diff --git "a/15788/metadata.json" "b/15788/metadata.json" new file mode 100644--- /dev/null +++ "b/15788/metadata.json" @@ -0,0 +1,20412 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "15788", + "quality_score": 0.8784, + "per_segment_quality_scores": [ + { + "start": 59.78, + "end": 61.48, + "probability": 0.7957 + }, + { + "start": 61.72, + "end": 63.06, + "probability": 0.9709 + }, + { + "start": 63.24, + "end": 66.58, + "probability": 0.7448 + }, + { + "start": 66.6, + "end": 68.32, + "probability": 0.9457 + }, + { + "start": 69.06, + "end": 70.46, + "probability": 0.8735 + }, + { + "start": 71.38, + "end": 75.58, + "probability": 0.6763 + }, + { + "start": 76.18, + "end": 77.96, + "probability": 0.8517 + }, + { + "start": 78.9, + "end": 81.94, + "probability": 0.9937 + }, + { + "start": 82.62, + "end": 84.98, + "probability": 0.7133 + }, + { + "start": 86.06, + "end": 88.6, + "probability": 0.9456 + }, + { + "start": 89.06, + "end": 92.96, + "probability": 0.7622 + }, + { + "start": 93.32, + "end": 95.35, + "probability": 0.8713 + }, + { + "start": 96.08, + "end": 101.02, + "probability": 0.8841 + }, + { + "start": 101.46, + "end": 106.0, + "probability": 0.9844 + }, + { + "start": 106.0, + "end": 109.26, + "probability": 0.9922 + }, + { + "start": 110.14, + "end": 115.34, + "probability": 0.957 + }, + { + "start": 115.34, + "end": 122.14, + "probability": 0.9978 + }, + { + "start": 122.66, + "end": 124.04, + "probability": 0.7094 + }, + { + "start": 124.34, + "end": 128.13, + "probability": 0.928 + }, + { + "start": 128.26, + "end": 135.46, + "probability": 0.9058 + }, + { + "start": 136.82, + "end": 140.2, + "probability": 0.9785 + }, + { + "start": 141.14, + "end": 142.7, + "probability": 0.8574 + }, + { + "start": 143.5, + "end": 144.86, + "probability": 0.8369 + }, + { + "start": 145.02, + "end": 148.66, + "probability": 0.8049 + }, + { + "start": 148.96, + "end": 149.72, + "probability": 0.8331 + }, + { + "start": 150.42, + "end": 156.82, + "probability": 0.9824 + }, + { + "start": 157.42, + "end": 163.38, + "probability": 0.9041 + }, + { + "start": 164.34, + "end": 176.46, + "probability": 0.9699 + }, + { + "start": 179.88, + "end": 182.14, + "probability": 0.8316 + }, + { + "start": 182.3, + "end": 186.98, + "probability": 0.959 + }, + { + "start": 186.98, + "end": 190.0, + "probability": 0.9723 + }, + { + "start": 191.0, + "end": 197.0, + "probability": 0.8512 + }, + { + "start": 197.1, + "end": 197.98, + "probability": 0.5645 + }, + { + "start": 198.26, + "end": 198.84, + "probability": 0.8231 + }, + { + "start": 199.38, + "end": 200.64, + "probability": 0.758 + }, + { + "start": 200.72, + "end": 202.14, + "probability": 0.8394 + }, + { + "start": 202.56, + "end": 207.48, + "probability": 0.9871 + }, + { + "start": 208.12, + "end": 210.14, + "probability": 0.9372 + }, + { + "start": 214.88, + "end": 215.3, + "probability": 0.2674 + }, + { + "start": 216.28, + "end": 218.02, + "probability": 0.7369 + }, + { + "start": 218.7, + "end": 219.78, + "probability": 0.9002 + }, + { + "start": 220.26, + "end": 224.98, + "probability": 0.864 + }, + { + "start": 225.56, + "end": 226.66, + "probability": 0.1681 + }, + { + "start": 226.78, + "end": 235.06, + "probability": 0.7448 + }, + { + "start": 235.56, + "end": 238.9, + "probability": 0.9937 + }, + { + "start": 239.58, + "end": 241.22, + "probability": 0.861 + }, + { + "start": 241.48, + "end": 242.2, + "probability": 0.7249 + }, + { + "start": 242.68, + "end": 243.3, + "probability": 0.6875 + }, + { + "start": 244.14, + "end": 245.44, + "probability": 0.9149 + }, + { + "start": 245.88, + "end": 250.74, + "probability": 0.9977 + }, + { + "start": 251.34, + "end": 254.92, + "probability": 0.0624 + }, + { + "start": 255.12, + "end": 256.02, + "probability": 0.4932 + }, + { + "start": 256.84, + "end": 258.48, + "probability": 0.6318 + }, + { + "start": 258.48, + "end": 259.52, + "probability": 0.8797 + }, + { + "start": 259.94, + "end": 262.15, + "probability": 0.7056 + }, + { + "start": 263.12, + "end": 264.18, + "probability": 0.467 + }, + { + "start": 264.72, + "end": 269.52, + "probability": 0.998 + }, + { + "start": 270.02, + "end": 271.2, + "probability": 0.9862 + }, + { + "start": 271.36, + "end": 274.48, + "probability": 0.8 + }, + { + "start": 275.02, + "end": 277.54, + "probability": 0.9186 + }, + { + "start": 277.62, + "end": 277.86, + "probability": 0.0206 + }, + { + "start": 278.64, + "end": 280.26, + "probability": 0.8333 + }, + { + "start": 280.92, + "end": 282.58, + "probability": 0.9834 + }, + { + "start": 282.98, + "end": 286.42, + "probability": 0.9794 + }, + { + "start": 286.9, + "end": 288.78, + "probability": 0.9885 + }, + { + "start": 289.56, + "end": 295.74, + "probability": 0.311 + }, + { + "start": 295.74, + "end": 298.64, + "probability": 0.8398 + }, + { + "start": 299.32, + "end": 299.32, + "probability": 0.0192 + }, + { + "start": 299.32, + "end": 299.32, + "probability": 0.2946 + }, + { + "start": 299.32, + "end": 300.68, + "probability": 0.5756 + }, + { + "start": 301.66, + "end": 306.28, + "probability": 0.9434 + }, + { + "start": 306.34, + "end": 306.88, + "probability": 0.3206 + }, + { + "start": 307.26, + "end": 308.12, + "probability": 0.0939 + }, + { + "start": 308.76, + "end": 310.24, + "probability": 0.9585 + }, + { + "start": 310.3, + "end": 313.16, + "probability": 0.9961 + }, + { + "start": 313.58, + "end": 315.78, + "probability": 0.9561 + }, + { + "start": 315.82, + "end": 317.14, + "probability": 0.8939 + }, + { + "start": 317.48, + "end": 320.72, + "probability": 0.9232 + }, + { + "start": 322.58, + "end": 323.16, + "probability": 0.228 + }, + { + "start": 324.02, + "end": 327.04, + "probability": 0.6061 + }, + { + "start": 328.3, + "end": 328.96, + "probability": 0.4805 + }, + { + "start": 328.96, + "end": 330.31, + "probability": 0.7275 + }, + { + "start": 330.74, + "end": 332.86, + "probability": 0.1871 + }, + { + "start": 333.36, + "end": 333.82, + "probability": 0.6583 + }, + { + "start": 334.5, + "end": 335.4, + "probability": 0.5304 + }, + { + "start": 335.56, + "end": 337.24, + "probability": 0.9753 + }, + { + "start": 337.64, + "end": 338.84, + "probability": 0.8787 + }, + { + "start": 338.92, + "end": 340.18, + "probability": 0.9263 + }, + { + "start": 340.62, + "end": 342.32, + "probability": 0.9402 + }, + { + "start": 343.52, + "end": 344.68, + "probability": 0.0867 + }, + { + "start": 344.68, + "end": 347.24, + "probability": 0.9536 + }, + { + "start": 349.52, + "end": 350.68, + "probability": 0.2892 + }, + { + "start": 355.44, + "end": 358.56, + "probability": 0.2693 + }, + { + "start": 361.3, + "end": 363.6, + "probability": 0.444 + }, + { + "start": 363.76, + "end": 364.45, + "probability": 0.6446 + }, + { + "start": 365.0, + "end": 367.96, + "probability": 0.8489 + }, + { + "start": 369.76, + "end": 375.72, + "probability": 0.9699 + }, + { + "start": 375.86, + "end": 376.74, + "probability": 0.8749 + }, + { + "start": 377.3, + "end": 378.12, + "probability": 0.8755 + }, + { + "start": 378.28, + "end": 378.98, + "probability": 0.741 + }, + { + "start": 379.5, + "end": 381.44, + "probability": 0.9648 + }, + { + "start": 382.16, + "end": 382.8, + "probability": 0.229 + }, + { + "start": 383.28, + "end": 386.28, + "probability": 0.5316 + }, + { + "start": 387.03, + "end": 389.4, + "probability": 0.9053 + }, + { + "start": 391.07, + "end": 395.1, + "probability": 0.8326 + }, + { + "start": 396.5, + "end": 401.38, + "probability": 0.9549 + }, + { + "start": 401.64, + "end": 405.4, + "probability": 0.6202 + }, + { + "start": 405.88, + "end": 410.5, + "probability": 0.9925 + }, + { + "start": 410.74, + "end": 410.84, + "probability": 0.1029 + }, + { + "start": 411.36, + "end": 413.64, + "probability": 0.7522 + }, + { + "start": 414.16, + "end": 415.28, + "probability": 0.6 + }, + { + "start": 415.92, + "end": 419.34, + "probability": 0.0986 + }, + { + "start": 419.48, + "end": 422.18, + "probability": 0.9922 + }, + { + "start": 422.66, + "end": 423.3, + "probability": 0.7691 + }, + { + "start": 423.42, + "end": 427.96, + "probability": 0.9192 + }, + { + "start": 428.7, + "end": 430.36, + "probability": 0.8229 + }, + { + "start": 431.0, + "end": 432.0, + "probability": 0.0974 + }, + { + "start": 432.74, + "end": 434.52, + "probability": 0.8539 + }, + { + "start": 434.88, + "end": 435.14, + "probability": 0.5847 + }, + { + "start": 435.62, + "end": 438.92, + "probability": 0.8806 + }, + { + "start": 439.48, + "end": 441.56, + "probability": 0.9329 + }, + { + "start": 441.94, + "end": 445.6, + "probability": 0.7688 + }, + { + "start": 445.6, + "end": 449.98, + "probability": 0.9123 + }, + { + "start": 450.38, + "end": 454.26, + "probability": 0.983 + }, + { + "start": 454.74, + "end": 457.34, + "probability": 0.7624 + }, + { + "start": 460.42, + "end": 461.38, + "probability": 0.717 + }, + { + "start": 461.56, + "end": 462.08, + "probability": 0.3723 + }, + { + "start": 462.52, + "end": 463.5, + "probability": 0.8522 + }, + { + "start": 463.92, + "end": 464.12, + "probability": 0.293 + }, + { + "start": 464.12, + "end": 466.72, + "probability": 0.9736 + }, + { + "start": 466.8, + "end": 467.38, + "probability": 0.3571 + }, + { + "start": 467.54, + "end": 469.5, + "probability": 0.9973 + }, + { + "start": 469.56, + "end": 470.68, + "probability": 0.977 + }, + { + "start": 471.26, + "end": 472.62, + "probability": 0.9707 + }, + { + "start": 472.68, + "end": 473.9, + "probability": 0.9656 + }, + { + "start": 474.32, + "end": 476.2, + "probability": 0.9961 + }, + { + "start": 476.34, + "end": 477.86, + "probability": 0.999 + }, + { + "start": 478.94, + "end": 481.44, + "probability": 0.9874 + }, + { + "start": 481.6, + "end": 484.0, + "probability": 0.8914 + }, + { + "start": 484.6, + "end": 486.0, + "probability": 0.9616 + }, + { + "start": 486.18, + "end": 489.78, + "probability": 0.9911 + }, + { + "start": 490.52, + "end": 494.04, + "probability": 0.9951 + }, + { + "start": 494.92, + "end": 497.92, + "probability": 0.9728 + }, + { + "start": 497.92, + "end": 502.12, + "probability": 0.9956 + }, + { + "start": 503.06, + "end": 505.16, + "probability": 0.951 + }, + { + "start": 505.78, + "end": 511.2, + "probability": 0.9133 + }, + { + "start": 511.74, + "end": 512.96, + "probability": 0.9629 + }, + { + "start": 513.0, + "end": 517.94, + "probability": 0.9882 + }, + { + "start": 518.62, + "end": 524.64, + "probability": 0.9622 + }, + { + "start": 524.78, + "end": 525.48, + "probability": 0.9618 + }, + { + "start": 526.44, + "end": 527.44, + "probability": 0.5202 + }, + { + "start": 528.44, + "end": 531.04, + "probability": 0.9243 + }, + { + "start": 531.14, + "end": 534.2, + "probability": 0.9062 + }, + { + "start": 534.36, + "end": 534.82, + "probability": 0.6063 + }, + { + "start": 536.14, + "end": 537.62, + "probability": 0.725 + }, + { + "start": 538.46, + "end": 540.52, + "probability": 0.9917 + }, + { + "start": 541.82, + "end": 542.08, + "probability": 0.2633 + }, + { + "start": 542.08, + "end": 545.64, + "probability": 0.8765 + }, + { + "start": 547.0, + "end": 552.24, + "probability": 0.9676 + }, + { + "start": 552.76, + "end": 553.8, + "probability": 0.955 + }, + { + "start": 554.2, + "end": 556.48, + "probability": 0.9686 + }, + { + "start": 556.88, + "end": 560.58, + "probability": 0.9851 + }, + { + "start": 561.24, + "end": 564.49, + "probability": 0.9941 + }, + { + "start": 565.58, + "end": 570.24, + "probability": 0.9967 + }, + { + "start": 570.3, + "end": 571.6, + "probability": 0.8897 + }, + { + "start": 572.4, + "end": 574.38, + "probability": 0.9837 + }, + { + "start": 574.48, + "end": 575.42, + "probability": 0.9393 + }, + { + "start": 576.04, + "end": 577.54, + "probability": 0.9594 + }, + { + "start": 577.82, + "end": 580.74, + "probability": 0.9823 + }, + { + "start": 581.78, + "end": 584.76, + "probability": 0.734 + }, + { + "start": 584.9, + "end": 586.12, + "probability": 0.8369 + }, + { + "start": 586.24, + "end": 587.68, + "probability": 0.7979 + }, + { + "start": 587.82, + "end": 588.88, + "probability": 0.9655 + }, + { + "start": 589.4, + "end": 592.12, + "probability": 0.9924 + }, + { + "start": 592.62, + "end": 597.26, + "probability": 0.9912 + }, + { + "start": 597.68, + "end": 601.36, + "probability": 0.9752 + }, + { + "start": 601.86, + "end": 602.8, + "probability": 0.6445 + }, + { + "start": 603.06, + "end": 603.94, + "probability": 0.874 + }, + { + "start": 604.02, + "end": 608.22, + "probability": 0.8795 + }, + { + "start": 608.74, + "end": 611.48, + "probability": 0.9912 + }, + { + "start": 611.74, + "end": 613.96, + "probability": 0.8795 + }, + { + "start": 614.52, + "end": 616.9, + "probability": 0.939 + }, + { + "start": 617.36, + "end": 619.62, + "probability": 0.991 + }, + { + "start": 620.22, + "end": 624.3, + "probability": 0.9273 + }, + { + "start": 624.62, + "end": 627.22, + "probability": 0.999 + }, + { + "start": 627.9, + "end": 633.0, + "probability": 0.9644 + }, + { + "start": 633.86, + "end": 635.52, + "probability": 0.8712 + }, + { + "start": 636.06, + "end": 637.82, + "probability": 0.973 + }, + { + "start": 637.98, + "end": 640.48, + "probability": 0.9673 + }, + { + "start": 640.96, + "end": 644.68, + "probability": 0.9832 + }, + { + "start": 645.06, + "end": 648.18, + "probability": 0.9966 + }, + { + "start": 649.0, + "end": 650.46, + "probability": 0.9712 + }, + { + "start": 651.24, + "end": 653.34, + "probability": 0.8786 + }, + { + "start": 654.06, + "end": 655.62, + "probability": 0.9952 + }, + { + "start": 656.3, + "end": 659.74, + "probability": 0.9881 + }, + { + "start": 660.28, + "end": 660.44, + "probability": 0.2708 + }, + { + "start": 660.44, + "end": 660.84, + "probability": 0.7045 + }, + { + "start": 661.16, + "end": 662.4, + "probability": 0.923 + }, + { + "start": 663.14, + "end": 664.52, + "probability": 0.9794 + }, + { + "start": 666.26, + "end": 666.8, + "probability": 0.8842 + }, + { + "start": 666.88, + "end": 667.54, + "probability": 0.9791 + }, + { + "start": 667.9, + "end": 669.6, + "probability": 0.9385 + }, + { + "start": 670.7, + "end": 672.28, + "probability": 0.9805 + }, + { + "start": 672.48, + "end": 673.62, + "probability": 0.9005 + }, + { + "start": 673.84, + "end": 674.6, + "probability": 0.7513 + }, + { + "start": 675.5, + "end": 677.0, + "probability": 0.9989 + }, + { + "start": 678.74, + "end": 681.44, + "probability": 0.9285 + }, + { + "start": 681.98, + "end": 682.95, + "probability": 0.9976 + }, + { + "start": 684.8, + "end": 686.0, + "probability": 0.9812 + }, + { + "start": 687.2, + "end": 689.04, + "probability": 0.8557 + }, + { + "start": 690.24, + "end": 693.2, + "probability": 0.9836 + }, + { + "start": 693.36, + "end": 695.34, + "probability": 0.7982 + }, + { + "start": 696.02, + "end": 698.82, + "probability": 0.7708 + }, + { + "start": 700.22, + "end": 703.7, + "probability": 0.9941 + }, + { + "start": 704.32, + "end": 705.26, + "probability": 0.9163 + }, + { + "start": 706.88, + "end": 709.26, + "probability": 0.9526 + }, + { + "start": 709.78, + "end": 711.46, + "probability": 0.6917 + }, + { + "start": 711.52, + "end": 713.92, + "probability": 0.9645 + }, + { + "start": 714.42, + "end": 714.79, + "probability": 0.7402 + }, + { + "start": 715.04, + "end": 715.36, + "probability": 0.9751 + }, + { + "start": 715.48, + "end": 716.74, + "probability": 0.9958 + }, + { + "start": 717.34, + "end": 720.14, + "probability": 0.9858 + }, + { + "start": 720.14, + "end": 723.72, + "probability": 0.9209 + }, + { + "start": 725.32, + "end": 730.74, + "probability": 0.9673 + }, + { + "start": 731.28, + "end": 736.84, + "probability": 0.9944 + }, + { + "start": 737.5, + "end": 739.26, + "probability": 0.9589 + }, + { + "start": 741.44, + "end": 742.92, + "probability": 0.7837 + }, + { + "start": 743.06, + "end": 745.48, + "probability": 0.9 + }, + { + "start": 746.56, + "end": 750.34, + "probability": 0.9563 + }, + { + "start": 750.5, + "end": 751.34, + "probability": 0.8944 + }, + { + "start": 752.56, + "end": 754.34, + "probability": 0.9498 + }, + { + "start": 755.36, + "end": 759.99, + "probability": 0.9958 + }, + { + "start": 760.2, + "end": 763.02, + "probability": 0.9976 + }, + { + "start": 764.24, + "end": 765.86, + "probability": 0.5637 + }, + { + "start": 766.84, + "end": 769.82, + "probability": 0.9843 + }, + { + "start": 769.86, + "end": 770.58, + "probability": 0.9117 + }, + { + "start": 770.7, + "end": 774.32, + "probability": 0.9678 + }, + { + "start": 774.44, + "end": 775.08, + "probability": 0.5914 + }, + { + "start": 775.26, + "end": 775.82, + "probability": 0.7926 + }, + { + "start": 778.36, + "end": 781.38, + "probability": 0.9805 + }, + { + "start": 781.48, + "end": 784.2, + "probability": 0.8402 + }, + { + "start": 784.3, + "end": 786.86, + "probability": 0.9727 + }, + { + "start": 788.0, + "end": 790.8, + "probability": 0.9958 + }, + { + "start": 791.34, + "end": 796.5, + "probability": 0.9937 + }, + { + "start": 796.72, + "end": 797.52, + "probability": 0.5555 + }, + { + "start": 798.12, + "end": 799.5, + "probability": 0.6549 + }, + { + "start": 800.08, + "end": 802.25, + "probability": 0.9282 + }, + { + "start": 802.68, + "end": 803.12, + "probability": 0.6638 + }, + { + "start": 803.58, + "end": 807.08, + "probability": 0.9452 + }, + { + "start": 807.24, + "end": 808.12, + "probability": 0.9428 + }, + { + "start": 808.7, + "end": 811.52, + "probability": 0.9977 + }, + { + "start": 812.1, + "end": 816.58, + "probability": 0.9929 + }, + { + "start": 817.32, + "end": 820.34, + "probability": 0.861 + }, + { + "start": 821.58, + "end": 824.44, + "probability": 0.7167 + }, + { + "start": 824.52, + "end": 827.22, + "probability": 0.9838 + }, + { + "start": 828.5, + "end": 830.32, + "probability": 0.9858 + }, + { + "start": 830.46, + "end": 831.58, + "probability": 0.9978 + }, + { + "start": 832.38, + "end": 836.64, + "probability": 0.9003 + }, + { + "start": 837.2, + "end": 840.82, + "probability": 0.9946 + }, + { + "start": 841.32, + "end": 843.18, + "probability": 0.9172 + }, + { + "start": 843.9, + "end": 846.78, + "probability": 0.9774 + }, + { + "start": 847.4, + "end": 851.84, + "probability": 0.9906 + }, + { + "start": 851.98, + "end": 854.1, + "probability": 0.9744 + }, + { + "start": 854.92, + "end": 858.45, + "probability": 0.9879 + }, + { + "start": 858.94, + "end": 861.02, + "probability": 0.996 + }, + { + "start": 862.04, + "end": 865.76, + "probability": 0.907 + }, + { + "start": 866.22, + "end": 867.9, + "probability": 0.8188 + }, + { + "start": 868.4, + "end": 871.54, + "probability": 0.9839 + }, + { + "start": 871.94, + "end": 875.01, + "probability": 0.9849 + }, + { + "start": 875.72, + "end": 878.24, + "probability": 0.858 + }, + { + "start": 878.34, + "end": 881.48, + "probability": 0.9561 + }, + { + "start": 882.4, + "end": 883.5, + "probability": 0.712 + }, + { + "start": 884.26, + "end": 884.86, + "probability": 0.8284 + }, + { + "start": 885.52, + "end": 890.28, + "probability": 0.9839 + }, + { + "start": 891.3, + "end": 893.74, + "probability": 0.9983 + }, + { + "start": 894.88, + "end": 897.78, + "probability": 0.9752 + }, + { + "start": 897.78, + "end": 903.36, + "probability": 0.9707 + }, + { + "start": 904.28, + "end": 908.02, + "probability": 0.9814 + }, + { + "start": 908.98, + "end": 911.98, + "probability": 0.8847 + }, + { + "start": 913.2, + "end": 915.06, + "probability": 0.9875 + }, + { + "start": 916.32, + "end": 919.98, + "probability": 0.9783 + }, + { + "start": 920.76, + "end": 923.6, + "probability": 0.9811 + }, + { + "start": 923.66, + "end": 926.18, + "probability": 0.9937 + }, + { + "start": 927.02, + "end": 928.56, + "probability": 0.9873 + }, + { + "start": 929.02, + "end": 932.3, + "probability": 0.9907 + }, + { + "start": 932.3, + "end": 935.54, + "probability": 0.9614 + }, + { + "start": 935.9, + "end": 937.28, + "probability": 0.9907 + }, + { + "start": 937.3, + "end": 939.0, + "probability": 0.9771 + }, + { + "start": 939.04, + "end": 939.8, + "probability": 0.8518 + }, + { + "start": 941.72, + "end": 945.35, + "probability": 0.9816 + }, + { + "start": 945.64, + "end": 946.94, + "probability": 0.9265 + }, + { + "start": 947.02, + "end": 948.92, + "probability": 0.9676 + }, + { + "start": 949.02, + "end": 950.9, + "probability": 0.971 + }, + { + "start": 951.32, + "end": 952.86, + "probability": 0.9856 + }, + { + "start": 953.78, + "end": 957.3, + "probability": 0.9807 + }, + { + "start": 957.52, + "end": 958.44, + "probability": 0.7221 + }, + { + "start": 958.56, + "end": 958.88, + "probability": 0.2537 + }, + { + "start": 959.02, + "end": 959.98, + "probability": 0.9713 + }, + { + "start": 960.9, + "end": 962.84, + "probability": 0.9246 + }, + { + "start": 963.7, + "end": 966.86, + "probability": 0.9973 + }, + { + "start": 966.94, + "end": 969.22, + "probability": 0.9967 + }, + { + "start": 969.52, + "end": 971.3, + "probability": 0.9873 + }, + { + "start": 971.64, + "end": 973.78, + "probability": 0.9176 + }, + { + "start": 975.48, + "end": 979.02, + "probability": 0.9974 + }, + { + "start": 979.02, + "end": 982.26, + "probability": 0.9851 + }, + { + "start": 983.04, + "end": 985.22, + "probability": 0.9946 + }, + { + "start": 986.9, + "end": 989.12, + "probability": 0.959 + }, + { + "start": 990.24, + "end": 994.56, + "probability": 0.5485 + }, + { + "start": 995.42, + "end": 998.8, + "probability": 0.9919 + }, + { + "start": 999.88, + "end": 1001.31, + "probability": 0.9782 + }, + { + "start": 1002.48, + "end": 1003.58, + "probability": 0.9854 + }, + { + "start": 1004.14, + "end": 1006.84, + "probability": 0.8936 + }, + { + "start": 1007.28, + "end": 1009.76, + "probability": 0.9941 + }, + { + "start": 1013.72, + "end": 1015.78, + "probability": 0.8437 + }, + { + "start": 1015.9, + "end": 1016.95, + "probability": 0.9461 + }, + { + "start": 1017.88, + "end": 1018.96, + "probability": 0.9844 + }, + { + "start": 1019.34, + "end": 1020.32, + "probability": 0.8921 + }, + { + "start": 1020.5, + "end": 1023.06, + "probability": 0.9912 + }, + { + "start": 1023.06, + "end": 1026.74, + "probability": 0.9346 + }, + { + "start": 1028.26, + "end": 1029.02, + "probability": 0.6343 + }, + { + "start": 1029.26, + "end": 1030.1, + "probability": 0.7753 + }, + { + "start": 1031.02, + "end": 1034.08, + "probability": 0.9883 + }, + { + "start": 1034.98, + "end": 1035.8, + "probability": 0.822 + }, + { + "start": 1037.06, + "end": 1040.08, + "probability": 0.9565 + }, + { + "start": 1040.46, + "end": 1042.6, + "probability": 0.8488 + }, + { + "start": 1043.06, + "end": 1044.06, + "probability": 0.9854 + }, + { + "start": 1045.02, + "end": 1047.14, + "probability": 0.8789 + }, + { + "start": 1047.82, + "end": 1051.3, + "probability": 0.9891 + }, + { + "start": 1051.92, + "end": 1054.48, + "probability": 0.9927 + }, + { + "start": 1055.32, + "end": 1056.94, + "probability": 0.9932 + }, + { + "start": 1057.14, + "end": 1059.12, + "probability": 0.9973 + }, + { + "start": 1059.7, + "end": 1061.04, + "probability": 0.9966 + }, + { + "start": 1061.86, + "end": 1064.2, + "probability": 0.8659 + }, + { + "start": 1064.56, + "end": 1068.64, + "probability": 0.9662 + }, + { + "start": 1068.66, + "end": 1072.08, + "probability": 0.9475 + }, + { + "start": 1073.22, + "end": 1075.92, + "probability": 0.9884 + }, + { + "start": 1076.04, + "end": 1077.14, + "probability": 0.9753 + }, + { + "start": 1077.9, + "end": 1080.74, + "probability": 0.9954 + }, + { + "start": 1081.78, + "end": 1087.58, + "probability": 0.9867 + }, + { + "start": 1088.02, + "end": 1090.7, + "probability": 0.9883 + }, + { + "start": 1091.48, + "end": 1092.3, + "probability": 0.8837 + }, + { + "start": 1092.5, + "end": 1096.0, + "probability": 0.994 + }, + { + "start": 1096.6, + "end": 1099.3, + "probability": 0.9969 + }, + { + "start": 1100.02, + "end": 1102.64, + "probability": 0.917 + }, + { + "start": 1102.7, + "end": 1104.72, + "probability": 0.9956 + }, + { + "start": 1105.44, + "end": 1110.06, + "probability": 0.9492 + }, + { + "start": 1110.2, + "end": 1111.52, + "probability": 0.6836 + }, + { + "start": 1111.62, + "end": 1113.66, + "probability": 0.9254 + }, + { + "start": 1114.14, + "end": 1118.0, + "probability": 0.9242 + }, + { + "start": 1118.64, + "end": 1119.04, + "probability": 0.7488 + }, + { + "start": 1119.12, + "end": 1120.3, + "probability": 0.9224 + }, + { + "start": 1121.42, + "end": 1126.52, + "probability": 0.9926 + }, + { + "start": 1127.24, + "end": 1129.6, + "probability": 0.9967 + }, + { + "start": 1131.2, + "end": 1133.56, + "probability": 0.9958 + }, + { + "start": 1134.36, + "end": 1137.54, + "probability": 0.9582 + }, + { + "start": 1137.92, + "end": 1139.3, + "probability": 0.7443 + }, + { + "start": 1140.16, + "end": 1145.58, + "probability": 0.9641 + }, + { + "start": 1145.64, + "end": 1148.12, + "probability": 0.9756 + }, + { + "start": 1149.02, + "end": 1151.48, + "probability": 0.9964 + }, + { + "start": 1151.78, + "end": 1153.48, + "probability": 0.965 + }, + { + "start": 1154.6, + "end": 1155.52, + "probability": 0.9382 + }, + { + "start": 1155.98, + "end": 1157.3, + "probability": 0.6319 + }, + { + "start": 1157.8, + "end": 1160.25, + "probability": 0.9696 + }, + { + "start": 1160.96, + "end": 1164.08, + "probability": 0.969 + }, + { + "start": 1164.64, + "end": 1167.22, + "probability": 0.9106 + }, + { + "start": 1167.82, + "end": 1169.18, + "probability": 0.9768 + }, + { + "start": 1169.32, + "end": 1171.18, + "probability": 0.9365 + }, + { + "start": 1171.98, + "end": 1174.8, + "probability": 0.7394 + }, + { + "start": 1176.74, + "end": 1181.34, + "probability": 0.9676 + }, + { + "start": 1181.92, + "end": 1185.36, + "probability": 0.9939 + }, + { + "start": 1185.64, + "end": 1186.38, + "probability": 0.7791 + }, + { + "start": 1188.64, + "end": 1190.48, + "probability": 0.6687 + }, + { + "start": 1191.16, + "end": 1195.44, + "probability": 0.9628 + }, + { + "start": 1198.5, + "end": 1200.11, + "probability": 0.9113 + }, + { + "start": 1200.3, + "end": 1201.4, + "probability": 0.7568 + }, + { + "start": 1201.46, + "end": 1202.52, + "probability": 0.9289 + }, + { + "start": 1204.42, + "end": 1209.22, + "probability": 0.7509 + }, + { + "start": 1210.12, + "end": 1216.96, + "probability": 0.9754 + }, + { + "start": 1217.1, + "end": 1219.16, + "probability": 0.9163 + }, + { + "start": 1220.7, + "end": 1221.58, + "probability": 0.6746 + }, + { + "start": 1223.16, + "end": 1225.93, + "probability": 0.9932 + }, + { + "start": 1227.64, + "end": 1228.14, + "probability": 0.9194 + }, + { + "start": 1229.02, + "end": 1231.96, + "probability": 0.9804 + }, + { + "start": 1233.12, + "end": 1235.34, + "probability": 0.8773 + }, + { + "start": 1236.76, + "end": 1242.22, + "probability": 0.9353 + }, + { + "start": 1243.12, + "end": 1245.28, + "probability": 0.9495 + }, + { + "start": 1246.0, + "end": 1246.56, + "probability": 0.7865 + }, + { + "start": 1248.02, + "end": 1251.38, + "probability": 0.959 + }, + { + "start": 1252.28, + "end": 1253.8, + "probability": 0.8242 + }, + { + "start": 1254.6, + "end": 1255.86, + "probability": 0.7825 + }, + { + "start": 1256.64, + "end": 1259.0, + "probability": 0.9772 + }, + { + "start": 1259.64, + "end": 1261.46, + "probability": 0.97 + }, + { + "start": 1262.76, + "end": 1264.58, + "probability": 0.9163 + }, + { + "start": 1265.28, + "end": 1270.16, + "probability": 0.8066 + }, + { + "start": 1270.26, + "end": 1272.6, + "probability": 0.8574 + }, + { + "start": 1273.46, + "end": 1280.1, + "probability": 0.9941 + }, + { + "start": 1280.96, + "end": 1286.42, + "probability": 0.9939 + }, + { + "start": 1286.42, + "end": 1289.26, + "probability": 0.9983 + }, + { + "start": 1289.34, + "end": 1294.36, + "probability": 0.9923 + }, + { + "start": 1294.36, + "end": 1298.88, + "probability": 0.9958 + }, + { + "start": 1300.48, + "end": 1303.5, + "probability": 0.863 + }, + { + "start": 1305.2, + "end": 1308.34, + "probability": 0.9883 + }, + { + "start": 1309.4, + "end": 1311.3, + "probability": 0.7361 + }, + { + "start": 1311.96, + "end": 1312.9, + "probability": 0.7353 + }, + { + "start": 1314.0, + "end": 1315.66, + "probability": 0.9957 + }, + { + "start": 1317.26, + "end": 1319.78, + "probability": 0.9764 + }, + { + "start": 1321.12, + "end": 1324.46, + "probability": 0.9504 + }, + { + "start": 1324.74, + "end": 1334.86, + "probability": 0.9738 + }, + { + "start": 1334.92, + "end": 1340.14, + "probability": 0.9839 + }, + { + "start": 1341.4, + "end": 1343.86, + "probability": 0.9126 + }, + { + "start": 1344.48, + "end": 1348.04, + "probability": 0.96 + }, + { + "start": 1348.04, + "end": 1353.0, + "probability": 0.9875 + }, + { + "start": 1353.66, + "end": 1355.1, + "probability": 0.9966 + }, + { + "start": 1358.4, + "end": 1364.82, + "probability": 0.9858 + }, + { + "start": 1366.3, + "end": 1367.76, + "probability": 0.4941 + }, + { + "start": 1368.64, + "end": 1374.08, + "probability": 0.9865 + }, + { + "start": 1374.86, + "end": 1382.66, + "probability": 0.9332 + }, + { + "start": 1383.32, + "end": 1389.28, + "probability": 0.9958 + }, + { + "start": 1390.8, + "end": 1391.96, + "probability": 0.8483 + }, + { + "start": 1392.72, + "end": 1399.92, + "probability": 0.9829 + }, + { + "start": 1400.74, + "end": 1402.42, + "probability": 0.9191 + }, + { + "start": 1403.26, + "end": 1404.84, + "probability": 0.9744 + }, + { + "start": 1405.56, + "end": 1407.14, + "probability": 0.9909 + }, + { + "start": 1407.72, + "end": 1410.54, + "probability": 0.9462 + }, + { + "start": 1412.52, + "end": 1418.6, + "probability": 0.9705 + }, + { + "start": 1419.76, + "end": 1421.1, + "probability": 0.8717 + }, + { + "start": 1421.64, + "end": 1423.22, + "probability": 0.9937 + }, + { + "start": 1423.92, + "end": 1426.26, + "probability": 0.9831 + }, + { + "start": 1427.42, + "end": 1431.78, + "probability": 0.9808 + }, + { + "start": 1432.98, + "end": 1436.54, + "probability": 0.9229 + }, + { + "start": 1437.4, + "end": 1439.58, + "probability": 0.958 + }, + { + "start": 1440.44, + "end": 1442.88, + "probability": 0.8171 + }, + { + "start": 1443.56, + "end": 1446.38, + "probability": 0.9927 + }, + { + "start": 1446.98, + "end": 1451.66, + "probability": 0.9927 + }, + { + "start": 1451.78, + "end": 1457.9, + "probability": 0.9935 + }, + { + "start": 1458.28, + "end": 1459.62, + "probability": 0.6083 + }, + { + "start": 1459.94, + "end": 1461.14, + "probability": 0.9195 + }, + { + "start": 1463.2, + "end": 1465.72, + "probability": 0.8575 + }, + { + "start": 1465.82, + "end": 1466.58, + "probability": 0.5984 + }, + { + "start": 1466.66, + "end": 1467.72, + "probability": 0.8017 + }, + { + "start": 1467.94, + "end": 1470.12, + "probability": 0.9966 + }, + { + "start": 1471.64, + "end": 1472.52, + "probability": 0.9491 + }, + { + "start": 1473.24, + "end": 1474.46, + "probability": 0.9595 + }, + { + "start": 1475.06, + "end": 1477.92, + "probability": 0.8183 + }, + { + "start": 1478.88, + "end": 1479.02, + "probability": 0.7288 + }, + { + "start": 1479.88, + "end": 1481.46, + "probability": 0.8807 + }, + { + "start": 1482.04, + "end": 1486.06, + "probability": 0.7721 + }, + { + "start": 1486.72, + "end": 1490.16, + "probability": 0.948 + }, + { + "start": 1491.26, + "end": 1493.8, + "probability": 0.8033 + }, + { + "start": 1494.46, + "end": 1499.54, + "probability": 0.9902 + }, + { + "start": 1499.66, + "end": 1502.52, + "probability": 0.861 + }, + { + "start": 1503.08, + "end": 1504.92, + "probability": 0.9701 + }, + { + "start": 1505.4, + "end": 1511.86, + "probability": 0.9985 + }, + { + "start": 1511.98, + "end": 1512.52, + "probability": 0.8823 + }, + { + "start": 1512.96, + "end": 1515.36, + "probability": 0.8041 + }, + { + "start": 1515.92, + "end": 1523.8, + "probability": 0.9722 + }, + { + "start": 1526.12, + "end": 1527.0, + "probability": 0.779 + }, + { + "start": 1527.3, + "end": 1532.22, + "probability": 0.9645 + }, + { + "start": 1533.14, + "end": 1533.86, + "probability": 0.5878 + }, + { + "start": 1533.88, + "end": 1534.9, + "probability": 0.9487 + }, + { + "start": 1534.98, + "end": 1538.78, + "probability": 0.9785 + }, + { + "start": 1538.78, + "end": 1544.04, + "probability": 0.9896 + }, + { + "start": 1545.34, + "end": 1554.04, + "probability": 0.9764 + }, + { + "start": 1554.48, + "end": 1555.68, + "probability": 0.5233 + }, + { + "start": 1555.8, + "end": 1562.96, + "probability": 0.7835 + }, + { + "start": 1563.82, + "end": 1570.94, + "probability": 0.9825 + }, + { + "start": 1572.46, + "end": 1577.18, + "probability": 0.9006 + }, + { + "start": 1577.22, + "end": 1581.6, + "probability": 0.9454 + }, + { + "start": 1582.32, + "end": 1583.98, + "probability": 0.7629 + }, + { + "start": 1584.66, + "end": 1586.16, + "probability": 0.9662 + }, + { + "start": 1586.7, + "end": 1587.62, + "probability": 0.8645 + }, + { + "start": 1587.78, + "end": 1590.1, + "probability": 0.8151 + }, + { + "start": 1590.22, + "end": 1592.3, + "probability": 0.8494 + }, + { + "start": 1592.36, + "end": 1593.1, + "probability": 0.9432 + }, + { + "start": 1593.56, + "end": 1594.06, + "probability": 0.9919 + }, + { + "start": 1594.6, + "end": 1602.38, + "probability": 0.994 + }, + { + "start": 1602.9, + "end": 1605.82, + "probability": 0.9945 + }, + { + "start": 1606.52, + "end": 1609.64, + "probability": 0.949 + }, + { + "start": 1610.32, + "end": 1612.2, + "probability": 0.8824 + }, + { + "start": 1613.98, + "end": 1616.86, + "probability": 0.3356 + }, + { + "start": 1617.42, + "end": 1622.58, + "probability": 0.9897 + }, + { + "start": 1623.06, + "end": 1623.66, + "probability": 0.8417 + }, + { + "start": 1625.12, + "end": 1625.18, + "probability": 0.049 + }, + { + "start": 1626.28, + "end": 1628.86, + "probability": 0.9899 + }, + { + "start": 1629.38, + "end": 1631.86, + "probability": 0.9672 + }, + { + "start": 1632.24, + "end": 1633.64, + "probability": 0.8638 + }, + { + "start": 1633.7, + "end": 1634.94, + "probability": 0.7702 + }, + { + "start": 1635.62, + "end": 1637.16, + "probability": 0.85 + }, + { + "start": 1637.26, + "end": 1640.38, + "probability": 0.972 + }, + { + "start": 1641.24, + "end": 1644.44, + "probability": 0.9425 + }, + { + "start": 1645.24, + "end": 1649.28, + "probability": 0.9482 + }, + { + "start": 1649.86, + "end": 1652.34, + "probability": 0.8813 + }, + { + "start": 1652.34, + "end": 1655.82, + "probability": 0.5407 + }, + { + "start": 1656.5, + "end": 1660.68, + "probability": 0.7993 + }, + { + "start": 1661.2, + "end": 1667.0, + "probability": 0.9884 + }, + { + "start": 1667.06, + "end": 1667.56, + "probability": 0.7016 + }, + { + "start": 1667.64, + "end": 1667.98, + "probability": 0.6417 + }, + { + "start": 1668.46, + "end": 1671.66, + "probability": 0.9341 + }, + { + "start": 1672.5, + "end": 1672.98, + "probability": 0.4076 + }, + { + "start": 1673.12, + "end": 1673.72, + "probability": 0.7121 + }, + { + "start": 1673.82, + "end": 1675.32, + "probability": 0.9413 + }, + { + "start": 1675.38, + "end": 1678.18, + "probability": 0.9198 + }, + { + "start": 1678.84, + "end": 1684.42, + "probability": 0.9159 + }, + { + "start": 1684.94, + "end": 1686.08, + "probability": 0.7371 + }, + { + "start": 1686.72, + "end": 1688.5, + "probability": 0.8501 + }, + { + "start": 1689.14, + "end": 1692.0, + "probability": 0.6333 + }, + { + "start": 1692.62, + "end": 1694.16, + "probability": 0.9702 + }, + { + "start": 1694.74, + "end": 1698.16, + "probability": 0.9148 + }, + { + "start": 1698.16, + "end": 1702.36, + "probability": 0.9846 + }, + { + "start": 1702.86, + "end": 1706.5, + "probability": 0.8726 + }, + { + "start": 1706.58, + "end": 1711.02, + "probability": 0.8178 + }, + { + "start": 1711.3, + "end": 1713.18, + "probability": 0.9083 + }, + { + "start": 1713.3, + "end": 1715.04, + "probability": 0.889 + }, + { + "start": 1716.85, + "end": 1717.7, + "probability": 0.4395 + }, + { + "start": 1717.7, + "end": 1718.76, + "probability": 0.5324 + }, + { + "start": 1719.0, + "end": 1720.44, + "probability": 0.7028 + }, + { + "start": 1720.54, + "end": 1726.44, + "probability": 0.8062 + }, + { + "start": 1726.94, + "end": 1731.6, + "probability": 0.9855 + }, + { + "start": 1732.16, + "end": 1733.28, + "probability": 0.9941 + }, + { + "start": 1734.46, + "end": 1735.7, + "probability": 0.9916 + }, + { + "start": 1736.14, + "end": 1738.26, + "probability": 0.9912 + }, + { + "start": 1738.78, + "end": 1739.48, + "probability": 0.8575 + }, + { + "start": 1739.54, + "end": 1740.34, + "probability": 0.9756 + }, + { + "start": 1740.8, + "end": 1744.22, + "probability": 0.9943 + }, + { + "start": 1744.62, + "end": 1745.36, + "probability": 0.8774 + }, + { + "start": 1745.96, + "end": 1751.3, + "probability": 0.9917 + }, + { + "start": 1751.3, + "end": 1755.34, + "probability": 0.9536 + }, + { + "start": 1755.78, + "end": 1758.68, + "probability": 0.9194 + }, + { + "start": 1759.06, + "end": 1760.58, + "probability": 0.9367 + }, + { + "start": 1760.98, + "end": 1762.54, + "probability": 0.9678 + }, + { + "start": 1762.84, + "end": 1763.12, + "probability": 0.6605 + }, + { + "start": 1763.9, + "end": 1764.06, + "probability": 0.1416 + }, + { + "start": 1764.06, + "end": 1764.3, + "probability": 0.1635 + }, + { + "start": 1764.82, + "end": 1770.96, + "probability": 0.8464 + }, + { + "start": 1771.74, + "end": 1773.06, + "probability": 0.9629 + }, + { + "start": 1773.08, + "end": 1775.26, + "probability": 0.9124 + }, + { + "start": 1775.4, + "end": 1776.24, + "probability": 0.7709 + }, + { + "start": 1778.62, + "end": 1779.12, + "probability": 0.3974 + }, + { + "start": 1779.12, + "end": 1779.22, + "probability": 0.1666 + }, + { + "start": 1779.72, + "end": 1781.64, + "probability": 0.3346 + }, + { + "start": 1781.72, + "end": 1785.16, + "probability": 0.6316 + }, + { + "start": 1785.16, + "end": 1786.22, + "probability": 0.8667 + }, + { + "start": 1786.28, + "end": 1786.78, + "probability": 0.8555 + }, + { + "start": 1786.86, + "end": 1788.34, + "probability": 0.7394 + }, + { + "start": 1788.44, + "end": 1788.46, + "probability": 0.1277 + }, + { + "start": 1789.1, + "end": 1789.4, + "probability": 0.1334 + }, + { + "start": 1789.86, + "end": 1793.86, + "probability": 0.5127 + }, + { + "start": 1794.42, + "end": 1800.5, + "probability": 0.9749 + }, + { + "start": 1800.94, + "end": 1803.6, + "probability": 0.8599 + }, + { + "start": 1805.05, + "end": 1805.8, + "probability": 0.0681 + }, + { + "start": 1805.86, + "end": 1806.92, + "probability": 0.8566 + }, + { + "start": 1807.14, + "end": 1811.2, + "probability": 0.9463 + }, + { + "start": 1811.36, + "end": 1812.52, + "probability": 0.6628 + }, + { + "start": 1812.78, + "end": 1813.36, + "probability": 0.7031 + }, + { + "start": 1813.76, + "end": 1814.5, + "probability": 0.645 + }, + { + "start": 1814.62, + "end": 1815.84, + "probability": 0.8733 + }, + { + "start": 1816.24, + "end": 1819.28, + "probability": 0.9351 + }, + { + "start": 1820.14, + "end": 1824.52, + "probability": 0.6579 + }, + { + "start": 1824.9, + "end": 1826.3, + "probability": 0.93 + }, + { + "start": 1826.34, + "end": 1828.26, + "probability": 0.9937 + }, + { + "start": 1829.04, + "end": 1830.6, + "probability": 0.9976 + }, + { + "start": 1831.24, + "end": 1833.16, + "probability": 0.6557 + }, + { + "start": 1833.18, + "end": 1835.44, + "probability": 0.9848 + }, + { + "start": 1835.92, + "end": 1837.26, + "probability": 0.9143 + }, + { + "start": 1837.28, + "end": 1838.12, + "probability": 0.9854 + }, + { + "start": 1838.74, + "end": 1839.52, + "probability": 0.5253 + }, + { + "start": 1839.9, + "end": 1841.14, + "probability": 0.9343 + }, + { + "start": 1841.7, + "end": 1845.4, + "probability": 0.9802 + }, + { + "start": 1845.46, + "end": 1848.46, + "probability": 0.9896 + }, + { + "start": 1849.34, + "end": 1852.2, + "probability": 0.9695 + }, + { + "start": 1852.64, + "end": 1855.6, + "probability": 0.552 + }, + { + "start": 1855.6, + "end": 1858.76, + "probability": 0.771 + }, + { + "start": 1859.26, + "end": 1861.5, + "probability": 0.8753 + }, + { + "start": 1861.54, + "end": 1863.34, + "probability": 0.5905 + }, + { + "start": 1863.9, + "end": 1866.64, + "probability": 0.5762 + }, + { + "start": 1866.98, + "end": 1867.18, + "probability": 0.4599 + }, + { + "start": 1869.05, + "end": 1872.66, + "probability": 0.4611 + }, + { + "start": 1872.74, + "end": 1873.08, + "probability": 0.6978 + }, + { + "start": 1873.66, + "end": 1875.84, + "probability": 0.8123 + }, + { + "start": 1876.42, + "end": 1877.76, + "probability": 0.5557 + }, + { + "start": 1878.72, + "end": 1880.22, + "probability": 0.9751 + }, + { + "start": 1882.28, + "end": 1883.38, + "probability": 0.6528 + }, + { + "start": 1883.86, + "end": 1885.3, + "probability": 0.813 + }, + { + "start": 1885.62, + "end": 1885.8, + "probability": 0.2044 + }, + { + "start": 1885.92, + "end": 1887.48, + "probability": 0.9791 + }, + { + "start": 1889.06, + "end": 1889.64, + "probability": 0.6606 + }, + { + "start": 1889.7, + "end": 1893.26, + "probability": 0.6898 + }, + { + "start": 1893.96, + "end": 1896.32, + "probability": 0.8291 + }, + { + "start": 1897.1, + "end": 1901.5, + "probability": 0.7517 + }, + { + "start": 1902.8, + "end": 1905.66, + "probability": 0.9268 + }, + { + "start": 1906.44, + "end": 1909.52, + "probability": 0.8232 + }, + { + "start": 1910.12, + "end": 1913.06, + "probability": 0.7896 + }, + { + "start": 1913.44, + "end": 1915.62, + "probability": 0.9688 + }, + { + "start": 1916.3, + "end": 1916.72, + "probability": 0.4164 + }, + { + "start": 1917.24, + "end": 1920.7, + "probability": 0.9521 + }, + { + "start": 1921.26, + "end": 1923.66, + "probability": 0.9658 + }, + { + "start": 1924.3, + "end": 1925.94, + "probability": 0.9823 + }, + { + "start": 1926.02, + "end": 1928.36, + "probability": 0.9265 + }, + { + "start": 1929.36, + "end": 1933.18, + "probability": 0.9948 + }, + { + "start": 1933.18, + "end": 1936.54, + "probability": 0.9831 + }, + { + "start": 1937.2, + "end": 1939.8, + "probability": 0.9917 + }, + { + "start": 1940.38, + "end": 1941.7, + "probability": 0.8925 + }, + { + "start": 1942.26, + "end": 1943.74, + "probability": 0.7869 + }, + { + "start": 1943.76, + "end": 1944.4, + "probability": 0.5768 + }, + { + "start": 1944.62, + "end": 1947.9, + "probability": 0.9993 + }, + { + "start": 1948.6, + "end": 1953.44, + "probability": 0.999 + }, + { + "start": 1954.28, + "end": 1955.42, + "probability": 0.9688 + }, + { + "start": 1956.34, + "end": 1956.84, + "probability": 0.313 + }, + { + "start": 1957.4, + "end": 1961.94, + "probability": 0.9978 + }, + { + "start": 1962.46, + "end": 1962.86, + "probability": 0.5113 + }, + { + "start": 1962.9, + "end": 1965.36, + "probability": 0.6813 + }, + { + "start": 1965.4, + "end": 1966.04, + "probability": 0.7464 + }, + { + "start": 1966.06, + "end": 1970.78, + "probability": 0.6864 + }, + { + "start": 1971.48, + "end": 1973.14, + "probability": 0.9162 + }, + { + "start": 1974.32, + "end": 1975.22, + "probability": 0.9976 + }, + { + "start": 1976.08, + "end": 1977.4, + "probability": 0.9076 + }, + { + "start": 1979.32, + "end": 1981.94, + "probability": 0.9922 + }, + { + "start": 1982.92, + "end": 1987.0, + "probability": 0.9902 + }, + { + "start": 1987.86, + "end": 1992.24, + "probability": 0.6384 + }, + { + "start": 1993.64, + "end": 1996.82, + "probability": 0.9914 + }, + { + "start": 1998.14, + "end": 1999.11, + "probability": 0.938 + }, + { + "start": 2000.04, + "end": 2001.72, + "probability": 0.9945 + }, + { + "start": 2002.44, + "end": 2004.9, + "probability": 0.9407 + }, + { + "start": 2005.8, + "end": 2008.56, + "probability": 0.9843 + }, + { + "start": 2009.08, + "end": 2012.42, + "probability": 0.986 + }, + { + "start": 2013.08, + "end": 2016.74, + "probability": 0.9691 + }, + { + "start": 2017.2, + "end": 2020.92, + "probability": 0.8126 + }, + { + "start": 2021.5, + "end": 2022.24, + "probability": 0.8203 + }, + { + "start": 2023.1, + "end": 2028.22, + "probability": 0.9747 + }, + { + "start": 2028.3, + "end": 2029.42, + "probability": 0.8753 + }, + { + "start": 2030.22, + "end": 2033.02, + "probability": 0.9447 + }, + { + "start": 2035.98, + "end": 2036.7, + "probability": 0.4136 + }, + { + "start": 2036.7, + "end": 2039.12, + "probability": 0.9077 + }, + { + "start": 2039.76, + "end": 2039.76, + "probability": 0.563 + }, + { + "start": 2039.76, + "end": 2043.22, + "probability": 0.9211 + }, + { + "start": 2044.34, + "end": 2051.34, + "probability": 0.9758 + }, + { + "start": 2052.16, + "end": 2053.26, + "probability": 0.9818 + }, + { + "start": 2053.78, + "end": 2057.94, + "probability": 0.9977 + }, + { + "start": 2057.94, + "end": 2061.74, + "probability": 0.9204 + }, + { + "start": 2062.4, + "end": 2063.9, + "probability": 0.9941 + }, + { + "start": 2064.8, + "end": 2066.44, + "probability": 0.9693 + }, + { + "start": 2067.08, + "end": 2068.16, + "probability": 0.4411 + }, + { + "start": 2068.78, + "end": 2071.5, + "probability": 0.7848 + }, + { + "start": 2072.02, + "end": 2073.92, + "probability": 0.9449 + }, + { + "start": 2074.16, + "end": 2075.66, + "probability": 0.9722 + }, + { + "start": 2076.16, + "end": 2077.92, + "probability": 0.9965 + }, + { + "start": 2078.48, + "end": 2080.76, + "probability": 0.908 + }, + { + "start": 2081.16, + "end": 2083.04, + "probability": 0.8219 + }, + { + "start": 2083.88, + "end": 2085.06, + "probability": 0.2538 + }, + { + "start": 2085.08, + "end": 2085.08, + "probability": 0.0018 + }, + { + "start": 2085.08, + "end": 2088.82, + "probability": 0.9082 + }, + { + "start": 2089.28, + "end": 2093.48, + "probability": 0.8508 + }, + { + "start": 2094.0, + "end": 2095.0, + "probability": 0.6461 + }, + { + "start": 2096.5, + "end": 2100.22, + "probability": 0.6653 + }, + { + "start": 2101.56, + "end": 2102.2, + "probability": 0.8349 + }, + { + "start": 2102.88, + "end": 2103.84, + "probability": 0.779 + }, + { + "start": 2104.24, + "end": 2106.46, + "probability": 0.0271 + }, + { + "start": 2107.48, + "end": 2109.84, + "probability": 0.5242 + }, + { + "start": 2110.12, + "end": 2110.12, + "probability": 0.104 + }, + { + "start": 2110.12, + "end": 2110.12, + "probability": 0.5861 + }, + { + "start": 2110.12, + "end": 2110.12, + "probability": 0.1134 + }, + { + "start": 2110.12, + "end": 2111.18, + "probability": 0.2156 + }, + { + "start": 2111.4, + "end": 2111.66, + "probability": 0.0932 + }, + { + "start": 2113.6, + "end": 2115.22, + "probability": 0.4117 + }, + { + "start": 2115.22, + "end": 2116.26, + "probability": 0.5323 + }, + { + "start": 2116.4, + "end": 2118.38, + "probability": 0.9199 + }, + { + "start": 2118.86, + "end": 2120.38, + "probability": 0.4689 + }, + { + "start": 2120.84, + "end": 2121.52, + "probability": 0.8646 + }, + { + "start": 2121.64, + "end": 2122.28, + "probability": 0.9718 + }, + { + "start": 2122.72, + "end": 2123.3, + "probability": 0.4193 + }, + { + "start": 2124.44, + "end": 2124.84, + "probability": 0.9819 + }, + { + "start": 2125.46, + "end": 2126.86, + "probability": 0.7635 + }, + { + "start": 2126.98, + "end": 2133.76, + "probability": 0.8264 + }, + { + "start": 2135.04, + "end": 2136.36, + "probability": 0.8637 + }, + { + "start": 2136.94, + "end": 2140.34, + "probability": 0.7277 + }, + { + "start": 2140.48, + "end": 2141.84, + "probability": 0.9809 + }, + { + "start": 2144.2, + "end": 2147.86, + "probability": 0.9647 + }, + { + "start": 2148.54, + "end": 2155.1, + "probability": 0.9724 + }, + { + "start": 2157.7, + "end": 2159.92, + "probability": 0.7191 + }, + { + "start": 2160.7, + "end": 2162.02, + "probability": 0.8414 + }, + { + "start": 2163.16, + "end": 2169.18, + "probability": 0.9219 + }, + { + "start": 2170.38, + "end": 2172.0, + "probability": 0.8777 + }, + { + "start": 2173.22, + "end": 2175.98, + "probability": 0.7296 + }, + { + "start": 2176.8, + "end": 2183.52, + "probability": 0.9985 + }, + { + "start": 2184.14, + "end": 2187.8, + "probability": 0.8769 + }, + { + "start": 2188.1, + "end": 2192.24, + "probability": 0.9914 + }, + { + "start": 2194.24, + "end": 2194.87, + "probability": 0.9854 + }, + { + "start": 2195.8, + "end": 2201.8, + "probability": 0.9543 + }, + { + "start": 2202.68, + "end": 2203.87, + "probability": 0.7671 + }, + { + "start": 2206.14, + "end": 2210.06, + "probability": 0.7189 + }, + { + "start": 2210.64, + "end": 2214.2, + "probability": 0.9876 + }, + { + "start": 2216.44, + "end": 2218.2, + "probability": 0.9707 + }, + { + "start": 2219.64, + "end": 2220.64, + "probability": 0.7538 + }, + { + "start": 2220.8, + "end": 2222.02, + "probability": 0.7523 + }, + { + "start": 2223.28, + "end": 2225.64, + "probability": 0.634 + }, + { + "start": 2227.46, + "end": 2230.58, + "probability": 0.7779 + }, + { + "start": 2232.14, + "end": 2236.8, + "probability": 0.9811 + }, + { + "start": 2239.22, + "end": 2241.48, + "probability": 0.9989 + }, + { + "start": 2241.54, + "end": 2242.26, + "probability": 0.5936 + }, + { + "start": 2242.56, + "end": 2245.48, + "probability": 0.979 + }, + { + "start": 2245.58, + "end": 2246.74, + "probability": 0.8289 + }, + { + "start": 2246.8, + "end": 2248.28, + "probability": 0.9017 + }, + { + "start": 2249.44, + "end": 2250.46, + "probability": 0.8337 + }, + { + "start": 2251.92, + "end": 2253.42, + "probability": 0.9443 + }, + { + "start": 2254.52, + "end": 2255.42, + "probability": 0.7956 + }, + { + "start": 2256.66, + "end": 2259.14, + "probability": 0.0975 + }, + { + "start": 2259.62, + "end": 2262.74, + "probability": 0.9227 + }, + { + "start": 2263.64, + "end": 2264.1, + "probability": 0.8914 + }, + { + "start": 2264.82, + "end": 2265.4, + "probability": 0.9422 + }, + { + "start": 2265.98, + "end": 2271.36, + "probability": 0.984 + }, + { + "start": 2271.38, + "end": 2273.7, + "probability": 0.8127 + }, + { + "start": 2275.16, + "end": 2276.22, + "probability": 0.9463 + }, + { + "start": 2277.7, + "end": 2279.02, + "probability": 0.9795 + }, + { + "start": 2279.66, + "end": 2282.1, + "probability": 0.9948 + }, + { + "start": 2284.12, + "end": 2284.94, + "probability": 0.9935 + }, + { + "start": 2285.56, + "end": 2289.82, + "probability": 0.9979 + }, + { + "start": 2289.82, + "end": 2293.46, + "probability": 0.9991 + }, + { + "start": 2295.78, + "end": 2298.1, + "probability": 0.8816 + }, + { + "start": 2299.18, + "end": 2301.54, + "probability": 0.9924 + }, + { + "start": 2302.76, + "end": 2306.76, + "probability": 0.6691 + }, + { + "start": 2307.36, + "end": 2311.26, + "probability": 0.9773 + }, + { + "start": 2311.8, + "end": 2313.26, + "probability": 0.9183 + }, + { + "start": 2314.2, + "end": 2317.72, + "probability": 0.998 + }, + { + "start": 2318.42, + "end": 2319.34, + "probability": 0.8654 + }, + { + "start": 2319.6, + "end": 2322.8, + "probability": 0.7406 + }, + { + "start": 2323.22, + "end": 2331.46, + "probability": 0.9421 + }, + { + "start": 2333.34, + "end": 2336.72, + "probability": 0.9955 + }, + { + "start": 2338.0, + "end": 2339.8, + "probability": 0.792 + }, + { + "start": 2341.36, + "end": 2343.54, + "probability": 0.8564 + }, + { + "start": 2344.2, + "end": 2346.2, + "probability": 0.9985 + }, + { + "start": 2347.58, + "end": 2350.4, + "probability": 0.9916 + }, + { + "start": 2351.1, + "end": 2353.8, + "probability": 0.9781 + }, + { + "start": 2354.86, + "end": 2355.86, + "probability": 0.5016 + }, + { + "start": 2355.98, + "end": 2359.14, + "probability": 0.7974 + }, + { + "start": 2360.12, + "end": 2362.48, + "probability": 0.6516 + }, + { + "start": 2363.24, + "end": 2366.76, + "probability": 0.8998 + }, + { + "start": 2367.04, + "end": 2368.82, + "probability": 0.994 + }, + { + "start": 2369.04, + "end": 2371.9, + "probability": 0.9878 + }, + { + "start": 2372.3, + "end": 2374.12, + "probability": 0.9968 + }, + { + "start": 2376.24, + "end": 2377.58, + "probability": 0.8784 + }, + { + "start": 2378.2, + "end": 2378.74, + "probability": 0.7533 + }, + { + "start": 2380.8, + "end": 2383.09, + "probability": 0.9304 + }, + { + "start": 2384.16, + "end": 2389.8, + "probability": 0.8014 + }, + { + "start": 2389.8, + "end": 2394.32, + "probability": 0.9675 + }, + { + "start": 2395.48, + "end": 2398.18, + "probability": 0.8399 + }, + { + "start": 2399.64, + "end": 2402.5, + "probability": 0.8014 + }, + { + "start": 2403.1, + "end": 2404.5, + "probability": 0.9557 + }, + { + "start": 2404.96, + "end": 2406.96, + "probability": 0.9733 + }, + { + "start": 2407.98, + "end": 2408.94, + "probability": 0.7481 + }, + { + "start": 2409.76, + "end": 2410.96, + "probability": 0.8604 + }, + { + "start": 2411.76, + "end": 2412.56, + "probability": 0.9553 + }, + { + "start": 2413.18, + "end": 2414.46, + "probability": 0.9725 + }, + { + "start": 2415.42, + "end": 2416.7, + "probability": 0.9695 + }, + { + "start": 2417.3, + "end": 2421.2, + "probability": 0.8708 + }, + { + "start": 2422.44, + "end": 2426.84, + "probability": 0.9318 + }, + { + "start": 2429.26, + "end": 2430.88, + "probability": 0.9312 + }, + { + "start": 2432.08, + "end": 2434.28, + "probability": 0.8293 + }, + { + "start": 2434.3, + "end": 2434.8, + "probability": 0.8913 + }, + { + "start": 2435.0, + "end": 2436.6, + "probability": 0.9329 + }, + { + "start": 2437.48, + "end": 2438.4, + "probability": 0.9297 + }, + { + "start": 2438.98, + "end": 2441.6, + "probability": 0.9319 + }, + { + "start": 2442.62, + "end": 2443.98, + "probability": 0.7563 + }, + { + "start": 2444.56, + "end": 2445.24, + "probability": 0.4791 + }, + { + "start": 2445.98, + "end": 2446.96, + "probability": 0.4976 + }, + { + "start": 2447.48, + "end": 2449.28, + "probability": 0.989 + }, + { + "start": 2449.7, + "end": 2451.07, + "probability": 0.9966 + }, + { + "start": 2453.12, + "end": 2456.04, + "probability": 0.9707 + }, + { + "start": 2456.64, + "end": 2459.84, + "probability": 0.9695 + }, + { + "start": 2462.1, + "end": 2463.54, + "probability": 0.9673 + }, + { + "start": 2464.4, + "end": 2464.8, + "probability": 0.484 + }, + { + "start": 2465.6, + "end": 2466.84, + "probability": 0.0362 + }, + { + "start": 2466.84, + "end": 2468.12, + "probability": 0.7903 + }, + { + "start": 2468.56, + "end": 2469.96, + "probability": 0.9789 + }, + { + "start": 2470.3, + "end": 2471.78, + "probability": 0.952 + }, + { + "start": 2472.22, + "end": 2473.54, + "probability": 0.9782 + }, + { + "start": 2473.86, + "end": 2475.12, + "probability": 0.8213 + }, + { + "start": 2475.4, + "end": 2477.26, + "probability": 0.9934 + }, + { + "start": 2477.56, + "end": 2478.62, + "probability": 0.9738 + }, + { + "start": 2478.78, + "end": 2480.64, + "probability": 0.3164 + }, + { + "start": 2481.04, + "end": 2482.54, + "probability": 0.9865 + }, + { + "start": 2482.62, + "end": 2483.55, + "probability": 0.9364 + }, + { + "start": 2486.3, + "end": 2489.32, + "probability": 0.9792 + }, + { + "start": 2490.22, + "end": 2491.36, + "probability": 0.9491 + }, + { + "start": 2492.68, + "end": 2494.08, + "probability": 0.0815 + }, + { + "start": 2494.18, + "end": 2494.6, + "probability": 0.1681 + }, + { + "start": 2494.72, + "end": 2496.92, + "probability": 0.931 + }, + { + "start": 2497.14, + "end": 2498.08, + "probability": 0.7932 + }, + { + "start": 2498.18, + "end": 2498.18, + "probability": 0.2779 + }, + { + "start": 2498.18, + "end": 2500.22, + "probability": 0.873 + }, + { + "start": 2500.44, + "end": 2501.49, + "probability": 0.6225 + }, + { + "start": 2502.34, + "end": 2504.26, + "probability": 0.9512 + }, + { + "start": 2504.36, + "end": 2506.58, + "probability": 0.6755 + }, + { + "start": 2507.66, + "end": 2508.5, + "probability": 0.7646 + }, + { + "start": 2509.48, + "end": 2510.72, + "probability": 0.9655 + }, + { + "start": 2511.14, + "end": 2511.82, + "probability": 0.6851 + }, + { + "start": 2512.18, + "end": 2514.2, + "probability": 0.4976 + }, + { + "start": 2514.94, + "end": 2516.16, + "probability": 0.6829 + }, + { + "start": 2516.84, + "end": 2517.74, + "probability": 0.9423 + }, + { + "start": 2518.38, + "end": 2522.46, + "probability": 0.9725 + }, + { + "start": 2522.56, + "end": 2524.22, + "probability": 0.9291 + }, + { + "start": 2525.2, + "end": 2526.02, + "probability": 0.3271 + }, + { + "start": 2527.28, + "end": 2530.28, + "probability": 0.9456 + }, + { + "start": 2530.6, + "end": 2531.94, + "probability": 0.7793 + }, + { + "start": 2532.36, + "end": 2534.42, + "probability": 0.9142 + }, + { + "start": 2535.18, + "end": 2537.58, + "probability": 0.9678 + }, + { + "start": 2538.82, + "end": 2540.76, + "probability": 0.6287 + }, + { + "start": 2542.08, + "end": 2544.06, + "probability": 0.9684 + }, + { + "start": 2545.28, + "end": 2547.32, + "probability": 0.9307 + }, + { + "start": 2548.46, + "end": 2551.13, + "probability": 0.5056 + }, + { + "start": 2552.4, + "end": 2553.42, + "probability": 0.1649 + }, + { + "start": 2554.68, + "end": 2556.04, + "probability": 0.9993 + }, + { + "start": 2556.92, + "end": 2560.52, + "probability": 0.9907 + }, + { + "start": 2560.52, + "end": 2562.9, + "probability": 0.9901 + }, + { + "start": 2563.82, + "end": 2564.34, + "probability": 0.9546 + }, + { + "start": 2564.64, + "end": 2565.78, + "probability": 0.9866 + }, + { + "start": 2566.76, + "end": 2567.44, + "probability": 0.486 + }, + { + "start": 2567.5, + "end": 2568.62, + "probability": 0.8037 + }, + { + "start": 2568.62, + "end": 2569.4, + "probability": 0.654 + }, + { + "start": 2569.58, + "end": 2570.48, + "probability": 0.9482 + }, + { + "start": 2571.08, + "end": 2571.34, + "probability": 0.5097 + }, + { + "start": 2573.0, + "end": 2578.92, + "probability": 0.8901 + }, + { + "start": 2579.98, + "end": 2581.06, + "probability": 0.9204 + }, + { + "start": 2582.48, + "end": 2583.44, + "probability": 0.9791 + }, + { + "start": 2583.52, + "end": 2586.46, + "probability": 0.8483 + }, + { + "start": 2586.86, + "end": 2588.02, + "probability": 0.9513 + }, + { + "start": 2588.88, + "end": 2592.44, + "probability": 0.9216 + }, + { + "start": 2592.92, + "end": 2593.78, + "probability": 0.9393 + }, + { + "start": 2595.32, + "end": 2600.86, + "probability": 0.9741 + }, + { + "start": 2601.92, + "end": 2604.92, + "probability": 0.9019 + }, + { + "start": 2605.02, + "end": 2605.74, + "probability": 0.99 + }, + { + "start": 2606.12, + "end": 2608.01, + "probability": 0.5987 + }, + { + "start": 2608.5, + "end": 2608.76, + "probability": 0.4065 + }, + { + "start": 2608.88, + "end": 2611.48, + "probability": 0.3507 + }, + { + "start": 2611.76, + "end": 2612.98, + "probability": 0.9578 + }, + { + "start": 2613.08, + "end": 2613.08, + "probability": 0.2188 + }, + { + "start": 2613.08, + "end": 2613.7, + "probability": 0.3011 + }, + { + "start": 2613.78, + "end": 2614.2, + "probability": 0.4726 + }, + { + "start": 2614.5, + "end": 2615.54, + "probability": 0.8645 + }, + { + "start": 2616.52, + "end": 2618.14, + "probability": 0.9406 + }, + { + "start": 2618.54, + "end": 2619.26, + "probability": 0.8726 + }, + { + "start": 2619.8, + "end": 2620.62, + "probability": 0.9629 + }, + { + "start": 2620.7, + "end": 2622.96, + "probability": 0.8492 + }, + { + "start": 2624.16, + "end": 2624.7, + "probability": 0.1077 + }, + { + "start": 2624.7, + "end": 2625.42, + "probability": 0.5754 + }, + { + "start": 2625.52, + "end": 2625.82, + "probability": 0.5466 + }, + { + "start": 2626.26, + "end": 2627.22, + "probability": 0.8398 + }, + { + "start": 2627.34, + "end": 2628.54, + "probability": 0.9875 + }, + { + "start": 2628.54, + "end": 2629.17, + "probability": 0.1471 + }, + { + "start": 2630.46, + "end": 2634.66, + "probability": 0.6655 + }, + { + "start": 2634.72, + "end": 2636.72, + "probability": 0.7791 + }, + { + "start": 2636.78, + "end": 2637.6, + "probability": 0.8867 + }, + { + "start": 2637.64, + "end": 2638.68, + "probability": 0.7867 + }, + { + "start": 2639.16, + "end": 2640.18, + "probability": 0.9603 + }, + { + "start": 2641.66, + "end": 2642.72, + "probability": 0.8818 + }, + { + "start": 2643.5, + "end": 2644.48, + "probability": 0.9622 + }, + { + "start": 2645.04, + "end": 2647.6, + "probability": 0.9261 + }, + { + "start": 2648.56, + "end": 2650.4, + "probability": 0.8023 + }, + { + "start": 2652.2, + "end": 2653.08, + "probability": 0.796 + }, + { + "start": 2653.98, + "end": 2655.28, + "probability": 0.4156 + }, + { + "start": 2655.86, + "end": 2658.1, + "probability": 0.8514 + }, + { + "start": 2658.78, + "end": 2660.59, + "probability": 0.7305 + }, + { + "start": 2662.0, + "end": 2666.63, + "probability": 0.8768 + }, + { + "start": 2668.46, + "end": 2670.5, + "probability": 0.9076 + }, + { + "start": 2670.66, + "end": 2673.9, + "probability": 0.966 + }, + { + "start": 2674.88, + "end": 2678.68, + "probability": 0.7281 + }, + { + "start": 2679.06, + "end": 2680.3, + "probability": 0.9629 + }, + { + "start": 2681.34, + "end": 2682.6, + "probability": 0.9353 + }, + { + "start": 2682.74, + "end": 2683.4, + "probability": 0.8094 + }, + { + "start": 2683.48, + "end": 2684.48, + "probability": 0.9785 + }, + { + "start": 2684.92, + "end": 2685.04, + "probability": 0.2338 + }, + { + "start": 2685.04, + "end": 2686.46, + "probability": 0.9727 + }, + { + "start": 2689.24, + "end": 2690.02, + "probability": 0.5446 + }, + { + "start": 2690.2, + "end": 2691.06, + "probability": 0.9834 + }, + { + "start": 2691.14, + "end": 2695.06, + "probability": 0.6857 + }, + { + "start": 2695.28, + "end": 2697.34, + "probability": 0.458 + }, + { + "start": 2697.88, + "end": 2700.06, + "probability": 0.7201 + }, + { + "start": 2700.82, + "end": 2701.14, + "probability": 0.4388 + }, + { + "start": 2701.56, + "end": 2701.56, + "probability": 0.2513 + }, + { + "start": 2701.56, + "end": 2701.56, + "probability": 0.6305 + }, + { + "start": 2701.56, + "end": 2703.04, + "probability": 0.7755 + }, + { + "start": 2703.28, + "end": 2704.08, + "probability": 0.7346 + }, + { + "start": 2704.88, + "end": 2705.9, + "probability": 0.6184 + }, + { + "start": 2706.54, + "end": 2708.88, + "probability": 0.9858 + }, + { + "start": 2710.04, + "end": 2711.66, + "probability": 0.6541 + }, + { + "start": 2712.88, + "end": 2713.46, + "probability": 0.2164 + }, + { + "start": 2713.92, + "end": 2716.26, + "probability": 0.9563 + }, + { + "start": 2716.34, + "end": 2716.72, + "probability": 0.5721 + }, + { + "start": 2717.48, + "end": 2717.58, + "probability": 0.1014 + }, + { + "start": 2717.58, + "end": 2719.28, + "probability": 0.9771 + }, + { + "start": 2719.3, + "end": 2720.26, + "probability": 0.4778 + }, + { + "start": 2720.44, + "end": 2722.56, + "probability": 0.7649 + }, + { + "start": 2723.32, + "end": 2724.84, + "probability": 0.9038 + }, + { + "start": 2725.5, + "end": 2726.66, + "probability": 0.7864 + }, + { + "start": 2727.12, + "end": 2728.78, + "probability": 0.6694 + }, + { + "start": 2728.78, + "end": 2730.14, + "probability": 0.469 + }, + { + "start": 2730.52, + "end": 2730.52, + "probability": 0.1142 + }, + { + "start": 2730.6, + "end": 2731.38, + "probability": 0.586 + }, + { + "start": 2731.66, + "end": 2732.32, + "probability": 0.7437 + }, + { + "start": 2732.56, + "end": 2734.38, + "probability": 0.6152 + }, + { + "start": 2734.66, + "end": 2735.14, + "probability": 0.5138 + }, + { + "start": 2736.48, + "end": 2738.42, + "probability": 0.4547 + }, + { + "start": 2738.96, + "end": 2739.86, + "probability": 0.9614 + }, + { + "start": 2739.96, + "end": 2741.9, + "probability": 0.9229 + }, + { + "start": 2742.52, + "end": 2744.1, + "probability": 0.2103 + }, + { + "start": 2744.92, + "end": 2745.6, + "probability": 0.2962 + }, + { + "start": 2746.82, + "end": 2746.92, + "probability": 0.2569 + }, + { + "start": 2747.58, + "end": 2749.82, + "probability": 0.1477 + }, + { + "start": 2749.82, + "end": 2750.8, + "probability": 0.7068 + }, + { + "start": 2751.86, + "end": 2758.74, + "probability": 0.9215 + }, + { + "start": 2759.1, + "end": 2760.7, + "probability": 0.8882 + }, + { + "start": 2760.9, + "end": 2762.08, + "probability": 0.6985 + }, + { + "start": 2763.16, + "end": 2768.92, + "probability": 0.7339 + }, + { + "start": 2769.66, + "end": 2772.08, + "probability": 0.7343 + }, + { + "start": 2772.28, + "end": 2774.4, + "probability": 0.1067 + }, + { + "start": 2774.52, + "end": 2774.72, + "probability": 0.0477 + }, + { + "start": 2774.72, + "end": 2774.72, + "probability": 0.1261 + }, + { + "start": 2774.72, + "end": 2775.62, + "probability": 0.8948 + }, + { + "start": 2776.62, + "end": 2777.78, + "probability": 0.8798 + }, + { + "start": 2778.26, + "end": 2780.78, + "probability": 0.8175 + }, + { + "start": 2780.92, + "end": 2783.58, + "probability": 0.9791 + }, + { + "start": 2784.54, + "end": 2786.62, + "probability": 0.7417 + }, + { + "start": 2787.4, + "end": 2787.5, + "probability": 0.6323 + }, + { + "start": 2787.5, + "end": 2788.93, + "probability": 0.8171 + }, + { + "start": 2789.2, + "end": 2791.9, + "probability": 0.9751 + }, + { + "start": 2792.0, + "end": 2793.06, + "probability": 0.9902 + }, + { + "start": 2793.48, + "end": 2793.8, + "probability": 0.6503 + }, + { + "start": 2794.18, + "end": 2794.7, + "probability": 0.359 + }, + { + "start": 2795.2, + "end": 2796.04, + "probability": 0.9717 + }, + { + "start": 2796.36, + "end": 2797.3, + "probability": 0.4812 + }, + { + "start": 2797.5, + "end": 2803.03, + "probability": 0.9977 + }, + { + "start": 2803.28, + "end": 2804.28, + "probability": 0.7119 + }, + { + "start": 2805.64, + "end": 2806.95, + "probability": 0.7356 + }, + { + "start": 2807.74, + "end": 2808.8, + "probability": 0.516 + }, + { + "start": 2809.6, + "end": 2810.54, + "probability": 0.7914 + }, + { + "start": 2811.16, + "end": 2813.92, + "probability": 0.9335 + }, + { + "start": 2815.1, + "end": 2816.4, + "probability": 0.9614 + }, + { + "start": 2817.66, + "end": 2819.92, + "probability": 0.8932 + }, + { + "start": 2821.24, + "end": 2822.0, + "probability": 0.8032 + }, + { + "start": 2822.04, + "end": 2822.96, + "probability": 0.9682 + }, + { + "start": 2824.34, + "end": 2826.56, + "probability": 0.8341 + }, + { + "start": 2826.64, + "end": 2828.1, + "probability": 0.9829 + }, + { + "start": 2828.2, + "end": 2831.04, + "probability": 0.9982 + }, + { + "start": 2831.52, + "end": 2833.56, + "probability": 0.9951 + }, + { + "start": 2834.02, + "end": 2835.88, + "probability": 0.8629 + }, + { + "start": 2836.46, + "end": 2837.22, + "probability": 0.8287 + }, + { + "start": 2837.96, + "end": 2838.96, + "probability": 0.9743 + }, + { + "start": 2839.34, + "end": 2844.42, + "probability": 0.992 + }, + { + "start": 2844.84, + "end": 2845.36, + "probability": 0.6365 + }, + { + "start": 2846.14, + "end": 2847.24, + "probability": 0.9524 + }, + { + "start": 2847.24, + "end": 2848.06, + "probability": 0.8029 + }, + { + "start": 2848.16, + "end": 2849.28, + "probability": 0.8613 + }, + { + "start": 2849.3, + "end": 2850.18, + "probability": 0.4464 + }, + { + "start": 2850.24, + "end": 2850.5, + "probability": 0.515 + }, + { + "start": 2851.6, + "end": 2855.12, + "probability": 0.9912 + }, + { + "start": 2855.78, + "end": 2857.54, + "probability": 0.9573 + }, + { + "start": 2858.22, + "end": 2862.8, + "probability": 0.9941 + }, + { + "start": 2863.34, + "end": 2864.38, + "probability": 0.8269 + }, + { + "start": 2864.44, + "end": 2865.02, + "probability": 0.6155 + }, + { + "start": 2865.18, + "end": 2865.88, + "probability": 0.9579 + }, + { + "start": 2866.4, + "end": 2867.88, + "probability": 0.9907 + }, + { + "start": 2867.98, + "end": 2869.06, + "probability": 0.9938 + }, + { + "start": 2869.74, + "end": 2873.62, + "probability": 0.9621 + }, + { + "start": 2874.08, + "end": 2875.18, + "probability": 0.562 + }, + { + "start": 2875.96, + "end": 2878.6, + "probability": 0.9885 + }, + { + "start": 2878.6, + "end": 2883.82, + "probability": 0.9935 + }, + { + "start": 2883.82, + "end": 2886.44, + "probability": 0.998 + }, + { + "start": 2886.8, + "end": 2891.2, + "probability": 0.9905 + }, + { + "start": 2891.58, + "end": 2892.36, + "probability": 0.3753 + }, + { + "start": 2892.36, + "end": 2892.66, + "probability": 0.1876 + }, + { + "start": 2893.8, + "end": 2894.8, + "probability": 0.4646 + }, + { + "start": 2894.8, + "end": 2897.0, + "probability": 0.6557 + }, + { + "start": 2897.46, + "end": 2898.44, + "probability": 0.6178 + }, + { + "start": 2898.86, + "end": 2901.04, + "probability": 0.3434 + }, + { + "start": 2901.48, + "end": 2901.94, + "probability": 0.3613 + }, + { + "start": 2902.7, + "end": 2904.56, + "probability": 0.248 + }, + { + "start": 2904.64, + "end": 2906.06, + "probability": 0.6285 + }, + { + "start": 2906.14, + "end": 2908.44, + "probability": 0.9946 + }, + { + "start": 2909.12, + "end": 2910.6, + "probability": 0.6941 + }, + { + "start": 2910.96, + "end": 2912.94, + "probability": 0.4819 + }, + { + "start": 2922.02, + "end": 2922.96, + "probability": 0.5746 + }, + { + "start": 2924.08, + "end": 2926.88, + "probability": 0.8477 + }, + { + "start": 2930.2, + "end": 2935.1, + "probability": 0.7586 + }, + { + "start": 2936.28, + "end": 2939.88, + "probability": 0.8575 + }, + { + "start": 2940.44, + "end": 2943.24, + "probability": 0.8686 + }, + { + "start": 2944.56, + "end": 2947.65, + "probability": 0.9676 + }, + { + "start": 2948.44, + "end": 2949.7, + "probability": 0.9629 + }, + { + "start": 2949.82, + "end": 2951.42, + "probability": 0.8343 + }, + { + "start": 2951.5, + "end": 2952.02, + "probability": 0.8387 + }, + { + "start": 2952.72, + "end": 2954.62, + "probability": 0.8541 + }, + { + "start": 2955.08, + "end": 2955.54, + "probability": 0.7563 + }, + { + "start": 2956.9, + "end": 2960.16, + "probability": 0.9679 + }, + { + "start": 2961.68, + "end": 2963.88, + "probability": 0.8875 + }, + { + "start": 2964.06, + "end": 2967.26, + "probability": 0.9942 + }, + { + "start": 2967.72, + "end": 2969.68, + "probability": 0.9168 + }, + { + "start": 2970.68, + "end": 2973.16, + "probability": 0.8749 + }, + { + "start": 2973.84, + "end": 2974.96, + "probability": 0.8906 + }, + { + "start": 2976.16, + "end": 2978.38, + "probability": 0.7134 + }, + { + "start": 2978.54, + "end": 2979.22, + "probability": 0.0792 + }, + { + "start": 2979.86, + "end": 2980.56, + "probability": 0.4943 + }, + { + "start": 2981.17, + "end": 2987.08, + "probability": 0.9658 + }, + { + "start": 2988.6, + "end": 2990.88, + "probability": 0.8709 + }, + { + "start": 2991.44, + "end": 2992.32, + "probability": 0.7843 + }, + { + "start": 2993.34, + "end": 2998.04, + "probability": 0.9928 + }, + { + "start": 2998.04, + "end": 3001.46, + "probability": 0.9858 + }, + { + "start": 3001.6, + "end": 3002.26, + "probability": 0.879 + }, + { + "start": 3003.24, + "end": 3012.74, + "probability": 0.9713 + }, + { + "start": 3013.72, + "end": 3018.84, + "probability": 0.9757 + }, + { + "start": 3019.0, + "end": 3019.96, + "probability": 0.5306 + }, + { + "start": 3019.98, + "end": 3021.52, + "probability": 0.9528 + }, + { + "start": 3022.86, + "end": 3027.38, + "probability": 0.992 + }, + { + "start": 3028.3, + "end": 3030.4, + "probability": 0.8879 + }, + { + "start": 3031.62, + "end": 3039.82, + "probability": 0.96 + }, + { + "start": 3040.52, + "end": 3043.92, + "probability": 0.7923 + }, + { + "start": 3044.88, + "end": 3051.72, + "probability": 0.8984 + }, + { + "start": 3052.04, + "end": 3053.02, + "probability": 0.9053 + }, + { + "start": 3053.56, + "end": 3054.22, + "probability": 0.8054 + }, + { + "start": 3056.04, + "end": 3056.46, + "probability": 0.1563 + }, + { + "start": 3056.76, + "end": 3059.22, + "probability": 0.4113 + }, + { + "start": 3059.32, + "end": 3060.1, + "probability": 0.6567 + }, + { + "start": 3060.46, + "end": 3062.44, + "probability": 0.6675 + }, + { + "start": 3062.52, + "end": 3063.64, + "probability": 0.7624 + }, + { + "start": 3065.34, + "end": 3065.8, + "probability": 0.1663 + }, + { + "start": 3065.84, + "end": 3065.84, + "probability": 0.0478 + }, + { + "start": 3065.84, + "end": 3066.76, + "probability": 0.5153 + }, + { + "start": 3070.48, + "end": 3071.92, + "probability": 0.8008 + }, + { + "start": 3072.22, + "end": 3073.14, + "probability": 0.8713 + }, + { + "start": 3073.68, + "end": 3075.5, + "probability": 0.9796 + }, + { + "start": 3076.54, + "end": 3078.02, + "probability": 0.8349 + }, + { + "start": 3078.1, + "end": 3078.68, + "probability": 0.9172 + }, + { + "start": 3078.76, + "end": 3083.49, + "probability": 0.9141 + }, + { + "start": 3084.18, + "end": 3085.6, + "probability": 0.8589 + }, + { + "start": 3085.76, + "end": 3085.76, + "probability": 0.6696 + }, + { + "start": 3085.76, + "end": 3085.76, + "probability": 0.1099 + }, + { + "start": 3085.76, + "end": 3086.21, + "probability": 0.6922 + }, + { + "start": 3086.84, + "end": 3089.88, + "probability": 0.4623 + }, + { + "start": 3090.32, + "end": 3092.62, + "probability": 0.8862 + }, + { + "start": 3092.7, + "end": 3093.36, + "probability": 0.8971 + }, + { + "start": 3093.74, + "end": 3094.14, + "probability": 0.4985 + }, + { + "start": 3094.24, + "end": 3094.82, + "probability": 0.2517 + }, + { + "start": 3094.94, + "end": 3095.66, + "probability": 0.4636 + }, + { + "start": 3096.3, + "end": 3096.88, + "probability": 0.9358 + }, + { + "start": 3096.98, + "end": 3098.1, + "probability": 0.9709 + }, + { + "start": 3098.62, + "end": 3100.1, + "probability": 0.9543 + }, + { + "start": 3100.16, + "end": 3101.38, + "probability": 0.9712 + }, + { + "start": 3101.46, + "end": 3102.56, + "probability": 0.3178 + }, + { + "start": 3103.56, + "end": 3104.5, + "probability": 0.3627 + }, + { + "start": 3104.54, + "end": 3105.32, + "probability": 0.4885 + }, + { + "start": 3106.29, + "end": 3108.06, + "probability": 0.8802 + }, + { + "start": 3108.3, + "end": 3109.02, + "probability": 0.7595 + }, + { + "start": 3110.3, + "end": 3115.52, + "probability": 0.9493 + }, + { + "start": 3116.02, + "end": 3117.12, + "probability": 0.3443 + }, + { + "start": 3117.48, + "end": 3119.58, + "probability": 0.5743 + }, + { + "start": 3120.42, + "end": 3120.48, + "probability": 0.0019 + }, + { + "start": 3121.06, + "end": 3121.26, + "probability": 0.0445 + }, + { + "start": 3121.26, + "end": 3121.5, + "probability": 0.154 + }, + { + "start": 3121.62, + "end": 3122.72, + "probability": 0.4012 + }, + { + "start": 3123.64, + "end": 3126.66, + "probability": 0.334 + }, + { + "start": 3126.78, + "end": 3127.22, + "probability": 0.8219 + }, + { + "start": 3127.28, + "end": 3128.68, + "probability": 0.973 + }, + { + "start": 3128.82, + "end": 3129.88, + "probability": 0.1716 + }, + { + "start": 3129.92, + "end": 3130.82, + "probability": 0.644 + }, + { + "start": 3130.94, + "end": 3131.36, + "probability": 0.8457 + }, + { + "start": 3132.16, + "end": 3137.64, + "probability": 0.4445 + }, + { + "start": 3137.96, + "end": 3138.52, + "probability": 0.6596 + }, + { + "start": 3139.44, + "end": 3140.82, + "probability": 0.1782 + }, + { + "start": 3141.2, + "end": 3141.2, + "probability": 0.0334 + }, + { + "start": 3141.2, + "end": 3142.44, + "probability": 0.6902 + }, + { + "start": 3142.88, + "end": 3145.18, + "probability": 0.958 + }, + { + "start": 3145.28, + "end": 3145.3, + "probability": 0.8081 + }, + { + "start": 3145.3, + "end": 3148.08, + "probability": 0.4539 + }, + { + "start": 3148.08, + "end": 3149.1, + "probability": 0.8564 + }, + { + "start": 3149.18, + "end": 3150.88, + "probability": 0.967 + }, + { + "start": 3151.44, + "end": 3152.86, + "probability": 0.1212 + }, + { + "start": 3152.98, + "end": 3154.74, + "probability": 0.6439 + }, + { + "start": 3155.5, + "end": 3157.38, + "probability": 0.1265 + }, + { + "start": 3157.54, + "end": 3157.74, + "probability": 0.6644 + }, + { + "start": 3159.38, + "end": 3163.62, + "probability": 0.5597 + }, + { + "start": 3164.28, + "end": 3166.08, + "probability": 0.332 + }, + { + "start": 3166.16, + "end": 3166.9, + "probability": 0.3207 + }, + { + "start": 3167.62, + "end": 3169.4, + "probability": 0.2854 + }, + { + "start": 3169.94, + "end": 3172.14, + "probability": 0.7092 + }, + { + "start": 3175.03, + "end": 3182.04, + "probability": 0.2859 + }, + { + "start": 3182.04, + "end": 3182.04, + "probability": 0.0222 + }, + { + "start": 3182.04, + "end": 3182.39, + "probability": 0.6239 + }, + { + "start": 3182.98, + "end": 3184.24, + "probability": 0.6566 + }, + { + "start": 3184.86, + "end": 3187.6, + "probability": 0.5642 + }, + { + "start": 3190.2, + "end": 3193.44, + "probability": 0.9121 + }, + { + "start": 3193.54, + "end": 3194.36, + "probability": 0.702 + }, + { + "start": 3195.71, + "end": 3198.88, + "probability": 0.994 + }, + { + "start": 3199.74, + "end": 3200.8, + "probability": 0.814 + }, + { + "start": 3201.24, + "end": 3204.62, + "probability": 0.8852 + }, + { + "start": 3205.0, + "end": 3205.98, + "probability": 0.1948 + }, + { + "start": 3206.52, + "end": 3208.54, + "probability": 0.9873 + }, + { + "start": 3209.1, + "end": 3212.26, + "probability": 0.96 + }, + { + "start": 3212.26, + "end": 3215.22, + "probability": 0.9948 + }, + { + "start": 3215.52, + "end": 3216.76, + "probability": 0.5291 + }, + { + "start": 3216.82, + "end": 3224.12, + "probability": 0.7167 + }, + { + "start": 3224.96, + "end": 3226.71, + "probability": 0.9604 + }, + { + "start": 3227.38, + "end": 3228.14, + "probability": 0.9134 + }, + { + "start": 3228.88, + "end": 3232.96, + "probability": 0.9937 + }, + { + "start": 3232.96, + "end": 3236.24, + "probability": 0.9699 + }, + { + "start": 3236.86, + "end": 3237.16, + "probability": 0.5132 + }, + { + "start": 3237.84, + "end": 3238.74, + "probability": 0.862 + }, + { + "start": 3238.9, + "end": 3240.18, + "probability": 0.4697 + }, + { + "start": 3241.34, + "end": 3244.22, + "probability": 0.8639 + }, + { + "start": 3245.02, + "end": 3247.26, + "probability": 0.971 + }, + { + "start": 3248.14, + "end": 3250.11, + "probability": 0.9795 + }, + { + "start": 3250.88, + "end": 3251.78, + "probability": 0.722 + }, + { + "start": 3252.12, + "end": 3252.92, + "probability": 0.6794 + }, + { + "start": 3253.34, + "end": 3254.68, + "probability": 0.9015 + }, + { + "start": 3255.2, + "end": 3255.83, + "probability": 0.9363 + }, + { + "start": 3256.14, + "end": 3257.74, + "probability": 0.8141 + }, + { + "start": 3257.94, + "end": 3258.72, + "probability": 0.8372 + }, + { + "start": 3259.02, + "end": 3261.1, + "probability": 0.9466 + }, + { + "start": 3261.74, + "end": 3265.84, + "probability": 0.9119 + }, + { + "start": 3267.0, + "end": 3269.26, + "probability": 0.701 + }, + { + "start": 3270.64, + "end": 3271.21, + "probability": 0.0546 + }, + { + "start": 3272.7, + "end": 3276.84, + "probability": 0.992 + }, + { + "start": 3277.68, + "end": 3279.7, + "probability": 0.8187 + }, + { + "start": 3281.34, + "end": 3281.76, + "probability": 0.434 + }, + { + "start": 3283.94, + "end": 3285.88, + "probability": 0.9095 + }, + { + "start": 3286.4, + "end": 3287.6, + "probability": 0.076 + }, + { + "start": 3288.2, + "end": 3288.66, + "probability": 0.072 + }, + { + "start": 3288.66, + "end": 3288.66, + "probability": 0.0054 + }, + { + "start": 3288.66, + "end": 3292.28, + "probability": 0.9243 + }, + { + "start": 3292.86, + "end": 3297.28, + "probability": 0.7379 + }, + { + "start": 3298.18, + "end": 3300.36, + "probability": 0.8292 + }, + { + "start": 3301.22, + "end": 3302.56, + "probability": 0.9956 + }, + { + "start": 3303.32, + "end": 3305.04, + "probability": 0.9609 + }, + { + "start": 3305.84, + "end": 3306.46, + "probability": 0.8481 + }, + { + "start": 3307.2, + "end": 3308.2, + "probability": 0.7752 + }, + { + "start": 3309.12, + "end": 3313.8, + "probability": 0.975 + }, + { + "start": 3313.98, + "end": 3314.64, + "probability": 0.9189 + }, + { + "start": 3315.86, + "end": 3319.62, + "probability": 0.9926 + }, + { + "start": 3320.46, + "end": 3321.51, + "probability": 0.9884 + }, + { + "start": 3321.96, + "end": 3324.3, + "probability": 0.8306 + }, + { + "start": 3324.6, + "end": 3326.1, + "probability": 0.2859 + }, + { + "start": 3327.22, + "end": 3330.2, + "probability": 0.9666 + }, + { + "start": 3330.78, + "end": 3333.28, + "probability": 0.9796 + }, + { + "start": 3334.6, + "end": 3336.9, + "probability": 0.9341 + }, + { + "start": 3338.19, + "end": 3340.6, + "probability": 0.5032 + }, + { + "start": 3341.62, + "end": 3343.48, + "probability": 0.6469 + }, + { + "start": 3343.48, + "end": 3343.58, + "probability": 0.6641 + }, + { + "start": 3343.88, + "end": 3344.86, + "probability": 0.4703 + }, + { + "start": 3345.7, + "end": 3345.86, + "probability": 0.1634 + }, + { + "start": 3345.86, + "end": 3346.02, + "probability": 0.5486 + }, + { + "start": 3346.84, + "end": 3349.42, + "probability": 0.7536 + }, + { + "start": 3349.56, + "end": 3350.36, + "probability": 0.6574 + }, + { + "start": 3350.46, + "end": 3351.8, + "probability": 0.7651 + }, + { + "start": 3352.91, + "end": 3357.08, + "probability": 0.9471 + }, + { + "start": 3358.13, + "end": 3360.98, + "probability": 0.8819 + }, + { + "start": 3361.16, + "end": 3363.66, + "probability": 0.6245 + }, + { + "start": 3364.24, + "end": 3366.4, + "probability": 0.7513 + }, + { + "start": 3367.24, + "end": 3369.38, + "probability": 0.4922 + }, + { + "start": 3369.8, + "end": 3370.1, + "probability": 0.0571 + }, + { + "start": 3370.14, + "end": 3370.92, + "probability": 0.9562 + }, + { + "start": 3371.34, + "end": 3375.52, + "probability": 0.8825 + }, + { + "start": 3376.02, + "end": 3377.4, + "probability": 0.9465 + }, + { + "start": 3377.52, + "end": 3378.68, + "probability": 0.7998 + }, + { + "start": 3380.56, + "end": 3380.92, + "probability": 0.9451 + }, + { + "start": 3381.48, + "end": 3382.28, + "probability": 0.5776 + }, + { + "start": 3382.76, + "end": 3384.28, + "probability": 0.7768 + }, + { + "start": 3384.3, + "end": 3385.5, + "probability": 0.799 + }, + { + "start": 3385.6, + "end": 3386.4, + "probability": 0.8511 + }, + { + "start": 3386.4, + "end": 3388.42, + "probability": 0.8011 + }, + { + "start": 3389.32, + "end": 3389.98, + "probability": 0.5128 + }, + { + "start": 3390.5, + "end": 3394.82, + "probability": 0.8022 + }, + { + "start": 3395.12, + "end": 3398.74, + "probability": 0.8368 + }, + { + "start": 3398.84, + "end": 3400.54, + "probability": 0.9398 + }, + { + "start": 3401.56, + "end": 3403.4, + "probability": 0.8882 + }, + { + "start": 3403.98, + "end": 3406.16, + "probability": 0.9105 + }, + { + "start": 3407.1, + "end": 3407.24, + "probability": 0.7058 + }, + { + "start": 3407.48, + "end": 3407.96, + "probability": 0.8882 + }, + { + "start": 3408.02, + "end": 3408.54, + "probability": 0.8943 + }, + { + "start": 3408.64, + "end": 3409.36, + "probability": 0.9307 + }, + { + "start": 3411.66, + "end": 3412.88, + "probability": 0.9191 + }, + { + "start": 3412.92, + "end": 3413.44, + "probability": 0.3596 + }, + { + "start": 3413.6, + "end": 3414.24, + "probability": 0.9725 + }, + { + "start": 3415.28, + "end": 3418.04, + "probability": 0.5483 + }, + { + "start": 3419.96, + "end": 3421.04, + "probability": 0.9893 + }, + { + "start": 3421.68, + "end": 3424.2, + "probability": 0.9632 + }, + { + "start": 3424.56, + "end": 3427.92, + "probability": 0.6836 + }, + { + "start": 3429.22, + "end": 3429.66, + "probability": 0.6036 + }, + { + "start": 3430.94, + "end": 3431.43, + "probability": 0.9067 + }, + { + "start": 3431.7, + "end": 3432.48, + "probability": 0.556 + }, + { + "start": 3432.72, + "end": 3434.02, + "probability": 0.6973 + }, + { + "start": 3434.8, + "end": 3435.64, + "probability": 0.9185 + }, + { + "start": 3437.24, + "end": 3438.28, + "probability": 0.78 + }, + { + "start": 3439.26, + "end": 3443.84, + "probability": 0.9663 + }, + { + "start": 3444.22, + "end": 3445.68, + "probability": 0.8574 + }, + { + "start": 3445.76, + "end": 3447.48, + "probability": 0.7618 + }, + { + "start": 3447.54, + "end": 3448.52, + "probability": 0.6272 + }, + { + "start": 3449.74, + "end": 3452.24, + "probability": 0.7976 + }, + { + "start": 3453.42, + "end": 3455.62, + "probability": 0.9621 + }, + { + "start": 3455.94, + "end": 3456.62, + "probability": 0.555 + }, + { + "start": 3456.7, + "end": 3460.16, + "probability": 0.896 + }, + { + "start": 3460.84, + "end": 3461.7, + "probability": 0.8888 + }, + { + "start": 3462.24, + "end": 3468.06, + "probability": 0.9879 + }, + { + "start": 3468.18, + "end": 3470.5, + "probability": 0.5543 + }, + { + "start": 3471.12, + "end": 3472.6, + "probability": 0.6649 + }, + { + "start": 3473.22, + "end": 3479.16, + "probability": 0.8183 + }, + { + "start": 3480.02, + "end": 3482.01, + "probability": 0.6184 + }, + { + "start": 3483.14, + "end": 3483.98, + "probability": 0.331 + }, + { + "start": 3484.42, + "end": 3486.78, + "probability": 0.9902 + }, + { + "start": 3487.0, + "end": 3487.5, + "probability": 0.0864 + }, + { + "start": 3487.64, + "end": 3490.22, + "probability": 0.9722 + }, + { + "start": 3490.22, + "end": 3490.78, + "probability": 0.7572 + }, + { + "start": 3491.12, + "end": 3491.7, + "probability": 0.5919 + }, + { + "start": 3492.4, + "end": 3493.9, + "probability": 0.8532 + }, + { + "start": 3494.0, + "end": 3496.92, + "probability": 0.9271 + }, + { + "start": 3497.18, + "end": 3497.72, + "probability": 0.4827 + }, + { + "start": 3498.08, + "end": 3499.4, + "probability": 0.9518 + }, + { + "start": 3499.78, + "end": 3504.32, + "probability": 0.9955 + }, + { + "start": 3504.72, + "end": 3505.34, + "probability": 0.6064 + }, + { + "start": 3505.54, + "end": 3507.52, + "probability": 0.6938 + }, + { + "start": 3507.86, + "end": 3508.2, + "probability": 0.844 + }, + { + "start": 3509.76, + "end": 3511.06, + "probability": 0.6439 + }, + { + "start": 3511.18, + "end": 3514.48, + "probability": 0.9944 + }, + { + "start": 3515.02, + "end": 3516.28, + "probability": 0.9547 + }, + { + "start": 3517.74, + "end": 3520.37, + "probability": 0.9937 + }, + { + "start": 3520.44, + "end": 3523.16, + "probability": 0.9439 + }, + { + "start": 3523.36, + "end": 3523.36, + "probability": 0.0006 + }, + { + "start": 3523.92, + "end": 3527.44, + "probability": 0.4758 + }, + { + "start": 3527.82, + "end": 3528.98, + "probability": 0.8341 + }, + { + "start": 3529.0, + "end": 3529.52, + "probability": 0.7861 + }, + { + "start": 3530.06, + "end": 3533.22, + "probability": 0.9939 + }, + { + "start": 3533.4, + "end": 3536.2, + "probability": 0.9731 + }, + { + "start": 3536.64, + "end": 3537.5, + "probability": 0.6907 + }, + { + "start": 3537.76, + "end": 3539.0, + "probability": 0.5188 + }, + { + "start": 3539.04, + "end": 3542.44, + "probability": 0.6587 + }, + { + "start": 3542.48, + "end": 3543.66, + "probability": 0.8576 + }, + { + "start": 3543.8, + "end": 3545.24, + "probability": 0.0153 + }, + { + "start": 3545.34, + "end": 3546.74, + "probability": 0.2678 + }, + { + "start": 3546.88, + "end": 3549.02, + "probability": 0.9181 + }, + { + "start": 3549.82, + "end": 3551.06, + "probability": 0.913 + }, + { + "start": 3551.38, + "end": 3556.52, + "probability": 0.9315 + }, + { + "start": 3556.82, + "end": 3558.6, + "probability": 0.9849 + }, + { + "start": 3559.86, + "end": 3561.54, + "probability": 0.9145 + }, + { + "start": 3563.36, + "end": 3566.74, + "probability": 0.9746 + }, + { + "start": 3567.66, + "end": 3570.72, + "probability": 0.6759 + }, + { + "start": 3571.2, + "end": 3574.32, + "probability": 0.7498 + }, + { + "start": 3575.74, + "end": 3576.92, + "probability": 0.8894 + }, + { + "start": 3577.32, + "end": 3578.8, + "probability": 0.9666 + }, + { + "start": 3580.12, + "end": 3583.88, + "probability": 0.9518 + }, + { + "start": 3584.58, + "end": 3587.64, + "probability": 0.7693 + }, + { + "start": 3588.42, + "end": 3590.28, + "probability": 0.9375 + }, + { + "start": 3591.34, + "end": 3593.72, + "probability": 0.9922 + }, + { + "start": 3593.72, + "end": 3593.96, + "probability": 0.1701 + }, + { + "start": 3594.16, + "end": 3597.12, + "probability": 0.3939 + }, + { + "start": 3597.14, + "end": 3598.18, + "probability": 0.709 + }, + { + "start": 3598.18, + "end": 3598.24, + "probability": 0.1382 + }, + { + "start": 3599.0, + "end": 3600.24, + "probability": 0.6136 + }, + { + "start": 3600.26, + "end": 3600.96, + "probability": 0.5488 + }, + { + "start": 3601.02, + "end": 3602.78, + "probability": 0.8135 + }, + { + "start": 3603.24, + "end": 3604.08, + "probability": 0.4665 + }, + { + "start": 3604.18, + "end": 3605.6, + "probability": 0.6246 + }, + { + "start": 3605.72, + "end": 3607.54, + "probability": 0.9624 + }, + { + "start": 3609.52, + "end": 3609.66, + "probability": 0.4009 + }, + { + "start": 3610.02, + "end": 3610.98, + "probability": 0.9656 + }, + { + "start": 3611.04, + "end": 3612.64, + "probability": 0.9565 + }, + { + "start": 3612.9, + "end": 3613.68, + "probability": 0.9609 + }, + { + "start": 3613.78, + "end": 3614.62, + "probability": 0.8703 + }, + { + "start": 3614.7, + "end": 3615.64, + "probability": 0.8663 + }, + { + "start": 3615.74, + "end": 3617.1, + "probability": 0.9755 + }, + { + "start": 3617.62, + "end": 3620.08, + "probability": 0.9685 + }, + { + "start": 3620.7, + "end": 3620.82, + "probability": 0.0776 + }, + { + "start": 3620.82, + "end": 3621.9, + "probability": 0.7355 + }, + { + "start": 3622.7, + "end": 3623.92, + "probability": 0.6343 + }, + { + "start": 3624.6, + "end": 3626.77, + "probability": 0.9961 + }, + { + "start": 3627.64, + "end": 3630.24, + "probability": 0.9459 + }, + { + "start": 3630.8, + "end": 3634.72, + "probability": 0.8641 + }, + { + "start": 3635.2, + "end": 3637.3, + "probability": 0.7746 + }, + { + "start": 3638.14, + "end": 3638.9, + "probability": 0.7232 + }, + { + "start": 3638.96, + "end": 3639.38, + "probability": 0.8941 + }, + { + "start": 3639.62, + "end": 3641.68, + "probability": 0.8016 + }, + { + "start": 3643.44, + "end": 3645.12, + "probability": 0.0155 + }, + { + "start": 3646.48, + "end": 3647.68, + "probability": 0.7453 + }, + { + "start": 3648.2, + "end": 3653.38, + "probability": 0.9734 + }, + { + "start": 3653.38, + "end": 3660.22, + "probability": 0.8593 + }, + { + "start": 3661.38, + "end": 3662.58, + "probability": 0.1535 + }, + { + "start": 3663.24, + "end": 3666.69, + "probability": 0.9863 + }, + { + "start": 3666.74, + "end": 3669.62, + "probability": 0.0492 + }, + { + "start": 3669.68, + "end": 3671.36, + "probability": 0.2526 + }, + { + "start": 3672.44, + "end": 3675.02, + "probability": 0.8239 + }, + { + "start": 3675.06, + "end": 3677.9, + "probability": 0.6542 + }, + { + "start": 3678.1, + "end": 3679.3, + "probability": 0.7425 + }, + { + "start": 3679.72, + "end": 3681.2, + "probability": 0.5784 + }, + { + "start": 3681.56, + "end": 3682.14, + "probability": 0.6929 + }, + { + "start": 3682.22, + "end": 3683.02, + "probability": 0.939 + }, + { + "start": 3683.04, + "end": 3684.22, + "probability": 0.9347 + }, + { + "start": 3684.64, + "end": 3685.08, + "probability": 0.6911 + }, + { + "start": 3687.2, + "end": 3688.46, + "probability": 0.5745 + }, + { + "start": 3688.56, + "end": 3691.5, + "probability": 0.7598 + }, + { + "start": 3691.56, + "end": 3698.02, + "probability": 0.9784 + }, + { + "start": 3698.4, + "end": 3698.92, + "probability": 0.9574 + }, + { + "start": 3699.56, + "end": 3700.38, + "probability": 0.7673 + }, + { + "start": 3700.48, + "end": 3704.8, + "probability": 0.8739 + }, + { + "start": 3704.94, + "end": 3706.18, + "probability": 0.9329 + }, + { + "start": 3706.24, + "end": 3707.64, + "probability": 0.9324 + }, + { + "start": 3708.28, + "end": 3712.6, + "probability": 0.9896 + }, + { + "start": 3712.74, + "end": 3714.34, + "probability": 0.9641 + }, + { + "start": 3714.84, + "end": 3717.46, + "probability": 0.9663 + }, + { + "start": 3718.68, + "end": 3721.2, + "probability": 0.8986 + }, + { + "start": 3722.04, + "end": 3725.48, + "probability": 0.9073 + }, + { + "start": 3727.58, + "end": 3730.47, + "probability": 0.969 + }, + { + "start": 3730.88, + "end": 3737.16, + "probability": 0.9827 + }, + { + "start": 3738.34, + "end": 3740.5, + "probability": 0.9958 + }, + { + "start": 3741.54, + "end": 3743.88, + "probability": 0.9756 + }, + { + "start": 3744.78, + "end": 3748.32, + "probability": 0.8166 + }, + { + "start": 3749.5, + "end": 3751.4, + "probability": 0.8995 + }, + { + "start": 3751.58, + "end": 3752.44, + "probability": 0.8987 + }, + { + "start": 3752.54, + "end": 3758.18, + "probability": 0.9556 + }, + { + "start": 3759.1, + "end": 3761.22, + "probability": 0.9264 + }, + { + "start": 3761.28, + "end": 3762.22, + "probability": 0.9872 + }, + { + "start": 3764.16, + "end": 3768.9, + "probability": 0.9907 + }, + { + "start": 3768.96, + "end": 3770.14, + "probability": 0.8955 + }, + { + "start": 3770.58, + "end": 3771.82, + "probability": 0.8934 + }, + { + "start": 3771.94, + "end": 3772.44, + "probability": 0.9022 + }, + { + "start": 3773.14, + "end": 3773.86, + "probability": 0.9586 + }, + { + "start": 3774.42, + "end": 3774.82, + "probability": 0.4387 + }, + { + "start": 3775.4, + "end": 3777.16, + "probability": 0.9893 + }, + { + "start": 3777.8, + "end": 3778.68, + "probability": 0.4707 + }, + { + "start": 3779.14, + "end": 3781.38, + "probability": 0.9484 + }, + { + "start": 3781.86, + "end": 3785.42, + "probability": 0.9878 + }, + { + "start": 3785.86, + "end": 3787.33, + "probability": 0.5226 + }, + { + "start": 3787.5, + "end": 3788.44, + "probability": 0.569 + }, + { + "start": 3788.66, + "end": 3790.18, + "probability": 0.9237 + }, + { + "start": 3790.6, + "end": 3794.76, + "probability": 0.6296 + }, + { + "start": 3795.36, + "end": 3800.1, + "probability": 0.9649 + }, + { + "start": 3800.4, + "end": 3800.94, + "probability": 0.5413 + }, + { + "start": 3800.98, + "end": 3802.14, + "probability": 0.7177 + }, + { + "start": 3804.78, + "end": 3805.98, + "probability": 0.6545 + }, + { + "start": 3806.14, + "end": 3806.16, + "probability": 0.38 + }, + { + "start": 3806.16, + "end": 3808.34, + "probability": 0.8565 + }, + { + "start": 3808.62, + "end": 3809.54, + "probability": 0.7754 + }, + { + "start": 3810.08, + "end": 3812.82, + "probability": 0.9941 + }, + { + "start": 3813.42, + "end": 3817.34, + "probability": 0.9847 + }, + { + "start": 3818.64, + "end": 3820.0, + "probability": 0.9553 + }, + { + "start": 3820.64, + "end": 3824.8, + "probability": 0.9973 + }, + { + "start": 3825.3, + "end": 3829.28, + "probability": 0.9899 + }, + { + "start": 3830.08, + "end": 3834.76, + "probability": 0.9943 + }, + { + "start": 3835.18, + "end": 3837.24, + "probability": 0.9801 + }, + { + "start": 3837.72, + "end": 3838.84, + "probability": 0.8323 + }, + { + "start": 3838.96, + "end": 3839.9, + "probability": 0.9413 + }, + { + "start": 3840.14, + "end": 3840.9, + "probability": 0.8971 + }, + { + "start": 3841.34, + "end": 3844.74, + "probability": 0.9617 + }, + { + "start": 3845.36, + "end": 3849.28, + "probability": 0.9878 + }, + { + "start": 3849.84, + "end": 3854.4, + "probability": 0.9987 + }, + { + "start": 3854.96, + "end": 3857.18, + "probability": 0.9979 + }, + { + "start": 3857.18, + "end": 3860.44, + "probability": 0.9966 + }, + { + "start": 3861.0, + "end": 3863.82, + "probability": 0.8218 + }, + { + "start": 3864.78, + "end": 3866.92, + "probability": 0.9404 + }, + { + "start": 3867.32, + "end": 3869.82, + "probability": 0.9839 + }, + { + "start": 3870.44, + "end": 3871.18, + "probability": 0.8163 + }, + { + "start": 3871.32, + "end": 3872.24, + "probability": 0.704 + }, + { + "start": 3872.5, + "end": 3875.12, + "probability": 0.9891 + }, + { + "start": 3875.36, + "end": 3876.82, + "probability": 0.8355 + }, + { + "start": 3877.12, + "end": 3879.04, + "probability": 0.8725 + }, + { + "start": 3879.44, + "end": 3882.72, + "probability": 0.9863 + }, + { + "start": 3883.22, + "end": 3887.4, + "probability": 0.8454 + }, + { + "start": 3887.4, + "end": 3891.18, + "probability": 0.9946 + }, + { + "start": 3891.6, + "end": 3894.44, + "probability": 0.4925 + }, + { + "start": 3894.7, + "end": 3895.26, + "probability": 0.4411 + }, + { + "start": 3895.42, + "end": 3896.76, + "probability": 0.7537 + }, + { + "start": 3897.24, + "end": 3897.48, + "probability": 0.0416 + }, + { + "start": 3907.02, + "end": 3909.55, + "probability": 0.6721 + }, + { + "start": 3910.58, + "end": 3914.18, + "probability": 0.9844 + }, + { + "start": 3914.4, + "end": 3916.71, + "probability": 0.9899 + }, + { + "start": 3917.58, + "end": 3921.84, + "probability": 0.9937 + }, + { + "start": 3922.86, + "end": 3926.38, + "probability": 0.7585 + }, + { + "start": 3926.94, + "end": 3928.24, + "probability": 0.9261 + }, + { + "start": 3928.32, + "end": 3932.18, + "probability": 0.9602 + }, + { + "start": 3932.3, + "end": 3935.98, + "probability": 0.8319 + }, + { + "start": 3936.76, + "end": 3937.34, + "probability": 0.3577 + }, + { + "start": 3937.64, + "end": 3938.21, + "probability": 0.3186 + }, + { + "start": 3938.76, + "end": 3940.6, + "probability": 0.9453 + }, + { + "start": 3941.14, + "end": 3942.96, + "probability": 0.9881 + }, + { + "start": 3943.6, + "end": 3944.58, + "probability": 0.9321 + }, + { + "start": 3944.8, + "end": 3947.1, + "probability": 0.9805 + }, + { + "start": 3947.72, + "end": 3949.06, + "probability": 0.9842 + }, + { + "start": 3949.34, + "end": 3950.56, + "probability": 0.8395 + }, + { + "start": 3950.68, + "end": 3954.88, + "probability": 0.9797 + }, + { + "start": 3955.4, + "end": 3961.18, + "probability": 0.9714 + }, + { + "start": 3961.38, + "end": 3962.06, + "probability": 0.9482 + }, + { + "start": 3962.1, + "end": 3962.52, + "probability": 0.489 + }, + { + "start": 3962.6, + "end": 3963.99, + "probability": 0.9331 + }, + { + "start": 3965.26, + "end": 3966.08, + "probability": 0.4899 + }, + { + "start": 3966.28, + "end": 3967.31, + "probability": 0.9849 + }, + { + "start": 3967.52, + "end": 3968.56, + "probability": 0.2995 + }, + { + "start": 3968.62, + "end": 3969.56, + "probability": 0.8464 + }, + { + "start": 3969.68, + "end": 3970.6, + "probability": 0.8495 + }, + { + "start": 3970.82, + "end": 3972.26, + "probability": 0.8793 + }, + { + "start": 3972.3, + "end": 3973.56, + "probability": 0.9346 + }, + { + "start": 3973.88, + "end": 3974.12, + "probability": 0.6701 + }, + { + "start": 3974.18, + "end": 3974.92, + "probability": 0.9126 + }, + { + "start": 3975.02, + "end": 3976.16, + "probability": 0.7444 + }, + { + "start": 3976.5, + "end": 3980.26, + "probability": 0.9983 + }, + { + "start": 3980.26, + "end": 3983.74, + "probability": 0.9973 + }, + { + "start": 3983.86, + "end": 3985.3, + "probability": 0.5081 + }, + { + "start": 3986.96, + "end": 3989.84, + "probability": 0.6855 + }, + { + "start": 3990.38, + "end": 3992.76, + "probability": 0.9297 + }, + { + "start": 3993.3, + "end": 3995.98, + "probability": 0.9695 + }, + { + "start": 3996.68, + "end": 4000.31, + "probability": 0.9894 + }, + { + "start": 4000.58, + "end": 4001.58, + "probability": 0.7709 + }, + { + "start": 4002.36, + "end": 4004.0, + "probability": 0.8821 + }, + { + "start": 4004.04, + "end": 4006.66, + "probability": 0.9962 + }, + { + "start": 4007.28, + "end": 4008.96, + "probability": 0.7598 + }, + { + "start": 4009.2, + "end": 4009.62, + "probability": 0.725 + }, + { + "start": 4009.78, + "end": 4014.16, + "probability": 0.9561 + }, + { + "start": 4014.62, + "end": 4016.24, + "probability": 0.8142 + }, + { + "start": 4016.28, + "end": 4019.18, + "probability": 0.8766 + }, + { + "start": 4019.54, + "end": 4022.02, + "probability": 0.9912 + }, + { + "start": 4022.46, + "end": 4022.78, + "probability": 0.5825 + }, + { + "start": 4022.94, + "end": 4023.48, + "probability": 0.8342 + }, + { + "start": 4023.6, + "end": 4025.22, + "probability": 0.9642 + }, + { + "start": 4025.52, + "end": 4027.1, + "probability": 0.8784 + }, + { + "start": 4027.22, + "end": 4028.18, + "probability": 0.9496 + }, + { + "start": 4028.26, + "end": 4029.08, + "probability": 0.6969 + }, + { + "start": 4029.14, + "end": 4030.86, + "probability": 0.98 + }, + { + "start": 4031.12, + "end": 4032.64, + "probability": 0.76 + }, + { + "start": 4032.82, + "end": 4034.32, + "probability": 0.8086 + }, + { + "start": 4034.64, + "end": 4036.46, + "probability": 0.8242 + }, + { + "start": 4036.92, + "end": 4039.08, + "probability": 0.9911 + }, + { + "start": 4039.08, + "end": 4042.74, + "probability": 0.9829 + }, + { + "start": 4043.62, + "end": 4044.48, + "probability": 0.8418 + }, + { + "start": 4045.0, + "end": 4046.1, + "probability": 0.7456 + }, + { + "start": 4046.4, + "end": 4047.2, + "probability": 0.7354 + }, + { + "start": 4047.58, + "end": 4049.04, + "probability": 0.962 + }, + { + "start": 4049.2, + "end": 4050.75, + "probability": 0.9749 + }, + { + "start": 4052.26, + "end": 4054.4, + "probability": 0.5428 + }, + { + "start": 4054.5, + "end": 4055.42, + "probability": 0.7535 + }, + { + "start": 4055.5, + "end": 4056.7, + "probability": 0.9404 + }, + { + "start": 4056.76, + "end": 4058.02, + "probability": 0.722 + }, + { + "start": 4058.16, + "end": 4059.28, + "probability": 0.9055 + }, + { + "start": 4059.36, + "end": 4063.34, + "probability": 0.9939 + }, + { + "start": 4063.86, + "end": 4065.46, + "probability": 0.9849 + }, + { + "start": 4065.82, + "end": 4066.58, + "probability": 0.7467 + }, + { + "start": 4066.64, + "end": 4067.88, + "probability": 0.9177 + }, + { + "start": 4068.36, + "end": 4070.88, + "probability": 0.9785 + }, + { + "start": 4071.08, + "end": 4071.57, + "probability": 0.5524 + }, + { + "start": 4072.2, + "end": 4073.6, + "probability": 0.6547 + }, + { + "start": 4074.1, + "end": 4077.18, + "probability": 0.9473 + }, + { + "start": 4077.68, + "end": 4080.0, + "probability": 0.9976 + }, + { + "start": 4080.46, + "end": 4084.3, + "probability": 0.9967 + }, + { + "start": 4084.82, + "end": 4086.6, + "probability": 0.9987 + }, + { + "start": 4086.66, + "end": 4088.76, + "probability": 0.9908 + }, + { + "start": 4089.62, + "end": 4092.26, + "probability": 0.986 + }, + { + "start": 4092.26, + "end": 4096.64, + "probability": 0.9899 + }, + { + "start": 4096.82, + "end": 4099.6, + "probability": 0.9934 + }, + { + "start": 4100.02, + "end": 4102.58, + "probability": 0.7706 + }, + { + "start": 4102.9, + "end": 4108.84, + "probability": 0.9142 + }, + { + "start": 4109.04, + "end": 4112.72, + "probability": 0.9974 + }, + { + "start": 4112.86, + "end": 4116.24, + "probability": 0.9966 + }, + { + "start": 4116.24, + "end": 4118.9, + "probability": 0.9299 + }, + { + "start": 4118.98, + "end": 4120.3, + "probability": 0.8124 + }, + { + "start": 4120.68, + "end": 4121.58, + "probability": 0.3736 + }, + { + "start": 4122.06, + "end": 4122.78, + "probability": 0.8119 + }, + { + "start": 4123.16, + "end": 4126.62, + "probability": 0.9245 + }, + { + "start": 4127.18, + "end": 4131.56, + "probability": 0.98 + }, + { + "start": 4131.78, + "end": 4135.1, + "probability": 0.974 + }, + { + "start": 4135.38, + "end": 4138.36, + "probability": 0.9975 + }, + { + "start": 4138.7, + "end": 4139.82, + "probability": 0.6748 + }, + { + "start": 4140.2, + "end": 4142.28, + "probability": 0.9941 + }, + { + "start": 4142.78, + "end": 4145.7, + "probability": 0.9898 + }, + { + "start": 4146.04, + "end": 4149.06, + "probability": 0.9919 + }, + { + "start": 4149.8, + "end": 4154.42, + "probability": 0.9958 + }, + { + "start": 4154.58, + "end": 4157.32, + "probability": 0.926 + }, + { + "start": 4157.86, + "end": 4159.8, + "probability": 0.6821 + }, + { + "start": 4160.12, + "end": 4160.62, + "probability": 0.4213 + }, + { + "start": 4160.84, + "end": 4163.44, + "probability": 0.6813 + }, + { + "start": 4163.78, + "end": 4165.18, + "probability": 0.8978 + }, + { + "start": 4165.48, + "end": 4167.94, + "probability": 0.9879 + }, + { + "start": 4167.94, + "end": 4170.62, + "probability": 0.9958 + }, + { + "start": 4171.16, + "end": 4176.24, + "probability": 0.9937 + }, + { + "start": 4176.34, + "end": 4180.32, + "probability": 0.9905 + }, + { + "start": 4180.54, + "end": 4187.92, + "probability": 0.9957 + }, + { + "start": 4188.76, + "end": 4191.94, + "probability": 0.9946 + }, + { + "start": 4192.94, + "end": 4194.38, + "probability": 0.9844 + }, + { + "start": 4194.52, + "end": 4195.3, + "probability": 0.8389 + }, + { + "start": 4195.38, + "end": 4196.46, + "probability": 0.7035 + }, + { + "start": 4196.82, + "end": 4198.28, + "probability": 0.9899 + }, + { + "start": 4198.38, + "end": 4199.96, + "probability": 0.9438 + }, + { + "start": 4200.0, + "end": 4202.84, + "probability": 0.9843 + }, + { + "start": 4203.86, + "end": 4204.6, + "probability": 0.5926 + }, + { + "start": 4205.08, + "end": 4208.38, + "probability": 0.9387 + }, + { + "start": 4208.44, + "end": 4209.68, + "probability": 0.7313 + }, + { + "start": 4210.26, + "end": 4216.88, + "probability": 0.9831 + }, + { + "start": 4217.02, + "end": 4217.98, + "probability": 0.9795 + }, + { + "start": 4218.36, + "end": 4219.6, + "probability": 0.9805 + }, + { + "start": 4219.74, + "end": 4220.44, + "probability": 0.7805 + }, + { + "start": 4220.48, + "end": 4224.72, + "probability": 0.9956 + }, + { + "start": 4224.82, + "end": 4227.24, + "probability": 0.9634 + }, + { + "start": 4227.54, + "end": 4230.32, + "probability": 0.9695 + }, + { + "start": 4230.84, + "end": 4232.14, + "probability": 0.9622 + }, + { + "start": 4232.28, + "end": 4233.36, + "probability": 0.877 + }, + { + "start": 4233.72, + "end": 4234.46, + "probability": 0.868 + }, + { + "start": 4234.62, + "end": 4235.3, + "probability": 0.9794 + }, + { + "start": 4235.98, + "end": 4236.72, + "probability": 0.9849 + }, + { + "start": 4236.8, + "end": 4237.36, + "probability": 0.958 + }, + { + "start": 4237.48, + "end": 4239.56, + "probability": 0.9237 + }, + { + "start": 4239.88, + "end": 4243.0, + "probability": 0.8561 + }, + { + "start": 4243.18, + "end": 4243.86, + "probability": 0.6577 + }, + { + "start": 4244.88, + "end": 4245.88, + "probability": 0.9402 + }, + { + "start": 4245.9, + "end": 4246.8, + "probability": 0.6696 + }, + { + "start": 4247.16, + "end": 4248.62, + "probability": 0.7537 + }, + { + "start": 4249.0, + "end": 4249.0, + "probability": 0.66 + }, + { + "start": 4249.04, + "end": 4250.5, + "probability": 0.6349 + }, + { + "start": 4250.54, + "end": 4250.54, + "probability": 0.5134 + }, + { + "start": 4250.64, + "end": 4252.52, + "probability": 0.6726 + }, + { + "start": 4253.1, + "end": 4255.92, + "probability": 0.7483 + }, + { + "start": 4256.38, + "end": 4257.46, + "probability": 0.8403 + }, + { + "start": 4257.56, + "end": 4257.88, + "probability": 0.7832 + }, + { + "start": 4258.0, + "end": 4259.72, + "probability": 0.6199 + }, + { + "start": 4261.78, + "end": 4264.09, + "probability": 0.9619 + }, + { + "start": 4265.02, + "end": 4266.76, + "probability": 0.7314 + }, + { + "start": 4267.44, + "end": 4268.96, + "probability": 0.8064 + }, + { + "start": 4269.56, + "end": 4269.9, + "probability": 0.117 + }, + { + "start": 4270.21, + "end": 4271.24, + "probability": 0.3827 + }, + { + "start": 4271.42, + "end": 4272.67, + "probability": 0.6224 + }, + { + "start": 4273.84, + "end": 4277.44, + "probability": 0.6329 + }, + { + "start": 4277.88, + "end": 4278.66, + "probability": 0.31 + }, + { + "start": 4278.86, + "end": 4280.25, + "probability": 0.7669 + }, + { + "start": 4280.54, + "end": 4280.74, + "probability": 0.1189 + }, + { + "start": 4280.84, + "end": 4281.42, + "probability": 0.3984 + }, + { + "start": 4281.56, + "end": 4283.96, + "probability": 0.4651 + }, + { + "start": 4284.64, + "end": 4285.22, + "probability": 0.4586 + }, + { + "start": 4285.52, + "end": 4287.62, + "probability": 0.6835 + }, + { + "start": 4288.46, + "end": 4288.6, + "probability": 0.2583 + }, + { + "start": 4288.6, + "end": 4289.61, + "probability": 0.1667 + }, + { + "start": 4289.94, + "end": 4291.36, + "probability": 0.7161 + }, + { + "start": 4291.58, + "end": 4291.6, + "probability": 0.7324 + }, + { + "start": 4292.58, + "end": 4294.72, + "probability": 0.6934 + }, + { + "start": 4294.86, + "end": 4297.72, + "probability": 0.0024 + }, + { + "start": 4297.78, + "end": 4298.48, + "probability": 0.1953 + }, + { + "start": 4298.58, + "end": 4299.6, + "probability": 0.8013 + }, + { + "start": 4299.66, + "end": 4299.74, + "probability": 0.5415 + }, + { + "start": 4299.82, + "end": 4300.94, + "probability": 0.7814 + }, + { + "start": 4301.48, + "end": 4304.42, + "probability": 0.9949 + }, + { + "start": 4305.22, + "end": 4305.86, + "probability": 0.0603 + }, + { + "start": 4305.94, + "end": 4306.8, + "probability": 0.8791 + }, + { + "start": 4307.52, + "end": 4307.86, + "probability": 0.0557 + }, + { + "start": 4307.86, + "end": 4308.49, + "probability": 0.6828 + }, + { + "start": 4308.82, + "end": 4310.08, + "probability": 0.7474 + }, + { + "start": 4311.32, + "end": 4313.42, + "probability": 0.7082 + }, + { + "start": 4314.32, + "end": 4315.76, + "probability": 0.8983 + }, + { + "start": 4315.82, + "end": 4317.08, + "probability": 0.8117 + }, + { + "start": 4317.16, + "end": 4318.18, + "probability": 0.8689 + }, + { + "start": 4318.3, + "end": 4318.68, + "probability": 0.9624 + }, + { + "start": 4318.92, + "end": 4319.28, + "probability": 0.2932 + }, + { + "start": 4319.78, + "end": 4319.88, + "probability": 0.0381 + }, + { + "start": 4319.88, + "end": 4320.34, + "probability": 0.3493 + }, + { + "start": 4320.44, + "end": 4320.88, + "probability": 0.6189 + }, + { + "start": 4321.46, + "end": 4322.68, + "probability": 0.316 + }, + { + "start": 4322.82, + "end": 4324.56, + "probability": 0.6817 + }, + { + "start": 4324.64, + "end": 4326.02, + "probability": 0.9494 + }, + { + "start": 4326.22, + "end": 4333.66, + "probability": 0.9321 + }, + { + "start": 4334.4, + "end": 4335.88, + "probability": 0.9549 + }, + { + "start": 4336.58, + "end": 4341.56, + "probability": 0.978 + }, + { + "start": 4341.64, + "end": 4343.32, + "probability": 0.9896 + }, + { + "start": 4344.02, + "end": 4346.72, + "probability": 0.9848 + }, + { + "start": 4347.28, + "end": 4348.36, + "probability": 0.8831 + }, + { + "start": 4348.46, + "end": 4353.66, + "probability": 0.978 + }, + { + "start": 4353.88, + "end": 4355.62, + "probability": 0.6711 + }, + { + "start": 4355.66, + "end": 4358.78, + "probability": 0.9924 + }, + { + "start": 4359.36, + "end": 4365.8, + "probability": 0.9858 + }, + { + "start": 4366.44, + "end": 4368.4, + "probability": 0.5854 + }, + { + "start": 4368.52, + "end": 4371.22, + "probability": 0.955 + }, + { + "start": 4371.3, + "end": 4374.26, + "probability": 0.8551 + }, + { + "start": 4374.42, + "end": 4378.14, + "probability": 0.9845 + }, + { + "start": 4378.14, + "end": 4381.28, + "probability": 0.9946 + }, + { + "start": 4383.28, + "end": 4384.76, + "probability": 0.7987 + }, + { + "start": 4384.92, + "end": 4386.14, + "probability": 0.9842 + }, + { + "start": 4386.48, + "end": 4389.48, + "probability": 0.9655 + }, + { + "start": 4389.72, + "end": 4390.34, + "probability": 0.8296 + }, + { + "start": 4390.4, + "end": 4390.72, + "probability": 0.8999 + }, + { + "start": 4390.8, + "end": 4391.4, + "probability": 0.8925 + }, + { + "start": 4391.48, + "end": 4391.88, + "probability": 0.7977 + }, + { + "start": 4392.36, + "end": 4396.74, + "probability": 0.8806 + }, + { + "start": 4396.84, + "end": 4397.7, + "probability": 0.4598 + }, + { + "start": 4397.78, + "end": 4398.48, + "probability": 0.4511 + }, + { + "start": 4398.48, + "end": 4400.58, + "probability": 0.9593 + }, + { + "start": 4400.82, + "end": 4404.0, + "probability": 0.9698 + }, + { + "start": 4404.98, + "end": 4409.78, + "probability": 0.9941 + }, + { + "start": 4410.14, + "end": 4410.51, + "probability": 0.8721 + }, + { + "start": 4411.0, + "end": 4412.04, + "probability": 0.8823 + }, + { + "start": 4412.18, + "end": 4412.92, + "probability": 0.8333 + }, + { + "start": 4413.74, + "end": 4414.56, + "probability": 0.5462 + }, + { + "start": 4414.66, + "end": 4418.02, + "probability": 0.8459 + }, + { + "start": 4418.16, + "end": 4419.86, + "probability": 0.9836 + }, + { + "start": 4419.98, + "end": 4420.04, + "probability": 0.0863 + }, + { + "start": 4421.55, + "end": 4423.8, + "probability": 0.7521 + }, + { + "start": 4423.8, + "end": 4423.8, + "probability": 0.325 + }, + { + "start": 4423.8, + "end": 4424.2, + "probability": 0.2477 + }, + { + "start": 4425.14, + "end": 4425.14, + "probability": 0.4679 + }, + { + "start": 4425.14, + "end": 4425.98, + "probability": 0.813 + }, + { + "start": 4426.4, + "end": 4430.96, + "probability": 0.8394 + }, + { + "start": 4431.06, + "end": 4433.56, + "probability": 0.7539 + }, + { + "start": 4433.68, + "end": 4435.84, + "probability": 0.7125 + }, + { + "start": 4435.94, + "end": 4437.84, + "probability": 0.9705 + }, + { + "start": 4439.56, + "end": 4441.12, + "probability": 0.9642 + }, + { + "start": 4441.98, + "end": 4444.8, + "probability": 0.9461 + }, + { + "start": 4445.36, + "end": 4449.96, + "probability": 0.9674 + }, + { + "start": 4450.42, + "end": 4455.66, + "probability": 0.8486 + }, + { + "start": 4455.8, + "end": 4457.04, + "probability": 0.8138 + }, + { + "start": 4457.42, + "end": 4459.6, + "probability": 0.7414 + }, + { + "start": 4459.66, + "end": 4461.32, + "probability": 0.8467 + }, + { + "start": 4462.04, + "end": 4463.46, + "probability": 0.8795 + }, + { + "start": 4463.56, + "end": 4464.16, + "probability": 0.6558 + }, + { + "start": 4464.24, + "end": 4465.32, + "probability": 0.9702 + }, + { + "start": 4465.52, + "end": 4466.5, + "probability": 0.8357 + }, + { + "start": 4466.84, + "end": 4470.4, + "probability": 0.9907 + }, + { + "start": 4470.4, + "end": 4473.72, + "probability": 0.9023 + }, + { + "start": 4473.82, + "end": 4474.52, + "probability": 0.6241 + }, + { + "start": 4474.86, + "end": 4476.12, + "probability": 0.7114 + }, + { + "start": 4476.24, + "end": 4482.16, + "probability": 0.9416 + }, + { + "start": 4482.16, + "end": 4482.7, + "probability": 0.4554 + }, + { + "start": 4482.78, + "end": 4483.4, + "probability": 0.5532 + }, + { + "start": 4483.7, + "end": 4485.04, + "probability": 0.433 + }, + { + "start": 4485.16, + "end": 4486.76, + "probability": 0.9169 + }, + { + "start": 4487.2, + "end": 4490.32, + "probability": 0.7589 + }, + { + "start": 4490.44, + "end": 4493.62, + "probability": 0.9905 + }, + { + "start": 4493.74, + "end": 4497.94, + "probability": 0.969 + }, + { + "start": 4498.08, + "end": 4501.07, + "probability": 0.8964 + }, + { + "start": 4501.44, + "end": 4502.22, + "probability": 0.9542 + }, + { + "start": 4502.26, + "end": 4503.06, + "probability": 0.89 + }, + { + "start": 4503.34, + "end": 4504.26, + "probability": 0.7794 + }, + { + "start": 4504.42, + "end": 4504.88, + "probability": 0.7674 + }, + { + "start": 4504.88, + "end": 4506.08, + "probability": 0.9336 + }, + { + "start": 4506.34, + "end": 4509.36, + "probability": 0.9837 + }, + { + "start": 4509.72, + "end": 4512.06, + "probability": 0.9745 + }, + { + "start": 4512.36, + "end": 4513.52, + "probability": 0.8679 + }, + { + "start": 4514.06, + "end": 4516.38, + "probability": 0.939 + }, + { + "start": 4516.66, + "end": 4519.04, + "probability": 0.9768 + }, + { + "start": 4519.38, + "end": 4521.26, + "probability": 0.9312 + }, + { + "start": 4521.68, + "end": 4525.48, + "probability": 0.9183 + }, + { + "start": 4526.38, + "end": 4528.03, + "probability": 0.9826 + }, + { + "start": 4528.7, + "end": 4529.88, + "probability": 0.5483 + }, + { + "start": 4530.12, + "end": 4530.66, + "probability": 0.6479 + }, + { + "start": 4530.78, + "end": 4531.9, + "probability": 0.882 + }, + { + "start": 4532.44, + "end": 4534.24, + "probability": 0.9517 + }, + { + "start": 4534.46, + "end": 4535.38, + "probability": 0.963 + }, + { + "start": 4535.46, + "end": 4536.28, + "probability": 0.7532 + }, + { + "start": 4536.7, + "end": 4538.36, + "probability": 0.9159 + }, + { + "start": 4539.1, + "end": 4540.78, + "probability": 0.9941 + }, + { + "start": 4541.78, + "end": 4543.62, + "probability": 0.9912 + }, + { + "start": 4544.1, + "end": 4544.62, + "probability": 0.9466 + }, + { + "start": 4544.72, + "end": 4545.44, + "probability": 0.5551 + }, + { + "start": 4545.48, + "end": 4546.62, + "probability": 0.6648 + }, + { + "start": 4546.78, + "end": 4547.98, + "probability": 0.9387 + }, + { + "start": 4548.54, + "end": 4550.19, + "probability": 0.8069 + }, + { + "start": 4550.6, + "end": 4552.76, + "probability": 0.9795 + }, + { + "start": 4552.76, + "end": 4555.1, + "probability": 0.9713 + }, + { + "start": 4555.48, + "end": 4559.1, + "probability": 0.9303 + }, + { + "start": 4559.1, + "end": 4562.06, + "probability": 0.998 + }, + { + "start": 4562.06, + "end": 4565.04, + "probability": 0.9775 + }, + { + "start": 4565.1, + "end": 4569.32, + "probability": 0.9482 + }, + { + "start": 4569.44, + "end": 4572.42, + "probability": 0.7226 + }, + { + "start": 4572.74, + "end": 4574.12, + "probability": 0.9742 + }, + { + "start": 4574.38, + "end": 4575.8, + "probability": 0.9159 + }, + { + "start": 4575.82, + "end": 4575.82, + "probability": 0.4124 + }, + { + "start": 4575.88, + "end": 4576.86, + "probability": 0.9707 + }, + { + "start": 4577.04, + "end": 4577.24, + "probability": 0.8207 + }, + { + "start": 4577.34, + "end": 4578.23, + "probability": 0.9554 + }, + { + "start": 4578.7, + "end": 4582.5, + "probability": 0.9497 + }, + { + "start": 4582.58, + "end": 4588.32, + "probability": 0.8397 + }, + { + "start": 4588.46, + "end": 4591.5, + "probability": 0.9481 + }, + { + "start": 4591.6, + "end": 4592.52, + "probability": 0.8928 + }, + { + "start": 4592.92, + "end": 4595.88, + "probability": 0.9927 + }, + { + "start": 4596.02, + "end": 4597.22, + "probability": 0.9078 + }, + { + "start": 4597.58, + "end": 4599.96, + "probability": 0.9587 + }, + { + "start": 4599.96, + "end": 4604.12, + "probability": 0.9777 + }, + { + "start": 4606.32, + "end": 4607.3, + "probability": 0.9963 + }, + { + "start": 4608.26, + "end": 4609.02, + "probability": 0.9342 + }, + { + "start": 4609.38, + "end": 4610.18, + "probability": 0.665 + }, + { + "start": 4610.46, + "end": 4610.8, + "probability": 0.6315 + }, + { + "start": 4611.46, + "end": 4611.48, + "probability": 0.1002 + }, + { + "start": 4611.48, + "end": 4612.16, + "probability": 0.4953 + }, + { + "start": 4612.2, + "end": 4613.34, + "probability": 0.8828 + }, + { + "start": 4615.46, + "end": 4618.38, + "probability": 0.998 + }, + { + "start": 4618.48, + "end": 4619.82, + "probability": 0.5699 + }, + { + "start": 4620.54, + "end": 4622.94, + "probability": 0.7937 + }, + { + "start": 4623.0, + "end": 4623.46, + "probability": 0.0474 + }, + { + "start": 4624.41, + "end": 4626.06, + "probability": 0.2292 + }, + { + "start": 4632.78, + "end": 4633.06, + "probability": 0.3353 + }, + { + "start": 4635.02, + "end": 4635.12, + "probability": 0.078 + }, + { + "start": 4635.12, + "end": 4635.92, + "probability": 0.4521 + }, + { + "start": 4636.24, + "end": 4637.64, + "probability": 0.8428 + }, + { + "start": 4637.74, + "end": 4639.52, + "probability": 0.7574 + }, + { + "start": 4639.62, + "end": 4642.54, + "probability": 0.8568 + }, + { + "start": 4643.28, + "end": 4643.56, + "probability": 0.773 + }, + { + "start": 4645.36, + "end": 4645.66, + "probability": 0.3783 + }, + { + "start": 4645.66, + "end": 4648.12, + "probability": 0.7878 + }, + { + "start": 4649.5, + "end": 4650.26, + "probability": 0.9423 + }, + { + "start": 4650.28, + "end": 4650.92, + "probability": 0.9067 + }, + { + "start": 4651.06, + "end": 4656.12, + "probability": 0.9174 + }, + { + "start": 4657.42, + "end": 4660.36, + "probability": 0.955 + }, + { + "start": 4661.28, + "end": 4663.28, + "probability": 0.9977 + }, + { + "start": 4664.18, + "end": 4666.05, + "probability": 0.8665 + }, + { + "start": 4666.4, + "end": 4666.96, + "probability": 0.7868 + }, + { + "start": 4667.08, + "end": 4667.6, + "probability": 0.935 + }, + { + "start": 4667.66, + "end": 4668.88, + "probability": 0.9351 + }, + { + "start": 4668.88, + "end": 4669.5, + "probability": 0.7609 + }, + { + "start": 4669.54, + "end": 4669.94, + "probability": 0.667 + }, + { + "start": 4669.94, + "end": 4672.46, + "probability": 0.9848 + }, + { + "start": 4673.36, + "end": 4674.22, + "probability": 0.8116 + }, + { + "start": 4674.76, + "end": 4675.34, + "probability": 0.7006 + }, + { + "start": 4675.5, + "end": 4676.06, + "probability": 0.8522 + }, + { + "start": 4676.08, + "end": 4677.02, + "probability": 0.645 + }, + { + "start": 4677.06, + "end": 4677.28, + "probability": 0.5154 + }, + { + "start": 4677.4, + "end": 4678.52, + "probability": 0.6945 + }, + { + "start": 4678.58, + "end": 4679.34, + "probability": 0.9526 + }, + { + "start": 4679.44, + "end": 4680.01, + "probability": 0.7834 + }, + { + "start": 4680.1, + "end": 4680.53, + "probability": 0.7501 + }, + { + "start": 4681.06, + "end": 4681.66, + "probability": 0.7668 + }, + { + "start": 4682.52, + "end": 4683.36, + "probability": 0.9814 + }, + { + "start": 4684.02, + "end": 4684.64, + "probability": 0.827 + }, + { + "start": 4685.0, + "end": 4685.82, + "probability": 0.9836 + }, + { + "start": 4686.2, + "end": 4691.98, + "probability": 0.9615 + }, + { + "start": 4692.58, + "end": 4697.62, + "probability": 0.9778 + }, + { + "start": 4697.84, + "end": 4698.9, + "probability": 0.6324 + }, + { + "start": 4698.94, + "end": 4701.12, + "probability": 0.7164 + }, + { + "start": 4702.9, + "end": 4703.62, + "probability": 0.7835 + }, + { + "start": 4703.72, + "end": 4705.04, + "probability": 0.9814 + }, + { + "start": 4705.06, + "end": 4706.94, + "probability": 0.8807 + }, + { + "start": 4707.02, + "end": 4707.88, + "probability": 0.9844 + }, + { + "start": 4707.9, + "end": 4708.36, + "probability": 0.8315 + }, + { + "start": 4708.56, + "end": 4708.84, + "probability": 0.8425 + }, + { + "start": 4709.04, + "end": 4709.24, + "probability": 0.6121 + }, + { + "start": 4709.56, + "end": 4710.14, + "probability": 0.9819 + }, + { + "start": 4710.54, + "end": 4711.12, + "probability": 0.0629 + }, + { + "start": 4711.12, + "end": 4712.4, + "probability": 0.9912 + }, + { + "start": 4713.04, + "end": 4713.88, + "probability": 0.9953 + }, + { + "start": 4713.92, + "end": 4714.52, + "probability": 0.8717 + }, + { + "start": 4714.54, + "end": 4715.08, + "probability": 0.9281 + }, + { + "start": 4715.22, + "end": 4716.04, + "probability": 0.8511 + }, + { + "start": 4717.04, + "end": 4717.7, + "probability": 0.917 + }, + { + "start": 4717.78, + "end": 4718.46, + "probability": 0.7413 + }, + { + "start": 4718.5, + "end": 4719.44, + "probability": 0.8767 + }, + { + "start": 4719.5, + "end": 4721.32, + "probability": 0.8576 + }, + { + "start": 4721.94, + "end": 4725.26, + "probability": 0.9932 + }, + { + "start": 4726.02, + "end": 4726.68, + "probability": 0.8674 + }, + { + "start": 4726.7, + "end": 4727.95, + "probability": 0.9766 + }, + { + "start": 4728.1, + "end": 4728.46, + "probability": 0.6838 + }, + { + "start": 4729.28, + "end": 4729.7, + "probability": 0.8342 + }, + { + "start": 4730.22, + "end": 4732.36, + "probability": 0.9338 + }, + { + "start": 4732.72, + "end": 4735.32, + "probability": 0.8363 + }, + { + "start": 4736.26, + "end": 4736.34, + "probability": 0.1238 + }, + { + "start": 4736.34, + "end": 4737.66, + "probability": 0.6927 + }, + { + "start": 4738.04, + "end": 4742.32, + "probability": 0.6404 + }, + { + "start": 4742.32, + "end": 4742.32, + "probability": 0.0293 + }, + { + "start": 4742.32, + "end": 4742.74, + "probability": 0.2221 + }, + { + "start": 4742.9, + "end": 4745.62, + "probability": 0.7742 + }, + { + "start": 4745.92, + "end": 4749.46, + "probability": 0.8958 + }, + { + "start": 4749.58, + "end": 4751.4, + "probability": 0.8124 + }, + { + "start": 4752.04, + "end": 4755.22, + "probability": 0.9705 + }, + { + "start": 4756.06, + "end": 4756.68, + "probability": 0.7587 + }, + { + "start": 4757.92, + "end": 4758.32, + "probability": 0.0495 + }, + { + "start": 4758.46, + "end": 4759.0, + "probability": 0.2036 + }, + { + "start": 4759.04, + "end": 4761.74, + "probability": 0.481 + }, + { + "start": 4762.3, + "end": 4762.4, + "probability": 0.2649 + }, + { + "start": 4762.4, + "end": 4762.56, + "probability": 0.4993 + }, + { + "start": 4762.56, + "end": 4763.06, + "probability": 0.8974 + }, + { + "start": 4763.7, + "end": 4764.96, + "probability": 0.9434 + }, + { + "start": 4764.96, + "end": 4765.0, + "probability": 0.5606 + }, + { + "start": 4765.0, + "end": 4765.34, + "probability": 0.7223 + }, + { + "start": 4765.4, + "end": 4766.34, + "probability": 0.735 + }, + { + "start": 4766.34, + "end": 4767.27, + "probability": 0.889 + }, + { + "start": 4767.28, + "end": 4769.18, + "probability": 0.6192 + }, + { + "start": 4769.24, + "end": 4771.6, + "probability": 0.9463 + }, + { + "start": 4771.66, + "end": 4774.78, + "probability": 0.9882 + }, + { + "start": 4775.26, + "end": 4778.92, + "probability": 0.8723 + }, + { + "start": 4778.92, + "end": 4781.64, + "probability": 0.9973 + }, + { + "start": 4781.74, + "end": 4782.2, + "probability": 0.4308 + }, + { + "start": 4782.34, + "end": 4785.95, + "probability": 0.964 + }, + { + "start": 4786.06, + "end": 4787.5, + "probability": 0.912 + }, + { + "start": 4787.7, + "end": 4789.56, + "probability": 0.8766 + }, + { + "start": 4789.9, + "end": 4791.2, + "probability": 0.0422 + }, + { + "start": 4791.32, + "end": 4794.1, + "probability": 0.7919 + }, + { + "start": 4794.32, + "end": 4796.28, + "probability": 0.7784 + }, + { + "start": 4796.44, + "end": 4798.48, + "probability": 0.929 + }, + { + "start": 4798.8, + "end": 4799.98, + "probability": 0.875 + }, + { + "start": 4800.54, + "end": 4805.52, + "probability": 0.1896 + }, + { + "start": 4806.24, + "end": 4808.26, + "probability": 0.8493 + }, + { + "start": 4808.64, + "end": 4811.76, + "probability": 0.7308 + }, + { + "start": 4812.36, + "end": 4812.56, + "probability": 0.4503 + }, + { + "start": 4812.64, + "end": 4815.02, + "probability": 0.9377 + }, + { + "start": 4815.24, + "end": 4818.1, + "probability": 0.9674 + }, + { + "start": 4818.76, + "end": 4822.36, + "probability": 0.9979 + }, + { + "start": 4822.84, + "end": 4823.44, + "probability": 0.6823 + }, + { + "start": 4823.66, + "end": 4824.64, + "probability": 0.6264 + }, + { + "start": 4824.84, + "end": 4828.24, + "probability": 0.5736 + }, + { + "start": 4828.56, + "end": 4828.7, + "probability": 0.5717 + }, + { + "start": 4829.86, + "end": 4831.34, + "probability": 0.917 + }, + { + "start": 4832.1, + "end": 4834.98, + "probability": 0.2352 + }, + { + "start": 4835.6, + "end": 4835.9, + "probability": 0.0579 + }, + { + "start": 4835.9, + "end": 4836.56, + "probability": 0.256 + }, + { + "start": 4836.56, + "end": 4837.65, + "probability": 0.4133 + }, + { + "start": 4837.86, + "end": 4841.6, + "probability": 0.958 + }, + { + "start": 4842.12, + "end": 4846.45, + "probability": 0.8573 + }, + { + "start": 4847.08, + "end": 4848.18, + "probability": 0.9873 + }, + { + "start": 4848.62, + "end": 4849.16, + "probability": 0.5587 + }, + { + "start": 4849.22, + "end": 4851.34, + "probability": 0.9514 + }, + { + "start": 4851.4, + "end": 4853.46, + "probability": 0.7078 + }, + { + "start": 4853.62, + "end": 4854.8, + "probability": 0.1568 + }, + { + "start": 4854.88, + "end": 4855.08, + "probability": 0.7478 + }, + { + "start": 4855.16, + "end": 4855.36, + "probability": 0.3008 + }, + { + "start": 4855.44, + "end": 4859.72, + "probability": 0.9637 + }, + { + "start": 4859.8, + "end": 4861.38, + "probability": 0.9863 + }, + { + "start": 4861.88, + "end": 4862.16, + "probability": 0.741 + }, + { + "start": 4862.18, + "end": 4863.04, + "probability": 0.804 + }, + { + "start": 4863.76, + "end": 4865.8, + "probability": 0.5493 + }, + { + "start": 4865.8, + "end": 4866.15, + "probability": 0.8091 + }, + { + "start": 4866.5, + "end": 4867.02, + "probability": 0.7309 + }, + { + "start": 4867.1, + "end": 4867.77, + "probability": 0.8235 + }, + { + "start": 4868.48, + "end": 4868.54, + "probability": 0.3273 + }, + { + "start": 4868.54, + "end": 4871.52, + "probability": 0.8983 + }, + { + "start": 4871.7, + "end": 4872.7, + "probability": 0.3979 + }, + { + "start": 4873.0, + "end": 4873.04, + "probability": 0.7866 + }, + { + "start": 4873.24, + "end": 4876.4, + "probability": 0.5273 + }, + { + "start": 4876.8, + "end": 4878.7, + "probability": 0.7789 + }, + { + "start": 4879.6, + "end": 4882.44, + "probability": 0.7405 + }, + { + "start": 4882.68, + "end": 4883.44, + "probability": 0.5397 + }, + { + "start": 4884.08, + "end": 4885.48, + "probability": 0.9301 + }, + { + "start": 4885.68, + "end": 4885.88, + "probability": 0.8988 + }, + { + "start": 4886.0, + "end": 4891.38, + "probability": 0.8756 + }, + { + "start": 4891.46, + "end": 4891.92, + "probability": 0.8479 + }, + { + "start": 4891.98, + "end": 4894.02, + "probability": 0.6335 + }, + { + "start": 4894.02, + "end": 4894.02, + "probability": 0.3322 + }, + { + "start": 4894.16, + "end": 4895.43, + "probability": 0.4411 + }, + { + "start": 4897.1, + "end": 4897.88, + "probability": 0.6566 + }, + { + "start": 4897.92, + "end": 4898.76, + "probability": 0.8031 + }, + { + "start": 4898.76, + "end": 4900.64, + "probability": 0.9438 + }, + { + "start": 4901.3, + "end": 4902.32, + "probability": 0.5728 + }, + { + "start": 4902.64, + "end": 4903.8, + "probability": 0.0289 + }, + { + "start": 4903.84, + "end": 4905.44, + "probability": 0.5059 + }, + { + "start": 4905.52, + "end": 4906.88, + "probability": 0.6703 + }, + { + "start": 4906.96, + "end": 4907.88, + "probability": 0.8162 + }, + { + "start": 4909.74, + "end": 4910.04, + "probability": 0.4448 + }, + { + "start": 4910.22, + "end": 4911.18, + "probability": 0.88 + }, + { + "start": 4911.56, + "end": 4912.68, + "probability": 0.5667 + }, + { + "start": 4912.68, + "end": 4913.82, + "probability": 0.7854 + }, + { + "start": 4913.92, + "end": 4916.94, + "probability": 0.71 + }, + { + "start": 4917.4, + "end": 4917.88, + "probability": 0.5592 + }, + { + "start": 4918.26, + "end": 4918.78, + "probability": 0.6917 + }, + { + "start": 4918.84, + "end": 4919.84, + "probability": 0.9194 + }, + { + "start": 4919.84, + "end": 4922.84, + "probability": 0.9917 + }, + { + "start": 4923.0, + "end": 4926.64, + "probability": 0.9765 + }, + { + "start": 4927.12, + "end": 4929.32, + "probability": 0.9709 + }, + { + "start": 4929.82, + "end": 4931.91, + "probability": 0.9785 + }, + { + "start": 4932.06, + "end": 4933.7, + "probability": 0.8728 + }, + { + "start": 4933.7, + "end": 4934.12, + "probability": 0.8129 + }, + { + "start": 4934.42, + "end": 4935.46, + "probability": 0.9486 + }, + { + "start": 4936.04, + "end": 4937.11, + "probability": 0.9874 + }, + { + "start": 4937.42, + "end": 4938.95, + "probability": 0.9446 + }, + { + "start": 4939.08, + "end": 4940.76, + "probability": 0.6919 + }, + { + "start": 4940.86, + "end": 4941.66, + "probability": 0.9169 + }, + { + "start": 4942.04, + "end": 4942.88, + "probability": 0.4994 + }, + { + "start": 4943.42, + "end": 4945.18, + "probability": 0.8711 + }, + { + "start": 4945.78, + "end": 4946.58, + "probability": 0.9108 + }, + { + "start": 4947.54, + "end": 4948.2, + "probability": 0.7642 + }, + { + "start": 4948.86, + "end": 4949.6, + "probability": 0.9705 + }, + { + "start": 4950.1, + "end": 4950.72, + "probability": 0.9895 + }, + { + "start": 4951.28, + "end": 4952.62, + "probability": 0.9765 + }, + { + "start": 4953.04, + "end": 4957.4, + "probability": 0.9949 + }, + { + "start": 4957.76, + "end": 4959.32, + "probability": 0.1623 + }, + { + "start": 4959.34, + "end": 4959.86, + "probability": 0.1517 + }, + { + "start": 4959.88, + "end": 4960.32, + "probability": 0.0064 + }, + { + "start": 4960.44, + "end": 4962.28, + "probability": 0.1132 + }, + { + "start": 4962.28, + "end": 4963.14, + "probability": 0.0889 + }, + { + "start": 4965.6, + "end": 4966.56, + "probability": 0.4761 + }, + { + "start": 4967.4, + "end": 4968.7, + "probability": 0.9344 + }, + { + "start": 4969.6, + "end": 4972.96, + "probability": 0.9928 + }, + { + "start": 4973.5, + "end": 4975.9, + "probability": 0.9752 + }, + { + "start": 4976.72, + "end": 4980.16, + "probability": 0.9932 + }, + { + "start": 4980.16, + "end": 4983.4, + "probability": 0.9964 + }, + { + "start": 4984.06, + "end": 4988.78, + "probability": 0.982 + }, + { + "start": 4988.78, + "end": 4992.4, + "probability": 0.9948 + }, + { + "start": 4992.88, + "end": 4995.2, + "probability": 0.9958 + }, + { + "start": 4996.0, + "end": 4998.3, + "probability": 0.6391 + }, + { + "start": 4998.4, + "end": 5000.4, + "probability": 0.9883 + }, + { + "start": 5001.1, + "end": 5003.12, + "probability": 0.9108 + }, + { + "start": 5003.36, + "end": 5005.98, + "probability": 0.9868 + }, + { + "start": 5006.12, + "end": 5007.26, + "probability": 0.958 + }, + { + "start": 5007.7, + "end": 5008.48, + "probability": 0.8929 + }, + { + "start": 5008.6, + "end": 5009.2, + "probability": 0.9303 + }, + { + "start": 5009.24, + "end": 5011.51, + "probability": 0.9768 + }, + { + "start": 5013.72, + "end": 5018.2, + "probability": 0.975 + }, + { + "start": 5018.84, + "end": 5019.34, + "probability": 0.6556 + }, + { + "start": 5019.58, + "end": 5021.68, + "probability": 0.9258 + }, + { + "start": 5021.76, + "end": 5024.8, + "probability": 0.9906 + }, + { + "start": 5025.32, + "end": 5027.64, + "probability": 0.522 + }, + { + "start": 5028.1, + "end": 5031.32, + "probability": 0.922 + }, + { + "start": 5031.42, + "end": 5032.84, + "probability": 0.7356 + }, + { + "start": 5033.18, + "end": 5037.38, + "probability": 0.9963 + }, + { + "start": 5037.38, + "end": 5040.0, + "probability": 0.9982 + }, + { + "start": 5040.3, + "end": 5043.22, + "probability": 0.7302 + }, + { + "start": 5043.56, + "end": 5045.44, + "probability": 0.9971 + }, + { + "start": 5045.48, + "end": 5046.98, + "probability": 0.9968 + }, + { + "start": 5047.22, + "end": 5048.94, + "probability": 0.7771 + }, + { + "start": 5049.1, + "end": 5051.52, + "probability": 0.7535 + }, + { + "start": 5051.56, + "end": 5052.28, + "probability": 0.843 + }, + { + "start": 5052.32, + "end": 5053.06, + "probability": 0.8128 + }, + { + "start": 5053.38, + "end": 5055.72, + "probability": 0.8168 + }, + { + "start": 5056.56, + "end": 5057.7, + "probability": 0.6181 + }, + { + "start": 5057.74, + "end": 5061.84, + "probability": 0.926 + }, + { + "start": 5062.16, + "end": 5065.46, + "probability": 0.9858 + }, + { + "start": 5066.34, + "end": 5066.8, + "probability": 0.5494 + }, + { + "start": 5066.92, + "end": 5068.24, + "probability": 0.753 + }, + { + "start": 5068.44, + "end": 5072.18, + "probability": 0.6487 + }, + { + "start": 5073.08, + "end": 5073.28, + "probability": 0.0482 + }, + { + "start": 5073.5, + "end": 5074.34, + "probability": 0.7177 + }, + { + "start": 5075.0, + "end": 5077.04, + "probability": 0.5484 + }, + { + "start": 5077.66, + "end": 5079.2, + "probability": 0.7844 + }, + { + "start": 5079.46, + "end": 5083.48, + "probability": 0.4701 + }, + { + "start": 5083.64, + "end": 5084.66, + "probability": 0.6713 + }, + { + "start": 5084.96, + "end": 5085.0, + "probability": 0.0 + }, + { + "start": 5087.86, + "end": 5089.18, + "probability": 0.2487 + }, + { + "start": 5090.32, + "end": 5091.66, + "probability": 0.6922 + }, + { + "start": 5092.46, + "end": 5094.44, + "probability": 0.9141 + }, + { + "start": 5094.52, + "end": 5096.57, + "probability": 0.905 + }, + { + "start": 5097.14, + "end": 5097.9, + "probability": 0.9892 + }, + { + "start": 5097.94, + "end": 5098.96, + "probability": 0.9714 + }, + { + "start": 5099.18, + "end": 5099.52, + "probability": 0.6567 + }, + { + "start": 5100.0, + "end": 5100.68, + "probability": 0.95 + }, + { + "start": 5100.78, + "end": 5104.0, + "probability": 0.9794 + }, + { + "start": 5104.04, + "end": 5104.86, + "probability": 0.7403 + }, + { + "start": 5105.26, + "end": 5106.98, + "probability": 0.8219 + }, + { + "start": 5107.08, + "end": 5108.28, + "probability": 0.7505 + }, + { + "start": 5108.28, + "end": 5108.85, + "probability": 0.7173 + }, + { + "start": 5109.38, + "end": 5110.0, + "probability": 0.4391 + }, + { + "start": 5110.14, + "end": 5110.72, + "probability": 0.5029 + }, + { + "start": 5111.2, + "end": 5113.34, + "probability": 0.9187 + }, + { + "start": 5113.42, + "end": 5114.55, + "probability": 0.4911 + }, + { + "start": 5115.12, + "end": 5116.58, + "probability": 0.8806 + }, + { + "start": 5117.22, + "end": 5118.02, + "probability": 0.6796 + }, + { + "start": 5118.18, + "end": 5121.7, + "probability": 0.9977 + }, + { + "start": 5121.98, + "end": 5123.2, + "probability": 0.9689 + }, + { + "start": 5123.28, + "end": 5124.26, + "probability": 0.6562 + }, + { + "start": 5124.62, + "end": 5125.88, + "probability": 0.9338 + }, + { + "start": 5126.32, + "end": 5127.99, + "probability": 0.9966 + }, + { + "start": 5128.78, + "end": 5131.96, + "probability": 0.9844 + }, + { + "start": 5132.6, + "end": 5135.42, + "probability": 0.9707 + }, + { + "start": 5136.06, + "end": 5137.56, + "probability": 0.938 + }, + { + "start": 5138.34, + "end": 5140.76, + "probability": 0.9799 + }, + { + "start": 5141.88, + "end": 5142.1, + "probability": 0.2413 + }, + { + "start": 5142.2, + "end": 5142.95, + "probability": 0.9408 + }, + { + "start": 5143.54, + "end": 5144.12, + "probability": 0.6403 + }, + { + "start": 5144.48, + "end": 5145.96, + "probability": 0.8209 + }, + { + "start": 5146.14, + "end": 5148.96, + "probability": 0.9764 + }, + { + "start": 5149.5, + "end": 5151.32, + "probability": 0.9377 + }, + { + "start": 5151.88, + "end": 5153.88, + "probability": 0.9875 + }, + { + "start": 5155.0, + "end": 5157.26, + "probability": 0.7467 + }, + { + "start": 5157.88, + "end": 5159.65, + "probability": 0.867 + }, + { + "start": 5159.94, + "end": 5161.48, + "probability": 0.9685 + }, + { + "start": 5161.52, + "end": 5163.36, + "probability": 0.8995 + }, + { + "start": 5163.92, + "end": 5165.64, + "probability": 0.996 + }, + { + "start": 5166.28, + "end": 5172.42, + "probability": 0.9931 + }, + { + "start": 5173.72, + "end": 5175.22, + "probability": 0.9648 + }, + { + "start": 5176.1, + "end": 5177.62, + "probability": 0.8038 + }, + { + "start": 5178.08, + "end": 5178.9, + "probability": 0.5834 + }, + { + "start": 5179.18, + "end": 5180.16, + "probability": 0.9639 + }, + { + "start": 5180.34, + "end": 5180.68, + "probability": 0.4112 + }, + { + "start": 5180.72, + "end": 5181.72, + "probability": 0.7291 + }, + { + "start": 5182.88, + "end": 5188.1, + "probability": 0.9949 + }, + { + "start": 5189.52, + "end": 5190.58, + "probability": 0.9432 + }, + { + "start": 5191.28, + "end": 5192.04, + "probability": 0.9442 + }, + { + "start": 5192.76, + "end": 5194.56, + "probability": 0.9875 + }, + { + "start": 5195.04, + "end": 5197.36, + "probability": 0.979 + }, + { + "start": 5197.78, + "end": 5198.69, + "probability": 0.9491 + }, + { + "start": 5199.22, + "end": 5201.04, + "probability": 0.7612 + }, + { + "start": 5201.04, + "end": 5203.2, + "probability": 0.8553 + }, + { + "start": 5203.33, + "end": 5203.59, + "probability": 0.3492 + }, + { + "start": 5203.98, + "end": 5204.96, + "probability": 0.8926 + }, + { + "start": 5205.68, + "end": 5208.58, + "probability": 0.9076 + }, + { + "start": 5208.6, + "end": 5210.64, + "probability": 0.9656 + }, + { + "start": 5211.84, + "end": 5213.7, + "probability": 0.0856 + }, + { + "start": 5214.22, + "end": 5214.84, + "probability": 0.2337 + }, + { + "start": 5214.84, + "end": 5215.06, + "probability": 0.4679 + }, + { + "start": 5215.32, + "end": 5216.26, + "probability": 0.7529 + }, + { + "start": 5217.1, + "end": 5219.54, + "probability": 0.8303 + }, + { + "start": 5220.84, + "end": 5222.78, + "probability": 0.4528 + }, + { + "start": 5223.06, + "end": 5224.2, + "probability": 0.1531 + }, + { + "start": 5224.2, + "end": 5224.88, + "probability": 0.7503 + }, + { + "start": 5224.94, + "end": 5227.46, + "probability": 0.9328 + }, + { + "start": 5227.66, + "end": 5228.8, + "probability": 0.9725 + }, + { + "start": 5229.45, + "end": 5230.39, + "probability": 0.3931 + }, + { + "start": 5230.76, + "end": 5232.12, + "probability": 0.7714 + }, + { + "start": 5233.1, + "end": 5235.26, + "probability": 0.6247 + }, + { + "start": 5235.98, + "end": 5240.24, + "probability": 0.9287 + }, + { + "start": 5240.24, + "end": 5242.4, + "probability": 0.9958 + }, + { + "start": 5242.48, + "end": 5243.8, + "probability": 0.998 + }, + { + "start": 5244.86, + "end": 5245.88, + "probability": 0.4778 + }, + { + "start": 5249.24, + "end": 5250.52, + "probability": 0.2861 + }, + { + "start": 5252.5, + "end": 5252.5, + "probability": 0.1082 + }, + { + "start": 5252.58, + "end": 5252.6, + "probability": 0.1459 + }, + { + "start": 5252.6, + "end": 5252.6, + "probability": 0.2972 + }, + { + "start": 5252.6, + "end": 5252.6, + "probability": 0.1917 + }, + { + "start": 5252.6, + "end": 5253.53, + "probability": 0.3899 + }, + { + "start": 5256.88, + "end": 5261.7, + "probability": 0.7974 + }, + { + "start": 5262.2, + "end": 5265.24, + "probability": 0.9973 + }, + { + "start": 5265.64, + "end": 5269.0, + "probability": 0.6226 + }, + { + "start": 5269.08, + "end": 5269.74, + "probability": 0.3852 + }, + { + "start": 5269.74, + "end": 5270.28, + "probability": 0.1155 + }, + { + "start": 5270.76, + "end": 5272.16, + "probability": 0.6668 + }, + { + "start": 5272.6, + "end": 5273.06, + "probability": 0.3825 + }, + { + "start": 5273.4, + "end": 5274.98, + "probability": 0.9945 + }, + { + "start": 5275.96, + "end": 5276.18, + "probability": 0.195 + }, + { + "start": 5276.84, + "end": 5277.12, + "probability": 0.3568 + }, + { + "start": 5277.8, + "end": 5279.2, + "probability": 0.9029 + }, + { + "start": 5280.14, + "end": 5281.4, + "probability": 0.9048 + }, + { + "start": 5282.32, + "end": 5285.6, + "probability": 0.2354 + }, + { + "start": 5285.6, + "end": 5286.68, + "probability": 0.6343 + }, + { + "start": 5287.4, + "end": 5288.02, + "probability": 0.6845 + }, + { + "start": 5288.12, + "end": 5290.74, + "probability": 0.9788 + }, + { + "start": 5291.06, + "end": 5293.0, + "probability": 0.6251 + }, + { + "start": 5293.42, + "end": 5299.7, + "probability": 0.989 + }, + { + "start": 5299.76, + "end": 5300.82, + "probability": 0.8647 + }, + { + "start": 5301.16, + "end": 5302.0, + "probability": 0.1796 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.2098 + }, + { + "start": 5302.0, + "end": 5302.78, + "probability": 0.5969 + }, + { + "start": 5303.26, + "end": 5304.18, + "probability": 0.95 + }, + { + "start": 5304.3, + "end": 5305.26, + "probability": 0.9473 + }, + { + "start": 5305.72, + "end": 5307.52, + "probability": 0.7328 + }, + { + "start": 5307.68, + "end": 5309.76, + "probability": 0.8218 + }, + { + "start": 5310.38, + "end": 5311.76, + "probability": 0.9863 + }, + { + "start": 5311.76, + "end": 5313.92, + "probability": 0.9081 + }, + { + "start": 5314.32, + "end": 5316.36, + "probability": 0.9945 + }, + { + "start": 5316.88, + "end": 5318.52, + "probability": 0.9325 + }, + { + "start": 5318.94, + "end": 5321.84, + "probability": 0.9926 + }, + { + "start": 5322.24, + "end": 5324.12, + "probability": 0.9947 + }, + { + "start": 5324.26, + "end": 5324.78, + "probability": 0.7123 + }, + { + "start": 5324.78, + "end": 5326.66, + "probability": 0.7442 + }, + { + "start": 5327.38, + "end": 5331.0, + "probability": 0.8989 + }, + { + "start": 5331.64, + "end": 5332.28, + "probability": 0.369 + }, + { + "start": 5333.38, + "end": 5334.93, + "probability": 0.9902 + }, + { + "start": 5335.6, + "end": 5337.22, + "probability": 0.6753 + }, + { + "start": 5337.6, + "end": 5338.06, + "probability": 0.3493 + }, + { + "start": 5339.48, + "end": 5341.68, + "probability": 0.7012 + }, + { + "start": 5341.78, + "end": 5344.26, + "probability": 0.9865 + }, + { + "start": 5344.58, + "end": 5346.24, + "probability": 0.9716 + }, + { + "start": 5346.4, + "end": 5346.98, + "probability": 0.9119 + }, + { + "start": 5348.19, + "end": 5350.3, + "probability": 0.903 + }, + { + "start": 5350.34, + "end": 5353.34, + "probability": 0.6639 + }, + { + "start": 5353.86, + "end": 5355.74, + "probability": 0.5339 + }, + { + "start": 5356.05, + "end": 5358.84, + "probability": 0.9521 + }, + { + "start": 5358.88, + "end": 5359.98, + "probability": 0.96 + }, + { + "start": 5360.52, + "end": 5360.96, + "probability": 0.6336 + }, + { + "start": 5361.12, + "end": 5362.62, + "probability": 0.9318 + }, + { + "start": 5362.9, + "end": 5364.36, + "probability": 0.2284 + }, + { + "start": 5369.54, + "end": 5375.26, + "probability": 0.482 + }, + { + "start": 5375.96, + "end": 5379.7, + "probability": 0.7564 + }, + { + "start": 5380.66, + "end": 5381.26, + "probability": 0.7563 + }, + { + "start": 5381.54, + "end": 5382.32, + "probability": 0.7388 + }, + { + "start": 5382.8, + "end": 5386.56, + "probability": 0.6807 + }, + { + "start": 5386.6, + "end": 5387.2, + "probability": 0.8968 + }, + { + "start": 5387.4, + "end": 5388.0, + "probability": 0.8882 + }, + { + "start": 5388.9, + "end": 5391.52, + "probability": 0.9974 + }, + { + "start": 5391.64, + "end": 5392.64, + "probability": 0.0825 + }, + { + "start": 5393.0, + "end": 5393.4, + "probability": 0.7834 + }, + { + "start": 5393.4, + "end": 5397.08, + "probability": 0.9905 + }, + { + "start": 5397.08, + "end": 5399.02, + "probability": 0.8787 + }, + { + "start": 5399.9, + "end": 5399.96, + "probability": 0.2658 + }, + { + "start": 5399.96, + "end": 5401.14, + "probability": 0.6765 + }, + { + "start": 5402.02, + "end": 5403.08, + "probability": 0.8071 + }, + { + "start": 5403.12, + "end": 5408.7, + "probability": 0.9469 + }, + { + "start": 5409.48, + "end": 5410.46, + "probability": 0.7234 + }, + { + "start": 5410.6, + "end": 5413.6, + "probability": 0.9595 + }, + { + "start": 5413.7, + "end": 5416.66, + "probability": 0.9251 + }, + { + "start": 5417.04, + "end": 5419.0, + "probability": 0.6013 + }, + { + "start": 5419.16, + "end": 5419.7, + "probability": 0.4734 + }, + { + "start": 5419.7, + "end": 5421.1, + "probability": 0.2456 + }, + { + "start": 5421.48, + "end": 5423.58, + "probability": 0.1166 + }, + { + "start": 5424.42, + "end": 5425.94, + "probability": 0.3782 + }, + { + "start": 5428.12, + "end": 5428.72, + "probability": 0.1141 + }, + { + "start": 5428.72, + "end": 5428.72, + "probability": 0.0906 + }, + { + "start": 5428.72, + "end": 5429.16, + "probability": 0.3841 + }, + { + "start": 5429.16, + "end": 5429.16, + "probability": 0.2474 + }, + { + "start": 5429.16, + "end": 5430.92, + "probability": 0.7 + }, + { + "start": 5431.1, + "end": 5432.94, + "probability": 0.8411 + }, + { + "start": 5434.21, + "end": 5436.02, + "probability": 0.7962 + }, + { + "start": 5436.12, + "end": 5438.92, + "probability": 0.997 + }, + { + "start": 5438.92, + "end": 5441.7, + "probability": 0.9948 + }, + { + "start": 5442.1, + "end": 5445.3, + "probability": 0.9187 + }, + { + "start": 5445.44, + "end": 5447.26, + "probability": 0.7043 + }, + { + "start": 5447.64, + "end": 5448.9, + "probability": 0.8784 + }, + { + "start": 5448.94, + "end": 5450.9, + "probability": 0.9893 + }, + { + "start": 5451.26, + "end": 5453.66, + "probability": 0.9982 + }, + { + "start": 5453.66, + "end": 5456.66, + "probability": 0.9504 + }, + { + "start": 5456.78, + "end": 5458.66, + "probability": 0.9905 + }, + { + "start": 5459.88, + "end": 5461.82, + "probability": 0.5944 + }, + { + "start": 5462.02, + "end": 5463.16, + "probability": 0.6631 + }, + { + "start": 5463.32, + "end": 5465.48, + "probability": 0.6156 + }, + { + "start": 5465.78, + "end": 5467.39, + "probability": 0.9507 + }, + { + "start": 5467.6, + "end": 5470.6, + "probability": 0.765 + }, + { + "start": 5470.76, + "end": 5471.36, + "probability": 0.8021 + }, + { + "start": 5471.52, + "end": 5471.94, + "probability": 0.6167 + }, + { + "start": 5472.04, + "end": 5472.84, + "probability": 0.8111 + }, + { + "start": 5473.44, + "end": 5476.02, + "probability": 0.9584 + }, + { + "start": 5476.18, + "end": 5479.88, + "probability": 0.9695 + }, + { + "start": 5481.38, + "end": 5481.38, + "probability": 0.1564 + }, + { + "start": 5481.38, + "end": 5482.94, + "probability": 0.8561 + }, + { + "start": 5484.0, + "end": 5485.0, + "probability": 0.9877 + }, + { + "start": 5485.88, + "end": 5486.74, + "probability": 0.986 + }, + { + "start": 5486.82, + "end": 5489.24, + "probability": 0.9753 + }, + { + "start": 5489.7, + "end": 5491.54, + "probability": 0.9945 + }, + { + "start": 5492.16, + "end": 5493.72, + "probability": 0.7082 + }, + { + "start": 5493.84, + "end": 5495.61, + "probability": 0.8876 + }, + { + "start": 5496.38, + "end": 5496.5, + "probability": 0.2279 + }, + { + "start": 5496.5, + "end": 5498.0, + "probability": 0.981 + }, + { + "start": 5498.5, + "end": 5499.54, + "probability": 0.8452 + }, + { + "start": 5500.3, + "end": 5503.02, + "probability": 0.9272 + }, + { + "start": 5503.62, + "end": 5504.88, + "probability": 0.8405 + }, + { + "start": 5505.38, + "end": 5506.26, + "probability": 0.8104 + }, + { + "start": 5506.68, + "end": 5508.92, + "probability": 0.8095 + }, + { + "start": 5509.5, + "end": 5513.26, + "probability": 0.9942 + }, + { + "start": 5513.26, + "end": 5517.6, + "probability": 0.9971 + }, + { + "start": 5517.98, + "end": 5519.62, + "probability": 0.7783 + }, + { + "start": 5520.04, + "end": 5521.12, + "probability": 0.8675 + }, + { + "start": 5521.5, + "end": 5522.56, + "probability": 0.755 + }, + { + "start": 5522.96, + "end": 5525.86, + "probability": 0.9583 + }, + { + "start": 5526.16, + "end": 5529.16, + "probability": 0.9951 + }, + { + "start": 5529.56, + "end": 5531.48, + "probability": 0.891 + }, + { + "start": 5531.7, + "end": 5532.26, + "probability": 0.8061 + }, + { + "start": 5532.68, + "end": 5533.44, + "probability": 0.5973 + }, + { + "start": 5533.5, + "end": 5537.24, + "probability": 0.8174 + }, + { + "start": 5537.62, + "end": 5537.62, + "probability": 0.0898 + }, + { + "start": 5537.9, + "end": 5538.38, + "probability": 0.8534 + }, + { + "start": 5538.82, + "end": 5540.66, + "probability": 0.8396 + }, + { + "start": 5540.82, + "end": 5541.77, + "probability": 0.9348 + }, + { + "start": 5542.4, + "end": 5543.05, + "probability": 0.7339 + }, + { + "start": 5543.9, + "end": 5545.02, + "probability": 0.586 + }, + { + "start": 5545.4, + "end": 5546.48, + "probability": 0.951 + }, + { + "start": 5546.94, + "end": 5547.88, + "probability": 0.9752 + }, + { + "start": 5548.16, + "end": 5549.0, + "probability": 0.891 + }, + { + "start": 5549.3, + "end": 5552.78, + "probability": 0.9761 + }, + { + "start": 5552.78, + "end": 5555.72, + "probability": 0.9593 + }, + { + "start": 5556.1, + "end": 5556.16, + "probability": 0.2163 + }, + { + "start": 5556.16, + "end": 5556.16, + "probability": 0.0337 + }, + { + "start": 5556.16, + "end": 5557.36, + "probability": 0.9265 + }, + { + "start": 5557.76, + "end": 5558.42, + "probability": 0.5886 + }, + { + "start": 5558.46, + "end": 5559.22, + "probability": 0.7803 + }, + { + "start": 5559.28, + "end": 5560.34, + "probability": 0.6286 + }, + { + "start": 5560.48, + "end": 5561.16, + "probability": 0.9582 + }, + { + "start": 5562.5, + "end": 5564.46, + "probability": 0.9967 + }, + { + "start": 5565.28, + "end": 5566.62, + "probability": 0.8552 + }, + { + "start": 5567.58, + "end": 5568.5, + "probability": 0.861 + }, + { + "start": 5568.76, + "end": 5569.78, + "probability": 0.3598 + }, + { + "start": 5570.28, + "end": 5572.74, + "probability": 0.9851 + }, + { + "start": 5573.84, + "end": 5576.52, + "probability": 0.9932 + }, + { + "start": 5576.82, + "end": 5577.62, + "probability": 0.9635 + }, + { + "start": 5577.66, + "end": 5578.34, + "probability": 0.7449 + }, + { + "start": 5578.7, + "end": 5580.2, + "probability": 0.9476 + }, + { + "start": 5580.24, + "end": 5582.02, + "probability": 0.9333 + }, + { + "start": 5582.04, + "end": 5583.0, + "probability": 0.803 + }, + { + "start": 5583.44, + "end": 5584.54, + "probability": 0.5396 + }, + { + "start": 5584.64, + "end": 5585.24, + "probability": 0.5038 + }, + { + "start": 5585.36, + "end": 5586.82, + "probability": 0.9661 + }, + { + "start": 5588.72, + "end": 5591.98, + "probability": 0.0746 + }, + { + "start": 5591.98, + "end": 5591.98, + "probability": 0.0564 + }, + { + "start": 5591.98, + "end": 5591.98, + "probability": 0.3581 + }, + { + "start": 5591.98, + "end": 5591.98, + "probability": 0.2088 + }, + { + "start": 5591.98, + "end": 5592.3, + "probability": 0.1077 + }, + { + "start": 5592.32, + "end": 5593.48, + "probability": 0.3516 + }, + { + "start": 5593.48, + "end": 5594.22, + "probability": 0.4062 + }, + { + "start": 5594.34, + "end": 5594.98, + "probability": 0.4086 + }, + { + "start": 5595.14, + "end": 5596.44, + "probability": 0.6162 + }, + { + "start": 5596.44, + "end": 5596.9, + "probability": 0.6451 + }, + { + "start": 5597.2, + "end": 5599.98, + "probability": 0.4427 + }, + { + "start": 5599.98, + "end": 5600.46, + "probability": 0.6841 + }, + { + "start": 5600.54, + "end": 5600.82, + "probability": 0.7127 + }, + { + "start": 5600.84, + "end": 5601.68, + "probability": 0.6668 + }, + { + "start": 5601.78, + "end": 5604.86, + "probability": 0.7174 + }, + { + "start": 5605.14, + "end": 5606.4, + "probability": 0.6747 + }, + { + "start": 5606.62, + "end": 5608.83, + "probability": 0.928 + }, + { + "start": 5609.46, + "end": 5609.54, + "probability": 0.6883 + }, + { + "start": 5609.7, + "end": 5610.08, + "probability": 0.7637 + }, + { + "start": 5610.14, + "end": 5610.71, + "probability": 0.959 + }, + { + "start": 5611.28, + "end": 5612.16, + "probability": 0.9214 + }, + { + "start": 5612.26, + "end": 5612.94, + "probability": 0.5131 + }, + { + "start": 5613.28, + "end": 5613.76, + "probability": 0.881 + }, + { + "start": 5613.78, + "end": 5614.48, + "probability": 0.9487 + }, + { + "start": 5614.68, + "end": 5616.92, + "probability": 0.9198 + }, + { + "start": 5617.22, + "end": 5618.02, + "probability": 0.5825 + }, + { + "start": 5618.28, + "end": 5619.56, + "probability": 0.9976 + }, + { + "start": 5619.74, + "end": 5621.56, + "probability": 0.9669 + }, + { + "start": 5621.86, + "end": 5621.88, + "probability": 0.4949 + }, + { + "start": 5621.88, + "end": 5624.58, + "probability": 0.9549 + }, + { + "start": 5624.6, + "end": 5626.36, + "probability": 0.9451 + }, + { + "start": 5626.66, + "end": 5630.12, + "probability": 0.8774 + }, + { + "start": 5630.34, + "end": 5631.9, + "probability": 0.5131 + }, + { + "start": 5632.52, + "end": 5635.6, + "probability": 0.4795 + }, + { + "start": 5636.52, + "end": 5637.16, + "probability": 0.3504 + }, + { + "start": 5637.36, + "end": 5638.8, + "probability": 0.6975 + }, + { + "start": 5638.92, + "end": 5641.48, + "probability": 0.8035 + }, + { + "start": 5641.54, + "end": 5643.24, + "probability": 0.6847 + }, + { + "start": 5643.34, + "end": 5643.8, + "probability": 0.9697 + }, + { + "start": 5644.22, + "end": 5644.77, + "probability": 0.2306 + }, + { + "start": 5646.42, + "end": 5649.9, + "probability": 0.7905 + }, + { + "start": 5650.26, + "end": 5650.52, + "probability": 0.4878 + }, + { + "start": 5650.6, + "end": 5652.04, + "probability": 0.7223 + }, + { + "start": 5652.38, + "end": 5653.2, + "probability": 0.3791 + }, + { + "start": 5653.2, + "end": 5653.64, + "probability": 0.5809 + }, + { + "start": 5654.18, + "end": 5656.36, + "probability": 0.9565 + }, + { + "start": 5658.68, + "end": 5660.72, + "probability": 0.6487 + }, + { + "start": 5662.08, + "end": 5665.56, + "probability": 0.1079 + }, + { + "start": 5665.56, + "end": 5667.28, + "probability": 0.5981 + }, + { + "start": 5667.36, + "end": 5667.8, + "probability": 0.5486 + }, + { + "start": 5667.82, + "end": 5673.86, + "probability": 0.777 + }, + { + "start": 5674.14, + "end": 5675.26, + "probability": 0.887 + }, + { + "start": 5675.58, + "end": 5678.59, + "probability": 0.915 + }, + { + "start": 5679.88, + "end": 5681.02, + "probability": 0.4532 + }, + { + "start": 5681.32, + "end": 5682.08, + "probability": 0.633 + }, + { + "start": 5683.02, + "end": 5686.1, + "probability": 0.79 + }, + { + "start": 5687.44, + "end": 5688.76, + "probability": 0.6049 + }, + { + "start": 5688.84, + "end": 5689.68, + "probability": 0.7495 + }, + { + "start": 5689.7, + "end": 5690.36, + "probability": 0.8214 + }, + { + "start": 5690.82, + "end": 5691.96, + "probability": 0.8262 + }, + { + "start": 5693.04, + "end": 5693.48, + "probability": 0.5204 + }, + { + "start": 5694.0, + "end": 5694.8, + "probability": 0.6296 + }, + { + "start": 5696.06, + "end": 5699.04, + "probability": 0.5586 + }, + { + "start": 5699.96, + "end": 5702.64, + "probability": 0.829 + }, + { + "start": 5703.4, + "end": 5704.83, + "probability": 0.995 + }, + { + "start": 5705.16, + "end": 5706.0, + "probability": 0.9917 + }, + { + "start": 5707.04, + "end": 5708.1, + "probability": 0.8468 + }, + { + "start": 5708.8, + "end": 5709.54, + "probability": 0.8751 + }, + { + "start": 5710.46, + "end": 5713.12, + "probability": 0.8523 + }, + { + "start": 5713.9, + "end": 5715.08, + "probability": 0.9167 + }, + { + "start": 5715.58, + "end": 5719.96, + "probability": 0.9826 + }, + { + "start": 5720.62, + "end": 5722.37, + "probability": 0.9946 + }, + { + "start": 5723.46, + "end": 5723.7, + "probability": 0.9455 + }, + { + "start": 5723.84, + "end": 5724.86, + "probability": 0.8913 + }, + { + "start": 5725.28, + "end": 5728.68, + "probability": 0.9695 + }, + { + "start": 5729.12, + "end": 5732.98, + "probability": 0.9722 + }, + { + "start": 5733.5, + "end": 5734.6, + "probability": 0.8904 + }, + { + "start": 5736.13, + "end": 5738.16, + "probability": 0.1183 + }, + { + "start": 5738.7, + "end": 5738.76, + "probability": 0.066 + }, + { + "start": 5738.76, + "end": 5738.76, + "probability": 0.1504 + }, + { + "start": 5738.76, + "end": 5738.76, + "probability": 0.0567 + }, + { + "start": 5738.76, + "end": 5740.48, + "probability": 0.6397 + }, + { + "start": 5740.98, + "end": 5742.06, + "probability": 0.1945 + }, + { + "start": 5742.06, + "end": 5742.92, + "probability": 0.8496 + }, + { + "start": 5743.32, + "end": 5746.0, + "probability": 0.7612 + }, + { + "start": 5746.04, + "end": 5746.7, + "probability": 0.8744 + }, + { + "start": 5747.16, + "end": 5747.5, + "probability": 0.8874 + }, + { + "start": 5747.8, + "end": 5748.9, + "probability": 0.8356 + }, + { + "start": 5749.02, + "end": 5753.84, + "probability": 0.973 + }, + { + "start": 5754.34, + "end": 5755.38, + "probability": 0.8025 + }, + { + "start": 5756.88, + "end": 5762.12, + "probability": 0.7399 + }, + { + "start": 5762.12, + "end": 5763.94, + "probability": 0.7007 + }, + { + "start": 5764.08, + "end": 5766.3, + "probability": 0.6957 + }, + { + "start": 5766.48, + "end": 5767.37, + "probability": 0.9218 + }, + { + "start": 5767.5, + "end": 5768.24, + "probability": 0.7728 + }, + { + "start": 5768.44, + "end": 5770.07, + "probability": 0.9865 + }, + { + "start": 5772.36, + "end": 5776.26, + "probability": 0.7771 + }, + { + "start": 5776.72, + "end": 5777.72, + "probability": 0.9069 + }, + { + "start": 5778.62, + "end": 5780.92, + "probability": 0.9702 + }, + { + "start": 5782.42, + "end": 5786.48, + "probability": 0.8487 + }, + { + "start": 5787.06, + "end": 5789.28, + "probability": 0.9928 + }, + { + "start": 5789.84, + "end": 5793.1, + "probability": 0.9232 + }, + { + "start": 5793.2, + "end": 5793.34, + "probability": 0.5885 + }, + { + "start": 5793.36, + "end": 5794.94, + "probability": 0.7954 + }, + { + "start": 5795.32, + "end": 5796.02, + "probability": 0.725 + }, + { + "start": 5796.38, + "end": 5796.66, + "probability": 0.6584 + }, + { + "start": 5796.82, + "end": 5797.08, + "probability": 0.7471 + }, + { + "start": 5797.1, + "end": 5797.12, + "probability": 0.12 + }, + { + "start": 5797.2, + "end": 5797.96, + "probability": 0.487 + }, + { + "start": 5797.96, + "end": 5799.56, + "probability": 0.5753 + }, + { + "start": 5799.68, + "end": 5801.88, + "probability": 0.9512 + }, + { + "start": 5801.96, + "end": 5803.52, + "probability": 0.9438 + }, + { + "start": 5804.0, + "end": 5806.32, + "probability": 0.9777 + }, + { + "start": 5806.86, + "end": 5808.62, + "probability": 0.9895 + }, + { + "start": 5809.04, + "end": 5810.48, + "probability": 0.9711 + }, + { + "start": 5810.82, + "end": 5812.9, + "probability": 0.9094 + }, + { + "start": 5813.32, + "end": 5814.56, + "probability": 0.7979 + }, + { + "start": 5814.84, + "end": 5814.84, + "probability": 0.38 + }, + { + "start": 5815.04, + "end": 5817.46, + "probability": 0.6171 + }, + { + "start": 5818.18, + "end": 5819.04, + "probability": 0.9664 + }, + { + "start": 5819.16, + "end": 5823.86, + "probability": 0.9355 + }, + { + "start": 5824.36, + "end": 5825.87, + "probability": 0.938 + }, + { + "start": 5826.54, + "end": 5827.64, + "probability": 0.7125 + }, + { + "start": 5828.26, + "end": 5832.96, + "probability": 0.8999 + }, + { + "start": 5832.96, + "end": 5834.7, + "probability": 0.7541 + }, + { + "start": 5834.74, + "end": 5839.06, + "probability": 0.9608 + }, + { + "start": 5839.18, + "end": 5839.5, + "probability": 0.479 + }, + { + "start": 5839.94, + "end": 5842.67, + "probability": 0.9849 + }, + { + "start": 5843.06, + "end": 5843.28, + "probability": 0.2084 + }, + { + "start": 5843.32, + "end": 5843.84, + "probability": 0.6466 + }, + { + "start": 5844.2, + "end": 5844.64, + "probability": 0.604 + }, + { + "start": 5844.68, + "end": 5845.76, + "probability": 0.6613 + }, + { + "start": 5846.08, + "end": 5847.68, + "probability": 0.9019 + }, + { + "start": 5847.9, + "end": 5850.66, + "probability": 0.7972 + }, + { + "start": 5850.66, + "end": 5851.4, + "probability": 0.7232 + }, + { + "start": 5851.52, + "end": 5852.46, + "probability": 0.7472 + }, + { + "start": 5853.12, + "end": 5853.52, + "probability": 0.71 + }, + { + "start": 5853.56, + "end": 5855.3, + "probability": 0.7475 + }, + { + "start": 5855.48, + "end": 5856.24, + "probability": 0.7587 + }, + { + "start": 5856.36, + "end": 5857.08, + "probability": 0.8224 + }, + { + "start": 5857.32, + "end": 5859.42, + "probability": 0.9545 + }, + { + "start": 5860.24, + "end": 5861.26, + "probability": 0.8737 + }, + { + "start": 5862.89, + "end": 5865.38, + "probability": 0.2799 + }, + { + "start": 5865.84, + "end": 5872.24, + "probability": 0.9412 + }, + { + "start": 5872.7, + "end": 5873.62, + "probability": 0.7216 + }, + { + "start": 5874.02, + "end": 5874.64, + "probability": 0.9375 + }, + { + "start": 5874.96, + "end": 5875.56, + "probability": 0.6459 + }, + { + "start": 5875.76, + "end": 5876.46, + "probability": 0.751 + }, + { + "start": 5877.1, + "end": 5877.8, + "probability": 0.6857 + }, + { + "start": 5877.98, + "end": 5879.3, + "probability": 0.7804 + }, + { + "start": 5879.36, + "end": 5880.24, + "probability": 0.4803 + }, + { + "start": 5880.38, + "end": 5882.9, + "probability": 0.9267 + }, + { + "start": 5883.2, + "end": 5884.18, + "probability": 0.933 + }, + { + "start": 5884.6, + "end": 5885.74, + "probability": 0.7707 + }, + { + "start": 5886.44, + "end": 5888.78, + "probability": 0.9602 + }, + { + "start": 5889.88, + "end": 5892.42, + "probability": 0.9591 + }, + { + "start": 5892.98, + "end": 5897.54, + "probability": 0.9262 + }, + { + "start": 5898.24, + "end": 5904.46, + "probability": 0.7343 + }, + { + "start": 5904.98, + "end": 5907.22, + "probability": 0.8669 + }, + { + "start": 5907.58, + "end": 5909.6, + "probability": 0.5344 + }, + { + "start": 5911.4, + "end": 5914.98, + "probability": 0.994 + }, + { + "start": 5915.24, + "end": 5917.34, + "probability": 0.6996 + }, + { + "start": 5917.66, + "end": 5918.56, + "probability": 0.6982 + }, + { + "start": 5919.0, + "end": 5921.98, + "probability": 0.8609 + }, + { + "start": 5922.14, + "end": 5923.42, + "probability": 0.8579 + }, + { + "start": 5924.08, + "end": 5924.46, + "probability": 0.6098 + }, + { + "start": 5924.54, + "end": 5925.42, + "probability": 0.9907 + }, + { + "start": 5925.56, + "end": 5926.48, + "probability": 0.9066 + }, + { + "start": 5926.94, + "end": 5930.64, + "probability": 0.9276 + }, + { + "start": 5931.16, + "end": 5936.82, + "probability": 0.8239 + }, + { + "start": 5937.28, + "end": 5944.3, + "probability": 0.904 + }, + { + "start": 5944.48, + "end": 5945.26, + "probability": 0.8184 + }, + { + "start": 5946.48, + "end": 5947.2, + "probability": 0.8583 + }, + { + "start": 5948.3, + "end": 5949.02, + "probability": 0.718 + }, + { + "start": 5949.2, + "end": 5950.48, + "probability": 0.8794 + }, + { + "start": 5950.92, + "end": 5952.12, + "probability": 0.0339 + }, + { + "start": 5956.09, + "end": 5960.42, + "probability": 0.9424 + }, + { + "start": 5960.86, + "end": 5961.26, + "probability": 0.0001 + }, + { + "start": 5962.36, + "end": 5962.5, + "probability": 0.0222 + }, + { + "start": 5962.5, + "end": 5964.9, + "probability": 0.1421 + }, + { + "start": 5965.6, + "end": 5969.68, + "probability": 0.8714 + }, + { + "start": 5970.22, + "end": 5972.9, + "probability": 0.0316 + }, + { + "start": 5973.62, + "end": 5977.54, + "probability": 0.022 + }, + { + "start": 5978.72, + "end": 5982.3, + "probability": 0.0236 + }, + { + "start": 5983.74, + "end": 5984.26, + "probability": 0.0614 + }, + { + "start": 5984.26, + "end": 5985.02, + "probability": 0.2989 + }, + { + "start": 5986.18, + "end": 5987.08, + "probability": 0.8048 + }, + { + "start": 5987.18, + "end": 5988.31, + "probability": 0.8225 + }, + { + "start": 5988.76, + "end": 5989.82, + "probability": 0.7341 + }, + { + "start": 5989.96, + "end": 5990.88, + "probability": 0.6731 + }, + { + "start": 5991.7, + "end": 5992.18, + "probability": 0.9549 + }, + { + "start": 5992.34, + "end": 5995.3, + "probability": 0.8571 + }, + { + "start": 5995.52, + "end": 5996.64, + "probability": 0.8966 + }, + { + "start": 5997.88, + "end": 6002.08, + "probability": 0.8052 + }, + { + "start": 6003.06, + "end": 6004.26, + "probability": 0.8475 + }, + { + "start": 6004.9, + "end": 6005.8, + "probability": 0.814 + }, + { + "start": 6006.18, + "end": 6007.54, + "probability": 0.7888 + }, + { + "start": 6007.62, + "end": 6008.6, + "probability": 0.9845 + }, + { + "start": 6008.72, + "end": 6009.96, + "probability": 0.786 + }, + { + "start": 6009.98, + "end": 6011.26, + "probability": 0.7987 + }, + { + "start": 6011.74, + "end": 6012.08, + "probability": 0.8456 + }, + { + "start": 6012.56, + "end": 6014.04, + "probability": 0.9595 + }, + { + "start": 6014.18, + "end": 6015.8, + "probability": 0.6341 + }, + { + "start": 6016.4, + "end": 6021.42, + "probability": 0.8358 + }, + { + "start": 6022.06, + "end": 6027.08, + "probability": 0.9321 + }, + { + "start": 6027.22, + "end": 6028.14, + "probability": 0.9202 + }, + { + "start": 6028.2, + "end": 6029.58, + "probability": 0.9725 + }, + { + "start": 6030.92, + "end": 6032.9, + "probability": 0.1382 + }, + { + "start": 6032.9, + "end": 6032.9, + "probability": 0.1375 + }, + { + "start": 6032.9, + "end": 6033.88, + "probability": 0.3801 + }, + { + "start": 6034.5, + "end": 6037.3, + "probability": 0.9865 + }, + { + "start": 6037.92, + "end": 6041.17, + "probability": 0.6303 + }, + { + "start": 6041.84, + "end": 6042.48, + "probability": 0.5521 + }, + { + "start": 6043.46, + "end": 6043.92, + "probability": 0.6364 + }, + { + "start": 6044.32, + "end": 6044.34, + "probability": 0.2529 + }, + { + "start": 6044.34, + "end": 6045.13, + "probability": 0.7342 + }, + { + "start": 6045.2, + "end": 6045.86, + "probability": 0.8081 + }, + { + "start": 6046.3, + "end": 6049.24, + "probability": 0.9277 + }, + { + "start": 6050.26, + "end": 6051.04, + "probability": 0.8681 + }, + { + "start": 6051.62, + "end": 6055.32, + "probability": 0.7298 + }, + { + "start": 6055.72, + "end": 6057.06, + "probability": 0.8984 + }, + { + "start": 6057.98, + "end": 6061.2, + "probability": 0.6671 + }, + { + "start": 6062.0, + "end": 6062.6, + "probability": 0.8917 + }, + { + "start": 6063.04, + "end": 6063.98, + "probability": 0.9536 + }, + { + "start": 6064.06, + "end": 6064.66, + "probability": 0.9382 + }, + { + "start": 6064.66, + "end": 6065.38, + "probability": 0.9666 + }, + { + "start": 6065.42, + "end": 6066.14, + "probability": 0.9688 + }, + { + "start": 6066.18, + "end": 6066.86, + "probability": 0.9589 + }, + { + "start": 6067.24, + "end": 6068.04, + "probability": 0.991 + }, + { + "start": 6068.26, + "end": 6068.89, + "probability": 0.9502 + }, + { + "start": 6069.38, + "end": 6071.24, + "probability": 0.9737 + }, + { + "start": 6071.38, + "end": 6072.3, + "probability": 0.6668 + }, + { + "start": 6072.8, + "end": 6073.66, + "probability": 0.7729 + }, + { + "start": 6073.94, + "end": 6074.58, + "probability": 0.9832 + }, + { + "start": 6075.46, + "end": 6075.78, + "probability": 0.098 + }, + { + "start": 6075.78, + "end": 6077.24, + "probability": 0.9904 + }, + { + "start": 6077.24, + "end": 6077.72, + "probability": 0.5681 + }, + { + "start": 6077.84, + "end": 6078.6, + "probability": 0.9531 + }, + { + "start": 6081.6, + "end": 6085.04, + "probability": 0.5608 + }, + { + "start": 6085.84, + "end": 6089.0, + "probability": 0.985 + }, + { + "start": 6089.14, + "end": 6091.0, + "probability": 0.9097 + }, + { + "start": 6091.18, + "end": 6091.88, + "probability": 0.7326 + }, + { + "start": 6091.98, + "end": 6094.28, + "probability": 0.9643 + }, + { + "start": 6094.76, + "end": 6095.46, + "probability": 0.9072 + }, + { + "start": 6095.6, + "end": 6098.04, + "probability": 0.7213 + }, + { + "start": 6098.1, + "end": 6100.02, + "probability": 0.9932 + }, + { + "start": 6100.8, + "end": 6102.76, + "probability": 0.9752 + }, + { + "start": 6103.16, + "end": 6104.02, + "probability": 0.7549 + }, + { + "start": 6104.54, + "end": 6107.38, + "probability": 0.9881 + }, + { + "start": 6107.9, + "end": 6109.0, + "probability": 0.9185 + }, + { + "start": 6109.3, + "end": 6110.6, + "probability": 0.9885 + }, + { + "start": 6110.96, + "end": 6112.38, + "probability": 0.8735 + }, + { + "start": 6112.58, + "end": 6114.84, + "probability": 0.9893 + }, + { + "start": 6115.46, + "end": 6116.72, + "probability": 0.7222 + }, + { + "start": 6117.0, + "end": 6119.42, + "probability": 0.9785 + }, + { + "start": 6119.98, + "end": 6121.45, + "probability": 0.5757 + }, + { + "start": 6122.7, + "end": 6124.46, + "probability": 0.7157 + }, + { + "start": 6125.04, + "end": 6125.8, + "probability": 0.6915 + }, + { + "start": 6127.14, + "end": 6127.98, + "probability": 0.8868 + }, + { + "start": 6128.1, + "end": 6133.26, + "probability": 0.9657 + }, + { + "start": 6133.94, + "end": 6135.56, + "probability": 0.9932 + }, + { + "start": 6136.26, + "end": 6140.92, + "probability": 0.9565 + }, + { + "start": 6140.98, + "end": 6142.48, + "probability": 0.7871 + }, + { + "start": 6142.6, + "end": 6143.3, + "probability": 0.7817 + }, + { + "start": 6143.78, + "end": 6144.4, + "probability": 0.9181 + }, + { + "start": 6144.84, + "end": 6145.38, + "probability": 0.603 + }, + { + "start": 6146.12, + "end": 6146.92, + "probability": 0.8206 + }, + { + "start": 6147.32, + "end": 6148.54, + "probability": 0.7873 + }, + { + "start": 6149.0, + "end": 6152.06, + "probability": 0.7769 + }, + { + "start": 6152.62, + "end": 6154.92, + "probability": 0.6115 + }, + { + "start": 6154.98, + "end": 6157.18, + "probability": 0.9497 + }, + { + "start": 6157.28, + "end": 6158.4, + "probability": 0.8257 + }, + { + "start": 6159.51, + "end": 6162.66, + "probability": 0.8818 + }, + { + "start": 6169.34, + "end": 6169.86, + "probability": 0.7582 + }, + { + "start": 6172.5, + "end": 6172.92, + "probability": 0.4051 + }, + { + "start": 6173.12, + "end": 6174.54, + "probability": 0.7598 + }, + { + "start": 6174.58, + "end": 6176.23, + "probability": 0.9746 + }, + { + "start": 6176.68, + "end": 6178.92, + "probability": 0.4596 + }, + { + "start": 6179.24, + "end": 6180.38, + "probability": 0.699 + }, + { + "start": 6180.8, + "end": 6182.62, + "probability": 0.5509 + }, + { + "start": 6183.32, + "end": 6185.1, + "probability": 0.9374 + }, + { + "start": 6186.08, + "end": 6187.52, + "probability": 0.6638 + }, + { + "start": 6188.06, + "end": 6188.68, + "probability": 0.8523 + }, + { + "start": 6188.86, + "end": 6190.72, + "probability": 0.5902 + }, + { + "start": 6190.74, + "end": 6191.14, + "probability": 0.6648 + }, + { + "start": 6191.58, + "end": 6192.18, + "probability": 0.9245 + }, + { + "start": 6193.38, + "end": 6194.52, + "probability": 0.8635 + }, + { + "start": 6194.58, + "end": 6195.44, + "probability": 0.9946 + }, + { + "start": 6196.18, + "end": 6197.36, + "probability": 0.874 + }, + { + "start": 6197.94, + "end": 6198.62, + "probability": 0.5231 + }, + { + "start": 6198.7, + "end": 6199.19, + "probability": 0.7791 + }, + { + "start": 6199.66, + "end": 6201.54, + "probability": 0.9253 + }, + { + "start": 6201.84, + "end": 6203.64, + "probability": 0.8601 + }, + { + "start": 6203.98, + "end": 6204.92, + "probability": 0.91 + }, + { + "start": 6205.02, + "end": 6205.12, + "probability": 0.6204 + }, + { + "start": 6205.2, + "end": 6206.06, + "probability": 0.7278 + }, + { + "start": 6209.98, + "end": 6210.68, + "probability": 0.4783 + }, + { + "start": 6211.52, + "end": 6211.76, + "probability": 0.13 + }, + { + "start": 6214.0, + "end": 6214.68, + "probability": 0.609 + }, + { + "start": 6214.82, + "end": 6216.32, + "probability": 0.8954 + }, + { + "start": 6216.7, + "end": 6217.94, + "probability": 0.3444 + }, + { + "start": 6218.66, + "end": 6220.14, + "probability": 0.0748 + }, + { + "start": 6220.38, + "end": 6225.46, + "probability": 0.7802 + }, + { + "start": 6225.98, + "end": 6226.58, + "probability": 0.8662 + }, + { + "start": 6227.84, + "end": 6228.36, + "probability": 0.9438 + }, + { + "start": 6228.8, + "end": 6229.88, + "probability": 0.8529 + }, + { + "start": 6230.42, + "end": 6231.64, + "probability": 0.8735 + }, + { + "start": 6232.1, + "end": 6232.44, + "probability": 0.7279 + }, + { + "start": 6232.54, + "end": 6234.7, + "probability": 0.8497 + }, + { + "start": 6235.32, + "end": 6236.92, + "probability": 0.9771 + }, + { + "start": 6237.18, + "end": 6239.6, + "probability": 0.9907 + }, + { + "start": 6240.1, + "end": 6241.42, + "probability": 0.6889 + }, + { + "start": 6241.42, + "end": 6244.72, + "probability": 0.8931 + }, + { + "start": 6245.24, + "end": 6248.1, + "probability": 0.8033 + }, + { + "start": 6248.4, + "end": 6250.34, + "probability": 0.9143 + }, + { + "start": 6250.46, + "end": 6252.04, + "probability": 0.8932 + }, + { + "start": 6255.62, + "end": 6256.54, + "probability": 0.1467 + }, + { + "start": 6256.54, + "end": 6258.56, + "probability": 0.689 + }, + { + "start": 6259.3, + "end": 6261.1, + "probability": 0.7176 + }, + { + "start": 6261.32, + "end": 6262.18, + "probability": 0.6748 + }, + { + "start": 6262.22, + "end": 6263.81, + "probability": 0.4871 + }, + { + "start": 6264.3, + "end": 6264.9, + "probability": 0.4617 + }, + { + "start": 6264.98, + "end": 6267.24, + "probability": 0.9608 + }, + { + "start": 6267.6, + "end": 6269.88, + "probability": 0.605 + }, + { + "start": 6269.94, + "end": 6270.58, + "probability": 0.2837 + }, + { + "start": 6271.22, + "end": 6273.84, + "probability": 0.7705 + }, + { + "start": 6274.24, + "end": 6275.36, + "probability": 0.6623 + }, + { + "start": 6275.92, + "end": 6277.2, + "probability": 0.998 + }, + { + "start": 6277.7, + "end": 6277.91, + "probability": 0.8936 + }, + { + "start": 6278.78, + "end": 6284.0, + "probability": 0.683 + }, + { + "start": 6284.68, + "end": 6287.7, + "probability": 0.9894 + }, + { + "start": 6287.92, + "end": 6288.8, + "probability": 0.7648 + }, + { + "start": 6289.48, + "end": 6290.88, + "probability": 0.9253 + }, + { + "start": 6291.42, + "end": 6293.16, + "probability": 0.7767 + }, + { + "start": 6293.96, + "end": 6296.18, + "probability": 0.8361 + }, + { + "start": 6296.24, + "end": 6300.24, + "probability": 0.9609 + }, + { + "start": 6300.38, + "end": 6302.38, + "probability": 0.7936 + }, + { + "start": 6302.9, + "end": 6304.18, + "probability": 0.9219 + }, + { + "start": 6304.86, + "end": 6307.38, + "probability": 0.8827 + }, + { + "start": 6308.0, + "end": 6309.4, + "probability": 0.3423 + }, + { + "start": 6309.94, + "end": 6311.78, + "probability": 0.2366 + }, + { + "start": 6311.96, + "end": 6313.18, + "probability": 0.6345 + }, + { + "start": 6313.28, + "end": 6314.14, + "probability": 0.7808 + }, + { + "start": 6314.68, + "end": 6315.58, + "probability": 0.745 + }, + { + "start": 6316.36, + "end": 6317.86, + "probability": 0.8784 + }, + { + "start": 6317.88, + "end": 6320.08, + "probability": 0.9552 + }, + { + "start": 6320.28, + "end": 6321.76, + "probability": 0.798 + }, + { + "start": 6322.12, + "end": 6322.12, + "probability": 0.0223 + }, + { + "start": 6324.06, + "end": 6324.2, + "probability": 0.1057 + }, + { + "start": 6324.2, + "end": 6324.87, + "probability": 0.5426 + }, + { + "start": 6325.0, + "end": 6325.48, + "probability": 0.7294 + }, + { + "start": 6325.54, + "end": 6328.2, + "probability": 0.8872 + }, + { + "start": 6328.56, + "end": 6328.98, + "probability": 0.49 + }, + { + "start": 6329.04, + "end": 6330.7, + "probability": 0.7373 + }, + { + "start": 6330.84, + "end": 6331.98, + "probability": 0.9917 + }, + { + "start": 6332.44, + "end": 6334.22, + "probability": 0.4975 + }, + { + "start": 6335.4, + "end": 6335.76, + "probability": 0.8382 + }, + { + "start": 6335.82, + "end": 6337.46, + "probability": 0.8826 + }, + { + "start": 6337.74, + "end": 6339.04, + "probability": 0.8574 + }, + { + "start": 6339.72, + "end": 6340.64, + "probability": 0.9424 + }, + { + "start": 6340.72, + "end": 6341.0, + "probability": 0.9591 + }, + { + "start": 6341.46, + "end": 6342.38, + "probability": 0.9024 + }, + { + "start": 6342.48, + "end": 6344.76, + "probability": 0.7928 + }, + { + "start": 6344.86, + "end": 6346.18, + "probability": 0.7204 + }, + { + "start": 6346.58, + "end": 6347.62, + "probability": 0.7673 + }, + { + "start": 6348.18, + "end": 6348.8, + "probability": 0.823 + }, + { + "start": 6349.18, + "end": 6354.56, + "probability": 0.9875 + }, + { + "start": 6355.06, + "end": 6355.74, + "probability": 0.7244 + }, + { + "start": 6356.54, + "end": 6357.44, + "probability": 0.9622 + }, + { + "start": 6357.48, + "end": 6359.62, + "probability": 0.9917 + }, + { + "start": 6359.94, + "end": 6360.78, + "probability": 0.873 + }, + { + "start": 6361.6, + "end": 6363.48, + "probability": 0.7869 + }, + { + "start": 6363.98, + "end": 6365.02, + "probability": 0.9912 + }, + { + "start": 6365.16, + "end": 6365.46, + "probability": 0.9058 + }, + { + "start": 6366.4, + "end": 6368.5, + "probability": 0.9548 + }, + { + "start": 6368.94, + "end": 6370.1, + "probability": 0.9028 + }, + { + "start": 6370.36, + "end": 6371.08, + "probability": 0.8384 + }, + { + "start": 6371.2, + "end": 6371.64, + "probability": 0.8361 + }, + { + "start": 6372.0, + "end": 6373.12, + "probability": 0.6665 + }, + { + "start": 6373.52, + "end": 6374.94, + "probability": 0.71 + }, + { + "start": 6375.34, + "end": 6377.09, + "probability": 0.6226 + }, + { + "start": 6377.6, + "end": 6378.34, + "probability": 0.8097 + }, + { + "start": 6378.5, + "end": 6379.3, + "probability": 0.8503 + }, + { + "start": 6379.4, + "end": 6380.54, + "probability": 0.7655 + }, + { + "start": 6380.64, + "end": 6381.84, + "probability": 0.9056 + }, + { + "start": 6381.84, + "end": 6382.92, + "probability": 0.8633 + }, + { + "start": 6383.18, + "end": 6384.66, + "probability": 0.715 + }, + { + "start": 6384.72, + "end": 6386.18, + "probability": 0.8929 + }, + { + "start": 6386.22, + "end": 6386.7, + "probability": 0.7707 + }, + { + "start": 6386.7, + "end": 6386.86, + "probability": 0.4902 + }, + { + "start": 6387.36, + "end": 6388.85, + "probability": 0.9946 + }, + { + "start": 6389.26, + "end": 6390.44, + "probability": 0.9198 + }, + { + "start": 6390.9, + "end": 6393.92, + "probability": 0.8773 + }, + { + "start": 6394.2, + "end": 6394.54, + "probability": 0.9928 + }, + { + "start": 6395.28, + "end": 6396.34, + "probability": 0.7576 + }, + { + "start": 6396.56, + "end": 6397.43, + "probability": 0.7714 + }, + { + "start": 6397.88, + "end": 6399.0, + "probability": 0.7094 + }, + { + "start": 6399.36, + "end": 6399.86, + "probability": 0.5047 + }, + { + "start": 6399.92, + "end": 6400.34, + "probability": 0.4773 + }, + { + "start": 6400.92, + "end": 6403.04, + "probability": 0.9805 + }, + { + "start": 6403.18, + "end": 6404.46, + "probability": 0.9693 + }, + { + "start": 6404.56, + "end": 6405.56, + "probability": 0.7786 + }, + { + "start": 6406.22, + "end": 6406.43, + "probability": 0.906 + }, + { + "start": 6407.76, + "end": 6412.16, + "probability": 0.9651 + }, + { + "start": 6412.48, + "end": 6412.78, + "probability": 0.7662 + }, + { + "start": 6413.46, + "end": 6414.43, + "probability": 0.7421 + }, + { + "start": 6414.9, + "end": 6417.98, + "probability": 0.9954 + }, + { + "start": 6418.14, + "end": 6419.01, + "probability": 0.8942 + }, + { + "start": 6419.3, + "end": 6422.42, + "probability": 0.8962 + }, + { + "start": 6422.9, + "end": 6424.26, + "probability": 0.6824 + }, + { + "start": 6424.98, + "end": 6427.12, + "probability": 0.8869 + }, + { + "start": 6427.22, + "end": 6429.66, + "probability": 0.9507 + }, + { + "start": 6430.54, + "end": 6431.5, + "probability": 0.8237 + }, + { + "start": 6432.16, + "end": 6435.42, + "probability": 0.7376 + }, + { + "start": 6435.76, + "end": 6436.94, + "probability": 0.6646 + }, + { + "start": 6437.14, + "end": 6437.7, + "probability": 0.853 + }, + { + "start": 6438.5, + "end": 6440.58, + "probability": 0.9568 + }, + { + "start": 6440.64, + "end": 6443.18, + "probability": 0.9829 + }, + { + "start": 6443.64, + "end": 6445.1, + "probability": 0.8617 + }, + { + "start": 6445.86, + "end": 6446.88, + "probability": 0.9927 + }, + { + "start": 6447.64, + "end": 6450.78, + "probability": 0.9926 + }, + { + "start": 6451.62, + "end": 6452.26, + "probability": 0.3791 + }, + { + "start": 6452.44, + "end": 6453.52, + "probability": 0.6741 + }, + { + "start": 6453.62, + "end": 6454.3, + "probability": 0.8543 + }, + { + "start": 6454.38, + "end": 6454.66, + "probability": 0.5174 + }, + { + "start": 6454.74, + "end": 6455.08, + "probability": 0.8828 + }, + { + "start": 6455.36, + "end": 6455.7, + "probability": 0.8782 + }, + { + "start": 6455.88, + "end": 6456.42, + "probability": 0.9463 + }, + { + "start": 6457.12, + "end": 6458.2, + "probability": 0.9668 + }, + { + "start": 6458.54, + "end": 6460.6, + "probability": 0.7187 + }, + { + "start": 6461.1, + "end": 6462.42, + "probability": 0.7855 + }, + { + "start": 6462.58, + "end": 6464.15, + "probability": 0.4605 + }, + { + "start": 6468.52, + "end": 6470.84, + "probability": 0.6902 + }, + { + "start": 6471.38, + "end": 6475.76, + "probability": 0.9619 + }, + { + "start": 6475.82, + "end": 6477.04, + "probability": 0.9937 + }, + { + "start": 6477.46, + "end": 6478.92, + "probability": 0.9811 + }, + { + "start": 6479.36, + "end": 6481.02, + "probability": 0.969 + }, + { + "start": 6481.14, + "end": 6485.62, + "probability": 0.9929 + }, + { + "start": 6485.96, + "end": 6486.02, + "probability": 0.1266 + }, + { + "start": 6486.02, + "end": 6489.62, + "probability": 0.9932 + }, + { + "start": 6490.02, + "end": 6490.9, + "probability": 0.3716 + }, + { + "start": 6490.94, + "end": 6491.08, + "probability": 0.7024 + }, + { + "start": 6491.2, + "end": 6492.0, + "probability": 0.5689 + }, + { + "start": 6492.26, + "end": 6493.62, + "probability": 0.8724 + }, + { + "start": 6494.0, + "end": 6496.26, + "probability": 0.8438 + }, + { + "start": 6497.0, + "end": 6500.02, + "probability": 0.6852 + }, + { + "start": 6500.18, + "end": 6500.79, + "probability": 0.8949 + }, + { + "start": 6501.7, + "end": 6502.82, + "probability": 0.7457 + }, + { + "start": 6502.98, + "end": 6504.48, + "probability": 0.9397 + }, + { + "start": 6504.74, + "end": 6506.92, + "probability": 0.9338 + }, + { + "start": 6507.34, + "end": 6510.56, + "probability": 0.7733 + }, + { + "start": 6510.96, + "end": 6513.22, + "probability": 0.9937 + }, + { + "start": 6513.58, + "end": 6516.58, + "probability": 0.6819 + }, + { + "start": 6516.7, + "end": 6518.28, + "probability": 0.3398 + }, + { + "start": 6518.38, + "end": 6519.1, + "probability": 0.8287 + }, + { + "start": 6519.18, + "end": 6522.16, + "probability": 0.6065 + }, + { + "start": 6522.7, + "end": 6525.24, + "probability": 0.8328 + }, + { + "start": 6525.54, + "end": 6528.3, + "probability": 0.8258 + }, + { + "start": 6528.62, + "end": 6530.2, + "probability": 0.9028 + }, + { + "start": 6530.26, + "end": 6531.4, + "probability": 0.9886 + }, + { + "start": 6531.72, + "end": 6533.48, + "probability": 0.9568 + }, + { + "start": 6533.54, + "end": 6533.8, + "probability": 0.5882 + }, + { + "start": 6534.38, + "end": 6537.56, + "probability": 0.704 + }, + { + "start": 6537.92, + "end": 6539.26, + "probability": 0.6164 + }, + { + "start": 6539.54, + "end": 6543.78, + "probability": 0.9485 + }, + { + "start": 6544.12, + "end": 6544.92, + "probability": 0.9946 + }, + { + "start": 6545.26, + "end": 6545.82, + "probability": 0.7866 + }, + { + "start": 6546.34, + "end": 6546.46, + "probability": 0.1751 + }, + { + "start": 6546.5, + "end": 6546.62, + "probability": 0.3468 + }, + { + "start": 6546.94, + "end": 6547.82, + "probability": 0.9624 + }, + { + "start": 6548.36, + "end": 6549.92, + "probability": 0.9933 + }, + { + "start": 6549.98, + "end": 6552.6, + "probability": 0.9939 + }, + { + "start": 6553.0, + "end": 6555.86, + "probability": 0.9516 + }, + { + "start": 6556.16, + "end": 6556.84, + "probability": 0.9567 + }, + { + "start": 6557.34, + "end": 6558.86, + "probability": 0.6494 + }, + { + "start": 6559.24, + "end": 6561.58, + "probability": 0.8719 + }, + { + "start": 6561.94, + "end": 6563.66, + "probability": 0.813 + }, + { + "start": 6564.32, + "end": 6565.4, + "probability": 0.6638 + }, + { + "start": 6565.52, + "end": 6566.26, + "probability": 0.3611 + }, + { + "start": 6566.52, + "end": 6569.52, + "probability": 0.7086 + }, + { + "start": 6569.56, + "end": 6571.88, + "probability": 0.753 + }, + { + "start": 6571.98, + "end": 6572.34, + "probability": 0.0542 + }, + { + "start": 6572.46, + "end": 6573.6, + "probability": 0.9331 + }, + { + "start": 6573.94, + "end": 6574.86, + "probability": 0.799 + }, + { + "start": 6575.4, + "end": 6576.45, + "probability": 0.6034 + }, + { + "start": 6576.76, + "end": 6578.0, + "probability": 0.7073 + }, + { + "start": 6578.12, + "end": 6578.91, + "probability": 0.5382 + }, + { + "start": 6580.0, + "end": 6582.52, + "probability": 0.9646 + }, + { + "start": 6582.92, + "end": 6584.18, + "probability": 0.9905 + }, + { + "start": 6584.68, + "end": 6585.98, + "probability": 0.7503 + }, + { + "start": 6586.02, + "end": 6587.2, + "probability": 0.8321 + }, + { + "start": 6587.2, + "end": 6589.12, + "probability": 0.6274 + }, + { + "start": 6589.14, + "end": 6590.02, + "probability": 0.4205 + }, + { + "start": 6590.1, + "end": 6590.68, + "probability": 0.7502 + }, + { + "start": 6591.12, + "end": 6595.22, + "probability": 0.9419 + }, + { + "start": 6595.3, + "end": 6600.65, + "probability": 0.9846 + }, + { + "start": 6600.84, + "end": 6601.68, + "probability": 0.7934 + }, + { + "start": 6601.9, + "end": 6603.44, + "probability": 0.9177 + }, + { + "start": 6603.88, + "end": 6604.04, + "probability": 0.3212 + }, + { + "start": 6604.04, + "end": 6606.82, + "probability": 0.7646 + }, + { + "start": 6607.16, + "end": 6610.3, + "probability": 0.943 + }, + { + "start": 6611.24, + "end": 6612.75, + "probability": 0.0579 + }, + { + "start": 6613.46, + "end": 6614.74, + "probability": 0.8271 + }, + { + "start": 6615.1, + "end": 6618.94, + "probability": 0.9844 + }, + { + "start": 6621.34, + "end": 6621.7, + "probability": 0.8324 + }, + { + "start": 6627.62, + "end": 6629.0, + "probability": 0.5822 + }, + { + "start": 6630.74, + "end": 6632.5, + "probability": 0.8237 + }, + { + "start": 6633.88, + "end": 6635.8, + "probability": 0.9987 + }, + { + "start": 6637.56, + "end": 6639.4, + "probability": 0.9952 + }, + { + "start": 6639.56, + "end": 6640.62, + "probability": 0.9864 + }, + { + "start": 6640.82, + "end": 6642.46, + "probability": 0.8857 + }, + { + "start": 6642.64, + "end": 6643.78, + "probability": 0.9252 + }, + { + "start": 6644.76, + "end": 6646.44, + "probability": 0.9025 + }, + { + "start": 6646.8, + "end": 6648.88, + "probability": 0.9639 + }, + { + "start": 6649.6, + "end": 6652.1, + "probability": 0.9717 + }, + { + "start": 6653.26, + "end": 6655.02, + "probability": 0.9902 + }, + { + "start": 6655.26, + "end": 6656.36, + "probability": 0.7647 + }, + { + "start": 6656.48, + "end": 6659.0, + "probability": 0.8623 + }, + { + "start": 6659.02, + "end": 6663.28, + "probability": 0.9597 + }, + { + "start": 6663.94, + "end": 6664.68, + "probability": 0.4707 + }, + { + "start": 6664.9, + "end": 6666.0, + "probability": 0.6446 + }, + { + "start": 6666.14, + "end": 6668.94, + "probability": 0.9424 + }, + { + "start": 6669.36, + "end": 6670.48, + "probability": 0.4861 + }, + { + "start": 6671.54, + "end": 6674.58, + "probability": 0.989 + }, + { + "start": 6675.6, + "end": 6676.64, + "probability": 0.8829 + }, + { + "start": 6677.58, + "end": 6680.66, + "probability": 0.9914 + }, + { + "start": 6680.8, + "end": 6682.0, + "probability": 0.8868 + }, + { + "start": 6682.14, + "end": 6684.58, + "probability": 0.8601 + }, + { + "start": 6684.9, + "end": 6685.84, + "probability": 0.9531 + }, + { + "start": 6686.18, + "end": 6687.76, + "probability": 0.8449 + }, + { + "start": 6688.24, + "end": 6690.98, + "probability": 0.9228 + }, + { + "start": 6691.42, + "end": 6692.44, + "probability": 0.4359 + }, + { + "start": 6692.62, + "end": 6695.22, + "probability": 0.867 + }, + { + "start": 6695.66, + "end": 6697.71, + "probability": 0.959 + }, + { + "start": 6698.2, + "end": 6701.02, + "probability": 0.9919 + }, + { + "start": 6702.52, + "end": 6703.52, + "probability": 0.8441 + }, + { + "start": 6703.88, + "end": 6707.64, + "probability": 0.9492 + }, + { + "start": 6708.18, + "end": 6711.12, + "probability": 0.9644 + }, + { + "start": 6712.02, + "end": 6714.52, + "probability": 0.983 + }, + { + "start": 6715.2, + "end": 6718.6, + "probability": 0.9496 + }, + { + "start": 6719.38, + "end": 6721.28, + "probability": 0.9917 + }, + { + "start": 6721.98, + "end": 6722.74, + "probability": 0.7372 + }, + { + "start": 6723.26, + "end": 6724.74, + "probability": 0.8828 + }, + { + "start": 6725.78, + "end": 6727.42, + "probability": 0.5026 + }, + { + "start": 6728.24, + "end": 6732.24, + "probability": 0.9696 + }, + { + "start": 6732.48, + "end": 6733.24, + "probability": 0.7322 + }, + { + "start": 6733.88, + "end": 6735.94, + "probability": 0.983 + }, + { + "start": 6736.42, + "end": 6738.62, + "probability": 0.9414 + }, + { + "start": 6739.28, + "end": 6742.66, + "probability": 0.9821 + }, + { + "start": 6743.74, + "end": 6746.72, + "probability": 0.9368 + }, + { + "start": 6747.3, + "end": 6751.6, + "probability": 0.9961 + }, + { + "start": 6751.76, + "end": 6754.78, + "probability": 0.9322 + }, + { + "start": 6755.34, + "end": 6758.26, + "probability": 0.7454 + }, + { + "start": 6758.94, + "end": 6760.16, + "probability": 0.7034 + }, + { + "start": 6760.32, + "end": 6766.82, + "probability": 0.9113 + }, + { + "start": 6767.5, + "end": 6768.4, + "probability": 0.9177 + }, + { + "start": 6768.44, + "end": 6771.36, + "probability": 0.9062 + }, + { + "start": 6772.04, + "end": 6773.02, + "probability": 0.8906 + }, + { + "start": 6773.74, + "end": 6777.1, + "probability": 0.8977 + }, + { + "start": 6777.62, + "end": 6778.08, + "probability": 0.8272 + }, + { + "start": 6778.3, + "end": 6779.34, + "probability": 0.5972 + }, + { + "start": 6779.7, + "end": 6780.69, + "probability": 0.8471 + }, + { + "start": 6782.14, + "end": 6782.93, + "probability": 0.8532 + }, + { + "start": 6783.26, + "end": 6784.0, + "probability": 0.8799 + }, + { + "start": 6784.16, + "end": 6785.66, + "probability": 0.986 + }, + { + "start": 6786.12, + "end": 6787.13, + "probability": 0.9202 + }, + { + "start": 6788.24, + "end": 6793.38, + "probability": 0.8614 + }, + { + "start": 6793.38, + "end": 6796.3, + "probability": 0.9392 + }, + { + "start": 6796.86, + "end": 6797.94, + "probability": 0.3847 + }, + { + "start": 6798.78, + "end": 6800.52, + "probability": 0.7803 + }, + { + "start": 6801.98, + "end": 6802.36, + "probability": 0.6509 + }, + { + "start": 6802.56, + "end": 6803.3, + "probability": 0.6364 + }, + { + "start": 6803.32, + "end": 6806.12, + "probability": 0.7804 + }, + { + "start": 6806.32, + "end": 6806.98, + "probability": 0.9624 + }, + { + "start": 6807.54, + "end": 6808.4, + "probability": 0.3668 + }, + { + "start": 6809.4, + "end": 6810.22, + "probability": 0.8315 + }, + { + "start": 6810.4, + "end": 6811.06, + "probability": 0.6296 + }, + { + "start": 6811.84, + "end": 6814.24, + "probability": 0.4795 + }, + { + "start": 6815.44, + "end": 6816.46, + "probability": 0.9861 + }, + { + "start": 6816.54, + "end": 6817.46, + "probability": 0.8737 + }, + { + "start": 6818.32, + "end": 6820.78, + "probability": 0.4986 + }, + { + "start": 6820.94, + "end": 6821.78, + "probability": 0.5964 + }, + { + "start": 6821.9, + "end": 6822.78, + "probability": 0.5859 + }, + { + "start": 6823.04, + "end": 6825.12, + "probability": 0.8291 + }, + { + "start": 6825.74, + "end": 6827.24, + "probability": 0.4795 + }, + { + "start": 6827.48, + "end": 6827.74, + "probability": 0.213 + }, + { + "start": 6827.8, + "end": 6828.62, + "probability": 0.47 + }, + { + "start": 6829.08, + "end": 6829.74, + "probability": 0.1117 + }, + { + "start": 6829.76, + "end": 6830.46, + "probability": 0.802 + }, + { + "start": 6830.84, + "end": 6832.62, + "probability": 0.3601 + }, + { + "start": 6832.62, + "end": 6834.55, + "probability": 0.0677 + }, + { + "start": 6834.84, + "end": 6835.84, + "probability": 0.8131 + }, + { + "start": 6836.84, + "end": 6837.78, + "probability": 0.4543 + }, + { + "start": 6837.78, + "end": 6838.26, + "probability": 0.5425 + }, + { + "start": 6838.26, + "end": 6839.03, + "probability": 0.5732 + }, + { + "start": 6839.34, + "end": 6840.28, + "probability": 0.6787 + }, + { + "start": 6840.74, + "end": 6845.24, + "probability": 0.9884 + }, + { + "start": 6845.36, + "end": 6846.72, + "probability": 0.3999 + }, + { + "start": 6847.34, + "end": 6849.22, + "probability": 0.7448 + }, + { + "start": 6849.44, + "end": 6851.02, + "probability": 0.8831 + }, + { + "start": 6851.3, + "end": 6857.62, + "probability": 0.9644 + }, + { + "start": 6858.38, + "end": 6859.64, + "probability": 0.346 + }, + { + "start": 6860.46, + "end": 6861.57, + "probability": 0.7057 + }, + { + "start": 6861.84, + "end": 6868.8, + "probability": 0.9915 + }, + { + "start": 6869.66, + "end": 6870.16, + "probability": 0.8743 + }, + { + "start": 6870.9, + "end": 6872.04, + "probability": 0.856 + }, + { + "start": 6872.3, + "end": 6872.66, + "probability": 0.8132 + }, + { + "start": 6872.74, + "end": 6872.92, + "probability": 0.4297 + }, + { + "start": 6872.94, + "end": 6875.04, + "probability": 0.6527 + }, + { + "start": 6875.04, + "end": 6875.45, + "probability": 0.5811 + }, + { + "start": 6875.64, + "end": 6876.0, + "probability": 0.789 + }, + { + "start": 6876.38, + "end": 6877.04, + "probability": 0.5809 + }, + { + "start": 6877.28, + "end": 6877.6, + "probability": 0.5122 + }, + { + "start": 6877.7, + "end": 6878.86, + "probability": 0.8267 + }, + { + "start": 6879.28, + "end": 6881.76, + "probability": 0.9705 + }, + { + "start": 6882.14, + "end": 6884.0, + "probability": 0.6566 + }, + { + "start": 6884.32, + "end": 6885.16, + "probability": 0.5585 + }, + { + "start": 6885.54, + "end": 6890.82, + "probability": 0.983 + }, + { + "start": 6891.64, + "end": 6893.7, + "probability": 0.9633 + }, + { + "start": 6894.12, + "end": 6897.16, + "probability": 0.9644 + }, + { + "start": 6897.26, + "end": 6898.16, + "probability": 0.8837 + }, + { + "start": 6898.88, + "end": 6899.8, + "probability": 0.812 + }, + { + "start": 6900.38, + "end": 6901.18, + "probability": 0.9558 + }, + { + "start": 6902.84, + "end": 6904.29, + "probability": 0.6483 + }, + { + "start": 6904.66, + "end": 6904.66, + "probability": 0.3758 + }, + { + "start": 6904.74, + "end": 6906.52, + "probability": 0.2126 + }, + { + "start": 6906.6, + "end": 6908.08, + "probability": 0.4903 + }, + { + "start": 6908.08, + "end": 6908.88, + "probability": 0.4945 + }, + { + "start": 6909.22, + "end": 6910.14, + "probability": 0.9336 + }, + { + "start": 6910.94, + "end": 6911.68, + "probability": 0.5909 + }, + { + "start": 6911.84, + "end": 6912.2, + "probability": 0.7664 + }, + { + "start": 6912.26, + "end": 6912.84, + "probability": 0.9624 + }, + { + "start": 6913.52, + "end": 6918.52, + "probability": 0.9924 + }, + { + "start": 6918.96, + "end": 6920.94, + "probability": 0.9807 + }, + { + "start": 6921.12, + "end": 6923.7, + "probability": 0.7523 + }, + { + "start": 6923.7, + "end": 6925.82, + "probability": 0.9661 + }, + { + "start": 6926.3, + "end": 6927.56, + "probability": 0.6498 + }, + { + "start": 6927.86, + "end": 6929.86, + "probability": 0.9519 + }, + { + "start": 6930.14, + "end": 6931.4, + "probability": 0.6388 + }, + { + "start": 6931.46, + "end": 6931.84, + "probability": 0.8225 + }, + { + "start": 6931.88, + "end": 6932.42, + "probability": 0.6767 + }, + { + "start": 6932.82, + "end": 6935.7, + "probability": 0.8264 + }, + { + "start": 6936.34, + "end": 6937.62, + "probability": 0.8806 + }, + { + "start": 6937.76, + "end": 6940.26, + "probability": 0.6877 + }, + { + "start": 6940.7, + "end": 6941.89, + "probability": 0.3182 + }, + { + "start": 6942.36, + "end": 6944.86, + "probability": 0.836 + }, + { + "start": 6945.52, + "end": 6946.74, + "probability": 0.8742 + }, + { + "start": 6947.44, + "end": 6948.62, + "probability": 0.8268 + }, + { + "start": 6948.68, + "end": 6951.14, + "probability": 0.9307 + }, + { + "start": 6951.66, + "end": 6952.38, + "probability": 0.603 + }, + { + "start": 6952.48, + "end": 6953.52, + "probability": 0.97 + }, + { + "start": 6954.18, + "end": 6956.42, + "probability": 0.7948 + }, + { + "start": 6956.62, + "end": 6957.6, + "probability": 0.9907 + }, + { + "start": 6957.8, + "end": 6960.52, + "probability": 0.9075 + }, + { + "start": 6960.66, + "end": 6961.46, + "probability": 0.844 + }, + { + "start": 6962.18, + "end": 6962.82, + "probability": 0.7164 + }, + { + "start": 6962.94, + "end": 6965.74, + "probability": 0.9168 + }, + { + "start": 6966.98, + "end": 6967.82, + "probability": 0.9562 + }, + { + "start": 6967.88, + "end": 6969.96, + "probability": 0.8087 + }, + { + "start": 6970.48, + "end": 6973.84, + "probability": 0.6835 + }, + { + "start": 6975.34, + "end": 6978.48, + "probability": 0.983 + }, + { + "start": 6979.92, + "end": 6981.28, + "probability": 0.8008 + }, + { + "start": 6982.24, + "end": 6984.36, + "probability": 0.9213 + }, + { + "start": 6984.46, + "end": 6985.98, + "probability": 0.9756 + }, + { + "start": 6987.06, + "end": 6988.38, + "probability": 0.1884 + }, + { + "start": 6988.38, + "end": 6990.44, + "probability": 0.7469 + }, + { + "start": 6991.76, + "end": 6992.46, + "probability": 0.6657 + }, + { + "start": 6992.56, + "end": 6995.2, + "probability": 0.8659 + }, + { + "start": 6996.0, + "end": 6997.92, + "probability": 0.7988 + }, + { + "start": 6998.54, + "end": 6999.28, + "probability": 0.0875 + }, + { + "start": 6999.49, + "end": 7001.08, + "probability": 0.9889 + }, + { + "start": 7001.64, + "end": 7003.9, + "probability": 0.5902 + }, + { + "start": 7004.04, + "end": 7007.14, + "probability": 0.7965 + }, + { + "start": 7008.14, + "end": 7011.3, + "probability": 0.9429 + }, + { + "start": 7012.12, + "end": 7015.32, + "probability": 0.9468 + }, + { + "start": 7015.8, + "end": 7017.72, + "probability": 0.9936 + }, + { + "start": 7018.5, + "end": 7018.9, + "probability": 0.876 + }, + { + "start": 7018.9, + "end": 7020.42, + "probability": 0.6732 + }, + { + "start": 7020.56, + "end": 7021.36, + "probability": 0.4115 + }, + { + "start": 7021.4, + "end": 7022.64, + "probability": 0.7565 + }, + { + "start": 7023.08, + "end": 7023.9, + "probability": 0.7915 + }, + { + "start": 7024.62, + "end": 7026.46, + "probability": 0.8468 + }, + { + "start": 7026.94, + "end": 7028.06, + "probability": 0.8831 + }, + { + "start": 7028.2, + "end": 7029.14, + "probability": 0.9276 + }, + { + "start": 7029.32, + "end": 7030.46, + "probability": 0.8266 + }, + { + "start": 7030.86, + "end": 7033.96, + "probability": 0.9507 + }, + { + "start": 7034.7, + "end": 7038.58, + "probability": 0.8475 + }, + { + "start": 7039.2, + "end": 7042.62, + "probability": 0.8616 + }, + { + "start": 7042.72, + "end": 7043.94, + "probability": 0.8043 + }, + { + "start": 7044.32, + "end": 7045.6, + "probability": 0.7396 + }, + { + "start": 7046.32, + "end": 7049.36, + "probability": 0.8128 + }, + { + "start": 7049.44, + "end": 7050.58, + "probability": 0.7991 + }, + { + "start": 7051.24, + "end": 7054.32, + "probability": 0.7915 + }, + { + "start": 7055.79, + "end": 7059.95, + "probability": 0.6689 + }, + { + "start": 7061.1, + "end": 7064.18, + "probability": 0.9604 + }, + { + "start": 7064.22, + "end": 7065.18, + "probability": 0.9856 + }, + { + "start": 7065.66, + "end": 7066.9, + "probability": 0.9665 + }, + { + "start": 7067.46, + "end": 7070.54, + "probability": 0.9584 + }, + { + "start": 7071.64, + "end": 7073.62, + "probability": 0.7869 + }, + { + "start": 7073.78, + "end": 7074.1, + "probability": 0.8208 + }, + { + "start": 7074.7, + "end": 7078.48, + "probability": 0.99 + }, + { + "start": 7078.52, + "end": 7079.26, + "probability": 0.9487 + }, + { + "start": 7080.2, + "end": 7082.04, + "probability": 0.9976 + }, + { + "start": 7083.38, + "end": 7085.64, + "probability": 0.9912 + }, + { + "start": 7085.82, + "end": 7088.1, + "probability": 0.9115 + }, + { + "start": 7088.2, + "end": 7088.46, + "probability": 0.737 + }, + { + "start": 7088.56, + "end": 7089.52, + "probability": 0.934 + }, + { + "start": 7089.98, + "end": 7092.68, + "probability": 0.7827 + }, + { + "start": 7092.98, + "end": 7093.5, + "probability": 0.3518 + }, + { + "start": 7093.66, + "end": 7094.58, + "probability": 0.6577 + }, + { + "start": 7094.94, + "end": 7095.48, + "probability": 0.2683 + }, + { + "start": 7095.62, + "end": 7096.4, + "probability": 0.6881 + }, + { + "start": 7096.46, + "end": 7097.14, + "probability": 0.671 + }, + { + "start": 7097.9, + "end": 7099.16, + "probability": 0.9614 + }, + { + "start": 7099.24, + "end": 7099.5, + "probability": 0.924 + }, + { + "start": 7099.88, + "end": 7102.9, + "probability": 0.924 + }, + { + "start": 7102.9, + "end": 7106.72, + "probability": 0.8393 + }, + { + "start": 7106.92, + "end": 7109.24, + "probability": 0.8935 + }, + { + "start": 7110.12, + "end": 7112.96, + "probability": 0.9852 + }, + { + "start": 7113.04, + "end": 7113.67, + "probability": 0.8573 + }, + { + "start": 7114.06, + "end": 7115.74, + "probability": 0.5571 + }, + { + "start": 7116.42, + "end": 7117.99, + "probability": 0.791 + }, + { + "start": 7118.44, + "end": 7118.86, + "probability": 0.6404 + }, + { + "start": 7119.42, + "end": 7121.26, + "probability": 0.8922 + }, + { + "start": 7121.44, + "end": 7121.6, + "probability": 0.4867 + }, + { + "start": 7121.7, + "end": 7123.92, + "probability": 0.9918 + }, + { + "start": 7124.26, + "end": 7125.2, + "probability": 0.7062 + }, + { + "start": 7125.2, + "end": 7126.38, + "probability": 0.5656 + }, + { + "start": 7126.54, + "end": 7126.78, + "probability": 0.0572 + }, + { + "start": 7127.3, + "end": 7132.74, + "probability": 0.7739 + }, + { + "start": 7132.74, + "end": 7133.08, + "probability": 0.2472 + }, + { + "start": 7133.3, + "end": 7134.82, + "probability": 0.9756 + }, + { + "start": 7134.94, + "end": 7135.71, + "probability": 0.9527 + }, + { + "start": 7135.84, + "end": 7138.46, + "probability": 0.6649 + }, + { + "start": 7138.58, + "end": 7142.94, + "probability": 0.6724 + }, + { + "start": 7142.98, + "end": 7143.2, + "probability": 0.0469 + }, + { + "start": 7143.2, + "end": 7143.34, + "probability": 0.3513 + }, + { + "start": 7143.44, + "end": 7144.84, + "probability": 0.9364 + }, + { + "start": 7145.38, + "end": 7148.16, + "probability": 0.8179 + }, + { + "start": 7148.6, + "end": 7151.96, + "probability": 0.8794 + }, + { + "start": 7152.8, + "end": 7153.65, + "probability": 0.5884 + }, + { + "start": 7154.22, + "end": 7154.92, + "probability": 0.8703 + }, + { + "start": 7155.0, + "end": 7155.42, + "probability": 0.679 + }, + { + "start": 7156.08, + "end": 7160.24, + "probability": 0.994 + }, + { + "start": 7160.76, + "end": 7162.92, + "probability": 0.9314 + }, + { + "start": 7163.26, + "end": 7165.7, + "probability": 0.8865 + }, + { + "start": 7165.88, + "end": 7166.4, + "probability": 0.9635 + }, + { + "start": 7166.76, + "end": 7167.6, + "probability": 0.6658 + }, + { + "start": 7167.84, + "end": 7170.16, + "probability": 0.9038 + }, + { + "start": 7170.8, + "end": 7171.46, + "probability": 0.9055 + }, + { + "start": 7171.74, + "end": 7172.06, + "probability": 0.4831 + }, + { + "start": 7172.32, + "end": 7173.2, + "probability": 0.9203 + }, + { + "start": 7174.16, + "end": 7175.34, + "probability": 0.8326 + }, + { + "start": 7176.74, + "end": 7177.54, + "probability": 0.7072 + }, + { + "start": 7178.84, + "end": 7179.92, + "probability": 0.8734 + }, + { + "start": 7180.04, + "end": 7180.56, + "probability": 0.8481 + }, + { + "start": 7180.9, + "end": 7182.4, + "probability": 0.8276 + }, + { + "start": 7182.88, + "end": 7184.66, + "probability": 0.8181 + }, + { + "start": 7184.76, + "end": 7187.66, + "probability": 0.9595 + }, + { + "start": 7189.24, + "end": 7191.9, + "probability": 0.9556 + }, + { + "start": 7192.7, + "end": 7195.9, + "probability": 0.9215 + }, + { + "start": 7196.16, + "end": 7197.09, + "probability": 0.879 + }, + { + "start": 7197.88, + "end": 7200.44, + "probability": 0.9969 + }, + { + "start": 7200.52, + "end": 7201.12, + "probability": 0.7447 + }, + { + "start": 7201.34, + "end": 7202.12, + "probability": 0.7241 + }, + { + "start": 7202.82, + "end": 7206.44, + "probability": 0.9916 + }, + { + "start": 7206.54, + "end": 7207.22, + "probability": 0.6776 + }, + { + "start": 7207.32, + "end": 7208.7, + "probability": 0.3335 + }, + { + "start": 7208.78, + "end": 7209.12, + "probability": 0.8639 + }, + { + "start": 7209.46, + "end": 7213.06, + "probability": 0.9559 + }, + { + "start": 7214.4, + "end": 7215.26, + "probability": 0.9641 + }, + { + "start": 7216.22, + "end": 7219.84, + "probability": 0.9612 + }, + { + "start": 7220.52, + "end": 7221.0, + "probability": 0.6714 + }, + { + "start": 7221.84, + "end": 7222.38, + "probability": 0.7523 + }, + { + "start": 7222.44, + "end": 7224.12, + "probability": 0.678 + }, + { + "start": 7224.62, + "end": 7226.26, + "probability": 0.9226 + }, + { + "start": 7226.84, + "end": 7228.24, + "probability": 0.9572 + }, + { + "start": 7228.3, + "end": 7229.56, + "probability": 0.9875 + }, + { + "start": 7229.98, + "end": 7231.52, + "probability": 0.9453 + }, + { + "start": 7232.22, + "end": 7233.26, + "probability": 0.9455 + }, + { + "start": 7233.92, + "end": 7235.16, + "probability": 0.9974 + }, + { + "start": 7236.18, + "end": 7237.58, + "probability": 0.9611 + }, + { + "start": 7237.72, + "end": 7239.64, + "probability": 0.799 + }, + { + "start": 7240.12, + "end": 7241.9, + "probability": 0.9988 + }, + { + "start": 7242.56, + "end": 7244.02, + "probability": 0.8517 + }, + { + "start": 7244.4, + "end": 7245.7, + "probability": 0.988 + }, + { + "start": 7245.78, + "end": 7246.72, + "probability": 0.8115 + }, + { + "start": 7247.3, + "end": 7250.32, + "probability": 0.8633 + }, + { + "start": 7251.28, + "end": 7254.04, + "probability": 0.9721 + }, + { + "start": 7254.2, + "end": 7255.2, + "probability": 0.4907 + }, + { + "start": 7255.84, + "end": 7256.6, + "probability": 0.8247 + }, + { + "start": 7256.68, + "end": 7257.1, + "probability": 0.3875 + }, + { + "start": 7257.14, + "end": 7257.34, + "probability": 0.8186 + }, + { + "start": 7257.36, + "end": 7259.1, + "probability": 0.9834 + }, + { + "start": 7259.84, + "end": 7265.28, + "probability": 0.9611 + }, + { + "start": 7266.32, + "end": 7267.14, + "probability": 0.5149 + }, + { + "start": 7267.36, + "end": 7270.46, + "probability": 0.9619 + }, + { + "start": 7270.9, + "end": 7272.68, + "probability": 0.6503 + }, + { + "start": 7272.82, + "end": 7273.18, + "probability": 0.8101 + }, + { + "start": 7273.62, + "end": 7274.2, + "probability": 0.8292 + }, + { + "start": 7274.36, + "end": 7274.56, + "probability": 0.6882 + }, + { + "start": 7274.64, + "end": 7275.32, + "probability": 0.8221 + }, + { + "start": 7275.74, + "end": 7276.84, + "probability": 0.9937 + }, + { + "start": 7277.54, + "end": 7278.8, + "probability": 0.8877 + }, + { + "start": 7279.46, + "end": 7284.12, + "probability": 0.7558 + }, + { + "start": 7284.44, + "end": 7285.27, + "probability": 0.5894 + }, + { + "start": 7285.68, + "end": 7286.94, + "probability": 0.6329 + }, + { + "start": 7286.98, + "end": 7288.16, + "probability": 0.6711 + }, + { + "start": 7288.62, + "end": 7290.58, + "probability": 0.6796 + }, + { + "start": 7291.34, + "end": 7291.96, + "probability": 0.7874 + }, + { + "start": 7292.72, + "end": 7294.27, + "probability": 0.9427 + }, + { + "start": 7294.42, + "end": 7295.15, + "probability": 0.9207 + }, + { + "start": 7295.54, + "end": 7298.06, + "probability": 0.7576 + }, + { + "start": 7298.1, + "end": 7298.3, + "probability": 0.8046 + }, + { + "start": 7298.42, + "end": 7299.16, + "probability": 0.6118 + }, + { + "start": 7299.54, + "end": 7301.22, + "probability": 0.6691 + }, + { + "start": 7301.26, + "end": 7301.8, + "probability": 0.7285 + }, + { + "start": 7301.92, + "end": 7302.38, + "probability": 0.8937 + }, + { + "start": 7303.42, + "end": 7305.34, + "probability": 0.7668 + }, + { + "start": 7306.28, + "end": 7308.02, + "probability": 0.471 + }, + { + "start": 7308.3, + "end": 7309.82, + "probability": 0.8179 + }, + { + "start": 7310.34, + "end": 7311.6, + "probability": 0.9236 + }, + { + "start": 7312.1, + "end": 7313.28, + "probability": 0.8568 + }, + { + "start": 7313.3, + "end": 7314.76, + "probability": 0.4964 + }, + { + "start": 7315.92, + "end": 7318.02, + "probability": 0.7536 + }, + { + "start": 7318.58, + "end": 7320.09, + "probability": 0.8774 + }, + { + "start": 7320.88, + "end": 7321.28, + "probability": 0.2249 + }, + { + "start": 7321.32, + "end": 7321.76, + "probability": 0.4722 + }, + { + "start": 7321.82, + "end": 7322.38, + "probability": 0.6555 + }, + { + "start": 7322.64, + "end": 7325.68, + "probability": 0.6085 + }, + { + "start": 7325.96, + "end": 7327.1, + "probability": 0.9517 + }, + { + "start": 7327.42, + "end": 7328.96, + "probability": 0.9403 + }, + { + "start": 7329.86, + "end": 7330.95, + "probability": 0.7676 + }, + { + "start": 7331.4, + "end": 7332.14, + "probability": 0.8474 + }, + { + "start": 7332.44, + "end": 7334.0, + "probability": 0.9521 + }, + { + "start": 7334.08, + "end": 7336.28, + "probability": 0.9416 + }, + { + "start": 7336.9, + "end": 7338.1, + "probability": 0.8066 + }, + { + "start": 7338.84, + "end": 7340.2, + "probability": 0.9155 + }, + { + "start": 7340.4, + "end": 7341.96, + "probability": 0.7692 + }, + { + "start": 7341.98, + "end": 7343.44, + "probability": 0.8455 + }, + { + "start": 7344.02, + "end": 7344.56, + "probability": 0.6999 + }, + { + "start": 7344.62, + "end": 7345.1, + "probability": 0.3443 + }, + { + "start": 7345.16, + "end": 7346.28, + "probability": 0.8821 + }, + { + "start": 7346.72, + "end": 7348.72, + "probability": 0.6907 + }, + { + "start": 7350.04, + "end": 7350.98, + "probability": 0.709 + }, + { + "start": 7351.24, + "end": 7354.4, + "probability": 0.9907 + }, + { + "start": 7354.7, + "end": 7359.74, + "probability": 0.9938 + }, + { + "start": 7360.78, + "end": 7361.64, + "probability": 0.5256 + }, + { + "start": 7362.42, + "end": 7369.4, + "probability": 0.9667 + }, + { + "start": 7370.38, + "end": 7371.54, + "probability": 0.9976 + }, + { + "start": 7372.1, + "end": 7373.92, + "probability": 0.9748 + }, + { + "start": 7374.88, + "end": 7379.8, + "probability": 0.9673 + }, + { + "start": 7379.88, + "end": 7383.0, + "probability": 0.9823 + }, + { + "start": 7383.42, + "end": 7385.66, + "probability": 0.9469 + }, + { + "start": 7386.48, + "end": 7386.48, + "probability": 0.0118 + }, + { + "start": 7386.64, + "end": 7388.57, + "probability": 0.9533 + }, + { + "start": 7389.2, + "end": 7396.08, + "probability": 0.9754 + }, + { + "start": 7396.44, + "end": 7398.68, + "probability": 0.7163 + }, + { + "start": 7400.38, + "end": 7405.56, + "probability": 0.9843 + }, + { + "start": 7406.14, + "end": 7406.14, + "probability": 0.1986 + }, + { + "start": 7406.14, + "end": 7406.54, + "probability": 0.585 + }, + { + "start": 7406.7, + "end": 7413.62, + "probability": 0.9803 + }, + { + "start": 7414.02, + "end": 7415.08, + "probability": 0.6908 + }, + { + "start": 7415.14, + "end": 7418.16, + "probability": 0.9656 + }, + { + "start": 7419.68, + "end": 7422.62, + "probability": 0.0591 + }, + { + "start": 7422.82, + "end": 7425.5, + "probability": 0.7014 + }, + { + "start": 7425.82, + "end": 7426.9, + "probability": 0.5661 + }, + { + "start": 7426.92, + "end": 7427.82, + "probability": 0.9624 + }, + { + "start": 7428.36, + "end": 7436.6, + "probability": 0.9968 + }, + { + "start": 7436.62, + "end": 7438.2, + "probability": 0.7807 + }, + { + "start": 7438.2, + "end": 7438.88, + "probability": 0.5193 + }, + { + "start": 7439.22, + "end": 7440.97, + "probability": 0.8445 + }, + { + "start": 7441.64, + "end": 7445.26, + "probability": 0.9191 + }, + { + "start": 7445.6, + "end": 7449.82, + "probability": 0.9891 + }, + { + "start": 7450.18, + "end": 7451.76, + "probability": 0.8625 + }, + { + "start": 7451.76, + "end": 7454.44, + "probability": 0.9951 + }, + { + "start": 7454.9, + "end": 7459.64, + "probability": 0.9663 + }, + { + "start": 7459.64, + "end": 7462.58, + "probability": 0.9403 + }, + { + "start": 7463.12, + "end": 7466.9, + "probability": 0.9886 + }, + { + "start": 7466.94, + "end": 7468.84, + "probability": 0.8514 + }, + { + "start": 7469.22, + "end": 7469.85, + "probability": 0.8193 + }, + { + "start": 7470.66, + "end": 7470.66, + "probability": 0.3755 + }, + { + "start": 7470.66, + "end": 7471.16, + "probability": 0.2975 + }, + { + "start": 7471.28, + "end": 7474.26, + "probability": 0.7573 + }, + { + "start": 7474.34, + "end": 7474.76, + "probability": 0.6031 + }, + { + "start": 7475.08, + "end": 7476.3, + "probability": 0.7016 + }, + { + "start": 7476.38, + "end": 7476.5, + "probability": 0.0497 + }, + { + "start": 7476.5, + "end": 7477.18, + "probability": 0.4607 + }, + { + "start": 7479.26, + "end": 7483.28, + "probability": 0.9907 + }, + { + "start": 7483.78, + "end": 7484.68, + "probability": 0.6466 + }, + { + "start": 7484.84, + "end": 7485.6, + "probability": 0.7246 + }, + { + "start": 7485.92, + "end": 7486.8, + "probability": 0.8181 + }, + { + "start": 7487.02, + "end": 7489.89, + "probability": 0.9713 + }, + { + "start": 7490.02, + "end": 7492.16, + "probability": 0.9969 + }, + { + "start": 7492.74, + "end": 7494.5, + "probability": 0.855 + }, + { + "start": 7495.12, + "end": 7499.7, + "probability": 0.9808 + }, + { + "start": 7500.32, + "end": 7503.72, + "probability": 0.9736 + }, + { + "start": 7503.78, + "end": 7505.42, + "probability": 0.9971 + }, + { + "start": 7505.46, + "end": 7506.49, + "probability": 0.9971 + }, + { + "start": 7507.7, + "end": 7510.72, + "probability": 0.8923 + }, + { + "start": 7511.52, + "end": 7515.08, + "probability": 0.9442 + }, + { + "start": 7515.68, + "end": 7520.2, + "probability": 0.9614 + }, + { + "start": 7520.5, + "end": 7524.34, + "probability": 0.9689 + }, + { + "start": 7524.4, + "end": 7525.68, + "probability": 0.7061 + }, + { + "start": 7526.0, + "end": 7529.52, + "probability": 0.98 + }, + { + "start": 7529.84, + "end": 7531.14, + "probability": 0.9691 + }, + { + "start": 7531.52, + "end": 7535.0, + "probability": 0.9683 + }, + { + "start": 7535.26, + "end": 7536.04, + "probability": 0.8383 + }, + { + "start": 7536.12, + "end": 7539.34, + "probability": 0.9615 + }, + { + "start": 7540.04, + "end": 7540.44, + "probability": 0.617 + }, + { + "start": 7540.5, + "end": 7542.82, + "probability": 0.9185 + }, + { + "start": 7542.96, + "end": 7545.28, + "probability": 0.9797 + }, + { + "start": 7545.8, + "end": 7549.54, + "probability": 0.5798 + }, + { + "start": 7549.74, + "end": 7553.42, + "probability": 0.9081 + }, + { + "start": 7553.76, + "end": 7556.26, + "probability": 0.9947 + }, + { + "start": 7556.72, + "end": 7558.5, + "probability": 0.97 + }, + { + "start": 7558.68, + "end": 7560.98, + "probability": 0.9797 + }, + { + "start": 7561.22, + "end": 7563.02, + "probability": 0.9648 + }, + { + "start": 7563.08, + "end": 7565.16, + "probability": 0.8036 + }, + { + "start": 7565.44, + "end": 7571.26, + "probability": 0.9338 + }, + { + "start": 7571.64, + "end": 7577.56, + "probability": 0.9837 + }, + { + "start": 7577.92, + "end": 7581.78, + "probability": 0.997 + }, + { + "start": 7581.78, + "end": 7585.2, + "probability": 0.9839 + }, + { + "start": 7585.52, + "end": 7586.67, + "probability": 0.9951 + }, + { + "start": 7587.1, + "end": 7587.4, + "probability": 0.3712 + }, + { + "start": 7587.46, + "end": 7588.58, + "probability": 0.6026 + }, + { + "start": 7589.08, + "end": 7591.7, + "probability": 0.9966 + }, + { + "start": 7592.14, + "end": 7592.84, + "probability": 0.5927 + }, + { + "start": 7592.98, + "end": 7593.98, + "probability": 0.6001 + }, + { + "start": 7594.32, + "end": 7596.2, + "probability": 0.8003 + }, + { + "start": 7596.72, + "end": 7597.26, + "probability": 0.4958 + }, + { + "start": 7597.36, + "end": 7597.68, + "probability": 0.1154 + }, + { + "start": 7597.68, + "end": 7598.66, + "probability": 0.7893 + }, + { + "start": 7599.02, + "end": 7600.08, + "probability": 0.8305 + }, + { + "start": 7600.44, + "end": 7605.22, + "probability": 0.7974 + }, + { + "start": 7605.22, + "end": 7605.22, + "probability": 0.2971 + }, + { + "start": 7605.22, + "end": 7607.37, + "probability": 0.8711 + }, + { + "start": 7607.84, + "end": 7607.84, + "probability": 0.4498 + }, + { + "start": 7607.84, + "end": 7610.1, + "probability": 0.8535 + }, + { + "start": 7610.3, + "end": 7612.76, + "probability": 0.933 + }, + { + "start": 7613.1, + "end": 7618.2, + "probability": 0.9878 + }, + { + "start": 7618.2, + "end": 7619.18, + "probability": 0.5434 + }, + { + "start": 7619.24, + "end": 7619.26, + "probability": 0.0278 + }, + { + "start": 7619.26, + "end": 7622.12, + "probability": 0.9716 + }, + { + "start": 7622.58, + "end": 7625.24, + "probability": 0.9432 + }, + { + "start": 7626.16, + "end": 7632.03, + "probability": 0.9894 + }, + { + "start": 7632.36, + "end": 7634.64, + "probability": 0.5767 + }, + { + "start": 7634.74, + "end": 7635.89, + "probability": 0.6209 + }, + { + "start": 7636.32, + "end": 7638.32, + "probability": 0.0656 + }, + { + "start": 7639.26, + "end": 7642.88, + "probability": 0.3122 + }, + { + "start": 7643.42, + "end": 7644.26, + "probability": 0.6884 + }, + { + "start": 7648.22, + "end": 7650.58, + "probability": 0.8732 + }, + { + "start": 7651.36, + "end": 7654.89, + "probability": 0.9579 + }, + { + "start": 7656.28, + "end": 7656.96, + "probability": 0.029 + }, + { + "start": 7657.52, + "end": 7660.44, + "probability": 0.8851 + }, + { + "start": 7661.32, + "end": 7664.6, + "probability": 0.8811 + }, + { + "start": 7665.84, + "end": 7670.94, + "probability": 0.8416 + }, + { + "start": 7672.2, + "end": 7674.52, + "probability": 0.9532 + }, + { + "start": 7675.04, + "end": 7676.0, + "probability": 0.0386 + }, + { + "start": 7677.5, + "end": 7678.42, + "probability": 0.066 + }, + { + "start": 7679.04, + "end": 7682.14, + "probability": 0.0991 + }, + { + "start": 7684.08, + "end": 7684.93, + "probability": 0.553 + }, + { + "start": 7685.88, + "end": 7687.14, + "probability": 0.6722 + }, + { + "start": 7687.68, + "end": 7691.32, + "probability": 0.9814 + }, + { + "start": 7691.94, + "end": 7693.24, + "probability": 0.8334 + }, + { + "start": 7694.1, + "end": 7694.64, + "probability": 0.6812 + }, + { + "start": 7695.44, + "end": 7701.58, + "probability": 0.8646 + }, + { + "start": 7702.0, + "end": 7707.24, + "probability": 0.9202 + }, + { + "start": 7707.44, + "end": 7709.94, + "probability": 0.8792 + }, + { + "start": 7710.7, + "end": 7715.44, + "probability": 0.7911 + }, + { + "start": 7716.26, + "end": 7720.58, + "probability": 0.9767 + }, + { + "start": 7721.26, + "end": 7725.7, + "probability": 0.9298 + }, + { + "start": 7725.86, + "end": 7727.18, + "probability": 0.9857 + }, + { + "start": 7727.68, + "end": 7729.08, + "probability": 0.981 + }, + { + "start": 7729.58, + "end": 7730.66, + "probability": 0.9291 + }, + { + "start": 7730.74, + "end": 7733.72, + "probability": 0.8993 + }, + { + "start": 7733.78, + "end": 7739.94, + "probability": 0.9773 + }, + { + "start": 7740.46, + "end": 7742.19, + "probability": 0.9246 + }, + { + "start": 7743.86, + "end": 7744.58, + "probability": 0.2008 + }, + { + "start": 7744.86, + "end": 7745.74, + "probability": 0.0982 + }, + { + "start": 7745.9, + "end": 7746.57, + "probability": 0.3598 + }, + { + "start": 7746.66, + "end": 7747.74, + "probability": 0.6365 + }, + { + "start": 7747.94, + "end": 7750.12, + "probability": 0.7392 + }, + { + "start": 7750.9, + "end": 7755.56, + "probability": 0.9733 + }, + { + "start": 7757.02, + "end": 7757.06, + "probability": 0.0258 + }, + { + "start": 7757.06, + "end": 7757.06, + "probability": 0.0519 + }, + { + "start": 7757.65, + "end": 7762.14, + "probability": 0.9852 + }, + { + "start": 7764.1, + "end": 7765.54, + "probability": 0.9434 + }, + { + "start": 7766.64, + "end": 7767.38, + "probability": 0.3826 + }, + { + "start": 7767.42, + "end": 7768.08, + "probability": 0.5443 + }, + { + "start": 7768.24, + "end": 7769.78, + "probability": 0.9151 + }, + { + "start": 7770.58, + "end": 7774.32, + "probability": 0.8854 + }, + { + "start": 7775.08, + "end": 7778.04, + "probability": 0.8396 + }, + { + "start": 7778.62, + "end": 7781.1, + "probability": 0.8357 + }, + { + "start": 7781.64, + "end": 7786.46, + "probability": 0.9415 + }, + { + "start": 7787.76, + "end": 7789.94, + "probability": 0.9985 + }, + { + "start": 7791.04, + "end": 7796.58, + "probability": 0.8453 + }, + { + "start": 7798.68, + "end": 7805.02, + "probability": 0.8584 + }, + { + "start": 7805.94, + "end": 7808.32, + "probability": 0.9543 + }, + { + "start": 7809.18, + "end": 7812.22, + "probability": 0.7431 + }, + { + "start": 7813.04, + "end": 7814.5, + "probability": 0.8243 + }, + { + "start": 7815.28, + "end": 7819.32, + "probability": 0.8453 + }, + { + "start": 7819.98, + "end": 7823.8, + "probability": 0.9001 + }, + { + "start": 7825.36, + "end": 7827.02, + "probability": 0.8644 + }, + { + "start": 7827.06, + "end": 7830.22, + "probability": 0.9618 + }, + { + "start": 7830.5, + "end": 7831.08, + "probability": 0.3561 + }, + { + "start": 7831.98, + "end": 7832.84, + "probability": 0.0216 + }, + { + "start": 7833.28, + "end": 7833.82, + "probability": 0.4736 + }, + { + "start": 7833.84, + "end": 7834.5, + "probability": 0.3896 + }, + { + "start": 7834.62, + "end": 7836.14, + "probability": 0.7674 + }, + { + "start": 7836.2, + "end": 7836.76, + "probability": 0.9443 + }, + { + "start": 7840.96, + "end": 7841.92, + "probability": 0.3138 + }, + { + "start": 7841.92, + "end": 7843.88, + "probability": 0.5784 + }, + { + "start": 7844.18, + "end": 7844.57, + "probability": 0.8014 + }, + { + "start": 7845.32, + "end": 7851.4, + "probability": 0.9624 + }, + { + "start": 7852.5, + "end": 7857.36, + "probability": 0.6689 + }, + { + "start": 7857.92, + "end": 7861.36, + "probability": 0.9032 + }, + { + "start": 7862.1, + "end": 7862.94, + "probability": 0.6074 + }, + { + "start": 7863.54, + "end": 7865.12, + "probability": 0.9912 + }, + { + "start": 7866.88, + "end": 7868.12, + "probability": 0.9292 + }, + { + "start": 7868.64, + "end": 7871.52, + "probability": 0.9936 + }, + { + "start": 7871.7, + "end": 7873.94, + "probability": 0.9066 + }, + { + "start": 7874.42, + "end": 7876.08, + "probability": 0.9348 + }, + { + "start": 7876.78, + "end": 7878.52, + "probability": 0.9873 + }, + { + "start": 7879.68, + "end": 7882.68, + "probability": 0.9868 + }, + { + "start": 7882.92, + "end": 7888.17, + "probability": 0.9249 + }, + { + "start": 7888.76, + "end": 7892.6, + "probability": 0.9265 + }, + { + "start": 7893.44, + "end": 7894.52, + "probability": 0.9754 + }, + { + "start": 7895.02, + "end": 7896.41, + "probability": 0.9774 + }, + { + "start": 7897.1, + "end": 7899.2, + "probability": 0.4467 + }, + { + "start": 7899.3, + "end": 7901.47, + "probability": 0.4778 + }, + { + "start": 7901.7, + "end": 7901.8, + "probability": 0.5688 + }, + { + "start": 7902.0, + "end": 7902.86, + "probability": 0.6068 + }, + { + "start": 7903.18, + "end": 7907.64, + "probability": 0.9613 + }, + { + "start": 7908.22, + "end": 7908.94, + "probability": 0.0069 + }, + { + "start": 7908.94, + "end": 7911.5, + "probability": 0.6402 + }, + { + "start": 7911.62, + "end": 7912.62, + "probability": 0.3851 + }, + { + "start": 7913.02, + "end": 7913.96, + "probability": 0.3973 + }, + { + "start": 7914.36, + "end": 7914.44, + "probability": 0.009 + }, + { + "start": 7914.44, + "end": 7914.44, + "probability": 0.0065 + }, + { + "start": 7914.44, + "end": 7917.62, + "probability": 0.6768 + }, + { + "start": 7917.64, + "end": 7919.04, + "probability": 0.8569 + }, + { + "start": 7919.4, + "end": 7919.4, + "probability": 0.2098 + }, + { + "start": 7919.4, + "end": 7920.8, + "probability": 0.5267 + }, + { + "start": 7920.8, + "end": 7921.86, + "probability": 0.763 + }, + { + "start": 7922.56, + "end": 7923.06, + "probability": 0.6623 + }, + { + "start": 7923.06, + "end": 7926.88, + "probability": 0.7283 + }, + { + "start": 7926.88, + "end": 7928.0, + "probability": 0.691 + }, + { + "start": 7928.16, + "end": 7930.78, + "probability": 0.43 + }, + { + "start": 7932.14, + "end": 7932.56, + "probability": 0.2708 + }, + { + "start": 7933.08, + "end": 7933.82, + "probability": 0.1284 + }, + { + "start": 7933.86, + "end": 7935.46, + "probability": 0.5827 + }, + { + "start": 7936.18, + "end": 7937.86, + "probability": 0.1499 + }, + { + "start": 7937.88, + "end": 7938.25, + "probability": 0.2249 + }, + { + "start": 7940.62, + "end": 7951.74, + "probability": 0.9474 + }, + { + "start": 7952.76, + "end": 7953.62, + "probability": 0.7653 + }, + { + "start": 7954.26, + "end": 7956.08, + "probability": 0.7994 + }, + { + "start": 7957.7, + "end": 7960.4, + "probability": 0.5809 + }, + { + "start": 7961.04, + "end": 7961.86, + "probability": 0.8021 + }, + { + "start": 7962.86, + "end": 7968.18, + "probability": 0.9669 + }, + { + "start": 7968.74, + "end": 7970.08, + "probability": 0.885 + }, + { + "start": 7970.62, + "end": 7973.71, + "probability": 0.8805 + }, + { + "start": 7974.46, + "end": 7974.5, + "probability": 0.0217 + }, + { + "start": 7974.5, + "end": 7976.02, + "probability": 0.7385 + }, + { + "start": 7976.56, + "end": 7979.88, + "probability": 0.9747 + }, + { + "start": 7980.28, + "end": 7983.34, + "probability": 0.8121 + }, + { + "start": 7983.38, + "end": 7986.38, + "probability": 0.7503 + }, + { + "start": 7986.5, + "end": 7990.94, + "probability": 0.9595 + }, + { + "start": 7991.64, + "end": 7997.32, + "probability": 0.9877 + }, + { + "start": 7997.44, + "end": 7999.48, + "probability": 0.928 + }, + { + "start": 8000.32, + "end": 8002.46, + "probability": 0.8959 + }, + { + "start": 8003.24, + "end": 8007.98, + "probability": 0.7572 + }, + { + "start": 8008.22, + "end": 8012.72, + "probability": 0.9295 + }, + { + "start": 8013.12, + "end": 8014.26, + "probability": 0.671 + }, + { + "start": 8014.76, + "end": 8015.1, + "probability": 0.7319 + }, + { + "start": 8015.2, + "end": 8015.78, + "probability": 0.9269 + }, + { + "start": 8016.14, + "end": 8022.78, + "probability": 0.9877 + }, + { + "start": 8026.98, + "end": 8028.66, + "probability": 0.9858 + }, + { + "start": 8029.36, + "end": 8029.88, + "probability": 0.9818 + }, + { + "start": 8030.46, + "end": 8034.1, + "probability": 0.9581 + }, + { + "start": 8035.1, + "end": 8037.3, + "probability": 0.9473 + }, + { + "start": 8037.52, + "end": 8040.82, + "probability": 0.7294 + }, + { + "start": 8041.78, + "end": 8042.52, + "probability": 0.6566 + }, + { + "start": 8044.56, + "end": 8047.0, + "probability": 0.5776 + }, + { + "start": 8047.62, + "end": 8048.84, + "probability": 0.8817 + }, + { + "start": 8049.72, + "end": 8051.22, + "probability": 0.8955 + }, + { + "start": 8051.84, + "end": 8052.88, + "probability": 0.8123 + }, + { + "start": 8053.9, + "end": 8055.62, + "probability": 0.8939 + }, + { + "start": 8056.16, + "end": 8057.18, + "probability": 0.9115 + }, + { + "start": 8057.86, + "end": 8060.4, + "probability": 0.6596 + }, + { + "start": 8061.42, + "end": 8063.48, + "probability": 0.8589 + }, + { + "start": 8064.54, + "end": 8069.24, + "probability": 0.6951 + }, + { + "start": 8069.92, + "end": 8073.04, + "probability": 0.9709 + }, + { + "start": 8073.64, + "end": 8074.48, + "probability": 0.2462 + }, + { + "start": 8074.7, + "end": 8081.36, + "probability": 0.9858 + }, + { + "start": 8081.8, + "end": 8084.08, + "probability": 0.9883 + }, + { + "start": 8084.56, + "end": 8085.66, + "probability": 0.8441 + }, + { + "start": 8086.14, + "end": 8088.38, + "probability": 0.9919 + }, + { + "start": 8088.72, + "end": 8089.86, + "probability": 0.8298 + }, + { + "start": 8090.5, + "end": 8100.48, + "probability": 0.9506 + }, + { + "start": 8101.24, + "end": 8107.82, + "probability": 0.9619 + }, + { + "start": 8108.2, + "end": 8109.74, + "probability": 0.9023 + }, + { + "start": 8110.36, + "end": 8111.88, + "probability": 0.5651 + }, + { + "start": 8111.96, + "end": 8112.44, + "probability": 0.8069 + }, + { + "start": 8112.82, + "end": 8113.28, + "probability": 0.5023 + }, + { + "start": 8113.62, + "end": 8116.04, + "probability": 0.7358 + }, + { + "start": 8118.22, + "end": 8120.08, + "probability": 0.457 + }, + { + "start": 8120.82, + "end": 8121.45, + "probability": 0.7751 + }, + { + "start": 8122.4, + "end": 8127.56, + "probability": 0.8973 + }, + { + "start": 8127.68, + "end": 8128.52, + "probability": 0.6389 + }, + { + "start": 8129.18, + "end": 8130.24, + "probability": 0.9395 + }, + { + "start": 8131.14, + "end": 8131.93, + "probability": 0.9648 + }, + { + "start": 8132.6, + "end": 8133.46, + "probability": 0.6647 + }, + { + "start": 8133.48, + "end": 8134.3, + "probability": 0.2783 + }, + { + "start": 8134.82, + "end": 8135.66, + "probability": 0.6979 + }, + { + "start": 8136.38, + "end": 8137.3, + "probability": 0.6167 + }, + { + "start": 8137.62, + "end": 8140.98, + "probability": 0.2874 + }, + { + "start": 8140.98, + "end": 8141.3, + "probability": 0.5501 + }, + { + "start": 8141.78, + "end": 8144.18, + "probability": 0.6047 + }, + { + "start": 8144.36, + "end": 8149.14, + "probability": 0.5129 + }, + { + "start": 8150.76, + "end": 8157.64, + "probability": 0.7908 + }, + { + "start": 8158.26, + "end": 8160.32, + "probability": 0.7505 + }, + { + "start": 8160.42, + "end": 8161.58, + "probability": 0.7565 + }, + { + "start": 8161.64, + "end": 8162.8, + "probability": 0.8417 + }, + { + "start": 8162.96, + "end": 8169.12, + "probability": 0.937 + }, + { + "start": 8170.04, + "end": 8171.06, + "probability": 0.963 + }, + { + "start": 8171.98, + "end": 8176.24, + "probability": 0.994 + }, + { + "start": 8176.42, + "end": 8177.22, + "probability": 0.4306 + }, + { + "start": 8177.7, + "end": 8180.62, + "probability": 0.8936 + }, + { + "start": 8182.64, + "end": 8185.24, + "probability": 0.9844 + }, + { + "start": 8185.46, + "end": 8186.87, + "probability": 0.2477 + }, + { + "start": 8187.1, + "end": 8188.06, + "probability": 0.73 + }, + { + "start": 8189.44, + "end": 8191.37, + "probability": 0.7396 + }, + { + "start": 8192.16, + "end": 8193.84, + "probability": 0.9413 + }, + { + "start": 8194.8, + "end": 8196.38, + "probability": 0.8185 + }, + { + "start": 8197.26, + "end": 8199.18, + "probability": 0.9038 + }, + { + "start": 8199.46, + "end": 8203.0, + "probability": 0.9269 + }, + { + "start": 8203.44, + "end": 8204.38, + "probability": 0.6908 + }, + { + "start": 8205.0, + "end": 8206.07, + "probability": 0.9609 + }, + { + "start": 8206.86, + "end": 8208.74, + "probability": 0.1068 + }, + { + "start": 8208.86, + "end": 8212.32, + "probability": 0.4246 + }, + { + "start": 8212.44, + "end": 8213.88, + "probability": 0.8632 + }, + { + "start": 8214.44, + "end": 8215.38, + "probability": 0.9415 + }, + { + "start": 8215.76, + "end": 8221.9, + "probability": 0.9678 + }, + { + "start": 8222.4, + "end": 8223.84, + "probability": 0.4975 + }, + { + "start": 8224.06, + "end": 8224.68, + "probability": 0.101 + }, + { + "start": 8224.88, + "end": 8225.08, + "probability": 0.55 + }, + { + "start": 8225.1, + "end": 8225.36, + "probability": 0.2865 + }, + { + "start": 8225.36, + "end": 8225.76, + "probability": 0.2867 + }, + { + "start": 8225.9, + "end": 8228.74, + "probability": 0.7513 + }, + { + "start": 8229.82, + "end": 8229.82, + "probability": 0.0486 + }, + { + "start": 8229.82, + "end": 8231.28, + "probability": 0.4721 + }, + { + "start": 8231.56, + "end": 8232.4, + "probability": 0.4925 + }, + { + "start": 8232.4, + "end": 8233.58, + "probability": 0.9216 + }, + { + "start": 8233.74, + "end": 8233.76, + "probability": 0.3425 + }, + { + "start": 8233.76, + "end": 8235.36, + "probability": 0.5993 + }, + { + "start": 8235.36, + "end": 8235.98, + "probability": 0.593 + }, + { + "start": 8236.14, + "end": 8239.36, + "probability": 0.4976 + }, + { + "start": 8239.36, + "end": 8239.4, + "probability": 0.2411 + }, + { + "start": 8239.4, + "end": 8240.78, + "probability": 0.3899 + }, + { + "start": 8241.62, + "end": 8241.62, + "probability": 0.2856 + }, + { + "start": 8241.64, + "end": 8243.14, + "probability": 0.8557 + }, + { + "start": 8243.34, + "end": 8243.7, + "probability": 0.9044 + }, + { + "start": 8243.72, + "end": 8245.48, + "probability": 0.7957 + }, + { + "start": 8245.48, + "end": 8248.2, + "probability": 0.0265 + }, + { + "start": 8248.26, + "end": 8248.28, + "probability": 0.0161 + }, + { + "start": 8248.28, + "end": 8249.74, + "probability": 0.626 + }, + { + "start": 8249.9, + "end": 8252.46, + "probability": 0.7096 + }, + { + "start": 8253.8, + "end": 8256.04, + "probability": 0.4019 + }, + { + "start": 8256.36, + "end": 8258.24, + "probability": 0.0108 + }, + { + "start": 8258.24, + "end": 8259.92, + "probability": 0.4315 + }, + { + "start": 8260.02, + "end": 8260.8, + "probability": 0.7722 + }, + { + "start": 8260.82, + "end": 8261.18, + "probability": 0.8005 + }, + { + "start": 8261.22, + "end": 8261.64, + "probability": 0.3248 + }, + { + "start": 8261.84, + "end": 8262.9, + "probability": 0.0602 + }, + { + "start": 8263.0, + "end": 8263.94, + "probability": 0.0333 + }, + { + "start": 8264.14, + "end": 8264.58, + "probability": 0.2063 + }, + { + "start": 8264.58, + "end": 8265.66, + "probability": 0.2542 + }, + { + "start": 8266.14, + "end": 8271.66, + "probability": 0.8885 + }, + { + "start": 8272.28, + "end": 8273.7, + "probability": 0.8545 + }, + { + "start": 8275.36, + "end": 8275.98, + "probability": 0.875 + }, + { + "start": 8276.16, + "end": 8276.58, + "probability": 0.8411 + }, + { + "start": 8276.64, + "end": 8280.14, + "probability": 0.7625 + }, + { + "start": 8280.18, + "end": 8280.66, + "probability": 0.8 + }, + { + "start": 8281.32, + "end": 8283.5, + "probability": 0.8574 + }, + { + "start": 8283.62, + "end": 8288.14, + "probability": 0.9785 + }, + { + "start": 8288.68, + "end": 8290.44, + "probability": 0.9858 + }, + { + "start": 8291.18, + "end": 8291.58, + "probability": 0.713 + }, + { + "start": 8292.54, + "end": 8295.24, + "probability": 0.9796 + }, + { + "start": 8296.32, + "end": 8297.36, + "probability": 0.9667 + }, + { + "start": 8298.08, + "end": 8301.33, + "probability": 0.9868 + }, + { + "start": 8302.72, + "end": 8303.92, + "probability": 0.8716 + }, + { + "start": 8305.2, + "end": 8308.97, + "probability": 0.8798 + }, + { + "start": 8309.98, + "end": 8313.03, + "probability": 0.9863 + }, + { + "start": 8313.96, + "end": 8319.26, + "probability": 0.9653 + }, + { + "start": 8320.4, + "end": 8322.44, + "probability": 0.9887 + }, + { + "start": 8323.26, + "end": 8325.26, + "probability": 0.9989 + }, + { + "start": 8325.7, + "end": 8330.03, + "probability": 0.9829 + }, + { + "start": 8330.2, + "end": 8332.94, + "probability": 0.9977 + }, + { + "start": 8333.14, + "end": 8335.54, + "probability": 0.8569 + }, + { + "start": 8337.32, + "end": 8337.84, + "probability": 0.7317 + }, + { + "start": 8338.48, + "end": 8342.0, + "probability": 0.9592 + }, + { + "start": 8344.42, + "end": 8346.5, + "probability": 0.9915 + }, + { + "start": 8347.48, + "end": 8348.68, + "probability": 0.7487 + }, + { + "start": 8349.98, + "end": 8351.9, + "probability": 0.9084 + }, + { + "start": 8352.46, + "end": 8354.84, + "probability": 0.9412 + }, + { + "start": 8355.52, + "end": 8359.08, + "probability": 0.9732 + }, + { + "start": 8360.5, + "end": 8360.68, + "probability": 0.3422 + }, + { + "start": 8360.84, + "end": 8361.68, + "probability": 0.6897 + }, + { + "start": 8361.74, + "end": 8363.04, + "probability": 0.7149 + }, + { + "start": 8363.24, + "end": 8367.06, + "probability": 0.7613 + }, + { + "start": 8367.64, + "end": 8368.23, + "probability": 0.8413 + }, + { + "start": 8368.28, + "end": 8368.9, + "probability": 0.637 + }, + { + "start": 8369.66, + "end": 8373.96, + "probability": 0.9742 + }, + { + "start": 8374.3, + "end": 8375.66, + "probability": 0.8322 + }, + { + "start": 8376.9, + "end": 8381.06, + "probability": 0.9258 + }, + { + "start": 8382.18, + "end": 8383.68, + "probability": 0.3198 + }, + { + "start": 8383.88, + "end": 8386.34, + "probability": 0.9758 + }, + { + "start": 8386.42, + "end": 8387.04, + "probability": 0.8464 + }, + { + "start": 8387.24, + "end": 8388.28, + "probability": 0.8169 + }, + { + "start": 8388.64, + "end": 8390.48, + "probability": 0.6982 + }, + { + "start": 8391.24, + "end": 8392.65, + "probability": 0.1552 + }, + { + "start": 8393.34, + "end": 8393.58, + "probability": 0.7143 + }, + { + "start": 8394.02, + "end": 8395.12, + "probability": 0.0161 + }, + { + "start": 8395.28, + "end": 8398.26, + "probability": 0.926 + }, + { + "start": 8398.84, + "end": 8404.44, + "probability": 0.9984 + }, + { + "start": 8405.88, + "end": 8407.28, + "probability": 0.7844 + }, + { + "start": 8407.92, + "end": 8412.56, + "probability": 0.7405 + }, + { + "start": 8413.66, + "end": 8417.32, + "probability": 0.9616 + }, + { + "start": 8418.68, + "end": 8420.46, + "probability": 0.9193 + }, + { + "start": 8421.16, + "end": 8425.28, + "probability": 0.951 + }, + { + "start": 8425.98, + "end": 8427.82, + "probability": 0.9893 + }, + { + "start": 8428.42, + "end": 8430.58, + "probability": 0.9703 + }, + { + "start": 8431.54, + "end": 8435.02, + "probability": 0.9097 + }, + { + "start": 8435.42, + "end": 8437.34, + "probability": 0.8677 + }, + { + "start": 8437.72, + "end": 8438.4, + "probability": 0.9439 + }, + { + "start": 8438.54, + "end": 8439.5, + "probability": 0.8545 + }, + { + "start": 8440.04, + "end": 8445.2, + "probability": 0.9263 + }, + { + "start": 8447.02, + "end": 8451.76, + "probability": 0.9985 + }, + { + "start": 8452.74, + "end": 8461.86, + "probability": 0.9113 + }, + { + "start": 8462.0, + "end": 8462.94, + "probability": 0.8646 + }, + { + "start": 8463.7, + "end": 8467.56, + "probability": 0.8344 + }, + { + "start": 8467.62, + "end": 8469.26, + "probability": 0.8689 + }, + { + "start": 8470.1, + "end": 8472.34, + "probability": 0.7964 + }, + { + "start": 8472.34, + "end": 8472.74, + "probability": 0.485 + }, + { + "start": 8473.66, + "end": 8474.36, + "probability": 0.7954 + }, + { + "start": 8476.02, + "end": 8477.02, + "probability": 0.8076 + }, + { + "start": 8477.14, + "end": 8477.52, + "probability": 0.7101 + }, + { + "start": 8477.58, + "end": 8483.28, + "probability": 0.9167 + }, + { + "start": 8483.28, + "end": 8488.7, + "probability": 0.9919 + }, + { + "start": 8488.9, + "end": 8490.24, + "probability": 0.7834 + }, + { + "start": 8490.62, + "end": 8491.38, + "probability": 0.6788 + }, + { + "start": 8491.92, + "end": 8494.9, + "probability": 0.7188 + }, + { + "start": 8495.18, + "end": 8495.96, + "probability": 0.6534 + }, + { + "start": 8496.84, + "end": 8500.78, + "probability": 0.8959 + }, + { + "start": 8502.34, + "end": 8503.32, + "probability": 0.9839 + }, + { + "start": 8505.04, + "end": 8509.78, + "probability": 0.9794 + }, + { + "start": 8511.28, + "end": 8512.32, + "probability": 0.8994 + }, + { + "start": 8513.72, + "end": 8514.68, + "probability": 0.8743 + }, + { + "start": 8514.8, + "end": 8515.44, + "probability": 0.853 + }, + { + "start": 8515.58, + "end": 8516.18, + "probability": 0.8005 + }, + { + "start": 8516.86, + "end": 8519.3, + "probability": 0.9512 + }, + { + "start": 8519.42, + "end": 8520.16, + "probability": 0.9711 + }, + { + "start": 8520.26, + "end": 8521.02, + "probability": 0.8454 + }, + { + "start": 8521.52, + "end": 8522.64, + "probability": 0.7815 + }, + { + "start": 8523.04, + "end": 8524.22, + "probability": 0.992 + }, + { + "start": 8525.52, + "end": 8526.62, + "probability": 0.0916 + }, + { + "start": 8527.88, + "end": 8529.26, + "probability": 0.9551 + }, + { + "start": 8530.02, + "end": 8530.7, + "probability": 0.9885 + }, + { + "start": 8531.68, + "end": 8532.4, + "probability": 0.9052 + }, + { + "start": 8533.62, + "end": 8535.92, + "probability": 0.8723 + }, + { + "start": 8536.66, + "end": 8537.62, + "probability": 0.2329 + }, + { + "start": 8538.94, + "end": 8544.24, + "probability": 0.9287 + }, + { + "start": 8545.4, + "end": 8547.32, + "probability": 0.9097 + }, + { + "start": 8548.4, + "end": 8552.76, + "probability": 0.9946 + }, + { + "start": 8552.9, + "end": 8553.38, + "probability": 0.6338 + }, + { + "start": 8554.36, + "end": 8555.98, + "probability": 0.3533 + }, + { + "start": 8556.5, + "end": 8556.78, + "probability": 0.1646 + }, + { + "start": 8557.16, + "end": 8557.64, + "probability": 0.4222 + }, + { + "start": 8558.9, + "end": 8564.92, + "probability": 0.9114 + }, + { + "start": 8564.92, + "end": 8572.42, + "probability": 0.9974 + }, + { + "start": 8573.44, + "end": 8574.7, + "probability": 0.701 + }, + { + "start": 8575.08, + "end": 8576.84, + "probability": 0.9971 + }, + { + "start": 8577.76, + "end": 8580.34, + "probability": 0.9924 + }, + { + "start": 8581.0, + "end": 8583.3, + "probability": 0.812 + }, + { + "start": 8584.04, + "end": 8586.06, + "probability": 0.7586 + }, + { + "start": 8587.36, + "end": 8591.26, + "probability": 0.9606 + }, + { + "start": 8592.04, + "end": 8593.72, + "probability": 0.7672 + }, + { + "start": 8594.54, + "end": 8598.5, + "probability": 0.8094 + }, + { + "start": 8599.34, + "end": 8604.98, + "probability": 0.9573 + }, + { + "start": 8605.26, + "end": 8606.34, + "probability": 0.6251 + }, + { + "start": 8606.78, + "end": 8609.56, + "probability": 0.8751 + }, + { + "start": 8610.22, + "end": 8612.22, + "probability": 0.9681 + }, + { + "start": 8613.18, + "end": 8613.76, + "probability": 0.6396 + }, + { + "start": 8614.4, + "end": 8616.34, + "probability": 0.9578 + }, + { + "start": 8617.56, + "end": 8620.46, + "probability": 0.6991 + }, + { + "start": 8620.86, + "end": 8623.68, + "probability": 0.7845 + }, + { + "start": 8623.84, + "end": 8625.88, + "probability": 0.9976 + }, + { + "start": 8626.76, + "end": 8629.3, + "probability": 0.9822 + }, + { + "start": 8629.86, + "end": 8633.14, + "probability": 0.9137 + }, + { + "start": 8633.86, + "end": 8634.5, + "probability": 0.0127 + }, + { + "start": 8635.56, + "end": 8640.2, + "probability": 0.9059 + }, + { + "start": 8641.58, + "end": 8643.42, + "probability": 0.2575 + }, + { + "start": 8643.76, + "end": 8645.84, + "probability": 0.7079 + }, + { + "start": 8645.92, + "end": 8646.62, + "probability": 0.3034 + }, + { + "start": 8646.74, + "end": 8647.28, + "probability": 0.8376 + }, + { + "start": 8647.46, + "end": 8652.26, + "probability": 0.8369 + }, + { + "start": 8652.84, + "end": 8654.74, + "probability": 0.8456 + }, + { + "start": 8655.34, + "end": 8656.62, + "probability": 0.761 + }, + { + "start": 8657.28, + "end": 8658.8, + "probability": 0.9839 + }, + { + "start": 8659.3, + "end": 8660.02, + "probability": 0.6262 + }, + { + "start": 8660.18, + "end": 8661.91, + "probability": 0.8579 + }, + { + "start": 8662.64, + "end": 8663.7, + "probability": 0.9308 + }, + { + "start": 8663.82, + "end": 8665.86, + "probability": 0.9159 + }, + { + "start": 8666.34, + "end": 8670.26, + "probability": 0.9595 + }, + { + "start": 8670.26, + "end": 8675.52, + "probability": 0.9508 + }, + { + "start": 8675.84, + "end": 8675.88, + "probability": 0.2141 + }, + { + "start": 8675.88, + "end": 8676.94, + "probability": 0.5363 + }, + { + "start": 8677.24, + "end": 8679.82, + "probability": 0.4051 + }, + { + "start": 8680.08, + "end": 8680.08, + "probability": 0.5326 + }, + { + "start": 8680.08, + "end": 8680.08, + "probability": 0.4239 + }, + { + "start": 8680.08, + "end": 8680.7, + "probability": 0.678 + }, + { + "start": 8680.86, + "end": 8684.28, + "probability": 0.7313 + }, + { + "start": 8684.66, + "end": 8688.63, + "probability": 0.6823 + }, + { + "start": 8689.52, + "end": 8690.59, + "probability": 0.5438 + }, + { + "start": 8691.32, + "end": 8693.96, + "probability": 0.3524 + }, + { + "start": 8694.46, + "end": 8699.94, + "probability": 0.6323 + }, + { + "start": 8700.18, + "end": 8702.7, + "probability": 0.6992 + }, + { + "start": 8702.94, + "end": 8705.93, + "probability": 0.5132 + }, + { + "start": 8706.86, + "end": 8707.14, + "probability": 0.2512 + }, + { + "start": 8707.14, + "end": 8710.42, + "probability": 0.9951 + }, + { + "start": 8710.94, + "end": 8711.62, + "probability": 0.8615 + }, + { + "start": 8711.96, + "end": 8715.68, + "probability": 0.1062 + }, + { + "start": 8715.92, + "end": 8717.62, + "probability": 0.6442 + }, + { + "start": 8717.92, + "end": 8719.2, + "probability": 0.4829 + }, + { + "start": 8719.2, + "end": 8722.16, + "probability": 0.9883 + }, + { + "start": 8722.84, + "end": 8726.18, + "probability": 0.2605 + }, + { + "start": 8726.28, + "end": 8727.5, + "probability": 0.9297 + }, + { + "start": 8727.8, + "end": 8729.08, + "probability": 0.9824 + }, + { + "start": 8729.2, + "end": 8730.08, + "probability": 0.7104 + }, + { + "start": 8730.58, + "end": 8731.66, + "probability": 0.9736 + }, + { + "start": 8732.58, + "end": 8735.6, + "probability": 0.9523 + }, + { + "start": 8735.68, + "end": 8739.62, + "probability": 0.9945 + }, + { + "start": 8740.12, + "end": 8742.98, + "probability": 0.8763 + }, + { + "start": 8743.04, + "end": 8745.22, + "probability": 0.8188 + }, + { + "start": 8745.76, + "end": 8752.14, + "probability": 0.9137 + }, + { + "start": 8755.38, + "end": 8755.86, + "probability": 0.7516 + }, + { + "start": 8756.52, + "end": 8758.64, + "probability": 0.9709 + }, + { + "start": 8759.58, + "end": 8761.22, + "probability": 0.9215 + }, + { + "start": 8761.42, + "end": 8764.0, + "probability": 0.8152 + }, + { + "start": 8764.12, + "end": 8766.26, + "probability": 0.6267 + }, + { + "start": 8766.64, + "end": 8767.98, + "probability": 0.9154 + }, + { + "start": 8769.2, + "end": 8772.92, + "probability": 0.9614 + }, + { + "start": 8774.26, + "end": 8777.46, + "probability": 0.7595 + }, + { + "start": 8778.16, + "end": 8779.0, + "probability": 0.2749 + }, + { + "start": 8779.56, + "end": 8782.31, + "probability": 0.7227 + }, + { + "start": 8783.02, + "end": 8788.24, + "probability": 0.9875 + }, + { + "start": 8788.24, + "end": 8794.08, + "probability": 0.9405 + }, + { + "start": 8794.5, + "end": 8795.8, + "probability": 0.7953 + }, + { + "start": 8796.26, + "end": 8797.54, + "probability": 0.6529 + }, + { + "start": 8797.66, + "end": 8801.74, + "probability": 0.9168 + }, + { + "start": 8802.1, + "end": 8804.18, + "probability": 0.9678 + }, + { + "start": 8806.94, + "end": 8813.78, + "probability": 0.9896 + }, + { + "start": 8814.54, + "end": 8818.82, + "probability": 0.9946 + }, + { + "start": 8819.6, + "end": 8822.92, + "probability": 0.9896 + }, + { + "start": 8824.26, + "end": 8825.52, + "probability": 0.8987 + }, + { + "start": 8826.06, + "end": 8833.82, + "probability": 0.8917 + }, + { + "start": 8836.02, + "end": 8838.16, + "probability": 0.9956 + }, + { + "start": 8838.9, + "end": 8850.7, + "probability": 0.937 + }, + { + "start": 8850.7, + "end": 8856.1, + "probability": 0.9819 + }, + { + "start": 8856.54, + "end": 8864.32, + "probability": 0.9953 + }, + { + "start": 8864.32, + "end": 8869.46, + "probability": 0.9963 + }, + { + "start": 8869.96, + "end": 8876.66, + "probability": 0.9953 + }, + { + "start": 8877.36, + "end": 8879.38, + "probability": 0.747 + }, + { + "start": 8880.04, + "end": 8881.71, + "probability": 0.7229 + }, + { + "start": 8881.76, + "end": 8883.96, + "probability": 0.7266 + }, + { + "start": 8884.32, + "end": 8887.42, + "probability": 0.8207 + }, + { + "start": 8887.7, + "end": 8888.5, + "probability": 0.9729 + }, + { + "start": 8888.58, + "end": 8889.54, + "probability": 0.9319 + }, + { + "start": 8890.02, + "end": 8891.22, + "probability": 0.9818 + }, + { + "start": 8891.86, + "end": 8892.64, + "probability": 0.4164 + }, + { + "start": 8893.1, + "end": 8895.34, + "probability": 0.942 + }, + { + "start": 8895.7, + "end": 8899.24, + "probability": 0.9313 + }, + { + "start": 8900.98, + "end": 8902.42, + "probability": 0.907 + }, + { + "start": 8904.6, + "end": 8905.32, + "probability": 0.953 + }, + { + "start": 8906.58, + "end": 8910.2, + "probability": 0.9099 + }, + { + "start": 8910.98, + "end": 8915.46, + "probability": 0.9838 + }, + { + "start": 8915.92, + "end": 8916.66, + "probability": 0.84 + }, + { + "start": 8917.54, + "end": 8920.64, + "probability": 0.5857 + }, + { + "start": 8921.18, + "end": 8924.62, + "probability": 0.9607 + }, + { + "start": 8926.08, + "end": 8926.38, + "probability": 0.4053 + }, + { + "start": 8927.2, + "end": 8927.68, + "probability": 0.7678 + }, + { + "start": 8929.34, + "end": 8930.12, + "probability": 0.8071 + }, + { + "start": 8931.62, + "end": 8933.98, + "probability": 0.8152 + }, + { + "start": 8934.86, + "end": 8935.9, + "probability": 0.922 + }, + { + "start": 8937.24, + "end": 8942.06, + "probability": 0.9598 + }, + { + "start": 8942.92, + "end": 8943.92, + "probability": 0.9707 + }, + { + "start": 8944.66, + "end": 8949.58, + "probability": 0.9336 + }, + { + "start": 8950.48, + "end": 8951.2, + "probability": 0.6273 + }, + { + "start": 8951.36, + "end": 8955.12, + "probability": 0.7598 + }, + { + "start": 8955.46, + "end": 8956.54, + "probability": 0.8878 + }, + { + "start": 8957.16, + "end": 8957.86, + "probability": 0.8325 + }, + { + "start": 8957.96, + "end": 8960.58, + "probability": 0.7558 + }, + { + "start": 8961.66, + "end": 8971.92, + "probability": 0.7517 + }, + { + "start": 8973.0, + "end": 8976.3, + "probability": 0.9799 + }, + { + "start": 8976.38, + "end": 8979.08, + "probability": 0.9995 + }, + { + "start": 8979.96, + "end": 8983.2, + "probability": 0.9984 + }, + { + "start": 8984.6, + "end": 8985.94, + "probability": 0.4513 + }, + { + "start": 8986.34, + "end": 8990.44, + "probability": 0.898 + }, + { + "start": 8990.88, + "end": 8991.8, + "probability": 0.8306 + }, + { + "start": 8991.88, + "end": 8995.9, + "probability": 0.7651 + }, + { + "start": 8995.92, + "end": 8996.34, + "probability": 0.9365 + }, + { + "start": 8996.86, + "end": 8997.7, + "probability": 0.8628 + }, + { + "start": 8998.04, + "end": 8999.65, + "probability": 0.8005 + }, + { + "start": 9000.82, + "end": 9001.94, + "probability": 0.7489 + }, + { + "start": 9002.42, + "end": 9006.48, + "probability": 0.9839 + }, + { + "start": 9006.82, + "end": 9010.94, + "probability": 0.5985 + }, + { + "start": 9011.06, + "end": 9011.94, + "probability": 0.2883 + }, + { + "start": 9013.48, + "end": 9014.16, + "probability": 0.6367 + }, + { + "start": 9015.3, + "end": 9017.58, + "probability": 0.9695 + }, + { + "start": 9018.76, + "end": 9020.14, + "probability": 0.8245 + }, + { + "start": 9021.38, + "end": 9022.02, + "probability": 0.5487 + }, + { + "start": 9022.74, + "end": 9023.67, + "probability": 0.1761 + }, + { + "start": 9023.94, + "end": 9024.44, + "probability": 0.3586 + }, + { + "start": 9025.02, + "end": 9026.34, + "probability": 0.5508 + }, + { + "start": 9026.58, + "end": 9027.24, + "probability": 0.6466 + }, + { + "start": 9027.24, + "end": 9028.24, + "probability": 0.691 + }, + { + "start": 9029.54, + "end": 9032.46, + "probability": 0.9141 + }, + { + "start": 9033.9, + "end": 9040.18, + "probability": 0.0847 + }, + { + "start": 9040.72, + "end": 9043.52, + "probability": 0.3203 + }, + { + "start": 9043.92, + "end": 9045.0, + "probability": 0.166 + }, + { + "start": 9045.48, + "end": 9045.48, + "probability": 0.1138 + }, + { + "start": 9045.48, + "end": 9047.28, + "probability": 0.188 + }, + { + "start": 9047.82, + "end": 9050.1, + "probability": 0.7926 + }, + { + "start": 9050.72, + "end": 9053.24, + "probability": 0.8442 + }, + { + "start": 9053.88, + "end": 9054.56, + "probability": 0.8119 + }, + { + "start": 9055.28, + "end": 9056.56, + "probability": 0.9497 + }, + { + "start": 9057.04, + "end": 9058.3, + "probability": 0.8608 + }, + { + "start": 9058.62, + "end": 9059.84, + "probability": 0.8641 + }, + { + "start": 9060.78, + "end": 9063.54, + "probability": 0.1978 + }, + { + "start": 9067.47, + "end": 9068.92, + "probability": 0.4829 + }, + { + "start": 9069.14, + "end": 9071.46, + "probability": 0.9733 + }, + { + "start": 9071.84, + "end": 9073.12, + "probability": 0.0466 + }, + { + "start": 9073.26, + "end": 9075.71, + "probability": 0.9773 + }, + { + "start": 9076.32, + "end": 9078.76, + "probability": 0.9609 + }, + { + "start": 9079.62, + "end": 9080.24, + "probability": 0.7808 + }, + { + "start": 9080.88, + "end": 9081.62, + "probability": 0.7434 + }, + { + "start": 9082.16, + "end": 9083.66, + "probability": 0.8228 + }, + { + "start": 9084.5, + "end": 9088.28, + "probability": 0.4224 + }, + { + "start": 9088.28, + "end": 9089.84, + "probability": 0.5701 + }, + { + "start": 9089.86, + "end": 9089.86, + "probability": 0.1163 + }, + { + "start": 9089.96, + "end": 9091.82, + "probability": 0.7371 + }, + { + "start": 9092.06, + "end": 9092.16, + "probability": 0.0465 + }, + { + "start": 9092.86, + "end": 9094.06, + "probability": 0.0385 + }, + { + "start": 9094.24, + "end": 9095.6, + "probability": 0.5253 + }, + { + "start": 9095.84, + "end": 9097.38, + "probability": 0.6276 + }, + { + "start": 9097.42, + "end": 9099.04, + "probability": 0.6792 + }, + { + "start": 9099.48, + "end": 9100.0, + "probability": 0.5485 + }, + { + "start": 9100.2, + "end": 9102.24, + "probability": 0.8128 + }, + { + "start": 9102.7, + "end": 9104.02, + "probability": 0.6773 + }, + { + "start": 9104.02, + "end": 9110.32, + "probability": 0.9471 + }, + { + "start": 9110.94, + "end": 9115.76, + "probability": 0.9724 + }, + { + "start": 9116.08, + "end": 9117.6, + "probability": 0.9332 + }, + { + "start": 9118.14, + "end": 9120.54, + "probability": 0.7402 + }, + { + "start": 9120.88, + "end": 9123.36, + "probability": 0.9722 + }, + { + "start": 9123.76, + "end": 9125.24, + "probability": 0.9631 + }, + { + "start": 9125.58, + "end": 9126.44, + "probability": 0.9619 + }, + { + "start": 9127.22, + "end": 9133.2, + "probability": 0.9957 + }, + { + "start": 9133.4, + "end": 9133.46, + "probability": 0.2119 + }, + { + "start": 9133.46, + "end": 9134.42, + "probability": 0.2672 + }, + { + "start": 9134.84, + "end": 9135.94, + "probability": 0.1905 + }, + { + "start": 9137.2, + "end": 9139.52, + "probability": 0.5414 + }, + { + "start": 9139.95, + "end": 9140.16, + "probability": 0.2944 + }, + { + "start": 9140.28, + "end": 9140.46, + "probability": 0.3411 + }, + { + "start": 9140.46, + "end": 9142.34, + "probability": 0.3134 + }, + { + "start": 9142.42, + "end": 9143.34, + "probability": 0.9371 + }, + { + "start": 9143.74, + "end": 9148.5, + "probability": 0.2556 + }, + { + "start": 9148.74, + "end": 9148.74, + "probability": 0.7064 + }, + { + "start": 9148.74, + "end": 9150.4, + "probability": 0.8964 + }, + { + "start": 9151.4, + "end": 9153.65, + "probability": 0.7014 + }, + { + "start": 9153.96, + "end": 9156.76, + "probability": 0.9013 + }, + { + "start": 9159.68, + "end": 9163.14, + "probability": 0.669 + }, + { + "start": 9163.2, + "end": 9164.88, + "probability": 0.2944 + }, + { + "start": 9165.04, + "end": 9165.58, + "probability": 0.2162 + }, + { + "start": 9165.58, + "end": 9168.59, + "probability": 0.678 + }, + { + "start": 9169.32, + "end": 9169.76, + "probability": 0.4668 + }, + { + "start": 9170.02, + "end": 9174.32, + "probability": 0.9915 + }, + { + "start": 9174.96, + "end": 9177.86, + "probability": 0.9756 + }, + { + "start": 9178.38, + "end": 9178.94, + "probability": 0.6054 + }, + { + "start": 9179.1, + "end": 9185.96, + "probability": 0.9852 + }, + { + "start": 9186.22, + "end": 9187.68, + "probability": 0.5577 + }, + { + "start": 9188.62, + "end": 9189.88, + "probability": 0.9893 + }, + { + "start": 9190.44, + "end": 9196.2, + "probability": 0.9686 + }, + { + "start": 9196.74, + "end": 9199.58, + "probability": 0.9656 + }, + { + "start": 9200.04, + "end": 9203.76, + "probability": 0.9949 + }, + { + "start": 9204.18, + "end": 9207.52, + "probability": 0.869 + }, + { + "start": 9207.6, + "end": 9208.26, + "probability": 0.3825 + }, + { + "start": 9208.54, + "end": 9209.34, + "probability": 0.3521 + }, + { + "start": 9209.84, + "end": 9211.3, + "probability": 0.5648 + }, + { + "start": 9211.9, + "end": 9212.84, + "probability": 0.7409 + }, + { + "start": 9213.48, + "end": 9214.46, + "probability": 0.9144 + }, + { + "start": 9214.5, + "end": 9215.2, + "probability": 0.8562 + }, + { + "start": 9215.24, + "end": 9215.96, + "probability": 0.7381 + }, + { + "start": 9216.3, + "end": 9218.52, + "probability": 0.6622 + }, + { + "start": 9218.8, + "end": 9220.12, + "probability": 0.6117 + }, + { + "start": 9220.34, + "end": 9221.36, + "probability": 0.5219 + }, + { + "start": 9221.72, + "end": 9225.28, + "probability": 0.9971 + }, + { + "start": 9225.28, + "end": 9228.84, + "probability": 0.8998 + }, + { + "start": 9229.36, + "end": 9229.46, + "probability": 0.3304 + }, + { + "start": 9230.5, + "end": 9231.62, + "probability": 0.4966 + }, + { + "start": 9232.62, + "end": 9234.62, + "probability": 0.6212 + }, + { + "start": 9234.92, + "end": 9242.74, + "probability": 0.942 + }, + { + "start": 9242.84, + "end": 9244.66, + "probability": 0.5478 + }, + { + "start": 9244.66, + "end": 9245.2, + "probability": 0.613 + }, + { + "start": 9245.64, + "end": 9245.78, + "probability": 0.0042 + }, + { + "start": 9245.78, + "end": 9246.62, + "probability": 0.3718 + }, + { + "start": 9246.9, + "end": 9247.26, + "probability": 0.3431 + }, + { + "start": 9248.5, + "end": 9252.5, + "probability": 0.9416 + }, + { + "start": 9253.5, + "end": 9254.96, + "probability": 0.9494 + }, + { + "start": 9255.6, + "end": 9259.68, + "probability": 0.9919 + }, + { + "start": 9260.3, + "end": 9261.54, + "probability": 0.7096 + }, + { + "start": 9261.94, + "end": 9266.42, + "probability": 0.9734 + }, + { + "start": 9267.02, + "end": 9270.1, + "probability": 0.9534 + }, + { + "start": 9270.62, + "end": 9272.14, + "probability": 0.9666 + }, + { + "start": 9272.28, + "end": 9273.14, + "probability": 0.471 + }, + { + "start": 9274.18, + "end": 9275.62, + "probability": 0.8284 + }, + { + "start": 9275.7, + "end": 9277.14, + "probability": 0.8975 + }, + { + "start": 9277.92, + "end": 9281.0, + "probability": 0.6327 + }, + { + "start": 9281.66, + "end": 9282.56, + "probability": 0.2945 + }, + { + "start": 9283.7, + "end": 9286.99, + "probability": 0.6676 + }, + { + "start": 9288.44, + "end": 9290.14, + "probability": 0.73 + }, + { + "start": 9290.16, + "end": 9292.68, + "probability": 0.6659 + }, + { + "start": 9293.06, + "end": 9294.64, + "probability": 0.7285 + }, + { + "start": 9295.14, + "end": 9300.56, + "probability": 0.9459 + }, + { + "start": 9300.72, + "end": 9302.4, + "probability": 0.5254 + }, + { + "start": 9303.3, + "end": 9306.0, + "probability": 0.5908 + }, + { + "start": 9306.58, + "end": 9307.32, + "probability": 0.9972 + }, + { + "start": 9313.22, + "end": 9316.28, + "probability": 0.9976 + }, + { + "start": 9316.7, + "end": 9318.64, + "probability": 0.9319 + }, + { + "start": 9319.3, + "end": 9322.22, + "probability": 0.9169 + }, + { + "start": 9322.82, + "end": 9326.7, + "probability": 0.9607 + }, + { + "start": 9327.22, + "end": 9328.74, + "probability": 0.9559 + }, + { + "start": 9329.46, + "end": 9330.78, + "probability": 0.9041 + }, + { + "start": 9331.34, + "end": 9333.5, + "probability": 0.7974 + }, + { + "start": 9334.5, + "end": 9336.54, + "probability": 0.7139 + }, + { + "start": 9337.84, + "end": 9341.96, + "probability": 0.9143 + }, + { + "start": 9342.68, + "end": 9343.92, + "probability": 0.9486 + }, + { + "start": 9344.9, + "end": 9348.3, + "probability": 0.9922 + }, + { + "start": 9349.72, + "end": 9351.28, + "probability": 0.9116 + }, + { + "start": 9351.72, + "end": 9353.24, + "probability": 0.6442 + }, + { + "start": 9353.68, + "end": 9361.18, + "probability": 0.8712 + }, + { + "start": 9361.76, + "end": 9362.98, + "probability": 0.95 + }, + { + "start": 9363.94, + "end": 9367.16, + "probability": 0.9922 + }, + { + "start": 9367.9, + "end": 9368.7, + "probability": 0.9458 + }, + { + "start": 9369.56, + "end": 9377.28, + "probability": 0.954 + }, + { + "start": 9378.1, + "end": 9382.9, + "probability": 0.8979 + }, + { + "start": 9383.7, + "end": 9385.58, + "probability": 0.8246 + }, + { + "start": 9386.54, + "end": 9387.04, + "probability": 0.9084 + }, + { + "start": 9387.28, + "end": 9393.06, + "probability": 0.8843 + }, + { + "start": 9393.34, + "end": 9393.8, + "probability": 0.0867 + }, + { + "start": 9393.92, + "end": 9396.02, + "probability": 0.6335 + }, + { + "start": 9396.02, + "end": 9396.9, + "probability": 0.5673 + }, + { + "start": 9398.44, + "end": 9399.58, + "probability": 0.9852 + }, + { + "start": 9400.64, + "end": 9402.48, + "probability": 0.9664 + }, + { + "start": 9403.74, + "end": 9405.0, + "probability": 0.3783 + }, + { + "start": 9407.32, + "end": 9407.82, + "probability": 0.43 + }, + { + "start": 9410.26, + "end": 9410.72, + "probability": 0.4527 + }, + { + "start": 9410.72, + "end": 9411.86, + "probability": 0.3571 + }, + { + "start": 9414.42, + "end": 9419.86, + "probability": 0.7729 + }, + { + "start": 9420.52, + "end": 9422.02, + "probability": 0.9648 + }, + { + "start": 9422.36, + "end": 9427.84, + "probability": 0.9249 + }, + { + "start": 9428.6, + "end": 9429.5, + "probability": 0.659 + }, + { + "start": 9430.2, + "end": 9433.56, + "probability": 0.8028 + }, + { + "start": 9435.18, + "end": 9442.16, + "probability": 0.972 + }, + { + "start": 9444.18, + "end": 9446.62, + "probability": 0.5473 + }, + { + "start": 9446.7, + "end": 9448.16, + "probability": 0.5907 + }, + { + "start": 9448.56, + "end": 9450.6, + "probability": 0.7288 + }, + { + "start": 9450.88, + "end": 9452.94, + "probability": 0.9451 + }, + { + "start": 9453.62, + "end": 9455.74, + "probability": 0.6685 + }, + { + "start": 9456.52, + "end": 9457.26, + "probability": 0.7219 + }, + { + "start": 9457.94, + "end": 9460.94, + "probability": 0.7441 + }, + { + "start": 9461.58, + "end": 9462.7, + "probability": 0.8538 + }, + { + "start": 9462.88, + "end": 9464.4, + "probability": 0.9761 + }, + { + "start": 9465.26, + "end": 9468.08, + "probability": 0.8291 + }, + { + "start": 9468.76, + "end": 9471.02, + "probability": 0.7458 + }, + { + "start": 9471.54, + "end": 9473.04, + "probability": 0.7938 + }, + { + "start": 9473.64, + "end": 9476.82, + "probability": 0.7427 + }, + { + "start": 9477.56, + "end": 9479.3, + "probability": 0.9888 + }, + { + "start": 9479.8, + "end": 9484.16, + "probability": 0.9973 + }, + { + "start": 9484.78, + "end": 9485.36, + "probability": 0.3492 + }, + { + "start": 9486.32, + "end": 9488.1, + "probability": 0.946 + }, + { + "start": 9488.38, + "end": 9490.38, + "probability": 0.9302 + }, + { + "start": 9490.74, + "end": 9492.62, + "probability": 0.9815 + }, + { + "start": 9492.76, + "end": 9493.42, + "probability": 0.7557 + }, + { + "start": 9493.94, + "end": 9495.32, + "probability": 0.6395 + }, + { + "start": 9495.86, + "end": 9497.24, + "probability": 0.9673 + }, + { + "start": 9497.76, + "end": 9499.72, + "probability": 0.999 + }, + { + "start": 9501.32, + "end": 9506.38, + "probability": 0.7832 + }, + { + "start": 9506.86, + "end": 9508.02, + "probability": 0.6846 + }, + { + "start": 9508.34, + "end": 9510.1, + "probability": 0.8353 + }, + { + "start": 9510.38, + "end": 9512.02, + "probability": 0.9141 + }, + { + "start": 9512.28, + "end": 9513.44, + "probability": 0.8771 + }, + { + "start": 9513.52, + "end": 9515.92, + "probability": 0.5954 + }, + { + "start": 9516.89, + "end": 9520.26, + "probability": 0.0173 + }, + { + "start": 9520.64, + "end": 9520.9, + "probability": 0.0553 + }, + { + "start": 9520.9, + "end": 9520.9, + "probability": 0.5981 + }, + { + "start": 9520.9, + "end": 9522.84, + "probability": 0.4121 + }, + { + "start": 9522.92, + "end": 9525.02, + "probability": 0.5262 + }, + { + "start": 9525.12, + "end": 9528.36, + "probability": 0.5761 + }, + { + "start": 9528.42, + "end": 9528.96, + "probability": 0.4534 + }, + { + "start": 9529.08, + "end": 9529.46, + "probability": 0.479 + }, + { + "start": 9529.74, + "end": 9530.32, + "probability": 0.8926 + }, + { + "start": 9530.68, + "end": 9532.38, + "probability": 0.1087 + }, + { + "start": 9532.94, + "end": 9534.42, + "probability": 0.7391 + }, + { + "start": 9534.54, + "end": 9534.92, + "probability": 0.1454 + }, + { + "start": 9535.36, + "end": 9535.76, + "probability": 0.7339 + }, + { + "start": 9535.9, + "end": 9538.6, + "probability": 0.9252 + }, + { + "start": 9539.08, + "end": 9540.16, + "probability": 0.9658 + }, + { + "start": 9540.36, + "end": 9540.84, + "probability": 0.3715 + }, + { + "start": 9541.0, + "end": 9542.88, + "probability": 0.2918 + }, + { + "start": 9542.88, + "end": 9544.16, + "probability": 0.1321 + }, + { + "start": 9544.52, + "end": 9545.31, + "probability": 0.6788 + }, + { + "start": 9546.08, + "end": 9546.78, + "probability": 0.5952 + }, + { + "start": 9547.46, + "end": 9552.4, + "probability": 0.689 + }, + { + "start": 9552.56, + "end": 9553.08, + "probability": 0.7978 + }, + { + "start": 9554.24, + "end": 9554.3, + "probability": 0.3185 + }, + { + "start": 9554.3, + "end": 9558.1, + "probability": 0.6396 + }, + { + "start": 9558.14, + "end": 9558.52, + "probability": 0.6212 + }, + { + "start": 9558.6, + "end": 9559.11, + "probability": 0.9495 + }, + { + "start": 9560.28, + "end": 9562.0, + "probability": 0.9725 + }, + { + "start": 9563.0, + "end": 9565.74, + "probability": 0.8264 + }, + { + "start": 9566.34, + "end": 9568.46, + "probability": 0.7217 + }, + { + "start": 9569.3, + "end": 9570.42, + "probability": 0.6748 + }, + { + "start": 9571.14, + "end": 9573.76, + "probability": 0.786 + }, + { + "start": 9574.3, + "end": 9579.18, + "probability": 0.8768 + }, + { + "start": 9579.78, + "end": 9580.76, + "probability": 0.9412 + }, + { + "start": 9580.9, + "end": 9581.78, + "probability": 0.7314 + }, + { + "start": 9582.04, + "end": 9585.1, + "probability": 0.819 + }, + { + "start": 9585.6, + "end": 9586.34, + "probability": 0.5641 + }, + { + "start": 9586.68, + "end": 9587.18, + "probability": 0.8168 + }, + { + "start": 9587.34, + "end": 9587.68, + "probability": 0.8576 + }, + { + "start": 9587.76, + "end": 9588.42, + "probability": 0.7914 + }, + { + "start": 9588.56, + "end": 9589.1, + "probability": 0.8754 + }, + { + "start": 9589.5, + "end": 9591.52, + "probability": 0.8136 + }, + { + "start": 9591.56, + "end": 9592.36, + "probability": 0.8674 + }, + { + "start": 9592.74, + "end": 9593.74, + "probability": 0.9816 + }, + { + "start": 9593.98, + "end": 9594.8, + "probability": 0.8669 + }, + { + "start": 9595.22, + "end": 9596.22, + "probability": 0.8742 + }, + { + "start": 9596.58, + "end": 9601.66, + "probability": 0.9796 + }, + { + "start": 9602.16, + "end": 9604.14, + "probability": 0.8289 + }, + { + "start": 9604.86, + "end": 9607.7, + "probability": 0.8332 + }, + { + "start": 9608.28, + "end": 9609.54, + "probability": 0.873 + }, + { + "start": 9609.7, + "end": 9610.94, + "probability": 0.9652 + }, + { + "start": 9611.26, + "end": 9612.56, + "probability": 0.5944 + }, + { + "start": 9613.04, + "end": 9613.44, + "probability": 0.7446 + }, + { + "start": 9614.1, + "end": 9617.47, + "probability": 0.9729 + }, + { + "start": 9617.98, + "end": 9619.42, + "probability": 0.947 + }, + { + "start": 9619.92, + "end": 9620.58, + "probability": 0.5041 + }, + { + "start": 9620.62, + "end": 9622.08, + "probability": 0.9501 + }, + { + "start": 9622.56, + "end": 9623.9, + "probability": 0.7397 + }, + { + "start": 9623.94, + "end": 9625.58, + "probability": 0.753 + }, + { + "start": 9625.86, + "end": 9625.86, + "probability": 0.0826 + }, + { + "start": 9625.86, + "end": 9627.08, + "probability": 0.6989 + }, + { + "start": 9627.14, + "end": 9631.14, + "probability": 0.6964 + }, + { + "start": 9631.3, + "end": 9635.5, + "probability": 0.8723 + }, + { + "start": 9635.78, + "end": 9636.76, + "probability": 0.3688 + }, + { + "start": 9638.12, + "end": 9639.96, + "probability": 0.8105 + }, + { + "start": 9640.4, + "end": 9643.46, + "probability": 0.6833 + }, + { + "start": 9644.06, + "end": 9646.1, + "probability": 0.6541 + }, + { + "start": 9646.42, + "end": 9648.88, + "probability": 0.9738 + }, + { + "start": 9649.22, + "end": 9649.36, + "probability": 0.593 + }, + { + "start": 9650.12, + "end": 9650.64, + "probability": 0.7622 + }, + { + "start": 9650.8, + "end": 9652.12, + "probability": 0.9099 + }, + { + "start": 9652.3, + "end": 9653.44, + "probability": 0.9863 + }, + { + "start": 9654.26, + "end": 9654.76, + "probability": 0.5774 + }, + { + "start": 9655.1, + "end": 9656.26, + "probability": 0.975 + }, + { + "start": 9656.52, + "end": 9657.24, + "probability": 0.4302 + }, + { + "start": 9658.18, + "end": 9661.7, + "probability": 0.6071 + }, + { + "start": 9662.42, + "end": 9664.03, + "probability": 0.9482 + }, + { + "start": 9664.3, + "end": 9664.8, + "probability": 0.9631 + }, + { + "start": 9668.22, + "end": 9669.96, + "probability": 0.5863 + }, + { + "start": 9670.28, + "end": 9670.88, + "probability": 0.8334 + }, + { + "start": 9670.98, + "end": 9671.45, + "probability": 0.8237 + }, + { + "start": 9671.74, + "end": 9672.5, + "probability": 0.4787 + }, + { + "start": 9675.43, + "end": 9678.2, + "probability": 0.9325 + }, + { + "start": 9680.96, + "end": 9682.98, + "probability": 0.5677 + }, + { + "start": 9683.28, + "end": 9684.72, + "probability": 0.7754 + }, + { + "start": 9684.92, + "end": 9685.82, + "probability": 0.8308 + }, + { + "start": 9686.06, + "end": 9686.6, + "probability": 0.7944 + }, + { + "start": 9686.66, + "end": 9688.44, + "probability": 0.9467 + }, + { + "start": 9689.38, + "end": 9690.64, + "probability": 0.7732 + }, + { + "start": 9691.1, + "end": 9691.22, + "probability": 0.2279 + }, + { + "start": 9692.24, + "end": 9694.3, + "probability": 0.9954 + }, + { + "start": 9694.84, + "end": 9697.66, + "probability": 0.1097 + }, + { + "start": 9698.3, + "end": 9700.04, + "probability": 0.1152 + }, + { + "start": 9700.4, + "end": 9703.44, + "probability": 0.7451 + }, + { + "start": 9703.44, + "end": 9704.28, + "probability": 0.3718 + }, + { + "start": 9704.76, + "end": 9706.02, + "probability": 0.7612 + }, + { + "start": 9707.12, + "end": 9709.2, + "probability": 0.9893 + }, + { + "start": 9709.44, + "end": 9711.46, + "probability": 0.0795 + }, + { + "start": 9711.8, + "end": 9712.9, + "probability": 0.9083 + }, + { + "start": 9712.98, + "end": 9715.06, + "probability": 0.9891 + }, + { + "start": 9717.54, + "end": 9720.76, + "probability": 0.4475 + }, + { + "start": 9721.04, + "end": 9721.64, + "probability": 0.9037 + }, + { + "start": 9721.66, + "end": 9722.02, + "probability": 0.3381 + }, + { + "start": 9722.02, + "end": 9722.9, + "probability": 0.3653 + }, + { + "start": 9726.27, + "end": 9732.48, + "probability": 0.78 + }, + { + "start": 9732.96, + "end": 9734.16, + "probability": 0.9268 + }, + { + "start": 9734.44, + "end": 9735.36, + "probability": 0.6414 + }, + { + "start": 9735.82, + "end": 9736.52, + "probability": 0.824 + }, + { + "start": 9736.98, + "end": 9737.4, + "probability": 0.7555 + }, + { + "start": 9737.56, + "end": 9741.42, + "probability": 0.8325 + }, + { + "start": 9741.76, + "end": 9741.94, + "probability": 0.5769 + }, + { + "start": 9742.36, + "end": 9744.9, + "probability": 0.5959 + }, + { + "start": 9745.36, + "end": 9747.1, + "probability": 0.3755 + }, + { + "start": 9747.5, + "end": 9748.84, + "probability": 0.5449 + }, + { + "start": 9749.5, + "end": 9750.1, + "probability": 0.6279 + }, + { + "start": 9750.1, + "end": 9750.74, + "probability": 0.3702 + }, + { + "start": 9751.5, + "end": 9753.24, + "probability": 0.8605 + }, + { + "start": 9753.68, + "end": 9755.06, + "probability": 0.5507 + }, + { + "start": 9755.44, + "end": 9756.0, + "probability": 0.4671 + }, + { + "start": 9756.08, + "end": 9756.82, + "probability": 0.575 + }, + { + "start": 9756.94, + "end": 9757.42, + "probability": 0.7833 + }, + { + "start": 9757.74, + "end": 9758.3, + "probability": 0.9379 + }, + { + "start": 9758.58, + "end": 9761.96, + "probability": 0.1061 + }, + { + "start": 9761.96, + "end": 9762.78, + "probability": 0.2037 + }, + { + "start": 9762.78, + "end": 9763.68, + "probability": 0.5171 + }, + { + "start": 9764.2, + "end": 9769.16, + "probability": 0.9196 + }, + { + "start": 9770.12, + "end": 9771.72, + "probability": 0.7993 + }, + { + "start": 9771.92, + "end": 9773.12, + "probability": 0.8621 + }, + { + "start": 9773.18, + "end": 9773.76, + "probability": 0.8566 + }, + { + "start": 9773.86, + "end": 9774.46, + "probability": 0.6462 + }, + { + "start": 9774.84, + "end": 9776.92, + "probability": 0.8706 + }, + { + "start": 9777.36, + "end": 9778.04, + "probability": 0.6779 + }, + { + "start": 9778.08, + "end": 9779.08, + "probability": 0.8163 + }, + { + "start": 9779.12, + "end": 9779.8, + "probability": 0.6163 + }, + { + "start": 9780.14, + "end": 9780.74, + "probability": 0.8634 + }, + { + "start": 9781.0, + "end": 9781.44, + "probability": 0.286 + }, + { + "start": 9781.78, + "end": 9781.78, + "probability": 0.2153 + }, + { + "start": 9781.78, + "end": 9782.12, + "probability": 0.5418 + }, + { + "start": 9783.34, + "end": 9783.9, + "probability": 0.2911 + }, + { + "start": 9784.9, + "end": 9785.04, + "probability": 0.183 + }, + { + "start": 9785.04, + "end": 9785.04, + "probability": 0.0908 + }, + { + "start": 9785.04, + "end": 9788.06, + "probability": 0.744 + }, + { + "start": 9788.44, + "end": 9790.56, + "probability": 0.7075 + }, + { + "start": 9791.04, + "end": 9791.72, + "probability": 0.3895 + }, + { + "start": 9791.8, + "end": 9796.1, + "probability": 0.5667 + }, + { + "start": 9797.14, + "end": 9801.39, + "probability": 0.9637 + }, + { + "start": 9801.65, + "end": 9805.79, + "probability": 0.6618 + }, + { + "start": 9806.07, + "end": 9806.67, + "probability": 0.7555 + }, + { + "start": 9806.73, + "end": 9809.87, + "probability": 0.9914 + }, + { + "start": 9810.23, + "end": 9812.07, + "probability": 0.9797 + }, + { + "start": 9813.89, + "end": 9817.27, + "probability": 0.9625 + }, + { + "start": 9817.63, + "end": 9818.67, + "probability": 0.5043 + }, + { + "start": 9818.99, + "end": 9820.53, + "probability": 0.9927 + }, + { + "start": 9821.31, + "end": 9822.55, + "probability": 0.703 + }, + { + "start": 9822.89, + "end": 9824.85, + "probability": 0.9634 + }, + { + "start": 9824.95, + "end": 9826.81, + "probability": 0.9573 + }, + { + "start": 9827.55, + "end": 9828.41, + "probability": 0.076 + }, + { + "start": 9832.45, + "end": 9833.52, + "probability": 0.4041 + }, + { + "start": 9837.57, + "end": 9839.29, + "probability": 0.3432 + }, + { + "start": 9840.45, + "end": 9841.33, + "probability": 0.4738 + }, + { + "start": 9841.43, + "end": 9841.43, + "probability": 0.8711 + }, + { + "start": 9841.47, + "end": 9842.15, + "probability": 0.5534 + }, + { + "start": 9842.35, + "end": 9842.85, + "probability": 0.5674 + }, + { + "start": 9842.99, + "end": 9844.23, + "probability": 0.8139 + }, + { + "start": 9844.89, + "end": 9847.01, + "probability": 0.9604 + }, + { + "start": 9847.92, + "end": 9849.45, + "probability": 0.5991 + }, + { + "start": 9849.45, + "end": 9852.11, + "probability": 0.7298 + }, + { + "start": 9852.77, + "end": 9853.05, + "probability": 0.0044 + }, + { + "start": 9853.12, + "end": 9856.13, + "probability": 0.6433 + }, + { + "start": 9856.61, + "end": 9859.28, + "probability": 0.971 + }, + { + "start": 9859.93, + "end": 9860.57, + "probability": 0.1297 + }, + { + "start": 9861.03, + "end": 9863.43, + "probability": 0.9437 + }, + { + "start": 9863.55, + "end": 9865.01, + "probability": 0.9124 + }, + { + "start": 9865.49, + "end": 9866.89, + "probability": 0.812 + }, + { + "start": 9867.45, + "end": 9870.59, + "probability": 0.8742 + }, + { + "start": 9870.59, + "end": 9873.55, + "probability": 0.8923 + }, + { + "start": 9874.03, + "end": 9874.97, + "probability": 0.9124 + }, + { + "start": 9875.09, + "end": 9879.79, + "probability": 0.9436 + }, + { + "start": 9880.47, + "end": 9880.83, + "probability": 0.4352 + }, + { + "start": 9880.93, + "end": 9881.87, + "probability": 0.583 + }, + { + "start": 9881.93, + "end": 9883.55, + "probability": 0.9397 + }, + { + "start": 9883.97, + "end": 9884.39, + "probability": 0.5633 + }, + { + "start": 9884.39, + "end": 9885.67, + "probability": 0.8325 + }, + { + "start": 9886.05, + "end": 9887.63, + "probability": 0.9832 + }, + { + "start": 9887.75, + "end": 9888.25, + "probability": 0.5014 + }, + { + "start": 9888.29, + "end": 9888.77, + "probability": 0.2186 + }, + { + "start": 9889.19, + "end": 9889.75, + "probability": 0.4028 + }, + { + "start": 9890.13, + "end": 9890.99, + "probability": 0.693 + }, + { + "start": 9891.03, + "end": 9891.59, + "probability": 0.6674 + }, + { + "start": 9891.91, + "end": 9892.45, + "probability": 0.8315 + }, + { + "start": 9893.15, + "end": 9896.65, + "probability": 0.198 + }, + { + "start": 9896.83, + "end": 9898.15, + "probability": 0.0347 + }, + { + "start": 9899.21, + "end": 9899.25, + "probability": 0.0126 + }, + { + "start": 9900.29, + "end": 9900.67, + "probability": 0.0351 + }, + { + "start": 9912.59, + "end": 9912.91, + "probability": 0.1276 + }, + { + "start": 9912.95, + "end": 9914.87, + "probability": 0.0307 + }, + { + "start": 9914.87, + "end": 9917.11, + "probability": 0.0238 + }, + { + "start": 9917.11, + "end": 9917.79, + "probability": 0.0327 + }, + { + "start": 9924.35, + "end": 9925.87, + "probability": 0.2455 + }, + { + "start": 9928.17, + "end": 9931.77, + "probability": 0.1038 + }, + { + "start": 9932.13, + "end": 9932.81, + "probability": 0.0999 + }, + { + "start": 9932.81, + "end": 9933.17, + "probability": 0.0398 + }, + { + "start": 9933.31, + "end": 9934.79, + "probability": 0.0328 + }, + { + "start": 9936.07, + "end": 9939.2, + "probability": 0.0298 + }, + { + "start": 9940.17, + "end": 9940.31, + "probability": 0.1394 + }, + { + "start": 9952.03, + "end": 9953.11, + "probability": 0.0987 + }, + { + "start": 9953.39, + "end": 9955.01, + "probability": 0.1045 + }, + { + "start": 9955.27, + "end": 9956.03, + "probability": 0.0118 + }, + { + "start": 9957.27, + "end": 9958.97, + "probability": 0.0422 + }, + { + "start": 9959.79, + "end": 9959.97, + "probability": 0.0195 + }, + { + "start": 9960.37, + "end": 9960.45, + "probability": 0.0762 + }, + { + "start": 9960.45, + "end": 9961.29, + "probability": 0.0376 + }, + { + "start": 9961.29, + "end": 9961.41, + "probability": 0.193 + }, + { + "start": 9961.79, + "end": 9963.05, + "probability": 0.2057 + }, + { + "start": 9963.15, + "end": 9964.83, + "probability": 0.2195 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9974.0, + "end": 9974.0, + "probability": 0.0 + }, + { + "start": 9975.28, + "end": 9976.64, + "probability": 0.0853 + }, + { + "start": 9976.8, + "end": 9980.36, + "probability": 0.3866 + }, + { + "start": 9980.42, + "end": 9981.98, + "probability": 0.9489 + }, + { + "start": 9982.06, + "end": 9983.06, + "probability": 0.76 + }, + { + "start": 9983.28, + "end": 9984.24, + "probability": 0.8445 + }, + { + "start": 9984.32, + "end": 9986.24, + "probability": 0.8217 + }, + { + "start": 9986.24, + "end": 9987.76, + "probability": 0.4509 + }, + { + "start": 9988.94, + "end": 9990.12, + "probability": 0.2221 + }, + { + "start": 9990.26, + "end": 9990.96, + "probability": 0.8046 + }, + { + "start": 9991.12, + "end": 9991.62, + "probability": 0.8573 + }, + { + "start": 9991.7, + "end": 9992.66, + "probability": 0.7944 + }, + { + "start": 9992.92, + "end": 9993.94, + "probability": 0.7231 + }, + { + "start": 9994.24, + "end": 9997.72, + "probability": 0.994 + }, + { + "start": 9997.78, + "end": 9999.38, + "probability": 0.9919 + }, + { + "start": 9999.48, + "end": 9999.5, + "probability": 0.0186 + }, + { + "start": 9999.5, + "end": 10001.26, + "probability": 0.8786 + }, + { + "start": 10001.34, + "end": 10001.79, + "probability": 0.8773 + }, + { + "start": 10002.5, + "end": 10004.66, + "probability": 0.8953 + }, + { + "start": 10005.06, + "end": 10007.7, + "probability": 0.9922 + }, + { + "start": 10007.78, + "end": 10009.88, + "probability": 0.968 + }, + { + "start": 10009.94, + "end": 10011.12, + "probability": 0.9917 + }, + { + "start": 10011.2, + "end": 10011.7, + "probability": 0.8734 + }, + { + "start": 10011.76, + "end": 10013.94, + "probability": 0.8802 + }, + { + "start": 10014.0, + "end": 10014.86, + "probability": 0.0125 + }, + { + "start": 10014.86, + "end": 10016.26, + "probability": 0.6967 + }, + { + "start": 10016.28, + "end": 10018.12, + "probability": 0.4263 + }, + { + "start": 10018.22, + "end": 10019.62, + "probability": 0.154 + }, + { + "start": 10019.84, + "end": 10023.1, + "probability": 0.7756 + }, + { + "start": 10023.66, + "end": 10023.66, + "probability": 0.0656 + }, + { + "start": 10023.66, + "end": 10025.22, + "probability": 0.9147 + }, + { + "start": 10025.88, + "end": 10028.64, + "probability": 0.9711 + }, + { + "start": 10029.18, + "end": 10032.02, + "probability": 0.9902 + }, + { + "start": 10032.82, + "end": 10032.82, + "probability": 0.0258 + }, + { + "start": 10032.82, + "end": 10036.24, + "probability": 0.8013 + }, + { + "start": 10036.48, + "end": 10036.7, + "probability": 0.0163 + }, + { + "start": 10036.94, + "end": 10037.2, + "probability": 0.1963 + }, + { + "start": 10037.2, + "end": 10037.46, + "probability": 0.0915 + }, + { + "start": 10037.46, + "end": 10043.82, + "probability": 0.7435 + }, + { + "start": 10044.74, + "end": 10049.52, + "probability": 0.1677 + }, + { + "start": 10055.93, + "end": 10061.4, + "probability": 0.2215 + }, + { + "start": 10061.4, + "end": 10062.56, + "probability": 0.0321 + }, + { + "start": 10062.76, + "end": 10063.58, + "probability": 0.406 + }, + { + "start": 10063.92, + "end": 10066.4, + "probability": 0.2491 + }, + { + "start": 10066.94, + "end": 10067.54, + "probability": 0.2399 + }, + { + "start": 10067.54, + "end": 10070.12, + "probability": 0.0972 + }, + { + "start": 10070.51, + "end": 10072.98, + "probability": 0.0817 + }, + { + "start": 10072.98, + "end": 10076.08, + "probability": 0.0312 + }, + { + "start": 10076.16, + "end": 10077.68, + "probability": 0.2538 + }, + { + "start": 10082.1, + "end": 10085.06, + "probability": 0.1253 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10107.0, + "end": 10107.0, + "probability": 0.0 + }, + { + "start": 10112.48, + "end": 10117.24, + "probability": 0.9552 + }, + { + "start": 10117.3, + "end": 10117.3, + "probability": 0.4007 + }, + { + "start": 10117.3, + "end": 10118.76, + "probability": 0.4861 + }, + { + "start": 10118.82, + "end": 10122.54, + "probability": 0.6739 + }, + { + "start": 10122.84, + "end": 10123.52, + "probability": 0.7797 + }, + { + "start": 10123.58, + "end": 10124.3, + "probability": 0.6262 + }, + { + "start": 10124.3, + "end": 10125.6, + "probability": 0.8155 + }, + { + "start": 10126.14, + "end": 10127.22, + "probability": 0.7506 + }, + { + "start": 10127.28, + "end": 10129.18, + "probability": 0.5374 + }, + { + "start": 10129.94, + "end": 10136.06, + "probability": 0.4441 + }, + { + "start": 10136.34, + "end": 10136.54, + "probability": 0.0079 + } + ], + "segments_count": 4079, + "words_count": 19374, + "avg_words_per_segment": 4.7497, + "avg_segment_duration": 1.9247, + "avg_words_per_minute": 114.5733, + "plenum_id": "15788", + "duration": 10145.82, + "title": null, + "plenum_date": "2011-08-16" +} \ No newline at end of file