + }, + { + "start": 14036.82, + "end": 14037.06, + "probability": 0.0024 + }, + { + "start": 14037.06, + "end": 14038.14, + "probability": 0.3564 + }, + { + "start": 14038.2, + "end": 14038.58, + "probability": 0.7887 + }, + { + "start": 14038.66, + "end": 14040.72, + "probability": 0.8458 + }, + { + "start": 14040.97, + "end": 14041.94, + "probability": 0.0336 + }, + { + "start": 14041.94, + "end": 14042.44, + "probability": 0.508 + }, + { + "start": 14042.84, + "end": 14043.7, + "probability": 0.8347 + }, + { + "start": 14044.21, + "end": 14044.56, + "probability": 0.2486 + }, + { + "start": 14045.16, + "end": 14045.64, + "probability": 0.0902 + }, + { + "start": 14046.04, + "end": 14048.2, + "probability": 0.3289 + }, + { + "start": 14048.28, + "end": 14049.06, + "probability": 0.3581 + }, + { + "start": 14049.08, + "end": 14049.84, + "probability": 0.8446 + }, + { + "start": 14049.88, + "end": 14051.56, + "probability": 0.9646 + }, + { + "start": 14051.66, + "end": 14055.64, + "probability": 0.979 + }, + { + "start": 14057.36, + "end": 14062.34, + "probability": 0.9404 + }, + { + "start": 14063.14, + "end": 14064.68, + "probability": 0.9758 + }, + { + "start": 14065.46, + "end": 14067.2, + "probability": 0.9639 + }, + { + "start": 14068.2, + "end": 14069.54, + "probability": 0.9426 + }, + { + "start": 14069.94, + "end": 14070.64, + "probability": 0.6261 + }, + { + "start": 14071.6, + "end": 14072.44, + "probability": 0.9254 + }, + { + "start": 14072.58, + "end": 14073.52, + "probability": 0.0104 + }, + { + "start": 14073.6, + "end": 14079.14, + "probability": 0.9763 + }, + { + "start": 14079.76, + "end": 14082.08, + "probability": 0.9022 + }, + { + "start": 14082.9, + "end": 14086.68, + "probability": 0.0665 + }, + { + "start": 14086.82, + "end": 14087.74, + "probability": 0.2983 + }, + { + "start": 14088.42, + "end": 14089.08, + "probability": 0.1162 + }, + { + "start": 14089.64, + "end": 14091.2, + "probability": 0.0275 + }, + { + "start": 14091.44, + "end": 14093.06, + "probability": 0.3948 + }, + { + "start": 14093.32, + "end": 14094.58, + "probability": 0.9124 + }, + { + "start": 14094.94, + "end": 14095.7, + "probability": 0.5001 + }, + { + "start": 14095.86, + "end": 14097.12, + "probability": 0.8226 + }, + { + "start": 14097.36, + "end": 14098.44, + "probability": 0.8052 + }, + { + "start": 14098.52, + "end": 14099.72, + "probability": 0.8075 + }, + { + "start": 14100.06, + "end": 14100.6, + "probability": 0.3538 + }, + { + "start": 14101.4, + "end": 14101.9, + "probability": 0.3371 + }, + { + "start": 14103.78, + "end": 14103.94, + "probability": 0.0892 + }, + { + "start": 14110.16, + "end": 14111.65, + "probability": 0.0472 + }, + { + "start": 14112.16, + "end": 14112.3, + "probability": 0.2846 + }, + { + "start": 14112.7, + "end": 14115.04, + "probability": 0.1947 + }, + { + "start": 14116.48, + "end": 14117.74, + "probability": 0.0281 + }, + { + "start": 14118.82, + "end": 14121.04, + "probability": 0.3231 + }, + { + "start": 14121.12, + "end": 14121.58, + "probability": 0.2089 + }, + { + "start": 14121.62, + "end": 14121.76, + "probability": 0.0646 + }, + { + "start": 14121.76, + "end": 14124.3, + "probability": 0.0704 + }, + { + "start": 14125.37, + "end": 14128.72, + "probability": 0.1047 + }, + { + "start": 14128.76, + "end": 14128.9, + "probability": 0.2938 + }, + { + "start": 14128.9, + "end": 14135.28, + "probability": 0.0164 + }, + { + "start": 14135.28, + "end": 14138.24, + "probability": 0.0191 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14166.0, + "end": 14166.0, + "probability": 0.0 + }, + { + "start": 14169.56, + "end": 14173.06, + "probability": 0.7436 + }, + { + "start": 14173.14, + "end": 14175.92, + "probability": 0.9712 + }, + { + "start": 14176.36, + "end": 14178.01, + "probability": 0.8118 + }, + { + "start": 14188.02, + "end": 14191.1, + "probability": 0.6953 + }, + { + "start": 14192.46, + "end": 14194.1, + "probability": 0.7947 + }, + { + "start": 14195.52, + "end": 14196.42, + "probability": 0.7609 + }, + { + "start": 14196.88, + "end": 14198.62, + "probability": 0.8604 + }, + { + "start": 14200.56, + "end": 14202.9, + "probability": 0.9216 + }, + { + "start": 14205.04, + "end": 14208.18, + "probability": 0.9604 + }, + { + "start": 14209.12, + "end": 14210.52, + "probability": 0.7914 + }, + { + "start": 14211.3, + "end": 14214.04, + "probability": 0.8369 + }, + { + "start": 14215.32, + "end": 14219.34, + "probability": 0.841 + }, + { + "start": 14220.58, + "end": 14224.08, + "probability": 0.777 + }, + { + "start": 14225.32, + "end": 14227.06, + "probability": 0.9321 + }, + { + "start": 14227.9, + "end": 14229.82, + "probability": 0.9786 + }, + { + "start": 14229.94, + "end": 14232.3, + "probability": 0.6649 + }, + { + "start": 14232.36, + "end": 14236.1, + "probability": 0.7149 + }, + { + "start": 14237.16, + "end": 14238.78, + "probability": 0.736 + }, + { + "start": 14239.8, + "end": 14244.11, + "probability": 0.9944 + }, + { + "start": 14244.5, + "end": 14247.26, + "probability": 0.7837 + }, + { + "start": 14248.78, + "end": 14249.88, + "probability": 0.783 + }, + { + "start": 14250.8, + "end": 14254.92, + "probability": 0.7742 + }, + { + "start": 14255.72, + "end": 14257.84, + "probability": 0.9762 + }, + { + "start": 14258.96, + "end": 14260.07, + "probability": 0.542 + }, + { + "start": 14260.62, + "end": 14263.14, + "probability": 0.9217 + }, + { + "start": 14263.2, + "end": 14264.53, + "probability": 0.9735 + }, + { + "start": 14265.02, + "end": 14266.94, + "probability": 0.7994 + }, + { + "start": 14266.98, + "end": 14267.82, + "probability": 0.4876 + }, + { + "start": 14267.94, + "end": 14268.64, + "probability": 0.7241 + }, + { + "start": 14268.76, + "end": 14270.18, + "probability": 0.9555 + }, + { + "start": 14271.28, + "end": 14274.38, + "probability": 0.6797 + }, + { + "start": 14275.52, + "end": 14280.26, + "probability": 0.7178 + }, + { + "start": 14281.68, + "end": 14287.52, + "probability": 0.873 + }, + { + "start": 14287.52, + "end": 14289.27, + "probability": 0.5154 + }, + { + "start": 14290.4, + "end": 14294.58, + "probability": 0.7546 + }, + { + "start": 14294.94, + "end": 14296.37, + "probability": 0.9695 + }, + { + "start": 14296.42, + "end": 14300.3, + "probability": 0.9902 + }, + { + "start": 14300.38, + "end": 14300.78, + "probability": 0.8253 + }, + { + "start": 14301.12, + "end": 14302.12, + "probability": 0.6954 + }, + { + "start": 14302.8, + "end": 14307.12, + "probability": 0.977 + }, + { + "start": 14307.48, + "end": 14311.08, + "probability": 0.9971 + }, + { + "start": 14311.08, + "end": 14315.64, + "probability": 0.8763 + }, + { + "start": 14316.52, + "end": 14317.18, + "probability": 0.4737 + }, + { + "start": 14317.32, + "end": 14318.42, + "probability": 0.8616 + }, + { + "start": 14318.52, + "end": 14319.56, + "probability": 0.5659 + }, + { + "start": 14319.7, + "end": 14320.9, + "probability": 0.9912 + }, + { + "start": 14321.92, + "end": 14322.44, + "probability": 0.7134 + }, + { + "start": 14322.5, + "end": 14329.34, + "probability": 0.5766 + }, + { + "start": 14329.44, + "end": 14329.62, + "probability": 0.3281 + }, + { + "start": 14329.7, + "end": 14333.42, + "probability": 0.9783 + }, + { + "start": 14333.52, + "end": 14334.1, + "probability": 0.7618 + }, + { + "start": 14334.22, + "end": 14335.55, + "probability": 0.9751 + }, + { + "start": 14335.64, + "end": 14335.74, + "probability": 0.3916 + }, + { + "start": 14335.84, + "end": 14335.84, + "probability": 0.1084 + }, + { + "start": 14335.84, + "end": 14336.58, + "probability": 0.9481 + }, + { + "start": 14336.82, + "end": 14337.16, + "probability": 0.8682 + }, + { + "start": 14337.6, + "end": 14338.7, + "probability": 0.7632 + }, + { + "start": 14338.84, + "end": 14342.8, + "probability": 0.9875 + }, + { + "start": 14342.9, + "end": 14344.48, + "probability": 0.8168 + }, + { + "start": 14344.58, + "end": 14348.14, + "probability": 0.9845 + }, + { + "start": 14348.46, + "end": 14349.16, + "probability": 0.6106 + }, + { + "start": 14349.9, + "end": 14365.54, + "probability": 0.0333 + }, + { + "start": 14365.54, + "end": 14366.12, + "probability": 0.0584 + }, + { + "start": 14366.52, + "end": 14366.54, + "probability": 0.0658 + }, + { + "start": 14366.54, + "end": 14366.58, + "probability": 0.3602 + }, + { + "start": 14366.58, + "end": 14370.18, + "probability": 0.6263 + }, + { + "start": 14370.34, + "end": 14371.98, + "probability": 0.9084 + }, + { + "start": 14373.68, + "end": 14376.02, + "probability": 0.5947 + }, + { + "start": 14376.38, + "end": 14377.54, + "probability": 0.6612 + }, + { + "start": 14377.64, + "end": 14378.6, + "probability": 0.6151 + }, + { + "start": 14378.66, + "end": 14380.48, + "probability": 0.7452 + }, + { + "start": 14380.6, + "end": 14382.02, + "probability": 0.7071 + }, + { + "start": 14382.6, + "end": 14386.48, + "probability": 0.905 + }, + { + "start": 14386.64, + "end": 14388.8, + "probability": 0.2137 + }, + { + "start": 14388.92, + "end": 14390.3, + "probability": 0.7684 + }, + { + "start": 14390.88, + "end": 14392.94, + "probability": 0.7975 + }, + { + "start": 14393.2, + "end": 14394.72, + "probability": 0.7524 + }, + { + "start": 14394.92, + "end": 14396.86, + "probability": 0.7221 + }, + { + "start": 14397.36, + "end": 14399.2, + "probability": 0.7369 + }, + { + "start": 14399.38, + "end": 14402.74, + "probability": 0.8226 + }, + { + "start": 14402.74, + "end": 14406.94, + "probability": 0.607 + }, + { + "start": 14407.06, + "end": 14410.3, + "probability": 0.4506 + }, + { + "start": 14410.32, + "end": 14411.42, + "probability": 0.3041 + }, + { + "start": 14412.28, + "end": 14415.3, + "probability": 0.5357 + }, + { + "start": 14415.3, + "end": 14419.34, + "probability": 0.7932 + }, + { + "start": 14419.56, + "end": 14421.78, + "probability": 0.1032 + }, + { + "start": 14421.98, + "end": 14423.14, + "probability": 0.6245 + }, + { + "start": 14423.3, + "end": 14423.88, + "probability": 0.6422 + }, + { + "start": 14423.92, + "end": 14424.59, + "probability": 0.6299 + }, + { + "start": 14424.92, + "end": 14426.16, + "probability": 0.7586 + }, + { + "start": 14426.22, + "end": 14428.84, + "probability": 0.929 + }, + { + "start": 14428.84, + "end": 14431.9, + "probability": 0.9929 + }, + { + "start": 14432.08, + "end": 14432.72, + "probability": 0.9409 + }, + { + "start": 14433.06, + "end": 14436.04, + "probability": 0.8823 + }, + { + "start": 14436.18, + "end": 14438.42, + "probability": 0.8749 + }, + { + "start": 14438.54, + "end": 14439.5, + "probability": 0.3276 + }, + { + "start": 14439.58, + "end": 14440.38, + "probability": 0.8396 + }, + { + "start": 14440.6, + "end": 14441.18, + "probability": 0.5818 + }, + { + "start": 14441.44, + "end": 14443.38, + "probability": 0.89 + }, + { + "start": 14443.54, + "end": 14445.04, + "probability": 0.9186 + }, + { + "start": 14445.5, + "end": 14445.64, + "probability": 0.6253 + }, + { + "start": 14445.74, + "end": 14446.64, + "probability": 0.6845 + }, + { + "start": 14446.74, + "end": 14447.42, + "probability": 0.6917 + }, + { + "start": 14447.68, + "end": 14449.4, + "probability": 0.8618 + }, + { + "start": 14449.58, + "end": 14453.9, + "probability": 0.9712 + }, + { + "start": 14454.16, + "end": 14457.54, + "probability": 0.8699 + }, + { + "start": 14458.1, + "end": 14460.32, + "probability": 0.983 + }, + { + "start": 14460.42, + "end": 14461.52, + "probability": 0.7193 + }, + { + "start": 14461.88, + "end": 14463.14, + "probability": 0.9516 + }, + { + "start": 14463.16, + "end": 14464.42, + "probability": 0.4004 + }, + { + "start": 14464.88, + "end": 14466.65, + "probability": 0.5998 + }, + { + "start": 14470.5, + "end": 14472.56, + "probability": 0.619 + }, + { + "start": 14472.56, + "end": 14473.66, + "probability": 0.7479 + }, + { + "start": 14473.66, + "end": 14475.08, + "probability": 0.1791 + }, + { + "start": 14475.44, + "end": 14478.82, + "probability": 0.7783 + }, + { + "start": 14479.08, + "end": 14481.22, + "probability": 0.7096 + }, + { + "start": 14481.34, + "end": 14488.04, + "probability": 0.4264 + }, + { + "start": 14488.72, + "end": 14489.26, + "probability": 0.5201 + }, + { + "start": 14489.36, + "end": 14493.56, + "probability": 0.1224 + }, + { + "start": 14493.74, + "end": 14494.94, + "probability": 0.1662 + }, + { + "start": 14495.3, + "end": 14495.84, + "probability": 0.8445 + }, + { + "start": 14496.56, + "end": 14496.7, + "probability": 0.31 + }, + { + "start": 14496.7, + "end": 14500.34, + "probability": 0.8562 + }, + { + "start": 14500.78, + "end": 14502.38, + "probability": 0.7305 + }, + { + "start": 14503.1, + "end": 14506.18, + "probability": 0.5822 + }, + { + "start": 14506.26, + "end": 14507.0, + "probability": 0.1341 + }, + { + "start": 14507.48, + "end": 14509.98, + "probability": 0.314 + }, + { + "start": 14509.98, + "end": 14511.32, + "probability": 0.2407 + }, + { + "start": 14512.32, + "end": 14513.12, + "probability": 0.2852 + }, + { + "start": 14514.1, + "end": 14515.51, + "probability": 0.4433 + }, + { + "start": 14517.22, + "end": 14519.44, + "probability": 0.7552 + }, + { + "start": 14519.7, + "end": 14521.2, + "probability": 0.8554 + }, + { + "start": 14521.7, + "end": 14522.5, + "probability": 0.4023 + }, + { + "start": 14522.58, + "end": 14523.66, + "probability": 0.6686 + }, + { + "start": 14523.8, + "end": 14530.9, + "probability": 0.8561 + }, + { + "start": 14531.96, + "end": 14534.94, + "probability": 0.9909 + }, + { + "start": 14534.94, + "end": 14539.88, + "probability": 0.9349 + }, + { + "start": 14540.16, + "end": 14540.96, + "probability": 0.7938 + }, + { + "start": 14541.06, + "end": 14541.66, + "probability": 0.7477 + }, + { + "start": 14541.82, + "end": 14542.56, + "probability": 0.9081 + }, + { + "start": 14542.72, + "end": 14543.88, + "probability": 0.9487 + }, + { + "start": 14544.06, + "end": 14545.14, + "probability": 0.927 + }, + { + "start": 14545.82, + "end": 14553.56, + "probability": 0.978 + }, + { + "start": 14554.02, + "end": 14557.66, + "probability": 0.9386 + }, + { + "start": 14558.06, + "end": 14560.84, + "probability": 0.8679 + }, + { + "start": 14561.6, + "end": 14568.06, + "probability": 0.9211 + }, + { + "start": 14568.7, + "end": 14575.1, + "probability": 0.7448 + }, + { + "start": 14575.48, + "end": 14578.8, + "probability": 0.9867 + }, + { + "start": 14578.8, + "end": 14583.74, + "probability": 0.9922 + }, + { + "start": 14584.56, + "end": 14589.62, + "probability": 0.9764 + }, + { + "start": 14590.04, + "end": 14594.04, + "probability": 0.6193 + }, + { + "start": 14594.34, + "end": 14599.02, + "probability": 0.9766 + }, + { + "start": 14599.62, + "end": 14604.18, + "probability": 0.9609 + }, + { + "start": 14604.26, + "end": 14610.18, + "probability": 0.9816 + }, + { + "start": 14610.64, + "end": 14615.44, + "probability": 0.8452 + }, + { + "start": 14615.98, + "end": 14617.3, + "probability": 0.9435 + }, + { + "start": 14617.84, + "end": 14624.36, + "probability": 0.9598 + }, + { + "start": 14624.66, + "end": 14631.44, + "probability": 0.9291 + }, + { + "start": 14632.14, + "end": 14636.36, + "probability": 0.9601 + }, + { + "start": 14637.64, + "end": 14643.56, + "probability": 0.6672 + }, + { + "start": 14644.08, + "end": 14647.08, + "probability": 0.3883 + }, + { + "start": 14647.6, + "end": 14652.46, + "probability": 0.9709 + }, + { + "start": 14653.2, + "end": 14659.12, + "probability": 0.9324 + }, + { + "start": 14659.12, + "end": 14662.8, + "probability": 0.9606 + }, + { + "start": 14663.6, + "end": 14671.68, + "probability": 0.8714 + }, + { + "start": 14672.32, + "end": 14675.04, + "probability": 0.6762 + }, + { + "start": 14675.46, + "end": 14683.4, + "probability": 0.9695 + }, + { + "start": 14683.4, + "end": 14690.98, + "probability": 0.9296 + }, + { + "start": 14691.44, + "end": 14699.0, + "probability": 0.9713 + }, + { + "start": 14699.58, + "end": 14707.26, + "probability": 0.9883 + }, + { + "start": 14707.86, + "end": 14710.21, + "probability": 0.8581 + }, + { + "start": 14711.8, + "end": 14712.88, + "probability": 0.4239 + }, + { + "start": 14713.3, + "end": 14717.14, + "probability": 0.5741 + }, + { + "start": 14717.84, + "end": 14718.3, + "probability": 0.3037 + }, + { + "start": 14721.92, + "end": 14726.64, + "probability": 0.8122 + }, + { + "start": 14727.24, + "end": 14732.3, + "probability": 0.5648 + }, + { + "start": 14732.8, + "end": 14735.7, + "probability": 0.9216 + }, + { + "start": 14736.58, + "end": 14742.44, + "probability": 0.9683 + }, + { + "start": 14742.44, + "end": 14750.28, + "probability": 0.8146 + }, + { + "start": 14750.28, + "end": 14758.02, + "probability": 0.9916 + }, + { + "start": 14759.34, + "end": 14764.96, + "probability": 0.9209 + }, + { + "start": 14764.96, + "end": 14770.28, + "probability": 0.6499 + }, + { + "start": 14771.42, + "end": 14775.98, + "probability": 0.9702 + }, + { + "start": 14775.98, + "end": 14780.62, + "probability": 0.981 + }, + { + "start": 14780.96, + "end": 14784.16, + "probability": 0.7883 + }, + { + "start": 14784.5, + "end": 14788.82, + "probability": 0.8497 + }, + { + "start": 14788.82, + "end": 14793.78, + "probability": 0.896 + }, + { + "start": 14794.66, + "end": 14801.44, + "probability": 0.9811 + }, + { + "start": 14801.44, + "end": 14810.28, + "probability": 0.9396 + }, + { + "start": 14810.6, + "end": 14814.22, + "probability": 0.6692 + }, + { + "start": 14814.44, + "end": 14815.86, + "probability": 0.7903 + }, + { + "start": 14820.0, + "end": 14827.0, + "probability": 0.882 + }, + { + "start": 14827.92, + "end": 14832.61, + "probability": 0.9859 + }, + { + "start": 14833.26, + "end": 14839.1, + "probability": 0.9783 + }, + { + "start": 14839.62, + "end": 14845.76, + "probability": 0.9828 + }, + { + "start": 14846.62, + "end": 14855.32, + "probability": 0.9634 + }, + { + "start": 14855.4, + "end": 14861.39, + "probability": 0.9608 + }, + { + "start": 14862.62, + "end": 14864.42, + "probability": 0.8061 + }, + { + "start": 14864.78, + "end": 14871.24, + "probability": 0.98 + }, + { + "start": 14872.32, + "end": 14880.64, + "probability": 0.9679 + }, + { + "start": 14880.64, + "end": 14889.02, + "probability": 0.9934 + }, + { + "start": 14889.02, + "end": 14896.66, + "probability": 0.8609 + }, + { + "start": 14896.98, + "end": 14899.96, + "probability": 0.669 + }, + { + "start": 14900.5, + "end": 14906.26, + "probability": 0.9782 + }, + { + "start": 14906.78, + "end": 14911.98, + "probability": 0.9812 + }, + { + "start": 14912.38, + "end": 14915.92, + "probability": 0.9875 + }, + { + "start": 14915.92, + "end": 14920.8, + "probability": 0.8184 + }, + { + "start": 14921.32, + "end": 14927.2, + "probability": 0.9871 + }, + { + "start": 14927.44, + "end": 14934.0, + "probability": 0.9901 + }, + { + "start": 14934.68, + "end": 14940.68, + "probability": 0.8536 + }, + { + "start": 14941.68, + "end": 14946.68, + "probability": 0.579 + }, + { + "start": 14946.68, + "end": 14950.64, + "probability": 0.7464 + }, + { + "start": 14951.46, + "end": 14957.2, + "probability": 0.981 + }, + { + "start": 14958.02, + "end": 14964.5, + "probability": 0.6245 + }, + { + "start": 14965.08, + "end": 14971.04, + "probability": 0.9889 + }, + { + "start": 14971.04, + "end": 14975.58, + "probability": 0.9972 + }, + { + "start": 14976.08, + "end": 14976.88, + "probability": 0.8519 + }, + { + "start": 14977.32, + "end": 14984.44, + "probability": 0.9768 + }, + { + "start": 14984.74, + "end": 14989.02, + "probability": 0.9782 + }, + { + "start": 14989.26, + "end": 14992.0, + "probability": 0.9652 + }, + { + "start": 14992.4, + "end": 14996.92, + "probability": 0.9837 + }, + { + "start": 14996.92, + "end": 15000.92, + "probability": 0.9921 + }, + { + "start": 15000.98, + "end": 15007.14, + "probability": 0.9295 + }, + { + "start": 15007.7, + "end": 15011.48, + "probability": 0.9668 + }, + { + "start": 15011.48, + "end": 15016.44, + "probability": 0.7704 + }, + { + "start": 15017.88, + "end": 15018.06, + "probability": 0.3886 + }, + { + "start": 15018.06, + "end": 15023.34, + "probability": 0.8222 + }, + { + "start": 15023.54, + "end": 15026.56, + "probability": 0.6573 + }, + { + "start": 15027.28, + "end": 15028.28, + "probability": 0.2274 + }, + { + "start": 15029.24, + "end": 15029.24, + "probability": 0.1731 + }, + { + "start": 15029.26, + "end": 15034.96, + "probability": 0.9868 + }, + { + "start": 15034.96, + "end": 15039.58, + "probability": 0.849 + }, + { + "start": 15040.06, + "end": 15042.18, + "probability": 0.606 + }, + { + "start": 15043.22, + "end": 15043.88, + "probability": 0.5658 + }, + { + "start": 15044.14, + "end": 15051.92, + "probability": 0.8644 + }, + { + "start": 15052.42, + "end": 15060.0, + "probability": 0.9157 + }, + { + "start": 15060.68, + "end": 15066.76, + "probability": 0.8613 + }, + { + "start": 15067.5, + "end": 15071.3, + "probability": 0.9827 + }, + { + "start": 15072.24, + "end": 15073.22, + "probability": 0.3892 + }, + { + "start": 15073.3, + "end": 15078.86, + "probability": 0.9668 + }, + { + "start": 15079.38, + "end": 15080.72, + "probability": 0.5171 + }, + { + "start": 15081.2, + "end": 15084.72, + "probability": 0.9698 + }, + { + "start": 15088.6, + "end": 15095.08, + "probability": 0.9871 + }, + { + "start": 15096.38, + "end": 15101.66, + "probability": 0.8596 + }, + { + "start": 15101.84, + "end": 15106.58, + "probability": 0.5287 + }, + { + "start": 15106.98, + "end": 15114.16, + "probability": 0.9273 + }, + { + "start": 15114.82, + "end": 15120.6, + "probability": 0.9545 + }, + { + "start": 15120.78, + "end": 15125.92, + "probability": 0.845 + }, + { + "start": 15126.0, + "end": 15128.76, + "probability": 0.7681 + }, + { + "start": 15129.3, + "end": 15136.92, + "probability": 0.8828 + }, + { + "start": 15137.08, + "end": 15137.88, + "probability": 0.8693 + }, + { + "start": 15137.98, + "end": 15138.6, + "probability": 0.4975 + }, + { + "start": 15138.62, + "end": 15143.18, + "probability": 0.9961 + }, + { + "start": 15143.72, + "end": 15151.06, + "probability": 0.9507 + }, + { + "start": 15151.6, + "end": 15153.02, + "probability": 0.5905 + }, + { + "start": 15153.5, + "end": 15157.16, + "probability": 0.9688 + }, + { + "start": 15157.7, + "end": 15157.7, + "probability": 0.0175 + }, + { + "start": 15157.7, + "end": 15160.9, + "probability": 0.6733 + }, + { + "start": 15160.9, + "end": 15164.7, + "probability": 0.1142 + }, + { + "start": 15166.52, + "end": 15166.74, + "probability": 0.0152 + }, + { + "start": 15169.56, + "end": 15170.06, + "probability": 0.0462 + }, + { + "start": 15173.16, + "end": 15178.1, + "probability": 0.0331 + }, + { + "start": 15179.58, + "end": 15181.22, + "probability": 0.1803 + }, + { + "start": 15183.0, + "end": 15185.32, + "probability": 0.2247 + }, + { + "start": 15185.32, + "end": 15188.94, + "probability": 0.2555 + }, + { + "start": 15193.18, + "end": 15194.94, + "probability": 0.9875 + }, + { + "start": 15199.23, + "end": 15200.27, + "probability": 0.08 + }, + { + "start": 15203.82, + "end": 15206.34, + "probability": 0.4171 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15250.0, + "end": 15250.0, + "probability": 0.0 + }, + { + "start": 15251.9, + "end": 15253.08, + "probability": 0.0626 + }, + { + "start": 15253.08, + "end": 15254.67, + "probability": 0.5007 + }, + { + "start": 15255.84, + "end": 15261.06, + "probability": 0.8798 + }, + { + "start": 15261.06, + "end": 15266.08, + "probability": 0.8435 + }, + { + "start": 15266.7, + "end": 15267.06, + "probability": 0.4348 + }, + { + "start": 15267.84, + "end": 15274.86, + "probability": 0.9897 + }, + { + "start": 15275.4, + "end": 15279.0, + "probability": 0.9932 + }, + { + "start": 15280.22, + "end": 15282.34, + "probability": 0.666 + }, + { + "start": 15282.44, + "end": 15284.86, + "probability": 0.8474 + }, + { + "start": 15285.3, + "end": 15287.12, + "probability": 0.277 + }, + { + "start": 15287.78, + "end": 15289.0, + "probability": 0.691 + }, + { + "start": 15289.04, + "end": 15290.54, + "probability": 0.96 + }, + { + "start": 15291.02, + "end": 15293.32, + "probability": 0.9983 + }, + { + "start": 15294.02, + "end": 15299.12, + "probability": 0.9927 + }, + { + "start": 15299.12, + "end": 15303.86, + "probability": 0.9927 + }, + { + "start": 15305.0, + "end": 15306.62, + "probability": 0.633 + }, + { + "start": 15306.84, + "end": 15309.7, + "probability": 0.8589 + }, + { + "start": 15309.7, + "end": 15316.07, + "probability": 0.936 + }, + { + "start": 15317.08, + "end": 15319.9, + "probability": 0.7758 + }, + { + "start": 15319.9, + "end": 15324.56, + "probability": 0.9476 + }, + { + "start": 15325.66, + "end": 15328.0, + "probability": 0.9669 + }, + { + "start": 15328.64, + "end": 15332.36, + "probability": 0.9636 + }, + { + "start": 15332.76, + "end": 15334.46, + "probability": 0.6925 + }, + { + "start": 15335.48, + "end": 15338.1, + "probability": 0.9925 + }, + { + "start": 15338.1, + "end": 15341.92, + "probability": 0.9882 + }, + { + "start": 15342.96, + "end": 15343.52, + "probability": 0.5723 + }, + { + "start": 15343.58, + "end": 15348.28, + "probability": 0.9656 + }, + { + "start": 15348.28, + "end": 15352.8, + "probability": 0.9967 + }, + { + "start": 15355.08, + "end": 15358.12, + "probability": 0.9789 + }, + { + "start": 15359.04, + "end": 15364.22, + "probability": 0.9932 + }, + { + "start": 15365.9, + "end": 15366.22, + "probability": 0.2994 + }, + { + "start": 15366.22, + "end": 15366.34, + "probability": 0.315 + }, + { + "start": 15366.52, + "end": 15367.8, + "probability": 0.8865 + }, + { + "start": 15370.52, + "end": 15376.76, + "probability": 0.8636 + }, + { + "start": 15376.88, + "end": 15381.24, + "probability": 0.8308 + }, + { + "start": 15381.64, + "end": 15388.18, + "probability": 0.6445 + }, + { + "start": 15389.18, + "end": 15390.43, + "probability": 0.8088 + }, + { + "start": 15390.64, + "end": 15391.28, + "probability": 0.6583 + }, + { + "start": 15391.98, + "end": 15394.84, + "probability": 0.959 + }, + { + "start": 15395.78, + "end": 15402.67, + "probability": 0.9417 + }, + { + "start": 15402.82, + "end": 15410.16, + "probability": 0.9749 + }, + { + "start": 15410.16, + "end": 15417.02, + "probability": 0.999 + }, + { + "start": 15418.56, + "end": 15418.86, + "probability": 0.681 + }, + { + "start": 15420.52, + "end": 15427.8, + "probability": 0.9969 + }, + { + "start": 15428.94, + "end": 15429.66, + "probability": 0.5898 + }, + { + "start": 15429.74, + "end": 15435.6, + "probability": 0.9909 + }, + { + "start": 15435.7, + "end": 15437.04, + "probability": 0.4355 + }, + { + "start": 15437.1, + "end": 15438.18, + "probability": 0.9765 + }, + { + "start": 15438.8, + "end": 15439.82, + "probability": 0.9467 + }, + { + "start": 15440.26, + "end": 15441.08, + "probability": 0.9835 + }, + { + "start": 15441.42, + "end": 15442.96, + "probability": 0.9801 + }, + { + "start": 15443.26, + "end": 15444.5, + "probability": 0.9723 + }, + { + "start": 15444.7, + "end": 15446.08, + "probability": 0.993 + }, + { + "start": 15446.22, + "end": 15447.78, + "probability": 0.9893 + }, + { + "start": 15447.88, + "end": 15451.18, + "probability": 0.9626 + }, + { + "start": 15452.52, + "end": 15458.1, + "probability": 0.984 + }, + { + "start": 15458.1, + "end": 15462.72, + "probability": 0.9991 + }, + { + "start": 15463.68, + "end": 15468.18, + "probability": 0.9467 + }, + { + "start": 15468.92, + "end": 15472.66, + "probability": 0.9738 + }, + { + "start": 15473.68, + "end": 15480.0, + "probability": 0.9668 + }, + { + "start": 15480.0, + "end": 15488.26, + "probability": 0.9981 + }, + { + "start": 15489.24, + "end": 15492.44, + "probability": 0.8496 + }, + { + "start": 15493.36, + "end": 15498.98, + "probability": 0.9542 + }, + { + "start": 15499.62, + "end": 15504.87, + "probability": 0.96 + }, + { + "start": 15505.52, + "end": 15509.36, + "probability": 0.9673 + }, + { + "start": 15509.38, + "end": 15509.92, + "probability": 0.0004 + }, + { + "start": 15512.3, + "end": 15513.34, + "probability": 0.2525 + }, + { + "start": 15514.04, + "end": 15516.38, + "probability": 0.5365 + }, + { + "start": 15516.9, + "end": 15521.52, + "probability": 0.981 + }, + { + "start": 15521.98, + "end": 15523.9, + "probability": 0.7695 + }, + { + "start": 15524.32, + "end": 15526.49, + "probability": 0.7916 + }, + { + "start": 15527.76, + "end": 15532.54, + "probability": 0.8385 + }, + { + "start": 15533.6, + "end": 15537.88, + "probability": 0.9009 + }, + { + "start": 15538.7, + "end": 15544.9, + "probability": 0.0889 + }, + { + "start": 15546.75, + "end": 15549.98, + "probability": 0.6602 + }, + { + "start": 15550.08, + "end": 15550.88, + "probability": 0.7193 + }, + { + "start": 15552.4, + "end": 15553.99, + "probability": 0.9419 + }, + { + "start": 15554.32, + "end": 15555.46, + "probability": 0.9052 + }, + { + "start": 15555.6, + "end": 15556.8, + "probability": 0.8167 + }, + { + "start": 15557.88, + "end": 15559.42, + "probability": 0.6456 + }, + { + "start": 15559.76, + "end": 15560.78, + "probability": 0.3719 + }, + { + "start": 15560.88, + "end": 15562.02, + "probability": 0.8204 + }, + { + "start": 15562.16, + "end": 15566.76, + "probability": 0.9839 + }, + { + "start": 15567.72, + "end": 15572.78, + "probability": 0.8284 + }, + { + "start": 15572.84, + "end": 15573.56, + "probability": 0.6092 + }, + { + "start": 15573.88, + "end": 15575.56, + "probability": 0.9004 + }, + { + "start": 15576.24, + "end": 15577.32, + "probability": 0.2859 + }, + { + "start": 15578.34, + "end": 15582.64, + "probability": 0.9909 + }, + { + "start": 15582.64, + "end": 15585.56, + "probability": 0.7489 + }, + { + "start": 15585.56, + "end": 15586.46, + "probability": 0.6796 + }, + { + "start": 15586.96, + "end": 15587.26, + "probability": 0.3792 + }, + { + "start": 15587.36, + "end": 15588.42, + "probability": 0.6769 + }, + { + "start": 15588.52, + "end": 15596.46, + "probability": 0.9364 + }, + { + "start": 15596.46, + "end": 15602.7, + "probability": 0.7399 + }, + { + "start": 15603.04, + "end": 15605.42, + "probability": 0.7989 + }, + { + "start": 15605.5, + "end": 15607.18, + "probability": 0.9396 + }, + { + "start": 15607.5, + "end": 15608.32, + "probability": 0.7844 + }, + { + "start": 15608.36, + "end": 15609.62, + "probability": 0.3901 + }, + { + "start": 15609.62, + "end": 15610.74, + "probability": 0.9196 + }, + { + "start": 15614.38, + "end": 15616.8, + "probability": 0.2233 + }, + { + "start": 15618.82, + "end": 15620.74, + "probability": 0.126 + }, + { + "start": 15621.4, + "end": 15621.42, + "probability": 0.0198 + }, + { + "start": 15648.6, + "end": 15648.6, + "probability": 0.3213 + }, + { + "start": 15648.6, + "end": 15649.04, + "probability": 0.298 + }, + { + "start": 15649.44, + "end": 15650.1, + "probability": 0.0722 + }, + { + "start": 15650.12, + "end": 15650.5, + "probability": 0.5488 + }, + { + "start": 15650.74, + "end": 15651.92, + "probability": 0.7339 + }, + { + "start": 15651.98, + "end": 15654.8, + "probability": 0.6694 + }, + { + "start": 15655.04, + "end": 15657.04, + "probability": 0.5247 + }, + { + "start": 15657.14, + "end": 15658.2, + "probability": 0.6871 + }, + { + "start": 15659.08, + "end": 15663.92, + "probability": 0.9348 + }, + { + "start": 15665.44, + "end": 15669.2, + "probability": 0.5828 + }, + { + "start": 15669.22, + "end": 15676.1, + "probability": 0.8114 + }, + { + "start": 15677.46, + "end": 15680.3, + "probability": 0.5513 + }, + { + "start": 15680.4, + "end": 15682.3, + "probability": 0.6639 + }, + { + "start": 15683.58, + "end": 15685.32, + "probability": 0.8525 + }, + { + "start": 15686.67, + "end": 15691.02, + "probability": 0.9417 + }, + { + "start": 15699.68, + "end": 15700.42, + "probability": 0.3671 + }, + { + "start": 15702.58, + "end": 15705.14, + "probability": 0.7592 + }, + { + "start": 15705.18, + "end": 15707.66, + "probability": 0.9919 + }, + { + "start": 15707.84, + "end": 15709.66, + "probability": 0.391 + }, + { + "start": 15709.72, + "end": 15711.92, + "probability": 0.799 + }, + { + "start": 15712.06, + "end": 15714.02, + "probability": 0.9503 + }, + { + "start": 15716.0, + "end": 15718.62, + "probability": 0.793 + }, + { + "start": 15719.48, + "end": 15721.52, + "probability": 0.7888 + }, + { + "start": 15722.33, + "end": 15729.6, + "probability": 0.9614 + }, + { + "start": 15729.84, + "end": 15730.24, + "probability": 0.008 + }, + { + "start": 15732.3, + "end": 15734.08, + "probability": 0.7136 + }, + { + "start": 15734.28, + "end": 15737.46, + "probability": 0.5741 + }, + { + "start": 15739.18, + "end": 15740.34, + "probability": 0.8114 + }, + { + "start": 15740.54, + "end": 15745.82, + "probability": 0.9251 + }, + { + "start": 15746.04, + "end": 15747.52, + "probability": 0.8067 + }, + { + "start": 15748.74, + "end": 15754.94, + "probability": 0.9858 + }, + { + "start": 15756.26, + "end": 15757.31, + "probability": 0.8042 + }, + { + "start": 15760.36, + "end": 15760.92, + "probability": 0.4133 + }, + { + "start": 15761.04, + "end": 15767.28, + "probability": 0.7984 + }, + { + "start": 15767.3, + "end": 15769.3, + "probability": 0.8329 + }, + { + "start": 15772.94, + "end": 15773.54, + "probability": 0.4628 + }, + { + "start": 15773.72, + "end": 15775.06, + "probability": 0.4128 + }, + { + "start": 15776.0, + "end": 15777.68, + "probability": 0.4903 + }, + { + "start": 15779.06, + "end": 15781.68, + "probability": 0.852 + }, + { + "start": 15781.84, + "end": 15785.76, + "probability": 0.5354 + }, + { + "start": 15786.4, + "end": 15788.36, + "probability": 0.9478 + }, + { + "start": 15788.46, + "end": 15789.88, + "probability": 0.879 + }, + { + "start": 15790.02, + "end": 15791.1, + "probability": 0.9498 + }, + { + "start": 15816.6, + "end": 15819.74, + "probability": 0.6643 + }, + { + "start": 15823.44, + "end": 15824.3, + "probability": 0.9336 + }, + { + "start": 15825.34, + "end": 15826.4, + "probability": 0.6739 + }, + { + "start": 15827.86, + "end": 15830.12, + "probability": 0.091 + }, + { + "start": 15830.82, + "end": 15832.56, + "probability": 0.9869 + }, + { + "start": 15835.08, + "end": 15836.32, + "probability": 0.319 + }, + { + "start": 15836.42, + "end": 15837.1, + "probability": 0.8216 + }, + { + "start": 15837.94, + "end": 15840.88, + "probability": 0.7981 + }, + { + "start": 15840.88, + "end": 15844.7, + "probability": 0.9334 + }, + { + "start": 15846.04, + "end": 15850.52, + "probability": 0.9951 + }, + { + "start": 15852.22, + "end": 15856.52, + "probability": 0.9971 + }, + { + "start": 15856.52, + "end": 15863.26, + "probability": 0.9993 + }, + { + "start": 15865.34, + "end": 15867.41, + "probability": 0.8885 + }, + { + "start": 15868.78, + "end": 15869.6, + "probability": 0.6773 + }, + { + "start": 15870.5, + "end": 15871.64, + "probability": 0.9561 + }, + { + "start": 15871.74, + "end": 15872.7, + "probability": 0.9847 + }, + { + "start": 15872.78, + "end": 15873.62, + "probability": 0.7992 + }, + { + "start": 15874.02, + "end": 15876.32, + "probability": 0.9789 + }, + { + "start": 15878.0, + "end": 15878.76, + "probability": 0.9607 + }, + { + "start": 15879.6, + "end": 15881.38, + "probability": 0.8066 + }, + { + "start": 15883.0, + "end": 15887.36, + "probability": 0.9451 + }, + { + "start": 15887.9, + "end": 15892.16, + "probability": 0.947 + }, + { + "start": 15894.66, + "end": 15898.64, + "probability": 0.995 + }, + { + "start": 15898.64, + "end": 15902.32, + "probability": 0.9951 + }, + { + "start": 15904.36, + "end": 15905.31, + "probability": 0.9345 + }, + { + "start": 15905.98, + "end": 15914.42, + "probability": 0.9243 + }, + { + "start": 15916.28, + "end": 15919.04, + "probability": 0.5952 + }, + { + "start": 15919.2, + "end": 15920.4, + "probability": 0.874 + }, + { + "start": 15920.9, + "end": 15922.02, + "probability": 0.868 + }, + { + "start": 15922.12, + "end": 15925.52, + "probability": 0.8667 + }, + { + "start": 15926.8, + "end": 15931.22, + "probability": 0.9722 + }, + { + "start": 15931.22, + "end": 15935.46, + "probability": 0.9954 + }, + { + "start": 15936.56, + "end": 15936.6, + "probability": 0.3127 + }, + { + "start": 15936.74, + "end": 15937.65, + "probability": 0.9639 + }, + { + "start": 15938.38, + "end": 15941.22, + "probability": 0.9783 + }, + { + "start": 15941.88, + "end": 15944.98, + "probability": 0.9629 + }, + { + "start": 15945.4, + "end": 15946.04, + "probability": 0.7736 + }, + { + "start": 15946.22, + "end": 15950.38, + "probability": 0.9637 + }, + { + "start": 15950.38, + "end": 15954.58, + "probability": 0.8139 + }, + { + "start": 15957.86, + "end": 15958.74, + "probability": 0.743 + }, + { + "start": 15958.96, + "end": 15960.48, + "probability": 0.9089 + }, + { + "start": 15960.88, + "end": 15963.2, + "probability": 0.9617 + }, + { + "start": 15963.48, + "end": 15964.54, + "probability": 0.9803 + }, + { + "start": 15964.54, + "end": 15966.52, + "probability": 0.7775 + }, + { + "start": 15967.24, + "end": 15971.76, + "probability": 0.9888 + }, + { + "start": 15972.82, + "end": 15975.72, + "probability": 0.9871 + }, + { + "start": 15976.16, + "end": 15979.56, + "probability": 0.9928 + }, + { + "start": 15979.56, + "end": 15985.6, + "probability": 0.9848 + }, + { + "start": 15986.76, + "end": 15987.36, + "probability": 0.9478 + }, + { + "start": 15987.46, + "end": 15990.41, + "probability": 0.7555 + }, + { + "start": 15990.72, + "end": 15991.94, + "probability": 0.9558 + }, + { + "start": 15992.5, + "end": 15993.54, + "probability": 0.9035 + }, + { + "start": 15994.48, + "end": 15997.06, + "probability": 0.9175 + }, + { + "start": 15997.62, + "end": 16001.7, + "probability": 0.6813 + }, + { + "start": 16002.06, + "end": 16005.12, + "probability": 0.9949 + }, + { + "start": 16006.0, + "end": 16010.6, + "probability": 0.9863 + }, + { + "start": 16011.28, + "end": 16014.48, + "probability": 0.9929 + }, + { + "start": 16017.1, + "end": 16018.14, + "probability": 0.9841 + }, + { + "start": 16019.52, + "end": 16023.72, + "probability": 0.8099 + }, + { + "start": 16025.96, + "end": 16031.6, + "probability": 0.9971 + }, + { + "start": 16032.26, + "end": 16035.58, + "probability": 0.97 + }, + { + "start": 16035.86, + "end": 16037.21, + "probability": 0.8608 + }, + { + "start": 16039.2, + "end": 16042.16, + "probability": 0.9804 + }, + { + "start": 16043.5, + "end": 16046.65, + "probability": 0.8818 + }, + { + "start": 16047.26, + "end": 16050.36, + "probability": 0.889 + }, + { + "start": 16051.44, + "end": 16052.9, + "probability": 0.9692 + }, + { + "start": 16054.26, + "end": 16055.76, + "probability": 0.784 + }, + { + "start": 16057.9, + "end": 16059.38, + "probability": 0.9746 + }, + { + "start": 16059.64, + "end": 16062.02, + "probability": 0.7681 + }, + { + "start": 16064.1, + "end": 16068.6, + "probability": 0.9681 + }, + { + "start": 16069.66, + "end": 16071.46, + "probability": 0.991 + }, + { + "start": 16072.48, + "end": 16074.54, + "probability": 0.6353 + }, + { + "start": 16076.24, + "end": 16080.38, + "probability": 0.8411 + }, + { + "start": 16081.14, + "end": 16083.48, + "probability": 0.914 + }, + { + "start": 16086.68, + "end": 16088.2, + "probability": 0.7186 + }, + { + "start": 16088.88, + "end": 16091.46, + "probability": 0.9909 + }, + { + "start": 16091.9, + "end": 16094.64, + "probability": 0.9893 + }, + { + "start": 16095.4, + "end": 16097.52, + "probability": 0.7542 + }, + { + "start": 16098.16, + "end": 16099.4, + "probability": 0.8684 + }, + { + "start": 16100.06, + "end": 16101.44, + "probability": 0.8766 + }, + { + "start": 16102.82, + "end": 16105.36, + "probability": 0.9933 + }, + { + "start": 16106.1, + "end": 16110.49, + "probability": 0.9704 + }, + { + "start": 16110.9, + "end": 16112.2, + "probability": 0.6968 + }, + { + "start": 16112.52, + "end": 16114.3, + "probability": 0.9946 + }, + { + "start": 16114.96, + "end": 16116.44, + "probability": 0.9387 + }, + { + "start": 16116.82, + "end": 16117.96, + "probability": 0.9059 + }, + { + "start": 16118.42, + "end": 16124.02, + "probability": 0.99 + }, + { + "start": 16124.54, + "end": 16127.92, + "probability": 0.9813 + }, + { + "start": 16128.96, + "end": 16129.97, + "probability": 0.9971 + }, + { + "start": 16130.86, + "end": 16132.66, + "probability": 0.9969 + }, + { + "start": 16133.0, + "end": 16136.42, + "probability": 0.9745 + }, + { + "start": 16136.42, + "end": 16139.6, + "probability": 0.9958 + }, + { + "start": 16140.5, + "end": 16143.94, + "probability": 0.8871 + }, + { + "start": 16143.94, + "end": 16147.2, + "probability": 0.9333 + }, + { + "start": 16152.5, + "end": 16155.36, + "probability": 0.9966 + }, + { + "start": 16155.36, + "end": 16157.72, + "probability": 0.6533 + }, + { + "start": 16158.38, + "end": 16163.74, + "probability": 0.986 + }, + { + "start": 16164.64, + "end": 16167.39, + "probability": 0.9907 + }, + { + "start": 16167.86, + "end": 16169.5, + "probability": 0.7775 + }, + { + "start": 16169.64, + "end": 16170.9, + "probability": 0.7186 + }, + { + "start": 16171.0, + "end": 16171.48, + "probability": 0.5555 + }, + { + "start": 16172.26, + "end": 16174.72, + "probability": 0.9732 + }, + { + "start": 16175.28, + "end": 16176.2, + "probability": 0.9729 + }, + { + "start": 16176.64, + "end": 16177.7, + "probability": 0.985 + }, + { + "start": 16177.96, + "end": 16178.94, + "probability": 0.9537 + }, + { + "start": 16179.28, + "end": 16182.54, + "probability": 0.988 + }, + { + "start": 16183.8, + "end": 16188.28, + "probability": 0.9534 + }, + { + "start": 16188.82, + "end": 16194.14, + "probability": 0.9639 + }, + { + "start": 16194.58, + "end": 16195.62, + "probability": 0.7599 + }, + { + "start": 16195.82, + "end": 16199.88, + "probability": 0.8696 + }, + { + "start": 16199.94, + "end": 16201.26, + "probability": 0.9401 + }, + { + "start": 16201.48, + "end": 16202.56, + "probability": 0.8428 + }, + { + "start": 16203.04, + "end": 16204.66, + "probability": 0.9626 + }, + { + "start": 16205.04, + "end": 16205.36, + "probability": 0.007 + }, + { + "start": 16205.8, + "end": 16206.36, + "probability": 0.031 + }, + { + "start": 16206.36, + "end": 16207.06, + "probability": 0.0638 + }, + { + "start": 16208.02, + "end": 16212.2, + "probability": 0.9459 + }, + { + "start": 16212.8, + "end": 16216.35, + "probability": 0.9954 + }, + { + "start": 16216.78, + "end": 16221.12, + "probability": 0.8733 + }, + { + "start": 16221.58, + "end": 16227.98, + "probability": 0.9891 + }, + { + "start": 16228.58, + "end": 16231.56, + "probability": 0.98 + }, + { + "start": 16233.34, + "end": 16235.7, + "probability": 0.7001 + }, + { + "start": 16235.8, + "end": 16237.24, + "probability": 0.6966 + }, + { + "start": 16239.14, + "end": 16243.54, + "probability": 0.8647 + }, + { + "start": 16243.54, + "end": 16246.82, + "probability": 0.9411 + }, + { + "start": 16247.4, + "end": 16249.02, + "probability": 0.9935 + }, + { + "start": 16249.38, + "end": 16253.42, + "probability": 0.9911 + }, + { + "start": 16254.12, + "end": 16258.88, + "probability": 0.9895 + }, + { + "start": 16260.02, + "end": 16261.96, + "probability": 0.6201 + }, + { + "start": 16262.6, + "end": 16267.18, + "probability": 0.9619 + }, + { + "start": 16268.0, + "end": 16273.16, + "probability": 0.9968 + }, + { + "start": 16273.3, + "end": 16278.04, + "probability": 0.9868 + }, + { + "start": 16278.82, + "end": 16279.9, + "probability": 0.7055 + }, + { + "start": 16280.02, + "end": 16283.16, + "probability": 0.9376 + }, + { + "start": 16283.52, + "end": 16289.6, + "probability": 0.9741 + }, + { + "start": 16290.62, + "end": 16293.72, + "probability": 0.9724 + }, + { + "start": 16294.26, + "end": 16296.82, + "probability": 0.82 + }, + { + "start": 16297.34, + "end": 16298.96, + "probability": 0.9576 + }, + { + "start": 16299.64, + "end": 16303.3, + "probability": 0.9834 + }, + { + "start": 16303.58, + "end": 16308.46, + "probability": 0.9819 + }, + { + "start": 16309.3, + "end": 16310.14, + "probability": 0.6094 + }, + { + "start": 16310.24, + "end": 16311.66, + "probability": 0.9543 + }, + { + "start": 16312.02, + "end": 16316.22, + "probability": 0.9577 + }, + { + "start": 16317.7, + "end": 16319.5, + "probability": 0.9779 + }, + { + "start": 16319.54, + "end": 16324.76, + "probability": 0.9842 + }, + { + "start": 16325.72, + "end": 16331.96, + "probability": 0.9988 + }, + { + "start": 16331.96, + "end": 16337.64, + "probability": 0.9996 + }, + { + "start": 16338.44, + "end": 16344.56, + "probability": 0.9554 + }, + { + "start": 16345.02, + "end": 16347.62, + "probability": 0.8416 + }, + { + "start": 16348.48, + "end": 16352.78, + "probability": 0.9695 + }, + { + "start": 16353.22, + "end": 16356.66, + "probability": 0.9495 + }, + { + "start": 16356.66, + "end": 16361.56, + "probability": 0.9702 + }, + { + "start": 16362.0, + "end": 16367.08, + "probability": 0.9967 + }, + { + "start": 16367.86, + "end": 16373.64, + "probability": 0.992 + }, + { + "start": 16375.3, + "end": 16377.84, + "probability": 0.9913 + }, + { + "start": 16378.06, + "end": 16378.52, + "probability": 0.5941 + }, + { + "start": 16378.66, + "end": 16381.4, + "probability": 0.988 + }, + { + "start": 16382.84, + "end": 16385.16, + "probability": 0.7616 + }, + { + "start": 16385.34, + "end": 16388.12, + "probability": 0.8705 + }, + { + "start": 16388.62, + "end": 16391.94, + "probability": 0.9672 + }, + { + "start": 16392.42, + "end": 16395.08, + "probability": 0.9694 + }, + { + "start": 16395.22, + "end": 16397.16, + "probability": 0.9276 + }, + { + "start": 16397.4, + "end": 16402.86, + "probability": 0.9962 + }, + { + "start": 16403.96, + "end": 16405.6, + "probability": 0.8539 + }, + { + "start": 16406.16, + "end": 16409.04, + "probability": 0.9748 + }, + { + "start": 16409.66, + "end": 16412.06, + "probability": 0.9979 + }, + { + "start": 16412.52, + "end": 16416.38, + "probability": 0.9916 + }, + { + "start": 16417.14, + "end": 16420.64, + "probability": 0.93 + }, + { + "start": 16420.76, + "end": 16424.22, + "probability": 0.991 + }, + { + "start": 16424.56, + "end": 16429.0, + "probability": 0.8892 + }, + { + "start": 16429.18, + "end": 16435.22, + "probability": 0.8715 + }, + { + "start": 16435.32, + "end": 16437.46, + "probability": 0.8478 + }, + { + "start": 16439.1, + "end": 16444.9, + "probability": 0.942 + }, + { + "start": 16444.9, + "end": 16451.34, + "probability": 0.9838 + }, + { + "start": 16453.48, + "end": 16454.46, + "probability": 0.8012 + }, + { + "start": 16454.68, + "end": 16458.64, + "probability": 0.8388 + }, + { + "start": 16459.26, + "end": 16464.22, + "probability": 0.9097 + }, + { + "start": 16464.62, + "end": 16470.96, + "probability": 0.9975 + }, + { + "start": 16472.28, + "end": 16477.34, + "probability": 0.9983 + }, + { + "start": 16478.24, + "end": 16480.54, + "probability": 0.9708 + }, + { + "start": 16481.48, + "end": 16485.38, + "probability": 0.9969 + }, + { + "start": 16485.86, + "end": 16488.04, + "probability": 0.9928 + }, + { + "start": 16488.34, + "end": 16488.88, + "probability": 0.8419 + }, + { + "start": 16489.14, + "end": 16492.48, + "probability": 0.9966 + }, + { + "start": 16492.66, + "end": 16493.44, + "probability": 0.1253 + }, + { + "start": 16493.44, + "end": 16496.2, + "probability": 0.6716 + }, + { + "start": 16496.68, + "end": 16504.14, + "probability": 0.9287 + }, + { + "start": 16504.78, + "end": 16505.7, + "probability": 0.7788 + }, + { + "start": 16506.0, + "end": 16507.2, + "probability": 0.9204 + }, + { + "start": 16507.64, + "end": 16509.98, + "probability": 0.989 + }, + { + "start": 16510.44, + "end": 16511.94, + "probability": 0.425 + }, + { + "start": 16512.5, + "end": 16518.04, + "probability": 0.9243 + }, + { + "start": 16518.34, + "end": 16520.53, + "probability": 0.9897 + }, + { + "start": 16522.52, + "end": 16524.16, + "probability": 0.9647 + }, + { + "start": 16524.4, + "end": 16525.24, + "probability": 0.5173 + }, + { + "start": 16525.56, + "end": 16526.3, + "probability": 0.8773 + }, + { + "start": 16526.76, + "end": 16531.48, + "probability": 0.99 + }, + { + "start": 16531.9, + "end": 16535.28, + "probability": 0.6342 + }, + { + "start": 16535.44, + "end": 16541.76, + "probability": 0.9985 + }, + { + "start": 16541.76, + "end": 16546.14, + "probability": 0.9696 + }, + { + "start": 16547.52, + "end": 16547.76, + "probability": 0.7378 + }, + { + "start": 16548.62, + "end": 16549.5, + "probability": 0.9429 + }, + { + "start": 16549.66, + "end": 16551.67, + "probability": 0.9812 + }, + { + "start": 16551.92, + "end": 16554.36, + "probability": 0.9594 + }, + { + "start": 16555.26, + "end": 16557.9, + "probability": 0.9834 + }, + { + "start": 16558.7, + "end": 16559.84, + "probability": 0.8906 + }, + { + "start": 16560.3, + "end": 16563.12, + "probability": 0.6883 + }, + { + "start": 16563.82, + "end": 16565.96, + "probability": 0.6681 + }, + { + "start": 16566.12, + "end": 16571.14, + "probability": 0.9728 + }, + { + "start": 16571.6, + "end": 16575.82, + "probability": 0.9964 + }, + { + "start": 16576.06, + "end": 16577.58, + "probability": 0.7938 + }, + { + "start": 16578.5, + "end": 16582.7, + "probability": 0.9899 + }, + { + "start": 16583.14, + "end": 16585.24, + "probability": 0.927 + }, + { + "start": 16585.8, + "end": 16589.96, + "probability": 0.9824 + }, + { + "start": 16590.2, + "end": 16594.68, + "probability": 0.9804 + }, + { + "start": 16595.3, + "end": 16597.8, + "probability": 0.9544 + }, + { + "start": 16597.94, + "end": 16601.6, + "probability": 0.947 + }, + { + "start": 16602.3, + "end": 16604.54, + "probability": 0.8391 + }, + { + "start": 16605.0, + "end": 16608.7, + "probability": 0.9685 + }, + { + "start": 16609.14, + "end": 16612.84, + "probability": 0.9931 + }, + { + "start": 16614.26, + "end": 16620.8, + "probability": 0.9797 + }, + { + "start": 16621.1, + "end": 16624.2, + "probability": 0.8935 + }, + { + "start": 16624.64, + "end": 16627.46, + "probability": 0.9915 + }, + { + "start": 16627.86, + "end": 16628.94, + "probability": 0.9116 + }, + { + "start": 16629.1, + "end": 16629.94, + "probability": 0.7344 + }, + { + "start": 16630.04, + "end": 16631.35, + "probability": 0.9395 + }, + { + "start": 16631.72, + "end": 16635.81, + "probability": 0.9967 + }, + { + "start": 16636.42, + "end": 16642.38, + "probability": 0.9756 + }, + { + "start": 16643.26, + "end": 16644.96, + "probability": 0.667 + }, + { + "start": 16645.56, + "end": 16647.4, + "probability": 0.9303 + }, + { + "start": 16647.74, + "end": 16648.7, + "probability": 0.9767 + }, + { + "start": 16648.78, + "end": 16650.86, + "probability": 0.775 + }, + { + "start": 16651.7, + "end": 16652.84, + "probability": 0.7373 + }, + { + "start": 16653.6, + "end": 16657.66, + "probability": 0.9429 + }, + { + "start": 16658.76, + "end": 16661.06, + "probability": 0.959 + }, + { + "start": 16661.5, + "end": 16667.46, + "probability": 0.9954 + }, + { + "start": 16667.82, + "end": 16670.5, + "probability": 0.9821 + }, + { + "start": 16671.68, + "end": 16674.52, + "probability": 0.8945 + }, + { + "start": 16674.81, + "end": 16677.14, + "probability": 0.6954 + }, + { + "start": 16677.32, + "end": 16680.34, + "probability": 0.9858 + }, + { + "start": 16680.44, + "end": 16682.9, + "probability": 0.9237 + }, + { + "start": 16683.58, + "end": 16686.36, + "probability": 0.2376 + }, + { + "start": 16688.49, + "end": 16690.53, + "probability": 0.2464 + }, + { + "start": 16693.04, + "end": 16693.08, + "probability": 0.063 + }, + { + "start": 16714.52, + "end": 16715.9, + "probability": 0.4974 + }, + { + "start": 16717.22, + "end": 16717.46, + "probability": 0.175 + }, + { + "start": 16718.02, + "end": 16718.92, + "probability": 0.7402 + }, + { + "start": 16719.06, + "end": 16720.24, + "probability": 0.9028 + }, + { + "start": 16720.3, + "end": 16721.09, + "probability": 0.9731 + }, + { + "start": 16721.98, + "end": 16725.73, + "probability": 0.9133 + }, + { + "start": 16726.92, + "end": 16728.12, + "probability": 0.5922 + }, + { + "start": 16728.2, + "end": 16728.84, + "probability": 0.9603 + }, + { + "start": 16728.98, + "end": 16729.98, + "probability": 0.7833 + }, + { + "start": 16730.12, + "end": 16732.26, + "probability": 0.9905 + }, + { + "start": 16732.4, + "end": 16735.58, + "probability": 0.9733 + }, + { + "start": 16736.8, + "end": 16741.9, + "probability": 0.813 + }, + { + "start": 16742.74, + "end": 16743.6, + "probability": 0.3966 + }, + { + "start": 16743.98, + "end": 16744.6, + "probability": 0.6433 + }, + { + "start": 16744.66, + "end": 16745.36, + "probability": 0.5733 + }, + { + "start": 16745.62, + "end": 16746.3, + "probability": 0.8538 + }, + { + "start": 16746.74, + "end": 16747.66, + "probability": 0.7874 + }, + { + "start": 16747.84, + "end": 16751.86, + "probability": 0.7584 + }, + { + "start": 16753.32, + "end": 16755.94, + "probability": 0.9576 + }, + { + "start": 16756.14, + "end": 16756.56, + "probability": 0.9937 + }, + { + "start": 16757.04, + "end": 16760.47, + "probability": 0.96 + }, + { + "start": 16762.04, + "end": 16762.8, + "probability": 0.9122 + }, + { + "start": 16763.04, + "end": 16765.7, + "probability": 0.9907 + }, + { + "start": 16766.36, + "end": 16767.22, + "probability": 0.4794 + }, + { + "start": 16767.24, + "end": 16768.86, + "probability": 0.9084 + }, + { + "start": 16768.98, + "end": 16769.56, + "probability": 0.5345 + }, + { + "start": 16769.58, + "end": 16772.44, + "probability": 0.9534 + }, + { + "start": 16772.56, + "end": 16773.4, + "probability": 0.6064 + }, + { + "start": 16773.48, + "end": 16774.08, + "probability": 0.9413 + }, + { + "start": 16774.72, + "end": 16776.5, + "probability": 0.9624 + }, + { + "start": 16777.0, + "end": 16777.84, + "probability": 0.9847 + }, + { + "start": 16777.96, + "end": 16779.1, + "probability": 0.8992 + }, + { + "start": 16779.74, + "end": 16781.16, + "probability": 0.9354 + }, + { + "start": 16782.2, + "end": 16784.56, + "probability": 0.8146 + }, + { + "start": 16785.5, + "end": 16789.44, + "probability": 0.76 + }, + { + "start": 16790.32, + "end": 16791.74, + "probability": 0.9889 + }, + { + "start": 16792.48, + "end": 16793.29, + "probability": 0.9303 + }, + { + "start": 16793.86, + "end": 16794.9, + "probability": 0.7747 + }, + { + "start": 16795.06, + "end": 16798.02, + "probability": 0.9375 + }, + { + "start": 16798.88, + "end": 16800.22, + "probability": 0.9454 + }, + { + "start": 16800.8, + "end": 16805.56, + "probability": 0.8789 + }, + { + "start": 16806.18, + "end": 16807.72, + "probability": 0.7468 + }, + { + "start": 16808.0, + "end": 16810.22, + "probability": 0.9656 + }, + { + "start": 16812.4, + "end": 16812.4, + "probability": 0.3454 + }, + { + "start": 16812.42, + "end": 16815.28, + "probability": 0.9281 + }, + { + "start": 16815.72, + "end": 16816.68, + "probability": 0.8249 + }, + { + "start": 16816.68, + "end": 16817.44, + "probability": 0.5762 + }, + { + "start": 16817.52, + "end": 16819.72, + "probability": 0.9886 + }, + { + "start": 16820.1, + "end": 16820.5, + "probability": 0.506 + }, + { + "start": 16820.5, + "end": 16821.7, + "probability": 0.894 + }, + { + "start": 16822.58, + "end": 16825.2, + "probability": 0.9828 + }, + { + "start": 16825.92, + "end": 16827.4, + "probability": 0.8404 + }, + { + "start": 16828.16, + "end": 16828.82, + "probability": 0.7724 + }, + { + "start": 16829.52, + "end": 16830.7, + "probability": 0.048 + }, + { + "start": 16830.74, + "end": 16831.95, + "probability": 0.7537 + }, + { + "start": 16832.46, + "end": 16834.63, + "probability": 0.1731 + }, + { + "start": 16835.3, + "end": 16836.76, + "probability": 0.0078 + }, + { + "start": 16836.94, + "end": 16839.89, + "probability": 0.4836 + }, + { + "start": 16840.0, + "end": 16841.42, + "probability": 0.2295 + }, + { + "start": 16841.54, + "end": 16841.84, + "probability": 0.0489 + }, + { + "start": 16841.84, + "end": 16842.66, + "probability": 0.3223 + }, + { + "start": 16842.9, + "end": 16847.38, + "probability": 0.8965 + }, + { + "start": 16847.96, + "end": 16852.42, + "probability": 0.7202 + }, + { + "start": 16852.46, + "end": 16853.76, + "probability": 0.5954 + }, + { + "start": 16853.88, + "end": 16855.86, + "probability": 0.293 + }, + { + "start": 16857.66, + "end": 16859.06, + "probability": 0.6013 + }, + { + "start": 16859.9, + "end": 16860.94, + "probability": 0.7522 + }, + { + "start": 16861.2, + "end": 16862.46, + "probability": 0.82 + }, + { + "start": 16863.18, + "end": 16863.55, + "probability": 0.9067 + }, + { + "start": 16864.32, + "end": 16866.44, + "probability": 0.9922 + }, + { + "start": 16866.58, + "end": 16869.46, + "probability": 0.9905 + }, + { + "start": 16870.8, + "end": 16871.91, + "probability": 0.742 + }, + { + "start": 16872.3, + "end": 16873.18, + "probability": 0.5317 + }, + { + "start": 16873.36, + "end": 16876.3, + "probability": 0.9277 + }, + { + "start": 16876.78, + "end": 16879.12, + "probability": 0.9316 + }, + { + "start": 16879.48, + "end": 16883.24, + "probability": 0.9941 + }, + { + "start": 16883.9, + "end": 16885.3, + "probability": 0.5951 + }, + { + "start": 16885.52, + "end": 16888.64, + "probability": 0.869 + }, + { + "start": 16888.76, + "end": 16890.06, + "probability": 0.9377 + }, + { + "start": 16890.88, + "end": 16891.47, + "probability": 0.8162 + }, + { + "start": 16892.68, + "end": 16893.7, + "probability": 0.5673 + }, + { + "start": 16893.88, + "end": 16894.82, + "probability": 0.7085 + }, + { + "start": 16894.84, + "end": 16895.38, + "probability": 0.7954 + }, + { + "start": 16896.22, + "end": 16897.52, + "probability": 0.7798 + }, + { + "start": 16897.72, + "end": 16901.54, + "probability": 0.9856 + }, + { + "start": 16902.32, + "end": 16905.52, + "probability": 0.9567 + }, + { + "start": 16905.78, + "end": 16909.98, + "probability": 0.9258 + }, + { + "start": 16910.7, + "end": 16913.64, + "probability": 0.7578 + }, + { + "start": 16914.16, + "end": 16915.12, + "probability": 0.8501 + }, + { + "start": 16915.52, + "end": 16916.38, + "probability": 0.9274 + }, + { + "start": 16916.46, + "end": 16917.2, + "probability": 0.9966 + }, + { + "start": 16917.34, + "end": 16919.74, + "probability": 0.9614 + }, + { + "start": 16919.94, + "end": 16921.14, + "probability": 0.9294 + }, + { + "start": 16921.28, + "end": 16925.0, + "probability": 0.856 + }, + { + "start": 16925.0, + "end": 16927.6, + "probability": 0.9966 + }, + { + "start": 16927.84, + "end": 16928.12, + "probability": 0.4555 + }, + { + "start": 16928.16, + "end": 16929.14, + "probability": 0.9536 + }, + { + "start": 16929.56, + "end": 16931.48, + "probability": 0.7662 + }, + { + "start": 16931.74, + "end": 16933.64, + "probability": 0.9744 + }, + { + "start": 16934.08, + "end": 16935.0, + "probability": 0.9194 + }, + { + "start": 16935.28, + "end": 16938.06, + "probability": 0.9736 + }, + { + "start": 16938.44, + "end": 16943.26, + "probability": 0.9572 + }, + { + "start": 16943.94, + "end": 16946.27, + "probability": 0.8617 + }, + { + "start": 16946.32, + "end": 16947.48, + "probability": 0.9036 + }, + { + "start": 16947.84, + "end": 16950.14, + "probability": 0.8652 + }, + { + "start": 16950.34, + "end": 16953.44, + "probability": 0.8983 + }, + { + "start": 16953.5, + "end": 16955.04, + "probability": 0.9204 + }, + { + "start": 16955.08, + "end": 16955.66, + "probability": 0.6583 + }, + { + "start": 16955.92, + "end": 16956.36, + "probability": 0.7324 + }, + { + "start": 16957.0, + "end": 16957.1, + "probability": 0.7559 + }, + { + "start": 16957.18, + "end": 16958.76, + "probability": 0.8369 + }, + { + "start": 16958.92, + "end": 16959.56, + "probability": 0.9095 + }, + { + "start": 16960.2, + "end": 16963.94, + "probability": 0.9399 + }, + { + "start": 16965.28, + "end": 16967.4, + "probability": 0.9297 + }, + { + "start": 16967.84, + "end": 16970.02, + "probability": 0.8821 + }, + { + "start": 16970.3, + "end": 16976.82, + "probability": 0.9053 + }, + { + "start": 16977.08, + "end": 16979.28, + "probability": 0.9321 + }, + { + "start": 16979.5, + "end": 16982.4, + "probability": 0.8748 + }, + { + "start": 16983.26, + "end": 16986.96, + "probability": 0.8676 + }, + { + "start": 16987.56, + "end": 16989.7, + "probability": 0.7697 + }, + { + "start": 16989.84, + "end": 16992.22, + "probability": 0.9489 + }, + { + "start": 16992.78, + "end": 16994.4, + "probability": 0.7511 + }, + { + "start": 16994.5, + "end": 16996.18, + "probability": 0.6354 + }, + { + "start": 16996.22, + "end": 16999.13, + "probability": 0.9485 + }, + { + "start": 16999.84, + "end": 17002.69, + "probability": 0.9276 + }, + { + "start": 17002.88, + "end": 17004.62, + "probability": 0.9709 + }, + { + "start": 17004.76, + "end": 17005.4, + "probability": 0.4044 + }, + { + "start": 17005.44, + "end": 17007.16, + "probability": 0.9078 + }, + { + "start": 17007.26, + "end": 17007.47, + "probability": 0.6649 + }, + { + "start": 17007.62, + "end": 17008.38, + "probability": 0.7816 + }, + { + "start": 17008.5, + "end": 17009.52, + "probability": 0.8644 + }, + { + "start": 17009.66, + "end": 17011.3, + "probability": 0.9124 + }, + { + "start": 17012.24, + "end": 17013.7, + "probability": 0.9307 + }, + { + "start": 17014.28, + "end": 17015.69, + "probability": 0.6802 + }, + { + "start": 17016.98, + "end": 17018.5, + "probability": 0.8438 + }, + { + "start": 17018.66, + "end": 17019.78, + "probability": 0.7698 + }, + { + "start": 17020.78, + "end": 17021.41, + "probability": 0.8875 + }, + { + "start": 17021.7, + "end": 17022.5, + "probability": 0.7584 + }, + { + "start": 17023.3, + "end": 17025.08, + "probability": 0.9829 + }, + { + "start": 17025.68, + "end": 17026.18, + "probability": 0.813 + }, + { + "start": 17026.26, + "end": 17027.46, + "probability": 0.9495 + }, + { + "start": 17027.68, + "end": 17030.94, + "probability": 0.9517 + }, + { + "start": 17030.94, + "end": 17035.06, + "probability": 0.9708 + }, + { + "start": 17035.42, + "end": 17036.04, + "probability": 0.4139 + }, + { + "start": 17036.52, + "end": 17038.12, + "probability": 0.4197 + }, + { + "start": 17038.24, + "end": 17039.62, + "probability": 0.9781 + }, + { + "start": 17039.86, + "end": 17043.28, + "probability": 0.9874 + }, + { + "start": 17043.6, + "end": 17044.18, + "probability": 0.4541 + }, + { + "start": 17044.78, + "end": 17047.9, + "probability": 0.9825 + }, + { + "start": 17048.0, + "end": 17049.1, + "probability": 0.7861 + }, + { + "start": 17049.46, + "end": 17050.7, + "probability": 0.8261 + }, + { + "start": 17050.9, + "end": 17051.36, + "probability": 0.8938 + }, + { + "start": 17051.52, + "end": 17052.18, + "probability": 0.7425 + }, + { + "start": 17052.24, + "end": 17053.02, + "probability": 0.4229 + }, + { + "start": 17053.12, + "end": 17053.72, + "probability": 0.8115 + }, + { + "start": 17053.84, + "end": 17056.86, + "probability": 0.9929 + }, + { + "start": 17056.86, + "end": 17059.54, + "probability": 0.991 + }, + { + "start": 17059.56, + "end": 17060.7, + "probability": 0.6774 + }, + { + "start": 17060.9, + "end": 17063.64, + "probability": 0.9223 + }, + { + "start": 17064.0, + "end": 17065.52, + "probability": 0.8643 + }, + { + "start": 17065.94, + "end": 17066.9, + "probability": 0.9147 + }, + { + "start": 17067.02, + "end": 17067.83, + "probability": 0.9427 + }, + { + "start": 17068.24, + "end": 17068.88, + "probability": 0.9191 + }, + { + "start": 17069.64, + "end": 17072.5, + "probability": 0.7351 + }, + { + "start": 17072.76, + "end": 17075.22, + "probability": 0.802 + }, + { + "start": 17075.72, + "end": 17076.36, + "probability": 0.5712 + }, + { + "start": 17076.48, + "end": 17078.36, + "probability": 0.9967 + }, + { + "start": 17078.76, + "end": 17079.98, + "probability": 0.8142 + }, + { + "start": 17080.1, + "end": 17082.46, + "probability": 0.9852 + }, + { + "start": 17082.98, + "end": 17085.06, + "probability": 0.8216 + }, + { + "start": 17085.66, + "end": 17089.18, + "probability": 0.8754 + }, + { + "start": 17089.66, + "end": 17091.04, + "probability": 0.7441 + }, + { + "start": 17091.38, + "end": 17093.02, + "probability": 0.9233 + }, + { + "start": 17093.36, + "end": 17094.6, + "probability": 0.9854 + }, + { + "start": 17094.62, + "end": 17096.72, + "probability": 0.7882 + }, + { + "start": 17097.02, + "end": 17098.34, + "probability": 0.7289 + }, + { + "start": 17098.72, + "end": 17099.46, + "probability": 0.9573 + }, + { + "start": 17099.52, + "end": 17103.06, + "probability": 0.9854 + }, + { + "start": 17103.24, + "end": 17103.78, + "probability": 0.9491 + }, + { + "start": 17103.92, + "end": 17104.86, + "probability": 0.6461 + }, + { + "start": 17105.24, + "end": 17106.68, + "probability": 0.9448 + }, + { + "start": 17106.9, + "end": 17107.66, + "probability": 0.3131 + }, + { + "start": 17108.1, + "end": 17108.18, + "probability": 0.2705 + }, + { + "start": 17108.2, + "end": 17108.44, + "probability": 0.7674 + }, + { + "start": 17108.52, + "end": 17110.18, + "probability": 0.9831 + }, + { + "start": 17110.18, + "end": 17113.3, + "probability": 0.9193 + }, + { + "start": 17113.56, + "end": 17114.68, + "probability": 0.8984 + }, + { + "start": 17114.8, + "end": 17115.54, + "probability": 0.8115 + }, + { + "start": 17115.66, + "end": 17118.34, + "probability": 0.9911 + }, + { + "start": 17121.78, + "end": 17123.12, + "probability": 0.9966 + }, + { + "start": 17123.66, + "end": 17124.69, + "probability": 0.708 + }, + { + "start": 17125.0, + "end": 17125.52, + "probability": 0.5667 + }, + { + "start": 17125.58, + "end": 17126.12, + "probability": 0.9024 + }, + { + "start": 17126.24, + "end": 17126.68, + "probability": 0.6564 + }, + { + "start": 17126.72, + "end": 17127.84, + "probability": 0.9971 + }, + { + "start": 17129.08, + "end": 17129.72, + "probability": 0.567 + }, + { + "start": 17130.28, + "end": 17132.62, + "probability": 0.6971 + }, + { + "start": 17133.16, + "end": 17137.48, + "probability": 0.7472 + }, + { + "start": 17137.98, + "end": 17139.97, + "probability": 0.8653 + }, + { + "start": 17140.4, + "end": 17141.66, + "probability": 0.9628 + }, + { + "start": 17141.92, + "end": 17144.62, + "probability": 0.9497 + }, + { + "start": 17144.7, + "end": 17145.92, + "probability": 0.9731 + }, + { + "start": 17146.08, + "end": 17146.84, + "probability": 0.778 + }, + { + "start": 17147.12, + "end": 17148.86, + "probability": 0.9648 + }, + { + "start": 17149.34, + "end": 17151.06, + "probability": 0.6954 + }, + { + "start": 17151.1, + "end": 17152.28, + "probability": 0.979 + }, + { + "start": 17152.92, + "end": 17153.69, + "probability": 0.9731 + }, + { + "start": 17154.52, + "end": 17155.46, + "probability": 0.9768 + }, + { + "start": 17155.46, + "end": 17156.08, + "probability": 0.3555 + }, + { + "start": 17156.1, + "end": 17156.2, + "probability": 0.1324 + }, + { + "start": 17156.22, + "end": 17156.28, + "probability": 0.3799 + }, + { + "start": 17156.28, + "end": 17159.56, + "probability": 0.7591 + }, + { + "start": 17159.74, + "end": 17164.08, + "probability": 0.7953 + }, + { + "start": 17164.12, + "end": 17166.2, + "probability": 0.9961 + }, + { + "start": 17166.46, + "end": 17167.76, + "probability": 0.9512 + }, + { + "start": 17168.22, + "end": 17170.7, + "probability": 0.8986 + }, + { + "start": 17171.12, + "end": 17171.6, + "probability": 0.9475 + }, + { + "start": 17171.78, + "end": 17172.82, + "probability": 0.9578 + }, + { + "start": 17173.14, + "end": 17175.56, + "probability": 0.9793 + }, + { + "start": 17175.94, + "end": 17179.4, + "probability": 0.9573 + }, + { + "start": 17179.76, + "end": 17181.16, + "probability": 0.975 + }, + { + "start": 17181.7, + "end": 17185.66, + "probability": 0.9879 + }, + { + "start": 17185.88, + "end": 17186.56, + "probability": 0.9611 + }, + { + "start": 17187.32, + "end": 17188.86, + "probability": 0.8845 + }, + { + "start": 17189.0, + "end": 17189.14, + "probability": 0.6281 + }, + { + "start": 17189.32, + "end": 17193.44, + "probability": 0.9922 + }, + { + "start": 17193.8, + "end": 17197.0, + "probability": 0.9971 + }, + { + "start": 17197.36, + "end": 17198.16, + "probability": 0.9037 + }, + { + "start": 17198.32, + "end": 17200.16, + "probability": 0.7318 + }, + { + "start": 17200.24, + "end": 17200.66, + "probability": 0.4881 + }, + { + "start": 17201.16, + "end": 17201.66, + "probability": 0.1252 + }, + { + "start": 17201.66, + "end": 17201.66, + "probability": 0.0519 + }, + { + "start": 17201.66, + "end": 17201.66, + "probability": 0.1706 + }, + { + "start": 17201.68, + "end": 17201.72, + "probability": 0.2806 + }, + { + "start": 17201.72, + "end": 17202.22, + "probability": 0.5914 + }, + { + "start": 17202.94, + "end": 17203.82, + "probability": 0.7025 + }, + { + "start": 17206.69, + "end": 17211.54, + "probability": 0.7702 + }, + { + "start": 17211.64, + "end": 17213.54, + "probability": 0.9476 + }, + { + "start": 17213.54, + "end": 17216.4, + "probability": 0.9856 + }, + { + "start": 17217.06, + "end": 17218.02, + "probability": 0.6986 + }, + { + "start": 17218.44, + "end": 17223.04, + "probability": 0.9014 + }, + { + "start": 17223.28, + "end": 17223.28, + "probability": 0.232 + }, + { + "start": 17223.34, + "end": 17225.78, + "probability": 0.7784 + }, + { + "start": 17226.3, + "end": 17227.08, + "probability": 0.528 + }, + { + "start": 17227.2, + "end": 17227.96, + "probability": 0.8529 + }, + { + "start": 17228.08, + "end": 17228.48, + "probability": 0.506 + }, + { + "start": 17228.52, + "end": 17229.76, + "probability": 0.9084 + }, + { + "start": 17229.84, + "end": 17230.28, + "probability": 0.5946 + }, + { + "start": 17230.38, + "end": 17230.74, + "probability": 0.8663 + }, + { + "start": 17230.8, + "end": 17231.62, + "probability": 0.8547 + }, + { + "start": 17232.02, + "end": 17233.22, + "probability": 0.2428 + }, + { + "start": 17233.24, + "end": 17237.62, + "probability": 0.4625 + }, + { + "start": 17237.66, + "end": 17237.88, + "probability": 0.4882 + }, + { + "start": 17237.94, + "end": 17238.3, + "probability": 0.8247 + }, + { + "start": 17238.38, + "end": 17239.38, + "probability": 0.1343 + }, + { + "start": 17240.5, + "end": 17242.7, + "probability": 0.3645 + }, + { + "start": 17243.0, + "end": 17248.86, + "probability": 0.9814 + }, + { + "start": 17248.9, + "end": 17252.82, + "probability": 0.9279 + }, + { + "start": 17252.98, + "end": 17255.48, + "probability": 0.9574 + }, + { + "start": 17255.64, + "end": 17256.9, + "probability": 0.3989 + }, + { + "start": 17256.9, + "end": 17259.22, + "probability": 0.4814 + }, + { + "start": 17259.38, + "end": 17260.34, + "probability": 0.5367 + }, + { + "start": 17261.94, + "end": 17262.26, + "probability": 0.1232 + }, + { + "start": 17262.26, + "end": 17262.58, + "probability": 0.0133 + }, + { + "start": 17262.58, + "end": 17263.96, + "probability": 0.1027 + }, + { + "start": 17265.24, + "end": 17266.34, + "probability": 0.6065 + }, + { + "start": 17267.7, + "end": 17269.48, + "probability": 0.8943 + }, + { + "start": 17274.0, + "end": 17275.52, + "probability": 0.6396 + }, + { + "start": 17276.99, + "end": 17279.9, + "probability": 0.6109 + }, + { + "start": 17279.9, + "end": 17280.5, + "probability": 0.0143 + }, + { + "start": 17282.3, + "end": 17283.8, + "probability": 0.307 + }, + { + "start": 17284.32, + "end": 17284.52, + "probability": 0.228 + }, + { + "start": 17284.52, + "end": 17284.52, + "probability": 0.1975 + }, + { + "start": 17284.52, + "end": 17285.58, + "probability": 0.8128 + }, + { + "start": 17285.76, + "end": 17287.34, + "probability": 0.7971 + }, + { + "start": 17287.46, + "end": 17288.94, + "probability": 0.9368 + }, + { + "start": 17289.08, + "end": 17290.38, + "probability": 0.8013 + }, + { + "start": 17290.46, + "end": 17293.88, + "probability": 0.8187 + }, + { + "start": 17294.56, + "end": 17297.96, + "probability": 0.9914 + }, + { + "start": 17299.92, + "end": 17302.0, + "probability": 0.7177 + }, + { + "start": 17302.14, + "end": 17304.24, + "probability": 0.9974 + }, + { + "start": 17305.02, + "end": 17308.36, + "probability": 0.9214 + }, + { + "start": 17308.38, + "end": 17310.42, + "probability": 0.9901 + }, + { + "start": 17310.62, + "end": 17311.86, + "probability": 0.8183 + }, + { + "start": 17312.0, + "end": 17314.78, + "probability": 0.8504 + }, + { + "start": 17315.22, + "end": 17319.94, + "probability": 0.9805 + }, + { + "start": 17320.6, + "end": 17323.85, + "probability": 0.9452 + }, + { + "start": 17325.84, + "end": 17328.34, + "probability": 0.9798 + }, + { + "start": 17329.36, + "end": 17329.42, + "probability": 0.1855 + }, + { + "start": 17329.8, + "end": 17332.14, + "probability": 0.7097 + }, + { + "start": 17332.24, + "end": 17336.09, + "probability": 0.7217 + }, + { + "start": 17336.72, + "end": 17342.92, + "probability": 0.9756 + }, + { + "start": 17342.92, + "end": 17349.04, + "probability": 0.96 + }, + { + "start": 17349.04, + "end": 17349.5, + "probability": 0.0867 + }, + { + "start": 17349.7, + "end": 17349.94, + "probability": 0.405 + }, + { + "start": 17350.12, + "end": 17352.0, + "probability": 0.8114 + }, + { + "start": 17352.22, + "end": 17352.56, + "probability": 0.3767 + }, + { + "start": 17352.64, + "end": 17352.84, + "probability": 0.383 + }, + { + "start": 17352.92, + "end": 17353.6, + "probability": 0.8366 + }, + { + "start": 17353.74, + "end": 17354.78, + "probability": 0.602 + }, + { + "start": 17354.8, + "end": 17356.32, + "probability": 0.7652 + }, + { + "start": 17356.52, + "end": 17361.97, + "probability": 0.6754 + }, + { + "start": 17363.18, + "end": 17363.18, + "probability": 0.0523 + }, + { + "start": 17363.18, + "end": 17365.8, + "probability": 0.8067 + }, + { + "start": 17365.8, + "end": 17368.82, + "probability": 0.9902 + }, + { + "start": 17369.06, + "end": 17373.14, + "probability": 0.6178 + }, + { + "start": 17373.32, + "end": 17375.85, + "probability": 0.796 + }, + { + "start": 17376.14, + "end": 17381.3, + "probability": 0.8879 + }, + { + "start": 17381.38, + "end": 17384.0, + "probability": 0.7491 + }, + { + "start": 17384.32, + "end": 17385.62, + "probability": 0.5515 + }, + { + "start": 17385.78, + "end": 17389.34, + "probability": 0.9042 + }, + { + "start": 17389.78, + "end": 17395.44, + "probability": 0.9622 + }, + { + "start": 17396.64, + "end": 17402.12, + "probability": 0.9934 + }, + { + "start": 17402.12, + "end": 17407.6, + "probability": 0.9988 + }, + { + "start": 17407.68, + "end": 17409.35, + "probability": 0.8035 + }, + { + "start": 17410.02, + "end": 17410.46, + "probability": 0.6045 + }, + { + "start": 17410.58, + "end": 17411.3, + "probability": 0.8473 + }, + { + "start": 17411.46, + "end": 17415.1, + "probability": 0.9753 + }, + { + "start": 17415.18, + "end": 17416.12, + "probability": 0.8242 + }, + { + "start": 17416.42, + "end": 17416.8, + "probability": 0.8671 + }, + { + "start": 17416.94, + "end": 17419.64, + "probability": 0.9888 + }, + { + "start": 17419.76, + "end": 17422.1, + "probability": 0.9895 + }, + { + "start": 17422.24, + "end": 17425.31, + "probability": 0.9816 + }, + { + "start": 17425.48, + "end": 17427.72, + "probability": 0.967 + }, + { + "start": 17427.92, + "end": 17428.95, + "probability": 0.9961 + }, + { + "start": 17429.56, + "end": 17434.94, + "probability": 0.9623 + }, + { + "start": 17435.28, + "end": 17438.1, + "probability": 0.9751 + }, + { + "start": 17439.42, + "end": 17441.72, + "probability": 0.1782 + }, + { + "start": 17441.72, + "end": 17442.07, + "probability": 0.1476 + }, + { + "start": 17442.68, + "end": 17443.28, + "probability": 0.6147 + }, + { + "start": 17443.32, + "end": 17445.26, + "probability": 0.5094 + }, + { + "start": 17445.34, + "end": 17446.02, + "probability": 0.8288 + }, + { + "start": 17446.06, + "end": 17450.64, + "probability": 0.8714 + }, + { + "start": 17451.54, + "end": 17451.8, + "probability": 0.3641 + }, + { + "start": 17451.8, + "end": 17456.68, + "probability": 0.7971 + }, + { + "start": 17456.98, + "end": 17458.28, + "probability": 0.9893 + }, + { + "start": 17458.42, + "end": 17463.36, + "probability": 0.9509 + }, + { + "start": 17463.66, + "end": 17466.18, + "probability": 0.8871 + }, + { + "start": 17466.18, + "end": 17469.34, + "probability": 0.9884 + }, + { + "start": 17469.44, + "end": 17470.66, + "probability": 0.6436 + }, + { + "start": 17471.57, + "end": 17473.58, + "probability": 0.5635 + }, + { + "start": 17473.68, + "end": 17473.76, + "probability": 0.2813 + }, + { + "start": 17473.76, + "end": 17474.61, + "probability": 0.5502 + }, + { + "start": 17475.32, + "end": 17478.08, + "probability": 0.8329 + }, + { + "start": 17479.14, + "end": 17481.34, + "probability": 0.7794 + }, + { + "start": 17481.48, + "end": 17482.96, + "probability": 0.9769 + }, + { + "start": 17483.06, + "end": 17485.56, + "probability": 0.984 + }, + { + "start": 17485.92, + "end": 17486.0, + "probability": 0.2367 + }, + { + "start": 17486.0, + "end": 17486.0, + "probability": 0.2778 + }, + { + "start": 17486.0, + "end": 17487.17, + "probability": 0.7084 + }, + { + "start": 17487.78, + "end": 17489.66, + "probability": 0.9766 + }, + { + "start": 17489.66, + "end": 17492.32, + "probability": 0.8756 + }, + { + "start": 17492.7, + "end": 17495.16, + "probability": 0.9771 + }, + { + "start": 17495.44, + "end": 17497.46, + "probability": 0.8704 + }, + { + "start": 17497.7, + "end": 17498.44, + "probability": 0.8333 + }, + { + "start": 17498.6, + "end": 17500.12, + "probability": 0.9487 + }, + { + "start": 17500.2, + "end": 17503.52, + "probability": 0.8717 + }, + { + "start": 17503.8, + "end": 17506.8, + "probability": 0.9962 + }, + { + "start": 17506.8, + "end": 17510.06, + "probability": 0.999 + }, + { + "start": 17510.46, + "end": 17514.61, + "probability": 0.9966 + }, + { + "start": 17514.84, + "end": 17517.39, + "probability": 0.1031 + }, + { + "start": 17518.1, + "end": 17518.18, + "probability": 0.0226 + }, + { + "start": 17518.44, + "end": 17520.2, + "probability": 0.4266 + }, + { + "start": 17520.2, + "end": 17522.76, + "probability": 0.6494 + }, + { + "start": 17522.86, + "end": 17525.58, + "probability": 0.6763 + }, + { + "start": 17525.96, + "end": 17527.42, + "probability": 0.8011 + }, + { + "start": 17527.86, + "end": 17530.38, + "probability": 0.272 + }, + { + "start": 17532.16, + "end": 17532.84, + "probability": 0.1792 + }, + { + "start": 17533.48, + "end": 17535.22, + "probability": 0.5495 + }, + { + "start": 17535.4, + "end": 17536.1, + "probability": 0.5402 + }, + { + "start": 17536.14, + "end": 17536.68, + "probability": 0.9448 + }, + { + "start": 17537.18, + "end": 17538.61, + "probability": 0.4933 + }, + { + "start": 17538.96, + "end": 17543.18, + "probability": 0.9026 + }, + { + "start": 17543.32, + "end": 17545.0, + "probability": 0.6741 + }, + { + "start": 17545.0, + "end": 17547.6, + "probability": 0.8071 + }, + { + "start": 17547.78, + "end": 17549.46, + "probability": 0.6016 + }, + { + "start": 17550.12, + "end": 17550.12, + "probability": 0.0538 + }, + { + "start": 17550.12, + "end": 17550.66, + "probability": 0.3954 + }, + { + "start": 17551.14, + "end": 17553.96, + "probability": 0.9976 + }, + { + "start": 17554.12, + "end": 17558.72, + "probability": 0.9803 + }, + { + "start": 17559.3, + "end": 17560.18, + "probability": 0.6663 + }, + { + "start": 17560.7, + "end": 17562.1, + "probability": 0.124 + }, + { + "start": 17562.4, + "end": 17562.5, + "probability": 0.0796 + }, + { + "start": 17562.9, + "end": 17564.42, + "probability": 0.2735 + }, + { + "start": 17564.58, + "end": 17564.76, + "probability": 0.0154 + }, + { + "start": 17564.94, + "end": 17567.44, + "probability": 0.8518 + }, + { + "start": 17568.1, + "end": 17568.92, + "probability": 0.5227 + }, + { + "start": 17569.12, + "end": 17570.8, + "probability": 0.5827 + }, + { + "start": 17571.42, + "end": 17571.66, + "probability": 0.259 + }, + { + "start": 17572.13, + "end": 17573.36, + "probability": 0.8936 + }, + { + "start": 17573.56, + "end": 17573.64, + "probability": 0.1224 + }, + { + "start": 17573.64, + "end": 17574.45, + "probability": 0.6203 + }, + { + "start": 17575.44, + "end": 17575.66, + "probability": 0.3352 + }, + { + "start": 17575.84, + "end": 17577.06, + "probability": 0.7985 + }, + { + "start": 17577.36, + "end": 17577.64, + "probability": 0.3271 + }, + { + "start": 17577.66, + "end": 17578.5, + "probability": 0.0066 + }, + { + "start": 17578.86, + "end": 17580.28, + "probability": 0.4435 + }, + { + "start": 17580.56, + "end": 17582.62, + "probability": 0.3447 + }, + { + "start": 17582.82, + "end": 17582.86, + "probability": 0.0044 + }, + { + "start": 17582.86, + "end": 17582.86, + "probability": 0.2419 + }, + { + "start": 17582.86, + "end": 17583.26, + "probability": 0.0298 + }, + { + "start": 17583.37, + "end": 17583.44, + "probability": 0.3403 + }, + { + "start": 17583.44, + "end": 17586.12, + "probability": 0.7087 + }, + { + "start": 17586.12, + "end": 17586.58, + "probability": 0.1616 + }, + { + "start": 17586.62, + "end": 17588.34, + "probability": 0.8612 + }, + { + "start": 17588.48, + "end": 17594.58, + "probability": 0.981 + }, + { + "start": 17594.72, + "end": 17596.24, + "probability": 0.8006 + }, + { + "start": 17596.42, + "end": 17598.6, + "probability": 0.3318 + }, + { + "start": 17598.76, + "end": 17598.76, + "probability": 0.1455 + }, + { + "start": 17598.76, + "end": 17598.76, + "probability": 0.1913 + }, + { + "start": 17598.76, + "end": 17600.3, + "probability": 0.7466 + }, + { + "start": 17600.48, + "end": 17600.9, + "probability": 0.4752 + }, + { + "start": 17601.04, + "end": 17605.0, + "probability": 0.9689 + }, + { + "start": 17605.2, + "end": 17606.58, + "probability": 0.7874 + }, + { + "start": 17606.7, + "end": 17610.39, + "probability": 0.8026 + }, + { + "start": 17610.64, + "end": 17610.64, + "probability": 0.075 + }, + { + "start": 17610.64, + "end": 17611.8, + "probability": 0.4756 + }, + { + "start": 17611.82, + "end": 17612.34, + "probability": 0.4276 + }, + { + "start": 17612.34, + "end": 17612.38, + "probability": 0.3952 + }, + { + "start": 17612.38, + "end": 17612.38, + "probability": 0.2081 + }, + { + "start": 17612.38, + "end": 17616.58, + "probability": 0.8067 + }, + { + "start": 17616.76, + "end": 17616.8, + "probability": 0.0166 + }, + { + "start": 17616.8, + "end": 17618.96, + "probability": 0.9512 + }, + { + "start": 17619.02, + "end": 17619.88, + "probability": 0.7931 + }, + { + "start": 17619.98, + "end": 17621.24, + "probability": 0.8142 + }, + { + "start": 17621.32, + "end": 17623.34, + "probability": 0.9924 + }, + { + "start": 17623.42, + "end": 17626.38, + "probability": 0.9128 + }, + { + "start": 17626.46, + "end": 17628.36, + "probability": 0.8137 + }, + { + "start": 17628.44, + "end": 17630.14, + "probability": 0.8244 + }, + { + "start": 17630.46, + "end": 17632.08, + "probability": 0.6882 + }, + { + "start": 17632.14, + "end": 17633.88, + "probability": 0.963 + }, + { + "start": 17633.98, + "end": 17635.24, + "probability": 0.8759 + }, + { + "start": 17635.32, + "end": 17637.36, + "probability": 0.9782 + }, + { + "start": 17638.4, + "end": 17641.22, + "probability": 0.7687 + }, + { + "start": 17641.34, + "end": 17643.74, + "probability": 0.7796 + }, + { + "start": 17643.98, + "end": 17645.4, + "probability": 0.7639 + }, + { + "start": 17645.7, + "end": 17647.48, + "probability": 0.9861 + }, + { + "start": 17647.56, + "end": 17648.62, + "probability": 0.8933 + }, + { + "start": 17649.0, + "end": 17650.28, + "probability": 0.6962 + }, + { + "start": 17650.42, + "end": 17651.46, + "probability": 0.5747 + }, + { + "start": 17651.62, + "end": 17655.86, + "probability": 0.9851 + }, + { + "start": 17657.15, + "end": 17661.26, + "probability": 0.8396 + }, + { + "start": 17661.4, + "end": 17662.2, + "probability": 0.1179 + }, + { + "start": 17662.22, + "end": 17662.4, + "probability": 0.2813 + }, + { + "start": 17662.4, + "end": 17662.56, + "probability": 0.0555 + }, + { + "start": 17662.56, + "end": 17668.36, + "probability": 0.7256 + }, + { + "start": 17668.74, + "end": 17670.66, + "probability": 0.7814 + }, + { + "start": 17670.94, + "end": 17672.06, + "probability": 0.7349 + }, + { + "start": 17672.06, + "end": 17674.0, + "probability": 0.3363 + }, + { + "start": 17676.68, + "end": 17677.64, + "probability": 0.0168 + }, + { + "start": 17677.64, + "end": 17678.76, + "probability": 0.1833 + }, + { + "start": 17678.84, + "end": 17678.88, + "probability": 0.0259 + }, + { + "start": 17680.5, + "end": 17680.8, + "probability": 0.064 + }, + { + "start": 17680.8, + "end": 17680.8, + "probability": 0.2112 + }, + { + "start": 17680.8, + "end": 17680.8, + "probability": 0.1288 + }, + { + "start": 17680.8, + "end": 17680.8, + "probability": 0.034 + }, + { + "start": 17680.8, + "end": 17682.51, + "probability": 0.2749 + }, + { + "start": 17682.94, + "end": 17682.94, + "probability": 0.4294 + }, + { + "start": 17683.28, + "end": 17684.28, + "probability": 0.6422 + }, + { + "start": 17684.96, + "end": 17689.02, + "probability": 0.9778 + }, + { + "start": 17689.02, + "end": 17692.18, + "probability": 0.9806 + }, + { + "start": 17692.5, + "end": 17693.58, + "probability": 0.7316 + }, + { + "start": 17694.08, + "end": 17695.46, + "probability": 0.9447 + }, + { + "start": 17695.78, + "end": 17698.38, + "probability": 0.9901 + }, + { + "start": 17698.58, + "end": 17701.68, + "probability": 0.6067 + }, + { + "start": 17701.9, + "end": 17705.16, + "probability": 0.8525 + }, + { + "start": 17705.46, + "end": 17708.72, + "probability": 0.9473 + }, + { + "start": 17708.72, + "end": 17713.36, + "probability": 0.9903 + }, + { + "start": 17713.76, + "end": 17715.42, + "probability": 0.6998 + }, + { + "start": 17715.8, + "end": 17719.08, + "probability": 0.9951 + }, + { + "start": 17719.08, + "end": 17722.36, + "probability": 0.9267 + }, + { + "start": 17722.74, + "end": 17724.78, + "probability": 0.9883 + }, + { + "start": 17724.96, + "end": 17726.1, + "probability": 0.9751 + }, + { + "start": 17726.22, + "end": 17727.18, + "probability": 0.9427 + }, + { + "start": 17727.22, + "end": 17730.1, + "probability": 0.9934 + }, + { + "start": 17730.64, + "end": 17731.28, + "probability": 0.6002 + }, + { + "start": 17731.4, + "end": 17736.4, + "probability": 0.8289 + }, + { + "start": 17736.4, + "end": 17741.02, + "probability": 0.9982 + }, + { + "start": 17741.22, + "end": 17744.68, + "probability": 0.998 + }, + { + "start": 17744.84, + "end": 17747.52, + "probability": 0.9218 + }, + { + "start": 17747.7, + "end": 17750.24, + "probability": 0.6871 + }, + { + "start": 17750.76, + "end": 17755.2, + "probability": 0.8612 + }, + { + "start": 17755.2, + "end": 17758.22, + "probability": 0.7427 + }, + { + "start": 17760.3, + "end": 17760.64, + "probability": 0.0328 + }, + { + "start": 17760.7, + "end": 17762.52, + "probability": 0.3898 + }, + { + "start": 17763.42, + "end": 17766.6, + "probability": 0.32 + }, + { + "start": 17767.0, + "end": 17769.34, + "probability": 0.2074 + }, + { + "start": 17770.72, + "end": 17771.3, + "probability": 0.1229 + }, + { + "start": 17771.3, + "end": 17773.74, + "probability": 0.2105 + }, + { + "start": 17773.84, + "end": 17774.34, + "probability": 0.2824 + }, + { + "start": 17774.34, + "end": 17775.28, + "probability": 0.8462 + }, + { + "start": 17775.98, + "end": 17775.98, + "probability": 0.5495 + }, + { + "start": 17775.98, + "end": 17778.17, + "probability": 0.9548 + }, + { + "start": 17778.8, + "end": 17782.2, + "probability": 0.0236 + }, + { + "start": 17782.2, + "end": 17783.68, + "probability": 0.1657 + }, + { + "start": 17783.68, + "end": 17788.36, + "probability": 0.0073 + }, + { + "start": 17788.7, + "end": 17788.79, + "probability": 0.0133 + }, + { + "start": 17788.86, + "end": 17790.96, + "probability": 0.1097 + }, + { + "start": 17790.96, + "end": 17791.28, + "probability": 0.1167 + }, + { + "start": 17791.38, + "end": 17792.14, + "probability": 0.1345 + }, + { + "start": 17796.72, + "end": 17798.18, + "probability": 0.3412 + }, + { + "start": 17798.18, + "end": 17799.04, + "probability": 0.0603 + }, + { + "start": 17803.0, + "end": 17806.0, + "probability": 0.0386 + }, + { + "start": 17808.58, + "end": 17808.96, + "probability": 0.0473 + }, + { + "start": 17808.96, + "end": 17809.84, + "probability": 0.0448 + }, + { + "start": 17809.84, + "end": 17811.27, + "probability": 0.068 + }, + { + "start": 17813.0, + "end": 17814.76, + "probability": 0.3037 + }, + { + "start": 17816.5, + "end": 17820.62, + "probability": 0.4 + }, + { + "start": 17820.94, + "end": 17822.9, + "probability": 0.0675 + }, + { + "start": 17822.9, + "end": 17824.63, + "probability": 0.3418 + }, + { + "start": 17824.7, + "end": 17827.32, + "probability": 0.0188 + }, + { + "start": 17828.3, + "end": 17831.14, + "probability": 0.1206 + }, + { + "start": 17831.14, + "end": 17835.8, + "probability": 0.1716 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.0, + "end": 17836.0, + "probability": 0.0 + }, + { + "start": 17836.34, + "end": 17836.76, + "probability": 0.4831 + }, + { + "start": 17836.76, + "end": 17836.76, + "probability": 0.0574 + }, + { + "start": 17836.76, + "end": 17838.24, + "probability": 0.045 + }, + { + "start": 17838.24, + "end": 17842.4, + "probability": 0.9751 + }, + { + "start": 17842.82, + "end": 17847.1, + "probability": 0.9753 + }, + { + "start": 17847.18, + "end": 17847.74, + "probability": 0.6307 + }, + { + "start": 17847.98, + "end": 17850.64, + "probability": 0.975 + }, + { + "start": 17851.06, + "end": 17853.74, + "probability": 0.973 + }, + { + "start": 17853.82, + "end": 17859.62, + "probability": 0.9101 + }, + { + "start": 17859.88, + "end": 17864.86, + "probability": 0.9813 + }, + { + "start": 17865.02, + "end": 17866.64, + "probability": 0.629 + }, + { + "start": 17867.0, + "end": 17869.85, + "probability": 0.9946 + }, + { + "start": 17870.54, + "end": 17874.4, + "probability": 0.9915 + }, + { + "start": 17875.0, + "end": 17877.36, + "probability": 0.9366 + }, + { + "start": 17877.68, + "end": 17880.62, + "probability": 0.9979 + }, + { + "start": 17880.7, + "end": 17881.45, + "probability": 0.9751 + }, + { + "start": 17881.76, + "end": 17882.74, + "probability": 0.829 + }, + { + "start": 17882.9, + "end": 17885.98, + "probability": 0.9514 + }, + { + "start": 17886.22, + "end": 17886.98, + "probability": 0.3165 + }, + { + "start": 17887.14, + "end": 17889.5, + "probability": 0.8754 + }, + { + "start": 17889.92, + "end": 17890.76, + "probability": 0.6022 + }, + { + "start": 17891.28, + "end": 17893.36, + "probability": 0.8951 + }, + { + "start": 17893.36, + "end": 17895.96, + "probability": 0.7597 + }, + { + "start": 17896.02, + "end": 17896.49, + "probability": 0.8623 + }, + { + "start": 17897.36, + "end": 17899.22, + "probability": 0.9492 + }, + { + "start": 17899.4, + "end": 17901.04, + "probability": 0.4696 + }, + { + "start": 17901.18, + "end": 17905.0, + "probability": 0.9809 + }, + { + "start": 17905.22, + "end": 17908.78, + "probability": 0.9907 + }, + { + "start": 17908.78, + "end": 17913.3, + "probability": 0.9905 + }, + { + "start": 17913.48, + "end": 17914.82, + "probability": 0.9172 + }, + { + "start": 17915.1, + "end": 17916.74, + "probability": 0.7311 + }, + { + "start": 17916.92, + "end": 17922.16, + "probability": 0.9199 + }, + { + "start": 17922.16, + "end": 17924.98, + "probability": 0.5795 + }, + { + "start": 17925.06, + "end": 17927.22, + "probability": 0.9104 + }, + { + "start": 17927.86, + "end": 17928.91, + "probability": 0.9816 + }, + { + "start": 17929.1, + "end": 17930.28, + "probability": 0.8423 + }, + { + "start": 17930.4, + "end": 17932.69, + "probability": 0.9963 + }, + { + "start": 17932.8, + "end": 17934.62, + "probability": 0.8776 + }, + { + "start": 17935.02, + "end": 17936.48, + "probability": 0.8789 + }, + { + "start": 17936.54, + "end": 17938.86, + "probability": 0.6698 + }, + { + "start": 17938.98, + "end": 17939.2, + "probability": 0.3116 + }, + { + "start": 17939.24, + "end": 17943.64, + "probability": 0.9406 + }, + { + "start": 17943.68, + "end": 17945.74, + "probability": 0.9858 + }, + { + "start": 17946.06, + "end": 17946.8, + "probability": 0.8752 + }, + { + "start": 17947.36, + "end": 17950.98, + "probability": 0.9116 + }, + { + "start": 17951.08, + "end": 17952.58, + "probability": 0.6005 + }, + { + "start": 17952.74, + "end": 17953.66, + "probability": 0.9725 + }, + { + "start": 17953.88, + "end": 17955.78, + "probability": 0.3977 + }, + { + "start": 17955.78, + "end": 17957.56, + "probability": 0.6017 + }, + { + "start": 17958.24, + "end": 17960.52, + "probability": 0.9932 + }, + { + "start": 17961.8, + "end": 17964.44, + "probability": 0.8384 + }, + { + "start": 17981.06, + "end": 17982.22, + "probability": 0.6548 + }, + { + "start": 17983.6, + "end": 17984.47, + "probability": 0.9677 + }, + { + "start": 17985.8, + "end": 17986.92, + "probability": 0.6599 + }, + { + "start": 17987.92, + "end": 17989.22, + "probability": 0.7117 + }, + { + "start": 17992.32, + "end": 17994.92, + "probability": 0.826 + }, + { + "start": 17997.01, + "end": 18003.05, + "probability": 0.9588 + }, + { + "start": 18003.96, + "end": 18004.74, + "probability": 0.6264 + }, + { + "start": 18005.16, + "end": 18005.28, + "probability": 0.0673 + }, + { + "start": 18006.88, + "end": 18008.14, + "probability": 0.2784 + }, + { + "start": 18008.64, + "end": 18008.76, + "probability": 0.1173 + }, + { + "start": 18008.94, + "end": 18011.7, + "probability": 0.8054 + }, + { + "start": 18011.98, + "end": 18013.46, + "probability": 0.7842 + }, + { + "start": 18013.46, + "end": 18013.67, + "probability": 0.0849 + }, + { + "start": 18014.7, + "end": 18017.48, + "probability": 0.967 + }, + { + "start": 18017.6, + "end": 18019.9, + "probability": 0.9636 + }, + { + "start": 18020.96, + "end": 18024.26, + "probability": 0.847 + }, + { + "start": 18024.76, + "end": 18027.14, + "probability": 0.9704 + }, + { + "start": 18027.96, + "end": 18031.78, + "probability": 0.9722 + }, + { + "start": 18033.94, + "end": 18037.38, + "probability": 0.8019 + }, + { + "start": 18038.92, + "end": 18041.37, + "probability": 0.6954 + }, + { + "start": 18042.7, + "end": 18046.76, + "probability": 0.7634 + }, + { + "start": 18047.3, + "end": 18048.16, + "probability": 0.7121 + }, + { + "start": 18048.26, + "end": 18050.7, + "probability": 0.9873 + }, + { + "start": 18051.4, + "end": 18054.74, + "probability": 0.9785 + }, + { + "start": 18055.54, + "end": 18057.0, + "probability": 0.6811 + }, + { + "start": 18058.18, + "end": 18059.48, + "probability": 0.9983 + }, + { + "start": 18059.76, + "end": 18061.86, + "probability": 0.9669 + }, + { + "start": 18061.94, + "end": 18063.16, + "probability": 0.8999 + }, + { + "start": 18063.72, + "end": 18064.42, + "probability": 0.9803 + }, + { + "start": 18065.8, + "end": 18067.01, + "probability": 0.9968 + }, + { + "start": 18068.38, + "end": 18075.46, + "probability": 0.8017 + }, + { + "start": 18076.0, + "end": 18076.98, + "probability": 0.5957 + }, + { + "start": 18078.72, + "end": 18081.48, + "probability": 0.757 + }, + { + "start": 18082.62, + "end": 18083.82, + "probability": 0.7507 + }, + { + "start": 18084.5, + "end": 18085.84, + "probability": 0.8457 + }, + { + "start": 18086.68, + "end": 18089.38, + "probability": 0.9211 + }, + { + "start": 18089.46, + "end": 18089.76, + "probability": 0.5088 + }, + { + "start": 18089.86, + "end": 18090.79, + "probability": 0.8804 + }, + { + "start": 18091.8, + "end": 18092.67, + "probability": 0.9658 + }, + { + "start": 18093.56, + "end": 18094.67, + "probability": 0.6052 + }, + { + "start": 18095.3, + "end": 18096.2, + "probability": 0.6794 + }, + { + "start": 18096.38, + "end": 18097.54, + "probability": 0.7794 + }, + { + "start": 18098.36, + "end": 18098.8, + "probability": 0.7751 + }, + { + "start": 18100.3, + "end": 18100.9, + "probability": 0.9423 + }, + { + "start": 18101.38, + "end": 18103.16, + "probability": 0.9784 + }, + { + "start": 18103.78, + "end": 18104.64, + "probability": 0.7563 + }, + { + "start": 18105.2, + "end": 18106.6, + "probability": 0.6242 + }, + { + "start": 18107.2, + "end": 18111.46, + "probability": 0.763 + }, + { + "start": 18111.56, + "end": 18112.3, + "probability": 0.9349 + }, + { + "start": 18113.38, + "end": 18114.88, + "probability": 0.6559 + }, + { + "start": 18115.92, + "end": 18117.52, + "probability": 0.9109 + }, + { + "start": 18118.62, + "end": 18120.32, + "probability": 0.9883 + }, + { + "start": 18120.44, + "end": 18123.8, + "probability": 0.7745 + }, + { + "start": 18123.96, + "end": 18126.5, + "probability": 0.8263 + }, + { + "start": 18127.74, + "end": 18131.56, + "probability": 0.6835 + }, + { + "start": 18131.88, + "end": 18138.14, + "probability": 0.9194 + }, + { + "start": 18138.38, + "end": 18139.33, + "probability": 0.9331 + }, + { + "start": 18141.14, + "end": 18146.34, + "probability": 0.9795 + }, + { + "start": 18146.34, + "end": 18153.62, + "probability": 0.9382 + }, + { + "start": 18154.92, + "end": 18158.6, + "probability": 0.9814 + }, + { + "start": 18158.7, + "end": 18160.0, + "probability": 0.7459 + }, + { + "start": 18160.86, + "end": 18164.36, + "probability": 0.9761 + }, + { + "start": 18165.44, + "end": 18167.66, + "probability": 0.9583 + }, + { + "start": 18169.66, + "end": 18174.9, + "probability": 0.9869 + }, + { + "start": 18174.9, + "end": 18179.32, + "probability": 0.8413 + }, + { + "start": 18181.86, + "end": 18183.5, + "probability": 0.9619 + }, + { + "start": 18184.88, + "end": 18189.92, + "probability": 0.8413 + }, + { + "start": 18191.68, + "end": 18193.96, + "probability": 0.9219 + }, + { + "start": 18194.86, + "end": 18196.12, + "probability": 0.9403 + }, + { + "start": 18196.12, + "end": 18198.2, + "probability": 0.707 + }, + { + "start": 18199.08, + "end": 18202.2, + "probability": 0.8718 + }, + { + "start": 18203.54, + "end": 18208.98, + "probability": 0.788 + }, + { + "start": 18210.8, + "end": 18212.26, + "probability": 0.9846 + }, + { + "start": 18212.98, + "end": 18216.5, + "probability": 0.9438 + }, + { + "start": 18218.74, + "end": 18222.85, + "probability": 0.8093 + }, + { + "start": 18223.7, + "end": 18227.1, + "probability": 0.9333 + }, + { + "start": 18227.1, + "end": 18228.74, + "probability": 0.7723 + }, + { + "start": 18229.7, + "end": 18230.42, + "probability": 0.9185 + }, + { + "start": 18230.88, + "end": 18235.4, + "probability": 0.8518 + }, + { + "start": 18235.54, + "end": 18236.16, + "probability": 0.1958 + }, + { + "start": 18236.3, + "end": 18236.66, + "probability": 0.8684 + }, + { + "start": 18236.98, + "end": 18239.7, + "probability": 0.9399 + }, + { + "start": 18239.7, + "end": 18242.76, + "probability": 0.8399 + }, + { + "start": 18242.86, + "end": 18247.12, + "probability": 0.8153 + }, + { + "start": 18247.56, + "end": 18249.12, + "probability": 0.497 + }, + { + "start": 18249.12, + "end": 18250.44, + "probability": 0.4761 + }, + { + "start": 18250.56, + "end": 18251.66, + "probability": 0.8971 + }, + { + "start": 18251.8, + "end": 18252.78, + "probability": 0.8269 + }, + { + "start": 18252.78, + "end": 18254.4, + "probability": 0.5562 + }, + { + "start": 18254.4, + "end": 18254.42, + "probability": 0.1511 + }, + { + "start": 18254.42, + "end": 18255.88, + "probability": 0.9886 + }, + { + "start": 18255.92, + "end": 18257.42, + "probability": 0.728 + }, + { + "start": 18257.82, + "end": 18259.62, + "probability": 0.9969 + }, + { + "start": 18259.76, + "end": 18261.74, + "probability": 0.8915 + }, + { + "start": 18261.8, + "end": 18263.44, + "probability": 0.7755 + }, + { + "start": 18264.18, + "end": 18265.98, + "probability": 0.8157 + }, + { + "start": 18266.48, + "end": 18268.78, + "probability": 0.7056 + }, + { + "start": 18268.84, + "end": 18269.5, + "probability": 0.7945 + }, + { + "start": 18270.19, + "end": 18274.78, + "probability": 0.5838 + }, + { + "start": 18274.78, + "end": 18275.22, + "probability": 0.573 + }, + { + "start": 18275.58, + "end": 18278.0, + "probability": 0.8484 + }, + { + "start": 18278.54, + "end": 18280.15, + "probability": 0.7074 + }, + { + "start": 18281.26, + "end": 18283.78, + "probability": 0.9539 + }, + { + "start": 18284.16, + "end": 18286.18, + "probability": 0.5148 + }, + { + "start": 18286.62, + "end": 18289.08, + "probability": 0.9937 + }, + { + "start": 18289.26, + "end": 18290.92, + "probability": 0.9851 + }, + { + "start": 18291.5, + "end": 18294.98, + "probability": 0.9724 + }, + { + "start": 18295.8, + "end": 18297.8, + "probability": 0.9635 + }, + { + "start": 18298.44, + "end": 18301.76, + "probability": 0.9724 + }, + { + "start": 18303.72, + "end": 18305.54, + "probability": 0.8739 + }, + { + "start": 18307.14, + "end": 18309.89, + "probability": 0.8965 + }, + { + "start": 18311.08, + "end": 18313.13, + "probability": 0.5707 + }, + { + "start": 18314.82, + "end": 18319.78, + "probability": 0.9247 + }, + { + "start": 18321.06, + "end": 18323.24, + "probability": 0.8904 + }, + { + "start": 18323.8, + "end": 18329.84, + "probability": 0.9854 + }, + { + "start": 18330.88, + "end": 18333.38, + "probability": 0.9907 + }, + { + "start": 18333.4, + "end": 18334.56, + "probability": 0.7511 + }, + { + "start": 18334.92, + "end": 18336.48, + "probability": 0.9914 + }, + { + "start": 18337.12, + "end": 18341.62, + "probability": 0.9688 + }, + { + "start": 18342.0, + "end": 18344.16, + "probability": 0.892 + }, + { + "start": 18344.62, + "end": 18347.4, + "probability": 0.9713 + }, + { + "start": 18347.76, + "end": 18350.52, + "probability": 0.77 + }, + { + "start": 18350.78, + "end": 18351.52, + "probability": 0.8498 + }, + { + "start": 18351.7, + "end": 18352.08, + "probability": 0.7877 + }, + { + "start": 18352.16, + "end": 18353.2, + "probability": 0.9343 + }, + { + "start": 18353.56, + "end": 18354.14, + "probability": 0.9158 + }, + { + "start": 18354.14, + "end": 18357.82, + "probability": 0.9211 + }, + { + "start": 18358.0, + "end": 18358.54, + "probability": 0.6119 + }, + { + "start": 18359.46, + "end": 18360.4, + "probability": 0.8386 + }, + { + "start": 18360.7, + "end": 18362.26, + "probability": 0.7671 + }, + { + "start": 18362.4, + "end": 18362.92, + "probability": 0.783 + }, + { + "start": 18363.6, + "end": 18364.7, + "probability": 0.6659 + }, + { + "start": 18364.86, + "end": 18366.6, + "probability": 0.6888 + }, + { + "start": 18366.86, + "end": 18368.5, + "probability": 0.9229 + }, + { + "start": 18370.6, + "end": 18371.78, + "probability": 0.1278 + }, + { + "start": 18371.78, + "end": 18373.14, + "probability": 0.1957 + }, + { + "start": 18373.58, + "end": 18376.2, + "probability": 0.2284 + }, + { + "start": 18379.11, + "end": 18380.78, + "probability": 0.3391 + }, + { + "start": 18380.78, + "end": 18381.48, + "probability": 0.3063 + }, + { + "start": 18384.2, + "end": 18385.86, + "probability": 0.914 + }, + { + "start": 18387.34, + "end": 18391.04, + "probability": 0.9805 + }, + { + "start": 18391.46, + "end": 18392.04, + "probability": 0.8282 + }, + { + "start": 18392.12, + "end": 18392.88, + "probability": 0.8989 + }, + { + "start": 18393.58, + "end": 18397.14, + "probability": 0.9229 + }, + { + "start": 18397.26, + "end": 18398.44, + "probability": 0.9971 + }, + { + "start": 18399.02, + "end": 18400.18, + "probability": 0.9663 + }, + { + "start": 18400.5, + "end": 18401.94, + "probability": 0.8708 + }, + { + "start": 18402.42, + "end": 18407.64, + "probability": 0.9346 + }, + { + "start": 18408.2, + "end": 18413.29, + "probability": 0.7066 + }, + { + "start": 18414.78, + "end": 18416.63, + "probability": 0.9731 + }, + { + "start": 18417.34, + "end": 18418.65, + "probability": 0.9946 + }, + { + "start": 18419.12, + "end": 18421.57, + "probability": 0.9775 + }, + { + "start": 18423.04, + "end": 18425.32, + "probability": 0.7434 + }, + { + "start": 18425.52, + "end": 18427.5, + "probability": 0.6402 + }, + { + "start": 18427.7, + "end": 18433.5, + "probability": 0.9226 + }, + { + "start": 18433.62, + "end": 18435.36, + "probability": 0.8496 + }, + { + "start": 18435.84, + "end": 18438.96, + "probability": 0.8213 + }, + { + "start": 18439.1, + "end": 18439.4, + "probability": 0.5365 + }, + { + "start": 18439.44, + "end": 18441.6, + "probability": 0.9125 + }, + { + "start": 18443.18, + "end": 18443.22, + "probability": 0.1121 + }, + { + "start": 18443.22, + "end": 18444.16, + "probability": 0.4786 + }, + { + "start": 18444.28, + "end": 18444.36, + "probability": 0.3257 + }, + { + "start": 18444.44, + "end": 18444.44, + "probability": 0.3303 + }, + { + "start": 18444.44, + "end": 18447.14, + "probability": 0.9136 + }, + { + "start": 18447.14, + "end": 18451.0, + "probability": 0.9794 + }, + { + "start": 18451.24, + "end": 18455.44, + "probability": 0.83 + }, + { + "start": 18455.8, + "end": 18457.5, + "probability": 0.6731 + }, + { + "start": 18457.76, + "end": 18461.6, + "probability": 0.9927 + }, + { + "start": 18461.86, + "end": 18463.16, + "probability": 0.9861 + }, + { + "start": 18463.84, + "end": 18465.94, + "probability": 0.8354 + }, + { + "start": 18467.06, + "end": 18469.42, + "probability": 0.9985 + }, + { + "start": 18470.06, + "end": 18471.34, + "probability": 0.8867 + }, + { + "start": 18481.36, + "end": 18481.74, + "probability": 0.5935 + }, + { + "start": 18481.74, + "end": 18482.16, + "probability": 0.759 + }, + { + "start": 18487.04, + "end": 18488.4, + "probability": 0.7746 + }, + { + "start": 18490.7, + "end": 18491.5, + "probability": 0.5846 + }, + { + "start": 18493.78, + "end": 18497.54, + "probability": 0.981 + }, + { + "start": 18499.5, + "end": 18509.14, + "probability": 0.9868 + }, + { + "start": 18510.46, + "end": 18511.06, + "probability": 0.8691 + }, + { + "start": 18515.84, + "end": 18520.12, + "probability": 0.8488 + }, + { + "start": 18521.48, + "end": 18522.0, + "probability": 0.0489 + }, + { + "start": 18523.16, + "end": 18525.38, + "probability": 0.9863 + }, + { + "start": 18527.8, + "end": 18532.18, + "probability": 0.9578 + }, + { + "start": 18533.44, + "end": 18535.2, + "probability": 0.9811 + }, + { + "start": 18536.38, + "end": 18537.68, + "probability": 0.6743 + }, + { + "start": 18541.52, + "end": 18546.74, + "probability": 0.9969 + }, + { + "start": 18546.74, + "end": 18549.46, + "probability": 0.9509 + }, + { + "start": 18550.9, + "end": 18554.08, + "probability": 0.8703 + }, + { + "start": 18558.88, + "end": 18560.78, + "probability": 0.9386 + }, + { + "start": 18562.02, + "end": 18563.86, + "probability": 0.8651 + }, + { + "start": 18564.9, + "end": 18565.66, + "probability": 0.8408 + }, + { + "start": 18565.88, + "end": 18566.86, + "probability": 0.751 + }, + { + "start": 18567.02, + "end": 18568.08, + "probability": 0.9336 + }, + { + "start": 18570.12, + "end": 18572.22, + "probability": 0.638 + }, + { + "start": 18573.32, + "end": 18574.36, + "probability": 0.8177 + }, + { + "start": 18575.04, + "end": 18578.8, + "probability": 0.9562 + }, + { + "start": 18580.14, + "end": 18583.52, + "probability": 0.9941 + }, + { + "start": 18583.76, + "end": 18586.44, + "probability": 0.9805 + }, + { + "start": 18587.58, + "end": 18588.32, + "probability": 0.9722 + }, + { + "start": 18588.88, + "end": 18596.32, + "probability": 0.9905 + }, + { + "start": 18596.32, + "end": 18600.86, + "probability": 0.9926 + }, + { + "start": 18602.14, + "end": 18603.94, + "probability": 0.8203 + }, + { + "start": 18604.08, + "end": 18610.0, + "probability": 0.9966 + }, + { + "start": 18611.54, + "end": 18617.82, + "probability": 0.9579 + }, + { + "start": 18622.18, + "end": 18623.72, + "probability": 0.8499 + }, + { + "start": 18625.18, + "end": 18626.22, + "probability": 0.9814 + }, + { + "start": 18628.3, + "end": 18630.08, + "probability": 0.9729 + }, + { + "start": 18632.22, + "end": 18633.08, + "probability": 0.9907 + }, + { + "start": 18635.27, + "end": 18640.92, + "probability": 0.9968 + }, + { + "start": 18642.6, + "end": 18646.98, + "probability": 0.9937 + }, + { + "start": 18647.43, + "end": 18651.98, + "probability": 0.9932 + }, + { + "start": 18654.04, + "end": 18656.88, + "probability": 0.9991 + }, + { + "start": 18660.1, + "end": 18663.1, + "probability": 0.8733 + }, + { + "start": 18664.86, + "end": 18665.94, + "probability": 0.575 + }, + { + "start": 18665.98, + "end": 18666.24, + "probability": 0.669 + }, + { + "start": 18666.28, + "end": 18667.74, + "probability": 0.8942 + }, + { + "start": 18667.82, + "end": 18668.58, + "probability": 0.3318 + }, + { + "start": 18668.92, + "end": 18670.66, + "probability": 0.8057 + }, + { + "start": 18670.78, + "end": 18672.22, + "probability": 0.9457 + }, + { + "start": 18672.54, + "end": 18675.14, + "probability": 0.9303 + }, + { + "start": 18675.18, + "end": 18676.62, + "probability": 0.1366 + }, + { + "start": 18677.75, + "end": 18684.42, + "probability": 0.8221 + }, + { + "start": 18685.86, + "end": 18693.3, + "probability": 0.9365 + }, + { + "start": 18694.44, + "end": 18695.98, + "probability": 0.0009 + }, + { + "start": 18695.98, + "end": 18699.44, + "probability": 0.7483 + }, + { + "start": 18701.66, + "end": 18702.9, + "probability": 0.7135 + }, + { + "start": 18704.42, + "end": 18706.56, + "probability": 0.7749 + }, + { + "start": 18707.38, + "end": 18713.2, + "probability": 0.9926 + }, + { + "start": 18714.78, + "end": 18716.92, + "probability": 0.989 + }, + { + "start": 18717.6, + "end": 18720.02, + "probability": 0.765 + }, + { + "start": 18720.74, + "end": 18730.08, + "probability": 0.9733 + }, + { + "start": 18731.24, + "end": 18737.42, + "probability": 0.9971 + }, + { + "start": 18740.34, + "end": 18741.22, + "probability": 0.8901 + }, + { + "start": 18741.32, + "end": 18742.28, + "probability": 0.8217 + }, + { + "start": 18742.8, + "end": 18745.2, + "probability": 0.9875 + }, + { + "start": 18746.78, + "end": 18747.5, + "probability": 0.979 + }, + { + "start": 18747.62, + "end": 18748.62, + "probability": 0.9839 + }, + { + "start": 18749.62, + "end": 18751.02, + "probability": 0.957 + }, + { + "start": 18751.1, + "end": 18752.84, + "probability": 0.9458 + }, + { + "start": 18753.58, + "end": 18755.38, + "probability": 0.9154 + }, + { + "start": 18756.34, + "end": 18757.82, + "probability": 0.8569 + }, + { + "start": 18760.44, + "end": 18762.6, + "probability": 0.96 + }, + { + "start": 18763.36, + "end": 18766.46, + "probability": 0.8555 + }, + { + "start": 18767.22, + "end": 18769.78, + "probability": 0.9543 + }, + { + "start": 18771.3, + "end": 18773.29, + "probability": 0.9683 + }, + { + "start": 18773.76, + "end": 18778.34, + "probability": 0.9711 + }, + { + "start": 18778.82, + "end": 18780.71, + "probability": 0.9023 + }, + { + "start": 18782.14, + "end": 18783.38, + "probability": 0.6928 + }, + { + "start": 18783.44, + "end": 18784.66, + "probability": 0.942 + }, + { + "start": 18785.02, + "end": 18787.5, + "probability": 0.9912 + }, + { + "start": 18790.24, + "end": 18794.84, + "probability": 0.9191 + }, + { + "start": 18796.56, + "end": 18799.24, + "probability": 0.9735 + }, + { + "start": 18800.62, + "end": 18806.98, + "probability": 0.955 + }, + { + "start": 18807.14, + "end": 18810.4, + "probability": 0.9906 + }, + { + "start": 18811.08, + "end": 18815.66, + "probability": 0.9985 + }, + { + "start": 18817.2, + "end": 18821.72, + "probability": 0.9895 + }, + { + "start": 18822.88, + "end": 18827.22, + "probability": 0.8778 + }, + { + "start": 18828.18, + "end": 18831.0, + "probability": 0.9736 + }, + { + "start": 18831.0, + "end": 18835.04, + "probability": 0.911 + }, + { + "start": 18836.52, + "end": 18843.38, + "probability": 0.9913 + }, + { + "start": 18844.62, + "end": 18846.82, + "probability": 0.9431 + }, + { + "start": 18848.16, + "end": 18849.92, + "probability": 0.9281 + }, + { + "start": 18849.96, + "end": 18850.98, + "probability": 0.2554 + }, + { + "start": 18852.1, + "end": 18856.34, + "probability": 0.6537 + }, + { + "start": 18857.26, + "end": 18858.26, + "probability": 0.4505 + }, + { + "start": 18859.46, + "end": 18862.08, + "probability": 0.8501 + }, + { + "start": 18862.96, + "end": 18869.38, + "probability": 0.8121 + }, + { + "start": 18869.44, + "end": 18870.92, + "probability": 0.8985 + }, + { + "start": 18871.06, + "end": 18878.88, + "probability": 0.9111 + }, + { + "start": 18879.8, + "end": 18885.72, + "probability": 0.9829 + }, + { + "start": 18886.68, + "end": 18890.16, + "probability": 0.9779 + }, + { + "start": 18891.94, + "end": 18893.95, + "probability": 0.9547 + }, + { + "start": 18894.8, + "end": 18899.52, + "probability": 0.9945 + }, + { + "start": 18899.52, + "end": 18900.32, + "probability": 0.6239 + }, + { + "start": 18900.44, + "end": 18901.62, + "probability": 0.8274 + }, + { + "start": 18902.74, + "end": 18904.54, + "probability": 0.9293 + }, + { + "start": 18905.38, + "end": 18907.34, + "probability": 0.8636 + }, + { + "start": 18908.96, + "end": 18909.44, + "probability": 0.9126 + }, + { + "start": 18910.04, + "end": 18912.46, + "probability": 0.8459 + }, + { + "start": 18913.36, + "end": 18915.03, + "probability": 0.6619 + }, + { + "start": 18916.2, + "end": 18918.48, + "probability": 0.9846 + }, + { + "start": 18918.62, + "end": 18920.58, + "probability": 0.7777 + }, + { + "start": 18920.9, + "end": 18923.31, + "probability": 0.9896 + }, + { + "start": 18925.32, + "end": 18933.6, + "probability": 0.9884 + }, + { + "start": 18933.92, + "end": 18935.8, + "probability": 0.7561 + }, + { + "start": 18937.34, + "end": 18941.72, + "probability": 0.6709 + }, + { + "start": 18942.48, + "end": 18943.58, + "probability": 0.8052 + }, + { + "start": 18944.84, + "end": 18947.1, + "probability": 0.9912 + }, + { + "start": 18947.28, + "end": 18953.13, + "probability": 0.9636 + }, + { + "start": 18956.22, + "end": 18957.88, + "probability": 0.9717 + }, + { + "start": 18959.0, + "end": 18961.6, + "probability": 0.9968 + }, + { + "start": 18962.46, + "end": 18965.86, + "probability": 0.9549 + }, + { + "start": 18966.54, + "end": 18968.72, + "probability": 0.9797 + }, + { + "start": 18970.34, + "end": 18971.58, + "probability": 0.0148 + }, + { + "start": 18971.58, + "end": 18973.98, + "probability": 0.5425 + }, + { + "start": 18975.5, + "end": 18976.75, + "probability": 0.6147 + }, + { + "start": 18977.86, + "end": 18977.86, + "probability": 0.1198 + }, + { + "start": 18978.16, + "end": 18979.5, + "probability": 0.9312 + }, + { + "start": 18979.64, + "end": 18981.02, + "probability": 0.9608 + }, + { + "start": 18982.58, + "end": 18986.56, + "probability": 0.9675 + }, + { + "start": 18987.06, + "end": 18988.82, + "probability": 0.6977 + }, + { + "start": 18989.56, + "end": 18992.84, + "probability": 0.763 + }, + { + "start": 18994.46, + "end": 18997.88, + "probability": 0.9326 + }, + { + "start": 18999.42, + "end": 19001.54, + "probability": 0.915 + }, + { + "start": 19002.68, + "end": 19007.14, + "probability": 0.8979 + }, + { + "start": 19008.68, + "end": 19012.66, + "probability": 0.859 + }, + { + "start": 19013.2, + "end": 19014.54, + "probability": 0.9951 + }, + { + "start": 19015.24, + "end": 19017.13, + "probability": 0.9698 + }, + { + "start": 19017.96, + "end": 19019.1, + "probability": 0.6413 + }, + { + "start": 19019.52, + "end": 19022.94, + "probability": 0.9296 + }, + { + "start": 19023.02, + "end": 19025.52, + "probability": 0.9983 + }, + { + "start": 19026.16, + "end": 19029.16, + "probability": 0.9544 + }, + { + "start": 19030.22, + "end": 19034.02, + "probability": 0.9618 + }, + { + "start": 19035.02, + "end": 19039.19, + "probability": 0.5749 + }, + { + "start": 19040.46, + "end": 19041.6, + "probability": 0.7195 + }, + { + "start": 19042.82, + "end": 19045.98, + "probability": 0.7025 + }, + { + "start": 19048.12, + "end": 19050.5, + "probability": 0.9778 + }, + { + "start": 19052.1, + "end": 19053.2, + "probability": 0.677 + }, + { + "start": 19053.9, + "end": 19062.32, + "probability": 0.9729 + }, + { + "start": 19063.64, + "end": 19067.68, + "probability": 0.9702 + }, + { + "start": 19067.9, + "end": 19069.08, + "probability": 0.6648 + }, + { + "start": 19070.22, + "end": 19076.28, + "probability": 0.9144 + }, + { + "start": 19077.22, + "end": 19079.54, + "probability": 0.9683 + }, + { + "start": 19082.86, + "end": 19085.36, + "probability": 0.9948 + }, + { + "start": 19086.04, + "end": 19087.9, + "probability": 0.998 + }, + { + "start": 19089.68, + "end": 19090.72, + "probability": 0.8754 + }, + { + "start": 19090.78, + "end": 19093.06, + "probability": 0.9478 + }, + { + "start": 19093.18, + "end": 19095.54, + "probability": 0.9619 + }, + { + "start": 19096.6, + "end": 19097.96, + "probability": 0.9956 + }, + { + "start": 19098.86, + "end": 19100.2, + "probability": 0.9061 + }, + { + "start": 19101.4, + "end": 19105.12, + "probability": 0.9506 + }, + { + "start": 19106.74, + "end": 19110.18, + "probability": 0.938 + }, + { + "start": 19111.26, + "end": 19118.38, + "probability": 0.9787 + }, + { + "start": 19118.38, + "end": 19121.1, + "probability": 0.9794 + }, + { + "start": 19121.8, + "end": 19122.2, + "probability": 0.8152 + }, + { + "start": 19122.96, + "end": 19127.14, + "probability": 0.9832 + }, + { + "start": 19130.26, + "end": 19130.9, + "probability": 0.3857 + }, + { + "start": 19131.76, + "end": 19135.62, + "probability": 0.8686 + }, + { + "start": 19135.72, + "end": 19137.6, + "probability": 0.4478 + }, + { + "start": 19137.6, + "end": 19138.44, + "probability": 0.1783 + }, + { + "start": 19138.44, + "end": 19138.88, + "probability": 0.2335 + }, + { + "start": 19139.06, + "end": 19141.06, + "probability": 0.2061 + }, + { + "start": 19141.4, + "end": 19144.5, + "probability": 0.0793 + }, + { + "start": 19157.4, + "end": 19164.3, + "probability": 0.0517 + }, + { + "start": 19164.3, + "end": 19164.3, + "probability": 0.086 + }, + { + "start": 19164.3, + "end": 19164.3, + "probability": 0.0603 + }, + { + "start": 19164.48, + "end": 19165.25, + "probability": 0.0334 + }, + { + "start": 19165.6, + "end": 19165.7, + "probability": 0.1672 + }, + { + "start": 19165.7, + "end": 19166.26, + "probability": 0.1525 + }, + { + "start": 19166.32, + "end": 19166.78, + "probability": 0.0677 + }, + { + "start": 19166.78, + "end": 19169.63, + "probability": 0.4895 + }, + { + "start": 19197.06, + "end": 19198.94, + "probability": 0.7547 + }, + { + "start": 19200.24, + "end": 19202.02, + "probability": 0.8849 + }, + { + "start": 19203.06, + "end": 19205.34, + "probability": 0.8706 + }, + { + "start": 19207.09, + "end": 19208.92, + "probability": 0.9562 + }, + { + "start": 19209.12, + "end": 19213.52, + "probability": 0.9647 + }, + { + "start": 19214.24, + "end": 19217.42, + "probability": 0.9722 + }, + { + "start": 19217.52, + "end": 19218.11, + "probability": 0.7088 + }, + { + "start": 19218.78, + "end": 19223.32, + "probability": 0.9714 + }, + { + "start": 19224.1, + "end": 19224.6, + "probability": 0.7387 + }, + { + "start": 19225.32, + "end": 19226.04, + "probability": 0.5647 + }, + { + "start": 19226.56, + "end": 19228.7, + "probability": 0.9038 + }, + { + "start": 19232.51, + "end": 19234.19, + "probability": 0.9253 + }, + { + "start": 19235.94, + "end": 19237.36, + "probability": 0.7856 + }, + { + "start": 19238.26, + "end": 19242.56, + "probability": 0.8386 + }, + { + "start": 19243.5, + "end": 19249.54, + "probability": 0.9363 + }, + { + "start": 19250.92, + "end": 19252.32, + "probability": 0.9731 + }, + { + "start": 19253.08, + "end": 19257.46, + "probability": 0.9705 + }, + { + "start": 19258.08, + "end": 19260.98, + "probability": 0.9863 + }, + { + "start": 19261.54, + "end": 19262.72, + "probability": 0.3173 + }, + { + "start": 19263.76, + "end": 19268.22, + "probability": 0.9513 + }, + { + "start": 19268.44, + "end": 19270.84, + "probability": 0.9068 + }, + { + "start": 19271.64, + "end": 19274.82, + "probability": 0.6651 + }, + { + "start": 19275.7, + "end": 19280.6, + "probability": 0.9023 + }, + { + "start": 19281.98, + "end": 19283.88, + "probability": 0.9897 + }, + { + "start": 19284.0, + "end": 19285.04, + "probability": 0.7358 + }, + { + "start": 19286.94, + "end": 19289.8, + "probability": 0.8779 + }, + { + "start": 19290.92, + "end": 19294.44, + "probability": 0.9958 + }, + { + "start": 19295.4, + "end": 19297.04, + "probability": 0.9217 + }, + { + "start": 19298.08, + "end": 19299.2, + "probability": 0.9429 + }, + { + "start": 19299.88, + "end": 19302.42, + "probability": 0.9238 + }, + { + "start": 19302.84, + "end": 19304.56, + "probability": 0.981 + }, + { + "start": 19305.02, + "end": 19306.52, + "probability": 0.9552 + }, + { + "start": 19307.78, + "end": 19309.04, + "probability": 0.9722 + }, + { + "start": 19309.04, + "end": 19309.74, + "probability": 0.9279 + }, + { + "start": 19310.34, + "end": 19312.74, + "probability": 0.9973 + }, + { + "start": 19313.42, + "end": 19314.2, + "probability": 0.4157 + }, + { + "start": 19314.8, + "end": 19315.64, + "probability": 0.6517 + }, + { + "start": 19316.62, + "end": 19317.98, + "probability": 0.9439 + }, + { + "start": 19318.9, + "end": 19321.5, + "probability": 0.9677 + }, + { + "start": 19321.7, + "end": 19323.04, + "probability": 0.9087 + }, + { + "start": 19324.14, + "end": 19327.62, + "probability": 0.979 + }, + { + "start": 19327.86, + "end": 19328.92, + "probability": 0.9694 + }, + { + "start": 19329.5, + "end": 19331.36, + "probability": 0.9074 + }, + { + "start": 19332.22, + "end": 19333.0, + "probability": 0.897 + }, + { + "start": 19335.52, + "end": 19336.52, + "probability": 0.9827 + }, + { + "start": 19337.36, + "end": 19341.02, + "probability": 0.9782 + }, + { + "start": 19341.6, + "end": 19342.32, + "probability": 0.7976 + }, + { + "start": 19342.52, + "end": 19343.24, + "probability": 0.8618 + }, + { + "start": 19343.74, + "end": 19345.86, + "probability": 0.9985 + }, + { + "start": 19345.86, + "end": 19348.2, + "probability": 0.9907 + }, + { + "start": 19349.04, + "end": 19351.34, + "probability": 0.9922 + }, + { + "start": 19351.5, + "end": 19351.84, + "probability": 0.8819 + }, + { + "start": 19351.92, + "end": 19354.86, + "probability": 0.9742 + }, + { + "start": 19355.74, + "end": 19358.52, + "probability": 0.9505 + }, + { + "start": 19359.26, + "end": 19360.82, + "probability": 0.8459 + }, + { + "start": 19361.0, + "end": 19363.98, + "probability": 0.963 + }, + { + "start": 19364.02, + "end": 19367.04, + "probability": 0.9268 + }, + { + "start": 19367.33, + "end": 19372.06, + "probability": 0.8317 + }, + { + "start": 19372.72, + "end": 19378.96, + "probability": 0.9829 + }, + { + "start": 19379.04, + "end": 19381.14, + "probability": 0.9346 + }, + { + "start": 19381.22, + "end": 19382.58, + "probability": 0.8676 + }, + { + "start": 19383.8, + "end": 19385.8, + "probability": 0.9719 + }, + { + "start": 19385.84, + "end": 19387.0, + "probability": 0.6318 + }, + { + "start": 19387.62, + "end": 19388.88, + "probability": 0.9915 + }, + { + "start": 19389.04, + "end": 19390.6, + "probability": 0.9096 + }, + { + "start": 19391.52, + "end": 19395.5, + "probability": 0.9092 + }, + { + "start": 19396.78, + "end": 19398.0, + "probability": 0.8927 + }, + { + "start": 19399.0, + "end": 19399.5, + "probability": 0.7333 + }, + { + "start": 19400.1, + "end": 19403.18, + "probability": 0.959 + }, + { + "start": 19403.36, + "end": 19404.06, + "probability": 0.3378 + }, + { + "start": 19404.58, + "end": 19405.9, + "probability": 0.9742 + }, + { + "start": 19405.98, + "end": 19406.78, + "probability": 0.9546 + }, + { + "start": 19406.82, + "end": 19407.92, + "probability": 0.9728 + }, + { + "start": 19408.7, + "end": 19411.58, + "probability": 0.9709 + }, + { + "start": 19411.68, + "end": 19412.36, + "probability": 0.5623 + }, + { + "start": 19412.48, + "end": 19414.3, + "probability": 0.9564 + }, + { + "start": 19414.34, + "end": 19414.66, + "probability": 0.8357 + }, + { + "start": 19415.24, + "end": 19418.44, + "probability": 0.7571 + }, + { + "start": 19418.64, + "end": 19419.64, + "probability": 0.9529 + }, + { + "start": 19420.54, + "end": 19423.56, + "probability": 0.996 + }, + { + "start": 19424.32, + "end": 19425.3, + "probability": 0.7311 + }, + { + "start": 19425.42, + "end": 19429.02, + "probability": 0.7493 + }, + { + "start": 19429.78, + "end": 19430.8, + "probability": 0.7539 + }, + { + "start": 19431.82, + "end": 19435.46, + "probability": 0.9007 + }, + { + "start": 19436.68, + "end": 19437.46, + "probability": 0.9585 + }, + { + "start": 19437.52, + "end": 19438.12, + "probability": 0.8702 + }, + { + "start": 19438.42, + "end": 19442.2, + "probability": 0.9985 + }, + { + "start": 19442.2, + "end": 19445.28, + "probability": 0.9744 + }, + { + "start": 19446.06, + "end": 19446.78, + "probability": 0.7384 + }, + { + "start": 19447.94, + "end": 19449.07, + "probability": 0.5623 + }, + { + "start": 19449.98, + "end": 19454.9, + "probability": 0.9834 + }, + { + "start": 19455.64, + "end": 19458.12, + "probability": 0.9684 + }, + { + "start": 19458.12, + "end": 19461.76, + "probability": 0.8727 + }, + { + "start": 19461.82, + "end": 19462.1, + "probability": 0.733 + }, + { + "start": 19463.02, + "end": 19466.03, + "probability": 0.8146 + }, + { + "start": 19467.74, + "end": 19470.26, + "probability": 0.987 + }, + { + "start": 19471.16, + "end": 19473.97, + "probability": 0.9527 + }, + { + "start": 19479.84, + "end": 19480.92, + "probability": 0.8405 + }, + { + "start": 19481.46, + "end": 19481.96, + "probability": 0.8165 + }, + { + "start": 19482.12, + "end": 19482.28, + "probability": 0.7131 + }, + { + "start": 19483.02, + "end": 19483.98, + "probability": 0.6766 + }, + { + "start": 19485.56, + "end": 19487.06, + "probability": 0.6835 + }, + { + "start": 19487.6, + "end": 19488.78, + "probability": 0.5705 + }, + { + "start": 19489.08, + "end": 19489.84, + "probability": 0.966 + }, + { + "start": 19489.94, + "end": 19490.38, + "probability": 0.7573 + }, + { + "start": 19490.46, + "end": 19491.64, + "probability": 0.6954 + }, + { + "start": 19491.82, + "end": 19493.2, + "probability": 0.8667 + }, + { + "start": 19493.34, + "end": 19496.26, + "probability": 0.9961 + }, + { + "start": 19496.3, + "end": 19498.64, + "probability": 0.6875 + }, + { + "start": 19498.82, + "end": 19504.08, + "probability": 0.9623 + }, + { + "start": 19504.34, + "end": 19505.92, + "probability": 0.8022 + }, + { + "start": 19505.98, + "end": 19507.46, + "probability": 0.8086 + }, + { + "start": 19508.1, + "end": 19508.52, + "probability": 0.8525 + }, + { + "start": 19508.6, + "end": 19509.34, + "probability": 0.688 + }, + { + "start": 19509.34, + "end": 19510.24, + "probability": 0.7665 + }, + { + "start": 19510.4, + "end": 19511.28, + "probability": 0.907 + }, + { + "start": 19511.34, + "end": 19511.78, + "probability": 0.4953 + }, + { + "start": 19511.78, + "end": 19513.4, + "probability": 0.0925 + }, + { + "start": 19513.44, + "end": 19515.52, + "probability": 0.3284 + }, + { + "start": 19515.68, + "end": 19517.32, + "probability": 0.1868 + }, + { + "start": 19517.32, + "end": 19517.32, + "probability": 0.2207 + }, + { + "start": 19517.32, + "end": 19517.32, + "probability": 0.0489 + }, + { + "start": 19517.32, + "end": 19518.54, + "probability": 0.1017 + }, + { + "start": 19518.66, + "end": 19519.38, + "probability": 0.2358 + }, + { + "start": 19519.5, + "end": 19521.94, + "probability": 0.6241 + }, + { + "start": 19522.18, + "end": 19522.54, + "probability": 0.693 + }, + { + "start": 19524.18, + "end": 19526.04, + "probability": 0.7853 + }, + { + "start": 19526.06, + "end": 19529.24, + "probability": 0.9541 + }, + { + "start": 19529.38, + "end": 19531.52, + "probability": 0.7743 + }, + { + "start": 19531.52, + "end": 19533.72, + "probability": 0.1064 + }, + { + "start": 19533.96, + "end": 19535.0, + "probability": 0.0892 + }, + { + "start": 19535.38, + "end": 19536.58, + "probability": 0.715 + }, + { + "start": 19536.66, + "end": 19538.46, + "probability": 0.4884 + }, + { + "start": 19538.5, + "end": 19541.44, + "probability": 0.7352 + }, + { + "start": 19542.56, + "end": 19544.58, + "probability": 0.916 + }, + { + "start": 19545.54, + "end": 19546.24, + "probability": 0.0622 + }, + { + "start": 19546.36, + "end": 19546.36, + "probability": 0.1123 + }, + { + "start": 19546.36, + "end": 19548.66, + "probability": 0.2591 + }, + { + "start": 19548.66, + "end": 19549.02, + "probability": 0.015 + }, + { + "start": 19549.02, + "end": 19549.02, + "probability": 0.3118 + }, + { + "start": 19549.02, + "end": 19550.86, + "probability": 0.5678 + }, + { + "start": 19551.24, + "end": 19553.52, + "probability": 0.9052 + }, + { + "start": 19553.76, + "end": 19556.54, + "probability": 0.9176 + }, + { + "start": 19557.2, + "end": 19558.02, + "probability": 0.9233 + }, + { + "start": 19559.98, + "end": 19561.52, + "probability": 0.8243 + }, + { + "start": 19561.68, + "end": 19563.04, + "probability": 0.9417 + }, + { + "start": 19563.2, + "end": 19563.68, + "probability": 0.5034 + }, + { + "start": 19564.0, + "end": 19565.1, + "probability": 0.9489 + }, + { + "start": 19565.22, + "end": 19566.16, + "probability": 0.967 + }, + { + "start": 19566.32, + "end": 19567.08, + "probability": 0.8018 + }, + { + "start": 19567.16, + "end": 19567.86, + "probability": 0.9246 + }, + { + "start": 19568.52, + "end": 19571.74, + "probability": 0.9902 + }, + { + "start": 19571.98, + "end": 19573.02, + "probability": 0.7186 + }, + { + "start": 19573.32, + "end": 19575.12, + "probability": 0.9957 + }, + { + "start": 19576.34, + "end": 19579.16, + "probability": 0.9924 + }, + { + "start": 19579.46, + "end": 19580.8, + "probability": 0.7397 + }, + { + "start": 19580.86, + "end": 19581.64, + "probability": 0.8867 + }, + { + "start": 19581.76, + "end": 19582.42, + "probability": 0.6685 + }, + { + "start": 19582.8, + "end": 19584.58, + "probability": 0.974 + }, + { + "start": 19585.28, + "end": 19587.52, + "probability": 0.998 + }, + { + "start": 19587.58, + "end": 19589.14, + "probability": 0.9966 + }, + { + "start": 19589.28, + "end": 19590.1, + "probability": 0.9819 + }, + { + "start": 19591.14, + "end": 19593.91, + "probability": 0.9937 + }, + { + "start": 19595.34, + "end": 19597.84, + "probability": 0.9497 + }, + { + "start": 19597.95, + "end": 19599.56, + "probability": 0.9819 + }, + { + "start": 19600.3, + "end": 19601.02, + "probability": 0.7987 + }, + { + "start": 19601.26, + "end": 19604.68, + "probability": 0.9951 + }, + { + "start": 19605.28, + "end": 19607.64, + "probability": 0.9731 + }, + { + "start": 19608.16, + "end": 19612.16, + "probability": 0.9951 + }, + { + "start": 19613.38, + "end": 19613.98, + "probability": 0.6996 + }, + { + "start": 19614.22, + "end": 19620.32, + "probability": 0.9958 + }, + { + "start": 19620.41, + "end": 19627.56, + "probability": 0.9975 + }, + { + "start": 19629.12, + "end": 19633.76, + "probability": 0.9786 + }, + { + "start": 19634.32, + "end": 19635.56, + "probability": 0.8886 + }, + { + "start": 19635.84, + "end": 19639.26, + "probability": 0.9916 + }, + { + "start": 19640.0, + "end": 19643.18, + "probability": 0.9904 + }, + { + "start": 19644.2, + "end": 19646.46, + "probability": 0.9765 + }, + { + "start": 19647.36, + "end": 19649.22, + "probability": 0.9764 + }, + { + "start": 19649.94, + "end": 19651.62, + "probability": 0.687 + }, + { + "start": 19652.54, + "end": 19656.28, + "probability": 0.9759 + }, + { + "start": 19656.94, + "end": 19660.74, + "probability": 0.9693 + }, + { + "start": 19662.18, + "end": 19665.04, + "probability": 0.9819 + }, + { + "start": 19666.52, + "end": 19668.14, + "probability": 0.9573 + }, + { + "start": 19669.78, + "end": 19673.42, + "probability": 0.8896 + }, + { + "start": 19674.04, + "end": 19674.94, + "probability": 0.6839 + }, + { + "start": 19675.1, + "end": 19676.8, + "probability": 0.9827 + }, + { + "start": 19677.3, + "end": 19678.74, + "probability": 0.9786 + }, + { + "start": 19679.14, + "end": 19680.04, + "probability": 0.7589 + }, + { + "start": 19680.74, + "end": 19684.32, + "probability": 0.9155 + }, + { + "start": 19684.82, + "end": 19688.64, + "probability": 0.9916 + }, + { + "start": 19689.92, + "end": 19695.12, + "probability": 0.6655 + }, + { + "start": 19695.64, + "end": 19697.08, + "probability": 0.9672 + }, + { + "start": 19698.22, + "end": 19699.36, + "probability": 0.9733 + }, + { + "start": 19699.7, + "end": 19703.16, + "probability": 0.9855 + }, + { + "start": 19704.4, + "end": 19707.82, + "probability": 0.8254 + }, + { + "start": 19708.34, + "end": 19709.44, + "probability": 0.8555 + }, + { + "start": 19710.14, + "end": 19711.46, + "probability": 0.7662 + }, + { + "start": 19711.48, + "end": 19713.86, + "probability": 0.9966 + }, + { + "start": 19713.92, + "end": 19717.66, + "probability": 0.9534 + }, + { + "start": 19718.16, + "end": 19720.52, + "probability": 0.9918 + }, + { + "start": 19721.98, + "end": 19724.66, + "probability": 0.7601 + }, + { + "start": 19725.24, + "end": 19731.36, + "probability": 0.9479 + }, + { + "start": 19732.08, + "end": 19734.62, + "probability": 0.9535 + }, + { + "start": 19735.28, + "end": 19739.02, + "probability": 0.9963 + }, + { + "start": 19739.62, + "end": 19742.22, + "probability": 0.9626 + }, + { + "start": 19742.72, + "end": 19743.86, + "probability": 0.9742 + }, + { + "start": 19744.22, + "end": 19745.22, + "probability": 0.5161 + }, + { + "start": 19745.36, + "end": 19747.02, + "probability": 0.9658 + }, + { + "start": 19747.4, + "end": 19748.52, + "probability": 0.9509 + }, + { + "start": 19748.86, + "end": 19751.76, + "probability": 0.9487 + }, + { + "start": 19752.12, + "end": 19754.34, + "probability": 0.9878 + }, + { + "start": 19754.46, + "end": 19755.16, + "probability": 0.9486 + }, + { + "start": 19755.54, + "end": 19758.04, + "probability": 0.9126 + }, + { + "start": 19758.82, + "end": 19760.86, + "probability": 0.9932 + }, + { + "start": 19761.52, + "end": 19764.3, + "probability": 0.9194 + }, + { + "start": 19774.54, + "end": 19777.06, + "probability": 0.2554 + }, + { + "start": 19778.1, + "end": 19780.08, + "probability": 0.7873 + }, + { + "start": 19780.2, + "end": 19780.99, + "probability": 0.974 + }, + { + "start": 19781.84, + "end": 19782.74, + "probability": 0.7343 + }, + { + "start": 19783.18, + "end": 19786.0, + "probability": 0.6664 + }, + { + "start": 19786.24, + "end": 19790.84, + "probability": 0.7966 + }, + { + "start": 19790.84, + "end": 19795.22, + "probability": 0.8971 + }, + { + "start": 19795.28, + "end": 19796.36, + "probability": 0.65 + }, + { + "start": 19796.96, + "end": 19798.52, + "probability": 0.9102 + }, + { + "start": 19799.04, + "end": 19801.04, + "probability": 0.9286 + }, + { + "start": 19801.2, + "end": 19801.88, + "probability": 0.3891 + }, + { + "start": 19802.3, + "end": 19806.92, + "probability": 0.9914 + }, + { + "start": 19806.94, + "end": 19807.8, + "probability": 0.6426 + }, + { + "start": 19807.84, + "end": 19808.86, + "probability": 0.6681 + }, + { + "start": 19808.98, + "end": 19809.18, + "probability": 0.2435 + }, + { + "start": 19809.24, + "end": 19809.48, + "probability": 0.2123 + }, + { + "start": 19809.52, + "end": 19811.52, + "probability": 0.9425 + }, + { + "start": 19811.84, + "end": 19815.46, + "probability": 0.9321 + }, + { + "start": 19815.74, + "end": 19816.92, + "probability": 0.8349 + }, + { + "start": 19817.3, + "end": 19819.14, + "probability": 0.9126 + }, + { + "start": 19819.34, + "end": 19820.11, + "probability": 0.9388 + }, + { + "start": 19820.44, + "end": 19824.74, + "probability": 0.8399 + }, + { + "start": 19825.44, + "end": 19826.5, + "probability": 0.708 + }, + { + "start": 19827.4, + "end": 19829.94, + "probability": 0.7721 + }, + { + "start": 19831.74, + "end": 19835.96, + "probability": 0.9208 + }, + { + "start": 19836.64, + "end": 19844.02, + "probability": 0.7814 + }, + { + "start": 19844.74, + "end": 19845.98, + "probability": 0.9198 + }, + { + "start": 19846.46, + "end": 19850.62, + "probability": 0.9785 + }, + { + "start": 19851.26, + "end": 19853.78, + "probability": 0.9829 + }, + { + "start": 19853.96, + "end": 19857.0, + "probability": 0.8357 + }, + { + "start": 19857.7, + "end": 19858.48, + "probability": 0.6061 + }, + { + "start": 19858.8, + "end": 19861.26, + "probability": 0.9637 + }, + { + "start": 19862.16, + "end": 19867.92, + "probability": 0.973 + }, + { + "start": 19868.2, + "end": 19869.94, + "probability": 0.8272 + }, + { + "start": 19869.98, + "end": 19870.12, + "probability": 0.0336 + }, + { + "start": 19870.2, + "end": 19870.96, + "probability": 0.7035 + }, + { + "start": 19871.34, + "end": 19873.28, + "probability": 0.7776 + }, + { + "start": 19873.56, + "end": 19877.36, + "probability": 0.974 + }, + { + "start": 19877.36, + "end": 19881.5, + "probability": 0.9145 + }, + { + "start": 19881.78, + "end": 19885.78, + "probability": 0.685 + }, + { + "start": 19886.22, + "end": 19887.25, + "probability": 0.9951 + }, + { + "start": 19887.94, + "end": 19889.28, + "probability": 0.9882 + }, + { + "start": 19889.9, + "end": 19891.42, + "probability": 0.9048 + }, + { + "start": 19891.62, + "end": 19892.64, + "probability": 0.7337 + }, + { + "start": 19892.9, + "end": 19894.98, + "probability": 0.9826 + }, + { + "start": 19895.08, + "end": 19896.34, + "probability": 0.9003 + }, + { + "start": 19896.62, + "end": 19899.42, + "probability": 0.9214 + }, + { + "start": 19899.58, + "end": 19900.49, + "probability": 0.8575 + }, + { + "start": 19900.88, + "end": 19902.38, + "probability": 0.9565 + }, + { + "start": 19902.52, + "end": 19905.02, + "probability": 0.7139 + }, + { + "start": 19905.06, + "end": 19905.99, + "probability": 0.8528 + }, + { + "start": 19906.52, + "end": 19907.5, + "probability": 0.9534 + }, + { + "start": 19908.16, + "end": 19912.94, + "probability": 0.8287 + }, + { + "start": 19912.94, + "end": 19916.84, + "probability": 0.9174 + }, + { + "start": 19917.12, + "end": 19917.86, + "probability": 0.9189 + }, + { + "start": 19918.8, + "end": 19921.72, + "probability": 0.9424 + }, + { + "start": 19921.9, + "end": 19925.64, + "probability": 0.7868 + }, + { + "start": 19926.06, + "end": 19926.82, + "probability": 0.6185 + }, + { + "start": 19927.1, + "end": 19931.52, + "probability": 0.8784 + }, + { + "start": 19931.84, + "end": 19936.96, + "probability": 0.9897 + }, + { + "start": 19937.28, + "end": 19941.1, + "probability": 0.8567 + }, + { + "start": 19941.5, + "end": 19948.46, + "probability": 0.9735 + }, + { + "start": 19949.06, + "end": 19949.38, + "probability": 0.7998 + }, + { + "start": 19950.9, + "end": 19952.96, + "probability": 0.8328 + }, + { + "start": 19953.5, + "end": 19955.14, + "probability": 0.9933 + }, + { + "start": 19955.38, + "end": 19956.2, + "probability": 0.9159 + }, + { + "start": 19956.8, + "end": 19961.66, + "probability": 0.9977 + }, + { + "start": 19978.56, + "end": 19981.2, + "probability": 0.8477 + }, + { + "start": 19982.06, + "end": 19984.16, + "probability": 0.7858 + }, + { + "start": 19985.78, + "end": 19987.56, + "probability": 0.9609 + }, + { + "start": 19988.66, + "end": 19992.12, + "probability": 0.9546 + }, + { + "start": 19994.34, + "end": 19997.1, + "probability": 0.9932 + }, + { + "start": 19999.03, + "end": 20002.07, + "probability": 0.9922 + }, + { + "start": 20002.68, + "end": 20008.06, + "probability": 0.9822 + }, + { + "start": 20008.94, + "end": 20012.58, + "probability": 0.7441 + }, + { + "start": 20012.76, + "end": 20017.72, + "probability": 0.8286 + }, + { + "start": 20017.87, + "end": 20023.3, + "probability": 0.9946 + }, + { + "start": 20025.18, + "end": 20031.06, + "probability": 0.9955 + }, + { + "start": 20032.54, + "end": 20035.99, + "probability": 0.9764 + }, + { + "start": 20037.52, + "end": 20039.36, + "probability": 0.9963 + }, + { + "start": 20040.18, + "end": 20042.22, + "probability": 0.9936 + }, + { + "start": 20042.46, + "end": 20042.88, + "probability": 0.8014 + }, + { + "start": 20045.14, + "end": 20049.74, + "probability": 0.9637 + }, + { + "start": 20050.32, + "end": 20053.62, + "probability": 0.9305 + }, + { + "start": 20054.88, + "end": 20060.28, + "probability": 0.8322 + }, + { + "start": 20061.18, + "end": 20063.32, + "probability": 0.9062 + }, + { + "start": 20063.84, + "end": 20065.16, + "probability": 0.738 + }, + { + "start": 20066.44, + "end": 20071.72, + "probability": 0.8519 + }, + { + "start": 20072.34, + "end": 20072.94, + "probability": 0.8421 + }, + { + "start": 20073.5, + "end": 20075.55, + "probability": 0.9978 + }, + { + "start": 20076.92, + "end": 20077.86, + "probability": 0.9335 + }, + { + "start": 20078.72, + "end": 20082.6, + "probability": 0.9604 + }, + { + "start": 20082.64, + "end": 20088.92, + "probability": 0.8582 + }, + { + "start": 20089.02, + "end": 20090.02, + "probability": 0.9194 + }, + { + "start": 20090.08, + "end": 20091.68, + "probability": 0.9506 + }, + { + "start": 20091.7, + "end": 20097.22, + "probability": 0.8102 + }, + { + "start": 20097.37, + "end": 20103.12, + "probability": 0.9806 + }, + { + "start": 20103.62, + "end": 20108.66, + "probability": 0.9793 + }, + { + "start": 20110.2, + "end": 20111.82, + "probability": 0.8188 + }, + { + "start": 20112.44, + "end": 20113.32, + "probability": 0.9611 + }, + { + "start": 20113.52, + "end": 20119.78, + "probability": 0.9286 + }, + { + "start": 20120.6, + "end": 20122.14, + "probability": 0.9888 + }, + { + "start": 20123.2, + "end": 20125.22, + "probability": 0.9946 + }, + { + "start": 20126.0, + "end": 20126.95, + "probability": 0.8812 + }, + { + "start": 20127.3, + "end": 20131.78, + "probability": 0.9609 + }, + { + "start": 20131.94, + "end": 20134.46, + "probability": 0.9641 + }, + { + "start": 20134.98, + "end": 20135.84, + "probability": 0.7499 + }, + { + "start": 20137.04, + "end": 20139.92, + "probability": 0.6177 + }, + { + "start": 20140.12, + "end": 20143.88, + "probability": 0.9423 + }, + { + "start": 20144.14, + "end": 20145.08, + "probability": 0.9322 + }, + { + "start": 20145.12, + "end": 20147.58, + "probability": 0.9675 + }, + { + "start": 20147.6, + "end": 20148.82, + "probability": 0.9399 + }, + { + "start": 20149.06, + "end": 20150.56, + "probability": 0.4139 + }, + { + "start": 20150.56, + "end": 20158.4, + "probability": 0.988 + }, + { + "start": 20158.6, + "end": 20164.46, + "probability": 0.9412 + }, + { + "start": 20164.66, + "end": 20167.17, + "probability": 0.9377 + }, + { + "start": 20168.02, + "end": 20172.14, + "probability": 0.923 + }, + { + "start": 20173.1, + "end": 20175.04, + "probability": 0.9673 + }, + { + "start": 20175.3, + "end": 20177.1, + "probability": 0.7873 + }, + { + "start": 20177.48, + "end": 20180.42, + "probability": 0.9027 + }, + { + "start": 20180.46, + "end": 20181.34, + "probability": 0.6085 + }, + { + "start": 20181.38, + "end": 20185.12, + "probability": 0.897 + }, + { + "start": 20185.24, + "end": 20186.35, + "probability": 0.9274 + }, + { + "start": 20187.62, + "end": 20190.2, + "probability": 0.7766 + }, + { + "start": 20190.98, + "end": 20192.5, + "probability": 0.922 + }, + { + "start": 20192.58, + "end": 20193.28, + "probability": 0.8829 + }, + { + "start": 20193.38, + "end": 20196.16, + "probability": 0.7772 + }, + { + "start": 20196.34, + "end": 20197.4, + "probability": 0.9525 + }, + { + "start": 20197.52, + "end": 20197.92, + "probability": 0.783 + }, + { + "start": 20198.0, + "end": 20201.05, + "probability": 0.7162 + }, + { + "start": 20201.24, + "end": 20205.18, + "probability": 0.7855 + }, + { + "start": 20205.2, + "end": 20206.04, + "probability": 0.7164 + }, + { + "start": 20206.58, + "end": 20209.0, + "probability": 0.966 + }, + { + "start": 20209.0, + "end": 20211.24, + "probability": 0.9597 + }, + { + "start": 20211.74, + "end": 20215.7, + "probability": 0.9879 + }, + { + "start": 20215.82, + "end": 20216.38, + "probability": 0.8832 + }, + { + "start": 20216.56, + "end": 20218.88, + "probability": 0.9795 + }, + { + "start": 20219.56, + "end": 20220.84, + "probability": 0.6232 + }, + { + "start": 20221.0, + "end": 20222.0, + "probability": 0.9712 + }, + { + "start": 20222.22, + "end": 20224.14, + "probability": 0.9956 + }, + { + "start": 20224.96, + "end": 20229.2, + "probability": 0.6363 + }, + { + "start": 20230.69, + "end": 20235.16, + "probability": 0.9932 + }, + { + "start": 20235.82, + "end": 20241.28, + "probability": 0.9761 + }, + { + "start": 20241.84, + "end": 20243.82, + "probability": 0.9813 + }, + { + "start": 20243.96, + "end": 20250.08, + "probability": 0.9706 + }, + { + "start": 20250.32, + "end": 20253.4, + "probability": 0.8546 + }, + { + "start": 20254.12, + "end": 20256.62, + "probability": 0.7991 + }, + { + "start": 20256.72, + "end": 20258.16, + "probability": 0.4718 + }, + { + "start": 20258.96, + "end": 20260.42, + "probability": 0.9633 + }, + { + "start": 20260.48, + "end": 20262.88, + "probability": 0.6274 + }, + { + "start": 20263.2, + "end": 20264.88, + "probability": 0.8833 + }, + { + "start": 20265.04, + "end": 20265.6, + "probability": 0.782 + }, + { + "start": 20265.7, + "end": 20266.26, + "probability": 0.5254 + }, + { + "start": 20266.42, + "end": 20267.02, + "probability": 0.6078 + }, + { + "start": 20267.06, + "end": 20267.56, + "probability": 0.8733 + }, + { + "start": 20267.66, + "end": 20269.9, + "probability": 0.8572 + }, + { + "start": 20270.58, + "end": 20271.7, + "probability": 0.9244 + }, + { + "start": 20271.92, + "end": 20273.73, + "probability": 0.8286 + }, + { + "start": 20275.1, + "end": 20276.12, + "probability": 0.1107 + }, + { + "start": 20276.6, + "end": 20277.92, + "probability": 0.7147 + }, + { + "start": 20278.06, + "end": 20281.5, + "probability": 0.9356 + }, + { + "start": 20282.64, + "end": 20284.64, + "probability": 0.9216 + }, + { + "start": 20285.6, + "end": 20287.8, + "probability": 0.9973 + }, + { + "start": 20288.34, + "end": 20290.38, + "probability": 0.9512 + }, + { + "start": 20309.24, + "end": 20310.04, + "probability": 0.7621 + }, + { + "start": 20310.22, + "end": 20311.22, + "probability": 0.9668 + }, + { + "start": 20311.3, + "end": 20312.42, + "probability": 0.7748 + }, + { + "start": 20314.0, + "end": 20323.22, + "probability": 0.9146 + }, + { + "start": 20324.86, + "end": 20330.16, + "probability": 0.9932 + }, + { + "start": 20331.86, + "end": 20333.54, + "probability": 0.1514 + }, + { + "start": 20334.24, + "end": 20336.18, + "probability": 0.3006 + }, + { + "start": 20337.68, + "end": 20338.34, + "probability": 0.7286 + }, + { + "start": 20341.28, + "end": 20342.28, + "probability": 0.9547 + }, + { + "start": 20343.39, + "end": 20345.66, + "probability": 0.9484 + }, + { + "start": 20345.92, + "end": 20346.62, + "probability": 0.3595 + }, + { + "start": 20346.84, + "end": 20347.8, + "probability": 0.1443 + }, + { + "start": 20348.06, + "end": 20348.61, + "probability": 0.9819 + }, + { + "start": 20350.7, + "end": 20352.02, + "probability": 0.4515 + }, + { + "start": 20352.12, + "end": 20360.12, + "probability": 0.9557 + }, + { + "start": 20363.34, + "end": 20364.1, + "probability": 0.6753 + }, + { + "start": 20365.22, + "end": 20366.96, + "probability": 0.5844 + }, + { + "start": 20367.56, + "end": 20368.88, + "probability": 0.9415 + }, + { + "start": 20370.22, + "end": 20371.9, + "probability": 0.941 + }, + { + "start": 20372.32, + "end": 20375.14, + "probability": 0.9731 + }, + { + "start": 20376.0, + "end": 20376.6, + "probability": 0.8995 + }, + { + "start": 20377.86, + "end": 20381.12, + "probability": 0.9927 + }, + { + "start": 20382.2, + "end": 20384.4, + "probability": 0.8396 + }, + { + "start": 20385.18, + "end": 20385.9, + "probability": 0.9939 + }, + { + "start": 20387.24, + "end": 20393.32, + "probability": 0.9881 + }, + { + "start": 20393.32, + "end": 20397.34, + "probability": 0.9963 + }, + { + "start": 20399.24, + "end": 20404.84, + "probability": 0.9917 + }, + { + "start": 20406.04, + "end": 20409.12, + "probability": 0.777 + }, + { + "start": 20409.24, + "end": 20409.88, + "probability": 0.6865 + }, + { + "start": 20409.98, + "end": 20411.54, + "probability": 0.6967 + }, + { + "start": 20411.72, + "end": 20413.13, + "probability": 0.9414 + }, + { + "start": 20414.08, + "end": 20414.46, + "probability": 0.5698 + }, + { + "start": 20414.56, + "end": 20415.14, + "probability": 0.8675 + }, + { + "start": 20415.24, + "end": 20419.84, + "probability": 0.9214 + }, + { + "start": 20420.66, + "end": 20428.14, + "probability": 0.9932 + }, + { + "start": 20429.0, + "end": 20430.38, + "probability": 0.6123 + }, + { + "start": 20433.86, + "end": 20434.98, + "probability": 0.6754 + }, + { + "start": 20435.22, + "end": 20437.26, + "probability": 0.8999 + }, + { + "start": 20437.44, + "end": 20437.92, + "probability": 0.7238 + }, + { + "start": 20438.42, + "end": 20444.2, + "probability": 0.9487 + }, + { + "start": 20445.38, + "end": 20449.76, + "probability": 0.8276 + }, + { + "start": 20453.26, + "end": 20457.54, + "probability": 0.9919 + }, + { + "start": 20458.78, + "end": 20459.86, + "probability": 0.7949 + }, + { + "start": 20460.74, + "end": 20463.92, + "probability": 0.9944 + }, + { + "start": 20463.92, + "end": 20468.58, + "probability": 0.9379 + }, + { + "start": 20469.66, + "end": 20469.66, + "probability": 0.0518 + }, + { + "start": 20469.66, + "end": 20472.06, + "probability": 0.5987 + }, + { + "start": 20473.16, + "end": 20477.98, + "probability": 0.9665 + }, + { + "start": 20477.98, + "end": 20482.94, + "probability": 0.9891 + }, + { + "start": 20483.5, + "end": 20487.56, + "probability": 0.8411 + }, + { + "start": 20489.06, + "end": 20489.76, + "probability": 0.8894 + }, + { + "start": 20490.26, + "end": 20495.74, + "probability": 0.9325 + }, + { + "start": 20496.8, + "end": 20503.56, + "probability": 0.9822 + }, + { + "start": 20504.74, + "end": 20509.93, + "probability": 0.9948 + }, + { + "start": 20513.56, + "end": 20520.76, + "probability": 0.986 + }, + { + "start": 20521.2, + "end": 20522.9, + "probability": 0.6352 + }, + { + "start": 20523.78, + "end": 20528.82, + "probability": 0.9668 + }, + { + "start": 20529.1, + "end": 20530.8, + "probability": 0.9922 + }, + { + "start": 20531.64, + "end": 20532.2, + "probability": 0.8136 + }, + { + "start": 20532.26, + "end": 20533.01, + "probability": 0.9613 + }, + { + "start": 20533.06, + "end": 20534.74, + "probability": 0.9705 + }, + { + "start": 20534.78, + "end": 20536.25, + "probability": 0.863 + }, + { + "start": 20536.92, + "end": 20540.12, + "probability": 0.8057 + }, + { + "start": 20540.94, + "end": 20542.43, + "probability": 0.1754 + }, + { + "start": 20542.98, + "end": 20546.1, + "probability": 0.5218 + }, + { + "start": 20546.68, + "end": 20547.98, + "probability": 0.0872 + }, + { + "start": 20547.98, + "end": 20548.74, + "probability": 0.0651 + }, + { + "start": 20548.88, + "end": 20549.36, + "probability": 0.2298 + }, + { + "start": 20549.36, + "end": 20551.92, + "probability": 0.1748 + }, + { + "start": 20551.94, + "end": 20553.06, + "probability": 0.1779 + }, + { + "start": 20554.18, + "end": 20555.1, + "probability": 0.355 + }, + { + "start": 20555.56, + "end": 20556.19, + "probability": 0.1542 + }, + { + "start": 20556.7, + "end": 20557.16, + "probability": 0.7393 + }, + { + "start": 20557.16, + "end": 20558.66, + "probability": 0.3557 + }, + { + "start": 20558.8, + "end": 20559.5, + "probability": 0.0562 + }, + { + "start": 20559.5, + "end": 20561.3, + "probability": 0.6165 + }, + { + "start": 20561.3, + "end": 20562.04, + "probability": 0.3531 + }, + { + "start": 20562.14, + "end": 20562.84, + "probability": 0.6155 + }, + { + "start": 20563.02, + "end": 20564.5, + "probability": 0.5265 + }, + { + "start": 20565.06, + "end": 20565.5, + "probability": 0.7491 + }, + { + "start": 20565.82, + "end": 20567.18, + "probability": 0.6367 + }, + { + "start": 20567.18, + "end": 20567.56, + "probability": 0.9231 + }, + { + "start": 20568.6, + "end": 20569.48, + "probability": 0.8499 + }, + { + "start": 20569.54, + "end": 20572.52, + "probability": 0.9933 + }, + { + "start": 20572.72, + "end": 20577.5, + "probability": 0.9412 + }, + { + "start": 20579.6, + "end": 20581.12, + "probability": 0.1158 + }, + { + "start": 20581.8, + "end": 20581.88, + "probability": 0.0316 + }, + { + "start": 20581.88, + "end": 20581.98, + "probability": 0.1172 + }, + { + "start": 20581.98, + "end": 20584.78, + "probability": 0.5354 + }, + { + "start": 20585.02, + "end": 20587.52, + "probability": 0.8929 + }, + { + "start": 20594.76, + "end": 20596.5, + "probability": 0.1548 + }, + { + "start": 20597.38, + "end": 20599.34, + "probability": 0.2283 + }, + { + "start": 20599.36, + "end": 20602.9, + "probability": 0.2042 + }, + { + "start": 20603.86, + "end": 20603.96, + "probability": 0.2291 + }, + { + "start": 20603.96, + "end": 20607.64, + "probability": 0.0755 + }, + { + "start": 20608.02, + "end": 20609.74, + "probability": 0.0966 + }, + { + "start": 20609.94, + "end": 20609.94, + "probability": 0.0545 + }, + { + "start": 20609.94, + "end": 20609.94, + "probability": 0.1055 + }, + { + "start": 20609.94, + "end": 20609.94, + "probability": 0.0974 + }, + { + "start": 20609.94, + "end": 20609.94, + "probability": 0.0591 + }, + { + "start": 20609.94, + "end": 20612.46, + "probability": 0.0176 + }, + { + "start": 20613.06, + "end": 20617.66, + "probability": 0.0722 + }, + { + "start": 20617.66, + "end": 20617.66, + "probability": 0.0765 + }, + { + "start": 20617.66, + "end": 20617.66, + "probability": 0.05 + }, + { + "start": 20617.66, + "end": 20618.52, + "probability": 0.0163 + }, + { + "start": 20619.74, + "end": 20620.3, + "probability": 0.4401 + }, + { + "start": 20620.54, + "end": 20622.0, + "probability": 0.1413 + }, + { + "start": 20622.12, + "end": 20623.52, + "probability": 0.4441 + }, + { + "start": 20624.0, + "end": 20624.0, + "probability": 0.0 + }, + { + "start": 20624.0, + "end": 20624.0, + "probability": 0.0 + }, + { + "start": 20624.18, + "end": 20626.8, + "probability": 0.9363 + }, + { + "start": 20626.94, + "end": 20627.62, + "probability": 0.4921 + }, + { + "start": 20627.68, + "end": 20629.36, + "probability": 0.8245 + }, + { + "start": 20634.08, + "end": 20634.77, + "probability": 0.4148 + }, + { + "start": 20635.82, + "end": 20637.58, + "probability": 0.2426 + }, + { + "start": 20637.78, + "end": 20639.38, + "probability": 0.7127 + }, + { + "start": 20639.38, + "end": 20640.98, + "probability": 0.2269 + }, + { + "start": 20641.06, + "end": 20645.35, + "probability": 0.9917 + }, + { + "start": 20645.9, + "end": 20647.04, + "probability": 0.8295 + }, + { + "start": 20647.38, + "end": 20649.62, + "probability": 0.6779 + }, + { + "start": 20651.62, + "end": 20657.76, + "probability": 0.9725 + }, + { + "start": 20658.52, + "end": 20661.1, + "probability": 0.8289 + }, + { + "start": 20661.44, + "end": 20665.52, + "probability": 0.9906 + }, + { + "start": 20666.56, + "end": 20667.62, + "probability": 0.5778 + }, + { + "start": 20670.46, + "end": 20670.86, + "probability": 0.2125 + }, + { + "start": 20670.86, + "end": 20671.07, + "probability": 0.5716 + }, + { + "start": 20673.12, + "end": 20673.84, + "probability": 0.6954 + }, + { + "start": 20674.02, + "end": 20674.84, + "probability": 0.9062 + }, + { + "start": 20675.88, + "end": 20677.48, + "probability": 0.8426 + }, + { + "start": 20677.58, + "end": 20678.37, + "probability": 0.8322 + }, + { + "start": 20679.78, + "end": 20681.1, + "probability": 0.5992 + }, + { + "start": 20682.28, + "end": 20684.68, + "probability": 0.9411 + }, + { + "start": 20684.86, + "end": 20687.96, + "probability": 0.7165 + }, + { + "start": 20688.78, + "end": 20690.62, + "probability": 0.8161 + }, + { + "start": 20690.72, + "end": 20692.34, + "probability": 0.7301 + }, + { + "start": 20692.42, + "end": 20695.36, + "probability": 0.8577 + }, + { + "start": 20696.0, + "end": 20697.38, + "probability": 0.9502 + }, + { + "start": 20697.58, + "end": 20702.94, + "probability": 0.7703 + }, + { + "start": 20702.98, + "end": 20704.18, + "probability": 0.9299 + }, + { + "start": 20705.12, + "end": 20705.46, + "probability": 0.5059 + }, + { + "start": 20705.82, + "end": 20706.1, + "probability": 0.2836 + }, + { + "start": 20706.1, + "end": 20706.58, + "probability": 0.6377 + }, + { + "start": 20706.68, + "end": 20710.66, + "probability": 0.8962 + }, + { + "start": 20710.72, + "end": 20711.62, + "probability": 0.7559 + }, + { + "start": 20712.23, + "end": 20716.68, + "probability": 0.9932 + }, + { + "start": 20717.74, + "end": 20721.42, + "probability": 0.9733 + }, + { + "start": 20722.28, + "end": 20725.22, + "probability": 0.9551 + }, + { + "start": 20725.68, + "end": 20727.34, + "probability": 0.9475 + }, + { + "start": 20728.34, + "end": 20731.93, + "probability": 0.9833 + }, + { + "start": 20733.52, + "end": 20735.84, + "probability": 0.9982 + }, + { + "start": 20737.04, + "end": 20738.56, + "probability": 0.9335 + }, + { + "start": 20739.7, + "end": 20743.68, + "probability": 0.9328 + }, + { + "start": 20744.0, + "end": 20745.2, + "probability": 0.7623 + }, + { + "start": 20748.84, + "end": 20750.42, + "probability": 0.8635 + }, + { + "start": 20750.66, + "end": 20751.56, + "probability": 0.6408 + }, + { + "start": 20752.86, + "end": 20753.9, + "probability": 0.9956 + }, + { + "start": 20755.26, + "end": 20757.44, + "probability": 0.9727 + }, + { + "start": 20758.74, + "end": 20761.32, + "probability": 0.9089 + }, + { + "start": 20762.72, + "end": 20767.48, + "probability": 0.9924 + }, + { + "start": 20767.82, + "end": 20768.99, + "probability": 0.9714 + }, + { + "start": 20769.8, + "end": 20770.87, + "probability": 0.75 + }, + { + "start": 20771.46, + "end": 20773.12, + "probability": 0.9741 + }, + { + "start": 20773.34, + "end": 20774.46, + "probability": 0.8901 + }, + { + "start": 20775.54, + "end": 20776.46, + "probability": 0.4808 + }, + { + "start": 20777.38, + "end": 20782.84, + "probability": 0.9951 + }, + { + "start": 20783.2, + "end": 20784.38, + "probability": 0.9956 + }, + { + "start": 20784.62, + "end": 20784.94, + "probability": 0.4972 + }, + { + "start": 20785.54, + "end": 20786.4, + "probability": 0.9841 + }, + { + "start": 20787.74, + "end": 20788.96, + "probability": 0.9885 + }, + { + "start": 20789.16, + "end": 20789.64, + "probability": 0.6549 + }, + { + "start": 20789.72, + "end": 20794.78, + "probability": 0.9821 + }, + { + "start": 20795.04, + "end": 20795.9, + "probability": 0.775 + }, + { + "start": 20796.56, + "end": 20800.08, + "probability": 0.813 + }, + { + "start": 20801.1, + "end": 20802.92, + "probability": 0.9273 + }, + { + "start": 20803.28, + "end": 20804.26, + "probability": 0.7838 + }, + { + "start": 20806.2, + "end": 20807.39, + "probability": 0.9734 + }, + { + "start": 20809.3, + "end": 20814.74, + "probability": 0.9864 + }, + { + "start": 20815.44, + "end": 20818.46, + "probability": 0.8893 + }, + { + "start": 20819.3, + "end": 20820.2, + "probability": 0.8815 + }, + { + "start": 20820.3, + "end": 20822.16, + "probability": 0.9949 + }, + { + "start": 20822.62, + "end": 20825.3, + "probability": 0.9951 + }, + { + "start": 20825.94, + "end": 20827.0, + "probability": 0.7696 + }, + { + "start": 20828.14, + "end": 20831.1, + "probability": 0.8544 + }, + { + "start": 20831.2, + "end": 20831.99, + "probability": 0.9534 + }, + { + "start": 20832.4, + "end": 20836.25, + "probability": 0.985 + }, + { + "start": 20837.35, + "end": 20842.84, + "probability": 0.9979 + }, + { + "start": 20842.98, + "end": 20845.84, + "probability": 0.9739 + }, + { + "start": 20845.88, + "end": 20846.42, + "probability": 0.4588 + }, + { + "start": 20846.42, + "end": 20847.92, + "probability": 0.6109 + }, + { + "start": 20848.08, + "end": 20848.7, + "probability": 0.8516 + }, + { + "start": 20849.92, + "end": 20851.28, + "probability": 0.9801 + }, + { + "start": 20852.36, + "end": 20855.41, + "probability": 0.9224 + }, + { + "start": 20855.8, + "end": 20857.02, + "probability": 0.835 + }, + { + "start": 20857.38, + "end": 20860.58, + "probability": 0.9801 + }, + { + "start": 20861.02, + "end": 20863.1, + "probability": 0.8054 + }, + { + "start": 20863.56, + "end": 20866.62, + "probability": 0.7554 + }, + { + "start": 20867.64, + "end": 20868.84, + "probability": 0.9311 + }, + { + "start": 20868.96, + "end": 20872.28, + "probability": 0.9109 + }, + { + "start": 20872.36, + "end": 20874.8, + "probability": 0.7534 + }, + { + "start": 20875.44, + "end": 20877.9, + "probability": 0.9717 + }, + { + "start": 20878.76, + "end": 20879.78, + "probability": 0.8801 + }, + { + "start": 20880.88, + "end": 20882.0, + "probability": 0.7089 + }, + { + "start": 20882.12, + "end": 20884.52, + "probability": 0.996 + }, + { + "start": 20884.6, + "end": 20887.54, + "probability": 0.9173 + }, + { + "start": 20888.46, + "end": 20890.1, + "probability": 0.9909 + }, + { + "start": 20890.44, + "end": 20893.78, + "probability": 0.9902 + }, + { + "start": 20894.58, + "end": 20896.28, + "probability": 0.8004 + }, + { + "start": 20897.06, + "end": 20900.6, + "probability": 0.989 + }, + { + "start": 20900.6, + "end": 20905.62, + "probability": 0.9756 + }, + { + "start": 20907.06, + "end": 20908.4, + "probability": 0.8056 + }, + { + "start": 20909.4, + "end": 20912.06, + "probability": 0.9968 + }, + { + "start": 20912.42, + "end": 20912.96, + "probability": 0.4474 + }, + { + "start": 20913.04, + "end": 20914.0, + "probability": 0.8562 + }, + { + "start": 20914.14, + "end": 20915.52, + "probability": 0.9564 + }, + { + "start": 20916.7, + "end": 20922.48, + "probability": 0.9837 + }, + { + "start": 20923.02, + "end": 20926.46, + "probability": 0.9886 + }, + { + "start": 20928.08, + "end": 20931.28, + "probability": 0.9172 + }, + { + "start": 20931.84, + "end": 20932.64, + "probability": 0.9896 + }, + { + "start": 20933.76, + "end": 20934.58, + "probability": 0.795 + }, + { + "start": 20935.66, + "end": 20935.96, + "probability": 0.6259 + }, + { + "start": 20936.0, + "end": 20936.26, + "probability": 0.839 + }, + { + "start": 20936.34, + "end": 20938.5, + "probability": 0.8928 + }, + { + "start": 20938.58, + "end": 20939.92, + "probability": 0.9938 + }, + { + "start": 20940.64, + "end": 20944.16, + "probability": 0.9409 + }, + { + "start": 20944.2, + "end": 20947.03, + "probability": 0.9717 + }, + { + "start": 20947.52, + "end": 20948.62, + "probability": 0.9518 + }, + { + "start": 20949.32, + "end": 20951.28, + "probability": 0.7544 + }, + { + "start": 20952.02, + "end": 20953.46, + "probability": 0.9193 + }, + { + "start": 20953.54, + "end": 20957.5, + "probability": 0.8955 + }, + { + "start": 20958.76, + "end": 20960.4, + "probability": 0.6363 + }, + { + "start": 20960.56, + "end": 20961.04, + "probability": 0.9521 + }, + { + "start": 20961.36, + "end": 20963.32, + "probability": 0.9246 + }, + { + "start": 20964.08, + "end": 20965.32, + "probability": 0.9489 + }, + { + "start": 20966.34, + "end": 20967.76, + "probability": 0.9186 + }, + { + "start": 20967.97, + "end": 20970.74, + "probability": 0.9563 + }, + { + "start": 20970.86, + "end": 20971.82, + "probability": 0.8782 + }, + { + "start": 20972.94, + "end": 20974.1, + "probability": 0.7859 + }, + { + "start": 20974.98, + "end": 20977.12, + "probability": 0.9783 + }, + { + "start": 20977.18, + "end": 20979.38, + "probability": 0.9702 + }, + { + "start": 20979.42, + "end": 20980.92, + "probability": 0.9149 + }, + { + "start": 20981.84, + "end": 20983.3, + "probability": 0.851 + }, + { + "start": 20983.74, + "end": 20985.96, + "probability": 0.9917 + }, + { + "start": 20986.96, + "end": 20987.73, + "probability": 0.9388 + }, + { + "start": 20988.76, + "end": 20991.6, + "probability": 0.9906 + }, + { + "start": 20991.96, + "end": 20993.77, + "probability": 0.9808 + }, + { + "start": 20994.24, + "end": 20997.58, + "probability": 0.9063 + }, + { + "start": 20997.78, + "end": 20998.24, + "probability": 0.4051 + }, + { + "start": 20998.24, + "end": 20998.88, + "probability": 0.7506 + }, + { + "start": 20999.2, + "end": 21000.32, + "probability": 0.9449 + }, + { + "start": 21000.62, + "end": 21002.03, + "probability": 0.9771 + }, + { + "start": 21002.48, + "end": 21005.72, + "probability": 0.9902 + }, + { + "start": 21005.8, + "end": 21008.22, + "probability": 0.6969 + }, + { + "start": 21008.84, + "end": 21010.84, + "probability": 0.5845 + }, + { + "start": 21010.92, + "end": 21012.1, + "probability": 0.5839 + }, + { + "start": 21012.18, + "end": 21013.39, + "probability": 0.6691 + }, + { + "start": 21013.98, + "end": 21015.4, + "probability": 0.1756 + }, + { + "start": 21015.52, + "end": 21016.48, + "probability": 0.6077 + }, + { + "start": 21016.52, + "end": 21017.9, + "probability": 0.7989 + }, + { + "start": 21018.43, + "end": 21020.92, + "probability": 0.6105 + }, + { + "start": 21020.92, + "end": 21020.99, + "probability": 0.5876 + }, + { + "start": 21021.86, + "end": 21022.48, + "probability": 0.1697 + }, + { + "start": 21022.58, + "end": 21022.68, + "probability": 0.0407 + }, + { + "start": 21022.68, + "end": 21025.38, + "probability": 0.6287 + }, + { + "start": 21025.72, + "end": 21027.12, + "probability": 0.8178 + }, + { + "start": 21027.12, + "end": 21028.7, + "probability": 0.9648 + }, + { + "start": 21028.88, + "end": 21030.43, + "probability": 0.8359 + }, + { + "start": 21030.62, + "end": 21032.78, + "probability": 0.992 + }, + { + "start": 21032.8, + "end": 21036.3, + "probability": 0.689 + }, + { + "start": 21036.42, + "end": 21039.68, + "probability": 0.9323 + }, + { + "start": 21039.7, + "end": 21041.33, + "probability": 0.6772 + }, + { + "start": 21041.72, + "end": 21043.2, + "probability": 0.341 + }, + { + "start": 21044.78, + "end": 21046.76, + "probability": 0.2523 + }, + { + "start": 21047.74, + "end": 21053.05, + "probability": 0.1414 + }, + { + "start": 21056.24, + "end": 21057.39, + "probability": 0.3156 + }, + { + "start": 21058.25, + "end": 21058.85, + "probability": 0.0755 + }, + { + "start": 21059.72, + "end": 21062.56, + "probability": 0.1792 + }, + { + "start": 21062.56, + "end": 21066.62, + "probability": 0.2042 + }, + { + "start": 21069.48, + "end": 21071.46, + "probability": 0.0898 + }, + { + "start": 21072.82, + "end": 21074.24, + "probability": 0.0551 + }, + { + "start": 21076.12, + "end": 21079.88, + "probability": 0.0098 + }, + { + "start": 21079.88, + "end": 21083.68, + "probability": 0.2595 + }, + { + "start": 21084.0, + "end": 21091.08, + "probability": 0.6876 + }, + { + "start": 21092.91, + "end": 21095.98, + "probability": 0.9894 + }, + { + "start": 21096.22, + "end": 21099.88, + "probability": 0.8643 + }, + { + "start": 21100.08, + "end": 21102.92, + "probability": 0.7536 + }, + { + "start": 21106.58, + "end": 21109.26, + "probability": 0.9971 + }, + { + "start": 21112.98, + "end": 21114.12, + "probability": 0.9182 + }, + { + "start": 21117.66, + "end": 21119.3, + "probability": 0.9282 + }, + { + "start": 21122.22, + "end": 21126.5, + "probability": 0.9907 + }, + { + "start": 21129.42, + "end": 21133.62, + "probability": 0.9056 + }, + { + "start": 21136.78, + "end": 21139.28, + "probability": 0.5258 + }, + { + "start": 21140.6, + "end": 21141.22, + "probability": 0.9824 + }, + { + "start": 21144.78, + "end": 21147.5, + "probability": 0.8227 + }, + { + "start": 21151.14, + "end": 21152.44, + "probability": 0.63 + }, + { + "start": 21153.74, + "end": 21160.56, + "probability": 0.8268 + }, + { + "start": 21165.82, + "end": 21168.22, + "probability": 0.6509 + }, + { + "start": 21169.16, + "end": 21171.26, + "probability": 0.9305 + }, + { + "start": 21172.24, + "end": 21180.2, + "probability": 0.9504 + }, + { + "start": 21180.7, + "end": 21182.3, + "probability": 0.988 + }, + { + "start": 21182.72, + "end": 21186.24, + "probability": 0.88 + }, + { + "start": 21186.56, + "end": 21188.28, + "probability": 0.8148 + }, + { + "start": 21193.34, + "end": 21199.32, + "probability": 0.8705 + }, + { + "start": 21199.52, + "end": 21200.48, + "probability": 0.6086 + }, + { + "start": 21200.5, + "end": 21205.91, + "probability": 0.9962 + }, + { + "start": 21206.8, + "end": 21212.62, + "probability": 0.9906 + }, + { + "start": 21214.04, + "end": 21215.12, + "probability": 0.6905 + }, + { + "start": 21216.66, + "end": 21221.98, + "probability": 0.9662 + }, + { + "start": 21225.32, + "end": 21227.52, + "probability": 0.8042 + }, + { + "start": 21229.3, + "end": 21237.34, + "probability": 0.9895 + }, + { + "start": 21237.76, + "end": 21238.74, + "probability": 0.7556 + }, + { + "start": 21239.94, + "end": 21244.02, + "probability": 0.9881 + }, + { + "start": 21244.58, + "end": 21245.32, + "probability": 0.5652 + }, + { + "start": 21249.88, + "end": 21251.0, + "probability": 0.7224 + }, + { + "start": 21256.08, + "end": 21257.16, + "probability": 0.8589 + }, + { + "start": 21260.22, + "end": 21262.06, + "probability": 0.6189 + }, + { + "start": 21262.12, + "end": 21265.6, + "probability": 0.7242 + }, + { + "start": 21265.84, + "end": 21268.26, + "probability": 0.8018 + }, + { + "start": 21268.3, + "end": 21271.6, + "probability": 0.8379 + }, + { + "start": 21273.04, + "end": 21275.72, + "probability": 0.9895 + }, + { + "start": 21277.22, + "end": 21281.4, + "probability": 0.9742 + }, + { + "start": 21281.54, + "end": 21282.18, + "probability": 0.2904 + }, + { + "start": 21285.04, + "end": 21286.82, + "probability": 0.8093 + }, + { + "start": 21288.98, + "end": 21298.26, + "probability": 0.9432 + }, + { + "start": 21300.46, + "end": 21306.64, + "probability": 0.96 + }, + { + "start": 21307.42, + "end": 21311.66, + "probability": 0.7906 + }, + { + "start": 21312.6, + "end": 21314.88, + "probability": 0.986 + }, + { + "start": 21317.36, + "end": 21322.7, + "probability": 0.983 + }, + { + "start": 21322.7, + "end": 21328.92, + "probability": 0.9891 + }, + { + "start": 21331.38, + "end": 21338.52, + "probability": 0.9933 + }, + { + "start": 21342.78, + "end": 21350.86, + "probability": 0.9408 + }, + { + "start": 21351.8, + "end": 21352.94, + "probability": 0.9215 + }, + { + "start": 21355.68, + "end": 21356.74, + "probability": 0.9119 + }, + { + "start": 21357.66, + "end": 21359.74, + "probability": 0.8199 + }, + { + "start": 21360.42, + "end": 21367.68, + "probability": 0.9972 + }, + { + "start": 21369.92, + "end": 21370.72, + "probability": 0.5676 + }, + { + "start": 21372.48, + "end": 21373.52, + "probability": 0.7851 + }, + { + "start": 21373.92, + "end": 21378.6, + "probability": 0.9681 + }, + { + "start": 21378.72, + "end": 21379.68, + "probability": 0.8563 + }, + { + "start": 21379.76, + "end": 21380.48, + "probability": 0.9222 + }, + { + "start": 21380.6, + "end": 21381.7, + "probability": 0.7331 + }, + { + "start": 21382.06, + "end": 21385.78, + "probability": 0.9432 + }, + { + "start": 21385.86, + "end": 21389.02, + "probability": 0.9626 + }, + { + "start": 21389.52, + "end": 21391.54, + "probability": 0.7795 + }, + { + "start": 21393.2, + "end": 21395.18, + "probability": 0.9948 + }, + { + "start": 21395.18, + "end": 21399.4, + "probability": 0.8143 + }, + { + "start": 21400.0, + "end": 21403.02, + "probability": 0.9358 + }, + { + "start": 21403.94, + "end": 21407.46, + "probability": 0.7661 + }, + { + "start": 21408.1, + "end": 21409.46, + "probability": 0.952 + }, + { + "start": 21411.52, + "end": 21414.02, + "probability": 0.8671 + }, + { + "start": 21414.64, + "end": 21415.1, + "probability": 0.7449 + }, + { + "start": 21415.76, + "end": 21416.66, + "probability": 0.9085 + }, + { + "start": 21417.48, + "end": 21421.66, + "probability": 0.9106 + }, + { + "start": 21423.2, + "end": 21424.22, + "probability": 0.7648 + }, + { + "start": 21425.72, + "end": 21428.16, + "probability": 0.8612 + }, + { + "start": 21428.86, + "end": 21429.94, + "probability": 0.7212 + }, + { + "start": 21430.72, + "end": 21433.14, + "probability": 0.8039 + }, + { + "start": 21433.36, + "end": 21438.48, + "probability": 0.6178 + }, + { + "start": 21439.24, + "end": 21441.96, + "probability": 0.5467 + }, + { + "start": 21442.18, + "end": 21444.68, + "probability": 0.9642 + }, + { + "start": 21445.2, + "end": 21446.85, + "probability": 0.5365 + }, + { + "start": 21447.12, + "end": 21447.6, + "probability": 0.7783 + }, + { + "start": 21447.6, + "end": 21448.36, + "probability": 0.9644 + }, + { + "start": 21448.42, + "end": 21449.06, + "probability": 0.7828 + }, + { + "start": 21451.74, + "end": 21453.08, + "probability": 0.8828 + }, + { + "start": 21454.6, + "end": 21454.9, + "probability": 0.3686 + }, + { + "start": 21454.98, + "end": 21459.36, + "probability": 0.9044 + }, + { + "start": 21459.36, + "end": 21464.28, + "probability": 0.9906 + }, + { + "start": 21464.28, + "end": 21468.28, + "probability": 0.9907 + }, + { + "start": 21468.72, + "end": 21468.86, + "probability": 0.3458 + }, + { + "start": 21469.02, + "end": 21469.62, + "probability": 0.2487 + }, + { + "start": 21469.64, + "end": 21471.74, + "probability": 0.4198 + }, + { + "start": 21471.74, + "end": 21471.74, + "probability": 0.027 + }, + { + "start": 21471.74, + "end": 21471.74, + "probability": 0.4039 + }, + { + "start": 21472.16, + "end": 21474.04, + "probability": 0.4397 + }, + { + "start": 21474.42, + "end": 21477.74, + "probability": 0.9231 + }, + { + "start": 21478.32, + "end": 21479.06, + "probability": 0.6897 + }, + { + "start": 21479.1, + "end": 21479.68, + "probability": 0.9455 + }, + { + "start": 21479.76, + "end": 21482.52, + "probability": 0.9629 + }, + { + "start": 21483.04, + "end": 21484.52, + "probability": 0.4748 + }, + { + "start": 21484.52, + "end": 21484.84, + "probability": 0.0434 + }, + { + "start": 21484.84, + "end": 21484.84, + "probability": 0.0257 + }, + { + "start": 21484.84, + "end": 21486.81, + "probability": 0.5397 + }, + { + "start": 21487.2, + "end": 21489.4, + "probability": 0.9944 + }, + { + "start": 21490.18, + "end": 21491.88, + "probability": 0.9705 + }, + { + "start": 21492.04, + "end": 21493.0, + "probability": 0.5154 + }, + { + "start": 21493.24, + "end": 21496.72, + "probability": 0.4238 + }, + { + "start": 21497.0, + "end": 21497.84, + "probability": 0.7332 + }, + { + "start": 21497.96, + "end": 21498.86, + "probability": 0.9385 + }, + { + "start": 21499.14, + "end": 21500.2, + "probability": 0.8901 + }, + { + "start": 21500.38, + "end": 21501.4, + "probability": 0.9738 + }, + { + "start": 21501.5, + "end": 21502.72, + "probability": 0.9774 + }, + { + "start": 21502.84, + "end": 21503.92, + "probability": 0.9149 + }, + { + "start": 21504.02, + "end": 21507.81, + "probability": 0.9255 + }, + { + "start": 21508.02, + "end": 21511.1, + "probability": 0.9694 + }, + { + "start": 21511.18, + "end": 21514.64, + "probability": 0.6684 + }, + { + "start": 21514.84, + "end": 21515.54, + "probability": 0.4829 + }, + { + "start": 21515.68, + "end": 21516.99, + "probability": 0.0127 + }, + { + "start": 21518.56, + "end": 21518.56, + "probability": 0.0701 + }, + { + "start": 21518.56, + "end": 21518.56, + "probability": 0.0602 + }, + { + "start": 21518.56, + "end": 21518.63, + "probability": 0.3468 + }, + { + "start": 21519.36, + "end": 21520.58, + "probability": 0.5542 + }, + { + "start": 21521.38, + "end": 21522.99, + "probability": 0.2768 + }, + { + "start": 21531.76, + "end": 21532.92, + "probability": 0.4751 + }, + { + "start": 21535.8, + "end": 21537.18, + "probability": 0.9932 + }, + { + "start": 21538.24, + "end": 21539.08, + "probability": 0.671 + }, + { + "start": 21541.24, + "end": 21542.76, + "probability": 0.676 + }, + { + "start": 21545.52, + "end": 21546.7, + "probability": 0.9236 + }, + { + "start": 21546.96, + "end": 21547.73, + "probability": 0.5459 + }, + { + "start": 21548.36, + "end": 21549.6, + "probability": 0.3861 + }, + { + "start": 21549.62, + "end": 21551.36, + "probability": 0.7377 + }, + { + "start": 21551.64, + "end": 21552.26, + "probability": 0.2153 + }, + { + "start": 21552.66, + "end": 21554.48, + "probability": 0.8842 + }, + { + "start": 21554.76, + "end": 21556.8, + "probability": 0.9746 + }, + { + "start": 21557.14, + "end": 21557.84, + "probability": 0.7702 + }, + { + "start": 21558.02, + "end": 21560.86, + "probability": 0.9614 + }, + { + "start": 21562.38, + "end": 21568.2, + "probability": 0.9797 + }, + { + "start": 21568.9, + "end": 21570.02, + "probability": 0.6622 + }, + { + "start": 21571.01, + "end": 21577.42, + "probability": 0.7299 + }, + { + "start": 21577.42, + "end": 21581.18, + "probability": 0.5348 + }, + { + "start": 21582.18, + "end": 21584.58, + "probability": 0.4565 + }, + { + "start": 21585.46, + "end": 21589.56, + "probability": 0.2456 + }, + { + "start": 21593.58, + "end": 21594.62, + "probability": 0.4989 + }, + { + "start": 21595.14, + "end": 21596.7, + "probability": 0.791 + }, + { + "start": 21599.1, + "end": 21600.22, + "probability": 0.9478 + }, + { + "start": 21601.48, + "end": 21602.94, + "probability": 0.896 + }, + { + "start": 21603.08, + "end": 21605.74, + "probability": 0.8068 + }, + { + "start": 21606.44, + "end": 21610.16, + "probability": 0.9291 + }, + { + "start": 21612.48, + "end": 21614.56, + "probability": 0.7987 + }, + { + "start": 21614.72, + "end": 21615.78, + "probability": 0.4853 + }, + { + "start": 21615.94, + "end": 21622.26, + "probability": 0.6624 + }, + { + "start": 21623.1, + "end": 21624.28, + "probability": 0.8569 + }, + { + "start": 21626.18, + "end": 21627.22, + "probability": 0.7961 + }, + { + "start": 21627.26, + "end": 21629.48, + "probability": 0.9886 + }, + { + "start": 21630.82, + "end": 21632.52, + "probability": 0.8355 + }, + { + "start": 21632.98, + "end": 21637.84, + "probability": 0.9105 + }, + { + "start": 21638.02, + "end": 21639.28, + "probability": 0.5047 + }, + { + "start": 21639.7, + "end": 21641.08, + "probability": 0.9435 + }, + { + "start": 21641.16, + "end": 21641.8, + "probability": 0.7524 + }, + { + "start": 21642.2, + "end": 21644.48, + "probability": 0.9443 + }, + { + "start": 21645.0, + "end": 21647.03, + "probability": 0.7899 + }, + { + "start": 21647.76, + "end": 21648.76, + "probability": 0.8384 + }, + { + "start": 21649.0, + "end": 21650.2, + "probability": 0.6934 + }, + { + "start": 21650.32, + "end": 21653.54, + "probability": 0.5035 + }, + { + "start": 21653.96, + "end": 21657.7, + "probability": 0.6253 + }, + { + "start": 21657.76, + "end": 21658.7, + "probability": 0.5953 + }, + { + "start": 21658.74, + "end": 21659.28, + "probability": 0.4529 + }, + { + "start": 21659.4, + "end": 21661.72, + "probability": 0.9088 + }, + { + "start": 21661.78, + "end": 21662.14, + "probability": 0.7017 + }, + { + "start": 21663.64, + "end": 21664.66, + "probability": 0.8896 + }, + { + "start": 21664.98, + "end": 21668.53, + "probability": 0.6673 + }, + { + "start": 21669.26, + "end": 21669.66, + "probability": 0.1234 + }, + { + "start": 21670.76, + "end": 21671.26, + "probability": 0.0449 + }, + { + "start": 21671.26, + "end": 21671.94, + "probability": 0.1102 + }, + { + "start": 21674.44, + "end": 21680.68, + "probability": 0.9855 + }, + { + "start": 21680.82, + "end": 21681.44, + "probability": 0.7173 + }, + { + "start": 21681.64, + "end": 21683.44, + "probability": 0.9886 + }, + { + "start": 21685.04, + "end": 21685.46, + "probability": 0.4472 + }, + { + "start": 21685.56, + "end": 21687.74, + "probability": 0.5939 + }, + { + "start": 21687.96, + "end": 21692.62, + "probability": 0.6866 + }, + { + "start": 21693.52, + "end": 21694.6, + "probability": 0.1068 + }, + { + "start": 21697.22, + "end": 21698.38, + "probability": 0.0116 + }, + { + "start": 21698.38, + "end": 21699.84, + "probability": 0.0403 + }, + { + "start": 21699.86, + "end": 21701.0, + "probability": 0.1314 + }, + { + "start": 21701.18, + "end": 21702.38, + "probability": 0.6401 + }, + { + "start": 21702.7, + "end": 21704.58, + "probability": 0.9639 + }, + { + "start": 21705.16, + "end": 21708.72, + "probability": 0.9247 + }, + { + "start": 21709.46, + "end": 21710.12, + "probability": 0.6522 + }, + { + "start": 21710.26, + "end": 21711.7, + "probability": 0.3479 + }, + { + "start": 21711.88, + "end": 21713.94, + "probability": 0.3913 + }, + { + "start": 21714.1, + "end": 21715.04, + "probability": 0.665 + }, + { + "start": 21715.62, + "end": 21717.2, + "probability": 0.7613 + }, + { + "start": 21717.56, + "end": 21720.34, + "probability": 0.7085 + }, + { + "start": 21721.9, + "end": 21724.78, + "probability": 0.978 + }, + { + "start": 21726.42, + "end": 21728.76, + "probability": 0.7427 + }, + { + "start": 21729.66, + "end": 21732.18, + "probability": 0.7087 + }, + { + "start": 21732.24, + "end": 21733.26, + "probability": 0.7249 + }, + { + "start": 21733.38, + "end": 21733.8, + "probability": 0.375 + }, + { + "start": 21733.98, + "end": 21735.2, + "probability": 0.9297 + }, + { + "start": 21735.38, + "end": 21736.24, + "probability": 0.7536 + }, + { + "start": 21736.54, + "end": 21740.44, + "probability": 0.9565 + }, + { + "start": 21740.52, + "end": 21745.26, + "probability": 0.9904 + }, + { + "start": 21745.58, + "end": 21748.62, + "probability": 0.9863 + }, + { + "start": 21748.94, + "end": 21750.02, + "probability": 0.8534 + }, + { + "start": 21750.28, + "end": 21751.7, + "probability": 0.9805 + }, + { + "start": 21751.92, + "end": 21753.34, + "probability": 0.9793 + }, + { + "start": 21753.42, + "end": 21753.82, + "probability": 0.6586 + }, + { + "start": 21754.7, + "end": 21756.0, + "probability": 0.914 + }, + { + "start": 21756.38, + "end": 21757.06, + "probability": 0.6468 + }, + { + "start": 21757.24, + "end": 21758.96, + "probability": 0.9911 + }, + { + "start": 21759.56, + "end": 21766.1, + "probability": 0.9301 + }, + { + "start": 21767.28, + "end": 21769.4, + "probability": 0.9698 + }, + { + "start": 21769.84, + "end": 21771.3, + "probability": 0.9946 + }, + { + "start": 21772.08, + "end": 21773.3, + "probability": 0.4394 + }, + { + "start": 21777.82, + "end": 21779.04, + "probability": 0.8677 + }, + { + "start": 21779.14, + "end": 21782.68, + "probability": 0.166 + }, + { + "start": 21782.72, + "end": 21783.84, + "probability": 0.6558 + }, + { + "start": 21783.9, + "end": 21785.78, + "probability": 0.9051 + }, + { + "start": 21785.8, + "end": 21786.46, + "probability": 0.5131 + }, + { + "start": 21786.48, + "end": 21787.08, + "probability": 0.2999 + }, + { + "start": 21787.42, + "end": 21787.76, + "probability": 0.8366 + }, + { + "start": 21788.08, + "end": 21790.04, + "probability": 0.6569 + }, + { + "start": 21791.1, + "end": 21791.96, + "probability": 0.9222 + }, + { + "start": 21793.32, + "end": 21795.6, + "probability": 0.9944 + }, + { + "start": 21796.58, + "end": 21798.25, + "probability": 0.7388 + }, + { + "start": 21799.28, + "end": 21801.86, + "probability": 0.9758 + }, + { + "start": 21801.86, + "end": 21805.1, + "probability": 0.9978 + }, + { + "start": 21806.22, + "end": 21808.64, + "probability": 0.9784 + }, + { + "start": 21809.38, + "end": 21811.7, + "probability": 0.8154 + }, + { + "start": 21812.8, + "end": 21813.62, + "probability": 0.9318 + }, + { + "start": 21813.7, + "end": 21814.22, + "probability": 0.9064 + }, + { + "start": 21814.44, + "end": 21816.5, + "probability": 0.9928 + }, + { + "start": 21817.2, + "end": 21819.4, + "probability": 0.8945 + }, + { + "start": 21820.28, + "end": 21825.5, + "probability": 0.9971 + }, + { + "start": 21826.6, + "end": 21829.8, + "probability": 0.992 + }, + { + "start": 21831.2, + "end": 21836.16, + "probability": 0.8364 + }, + { + "start": 21836.26, + "end": 21837.64, + "probability": 0.9062 + }, + { + "start": 21838.26, + "end": 21841.2, + "probability": 0.9502 + }, + { + "start": 21841.84, + "end": 21844.22, + "probability": 0.9625 + }, + { + "start": 21844.74, + "end": 21845.98, + "probability": 0.6884 + }, + { + "start": 21846.04, + "end": 21848.66, + "probability": 0.9517 + }, + { + "start": 21849.16, + "end": 21851.38, + "probability": 0.9665 + }, + { + "start": 21851.54, + "end": 21853.34, + "probability": 0.6995 + }, + { + "start": 21853.92, + "end": 21857.76, + "probability": 0.9807 + }, + { + "start": 21858.5, + "end": 21863.28, + "probability": 0.8927 + }, + { + "start": 21864.04, + "end": 21867.56, + "probability": 0.9883 + }, + { + "start": 21868.6, + "end": 21870.86, + "probability": 0.8945 + }, + { + "start": 21871.68, + "end": 21876.26, + "probability": 0.9297 + }, + { + "start": 21877.04, + "end": 21880.7, + "probability": 0.996 + }, + { + "start": 21880.7, + "end": 21883.54, + "probability": 0.985 + }, + { + "start": 21884.92, + "end": 21887.24, + "probability": 0.9959 + }, + { + "start": 21887.98, + "end": 21891.5, + "probability": 0.9943 + }, + { + "start": 21892.04, + "end": 21893.04, + "probability": 0.8623 + }, + { + "start": 21893.92, + "end": 21894.98, + "probability": 0.9166 + }, + { + "start": 21895.64, + "end": 21896.98, + "probability": 0.6573 + }, + { + "start": 21897.72, + "end": 21899.34, + "probability": 0.9394 + }, + { + "start": 21899.86, + "end": 21900.22, + "probability": 0.5619 + }, + { + "start": 21901.34, + "end": 21903.82, + "probability": 0.9403 + }, + { + "start": 21904.32, + "end": 21906.54, + "probability": 0.9575 + }, + { + "start": 21907.66, + "end": 21909.0, + "probability": 0.7801 + }, + { + "start": 21909.18, + "end": 21909.82, + "probability": 0.9126 + }, + { + "start": 21909.94, + "end": 21913.64, + "probability": 0.9233 + }, + { + "start": 21914.22, + "end": 21915.44, + "probability": 0.7482 + }, + { + "start": 21916.4, + "end": 21917.08, + "probability": 0.9246 + }, + { + "start": 21917.5, + "end": 21918.36, + "probability": 0.6403 + }, + { + "start": 21918.6, + "end": 21919.63, + "probability": 0.928 + }, + { + "start": 21920.28, + "end": 21921.38, + "probability": 0.662 + }, + { + "start": 21921.42, + "end": 21925.22, + "probability": 0.9719 + }, + { + "start": 21926.04, + "end": 21927.76, + "probability": 0.9866 + }, + { + "start": 21927.76, + "end": 21930.86, + "probability": 0.9653 + }, + { + "start": 21931.9, + "end": 21934.44, + "probability": 0.9656 + }, + { + "start": 21935.1, + "end": 21936.62, + "probability": 0.8105 + }, + { + "start": 21937.36, + "end": 21938.2, + "probability": 0.9874 + }, + { + "start": 21938.34, + "end": 21939.18, + "probability": 0.5465 + }, + { + "start": 21939.24, + "end": 21946.34, + "probability": 0.986 + }, + { + "start": 21947.34, + "end": 21951.28, + "probability": 0.8915 + }, + { + "start": 21951.9, + "end": 21953.08, + "probability": 0.8843 + }, + { + "start": 21953.54, + "end": 21954.96, + "probability": 0.916 + }, + { + "start": 21955.22, + "end": 21956.42, + "probability": 0.9268 + }, + { + "start": 21956.88, + "end": 21960.48, + "probability": 0.9924 + }, + { + "start": 21961.28, + "end": 21965.32, + "probability": 0.9923 + }, + { + "start": 21965.96, + "end": 21968.34, + "probability": 0.8423 + }, + { + "start": 21969.24, + "end": 21973.22, + "probability": 0.9859 + }, + { + "start": 21974.04, + "end": 21974.2, + "probability": 0.4717 + }, + { + "start": 21974.36, + "end": 21976.0, + "probability": 0.9373 + }, + { + "start": 21976.46, + "end": 21977.62, + "probability": 0.9512 + }, + { + "start": 21977.96, + "end": 21979.86, + "probability": 0.9857 + }, + { + "start": 21981.12, + "end": 21984.56, + "probability": 0.9987 + }, + { + "start": 21985.34, + "end": 21988.1, + "probability": 0.8733 + }, + { + "start": 21988.84, + "end": 21991.36, + "probability": 0.9575 + }, + { + "start": 21994.65, + "end": 21995.82, + "probability": 0.1076 + }, + { + "start": 21997.12, + "end": 21997.54, + "probability": 0.0197 + }, + { + "start": 21997.7, + "end": 21997.84, + "probability": 0.1653 + }, + { + "start": 21997.84, + "end": 21997.84, + "probability": 0.3562 + }, + { + "start": 21997.84, + "end": 21999.66, + "probability": 0.7622 + }, + { + "start": 21999.68, + "end": 21999.9, + "probability": 0.3212 + }, + { + "start": 22000.08, + "end": 22000.08, + "probability": 0.0382 + }, + { + "start": 22000.08, + "end": 22003.0, + "probability": 0.9293 + }, + { + "start": 22003.12, + "end": 22004.16, + "probability": 0.8669 + }, + { + "start": 22004.82, + "end": 22006.62, + "probability": 0.2059 + }, + { + "start": 22007.28, + "end": 22008.12, + "probability": 0.0172 + }, + { + "start": 22008.2, + "end": 22008.78, + "probability": 0.4483 + }, + { + "start": 22009.6, + "end": 22011.98, + "probability": 0.6191 + }, + { + "start": 22012.04, + "end": 22014.42, + "probability": 0.632 + }, + { + "start": 22014.5, + "end": 22015.02, + "probability": 0.3294 + }, + { + "start": 22015.1, + "end": 22018.08, + "probability": 0.9429 + }, + { + "start": 22018.08, + "end": 22019.3, + "probability": 0.8621 + }, + { + "start": 22019.36, + "end": 22023.46, + "probability": 0.4003 + }, + { + "start": 22024.44, + "end": 22028.2, + "probability": 0.105 + }, + { + "start": 22029.25, + "end": 22033.06, + "probability": 0.8904 + }, + { + "start": 22033.46, + "end": 22034.46, + "probability": 0.9697 + }, + { + "start": 22035.18, + "end": 22039.32, + "probability": 0.8572 + }, + { + "start": 22040.04, + "end": 22041.88, + "probability": 0.8225 + }, + { + "start": 22043.16, + "end": 22047.34, + "probability": 0.9655 + }, + { + "start": 22047.86, + "end": 22048.72, + "probability": 0.835 + }, + { + "start": 22049.28, + "end": 22054.28, + "probability": 0.979 + }, + { + "start": 22055.28, + "end": 22056.98, + "probability": 0.763 + }, + { + "start": 22057.5, + "end": 22060.16, + "probability": 0.9972 + }, + { + "start": 22060.7, + "end": 22063.16, + "probability": 0.9725 + }, + { + "start": 22063.74, + "end": 22068.26, + "probability": 0.854 + }, + { + "start": 22069.34, + "end": 22070.28, + "probability": 0.9927 + }, + { + "start": 22070.44, + "end": 22070.68, + "probability": 0.8471 + }, + { + "start": 22070.72, + "end": 22072.44, + "probability": 0.994 + }, + { + "start": 22072.98, + "end": 22074.76, + "probability": 0.9525 + }, + { + "start": 22075.12, + "end": 22078.52, + "probability": 0.9175 + }, + { + "start": 22078.78, + "end": 22080.33, + "probability": 0.1311 + }, + { + "start": 22089.3, + "end": 22090.96, + "probability": 0.3085 + }, + { + "start": 22090.98, + "end": 22093.3, + "probability": 0.284 + }, + { + "start": 22093.42, + "end": 22093.68, + "probability": 0.0296 + }, + { + "start": 22093.68, + "end": 22093.68, + "probability": 0.3404 + }, + { + "start": 22093.68, + "end": 22093.68, + "probability": 0.0549 + }, + { + "start": 22093.68, + "end": 22095.48, + "probability": 0.499 + }, + { + "start": 22096.3, + "end": 22101.28, + "probability": 0.9168 + }, + { + "start": 22102.42, + "end": 22105.1, + "probability": 0.8997 + }, + { + "start": 22105.72, + "end": 22108.18, + "probability": 0.8179 + }, + { + "start": 22108.46, + "end": 22112.1, + "probability": 0.9675 + }, + { + "start": 22112.68, + "end": 22118.8, + "probability": 0.9657 + }, + { + "start": 22118.9, + "end": 22119.9, + "probability": 0.2942 + }, + { + "start": 22120.32, + "end": 22123.6, + "probability": 0.9582 + }, + { + "start": 22123.62, + "end": 22125.44, + "probability": 0.9411 + }, + { + "start": 22125.72, + "end": 22130.0, + "probability": 0.9928 + }, + { + "start": 22130.76, + "end": 22133.02, + "probability": 0.9964 + }, + { + "start": 22133.58, + "end": 22136.12, + "probability": 0.998 + }, + { + "start": 22136.64, + "end": 22138.9, + "probability": 0.9447 + }, + { + "start": 22138.98, + "end": 22139.88, + "probability": 0.6467 + }, + { + "start": 22139.88, + "end": 22140.44, + "probability": 0.4852 + }, + { + "start": 22140.46, + "end": 22141.78, + "probability": 0.5634 + }, + { + "start": 22141.92, + "end": 22144.12, + "probability": 0.4828 + }, + { + "start": 22144.54, + "end": 22144.54, + "probability": 0.1274 + }, + { + "start": 22144.54, + "end": 22144.98, + "probability": 0.6394 + }, + { + "start": 22145.06, + "end": 22146.56, + "probability": 0.7016 + }, + { + "start": 22146.56, + "end": 22147.94, + "probability": 0.5582 + }, + { + "start": 22147.98, + "end": 22149.04, + "probability": 0.9673 + }, + { + "start": 22150.5, + "end": 22152.86, + "probability": 0.8538 + }, + { + "start": 22153.1, + "end": 22155.74, + "probability": 0.8403 + }, + { + "start": 22156.42, + "end": 22159.54, + "probability": 0.9163 + }, + { + "start": 22160.16, + "end": 22162.42, + "probability": 0.9765 + }, + { + "start": 22163.38, + "end": 22164.0, + "probability": 0.8005 + }, + { + "start": 22164.14, + "end": 22164.38, + "probability": 0.8504 + }, + { + "start": 22164.5, + "end": 22164.6, + "probability": 0.4328 + }, + { + "start": 22164.7, + "end": 22168.82, + "probability": 0.9782 + }, + { + "start": 22169.46, + "end": 22173.28, + "probability": 0.9712 + }, + { + "start": 22173.28, + "end": 22176.24, + "probability": 0.9956 + }, + { + "start": 22177.3, + "end": 22178.62, + "probability": 0.0522 + }, + { + "start": 22178.62, + "end": 22181.26, + "probability": 0.2324 + }, + { + "start": 22181.4, + "end": 22183.96, + "probability": 0.7266 + }, + { + "start": 22185.1, + "end": 22189.9, + "probability": 0.9938 + }, + { + "start": 22190.74, + "end": 22196.48, + "probability": 0.9976 + }, + { + "start": 22196.86, + "end": 22197.96, + "probability": 0.8943 + }, + { + "start": 22199.16, + "end": 22203.46, + "probability": 0.9717 + }, + { + "start": 22204.04, + "end": 22204.78, + "probability": 0.4707 + }, + { + "start": 22205.3, + "end": 22206.02, + "probability": 0.6679 + }, + { + "start": 22206.1, + "end": 22209.68, + "probability": 0.8545 + }, + { + "start": 22210.08, + "end": 22211.18, + "probability": 0.9247 + }, + { + "start": 22211.56, + "end": 22215.24, + "probability": 0.9861 + }, + { + "start": 22216.34, + "end": 22217.0, + "probability": 0.5128 + }, + { + "start": 22217.2, + "end": 22217.64, + "probability": 0.6516 + }, + { + "start": 22217.66, + "end": 22218.7, + "probability": 0.9533 + }, + { + "start": 22219.08, + "end": 22220.67, + "probability": 0.8918 + }, + { + "start": 22221.14, + "end": 22227.3, + "probability": 0.9717 + }, + { + "start": 22227.86, + "end": 22229.02, + "probability": 0.9703 + }, + { + "start": 22229.48, + "end": 22231.28, + "probability": 0.8379 + }, + { + "start": 22231.6, + "end": 22232.3, + "probability": 0.7356 + }, + { + "start": 22232.3, + "end": 22233.92, + "probability": 0.9126 + }, + { + "start": 22234.0, + "end": 22237.68, + "probability": 0.4932 + }, + { + "start": 22237.8, + "end": 22239.0, + "probability": 0.9844 + }, + { + "start": 22239.7, + "end": 22240.94, + "probability": 0.8342 + }, + { + "start": 22241.28, + "end": 22243.98, + "probability": 0.9843 + }, + { + "start": 22244.02, + "end": 22248.82, + "probability": 0.9966 + }, + { + "start": 22249.36, + "end": 22250.74, + "probability": 0.844 + }, + { + "start": 22251.38, + "end": 22253.66, + "probability": 0.9732 + }, + { + "start": 22253.76, + "end": 22255.02, + "probability": 0.8022 + }, + { + "start": 22255.02, + "end": 22255.56, + "probability": 0.5707 + }, + { + "start": 22256.0, + "end": 22257.4, + "probability": 0.7236 + }, + { + "start": 22257.48, + "end": 22259.2, + "probability": 0.9706 + }, + { + "start": 22259.8, + "end": 22263.64, + "probability": 0.8709 + }, + { + "start": 22264.22, + "end": 22265.92, + "probability": 0.906 + }, + { + "start": 22266.52, + "end": 22268.66, + "probability": 0.9707 + }, + { + "start": 22268.72, + "end": 22273.66, + "probability": 0.8845 + }, + { + "start": 22273.76, + "end": 22274.24, + "probability": 0.8668 + }, + { + "start": 22274.66, + "end": 22275.68, + "probability": 0.9159 + }, + { + "start": 22276.24, + "end": 22279.36, + "probability": 0.6865 + }, + { + "start": 22279.8, + "end": 22281.52, + "probability": 0.988 + }, + { + "start": 22282.2, + "end": 22282.54, + "probability": 0.4892 + }, + { + "start": 22282.56, + "end": 22285.61, + "probability": 0.973 + }, + { + "start": 22286.02, + "end": 22286.74, + "probability": 0.5898 + }, + { + "start": 22286.88, + "end": 22289.04, + "probability": 0.8892 + }, + { + "start": 22289.96, + "end": 22294.02, + "probability": 0.6564 + }, + { + "start": 22294.3, + "end": 22295.34, + "probability": 0.6035 + }, + { + "start": 22295.54, + "end": 22296.78, + "probability": 0.696 + }, + { + "start": 22296.78, + "end": 22299.68, + "probability": 0.7449 + }, + { + "start": 22299.68, + "end": 22300.66, + "probability": 0.5568 + }, + { + "start": 22301.04, + "end": 22302.1, + "probability": 0.8954 + }, + { + "start": 22302.16, + "end": 22306.34, + "probability": 0.9756 + }, + { + "start": 22306.34, + "end": 22309.38, + "probability": 0.7924 + }, + { + "start": 22309.54, + "end": 22311.08, + "probability": 0.7999 + }, + { + "start": 22313.92, + "end": 22314.92, + "probability": 0.7356 + }, + { + "start": 22316.48, + "end": 22317.56, + "probability": 0.821 + }, + { + "start": 22318.32, + "end": 22320.52, + "probability": 0.9008 + }, + { + "start": 22321.74, + "end": 22322.96, + "probability": 0.7895 + }, + { + "start": 22324.08, + "end": 22325.44, + "probability": 0.9048 + }, + { + "start": 22328.03, + "end": 22335.75, + "probability": 0.7922 + }, + { + "start": 22336.76, + "end": 22338.92, + "probability": 0.8891 + }, + { + "start": 22340.84, + "end": 22351.42, + "probability": 0.9816 + }, + { + "start": 22351.66, + "end": 22352.36, + "probability": 0.0215 + }, + { + "start": 22353.12, + "end": 22353.12, + "probability": 0.0766 + }, + { + "start": 22353.14, + "end": 22359.35, + "probability": 0.9683 + }, + { + "start": 22359.86, + "end": 22361.6, + "probability": 0.7324 + }, + { + "start": 22362.68, + "end": 22364.1, + "probability": 0.921 + }, + { + "start": 22364.32, + "end": 22367.81, + "probability": 0.8965 + }, + { + "start": 22368.7, + "end": 22374.28, + "probability": 0.8948 + }, + { + "start": 22375.34, + "end": 22376.48, + "probability": 0.9645 + }, + { + "start": 22377.12, + "end": 22378.12, + "probability": 0.9855 + }, + { + "start": 22378.9, + "end": 22382.12, + "probability": 0.8458 + }, + { + "start": 22382.54, + "end": 22383.06, + "probability": 0.7868 + }, + { + "start": 22383.42, + "end": 22385.1, + "probability": 0.8885 + }, + { + "start": 22385.12, + "end": 22387.48, + "probability": 0.8072 + }, + { + "start": 22387.54, + "end": 22389.14, + "probability": 0.7861 + }, + { + "start": 22389.5, + "end": 22390.74, + "probability": 0.2698 + }, + { + "start": 22391.0, + "end": 22393.98, + "probability": 0.4204 + }, + { + "start": 22394.28, + "end": 22396.94, + "probability": 0.643 + }, + { + "start": 22396.98, + "end": 22399.2, + "probability": 0.863 + }, + { + "start": 22399.36, + "end": 22400.24, + "probability": 0.3658 + }, + { + "start": 22400.26, + "end": 22401.66, + "probability": 0.7301 + }, + { + "start": 22401.86, + "end": 22404.4, + "probability": 0.8811 + }, + { + "start": 22404.52, + "end": 22406.68, + "probability": 0.6733 + }, + { + "start": 22406.82, + "end": 22406.98, + "probability": 0.0134 + }, + { + "start": 22406.98, + "end": 22408.24, + "probability": 0.2044 + }, + { + "start": 22408.24, + "end": 22409.54, + "probability": 0.7745 + }, + { + "start": 22409.6, + "end": 22412.68, + "probability": 0.9932 + }, + { + "start": 22413.5, + "end": 22414.36, + "probability": 0.8798 + }, + { + "start": 22414.92, + "end": 22415.96, + "probability": 0.3561 + }, + { + "start": 22416.08, + "end": 22421.46, + "probability": 0.7784 + }, + { + "start": 22421.46, + "end": 22425.74, + "probability": 0.9689 + }, + { + "start": 22426.14, + "end": 22428.56, + "probability": 0.487 + }, + { + "start": 22428.56, + "end": 22430.56, + "probability": 0.3379 + }, + { + "start": 22430.7, + "end": 22431.52, + "probability": 0.7577 + }, + { + "start": 22431.52, + "end": 22436.2, + "probability": 0.8351 + }, + { + "start": 22436.84, + "end": 22438.42, + "probability": 0.746 + }, + { + "start": 22438.68, + "end": 22443.92, + "probability": 0.8328 + }, + { + "start": 22443.92, + "end": 22450.11, + "probability": 0.6823 + }, + { + "start": 22450.86, + "end": 22451.7, + "probability": 0.7249 + }, + { + "start": 22451.98, + "end": 22453.42, + "probability": 0.7864 + }, + { + "start": 22453.8, + "end": 22455.41, + "probability": 0.6613 + }, + { + "start": 22456.64, + "end": 22457.04, + "probability": 0.5909 + }, + { + "start": 22457.12, + "end": 22463.82, + "probability": 0.8926 + }, + { + "start": 22464.74, + "end": 22468.66, + "probability": 0.7673 + }, + { + "start": 22470.26, + "end": 22472.82, + "probability": 0.8437 + }, + { + "start": 22472.94, + "end": 22478.46, + "probability": 0.9609 + }, + { + "start": 22478.58, + "end": 22479.38, + "probability": 0.7801 + }, + { + "start": 22479.78, + "end": 22480.22, + "probability": 0.7635 + }, + { + "start": 22480.38, + "end": 22481.72, + "probability": 0.9338 + }, + { + "start": 22481.92, + "end": 22482.98, + "probability": 0.8489 + }, + { + "start": 22483.04, + "end": 22484.98, + "probability": 0.9707 + }, + { + "start": 22485.66, + "end": 22488.1, + "probability": 0.763 + }, + { + "start": 22488.5, + "end": 22494.32, + "probability": 0.9697 + }, + { + "start": 22495.3, + "end": 22498.12, + "probability": 0.7726 + }, + { + "start": 22499.04, + "end": 22499.64, + "probability": 0.7301 + }, + { + "start": 22500.3, + "end": 22503.06, + "probability": 0.8288 + }, + { + "start": 22503.74, + "end": 22505.88, + "probability": 0.4924 + }, + { + "start": 22506.76, + "end": 22508.92, + "probability": 0.4275 + }, + { + "start": 22508.98, + "end": 22511.6, + "probability": 0.9861 + }, + { + "start": 22511.98, + "end": 22513.54, + "probability": 0.3782 + }, + { + "start": 22513.68, + "end": 22514.51, + "probability": 0.9009 + }, + { + "start": 22514.64, + "end": 22516.58, + "probability": 0.9742 + }, + { + "start": 22516.64, + "end": 22517.68, + "probability": 0.9053 + }, + { + "start": 22518.14, + "end": 22518.14, + "probability": 0.1173 + }, + { + "start": 22518.14, + "end": 22520.24, + "probability": 0.54 + }, + { + "start": 22520.24, + "end": 22520.82, + "probability": 0.2222 + }, + { + "start": 22521.12, + "end": 22525.44, + "probability": 0.8359 + }, + { + "start": 22525.52, + "end": 22526.2, + "probability": 0.3524 + }, + { + "start": 22526.26, + "end": 22526.72, + "probability": 0.6747 + }, + { + "start": 22527.06, + "end": 22530.42, + "probability": 0.7151 + }, + { + "start": 22530.6, + "end": 22531.58, + "probability": 0.9392 + }, + { + "start": 22531.64, + "end": 22537.04, + "probability": 0.9333 + }, + { + "start": 22537.12, + "end": 22538.68, + "probability": 0.739 + }, + { + "start": 22538.8, + "end": 22541.4, + "probability": 0.2454 + }, + { + "start": 22541.4, + "end": 22543.3, + "probability": 0.6475 + }, + { + "start": 22543.88, + "end": 22547.3, + "probability": 0.9808 + }, + { + "start": 22547.48, + "end": 22550.06, + "probability": 0.8709 + }, + { + "start": 22550.44, + "end": 22554.26, + "probability": 0.8969 + }, + { + "start": 22554.6, + "end": 22555.56, + "probability": 0.9868 + }, + { + "start": 22555.62, + "end": 22559.86, + "probability": 0.8699 + }, + { + "start": 22560.55, + "end": 22560.62, + "probability": 0.2815 + }, + { + "start": 22560.62, + "end": 22560.62, + "probability": 0.5534 + }, + { + "start": 22560.62, + "end": 22564.82, + "probability": 0.9837 + }, + { + "start": 22564.82, + "end": 22569.1, + "probability": 0.9972 + }, + { + "start": 22569.88, + "end": 22570.04, + "probability": 0.001 + }, + { + "start": 22570.04, + "end": 22573.38, + "probability": 0.9868 + }, + { + "start": 22573.98, + "end": 22574.1, + "probability": 0.0299 + }, + { + "start": 22574.1, + "end": 22574.1, + "probability": 0.0364 + }, + { + "start": 22574.1, + "end": 22574.1, + "probability": 0.1095 + }, + { + "start": 22574.1, + "end": 22574.28, + "probability": 0.1484 + }, + { + "start": 22575.02, + "end": 22580.76, + "probability": 0.8276 + }, + { + "start": 22580.76, + "end": 22581.96, + "probability": 0.3547 + }, + { + "start": 22581.96, + "end": 22582.72, + "probability": 0.698 + }, + { + "start": 22583.26, + "end": 22588.86, + "probability": 0.6541 + }, + { + "start": 22588.86, + "end": 22590.44, + "probability": 0.6176 + }, + { + "start": 22590.68, + "end": 22591.16, + "probability": 0.0143 + }, + { + "start": 22592.3, + "end": 22593.38, + "probability": 0.2076 + }, + { + "start": 22594.04, + "end": 22595.14, + "probability": 0.1929 + }, + { + "start": 22595.14, + "end": 22596.5, + "probability": 0.6392 + }, + { + "start": 22596.5, + "end": 22599.88, + "probability": 0.8741 + }, + { + "start": 22600.98, + "end": 22601.14, + "probability": 0.1469 + }, + { + "start": 22601.14, + "end": 22602.44, + "probability": 0.5639 + }, + { + "start": 22602.46, + "end": 22603.86, + "probability": 0.6251 + }, + { + "start": 22603.94, + "end": 22604.8, + "probability": 0.6686 + }, + { + "start": 22604.86, + "end": 22607.6, + "probability": 0.6638 + }, + { + "start": 22607.6, + "end": 22613.72, + "probability": 0.8688 + }, + { + "start": 22614.2, + "end": 22614.92, + "probability": 0.6368 + }, + { + "start": 22615.1, + "end": 22615.48, + "probability": 0.4261 + }, + { + "start": 22615.7, + "end": 22618.66, + "probability": 0.928 + }, + { + "start": 22618.66, + "end": 22622.12, + "probability": 0.9705 + }, + { + "start": 22623.88, + "end": 22625.14, + "probability": 0.0596 + }, + { + "start": 22625.14, + "end": 22627.84, + "probability": 0.0376 + }, + { + "start": 22629.82, + "end": 22629.82, + "probability": 0.0746 + }, + { + "start": 22629.82, + "end": 22630.76, + "probability": 0.0297 + }, + { + "start": 22630.76, + "end": 22630.76, + "probability": 0.0683 + }, + { + "start": 22630.76, + "end": 22634.58, + "probability": 0.5943 + }, + { + "start": 22634.84, + "end": 22640.74, + "probability": 0.9757 + }, + { + "start": 22641.18, + "end": 22642.3, + "probability": 0.6493 + }, + { + "start": 22642.78, + "end": 22642.92, + "probability": 0.0019 + }, + { + "start": 22642.92, + "end": 22646.26, + "probability": 0.5204 + }, + { + "start": 22646.68, + "end": 22651.02, + "probability": 0.5293 + }, + { + "start": 22651.14, + "end": 22652.38, + "probability": 0.917 + }, + { + "start": 22652.38, + "end": 22654.04, + "probability": 0.3747 + }, + { + "start": 22656.34, + "end": 22656.83, + "probability": 0.0177 + }, + { + "start": 22657.52, + "end": 22659.08, + "probability": 0.1566 + }, + { + "start": 22659.42, + "end": 22662.22, + "probability": 0.1749 + }, + { + "start": 22662.32, + "end": 22663.3, + "probability": 0.6223 + }, + { + "start": 22663.3, + "end": 22668.48, + "probability": 0.926 + }, + { + "start": 22668.62, + "end": 22670.98, + "probability": 0.9927 + }, + { + "start": 22671.4, + "end": 22675.16, + "probability": 0.9386 + }, + { + "start": 22675.68, + "end": 22679.96, + "probability": 0.7291 + }, + { + "start": 22680.14, + "end": 22681.42, + "probability": 0.8775 + }, + { + "start": 22681.56, + "end": 22683.05, + "probability": 0.9937 + }, + { + "start": 22683.26, + "end": 22686.26, + "probability": 0.9039 + }, + { + "start": 22686.8, + "end": 22687.04, + "probability": 0.4182 + }, + { + "start": 22687.32, + "end": 22690.76, + "probability": 0.9972 + }, + { + "start": 22691.14, + "end": 22693.17, + "probability": 0.9373 + }, + { + "start": 22693.6, + "end": 22694.67, + "probability": 0.9268 + }, + { + "start": 22695.34, + "end": 22696.84, + "probability": 0.4997 + }, + { + "start": 22696.96, + "end": 22698.36, + "probability": 0.8472 + }, + { + "start": 22698.36, + "end": 22699.6, + "probability": 0.099 + }, + { + "start": 22699.6, + "end": 22700.16, + "probability": 0.3872 + }, + { + "start": 22701.18, + "end": 22704.5, + "probability": 0.625 + }, + { + "start": 22705.18, + "end": 22706.92, + "probability": 0.0303 + }, + { + "start": 22706.96, + "end": 22709.72, + "probability": 0.4414 + }, + { + "start": 22710.14, + "end": 22710.74, + "probability": 0.0743 + }, + { + "start": 22710.84, + "end": 22711.46, + "probability": 0.1101 + }, + { + "start": 22711.82, + "end": 22715.26, + "probability": 0.9919 + }, + { + "start": 22715.82, + "end": 22722.26, + "probability": 0.9906 + }, + { + "start": 22722.78, + "end": 22723.62, + "probability": 0.4747 + }, + { + "start": 22724.35, + "end": 22726.12, + "probability": 0.2831 + }, + { + "start": 22726.12, + "end": 22726.52, + "probability": 0.2503 + }, + { + "start": 22726.7, + "end": 22727.94, + "probability": 0.4562 + }, + { + "start": 22728.54, + "end": 22730.2, + "probability": 0.2011 + }, + { + "start": 22730.74, + "end": 22730.74, + "probability": 0.0494 + }, + { + "start": 22730.74, + "end": 22730.74, + "probability": 0.1844 + }, + { + "start": 22730.74, + "end": 22731.2, + "probability": 0.3332 + }, + { + "start": 22732.12, + "end": 22734.18, + "probability": 0.6484 + }, + { + "start": 22734.22, + "end": 22734.88, + "probability": 0.5077 + }, + { + "start": 22734.9, + "end": 22735.32, + "probability": 0.4446 + }, + { + "start": 22735.32, + "end": 22735.42, + "probability": 0.0593 + }, + { + "start": 22736.54, + "end": 22738.08, + "probability": 0.0795 + }, + { + "start": 22738.16, + "end": 22741.32, + "probability": 0.0765 + }, + { + "start": 22741.6, + "end": 22746.5, + "probability": 0.4929 + }, + { + "start": 22746.78, + "end": 22748.92, + "probability": 0.7933 + }, + { + "start": 22749.22, + "end": 22750.74, + "probability": 0.9529 + }, + { + "start": 22751.08, + "end": 22751.42, + "probability": 0.8211 + }, + { + "start": 22752.5, + "end": 22752.8, + "probability": 0.2893 + }, + { + "start": 22752.8, + "end": 22753.56, + "probability": 0.0205 + }, + { + "start": 22753.94, + "end": 22753.94, + "probability": 0.0831 + }, + { + "start": 22754.26, + "end": 22754.26, + "probability": 0.0283 + }, + { + "start": 22754.26, + "end": 22756.44, + "probability": 0.1908 + }, + { + "start": 22756.44, + "end": 22757.06, + "probability": 0.0745 + }, + { + "start": 22757.58, + "end": 22758.74, + "probability": 0.4124 + }, + { + "start": 22758.82, + "end": 22759.54, + "probability": 0.2483 + }, + { + "start": 22759.64, + "end": 22762.94, + "probability": 0.5179 + }, + { + "start": 22763.4, + "end": 22766.28, + "probability": 0.2317 + }, + { + "start": 22766.42, + "end": 22771.7, + "probability": 0.9839 + }, + { + "start": 22771.86, + "end": 22772.8, + "probability": 0.653 + }, + { + "start": 22772.9, + "end": 22773.2, + "probability": 0.5828 + }, + { + "start": 22773.26, + "end": 22773.64, + "probability": 0.6366 + }, + { + "start": 22773.68, + "end": 22776.6, + "probability": 0.9951 + }, + { + "start": 22776.66, + "end": 22778.98, + "probability": 0.7041 + }, + { + "start": 22779.16, + "end": 22780.62, + "probability": 0.5691 + }, + { + "start": 22781.2, + "end": 22785.66, + "probability": 0.6948 + }, + { + "start": 22785.86, + "end": 22788.62, + "probability": 0.8817 + }, + { + "start": 22789.04, + "end": 22791.24, + "probability": 0.6591 + }, + { + "start": 22791.8, + "end": 22792.5, + "probability": 0.1909 + }, + { + "start": 22793.6, + "end": 22794.02, + "probability": 0.1151 + }, + { + "start": 22794.02, + "end": 22795.75, + "probability": 0.0761 + }, + { + "start": 22796.54, + "end": 22798.36, + "probability": 0.5823 + }, + { + "start": 22798.62, + "end": 22802.1, + "probability": 0.9092 + }, + { + "start": 22802.84, + "end": 22802.86, + "probability": 0.0357 + }, + { + "start": 22802.86, + "end": 22806.0, + "probability": 0.8646 + }, + { + "start": 22806.0, + "end": 22809.82, + "probability": 0.8724 + }, + { + "start": 22810.0, + "end": 22815.4, + "probability": 0.916 + }, + { + "start": 22816.32, + "end": 22816.38, + "probability": 0.0391 + }, + { + "start": 22816.38, + "end": 22817.22, + "probability": 0.2823 + }, + { + "start": 22817.24, + "end": 22821.38, + "probability": 0.5017 + }, + { + "start": 22821.76, + "end": 22823.94, + "probability": 0.4923 + }, + { + "start": 22823.94, + "end": 22823.98, + "probability": 0.0914 + }, + { + "start": 22823.98, + "end": 22827.78, + "probability": 0.3191 + }, + { + "start": 22827.78, + "end": 22828.32, + "probability": 0.8181 + }, + { + "start": 22828.46, + "end": 22832.34, + "probability": 0.5956 + }, + { + "start": 22833.14, + "end": 22834.26, + "probability": 0.1333 + }, + { + "start": 22834.32, + "end": 22835.92, + "probability": 0.5572 + }, + { + "start": 22836.08, + "end": 22837.46, + "probability": 0.7773 + }, + { + "start": 22837.54, + "end": 22838.54, + "probability": 0.6838 + }, + { + "start": 22838.64, + "end": 22842.74, + "probability": 0.8271 + }, + { + "start": 22843.0, + "end": 22851.9, + "probability": 0.8462 + }, + { + "start": 22852.46, + "end": 22855.8, + "probability": 0.0098 + }, + { + "start": 22855.8, + "end": 22855.94, + "probability": 0.1232 + }, + { + "start": 22855.94, + "end": 22857.38, + "probability": 0.5884 + }, + { + "start": 22857.48, + "end": 22859.82, + "probability": 0.8124 + }, + { + "start": 22860.88, + "end": 22864.52, + "probability": 0.9938 + }, + { + "start": 22864.88, + "end": 22869.24, + "probability": 0.9492 + }, + { + "start": 22869.68, + "end": 22870.7, + "probability": 0.8552 + }, + { + "start": 22871.02, + "end": 22871.62, + "probability": 0.8146 + }, + { + "start": 22871.78, + "end": 22875.94, + "probability": 0.9904 + }, + { + "start": 22875.94, + "end": 22880.14, + "probability": 0.9502 + }, + { + "start": 22880.22, + "end": 22880.86, + "probability": 0.8394 + }, + { + "start": 22880.9, + "end": 22881.86, + "probability": 0.7329 + }, + { + "start": 22881.94, + "end": 22884.4, + "probability": 0.7603 + }, + { + "start": 22885.04, + "end": 22888.76, + "probability": 0.8071 + }, + { + "start": 22889.06, + "end": 22891.06, + "probability": 0.9194 + }, + { + "start": 22891.58, + "end": 22892.08, + "probability": 0.7167 + }, + { + "start": 22893.98, + "end": 22898.1, + "probability": 0.0166 + }, + { + "start": 22903.68, + "end": 22904.62, + "probability": 0.7447 + }, + { + "start": 22904.9, + "end": 22905.76, + "probability": 0.9355 + }, + { + "start": 22906.02, + "end": 22914.5, + "probability": 0.8926 + }, + { + "start": 22915.48, + "end": 22916.01, + "probability": 0.9946 + }, + { + "start": 22918.16, + "end": 22920.78, + "probability": 0.9666 + }, + { + "start": 22921.5, + "end": 22923.92, + "probability": 0.8252 + }, + { + "start": 22923.98, + "end": 22924.72, + "probability": 0.9587 + }, + { + "start": 22924.9, + "end": 22931.94, + "probability": 0.7607 + }, + { + "start": 22933.72, + "end": 22935.58, + "probability": 0.9916 + }, + { + "start": 22935.66, + "end": 22936.9, + "probability": 0.9692 + }, + { + "start": 22937.4, + "end": 22938.98, + "probability": 0.9867 + }, + { + "start": 22939.08, + "end": 22941.96, + "probability": 0.7589 + }, + { + "start": 22943.16, + "end": 22947.4, + "probability": 0.9348 + }, + { + "start": 22948.92, + "end": 22952.64, + "probability": 0.9649 + }, + { + "start": 22953.34, + "end": 22956.42, + "probability": 0.9964 + }, + { + "start": 22958.78, + "end": 22960.08, + "probability": 0.9972 + }, + { + "start": 22961.8, + "end": 22964.62, + "probability": 0.9944 + }, + { + "start": 22966.16, + "end": 22966.16, + "probability": 0.0619 + }, + { + "start": 22966.16, + "end": 22970.16, + "probability": 0.915 + }, + { + "start": 22970.68, + "end": 22976.17, + "probability": 0.81 + }, + { + "start": 22979.94, + "end": 22981.34, + "probability": 0.9265 + }, + { + "start": 22982.04, + "end": 22984.14, + "probability": 0.9639 + }, + { + "start": 22985.66, + "end": 22988.1, + "probability": 0.997 + }, + { + "start": 22989.28, + "end": 22994.52, + "probability": 0.893 + }, + { + "start": 22995.32, + "end": 23002.16, + "probability": 0.9547 + }, + { + "start": 23002.3, + "end": 23007.27, + "probability": 0.9972 + }, + { + "start": 23009.7, + "end": 23012.4, + "probability": 0.9016 + }, + { + "start": 23013.16, + "end": 23013.72, + "probability": 0.5018 + }, + { + "start": 23014.66, + "end": 23017.24, + "probability": 0.9297 + }, + { + "start": 23018.76, + "end": 23019.0, + "probability": 0.531 + }, + { + "start": 23019.14, + "end": 23027.38, + "probability": 0.9648 + }, + { + "start": 23027.5, + "end": 23028.7, + "probability": 0.9298 + }, + { + "start": 23028.82, + "end": 23030.14, + "probability": 0.4436 + }, + { + "start": 23031.52, + "end": 23034.44, + "probability": 0.8949 + }, + { + "start": 23035.48, + "end": 23037.22, + "probability": 0.9272 + }, + { + "start": 23038.22, + "end": 23041.34, + "probability": 0.9429 + }, + { + "start": 23041.42, + "end": 23041.82, + "probability": 0.6687 + }, + { + "start": 23041.96, + "end": 23048.6, + "probability": 0.9608 + }, + { + "start": 23048.82, + "end": 23051.7, + "probability": 0.9902 + }, + { + "start": 23052.04, + "end": 23053.1, + "probability": 0.5191 + }, + { + "start": 23054.0, + "end": 23056.4, + "probability": 0.9891 + }, + { + "start": 23059.78, + "end": 23062.04, + "probability": 0.9904 + }, + { + "start": 23064.18, + "end": 23065.66, + "probability": 0.9487 + }, + { + "start": 23067.9, + "end": 23071.92, + "probability": 0.9854 + }, + { + "start": 23071.96, + "end": 23073.16, + "probability": 0.8581 + }, + { + "start": 23073.22, + "end": 23074.2, + "probability": 0.9597 + }, + { + "start": 23074.98, + "end": 23075.78, + "probability": 0.8022 + }, + { + "start": 23076.96, + "end": 23078.6, + "probability": 0.8333 + }, + { + "start": 23079.92, + "end": 23080.92, + "probability": 0.929 + }, + { + "start": 23083.12, + "end": 23089.26, + "probability": 0.8999 + }, + { + "start": 23090.9, + "end": 23091.96, + "probability": 0.9978 + }, + { + "start": 23094.26, + "end": 23095.34, + "probability": 0.5586 + }, + { + "start": 23095.9, + "end": 23099.02, + "probability": 0.0192 + }, + { + "start": 23099.26, + "end": 23099.64, + "probability": 0.5914 + }, + { + "start": 23100.76, + "end": 23101.68, + "probability": 0.6624 + }, + { + "start": 23102.06, + "end": 23104.62, + "probability": 0.4114 + }, + { + "start": 23104.76, + "end": 23106.04, + "probability": 0.9668 + }, + { + "start": 23106.6, + "end": 23107.5, + "probability": 0.0946 + }, + { + "start": 23107.86, + "end": 23108.84, + "probability": 0.9419 + }, + { + "start": 23109.06, + "end": 23112.24, + "probability": 0.5918 + }, + { + "start": 23112.68, + "end": 23114.66, + "probability": 0.6693 + }, + { + "start": 23114.94, + "end": 23117.32, + "probability": 0.6658 + }, + { + "start": 23117.4, + "end": 23118.9, + "probability": 0.4454 + }, + { + "start": 23119.08, + "end": 23119.08, + "probability": 0.0053 + }, + { + "start": 23119.08, + "end": 23121.66, + "probability": 0.6835 + }, + { + "start": 23122.24, + "end": 23122.6, + "probability": 0.4027 + }, + { + "start": 23122.6, + "end": 23124.92, + "probability": 0.4156 + }, + { + "start": 23125.2, + "end": 23126.8, + "probability": 0.2448 + }, + { + "start": 23130.96, + "end": 23134.5, + "probability": 0.8993 + }, + { + "start": 23138.28, + "end": 23139.56, + "probability": 0.9882 + }, + { + "start": 23143.2, + "end": 23143.54, + "probability": 0.7314 + }, + { + "start": 23144.42, + "end": 23145.1, + "probability": 0.355 + }, + { + "start": 23156.06, + "end": 23157.48, + "probability": 0.6907 + }, + { + "start": 23159.3, + "end": 23159.86, + "probability": 0.1775 + }, + { + "start": 23160.06, + "end": 23162.56, + "probability": 0.96 + }, + { + "start": 23162.56, + "end": 23167.46, + "probability": 0.6533 + }, + { + "start": 23168.41, + "end": 23172.18, + "probability": 0.9219 + }, + { + "start": 23174.72, + "end": 23175.44, + "probability": 0.958 + }, + { + "start": 23176.28, + "end": 23178.52, + "probability": 0.9918 + }, + { + "start": 23181.1, + "end": 23181.52, + "probability": 0.5542 + }, + { + "start": 23184.24, + "end": 23186.32, + "probability": 0.9072 + }, + { + "start": 23189.06, + "end": 23190.7, + "probability": 0.9938 + }, + { + "start": 23192.54, + "end": 23194.06, + "probability": 0.9654 + }, + { + "start": 23194.64, + "end": 23195.88, + "probability": 0.9459 + }, + { + "start": 23198.96, + "end": 23203.66, + "probability": 0.9941 + }, + { + "start": 23206.2, + "end": 23208.12, + "probability": 0.9976 + }, + { + "start": 23209.86, + "end": 23210.84, + "probability": 0.08 + }, + { + "start": 23211.54, + "end": 23215.94, + "probability": 0.9067 + }, + { + "start": 23218.4, + "end": 23222.3, + "probability": 0.9794 + }, + { + "start": 23225.1, + "end": 23227.54, + "probability": 0.8572 + }, + { + "start": 23230.8, + "end": 23234.52, + "probability": 0.9735 + }, + { + "start": 23234.92, + "end": 23238.3, + "probability": 0.964 + }, + { + "start": 23239.54, + "end": 23241.38, + "probability": 0.959 + }, + { + "start": 23244.02, + "end": 23249.8, + "probability": 0.9404 + }, + { + "start": 23251.86, + "end": 23254.48, + "probability": 0.9928 + }, + { + "start": 23257.1, + "end": 23260.48, + "probability": 0.9735 + }, + { + "start": 23261.86, + "end": 23263.58, + "probability": 0.7737 + }, + { + "start": 23266.58, + "end": 23268.44, + "probability": 0.988 + }, + { + "start": 23269.9, + "end": 23272.44, + "probability": 0.999 + }, + { + "start": 23273.16, + "end": 23274.62, + "probability": 0.9943 + }, + { + "start": 23275.88, + "end": 23279.38, + "probability": 0.9869 + }, + { + "start": 23280.82, + "end": 23284.58, + "probability": 0.9939 + }, + { + "start": 23285.76, + "end": 23288.94, + "probability": 0.9944 + }, + { + "start": 23289.14, + "end": 23293.6, + "probability": 0.9963 + }, + { + "start": 23293.92, + "end": 23296.78, + "probability": 0.581 + }, + { + "start": 23296.96, + "end": 23298.38, + "probability": 0.3889 + }, + { + "start": 23298.38, + "end": 23301.88, + "probability": 0.3619 + }, + { + "start": 23301.88, + "end": 23303.18, + "probability": 0.5922 + }, + { + "start": 23303.46, + "end": 23304.62, + "probability": 0.0851 + }, + { + "start": 23305.52, + "end": 23306.15, + "probability": 0.0169 + }, + { + "start": 23307.12, + "end": 23307.66, + "probability": 0.083 + }, + { + "start": 23307.86, + "end": 23309.72, + "probability": 0.0403 + }, + { + "start": 23310.08, + "end": 23310.52, + "probability": 0.2179 + }, + { + "start": 23310.58, + "end": 23310.58, + "probability": 0.1704 + }, + { + "start": 23310.6, + "end": 23310.6, + "probability": 0.1982 + }, + { + "start": 23310.6, + "end": 23312.18, + "probability": 0.5673 + }, + { + "start": 23313.0, + "end": 23314.18, + "probability": 0.7252 + }, + { + "start": 23314.22, + "end": 23315.72, + "probability": 0.7499 + }, + { + "start": 23316.08, + "end": 23316.1, + "probability": 0.1968 + }, + { + "start": 23316.1, + "end": 23318.02, + "probability": 0.6401 + }, + { + "start": 23318.3, + "end": 23319.52, + "probability": 0.1394 + }, + { + "start": 23319.52, + "end": 23320.82, + "probability": 0.501 + }, + { + "start": 23320.82, + "end": 23321.72, + "probability": 0.5041 + }, + { + "start": 23322.28, + "end": 23322.95, + "probability": 0.3104 + }, + { + "start": 23323.08, + "end": 23326.44, + "probability": 0.8794 + }, + { + "start": 23326.7, + "end": 23329.26, + "probability": 0.9399 + }, + { + "start": 23330.38, + "end": 23331.46, + "probability": 0.4578 + }, + { + "start": 23331.68, + "end": 23333.44, + "probability": 0.7988 + }, + { + "start": 23335.36, + "end": 23336.2, + "probability": 0.0927 + }, + { + "start": 23336.56, + "end": 23338.06, + "probability": 0.6445 + }, + { + "start": 23338.32, + "end": 23340.6, + "probability": 0.0493 + }, + { + "start": 23343.6, + "end": 23344.94, + "probability": 0.3526 + }, + { + "start": 23346.32, + "end": 23347.18, + "probability": 0.0264 + }, + { + "start": 23347.2, + "end": 23347.2, + "probability": 0.0184 + }, + { + "start": 23347.46, + "end": 23347.76, + "probability": 0.1234 + }, + { + "start": 23347.76, + "end": 23351.78, + "probability": 0.1699 + }, + { + "start": 23353.88, + "end": 23354.72, + "probability": 0.0335 + }, + { + "start": 23355.2, + "end": 23355.97, + "probability": 0.374 + }, + { + "start": 23359.34, + "end": 23361.72, + "probability": 0.0597 + }, + { + "start": 23361.72, + "end": 23361.72, + "probability": 0.1419 + }, + { + "start": 23361.72, + "end": 23361.72, + "probability": 0.0442 + }, + { + "start": 23361.72, + "end": 23361.72, + "probability": 0.0708 + }, + { + "start": 23361.72, + "end": 23362.07, + "probability": 0.4543 + }, + { + "start": 23362.36, + "end": 23363.82, + "probability": 0.6317 + }, + { + "start": 23364.0, + "end": 23364.9, + "probability": 0.4972 + }, + { + "start": 23365.16, + "end": 23366.58, + "probability": 0.8229 + }, + { + "start": 23370.34, + "end": 23372.08, + "probability": 0.0077 + }, + { + "start": 23372.08, + "end": 23373.14, + "probability": 0.155 + }, + { + "start": 23373.18, + "end": 23377.2, + "probability": 0.7816 + }, + { + "start": 23377.28, + "end": 23378.5, + "probability": 0.9546 + }, + { + "start": 23378.56, + "end": 23379.62, + "probability": 0.982 + }, + { + "start": 23379.84, + "end": 23384.56, + "probability": 0.8498 + }, + { + "start": 23385.46, + "end": 23386.32, + "probability": 0.6665 + }, + { + "start": 23386.86, + "end": 23387.92, + "probability": 0.8888 + }, + { + "start": 23388.12, + "end": 23391.96, + "probability": 0.9464 + }, + { + "start": 23392.0, + "end": 23392.64, + "probability": 0.0463 + }, + { + "start": 23392.64, + "end": 23395.54, + "probability": 0.75 + }, + { + "start": 23396.7, + "end": 23400.64, + "probability": 0.9576 + }, + { + "start": 23400.76, + "end": 23404.74, + "probability": 0.8838 + }, + { + "start": 23405.72, + "end": 23408.94, + "probability": 0.9321 + }, + { + "start": 23409.12, + "end": 23409.78, + "probability": 0.6283 + }, + { + "start": 23411.14, + "end": 23413.82, + "probability": 0.9983 + }, + { + "start": 23416.76, + "end": 23421.38, + "probability": 0.9958 + }, + { + "start": 23423.24, + "end": 23424.94, + "probability": 0.9656 + }, + { + "start": 23426.76, + "end": 23428.78, + "probability": 0.8809 + }, + { + "start": 23430.52, + "end": 23432.86, + "probability": 0.98 + }, + { + "start": 23433.76, + "end": 23435.64, + "probability": 0.855 + }, + { + "start": 23436.64, + "end": 23438.56, + "probability": 0.9485 + }, + { + "start": 23439.34, + "end": 23442.7, + "probability": 0.9089 + }, + { + "start": 23445.0, + "end": 23449.4, + "probability": 0.8814 + }, + { + "start": 23452.46, + "end": 23454.2, + "probability": 0.8861 + }, + { + "start": 23454.82, + "end": 23455.44, + "probability": 0.6688 + }, + { + "start": 23457.3, + "end": 23463.32, + "probability": 0.9751 + }, + { + "start": 23463.36, + "end": 23464.12, + "probability": 0.806 + }, + { + "start": 23465.94, + "end": 23467.62, + "probability": 0.9956 + }, + { + "start": 23470.0, + "end": 23471.68, + "probability": 0.9905 + }, + { + "start": 23472.18, + "end": 23472.72, + "probability": 0.8512 + }, + { + "start": 23472.82, + "end": 23473.34, + "probability": 0.9622 + }, + { + "start": 23473.68, + "end": 23475.3, + "probability": 0.9924 + }, + { + "start": 23478.38, + "end": 23479.92, + "probability": 0.9493 + }, + { + "start": 23481.18, + "end": 23482.34, + "probability": 0.8773 + }, + { + "start": 23484.94, + "end": 23488.44, + "probability": 0.9971 + }, + { + "start": 23488.44, + "end": 23496.04, + "probability": 0.9906 + }, + { + "start": 23497.92, + "end": 23501.46, + "probability": 0.9588 + }, + { + "start": 23503.68, + "end": 23503.98, + "probability": 0.9739 + }, + { + "start": 23504.8, + "end": 23508.16, + "probability": 0.8871 + }, + { + "start": 23510.14, + "end": 23514.2, + "probability": 0.9568 + }, + { + "start": 23517.28, + "end": 23520.08, + "probability": 0.9919 + }, + { + "start": 23520.98, + "end": 23523.82, + "probability": 0.8879 + }, + { + "start": 23525.84, + "end": 23527.12, + "probability": 0.9248 + }, + { + "start": 23529.6, + "end": 23530.3, + "probability": 0.9192 + }, + { + "start": 23530.48, + "end": 23535.32, + "probability": 0.9849 + }, + { + "start": 23536.03, + "end": 23539.08, + "probability": 0.9958 + }, + { + "start": 23540.9, + "end": 23545.24, + "probability": 0.9877 + }, + { + "start": 23547.88, + "end": 23549.44, + "probability": 0.6258 + }, + { + "start": 23550.62, + "end": 23552.26, + "probability": 0.9421 + }, + { + "start": 23553.76, + "end": 23555.6, + "probability": 0.9766 + }, + { + "start": 23557.74, + "end": 23559.36, + "probability": 0.8471 + }, + { + "start": 23560.6, + "end": 23561.19, + "probability": 0.9829 + }, + { + "start": 23564.82, + "end": 23565.92, + "probability": 0.6258 + }, + { + "start": 23568.8, + "end": 23570.88, + "probability": 0.8298 + }, + { + "start": 23572.14, + "end": 23576.43, + "probability": 0.2699 + }, + { + "start": 23578.62, + "end": 23580.56, + "probability": 0.8012 + }, + { + "start": 23580.82, + "end": 23582.42, + "probability": 0.8348 + }, + { + "start": 23583.4, + "end": 23592.22, + "probability": 0.9146 + }, + { + "start": 23593.06, + "end": 23595.0, + "probability": 0.8141 + }, + { + "start": 23597.58, + "end": 23600.88, + "probability": 0.9502 + }, + { + "start": 23601.14, + "end": 23603.22, + "probability": 0.9696 + }, + { + "start": 23604.16, + "end": 23607.4, + "probability": 0.9687 + }, + { + "start": 23609.18, + "end": 23611.88, + "probability": 0.9717 + }, + { + "start": 23614.62, + "end": 23617.66, + "probability": 0.9829 + }, + { + "start": 23621.22, + "end": 23624.22, + "probability": 0.996 + }, + { + "start": 23624.42, + "end": 23626.26, + "probability": 0.9984 + }, + { + "start": 23628.92, + "end": 23629.78, + "probability": 0.8298 + }, + { + "start": 23630.74, + "end": 23632.24, + "probability": 0.9747 + }, + { + "start": 23633.22, + "end": 23634.32, + "probability": 0.9703 + }, + { + "start": 23635.96, + "end": 23637.06, + "probability": 0.9135 + }, + { + "start": 23638.6, + "end": 23645.28, + "probability": 0.9971 + }, + { + "start": 23648.26, + "end": 23650.87, + "probability": 0.7535 + }, + { + "start": 23655.58, + "end": 23657.8, + "probability": 0.9916 + }, + { + "start": 23660.84, + "end": 23662.26, + "probability": 0.8872 + }, + { + "start": 23665.56, + "end": 23667.54, + "probability": 0.9727 + }, + { + "start": 23670.34, + "end": 23671.4, + "probability": 0.9617 + }, + { + "start": 23673.94, + "end": 23674.12, + "probability": 0.0186 + }, + { + "start": 23680.64, + "end": 23682.54, + "probability": 0.4349 + }, + { + "start": 23685.04, + "end": 23686.08, + "probability": 0.6599 + }, + { + "start": 23688.32, + "end": 23689.62, + "probability": 0.9623 + }, + { + "start": 23692.26, + "end": 23695.32, + "probability": 0.922 + }, + { + "start": 23699.7, + "end": 23702.97, + "probability": 0.9849 + }, + { + "start": 23704.88, + "end": 23710.0, + "probability": 0.9932 + }, + { + "start": 23711.1, + "end": 23714.94, + "probability": 0.9975 + }, + { + "start": 23716.88, + "end": 23718.36, + "probability": 0.8271 + }, + { + "start": 23720.18, + "end": 23720.94, + "probability": 0.8728 + }, + { + "start": 23721.56, + "end": 23723.26, + "probability": 0.9758 + }, + { + "start": 23724.96, + "end": 23725.44, + "probability": 0.908 + }, + { + "start": 23728.36, + "end": 23730.76, + "probability": 0.9863 + }, + { + "start": 23732.02, + "end": 23735.36, + "probability": 0.9987 + }, + { + "start": 23739.08, + "end": 23742.06, + "probability": 0.9405 + }, + { + "start": 23745.3, + "end": 23747.22, + "probability": 0.9592 + }, + { + "start": 23749.02, + "end": 23749.54, + "probability": 0.6716 + }, + { + "start": 23753.82, + "end": 23760.84, + "probability": 0.9868 + }, + { + "start": 23762.54, + "end": 23764.9, + "probability": 0.9828 + }, + { + "start": 23766.38, + "end": 23769.98, + "probability": 0.9601 + }, + { + "start": 23772.82, + "end": 23776.78, + "probability": 0.9979 + }, + { + "start": 23778.2, + "end": 23778.28, + "probability": 0.0216 + }, + { + "start": 23778.28, + "end": 23779.21, + "probability": 0.6591 + }, + { + "start": 23781.24, + "end": 23782.11, + "probability": 0.8577 + }, + { + "start": 23783.94, + "end": 23786.56, + "probability": 0.9674 + }, + { + "start": 23787.12, + "end": 23788.6, + "probability": 0.888 + }, + { + "start": 23790.2, + "end": 23791.34, + "probability": 0.6801 + }, + { + "start": 23792.5, + "end": 23793.75, + "probability": 0.8379 + }, + { + "start": 23795.36, + "end": 23797.8, + "probability": 0.9355 + }, + { + "start": 23802.26, + "end": 23804.62, + "probability": 0.9989 + }, + { + "start": 23808.7, + "end": 23809.54, + "probability": 0.855 + }, + { + "start": 23809.72, + "end": 23811.66, + "probability": 0.9631 + }, + { + "start": 23813.36, + "end": 23815.6, + "probability": 0.9718 + }, + { + "start": 23816.96, + "end": 23820.4, + "probability": 0.777 + }, + { + "start": 23820.78, + "end": 23821.76, + "probability": 0.7839 + }, + { + "start": 23821.9, + "end": 23822.76, + "probability": 0.8764 + }, + { + "start": 23825.68, + "end": 23826.52, + "probability": 0.4619 + }, + { + "start": 23826.98, + "end": 23827.1, + "probability": 0.0826 + }, + { + "start": 23827.1, + "end": 23828.75, + "probability": 0.2714 + }, + { + "start": 23829.24, + "end": 23830.72, + "probability": 0.328 + }, + { + "start": 23830.86, + "end": 23832.1, + "probability": 0.3904 + }, + { + "start": 23832.12, + "end": 23832.82, + "probability": 0.5867 + }, + { + "start": 23833.1, + "end": 23834.72, + "probability": 0.6711 + }, + { + "start": 23834.92, + "end": 23835.78, + "probability": 0.6533 + }, + { + "start": 23835.78, + "end": 23838.04, + "probability": 0.3908 + }, + { + "start": 23838.04, + "end": 23839.86, + "probability": 0.1651 + }, + { + "start": 23841.42, + "end": 23842.58, + "probability": 0.4838 + }, + { + "start": 23842.68, + "end": 23843.78, + "probability": 0.2478 + }, + { + "start": 23843.84, + "end": 23845.66, + "probability": 0.9631 + }, + { + "start": 23847.44, + "end": 23850.02, + "probability": 0.7374 + }, + { + "start": 23850.08, + "end": 23850.08, + "probability": 0.0272 + }, + { + "start": 23850.66, + "end": 23851.04, + "probability": 0.0736 + }, + { + "start": 23851.22, + "end": 23851.22, + "probability": 0.7046 + }, + { + "start": 23853.4, + "end": 23854.82, + "probability": 0.7865 + }, + { + "start": 23859.42, + "end": 23861.12, + "probability": 0.9596 + }, + { + "start": 23863.72, + "end": 23866.36, + "probability": 0.9703 + }, + { + "start": 23867.28, + "end": 23868.88, + "probability": 0.8919 + }, + { + "start": 23871.2, + "end": 23876.0, + "probability": 0.9613 + }, + { + "start": 23879.18, + "end": 23880.66, + "probability": 0.9756 + }, + { + "start": 23881.5, + "end": 23884.56, + "probability": 0.9352 + }, + { + "start": 23888.52, + "end": 23890.34, + "probability": 0.9213 + }, + { + "start": 23892.78, + "end": 23894.68, + "probability": 0.9722 + }, + { + "start": 23894.7, + "end": 23897.0, + "probability": 0.9957 + }, + { + "start": 23897.06, + "end": 23897.9, + "probability": 0.7504 + }, + { + "start": 23900.38, + "end": 23902.82, + "probability": 0.9507 + }, + { + "start": 23902.92, + "end": 23904.58, + "probability": 0.9912 + }, + { + "start": 23904.96, + "end": 23906.16, + "probability": 0.9631 + }, + { + "start": 23908.1, + "end": 23910.26, + "probability": 0.989 + }, + { + "start": 23913.9, + "end": 23916.49, + "probability": 0.5874 + }, + { + "start": 23919.1, + "end": 23920.54, + "probability": 0.8036 + }, + { + "start": 23920.6, + "end": 23925.34, + "probability": 0.9731 + }, + { + "start": 23925.5, + "end": 23926.94, + "probability": 0.994 + }, + { + "start": 23929.26, + "end": 23931.02, + "probability": 0.9971 + }, + { + "start": 23933.82, + "end": 23936.34, + "probability": 0.9744 + }, + { + "start": 23936.64, + "end": 23943.8, + "probability": 0.9708 + }, + { + "start": 23944.64, + "end": 23945.36, + "probability": 0.5141 + }, + { + "start": 23945.52, + "end": 23947.54, + "probability": 0.7077 + }, + { + "start": 23948.04, + "end": 23948.94, + "probability": 0.6392 + }, + { + "start": 23950.3, + "end": 23953.47, + "probability": 0.9919 + }, + { + "start": 23954.06, + "end": 23957.1, + "probability": 0.8728 + }, + { + "start": 23958.86, + "end": 23959.66, + "probability": 0.5209 + }, + { + "start": 23964.18, + "end": 23965.08, + "probability": 0.5602 + }, + { + "start": 23969.02, + "end": 23970.16, + "probability": 0.2813 + }, + { + "start": 23972.44, + "end": 23973.76, + "probability": 0.9781 + }, + { + "start": 23973.8, + "end": 23975.24, + "probability": 0.9937 + }, + { + "start": 23975.24, + "end": 23976.74, + "probability": 0.9967 + }, + { + "start": 23979.82, + "end": 23980.56, + "probability": 0.6425 + }, + { + "start": 23981.26, + "end": 23981.98, + "probability": 0.9536 + }, + { + "start": 23986.04, + "end": 23986.52, + "probability": 0.2263 + }, + { + "start": 23986.52, + "end": 23987.54, + "probability": 0.6634 + }, + { + "start": 23987.66, + "end": 23989.06, + "probability": 0.9065 + }, + { + "start": 23989.32, + "end": 23991.18, + "probability": 0.9946 + }, + { + "start": 23993.38, + "end": 23994.72, + "probability": 0.9878 + }, + { + "start": 23997.7, + "end": 24001.17, + "probability": 0.7719 + }, + { + "start": 24002.48, + "end": 24003.3, + "probability": 0.0404 + }, + { + "start": 24003.44, + "end": 24006.1, + "probability": 0.8321 + }, + { + "start": 24010.5, + "end": 24018.06, + "probability": 0.9972 + }, + { + "start": 24019.92, + "end": 24020.62, + "probability": 0.6777 + }, + { + "start": 24022.04, + "end": 24027.68, + "probability": 0.9951 + }, + { + "start": 24029.48, + "end": 24030.64, + "probability": 0.9946 + }, + { + "start": 24031.56, + "end": 24036.6, + "probability": 0.921 + }, + { + "start": 24044.32, + "end": 24047.0, + "probability": 0.7494 + }, + { + "start": 24052.14, + "end": 24053.78, + "probability": 0.9573 + }, + { + "start": 24053.9, + "end": 24055.6, + "probability": 0.9827 + }, + { + "start": 24055.66, + "end": 24057.0, + "probability": 0.8695 + }, + { + "start": 24061.3, + "end": 24062.66, + "probability": 0.6641 + }, + { + "start": 24063.54, + "end": 24065.42, + "probability": 0.5771 + }, + { + "start": 24066.94, + "end": 24067.72, + "probability": 0.8133 + }, + { + "start": 24067.82, + "end": 24071.18, + "probability": 0.7664 + }, + { + "start": 24076.0, + "end": 24078.04, + "probability": 0.9979 + }, + { + "start": 24078.16, + "end": 24081.36, + "probability": 0.9966 + }, + { + "start": 24082.6, + "end": 24083.88, + "probability": 0.9751 + }, + { + "start": 24086.02, + "end": 24088.38, + "probability": 0.8919 + }, + { + "start": 24090.3, + "end": 24094.14, + "probability": 0.9817 + }, + { + "start": 24095.0, + "end": 24098.32, + "probability": 0.0369 + }, + { + "start": 24098.68, + "end": 24100.7, + "probability": 0.8733 + }, + { + "start": 24103.38, + "end": 24106.0, + "probability": 0.9974 + }, + { + "start": 24106.54, + "end": 24109.64, + "probability": 0.9956 + }, + { + "start": 24109.92, + "end": 24111.88, + "probability": 0.9951 + }, + { + "start": 24113.0, + "end": 24114.08, + "probability": 0.6618 + }, + { + "start": 24117.5, + "end": 24124.56, + "probability": 0.7968 + }, + { + "start": 24128.56, + "end": 24130.42, + "probability": 0.9862 + }, + { + "start": 24130.56, + "end": 24132.18, + "probability": 0.9608 + }, + { + "start": 24133.04, + "end": 24133.9, + "probability": 0.9138 + }, + { + "start": 24134.54, + "end": 24135.46, + "probability": 0.9326 + }, + { + "start": 24136.64, + "end": 24138.14, + "probability": 0.9676 + }, + { + "start": 24142.22, + "end": 24143.1, + "probability": 0.736 + }, + { + "start": 24143.32, + "end": 24148.0, + "probability": 0.6784 + }, + { + "start": 24148.52, + "end": 24149.38, + "probability": 0.7783 + }, + { + "start": 24149.42, + "end": 24151.46, + "probability": 0.9819 + }, + { + "start": 24151.96, + "end": 24155.28, + "probability": 0.9942 + }, + { + "start": 24156.7, + "end": 24157.41, + "probability": 0.0318 + }, + { + "start": 24157.78, + "end": 24160.04, + "probability": 0.9978 + }, + { + "start": 24160.98, + "end": 24162.34, + "probability": 0.4714 + }, + { + "start": 24163.12, + "end": 24163.32, + "probability": 0.5898 + }, + { + "start": 24165.06, + "end": 24166.8, + "probability": 0.8675 + }, + { + "start": 24167.56, + "end": 24167.56, + "probability": 0.0047 + }, + { + "start": 24168.16, + "end": 24169.24, + "probability": 0.0176 + }, + { + "start": 24169.24, + "end": 24169.8, + "probability": 0.4537 + }, + { + "start": 24169.9, + "end": 24170.88, + "probability": 0.3348 + }, + { + "start": 24171.22, + "end": 24171.66, + "probability": 0.3844 + }, + { + "start": 24172.22, + "end": 24173.42, + "probability": 0.2007 + }, + { + "start": 24174.34, + "end": 24175.48, + "probability": 0.3323 + }, + { + "start": 24179.13, + "end": 24181.68, + "probability": 0.7494 + }, + { + "start": 24183.2, + "end": 24186.06, + "probability": 0.9811 + }, + { + "start": 24190.62, + "end": 24191.54, + "probability": 0.4034 + }, + { + "start": 24194.52, + "end": 24195.8, + "probability": 0.9686 + }, + { + "start": 24197.6, + "end": 24199.16, + "probability": 0.6929 + }, + { + "start": 24200.06, + "end": 24206.18, + "probability": 0.9666 + }, + { + "start": 24206.26, + "end": 24207.12, + "probability": 0.3331 + }, + { + "start": 24209.26, + "end": 24215.78, + "probability": 0.9965 + }, + { + "start": 24217.18, + "end": 24219.28, + "probability": 0.8146 + }, + { + "start": 24220.62, + "end": 24220.78, + "probability": 0.4774 + }, + { + "start": 24220.96, + "end": 24225.12, + "probability": 0.9338 + }, + { + "start": 24227.16, + "end": 24229.8, + "probability": 0.9946 + }, + { + "start": 24230.24, + "end": 24230.92, + "probability": 0.5623 + }, + { + "start": 24231.0, + "end": 24232.46, + "probability": 0.9873 + }, + { + "start": 24234.48, + "end": 24236.86, + "probability": 0.8878 + }, + { + "start": 24239.72, + "end": 24241.32, + "probability": 0.9965 + }, + { + "start": 24244.46, + "end": 24245.56, + "probability": 0.7737 + }, + { + "start": 24245.64, + "end": 24247.06, + "probability": 0.8053 + }, + { + "start": 24247.12, + "end": 24249.02, + "probability": 0.9069 + }, + { + "start": 24250.46, + "end": 24250.72, + "probability": 0.4192 + }, + { + "start": 24250.76, + "end": 24251.12, + "probability": 0.7262 + }, + { + "start": 24251.16, + "end": 24251.8, + "probability": 0.7275 + }, + { + "start": 24251.86, + "end": 24253.76, + "probability": 0.9608 + }, + { + "start": 24255.96, + "end": 24257.64, + "probability": 0.9927 + }, + { + "start": 24262.66, + "end": 24265.2, + "probability": 0.7814 + }, + { + "start": 24268.98, + "end": 24271.9, + "probability": 0.8633 + }, + { + "start": 24273.58, + "end": 24276.62, + "probability": 0.7948 + }, + { + "start": 24280.2, + "end": 24280.2, + "probability": 0.2517 + }, + { + "start": 24280.2, + "end": 24280.2, + "probability": 0.3692 + }, + { + "start": 24280.2, + "end": 24283.28, + "probability": 0.7377 + }, + { + "start": 24286.22, + "end": 24290.7, + "probability": 0.9976 + }, + { + "start": 24290.78, + "end": 24296.88, + "probability": 0.9073 + }, + { + "start": 24297.06, + "end": 24297.8, + "probability": 0.3973 + }, + { + "start": 24298.82, + "end": 24299.64, + "probability": 0.6405 + }, + { + "start": 24299.78, + "end": 24302.24, + "probability": 0.9006 + }, + { + "start": 24302.76, + "end": 24303.48, + "probability": 0.7391 + }, + { + "start": 24303.6, + "end": 24309.12, + "probability": 0.9497 + }, + { + "start": 24309.12, + "end": 24309.96, + "probability": 0.5029 + }, + { + "start": 24312.84, + "end": 24315.26, + "probability": 0.946 + }, + { + "start": 24315.36, + "end": 24317.64, + "probability": 0.9961 + }, + { + "start": 24318.3, + "end": 24320.54, + "probability": 0.9827 + }, + { + "start": 24320.86, + "end": 24326.56, + "probability": 0.9949 + }, + { + "start": 24327.84, + "end": 24330.22, + "probability": 0.9827 + }, + { + "start": 24333.08, + "end": 24334.02, + "probability": 0.7381 + }, + { + "start": 24334.12, + "end": 24335.06, + "probability": 0.0569 + }, + { + "start": 24335.1, + "end": 24336.98, + "probability": 0.9548 + }, + { + "start": 24337.48, + "end": 24339.84, + "probability": 0.7549 + }, + { + "start": 24341.68, + "end": 24342.58, + "probability": 0.9895 + }, + { + "start": 24345.24, + "end": 24349.28, + "probability": 0.9034 + }, + { + "start": 24350.54, + "end": 24353.04, + "probability": 0.9919 + }, + { + "start": 24355.12, + "end": 24355.42, + "probability": 0.4065 + }, + { + "start": 24355.58, + "end": 24360.3, + "probability": 0.9941 + }, + { + "start": 24361.27, + "end": 24369.78, + "probability": 0.8021 + }, + { + "start": 24370.78, + "end": 24373.5, + "probability": 0.8367 + }, + { + "start": 24373.7, + "end": 24375.46, + "probability": 0.7653 + }, + { + "start": 24377.98, + "end": 24379.27, + "probability": 0.6387 + }, + { + "start": 24381.38, + "end": 24381.38, + "probability": 0.2032 + }, + { + "start": 24381.38, + "end": 24383.28, + "probability": 0.4705 + }, + { + "start": 24384.72, + "end": 24384.72, + "probability": 0.2328 + }, + { + "start": 24384.72, + "end": 24386.14, + "probability": 0.4089 + }, + { + "start": 24386.22, + "end": 24387.73, + "probability": 0.6517 + }, + { + "start": 24388.78, + "end": 24392.16, + "probability": 0.5432 + }, + { + "start": 24395.1, + "end": 24395.38, + "probability": 0.0702 + }, + { + "start": 24396.22, + "end": 24396.22, + "probability": 0.5435 + }, + { + "start": 24396.26, + "end": 24397.14, + "probability": 0.9707 + }, + { + "start": 24400.04, + "end": 24400.92, + "probability": 0.6006 + }, + { + "start": 24402.5, + "end": 24403.97, + "probability": 0.9851 + }, + { + "start": 24404.24, + "end": 24406.36, + "probability": 0.8917 + }, + { + "start": 24406.62, + "end": 24407.54, + "probability": 0.9133 + }, + { + "start": 24409.52, + "end": 24411.04, + "probability": 0.9805 + }, + { + "start": 24411.88, + "end": 24414.88, + "probability": 0.0601 + }, + { + "start": 24415.36, + "end": 24416.02, + "probability": 0.9396 + }, + { + "start": 24419.06, + "end": 24426.5, + "probability": 0.9851 + }, + { + "start": 24428.42, + "end": 24431.22, + "probability": 0.9963 + }, + { + "start": 24431.32, + "end": 24435.48, + "probability": 0.8902 + }, + { + "start": 24437.1, + "end": 24439.5, + "probability": 0.9972 + }, + { + "start": 24443.18, + "end": 24443.82, + "probability": 0.8136 + }, + { + "start": 24448.78, + "end": 24454.92, + "probability": 0.9994 + }, + { + "start": 24456.2, + "end": 24461.72, + "probability": 0.9985 + }, + { + "start": 24464.54, + "end": 24467.2, + "probability": 0.9844 + }, + { + "start": 24468.96, + "end": 24470.06, + "probability": 0.9651 + }, + { + "start": 24472.66, + "end": 24473.24, + "probability": 0.6435 + }, + { + "start": 24477.12, + "end": 24481.5, + "probability": 0.8256 + }, + { + "start": 24486.04, + "end": 24486.76, + "probability": 0.9358 + }, + { + "start": 24490.3, + "end": 24491.08, + "probability": 0.8811 + }, + { + "start": 24494.6, + "end": 24498.84, + "probability": 0.7766 + }, + { + "start": 24499.16, + "end": 24502.2, + "probability": 0.7504 + }, + { + "start": 24502.2, + "end": 24509.28, + "probability": 0.8641 + }, + { + "start": 24510.46, + "end": 24511.72, + "probability": 0.0473 + }, + { + "start": 24512.2, + "end": 24513.14, + "probability": 0.5947 + }, + { + "start": 24513.9, + "end": 24517.48, + "probability": 0.8491 + }, + { + "start": 24517.6, + "end": 24517.64, + "probability": 0.252 + }, + { + "start": 24517.64, + "end": 24519.18, + "probability": 0.515 + }, + { + "start": 24520.0, + "end": 24521.08, + "probability": 0.2228 + }, + { + "start": 24521.22, + "end": 24522.0, + "probability": 0.0817 + }, + { + "start": 24522.0, + "end": 24522.2, + "probability": 0.5372 + }, + { + "start": 24522.2, + "end": 24523.64, + "probability": 0.2185 + }, + { + "start": 24523.84, + "end": 24526.48, + "probability": 0.9875 + }, + { + "start": 24526.8, + "end": 24527.2, + "probability": 0.0215 + }, + { + "start": 24528.14, + "end": 24530.42, + "probability": 0.8759 + }, + { + "start": 24530.56, + "end": 24531.5, + "probability": 0.7285 + }, + { + "start": 24532.2, + "end": 24534.06, + "probability": 0.4863 + }, + { + "start": 24534.06, + "end": 24534.94, + "probability": 0.1138 + }, + { + "start": 24534.94, + "end": 24536.56, + "probability": 0.0555 + }, + { + "start": 24536.56, + "end": 24536.94, + "probability": 0.182 + }, + { + "start": 24537.28, + "end": 24537.46, + "probability": 0.41 + }, + { + "start": 24537.46, + "end": 24538.88, + "probability": 0.9106 + }, + { + "start": 24539.34, + "end": 24539.86, + "probability": 0.0371 + }, + { + "start": 24539.86, + "end": 24542.12, + "probability": 0.6301 + }, + { + "start": 24542.16, + "end": 24545.78, + "probability": 0.6167 + }, + { + "start": 24549.34, + "end": 24552.5, + "probability": 0.2111 + }, + { + "start": 24552.52, + "end": 24554.34, + "probability": 0.1165 + }, + { + "start": 24554.34, + "end": 24555.38, + "probability": 0.0537 + }, + { + "start": 24555.4, + "end": 24557.64, + "probability": 0.9307 + }, + { + "start": 24558.4, + "end": 24558.4, + "probability": 0.1498 + }, + { + "start": 24558.4, + "end": 24560.9, + "probability": 0.8513 + }, + { + "start": 24562.54, + "end": 24564.08, + "probability": 0.9925 + }, + { + "start": 24567.02, + "end": 24567.44, + "probability": 0.8306 + }, + { + "start": 24567.96, + "end": 24575.42, + "probability": 0.9749 + }, + { + "start": 24577.44, + "end": 24583.78, + "probability": 0.9895 + }, + { + "start": 24584.84, + "end": 24588.34, + "probability": 0.9563 + }, + { + "start": 24591.34, + "end": 24593.56, + "probability": 0.9925 + }, + { + "start": 24595.38, + "end": 24597.28, + "probability": 0.7622 + }, + { + "start": 24598.68, + "end": 24602.72, + "probability": 0.927 + }, + { + "start": 24605.48, + "end": 24606.25, + "probability": 0.9648 + }, + { + "start": 24610.38, + "end": 24611.3, + "probability": 0.793 + }, + { + "start": 24614.18, + "end": 24615.78, + "probability": 0.8123 + }, + { + "start": 24619.12, + "end": 24621.88, + "probability": 0.7556 + }, + { + "start": 24625.36, + "end": 24631.6, + "probability": 0.9949 + }, + { + "start": 24634.52, + "end": 24635.2, + "probability": 0.855 + }, + { + "start": 24638.08, + "end": 24638.96, + "probability": 0.7985 + }, + { + "start": 24639.02, + "end": 24640.12, + "probability": 0.8884 + }, + { + "start": 24640.2, + "end": 24640.74, + "probability": 0.8536 + }, + { + "start": 24640.8, + "end": 24641.72, + "probability": 0.9631 + }, + { + "start": 24644.46, + "end": 24645.64, + "probability": 0.9091 + }, + { + "start": 24646.08, + "end": 24650.02, + "probability": 0.702 + }, + { + "start": 24652.86, + "end": 24654.27, + "probability": 0.9156 + }, + { + "start": 24655.42, + "end": 24657.39, + "probability": 0.9884 + }, + { + "start": 24658.08, + "end": 24664.28, + "probability": 0.9097 + }, + { + "start": 24665.42, + "end": 24665.82, + "probability": 0.0255 + }, + { + "start": 24666.24, + "end": 24668.54, + "probability": 0.6928 + }, + { + "start": 24668.56, + "end": 24669.88, + "probability": 0.8111 + }, + { + "start": 24672.02, + "end": 24673.61, + "probability": 0.7869 + }, + { + "start": 24674.54, + "end": 24675.56, + "probability": 0.0087 + }, + { + "start": 24675.56, + "end": 24675.56, + "probability": 0.3542 + }, + { + "start": 24675.56, + "end": 24676.16, + "probability": 0.1014 + }, + { + "start": 24680.04, + "end": 24682.88, + "probability": 0.7944 + }, + { + "start": 24685.98, + "end": 24688.72, + "probability": 0.9951 + }, + { + "start": 24688.72, + "end": 24692.44, + "probability": 0.9925 + }, + { + "start": 24693.64, + "end": 24697.06, + "probability": 0.1808 + }, + { + "start": 24698.96, + "end": 24700.4, + "probability": 0.0562 + }, + { + "start": 24700.96, + "end": 24701.72, + "probability": 0.1186 + }, + { + "start": 24705.22, + "end": 24706.88, + "probability": 0.5059 + }, + { + "start": 24710.08, + "end": 24711.66, + "probability": 0.8686 + }, + { + "start": 24714.84, + "end": 24718.28, + "probability": 0.9676 + }, + { + "start": 24721.24, + "end": 24726.43, + "probability": 0.9556 + }, + { + "start": 24730.26, + "end": 24731.02, + "probability": 0.8294 + }, + { + "start": 24732.0, + "end": 24733.36, + "probability": 0.7135 + }, + { + "start": 24735.76, + "end": 24736.56, + "probability": 0.4863 + }, + { + "start": 24737.64, + "end": 24741.76, + "probability": 0.9539 + }, + { + "start": 24745.24, + "end": 24746.6, + "probability": 0.8238 + }, + { + "start": 24747.4, + "end": 24748.86, + "probability": 0.5644 + }, + { + "start": 24749.8, + "end": 24751.12, + "probability": 0.5314 + }, + { + "start": 24753.38, + "end": 24757.28, + "probability": 0.7099 + }, + { + "start": 24758.42, + "end": 24760.42, + "probability": 0.7382 + }, + { + "start": 24760.5, + "end": 24762.89, + "probability": 0.7622 + }, + { + "start": 24766.84, + "end": 24770.28, + "probability": 0.9858 + }, + { + "start": 24770.82, + "end": 24773.26, + "probability": 0.8103 + }, + { + "start": 24773.36, + "end": 24774.34, + "probability": 0.7856 + }, + { + "start": 24778.24, + "end": 24782.56, + "probability": 0.788 + }, + { + "start": 24784.02, + "end": 24788.82, + "probability": 0.9411 + }, + { + "start": 24789.72, + "end": 24790.52, + "probability": 0.7611 + }, + { + "start": 24790.62, + "end": 24791.54, + "probability": 0.9769 + }, + { + "start": 24791.64, + "end": 24792.54, + "probability": 0.9865 + }, + { + "start": 24792.58, + "end": 24801.44, + "probability": 0.9124 + }, + { + "start": 24802.52, + "end": 24803.94, + "probability": 0.9535 + }, + { + "start": 24804.14, + "end": 24811.1, + "probability": 0.9883 + }, + { + "start": 24814.36, + "end": 24815.82, + "probability": 0.9827 + }, + { + "start": 24816.7, + "end": 24819.34, + "probability": 0.9548 + }, + { + "start": 24820.0, + "end": 24824.56, + "probability": 0.717 + }, + { + "start": 24824.78, + "end": 24826.34, + "probability": 0.8943 + }, + { + "start": 24827.68, + "end": 24832.2, + "probability": 0.9657 + }, + { + "start": 24832.46, + "end": 24834.36, + "probability": 0.9644 + }, + { + "start": 24836.32, + "end": 24842.4, + "probability": 0.9949 + }, + { + "start": 24843.2, + "end": 24848.92, + "probability": 0.9883 + }, + { + "start": 24850.02, + "end": 24856.74, + "probability": 0.7974 + }, + { + "start": 24857.34, + "end": 24858.44, + "probability": 0.7643 + }, + { + "start": 24858.58, + "end": 24861.04, + "probability": 0.8182 + }, + { + "start": 24861.52, + "end": 24863.64, + "probability": 0.9072 + }, + { + "start": 24863.96, + "end": 24865.06, + "probability": 0.8731 + }, + { + "start": 24865.34, + "end": 24867.12, + "probability": 0.9089 + }, + { + "start": 24867.46, + "end": 24871.98, + "probability": 0.9661 + }, + { + "start": 24872.52, + "end": 24875.93, + "probability": 0.9868 + }, + { + "start": 24876.78, + "end": 24877.8, + "probability": 0.7912 + }, + { + "start": 24878.24, + "end": 24879.4, + "probability": 0.7476 + }, + { + "start": 24879.62, + "end": 24880.6, + "probability": 0.9681 + }, + { + "start": 24880.9, + "end": 24883.48, + "probability": 0.8406 + }, + { + "start": 24883.74, + "end": 24886.42, + "probability": 0.9097 + }, + { + "start": 24887.0, + "end": 24890.52, + "probability": 0.8913 + }, + { + "start": 24891.72, + "end": 24897.2, + "probability": 0.9526 + }, + { + "start": 24898.3, + "end": 24901.54, + "probability": 0.9626 + }, + { + "start": 24901.94, + "end": 24904.31, + "probability": 0.9937 + }, + { + "start": 24904.88, + "end": 24906.55, + "probability": 0.8597 + }, + { + "start": 24907.24, + "end": 24908.72, + "probability": 0.8939 + }, + { + "start": 24908.82, + "end": 24909.48, + "probability": 0.7884 + }, + { + "start": 24909.6, + "end": 24911.92, + "probability": 0.9968 + }, + { + "start": 24912.58, + "end": 24914.47, + "probability": 0.9526 + }, + { + "start": 24915.16, + "end": 24920.18, + "probability": 0.9829 + }, + { + "start": 24920.18, + "end": 24925.92, + "probability": 0.991 + }, + { + "start": 24926.14, + "end": 24926.84, + "probability": 0.8876 + }, + { + "start": 24927.78, + "end": 24928.32, + "probability": 0.9666 + }, + { + "start": 24929.54, + "end": 24933.22, + "probability": 0.9625 + }, + { + "start": 24933.94, + "end": 24935.82, + "probability": 0.9751 + }, + { + "start": 24936.46, + "end": 24939.22, + "probability": 0.986 + }, + { + "start": 24939.6, + "end": 24944.76, + "probability": 0.987 + }, + { + "start": 24945.5, + "end": 24950.02, + "probability": 0.9986 + }, + { + "start": 24950.14, + "end": 24955.42, + "probability": 0.9988 + }, + { + "start": 24955.7, + "end": 24956.52, + "probability": 0.4666 + }, + { + "start": 24956.9, + "end": 24958.94, + "probability": 0.9297 + }, + { + "start": 24960.1, + "end": 24962.08, + "probability": 0.8647 + }, + { + "start": 24963.78, + "end": 24965.94, + "probability": 0.9531 + }, + { + "start": 24966.48, + "end": 24967.12, + "probability": 0.8971 + }, + { + "start": 24967.78, + "end": 24973.18, + "probability": 0.871 + }, + { + "start": 24973.86, + "end": 24973.86, + "probability": 0.0498 + }, + { + "start": 24973.86, + "end": 24975.58, + "probability": 0.3214 + }, + { + "start": 24975.7, + "end": 24978.74, + "probability": 0.0879 + }, + { + "start": 24979.04, + "end": 24979.71, + "probability": 0.4229 + }, + { + "start": 24980.64, + "end": 24980.64, + "probability": 0.4873 + }, + { + "start": 24980.64, + "end": 24981.6, + "probability": 0.3381 + }, + { + "start": 24982.36, + "end": 24984.42, + "probability": 0.3073 + }, + { + "start": 24984.84, + "end": 24984.84, + "probability": 0.0065 + }, + { + "start": 24984.84, + "end": 24984.84, + "probability": 0.0281 + }, + { + "start": 24984.84, + "end": 24986.7, + "probability": 0.9723 + }, + { + "start": 24986.84, + "end": 24987.36, + "probability": 0.3855 + }, + { + "start": 24987.5, + "end": 24989.48, + "probability": 0.9379 + }, + { + "start": 24990.26, + "end": 24990.64, + "probability": 0.5522 + }, + { + "start": 24990.98, + "end": 24992.7, + "probability": 0.5452 + }, + { + "start": 24993.18, + "end": 24995.29, + "probability": 0.1567 + }, + { + "start": 24995.88, + "end": 24998.32, + "probability": 0.8323 + }, + { + "start": 24998.52, + "end": 24998.78, + "probability": 0.1338 + }, + { + "start": 24998.98, + "end": 25000.52, + "probability": 0.8601 + }, + { + "start": 25002.8, + "end": 25002.98, + "probability": 0.0741 + }, + { + "start": 25003.08, + "end": 25003.16, + "probability": 0.2006 + }, + { + "start": 25003.24, + "end": 25003.24, + "probability": 0.207 + }, + { + "start": 25003.3, + "end": 25007.54, + "probability": 0.4843 + }, + { + "start": 25009.46, + "end": 25009.46, + "probability": 0.148 + }, + { + "start": 25009.46, + "end": 25009.96, + "probability": 0.0242 + }, + { + "start": 25010.4, + "end": 25011.4, + "probability": 0.27 + }, + { + "start": 25011.7, + "end": 25012.94, + "probability": 0.0448 + }, + { + "start": 25012.94, + "end": 25012.94, + "probability": 0.0234 + }, + { + "start": 25012.94, + "end": 25014.54, + "probability": 0.2108 + }, + { + "start": 25014.98, + "end": 25016.02, + "probability": 0.1355 + }, + { + "start": 25016.1, + "end": 25016.54, + "probability": 0.0551 + }, + { + "start": 25016.54, + "end": 25017.76, + "probability": 0.1122 + }, + { + "start": 25023.6, + "end": 25025.6, + "probability": 0.0647 + }, + { + "start": 25025.6, + "end": 25025.66, + "probability": 0.1269 + }, + { + "start": 25025.66, + "end": 25026.18, + "probability": 0.4547 + }, + { + "start": 25026.18, + "end": 25026.48, + "probability": 0.2561 + }, + { + "start": 25026.74, + "end": 25027.94, + "probability": 0.2547 + }, + { + "start": 25028.82, + "end": 25029.38, + "probability": 0.1918 + }, + { + "start": 25031.66, + "end": 25034.12, + "probability": 0.0997 + }, + { + "start": 25034.12, + "end": 25034.12, + "probability": 0.0249 + }, + { + "start": 25034.12, + "end": 25034.12, + "probability": 0.0673 + }, + { + "start": 25034.12, + "end": 25034.12, + "probability": 0.051 + }, + { + "start": 25034.12, + "end": 25034.12, + "probability": 0.1553 + }, + { + "start": 25034.12, + "end": 25034.88, + "probability": 0.5044 + }, + { + "start": 25034.92, + "end": 25040.76, + "probability": 0.8883 + }, + { + "start": 25041.76, + "end": 25042.88, + "probability": 0.5457 + }, + { + "start": 25042.98, + "end": 25043.68, + "probability": 0.4777 + }, + { + "start": 25043.8, + "end": 25046.74, + "probability": 0.9907 + }, + { + "start": 25048.0, + "end": 25051.26, + "probability": 0.8496 + }, + { + "start": 25051.84, + "end": 25053.98, + "probability": 0.983 + }, + { + "start": 25054.1, + "end": 25057.2, + "probability": 0.7718 + }, + { + "start": 25057.3, + "end": 25058.48, + "probability": 0.814 + }, + { + "start": 25059.32, + "end": 25060.46, + "probability": 0.7433 + }, + { + "start": 25060.66, + "end": 25066.38, + "probability": 0.9798 + }, + { + "start": 25066.38, + "end": 25072.94, + "probability": 0.9798 + }, + { + "start": 25074.38, + "end": 25078.38, + "probability": 0.9961 + }, + { + "start": 25078.38, + "end": 25084.2, + "probability": 0.9985 + }, + { + "start": 25084.72, + "end": 25089.28, + "probability": 0.769 + }, + { + "start": 25089.84, + "end": 25091.38, + "probability": 0.8182 + }, + { + "start": 25092.6, + "end": 25094.2, + "probability": 0.9961 + }, + { + "start": 25094.38, + "end": 25094.92, + "probability": 0.9006 + }, + { + "start": 25095.06, + "end": 25095.84, + "probability": 0.6505 + }, + { + "start": 25095.84, + "end": 25096.52, + "probability": 0.5389 + }, + { + "start": 25096.58, + "end": 25097.7, + "probability": 0.8782 + }, + { + "start": 25098.6, + "end": 25102.12, + "probability": 0.9227 + }, + { + "start": 25102.88, + "end": 25106.28, + "probability": 0.9579 + }, + { + "start": 25106.56, + "end": 25108.54, + "probability": 0.7982 + }, + { + "start": 25109.2, + "end": 25111.22, + "probability": 0.9103 + }, + { + "start": 25112.28, + "end": 25113.86, + "probability": 0.7083 + }, + { + "start": 25114.66, + "end": 25118.5, + "probability": 0.9954 + }, + { + "start": 25118.54, + "end": 25119.76, + "probability": 0.905 + }, + { + "start": 25119.9, + "end": 25120.86, + "probability": 0.9779 + }, + { + "start": 25120.94, + "end": 25121.82, + "probability": 0.9043 + }, + { + "start": 25122.42, + "end": 25127.8, + "probability": 0.9941 + }, + { + "start": 25127.82, + "end": 25130.56, + "probability": 0.8181 + }, + { + "start": 25131.88, + "end": 25133.7, + "probability": 0.8744 + }, + { + "start": 25133.84, + "end": 25135.24, + "probability": 0.9423 + }, + { + "start": 25135.4, + "end": 25136.98, + "probability": 0.9667 + }, + { + "start": 25137.2, + "end": 25138.74, + "probability": 0.9829 + }, + { + "start": 25138.94, + "end": 25141.68, + "probability": 0.9963 + }, + { + "start": 25141.92, + "end": 25145.1, + "probability": 0.9592 + }, + { + "start": 25145.22, + "end": 25146.74, + "probability": 0.7619 + }, + { + "start": 25147.8, + "end": 25150.94, + "probability": 0.7839 + }, + { + "start": 25151.04, + "end": 25153.74, + "probability": 0.7954 + }, + { + "start": 25154.18, + "end": 25157.4, + "probability": 0.915 + }, + { + "start": 25160.26, + "end": 25160.6, + "probability": 0.2652 + }, + { + "start": 25160.64, + "end": 25167.3, + "probability": 0.9937 + }, + { + "start": 25169.1, + "end": 25172.46, + "probability": 0.9665 + }, + { + "start": 25173.3, + "end": 25179.88, + "probability": 0.9915 + }, + { + "start": 25179.88, + "end": 25184.36, + "probability": 0.9932 + }, + { + "start": 25184.94, + "end": 25186.0, + "probability": 0.7044 + }, + { + "start": 25186.14, + "end": 25190.12, + "probability": 0.9893 + }, + { + "start": 25190.85, + "end": 25193.93, + "probability": 0.999 + }, + { + "start": 25194.84, + "end": 25198.54, + "probability": 0.9021 + }, + { + "start": 25198.88, + "end": 25202.64, + "probability": 0.9852 + }, + { + "start": 25202.98, + "end": 25204.47, + "probability": 0.9963 + }, + { + "start": 25205.0, + "end": 25209.16, + "probability": 0.9883 + }, + { + "start": 25209.26, + "end": 25210.9, + "probability": 0.7474 + }, + { + "start": 25212.14, + "end": 25216.34, + "probability": 0.7383 + }, + { + "start": 25217.04, + "end": 25221.38, + "probability": 0.8354 + }, + { + "start": 25221.7, + "end": 25224.36, + "probability": 0.9784 + }, + { + "start": 25225.16, + "end": 25226.62, + "probability": 0.9602 + }, + { + "start": 25227.24, + "end": 25229.14, + "probability": 0.9558 + }, + { + "start": 25229.32, + "end": 25230.68, + "probability": 0.9651 + }, + { + "start": 25233.14, + "end": 25236.18, + "probability": 0.3098 + }, + { + "start": 25236.28, + "end": 25242.7, + "probability": 0.3096 + }, + { + "start": 25242.7, + "end": 25242.88, + "probability": 0.0591 + }, + { + "start": 25242.88, + "end": 25243.36, + "probability": 0.0243 + }, + { + "start": 25243.46, + "end": 25245.66, + "probability": 0.627 + }, + { + "start": 25246.6, + "end": 25248.5, + "probability": 0.1496 + }, + { + "start": 25248.5, + "end": 25248.93, + "probability": 0.506 + }, + { + "start": 25249.9, + "end": 25251.34, + "probability": 0.7913 + }, + { + "start": 25251.4, + "end": 25252.38, + "probability": 0.4946 + }, + { + "start": 25253.12, + "end": 25254.9, + "probability": 0.8255 + }, + { + "start": 25255.44, + "end": 25257.72, + "probability": 0.9394 + }, + { + "start": 25258.28, + "end": 25261.08, + "probability": 0.9963 + }, + { + "start": 25261.08, + "end": 25264.82, + "probability": 0.9976 + }, + { + "start": 25265.68, + "end": 25271.14, + "probability": 0.9619 + }, + { + "start": 25272.14, + "end": 25275.98, + "probability": 0.9872 + }, + { + "start": 25277.24, + "end": 25278.42, + "probability": 0.8955 + }, + { + "start": 25278.48, + "end": 25279.76, + "probability": 0.9746 + }, + { + "start": 25279.94, + "end": 25282.66, + "probability": 0.964 + }, + { + "start": 25283.16, + "end": 25289.7, + "probability": 0.9198 + }, + { + "start": 25291.0, + "end": 25294.5, + "probability": 0.9331 + }, + { + "start": 25295.08, + "end": 25296.58, + "probability": 0.2686 + }, + { + "start": 25297.2, + "end": 25302.42, + "probability": 0.7778 + }, + { + "start": 25302.52, + "end": 25304.24, + "probability": 0.9044 + }, + { + "start": 25304.24, + "end": 25306.09, + "probability": 0.7716 + }, + { + "start": 25306.84, + "end": 25309.34, + "probability": 0.577 + }, + { + "start": 25310.76, + "end": 25311.18, + "probability": 0.5227 + }, + { + "start": 25311.88, + "end": 25314.72, + "probability": 0.5362 + }, + { + "start": 25315.2, + "end": 25315.62, + "probability": 0.9185 + }, + { + "start": 25316.14, + "end": 25317.96, + "probability": 0.9933 + }, + { + "start": 25318.0, + "end": 25319.12, + "probability": 0.7764 + }, + { + "start": 25319.32, + "end": 25321.9, + "probability": 0.8858 + }, + { + "start": 25322.0, + "end": 25323.5, + "probability": 0.8509 + }, + { + "start": 25323.62, + "end": 25324.34, + "probability": 0.4668 + }, + { + "start": 25324.38, + "end": 25325.22, + "probability": 0.8571 + }, + { + "start": 25325.38, + "end": 25327.44, + "probability": 0.8597 + }, + { + "start": 25327.84, + "end": 25328.42, + "probability": 0.7746 + }, + { + "start": 25328.44, + "end": 25329.1, + "probability": 0.8264 + }, + { + "start": 25329.12, + "end": 25330.4, + "probability": 0.95 + }, + { + "start": 25330.96, + "end": 25333.48, + "probability": 0.9556 + }, + { + "start": 25334.36, + "end": 25338.38, + "probability": 0.9839 + }, + { + "start": 25338.38, + "end": 25342.76, + "probability": 0.9982 + }, + { + "start": 25343.34, + "end": 25350.42, + "probability": 0.9899 + }, + { + "start": 25352.08, + "end": 25352.7, + "probability": 0.7141 + }, + { + "start": 25352.82, + "end": 25355.18, + "probability": 0.9974 + }, + { + "start": 25355.4, + "end": 25358.44, + "probability": 0.9949 + }, + { + "start": 25358.5, + "end": 25360.08, + "probability": 0.9878 + }, + { + "start": 25360.62, + "end": 25362.86, + "probability": 0.9781 + }, + { + "start": 25363.44, + "end": 25367.58, + "probability": 0.9958 + }, + { + "start": 25368.04, + "end": 25370.24, + "probability": 0.9572 + }, + { + "start": 25370.86, + "end": 25374.88, + "probability": 0.9901 + }, + { + "start": 25375.26, + "end": 25377.3, + "probability": 0.9744 + }, + { + "start": 25378.16, + "end": 25382.16, + "probability": 0.9897 + }, + { + "start": 25382.26, + "end": 25386.4, + "probability": 0.9772 + }, + { + "start": 25387.0, + "end": 25388.02, + "probability": 0.5557 + }, + { + "start": 25389.28, + "end": 25390.64, + "probability": 0.8241 + }, + { + "start": 25391.34, + "end": 25395.18, + "probability": 0.9957 + }, + { + "start": 25395.18, + "end": 25401.24, + "probability": 0.8175 + }, + { + "start": 25401.4, + "end": 25402.1, + "probability": 0.6716 + }, + { + "start": 25402.86, + "end": 25405.08, + "probability": 0.9592 + }, + { + "start": 25405.76, + "end": 25406.4, + "probability": 0.8931 + }, + { + "start": 25407.48, + "end": 25408.34, + "probability": 0.9558 + }, + { + "start": 25408.58, + "end": 25409.72, + "probability": 0.7017 + }, + { + "start": 25409.72, + "end": 25411.0, + "probability": 0.7686 + }, + { + "start": 25411.1, + "end": 25412.72, + "probability": 0.8764 + }, + { + "start": 25413.52, + "end": 25417.46, + "probability": 0.9661 + }, + { + "start": 25417.64, + "end": 25420.16, + "probability": 0.9988 + }, + { + "start": 25420.98, + "end": 25422.78, + "probability": 0.9039 + }, + { + "start": 25423.28, + "end": 25427.42, + "probability": 0.9904 + }, + { + "start": 25428.18, + "end": 25434.16, + "probability": 0.9924 + }, + { + "start": 25434.54, + "end": 25435.68, + "probability": 0.8304 + }, + { + "start": 25435.74, + "end": 25437.22, + "probability": 0.9461 + }, + { + "start": 25437.7, + "end": 25440.22, + "probability": 0.9921 + }, + { + "start": 25440.22, + "end": 25444.16, + "probability": 0.7658 + }, + { + "start": 25445.66, + "end": 25447.1, + "probability": 0.5776 + }, + { + "start": 25447.36, + "end": 25447.64, + "probability": 0.4328 + }, + { + "start": 25448.89, + "end": 25449.49, + "probability": 0.0218 + }, + { + "start": 25451.22, + "end": 25453.08, + "probability": 0.2843 + }, + { + "start": 25453.34, + "end": 25454.86, + "probability": 0.5488 + }, + { + "start": 25456.82, + "end": 25460.1, + "probability": 0.6866 + }, + { + "start": 25461.06, + "end": 25463.56, + "probability": 0.8369 + }, + { + "start": 25466.48, + "end": 25468.34, + "probability": 0.4125 + }, + { + "start": 25468.72, + "end": 25473.08, + "probability": 0.5934 + }, + { + "start": 25473.2, + "end": 25476.22, + "probability": 0.7125 + }, + { + "start": 25476.56, + "end": 25479.32, + "probability": 0.5688 + }, + { + "start": 25479.46, + "end": 25481.14, + "probability": 0.0727 + }, + { + "start": 25481.54, + "end": 25483.78, + "probability": 0.9455 + }, + { + "start": 25484.26, + "end": 25488.9, + "probability": 0.9811 + }, + { + "start": 25489.18, + "end": 25490.24, + "probability": 0.7154 + }, + { + "start": 25491.24, + "end": 25494.06, + "probability": 0.786 + }, + { + "start": 25494.68, + "end": 25497.24, + "probability": 0.9943 + }, + { + "start": 25497.24, + "end": 25500.68, + "probability": 0.8175 + }, + { + "start": 25500.84, + "end": 25502.36, + "probability": 0.8491 + }, + { + "start": 25502.6, + "end": 25503.64, + "probability": 0.1296 + }, + { + "start": 25503.64, + "end": 25505.56, + "probability": 0.1479 + }, + { + "start": 25505.76, + "end": 25509.9, + "probability": 0.9794 + }, + { + "start": 25510.08, + "end": 25511.0, + "probability": 0.7873 + }, + { + "start": 25511.04, + "end": 25512.18, + "probability": 0.6823 + }, + { + "start": 25512.5, + "end": 25512.78, + "probability": 0.7847 + }, + { + "start": 25512.86, + "end": 25518.12, + "probability": 0.9536 + }, + { + "start": 25518.12, + "end": 25520.8, + "probability": 0.9937 + }, + { + "start": 25521.09, + "end": 25524.24, + "probability": 0.9932 + }, + { + "start": 25524.36, + "end": 25528.36, + "probability": 0.9956 + }, + { + "start": 25528.4, + "end": 25529.14, + "probability": 0.2619 + }, + { + "start": 25531.1, + "end": 25531.2, + "probability": 0.1313 + }, + { + "start": 25531.2, + "end": 25532.74, + "probability": 0.2161 + }, + { + "start": 25533.14, + "end": 25534.48, + "probability": 0.319 + }, + { + "start": 25534.84, + "end": 25537.24, + "probability": 0.7006 + }, + { + "start": 25537.34, + "end": 25538.46, + "probability": 0.6324 + }, + { + "start": 25538.92, + "end": 25540.6, + "probability": 0.1686 + }, + { + "start": 25540.72, + "end": 25541.61, + "probability": 0.071 + }, + { + "start": 25543.7, + "end": 25545.2, + "probability": 0.0779 + }, + { + "start": 25545.2, + "end": 25545.48, + "probability": 0.0213 + }, + { + "start": 25545.48, + "end": 25546.56, + "probability": 0.5235 + }, + { + "start": 25546.8, + "end": 25547.98, + "probability": 0.8736 + }, + { + "start": 25548.42, + "end": 25549.78, + "probability": 0.0812 + }, + { + "start": 25549.94, + "end": 25551.9, + "probability": 0.9122 + }, + { + "start": 25552.06, + "end": 25556.2, + "probability": 0.9877 + }, + { + "start": 25556.52, + "end": 25559.84, + "probability": 0.9382 + }, + { + "start": 25561.0, + "end": 25562.31, + "probability": 0.8209 + }, + { + "start": 25563.32, + "end": 25566.14, + "probability": 0.8215 + }, + { + "start": 25566.5, + "end": 25568.38, + "probability": 0.985 + }, + { + "start": 25568.5, + "end": 25569.8, + "probability": 0.7344 + }, + { + "start": 25570.42, + "end": 25571.86, + "probability": 0.9338 + }, + { + "start": 25571.98, + "end": 25573.98, + "probability": 0.8633 + }, + { + "start": 25574.08, + "end": 25574.56, + "probability": 0.7399 + }, + { + "start": 25577.76, + "end": 25581.08, + "probability": 0.7612 + }, + { + "start": 25581.26, + "end": 25584.2, + "probability": 0.9951 + }, + { + "start": 25584.76, + "end": 25587.84, + "probability": 0.9909 + }, + { + "start": 25588.62, + "end": 25590.44, + "probability": 0.7484 + }, + { + "start": 25590.56, + "end": 25592.58, + "probability": 0.9655 + }, + { + "start": 25592.66, + "end": 25592.88, + "probability": 0.011 + }, + { + "start": 25593.44, + "end": 25594.42, + "probability": 0.6 + }, + { + "start": 25594.48, + "end": 25595.6, + "probability": 0.9407 + }, + { + "start": 25596.0, + "end": 25600.44, + "probability": 0.967 + }, + { + "start": 25600.9, + "end": 25603.35, + "probability": 0.9656 + }, + { + "start": 25604.02, + "end": 25605.21, + "probability": 0.9473 + }, + { + "start": 25605.52, + "end": 25606.5, + "probability": 0.2096 + }, + { + "start": 25606.58, + "end": 25607.66, + "probability": 0.9502 + }, + { + "start": 25607.78, + "end": 25609.55, + "probability": 0.9307 + }, + { + "start": 25609.98, + "end": 25614.2, + "probability": 0.9705 + }, + { + "start": 25614.62, + "end": 25617.06, + "probability": 0.9524 + }, + { + "start": 25617.52, + "end": 25618.0, + "probability": 0.4904 + }, + { + "start": 25618.18, + "end": 25620.1, + "probability": 0.8888 + }, + { + "start": 25620.32, + "end": 25624.09, + "probability": 0.9812 + }, + { + "start": 25624.68, + "end": 25626.64, + "probability": 0.9929 + }, + { + "start": 25627.04, + "end": 25628.82, + "probability": 0.9785 + }, + { + "start": 25629.28, + "end": 25633.92, + "probability": 0.9884 + }, + { + "start": 25634.02, + "end": 25639.12, + "probability": 0.613 + }, + { + "start": 25639.14, + "end": 25640.92, + "probability": 0.318 + }, + { + "start": 25641.22, + "end": 25642.5, + "probability": 0.9665 + }, + { + "start": 25642.86, + "end": 25644.0, + "probability": 0.9272 + }, + { + "start": 25644.0, + "end": 25646.18, + "probability": 0.0245 + }, + { + "start": 25646.5, + "end": 25649.56, + "probability": 0.047 + }, + { + "start": 25650.16, + "end": 25651.26, + "probability": 0.0504 + }, + { + "start": 25651.26, + "end": 25651.26, + "probability": 0.2224 + }, + { + "start": 25651.6, + "end": 25651.84, + "probability": 0.0515 + }, + { + "start": 25653.3, + "end": 25656.52, + "probability": 0.0768 + }, + { + "start": 25656.86, + "end": 25657.54, + "probability": 0.0926 + }, + { + "start": 25657.74, + "end": 25660.8, + "probability": 0.1376 + }, + { + "start": 25661.12, + "end": 25662.36, + "probability": 0.9168 + }, + { + "start": 25662.44, + "end": 25663.16, + "probability": 0.9164 + }, + { + "start": 25663.16, + "end": 25664.46, + "probability": 0.5856 + }, + { + "start": 25664.52, + "end": 25666.22, + "probability": 0.8377 + }, + { + "start": 25666.32, + "end": 25668.28, + "probability": 0.9176 + }, + { + "start": 25668.6, + "end": 25670.32, + "probability": 0.7667 + }, + { + "start": 25670.32, + "end": 25671.6, + "probability": 0.9731 + }, + { + "start": 25671.62, + "end": 25672.26, + "probability": 0.3922 + }, + { + "start": 25672.44, + "end": 25677.92, + "probability": 0.9944 + }, + { + "start": 25677.96, + "end": 25680.04, + "probability": 0.8268 + }, + { + "start": 25680.3, + "end": 25682.78, + "probability": 0.6255 + }, + { + "start": 25683.3, + "end": 25685.4, + "probability": 0.1271 + }, + { + "start": 25685.54, + "end": 25687.98, + "probability": 0.104 + }, + { + "start": 25688.26, + "end": 25692.66, + "probability": 0.0949 + }, + { + "start": 25693.05, + "end": 25695.07, + "probability": 0.1323 + }, + { + "start": 25695.48, + "end": 25698.76, + "probability": 0.8164 + }, + { + "start": 25699.04, + "end": 25699.98, + "probability": 0.0188 + }, + { + "start": 25700.38, + "end": 25700.7, + "probability": 0.0093 + }, + { + "start": 25711.46, + "end": 25712.98, + "probability": 0.0781 + }, + { + "start": 25715.88, + "end": 25717.88, + "probability": 0.2858 + }, + { + "start": 25718.84, + "end": 25722.54, + "probability": 0.0493 + }, + { + "start": 25722.54, + "end": 25722.54, + "probability": 0.0892 + }, + { + "start": 25722.54, + "end": 25722.54, + "probability": 0.1728 + }, + { + "start": 25722.54, + "end": 25722.54, + "probability": 0.3877 + }, + { + "start": 25722.54, + "end": 25724.96, + "probability": 0.5182 + }, + { + "start": 25725.14, + "end": 25725.72, + "probability": 0.3084 + }, + { + "start": 25728.8, + "end": 25730.62, + "probability": 0.4913 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.0, + "end": 25831.0, + "probability": 0.0 + }, + { + "start": 25831.52, + "end": 25835.28, + "probability": 0.1014 + }, + { + "start": 25835.82, + "end": 25838.59, + "probability": 0.0772 + }, + { + "start": 25839.74, + "end": 25839.98, + "probability": 0.0371 + }, + { + "start": 25839.98, + "end": 25841.08, + "probability": 0.2341 + }, + { + "start": 25841.4, + "end": 25842.02, + "probability": 0.3293 + }, + { + "start": 25842.2, + "end": 25845.74, + "probability": 0.1123 + }, + { + "start": 25854.76, + "end": 25855.1, + "probability": 0.0175 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.0, + "end": 25957.0, + "probability": 0.0 + }, + { + "start": 25957.16, + "end": 25957.46, + "probability": 0.1565 + }, + { + "start": 25957.46, + "end": 25958.61, + "probability": 0.6403 + }, + { + "start": 25960.1, + "end": 25961.1, + "probability": 0.4116 + }, + { + "start": 25961.76, + "end": 25962.52, + "probability": 0.6909 + }, + { + "start": 25962.56, + "end": 25967.1, + "probability": 0.7389 + }, + { + "start": 25968.88, + "end": 25973.64, + "probability": 0.9762 + }, + { + "start": 25975.0, + "end": 25979.82, + "probability": 0.9744 + }, + { + "start": 25980.5, + "end": 25983.64, + "probability": 0.5075 + }, + { + "start": 25984.08, + "end": 25986.26, + "probability": 0.8068 + }, + { + "start": 25986.78, + "end": 25987.82, + "probability": 0.7685 + }, + { + "start": 25988.2, + "end": 25993.2, + "probability": 0.0153 + }, + { + "start": 25994.0, + "end": 25994.12, + "probability": 0.0071 + }, + { + "start": 25994.38, + "end": 25995.66, + "probability": 0.0342 + }, + { + "start": 25997.72, + "end": 25998.66, + "probability": 0.6443 + }, + { + "start": 25999.0, + "end": 25999.38, + "probability": 0.0465 + }, + { + "start": 25999.38, + "end": 26000.7, + "probability": 0.2205 + }, + { + "start": 26000.7, + "end": 26000.76, + "probability": 0.4016 + }, + { + "start": 26000.76, + "end": 26001.42, + "probability": 0.1703 + }, + { + "start": 26001.58, + "end": 26002.6, + "probability": 0.1908 + }, + { + "start": 26003.06, + "end": 26005.22, + "probability": 0.3221 + }, + { + "start": 26005.56, + "end": 26009.02, + "probability": 0.993 + }, + { + "start": 26009.02, + "end": 26014.46, + "probability": 0.9978 + }, + { + "start": 26014.86, + "end": 26018.68, + "probability": 0.8745 + }, + { + "start": 26018.84, + "end": 26020.36, + "probability": 0.8534 + }, + { + "start": 26020.76, + "end": 26022.42, + "probability": 0.9919 + }, + { + "start": 26022.68, + "end": 26022.96, + "probability": 0.4553 + }, + { + "start": 26023.32, + "end": 26026.06, + "probability": 0.9977 + }, + { + "start": 26026.8, + "end": 26029.5, + "probability": 0.9849 + }, + { + "start": 26030.88, + "end": 26032.68, + "probability": 0.9963 + }, + { + "start": 26032.76, + "end": 26034.02, + "probability": 0.9106 + }, + { + "start": 26034.48, + "end": 26036.72, + "probability": 0.9628 + }, + { + "start": 26037.34, + "end": 26040.64, + "probability": 0.9775 + }, + { + "start": 26041.2, + "end": 26041.78, + "probability": 0.771 + }, + { + "start": 26041.9, + "end": 26044.02, + "probability": 0.9753 + }, + { + "start": 26044.48, + "end": 26046.68, + "probability": 0.8733 + }, + { + "start": 26047.02, + "end": 26047.54, + "probability": 0.6799 + }, + { + "start": 26047.86, + "end": 26049.06, + "probability": 0.9384 + }, + { + "start": 26050.72, + "end": 26053.68, + "probability": 0.9963 + }, + { + "start": 26053.92, + "end": 26054.54, + "probability": 0.229 + }, + { + "start": 26054.58, + "end": 26054.58, + "probability": 0.5357 + }, + { + "start": 26054.62, + "end": 26054.9, + "probability": 0.3238 + }, + { + "start": 26054.9, + "end": 26056.44, + "probability": 0.6832 + }, + { + "start": 26057.0, + "end": 26059.94, + "probability": 0.993 + }, + { + "start": 26059.94, + "end": 26063.38, + "probability": 0.9368 + }, + { + "start": 26063.8, + "end": 26066.12, + "probability": 0.9973 + }, + { + "start": 26067.82, + "end": 26072.3, + "probability": 0.9865 + }, + { + "start": 26072.3, + "end": 26075.79, + "probability": 0.9875 + }, + { + "start": 26077.04, + "end": 26077.94, + "probability": 0.6645 + }, + { + "start": 26078.0, + "end": 26078.8, + "probability": 0.6414 + }, + { + "start": 26078.88, + "end": 26081.66, + "probability": 0.883 + }, + { + "start": 26081.84, + "end": 26084.47, + "probability": 0.9967 + }, + { + "start": 26084.76, + "end": 26085.95, + "probability": 0.7427 + }, + { + "start": 26087.06, + "end": 26089.72, + "probability": 0.9378 + }, + { + "start": 26089.78, + "end": 26091.0, + "probability": 0.7581 + }, + { + "start": 26091.58, + "end": 26094.0, + "probability": 0.9246 + }, + { + "start": 26094.06, + "end": 26094.38, + "probability": 0.4627 + }, + { + "start": 26094.4, + "end": 26096.22, + "probability": 0.9497 + }, + { + "start": 26096.26, + "end": 26099.72, + "probability": 0.9712 + }, + { + "start": 26099.89, + "end": 26100.2, + "probability": 0.1782 + }, + { + "start": 26100.2, + "end": 26101.1, + "probability": 0.1972 + }, + { + "start": 26101.36, + "end": 26104.38, + "probability": 0.9573 + }, + { + "start": 26104.7, + "end": 26108.38, + "probability": 0.4664 + }, + { + "start": 26110.64, + "end": 26111.72, + "probability": 0.5815 + }, + { + "start": 26112.1, + "end": 26113.62, + "probability": 0.222 + }, + { + "start": 26113.82, + "end": 26115.78, + "probability": 0.1881 + }, + { + "start": 26116.02, + "end": 26118.76, + "probability": 0.7646 + }, + { + "start": 26118.84, + "end": 26119.5, + "probability": 0.8529 + }, + { + "start": 26119.62, + "end": 26120.7, + "probability": 0.6771 + }, + { + "start": 26120.7, + "end": 26121.34, + "probability": 0.5497 + }, + { + "start": 26121.42, + "end": 26122.96, + "probability": 0.2823 + }, + { + "start": 26123.0, + "end": 26125.22, + "probability": 0.7795 + }, + { + "start": 26125.38, + "end": 26126.22, + "probability": 0.0906 + }, + { + "start": 26126.74, + "end": 26127.24, + "probability": 0.0105 + }, + { + "start": 26127.26, + "end": 26127.4, + "probability": 0.0151 + }, + { + "start": 26127.4, + "end": 26130.1, + "probability": 0.9376 + }, + { + "start": 26131.04, + "end": 26132.7, + "probability": 0.9796 + }, + { + "start": 26132.82, + "end": 26134.58, + "probability": 0.9959 + }, + { + "start": 26134.72, + "end": 26136.78, + "probability": 0.8971 + }, + { + "start": 26137.12, + "end": 26138.52, + "probability": 0.9781 + }, + { + "start": 26139.02, + "end": 26140.4, + "probability": 0.8241 + }, + { + "start": 26142.32, + "end": 26145.61, + "probability": 0.9956 + }, + { + "start": 26146.28, + "end": 26146.36, + "probability": 0.0315 + }, + { + "start": 26146.36, + "end": 26149.6, + "probability": 0.9944 + }, + { + "start": 26149.94, + "end": 26152.74, + "probability": 0.9615 + }, + { + "start": 26153.2, + "end": 26157.46, + "probability": 0.9863 + }, + { + "start": 26157.46, + "end": 26159.36, + "probability": 0.618 + }, + { + "start": 26159.36, + "end": 26160.26, + "probability": 0.8374 + }, + { + "start": 26164.22, + "end": 26165.7, + "probability": 0.9967 + }, + { + "start": 26166.64, + "end": 26171.82, + "probability": 0.9978 + }, + { + "start": 26172.58, + "end": 26177.44, + "probability": 0.9985 + }, + { + "start": 26178.3, + "end": 26178.96, + "probability": 0.6496 + }, + { + "start": 26179.26, + "end": 26182.02, + "probability": 0.9766 + }, + { + "start": 26182.16, + "end": 26185.62, + "probability": 0.8465 + }, + { + "start": 26185.9, + "end": 26188.68, + "probability": 0.9922 + }, + { + "start": 26189.42, + "end": 26190.0, + "probability": 0.2943 + }, + { + "start": 26190.16, + "end": 26190.96, + "probability": 0.7058 + }, + { + "start": 26191.04, + "end": 26191.42, + "probability": 0.7427 + }, + { + "start": 26191.62, + "end": 26193.26, + "probability": 0.9697 + }, + { + "start": 26193.54, + "end": 26194.96, + "probability": 0.974 + }, + { + "start": 26195.24, + "end": 26195.96, + "probability": 0.665 + }, + { + "start": 26196.28, + "end": 26199.28, + "probability": 0.7667 + }, + { + "start": 26199.56, + "end": 26202.62, + "probability": 0.9971 + }, + { + "start": 26202.74, + "end": 26203.86, + "probability": 0.7954 + }, + { + "start": 26204.18, + "end": 26205.75, + "probability": 0.6291 + }, + { + "start": 26205.94, + "end": 26210.2, + "probability": 0.8468 + }, + { + "start": 26212.28, + "end": 26213.93, + "probability": 0.0146 + }, + { + "start": 26216.6, + "end": 26217.48, + "probability": 0.0031 + }, + { + "start": 26218.26, + "end": 26219.84, + "probability": 0.0455 + }, + { + "start": 26219.84, + "end": 26220.47, + "probability": 0.2083 + }, + { + "start": 26221.38, + "end": 26222.51, + "probability": 0.072 + }, + { + "start": 26223.44, + "end": 26226.76, + "probability": 0.2458 + }, + { + "start": 26227.18, + "end": 26228.74, + "probability": 0.2831 + }, + { + "start": 26229.32, + "end": 26229.32, + "probability": 0.2979 + }, + { + "start": 26229.32, + "end": 26230.36, + "probability": 0.6244 + }, + { + "start": 26230.8, + "end": 26235.48, + "probability": 0.9017 + }, + { + "start": 26235.84, + "end": 26239.3, + "probability": 0.9551 + }, + { + "start": 26240.02, + "end": 26243.78, + "probability": 0.9946 + }, + { + "start": 26244.72, + "end": 26245.56, + "probability": 0.8541 + }, + { + "start": 26245.66, + "end": 26248.18, + "probability": 0.9416 + }, + { + "start": 26248.22, + "end": 26249.19, + "probability": 0.7989 + }, + { + "start": 26249.28, + "end": 26250.22, + "probability": 0.8218 + }, + { + "start": 26250.62, + "end": 26253.1, + "probability": 0.8068 + }, + { + "start": 26254.08, + "end": 26255.88, + "probability": 0.9606 + }, + { + "start": 26256.72, + "end": 26261.0, + "probability": 0.9916 + }, + { + "start": 26263.26, + "end": 26266.16, + "probability": 0.5956 + }, + { + "start": 26266.5, + "end": 26270.48, + "probability": 0.566 + }, + { + "start": 26271.26, + "end": 26272.64, + "probability": 0.0287 + }, + { + "start": 26273.08, + "end": 26279.68, + "probability": 0.9699 + }, + { + "start": 26280.7, + "end": 26284.14, + "probability": 0.9785 + }, + { + "start": 26286.04, + "end": 26289.62, + "probability": 0.7789 + }, + { + "start": 26291.38, + "end": 26297.72, + "probability": 0.9945 + }, + { + "start": 26298.58, + "end": 26299.24, + "probability": 0.7897 + }, + { + "start": 26299.38, + "end": 26301.72, + "probability": 0.6625 + }, + { + "start": 26301.86, + "end": 26302.84, + "probability": 0.8296 + }, + { + "start": 26303.44, + "end": 26305.38, + "probability": 0.8792 + }, + { + "start": 26305.6, + "end": 26306.4, + "probability": 0.6729 + }, + { + "start": 26306.5, + "end": 26307.89, + "probability": 0.9043 + }, + { + "start": 26309.23, + "end": 26312.8, + "probability": 0.8152 + }, + { + "start": 26313.04, + "end": 26315.48, + "probability": 0.9939 + }, + { + "start": 26315.48, + "end": 26318.92, + "probability": 0.9252 + }, + { + "start": 26319.44, + "end": 26321.46, + "probability": 0.9822 + }, + { + "start": 26324.16, + "end": 26328.68, + "probability": 0.9256 + }, + { + "start": 26329.56, + "end": 26331.22, + "probability": 0.6613 + }, + { + "start": 26331.62, + "end": 26338.84, + "probability": 0.9321 + }, + { + "start": 26339.72, + "end": 26340.7, + "probability": 0.7531 + }, + { + "start": 26340.92, + "end": 26342.26, + "probability": 0.9633 + }, + { + "start": 26342.34, + "end": 26343.36, + "probability": 0.7451 + }, + { + "start": 26343.66, + "end": 26347.9, + "probability": 0.9683 + }, + { + "start": 26348.14, + "end": 26349.74, + "probability": 0.98 + }, + { + "start": 26350.42, + "end": 26354.2, + "probability": 0.9985 + }, + { + "start": 26354.2, + "end": 26361.32, + "probability": 0.9915 + }, + { + "start": 26362.1, + "end": 26363.12, + "probability": 0.8478 + }, + { + "start": 26363.84, + "end": 26366.3, + "probability": 0.9265 + }, + { + "start": 26367.16, + "end": 26373.0, + "probability": 0.9839 + }, + { + "start": 26375.22, + "end": 26375.84, + "probability": 0.852 + }, + { + "start": 26376.92, + "end": 26378.12, + "probability": 0.7872 + }, + { + "start": 26378.28, + "end": 26380.38, + "probability": 0.7837 + }, + { + "start": 26380.82, + "end": 26387.18, + "probability": 0.8621 + }, + { + "start": 26387.2, + "end": 26391.32, + "probability": 0.9266 + }, + { + "start": 26391.6, + "end": 26394.64, + "probability": 0.7959 + }, + { + "start": 26396.06, + "end": 26401.42, + "probability": 0.9717 + }, + { + "start": 26401.58, + "end": 26402.84, + "probability": 0.4244 + }, + { + "start": 26404.02, + "end": 26408.08, + "probability": 0.8589 + }, + { + "start": 26408.6, + "end": 26409.33, + "probability": 0.5406 + }, + { + "start": 26410.44, + "end": 26413.86, + "probability": 0.7917 + }, + { + "start": 26414.4, + "end": 26417.78, + "probability": 0.8452 + }, + { + "start": 26418.56, + "end": 26423.44, + "probability": 0.6092 + }, + { + "start": 26424.2, + "end": 26425.16, + "probability": 0.921 + }, + { + "start": 26425.24, + "end": 26426.66, + "probability": 0.8618 + }, + { + "start": 26426.96, + "end": 26427.82, + "probability": 0.5648 + }, + { + "start": 26428.32, + "end": 26432.2, + "probability": 0.8246 + }, + { + "start": 26432.4, + "end": 26435.86, + "probability": 0.9853 + }, + { + "start": 26435.86, + "end": 26439.32, + "probability": 0.9788 + }, + { + "start": 26439.56, + "end": 26440.26, + "probability": 0.803 + }, + { + "start": 26440.54, + "end": 26442.94, + "probability": 0.7381 + }, + { + "start": 26442.96, + "end": 26444.26, + "probability": 0.7823 + }, + { + "start": 26444.5, + "end": 26449.82, + "probability": 0.0276 + }, + { + "start": 26452.68, + "end": 26457.9, + "probability": 0.8956 + }, + { + "start": 26458.28, + "end": 26459.22, + "probability": 0.3262 + }, + { + "start": 26459.96, + "end": 26462.38, + "probability": 0.5092 + }, + { + "start": 26462.86, + "end": 26465.16, + "probability": 0.6487 + }, + { + "start": 26467.94, + "end": 26470.44, + "probability": 0.976 + }, + { + "start": 26470.86, + "end": 26471.22, + "probability": 0.437 + }, + { + "start": 26471.34, + "end": 26474.78, + "probability": 0.9895 + }, + { + "start": 26475.08, + "end": 26477.1, + "probability": 0.9977 + }, + { + "start": 26477.32, + "end": 26478.72, + "probability": 0.9663 + }, + { + "start": 26479.28, + "end": 26479.76, + "probability": 0.7899 + }, + { + "start": 26479.78, + "end": 26480.46, + "probability": 0.7931 + }, + { + "start": 26480.56, + "end": 26481.58, + "probability": 0.8814 + }, + { + "start": 26481.86, + "end": 26482.7, + "probability": 0.9548 + }, + { + "start": 26483.06, + "end": 26484.24, + "probability": 0.9729 + }, + { + "start": 26484.56, + "end": 26489.86, + "probability": 0.7605 + }, + { + "start": 26494.1, + "end": 26497.48, + "probability": 0.2934 + }, + { + "start": 26502.56, + "end": 26509.24, + "probability": 0.4823 + }, + { + "start": 26509.38, + "end": 26514.3, + "probability": 0.9673 + }, + { + "start": 26521.08, + "end": 26525.52, + "probability": 0.9656 + }, + { + "start": 26526.3, + "end": 26530.54, + "probability": 0.9976 + }, + { + "start": 26530.6, + "end": 26532.38, + "probability": 0.584 + }, + { + "start": 26532.92, + "end": 26538.05, + "probability": 0.9201 + }, + { + "start": 26538.56, + "end": 26540.1, + "probability": 0.7548 + }, + { + "start": 26540.26, + "end": 26542.48, + "probability": 0.8848 + }, + { + "start": 26544.58, + "end": 26544.72, + "probability": 0.4254 + }, + { + "start": 26546.78, + "end": 26547.58, + "probability": 0.2602 + }, + { + "start": 26551.5, + "end": 26553.42, + "probability": 0.5286 + }, + { + "start": 26553.58, + "end": 26556.3, + "probability": 0.0513 + }, + { + "start": 26559.66, + "end": 26561.06, + "probability": 0.2036 + }, + { + "start": 26563.0, + "end": 26563.16, + "probability": 0.1649 + }, + { + "start": 26563.16, + "end": 26566.72, + "probability": 0.1021 + }, + { + "start": 26566.72, + "end": 26567.4, + "probability": 0.101 + }, + { + "start": 26568.66, + "end": 26569.18, + "probability": 0.2232 + }, + { + "start": 26570.22, + "end": 26571.44, + "probability": 0.4279 + }, + { + "start": 26602.24, + "end": 26603.76, + "probability": 0.8757 + }, + { + "start": 26603.88, + "end": 26607.54, + "probability": 0.9973 + }, + { + "start": 26607.54, + "end": 26612.34, + "probability": 0.9879 + }, + { + "start": 26612.68, + "end": 26613.56, + "probability": 0.9437 + }, + { + "start": 26613.68, + "end": 26615.06, + "probability": 0.8716 + }, + { + "start": 26615.34, + "end": 26616.48, + "probability": 0.7391 + }, + { + "start": 26616.5, + "end": 26618.98, + "probability": 0.9826 + }, + { + "start": 26620.12, + "end": 26623.32, + "probability": 0.8403 + }, + { + "start": 26623.46, + "end": 26627.84, + "probability": 0.869 + }, + { + "start": 26628.1, + "end": 26630.02, + "probability": 0.9875 + }, + { + "start": 26630.08, + "end": 26631.04, + "probability": 0.9613 + }, + { + "start": 26631.18, + "end": 26637.92, + "probability": 0.9922 + }, + { + "start": 26638.34, + "end": 26639.46, + "probability": 0.7255 + }, + { + "start": 26639.58, + "end": 26643.52, + "probability": 0.9814 + }, + { + "start": 26644.24, + "end": 26647.84, + "probability": 0.9906 + }, + { + "start": 26647.84, + "end": 26651.72, + "probability": 0.9972 + }, + { + "start": 26651.72, + "end": 26655.4, + "probability": 0.9973 + }, + { + "start": 26655.9, + "end": 26658.36, + "probability": 0.6128 + }, + { + "start": 26659.6, + "end": 26665.04, + "probability": 0.9193 + }, + { + "start": 26665.58, + "end": 26668.12, + "probability": 0.9758 + }, + { + "start": 26668.12, + "end": 26670.78, + "probability": 0.9827 + }, + { + "start": 26670.78, + "end": 26675.26, + "probability": 0.9582 + }, + { + "start": 26675.62, + "end": 26679.66, + "probability": 0.9894 + }, + { + "start": 26679.66, + "end": 26684.88, + "probability": 0.9811 + }, + { + "start": 26685.0, + "end": 26690.2, + "probability": 0.993 + }, + { + "start": 26691.58, + "end": 26695.58, + "probability": 0.9695 + }, + { + "start": 26695.98, + "end": 26700.2, + "probability": 0.9897 + }, + { + "start": 26700.76, + "end": 26703.02, + "probability": 0.8773 + }, + { + "start": 26703.14, + "end": 26705.66, + "probability": 0.9958 + }, + { + "start": 26705.66, + "end": 26709.02, + "probability": 0.7294 + }, + { + "start": 26709.48, + "end": 26711.34, + "probability": 0.9722 + }, + { + "start": 26711.34, + "end": 26714.18, + "probability": 0.856 + }, + { + "start": 26714.58, + "end": 26717.37, + "probability": 0.9584 + }, + { + "start": 26717.84, + "end": 26720.0, + "probability": 0.9888 + }, + { + "start": 26720.0, + "end": 26722.04, + "probability": 0.9806 + }, + { + "start": 26722.16, + "end": 26723.14, + "probability": 0.7466 + }, + { + "start": 26723.32, + "end": 26725.5, + "probability": 0.9816 + }, + { + "start": 26725.5, + "end": 26728.1, + "probability": 0.8347 + }, + { + "start": 26728.56, + "end": 26730.16, + "probability": 0.9526 + }, + { + "start": 26730.32, + "end": 26731.1, + "probability": 0.6604 + }, + { + "start": 26731.14, + "end": 26733.18, + "probability": 0.6776 + }, + { + "start": 26733.62, + "end": 26738.1, + "probability": 0.8908 + }, + { + "start": 26738.46, + "end": 26743.4, + "probability": 0.9746 + }, + { + "start": 26743.7, + "end": 26743.96, + "probability": 0.5875 + }, + { + "start": 26744.14, + "end": 26744.4, + "probability": 0.8738 + }, + { + "start": 26744.54, + "end": 26746.58, + "probability": 0.9481 + }, + { + "start": 26746.94, + "end": 26752.7, + "probability": 0.9111 + }, + { + "start": 26754.1, + "end": 26756.28, + "probability": 0.9302 + }, + { + "start": 26756.38, + "end": 26758.0, + "probability": 0.8262 + }, + { + "start": 26758.38, + "end": 26764.88, + "probability": 0.9854 + }, + { + "start": 26767.16, + "end": 26768.58, + "probability": 0.2148 + }, + { + "start": 26770.68, + "end": 26772.22, + "probability": 0.2313 + }, + { + "start": 26772.22, + "end": 26772.22, + "probability": 0.1805 + }, + { + "start": 26772.22, + "end": 26772.22, + "probability": 0.2484 + }, + { + "start": 26772.22, + "end": 26773.78, + "probability": 0.614 + }, + { + "start": 26773.86, + "end": 26779.9, + "probability": 0.9191 + }, + { + "start": 26781.0, + "end": 26786.14, + "probability": 0.8429 + }, + { + "start": 26787.35, + "end": 26793.75, + "probability": 0.9617 + }, + { + "start": 26794.3, + "end": 26797.88, + "probability": 0.983 + }, + { + "start": 26797.88, + "end": 26804.34, + "probability": 0.9436 + }, + { + "start": 26805.76, + "end": 26811.06, + "probability": 0.9855 + }, + { + "start": 26811.14, + "end": 26812.18, + "probability": 0.8457 + }, + { + "start": 26813.06, + "end": 26813.38, + "probability": 0.3394 + }, + { + "start": 26813.54, + "end": 26820.18, + "probability": 0.9949 + }, + { + "start": 26820.38, + "end": 26820.62, + "probability": 0.4216 + }, + { + "start": 26820.96, + "end": 26825.14, + "probability": 0.9084 + }, + { + "start": 26825.22, + "end": 26825.44, + "probability": 0.6953 + }, + { + "start": 26825.48, + "end": 26825.8, + "probability": 0.7429 + }, + { + "start": 26825.9, + "end": 26832.9, + "probability": 0.9209 + }, + { + "start": 26832.9, + "end": 26837.0, + "probability": 0.9574 + }, + { + "start": 26837.26, + "end": 26838.08, + "probability": 0.4044 + }, + { + "start": 26838.8, + "end": 26842.02, + "probability": 0.8099 + }, + { + "start": 26842.1, + "end": 26843.1, + "probability": 0.7103 + }, + { + "start": 26843.18, + "end": 26844.08, + "probability": 0.6763 + }, + { + "start": 26844.86, + "end": 26845.68, + "probability": 0.4836 + }, + { + "start": 26849.36, + "end": 26849.38, + "probability": 0.0281 + }, + { + "start": 26850.08, + "end": 26851.42, + "probability": 0.2536 + }, + { + "start": 26865.94, + "end": 26866.68, + "probability": 0.0417 + }, + { + "start": 26866.68, + "end": 26867.98, + "probability": 0.0695 + }, + { + "start": 26868.2, + "end": 26870.54, + "probability": 0.2424 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26960.0, + "end": 26960.0, + "probability": 0.0 + }, + { + "start": 26961.3, + "end": 26963.22, + "probability": 0.5741 + }, + { + "start": 26963.78, + "end": 26964.68, + "probability": 0.6827 + }, + { + "start": 26964.8, + "end": 26968.82, + "probability": 0.9561 + }, + { + "start": 26969.34, + "end": 26971.68, + "probability": 0.6732 + }, + { + "start": 26971.9, + "end": 26975.96, + "probability": 0.8812 + }, + { + "start": 26976.26, + "end": 26978.92, + "probability": 0.9967 + }, + { + "start": 26979.1, + "end": 26980.92, + "probability": 0.9312 + }, + { + "start": 26981.34, + "end": 26982.9, + "probability": 0.8085 + }, + { + "start": 26982.94, + "end": 26984.94, + "probability": 0.7471 + }, + { + "start": 26985.06, + "end": 26985.77, + "probability": 0.9575 + }, + { + "start": 26985.92, + "end": 26991.56, + "probability": 0.9673 + }, + { + "start": 26991.72, + "end": 26994.28, + "probability": 0.9449 + }, + { + "start": 26994.28, + "end": 26997.54, + "probability": 0.8033 + }, + { + "start": 26998.1, + "end": 27004.16, + "probability": 0.99 + }, + { + "start": 27004.66, + "end": 27006.36, + "probability": 0.9409 + }, + { + "start": 27006.68, + "end": 27008.51, + "probability": 0.9278 + }, + { + "start": 27008.72, + "end": 27009.88, + "probability": 0.9022 + }, + { + "start": 27009.92, + "end": 27010.62, + "probability": 0.6249 + }, + { + "start": 27010.74, + "end": 27014.02, + "probability": 0.8755 + }, + { + "start": 27014.5, + "end": 27016.1, + "probability": 0.8586 + }, + { + "start": 27016.14, + "end": 27020.44, + "probability": 0.9867 + }, + { + "start": 27020.72, + "end": 27021.82, + "probability": 0.7904 + }, + { + "start": 27022.22, + "end": 27024.02, + "probability": 0.999 + }, + { + "start": 27024.12, + "end": 27026.56, + "probability": 0.9414 + }, + { + "start": 27026.74, + "end": 27027.74, + "probability": 0.5705 + }, + { + "start": 27027.9, + "end": 27032.3, + "probability": 0.889 + }, + { + "start": 27032.6, + "end": 27034.66, + "probability": 0.9766 + }, + { + "start": 27034.78, + "end": 27036.24, + "probability": 0.9471 + }, + { + "start": 27036.34, + "end": 27041.46, + "probability": 0.9489 + }, + { + "start": 27041.7, + "end": 27044.92, + "probability": 0.8815 + }, + { + "start": 27045.34, + "end": 27051.3, + "probability": 0.9587 + }, + { + "start": 27051.42, + "end": 27052.22, + "probability": 0.6894 + }, + { + "start": 27052.94, + "end": 27060.22, + "probability": 0.9688 + }, + { + "start": 27060.64, + "end": 27067.04, + "probability": 0.9675 + }, + { + "start": 27067.36, + "end": 27068.96, + "probability": 0.8981 + }, + { + "start": 27069.6, + "end": 27072.7, + "probability": 0.5923 + }, + { + "start": 27072.9, + "end": 27078.78, + "probability": 0.9927 + }, + { + "start": 27079.32, + "end": 27083.76, + "probability": 0.9987 + }, + { + "start": 27084.28, + "end": 27084.86, + "probability": 0.3618 + }, + { + "start": 27085.54, + "end": 27086.68, + "probability": 0.7946 + }, + { + "start": 27087.26, + "end": 27089.48, + "probability": 0.9963 + }, + { + "start": 27089.8, + "end": 27091.96, + "probability": 0.8984 + }, + { + "start": 27092.32, + "end": 27096.9, + "probability": 0.9845 + }, + { + "start": 27097.0, + "end": 27100.48, + "probability": 0.9855 + }, + { + "start": 27100.76, + "end": 27103.3, + "probability": 0.9591 + }, + { + "start": 27103.44, + "end": 27105.9, + "probability": 0.9572 + }, + { + "start": 27106.84, + "end": 27108.96, + "probability": 0.9691 + }, + { + "start": 27109.2, + "end": 27111.64, + "probability": 0.6662 + }, + { + "start": 27112.32, + "end": 27115.56, + "probability": 0.7424 + }, + { + "start": 27123.56, + "end": 27126.94, + "probability": 0.6622 + }, + { + "start": 27130.68, + "end": 27133.98, + "probability": 0.7468 + }, + { + "start": 27135.8, + "end": 27138.48, + "probability": 0.9803 + }, + { + "start": 27138.56, + "end": 27140.44, + "probability": 0.9775 + }, + { + "start": 27140.84, + "end": 27145.7, + "probability": 0.9971 + }, + { + "start": 27146.62, + "end": 27153.28, + "probability": 0.9917 + }, + { + "start": 27153.94, + "end": 27159.24, + "probability": 0.998 + }, + { + "start": 27159.76, + "end": 27162.46, + "probability": 0.9961 + }, + { + "start": 27162.88, + "end": 27168.62, + "probability": 0.9922 + }, + { + "start": 27168.62, + "end": 27173.08, + "probability": 0.9989 + }, + { + "start": 27174.2, + "end": 27181.2, + "probability": 0.9829 + }, + { + "start": 27182.2, + "end": 27183.68, + "probability": 0.7667 + }, + { + "start": 27184.36, + "end": 27185.99, + "probability": 0.9469 + }, + { + "start": 27186.72, + "end": 27188.98, + "probability": 0.9868 + }, + { + "start": 27189.86, + "end": 27195.32, + "probability": 0.9939 + }, + { + "start": 27195.96, + "end": 27200.14, + "probability": 0.9903 + }, + { + "start": 27200.78, + "end": 27207.74, + "probability": 0.9927 + }, + { + "start": 27208.24, + "end": 27209.58, + "probability": 0.9751 + }, + { + "start": 27209.86, + "end": 27214.54, + "probability": 0.9705 + }, + { + "start": 27214.54, + "end": 27219.36, + "probability": 0.9992 + }, + { + "start": 27220.48, + "end": 27229.98, + "probability": 0.9709 + }, + { + "start": 27230.96, + "end": 27236.12, + "probability": 0.8223 + }, + { + "start": 27237.06, + "end": 27243.74, + "probability": 0.9883 + }, + { + "start": 27244.32, + "end": 27249.58, + "probability": 0.9969 + }, + { + "start": 27250.3, + "end": 27253.52, + "probability": 0.995 + }, + { + "start": 27253.74, + "end": 27255.46, + "probability": 0.9696 + }, + { + "start": 27255.84, + "end": 27261.06, + "probability": 0.8818 + }, + { + "start": 27262.08, + "end": 27265.0, + "probability": 0.989 + }, + { + "start": 27265.16, + "end": 27269.28, + "probability": 0.999 + }, + { + "start": 27269.9, + "end": 27278.16, + "probability": 0.9956 + }, + { + "start": 27278.54, + "end": 27281.14, + "probability": 0.9951 + }, + { + "start": 27282.24, + "end": 27287.58, + "probability": 0.939 + }, + { + "start": 27288.04, + "end": 27291.28, + "probability": 0.9556 + }, + { + "start": 27291.94, + "end": 27294.02, + "probability": 0.9585 + }, + { + "start": 27294.16, + "end": 27301.46, + "probability": 0.998 + }, + { + "start": 27301.46, + "end": 27308.18, + "probability": 0.9973 + }, + { + "start": 27308.76, + "end": 27311.68, + "probability": 0.9946 + }, + { + "start": 27312.16, + "end": 27321.0, + "probability": 0.9891 + }, + { + "start": 27321.46, + "end": 27324.84, + "probability": 0.9896 + }, + { + "start": 27327.48, + "end": 27329.64, + "probability": 0.2741 + }, + { + "start": 27330.44, + "end": 27332.92, + "probability": 0.9607 + }, + { + "start": 27333.62, + "end": 27338.62, + "probability": 0.9272 + }, + { + "start": 27339.2, + "end": 27344.48, + "probability": 0.9194 + }, + { + "start": 27344.82, + "end": 27348.98, + "probability": 0.9979 + }, + { + "start": 27349.82, + "end": 27351.72, + "probability": 0.8288 + }, + { + "start": 27352.2, + "end": 27358.32, + "probability": 0.9882 + }, + { + "start": 27358.6, + "end": 27359.7, + "probability": 0.9731 + }, + { + "start": 27360.14, + "end": 27365.88, + "probability": 0.9946 + }, + { + "start": 27366.16, + "end": 27372.5, + "probability": 0.9928 + }, + { + "start": 27373.18, + "end": 27375.94, + "probability": 0.8948 + }, + { + "start": 27376.32, + "end": 27379.4, + "probability": 0.9634 + }, + { + "start": 27379.96, + "end": 27383.7, + "probability": 0.9968 + }, + { + "start": 27383.7, + "end": 27388.58, + "probability": 0.9937 + }, + { + "start": 27389.82, + "end": 27391.66, + "probability": 0.9019 + }, + { + "start": 27391.78, + "end": 27394.04, + "probability": 0.9919 + }, + { + "start": 27394.6, + "end": 27397.02, + "probability": 0.9391 + }, + { + "start": 27407.86, + "end": 27413.14, + "probability": 0.4762 + }, + { + "start": 27415.04, + "end": 27417.24, + "probability": 0.8699 + }, + { + "start": 27418.18, + "end": 27418.32, + "probability": 0.3342 + }, + { + "start": 27418.32, + "end": 27418.32, + "probability": 0.5411 + }, + { + "start": 27418.32, + "end": 27418.32, + "probability": 0.0673 + }, + { + "start": 27418.62, + "end": 27420.95, + "probability": 0.7008 + }, + { + "start": 27421.84, + "end": 27422.72, + "probability": 0.8254 + }, + { + "start": 27422.74, + "end": 27424.74, + "probability": 0.666 + }, + { + "start": 27425.88, + "end": 27427.84, + "probability": 0.9829 + }, + { + "start": 27428.94, + "end": 27430.72, + "probability": 0.9782 + }, + { + "start": 27431.9, + "end": 27437.14, + "probability": 0.9951 + }, + { + "start": 27438.9, + "end": 27442.1, + "probability": 0.9913 + }, + { + "start": 27443.66, + "end": 27452.54, + "probability": 0.959 + }, + { + "start": 27453.22, + "end": 27454.62, + "probability": 0.9022 + }, + { + "start": 27455.36, + "end": 27457.3, + "probability": 0.7437 + }, + { + "start": 27459.84, + "end": 27464.96, + "probability": 0.9771 + }, + { + "start": 27465.18, + "end": 27470.16, + "probability": 0.991 + }, + { + "start": 27471.12, + "end": 27474.96, + "probability": 0.9893 + }, + { + "start": 27476.5, + "end": 27478.44, + "probability": 0.8412 + }, + { + "start": 27479.3, + "end": 27484.14, + "probability": 0.9928 + }, + { + "start": 27486.2, + "end": 27493.24, + "probability": 0.9054 + }, + { + "start": 27493.34, + "end": 27496.04, + "probability": 0.9041 + }, + { + "start": 27496.94, + "end": 27502.36, + "probability": 0.9863 + }, + { + "start": 27503.5, + "end": 27506.3, + "probability": 0.9976 + }, + { + "start": 27506.86, + "end": 27508.16, + "probability": 0.8374 + }, + { + "start": 27509.18, + "end": 27518.7, + "probability": 0.9835 + }, + { + "start": 27520.24, + "end": 27524.96, + "probability": 0.9812 + }, + { + "start": 27527.88, + "end": 27535.1, + "probability": 0.999 + }, + { + "start": 27536.6, + "end": 27538.88, + "probability": 0.8605 + }, + { + "start": 27540.94, + "end": 27546.46, + "probability": 0.9966 + }, + { + "start": 27546.66, + "end": 27551.38, + "probability": 0.9904 + }, + { + "start": 27551.58, + "end": 27553.28, + "probability": 0.8021 + }, + { + "start": 27553.34, + "end": 27555.6, + "probability": 0.9697 + }, + { + "start": 27555.68, + "end": 27559.4, + "probability": 0.9858 + }, + { + "start": 27559.74, + "end": 27564.5, + "probability": 0.9911 + }, + { + "start": 27564.5, + "end": 27571.86, + "probability": 0.9658 + }, + { + "start": 27571.9, + "end": 27572.32, + "probability": 0.891 + }, + { + "start": 27572.96, + "end": 27579.2, + "probability": 0.9818 + }, + { + "start": 27580.44, + "end": 27582.06, + "probability": 0.6793 + }, + { + "start": 27582.8, + "end": 27586.3, + "probability": 0.985 + }, + { + "start": 27586.68, + "end": 27587.92, + "probability": 0.9993 + }, + { + "start": 27588.88, + "end": 27591.44, + "probability": 0.8773 + }, + { + "start": 27592.24, + "end": 27594.6, + "probability": 0.9416 + }, + { + "start": 27595.74, + "end": 27599.12, + "probability": 0.9902 + }, + { + "start": 27599.56, + "end": 27603.26, + "probability": 0.9913 + }, + { + "start": 27603.3, + "end": 27606.0, + "probability": 0.7606 + }, + { + "start": 27606.7, + "end": 27610.42, + "probability": 0.9048 + }, + { + "start": 27611.4, + "end": 27612.52, + "probability": 0.9644 + }, + { + "start": 27612.58, + "end": 27613.28, + "probability": 0.6742 + }, + { + "start": 27613.28, + "end": 27618.1, + "probability": 0.8875 + }, + { + "start": 27618.22, + "end": 27619.32, + "probability": 0.7849 + }, + { + "start": 27619.58, + "end": 27622.26, + "probability": 0.9911 + }, + { + "start": 27622.44, + "end": 27623.2, + "probability": 0.7446 + }, + { + "start": 27623.36, + "end": 27624.6, + "probability": 0.9201 + }, + { + "start": 27624.8, + "end": 27627.26, + "probability": 0.8718 + }, + { + "start": 27627.58, + "end": 27632.9, + "probability": 0.9395 + }, + { + "start": 27632.9, + "end": 27636.42, + "probability": 0.9398 + }, + { + "start": 27636.74, + "end": 27640.76, + "probability": 0.9768 + }, + { + "start": 27640.76, + "end": 27643.5, + "probability": 0.4637 + }, + { + "start": 27644.2, + "end": 27648.62, + "probability": 0.997 + }, + { + "start": 27649.2, + "end": 27652.9, + "probability": 0.9717 + }, + { + "start": 27653.06, + "end": 27655.06, + "probability": 0.947 + }, + { + "start": 27655.22, + "end": 27657.42, + "probability": 0.882 + }, + { + "start": 27657.74, + "end": 27663.5, + "probability": 0.948 + }, + { + "start": 27663.6, + "end": 27664.26, + "probability": 0.8241 + }, + { + "start": 27664.4, + "end": 27666.72, + "probability": 0.9048 + }, + { + "start": 27668.12, + "end": 27671.28, + "probability": 0.3736 + }, + { + "start": 27671.28, + "end": 27671.28, + "probability": 0.1287 + }, + { + "start": 27671.28, + "end": 27672.12, + "probability": 0.761 + }, + { + "start": 27677.66, + "end": 27678.8, + "probability": 0.6173 + }, + { + "start": 27679.64, + "end": 27682.38, + "probability": 0.529 + }, + { + "start": 27682.5, + "end": 27685.72, + "probability": 0.787 + }, + { + "start": 27685.84, + "end": 27690.92, + "probability": 0.6957 + }, + { + "start": 27691.68, + "end": 27692.5, + "probability": 0.7139 + }, + { + "start": 27693.06, + "end": 27696.58, + "probability": 0.9957 + }, + { + "start": 27697.22, + "end": 27701.62, + "probability": 0.9828 + }, + { + "start": 27701.62, + "end": 27705.84, + "probability": 0.9723 + }, + { + "start": 27705.9, + "end": 27709.64, + "probability": 0.9365 + }, + { + "start": 27709.78, + "end": 27713.06, + "probability": 0.9764 + }, + { + "start": 27713.06, + "end": 27717.26, + "probability": 0.9952 + }, + { + "start": 27717.9, + "end": 27721.16, + "probability": 0.997 + }, + { + "start": 27721.16, + "end": 27726.04, + "probability": 0.9993 + }, + { + "start": 27726.98, + "end": 27730.32, + "probability": 0.9907 + }, + { + "start": 27730.32, + "end": 27734.56, + "probability": 0.9951 + }, + { + "start": 27734.78, + "end": 27736.4, + "probability": 0.8501 + }, + { + "start": 27736.56, + "end": 27740.65, + "probability": 0.9758 + }, + { + "start": 27741.32, + "end": 27743.74, + "probability": 0.9779 + }, + { + "start": 27744.3, + "end": 27746.92, + "probability": 0.9518 + }, + { + "start": 27746.92, + "end": 27749.88, + "probability": 0.9977 + }, + { + "start": 27750.44, + "end": 27752.78, + "probability": 0.9737 + }, + { + "start": 27752.88, + "end": 27754.0, + "probability": 0.773 + }, + { + "start": 27754.06, + "end": 27757.56, + "probability": 0.998 + }, + { + "start": 27757.56, + "end": 27761.44, + "probability": 0.9889 + }, + { + "start": 27762.06, + "end": 27764.18, + "probability": 0.9959 + }, + { + "start": 27764.28, + "end": 27767.66, + "probability": 0.9917 + }, + { + "start": 27768.06, + "end": 27768.84, + "probability": 0.965 + }, + { + "start": 27769.4, + "end": 27772.68, + "probability": 0.9545 + }, + { + "start": 27772.92, + "end": 27773.7, + "probability": 0.5566 + }, + { + "start": 27774.1, + "end": 27775.8, + "probability": 0.9801 + }, + { + "start": 27776.52, + "end": 27777.7, + "probability": 0.8025 + }, + { + "start": 27777.82, + "end": 27778.38, + "probability": 0.9236 + }, + { + "start": 27778.48, + "end": 27779.02, + "probability": 0.9933 + }, + { + "start": 27779.1, + "end": 27779.9, + "probability": 0.954 + }, + { + "start": 27780.26, + "end": 27782.96, + "probability": 0.8556 + }, + { + "start": 27783.48, + "end": 27786.3, + "probability": 0.9299 + }, + { + "start": 27787.06, + "end": 27791.36, + "probability": 0.9136 + }, + { + "start": 27791.46, + "end": 27792.92, + "probability": 0.9952 + }, + { + "start": 27793.38, + "end": 27796.32, + "probability": 0.9712 + }, + { + "start": 27796.94, + "end": 27801.92, + "probability": 0.9121 + }, + { + "start": 27802.24, + "end": 27804.46, + "probability": 0.9537 + }, + { + "start": 27805.38, + "end": 27806.82, + "probability": 0.4976 + }, + { + "start": 27807.44, + "end": 27811.32, + "probability": 0.9985 + }, + { + "start": 27811.88, + "end": 27814.2, + "probability": 0.992 + }, + { + "start": 27814.2, + "end": 27816.82, + "probability": 0.9733 + }, + { + "start": 27817.54, + "end": 27819.2, + "probability": 0.9951 + }, + { + "start": 27819.76, + "end": 27824.18, + "probability": 0.9902 + }, + { + "start": 27824.78, + "end": 27827.02, + "probability": 0.9985 + }, + { + "start": 27827.32, + "end": 27829.46, + "probability": 0.9696 + }, + { + "start": 27830.26, + "end": 27835.82, + "probability": 0.9788 + }, + { + "start": 27836.34, + "end": 27838.98, + "probability": 0.9334 + }, + { + "start": 27839.5, + "end": 27843.86, + "probability": 0.9954 + }, + { + "start": 27844.28, + "end": 27846.78, + "probability": 0.9971 + }, + { + "start": 27846.78, + "end": 27851.2, + "probability": 0.9985 + }, + { + "start": 27851.78, + "end": 27851.88, + "probability": 0.5386 + }, + { + "start": 27853.02, + "end": 27854.98, + "probability": 0.9318 + }, + { + "start": 27855.22, + "end": 27857.46, + "probability": 0.9512 + }, + { + "start": 27858.1, + "end": 27860.3, + "probability": 0.7644 + }, + { + "start": 27886.5, + "end": 27889.08, + "probability": 0.5301 + }, + { + "start": 27889.24, + "end": 27890.58, + "probability": 0.6986 + }, + { + "start": 27890.84, + "end": 27893.63, + "probability": 0.9938 + }, + { + "start": 27894.6, + "end": 27900.76, + "probability": 0.8217 + }, + { + "start": 27900.76, + "end": 27905.3, + "probability": 0.9564 + }, + { + "start": 27905.3, + "end": 27909.62, + "probability": 0.9105 + }, + { + "start": 27909.68, + "end": 27912.88, + "probability": 0.9713 + }, + { + "start": 27913.64, + "end": 27915.21, + "probability": 0.9966 + }, + { + "start": 27915.44, + "end": 27916.28, + "probability": 0.7508 + }, + { + "start": 27916.42, + "end": 27919.44, + "probability": 0.9948 + }, + { + "start": 27919.58, + "end": 27923.1, + "probability": 0.9956 + }, + { + "start": 27923.68, + "end": 27924.87, + "probability": 0.9716 + }, + { + "start": 27925.14, + "end": 27926.04, + "probability": 0.9517 + }, + { + "start": 27926.3, + "end": 27927.88, + "probability": 0.9829 + }, + { + "start": 27928.02, + "end": 27929.66, + "probability": 0.9902 + }, + { + "start": 27930.08, + "end": 27932.79, + "probability": 0.9842 + }, + { + "start": 27933.44, + "end": 27935.86, + "probability": 0.9519 + }, + { + "start": 27936.48, + "end": 27938.78, + "probability": 0.3784 + }, + { + "start": 27939.4, + "end": 27942.7, + "probability": 0.8649 + }, + { + "start": 27943.02, + "end": 27945.52, + "probability": 0.7935 + }, + { + "start": 27945.8, + "end": 27947.64, + "probability": 0.9883 + }, + { + "start": 27948.06, + "end": 27949.12, + "probability": 0.558 + }, + { + "start": 27949.28, + "end": 27952.54, + "probability": 0.7788 + }, + { + "start": 27952.84, + "end": 27955.82, + "probability": 0.9941 + }, + { + "start": 27955.82, + "end": 27959.22, + "probability": 0.9355 + }, + { + "start": 27959.28, + "end": 27961.6, + "probability": 0.9686 + }, + { + "start": 27961.6, + "end": 27964.54, + "probability": 0.9993 + }, + { + "start": 27964.62, + "end": 27966.94, + "probability": 0.9566 + }, + { + "start": 27967.26, + "end": 27967.28, + "probability": 0.5226 + }, + { + "start": 27967.4, + "end": 27967.96, + "probability": 0.7477 + }, + { + "start": 27968.06, + "end": 27971.56, + "probability": 0.9076 + }, + { + "start": 27972.14, + "end": 27973.54, + "probability": 0.9677 + }, + { + "start": 27974.01, + "end": 27977.86, + "probability": 0.9922 + }, + { + "start": 27977.98, + "end": 27979.26, + "probability": 0.965 + }, + { + "start": 27979.66, + "end": 27981.32, + "probability": 0.9868 + }, + { + "start": 27981.84, + "end": 27986.4, + "probability": 0.9788 + }, + { + "start": 27986.58, + "end": 27989.3, + "probability": 0.8302 + }, + { + "start": 27989.34, + "end": 27989.92, + "probability": 0.7362 + }, + { + "start": 27990.04, + "end": 27990.9, + "probability": 0.7822 + }, + { + "start": 27991.14, + "end": 27992.28, + "probability": 0.9778 + }, + { + "start": 27992.28, + "end": 27994.76, + "probability": 0.8643 + }, + { + "start": 27994.88, + "end": 27996.94, + "probability": 0.5242 + }, + { + "start": 27997.06, + "end": 27997.65, + "probability": 0.6105 + }, + { + "start": 27997.88, + "end": 27998.98, + "probability": 0.8135 + }, + { + "start": 27999.04, + "end": 27999.7, + "probability": 0.8186 + }, + { + "start": 28000.12, + "end": 28001.48, + "probability": 0.9245 + }, + { + "start": 28003.54, + "end": 28003.7, + "probability": 0.4749 + }, + { + "start": 28003.7, + "end": 28006.06, + "probability": 0.6878 + }, + { + "start": 28006.6, + "end": 28012.98, + "probability": 0.9556 + }, + { + "start": 28013.12, + "end": 28014.9, + "probability": 0.7916 + }, + { + "start": 28015.18, + "end": 28017.58, + "probability": 0.9246 + }, + { + "start": 28017.96, + "end": 28019.02, + "probability": 0.6796 + }, + { + "start": 28019.14, + "end": 28020.58, + "probability": 0.9937 + }, + { + "start": 28020.98, + "end": 28024.18, + "probability": 0.8497 + }, + { + "start": 28024.44, + "end": 28028.14, + "probability": 0.9702 + }, + { + "start": 28028.3, + "end": 28029.46, + "probability": 0.8599 + }, + { + "start": 28029.64, + "end": 28035.48, + "probability": 0.8457 + }, + { + "start": 28036.2, + "end": 28037.41, + "probability": 0.7986 + }, + { + "start": 28038.12, + "end": 28039.11, + "probability": 0.949 + }, + { + "start": 28039.74, + "end": 28041.16, + "probability": 0.703 + }, + { + "start": 28041.32, + "end": 28042.58, + "probability": 0.5471 + }, + { + "start": 28042.64, + "end": 28043.44, + "probability": 0.8671 + }, + { + "start": 28043.58, + "end": 28045.38, + "probability": 0.9841 + }, + { + "start": 28045.62, + "end": 28046.72, + "probability": 0.9785 + }, + { + "start": 28046.76, + "end": 28048.5, + "probability": 0.8937 + }, + { + "start": 28049.1, + "end": 28050.02, + "probability": 0.8535 + }, + { + "start": 28050.1, + "end": 28051.2, + "probability": 0.5958 + }, + { + "start": 28051.26, + "end": 28051.84, + "probability": 0.5717 + }, + { + "start": 28051.86, + "end": 28052.04, + "probability": 0.6603 + }, + { + "start": 28052.14, + "end": 28053.16, + "probability": 0.7778 + }, + { + "start": 28053.56, + "end": 28054.52, + "probability": 0.6642 + }, + { + "start": 28054.74, + "end": 28055.52, + "probability": 0.82 + }, + { + "start": 28055.8, + "end": 28058.04, + "probability": 0.9395 + }, + { + "start": 28058.42, + "end": 28058.94, + "probability": 0.9805 + }, + { + "start": 28059.64, + "end": 28063.28, + "probability": 0.9043 + }, + { + "start": 28064.5, + "end": 28069.74, + "probability": 0.9719 + }, + { + "start": 28070.46, + "end": 28073.16, + "probability": 0.6216 + }, + { + "start": 28073.24, + "end": 28074.39, + "probability": 0.5662 + }, + { + "start": 28074.88, + "end": 28075.6, + "probability": 0.8026 + }, + { + "start": 28075.76, + "end": 28076.36, + "probability": 0.7109 + }, + { + "start": 28076.4, + "end": 28078.28, + "probability": 0.9023 + }, + { + "start": 28078.84, + "end": 28080.45, + "probability": 0.9592 + }, + { + "start": 28081.44, + "end": 28082.68, + "probability": 0.6847 + }, + { + "start": 28082.88, + "end": 28087.86, + "probability": 0.8521 + }, + { + "start": 28087.96, + "end": 28089.92, + "probability": 0.958 + }, + { + "start": 28090.24, + "end": 28092.14, + "probability": 0.9915 + }, + { + "start": 28092.48, + "end": 28094.99, + "probability": 0.9873 + }, + { + "start": 28095.52, + "end": 28096.4, + "probability": 0.6666 + }, + { + "start": 28096.92, + "end": 28101.26, + "probability": 0.9863 + }, + { + "start": 28101.7, + "end": 28104.72, + "probability": 0.993 + }, + { + "start": 28104.88, + "end": 28106.2, + "probability": 0.6475 + }, + { + "start": 28106.68, + "end": 28108.22, + "probability": 0.9177 + }, + { + "start": 28108.26, + "end": 28109.04, + "probability": 0.9279 + }, + { + "start": 28109.06, + "end": 28110.38, + "probability": 0.5276 + }, + { + "start": 28110.92, + "end": 28112.82, + "probability": 0.8436 + }, + { + "start": 28113.18, + "end": 28115.89, + "probability": 0.7153 + }, + { + "start": 28116.54, + "end": 28117.9, + "probability": 0.9227 + }, + { + "start": 28118.06, + "end": 28119.64, + "probability": 0.6437 + }, + { + "start": 28119.7, + "end": 28120.85, + "probability": 0.9723 + }, + { + "start": 28121.14, + "end": 28121.57, + "probability": 0.9833 + }, + { + "start": 28122.0, + "end": 28124.24, + "probability": 0.9482 + }, + { + "start": 28124.68, + "end": 28126.5, + "probability": 0.8028 + }, + { + "start": 28127.06, + "end": 28128.52, + "probability": 0.8739 + }, + { + "start": 28128.54, + "end": 28130.76, + "probability": 0.7904 + }, + { + "start": 28130.96, + "end": 28132.64, + "probability": 0.7341 + }, + { + "start": 28132.68, + "end": 28133.06, + "probability": 0.3324 + }, + { + "start": 28133.12, + "end": 28133.58, + "probability": 0.8728 + }, + { + "start": 28133.66, + "end": 28135.62, + "probability": 0.9131 + }, + { + "start": 28135.9, + "end": 28137.47, + "probability": 0.5445 + }, + { + "start": 28138.92, + "end": 28141.66, + "probability": 0.6707 + }, + { + "start": 28148.04, + "end": 28148.74, + "probability": 0.7539 + }, + { + "start": 28148.9, + "end": 28149.98, + "probability": 0.9621 + }, + { + "start": 28150.12, + "end": 28150.88, + "probability": 0.9181 + }, + { + "start": 28151.0, + "end": 28151.92, + "probability": 0.7416 + }, + { + "start": 28151.96, + "end": 28154.66, + "probability": 0.8637 + }, + { + "start": 28155.08, + "end": 28158.92, + "probability": 0.8924 + }, + { + "start": 28159.1, + "end": 28159.24, + "probability": 0.3091 + }, + { + "start": 28159.24, + "end": 28161.07, + "probability": 0.7225 + }, + { + "start": 28162.54, + "end": 28164.37, + "probability": 0.9933 + }, + { + "start": 28165.92, + "end": 28172.56, + "probability": 0.981 + }, + { + "start": 28172.66, + "end": 28173.94, + "probability": 0.7183 + }, + { + "start": 28174.42, + "end": 28175.5, + "probability": 0.9648 + }, + { + "start": 28175.66, + "end": 28181.94, + "probability": 0.9813 + }, + { + "start": 28183.12, + "end": 28184.24, + "probability": 0.9307 + }, + { + "start": 28184.32, + "end": 28185.24, + "probability": 0.8138 + }, + { + "start": 28185.3, + "end": 28188.98, + "probability": 0.9976 + }, + { + "start": 28189.66, + "end": 28195.38, + "probability": 0.9324 + }, + { + "start": 28196.06, + "end": 28200.02, + "probability": 0.9946 + }, + { + "start": 28201.1, + "end": 28202.34, + "probability": 0.8376 + }, + { + "start": 28202.52, + "end": 28204.14, + "probability": 0.801 + }, + { + "start": 28204.26, + "end": 28205.5, + "probability": 0.9646 + }, + { + "start": 28205.84, + "end": 28205.84, + "probability": 0.2615 + }, + { + "start": 28206.42, + "end": 28207.02, + "probability": 0.3802 + }, + { + "start": 28207.12, + "end": 28207.82, + "probability": 0.659 + }, + { + "start": 28208.18, + "end": 28209.2, + "probability": 0.5424 + }, + { + "start": 28209.2, + "end": 28209.62, + "probability": 0.73 + }, + { + "start": 28209.74, + "end": 28212.14, + "probability": 0.9052 + }, + { + "start": 28212.68, + "end": 28213.93, + "probability": 0.6951 + }, + { + "start": 28214.48, + "end": 28216.28, + "probability": 0.5751 + }, + { + "start": 28217.48, + "end": 28217.6, + "probability": 0.1724 + }, + { + "start": 28217.6, + "end": 28218.08, + "probability": 0.3067 + }, + { + "start": 28218.16, + "end": 28221.6, + "probability": 0.9092 + }, + { + "start": 28221.7, + "end": 28224.78, + "probability": 0.5719 + }, + { + "start": 28225.08, + "end": 28225.78, + "probability": 0.4233 + }, + { + "start": 28225.92, + "end": 28226.68, + "probability": 0.5612 + }, + { + "start": 28227.12, + "end": 28227.64, + "probability": 0.0835 + }, + { + "start": 28227.94, + "end": 28229.64, + "probability": 0.0973 + }, + { + "start": 28231.54, + "end": 28233.66, + "probability": 0.6826 + }, + { + "start": 28234.58, + "end": 28235.9, + "probability": 0.1599 + }, + { + "start": 28235.9, + "end": 28235.9, + "probability": 0.6049 + }, + { + "start": 28235.9, + "end": 28237.4, + "probability": 0.7004 + }, + { + "start": 28238.26, + "end": 28240.1, + "probability": 0.8062 + }, + { + "start": 28241.12, + "end": 28244.02, + "probability": 0.9951 + }, + { + "start": 28245.82, + "end": 28247.92, + "probability": 0.5586 + }, + { + "start": 28248.22, + "end": 28249.68, + "probability": 0.5616 + }, + { + "start": 28249.8, + "end": 28250.56, + "probability": 0.5869 + }, + { + "start": 28250.64, + "end": 28251.32, + "probability": 0.4359 + }, + { + "start": 28251.58, + "end": 28253.6, + "probability": 0.9139 + }, + { + "start": 28253.74, + "end": 28254.6, + "probability": 0.8057 + }, + { + "start": 28255.38, + "end": 28257.27, + "probability": 0.9338 + }, + { + "start": 28258.12, + "end": 28262.44, + "probability": 0.9824 + }, + { + "start": 28264.32, + "end": 28268.36, + "probability": 0.9889 + }, + { + "start": 28268.86, + "end": 28269.42, + "probability": 0.6662 + }, + { + "start": 28269.62, + "end": 28274.7, + "probability": 0.9686 + }, + { + "start": 28275.06, + "end": 28276.62, + "probability": 0.9414 + }, + { + "start": 28277.12, + "end": 28279.58, + "probability": 0.8529 + }, + { + "start": 28279.68, + "end": 28280.78, + "probability": 0.7935 + }, + { + "start": 28280.8, + "end": 28282.04, + "probability": 0.8185 + }, + { + "start": 28282.66, + "end": 28284.42, + "probability": 0.6175 + }, + { + "start": 28285.32, + "end": 28286.4, + "probability": 0.7754 + }, + { + "start": 28287.66, + "end": 28289.04, + "probability": 0.9922 + }, + { + "start": 28291.46, + "end": 28292.38, + "probability": 0.921 + }, + { + "start": 28292.5, + "end": 28293.26, + "probability": 0.9781 + }, + { + "start": 28293.34, + "end": 28294.16, + "probability": 0.7705 + }, + { + "start": 28294.24, + "end": 28294.98, + "probability": 0.5382 + }, + { + "start": 28295.14, + "end": 28296.58, + "probability": 0.7636 + }, + { + "start": 28297.78, + "end": 28299.08, + "probability": 0.8231 + }, + { + "start": 28299.34, + "end": 28299.7, + "probability": 0.3446 + }, + { + "start": 28300.32, + "end": 28303.66, + "probability": 0.8098 + }, + { + "start": 28303.74, + "end": 28310.21, + "probability": 0.9292 + }, + { + "start": 28310.5, + "end": 28311.38, + "probability": 0.4465 + }, + { + "start": 28311.64, + "end": 28312.58, + "probability": 0.9041 + }, + { + "start": 28312.68, + "end": 28313.72, + "probability": 0.9033 + }, + { + "start": 28313.88, + "end": 28314.7, + "probability": 0.6085 + }, + { + "start": 28314.74, + "end": 28315.74, + "probability": 0.8294 + }, + { + "start": 28315.92, + "end": 28318.44, + "probability": 0.8087 + }, + { + "start": 28319.78, + "end": 28323.92, + "probability": 0.9978 + }, + { + "start": 28323.92, + "end": 28328.98, + "probability": 0.8275 + }, + { + "start": 28329.58, + "end": 28333.78, + "probability": 0.6295 + }, + { + "start": 28334.86, + "end": 28338.83, + "probability": 0.9149 + }, + { + "start": 28339.22, + "end": 28343.05, + "probability": 0.9868 + }, + { + "start": 28343.3, + "end": 28343.7, + "probability": 0.466 + }, + { + "start": 28343.72, + "end": 28344.4, + "probability": 0.5693 + }, + { + "start": 28344.8, + "end": 28346.78, + "probability": 0.9429 + }, + { + "start": 28347.1, + "end": 28352.82, + "probability": 0.9922 + }, + { + "start": 28352.96, + "end": 28360.34, + "probability": 0.9922 + }, + { + "start": 28360.74, + "end": 28360.76, + "probability": 0.2819 + }, + { + "start": 28360.88, + "end": 28361.56, + "probability": 0.7228 + }, + { + "start": 28361.88, + "end": 28367.7, + "probability": 0.9829 + }, + { + "start": 28367.98, + "end": 28368.74, + "probability": 0.4808 + }, + { + "start": 28369.24, + "end": 28370.28, + "probability": 0.6887 + }, + { + "start": 28370.36, + "end": 28372.77, + "probability": 0.937 + }, + { + "start": 28373.74, + "end": 28378.78, + "probability": 0.9839 + }, + { + "start": 28379.04, + "end": 28380.38, + "probability": 0.8872 + }, + { + "start": 28380.62, + "end": 28381.98, + "probability": 0.9375 + }, + { + "start": 28382.12, + "end": 28384.72, + "probability": 0.9985 + }, + { + "start": 28385.08, + "end": 28386.46, + "probability": 0.7427 + }, + { + "start": 28387.0, + "end": 28387.64, + "probability": 0.5322 + }, + { + "start": 28388.18, + "end": 28390.32, + "probability": 0.8467 + }, + { + "start": 28391.42, + "end": 28394.84, + "probability": 0.7783 + }, + { + "start": 28394.98, + "end": 28396.14, + "probability": 0.8526 + }, + { + "start": 28396.28, + "end": 28399.44, + "probability": 0.9025 + }, + { + "start": 28399.7, + "end": 28401.73, + "probability": 0.9941 + }, + { + "start": 28402.16, + "end": 28404.7, + "probability": 0.9141 + }, + { + "start": 28404.88, + "end": 28409.4, + "probability": 0.9857 + }, + { + "start": 28409.56, + "end": 28410.78, + "probability": 0.6478 + }, + { + "start": 28411.47, + "end": 28413.58, + "probability": 0.9382 + }, + { + "start": 28413.62, + "end": 28416.7, + "probability": 0.7448 + }, + { + "start": 28417.06, + "end": 28423.42, + "probability": 0.6785 + }, + { + "start": 28423.5, + "end": 28423.99, + "probability": 0.7451 + }, + { + "start": 28425.32, + "end": 28426.93, + "probability": 0.6885 + }, + { + "start": 28427.14, + "end": 28428.44, + "probability": 0.812 + }, + { + "start": 28429.78, + "end": 28431.7, + "probability": 0.191 + }, + { + "start": 28432.24, + "end": 28434.06, + "probability": 0.3369 + }, + { + "start": 28434.06, + "end": 28436.32, + "probability": 0.3206 + }, + { + "start": 28436.68, + "end": 28440.98, + "probability": 0.5179 + }, + { + "start": 28441.62, + "end": 28444.62, + "probability": 0.8443 + }, + { + "start": 28444.7, + "end": 28446.9, + "probability": 0.6196 + }, + { + "start": 28447.3, + "end": 28449.38, + "probability": 0.6123 + }, + { + "start": 28449.6, + "end": 28453.46, + "probability": 0.6035 + }, + { + "start": 28453.82, + "end": 28454.88, + "probability": 0.1741 + }, + { + "start": 28454.88, + "end": 28456.26, + "probability": 0.8472 + }, + { + "start": 28456.7, + "end": 28458.26, + "probability": 0.218 + }, + { + "start": 28458.46, + "end": 28459.0, + "probability": 0.1246 + }, + { + "start": 28459.12, + "end": 28459.68, + "probability": 0.8444 + }, + { + "start": 28459.78, + "end": 28460.14, + "probability": 0.4241 + }, + { + "start": 28460.34, + "end": 28461.12, + "probability": 0.9043 + }, + { + "start": 28461.44, + "end": 28466.2, + "probability": 0.7758 + }, + { + "start": 28466.2, + "end": 28470.72, + "probability": 0.9508 + }, + { + "start": 28471.28, + "end": 28473.54, + "probability": 0.915 + }, + { + "start": 28473.8, + "end": 28476.72, + "probability": 0.8434 + }, + { + "start": 28477.22, + "end": 28477.85, + "probability": 0.6755 + }, + { + "start": 28478.02, + "end": 28478.57, + "probability": 0.7495 + }, + { + "start": 28478.76, + "end": 28479.12, + "probability": 0.8206 + }, + { + "start": 28479.5, + "end": 28483.34, + "probability": 0.8444 + }, + { + "start": 28483.56, + "end": 28484.06, + "probability": 0.5588 + }, + { + "start": 28484.14, + "end": 28484.56, + "probability": 0.4884 + }, + { + "start": 28484.6, + "end": 28490.94, + "probability": 0.9761 + }, + { + "start": 28491.0, + "end": 28492.02, + "probability": 0.5897 + }, + { + "start": 28492.14, + "end": 28493.06, + "probability": 0.8756 + }, + { + "start": 28495.68, + "end": 28498.62, + "probability": 0.9961 + }, + { + "start": 28498.66, + "end": 28499.0, + "probability": 0.6008 + }, + { + "start": 28499.3, + "end": 28501.2, + "probability": 0.5256 + }, + { + "start": 28501.62, + "end": 28504.0, + "probability": 0.6912 + }, + { + "start": 28504.56, + "end": 28507.52, + "probability": 0.9238 + }, + { + "start": 28524.08, + "end": 28526.7, + "probability": 0.6115 + }, + { + "start": 28526.96, + "end": 28527.48, + "probability": 0.8323 + }, + { + "start": 28527.54, + "end": 28528.82, + "probability": 0.7462 + }, + { + "start": 28529.06, + "end": 28529.24, + "probability": 0.3972 + }, + { + "start": 28529.38, + "end": 28532.04, + "probability": 0.9906 + }, + { + "start": 28532.08, + "end": 28533.48, + "probability": 0.769 + }, + { + "start": 28533.78, + "end": 28536.3, + "probability": 0.8193 + }, + { + "start": 28537.04, + "end": 28540.76, + "probability": 0.9246 + }, + { + "start": 28541.04, + "end": 28544.5, + "probability": 0.979 + }, + { + "start": 28544.64, + "end": 28545.38, + "probability": 0.6998 + }, + { + "start": 28545.5, + "end": 28546.68, + "probability": 0.8745 + }, + { + "start": 28547.32, + "end": 28549.08, + "probability": 0.8987 + }, + { + "start": 28549.34, + "end": 28552.14, + "probability": 0.9773 + }, + { + "start": 28552.58, + "end": 28556.08, + "probability": 0.967 + }, + { + "start": 28556.24, + "end": 28556.9, + "probability": 0.5252 + }, + { + "start": 28556.9, + "end": 28558.06, + "probability": 0.922 + }, + { + "start": 28558.28, + "end": 28559.94, + "probability": 0.5192 + }, + { + "start": 28560.22, + "end": 28563.17, + "probability": 0.8606 + }, + { + "start": 28563.32, + "end": 28564.06, + "probability": 0.6237 + }, + { + "start": 28564.06, + "end": 28568.12, + "probability": 0.9325 + }, + { + "start": 28568.24, + "end": 28569.44, + "probability": 0.5575 + }, + { + "start": 28569.62, + "end": 28570.52, + "probability": 0.7861 + }, + { + "start": 28570.6, + "end": 28572.66, + "probability": 0.9635 + }, + { + "start": 28572.92, + "end": 28574.54, + "probability": 0.7737 + }, + { + "start": 28574.66, + "end": 28576.92, + "probability": 0.9946 + }, + { + "start": 28577.06, + "end": 28577.98, + "probability": 0.5759 + }, + { + "start": 28578.24, + "end": 28579.44, + "probability": 0.9912 + }, + { + "start": 28579.94, + "end": 28584.46, + "probability": 0.9812 + }, + { + "start": 28584.74, + "end": 28585.28, + "probability": 0.8733 + }, + { + "start": 28586.12, + "end": 28587.48, + "probability": 0.2644 + }, + { + "start": 28587.68, + "end": 28589.69, + "probability": 0.9089 + }, + { + "start": 28589.98, + "end": 28591.0, + "probability": 0.7314 + }, + { + "start": 28591.14, + "end": 28597.28, + "probability": 0.6581 + }, + { + "start": 28597.42, + "end": 28599.96, + "probability": 0.8498 + }, + { + "start": 28600.5, + "end": 28605.24, + "probability": 0.8885 + }, + { + "start": 28605.76, + "end": 28607.24, + "probability": 0.634 + }, + { + "start": 28607.8, + "end": 28609.26, + "probability": 0.6691 + }, + { + "start": 28609.42, + "end": 28610.62, + "probability": 0.875 + }, + { + "start": 28610.82, + "end": 28611.84, + "probability": 0.8425 + }, + { + "start": 28612.06, + "end": 28614.6, + "probability": 0.8811 + }, + { + "start": 28614.9, + "end": 28615.48, + "probability": 0.3086 + }, + { + "start": 28615.62, + "end": 28615.74, + "probability": 0.8098 + }, + { + "start": 28615.88, + "end": 28616.86, + "probability": 0.7394 + }, + { + "start": 28617.02, + "end": 28617.76, + "probability": 0.811 + }, + { + "start": 28617.84, + "end": 28624.76, + "probability": 0.9878 + }, + { + "start": 28624.88, + "end": 28626.7, + "probability": 0.9643 + }, + { + "start": 28626.8, + "end": 28627.32, + "probability": 0.8299 + }, + { + "start": 28627.44, + "end": 28628.56, + "probability": 0.6122 + }, + { + "start": 28629.1, + "end": 28632.37, + "probability": 0.9616 + }, + { + "start": 28632.64, + "end": 28637.32, + "probability": 0.87 + }, + { + "start": 28637.9, + "end": 28638.12, + "probability": 0.5697 + }, + { + "start": 28638.18, + "end": 28639.22, + "probability": 0.7203 + }, + { + "start": 28639.48, + "end": 28642.38, + "probability": 0.6635 + }, + { + "start": 28642.44, + "end": 28646.96, + "probability": 0.8247 + }, + { + "start": 28647.22, + "end": 28650.48, + "probability": 0.9871 + }, + { + "start": 28650.64, + "end": 28653.68, + "probability": 0.7025 + }, + { + "start": 28653.98, + "end": 28655.68, + "probability": 0.6625 + }, + { + "start": 28656.08, + "end": 28658.2, + "probability": 0.9313 + }, + { + "start": 28658.42, + "end": 28659.48, + "probability": 0.6933 + }, + { + "start": 28659.78, + "end": 28662.08, + "probability": 0.6518 + }, + { + "start": 28662.26, + "end": 28664.6, + "probability": 0.7748 + }, + { + "start": 28664.84, + "end": 28667.08, + "probability": 0.4978 + }, + { + "start": 28667.16, + "end": 28667.52, + "probability": 0.7708 + }, + { + "start": 28667.66, + "end": 28668.22, + "probability": 0.4579 + }, + { + "start": 28668.84, + "end": 28670.56, + "probability": 0.5097 + }, + { + "start": 28671.0, + "end": 28672.52, + "probability": 0.8892 + }, + { + "start": 28672.76, + "end": 28676.42, + "probability": 0.8007 + }, + { + "start": 28676.76, + "end": 28679.54, + "probability": 0.7433 + }, + { + "start": 28682.48, + "end": 28684.2, + "probability": 0.7292 + }, + { + "start": 28685.16, + "end": 28687.12, + "probability": 0.9626 + }, + { + "start": 28687.42, + "end": 28692.56, + "probability": 0.9076 + }, + { + "start": 28692.74, + "end": 28693.38, + "probability": 0.8829 + }, + { + "start": 28693.58, + "end": 28694.38, + "probability": 0.9653 + }, + { + "start": 28694.4, + "end": 28696.74, + "probability": 0.7786 + }, + { + "start": 28696.92, + "end": 28699.94, + "probability": 0.9829 + }, + { + "start": 28700.32, + "end": 28703.42, + "probability": 0.9066 + }, + { + "start": 28703.78, + "end": 28704.82, + "probability": 0.7861 + }, + { + "start": 28705.44, + "end": 28706.66, + "probability": 0.8785 + }, + { + "start": 28707.38, + "end": 28709.24, + "probability": 0.9314 + }, + { + "start": 28709.7, + "end": 28713.9, + "probability": 0.9349 + }, + { + "start": 28714.44, + "end": 28716.6, + "probability": 0.0868 + }, + { + "start": 28716.6, + "end": 28718.32, + "probability": 0.4824 + }, + { + "start": 28718.38, + "end": 28720.53, + "probability": 0.9312 + }, + { + "start": 28721.18, + "end": 28724.3, + "probability": 0.9403 + }, + { + "start": 28738.0, + "end": 28738.24, + "probability": 0.5396 + }, + { + "start": 28738.82, + "end": 28741.32, + "probability": 0.7891 + }, + { + "start": 28745.4, + "end": 28748.36, + "probability": 0.9968 + }, + { + "start": 28748.36, + "end": 28751.24, + "probability": 0.9654 + }, + { + "start": 28752.8, + "end": 28755.0, + "probability": 0.8975 + }, + { + "start": 28756.2, + "end": 28758.26, + "probability": 0.9829 + }, + { + "start": 28759.54, + "end": 28766.14, + "probability": 0.9917 + }, + { + "start": 28766.8, + "end": 28767.86, + "probability": 0.7046 + }, + { + "start": 28768.84, + "end": 28771.76, + "probability": 0.8712 + }, + { + "start": 28772.38, + "end": 28773.72, + "probability": 0.6445 + }, + { + "start": 28774.72, + "end": 28781.78, + "probability": 0.9365 + }, + { + "start": 28782.2, + "end": 28782.56, + "probability": 0.9425 + }, + { + "start": 28783.6, + "end": 28785.2, + "probability": 0.8284 + }, + { + "start": 28789.54, + "end": 28792.6, + "probability": 0.9965 + }, + { + "start": 28794.28, + "end": 28796.24, + "probability": 0.8961 + }, + { + "start": 28797.96, + "end": 28801.18, + "probability": 0.9371 + }, + { + "start": 28802.08, + "end": 28805.62, + "probability": 0.8841 + }, + { + "start": 28806.42, + "end": 28807.38, + "probability": 0.7625 + }, + { + "start": 28809.66, + "end": 28810.6, + "probability": 0.3968 + }, + { + "start": 28810.84, + "end": 28811.24, + "probability": 0.1293 + }, + { + "start": 28811.24, + "end": 28812.64, + "probability": 0.8527 + }, + { + "start": 28813.68, + "end": 28814.12, + "probability": 0.3896 + }, + { + "start": 28814.22, + "end": 28815.02, + "probability": 0.7398 + }, + { + "start": 28815.1, + "end": 28815.68, + "probability": 0.7892 + }, + { + "start": 28815.72, + "end": 28818.86, + "probability": 0.8746 + }, + { + "start": 28820.28, + "end": 28823.0, + "probability": 0.8372 + }, + { + "start": 28823.84, + "end": 28826.86, + "probability": 0.9521 + }, + { + "start": 28827.48, + "end": 28832.88, + "probability": 0.7461 + }, + { + "start": 28833.42, + "end": 28841.16, + "probability": 0.9862 + }, + { + "start": 28841.24, + "end": 28845.0, + "probability": 0.964 + }, + { + "start": 28845.18, + "end": 28852.5, + "probability": 0.9784 + }, + { + "start": 28852.7, + "end": 28853.4, + "probability": 0.4874 + }, + { + "start": 28853.72, + "end": 28854.6, + "probability": 0.9053 + }, + { + "start": 28855.48, + "end": 28861.06, + "probability": 0.9478 + }, + { + "start": 28861.06, + "end": 28863.5, + "probability": 0.6208 + }, + { + "start": 28865.72, + "end": 28866.92, + "probability": 0.4194 + }, + { + "start": 28868.2, + "end": 28871.72, + "probability": 0.9146 + }, + { + "start": 28871.74, + "end": 28873.08, + "probability": 0.9976 + }, + { + "start": 28875.0, + "end": 28876.98, + "probability": 0.9992 + }, + { + "start": 28878.28, + "end": 28880.68, + "probability": 0.9884 + }, + { + "start": 28882.44, + "end": 28887.4, + "probability": 0.8691 + }, + { + "start": 28888.86, + "end": 28890.72, + "probability": 0.9368 + }, + { + "start": 28890.86, + "end": 28896.26, + "probability": 0.9917 + }, + { + "start": 28896.74, + "end": 28900.96, + "probability": 0.9878 + }, + { + "start": 28903.2, + "end": 28904.78, + "probability": 0.5037 + }, + { + "start": 28904.88, + "end": 28910.58, + "probability": 0.9634 + }, + { + "start": 28910.9, + "end": 28917.5, + "probability": 0.9456 + }, + { + "start": 28918.12, + "end": 28922.08, + "probability": 0.7599 + }, + { + "start": 28923.68, + "end": 28927.96, + "probability": 0.9575 + }, + { + "start": 28927.96, + "end": 28933.56, + "probability": 0.7429 + }, + { + "start": 28934.8, + "end": 28936.26, + "probability": 0.9166 + }, + { + "start": 28936.84, + "end": 28938.16, + "probability": 0.9777 + }, + { + "start": 28939.3, + "end": 28946.36, + "probability": 0.9878 + }, + { + "start": 28947.2, + "end": 28948.62, + "probability": 0.8435 + }, + { + "start": 28949.98, + "end": 28950.56, + "probability": 0.3789 + }, + { + "start": 28951.08, + "end": 28953.88, + "probability": 0.7589 + }, + { + "start": 28954.18, + "end": 28955.96, + "probability": 0.9966 + }, + { + "start": 28956.14, + "end": 28961.76, + "probability": 0.9918 + }, + { + "start": 28961.8, + "end": 28964.16, + "probability": 0.8454 + }, + { + "start": 28964.24, + "end": 28964.6, + "probability": 0.4061 + }, + { + "start": 28964.7, + "end": 28966.3, + "probability": 0.9825 + }, + { + "start": 28966.64, + "end": 28967.78, + "probability": 0.8719 + }, + { + "start": 28967.82, + "end": 28969.82, + "probability": 0.9245 + }, + { + "start": 28969.88, + "end": 28970.88, + "probability": 0.8397 + }, + { + "start": 28971.02, + "end": 28973.98, + "probability": 0.9718 + }, + { + "start": 28974.22, + "end": 28974.9, + "probability": 0.5681 + }, + { + "start": 28975.44, + "end": 28977.22, + "probability": 0.8779 + }, + { + "start": 28977.6, + "end": 28980.14, + "probability": 0.9845 + }, + { + "start": 28980.34, + "end": 28982.98, + "probability": 0.9412 + }, + { + "start": 28983.1, + "end": 28983.52, + "probability": 0.7502 + }, + { + "start": 28984.56, + "end": 28986.71, + "probability": 0.9268 + }, + { + "start": 28987.4, + "end": 28991.24, + "probability": 0.8281 + }, + { + "start": 28992.8, + "end": 28996.22, + "probability": 0.754 + }, + { + "start": 28997.94, + "end": 29002.88, + "probability": 0.9714 + }, + { + "start": 29002.92, + "end": 29003.8, + "probability": 0.8217 + }, + { + "start": 29008.46, + "end": 29009.42, + "probability": 0.9055 + }, + { + "start": 29011.48, + "end": 29015.2, + "probability": 0.8749 + }, + { + "start": 29015.34, + "end": 29016.26, + "probability": 0.6861 + }, + { + "start": 29016.98, + "end": 29017.88, + "probability": 0.5244 + }, + { + "start": 29018.92, + "end": 29021.89, + "probability": 0.7391 + }, + { + "start": 29024.64, + "end": 29028.04, + "probability": 0.9066 + }, + { + "start": 29028.84, + "end": 29030.38, + "probability": 0.6788 + }, + { + "start": 29030.56, + "end": 29035.93, + "probability": 0.9954 + }, + { + "start": 29036.42, + "end": 29037.98, + "probability": 0.9951 + }, + { + "start": 29038.08, + "end": 29038.66, + "probability": 0.5189 + }, + { + "start": 29038.8, + "end": 29043.9, + "probability": 0.9666 + }, + { + "start": 29044.82, + "end": 29048.34, + "probability": 0.8414 + }, + { + "start": 29048.94, + "end": 29050.7, + "probability": 0.922 + }, + { + "start": 29051.58, + "end": 29054.86, + "probability": 0.9843 + }, + { + "start": 29055.54, + "end": 29058.28, + "probability": 0.9232 + }, + { + "start": 29059.64, + "end": 29064.3, + "probability": 0.959 + }, + { + "start": 29065.0, + "end": 29066.86, + "probability": 0.7169 + }, + { + "start": 29069.02, + "end": 29071.88, + "probability": 0.9231 + }, + { + "start": 29073.04, + "end": 29074.66, + "probability": 0.4536 + }, + { + "start": 29075.48, + "end": 29076.18, + "probability": 0.8428 + }, + { + "start": 29076.24, + "end": 29076.44, + "probability": 0.6138 + }, + { + "start": 29076.54, + "end": 29079.28, + "probability": 0.8095 + }, + { + "start": 29080.62, + "end": 29081.84, + "probability": 0.5078 + }, + { + "start": 29082.68, + "end": 29084.34, + "probability": 0.8979 + }, + { + "start": 29084.38, + "end": 29085.88, + "probability": 0.9802 + }, + { + "start": 29086.06, + "end": 29089.34, + "probability": 0.8441 + }, + { + "start": 29089.66, + "end": 29095.76, + "probability": 0.9861 + }, + { + "start": 29095.8, + "end": 29096.34, + "probability": 0.9849 + }, + { + "start": 29096.62, + "end": 29097.88, + "probability": 0.9814 + }, + { + "start": 29098.0, + "end": 29098.44, + "probability": 0.5137 + }, + { + "start": 29098.52, + "end": 29099.18, + "probability": 0.8877 + }, + { + "start": 29100.2, + "end": 29103.02, + "probability": 0.9839 + }, + { + "start": 29103.98, + "end": 29104.94, + "probability": 0.9951 + }, + { + "start": 29105.16, + "end": 29107.16, + "probability": 0.9585 + }, + { + "start": 29107.64, + "end": 29110.15, + "probability": 0.9694 + }, + { + "start": 29110.28, + "end": 29110.48, + "probability": 0.2815 + }, + { + "start": 29110.58, + "end": 29110.93, + "probability": 0.6473 + }, + { + "start": 29111.16, + "end": 29113.04, + "probability": 0.936 + }, + { + "start": 29114.6, + "end": 29118.1, + "probability": 0.9227 + }, + { + "start": 29119.2, + "end": 29120.08, + "probability": 0.3703 + }, + { + "start": 29120.2, + "end": 29124.68, + "probability": 0.9908 + }, + { + "start": 29124.92, + "end": 29125.64, + "probability": 0.7327 + }, + { + "start": 29125.92, + "end": 29127.94, + "probability": 0.9919 + }, + { + "start": 29129.2, + "end": 29130.28, + "probability": 0.7463 + }, + { + "start": 29132.05, + "end": 29132.89, + "probability": 0.5085 + }, + { + "start": 29133.88, + "end": 29134.58, + "probability": 0.8574 + }, + { + "start": 29134.64, + "end": 29136.12, + "probability": 0.734 + }, + { + "start": 29136.32, + "end": 29138.94, + "probability": 0.9976 + }, + { + "start": 29140.2, + "end": 29142.36, + "probability": 0.9253 + }, + { + "start": 29142.5, + "end": 29143.2, + "probability": 0.7374 + }, + { + "start": 29143.34, + "end": 29147.42, + "probability": 0.8438 + }, + { + "start": 29148.26, + "end": 29152.56, + "probability": 0.9839 + }, + { + "start": 29153.64, + "end": 29156.52, + "probability": 0.9414 + }, + { + "start": 29157.54, + "end": 29164.0, + "probability": 0.9097 + }, + { + "start": 29164.04, + "end": 29165.84, + "probability": 0.6078 + }, + { + "start": 29166.54, + "end": 29170.44, + "probability": 0.9489 + }, + { + "start": 29171.7, + "end": 29175.56, + "probability": 0.8864 + }, + { + "start": 29176.28, + "end": 29180.3, + "probability": 0.8434 + }, + { + "start": 29181.76, + "end": 29185.36, + "probability": 0.9941 + }, + { + "start": 29186.2, + "end": 29187.96, + "probability": 0.7971 + }, + { + "start": 29188.54, + "end": 29190.42, + "probability": 0.8768 + }, + { + "start": 29191.22, + "end": 29192.26, + "probability": 0.7764 + }, + { + "start": 29192.38, + "end": 29193.46, + "probability": 0.9355 + }, + { + "start": 29194.16, + "end": 29196.68, + "probability": 0.9653 + }, + { + "start": 29197.54, + "end": 29200.96, + "probability": 0.9736 + }, + { + "start": 29201.88, + "end": 29208.3, + "probability": 0.9429 + }, + { + "start": 29209.16, + "end": 29211.6, + "probability": 0.874 + }, + { + "start": 29211.92, + "end": 29212.42, + "probability": 0.5459 + }, + { + "start": 29212.5, + "end": 29213.42, + "probability": 0.9961 + }, + { + "start": 29213.84, + "end": 29216.62, + "probability": 0.9937 + }, + { + "start": 29216.86, + "end": 29220.08, + "probability": 0.7921 + }, + { + "start": 29220.82, + "end": 29221.92, + "probability": 0.6729 + }, + { + "start": 29222.1, + "end": 29225.18, + "probability": 0.9886 + }, + { + "start": 29226.22, + "end": 29229.38, + "probability": 0.9907 + }, + { + "start": 29230.62, + "end": 29234.86, + "probability": 0.9487 + }, + { + "start": 29234.96, + "end": 29235.8, + "probability": 0.7869 + }, + { + "start": 29236.44, + "end": 29239.66, + "probability": 0.9237 + }, + { + "start": 29240.5, + "end": 29241.8, + "probability": 0.9572 + }, + { + "start": 29242.32, + "end": 29244.93, + "probability": 0.7072 + }, + { + "start": 29246.86, + "end": 29247.4, + "probability": 0.164 + }, + { + "start": 29247.4, + "end": 29247.98, + "probability": 0.3833 + }, + { + "start": 29248.22, + "end": 29249.24, + "probability": 0.6143 + }, + { + "start": 29249.66, + "end": 29251.66, + "probability": 0.3185 + }, + { + "start": 29252.64, + "end": 29253.66, + "probability": 0.3781 + }, + { + "start": 29254.36, + "end": 29256.26, + "probability": 0.2722 + }, + { + "start": 29256.56, + "end": 29257.54, + "probability": 0.3445 + }, + { + "start": 29257.74, + "end": 29259.06, + "probability": 0.0776 + }, + { + "start": 29259.06, + "end": 29259.94, + "probability": 0.2224 + }, + { + "start": 29260.06, + "end": 29260.16, + "probability": 0.2727 + }, + { + "start": 29260.88, + "end": 29263.0, + "probability": 0.2354 + }, + { + "start": 29263.5, + "end": 29264.06, + "probability": 0.2592 + }, + { + "start": 29264.08, + "end": 29267.1, + "probability": 0.7317 + }, + { + "start": 29267.24, + "end": 29268.18, + "probability": 0.2911 + }, + { + "start": 29268.2, + "end": 29268.94, + "probability": 0.3217 + }, + { + "start": 29269.42, + "end": 29270.64, + "probability": 0.9845 + }, + { + "start": 29271.4, + "end": 29274.58, + "probability": 0.9885 + }, + { + "start": 29274.66, + "end": 29275.03, + "probability": 0.9785 + }, + { + "start": 29275.92, + "end": 29278.54, + "probability": 0.9966 + }, + { + "start": 29278.58, + "end": 29279.15, + "probability": 0.9021 + }, + { + "start": 29279.24, + "end": 29282.96, + "probability": 0.9238 + }, + { + "start": 29283.16, + "end": 29285.74, + "probability": 0.7633 + }, + { + "start": 29285.74, + "end": 29286.06, + "probability": 0.4969 + }, + { + "start": 29286.24, + "end": 29287.56, + "probability": 0.683 + }, + { + "start": 29287.64, + "end": 29289.86, + "probability": 0.7522 + }, + { + "start": 29290.48, + "end": 29294.82, + "probability": 0.9885 + }, + { + "start": 29294.94, + "end": 29296.3, + "probability": 0.7993 + }, + { + "start": 29296.5, + "end": 29297.52, + "probability": 0.4614 + }, + { + "start": 29298.44, + "end": 29301.24, + "probability": 0.981 + }, + { + "start": 29301.48, + "end": 29303.68, + "probability": 0.9399 + }, + { + "start": 29303.9, + "end": 29305.92, + "probability": 0.8685 + }, + { + "start": 29306.66, + "end": 29310.42, + "probability": 0.9982 + }, + { + "start": 29310.42, + "end": 29314.76, + "probability": 0.9958 + }, + { + "start": 29315.36, + "end": 29317.84, + "probability": 0.965 + }, + { + "start": 29318.32, + "end": 29320.36, + "probability": 0.9903 + }, + { + "start": 29321.1, + "end": 29323.32, + "probability": 0.996 + }, + { + "start": 29323.84, + "end": 29325.29, + "probability": 0.9969 + }, + { + "start": 29325.86, + "end": 29328.42, + "probability": 0.9075 + }, + { + "start": 29328.82, + "end": 29330.58, + "probability": 0.8466 + }, + { + "start": 29330.68, + "end": 29332.64, + "probability": 0.9968 + }, + { + "start": 29333.04, + "end": 29337.36, + "probability": 0.9894 + }, + { + "start": 29337.76, + "end": 29340.66, + "probability": 0.9072 + }, + { + "start": 29340.78, + "end": 29343.28, + "probability": 0.6722 + }, + { + "start": 29343.94, + "end": 29346.94, + "probability": 0.7954 + }, + { + "start": 29347.58, + "end": 29350.72, + "probability": 0.9893 + }, + { + "start": 29351.38, + "end": 29354.66, + "probability": 0.9223 + }, + { + "start": 29354.66, + "end": 29355.2, + "probability": 0.777 + }, + { + "start": 29355.7, + "end": 29355.82, + "probability": 0.4914 + }, + { + "start": 29355.86, + "end": 29359.76, + "probability": 0.9754 + }, + { + "start": 29359.86, + "end": 29361.32, + "probability": 0.5504 + }, + { + "start": 29361.6, + "end": 29362.96, + "probability": 0.7993 + }, + { + "start": 29363.42, + "end": 29365.06, + "probability": 0.7565 + }, + { + "start": 29365.1, + "end": 29367.46, + "probability": 0.983 + }, + { + "start": 29367.52, + "end": 29368.04, + "probability": 0.808 + }, + { + "start": 29368.62, + "end": 29369.26, + "probability": 0.6946 + }, + { + "start": 29369.46, + "end": 29370.84, + "probability": 0.7065 + }, + { + "start": 29371.1, + "end": 29375.1, + "probability": 0.9664 + }, + { + "start": 29378.12, + "end": 29380.72, + "probability": 0.7324 + }, + { + "start": 29381.94, + "end": 29382.18, + "probability": 0.9514 + }, + { + "start": 29387.72, + "end": 29388.74, + "probability": 0.5471 + }, + { + "start": 29390.72, + "end": 29393.6, + "probability": 0.9971 + }, + { + "start": 29395.14, + "end": 29399.2, + "probability": 0.992 + }, + { + "start": 29400.98, + "end": 29403.44, + "probability": 0.976 + }, + { + "start": 29406.16, + "end": 29408.26, + "probability": 0.9849 + }, + { + "start": 29410.7, + "end": 29411.3, + "probability": 0.9541 + }, + { + "start": 29415.9, + "end": 29419.5, + "probability": 0.9934 + }, + { + "start": 29419.6, + "end": 29420.84, + "probability": 0.9961 + }, + { + "start": 29421.46, + "end": 29425.9, + "probability": 0.9247 + }, + { + "start": 29426.06, + "end": 29431.18, + "probability": 0.9344 + }, + { + "start": 29432.78, + "end": 29435.08, + "probability": 0.9985 + }, + { + "start": 29436.04, + "end": 29441.62, + "probability": 0.9958 + }, + { + "start": 29442.44, + "end": 29449.52, + "probability": 0.8878 + }, + { + "start": 29449.7, + "end": 29450.22, + "probability": 0.2277 + }, + { + "start": 29451.62, + "end": 29452.58, + "probability": 0.9868 + }, + { + "start": 29455.06, + "end": 29461.2, + "probability": 0.9747 + }, + { + "start": 29461.32, + "end": 29462.74, + "probability": 0.9185 + }, + { + "start": 29464.04, + "end": 29466.42, + "probability": 0.9873 + }, + { + "start": 29467.4, + "end": 29471.54, + "probability": 0.9941 + }, + { + "start": 29472.5, + "end": 29476.12, + "probability": 0.9967 + }, + { + "start": 29476.2, + "end": 29476.88, + "probability": 0.5488 + }, + { + "start": 29477.1, + "end": 29477.45, + "probability": 0.8818 + }, + { + "start": 29478.72, + "end": 29482.04, + "probability": 0.9672 + }, + { + "start": 29482.08, + "end": 29484.86, + "probability": 0.94 + }, + { + "start": 29484.94, + "end": 29486.9, + "probability": 0.9625 + }, + { + "start": 29487.64, + "end": 29489.14, + "probability": 0.9907 + }, + { + "start": 29490.1, + "end": 29491.82, + "probability": 0.9531 + }, + { + "start": 29492.0, + "end": 29493.02, + "probability": 0.9873 + }, + { + "start": 29493.8, + "end": 29497.12, + "probability": 0.9342 + }, + { + "start": 29497.84, + "end": 29499.54, + "probability": 0.7748 + }, + { + "start": 29500.0, + "end": 29503.66, + "probability": 0.958 + }, + { + "start": 29504.58, + "end": 29507.96, + "probability": 0.9268 + }, + { + "start": 29508.06, + "end": 29509.08, + "probability": 0.2814 + }, + { + "start": 29509.9, + "end": 29510.66, + "probability": 0.5001 + }, + { + "start": 29511.18, + "end": 29512.98, + "probability": 0.8933 + }, + { + "start": 29513.8, + "end": 29515.04, + "probability": 0.9511 + }, + { + "start": 29515.08, + "end": 29517.84, + "probability": 0.9956 + }, + { + "start": 29518.54, + "end": 29521.68, + "probability": 0.6694 + }, + { + "start": 29522.1, + "end": 29524.88, + "probability": 0.9731 + }, + { + "start": 29525.42, + "end": 29526.76, + "probability": 0.9873 + }, + { + "start": 29526.86, + "end": 29527.08, + "probability": 0.4962 + }, + { + "start": 29527.12, + "end": 29527.76, + "probability": 0.4817 + }, + { + "start": 29527.86, + "end": 29531.92, + "probability": 0.9963 + }, + { + "start": 29532.2, + "end": 29534.18, + "probability": 0.9551 + }, + { + "start": 29535.54, + "end": 29539.68, + "probability": 0.9749 + }, + { + "start": 29539.88, + "end": 29544.49, + "probability": 0.9481 + }, + { + "start": 29545.0, + "end": 29547.12, + "probability": 0.77 + }, + { + "start": 29547.38, + "end": 29547.94, + "probability": 0.6256 + }, + { + "start": 29549.08, + "end": 29552.36, + "probability": 0.9858 + }, + { + "start": 29552.94, + "end": 29556.02, + "probability": 0.9935 + }, + { + "start": 29556.02, + "end": 29558.92, + "probability": 0.9757 + }, + { + "start": 29559.24, + "end": 29560.04, + "probability": 0.665 + }, + { + "start": 29561.04, + "end": 29564.58, + "probability": 0.975 + }, + { + "start": 29564.92, + "end": 29568.04, + "probability": 0.8982 + }, + { + "start": 29568.16, + "end": 29568.84, + "probability": 0.8829 + }, + { + "start": 29569.3, + "end": 29570.7, + "probability": 0.753 + }, + { + "start": 29571.06, + "end": 29575.33, + "probability": 0.7949 + }, + { + "start": 29575.6, + "end": 29576.16, + "probability": 0.062 + }, + { + "start": 29576.16, + "end": 29576.16, + "probability": 0.1058 + }, + { + "start": 29576.16, + "end": 29578.5, + "probability": 0.7438 + }, + { + "start": 29578.88, + "end": 29579.58, + "probability": 0.7813 + }, + { + "start": 29579.72, + "end": 29580.75, + "probability": 0.9189 + }, + { + "start": 29581.0, + "end": 29581.44, + "probability": 0.4001 + }, + { + "start": 29581.6, + "end": 29582.12, + "probability": 0.7643 + }, + { + "start": 29582.3, + "end": 29583.07, + "probability": 0.7905 + }, + { + "start": 29584.14, + "end": 29587.8, + "probability": 0.8669 + }, + { + "start": 29588.04, + "end": 29589.2, + "probability": 0.9669 + }, + { + "start": 29589.52, + "end": 29591.5, + "probability": 0.8879 + }, + { + "start": 29591.74, + "end": 29596.0, + "probability": 0.9489 + }, + { + "start": 29596.18, + "end": 29598.2, + "probability": 0.9121 + }, + { + "start": 29598.34, + "end": 29602.86, + "probability": 0.8467 + }, + { + "start": 29603.0, + "end": 29603.92, + "probability": 0.8922 + }, + { + "start": 29604.34, + "end": 29605.32, + "probability": 0.937 + }, + { + "start": 29605.48, + "end": 29606.26, + "probability": 0.6836 + }, + { + "start": 29606.48, + "end": 29607.46, + "probability": 0.9948 + }, + { + "start": 29607.72, + "end": 29608.94, + "probability": 0.4648 + }, + { + "start": 29609.0, + "end": 29611.5, + "probability": 0.8376 + }, + { + "start": 29611.62, + "end": 29611.96, + "probability": 0.4011 + }, + { + "start": 29612.0, + "end": 29612.96, + "probability": 0.6129 + }, + { + "start": 29613.22, + "end": 29613.6, + "probability": 0.5905 + }, + { + "start": 29613.64, + "end": 29613.82, + "probability": 0.2234 + }, + { + "start": 29613.82, + "end": 29614.2, + "probability": 0.6668 + }, + { + "start": 29614.3, + "end": 29615.14, + "probability": 0.7146 + }, + { + "start": 29615.34, + "end": 29616.42, + "probability": 0.9042 + }, + { + "start": 29616.5, + "end": 29617.56, + "probability": 0.7689 + }, + { + "start": 29617.7, + "end": 29618.3, + "probability": 0.5129 + }, + { + "start": 29618.3, + "end": 29620.88, + "probability": 0.9945 + }, + { + "start": 29621.28, + "end": 29622.92, + "probability": 0.7319 + }, + { + "start": 29622.92, + "end": 29623.46, + "probability": 0.6866 + }, + { + "start": 29623.9, + "end": 29624.92, + "probability": 0.9194 + }, + { + "start": 29624.96, + "end": 29625.47, + "probability": 0.9141 + }, + { + "start": 29626.04, + "end": 29630.2, + "probability": 0.9923 + }, + { + "start": 29630.28, + "end": 29631.06, + "probability": 0.8033 + }, + { + "start": 29631.2, + "end": 29632.52, + "probability": 0.6879 + }, + { + "start": 29632.72, + "end": 29635.06, + "probability": 0.9751 + }, + { + "start": 29635.36, + "end": 29639.28, + "probability": 0.8542 + }, + { + "start": 29639.86, + "end": 29640.3, + "probability": 0.4799 + }, + { + "start": 29640.38, + "end": 29641.36, + "probability": 0.905 + }, + { + "start": 29641.86, + "end": 29642.36, + "probability": 0.7578 + }, + { + "start": 29642.66, + "end": 29643.74, + "probability": 0.9204 + }, + { + "start": 29644.02, + "end": 29644.9, + "probability": 0.7877 + }, + { + "start": 29645.02, + "end": 29648.88, + "probability": 0.9878 + }, + { + "start": 29648.88, + "end": 29651.3, + "probability": 0.8876 + }, + { + "start": 29651.54, + "end": 29654.8, + "probability": 0.8269 + }, + { + "start": 29655.4, + "end": 29658.12, + "probability": 0.9141 + }, + { + "start": 29658.28, + "end": 29659.4, + "probability": 0.3807 + }, + { + "start": 29659.98, + "end": 29660.82, + "probability": 0.3753 + }, + { + "start": 29660.96, + "end": 29661.48, + "probability": 0.3575 + }, + { + "start": 29662.02, + "end": 29664.92, + "probability": 0.3338 + }, + { + "start": 29665.08, + "end": 29666.04, + "probability": 0.3595 + }, + { + "start": 29669.26, + "end": 29669.64, + "probability": 0.4588 + }, + { + "start": 29669.64, + "end": 29670.8, + "probability": 0.5482 + }, + { + "start": 29671.84, + "end": 29674.34, + "probability": 0.4866 + }, + { + "start": 29674.68, + "end": 29676.88, + "probability": 0.9889 + }, + { + "start": 29677.4, + "end": 29678.7, + "probability": 0.6964 + }, + { + "start": 29679.24, + "end": 29681.1, + "probability": 0.9087 + }, + { + "start": 29681.18, + "end": 29681.88, + "probability": 0.7651 + }, + { + "start": 29682.0, + "end": 29682.8, + "probability": 0.7275 + }, + { + "start": 29683.04, + "end": 29684.64, + "probability": 0.9352 + }, + { + "start": 29684.82, + "end": 29686.0, + "probability": 0.644 + }, + { + "start": 29686.1, + "end": 29686.56, + "probability": 0.3435 + }, + { + "start": 29686.64, + "end": 29687.42, + "probability": 0.5663 + }, + { + "start": 29687.42, + "end": 29689.53, + "probability": 0.701 + }, + { + "start": 29689.6, + "end": 29690.06, + "probability": 0.5684 + }, + { + "start": 29691.02, + "end": 29691.46, + "probability": 0.7621 + }, + { + "start": 29692.32, + "end": 29698.5, + "probability": 0.0346 + }, + { + "start": 29700.64, + "end": 29701.3, + "probability": 0.1841 + }, + { + "start": 29701.8, + "end": 29702.14, + "probability": 0.0295 + }, + { + "start": 29702.44, + "end": 29702.88, + "probability": 0.076 + }, + { + "start": 29704.5, + "end": 29705.96, + "probability": 0.6187 + }, + { + "start": 29706.26, + "end": 29710.22, + "probability": 0.8625 + }, + { + "start": 29710.72, + "end": 29717.5, + "probability": 0.9989 + }, + { + "start": 29718.5, + "end": 29722.2, + "probability": 0.9474 + }, + { + "start": 29722.2, + "end": 29726.62, + "probability": 0.998 + }, + { + "start": 29726.74, + "end": 29729.54, + "probability": 0.9971 + }, + { + "start": 29730.3, + "end": 29733.66, + "probability": 0.9953 + }, + { + "start": 29734.46, + "end": 29737.4, + "probability": 0.9897 + }, + { + "start": 29737.96, + "end": 29740.74, + "probability": 0.8832 + }, + { + "start": 29740.82, + "end": 29742.8, + "probability": 0.897 + }, + { + "start": 29743.3, + "end": 29744.96, + "probability": 0.9656 + }, + { + "start": 29745.28, + "end": 29751.82, + "probability": 0.9019 + }, + { + "start": 29752.32, + "end": 29752.76, + "probability": 0.7832 + }, + { + "start": 29752.92, + "end": 29755.92, + "probability": 0.9668 + }, + { + "start": 29755.92, + "end": 29759.72, + "probability": 0.9891 + }, + { + "start": 29760.42, + "end": 29763.6, + "probability": 0.9723 + }, + { + "start": 29764.18, + "end": 29765.74, + "probability": 0.9955 + }, + { + "start": 29766.78, + "end": 29768.0, + "probability": 0.6886 + }, + { + "start": 29768.12, + "end": 29773.5, + "probability": 0.9681 + }, + { + "start": 29773.98, + "end": 29774.48, + "probability": 0.8293 + }, + { + "start": 29774.52, + "end": 29775.4, + "probability": 0.8929 + }, + { + "start": 29775.58, + "end": 29780.02, + "probability": 0.9706 + }, + { + "start": 29780.24, + "end": 29782.48, + "probability": 0.9955 + }, + { + "start": 29782.62, + "end": 29784.24, + "probability": 0.9112 + }, + { + "start": 29784.62, + "end": 29788.62, + "probability": 0.8839 + }, + { + "start": 29789.26, + "end": 29791.32, + "probability": 0.928 + }, + { + "start": 29791.48, + "end": 29793.67, + "probability": 0.9956 + }, + { + "start": 29794.8, + "end": 29798.64, + "probability": 0.9987 + }, + { + "start": 29798.68, + "end": 29804.84, + "probability": 0.9926 + }, + { + "start": 29805.4, + "end": 29808.26, + "probability": 0.9941 + }, + { + "start": 29808.3, + "end": 29809.0, + "probability": 0.8464 + }, + { + "start": 29809.08, + "end": 29810.52, + "probability": 0.9495 + }, + { + "start": 29810.6, + "end": 29813.2, + "probability": 0.9327 + }, + { + "start": 29813.28, + "end": 29816.64, + "probability": 0.9961 + }, + { + "start": 29817.14, + "end": 29820.42, + "probability": 0.7307 + }, + { + "start": 29820.7, + "end": 29821.32, + "probability": 0.9887 + }, + { + "start": 29821.4, + "end": 29822.16, + "probability": 0.9394 + }, + { + "start": 29822.32, + "end": 29824.8, + "probability": 0.9899 + }, + { + "start": 29824.9, + "end": 29826.64, + "probability": 0.9961 + }, + { + "start": 29826.94, + "end": 29832.18, + "probability": 0.9927 + }, + { + "start": 29832.7, + "end": 29833.32, + "probability": 0.5524 + }, + { + "start": 29833.38, + "end": 29835.11, + "probability": 0.691 + }, + { + "start": 29835.84, + "end": 29837.68, + "probability": 0.8856 + }, + { + "start": 29837.7, + "end": 29840.08, + "probability": 0.6212 + }, + { + "start": 29840.76, + "end": 29841.22, + "probability": 0.2735 + }, + { + "start": 29841.46, + "end": 29843.1, + "probability": 0.6759 + }, + { + "start": 29843.64, + "end": 29845.5, + "probability": 0.5142 + }, + { + "start": 29845.5, + "end": 29847.08, + "probability": 0.7466 + }, + { + "start": 29855.17, + "end": 29857.14, + "probability": 0.2593 + }, + { + "start": 29857.22, + "end": 29858.96, + "probability": 0.7959 + }, + { + "start": 29859.06, + "end": 29862.3, + "probability": 0.8746 + }, + { + "start": 29867.02, + "end": 29868.48, + "probability": 0.7165 + }, + { + "start": 29876.22, + "end": 29879.82, + "probability": 0.1209 + }, + { + "start": 29880.28, + "end": 29883.26, + "probability": 0.102 + }, + { + "start": 29883.94, + "end": 29885.3, + "probability": 0.5639 + }, + { + "start": 29885.32, + "end": 29888.36, + "probability": 0.4365 + }, + { + "start": 29888.86, + "end": 29889.54, + "probability": 0.6738 + }, + { + "start": 29889.72, + "end": 29893.26, + "probability": 0.5641 + }, + { + "start": 29893.34, + "end": 29896.2, + "probability": 0.8188 + }, + { + "start": 29896.2, + "end": 29898.62, + "probability": 0.7476 + }, + { + "start": 29899.02, + "end": 29899.32, + "probability": 0.2203 + }, + { + "start": 29900.91, + "end": 29904.18, + "probability": 0.8221 + }, + { + "start": 29904.28, + "end": 29904.92, + "probability": 0.5007 + }, + { + "start": 29905.04, + "end": 29905.72, + "probability": 0.0152 + }, + { + "start": 29905.74, + "end": 29907.16, + "probability": 0.5682 + }, + { + "start": 29908.18, + "end": 29910.3, + "probability": 0.7179 + }, + { + "start": 29910.46, + "end": 29913.0, + "probability": 0.9885 + }, + { + "start": 29913.72, + "end": 29913.92, + "probability": 0.1297 + }, + { + "start": 29913.92, + "end": 29915.51, + "probability": 0.2815 + }, + { + "start": 29916.3, + "end": 29919.16, + "probability": 0.7404 + }, + { + "start": 29920.08, + "end": 29920.86, + "probability": 0.5741 + }, + { + "start": 29921.26, + "end": 29922.4, + "probability": 0.7118 + }, + { + "start": 29926.68, + "end": 29927.04, + "probability": 0.7059 + }, + { + "start": 29929.26, + "end": 29931.36, + "probability": 0.7503 + }, + { + "start": 29932.5, + "end": 29933.7, + "probability": 0.9111 + }, + { + "start": 29934.28, + "end": 29935.54, + "probability": 0.3396 + }, + { + "start": 29936.0, + "end": 29941.6, + "probability": 0.8789 + }, + { + "start": 29941.8, + "end": 29944.04, + "probability": 0.9452 + }, + { + "start": 29944.68, + "end": 29947.46, + "probability": 0.9976 + }, + { + "start": 29947.98, + "end": 29949.04, + "probability": 0.9018 + }, + { + "start": 29949.6, + "end": 29954.18, + "probability": 0.9846 + }, + { + "start": 29955.02, + "end": 29961.58, + "probability": 0.909 + }, + { + "start": 29962.66, + "end": 29966.96, + "probability": 0.6654 + }, + { + "start": 29967.48, + "end": 29968.12, + "probability": 0.606 + }, + { + "start": 29968.32, + "end": 29974.72, + "probability": 0.8614 + }, + { + "start": 29975.42, + "end": 29982.36, + "probability": 0.9742 + }, + { + "start": 29982.66, + "end": 29984.38, + "probability": 0.889 + }, + { + "start": 29984.82, + "end": 29987.42, + "probability": 0.9823 + }, + { + "start": 29987.9, + "end": 29989.26, + "probability": 0.8546 + }, + { + "start": 29989.52, + "end": 29996.54, + "probability": 0.8531 + }, + { + "start": 29997.3, + "end": 30000.86, + "probability": 0.9863 + }, + { + "start": 30001.56, + "end": 30004.94, + "probability": 0.7867 + }, + { + "start": 30004.94, + "end": 30008.16, + "probability": 0.9788 + }, + { + "start": 30008.66, + "end": 30015.74, + "probability": 0.9673 + }, + { + "start": 30016.22, + "end": 30016.7, + "probability": 0.4233 + }, + { + "start": 30016.7, + "end": 30016.96, + "probability": 0.8687 + }, + { + "start": 30017.08, + "end": 30020.02, + "probability": 0.9961 + }, + { + "start": 30020.56, + "end": 30025.16, + "probability": 0.99 + }, + { + "start": 30025.16, + "end": 30030.66, + "probability": 0.9542 + }, + { + "start": 30031.8, + "end": 30033.24, + "probability": 0.7659 + }, + { + "start": 30034.3, + "end": 30036.16, + "probability": 0.5562 + }, + { + "start": 30037.22, + "end": 30043.02, + "probability": 0.9747 + }, + { + "start": 30043.32, + "end": 30044.37, + "probability": 0.888 + }, + { + "start": 30045.12, + "end": 30046.04, + "probability": 0.7971 + }, + { + "start": 30046.46, + "end": 30049.85, + "probability": 0.9233 + }, + { + "start": 30051.24, + "end": 30055.85, + "probability": 0.9365 + }, + { + "start": 30057.34, + "end": 30058.3, + "probability": 0.7658 + }, + { + "start": 30058.88, + "end": 30064.72, + "probability": 0.98 + }, + { + "start": 30065.36, + "end": 30069.86, + "probability": 0.9648 + }, + { + "start": 30070.98, + "end": 30071.4, + "probability": 0.7712 + }, + { + "start": 30071.56, + "end": 30073.08, + "probability": 0.9766 + }, + { + "start": 30073.18, + "end": 30077.48, + "probability": 0.9784 + }, + { + "start": 30077.48, + "end": 30081.3, + "probability": 0.9214 + }, + { + "start": 30082.24, + "end": 30087.46, + "probability": 0.9588 + }, + { + "start": 30087.7, + "end": 30089.08, + "probability": 0.6396 + }, + { + "start": 30089.56, + "end": 30092.12, + "probability": 0.8685 + }, + { + "start": 30092.22, + "end": 30094.92, + "probability": 0.901 + }, + { + "start": 30095.26, + "end": 30098.68, + "probability": 0.9824 + }, + { + "start": 30099.12, + "end": 30100.46, + "probability": 0.877 + }, + { + "start": 30101.58, + "end": 30103.86, + "probability": 0.8318 + }, + { + "start": 30103.96, + "end": 30105.0, + "probability": 0.9141 + }, + { + "start": 30105.48, + "end": 30107.3, + "probability": 0.6266 + }, + { + "start": 30107.38, + "end": 30112.36, + "probability": 0.9742 + }, + { + "start": 30112.6, + "end": 30114.26, + "probability": 0.9252 + }, + { + "start": 30114.86, + "end": 30116.86, + "probability": 0.8128 + }, + { + "start": 30117.16, + "end": 30118.5, + "probability": 0.8133 + }, + { + "start": 30119.18, + "end": 30123.8, + "probability": 0.8181 + }, + { + "start": 30124.42, + "end": 30128.54, + "probability": 0.9348 + }, + { + "start": 30129.62, + "end": 30131.24, + "probability": 0.7602 + }, + { + "start": 30131.68, + "end": 30135.01, + "probability": 0.8597 + }, + { + "start": 30135.22, + "end": 30135.9, + "probability": 0.2742 + }, + { + "start": 30136.08, + "end": 30139.14, + "probability": 0.331 + }, + { + "start": 30139.18, + "end": 30139.7, + "probability": 0.4432 + }, + { + "start": 30139.72, + "end": 30139.78, + "probability": 0.0349 + }, + { + "start": 30139.78, + "end": 30141.34, + "probability": 0.9092 + }, + { + "start": 30141.5, + "end": 30144.78, + "probability": 0.9753 + }, + { + "start": 30144.92, + "end": 30148.08, + "probability": 0.9827 + }, + { + "start": 30148.72, + "end": 30155.1, + "probability": 0.9517 + }, + { + "start": 30156.1, + "end": 30156.9, + "probability": 0.739 + }, + { + "start": 30156.98, + "end": 30157.98, + "probability": 0.858 + }, + { + "start": 30158.0, + "end": 30158.86, + "probability": 0.8192 + }, + { + "start": 30159.36, + "end": 30162.22, + "probability": 0.974 + }, + { + "start": 30162.22, + "end": 30166.48, + "probability": 0.9401 + }, + { + "start": 30166.78, + "end": 30169.74, + "probability": 0.9731 + }, + { + "start": 30169.86, + "end": 30170.44, + "probability": 0.7609 + }, + { + "start": 30170.6, + "end": 30172.62, + "probability": 0.9711 + }, + { + "start": 30174.1, + "end": 30175.72, + "probability": 0.7468 + }, + { + "start": 30177.38, + "end": 30179.18, + "probability": 0.7062 + }, + { + "start": 30181.07, + "end": 30185.36, + "probability": 0.8866 + }, + { + "start": 30185.92, + "end": 30188.36, + "probability": 0.8169 + }, + { + "start": 30189.38, + "end": 30191.38, + "probability": 0.7211 + }, + { + "start": 30196.26, + "end": 30199.46, + "probability": 0.6825 + }, + { + "start": 30200.0, + "end": 30200.42, + "probability": 0.876 + }, + { + "start": 30204.1, + "end": 30205.5, + "probability": 0.6772 + }, + { + "start": 30205.92, + "end": 30205.92, + "probability": 0.5131 + }, + { + "start": 30205.92, + "end": 30207.08, + "probability": 0.802 + }, + { + "start": 30207.16, + "end": 30208.08, + "probability": 0.9014 + }, + { + "start": 30209.0, + "end": 30210.36, + "probability": 0.6901 + }, + { + "start": 30212.41, + "end": 30217.41, + "probability": 0.8774 + }, + { + "start": 30218.3, + "end": 30221.2, + "probability": 0.9502 + }, + { + "start": 30222.22, + "end": 30226.92, + "probability": 0.9967 + }, + { + "start": 30228.92, + "end": 30231.94, + "probability": 0.9917 + }, + { + "start": 30231.94, + "end": 30235.98, + "probability": 0.9926 + }, + { + "start": 30236.72, + "end": 30243.88, + "probability": 0.9912 + }, + { + "start": 30245.34, + "end": 30249.68, + "probability": 0.8168 + }, + { + "start": 30250.38, + "end": 30256.06, + "probability": 0.9696 + }, + { + "start": 30256.24, + "end": 30257.18, + "probability": 0.9447 + }, + { + "start": 30257.34, + "end": 30261.84, + "probability": 0.9607 + }, + { + "start": 30263.84, + "end": 30267.82, + "probability": 0.6697 + }, + { + "start": 30268.52, + "end": 30273.04, + "probability": 0.9253 + }, + { + "start": 30273.2, + "end": 30274.1, + "probability": 0.8024 + }, + { + "start": 30274.24, + "end": 30280.48, + "probability": 0.9811 + }, + { + "start": 30281.42, + "end": 30283.22, + "probability": 0.9376 + }, + { + "start": 30283.76, + "end": 30290.98, + "probability": 0.9333 + }, + { + "start": 30291.12, + "end": 30292.5, + "probability": 0.7021 + }, + { + "start": 30293.02, + "end": 30297.48, + "probability": 0.663 + }, + { + "start": 30299.84, + "end": 30302.1, + "probability": 0.9624 + }, + { + "start": 30302.56, + "end": 30304.5, + "probability": 0.6772 + }, + { + "start": 30304.54, + "end": 30308.8, + "probability": 0.9622 + }, + { + "start": 30308.94, + "end": 30311.52, + "probability": 0.9181 + }, + { + "start": 30312.08, + "end": 30313.43, + "probability": 0.981 + }, + { + "start": 30313.7, + "end": 30315.02, + "probability": 0.9493 + }, + { + "start": 30315.18, + "end": 30316.2, + "probability": 0.965 + }, + { + "start": 30316.26, + "end": 30317.42, + "probability": 0.6799 + }, + { + "start": 30317.84, + "end": 30321.14, + "probability": 0.3538 + }, + { + "start": 30321.28, + "end": 30325.42, + "probability": 0.924 + }, + { + "start": 30325.62, + "end": 30328.38, + "probability": 0.8699 + }, + { + "start": 30328.58, + "end": 30329.76, + "probability": 0.5084 + }, + { + "start": 30329.98, + "end": 30334.08, + "probability": 0.9259 + }, + { + "start": 30334.62, + "end": 30336.7, + "probability": 0.9939 + }, + { + "start": 30336.78, + "end": 30340.12, + "probability": 0.9665 + }, + { + "start": 30340.32, + "end": 30341.78, + "probability": 0.8953 + }, + { + "start": 30342.68, + "end": 30346.18, + "probability": 0.842 + }, + { + "start": 30347.0, + "end": 30351.82, + "probability": 0.9465 + }, + { + "start": 30352.6, + "end": 30354.62, + "probability": 0.8818 + }, + { + "start": 30355.1, + "end": 30356.38, + "probability": 0.985 + }, + { + "start": 30356.58, + "end": 30363.0, + "probability": 0.95 + }, + { + "start": 30363.44, + "end": 30366.5, + "probability": 0.9264 + }, + { + "start": 30367.2, + "end": 30367.48, + "probability": 0.538 + }, + { + "start": 30367.66, + "end": 30368.2, + "probability": 0.7973 + }, + { + "start": 30368.32, + "end": 30371.44, + "probability": 0.9742 + }, + { + "start": 30371.88, + "end": 30372.9, + "probability": 0.7579 + }, + { + "start": 30373.38, + "end": 30376.65, + "probability": 0.8033 + }, + { + "start": 30376.78, + "end": 30379.94, + "probability": 0.633 + }, + { + "start": 30380.1, + "end": 30382.58, + "probability": 0.8448 + }, + { + "start": 30382.58, + "end": 30385.28, + "probability": 0.991 + }, + { + "start": 30386.02, + "end": 30388.14, + "probability": 0.9517 + }, + { + "start": 30388.9, + "end": 30389.76, + "probability": 0.3644 + }, + { + "start": 30390.38, + "end": 30391.38, + "probability": 0.8206 + }, + { + "start": 30392.0, + "end": 30392.78, + "probability": 0.8536 + }, + { + "start": 30392.84, + "end": 30396.58, + "probability": 0.9598 + }, + { + "start": 30396.7, + "end": 30399.18, + "probability": 0.9453 + }, + { + "start": 30399.3, + "end": 30400.82, + "probability": 0.9864 + }, + { + "start": 30401.76, + "end": 30403.52, + "probability": 0.7489 + }, + { + "start": 30403.62, + "end": 30406.86, + "probability": 0.9741 + }, + { + "start": 30406.86, + "end": 30410.4, + "probability": 0.9975 + }, + { + "start": 30410.82, + "end": 30413.68, + "probability": 0.9425 + }, + { + "start": 30414.72, + "end": 30416.22, + "probability": 0.8976 + }, + { + "start": 30416.36, + "end": 30418.26, + "probability": 0.9508 + }, + { + "start": 30418.36, + "end": 30419.72, + "probability": 0.9895 + }, + { + "start": 30419.82, + "end": 30421.3, + "probability": 0.9728 + }, + { + "start": 30421.62, + "end": 30424.62, + "probability": 0.8391 + }, + { + "start": 30424.78, + "end": 30427.48, + "probability": 0.9417 + }, + { + "start": 30428.12, + "end": 30432.54, + "probability": 0.9569 + }, + { + "start": 30433.0, + "end": 30434.79, + "probability": 0.8956 + }, + { + "start": 30435.08, + "end": 30438.02, + "probability": 0.8259 + }, + { + "start": 30438.48, + "end": 30442.22, + "probability": 0.9094 + }, + { + "start": 30442.32, + "end": 30443.08, + "probability": 0.9163 + }, + { + "start": 30443.18, + "end": 30444.3, + "probability": 0.9128 + }, + { + "start": 30444.66, + "end": 30445.24, + "probability": 0.8788 + }, + { + "start": 30445.5, + "end": 30446.86, + "probability": 0.9628 + }, + { + "start": 30446.96, + "end": 30449.9, + "probability": 0.9495 + }, + { + "start": 30451.08, + "end": 30451.88, + "probability": 0.9558 + }, + { + "start": 30452.08, + "end": 30456.28, + "probability": 0.9194 + }, + { + "start": 30456.44, + "end": 30457.02, + "probability": 0.6616 + }, + { + "start": 30457.06, + "end": 30458.22, + "probability": 0.7828 + }, + { + "start": 30458.42, + "end": 30462.04, + "probability": 0.9951 + }, + { + "start": 30462.54, + "end": 30468.66, + "probability": 0.981 + }, + { + "start": 30468.8, + "end": 30471.82, + "probability": 0.8668 + }, + { + "start": 30471.92, + "end": 30472.91, + "probability": 0.9581 + }, + { + "start": 30473.62, + "end": 30476.02, + "probability": 0.9225 + }, + { + "start": 30476.04, + "end": 30477.24, + "probability": 0.9818 + }, + { + "start": 30477.32, + "end": 30478.42, + "probability": 0.733 + }, + { + "start": 30478.48, + "end": 30483.32, + "probability": 0.906 + }, + { + "start": 30483.42, + "end": 30484.78, + "probability": 0.8615 + }, + { + "start": 30484.9, + "end": 30486.54, + "probability": 0.9897 + }, + { + "start": 30487.48, + "end": 30487.48, + "probability": 0.6743 + }, + { + "start": 30489.96, + "end": 30494.18, + "probability": 0.9908 + }, + { + "start": 30495.66, + "end": 30497.46, + "probability": 0.894 + }, + { + "start": 30498.0, + "end": 30498.54, + "probability": 0.4834 + }, + { + "start": 30498.72, + "end": 30499.74, + "probability": 0.817 + }, + { + "start": 30499.86, + "end": 30503.26, + "probability": 0.978 + }, + { + "start": 30503.26, + "end": 30505.88, + "probability": 0.9963 + }, + { + "start": 30505.98, + "end": 30507.82, + "probability": 0.8942 + }, + { + "start": 30508.44, + "end": 30513.08, + "probability": 0.8976 + }, + { + "start": 30513.22, + "end": 30518.36, + "probability": 0.979 + }, + { + "start": 30518.36, + "end": 30521.82, + "probability": 0.9699 + }, + { + "start": 30522.6, + "end": 30526.76, + "probability": 0.9961 + }, + { + "start": 30526.78, + "end": 30529.4, + "probability": 0.9869 + }, + { + "start": 30529.88, + "end": 30531.36, + "probability": 0.9668 + }, + { + "start": 30531.44, + "end": 30533.2, + "probability": 0.8966 + }, + { + "start": 30533.3, + "end": 30534.34, + "probability": 0.9406 + }, + { + "start": 30534.64, + "end": 30536.32, + "probability": 0.9194 + }, + { + "start": 30536.4, + "end": 30538.52, + "probability": 0.9402 + }, + { + "start": 30538.62, + "end": 30545.3, + "probability": 0.9407 + }, + { + "start": 30545.34, + "end": 30545.84, + "probability": 0.788 + }, + { + "start": 30545.84, + "end": 30546.44, + "probability": 0.7994 + }, + { + "start": 30546.52, + "end": 30546.86, + "probability": 0.7264 + }, + { + "start": 30546.92, + "end": 30548.94, + "probability": 0.9552 + }, + { + "start": 30549.44, + "end": 30549.93, + "probability": 0.5105 + }, + { + "start": 30550.68, + "end": 30551.46, + "probability": 0.465 + }, + { + "start": 30551.66, + "end": 30551.74, + "probability": 0.3111 + }, + { + "start": 30551.84, + "end": 30554.94, + "probability": 0.942 + }, + { + "start": 30555.02, + "end": 30556.58, + "probability": 0.9834 + }, + { + "start": 30557.2, + "end": 30557.76, + "probability": 0.7639 + }, + { + "start": 30557.84, + "end": 30558.44, + "probability": 0.9696 + }, + { + "start": 30558.54, + "end": 30562.42, + "probability": 0.9968 + }, + { + "start": 30562.42, + "end": 30565.48, + "probability": 0.9956 + }, + { + "start": 30565.88, + "end": 30570.42, + "probability": 0.994 + }, + { + "start": 30570.48, + "end": 30571.12, + "probability": 0.1142 + }, + { + "start": 30571.84, + "end": 30575.42, + "probability": 0.9062 + }, + { + "start": 30575.86, + "end": 30579.58, + "probability": 0.8569 + }, + { + "start": 30580.5, + "end": 30584.64, + "probability": 0.8813 + }, + { + "start": 30585.96, + "end": 30592.72, + "probability": 0.9476 + }, + { + "start": 30592.82, + "end": 30594.04, + "probability": 0.8944 + }, + { + "start": 30594.08, + "end": 30595.1, + "probability": 0.8326 + }, + { + "start": 30595.18, + "end": 30596.46, + "probability": 0.7821 + }, + { + "start": 30596.54, + "end": 30598.16, + "probability": 0.9751 + }, + { + "start": 30599.1, + "end": 30601.06, + "probability": 0.9162 + }, + { + "start": 30601.74, + "end": 30602.26, + "probability": 0.6887 + }, + { + "start": 30602.42, + "end": 30605.44, + "probability": 0.9779 + }, + { + "start": 30605.44, + "end": 30610.42, + "probability": 0.9732 + }, + { + "start": 30611.18, + "end": 30615.16, + "probability": 0.9651 + }, + { + "start": 30615.62, + "end": 30619.1, + "probability": 0.9917 + }, + { + "start": 30620.1, + "end": 30623.32, + "probability": 0.9716 + }, + { + "start": 30623.38, + "end": 30625.0, + "probability": 0.8808 + }, + { + "start": 30625.2, + "end": 30627.18, + "probability": 0.9917 + }, + { + "start": 30627.54, + "end": 30631.34, + "probability": 0.9111 + }, + { + "start": 30631.46, + "end": 30634.04, + "probability": 0.145 + }, + { + "start": 30634.04, + "end": 30636.21, + "probability": 0.661 + }, + { + "start": 30637.2, + "end": 30637.5, + "probability": 0.3873 + }, + { + "start": 30637.78, + "end": 30641.36, + "probability": 0.9249 + }, + { + "start": 30641.46, + "end": 30642.98, + "probability": 0.7798 + }, + { + "start": 30643.38, + "end": 30647.06, + "probability": 0.9126 + }, + { + "start": 30647.14, + "end": 30647.64, + "probability": 0.466 + }, + { + "start": 30647.68, + "end": 30648.49, + "probability": 0.936 + }, + { + "start": 30648.86, + "end": 30649.94, + "probability": 0.7564 + }, + { + "start": 30650.02, + "end": 30651.6, + "probability": 0.916 + }, + { + "start": 30652.48, + "end": 30658.16, + "probability": 0.9483 + }, + { + "start": 30658.28, + "end": 30661.3, + "probability": 0.9702 + }, + { + "start": 30662.92, + "end": 30663.62, + "probability": 0.5259 + }, + { + "start": 30664.38, + "end": 30665.6, + "probability": 0.8969 + }, + { + "start": 30666.76, + "end": 30669.44, + "probability": 0.9954 + }, + { + "start": 30669.76, + "end": 30673.52, + "probability": 0.9146 + }, + { + "start": 30674.28, + "end": 30676.86, + "probability": 0.9744 + }, + { + "start": 30677.42, + "end": 30678.96, + "probability": 0.9932 + }, + { + "start": 30680.46, + "end": 30683.8, + "probability": 0.7108 + }, + { + "start": 30684.38, + "end": 30687.56, + "probability": 0.8711 + }, + { + "start": 30688.3, + "end": 30690.11, + "probability": 0.9206 + }, + { + "start": 30690.62, + "end": 30691.88, + "probability": 0.9966 + }, + { + "start": 30691.9, + "end": 30693.62, + "probability": 0.7995 + }, + { + "start": 30694.4, + "end": 30695.0, + "probability": 0.5481 + }, + { + "start": 30695.52, + "end": 30696.8, + "probability": 0.7534 + }, + { + "start": 30697.54, + "end": 30700.48, + "probability": 0.8628 + }, + { + "start": 30700.84, + "end": 30703.44, + "probability": 0.9758 + }, + { + "start": 30703.86, + "end": 30705.78, + "probability": 0.7625 + }, + { + "start": 30705.82, + "end": 30707.6, + "probability": 0.9865 + }, + { + "start": 30708.62, + "end": 30716.0, + "probability": 0.679 + }, + { + "start": 30716.78, + "end": 30718.4, + "probability": 0.5309 + }, + { + "start": 30719.1, + "end": 30722.82, + "probability": 0.8664 + }, + { + "start": 30722.98, + "end": 30725.96, + "probability": 0.9681 + }, + { + "start": 30726.44, + "end": 30729.68, + "probability": 0.9714 + }, + { + "start": 30729.68, + "end": 30732.12, + "probability": 0.9668 + }, + { + "start": 30732.74, + "end": 30739.0, + "probability": 0.9873 + }, + { + "start": 30739.0, + "end": 30744.36, + "probability": 0.8682 + }, + { + "start": 30745.2, + "end": 30747.52, + "probability": 0.7807 + }, + { + "start": 30748.3, + "end": 30751.54, + "probability": 0.9685 + }, + { + "start": 30752.18, + "end": 30753.54, + "probability": 0.5629 + }, + { + "start": 30753.9, + "end": 30756.82, + "probability": 0.9488 + }, + { + "start": 30757.26, + "end": 30759.46, + "probability": 0.9883 + }, + { + "start": 30759.62, + "end": 30762.48, + "probability": 0.9899 + }, + { + "start": 30763.4, + "end": 30767.21, + "probability": 0.8088 + }, + { + "start": 30768.02, + "end": 30773.48, + "probability": 0.8915 + }, + { + "start": 30773.58, + "end": 30774.27, + "probability": 0.9438 + }, + { + "start": 30774.76, + "end": 30775.2, + "probability": 0.4765 + }, + { + "start": 30775.46, + "end": 30776.3, + "probability": 0.7138 + }, + { + "start": 30776.64, + "end": 30779.4, + "probability": 0.8521 + }, + { + "start": 30779.4, + "end": 30783.28, + "probability": 0.9766 + }, + { + "start": 30783.62, + "end": 30786.38, + "probability": 0.8493 + }, + { + "start": 30787.38, + "end": 30791.1, + "probability": 0.856 + }, + { + "start": 30791.18, + "end": 30796.52, + "probability": 0.9985 + }, + { + "start": 30796.74, + "end": 30797.34, + "probability": 0.7106 + }, + { + "start": 30797.42, + "end": 30799.4, + "probability": 0.8867 + }, + { + "start": 30799.68, + "end": 30802.46, + "probability": 0.6652 + }, + { + "start": 30803.58, + "end": 30803.94, + "probability": 0.0151 + }, + { + "start": 30805.0, + "end": 30809.32, + "probability": 0.4339 + }, + { + "start": 30809.72, + "end": 30813.56, + "probability": 0.9634 + }, + { + "start": 30814.12, + "end": 30816.48, + "probability": 0.9345 + }, + { + "start": 30817.14, + "end": 30821.4, + "probability": 0.9352 + }, + { + "start": 30822.46, + "end": 30827.2, + "probability": 0.9682 + }, + { + "start": 30827.26, + "end": 30828.2, + "probability": 0.5983 + }, + { + "start": 30828.8, + "end": 30830.66, + "probability": 0.6411 + }, + { + "start": 30830.9, + "end": 30831.94, + "probability": 0.8209 + }, + { + "start": 30832.36, + "end": 30833.07, + "probability": 0.9911 + }, + { + "start": 30833.44, + "end": 30834.64, + "probability": 0.9837 + }, + { + "start": 30834.74, + "end": 30835.54, + "probability": 0.6513 + }, + { + "start": 30835.64, + "end": 30836.66, + "probability": 0.9337 + }, + { + "start": 30837.02, + "end": 30837.62, + "probability": 0.6387 + }, + { + "start": 30837.78, + "end": 30841.74, + "probability": 0.93 + }, + { + "start": 30842.24, + "end": 30843.54, + "probability": 0.8939 + }, + { + "start": 30843.6, + "end": 30847.54, + "probability": 0.9409 + }, + { + "start": 30847.64, + "end": 30848.1, + "probability": 0.7545 + }, + { + "start": 30848.48, + "end": 30848.84, + "probability": 0.619 + }, + { + "start": 30848.88, + "end": 30848.96, + "probability": 0.1078 + }, + { + "start": 30849.06, + "end": 30850.56, + "probability": 0.9763 + }, + { + "start": 30850.64, + "end": 30853.44, + "probability": 0.8931 + }, + { + "start": 30853.5, + "end": 30854.88, + "probability": 0.7328 + }, + { + "start": 30855.42, + "end": 30856.9, + "probability": 0.7607 + }, + { + "start": 30857.08, + "end": 30859.64, + "probability": 0.0476 + }, + { + "start": 30860.32, + "end": 30861.36, + "probability": 0.2522 + }, + { + "start": 30862.24, + "end": 30862.46, + "probability": 0.3128 + }, + { + "start": 30862.52, + "end": 30862.86, + "probability": 0.326 + }, + { + "start": 30863.0, + "end": 30864.24, + "probability": 0.8039 + }, + { + "start": 30864.32, + "end": 30867.18, + "probability": 0.9705 + }, + { + "start": 30867.56, + "end": 30869.66, + "probability": 0.5813 + }, + { + "start": 30869.8, + "end": 30872.19, + "probability": 0.8116 + }, + { + "start": 30872.74, + "end": 30872.96, + "probability": 0.3675 + }, + { + "start": 30873.06, + "end": 30874.16, + "probability": 0.6984 + }, + { + "start": 30874.22, + "end": 30875.5, + "probability": 0.8384 + }, + { + "start": 30876.3, + "end": 30878.44, + "probability": 0.7188 + }, + { + "start": 30878.56, + "end": 30878.56, + "probability": 0.0064 + }, + { + "start": 30878.56, + "end": 30879.58, + "probability": 0.4727 + }, + { + "start": 30879.64, + "end": 30882.55, + "probability": 0.8839 + }, + { + "start": 30884.54, + "end": 30884.7, + "probability": 0.2133 + }, + { + "start": 30896.38, + "end": 30897.14, + "probability": 0.3188 + }, + { + "start": 30897.66, + "end": 30897.76, + "probability": 0.0626 + }, + { + "start": 30897.76, + "end": 30900.36, + "probability": 0.6265 + }, + { + "start": 30900.56, + "end": 30900.78, + "probability": 0.2917 + }, + { + "start": 30900.92, + "end": 30904.94, + "probability": 0.776 + }, + { + "start": 30906.0, + "end": 30909.34, + "probability": 0.2659 + }, + { + "start": 30909.34, + "end": 30909.34, + "probability": 0.3285 + }, + { + "start": 30909.34, + "end": 30909.34, + "probability": 0.3999 + }, + { + "start": 30909.34, + "end": 30911.3, + "probability": 0.583 + }, + { + "start": 30911.82, + "end": 30914.18, + "probability": 0.636 + }, + { + "start": 30915.3, + "end": 30920.52, + "probability": 0.5524 + }, + { + "start": 30920.6, + "end": 30921.74, + "probability": 0.6925 + }, + { + "start": 30922.4, + "end": 30924.06, + "probability": 0.3101 + }, + { + "start": 30929.64, + "end": 30929.82, + "probability": 0.3145 + }, + { + "start": 30929.82, + "end": 30931.86, + "probability": 0.7125 + }, + { + "start": 30932.58, + "end": 30933.52, + "probability": 0.8119 + }, + { + "start": 30934.82, + "end": 30937.98, + "probability": 0.9329 + }, + { + "start": 30938.9, + "end": 30944.92, + "probability": 0.9912 + }, + { + "start": 30945.92, + "end": 30949.22, + "probability": 0.7877 + }, + { + "start": 30949.28, + "end": 30952.96, + "probability": 0.979 + }, + { + "start": 30954.18, + "end": 30955.0, + "probability": 0.8439 + }, + { + "start": 30955.54, + "end": 30958.34, + "probability": 0.7664 + }, + { + "start": 30959.76, + "end": 30962.36, + "probability": 0.8791 + }, + { + "start": 30962.84, + "end": 30963.58, + "probability": 0.8721 + }, + { + "start": 30964.66, + "end": 30969.48, + "probability": 0.9966 + }, + { + "start": 30970.28, + "end": 30970.82, + "probability": 0.8124 + }, + { + "start": 30971.78, + "end": 30973.18, + "probability": 0.9664 + }, + { + "start": 30973.8, + "end": 30974.46, + "probability": 0.7485 + }, + { + "start": 30975.2, + "end": 30977.28, + "probability": 0.8477 + }, + { + "start": 30978.46, + "end": 30985.2, + "probability": 0.6612 + }, + { + "start": 30985.78, + "end": 30990.66, + "probability": 0.9187 + }, + { + "start": 30992.38, + "end": 30993.48, + "probability": 0.6769 + }, + { + "start": 30994.04, + "end": 30997.12, + "probability": 0.5501 + }, + { + "start": 30997.18, + "end": 30997.53, + "probability": 0.4979 + }, + { + "start": 30997.78, + "end": 30998.8, + "probability": 0.9299 + }, + { + "start": 30999.18, + "end": 31001.32, + "probability": 0.4686 + }, + { + "start": 31001.66, + "end": 31002.53, + "probability": 0.9946 + }, + { + "start": 31002.7, + "end": 31004.77, + "probability": 0.96 + }, + { + "start": 31006.94, + "end": 31007.42, + "probability": 0.1127 + }, + { + "start": 31007.78, + "end": 31008.83, + "probability": 0.4878 + }, + { + "start": 31009.34, + "end": 31009.54, + "probability": 0.6963 + }, + { + "start": 31009.61, + "end": 31011.8, + "probability": 0.8599 + }, + { + "start": 31011.8, + "end": 31013.44, + "probability": 0.3849 + }, + { + "start": 31013.52, + "end": 31013.52, + "probability": 0.4242 + }, + { + "start": 31013.52, + "end": 31014.38, + "probability": 0.9193 + }, + { + "start": 31014.5, + "end": 31015.24, + "probability": 0.516 + }, + { + "start": 31015.4, + "end": 31015.84, + "probability": 0.8124 + }, + { + "start": 31015.94, + "end": 31019.08, + "probability": 0.7712 + }, + { + "start": 31019.42, + "end": 31019.98, + "probability": 0.5224 + }, + { + "start": 31020.2, + "end": 31021.08, + "probability": 0.7333 + }, + { + "start": 31021.28, + "end": 31022.46, + "probability": 0.9274 + }, + { + "start": 31023.8, + "end": 31028.34, + "probability": 0.8599 + }, + { + "start": 31029.02, + "end": 31033.94, + "probability": 0.9398 + }, + { + "start": 31034.04, + "end": 31036.44, + "probability": 0.9507 + }, + { + "start": 31037.82, + "end": 31040.1, + "probability": 0.9824 + }, + { + "start": 31040.92, + "end": 31042.64, + "probability": 0.9432 + }, + { + "start": 31043.34, + "end": 31044.96, + "probability": 0.8937 + }, + { + "start": 31045.36, + "end": 31049.22, + "probability": 0.9304 + }, + { + "start": 31050.04, + "end": 31055.36, + "probability": 0.9741 + }, + { + "start": 31055.68, + "end": 31058.7, + "probability": 0.6743 + }, + { + "start": 31060.8, + "end": 31063.51, + "probability": 0.8788 + }, + { + "start": 31064.32, + "end": 31065.55, + "probability": 0.7878 + }, + { + "start": 31066.08, + "end": 31067.98, + "probability": 0.952 + }, + { + "start": 31068.3, + "end": 31070.56, + "probability": 0.9785 + }, + { + "start": 31071.36, + "end": 31072.7, + "probability": 0.5036 + }, + { + "start": 31073.5, + "end": 31074.14, + "probability": 0.3726 + }, + { + "start": 31074.46, + "end": 31075.8, + "probability": 0.5518 + }, + { + "start": 31075.9, + "end": 31076.48, + "probability": 0.899 + }, + { + "start": 31076.76, + "end": 31081.36, + "probability": 0.5925 + }, + { + "start": 31082.46, + "end": 31083.71, + "probability": 0.3351 + }, + { + "start": 31083.8, + "end": 31088.62, + "probability": 0.8461 + }, + { + "start": 31088.86, + "end": 31090.08, + "probability": 0.917 + }, + { + "start": 31090.2, + "end": 31090.76, + "probability": 0.5267 + }, + { + "start": 31091.44, + "end": 31098.38, + "probability": 0.9964 + }, + { + "start": 31098.38, + "end": 31106.46, + "probability": 0.9534 + }, + { + "start": 31108.26, + "end": 31108.88, + "probability": 0.4967 + }, + { + "start": 31111.66, + "end": 31114.98, + "probability": 0.6815 + }, + { + "start": 31115.3, + "end": 31118.1, + "probability": 0.9644 + }, + { + "start": 31118.68, + "end": 31119.68, + "probability": 0.7029 + }, + { + "start": 31121.39, + "end": 31125.96, + "probability": 0.4995 + }, + { + "start": 31126.72, + "end": 31126.72, + "probability": 0.5206 + }, + { + "start": 31126.72, + "end": 31129.36, + "probability": 0.719 + }, + { + "start": 31129.36, + "end": 31133.2, + "probability": 0.7884 + }, + { + "start": 31134.94, + "end": 31137.46, + "probability": 0.476 + }, + { + "start": 31138.32, + "end": 31140.5, + "probability": 0.5728 + }, + { + "start": 31141.06, + "end": 31141.88, + "probability": 0.9273 + }, + { + "start": 31142.24, + "end": 31143.74, + "probability": 0.9775 + }, + { + "start": 31143.92, + "end": 31145.16, + "probability": 0.7132 + }, + { + "start": 31145.48, + "end": 31147.68, + "probability": 0.8958 + }, + { + "start": 31147.92, + "end": 31152.36, + "probability": 0.9886 + }, + { + "start": 31152.6, + "end": 31153.1, + "probability": 0.5486 + }, + { + "start": 31153.3, + "end": 31154.3, + "probability": 0.9532 + }, + { + "start": 31154.66, + "end": 31155.58, + "probability": 0.4383 + }, + { + "start": 31156.08, + "end": 31156.72, + "probability": 0.8006 + }, + { + "start": 31156.88, + "end": 31160.08, + "probability": 0.9057 + }, + { + "start": 31161.28, + "end": 31162.92, + "probability": 0.9734 + }, + { + "start": 31163.1, + "end": 31163.5, + "probability": 0.7919 + }, + { + "start": 31163.7, + "end": 31168.84, + "probability": 0.7219 + }, + { + "start": 31168.84, + "end": 31170.0, + "probability": 0.3603 + }, + { + "start": 31187.72, + "end": 31190.0, + "probability": 0.6391 + }, + { + "start": 31191.36, + "end": 31193.58, + "probability": 0.6959 + }, + { + "start": 31195.12, + "end": 31199.2, + "probability": 0.712 + }, + { + "start": 31199.92, + "end": 31200.5, + "probability": 0.0614 + }, + { + "start": 31200.7, + "end": 31201.38, + "probability": 0.5299 + }, + { + "start": 31202.72, + "end": 31205.18, + "probability": 0.9525 + }, + { + "start": 31206.64, + "end": 31211.9, + "probability": 0.9367 + }, + { + "start": 31214.02, + "end": 31214.92, + "probability": 0.6514 + }, + { + "start": 31215.22, + "end": 31224.22, + "probability": 0.9619 + }, + { + "start": 31225.32, + "end": 31229.6, + "probability": 0.8671 + }, + { + "start": 31230.86, + "end": 31233.2, + "probability": 0.4457 + }, + { + "start": 31233.48, + "end": 31233.54, + "probability": 0.1704 + }, + { + "start": 31233.54, + "end": 31236.0, + "probability": 0.8305 + }, + { + "start": 31236.52, + "end": 31242.04, + "probability": 0.9566 + }, + { + "start": 31243.04, + "end": 31245.51, + "probability": 0.7488 + }, + { + "start": 31246.18, + "end": 31249.44, + "probability": 0.6459 + }, + { + "start": 31249.92, + "end": 31253.62, + "probability": 0.8597 + }, + { + "start": 31255.9, + "end": 31261.4, + "probability": 0.9092 + }, + { + "start": 31263.62, + "end": 31265.93, + "probability": 0.8473 + }, + { + "start": 31267.78, + "end": 31269.16, + "probability": 0.9668 + }, + { + "start": 31270.06, + "end": 31274.78, + "probability": 0.9124 + }, + { + "start": 31274.88, + "end": 31276.11, + "probability": 0.8622 + }, + { + "start": 31276.72, + "end": 31283.94, + "probability": 0.8591 + }, + { + "start": 31284.0, + "end": 31285.29, + "probability": 0.8784 + }, + { + "start": 31285.66, + "end": 31286.34, + "probability": 0.791 + }, + { + "start": 31287.16, + "end": 31293.8, + "probability": 0.6161 + }, + { + "start": 31294.1, + "end": 31295.72, + "probability": 0.9324 + }, + { + "start": 31295.92, + "end": 31301.46, + "probability": 0.7511 + }, + { + "start": 31301.6, + "end": 31304.66, + "probability": 0.9709 + }, + { + "start": 31305.34, + "end": 31307.3, + "probability": 0.9656 + }, + { + "start": 31307.84, + "end": 31310.42, + "probability": 0.7721 + }, + { + "start": 31310.58, + "end": 31311.6, + "probability": 0.6245 + }, + { + "start": 31313.56, + "end": 31316.8, + "probability": 0.5767 + }, + { + "start": 31317.3, + "end": 31319.15, + "probability": 0.9061 + }, + { + "start": 31320.28, + "end": 31323.52, + "probability": 0.794 + }, + { + "start": 31324.5, + "end": 31328.56, + "probability": 0.8965 + }, + { + "start": 31329.28, + "end": 31332.0, + "probability": 0.8463 + }, + { + "start": 31333.1, + "end": 31334.42, + "probability": 0.9146 + }, + { + "start": 31336.16, + "end": 31342.8, + "probability": 0.7453 + }, + { + "start": 31342.98, + "end": 31344.18, + "probability": 0.5555 + }, + { + "start": 31345.0, + "end": 31347.43, + "probability": 0.9617 + }, + { + "start": 31348.36, + "end": 31348.7, + "probability": 0.4667 + }, + { + "start": 31348.8, + "end": 31349.7, + "probability": 0.7954 + }, + { + "start": 31349.84, + "end": 31353.2, + "probability": 0.8903 + }, + { + "start": 31353.44, + "end": 31356.08, + "probability": 0.8979 + }, + { + "start": 31356.36, + "end": 31357.86, + "probability": 0.9597 + }, + { + "start": 31358.34, + "end": 31359.57, + "probability": 0.9769 + }, + { + "start": 31360.4, + "end": 31364.58, + "probability": 0.9535 + }, + { + "start": 31365.14, + "end": 31371.98, + "probability": 0.8542 + }, + { + "start": 31373.72, + "end": 31376.59, + "probability": 0.8247 + }, + { + "start": 31377.34, + "end": 31384.66, + "probability": 0.9833 + }, + { + "start": 31384.84, + "end": 31388.62, + "probability": 0.828 + }, + { + "start": 31389.16, + "end": 31390.86, + "probability": 0.7746 + }, + { + "start": 31392.82, + "end": 31396.5, + "probability": 0.8854 + }, + { + "start": 31397.26, + "end": 31402.26, + "probability": 0.8593 + }, + { + "start": 31402.58, + "end": 31405.1, + "probability": 0.9839 + }, + { + "start": 31405.6, + "end": 31410.28, + "probability": 0.863 + }, + { + "start": 31410.48, + "end": 31412.98, + "probability": 0.8138 + }, + { + "start": 31413.14, + "end": 31417.26, + "probability": 0.696 + }, + { + "start": 31418.26, + "end": 31419.44, + "probability": 0.9883 + }, + { + "start": 31421.1, + "end": 31422.82, + "probability": 0.998 + }, + { + "start": 31424.78, + "end": 31427.31, + "probability": 0.8612 + }, + { + "start": 31428.44, + "end": 31435.1, + "probability": 0.8911 + }, + { + "start": 31436.06, + "end": 31441.96, + "probability": 0.9576 + }, + { + "start": 31442.26, + "end": 31445.54, + "probability": 0.9818 + }, + { + "start": 31446.16, + "end": 31447.12, + "probability": 0.8588 + }, + { + "start": 31447.9, + "end": 31449.96, + "probability": 0.7997 + }, + { + "start": 31450.06, + "end": 31451.18, + "probability": 0.8363 + }, + { + "start": 31451.9, + "end": 31453.32, + "probability": 0.6972 + }, + { + "start": 31453.32, + "end": 31454.2, + "probability": 0.0877 + }, + { + "start": 31454.2, + "end": 31454.52, + "probability": 0.4388 + }, + { + "start": 31455.74, + "end": 31456.56, + "probability": 0.674 + }, + { + "start": 31456.68, + "end": 31457.26, + "probability": 0.6559 + }, + { + "start": 31457.34, + "end": 31458.98, + "probability": 0.793 + }, + { + "start": 31459.28, + "end": 31461.28, + "probability": 0.8776 + }, + { + "start": 31462.0, + "end": 31463.04, + "probability": 0.2694 + }, + { + "start": 31465.57, + "end": 31467.71, + "probability": 0.0894 + }, + { + "start": 31468.18, + "end": 31471.52, + "probability": 0.8915 + }, + { + "start": 31471.62, + "end": 31473.18, + "probability": 0.9339 + }, + { + "start": 31473.74, + "end": 31475.24, + "probability": 0.6925 + }, + { + "start": 31476.8, + "end": 31481.48, + "probability": 0.2734 + }, + { + "start": 31482.76, + "end": 31483.3, + "probability": 0.7252 + }, + { + "start": 31483.94, + "end": 31484.78, + "probability": 0.6474 + }, + { + "start": 31484.82, + "end": 31485.84, + "probability": 0.8206 + }, + { + "start": 31485.96, + "end": 31488.65, + "probability": 0.5717 + }, + { + "start": 31489.7, + "end": 31490.7, + "probability": 0.7968 + }, + { + "start": 31490.84, + "end": 31494.24, + "probability": 0.9871 + }, + { + "start": 31494.38, + "end": 31495.28, + "probability": 0.5639 + }, + { + "start": 31495.82, + "end": 31497.16, + "probability": 0.7417 + }, + { + "start": 31497.28, + "end": 31499.2, + "probability": 0.8033 + }, + { + "start": 31499.34, + "end": 31501.7, + "probability": 0.8874 + }, + { + "start": 31501.78, + "end": 31504.4, + "probability": 0.9269 + }, + { + "start": 31504.64, + "end": 31507.9, + "probability": 0.9884 + }, + { + "start": 31508.32, + "end": 31510.64, + "probability": 0.994 + }, + { + "start": 31510.64, + "end": 31515.1, + "probability": 0.9507 + }, + { + "start": 31515.32, + "end": 31517.04, + "probability": 0.9937 + }, + { + "start": 31517.5, + "end": 31518.96, + "probability": 0.52 + }, + { + "start": 31519.04, + "end": 31519.52, + "probability": 0.796 + }, + { + "start": 31519.86, + "end": 31523.64, + "probability": 0.9932 + }, + { + "start": 31523.8, + "end": 31525.64, + "probability": 0.9681 + }, + { + "start": 31526.06, + "end": 31527.08, + "probability": 0.9384 + }, + { + "start": 31527.2, + "end": 31529.23, + "probability": 0.6782 + }, + { + "start": 31530.56, + "end": 31532.82, + "probability": 0.9667 + }, + { + "start": 31533.0, + "end": 31536.74, + "probability": 0.9609 + }, + { + "start": 31537.92, + "end": 31546.48, + "probability": 0.9804 + }, + { + "start": 31546.78, + "end": 31549.32, + "probability": 0.9893 + }, + { + "start": 31550.32, + "end": 31555.26, + "probability": 0.9845 + }, + { + "start": 31555.62, + "end": 31557.83, + "probability": 0.9874 + }, + { + "start": 31558.26, + "end": 31559.94, + "probability": 0.9883 + }, + { + "start": 31560.2, + "end": 31565.22, + "probability": 0.9795 + }, + { + "start": 31565.4, + "end": 31567.16, + "probability": 0.9963 + }, + { + "start": 31567.62, + "end": 31573.8, + "probability": 0.8577 + }, + { + "start": 31573.86, + "end": 31575.18, + "probability": 0.8296 + }, + { + "start": 31575.44, + "end": 31577.76, + "probability": 0.8455 + }, + { + "start": 31578.02, + "end": 31579.8, + "probability": 0.9912 + }, + { + "start": 31579.98, + "end": 31583.44, + "probability": 0.9962 + }, + { + "start": 31583.54, + "end": 31585.0, + "probability": 0.9941 + }, + { + "start": 31585.26, + "end": 31589.18, + "probability": 0.9873 + }, + { + "start": 31589.36, + "end": 31590.84, + "probability": 0.9971 + }, + { + "start": 31591.02, + "end": 31591.92, + "probability": 0.9935 + }, + { + "start": 31592.04, + "end": 31593.66, + "probability": 0.9894 + }, + { + "start": 31594.04, + "end": 31594.94, + "probability": 0.9875 + }, + { + "start": 31595.52, + "end": 31596.44, + "probability": 0.4765 + }, + { + "start": 31596.76, + "end": 31599.86, + "probability": 0.9248 + }, + { + "start": 31601.24, + "end": 31602.12, + "probability": 0.6887 + }, + { + "start": 31602.28, + "end": 31603.02, + "probability": 0.8984 + }, + { + "start": 31603.16, + "end": 31605.7, + "probability": 0.9518 + }, + { + "start": 31605.74, + "end": 31609.04, + "probability": 0.9827 + }, + { + "start": 31609.04, + "end": 31610.04, + "probability": 0.9237 + }, + { + "start": 31610.34, + "end": 31610.82, + "probability": 0.8449 + }, + { + "start": 31610.92, + "end": 31611.84, + "probability": 0.9343 + }, + { + "start": 31612.8, + "end": 31617.03, + "probability": 0.9843 + }, + { + "start": 31617.14, + "end": 31618.2, + "probability": 0.8479 + }, + { + "start": 31618.96, + "end": 31620.54, + "probability": 0.9871 + }, + { + "start": 31621.28, + "end": 31622.24, + "probability": 0.9565 + }, + { + "start": 31623.36, + "end": 31625.74, + "probability": 0.8636 + }, + { + "start": 31626.56, + "end": 31627.61, + "probability": 0.7887 + }, + { + "start": 31628.62, + "end": 31629.3, + "probability": 0.5571 + }, + { + "start": 31629.44, + "end": 31630.19, + "probability": 0.7869 + }, + { + "start": 31630.38, + "end": 31633.46, + "probability": 0.9539 + }, + { + "start": 31633.46, + "end": 31635.9, + "probability": 0.9456 + }, + { + "start": 31637.14, + "end": 31639.74, + "probability": 0.9346 + }, + { + "start": 31641.54, + "end": 31647.18, + "probability": 0.9854 + }, + { + "start": 31648.04, + "end": 31654.5, + "probability": 0.991 + }, + { + "start": 31655.38, + "end": 31655.86, + "probability": 0.7283 + }, + { + "start": 31656.24, + "end": 31659.26, + "probability": 0.1344 + }, + { + "start": 31659.26, + "end": 31664.38, + "probability": 0.981 + }, + { + "start": 31664.5, + "end": 31665.42, + "probability": 0.6866 + }, + { + "start": 31665.82, + "end": 31666.78, + "probability": 0.6575 + }, + { + "start": 31667.88, + "end": 31668.7, + "probability": 0.0447 + }, + { + "start": 31668.74, + "end": 31668.82, + "probability": 0.2832 + }, + { + "start": 31668.82, + "end": 31668.82, + "probability": 0.2796 + }, + { + "start": 31668.82, + "end": 31669.48, + "probability": 0.8674 + }, + { + "start": 31669.6, + "end": 31671.57, + "probability": 0.9624 + }, + { + "start": 31671.86, + "end": 31673.12, + "probability": 0.5351 + }, + { + "start": 31673.76, + "end": 31673.82, + "probability": 0.1023 + }, + { + "start": 31673.82, + "end": 31675.56, + "probability": 0.9543 + }, + { + "start": 31676.16, + "end": 31678.1, + "probability": 0.3569 + }, + { + "start": 31678.46, + "end": 31682.02, + "probability": 0.1875 + }, + { + "start": 31682.14, + "end": 31682.4, + "probability": 0.4941 + }, + { + "start": 31683.34, + "end": 31683.58, + "probability": 0.1206 + }, + { + "start": 31683.58, + "end": 31684.56, + "probability": 0.6008 + }, + { + "start": 31684.76, + "end": 31686.38, + "probability": 0.1866 + }, + { + "start": 31686.54, + "end": 31687.72, + "probability": 0.1141 + }, + { + "start": 31687.72, + "end": 31688.2, + "probability": 0.3698 + }, + { + "start": 31688.44, + "end": 31688.76, + "probability": 0.1116 + }, + { + "start": 31688.76, + "end": 31689.12, + "probability": 0.1775 + }, + { + "start": 31689.26, + "end": 31691.23, + "probability": 0.416 + }, + { + "start": 31691.8, + "end": 31692.12, + "probability": 0.2638 + }, + { + "start": 31692.3, + "end": 31693.32, + "probability": 0.6018 + }, + { + "start": 31693.84, + "end": 31695.1, + "probability": 0.2742 + }, + { + "start": 31695.16, + "end": 31696.72, + "probability": 0.894 + }, + { + "start": 31697.04, + "end": 31698.1, + "probability": 0.8088 + }, + { + "start": 31698.18, + "end": 31698.64, + "probability": 0.3461 + }, + { + "start": 31698.64, + "end": 31702.06, + "probability": 0.9058 + }, + { + "start": 31702.74, + "end": 31702.9, + "probability": 0.0162 + }, + { + "start": 31703.98, + "end": 31704.5, + "probability": 0.0522 + }, + { + "start": 31704.5, + "end": 31704.6, + "probability": 0.0496 + }, + { + "start": 31704.6, + "end": 31704.6, + "probability": 0.0263 + }, + { + "start": 31704.6, + "end": 31704.6, + "probability": 0.0652 + }, + { + "start": 31704.6, + "end": 31705.5, + "probability": 0.7893 + }, + { + "start": 31705.68, + "end": 31706.78, + "probability": 0.8636 + }, + { + "start": 31707.02, + "end": 31707.72, + "probability": 0.7232 + }, + { + "start": 31708.22, + "end": 31709.12, + "probability": 0.9175 + }, + { + "start": 31709.6, + "end": 31709.96, + "probability": 0.6959 + }, + { + "start": 31710.06, + "end": 31714.78, + "probability": 0.9304 + }, + { + "start": 31715.34, + "end": 31717.92, + "probability": 0.9972 + }, + { + "start": 31718.4, + "end": 31723.62, + "probability": 0.998 + }, + { + "start": 31724.04, + "end": 31724.72, + "probability": 0.3589 + }, + { + "start": 31725.36, + "end": 31726.97, + "probability": 0.715 + }, + { + "start": 31727.22, + "end": 31729.06, + "probability": 0.4128 + }, + { + "start": 31729.26, + "end": 31731.58, + "probability": 0.4753 + }, + { + "start": 31731.74, + "end": 31732.7, + "probability": 0.5383 + }, + { + "start": 31733.78, + "end": 31734.06, + "probability": 0.0012 + }, + { + "start": 31735.16, + "end": 31735.16, + "probability": 0.025 + }, + { + "start": 31735.16, + "end": 31736.04, + "probability": 0.7903 + }, + { + "start": 31736.44, + "end": 31736.98, + "probability": 0.6287 + }, + { + "start": 31738.14, + "end": 31739.86, + "probability": 0.9028 + }, + { + "start": 31739.94, + "end": 31740.52, + "probability": 0.9211 + }, + { + "start": 31740.9, + "end": 31743.02, + "probability": 0.9927 + }, + { + "start": 31743.12, + "end": 31743.82, + "probability": 0.7918 + }, + { + "start": 31743.88, + "end": 31744.8, + "probability": 0.988 + }, + { + "start": 31744.86, + "end": 31748.54, + "probability": 0.9915 + }, + { + "start": 31748.7, + "end": 31749.58, + "probability": 0.6498 + }, + { + "start": 31750.12, + "end": 31756.34, + "probability": 0.8006 + }, + { + "start": 31756.88, + "end": 31760.96, + "probability": 0.9539 + }, + { + "start": 31761.26, + "end": 31761.76, + "probability": 0.613 + }, + { + "start": 31762.4, + "end": 31766.08, + "probability": 0.9683 + }, + { + "start": 31769.16, + "end": 31773.78, + "probability": 0.981 + }, + { + "start": 31773.88, + "end": 31775.76, + "probability": 0.9829 + }, + { + "start": 31776.08, + "end": 31779.72, + "probability": 0.986 + }, + { + "start": 31780.2, + "end": 31781.76, + "probability": 0.9487 + }, + { + "start": 31781.8, + "end": 31783.38, + "probability": 0.9129 + }, + { + "start": 31783.64, + "end": 31789.26, + "probability": 0.8121 + }, + { + "start": 31789.26, + "end": 31792.64, + "probability": 0.9993 + }, + { + "start": 31792.98, + "end": 31795.88, + "probability": 0.8525 + }, + { + "start": 31796.14, + "end": 31798.34, + "probability": 0.9096 + }, + { + "start": 31798.5, + "end": 31801.58, + "probability": 0.906 + }, + { + "start": 31802.12, + "end": 31807.5, + "probability": 0.7738 + }, + { + "start": 31807.68, + "end": 31808.88, + "probability": 0.2731 + }, + { + "start": 31809.36, + "end": 31812.72, + "probability": 0.8233 + }, + { + "start": 31813.04, + "end": 31814.56, + "probability": 0.9097 + }, + { + "start": 31814.82, + "end": 31817.3, + "probability": 0.9412 + }, + { + "start": 31817.54, + "end": 31822.57, + "probability": 0.9198 + }, + { + "start": 31823.4, + "end": 31824.46, + "probability": 0.8875 + }, + { + "start": 31825.08, + "end": 31826.46, + "probability": 0.8547 + }, + { + "start": 31826.72, + "end": 31828.64, + "probability": 0.9049 + }, + { + "start": 31828.7, + "end": 31829.8, + "probability": 0.745 + }, + { + "start": 31830.08, + "end": 31831.68, + "probability": 0.9497 + }, + { + "start": 31831.88, + "end": 31836.84, + "probability": 0.9912 + }, + { + "start": 31837.24, + "end": 31838.84, + "probability": 0.9858 + }, + { + "start": 31839.4, + "end": 31843.76, + "probability": 0.8113 + }, + { + "start": 31844.36, + "end": 31848.04, + "probability": 0.9928 + }, + { + "start": 31848.42, + "end": 31849.08, + "probability": 0.5355 + }, + { + "start": 31849.08, + "end": 31849.88, + "probability": 0.0879 + }, + { + "start": 31850.1, + "end": 31854.08, + "probability": 0.8501 + }, + { + "start": 31854.68, + "end": 31858.42, + "probability": 0.9231 + }, + { + "start": 31858.98, + "end": 31860.1, + "probability": 0.713 + }, + { + "start": 31860.72, + "end": 31861.26, + "probability": 0.9066 + }, + { + "start": 31861.66, + "end": 31863.7, + "probability": 0.9932 + }, + { + "start": 31864.08, + "end": 31865.76, + "probability": 0.9808 + }, + { + "start": 31865.82, + "end": 31866.46, + "probability": 0.876 + }, + { + "start": 31867.06, + "end": 31870.02, + "probability": 0.9541 + }, + { + "start": 31870.38, + "end": 31872.88, + "probability": 0.9948 + }, + { + "start": 31872.94, + "end": 31874.25, + "probability": 0.8889 + }, + { + "start": 31874.9, + "end": 31875.12, + "probability": 0.2909 + }, + { + "start": 31875.32, + "end": 31875.6, + "probability": 0.7343 + }, + { + "start": 31875.68, + "end": 31877.02, + "probability": 0.9251 + }, + { + "start": 31877.02, + "end": 31878.12, + "probability": 0.4826 + }, + { + "start": 31878.2, + "end": 31878.32, + "probability": 0.6837 + }, + { + "start": 31878.66, + "end": 31885.62, + "probability": 0.8698 + }, + { + "start": 31885.76, + "end": 31887.56, + "probability": 0.6055 + }, + { + "start": 31887.66, + "end": 31888.76, + "probability": 0.8306 + }, + { + "start": 31894.76, + "end": 31896.44, + "probability": 0.9313 + }, + { + "start": 31898.62, + "end": 31898.62, + "probability": 0.5103 + }, + { + "start": 31899.34, + "end": 31900.78, + "probability": 0.4712 + }, + { + "start": 31903.08, + "end": 31904.12, + "probability": 0.4138 + }, + { + "start": 31904.16, + "end": 31906.5, + "probability": 0.9562 + }, + { + "start": 31906.78, + "end": 31911.14, + "probability": 0.6559 + }, + { + "start": 31911.4, + "end": 31912.26, + "probability": 0.9211 + }, + { + "start": 31912.38, + "end": 31914.03, + "probability": 0.9377 + }, + { + "start": 31914.54, + "end": 31916.72, + "probability": 0.7758 + }, + { + "start": 31918.06, + "end": 31919.76, + "probability": 0.8865 + }, + { + "start": 31920.18, + "end": 31922.7, + "probability": 0.7225 + }, + { + "start": 31923.76, + "end": 31924.62, + "probability": 0.8635 + }, + { + "start": 31925.44, + "end": 31926.04, + "probability": 0.7538 + }, + { + "start": 31926.16, + "end": 31927.92, + "probability": 0.7472 + }, + { + "start": 31928.04, + "end": 31928.42, + "probability": 0.6487 + }, + { + "start": 31928.64, + "end": 31929.64, + "probability": 0.9874 + }, + { + "start": 31930.5, + "end": 31931.04, + "probability": 0.6 + }, + { + "start": 31931.28, + "end": 31931.54, + "probability": 0.0094 + }, + { + "start": 31932.08, + "end": 31932.85, + "probability": 0.0555 + }, + { + "start": 31933.12, + "end": 31934.54, + "probability": 0.3779 + }, + { + "start": 31934.54, + "end": 31935.76, + "probability": 0.6782 + }, + { + "start": 31935.84, + "end": 31937.74, + "probability": 0.9302 + }, + { + "start": 31937.8, + "end": 31938.26, + "probability": 0.7205 + }, + { + "start": 31938.36, + "end": 31938.66, + "probability": 0.8738 + }, + { + "start": 31939.42, + "end": 31941.81, + "probability": 0.9326 + }, + { + "start": 31943.62, + "end": 31945.78, + "probability": 0.7768 + }, + { + "start": 31945.82, + "end": 31949.28, + "probability": 0.5001 + }, + { + "start": 31951.64, + "end": 31954.32, + "probability": 0.9676 + }, + { + "start": 31955.1, + "end": 31955.2, + "probability": 0.4522 + }, + { + "start": 31955.2, + "end": 31955.2, + "probability": 0.3281 + }, + { + "start": 31955.2, + "end": 31956.32, + "probability": 0.9355 + }, + { + "start": 31956.36, + "end": 31960.28, + "probability": 0.324 + }, + { + "start": 31960.28, + "end": 31961.52, + "probability": 0.3338 + }, + { + "start": 31961.88, + "end": 31965.3, + "probability": 0.9792 + }, + { + "start": 31966.0, + "end": 31968.56, + "probability": 0.8896 + }, + { + "start": 31969.6, + "end": 31971.52, + "probability": 0.923 + }, + { + "start": 31971.62, + "end": 31974.82, + "probability": 0.904 + }, + { + "start": 31975.64, + "end": 31977.88, + "probability": 0.8088 + }, + { + "start": 31978.1, + "end": 31981.48, + "probability": 0.9917 + }, + { + "start": 31981.68, + "end": 31982.11, + "probability": 0.9346 + }, + { + "start": 31982.48, + "end": 31984.65, + "probability": 0.9871 + }, + { + "start": 31985.24, + "end": 31987.61, + "probability": 0.9958 + }, + { + "start": 31988.42, + "end": 31989.57, + "probability": 0.6203 + }, + { + "start": 31991.38, + "end": 31994.86, + "probability": 0.4604 + }, + { + "start": 31995.0, + "end": 31995.68, + "probability": 0.5923 + }, + { + "start": 31995.76, + "end": 31997.04, + "probability": 0.9288 + }, + { + "start": 31997.24, + "end": 32001.28, + "probability": 0.9304 + }, + { + "start": 32001.86, + "end": 32003.36, + "probability": 0.6507 + }, + { + "start": 32005.26, + "end": 32010.04, + "probability": 0.7264 + }, + { + "start": 32010.1, + "end": 32011.04, + "probability": 0.7898 + }, + { + "start": 32011.12, + "end": 32011.88, + "probability": 0.819 + }, + { + "start": 32011.94, + "end": 32013.38, + "probability": 0.6951 + }, + { + "start": 32013.77, + "end": 32018.06, + "probability": 0.683 + }, + { + "start": 32018.76, + "end": 32019.56, + "probability": 0.4197 + }, + { + "start": 32021.45, + "end": 32023.98, + "probability": 0.8663 + }, + { + "start": 32024.6, + "end": 32025.78, + "probability": 0.5936 + }, + { + "start": 32025.86, + "end": 32032.18, + "probability": 0.6665 + }, + { + "start": 32033.0, + "end": 32033.84, + "probability": 0.7128 + }, + { + "start": 32034.24, + "end": 32036.58, + "probability": 0.3181 + }, + { + "start": 32038.5, + "end": 32038.74, + "probability": 0.1824 + }, + { + "start": 32038.74, + "end": 32040.6, + "probability": 0.3532 + }, + { + "start": 32040.7, + "end": 32041.68, + "probability": 0.5044 + }, + { + "start": 32042.0, + "end": 32042.82, + "probability": 0.6892 + }, + { + "start": 32043.14, + "end": 32049.1, + "probability": 0.8173 + }, + { + "start": 32049.64, + "end": 32053.96, + "probability": 0.6745 + }, + { + "start": 32053.96, + "end": 32054.54, + "probability": 0.4328 + }, + { + "start": 32054.6, + "end": 32054.84, + "probability": 0.3861 + }, + { + "start": 32055.0, + "end": 32060.58, + "probability": 0.722 + }, + { + "start": 32061.02, + "end": 32062.22, + "probability": 0.872 + }, + { + "start": 32062.38, + "end": 32063.48, + "probability": 0.8297 + }, + { + "start": 32064.28, + "end": 32067.1, + "probability": 0.7112 + }, + { + "start": 32068.02, + "end": 32070.06, + "probability": 0.7577 + }, + { + "start": 32070.14, + "end": 32071.84, + "probability": 0.794 + }, + { + "start": 32071.9, + "end": 32072.8, + "probability": 0.6492 + }, + { + "start": 32072.86, + "end": 32075.62, + "probability": 0.7009 + }, + { + "start": 32076.5, + "end": 32079.06, + "probability": 0.8256 + }, + { + "start": 32079.4, + "end": 32080.45, + "probability": 0.8236 + }, + { + "start": 32080.8, + "end": 32081.3, + "probability": 0.7949 + }, + { + "start": 32081.36, + "end": 32084.42, + "probability": 0.9875 + }, + { + "start": 32084.56, + "end": 32085.3, + "probability": 0.685 + }, + { + "start": 32085.8, + "end": 32087.69, + "probability": 0.7659 + }, + { + "start": 32087.98, + "end": 32091.14, + "probability": 0.8541 + }, + { + "start": 32091.54, + "end": 32096.26, + "probability": 0.7232 + }, + { + "start": 32096.42, + "end": 32098.92, + "probability": 0.9868 + }, + { + "start": 32099.26, + "end": 32099.96, + "probability": 0.8121 + }, + { + "start": 32100.22, + "end": 32100.96, + "probability": 0.5144 + }, + { + "start": 32101.14, + "end": 32103.94, + "probability": 0.6795 + }, + { + "start": 32104.06, + "end": 32105.32, + "probability": 0.8188 + }, + { + "start": 32105.4, + "end": 32105.96, + "probability": 0.7483 + }, + { + "start": 32105.98, + "end": 32111.34, + "probability": 0.4135 + }, + { + "start": 32111.34, + "end": 32112.84, + "probability": 0.2102 + }, + { + "start": 32112.96, + "end": 32114.08, + "probability": 0.492 + }, + { + "start": 32114.28, + "end": 32115.98, + "probability": 0.863 + }, + { + "start": 32116.02, + "end": 32119.54, + "probability": 0.5953 + }, + { + "start": 32120.22, + "end": 32124.18, + "probability": 0.7484 + }, + { + "start": 32124.48, + "end": 32125.18, + "probability": 0.6305 + }, + { + "start": 32125.66, + "end": 32127.18, + "probability": 0.9902 + }, + { + "start": 32127.28, + "end": 32129.4, + "probability": 0.437 + }, + { + "start": 32129.44, + "end": 32130.18, + "probability": 0.7747 + }, + { + "start": 32130.34, + "end": 32130.48, + "probability": 0.5687 + }, + { + "start": 32130.48, + "end": 32134.94, + "probability": 0.5503 + }, + { + "start": 32136.88, + "end": 32140.98, + "probability": 0.8314 + }, + { + "start": 32141.04, + "end": 32141.82, + "probability": 0.9382 + }, + { + "start": 32142.0, + "end": 32142.46, + "probability": 0.9758 + }, + { + "start": 32142.6, + "end": 32144.12, + "probability": 0.9792 + }, + { + "start": 32144.72, + "end": 32147.56, + "probability": 0.9163 + }, + { + "start": 32147.7, + "end": 32150.32, + "probability": 0.907 + }, + { + "start": 32150.6, + "end": 32152.88, + "probability": 0.7285 + }, + { + "start": 32152.98, + "end": 32154.1, + "probability": 0.4825 + }, + { + "start": 32154.14, + "end": 32154.94, + "probability": 0.3983 + }, + { + "start": 32154.96, + "end": 32155.32, + "probability": 0.648 + }, + { + "start": 32155.46, + "end": 32157.26, + "probability": 0.8679 + }, + { + "start": 32157.64, + "end": 32163.42, + "probability": 0.9565 + }, + { + "start": 32163.54, + "end": 32164.6, + "probability": 0.5207 + }, + { + "start": 32164.62, + "end": 32167.0, + "probability": 0.5762 + }, + { + "start": 32167.0, + "end": 32170.36, + "probability": 0.8294 + }, + { + "start": 32170.64, + "end": 32172.96, + "probability": 0.9081 + }, + { + "start": 32173.08, + "end": 32174.74, + "probability": 0.9858 + }, + { + "start": 32174.9, + "end": 32176.1, + "probability": 0.651 + }, + { + "start": 32176.12, + "end": 32176.87, + "probability": 0.7251 + }, + { + "start": 32177.84, + "end": 32180.16, + "probability": 0.7435 + }, + { + "start": 32180.26, + "end": 32181.2, + "probability": 0.7613 + }, + { + "start": 32182.24, + "end": 32184.34, + "probability": 0.4867 + }, + { + "start": 32184.44, + "end": 32186.08, + "probability": 0.751 + }, + { + "start": 32186.14, + "end": 32186.84, + "probability": 0.4172 + }, + { + "start": 32186.92, + "end": 32187.66, + "probability": 0.7402 + }, + { + "start": 32187.78, + "end": 32188.46, + "probability": 0.5806 + }, + { + "start": 32188.5, + "end": 32189.36, + "probability": 0.6853 + }, + { + "start": 32190.48, + "end": 32192.76, + "probability": 0.9834 + }, + { + "start": 32193.28, + "end": 32194.64, + "probability": 0.3561 + }, + { + "start": 32196.6, + "end": 32198.52, + "probability": 0.8518 + }, + { + "start": 32199.44, + "end": 32199.86, + "probability": 0.4696 + }, + { + "start": 32200.42, + "end": 32203.68, + "probability": 0.9598 + }, + { + "start": 32203.82, + "end": 32206.4, + "probability": 0.7208 + }, + { + "start": 32206.56, + "end": 32208.98, + "probability": 0.9868 + }, + { + "start": 32209.2, + "end": 32213.32, + "probability": 0.9574 + }, + { + "start": 32213.6, + "end": 32216.16, + "probability": 0.6632 + }, + { + "start": 32216.8, + "end": 32219.76, + "probability": 0.9081 + }, + { + "start": 32219.84, + "end": 32223.04, + "probability": 0.942 + }, + { + "start": 32223.54, + "end": 32225.57, + "probability": 0.8716 + }, + { + "start": 32226.0, + "end": 32227.36, + "probability": 0.7853 + }, + { + "start": 32227.94, + "end": 32228.72, + "probability": 0.7256 + }, + { + "start": 32228.92, + "end": 32232.13, + "probability": 0.9808 + }, + { + "start": 32232.16, + "end": 32233.02, + "probability": 0.7017 + }, + { + "start": 32233.88, + "end": 32235.98, + "probability": 0.44 + }, + { + "start": 32236.48, + "end": 32238.96, + "probability": 0.9254 + }, + { + "start": 32239.72, + "end": 32240.64, + "probability": 0.7623 + }, + { + "start": 32240.74, + "end": 32241.74, + "probability": 0.889 + }, + { + "start": 32242.02, + "end": 32243.64, + "probability": 0.6859 + }, + { + "start": 32243.8, + "end": 32246.44, + "probability": 0.6929 + }, + { + "start": 32246.64, + "end": 32247.9, + "probability": 0.3995 + }, + { + "start": 32248.08, + "end": 32248.44, + "probability": 0.7055 + }, + { + "start": 32249.66, + "end": 32254.6, + "probability": 0.9814 + }, + { + "start": 32254.78, + "end": 32255.54, + "probability": 0.932 + }, + { + "start": 32257.52, + "end": 32257.98, + "probability": 0.6471 + }, + { + "start": 32258.7, + "end": 32260.4, + "probability": 0.9967 + }, + { + "start": 32260.92, + "end": 32261.88, + "probability": 0.8053 + }, + { + "start": 32270.68, + "end": 32272.18, + "probability": 0.6797 + }, + { + "start": 32274.36, + "end": 32276.28, + "probability": 0.6697 + }, + { + "start": 32278.7, + "end": 32282.7, + "probability": 0.9919 + }, + { + "start": 32283.3, + "end": 32287.54, + "probability": 0.9976 + }, + { + "start": 32289.0, + "end": 32289.36, + "probability": 0.9955 + }, + { + "start": 32290.48, + "end": 32292.1, + "probability": 0.0989 + }, + { + "start": 32293.46, + "end": 32298.68, + "probability": 0.8383 + }, + { + "start": 32298.8, + "end": 32300.12, + "probability": 0.8485 + }, + { + "start": 32301.02, + "end": 32302.1, + "probability": 0.8533 + }, + { + "start": 32302.56, + "end": 32303.54, + "probability": 0.9865 + }, + { + "start": 32303.58, + "end": 32305.26, + "probability": 0.9028 + }, + { + "start": 32305.4, + "end": 32306.78, + "probability": 0.7581 + }, + { + "start": 32307.46, + "end": 32309.38, + "probability": 0.3207 + }, + { + "start": 32309.48, + "end": 32310.38, + "probability": 0.4838 + }, + { + "start": 32310.76, + "end": 32314.3, + "probability": 0.9086 + }, + { + "start": 32316.08, + "end": 32320.6, + "probability": 0.7423 + }, + { + "start": 32320.99, + "end": 32322.26, + "probability": 0.5061 + }, + { + "start": 32322.5, + "end": 32325.1, + "probability": 0.9845 + }, + { + "start": 32325.26, + "end": 32327.54, + "probability": 0.9195 + }, + { + "start": 32327.88, + "end": 32328.5, + "probability": 0.7798 + }, + { + "start": 32328.58, + "end": 32329.48, + "probability": 0.9161 + }, + { + "start": 32329.74, + "end": 32334.74, + "probability": 0.9583 + }, + { + "start": 32335.02, + "end": 32337.78, + "probability": 0.9919 + }, + { + "start": 32338.2, + "end": 32339.06, + "probability": 0.7615 + }, + { + "start": 32339.46, + "end": 32340.7, + "probability": 0.9423 + }, + { + "start": 32340.96, + "end": 32341.76, + "probability": 0.8572 + }, + { + "start": 32341.88, + "end": 32342.1, + "probability": 0.0001 + }, + { + "start": 32342.54, + "end": 32343.9, + "probability": 0.9434 + }, + { + "start": 32344.0, + "end": 32346.74, + "probability": 0.9905 + }, + { + "start": 32346.84, + "end": 32347.64, + "probability": 0.793 + }, + { + "start": 32347.9, + "end": 32348.91, + "probability": 0.9751 + }, + { + "start": 32349.44, + "end": 32351.12, + "probability": 0.978 + }, + { + "start": 32351.12, + "end": 32352.32, + "probability": 0.7625 + }, + { + "start": 32352.42, + "end": 32353.0, + "probability": 0.7289 + }, + { + "start": 32353.08, + "end": 32354.32, + "probability": 0.767 + }, + { + "start": 32354.46, + "end": 32357.02, + "probability": 0.9824 + }, + { + "start": 32357.12, + "end": 32357.96, + "probability": 0.7427 + }, + { + "start": 32358.18, + "end": 32360.12, + "probability": 0.9865 + }, + { + "start": 32360.7, + "end": 32361.08, + "probability": 0.6788 + }, + { + "start": 32361.16, + "end": 32361.76, + "probability": 0.7009 + }, + { + "start": 32361.88, + "end": 32362.88, + "probability": 0.8598 + }, + { + "start": 32362.94, + "end": 32365.36, + "probability": 0.946 + }, + { + "start": 32365.68, + "end": 32367.12, + "probability": 0.7268 + }, + { + "start": 32367.22, + "end": 32371.04, + "probability": 0.9556 + }, + { + "start": 32371.04, + "end": 32375.08, + "probability": 0.9975 + }, + { + "start": 32375.64, + "end": 32377.76, + "probability": 0.9014 + }, + { + "start": 32378.04, + "end": 32382.38, + "probability": 0.9004 + }, + { + "start": 32382.64, + "end": 32384.62, + "probability": 0.8914 + }, + { + "start": 32384.94, + "end": 32386.62, + "probability": 0.9087 + }, + { + "start": 32387.02, + "end": 32388.92, + "probability": 0.8247 + }, + { + "start": 32389.02, + "end": 32390.46, + "probability": 0.7324 + }, + { + "start": 32390.64, + "end": 32392.54, + "probability": 0.9493 + }, + { + "start": 32392.72, + "end": 32394.96, + "probability": 0.9546 + }, + { + "start": 32395.36, + "end": 32396.1, + "probability": 0.7225 + }, + { + "start": 32396.9, + "end": 32401.82, + "probability": 0.9642 + }, + { + "start": 32402.12, + "end": 32403.56, + "probability": 0.9902 + }, + { + "start": 32403.76, + "end": 32404.56, + "probability": 0.9619 + }, + { + "start": 32404.58, + "end": 32408.02, + "probability": 0.9719 + }, + { + "start": 32408.2, + "end": 32411.82, + "probability": 0.9916 + }, + { + "start": 32412.42, + "end": 32412.42, + "probability": 0.1963 + }, + { + "start": 32412.42, + "end": 32413.46, + "probability": 0.3596 + }, + { + "start": 32413.5, + "end": 32416.5, + "probability": 0.9716 + }, + { + "start": 32416.78, + "end": 32417.27, + "probability": 0.9214 + }, + { + "start": 32417.46, + "end": 32422.18, + "probability": 0.9828 + }, + { + "start": 32422.5, + "end": 32424.04, + "probability": 0.0903 + }, + { + "start": 32424.18, + "end": 32424.18, + "probability": 0.1472 + }, + { + "start": 32424.22, + "end": 32427.34, + "probability": 0.7576 + }, + { + "start": 32427.34, + "end": 32430.5, + "probability": 0.9822 + }, + { + "start": 32430.78, + "end": 32431.62, + "probability": 0.951 + }, + { + "start": 32431.86, + "end": 32433.52, + "probability": 0.9778 + }, + { + "start": 32433.56, + "end": 32434.84, + "probability": 0.9731 + }, + { + "start": 32435.06, + "end": 32436.76, + "probability": 0.795 + }, + { + "start": 32436.86, + "end": 32437.62, + "probability": 0.9229 + }, + { + "start": 32437.86, + "end": 32442.9, + "probability": 0.9447 + }, + { + "start": 32443.62, + "end": 32445.48, + "probability": 0.8717 + }, + { + "start": 32445.66, + "end": 32450.26, + "probability": 0.9789 + }, + { + "start": 32450.74, + "end": 32452.16, + "probability": 0.8061 + }, + { + "start": 32452.5, + "end": 32454.3, + "probability": 0.6437 + }, + { + "start": 32454.56, + "end": 32458.46, + "probability": 0.9813 + }, + { + "start": 32458.94, + "end": 32461.86, + "probability": 0.9786 + }, + { + "start": 32462.04, + "end": 32463.12, + "probability": 0.8886 + }, + { + "start": 32463.4, + "end": 32466.72, + "probability": 0.9947 + }, + { + "start": 32467.1, + "end": 32467.58, + "probability": 0.6366 + }, + { + "start": 32467.68, + "end": 32468.92, + "probability": 0.9655 + }, + { + "start": 32469.34, + "end": 32471.72, + "probability": 0.9929 + }, + { + "start": 32471.82, + "end": 32472.5, + "probability": 0.8092 + }, + { + "start": 32472.56, + "end": 32473.98, + "probability": 0.8473 + }, + { + "start": 32474.2, + "end": 32477.06, + "probability": 0.9905 + }, + { + "start": 32478.86, + "end": 32480.12, + "probability": 0.9697 + }, + { + "start": 32480.58, + "end": 32484.48, + "probability": 0.7319 + }, + { + "start": 32484.56, + "end": 32485.52, + "probability": 0.9634 + }, + { + "start": 32486.26, + "end": 32489.44, + "probability": 0.8633 + }, + { + "start": 32489.82, + "end": 32493.72, + "probability": 0.9946 + }, + { + "start": 32494.04, + "end": 32495.02, + "probability": 0.6511 + }, + { + "start": 32495.56, + "end": 32499.66, + "probability": 0.9606 + }, + { + "start": 32500.22, + "end": 32500.22, + "probability": 0.2709 + }, + { + "start": 32500.22, + "end": 32505.56, + "probability": 0.9628 + }, + { + "start": 32505.56, + "end": 32508.7, + "probability": 0.9993 + }, + { + "start": 32509.3, + "end": 32513.28, + "probability": 0.9061 + }, + { + "start": 32513.28, + "end": 32516.8, + "probability": 0.9941 + }, + { + "start": 32517.2, + "end": 32521.6, + "probability": 0.8825 + }, + { + "start": 32522.0, + "end": 32525.66, + "probability": 0.8286 + }, + { + "start": 32526.38, + "end": 32527.66, + "probability": 0.0468 + }, + { + "start": 32527.66, + "end": 32528.6, + "probability": 0.3764 + }, + { + "start": 32528.6, + "end": 32531.4, + "probability": 0.9229 + }, + { + "start": 32531.68, + "end": 32534.72, + "probability": 0.7826 + }, + { + "start": 32535.32, + "end": 32538.22, + "probability": 0.8115 + }, + { + "start": 32538.36, + "end": 32541.16, + "probability": 0.8773 + }, + { + "start": 32541.16, + "end": 32545.56, + "probability": 0.765 + }, + { + "start": 32546.3, + "end": 32549.04, + "probability": 0.8711 + }, + { + "start": 32549.82, + "end": 32552.3, + "probability": 0.8689 + }, + { + "start": 32552.56, + "end": 32555.84, + "probability": 0.9922 + }, + { + "start": 32556.14, + "end": 32559.38, + "probability": 0.91 + }, + { + "start": 32559.7, + "end": 32561.27, + "probability": 0.8439 + }, + { + "start": 32561.54, + "end": 32562.3, + "probability": 0.4977 + }, + { + "start": 32562.36, + "end": 32563.94, + "probability": 0.9518 + }, + { + "start": 32564.38, + "end": 32569.34, + "probability": 0.99 + }, + { + "start": 32570.32, + "end": 32572.86, + "probability": 0.7737 + }, + { + "start": 32573.22, + "end": 32577.2, + "probability": 0.8959 + }, + { + "start": 32577.42, + "end": 32578.38, + "probability": 0.9526 + }, + { + "start": 32578.74, + "end": 32579.98, + "probability": 0.9762 + }, + { + "start": 32580.58, + "end": 32582.44, + "probability": 0.9406 + }, + { + "start": 32582.9, + "end": 32583.6, + "probability": 0.6874 + }, + { + "start": 32583.74, + "end": 32584.66, + "probability": 0.5879 + }, + { + "start": 32584.72, + "end": 32589.52, + "probability": 0.8792 + }, + { + "start": 32590.9, + "end": 32592.64, + "probability": 0.9132 + }, + { + "start": 32592.74, + "end": 32596.48, + "probability": 0.7794 + }, + { + "start": 32596.48, + "end": 32600.18, + "probability": 0.9825 + }, + { + "start": 32600.52, + "end": 32603.35, + "probability": 0.9973 + }, + { + "start": 32603.88, + "end": 32605.03, + "probability": 0.8094 + }, + { + "start": 32605.84, + "end": 32606.98, + "probability": 0.973 + }, + { + "start": 32607.04, + "end": 32609.42, + "probability": 0.9971 + }, + { + "start": 32610.42, + "end": 32612.4, + "probability": 0.9979 + }, + { + "start": 32612.44, + "end": 32613.66, + "probability": 0.9946 + }, + { + "start": 32614.86, + "end": 32621.92, + "probability": 0.5879 + }, + { + "start": 32622.26, + "end": 32623.76, + "probability": 0.6287 + }, + { + "start": 32624.1, + "end": 32629.34, + "probability": 0.9274 + }, + { + "start": 32629.54, + "end": 32632.22, + "probability": 0.2395 + }, + { + "start": 32632.72, + "end": 32636.16, + "probability": 0.9802 + }, + { + "start": 32636.56, + "end": 32640.48, + "probability": 0.1101 + }, + { + "start": 32640.48, + "end": 32640.74, + "probability": 0.4438 + }, + { + "start": 32640.74, + "end": 32645.2, + "probability": 0.7512 + }, + { + "start": 32645.2, + "end": 32649.24, + "probability": 0.8356 + }, + { + "start": 32649.44, + "end": 32652.94, + "probability": 0.1425 + }, + { + "start": 32653.24, + "end": 32653.72, + "probability": 0.1486 + }, + { + "start": 32653.72, + "end": 32654.22, + "probability": 0.1558 + }, + { + "start": 32654.66, + "end": 32654.66, + "probability": 0.0761 + }, + { + "start": 32654.66, + "end": 32659.56, + "probability": 0.3563 + }, + { + "start": 32659.76, + "end": 32660.62, + "probability": 0.5316 + }, + { + "start": 32660.96, + "end": 32663.13, + "probability": 0.9912 + }, + { + "start": 32665.82, + "end": 32666.12, + "probability": 0.5234 + }, + { + "start": 32666.12, + "end": 32668.44, + "probability": 0.7371 + }, + { + "start": 32668.86, + "end": 32670.76, + "probability": 0.9924 + }, + { + "start": 32670.9, + "end": 32673.64, + "probability": 0.9902 + }, + { + "start": 32674.28, + "end": 32675.66, + "probability": 0.8913 + }, + { + "start": 32675.74, + "end": 32680.76, + "probability": 0.8494 + }, + { + "start": 32680.98, + "end": 32681.78, + "probability": 0.9022 + }, + { + "start": 32682.04, + "end": 32687.46, + "probability": 0.9399 + }, + { + "start": 32687.82, + "end": 32691.68, + "probability": 0.9912 + }, + { + "start": 32691.68, + "end": 32695.76, + "probability": 0.9997 + }, + { + "start": 32696.26, + "end": 32699.6, + "probability": 0.9976 + }, + { + "start": 32699.86, + "end": 32700.9, + "probability": 0.9248 + }, + { + "start": 32700.96, + "end": 32702.49, + "probability": 0.991 + }, + { + "start": 32702.8, + "end": 32705.06, + "probability": 0.0468 + }, + { + "start": 32705.5, + "end": 32708.84, + "probability": 0.6836 + }, + { + "start": 32709.0, + "end": 32712.46, + "probability": 0.8641 + }, + { + "start": 32712.46, + "end": 32716.1, + "probability": 0.9977 + }, + { + "start": 32716.46, + "end": 32721.68, + "probability": 0.9854 + }, + { + "start": 32721.94, + "end": 32724.5, + "probability": 0.999 + }, + { + "start": 32724.5, + "end": 32727.44, + "probability": 0.9627 + }, + { + "start": 32727.78, + "end": 32731.02, + "probability": 0.9662 + }, + { + "start": 32731.2, + "end": 32732.9, + "probability": 0.8158 + }, + { + "start": 32733.16, + "end": 32737.66, + "probability": 0.8406 + }, + { + "start": 32737.78, + "end": 32738.62, + "probability": 0.8627 + }, + { + "start": 32738.9, + "end": 32739.68, + "probability": 0.7806 + }, + { + "start": 32740.82, + "end": 32742.66, + "probability": 0.1924 + }, + { + "start": 32743.4, + "end": 32745.8, + "probability": 0.4026 + }, + { + "start": 32745.9, + "end": 32750.81, + "probability": 0.014 + }, + { + "start": 32756.54, + "end": 32757.72, + "probability": 0.0096 + }, + { + "start": 32761.94, + "end": 32764.22, + "probability": 0.7134 + }, + { + "start": 32765.08, + "end": 32770.28, + "probability": 0.9756 + }, + { + "start": 32770.52, + "end": 32777.7, + "probability": 0.989 + }, + { + "start": 32778.62, + "end": 32780.26, + "probability": 0.6918 + }, + { + "start": 32781.18, + "end": 32784.54, + "probability": 0.8101 + }, + { + "start": 32784.66, + "end": 32788.04, + "probability": 0.3334 + }, + { + "start": 32788.1, + "end": 32788.8, + "probability": 0.3385 + }, + { + "start": 32788.82, + "end": 32790.24, + "probability": 0.9017 + }, + { + "start": 32790.62, + "end": 32791.48, + "probability": 0.7714 + }, + { + "start": 32791.54, + "end": 32791.86, + "probability": 0.5654 + }, + { + "start": 32792.34, + "end": 32793.16, + "probability": 0.7946 + }, + { + "start": 32793.32, + "end": 32795.24, + "probability": 0.8889 + }, + { + "start": 32795.34, + "end": 32798.42, + "probability": 0.9696 + }, + { + "start": 32799.76, + "end": 32804.42, + "probability": 0.8414 + }, + { + "start": 32805.96, + "end": 32810.24, + "probability": 0.8495 + }, + { + "start": 32811.52, + "end": 32815.72, + "probability": 0.9576 + }, + { + "start": 32815.76, + "end": 32819.02, + "probability": 0.8073 + }, + { + "start": 32819.36, + "end": 32820.58, + "probability": 0.5601 + }, + { + "start": 32820.9, + "end": 32822.2, + "probability": 0.727 + }, + { + "start": 32822.88, + "end": 32824.04, + "probability": 0.6028 + }, + { + "start": 32824.54, + "end": 32829.6, + "probability": 0.6307 + }, + { + "start": 32830.18, + "end": 32832.54, + "probability": 0.8686 + }, + { + "start": 32833.14, + "end": 32837.28, + "probability": 0.9436 + }, + { + "start": 32839.12, + "end": 32840.28, + "probability": 0.4597 + }, + { + "start": 32840.8, + "end": 32840.88, + "probability": 0.2345 + }, + { + "start": 32840.88, + "end": 32841.84, + "probability": 0.4493 + }, + { + "start": 32842.02, + "end": 32844.32, + "probability": 0.7983 + }, + { + "start": 32844.42, + "end": 32846.52, + "probability": 0.982 + }, + { + "start": 32846.56, + "end": 32847.34, + "probability": 0.5923 + }, + { + "start": 32847.8, + "end": 32850.28, + "probability": 0.9912 + }, + { + "start": 32850.64, + "end": 32853.6, + "probability": 0.128 + }, + { + "start": 32853.6, + "end": 32855.46, + "probability": 0.7973 + }, + { + "start": 32856.9, + "end": 32864.04, + "probability": 0.8563 + }, + { + "start": 32864.04, + "end": 32868.02, + "probability": 0.9847 + }, + { + "start": 32868.4, + "end": 32873.72, + "probability": 0.0115 + }, + { + "start": 32875.14, + "end": 32876.46, + "probability": 0.0536 + }, + { + "start": 32877.04, + "end": 32879.22, + "probability": 0.0679 + }, + { + "start": 32879.56, + "end": 32880.48, + "probability": 0.2227 + }, + { + "start": 32880.7, + "end": 32880.72, + "probability": 0.0561 + }, + { + "start": 32880.72, + "end": 32880.84, + "probability": 0.0603 + }, + { + "start": 32880.84, + "end": 32888.24, + "probability": 0.7258 + }, + { + "start": 32888.76, + "end": 32888.9, + "probability": 0.2773 + }, + { + "start": 32888.9, + "end": 32889.38, + "probability": 0.0719 + }, + { + "start": 32889.98, + "end": 32890.52, + "probability": 0.0006 + }, + { + "start": 32890.52, + "end": 32890.68, + "probability": 0.0129 + }, + { + "start": 32891.16, + "end": 32893.34, + "probability": 0.1266 + }, + { + "start": 32894.24, + "end": 32900.84, + "probability": 0.9935 + }, + { + "start": 32901.28, + "end": 32902.04, + "probability": 0.4951 + }, + { + "start": 32902.18, + "end": 32908.14, + "probability": 0.8345 + }, + { + "start": 32908.28, + "end": 32909.92, + "probability": 0.6615 + }, + { + "start": 32910.0, + "end": 32910.94, + "probability": 0.3909 + }, + { + "start": 32911.3, + "end": 32914.0, + "probability": 0.3019 + }, + { + "start": 32914.3, + "end": 32917.74, + "probability": 0.9889 + }, + { + "start": 32919.04, + "end": 32922.2, + "probability": 0.7563 + }, + { + "start": 32922.2, + "end": 32925.4, + "probability": 0.9707 + }, + { + "start": 32925.46, + "end": 32928.74, + "probability": 0.7517 + }, + { + "start": 32928.98, + "end": 32932.16, + "probability": 0.7026 + }, + { + "start": 32932.82, + "end": 32939.38, + "probability": 0.8428 + }, + { + "start": 32939.46, + "end": 32945.47, + "probability": 0.9059 + }, + { + "start": 32946.58, + "end": 32947.39, + "probability": 0.228 + }, + { + "start": 32948.56, + "end": 32948.56, + "probability": 0.027 + }, + { + "start": 32948.71, + "end": 32954.54, + "probability": 0.6425 + }, + { + "start": 32955.02, + "end": 32957.92, + "probability": 0.9938 + }, + { + "start": 32958.4, + "end": 32959.76, + "probability": 0.9098 + }, + { + "start": 32959.86, + "end": 32960.56, + "probability": 0.9087 + }, + { + "start": 32961.08, + "end": 32962.9, + "probability": 0.9114 + }, + { + "start": 32963.02, + "end": 32969.74, + "probability": 0.9966 + }, + { + "start": 32970.3, + "end": 32973.72, + "probability": 0.9775 + }, + { + "start": 32973.72, + "end": 32976.8, + "probability": 0.9782 + }, + { + "start": 32977.18, + "end": 32977.75, + "probability": 0.8599 + }, + { + "start": 32978.62, + "end": 32981.22, + "probability": 0.9863 + }, + { + "start": 32981.32, + "end": 32986.36, + "probability": 0.8465 + }, + { + "start": 32986.98, + "end": 32987.78, + "probability": 0.5766 + }, + { + "start": 32987.78, + "end": 32993.24, + "probability": 0.9763 + }, + { + "start": 32993.8, + "end": 32999.62, + "probability": 0.9596 + }, + { + "start": 32999.64, + "end": 33002.6, + "probability": 0.8511 + }, + { + "start": 33002.88, + "end": 33003.38, + "probability": 0.4712 + }, + { + "start": 33003.66, + "end": 33004.64, + "probability": 0.8788 + }, + { + "start": 33004.92, + "end": 33005.56, + "probability": 0.8246 + }, + { + "start": 33006.28, + "end": 33007.28, + "probability": 0.6965 + }, + { + "start": 33007.64, + "end": 33008.12, + "probability": 0.6881 + }, + { + "start": 33010.12, + "end": 33012.2, + "probability": 0.514 + }, + { + "start": 33013.46, + "end": 33015.94, + "probability": 0.1043 + }, + { + "start": 33016.88, + "end": 33019.08, + "probability": 0.7378 + }, + { + "start": 33019.61, + "end": 33021.1, + "probability": 0.687 + }, + { + "start": 33021.54, + "end": 33026.28, + "probability": 0.4843 + }, + { + "start": 33026.28, + "end": 33028.3, + "probability": 0.1726 + }, + { + "start": 33028.4, + "end": 33030.24, + "probability": 0.4007 + }, + { + "start": 33030.24, + "end": 33032.4, + "probability": 0.0697 + }, + { + "start": 33032.54, + "end": 33033.46, + "probability": 0.5931 + }, + { + "start": 33033.68, + "end": 33034.36, + "probability": 0.755 + }, + { + "start": 33034.48, + "end": 33038.36, + "probability": 0.9233 + }, + { + "start": 33038.46, + "end": 33043.9, + "probability": 0.9375 + }, + { + "start": 33044.4, + "end": 33045.34, + "probability": 0.9316 + }, + { + "start": 33046.88, + "end": 33047.1, + "probability": 0.0479 + }, + { + "start": 33047.1, + "end": 33048.69, + "probability": 0.7502 + }, + { + "start": 33049.14, + "end": 33052.32, + "probability": 0.8741 + }, + { + "start": 33053.06, + "end": 33059.34, + "probability": 0.9534 + }, + { + "start": 33060.38, + "end": 33063.46, + "probability": 0.8381 + }, + { + "start": 33063.76, + "end": 33066.44, + "probability": 0.8972 + }, + { + "start": 33066.44, + "end": 33067.7, + "probability": 0.5614 + }, + { + "start": 33067.7, + "end": 33068.2, + "probability": 0.764 + }, + { + "start": 33068.56, + "end": 33069.38, + "probability": 0.8168 + }, + { + "start": 33072.5, + "end": 33075.04, + "probability": 0.7931 + }, + { + "start": 33076.14, + "end": 33080.7, + "probability": 0.2967 + }, + { + "start": 33081.96, + "end": 33081.96, + "probability": 0.2392 + }, + { + "start": 33081.96, + "end": 33082.45, + "probability": 0.1356 + }, + { + "start": 33084.94, + "end": 33087.06, + "probability": 0.1142 + }, + { + "start": 33087.36, + "end": 33088.48, + "probability": 0.6826 + }, + { + "start": 33089.01, + "end": 33091.17, + "probability": 0.3461 + }, + { + "start": 33091.6, + "end": 33093.9, + "probability": 0.1448 + }, + { + "start": 33094.72, + "end": 33096.2, + "probability": 0.4349 + }, + { + "start": 33096.4, + "end": 33098.02, + "probability": 0.5962 + }, + { + "start": 33098.4, + "end": 33101.02, + "probability": 0.932 + }, + { + "start": 33101.8, + "end": 33105.42, + "probability": 0.9914 + }, + { + "start": 33105.56, + "end": 33106.83, + "probability": 0.833 + }, + { + "start": 33107.68, + "end": 33110.18, + "probability": 0.9353 + }, + { + "start": 33110.64, + "end": 33115.3, + "probability": 0.9979 + }, + { + "start": 33116.1, + "end": 33116.72, + "probability": 0.8745 + }, + { + "start": 33116.84, + "end": 33117.46, + "probability": 0.6315 + }, + { + "start": 33117.62, + "end": 33122.14, + "probability": 0.9911 + }, + { + "start": 33122.66, + "end": 33126.88, + "probability": 0.7844 + }, + { + "start": 33127.8, + "end": 33130.68, + "probability": 0.7825 + }, + { + "start": 33131.36, + "end": 33136.6, + "probability": 0.9953 + }, + { + "start": 33137.36, + "end": 33138.36, + "probability": 0.6658 + }, + { + "start": 33138.92, + "end": 33143.5, + "probability": 0.9758 + }, + { + "start": 33144.28, + "end": 33147.0, + "probability": 0.9944 + }, + { + "start": 33147.66, + "end": 33152.2, + "probability": 0.9924 + }, + { + "start": 33152.64, + "end": 33154.02, + "probability": 0.323 + }, + { + "start": 33154.52, + "end": 33154.62, + "probability": 0.0021 + }, + { + "start": 33154.62, + "end": 33155.9, + "probability": 0.7369 + }, + { + "start": 33156.44, + "end": 33157.6, + "probability": 0.6673 + }, + { + "start": 33157.64, + "end": 33158.2, + "probability": 0.7291 + }, + { + "start": 33158.2, + "end": 33159.4, + "probability": 0.8534 + }, + { + "start": 33159.68, + "end": 33163.84, + "probability": 0.9944 + }, + { + "start": 33163.92, + "end": 33169.6, + "probability": 0.9905 + }, + { + "start": 33170.7, + "end": 33172.22, + "probability": 0.7973 + }, + { + "start": 33172.72, + "end": 33175.46, + "probability": 0.9971 + }, + { + "start": 33175.52, + "end": 33176.3, + "probability": 0.6265 + }, + { + "start": 33176.66, + "end": 33177.88, + "probability": 0.8039 + }, + { + "start": 33182.5, + "end": 33184.36, + "probability": 0.7273 + }, + { + "start": 33184.92, + "end": 33187.6, + "probability": 0.9878 + }, + { + "start": 33187.9, + "end": 33189.46, + "probability": 0.8644 + }, + { + "start": 33189.6, + "end": 33190.4, + "probability": 0.873 + }, + { + "start": 33190.82, + "end": 33191.8, + "probability": 0.9282 + }, + { + "start": 33191.82, + "end": 33195.0, + "probability": 0.99 + }, + { + "start": 33195.3, + "end": 33196.72, + "probability": 0.9216 + }, + { + "start": 33196.86, + "end": 33198.46, + "probability": 0.8193 + }, + { + "start": 33198.6, + "end": 33199.82, + "probability": 0.3956 + }, + { + "start": 33200.2, + "end": 33200.98, + "probability": 0.8054 + }, + { + "start": 33201.04, + "end": 33201.94, + "probability": 0.9299 + }, + { + "start": 33201.98, + "end": 33206.44, + "probability": 0.9524 + }, + { + "start": 33206.6, + "end": 33211.46, + "probability": 0.9273 + }, + { + "start": 33211.78, + "end": 33215.1, + "probability": 0.8259 + }, + { + "start": 33215.64, + "end": 33220.86, + "probability": 0.9663 + }, + { + "start": 33221.36, + "end": 33222.54, + "probability": 0.9092 + }, + { + "start": 33223.0, + "end": 33227.08, + "probability": 0.7919 + }, + { + "start": 33227.44, + "end": 33229.84, + "probability": 0.9392 + }, + { + "start": 33230.0, + "end": 33233.46, + "probability": 0.7151 + }, + { + "start": 33233.62, + "end": 33234.12, + "probability": 0.5247 + }, + { + "start": 33234.22, + "end": 33235.24, + "probability": 0.8441 + }, + { + "start": 33236.56, + "end": 33239.64, + "probability": 0.7905 + }, + { + "start": 33239.72, + "end": 33241.33, + "probability": 0.875 + }, + { + "start": 33241.42, + "end": 33242.04, + "probability": 0.6637 + }, + { + "start": 33259.42, + "end": 33260.04, + "probability": 0.7677 + }, + { + "start": 33261.44, + "end": 33261.44, + "probability": 0.4803 + }, + { + "start": 33261.44, + "end": 33263.86, + "probability": 0.6545 + }, + { + "start": 33263.96, + "end": 33268.4, + "probability": 0.9757 + }, + { + "start": 33270.28, + "end": 33274.54, + "probability": 0.8462 + }, + { + "start": 33275.4, + "end": 33276.2, + "probability": 0.0346 + }, + { + "start": 33276.2, + "end": 33276.9, + "probability": 0.4369 + }, + { + "start": 33277.72, + "end": 33278.08, + "probability": 0.5852 + }, + { + "start": 33279.68, + "end": 33280.18, + "probability": 0.5098 + }, + { + "start": 33282.1, + "end": 33283.18, + "probability": 0.6365 + }, + { + "start": 33298.8, + "end": 33299.18, + "probability": 0.773 + }, + { + "start": 33301.64, + "end": 33302.96, + "probability": 0.5762 + }, + { + "start": 33303.16, + "end": 33303.16, + "probability": 0.348 + }, + { + "start": 33303.16, + "end": 33303.72, + "probability": 0.7353 + }, + { + "start": 33303.84, + "end": 33304.9, + "probability": 0.5931 + }, + { + "start": 33305.7, + "end": 33310.76, + "probability": 0.9777 + }, + { + "start": 33310.76, + "end": 33316.72, + "probability": 0.9913 + }, + { + "start": 33316.86, + "end": 33319.08, + "probability": 0.9909 + }, + { + "start": 33319.08, + "end": 33321.96, + "probability": 0.998 + }, + { + "start": 33322.82, + "end": 33323.2, + "probability": 0.8024 + }, + { + "start": 33323.38, + "end": 33324.26, + "probability": 0.9497 + }, + { + "start": 33325.1, + "end": 33330.46, + "probability": 0.8688 + }, + { + "start": 33330.9, + "end": 33333.68, + "probability": 0.8943 + }, + { + "start": 33333.68, + "end": 33333.82, + "probability": 0.2365 + }, + { + "start": 33334.96, + "end": 33335.82, + "probability": 0.5566 + }, + { + "start": 33335.96, + "end": 33336.64, + "probability": 0.7601 + }, + { + "start": 33336.86, + "end": 33339.86, + "probability": 0.5414 + }, + { + "start": 33340.84, + "end": 33342.88, + "probability": 0.8765 + }, + { + "start": 33343.0, + "end": 33344.86, + "probability": 0.6275 + }, + { + "start": 33345.22, + "end": 33347.42, + "probability": 0.4518 + }, + { + "start": 33350.22, + "end": 33351.82, + "probability": 0.388 + }, + { + "start": 33352.04, + "end": 33353.08, + "probability": 0.7437 + }, + { + "start": 33353.28, + "end": 33361.0, + "probability": 0.9712 + }, + { + "start": 33361.6, + "end": 33365.64, + "probability": 0.9921 + }, + { + "start": 33365.64, + "end": 33370.58, + "probability": 0.9976 + }, + { + "start": 33371.16, + "end": 33373.52, + "probability": 0.9969 + }, + { + "start": 33374.06, + "end": 33376.9, + "probability": 0.9342 + }, + { + "start": 33377.44, + "end": 33380.16, + "probability": 0.9913 + }, + { + "start": 33381.2, + "end": 33383.94, + "probability": 0.9961 + }, + { + "start": 33384.16, + "end": 33384.76, + "probability": 0.808 + }, + { + "start": 33385.06, + "end": 33386.66, + "probability": 0.9695 + }, + { + "start": 33386.7, + "end": 33387.76, + "probability": 0.9713 + }, + { + "start": 33389.96, + "end": 33392.4, + "probability": 0.9627 + }, + { + "start": 33392.5, + "end": 33397.66, + "probability": 0.9937 + }, + { + "start": 33397.66, + "end": 33402.68, + "probability": 0.9971 + }, + { + "start": 33403.32, + "end": 33406.36, + "probability": 0.9979 + }, + { + "start": 33406.5, + "end": 33409.32, + "probability": 0.9976 + }, + { + "start": 33409.86, + "end": 33411.06, + "probability": 0.9185 + }, + { + "start": 33411.28, + "end": 33412.84, + "probability": 0.9983 + }, + { + "start": 33413.32, + "end": 33415.74, + "probability": 0.9863 + }, + { + "start": 33416.56, + "end": 33418.86, + "probability": 0.9731 + }, + { + "start": 33419.54, + "end": 33423.14, + "probability": 0.984 + }, + { + "start": 33424.46, + "end": 33428.66, + "probability": 0.9958 + }, + { + "start": 33428.66, + "end": 33432.12, + "probability": 0.998 + }, + { + "start": 33433.4, + "end": 33434.9, + "probability": 0.8483 + }, + { + "start": 33435.46, + "end": 33437.22, + "probability": 0.9906 + }, + { + "start": 33437.98, + "end": 33439.07, + "probability": 0.9336 + }, + { + "start": 33439.6, + "end": 33441.68, + "probability": 0.9911 + }, + { + "start": 33442.08, + "end": 33443.64, + "probability": 0.9969 + }, + { + "start": 33443.7, + "end": 33445.64, + "probability": 0.9951 + }, + { + "start": 33446.26, + "end": 33448.12, + "probability": 0.7978 + }, + { + "start": 33448.64, + "end": 33450.08, + "probability": 0.974 + }, + { + "start": 33451.16, + "end": 33451.8, + "probability": 0.49 + }, + { + "start": 33452.04, + "end": 33455.98, + "probability": 0.9723 + }, + { + "start": 33456.66, + "end": 33458.22, + "probability": 0.9882 + }, + { + "start": 33458.8, + "end": 33464.52, + "probability": 0.9594 + }, + { + "start": 33464.54, + "end": 33469.04, + "probability": 0.7881 + }, + { + "start": 33469.18, + "end": 33470.72, + "probability": 0.6624 + }, + { + "start": 33470.98, + "end": 33474.38, + "probability": 0.9727 + }, + { + "start": 33474.68, + "end": 33476.06, + "probability": 0.9046 + }, + { + "start": 33476.54, + "end": 33479.3, + "probability": 0.9821 + }, + { + "start": 33479.82, + "end": 33482.24, + "probability": 0.9844 + }, + { + "start": 33482.58, + "end": 33484.04, + "probability": 0.9851 + }, + { + "start": 33484.12, + "end": 33484.92, + "probability": 0.478 + }, + { + "start": 33485.26, + "end": 33485.82, + "probability": 0.9182 + }, + { + "start": 33486.52, + "end": 33487.54, + "probability": 0.9834 + }, + { + "start": 33487.64, + "end": 33489.62, + "probability": 0.9767 + }, + { + "start": 33490.38, + "end": 33491.44, + "probability": 0.8133 + }, + { + "start": 33491.7, + "end": 33496.62, + "probability": 0.98 + }, + { + "start": 33497.28, + "end": 33502.08, + "probability": 0.9902 + }, + { + "start": 33502.56, + "end": 33504.4, + "probability": 0.8801 + }, + { + "start": 33504.98, + "end": 33507.26, + "probability": 0.9941 + }, + { + "start": 33507.78, + "end": 33510.08, + "probability": 0.8122 + }, + { + "start": 33511.58, + "end": 33514.22, + "probability": 0.0922 + }, + { + "start": 33514.33, + "end": 33518.02, + "probability": 0.9794 + }, + { + "start": 33518.04, + "end": 33518.5, + "probability": 0.5625 + }, + { + "start": 33518.5, + "end": 33518.58, + "probability": 0.5084 + }, + { + "start": 33518.58, + "end": 33520.32, + "probability": 0.5284 + }, + { + "start": 33520.4, + "end": 33522.18, + "probability": 0.5621 + }, + { + "start": 33537.38, + "end": 33538.02, + "probability": 0.3737 + }, + { + "start": 33538.2, + "end": 33538.76, + "probability": 0.3665 + }, + { + "start": 33538.76, + "end": 33539.54, + "probability": 0.4673 + }, + { + "start": 33539.82, + "end": 33545.28, + "probability": 0.9591 + }, + { + "start": 33546.52, + "end": 33549.04, + "probability": 0.937 + }, + { + "start": 33550.0, + "end": 33553.06, + "probability": 0.9756 + }, + { + "start": 33553.88, + "end": 33559.58, + "probability": 0.7797 + }, + { + "start": 33559.62, + "end": 33560.44, + "probability": 0.8767 + }, + { + "start": 33561.26, + "end": 33566.8, + "probability": 0.9507 + }, + { + "start": 33567.38, + "end": 33577.66, + "probability": 0.9487 + }, + { + "start": 33578.5, + "end": 33580.22, + "probability": 0.89 + }, + { + "start": 33580.22, + "end": 33585.48, + "probability": 0.9524 + }, + { + "start": 33585.82, + "end": 33588.47, + "probability": 0.8948 + }, + { + "start": 33588.8, + "end": 33590.72, + "probability": 0.7845 + }, + { + "start": 33590.94, + "end": 33591.96, + "probability": 0.4598 + }, + { + "start": 33592.1, + "end": 33594.59, + "probability": 0.9424 + }, + { + "start": 33595.1, + "end": 33597.9, + "probability": 0.873 + }, + { + "start": 33598.26, + "end": 33600.6, + "probability": 0.9709 + }, + { + "start": 33601.38, + "end": 33608.1, + "probability": 0.8289 + }, + { + "start": 33608.48, + "end": 33613.18, + "probability": 0.9951 + }, + { + "start": 33613.28, + "end": 33616.54, + "probability": 0.9895 + }, + { + "start": 33616.54, + "end": 33619.8, + "probability": 0.9855 + }, + { + "start": 33620.22, + "end": 33620.9, + "probability": 0.6739 + }, + { + "start": 33621.02, + "end": 33622.08, + "probability": 0.7543 + }, + { + "start": 33622.34, + "end": 33624.76, + "probability": 0.9624 + }, + { + "start": 33625.5, + "end": 33629.54, + "probability": 0.8951 + }, + { + "start": 33630.46, + "end": 33631.46, + "probability": 0.9551 + }, + { + "start": 33631.62, + "end": 33634.98, + "probability": 0.9954 + }, + { + "start": 33635.1, + "end": 33636.12, + "probability": 0.8104 + }, + { + "start": 33636.7, + "end": 33638.68, + "probability": 0.5136 + }, + { + "start": 33639.38, + "end": 33642.1, + "probability": 0.9541 + }, + { + "start": 33642.4, + "end": 33644.28, + "probability": 0.8819 + }, + { + "start": 33644.38, + "end": 33648.66, + "probability": 0.8831 + }, + { + "start": 33648.86, + "end": 33651.71, + "probability": 0.8027 + }, + { + "start": 33652.08, + "end": 33654.1, + "probability": 0.8267 + }, + { + "start": 33654.18, + "end": 33655.64, + "probability": 0.9277 + }, + { + "start": 33656.18, + "end": 33658.0, + "probability": 0.9059 + }, + { + "start": 33658.1, + "end": 33659.96, + "probability": 0.9549 + }, + { + "start": 33660.18, + "end": 33663.04, + "probability": 0.9271 + }, + { + "start": 33663.1, + "end": 33665.32, + "probability": 0.9222 + }, + { + "start": 33665.52, + "end": 33667.24, + "probability": 0.9336 + }, + { + "start": 33667.34, + "end": 33668.78, + "probability": 0.9884 + }, + { + "start": 33668.96, + "end": 33671.18, + "probability": 0.876 + }, + { + "start": 33671.32, + "end": 33672.66, + "probability": 0.8984 + }, + { + "start": 33672.86, + "end": 33674.64, + "probability": 0.9287 + }, + { + "start": 33674.72, + "end": 33675.74, + "probability": 0.7032 + }, + { + "start": 33676.0, + "end": 33678.36, + "probability": 0.873 + }, + { + "start": 33678.46, + "end": 33682.0, + "probability": 0.512 + }, + { + "start": 33682.08, + "end": 33683.18, + "probability": 0.7431 + }, + { + "start": 33683.32, + "end": 33687.6, + "probability": 0.9845 + }, + { + "start": 33687.86, + "end": 33691.54, + "probability": 0.9771 + }, + { + "start": 33692.04, + "end": 33695.96, + "probability": 0.9951 + }, + { + "start": 33696.1, + "end": 33698.52, + "probability": 0.8235 + }, + { + "start": 33698.88, + "end": 33701.18, + "probability": 0.9313 + }, + { + "start": 33701.42, + "end": 33705.74, + "probability": 0.9927 + }, + { + "start": 33705.76, + "end": 33708.8, + "probability": 0.8135 + }, + { + "start": 33709.02, + "end": 33709.94, + "probability": 0.7001 + }, + { + "start": 33710.08, + "end": 33711.44, + "probability": 0.9907 + }, + { + "start": 33711.62, + "end": 33714.34, + "probability": 0.8261 + }, + { + "start": 33714.62, + "end": 33716.31, + "probability": 0.987 + }, + { + "start": 33716.64, + "end": 33721.88, + "probability": 0.9775 + }, + { + "start": 33721.98, + "end": 33724.48, + "probability": 0.7872 + }, + { + "start": 33724.52, + "end": 33725.6, + "probability": 0.8852 + }, + { + "start": 33725.66, + "end": 33730.28, + "probability": 0.9572 + }, + { + "start": 33730.4, + "end": 33730.7, + "probability": 0.7326 + }, + { + "start": 33730.8, + "end": 33731.4, + "probability": 0.6442 + }, + { + "start": 33732.14, + "end": 33732.9, + "probability": 0.8798 + }, + { + "start": 33739.22, + "end": 33743.2, + "probability": 0.9138 + }, + { + "start": 33745.52, + "end": 33747.16, + "probability": 0.722 + }, + { + "start": 33748.84, + "end": 33751.26, + "probability": 0.9772 + }, + { + "start": 33763.86, + "end": 33765.12, + "probability": 0.5913 + }, + { + "start": 33768.42, + "end": 33769.04, + "probability": 0.7983 + }, + { + "start": 33770.7, + "end": 33775.48, + "probability": 0.7877 + }, + { + "start": 33775.48, + "end": 33781.9, + "probability": 0.918 + }, + { + "start": 33781.94, + "end": 33783.36, + "probability": 0.854 + }, + { + "start": 33784.7, + "end": 33786.06, + "probability": 0.5808 + }, + { + "start": 33787.08, + "end": 33789.28, + "probability": 0.8511 + }, + { + "start": 33790.16, + "end": 33792.4, + "probability": 0.9466 + }, + { + "start": 33794.0, + "end": 33796.54, + "probability": 0.9705 + }, + { + "start": 33799.36, + "end": 33804.24, + "probability": 0.9524 + }, + { + "start": 33804.6, + "end": 33806.28, + "probability": 0.6345 + }, + { + "start": 33807.18, + "end": 33814.42, + "probability": 0.9851 + }, + { + "start": 33814.42, + "end": 33820.52, + "probability": 0.9988 + }, + { + "start": 33822.76, + "end": 33825.6, + "probability": 0.7848 + }, + { + "start": 33826.26, + "end": 33830.62, + "probability": 0.7511 + }, + { + "start": 33832.02, + "end": 33834.62, + "probability": 0.605 + }, + { + "start": 33835.26, + "end": 33836.54, + "probability": 0.7909 + }, + { + "start": 33837.34, + "end": 33841.5, + "probability": 0.9954 + }, + { + "start": 33843.12, + "end": 33844.4, + "probability": 0.897 + }, + { + "start": 33845.36, + "end": 33848.92, + "probability": 0.8323 + }, + { + "start": 33848.92, + "end": 33852.38, + "probability": 0.9935 + }, + { + "start": 33853.0, + "end": 33859.94, + "probability": 0.9866 + }, + { + "start": 33860.34, + "end": 33864.14, + "probability": 0.968 + }, + { + "start": 33864.14, + "end": 33867.7, + "probability": 0.9877 + }, + { + "start": 33868.22, + "end": 33869.4, + "probability": 0.6787 + }, + { + "start": 33870.3, + "end": 33872.6, + "probability": 0.976 + }, + { + "start": 33872.6, + "end": 33875.46, + "probability": 0.9571 + }, + { + "start": 33875.6, + "end": 33879.36, + "probability": 0.9756 + }, + { + "start": 33879.86, + "end": 33880.34, + "probability": 0.6083 + }, + { + "start": 33880.94, + "end": 33881.92, + "probability": 0.8165 + }, + { + "start": 33882.7, + "end": 33884.1, + "probability": 0.6632 + }, + { + "start": 33884.14, + "end": 33888.42, + "probability": 0.9924 + }, + { + "start": 33888.54, + "end": 33890.48, + "probability": 0.9922 + }, + { + "start": 33890.94, + "end": 33893.8, + "probability": 0.9924 + }, + { + "start": 33893.8, + "end": 33897.98, + "probability": 0.9155 + }, + { + "start": 33898.06, + "end": 33899.02, + "probability": 0.7025 + }, + { + "start": 33900.04, + "end": 33908.04, + "probability": 0.9918 + }, + { + "start": 33908.66, + "end": 33911.86, + "probability": 0.9919 + }, + { + "start": 33913.06, + "end": 33913.3, + "probability": 0.206 + }, + { + "start": 33914.36, + "end": 33915.72, + "probability": 0.9376 + }, + { + "start": 33916.4, + "end": 33920.1, + "probability": 0.994 + }, + { + "start": 33920.82, + "end": 33921.78, + "probability": 0.7439 + }, + { + "start": 33922.4, + "end": 33926.68, + "probability": 0.9725 + }, + { + "start": 33928.5, + "end": 33929.0, + "probability": 0.0228 + }, + { + "start": 33930.72, + "end": 33934.84, + "probability": 0.8817 + }, + { + "start": 33935.62, + "end": 33937.72, + "probability": 0.8557 + }, + { + "start": 33938.18, + "end": 33939.14, + "probability": 0.8315 + }, + { + "start": 33939.98, + "end": 33941.72, + "probability": 0.8158 + }, + { + "start": 33943.28, + "end": 33944.76, + "probability": 0.7435 + }, + { + "start": 33946.0, + "end": 33947.14, + "probability": 0.8856 + }, + { + "start": 33947.66, + "end": 33952.48, + "probability": 0.8134 + }, + { + "start": 33953.48, + "end": 33954.24, + "probability": 0.8668 + }, + { + "start": 33954.42, + "end": 33956.42, + "probability": 0.8032 + }, + { + "start": 33956.56, + "end": 33958.42, + "probability": 0.9971 + }, + { + "start": 33959.44, + "end": 33962.68, + "probability": 0.8623 + }, + { + "start": 33964.67, + "end": 33969.36, + "probability": 0.9697 + }, + { + "start": 33969.5, + "end": 33971.28, + "probability": 0.9861 + }, + { + "start": 33971.8, + "end": 33972.88, + "probability": 0.9911 + }, + { + "start": 33974.16, + "end": 33975.52, + "probability": 0.6035 + }, + { + "start": 33976.9, + "end": 33983.14, + "probability": 0.9929 + }, + { + "start": 33983.68, + "end": 33983.94, + "probability": 0.9258 + }, + { + "start": 33984.62, + "end": 33985.51, + "probability": 0.6839 + }, + { + "start": 33986.18, + "end": 33989.82, + "probability": 0.8276 + }, + { + "start": 33990.44, + "end": 33992.82, + "probability": 0.7464 + }, + { + "start": 33993.46, + "end": 33996.04, + "probability": 0.5034 + }, + { + "start": 33997.76, + "end": 33999.82, + "probability": 0.7816 + }, + { + "start": 34000.86, + "end": 34006.14, + "probability": 0.8661 + }, + { + "start": 34007.12, + "end": 34008.34, + "probability": 0.8424 + }, + { + "start": 34008.86, + "end": 34010.22, + "probability": 0.9065 + }, + { + "start": 34011.06, + "end": 34012.64, + "probability": 0.906 + }, + { + "start": 34013.58, + "end": 34014.86, + "probability": 0.8074 + }, + { + "start": 34015.6, + "end": 34019.38, + "probability": 0.9407 + }, + { + "start": 34020.6, + "end": 34020.76, + "probability": 0.8672 + }, + { + "start": 34021.38, + "end": 34022.68, + "probability": 0.5154 + }, + { + "start": 34023.5, + "end": 34027.06, + "probability": 0.9666 + }, + { + "start": 34027.66, + "end": 34029.56, + "probability": 0.9623 + }, + { + "start": 34030.46, + "end": 34032.62, + "probability": 0.8279 + }, + { + "start": 34033.3, + "end": 34035.96, + "probability": 0.9786 + }, + { + "start": 34037.12, + "end": 34039.09, + "probability": 0.5231 + }, + { + "start": 34039.58, + "end": 34047.74, + "probability": 0.8581 + }, + { + "start": 34048.14, + "end": 34052.4, + "probability": 0.8805 + }, + { + "start": 34052.5, + "end": 34056.08, + "probability": 0.9883 + }, + { + "start": 34056.72, + "end": 34058.24, + "probability": 0.766 + }, + { + "start": 34058.7, + "end": 34061.2, + "probability": 0.6066 + }, + { + "start": 34061.28, + "end": 34061.28, + "probability": 0.4264 + }, + { + "start": 34061.4, + "end": 34064.32, + "probability": 0.5786 + }, + { + "start": 34064.72, + "end": 34070.5, + "probability": 0.9475 + }, + { + "start": 34070.58, + "end": 34071.46, + "probability": 0.3529 + }, + { + "start": 34071.76, + "end": 34073.0, + "probability": 0.625 + }, + { + "start": 34073.52, + "end": 34073.78, + "probability": 0.8794 + }, + { + "start": 34073.96, + "end": 34075.2, + "probability": 0.9559 + }, + { + "start": 34075.66, + "end": 34076.62, + "probability": 0.4998 + }, + { + "start": 34076.98, + "end": 34077.26, + "probability": 0.9642 + }, + { + "start": 34077.66, + "end": 34080.54, + "probability": 0.9739 + }, + { + "start": 34080.54, + "end": 34084.5, + "probability": 0.9741 + }, + { + "start": 34084.92, + "end": 34086.38, + "probability": 0.6696 + }, + { + "start": 34086.44, + "end": 34090.62, + "probability": 0.9954 + }, + { + "start": 34090.9, + "end": 34095.36, + "probability": 0.979 + }, + { + "start": 34095.36, + "end": 34101.3, + "probability": 0.9937 + }, + { + "start": 34101.3, + "end": 34107.5, + "probability": 0.9664 + }, + { + "start": 34109.62, + "end": 34110.34, + "probability": 0.8625 + }, + { + "start": 34111.12, + "end": 34114.38, + "probability": 0.9918 + }, + { + "start": 34114.5, + "end": 34118.38, + "probability": 0.9543 + }, + { + "start": 34119.18, + "end": 34122.36, + "probability": 0.9824 + }, + { + "start": 34122.9, + "end": 34126.92, + "probability": 0.9458 + }, + { + "start": 34128.12, + "end": 34132.44, + "probability": 0.9906 + }, + { + "start": 34133.4, + "end": 34136.96, + "probability": 0.9785 + }, + { + "start": 34136.96, + "end": 34140.1, + "probability": 0.9758 + }, + { + "start": 34141.06, + "end": 34144.46, + "probability": 0.9565 + }, + { + "start": 34145.08, + "end": 34148.28, + "probability": 0.9448 + }, + { + "start": 34149.14, + "end": 34154.5, + "probability": 0.9545 + }, + { + "start": 34155.14, + "end": 34161.02, + "probability": 0.8215 + }, + { + "start": 34161.44, + "end": 34162.02, + "probability": 0.5375 + }, + { + "start": 34162.68, + "end": 34164.98, + "probability": 0.851 + }, + { + "start": 34165.52, + "end": 34168.52, + "probability": 0.6966 + }, + { + "start": 34169.04, + "end": 34172.48, + "probability": 0.9453 + }, + { + "start": 34172.94, + "end": 34175.06, + "probability": 0.9198 + }, + { + "start": 34175.8, + "end": 34177.6, + "probability": 0.9796 + }, + { + "start": 34177.76, + "end": 34183.44, + "probability": 0.9869 + }, + { + "start": 34183.44, + "end": 34187.84, + "probability": 0.9157 + }, + { + "start": 34188.26, + "end": 34189.72, + "probability": 0.7344 + }, + { + "start": 34189.88, + "end": 34190.2, + "probability": 0.7749 + }, + { + "start": 34190.68, + "end": 34194.28, + "probability": 0.9786 + }, + { + "start": 34194.76, + "end": 34198.54, + "probability": 0.988 + }, + { + "start": 34198.54, + "end": 34201.86, + "probability": 0.9526 + }, + { + "start": 34201.94, + "end": 34202.36, + "probability": 0.8034 + }, + { + "start": 34202.8, + "end": 34203.72, + "probability": 0.861 + }, + { + "start": 34204.3, + "end": 34209.34, + "probability": 0.9816 + }, + { + "start": 34209.76, + "end": 34211.89, + "probability": 0.8013 + }, + { + "start": 34212.64, + "end": 34217.86, + "probability": 0.9435 + }, + { + "start": 34218.48, + "end": 34220.52, + "probability": 0.8717 + }, + { + "start": 34220.82, + "end": 34223.76, + "probability": 0.8969 + }, + { + "start": 34223.84, + "end": 34228.72, + "probability": 0.9866 + }, + { + "start": 34228.72, + "end": 34235.76, + "probability": 0.9812 + }, + { + "start": 34236.64, + "end": 34240.04, + "probability": 0.9957 + }, + { + "start": 34240.52, + "end": 34241.84, + "probability": 0.8566 + }, + { + "start": 34242.28, + "end": 34246.44, + "probability": 0.8657 + }, + { + "start": 34246.8, + "end": 34252.4, + "probability": 0.9514 + }, + { + "start": 34252.76, + "end": 34258.14, + "probability": 0.9972 + }, + { + "start": 34258.6, + "end": 34261.1, + "probability": 0.9419 + }, + { + "start": 34261.36, + "end": 34261.74, + "probability": 0.4943 + }, + { + "start": 34262.48, + "end": 34269.1, + "probability": 0.9654 + }, + { + "start": 34270.08, + "end": 34270.8, + "probability": 0.5693 + }, + { + "start": 34271.7, + "end": 34273.92, + "probability": 0.9294 + }, + { + "start": 34274.78, + "end": 34278.38, + "probability": 0.7001 + }, + { + "start": 34278.5, + "end": 34281.98, + "probability": 0.8569 + }, + { + "start": 34282.06, + "end": 34282.44, + "probability": 0.7092 + }, + { + "start": 34282.56, + "end": 34283.44, + "probability": 0.6228 + }, + { + "start": 34283.92, + "end": 34286.46, + "probability": 0.9925 + }, + { + "start": 34286.68, + "end": 34288.22, + "probability": 0.9722 + }, + { + "start": 34288.36, + "end": 34291.3, + "probability": 0.9423 + }, + { + "start": 34292.08, + "end": 34295.94, + "probability": 0.8683 + }, + { + "start": 34296.02, + "end": 34296.53, + "probability": 0.8237 + }, + { + "start": 34296.7, + "end": 34297.56, + "probability": 0.6786 + }, + { + "start": 34297.8, + "end": 34298.5, + "probability": 0.657 + }, + { + "start": 34298.54, + "end": 34298.94, + "probability": 0.9375 + }, + { + "start": 34299.14, + "end": 34302.68, + "probability": 0.9916 + }, + { + "start": 34302.88, + "end": 34304.04, + "probability": 0.2835 + }, + { + "start": 34304.64, + "end": 34306.28, + "probability": 0.2697 + }, + { + "start": 34306.28, + "end": 34310.28, + "probability": 0.7758 + }, + { + "start": 34310.68, + "end": 34313.44, + "probability": 0.8744 + }, + { + "start": 34313.9, + "end": 34315.66, + "probability": 0.9766 + }, + { + "start": 34318.64, + "end": 34328.38, + "probability": 0.2587 + }, + { + "start": 34335.36, + "end": 34336.74, + "probability": 0.4456 + }, + { + "start": 34337.32, + "end": 34338.02, + "probability": 0.6707 + }, + { + "start": 34338.64, + "end": 34341.3, + "probability": 0.9106 + }, + { + "start": 34341.9, + "end": 34345.26, + "probability": 0.8448 + }, + { + "start": 34345.48, + "end": 34347.2, + "probability": 0.023 + }, + { + "start": 34366.04, + "end": 34367.66, + "probability": 0.3362 + }, + { + "start": 34367.86, + "end": 34368.16, + "probability": 0.0473 + }, + { + "start": 34368.18, + "end": 34370.6, + "probability": 0.3344 + }, + { + "start": 34371.7, + "end": 34375.8, + "probability": 0.8659 + }, + { + "start": 34375.8, + "end": 34380.6, + "probability": 0.9878 + }, + { + "start": 34380.62, + "end": 34385.86, + "probability": 0.8553 + }, + { + "start": 34387.02, + "end": 34390.34, + "probability": 0.9202 + }, + { + "start": 34390.72, + "end": 34394.82, + "probability": 0.9445 + }, + { + "start": 34395.86, + "end": 34397.39, + "probability": 0.7835 + }, + { + "start": 34398.94, + "end": 34399.94, + "probability": 0.7923 + }, + { + "start": 34400.36, + "end": 34406.36, + "probability": 0.8848 + }, + { + "start": 34407.06, + "end": 34409.5, + "probability": 0.9259 + }, + { + "start": 34410.16, + "end": 34412.38, + "probability": 0.9035 + }, + { + "start": 34412.8, + "end": 34415.98, + "probability": 0.493 + }, + { + "start": 34416.0, + "end": 34417.38, + "probability": 0.7036 + }, + { + "start": 34417.64, + "end": 34418.1, + "probability": 0.6937 + }, + { + "start": 34418.26, + "end": 34419.18, + "probability": 0.6305 + }, + { + "start": 34420.16, + "end": 34422.02, + "probability": 0.98 + }, + { + "start": 34422.34, + "end": 34425.44, + "probability": 0.5189 + }, + { + "start": 34425.44, + "end": 34425.44, + "probability": 0.0499 + }, + { + "start": 34425.44, + "end": 34425.44, + "probability": 0.0441 + }, + { + "start": 34425.44, + "end": 34426.26, + "probability": 0.223 + }, + { + "start": 34427.62, + "end": 34434.76, + "probability": 0.7559 + }, + { + "start": 34435.5, + "end": 34438.46, + "probability": 0.9868 + }, + { + "start": 34439.64, + "end": 34441.64, + "probability": 0.6645 + }, + { + "start": 34442.14, + "end": 34445.36, + "probability": 0.6562 + }, + { + "start": 34445.46, + "end": 34446.83, + "probability": 0.6826 + }, + { + "start": 34448.26, + "end": 34450.56, + "probability": 0.7347 + }, + { + "start": 34451.7, + "end": 34452.0, + "probability": 0.6272 + }, + { + "start": 34452.56, + "end": 34458.9, + "probability": 0.9933 + }, + { + "start": 34459.58, + "end": 34462.87, + "probability": 0.9952 + }, + { + "start": 34463.38, + "end": 34466.98, + "probability": 0.8986 + }, + { + "start": 34467.44, + "end": 34470.98, + "probability": 0.677 + }, + { + "start": 34471.44, + "end": 34474.32, + "probability": 0.9305 + }, + { + "start": 34475.22, + "end": 34477.34, + "probability": 0.9945 + }, + { + "start": 34477.78, + "end": 34478.98, + "probability": 0.8551 + }, + { + "start": 34479.44, + "end": 34484.9, + "probability": 0.9191 + }, + { + "start": 34485.52, + "end": 34486.7, + "probability": 0.9961 + }, + { + "start": 34487.46, + "end": 34491.66, + "probability": 0.8221 + }, + { + "start": 34492.8, + "end": 34499.12, + "probability": 0.9395 + }, + { + "start": 34501.48, + "end": 34506.84, + "probability": 0.9769 + }, + { + "start": 34507.4, + "end": 34507.52, + "probability": 0.3276 + }, + { + "start": 34507.7, + "end": 34512.9, + "probability": 0.8274 + }, + { + "start": 34513.6, + "end": 34518.48, + "probability": 0.9146 + }, + { + "start": 34519.06, + "end": 34520.58, + "probability": 0.7439 + }, + { + "start": 34521.12, + "end": 34521.78, + "probability": 0.531 + }, + { + "start": 34522.94, + "end": 34530.16, + "probability": 0.9635 + }, + { + "start": 34530.66, + "end": 34533.98, + "probability": 0.8146 + }, + { + "start": 34535.22, + "end": 34538.86, + "probability": 0.9178 + }, + { + "start": 34539.42, + "end": 34542.18, + "probability": 0.9673 + }, + { + "start": 34545.42, + "end": 34551.58, + "probability": 0.9916 + }, + { + "start": 34552.92, + "end": 34557.66, + "probability": 0.9899 + }, + { + "start": 34558.58, + "end": 34560.6, + "probability": 0.8756 + }, + { + "start": 34561.44, + "end": 34562.5, + "probability": 0.8092 + }, + { + "start": 34562.88, + "end": 34564.0, + "probability": 0.8887 + }, + { + "start": 34564.32, + "end": 34567.66, + "probability": 0.0174 + }, + { + "start": 34567.66, + "end": 34571.66, + "probability": 0.4109 + }, + { + "start": 34572.42, + "end": 34575.7, + "probability": 0.8952 + }, + { + "start": 34576.26, + "end": 34580.5, + "probability": 0.9399 + }, + { + "start": 34580.84, + "end": 34582.28, + "probability": 0.9547 + }, + { + "start": 34582.56, + "end": 34583.12, + "probability": 0.7781 + }, + { + "start": 34583.62, + "end": 34584.86, + "probability": 0.5645 + }, + { + "start": 34584.92, + "end": 34585.5, + "probability": 0.3889 + }, + { + "start": 34585.78, + "end": 34586.84, + "probability": 0.0732 + }, + { + "start": 34586.86, + "end": 34587.2, + "probability": 0.3576 + }, + { + "start": 34587.26, + "end": 34590.2, + "probability": 0.7521 + }, + { + "start": 34591.34, + "end": 34592.68, + "probability": 0.6561 + }, + { + "start": 34593.02, + "end": 34594.14, + "probability": 0.9269 + }, + { + "start": 34594.22, + "end": 34595.4, + "probability": 0.7984 + }, + { + "start": 34595.96, + "end": 34597.58, + "probability": 0.9504 + }, + { + "start": 34597.64, + "end": 34599.94, + "probability": 0.6856 + }, + { + "start": 34600.2, + "end": 34600.48, + "probability": 0.48 + }, + { + "start": 34600.54, + "end": 34604.0, + "probability": 0.9601 + }, + { + "start": 34604.0, + "end": 34608.42, + "probability": 0.9374 + }, + { + "start": 34609.08, + "end": 34610.78, + "probability": 0.6697 + }, + { + "start": 34610.96, + "end": 34615.76, + "probability": 0.691 + }, + { + "start": 34616.16, + "end": 34621.58, + "probability": 0.9779 + }, + { + "start": 34622.2, + "end": 34624.3, + "probability": 0.9902 + }, + { + "start": 34624.3, + "end": 34626.82, + "probability": 0.9832 + }, + { + "start": 34627.4, + "end": 34630.1, + "probability": 0.8948 + }, + { + "start": 34630.12, + "end": 34632.2, + "probability": 0.972 + }, + { + "start": 34633.08, + "end": 34640.76, + "probability": 0.9834 + }, + { + "start": 34641.22, + "end": 34643.54, + "probability": 0.8587 + }, + { + "start": 34643.66, + "end": 34645.61, + "probability": 0.9702 + }, + { + "start": 34646.32, + "end": 34647.27, + "probability": 0.8888 + }, + { + "start": 34647.76, + "end": 34648.4, + "probability": 0.8908 + }, + { + "start": 34648.6, + "end": 34649.44, + "probability": 0.8303 + }, + { + "start": 34650.14, + "end": 34654.1, + "probability": 0.7018 + }, + { + "start": 34654.66, + "end": 34655.7, + "probability": 0.8303 + }, + { + "start": 34655.78, + "end": 34656.36, + "probability": 0.7349 + }, + { + "start": 34656.4, + "end": 34659.16, + "probability": 0.8188 + }, + { + "start": 34659.32, + "end": 34660.54, + "probability": 0.9123 + }, + { + "start": 34662.18, + "end": 34662.62, + "probability": 0.1747 + }, + { + "start": 34662.62, + "end": 34668.12, + "probability": 0.9544 + }, + { + "start": 34668.76, + "end": 34670.28, + "probability": 0.6244 + }, + { + "start": 34671.74, + "end": 34676.06, + "probability": 0.6181 + }, + { + "start": 34677.0, + "end": 34681.57, + "probability": 0.7021 + }, + { + "start": 34681.82, + "end": 34684.68, + "probability": 0.7069 + }, + { + "start": 34685.38, + "end": 34689.34, + "probability": 0.7628 + }, + { + "start": 34689.66, + "end": 34693.86, + "probability": 0.9647 + }, + { + "start": 34694.44, + "end": 34695.4, + "probability": 0.9896 + }, + { + "start": 34695.66, + "end": 34695.98, + "probability": 0.6991 + }, + { + "start": 34702.24, + "end": 34706.2, + "probability": 0.8708 + }, + { + "start": 34706.78, + "end": 34707.62, + "probability": 0.9563 + }, + { + "start": 34707.64, + "end": 34708.62, + "probability": 0.9871 + }, + { + "start": 34709.74, + "end": 34710.76, + "probability": 0.8481 + }, + { + "start": 34711.1, + "end": 34712.7, + "probability": 0.1105 + }, + { + "start": 34715.34, + "end": 34720.5, + "probability": 0.9342 + }, + { + "start": 34731.86, + "end": 34734.16, + "probability": 0.7593 + }, + { + "start": 34735.52, + "end": 34736.99, + "probability": 0.9111 + }, + { + "start": 34737.1, + "end": 34738.16, + "probability": 0.834 + }, + { + "start": 34738.26, + "end": 34741.64, + "probability": 0.9668 + }, + { + "start": 34741.64, + "end": 34745.44, + "probability": 0.9486 + }, + { + "start": 34746.14, + "end": 34750.42, + "probability": 0.975 + }, + { + "start": 34750.42, + "end": 34757.6, + "probability": 0.9902 + }, + { + "start": 34757.8, + "end": 34758.42, + "probability": 0.4009 + }, + { + "start": 34758.74, + "end": 34760.7, + "probability": 0.9701 + }, + { + "start": 34760.8, + "end": 34764.02, + "probability": 0.9854 + }, + { + "start": 34764.02, + "end": 34766.74, + "probability": 0.7233 + }, + { + "start": 34767.24, + "end": 34771.21, + "probability": 0.6663 + }, + { + "start": 34771.62, + "end": 34772.6, + "probability": 0.6184 + }, + { + "start": 34773.02, + "end": 34774.49, + "probability": 0.7626 + }, + { + "start": 34774.78, + "end": 34778.02, + "probability": 0.9966 + }, + { + "start": 34778.26, + "end": 34781.86, + "probability": 0.9969 + }, + { + "start": 34781.86, + "end": 34785.0, + "probability": 0.9842 + }, + { + "start": 34785.52, + "end": 34786.2, + "probability": 0.8622 + }, + { + "start": 34787.56, + "end": 34792.54, + "probability": 0.981 + }, + { + "start": 34793.46, + "end": 34794.46, + "probability": 0.8437 + }, + { + "start": 34794.56, + "end": 34796.5, + "probability": 0.9985 + }, + { + "start": 34796.6, + "end": 34798.12, + "probability": 0.9971 + }, + { + "start": 34798.76, + "end": 34799.86, + "probability": 0.8835 + }, + { + "start": 34799.94, + "end": 34801.18, + "probability": 0.9655 + }, + { + "start": 34801.66, + "end": 34804.74, + "probability": 0.8763 + }, + { + "start": 34805.22, + "end": 34806.76, + "probability": 0.6093 + }, + { + "start": 34807.32, + "end": 34809.52, + "probability": 0.9442 + }, + { + "start": 34810.02, + "end": 34811.26, + "probability": 0.8362 + }, + { + "start": 34811.54, + "end": 34813.04, + "probability": 0.9924 + }, + { + "start": 34813.08, + "end": 34817.04, + "probability": 0.9902 + }, + { + "start": 34817.5, + "end": 34818.82, + "probability": 0.634 + }, + { + "start": 34818.98, + "end": 34820.32, + "probability": 0.667 + }, + { + "start": 34821.42, + "end": 34823.5, + "probability": 0.991 + }, + { + "start": 34824.42, + "end": 34829.34, + "probability": 0.9961 + }, + { + "start": 34830.62, + "end": 34831.12, + "probability": 0.5845 + }, + { + "start": 34831.6, + "end": 34835.7, + "probability": 0.9949 + }, + { + "start": 34835.7, + "end": 34838.55, + "probability": 0.9993 + }, + { + "start": 34839.54, + "end": 34843.4, + "probability": 0.8237 + }, + { + "start": 34844.0, + "end": 34844.6, + "probability": 0.9319 + }, + { + "start": 34844.68, + "end": 34845.26, + "probability": 0.957 + }, + { + "start": 34845.3, + "end": 34845.94, + "probability": 0.7204 + }, + { + "start": 34846.44, + "end": 34850.74, + "probability": 0.9781 + }, + { + "start": 34851.2, + "end": 34853.5, + "probability": 0.9873 + }, + { + "start": 34854.08, + "end": 34857.56, + "probability": 0.991 + }, + { + "start": 34858.32, + "end": 34862.36, + "probability": 0.9657 + }, + { + "start": 34862.66, + "end": 34865.72, + "probability": 0.7769 + }, + { + "start": 34866.5, + "end": 34866.82, + "probability": 0.5201 + }, + { + "start": 34866.84, + "end": 34869.84, + "probability": 0.9929 + }, + { + "start": 34869.84, + "end": 34872.78, + "probability": 0.985 + }, + { + "start": 34873.42, + "end": 34878.2, + "probability": 0.9744 + }, + { + "start": 34878.64, + "end": 34879.5, + "probability": 0.9443 + }, + { + "start": 34879.66, + "end": 34880.66, + "probability": 0.8077 + }, + { + "start": 34880.76, + "end": 34882.26, + "probability": 0.8272 + }, + { + "start": 34883.12, + "end": 34884.05, + "probability": 0.9735 + }, + { + "start": 34884.46, + "end": 34885.16, + "probability": 0.8001 + }, + { + "start": 34885.22, + "end": 34885.88, + "probability": 0.9525 + }, + { + "start": 34887.6, + "end": 34892.68, + "probability": 0.9907 + }, + { + "start": 34892.88, + "end": 34897.22, + "probability": 0.9117 + }, + { + "start": 34897.8, + "end": 34902.86, + "probability": 0.9804 + }, + { + "start": 34903.54, + "end": 34906.86, + "probability": 0.9919 + }, + { + "start": 34907.58, + "end": 34910.26, + "probability": 0.7141 + }, + { + "start": 34910.9, + "end": 34912.04, + "probability": 0.7592 + }, + { + "start": 34912.52, + "end": 34915.48, + "probability": 0.972 + }, + { + "start": 34915.48, + "end": 34918.62, + "probability": 0.9796 + }, + { + "start": 34918.7, + "end": 34921.94, + "probability": 0.9331 + }, + { + "start": 34922.0, + "end": 34922.82, + "probability": 0.7551 + }, + { + "start": 34924.24, + "end": 34926.7, + "probability": 0.9272 + }, + { + "start": 34926.7, + "end": 34926.96, + "probability": 0.7061 + }, + { + "start": 34927.56, + "end": 34928.58, + "probability": 0.9813 + }, + { + "start": 34929.26, + "end": 34931.66, + "probability": 0.8349 + }, + { + "start": 34931.66, + "end": 34933.96, + "probability": 0.9327 + }, + { + "start": 34934.16, + "end": 34936.1, + "probability": 0.9917 + }, + { + "start": 34936.16, + "end": 34937.86, + "probability": 0.7324 + }, + { + "start": 34937.88, + "end": 34938.0, + "probability": 0.1985 + }, + { + "start": 34938.0, + "end": 34944.94, + "probability": 0.9598 + }, + { + "start": 34944.98, + "end": 34947.86, + "probability": 0.9962 + }, + { + "start": 34947.86, + "end": 34950.18, + "probability": 0.9688 + }, + { + "start": 34950.62, + "end": 34952.87, + "probability": 0.8027 + }, + { + "start": 34953.48, + "end": 34954.04, + "probability": 0.9233 + }, + { + "start": 34954.16, + "end": 34958.2, + "probability": 0.9933 + }, + { + "start": 34958.2, + "end": 34962.34, + "probability": 0.9978 + }, + { + "start": 34962.56, + "end": 34965.04, + "probability": 0.992 + }, + { + "start": 34965.32, + "end": 34967.28, + "probability": 0.9986 + }, + { + "start": 34967.76, + "end": 34970.48, + "probability": 0.983 + }, + { + "start": 34970.48, + "end": 34973.24, + "probability": 0.992 + }, + { + "start": 34973.28, + "end": 34974.52, + "probability": 0.439 + }, + { + "start": 34975.0, + "end": 34979.36, + "probability": 0.8572 + }, + { + "start": 34979.96, + "end": 34981.26, + "probability": 0.837 + }, + { + "start": 34981.78, + "end": 34983.92, + "probability": 0.8943 + }, + { + "start": 34984.48, + "end": 34985.38, + "probability": 0.7574 + }, + { + "start": 34985.42, + "end": 34985.72, + "probability": 0.8373 + }, + { + "start": 34985.76, + "end": 34987.26, + "probability": 0.9729 + }, + { + "start": 34987.32, + "end": 34990.08, + "probability": 0.9231 + }, + { + "start": 34990.08, + "end": 34990.56, + "probability": 0.5907 + }, + { + "start": 34990.68, + "end": 34992.52, + "probability": 0.8962 + }, + { + "start": 34992.52, + "end": 34996.3, + "probability": 0.9412 + }, + { + "start": 34996.84, + "end": 34997.48, + "probability": 0.9033 + }, + { + "start": 35000.42, + "end": 35001.22, + "probability": 0.4609 + }, + { + "start": 35001.86, + "end": 35007.42, + "probability": 0.8589 + }, + { + "start": 35008.34, + "end": 35010.02, + "probability": 0.6865 + }, + { + "start": 35010.22, + "end": 35011.28, + "probability": 0.7144 + }, + { + "start": 35011.66, + "end": 35013.52, + "probability": 0.7952 + }, + { + "start": 35014.14, + "end": 35015.08, + "probability": 0.4267 + }, + { + "start": 35015.52, + "end": 35017.16, + "probability": 0.7898 + }, + { + "start": 35018.08, + "end": 35020.42, + "probability": 0.9122 + }, + { + "start": 35021.8, + "end": 35024.82, + "probability": 0.9337 + }, + { + "start": 35024.82, + "end": 35028.5, + "probability": 0.9438 + }, + { + "start": 35031.02, + "end": 35033.96, + "probability": 0.8595 + }, + { + "start": 35038.37, + "end": 35041.25, + "probability": 0.7574 + }, + { + "start": 35042.3, + "end": 35043.56, + "probability": 0.7971 + }, + { + "start": 35048.89, + "end": 35052.26, + "probability": 0.7433 + }, + { + "start": 35053.06, + "end": 35055.44, + "probability": 0.6875 + }, + { + "start": 35056.04, + "end": 35058.32, + "probability": 0.984 + }, + { + "start": 35060.66, + "end": 35063.04, + "probability": 0.3012 + }, + { + "start": 35064.08, + "end": 35064.98, + "probability": 0.8057 + }, + { + "start": 35065.26, + "end": 35067.08, + "probability": 0.8344 + }, + { + "start": 35067.24, + "end": 35068.96, + "probability": 0.951 + }, + { + "start": 35069.82, + "end": 35076.38, + "probability": 0.7308 + }, + { + "start": 35076.56, + "end": 35079.14, + "probability": 0.7939 + }, + { + "start": 35080.06, + "end": 35081.2, + "probability": 0.9819 + }, + { + "start": 35081.26, + "end": 35083.58, + "probability": 0.882 + }, + { + "start": 35086.61, + "end": 35090.26, + "probability": 0.8878 + }, + { + "start": 35090.96, + "end": 35096.4, + "probability": 0.9505 + }, + { + "start": 35097.46, + "end": 35104.08, + "probability": 0.9711 + }, + { + "start": 35104.16, + "end": 35105.74, + "probability": 0.6086 + }, + { + "start": 35105.82, + "end": 35106.48, + "probability": 0.5013 + }, + { + "start": 35106.56, + "end": 35110.72, + "probability": 0.896 + }, + { + "start": 35111.3, + "end": 35111.78, + "probability": 0.3596 + }, + { + "start": 35111.88, + "end": 35112.2, + "probability": 0.9137 + }, + { + "start": 35112.3, + "end": 35116.56, + "probability": 0.9734 + }, + { + "start": 35116.8, + "end": 35119.96, + "probability": 0.7149 + }, + { + "start": 35121.98, + "end": 35126.04, + "probability": 0.8548 + }, + { + "start": 35126.52, + "end": 35129.32, + "probability": 0.6843 + }, + { + "start": 35129.42, + "end": 35130.7, + "probability": 0.7957 + }, + { + "start": 35130.74, + "end": 35131.58, + "probability": 0.8763 + }, + { + "start": 35132.18, + "end": 35135.48, + "probability": 0.8477 + }, + { + "start": 35135.48, + "end": 35140.36, + "probability": 0.9811 + }, + { + "start": 35140.44, + "end": 35142.93, + "probability": 0.7196 + }, + { + "start": 35143.14, + "end": 35146.92, + "probability": 0.9967 + }, + { + "start": 35147.68, + "end": 35152.38, + "probability": 0.9926 + }, + { + "start": 35152.38, + "end": 35154.7, + "probability": 0.9801 + }, + { + "start": 35156.5, + "end": 35158.52, + "probability": 0.7412 + }, + { + "start": 35158.64, + "end": 35159.9, + "probability": 0.7483 + }, + { + "start": 35160.02, + "end": 35163.14, + "probability": 0.9159 + }, + { + "start": 35163.18, + "end": 35164.3, + "probability": 0.9025 + }, + { + "start": 35166.52, + "end": 35173.74, + "probability": 0.9844 + }, + { + "start": 35175.46, + "end": 35181.64, + "probability": 0.9727 + }, + { + "start": 35182.24, + "end": 35184.96, + "probability": 0.8066 + }, + { + "start": 35185.72, + "end": 35190.96, + "probability": 0.9939 + }, + { + "start": 35191.04, + "end": 35194.3, + "probability": 0.7686 + }, + { + "start": 35195.38, + "end": 35196.5, + "probability": 0.9819 + }, + { + "start": 35199.14, + "end": 35199.88, + "probability": 0.4962 + }, + { + "start": 35200.78, + "end": 35203.94, + "probability": 0.9944 + }, + { + "start": 35204.08, + "end": 35205.12, + "probability": 0.8793 + }, + { + "start": 35205.56, + "end": 35213.07, + "probability": 0.9135 + }, + { + "start": 35213.64, + "end": 35215.46, + "probability": 0.9699 + }, + { + "start": 35215.94, + "end": 35223.52, + "probability": 0.9907 + }, + { + "start": 35223.76, + "end": 35229.24, + "probability": 0.9294 + }, + { + "start": 35230.38, + "end": 35236.1, + "probability": 0.9939 + }, + { + "start": 35237.94, + "end": 35243.08, + "probability": 0.9849 + }, + { + "start": 35243.68, + "end": 35244.4, + "probability": 0.7392 + }, + { + "start": 35244.8, + "end": 35248.62, + "probability": 0.9885 + }, + { + "start": 35248.78, + "end": 35251.81, + "probability": 0.9863 + }, + { + "start": 35252.2, + "end": 35257.36, + "probability": 0.9985 + }, + { + "start": 35260.06, + "end": 35260.56, + "probability": 0.3721 + }, + { + "start": 35260.56, + "end": 35262.6, + "probability": 0.6586 + }, + { + "start": 35262.74, + "end": 35263.29, + "probability": 0.4866 + }, + { + "start": 35264.16, + "end": 35265.28, + "probability": 0.5469 + }, + { + "start": 35265.46, + "end": 35267.1, + "probability": 0.7797 + }, + { + "start": 35267.1, + "end": 35268.14, + "probability": 0.1901 + }, + { + "start": 35268.46, + "end": 35269.6, + "probability": 0.8719 + }, + { + "start": 35269.7, + "end": 35271.6, + "probability": 0.9127 + }, + { + "start": 35272.16, + "end": 35276.7, + "probability": 0.9733 + }, + { + "start": 35276.72, + "end": 35280.2, + "probability": 0.91 + }, + { + "start": 35280.22, + "end": 35280.62, + "probability": 0.6733 + }, + { + "start": 35280.72, + "end": 35281.2, + "probability": 0.868 + }, + { + "start": 35281.42, + "end": 35283.72, + "probability": 0.9425 + }, + { + "start": 35284.18, + "end": 35285.86, + "probability": 0.8008 + }, + { + "start": 35286.56, + "end": 35292.24, + "probability": 0.9455 + }, + { + "start": 35292.78, + "end": 35293.32, + "probability": 0.492 + }, + { + "start": 35293.62, + "end": 35295.6, + "probability": 0.8131 + }, + { + "start": 35295.82, + "end": 35301.88, + "probability": 0.9924 + }, + { + "start": 35301.98, + "end": 35302.96, + "probability": 0.7786 + }, + { + "start": 35303.26, + "end": 35307.0, + "probability": 0.9663 + }, + { + "start": 35307.16, + "end": 35307.62, + "probability": 0.7329 + }, + { + "start": 35308.4, + "end": 35310.42, + "probability": 0.6428 + }, + { + "start": 35310.62, + "end": 35313.02, + "probability": 0.8658 + }, + { + "start": 35313.04, + "end": 35314.96, + "probability": 0.4956 + }, + { + "start": 35315.72, + "end": 35318.2, + "probability": 0.677 + }, + { + "start": 35322.76, + "end": 35324.42, + "probability": 0.9923 + }, + { + "start": 35324.62, + "end": 35326.0, + "probability": 0.5094 + }, + { + "start": 35326.28, + "end": 35327.04, + "probability": 0.7506 + }, + { + "start": 35327.04, + "end": 35327.8, + "probability": 0.8193 + }, + { + "start": 35328.08, + "end": 35330.4, + "probability": 0.8043 + }, + { + "start": 35332.16, + "end": 35334.46, + "probability": 0.8947 + }, + { + "start": 35336.5, + "end": 35341.8, + "probability": 0.9926 + }, + { + "start": 35343.18, + "end": 35343.34, + "probability": 0.0794 + }, + { + "start": 35343.4, + "end": 35346.1, + "probability": 0.5109 + }, + { + "start": 35346.24, + "end": 35347.98, + "probability": 0.7751 + }, + { + "start": 35348.08, + "end": 35350.9, + "probability": 0.8945 + }, + { + "start": 35352.32, + "end": 35360.24, + "probability": 0.8892 + }, + { + "start": 35361.02, + "end": 35362.98, + "probability": 0.7236 + }, + { + "start": 35367.16, + "end": 35368.2, + "probability": 0.7742 + }, + { + "start": 35369.16, + "end": 35370.94, + "probability": 0.6904 + }, + { + "start": 35372.54, + "end": 35374.8, + "probability": 0.9457 + }, + { + "start": 35375.58, + "end": 35380.44, + "probability": 0.9448 + }, + { + "start": 35381.94, + "end": 35384.16, + "probability": 0.9951 + }, + { + "start": 35385.56, + "end": 35388.02, + "probability": 0.9375 + }, + { + "start": 35388.5, + "end": 35390.5, + "probability": 0.6434 + }, + { + "start": 35391.06, + "end": 35391.84, + "probability": 0.837 + }, + { + "start": 35391.92, + "end": 35396.32, + "probability": 0.9008 + }, + { + "start": 35396.32, + "end": 35402.38, + "probability": 0.9829 + }, + { + "start": 35402.88, + "end": 35406.52, + "probability": 0.99 + }, + { + "start": 35407.18, + "end": 35408.32, + "probability": 0.9404 + }, + { + "start": 35409.86, + "end": 35411.1, + "probability": 0.917 + }, + { + "start": 35411.2, + "end": 35412.84, + "probability": 0.6408 + }, + { + "start": 35413.66, + "end": 35419.86, + "probability": 0.9341 + }, + { + "start": 35420.66, + "end": 35421.82, + "probability": 0.7654 + }, + { + "start": 35422.78, + "end": 35424.3, + "probability": 0.9131 + }, + { + "start": 35424.52, + "end": 35426.64, + "probability": 0.9875 + }, + { + "start": 35426.94, + "end": 35430.36, + "probability": 0.9521 + }, + { + "start": 35431.22, + "end": 35434.3, + "probability": 0.7847 + }, + { + "start": 35435.98, + "end": 35440.44, + "probability": 0.8973 + }, + { + "start": 35441.28, + "end": 35442.4, + "probability": 0.7596 + }, + { + "start": 35443.8, + "end": 35447.02, + "probability": 0.8566 + }, + { + "start": 35447.72, + "end": 35449.02, + "probability": 0.832 + }, + { + "start": 35451.14, + "end": 35451.5, + "probability": 0.0451 + }, + { + "start": 35451.5, + "end": 35451.5, + "probability": 0.2606 + }, + { + "start": 35451.5, + "end": 35452.96, + "probability": 0.4431 + }, + { + "start": 35453.54, + "end": 35455.5, + "probability": 0.5504 + }, + { + "start": 35455.96, + "end": 35457.22, + "probability": 0.6265 + }, + { + "start": 35457.22, + "end": 35459.78, + "probability": 0.6109 + }, + { + "start": 35460.61, + "end": 35462.34, + "probability": 0.7912 + }, + { + "start": 35463.58, + "end": 35465.78, + "probability": 0.9937 + }, + { + "start": 35468.78, + "end": 35470.04, + "probability": 0.5099 + }, + { + "start": 35470.2, + "end": 35474.98, + "probability": 0.8878 + }, + { + "start": 35475.12, + "end": 35475.38, + "probability": 0.5842 + }, + { + "start": 35475.38, + "end": 35475.94, + "probability": 0.4684 + }, + { + "start": 35476.06, + "end": 35482.38, + "probability": 0.917 + }, + { + "start": 35482.52, + "end": 35483.93, + "probability": 0.8696 + }, + { + "start": 35484.7, + "end": 35485.58, + "probability": 0.1882 + }, + { + "start": 35486.42, + "end": 35490.98, + "probability": 0.786 + }, + { + "start": 35491.36, + "end": 35494.92, + "probability": 0.9911 + }, + { + "start": 35496.4, + "end": 35497.7, + "probability": 0.7893 + }, + { + "start": 35498.02, + "end": 35499.14, + "probability": 0.6696 + }, + { + "start": 35499.6, + "end": 35500.64, + "probability": 0.5238 + }, + { + "start": 35500.9, + "end": 35504.82, + "probability": 0.8879 + }, + { + "start": 35504.96, + "end": 35505.42, + "probability": 0.072 + }, + { + "start": 35505.46, + "end": 35507.91, + "probability": 0.0386 + }, + { + "start": 35508.6, + "end": 35509.98, + "probability": 0.7285 + }, + { + "start": 35510.36, + "end": 35510.88, + "probability": 0.5928 + }, + { + "start": 35511.12, + "end": 35512.78, + "probability": 0.0959 + }, + { + "start": 35512.84, + "end": 35514.04, + "probability": 0.0647 + }, + { + "start": 35514.12, + "end": 35518.52, + "probability": 0.3908 + }, + { + "start": 35520.32, + "end": 35524.04, + "probability": 0.9161 + }, + { + "start": 35524.22, + "end": 35525.18, + "probability": 0.7952 + }, + { + "start": 35525.26, + "end": 35525.9, + "probability": 0.0283 + }, + { + "start": 35526.24, + "end": 35528.9, + "probability": 0.8293 + }, + { + "start": 35528.9, + "end": 35532.74, + "probability": 0.4258 + }, + { + "start": 35532.84, + "end": 35533.71, + "probability": 0.7117 + }, + { + "start": 35534.86, + "end": 35538.11, + "probability": 0.3902 + }, + { + "start": 35539.08, + "end": 35539.38, + "probability": 0.0963 + }, + { + "start": 35539.56, + "end": 35539.86, + "probability": 0.64 + }, + { + "start": 35540.18, + "end": 35541.08, + "probability": 0.6177 + }, + { + "start": 35541.28, + "end": 35542.99, + "probability": 0.3503 + }, + { + "start": 35543.96, + "end": 35544.84, + "probability": 0.5551 + }, + { + "start": 35544.92, + "end": 35547.56, + "probability": 0.5899 + }, + { + "start": 35548.22, + "end": 35551.08, + "probability": 0.3898 + }, + { + "start": 35551.44, + "end": 35553.24, + "probability": 0.2703 + }, + { + "start": 35553.24, + "end": 35553.72, + "probability": 0.1031 + }, + { + "start": 35554.28, + "end": 35558.06, + "probability": 0.7842 + }, + { + "start": 35558.96, + "end": 35559.52, + "probability": 0.429 + }, + { + "start": 35559.58, + "end": 35560.48, + "probability": 0.7823 + }, + { + "start": 35560.76, + "end": 35562.96, + "probability": 0.9386 + }, + { + "start": 35563.32, + "end": 35565.42, + "probability": 0.8341 + }, + { + "start": 35566.04, + "end": 35569.1, + "probability": 0.7842 + }, + { + "start": 35569.18, + "end": 35570.67, + "probability": 0.5944 + }, + { + "start": 35571.4, + "end": 35572.32, + "probability": 0.9495 + }, + { + "start": 35572.46, + "end": 35573.4, + "probability": 0.9184 + }, + { + "start": 35573.54, + "end": 35574.3, + "probability": 0.6805 + }, + { + "start": 35574.34, + "end": 35575.08, + "probability": 0.8146 + }, + { + "start": 35575.12, + "end": 35576.38, + "probability": 0.5618 + }, + { + "start": 35576.78, + "end": 35578.08, + "probability": 0.9602 + }, + { + "start": 35578.44, + "end": 35581.52, + "probability": 0.9142 + }, + { + "start": 35581.7, + "end": 35583.62, + "probability": 0.6157 + }, + { + "start": 35584.06, + "end": 35585.04, + "probability": 0.6558 + }, + { + "start": 35585.62, + "end": 35588.58, + "probability": 0.7364 + }, + { + "start": 35589.04, + "end": 35591.34, + "probability": 0.9953 + }, + { + "start": 35591.58, + "end": 35593.6, + "probability": 0.9487 + }, + { + "start": 35594.0, + "end": 35600.74, + "probability": 0.8718 + }, + { + "start": 35602.5, + "end": 35603.8, + "probability": 0.0619 + }, + { + "start": 35604.46, + "end": 35605.9, + "probability": 0.7378 + }, + { + "start": 35606.0, + "end": 35610.36, + "probability": 0.7411 + }, + { + "start": 35610.86, + "end": 35614.0, + "probability": 0.4331 + }, + { + "start": 35617.22, + "end": 35618.76, + "probability": 0.2915 + }, + { + "start": 35623.28, + "end": 35624.7, + "probability": 0.0603 + }, + { + "start": 35624.7, + "end": 35624.7, + "probability": 0.0748 + }, + { + "start": 35624.7, + "end": 35624.7, + "probability": 0.0266 + }, + { + "start": 35624.7, + "end": 35625.68, + "probability": 0.2843 + }, + { + "start": 35626.34, + "end": 35632.96, + "probability": 0.729 + }, + { + "start": 35633.26, + "end": 35636.58, + "probability": 0.8503 + }, + { + "start": 35637.34, + "end": 35638.56, + "probability": 0.7197 + }, + { + "start": 35639.64, + "end": 35640.78, + "probability": 0.9485 + }, + { + "start": 35640.86, + "end": 35647.52, + "probability": 0.9365 + }, + { + "start": 35647.76, + "end": 35650.64, + "probability": 0.8074 + }, + { + "start": 35650.74, + "end": 35651.9, + "probability": 0.8141 + }, + { + "start": 35652.5, + "end": 35655.22, + "probability": 0.5501 + }, + { + "start": 35656.9, + "end": 35664.1, + "probability": 0.9864 + }, + { + "start": 35665.24, + "end": 35665.95, + "probability": 0.4325 + }, + { + "start": 35667.1, + "end": 35671.74, + "probability": 0.9769 + }, + { + "start": 35671.94, + "end": 35673.28, + "probability": 0.9871 + }, + { + "start": 35673.68, + "end": 35683.7, + "probability": 0.9825 + }, + { + "start": 35684.14, + "end": 35688.82, + "probability": 0.9937 + }, + { + "start": 35689.28, + "end": 35690.52, + "probability": 0.7728 + }, + { + "start": 35692.22, + "end": 35694.46, + "probability": 0.9732 + }, + { + "start": 35694.66, + "end": 35697.4, + "probability": 0.8754 + }, + { + "start": 35698.2, + "end": 35704.32, + "probability": 0.905 + }, + { + "start": 35706.08, + "end": 35714.38, + "probability": 0.9363 + }, + { + "start": 35718.54, + "end": 35719.64, + "probability": 0.6533 + }, + { + "start": 35721.5, + "end": 35725.1, + "probability": 0.8472 + }, + { + "start": 35725.84, + "end": 35727.5, + "probability": 0.9714 + }, + { + "start": 35727.6, + "end": 35730.96, + "probability": 0.9971 + }, + { + "start": 35731.32, + "end": 35731.76, + "probability": 0.1111 + }, + { + "start": 35734.28, + "end": 35735.38, + "probability": 0.9031 + }, + { + "start": 35736.88, + "end": 35738.02, + "probability": 0.9889 + }, + { + "start": 35738.08, + "end": 35738.96, + "probability": 0.415 + }, + { + "start": 35739.1, + "end": 35740.1, + "probability": 0.6209 + }, + { + "start": 35740.46, + "end": 35741.25, + "probability": 0.5615 + }, + { + "start": 35742.88, + "end": 35745.58, + "probability": 0.8262 + }, + { + "start": 35746.16, + "end": 35747.16, + "probability": 0.7582 + }, + { + "start": 35747.9, + "end": 35748.62, + "probability": 0.8316 + }, + { + "start": 35749.12, + "end": 35754.98, + "probability": 0.9724 + }, + { + "start": 35756.22, + "end": 35761.02, + "probability": 0.8451 + }, + { + "start": 35761.12, + "end": 35765.06, + "probability": 0.9818 + }, + { + "start": 35765.9, + "end": 35766.3, + "probability": 0.572 + }, + { + "start": 35766.42, + "end": 35767.24, + "probability": 0.8795 + }, + { + "start": 35767.64, + "end": 35770.8, + "probability": 0.9642 + }, + { + "start": 35770.96, + "end": 35773.34, + "probability": 0.8483 + }, + { + "start": 35773.68, + "end": 35774.98, + "probability": 0.3805 + }, + { + "start": 35774.98, + "end": 35775.06, + "probability": 0.2464 + }, + { + "start": 35775.06, + "end": 35775.62, + "probability": 0.4464 + }, + { + "start": 35775.8, + "end": 35777.1, + "probability": 0.9774 + }, + { + "start": 35777.28, + "end": 35778.36, + "probability": 0.6583 + }, + { + "start": 35779.42, + "end": 35780.14, + "probability": 0.7466 + }, + { + "start": 35780.24, + "end": 35781.44, + "probability": 0.9694 + }, + { + "start": 35782.76, + "end": 35783.94, + "probability": 0.0729 + }, + { + "start": 35783.94, + "end": 35787.02, + "probability": 0.6895 + }, + { + "start": 35787.12, + "end": 35789.3, + "probability": 0.7321 + }, + { + "start": 35789.56, + "end": 35790.22, + "probability": 0.0656 + }, + { + "start": 35790.22, + "end": 35792.02, + "probability": 0.42 + }, + { + "start": 35792.5, + "end": 35798.9, + "probability": 0.7045 + }, + { + "start": 35799.54, + "end": 35803.58, + "probability": 0.8115 + }, + { + "start": 35803.72, + "end": 35804.46, + "probability": 0.4979 + }, + { + "start": 35805.02, + "end": 35808.2, + "probability": 0.3748 + }, + { + "start": 35808.34, + "end": 35809.0, + "probability": 0.3635 + }, + { + "start": 35809.24, + "end": 35809.4, + "probability": 0.3206 + }, + { + "start": 35809.6, + "end": 35810.96, + "probability": 0.6586 + }, + { + "start": 35811.08, + "end": 35814.05, + "probability": 0.4982 + }, + { + "start": 35814.18, + "end": 35815.88, + "probability": 0.9882 + }, + { + "start": 35815.92, + "end": 35816.76, + "probability": 0.9023 + }, + { + "start": 35816.84, + "end": 35818.98, + "probability": 0.6812 + }, + { + "start": 35819.4, + "end": 35821.8, + "probability": 0.0257 + }, + { + "start": 35823.08, + "end": 35823.08, + "probability": 0.3723 + }, + { + "start": 35823.08, + "end": 35825.46, + "probability": 0.3965 + }, + { + "start": 35825.72, + "end": 35828.96, + "probability": 0.9487 + }, + { + "start": 35829.8, + "end": 35832.06, + "probability": 0.7577 + }, + { + "start": 35832.2, + "end": 35833.54, + "probability": 0.9767 + }, + { + "start": 35833.74, + "end": 35834.7, + "probability": 0.7188 + }, + { + "start": 35834.9, + "end": 35836.42, + "probability": 0.5211 + }, + { + "start": 35836.84, + "end": 35839.16, + "probability": 0.8641 + }, + { + "start": 35841.38, + "end": 35842.28, + "probability": 0.7733 + }, + { + "start": 35842.44, + "end": 35843.78, + "probability": 0.8304 + }, + { + "start": 35844.08, + "end": 35845.38, + "probability": 0.8043 + }, + { + "start": 35845.64, + "end": 35848.72, + "probability": 0.5564 + }, + { + "start": 35849.06, + "end": 35853.38, + "probability": 0.9182 + }, + { + "start": 35854.1, + "end": 35855.22, + "probability": 0.9176 + }, + { + "start": 35856.0, + "end": 35858.08, + "probability": 0.9814 + }, + { + "start": 35858.76, + "end": 35862.18, + "probability": 0.9927 + }, + { + "start": 35862.58, + "end": 35863.78, + "probability": 0.9894 + }, + { + "start": 35864.02, + "end": 35866.84, + "probability": 0.9214 + }, + { + "start": 35867.04, + "end": 35870.92, + "probability": 0.7098 + }, + { + "start": 35872.68, + "end": 35878.26, + "probability": 0.9153 + }, + { + "start": 35878.52, + "end": 35880.16, + "probability": 0.8949 + }, + { + "start": 35880.24, + "end": 35880.86, + "probability": 0.6409 + }, + { + "start": 35881.24, + "end": 35883.36, + "probability": 0.8582 + }, + { + "start": 35883.5, + "end": 35885.74, + "probability": 0.7952 + }, + { + "start": 35886.13, + "end": 35886.74, + "probability": 0.7532 + }, + { + "start": 35886.92, + "end": 35891.06, + "probability": 0.7306 + }, + { + "start": 35891.88, + "end": 35894.14, + "probability": 0.6463 + }, + { + "start": 35898.4, + "end": 35899.6, + "probability": 0.6674 + }, + { + "start": 35899.72, + "end": 35902.96, + "probability": 0.896 + }, + { + "start": 35909.3, + "end": 35910.2, + "probability": 0.7405 + }, + { + "start": 35910.3, + "end": 35910.88, + "probability": 0.7719 + }, + { + "start": 35910.9, + "end": 35911.66, + "probability": 0.8057 + }, + { + "start": 35911.74, + "end": 35912.33, + "probability": 0.8071 + }, + { + "start": 35912.42, + "end": 35912.82, + "probability": 0.8066 + }, + { + "start": 35912.98, + "end": 35921.66, + "probability": 0.9681 + }, + { + "start": 35921.8, + "end": 35925.14, + "probability": 0.5035 + }, + { + "start": 35926.12, + "end": 35931.89, + "probability": 0.9597 + }, + { + "start": 35932.0, + "end": 35936.96, + "probability": 0.9993 + }, + { + "start": 35937.66, + "end": 35941.84, + "probability": 0.9884 + }, + { + "start": 35941.94, + "end": 35944.98, + "probability": 0.8865 + }, + { + "start": 35945.98, + "end": 35950.58, + "probability": 0.9237 + }, + { + "start": 35950.58, + "end": 35955.28, + "probability": 0.9658 + }, + { + "start": 35956.36, + "end": 35959.8, + "probability": 0.9277 + }, + { + "start": 35960.74, + "end": 35965.8, + "probability": 0.9891 + }, + { + "start": 35965.94, + "end": 35967.49, + "probability": 0.9487 + }, + { + "start": 35970.06, + "end": 35972.0, + "probability": 0.6693 + }, + { + "start": 35972.32, + "end": 35973.82, + "probability": 0.9896 + }, + { + "start": 35973.96, + "end": 35975.62, + "probability": 0.9087 + }, + { + "start": 35975.7, + "end": 35978.34, + "probability": 0.8848 + }, + { + "start": 35979.14, + "end": 35981.16, + "probability": 0.4789 + }, + { + "start": 35981.44, + "end": 35984.34, + "probability": 0.9906 + }, + { + "start": 35984.34, + "end": 35988.46, + "probability": 0.9987 + }, + { + "start": 35988.76, + "end": 35989.44, + "probability": 0.6391 + }, + { + "start": 35992.08, + "end": 35993.48, + "probability": 0.9329 + }, + { + "start": 35994.83, + "end": 35997.32, + "probability": 0.5775 + }, + { + "start": 35998.78, + "end": 36000.48, + "probability": 0.7796 + }, + { + "start": 36001.68, + "end": 36005.64, + "probability": 0.9042 + }, + { + "start": 36006.7, + "end": 36007.72, + "probability": 0.9533 + }, + { + "start": 36007.9, + "end": 36009.34, + "probability": 0.9714 + }, + { + "start": 36009.58, + "end": 36014.76, + "probability": 0.9526 + }, + { + "start": 36015.56, + "end": 36021.5, + "probability": 0.8574 + }, + { + "start": 36021.96, + "end": 36023.64, + "probability": 0.5542 + }, + { + "start": 36023.7, + "end": 36024.84, + "probability": 0.8157 + }, + { + "start": 36024.96, + "end": 36025.62, + "probability": 0.6782 + }, + { + "start": 36025.84, + "end": 36027.42, + "probability": 0.9521 + }, + { + "start": 36027.54, + "end": 36028.91, + "probability": 0.9637 + }, + { + "start": 36029.04, + "end": 36029.72, + "probability": 0.8918 + }, + { + "start": 36029.86, + "end": 36030.74, + "probability": 0.9063 + }, + { + "start": 36032.62, + "end": 36037.26, + "probability": 0.9425 + }, + { + "start": 36038.36, + "end": 36039.54, + "probability": 0.8098 + }, + { + "start": 36040.38, + "end": 36042.2, + "probability": 0.9863 + }, + { + "start": 36042.46, + "end": 36045.6, + "probability": 0.9412 + }, + { + "start": 36045.66, + "end": 36046.34, + "probability": 0.89 + }, + { + "start": 36046.46, + "end": 36047.12, + "probability": 0.7271 + }, + { + "start": 36047.54, + "end": 36048.87, + "probability": 0.9715 + }, + { + "start": 36048.98, + "end": 36049.7, + "probability": 0.4753 + }, + { + "start": 36050.0, + "end": 36055.66, + "probability": 0.9637 + }, + { + "start": 36056.2, + "end": 36057.8, + "probability": 0.8228 + }, + { + "start": 36058.06, + "end": 36065.08, + "probability": 0.9499 + }, + { + "start": 36065.52, + "end": 36073.62, + "probability": 0.9905 + }, + { + "start": 36074.24, + "end": 36075.84, + "probability": 0.9803 + }, + { + "start": 36076.16, + "end": 36082.06, + "probability": 0.9591 + }, + { + "start": 36082.76, + "end": 36083.98, + "probability": 0.8919 + }, + { + "start": 36084.26, + "end": 36085.08, + "probability": 0.7708 + }, + { + "start": 36085.56, + "end": 36090.98, + "probability": 0.8468 + }, + { + "start": 36091.38, + "end": 36094.3, + "probability": 0.9529 + }, + { + "start": 36095.04, + "end": 36099.88, + "probability": 0.9653 + }, + { + "start": 36100.2, + "end": 36100.9, + "probability": 0.8376 + }, + { + "start": 36100.98, + "end": 36101.84, + "probability": 0.9795 + }, + { + "start": 36101.98, + "end": 36103.32, + "probability": 0.9761 + }, + { + "start": 36103.76, + "end": 36106.24, + "probability": 0.6628 + }, + { + "start": 36106.42, + "end": 36108.1, + "probability": 0.9917 + }, + { + "start": 36108.72, + "end": 36111.86, + "probability": 0.8859 + }, + { + "start": 36112.86, + "end": 36117.22, + "probability": 0.9922 + }, + { + "start": 36117.62, + "end": 36124.06, + "probability": 0.9933 + }, + { + "start": 36124.26, + "end": 36127.12, + "probability": 0.9059 + }, + { + "start": 36130.7, + "end": 36132.88, + "probability": 0.4349 + }, + { + "start": 36133.11, + "end": 36133.2, + "probability": 0.138 + }, + { + "start": 36133.4, + "end": 36135.56, + "probability": 0.6898 + }, + { + "start": 36135.68, + "end": 36139.22, + "probability": 0.9342 + }, + { + "start": 36139.66, + "end": 36140.62, + "probability": 0.97 + }, + { + "start": 36140.68, + "end": 36144.1, + "probability": 0.9962 + }, + { + "start": 36144.16, + "end": 36149.38, + "probability": 0.9788 + }, + { + "start": 36149.62, + "end": 36150.32, + "probability": 0.618 + }, + { + "start": 36151.64, + "end": 36152.27, + "probability": 0.8896 + }, + { + "start": 36152.68, + "end": 36158.02, + "probability": 0.9646 + }, + { + "start": 36158.1, + "end": 36159.38, + "probability": 0.8871 + }, + { + "start": 36159.72, + "end": 36160.63, + "probability": 0.915 + }, + { + "start": 36161.12, + "end": 36161.24, + "probability": 0.0335 + }, + { + "start": 36161.24, + "end": 36164.44, + "probability": 0.8022 + }, + { + "start": 36164.66, + "end": 36166.24, + "probability": 0.805 + }, + { + "start": 36166.46, + "end": 36166.9, + "probability": 0.6627 + }, + { + "start": 36167.08, + "end": 36168.38, + "probability": 0.9622 + }, + { + "start": 36168.46, + "end": 36169.48, + "probability": 0.9142 + }, + { + "start": 36169.9, + "end": 36170.52, + "probability": 0.5363 + }, + { + "start": 36171.28, + "end": 36172.62, + "probability": 0.8127 + }, + { + "start": 36172.74, + "end": 36173.72, + "probability": 0.8013 + }, + { + "start": 36173.86, + "end": 36180.62, + "probability": 0.85 + }, + { + "start": 36180.64, + "end": 36184.72, + "probability": 0.868 + }, + { + "start": 36184.72, + "end": 36190.8, + "probability": 0.95 + }, + { + "start": 36190.9, + "end": 36192.2, + "probability": 0.8203 + }, + { + "start": 36192.4, + "end": 36195.82, + "probability": 0.7883 + }, + { + "start": 36196.0, + "end": 36196.7, + "probability": 0.9036 + }, + { + "start": 36196.74, + "end": 36197.52, + "probability": 0.8859 + }, + { + "start": 36197.56, + "end": 36198.52, + "probability": 0.7922 + }, + { + "start": 36198.52, + "end": 36199.22, + "probability": 0.8997 + }, + { + "start": 36199.82, + "end": 36200.24, + "probability": 0.8566 + }, + { + "start": 36200.98, + "end": 36203.0, + "probability": 0.7462 + }, + { + "start": 36203.2, + "end": 36203.98, + "probability": 0.9774 + }, + { + "start": 36204.2, + "end": 36205.06, + "probability": 0.2279 + }, + { + "start": 36205.36, + "end": 36209.72, + "probability": 0.9064 + }, + { + "start": 36210.1, + "end": 36210.5, + "probability": 0.0793 + }, + { + "start": 36210.5, + "end": 36212.16, + "probability": 0.3263 + }, + { + "start": 36212.2, + "end": 36214.72, + "probability": 0.6753 + }, + { + "start": 36215.1, + "end": 36217.62, + "probability": 0.7624 + }, + { + "start": 36217.96, + "end": 36219.18, + "probability": 0.8158 + }, + { + "start": 36219.3, + "end": 36219.82, + "probability": 0.7726 + }, + { + "start": 36220.52, + "end": 36222.67, + "probability": 0.6444 + }, + { + "start": 36236.02, + "end": 36236.42, + "probability": 0.6747 + }, + { + "start": 36245.68, + "end": 36246.72, + "probability": 0.5931 + }, + { + "start": 36246.76, + "end": 36248.44, + "probability": 0.8931 + }, + { + "start": 36248.86, + "end": 36252.78, + "probability": 0.8767 + }, + { + "start": 36252.78, + "end": 36256.02, + "probability": 0.9915 + }, + { + "start": 36256.86, + "end": 36260.16, + "probability": 0.9216 + }, + { + "start": 36260.24, + "end": 36263.06, + "probability": 0.9287 + }, + { + "start": 36264.24, + "end": 36266.34, + "probability": 0.985 + }, + { + "start": 36266.54, + "end": 36269.88, + "probability": 0.9753 + }, + { + "start": 36270.82, + "end": 36272.1, + "probability": 0.9257 + }, + { + "start": 36272.46, + "end": 36273.46, + "probability": 0.9432 + }, + { + "start": 36273.64, + "end": 36274.16, + "probability": 0.9748 + }, + { + "start": 36274.22, + "end": 36279.92, + "probability": 0.9041 + }, + { + "start": 36280.5, + "end": 36285.78, + "probability": 0.9317 + }, + { + "start": 36285.94, + "end": 36289.22, + "probability": 0.9283 + }, + { + "start": 36290.68, + "end": 36295.66, + "probability": 0.9871 + }, + { + "start": 36295.98, + "end": 36297.2, + "probability": 0.8726 + }, + { + "start": 36297.82, + "end": 36299.42, + "probability": 0.5342 + }, + { + "start": 36300.02, + "end": 36302.86, + "probability": 0.9583 + }, + { + "start": 36303.4, + "end": 36304.62, + "probability": 0.6742 + }, + { + "start": 36304.82, + "end": 36310.46, + "probability": 0.9207 + }, + { + "start": 36310.58, + "end": 36311.5, + "probability": 0.7502 + }, + { + "start": 36312.42, + "end": 36315.64, + "probability": 0.7377 + }, + { + "start": 36316.42, + "end": 36320.1, + "probability": 0.9805 + }, + { + "start": 36320.24, + "end": 36322.86, + "probability": 0.9036 + }, + { + "start": 36322.94, + "end": 36324.46, + "probability": 0.9067 + }, + { + "start": 36324.8, + "end": 36325.64, + "probability": 0.8301 + }, + { + "start": 36325.82, + "end": 36332.72, + "probability": 0.9934 + }, + { + "start": 36332.72, + "end": 36339.36, + "probability": 0.9517 + }, + { + "start": 36340.1, + "end": 36341.1, + "probability": 0.9806 + }, + { + "start": 36342.82, + "end": 36344.6, + "probability": 0.8945 + }, + { + "start": 36344.6, + "end": 36344.86, + "probability": 0.1295 + }, + { + "start": 36345.0, + "end": 36346.5, + "probability": 0.4816 + }, + { + "start": 36346.9, + "end": 36351.16, + "probability": 0.8894 + }, + { + "start": 36351.66, + "end": 36356.56, + "probability": 0.9456 + }, + { + "start": 36356.56, + "end": 36360.5, + "probability": 0.9526 + }, + { + "start": 36362.32, + "end": 36364.52, + "probability": 0.5342 + }, + { + "start": 36364.68, + "end": 36365.72, + "probability": 0.7153 + }, + { + "start": 36365.98, + "end": 36367.16, + "probability": 0.6407 + }, + { + "start": 36367.66, + "end": 36372.42, + "probability": 0.9578 + }, + { + "start": 36376.66, + "end": 36377.52, + "probability": 0.9016 + }, + { + "start": 36377.56, + "end": 36381.2, + "probability": 0.6887 + }, + { + "start": 36381.44, + "end": 36382.86, + "probability": 0.7122 + }, + { + "start": 36383.56, + "end": 36387.92, + "probability": 0.8591 + }, + { + "start": 36388.58, + "end": 36391.36, + "probability": 0.9126 + }, + { + "start": 36391.4, + "end": 36395.64, + "probability": 0.9863 + }, + { + "start": 36395.82, + "end": 36397.04, + "probability": 0.8503 + }, + { + "start": 36397.12, + "end": 36400.18, + "probability": 0.958 + }, + { + "start": 36400.52, + "end": 36406.36, + "probability": 0.9265 + }, + { + "start": 36406.36, + "end": 36411.44, + "probability": 0.9779 + }, + { + "start": 36412.44, + "end": 36415.2, + "probability": 0.9811 + }, + { + "start": 36415.2, + "end": 36418.4, + "probability": 0.9968 + }, + { + "start": 36418.8, + "end": 36425.36, + "probability": 0.9638 + }, + { + "start": 36425.46, + "end": 36426.1, + "probability": 0.84 + }, + { + "start": 36426.26, + "end": 36426.88, + "probability": 0.6386 + }, + { + "start": 36427.14, + "end": 36429.14, + "probability": 0.7914 + }, + { + "start": 36432.56, + "end": 36435.96, + "probability": 0.9417 + }, + { + "start": 36436.48, + "end": 36438.12, + "probability": 0.7017 + }, + { + "start": 36439.06, + "end": 36442.3, + "probability": 0.9185 + }, + { + "start": 36442.46, + "end": 36446.0, + "probability": 0.9762 + }, + { + "start": 36446.0, + "end": 36450.36, + "probability": 0.9655 + }, + { + "start": 36450.4, + "end": 36451.14, + "probability": 0.8304 + }, + { + "start": 36451.2, + "end": 36451.98, + "probability": 0.7571 + }, + { + "start": 36452.56, + "end": 36456.74, + "probability": 0.951 + }, + { + "start": 36457.12, + "end": 36462.34, + "probability": 0.9596 + }, + { + "start": 36463.0, + "end": 36464.0, + "probability": 0.6839 + }, + { + "start": 36464.76, + "end": 36467.24, + "probability": 0.7912 + }, + { + "start": 36467.28, + "end": 36468.46, + "probability": 0.7366 + }, + { + "start": 36468.6, + "end": 36471.04, + "probability": 0.5942 + }, + { + "start": 36479.6, + "end": 36481.62, + "probability": 0.7703 + }, + { + "start": 36492.22, + "end": 36492.76, + "probability": 0.3255 + }, + { + "start": 36492.84, + "end": 36493.52, + "probability": 0.6301 + }, + { + "start": 36493.64, + "end": 36496.12, + "probability": 0.7869 + }, + { + "start": 36496.2, + "end": 36497.18, + "probability": 0.9053 + }, + { + "start": 36497.54, + "end": 36501.76, + "probability": 0.8622 + }, + { + "start": 36501.92, + "end": 36505.66, + "probability": 0.9148 + }, + { + "start": 36506.56, + "end": 36512.34, + "probability": 0.9014 + }, + { + "start": 36513.36, + "end": 36515.12, + "probability": 0.5368 + }, + { + "start": 36516.16, + "end": 36518.3, + "probability": 0.7329 + }, + { + "start": 36521.42, + "end": 36526.46, + "probability": 0.8804 + }, + { + "start": 36527.28, + "end": 36530.14, + "probability": 0.892 + }, + { + "start": 36530.96, + "end": 36532.94, + "probability": 0.9366 + }, + { + "start": 36533.02, + "end": 36537.06, + "probability": 0.9954 + }, + { + "start": 36537.06, + "end": 36543.22, + "probability": 0.9978 + }, + { + "start": 36545.04, + "end": 36549.38, + "probability": 0.9843 + }, + { + "start": 36550.0, + "end": 36553.94, + "probability": 0.9963 + }, + { + "start": 36554.46, + "end": 36557.82, + "probability": 0.85 + }, + { + "start": 36558.72, + "end": 36563.68, + "probability": 0.9153 + }, + { + "start": 36564.32, + "end": 36565.38, + "probability": 0.8474 + }, + { + "start": 36566.02, + "end": 36568.98, + "probability": 0.9854 + }, + { + "start": 36568.98, + "end": 36573.42, + "probability": 0.9852 + }, + { + "start": 36573.92, + "end": 36574.72, + "probability": 0.7498 + }, + { + "start": 36575.14, + "end": 36580.44, + "probability": 0.8795 + }, + { + "start": 36581.1, + "end": 36583.7, + "probability": 0.9548 + }, + { + "start": 36583.72, + "end": 36586.58, + "probability": 0.9976 + }, + { + "start": 36587.26, + "end": 36588.28, + "probability": 0.8802 + }, + { + "start": 36588.9, + "end": 36589.66, + "probability": 0.8325 + }, + { + "start": 36590.52, + "end": 36591.77, + "probability": 0.5821 + }, + { + "start": 36592.66, + "end": 36597.4, + "probability": 0.9789 + }, + { + "start": 36598.56, + "end": 36601.17, + "probability": 0.4518 + }, + { + "start": 36603.88, + "end": 36604.8, + "probability": 0.7801 + }, + { + "start": 36605.84, + "end": 36610.5, + "probability": 0.9585 + }, + { + "start": 36611.4, + "end": 36614.32, + "probability": 0.7425 + }, + { + "start": 36614.88, + "end": 36620.58, + "probability": 0.6984 + }, + { + "start": 36621.74, + "end": 36626.02, + "probability": 0.8327 + }, + { + "start": 36626.54, + "end": 36627.96, + "probability": 0.7437 + }, + { + "start": 36628.74, + "end": 36630.82, + "probability": 0.8049 + }, + { + "start": 36631.44, + "end": 36637.32, + "probability": 0.9564 + }, + { + "start": 36637.9, + "end": 36641.66, + "probability": 0.9382 + }, + { + "start": 36642.26, + "end": 36645.83, + "probability": 0.9949 + }, + { + "start": 36646.62, + "end": 36647.74, + "probability": 0.8535 + }, + { + "start": 36649.16, + "end": 36654.76, + "probability": 0.9808 + }, + { + "start": 36654.76, + "end": 36661.76, + "probability": 0.968 + }, + { + "start": 36662.44, + "end": 36670.14, + "probability": 0.7397 + }, + { + "start": 36671.08, + "end": 36671.28, + "probability": 0.332 + }, + { + "start": 36671.4, + "end": 36675.89, + "probability": 0.8674 + }, + { + "start": 36676.52, + "end": 36677.24, + "probability": 0.6572 + }, + { + "start": 36677.28, + "end": 36678.38, + "probability": 0.8663 + }, + { + "start": 36678.98, + "end": 36682.54, + "probability": 0.7436 + }, + { + "start": 36684.32, + "end": 36684.64, + "probability": 0.8372 + }, + { + "start": 36684.66, + "end": 36689.24, + "probability": 0.7633 + }, + { + "start": 36690.02, + "end": 36693.76, + "probability": 0.9831 + }, + { + "start": 36693.86, + "end": 36695.1, + "probability": 0.54 + }, + { + "start": 36696.24, + "end": 36701.92, + "probability": 0.9225 + }, + { + "start": 36704.36, + "end": 36705.14, + "probability": 0.6236 + }, + { + "start": 36706.3, + "end": 36707.7, + "probability": 0.7576 + }, + { + "start": 36708.46, + "end": 36711.34, + "probability": 0.7977 + }, + { + "start": 36713.26, + "end": 36714.2, + "probability": 0.3983 + }, + { + "start": 36715.98, + "end": 36721.26, + "probability": 0.9461 + }, + { + "start": 36723.12, + "end": 36724.96, + "probability": 0.5943 + }, + { + "start": 36727.66, + "end": 36728.86, + "probability": 0.7428 + }, + { + "start": 36730.82, + "end": 36734.46, + "probability": 0.8859 + }, + { + "start": 36735.48, + "end": 36736.54, + "probability": 0.8227 + }, + { + "start": 36737.68, + "end": 36740.8, + "probability": 0.9079 + }, + { + "start": 36741.58, + "end": 36742.38, + "probability": 0.688 + }, + { + "start": 36743.36, + "end": 36745.48, + "probability": 0.8551 + }, + { + "start": 36746.22, + "end": 36749.54, + "probability": 0.8618 + }, + { + "start": 36750.48, + "end": 36752.28, + "probability": 0.8615 + }, + { + "start": 36752.96, + "end": 36754.48, + "probability": 0.6815 + }, + { + "start": 36755.74, + "end": 36756.86, + "probability": 0.7752 + }, + { + "start": 36757.04, + "end": 36762.39, + "probability": 0.9771 + }, + { + "start": 36763.04, + "end": 36767.0, + "probability": 0.9758 + }, + { + "start": 36768.02, + "end": 36770.18, + "probability": 0.6475 + }, + { + "start": 36771.48, + "end": 36775.94, + "probability": 0.9965 + }, + { + "start": 36776.36, + "end": 36780.52, + "probability": 0.9927 + }, + { + "start": 36780.62, + "end": 36784.66, + "probability": 0.9906 + }, + { + "start": 36784.78, + "end": 36785.58, + "probability": 0.8258 + }, + { + "start": 36786.1, + "end": 36787.54, + "probability": 0.451 + }, + { + "start": 36788.14, + "end": 36789.64, + "probability": 0.944 + }, + { + "start": 36790.4, + "end": 36794.34, + "probability": 0.9512 + }, + { + "start": 36795.24, + "end": 36804.14, + "probability": 0.8574 + }, + { + "start": 36804.76, + "end": 36809.14, + "probability": 0.9834 + }, + { + "start": 36809.96, + "end": 36815.58, + "probability": 0.9138 + }, + { + "start": 36816.6, + "end": 36817.18, + "probability": 0.8639 + }, + { + "start": 36817.24, + "end": 36818.92, + "probability": 0.9133 + }, + { + "start": 36819.4, + "end": 36824.04, + "probability": 0.9826 + }, + { + "start": 36824.42, + "end": 36829.88, + "probability": 0.9723 + }, + { + "start": 36831.31, + "end": 36833.92, + "probability": 0.8866 + }, + { + "start": 36833.92, + "end": 36839.62, + "probability": 0.866 + }, + { + "start": 36840.06, + "end": 36848.1, + "probability": 0.9828 + }, + { + "start": 36848.84, + "end": 36851.63, + "probability": 0.0641 + }, + { + "start": 36852.3, + "end": 36853.7, + "probability": 0.316 + }, + { + "start": 36853.94, + "end": 36854.64, + "probability": 0.442 + }, + { + "start": 36854.68, + "end": 36855.59, + "probability": 0.9363 + }, + { + "start": 36856.42, + "end": 36860.94, + "probability": 0.9185 + }, + { + "start": 36862.16, + "end": 36864.86, + "probability": 0.8776 + }, + { + "start": 36867.2, + "end": 36871.22, + "probability": 0.979 + }, + { + "start": 36871.74, + "end": 36879.48, + "probability": 0.9715 + }, + { + "start": 36880.86, + "end": 36885.54, + "probability": 0.9263 + }, + { + "start": 36886.32, + "end": 36890.9, + "probability": 0.8465 + }, + { + "start": 36891.82, + "end": 36893.64, + "probability": 0.8683 + }, + { + "start": 36894.2, + "end": 36895.34, + "probability": 0.8411 + }, + { + "start": 36896.04, + "end": 36897.32, + "probability": 0.1926 + }, + { + "start": 36897.36, + "end": 36899.02, + "probability": 0.0119 + }, + { + "start": 36899.48, + "end": 36899.68, + "probability": 0.0649 + }, + { + "start": 36899.68, + "end": 36901.28, + "probability": 0.175 + }, + { + "start": 36902.06, + "end": 36904.8, + "probability": 0.3248 + }, + { + "start": 36905.32, + "end": 36906.96, + "probability": 0.4472 + }, + { + "start": 36907.46, + "end": 36911.74, + "probability": 0.991 + }, + { + "start": 36912.12, + "end": 36913.06, + "probability": 0.9207 + }, + { + "start": 36913.86, + "end": 36916.22, + "probability": 0.5394 + }, + { + "start": 36916.38, + "end": 36916.74, + "probability": 0.6063 + }, + { + "start": 36916.94, + "end": 36917.54, + "probability": 0.7414 + }, + { + "start": 36917.86, + "end": 36918.18, + "probability": 0.1027 + }, + { + "start": 36918.18, + "end": 36921.86, + "probability": 0.579 + }, + { + "start": 36922.14, + "end": 36923.1, + "probability": 0.2683 + }, + { + "start": 36923.42, + "end": 36924.64, + "probability": 0.6174 + }, + { + "start": 36924.76, + "end": 36926.2, + "probability": 0.8949 + }, + { + "start": 36926.66, + "end": 36928.68, + "probability": 0.944 + }, + { + "start": 36928.96, + "end": 36930.02, + "probability": 0.7742 + }, + { + "start": 36930.37, + "end": 36932.6, + "probability": 0.6985 + }, + { + "start": 36932.62, + "end": 36937.21, + "probability": 0.8627 + }, + { + "start": 36937.46, + "end": 36938.26, + "probability": 0.7595 + }, + { + "start": 36938.38, + "end": 36943.62, + "probability": 0.5987 + }, + { + "start": 36943.72, + "end": 36944.49, + "probability": 0.478 + }, + { + "start": 36944.92, + "end": 36944.96, + "probability": 0.0544 + }, + { + "start": 36944.96, + "end": 36948.32, + "probability": 0.4793 + }, + { + "start": 36949.28, + "end": 36952.08, + "probability": 0.6306 + }, + { + "start": 36952.62, + "end": 36956.7, + "probability": 0.834 + }, + { + "start": 36956.88, + "end": 36958.02, + "probability": 0.5945 + }, + { + "start": 36958.1, + "end": 36959.58, + "probability": 0.8938 + }, + { + "start": 36959.94, + "end": 36961.26, + "probability": 0.5697 + }, + { + "start": 36961.54, + "end": 36962.84, + "probability": 0.7876 + }, + { + "start": 36963.08, + "end": 36965.64, + "probability": 0.7312 + }, + { + "start": 36966.46, + "end": 36968.08, + "probability": 0.8859 + }, + { + "start": 36968.58, + "end": 36970.76, + "probability": 0.8704 + }, + { + "start": 36971.12, + "end": 36972.4, + "probability": 0.9893 + }, + { + "start": 36972.44, + "end": 36973.12, + "probability": 0.7107 + }, + { + "start": 36973.26, + "end": 36974.44, + "probability": 0.9397 + }, + { + "start": 36974.92, + "end": 36978.24, + "probability": 0.7302 + }, + { + "start": 36978.7, + "end": 36978.94, + "probability": 0.674 + }, + { + "start": 36978.94, + "end": 36982.68, + "probability": 0.7157 + }, + { + "start": 36982.76, + "end": 36984.32, + "probability": 0.764 + }, + { + "start": 36984.7, + "end": 36985.54, + "probability": 0.6072 + }, + { + "start": 36985.78, + "end": 36986.99, + "probability": 0.9944 + }, + { + "start": 36987.5, + "end": 36988.34, + "probability": 0.7251 + }, + { + "start": 36988.68, + "end": 36990.0, + "probability": 0.8846 + }, + { + "start": 36990.22, + "end": 36997.5, + "probability": 0.8201 + }, + { + "start": 36998.42, + "end": 37000.66, + "probability": 0.9103 + }, + { + "start": 37001.02, + "end": 37005.48, + "probability": 0.6992 + }, + { + "start": 37005.54, + "end": 37006.46, + "probability": 0.6092 + }, + { + "start": 37006.48, + "end": 37007.52, + "probability": 0.5873 + }, + { + "start": 37007.6, + "end": 37008.82, + "probability": 0.6948 + }, + { + "start": 37008.98, + "end": 37010.12, + "probability": 0.7019 + }, + { + "start": 37010.54, + "end": 37015.98, + "probability": 0.9846 + }, + { + "start": 37016.2, + "end": 37017.22, + "probability": 0.9193 + }, + { + "start": 37017.58, + "end": 37018.76, + "probability": 0.9054 + }, + { + "start": 37018.9, + "end": 37020.56, + "probability": 0.9875 + }, + { + "start": 37020.56, + "end": 37021.06, + "probability": 0.5371 + }, + { + "start": 37021.14, + "end": 37025.72, + "probability": 0.988 + }, + { + "start": 37026.1, + "end": 37027.08, + "probability": 0.5874 + }, + { + "start": 37027.28, + "end": 37028.12, + "probability": 0.2681 + }, + { + "start": 37028.48, + "end": 37029.62, + "probability": 0.8171 + }, + { + "start": 37029.76, + "end": 37031.5, + "probability": 0.765 + }, + { + "start": 37032.2, + "end": 37036.06, + "probability": 0.9818 + }, + { + "start": 37036.16, + "end": 37036.86, + "probability": 0.8589 + }, + { + "start": 37037.4, + "end": 37041.3, + "probability": 0.6677 + }, + { + "start": 37042.98, + "end": 37044.72, + "probability": 0.5067 + }, + { + "start": 37044.76, + "end": 37046.24, + "probability": 0.848 + }, + { + "start": 37048.08, + "end": 37054.22, + "probability": 0.7446 + }, + { + "start": 37054.88, + "end": 37055.38, + "probability": 0.805 + }, + { + "start": 37069.94, + "end": 37070.5, + "probability": 0.129 + }, + { + "start": 37071.08, + "end": 37071.89, + "probability": 0.1622 + }, + { + "start": 37073.1, + "end": 37076.34, + "probability": 0.7169 + }, + { + "start": 37076.54, + "end": 37076.74, + "probability": 0.2591 + }, + { + "start": 37076.84, + "end": 37079.86, + "probability": 0.818 + }, + { + "start": 37079.86, + "end": 37084.24, + "probability": 0.9426 + }, + { + "start": 37084.96, + "end": 37087.68, + "probability": 0.9783 + }, + { + "start": 37087.96, + "end": 37088.58, + "probability": 0.325 + }, + { + "start": 37089.46, + "end": 37091.54, + "probability": 0.9043 + }, + { + "start": 37092.06, + "end": 37095.4, + "probability": 0.8545 + }, + { + "start": 37096.3, + "end": 37100.0, + "probability": 0.5659 + }, + { + "start": 37100.24, + "end": 37100.84, + "probability": 0.319 + }, + { + "start": 37101.38, + "end": 37101.58, + "probability": 0.368 + }, + { + "start": 37101.58, + "end": 37101.76, + "probability": 0.1313 + }, + { + "start": 37110.22, + "end": 37112.82, + "probability": 0.4091 + }, + { + "start": 37115.34, + "end": 37117.9, + "probability": 0.4027 + }, + { + "start": 37117.9, + "end": 37119.7, + "probability": 0.6692 + }, + { + "start": 37120.68, + "end": 37126.56, + "probability": 0.9203 + }, + { + "start": 37126.66, + "end": 37129.18, + "probability": 0.664 + }, + { + "start": 37130.16, + "end": 37134.72, + "probability": 0.836 + }, + { + "start": 37135.3, + "end": 37136.82, + "probability": 0.7863 + }, + { + "start": 37137.26, + "end": 37137.96, + "probability": 0.818 + }, + { + "start": 37138.02, + "end": 37139.7, + "probability": 0.9018 + }, + { + "start": 37139.9, + "end": 37140.88, + "probability": 0.7367 + }, + { + "start": 37140.98, + "end": 37144.66, + "probability": 0.9798 + }, + { + "start": 37145.08, + "end": 37146.3, + "probability": 0.7701 + }, + { + "start": 37146.68, + "end": 37147.84, + "probability": 0.4819 + }, + { + "start": 37148.12, + "end": 37150.68, + "probability": 0.9887 + }, + { + "start": 37151.22, + "end": 37153.76, + "probability": 0.9216 + }, + { + "start": 37154.74, + "end": 37156.24, + "probability": 0.8588 + }, + { + "start": 37157.3, + "end": 37160.08, + "probability": 0.7902 + }, + { + "start": 37161.2, + "end": 37163.22, + "probability": 0.8644 + }, + { + "start": 37163.62, + "end": 37166.96, + "probability": 0.887 + }, + { + "start": 37168.16, + "end": 37171.58, + "probability": 0.8038 + }, + { + "start": 37172.42, + "end": 37175.32, + "probability": 0.9887 + }, + { + "start": 37176.02, + "end": 37178.38, + "probability": 0.9903 + }, + { + "start": 37178.4, + "end": 37181.78, + "probability": 0.9655 + }, + { + "start": 37183.96, + "end": 37187.68, + "probability": 0.9937 + }, + { + "start": 37188.62, + "end": 37195.35, + "probability": 0.9893 + }, + { + "start": 37195.82, + "end": 37197.54, + "probability": 0.8221 + }, + { + "start": 37198.0, + "end": 37201.66, + "probability": 0.9853 + }, + { + "start": 37201.66, + "end": 37207.82, + "probability": 0.9474 + }, + { + "start": 37209.02, + "end": 37211.94, + "probability": 0.8039 + }, + { + "start": 37212.04, + "end": 37214.1, + "probability": 0.9562 + }, + { + "start": 37214.22, + "end": 37216.86, + "probability": 0.9849 + }, + { + "start": 37218.2, + "end": 37220.98, + "probability": 0.9703 + }, + { + "start": 37221.28, + "end": 37226.46, + "probability": 0.9678 + }, + { + "start": 37228.2, + "end": 37235.34, + "probability": 0.9763 + }, + { + "start": 37235.68, + "end": 37236.8, + "probability": 0.7854 + }, + { + "start": 37236.84, + "end": 37238.28, + "probability": 0.842 + }, + { + "start": 37239.26, + "end": 37242.12, + "probability": 0.5486 + }, + { + "start": 37242.26, + "end": 37244.92, + "probability": 0.9734 + }, + { + "start": 37246.3, + "end": 37250.3, + "probability": 0.9856 + }, + { + "start": 37250.3, + "end": 37253.22, + "probability": 0.9954 + }, + { + "start": 37253.78, + "end": 37256.74, + "probability": 0.7785 + }, + { + "start": 37257.86, + "end": 37257.94, + "probability": 0.3405 + }, + { + "start": 37258.04, + "end": 37259.16, + "probability": 0.9056 + }, + { + "start": 37259.16, + "end": 37261.36, + "probability": 0.9968 + }, + { + "start": 37262.16, + "end": 37267.12, + "probability": 0.983 + }, + { + "start": 37267.2, + "end": 37268.54, + "probability": 0.8776 + }, + { + "start": 37269.36, + "end": 37272.82, + "probability": 0.9712 + }, + { + "start": 37275.02, + "end": 37275.52, + "probability": 0.4675 + }, + { + "start": 37275.6, + "end": 37279.62, + "probability": 0.6568 + }, + { + "start": 37279.86, + "end": 37284.76, + "probability": 0.9473 + }, + { + "start": 37285.02, + "end": 37290.3, + "probability": 0.9934 + }, + { + "start": 37291.92, + "end": 37294.38, + "probability": 0.9816 + }, + { + "start": 37294.9, + "end": 37298.38, + "probability": 0.8618 + }, + { + "start": 37299.6, + "end": 37304.04, + "probability": 0.9927 + }, + { + "start": 37305.22, + "end": 37307.1, + "probability": 0.882 + }, + { + "start": 37307.24, + "end": 37310.73, + "probability": 0.9917 + }, + { + "start": 37311.1, + "end": 37314.1, + "probability": 0.9204 + }, + { + "start": 37314.44, + "end": 37315.62, + "probability": 0.9478 + }, + { + "start": 37316.42, + "end": 37317.34, + "probability": 0.8544 + }, + { + "start": 37317.9, + "end": 37319.9, + "probability": 0.8997 + }, + { + "start": 37320.94, + "end": 37322.4, + "probability": 0.9175 + }, + { + "start": 37323.42, + "end": 37324.14, + "probability": 0.5439 + }, + { + "start": 37324.16, + "end": 37324.72, + "probability": 0.9454 + }, + { + "start": 37324.84, + "end": 37325.76, + "probability": 0.9469 + }, + { + "start": 37325.8, + "end": 37327.98, + "probability": 0.9783 + }, + { + "start": 37328.12, + "end": 37328.4, + "probability": 0.9078 + }, + { + "start": 37328.4, + "end": 37331.2, + "probability": 0.8882 + }, + { + "start": 37331.36, + "end": 37332.4, + "probability": 0.6019 + }, + { + "start": 37332.7, + "end": 37333.6, + "probability": 0.6639 + }, + { + "start": 37333.6, + "end": 37334.5, + "probability": 0.9414 + }, + { + "start": 37334.74, + "end": 37337.04, + "probability": 0.987 + }, + { + "start": 37338.04, + "end": 37341.34, + "probability": 0.8623 + }, + { + "start": 37341.44, + "end": 37342.2, + "probability": 0.9399 + }, + { + "start": 37342.24, + "end": 37343.78, + "probability": 0.9857 + }, + { + "start": 37343.92, + "end": 37345.78, + "probability": 0.9841 + }, + { + "start": 37346.88, + "end": 37349.58, + "probability": 0.9545 + }, + { + "start": 37350.42, + "end": 37354.76, + "probability": 0.9637 + }, + { + "start": 37355.3, + "end": 37356.48, + "probability": 0.9434 + }, + { + "start": 37356.88, + "end": 37361.68, + "probability": 0.9755 + }, + { + "start": 37362.08, + "end": 37365.9, + "probability": 0.9552 + }, + { + "start": 37367.34, + "end": 37369.56, + "probability": 0.7636 + }, + { + "start": 37370.12, + "end": 37377.74, + "probability": 0.9744 + }, + { + "start": 37380.41, + "end": 37380.64, + "probability": 0.0593 + }, + { + "start": 37380.64, + "end": 37383.38, + "probability": 0.8847 + }, + { + "start": 37384.04, + "end": 37387.56, + "probability": 0.7808 + }, + { + "start": 37388.24, + "end": 37388.36, + "probability": 0.1703 + }, + { + "start": 37388.46, + "end": 37391.18, + "probability": 0.8019 + }, + { + "start": 37391.96, + "end": 37398.34, + "probability": 0.9548 + }, + { + "start": 37399.44, + "end": 37402.06, + "probability": 0.8549 + }, + { + "start": 37402.96, + "end": 37406.38, + "probability": 0.9521 + }, + { + "start": 37406.86, + "end": 37408.98, + "probability": 0.9541 + }, + { + "start": 37410.1, + "end": 37412.33, + "probability": 0.9565 + }, + { + "start": 37413.44, + "end": 37419.14, + "probability": 0.9207 + }, + { + "start": 37420.32, + "end": 37421.51, + "probability": 0.8689 + }, + { + "start": 37422.2, + "end": 37422.92, + "probability": 0.7985 + }, + { + "start": 37423.2, + "end": 37427.36, + "probability": 0.9868 + }, + { + "start": 37430.56, + "end": 37431.56, + "probability": 0.8905 + }, + { + "start": 37431.66, + "end": 37432.48, + "probability": 0.5978 + }, + { + "start": 37432.48, + "end": 37435.06, + "probability": 0.9882 + }, + { + "start": 37435.68, + "end": 37436.48, + "probability": 0.5016 + }, + { + "start": 37437.24, + "end": 37442.5, + "probability": 0.9949 + }, + { + "start": 37442.9, + "end": 37444.28, + "probability": 0.9653 + }, + { + "start": 37444.44, + "end": 37445.28, + "probability": 0.4396 + }, + { + "start": 37445.76, + "end": 37448.5, + "probability": 0.7984 + }, + { + "start": 37449.04, + "end": 37452.9, + "probability": 0.9554 + }, + { + "start": 37453.44, + "end": 37455.44, + "probability": 0.9922 + }, + { + "start": 37455.58, + "end": 37456.53, + "probability": 0.9802 + }, + { + "start": 37456.88, + "end": 37458.9, + "probability": 0.9932 + }, + { + "start": 37460.12, + "end": 37460.94, + "probability": 0.9894 + }, + { + "start": 37461.02, + "end": 37461.74, + "probability": 0.7126 + }, + { + "start": 37462.2, + "end": 37463.74, + "probability": 0.8339 + }, + { + "start": 37463.96, + "end": 37467.12, + "probability": 0.9902 + }, + { + "start": 37467.42, + "end": 37468.12, + "probability": 0.7909 + }, + { + "start": 37468.48, + "end": 37469.9, + "probability": 0.5754 + }, + { + "start": 37471.58, + "end": 37476.34, + "probability": 0.6655 + }, + { + "start": 37477.0, + "end": 37483.52, + "probability": 0.5721 + }, + { + "start": 37484.32, + "end": 37484.52, + "probability": 0.0711 + }, + { + "start": 37484.52, + "end": 37486.18, + "probability": 0.6904 + }, + { + "start": 37487.1, + "end": 37489.16, + "probability": 0.7117 + }, + { + "start": 37489.98, + "end": 37490.18, + "probability": 0.6794 + }, + { + "start": 37491.1, + "end": 37493.2, + "probability": 0.8557 + }, + { + "start": 37494.68, + "end": 37494.88, + "probability": 0.6223 + }, + { + "start": 37508.06, + "end": 37511.3, + "probability": 0.9216 + }, + { + "start": 37512.0, + "end": 37513.6, + "probability": 0.5263 + }, + { + "start": 37515.6, + "end": 37515.78, + "probability": 0.3005 + }, + { + "start": 37516.96, + "end": 37518.72, + "probability": 0.3723 + }, + { + "start": 37518.88, + "end": 37521.76, + "probability": 0.6267 + }, + { + "start": 37522.12, + "end": 37525.1, + "probability": 0.7591 + }, + { + "start": 37525.18, + "end": 37526.54, + "probability": 0.9386 + }, + { + "start": 37526.6, + "end": 37527.95, + "probability": 0.9839 + }, + { + "start": 37528.38, + "end": 37529.14, + "probability": 0.8701 + }, + { + "start": 37529.34, + "end": 37530.12, + "probability": 0.8879 + }, + { + "start": 37530.18, + "end": 37530.9, + "probability": 0.6912 + }, + { + "start": 37532.24, + "end": 37535.53, + "probability": 0.6665 + }, + { + "start": 37536.6, + "end": 37537.88, + "probability": 0.9973 + }, + { + "start": 37539.94, + "end": 37542.38, + "probability": 0.981 + }, + { + "start": 37542.88, + "end": 37544.14, + "probability": 0.8517 + }, + { + "start": 37544.32, + "end": 37545.34, + "probability": 0.8881 + }, + { + "start": 37545.44, + "end": 37546.44, + "probability": 0.6324 + }, + { + "start": 37547.0, + "end": 37550.0, + "probability": 0.9618 + }, + { + "start": 37552.22, + "end": 37559.9, + "probability": 0.9373 + }, + { + "start": 37561.52, + "end": 37564.78, + "probability": 0.9338 + }, + { + "start": 37565.6, + "end": 37568.7, + "probability": 0.973 + }, + { + "start": 37569.46, + "end": 37574.02, + "probability": 0.917 + }, + { + "start": 37574.02, + "end": 37577.32, + "probability": 0.9458 + }, + { + "start": 37578.84, + "end": 37579.72, + "probability": 0.5626 + }, + { + "start": 37580.36, + "end": 37581.58, + "probability": 0.7487 + }, + { + "start": 37582.9, + "end": 37588.72, + "probability": 0.9578 + }, + { + "start": 37590.18, + "end": 37594.66, + "probability": 0.9363 + }, + { + "start": 37595.24, + "end": 37597.78, + "probability": 0.7708 + }, + { + "start": 37599.22, + "end": 37603.44, + "probability": 0.961 + }, + { + "start": 37603.7, + "end": 37605.23, + "probability": 0.6191 + }, + { + "start": 37605.78, + "end": 37607.6, + "probability": 0.8711 + }, + { + "start": 37607.8, + "end": 37609.26, + "probability": 0.9358 + }, + { + "start": 37609.64, + "end": 37616.16, + "probability": 0.9062 + }, + { + "start": 37618.72, + "end": 37622.04, + "probability": 0.798 + }, + { + "start": 37623.22, + "end": 37624.18, + "probability": 0.9371 + }, + { + "start": 37626.08, + "end": 37629.84, + "probability": 0.7045 + }, + { + "start": 37631.0, + "end": 37639.04, + "probability": 0.9136 + }, + { + "start": 37639.66, + "end": 37643.86, + "probability": 0.7472 + }, + { + "start": 37643.86, + "end": 37650.72, + "probability": 0.8318 + }, + { + "start": 37652.84, + "end": 37654.98, + "probability": 0.6957 + }, + { + "start": 37655.34, + "end": 37659.15, + "probability": 0.8888 + }, + { + "start": 37659.68, + "end": 37660.94, + "probability": 0.4997 + }, + { + "start": 37661.08, + "end": 37661.96, + "probability": 0.0065 + }, + { + "start": 37661.96, + "end": 37664.68, + "probability": 0.7324 + }, + { + "start": 37664.88, + "end": 37664.88, + "probability": 0.0505 + }, + { + "start": 37664.88, + "end": 37666.68, + "probability": 0.8616 + }, + { + "start": 37666.7, + "end": 37669.7, + "probability": 0.6764 + }, + { + "start": 37670.08, + "end": 37672.22, + "probability": 0.9434 + }, + { + "start": 37672.66, + "end": 37674.34, + "probability": 0.8081 + }, + { + "start": 37675.8, + "end": 37678.02, + "probability": 0.6382 + }, + { + "start": 37678.58, + "end": 37681.84, + "probability": 0.9772 + }, + { + "start": 37682.44, + "end": 37683.5, + "probability": 0.7685 + }, + { + "start": 37684.06, + "end": 37687.49, + "probability": 0.948 + }, + { + "start": 37690.08, + "end": 37691.32, + "probability": 0.939 + }, + { + "start": 37691.88, + "end": 37693.85, + "probability": 0.7402 + }, + { + "start": 37694.52, + "end": 37695.38, + "probability": 0.2971 + }, + { + "start": 37696.08, + "end": 37698.05, + "probability": 0.1642 + }, + { + "start": 37698.84, + "end": 37700.32, + "probability": 0.6181 + }, + { + "start": 37700.52, + "end": 37701.36, + "probability": 0.7735 + }, + { + "start": 37701.36, + "end": 37706.54, + "probability": 0.8618 + }, + { + "start": 37707.18, + "end": 37710.14, + "probability": 0.9387 + }, + { + "start": 37710.48, + "end": 37715.32, + "probability": 0.9236 + }, + { + "start": 37715.36, + "end": 37715.9, + "probability": 0.6765 + }, + { + "start": 37716.14, + "end": 37716.92, + "probability": 0.5551 + }, + { + "start": 37717.0, + "end": 37718.22, + "probability": 0.8997 + }, + { + "start": 37718.32, + "end": 37719.88, + "probability": 0.8605 + }, + { + "start": 37719.94, + "end": 37723.7, + "probability": 0.9352 + }, + { + "start": 37723.86, + "end": 37726.34, + "probability": 0.8576 + }, + { + "start": 37726.94, + "end": 37727.46, + "probability": 0.4497 + }, + { + "start": 37727.52, + "end": 37729.88, + "probability": 0.9258 + }, + { + "start": 37732.96, + "end": 37735.84, + "probability": 0.8614 + }, + { + "start": 37746.46, + "end": 37748.58, + "probability": 0.7375 + }, + { + "start": 37749.1, + "end": 37752.14, + "probability": 0.8772 + }, + { + "start": 37752.36, + "end": 37758.4, + "probability": 0.9885 + }, + { + "start": 37758.96, + "end": 37760.62, + "probability": 0.9688 + }, + { + "start": 37760.82, + "end": 37762.16, + "probability": 0.957 + }, + { + "start": 37763.2, + "end": 37763.94, + "probability": 0.4393 + }, + { + "start": 37764.22, + "end": 37767.96, + "probability": 0.9208 + }, + { + "start": 37768.94, + "end": 37768.94, + "probability": 0.5948 + }, + { + "start": 37768.94, + "end": 37775.44, + "probability": 0.7413 + }, + { + "start": 37775.98, + "end": 37778.98, + "probability": 0.8181 + }, + { + "start": 37779.8, + "end": 37785.46, + "probability": 0.9795 + }, + { + "start": 37786.02, + "end": 37788.44, + "probability": 0.9934 + }, + { + "start": 37789.0, + "end": 37791.78, + "probability": 0.9967 + }, + { + "start": 37791.88, + "end": 37793.72, + "probability": 0.9327 + }, + { + "start": 37793.84, + "end": 37794.46, + "probability": 0.7764 + }, + { + "start": 37795.02, + "end": 37800.28, + "probability": 0.9082 + }, + { + "start": 37800.62, + "end": 37807.14, + "probability": 0.9786 + }, + { + "start": 37809.18, + "end": 37811.4, + "probability": 0.8974 + }, + { + "start": 37811.56, + "end": 37815.86, + "probability": 0.9927 + }, + { + "start": 37817.0, + "end": 37821.52, + "probability": 0.8831 + }, + { + "start": 37822.14, + "end": 37823.42, + "probability": 0.7481 + }, + { + "start": 37826.8, + "end": 37827.32, + "probability": 0.5564 + }, + { + "start": 37828.48, + "end": 37834.38, + "probability": 0.9641 + }, + { + "start": 37835.84, + "end": 37841.14, + "probability": 0.9855 + }, + { + "start": 37841.42, + "end": 37847.7, + "probability": 0.8672 + }, + { + "start": 37849.06, + "end": 37851.8, + "probability": 0.9931 + }, + { + "start": 37852.18, + "end": 37853.54, + "probability": 0.9502 + }, + { + "start": 37853.66, + "end": 37856.12, + "probability": 0.9532 + }, + { + "start": 37856.7, + "end": 37859.26, + "probability": 0.953 + }, + { + "start": 37859.52, + "end": 37862.64, + "probability": 0.9861 + }, + { + "start": 37862.64, + "end": 37867.76, + "probability": 0.9137 + }, + { + "start": 37868.8, + "end": 37870.94, + "probability": 0.9745 + }, + { + "start": 37871.0, + "end": 37872.32, + "probability": 0.8765 + }, + { + "start": 37872.42, + "end": 37875.88, + "probability": 0.9124 + }, + { + "start": 37878.22, + "end": 37878.58, + "probability": 0.5949 + }, + { + "start": 37878.72, + "end": 37880.82, + "probability": 0.807 + }, + { + "start": 37881.92, + "end": 37882.4, + "probability": 0.9512 + }, + { + "start": 37883.54, + "end": 37885.34, + "probability": 0.9769 + }, + { + "start": 37888.62, + "end": 37888.62, + "probability": 0.315 + }, + { + "start": 37888.62, + "end": 37888.62, + "probability": 0.2717 + }, + { + "start": 37888.62, + "end": 37890.32, + "probability": 0.946 + }, + { + "start": 37890.86, + "end": 37891.04, + "probability": 0.4559 + }, + { + "start": 37891.1, + "end": 37892.18, + "probability": 0.2729 + }, + { + "start": 37892.3, + "end": 37893.09, + "probability": 0.8125 + }, + { + "start": 37893.22, + "end": 37894.94, + "probability": 0.4315 + }, + { + "start": 37894.96, + "end": 37895.64, + "probability": 0.8126 + }, + { + "start": 37895.8, + "end": 37896.58, + "probability": 0.8817 + }, + { + "start": 37897.16, + "end": 37897.58, + "probability": 0.8969 + }, + { + "start": 37897.62, + "end": 37899.7, + "probability": 0.549 + }, + { + "start": 37900.38, + "end": 37901.42, + "probability": 0.952 + }, + { + "start": 37902.26, + "end": 37903.64, + "probability": 0.6422 + }, + { + "start": 37903.86, + "end": 37904.88, + "probability": 0.7829 + }, + { + "start": 37904.98, + "end": 37905.46, + "probability": 0.6909 + }, + { + "start": 37905.56, + "end": 37906.8, + "probability": 0.8809 + }, + { + "start": 37906.88, + "end": 37907.44, + "probability": 0.7748 + }, + { + "start": 37907.56, + "end": 37910.98, + "probability": 0.8123 + }, + { + "start": 37911.56, + "end": 37912.3, + "probability": 0.4243 + }, + { + "start": 37912.32, + "end": 37912.82, + "probability": 0.828 + }, + { + "start": 37921.48, + "end": 37923.26, + "probability": 0.3529 + }, + { + "start": 37923.26, + "end": 37923.33, + "probability": 0.0517 + }, + { + "start": 37928.72, + "end": 37931.1, + "probability": 0.5478 + }, + { + "start": 37931.24, + "end": 37931.42, + "probability": 0.2606 + }, + { + "start": 37931.52, + "end": 37933.92, + "probability": 0.837 + }, + { + "start": 37933.92, + "end": 37936.24, + "probability": 0.8442 + }, + { + "start": 37936.9, + "end": 37938.8, + "probability": 0.5577 + }, + { + "start": 37939.16, + "end": 37944.64, + "probability": 0.6695 + }, + { + "start": 37945.26, + "end": 37945.38, + "probability": 0.0476 + }, + { + "start": 37945.38, + "end": 37945.38, + "probability": 0.3046 + }, + { + "start": 37945.38, + "end": 37945.38, + "probability": 0.3239 + }, + { + "start": 37945.38, + "end": 37945.38, + "probability": 0.1096 + }, + { + "start": 37945.38, + "end": 37947.92, + "probability": 0.4337 + }, + { + "start": 37947.92, + "end": 37950.66, + "probability": 0.6454 + }, + { + "start": 37950.96, + "end": 37951.06, + "probability": 0.8939 + }, + { + "start": 37952.8, + "end": 37954.44, + "probability": 0.9485 + }, + { + "start": 37955.1, + "end": 37955.54, + "probability": 0.514 + }, + { + "start": 37955.84, + "end": 37957.76, + "probability": 0.987 + }, + { + "start": 37959.06, + "end": 37960.28, + "probability": 0.8334 + }, + { + "start": 37961.96, + "end": 37964.38, + "probability": 0.2322 + }, + { + "start": 37964.42, + "end": 37964.78, + "probability": 0.5608 + }, + { + "start": 37964.88, + "end": 37965.64, + "probability": 0.7478 + }, + { + "start": 37965.7, + "end": 37966.94, + "probability": 0.8703 + }, + { + "start": 37967.1, + "end": 37967.48, + "probability": 0.7961 + }, + { + "start": 37967.56, + "end": 37969.28, + "probability": 0.6314 + }, + { + "start": 37969.4, + "end": 37971.62, + "probability": 0.4997 + }, + { + "start": 37971.68, + "end": 37972.18, + "probability": 0.7273 + }, + { + "start": 37972.3, + "end": 37976.28, + "probability": 0.6211 + }, + { + "start": 37976.34, + "end": 37977.64, + "probability": 0.7555 + }, + { + "start": 37977.78, + "end": 37978.42, + "probability": 0.9148 + }, + { + "start": 37978.44, + "end": 37981.5, + "probability": 0.9543 + }, + { + "start": 37984.04, + "end": 37988.38, + "probability": 0.6784 + }, + { + "start": 37989.74, + "end": 37994.92, + "probability": 0.9432 + }, + { + "start": 37995.96, + "end": 37999.1, + "probability": 0.8625 + }, + { + "start": 37999.68, + "end": 38001.86, + "probability": 0.9238 + }, + { + "start": 38001.9, + "end": 38004.96, + "probability": 0.9564 + }, + { + "start": 38005.8, + "end": 38010.44, + "probability": 0.9897 + }, + { + "start": 38011.98, + "end": 38017.28, + "probability": 0.9966 + }, + { + "start": 38017.48, + "end": 38018.78, + "probability": 0.7761 + }, + { + "start": 38018.94, + "end": 38027.8, + "probability": 0.9585 + }, + { + "start": 38027.94, + "end": 38031.67, + "probability": 0.9937 + }, + { + "start": 38032.68, + "end": 38034.94, + "probability": 0.9727 + }, + { + "start": 38035.5, + "end": 38039.16, + "probability": 0.9819 + }, + { + "start": 38040.52, + "end": 38047.1, + "probability": 0.8179 + }, + { + "start": 38047.18, + "end": 38051.3, + "probability": 0.9321 + }, + { + "start": 38051.4, + "end": 38052.9, + "probability": 0.9159 + }, + { + "start": 38054.24, + "end": 38057.7, + "probability": 0.9861 + }, + { + "start": 38057.9, + "end": 38060.56, + "probability": 0.9864 + }, + { + "start": 38062.48, + "end": 38063.86, + "probability": 0.7922 + }, + { + "start": 38064.34, + "end": 38065.24, + "probability": 0.9089 + }, + { + "start": 38065.5, + "end": 38069.78, + "probability": 0.9931 + }, + { + "start": 38070.56, + "end": 38073.34, + "probability": 0.9961 + }, + { + "start": 38073.6, + "end": 38080.22, + "probability": 0.9857 + }, + { + "start": 38080.76, + "end": 38082.96, + "probability": 0.9962 + }, + { + "start": 38084.3, + "end": 38089.82, + "probability": 0.9973 + }, + { + "start": 38090.8, + "end": 38095.22, + "probability": 0.9521 + }, + { + "start": 38096.1, + "end": 38098.86, + "probability": 0.9759 + }, + { + "start": 38098.96, + "end": 38101.54, + "probability": 0.9927 + }, + { + "start": 38101.84, + "end": 38107.5, + "probability": 0.9943 + }, + { + "start": 38107.5, + "end": 38111.6, + "probability": 0.999 + }, + { + "start": 38113.04, + "end": 38117.7, + "probability": 0.9919 + }, + { + "start": 38117.88, + "end": 38121.4, + "probability": 0.767 + }, + { + "start": 38121.76, + "end": 38128.24, + "probability": 0.9278 + }, + { + "start": 38128.86, + "end": 38131.24, + "probability": 0.9976 + }, + { + "start": 38131.54, + "end": 38134.64, + "probability": 0.7475 + }, + { + "start": 38135.54, + "end": 38140.42, + "probability": 0.9902 + }, + { + "start": 38140.98, + "end": 38142.84, + "probability": 0.823 + }, + { + "start": 38143.56, + "end": 38148.98, + "probability": 0.9972 + }, + { + "start": 38148.98, + "end": 38153.88, + "probability": 0.9986 + }, + { + "start": 38154.8, + "end": 38161.2, + "probability": 0.9924 + }, + { + "start": 38161.2, + "end": 38167.16, + "probability": 0.9955 + }, + { + "start": 38167.84, + "end": 38170.22, + "probability": 0.8874 + }, + { + "start": 38170.9, + "end": 38174.08, + "probability": 0.7538 + }, + { + "start": 38175.24, + "end": 38176.9, + "probability": 0.9444 + }, + { + "start": 38177.18, + "end": 38177.74, + "probability": 0.9288 + }, + { + "start": 38177.82, + "end": 38179.76, + "probability": 0.8915 + }, + { + "start": 38179.94, + "end": 38187.88, + "probability": 0.9431 + }, + { + "start": 38187.88, + "end": 38194.94, + "probability": 0.9961 + }, + { + "start": 38195.06, + "end": 38195.46, + "probability": 0.7562 + }, + { + "start": 38196.3, + "end": 38197.94, + "probability": 0.6068 + }, + { + "start": 38198.36, + "end": 38201.02, + "probability": 0.4465 + }, + { + "start": 38202.08, + "end": 38204.12, + "probability": 0.6867 + }, + { + "start": 38212.46, + "end": 38213.16, + "probability": 0.7311 + }, + { + "start": 38220.22, + "end": 38221.56, + "probability": 0.545 + }, + { + "start": 38222.3, + "end": 38226.82, + "probability": 0.9722 + }, + { + "start": 38227.86, + "end": 38234.18, + "probability": 0.8705 + }, + { + "start": 38234.82, + "end": 38238.58, + "probability": 0.9691 + }, + { + "start": 38239.5, + "end": 38241.28, + "probability": 0.7119 + }, + { + "start": 38241.46, + "end": 38242.53, + "probability": 0.6707 + }, + { + "start": 38242.88, + "end": 38244.58, + "probability": 0.7045 + }, + { + "start": 38245.44, + "end": 38250.68, + "probability": 0.9421 + }, + { + "start": 38255.94, + "end": 38263.2, + "probability": 0.978 + }, + { + "start": 38264.14, + "end": 38271.04, + "probability": 0.9182 + }, + { + "start": 38271.58, + "end": 38273.74, + "probability": 0.9872 + }, + { + "start": 38274.62, + "end": 38275.42, + "probability": 0.7083 + }, + { + "start": 38275.54, + "end": 38276.8, + "probability": 0.8577 + }, + { + "start": 38277.14, + "end": 38279.0, + "probability": 0.5217 + }, + { + "start": 38279.0, + "end": 38279.4, + "probability": 0.7588 + }, + { + "start": 38279.6, + "end": 38280.62, + "probability": 0.8835 + }, + { + "start": 38281.08, + "end": 38283.58, + "probability": 0.921 + }, + { + "start": 38283.66, + "end": 38284.94, + "probability": 0.9788 + }, + { + "start": 38286.84, + "end": 38288.2, + "probability": 0.915 + }, + { + "start": 38289.18, + "end": 38290.57, + "probability": 0.7981 + }, + { + "start": 38290.82, + "end": 38291.8, + "probability": 0.5251 + }, + { + "start": 38291.86, + "end": 38292.86, + "probability": 0.899 + }, + { + "start": 38293.02, + "end": 38295.0, + "probability": 0.9302 + }, + { + "start": 38296.04, + "end": 38296.34, + "probability": 0.4017 + }, + { + "start": 38296.44, + "end": 38299.54, + "probability": 0.9531 + }, + { + "start": 38300.38, + "end": 38307.66, + "probability": 0.9793 + }, + { + "start": 38308.76, + "end": 38310.84, + "probability": 0.6458 + }, + { + "start": 38311.68, + "end": 38315.02, + "probability": 0.9396 + }, + { + "start": 38315.72, + "end": 38319.6, + "probability": 0.9556 + }, + { + "start": 38319.62, + "end": 38323.5, + "probability": 0.9543 + }, + { + "start": 38323.76, + "end": 38324.5, + "probability": 0.6441 + }, + { + "start": 38325.08, + "end": 38327.32, + "probability": 0.9366 + }, + { + "start": 38327.86, + "end": 38330.94, + "probability": 0.7674 + }, + { + "start": 38331.76, + "end": 38336.0, + "probability": 0.9477 + }, + { + "start": 38338.06, + "end": 38340.38, + "probability": 0.8542 + }, + { + "start": 38340.38, + "end": 38342.62, + "probability": 0.9709 + }, + { + "start": 38342.7, + "end": 38345.82, + "probability": 0.9842 + }, + { + "start": 38345.82, + "end": 38348.96, + "probability": 0.9962 + }, + { + "start": 38349.1, + "end": 38350.7, + "probability": 0.9227 + }, + { + "start": 38351.58, + "end": 38354.16, + "probability": 0.9959 + }, + { + "start": 38354.16, + "end": 38356.98, + "probability": 0.9911 + }, + { + "start": 38356.98, + "end": 38361.52, + "probability": 0.9695 + }, + { + "start": 38361.82, + "end": 38362.62, + "probability": 0.9422 + }, + { + "start": 38365.22, + "end": 38373.02, + "probability": 0.9341 + }, + { + "start": 38373.22, + "end": 38381.38, + "probability": 0.9734 + }, + { + "start": 38381.52, + "end": 38383.56, + "probability": 0.6647 + }, + { + "start": 38384.24, + "end": 38391.66, + "probability": 0.9813 + }, + { + "start": 38391.82, + "end": 38392.34, + "probability": 0.3732 + }, + { + "start": 38392.38, + "end": 38393.82, + "probability": 0.87 + }, + { + "start": 38394.52, + "end": 38396.64, + "probability": 0.975 + }, + { + "start": 38396.7, + "end": 38397.7, + "probability": 0.9805 + }, + { + "start": 38397.88, + "end": 38397.9, + "probability": 0.0845 + }, + { + "start": 38397.9, + "end": 38398.52, + "probability": 0.4137 + }, + { + "start": 38399.36, + "end": 38402.64, + "probability": 0.8687 + }, + { + "start": 38403.18, + "end": 38408.38, + "probability": 0.2983 + }, + { + "start": 38409.68, + "end": 38411.04, + "probability": 0.8959 + }, + { + "start": 38413.66, + "end": 38414.42, + "probability": 0.9692 + }, + { + "start": 38414.5, + "end": 38417.7, + "probability": 0.9871 + }, + { + "start": 38418.34, + "end": 38419.62, + "probability": 0.8091 + }, + { + "start": 38419.96, + "end": 38420.96, + "probability": 0.8815 + }, + { + "start": 38421.06, + "end": 38423.12, + "probability": 0.8414 + }, + { + "start": 38423.96, + "end": 38425.22, + "probability": 0.9855 + }, + { + "start": 38425.78, + "end": 38432.02, + "probability": 0.9745 + }, + { + "start": 38433.2, + "end": 38437.68, + "probability": 0.743 + }, + { + "start": 38438.72, + "end": 38443.72, + "probability": 0.984 + }, + { + "start": 38443.8, + "end": 38446.48, + "probability": 0.8384 + }, + { + "start": 38447.62, + "end": 38450.3, + "probability": 0.8374 + }, + { + "start": 38450.98, + "end": 38456.1, + "probability": 0.9144 + }, + { + "start": 38456.16, + "end": 38457.96, + "probability": 0.7587 + }, + { + "start": 38458.42, + "end": 38458.92, + "probability": 0.65 + }, + { + "start": 38459.0, + "end": 38466.26, + "probability": 0.9745 + }, + { + "start": 38466.38, + "end": 38467.72, + "probability": 0.9434 + }, + { + "start": 38468.52, + "end": 38472.62, + "probability": 0.9968 + }, + { + "start": 38473.14, + "end": 38477.04, + "probability": 0.9661 + }, + { + "start": 38477.04, + "end": 38481.3, + "probability": 0.5137 + }, + { + "start": 38481.3, + "end": 38484.38, + "probability": 0.8774 + }, + { + "start": 38485.01, + "end": 38492.38, + "probability": 0.9546 + }, + { + "start": 38493.98, + "end": 38499.16, + "probability": 0.9461 + }, + { + "start": 38499.2, + "end": 38500.56, + "probability": 0.9011 + }, + { + "start": 38501.72, + "end": 38506.0, + "probability": 0.9159 + }, + { + "start": 38506.68, + "end": 38513.38, + "probability": 0.8918 + }, + { + "start": 38513.56, + "end": 38518.52, + "probability": 0.9845 + }, + { + "start": 38518.8, + "end": 38520.82, + "probability": 0.9167 + }, + { + "start": 38522.42, + "end": 38524.94, + "probability": 0.9888 + }, + { + "start": 38525.62, + "end": 38530.94, + "probability": 0.9666 + }, + { + "start": 38531.12, + "end": 38531.64, + "probability": 0.6417 + }, + { + "start": 38531.9, + "end": 38536.6, + "probability": 0.8988 + }, + { + "start": 38536.68, + "end": 38537.08, + "probability": 0.815 + }, + { + "start": 38537.16, + "end": 38537.72, + "probability": 0.8396 + }, + { + "start": 38537.8, + "end": 38538.82, + "probability": 0.9902 + }, + { + "start": 38540.06, + "end": 38541.04, + "probability": 0.7756 + }, + { + "start": 38541.04, + "end": 38542.88, + "probability": 0.9661 + }, + { + "start": 38544.44, + "end": 38544.82, + "probability": 0.1242 + }, + { + "start": 38544.82, + "end": 38545.98, + "probability": 0.6971 + }, + { + "start": 38547.96, + "end": 38554.02, + "probability": 0.9183 + }, + { + "start": 38554.18, + "end": 38556.46, + "probability": 0.8779 + }, + { + "start": 38556.64, + "end": 38558.02, + "probability": 0.8472 + }, + { + "start": 38558.08, + "end": 38558.36, + "probability": 0.8726 + }, + { + "start": 38558.5, + "end": 38559.4, + "probability": 0.8983 + }, + { + "start": 38559.62, + "end": 38560.04, + "probability": 0.6092 + }, + { + "start": 38565.06, + "end": 38565.32, + "probability": 0.7441 + }, + { + "start": 38566.62, + "end": 38569.34, + "probability": 0.5865 + }, + { + "start": 38569.5, + "end": 38569.52, + "probability": 0.5138 + }, + { + "start": 38569.52, + "end": 38570.16, + "probability": 0.7259 + }, + { + "start": 38570.26, + "end": 38575.62, + "probability": 0.9932 + }, + { + "start": 38575.62, + "end": 38581.66, + "probability": 0.9701 + }, + { + "start": 38582.62, + "end": 38582.68, + "probability": 0.0271 + }, + { + "start": 38582.78, + "end": 38586.3, + "probability": 0.9829 + }, + { + "start": 38586.48, + "end": 38586.86, + "probability": 0.5368 + }, + { + "start": 38586.94, + "end": 38587.56, + "probability": 0.844 + }, + { + "start": 38588.79, + "end": 38589.94, + "probability": 0.6184 + }, + { + "start": 38589.94, + "end": 38591.92, + "probability": 0.6213 + }, + { + "start": 38591.98, + "end": 38595.92, + "probability": 0.8313 + }, + { + "start": 38596.94, + "end": 38600.1, + "probability": 0.994 + }, + { + "start": 38600.2, + "end": 38602.14, + "probability": 0.865 + }, + { + "start": 38602.26, + "end": 38604.68, + "probability": 0.9377 + }, + { + "start": 38605.02, + "end": 38607.56, + "probability": 0.8547 + }, + { + "start": 38607.56, + "end": 38612.32, + "probability": 0.9505 + }, + { + "start": 38612.44, + "end": 38615.1, + "probability": 0.848 + }, + { + "start": 38615.68, + "end": 38617.22, + "probability": 0.8892 + }, + { + "start": 38617.34, + "end": 38621.74, + "probability": 0.872 + }, + { + "start": 38622.42, + "end": 38623.56, + "probability": 0.9097 + }, + { + "start": 38624.08, + "end": 38630.94, + "probability": 0.782 + }, + { + "start": 38632.72, + "end": 38633.46, + "probability": 0.8177 + }, + { + "start": 38633.62, + "end": 38636.0, + "probability": 0.908 + }, + { + "start": 38636.38, + "end": 38637.64, + "probability": 0.8553 + }, + { + "start": 38637.74, + "end": 38641.56, + "probability": 0.9531 + }, + { + "start": 38642.12, + "end": 38645.31, + "probability": 0.6631 + }, + { + "start": 38645.94, + "end": 38650.8, + "probability": 0.9297 + }, + { + "start": 38651.7, + "end": 38652.8, + "probability": 0.9417 + }, + { + "start": 38652.92, + "end": 38653.93, + "probability": 0.9844 + }, + { + "start": 38654.12, + "end": 38655.52, + "probability": 0.9108 + }, + { + "start": 38655.6, + "end": 38656.86, + "probability": 0.6313 + }, + { + "start": 38657.24, + "end": 38660.66, + "probability": 0.8802 + }, + { + "start": 38661.54, + "end": 38662.28, + "probability": 0.9755 + }, + { + "start": 38662.84, + "end": 38663.48, + "probability": 0.695 + }, + { + "start": 38663.54, + "end": 38664.7, + "probability": 0.9014 + }, + { + "start": 38665.12, + "end": 38671.94, + "probability": 0.9808 + }, + { + "start": 38673.1, + "end": 38679.41, + "probability": 0.9671 + }, + { + "start": 38681.76, + "end": 38684.26, + "probability": 0.2198 + }, + { + "start": 38687.88, + "end": 38688.96, + "probability": 0.7051 + }, + { + "start": 38689.04, + "end": 38694.56, + "probability": 0.9093 + }, + { + "start": 38697.76, + "end": 38701.0, + "probability": 0.9808 + }, + { + "start": 38701.18, + "end": 38702.3, + "probability": 0.9024 + }, + { + "start": 38702.42, + "end": 38704.06, + "probability": 0.8333 + }, + { + "start": 38704.78, + "end": 38707.5, + "probability": 0.9302 + }, + { + "start": 38707.8, + "end": 38711.52, + "probability": 0.9956 + }, + { + "start": 38711.52, + "end": 38715.64, + "probability": 0.9968 + }, + { + "start": 38716.36, + "end": 38717.22, + "probability": 0.9046 + }, + { + "start": 38717.94, + "end": 38718.04, + "probability": 0.7197 + }, + { + "start": 38719.42, + "end": 38721.66, + "probability": 0.9253 + }, + { + "start": 38722.2, + "end": 38724.38, + "probability": 0.76 + }, + { + "start": 38725.1, + "end": 38727.74, + "probability": 0.9927 + }, + { + "start": 38727.82, + "end": 38730.38, + "probability": 0.9673 + }, + { + "start": 38731.3, + "end": 38731.3, + "probability": 0.0761 + }, + { + "start": 38731.3, + "end": 38734.26, + "probability": 0.9805 + }, + { + "start": 38734.32, + "end": 38735.12, + "probability": 0.9893 + }, + { + "start": 38735.52, + "end": 38736.7, + "probability": 0.9425 + }, + { + "start": 38737.34, + "end": 38739.52, + "probability": 0.9841 + }, + { + "start": 38739.72, + "end": 38741.6, + "probability": 0.9877 + }, + { + "start": 38742.24, + "end": 38743.64, + "probability": 0.9709 + }, + { + "start": 38743.86, + "end": 38744.6, + "probability": 0.7842 + }, + { + "start": 38745.46, + "end": 38746.06, + "probability": 0.6876 + }, + { + "start": 38750.74, + "end": 38752.22, + "probability": 0.1967 + }, + { + "start": 38752.65, + "end": 38754.88, + "probability": 0.7022 + }, + { + "start": 38755.38, + "end": 38755.4, + "probability": 0.0032 + }, + { + "start": 38756.2, + "end": 38758.34, + "probability": 0.0773 + }, + { + "start": 38758.74, + "end": 38762.5, + "probability": 0.9747 + }, + { + "start": 38762.5, + "end": 38765.58, + "probability": 0.999 + }, + { + "start": 38765.72, + "end": 38766.34, + "probability": 0.8501 + }, + { + "start": 38766.86, + "end": 38768.7, + "probability": 0.7817 + }, + { + "start": 38769.04, + "end": 38769.52, + "probability": 0.7154 + }, + { + "start": 38769.58, + "end": 38770.86, + "probability": 0.7895 + }, + { + "start": 38771.24, + "end": 38772.96, + "probability": 0.9585 + }, + { + "start": 38773.1, + "end": 38777.5, + "probability": 0.9939 + }, + { + "start": 38778.2, + "end": 38783.7, + "probability": 0.9973 + }, + { + "start": 38784.58, + "end": 38785.84, + "probability": 0.6158 + }, + { + "start": 38785.96, + "end": 38792.4, + "probability": 0.9348 + }, + { + "start": 38792.58, + "end": 38795.12, + "probability": 0.8221 + }, + { + "start": 38795.98, + "end": 38799.8, + "probability": 0.9902 + }, + { + "start": 38799.92, + "end": 38802.18, + "probability": 0.9729 + }, + { + "start": 38804.5, + "end": 38805.16, + "probability": 0.8974 + }, + { + "start": 38805.92, + "end": 38807.78, + "probability": 0.175 + }, + { + "start": 38808.5, + "end": 38810.8, + "probability": 0.1802 + }, + { + "start": 38813.19, + "end": 38813.68, + "probability": 0.0241 + }, + { + "start": 38814.0, + "end": 38814.66, + "probability": 0.2999 + }, + { + "start": 38816.14, + "end": 38816.4, + "probability": 0.2201 + }, + { + "start": 38817.0, + "end": 38818.34, + "probability": 0.6006 + }, + { + "start": 38820.5, + "end": 38821.52, + "probability": 0.0906 + }, + { + "start": 38824.28, + "end": 38835.22, + "probability": 0.9956 + }, + { + "start": 38835.22, + "end": 38840.28, + "probability": 0.9993 + }, + { + "start": 38840.98, + "end": 38843.98, + "probability": 0.7512 + }, + { + "start": 38844.7, + "end": 38846.86, + "probability": 0.9816 + }, + { + "start": 38847.1, + "end": 38848.26, + "probability": 0.8924 + }, + { + "start": 38848.34, + "end": 38849.56, + "probability": 0.7877 + }, + { + "start": 38849.88, + "end": 38850.98, + "probability": 0.9373 + }, + { + "start": 38851.02, + "end": 38853.78, + "probability": 0.9868 + }, + { + "start": 38853.82, + "end": 38855.62, + "probability": 0.9588 + }, + { + "start": 38855.74, + "end": 38856.74, + "probability": 0.9482 + }, + { + "start": 38857.6, + "end": 38860.66, + "probability": 0.0413 + }, + { + "start": 38861.74, + "end": 38866.9, + "probability": 0.1778 + }, + { + "start": 38868.2, + "end": 38870.92, + "probability": 0.8829 + }, + { + "start": 38871.46, + "end": 38872.68, + "probability": 0.6194 + }, + { + "start": 38872.96, + "end": 38875.64, + "probability": 0.8803 + }, + { + "start": 38876.72, + "end": 38879.71, + "probability": 0.556 + }, + { + "start": 38880.08, + "end": 38881.22, + "probability": 0.6517 + }, + { + "start": 38881.78, + "end": 38886.82, + "probability": 0.8171 + }, + { + "start": 38886.88, + "end": 38887.32, + "probability": 0.0589 + }, + { + "start": 38887.32, + "end": 38888.46, + "probability": 0.6543 + }, + { + "start": 38889.9, + "end": 38893.02, + "probability": 0.3953 + }, + { + "start": 38893.08, + "end": 38893.68, + "probability": 0.5816 + }, + { + "start": 38893.94, + "end": 38895.58, + "probability": 0.1343 + }, + { + "start": 38895.86, + "end": 38897.44, + "probability": 0.6636 + }, + { + "start": 38898.46, + "end": 38900.72, + "probability": 0.7599 + }, + { + "start": 38901.58, + "end": 38904.04, + "probability": 0.6017 + }, + { + "start": 38904.63, + "end": 38905.92, + "probability": 0.8748 + }, + { + "start": 38906.0, + "end": 38907.86, + "probability": 0.6519 + }, + { + "start": 38907.92, + "end": 38909.4, + "probability": 0.9207 + }, + { + "start": 38909.82, + "end": 38911.96, + "probability": 0.1861 + }, + { + "start": 38911.96, + "end": 38914.2, + "probability": 0.7188 + }, + { + "start": 38914.88, + "end": 38916.42, + "probability": 0.8157 + }, + { + "start": 38919.75, + "end": 38922.86, + "probability": 0.9849 + }, + { + "start": 38924.38, + "end": 38928.82, + "probability": 0.0849 + }, + { + "start": 38931.46, + "end": 38933.52, + "probability": 0.0106 + }, + { + "start": 38933.52, + "end": 38933.52, + "probability": 0.1465 + }, + { + "start": 38933.52, + "end": 38933.72, + "probability": 0.0993 + }, + { + "start": 38934.82, + "end": 38936.42, + "probability": 0.0113 + }, + { + "start": 38937.42, + "end": 38939.88, + "probability": 0.7776 + }, + { + "start": 38940.0, + "end": 38940.35, + "probability": 0.4801 + }, + { + "start": 38940.54, + "end": 38942.26, + "probability": 0.7837 + }, + { + "start": 38942.36, + "end": 38944.0, + "probability": 0.8265 + }, + { + "start": 38944.78, + "end": 38948.24, + "probability": 0.8057 + }, + { + "start": 38948.62, + "end": 38949.9, + "probability": 0.7962 + }, + { + "start": 38950.14, + "end": 38952.66, + "probability": 0.952 + }, + { + "start": 38954.4, + "end": 38958.08, + "probability": 0.8634 + }, + { + "start": 38960.86, + "end": 38962.98, + "probability": 0.9984 + }, + { + "start": 38962.98, + "end": 38967.44, + "probability": 0.9955 + }, + { + "start": 38969.46, + "end": 38970.48, + "probability": 0.73 + }, + { + "start": 38972.12, + "end": 38974.98, + "probability": 0.9873 + }, + { + "start": 38975.78, + "end": 38977.48, + "probability": 0.9264 + }, + { + "start": 38978.12, + "end": 38982.4, + "probability": 0.866 + }, + { + "start": 38982.94, + "end": 38987.94, + "probability": 0.9941 + }, + { + "start": 38988.1, + "end": 38989.54, + "probability": 0.9759 + }, + { + "start": 38989.74, + "end": 38992.88, + "probability": 0.9326 + }, + { + "start": 38995.94, + "end": 39000.22, + "probability": 0.6831 + }, + { + "start": 39001.04, + "end": 39006.7, + "probability": 0.9766 + }, + { + "start": 39006.88, + "end": 39008.18, + "probability": 0.4694 + }, + { + "start": 39008.18, + "end": 39008.4, + "probability": 0.2773 + }, + { + "start": 39010.34, + "end": 39015.52, + "probability": 0.916 + }, + { + "start": 39016.72, + "end": 39020.92, + "probability": 0.9599 + }, + { + "start": 39023.7, + "end": 39027.06, + "probability": 0.97 + }, + { + "start": 39028.74, + "end": 39034.66, + "probability": 0.9896 + }, + { + "start": 39036.26, + "end": 39037.8, + "probability": 0.8011 + }, + { + "start": 39038.4, + "end": 39042.0, + "probability": 0.9634 + }, + { + "start": 39043.04, + "end": 39047.76, + "probability": 0.9799 + }, + { + "start": 39049.56, + "end": 39049.94, + "probability": 0.8337 + }, + { + "start": 39052.84, + "end": 39054.2, + "probability": 0.901 + }, + { + "start": 39054.4, + "end": 39056.54, + "probability": 0.9844 + }, + { + "start": 39065.04, + "end": 39071.44, + "probability": 0.9891 + }, + { + "start": 39073.56, + "end": 39076.08, + "probability": 0.9481 + }, + { + "start": 39076.98, + "end": 39079.46, + "probability": 0.706 + }, + { + "start": 39081.18, + "end": 39082.46, + "probability": 0.905 + }, + { + "start": 39082.82, + "end": 39087.16, + "probability": 0.9412 + }, + { + "start": 39087.62, + "end": 39090.12, + "probability": 0.8273 + }, + { + "start": 39090.77, + "end": 39092.98, + "probability": 0.925 + }, + { + "start": 39095.7, + "end": 39097.26, + "probability": 0.8771 + }, + { + "start": 39099.32, + "end": 39100.3, + "probability": 0.8408 + }, + { + "start": 39100.54, + "end": 39106.78, + "probability": 0.9438 + }, + { + "start": 39108.02, + "end": 39113.98, + "probability": 0.9761 + }, + { + "start": 39114.52, + "end": 39115.37, + "probability": 0.751 + }, + { + "start": 39116.24, + "end": 39120.3, + "probability": 0.9741 + }, + { + "start": 39120.52, + "end": 39125.54, + "probability": 0.9957 + }, + { + "start": 39126.74, + "end": 39135.16, + "probability": 0.979 + }, + { + "start": 39135.78, + "end": 39136.46, + "probability": 0.8324 + }, + { + "start": 39137.96, + "end": 39148.18, + "probability": 0.952 + }, + { + "start": 39148.32, + "end": 39150.64, + "probability": 0.8748 + }, + { + "start": 39150.8, + "end": 39151.72, + "probability": 0.6333 + }, + { + "start": 39152.58, + "end": 39153.96, + "probability": 0.8185 + }, + { + "start": 39156.32, + "end": 39161.3, + "probability": 0.8288 + }, + { + "start": 39161.46, + "end": 39165.12, + "probability": 0.5383 + }, + { + "start": 39165.78, + "end": 39167.34, + "probability": 0.8641 + }, + { + "start": 39167.42, + "end": 39168.54, + "probability": 0.9091 + }, + { + "start": 39168.62, + "end": 39169.8, + "probability": 0.7891 + }, + { + "start": 39169.84, + "end": 39169.94, + "probability": 0.3958 + }, + { + "start": 39171.94, + "end": 39173.9, + "probability": 0.422 + }, + { + "start": 39176.33, + "end": 39179.82, + "probability": 0.9607 + }, + { + "start": 39180.66, + "end": 39185.82, + "probability": 0.9189 + }, + { + "start": 39190.52, + "end": 39195.62, + "probability": 0.7407 + }, + { + "start": 39199.2, + "end": 39208.14, + "probability": 0.9742 + }, + { + "start": 39209.62, + "end": 39211.72, + "probability": 0.8029 + }, + { + "start": 39213.18, + "end": 39214.1, + "probability": 0.5882 + }, + { + "start": 39216.9, + "end": 39219.04, + "probability": 0.6682 + }, + { + "start": 39219.98, + "end": 39222.42, + "probability": 0.7698 + }, + { + "start": 39223.7, + "end": 39225.48, + "probability": 0.5722 + }, + { + "start": 39226.46, + "end": 39230.46, + "probability": 0.9921 + }, + { + "start": 39230.52, + "end": 39232.08, + "probability": 0.946 + }, + { + "start": 39234.36, + "end": 39236.68, + "probability": 0.9866 + }, + { + "start": 39237.34, + "end": 39239.02, + "probability": 0.9458 + }, + { + "start": 39241.12, + "end": 39247.54, + "probability": 0.9983 + }, + { + "start": 39248.84, + "end": 39253.22, + "probability": 0.9391 + }, + { + "start": 39254.8, + "end": 39256.48, + "probability": 0.8564 + }, + { + "start": 39256.72, + "end": 39263.06, + "probability": 0.9349 + }, + { + "start": 39266.46, + "end": 39267.82, + "probability": 0.9419 + }, + { + "start": 39267.94, + "end": 39270.06, + "probability": 0.8633 + }, + { + "start": 39275.56, + "end": 39276.64, + "probability": 0.8675 + }, + { + "start": 39278.72, + "end": 39288.38, + "probability": 0.8955 + }, + { + "start": 39288.48, + "end": 39292.26, + "probability": 0.726 + }, + { + "start": 39293.64, + "end": 39296.12, + "probability": 0.9961 + }, + { + "start": 39296.42, + "end": 39302.32, + "probability": 0.8887 + }, + { + "start": 39302.64, + "end": 39303.78, + "probability": 0.4674 + }, + { + "start": 39304.46, + "end": 39308.17, + "probability": 0.9502 + }, + { + "start": 39310.1, + "end": 39311.06, + "probability": 0.8515 + }, + { + "start": 39311.5, + "end": 39312.1, + "probability": 0.8843 + }, + { + "start": 39312.26, + "end": 39314.28, + "probability": 0.7756 + }, + { + "start": 39315.5, + "end": 39315.86, + "probability": 0.6832 + }, + { + "start": 39316.04, + "end": 39316.7, + "probability": 0.9298 + }, + { + "start": 39316.84, + "end": 39322.14, + "probability": 0.9813 + }, + { + "start": 39323.36, + "end": 39328.76, + "probability": 0.9673 + }, + { + "start": 39329.6, + "end": 39332.76, + "probability": 0.768 + }, + { + "start": 39333.38, + "end": 39337.48, + "probability": 0.7818 + }, + { + "start": 39338.1, + "end": 39342.32, + "probability": 0.9003 + }, + { + "start": 39342.32, + "end": 39345.4, + "probability": 0.8397 + }, + { + "start": 39347.18, + "end": 39348.84, + "probability": 0.9972 + }, + { + "start": 39348.9, + "end": 39350.64, + "probability": 0.6436 + }, + { + "start": 39351.4, + "end": 39351.9, + "probability": 0.9143 + }, + { + "start": 39351.92, + "end": 39355.42, + "probability": 0.9287 + }, + { + "start": 39355.5, + "end": 39360.78, + "probability": 0.979 + }, + { + "start": 39360.78, + "end": 39368.28, + "probability": 0.9973 + }, + { + "start": 39370.82, + "end": 39373.3, + "probability": 0.9836 + }, + { + "start": 39374.4, + "end": 39377.32, + "probability": 0.9644 + }, + { + "start": 39379.96, + "end": 39382.66, + "probability": 0.8267 + }, + { + "start": 39387.26, + "end": 39389.6, + "probability": 0.8188 + }, + { + "start": 39389.64, + "end": 39393.6, + "probability": 0.9852 + }, + { + "start": 39394.62, + "end": 39396.66, + "probability": 0.7955 + }, + { + "start": 39396.8, + "end": 39398.68, + "probability": 0.9374 + }, + { + "start": 39401.56, + "end": 39404.34, + "probability": 0.8115 + }, + { + "start": 39405.7, + "end": 39409.54, + "probability": 0.9187 + }, + { + "start": 39412.76, + "end": 39413.98, + "probability": 0.7637 + }, + { + "start": 39415.44, + "end": 39417.77, + "probability": 0.9361 + }, + { + "start": 39419.42, + "end": 39419.7, + "probability": 0.0216 + }, + { + "start": 39420.18, + "end": 39421.84, + "probability": 0.9526 + }, + { + "start": 39421.9, + "end": 39425.36, + "probability": 0.9844 + }, + { + "start": 39427.1, + "end": 39428.58, + "probability": 0.9683 + }, + { + "start": 39429.92, + "end": 39431.6, + "probability": 0.9651 + }, + { + "start": 39433.78, + "end": 39435.9, + "probability": 0.8797 + }, + { + "start": 39436.8, + "end": 39439.1, + "probability": 0.7513 + }, + { + "start": 39439.62, + "end": 39442.36, + "probability": 0.8743 + }, + { + "start": 39444.24, + "end": 39448.64, + "probability": 0.8362 + }, + { + "start": 39451.26, + "end": 39453.41, + "probability": 0.8852 + }, + { + "start": 39453.64, + "end": 39462.58, + "probability": 0.9017 + }, + { + "start": 39463.04, + "end": 39464.0, + "probability": 0.6838 + }, + { + "start": 39465.22, + "end": 39465.97, + "probability": 0.3961 + }, + { + "start": 39470.48, + "end": 39473.14, + "probability": 0.7461 + }, + { + "start": 39475.22, + "end": 39478.3, + "probability": 0.9371 + }, + { + "start": 39480.44, + "end": 39481.72, + "probability": 0.6522 + }, + { + "start": 39482.32, + "end": 39488.94, + "probability": 0.8745 + }, + { + "start": 39489.0, + "end": 39491.06, + "probability": 0.8235 + }, + { + "start": 39493.6, + "end": 39497.72, + "probability": 0.9087 + }, + { + "start": 39498.46, + "end": 39500.96, + "probability": 0.9759 + }, + { + "start": 39501.0, + "end": 39502.38, + "probability": 0.9917 + }, + { + "start": 39503.12, + "end": 39505.8, + "probability": 0.9949 + }, + { + "start": 39507.06, + "end": 39510.02, + "probability": 0.5021 + }, + { + "start": 39514.78, + "end": 39516.23, + "probability": 0.9742 + }, + { + "start": 39520.14, + "end": 39520.6, + "probability": 0.5035 + }, + { + "start": 39522.76, + "end": 39526.02, + "probability": 0.9985 + }, + { + "start": 39527.1, + "end": 39530.36, + "probability": 0.998 + }, + { + "start": 39531.34, + "end": 39531.88, + "probability": 0.7691 + }, + { + "start": 39534.96, + "end": 39537.72, + "probability": 0.5532 + }, + { + "start": 39541.22, + "end": 39543.08, + "probability": 0.9807 + }, + { + "start": 39544.26, + "end": 39550.48, + "probability": 0.9774 + }, + { + "start": 39551.76, + "end": 39556.52, + "probability": 0.9364 + }, + { + "start": 39556.66, + "end": 39557.64, + "probability": 0.5869 + }, + { + "start": 39557.64, + "end": 39563.44, + "probability": 0.9907 + }, + { + "start": 39564.12, + "end": 39565.94, + "probability": 0.8486 + }, + { + "start": 39566.68, + "end": 39570.8, + "probability": 0.7908 + }, + { + "start": 39571.0, + "end": 39571.0, + "probability": 0.3358 + }, + { + "start": 39571.08, + "end": 39572.51, + "probability": 0.0839 + }, + { + "start": 39572.88, + "end": 39574.88, + "probability": 0.8287 + }, + { + "start": 39574.9, + "end": 39575.66, + "probability": 0.9226 + }, + { + "start": 39576.5, + "end": 39577.72, + "probability": 0.0962 + }, + { + "start": 39579.54, + "end": 39586.1, + "probability": 0.9924 + }, + { + "start": 39586.2, + "end": 39586.66, + "probability": 0.2695 + }, + { + "start": 39586.94, + "end": 39587.46, + "probability": 0.8361 + }, + { + "start": 39587.8, + "end": 39588.88, + "probability": 0.72 + }, + { + "start": 39590.56, + "end": 39592.74, + "probability": 0.9043 + }, + { + "start": 39601.48, + "end": 39602.64, + "probability": 0.6989 + }, + { + "start": 39604.94, + "end": 39611.18, + "probability": 0.8315 + }, + { + "start": 39611.5, + "end": 39612.84, + "probability": 0.7015 + }, + { + "start": 39612.9, + "end": 39613.98, + "probability": 0.9955 + }, + { + "start": 39614.12, + "end": 39614.5, + "probability": 0.242 + }, + { + "start": 39614.68, + "end": 39616.88, + "probability": 0.1132 + }, + { + "start": 39619.96, + "end": 39620.3, + "probability": 0.6653 + }, + { + "start": 39621.78, + "end": 39624.86, + "probability": 0.9901 + }, + { + "start": 39625.8, + "end": 39627.68, + "probability": 0.5014 + }, + { + "start": 39629.3, + "end": 39631.2, + "probability": 0.5205 + }, + { + "start": 39632.24, + "end": 39637.34, + "probability": 0.891 + }, + { + "start": 39637.66, + "end": 39638.6, + "probability": 0.7236 + }, + { + "start": 39639.68, + "end": 39643.54, + "probability": 0.9619 + }, + { + "start": 39643.84, + "end": 39647.04, + "probability": 0.7545 + }, + { + "start": 39647.58, + "end": 39650.4, + "probability": 0.7737 + }, + { + "start": 39651.84, + "end": 39653.04, + "probability": 0.9943 + }, + { + "start": 39653.5, + "end": 39655.66, + "probability": 0.5889 + }, + { + "start": 39656.56, + "end": 39658.0, + "probability": 0.9836 + }, + { + "start": 39658.3, + "end": 39659.5, + "probability": 0.8893 + }, + { + "start": 39660.66, + "end": 39662.92, + "probability": 0.9912 + }, + { + "start": 39663.18, + "end": 39666.12, + "probability": 0.9902 + }, + { + "start": 39666.68, + "end": 39667.4, + "probability": 0.6319 + }, + { + "start": 39667.68, + "end": 39668.06, + "probability": 0.2387 + }, + { + "start": 39668.94, + "end": 39669.72, + "probability": 0.9854 + }, + { + "start": 39671.74, + "end": 39674.58, + "probability": 0.7538 + }, + { + "start": 39675.28, + "end": 39680.06, + "probability": 0.9459 + }, + { + "start": 39680.92, + "end": 39686.46, + "probability": 0.6659 + }, + { + "start": 39686.46, + "end": 39691.22, + "probability": 0.8957 + }, + { + "start": 39691.42, + "end": 39693.42, + "probability": 0.1036 + }, + { + "start": 39693.96, + "end": 39698.84, + "probability": 0.9858 + }, + { + "start": 39698.88, + "end": 39700.16, + "probability": 0.9977 + }, + { + "start": 39701.94, + "end": 39704.04, + "probability": 0.8097 + }, + { + "start": 39704.64, + "end": 39706.92, + "probability": 0.9263 + }, + { + "start": 39707.92, + "end": 39711.76, + "probability": 0.8775 + }, + { + "start": 39712.06, + "end": 39713.54, + "probability": 0.9782 + }, + { + "start": 39713.58, + "end": 39714.54, + "probability": 0.7548 + }, + { + "start": 39715.1, + "end": 39719.04, + "probability": 0.9731 + }, + { + "start": 39719.4, + "end": 39721.18, + "probability": 0.6971 + }, + { + "start": 39721.26, + "end": 39725.24, + "probability": 0.8979 + }, + { + "start": 39725.4, + "end": 39725.72, + "probability": 0.8815 + }, + { + "start": 39725.84, + "end": 39726.88, + "probability": 0.9039 + }, + { + "start": 39727.56, + "end": 39732.98, + "probability": 0.9762 + }, + { + "start": 39733.78, + "end": 39736.46, + "probability": 0.8255 + }, + { + "start": 39737.6, + "end": 39743.22, + "probability": 0.8393 + }, + { + "start": 39743.28, + "end": 39749.08, + "probability": 0.9933 + }, + { + "start": 39749.08, + "end": 39751.38, + "probability": 0.9668 + }, + { + "start": 39751.52, + "end": 39754.38, + "probability": 0.996 + }, + { + "start": 39754.38, + "end": 39758.08, + "probability": 0.9982 + }, + { + "start": 39758.3, + "end": 39760.9, + "probability": 0.8949 + }, + { + "start": 39761.04, + "end": 39763.86, + "probability": 0.9883 + }, + { + "start": 39766.56, + "end": 39768.02, + "probability": 0.6433 + }, + { + "start": 39768.16, + "end": 39771.36, + "probability": 0.9912 + }, + { + "start": 39771.36, + "end": 39776.02, + "probability": 0.9942 + }, + { + "start": 39776.94, + "end": 39779.24, + "probability": 0.875 + }, + { + "start": 39779.44, + "end": 39782.4, + "probability": 0.9971 + }, + { + "start": 39783.12, + "end": 39785.14, + "probability": 0.4331 + }, + { + "start": 39785.2, + "end": 39787.52, + "probability": 0.9109 + }, + { + "start": 39787.66, + "end": 39789.98, + "probability": 0.7874 + }, + { + "start": 39790.7, + "end": 39793.8, + "probability": 0.9186 + }, + { + "start": 39794.06, + "end": 39797.56, + "probability": 0.9962 + }, + { + "start": 39798.38, + "end": 39803.4, + "probability": 0.9974 + }, + { + "start": 39803.4, + "end": 39806.44, + "probability": 0.9993 + }, + { + "start": 39807.4, + "end": 39812.8, + "probability": 0.9771 + }, + { + "start": 39814.2, + "end": 39817.52, + "probability": 0.9901 + }, + { + "start": 39817.52, + "end": 39821.54, + "probability": 0.999 + }, + { + "start": 39822.1, + "end": 39825.36, + "probability": 0.891 + }, + { + "start": 39825.36, + "end": 39828.34, + "probability": 0.9983 + }, + { + "start": 39829.1, + "end": 39830.48, + "probability": 0.8361 + }, + { + "start": 39831.12, + "end": 39834.2, + "probability": 0.9276 + }, + { + "start": 39834.38, + "end": 39837.82, + "probability": 0.9533 + }, + { + "start": 39838.3, + "end": 39840.78, + "probability": 0.9606 + }, + { + "start": 39840.94, + "end": 39845.68, + "probability": 0.9875 + }, + { + "start": 39846.48, + "end": 39849.5, + "probability": 0.9989 + }, + { + "start": 39849.72, + "end": 39853.72, + "probability": 0.9938 + }, + { + "start": 39854.64, + "end": 39857.26, + "probability": 0.8926 + }, + { + "start": 39857.26, + "end": 39862.12, + "probability": 0.9982 + }, + { + "start": 39862.52, + "end": 39866.9, + "probability": 0.9875 + }, + { + "start": 39866.9, + "end": 39871.5, + "probability": 0.9977 + }, + { + "start": 39872.02, + "end": 39876.16, + "probability": 0.9602 + }, + { + "start": 39877.32, + "end": 39880.02, + "probability": 0.9418 + }, + { + "start": 39880.16, + "end": 39881.36, + "probability": 0.9201 + }, + { + "start": 39882.1, + "end": 39884.0, + "probability": 0.9587 + }, + { + "start": 39884.24, + "end": 39886.58, + "probability": 0.8701 + }, + { + "start": 39887.02, + "end": 39890.7, + "probability": 0.9881 + }, + { + "start": 39890.86, + "end": 39893.22, + "probability": 0.9553 + }, + { + "start": 39893.5, + "end": 39896.86, + "probability": 0.934 + }, + { + "start": 39896.96, + "end": 39897.47, + "probability": 0.5446 + }, + { + "start": 39899.2, + "end": 39901.84, + "probability": 0.9868 + }, + { + "start": 39902.68, + "end": 39904.46, + "probability": 0.8949 + }, + { + "start": 39906.32, + "end": 39909.46, + "probability": 0.9873 + }, + { + "start": 39910.54, + "end": 39913.26, + "probability": 0.9699 + }, + { + "start": 39913.44, + "end": 39916.18, + "probability": 0.9958 + }, + { + "start": 39916.18, + "end": 39918.86, + "probability": 0.9991 + }, + { + "start": 39919.62, + "end": 39920.89, + "probability": 0.9961 + }, + { + "start": 39921.28, + "end": 39925.78, + "probability": 0.9911 + }, + { + "start": 39927.45, + "end": 39929.43, + "probability": 0.0701 + }, + { + "start": 39930.84, + "end": 39934.22, + "probability": 0.9927 + }, + { + "start": 39934.26, + "end": 39937.56, + "probability": 0.9771 + }, + { + "start": 39937.72, + "end": 39940.04, + "probability": 0.8625 + }, + { + "start": 39940.08, + "end": 39941.06, + "probability": 0.9294 + }, + { + "start": 39941.28, + "end": 39944.62, + "probability": 0.9907 + }, + { + "start": 39945.06, + "end": 39946.52, + "probability": 0.9858 + }, + { + "start": 39946.56, + "end": 39947.91, + "probability": 0.8587 + }, + { + "start": 39950.12, + "end": 39950.56, + "probability": 0.3092 + }, + { + "start": 39950.74, + "end": 39953.26, + "probability": 0.2656 + }, + { + "start": 39953.88, + "end": 39955.42, + "probability": 0.0336 + }, + { + "start": 39955.76, + "end": 39955.76, + "probability": 0.3108 + }, + { + "start": 39955.76, + "end": 39957.86, + "probability": 0.8747 + }, + { + "start": 39958.02, + "end": 39959.52, + "probability": 0.8201 + }, + { + "start": 39959.9, + "end": 39960.73, + "probability": 0.9678 + }, + { + "start": 39961.14, + "end": 39962.38, + "probability": 0.9919 + }, + { + "start": 39962.94, + "end": 39964.94, + "probability": 0.9316 + }, + { + "start": 39965.76, + "end": 39970.38, + "probability": 0.8413 + }, + { + "start": 39970.98, + "end": 39973.42, + "probability": 0.9714 + }, + { + "start": 39974.1, + "end": 39975.18, + "probability": 0.8933 + }, + { + "start": 39975.28, + "end": 39976.06, + "probability": 0.6588 + }, + { + "start": 39976.18, + "end": 39979.12, + "probability": 0.9887 + }, + { + "start": 39979.24, + "end": 39982.72, + "probability": 0.9918 + }, + { + "start": 39983.34, + "end": 39986.78, + "probability": 0.988 + }, + { + "start": 39988.02, + "end": 39992.84, + "probability": 0.9972 + }, + { + "start": 39994.72, + "end": 39995.92, + "probability": 0.6289 + }, + { + "start": 39996.0, + "end": 39996.79, + "probability": 0.0229 + }, + { + "start": 39996.9, + "end": 39997.46, + "probability": 0.7601 + }, + { + "start": 39998.42, + "end": 40002.48, + "probability": 0.8372 + }, + { + "start": 40002.9, + "end": 40003.8, + "probability": 0.0591 + }, + { + "start": 40004.1, + "end": 40009.37, + "probability": 0.3863 + }, + { + "start": 40010.52, + "end": 40015.76, + "probability": 0.5 + }, + { + "start": 40015.82, + "end": 40018.24, + "probability": 0.7852 + }, + { + "start": 40018.74, + "end": 40020.76, + "probability": 0.6987 + }, + { + "start": 40020.78, + "end": 40021.62, + "probability": 0.7525 + }, + { + "start": 40023.5, + "end": 40026.12, + "probability": 0.2035 + }, + { + "start": 40026.12, + "end": 40028.66, + "probability": 0.1603 + }, + { + "start": 40029.46, + "end": 40032.14, + "probability": 0.8671 + }, + { + "start": 40032.28, + "end": 40035.46, + "probability": 0.9806 + }, + { + "start": 40035.66, + "end": 40037.3, + "probability": 0.6558 + }, + { + "start": 40037.72, + "end": 40039.82, + "probability": 0.8762 + }, + { + "start": 40040.14, + "end": 40041.46, + "probability": 0.946 + }, + { + "start": 40042.72, + "end": 40045.22, + "probability": 0.9741 + }, + { + "start": 40046.58, + "end": 40046.92, + "probability": 0.2977 + }, + { + "start": 40047.02, + "end": 40048.24, + "probability": 0.6997 + }, + { + "start": 40048.36, + "end": 40049.36, + "probability": 0.8675 + }, + { + "start": 40049.52, + "end": 40055.84, + "probability": 0.941 + }, + { + "start": 40056.28, + "end": 40059.04, + "probability": 0.9849 + }, + { + "start": 40059.4, + "end": 40062.1, + "probability": 0.9929 + }, + { + "start": 40062.62, + "end": 40066.36, + "probability": 0.9897 + }, + { + "start": 40066.36, + "end": 40070.23, + "probability": 0.9816 + }, + { + "start": 40070.84, + "end": 40073.24, + "probability": 0.9715 + }, + { + "start": 40073.68, + "end": 40075.18, + "probability": 0.8132 + }, + { + "start": 40075.56, + "end": 40078.44, + "probability": 0.9941 + }, + { + "start": 40078.56, + "end": 40079.04, + "probability": 0.7243 + }, + { + "start": 40080.48, + "end": 40084.38, + "probability": 0.0134 + }, + { + "start": 40084.46, + "end": 40088.46, + "probability": 0.1217 + }, + { + "start": 40089.96, + "end": 40093.32, + "probability": 0.0039 + }, + { + "start": 40096.22, + "end": 40097.22, + "probability": 0.1879 + }, + { + "start": 40099.6, + "end": 40101.76, + "probability": 0.203 + }, + { + "start": 40102.06, + "end": 40102.92, + "probability": 0.0678 + }, + { + "start": 40104.92, + "end": 40107.84, + "probability": 0.1489 + }, + { + "start": 40112.6, + "end": 40112.6, + "probability": 0.0111 + }, + { + "start": 40120.54, + "end": 40120.54, + "probability": 0.0149 + }, + { + "start": 40120.7, + "end": 40125.4, + "probability": 0.1427 + }, + { + "start": 40126.04, + "end": 40126.04, + "probability": 0.1304 + }, + { + "start": 40126.04, + "end": 40126.72, + "probability": 0.4347 + }, + { + "start": 40127.16, + "end": 40131.74, + "probability": 0.6634 + }, + { + "start": 40131.94, + "end": 40134.98, + "probability": 0.9078 + }, + { + "start": 40135.42, + "end": 40136.88, + "probability": 0.6514 + }, + { + "start": 40136.94, + "end": 40138.26, + "probability": 0.8783 + }, + { + "start": 40138.32, + "end": 40138.86, + "probability": 0.8729 + }, + { + "start": 40139.84, + "end": 40143.48, + "probability": 0.929 + }, + { + "start": 40145.68, + "end": 40147.0, + "probability": 0.6167 + }, + { + "start": 40147.02, + "end": 40147.94, + "probability": 0.9072 + }, + { + "start": 40148.08, + "end": 40149.0, + "probability": 0.427 + }, + { + "start": 40149.1, + "end": 40152.38, + "probability": 0.8294 + }, + { + "start": 40152.46, + "end": 40153.16, + "probability": 0.5404 + }, + { + "start": 40154.3, + "end": 40154.54, + "probability": 0.8929 + }, + { + "start": 40156.28, + "end": 40157.68, + "probability": 0.4135 + }, + { + "start": 40161.78, + "end": 40161.84, + "probability": 0.2531 + }, + { + "start": 40166.53, + "end": 40166.93, + "probability": 0.0331 + }, + { + "start": 40172.64, + "end": 40175.54, + "probability": 0.5611 + }, + { + "start": 40175.66, + "end": 40178.46, + "probability": 0.75 + }, + { + "start": 40178.46, + "end": 40180.8, + "probability": 0.9437 + }, + { + "start": 40181.32, + "end": 40182.6, + "probability": 0.6568 + }, + { + "start": 40183.04, + "end": 40188.36, + "probability": 0.5865 + }, + { + "start": 40189.02, + "end": 40189.1, + "probability": 0.0572 + }, + { + "start": 40189.76, + "end": 40189.76, + "probability": 0.0604 + }, + { + "start": 40189.76, + "end": 40192.04, + "probability": 0.4829 + }, + { + "start": 40192.82, + "end": 40193.08, + "probability": 0.3052 + }, + { + "start": 40193.78, + "end": 40197.14, + "probability": 0.46 + }, + { + "start": 40197.64, + "end": 40198.58, + "probability": 0.7337 + }, + { + "start": 40199.52, + "end": 40202.88, + "probability": 0.5008 + }, + { + "start": 40203.18, + "end": 40206.88, + "probability": 0.5555 + }, + { + "start": 40207.6, + "end": 40208.48, + "probability": 0.5808 + }, + { + "start": 40209.6, + "end": 40214.26, + "probability": 0.9631 + }, + { + "start": 40214.74, + "end": 40214.94, + "probability": 0.2451 + }, + { + "start": 40214.94, + "end": 40215.7, + "probability": 0.6407 + }, + { + "start": 40215.9, + "end": 40221.72, + "probability": 0.9848 + }, + { + "start": 40221.72, + "end": 40227.74, + "probability": 0.9784 + }, + { + "start": 40227.86, + "end": 40228.7, + "probability": 0.5786 + }, + { + "start": 40228.7, + "end": 40228.92, + "probability": 0.9556 + }, + { + "start": 40229.72, + "end": 40234.58, + "probability": 0.9909 + }, + { + "start": 40235.63, + "end": 40238.64, + "probability": 0.9841 + }, + { + "start": 40238.86, + "end": 40239.85, + "probability": 0.7765 + }, + { + "start": 40241.12, + "end": 40247.38, + "probability": 0.9971 + }, + { + "start": 40247.82, + "end": 40248.66, + "probability": 0.5818 + }, + { + "start": 40249.66, + "end": 40251.2, + "probability": 0.7885 + }, + { + "start": 40252.9, + "end": 40255.76, + "probability": 0.9561 + }, + { + "start": 40256.26, + "end": 40259.52, + "probability": 0.8962 + }, + { + "start": 40259.52, + "end": 40261.74, + "probability": 0.9638 + }, + { + "start": 40263.02, + "end": 40263.6, + "probability": 0.3927 + }, + { + "start": 40263.84, + "end": 40268.62, + "probability": 0.7545 + }, + { + "start": 40268.74, + "end": 40269.34, + "probability": 0.8071 + }, + { + "start": 40269.92, + "end": 40274.54, + "probability": 0.9518 + }, + { + "start": 40275.76, + "end": 40277.64, + "probability": 0.5054 + }, + { + "start": 40278.12, + "end": 40283.62, + "probability": 0.9259 + }, + { + "start": 40284.02, + "end": 40285.32, + "probability": 0.8952 + }, + { + "start": 40286.0, + "end": 40288.74, + "probability": 0.9956 + }, + { + "start": 40289.48, + "end": 40293.08, + "probability": 0.7198 + }, + { + "start": 40293.98, + "end": 40295.23, + "probability": 0.8188 + }, + { + "start": 40295.54, + "end": 40297.5, + "probability": 0.9528 + }, + { + "start": 40298.52, + "end": 40299.55, + "probability": 0.9648 + }, + { + "start": 40301.36, + "end": 40303.0, + "probability": 0.857 + }, + { + "start": 40306.58, + "end": 40313.28, + "probability": 0.9967 + }, + { + "start": 40314.5, + "end": 40316.72, + "probability": 0.8919 + }, + { + "start": 40317.5, + "end": 40319.0, + "probability": 0.9512 + }, + { + "start": 40319.82, + "end": 40323.06, + "probability": 0.9424 + }, + { + "start": 40324.1, + "end": 40327.8, + "probability": 0.8656 + }, + { + "start": 40328.56, + "end": 40331.87, + "probability": 0.9277 + }, + { + "start": 40332.9, + "end": 40336.36, + "probability": 0.9948 + }, + { + "start": 40337.44, + "end": 40338.4, + "probability": 0.999 + }, + { + "start": 40340.78, + "end": 40343.5, + "probability": 0.6346 + }, + { + "start": 40344.52, + "end": 40347.14, + "probability": 0.8939 + }, + { + "start": 40348.0, + "end": 40350.46, + "probability": 0.7623 + }, + { + "start": 40351.1, + "end": 40358.24, + "probability": 0.9911 + }, + { + "start": 40358.24, + "end": 40365.98, + "probability": 0.9154 + }, + { + "start": 40367.98, + "end": 40372.92, + "probability": 0.9972 + }, + { + "start": 40373.15, + "end": 40375.96, + "probability": 0.9924 + }, + { + "start": 40376.18, + "end": 40377.42, + "probability": 0.4401 + }, + { + "start": 40378.14, + "end": 40382.12, + "probability": 0.9976 + }, + { + "start": 40383.08, + "end": 40386.6, + "probability": 0.8588 + }, + { + "start": 40386.72, + "end": 40389.22, + "probability": 0.9767 + }, + { + "start": 40390.04, + "end": 40397.42, + "probability": 0.7955 + }, + { + "start": 40397.82, + "end": 40399.86, + "probability": 0.9906 + }, + { + "start": 40400.8, + "end": 40403.78, + "probability": 0.9684 + }, + { + "start": 40404.3, + "end": 40407.74, + "probability": 0.988 + }, + { + "start": 40408.42, + "end": 40414.36, + "probability": 0.9486 + }, + { + "start": 40415.02, + "end": 40417.02, + "probability": 0.9946 + }, + { + "start": 40417.52, + "end": 40422.04, + "probability": 0.9321 + }, + { + "start": 40422.78, + "end": 40423.44, + "probability": 0.7761 + }, + { + "start": 40423.6, + "end": 40424.78, + "probability": 0.8573 + }, + { + "start": 40425.18, + "end": 40430.64, + "probability": 0.977 + }, + { + "start": 40430.72, + "end": 40431.28, + "probability": 0.8196 + }, + { + "start": 40432.16, + "end": 40434.36, + "probability": 0.9715 + }, + { + "start": 40434.4, + "end": 40435.52, + "probability": 0.6636 + }, + { + "start": 40451.3, + "end": 40451.58, + "probability": 0.3751 + }, + { + "start": 40451.68, + "end": 40453.28, + "probability": 0.3627 + }, + { + "start": 40453.34, + "end": 40457.02, + "probability": 0.7454 + }, + { + "start": 40458.14, + "end": 40461.04, + "probability": 0.9304 + }, + { + "start": 40461.06, + "end": 40462.98, + "probability": 0.9504 + }, + { + "start": 40463.4, + "end": 40464.4, + "probability": 0.6137 + }, + { + "start": 40464.44, + "end": 40467.4, + "probability": 0.9321 + }, + { + "start": 40467.64, + "end": 40469.26, + "probability": 0.8226 + }, + { + "start": 40469.44, + "end": 40471.66, + "probability": 0.8484 + }, + { + "start": 40473.08, + "end": 40475.7, + "probability": 0.942 + }, + { + "start": 40478.7, + "end": 40479.86, + "probability": 0.6536 + }, + { + "start": 40479.98, + "end": 40485.92, + "probability": 0.7872 + }, + { + "start": 40486.02, + "end": 40488.8, + "probability": 0.8309 + }, + { + "start": 40489.4, + "end": 40490.58, + "probability": 0.9554 + }, + { + "start": 40490.66, + "end": 40491.24, + "probability": 0.9696 + }, + { + "start": 40491.38, + "end": 40493.24, + "probability": 0.8369 + }, + { + "start": 40493.28, + "end": 40494.05, + "probability": 0.9062 + }, + { + "start": 40494.96, + "end": 40498.14, + "probability": 0.9707 + }, + { + "start": 40498.14, + "end": 40502.62, + "probability": 0.9838 + }, + { + "start": 40503.26, + "end": 40506.4, + "probability": 0.9543 + }, + { + "start": 40506.68, + "end": 40509.48, + "probability": 0.9474 + }, + { + "start": 40510.28, + "end": 40515.3, + "probability": 0.9634 + }, + { + "start": 40516.94, + "end": 40522.92, + "probability": 0.9922 + }, + { + "start": 40523.62, + "end": 40527.76, + "probability": 0.9912 + }, + { + "start": 40528.24, + "end": 40532.62, + "probability": 0.9912 + }, + { + "start": 40532.86, + "end": 40536.9, + "probability": 0.9989 + }, + { + "start": 40537.28, + "end": 40538.48, + "probability": 0.5392 + }, + { + "start": 40538.52, + "end": 40540.24, + "probability": 0.9987 + }, + { + "start": 40543.88, + "end": 40550.16, + "probability": 0.9955 + }, + { + "start": 40550.8, + "end": 40554.02, + "probability": 0.9961 + }, + { + "start": 40554.3, + "end": 40556.6, + "probability": 0.9971 + }, + { + "start": 40557.28, + "end": 40558.14, + "probability": 0.8376 + }, + { + "start": 40558.24, + "end": 40566.72, + "probability": 0.9895 + }, + { + "start": 40566.72, + "end": 40571.96, + "probability": 0.9767 + }, + { + "start": 40573.14, + "end": 40574.92, + "probability": 0.8026 + }, + { + "start": 40575.52, + "end": 40578.52, + "probability": 0.9897 + }, + { + "start": 40578.62, + "end": 40580.42, + "probability": 0.9331 + }, + { + "start": 40580.84, + "end": 40584.1, + "probability": 0.9979 + }, + { + "start": 40584.1, + "end": 40586.92, + "probability": 0.9886 + }, + { + "start": 40587.0, + "end": 40590.9, + "probability": 0.9954 + }, + { + "start": 40591.46, + "end": 40596.52, + "probability": 0.9919 + }, + { + "start": 40598.8, + "end": 40600.16, + "probability": 0.9932 + }, + { + "start": 40600.32, + "end": 40603.92, + "probability": 0.8288 + }, + { + "start": 40604.34, + "end": 40606.68, + "probability": 0.8401 + }, + { + "start": 40607.82, + "end": 40609.02, + "probability": 0.8944 + }, + { + "start": 40609.14, + "end": 40612.94, + "probability": 0.9183 + }, + { + "start": 40613.4, + "end": 40615.54, + "probability": 0.9829 + }, + { + "start": 40615.64, + "end": 40616.6, + "probability": 0.802 + }, + { + "start": 40616.68, + "end": 40617.54, + "probability": 0.5029 + }, + { + "start": 40618.14, + "end": 40620.12, + "probability": 0.7681 + }, + { + "start": 40620.38, + "end": 40621.01, + "probability": 0.9523 + }, + { + "start": 40621.26, + "end": 40625.74, + "probability": 0.9481 + }, + { + "start": 40626.4, + "end": 40633.9, + "probability": 0.9834 + }, + { + "start": 40634.5, + "end": 40637.24, + "probability": 0.9487 + }, + { + "start": 40638.3, + "end": 40640.32, + "probability": 0.9923 + }, + { + "start": 40640.9, + "end": 40641.34, + "probability": 0.8344 + }, + { + "start": 40643.5, + "end": 40645.14, + "probability": 0.6924 + }, + { + "start": 40645.78, + "end": 40647.32, + "probability": 0.7188 + }, + { + "start": 40648.76, + "end": 40651.22, + "probability": 0.823 + }, + { + "start": 40660.48, + "end": 40662.5, + "probability": 0.7334 + }, + { + "start": 40663.48, + "end": 40665.17, + "probability": 0.9717 + }, + { + "start": 40666.3, + "end": 40671.12, + "probability": 0.9954 + }, + { + "start": 40672.76, + "end": 40674.28, + "probability": 0.7907 + }, + { + "start": 40675.8, + "end": 40679.7, + "probability": 0.9794 + }, + { + "start": 40680.66, + "end": 40681.66, + "probability": 0.8719 + }, + { + "start": 40681.78, + "end": 40685.24, + "probability": 0.9948 + }, + { + "start": 40686.26, + "end": 40688.26, + "probability": 0.855 + }, + { + "start": 40689.7, + "end": 40692.56, + "probability": 0.835 + }, + { + "start": 40693.92, + "end": 40698.4, + "probability": 0.9983 + }, + { + "start": 40699.18, + "end": 40700.36, + "probability": 0.9976 + }, + { + "start": 40701.46, + "end": 40704.51, + "probability": 0.9507 + }, + { + "start": 40706.18, + "end": 40706.97, + "probability": 0.8491 + }, + { + "start": 40708.16, + "end": 40710.62, + "probability": 0.7581 + }, + { + "start": 40712.11, + "end": 40715.96, + "probability": 0.9209 + }, + { + "start": 40716.7, + "end": 40720.56, + "probability": 0.8596 + }, + { + "start": 40721.56, + "end": 40725.74, + "probability": 0.9572 + }, + { + "start": 40726.02, + "end": 40727.6, + "probability": 0.8255 + }, + { + "start": 40728.48, + "end": 40733.86, + "probability": 0.9307 + }, + { + "start": 40734.82, + "end": 40738.38, + "probability": 0.9574 + }, + { + "start": 40739.1, + "end": 40741.92, + "probability": 0.9973 + }, + { + "start": 40742.94, + "end": 40747.16, + "probability": 0.9508 + }, + { + "start": 40747.5, + "end": 40749.68, + "probability": 0.9951 + }, + { + "start": 40750.64, + "end": 40753.88, + "probability": 0.9679 + }, + { + "start": 40755.36, + "end": 40760.94, + "probability": 0.9747 + }, + { + "start": 40762.32, + "end": 40762.98, + "probability": 0.7513 + }, + { + "start": 40763.58, + "end": 40767.8, + "probability": 0.9956 + }, + { + "start": 40769.14, + "end": 40772.3, + "probability": 0.9327 + }, + { + "start": 40772.88, + "end": 40774.43, + "probability": 0.9448 + }, + { + "start": 40774.72, + "end": 40779.92, + "probability": 0.9849 + }, + { + "start": 40780.16, + "end": 40781.74, + "probability": 0.9066 + }, + { + "start": 40783.18, + "end": 40785.98, + "probability": 0.9902 + }, + { + "start": 40785.98, + "end": 40789.94, + "probability": 0.9815 + }, + { + "start": 40790.04, + "end": 40791.0, + "probability": 0.9103 + }, + { + "start": 40791.04, + "end": 40792.98, + "probability": 0.9836 + }, + { + "start": 40794.34, + "end": 40800.5, + "probability": 0.9941 + }, + { + "start": 40800.62, + "end": 40801.76, + "probability": 0.9575 + }, + { + "start": 40801.92, + "end": 40802.74, + "probability": 0.4183 + }, + { + "start": 40805.32, + "end": 40806.92, + "probability": 0.5028 + }, + { + "start": 40807.26, + "end": 40809.68, + "probability": 0.9677 + }, + { + "start": 40809.76, + "end": 40811.2, + "probability": 0.9983 + }, + { + "start": 40811.76, + "end": 40815.58, + "probability": 0.9524 + }, + { + "start": 40816.46, + "end": 40818.8, + "probability": 0.7859 + }, + { + "start": 40818.86, + "end": 40821.74, + "probability": 0.8981 + }, + { + "start": 40821.94, + "end": 40822.48, + "probability": 0.7683 + }, + { + "start": 40822.62, + "end": 40823.16, + "probability": 0.8954 + }, + { + "start": 40824.32, + "end": 40825.56, + "probability": 0.8173 + }, + { + "start": 40826.38, + "end": 40828.98, + "probability": 0.9811 + }, + { + "start": 40830.16, + "end": 40831.26, + "probability": 0.8361 + }, + { + "start": 40831.4, + "end": 40831.98, + "probability": 0.7928 + }, + { + "start": 40832.32, + "end": 40835.24, + "probability": 0.9934 + }, + { + "start": 40835.38, + "end": 40836.54, + "probability": 0.6899 + }, + { + "start": 40836.68, + "end": 40840.58, + "probability": 0.9782 + }, + { + "start": 40841.44, + "end": 40844.34, + "probability": 0.7864 + }, + { + "start": 40844.42, + "end": 40846.49, + "probability": 0.9658 + }, + { + "start": 40847.12, + "end": 40847.44, + "probability": 0.5647 + }, + { + "start": 40847.44, + "end": 40850.14, + "probability": 0.9216 + }, + { + "start": 40850.8, + "end": 40852.64, + "probability": 0.5987 + }, + { + "start": 40853.04, + "end": 40854.48, + "probability": 0.9468 + }, + { + "start": 40854.6, + "end": 40856.4, + "probability": 0.9185 + }, + { + "start": 40856.66, + "end": 40857.16, + "probability": 0.4698 + }, + { + "start": 40857.34, + "end": 40857.56, + "probability": 0.7571 + }, + { + "start": 40857.62, + "end": 40860.0, + "probability": 0.2392 + }, + { + "start": 40860.0, + "end": 40865.14, + "probability": 0.3166 + }, + { + "start": 40865.14, + "end": 40867.52, + "probability": 0.3832 + }, + { + "start": 40867.76, + "end": 40872.52, + "probability": 0.4379 + }, + { + "start": 40873.68, + "end": 40875.1, + "probability": 0.7089 + }, + { + "start": 40875.14, + "end": 40875.88, + "probability": 0.8061 + }, + { + "start": 40876.36, + "end": 40877.0, + "probability": 0.7544 + }, + { + "start": 40877.06, + "end": 40881.12, + "probability": 0.9949 + }, + { + "start": 40881.38, + "end": 40882.28, + "probability": 0.0132 + }, + { + "start": 40882.84, + "end": 40883.42, + "probability": 0.6286 + }, + { + "start": 40884.78, + "end": 40885.02, + "probability": 0.094 + }, + { + "start": 40889.81, + "end": 40892.22, + "probability": 0.9788 + }, + { + "start": 40892.32, + "end": 40893.42, + "probability": 0.8034 + }, + { + "start": 40893.54, + "end": 40896.38, + "probability": 0.9856 + }, + { + "start": 40896.42, + "end": 40898.52, + "probability": 0.7078 + }, + { + "start": 40900.0, + "end": 40900.9, + "probability": 0.5081 + }, + { + "start": 40902.35, + "end": 40908.18, + "probability": 0.3331 + }, + { + "start": 40908.66, + "end": 40912.06, + "probability": 0.8928 + }, + { + "start": 40912.32, + "end": 40914.64, + "probability": 0.8787 + }, + { + "start": 40914.7, + "end": 40916.1, + "probability": 0.9733 + }, + { + "start": 40916.16, + "end": 40916.3, + "probability": 0.245 + }, + { + "start": 40916.38, + "end": 40917.8, + "probability": 0.3011 + }, + { + "start": 40919.24, + "end": 40922.08, + "probability": 0.5114 + }, + { + "start": 40922.2, + "end": 40923.06, + "probability": 0.889 + }, + { + "start": 40923.14, + "end": 40923.94, + "probability": 0.8782 + }, + { + "start": 40924.0, + "end": 40928.7, + "probability": 0.846 + }, + { + "start": 40931.22, + "end": 40934.9, + "probability": 0.5716 + }, + { + "start": 40935.06, + "end": 40935.78, + "probability": 0.4964 + }, + { + "start": 40935.92, + "end": 40942.02, + "probability": 0.5747 + }, + { + "start": 40942.66, + "end": 40942.86, + "probability": 0.508 + }, + { + "start": 40942.96, + "end": 40943.56, + "probability": 0.4703 + }, + { + "start": 40943.66, + "end": 40943.7, + "probability": 0.0054 + }, + { + "start": 40944.22, + "end": 40945.98, + "probability": 0.8402 + }, + { + "start": 40946.12, + "end": 40950.35, + "probability": 0.5957 + }, + { + "start": 40951.12, + "end": 40954.12, + "probability": 0.9492 + }, + { + "start": 40954.12, + "end": 40956.96, + "probability": 0.6895 + }, + { + "start": 40957.66, + "end": 40957.96, + "probability": 0.054 + }, + { + "start": 40957.96, + "end": 40960.66, + "probability": 0.624 + }, + { + "start": 40961.72, + "end": 40964.56, + "probability": 0.6148 + }, + { + "start": 40964.56, + "end": 40965.2, + "probability": 0.6249 + }, + { + "start": 40965.92, + "end": 40967.18, + "probability": 0.6107 + }, + { + "start": 40981.16, + "end": 40984.1, + "probability": 0.8618 + }, + { + "start": 40984.78, + "end": 40990.58, + "probability": 0.9857 + }, + { + "start": 40990.62, + "end": 40991.52, + "probability": 0.6222 + }, + { + "start": 40991.58, + "end": 40992.33, + "probability": 0.9745 + }, + { + "start": 40992.6, + "end": 40993.6, + "probability": 0.8035 + }, + { + "start": 40993.78, + "end": 40994.68, + "probability": 0.9629 + }, + { + "start": 40995.42, + "end": 40997.62, + "probability": 0.9585 + }, + { + "start": 40998.12, + "end": 40999.32, + "probability": 0.9956 + }, + { + "start": 40999.4, + "end": 41003.18, + "probability": 0.9218 + }, + { + "start": 41003.3, + "end": 41005.3, + "probability": 0.7606 + }, + { + "start": 41005.48, + "end": 41007.46, + "probability": 0.5624 + }, + { + "start": 41007.6, + "end": 41009.92, + "probability": 0.9878 + }, + { + "start": 41010.24, + "end": 41017.34, + "probability": 0.9363 + }, + { + "start": 41017.96, + "end": 41021.98, + "probability": 0.8937 + }, + { + "start": 41022.1, + "end": 41024.18, + "probability": 0.8015 + }, + { + "start": 41025.06, + "end": 41026.12, + "probability": 0.9236 + }, + { + "start": 41027.22, + "end": 41028.56, + "probability": 0.9179 + }, + { + "start": 41029.54, + "end": 41030.3, + "probability": 0.9832 + }, + { + "start": 41030.38, + "end": 41030.7, + "probability": 0.529 + }, + { + "start": 41030.7, + "end": 41033.08, + "probability": 0.9239 + }, + { + "start": 41035.65, + "end": 41037.44, + "probability": 0.9436 + }, + { + "start": 41037.62, + "end": 41040.18, + "probability": 0.979 + }, + { + "start": 41040.26, + "end": 41041.87, + "probability": 0.8582 + }, + { + "start": 41042.93, + "end": 41044.46, + "probability": 0.7076 + }, + { + "start": 41044.52, + "end": 41047.34, + "probability": 0.9958 + }, + { + "start": 41047.34, + "end": 41050.86, + "probability": 0.8341 + }, + { + "start": 41050.96, + "end": 41052.26, + "probability": 0.3908 + }, + { + "start": 41052.34, + "end": 41054.68, + "probability": 0.6902 + }, + { + "start": 41054.82, + "end": 41056.68, + "probability": 0.6452 + }, + { + "start": 41056.78, + "end": 41057.97, + "probability": 0.3392 + }, + { + "start": 41058.36, + "end": 41059.3, + "probability": 0.753 + }, + { + "start": 41059.5, + "end": 41060.2, + "probability": 0.4517 + }, + { + "start": 41060.48, + "end": 41061.0, + "probability": 0.9006 + }, + { + "start": 41061.22, + "end": 41061.62, + "probability": 0.8557 + }, + { + "start": 41061.68, + "end": 41063.9, + "probability": 0.951 + }, + { + "start": 41063.96, + "end": 41064.86, + "probability": 0.8422 + }, + { + "start": 41066.2, + "end": 41071.0, + "probability": 0.9569 + }, + { + "start": 41072.76, + "end": 41074.04, + "probability": 0.9404 + }, + { + "start": 41075.2, + "end": 41077.08, + "probability": 0.4802 + }, + { + "start": 41077.26, + "end": 41077.9, + "probability": 0.978 + }, + { + "start": 41077.98, + "end": 41078.26, + "probability": 0.2788 + }, + { + "start": 41078.46, + "end": 41079.79, + "probability": 0.5453 + }, + { + "start": 41079.8, + "end": 41082.18, + "probability": 0.7981 + }, + { + "start": 41082.18, + "end": 41085.48, + "probability": 0.9647 + }, + { + "start": 41085.94, + "end": 41088.84, + "probability": 0.9928 + }, + { + "start": 41089.04, + "end": 41090.68, + "probability": 0.9521 + }, + { + "start": 41090.76, + "end": 41093.64, + "probability": 0.9479 + }, + { + "start": 41094.32, + "end": 41098.6, + "probability": 0.7746 + }, + { + "start": 41099.42, + "end": 41100.12, + "probability": 0.9532 + }, + { + "start": 41101.28, + "end": 41103.88, + "probability": 0.9819 + }, + { + "start": 41105.46, + "end": 41110.1, + "probability": 0.8124 + }, + { + "start": 41110.16, + "end": 41110.7, + "probability": 0.7087 + }, + { + "start": 41110.84, + "end": 41111.48, + "probability": 0.7076 + }, + { + "start": 41111.5, + "end": 41112.66, + "probability": 0.7817 + }, + { + "start": 41112.76, + "end": 41113.58, + "probability": 0.9243 + }, + { + "start": 41113.6, + "end": 41114.52, + "probability": 0.8525 + }, + { + "start": 41115.82, + "end": 41118.12, + "probability": 0.9742 + }, + { + "start": 41119.4, + "end": 41122.12, + "probability": 0.9432 + }, + { + "start": 41123.26, + "end": 41125.58, + "probability": 0.9829 + }, + { + "start": 41126.06, + "end": 41127.5, + "probability": 0.647 + }, + { + "start": 41128.12, + "end": 41133.06, + "probability": 0.9943 + }, + { + "start": 41133.64, + "end": 41136.92, + "probability": 0.8864 + }, + { + "start": 41137.92, + "end": 41138.26, + "probability": 0.7766 + }, + { + "start": 41138.26, + "end": 41141.6, + "probability": 0.9974 + }, + { + "start": 41142.46, + "end": 41146.1, + "probability": 0.9842 + }, + { + "start": 41146.76, + "end": 41148.04, + "probability": 0.7218 + }, + { + "start": 41148.8, + "end": 41149.84, + "probability": 0.9846 + }, + { + "start": 41150.7, + "end": 41153.26, + "probability": 0.9474 + }, + { + "start": 41153.48, + "end": 41156.46, + "probability": 0.9505 + }, + { + "start": 41157.16, + "end": 41157.94, + "probability": 0.4966 + }, + { + "start": 41158.9, + "end": 41161.06, + "probability": 0.8937 + }, + { + "start": 41162.02, + "end": 41162.56, + "probability": 0.6417 + }, + { + "start": 41162.62, + "end": 41163.56, + "probability": 0.6931 + }, + { + "start": 41163.62, + "end": 41166.0, + "probability": 0.9928 + }, + { + "start": 41166.46, + "end": 41167.46, + "probability": 0.9467 + }, + { + "start": 41168.14, + "end": 41168.66, + "probability": 0.9303 + }, + { + "start": 41169.78, + "end": 41172.94, + "probability": 0.9984 + }, + { + "start": 41172.94, + "end": 41177.02, + "probability": 0.7987 + }, + { + "start": 41177.74, + "end": 41178.26, + "probability": 0.5283 + }, + { + "start": 41178.32, + "end": 41178.98, + "probability": 0.6638 + }, + { + "start": 41179.14, + "end": 41184.34, + "probability": 0.8613 + }, + { + "start": 41184.52, + "end": 41185.9, + "probability": 0.9437 + }, + { + "start": 41186.6, + "end": 41190.46, + "probability": 0.7551 + }, + { + "start": 41191.54, + "end": 41194.12, + "probability": 0.844 + }, + { + "start": 41195.28, + "end": 41196.46, + "probability": 0.9775 + }, + { + "start": 41196.88, + "end": 41197.96, + "probability": 0.8825 + }, + { + "start": 41198.12, + "end": 41199.32, + "probability": 0.947 + }, + { + "start": 41199.52, + "end": 41200.12, + "probability": 0.6618 + }, + { + "start": 41200.2, + "end": 41201.32, + "probability": 0.7653 + }, + { + "start": 41202.1, + "end": 41207.15, + "probability": 0.9485 + }, + { + "start": 41208.36, + "end": 41211.5, + "probability": 0.9967 + }, + { + "start": 41212.2, + "end": 41214.68, + "probability": 0.9677 + }, + { + "start": 41214.86, + "end": 41215.6, + "probability": 0.8341 + }, + { + "start": 41216.0, + "end": 41216.8, + "probability": 0.8655 + }, + { + "start": 41216.88, + "end": 41217.66, + "probability": 0.8399 + }, + { + "start": 41217.8, + "end": 41218.54, + "probability": 0.8192 + }, + { + "start": 41219.82, + "end": 41220.98, + "probability": 0.9432 + }, + { + "start": 41221.06, + "end": 41221.93, + "probability": 0.9236 + }, + { + "start": 41222.1, + "end": 41223.38, + "probability": 0.7267 + }, + { + "start": 41223.4, + "end": 41225.5, + "probability": 0.8317 + }, + { + "start": 41226.24, + "end": 41229.3, + "probability": 0.4634 + }, + { + "start": 41229.4, + "end": 41233.1, + "probability": 0.8678 + }, + { + "start": 41234.24, + "end": 41238.22, + "probability": 0.9222 + }, + { + "start": 41239.2, + "end": 41240.56, + "probability": 0.9888 + }, + { + "start": 41241.74, + "end": 41245.72, + "probability": 0.3864 + }, + { + "start": 41245.72, + "end": 41246.42, + "probability": 0.5617 + }, + { + "start": 41246.5, + "end": 41251.12, + "probability": 0.8864 + }, + { + "start": 41251.26, + "end": 41252.92, + "probability": 0.9604 + }, + { + "start": 41253.44, + "end": 41257.38, + "probability": 0.9484 + }, + { + "start": 41258.32, + "end": 41259.62, + "probability": 0.9755 + }, + { + "start": 41261.38, + "end": 41264.36, + "probability": 0.9713 + }, + { + "start": 41264.36, + "end": 41267.72, + "probability": 0.931 + }, + { + "start": 41268.56, + "end": 41269.12, + "probability": 0.5218 + }, + { + "start": 41269.38, + "end": 41269.94, + "probability": 0.9381 + }, + { + "start": 41270.38, + "end": 41271.18, + "probability": 0.989 + }, + { + "start": 41271.44, + "end": 41272.44, + "probability": 0.9451 + }, + { + "start": 41273.14, + "end": 41277.68, + "probability": 0.9237 + }, + { + "start": 41278.16, + "end": 41279.14, + "probability": 0.9612 + }, + { + "start": 41279.44, + "end": 41280.72, + "probability": 0.8869 + }, + { + "start": 41281.98, + "end": 41282.92, + "probability": 0.7633 + }, + { + "start": 41283.8, + "end": 41285.0, + "probability": 0.8447 + }, + { + "start": 41286.0, + "end": 41287.52, + "probability": 0.8618 + }, + { + "start": 41288.18, + "end": 41293.64, + "probability": 0.8276 + }, + { + "start": 41294.4, + "end": 41296.16, + "probability": 0.9871 + }, + { + "start": 41296.94, + "end": 41298.96, + "probability": 0.6706 + }, + { + "start": 41299.56, + "end": 41301.92, + "probability": 0.9526 + }, + { + "start": 41302.54, + "end": 41304.71, + "probability": 0.9452 + }, + { + "start": 41305.4, + "end": 41307.38, + "probability": 0.9963 + }, + { + "start": 41307.82, + "end": 41312.06, + "probability": 0.9918 + }, + { + "start": 41312.12, + "end": 41313.84, + "probability": 0.8428 + }, + { + "start": 41314.24, + "end": 41314.9, + "probability": 0.7266 + }, + { + "start": 41314.96, + "end": 41316.1, + "probability": 0.6446 + }, + { + "start": 41316.78, + "end": 41318.9, + "probability": 0.952 + }, + { + "start": 41320.24, + "end": 41322.68, + "probability": 0.8472 + }, + { + "start": 41323.46, + "end": 41325.58, + "probability": 0.9411 + }, + { + "start": 41326.18, + "end": 41328.0, + "probability": 0.95 + }, + { + "start": 41328.88, + "end": 41333.16, + "probability": 0.9945 + }, + { + "start": 41333.16, + "end": 41337.52, + "probability": 0.9734 + }, + { + "start": 41338.3, + "end": 41339.96, + "probability": 0.9746 + }, + { + "start": 41340.46, + "end": 41342.52, + "probability": 0.9637 + }, + { + "start": 41343.06, + "end": 41347.84, + "probability": 0.9895 + }, + { + "start": 41348.92, + "end": 41351.12, + "probability": 0.9966 + }, + { + "start": 41351.58, + "end": 41353.56, + "probability": 0.9918 + }, + { + "start": 41353.74, + "end": 41355.49, + "probability": 0.993 + }, + { + "start": 41356.2, + "end": 41359.02, + "probability": 0.916 + }, + { + "start": 41359.7, + "end": 41365.6, + "probability": 0.9621 + }, + { + "start": 41366.9, + "end": 41367.84, + "probability": 0.7185 + }, + { + "start": 41368.52, + "end": 41370.35, + "probability": 0.8894 + }, + { + "start": 41372.04, + "end": 41374.82, + "probability": 0.0633 + }, + { + "start": 41374.82, + "end": 41377.02, + "probability": 0.8039 + }, + { + "start": 41377.1, + "end": 41378.31, + "probability": 0.8363 + }, + { + "start": 41381.04, + "end": 41383.76, + "probability": 0.9946 + }, + { + "start": 41384.1, + "end": 41387.48, + "probability": 0.9651 + }, + { + "start": 41387.96, + "end": 41390.4, + "probability": 0.9393 + }, + { + "start": 41391.1, + "end": 41392.3, + "probability": 0.7372 + }, + { + "start": 41392.72, + "end": 41396.52, + "probability": 0.9709 + }, + { + "start": 41397.18, + "end": 41399.78, + "probability": 0.9028 + }, + { + "start": 41400.18, + "end": 41401.4, + "probability": 0.9983 + }, + { + "start": 41402.38, + "end": 41404.44, + "probability": 0.6334 + }, + { + "start": 41404.5, + "end": 41404.94, + "probability": 0.4884 + }, + { + "start": 41404.96, + "end": 41405.88, + "probability": 0.7899 + }, + { + "start": 41405.9, + "end": 41406.84, + "probability": 0.7146 + }, + { + "start": 41408.54, + "end": 41411.9, + "probability": 0.9963 + }, + { + "start": 41413.16, + "end": 41413.68, + "probability": 0.8232 + }, + { + "start": 41413.86, + "end": 41416.0, + "probability": 0.9692 + }, + { + "start": 41416.42, + "end": 41417.64, + "probability": 0.9907 + }, + { + "start": 41417.74, + "end": 41418.8, + "probability": 0.7104 + }, + { + "start": 41419.4, + "end": 41421.08, + "probability": 0.5197 + }, + { + "start": 41421.1, + "end": 41421.98, + "probability": 0.9858 + }, + { + "start": 41422.1, + "end": 41423.26, + "probability": 0.7307 + }, + { + "start": 41424.46, + "end": 41425.7, + "probability": 0.9047 + }, + { + "start": 41425.82, + "end": 41427.0, + "probability": 0.981 + }, + { + "start": 41427.02, + "end": 41428.54, + "probability": 0.9836 + }, + { + "start": 41429.28, + "end": 41432.2, + "probability": 0.9446 + }, + { + "start": 41432.28, + "end": 41435.04, + "probability": 0.9772 + }, + { + "start": 41435.74, + "end": 41439.2, + "probability": 0.9069 + }, + { + "start": 41440.08, + "end": 41443.98, + "probability": 0.9861 + }, + { + "start": 41444.92, + "end": 41445.74, + "probability": 0.7312 + }, + { + "start": 41445.84, + "end": 41446.82, + "probability": 0.805 + }, + { + "start": 41446.84, + "end": 41449.44, + "probability": 0.8246 + }, + { + "start": 41449.8, + "end": 41452.98, + "probability": 0.9903 + }, + { + "start": 41453.54, + "end": 41457.58, + "probability": 0.8062 + }, + { + "start": 41457.64, + "end": 41460.91, + "probability": 0.894 + }, + { + "start": 41461.48, + "end": 41463.78, + "probability": 0.8501 + }, + { + "start": 41464.6, + "end": 41464.82, + "probability": 0.4001 + }, + { + "start": 41464.88, + "end": 41465.56, + "probability": 0.7154 + }, + { + "start": 41465.8, + "end": 41467.78, + "probability": 0.8809 + }, + { + "start": 41467.88, + "end": 41469.48, + "probability": 0.9719 + }, + { + "start": 41469.54, + "end": 41470.26, + "probability": 0.9158 + }, + { + "start": 41471.36, + "end": 41472.14, + "probability": 0.6379 + }, + { + "start": 41472.56, + "end": 41473.04, + "probability": 0.768 + }, + { + "start": 41473.12, + "end": 41473.8, + "probability": 0.6702 + }, + { + "start": 41473.84, + "end": 41476.02, + "probability": 0.9722 + }, + { + "start": 41476.06, + "end": 41476.8, + "probability": 0.6225 + }, + { + "start": 41479.08, + "end": 41481.36, + "probability": 0.9467 + }, + { + "start": 41481.44, + "end": 41485.04, + "probability": 0.8443 + }, + { + "start": 41485.3, + "end": 41487.22, + "probability": 0.7723 + }, + { + "start": 41487.78, + "end": 41491.16, + "probability": 0.9712 + }, + { + "start": 41491.26, + "end": 41491.82, + "probability": 0.9837 + }, + { + "start": 41492.38, + "end": 41496.96, + "probability": 0.9946 + }, + { + "start": 41497.16, + "end": 41497.84, + "probability": 0.9092 + }, + { + "start": 41498.42, + "end": 41501.54, + "probability": 0.7869 + }, + { + "start": 41501.8, + "end": 41504.3, + "probability": 0.9635 + }, + { + "start": 41504.36, + "end": 41505.34, + "probability": 0.6331 + }, + { + "start": 41506.08, + "end": 41507.78, + "probability": 0.5851 + }, + { + "start": 41507.88, + "end": 41509.06, + "probability": 0.9067 + }, + { + "start": 41509.06, + "end": 41510.27, + "probability": 0.7327 + }, + { + "start": 41510.68, + "end": 41511.6, + "probability": 0.942 + }, + { + "start": 41511.66, + "end": 41511.94, + "probability": 0.8901 + }, + { + "start": 41512.56, + "end": 41514.41, + "probability": 0.8048 + }, + { + "start": 41515.18, + "end": 41515.66, + "probability": 0.5101 + }, + { + "start": 41516.26, + "end": 41521.38, + "probability": 0.9871 + }, + { + "start": 41521.76, + "end": 41523.26, + "probability": 0.7406 + }, + { + "start": 41523.38, + "end": 41524.48, + "probability": 0.9851 + }, + { + "start": 41524.52, + "end": 41525.82, + "probability": 0.908 + }, + { + "start": 41526.2, + "end": 41526.66, + "probability": 0.4377 + }, + { + "start": 41526.76, + "end": 41528.62, + "probability": 0.913 + }, + { + "start": 41528.86, + "end": 41533.3, + "probability": 0.9158 + }, + { + "start": 41533.64, + "end": 41535.08, + "probability": 0.8646 + }, + { + "start": 41535.22, + "end": 41537.3, + "probability": 0.8355 + }, + { + "start": 41537.38, + "end": 41537.38, + "probability": 0.0002 + }, + { + "start": 41538.24, + "end": 41539.42, + "probability": 0.5662 + }, + { + "start": 41539.6, + "end": 41540.22, + "probability": 0.9 + }, + { + "start": 41540.28, + "end": 41543.02, + "probability": 0.8939 + }, + { + "start": 41543.46, + "end": 41543.88, + "probability": 0.946 + }, + { + "start": 41544.0, + "end": 41545.02, + "probability": 0.7632 + }, + { + "start": 41545.1, + "end": 41548.46, + "probability": 0.8877 + }, + { + "start": 41548.84, + "end": 41556.02, + "probability": 0.9364 + }, + { + "start": 41556.86, + "end": 41562.34, + "probability": 0.8725 + }, + { + "start": 41564.02, + "end": 41567.52, + "probability": 0.8858 + }, + { + "start": 41568.9, + "end": 41569.94, + "probability": 0.3559 + }, + { + "start": 41570.54, + "end": 41571.56, + "probability": 0.9551 + }, + { + "start": 41571.66, + "end": 41573.23, + "probability": 0.9705 + }, + { + "start": 41575.6, + "end": 41576.1, + "probability": 0.0608 + }, + { + "start": 41576.1, + "end": 41576.1, + "probability": 0.0057 + }, + { + "start": 41576.1, + "end": 41576.3, + "probability": 0.4488 + }, + { + "start": 41576.4, + "end": 41577.03, + "probability": 0.1675 + }, + { + "start": 41577.2, + "end": 41579.12, + "probability": 0.9011 + }, + { + "start": 41579.12, + "end": 41579.94, + "probability": 0.5047 + }, + { + "start": 41579.96, + "end": 41581.26, + "probability": 0.3619 + }, + { + "start": 41582.92, + "end": 41585.86, + "probability": 0.7986 + }, + { + "start": 41586.0, + "end": 41588.66, + "probability": 0.9836 + }, + { + "start": 41590.82, + "end": 41593.74, + "probability": 0.8603 + }, + { + "start": 41593.88, + "end": 41594.36, + "probability": 0.8871 + }, + { + "start": 41594.52, + "end": 41595.06, + "probability": 0.5998 + }, + { + "start": 41595.46, + "end": 41597.74, + "probability": 0.9273 + }, + { + "start": 41597.82, + "end": 41598.96, + "probability": 0.9357 + }, + { + "start": 41599.32, + "end": 41602.74, + "probability": 0.9475 + }, + { + "start": 41603.26, + "end": 41603.96, + "probability": 0.6745 + }, + { + "start": 41604.04, + "end": 41607.72, + "probability": 0.9907 + }, + { + "start": 41607.88, + "end": 41608.54, + "probability": 0.453 + }, + { + "start": 41608.62, + "end": 41610.92, + "probability": 0.8882 + }, + { + "start": 41611.18, + "end": 41612.96, + "probability": 0.9345 + }, + { + "start": 41613.46, + "end": 41618.24, + "probability": 0.9581 + }, + { + "start": 41618.34, + "end": 41621.94, + "probability": 0.8492 + }, + { + "start": 41622.3, + "end": 41624.66, + "probability": 0.9332 + }, + { + "start": 41625.04, + "end": 41625.44, + "probability": 0.9249 + }, + { + "start": 41625.88, + "end": 41628.3, + "probability": 0.6813 + }, + { + "start": 41629.16, + "end": 41633.06, + "probability": 0.8524 + }, + { + "start": 41634.24, + "end": 41637.74, + "probability": 0.7429 + }, + { + "start": 41638.28, + "end": 41639.06, + "probability": 0.5799 + }, + { + "start": 41639.1, + "end": 41639.67, + "probability": 0.7979 + }, + { + "start": 41643.04, + "end": 41645.3, + "probability": 0.0246 + }, + { + "start": 41645.52, + "end": 41646.72, + "probability": 0.0205 + }, + { + "start": 41647.92, + "end": 41648.88, + "probability": 0.083 + }, + { + "start": 41652.54, + "end": 41653.06, + "probability": 0.1952 + }, + { + "start": 41653.18, + "end": 41654.04, + "probability": 0.5294 + }, + { + "start": 41654.08, + "end": 41655.4, + "probability": 0.7599 + }, + { + "start": 41655.46, + "end": 41657.64, + "probability": 0.8712 + }, + { + "start": 41658.02, + "end": 41658.76, + "probability": 0.9961 + }, + { + "start": 41659.14, + "end": 41660.82, + "probability": 0.7776 + }, + { + "start": 41668.08, + "end": 41669.52, + "probability": 0.6027 + }, + { + "start": 41669.62, + "end": 41675.51, + "probability": 0.7117 + }, + { + "start": 41676.38, + "end": 41676.9, + "probability": 0.6522 + }, + { + "start": 41677.02, + "end": 41678.02, + "probability": 0.7315 + }, + { + "start": 41678.32, + "end": 41680.54, + "probability": 0.6038 + }, + { + "start": 41680.7, + "end": 41682.32, + "probability": 0.9678 + }, + { + "start": 41683.98, + "end": 41687.0, + "probability": 0.9757 + }, + { + "start": 41688.02, + "end": 41694.3, + "probability": 0.8161 + }, + { + "start": 41694.46, + "end": 41695.28, + "probability": 0.7317 + }, + { + "start": 41696.08, + "end": 41698.95, + "probability": 0.9933 + }, + { + "start": 41699.64, + "end": 41701.02, + "probability": 0.9119 + }, + { + "start": 41701.32, + "end": 41702.08, + "probability": 0.4102 + }, + { + "start": 41702.82, + "end": 41706.5, + "probability": 0.9841 + }, + { + "start": 41708.34, + "end": 41709.96, + "probability": 0.8988 + }, + { + "start": 41710.9, + "end": 41717.32, + "probability": 0.9578 + }, + { + "start": 41717.32, + "end": 41723.1, + "probability": 0.9974 + }, + { + "start": 41724.28, + "end": 41726.62, + "probability": 0.9792 + }, + { + "start": 41728.32, + "end": 41729.88, + "probability": 0.8784 + }, + { + "start": 41730.89, + "end": 41734.1, + "probability": 0.8462 + }, + { + "start": 41734.1, + "end": 41736.32, + "probability": 0.8424 + }, + { + "start": 41737.44, + "end": 41739.12, + "probability": 0.8149 + }, + { + "start": 41740.46, + "end": 41741.86, + "probability": 0.409 + }, + { + "start": 41741.88, + "end": 41748.48, + "probability": 0.9521 + }, + { + "start": 41748.6, + "end": 41751.38, + "probability": 0.9837 + }, + { + "start": 41752.58, + "end": 41754.9, + "probability": 0.6453 + }, + { + "start": 41755.72, + "end": 41756.48, + "probability": 0.9143 + }, + { + "start": 41756.52, + "end": 41758.14, + "probability": 0.9365 + }, + { + "start": 41758.42, + "end": 41761.8, + "probability": 0.9985 + }, + { + "start": 41763.0, + "end": 41766.76, + "probability": 0.7771 + }, + { + "start": 41767.86, + "end": 41769.92, + "probability": 0.9072 + }, + { + "start": 41770.64, + "end": 41774.08, + "probability": 0.7793 + }, + { + "start": 41774.54, + "end": 41779.84, + "probability": 0.9622 + }, + { + "start": 41780.54, + "end": 41782.72, + "probability": 0.4674 + }, + { + "start": 41783.26, + "end": 41784.82, + "probability": 0.777 + }, + { + "start": 41785.0, + "end": 41785.78, + "probability": 0.4 + }, + { + "start": 41785.82, + "end": 41792.34, + "probability": 0.9697 + }, + { + "start": 41792.48, + "end": 41799.88, + "probability": 0.9683 + }, + { + "start": 41800.76, + "end": 41801.06, + "probability": 0.3561 + }, + { + "start": 41801.18, + "end": 41805.74, + "probability": 0.8345 + }, + { + "start": 41806.14, + "end": 41807.7, + "probability": 0.8406 + }, + { + "start": 41808.24, + "end": 41809.22, + "probability": 0.7996 + }, + { + "start": 41809.26, + "end": 41812.32, + "probability": 0.8205 + }, + { + "start": 41812.38, + "end": 41814.36, + "probability": 0.6401 + }, + { + "start": 41814.76, + "end": 41817.44, + "probability": 0.8465 + }, + { + "start": 41817.52, + "end": 41818.6, + "probability": 0.2891 + }, + { + "start": 41819.12, + "end": 41822.16, + "probability": 0.3606 + }, + { + "start": 41822.16, + "end": 41823.82, + "probability": 0.6501 + }, + { + "start": 41826.28, + "end": 41830.78, + "probability": 0.8767 + }, + { + "start": 41830.94, + "end": 41832.78, + "probability": 0.7889 + }, + { + "start": 41832.92, + "end": 41839.68, + "probability": 0.9718 + }, + { + "start": 41839.82, + "end": 41840.96, + "probability": 0.557 + }, + { + "start": 41841.14, + "end": 41843.35, + "probability": 0.9178 + }, + { + "start": 41843.94, + "end": 41845.17, + "probability": 0.6595 + }, + { + "start": 41845.8, + "end": 41850.5, + "probability": 0.9993 + }, + { + "start": 41851.84, + "end": 41852.86, + "probability": 0.9146 + }, + { + "start": 41852.96, + "end": 41853.6, + "probability": 0.608 + }, + { + "start": 41854.38, + "end": 41856.18, + "probability": 0.9123 + }, + { + "start": 41856.2, + "end": 41856.78, + "probability": 0.3179 + }, + { + "start": 41857.16, + "end": 41858.44, + "probability": 0.759 + }, + { + "start": 41858.6, + "end": 41859.26, + "probability": 0.4879 + }, + { + "start": 41860.24, + "end": 41860.98, + "probability": 0.0333 + }, + { + "start": 41860.98, + "end": 41861.09, + "probability": 0.3263 + }, + { + "start": 41861.64, + "end": 41863.66, + "probability": 0.9923 + }, + { + "start": 41863.8, + "end": 41867.34, + "probability": 0.963 + }, + { + "start": 41872.06, + "end": 41873.22, + "probability": 0.0579 + }, + { + "start": 41873.68, + "end": 41875.64, + "probability": 0.7012 + }, + { + "start": 41875.7, + "end": 41876.38, + "probability": 0.1724 + }, + { + "start": 41877.02, + "end": 41883.16, + "probability": 0.978 + }, + { + "start": 41884.08, + "end": 41886.9, + "probability": 0.9394 + }, + { + "start": 41886.92, + "end": 41887.94, + "probability": 0.7555 + }, + { + "start": 41888.2, + "end": 41888.68, + "probability": 0.6773 + }, + { + "start": 41889.06, + "end": 41891.68, + "probability": 0.8682 + }, + { + "start": 41891.84, + "end": 41892.16, + "probability": 0.6719 + }, + { + "start": 41892.68, + "end": 41895.06, + "probability": 0.92 + }, + { + "start": 41895.12, + "end": 41902.34, + "probability": 0.9706 + }, + { + "start": 41902.42, + "end": 41904.42, + "probability": 0.9927 + }, + { + "start": 41904.42, + "end": 41908.74, + "probability": 0.9861 + }, + { + "start": 41909.4, + "end": 41911.94, + "probability": 0.8064 + }, + { + "start": 41912.2, + "end": 41913.78, + "probability": 0.9529 + }, + { + "start": 41913.9, + "end": 41914.78, + "probability": 0.8632 + }, + { + "start": 41914.9, + "end": 41915.2, + "probability": 0.5149 + }, + { + "start": 41916.02, + "end": 41916.96, + "probability": 0.8634 + }, + { + "start": 41916.98, + "end": 41919.38, + "probability": 0.4608 + }, + { + "start": 41920.1, + "end": 41921.86, + "probability": 0.7249 + }, + { + "start": 41922.06, + "end": 41922.88, + "probability": 0.629 + }, + { + "start": 41922.96, + "end": 41924.6, + "probability": 0.9774 + }, + { + "start": 41924.68, + "end": 41925.36, + "probability": 0.8562 + }, + { + "start": 41925.54, + "end": 41926.5, + "probability": 0.4707 + }, + { + "start": 41926.54, + "end": 41927.18, + "probability": 0.6651 + }, + { + "start": 41929.6, + "end": 41929.78, + "probability": 0.1244 + }, + { + "start": 41929.78, + "end": 41935.74, + "probability": 0.9648 + }, + { + "start": 41935.88, + "end": 41937.54, + "probability": 0.7593 + }, + { + "start": 41938.24, + "end": 41939.2, + "probability": 0.3773 + }, + { + "start": 41939.5, + "end": 41943.12, + "probability": 0.6955 + }, + { + "start": 41943.22, + "end": 41946.44, + "probability": 0.6669 + }, + { + "start": 41946.44, + "end": 41949.48, + "probability": 0.9574 + }, + { + "start": 41949.88, + "end": 41951.38, + "probability": 0.9218 + }, + { + "start": 41951.78, + "end": 41953.38, + "probability": 0.691 + }, + { + "start": 41953.5, + "end": 41955.02, + "probability": 0.9862 + }, + { + "start": 41955.32, + "end": 41957.22, + "probability": 0.9517 + }, + { + "start": 41958.26, + "end": 41962.64, + "probability": 0.9806 + }, + { + "start": 41962.74, + "end": 41962.76, + "probability": 0.1655 + }, + { + "start": 41962.88, + "end": 41963.38, + "probability": 0.787 + }, + { + "start": 41963.5, + "end": 41964.58, + "probability": 0.9824 + }, + { + "start": 41965.0, + "end": 41966.68, + "probability": 0.9075 + }, + { + "start": 41967.62, + "end": 41969.28, + "probability": 0.3865 + }, + { + "start": 41969.32, + "end": 41969.76, + "probability": 0.2673 + }, + { + "start": 41969.96, + "end": 41974.94, + "probability": 0.9863 + }, + { + "start": 41975.08, + "end": 41977.88, + "probability": 0.9716 + }, + { + "start": 41978.04, + "end": 41983.22, + "probability": 0.9631 + }, + { + "start": 41983.9, + "end": 41984.5, + "probability": 0.9174 + }, + { + "start": 41984.7, + "end": 41985.26, + "probability": 0.908 + }, + { + "start": 41985.36, + "end": 41986.92, + "probability": 0.9146 + }, + { + "start": 41987.08, + "end": 41989.28, + "probability": 0.9662 + }, + { + "start": 41989.36, + "end": 41991.82, + "probability": 0.2345 + }, + { + "start": 41991.84, + "end": 41992.14, + "probability": 0.4658 + }, + { + "start": 41992.22, + "end": 41992.82, + "probability": 0.8313 + }, + { + "start": 41992.94, + "end": 41994.92, + "probability": 0.875 + }, + { + "start": 41995.3, + "end": 41996.0, + "probability": 0.9572 + }, + { + "start": 41996.04, + "end": 41998.4, + "probability": 0.9107 + }, + { + "start": 41998.54, + "end": 41999.4, + "probability": 0.7133 + }, + { + "start": 41999.72, + "end": 42000.96, + "probability": 0.9654 + }, + { + "start": 42001.18, + "end": 42004.46, + "probability": 0.9696 + }, + { + "start": 42004.62, + "end": 42006.66, + "probability": 0.9531 + }, + { + "start": 42006.7, + "end": 42007.44, + "probability": 0.7354 + }, + { + "start": 42007.7, + "end": 42010.42, + "probability": 0.9238 + }, + { + "start": 42010.52, + "end": 42010.88, + "probability": 0.6229 + }, + { + "start": 42010.94, + "end": 42013.56, + "probability": 0.8184 + }, + { + "start": 42014.18, + "end": 42018.5, + "probability": 0.969 + }, + { + "start": 42018.86, + "end": 42020.01, + "probability": 0.6722 + }, + { + "start": 42021.26, + "end": 42022.26, + "probability": 0.818 + }, + { + "start": 42022.86, + "end": 42024.42, + "probability": 0.6541 + }, + { + "start": 42024.62, + "end": 42025.74, + "probability": 0.8778 + }, + { + "start": 42026.08, + "end": 42027.58, + "probability": 0.7657 + }, + { + "start": 42027.84, + "end": 42030.2, + "probability": 0.9761 + }, + { + "start": 42030.48, + "end": 42032.36, + "probability": 0.8853 + }, + { + "start": 42032.42, + "end": 42037.92, + "probability": 0.9954 + }, + { + "start": 42038.38, + "end": 42039.6, + "probability": 0.9629 + }, + { + "start": 42039.74, + "end": 42041.02, + "probability": 0.9831 + }, + { + "start": 42041.28, + "end": 42044.52, + "probability": 0.9892 + }, + { + "start": 42044.6, + "end": 42045.58, + "probability": 0.937 + }, + { + "start": 42046.35, + "end": 42049.3, + "probability": 0.946 + }, + { + "start": 42049.56, + "end": 42054.2, + "probability": 0.9984 + }, + { + "start": 42054.54, + "end": 42057.04, + "probability": 0.8286 + }, + { + "start": 42057.86, + "end": 42058.86, + "probability": 0.8953 + }, + { + "start": 42059.04, + "end": 42063.02, + "probability": 0.8451 + }, + { + "start": 42063.5, + "end": 42063.58, + "probability": 0.5781 + }, + { + "start": 42063.72, + "end": 42064.32, + "probability": 0.8053 + }, + { + "start": 42064.72, + "end": 42069.5, + "probability": 0.9616 + }, + { + "start": 42070.2, + "end": 42071.84, + "probability": 0.9617 + }, + { + "start": 42071.96, + "end": 42072.16, + "probability": 0.4774 + }, + { + "start": 42072.32, + "end": 42077.18, + "probability": 0.6708 + }, + { + "start": 42077.5, + "end": 42079.5, + "probability": 0.9592 + }, + { + "start": 42081.06, + "end": 42083.48, + "probability": 0.7916 + }, + { + "start": 42084.84, + "end": 42087.76, + "probability": 0.7469 + }, + { + "start": 42088.12, + "end": 42088.68, + "probability": 0.7312 + }, + { + "start": 42089.38, + "end": 42090.58, + "probability": 0.9044 + }, + { + "start": 42096.66, + "end": 42097.36, + "probability": 0.5241 + }, + { + "start": 42097.74, + "end": 42098.9, + "probability": 0.336 + }, + { + "start": 42100.04, + "end": 42103.44, + "probability": 0.6722 + }, + { + "start": 42104.0, + "end": 42107.15, + "probability": 0.8383 + }, + { + "start": 42107.9, + "end": 42111.34, + "probability": 0.8381 + }, + { + "start": 42111.34, + "end": 42113.64, + "probability": 0.9691 + }, + { + "start": 42113.82, + "end": 42115.06, + "probability": 0.7931 + }, + { + "start": 42115.18, + "end": 42115.78, + "probability": 0.8694 + }, + { + "start": 42115.92, + "end": 42119.44, + "probability": 0.9691 + }, + { + "start": 42119.44, + "end": 42125.0, + "probability": 0.7319 + }, + { + "start": 42125.06, + "end": 42126.0, + "probability": 0.9395 + }, + { + "start": 42126.24, + "end": 42131.78, + "probability": 0.7831 + }, + { + "start": 42132.04, + "end": 42133.66, + "probability": 0.9708 + }, + { + "start": 42135.04, + "end": 42138.88, + "probability": 0.958 + }, + { + "start": 42139.42, + "end": 42143.16, + "probability": 0.5155 + }, + { + "start": 42144.62, + "end": 42147.04, + "probability": 0.6537 + }, + { + "start": 42147.54, + "end": 42148.26, + "probability": 0.7638 + }, + { + "start": 42149.96, + "end": 42153.2, + "probability": 0.7045 + }, + { + "start": 42153.92, + "end": 42160.08, + "probability": 0.7414 + }, + { + "start": 42160.3, + "end": 42163.8, + "probability": 0.5841 + }, + { + "start": 42165.86, + "end": 42165.86, + "probability": 0.4992 + }, + { + "start": 42165.86, + "end": 42168.6, + "probability": 0.7018 + }, + { + "start": 42168.92, + "end": 42169.7, + "probability": 0.8406 + }, + { + "start": 42169.88, + "end": 42171.0, + "probability": 0.7419 + }, + { + "start": 42172.78, + "end": 42176.94, + "probability": 0.6739 + }, + { + "start": 42177.02, + "end": 42179.96, + "probability": 0.9608 + }, + { + "start": 42180.38, + "end": 42182.48, + "probability": 0.7501 + }, + { + "start": 42183.58, + "end": 42184.62, + "probability": 0.9418 + }, + { + "start": 42185.34, + "end": 42186.04, + "probability": 0.8104 + }, + { + "start": 42186.16, + "end": 42189.88, + "probability": 0.823 + }, + { + "start": 42190.08, + "end": 42191.62, + "probability": 0.9495 + }, + { + "start": 42191.66, + "end": 42193.59, + "probability": 0.784 + }, + { + "start": 42194.26, + "end": 42195.04, + "probability": 0.8704 + }, + { + "start": 42195.74, + "end": 42198.12, + "probability": 0.7719 + }, + { + "start": 42199.06, + "end": 42201.9, + "probability": 0.7703 + }, + { + "start": 42202.44, + "end": 42205.86, + "probability": 0.7695 + }, + { + "start": 42206.28, + "end": 42209.76, + "probability": 0.6459 + }, + { + "start": 42210.22, + "end": 42211.74, + "probability": 0.8918 + }, + { + "start": 42212.44, + "end": 42213.32, + "probability": 0.8965 + }, + { + "start": 42213.48, + "end": 42214.31, + "probability": 0.9666 + }, + { + "start": 42214.36, + "end": 42215.36, + "probability": 0.733 + }, + { + "start": 42215.44, + "end": 42218.46, + "probability": 0.8956 + }, + { + "start": 42218.98, + "end": 42220.74, + "probability": 0.8477 + }, + { + "start": 42221.0, + "end": 42221.86, + "probability": 0.8038 + }, + { + "start": 42222.26, + "end": 42223.2, + "probability": 0.6556 + }, + { + "start": 42223.58, + "end": 42224.82, + "probability": 0.6934 + }, + { + "start": 42224.9, + "end": 42226.74, + "probability": 0.8976 + }, + { + "start": 42227.32, + "end": 42234.37, + "probability": 0.5633 + }, + { + "start": 42235.94, + "end": 42243.06, + "probability": 0.4657 + }, + { + "start": 42243.08, + "end": 42244.9, + "probability": 0.6489 + }, + { + "start": 42244.96, + "end": 42248.92, + "probability": 0.6323 + }, + { + "start": 42250.4, + "end": 42250.86, + "probability": 0.5203 + }, + { + "start": 42250.92, + "end": 42253.7, + "probability": 0.9445 + }, + { + "start": 42253.7, + "end": 42254.04, + "probability": 0.7002 + }, + { + "start": 42256.22, + "end": 42257.54, + "probability": 0.4597 + }, + { + "start": 42257.6, + "end": 42259.5, + "probability": 0.8938 + }, + { + "start": 42260.2, + "end": 42262.78, + "probability": 0.9839 + }, + { + "start": 42263.22, + "end": 42264.09, + "probability": 0.9011 + }, + { + "start": 42264.36, + "end": 42265.18, + "probability": 0.8876 + }, + { + "start": 42265.8, + "end": 42266.62, + "probability": 0.8292 + }, + { + "start": 42266.7, + "end": 42270.06, + "probability": 0.9472 + }, + { + "start": 42270.18, + "end": 42270.98, + "probability": 0.8353 + }, + { + "start": 42271.04, + "end": 42271.61, + "probability": 0.5642 + }, + { + "start": 42272.0, + "end": 42272.7, + "probability": 0.6469 + }, + { + "start": 42273.4, + "end": 42275.06, + "probability": 0.9076 + }, + { + "start": 42275.24, + "end": 42277.92, + "probability": 0.8259 + }, + { + "start": 42278.44, + "end": 42279.34, + "probability": 0.8459 + }, + { + "start": 42279.4, + "end": 42284.52, + "probability": 0.9321 + }, + { + "start": 42284.62, + "end": 42285.76, + "probability": 0.8942 + }, + { + "start": 42285.84, + "end": 42288.86, + "probability": 0.8912 + }, + { + "start": 42288.86, + "end": 42292.58, + "probability": 0.5229 + }, + { + "start": 42293.44, + "end": 42295.72, + "probability": 0.7769 + }, + { + "start": 42297.58, + "end": 42298.28, + "probability": 0.9974 + }, + { + "start": 42298.9, + "end": 42299.62, + "probability": 0.5144 + }, + { + "start": 42299.74, + "end": 42300.57, + "probability": 0.6664 + }, + { + "start": 42301.08, + "end": 42303.56, + "probability": 0.7779 + }, + { + "start": 42304.5, + "end": 42306.38, + "probability": 0.8221 + }, + { + "start": 42306.58, + "end": 42309.18, + "probability": 0.795 + }, + { + "start": 42309.4, + "end": 42310.48, + "probability": 0.9598 + }, + { + "start": 42310.58, + "end": 42312.8, + "probability": 0.6734 + }, + { + "start": 42314.5, + "end": 42315.21, + "probability": 0.9421 + }, + { + "start": 42316.0, + "end": 42316.16, + "probability": 0.4466 + }, + { + "start": 42316.44, + "end": 42317.26, + "probability": 0.5976 + }, + { + "start": 42317.66, + "end": 42319.32, + "probability": 0.5501 + }, + { + "start": 42319.4, + "end": 42320.68, + "probability": 0.3664 + }, + { + "start": 42320.72, + "end": 42321.28, + "probability": 0.5072 + }, + { + "start": 42321.28, + "end": 42321.78, + "probability": 0.8414 + }, + { + "start": 42321.86, + "end": 42323.4, + "probability": 0.6788 + }, + { + "start": 42323.4, + "end": 42325.16, + "probability": 0.5748 + }, + { + "start": 42325.28, + "end": 42326.74, + "probability": 0.9668 + }, + { + "start": 42327.96, + "end": 42329.74, + "probability": 0.8812 + }, + { + "start": 42329.78, + "end": 42330.52, + "probability": 0.6316 + }, + { + "start": 42330.7, + "end": 42331.74, + "probability": 0.7596 + }, + { + "start": 42331.78, + "end": 42332.5, + "probability": 0.4241 + }, + { + "start": 42332.52, + "end": 42332.9, + "probability": 0.8048 + }, + { + "start": 42332.92, + "end": 42333.88, + "probability": 0.734 + }, + { + "start": 42333.94, + "end": 42336.9, + "probability": 0.9113 + }, + { + "start": 42338.06, + "end": 42339.46, + "probability": 0.6961 + }, + { + "start": 42339.46, + "end": 42340.56, + "probability": 0.692 + }, + { + "start": 42341.32, + "end": 42345.42, + "probability": 0.9581 + }, + { + "start": 42345.58, + "end": 42347.86, + "probability": 0.7048 + }, + { + "start": 42347.96, + "end": 42352.34, + "probability": 0.9882 + }, + { + "start": 42353.34, + "end": 42356.4, + "probability": 0.9849 + }, + { + "start": 42358.2, + "end": 42361.08, + "probability": 0.5571 + }, + { + "start": 42361.2, + "end": 42361.84, + "probability": 0.5643 + }, + { + "start": 42362.28, + "end": 42364.44, + "probability": 0.932 + }, + { + "start": 42364.88, + "end": 42365.9, + "probability": 0.9863 + }, + { + "start": 42365.98, + "end": 42366.62, + "probability": 0.7237 + }, + { + "start": 42366.68, + "end": 42367.62, + "probability": 0.9233 + }, + { + "start": 42367.7, + "end": 42368.22, + "probability": 0.5338 + }, + { + "start": 42368.4, + "end": 42369.34, + "probability": 0.7081 + }, + { + "start": 42370.04, + "end": 42371.84, + "probability": 0.9922 + }, + { + "start": 42372.04, + "end": 42372.54, + "probability": 0.5948 + }, + { + "start": 42372.6, + "end": 42374.16, + "probability": 0.9353 + }, + { + "start": 42374.3, + "end": 42374.86, + "probability": 0.8005 + }, + { + "start": 42376.18, + "end": 42376.5, + "probability": 0.3674 + }, + { + "start": 42376.52, + "end": 42378.42, + "probability": 0.8939 + }, + { + "start": 42378.56, + "end": 42380.78, + "probability": 0.7472 + }, + { + "start": 42381.72, + "end": 42383.2, + "probability": 0.4923 + }, + { + "start": 42383.28, + "end": 42385.37, + "probability": 0.7793 + }, + { + "start": 42386.04, + "end": 42388.14, + "probability": 0.752 + }, + { + "start": 42390.02, + "end": 42391.06, + "probability": 0.5006 + }, + { + "start": 42391.38, + "end": 42399.28, + "probability": 0.8341 + }, + { + "start": 42399.38, + "end": 42401.28, + "probability": 0.9886 + }, + { + "start": 42401.32, + "end": 42402.5, + "probability": 0.7946 + }, + { + "start": 42402.6, + "end": 42404.74, + "probability": 0.8201 + }, + { + "start": 42404.94, + "end": 42406.38, + "probability": 0.7669 + }, + { + "start": 42406.58, + "end": 42408.84, + "probability": 0.7678 + }, + { + "start": 42408.92, + "end": 42410.68, + "probability": 0.9723 + }, + { + "start": 42410.9, + "end": 42411.94, + "probability": 0.9633 + }, + { + "start": 42412.24, + "end": 42413.2, + "probability": 0.6485 + }, + { + "start": 42413.58, + "end": 42415.74, + "probability": 0.8421 + }, + { + "start": 42415.78, + "end": 42416.18, + "probability": 0.7991 + }, + { + "start": 42416.66, + "end": 42418.08, + "probability": 0.9363 + }, + { + "start": 42418.42, + "end": 42419.98, + "probability": 0.9458 + }, + { + "start": 42420.14, + "end": 42423.16, + "probability": 0.9329 + }, + { + "start": 42423.48, + "end": 42427.26, + "probability": 0.8953 + }, + { + "start": 42427.64, + "end": 42427.82, + "probability": 0.0035 + }, + { + "start": 42427.88, + "end": 42430.62, + "probability": 0.9718 + }, + { + "start": 42431.49, + "end": 42433.31, + "probability": 0.7742 + }, + { + "start": 42433.38, + "end": 42434.84, + "probability": 0.8615 + }, + { + "start": 42435.42, + "end": 42436.16, + "probability": 0.6445 + }, + { + "start": 42436.2, + "end": 42437.62, + "probability": 0.9551 + }, + { + "start": 42437.8, + "end": 42439.14, + "probability": 0.9966 + }, + { + "start": 42439.22, + "end": 42441.58, + "probability": 0.957 + }, + { + "start": 42441.66, + "end": 42442.04, + "probability": 0.6899 + }, + { + "start": 42442.36, + "end": 42443.24, + "probability": 0.6182 + }, + { + "start": 42443.62, + "end": 42446.02, + "probability": 0.9451 + }, + { + "start": 42446.06, + "end": 42447.74, + "probability": 0.8729 + }, + { + "start": 42448.54, + "end": 42449.56, + "probability": 0.8123 + }, + { + "start": 42449.62, + "end": 42450.94, + "probability": 0.9187 + }, + { + "start": 42451.22, + "end": 42454.06, + "probability": 0.8329 + }, + { + "start": 42454.26, + "end": 42459.64, + "probability": 0.9497 + }, + { + "start": 42460.6, + "end": 42461.66, + "probability": 0.7693 + }, + { + "start": 42461.72, + "end": 42464.36, + "probability": 0.9227 + }, + { + "start": 42464.44, + "end": 42471.66, + "probability": 0.9816 + }, + { + "start": 42472.28, + "end": 42475.24, + "probability": 0.9585 + }, + { + "start": 42475.64, + "end": 42476.32, + "probability": 0.3519 + }, + { + "start": 42476.44, + "end": 42477.66, + "probability": 0.626 + }, + { + "start": 42477.76, + "end": 42478.7, + "probability": 0.8805 + }, + { + "start": 42478.88, + "end": 42479.28, + "probability": 0.8176 + }, + { + "start": 42479.4, + "end": 42480.18, + "probability": 0.9564 + }, + { + "start": 42480.24, + "end": 42483.26, + "probability": 0.9498 + }, + { + "start": 42483.58, + "end": 42485.08, + "probability": 0.8428 + }, + { + "start": 42485.12, + "end": 42490.76, + "probability": 0.9901 + }, + { + "start": 42492.04, + "end": 42495.42, + "probability": 0.9728 + }, + { + "start": 42495.42, + "end": 42499.4, + "probability": 0.9901 + }, + { + "start": 42500.04, + "end": 42504.04, + "probability": 0.5766 + }, + { + "start": 42504.2, + "end": 42506.32, + "probability": 0.8069 + }, + { + "start": 42506.4, + "end": 42508.06, + "probability": 0.9137 + }, + { + "start": 42508.66, + "end": 42510.96, + "probability": 0.7068 + }, + { + "start": 42511.0, + "end": 42513.42, + "probability": 0.9731 + }, + { + "start": 42514.18, + "end": 42516.38, + "probability": 0.9852 + }, + { + "start": 42516.38, + "end": 42518.98, + "probability": 0.9969 + }, + { + "start": 42519.4, + "end": 42521.0, + "probability": 0.8639 + }, + { + "start": 42521.14, + "end": 42524.54, + "probability": 0.9041 + }, + { + "start": 42525.16, + "end": 42527.1, + "probability": 0.8689 + }, + { + "start": 42527.1, + "end": 42529.8, + "probability": 0.9859 + }, + { + "start": 42529.92, + "end": 42531.7, + "probability": 0.751 + }, + { + "start": 42532.06, + "end": 42533.74, + "probability": 0.9544 + }, + { + "start": 42534.12, + "end": 42534.76, + "probability": 0.8197 + }, + { + "start": 42534.88, + "end": 42537.84, + "probability": 0.811 + }, + { + "start": 42539.82, + "end": 42545.42, + "probability": 0.9827 + }, + { + "start": 42545.42, + "end": 42550.98, + "probability": 0.9654 + }, + { + "start": 42551.58, + "end": 42555.32, + "probability": 0.7695 + }, + { + "start": 42556.28, + "end": 42556.38, + "probability": 0.6045 + }, + { + "start": 42558.47, + "end": 42563.52, + "probability": 0.9851 + }, + { + "start": 42563.78, + "end": 42566.5, + "probability": 0.8388 + }, + { + "start": 42566.84, + "end": 42567.74, + "probability": 0.9121 + }, + { + "start": 42567.82, + "end": 42570.6, + "probability": 0.9317 + }, + { + "start": 42571.1, + "end": 42572.24, + "probability": 0.5956 + }, + { + "start": 42572.44, + "end": 42573.34, + "probability": 0.8947 + }, + { + "start": 42573.46, + "end": 42575.94, + "probability": 0.5775 + }, + { + "start": 42576.9, + "end": 42578.54, + "probability": 0.9917 + }, + { + "start": 42578.54, + "end": 42581.4, + "probability": 0.6732 + }, + { + "start": 42581.52, + "end": 42584.3, + "probability": 0.9748 + }, + { + "start": 42584.3, + "end": 42587.04, + "probability": 0.9278 + }, + { + "start": 42588.22, + "end": 42588.42, + "probability": 0.2488 + }, + { + "start": 42588.54, + "end": 42591.88, + "probability": 0.9453 + }, + { + "start": 42591.88, + "end": 42596.52, + "probability": 0.9932 + }, + { + "start": 42597.06, + "end": 42597.34, + "probability": 0.3266 + }, + { + "start": 42597.36, + "end": 42599.46, + "probability": 0.9619 + }, + { + "start": 42599.58, + "end": 42599.88, + "probability": 0.5102 + }, + { + "start": 42599.96, + "end": 42600.64, + "probability": 0.6944 + }, + { + "start": 42601.76, + "end": 42602.12, + "probability": 0.7421 + }, + { + "start": 42602.18, + "end": 42602.94, + "probability": 0.6842 + }, + { + "start": 42603.02, + "end": 42604.58, + "probability": 0.8804 + }, + { + "start": 42604.9, + "end": 42609.78, + "probability": 0.8505 + }, + { + "start": 42610.22, + "end": 42612.62, + "probability": 0.9933 + }, + { + "start": 42612.72, + "end": 42614.02, + "probability": 0.9728 + }, + { + "start": 42615.16, + "end": 42615.68, + "probability": 0.6834 + }, + { + "start": 42616.56, + "end": 42618.66, + "probability": 0.2233 + }, + { + "start": 42618.66, + "end": 42621.87, + "probability": 0.9761 + }, + { + "start": 42622.46, + "end": 42623.86, + "probability": 0.8492 + }, + { + "start": 42623.96, + "end": 42627.72, + "probability": 0.7027 + }, + { + "start": 42627.9, + "end": 42628.58, + "probability": 0.8231 + }, + { + "start": 42628.74, + "end": 42629.64, + "probability": 0.5985 + }, + { + "start": 42630.48, + "end": 42634.56, + "probability": 0.9346 + }, + { + "start": 42634.56, + "end": 42638.4, + "probability": 0.9697 + }, + { + "start": 42638.98, + "end": 42640.16, + "probability": 0.6765 + }, + { + "start": 42640.36, + "end": 42641.14, + "probability": 0.8869 + }, + { + "start": 42641.42, + "end": 42643.86, + "probability": 0.9277 + }, + { + "start": 42644.84, + "end": 42647.95, + "probability": 0.7966 + }, + { + "start": 42648.1, + "end": 42654.24, + "probability": 0.9026 + }, + { + "start": 42654.24, + "end": 42658.3, + "probability": 0.9842 + }, + { + "start": 42658.4, + "end": 42660.22, + "probability": 0.9917 + }, + { + "start": 42660.36, + "end": 42664.94, + "probability": 0.8666 + }, + { + "start": 42664.98, + "end": 42670.14, + "probability": 0.9829 + }, + { + "start": 42670.26, + "end": 42671.46, + "probability": 0.1191 + }, + { + "start": 42672.28, + "end": 42673.9, + "probability": 0.1929 + }, + { + "start": 42675.06, + "end": 42678.58, + "probability": 0.9909 + }, + { + "start": 42678.82, + "end": 42680.48, + "probability": 0.6963 + }, + { + "start": 42681.28, + "end": 42684.92, + "probability": 0.666 + }, + { + "start": 42685.44, + "end": 42685.48, + "probability": 0.1463 + }, + { + "start": 42685.48, + "end": 42686.86, + "probability": 0.8941 + }, + { + "start": 42686.94, + "end": 42688.2, + "probability": 0.8223 + }, + { + "start": 42688.28, + "end": 42689.2, + "probability": 0.7528 + }, + { + "start": 42689.24, + "end": 42690.34, + "probability": 0.6789 + }, + { + "start": 42691.02, + "end": 42691.14, + "probability": 0.319 + }, + { + "start": 42691.24, + "end": 42694.32, + "probability": 0.9806 + }, + { + "start": 42694.44, + "end": 42695.98, + "probability": 0.9705 + }, + { + "start": 42696.1, + "end": 42698.74, + "probability": 0.9878 + }, + { + "start": 42700.72, + "end": 42702.43, + "probability": 0.9864 + }, + { + "start": 42702.84, + "end": 42704.22, + "probability": 0.631 + }, + { + "start": 42704.36, + "end": 42712.24, + "probability": 0.8105 + }, + { + "start": 42712.32, + "end": 42713.04, + "probability": 0.7709 + }, + { + "start": 42715.16, + "end": 42720.98, + "probability": 0.9524 + }, + { + "start": 42721.08, + "end": 42722.47, + "probability": 0.5578 + }, + { + "start": 42723.62, + "end": 42725.4, + "probability": 0.1895 + }, + { + "start": 42725.86, + "end": 42727.02, + "probability": 0.7954 + }, + { + "start": 42727.14, + "end": 42731.03, + "probability": 0.9804 + }, + { + "start": 42732.36, + "end": 42733.04, + "probability": 0.4387 + }, + { + "start": 42733.12, + "end": 42733.88, + "probability": 0.4806 + }, + { + "start": 42734.0, + "end": 42734.51, + "probability": 0.9595 + }, + { + "start": 42734.74, + "end": 42736.98, + "probability": 0.8939 + }, + { + "start": 42737.74, + "end": 42738.11, + "probability": 0.5131 + }, + { + "start": 42738.8, + "end": 42740.46, + "probability": 0.7167 + }, + { + "start": 42740.62, + "end": 42743.24, + "probability": 0.8021 + }, + { + "start": 42743.28, + "end": 42745.46, + "probability": 0.919 + }, + { + "start": 42745.56, + "end": 42747.76, + "probability": 0.9775 + }, + { + "start": 42747.98, + "end": 42749.58, + "probability": 0.6414 + }, + { + "start": 42750.22, + "end": 42752.86, + "probability": 0.9355 + }, + { + "start": 42753.18, + "end": 42754.76, + "probability": 0.7864 + }, + { + "start": 42755.24, + "end": 42757.36, + "probability": 0.9014 + }, + { + "start": 42757.44, + "end": 42761.22, + "probability": 0.912 + }, + { + "start": 42761.8, + "end": 42763.66, + "probability": 0.7123 + }, + { + "start": 42763.8, + "end": 42764.36, + "probability": 0.7217 + }, + { + "start": 42764.54, + "end": 42766.86, + "probability": 0.723 + }, + { + "start": 42766.96, + "end": 42768.72, + "probability": 0.9701 + }, + { + "start": 42769.08, + "end": 42774.5, + "probability": 0.8484 + }, + { + "start": 42774.92, + "end": 42777.28, + "probability": 0.5224 + }, + { + "start": 42777.3, + "end": 42778.08, + "probability": 0.6815 + }, + { + "start": 42779.37, + "end": 42782.58, + "probability": 0.8703 + }, + { + "start": 42782.68, + "end": 42786.96, + "probability": 0.8734 + }, + { + "start": 42787.2, + "end": 42788.08, + "probability": 0.662 + }, + { + "start": 42788.1, + "end": 42789.04, + "probability": 0.943 + }, + { + "start": 42790.66, + "end": 42793.9, + "probability": 0.8676 + }, + { + "start": 42793.9, + "end": 42796.38, + "probability": 0.934 + }, + { + "start": 42796.5, + "end": 42797.32, + "probability": 0.7847 + }, + { + "start": 42797.4, + "end": 42798.68, + "probability": 0.9473 + }, + { + "start": 42798.8, + "end": 42801.42, + "probability": 0.8807 + }, + { + "start": 42801.48, + "end": 42804.54, + "probability": 0.9163 + }, + { + "start": 42805.3, + "end": 42808.0, + "probability": 0.9471 + }, + { + "start": 42808.0, + "end": 42810.2, + "probability": 0.9117 + }, + { + "start": 42810.66, + "end": 42812.58, + "probability": 0.9668 + }, + { + "start": 42812.6, + "end": 42815.04, + "probability": 0.7375 + }, + { + "start": 42815.36, + "end": 42815.84, + "probability": 0.4084 + }, + { + "start": 42815.92, + "end": 42819.44, + "probability": 0.9563 + }, + { + "start": 42819.44, + "end": 42821.86, + "probability": 0.9813 + }, + { + "start": 42822.7, + "end": 42823.92, + "probability": 0.9807 + }, + { + "start": 42827.56, + "end": 42827.98, + "probability": 0.6691 + }, + { + "start": 42828.64, + "end": 42831.8, + "probability": 0.9303 + }, + { + "start": 42832.28, + "end": 42834.3, + "probability": 0.8877 + }, + { + "start": 42834.34, + "end": 42839.46, + "probability": 0.8178 + }, + { + "start": 42839.88, + "end": 42843.6, + "probability": 0.9755 + }, + { + "start": 42844.48, + "end": 42844.58, + "probability": 0.3495 + }, + { + "start": 42844.86, + "end": 42845.12, + "probability": 0.8565 + }, + { + "start": 42845.22, + "end": 42845.56, + "probability": 0.7701 + }, + { + "start": 42845.68, + "end": 42846.62, + "probability": 0.6081 + }, + { + "start": 42846.68, + "end": 42847.2, + "probability": 0.6409 + }, + { + "start": 42847.4, + "end": 42848.28, + "probability": 0.9181 + }, + { + "start": 42849.16, + "end": 42850.1, + "probability": 0.4397 + }, + { + "start": 42850.76, + "end": 42853.4, + "probability": 0.2976 + }, + { + "start": 42853.64, + "end": 42855.55, + "probability": 0.9945 + }, + { + "start": 42856.52, + "end": 42858.46, + "probability": 0.9262 + }, + { + "start": 42858.58, + "end": 42861.84, + "probability": 0.7772 + }, + { + "start": 42862.48, + "end": 42863.58, + "probability": 0.7047 + }, + { + "start": 42863.72, + "end": 42867.56, + "probability": 0.9242 + }, + { + "start": 42868.82, + "end": 42869.2, + "probability": 0.1397 + }, + { + "start": 42872.1, + "end": 42877.06, + "probability": 0.9292 + }, + { + "start": 42877.48, + "end": 42878.65, + "probability": 0.9993 + }, + { + "start": 42878.74, + "end": 42879.82, + "probability": 0.8817 + }, + { + "start": 42881.22, + "end": 42883.64, + "probability": 0.9839 + }, + { + "start": 42886.58, + "end": 42891.22, + "probability": 0.7319 + }, + { + "start": 42891.3, + "end": 42891.92, + "probability": 0.5719 + }, + { + "start": 42891.98, + "end": 42892.34, + "probability": 0.7008 + }, + { + "start": 42892.5, + "end": 42894.28, + "probability": 0.8602 + }, + { + "start": 42894.66, + "end": 42895.82, + "probability": 0.8892 + }, + { + "start": 42896.08, + "end": 42896.76, + "probability": 0.9557 + }, + { + "start": 42899.24, + "end": 42899.48, + "probability": 0.3788 + }, + { + "start": 42900.3, + "end": 42900.86, + "probability": 0.2824 + }, + { + "start": 42902.5, + "end": 42903.38, + "probability": 0.9521 + }, + { + "start": 42905.46, + "end": 42905.66, + "probability": 0.1315 + }, + { + "start": 42905.66, + "end": 42907.02, + "probability": 0.9362 + }, + { + "start": 42907.1, + "end": 42907.73, + "probability": 0.5767 + }, + { + "start": 42908.14, + "end": 42908.34, + "probability": 0.888 + }, + { + "start": 42908.76, + "end": 42910.44, + "probability": 0.7962 + }, + { + "start": 42911.0, + "end": 42911.58, + "probability": 0.8555 + }, + { + "start": 42911.64, + "end": 42913.96, + "probability": 0.0976 + }, + { + "start": 42915.04, + "end": 42915.98, + "probability": 0.9235 + }, + { + "start": 42916.56, + "end": 42921.38, + "probability": 0.0663 + }, + { + "start": 42921.38, + "end": 42921.38, + "probability": 0.0344 + }, + { + "start": 42921.38, + "end": 42923.33, + "probability": 0.569 + }, + { + "start": 42926.32, + "end": 42926.32, + "probability": 0.245 + }, + { + "start": 42926.32, + "end": 42927.56, + "probability": 0.5183 + }, + { + "start": 42928.04, + "end": 42929.82, + "probability": 0.6494 + }, + { + "start": 42930.82, + "end": 42932.0, + "probability": 0.2601 + }, + { + "start": 42932.06, + "end": 42932.06, + "probability": 0.0789 + }, + { + "start": 42932.06, + "end": 42932.06, + "probability": 0.3249 + }, + { + "start": 42932.06, + "end": 42933.58, + "probability": 0.2935 + }, + { + "start": 42934.66, + "end": 42935.6, + "probability": 0.5387 + }, + { + "start": 42937.74, + "end": 42939.56, + "probability": 0.7295 + }, + { + "start": 42940.16, + "end": 42941.96, + "probability": 0.7317 + }, + { + "start": 42942.36, + "end": 42946.4, + "probability": 0.865 + }, + { + "start": 42946.44, + "end": 42947.34, + "probability": 0.4867 + }, + { + "start": 42947.42, + "end": 42947.56, + "probability": 0.5213 + }, + { + "start": 42947.62, + "end": 42947.84, + "probability": 0.7096 + }, + { + "start": 42949.34, + "end": 42953.14, + "probability": 0.8605 + }, + { + "start": 42953.36, + "end": 42956.64, + "probability": 0.6794 + }, + { + "start": 42960.68, + "end": 42964.1, + "probability": 0.943 + }, + { + "start": 42964.16, + "end": 42966.24, + "probability": 0.6702 + }, + { + "start": 42966.84, + "end": 42967.82, + "probability": 0.4994 + }, + { + "start": 42967.96, + "end": 42971.28, + "probability": 0.9658 + }, + { + "start": 42971.38, + "end": 42973.06, + "probability": 0.888 + }, + { + "start": 42973.4, + "end": 42976.64, + "probability": 0.7812 + }, + { + "start": 42977.8, + "end": 42978.72, + "probability": 0.6464 + }, + { + "start": 42979.4, + "end": 42982.78, + "probability": 0.9799 + }, + { + "start": 42983.64, + "end": 42984.9, + "probability": 0.7315 + }, + { + "start": 42984.92, + "end": 42986.12, + "probability": 0.9291 + }, + { + "start": 42987.88, + "end": 42988.88, + "probability": 0.5197 + }, + { + "start": 42989.1, + "end": 42990.02, + "probability": 0.6066 + }, + { + "start": 42990.1, + "end": 42992.42, + "probability": 0.9951 + }, + { + "start": 42992.48, + "end": 42993.82, + "probability": 0.9322 + }, + { + "start": 42994.8, + "end": 42995.24, + "probability": 0.6099 + }, + { + "start": 43014.0, + "end": 43015.94, + "probability": 0.7515 + }, + { + "start": 43016.08, + "end": 43017.06, + "probability": 0.6822 + }, + { + "start": 43017.06, + "end": 43017.06, + "probability": 0.4468 + }, + { + "start": 43017.06, + "end": 43017.74, + "probability": 0.7972 + }, + { + "start": 43017.86, + "end": 43018.3, + "probability": 0.0613 + }, + { + "start": 43018.54, + "end": 43019.56, + "probability": 0.7108 + }, + { + "start": 43019.76, + "end": 43020.58, + "probability": 0.6724 + }, + { + "start": 43021.1, + "end": 43025.3, + "probability": 0.6663 + }, + { + "start": 43025.3, + "end": 43029.66, + "probability": 0.8562 + }, + { + "start": 43029.74, + "end": 43031.0, + "probability": 0.9408 + }, + { + "start": 43047.64, + "end": 43048.18, + "probability": 0.6442 + }, + { + "start": 43048.98, + "end": 43050.42, + "probability": 0.6186 + }, + { + "start": 43050.8, + "end": 43053.0, + "probability": 0.8426 + }, + { + "start": 43054.34, + "end": 43055.92, + "probability": 0.9146 + }, + { + "start": 43056.32, + "end": 43057.8, + "probability": 0.9844 + }, + { + "start": 43057.86, + "end": 43058.56, + "probability": 0.9761 + }, + { + "start": 43058.56, + "end": 43059.56, + "probability": 0.3584 + }, + { + "start": 43060.1, + "end": 43067.3, + "probability": 0.5435 + }, + { + "start": 43068.66, + "end": 43069.8, + "probability": 0.9556 + }, + { + "start": 43069.92, + "end": 43070.96, + "probability": 0.6095 + }, + { + "start": 43071.02, + "end": 43071.88, + "probability": 0.6104 + }, + { + "start": 43071.94, + "end": 43072.98, + "probability": 0.801 + }, + { + "start": 43080.74, + "end": 43081.42, + "probability": 0.6216 + }, + { + "start": 43081.58, + "end": 43083.76, + "probability": 0.8228 + }, + { + "start": 43083.76, + "end": 43085.12, + "probability": 0.9114 + }, + { + "start": 43085.73, + "end": 43087.06, + "probability": 0.8694 + }, + { + "start": 43087.08, + "end": 43089.38, + "probability": 0.7011 + }, + { + "start": 43089.4, + "end": 43091.34, + "probability": 0.6343 + }, + { + "start": 43095.78, + "end": 43098.22, + "probability": 0.3894 + }, + { + "start": 43098.66, + "end": 43099.66, + "probability": 0.6674 + }, + { + "start": 43099.74, + "end": 43100.8, + "probability": 0.5322 + }, + { + "start": 43100.92, + "end": 43101.79, + "probability": 0.8601 + }, + { + "start": 43102.04, + "end": 43102.73, + "probability": 0.8893 + }, + { + "start": 43103.77, + "end": 43109.9, + "probability": 0.8343 + }, + { + "start": 43110.48, + "end": 43111.16, + "probability": 0.9897 + }, + { + "start": 43111.42, + "end": 43112.4, + "probability": 0.8971 + }, + { + "start": 43112.5, + "end": 43113.46, + "probability": 0.7974 + }, + { + "start": 43113.6, + "end": 43114.05, + "probability": 0.073 + }, + { + "start": 43115.68, + "end": 43118.9, + "probability": 0.6806 + }, + { + "start": 43119.56, + "end": 43120.32, + "probability": 0.7581 + }, + { + "start": 43121.64, + "end": 43122.38, + "probability": 0.6448 + }, + { + "start": 43122.56, + "end": 43122.96, + "probability": 0.5283 + }, + { + "start": 43123.22, + "end": 43123.48, + "probability": 0.0904 + }, + { + "start": 43123.97, + "end": 43128.82, + "probability": 0.5631 + }, + { + "start": 43130.18, + "end": 43132.3, + "probability": 0.6836 + }, + { + "start": 43132.32, + "end": 43133.98, + "probability": 0.2839 + }, + { + "start": 43134.46, + "end": 43137.92, + "probability": 0.7328 + }, + { + "start": 43138.32, + "end": 43138.86, + "probability": 0.8499 + }, + { + "start": 43139.03, + "end": 43140.44, + "probability": 0.148 + }, + { + "start": 43141.62, + "end": 43143.32, + "probability": 0.0989 + }, + { + "start": 43143.7, + "end": 43144.24, + "probability": 0.7885 + }, + { + "start": 43144.34, + "end": 43150.12, + "probability": 0.7764 + }, + { + "start": 43150.38, + "end": 43153.74, + "probability": 0.7286 + }, + { + "start": 43153.86, + "end": 43156.64, + "probability": 0.9841 + }, + { + "start": 43156.64, + "end": 43159.18, + "probability": 0.9761 + }, + { + "start": 43159.32, + "end": 43162.24, + "probability": 0.772 + }, + { + "start": 43162.4, + "end": 43163.86, + "probability": 0.4491 + }, + { + "start": 43163.92, + "end": 43166.18, + "probability": 0.4645 + }, + { + "start": 43167.7, + "end": 43169.98, + "probability": 0.7366 + }, + { + "start": 43170.78, + "end": 43173.44, + "probability": 0.3714 + }, + { + "start": 43173.44, + "end": 43176.22, + "probability": 0.7977 + }, + { + "start": 43176.42, + "end": 43178.28, + "probability": 0.6761 + }, + { + "start": 43178.6, + "end": 43180.48, + "probability": 0.7898 + }, + { + "start": 43180.56, + "end": 43183.96, + "probability": 0.8127 + }, + { + "start": 43184.38, + "end": 43185.3, + "probability": 0.8264 + }, + { + "start": 43185.38, + "end": 43186.4, + "probability": 0.9191 + }, + { + "start": 43186.76, + "end": 43189.06, + "probability": 0.9661 + }, + { + "start": 43189.14, + "end": 43192.6, + "probability": 0.905 + }, + { + "start": 43192.92, + "end": 43193.96, + "probability": 0.6828 + }, + { + "start": 43194.04, + "end": 43197.16, + "probability": 0.9818 + }, + { + "start": 43197.52, + "end": 43199.24, + "probability": 0.9113 + }, + { + "start": 43199.34, + "end": 43203.02, + "probability": 0.8626 + }, + { + "start": 43203.46, + "end": 43203.88, + "probability": 0.4893 + }, + { + "start": 43203.88, + "end": 43204.98, + "probability": 0.8078 + }, + { + "start": 43205.06, + "end": 43208.76, + "probability": 0.8845 + }, + { + "start": 43208.94, + "end": 43211.34, + "probability": 0.3754 + }, + { + "start": 43211.42, + "end": 43211.72, + "probability": 0.5826 + }, + { + "start": 43211.74, + "end": 43213.02, + "probability": 0.8745 + }, + { + "start": 43213.1, + "end": 43214.22, + "probability": 0.7391 + }, + { + "start": 43214.32, + "end": 43216.06, + "probability": 0.7877 + }, + { + "start": 43217.06, + "end": 43220.24, + "probability": 0.938 + }, + { + "start": 43223.36, + "end": 43228.28, + "probability": 0.9276 + }, + { + "start": 43228.66, + "end": 43229.68, + "probability": 0.7118 + }, + { + "start": 43229.72, + "end": 43231.72, + "probability": 0.6082 + }, + { + "start": 43232.54, + "end": 43238.04, + "probability": 0.9463 + }, + { + "start": 43238.04, + "end": 43239.96, + "probability": 0.843 + }, + { + "start": 43240.9, + "end": 43243.4, + "probability": 0.8463 + }, + { + "start": 43243.76, + "end": 43245.24, + "probability": 0.6153 + }, + { + "start": 43245.34, + "end": 43248.21, + "probability": 0.7015 + }, + { + "start": 43249.26, + "end": 43251.02, + "probability": 0.5022 + }, + { + "start": 43251.2, + "end": 43254.8, + "probability": 0.2479 + }, + { + "start": 43254.8, + "end": 43255.66, + "probability": 0.2067 + }, + { + "start": 43255.82, + "end": 43258.39, + "probability": 0.5134 + }, + { + "start": 43259.86, + "end": 43261.5, + "probability": 0.3485 + }, + { + "start": 43261.52, + "end": 43265.2, + "probability": 0.7852 + }, + { + "start": 43265.94, + "end": 43266.96, + "probability": 0.832 + }, + { + "start": 43267.14, + "end": 43268.46, + "probability": 0.6922 + }, + { + "start": 43269.54, + "end": 43270.63, + "probability": 0.6737 + }, + { + "start": 43271.66, + "end": 43273.12, + "probability": 0.1997 + }, + { + "start": 43273.36, + "end": 43275.12, + "probability": 0.3682 + }, + { + "start": 43279.32, + "end": 43280.84, + "probability": 0.169 + }, + { + "start": 43280.9, + "end": 43281.05, + "probability": 0.1032 + }, + { + "start": 43281.76, + "end": 43282.7, + "probability": 0.6996 + }, + { + "start": 43283.0, + "end": 43284.28, + "probability": 0.8358 + }, + { + "start": 43286.76, + "end": 43288.88, + "probability": 0.341 + }, + { + "start": 43289.06, + "end": 43293.12, + "probability": 0.6667 + }, + { + "start": 43293.12, + "end": 43295.9, + "probability": 0.9494 + }, + { + "start": 43297.36, + "end": 43299.44, + "probability": 0.3915 + }, + { + "start": 43300.04, + "end": 43303.52, + "probability": 0.9878 + }, + { + "start": 43303.52, + "end": 43307.26, + "probability": 0.9984 + }, + { + "start": 43307.82, + "end": 43312.94, + "probability": 0.6578 + }, + { + "start": 43312.94, + "end": 43316.54, + "probability": 0.9143 + }, + { + "start": 43317.32, + "end": 43320.52, + "probability": 0.6466 + }, + { + "start": 43321.16, + "end": 43322.47, + "probability": 0.806 + }, + { + "start": 43323.04, + "end": 43325.6, + "probability": 0.6902 + }, + { + "start": 43325.96, + "end": 43329.0, + "probability": 0.9829 + }, + { + "start": 43329.24, + "end": 43329.9, + "probability": 0.2376 + }, + { + "start": 43332.92, + "end": 43333.32, + "probability": 0.2216 + }, + { + "start": 43335.47, + "end": 43338.94, + "probability": 0.9221 + }, + { + "start": 43338.94, + "end": 43342.82, + "probability": 0.8111 + }, + { + "start": 43343.34, + "end": 43345.14, + "probability": 0.7786 + }, + { + "start": 43345.8, + "end": 43345.8, + "probability": 0.0724 + }, + { + "start": 43345.8, + "end": 43349.28, + "probability": 0.887 + }, + { + "start": 43349.42, + "end": 43350.48, + "probability": 0.7158 + }, + { + "start": 43351.12, + "end": 43353.18, + "probability": 0.7555 + }, + { + "start": 43353.2, + "end": 43356.38, + "probability": 0.93 + }, + { + "start": 43356.94, + "end": 43360.13, + "probability": 0.8392 + }, + { + "start": 43366.04, + "end": 43368.3, + "probability": 0.8156 + }, + { + "start": 43368.52, + "end": 43369.76, + "probability": 0.9945 + }, + { + "start": 43372.15, + "end": 43378.66, + "probability": 0.974 + }, + { + "start": 43379.5, + "end": 43382.66, + "probability": 0.7296 + }, + { + "start": 43383.08, + "end": 43385.72, + "probability": 0.7538 + }, + { + "start": 43386.94, + "end": 43390.14, + "probability": 0.988 + }, + { + "start": 43390.5, + "end": 43394.46, + "probability": 0.9961 + }, + { + "start": 43394.52, + "end": 43395.58, + "probability": 0.9455 + }, + { + "start": 43396.56, + "end": 43398.4, + "probability": 0.7827 + }, + { + "start": 43398.94, + "end": 43399.1, + "probability": 0.1588 + }, + { + "start": 43399.1, + "end": 43403.36, + "probability": 0.9067 + }, + { + "start": 43403.64, + "end": 43405.06, + "probability": 0.8852 + }, + { + "start": 43405.18, + "end": 43409.88, + "probability": 0.8795 + }, + { + "start": 43410.8, + "end": 43413.36, + "probability": 0.927 + }, + { + "start": 43415.32, + "end": 43415.7, + "probability": 0.6009 + }, + { + "start": 43416.33, + "end": 43420.34, + "probability": 0.7225 + }, + { + "start": 43420.52, + "end": 43421.6, + "probability": 0.9846 + }, + { + "start": 43422.32, + "end": 43422.62, + "probability": 0.031 + }, + { + "start": 43422.96, + "end": 43426.15, + "probability": 0.2551 + }, + { + "start": 43426.82, + "end": 43427.56, + "probability": 0.5348 + }, + { + "start": 43428.36, + "end": 43432.52, + "probability": 0.7485 + }, + { + "start": 43432.66, + "end": 43433.66, + "probability": 0.514 + }, + { + "start": 43433.78, + "end": 43435.74, + "probability": 0.4673 + }, + { + "start": 43436.6, + "end": 43437.25, + "probability": 0.0109 + }, + { + "start": 43437.46, + "end": 43441.0, + "probability": 0.5099 + }, + { + "start": 43441.26, + "end": 43442.36, + "probability": 0.902 + }, + { + "start": 43442.5, + "end": 43443.68, + "probability": 0.7066 + }, + { + "start": 43443.82, + "end": 43445.62, + "probability": 0.6528 + }, + { + "start": 43446.22, + "end": 43448.08, + "probability": 0.6496 + }, + { + "start": 43448.24, + "end": 43448.24, + "probability": 0.1877 + }, + { + "start": 43448.5, + "end": 43454.0, + "probability": 0.9688 + }, + { + "start": 43455.12, + "end": 43460.54, + "probability": 0.5478 + }, + { + "start": 43460.76, + "end": 43462.52, + "probability": 0.1496 + }, + { + "start": 43463.7, + "end": 43467.66, + "probability": 0.8601 + }, + { + "start": 43469.38, + "end": 43471.08, + "probability": 0.4586 + }, + { + "start": 43471.68, + "end": 43473.3, + "probability": 0.9067 + }, + { + "start": 43480.3, + "end": 43483.28, + "probability": 0.7456 + }, + { + "start": 43484.18, + "end": 43485.58, + "probability": 0.8499 + }, + { + "start": 43485.88, + "end": 43490.46, + "probability": 0.9709 + }, + { + "start": 43492.72, + "end": 43496.54, + "probability": 0.993 + }, + { + "start": 43497.04, + "end": 43502.76, + "probability": 0.8229 + }, + { + "start": 43502.8, + "end": 43507.68, + "probability": 0.8723 + }, + { + "start": 43507.68, + "end": 43512.6, + "probability": 0.9943 + }, + { + "start": 43513.02, + "end": 43516.25, + "probability": 0.8405 + }, + { + "start": 43516.8, + "end": 43519.84, + "probability": 0.9874 + }, + { + "start": 43520.38, + "end": 43522.02, + "probability": 0.9705 + }, + { + "start": 43523.84, + "end": 43526.56, + "probability": 0.988 + }, + { + "start": 43527.46, + "end": 43527.88, + "probability": 0.8347 + }, + { + "start": 43527.98, + "end": 43533.66, + "probability": 0.9248 + }, + { + "start": 43534.0, + "end": 43535.53, + "probability": 0.9971 + }, + { + "start": 43536.06, + "end": 43539.68, + "probability": 0.9311 + }, + { + "start": 43540.06, + "end": 43544.4, + "probability": 0.9615 + }, + { + "start": 43544.4, + "end": 43549.1, + "probability": 0.9745 + }, + { + "start": 43550.58, + "end": 43550.78, + "probability": 0.4759 + }, + { + "start": 43551.92, + "end": 43554.48, + "probability": 0.4475 + }, + { + "start": 43554.54, + "end": 43561.14, + "probability": 0.9867 + }, + { + "start": 43561.14, + "end": 43565.72, + "probability": 0.9943 + }, + { + "start": 43567.92, + "end": 43575.58, + "probability": 0.9727 + }, + { + "start": 43577.34, + "end": 43581.86, + "probability": 0.9898 + }, + { + "start": 43581.86, + "end": 43584.66, + "probability": 0.8039 + }, + { + "start": 43586.42, + "end": 43590.96, + "probability": 0.9731 + }, + { + "start": 43591.33, + "end": 43595.26, + "probability": 0.8694 + }, + { + "start": 43597.26, + "end": 43603.16, + "probability": 0.9531 + }, + { + "start": 43603.64, + "end": 43607.3, + "probability": 0.893 + }, + { + "start": 43607.6, + "end": 43609.64, + "probability": 0.891 + }, + { + "start": 43609.98, + "end": 43611.18, + "probability": 0.6632 + }, + { + "start": 43612.32, + "end": 43615.76, + "probability": 0.9547 + }, + { + "start": 43617.04, + "end": 43624.06, + "probability": 0.9107 + }, + { + "start": 43624.06, + "end": 43629.8, + "probability": 0.9821 + }, + { + "start": 43630.24, + "end": 43633.64, + "probability": 0.8462 + }, + { + "start": 43638.4, + "end": 43639.88, + "probability": 0.9941 + }, + { + "start": 43641.86, + "end": 43645.48, + "probability": 0.9783 + }, + { + "start": 43646.92, + "end": 43651.06, + "probability": 0.8803 + }, + { + "start": 43651.84, + "end": 43654.93, + "probability": 0.9448 + }, + { + "start": 43655.64, + "end": 43656.16, + "probability": 0.5443 + }, + { + "start": 43656.32, + "end": 43657.52, + "probability": 0.4325 + }, + { + "start": 43658.2, + "end": 43660.16, + "probability": 0.9457 + }, + { + "start": 43660.4, + "end": 43661.92, + "probability": 0.7649 + }, + { + "start": 43661.98, + "end": 43662.66, + "probability": 0.4102 + }, + { + "start": 43664.06, + "end": 43667.1, + "probability": 0.9166 + }, + { + "start": 43667.62, + "end": 43669.37, + "probability": 0.7776 + }, + { + "start": 43670.52, + "end": 43673.7, + "probability": 0.9636 + }, + { + "start": 43674.22, + "end": 43677.68, + "probability": 0.6434 + }, + { + "start": 43679.7, + "end": 43680.86, + "probability": 0.6762 + }, + { + "start": 43681.84, + "end": 43686.42, + "probability": 0.9663 + }, + { + "start": 43686.8, + "end": 43689.72, + "probability": 0.8089 + }, + { + "start": 43689.88, + "end": 43691.44, + "probability": 0.9739 + }, + { + "start": 43692.56, + "end": 43694.65, + "probability": 0.9922 + }, + { + "start": 43695.4, + "end": 43698.28, + "probability": 0.9665 + }, + { + "start": 43698.48, + "end": 43701.82, + "probability": 0.971 + }, + { + "start": 43702.34, + "end": 43703.9, + "probability": 0.9759 + }, + { + "start": 43704.28, + "end": 43707.64, + "probability": 0.6212 + }, + { + "start": 43708.24, + "end": 43712.96, + "probability": 0.8723 + }, + { + "start": 43713.12, + "end": 43714.54, + "probability": 0.6876 + }, + { + "start": 43714.92, + "end": 43718.42, + "probability": 0.8456 + }, + { + "start": 43719.08, + "end": 43719.28, + "probability": 0.9344 + }, + { + "start": 43719.88, + "end": 43722.2, + "probability": 0.8081 + }, + { + "start": 43722.8, + "end": 43725.34, + "probability": 0.9635 + }, + { + "start": 43725.7, + "end": 43726.3, + "probability": 0.6458 + }, + { + "start": 43726.4, + "end": 43729.8, + "probability": 0.9668 + }, + { + "start": 43730.78, + "end": 43734.18, + "probability": 0.7126 + }, + { + "start": 43734.82, + "end": 43735.74, + "probability": 0.7261 + }, + { + "start": 43736.26, + "end": 43737.92, + "probability": 0.7892 + }, + { + "start": 43738.18, + "end": 43739.32, + "probability": 0.701 + }, + { + "start": 43741.34, + "end": 43744.64, + "probability": 0.9698 + }, + { + "start": 43744.74, + "end": 43745.2, + "probability": 0.8632 + }, + { + "start": 43747.92, + "end": 43747.92, + "probability": 0.5177 + }, + { + "start": 43749.04, + "end": 43758.98, + "probability": 0.9738 + }, + { + "start": 43760.42, + "end": 43764.56, + "probability": 0.9043 + }, + { + "start": 43765.68, + "end": 43768.68, + "probability": 0.8414 + }, + { + "start": 43768.98, + "end": 43770.32, + "probability": 0.9517 + }, + { + "start": 43770.64, + "end": 43773.82, + "probability": 0.9931 + }, + { + "start": 43774.1, + "end": 43775.9, + "probability": 0.6204 + }, + { + "start": 43776.54, + "end": 43782.78, + "probability": 0.8699 + }, + { + "start": 43783.1, + "end": 43784.56, + "probability": 0.8066 + }, + { + "start": 43784.82, + "end": 43785.94, + "probability": 0.6674 + }, + { + "start": 43786.14, + "end": 43789.38, + "probability": 0.9863 + }, + { + "start": 43789.6, + "end": 43792.78, + "probability": 0.9924 + }, + { + "start": 43792.92, + "end": 43796.06, + "probability": 0.8354 + }, + { + "start": 43797.82, + "end": 43798.72, + "probability": 0.8614 + }, + { + "start": 43798.84, + "end": 43799.5, + "probability": 0.7386 + }, + { + "start": 43799.68, + "end": 43800.76, + "probability": 0.8887 + }, + { + "start": 43800.94, + "end": 43804.48, + "probability": 0.9963 + }, + { + "start": 43805.4, + "end": 43808.24, + "probability": 0.8389 + }, + { + "start": 43808.88, + "end": 43811.5, + "probability": 0.9786 + }, + { + "start": 43811.62, + "end": 43813.38, + "probability": 0.9867 + }, + { + "start": 43813.4, + "end": 43815.88, + "probability": 0.9741 + }, + { + "start": 43816.06, + "end": 43819.24, + "probability": 0.974 + }, + { + "start": 43819.66, + "end": 43820.94, + "probability": 0.6787 + }, + { + "start": 43821.42, + "end": 43822.97, + "probability": 0.9976 + }, + { + "start": 43823.38, + "end": 43827.32, + "probability": 0.8986 + }, + { + "start": 43827.48, + "end": 43830.16, + "probability": 0.9858 + }, + { + "start": 43830.88, + "end": 43835.14, + "probability": 0.9912 + }, + { + "start": 43835.26, + "end": 43836.88, + "probability": 0.6612 + }, + { + "start": 43837.84, + "end": 43840.68, + "probability": 0.8408 + }, + { + "start": 43840.96, + "end": 43842.6, + "probability": 0.9134 + }, + { + "start": 43843.28, + "end": 43846.18, + "probability": 0.9398 + }, + { + "start": 43846.32, + "end": 43847.84, + "probability": 0.9944 + }, + { + "start": 43849.22, + "end": 43852.28, + "probability": 0.9993 + }, + { + "start": 43852.28, + "end": 43856.26, + "probability": 0.9954 + }, + { + "start": 43856.48, + "end": 43857.6, + "probability": 0.9785 + }, + { + "start": 43858.72, + "end": 43862.7, + "probability": 0.9958 + }, + { + "start": 43864.72, + "end": 43867.12, + "probability": 0.9712 + }, + { + "start": 43868.36, + "end": 43873.08, + "probability": 0.7986 + }, + { + "start": 43873.6, + "end": 43878.2, + "probability": 0.9725 + }, + { + "start": 43879.02, + "end": 43881.74, + "probability": 0.9766 + }, + { + "start": 43883.02, + "end": 43886.28, + "probability": 0.9109 + }, + { + "start": 43887.2, + "end": 43890.22, + "probability": 0.9366 + }, + { + "start": 43890.34, + "end": 43892.22, + "probability": 0.7834 + }, + { + "start": 43894.22, + "end": 43896.1, + "probability": 0.9716 + }, + { + "start": 43897.06, + "end": 43902.24, + "probability": 0.9902 + }, + { + "start": 43902.28, + "end": 43904.42, + "probability": 0.6821 + }, + { + "start": 43905.44, + "end": 43910.02, + "probability": 0.9143 + }, + { + "start": 43910.14, + "end": 43910.84, + "probability": 0.7189 + }, + { + "start": 43910.9, + "end": 43912.24, + "probability": 0.9862 + }, + { + "start": 43914.1, + "end": 43916.88, + "probability": 0.9408 + }, + { + "start": 43918.22, + "end": 43922.1, + "probability": 0.9961 + }, + { + "start": 43922.1, + "end": 43928.68, + "probability": 0.9734 + }, + { + "start": 43929.34, + "end": 43930.56, + "probability": 0.814 + }, + { + "start": 43930.9, + "end": 43932.08, + "probability": 0.7457 + }, + { + "start": 43932.36, + "end": 43934.62, + "probability": 0.957 + }, + { + "start": 43936.04, + "end": 43938.36, + "probability": 0.9775 + }, + { + "start": 43938.7, + "end": 43939.82, + "probability": 0.7985 + }, + { + "start": 43939.84, + "end": 43940.48, + "probability": 0.8964 + }, + { + "start": 43940.58, + "end": 43941.26, + "probability": 0.9336 + }, + { + "start": 43942.78, + "end": 43946.8, + "probability": 0.9707 + }, + { + "start": 43947.22, + "end": 43949.52, + "probability": 0.992 + }, + { + "start": 43949.52, + "end": 43952.58, + "probability": 0.9979 + }, + { + "start": 43953.04, + "end": 43955.52, + "probability": 0.9382 + }, + { + "start": 43955.84, + "end": 43959.22, + "probability": 0.9531 + }, + { + "start": 43961.44, + "end": 43963.92, + "probability": 0.9938 + }, + { + "start": 43963.92, + "end": 43966.46, + "probability": 0.7988 + }, + { + "start": 43966.56, + "end": 43967.74, + "probability": 0.6943 + }, + { + "start": 43968.9, + "end": 43971.42, + "probability": 0.9482 + }, + { + "start": 43971.64, + "end": 43973.16, + "probability": 0.9751 + }, + { + "start": 43973.28, + "end": 43974.16, + "probability": 0.804 + }, + { + "start": 43974.24, + "end": 43975.22, + "probability": 0.6016 + }, + { + "start": 43975.56, + "end": 43977.4, + "probability": 0.9941 + }, + { + "start": 43978.0, + "end": 43980.05, + "probability": 0.9867 + }, + { + "start": 43981.24, + "end": 43983.1, + "probability": 0.9977 + }, + { + "start": 43983.1, + "end": 43985.54, + "probability": 0.9839 + }, + { + "start": 43985.9, + "end": 43993.0, + "probability": 0.8702 + }, + { + "start": 43993.32, + "end": 43994.32, + "probability": 0.9757 + }, + { + "start": 43995.3, + "end": 44000.96, + "probability": 0.9886 + }, + { + "start": 44001.42, + "end": 44002.44, + "probability": 0.8435 + }, + { + "start": 44002.92, + "end": 44006.54, + "probability": 0.9951 + }, + { + "start": 44007.82, + "end": 44011.42, + "probability": 0.9861 + }, + { + "start": 44011.42, + "end": 44014.52, + "probability": 0.999 + }, + { + "start": 44015.62, + "end": 44020.2, + "probability": 0.9858 + }, + { + "start": 44020.76, + "end": 44022.78, + "probability": 0.6466 + }, + { + "start": 44022.92, + "end": 44024.76, + "probability": 0.9061 + }, + { + "start": 44024.92, + "end": 44025.94, + "probability": 0.8836 + }, + { + "start": 44026.0, + "end": 44029.2, + "probability": 0.9917 + }, + { + "start": 44029.2, + "end": 44032.62, + "probability": 0.983 + }, + { + "start": 44033.16, + "end": 44034.72, + "probability": 0.9986 + }, + { + "start": 44034.82, + "end": 44036.32, + "probability": 0.9989 + }, + { + "start": 44037.62, + "end": 44042.22, + "probability": 0.9819 + }, + { + "start": 44042.48, + "end": 44043.46, + "probability": 0.7988 + }, + { + "start": 44043.84, + "end": 44046.6, + "probability": 0.8316 + }, + { + "start": 44046.92, + "end": 44047.42, + "probability": 0.815 + }, + { + "start": 44048.58, + "end": 44052.74, + "probability": 0.8757 + }, + { + "start": 44053.6, + "end": 44054.68, + "probability": 0.5388 + }, + { + "start": 44063.62, + "end": 44063.62, + "probability": 0.4286 + }, + { + "start": 44063.62, + "end": 44063.62, + "probability": 0.1638 + }, + { + "start": 44063.62, + "end": 44063.62, + "probability": 0.1053 + }, + { + "start": 44063.62, + "end": 44063.62, + "probability": 0.1456 + }, + { + "start": 44063.62, + "end": 44063.62, + "probability": 0.0284 + }, + { + "start": 44063.62, + "end": 44063.78, + "probability": 0.154 + }, + { + "start": 44090.48, + "end": 44091.4, + "probability": 0.6383 + }, + { + "start": 44092.84, + "end": 44095.54, + "probability": 0.9705 + }, + { + "start": 44097.6, + "end": 44100.64, + "probability": 0.9917 + }, + { + "start": 44101.34, + "end": 44104.07, + "probability": 0.9119 + }, + { + "start": 44105.26, + "end": 44106.56, + "probability": 0.8743 + }, + { + "start": 44106.58, + "end": 44108.54, + "probability": 0.9966 + }, + { + "start": 44109.56, + "end": 44110.98, + "probability": 0.9814 + }, + { + "start": 44112.26, + "end": 44116.36, + "probability": 0.9963 + }, + { + "start": 44117.6, + "end": 44119.82, + "probability": 0.6382 + }, + { + "start": 44120.82, + "end": 44123.56, + "probability": 0.6985 + }, + { + "start": 44124.5, + "end": 44126.12, + "probability": 0.9634 + }, + { + "start": 44126.96, + "end": 44127.92, + "probability": 0.9563 + }, + { + "start": 44128.04, + "end": 44132.26, + "probability": 0.9226 + }, + { + "start": 44132.6, + "end": 44136.23, + "probability": 0.8791 + }, + { + "start": 44138.62, + "end": 44141.74, + "probability": 0.9922 + }, + { + "start": 44142.88, + "end": 44144.52, + "probability": 0.8986 + }, + { + "start": 44145.28, + "end": 44146.52, + "probability": 0.9941 + }, + { + "start": 44148.32, + "end": 44149.34, + "probability": 0.9795 + }, + { + "start": 44150.36, + "end": 44153.16, + "probability": 0.9773 + }, + { + "start": 44153.5, + "end": 44155.64, + "probability": 0.9965 + }, + { + "start": 44155.66, + "end": 44156.66, + "probability": 0.3018 + }, + { + "start": 44157.0, + "end": 44158.0, + "probability": 0.1086 + }, + { + "start": 44158.72, + "end": 44159.18, + "probability": 0.5874 + }, + { + "start": 44159.74, + "end": 44161.95, + "probability": 0.9985 + }, + { + "start": 44162.88, + "end": 44165.68, + "probability": 0.996 + }, + { + "start": 44166.0, + "end": 44167.34, + "probability": 0.4687 + }, + { + "start": 44167.44, + "end": 44169.22, + "probability": 0.9803 + }, + { + "start": 44169.5, + "end": 44173.48, + "probability": 0.8863 + }, + { + "start": 44173.8, + "end": 44176.58, + "probability": 0.9932 + }, + { + "start": 44176.7, + "end": 44177.76, + "probability": 0.9077 + }, + { + "start": 44177.86, + "end": 44178.26, + "probability": 0.8312 + }, + { + "start": 44180.62, + "end": 44181.88, + "probability": 0.5269 + }, + { + "start": 44182.74, + "end": 44183.46, + "probability": 0.266 + }, + { + "start": 44184.1, + "end": 44184.72, + "probability": 0.4791 + }, + { + "start": 44185.78, + "end": 44189.16, + "probability": 0.298 + }, + { + "start": 44189.34, + "end": 44190.48, + "probability": 0.6558 + }, + { + "start": 44190.6, + "end": 44191.34, + "probability": 0.3646 + }, + { + "start": 44191.62, + "end": 44193.72, + "probability": 0.4116 + }, + { + "start": 44193.78, + "end": 44196.85, + "probability": 0.5518 + }, + { + "start": 44197.52, + "end": 44199.35, + "probability": 0.6251 + }, + { + "start": 44199.64, + "end": 44201.88, + "probability": 0.3905 + }, + { + "start": 44203.02, + "end": 44206.39, + "probability": 0.8663 + }, + { + "start": 44207.54, + "end": 44207.8, + "probability": 0.5429 + }, + { + "start": 44207.92, + "end": 44209.4, + "probability": 0.73 + }, + { + "start": 44209.48, + "end": 44212.06, + "probability": 0.9255 + }, + { + "start": 44212.12, + "end": 44213.88, + "probability": 0.9377 + }, + { + "start": 44214.8, + "end": 44216.08, + "probability": 0.6587 + }, + { + "start": 44216.7, + "end": 44218.64, + "probability": 0.7941 + }, + { + "start": 44219.1, + "end": 44224.72, + "probability": 0.9717 + }, + { + "start": 44225.74, + "end": 44232.64, + "probability": 0.8855 + }, + { + "start": 44232.64, + "end": 44235.68, + "probability": 0.6563 + }, + { + "start": 44235.68, + "end": 44240.98, + "probability": 0.7593 + }, + { + "start": 44241.12, + "end": 44243.08, + "probability": 0.8826 + }, + { + "start": 44243.2, + "end": 44247.22, + "probability": 0.0819 + }, + { + "start": 44252.58, + "end": 44255.18, + "probability": 0.0908 + }, + { + "start": 44259.16, + "end": 44260.16, + "probability": 0.2557 + }, + { + "start": 44260.68, + "end": 44261.06, + "probability": 0.5326 + }, + { + "start": 44261.14, + "end": 44261.84, + "probability": 0.1513 + }, + { + "start": 44261.98, + "end": 44264.78, + "probability": 0.8161 + }, + { + "start": 44265.22, + "end": 44266.98, + "probability": 0.9514 + }, + { + "start": 44267.1, + "end": 44268.06, + "probability": 0.7242 + }, + { + "start": 44269.06, + "end": 44269.18, + "probability": 0.0013 + } + ], + "segments_count": 14726, + "words_count": 74429, + "avg_words_per_segment": 5.0543, + "avg_segment_duration": 2.2963, + "avg_words_per_minute": 100.8278, + "plenum_id": "11997", + "duration": 44290.76, + "title": null, + "plenum_date": "2011-02-02" +} \ No newline at end of file