diff --git "a/30305/metadata.json" "b/30305/metadata.json" new file mode 100644--- /dev/null +++ "b/30305/metadata.json" @@ -0,0 +1,51002 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "30305", + "quality_score": 0.8909, + "per_segment_quality_scores": [ + { + "start": 54.31, + "end": 61.98, + "probability": 0.4695 + }, + { + "start": 62.08, + "end": 63.02, + "probability": 0.502 + }, + { + "start": 63.58, + "end": 65.72, + "probability": 0.6983 + }, + { + "start": 65.72, + "end": 69.02, + "probability": 0.9775 + }, + { + "start": 69.5, + "end": 71.63, + "probability": 0.6223 + }, + { + "start": 72.36, + "end": 74.4, + "probability": 0.4281 + }, + { + "start": 75.18, + "end": 81.14, + "probability": 0.6353 + }, + { + "start": 81.26, + "end": 82.98, + "probability": 0.426 + }, + { + "start": 83.86, + "end": 86.1, + "probability": 0.3253 + }, + { + "start": 86.1, + "end": 91.6, + "probability": 0.9124 + }, + { + "start": 92.34, + "end": 93.46, + "probability": 0.5955 + }, + { + "start": 93.54, + "end": 93.78, + "probability": 0.7605 + }, + { + "start": 93.92, + "end": 96.08, + "probability": 0.8724 + }, + { + "start": 96.92, + "end": 97.3, + "probability": 0.181 + }, + { + "start": 97.46, + "end": 98.6, + "probability": 0.915 + }, + { + "start": 98.72, + "end": 99.9, + "probability": 0.8558 + }, + { + "start": 100.2, + "end": 102.7, + "probability": 0.979 + }, + { + "start": 103.46, + "end": 104.08, + "probability": 0.5469 + }, + { + "start": 104.2, + "end": 109.66, + "probability": 0.9495 + }, + { + "start": 109.66, + "end": 113.28, + "probability": 0.976 + }, + { + "start": 113.32, + "end": 115.62, + "probability": 0.9438 + }, + { + "start": 115.8, + "end": 117.18, + "probability": 0.9178 + }, + { + "start": 117.58, + "end": 117.98, + "probability": 0.0025 + }, + { + "start": 118.8, + "end": 121.45, + "probability": 0.6214 + }, + { + "start": 122.24, + "end": 126.58, + "probability": 0.0157 + }, + { + "start": 135.1, + "end": 136.18, + "probability": 0.0205 + }, + { + "start": 136.24, + "end": 136.44, + "probability": 0.2535 + }, + { + "start": 153.32, + "end": 155.8, + "probability": 0.0144 + }, + { + "start": 156.2, + "end": 156.82, + "probability": 0.1631 + }, + { + "start": 158.58, + "end": 160.88, + "probability": 0.2228 + }, + { + "start": 163.5, + "end": 165.28, + "probability": 0.215 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0 + }, + { + "start": 290.28, + "end": 294.32, + "probability": 0.687 + }, + { + "start": 296.4, + "end": 296.8, + "probability": 0.0278 + }, + { + "start": 297.61, + "end": 298.3, + "probability": 0.0042 + }, + { + "start": 302.08, + "end": 302.4, + "probability": 0.0359 + }, + { + "start": 302.91, + "end": 307.78, + "probability": 0.064 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.0, + "end": 421.0, + "probability": 0.0 + }, + { + "start": 421.16, + "end": 421.78, + "probability": 0.1575 + }, + { + "start": 422.88, + "end": 425.76, + "probability": 0.236 + }, + { + "start": 425.92, + "end": 427.16, + "probability": 0.0551 + }, + { + "start": 427.34, + "end": 431.32, + "probability": 0.0595 + }, + { + "start": 431.32, + "end": 434.18, + "probability": 0.0646 + }, + { + "start": 434.6, + "end": 437.99, + "probability": 0.0309 + }, + { + "start": 440.65, + "end": 442.12, + "probability": 0.067 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.0, + "end": 543.0, + "probability": 0.0 + }, + { + "start": 543.12, + "end": 543.56, + "probability": 0.3231 + }, + { + "start": 543.86, + "end": 545.56, + "probability": 0.9339 + }, + { + "start": 546.06, + "end": 547.5, + "probability": 0.8763 + }, + { + "start": 547.68, + "end": 548.95, + "probability": 0.5957 + }, + { + "start": 548.98, + "end": 550.26, + "probability": 0.8708 + }, + { + "start": 550.46, + "end": 550.66, + "probability": 0.9456 + }, + { + "start": 550.7, + "end": 552.94, + "probability": 0.9918 + }, + { + "start": 553.22, + "end": 554.56, + "probability": 0.8819 + }, + { + "start": 554.68, + "end": 555.06, + "probability": 0.1221 + }, + { + "start": 555.12, + "end": 556.02, + "probability": 0.8989 + }, + { + "start": 556.28, + "end": 557.34, + "probability": 0.7064 + }, + { + "start": 557.64, + "end": 558.48, + "probability": 0.8033 + }, + { + "start": 558.66, + "end": 559.1, + "probability": 0.2575 + }, + { + "start": 559.16, + "end": 560.08, + "probability": 0.9658 + }, + { + "start": 560.4, + "end": 561.42, + "probability": 0.9596 + }, + { + "start": 561.92, + "end": 564.96, + "probability": 0.9134 + }, + { + "start": 565.48, + "end": 567.45, + "probability": 0.9506 + }, + { + "start": 568.26, + "end": 571.8, + "probability": 0.9546 + }, + { + "start": 572.24, + "end": 573.96, + "probability": 0.9755 + }, + { + "start": 574.44, + "end": 574.94, + "probability": 0.7149 + }, + { + "start": 575.52, + "end": 575.9, + "probability": 0.6776 + }, + { + "start": 576.04, + "end": 576.14, + "probability": 0.8041 + }, + { + "start": 576.16, + "end": 579.38, + "probability": 0.9871 + }, + { + "start": 579.8, + "end": 583.52, + "probability": 0.9282 + }, + { + "start": 583.72, + "end": 585.52, + "probability": 0.8322 + }, + { + "start": 585.78, + "end": 589.46, + "probability": 0.8638 + }, + { + "start": 589.78, + "end": 593.24, + "probability": 0.8941 + }, + { + "start": 593.4, + "end": 594.48, + "probability": 0.7986 + }, + { + "start": 594.6, + "end": 595.56, + "probability": 0.8565 + }, + { + "start": 595.94, + "end": 596.26, + "probability": 0.7125 + }, + { + "start": 596.28, + "end": 598.92, + "probability": 0.9897 + }, + { + "start": 599.04, + "end": 599.88, + "probability": 0.6373 + }, + { + "start": 600.28, + "end": 600.68, + "probability": 0.707 + }, + { + "start": 600.8, + "end": 602.74, + "probability": 0.9914 + }, + { + "start": 603.16, + "end": 604.86, + "probability": 0.9417 + }, + { + "start": 605.04, + "end": 606.24, + "probability": 0.9957 + }, + { + "start": 606.26, + "end": 607.94, + "probability": 0.9735 + }, + { + "start": 608.22, + "end": 609.2, + "probability": 0.8593 + }, + { + "start": 609.42, + "end": 610.1, + "probability": 0.8571 + }, + { + "start": 610.24, + "end": 611.08, + "probability": 0.7978 + }, + { + "start": 611.24, + "end": 612.54, + "probability": 0.99 + }, + { + "start": 612.7, + "end": 613.5, + "probability": 0.7445 + }, + { + "start": 613.7, + "end": 617.32, + "probability": 0.9938 + }, + { + "start": 617.62, + "end": 618.44, + "probability": 0.9714 + }, + { + "start": 618.64, + "end": 622.06, + "probability": 0.9917 + }, + { + "start": 622.74, + "end": 623.4, + "probability": 0.8993 + }, + { + "start": 624.34, + "end": 626.3, + "probability": 0.915 + }, + { + "start": 626.36, + "end": 628.9, + "probability": 0.9265 + }, + { + "start": 629.8, + "end": 631.36, + "probability": 0.9479 + }, + { + "start": 631.54, + "end": 631.78, + "probability": 0.798 + }, + { + "start": 632.22, + "end": 633.0, + "probability": 0.3405 + }, + { + "start": 633.12, + "end": 637.96, + "probability": 0.6866 + }, + { + "start": 638.15, + "end": 642.8, + "probability": 0.9854 + }, + { + "start": 643.36, + "end": 645.68, + "probability": 0.9972 + }, + { + "start": 645.68, + "end": 650.26, + "probability": 0.9994 + }, + { + "start": 650.28, + "end": 651.78, + "probability": 0.5116 + }, + { + "start": 652.17, + "end": 654.2, + "probability": 0.8461 + }, + { + "start": 654.22, + "end": 654.36, + "probability": 0.6698 + }, + { + "start": 654.36, + "end": 657.55, + "probability": 0.2348 + }, + { + "start": 659.94, + "end": 660.18, + "probability": 0.0348 + }, + { + "start": 660.18, + "end": 660.18, + "probability": 0.1737 + }, + { + "start": 660.18, + "end": 660.74, + "probability": 0.7891 + }, + { + "start": 661.14, + "end": 662.12, + "probability": 0.9907 + }, + { + "start": 663.76, + "end": 664.98, + "probability": 0.2209 + }, + { + "start": 666.73, + "end": 672.96, + "probability": 0.536 + }, + { + "start": 673.6, + "end": 675.4, + "probability": 0.559 + }, + { + "start": 675.85, + "end": 676.58, + "probability": 0.2087 + }, + { + "start": 676.8, + "end": 679.36, + "probability": 0.1312 + }, + { + "start": 679.36, + "end": 685.46, + "probability": 0.2914 + }, + { + "start": 685.56, + "end": 686.12, + "probability": 0.0391 + }, + { + "start": 686.12, + "end": 687.0, + "probability": 0.023 + }, + { + "start": 687.56, + "end": 689.16, + "probability": 0.6187 + }, + { + "start": 690.43, + "end": 695.32, + "probability": 0.8838 + }, + { + "start": 695.4, + "end": 699.04, + "probability": 0.9639 + }, + { + "start": 700.24, + "end": 700.96, + "probability": 0.4714 + }, + { + "start": 701.02, + "end": 703.26, + "probability": 0.9652 + }, + { + "start": 703.5, + "end": 705.42, + "probability": 0.7201 + }, + { + "start": 706.02, + "end": 706.76, + "probability": 0.841 + }, + { + "start": 706.88, + "end": 707.5, + "probability": 0.9413 + }, + { + "start": 707.56, + "end": 709.52, + "probability": 0.9565 + }, + { + "start": 718.78, + "end": 722.92, + "probability": 0.9804 + }, + { + "start": 723.5, + "end": 724.9, + "probability": 0.9727 + }, + { + "start": 725.9, + "end": 727.86, + "probability": 0.7348 + }, + { + "start": 728.5, + "end": 732.22, + "probability": 0.9258 + }, + { + "start": 732.22, + "end": 736.34, + "probability": 0.8225 + }, + { + "start": 736.9, + "end": 737.7, + "probability": 0.7447 + }, + { + "start": 738.66, + "end": 739.52, + "probability": 0.8279 + }, + { + "start": 739.72, + "end": 740.68, + "probability": 0.8264 + }, + { + "start": 740.8, + "end": 746.6, + "probability": 0.9593 + }, + { + "start": 746.7, + "end": 749.72, + "probability": 0.9782 + }, + { + "start": 750.42, + "end": 756.18, + "probability": 0.9924 + }, + { + "start": 756.38, + "end": 757.56, + "probability": 0.6854 + }, + { + "start": 757.6, + "end": 757.94, + "probability": 0.7901 + }, + { + "start": 758.06, + "end": 758.94, + "probability": 0.8313 + }, + { + "start": 759.04, + "end": 761.58, + "probability": 0.5801 + }, + { + "start": 761.86, + "end": 766.82, + "probability": 0.7821 + }, + { + "start": 768.02, + "end": 770.0, + "probability": 0.6605 + }, + { + "start": 770.08, + "end": 771.92, + "probability": 0.9446 + }, + { + "start": 772.0, + "end": 772.28, + "probability": 0.8108 + }, + { + "start": 773.66, + "end": 774.72, + "probability": 0.8214 + }, + { + "start": 775.26, + "end": 776.92, + "probability": 0.569 + }, + { + "start": 777.9, + "end": 781.82, + "probability": 0.9853 + }, + { + "start": 781.82, + "end": 786.47, + "probability": 0.9846 + }, + { + "start": 787.58, + "end": 791.2, + "probability": 0.9979 + }, + { + "start": 792.46, + "end": 795.12, + "probability": 0.7696 + }, + { + "start": 795.88, + "end": 799.26, + "probability": 0.9731 + }, + { + "start": 799.82, + "end": 802.22, + "probability": 0.8169 + }, + { + "start": 802.96, + "end": 806.62, + "probability": 0.9948 + }, + { + "start": 807.58, + "end": 810.12, + "probability": 0.965 + }, + { + "start": 810.8, + "end": 813.44, + "probability": 0.9686 + }, + { + "start": 813.44, + "end": 816.22, + "probability": 0.9847 + }, + { + "start": 817.58, + "end": 822.04, + "probability": 0.9939 + }, + { + "start": 823.94, + "end": 827.56, + "probability": 0.8233 + }, + { + "start": 827.8, + "end": 828.26, + "probability": 0.8292 + }, + { + "start": 828.78, + "end": 829.54, + "probability": 0.7253 + }, + { + "start": 830.26, + "end": 832.14, + "probability": 0.9538 + }, + { + "start": 834.1, + "end": 837.5, + "probability": 0.9565 + }, + { + "start": 837.64, + "end": 838.14, + "probability": 0.8215 + }, + { + "start": 838.56, + "end": 842.38, + "probability": 0.9766 + }, + { + "start": 842.82, + "end": 844.46, + "probability": 0.9346 + }, + { + "start": 845.0, + "end": 850.2, + "probability": 0.9607 + }, + { + "start": 850.2, + "end": 856.2, + "probability": 0.9814 + }, + { + "start": 856.26, + "end": 860.42, + "probability": 0.9911 + }, + { + "start": 860.98, + "end": 865.78, + "probability": 0.9752 + }, + { + "start": 866.0, + "end": 867.6, + "probability": 0.9812 + }, + { + "start": 871.3, + "end": 874.02, + "probability": 0.8785 + }, + { + "start": 874.12, + "end": 874.68, + "probability": 0.5825 + }, + { + "start": 875.8, + "end": 877.5, + "probability": 0.703 + }, + { + "start": 877.52, + "end": 882.26, + "probability": 0.998 + }, + { + "start": 882.98, + "end": 885.14, + "probability": 0.9746 + }, + { + "start": 885.24, + "end": 887.32, + "probability": 0.8484 + }, + { + "start": 887.96, + "end": 891.88, + "probability": 0.8759 + }, + { + "start": 891.98, + "end": 892.54, + "probability": 0.8037 + }, + { + "start": 892.64, + "end": 893.88, + "probability": 0.7297 + }, + { + "start": 894.24, + "end": 895.96, + "probability": 0.7612 + }, + { + "start": 896.18, + "end": 896.84, + "probability": 0.3882 + }, + { + "start": 896.88, + "end": 898.08, + "probability": 0.9286 + }, + { + "start": 898.4, + "end": 901.84, + "probability": 0.9516 + }, + { + "start": 901.98, + "end": 902.78, + "probability": 0.968 + }, + { + "start": 903.36, + "end": 904.8, + "probability": 0.9995 + }, + { + "start": 905.62, + "end": 906.18, + "probability": 0.7237 + }, + { + "start": 906.54, + "end": 906.7, + "probability": 0.6951 + }, + { + "start": 907.58, + "end": 911.54, + "probability": 0.8576 + }, + { + "start": 912.22, + "end": 916.88, + "probability": 0.9487 + }, + { + "start": 916.88, + "end": 923.0, + "probability": 0.989 + }, + { + "start": 923.22, + "end": 926.12, + "probability": 0.9976 + }, + { + "start": 928.42, + "end": 929.3, + "probability": 0.7803 + }, + { + "start": 929.52, + "end": 930.5, + "probability": 0.8108 + }, + { + "start": 930.58, + "end": 932.06, + "probability": 0.8964 + }, + { + "start": 932.2, + "end": 932.72, + "probability": 0.7064 + }, + { + "start": 932.82, + "end": 938.84, + "probability": 0.9744 + }, + { + "start": 938.84, + "end": 943.32, + "probability": 0.9679 + }, + { + "start": 950.1, + "end": 950.5, + "probability": 0.5801 + }, + { + "start": 950.64, + "end": 951.54, + "probability": 0.644 + }, + { + "start": 951.66, + "end": 954.88, + "probability": 0.8234 + }, + { + "start": 955.8, + "end": 957.02, + "probability": 0.4006 + }, + { + "start": 957.26, + "end": 958.08, + "probability": 0.411 + }, + { + "start": 958.08, + "end": 962.8, + "probability": 0.9474 + }, + { + "start": 962.8, + "end": 966.76, + "probability": 0.9966 + }, + { + "start": 967.08, + "end": 967.32, + "probability": 0.1506 + }, + { + "start": 967.32, + "end": 971.06, + "probability": 0.9059 + }, + { + "start": 971.8, + "end": 975.78, + "probability": 0.9579 + }, + { + "start": 976.38, + "end": 977.24, + "probability": 0.689 + }, + { + "start": 978.24, + "end": 980.96, + "probability": 0.9398 + }, + { + "start": 981.94, + "end": 985.6, + "probability": 0.9964 + }, + { + "start": 985.78, + "end": 986.1, + "probability": 0.6264 + }, + { + "start": 987.16, + "end": 987.58, + "probability": 0.4175 + }, + { + "start": 987.78, + "end": 988.68, + "probability": 0.9022 + }, + { + "start": 988.94, + "end": 991.06, + "probability": 0.7992 + }, + { + "start": 992.56, + "end": 995.76, + "probability": 0.9906 + }, + { + "start": 995.76, + "end": 1001.14, + "probability": 0.8619 + }, + { + "start": 1002.48, + "end": 1003.68, + "probability": 0.9902 + }, + { + "start": 1005.16, + "end": 1008.46, + "probability": 0.993 + }, + { + "start": 1009.16, + "end": 1016.38, + "probability": 0.9323 + }, + { + "start": 1016.44, + "end": 1016.88, + "probability": 0.8573 + }, + { + "start": 1017.0, + "end": 1017.96, + "probability": 0.6136 + }, + { + "start": 1018.56, + "end": 1021.76, + "probability": 0.8315 + }, + { + "start": 1022.38, + "end": 1026.38, + "probability": 0.9656 + }, + { + "start": 1027.5, + "end": 1028.02, + "probability": 0.9493 + }, + { + "start": 1028.82, + "end": 1029.08, + "probability": 0.2359 + }, + { + "start": 1029.08, + "end": 1031.94, + "probability": 0.9703 + }, + { + "start": 1032.1, + "end": 1033.64, + "probability": 0.7924 + }, + { + "start": 1033.8, + "end": 1038.0, + "probability": 0.9477 + }, + { + "start": 1038.18, + "end": 1041.24, + "probability": 0.9976 + }, + { + "start": 1042.0, + "end": 1043.16, + "probability": 0.9747 + }, + { + "start": 1045.22, + "end": 1049.4, + "probability": 0.9875 + }, + { + "start": 1050.78, + "end": 1052.8, + "probability": 0.9797 + }, + { + "start": 1053.66, + "end": 1055.48, + "probability": 0.9613 + }, + { + "start": 1056.5, + "end": 1056.94, + "probability": 0.6722 + }, + { + "start": 1057.14, + "end": 1060.6, + "probability": 0.9595 + }, + { + "start": 1062.1, + "end": 1065.42, + "probability": 0.7823 + }, + { + "start": 1066.12, + "end": 1070.18, + "probability": 0.9903 + }, + { + "start": 1070.82, + "end": 1073.94, + "probability": 0.9684 + }, + { + "start": 1075.2, + "end": 1076.32, + "probability": 0.97 + }, + { + "start": 1076.96, + "end": 1078.4, + "probability": 0.959 + }, + { + "start": 1079.62, + "end": 1082.64, + "probability": 0.848 + }, + { + "start": 1082.96, + "end": 1087.28, + "probability": 0.9901 + }, + { + "start": 1087.44, + "end": 1090.28, + "probability": 0.9854 + }, + { + "start": 1091.16, + "end": 1094.22, + "probability": 0.9941 + }, + { + "start": 1094.22, + "end": 1097.68, + "probability": 0.9941 + }, + { + "start": 1098.7, + "end": 1101.58, + "probability": 0.9873 + }, + { + "start": 1102.48, + "end": 1105.58, + "probability": 0.9751 + }, + { + "start": 1106.08, + "end": 1106.94, + "probability": 0.6531 + }, + { + "start": 1108.98, + "end": 1111.1, + "probability": 0.9919 + }, + { + "start": 1111.18, + "end": 1112.44, + "probability": 0.9058 + }, + { + "start": 1116.82, + "end": 1117.7, + "probability": 0.7789 + }, + { + "start": 1117.9, + "end": 1119.04, + "probability": 0.4549 + }, + { + "start": 1119.16, + "end": 1122.47, + "probability": 0.9468 + }, + { + "start": 1122.7, + "end": 1124.24, + "probability": 0.5651 + }, + { + "start": 1124.24, + "end": 1127.4, + "probability": 0.8862 + }, + { + "start": 1128.2, + "end": 1133.18, + "probability": 0.9023 + }, + { + "start": 1133.54, + "end": 1135.04, + "probability": 0.8019 + }, + { + "start": 1135.08, + "end": 1137.1, + "probability": 0.9084 + }, + { + "start": 1138.04, + "end": 1140.16, + "probability": 0.6691 + }, + { + "start": 1140.34, + "end": 1141.07, + "probability": 0.9427 + }, + { + "start": 1141.34, + "end": 1144.22, + "probability": 0.9871 + }, + { + "start": 1144.92, + "end": 1150.18, + "probability": 0.9637 + }, + { + "start": 1150.18, + "end": 1155.22, + "probability": 0.929 + }, + { + "start": 1155.42, + "end": 1156.38, + "probability": 0.3557 + }, + { + "start": 1156.58, + "end": 1158.42, + "probability": 0.9517 + }, + { + "start": 1158.5, + "end": 1163.2, + "probability": 0.9806 + }, + { + "start": 1163.32, + "end": 1165.56, + "probability": 0.9154 + }, + { + "start": 1165.92, + "end": 1169.86, + "probability": 0.6489 + }, + { + "start": 1170.18, + "end": 1171.92, + "probability": 0.7594 + }, + { + "start": 1172.44, + "end": 1172.86, + "probability": 0.8495 + }, + { + "start": 1172.92, + "end": 1176.56, + "probability": 0.7867 + }, + { + "start": 1177.4, + "end": 1181.18, + "probability": 0.6971 + }, + { + "start": 1181.4, + "end": 1183.7, + "probability": 0.8319 + }, + { + "start": 1183.76, + "end": 1184.68, + "probability": 0.8342 + }, + { + "start": 1184.88, + "end": 1187.57, + "probability": 0.99 + }, + { + "start": 1187.74, + "end": 1189.1, + "probability": 0.7142 + }, + { + "start": 1189.38, + "end": 1191.28, + "probability": 0.7387 + }, + { + "start": 1191.62, + "end": 1195.36, + "probability": 0.8481 + }, + { + "start": 1195.5, + "end": 1196.66, + "probability": 0.863 + }, + { + "start": 1196.78, + "end": 1198.11, + "probability": 0.933 + }, + { + "start": 1198.34, + "end": 1200.34, + "probability": 0.8373 + }, + { + "start": 1200.52, + "end": 1202.97, + "probability": 0.881 + }, + { + "start": 1203.64, + "end": 1205.92, + "probability": 0.9263 + }, + { + "start": 1205.94, + "end": 1208.92, + "probability": 0.9751 + }, + { + "start": 1209.02, + "end": 1210.32, + "probability": 0.8752 + }, + { + "start": 1210.38, + "end": 1210.74, + "probability": 0.9341 + }, + { + "start": 1211.56, + "end": 1216.06, + "probability": 0.9672 + }, + { + "start": 1216.12, + "end": 1217.1, + "probability": 0.9966 + }, + { + "start": 1217.36, + "end": 1219.46, + "probability": 0.5425 + }, + { + "start": 1219.52, + "end": 1221.34, + "probability": 0.9611 + }, + { + "start": 1221.36, + "end": 1223.84, + "probability": 0.9633 + }, + { + "start": 1227.4, + "end": 1228.98, + "probability": 0.8115 + }, + { + "start": 1232.32, + "end": 1236.56, + "probability": 0.8208 + }, + { + "start": 1241.0, + "end": 1243.1, + "probability": 0.9787 + }, + { + "start": 1244.36, + "end": 1245.02, + "probability": 0.7734 + }, + { + "start": 1245.62, + "end": 1248.66, + "probability": 0.9935 + }, + { + "start": 1249.16, + "end": 1251.58, + "probability": 0.9363 + }, + { + "start": 1253.06, + "end": 1254.97, + "probability": 0.9972 + }, + { + "start": 1255.36, + "end": 1257.06, + "probability": 0.6283 + }, + { + "start": 1265.66, + "end": 1266.02, + "probability": 0.0286 + }, + { + "start": 1266.02, + "end": 1266.02, + "probability": 0.0418 + }, + { + "start": 1266.02, + "end": 1266.02, + "probability": 0.2774 + }, + { + "start": 1266.02, + "end": 1266.02, + "probability": 0.1037 + }, + { + "start": 1266.02, + "end": 1266.02, + "probability": 0.0296 + }, + { + "start": 1266.02, + "end": 1266.02, + "probability": 0.0112 + }, + { + "start": 1266.02, + "end": 1266.62, + "probability": 0.2998 + }, + { + "start": 1266.66, + "end": 1271.82, + "probability": 0.475 + }, + { + "start": 1271.98, + "end": 1276.2, + "probability": 0.9972 + }, + { + "start": 1277.14, + "end": 1279.28, + "probability": 0.8454 + }, + { + "start": 1279.38, + "end": 1282.84, + "probability": 0.8035 + }, + { + "start": 1283.5, + "end": 1287.28, + "probability": 0.9518 + }, + { + "start": 1287.54, + "end": 1289.18, + "probability": 0.8369 + }, + { + "start": 1289.82, + "end": 1295.08, + "probability": 0.9556 + }, + { + "start": 1295.16, + "end": 1297.82, + "probability": 0.9937 + }, + { + "start": 1298.18, + "end": 1299.52, + "probability": 0.8328 + }, + { + "start": 1299.78, + "end": 1301.86, + "probability": 0.9131 + }, + { + "start": 1303.68, + "end": 1304.6, + "probability": 0.8545 + }, + { + "start": 1308.36, + "end": 1309.16, + "probability": 0.713 + }, + { + "start": 1309.28, + "end": 1310.78, + "probability": 0.7569 + }, + { + "start": 1310.94, + "end": 1311.38, + "probability": 0.6949 + }, + { + "start": 1311.5, + "end": 1312.76, + "probability": 0.7718 + }, + { + "start": 1312.9, + "end": 1313.3, + "probability": 0.6944 + }, + { + "start": 1313.4, + "end": 1313.86, + "probability": 0.9116 + }, + { + "start": 1313.92, + "end": 1317.7, + "probability": 0.9681 + }, + { + "start": 1317.96, + "end": 1323.18, + "probability": 0.9756 + }, + { + "start": 1323.28, + "end": 1326.4, + "probability": 0.9801 + }, + { + "start": 1326.6, + "end": 1328.58, + "probability": 0.965 + }, + { + "start": 1328.7, + "end": 1331.28, + "probability": 0.8502 + }, + { + "start": 1332.02, + "end": 1334.42, + "probability": 0.8333 + }, + { + "start": 1334.64, + "end": 1335.96, + "probability": 0.5021 + }, + { + "start": 1336.7, + "end": 1340.68, + "probability": 0.9925 + }, + { + "start": 1341.26, + "end": 1347.52, + "probability": 0.9865 + }, + { + "start": 1347.6, + "end": 1348.94, + "probability": 0.9569 + }, + { + "start": 1349.44, + "end": 1350.9, + "probability": 0.6661 + }, + { + "start": 1351.0, + "end": 1351.94, + "probability": 0.8239 + }, + { + "start": 1352.02, + "end": 1356.1, + "probability": 0.9539 + }, + { + "start": 1356.18, + "end": 1358.92, + "probability": 0.9961 + }, + { + "start": 1358.92, + "end": 1364.2, + "probability": 0.9897 + }, + { + "start": 1364.56, + "end": 1364.78, + "probability": 0.6763 + }, + { + "start": 1365.1, + "end": 1366.48, + "probability": 0.8818 + }, + { + "start": 1366.58, + "end": 1369.24, + "probability": 0.9945 + }, + { + "start": 1369.44, + "end": 1373.46, + "probability": 0.9961 + }, + { + "start": 1373.76, + "end": 1374.62, + "probability": 0.8749 + }, + { + "start": 1375.54, + "end": 1377.54, + "probability": 0.7153 + }, + { + "start": 1379.62, + "end": 1382.22, + "probability": 0.9056 + }, + { + "start": 1383.58, + "end": 1387.04, + "probability": 0.9195 + }, + { + "start": 1388.44, + "end": 1389.34, + "probability": 0.9712 + }, + { + "start": 1389.51, + "end": 1394.52, + "probability": 0.7542 + }, + { + "start": 1394.82, + "end": 1396.28, + "probability": 0.8917 + }, + { + "start": 1396.52, + "end": 1397.08, + "probability": 0.6005 + }, + { + "start": 1397.68, + "end": 1399.32, + "probability": 0.7082 + }, + { + "start": 1399.46, + "end": 1400.32, + "probability": 0.8792 + }, + { + "start": 1400.64, + "end": 1401.48, + "probability": 0.9622 + }, + { + "start": 1401.58, + "end": 1402.9, + "probability": 0.9596 + }, + { + "start": 1404.14, + "end": 1408.22, + "probability": 0.9449 + }, + { + "start": 1409.02, + "end": 1409.72, + "probability": 0.827 + }, + { + "start": 1409.86, + "end": 1411.2, + "probability": 0.9814 + }, + { + "start": 1411.28, + "end": 1412.55, + "probability": 0.8058 + }, + { + "start": 1412.92, + "end": 1413.28, + "probability": 0.7961 + }, + { + "start": 1414.56, + "end": 1415.76, + "probability": 0.6327 + }, + { + "start": 1416.5, + "end": 1417.52, + "probability": 0.8424 + }, + { + "start": 1417.72, + "end": 1418.44, + "probability": 0.9067 + }, + { + "start": 1418.56, + "end": 1420.7, + "probability": 0.893 + }, + { + "start": 1421.4, + "end": 1421.98, + "probability": 0.7482 + }, + { + "start": 1422.1, + "end": 1423.76, + "probability": 0.7791 + }, + { + "start": 1424.24, + "end": 1426.46, + "probability": 0.9541 + }, + { + "start": 1427.12, + "end": 1429.54, + "probability": 0.6416 + }, + { + "start": 1429.66, + "end": 1431.68, + "probability": 0.9531 + }, + { + "start": 1431.78, + "end": 1432.28, + "probability": 0.6224 + }, + { + "start": 1432.28, + "end": 1435.04, + "probability": 0.8093 + }, + { + "start": 1435.16, + "end": 1437.0, + "probability": 0.8937 + }, + { + "start": 1437.42, + "end": 1440.98, + "probability": 0.9967 + }, + { + "start": 1441.14, + "end": 1442.78, + "probability": 0.9922 + }, + { + "start": 1442.86, + "end": 1444.84, + "probability": 0.9752 + }, + { + "start": 1445.98, + "end": 1448.12, + "probability": 0.8873 + }, + { + "start": 1448.22, + "end": 1450.26, + "probability": 0.9553 + }, + { + "start": 1450.94, + "end": 1454.44, + "probability": 0.6309 + }, + { + "start": 1454.94, + "end": 1457.08, + "probability": 0.9405 + }, + { + "start": 1457.36, + "end": 1463.44, + "probability": 0.9357 + }, + { + "start": 1463.76, + "end": 1465.12, + "probability": 0.9954 + }, + { + "start": 1465.42, + "end": 1466.72, + "probability": 0.8889 + }, + { + "start": 1466.78, + "end": 1468.46, + "probability": 0.9233 + }, + { + "start": 1469.36, + "end": 1471.5, + "probability": 0.9127 + }, + { + "start": 1472.66, + "end": 1476.34, + "probability": 0.8041 + }, + { + "start": 1477.08, + "end": 1478.81, + "probability": 0.7603 + }, + { + "start": 1479.74, + "end": 1483.02, + "probability": 0.9702 + }, + { + "start": 1483.02, + "end": 1485.1, + "probability": 0.9966 + }, + { + "start": 1485.84, + "end": 1491.38, + "probability": 0.7458 + }, + { + "start": 1491.78, + "end": 1493.42, + "probability": 0.9848 + }, + { + "start": 1493.86, + "end": 1495.68, + "probability": 0.9232 + }, + { + "start": 1496.02, + "end": 1496.81, + "probability": 0.7747 + }, + { + "start": 1497.56, + "end": 1500.28, + "probability": 0.5331 + }, + { + "start": 1501.22, + "end": 1503.22, + "probability": 0.9871 + }, + { + "start": 1503.52, + "end": 1507.46, + "probability": 0.7521 + }, + { + "start": 1507.6, + "end": 1509.24, + "probability": 0.6921 + }, + { + "start": 1509.6, + "end": 1511.46, + "probability": 0.9687 + }, + { + "start": 1511.84, + "end": 1514.86, + "probability": 0.9104 + }, + { + "start": 1515.68, + "end": 1517.58, + "probability": 0.5542 + }, + { + "start": 1517.74, + "end": 1519.78, + "probability": 0.9839 + }, + { + "start": 1520.32, + "end": 1521.16, + "probability": 0.8101 + }, + { + "start": 1521.58, + "end": 1522.78, + "probability": 0.2626 + }, + { + "start": 1522.8, + "end": 1526.38, + "probability": 0.7104 + }, + { + "start": 1526.56, + "end": 1526.98, + "probability": 0.7993 + }, + { + "start": 1529.18, + "end": 1530.72, + "probability": 0.9839 + }, + { + "start": 1530.92, + "end": 1530.92, + "probability": 0.2271 + }, + { + "start": 1530.92, + "end": 1532.46, + "probability": 0.7585 + }, + { + "start": 1532.7, + "end": 1534.96, + "probability": 0.444 + }, + { + "start": 1534.98, + "end": 1536.01, + "probability": 0.7882 + }, + { + "start": 1536.28, + "end": 1537.18, + "probability": 0.9064 + }, + { + "start": 1537.66, + "end": 1539.18, + "probability": 0.7816 + }, + { + "start": 1539.28, + "end": 1540.8, + "probability": 0.9879 + }, + { + "start": 1541.76, + "end": 1543.32, + "probability": 0.8357 + }, + { + "start": 1543.46, + "end": 1544.06, + "probability": 0.7262 + }, + { + "start": 1544.16, + "end": 1544.85, + "probability": 0.9907 + }, + { + "start": 1545.14, + "end": 1545.86, + "probability": 0.5203 + }, + { + "start": 1546.0, + "end": 1548.22, + "probability": 0.832 + }, + { + "start": 1548.62, + "end": 1549.94, + "probability": 0.941 + }, + { + "start": 1551.38, + "end": 1553.34, + "probability": 0.7546 + }, + { + "start": 1553.72, + "end": 1558.42, + "probability": 0.9939 + }, + { + "start": 1558.86, + "end": 1559.82, + "probability": 0.833 + }, + { + "start": 1560.14, + "end": 1560.84, + "probability": 0.842 + }, + { + "start": 1560.94, + "end": 1565.79, + "probability": 0.9714 + }, + { + "start": 1566.12, + "end": 1567.86, + "probability": 0.6356 + }, + { + "start": 1568.18, + "end": 1569.38, + "probability": 0.9359 + }, + { + "start": 1569.78, + "end": 1571.42, + "probability": 0.9858 + }, + { + "start": 1571.62, + "end": 1573.78, + "probability": 0.8959 + }, + { + "start": 1574.9, + "end": 1576.1, + "probability": 0.9414 + }, + { + "start": 1576.16, + "end": 1578.12, + "probability": 0.6334 + }, + { + "start": 1578.6, + "end": 1580.8, + "probability": 0.9199 + }, + { + "start": 1580.84, + "end": 1581.62, + "probability": 0.9878 + }, + { + "start": 1582.46, + "end": 1586.96, + "probability": 0.9707 + }, + { + "start": 1587.52, + "end": 1590.86, + "probability": 0.8696 + }, + { + "start": 1591.76, + "end": 1595.42, + "probability": 0.9551 + }, + { + "start": 1596.52, + "end": 1598.26, + "probability": 0.9068 + }, + { + "start": 1598.98, + "end": 1604.14, + "probability": 0.9343 + }, + { + "start": 1604.56, + "end": 1608.68, + "probability": 0.8586 + }, + { + "start": 1609.3, + "end": 1613.31, + "probability": 0.8225 + }, + { + "start": 1613.88, + "end": 1615.22, + "probability": 0.8981 + }, + { + "start": 1615.9, + "end": 1617.44, + "probability": 0.9231 + }, + { + "start": 1617.82, + "end": 1620.02, + "probability": 0.9962 + }, + { + "start": 1620.68, + "end": 1623.23, + "probability": 0.9636 + }, + { + "start": 1623.7, + "end": 1624.68, + "probability": 0.8267 + }, + { + "start": 1624.7, + "end": 1625.9, + "probability": 0.7576 + }, + { + "start": 1625.96, + "end": 1627.41, + "probability": 0.9546 + }, + { + "start": 1631.26, + "end": 1633.92, + "probability": 0.9638 + }, + { + "start": 1634.84, + "end": 1635.66, + "probability": 0.6965 + }, + { + "start": 1637.42, + "end": 1638.83, + "probability": 0.2625 + }, + { + "start": 1639.3, + "end": 1639.34, + "probability": 0.3799 + }, + { + "start": 1639.34, + "end": 1641.02, + "probability": 0.3258 + }, + { + "start": 1641.7, + "end": 1643.28, + "probability": 0.5665 + }, + { + "start": 1645.19, + "end": 1647.04, + "probability": 0.6966 + }, + { + "start": 1649.28, + "end": 1650.72, + "probability": 0.0698 + }, + { + "start": 1650.72, + "end": 1650.76, + "probability": 0.2906 + }, + { + "start": 1650.76, + "end": 1654.5, + "probability": 0.0472 + }, + { + "start": 1654.5, + "end": 1656.18, + "probability": 0.099 + }, + { + "start": 1656.98, + "end": 1657.72, + "probability": 0.0059 + }, + { + "start": 1657.74, + "end": 1658.98, + "probability": 0.4793 + }, + { + "start": 1658.98, + "end": 1660.02, + "probability": 0.1457 + }, + { + "start": 1660.12, + "end": 1662.76, + "probability": 0.0547 + }, + { + "start": 1662.84, + "end": 1663.16, + "probability": 0.1621 + }, + { + "start": 1663.16, + "end": 1663.6, + "probability": 0.0181 + }, + { + "start": 1667.2, + "end": 1669.38, + "probability": 0.1258 + }, + { + "start": 1675.26, + "end": 1677.44, + "probability": 0.6168 + }, + { + "start": 1677.64, + "end": 1679.74, + "probability": 0.467 + }, + { + "start": 1679.74, + "end": 1680.24, + "probability": 0.0902 + }, + { + "start": 1680.24, + "end": 1684.2, + "probability": 0.2639 + }, + { + "start": 1697.76, + "end": 1698.62, + "probability": 0.0303 + }, + { + "start": 1699.14, + "end": 1699.8, + "probability": 0.1405 + }, + { + "start": 1700.38, + "end": 1700.44, + "probability": 0.5015 + }, + { + "start": 1700.44, + "end": 1700.86, + "probability": 0.2514 + }, + { + "start": 1701.24, + "end": 1703.92, + "probability": 0.4912 + }, + { + "start": 1705.1, + "end": 1708.13, + "probability": 0.0762 + }, + { + "start": 1708.42, + "end": 1709.0, + "probability": 0.2399 + }, + { + "start": 1709.65, + "end": 1711.12, + "probability": 0.1612 + }, + { + "start": 1711.12, + "end": 1711.12, + "probability": 0.3076 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.0, + "end": 1734.0, + "probability": 0.0 + }, + { + "start": 1734.26, + "end": 1740.88, + "probability": 0.1857 + }, + { + "start": 1741.14, + "end": 1741.72, + "probability": 0.7183 + }, + { + "start": 1748.14, + "end": 1748.66, + "probability": 0.0894 + }, + { + "start": 1749.78, + "end": 1750.44, + "probability": 0.0284 + }, + { + "start": 1750.44, + "end": 1751.49, + "probability": 0.0574 + }, + { + "start": 1753.1, + "end": 1754.58, + "probability": 0.0706 + }, + { + "start": 1754.82, + "end": 1756.0, + "probability": 0.0346 + }, + { + "start": 1756.0, + "end": 1756.26, + "probability": 0.1496 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1856.0, + "end": 1856.0, + "probability": 0.0 + }, + { + "start": 1870.06, + "end": 1871.96, + "probability": 0.0134 + }, + { + "start": 1873.4, + "end": 1877.02, + "probability": 0.0339 + }, + { + "start": 1880.56, + "end": 1882.36, + "probability": 0.0086 + }, + { + "start": 1895.92, + "end": 1896.96, + "probability": 0.0505 + }, + { + "start": 1897.06, + "end": 1903.76, + "probability": 0.0523 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.0, + "end": 1984.0, + "probability": 0.0 + }, + { + "start": 1984.24, + "end": 1984.64, + "probability": 0.0008 + }, + { + "start": 1984.64, + "end": 1984.64, + "probability": 0.1424 + }, + { + "start": 1984.64, + "end": 1984.64, + "probability": 0.0383 + }, + { + "start": 1984.64, + "end": 1984.64, + "probability": 0.0506 + }, + { + "start": 1984.64, + "end": 1984.64, + "probability": 0.1898 + }, + { + "start": 1984.64, + "end": 1984.64, + "probability": 0.2962 + }, + { + "start": 1984.64, + "end": 1984.64, + "probability": 0.2 + }, + { + "start": 1984.64, + "end": 1985.45, + "probability": 0.0777 + }, + { + "start": 1986.08, + "end": 1988.04, + "probability": 0.6807 + }, + { + "start": 1988.04, + "end": 1988.47, + "probability": 0.1255 + }, + { + "start": 1989.12, + "end": 1989.88, + "probability": 0.8146 + }, + { + "start": 1990.38, + "end": 1995.88, + "probability": 0.7261 + }, + { + "start": 1996.12, + "end": 2000.36, + "probability": 0.886 + }, + { + "start": 2000.84, + "end": 2002.78, + "probability": 0.9449 + }, + { + "start": 2002.92, + "end": 2004.42, + "probability": 0.8185 + }, + { + "start": 2004.86, + "end": 2006.34, + "probability": 0.9868 + }, + { + "start": 2006.4, + "end": 2008.2, + "probability": 0.7991 + }, + { + "start": 2008.5, + "end": 2009.9, + "probability": 0.6333 + }, + { + "start": 2010.02, + "end": 2019.8, + "probability": 0.8149 + }, + { + "start": 2020.06, + "end": 2020.3, + "probability": 0.5981 + }, + { + "start": 2020.3, + "end": 2022.42, + "probability": 0.8696 + }, + { + "start": 2022.68, + "end": 2024.02, + "probability": 0.9705 + }, + { + "start": 2025.06, + "end": 2027.02, + "probability": 0.9531 + }, + { + "start": 2027.88, + "end": 2033.36, + "probability": 0.9702 + }, + { + "start": 2034.42, + "end": 2035.7, + "probability": 0.8732 + }, + { + "start": 2036.36, + "end": 2036.98, + "probability": 0.5 + }, + { + "start": 2037.08, + "end": 2039.28, + "probability": 0.5928 + }, + { + "start": 2039.4, + "end": 2041.18, + "probability": 0.9044 + }, + { + "start": 2041.42, + "end": 2045.04, + "probability": 0.9755 + }, + { + "start": 2045.18, + "end": 2047.36, + "probability": 0.9024 + }, + { + "start": 2047.76, + "end": 2054.4, + "probability": 0.8639 + }, + { + "start": 2054.98, + "end": 2058.38, + "probability": 0.9946 + }, + { + "start": 2059.1, + "end": 2060.32, + "probability": 0.8821 + }, + { + "start": 2060.38, + "end": 2064.39, + "probability": 0.9602 + }, + { + "start": 2065.42, + "end": 2066.14, + "probability": 0.8429 + }, + { + "start": 2066.32, + "end": 2067.62, + "probability": 0.9872 + }, + { + "start": 2067.66, + "end": 2068.87, + "probability": 0.9589 + }, + { + "start": 2069.44, + "end": 2071.32, + "probability": 0.9658 + }, + { + "start": 2072.22, + "end": 2076.28, + "probability": 0.4921 + }, + { + "start": 2076.46, + "end": 2080.38, + "probability": 0.9852 + }, + { + "start": 2080.74, + "end": 2081.38, + "probability": 0.6548 + }, + { + "start": 2081.58, + "end": 2082.04, + "probability": 0.3418 + }, + { + "start": 2082.06, + "end": 2085.9, + "probability": 0.9897 + }, + { + "start": 2086.0, + "end": 2088.88, + "probability": 0.9887 + }, + { + "start": 2089.18, + "end": 2090.0, + "probability": 0.7405 + }, + { + "start": 2090.06, + "end": 2092.0, + "probability": 0.8267 + }, + { + "start": 2094.85, + "end": 2096.86, + "probability": 0.7106 + }, + { + "start": 2097.14, + "end": 2100.0, + "probability": 0.6438 + }, + { + "start": 2100.58, + "end": 2102.66, + "probability": 0.9771 + }, + { + "start": 2102.66, + "end": 2106.48, + "probability": 0.9889 + }, + { + "start": 2106.92, + "end": 2108.42, + "probability": 0.9777 + }, + { + "start": 2108.5, + "end": 2109.26, + "probability": 0.5645 + }, + { + "start": 2109.34, + "end": 2112.18, + "probability": 0.3551 + }, + { + "start": 2112.64, + "end": 2113.97, + "probability": 0.4974 + }, + { + "start": 2115.96, + "end": 2116.82, + "probability": 0.6679 + }, + { + "start": 2117.12, + "end": 2118.16, + "probability": 0.9536 + }, + { + "start": 2118.6, + "end": 2121.44, + "probability": 0.9897 + }, + { + "start": 2121.76, + "end": 2122.8, + "probability": 0.9901 + }, + { + "start": 2123.9, + "end": 2124.6, + "probability": 0.7214 + }, + { + "start": 2124.74, + "end": 2126.78, + "probability": 0.9706 + }, + { + "start": 2126.94, + "end": 2127.58, + "probability": 0.6325 + }, + { + "start": 2127.72, + "end": 2130.94, + "probability": 0.9371 + }, + { + "start": 2131.1, + "end": 2132.66, + "probability": 0.7254 + }, + { + "start": 2132.78, + "end": 2134.08, + "probability": 0.6964 + }, + { + "start": 2134.2, + "end": 2134.9, + "probability": 0.8516 + }, + { + "start": 2135.18, + "end": 2136.24, + "probability": 0.9665 + }, + { + "start": 2136.3, + "end": 2136.78, + "probability": 0.8643 + }, + { + "start": 2136.82, + "end": 2137.86, + "probability": 0.8904 + }, + { + "start": 2137.86, + "end": 2141.46, + "probability": 0.9963 + }, + { + "start": 2142.1, + "end": 2145.54, + "probability": 0.7832 + }, + { + "start": 2145.76, + "end": 2146.68, + "probability": 0.7377 + }, + { + "start": 2146.78, + "end": 2148.68, + "probability": 0.9946 + }, + { + "start": 2148.7, + "end": 2149.72, + "probability": 0.874 + }, + { + "start": 2149.88, + "end": 2150.6, + "probability": 0.7694 + }, + { + "start": 2150.6, + "end": 2151.13, + "probability": 0.8193 + }, + { + "start": 2152.16, + "end": 2154.24, + "probability": 0.9795 + }, + { + "start": 2154.34, + "end": 2155.14, + "probability": 0.699 + }, + { + "start": 2155.66, + "end": 2162.22, + "probability": 0.9888 + }, + { + "start": 2162.42, + "end": 2164.36, + "probability": 0.8683 + }, + { + "start": 2164.54, + "end": 2165.42, + "probability": 0.8728 + }, + { + "start": 2165.56, + "end": 2170.4, + "probability": 0.9705 + }, + { + "start": 2170.84, + "end": 2171.58, + "probability": 0.6206 + }, + { + "start": 2171.86, + "end": 2172.56, + "probability": 0.8289 + }, + { + "start": 2172.64, + "end": 2176.66, + "probability": 0.7948 + }, + { + "start": 2177.08, + "end": 2179.46, + "probability": 0.7473 + }, + { + "start": 2179.76, + "end": 2184.98, + "probability": 0.9434 + }, + { + "start": 2185.14, + "end": 2186.16, + "probability": 0.9624 + }, + { + "start": 2186.4, + "end": 2192.1, + "probability": 0.9886 + }, + { + "start": 2192.2, + "end": 2196.56, + "probability": 0.9902 + }, + { + "start": 2197.12, + "end": 2200.38, + "probability": 0.7003 + }, + { + "start": 2200.76, + "end": 2202.12, + "probability": 0.6945 + }, + { + "start": 2202.18, + "end": 2203.64, + "probability": 0.9653 + }, + { + "start": 2203.8, + "end": 2205.28, + "probability": 0.8331 + }, + { + "start": 2205.66, + "end": 2207.96, + "probability": 0.7153 + }, + { + "start": 2207.98, + "end": 2212.84, + "probability": 0.2528 + }, + { + "start": 2218.36, + "end": 2220.98, + "probability": 0.7218 + }, + { + "start": 2221.98, + "end": 2226.38, + "probability": 0.665 + }, + { + "start": 2226.52, + "end": 2232.66, + "probability": 0.8117 + }, + { + "start": 2233.0, + "end": 2234.98, + "probability": 0.8412 + }, + { + "start": 2235.06, + "end": 2236.38, + "probability": 0.6953 + }, + { + "start": 2236.44, + "end": 2242.24, + "probability": 0.9821 + }, + { + "start": 2242.4, + "end": 2244.0, + "probability": 0.716 + }, + { + "start": 2246.16, + "end": 2248.76, + "probability": 0.8509 + }, + { + "start": 2248.86, + "end": 2251.9, + "probability": 0.6698 + }, + { + "start": 2252.02, + "end": 2255.76, + "probability": 0.9879 + }, + { + "start": 2255.82, + "end": 2256.96, + "probability": 0.7902 + }, + { + "start": 2257.14, + "end": 2257.82, + "probability": 0.9337 + }, + { + "start": 2257.88, + "end": 2262.56, + "probability": 0.9783 + }, + { + "start": 2262.56, + "end": 2263.32, + "probability": 0.5404 + }, + { + "start": 2265.17, + "end": 2267.91, + "probability": 0.8654 + }, + { + "start": 2268.32, + "end": 2272.93, + "probability": 0.9795 + }, + { + "start": 2273.6, + "end": 2275.56, + "probability": 0.901 + }, + { + "start": 2275.62, + "end": 2278.64, + "probability": 0.8995 + }, + { + "start": 2278.74, + "end": 2280.0, + "probability": 0.7003 + }, + { + "start": 2280.06, + "end": 2281.32, + "probability": 0.6614 + }, + { + "start": 2282.02, + "end": 2288.06, + "probability": 0.858 + }, + { + "start": 2288.38, + "end": 2290.57, + "probability": 0.9717 + }, + { + "start": 2290.7, + "end": 2292.58, + "probability": 0.8261 + }, + { + "start": 2292.92, + "end": 2294.16, + "probability": 0.7755 + }, + { + "start": 2294.48, + "end": 2299.56, + "probability": 0.9712 + }, + { + "start": 2299.56, + "end": 2302.7, + "probability": 0.9913 + }, + { + "start": 2302.8, + "end": 2304.82, + "probability": 0.9862 + }, + { + "start": 2305.22, + "end": 2309.64, + "probability": 0.993 + }, + { + "start": 2309.64, + "end": 2313.38, + "probability": 0.9771 + }, + { + "start": 2313.5, + "end": 2315.42, + "probability": 0.9431 + }, + { + "start": 2315.52, + "end": 2315.98, + "probability": 0.7287 + }, + { + "start": 2316.0, + "end": 2316.7, + "probability": 0.442 + }, + { + "start": 2316.7, + "end": 2318.98, + "probability": 0.7516 + }, + { + "start": 2319.12, + "end": 2320.52, + "probability": 0.8974 + }, + { + "start": 2325.44, + "end": 2329.08, + "probability": 0.965 + }, + { + "start": 2330.14, + "end": 2332.26, + "probability": 0.9336 + }, + { + "start": 2333.0, + "end": 2336.21, + "probability": 0.9803 + }, + { + "start": 2337.04, + "end": 2338.6, + "probability": 0.8118 + }, + { + "start": 2338.76, + "end": 2340.44, + "probability": 0.7855 + }, + { + "start": 2342.54, + "end": 2344.58, + "probability": 0.9823 + }, + { + "start": 2344.58, + "end": 2345.16, + "probability": 0.0555 + }, + { + "start": 2346.22, + "end": 2347.54, + "probability": 0.68 + }, + { + "start": 2348.08, + "end": 2355.18, + "probability": 0.9838 + }, + { + "start": 2355.28, + "end": 2355.94, + "probability": 0.9059 + }, + { + "start": 2356.12, + "end": 2358.54, + "probability": 0.9944 + }, + { + "start": 2358.64, + "end": 2360.36, + "probability": 0.7434 + }, + { + "start": 2361.04, + "end": 2362.72, + "probability": 0.7911 + }, + { + "start": 2362.92, + "end": 2367.18, + "probability": 0.9508 + }, + { + "start": 2367.18, + "end": 2371.76, + "probability": 0.9954 + }, + { + "start": 2372.84, + "end": 2376.75, + "probability": 0.6459 + }, + { + "start": 2377.54, + "end": 2379.56, + "probability": 0.9456 + }, + { + "start": 2379.82, + "end": 2380.43, + "probability": 0.6658 + }, + { + "start": 2381.56, + "end": 2382.54, + "probability": 0.8952 + }, + { + "start": 2382.66, + "end": 2385.3, + "probability": 0.9864 + }, + { + "start": 2385.54, + "end": 2389.86, + "probability": 0.7797 + }, + { + "start": 2390.08, + "end": 2392.4, + "probability": 0.9561 + }, + { + "start": 2392.92, + "end": 2395.36, + "probability": 0.9547 + }, + { + "start": 2395.66, + "end": 2397.66, + "probability": 0.6539 + }, + { + "start": 2398.52, + "end": 2402.42, + "probability": 0.9724 + }, + { + "start": 2402.64, + "end": 2406.32, + "probability": 0.897 + }, + { + "start": 2406.32, + "end": 2410.52, + "probability": 0.9873 + }, + { + "start": 2411.08, + "end": 2415.06, + "probability": 0.9424 + }, + { + "start": 2415.12, + "end": 2415.64, + "probability": 0.3871 + }, + { + "start": 2415.92, + "end": 2417.98, + "probability": 0.7382 + }, + { + "start": 2418.08, + "end": 2419.3, + "probability": 0.8514 + }, + { + "start": 2421.9, + "end": 2425.52, + "probability": 0.8482 + }, + { + "start": 2425.68, + "end": 2427.42, + "probability": 0.8805 + }, + { + "start": 2427.5, + "end": 2434.58, + "probability": 0.9761 + }, + { + "start": 2434.76, + "end": 2436.08, + "probability": 0.4552 + }, + { + "start": 2436.32, + "end": 2437.62, + "probability": 0.7056 + }, + { + "start": 2438.66, + "end": 2440.18, + "probability": 0.9939 + }, + { + "start": 2440.3, + "end": 2445.04, + "probability": 0.9482 + }, + { + "start": 2445.34, + "end": 2446.4, + "probability": 0.8408 + }, + { + "start": 2446.46, + "end": 2448.18, + "probability": 0.9474 + }, + { + "start": 2448.54, + "end": 2451.24, + "probability": 0.7332 + }, + { + "start": 2451.48, + "end": 2454.66, + "probability": 0.9966 + }, + { + "start": 2454.74, + "end": 2456.18, + "probability": 0.998 + }, + { + "start": 2456.88, + "end": 2460.64, + "probability": 0.9182 + }, + { + "start": 2461.24, + "end": 2467.74, + "probability": 0.8998 + }, + { + "start": 2468.14, + "end": 2470.14, + "probability": 0.9458 + }, + { + "start": 2470.74, + "end": 2471.3, + "probability": 0.9525 + }, + { + "start": 2471.78, + "end": 2477.08, + "probability": 0.989 + }, + { + "start": 2477.96, + "end": 2480.98, + "probability": 0.995 + }, + { + "start": 2480.98, + "end": 2483.0, + "probability": 0.9866 + }, + { + "start": 2483.46, + "end": 2483.98, + "probability": 0.9138 + }, + { + "start": 2484.66, + "end": 2485.08, + "probability": 0.9518 + }, + { + "start": 2485.84, + "end": 2490.1, + "probability": 0.9502 + }, + { + "start": 2491.18, + "end": 2494.04, + "probability": 0.4413 + }, + { + "start": 2494.82, + "end": 2495.6, + "probability": 0.6885 + }, + { + "start": 2495.84, + "end": 2496.42, + "probability": 0.8454 + }, + { + "start": 2496.9, + "end": 2500.5, + "probability": 0.8057 + }, + { + "start": 2500.56, + "end": 2501.18, + "probability": 0.6204 + }, + { + "start": 2501.32, + "end": 2501.74, + "probability": 0.9139 + }, + { + "start": 2502.9, + "end": 2503.4, + "probability": 0.5606 + }, + { + "start": 2503.58, + "end": 2505.0, + "probability": 0.6685 + }, + { + "start": 2505.14, + "end": 2508.08, + "probability": 0.7086 + }, + { + "start": 2508.16, + "end": 2508.84, + "probability": 0.7015 + }, + { + "start": 2509.34, + "end": 2511.64, + "probability": 0.8813 + }, + { + "start": 2511.8, + "end": 2512.54, + "probability": 0.7959 + }, + { + "start": 2512.68, + "end": 2514.7, + "probability": 0.9032 + }, + { + "start": 2515.88, + "end": 2518.4, + "probability": 0.9843 + }, + { + "start": 2519.2, + "end": 2521.16, + "probability": 0.7715 + }, + { + "start": 2521.48, + "end": 2522.58, + "probability": 0.9509 + }, + { + "start": 2523.48, + "end": 2525.48, + "probability": 0.9692 + }, + { + "start": 2525.96, + "end": 2528.28, + "probability": 0.9858 + }, + { + "start": 2529.14, + "end": 2530.56, + "probability": 0.5908 + }, + { + "start": 2531.0, + "end": 2533.14, + "probability": 0.9964 + }, + { + "start": 2533.8, + "end": 2535.54, + "probability": 0.9148 + }, + { + "start": 2536.0, + "end": 2538.64, + "probability": 0.7737 + }, + { + "start": 2538.7, + "end": 2539.16, + "probability": 0.8651 + }, + { + "start": 2539.22, + "end": 2540.94, + "probability": 0.7483 + }, + { + "start": 2541.7, + "end": 2545.54, + "probability": 0.9783 + }, + { + "start": 2545.74, + "end": 2551.9, + "probability": 0.9888 + }, + { + "start": 2552.02, + "end": 2554.64, + "probability": 0.8328 + }, + { + "start": 2554.8, + "end": 2557.26, + "probability": 0.8354 + }, + { + "start": 2558.3, + "end": 2561.34, + "probability": 0.9843 + }, + { + "start": 2561.56, + "end": 2564.88, + "probability": 0.9714 + }, + { + "start": 2565.04, + "end": 2565.44, + "probability": 0.7631 + }, + { + "start": 2565.7, + "end": 2566.64, + "probability": 0.7449 + }, + { + "start": 2566.88, + "end": 2568.58, + "probability": 0.9679 + }, + { + "start": 2568.92, + "end": 2571.48, + "probability": 0.8289 + }, + { + "start": 2571.66, + "end": 2573.24, + "probability": 0.9166 + }, + { + "start": 2573.4, + "end": 2576.2, + "probability": 0.9755 + }, + { + "start": 2576.2, + "end": 2577.76, + "probability": 0.8555 + }, + { + "start": 2578.52, + "end": 2582.08, + "probability": 0.8623 + }, + { + "start": 2582.62, + "end": 2585.46, + "probability": 0.9316 + }, + { + "start": 2585.46, + "end": 2588.0, + "probability": 0.9029 + }, + { + "start": 2588.4, + "end": 2591.68, + "probability": 0.9946 + }, + { + "start": 2591.78, + "end": 2591.94, + "probability": 0.8489 + }, + { + "start": 2592.54, + "end": 2595.82, + "probability": 0.9559 + }, + { + "start": 2596.16, + "end": 2597.66, + "probability": 0.95 + }, + { + "start": 2598.08, + "end": 2599.48, + "probability": 0.874 + }, + { + "start": 2599.6, + "end": 2600.04, + "probability": 0.3077 + }, + { + "start": 2600.68, + "end": 2601.54, + "probability": 0.6223 + }, + { + "start": 2601.66, + "end": 2602.98, + "probability": 0.5916 + }, + { + "start": 2603.06, + "end": 2605.54, + "probability": 0.6391 + }, + { + "start": 2605.86, + "end": 2606.64, + "probability": 0.1154 + }, + { + "start": 2606.64, + "end": 2607.73, + "probability": 0.1316 + }, + { + "start": 2608.52, + "end": 2610.7, + "probability": 0.7486 + }, + { + "start": 2610.9, + "end": 2611.2, + "probability": 0.6882 + }, + { + "start": 2611.28, + "end": 2613.9, + "probability": 0.744 + }, + { + "start": 2613.96, + "end": 2616.5, + "probability": 0.937 + }, + { + "start": 2616.58, + "end": 2618.54, + "probability": 0.9945 + }, + { + "start": 2619.28, + "end": 2620.48, + "probability": 0.7133 + }, + { + "start": 2620.48, + "end": 2623.12, + "probability": 0.4999 + }, + { + "start": 2623.2, + "end": 2624.5, + "probability": 0.7118 + }, + { + "start": 2624.56, + "end": 2625.18, + "probability": 0.3852 + }, + { + "start": 2625.26, + "end": 2625.7, + "probability": 0.7669 + }, + { + "start": 2625.78, + "end": 2628.12, + "probability": 0.8198 + }, + { + "start": 2628.12, + "end": 2628.82, + "probability": 0.6312 + }, + { + "start": 2628.96, + "end": 2633.28, + "probability": 0.8833 + }, + { + "start": 2633.72, + "end": 2635.3, + "probability": 0.6858 + }, + { + "start": 2635.96, + "end": 2636.82, + "probability": 0.0523 + }, + { + "start": 2636.82, + "end": 2637.54, + "probability": 0.2467 + }, + { + "start": 2637.64, + "end": 2638.38, + "probability": 0.4649 + }, + { + "start": 2638.92, + "end": 2638.92, + "probability": 0.1237 + }, + { + "start": 2638.92, + "end": 2639.02, + "probability": 0.0183 + }, + { + "start": 2639.02, + "end": 2642.22, + "probability": 0.6872 + }, + { + "start": 2642.34, + "end": 2642.85, + "probability": 0.9451 + }, + { + "start": 2643.4, + "end": 2646.96, + "probability": 0.9889 + }, + { + "start": 2647.3, + "end": 2647.58, + "probability": 0.6468 + }, + { + "start": 2648.52, + "end": 2649.94, + "probability": 0.3275 + }, + { + "start": 2650.69, + "end": 2654.26, + "probability": 0.8364 + }, + { + "start": 2654.32, + "end": 2655.7, + "probability": 0.9479 + }, + { + "start": 2655.78, + "end": 2656.97, + "probability": 0.9666 + }, + { + "start": 2657.34, + "end": 2659.34, + "probability": 0.4061 + }, + { + "start": 2659.52, + "end": 2659.98, + "probability": 0.4702 + }, + { + "start": 2671.54, + "end": 2672.66, + "probability": 0.7012 + }, + { + "start": 2674.7, + "end": 2674.8, + "probability": 0.0593 + }, + { + "start": 2674.8, + "end": 2677.32, + "probability": 0.0276 + }, + { + "start": 2677.4, + "end": 2677.6, + "probability": 0.0541 + }, + { + "start": 2677.6, + "end": 2679.36, + "probability": 0.0352 + }, + { + "start": 2679.36, + "end": 2679.56, + "probability": 0.0759 + }, + { + "start": 2680.56, + "end": 2680.76, + "probability": 0.013 + }, + { + "start": 2680.76, + "end": 2680.76, + "probability": 0.0165 + }, + { + "start": 2680.76, + "end": 2680.76, + "probability": 0.1182 + }, + { + "start": 2680.76, + "end": 2682.0, + "probability": 0.4928 + }, + { + "start": 2682.0, + "end": 2683.76, + "probability": 0.8856 + }, + { + "start": 2684.0, + "end": 2686.26, + "probability": 0.9506 + }, + { + "start": 2686.34, + "end": 2686.94, + "probability": 0.4893 + }, + { + "start": 2686.94, + "end": 2687.64, + "probability": 0.706 + }, + { + "start": 2687.76, + "end": 2690.78, + "probability": 0.97 + }, + { + "start": 2690.84, + "end": 2691.95, + "probability": 0.1304 + }, + { + "start": 2691.98, + "end": 2692.34, + "probability": 0.4509 + }, + { + "start": 2692.52, + "end": 2693.32, + "probability": 0.3812 + }, + { + "start": 2693.36, + "end": 2698.16, + "probability": 0.9697 + }, + { + "start": 2698.62, + "end": 2701.12, + "probability": 0.6374 + }, + { + "start": 2701.2, + "end": 2702.51, + "probability": 0.9948 + }, + { + "start": 2703.66, + "end": 2704.51, + "probability": 0.9005 + }, + { + "start": 2704.68, + "end": 2708.42, + "probability": 0.9634 + }, + { + "start": 2708.42, + "end": 2711.58, + "probability": 0.9966 + }, + { + "start": 2711.94, + "end": 2713.76, + "probability": 0.9941 + }, + { + "start": 2713.94, + "end": 2715.42, + "probability": 0.9946 + }, + { + "start": 2715.66, + "end": 2716.4, + "probability": 0.9871 + }, + { + "start": 2717.3, + "end": 2718.72, + "probability": 0.41 + }, + { + "start": 2719.04, + "end": 2720.52, + "probability": 0.7593 + }, + { + "start": 2720.9, + "end": 2722.82, + "probability": 0.9385 + }, + { + "start": 2723.06, + "end": 2723.86, + "probability": 0.9868 + }, + { + "start": 2724.34, + "end": 2726.32, + "probability": 0.9932 + }, + { + "start": 2726.42, + "end": 2727.86, + "probability": 0.9326 + }, + { + "start": 2727.98, + "end": 2730.92, + "probability": 0.9978 + }, + { + "start": 2731.04, + "end": 2733.72, + "probability": 0.9552 + }, + { + "start": 2734.0, + "end": 2734.88, + "probability": 0.9049 + }, + { + "start": 2734.94, + "end": 2735.56, + "probability": 0.8948 + }, + { + "start": 2736.24, + "end": 2741.86, + "probability": 0.8764 + }, + { + "start": 2742.24, + "end": 2742.46, + "probability": 0.8709 + }, + { + "start": 2742.94, + "end": 2743.54, + "probability": 0.888 + }, + { + "start": 2746.08, + "end": 2746.14, + "probability": 0.0346 + }, + { + "start": 2746.14, + "end": 2746.14, + "probability": 0.0689 + }, + { + "start": 2746.14, + "end": 2747.43, + "probability": 0.9715 + }, + { + "start": 2748.58, + "end": 2751.34, + "probability": 0.8901 + }, + { + "start": 2751.38, + "end": 2754.86, + "probability": 0.8627 + }, + { + "start": 2755.52, + "end": 2756.88, + "probability": 0.8365 + }, + { + "start": 2756.9, + "end": 2757.96, + "probability": 0.9417 + }, + { + "start": 2758.1, + "end": 2762.72, + "probability": 0.8806 + }, + { + "start": 2762.72, + "end": 2769.08, + "probability": 0.9947 + }, + { + "start": 2769.24, + "end": 2771.22, + "probability": 0.8558 + }, + { + "start": 2772.3, + "end": 2772.8, + "probability": 0.7635 + }, + { + "start": 2773.4, + "end": 2777.42, + "probability": 0.9962 + }, + { + "start": 2778.12, + "end": 2783.0, + "probability": 0.8965 + }, + { + "start": 2783.0, + "end": 2787.18, + "probability": 0.9408 + }, + { + "start": 2787.74, + "end": 2789.84, + "probability": 0.7108 + }, + { + "start": 2790.0, + "end": 2794.08, + "probability": 0.8977 + }, + { + "start": 2794.16, + "end": 2798.2, + "probability": 0.8139 + }, + { + "start": 2799.64, + "end": 2800.14, + "probability": 0.3305 + }, + { + "start": 2800.56, + "end": 2801.48, + "probability": 0.8376 + }, + { + "start": 2801.58, + "end": 2803.12, + "probability": 0.2807 + }, + { + "start": 2803.22, + "end": 2804.4, + "probability": 0.6775 + }, + { + "start": 2804.52, + "end": 2805.98, + "probability": 0.7767 + }, + { + "start": 2806.04, + "end": 2808.72, + "probability": 0.7992 + }, + { + "start": 2809.3, + "end": 2809.62, + "probability": 0.4689 + }, + { + "start": 2809.82, + "end": 2810.72, + "probability": 0.9782 + }, + { + "start": 2811.08, + "end": 2815.22, + "probability": 0.9852 + }, + { + "start": 2815.7, + "end": 2816.22, + "probability": 0.3995 + }, + { + "start": 2817.02, + "end": 2817.62, + "probability": 0.4248 + }, + { + "start": 2817.76, + "end": 2818.5, + "probability": 0.5823 + }, + { + "start": 2819.04, + "end": 2821.54, + "probability": 0.8784 + }, + { + "start": 2822.76, + "end": 2825.9, + "probability": 0.9985 + }, + { + "start": 2826.2, + "end": 2830.62, + "probability": 0.9878 + }, + { + "start": 2831.0, + "end": 2831.63, + "probability": 0.4956 + }, + { + "start": 2832.34, + "end": 2833.78, + "probability": 0.0535 + }, + { + "start": 2833.78, + "end": 2833.9, + "probability": 0.1916 + }, + { + "start": 2834.32, + "end": 2835.36, + "probability": 0.0738 + }, + { + "start": 2835.36, + "end": 2837.91, + "probability": 0.6365 + }, + { + "start": 2839.32, + "end": 2842.72, + "probability": 0.2619 + }, + { + "start": 2842.72, + "end": 2845.6, + "probability": 0.5865 + }, + { + "start": 2846.32, + "end": 2848.8, + "probability": 0.5573 + }, + { + "start": 2849.3, + "end": 2851.36, + "probability": 0.9927 + }, + { + "start": 2851.48, + "end": 2851.94, + "probability": 0.9462 + }, + { + "start": 2852.02, + "end": 2853.06, + "probability": 0.9863 + }, + { + "start": 2853.32, + "end": 2854.08, + "probability": 0.936 + }, + { + "start": 2854.18, + "end": 2857.44, + "probability": 0.9886 + }, + { + "start": 2857.66, + "end": 2858.94, + "probability": 0.5247 + }, + { + "start": 2859.58, + "end": 2861.46, + "probability": 0.8787 + }, + { + "start": 2861.6, + "end": 2864.88, + "probability": 0.9601 + }, + { + "start": 2864.88, + "end": 2866.44, + "probability": 0.9691 + }, + { + "start": 2866.54, + "end": 2869.46, + "probability": 0.8098 + }, + { + "start": 2869.6, + "end": 2872.72, + "probability": 0.6676 + }, + { + "start": 2873.44, + "end": 2878.2, + "probability": 0.9303 + }, + { + "start": 2878.36, + "end": 2879.16, + "probability": 0.6116 + }, + { + "start": 2879.36, + "end": 2880.92, + "probability": 0.7412 + }, + { + "start": 2881.5, + "end": 2883.46, + "probability": 0.9513 + }, + { + "start": 2884.46, + "end": 2885.8, + "probability": 0.8457 + }, + { + "start": 2886.36, + "end": 2887.86, + "probability": 0.9191 + }, + { + "start": 2888.02, + "end": 2893.4, + "probability": 0.9078 + }, + { + "start": 2893.56, + "end": 2898.04, + "probability": 0.9214 + }, + { + "start": 2898.24, + "end": 2898.76, + "probability": 0.6585 + }, + { + "start": 2899.24, + "end": 2902.34, + "probability": 0.8415 + }, + { + "start": 2903.04, + "end": 2903.52, + "probability": 0.7392 + }, + { + "start": 2904.32, + "end": 2908.0, + "probability": 0.9252 + }, + { + "start": 2908.1, + "end": 2911.06, + "probability": 0.9153 + }, + { + "start": 2911.16, + "end": 2915.92, + "probability": 0.9858 + }, + { + "start": 2916.5, + "end": 2917.16, + "probability": 0.478 + }, + { + "start": 2917.22, + "end": 2918.04, + "probability": 0.8507 + }, + { + "start": 2918.16, + "end": 2922.44, + "probability": 0.9473 + }, + { + "start": 2922.8, + "end": 2925.04, + "probability": 0.9712 + }, + { + "start": 2925.08, + "end": 2925.7, + "probability": 0.8725 + }, + { + "start": 2925.86, + "end": 2926.3, + "probability": 0.5111 + }, + { + "start": 2926.3, + "end": 2931.18, + "probability": 0.9688 + }, + { + "start": 2932.0, + "end": 2935.1, + "probability": 0.9929 + }, + { + "start": 2935.1, + "end": 2939.58, + "probability": 0.9945 + }, + { + "start": 2940.4, + "end": 2942.3, + "probability": 0.8414 + }, + { + "start": 2942.84, + "end": 2943.54, + "probability": 0.4396 + }, + { + "start": 2943.6, + "end": 2944.66, + "probability": 0.9556 + }, + { + "start": 2944.76, + "end": 2947.3, + "probability": 0.8896 + }, + { + "start": 2947.64, + "end": 2950.06, + "probability": 0.9702 + }, + { + "start": 2950.48, + "end": 2951.96, + "probability": 0.8988 + }, + { + "start": 2952.36, + "end": 2955.14, + "probability": 0.9893 + }, + { + "start": 2955.66, + "end": 2957.52, + "probability": 0.7965 + }, + { + "start": 2957.84, + "end": 2961.36, + "probability": 0.8271 + }, + { + "start": 2961.82, + "end": 2965.9, + "probability": 0.9303 + }, + { + "start": 2965.9, + "end": 2970.56, + "probability": 0.9664 + }, + { + "start": 2970.94, + "end": 2972.92, + "probability": 0.6663 + }, + { + "start": 2972.98, + "end": 2975.76, + "probability": 0.9556 + }, + { + "start": 2976.4, + "end": 2976.98, + "probability": 0.5947 + }, + { + "start": 2977.08, + "end": 2978.84, + "probability": 0.9812 + }, + { + "start": 2978.88, + "end": 2982.08, + "probability": 0.9247 + }, + { + "start": 2982.74, + "end": 2986.16, + "probability": 0.9893 + }, + { + "start": 2986.34, + "end": 2990.42, + "probability": 0.9499 + }, + { + "start": 2990.52, + "end": 2992.48, + "probability": 0.9619 + }, + { + "start": 2992.56, + "end": 2994.28, + "probability": 0.9774 + }, + { + "start": 2994.48, + "end": 2996.46, + "probability": 0.6193 + }, + { + "start": 2997.55, + "end": 2999.82, + "probability": 0.946 + }, + { + "start": 2999.94, + "end": 3000.5, + "probability": 0.9297 + }, + { + "start": 3000.94, + "end": 3002.28, + "probability": 0.9836 + }, + { + "start": 3002.84, + "end": 3006.3, + "probability": 0.69 + }, + { + "start": 3006.38, + "end": 3007.5, + "probability": 0.6567 + }, + { + "start": 3007.8, + "end": 3011.0, + "probability": 0.7135 + }, + { + "start": 3011.84, + "end": 3016.48, + "probability": 0.9108 + }, + { + "start": 3017.12, + "end": 3020.64, + "probability": 0.9583 + }, + { + "start": 3020.82, + "end": 3023.64, + "probability": 0.9926 + }, + { + "start": 3023.82, + "end": 3026.56, + "probability": 0.9238 + }, + { + "start": 3026.62, + "end": 3030.08, + "probability": 0.945 + }, + { + "start": 3030.08, + "end": 3033.66, + "probability": 0.9617 + }, + { + "start": 3034.58, + "end": 3038.26, + "probability": 0.9365 + }, + { + "start": 3038.64, + "end": 3042.62, + "probability": 0.9915 + }, + { + "start": 3043.08, + "end": 3047.52, + "probability": 0.9971 + }, + { + "start": 3047.7, + "end": 3049.3, + "probability": 0.6377 + }, + { + "start": 3049.4, + "end": 3051.04, + "probability": 0.8767 + }, + { + "start": 3051.46, + "end": 3052.9, + "probability": 0.9264 + }, + { + "start": 3053.04, + "end": 3054.12, + "probability": 0.988 + }, + { + "start": 3054.64, + "end": 3056.52, + "probability": 0.9786 + }, + { + "start": 3057.24, + "end": 3062.24, + "probability": 0.9971 + }, + { + "start": 3062.24, + "end": 3065.5, + "probability": 0.999 + }, + { + "start": 3066.52, + "end": 3069.88, + "probability": 0.9724 + }, + { + "start": 3070.0, + "end": 3071.28, + "probability": 0.8665 + }, + { + "start": 3071.36, + "end": 3071.86, + "probability": 0.6556 + }, + { + "start": 3071.92, + "end": 3074.16, + "probability": 0.9259 + }, + { + "start": 3074.48, + "end": 3076.88, + "probability": 0.9068 + }, + { + "start": 3077.54, + "end": 3080.9, + "probability": 0.9897 + }, + { + "start": 3080.9, + "end": 3084.38, + "probability": 0.9956 + }, + { + "start": 3084.6, + "end": 3088.78, + "probability": 0.9724 + }, + { + "start": 3089.26, + "end": 3089.9, + "probability": 0.7504 + }, + { + "start": 3090.46, + "end": 3092.08, + "probability": 0.8143 + }, + { + "start": 3092.16, + "end": 3094.52, + "probability": 0.9698 + }, + { + "start": 3094.6, + "end": 3096.6, + "probability": 0.9953 + }, + { + "start": 3102.16, + "end": 3105.62, + "probability": 0.8433 + }, + { + "start": 3105.64, + "end": 3111.16, + "probability": 0.9655 + }, + { + "start": 3111.16, + "end": 3115.98, + "probability": 0.97 + }, + { + "start": 3117.3, + "end": 3117.52, + "probability": 0.0076 + }, + { + "start": 3117.74, + "end": 3122.84, + "probability": 0.9775 + }, + { + "start": 3123.44, + "end": 3124.0, + "probability": 0.7405 + }, + { + "start": 3124.2, + "end": 3126.91, + "probability": 0.9619 + }, + { + "start": 3127.28, + "end": 3129.76, + "probability": 0.9786 + }, + { + "start": 3130.5, + "end": 3130.98, + "probability": 0.0071 + }, + { + "start": 3131.32, + "end": 3132.26, + "probability": 0.8407 + }, + { + "start": 3132.4, + "end": 3135.75, + "probability": 0.9552 + }, + { + "start": 3136.3, + "end": 3137.76, + "probability": 0.8193 + }, + { + "start": 3138.4, + "end": 3139.22, + "probability": 0.405 + }, + { + "start": 3139.38, + "end": 3140.32, + "probability": 0.7772 + }, + { + "start": 3140.42, + "end": 3145.4, + "probability": 0.7561 + }, + { + "start": 3146.36, + "end": 3149.68, + "probability": 0.7751 + }, + { + "start": 3150.06, + "end": 3151.58, + "probability": 0.7958 + }, + { + "start": 3152.12, + "end": 3153.08, + "probability": 0.7539 + }, + { + "start": 3153.38, + "end": 3153.78, + "probability": 0.902 + }, + { + "start": 3153.88, + "end": 3156.72, + "probability": 0.9785 + }, + { + "start": 3156.72, + "end": 3159.34, + "probability": 0.9717 + }, + { + "start": 3159.54, + "end": 3162.73, + "probability": 0.9585 + }, + { + "start": 3163.18, + "end": 3164.94, + "probability": 0.9883 + }, + { + "start": 3165.16, + "end": 3166.42, + "probability": 0.9875 + }, + { + "start": 3166.86, + "end": 3170.29, + "probability": 0.9702 + }, + { + "start": 3170.58, + "end": 3174.12, + "probability": 0.9706 + }, + { + "start": 3174.4, + "end": 3178.86, + "probability": 0.9845 + }, + { + "start": 3179.34, + "end": 3181.26, + "probability": 0.9939 + }, + { + "start": 3182.38, + "end": 3186.28, + "probability": 0.0284 + }, + { + "start": 3186.28, + "end": 3189.74, + "probability": 0.7607 + }, + { + "start": 3189.92, + "end": 3192.46, + "probability": 0.9536 + }, + { + "start": 3192.84, + "end": 3193.86, + "probability": 0.8832 + }, + { + "start": 3194.62, + "end": 3197.92, + "probability": 0.8863 + }, + { + "start": 3198.04, + "end": 3202.38, + "probability": 0.7837 + }, + { + "start": 3202.54, + "end": 3202.9, + "probability": 0.9704 + }, + { + "start": 3203.32, + "end": 3203.56, + "probability": 0.8895 + }, + { + "start": 3204.12, + "end": 3206.58, + "probability": 0.8202 + }, + { + "start": 3206.64, + "end": 3208.46, + "probability": 0.9301 + }, + { + "start": 3208.88, + "end": 3212.72, + "probability": 0.9839 + }, + { + "start": 3212.82, + "end": 3213.9, + "probability": 0.9338 + }, + { + "start": 3213.96, + "end": 3214.84, + "probability": 0.2119 + }, + { + "start": 3215.9, + "end": 3217.92, + "probability": 0.9917 + }, + { + "start": 3218.12, + "end": 3219.08, + "probability": 0.5916 + }, + { + "start": 3220.3, + "end": 3221.0, + "probability": 0.1723 + }, + { + "start": 3221.0, + "end": 3223.68, + "probability": 0.7177 + }, + { + "start": 3224.04, + "end": 3225.48, + "probability": 0.7789 + }, + { + "start": 3225.8, + "end": 3230.98, + "probability": 0.8407 + }, + { + "start": 3231.86, + "end": 3232.95, + "probability": 0.9252 + }, + { + "start": 3233.28, + "end": 3235.96, + "probability": 0.9963 + }, + { + "start": 3236.08, + "end": 3239.52, + "probability": 0.9948 + }, + { + "start": 3240.2, + "end": 3242.7, + "probability": 0.9878 + }, + { + "start": 3243.62, + "end": 3248.4, + "probability": 0.8845 + }, + { + "start": 3248.4, + "end": 3253.68, + "probability": 0.9539 + }, + { + "start": 3253.76, + "end": 3256.12, + "probability": 0.8003 + }, + { + "start": 3256.24, + "end": 3256.56, + "probability": 0.5855 + }, + { + "start": 3256.68, + "end": 3260.46, + "probability": 0.9513 + }, + { + "start": 3260.46, + "end": 3264.0, + "probability": 0.9968 + }, + { + "start": 3264.1, + "end": 3265.7, + "probability": 0.606 + }, + { + "start": 3265.86, + "end": 3267.92, + "probability": 0.9897 + }, + { + "start": 3268.24, + "end": 3270.46, + "probability": 0.8826 + }, + { + "start": 3270.8, + "end": 3274.32, + "probability": 0.9963 + }, + { + "start": 3275.76, + "end": 3277.28, + "probability": 0.306 + }, + { + "start": 3277.36, + "end": 3279.68, + "probability": 0.9536 + }, + { + "start": 3279.68, + "end": 3282.52, + "probability": 0.9749 + }, + { + "start": 3283.04, + "end": 3285.12, + "probability": 0.8715 + }, + { + "start": 3285.3, + "end": 3285.42, + "probability": 0.6185 + }, + { + "start": 3286.26, + "end": 3286.26, + "probability": 0.0024 + }, + { + "start": 3286.26, + "end": 3288.0, + "probability": 0.708 + }, + { + "start": 3288.14, + "end": 3295.64, + "probability": 0.0352 + }, + { + "start": 3297.41, + "end": 3299.86, + "probability": 0.9627 + }, + { + "start": 3299.86, + "end": 3303.0, + "probability": 0.8315 + }, + { + "start": 3303.42, + "end": 3307.9, + "probability": 0.9728 + }, + { + "start": 3308.66, + "end": 3310.18, + "probability": 0.9077 + }, + { + "start": 3310.71, + "end": 3317.52, + "probability": 0.9485 + }, + { + "start": 3317.68, + "end": 3321.22, + "probability": 0.9737 + }, + { + "start": 3321.78, + "end": 3323.97, + "probability": 0.9955 + }, + { + "start": 3324.18, + "end": 3325.96, + "probability": 0.8518 + }, + { + "start": 3326.82, + "end": 3328.38, + "probability": 0.4983 + }, + { + "start": 3328.52, + "end": 3332.2, + "probability": 0.9608 + }, + { + "start": 3332.38, + "end": 3333.38, + "probability": 0.8635 + }, + { + "start": 3333.44, + "end": 3335.62, + "probability": 0.9916 + }, + { + "start": 3335.62, + "end": 3339.18, + "probability": 0.3604 + }, + { + "start": 3339.18, + "end": 3339.18, + "probability": 0.1068 + }, + { + "start": 3339.18, + "end": 3339.66, + "probability": 0.1253 + }, + { + "start": 3339.76, + "end": 3342.18, + "probability": 0.8367 + }, + { + "start": 3342.22, + "end": 3344.14, + "probability": 0.9829 + }, + { + "start": 3344.92, + "end": 3347.76, + "probability": 0.9842 + }, + { + "start": 3349.02, + "end": 3353.04, + "probability": 0.8572 + }, + { + "start": 3353.1, + "end": 3356.32, + "probability": 0.9697 + }, + { + "start": 3356.68, + "end": 3357.76, + "probability": 0.8857 + }, + { + "start": 3357.82, + "end": 3362.51, + "probability": 0.9951 + }, + { + "start": 3362.68, + "end": 3368.3, + "probability": 0.9866 + }, + { + "start": 3368.64, + "end": 3370.9, + "probability": 0.8831 + }, + { + "start": 3371.12, + "end": 3374.7, + "probability": 0.7909 + }, + { + "start": 3375.14, + "end": 3379.22, + "probability": 0.8504 + }, + { + "start": 3379.46, + "end": 3380.96, + "probability": 0.0063 + }, + { + "start": 3383.96, + "end": 3384.32, + "probability": 0.0336 + }, + { + "start": 3384.32, + "end": 3384.32, + "probability": 0.0918 + }, + { + "start": 3384.32, + "end": 3385.5, + "probability": 0.413 + }, + { + "start": 3385.92, + "end": 3387.34, + "probability": 0.6875 + }, + { + "start": 3387.48, + "end": 3388.53, + "probability": 0.7844 + }, + { + "start": 3388.68, + "end": 3393.0, + "probability": 0.9689 + }, + { + "start": 3393.26, + "end": 3393.46, + "probability": 0.7041 + }, + { + "start": 3399.38, + "end": 3402.48, + "probability": 0.0619 + }, + { + "start": 3402.48, + "end": 3402.48, + "probability": 0.1531 + }, + { + "start": 3402.48, + "end": 3402.48, + "probability": 0.1392 + }, + { + "start": 3402.48, + "end": 3402.48, + "probability": 0.2168 + }, + { + "start": 3402.48, + "end": 3402.48, + "probability": 0.0459 + }, + { + "start": 3402.48, + "end": 3405.8, + "probability": 0.6141 + }, + { + "start": 3405.8, + "end": 3409.52, + "probability": 0.9957 + }, + { + "start": 3409.52, + "end": 3409.64, + "probability": 0.0349 + }, + { + "start": 3412.12, + "end": 3412.88, + "probability": 0.3918 + }, + { + "start": 3413.62, + "end": 3416.02, + "probability": 0.891 + }, + { + "start": 3416.08, + "end": 3416.4, + "probability": 0.2574 + }, + { + "start": 3416.98, + "end": 3419.48, + "probability": 0.9245 + }, + { + "start": 3420.26, + "end": 3423.42, + "probability": 0.8894 + }, + { + "start": 3424.22, + "end": 3424.22, + "probability": 0.0611 + }, + { + "start": 3424.22, + "end": 3425.4, + "probability": 0.4568 + }, + { + "start": 3425.96, + "end": 3427.24, + "probability": 0.9252 + }, + { + "start": 3428.28, + "end": 3429.67, + "probability": 0.5022 + }, + { + "start": 3431.48, + "end": 3435.06, + "probability": 0.9568 + }, + { + "start": 3436.28, + "end": 3440.9, + "probability": 0.9484 + }, + { + "start": 3441.52, + "end": 3442.0, + "probability": 0.2719 + }, + { + "start": 3442.3, + "end": 3444.14, + "probability": 0.8966 + }, + { + "start": 3445.45, + "end": 3447.94, + "probability": 0.2796 + }, + { + "start": 3448.04, + "end": 3450.72, + "probability": 0.6675 + }, + { + "start": 3450.94, + "end": 3455.42, + "probability": 0.9358 + }, + { + "start": 3458.28, + "end": 3459.68, + "probability": 0.5429 + }, + { + "start": 3460.28, + "end": 3461.9, + "probability": 0.7612 + }, + { + "start": 3462.1, + "end": 3467.78, + "probability": 0.9843 + }, + { + "start": 3467.78, + "end": 3475.16, + "probability": 0.7116 + }, + { + "start": 3475.94, + "end": 3480.58, + "probability": 0.2481 + }, + { + "start": 3481.66, + "end": 3482.8, + "probability": 0.2292 + }, + { + "start": 3482.92, + "end": 3487.73, + "probability": 0.9147 + }, + { + "start": 3489.4, + "end": 3491.06, + "probability": 0.9632 + }, + { + "start": 3491.16, + "end": 3492.6, + "probability": 0.4732 + }, + { + "start": 3492.74, + "end": 3494.26, + "probability": 0.8881 + }, + { + "start": 3494.34, + "end": 3497.13, + "probability": 0.9844 + }, + { + "start": 3497.36, + "end": 3502.9, + "probability": 0.9932 + }, + { + "start": 3504.52, + "end": 3506.74, + "probability": 0.9517 + }, + { + "start": 3506.88, + "end": 3507.48, + "probability": 0.9456 + }, + { + "start": 3507.82, + "end": 3509.1, + "probability": 0.9136 + }, + { + "start": 3510.0, + "end": 3514.1, + "probability": 0.7955 + }, + { + "start": 3515.86, + "end": 3522.7, + "probability": 0.8298 + }, + { + "start": 3523.1, + "end": 3526.92, + "probability": 0.9824 + }, + { + "start": 3527.5, + "end": 3531.88, + "probability": 0.9175 + }, + { + "start": 3531.88, + "end": 3535.84, + "probability": 0.9699 + }, + { + "start": 3536.32, + "end": 3540.52, + "probability": 0.8918 + }, + { + "start": 3540.9, + "end": 3542.1, + "probability": 0.8999 + }, + { + "start": 3542.12, + "end": 3543.61, + "probability": 0.9912 + }, + { + "start": 3544.92, + "end": 3548.8, + "probability": 0.9021 + }, + { + "start": 3551.23, + "end": 3554.34, + "probability": 0.998 + }, + { + "start": 3554.34, + "end": 3560.96, + "probability": 0.898 + }, + { + "start": 3561.6, + "end": 3566.32, + "probability": 0.9712 + }, + { + "start": 3567.06, + "end": 3568.72, + "probability": 0.998 + }, + { + "start": 3568.82, + "end": 3569.68, + "probability": 0.9626 + }, + { + "start": 3570.2, + "end": 3573.22, + "probability": 0.9891 + }, + { + "start": 3573.54, + "end": 3576.72, + "probability": 0.9946 + }, + { + "start": 3577.14, + "end": 3579.96, + "probability": 0.9847 + }, + { + "start": 3579.96, + "end": 3583.34, + "probability": 0.9738 + }, + { + "start": 3583.68, + "end": 3587.04, + "probability": 0.9941 + }, + { + "start": 3587.4, + "end": 3587.66, + "probability": 0.7167 + }, + { + "start": 3587.76, + "end": 3590.26, + "probability": 0.8463 + }, + { + "start": 3590.32, + "end": 3592.94, + "probability": 0.9953 + }, + { + "start": 3593.32, + "end": 3595.9, + "probability": 0.9666 + }, + { + "start": 3596.5, + "end": 3598.88, + "probability": 0.8303 + }, + { + "start": 3598.88, + "end": 3601.96, + "probability": 0.7746 + }, + { + "start": 3602.06, + "end": 3605.9, + "probability": 0.9943 + }, + { + "start": 3606.02, + "end": 3610.1, + "probability": 0.9165 + }, + { + "start": 3610.56, + "end": 3613.5, + "probability": 0.9943 + }, + { + "start": 3613.5, + "end": 3616.76, + "probability": 0.978 + }, + { + "start": 3617.16, + "end": 3618.36, + "probability": 0.7382 + }, + { + "start": 3618.72, + "end": 3619.7, + "probability": 0.7035 + }, + { + "start": 3619.88, + "end": 3622.14, + "probability": 0.7852 + }, + { + "start": 3622.46, + "end": 3626.9, + "probability": 0.9412 + }, + { + "start": 3627.66, + "end": 3627.94, + "probability": 0.5662 + }, + { + "start": 3628.58, + "end": 3635.52, + "probability": 0.978 + }, + { + "start": 3635.58, + "end": 3636.06, + "probability": 0.5577 + }, + { + "start": 3636.24, + "end": 3639.18, + "probability": 0.9929 + }, + { + "start": 3639.28, + "end": 3641.62, + "probability": 0.9838 + }, + { + "start": 3642.26, + "end": 3642.46, + "probability": 0.6603 + }, + { + "start": 3643.3, + "end": 3643.3, + "probability": 0.2611 + }, + { + "start": 3643.3, + "end": 3644.68, + "probability": 0.7603 + }, + { + "start": 3644.84, + "end": 3647.8, + "probability": 0.9642 + }, + { + "start": 3655.08, + "end": 3656.7, + "probability": 0.6103 + }, + { + "start": 3657.98, + "end": 3658.46, + "probability": 0.6934 + }, + { + "start": 3658.94, + "end": 3663.34, + "probability": 0.9714 + }, + { + "start": 3663.92, + "end": 3666.42, + "probability": 0.9236 + }, + { + "start": 3667.36, + "end": 3671.76, + "probability": 0.9691 + }, + { + "start": 3673.0, + "end": 3675.28, + "probability": 0.8334 + }, + { + "start": 3675.32, + "end": 3679.14, + "probability": 0.9928 + }, + { + "start": 3679.5, + "end": 3681.24, + "probability": 0.7364 + }, + { + "start": 3682.32, + "end": 3684.6, + "probability": 0.9815 + }, + { + "start": 3685.8, + "end": 3687.96, + "probability": 0.9407 + }, + { + "start": 3687.96, + "end": 3690.78, + "probability": 0.9922 + }, + { + "start": 3691.76, + "end": 3694.12, + "probability": 0.9723 + }, + { + "start": 3694.7, + "end": 3697.22, + "probability": 0.9841 + }, + { + "start": 3697.26, + "end": 3701.34, + "probability": 0.8815 + }, + { + "start": 3701.34, + "end": 3704.36, + "probability": 0.9933 + }, + { + "start": 3705.44, + "end": 3706.58, + "probability": 0.6856 + }, + { + "start": 3706.8, + "end": 3709.92, + "probability": 0.7866 + }, + { + "start": 3711.2, + "end": 3715.96, + "probability": 0.8795 + }, + { + "start": 3716.6, + "end": 3717.18, + "probability": 0.5336 + }, + { + "start": 3717.3, + "end": 3719.88, + "probability": 0.8803 + }, + { + "start": 3719.88, + "end": 3722.86, + "probability": 0.8584 + }, + { + "start": 3723.48, + "end": 3726.14, + "probability": 0.9919 + }, + { + "start": 3726.14, + "end": 3730.04, + "probability": 0.9987 + }, + { + "start": 3730.7, + "end": 3735.66, + "probability": 0.9836 + }, + { + "start": 3735.7, + "end": 3736.12, + "probability": 0.5038 + }, + { + "start": 3736.7, + "end": 3739.72, + "probability": 0.8701 + }, + { + "start": 3740.72, + "end": 3744.1, + "probability": 0.9836 + }, + { + "start": 3745.2, + "end": 3752.14, + "probability": 0.7759 + }, + { + "start": 3752.32, + "end": 3753.52, + "probability": 0.9134 + }, + { + "start": 3753.8, + "end": 3756.4, + "probability": 0.9121 + }, + { + "start": 3757.54, + "end": 3761.52, + "probability": 0.9666 + }, + { + "start": 3761.88, + "end": 3766.08, + "probability": 0.955 + }, + { + "start": 3766.24, + "end": 3766.34, + "probability": 0.6116 + }, + { + "start": 3768.42, + "end": 3769.4, + "probability": 0.5445 + }, + { + "start": 3769.68, + "end": 3770.44, + "probability": 0.8285 + }, + { + "start": 3774.54, + "end": 3776.04, + "probability": 0.9303 + }, + { + "start": 3776.58, + "end": 3780.82, + "probability": 0.9944 + }, + { + "start": 3781.72, + "end": 3781.74, + "probability": 0.046 + }, + { + "start": 3782.26, + "end": 3782.9, + "probability": 0.4571 + }, + { + "start": 3783.72, + "end": 3785.16, + "probability": 0.7518 + }, + { + "start": 3785.88, + "end": 3787.46, + "probability": 0.7715 + }, + { + "start": 3788.12, + "end": 3788.86, + "probability": 0.7308 + }, + { + "start": 3789.24, + "end": 3790.1, + "probability": 0.8247 + }, + { + "start": 3808.74, + "end": 3812.88, + "probability": 0.3923 + }, + { + "start": 3812.88, + "end": 3815.88, + "probability": 0.9069 + }, + { + "start": 3816.06, + "end": 3818.04, + "probability": 0.8714 + }, + { + "start": 3818.06, + "end": 3819.68, + "probability": 0.1382 + }, + { + "start": 3829.54, + "end": 3830.56, + "probability": 0.3475 + }, + { + "start": 3830.74, + "end": 3833.0, + "probability": 0.7402 + }, + { + "start": 3834.82, + "end": 3839.7, + "probability": 0.3866 + }, + { + "start": 3856.66, + "end": 3858.68, + "probability": 0.0679 + }, + { + "start": 3858.68, + "end": 3859.9, + "probability": 0.008 + }, + { + "start": 3861.12, + "end": 3863.28, + "probability": 0.0647 + }, + { + "start": 3868.28, + "end": 3868.98, + "probability": 0.0104 + }, + { + "start": 3869.44, + "end": 3871.42, + "probability": 0.1554 + }, + { + "start": 3871.42, + "end": 3874.28, + "probability": 0.0379 + }, + { + "start": 3874.28, + "end": 3876.84, + "probability": 0.0389 + }, + { + "start": 3877.34, + "end": 3877.78, + "probability": 0.012 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3888.0, + "end": 3888.0, + "probability": 0.0 + }, + { + "start": 3898.91, + "end": 3904.1, + "probability": 0.0452 + }, + { + "start": 3904.1, + "end": 3906.44, + "probability": 0.1056 + }, + { + "start": 3906.44, + "end": 3907.21, + "probability": 0.1196 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.0 + }, + { + "start": 4043.63, + "end": 4044.5, + "probability": 0.0137 + }, + { + "start": 4044.8, + "end": 4047.68, + "probability": 0.0811 + }, + { + "start": 4049.47, + "end": 4050.2, + "probability": 0.0507 + }, + { + "start": 4050.48, + "end": 4050.48, + "probability": 0.0674 + }, + { + "start": 4052.88, + "end": 4053.0, + "probability": 0.0188 + }, + { + "start": 4063.82, + "end": 4065.84, + "probability": 0.0515 + }, + { + "start": 4066.0, + "end": 4066.78, + "probability": 0.0073 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.0, + "end": 4173.0, + "probability": 0.0 + }, + { + "start": 4173.32, + "end": 4175.42, + "probability": 0.3912 + }, + { + "start": 4176.96, + "end": 4182.4, + "probability": 0.9871 + }, + { + "start": 4183.22, + "end": 4185.62, + "probability": 0.9974 + }, + { + "start": 4186.4, + "end": 4188.14, + "probability": 0.8708 + }, + { + "start": 4189.02, + "end": 4191.32, + "probability": 0.9971 + }, + { + "start": 4191.32, + "end": 4196.06, + "probability": 0.989 + }, + { + "start": 4197.02, + "end": 4199.76, + "probability": 0.9932 + }, + { + "start": 4200.42, + "end": 4201.82, + "probability": 0.9524 + }, + { + "start": 4202.4, + "end": 4204.28, + "probability": 0.9321 + }, + { + "start": 4204.92, + "end": 4209.52, + "probability": 0.9883 + }, + { + "start": 4209.62, + "end": 4210.86, + "probability": 0.9688 + }, + { + "start": 4211.44, + "end": 4215.62, + "probability": 0.9961 + }, + { + "start": 4216.42, + "end": 4218.12, + "probability": 0.9142 + }, + { + "start": 4219.04, + "end": 4224.06, + "probability": 0.9555 + }, + { + "start": 4224.2, + "end": 4225.1, + "probability": 0.965 + }, + { + "start": 4226.66, + "end": 4228.6, + "probability": 0.5839 + }, + { + "start": 4228.76, + "end": 4231.26, + "probability": 0.8353 + }, + { + "start": 4249.12, + "end": 4251.5, + "probability": 0.7139 + }, + { + "start": 4252.6, + "end": 4260.4, + "probability": 0.9938 + }, + { + "start": 4260.96, + "end": 4264.62, + "probability": 0.995 + }, + { + "start": 4265.3, + "end": 4265.96, + "probability": 0.9542 + }, + { + "start": 4267.52, + "end": 4269.42, + "probability": 0.5183 + }, + { + "start": 4271.68, + "end": 4272.04, + "probability": 0.9048 + }, + { + "start": 4275.12, + "end": 4278.54, + "probability": 0.4899 + }, + { + "start": 4278.54, + "end": 4278.6, + "probability": 0.1033 + }, + { + "start": 4278.6, + "end": 4281.68, + "probability": 0.3665 + }, + { + "start": 4283.44, + "end": 4284.75, + "probability": 0.9058 + }, + { + "start": 4287.84, + "end": 4288.58, + "probability": 0.771 + }, + { + "start": 4289.14, + "end": 4289.8, + "probability": 0.9924 + }, + { + "start": 4293.26, + "end": 4297.28, + "probability": 0.0442 + }, + { + "start": 4299.32, + "end": 4300.5, + "probability": 0.2479 + }, + { + "start": 4305.12, + "end": 4305.62, + "probability": 0.2897 + }, + { + "start": 4308.02, + "end": 4309.36, + "probability": 0.1575 + }, + { + "start": 4311.52, + "end": 4311.8, + "probability": 0.05 + }, + { + "start": 4312.56, + "end": 4314.18, + "probability": 0.3234 + }, + { + "start": 4314.94, + "end": 4315.88, + "probability": 0.8426 + }, + { + "start": 4316.1, + "end": 4317.42, + "probability": 0.5369 + }, + { + "start": 4318.76, + "end": 4320.76, + "probability": 0.9718 + }, + { + "start": 4321.18, + "end": 4321.18, + "probability": 0.2673 + }, + { + "start": 4321.24, + "end": 4322.04, + "probability": 0.7099 + }, + { + "start": 4323.4, + "end": 4324.72, + "probability": 0.7316 + }, + { + "start": 4324.94, + "end": 4329.0, + "probability": 0.8283 + }, + { + "start": 4330.44, + "end": 4330.94, + "probability": 0.5689 + }, + { + "start": 4334.02, + "end": 4334.54, + "probability": 0.7297 + }, + { + "start": 4334.82, + "end": 4338.94, + "probability": 0.9549 + }, + { + "start": 4341.08, + "end": 4343.5, + "probability": 0.995 + }, + { + "start": 4344.54, + "end": 4348.08, + "probability": 0.7713 + }, + { + "start": 4349.9, + "end": 4350.64, + "probability": 0.542 + }, + { + "start": 4351.24, + "end": 4354.06, + "probability": 0.817 + }, + { + "start": 4354.86, + "end": 4357.84, + "probability": 0.9838 + }, + { + "start": 4359.92, + "end": 4364.12, + "probability": 0.809 + }, + { + "start": 4364.32, + "end": 4365.56, + "probability": 0.5326 + }, + { + "start": 4365.76, + "end": 4367.42, + "probability": 0.9321 + }, + { + "start": 4368.7, + "end": 4369.22, + "probability": 0.9122 + }, + { + "start": 4369.98, + "end": 4371.92, + "probability": 0.6092 + }, + { + "start": 4372.62, + "end": 4376.04, + "probability": 0.991 + }, + { + "start": 4376.21, + "end": 4380.18, + "probability": 0.9777 + }, + { + "start": 4380.86, + "end": 4382.86, + "probability": 0.7848 + }, + { + "start": 4383.9, + "end": 4386.58, + "probability": 0.8772 + }, + { + "start": 4387.04, + "end": 4387.88, + "probability": 0.9941 + }, + { + "start": 4388.2, + "end": 4389.66, + "probability": 0.9709 + }, + { + "start": 4390.0, + "end": 4394.28, + "probability": 0.527 + }, + { + "start": 4394.48, + "end": 4397.8, + "probability": 0.7715 + }, + { + "start": 4398.16, + "end": 4398.86, + "probability": 0.8378 + }, + { + "start": 4399.4, + "end": 4400.86, + "probability": 0.9634 + }, + { + "start": 4400.94, + "end": 4402.24, + "probability": 0.9751 + }, + { + "start": 4402.42, + "end": 4403.36, + "probability": 0.8504 + }, + { + "start": 4403.9, + "end": 4405.04, + "probability": 0.6463 + }, + { + "start": 4405.34, + "end": 4408.94, + "probability": 0.9326 + }, + { + "start": 4409.02, + "end": 4409.54, + "probability": 0.8892 + }, + { + "start": 4410.72, + "end": 4412.24, + "probability": 0.8454 + }, + { + "start": 4412.44, + "end": 4414.3, + "probability": 0.7511 + }, + { + "start": 4415.84, + "end": 4420.1, + "probability": 0.873 + }, + { + "start": 4421.77, + "end": 4424.12, + "probability": 0.8276 + }, + { + "start": 4424.26, + "end": 4424.8, + "probability": 0.3363 + }, + { + "start": 4424.84, + "end": 4427.74, + "probability": 0.8815 + }, + { + "start": 4430.02, + "end": 4432.22, + "probability": 0.5843 + }, + { + "start": 4432.28, + "end": 4432.58, + "probability": 0.8498 + }, + { + "start": 4437.52, + "end": 4438.46, + "probability": 0.6696 + }, + { + "start": 4438.56, + "end": 4439.9, + "probability": 0.8776 + }, + { + "start": 4440.14, + "end": 4442.64, + "probability": 0.9651 + }, + { + "start": 4443.52, + "end": 4444.2, + "probability": 0.9044 + }, + { + "start": 4444.5, + "end": 4447.46, + "probability": 0.757 + }, + { + "start": 4447.62, + "end": 4450.56, + "probability": 0.9938 + }, + { + "start": 4450.7, + "end": 4454.68, + "probability": 0.8376 + }, + { + "start": 4454.8, + "end": 4458.98, + "probability": 0.9395 + }, + { + "start": 4459.2, + "end": 4459.7, + "probability": 0.753 + }, + { + "start": 4460.12, + "end": 4464.0, + "probability": 0.8894 + }, + { + "start": 4472.82, + "end": 4473.36, + "probability": 0.4622 + }, + { + "start": 4473.4, + "end": 4473.98, + "probability": 0.7578 + }, + { + "start": 4475.64, + "end": 4477.54, + "probability": 0.0341 + }, + { + "start": 4477.54, + "end": 4477.6, + "probability": 0.0304 + }, + { + "start": 4477.6, + "end": 4477.6, + "probability": 0.0258 + }, + { + "start": 4477.6, + "end": 4477.86, + "probability": 0.0994 + }, + { + "start": 4477.86, + "end": 4478.9, + "probability": 0.1003 + }, + { + "start": 4489.1, + "end": 4492.9, + "probability": 0.9046 + }, + { + "start": 4493.18, + "end": 4494.52, + "probability": 0.8271 + }, + { + "start": 4494.92, + "end": 4497.96, + "probability": 0.7498 + }, + { + "start": 4498.59, + "end": 4499.04, + "probability": 0.0436 + }, + { + "start": 4500.64, + "end": 4501.04, + "probability": 0.4466 + }, + { + "start": 4501.04, + "end": 4510.26, + "probability": 0.9784 + }, + { + "start": 4512.16, + "end": 4515.72, + "probability": 0.8068 + }, + { + "start": 4517.82, + "end": 4522.78, + "probability": 0.9982 + }, + { + "start": 4522.98, + "end": 4524.56, + "probability": 0.6494 + }, + { + "start": 4525.78, + "end": 4528.0, + "probability": 0.9977 + }, + { + "start": 4529.06, + "end": 4531.54, + "probability": 0.6592 + }, + { + "start": 4535.76, + "end": 4536.98, + "probability": 0.9135 + }, + { + "start": 4538.92, + "end": 4540.4, + "probability": 0.8005 + }, + { + "start": 4543.08, + "end": 4545.54, + "probability": 0.8864 + }, + { + "start": 4546.38, + "end": 4552.74, + "probability": 0.9965 + }, + { + "start": 4552.74, + "end": 4559.38, + "probability": 0.9981 + }, + { + "start": 4560.32, + "end": 4567.64, + "probability": 0.9983 + }, + { + "start": 4567.94, + "end": 4571.3, + "probability": 0.9717 + }, + { + "start": 4571.3, + "end": 4576.3, + "probability": 0.9899 + }, + { + "start": 4577.28, + "end": 4582.06, + "probability": 0.9802 + }, + { + "start": 4582.58, + "end": 4584.82, + "probability": 0.9992 + }, + { + "start": 4584.96, + "end": 4587.02, + "probability": 0.8957 + }, + { + "start": 4587.26, + "end": 4594.1, + "probability": 0.9893 + }, + { + "start": 4594.88, + "end": 4600.1, + "probability": 0.9786 + }, + { + "start": 4600.66, + "end": 4604.7, + "probability": 0.9933 + }, + { + "start": 4605.62, + "end": 4609.16, + "probability": 0.9675 + }, + { + "start": 4609.36, + "end": 4613.1, + "probability": 0.7228 + }, + { + "start": 4613.56, + "end": 4615.38, + "probability": 0.8345 + }, + { + "start": 4616.16, + "end": 4621.26, + "probability": 0.8741 + }, + { + "start": 4621.28, + "end": 4621.4, + "probability": 0.3277 + }, + { + "start": 4621.5, + "end": 4622.23, + "probability": 0.4682 + }, + { + "start": 4622.54, + "end": 4623.94, + "probability": 0.7608 + }, + { + "start": 4626.0, + "end": 4628.18, + "probability": 0.8687 + }, + { + "start": 4629.02, + "end": 4632.18, + "probability": 0.9926 + }, + { + "start": 4632.3, + "end": 4633.12, + "probability": 0.5994 + }, + { + "start": 4634.2, + "end": 4636.2, + "probability": 0.6141 + }, + { + "start": 4637.52, + "end": 4639.56, + "probability": 0.9221 + }, + { + "start": 4639.88, + "end": 4644.4, + "probability": 0.9996 + }, + { + "start": 4644.4, + "end": 4651.84, + "probability": 0.9635 + }, + { + "start": 4652.6, + "end": 4653.56, + "probability": 0.8418 + }, + { + "start": 4654.94, + "end": 4659.06, + "probability": 0.9681 + }, + { + "start": 4659.94, + "end": 4660.84, + "probability": 0.4869 + }, + { + "start": 4661.02, + "end": 4663.24, + "probability": 0.6553 + }, + { + "start": 4666.2, + "end": 4667.3, + "probability": 0.8008 + }, + { + "start": 4668.12, + "end": 4673.33, + "probability": 0.9898 + }, + { + "start": 4673.66, + "end": 4676.42, + "probability": 0.9581 + }, + { + "start": 4677.1, + "end": 4678.14, + "probability": 0.8884 + }, + { + "start": 4678.72, + "end": 4681.76, + "probability": 0.9689 + }, + { + "start": 4682.32, + "end": 4685.06, + "probability": 0.9608 + }, + { + "start": 4685.5, + "end": 4690.2, + "probability": 0.9744 + }, + { + "start": 4690.76, + "end": 4695.34, + "probability": 0.8945 + }, + { + "start": 4695.34, + "end": 4700.86, + "probability": 0.9968 + }, + { + "start": 4701.62, + "end": 4702.18, + "probability": 0.8255 + }, + { + "start": 4702.62, + "end": 4703.26, + "probability": 0.4639 + }, + { + "start": 4703.48, + "end": 4709.56, + "probability": 0.9949 + }, + { + "start": 4710.12, + "end": 4714.34, + "probability": 0.9289 + }, + { + "start": 4715.04, + "end": 4718.04, + "probability": 0.9556 + }, + { + "start": 4718.68, + "end": 4721.06, + "probability": 0.9097 + }, + { + "start": 4721.62, + "end": 4727.26, + "probability": 0.9966 + }, + { + "start": 4727.26, + "end": 4733.02, + "probability": 0.9553 + }, + { + "start": 4733.64, + "end": 4738.56, + "probability": 0.9954 + }, + { + "start": 4750.4, + "end": 4752.54, + "probability": 0.6953 + }, + { + "start": 4757.74, + "end": 4761.56, + "probability": 0.9421 + }, + { + "start": 4761.8, + "end": 4762.3, + "probability": 0.8589 + }, + { + "start": 4763.8, + "end": 4765.9, + "probability": 0.4434 + }, + { + "start": 4768.66, + "end": 4770.14, + "probability": 0.7428 + }, + { + "start": 4770.38, + "end": 4771.46, + "probability": 0.8034 + }, + { + "start": 4771.78, + "end": 4772.66, + "probability": 0.6572 + }, + { + "start": 4774.1, + "end": 4774.52, + "probability": 0.5005 + }, + { + "start": 4783.82, + "end": 4785.0, + "probability": 0.6346 + }, + { + "start": 4787.65, + "end": 4790.92, + "probability": 0.7093 + }, + { + "start": 4792.84, + "end": 4796.86, + "probability": 0.9791 + }, + { + "start": 4797.9, + "end": 4799.82, + "probability": 0.9731 + }, + { + "start": 4801.42, + "end": 4803.32, + "probability": 0.9829 + }, + { + "start": 4804.1, + "end": 4807.08, + "probability": 0.9814 + }, + { + "start": 4808.12, + "end": 4810.04, + "probability": 0.9231 + }, + { + "start": 4810.46, + "end": 4813.1, + "probability": 0.8989 + }, + { + "start": 4813.88, + "end": 4816.54, + "probability": 0.9952 + }, + { + "start": 4816.64, + "end": 4824.16, + "probability": 0.9434 + }, + { + "start": 4824.92, + "end": 4828.46, + "probability": 0.966 + }, + { + "start": 4829.34, + "end": 4831.36, + "probability": 0.9664 + }, + { + "start": 4833.52, + "end": 4835.24, + "probability": 0.7588 + }, + { + "start": 4836.14, + "end": 4838.64, + "probability": 0.9679 + }, + { + "start": 4839.72, + "end": 4841.86, + "probability": 0.9919 + }, + { + "start": 4842.0, + "end": 4844.0, + "probability": 0.8341 + }, + { + "start": 4844.2, + "end": 4846.36, + "probability": 0.7655 + }, + { + "start": 4847.12, + "end": 4850.64, + "probability": 0.573 + }, + { + "start": 4853.94, + "end": 4855.42, + "probability": 0.8588 + }, + { + "start": 4856.36, + "end": 4858.74, + "probability": 0.9919 + }, + { + "start": 4858.86, + "end": 4861.1, + "probability": 0.9671 + }, + { + "start": 4862.08, + "end": 4864.88, + "probability": 0.9888 + }, + { + "start": 4865.28, + "end": 4867.82, + "probability": 0.9921 + }, + { + "start": 4868.68, + "end": 4870.16, + "probability": 0.8999 + }, + { + "start": 4871.12, + "end": 4874.1, + "probability": 0.8413 + }, + { + "start": 4874.88, + "end": 4875.56, + "probability": 0.8556 + }, + { + "start": 4875.82, + "end": 4877.72, + "probability": 0.8713 + }, + { + "start": 4877.9, + "end": 4879.86, + "probability": 0.8068 + }, + { + "start": 4879.92, + "end": 4881.44, + "probability": 0.8617 + }, + { + "start": 4881.98, + "end": 4885.54, + "probability": 0.9994 + }, + { + "start": 4885.86, + "end": 4890.46, + "probability": 0.9985 + }, + { + "start": 4891.9, + "end": 4895.46, + "probability": 0.7886 + }, + { + "start": 4895.62, + "end": 4900.48, + "probability": 0.9971 + }, + { + "start": 4900.48, + "end": 4904.08, + "probability": 0.9945 + }, + { + "start": 4904.2, + "end": 4905.64, + "probability": 0.6815 + }, + { + "start": 4905.7, + "end": 4905.78, + "probability": 0.6129 + }, + { + "start": 4905.82, + "end": 4908.12, + "probability": 0.9526 + }, + { + "start": 4908.24, + "end": 4908.68, + "probability": 0.6991 + }, + { + "start": 4908.76, + "end": 4909.88, + "probability": 0.9905 + }, + { + "start": 4910.96, + "end": 4912.31, + "probability": 0.9787 + }, + { + "start": 4913.34, + "end": 4914.56, + "probability": 0.9553 + }, + { + "start": 4915.92, + "end": 4917.82, + "probability": 0.9763 + }, + { + "start": 4918.1, + "end": 4919.04, + "probability": 0.4067 + }, + { + "start": 4919.4, + "end": 4920.72, + "probability": 0.7949 + }, + { + "start": 4920.92, + "end": 4923.58, + "probability": 0.8251 + }, + { + "start": 4923.68, + "end": 4924.26, + "probability": 0.8246 + }, + { + "start": 4924.34, + "end": 4925.56, + "probability": 0.9697 + }, + { + "start": 4926.3, + "end": 4932.4, + "probability": 0.9647 + }, + { + "start": 4932.72, + "end": 4933.5, + "probability": 0.9536 + }, + { + "start": 4933.72, + "end": 4938.24, + "probability": 0.9966 + }, + { + "start": 4938.7, + "end": 4940.84, + "probability": 0.9763 + }, + { + "start": 4941.34, + "end": 4942.46, + "probability": 0.5054 + }, + { + "start": 4943.08, + "end": 4945.78, + "probability": 0.9152 + }, + { + "start": 4946.0, + "end": 4947.4, + "probability": 0.7861 + }, + { + "start": 4947.68, + "end": 4949.06, + "probability": 0.932 + }, + { + "start": 4949.34, + "end": 4952.92, + "probability": 0.9088 + }, + { + "start": 4952.92, + "end": 4955.12, + "probability": 0.8281 + }, + { + "start": 4956.72, + "end": 4963.68, + "probability": 0.6413 + }, + { + "start": 4963.68, + "end": 4964.62, + "probability": 0.858 + }, + { + "start": 4965.34, + "end": 4967.04, + "probability": 0.6334 + }, + { + "start": 4967.92, + "end": 4969.08, + "probability": 0.7367 + }, + { + "start": 4970.56, + "end": 4971.58, + "probability": 0.6663 + }, + { + "start": 4971.7, + "end": 4972.9, + "probability": 0.5377 + }, + { + "start": 4973.76, + "end": 4975.28, + "probability": 0.9773 + }, + { + "start": 4975.88, + "end": 4977.9, + "probability": 0.8956 + }, + { + "start": 4978.48, + "end": 4979.06, + "probability": 0.5726 + }, + { + "start": 4979.34, + "end": 4979.46, + "probability": 0.8545 + }, + { + "start": 4979.46, + "end": 4979.62, + "probability": 0.7586 + }, + { + "start": 4979.68, + "end": 4980.74, + "probability": 0.9468 + }, + { + "start": 4980.84, + "end": 4981.62, + "probability": 0.9761 + }, + { + "start": 4981.94, + "end": 4982.7, + "probability": 0.712 + }, + { + "start": 4982.86, + "end": 4985.34, + "probability": 0.9833 + }, + { + "start": 4985.76, + "end": 4986.2, + "probability": 0.5168 + }, + { + "start": 4986.4, + "end": 4987.58, + "probability": 0.9836 + }, + { + "start": 4987.66, + "end": 4988.7, + "probability": 0.5802 + }, + { + "start": 4989.02, + "end": 4991.26, + "probability": 0.9894 + }, + { + "start": 4991.76, + "end": 4992.32, + "probability": 0.7922 + }, + { + "start": 4992.98, + "end": 4995.66, + "probability": 0.9712 + }, + { + "start": 4995.74, + "end": 4996.46, + "probability": 0.8555 + }, + { + "start": 4996.5, + "end": 4997.34, + "probability": 0.9804 + }, + { + "start": 4997.6, + "end": 4998.58, + "probability": 0.985 + }, + { + "start": 4998.72, + "end": 4999.64, + "probability": 0.9858 + }, + { + "start": 4999.72, + "end": 5000.38, + "probability": 0.8414 + }, + { + "start": 5001.04, + "end": 5003.78, + "probability": 0.9874 + }, + { + "start": 5003.78, + "end": 5005.64, + "probability": 0.9932 + }, + { + "start": 5006.46, + "end": 5010.06, + "probability": 0.968 + }, + { + "start": 5010.64, + "end": 5011.5, + "probability": 0.9723 + }, + { + "start": 5011.7, + "end": 5011.86, + "probability": 0.913 + }, + { + "start": 5011.88, + "end": 5015.78, + "probability": 0.9791 + }, + { + "start": 5016.12, + "end": 5017.9, + "probability": 0.9915 + }, + { + "start": 5018.36, + "end": 5019.88, + "probability": 0.9563 + }, + { + "start": 5021.32, + "end": 5023.52, + "probability": 0.6569 + }, + { + "start": 5024.38, + "end": 5029.0, + "probability": 0.9933 + }, + { + "start": 5029.38, + "end": 5030.8, + "probability": 0.9471 + }, + { + "start": 5031.46, + "end": 5033.4, + "probability": 0.9894 + }, + { + "start": 5034.84, + "end": 5036.64, + "probability": 0.9868 + }, + { + "start": 5036.82, + "end": 5040.2, + "probability": 0.9697 + }, + { + "start": 5040.62, + "end": 5043.52, + "probability": 0.7452 + }, + { + "start": 5043.6, + "end": 5045.44, + "probability": 0.9273 + }, + { + "start": 5045.76, + "end": 5047.68, + "probability": 0.8965 + }, + { + "start": 5047.82, + "end": 5050.6, + "probability": 0.9888 + }, + { + "start": 5051.12, + "end": 5053.36, + "probability": 0.9429 + }, + { + "start": 5053.8, + "end": 5055.84, + "probability": 0.9675 + }, + { + "start": 5056.88, + "end": 5059.84, + "probability": 0.0293 + }, + { + "start": 5060.0, + "end": 5065.68, + "probability": 0.5678 + }, + { + "start": 5065.82, + "end": 5067.36, + "probability": 0.3707 + }, + { + "start": 5067.36, + "end": 5071.63, + "probability": 0.8235 + }, + { + "start": 5072.44, + "end": 5075.4, + "probability": 0.9971 + }, + { + "start": 5076.62, + "end": 5079.78, + "probability": 0.9298 + }, + { + "start": 5080.38, + "end": 5081.24, + "probability": 0.9767 + }, + { + "start": 5081.66, + "end": 5084.48, + "probability": 0.9026 + }, + { + "start": 5084.88, + "end": 5086.26, + "probability": 0.4369 + }, + { + "start": 5086.42, + "end": 5087.42, + "probability": 0.9622 + }, + { + "start": 5087.54, + "end": 5089.76, + "probability": 0.8934 + }, + { + "start": 5089.98, + "end": 5094.52, + "probability": 0.9099 + }, + { + "start": 5094.72, + "end": 5096.34, + "probability": 0.8092 + }, + { + "start": 5096.52, + "end": 5100.98, + "probability": 0.9961 + }, + { + "start": 5101.36, + "end": 5104.86, + "probability": 0.9816 + }, + { + "start": 5104.94, + "end": 5107.72, + "probability": 0.9972 + }, + { + "start": 5108.48, + "end": 5109.96, + "probability": 0.761 + }, + { + "start": 5110.1, + "end": 5111.6, + "probability": 0.911 + }, + { + "start": 5112.04, + "end": 5114.78, + "probability": 0.8909 + }, + { + "start": 5116.12, + "end": 5120.18, + "probability": 0.9961 + }, + { + "start": 5120.86, + "end": 5122.24, + "probability": 0.9948 + }, + { + "start": 5123.26, + "end": 5125.44, + "probability": 0.8763 + }, + { + "start": 5125.46, + "end": 5128.44, + "probability": 0.9505 + }, + { + "start": 5137.78, + "end": 5137.78, + "probability": 0.7589 + }, + { + "start": 5137.78, + "end": 5138.82, + "probability": 0.7581 + }, + { + "start": 5144.08, + "end": 5145.48, + "probability": 0.9241 + }, + { + "start": 5145.96, + "end": 5155.0, + "probability": 0.9941 + }, + { + "start": 5155.0, + "end": 5157.84, + "probability": 0.9766 + }, + { + "start": 5158.46, + "end": 5160.88, + "probability": 0.8223 + }, + { + "start": 5162.93, + "end": 5165.96, + "probability": 0.769 + }, + { + "start": 5166.26, + "end": 5171.04, + "probability": 0.0957 + }, + { + "start": 5173.17, + "end": 5175.46, + "probability": 0.8649 + }, + { + "start": 5176.94, + "end": 5178.6, + "probability": 0.2652 + }, + { + "start": 5178.7, + "end": 5179.64, + "probability": 0.719 + }, + { + "start": 5179.82, + "end": 5181.28, + "probability": 0.6652 + }, + { + "start": 5181.42, + "end": 5185.1, + "probability": 0.3368 + }, + { + "start": 5185.1, + "end": 5185.1, + "probability": 0.0082 + }, + { + "start": 5185.1, + "end": 5187.42, + "probability": 0.6399 + }, + { + "start": 5187.42, + "end": 5187.52, + "probability": 0.4312 + }, + { + "start": 5187.76, + "end": 5189.32, + "probability": 0.7763 + }, + { + "start": 5189.46, + "end": 5191.36, + "probability": 0.9832 + }, + { + "start": 5191.68, + "end": 5191.68, + "probability": 0.1375 + }, + { + "start": 5191.7, + "end": 5192.12, + "probability": 0.7062 + }, + { + "start": 5192.58, + "end": 5193.7, + "probability": 0.3591 + }, + { + "start": 5193.78, + "end": 5195.78, + "probability": 0.9304 + }, + { + "start": 5195.82, + "end": 5196.62, + "probability": 0.7239 + }, + { + "start": 5196.68, + "end": 5197.52, + "probability": 0.5765 + }, + { + "start": 5198.1, + "end": 5201.38, + "probability": 0.8651 + }, + { + "start": 5201.42, + "end": 5201.8, + "probability": 0.5194 + }, + { + "start": 5202.74, + "end": 5206.36, + "probability": 0.9561 + }, + { + "start": 5206.88, + "end": 5209.66, + "probability": 0.8572 + }, + { + "start": 5210.88, + "end": 5213.04, + "probability": 0.9823 + }, + { + "start": 5215.94, + "end": 5217.14, + "probability": 0.9357 + }, + { + "start": 5217.52, + "end": 5220.42, + "probability": 0.9666 + }, + { + "start": 5221.7, + "end": 5223.98, + "probability": 0.9811 + }, + { + "start": 5224.78, + "end": 5225.54, + "probability": 0.8098 + }, + { + "start": 5226.06, + "end": 5230.24, + "probability": 0.9752 + }, + { + "start": 5230.98, + "end": 5231.44, + "probability": 0.8951 + }, + { + "start": 5232.2, + "end": 5235.52, + "probability": 0.9027 + }, + { + "start": 5236.59, + "end": 5240.72, + "probability": 0.9856 + }, + { + "start": 5240.88, + "end": 5243.88, + "probability": 0.782 + }, + { + "start": 5245.4, + "end": 5247.98, + "probability": 0.9626 + }, + { + "start": 5248.62, + "end": 5251.34, + "probability": 0.8897 + }, + { + "start": 5252.22, + "end": 5254.14, + "probability": 0.8858 + }, + { + "start": 5255.06, + "end": 5256.64, + "probability": 0.9175 + }, + { + "start": 5256.9, + "end": 5262.28, + "probability": 0.9964 + }, + { + "start": 5263.52, + "end": 5264.8, + "probability": 0.884 + }, + { + "start": 5265.36, + "end": 5267.76, + "probability": 0.9806 + }, + { + "start": 5267.88, + "end": 5268.3, + "probability": 0.8508 + }, + { + "start": 5269.72, + "end": 5271.72, + "probability": 0.9475 + }, + { + "start": 5272.3, + "end": 5273.82, + "probability": 0.984 + }, + { + "start": 5274.74, + "end": 5276.0, + "probability": 0.9924 + }, + { + "start": 5276.34, + "end": 5278.6, + "probability": 0.584 + }, + { + "start": 5278.74, + "end": 5280.04, + "probability": 0.5862 + }, + { + "start": 5280.42, + "end": 5281.06, + "probability": 0.5496 + }, + { + "start": 5281.12, + "end": 5281.8, + "probability": 0.914 + }, + { + "start": 5282.7, + "end": 5283.94, + "probability": 0.9329 + }, + { + "start": 5284.86, + "end": 5290.44, + "probability": 0.4682 + }, + { + "start": 5291.24, + "end": 5293.2, + "probability": 0.5966 + }, + { + "start": 5298.1, + "end": 5303.38, + "probability": 0.1467 + }, + { + "start": 5303.38, + "end": 5304.34, + "probability": 0.0402 + }, + { + "start": 5304.44, + "end": 5305.0, + "probability": 0.048 + }, + { + "start": 5305.06, + "end": 5305.54, + "probability": 0.3162 + }, + { + "start": 5306.54, + "end": 5307.2, + "probability": 0.1402 + }, + { + "start": 5315.1, + "end": 5318.34, + "probability": 0.7334 + }, + { + "start": 5318.34, + "end": 5318.34, + "probability": 0.0226 + }, + { + "start": 5318.34, + "end": 5318.34, + "probability": 0.2565 + }, + { + "start": 5318.34, + "end": 5318.34, + "probability": 0.1268 + }, + { + "start": 5318.34, + "end": 5318.86, + "probability": 0.064 + }, + { + "start": 5319.82, + "end": 5322.46, + "probability": 0.7837 + }, + { + "start": 5322.72, + "end": 5324.12, + "probability": 0.8736 + }, + { + "start": 5324.3, + "end": 5324.58, + "probability": 0.6812 + }, + { + "start": 5324.9, + "end": 5325.43, + "probability": 0.7975 + }, + { + "start": 5326.24, + "end": 5328.08, + "probability": 0.8159 + }, + { + "start": 5329.02, + "end": 5329.94, + "probability": 0.889 + }, + { + "start": 5330.9, + "end": 5332.64, + "probability": 0.8987 + }, + { + "start": 5332.82, + "end": 5332.82, + "probability": 0.6784 + }, + { + "start": 5332.92, + "end": 5336.04, + "probability": 0.7852 + }, + { + "start": 5336.54, + "end": 5337.48, + "probability": 0.9943 + }, + { + "start": 5338.02, + "end": 5338.98, + "probability": 0.6425 + }, + { + "start": 5339.02, + "end": 5343.02, + "probability": 0.9919 + }, + { + "start": 5343.26, + "end": 5344.92, + "probability": 0.5105 + }, + { + "start": 5344.96, + "end": 5346.5, + "probability": 0.8679 + }, + { + "start": 5346.64, + "end": 5347.2, + "probability": 0.7329 + }, + { + "start": 5347.94, + "end": 5349.04, + "probability": 0.9023 + }, + { + "start": 5349.26, + "end": 5349.88, + "probability": 0.8138 + }, + { + "start": 5349.92, + "end": 5352.33, + "probability": 0.7583 + }, + { + "start": 5353.46, + "end": 5356.38, + "probability": 0.8341 + }, + { + "start": 5364.94, + "end": 5369.48, + "probability": 0.3368 + }, + { + "start": 5382.56, + "end": 5383.3, + "probability": 0.5428 + }, + { + "start": 5383.3, + "end": 5383.46, + "probability": 0.3293 + }, + { + "start": 5383.46, + "end": 5383.5, + "probability": 0.1328 + }, + { + "start": 5383.5, + "end": 5383.5, + "probability": 0.0572 + }, + { + "start": 5384.02, + "end": 5385.66, + "probability": 0.2453 + }, + { + "start": 5386.7, + "end": 5389.32, + "probability": 0.8481 + }, + { + "start": 5389.4, + "end": 5391.84, + "probability": 0.6725 + }, + { + "start": 5394.4, + "end": 5397.5, + "probability": 0.9895 + }, + { + "start": 5397.68, + "end": 5400.02, + "probability": 0.4359 + }, + { + "start": 5401.38, + "end": 5401.48, + "probability": 0.4737 + }, + { + "start": 5403.88, + "end": 5407.04, + "probability": 0.8013 + }, + { + "start": 5407.84, + "end": 5409.75, + "probability": 0.8024 + }, + { + "start": 5411.64, + "end": 5413.04, + "probability": 0.6785 + }, + { + "start": 5413.1, + "end": 5414.46, + "probability": 0.8612 + }, + { + "start": 5414.86, + "end": 5417.32, + "probability": 0.8933 + }, + { + "start": 5417.44, + "end": 5418.56, + "probability": 0.8573 + }, + { + "start": 5418.64, + "end": 5419.78, + "probability": 0.9609 + }, + { + "start": 5420.22, + "end": 5423.29, + "probability": 0.8215 + }, + { + "start": 5426.54, + "end": 5428.68, + "probability": 0.6199 + }, + { + "start": 5434.18, + "end": 5435.56, + "probability": 0.9839 + }, + { + "start": 5436.38, + "end": 5438.36, + "probability": 0.0882 + }, + { + "start": 5439.08, + "end": 5441.28, + "probability": 0.974 + }, + { + "start": 5441.4, + "end": 5445.52, + "probability": 0.9735 + }, + { + "start": 5446.08, + "end": 5453.1, + "probability": 0.7343 + }, + { + "start": 5453.52, + "end": 5455.56, + "probability": 0.9795 + }, + { + "start": 5456.4, + "end": 5457.1, + "probability": 0.7368 + }, + { + "start": 5457.1, + "end": 5457.56, + "probability": 0.8217 + }, + { + "start": 5463.38, + "end": 5463.86, + "probability": 0.2621 + }, + { + "start": 5464.32, + "end": 5467.26, + "probability": 0.7649 + }, + { + "start": 5467.82, + "end": 5470.54, + "probability": 0.977 + }, + { + "start": 5471.26, + "end": 5472.82, + "probability": 0.5017 + }, + { + "start": 5472.82, + "end": 5477.4, + "probability": 0.9922 + }, + { + "start": 5477.64, + "end": 5479.56, + "probability": 0.6589 + }, + { + "start": 5479.58, + "end": 5481.08, + "probability": 0.6291 + }, + { + "start": 5481.08, + "end": 5482.52, + "probability": 0.6445 + }, + { + "start": 5483.3, + "end": 5484.28, + "probability": 0.7116 + }, + { + "start": 5485.16, + "end": 5485.96, + "probability": 0.7982 + }, + { + "start": 5486.22, + "end": 5488.7, + "probability": 0.8932 + }, + { + "start": 5488.76, + "end": 5490.12, + "probability": 0.7999 + }, + { + "start": 5490.34, + "end": 5495.5, + "probability": 0.965 + }, + { + "start": 5496.4, + "end": 5499.68, + "probability": 0.9968 + }, + { + "start": 5500.62, + "end": 5501.0, + "probability": 0.4704 + }, + { + "start": 5501.16, + "end": 5502.48, + "probability": 0.886 + }, + { + "start": 5502.72, + "end": 5509.08, + "probability": 0.9381 + }, + { + "start": 5509.3, + "end": 5514.12, + "probability": 0.9759 + }, + { + "start": 5514.12, + "end": 5520.64, + "probability": 0.8143 + }, + { + "start": 5521.14, + "end": 5521.14, + "probability": 0.1711 + }, + { + "start": 5521.14, + "end": 5525.86, + "probability": 0.9808 + }, + { + "start": 5525.98, + "end": 5526.52, + "probability": 0.8324 + }, + { + "start": 5526.66, + "end": 5527.26, + "probability": 0.7618 + }, + { + "start": 5527.32, + "end": 5531.72, + "probability": 0.9667 + }, + { + "start": 5532.66, + "end": 5535.44, + "probability": 0.9644 + }, + { + "start": 5535.44, + "end": 5538.26, + "probability": 0.9767 + }, + { + "start": 5538.9, + "end": 5542.6, + "probability": 0.9773 + }, + { + "start": 5542.64, + "end": 5545.55, + "probability": 0.9922 + }, + { + "start": 5545.58, + "end": 5549.2, + "probability": 0.9926 + }, + { + "start": 5549.2, + "end": 5552.2, + "probability": 0.9983 + }, + { + "start": 5553.24, + "end": 5557.3, + "probability": 0.9766 + }, + { + "start": 5557.36, + "end": 5558.6, + "probability": 0.8704 + }, + { + "start": 5559.06, + "end": 5561.26, + "probability": 0.9581 + }, + { + "start": 5561.38, + "end": 5563.26, + "probability": 0.762 + }, + { + "start": 5563.74, + "end": 5566.72, + "probability": 0.9205 + }, + { + "start": 5566.86, + "end": 5568.34, + "probability": 0.736 + }, + { + "start": 5568.96, + "end": 5572.04, + "probability": 0.97 + }, + { + "start": 5572.14, + "end": 5575.98, + "probability": 0.9377 + }, + { + "start": 5576.22, + "end": 5579.2, + "probability": 0.9792 + }, + { + "start": 5579.36, + "end": 5579.62, + "probability": 0.6302 + }, + { + "start": 5580.48, + "end": 5582.54, + "probability": 0.4482 + }, + { + "start": 5582.84, + "end": 5584.52, + "probability": 0.8033 + }, + { + "start": 5591.28, + "end": 5593.76, + "probability": 0.6657 + }, + { + "start": 5594.94, + "end": 5597.82, + "probability": 0.995 + }, + { + "start": 5597.86, + "end": 5600.8, + "probability": 0.9469 + }, + { + "start": 5601.34, + "end": 5604.2, + "probability": 0.9867 + }, + { + "start": 5604.2, + "end": 5607.52, + "probability": 0.9975 + }, + { + "start": 5608.24, + "end": 5610.9, + "probability": 0.999 + }, + { + "start": 5612.44, + "end": 5613.64, + "probability": 0.5948 + }, + { + "start": 5614.04, + "end": 5616.68, + "probability": 0.9749 + }, + { + "start": 5616.88, + "end": 5618.4, + "probability": 0.873 + }, + { + "start": 5619.48, + "end": 5623.72, + "probability": 0.9331 + }, + { + "start": 5624.6, + "end": 5624.94, + "probability": 0.3573 + }, + { + "start": 5625.06, + "end": 5627.94, + "probability": 0.9954 + }, + { + "start": 5627.94, + "end": 5634.58, + "probability": 0.9504 + }, + { + "start": 5634.94, + "end": 5635.1, + "probability": 0.0323 + }, + { + "start": 5635.98, + "end": 5639.0, + "probability": 0.9965 + }, + { + "start": 5639.0, + "end": 5642.86, + "probability": 0.8584 + }, + { + "start": 5643.78, + "end": 5643.92, + "probability": 0.2113 + }, + { + "start": 5644.48, + "end": 5647.94, + "probability": 0.9981 + }, + { + "start": 5647.94, + "end": 5655.04, + "probability": 0.9969 + }, + { + "start": 5657.14, + "end": 5659.2, + "probability": 0.3899 + }, + { + "start": 5659.28, + "end": 5661.98, + "probability": 0.9932 + }, + { + "start": 5661.98, + "end": 5664.72, + "probability": 0.9788 + }, + { + "start": 5664.72, + "end": 5671.12, + "probability": 0.9819 + }, + { + "start": 5672.24, + "end": 5672.92, + "probability": 0.052 + }, + { + "start": 5673.14, + "end": 5675.75, + "probability": 0.8606 + }, + { + "start": 5676.32, + "end": 5678.9, + "probability": 0.9019 + }, + { + "start": 5679.46, + "end": 5681.5, + "probability": 0.9727 + }, + { + "start": 5681.52, + "end": 5682.56, + "probability": 0.7964 + }, + { + "start": 5682.7, + "end": 5684.58, + "probability": 0.8813 + }, + { + "start": 5684.66, + "end": 5689.06, + "probability": 0.9705 + }, + { + "start": 5689.06, + "end": 5693.5, + "probability": 0.9549 + }, + { + "start": 5694.8, + "end": 5699.12, + "probability": 0.9531 + }, + { + "start": 5699.12, + "end": 5703.16, + "probability": 0.993 + }, + { + "start": 5704.02, + "end": 5709.78, + "probability": 0.9849 + }, + { + "start": 5710.02, + "end": 5710.56, + "probability": 0.7343 + }, + { + "start": 5710.84, + "end": 5717.9, + "probability": 0.8473 + }, + { + "start": 5718.36, + "end": 5723.24, + "probability": 0.8023 + }, + { + "start": 5723.24, + "end": 5727.34, + "probability": 0.9839 + }, + { + "start": 5727.98, + "end": 5729.96, + "probability": 0.8243 + }, + { + "start": 5730.62, + "end": 5734.06, + "probability": 0.9675 + }, + { + "start": 5734.06, + "end": 5741.08, + "probability": 0.9967 + }, + { + "start": 5742.99, + "end": 5750.18, + "probability": 0.9786 + }, + { + "start": 5750.36, + "end": 5754.26, + "probability": 0.9739 + }, + { + "start": 5754.28, + "end": 5757.74, + "probability": 0.9905 + }, + { + "start": 5759.42, + "end": 5760.84, + "probability": 0.5806 + }, + { + "start": 5761.04, + "end": 5764.16, + "probability": 0.7596 + }, + { + "start": 5764.98, + "end": 5766.54, + "probability": 0.9377 + }, + { + "start": 5767.46, + "end": 5771.48, + "probability": 0.7441 + }, + { + "start": 5776.82, + "end": 5778.14, + "probability": 0.7425 + }, + { + "start": 5778.86, + "end": 5782.1, + "probability": 0.9362 + }, + { + "start": 5783.5, + "end": 5785.66, + "probability": 0.5791 + }, + { + "start": 5785.74, + "end": 5786.36, + "probability": 0.927 + }, + { + "start": 5786.48, + "end": 5788.3, + "probability": 0.7122 + }, + { + "start": 5788.8, + "end": 5791.66, + "probability": 0.9839 + }, + { + "start": 5791.78, + "end": 5792.92, + "probability": 0.7766 + }, + { + "start": 5793.4, + "end": 5796.64, + "probability": 0.9641 + }, + { + "start": 5798.74, + "end": 5801.16, + "probability": 0.9964 + }, + { + "start": 5802.66, + "end": 5807.02, + "probability": 0.9938 + }, + { + "start": 5807.98, + "end": 5810.8, + "probability": 0.9951 + }, + { + "start": 5811.28, + "end": 5816.46, + "probability": 0.9497 + }, + { + "start": 5817.54, + "end": 5819.24, + "probability": 0.9949 + }, + { + "start": 5819.86, + "end": 5820.86, + "probability": 0.8846 + }, + { + "start": 5821.56, + "end": 5825.3, + "probability": 0.7738 + }, + { + "start": 5825.34, + "end": 5828.93, + "probability": 0.979 + }, + { + "start": 5830.28, + "end": 5834.5, + "probability": 0.8253 + }, + { + "start": 5835.06, + "end": 5836.56, + "probability": 0.9902 + }, + { + "start": 5836.62, + "end": 5837.4, + "probability": 0.8195 + }, + { + "start": 5837.72, + "end": 5839.54, + "probability": 0.9805 + }, + { + "start": 5840.02, + "end": 5840.46, + "probability": 0.4982 + }, + { + "start": 5840.68, + "end": 5841.22, + "probability": 0.6746 + }, + { + "start": 5843.42, + "end": 5844.3, + "probability": 0.8651 + }, + { + "start": 5844.4, + "end": 5845.78, + "probability": 0.9961 + }, + { + "start": 5846.14, + "end": 5847.46, + "probability": 0.9832 + }, + { + "start": 5848.42, + "end": 5849.04, + "probability": 0.6411 + }, + { + "start": 5849.44, + "end": 5852.32, + "probability": 0.9741 + }, + { + "start": 5853.68, + "end": 5855.56, + "probability": 0.9656 + }, + { + "start": 5856.0, + "end": 5857.36, + "probability": 0.5295 + }, + { + "start": 5857.6, + "end": 5857.78, + "probability": 0.7068 + }, + { + "start": 5857.86, + "end": 5858.8, + "probability": 0.9918 + }, + { + "start": 5858.88, + "end": 5859.48, + "probability": 0.529 + }, + { + "start": 5859.48, + "end": 5861.24, + "probability": 0.9765 + }, + { + "start": 5861.52, + "end": 5862.26, + "probability": 0.9408 + }, + { + "start": 5862.32, + "end": 5865.84, + "probability": 0.8802 + }, + { + "start": 5866.16, + "end": 5867.04, + "probability": 0.1746 + }, + { + "start": 5867.04, + "end": 5867.44, + "probability": 0.0459 + }, + { + "start": 5867.78, + "end": 5868.83, + "probability": 0.0278 + }, + { + "start": 5869.1, + "end": 5872.02, + "probability": 0.7598 + }, + { + "start": 5872.14, + "end": 5876.12, + "probability": 0.8844 + }, + { + "start": 5876.92, + "end": 5878.02, + "probability": 0.9688 + }, + { + "start": 5879.0, + "end": 5882.5, + "probability": 0.8599 + }, + { + "start": 5883.2, + "end": 5883.74, + "probability": 0.9159 + }, + { + "start": 5884.22, + "end": 5884.84, + "probability": 0.9478 + }, + { + "start": 5884.98, + "end": 5891.66, + "probability": 0.9829 + }, + { + "start": 5892.1, + "end": 5893.1, + "probability": 0.8225 + }, + { + "start": 5893.34, + "end": 5894.22, + "probability": 0.9495 + }, + { + "start": 5894.36, + "end": 5895.44, + "probability": 0.973 + }, + { + "start": 5896.65, + "end": 5897.92, + "probability": 0.9691 + }, + { + "start": 5897.92, + "end": 5898.83, + "probability": 0.9614 + }, + { + "start": 5899.7, + "end": 5900.88, + "probability": 0.6476 + }, + { + "start": 5901.36, + "end": 5903.24, + "probability": 0.7919 + }, + { + "start": 5904.88, + "end": 5906.7, + "probability": 0.8852 + }, + { + "start": 5907.42, + "end": 5909.78, + "probability": 0.9895 + }, + { + "start": 5910.98, + "end": 5911.3, + "probability": 0.8354 + }, + { + "start": 5913.12, + "end": 5913.78, + "probability": 0.958 + }, + { + "start": 5914.12, + "end": 5915.3, + "probability": 0.8566 + }, + { + "start": 5915.8, + "end": 5916.7, + "probability": 0.9805 + }, + { + "start": 5916.78, + "end": 5917.42, + "probability": 0.8042 + }, + { + "start": 5917.74, + "end": 5918.26, + "probability": 0.3861 + }, + { + "start": 5918.32, + "end": 5919.36, + "probability": 0.8759 + }, + { + "start": 5919.44, + "end": 5920.28, + "probability": 0.9623 + }, + { + "start": 5921.16, + "end": 5924.76, + "probability": 0.9567 + }, + { + "start": 5925.7, + "end": 5928.7, + "probability": 0.9925 + }, + { + "start": 5928.82, + "end": 5929.52, + "probability": 0.8636 + }, + { + "start": 5929.68, + "end": 5930.46, + "probability": 0.6 + }, + { + "start": 5930.9, + "end": 5937.34, + "probability": 0.9211 + }, + { + "start": 5937.96, + "end": 5939.38, + "probability": 0.9983 + }, + { + "start": 5940.0, + "end": 5945.62, + "probability": 0.9932 + }, + { + "start": 5946.02, + "end": 5952.08, + "probability": 0.9902 + }, + { + "start": 5952.52, + "end": 5955.74, + "probability": 0.9253 + }, + { + "start": 5956.18, + "end": 5957.04, + "probability": 0.5822 + }, + { + "start": 5957.7, + "end": 5957.8, + "probability": 0.0457 + }, + { + "start": 5957.8, + "end": 5960.44, + "probability": 0.9064 + }, + { + "start": 5960.74, + "end": 5965.2, + "probability": 0.5286 + }, + { + "start": 5965.6, + "end": 5966.64, + "probability": 0.8849 + }, + { + "start": 5966.94, + "end": 5969.94, + "probability": 0.7588 + }, + { + "start": 5970.08, + "end": 5973.26, + "probability": 0.9858 + }, + { + "start": 5977.82, + "end": 5980.22, + "probability": 0.4123 + }, + { + "start": 5980.28, + "end": 5981.12, + "probability": 0.6892 + }, + { + "start": 5981.18, + "end": 5982.12, + "probability": 0.7652 + }, + { + "start": 5984.23, + "end": 5989.39, + "probability": 0.2628 + }, + { + "start": 6000.8, + "end": 6000.94, + "probability": 0.0109 + }, + { + "start": 6004.19, + "end": 6007.62, + "probability": 0.9181 + }, + { + "start": 6007.76, + "end": 6008.9, + "probability": 0.5044 + }, + { + "start": 6009.36, + "end": 6014.06, + "probability": 0.4181 + }, + { + "start": 6014.32, + "end": 6016.68, + "probability": 0.8887 + }, + { + "start": 6019.34, + "end": 6022.54, + "probability": 0.009 + }, + { + "start": 6022.54, + "end": 6022.54, + "probability": 0.0785 + }, + { + "start": 6022.54, + "end": 6030.32, + "probability": 0.2702 + }, + { + "start": 6034.22, + "end": 6035.5, + "probability": 0.0587 + }, + { + "start": 6035.5, + "end": 6037.62, + "probability": 0.4282 + }, + { + "start": 6037.86, + "end": 6038.79, + "probability": 0.0612 + }, + { + "start": 6041.0, + "end": 6041.76, + "probability": 0.0806 + }, + { + "start": 6043.4, + "end": 6045.2, + "probability": 0.1501 + }, + { + "start": 6046.72, + "end": 6047.1, + "probability": 0.0162 + }, + { + "start": 6051.48, + "end": 6056.6, + "probability": 0.2976 + }, + { + "start": 6057.56, + "end": 6058.84, + "probability": 0.0101 + }, + { + "start": 6058.84, + "end": 6059.58, + "probability": 0.0447 + }, + { + "start": 6059.84, + "end": 6062.2, + "probability": 0.0544 + }, + { + "start": 6062.78, + "end": 6062.98, + "probability": 0.0918 + }, + { + "start": 6063.0, + "end": 6063.0, + "probability": 0.0 + }, + { + "start": 6063.0, + "end": 6063.0, + "probability": 0.0 + }, + { + "start": 6063.0, + "end": 6063.0, + "probability": 0.0 + }, + { + "start": 6063.0, + "end": 6063.0, + "probability": 0.0 + }, + { + "start": 6063.0, + "end": 6063.0, + "probability": 0.0 + }, + { + "start": 6063.0, + "end": 6063.0, + "probability": 0.0 + }, + { + "start": 6069.32, + "end": 6070.08, + "probability": 0.8456 + }, + { + "start": 6097.74, + "end": 6098.36, + "probability": 0.0644 + }, + { + "start": 6100.4, + "end": 6101.08, + "probability": 0.1189 + }, + { + "start": 6101.08, + "end": 6103.24, + "probability": 0.0441 + }, + { + "start": 6113.54, + "end": 6114.22, + "probability": 0.1322 + }, + { + "start": 6115.62, + "end": 6117.14, + "probability": 0.1094 + }, + { + "start": 6118.26, + "end": 6122.1, + "probability": 0.0498 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.0, + "end": 6184.0, + "probability": 0.0 + }, + { + "start": 6184.3, + "end": 6184.34, + "probability": 0.136 + }, + { + "start": 6184.34, + "end": 6184.34, + "probability": 0.1258 + }, + { + "start": 6184.34, + "end": 6184.34, + "probability": 0.0379 + }, + { + "start": 6184.34, + "end": 6184.44, + "probability": 0.052 + }, + { + "start": 6184.54, + "end": 6184.78, + "probability": 0.4867 + }, + { + "start": 6185.74, + "end": 6187.6, + "probability": 0.8911 + }, + { + "start": 6188.72, + "end": 6189.22, + "probability": 0.7935 + }, + { + "start": 6189.24, + "end": 6190.78, + "probability": 0.8076 + }, + { + "start": 6190.82, + "end": 6191.98, + "probability": 0.6728 + }, + { + "start": 6193.1, + "end": 6196.14, + "probability": 0.9141 + }, + { + "start": 6196.48, + "end": 6197.0, + "probability": 0.6355 + }, + { + "start": 6197.56, + "end": 6198.42, + "probability": 0.8318 + }, + { + "start": 6199.28, + "end": 6200.96, + "probability": 0.6655 + }, + { + "start": 6202.2, + "end": 6204.36, + "probability": 0.7686 + }, + { + "start": 6205.04, + "end": 6209.32, + "probability": 0.9741 + }, + { + "start": 6209.7, + "end": 6215.04, + "probability": 0.9548 + }, + { + "start": 6216.08, + "end": 6216.8, + "probability": 0.7408 + }, + { + "start": 6217.5, + "end": 6218.42, + "probability": 0.8848 + }, + { + "start": 6218.8, + "end": 6220.9, + "probability": 0.8925 + }, + { + "start": 6221.24, + "end": 6222.84, + "probability": 0.9352 + }, + { + "start": 6223.9, + "end": 6225.74, + "probability": 0.6628 + }, + { + "start": 6225.8, + "end": 6227.72, + "probability": 0.8242 + }, + { + "start": 6228.62, + "end": 6229.82, + "probability": 0.8665 + }, + { + "start": 6230.46, + "end": 6231.84, + "probability": 0.9871 + }, + { + "start": 6233.06, + "end": 6234.78, + "probability": 0.8929 + }, + { + "start": 6234.96, + "end": 6236.04, + "probability": 0.6954 + }, + { + "start": 6236.16, + "end": 6236.48, + "probability": 0.4174 + }, + { + "start": 6236.56, + "end": 6237.14, + "probability": 0.7382 + }, + { + "start": 6237.24, + "end": 6239.08, + "probability": 0.7974 + }, + { + "start": 6239.12, + "end": 6240.2, + "probability": 0.7537 + }, + { + "start": 6241.34, + "end": 6245.58, + "probability": 0.9907 + }, + { + "start": 6246.14, + "end": 6249.36, + "probability": 0.9953 + }, + { + "start": 6249.5, + "end": 6249.74, + "probability": 0.4133 + }, + { + "start": 6250.12, + "end": 6251.34, + "probability": 0.9935 + }, + { + "start": 6251.42, + "end": 6252.02, + "probability": 0.7203 + }, + { + "start": 6252.42, + "end": 6252.95, + "probability": 0.9053 + }, + { + "start": 6253.58, + "end": 6260.18, + "probability": 0.9325 + }, + { + "start": 6261.04, + "end": 6263.29, + "probability": 0.981 + }, + { + "start": 6263.74, + "end": 6267.2, + "probability": 0.7161 + }, + { + "start": 6267.2, + "end": 6269.74, + "probability": 0.9944 + }, + { + "start": 6270.24, + "end": 6271.16, + "probability": 0.9214 + }, + { + "start": 6271.48, + "end": 6272.96, + "probability": 0.9028 + }, + { + "start": 6273.0, + "end": 6274.36, + "probability": 0.9712 + }, + { + "start": 6274.96, + "end": 6278.46, + "probability": 0.9948 + }, + { + "start": 6278.98, + "end": 6282.56, + "probability": 0.995 + }, + { + "start": 6283.02, + "end": 6284.03, + "probability": 0.7876 + }, + { + "start": 6284.34, + "end": 6286.46, + "probability": 0.9663 + }, + { + "start": 6286.6, + "end": 6287.54, + "probability": 0.9686 + }, + { + "start": 6287.68, + "end": 6289.6, + "probability": 0.5148 + }, + { + "start": 6290.06, + "end": 6291.04, + "probability": 0.5094 + }, + { + "start": 6291.18, + "end": 6292.14, + "probability": 0.4324 + }, + { + "start": 6292.16, + "end": 6294.0, + "probability": 0.757 + }, + { + "start": 6294.82, + "end": 6295.26, + "probability": 0.6136 + }, + { + "start": 6295.5, + "end": 6301.28, + "probability": 0.9975 + }, + { + "start": 6301.95, + "end": 6304.64, + "probability": 0.9979 + }, + { + "start": 6305.2, + "end": 6306.16, + "probability": 0.6234 + }, + { + "start": 6306.44, + "end": 6306.9, + "probability": 0.6897 + }, + { + "start": 6307.0, + "end": 6310.38, + "probability": 0.9757 + }, + { + "start": 6310.6, + "end": 6314.28, + "probability": 0.6536 + }, + { + "start": 6314.28, + "end": 6315.8, + "probability": 0.7584 + }, + { + "start": 6316.2, + "end": 6316.66, + "probability": 0.4147 + }, + { + "start": 6317.4, + "end": 6318.18, + "probability": 0.8683 + }, + { + "start": 6318.52, + "end": 6321.28, + "probability": 0.9858 + }, + { + "start": 6322.04, + "end": 6324.28, + "probability": 0.8677 + }, + { + "start": 6324.36, + "end": 6327.24, + "probability": 0.8838 + }, + { + "start": 6327.41, + "end": 6327.84, + "probability": 0.9189 + }, + { + "start": 6328.68, + "end": 6328.94, + "probability": 0.4354 + }, + { + "start": 6328.96, + "end": 6334.28, + "probability": 0.8776 + }, + { + "start": 6334.4, + "end": 6337.64, + "probability": 0.9159 + }, + { + "start": 6338.32, + "end": 6338.72, + "probability": 0.7175 + }, + { + "start": 6338.82, + "end": 6340.56, + "probability": 0.9697 + }, + { + "start": 6340.68, + "end": 6342.07, + "probability": 0.981 + }, + { + "start": 6342.72, + "end": 6345.32, + "probability": 0.981 + }, + { + "start": 6346.14, + "end": 6348.16, + "probability": 0.6948 + }, + { + "start": 6348.32, + "end": 6348.66, + "probability": 0.5216 + }, + { + "start": 6352.38, + "end": 6352.38, + "probability": 0.3447 + }, + { + "start": 6352.38, + "end": 6353.64, + "probability": 0.5621 + }, + { + "start": 6354.22, + "end": 6357.8, + "probability": 0.8735 + }, + { + "start": 6372.7, + "end": 6373.52, + "probability": 0.5798 + }, + { + "start": 6373.56, + "end": 6374.7, + "probability": 0.6512 + }, + { + "start": 6374.94, + "end": 6377.39, + "probability": 0.7513 + }, + { + "start": 6377.7, + "end": 6382.46, + "probability": 0.7407 + }, + { + "start": 6382.8, + "end": 6384.6, + "probability": 0.9739 + }, + { + "start": 6385.32, + "end": 6389.63, + "probability": 0.9788 + }, + { + "start": 6389.9, + "end": 6391.4, + "probability": 0.8303 + }, + { + "start": 6391.5, + "end": 6392.14, + "probability": 0.4359 + }, + { + "start": 6392.66, + "end": 6394.25, + "probability": 0.932 + }, + { + "start": 6395.96, + "end": 6398.4, + "probability": 0.8579 + }, + { + "start": 6398.9, + "end": 6400.12, + "probability": 0.9685 + }, + { + "start": 6402.44, + "end": 6403.18, + "probability": 0.943 + }, + { + "start": 6403.5, + "end": 6404.48, + "probability": 0.9636 + }, + { + "start": 6404.58, + "end": 6406.04, + "probability": 0.5375 + }, + { + "start": 6406.32, + "end": 6407.89, + "probability": 0.3704 + }, + { + "start": 6410.12, + "end": 6410.38, + "probability": 0.5871 + }, + { + "start": 6413.4, + "end": 6418.96, + "probability": 0.816 + }, + { + "start": 6419.06, + "end": 6419.64, + "probability": 0.655 + }, + { + "start": 6420.4, + "end": 6421.06, + "probability": 0.4695 + }, + { + "start": 6421.22, + "end": 6422.36, + "probability": 0.873 + }, + { + "start": 6422.66, + "end": 6424.12, + "probability": 0.9865 + }, + { + "start": 6424.24, + "end": 6429.48, + "probability": 0.7155 + }, + { + "start": 6431.97, + "end": 6436.18, + "probability": 0.9839 + }, + { + "start": 6437.12, + "end": 6440.16, + "probability": 0.5652 + }, + { + "start": 6440.5, + "end": 6444.6, + "probability": 0.9769 + }, + { + "start": 6445.38, + "end": 6446.6, + "probability": 0.9887 + }, + { + "start": 6446.9, + "end": 6449.36, + "probability": 0.9344 + }, + { + "start": 6449.94, + "end": 6451.77, + "probability": 0.9897 + }, + { + "start": 6452.26, + "end": 6455.14, + "probability": 0.7553 + }, + { + "start": 6455.2, + "end": 6457.38, + "probability": 0.6921 + }, + { + "start": 6457.52, + "end": 6460.12, + "probability": 0.9809 + }, + { + "start": 6460.18, + "end": 6462.08, + "probability": 0.9152 + }, + { + "start": 6463.04, + "end": 6468.22, + "probability": 0.9656 + }, + { + "start": 6468.32, + "end": 6470.58, + "probability": 0.8443 + }, + { + "start": 6470.58, + "end": 6471.88, + "probability": 0.9215 + }, + { + "start": 6472.44, + "end": 6473.9, + "probability": 0.8538 + }, + { + "start": 6474.64, + "end": 6481.7, + "probability": 0.8018 + }, + { + "start": 6481.76, + "end": 6483.02, + "probability": 0.9962 + }, + { + "start": 6483.18, + "end": 6483.18, + "probability": 0.078 + }, + { + "start": 6483.18, + "end": 6483.28, + "probability": 0.3964 + }, + { + "start": 6483.44, + "end": 6485.32, + "probability": 0.8522 + }, + { + "start": 6485.54, + "end": 6488.92, + "probability": 0.771 + }, + { + "start": 6489.02, + "end": 6489.6, + "probability": 0.7778 + }, + { + "start": 6489.62, + "end": 6492.58, + "probability": 0.9565 + }, + { + "start": 6492.7, + "end": 6492.9, + "probability": 0.7949 + }, + { + "start": 6493.54, + "end": 6495.02, + "probability": 0.7629 + }, + { + "start": 6496.04, + "end": 6498.38, + "probability": 0.7247 + }, + { + "start": 6498.46, + "end": 6500.06, + "probability": 0.9738 + }, + { + "start": 6501.08, + "end": 6503.4, + "probability": 0.8106 + }, + { + "start": 6519.7, + "end": 6520.85, + "probability": 0.9351 + }, + { + "start": 6523.96, + "end": 6525.06, + "probability": 0.8462 + }, + { + "start": 6525.18, + "end": 6526.82, + "probability": 0.8947 + }, + { + "start": 6527.16, + "end": 6529.24, + "probability": 0.9191 + }, + { + "start": 6529.4, + "end": 6532.02, + "probability": 0.9303 + }, + { + "start": 6532.78, + "end": 6533.74, + "probability": 0.7238 + }, + { + "start": 6534.18, + "end": 6537.38, + "probability": 0.9491 + }, + { + "start": 6537.96, + "end": 6543.2, + "probability": 0.9914 + }, + { + "start": 6543.2, + "end": 6547.38, + "probability": 0.8848 + }, + { + "start": 6547.96, + "end": 6549.88, + "probability": 0.988 + }, + { + "start": 6549.88, + "end": 6551.88, + "probability": 0.6501 + }, + { + "start": 6552.88, + "end": 6553.63, + "probability": 0.8612 + }, + { + "start": 6554.56, + "end": 6556.26, + "probability": 0.805 + }, + { + "start": 6556.72, + "end": 6557.61, + "probability": 0.8926 + }, + { + "start": 6557.88, + "end": 6560.28, + "probability": 0.8645 + }, + { + "start": 6561.04, + "end": 6561.67, + "probability": 0.9341 + }, + { + "start": 6564.36, + "end": 6565.96, + "probability": 0.9917 + }, + { + "start": 6566.6, + "end": 6567.26, + "probability": 0.357 + }, + { + "start": 6568.27, + "end": 6569.8, + "probability": 0.6685 + }, + { + "start": 6570.7, + "end": 6571.84, + "probability": 0.8137 + }, + { + "start": 6572.1, + "end": 6577.56, + "probability": 0.9727 + }, + { + "start": 6578.14, + "end": 6579.64, + "probability": 0.9801 + }, + { + "start": 6580.16, + "end": 6581.22, + "probability": 0.9826 + }, + { + "start": 6581.76, + "end": 6584.18, + "probability": 0.9791 + }, + { + "start": 6584.24, + "end": 6585.86, + "probability": 0.9907 + }, + { + "start": 6585.94, + "end": 6587.64, + "probability": 0.9088 + }, + { + "start": 6588.16, + "end": 6592.0, + "probability": 0.9583 + }, + { + "start": 6592.06, + "end": 6596.46, + "probability": 0.9906 + }, + { + "start": 6596.46, + "end": 6600.62, + "probability": 0.9854 + }, + { + "start": 6601.0, + "end": 6604.02, + "probability": 0.9561 + }, + { + "start": 6604.52, + "end": 6606.5, + "probability": 0.8597 + }, + { + "start": 6607.02, + "end": 6611.02, + "probability": 0.9915 + }, + { + "start": 6611.02, + "end": 6615.7, + "probability": 0.9232 + }, + { + "start": 6615.74, + "end": 6616.62, + "probability": 0.656 + }, + { + "start": 6616.78, + "end": 6619.1, + "probability": 0.91 + }, + { + "start": 6619.4, + "end": 6619.66, + "probability": 0.8029 + }, + { + "start": 6619.74, + "end": 6620.86, + "probability": 0.8895 + }, + { + "start": 6621.02, + "end": 6625.11, + "probability": 0.9609 + }, + { + "start": 6625.76, + "end": 6630.16, + "probability": 0.9724 + }, + { + "start": 6630.52, + "end": 6631.28, + "probability": 0.4989 + }, + { + "start": 6631.8, + "end": 6633.12, + "probability": 0.6786 + }, + { + "start": 6633.18, + "end": 6634.9, + "probability": 0.9445 + }, + { + "start": 6635.3, + "end": 6637.15, + "probability": 0.9949 + }, + { + "start": 6637.54, + "end": 6640.66, + "probability": 0.8047 + }, + { + "start": 6640.74, + "end": 6643.74, + "probability": 0.9703 + }, + { + "start": 6644.14, + "end": 6645.04, + "probability": 0.9473 + }, + { + "start": 6645.22, + "end": 6650.46, + "probability": 0.9861 + }, + { + "start": 6650.46, + "end": 6652.34, + "probability": 0.5637 + }, + { + "start": 6652.34, + "end": 6653.64, + "probability": 0.9531 + }, + { + "start": 6655.6, + "end": 6656.8, + "probability": 0.9111 + }, + { + "start": 6656.8, + "end": 6657.46, + "probability": 0.567 + }, + { + "start": 6657.64, + "end": 6659.26, + "probability": 0.9258 + }, + { + "start": 6659.26, + "end": 6659.28, + "probability": 0.7978 + }, + { + "start": 6659.36, + "end": 6661.22, + "probability": 0.9953 + }, + { + "start": 6661.36, + "end": 6664.66, + "probability": 0.977 + }, + { + "start": 6664.93, + "end": 6668.32, + "probability": 0.9189 + }, + { + "start": 6668.44, + "end": 6670.34, + "probability": 0.8683 + }, + { + "start": 6670.34, + "end": 6671.82, + "probability": 0.6963 + }, + { + "start": 6671.84, + "end": 6671.84, + "probability": 0.3306 + }, + { + "start": 6671.92, + "end": 6671.92, + "probability": 0.4623 + }, + { + "start": 6671.92, + "end": 6672.44, + "probability": 0.4828 + }, + { + "start": 6672.46, + "end": 6673.28, + "probability": 0.7543 + }, + { + "start": 6673.34, + "end": 6674.06, + "probability": 0.7101 + }, + { + "start": 6674.1, + "end": 6676.44, + "probability": 0.9554 + }, + { + "start": 6676.44, + "end": 6678.94, + "probability": 0.9987 + }, + { + "start": 6679.28, + "end": 6679.32, + "probability": 0.3513 + }, + { + "start": 6679.34, + "end": 6680.18, + "probability": 0.8821 + }, + { + "start": 6680.24, + "end": 6681.82, + "probability": 0.5951 + }, + { + "start": 6681.88, + "end": 6686.3, + "probability": 0.4386 + }, + { + "start": 6686.3, + "end": 6686.98, + "probability": 0.1042 + }, + { + "start": 6687.28, + "end": 6690.24, + "probability": 0.971 + }, + { + "start": 6690.36, + "end": 6691.12, + "probability": 0.8352 + }, + { + "start": 6691.6, + "end": 6692.02, + "probability": 0.856 + }, + { + "start": 6692.88, + "end": 6694.02, + "probability": 0.7081 + }, + { + "start": 6694.32, + "end": 6696.08, + "probability": 0.9988 + }, + { + "start": 6696.12, + "end": 6697.91, + "probability": 0.9863 + }, + { + "start": 6698.09, + "end": 6701.79, + "probability": 0.8345 + }, + { + "start": 6702.11, + "end": 6704.53, + "probability": 0.9924 + }, + { + "start": 6704.89, + "end": 6707.43, + "probability": 0.9955 + }, + { + "start": 6707.51, + "end": 6709.97, + "probability": 0.9857 + }, + { + "start": 6710.37, + "end": 6711.39, + "probability": 0.9417 + }, + { + "start": 6711.51, + "end": 6712.93, + "probability": 0.9976 + }, + { + "start": 6713.01, + "end": 6714.03, + "probability": 0.9747 + }, + { + "start": 6715.11, + "end": 6715.47, + "probability": 0.6353 + }, + { + "start": 6715.55, + "end": 6716.19, + "probability": 0.7549 + }, + { + "start": 6716.45, + "end": 6717.77, + "probability": 0.897 + }, + { + "start": 6719.89, + "end": 6721.53, + "probability": 0.8842 + }, + { + "start": 6726.27, + "end": 6726.63, + "probability": 0.3464 + }, + { + "start": 6726.67, + "end": 6727.09, + "probability": 0.7054 + }, + { + "start": 6727.13, + "end": 6728.25, + "probability": 0.8142 + }, + { + "start": 6729.01, + "end": 6729.31, + "probability": 0.0093 + }, + { + "start": 6731.7, + "end": 6732.91, + "probability": 0.0368 + }, + { + "start": 6734.19, + "end": 6734.53, + "probability": 0.1057 + }, + { + "start": 6735.29, + "end": 6738.35, + "probability": 0.0735 + }, + { + "start": 6756.99, + "end": 6759.43, + "probability": 0.6179 + }, + { + "start": 6760.05, + "end": 6763.23, + "probability": 0.7322 + }, + { + "start": 6763.27, + "end": 6764.83, + "probability": 0.4822 + }, + { + "start": 6765.93, + "end": 6769.47, + "probability": 0.0621 + }, + { + "start": 6770.01, + "end": 6774.45, + "probability": 0.2996 + }, + { + "start": 6776.21, + "end": 6779.71, + "probability": 0.0886 + }, + { + "start": 6779.71, + "end": 6779.71, + "probability": 0.1776 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.2, + "end": 6834.98, + "probability": 0.5146 + }, + { + "start": 6835.24, + "end": 6838.4, + "probability": 0.739 + }, + { + "start": 6839.58, + "end": 6840.74, + "probability": 0.9537 + }, + { + "start": 6841.66, + "end": 6846.24, + "probability": 0.9888 + }, + { + "start": 6846.24, + "end": 6850.68, + "probability": 0.9882 + }, + { + "start": 6850.76, + "end": 6851.32, + "probability": 0.7823 + }, + { + "start": 6852.96, + "end": 6854.1, + "probability": 0.3808 + }, + { + "start": 6854.56, + "end": 6856.74, + "probability": 0.9805 + }, + { + "start": 6858.02, + "end": 6858.82, + "probability": 0.9341 + }, + { + "start": 6859.14, + "end": 6860.88, + "probability": 0.9229 + }, + { + "start": 6861.98, + "end": 6864.04, + "probability": 0.8235 + }, + { + "start": 6864.04, + "end": 6867.12, + "probability": 0.9849 + }, + { + "start": 6868.52, + "end": 6872.42, + "probability": 0.8535 + }, + { + "start": 6873.94, + "end": 6876.46, + "probability": 0.9421 + }, + { + "start": 6877.34, + "end": 6881.72, + "probability": 0.712 + }, + { + "start": 6882.48, + "end": 6884.38, + "probability": 0.9407 + }, + { + "start": 6885.36, + "end": 6886.04, + "probability": 0.9958 + }, + { + "start": 6887.7, + "end": 6890.26, + "probability": 0.9575 + }, + { + "start": 6891.5, + "end": 6891.98, + "probability": 0.708 + }, + { + "start": 6894.22, + "end": 6903.94, + "probability": 0.9497 + }, + { + "start": 6904.7, + "end": 6906.22, + "probability": 0.8493 + }, + { + "start": 6908.96, + "end": 6909.96, + "probability": 0.8491 + }, + { + "start": 6911.6, + "end": 6915.64, + "probability": 0.9821 + }, + { + "start": 6915.88, + "end": 6916.86, + "probability": 0.6944 + }, + { + "start": 6919.22, + "end": 6923.52, + "probability": 0.8415 + }, + { + "start": 6924.28, + "end": 6926.12, + "probability": 0.9426 + }, + { + "start": 6926.38, + "end": 6929.6, + "probability": 0.9141 + }, + { + "start": 6930.38, + "end": 6933.46, + "probability": 0.8826 + }, + { + "start": 6933.9, + "end": 6937.14, + "probability": 0.9404 + }, + { + "start": 6937.2, + "end": 6937.78, + "probability": 0.266 + }, + { + "start": 6937.78, + "end": 6940.22, + "probability": 0.7723 + }, + { + "start": 6940.3, + "end": 6940.88, + "probability": 0.7502 + }, + { + "start": 6940.88, + "end": 6942.32, + "probability": 0.7693 + }, + { + "start": 6942.86, + "end": 6944.18, + "probability": 0.9971 + }, + { + "start": 6945.66, + "end": 6946.38, + "probability": 0.4921 + }, + { + "start": 6946.38, + "end": 6946.42, + "probability": 0.3094 + }, + { + "start": 6946.42, + "end": 6947.8, + "probability": 0.705 + }, + { + "start": 6947.96, + "end": 6948.98, + "probability": 0.9091 + }, + { + "start": 6949.06, + "end": 6949.36, + "probability": 0.7213 + }, + { + "start": 6950.74, + "end": 6952.42, + "probability": 0.9907 + }, + { + "start": 6953.26, + "end": 6957.88, + "probability": 0.9182 + }, + { + "start": 6958.82, + "end": 6964.1, + "probability": 0.981 + }, + { + "start": 6964.6, + "end": 6965.26, + "probability": 0.0342 + }, + { + "start": 6965.94, + "end": 6970.78, + "probability": 0.8794 + }, + { + "start": 6971.64, + "end": 6973.13, + "probability": 0.9665 + }, + { + "start": 6973.7, + "end": 6975.84, + "probability": 0.8623 + }, + { + "start": 6976.64, + "end": 6977.22, + "probability": 0.8052 + }, + { + "start": 6978.24, + "end": 6980.58, + "probability": 0.688 + }, + { + "start": 6980.72, + "end": 6981.18, + "probability": 0.8517 + }, + { + "start": 6981.76, + "end": 6983.8, + "probability": 0.9572 + }, + { + "start": 6984.24, + "end": 6985.52, + "probability": 0.719 + }, + { + "start": 6985.52, + "end": 6985.68, + "probability": 0.6312 + }, + { + "start": 6986.04, + "end": 6986.82, + "probability": 0.6473 + }, + { + "start": 6986.88, + "end": 6987.32, + "probability": 0.6925 + }, + { + "start": 6988.06, + "end": 6990.6, + "probability": 0.9526 + }, + { + "start": 6992.68, + "end": 6995.98, + "probability": 0.9763 + }, + { + "start": 6996.64, + "end": 6998.5, + "probability": 0.9183 + }, + { + "start": 7000.12, + "end": 7003.68, + "probability": 0.9287 + }, + { + "start": 7003.68, + "end": 7009.08, + "probability": 0.7438 + }, + { + "start": 7009.08, + "end": 7010.5, + "probability": 0.6396 + }, + { + "start": 7010.68, + "end": 7011.54, + "probability": 0.6218 + }, + { + "start": 7012.12, + "end": 7018.82, + "probability": 0.8639 + }, + { + "start": 7018.92, + "end": 7020.54, + "probability": 0.8166 + }, + { + "start": 7020.66, + "end": 7021.56, + "probability": 0.4434 + }, + { + "start": 7022.1, + "end": 7023.26, + "probability": 0.3281 + }, + { + "start": 7024.06, + "end": 7025.64, + "probability": 0.8433 + }, + { + "start": 7026.56, + "end": 7028.7, + "probability": 0.9387 + }, + { + "start": 7029.4, + "end": 7031.02, + "probability": 0.5564 + }, + { + "start": 7031.72, + "end": 7033.14, + "probability": 0.9745 + }, + { + "start": 7033.4, + "end": 7034.52, + "probability": 0.9907 + }, + { + "start": 7036.0, + "end": 7037.56, + "probability": 0.9491 + }, + { + "start": 7038.14, + "end": 7040.12, + "probability": 0.7456 + }, + { + "start": 7040.84, + "end": 7043.66, + "probability": 0.9167 + }, + { + "start": 7044.44, + "end": 7047.05, + "probability": 0.8458 + }, + { + "start": 7047.48, + "end": 7051.06, + "probability": 0.9099 + }, + { + "start": 7051.64, + "end": 7058.12, + "probability": 0.981 + }, + { + "start": 7058.62, + "end": 7061.24, + "probability": 0.9865 + }, + { + "start": 7061.72, + "end": 7065.79, + "probability": 0.8697 + }, + { + "start": 7067.02, + "end": 7071.42, + "probability": 0.9892 + }, + { + "start": 7072.46, + "end": 7073.38, + "probability": 0.8044 + }, + { + "start": 7074.76, + "end": 7079.6, + "probability": 0.9773 + }, + { + "start": 7080.6, + "end": 7084.74, + "probability": 0.7825 + }, + { + "start": 7085.7, + "end": 7088.56, + "probability": 0.8573 + }, + { + "start": 7089.84, + "end": 7092.72, + "probability": 0.9575 + }, + { + "start": 7093.4, + "end": 7095.52, + "probability": 0.9268 + }, + { + "start": 7096.34, + "end": 7097.12, + "probability": 0.7263 + }, + { + "start": 7097.86, + "end": 7099.04, + "probability": 0.8962 + }, + { + "start": 7099.56, + "end": 7101.24, + "probability": 0.606 + }, + { + "start": 7102.82, + "end": 7105.12, + "probability": 0.8269 + }, + { + "start": 7106.02, + "end": 7111.14, + "probability": 0.8392 + }, + { + "start": 7111.2, + "end": 7112.72, + "probability": 0.9702 + }, + { + "start": 7113.16, + "end": 7113.74, + "probability": 0.4684 + }, + { + "start": 7114.62, + "end": 7115.8, + "probability": 0.8538 + }, + { + "start": 7116.34, + "end": 7117.68, + "probability": 0.875 + }, + { + "start": 7117.84, + "end": 7118.76, + "probability": 0.816 + }, + { + "start": 7119.56, + "end": 7123.82, + "probability": 0.9736 + }, + { + "start": 7124.6, + "end": 7125.28, + "probability": 0.9316 + }, + { + "start": 7125.86, + "end": 7127.64, + "probability": 0.9446 + }, + { + "start": 7128.64, + "end": 7133.28, + "probability": 0.7517 + }, + { + "start": 7133.82, + "end": 7136.58, + "probability": 0.9877 + }, + { + "start": 7137.3, + "end": 7139.26, + "probability": 0.8608 + }, + { + "start": 7140.26, + "end": 7143.44, + "probability": 0.6874 + }, + { + "start": 7144.1, + "end": 7144.38, + "probability": 0.4654 + }, + { + "start": 7144.48, + "end": 7152.08, + "probability": 0.9897 + }, + { + "start": 7152.18, + "end": 7153.08, + "probability": 0.5393 + }, + { + "start": 7153.76, + "end": 7155.24, + "probability": 0.9492 + }, + { + "start": 7155.26, + "end": 7156.74, + "probability": 0.8196 + }, + { + "start": 7156.94, + "end": 7159.98, + "probability": 0.9891 + }, + { + "start": 7160.22, + "end": 7161.92, + "probability": 0.7576 + }, + { + "start": 7162.82, + "end": 7165.24, + "probability": 0.8727 + }, + { + "start": 7165.38, + "end": 7165.7, + "probability": 0.4981 + }, + { + "start": 7166.26, + "end": 7169.2, + "probability": 0.9824 + }, + { + "start": 7169.22, + "end": 7174.16, + "probability": 0.825 + }, + { + "start": 7175.1, + "end": 7180.26, + "probability": 0.8956 + }, + { + "start": 7180.26, + "end": 7185.96, + "probability": 0.7211 + }, + { + "start": 7186.32, + "end": 7189.0, + "probability": 0.9114 + }, + { + "start": 7189.6, + "end": 7194.12, + "probability": 0.6639 + }, + { + "start": 7195.0, + "end": 7195.84, + "probability": 0.7308 + }, + { + "start": 7196.96, + "end": 7197.68, + "probability": 0.8028 + }, + { + "start": 7197.92, + "end": 7203.02, + "probability": 0.9938 + }, + { + "start": 7203.16, + "end": 7205.78, + "probability": 0.877 + }, + { + "start": 7207.22, + "end": 7209.34, + "probability": 0.0088 + }, + { + "start": 7210.98, + "end": 7213.22, + "probability": 0.9613 + }, + { + "start": 7213.52, + "end": 7214.74, + "probability": 0.5368 + }, + { + "start": 7214.98, + "end": 7219.5, + "probability": 0.9634 + }, + { + "start": 7220.36, + "end": 7223.02, + "probability": 0.7829 + }, + { + "start": 7223.98, + "end": 7224.82, + "probability": 0.719 + }, + { + "start": 7225.0, + "end": 7225.53, + "probability": 0.8892 + }, + { + "start": 7226.4, + "end": 7229.12, + "probability": 0.9674 + }, + { + "start": 7229.5, + "end": 7230.83, + "probability": 0.7822 + }, + { + "start": 7231.52, + "end": 7231.9, + "probability": 0.6248 + }, + { + "start": 7231.96, + "end": 7232.36, + "probability": 0.7152 + }, + { + "start": 7232.72, + "end": 7237.0, + "probability": 0.9944 + }, + { + "start": 7237.56, + "end": 7238.08, + "probability": 0.6903 + }, + { + "start": 7239.36, + "end": 7241.6, + "probability": 0.9246 + }, + { + "start": 7242.36, + "end": 7245.12, + "probability": 0.9933 + }, + { + "start": 7245.56, + "end": 7247.62, + "probability": 0.9042 + }, + { + "start": 7247.88, + "end": 7248.74, + "probability": 0.9451 + }, + { + "start": 7249.82, + "end": 7250.66, + "probability": 0.9138 + }, + { + "start": 7252.0, + "end": 7254.98, + "probability": 0.889 + }, + { + "start": 7255.5, + "end": 7256.84, + "probability": 0.8703 + }, + { + "start": 7257.44, + "end": 7257.88, + "probability": 0.54 + }, + { + "start": 7258.3, + "end": 7261.74, + "probability": 0.5894 + }, + { + "start": 7262.22, + "end": 7265.84, + "probability": 0.9822 + }, + { + "start": 7266.16, + "end": 7274.16, + "probability": 0.8149 + }, + { + "start": 7275.08, + "end": 7277.54, + "probability": 0.6946 + }, + { + "start": 7278.55, + "end": 7282.06, + "probability": 0.8132 + }, + { + "start": 7282.08, + "end": 7282.46, + "probability": 0.8146 + }, + { + "start": 7282.9, + "end": 7285.6, + "probability": 0.9786 + }, + { + "start": 7285.9, + "end": 7288.56, + "probability": 0.6273 + }, + { + "start": 7289.28, + "end": 7292.64, + "probability": 0.96 + }, + { + "start": 7293.48, + "end": 7294.48, + "probability": 0.7614 + }, + { + "start": 7295.34, + "end": 7300.4, + "probability": 0.7908 + }, + { + "start": 7301.44, + "end": 7303.08, + "probability": 0.5308 + }, + { + "start": 7303.66, + "end": 7305.66, + "probability": 0.9945 + }, + { + "start": 7306.1, + "end": 7307.74, + "probability": 0.9885 + }, + { + "start": 7308.28, + "end": 7310.48, + "probability": 0.7488 + }, + { + "start": 7311.1, + "end": 7311.96, + "probability": 0.6655 + }, + { + "start": 7312.14, + "end": 7313.24, + "probability": 0.8097 + }, + { + "start": 7313.48, + "end": 7314.76, + "probability": 0.8168 + }, + { + "start": 7314.9, + "end": 7315.48, + "probability": 0.7844 + }, + { + "start": 7315.68, + "end": 7316.64, + "probability": 0.8741 + }, + { + "start": 7317.28, + "end": 7319.24, + "probability": 0.9777 + }, + { + "start": 7320.32, + "end": 7325.04, + "probability": 0.6575 + }, + { + "start": 7325.24, + "end": 7327.3, + "probability": 0.9963 + }, + { + "start": 7327.96, + "end": 7331.48, + "probability": 0.9065 + }, + { + "start": 7332.3, + "end": 7334.36, + "probability": 0.8363 + }, + { + "start": 7334.94, + "end": 7337.98, + "probability": 0.9316 + }, + { + "start": 7338.1, + "end": 7341.62, + "probability": 0.9781 + }, + { + "start": 7342.24, + "end": 7346.44, + "probability": 0.8993 + }, + { + "start": 7346.84, + "end": 7347.34, + "probability": 0.362 + }, + { + "start": 7348.1, + "end": 7349.6, + "probability": 0.5979 + }, + { + "start": 7350.3, + "end": 7352.78, + "probability": 0.9508 + }, + { + "start": 7353.26, + "end": 7354.6, + "probability": 0.887 + }, + { + "start": 7355.9, + "end": 7357.78, + "probability": 0.9802 + }, + { + "start": 7358.32, + "end": 7362.48, + "probability": 0.9194 + }, + { + "start": 7362.62, + "end": 7363.08, + "probability": 0.1165 + }, + { + "start": 7363.38, + "end": 7364.15, + "probability": 0.4504 + }, + { + "start": 7364.84, + "end": 7365.64, + "probability": 0.75 + }, + { + "start": 7365.74, + "end": 7366.52, + "probability": 0.8784 + }, + { + "start": 7367.18, + "end": 7367.9, + "probability": 0.5868 + }, + { + "start": 7368.38, + "end": 7372.06, + "probability": 0.9603 + }, + { + "start": 7372.6, + "end": 7375.9, + "probability": 0.7436 + }, + { + "start": 7376.32, + "end": 7379.46, + "probability": 0.6 + }, + { + "start": 7380.18, + "end": 7382.52, + "probability": 0.9588 + }, + { + "start": 7383.12, + "end": 7384.62, + "probability": 0.9805 + }, + { + "start": 7385.72, + "end": 7387.84, + "probability": 0.9448 + }, + { + "start": 7388.14, + "end": 7391.3, + "probability": 0.998 + }, + { + "start": 7391.7, + "end": 7394.44, + "probability": 0.8716 + }, + { + "start": 7394.98, + "end": 7401.1, + "probability": 0.9673 + }, + { + "start": 7401.1, + "end": 7405.56, + "probability": 0.9862 + }, + { + "start": 7406.16, + "end": 7406.58, + "probability": 0.8027 + }, + { + "start": 7407.5, + "end": 7409.3, + "probability": 0.5757 + }, + { + "start": 7410.18, + "end": 7414.38, + "probability": 0.9447 + }, + { + "start": 7415.02, + "end": 7417.46, + "probability": 0.7992 + }, + { + "start": 7417.46, + "end": 7419.02, + "probability": 0.7768 + }, + { + "start": 7419.1, + "end": 7421.1, + "probability": 0.4343 + }, + { + "start": 7421.22, + "end": 7422.43, + "probability": 0.7769 + }, + { + "start": 7423.7, + "end": 7426.7, + "probability": 0.9343 + }, + { + "start": 7434.16, + "end": 7434.96, + "probability": 0.9583 + }, + { + "start": 7435.16, + "end": 7435.88, + "probability": 0.9577 + }, + { + "start": 7435.98, + "end": 7439.82, + "probability": 0.9673 + }, + { + "start": 7439.96, + "end": 7443.4, + "probability": 0.9354 + }, + { + "start": 7443.66, + "end": 7444.28, + "probability": 0.729 + }, + { + "start": 7446.46, + "end": 7448.05, + "probability": 0.9601 + }, + { + "start": 7449.38, + "end": 7450.5, + "probability": 0.7284 + }, + { + "start": 7450.94, + "end": 7451.38, + "probability": 0.5576 + }, + { + "start": 7451.62, + "end": 7453.04, + "probability": 0.7339 + }, + { + "start": 7453.64, + "end": 7455.36, + "probability": 0.7315 + }, + { + "start": 7456.28, + "end": 7459.64, + "probability": 0.8297 + }, + { + "start": 7461.1, + "end": 7464.56, + "probability": 0.99 + }, + { + "start": 7464.96, + "end": 7469.32, + "probability": 0.9853 + }, + { + "start": 7470.74, + "end": 7474.36, + "probability": 0.9976 + }, + { + "start": 7474.36, + "end": 7479.86, + "probability": 0.9754 + }, + { + "start": 7481.5, + "end": 7485.26, + "probability": 0.9971 + }, + { + "start": 7485.45, + "end": 7489.66, + "probability": 0.9961 + }, + { + "start": 7490.36, + "end": 7491.52, + "probability": 0.9888 + }, + { + "start": 7491.62, + "end": 7494.47, + "probability": 0.9985 + }, + { + "start": 7494.7, + "end": 7499.72, + "probability": 0.9728 + }, + { + "start": 7500.98, + "end": 7507.44, + "probability": 0.9427 + }, + { + "start": 7507.44, + "end": 7512.1, + "probability": 0.9967 + }, + { + "start": 7513.2, + "end": 7518.66, + "probability": 0.9842 + }, + { + "start": 7519.76, + "end": 7521.8, + "probability": 0.9985 + }, + { + "start": 7522.8, + "end": 7525.0, + "probability": 0.9971 + }, + { + "start": 7525.26, + "end": 7529.28, + "probability": 0.9716 + }, + { + "start": 7531.32, + "end": 7537.48, + "probability": 0.9756 + }, + { + "start": 7537.48, + "end": 7542.62, + "probability": 0.998 + }, + { + "start": 7544.34, + "end": 7545.78, + "probability": 0.999 + }, + { + "start": 7545.88, + "end": 7547.28, + "probability": 0.9711 + }, + { + "start": 7547.32, + "end": 7547.9, + "probability": 0.7876 + }, + { + "start": 7548.22, + "end": 7555.38, + "probability": 0.9733 + }, + { + "start": 7555.48, + "end": 7556.38, + "probability": 0.6696 + }, + { + "start": 7557.7, + "end": 7558.1, + "probability": 0.939 + }, + { + "start": 7558.14, + "end": 7558.94, + "probability": 0.5883 + }, + { + "start": 7559.12, + "end": 7560.2, + "probability": 0.668 + }, + { + "start": 7560.36, + "end": 7561.92, + "probability": 0.8679 + }, + { + "start": 7562.08, + "end": 7563.92, + "probability": 0.9541 + }, + { + "start": 7564.7, + "end": 7571.2, + "probability": 0.9941 + }, + { + "start": 7571.96, + "end": 7572.72, + "probability": 0.7442 + }, + { + "start": 7572.76, + "end": 7578.2, + "probability": 0.9861 + }, + { + "start": 7578.2, + "end": 7582.62, + "probability": 0.9819 + }, + { + "start": 7583.14, + "end": 7586.9, + "probability": 0.8264 + }, + { + "start": 7587.42, + "end": 7592.12, + "probability": 0.9916 + }, + { + "start": 7593.66, + "end": 7594.68, + "probability": 0.6611 + }, + { + "start": 7594.8, + "end": 7596.22, + "probability": 0.8768 + }, + { + "start": 7596.4, + "end": 7597.22, + "probability": 0.7049 + }, + { + "start": 7597.62, + "end": 7598.12, + "probability": 0.9855 + }, + { + "start": 7599.02, + "end": 7599.92, + "probability": 0.961 + }, + { + "start": 7600.28, + "end": 7601.34, + "probability": 0.8778 + }, + { + "start": 7602.98, + "end": 7603.74, + "probability": 0.9363 + }, + { + "start": 7603.9, + "end": 7605.14, + "probability": 0.8181 + }, + { + "start": 7605.32, + "end": 7609.48, + "probability": 0.9927 + }, + { + "start": 7609.48, + "end": 7614.34, + "probability": 0.9844 + }, + { + "start": 7614.46, + "end": 7617.2, + "probability": 0.9983 + }, + { + "start": 7617.4, + "end": 7619.58, + "probability": 0.9923 + }, + { + "start": 7620.16, + "end": 7626.64, + "probability": 0.9971 + }, + { + "start": 7626.64, + "end": 7631.74, + "probability": 0.9499 + }, + { + "start": 7632.52, + "end": 7634.39, + "probability": 0.9756 + }, + { + "start": 7635.04, + "end": 7638.14, + "probability": 0.9915 + }, + { + "start": 7638.14, + "end": 7642.38, + "probability": 0.9202 + }, + { + "start": 7642.64, + "end": 7645.76, + "probability": 0.9991 + }, + { + "start": 7645.76, + "end": 7649.98, + "probability": 0.9995 + }, + { + "start": 7650.18, + "end": 7651.62, + "probability": 0.596 + }, + { + "start": 7651.62, + "end": 7652.18, + "probability": 0.38 + }, + { + "start": 7652.54, + "end": 7654.34, + "probability": 0.9721 + }, + { + "start": 7654.42, + "end": 7661.32, + "probability": 0.9584 + }, + { + "start": 7661.5, + "end": 7662.24, + "probability": 0.8722 + }, + { + "start": 7662.3, + "end": 7663.42, + "probability": 0.8754 + }, + { + "start": 7663.58, + "end": 7665.07, + "probability": 0.9195 + }, + { + "start": 7665.66, + "end": 7666.36, + "probability": 0.4742 + }, + { + "start": 7666.84, + "end": 7667.52, + "probability": 0.5141 + }, + { + "start": 7668.18, + "end": 7669.72, + "probability": 0.9286 + }, + { + "start": 7670.04, + "end": 7671.18, + "probability": 0.7937 + }, + { + "start": 7671.68, + "end": 7673.18, + "probability": 0.9665 + }, + { + "start": 7673.28, + "end": 7673.56, + "probability": 0.8965 + }, + { + "start": 7674.6, + "end": 7676.16, + "probability": 0.5727 + }, + { + "start": 7678.02, + "end": 7682.08, + "probability": 0.9748 + }, + { + "start": 7685.34, + "end": 7685.76, + "probability": 0.0104 + }, + { + "start": 7686.52, + "end": 7687.78, + "probability": 0.0661 + }, + { + "start": 7691.76, + "end": 7695.74, + "probability": 0.0991 + }, + { + "start": 7696.26, + "end": 7697.42, + "probability": 0.7709 + }, + { + "start": 7699.88, + "end": 7699.94, + "probability": 0.0112 + }, + { + "start": 7700.5, + "end": 7704.5, + "probability": 0.0624 + }, + { + "start": 7708.53, + "end": 7709.14, + "probability": 0.8384 + }, + { + "start": 7709.78, + "end": 7712.14, + "probability": 0.8004 + }, + { + "start": 7712.86, + "end": 7713.34, + "probability": 0.8409 + }, + { + "start": 7713.34, + "end": 7715.24, + "probability": 0.9376 + }, + { + "start": 7715.54, + "end": 7718.6, + "probability": 0.9917 + }, + { + "start": 7718.64, + "end": 7719.62, + "probability": 0.9806 + }, + { + "start": 7720.82, + "end": 7721.82, + "probability": 0.6982 + }, + { + "start": 7721.92, + "end": 7723.44, + "probability": 0.9875 + }, + { + "start": 7723.66, + "end": 7724.2, + "probability": 0.1647 + }, + { + "start": 7724.2, + "end": 7724.2, + "probability": 0.0966 + }, + { + "start": 7724.2, + "end": 7724.48, + "probability": 0.3093 + }, + { + "start": 7725.44, + "end": 7727.88, + "probability": 0.7303 + }, + { + "start": 7728.02, + "end": 7730.71, + "probability": 0.9835 + }, + { + "start": 7731.16, + "end": 7732.9, + "probability": 0.9151 + }, + { + "start": 7734.52, + "end": 7736.1, + "probability": 0.9777 + }, + { + "start": 7737.68, + "end": 7737.96, + "probability": 0.0978 + }, + { + "start": 7738.5, + "end": 7744.58, + "probability": 0.5347 + }, + { + "start": 7745.1, + "end": 7747.52, + "probability": 0.9604 + }, + { + "start": 7747.58, + "end": 7749.98, + "probability": 0.9979 + }, + { + "start": 7751.4, + "end": 7752.74, + "probability": 0.9835 + }, + { + "start": 7752.94, + "end": 7754.12, + "probability": 0.9867 + }, + { + "start": 7754.32, + "end": 7755.68, + "probability": 0.9136 + }, + { + "start": 7756.0, + "end": 7757.04, + "probability": 0.9983 + }, + { + "start": 7758.0, + "end": 7758.94, + "probability": 0.7404 + }, + { + "start": 7759.36, + "end": 7760.06, + "probability": 0.6725 + }, + { + "start": 7760.22, + "end": 7760.42, + "probability": 0.879 + }, + { + "start": 7760.7, + "end": 7761.52, + "probability": 0.6111 + }, + { + "start": 7761.56, + "end": 7762.72, + "probability": 0.0309 + }, + { + "start": 7763.1, + "end": 7765.42, + "probability": 0.8079 + }, + { + "start": 7765.64, + "end": 7768.24, + "probability": 0.6599 + }, + { + "start": 7770.23, + "end": 7776.96, + "probability": 0.9907 + }, + { + "start": 7777.66, + "end": 7781.06, + "probability": 0.9731 + }, + { + "start": 7785.24, + "end": 7790.88, + "probability": 0.9976 + }, + { + "start": 7790.88, + "end": 7793.04, + "probability": 0.9876 + }, + { + "start": 7793.38, + "end": 7795.2, + "probability": 0.7977 + }, + { + "start": 7795.5, + "end": 7796.5, + "probability": 0.9783 + }, + { + "start": 7796.58, + "end": 7798.4, + "probability": 0.9879 + }, + { + "start": 7798.94, + "end": 7800.3, + "probability": 0.9334 + }, + { + "start": 7800.46, + "end": 7802.22, + "probability": 0.8302 + }, + { + "start": 7802.92, + "end": 7804.78, + "probability": 0.8939 + }, + { + "start": 7804.94, + "end": 7809.06, + "probability": 0.9313 + }, + { + "start": 7809.24, + "end": 7810.52, + "probability": 0.985 + }, + { + "start": 7811.1, + "end": 7813.8, + "probability": 0.9746 + }, + { + "start": 7813.88, + "end": 7815.32, + "probability": 0.989 + }, + { + "start": 7815.84, + "end": 7816.5, + "probability": 0.8179 + }, + { + "start": 7816.64, + "end": 7818.87, + "probability": 0.979 + }, + { + "start": 7819.04, + "end": 7819.78, + "probability": 0.8041 + }, + { + "start": 7820.22, + "end": 7822.08, + "probability": 0.9746 + }, + { + "start": 7822.14, + "end": 7822.64, + "probability": 0.6718 + }, + { + "start": 7822.68, + "end": 7825.23, + "probability": 0.9707 + }, + { + "start": 7825.66, + "end": 7826.46, + "probability": 0.8924 + }, + { + "start": 7826.68, + "end": 7831.8, + "probability": 0.9907 + }, + { + "start": 7831.8, + "end": 7834.82, + "probability": 0.9851 + }, + { + "start": 7835.16, + "end": 7836.16, + "probability": 0.4618 + }, + { + "start": 7837.19, + "end": 7839.24, + "probability": 0.7893 + }, + { + "start": 7839.26, + "end": 7842.24, + "probability": 0.9386 + }, + { + "start": 7842.76, + "end": 7846.26, + "probability": 0.9554 + }, + { + "start": 7846.8, + "end": 7847.46, + "probability": 0.8898 + }, + { + "start": 7848.38, + "end": 7848.84, + "probability": 0.8855 + }, + { + "start": 7848.88, + "end": 7849.64, + "probability": 0.7933 + }, + { + "start": 7849.82, + "end": 7851.65, + "probability": 0.9733 + }, + { + "start": 7851.9, + "end": 7852.38, + "probability": 0.9624 + }, + { + "start": 7853.32, + "end": 7856.84, + "probability": 0.9951 + }, + { + "start": 7856.88, + "end": 7858.22, + "probability": 0.9646 + }, + { + "start": 7858.36, + "end": 7860.26, + "probability": 0.9939 + }, + { + "start": 7860.62, + "end": 7861.26, + "probability": 0.3603 + }, + { + "start": 7861.34, + "end": 7862.1, + "probability": 0.9614 + }, + { + "start": 7862.36, + "end": 7867.68, + "probability": 0.9834 + }, + { + "start": 7868.2, + "end": 7868.52, + "probability": 0.6051 + }, + { + "start": 7868.56, + "end": 7870.36, + "probability": 0.9895 + }, + { + "start": 7870.96, + "end": 7872.46, + "probability": 0.8423 + }, + { + "start": 7872.54, + "end": 7874.26, + "probability": 0.7064 + }, + { + "start": 7875.86, + "end": 7876.68, + "probability": 0.9483 + }, + { + "start": 7877.04, + "end": 7879.64, + "probability": 0.8045 + }, + { + "start": 7879.9, + "end": 7881.38, + "probability": 0.9795 + }, + { + "start": 7882.88, + "end": 7885.28, + "probability": 0.9729 + }, + { + "start": 7885.72, + "end": 7889.08, + "probability": 0.9307 + }, + { + "start": 7889.16, + "end": 7890.63, + "probability": 0.9926 + }, + { + "start": 7891.68, + "end": 7895.3, + "probability": 0.987 + }, + { + "start": 7895.7, + "end": 7897.84, + "probability": 0.989 + }, + { + "start": 7898.08, + "end": 7900.98, + "probability": 0.9987 + }, + { + "start": 7901.06, + "end": 7903.16, + "probability": 0.8319 + }, + { + "start": 7903.28, + "end": 7903.94, + "probability": 0.9912 + }, + { + "start": 7904.12, + "end": 7904.92, + "probability": 0.6616 + }, + { + "start": 7905.48, + "end": 7906.38, + "probability": 0.7802 + }, + { + "start": 7906.78, + "end": 7909.9, + "probability": 0.9915 + }, + { + "start": 7910.02, + "end": 7911.93, + "probability": 0.9937 + }, + { + "start": 7912.5, + "end": 7914.86, + "probability": 0.9531 + }, + { + "start": 7915.48, + "end": 7920.7, + "probability": 0.9847 + }, + { + "start": 7921.16, + "end": 7922.32, + "probability": 0.9424 + }, + { + "start": 7922.74, + "end": 7923.78, + "probability": 0.9849 + }, + { + "start": 7924.04, + "end": 7925.71, + "probability": 0.9957 + }, + { + "start": 7926.34, + "end": 7928.99, + "probability": 0.9528 + }, + { + "start": 7929.42, + "end": 7930.08, + "probability": 0.6352 + }, + { + "start": 7930.14, + "end": 7930.24, + "probability": 0.769 + }, + { + "start": 7930.24, + "end": 7931.18, + "probability": 0.6168 + }, + { + "start": 7932.06, + "end": 7934.2, + "probability": 0.7117 + }, + { + "start": 7934.34, + "end": 7937.72, + "probability": 0.9941 + }, + { + "start": 7937.9, + "end": 7939.5, + "probability": 0.7249 + }, + { + "start": 7940.52, + "end": 7942.52, + "probability": 0.095 + }, + { + "start": 7942.76, + "end": 7945.3, + "probability": 0.6002 + }, + { + "start": 7947.04, + "end": 7951.1, + "probability": 0.9595 + }, + { + "start": 7951.26, + "end": 7957.24, + "probability": 0.9358 + }, + { + "start": 7957.48, + "end": 7963.04, + "probability": 0.9834 + }, + { + "start": 7963.68, + "end": 7966.0, + "probability": 0.9995 + }, + { + "start": 7966.3, + "end": 7966.76, + "probability": 0.822 + }, + { + "start": 7966.84, + "end": 7967.2, + "probability": 0.764 + }, + { + "start": 7967.46, + "end": 7969.52, + "probability": 0.8262 + }, + { + "start": 7969.8, + "end": 7971.2, + "probability": 0.8802 + }, + { + "start": 7971.3, + "end": 7972.66, + "probability": 0.9346 + }, + { + "start": 7972.92, + "end": 7977.02, + "probability": 0.9521 + }, + { + "start": 7977.54, + "end": 7980.18, + "probability": 0.9406 + }, + { + "start": 7981.56, + "end": 7984.58, + "probability": 0.9216 + }, + { + "start": 7985.04, + "end": 7987.74, + "probability": 0.7998 + }, + { + "start": 7988.0, + "end": 7990.26, + "probability": 0.9893 + }, + { + "start": 7990.3, + "end": 7992.32, + "probability": 0.9813 + }, + { + "start": 7992.64, + "end": 7995.32, + "probability": 0.7524 + }, + { + "start": 7995.5, + "end": 7999.9, + "probability": 0.8337 + }, + { + "start": 8002.48, + "end": 8004.38, + "probability": 0.4619 + }, + { + "start": 8012.6, + "end": 8014.34, + "probability": 0.5369 + }, + { + "start": 8014.34, + "end": 8015.52, + "probability": 0.5658 + }, + { + "start": 8016.28, + "end": 8019.5, + "probability": 0.9012 + }, + { + "start": 8021.0, + "end": 8023.18, + "probability": 0.6653 + }, + { + "start": 8023.76, + "end": 8024.76, + "probability": 0.7827 + }, + { + "start": 8024.76, + "end": 8025.26, + "probability": 0.6543 + }, + { + "start": 8025.32, + "end": 8025.58, + "probability": 0.6252 + }, + { + "start": 8025.58, + "end": 8025.62, + "probability": 0.9001 + }, + { + "start": 8025.74, + "end": 8026.08, + "probability": 0.8912 + }, + { + "start": 8026.08, + "end": 8027.08, + "probability": 0.5748 + }, + { + "start": 8028.54, + "end": 8028.98, + "probability": 0.0003 + }, + { + "start": 8031.68, + "end": 8032.38, + "probability": 0.0148 + }, + { + "start": 8033.66, + "end": 8035.36, + "probability": 0.9373 + }, + { + "start": 8035.58, + "end": 8037.5, + "probability": 0.0386 + }, + { + "start": 8038.36, + "end": 8040.04, + "probability": 0.0971 + }, + { + "start": 8042.04, + "end": 8042.4, + "probability": 0.1686 + }, + { + "start": 8042.4, + "end": 8043.04, + "probability": 0.8253 + }, + { + "start": 8043.82, + "end": 8046.62, + "probability": 0.9835 + }, + { + "start": 8047.44, + "end": 8049.42, + "probability": 0.9246 + }, + { + "start": 8050.16, + "end": 8053.42, + "probability": 0.9741 + }, + { + "start": 8054.2, + "end": 8055.0, + "probability": 0.6819 + }, + { + "start": 8055.24, + "end": 8058.18, + "probability": 0.8722 + }, + { + "start": 8058.9, + "end": 8062.74, + "probability": 0.981 + }, + { + "start": 8062.74, + "end": 8065.4, + "probability": 0.9122 + }, + { + "start": 8065.78, + "end": 8067.64, + "probability": 0.8985 + }, + { + "start": 8068.52, + "end": 8072.08, + "probability": 0.99 + }, + { + "start": 8073.3, + "end": 8073.42, + "probability": 0.2398 + }, + { + "start": 8073.68, + "end": 8076.46, + "probability": 0.9971 + }, + { + "start": 8076.84, + "end": 8079.66, + "probability": 0.84 + }, + { + "start": 8079.78, + "end": 8084.96, + "probability": 0.957 + }, + { + "start": 8085.4, + "end": 8087.42, + "probability": 0.9399 + }, + { + "start": 8087.82, + "end": 8088.5, + "probability": 0.4167 + }, + { + "start": 8089.3, + "end": 8093.44, + "probability": 0.9448 + }, + { + "start": 8094.64, + "end": 8097.9, + "probability": 0.9974 + }, + { + "start": 8098.64, + "end": 8098.96, + "probability": 0.4826 + }, + { + "start": 8099.5, + "end": 8101.06, + "probability": 0.6228 + }, + { + "start": 8101.14, + "end": 8104.32, + "probability": 0.9474 + }, + { + "start": 8104.44, + "end": 8106.34, + "probability": 0.7184 + }, + { + "start": 8109.24, + "end": 8111.08, + "probability": 0.7495 + }, + { + "start": 8111.62, + "end": 8112.38, + "probability": 0.7359 + }, + { + "start": 8112.54, + "end": 8114.22, + "probability": 0.9648 + }, + { + "start": 8114.42, + "end": 8115.66, + "probability": 0.9678 + }, + { + "start": 8116.1, + "end": 8116.84, + "probability": 0.7211 + }, + { + "start": 8117.32, + "end": 8118.62, + "probability": 0.8994 + }, + { + "start": 8118.78, + "end": 8120.08, + "probability": 0.9055 + }, + { + "start": 8122.28, + "end": 8124.28, + "probability": 0.2681 + }, + { + "start": 8124.88, + "end": 8125.12, + "probability": 0.0647 + }, + { + "start": 8125.12, + "end": 8125.68, + "probability": 0.0681 + }, + { + "start": 8125.68, + "end": 8125.68, + "probability": 0.3489 + }, + { + "start": 8125.68, + "end": 8126.62, + "probability": 0.3738 + }, + { + "start": 8127.0, + "end": 8128.04, + "probability": 0.5409 + }, + { + "start": 8129.34, + "end": 8131.68, + "probability": 0.4022 + }, + { + "start": 8131.68, + "end": 8131.96, + "probability": 0.2976 + }, + { + "start": 8132.08, + "end": 8133.54, + "probability": 0.6101 + }, + { + "start": 8133.9, + "end": 8136.18, + "probability": 0.5725 + }, + { + "start": 8136.64, + "end": 8138.9, + "probability": 0.8076 + }, + { + "start": 8139.44, + "end": 8140.28, + "probability": 0.7146 + }, + { + "start": 8140.52, + "end": 8142.82, + "probability": 0.5422 + }, + { + "start": 8142.82, + "end": 8145.81, + "probability": 0.9701 + }, + { + "start": 8146.6, + "end": 8147.76, + "probability": 0.7704 + }, + { + "start": 8148.26, + "end": 8151.92, + "probability": 0.9888 + }, + { + "start": 8152.38, + "end": 8154.4, + "probability": 0.6327 + }, + { + "start": 8154.82, + "end": 8156.24, + "probability": 0.87 + }, + { + "start": 8156.9, + "end": 8158.34, + "probability": 0.8898 + }, + { + "start": 8158.74, + "end": 8160.22, + "probability": 0.9644 + }, + { + "start": 8160.74, + "end": 8163.42, + "probability": 0.9879 + }, + { + "start": 8164.08, + "end": 8166.64, + "probability": 0.9678 + }, + { + "start": 8167.38, + "end": 8169.56, + "probability": 0.901 + }, + { + "start": 8170.22, + "end": 8177.46, + "probability": 0.9422 + }, + { + "start": 8178.12, + "end": 8183.72, + "probability": 0.996 + }, + { + "start": 8184.62, + "end": 8186.72, + "probability": 0.7797 + }, + { + "start": 8187.18, + "end": 8188.79, + "probability": 0.884 + }, + { + "start": 8189.6, + "end": 8191.86, + "probability": 0.9879 + }, + { + "start": 8192.28, + "end": 8193.7, + "probability": 0.9551 + }, + { + "start": 8194.22, + "end": 8196.14, + "probability": 0.8416 + }, + { + "start": 8196.8, + "end": 8197.88, + "probability": 0.6337 + }, + { + "start": 8198.22, + "end": 8202.82, + "probability": 0.9005 + }, + { + "start": 8203.08, + "end": 8204.44, + "probability": 0.8942 + }, + { + "start": 8204.94, + "end": 8207.62, + "probability": 0.6805 + }, + { + "start": 8208.38, + "end": 8209.12, + "probability": 0.7997 + }, + { + "start": 8209.2, + "end": 8213.4, + "probability": 0.9795 + }, + { + "start": 8213.88, + "end": 8217.7, + "probability": 0.9671 + }, + { + "start": 8218.08, + "end": 8219.7, + "probability": 0.8483 + }, + { + "start": 8221.43, + "end": 8222.7, + "probability": 0.4259 + }, + { + "start": 8222.7, + "end": 8222.74, + "probability": 0.5676 + }, + { + "start": 8222.86, + "end": 8223.18, + "probability": 0.6945 + }, + { + "start": 8223.22, + "end": 8223.92, + "probability": 0.7866 + }, + { + "start": 8224.6, + "end": 8228.4, + "probability": 0.9561 + }, + { + "start": 8228.8, + "end": 8231.5, + "probability": 0.8945 + }, + { + "start": 8231.58, + "end": 8233.08, + "probability": 0.895 + }, + { + "start": 8233.4, + "end": 8234.92, + "probability": 0.9686 + }, + { + "start": 8235.24, + "end": 8236.78, + "probability": 0.6231 + }, + { + "start": 8236.88, + "end": 8239.1, + "probability": 0.9912 + }, + { + "start": 8239.22, + "end": 8239.4, + "probability": 0.2774 + }, + { + "start": 8239.4, + "end": 8242.06, + "probability": 0.7603 + }, + { + "start": 8242.84, + "end": 8243.02, + "probability": 0.6849 + }, + { + "start": 8243.02, + "end": 8244.35, + "probability": 0.8128 + }, + { + "start": 8244.56, + "end": 8246.65, + "probability": 0.907 + }, + { + "start": 8247.3, + "end": 8247.3, + "probability": 0.2854 + }, + { + "start": 8247.4, + "end": 8251.1, + "probability": 0.9778 + }, + { + "start": 8252.56, + "end": 8254.24, + "probability": 0.6275 + }, + { + "start": 8254.38, + "end": 8256.48, + "probability": 0.9594 + }, + { + "start": 8256.48, + "end": 8258.36, + "probability": 0.7025 + }, + { + "start": 8258.56, + "end": 8261.5, + "probability": 0.683 + }, + { + "start": 8261.56, + "end": 8262.3, + "probability": 0.7413 + }, + { + "start": 8267.02, + "end": 8273.76, + "probability": 0.0212 + }, + { + "start": 8273.76, + "end": 8274.05, + "probability": 0.0294 + }, + { + "start": 8274.24, + "end": 8279.1, + "probability": 0.05 + }, + { + "start": 8279.88, + "end": 8280.26, + "probability": 0.0618 + }, + { + "start": 8280.26, + "end": 8280.56, + "probability": 0.248 + }, + { + "start": 8281.22, + "end": 8284.76, + "probability": 0.6328 + }, + { + "start": 8285.46, + "end": 8287.66, + "probability": 0.8343 + }, + { + "start": 8288.73, + "end": 8292.38, + "probability": 0.5899 + }, + { + "start": 8292.82, + "end": 8293.99, + "probability": 0.0919 + }, + { + "start": 8294.94, + "end": 8295.72, + "probability": 0.8953 + }, + { + "start": 8295.92, + "end": 8301.06, + "probability": 0.8795 + }, + { + "start": 8301.52, + "end": 8302.5, + "probability": 0.9574 + }, + { + "start": 8303.9, + "end": 8306.92, + "probability": 0.682 + }, + { + "start": 8306.98, + "end": 8308.28, + "probability": 0.5925 + }, + { + "start": 8308.42, + "end": 8312.22, + "probability": 0.6652 + }, + { + "start": 8312.5, + "end": 8313.44, + "probability": 0.8663 + }, + { + "start": 8319.46, + "end": 8324.9, + "probability": 0.0617 + }, + { + "start": 8324.9, + "end": 8325.08, + "probability": 0.0206 + }, + { + "start": 8325.4, + "end": 8327.94, + "probability": 0.0696 + }, + { + "start": 8330.94, + "end": 8330.94, + "probability": 0.0628 + }, + { + "start": 8330.94, + "end": 8335.98, + "probability": 0.718 + }, + { + "start": 8337.14, + "end": 8339.26, + "probability": 0.8872 + }, + { + "start": 8340.42, + "end": 8341.1, + "probability": 0.7917 + }, + { + "start": 8348.66, + "end": 8348.66, + "probability": 0.4448 + }, + { + "start": 8348.66, + "end": 8350.0, + "probability": 0.6375 + }, + { + "start": 8351.6, + "end": 8354.54, + "probability": 0.9924 + }, + { + "start": 8354.86, + "end": 8359.4, + "probability": 0.9289 + }, + { + "start": 8360.0, + "end": 8361.94, + "probability": 0.5963 + }, + { + "start": 8362.04, + "end": 8365.34, + "probability": 0.859 + }, + { + "start": 8366.12, + "end": 8369.24, + "probability": 0.7601 + }, + { + "start": 8374.26, + "end": 8375.34, + "probability": 0.7197 + }, + { + "start": 8375.34, + "end": 8376.6, + "probability": 0.4883 + }, + { + "start": 8378.54, + "end": 8382.46, + "probability": 0.9921 + }, + { + "start": 8384.2, + "end": 8387.18, + "probability": 0.9871 + }, + { + "start": 8387.94, + "end": 8392.97, + "probability": 0.9757 + }, + { + "start": 8394.64, + "end": 8397.06, + "probability": 0.9802 + }, + { + "start": 8398.44, + "end": 8402.82, + "probability": 0.8591 + }, + { + "start": 8403.56, + "end": 8407.78, + "probability": 0.9598 + }, + { + "start": 8407.88, + "end": 8409.42, + "probability": 0.9177 + }, + { + "start": 8409.54, + "end": 8412.24, + "probability": 0.9956 + }, + { + "start": 8412.87, + "end": 8416.63, + "probability": 0.5726 + }, + { + "start": 8417.36, + "end": 8419.76, + "probability": 0.9148 + }, + { + "start": 8426.84, + "end": 8432.1, + "probability": 0.7391 + }, + { + "start": 8432.14, + "end": 8432.74, + "probability": 0.4934 + }, + { + "start": 8432.78, + "end": 8433.56, + "probability": 0.6125 + }, + { + "start": 8434.22, + "end": 8439.14, + "probability": 0.3873 + }, + { + "start": 8440.02, + "end": 8441.14, + "probability": 0.762 + }, + { + "start": 8442.32, + "end": 8442.52, + "probability": 0.761 + }, + { + "start": 8442.7, + "end": 8444.38, + "probability": 0.853 + }, + { + "start": 8444.58, + "end": 8446.26, + "probability": 0.726 + }, + { + "start": 8446.3, + "end": 8448.9, + "probability": 0.9421 + }, + { + "start": 8449.38, + "end": 8454.03, + "probability": 0.9906 + }, + { + "start": 8454.2, + "end": 8459.74, + "probability": 0.8294 + }, + { + "start": 8462.04, + "end": 8467.66, + "probability": 0.7311 + }, + { + "start": 8468.8, + "end": 8470.78, + "probability": 0.8112 + }, + { + "start": 8470.84, + "end": 8472.16, + "probability": 0.7646 + }, + { + "start": 8472.36, + "end": 8473.54, + "probability": 0.8785 + }, + { + "start": 8477.12, + "end": 8481.9, + "probability": 0.9829 + }, + { + "start": 8481.9, + "end": 8486.78, + "probability": 0.9834 + }, + { + "start": 8486.82, + "end": 8490.92, + "probability": 0.7828 + }, + { + "start": 8491.64, + "end": 8494.98, + "probability": 0.9746 + }, + { + "start": 8495.44, + "end": 8498.04, + "probability": 0.9867 + }, + { + "start": 8498.38, + "end": 8501.14, + "probability": 0.9818 + }, + { + "start": 8501.8, + "end": 8505.4, + "probability": 0.9953 + }, + { + "start": 8506.32, + "end": 8508.54, + "probability": 0.7171 + }, + { + "start": 8509.22, + "end": 8511.04, + "probability": 0.4454 + }, + { + "start": 8513.7, + "end": 8522.84, + "probability": 0.9361 + }, + { + "start": 8523.32, + "end": 8526.1, + "probability": 0.9218 + }, + { + "start": 8526.42, + "end": 8531.72, + "probability": 0.9961 + }, + { + "start": 8532.66, + "end": 8533.7, + "probability": 0.843 + }, + { + "start": 8533.72, + "end": 8535.0, + "probability": 0.9137 + }, + { + "start": 8535.6, + "end": 8538.06, + "probability": 0.7342 + }, + { + "start": 8538.26, + "end": 8541.86, + "probability": 0.9869 + }, + { + "start": 8542.1, + "end": 8546.88, + "probability": 0.866 + }, + { + "start": 8547.04, + "end": 8547.9, + "probability": 0.7627 + }, + { + "start": 8548.02, + "end": 8549.02, + "probability": 0.8861 + }, + { + "start": 8549.16, + "end": 8550.4, + "probability": 0.9175 + }, + { + "start": 8551.02, + "end": 8558.14, + "probability": 0.9923 + }, + { + "start": 8559.48, + "end": 8563.16, + "probability": 0.4977 + }, + { + "start": 8563.2, + "end": 8565.24, + "probability": 0.7973 + }, + { + "start": 8565.28, + "end": 8567.64, + "probability": 0.8681 + }, + { + "start": 8568.58, + "end": 8569.94, + "probability": 0.7977 + }, + { + "start": 8569.98, + "end": 8571.36, + "probability": 0.9404 + }, + { + "start": 8571.46, + "end": 8577.0, + "probability": 0.7668 + }, + { + "start": 8577.64, + "end": 8580.66, + "probability": 0.9732 + }, + { + "start": 8581.6, + "end": 8585.82, + "probability": 0.8936 + }, + { + "start": 8586.36, + "end": 8589.42, + "probability": 0.9897 + }, + { + "start": 8591.5, + "end": 8593.34, + "probability": 0.4699 + }, + { + "start": 8593.94, + "end": 8595.16, + "probability": 0.8558 + }, + { + "start": 8595.56, + "end": 8598.48, + "probability": 0.9927 + }, + { + "start": 8598.96, + "end": 8602.12, + "probability": 0.7242 + }, + { + "start": 8602.78, + "end": 8609.68, + "probability": 0.9332 + }, + { + "start": 8609.76, + "end": 8610.6, + "probability": 0.3794 + }, + { + "start": 8610.78, + "end": 8614.34, + "probability": 0.875 + }, + { + "start": 8614.34, + "end": 8618.04, + "probability": 0.8891 + }, + { + "start": 8618.86, + "end": 8623.69, + "probability": 0.8144 + }, + { + "start": 8625.2, + "end": 8629.96, + "probability": 0.9275 + }, + { + "start": 8629.96, + "end": 8633.64, + "probability": 0.9988 + }, + { + "start": 8635.08, + "end": 8639.88, + "probability": 0.9419 + }, + { + "start": 8640.26, + "end": 8643.44, + "probability": 0.8355 + }, + { + "start": 8643.76, + "end": 8646.36, + "probability": 0.9963 + }, + { + "start": 8646.44, + "end": 8653.9, + "probability": 0.9465 + }, + { + "start": 8655.72, + "end": 8660.26, + "probability": 0.7311 + }, + { + "start": 8661.04, + "end": 8668.06, + "probability": 0.947 + }, + { + "start": 8668.06, + "end": 8668.08, + "probability": 0.5681 + }, + { + "start": 8668.08, + "end": 8668.44, + "probability": 0.3797 + }, + { + "start": 8668.52, + "end": 8669.66, + "probability": 0.8289 + }, + { + "start": 8669.68, + "end": 8670.82, + "probability": 0.8589 + }, + { + "start": 8670.84, + "end": 8671.84, + "probability": 0.8538 + }, + { + "start": 8672.09, + "end": 8674.36, + "probability": 0.976 + }, + { + "start": 8674.6, + "end": 8676.06, + "probability": 0.9704 + }, + { + "start": 8676.32, + "end": 8679.5, + "probability": 0.9896 + }, + { + "start": 8680.18, + "end": 8685.62, + "probability": 0.9712 + }, + { + "start": 8685.62, + "end": 8689.99, + "probability": 0.9904 + }, + { + "start": 8692.1, + "end": 8698.12, + "probability": 0.9971 + }, + { + "start": 8698.56, + "end": 8699.36, + "probability": 0.4182 + }, + { + "start": 8699.88, + "end": 8702.14, + "probability": 0.971 + }, + { + "start": 8702.28, + "end": 8703.96, + "probability": 0.9095 + }, + { + "start": 8704.46, + "end": 8708.58, + "probability": 0.9245 + }, + { + "start": 8709.54, + "end": 8712.28, + "probability": 0.6616 + }, + { + "start": 8713.02, + "end": 8714.18, + "probability": 0.9912 + }, + { + "start": 8714.28, + "end": 8715.5, + "probability": 0.9767 + }, + { + "start": 8715.98, + "end": 8721.14, + "probability": 0.7109 + }, + { + "start": 8721.56, + "end": 8724.64, + "probability": 0.7459 + }, + { + "start": 8725.02, + "end": 8726.12, + "probability": 0.6683 + }, + { + "start": 8726.48, + "end": 8730.24, + "probability": 0.9666 + }, + { + "start": 8733.36, + "end": 8738.8, + "probability": 0.1497 + }, + { + "start": 8739.04, + "end": 8739.38, + "probability": 0.4536 + }, + { + "start": 8739.88, + "end": 8741.06, + "probability": 0.8858 + }, + { + "start": 8741.22, + "end": 8744.42, + "probability": 0.9551 + }, + { + "start": 8744.48, + "end": 8747.6, + "probability": 0.9133 + }, + { + "start": 8747.72, + "end": 8749.0, + "probability": 0.9673 + }, + { + "start": 8749.1, + "end": 8750.78, + "probability": 0.6165 + }, + { + "start": 8751.56, + "end": 8755.5, + "probability": 0.9788 + }, + { + "start": 8755.5, + "end": 8756.16, + "probability": 0.6531 + }, + { + "start": 8756.62, + "end": 8759.28, + "probability": 0.915 + }, + { + "start": 8759.44, + "end": 8761.06, + "probability": 0.8184 + }, + { + "start": 8761.24, + "end": 8766.5, + "probability": 0.9462 + }, + { + "start": 8767.95, + "end": 8771.58, + "probability": 0.5245 + }, + { + "start": 8771.94, + "end": 8774.24, + "probability": 0.7587 + }, + { + "start": 8774.38, + "end": 8774.96, + "probability": 0.6743 + }, + { + "start": 8775.3, + "end": 8777.5, + "probability": 0.9926 + }, + { + "start": 8777.94, + "end": 8778.98, + "probability": 0.6709 + }, + { + "start": 8779.1, + "end": 8779.73, + "probability": 0.7157 + }, + { + "start": 8780.86, + "end": 8783.52, + "probability": 0.988 + }, + { + "start": 8784.2, + "end": 8785.77, + "probability": 0.8779 + }, + { + "start": 8786.22, + "end": 8792.48, + "probability": 0.9605 + }, + { + "start": 8792.7, + "end": 8795.68, + "probability": 0.9407 + }, + { + "start": 8795.78, + "end": 8797.48, + "probability": 0.6829 + }, + { + "start": 8798.32, + "end": 8803.76, + "probability": 0.8264 + }, + { + "start": 8804.14, + "end": 8805.48, + "probability": 0.9932 + }, + { + "start": 8805.8, + "end": 8806.4, + "probability": 0.6032 + }, + { + "start": 8806.84, + "end": 8814.7, + "probability": 0.9633 + }, + { + "start": 8815.24, + "end": 8817.18, + "probability": 0.9889 + }, + { + "start": 8817.84, + "end": 8818.26, + "probability": 0.5393 + }, + { + "start": 8818.3, + "end": 8819.37, + "probability": 0.7496 + }, + { + "start": 8819.98, + "end": 8823.35, + "probability": 0.958 + }, + { + "start": 8823.86, + "end": 8824.98, + "probability": 0.9911 + }, + { + "start": 8826.0, + "end": 8832.12, + "probability": 0.9669 + }, + { + "start": 8832.6, + "end": 8837.98, + "probability": 0.6991 + }, + { + "start": 8839.94, + "end": 8840.22, + "probability": 0.4247 + }, + { + "start": 8840.68, + "end": 8845.14, + "probability": 0.585 + }, + { + "start": 8845.62, + "end": 8848.3, + "probability": 0.3795 + }, + { + "start": 8851.44, + "end": 8855.68, + "probability": 0.912 + }, + { + "start": 8855.68, + "end": 8860.18, + "probability": 0.839 + }, + { + "start": 8860.98, + "end": 8865.76, + "probability": 0.8954 + }, + { + "start": 8867.02, + "end": 8869.22, + "probability": 0.8253 + }, + { + "start": 8869.36, + "end": 8873.06, + "probability": 0.9908 + }, + { + "start": 8874.02, + "end": 8880.92, + "probability": 0.9321 + }, + { + "start": 8881.04, + "end": 8887.12, + "probability": 0.9977 + }, + { + "start": 8887.38, + "end": 8887.6, + "probability": 0.7214 + }, + { + "start": 8888.5, + "end": 8888.78, + "probability": 0.5837 + }, + { + "start": 8888.82, + "end": 8889.76, + "probability": 0.4533 + }, + { + "start": 8890.32, + "end": 8891.52, + "probability": 0.5944 + }, + { + "start": 8891.62, + "end": 8893.22, + "probability": 0.9104 + }, + { + "start": 8894.64, + "end": 8896.87, + "probability": 0.8145 + }, + { + "start": 8907.94, + "end": 8908.82, + "probability": 0.6778 + }, + { + "start": 8908.9, + "end": 8910.0, + "probability": 0.9235 + }, + { + "start": 8910.12, + "end": 8911.48, + "probability": 0.8982 + }, + { + "start": 8912.0, + "end": 8915.46, + "probability": 0.8551 + }, + { + "start": 8916.18, + "end": 8917.46, + "probability": 0.9458 + }, + { + "start": 8917.6, + "end": 8919.22, + "probability": 0.9915 + }, + { + "start": 8919.34, + "end": 8921.78, + "probability": 0.9964 + }, + { + "start": 8922.18, + "end": 8924.72, + "probability": 0.9943 + }, + { + "start": 8925.26, + "end": 8927.0, + "probability": 0.8036 + }, + { + "start": 8927.8, + "end": 8929.32, + "probability": 0.9694 + }, + { + "start": 8929.52, + "end": 8930.0, + "probability": 0.9165 + }, + { + "start": 8930.98, + "end": 8931.9, + "probability": 0.6021 + }, + { + "start": 8932.62, + "end": 8933.36, + "probability": 0.7106 + }, + { + "start": 8934.38, + "end": 8934.96, + "probability": 0.7504 + }, + { + "start": 8935.64, + "end": 8937.36, + "probability": 0.9917 + }, + { + "start": 8938.1, + "end": 8941.7, + "probability": 0.9253 + }, + { + "start": 8941.9, + "end": 8943.8, + "probability": 0.9302 + }, + { + "start": 8944.28, + "end": 8945.16, + "probability": 0.8965 + }, + { + "start": 8945.34, + "end": 8948.36, + "probability": 0.9746 + }, + { + "start": 8949.0, + "end": 8955.24, + "probability": 0.8901 + }, + { + "start": 8955.52, + "end": 8958.26, + "probability": 0.0562 + }, + { + "start": 8959.38, + "end": 8959.38, + "probability": 0.0232 + }, + { + "start": 8959.38, + "end": 8960.16, + "probability": 0.3206 + }, + { + "start": 8960.94, + "end": 8962.6, + "probability": 0.8688 + }, + { + "start": 8963.38, + "end": 8965.62, + "probability": 0.666 + }, + { + "start": 8966.14, + "end": 8970.38, + "probability": 0.9404 + }, + { + "start": 8970.98, + "end": 8975.32, + "probability": 0.9511 + }, + { + "start": 8976.02, + "end": 8981.58, + "probability": 0.9699 + }, + { + "start": 8982.06, + "end": 8984.72, + "probability": 0.7803 + }, + { + "start": 8985.88, + "end": 8985.92, + "probability": 0.0202 + }, + { + "start": 8985.92, + "end": 8987.62, + "probability": 0.9002 + }, + { + "start": 8987.96, + "end": 8988.72, + "probability": 0.8384 + }, + { + "start": 8988.82, + "end": 8990.65, + "probability": 0.9961 + }, + { + "start": 8991.2, + "end": 8992.88, + "probability": 0.4628 + }, + { + "start": 8992.94, + "end": 8993.42, + "probability": 0.3916 + }, + { + "start": 8993.64, + "end": 8994.86, + "probability": 0.9932 + }, + { + "start": 8994.9, + "end": 8995.08, + "probability": 0.5146 + }, + { + "start": 8995.16, + "end": 8995.88, + "probability": 0.881 + }, + { + "start": 8996.22, + "end": 8997.36, + "probability": 0.7124 + }, + { + "start": 8997.42, + "end": 8999.34, + "probability": 0.9823 + }, + { + "start": 8999.74, + "end": 9003.46, + "probability": 0.9185 + }, + { + "start": 9003.96, + "end": 9005.0, + "probability": 0.7982 + }, + { + "start": 9005.2, + "end": 9007.98, + "probability": 0.865 + }, + { + "start": 9008.18, + "end": 9008.46, + "probability": 0.3875 + }, + { + "start": 9008.48, + "end": 9011.52, + "probability": 0.3456 + }, + { + "start": 9012.32, + "end": 9019.5, + "probability": 0.9875 + }, + { + "start": 9020.24, + "end": 9023.54, + "probability": 0.9787 + }, + { + "start": 9023.54, + "end": 9026.84, + "probability": 0.9957 + }, + { + "start": 9028.66, + "end": 9030.66, + "probability": 0.7719 + }, + { + "start": 9031.18, + "end": 9033.24, + "probability": 0.6881 + }, + { + "start": 9033.3, + "end": 9034.45, + "probability": 0.8937 + }, + { + "start": 9035.24, + "end": 9038.42, + "probability": 0.9085 + }, + { + "start": 9038.62, + "end": 9041.91, + "probability": 0.7513 + }, + { + "start": 9042.66, + "end": 9046.56, + "probability": 0.9443 + }, + { + "start": 9047.42, + "end": 9051.38, + "probability": 0.9358 + }, + { + "start": 9051.96, + "end": 9058.04, + "probability": 0.9524 + }, + { + "start": 9058.04, + "end": 9060.64, + "probability": 0.9862 + }, + { + "start": 9061.46, + "end": 9066.4, + "probability": 0.7713 + }, + { + "start": 9066.4, + "end": 9071.02, + "probability": 0.9968 + }, + { + "start": 9072.0, + "end": 9075.36, + "probability": 0.9902 + }, + { + "start": 9075.36, + "end": 9083.0, + "probability": 0.7838 + }, + { + "start": 9083.7, + "end": 9087.32, + "probability": 0.9883 + }, + { + "start": 9088.06, + "end": 9090.58, + "probability": 0.9901 + }, + { + "start": 9090.58, + "end": 9094.28, + "probability": 0.9979 + }, + { + "start": 9094.96, + "end": 9097.35, + "probability": 0.8925 + }, + { + "start": 9098.04, + "end": 9105.26, + "probability": 0.9497 + }, + { + "start": 9105.8, + "end": 9106.54, + "probability": 0.8164 + }, + { + "start": 9107.34, + "end": 9111.58, + "probability": 0.9849 + }, + { + "start": 9112.32, + "end": 9117.58, + "probability": 0.9886 + }, + { + "start": 9118.6, + "end": 9124.94, + "probability": 0.9962 + }, + { + "start": 9125.68, + "end": 9127.56, + "probability": 0.9979 + }, + { + "start": 9127.66, + "end": 9132.4, + "probability": 0.9485 + }, + { + "start": 9132.4, + "end": 9136.28, + "probability": 0.9934 + }, + { + "start": 9136.74, + "end": 9138.16, + "probability": 0.8458 + }, + { + "start": 9138.76, + "end": 9141.64, + "probability": 0.9247 + }, + { + "start": 9142.16, + "end": 9145.98, + "probability": 0.7875 + }, + { + "start": 9147.64, + "end": 9149.32, + "probability": 0.9335 + }, + { + "start": 9149.4, + "end": 9150.02, + "probability": 0.5775 + }, + { + "start": 9150.08, + "end": 9150.79, + "probability": 0.5737 + }, + { + "start": 9150.86, + "end": 9151.28, + "probability": 0.5967 + }, + { + "start": 9152.34, + "end": 9153.58, + "probability": 0.6233 + }, + { + "start": 9155.82, + "end": 9156.08, + "probability": 0.325 + }, + { + "start": 9156.14, + "end": 9161.42, + "probability": 0.9082 + }, + { + "start": 9162.5, + "end": 9163.16, + "probability": 0.6569 + }, + { + "start": 9163.46, + "end": 9164.2, + "probability": 0.8555 + }, + { + "start": 9166.9, + "end": 9174.42, + "probability": 0.0747 + }, + { + "start": 9182.16, + "end": 9184.06, + "probability": 0.0573 + }, + { + "start": 9184.85, + "end": 9185.42, + "probability": 0.0563 + }, + { + "start": 9185.54, + "end": 9186.18, + "probability": 0.2608 + }, + { + "start": 9186.18, + "end": 9188.88, + "probability": 0.2233 + }, + { + "start": 9188.96, + "end": 9191.6, + "probability": 0.1065 + }, + { + "start": 9191.6, + "end": 9191.74, + "probability": 0.1599 + }, + { + "start": 9194.32, + "end": 9194.5, + "probability": 0.1175 + }, + { + "start": 9194.52, + "end": 9195.37, + "probability": 0.4281 + }, + { + "start": 9198.84, + "end": 9204.64, + "probability": 0.0971 + }, + { + "start": 9206.23, + "end": 9209.7, + "probability": 0.025 + }, + { + "start": 9209.82, + "end": 9211.66, + "probability": 0.0791 + }, + { + "start": 9218.02, + "end": 9218.04, + "probability": 0.0059 + }, + { + "start": 9218.04, + "end": 9218.04, + "probability": 0.0259 + }, + { + "start": 9218.04, + "end": 9218.04, + "probability": 0.0273 + }, + { + "start": 9218.04, + "end": 9218.04, + "probability": 0.0623 + }, + { + "start": 9218.04, + "end": 9218.04, + "probability": 0.1996 + }, + { + "start": 9218.08, + "end": 9219.14, + "probability": 0.6431 + }, + { + "start": 9233.18, + "end": 9236.68, + "probability": 0.6397 + }, + { + "start": 9237.36, + "end": 9238.52, + "probability": 0.7677 + }, + { + "start": 9239.7, + "end": 9243.1, + "probability": 0.9946 + }, + { + "start": 9243.9, + "end": 9247.34, + "probability": 0.9816 + }, + { + "start": 9248.3, + "end": 9254.64, + "probability": 0.9637 + }, + { + "start": 9254.7, + "end": 9256.94, + "probability": 0.8964 + }, + { + "start": 9257.62, + "end": 9263.28, + "probability": 0.9451 + }, + { + "start": 9264.08, + "end": 9270.32, + "probability": 0.8644 + }, + { + "start": 9271.18, + "end": 9274.88, + "probability": 0.9888 + }, + { + "start": 9275.42, + "end": 9279.76, + "probability": 0.9808 + }, + { + "start": 9279.78, + "end": 9280.98, + "probability": 0.8673 + }, + { + "start": 9282.26, + "end": 9285.08, + "probability": 0.9867 + }, + { + "start": 9285.08, + "end": 9288.12, + "probability": 0.9945 + }, + { + "start": 9288.32, + "end": 9289.02, + "probability": 0.6268 + }, + { + "start": 9289.08, + "end": 9290.37, + "probability": 0.7127 + }, + { + "start": 9290.5, + "end": 9291.44, + "probability": 0.5009 + }, + { + "start": 9291.76, + "end": 9292.44, + "probability": 0.6762 + }, + { + "start": 9295.04, + "end": 9297.42, + "probability": 0.559 + }, + { + "start": 9298.72, + "end": 9299.7, + "probability": 0.6954 + }, + { + "start": 9300.0, + "end": 9301.28, + "probability": 0.662 + }, + { + "start": 9301.32, + "end": 9303.94, + "probability": 0.9042 + }, + { + "start": 9304.02, + "end": 9305.86, + "probability": 0.9854 + }, + { + "start": 9306.48, + "end": 9311.42, + "probability": 0.9929 + }, + { + "start": 9312.36, + "end": 9314.04, + "probability": 0.9642 + }, + { + "start": 9314.16, + "end": 9315.78, + "probability": 0.9758 + }, + { + "start": 9315.8, + "end": 9321.52, + "probability": 0.9938 + }, + { + "start": 9322.2, + "end": 9328.16, + "probability": 0.98 + }, + { + "start": 9328.48, + "end": 9331.14, + "probability": 0.7515 + }, + { + "start": 9331.78, + "end": 9333.06, + "probability": 0.4492 + }, + { + "start": 9335.28, + "end": 9339.64, + "probability": 0.9835 + }, + { + "start": 9339.64, + "end": 9342.64, + "probability": 0.9924 + }, + { + "start": 9343.26, + "end": 9345.54, + "probability": 0.9993 + }, + { + "start": 9345.78, + "end": 9347.42, + "probability": 0.7562 + }, + { + "start": 9347.8, + "end": 9349.25, + "probability": 0.7402 + }, + { + "start": 9349.92, + "end": 9353.82, + "probability": 0.9803 + }, + { + "start": 9354.44, + "end": 9358.22, + "probability": 0.973 + }, + { + "start": 9358.22, + "end": 9363.24, + "probability": 0.9642 + }, + { + "start": 9363.9, + "end": 9364.56, + "probability": 0.4254 + }, + { + "start": 9364.88, + "end": 9373.44, + "probability": 0.9165 + }, + { + "start": 9373.77, + "end": 9378.44, + "probability": 0.931 + }, + { + "start": 9378.9, + "end": 9381.76, + "probability": 0.8611 + }, + { + "start": 9382.08, + "end": 9386.34, + "probability": 0.8804 + }, + { + "start": 9386.34, + "end": 9391.3, + "probability": 0.9986 + }, + { + "start": 9391.84, + "end": 9397.28, + "probability": 0.9753 + }, + { + "start": 9398.36, + "end": 9400.68, + "probability": 0.9927 + }, + { + "start": 9401.28, + "end": 9402.74, + "probability": 0.9186 + }, + { + "start": 9403.48, + "end": 9407.28, + "probability": 0.8652 + }, + { + "start": 9407.8, + "end": 9411.24, + "probability": 0.8581 + }, + { + "start": 9411.34, + "end": 9412.06, + "probability": 0.9684 + }, + { + "start": 9412.14, + "end": 9413.22, + "probability": 0.8433 + }, + { + "start": 9413.82, + "end": 9417.52, + "probability": 0.6446 + }, + { + "start": 9417.8, + "end": 9422.4, + "probability": 0.9958 + }, + { + "start": 9422.4, + "end": 9429.34, + "probability": 0.988 + }, + { + "start": 9430.6, + "end": 9435.54, + "probability": 0.994 + }, + { + "start": 9435.76, + "end": 9440.1, + "probability": 0.9948 + }, + { + "start": 9441.02, + "end": 9443.42, + "probability": 0.6083 + }, + { + "start": 9444.34, + "end": 9445.38, + "probability": 0.9338 + }, + { + "start": 9447.1, + "end": 9447.78, + "probability": 0.6355 + }, + { + "start": 9448.66, + "end": 9449.86, + "probability": 0.8767 + }, + { + "start": 9449.92, + "end": 9454.36, + "probability": 0.8463 + }, + { + "start": 9454.7, + "end": 9458.58, + "probability": 0.8576 + }, + { + "start": 9458.58, + "end": 9462.98, + "probability": 0.9434 + }, + { + "start": 9463.22, + "end": 9468.4, + "probability": 0.9802 + }, + { + "start": 9468.86, + "end": 9470.8, + "probability": 0.9956 + }, + { + "start": 9471.48, + "end": 9473.8, + "probability": 0.667 + }, + { + "start": 9474.0, + "end": 9477.9, + "probability": 0.7576 + }, + { + "start": 9478.22, + "end": 9480.01, + "probability": 0.9902 + }, + { + "start": 9480.56, + "end": 9483.32, + "probability": 0.9818 + }, + { + "start": 9483.6, + "end": 9485.66, + "probability": 0.9355 + }, + { + "start": 9485.66, + "end": 9488.82, + "probability": 0.997 + }, + { + "start": 9489.28, + "end": 9492.68, + "probability": 0.989 + }, + { + "start": 9492.68, + "end": 9496.36, + "probability": 0.9865 + }, + { + "start": 9496.92, + "end": 9500.76, + "probability": 0.9544 + }, + { + "start": 9500.76, + "end": 9504.8, + "probability": 0.9056 + }, + { + "start": 9505.24, + "end": 9509.1, + "probability": 0.7812 + }, + { + "start": 9509.3, + "end": 9510.74, + "probability": 0.9896 + }, + { + "start": 9511.6, + "end": 9514.72, + "probability": 0.5683 + }, + { + "start": 9514.78, + "end": 9517.8, + "probability": 0.9346 + }, + { + "start": 9518.36, + "end": 9518.98, + "probability": 0.8809 + }, + { + "start": 9519.08, + "end": 9520.0, + "probability": 0.6625 + }, + { + "start": 9520.48, + "end": 9524.9, + "probability": 0.92 + }, + { + "start": 9525.28, + "end": 9530.02, + "probability": 0.9253 + }, + { + "start": 9530.52, + "end": 9532.18, + "probability": 0.5641 + }, + { + "start": 9532.86, + "end": 9533.5, + "probability": 0.5369 + }, + { + "start": 9533.62, + "end": 9534.3, + "probability": 0.8561 + }, + { + "start": 9534.54, + "end": 9538.98, + "probability": 0.7972 + }, + { + "start": 9539.42, + "end": 9540.62, + "probability": 0.4828 + }, + { + "start": 9540.66, + "end": 9542.94, + "probability": 0.6975 + }, + { + "start": 9543.0, + "end": 9544.08, + "probability": 0.9897 + }, + { + "start": 9544.26, + "end": 9545.74, + "probability": 0.5228 + }, + { + "start": 9546.4, + "end": 9548.3, + "probability": 0.6316 + }, + { + "start": 9549.04, + "end": 9552.48, + "probability": 0.6647 + }, + { + "start": 9552.48, + "end": 9554.56, + "probability": 0.9854 + }, + { + "start": 9555.02, + "end": 9556.02, + "probability": 0.9487 + }, + { + "start": 9556.48, + "end": 9559.78, + "probability": 0.739 + }, + { + "start": 9560.2, + "end": 9563.29, + "probability": 0.9644 + }, + { + "start": 9564.26, + "end": 9565.58, + "probability": 0.7351 + }, + { + "start": 9565.64, + "end": 9569.04, + "probability": 0.8939 + }, + { + "start": 9569.66, + "end": 9572.52, + "probability": 0.9436 + }, + { + "start": 9573.0, + "end": 9574.82, + "probability": 0.734 + }, + { + "start": 9575.48, + "end": 9578.24, + "probability": 0.9502 + }, + { + "start": 9578.64, + "end": 9580.12, + "probability": 0.9186 + }, + { + "start": 9580.5, + "end": 9581.74, + "probability": 0.6142 + }, + { + "start": 9581.78, + "end": 9585.24, + "probability": 0.9312 + }, + { + "start": 9586.08, + "end": 9589.14, + "probability": 0.9792 + }, + { + "start": 9589.56, + "end": 9591.38, + "probability": 0.9004 + }, + { + "start": 9592.64, + "end": 9596.08, + "probability": 0.961 + }, + { + "start": 9598.36, + "end": 9604.06, + "probability": 0.8268 + }, + { + "start": 9604.22, + "end": 9605.42, + "probability": 0.7915 + }, + { + "start": 9606.16, + "end": 9607.9, + "probability": 0.9991 + }, + { + "start": 9608.44, + "end": 9611.2, + "probability": 0.8179 + }, + { + "start": 9611.7, + "end": 9613.8, + "probability": 0.8151 + }, + { + "start": 9614.36, + "end": 9618.28, + "probability": 0.972 + }, + { + "start": 9618.28, + "end": 9623.66, + "probability": 0.6981 + }, + { + "start": 9623.96, + "end": 9628.66, + "probability": 0.9855 + }, + { + "start": 9629.2, + "end": 9632.02, + "probability": 0.9492 + }, + { + "start": 9632.02, + "end": 9636.56, + "probability": 0.9783 + }, + { + "start": 9636.76, + "end": 9641.1, + "probability": 0.8311 + }, + { + "start": 9641.56, + "end": 9642.06, + "probability": 0.7968 + }, + { + "start": 9643.34, + "end": 9644.94, + "probability": 0.0959 + }, + { + "start": 9646.6, + "end": 9651.65, + "probability": 0.3701 + }, + { + "start": 9652.44, + "end": 9652.44, + "probability": 0.0535 + }, + { + "start": 9652.44, + "end": 9653.14, + "probability": 0.3757 + }, + { + "start": 9653.24, + "end": 9653.76, + "probability": 0.7111 + }, + { + "start": 9653.78, + "end": 9654.64, + "probability": 0.7134 + }, + { + "start": 9654.74, + "end": 9655.24, + "probability": 0.324 + }, + { + "start": 9655.34, + "end": 9656.44, + "probability": 0.7589 + }, + { + "start": 9656.56, + "end": 9658.72, + "probability": 0.9274 + }, + { + "start": 9659.34, + "end": 9663.02, + "probability": 0.7572 + }, + { + "start": 9663.58, + "end": 9665.32, + "probability": 0.7076 + }, + { + "start": 9665.38, + "end": 9667.32, + "probability": 0.721 + }, + { + "start": 9667.46, + "end": 9669.38, + "probability": 0.8767 + }, + { + "start": 9669.48, + "end": 9670.3, + "probability": 0.2171 + }, + { + "start": 9670.6, + "end": 9673.44, + "probability": 0.6592 + }, + { + "start": 9673.86, + "end": 9676.86, + "probability": 0.87 + }, + { + "start": 9677.1, + "end": 9677.52, + "probability": 0.5854 + }, + { + "start": 9677.6, + "end": 9678.54, + "probability": 0.55 + }, + { + "start": 9678.54, + "end": 9678.6, + "probability": 0.3763 + }, + { + "start": 9678.62, + "end": 9679.22, + "probability": 0.3697 + }, + { + "start": 9679.22, + "end": 9679.48, + "probability": 0.2225 + }, + { + "start": 9679.62, + "end": 9680.49, + "probability": 0.7193 + }, + { + "start": 9680.84, + "end": 9686.34, + "probability": 0.9973 + }, + { + "start": 9687.91, + "end": 9690.06, + "probability": 0.9858 + }, + { + "start": 9690.3, + "end": 9691.49, + "probability": 0.5684 + }, + { + "start": 9691.64, + "end": 9692.26, + "probability": 0.9192 + }, + { + "start": 9692.28, + "end": 9696.22, + "probability": 0.783 + }, + { + "start": 9696.26, + "end": 9696.7, + "probability": 0.799 + }, + { + "start": 9697.44, + "end": 9699.36, + "probability": 0.9281 + }, + { + "start": 9699.5, + "end": 9700.02, + "probability": 0.5522 + }, + { + "start": 9700.86, + "end": 9703.94, + "probability": 0.9938 + }, + { + "start": 9704.04, + "end": 9705.2, + "probability": 0.8658 + }, + { + "start": 9705.6, + "end": 9707.34, + "probability": 0.92 + }, + { + "start": 9707.44, + "end": 9711.26, + "probability": 0.9337 + }, + { + "start": 9711.44, + "end": 9714.92, + "probability": 0.9951 + }, + { + "start": 9715.12, + "end": 9716.1, + "probability": 0.4976 + }, + { + "start": 9716.12, + "end": 9716.56, + "probability": 0.5474 + }, + { + "start": 9716.88, + "end": 9721.7, + "probability": 0.9874 + }, + { + "start": 9722.26, + "end": 9722.8, + "probability": 0.7158 + }, + { + "start": 9722.92, + "end": 9724.66, + "probability": 0.7512 + }, + { + "start": 9724.7, + "end": 9725.56, + "probability": 0.3623 + }, + { + "start": 9725.96, + "end": 9728.0, + "probability": 0.9038 + }, + { + "start": 9728.38, + "end": 9731.62, + "probability": 0.9723 + }, + { + "start": 9732.44, + "end": 9735.08, + "probability": 0.9648 + }, + { + "start": 9735.34, + "end": 9737.4, + "probability": 0.9474 + }, + { + "start": 9737.98, + "end": 9739.78, + "probability": 0.9495 + }, + { + "start": 9740.3, + "end": 9744.04, + "probability": 0.8714 + }, + { + "start": 9744.24, + "end": 9748.42, + "probability": 0.9696 + }, + { + "start": 9748.68, + "end": 9749.9, + "probability": 0.9353 + }, + { + "start": 9750.4, + "end": 9751.58, + "probability": 0.7086 + }, + { + "start": 9751.74, + "end": 9753.34, + "probability": 0.835 + }, + { + "start": 9754.02, + "end": 9754.68, + "probability": 0.7593 + }, + { + "start": 9754.76, + "end": 9755.72, + "probability": 0.6832 + }, + { + "start": 9756.04, + "end": 9756.76, + "probability": 0.9241 + }, + { + "start": 9756.84, + "end": 9758.05, + "probability": 0.5798 + }, + { + "start": 9758.44, + "end": 9758.84, + "probability": 0.6997 + }, + { + "start": 9758.84, + "end": 9759.56, + "probability": 0.8601 + }, + { + "start": 9760.26, + "end": 9761.54, + "probability": 0.7178 + }, + { + "start": 9762.16, + "end": 9764.33, + "probability": 0.9238 + }, + { + "start": 9764.98, + "end": 9768.92, + "probability": 0.7417 + }, + { + "start": 9769.02, + "end": 9771.44, + "probability": 0.8411 + }, + { + "start": 9771.86, + "end": 9775.42, + "probability": 0.8711 + }, + { + "start": 9775.96, + "end": 9777.17, + "probability": 0.9953 + }, + { + "start": 9777.98, + "end": 9779.48, + "probability": 0.9863 + }, + { + "start": 9779.96, + "end": 9781.14, + "probability": 0.9941 + }, + { + "start": 9781.58, + "end": 9782.48, + "probability": 0.6175 + }, + { + "start": 9782.76, + "end": 9785.7, + "probability": 0.948 + }, + { + "start": 9785.84, + "end": 9789.94, + "probability": 0.9982 + }, + { + "start": 9790.06, + "end": 9791.51, + "probability": 0.7222 + }, + { + "start": 9792.46, + "end": 9795.57, + "probability": 0.9408 + }, + { + "start": 9796.38, + "end": 9796.66, + "probability": 0.4099 + }, + { + "start": 9796.78, + "end": 9797.44, + "probability": 0.4996 + }, + { + "start": 9797.58, + "end": 9800.36, + "probability": 0.9492 + }, + { + "start": 9801.22, + "end": 9802.32, + "probability": 0.8912 + }, + { + "start": 9802.78, + "end": 9807.6, + "probability": 0.9771 + }, + { + "start": 9807.7, + "end": 9809.22, + "probability": 0.9903 + }, + { + "start": 9809.72, + "end": 9811.39, + "probability": 0.9961 + }, + { + "start": 9811.84, + "end": 9813.98, + "probability": 0.8576 + }, + { + "start": 9814.1, + "end": 9815.18, + "probability": 0.9734 + }, + { + "start": 9815.58, + "end": 9817.28, + "probability": 0.8174 + }, + { + "start": 9817.36, + "end": 9819.33, + "probability": 0.9614 + }, + { + "start": 9819.74, + "end": 9822.74, + "probability": 0.9888 + }, + { + "start": 9823.1, + "end": 9825.35, + "probability": 0.9949 + }, + { + "start": 9825.86, + "end": 9826.94, + "probability": 0.949 + }, + { + "start": 9827.04, + "end": 9827.68, + "probability": 0.6662 + }, + { + "start": 9827.72, + "end": 9828.44, + "probability": 0.477 + }, + { + "start": 9828.48, + "end": 9829.54, + "probability": 0.8577 + }, + { + "start": 9829.88, + "end": 9833.3, + "probability": 0.9548 + }, + { + "start": 9833.66, + "end": 9835.31, + "probability": 0.9189 + }, + { + "start": 9835.84, + "end": 9838.08, + "probability": 0.9919 + }, + { + "start": 9838.42, + "end": 9841.94, + "probability": 0.9677 + }, + { + "start": 9841.94, + "end": 9844.14, + "probability": 0.7656 + }, + { + "start": 9844.76, + "end": 9846.66, + "probability": 0.9048 + }, + { + "start": 9848.3, + "end": 9852.58, + "probability": 0.9955 + }, + { + "start": 9852.86, + "end": 9853.34, + "probability": 0.2723 + }, + { + "start": 9853.36, + "end": 9853.64, + "probability": 0.438 + }, + { + "start": 9853.8, + "end": 9855.92, + "probability": 0.97 + }, + { + "start": 9856.02, + "end": 9857.54, + "probability": 0.7725 + }, + { + "start": 9857.76, + "end": 9861.7, + "probability": 0.9404 + }, + { + "start": 9862.14, + "end": 9864.32, + "probability": 0.9861 + }, + { + "start": 9864.42, + "end": 9866.3, + "probability": 0.9211 + }, + { + "start": 9866.66, + "end": 9868.02, + "probability": 0.4876 + }, + { + "start": 9868.32, + "end": 9869.4, + "probability": 0.8358 + }, + { + "start": 9869.64, + "end": 9871.78, + "probability": 0.9373 + }, + { + "start": 9871.84, + "end": 9872.32, + "probability": 0.8748 + }, + { + "start": 9872.48, + "end": 9873.62, + "probability": 0.6635 + }, + { + "start": 9874.78, + "end": 9877.6, + "probability": 0.8909 + }, + { + "start": 9881.7, + "end": 9882.16, + "probability": 0.2975 + }, + { + "start": 9885.46, + "end": 9890.84, + "probability": 0.2057 + }, + { + "start": 9917.22, + "end": 9920.8, + "probability": 0.6459 + }, + { + "start": 9921.58, + "end": 9927.35, + "probability": 0.9641 + }, + { + "start": 9927.8, + "end": 9935.56, + "probability": 0.9955 + }, + { + "start": 9935.74, + "end": 9936.48, + "probability": 0.6022 + }, + { + "start": 9936.64, + "end": 9940.76, + "probability": 0.924 + }, + { + "start": 9940.99, + "end": 9942.64, + "probability": 0.9946 + }, + { + "start": 9942.74, + "end": 9943.4, + "probability": 0.4883 + }, + { + "start": 9944.2, + "end": 9945.62, + "probability": 0.8097 + }, + { + "start": 9945.72, + "end": 9950.11, + "probability": 0.9839 + }, + { + "start": 9950.32, + "end": 9951.2, + "probability": 0.9491 + }, + { + "start": 9951.32, + "end": 9952.42, + "probability": 0.8953 + }, + { + "start": 9953.0, + "end": 9956.82, + "probability": 0.7899 + }, + { + "start": 9957.36, + "end": 9959.2, + "probability": 0.831 + }, + { + "start": 9960.12, + "end": 9963.42, + "probability": 0.9906 + }, + { + "start": 9964.84, + "end": 9972.04, + "probability": 0.9823 + }, + { + "start": 9972.04, + "end": 9979.38, + "probability": 0.9457 + }, + { + "start": 9980.56, + "end": 9985.5, + "probability": 0.9947 + }, + { + "start": 9986.22, + "end": 9994.32, + "probability": 0.8869 + }, + { + "start": 9995.0, + "end": 9999.52, + "probability": 0.9968 + }, + { + "start": 10000.48, + "end": 10003.18, + "probability": 0.9922 + }, + { + "start": 10003.76, + "end": 10004.76, + "probability": 0.9928 + }, + { + "start": 10005.32, + "end": 10006.48, + "probability": 0.77 + }, + { + "start": 10007.44, + "end": 10009.8, + "probability": 0.9297 + }, + { + "start": 10010.4, + "end": 10015.58, + "probability": 0.993 + }, + { + "start": 10016.88, + "end": 10020.18, + "probability": 0.964 + }, + { + "start": 10020.7, + "end": 10022.5, + "probability": 0.8882 + }, + { + "start": 10023.62, + "end": 10024.8, + "probability": 0.9545 + }, + { + "start": 10025.5, + "end": 10031.66, + "probability": 0.9902 + }, + { + "start": 10031.66, + "end": 10032.54, + "probability": 0.532 + }, + { + "start": 10032.62, + "end": 10034.4, + "probability": 0.6029 + }, + { + "start": 10034.4, + "end": 10034.72, + "probability": 0.6629 + }, + { + "start": 10036.76, + "end": 10037.9, + "probability": 0.9911 + }, + { + "start": 10039.18, + "end": 10040.8, + "probability": 0.9951 + }, + { + "start": 10040.8, + "end": 10041.86, + "probability": 0.8546 + }, + { + "start": 10042.0, + "end": 10042.32, + "probability": 0.4084 + }, + { + "start": 10042.5, + "end": 10044.58, + "probability": 0.878 + }, + { + "start": 10046.16, + "end": 10047.08, + "probability": 0.7593 + }, + { + "start": 10048.04, + "end": 10051.5, + "probability": 0.999 + }, + { + "start": 10051.5, + "end": 10056.0, + "probability": 0.9983 + }, + { + "start": 10056.98, + "end": 10065.14, + "probability": 0.9884 + }, + { + "start": 10065.8, + "end": 10073.28, + "probability": 0.967 + }, + { + "start": 10074.38, + "end": 10080.58, + "probability": 0.9622 + }, + { + "start": 10081.76, + "end": 10087.88, + "probability": 0.9978 + }, + { + "start": 10087.98, + "end": 10090.0, + "probability": 0.9949 + }, + { + "start": 10090.14, + "end": 10091.02, + "probability": 0.7545 + }, + { + "start": 10091.06, + "end": 10095.26, + "probability": 0.9725 + }, + { + "start": 10095.32, + "end": 10102.5, + "probability": 0.9919 + }, + { + "start": 10102.5, + "end": 10109.84, + "probability": 0.9816 + }, + { + "start": 10110.84, + "end": 10112.3, + "probability": 0.7646 + }, + { + "start": 10112.64, + "end": 10114.38, + "probability": 0.937 + }, + { + "start": 10114.54, + "end": 10115.56, + "probability": 0.6319 + }, + { + "start": 10115.64, + "end": 10116.8, + "probability": 0.9151 + }, + { + "start": 10116.96, + "end": 10117.86, + "probability": 0.6733 + }, + { + "start": 10118.84, + "end": 10125.3, + "probability": 0.9764 + }, + { + "start": 10125.52, + "end": 10127.74, + "probability": 0.8933 + }, + { + "start": 10128.3, + "end": 10132.18, + "probability": 0.987 + }, + { + "start": 10133.36, + "end": 10134.08, + "probability": 0.8927 + }, + { + "start": 10134.84, + "end": 10140.48, + "probability": 0.8917 + }, + { + "start": 10141.14, + "end": 10146.18, + "probability": 0.9976 + }, + { + "start": 10146.18, + "end": 10150.78, + "probability": 0.9919 + }, + { + "start": 10151.6, + "end": 10155.44, + "probability": 0.9634 + }, + { + "start": 10155.46, + "end": 10160.7, + "probability": 0.9937 + }, + { + "start": 10161.2, + "end": 10168.12, + "probability": 0.9921 + }, + { + "start": 10168.24, + "end": 10169.56, + "probability": 0.8364 + }, + { + "start": 10169.7, + "end": 10172.42, + "probability": 0.7183 + }, + { + "start": 10173.04, + "end": 10173.9, + "probability": 0.8627 + }, + { + "start": 10174.46, + "end": 10182.48, + "probability": 0.9616 + }, + { + "start": 10182.8, + "end": 10187.36, + "probability": 0.945 + }, + { + "start": 10188.38, + "end": 10189.02, + "probability": 0.7943 + }, + { + "start": 10190.02, + "end": 10194.06, + "probability": 0.9938 + }, + { + "start": 10194.06, + "end": 10199.26, + "probability": 0.9941 + }, + { + "start": 10199.82, + "end": 10203.7, + "probability": 0.9724 + }, + { + "start": 10204.78, + "end": 10206.88, + "probability": 0.7663 + }, + { + "start": 10207.52, + "end": 10211.52, + "probability": 0.989 + }, + { + "start": 10212.02, + "end": 10212.42, + "probability": 0.7825 + }, + { + "start": 10215.26, + "end": 10216.94, + "probability": 0.7764 + }, + { + "start": 10218.5, + "end": 10219.84, + "probability": 0.7876 + }, + { + "start": 10220.62, + "end": 10223.92, + "probability": 0.6007 + }, + { + "start": 10228.78, + "end": 10229.4, + "probability": 0.4168 + }, + { + "start": 10229.68, + "end": 10232.43, + "probability": 0.4686 + }, + { + "start": 10236.04, + "end": 10237.22, + "probability": 0.8267 + }, + { + "start": 10237.86, + "end": 10242.98, + "probability": 0.9695 + }, + { + "start": 10243.24, + "end": 10246.1, + "probability": 0.9764 + }, + { + "start": 10247.2, + "end": 10249.68, + "probability": 0.7472 + }, + { + "start": 10250.14, + "end": 10253.18, + "probability": 0.8885 + }, + { + "start": 10253.2, + "end": 10255.72, + "probability": 0.9793 + }, + { + "start": 10256.5, + "end": 10257.52, + "probability": 0.8261 + }, + { + "start": 10257.72, + "end": 10258.86, + "probability": 0.6415 + }, + { + "start": 10258.9, + "end": 10260.06, + "probability": 0.8851 + }, + { + "start": 10260.6, + "end": 10263.06, + "probability": 0.9519 + }, + { + "start": 10263.44, + "end": 10263.88, + "probability": 0.2537 + }, + { + "start": 10264.7, + "end": 10268.54, + "probability": 0.9686 + }, + { + "start": 10268.72, + "end": 10271.62, + "probability": 0.8859 + }, + { + "start": 10271.94, + "end": 10276.52, + "probability": 0.8557 + }, + { + "start": 10276.9, + "end": 10280.9, + "probability": 0.9688 + }, + { + "start": 10280.9, + "end": 10284.98, + "probability": 0.8029 + }, + { + "start": 10285.16, + "end": 10285.94, + "probability": 0.7294 + }, + { + "start": 10286.06, + "end": 10288.68, + "probability": 0.9326 + }, + { + "start": 10288.82, + "end": 10295.04, + "probability": 0.9779 + }, + { + "start": 10295.4, + "end": 10296.12, + "probability": 0.7228 + }, + { + "start": 10296.28, + "end": 10297.2, + "probability": 0.8577 + }, + { + "start": 10297.44, + "end": 10302.18, + "probability": 0.989 + }, + { + "start": 10302.72, + "end": 10304.06, + "probability": 0.9355 + }, + { + "start": 10304.18, + "end": 10305.1, + "probability": 0.9428 + }, + { + "start": 10305.44, + "end": 10306.06, + "probability": 0.3422 + }, + { + "start": 10306.1, + "end": 10307.34, + "probability": 0.6585 + }, + { + "start": 10307.54, + "end": 10308.96, + "probability": 0.708 + }, + { + "start": 10309.24, + "end": 10312.48, + "probability": 0.959 + }, + { + "start": 10312.54, + "end": 10315.65, + "probability": 0.9176 + }, + { + "start": 10315.8, + "end": 10316.9, + "probability": 0.9064 + }, + { + "start": 10317.1, + "end": 10318.4, + "probability": 0.6169 + }, + { + "start": 10318.74, + "end": 10319.12, + "probability": 0.3997 + }, + { + "start": 10319.24, + "end": 10320.74, + "probability": 0.6646 + }, + { + "start": 10321.26, + "end": 10323.04, + "probability": 0.837 + }, + { + "start": 10323.28, + "end": 10324.84, + "probability": 0.981 + }, + { + "start": 10324.94, + "end": 10326.28, + "probability": 0.8374 + }, + { + "start": 10326.66, + "end": 10328.66, + "probability": 0.991 + }, + { + "start": 10329.0, + "end": 10331.36, + "probability": 0.9863 + }, + { + "start": 10331.88, + "end": 10332.99, + "probability": 0.8521 + }, + { + "start": 10333.62, + "end": 10337.96, + "probability": 0.9944 + }, + { + "start": 10338.14, + "end": 10339.34, + "probability": 0.743 + }, + { + "start": 10339.46, + "end": 10340.92, + "probability": 0.8594 + }, + { + "start": 10341.04, + "end": 10342.22, + "probability": 0.7535 + }, + { + "start": 10342.32, + "end": 10343.32, + "probability": 0.6156 + }, + { + "start": 10344.08, + "end": 10349.54, + "probability": 0.8466 + }, + { + "start": 10352.61, + "end": 10354.1, + "probability": 0.9155 + }, + { + "start": 10354.1, + "end": 10356.7, + "probability": 0.9462 + }, + { + "start": 10357.38, + "end": 10360.6, + "probability": 0.9966 + }, + { + "start": 10361.06, + "end": 10365.4, + "probability": 0.9911 + }, + { + "start": 10365.84, + "end": 10366.96, + "probability": 0.8135 + }, + { + "start": 10367.5, + "end": 10371.96, + "probability": 0.9783 + }, + { + "start": 10372.48, + "end": 10375.38, + "probability": 0.9866 + }, + { + "start": 10375.46, + "end": 10376.52, + "probability": 0.924 + }, + { + "start": 10376.6, + "end": 10379.2, + "probability": 0.8761 + }, + { + "start": 10379.66, + "end": 10381.26, + "probability": 0.9956 + }, + { + "start": 10381.38, + "end": 10382.5, + "probability": 0.8943 + }, + { + "start": 10383.02, + "end": 10384.74, + "probability": 0.9186 + }, + { + "start": 10384.78, + "end": 10387.68, + "probability": 0.9668 + }, + { + "start": 10388.14, + "end": 10390.4, + "probability": 0.9764 + }, + { + "start": 10390.8, + "end": 10392.42, + "probability": 0.9669 + }, + { + "start": 10393.2, + "end": 10396.36, + "probability": 0.8687 + }, + { + "start": 10396.54, + "end": 10397.22, + "probability": 0.7002 + }, + { + "start": 10397.38, + "end": 10399.18, + "probability": 0.8924 + }, + { + "start": 10399.52, + "end": 10401.76, + "probability": 0.9814 + }, + { + "start": 10402.1, + "end": 10403.1, + "probability": 0.9204 + }, + { + "start": 10403.14, + "end": 10404.63, + "probability": 0.9727 + }, + { + "start": 10405.08, + "end": 10406.32, + "probability": 0.9817 + }, + { + "start": 10406.64, + "end": 10407.52, + "probability": 0.9441 + }, + { + "start": 10407.76, + "end": 10411.3, + "probability": 0.9788 + }, + { + "start": 10411.76, + "end": 10415.12, + "probability": 0.9912 + }, + { + "start": 10415.38, + "end": 10418.07, + "probability": 0.9652 + }, + { + "start": 10418.56, + "end": 10419.9, + "probability": 0.9235 + }, + { + "start": 10420.2, + "end": 10424.39, + "probability": 0.9517 + }, + { + "start": 10424.6, + "end": 10425.39, + "probability": 0.4969 + }, + { + "start": 10425.58, + "end": 10425.8, + "probability": 0.8385 + }, + { + "start": 10426.18, + "end": 10427.34, + "probability": 0.8408 + }, + { + "start": 10428.34, + "end": 10430.7, + "probability": 0.981 + }, + { + "start": 10431.5, + "end": 10432.7, + "probability": 0.6071 + }, + { + "start": 10433.38, + "end": 10436.28, + "probability": 0.6729 + }, + { + "start": 10436.4, + "end": 10439.18, + "probability": 0.5404 + }, + { + "start": 10439.64, + "end": 10442.14, + "probability": 0.8536 + }, + { + "start": 10442.22, + "end": 10442.52, + "probability": 0.9094 + }, + { + "start": 10443.46, + "end": 10445.24, + "probability": 0.7786 + }, + { + "start": 10445.38, + "end": 10447.54, + "probability": 0.9353 + }, + { + "start": 10448.0, + "end": 10448.18, + "probability": 0.405 + }, + { + "start": 10448.24, + "end": 10448.52, + "probability": 0.7427 + }, + { + "start": 10448.62, + "end": 10454.02, + "probability": 0.7501 + }, + { + "start": 10454.8, + "end": 10456.16, + "probability": 0.0243 + }, + { + "start": 10459.26, + "end": 10459.92, + "probability": 0.6518 + }, + { + "start": 10460.1, + "end": 10460.98, + "probability": 0.7909 + }, + { + "start": 10461.5, + "end": 10462.86, + "probability": 0.226 + }, + { + "start": 10466.28, + "end": 10466.68, + "probability": 0.0451 + }, + { + "start": 10473.58, + "end": 10475.18, + "probability": 0.2233 + }, + { + "start": 10475.18, + "end": 10478.28, + "probability": 0.0206 + }, + { + "start": 10479.04, + "end": 10479.04, + "probability": 0.0767 + }, + { + "start": 10479.04, + "end": 10484.68, + "probability": 0.7357 + }, + { + "start": 10485.58, + "end": 10485.58, + "probability": 0.0052 + }, + { + "start": 10485.58, + "end": 10485.58, + "probability": 0.0087 + }, + { + "start": 10485.58, + "end": 10486.76, + "probability": 0.6141 + }, + { + "start": 10487.2, + "end": 10487.72, + "probability": 0.6016 + }, + { + "start": 10489.55, + "end": 10491.98, + "probability": 0.7864 + }, + { + "start": 10493.26, + "end": 10494.54, + "probability": 0.7874 + }, + { + "start": 10494.76, + "end": 10495.74, + "probability": 0.3439 + }, + { + "start": 10495.8, + "end": 10497.37, + "probability": 0.6891 + }, + { + "start": 10498.08, + "end": 10502.68, + "probability": 0.7927 + }, + { + "start": 10502.92, + "end": 10504.76, + "probability": 0.15 + }, + { + "start": 10504.88, + "end": 10506.66, + "probability": 0.9405 + }, + { + "start": 10506.76, + "end": 10507.58, + "probability": 0.8353 + }, + { + "start": 10508.63, + "end": 10512.08, + "probability": 0.9437 + }, + { + "start": 10512.08, + "end": 10516.88, + "probability": 0.5976 + }, + { + "start": 10516.98, + "end": 10518.84, + "probability": 0.461 + }, + { + "start": 10518.84, + "end": 10519.08, + "probability": 0.6592 + }, + { + "start": 10521.78, + "end": 10522.66, + "probability": 0.4384 + }, + { + "start": 10523.08, + "end": 10525.02, + "probability": 0.9228 + }, + { + "start": 10525.16, + "end": 10528.08, + "probability": 0.8257 + }, + { + "start": 10528.86, + "end": 10530.04, + "probability": 0.5849 + }, + { + "start": 10533.76, + "end": 10536.7, + "probability": 0.676 + }, + { + "start": 10536.7, + "end": 10537.16, + "probability": 0.5606 + }, + { + "start": 10539.44, + "end": 10541.82, + "probability": 0.7922 + }, + { + "start": 10541.82, + "end": 10542.18, + "probability": 0.8315 + }, + { + "start": 10543.42, + "end": 10545.52, + "probability": 0.9926 + }, + { + "start": 10547.62, + "end": 10551.54, + "probability": 0.9838 + }, + { + "start": 10551.7, + "end": 10552.96, + "probability": 0.5022 + }, + { + "start": 10554.1, + "end": 10556.94, + "probability": 0.9706 + }, + { + "start": 10557.52, + "end": 10560.5, + "probability": 0.8526 + }, + { + "start": 10572.5, + "end": 10575.84, + "probability": 0.9587 + }, + { + "start": 10576.1, + "end": 10577.6, + "probability": 0.9736 + }, + { + "start": 10578.64, + "end": 10580.6, + "probability": 0.7718 + }, + { + "start": 10582.24, + "end": 10586.53, + "probability": 0.9488 + }, + { + "start": 10586.62, + "end": 10592.08, + "probability": 0.9978 + }, + { + "start": 10592.56, + "end": 10595.54, + "probability": 0.9156 + }, + { + "start": 10596.14, + "end": 10599.86, + "probability": 0.9779 + }, + { + "start": 10600.42, + "end": 10604.36, + "probability": 0.9773 + }, + { + "start": 10604.58, + "end": 10605.18, + "probability": 0.8589 + }, + { + "start": 10606.14, + "end": 10609.13, + "probability": 0.7115 + }, + { + "start": 10610.32, + "end": 10611.8, + "probability": 0.9384 + }, + { + "start": 10611.9, + "end": 10614.74, + "probability": 0.95 + }, + { + "start": 10614.74, + "end": 10619.04, + "probability": 0.9839 + }, + { + "start": 10620.04, + "end": 10621.08, + "probability": 0.9478 + }, + { + "start": 10621.66, + "end": 10623.52, + "probability": 0.9983 + }, + { + "start": 10624.1, + "end": 10627.18, + "probability": 0.9254 + }, + { + "start": 10628.24, + "end": 10629.26, + "probability": 0.9728 + }, + { + "start": 10629.72, + "end": 10630.9, + "probability": 0.998 + }, + { + "start": 10631.16, + "end": 10635.28, + "probability": 0.7914 + }, + { + "start": 10635.5, + "end": 10639.6, + "probability": 0.9945 + }, + { + "start": 10640.04, + "end": 10640.66, + "probability": 0.7271 + }, + { + "start": 10641.24, + "end": 10642.22, + "probability": 0.9993 + }, + { + "start": 10643.94, + "end": 10644.46, + "probability": 0.851 + }, + { + "start": 10644.62, + "end": 10646.02, + "probability": 0.9871 + }, + { + "start": 10646.22, + "end": 10650.26, + "probability": 0.9803 + }, + { + "start": 10650.56, + "end": 10652.18, + "probability": 0.9758 + }, + { + "start": 10652.3, + "end": 10652.96, + "probability": 0.8804 + }, + { + "start": 10652.96, + "end": 10653.94, + "probability": 0.6164 + }, + { + "start": 10654.24, + "end": 10654.7, + "probability": 0.8631 + }, + { + "start": 10654.8, + "end": 10656.42, + "probability": 0.9646 + }, + { + "start": 10656.68, + "end": 10658.0, + "probability": 0.9394 + }, + { + "start": 10658.26, + "end": 10660.24, + "probability": 0.9955 + }, + { + "start": 10661.1, + "end": 10663.86, + "probability": 0.9153 + }, + { + "start": 10664.44, + "end": 10666.3, + "probability": 0.9925 + }, + { + "start": 10666.76, + "end": 10667.04, + "probability": 0.9854 + }, + { + "start": 10667.4, + "end": 10668.42, + "probability": 0.9769 + }, + { + "start": 10668.56, + "end": 10669.74, + "probability": 0.9117 + }, + { + "start": 10670.06, + "end": 10671.4, + "probability": 0.8643 + }, + { + "start": 10671.8, + "end": 10675.1, + "probability": 0.9393 + }, + { + "start": 10675.3, + "end": 10676.89, + "probability": 0.9824 + }, + { + "start": 10677.02, + "end": 10677.99, + "probability": 0.9517 + }, + { + "start": 10678.24, + "end": 10679.44, + "probability": 0.7146 + }, + { + "start": 10679.8, + "end": 10680.36, + "probability": 0.8259 + }, + { + "start": 10680.78, + "end": 10681.54, + "probability": 0.5576 + }, + { + "start": 10681.72, + "end": 10682.3, + "probability": 0.7213 + }, + { + "start": 10682.46, + "end": 10683.36, + "probability": 0.9366 + }, + { + "start": 10683.52, + "end": 10684.02, + "probability": 0.7205 + }, + { + "start": 10684.34, + "end": 10686.62, + "probability": 0.6971 + }, + { + "start": 10686.74, + "end": 10687.84, + "probability": 0.9631 + }, + { + "start": 10688.48, + "end": 10691.44, + "probability": 0.8945 + }, + { + "start": 10691.6, + "end": 10693.42, + "probability": 0.7052 + }, + { + "start": 10693.44, + "end": 10693.88, + "probability": 0.4876 + }, + { + "start": 10694.18, + "end": 10695.62, + "probability": 0.9792 + }, + { + "start": 10695.7, + "end": 10696.18, + "probability": 0.6843 + }, + { + "start": 10696.18, + "end": 10698.26, + "probability": 0.9053 + }, + { + "start": 10699.16, + "end": 10701.84, + "probability": 0.6951 + }, + { + "start": 10702.46, + "end": 10703.68, + "probability": 0.9618 + }, + { + "start": 10704.3, + "end": 10705.28, + "probability": 0.9785 + }, + { + "start": 10705.38, + "end": 10708.5, + "probability": 0.8903 + }, + { + "start": 10708.5, + "end": 10711.6, + "probability": 0.8896 + }, + { + "start": 10711.84, + "end": 10712.4, + "probability": 0.9564 + }, + { + "start": 10713.44, + "end": 10716.68, + "probability": 0.5847 + }, + { + "start": 10717.4, + "end": 10720.13, + "probability": 0.9867 + }, + { + "start": 10720.68, + "end": 10723.4, + "probability": 0.9771 + }, + { + "start": 10723.76, + "end": 10725.1, + "probability": 0.9753 + }, + { + "start": 10725.28, + "end": 10726.1, + "probability": 0.9891 + }, + { + "start": 10726.5, + "end": 10727.94, + "probability": 0.9302 + }, + { + "start": 10728.18, + "end": 10729.18, + "probability": 0.9253 + }, + { + "start": 10729.96, + "end": 10730.74, + "probability": 0.6308 + }, + { + "start": 10731.68, + "end": 10734.22, + "probability": 0.9603 + }, + { + "start": 10735.0, + "end": 10736.7, + "probability": 0.9798 + }, + { + "start": 10737.32, + "end": 10741.14, + "probability": 0.9523 + }, + { + "start": 10741.48, + "end": 10743.12, + "probability": 0.9868 + }, + { + "start": 10744.26, + "end": 10747.0, + "probability": 0.9907 + }, + { + "start": 10748.86, + "end": 10751.04, + "probability": 0.9875 + }, + { + "start": 10751.12, + "end": 10751.98, + "probability": 0.9153 + }, + { + "start": 10752.54, + "end": 10755.54, + "probability": 0.9989 + }, + { + "start": 10755.88, + "end": 10756.4, + "probability": 0.9206 + }, + { + "start": 10756.6, + "end": 10757.34, + "probability": 0.9872 + }, + { + "start": 10758.16, + "end": 10759.14, + "probability": 0.8385 + }, + { + "start": 10759.76, + "end": 10763.0, + "probability": 0.8654 + }, + { + "start": 10763.56, + "end": 10765.82, + "probability": 0.7976 + }, + { + "start": 10766.16, + "end": 10767.4, + "probability": 0.9946 + }, + { + "start": 10768.06, + "end": 10769.52, + "probability": 0.9016 + }, + { + "start": 10769.72, + "end": 10771.33, + "probability": 0.9989 + }, + { + "start": 10771.92, + "end": 10772.82, + "probability": 0.9336 + }, + { + "start": 10773.02, + "end": 10774.56, + "probability": 0.9987 + }, + { + "start": 10774.76, + "end": 10775.34, + "probability": 0.3711 + }, + { + "start": 10775.4, + "end": 10776.1, + "probability": 0.8387 + }, + { + "start": 10776.48, + "end": 10779.06, + "probability": 0.7429 + }, + { + "start": 10779.32, + "end": 10780.02, + "probability": 0.7065 + }, + { + "start": 10781.2, + "end": 10782.7, + "probability": 0.9956 + }, + { + "start": 10782.76, + "end": 10786.26, + "probability": 0.9193 + }, + { + "start": 10786.66, + "end": 10787.42, + "probability": 0.7779 + }, + { + "start": 10787.78, + "end": 10789.24, + "probability": 0.9655 + }, + { + "start": 10789.52, + "end": 10790.22, + "probability": 0.7579 + }, + { + "start": 10790.86, + "end": 10791.92, + "probability": 0.5142 + }, + { + "start": 10792.36, + "end": 10792.76, + "probability": 0.3637 + }, + { + "start": 10792.76, + "end": 10794.18, + "probability": 0.5586 + }, + { + "start": 10794.2, + "end": 10798.48, + "probability": 0.9755 + }, + { + "start": 10799.1, + "end": 10800.5, + "probability": 0.9849 + }, + { + "start": 10800.66, + "end": 10801.01, + "probability": 0.9299 + }, + { + "start": 10802.08, + "end": 10803.14, + "probability": 0.9878 + }, + { + "start": 10804.42, + "end": 10806.96, + "probability": 0.9685 + }, + { + "start": 10807.38, + "end": 10808.52, + "probability": 0.7966 + }, + { + "start": 10808.58, + "end": 10810.54, + "probability": 0.996 + }, + { + "start": 10810.96, + "end": 10814.24, + "probability": 0.986 + }, + { + "start": 10814.82, + "end": 10819.2, + "probability": 0.9954 + }, + { + "start": 10819.36, + "end": 10819.88, + "probability": 0.3456 + }, + { + "start": 10819.96, + "end": 10824.62, + "probability": 0.9719 + }, + { + "start": 10824.72, + "end": 10827.76, + "probability": 0.9971 + }, + { + "start": 10827.76, + "end": 10831.26, + "probability": 0.9821 + }, + { + "start": 10831.74, + "end": 10833.6, + "probability": 0.9575 + }, + { + "start": 10833.76, + "end": 10834.44, + "probability": 0.3148 + }, + { + "start": 10834.46, + "end": 10837.22, + "probability": 0.8311 + }, + { + "start": 10837.3, + "end": 10838.18, + "probability": 0.7521 + }, + { + "start": 10838.24, + "end": 10839.12, + "probability": 0.8358 + }, + { + "start": 10839.2, + "end": 10840.72, + "probability": 0.9224 + }, + { + "start": 10840.78, + "end": 10841.78, + "probability": 0.9839 + }, + { + "start": 10841.84, + "end": 10846.42, + "probability": 0.7979 + }, + { + "start": 10846.86, + "end": 10848.21, + "probability": 0.9314 + }, + { + "start": 10848.72, + "end": 10850.84, + "probability": 0.8545 + }, + { + "start": 10851.96, + "end": 10853.2, + "probability": 0.1082 + }, + { + "start": 10853.2, + "end": 10853.68, + "probability": 0.2793 + }, + { + "start": 10853.96, + "end": 10854.92, + "probability": 0.8213 + }, + { + "start": 10855.36, + "end": 10857.78, + "probability": 0.8209 + }, + { + "start": 10858.64, + "end": 10861.54, + "probability": 0.9831 + }, + { + "start": 10861.8, + "end": 10864.46, + "probability": 0.9854 + }, + { + "start": 10864.46, + "end": 10870.24, + "probability": 0.9805 + }, + { + "start": 10870.36, + "end": 10871.9, + "probability": 0.8548 + }, + { + "start": 10872.24, + "end": 10874.96, + "probability": 0.7847 + }, + { + "start": 10875.0, + "end": 10875.5, + "probability": 0.9108 + }, + { + "start": 10875.58, + "end": 10876.06, + "probability": 0.8119 + }, + { + "start": 10876.14, + "end": 10877.18, + "probability": 0.9739 + }, + { + "start": 10877.64, + "end": 10878.44, + "probability": 0.9177 + }, + { + "start": 10878.92, + "end": 10880.26, + "probability": 0.9903 + }, + { + "start": 10880.4, + "end": 10885.04, + "probability": 0.9695 + }, + { + "start": 10885.28, + "end": 10886.48, + "probability": 0.9817 + }, + { + "start": 10886.62, + "end": 10891.22, + "probability": 0.9865 + }, + { + "start": 10891.74, + "end": 10894.74, + "probability": 0.7252 + }, + { + "start": 10895.1, + "end": 10896.19, + "probability": 0.7712 + }, + { + "start": 10896.42, + "end": 10896.64, + "probability": 0.6275 + }, + { + "start": 10897.78, + "end": 10899.92, + "probability": 0.752 + }, + { + "start": 10899.96, + "end": 10902.34, + "probability": 0.9538 + }, + { + "start": 10902.72, + "end": 10906.04, + "probability": 0.9113 + }, + { + "start": 10906.1, + "end": 10906.2, + "probability": 0.8687 + }, + { + "start": 10908.68, + "end": 10910.26, + "probability": 0.1493 + }, + { + "start": 10910.78, + "end": 10912.9, + "probability": 0.0398 + }, + { + "start": 10936.58, + "end": 10938.28, + "probability": 0.5157 + }, + { + "start": 10940.12, + "end": 10942.86, + "probability": 0.9144 + }, + { + "start": 10942.98, + "end": 10943.37, + "probability": 0.0099 + }, + { + "start": 10944.78, + "end": 10946.04, + "probability": 0.9529 + }, + { + "start": 10947.1, + "end": 10949.74, + "probability": 0.8827 + }, + { + "start": 10950.82, + "end": 10956.9, + "probability": 0.9901 + }, + { + "start": 10956.9, + "end": 10963.76, + "probability": 0.9912 + }, + { + "start": 10964.6, + "end": 10966.4, + "probability": 0.9426 + }, + { + "start": 10967.54, + "end": 10968.9, + "probability": 0.8897 + }, + { + "start": 10970.26, + "end": 10977.87, + "probability": 0.9644 + }, + { + "start": 10979.64, + "end": 10980.64, + "probability": 0.9537 + }, + { + "start": 10980.7, + "end": 10987.24, + "probability": 0.9927 + }, + { + "start": 10987.24, + "end": 10992.3, + "probability": 0.9987 + }, + { + "start": 10993.08, + "end": 10995.86, + "probability": 0.9771 + }, + { + "start": 10997.22, + "end": 10997.94, + "probability": 0.6486 + }, + { + "start": 10998.66, + "end": 11007.7, + "probability": 0.9927 + }, + { + "start": 11008.46, + "end": 11013.44, + "probability": 0.9479 + }, + { + "start": 11014.7, + "end": 11021.28, + "probability": 0.9797 + }, + { + "start": 11022.0, + "end": 11023.78, + "probability": 0.7994 + }, + { + "start": 11024.6, + "end": 11033.32, + "probability": 0.9883 + }, + { + "start": 11034.24, + "end": 11040.9, + "probability": 0.9978 + }, + { + "start": 11041.44, + "end": 11043.26, + "probability": 0.9698 + }, + { + "start": 11044.14, + "end": 11044.9, + "probability": 0.6619 + }, + { + "start": 11045.7, + "end": 11048.54, + "probability": 0.999 + }, + { + "start": 11049.06, + "end": 11052.76, + "probability": 0.9964 + }, + { + "start": 11053.48, + "end": 11059.54, + "probability": 0.9908 + }, + { + "start": 11061.04, + "end": 11061.74, + "probability": 0.5737 + }, + { + "start": 11062.54, + "end": 11068.18, + "probability": 0.9128 + }, + { + "start": 11068.18, + "end": 11074.4, + "probability": 0.9918 + }, + { + "start": 11075.48, + "end": 11078.3, + "probability": 0.589 + }, + { + "start": 11078.98, + "end": 11081.58, + "probability": 0.9967 + }, + { + "start": 11082.48, + "end": 11082.68, + "probability": 0.7496 + }, + { + "start": 11083.68, + "end": 11084.42, + "probability": 0.8007 + }, + { + "start": 11086.14, + "end": 11089.04, + "probability": 0.9418 + }, + { + "start": 11089.46, + "end": 11091.28, + "probability": 0.9319 + }, + { + "start": 11091.8, + "end": 11093.4, + "probability": 0.9128 + }, + { + "start": 11103.44, + "end": 11105.3, + "probability": 0.0992 + }, + { + "start": 11105.32, + "end": 11105.64, + "probability": 0.4643 + }, + { + "start": 11105.7, + "end": 11107.98, + "probability": 0.6476 + }, + { + "start": 11108.28, + "end": 11110.15, + "probability": 0.9844 + }, + { + "start": 11111.16, + "end": 11114.84, + "probability": 0.8423 + }, + { + "start": 11115.2, + "end": 11117.48, + "probability": 0.978 + }, + { + "start": 11117.9, + "end": 11119.42, + "probability": 0.8732 + }, + { + "start": 11119.78, + "end": 11122.16, + "probability": 0.9613 + }, + { + "start": 11122.32, + "end": 11122.92, + "probability": 0.6693 + }, + { + "start": 11123.46, + "end": 11124.26, + "probability": 0.7743 + }, + { + "start": 11124.4, + "end": 11126.34, + "probability": 0.8573 + }, + { + "start": 11126.42, + "end": 11127.06, + "probability": 0.8054 + }, + { + "start": 11127.12, + "end": 11128.84, + "probability": 0.8738 + }, + { + "start": 11129.24, + "end": 11130.57, + "probability": 0.6247 + }, + { + "start": 11130.8, + "end": 11131.06, + "probability": 0.7899 + }, + { + "start": 11131.72, + "end": 11136.14, + "probability": 0.9958 + }, + { + "start": 11136.68, + "end": 11137.38, + "probability": 0.7048 + }, + { + "start": 11138.32, + "end": 11139.18, + "probability": 0.9536 + }, + { + "start": 11139.26, + "end": 11139.7, + "probability": 0.944 + }, + { + "start": 11139.82, + "end": 11141.44, + "probability": 0.7873 + }, + { + "start": 11141.54, + "end": 11142.86, + "probability": 0.8774 + }, + { + "start": 11143.14, + "end": 11144.6, + "probability": 0.9876 + }, + { + "start": 11144.72, + "end": 11150.58, + "probability": 0.8945 + }, + { + "start": 11150.58, + "end": 11153.66, + "probability": 0.9167 + }, + { + "start": 11153.76, + "end": 11156.72, + "probability": 0.9326 + }, + { + "start": 11156.78, + "end": 11160.08, + "probability": 0.9976 + }, + { + "start": 11160.72, + "end": 11163.56, + "probability": 0.9971 + }, + { + "start": 11163.94, + "end": 11164.78, + "probability": 0.5553 + }, + { + "start": 11165.0, + "end": 11167.8, + "probability": 0.9973 + }, + { + "start": 11168.26, + "end": 11170.98, + "probability": 0.9985 + }, + { + "start": 11171.3, + "end": 11173.04, + "probability": 0.9971 + }, + { + "start": 11173.28, + "end": 11177.06, + "probability": 0.9966 + }, + { + "start": 11177.54, + "end": 11178.4, + "probability": 0.8755 + }, + { + "start": 11179.36, + "end": 11179.9, + "probability": 0.8982 + }, + { + "start": 11180.04, + "end": 11181.74, + "probability": 0.868 + }, + { + "start": 11181.9, + "end": 11182.82, + "probability": 0.8112 + }, + { + "start": 11182.9, + "end": 11183.06, + "probability": 0.5384 + }, + { + "start": 11183.16, + "end": 11184.98, + "probability": 0.9983 + }, + { + "start": 11185.36, + "end": 11186.02, + "probability": 0.851 + }, + { + "start": 11186.5, + "end": 11190.94, + "probability": 0.4859 + }, + { + "start": 11191.26, + "end": 11194.22, + "probability": 0.824 + }, + { + "start": 11194.32, + "end": 11194.72, + "probability": 0.1206 + }, + { + "start": 11195.92, + "end": 11196.78, + "probability": 0.9217 + }, + { + "start": 11196.98, + "end": 11198.16, + "probability": 0.6807 + }, + { + "start": 11198.22, + "end": 11199.22, + "probability": 0.8529 + }, + { + "start": 11199.34, + "end": 11199.72, + "probability": 0.9435 + }, + { + "start": 11199.78, + "end": 11202.96, + "probability": 0.793 + }, + { + "start": 11203.7, + "end": 11206.12, + "probability": 0.7783 + }, + { + "start": 11206.22, + "end": 11207.52, + "probability": 0.9819 + }, + { + "start": 11207.76, + "end": 11208.48, + "probability": 0.7373 + }, + { + "start": 11208.62, + "end": 11211.9, + "probability": 0.9836 + }, + { + "start": 11211.9, + "end": 11215.84, + "probability": 0.9784 + }, + { + "start": 11216.26, + "end": 11216.96, + "probability": 0.9362 + }, + { + "start": 11218.02, + "end": 11222.72, + "probability": 0.9971 + }, + { + "start": 11222.82, + "end": 11223.28, + "probability": 0.7993 + }, + { + "start": 11223.34, + "end": 11225.82, + "probability": 0.9754 + }, + { + "start": 11226.3, + "end": 11227.44, + "probability": 0.9954 + }, + { + "start": 11228.14, + "end": 11228.94, + "probability": 0.832 + }, + { + "start": 11229.42, + "end": 11231.44, + "probability": 0.9424 + }, + { + "start": 11231.64, + "end": 11233.14, + "probability": 0.8425 + }, + { + "start": 11234.94, + "end": 11239.82, + "probability": 0.9587 + }, + { + "start": 11239.9, + "end": 11241.56, + "probability": 0.5086 + }, + { + "start": 11241.66, + "end": 11242.36, + "probability": 0.5801 + }, + { + "start": 11242.62, + "end": 11244.0, + "probability": 0.6645 + }, + { + "start": 11244.06, + "end": 11244.76, + "probability": 0.5965 + }, + { + "start": 11246.75, + "end": 11247.78, + "probability": 0.0155 + }, + { + "start": 11248.32, + "end": 11251.68, + "probability": 0.4913 + }, + { + "start": 11252.3, + "end": 11252.7, + "probability": 0.0037 + }, + { + "start": 11255.72, + "end": 11258.34, + "probability": 0.0513 + }, + { + "start": 11259.12, + "end": 11259.86, + "probability": 0.2595 + }, + { + "start": 11261.52, + "end": 11262.26, + "probability": 0.0832 + }, + { + "start": 11262.26, + "end": 11266.54, + "probability": 0.5567 + }, + { + "start": 11266.68, + "end": 11268.6, + "probability": 0.783 + }, + { + "start": 11277.98, + "end": 11280.74, + "probability": 0.7766 + }, + { + "start": 11280.84, + "end": 11283.96, + "probability": 0.909 + }, + { + "start": 11284.3, + "end": 11285.88, + "probability": 0.4348 + }, + { + "start": 11286.46, + "end": 11288.26, + "probability": 0.943 + }, + { + "start": 11303.19, + "end": 11305.48, + "probability": 0.5187 + }, + { + "start": 11309.26, + "end": 11312.66, + "probability": 0.5176 + }, + { + "start": 11313.43, + "end": 11318.38, + "probability": 0.6671 + }, + { + "start": 11319.1, + "end": 11320.8, + "probability": 0.9653 + }, + { + "start": 11321.4, + "end": 11322.14, + "probability": 0.2484 + }, + { + "start": 11324.04, + "end": 11325.94, + "probability": 0.8091 + }, + { + "start": 11328.46, + "end": 11331.26, + "probability": 0.3584 + }, + { + "start": 11331.46, + "end": 11333.82, + "probability": 0.6074 + }, + { + "start": 11334.88, + "end": 11334.98, + "probability": 0.6424 + }, + { + "start": 11335.1, + "end": 11335.1, + "probability": 0.8981 + }, + { + "start": 11335.1, + "end": 11336.74, + "probability": 0.6844 + }, + { + "start": 11336.8, + "end": 11337.66, + "probability": 0.7711 + }, + { + "start": 11338.34, + "end": 11344.94, + "probability": 0.988 + }, + { + "start": 11344.94, + "end": 11350.58, + "probability": 0.999 + }, + { + "start": 11351.34, + "end": 11355.52, + "probability": 0.8253 + }, + { + "start": 11356.08, + "end": 11360.45, + "probability": 0.9954 + }, + { + "start": 11363.12, + "end": 11363.94, + "probability": 0.5081 + }, + { + "start": 11364.52, + "end": 11365.08, + "probability": 0.5361 + }, + { + "start": 11365.42, + "end": 11367.04, + "probability": 0.9803 + }, + { + "start": 11367.5, + "end": 11372.34, + "probability": 0.9839 + }, + { + "start": 11372.72, + "end": 11374.1, + "probability": 0.8479 + }, + { + "start": 11374.42, + "end": 11376.15, + "probability": 0.9072 + }, + { + "start": 11376.5, + "end": 11382.34, + "probability": 0.9878 + }, + { + "start": 11382.34, + "end": 11388.24, + "probability": 0.9941 + }, + { + "start": 11388.62, + "end": 11389.06, + "probability": 0.7589 + }, + { + "start": 11389.18, + "end": 11391.06, + "probability": 0.9395 + }, + { + "start": 11391.16, + "end": 11393.4, + "probability": 0.8829 + }, + { + "start": 11393.98, + "end": 11395.4, + "probability": 0.9226 + }, + { + "start": 11407.7, + "end": 11409.74, + "probability": 0.7546 + }, + { + "start": 11410.58, + "end": 11412.02, + "probability": 0.7088 + }, + { + "start": 11412.14, + "end": 11414.64, + "probability": 0.8142 + }, + { + "start": 11414.7, + "end": 11416.68, + "probability": 0.9638 + }, + { + "start": 11417.82, + "end": 11419.22, + "probability": 0.537 + }, + { + "start": 11419.42, + "end": 11421.05, + "probability": 0.8089 + }, + { + "start": 11421.94, + "end": 11423.1, + "probability": 0.4608 + }, + { + "start": 11423.14, + "end": 11423.72, + "probability": 0.6683 + }, + { + "start": 11423.86, + "end": 11426.3, + "probability": 0.7638 + }, + { + "start": 11426.54, + "end": 11430.9, + "probability": 0.9272 + }, + { + "start": 11430.94, + "end": 11432.72, + "probability": 0.2207 + }, + { + "start": 11432.78, + "end": 11433.26, + "probability": 0.6147 + }, + { + "start": 11433.3, + "end": 11434.48, + "probability": 0.7267 + }, + { + "start": 11434.94, + "end": 11436.2, + "probability": 0.1994 + }, + { + "start": 11455.12, + "end": 11461.0, + "probability": 0.174 + }, + { + "start": 11461.0, + "end": 11461.0, + "probability": 0.0214 + }, + { + "start": 11461.0, + "end": 11461.0, + "probability": 0.0275 + }, + { + "start": 11461.0, + "end": 11462.1, + "probability": 0.2913 + }, + { + "start": 11462.26, + "end": 11464.62, + "probability": 0.5928 + }, + { + "start": 11467.28, + "end": 11471.98, + "probability": 0.0951 + }, + { + "start": 11471.98, + "end": 11472.18, + "probability": 0.2857 + }, + { + "start": 11472.18, + "end": 11472.18, + "probability": 0.0565 + }, + { + "start": 11472.18, + "end": 11473.05, + "probability": 0.1941 + }, + { + "start": 11473.66, + "end": 11474.04, + "probability": 0.0273 + }, + { + "start": 11474.04, + "end": 11474.41, + "probability": 0.0749 + }, + { + "start": 11475.77, + "end": 11478.44, + "probability": 0.006 + }, + { + "start": 11478.44, + "end": 11478.58, + "probability": 0.2125 + }, + { + "start": 11478.58, + "end": 11478.58, + "probability": 0.0449 + }, + { + "start": 11478.58, + "end": 11478.58, + "probability": 0.0323 + }, + { + "start": 11478.58, + "end": 11479.04, + "probability": 0.1217 + }, + { + "start": 11480.66, + "end": 11481.72, + "probability": 0.6816 + }, + { + "start": 11483.74, + "end": 11487.86, + "probability": 0.6836 + }, + { + "start": 11487.86, + "end": 11491.3, + "probability": 0.9751 + }, + { + "start": 11492.12, + "end": 11497.99, + "probability": 0.6034 + }, + { + "start": 11499.0, + "end": 11503.72, + "probability": 0.7529 + }, + { + "start": 11503.94, + "end": 11506.24, + "probability": 0.9469 + }, + { + "start": 11507.46, + "end": 11508.58, + "probability": 0.9856 + }, + { + "start": 11509.48, + "end": 11512.9, + "probability": 0.753 + }, + { + "start": 11517.82, + "end": 11520.24, + "probability": 0.4092 + }, + { + "start": 11520.92, + "end": 11523.22, + "probability": 0.8221 + }, + { + "start": 11523.84, + "end": 11524.7, + "probability": 0.901 + }, + { + "start": 11525.5, + "end": 11526.38, + "probability": 0.8602 + }, + { + "start": 11527.86, + "end": 11529.6, + "probability": 0.8103 + }, + { + "start": 11531.29, + "end": 11535.68, + "probability": 0.9348 + }, + { + "start": 11536.42, + "end": 11538.42, + "probability": 0.533 + }, + { + "start": 11538.96, + "end": 11539.74, + "probability": 0.6147 + }, + { + "start": 11540.75, + "end": 11542.62, + "probability": 0.8678 + }, + { + "start": 11543.14, + "end": 11544.12, + "probability": 0.6947 + }, + { + "start": 11544.78, + "end": 11545.36, + "probability": 0.9247 + }, + { + "start": 11546.04, + "end": 11547.0, + "probability": 0.9292 + }, + { + "start": 11549.72, + "end": 11551.42, + "probability": 0.7279 + }, + { + "start": 11552.14, + "end": 11553.7, + "probability": 0.3357 + }, + { + "start": 11554.3, + "end": 11555.06, + "probability": 0.8442 + }, + { + "start": 11556.02, + "end": 11559.74, + "probability": 0.9756 + }, + { + "start": 11559.76, + "end": 11560.52, + "probability": 0.8164 + }, + { + "start": 11562.0, + "end": 11562.62, + "probability": 0.4086 + }, + { + "start": 11562.64, + "end": 11563.12, + "probability": 0.754 + }, + { + "start": 11563.2, + "end": 11565.04, + "probability": 0.6961 + }, + { + "start": 11566.0, + "end": 11571.52, + "probability": 0.9707 + }, + { + "start": 11571.94, + "end": 11574.64, + "probability": 0.6727 + }, + { + "start": 11574.9, + "end": 11576.56, + "probability": 0.9249 + }, + { + "start": 11576.82, + "end": 11577.56, + "probability": 0.76 + }, + { + "start": 11577.62, + "end": 11579.28, + "probability": 0.6332 + }, + { + "start": 11579.58, + "end": 11583.22, + "probability": 0.9535 + }, + { + "start": 11583.34, + "end": 11584.44, + "probability": 0.8252 + }, + { + "start": 11584.46, + "end": 11585.24, + "probability": 0.9097 + }, + { + "start": 11585.68, + "end": 11587.76, + "probability": 0.9888 + }, + { + "start": 11589.38, + "end": 11595.38, + "probability": 0.9141 + }, + { + "start": 11596.36, + "end": 11601.6, + "probability": 0.938 + }, + { + "start": 11602.54, + "end": 11607.28, + "probability": 0.9977 + }, + { + "start": 11607.9, + "end": 11612.71, + "probability": 0.9961 + }, + { + "start": 11612.98, + "end": 11612.98, + "probability": 0.524 + }, + { + "start": 11612.98, + "end": 11613.98, + "probability": 0.7015 + }, + { + "start": 11615.16, + "end": 11618.14, + "probability": 0.9947 + }, + { + "start": 11618.68, + "end": 11623.0, + "probability": 0.7429 + }, + { + "start": 11623.88, + "end": 11627.78, + "probability": 0.9411 + }, + { + "start": 11628.2, + "end": 11629.74, + "probability": 0.9412 + }, + { + "start": 11630.04, + "end": 11633.68, + "probability": 0.9825 + }, + { + "start": 11634.64, + "end": 11639.76, + "probability": 0.9675 + }, + { + "start": 11639.86, + "end": 11640.34, + "probability": 0.8087 + }, + { + "start": 11640.94, + "end": 11644.86, + "probability": 0.9623 + }, + { + "start": 11645.68, + "end": 11649.68, + "probability": 0.9977 + }, + { + "start": 11652.12, + "end": 11654.7, + "probability": 0.9641 + }, + { + "start": 11655.4, + "end": 11659.02, + "probability": 0.8288 + }, + { + "start": 11661.94, + "end": 11665.28, + "probability": 0.8269 + }, + { + "start": 11665.34, + "end": 11667.34, + "probability": 0.99 + }, + { + "start": 11667.5, + "end": 11669.74, + "probability": 0.9368 + }, + { + "start": 11669.88, + "end": 11670.34, + "probability": 0.691 + }, + { + "start": 11670.46, + "end": 11671.94, + "probability": 0.7567 + }, + { + "start": 11672.32, + "end": 11674.58, + "probability": 0.9542 + }, + { + "start": 11674.62, + "end": 11676.78, + "probability": 0.7848 + }, + { + "start": 11677.32, + "end": 11679.69, + "probability": 0.947 + }, + { + "start": 11680.08, + "end": 11680.98, + "probability": 0.4788 + }, + { + "start": 11681.02, + "end": 11682.6, + "probability": 0.8943 + }, + { + "start": 11683.3, + "end": 11686.42, + "probability": 0.9939 + }, + { + "start": 11686.52, + "end": 11688.36, + "probability": 0.9902 + }, + { + "start": 11688.44, + "end": 11692.42, + "probability": 0.9872 + }, + { + "start": 11693.36, + "end": 11696.1, + "probability": 0.9994 + }, + { + "start": 11696.64, + "end": 11701.46, + "probability": 0.9928 + }, + { + "start": 11701.46, + "end": 11705.08, + "probability": 0.9851 + }, + { + "start": 11705.5, + "end": 11706.92, + "probability": 0.9883 + }, + { + "start": 11708.04, + "end": 11708.56, + "probability": 0.1578 + }, + { + "start": 11708.88, + "end": 11710.6, + "probability": 0.9976 + }, + { + "start": 11712.7, + "end": 11716.92, + "probability": 0.959 + }, + { + "start": 11717.04, + "end": 11717.98, + "probability": 0.5379 + }, + { + "start": 11718.12, + "end": 11718.82, + "probability": 0.7314 + }, + { + "start": 11719.68, + "end": 11721.04, + "probability": 0.7314 + }, + { + "start": 11721.1, + "end": 11725.78, + "probability": 0.952 + }, + { + "start": 11726.0, + "end": 11727.7, + "probability": 0.998 + }, + { + "start": 11728.2, + "end": 11728.7, + "probability": 0.9351 + }, + { + "start": 11728.78, + "end": 11735.02, + "probability": 0.9573 + }, + { + "start": 11735.08, + "end": 11737.44, + "probability": 0.848 + }, + { + "start": 11738.42, + "end": 11742.04, + "probability": 0.9871 + }, + { + "start": 11743.3, + "end": 11743.62, + "probability": 0.3047 + }, + { + "start": 11743.74, + "end": 11744.14, + "probability": 0.5673 + }, + { + "start": 11744.34, + "end": 11747.32, + "probability": 0.8443 + }, + { + "start": 11747.46, + "end": 11748.02, + "probability": 0.4605 + }, + { + "start": 11748.12, + "end": 11748.82, + "probability": 0.7472 + }, + { + "start": 11749.18, + "end": 11750.3, + "probability": 0.8408 + }, + { + "start": 11750.36, + "end": 11750.94, + "probability": 0.9403 + }, + { + "start": 11751.54, + "end": 11753.48, + "probability": 0.8992 + }, + { + "start": 11754.02, + "end": 11755.52, + "probability": 0.9736 + }, + { + "start": 11756.76, + "end": 11759.26, + "probability": 0.5191 + }, + { + "start": 11760.4, + "end": 11761.1, + "probability": 0.3441 + }, + { + "start": 11761.82, + "end": 11764.8, + "probability": 0.8706 + }, + { + "start": 11765.54, + "end": 11770.12, + "probability": 0.8304 + }, + { + "start": 11770.26, + "end": 11774.28, + "probability": 0.9624 + }, + { + "start": 11774.44, + "end": 11777.0, + "probability": 0.9675 + }, + { + "start": 11777.1, + "end": 11777.7, + "probability": 0.8286 + }, + { + "start": 11778.48, + "end": 11782.38, + "probability": 0.9973 + }, + { + "start": 11783.38, + "end": 11786.16, + "probability": 0.6716 + }, + { + "start": 11787.5, + "end": 11793.18, + "probability": 0.9945 + }, + { + "start": 11794.58, + "end": 11797.36, + "probability": 0.9952 + }, + { + "start": 11798.06, + "end": 11801.12, + "probability": 0.9989 + }, + { + "start": 11801.92, + "end": 11803.82, + "probability": 0.9843 + }, + { + "start": 11803.86, + "end": 11805.2, + "probability": 0.8375 + }, + { + "start": 11805.8, + "end": 11806.74, + "probability": 0.9915 + }, + { + "start": 11806.98, + "end": 11808.36, + "probability": 0.9917 + }, + { + "start": 11808.66, + "end": 11811.68, + "probability": 0.9347 + }, + { + "start": 11811.7, + "end": 11817.4, + "probability": 0.9969 + }, + { + "start": 11817.9, + "end": 11819.95, + "probability": 0.9833 + }, + { + "start": 11820.78, + "end": 11824.07, + "probability": 0.9932 + }, + { + "start": 11824.96, + "end": 11825.82, + "probability": 0.9403 + }, + { + "start": 11826.52, + "end": 11828.46, + "probability": 0.9957 + }, + { + "start": 11829.0, + "end": 11832.5, + "probability": 0.9883 + }, + { + "start": 11833.24, + "end": 11834.06, + "probability": 0.5286 + }, + { + "start": 11834.48, + "end": 11837.4, + "probability": 0.6536 + }, + { + "start": 11837.5, + "end": 11840.26, + "probability": 0.941 + }, + { + "start": 11840.64, + "end": 11842.82, + "probability": 0.9597 + }, + { + "start": 11849.42, + "end": 11850.42, + "probability": 0.6141 + }, + { + "start": 11862.47, + "end": 11864.78, + "probability": 0.6421 + }, + { + "start": 11865.4, + "end": 11865.6, + "probability": 0.5485 + }, + { + "start": 11865.9, + "end": 11870.24, + "probability": 0.6844 + }, + { + "start": 11870.26, + "end": 11871.3, + "probability": 0.6456 + }, + { + "start": 11871.36, + "end": 11871.88, + "probability": 0.9077 + }, + { + "start": 11874.23, + "end": 11879.9, + "probability": 0.6899 + }, + { + "start": 11880.8, + "end": 11884.28, + "probability": 0.9784 + }, + { + "start": 11884.6, + "end": 11886.8, + "probability": 0.7605 + }, + { + "start": 11887.12, + "end": 11888.8, + "probability": 0.9788 + }, + { + "start": 11889.2, + "end": 11889.88, + "probability": 0.9932 + }, + { + "start": 11890.6, + "end": 11893.84, + "probability": 0.6062 + }, + { + "start": 11895.12, + "end": 11896.86, + "probability": 0.0746 + }, + { + "start": 11897.38, + "end": 11898.62, + "probability": 0.0512 + }, + { + "start": 11900.3, + "end": 11901.9, + "probability": 0.6771 + }, + { + "start": 11903.82, + "end": 11905.9, + "probability": 0.9966 + }, + { + "start": 11906.66, + "end": 11911.1, + "probability": 0.9773 + }, + { + "start": 11912.16, + "end": 11913.2, + "probability": 0.7145 + }, + { + "start": 11914.42, + "end": 11920.4, + "probability": 0.8508 + }, + { + "start": 11920.5, + "end": 11921.14, + "probability": 0.7501 + }, + { + "start": 11921.34, + "end": 11922.56, + "probability": 0.8611 + }, + { + "start": 11923.76, + "end": 11926.64, + "probability": 0.7077 + }, + { + "start": 11926.76, + "end": 11927.54, + "probability": 0.7056 + }, + { + "start": 11928.5, + "end": 11930.54, + "probability": 0.9881 + }, + { + "start": 11932.42, + "end": 11933.6, + "probability": 0.2767 + }, + { + "start": 11933.74, + "end": 11934.6, + "probability": 0.611 + }, + { + "start": 11934.74, + "end": 11936.56, + "probability": 0.9606 + }, + { + "start": 11937.2, + "end": 11938.22, + "probability": 0.9409 + }, + { + "start": 11939.35, + "end": 11945.46, + "probability": 0.9007 + }, + { + "start": 11946.48, + "end": 11950.76, + "probability": 0.794 + }, + { + "start": 11952.48, + "end": 11955.34, + "probability": 0.7549 + }, + { + "start": 11955.48, + "end": 11961.14, + "probability": 0.8799 + }, + { + "start": 11962.76, + "end": 11966.68, + "probability": 0.767 + }, + { + "start": 11966.72, + "end": 11967.18, + "probability": 0.2027 + }, + { + "start": 11967.36, + "end": 11967.94, + "probability": 0.5623 + }, + { + "start": 11968.22, + "end": 11968.9, + "probability": 0.7521 + }, + { + "start": 11969.98, + "end": 11971.26, + "probability": 0.9754 + }, + { + "start": 11972.78, + "end": 11977.68, + "probability": 0.9792 + }, + { + "start": 11978.68, + "end": 11979.38, + "probability": 0.8788 + }, + { + "start": 11979.56, + "end": 11982.3, + "probability": 0.5299 + }, + { + "start": 11982.3, + "end": 11983.12, + "probability": 0.8972 + }, + { + "start": 11983.28, + "end": 11984.56, + "probability": 0.7563 + }, + { + "start": 11985.5, + "end": 11987.3, + "probability": 0.9424 + }, + { + "start": 11988.68, + "end": 11989.44, + "probability": 0.5723 + }, + { + "start": 11990.7, + "end": 11993.22, + "probability": 0.9907 + }, + { + "start": 11996.0, + "end": 12002.2, + "probability": 0.9113 + }, + { + "start": 12002.9, + "end": 12005.46, + "probability": 0.8119 + }, + { + "start": 12006.7, + "end": 12008.24, + "probability": 0.8935 + }, + { + "start": 12010.8, + "end": 12013.32, + "probability": 0.9191 + }, + { + "start": 12013.42, + "end": 12016.9, + "probability": 0.9095 + }, + { + "start": 12017.54, + "end": 12018.64, + "probability": 0.8791 + }, + { + "start": 12019.54, + "end": 12020.36, + "probability": 0.7403 + }, + { + "start": 12020.98, + "end": 12024.0, + "probability": 0.9766 + }, + { + "start": 12024.06, + "end": 12024.92, + "probability": 0.6016 + }, + { + "start": 12025.6, + "end": 12026.78, + "probability": 0.77 + }, + { + "start": 12027.36, + "end": 12030.44, + "probability": 0.9368 + }, + { + "start": 12031.4, + "end": 12033.12, + "probability": 0.8323 + }, + { + "start": 12034.46, + "end": 12035.5, + "probability": 0.991 + }, + { + "start": 12036.14, + "end": 12037.38, + "probability": 0.7081 + }, + { + "start": 12037.98, + "end": 12040.86, + "probability": 0.9881 + }, + { + "start": 12041.98, + "end": 12045.02, + "probability": 0.8259 + }, + { + "start": 12047.18, + "end": 12048.96, + "probability": 0.5586 + }, + { + "start": 12049.06, + "end": 12049.54, + "probability": 0.6269 + }, + { + "start": 12049.68, + "end": 12051.1, + "probability": 0.8969 + }, + { + "start": 12051.48, + "end": 12052.01, + "probability": 0.9072 + }, + { + "start": 12052.24, + "end": 12055.58, + "probability": 0.9966 + }, + { + "start": 12056.2, + "end": 12058.2, + "probability": 0.5661 + }, + { + "start": 12058.86, + "end": 12061.42, + "probability": 0.5485 + }, + { + "start": 12062.16, + "end": 12069.46, + "probability": 0.9897 + }, + { + "start": 12070.72, + "end": 12071.2, + "probability": 0.8884 + }, + { + "start": 12072.62, + "end": 12075.64, + "probability": 0.8028 + }, + { + "start": 12076.7, + "end": 12077.48, + "probability": 0.3311 + }, + { + "start": 12078.38, + "end": 12079.78, + "probability": 0.7859 + }, + { + "start": 12082.72, + "end": 12087.88, + "probability": 0.9421 + }, + { + "start": 12089.0, + "end": 12090.68, + "probability": 0.8282 + }, + { + "start": 12091.62, + "end": 12094.12, + "probability": 0.9685 + }, + { + "start": 12094.22, + "end": 12095.54, + "probability": 0.8938 + }, + { + "start": 12096.94, + "end": 12098.56, + "probability": 0.7493 + }, + { + "start": 12099.6, + "end": 12102.5, + "probability": 0.9974 + }, + { + "start": 12103.32, + "end": 12105.54, + "probability": 0.9934 + }, + { + "start": 12106.44, + "end": 12107.68, + "probability": 0.9742 + }, + { + "start": 12108.8, + "end": 12111.7, + "probability": 0.8691 + }, + { + "start": 12115.38, + "end": 12116.14, + "probability": 0.7562 + }, + { + "start": 12118.24, + "end": 12119.46, + "probability": 0.8448 + }, + { + "start": 12121.36, + "end": 12122.96, + "probability": 0.5732 + }, + { + "start": 12123.04, + "end": 12125.16, + "probability": 0.4414 + }, + { + "start": 12126.2, + "end": 12130.12, + "probability": 0.9412 + }, + { + "start": 12130.72, + "end": 12131.44, + "probability": 0.4628 + }, + { + "start": 12131.7, + "end": 12138.22, + "probability": 0.9795 + }, + { + "start": 12138.92, + "end": 12140.0, + "probability": 0.6009 + }, + { + "start": 12140.1, + "end": 12141.42, + "probability": 0.9578 + }, + { + "start": 12141.54, + "end": 12143.17, + "probability": 0.7937 + }, + { + "start": 12143.96, + "end": 12146.86, + "probability": 0.8507 + }, + { + "start": 12148.5, + "end": 12149.56, + "probability": 0.9349 + }, + { + "start": 12149.58, + "end": 12154.58, + "probability": 0.9591 + }, + { + "start": 12155.64, + "end": 12157.38, + "probability": 0.7304 + }, + { + "start": 12158.36, + "end": 12161.18, + "probability": 0.9844 + }, + { + "start": 12161.18, + "end": 12164.68, + "probability": 0.8689 + }, + { + "start": 12164.68, + "end": 12166.56, + "probability": 0.9746 + }, + { + "start": 12167.94, + "end": 12170.84, + "probability": 0.9585 + }, + { + "start": 12170.84, + "end": 12174.34, + "probability": 0.9937 + }, + { + "start": 12174.42, + "end": 12176.72, + "probability": 0.9336 + }, + { + "start": 12176.82, + "end": 12178.02, + "probability": 0.9256 + }, + { + "start": 12179.68, + "end": 12180.88, + "probability": 0.8269 + }, + { + "start": 12181.02, + "end": 12181.76, + "probability": 0.8995 + }, + { + "start": 12181.84, + "end": 12182.54, + "probability": 0.751 + }, + { + "start": 12182.6, + "end": 12183.36, + "probability": 0.8447 + }, + { + "start": 12183.4, + "end": 12184.22, + "probability": 0.9553 + }, + { + "start": 12184.64, + "end": 12185.16, + "probability": 0.9653 + }, + { + "start": 12186.12, + "end": 12188.86, + "probability": 0.8836 + }, + { + "start": 12189.92, + "end": 12191.92, + "probability": 0.6707 + }, + { + "start": 12193.72, + "end": 12195.68, + "probability": 0.9936 + }, + { + "start": 12197.74, + "end": 12199.1, + "probability": 0.6119 + }, + { + "start": 12200.32, + "end": 12202.2, + "probability": 0.9643 + }, + { + "start": 12202.26, + "end": 12204.22, + "probability": 0.7628 + }, + { + "start": 12205.2, + "end": 12211.4, + "probability": 0.7449 + }, + { + "start": 12212.16, + "end": 12217.52, + "probability": 0.9531 + }, + { + "start": 12217.6, + "end": 12218.66, + "probability": 0.9112 + }, + { + "start": 12218.72, + "end": 12219.58, + "probability": 0.9403 + }, + { + "start": 12219.66, + "end": 12222.88, + "probability": 0.8899 + }, + { + "start": 12223.8, + "end": 12224.78, + "probability": 0.8827 + }, + { + "start": 12226.28, + "end": 12227.26, + "probability": 0.9291 + }, + { + "start": 12227.56, + "end": 12230.42, + "probability": 0.9233 + }, + { + "start": 12231.22, + "end": 12231.86, + "probability": 0.8316 + }, + { + "start": 12232.78, + "end": 12233.3, + "probability": 0.5207 + }, + { + "start": 12234.86, + "end": 12238.86, + "probability": 0.9189 + }, + { + "start": 12240.94, + "end": 12242.5, + "probability": 0.9839 + }, + { + "start": 12243.08, + "end": 12244.54, + "probability": 0.9894 + }, + { + "start": 12245.48, + "end": 12248.82, + "probability": 0.9219 + }, + { + "start": 12249.06, + "end": 12256.68, + "probability": 0.9187 + }, + { + "start": 12257.06, + "end": 12261.26, + "probability": 0.9277 + }, + { + "start": 12261.4, + "end": 12263.24, + "probability": 0.8999 + }, + { + "start": 12264.8, + "end": 12269.86, + "probability": 0.9855 + }, + { + "start": 12270.96, + "end": 12273.64, + "probability": 0.9764 + }, + { + "start": 12274.44, + "end": 12277.9, + "probability": 0.9287 + }, + { + "start": 12278.44, + "end": 12279.0, + "probability": 0.9433 + }, + { + "start": 12279.3, + "end": 12280.34, + "probability": 0.3359 + }, + { + "start": 12280.34, + "end": 12281.8, + "probability": 0.5411 + }, + { + "start": 12281.9, + "end": 12284.32, + "probability": 0.9717 + }, + { + "start": 12285.84, + "end": 12286.82, + "probability": 0.9503 + }, + { + "start": 12293.27, + "end": 12295.52, + "probability": 0.8245 + }, + { + "start": 12296.24, + "end": 12300.98, + "probability": 0.6832 + }, + { + "start": 12302.24, + "end": 12304.62, + "probability": 0.9692 + }, + { + "start": 12305.95, + "end": 12309.54, + "probability": 0.9639 + }, + { + "start": 12311.04, + "end": 12313.58, + "probability": 0.9614 + }, + { + "start": 12314.24, + "end": 12316.9, + "probability": 0.9288 + }, + { + "start": 12318.16, + "end": 12319.52, + "probability": 0.4928 + }, + { + "start": 12319.64, + "end": 12321.12, + "probability": 0.8103 + }, + { + "start": 12321.18, + "end": 12325.12, + "probability": 0.9521 + }, + { + "start": 12326.36, + "end": 12328.74, + "probability": 0.9939 + }, + { + "start": 12330.9, + "end": 12332.38, + "probability": 0.0675 + }, + { + "start": 12335.09, + "end": 12336.31, + "probability": 0.1587 + }, + { + "start": 12338.0, + "end": 12338.0, + "probability": 0.0206 + }, + { + "start": 12338.0, + "end": 12338.56, + "probability": 0.66 + }, + { + "start": 12338.76, + "end": 12342.36, + "probability": 0.7909 + }, + { + "start": 12344.02, + "end": 12345.78, + "probability": 0.9838 + }, + { + "start": 12348.84, + "end": 12351.26, + "probability": 0.5267 + }, + { + "start": 12352.62, + "end": 12355.62, + "probability": 0.9047 + }, + { + "start": 12355.72, + "end": 12358.71, + "probability": 0.9727 + }, + { + "start": 12359.34, + "end": 12360.9, + "probability": 0.918 + }, + { + "start": 12362.78, + "end": 12368.32, + "probability": 0.9481 + }, + { + "start": 12370.4, + "end": 12373.4, + "probability": 0.8989 + }, + { + "start": 12375.0, + "end": 12377.46, + "probability": 0.8781 + }, + { + "start": 12378.0, + "end": 12379.14, + "probability": 0.3931 + }, + { + "start": 12380.04, + "end": 12384.78, + "probability": 0.9434 + }, + { + "start": 12385.48, + "end": 12388.74, + "probability": 0.9136 + }, + { + "start": 12389.76, + "end": 12397.1, + "probability": 0.4512 + }, + { + "start": 12397.96, + "end": 12400.66, + "probability": 0.8371 + }, + { + "start": 12402.22, + "end": 12402.56, + "probability": 0.6707 + }, + { + "start": 12402.68, + "end": 12408.1, + "probability": 0.9409 + }, + { + "start": 12409.76, + "end": 12412.83, + "probability": 0.967 + }, + { + "start": 12413.52, + "end": 12416.04, + "probability": 0.9566 + }, + { + "start": 12417.2, + "end": 12417.66, + "probability": 0.4702 + }, + { + "start": 12417.8, + "end": 12419.56, + "probability": 0.702 + }, + { + "start": 12419.78, + "end": 12422.14, + "probability": 0.8374 + }, + { + "start": 12422.42, + "end": 12424.56, + "probability": 0.7396 + }, + { + "start": 12425.18, + "end": 12425.62, + "probability": 0.9186 + }, + { + "start": 12427.78, + "end": 12432.2, + "probability": 0.9463 + }, + { + "start": 12432.32, + "end": 12437.03, + "probability": 0.9188 + }, + { + "start": 12437.65, + "end": 12440.1, + "probability": 0.7106 + }, + { + "start": 12440.2, + "end": 12441.54, + "probability": 0.8855 + }, + { + "start": 12442.22, + "end": 12443.72, + "probability": 0.9921 + }, + { + "start": 12444.38, + "end": 12449.16, + "probability": 0.9666 + }, + { + "start": 12449.22, + "end": 12454.06, + "probability": 0.9957 + }, + { + "start": 12454.06, + "end": 12457.68, + "probability": 0.9986 + }, + { + "start": 12458.24, + "end": 12460.3, + "probability": 0.6842 + }, + { + "start": 12460.48, + "end": 12462.86, + "probability": 0.9083 + }, + { + "start": 12464.58, + "end": 12467.94, + "probability": 0.8154 + }, + { + "start": 12468.02, + "end": 12468.64, + "probability": 0.6516 + }, + { + "start": 12469.4, + "end": 12470.34, + "probability": 0.9159 + }, + { + "start": 12471.98, + "end": 12475.1, + "probability": 0.7834 + }, + { + "start": 12475.16, + "end": 12477.5, + "probability": 0.9781 + }, + { + "start": 12477.62, + "end": 12480.08, + "probability": 0.9951 + }, + { + "start": 12480.36, + "end": 12481.62, + "probability": 0.9761 + }, + { + "start": 12484.5, + "end": 12485.78, + "probability": 0.8646 + }, + { + "start": 12485.92, + "end": 12489.42, + "probability": 0.9751 + }, + { + "start": 12489.64, + "end": 12490.3, + "probability": 0.7302 + }, + { + "start": 12492.48, + "end": 12498.68, + "probability": 0.7935 + }, + { + "start": 12501.48, + "end": 12507.3, + "probability": 0.8084 + }, + { + "start": 12508.0, + "end": 12508.46, + "probability": 0.645 + }, + { + "start": 12510.1, + "end": 12511.22, + "probability": 0.9299 + }, + { + "start": 12511.22, + "end": 12511.32, + "probability": 0.761 + }, + { + "start": 12511.54, + "end": 12512.44, + "probability": 0.8926 + }, + { + "start": 12512.76, + "end": 12513.54, + "probability": 0.8577 + }, + { + "start": 12513.68, + "end": 12514.32, + "probability": 0.9758 + }, + { + "start": 12515.14, + "end": 12517.14, + "probability": 0.6145 + }, + { + "start": 12519.14, + "end": 12524.06, + "probability": 0.991 + }, + { + "start": 12524.06, + "end": 12526.04, + "probability": 0.9586 + }, + { + "start": 12526.18, + "end": 12528.72, + "probability": 0.7742 + }, + { + "start": 12529.72, + "end": 12537.12, + "probability": 0.9586 + }, + { + "start": 12537.36, + "end": 12541.28, + "probability": 0.9758 + }, + { + "start": 12542.46, + "end": 12544.0, + "probability": 0.7932 + }, + { + "start": 12545.02, + "end": 12547.3, + "probability": 0.9927 + }, + { + "start": 12548.46, + "end": 12550.74, + "probability": 0.8931 + }, + { + "start": 12551.82, + "end": 12559.92, + "probability": 0.9713 + }, + { + "start": 12560.24, + "end": 12565.12, + "probability": 0.939 + }, + { + "start": 12565.2, + "end": 12567.24, + "probability": 0.7539 + }, + { + "start": 12568.62, + "end": 12570.74, + "probability": 0.7412 + }, + { + "start": 12571.76, + "end": 12573.96, + "probability": 0.9297 + }, + { + "start": 12574.9, + "end": 12576.32, + "probability": 0.9545 + }, + { + "start": 12577.4, + "end": 12581.22, + "probability": 0.9952 + }, + { + "start": 12581.44, + "end": 12582.06, + "probability": 0.4801 + }, + { + "start": 12582.28, + "end": 12587.22, + "probability": 0.9375 + }, + { + "start": 12587.38, + "end": 12587.92, + "probability": 0.7719 + }, + { + "start": 12588.92, + "end": 12591.34, + "probability": 0.877 + }, + { + "start": 12591.82, + "end": 12595.66, + "probability": 0.9796 + }, + { + "start": 12595.66, + "end": 12601.31, + "probability": 0.9299 + }, + { + "start": 12602.88, + "end": 12605.18, + "probability": 0.9922 + }, + { + "start": 12605.28, + "end": 12606.74, + "probability": 0.9437 + }, + { + "start": 12607.62, + "end": 12611.6, + "probability": 0.8693 + }, + { + "start": 12612.14, + "end": 12615.32, + "probability": 0.9882 + }, + { + "start": 12615.94, + "end": 12617.2, + "probability": 0.8877 + }, + { + "start": 12617.52, + "end": 12618.66, + "probability": 0.7544 + }, + { + "start": 12618.84, + "end": 12620.38, + "probability": 0.9821 + }, + { + "start": 12620.54, + "end": 12621.34, + "probability": 0.6879 + }, + { + "start": 12621.78, + "end": 12623.22, + "probability": 0.9567 + }, + { + "start": 12624.24, + "end": 12626.02, + "probability": 0.6907 + }, + { + "start": 12626.94, + "end": 12628.66, + "probability": 0.8492 + }, + { + "start": 12629.36, + "end": 12629.74, + "probability": 0.7693 + }, + { + "start": 12630.08, + "end": 12632.4, + "probability": 0.6157 + }, + { + "start": 12632.52, + "end": 12636.64, + "probability": 0.8783 + }, + { + "start": 12639.74, + "end": 12641.58, + "probability": 0.7992 + }, + { + "start": 12649.22, + "end": 12650.54, + "probability": 0.6581 + }, + { + "start": 12651.88, + "end": 12654.28, + "probability": 0.9881 + }, + { + "start": 12656.6, + "end": 12659.52, + "probability": 0.986 + }, + { + "start": 12659.72, + "end": 12662.82, + "probability": 0.9825 + }, + { + "start": 12664.72, + "end": 12672.26, + "probability": 0.9641 + }, + { + "start": 12672.54, + "end": 12674.76, + "probability": 0.9836 + }, + { + "start": 12674.94, + "end": 12675.84, + "probability": 0.8053 + }, + { + "start": 12675.92, + "end": 12677.49, + "probability": 0.9046 + }, + { + "start": 12679.88, + "end": 12683.88, + "probability": 0.9043 + }, + { + "start": 12686.04, + "end": 12688.94, + "probability": 0.9092 + }, + { + "start": 12690.68, + "end": 12692.14, + "probability": 0.8859 + }, + { + "start": 12693.26, + "end": 12694.96, + "probability": 0.9673 + }, + { + "start": 12696.14, + "end": 12697.16, + "probability": 0.9375 + }, + { + "start": 12697.22, + "end": 12699.4, + "probability": 0.9265 + }, + { + "start": 12699.8, + "end": 12702.06, + "probability": 0.8097 + }, + { + "start": 12703.28, + "end": 12704.42, + "probability": 0.9725 + }, + { + "start": 12706.66, + "end": 12709.64, + "probability": 0.9659 + }, + { + "start": 12711.08, + "end": 12714.28, + "probability": 0.8091 + }, + { + "start": 12714.86, + "end": 12715.98, + "probability": 0.8772 + }, + { + "start": 12717.16, + "end": 12718.58, + "probability": 0.8815 + }, + { + "start": 12719.14, + "end": 12720.02, + "probability": 0.9718 + }, + { + "start": 12722.9, + "end": 12724.76, + "probability": 0.9807 + }, + { + "start": 12726.04, + "end": 12726.98, + "probability": 0.8524 + }, + { + "start": 12729.04, + "end": 12736.58, + "probability": 0.9968 + }, + { + "start": 12738.8, + "end": 12740.22, + "probability": 0.912 + }, + { + "start": 12740.74, + "end": 12741.6, + "probability": 0.9629 + }, + { + "start": 12742.22, + "end": 12744.48, + "probability": 0.9395 + }, + { + "start": 12745.32, + "end": 12747.52, + "probability": 0.8478 + }, + { + "start": 12750.06, + "end": 12756.4, + "probability": 0.9708 + }, + { + "start": 12758.54, + "end": 12760.34, + "probability": 0.9053 + }, + { + "start": 12761.32, + "end": 12762.82, + "probability": 0.9902 + }, + { + "start": 12764.04, + "end": 12767.76, + "probability": 0.9373 + }, + { + "start": 12768.84, + "end": 12770.62, + "probability": 0.8888 + }, + { + "start": 12771.24, + "end": 12772.62, + "probability": 0.7484 + }, + { + "start": 12773.2, + "end": 12774.34, + "probability": 0.9128 + }, + { + "start": 12776.78, + "end": 12777.14, + "probability": 0.4287 + }, + { + "start": 12778.6, + "end": 12779.5, + "probability": 0.6185 + }, + { + "start": 12780.56, + "end": 12783.27, + "probability": 0.9791 + }, + { + "start": 12784.04, + "end": 12786.9, + "probability": 0.9956 + }, + { + "start": 12787.8, + "end": 12792.44, + "probability": 0.9863 + }, + { + "start": 12792.76, + "end": 12794.59, + "probability": 0.7336 + }, + { + "start": 12795.52, + "end": 12796.08, + "probability": 0.6592 + }, + { + "start": 12796.08, + "end": 12797.4, + "probability": 0.1981 + }, + { + "start": 12797.4, + "end": 12797.4, + "probability": 0.1284 + }, + { + "start": 12797.4, + "end": 12797.92, + "probability": 0.829 + }, + { + "start": 12798.62, + "end": 12800.32, + "probability": 0.6304 + }, + { + "start": 12800.74, + "end": 12806.48, + "probability": 0.9818 + }, + { + "start": 12807.06, + "end": 12807.24, + "probability": 0.2335 + }, + { + "start": 12809.08, + "end": 12811.12, + "probability": 0.638 + }, + { + "start": 12811.12, + "end": 12814.24, + "probability": 0.8489 + }, + { + "start": 12814.62, + "end": 12815.5, + "probability": 0.9573 + }, + { + "start": 12816.02, + "end": 12817.32, + "probability": 0.2376 + }, + { + "start": 12817.56, + "end": 12819.22, + "probability": 0.7394 + }, + { + "start": 12819.6, + "end": 12820.12, + "probability": 0.9042 + }, + { + "start": 12820.34, + "end": 12821.24, + "probability": 0.8404 + }, + { + "start": 12822.92, + "end": 12826.33, + "probability": 0.9561 + }, + { + "start": 12826.52, + "end": 12827.12, + "probability": 0.4699 + }, + { + "start": 12828.1, + "end": 12830.36, + "probability": 0.916 + }, + { + "start": 12831.62, + "end": 12832.1, + "probability": 0.9321 + }, + { + "start": 12832.66, + "end": 12834.2, + "probability": 0.9844 + }, + { + "start": 12834.6, + "end": 12836.15, + "probability": 0.9829 + }, + { + "start": 12837.2, + "end": 12838.72, + "probability": 0.8415 + }, + { + "start": 12838.86, + "end": 12840.56, + "probability": 0.9819 + }, + { + "start": 12841.5, + "end": 12842.58, + "probability": 0.9849 + }, + { + "start": 12843.12, + "end": 12844.44, + "probability": 0.7461 + }, + { + "start": 12844.44, + "end": 12846.32, + "probability": 0.9016 + }, + { + "start": 12847.36, + "end": 12849.66, + "probability": 0.8598 + }, + { + "start": 12850.96, + "end": 12851.78, + "probability": 0.9836 + }, + { + "start": 12851.96, + "end": 12854.82, + "probability": 0.9093 + }, + { + "start": 12857.22, + "end": 12862.16, + "probability": 0.7398 + }, + { + "start": 12863.28, + "end": 12865.06, + "probability": 0.8391 + }, + { + "start": 12866.06, + "end": 12867.42, + "probability": 0.8005 + }, + { + "start": 12869.22, + "end": 12870.36, + "probability": 0.9358 + }, + { + "start": 12871.04, + "end": 12873.28, + "probability": 0.1921 + }, + { + "start": 12875.4, + "end": 12875.44, + "probability": 0.0884 + }, + { + "start": 12878.56, + "end": 12881.0, + "probability": 0.9796 + }, + { + "start": 12881.68, + "end": 12882.92, + "probability": 0.8698 + }, + { + "start": 12883.8, + "end": 12888.72, + "probability": 0.9561 + }, + { + "start": 12893.8, + "end": 12893.82, + "probability": 0.7478 + }, + { + "start": 12893.82, + "end": 12895.5, + "probability": 0.8764 + }, + { + "start": 12896.28, + "end": 12900.14, + "probability": 0.9437 + }, + { + "start": 12900.86, + "end": 12905.38, + "probability": 0.879 + }, + { + "start": 12906.14, + "end": 12908.02, + "probability": 0.7786 + }, + { + "start": 12909.4, + "end": 12911.92, + "probability": 0.99 + }, + { + "start": 12912.96, + "end": 12913.76, + "probability": 0.7758 + }, + { + "start": 12913.9, + "end": 12915.26, + "probability": 0.925 + }, + { + "start": 12915.86, + "end": 12916.64, + "probability": 0.9512 + }, + { + "start": 12917.76, + "end": 12925.06, + "probability": 0.9834 + }, + { + "start": 12925.74, + "end": 12930.36, + "probability": 0.9907 + }, + { + "start": 12930.46, + "end": 12931.24, + "probability": 0.9488 + }, + { + "start": 12932.88, + "end": 12935.38, + "probability": 0.9768 + }, + { + "start": 12936.22, + "end": 12936.98, + "probability": 0.5395 + }, + { + "start": 12937.68, + "end": 12938.92, + "probability": 0.9538 + }, + { + "start": 12940.18, + "end": 12943.32, + "probability": 0.9835 + }, + { + "start": 12944.28, + "end": 12947.02, + "probability": 0.9279 + }, + { + "start": 12947.86, + "end": 12948.86, + "probability": 0.9661 + }, + { + "start": 12949.92, + "end": 12951.84, + "probability": 0.9985 + }, + { + "start": 12953.0, + "end": 12954.28, + "probability": 0.9661 + }, + { + "start": 12955.64, + "end": 12956.52, + "probability": 0.8087 + }, + { + "start": 12956.72, + "end": 12957.62, + "probability": 0.9425 + }, + { + "start": 12961.22, + "end": 12962.06, + "probability": 0.9976 + }, + { + "start": 12963.28, + "end": 12964.76, + "probability": 0.999 + }, + { + "start": 12966.24, + "end": 12967.54, + "probability": 0.9521 + }, + { + "start": 12969.42, + "end": 12971.3, + "probability": 0.9619 + }, + { + "start": 12971.46, + "end": 12975.72, + "probability": 0.9698 + }, + { + "start": 12977.9, + "end": 12980.42, + "probability": 0.9073 + }, + { + "start": 12981.2, + "end": 12984.16, + "probability": 0.9316 + }, + { + "start": 12984.7, + "end": 12986.78, + "probability": 0.9986 + }, + { + "start": 12987.2, + "end": 12988.98, + "probability": 0.9913 + }, + { + "start": 12989.52, + "end": 12992.98, + "probability": 0.9548 + }, + { + "start": 12993.34, + "end": 12993.98, + "probability": 0.477 + }, + { + "start": 12994.04, + "end": 12995.56, + "probability": 0.7843 + }, + { + "start": 12995.84, + "end": 12996.18, + "probability": 0.8506 + }, + { + "start": 12996.5, + "end": 12998.46, + "probability": 0.9094 + }, + { + "start": 12998.52, + "end": 13001.3, + "probability": 0.8648 + }, + { + "start": 13002.04, + "end": 13002.28, + "probability": 0.4007 + }, + { + "start": 13002.42, + "end": 13005.97, + "probability": 0.9468 + }, + { + "start": 13006.94, + "end": 13007.66, + "probability": 0.4081 + }, + { + "start": 13008.36, + "end": 13010.32, + "probability": 0.6935 + }, + { + "start": 13011.8, + "end": 13016.78, + "probability": 0.9792 + }, + { + "start": 13016.9, + "end": 13017.78, + "probability": 0.5014 + }, + { + "start": 13017.84, + "end": 13020.34, + "probability": 0.9791 + }, + { + "start": 13022.96, + "end": 13025.32, + "probability": 0.8649 + }, + { + "start": 13025.32, + "end": 13028.72, + "probability": 0.9993 + }, + { + "start": 13029.44, + "end": 13033.78, + "probability": 0.7127 + }, + { + "start": 13033.84, + "end": 13035.2, + "probability": 0.396 + }, + { + "start": 13035.96, + "end": 13044.84, + "probability": 0.5162 + }, + { + "start": 13046.75, + "end": 13049.48, + "probability": 0.5888 + }, + { + "start": 13049.66, + "end": 13050.12, + "probability": 0.7085 + }, + { + "start": 13050.64, + "end": 13053.04, + "probability": 0.9019 + }, + { + "start": 13055.28, + "end": 13056.44, + "probability": 0.8986 + }, + { + "start": 13057.88, + "end": 13059.3, + "probability": 0.8636 + }, + { + "start": 13060.74, + "end": 13062.72, + "probability": 0.9351 + }, + { + "start": 13072.8, + "end": 13072.8, + "probability": 0.096 + }, + { + "start": 13072.8, + "end": 13072.8, + "probability": 0.0928 + }, + { + "start": 13072.8, + "end": 13073.24, + "probability": 0.505 + }, + { + "start": 13074.6, + "end": 13075.1, + "probability": 0.783 + }, + { + "start": 13075.72, + "end": 13076.96, + "probability": 0.9318 + }, + { + "start": 13077.64, + "end": 13082.6, + "probability": 0.6869 + }, + { + "start": 13082.7, + "end": 13083.38, + "probability": 0.5644 + }, + { + "start": 13083.48, + "end": 13084.6, + "probability": 0.771 + }, + { + "start": 13086.74, + "end": 13089.1, + "probability": 0.7788 + }, + { + "start": 13091.2, + "end": 13091.38, + "probability": 0.1597 + }, + { + "start": 13091.42, + "end": 13097.56, + "probability": 0.6795 + }, + { + "start": 13098.9, + "end": 13106.4, + "probability": 0.994 + }, + { + "start": 13107.1, + "end": 13109.8, + "probability": 0.9729 + }, + { + "start": 13110.72, + "end": 13114.98, + "probability": 0.9682 + }, + { + "start": 13117.42, + "end": 13121.04, + "probability": 0.981 + }, + { + "start": 13121.48, + "end": 13122.3, + "probability": 0.8941 + }, + { + "start": 13122.72, + "end": 13127.8, + "probability": 0.9491 + }, + { + "start": 13128.92, + "end": 13129.68, + "probability": 0.9243 + }, + { + "start": 13132.03, + "end": 13133.9, + "probability": 0.9477 + }, + { + "start": 13135.96, + "end": 13138.38, + "probability": 0.9067 + }, + { + "start": 13139.76, + "end": 13142.0, + "probability": 0.9766 + }, + { + "start": 13143.98, + "end": 13145.0, + "probability": 0.7257 + }, + { + "start": 13147.12, + "end": 13150.14, + "probability": 0.9819 + }, + { + "start": 13151.52, + "end": 13152.67, + "probability": 0.9614 + }, + { + "start": 13153.62, + "end": 13154.6, + "probability": 0.8987 + }, + { + "start": 13155.78, + "end": 13158.24, + "probability": 0.7843 + }, + { + "start": 13159.08, + "end": 13159.96, + "probability": 0.9675 + }, + { + "start": 13160.54, + "end": 13161.44, + "probability": 0.9707 + }, + { + "start": 13161.54, + "end": 13161.62, + "probability": 0.7004 + }, + { + "start": 13161.88, + "end": 13162.75, + "probability": 0.8205 + }, + { + "start": 13162.92, + "end": 13163.16, + "probability": 0.7681 + }, + { + "start": 13163.26, + "end": 13166.54, + "probability": 0.9224 + }, + { + "start": 13167.12, + "end": 13169.58, + "probability": 0.8641 + }, + { + "start": 13170.26, + "end": 13174.18, + "probability": 0.99 + }, + { + "start": 13174.98, + "end": 13175.94, + "probability": 0.8183 + }, + { + "start": 13176.76, + "end": 13177.94, + "probability": 0.6195 + }, + { + "start": 13178.08, + "end": 13179.68, + "probability": 0.6314 + }, + { + "start": 13180.48, + "end": 13185.6, + "probability": 0.9384 + }, + { + "start": 13185.98, + "end": 13190.26, + "probability": 0.922 + }, + { + "start": 13193.34, + "end": 13193.96, + "probability": 0.8986 + }, + { + "start": 13195.05, + "end": 13198.25, + "probability": 0.9414 + }, + { + "start": 13198.82, + "end": 13200.5, + "probability": 0.8088 + }, + { + "start": 13200.64, + "end": 13201.22, + "probability": 0.578 + }, + { + "start": 13201.32, + "end": 13202.16, + "probability": 0.8244 + }, + { + "start": 13202.24, + "end": 13202.98, + "probability": 0.7635 + }, + { + "start": 13203.06, + "end": 13204.6, + "probability": 0.9622 + }, + { + "start": 13205.66, + "end": 13206.12, + "probability": 0.9632 + }, + { + "start": 13208.94, + "end": 13210.8, + "probability": 0.8851 + }, + { + "start": 13212.12, + "end": 13217.1, + "probability": 0.8628 + }, + { + "start": 13217.74, + "end": 13219.54, + "probability": 0.9876 + }, + { + "start": 13222.44, + "end": 13223.26, + "probability": 0.9373 + }, + { + "start": 13224.14, + "end": 13225.62, + "probability": 0.8621 + }, + { + "start": 13226.38, + "end": 13229.26, + "probability": 0.984 + }, + { + "start": 13229.74, + "end": 13231.2, + "probability": 0.8955 + }, + { + "start": 13231.62, + "end": 13232.9, + "probability": 0.4714 + }, + { + "start": 13233.08, + "end": 13233.48, + "probability": 0.2475 + }, + { + "start": 13233.58, + "end": 13234.7, + "probability": 0.8303 + }, + { + "start": 13234.88, + "end": 13235.32, + "probability": 0.5282 + }, + { + "start": 13235.44, + "end": 13236.4, + "probability": 0.8179 + }, + { + "start": 13236.92, + "end": 13240.51, + "probability": 0.9138 + }, + { + "start": 13244.04, + "end": 13247.46, + "probability": 0.9932 + }, + { + "start": 13248.24, + "end": 13250.69, + "probability": 0.8828 + }, + { + "start": 13251.74, + "end": 13252.46, + "probability": 0.6667 + }, + { + "start": 13253.56, + "end": 13254.76, + "probability": 0.7979 + }, + { + "start": 13255.52, + "end": 13258.12, + "probability": 0.9764 + }, + { + "start": 13258.22, + "end": 13258.58, + "probability": 0.8138 + }, + { + "start": 13260.02, + "end": 13265.28, + "probability": 0.8838 + }, + { + "start": 13266.48, + "end": 13275.8, + "probability": 0.9941 + }, + { + "start": 13278.1, + "end": 13283.54, + "probability": 0.9514 + }, + { + "start": 13283.62, + "end": 13285.42, + "probability": 0.646 + }, + { + "start": 13285.48, + "end": 13287.0, + "probability": 0.4921 + }, + { + "start": 13287.42, + "end": 13289.2, + "probability": 0.8553 + }, + { + "start": 13289.3, + "end": 13291.12, + "probability": 0.973 + }, + { + "start": 13292.52, + "end": 13294.24, + "probability": 0.6609 + }, + { + "start": 13294.28, + "end": 13295.01, + "probability": 0.72 + }, + { + "start": 13295.78, + "end": 13297.02, + "probability": 0.5684 + }, + { + "start": 13297.62, + "end": 13299.04, + "probability": 0.9128 + }, + { + "start": 13299.24, + "end": 13301.96, + "probability": 0.8932 + }, + { + "start": 13302.06, + "end": 13303.62, + "probability": 0.8406 + }, + { + "start": 13303.7, + "end": 13306.18, + "probability": 0.9583 + }, + { + "start": 13310.7, + "end": 13311.2, + "probability": 0.9717 + }, + { + "start": 13312.22, + "end": 13315.42, + "probability": 0.5847 + }, + { + "start": 13315.58, + "end": 13316.4, + "probability": 0.685 + }, + { + "start": 13316.46, + "end": 13320.78, + "probability": 0.978 + }, + { + "start": 13323.2, + "end": 13324.32, + "probability": 0.8334 + }, + { + "start": 13326.97, + "end": 13328.76, + "probability": 0.9608 + }, + { + "start": 13329.14, + "end": 13333.34, + "probability": 0.723 + }, + { + "start": 13333.6, + "end": 13334.42, + "probability": 0.9492 + }, + { + "start": 13334.64, + "end": 13335.72, + "probability": 0.9358 + }, + { + "start": 13337.34, + "end": 13339.68, + "probability": 0.6118 + }, + { + "start": 13339.76, + "end": 13341.32, + "probability": 0.5753 + }, + { + "start": 13341.38, + "end": 13341.78, + "probability": 0.8369 + }, + { + "start": 13342.54, + "end": 13343.98, + "probability": 0.7613 + }, + { + "start": 13345.84, + "end": 13349.32, + "probability": 0.8794 + }, + { + "start": 13352.72, + "end": 13353.18, + "probability": 0.8987 + }, + { + "start": 13354.4, + "end": 13356.6, + "probability": 0.6466 + }, + { + "start": 13359.18, + "end": 13360.7, + "probability": 0.7008 + }, + { + "start": 13361.0, + "end": 13362.8, + "probability": 0.6154 + }, + { + "start": 13362.86, + "end": 13367.1, + "probability": 0.641 + }, + { + "start": 13369.6, + "end": 13371.5, + "probability": 0.7942 + }, + { + "start": 13372.12, + "end": 13374.3, + "probability": 0.9888 + }, + { + "start": 13375.32, + "end": 13379.7, + "probability": 0.9944 + }, + { + "start": 13379.9, + "end": 13383.6, + "probability": 0.9962 + }, + { + "start": 13383.72, + "end": 13384.0, + "probability": 0.9253 + }, + { + "start": 13384.58, + "end": 13384.9, + "probability": 0.4459 + }, + { + "start": 13385.1, + "end": 13386.2, + "probability": 0.3934 + }, + { + "start": 13388.06, + "end": 13392.82, + "probability": 0.9701 + }, + { + "start": 13393.66, + "end": 13401.83, + "probability": 0.9927 + }, + { + "start": 13403.04, + "end": 13404.26, + "probability": 0.9598 + }, + { + "start": 13405.56, + "end": 13410.08, + "probability": 0.9982 + }, + { + "start": 13410.82, + "end": 13411.04, + "probability": 0.9188 + }, + { + "start": 13412.28, + "end": 13414.68, + "probability": 0.8835 + }, + { + "start": 13415.16, + "end": 13416.5, + "probability": 0.7729 + }, + { + "start": 13417.04, + "end": 13417.8, + "probability": 0.6872 + }, + { + "start": 13435.18, + "end": 13436.3, + "probability": 0.9732 + }, + { + "start": 13438.66, + "end": 13441.16, + "probability": 0.7634 + }, + { + "start": 13444.0, + "end": 13449.38, + "probability": 0.9533 + }, + { + "start": 13449.38, + "end": 13454.32, + "probability": 0.9857 + }, + { + "start": 13455.8, + "end": 13456.74, + "probability": 0.5674 + }, + { + "start": 13461.62, + "end": 13463.54, + "probability": 0.9878 + }, + { + "start": 13466.56, + "end": 13472.24, + "probability": 0.9873 + }, + { + "start": 13473.46, + "end": 13478.58, + "probability": 0.9765 + }, + { + "start": 13481.64, + "end": 13483.34, + "probability": 0.7514 + }, + { + "start": 13484.86, + "end": 13486.0, + "probability": 0.8966 + }, + { + "start": 13487.7, + "end": 13488.2, + "probability": 0.9895 + }, + { + "start": 13489.5, + "end": 13490.16, + "probability": 0.9647 + }, + { + "start": 13490.9, + "end": 13491.74, + "probability": 0.9117 + }, + { + "start": 13493.18, + "end": 13493.6, + "probability": 0.4494 + }, + { + "start": 13494.9, + "end": 13497.76, + "probability": 0.8487 + }, + { + "start": 13501.74, + "end": 13504.48, + "probability": 0.8303 + }, + { + "start": 13504.48, + "end": 13504.94, + "probability": 0.7441 + }, + { + "start": 13506.24, + "end": 13506.72, + "probability": 0.725 + }, + { + "start": 13509.88, + "end": 13513.24, + "probability": 0.9561 + }, + { + "start": 13517.06, + "end": 13517.62, + "probability": 0.8097 + }, + { + "start": 13517.84, + "end": 13518.68, + "probability": 0.9325 + }, + { + "start": 13518.92, + "end": 13520.62, + "probability": 0.9851 + }, + { + "start": 13520.78, + "end": 13522.25, + "probability": 0.9666 + }, + { + "start": 13522.4, + "end": 13523.48, + "probability": 0.9842 + }, + { + "start": 13523.52, + "end": 13523.84, + "probability": 0.935 + }, + { + "start": 13524.86, + "end": 13525.94, + "probability": 0.9152 + }, + { + "start": 13526.42, + "end": 13528.06, + "probability": 0.9227 + }, + { + "start": 13528.46, + "end": 13534.62, + "probability": 0.8437 + }, + { + "start": 13536.36, + "end": 13538.76, + "probability": 0.9907 + }, + { + "start": 13540.4, + "end": 13542.42, + "probability": 0.9724 + }, + { + "start": 13543.4, + "end": 13553.06, + "probability": 0.9772 + }, + { + "start": 13554.56, + "end": 13554.96, + "probability": 0.5796 + }, + { + "start": 13555.06, + "end": 13558.62, + "probability": 0.9939 + }, + { + "start": 13560.38, + "end": 13561.76, + "probability": 0.6846 + }, + { + "start": 13563.02, + "end": 13565.82, + "probability": 0.8218 + }, + { + "start": 13566.64, + "end": 13568.7, + "probability": 0.9436 + }, + { + "start": 13569.64, + "end": 13573.28, + "probability": 0.9018 + }, + { + "start": 13575.48, + "end": 13576.76, + "probability": 0.8301 + }, + { + "start": 13577.7, + "end": 13578.16, + "probability": 0.8441 + }, + { + "start": 13578.58, + "end": 13578.88, + "probability": 0.9441 + }, + { + "start": 13580.24, + "end": 13581.54, + "probability": 0.925 + }, + { + "start": 13582.46, + "end": 13585.82, + "probability": 0.9958 + }, + { + "start": 13586.66, + "end": 13587.52, + "probability": 0.7445 + }, + { + "start": 13588.88, + "end": 13590.88, + "probability": 0.997 + }, + { + "start": 13592.58, + "end": 13594.44, + "probability": 0.7596 + }, + { + "start": 13596.92, + "end": 13598.24, + "probability": 0.981 + }, + { + "start": 13599.34, + "end": 13600.74, + "probability": 0.715 + }, + { + "start": 13602.74, + "end": 13605.66, + "probability": 0.9799 + }, + { + "start": 13607.8, + "end": 13609.14, + "probability": 0.9912 + }, + { + "start": 13611.8, + "end": 13614.42, + "probability": 0.638 + }, + { + "start": 13618.38, + "end": 13621.92, + "probability": 0.9943 + }, + { + "start": 13622.2, + "end": 13623.38, + "probability": 0.9946 + }, + { + "start": 13623.7, + "end": 13624.66, + "probability": 0.8773 + }, + { + "start": 13625.38, + "end": 13628.58, + "probability": 0.9528 + }, + { + "start": 13630.5, + "end": 13637.82, + "probability": 0.999 + }, + { + "start": 13638.46, + "end": 13639.9, + "probability": 0.907 + }, + { + "start": 13642.16, + "end": 13644.32, + "probability": 0.9737 + }, + { + "start": 13645.9, + "end": 13646.58, + "probability": 0.8374 + }, + { + "start": 13648.06, + "end": 13648.94, + "probability": 0.9609 + }, + { + "start": 13650.18, + "end": 13650.8, + "probability": 0.9849 + }, + { + "start": 13651.94, + "end": 13653.0, + "probability": 0.8562 + }, + { + "start": 13655.6, + "end": 13656.06, + "probability": 0.9686 + }, + { + "start": 13657.64, + "end": 13658.58, + "probability": 0.813 + }, + { + "start": 13659.38, + "end": 13661.06, + "probability": 0.9908 + }, + { + "start": 13662.1, + "end": 13662.58, + "probability": 0.8739 + }, + { + "start": 13663.22, + "end": 13663.9, + "probability": 0.6754 + }, + { + "start": 13664.82, + "end": 13666.28, + "probability": 0.8698 + }, + { + "start": 13667.08, + "end": 13668.46, + "probability": 0.974 + }, + { + "start": 13669.4, + "end": 13671.0, + "probability": 0.9971 + }, + { + "start": 13673.44, + "end": 13677.0, + "probability": 0.9719 + }, + { + "start": 13677.48, + "end": 13680.78, + "probability": 0.9553 + }, + { + "start": 13681.36, + "end": 13683.26, + "probability": 0.913 + }, + { + "start": 13683.66, + "end": 13685.66, + "probability": 0.9307 + }, + { + "start": 13687.12, + "end": 13688.44, + "probability": 0.9845 + }, + { + "start": 13690.4, + "end": 13694.28, + "probability": 0.822 + }, + { + "start": 13694.38, + "end": 13696.22, + "probability": 0.8816 + }, + { + "start": 13696.58, + "end": 13698.1, + "probability": 0.8157 + }, + { + "start": 13699.63, + "end": 13699.7, + "probability": 0.3854 + }, + { + "start": 13700.36, + "end": 13703.62, + "probability": 0.8604 + }, + { + "start": 13705.22, + "end": 13707.76, + "probability": 0.9651 + }, + { + "start": 13712.92, + "end": 13715.4, + "probability": 0.8737 + }, + { + "start": 13717.18, + "end": 13718.36, + "probability": 0.8423 + }, + { + "start": 13718.5, + "end": 13719.15, + "probability": 0.8874 + }, + { + "start": 13719.98, + "end": 13721.74, + "probability": 0.8452 + }, + { + "start": 13722.34, + "end": 13725.38, + "probability": 0.9508 + }, + { + "start": 13726.16, + "end": 13726.78, + "probability": 0.9526 + }, + { + "start": 13726.8, + "end": 13727.56, + "probability": 0.6777 + }, + { + "start": 13728.94, + "end": 13729.78, + "probability": 0.1922 + }, + { + "start": 13729.78, + "end": 13730.06, + "probability": 0.0334 + }, + { + "start": 13733.08, + "end": 13733.98, + "probability": 0.709 + }, + { + "start": 13735.0, + "end": 13736.74, + "probability": 0.943 + }, + { + "start": 13737.56, + "end": 13739.16, + "probability": 0.9807 + }, + { + "start": 13739.94, + "end": 13743.1, + "probability": 0.9952 + }, + { + "start": 13744.67, + "end": 13749.9, + "probability": 0.9875 + }, + { + "start": 13750.3, + "end": 13752.4, + "probability": 0.9814 + }, + { + "start": 13753.18, + "end": 13753.92, + "probability": 0.8181 + }, + { + "start": 13754.66, + "end": 13755.06, + "probability": 0.8857 + }, + { + "start": 13756.04, + "end": 13757.52, + "probability": 0.8994 + }, + { + "start": 13758.66, + "end": 13761.82, + "probability": 0.7789 + }, + { + "start": 13761.92, + "end": 13763.02, + "probability": 0.5353 + }, + { + "start": 13763.96, + "end": 13764.54, + "probability": 0.888 + }, + { + "start": 13764.68, + "end": 13767.24, + "probability": 0.9553 + }, + { + "start": 13768.12, + "end": 13772.18, + "probability": 0.7864 + }, + { + "start": 13773.32, + "end": 13776.66, + "probability": 0.9954 + }, + { + "start": 13776.84, + "end": 13779.06, + "probability": 0.9748 + }, + { + "start": 13779.84, + "end": 13782.36, + "probability": 0.6047 + }, + { + "start": 13782.94, + "end": 13783.4, + "probability": 0.6538 + }, + { + "start": 13783.54, + "end": 13784.46, + "probability": 0.8206 + }, + { + "start": 13784.8, + "end": 13785.15, + "probability": 0.6533 + }, + { + "start": 13785.46, + "end": 13786.3, + "probability": 0.8861 + }, + { + "start": 13786.86, + "end": 13788.22, + "probability": 0.491 + }, + { + "start": 13788.64, + "end": 13791.78, + "probability": 0.9601 + }, + { + "start": 13791.96, + "end": 13792.14, + "probability": 0.8514 + }, + { + "start": 13792.62, + "end": 13794.78, + "probability": 0.8286 + }, + { + "start": 13795.26, + "end": 13795.44, + "probability": 0.2916 + }, + { + "start": 13795.5, + "end": 13798.22, + "probability": 0.6386 + }, + { + "start": 13798.22, + "end": 13803.42, + "probability": 0.9909 + }, + { + "start": 13804.24, + "end": 13807.24, + "probability": 0.6233 + }, + { + "start": 13807.52, + "end": 13810.88, + "probability": 0.8243 + }, + { + "start": 13812.9, + "end": 13814.04, + "probability": 0.7458 + }, + { + "start": 13814.72, + "end": 13816.24, + "probability": 0.9969 + }, + { + "start": 13816.96, + "end": 13817.58, + "probability": 0.9976 + }, + { + "start": 13818.7, + "end": 13819.22, + "probability": 0.6721 + }, + { + "start": 13819.82, + "end": 13821.86, + "probability": 0.9194 + }, + { + "start": 13823.36, + "end": 13825.7, + "probability": 0.775 + }, + { + "start": 13826.36, + "end": 13829.96, + "probability": 0.8988 + }, + { + "start": 13834.88, + "end": 13838.38, + "probability": 0.8022 + }, + { + "start": 13856.58, + "end": 13856.86, + "probability": 0.6701 + }, + { + "start": 13859.74, + "end": 13865.06, + "probability": 0.9539 + }, + { + "start": 13866.26, + "end": 13869.12, + "probability": 0.4922 + }, + { + "start": 13870.2, + "end": 13874.42, + "probability": 0.991 + }, + { + "start": 13876.54, + "end": 13879.94, + "probability": 0.9745 + }, + { + "start": 13881.58, + "end": 13884.96, + "probability": 0.96 + }, + { + "start": 13886.32, + "end": 13888.26, + "probability": 0.7278 + }, + { + "start": 13890.04, + "end": 13893.1, + "probability": 0.9877 + }, + { + "start": 13894.96, + "end": 13899.0, + "probability": 0.9963 + }, + { + "start": 13900.04, + "end": 13901.14, + "probability": 0.7728 + }, + { + "start": 13902.62, + "end": 13907.4, + "probability": 0.9971 + }, + { + "start": 13908.47, + "end": 13914.08, + "probability": 0.9407 + }, + { + "start": 13915.24, + "end": 13919.7, + "probability": 0.9916 + }, + { + "start": 13920.07, + "end": 13923.98, + "probability": 0.9946 + }, + { + "start": 13924.98, + "end": 13927.2, + "probability": 0.8173 + }, + { + "start": 13927.82, + "end": 13932.18, + "probability": 0.9362 + }, + { + "start": 13934.22, + "end": 13934.54, + "probability": 0.7535 + }, + { + "start": 13934.76, + "end": 13937.78, + "probability": 0.8924 + }, + { + "start": 13937.84, + "end": 13939.52, + "probability": 0.9397 + }, + { + "start": 13940.1, + "end": 13941.06, + "probability": 0.9448 + }, + { + "start": 13942.28, + "end": 13948.14, + "probability": 0.9979 + }, + { + "start": 13948.14, + "end": 13954.6, + "probability": 0.9626 + }, + { + "start": 13955.3, + "end": 13958.12, + "probability": 0.9891 + }, + { + "start": 13958.45, + "end": 13962.08, + "probability": 0.9927 + }, + { + "start": 13963.28, + "end": 13965.98, + "probability": 0.3386 + }, + { + "start": 13966.68, + "end": 13973.8, + "probability": 0.9941 + }, + { + "start": 13973.88, + "end": 13976.72, + "probability": 0.9978 + }, + { + "start": 13976.86, + "end": 13980.54, + "probability": 0.9988 + }, + { + "start": 13980.54, + "end": 13984.48, + "probability": 0.9879 + }, + { + "start": 13984.98, + "end": 13989.08, + "probability": 0.9839 + }, + { + "start": 13989.12, + "end": 13989.74, + "probability": 0.8986 + }, + { + "start": 13990.04, + "end": 13993.02, + "probability": 0.8358 + }, + { + "start": 13993.56, + "end": 13996.16, + "probability": 0.9878 + }, + { + "start": 13996.68, + "end": 13998.22, + "probability": 0.8826 + }, + { + "start": 13998.36, + "end": 14000.22, + "probability": 0.9923 + }, + { + "start": 14000.82, + "end": 14002.28, + "probability": 0.7692 + }, + { + "start": 14002.45, + "end": 14004.96, + "probability": 0.9795 + }, + { + "start": 14005.36, + "end": 14007.18, + "probability": 0.8707 + }, + { + "start": 14008.34, + "end": 14008.34, + "probability": 0.3085 + }, + { + "start": 14008.5, + "end": 14008.98, + "probability": 0.5429 + }, + { + "start": 14009.1, + "end": 14014.2, + "probability": 0.9609 + }, + { + "start": 14014.7, + "end": 14015.7, + "probability": 0.95 + }, + { + "start": 14015.8, + "end": 14019.14, + "probability": 0.9385 + }, + { + "start": 14019.66, + "end": 14020.72, + "probability": 0.806 + }, + { + "start": 14021.24, + "end": 14023.46, + "probability": 0.9216 + }, + { + "start": 14023.7, + "end": 14028.78, + "probability": 0.9795 + }, + { + "start": 14029.34, + "end": 14034.02, + "probability": 0.8678 + }, + { + "start": 14034.15, + "end": 14037.07, + "probability": 0.8973 + }, + { + "start": 14037.78, + "end": 14041.68, + "probability": 0.8354 + }, + { + "start": 14041.82, + "end": 14045.82, + "probability": 0.5236 + }, + { + "start": 14047.62, + "end": 14048.54, + "probability": 0.6402 + }, + { + "start": 14048.54, + "end": 14054.1, + "probability": 0.9036 + }, + { + "start": 14054.72, + "end": 14055.96, + "probability": 0.9016 + }, + { + "start": 14056.38, + "end": 14057.26, + "probability": 0.6489 + }, + { + "start": 14057.34, + "end": 14059.98, + "probability": 0.6445 + }, + { + "start": 14060.66, + "end": 14062.54, + "probability": 0.8529 + }, + { + "start": 14062.58, + "end": 14063.14, + "probability": 0.6052 + }, + { + "start": 14063.3, + "end": 14065.46, + "probability": 0.8442 + }, + { + "start": 14065.58, + "end": 14066.74, + "probability": 0.7976 + }, + { + "start": 14067.32, + "end": 14067.54, + "probability": 0.3469 + }, + { + "start": 14068.6, + "end": 14068.6, + "probability": 0.383 + }, + { + "start": 14068.6, + "end": 14069.52, + "probability": 0.7805 + }, + { + "start": 14069.68, + "end": 14076.8, + "probability": 0.9659 + }, + { + "start": 14076.8, + "end": 14081.14, + "probability": 0.9857 + }, + { + "start": 14081.78, + "end": 14082.56, + "probability": 0.4732 + }, + { + "start": 14082.66, + "end": 14084.7, + "probability": 0.9751 + }, + { + "start": 14084.76, + "end": 14089.56, + "probability": 0.991 + }, + { + "start": 14090.2, + "end": 14090.22, + "probability": 0.0746 + }, + { + "start": 14090.34, + "end": 14090.76, + "probability": 0.9225 + }, + { + "start": 14090.86, + "end": 14097.52, + "probability": 0.9824 + }, + { + "start": 14097.94, + "end": 14100.4, + "probability": 0.9819 + }, + { + "start": 14100.46, + "end": 14101.78, + "probability": 0.7208 + }, + { + "start": 14102.28, + "end": 14104.4, + "probability": 0.0994 + }, + { + "start": 14104.4, + "end": 14106.62, + "probability": 0.6129 + }, + { + "start": 14107.28, + "end": 14109.42, + "probability": 0.9834 + }, + { + "start": 14109.54, + "end": 14109.8, + "probability": 0.3126 + }, + { + "start": 14110.04, + "end": 14110.56, + "probability": 0.9099 + }, + { + "start": 14110.84, + "end": 14113.12, + "probability": 0.8303 + }, + { + "start": 14113.32, + "end": 14113.74, + "probability": 0.3958 + }, + { + "start": 14113.76, + "end": 14120.76, + "probability": 0.9864 + }, + { + "start": 14120.78, + "end": 14124.48, + "probability": 0.9963 + }, + { + "start": 14124.48, + "end": 14127.52, + "probability": 0.6932 + }, + { + "start": 14127.94, + "end": 14130.2, + "probability": 0.7988 + }, + { + "start": 14130.58, + "end": 14135.82, + "probability": 0.9663 + }, + { + "start": 14135.88, + "end": 14141.5, + "probability": 0.9946 + }, + { + "start": 14141.5, + "end": 14148.1, + "probability": 0.9919 + }, + { + "start": 14148.18, + "end": 14150.3, + "probability": 0.8138 + }, + { + "start": 14151.12, + "end": 14151.12, + "probability": 0.4438 + }, + { + "start": 14151.12, + "end": 14155.32, + "probability": 0.9643 + }, + { + "start": 14155.32, + "end": 14160.12, + "probability": 0.9724 + }, + { + "start": 14161.02, + "end": 14164.06, + "probability": 0.9801 + }, + { + "start": 14164.26, + "end": 14164.76, + "probability": 0.8341 + }, + { + "start": 14164.76, + "end": 14165.62, + "probability": 0.9233 + }, + { + "start": 14166.02, + "end": 14170.3, + "probability": 0.9905 + }, + { + "start": 14170.34, + "end": 14171.96, + "probability": 0.7647 + }, + { + "start": 14172.36, + "end": 14174.26, + "probability": 0.8099 + }, + { + "start": 14174.32, + "end": 14174.5, + "probability": 0.8188 + }, + { + "start": 14175.26, + "end": 14177.84, + "probability": 0.9573 + }, + { + "start": 14177.98, + "end": 14179.54, + "probability": 0.9314 + }, + { + "start": 14180.28, + "end": 14181.96, + "probability": 0.7244 + }, + { + "start": 14192.3, + "end": 14193.66, + "probability": 0.9653 + }, + { + "start": 14194.28, + "end": 14195.46, + "probability": 0.901 + }, + { + "start": 14213.54, + "end": 14214.44, + "probability": 0.4828 + }, + { + "start": 14215.46, + "end": 14216.92, + "probability": 0.6742 + }, + { + "start": 14218.36, + "end": 14226.3, + "probability": 0.8017 + }, + { + "start": 14227.16, + "end": 14229.94, + "probability": 0.984 + }, + { + "start": 14231.46, + "end": 14236.94, + "probability": 0.9238 + }, + { + "start": 14237.94, + "end": 14241.74, + "probability": 0.9985 + }, + { + "start": 14241.74, + "end": 14246.12, + "probability": 0.957 + }, + { + "start": 14247.98, + "end": 14249.76, + "probability": 0.9798 + }, + { + "start": 14252.72, + "end": 14256.0, + "probability": 0.9932 + }, + { + "start": 14258.22, + "end": 14262.02, + "probability": 0.9927 + }, + { + "start": 14262.28, + "end": 14265.1, + "probability": 0.8993 + }, + { + "start": 14266.82, + "end": 14268.36, + "probability": 0.9831 + }, + { + "start": 14269.3, + "end": 14273.18, + "probability": 0.9961 + }, + { + "start": 14273.36, + "end": 14275.36, + "probability": 0.7559 + }, + { + "start": 14276.48, + "end": 14278.24, + "probability": 0.9505 + }, + { + "start": 14278.32, + "end": 14283.04, + "probability": 0.9484 + }, + { + "start": 14283.88, + "end": 14284.58, + "probability": 0.9034 + }, + { + "start": 14285.82, + "end": 14287.72, + "probability": 0.9915 + }, + { + "start": 14289.82, + "end": 14292.56, + "probability": 0.9713 + }, + { + "start": 14292.88, + "end": 14295.06, + "probability": 0.7735 + }, + { + "start": 14295.34, + "end": 14298.02, + "probability": 0.8435 + }, + { + "start": 14299.04, + "end": 14299.96, + "probability": 0.9854 + }, + { + "start": 14300.26, + "end": 14301.24, + "probability": 0.913 + }, + { + "start": 14301.36, + "end": 14302.66, + "probability": 0.8923 + }, + { + "start": 14302.96, + "end": 14306.5, + "probability": 0.7872 + }, + { + "start": 14307.82, + "end": 14310.44, + "probability": 0.8111 + }, + { + "start": 14311.04, + "end": 14312.25, + "probability": 0.5672 + }, + { + "start": 14313.02, + "end": 14315.96, + "probability": 0.7208 + }, + { + "start": 14316.04, + "end": 14317.26, + "probability": 0.7704 + }, + { + "start": 14317.32, + "end": 14321.2, + "probability": 0.984 + }, + { + "start": 14321.56, + "end": 14324.32, + "probability": 0.9824 + }, + { + "start": 14325.36, + "end": 14326.82, + "probability": 0.9973 + }, + { + "start": 14327.82, + "end": 14332.24, + "probability": 0.9854 + }, + { + "start": 14332.54, + "end": 14337.78, + "probability": 0.9988 + }, + { + "start": 14339.48, + "end": 14341.7, + "probability": 0.5821 + }, + { + "start": 14342.14, + "end": 14342.66, + "probability": 0.5161 + }, + { + "start": 14342.74, + "end": 14347.16, + "probability": 0.9932 + }, + { + "start": 14348.4, + "end": 14349.97, + "probability": 0.9954 + }, + { + "start": 14350.26, + "end": 14354.44, + "probability": 0.9907 + }, + { + "start": 14354.48, + "end": 14356.02, + "probability": 0.9885 + }, + { + "start": 14358.0, + "end": 14360.96, + "probability": 0.7685 + }, + { + "start": 14360.96, + "end": 14364.46, + "probability": 0.8821 + }, + { + "start": 14365.04, + "end": 14365.34, + "probability": 0.5617 + }, + { + "start": 14365.64, + "end": 14371.36, + "probability": 0.769 + }, + { + "start": 14371.44, + "end": 14372.92, + "probability": 0.8496 + }, + { + "start": 14374.04, + "end": 14374.58, + "probability": 0.5181 + }, + { + "start": 14374.6, + "end": 14379.4, + "probability": 0.9569 + }, + { + "start": 14381.48, + "end": 14383.7, + "probability": 0.9868 + }, + { + "start": 14384.8, + "end": 14387.54, + "probability": 0.4265 + }, + { + "start": 14387.82, + "end": 14388.7, + "probability": 0.0584 + }, + { + "start": 14388.7, + "end": 14390.2, + "probability": 0.6076 + }, + { + "start": 14390.66, + "end": 14395.34, + "probability": 0.8113 + }, + { + "start": 14396.22, + "end": 14399.12, + "probability": 0.8895 + }, + { + "start": 14399.22, + "end": 14403.22, + "probability": 0.9837 + }, + { + "start": 14403.68, + "end": 14404.88, + "probability": 0.9761 + }, + { + "start": 14405.22, + "end": 14406.83, + "probability": 0.6174 + }, + { + "start": 14407.28, + "end": 14411.08, + "probability": 0.637 + }, + { + "start": 14411.66, + "end": 14414.38, + "probability": 0.8318 + }, + { + "start": 14414.4, + "end": 14414.64, + "probability": 0.7275 + }, + { + "start": 14414.76, + "end": 14415.18, + "probability": 0.5577 + }, + { + "start": 14415.62, + "end": 14417.36, + "probability": 0.7058 + }, + { + "start": 14417.48, + "end": 14420.32, + "probability": 0.9415 + }, + { + "start": 14420.44, + "end": 14426.12, + "probability": 0.9842 + }, + { + "start": 14426.44, + "end": 14427.12, + "probability": 0.783 + }, + { + "start": 14427.76, + "end": 14430.98, + "probability": 0.7453 + }, + { + "start": 14431.06, + "end": 14433.64, + "probability": 0.9066 + }, + { + "start": 14433.78, + "end": 14435.36, + "probability": 0.5357 + }, + { + "start": 14435.62, + "end": 14438.32, + "probability": 0.8822 + }, + { + "start": 14438.38, + "end": 14440.12, + "probability": 0.7699 + }, + { + "start": 14440.18, + "end": 14442.93, + "probability": 0.996 + }, + { + "start": 14443.66, + "end": 14446.44, + "probability": 0.9661 + }, + { + "start": 14446.58, + "end": 14447.16, + "probability": 0.7024 + }, + { + "start": 14447.9, + "end": 14451.26, + "probability": 0.9463 + }, + { + "start": 14451.9, + "end": 14454.7, + "probability": 0.9847 + }, + { + "start": 14454.76, + "end": 14456.5, + "probability": 0.9137 + }, + { + "start": 14456.66, + "end": 14458.44, + "probability": 0.988 + }, + { + "start": 14459.2, + "end": 14460.96, + "probability": 0.9215 + }, + { + "start": 14461.68, + "end": 14463.18, + "probability": 0.6724 + }, + { + "start": 14463.44, + "end": 14467.08, + "probability": 0.9777 + }, + { + "start": 14468.44, + "end": 14469.58, + "probability": 0.9549 + }, + { + "start": 14469.82, + "end": 14472.72, + "probability": 0.971 + }, + { + "start": 14473.46, + "end": 14476.22, + "probability": 0.8498 + }, + { + "start": 14477.3, + "end": 14478.76, + "probability": 0.9897 + }, + { + "start": 14479.84, + "end": 14480.78, + "probability": 0.8716 + }, + { + "start": 14480.88, + "end": 14483.36, + "probability": 0.9576 + }, + { + "start": 14483.52, + "end": 14484.02, + "probability": 0.698 + }, + { + "start": 14484.1, + "end": 14484.68, + "probability": 0.9848 + }, + { + "start": 14485.43, + "end": 14487.98, + "probability": 0.6224 + }, + { + "start": 14488.8, + "end": 14491.28, + "probability": 0.6826 + }, + { + "start": 14491.36, + "end": 14492.12, + "probability": 0.9451 + }, + { + "start": 14492.28, + "end": 14492.54, + "probability": 0.3086 + }, + { + "start": 14492.68, + "end": 14493.58, + "probability": 0.9382 + }, + { + "start": 14493.74, + "end": 14495.62, + "probability": 0.7487 + }, + { + "start": 14495.8, + "end": 14496.7, + "probability": 0.8626 + }, + { + "start": 14497.12, + "end": 14498.68, + "probability": 0.9068 + }, + { + "start": 14498.76, + "end": 14499.52, + "probability": 0.9574 + }, + { + "start": 14499.58, + "end": 14500.6, + "probability": 0.9835 + }, + { + "start": 14501.36, + "end": 14502.54, + "probability": 0.7872 + }, + { + "start": 14503.12, + "end": 14503.84, + "probability": 0.7985 + }, + { + "start": 14504.86, + "end": 14505.7, + "probability": 0.9469 + }, + { + "start": 14505.76, + "end": 14506.28, + "probability": 0.555 + }, + { + "start": 14506.28, + "end": 14506.3, + "probability": 0.483 + }, + { + "start": 14506.3, + "end": 14509.08, + "probability": 0.929 + }, + { + "start": 14509.7, + "end": 14509.96, + "probability": 0.7755 + }, + { + "start": 14510.22, + "end": 14510.76, + "probability": 0.7181 + }, + { + "start": 14511.2, + "end": 14511.3, + "probability": 0.0101 + }, + { + "start": 14511.38, + "end": 14511.72, + "probability": 0.4433 + }, + { + "start": 14511.86, + "end": 14513.06, + "probability": 0.5017 + }, + { + "start": 14514.3, + "end": 14515.4, + "probability": 0.0 + }, + { + "start": 14518.94, + "end": 14519.3, + "probability": 0.0409 + }, + { + "start": 14519.3, + "end": 14521.06, + "probability": 0.2711 + }, + { + "start": 14521.18, + "end": 14522.4, + "probability": 0.4076 + }, + { + "start": 14522.4, + "end": 14523.87, + "probability": 0.7573 + }, + { + "start": 14524.46, + "end": 14525.42, + "probability": 0.3894 + }, + { + "start": 14525.74, + "end": 14526.94, + "probability": 0.5172 + }, + { + "start": 14527.4, + "end": 14527.72, + "probability": 0.6458 + }, + { + "start": 14527.72, + "end": 14528.26, + "probability": 0.4688 + }, + { + "start": 14528.48, + "end": 14528.9, + "probability": 0.5412 + }, + { + "start": 14529.24, + "end": 14530.0, + "probability": 0.8646 + }, + { + "start": 14530.18, + "end": 14530.66, + "probability": 0.5701 + }, + { + "start": 14530.68, + "end": 14530.8, + "probability": 0.8728 + }, + { + "start": 14530.98, + "end": 14531.6, + "probability": 0.8162 + }, + { + "start": 14532.1, + "end": 14532.76, + "probability": 0.1693 + }, + { + "start": 14532.78, + "end": 14532.82, + "probability": 0.5297 + }, + { + "start": 14532.86, + "end": 14533.36, + "probability": 0.7801 + }, + { + "start": 14533.8, + "end": 14535.04, + "probability": 0.9185 + }, + { + "start": 14535.72, + "end": 14536.9, + "probability": 0.7346 + }, + { + "start": 14536.98, + "end": 14541.9, + "probability": 0.7786 + }, + { + "start": 14542.98, + "end": 14545.5, + "probability": 0.9502 + }, + { + "start": 14545.58, + "end": 14547.72, + "probability": 0.8712 + }, + { + "start": 14547.86, + "end": 14548.5, + "probability": 0.4529 + }, + { + "start": 14549.38, + "end": 14551.72, + "probability": 0.8831 + }, + { + "start": 14551.82, + "end": 14552.8, + "probability": 0.4486 + }, + { + "start": 14553.04, + "end": 14557.18, + "probability": 0.8854 + }, + { + "start": 14557.26, + "end": 14559.2, + "probability": 0.846 + }, + { + "start": 14559.76, + "end": 14561.66, + "probability": 0.9507 + }, + { + "start": 14561.76, + "end": 14562.72, + "probability": 0.9664 + }, + { + "start": 14562.96, + "end": 14566.76, + "probability": 0.8723 + }, + { + "start": 14566.92, + "end": 14569.78, + "probability": 0.6649 + }, + { + "start": 14570.6, + "end": 14571.16, + "probability": 0.8407 + }, + { + "start": 14571.44, + "end": 14572.14, + "probability": 0.8953 + }, + { + "start": 14572.46, + "end": 14573.28, + "probability": 0.9718 + }, + { + "start": 14573.32, + "end": 14573.75, + "probability": 0.8073 + }, + { + "start": 14574.96, + "end": 14579.18, + "probability": 0.989 + }, + { + "start": 14579.78, + "end": 14581.08, + "probability": 0.8373 + }, + { + "start": 14581.12, + "end": 14581.36, + "probability": 0.954 + }, + { + "start": 14582.06, + "end": 14583.34, + "probability": 0.7408 + }, + { + "start": 14584.04, + "end": 14584.82, + "probability": 0.6307 + }, + { + "start": 14585.0, + "end": 14586.84, + "probability": 0.7037 + }, + { + "start": 14603.08, + "end": 14605.3, + "probability": 0.7558 + }, + { + "start": 14606.74, + "end": 14608.39, + "probability": 0.8245 + }, + { + "start": 14609.48, + "end": 14611.96, + "probability": 0.7504 + }, + { + "start": 14612.0, + "end": 14616.76, + "probability": 0.6251 + }, + { + "start": 14617.52, + "end": 14619.4, + "probability": 0.7462 + }, + { + "start": 14619.62, + "end": 14619.62, + "probability": 0.2468 + }, + { + "start": 14619.62, + "end": 14620.38, + "probability": 0.625 + }, + { + "start": 14620.48, + "end": 14621.62, + "probability": 0.7024 + }, + { + "start": 14622.66, + "end": 14625.86, + "probability": 0.8499 + }, + { + "start": 14626.84, + "end": 14628.32, + "probability": 0.2968 + }, + { + "start": 14628.32, + "end": 14634.16, + "probability": 0.9841 + }, + { + "start": 14634.7, + "end": 14639.44, + "probability": 0.9993 + }, + { + "start": 14640.48, + "end": 14643.66, + "probability": 0.9949 + }, + { + "start": 14645.12, + "end": 14649.6, + "probability": 0.9537 + }, + { + "start": 14650.26, + "end": 14652.34, + "probability": 0.9907 + }, + { + "start": 14652.96, + "end": 14657.52, + "probability": 0.8247 + }, + { + "start": 14658.16, + "end": 14658.92, + "probability": 0.8242 + }, + { + "start": 14659.56, + "end": 14660.06, + "probability": 0.616 + }, + { + "start": 14660.86, + "end": 14663.08, + "probability": 0.7954 + }, + { + "start": 14664.06, + "end": 14668.66, + "probability": 0.9911 + }, + { + "start": 14669.28, + "end": 14670.6, + "probability": 0.8164 + }, + { + "start": 14671.12, + "end": 14671.8, + "probability": 0.7553 + }, + { + "start": 14672.82, + "end": 14673.27, + "probability": 0.1352 + }, + { + "start": 14674.84, + "end": 14680.46, + "probability": 0.9229 + }, + { + "start": 14680.88, + "end": 14681.96, + "probability": 0.9546 + }, + { + "start": 14682.14, + "end": 14683.26, + "probability": 0.8657 + }, + { + "start": 14683.36, + "end": 14683.99, + "probability": 0.8945 + }, + { + "start": 14684.68, + "end": 14686.1, + "probability": 0.9889 + }, + { + "start": 14686.14, + "end": 14689.5, + "probability": 0.9536 + }, + { + "start": 14689.9, + "end": 14692.04, + "probability": 0.9924 + }, + { + "start": 14692.52, + "end": 14694.58, + "probability": 0.9927 + }, + { + "start": 14695.56, + "end": 14698.7, + "probability": 0.9835 + }, + { + "start": 14699.22, + "end": 14702.46, + "probability": 0.9447 + }, + { + "start": 14702.98, + "end": 14704.98, + "probability": 0.9945 + }, + { + "start": 14705.6, + "end": 14708.18, + "probability": 0.6503 + }, + { + "start": 14709.32, + "end": 14710.76, + "probability": 0.0472 + }, + { + "start": 14711.38, + "end": 14712.44, + "probability": 0.3328 + }, + { + "start": 14713.18, + "end": 14713.72, + "probability": 0.1383 + }, + { + "start": 14713.72, + "end": 14714.26, + "probability": 0.5092 + }, + { + "start": 14714.34, + "end": 14717.32, + "probability": 0.6763 + }, + { + "start": 14717.5, + "end": 14718.6, + "probability": 0.877 + }, + { + "start": 14718.72, + "end": 14719.82, + "probability": 0.324 + }, + { + "start": 14719.88, + "end": 14720.88, + "probability": 0.0253 + }, + { + "start": 14721.22, + "end": 14721.92, + "probability": 0.1584 + }, + { + "start": 14722.54, + "end": 14724.16, + "probability": 0.772 + }, + { + "start": 14724.46, + "end": 14725.58, + "probability": 0.447 + }, + { + "start": 14725.72, + "end": 14727.88, + "probability": 0.8745 + }, + { + "start": 14727.96, + "end": 14731.78, + "probability": 0.9893 + }, + { + "start": 14732.58, + "end": 14735.82, + "probability": 0.9967 + }, + { + "start": 14736.4, + "end": 14740.82, + "probability": 0.9968 + }, + { + "start": 14741.88, + "end": 14744.06, + "probability": 0.9956 + }, + { + "start": 14744.82, + "end": 14746.7, + "probability": 0.999 + }, + { + "start": 14746.86, + "end": 14750.7, + "probability": 0.9891 + }, + { + "start": 14751.64, + "end": 14753.84, + "probability": 0.9406 + }, + { + "start": 14753.88, + "end": 14755.96, + "probability": 0.9265 + }, + { + "start": 14756.1, + "end": 14757.5, + "probability": 0.6664 + }, + { + "start": 14757.52, + "end": 14759.02, + "probability": 0.9066 + }, + { + "start": 14759.1, + "end": 14762.48, + "probability": 0.9912 + }, + { + "start": 14763.12, + "end": 14766.46, + "probability": 0.9973 + }, + { + "start": 14766.46, + "end": 14771.7, + "probability": 0.8673 + }, + { + "start": 14772.48, + "end": 14778.36, + "probability": 0.8414 + }, + { + "start": 14779.54, + "end": 14781.26, + "probability": 0.8811 + }, + { + "start": 14782.18, + "end": 14789.28, + "probability": 0.9971 + }, + { + "start": 14789.28, + "end": 14794.96, + "probability": 0.9543 + }, + { + "start": 14795.5, + "end": 14801.2, + "probability": 0.9868 + }, + { + "start": 14801.66, + "end": 14804.24, + "probability": 0.9963 + }, + { + "start": 14804.54, + "end": 14808.1, + "probability": 0.9273 + }, + { + "start": 14808.58, + "end": 14811.0, + "probability": 0.9824 + }, + { + "start": 14811.56, + "end": 14812.64, + "probability": 0.4706 + }, + { + "start": 14812.64, + "end": 14815.9, + "probability": 0.9951 + }, + { + "start": 14816.28, + "end": 14816.62, + "probability": 0.558 + }, + { + "start": 14817.46, + "end": 14821.16, + "probability": 0.9946 + }, + { + "start": 14821.46, + "end": 14823.3, + "probability": 0.7517 + }, + { + "start": 14824.42, + "end": 14824.6, + "probability": 0.6271 + }, + { + "start": 14824.7, + "end": 14825.42, + "probability": 0.6386 + }, + { + "start": 14825.58, + "end": 14828.84, + "probability": 0.9412 + }, + { + "start": 14829.48, + "end": 14835.4, + "probability": 0.9854 + }, + { + "start": 14836.0, + "end": 14838.44, + "probability": 0.9636 + }, + { + "start": 14838.94, + "end": 14842.18, + "probability": 0.9885 + }, + { + "start": 14842.26, + "end": 14848.94, + "probability": 0.9949 + }, + { + "start": 14849.84, + "end": 14856.2, + "probability": 0.8785 + }, + { + "start": 14857.89, + "end": 14859.46, + "probability": 0.7633 + }, + { + "start": 14859.58, + "end": 14860.18, + "probability": 0.3387 + }, + { + "start": 14860.32, + "end": 14864.24, + "probability": 0.9546 + }, + { + "start": 14864.6, + "end": 14869.28, + "probability": 0.998 + }, + { + "start": 14869.28, + "end": 14874.36, + "probability": 0.9865 + }, + { + "start": 14874.86, + "end": 14878.5, + "probability": 0.9621 + }, + { + "start": 14879.02, + "end": 14881.84, + "probability": 0.9526 + }, + { + "start": 14882.78, + "end": 14884.0, + "probability": 0.9808 + }, + { + "start": 14884.62, + "end": 14886.14, + "probability": 0.3204 + }, + { + "start": 14886.14, + "end": 14888.08, + "probability": 0.9704 + }, + { + "start": 14888.54, + "end": 14889.9, + "probability": 0.929 + }, + { + "start": 14890.46, + "end": 14891.6, + "probability": 0.9949 + }, + { + "start": 14892.12, + "end": 14893.06, + "probability": 0.6183 + }, + { + "start": 14893.6, + "end": 14894.86, + "probability": 0.932 + }, + { + "start": 14895.16, + "end": 14897.19, + "probability": 0.9953 + }, + { + "start": 14897.5, + "end": 14900.22, + "probability": 0.9133 + }, + { + "start": 14900.82, + "end": 14904.02, + "probability": 0.995 + }, + { + "start": 14904.8, + "end": 14907.74, + "probability": 0.9883 + }, + { + "start": 14907.9, + "end": 14910.28, + "probability": 0.8917 + }, + { + "start": 14910.38, + "end": 14911.04, + "probability": 0.5894 + }, + { + "start": 14911.48, + "end": 14911.48, + "probability": 0.0287 + }, + { + "start": 14911.48, + "end": 14912.92, + "probability": 0.893 + }, + { + "start": 14913.16, + "end": 14915.0, + "probability": 0.9946 + }, + { + "start": 14915.6, + "end": 14916.64, + "probability": 0.7991 + }, + { + "start": 14916.74, + "end": 14917.5, + "probability": 0.0689 + }, + { + "start": 14917.7, + "end": 14918.0, + "probability": 0.8793 + }, + { + "start": 14918.98, + "end": 14922.32, + "probability": 0.995 + }, + { + "start": 14922.38, + "end": 14925.2, + "probability": 0.9897 + }, + { + "start": 14925.66, + "end": 14928.56, + "probability": 0.9969 + }, + { + "start": 14928.96, + "end": 14933.52, + "probability": 0.9995 + }, + { + "start": 14934.22, + "end": 14937.84, + "probability": 0.9964 + }, + { + "start": 14938.14, + "end": 14940.06, + "probability": 0.9887 + }, + { + "start": 14940.42, + "end": 14944.18, + "probability": 0.9991 + }, + { + "start": 14944.18, + "end": 14947.9, + "probability": 0.9966 + }, + { + "start": 14948.04, + "end": 14949.56, + "probability": 0.9847 + }, + { + "start": 14950.56, + "end": 14952.16, + "probability": 0.5301 + }, + { + "start": 14952.24, + "end": 14954.34, + "probability": 0.927 + }, + { + "start": 14956.68, + "end": 14957.24, + "probability": 0.2928 + }, + { + "start": 14958.7, + "end": 14959.1, + "probability": 0.0767 + }, + { + "start": 14960.52, + "end": 14961.82, + "probability": 0.8412 + }, + { + "start": 14965.86, + "end": 14966.02, + "probability": 0.6292 + }, + { + "start": 14970.32, + "end": 14971.32, + "probability": 0.7269 + }, + { + "start": 14972.08, + "end": 14973.46, + "probability": 0.4158 + }, + { + "start": 14973.76, + "end": 14975.72, + "probability": 0.544 + }, + { + "start": 14975.86, + "end": 14977.0, + "probability": 0.7574 + }, + { + "start": 14977.56, + "end": 14979.74, + "probability": 0.8792 + }, + { + "start": 14979.82, + "end": 14983.8, + "probability": 0.9313 + }, + { + "start": 14984.9, + "end": 14986.6, + "probability": 0.0602 + }, + { + "start": 14986.7, + "end": 14988.24, + "probability": 0.1392 + }, + { + "start": 14988.74, + "end": 14989.94, + "probability": 0.9432 + }, + { + "start": 14991.55, + "end": 14996.34, + "probability": 0.9681 + }, + { + "start": 14998.28, + "end": 15001.24, + "probability": 0.5828 + }, + { + "start": 15001.64, + "end": 15003.76, + "probability": 0.486 + }, + { + "start": 15003.76, + "end": 15006.87, + "probability": 0.7491 + }, + { + "start": 15007.22, + "end": 15008.66, + "probability": 0.9426 + }, + { + "start": 15008.66, + "end": 15008.8, + "probability": 0.6277 + }, + { + "start": 15009.6, + "end": 15012.22, + "probability": 0.6565 + }, + { + "start": 15012.82, + "end": 15013.08, + "probability": 0.3545 + }, + { + "start": 15013.1, + "end": 15013.68, + "probability": 0.6226 + }, + { + "start": 15013.8, + "end": 15015.18, + "probability": 0.8168 + }, + { + "start": 15015.28, + "end": 15016.56, + "probability": 0.8164 + }, + { + "start": 15017.6, + "end": 15021.54, + "probability": 0.8218 + }, + { + "start": 15023.04, + "end": 15023.88, + "probability": 0.5773 + }, + { + "start": 15025.56, + "end": 15030.08, + "probability": 0.9771 + }, + { + "start": 15030.08, + "end": 15033.04, + "probability": 0.9847 + }, + { + "start": 15035.12, + "end": 15037.11, + "probability": 0.9875 + }, + { + "start": 15039.05, + "end": 15040.2, + "probability": 0.6558 + }, + { + "start": 15043.34, + "end": 15045.09, + "probability": 0.0078 + }, + { + "start": 15047.82, + "end": 15050.56, + "probability": 0.9981 + }, + { + "start": 15054.26, + "end": 15058.66, + "probability": 0.5497 + }, + { + "start": 15060.56, + "end": 15062.6, + "probability": 0.9912 + }, + { + "start": 15063.44, + "end": 15064.92, + "probability": 0.8397 + }, + { + "start": 15066.04, + "end": 15067.34, + "probability": 0.9478 + }, + { + "start": 15070.0, + "end": 15073.06, + "probability": 0.9698 + }, + { + "start": 15074.96, + "end": 15079.12, + "probability": 0.9985 + }, + { + "start": 15083.06, + "end": 15084.36, + "probability": 0.9526 + }, + { + "start": 15084.42, + "end": 15088.88, + "probability": 0.7881 + }, + { + "start": 15089.66, + "end": 15091.82, + "probability": 0.9711 + }, + { + "start": 15091.86, + "end": 15095.5, + "probability": 0.9762 + }, + { + "start": 15098.48, + "end": 15102.32, + "probability": 0.9808 + }, + { + "start": 15103.44, + "end": 15110.18, + "probability": 0.9944 + }, + { + "start": 15111.3, + "end": 15112.86, + "probability": 0.9952 + }, + { + "start": 15114.28, + "end": 15117.58, + "probability": 0.9918 + }, + { + "start": 15118.66, + "end": 15122.32, + "probability": 0.9901 + }, + { + "start": 15123.2, + "end": 15125.3, + "probability": 0.9878 + }, + { + "start": 15126.46, + "end": 15128.54, + "probability": 0.999 + }, + { + "start": 15129.8, + "end": 15132.32, + "probability": 0.6438 + }, + { + "start": 15132.34, + "end": 15134.34, + "probability": 0.9532 + }, + { + "start": 15134.54, + "end": 15138.76, + "probability": 0.9125 + }, + { + "start": 15139.28, + "end": 15143.0, + "probability": 0.9668 + }, + { + "start": 15144.02, + "end": 15145.62, + "probability": 0.8811 + }, + { + "start": 15146.4, + "end": 15149.6, + "probability": 0.9333 + }, + { + "start": 15150.18, + "end": 15150.88, + "probability": 0.985 + }, + { + "start": 15151.54, + "end": 15154.38, + "probability": 0.875 + }, + { + "start": 15155.42, + "end": 15159.9, + "probability": 0.9341 + }, + { + "start": 15161.9, + "end": 15162.41, + "probability": 0.3486 + }, + { + "start": 15163.7, + "end": 15165.94, + "probability": 0.9973 + }, + { + "start": 15166.66, + "end": 15168.48, + "probability": 0.9106 + }, + { + "start": 15169.24, + "end": 15171.54, + "probability": 0.9863 + }, + { + "start": 15172.6, + "end": 15175.52, + "probability": 0.9933 + }, + { + "start": 15176.18, + "end": 15179.64, + "probability": 0.8111 + }, + { + "start": 15181.05, + "end": 15183.58, + "probability": 0.9941 + }, + { + "start": 15185.36, + "end": 15186.14, + "probability": 0.9124 + }, + { + "start": 15187.62, + "end": 15190.54, + "probability": 0.9066 + }, + { + "start": 15191.62, + "end": 15194.54, + "probability": 0.9398 + }, + { + "start": 15196.3, + "end": 15197.76, + "probability": 0.9413 + }, + { + "start": 15199.54, + "end": 15204.62, + "probability": 0.7883 + }, + { + "start": 15206.06, + "end": 15210.18, + "probability": 0.837 + }, + { + "start": 15211.02, + "end": 15212.3, + "probability": 0.9139 + }, + { + "start": 15213.48, + "end": 15215.78, + "probability": 0.9892 + }, + { + "start": 15218.28, + "end": 15219.28, + "probability": 0.7687 + }, + { + "start": 15220.3, + "end": 15223.24, + "probability": 0.8574 + }, + { + "start": 15224.68, + "end": 15226.38, + "probability": 0.987 + }, + { + "start": 15227.28, + "end": 15227.9, + "probability": 0.725 + }, + { + "start": 15227.92, + "end": 15229.64, + "probability": 0.9935 + }, + { + "start": 15232.7, + "end": 15236.3, + "probability": 0.9825 + }, + { + "start": 15239.38, + "end": 15239.84, + "probability": 0.5459 + }, + { + "start": 15239.98, + "end": 15245.06, + "probability": 0.9774 + }, + { + "start": 15247.5, + "end": 15252.76, + "probability": 0.9855 + }, + { + "start": 15253.12, + "end": 15254.18, + "probability": 0.7732 + }, + { + "start": 15254.86, + "end": 15258.32, + "probability": 0.9411 + }, + { + "start": 15258.32, + "end": 15262.22, + "probability": 0.9594 + }, + { + "start": 15262.84, + "end": 15265.3, + "probability": 0.8516 + }, + { + "start": 15266.72, + "end": 15271.74, + "probability": 0.9733 + }, + { + "start": 15273.16, + "end": 15276.2, + "probability": 0.9166 + }, + { + "start": 15277.28, + "end": 15279.66, + "probability": 0.9146 + }, + { + "start": 15281.1, + "end": 15283.88, + "probability": 0.8748 + }, + { + "start": 15284.76, + "end": 15287.3, + "probability": 0.9731 + }, + { + "start": 15290.5, + "end": 15292.2, + "probability": 0.6713 + }, + { + "start": 15293.58, + "end": 15295.16, + "probability": 0.9835 + }, + { + "start": 15295.82, + "end": 15296.27, + "probability": 0.7891 + }, + { + "start": 15297.38, + "end": 15298.84, + "probability": 0.8026 + }, + { + "start": 15298.88, + "end": 15300.28, + "probability": 0.9746 + }, + { + "start": 15300.36, + "end": 15301.6, + "probability": 0.9851 + }, + { + "start": 15301.68, + "end": 15302.26, + "probability": 0.785 + }, + { + "start": 15302.62, + "end": 15303.38, + "probability": 0.9735 + }, + { + "start": 15303.9, + "end": 15305.2, + "probability": 0.9477 + }, + { + "start": 15305.74, + "end": 15307.25, + "probability": 0.5207 + }, + { + "start": 15308.26, + "end": 15310.76, + "probability": 0.9539 + }, + { + "start": 15312.42, + "end": 15316.02, + "probability": 0.9604 + }, + { + "start": 15317.38, + "end": 15319.66, + "probability": 0.7764 + }, + { + "start": 15320.52, + "end": 15321.74, + "probability": 0.9907 + }, + { + "start": 15321.92, + "end": 15323.98, + "probability": 0.9585 + }, + { + "start": 15325.24, + "end": 15326.26, + "probability": 0.883 + }, + { + "start": 15327.02, + "end": 15330.08, + "probability": 0.85 + }, + { + "start": 15330.86, + "end": 15333.1, + "probability": 0.8462 + }, + { + "start": 15333.3, + "end": 15335.2, + "probability": 0.998 + }, + { + "start": 15335.32, + "end": 15338.78, + "probability": 0.9807 + }, + { + "start": 15339.0, + "end": 15339.4, + "probability": 0.9648 + }, + { + "start": 15339.8, + "end": 15342.12, + "probability": 0.8555 + }, + { + "start": 15342.8, + "end": 15347.19, + "probability": 0.8935 + }, + { + "start": 15349.1, + "end": 15353.66, + "probability": 0.9154 + }, + { + "start": 15354.28, + "end": 15358.22, + "probability": 0.5855 + }, + { + "start": 15359.24, + "end": 15368.82, + "probability": 0.6707 + }, + { + "start": 15369.04, + "end": 15370.94, + "probability": 0.7429 + }, + { + "start": 15372.78, + "end": 15375.18, + "probability": 0.2683 + }, + { + "start": 15376.58, + "end": 15377.07, + "probability": 0.1912 + }, + { + "start": 15377.76, + "end": 15379.32, + "probability": 0.698 + }, + { + "start": 15379.52, + "end": 15382.22, + "probability": 0.0995 + }, + { + "start": 15383.42, + "end": 15385.7, + "probability": 0.9137 + }, + { + "start": 15386.38, + "end": 15389.7, + "probability": 0.6653 + }, + { + "start": 15389.92, + "end": 15390.26, + "probability": 0.7849 + }, + { + "start": 15395.5, + "end": 15398.44, + "probability": 0.9825 + }, + { + "start": 15399.58, + "end": 15400.06, + "probability": 0.6493 + }, + { + "start": 15400.12, + "end": 15400.7, + "probability": 0.5889 + }, + { + "start": 15400.82, + "end": 15403.32, + "probability": 0.9785 + }, + { + "start": 15404.28, + "end": 15406.3, + "probability": 0.9312 + }, + { + "start": 15406.38, + "end": 15408.3, + "probability": 0.5289 + }, + { + "start": 15408.56, + "end": 15409.14, + "probability": 0.6305 + }, + { + "start": 15409.42, + "end": 15410.54, + "probability": 0.9526 + }, + { + "start": 15411.76, + "end": 15414.24, + "probability": 0.6544 + }, + { + "start": 15414.96, + "end": 15416.12, + "probability": 0.9077 + }, + { + "start": 15416.84, + "end": 15416.96, + "probability": 0.168 + }, + { + "start": 15418.04, + "end": 15420.92, + "probability": 0.9926 + }, + { + "start": 15421.8, + "end": 15422.82, + "probability": 0.8766 + }, + { + "start": 15423.48, + "end": 15424.02, + "probability": 0.8184 + }, + { + "start": 15424.58, + "end": 15427.98, + "probability": 0.9574 + }, + { + "start": 15428.84, + "end": 15433.24, + "probability": 0.7606 + }, + { + "start": 15433.52, + "end": 15438.96, + "probability": 0.9937 + }, + { + "start": 15438.96, + "end": 15444.18, + "probability": 0.8785 + }, + { + "start": 15444.54, + "end": 15447.4, + "probability": 0.9956 + }, + { + "start": 15447.4, + "end": 15451.2, + "probability": 0.9747 + }, + { + "start": 15452.24, + "end": 15453.16, + "probability": 0.8311 + }, + { + "start": 15454.02, + "end": 15457.4, + "probability": 0.9485 + }, + { + "start": 15458.46, + "end": 15460.12, + "probability": 0.938 + }, + { + "start": 15460.64, + "end": 15464.56, + "probability": 0.9851 + }, + { + "start": 15464.56, + "end": 15469.62, + "probability": 0.9475 + }, + { + "start": 15470.06, + "end": 15473.44, + "probability": 0.7773 + }, + { + "start": 15473.5, + "end": 15478.74, + "probability": 0.9469 + }, + { + "start": 15480.02, + "end": 15483.58, + "probability": 0.6859 + }, + { + "start": 15484.22, + "end": 15484.68, + "probability": 0.5938 + }, + { + "start": 15485.82, + "end": 15489.8, + "probability": 0.9055 + }, + { + "start": 15490.3, + "end": 15491.86, + "probability": 0.5811 + }, + { + "start": 15491.98, + "end": 15493.28, + "probability": 0.7681 + }, + { + "start": 15493.8, + "end": 15494.72, + "probability": 0.9588 + }, + { + "start": 15494.94, + "end": 15497.32, + "probability": 0.9363 + }, + { + "start": 15500.0, + "end": 15501.52, + "probability": 0.9614 + }, + { + "start": 15502.16, + "end": 15502.26, + "probability": 0.0206 + }, + { + "start": 15502.26, + "end": 15502.26, + "probability": 0.0321 + }, + { + "start": 15502.26, + "end": 15507.36, + "probability": 0.9044 + }, + { + "start": 15509.02, + "end": 15511.22, + "probability": 0.7235 + }, + { + "start": 15511.26, + "end": 15517.48, + "probability": 0.99 + }, + { + "start": 15518.46, + "end": 15521.6, + "probability": 0.8361 + }, + { + "start": 15522.56, + "end": 15527.96, + "probability": 0.8663 + }, + { + "start": 15528.64, + "end": 15530.54, + "probability": 0.9852 + }, + { + "start": 15531.1, + "end": 15538.0, + "probability": 0.9216 + }, + { + "start": 15538.58, + "end": 15539.22, + "probability": 0.824 + }, + { + "start": 15539.9, + "end": 15542.58, + "probability": 0.8812 + }, + { + "start": 15542.86, + "end": 15543.84, + "probability": 0.3057 + }, + { + "start": 15544.22, + "end": 15547.76, + "probability": 0.9924 + }, + { + "start": 15548.76, + "end": 15549.48, + "probability": 0.8517 + }, + { + "start": 15550.0, + "end": 15553.42, + "probability": 0.9802 + }, + { + "start": 15554.08, + "end": 15557.48, + "probability": 0.9517 + }, + { + "start": 15558.58, + "end": 15561.42, + "probability": 0.8189 + }, + { + "start": 15561.88, + "end": 15562.96, + "probability": 0.8969 + }, + { + "start": 15563.06, + "end": 15564.12, + "probability": 0.6139 + }, + { + "start": 15564.62, + "end": 15566.14, + "probability": 0.8717 + }, + { + "start": 15566.3, + "end": 15567.76, + "probability": 0.8822 + }, + { + "start": 15568.1, + "end": 15570.06, + "probability": 0.6001 + }, + { + "start": 15570.22, + "end": 15571.2, + "probability": 0.29 + }, + { + "start": 15572.94, + "end": 15575.18, + "probability": 0.8832 + }, + { + "start": 15576.7, + "end": 15582.98, + "probability": 0.9717 + }, + { + "start": 15583.92, + "end": 15586.43, + "probability": 0.8198 + }, + { + "start": 15588.31, + "end": 15588.8, + "probability": 0.1891 + }, + { + "start": 15588.8, + "end": 15594.7, + "probability": 0.8618 + }, + { + "start": 15595.16, + "end": 15599.84, + "probability": 0.9711 + }, + { + "start": 15600.06, + "end": 15602.18, + "probability": 0.9085 + }, + { + "start": 15602.52, + "end": 15603.6, + "probability": 0.8915 + }, + { + "start": 15603.78, + "end": 15605.24, + "probability": 0.5743 + }, + { + "start": 15605.38, + "end": 15606.56, + "probability": 0.886 + }, + { + "start": 15607.52, + "end": 15613.5, + "probability": 0.9185 + }, + { + "start": 15614.1, + "end": 15615.78, + "probability": 0.9903 + }, + { + "start": 15616.64, + "end": 15619.86, + "probability": 0.7974 + }, + { + "start": 15619.94, + "end": 15621.06, + "probability": 0.963 + }, + { + "start": 15621.7, + "end": 15623.64, + "probability": 0.8765 + }, + { + "start": 15623.86, + "end": 15624.72, + "probability": 0.9731 + }, + { + "start": 15624.78, + "end": 15625.2, + "probability": 0.5575 + }, + { + "start": 15625.26, + "end": 15626.32, + "probability": 0.9912 + }, + { + "start": 15626.64, + "end": 15628.17, + "probability": 0.731 + }, + { + "start": 15629.44, + "end": 15635.35, + "probability": 0.9897 + }, + { + "start": 15636.22, + "end": 15638.38, + "probability": 0.9986 + }, + { + "start": 15638.4, + "end": 15640.64, + "probability": 0.9821 + }, + { + "start": 15641.28, + "end": 15642.84, + "probability": 0.6248 + }, + { + "start": 15643.52, + "end": 15645.18, + "probability": 0.6052 + }, + { + "start": 15645.22, + "end": 15646.0, + "probability": 0.4479 + }, + { + "start": 15646.06, + "end": 15648.02, + "probability": 0.692 + }, + { + "start": 15648.08, + "end": 15648.64, + "probability": 0.6338 + }, + { + "start": 15648.64, + "end": 15649.76, + "probability": 0.9446 + }, + { + "start": 15650.8, + "end": 15654.06, + "probability": 0.9504 + }, + { + "start": 15654.74, + "end": 15657.4, + "probability": 0.9456 + }, + { + "start": 15657.56, + "end": 15661.52, + "probability": 0.948 + }, + { + "start": 15661.52, + "end": 15664.82, + "probability": 0.9362 + }, + { + "start": 15666.58, + "end": 15672.04, + "probability": 0.9825 + }, + { + "start": 15674.52, + "end": 15678.22, + "probability": 0.8069 + }, + { + "start": 15678.9, + "end": 15680.18, + "probability": 0.9476 + }, + { + "start": 15681.7, + "end": 15682.3, + "probability": 0.3853 + }, + { + "start": 15683.46, + "end": 15684.8, + "probability": 0.8171 + }, + { + "start": 15685.64, + "end": 15688.62, + "probability": 0.7576 + }, + { + "start": 15689.54, + "end": 15691.41, + "probability": 0.9282 + }, + { + "start": 15692.22, + "end": 15695.26, + "probability": 0.9829 + }, + { + "start": 15695.54, + "end": 15697.6, + "probability": 0.6774 + }, + { + "start": 15699.12, + "end": 15701.0, + "probability": 0.9839 + }, + { + "start": 15701.34, + "end": 15704.74, + "probability": 0.8598 + }, + { + "start": 15705.16, + "end": 15708.58, + "probability": 0.8656 + }, + { + "start": 15708.64, + "end": 15710.86, + "probability": 0.8494 + }, + { + "start": 15711.14, + "end": 15711.8, + "probability": 0.7885 + }, + { + "start": 15711.84, + "end": 15713.56, + "probability": 0.862 + }, + { + "start": 15714.0, + "end": 15715.16, + "probability": 0.9608 + }, + { + "start": 15715.62, + "end": 15717.46, + "probability": 0.8599 + }, + { + "start": 15717.5, + "end": 15719.26, + "probability": 0.6154 + }, + { + "start": 15720.36, + "end": 15720.36, + "probability": 0.3706 + }, + { + "start": 15720.62, + "end": 15724.92, + "probability": 0.9553 + }, + { + "start": 15725.0, + "end": 15725.85, + "probability": 0.8618 + }, + { + "start": 15726.28, + "end": 15727.56, + "probability": 0.8589 + }, + { + "start": 15728.06, + "end": 15734.32, + "probability": 0.9512 + }, + { + "start": 15734.86, + "end": 15738.28, + "probability": 0.9839 + }, + { + "start": 15738.52, + "end": 15739.4, + "probability": 0.858 + }, + { + "start": 15739.82, + "end": 15741.46, + "probability": 0.8688 + }, + { + "start": 15742.7, + "end": 15748.34, + "probability": 0.9757 + }, + { + "start": 15748.82, + "end": 15752.28, + "probability": 0.9314 + }, + { + "start": 15752.5, + "end": 15756.36, + "probability": 0.9783 + }, + { + "start": 15756.36, + "end": 15760.66, + "probability": 0.949 + }, + { + "start": 15760.88, + "end": 15762.02, + "probability": 0.8973 + }, + { + "start": 15762.26, + "end": 15765.26, + "probability": 0.9002 + }, + { + "start": 15765.72, + "end": 15766.44, + "probability": 0.7672 + }, + { + "start": 15766.54, + "end": 15767.84, + "probability": 0.9565 + }, + { + "start": 15768.36, + "end": 15769.04, + "probability": 0.8303 + }, + { + "start": 15769.12, + "end": 15769.92, + "probability": 0.7546 + }, + { + "start": 15770.02, + "end": 15771.16, + "probability": 0.7371 + }, + { + "start": 15771.2, + "end": 15772.04, + "probability": 0.5113 + }, + { + "start": 15772.14, + "end": 15775.54, + "probability": 0.8408 + }, + { + "start": 15775.54, + "end": 15776.1, + "probability": 0.2854 + }, + { + "start": 15776.8, + "end": 15778.1, + "probability": 0.7646 + }, + { + "start": 15778.5, + "end": 15780.22, + "probability": 0.7857 + }, + { + "start": 15780.4, + "end": 15781.33, + "probability": 0.8337 + }, + { + "start": 15781.96, + "end": 15783.28, + "probability": 0.3799 + }, + { + "start": 15783.28, + "end": 15783.38, + "probability": 0.3864 + }, + { + "start": 15783.7, + "end": 15783.98, + "probability": 0.6594 + }, + { + "start": 15784.14, + "end": 15784.82, + "probability": 0.4708 + }, + { + "start": 15785.0, + "end": 15787.1, + "probability": 0.8135 + }, + { + "start": 15787.16, + "end": 15789.18, + "probability": 0.8405 + }, + { + "start": 15789.52, + "end": 15791.08, + "probability": 0.9897 + }, + { + "start": 15791.5, + "end": 15794.14, + "probability": 0.9772 + }, + { + "start": 15794.14, + "end": 15797.38, + "probability": 0.9663 + }, + { + "start": 15797.52, + "end": 15797.94, + "probability": 0.7346 + }, + { + "start": 15798.16, + "end": 15800.02, + "probability": 0.8447 + }, + { + "start": 15800.06, + "end": 15801.54, + "probability": 0.4696 + }, + { + "start": 15802.16, + "end": 15804.38, + "probability": 0.6307 + }, + { + "start": 15804.92, + "end": 15805.84, + "probability": 0.7645 + }, + { + "start": 15805.98, + "end": 15808.64, + "probability": 0.8896 + }, + { + "start": 15809.02, + "end": 15809.9, + "probability": 0.8284 + }, + { + "start": 15810.38, + "end": 15812.66, + "probability": 0.9553 + }, + { + "start": 15813.88, + "end": 15816.82, + "probability": 0.8689 + }, + { + "start": 15819.18, + "end": 15821.86, + "probability": 0.7079 + }, + { + "start": 15822.1, + "end": 15822.1, + "probability": 0.9248 + }, + { + "start": 15822.1, + "end": 15822.9, + "probability": 0.7518 + }, + { + "start": 15822.94, + "end": 15824.04, + "probability": 0.6675 + }, + { + "start": 15825.18, + "end": 15829.22, + "probability": 0.9796 + }, + { + "start": 15830.44, + "end": 15837.66, + "probability": 0.9941 + }, + { + "start": 15839.22, + "end": 15842.14, + "probability": 0.9868 + }, + { + "start": 15843.52, + "end": 15845.7, + "probability": 0.9486 + }, + { + "start": 15845.92, + "end": 15849.74, + "probability": 0.9912 + }, + { + "start": 15850.66, + "end": 15851.86, + "probability": 0.7446 + }, + { + "start": 15852.56, + "end": 15855.8, + "probability": 0.9966 + }, + { + "start": 15856.64, + "end": 15857.22, + "probability": 0.8187 + }, + { + "start": 15857.86, + "end": 15860.14, + "probability": 0.9548 + }, + { + "start": 15861.28, + "end": 15862.08, + "probability": 0.9715 + }, + { + "start": 15863.02, + "end": 15866.38, + "probability": 0.861 + }, + { + "start": 15867.42, + "end": 15874.44, + "probability": 0.9583 + }, + { + "start": 15876.38, + "end": 15884.04, + "probability": 0.998 + }, + { + "start": 15884.04, + "end": 15893.9, + "probability": 0.9945 + }, + { + "start": 15894.6, + "end": 15896.26, + "probability": 0.7186 + }, + { + "start": 15898.0, + "end": 15900.5, + "probability": 0.891 + }, + { + "start": 15901.52, + "end": 15903.22, + "probability": 0.8341 + }, + { + "start": 15904.48, + "end": 15908.86, + "probability": 0.9704 + }, + { + "start": 15908.94, + "end": 15909.56, + "probability": 0.6715 + }, + { + "start": 15909.66, + "end": 15910.66, + "probability": 0.9128 + }, + { + "start": 15912.28, + "end": 15915.32, + "probability": 0.8756 + }, + { + "start": 15917.46, + "end": 15920.54, + "probability": 0.9927 + }, + { + "start": 15921.42, + "end": 15922.67, + "probability": 0.6397 + }, + { + "start": 15924.02, + "end": 15925.84, + "probability": 0.9912 + }, + { + "start": 15925.94, + "end": 15927.64, + "probability": 0.9302 + }, + { + "start": 15928.42, + "end": 15929.5, + "probability": 0.8658 + }, + { + "start": 15929.58, + "end": 15931.5, + "probability": 0.9753 + }, + { + "start": 15933.22, + "end": 15936.26, + "probability": 0.9775 + }, + { + "start": 15936.84, + "end": 15938.86, + "probability": 0.9197 + }, + { + "start": 15939.78, + "end": 15941.34, + "probability": 0.9863 + }, + { + "start": 15942.1, + "end": 15944.58, + "probability": 0.9961 + }, + { + "start": 15945.52, + "end": 15950.86, + "probability": 0.987 + }, + { + "start": 15950.86, + "end": 15955.06, + "probability": 0.9988 + }, + { + "start": 15956.5, + "end": 15957.16, + "probability": 0.5679 + }, + { + "start": 15957.34, + "end": 15963.62, + "probability": 0.9968 + }, + { + "start": 15964.66, + "end": 15966.16, + "probability": 0.9934 + }, + { + "start": 15967.22, + "end": 15969.93, + "probability": 0.7606 + }, + { + "start": 15971.52, + "end": 15973.64, + "probability": 0.7563 + }, + { + "start": 15974.42, + "end": 15975.7, + "probability": 0.7782 + }, + { + "start": 15976.6, + "end": 15982.72, + "probability": 0.9834 + }, + { + "start": 15982.72, + "end": 15986.88, + "probability": 0.9035 + }, + { + "start": 15987.76, + "end": 15989.41, + "probability": 0.8499 + }, + { + "start": 15990.54, + "end": 15993.2, + "probability": 0.9956 + }, + { + "start": 15993.2, + "end": 15996.64, + "probability": 0.9984 + }, + { + "start": 15997.36, + "end": 16001.06, + "probability": 0.9975 + }, + { + "start": 16003.92, + "end": 16004.9, + "probability": 0.9299 + }, + { + "start": 16005.38, + "end": 16008.12, + "probability": 0.9964 + }, + { + "start": 16009.4, + "end": 16010.12, + "probability": 0.7749 + }, + { + "start": 16010.28, + "end": 16012.72, + "probability": 0.998 + }, + { + "start": 16012.72, + "end": 16016.4, + "probability": 0.9769 + }, + { + "start": 16017.32, + "end": 16020.74, + "probability": 0.962 + }, + { + "start": 16021.46, + "end": 16023.1, + "probability": 0.9097 + }, + { + "start": 16023.28, + "end": 16023.94, + "probability": 0.7232 + }, + { + "start": 16024.16, + "end": 16025.16, + "probability": 0.8445 + }, + { + "start": 16025.62, + "end": 16028.28, + "probability": 0.9577 + }, + { + "start": 16029.5, + "end": 16030.36, + "probability": 0.8162 + }, + { + "start": 16030.44, + "end": 16032.5, + "probability": 0.8995 + }, + { + "start": 16033.5, + "end": 16037.08, + "probability": 0.9958 + }, + { + "start": 16037.68, + "end": 16040.48, + "probability": 0.9918 + }, + { + "start": 16040.86, + "end": 16041.18, + "probability": 0.6099 + }, + { + "start": 16041.6, + "end": 16046.04, + "probability": 0.7447 + }, + { + "start": 16046.94, + "end": 16050.44, + "probability": 0.9629 + }, + { + "start": 16051.14, + "end": 16055.36, + "probability": 0.9663 + }, + { + "start": 16055.36, + "end": 16058.22, + "probability": 0.9582 + }, + { + "start": 16058.32, + "end": 16058.42, + "probability": 0.2071 + }, + { + "start": 16059.3, + "end": 16063.76, + "probability": 0.9636 + }, + { + "start": 16064.44, + "end": 16068.1, + "probability": 0.9364 + }, + { + "start": 16068.22, + "end": 16068.94, + "probability": 0.6616 + }, + { + "start": 16070.08, + "end": 16071.4, + "probability": 0.9989 + }, + { + "start": 16074.18, + "end": 16077.52, + "probability": 0.9182 + }, + { + "start": 16079.18, + "end": 16079.5, + "probability": 0.4316 + }, + { + "start": 16079.5, + "end": 16081.68, + "probability": 0.9059 + }, + { + "start": 16083.53, + "end": 16088.74, + "probability": 0.9807 + }, + { + "start": 16089.56, + "end": 16093.42, + "probability": 0.9826 + }, + { + "start": 16093.92, + "end": 16094.42, + "probability": 0.761 + }, + { + "start": 16094.92, + "end": 16095.92, + "probability": 0.9699 + }, + { + "start": 16096.0, + "end": 16096.9, + "probability": 0.9183 + }, + { + "start": 16097.34, + "end": 16099.5, + "probability": 0.9113 + }, + { + "start": 16099.64, + "end": 16100.58, + "probability": 0.9652 + }, + { + "start": 16101.78, + "end": 16105.38, + "probability": 0.9891 + }, + { + "start": 16105.6, + "end": 16109.32, + "probability": 0.9931 + }, + { + "start": 16109.4, + "end": 16110.08, + "probability": 0.9614 + }, + { + "start": 16110.32, + "end": 16110.88, + "probability": 0.2632 + }, + { + "start": 16112.08, + "end": 16115.78, + "probability": 0.9843 + }, + { + "start": 16115.86, + "end": 16116.46, + "probability": 0.4257 + }, + { + "start": 16116.6, + "end": 16117.42, + "probability": 0.8638 + }, + { + "start": 16117.48, + "end": 16118.22, + "probability": 0.9912 + }, + { + "start": 16118.42, + "end": 16119.8, + "probability": 0.9885 + }, + { + "start": 16121.5, + "end": 16122.62, + "probability": 0.8341 + }, + { + "start": 16122.7, + "end": 16125.46, + "probability": 0.8314 + }, + { + "start": 16125.52, + "end": 16132.78, + "probability": 0.957 + }, + { + "start": 16134.34, + "end": 16136.38, + "probability": 0.4172 + }, + { + "start": 16137.06, + "end": 16138.92, + "probability": 0.8549 + }, + { + "start": 16140.28, + "end": 16142.23, + "probability": 0.8965 + }, + { + "start": 16143.12, + "end": 16145.86, + "probability": 0.9578 + }, + { + "start": 16146.0, + "end": 16147.1, + "probability": 0.7717 + }, + { + "start": 16148.0, + "end": 16148.4, + "probability": 0.8863 + }, + { + "start": 16148.44, + "end": 16149.36, + "probability": 0.7798 + }, + { + "start": 16149.74, + "end": 16153.72, + "probability": 0.9904 + }, + { + "start": 16154.74, + "end": 16155.85, + "probability": 0.9207 + }, + { + "start": 16156.64, + "end": 16158.16, + "probability": 0.9507 + }, + { + "start": 16158.96, + "end": 16163.22, + "probability": 0.9617 + }, + { + "start": 16164.0, + "end": 16166.24, + "probability": 0.8604 + }, + { + "start": 16166.76, + "end": 16168.04, + "probability": 0.9105 + }, + { + "start": 16168.54, + "end": 16169.46, + "probability": 0.887 + }, + { + "start": 16169.92, + "end": 16174.22, + "probability": 0.9927 + }, + { + "start": 16174.66, + "end": 16175.3, + "probability": 0.8369 + }, + { + "start": 16176.1, + "end": 16177.92, + "probability": 0.6335 + }, + { + "start": 16178.02, + "end": 16179.28, + "probability": 0.6273 + }, + { + "start": 16179.96, + "end": 16182.1, + "probability": 0.6005 + }, + { + "start": 16183.52, + "end": 16184.72, + "probability": 0.7056 + }, + { + "start": 16197.3, + "end": 16198.38, + "probability": 0.4601 + }, + { + "start": 16202.52, + "end": 16204.54, + "probability": 0.9693 + }, + { + "start": 16204.66, + "end": 16211.26, + "probability": 0.9929 + }, + { + "start": 16212.5, + "end": 16220.09, + "probability": 0.9823 + }, + { + "start": 16220.6, + "end": 16226.56, + "probability": 0.9975 + }, + { + "start": 16226.96, + "end": 16229.26, + "probability": 0.9974 + }, + { + "start": 16230.14, + "end": 16232.1, + "probability": 0.9685 + }, + { + "start": 16232.26, + "end": 16236.24, + "probability": 0.9854 + }, + { + "start": 16237.22, + "end": 16239.42, + "probability": 0.9932 + }, + { + "start": 16240.56, + "end": 16243.63, + "probability": 0.9897 + }, + { + "start": 16244.22, + "end": 16246.62, + "probability": 0.7294 + }, + { + "start": 16247.7, + "end": 16251.24, + "probability": 0.8042 + }, + { + "start": 16251.34, + "end": 16253.16, + "probability": 0.8725 + }, + { + "start": 16253.71, + "end": 16257.02, + "probability": 0.9496 + }, + { + "start": 16259.87, + "end": 16262.78, + "probability": 0.6456 + }, + { + "start": 16264.08, + "end": 16266.22, + "probability": 0.8805 + }, + { + "start": 16268.26, + "end": 16269.82, + "probability": 0.9903 + }, + { + "start": 16273.0, + "end": 16275.3, + "probability": 0.8361 + }, + { + "start": 16277.22, + "end": 16278.28, + "probability": 0.915 + }, + { + "start": 16279.36, + "end": 16279.82, + "probability": 0.9628 + }, + { + "start": 16280.98, + "end": 16283.36, + "probability": 0.9881 + }, + { + "start": 16284.68, + "end": 16288.38, + "probability": 0.9643 + }, + { + "start": 16289.68, + "end": 16292.24, + "probability": 0.9731 + }, + { + "start": 16292.28, + "end": 16295.64, + "probability": 0.991 + }, + { + "start": 16297.54, + "end": 16299.86, + "probability": 0.6097 + }, + { + "start": 16302.04, + "end": 16305.86, + "probability": 0.8959 + }, + { + "start": 16306.32, + "end": 16307.66, + "probability": 0.8476 + }, + { + "start": 16308.46, + "end": 16310.7, + "probability": 0.8237 + }, + { + "start": 16311.3, + "end": 16313.04, + "probability": 0.9299 + }, + { + "start": 16313.8, + "end": 16314.86, + "probability": 0.7468 + }, + { + "start": 16315.98, + "end": 16323.22, + "probability": 0.9789 + }, + { + "start": 16323.32, + "end": 16324.32, + "probability": 0.967 + }, + { + "start": 16324.96, + "end": 16328.54, + "probability": 0.6452 + }, + { + "start": 16329.84, + "end": 16335.41, + "probability": 0.9932 + }, + { + "start": 16336.94, + "end": 16338.46, + "probability": 0.9771 + }, + { + "start": 16338.52, + "end": 16339.68, + "probability": 0.8398 + }, + { + "start": 16340.7, + "end": 16345.06, + "probability": 0.907 + }, + { + "start": 16346.1, + "end": 16347.74, + "probability": 0.9459 + }, + { + "start": 16350.04, + "end": 16352.7, + "probability": 0.802 + }, + { + "start": 16353.5, + "end": 16355.08, + "probability": 0.5241 + }, + { + "start": 16355.62, + "end": 16357.64, + "probability": 0.7309 + }, + { + "start": 16358.86, + "end": 16361.8, + "probability": 0.8448 + }, + { + "start": 16364.0, + "end": 16366.82, + "probability": 0.9734 + }, + { + "start": 16366.96, + "end": 16367.94, + "probability": 0.8352 + }, + { + "start": 16368.0, + "end": 16370.64, + "probability": 0.8051 + }, + { + "start": 16371.16, + "end": 16372.86, + "probability": 0.7358 + }, + { + "start": 16373.22, + "end": 16376.04, + "probability": 0.9554 + }, + { + "start": 16377.36, + "end": 16379.48, + "probability": 0.8712 + }, + { + "start": 16380.96, + "end": 16384.44, + "probability": 0.4873 + }, + { + "start": 16384.56, + "end": 16388.34, + "probability": 0.9731 + }, + { + "start": 16389.1, + "end": 16390.36, + "probability": 0.5046 + }, + { + "start": 16391.04, + "end": 16392.56, + "probability": 0.7827 + }, + { + "start": 16394.16, + "end": 16395.5, + "probability": 0.7197 + }, + { + "start": 16396.1, + "end": 16397.78, + "probability": 0.9934 + }, + { + "start": 16398.74, + "end": 16399.04, + "probability": 0.3652 + }, + { + "start": 16399.12, + "end": 16400.12, + "probability": 0.7487 + }, + { + "start": 16400.24, + "end": 16400.96, + "probability": 0.8801 + }, + { + "start": 16401.2, + "end": 16402.08, + "probability": 0.9909 + }, + { + "start": 16402.14, + "end": 16403.18, + "probability": 0.964 + }, + { + "start": 16404.14, + "end": 16406.16, + "probability": 0.9848 + }, + { + "start": 16408.04, + "end": 16409.28, + "probability": 0.984 + }, + { + "start": 16409.88, + "end": 16411.04, + "probability": 0.9028 + }, + { + "start": 16411.26, + "end": 16412.42, + "probability": 0.8206 + }, + { + "start": 16412.74, + "end": 16414.52, + "probability": 0.5556 + }, + { + "start": 16414.8, + "end": 16418.24, + "probability": 0.851 + }, + { + "start": 16419.04, + "end": 16419.6, + "probability": 0.6897 + }, + { + "start": 16420.78, + "end": 16421.64, + "probability": 0.9486 + }, + { + "start": 16423.36, + "end": 16425.76, + "probability": 0.9903 + }, + { + "start": 16428.64, + "end": 16432.54, + "probability": 0.991 + }, + { + "start": 16434.6, + "end": 16436.74, + "probability": 0.9534 + }, + { + "start": 16438.04, + "end": 16440.86, + "probability": 0.8329 + }, + { + "start": 16442.78, + "end": 16445.94, + "probability": 0.9224 + }, + { + "start": 16447.6, + "end": 16450.42, + "probability": 0.9865 + }, + { + "start": 16451.28, + "end": 16452.76, + "probability": 0.4012 + }, + { + "start": 16454.16, + "end": 16459.86, + "probability": 0.9741 + }, + { + "start": 16460.64, + "end": 16462.52, + "probability": 0.9912 + }, + { + "start": 16463.38, + "end": 16466.7, + "probability": 0.8316 + }, + { + "start": 16467.3, + "end": 16470.74, + "probability": 0.8402 + }, + { + "start": 16470.74, + "end": 16473.38, + "probability": 0.828 + }, + { + "start": 16473.92, + "end": 16475.38, + "probability": 0.8329 + }, + { + "start": 16475.78, + "end": 16479.72, + "probability": 0.7151 + }, + { + "start": 16479.88, + "end": 16481.04, + "probability": 0.672 + }, + { + "start": 16481.28, + "end": 16482.66, + "probability": 0.9462 + }, + { + "start": 16483.02, + "end": 16484.16, + "probability": 0.8677 + }, + { + "start": 16484.52, + "end": 16486.26, + "probability": 0.9554 + }, + { + "start": 16486.66, + "end": 16490.0, + "probability": 0.9816 + }, + { + "start": 16490.28, + "end": 16494.02, + "probability": 0.937 + }, + { + "start": 16494.3, + "end": 16498.28, + "probability": 0.5903 + }, + { + "start": 16498.54, + "end": 16502.8, + "probability": 0.7793 + }, + { + "start": 16502.8, + "end": 16506.76, + "probability": 0.9589 + }, + { + "start": 16507.38, + "end": 16511.8, + "probability": 0.7713 + }, + { + "start": 16512.4, + "end": 16516.36, + "probability": 0.7488 + }, + { + "start": 16517.16, + "end": 16520.16, + "probability": 0.9487 + }, + { + "start": 16520.32, + "end": 16521.56, + "probability": 0.7126 + }, + { + "start": 16521.74, + "end": 16523.62, + "probability": 0.8619 + }, + { + "start": 16523.66, + "end": 16526.72, + "probability": 0.8427 + }, + { + "start": 16526.72, + "end": 16530.74, + "probability": 0.9391 + }, + { + "start": 16530.86, + "end": 16531.72, + "probability": 0.8939 + }, + { + "start": 16532.42, + "end": 16532.78, + "probability": 0.7545 + }, + { + "start": 16533.04, + "end": 16535.28, + "probability": 0.7717 + }, + { + "start": 16535.36, + "end": 16539.62, + "probability": 0.9761 + }, + { + "start": 16540.3, + "end": 16543.04, + "probability": 0.8704 + }, + { + "start": 16571.65, + "end": 16578.26, + "probability": 0.9653 + }, + { + "start": 16580.6, + "end": 16582.12, + "probability": 0.5862 + }, + { + "start": 16589.28, + "end": 16591.76, + "probability": 0.8273 + }, + { + "start": 16593.52, + "end": 16595.94, + "probability": 0.9052 + }, + { + "start": 16599.58, + "end": 16601.48, + "probability": 0.9102 + }, + { + "start": 16604.12, + "end": 16612.0, + "probability": 0.9952 + }, + { + "start": 16618.72, + "end": 16624.03, + "probability": 0.6495 + }, + { + "start": 16625.26, + "end": 16626.76, + "probability": 0.8015 + }, + { + "start": 16629.66, + "end": 16631.18, + "probability": 0.6669 + }, + { + "start": 16631.6, + "end": 16632.24, + "probability": 0.4932 + }, + { + "start": 16632.32, + "end": 16637.48, + "probability": 0.5999 + }, + { + "start": 16637.54, + "end": 16638.58, + "probability": 0.7428 + }, + { + "start": 16639.92, + "end": 16642.38, + "probability": 0.8774 + }, + { + "start": 16643.58, + "end": 16646.62, + "probability": 0.728 + }, + { + "start": 16648.5, + "end": 16653.84, + "probability": 0.9634 + }, + { + "start": 16654.64, + "end": 16656.52, + "probability": 0.5103 + }, + { + "start": 16657.48, + "end": 16660.74, + "probability": 0.9038 + }, + { + "start": 16660.74, + "end": 16664.94, + "probability": 0.7314 + }, + { + "start": 16665.0, + "end": 16666.08, + "probability": 0.4672 + }, + { + "start": 16666.46, + "end": 16667.61, + "probability": 0.925 + }, + { + "start": 16669.98, + "end": 16673.96, + "probability": 0.5124 + }, + { + "start": 16673.98, + "end": 16674.68, + "probability": 0.7124 + }, + { + "start": 16674.68, + "end": 16675.76, + "probability": 0.5575 + }, + { + "start": 16675.76, + "end": 16677.24, + "probability": 0.7469 + }, + { + "start": 16677.46, + "end": 16678.08, + "probability": 0.522 + }, + { + "start": 16678.12, + "end": 16681.28, + "probability": 0.8965 + }, + { + "start": 16701.87, + "end": 16707.28, + "probability": 0.3208 + }, + { + "start": 16707.28, + "end": 16710.56, + "probability": 0.1501 + }, + { + "start": 16711.84, + "end": 16718.2, + "probability": 0.1215 + }, + { + "start": 16718.75, + "end": 16721.64, + "probability": 0.093 + }, + { + "start": 16721.64, + "end": 16721.78, + "probability": 0.3501 + }, + { + "start": 16723.92, + "end": 16725.98, + "probability": 0.0506 + }, + { + "start": 16736.08, + "end": 16737.9, + "probability": 0.0193 + }, + { + "start": 16745.51, + "end": 16749.38, + "probability": 0.3229 + }, + { + "start": 16749.38, + "end": 16752.22, + "probability": 0.0624 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.0, + "end": 16777.0, + "probability": 0.0 + }, + { + "start": 16777.5, + "end": 16778.68, + "probability": 0.0156 + }, + { + "start": 16778.68, + "end": 16778.68, + "probability": 0.0072 + }, + { + "start": 16778.68, + "end": 16778.68, + "probability": 0.0768 + }, + { + "start": 16778.68, + "end": 16779.75, + "probability": 0.5519 + }, + { + "start": 16780.66, + "end": 16786.36, + "probability": 0.7402 + }, + { + "start": 16786.92, + "end": 16787.7, + "probability": 0.725 + }, + { + "start": 16789.4, + "end": 16792.3, + "probability": 0.3086 + }, + { + "start": 16794.98, + "end": 16795.42, + "probability": 0.7334 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.0, + "end": 16898.0, + "probability": 0.0 + }, + { + "start": 16898.16, + "end": 16898.62, + "probability": 0.0797 + }, + { + "start": 16898.68, + "end": 16898.7, + "probability": 0.2231 + }, + { + "start": 16898.7, + "end": 16898.7, + "probability": 0.4138 + }, + { + "start": 16898.7, + "end": 16899.18, + "probability": 0.119 + }, + { + "start": 16899.18, + "end": 16901.94, + "probability": 0.6364 + }, + { + "start": 16902.02, + "end": 16903.08, + "probability": 0.3089 + }, + { + "start": 16903.08, + "end": 16904.7, + "probability": 0.8381 + }, + { + "start": 16904.7, + "end": 16904.9, + "probability": 0.3319 + }, + { + "start": 16905.94, + "end": 16906.56, + "probability": 0.8299 + }, + { + "start": 16907.3, + "end": 16911.18, + "probability": 0.8986 + }, + { + "start": 16914.12, + "end": 16916.84, + "probability": 0.6824 + }, + { + "start": 16917.38, + "end": 16921.32, + "probability": 0.9072 + }, + { + "start": 16921.44, + "end": 16922.06, + "probability": 0.9242 + }, + { + "start": 16922.12, + "end": 16923.3, + "probability": 0.9335 + }, + { + "start": 16923.7, + "end": 16925.02, + "probability": 0.608 + }, + { + "start": 16925.62, + "end": 16929.54, + "probability": 0.8826 + }, + { + "start": 16929.6, + "end": 16932.88, + "probability": 0.8208 + }, + { + "start": 16933.02, + "end": 16936.42, + "probability": 0.8638 + }, + { + "start": 16937.0, + "end": 16937.98, + "probability": 0.8643 + }, + { + "start": 16938.04, + "end": 16938.64, + "probability": 0.8342 + }, + { + "start": 16939.08, + "end": 16941.02, + "probability": 0.8389 + }, + { + "start": 16941.18, + "end": 16942.4, + "probability": 0.9839 + }, + { + "start": 16942.62, + "end": 16947.32, + "probability": 0.9258 + }, + { + "start": 16947.56, + "end": 16950.42, + "probability": 0.7652 + }, + { + "start": 16957.66, + "end": 16958.9, + "probability": 0.8249 + }, + { + "start": 16971.9, + "end": 16972.36, + "probability": 0.3749 + }, + { + "start": 16972.36, + "end": 16972.98, + "probability": 0.5973 + }, + { + "start": 16973.1, + "end": 16975.38, + "probability": 0.7462 + }, + { + "start": 16975.46, + "end": 16976.14, + "probability": 0.6025 + }, + { + "start": 16976.14, + "end": 16976.44, + "probability": 0.5518 + }, + { + "start": 16976.6, + "end": 16977.08, + "probability": 0.2964 + }, + { + "start": 16977.2, + "end": 16978.64, + "probability": 0.7736 + }, + { + "start": 16979.2, + "end": 16980.54, + "probability": 0.8912 + }, + { + "start": 16980.98, + "end": 16981.56, + "probability": 0.735 + }, + { + "start": 16981.78, + "end": 16982.96, + "probability": 0.8129 + }, + { + "start": 16983.18, + "end": 16985.7, + "probability": 0.781 + }, + { + "start": 16988.88, + "end": 16989.66, + "probability": 0.744 + }, + { + "start": 16990.08, + "end": 16992.44, + "probability": 0.7288 + }, + { + "start": 16993.24, + "end": 16996.84, + "probability": 0.9247 + }, + { + "start": 16996.84, + "end": 17003.52, + "probability": 0.937 + }, + { + "start": 17004.48, + "end": 17006.68, + "probability": 0.9824 + }, + { + "start": 17007.28, + "end": 17010.18, + "probability": 0.9842 + }, + { + "start": 17011.18, + "end": 17014.16, + "probability": 0.9863 + }, + { + "start": 17014.26, + "end": 17016.46, + "probability": 0.6738 + }, + { + "start": 17016.92, + "end": 17018.82, + "probability": 0.8496 + }, + { + "start": 17019.28, + "end": 17021.0, + "probability": 0.9889 + }, + { + "start": 17021.58, + "end": 17025.8, + "probability": 0.9952 + }, + { + "start": 17026.18, + "end": 17029.7, + "probability": 0.9983 + }, + { + "start": 17030.4, + "end": 17034.42, + "probability": 0.9801 + }, + { + "start": 17034.42, + "end": 17038.62, + "probability": 0.9889 + }, + { + "start": 17039.12, + "end": 17041.82, + "probability": 0.9561 + }, + { + "start": 17042.56, + "end": 17043.34, + "probability": 0.7582 + }, + { + "start": 17043.62, + "end": 17044.94, + "probability": 0.7581 + }, + { + "start": 17045.3, + "end": 17046.15, + "probability": 0.4795 + }, + { + "start": 17046.94, + "end": 17048.2, + "probability": 0.9228 + }, + { + "start": 17048.8, + "end": 17052.84, + "probability": 0.8714 + }, + { + "start": 17055.1, + "end": 17057.04, + "probability": 0.914 + }, + { + "start": 17057.76, + "end": 17063.1, + "probability": 0.9913 + }, + { + "start": 17063.12, + "end": 17070.42, + "probability": 0.9885 + }, + { + "start": 17071.06, + "end": 17073.26, + "probability": 0.7938 + }, + { + "start": 17073.46, + "end": 17074.26, + "probability": 0.8861 + }, + { + "start": 17074.4, + "end": 17078.0, + "probability": 0.9885 + }, + { + "start": 17078.68, + "end": 17081.32, + "probability": 0.9877 + }, + { + "start": 17081.84, + "end": 17082.56, + "probability": 0.6903 + }, + { + "start": 17082.68, + "end": 17083.76, + "probability": 0.925 + }, + { + "start": 17083.84, + "end": 17088.98, + "probability": 0.9969 + }, + { + "start": 17090.0, + "end": 17091.78, + "probability": 0.9573 + }, + { + "start": 17092.48, + "end": 17094.34, + "probability": 0.9686 + }, + { + "start": 17094.82, + "end": 17102.96, + "probability": 0.877 + }, + { + "start": 17103.46, + "end": 17105.34, + "probability": 0.5705 + }, + { + "start": 17105.8, + "end": 17114.22, + "probability": 0.9222 + }, + { + "start": 17115.1, + "end": 17122.18, + "probability": 0.9082 + }, + { + "start": 17123.64, + "end": 17125.34, + "probability": 0.5488 + }, + { + "start": 17125.86, + "end": 17127.58, + "probability": 0.9742 + }, + { + "start": 17127.82, + "end": 17132.3, + "probability": 0.9456 + }, + { + "start": 17132.3, + "end": 17138.62, + "probability": 0.9926 + }, + { + "start": 17139.48, + "end": 17139.82, + "probability": 0.4128 + }, + { + "start": 17139.86, + "end": 17140.68, + "probability": 0.7668 + }, + { + "start": 17140.76, + "end": 17148.16, + "probability": 0.8834 + }, + { + "start": 17148.62, + "end": 17150.26, + "probability": 0.7053 + }, + { + "start": 17150.34, + "end": 17151.22, + "probability": 0.7117 + }, + { + "start": 17151.28, + "end": 17153.5, + "probability": 0.759 + }, + { + "start": 17153.9, + "end": 17160.08, + "probability": 0.9333 + }, + { + "start": 17160.12, + "end": 17160.9, + "probability": 0.6745 + }, + { + "start": 17161.18, + "end": 17162.38, + "probability": 0.6524 + }, + { + "start": 17163.78, + "end": 17170.94, + "probability": 0.9971 + }, + { + "start": 17171.36, + "end": 17179.36, + "probability": 0.965 + }, + { + "start": 17179.42, + "end": 17180.9, + "probability": 0.7665 + }, + { + "start": 17181.38, + "end": 17184.92, + "probability": 0.8729 + }, + { + "start": 17185.08, + "end": 17189.74, + "probability": 0.9956 + }, + { + "start": 17190.22, + "end": 17192.48, + "probability": 0.9446 + }, + { + "start": 17193.08, + "end": 17196.68, + "probability": 0.9425 + }, + { + "start": 17197.28, + "end": 17197.8, + "probability": 0.4976 + }, + { + "start": 17197.96, + "end": 17201.88, + "probability": 0.9521 + }, + { + "start": 17202.06, + "end": 17203.56, + "probability": 0.9767 + }, + { + "start": 17204.06, + "end": 17207.86, + "probability": 0.998 + }, + { + "start": 17207.86, + "end": 17213.4, + "probability": 0.9968 + }, + { + "start": 17213.68, + "end": 17214.3, + "probability": 0.5443 + }, + { + "start": 17215.06, + "end": 17215.24, + "probability": 0.2831 + }, + { + "start": 17215.24, + "end": 17217.28, + "probability": 0.9552 + }, + { + "start": 17218.06, + "end": 17218.22, + "probability": 0.1019 + }, + { + "start": 17218.22, + "end": 17220.12, + "probability": 0.7612 + }, + { + "start": 17220.4, + "end": 17224.94, + "probability": 0.8254 + }, + { + "start": 17225.02, + "end": 17225.78, + "probability": 0.8865 + }, + { + "start": 17225.82, + "end": 17227.68, + "probability": 0.8563 + }, + { + "start": 17231.52, + "end": 17233.78, + "probability": 0.9109 + }, + { + "start": 17234.44, + "end": 17236.06, + "probability": 0.9233 + }, + { + "start": 17236.14, + "end": 17236.66, + "probability": 0.6403 + }, + { + "start": 17236.7, + "end": 17237.98, + "probability": 0.7892 + }, + { + "start": 17238.02, + "end": 17240.26, + "probability": 0.7449 + }, + { + "start": 17240.4, + "end": 17242.86, + "probability": 0.7603 + }, + { + "start": 17246.48, + "end": 17247.34, + "probability": 0.6905 + }, + { + "start": 17248.16, + "end": 17249.02, + "probability": 0.6619 + }, + { + "start": 17249.06, + "end": 17249.68, + "probability": 0.6543 + }, + { + "start": 17249.78, + "end": 17251.24, + "probability": 0.5331 + }, + { + "start": 17251.34, + "end": 17252.06, + "probability": 0.9247 + }, + { + "start": 17252.32, + "end": 17255.26, + "probability": 0.9653 + }, + { + "start": 17255.32, + "end": 17257.4, + "probability": 0.8654 + }, + { + "start": 17259.8, + "end": 17262.4, + "probability": 0.7617 + }, + { + "start": 17263.64, + "end": 17267.14, + "probability": 0.9577 + }, + { + "start": 17267.3, + "end": 17268.1, + "probability": 0.8729 + }, + { + "start": 17268.16, + "end": 17271.4, + "probability": 0.969 + }, + { + "start": 17272.76, + "end": 17273.44, + "probability": 0.8449 + }, + { + "start": 17273.46, + "end": 17279.06, + "probability": 0.9896 + }, + { + "start": 17280.0, + "end": 17284.92, + "probability": 0.9216 + }, + { + "start": 17286.3, + "end": 17291.52, + "probability": 0.9724 + }, + { + "start": 17292.06, + "end": 17294.92, + "probability": 0.7939 + }, + { + "start": 17296.38, + "end": 17301.14, + "probability": 0.8735 + }, + { + "start": 17302.28, + "end": 17302.64, + "probability": 0.5272 + }, + { + "start": 17302.72, + "end": 17306.14, + "probability": 0.9759 + }, + { + "start": 17306.14, + "end": 17309.82, + "probability": 0.999 + }, + { + "start": 17310.7, + "end": 17312.76, + "probability": 0.8656 + }, + { + "start": 17313.84, + "end": 17315.82, + "probability": 0.984 + }, + { + "start": 17316.0, + "end": 17318.14, + "probability": 0.9308 + }, + { + "start": 17318.32, + "end": 17320.1, + "probability": 0.8711 + }, + { + "start": 17320.66, + "end": 17322.44, + "probability": 0.8691 + }, + { + "start": 17324.62, + "end": 17327.0, + "probability": 0.9972 + }, + { + "start": 17327.38, + "end": 17329.42, + "probability": 0.9373 + }, + { + "start": 17330.48, + "end": 17333.32, + "probability": 0.9614 + }, + { + "start": 17334.4, + "end": 17336.66, + "probability": 0.9919 + }, + { + "start": 17337.38, + "end": 17341.7, + "probability": 0.9954 + }, + { + "start": 17341.98, + "end": 17344.46, + "probability": 0.9927 + }, + { + "start": 17345.28, + "end": 17350.6, + "probability": 0.996 + }, + { + "start": 17351.74, + "end": 17355.12, + "probability": 0.8508 + }, + { + "start": 17355.82, + "end": 17360.6, + "probability": 0.9954 + }, + { + "start": 17362.32, + "end": 17363.08, + "probability": 0.9155 + }, + { + "start": 17363.16, + "end": 17364.94, + "probability": 0.9965 + }, + { + "start": 17365.38, + "end": 17371.9, + "probability": 0.9955 + }, + { + "start": 17372.42, + "end": 17373.74, + "probability": 0.9265 + }, + { + "start": 17374.66, + "end": 17375.56, + "probability": 0.4424 + }, + { + "start": 17375.82, + "end": 17378.52, + "probability": 0.9817 + }, + { + "start": 17378.52, + "end": 17384.6, + "probability": 0.9855 + }, + { + "start": 17384.8, + "end": 17387.08, + "probability": 0.468 + }, + { + "start": 17387.08, + "end": 17387.71, + "probability": 0.1717 + }, + { + "start": 17389.76, + "end": 17391.86, + "probability": 0.9891 + }, + { + "start": 17392.1, + "end": 17394.25, + "probability": 0.9927 + }, + { + "start": 17394.64, + "end": 17395.5, + "probability": 0.8245 + }, + { + "start": 17396.5, + "end": 17398.4, + "probability": 0.9139 + }, + { + "start": 17399.68, + "end": 17404.98, + "probability": 0.5584 + }, + { + "start": 17405.5, + "end": 17409.1, + "probability": 0.7708 + }, + { + "start": 17409.86, + "end": 17411.12, + "probability": 0.8992 + }, + { + "start": 17412.14, + "end": 17414.22, + "probability": 0.8837 + }, + { + "start": 17414.94, + "end": 17416.48, + "probability": 0.8494 + }, + { + "start": 17416.86, + "end": 17419.48, + "probability": 0.9785 + }, + { + "start": 17420.0, + "end": 17422.06, + "probability": 0.9813 + }, + { + "start": 17423.28, + "end": 17424.98, + "probability": 0.995 + }, + { + "start": 17425.18, + "end": 17427.73, + "probability": 0.8526 + }, + { + "start": 17428.12, + "end": 17430.16, + "probability": 0.9958 + }, + { + "start": 17430.5, + "end": 17431.52, + "probability": 0.9728 + }, + { + "start": 17432.48, + "end": 17434.18, + "probability": 0.8784 + }, + { + "start": 17434.26, + "end": 17436.24, + "probability": 0.9474 + }, + { + "start": 17436.3, + "end": 17437.82, + "probability": 0.7074 + }, + { + "start": 17437.98, + "end": 17442.76, + "probability": 0.9963 + }, + { + "start": 17443.88, + "end": 17445.6, + "probability": 0.787 + }, + { + "start": 17447.24, + "end": 17451.2, + "probability": 0.9027 + }, + { + "start": 17451.34, + "end": 17454.46, + "probability": 0.9773 + }, + { + "start": 17455.0, + "end": 17458.14, + "probability": 0.9813 + }, + { + "start": 17458.14, + "end": 17460.96, + "probability": 0.9442 + }, + { + "start": 17461.76, + "end": 17463.0, + "probability": 0.9255 + }, + { + "start": 17463.12, + "end": 17469.8, + "probability": 0.9843 + }, + { + "start": 17469.86, + "end": 17474.2, + "probability": 0.6571 + }, + { + "start": 17474.28, + "end": 17475.72, + "probability": 0.8641 + }, + { + "start": 17475.86, + "end": 17477.5, + "probability": 0.9438 + }, + { + "start": 17478.0, + "end": 17479.84, + "probability": 0.8625 + }, + { + "start": 17480.54, + "end": 17480.82, + "probability": 0.6029 + }, + { + "start": 17480.82, + "end": 17482.76, + "probability": 0.9281 + }, + { + "start": 17482.9, + "end": 17483.86, + "probability": 0.9518 + }, + { + "start": 17484.28, + "end": 17486.54, + "probability": 0.9912 + }, + { + "start": 17486.74, + "end": 17487.9, + "probability": 0.8496 + }, + { + "start": 17488.02, + "end": 17491.62, + "probability": 0.9792 + }, + { + "start": 17491.64, + "end": 17491.92, + "probability": 0.6537 + }, + { + "start": 17492.18, + "end": 17494.64, + "probability": 0.9453 + }, + { + "start": 17495.12, + "end": 17497.88, + "probability": 0.9855 + }, + { + "start": 17498.92, + "end": 17501.04, + "probability": 0.9254 + }, + { + "start": 17509.7, + "end": 17511.18, + "probability": 0.9379 + }, + { + "start": 17511.8, + "end": 17514.62, + "probability": 0.5126 + }, + { + "start": 17515.2, + "end": 17517.1, + "probability": 0.679 + }, + { + "start": 17518.62, + "end": 17523.82, + "probability": 0.8058 + }, + { + "start": 17523.96, + "end": 17524.68, + "probability": 0.6944 + }, + { + "start": 17524.88, + "end": 17528.02, + "probability": 0.6766 + }, + { + "start": 17528.82, + "end": 17530.66, + "probability": 0.697 + }, + { + "start": 17530.8, + "end": 17532.33, + "probability": 0.7185 + }, + { + "start": 17532.66, + "end": 17533.34, + "probability": 0.8746 + }, + { + "start": 17533.4, + "end": 17535.16, + "probability": 0.866 + }, + { + "start": 17535.18, + "end": 17535.78, + "probability": 0.8985 + }, + { + "start": 17536.3, + "end": 17537.72, + "probability": 0.9747 + }, + { + "start": 17537.8, + "end": 17541.48, + "probability": 0.9419 + }, + { + "start": 17541.72, + "end": 17547.68, + "probability": 0.9863 + }, + { + "start": 17549.15, + "end": 17553.14, + "probability": 0.989 + }, + { + "start": 17553.14, + "end": 17557.0, + "probability": 0.9139 + }, + { + "start": 17557.76, + "end": 17558.5, + "probability": 0.7605 + }, + { + "start": 17558.72, + "end": 17561.93, + "probability": 0.4745 + }, + { + "start": 17562.84, + "end": 17563.22, + "probability": 0.5059 + }, + { + "start": 17563.32, + "end": 17567.18, + "probability": 0.9885 + }, + { + "start": 17567.18, + "end": 17570.56, + "probability": 0.9978 + }, + { + "start": 17571.22, + "end": 17571.88, + "probability": 0.7507 + }, + { + "start": 17572.32, + "end": 17574.24, + "probability": 0.8053 + }, + { + "start": 17574.36, + "end": 17578.24, + "probability": 0.8854 + }, + { + "start": 17578.36, + "end": 17579.48, + "probability": 0.8401 + }, + { + "start": 17579.54, + "end": 17580.04, + "probability": 0.8511 + }, + { + "start": 17580.06, + "end": 17580.98, + "probability": 0.9678 + }, + { + "start": 17581.0, + "end": 17581.8, + "probability": 0.9628 + }, + { + "start": 17581.88, + "end": 17583.92, + "probability": 0.7035 + }, + { + "start": 17584.04, + "end": 17584.72, + "probability": 0.6306 + }, + { + "start": 17585.22, + "end": 17585.98, + "probability": 0.896 + }, + { + "start": 17586.16, + "end": 17587.46, + "probability": 0.7129 + }, + { + "start": 17587.54, + "end": 17588.48, + "probability": 0.9287 + }, + { + "start": 17588.98, + "end": 17591.02, + "probability": 0.9038 + }, + { + "start": 17591.76, + "end": 17592.38, + "probability": 0.7954 + }, + { + "start": 17592.86, + "end": 17593.28, + "probability": 0.8894 + }, + { + "start": 17593.58, + "end": 17595.12, + "probability": 0.7101 + }, + { + "start": 17595.16, + "end": 17595.56, + "probability": 0.9462 + }, + { + "start": 17595.66, + "end": 17596.32, + "probability": 0.9447 + }, + { + "start": 17596.4, + "end": 17597.25, + "probability": 0.9653 + }, + { + "start": 17597.36, + "end": 17598.12, + "probability": 0.9849 + }, + { + "start": 17598.42, + "end": 17599.04, + "probability": 0.9778 + }, + { + "start": 17599.1, + "end": 17600.24, + "probability": 0.8328 + }, + { + "start": 17600.82, + "end": 17603.5, + "probability": 0.739 + }, + { + "start": 17603.62, + "end": 17604.72, + "probability": 0.8579 + }, + { + "start": 17605.3, + "end": 17608.14, + "probability": 0.9304 + }, + { + "start": 17608.52, + "end": 17610.4, + "probability": 0.764 + }, + { + "start": 17610.48, + "end": 17613.12, + "probability": 0.8822 + }, + { + "start": 17613.76, + "end": 17616.48, + "probability": 0.9454 + }, + { + "start": 17616.58, + "end": 17621.14, + "probability": 0.9814 + }, + { + "start": 17621.22, + "end": 17623.26, + "probability": 0.9956 + }, + { + "start": 17623.94, + "end": 17627.44, + "probability": 0.9976 + }, + { + "start": 17627.94, + "end": 17628.68, + "probability": 0.4469 + }, + { + "start": 17628.84, + "end": 17630.02, + "probability": 0.9559 + }, + { + "start": 17630.36, + "end": 17632.44, + "probability": 0.9531 + }, + { + "start": 17632.83, + "end": 17637.6, + "probability": 0.994 + }, + { + "start": 17637.84, + "end": 17638.48, + "probability": 0.6709 + }, + { + "start": 17638.52, + "end": 17639.46, + "probability": 0.8302 + }, + { + "start": 17641.83, + "end": 17643.58, + "probability": 0.0143 + }, + { + "start": 17643.58, + "end": 17645.24, + "probability": 0.7327 + }, + { + "start": 17645.26, + "end": 17646.36, + "probability": 0.8173 + }, + { + "start": 17646.72, + "end": 17648.3, + "probability": 0.9721 + }, + { + "start": 17648.4, + "end": 17651.12, + "probability": 0.9158 + }, + { + "start": 17651.52, + "end": 17655.22, + "probability": 0.8012 + }, + { + "start": 17655.28, + "end": 17657.38, + "probability": 0.9872 + }, + { + "start": 17657.82, + "end": 17659.1, + "probability": 0.7946 + }, + { + "start": 17659.16, + "end": 17661.3, + "probability": 0.8634 + }, + { + "start": 17661.3, + "end": 17663.32, + "probability": 0.8723 + }, + { + "start": 17664.82, + "end": 17666.82, + "probability": 0.9175 + }, + { + "start": 17666.92, + "end": 17669.64, + "probability": 0.981 + }, + { + "start": 17669.8, + "end": 17671.67, + "probability": 0.9688 + }, + { + "start": 17672.0, + "end": 17673.06, + "probability": 0.9093 + }, + { + "start": 17673.34, + "end": 17674.64, + "probability": 0.8772 + }, + { + "start": 17674.7, + "end": 17675.98, + "probability": 0.9777 + }, + { + "start": 17676.34, + "end": 17676.54, + "probability": 0.4854 + }, + { + "start": 17676.58, + "end": 17679.22, + "probability": 0.9881 + }, + { + "start": 17679.66, + "end": 17682.14, + "probability": 0.9376 + }, + { + "start": 17682.5, + "end": 17683.14, + "probability": 0.8853 + }, + { + "start": 17683.3, + "end": 17684.26, + "probability": 0.8746 + }, + { + "start": 17684.32, + "end": 17687.46, + "probability": 0.9834 + }, + { + "start": 17687.92, + "end": 17694.86, + "probability": 0.9368 + }, + { + "start": 17695.04, + "end": 17697.14, + "probability": 0.9893 + }, + { + "start": 17698.02, + "end": 17700.88, + "probability": 0.9949 + }, + { + "start": 17700.88, + "end": 17705.42, + "probability": 0.9934 + }, + { + "start": 17705.84, + "end": 17707.23, + "probability": 0.9951 + }, + { + "start": 17707.78, + "end": 17709.07, + "probability": 0.7832 + }, + { + "start": 17709.3, + "end": 17711.34, + "probability": 0.7683 + }, + { + "start": 17711.66, + "end": 17712.28, + "probability": 0.6472 + }, + { + "start": 17712.38, + "end": 17713.76, + "probability": 0.9403 + }, + { + "start": 17714.14, + "end": 17714.56, + "probability": 0.6677 + }, + { + "start": 17715.06, + "end": 17717.44, + "probability": 0.9302 + }, + { + "start": 17717.54, + "end": 17719.36, + "probability": 0.9214 + }, + { + "start": 17719.78, + "end": 17720.38, + "probability": 0.4199 + }, + { + "start": 17720.46, + "end": 17721.52, + "probability": 0.9162 + }, + { + "start": 17721.96, + "end": 17722.88, + "probability": 0.6761 + }, + { + "start": 17723.64, + "end": 17724.74, + "probability": 0.7704 + }, + { + "start": 17731.84, + "end": 17733.82, + "probability": 0.7007 + }, + { + "start": 17734.52, + "end": 17737.74, + "probability": 0.8523 + }, + { + "start": 17738.64, + "end": 17740.06, + "probability": 0.9704 + }, + { + "start": 17740.98, + "end": 17743.59, + "probability": 0.9594 + }, + { + "start": 17743.66, + "end": 17747.38, + "probability": 0.7614 + }, + { + "start": 17748.46, + "end": 17750.2, + "probability": 0.7599 + }, + { + "start": 17750.36, + "end": 17751.6, + "probability": 0.7668 + }, + { + "start": 17752.58, + "end": 17753.2, + "probability": 0.7742 + }, + { + "start": 17753.38, + "end": 17756.02, + "probability": 0.9248 + }, + { + "start": 17756.44, + "end": 17761.28, + "probability": 0.8918 + }, + { + "start": 17761.46, + "end": 17765.0, + "probability": 0.9665 + }, + { + "start": 17766.24, + "end": 17769.2, + "probability": 0.8451 + }, + { + "start": 17770.04, + "end": 17772.4, + "probability": 0.9961 + }, + { + "start": 17773.18, + "end": 17776.24, + "probability": 0.8927 + }, + { + "start": 17777.3, + "end": 17779.48, + "probability": 0.9334 + }, + { + "start": 17779.48, + "end": 17781.5, + "probability": 0.8914 + }, + { + "start": 17782.76, + "end": 17789.14, + "probability": 0.9655 + }, + { + "start": 17789.3, + "end": 17789.7, + "probability": 0.8786 + }, + { + "start": 17790.32, + "end": 17791.36, + "probability": 0.915 + }, + { + "start": 17792.28, + "end": 17794.84, + "probability": 0.8603 + }, + { + "start": 17795.5, + "end": 17797.9, + "probability": 0.9102 + }, + { + "start": 17798.42, + "end": 17801.98, + "probability": 0.9583 + }, + { + "start": 17803.02, + "end": 17805.94, + "probability": 0.8976 + }, + { + "start": 17806.6, + "end": 17808.28, + "probability": 0.9952 + }, + { + "start": 17808.92, + "end": 17810.79, + "probability": 0.9776 + }, + { + "start": 17811.78, + "end": 17812.76, + "probability": 0.9626 + }, + { + "start": 17813.44, + "end": 17815.68, + "probability": 0.7842 + }, + { + "start": 17816.26, + "end": 17817.28, + "probability": 0.9097 + }, + { + "start": 17817.78, + "end": 17820.9, + "probability": 0.9825 + }, + { + "start": 17821.28, + "end": 17822.02, + "probability": 0.642 + }, + { + "start": 17822.68, + "end": 17824.92, + "probability": 0.8595 + }, + { + "start": 17825.36, + "end": 17827.32, + "probability": 0.9619 + }, + { + "start": 17828.14, + "end": 17829.12, + "probability": 0.9617 + }, + { + "start": 17829.18, + "end": 17832.86, + "probability": 0.9877 + }, + { + "start": 17833.56, + "end": 17836.38, + "probability": 0.8613 + }, + { + "start": 17836.72, + "end": 17841.04, + "probability": 0.9886 + }, + { + "start": 17841.04, + "end": 17844.5, + "probability": 0.9725 + }, + { + "start": 17845.84, + "end": 17847.1, + "probability": 0.9459 + }, + { + "start": 17847.46, + "end": 17848.64, + "probability": 0.9614 + }, + { + "start": 17849.04, + "end": 17851.2, + "probability": 0.9282 + }, + { + "start": 17851.78, + "end": 17855.72, + "probability": 0.853 + }, + { + "start": 17855.72, + "end": 17858.2, + "probability": 0.9982 + }, + { + "start": 17858.98, + "end": 17863.88, + "probability": 0.9828 + }, + { + "start": 17864.4, + "end": 17866.58, + "probability": 0.996 + }, + { + "start": 17867.38, + "end": 17871.84, + "probability": 0.9819 + }, + { + "start": 17872.44, + "end": 17874.7, + "probability": 0.8444 + }, + { + "start": 17875.26, + "end": 17876.54, + "probability": 0.9194 + }, + { + "start": 17876.8, + "end": 17876.98, + "probability": 0.4106 + }, + { + "start": 17877.02, + "end": 17877.9, + "probability": 0.8576 + }, + { + "start": 17878.24, + "end": 17878.34, + "probability": 0.4435 + }, + { + "start": 17878.48, + "end": 17879.2, + "probability": 0.5516 + }, + { + "start": 17879.84, + "end": 17882.68, + "probability": 0.998 + }, + { + "start": 17882.68, + "end": 17886.46, + "probability": 0.9005 + }, + { + "start": 17887.34, + "end": 17889.82, + "probability": 0.9788 + }, + { + "start": 17889.92, + "end": 17892.66, + "probability": 0.9871 + }, + { + "start": 17893.48, + "end": 17896.52, + "probability": 0.8467 + }, + { + "start": 17897.26, + "end": 17899.94, + "probability": 0.9783 + }, + { + "start": 17900.86, + "end": 17901.84, + "probability": 0.8227 + }, + { + "start": 17901.96, + "end": 17904.18, + "probability": 0.7131 + }, + { + "start": 17904.68, + "end": 17907.36, + "probability": 0.961 + }, + { + "start": 17907.72, + "end": 17908.24, + "probability": 0.4104 + }, + { + "start": 17908.82, + "end": 17909.44, + "probability": 0.7344 + }, + { + "start": 17910.1, + "end": 17913.72, + "probability": 0.8523 + }, + { + "start": 17914.4, + "end": 17915.88, + "probability": 0.8457 + }, + { + "start": 17916.56, + "end": 17917.08, + "probability": 0.7501 + }, + { + "start": 17917.12, + "end": 17918.44, + "probability": 0.8279 + }, + { + "start": 17918.68, + "end": 17920.68, + "probability": 0.8689 + }, + { + "start": 17921.8, + "end": 17925.14, + "probability": 0.9025 + }, + { + "start": 17926.1, + "end": 17926.93, + "probability": 0.9083 + }, + { + "start": 17927.72, + "end": 17928.48, + "probability": 0.7571 + }, + { + "start": 17929.06, + "end": 17930.46, + "probability": 0.499 + }, + { + "start": 17931.18, + "end": 17933.5, + "probability": 0.9808 + }, + { + "start": 17934.38, + "end": 17936.14, + "probability": 0.5715 + }, + { + "start": 17936.2, + "end": 17938.02, + "probability": 0.9724 + }, + { + "start": 17938.38, + "end": 17938.96, + "probability": 0.8245 + }, + { + "start": 17939.46, + "end": 17945.44, + "probability": 0.9355 + }, + { + "start": 17945.52, + "end": 17945.94, + "probability": 0.9363 + }, + { + "start": 17945.98, + "end": 17946.66, + "probability": 0.8478 + }, + { + "start": 17947.5, + "end": 17948.14, + "probability": 0.7156 + }, + { + "start": 17949.02, + "end": 17950.5, + "probability": 0.9271 + }, + { + "start": 17951.2, + "end": 17952.08, + "probability": 0.7871 + }, + { + "start": 17952.88, + "end": 17954.28, + "probability": 0.7677 + }, + { + "start": 17954.44, + "end": 17956.13, + "probability": 0.9896 + }, + { + "start": 17956.8, + "end": 17958.84, + "probability": 0.8905 + }, + { + "start": 17960.26, + "end": 17962.32, + "probability": 0.8517 + }, + { + "start": 17963.02, + "end": 17964.36, + "probability": 0.9649 + }, + { + "start": 17964.46, + "end": 17965.5, + "probability": 0.8156 + }, + { + "start": 17965.9, + "end": 17966.7, + "probability": 0.7585 + }, + { + "start": 17966.78, + "end": 17967.12, + "probability": 0.606 + }, + { + "start": 17967.2, + "end": 17968.36, + "probability": 0.8298 + }, + { + "start": 17968.52, + "end": 17968.96, + "probability": 0.7072 + }, + { + "start": 17969.04, + "end": 17970.28, + "probability": 0.9785 + }, + { + "start": 17970.74, + "end": 17972.08, + "probability": 0.9658 + }, + { + "start": 17972.56, + "end": 17973.92, + "probability": 0.9885 + }, + { + "start": 17974.14, + "end": 17974.64, + "probability": 0.8664 + }, + { + "start": 17975.58, + "end": 17975.72, + "probability": 0.2195 + }, + { + "start": 17975.72, + "end": 17977.08, + "probability": 0.9658 + }, + { + "start": 17977.22, + "end": 17979.57, + "probability": 0.9819 + }, + { + "start": 17980.34, + "end": 17982.58, + "probability": 0.9722 + }, + { + "start": 17983.0, + "end": 17984.84, + "probability": 0.9893 + }, + { + "start": 17985.08, + "end": 17988.04, + "probability": 0.9151 + }, + { + "start": 17988.88, + "end": 17993.24, + "probability": 0.9626 + }, + { + "start": 17993.92, + "end": 17994.28, + "probability": 0.4931 + }, + { + "start": 17994.38, + "end": 17995.32, + "probability": 0.868 + }, + { + "start": 17995.7, + "end": 17996.12, + "probability": 0.5834 + }, + { + "start": 17996.16, + "end": 17996.44, + "probability": 0.8366 + }, + { + "start": 17996.52, + "end": 17996.9, + "probability": 0.5279 + }, + { + "start": 17997.04, + "end": 17998.48, + "probability": 0.2775 + }, + { + "start": 17998.96, + "end": 18002.08, + "probability": 0.8696 + }, + { + "start": 18004.38, + "end": 18009.0, + "probability": 0.72 + }, + { + "start": 18009.58, + "end": 18012.12, + "probability": 0.9245 + }, + { + "start": 18012.82, + "end": 18014.32, + "probability": 0.9862 + }, + { + "start": 18014.4, + "end": 18015.18, + "probability": 0.821 + }, + { + "start": 18016.02, + "end": 18017.06, + "probability": 0.979 + }, + { + "start": 18017.62, + "end": 18018.84, + "probability": 0.6619 + }, + { + "start": 18019.12, + "end": 18019.2, + "probability": 0.4619 + }, + { + "start": 18019.5, + "end": 18020.32, + "probability": 0.7792 + }, + { + "start": 18020.68, + "end": 18021.5, + "probability": 0.9469 + }, + { + "start": 18021.68, + "end": 18026.58, + "probability": 0.9538 + }, + { + "start": 18027.48, + "end": 18029.4, + "probability": 0.8468 + }, + { + "start": 18030.08, + "end": 18031.46, + "probability": 0.9947 + }, + { + "start": 18031.52, + "end": 18031.9, + "probability": 0.9187 + }, + { + "start": 18032.4, + "end": 18034.36, + "probability": 0.7319 + }, + { + "start": 18034.48, + "end": 18036.96, + "probability": 0.8151 + }, + { + "start": 18037.18, + "end": 18039.68, + "probability": 0.7122 + }, + { + "start": 18039.82, + "end": 18040.62, + "probability": 0.4839 + }, + { + "start": 18040.62, + "end": 18041.48, + "probability": 0.7231 + }, + { + "start": 18044.44, + "end": 18046.04, + "probability": 0.5857 + }, + { + "start": 18046.68, + "end": 18048.08, + "probability": 0.8699 + }, + { + "start": 18049.4, + "end": 18050.36, + "probability": 0.8799 + }, + { + "start": 18051.26, + "end": 18051.7, + "probability": 0.7899 + }, + { + "start": 18052.34, + "end": 18052.82, + "probability": 0.353 + }, + { + "start": 18054.92, + "end": 18057.22, + "probability": 0.9341 + }, + { + "start": 18057.32, + "end": 18059.02, + "probability": 0.8651 + }, + { + "start": 18059.44, + "end": 18060.88, + "probability": 0.8617 + }, + { + "start": 18062.72, + "end": 18067.4, + "probability": 0.9796 + }, + { + "start": 18068.26, + "end": 18070.86, + "probability": 0.9934 + }, + { + "start": 18070.96, + "end": 18074.32, + "probability": 0.9933 + }, + { + "start": 18075.06, + "end": 18077.72, + "probability": 0.9038 + }, + { + "start": 18078.68, + "end": 18083.9, + "probability": 0.996 + }, + { + "start": 18085.06, + "end": 18087.4, + "probability": 0.9988 + }, + { + "start": 18088.94, + "end": 18090.26, + "probability": 0.7419 + }, + { + "start": 18090.82, + "end": 18094.72, + "probability": 0.7343 + }, + { + "start": 18095.4, + "end": 18100.04, + "probability": 0.9923 + }, + { + "start": 18101.1, + "end": 18103.23, + "probability": 0.9874 + }, + { + "start": 18103.82, + "end": 18108.62, + "probability": 0.7266 + }, + { + "start": 18109.3, + "end": 18110.36, + "probability": 0.7449 + }, + { + "start": 18112.48, + "end": 18116.86, + "probability": 0.9976 + }, + { + "start": 18117.9, + "end": 18118.83, + "probability": 0.8719 + }, + { + "start": 18120.52, + "end": 18122.32, + "probability": 0.7006 + }, + { + "start": 18123.28, + "end": 18128.77, + "probability": 0.9783 + }, + { + "start": 18129.74, + "end": 18130.65, + "probability": 0.9932 + }, + { + "start": 18131.38, + "end": 18134.6, + "probability": 0.9269 + }, + { + "start": 18134.64, + "end": 18137.42, + "probability": 0.9614 + }, + { + "start": 18138.6, + "end": 18144.02, + "probability": 0.959 + }, + { + "start": 18144.24, + "end": 18145.32, + "probability": 0.9951 + }, + { + "start": 18147.16, + "end": 18149.52, + "probability": 0.9966 + }, + { + "start": 18149.7, + "end": 18150.32, + "probability": 0.7312 + }, + { + "start": 18150.46, + "end": 18152.8, + "probability": 0.9906 + }, + { + "start": 18153.88, + "end": 18156.92, + "probability": 0.9852 + }, + { + "start": 18156.92, + "end": 18160.06, + "probability": 0.9932 + }, + { + "start": 18160.46, + "end": 18163.78, + "probability": 0.812 + }, + { + "start": 18164.6, + "end": 18166.2, + "probability": 0.9966 + }, + { + "start": 18166.44, + "end": 18171.34, + "probability": 0.9757 + }, + { + "start": 18171.34, + "end": 18176.28, + "probability": 0.9959 + }, + { + "start": 18177.0, + "end": 18180.06, + "probability": 0.9979 + }, + { + "start": 18181.04, + "end": 18182.1, + "probability": 0.9458 + }, + { + "start": 18182.88, + "end": 18184.04, + "probability": 0.9993 + }, + { + "start": 18184.58, + "end": 18184.82, + "probability": 0.2813 + }, + { + "start": 18184.82, + "end": 18186.18, + "probability": 0.7178 + }, + { + "start": 18186.28, + "end": 18186.9, + "probability": 0.6518 + }, + { + "start": 18187.3, + "end": 18188.74, + "probability": 0.9556 + }, + { + "start": 18189.16, + "end": 18190.16, + "probability": 0.983 + }, + { + "start": 18190.32, + "end": 18194.14, + "probability": 0.8687 + }, + { + "start": 18194.82, + "end": 18199.7, + "probability": 0.9954 + }, + { + "start": 18200.2, + "end": 18200.72, + "probability": 0.4926 + }, + { + "start": 18201.08, + "end": 18203.38, + "probability": 0.959 + }, + { + "start": 18203.54, + "end": 18205.5, + "probability": 0.9397 + }, + { + "start": 18206.2, + "end": 18206.46, + "probability": 0.5991 + }, + { + "start": 18207.26, + "end": 18210.8, + "probability": 0.8986 + }, + { + "start": 18211.4, + "end": 18213.7, + "probability": 0.9983 + }, + { + "start": 18213.7, + "end": 18216.54, + "probability": 0.9758 + }, + { + "start": 18216.7, + "end": 18219.58, + "probability": 0.8465 + }, + { + "start": 18219.66, + "end": 18220.3, + "probability": 0.8589 + }, + { + "start": 18220.62, + "end": 18221.78, + "probability": 0.8423 + }, + { + "start": 18221.94, + "end": 18225.04, + "probability": 0.8394 + }, + { + "start": 18225.34, + "end": 18227.82, + "probability": 0.9488 + }, + { + "start": 18228.02, + "end": 18229.31, + "probability": 0.8393 + }, + { + "start": 18229.66, + "end": 18235.91, + "probability": 0.9573 + }, + { + "start": 18236.16, + "end": 18238.32, + "probability": 0.8999 + }, + { + "start": 18238.62, + "end": 18243.98, + "probability": 0.9674 + }, + { + "start": 18244.82, + "end": 18246.8, + "probability": 0.8384 + }, + { + "start": 18246.96, + "end": 18247.98, + "probability": 0.4247 + }, + { + "start": 18248.42, + "end": 18251.4, + "probability": 0.997 + }, + { + "start": 18251.52, + "end": 18254.14, + "probability": 0.9346 + }, + { + "start": 18254.2, + "end": 18258.18, + "probability": 0.8076 + }, + { + "start": 18258.34, + "end": 18259.31, + "probability": 0.9932 + }, + { + "start": 18260.34, + "end": 18263.56, + "probability": 0.9497 + }, + { + "start": 18264.5, + "end": 18267.26, + "probability": 0.8584 + }, + { + "start": 18268.08, + "end": 18268.8, + "probability": 0.9521 + }, + { + "start": 18268.86, + "end": 18269.3, + "probability": 0.9673 + }, + { + "start": 18269.56, + "end": 18272.98, + "probability": 0.9872 + }, + { + "start": 18273.18, + "end": 18273.82, + "probability": 0.8804 + }, + { + "start": 18273.9, + "end": 18274.42, + "probability": 0.8991 + }, + { + "start": 18274.54, + "end": 18275.4, + "probability": 0.9469 + }, + { + "start": 18276.26, + "end": 18279.86, + "probability": 0.6353 + }, + { + "start": 18280.58, + "end": 18282.02, + "probability": 0.9327 + }, + { + "start": 18282.2, + "end": 18283.28, + "probability": 0.96 + }, + { + "start": 18283.38, + "end": 18287.78, + "probability": 0.9907 + }, + { + "start": 18287.88, + "end": 18288.94, + "probability": 0.9716 + }, + { + "start": 18289.66, + "end": 18294.38, + "probability": 0.9976 + }, + { + "start": 18295.38, + "end": 18295.48, + "probability": 0.1924 + }, + { + "start": 18295.56, + "end": 18296.62, + "probability": 0.7793 + }, + { + "start": 18296.72, + "end": 18297.72, + "probability": 0.9193 + }, + { + "start": 18297.94, + "end": 18298.95, + "probability": 0.8247 + }, + { + "start": 18299.66, + "end": 18300.34, + "probability": 0.4653 + }, + { + "start": 18300.52, + "end": 18301.3, + "probability": 0.9854 + }, + { + "start": 18301.46, + "end": 18303.7, + "probability": 0.9768 + }, + { + "start": 18304.4, + "end": 18306.3, + "probability": 0.9937 + }, + { + "start": 18306.3, + "end": 18307.59, + "probability": 0.9713 + }, + { + "start": 18308.4, + "end": 18308.48, + "probability": 0.5751 + }, + { + "start": 18308.54, + "end": 18308.68, + "probability": 0.4583 + }, + { + "start": 18308.68, + "end": 18309.16, + "probability": 0.4977 + }, + { + "start": 18309.18, + "end": 18310.04, + "probability": 0.663 + }, + { + "start": 18310.1, + "end": 18310.3, + "probability": 0.9363 + }, + { + "start": 18310.42, + "end": 18310.94, + "probability": 0.8786 + }, + { + "start": 18311.41, + "end": 18312.82, + "probability": 0.9819 + }, + { + "start": 18312.82, + "end": 18313.48, + "probability": 0.5717 + }, + { + "start": 18313.64, + "end": 18316.02, + "probability": 0.9346 + }, + { + "start": 18316.24, + "end": 18316.24, + "probability": 0.8458 + }, + { + "start": 18316.24, + "end": 18318.62, + "probability": 0.9632 + }, + { + "start": 18318.82, + "end": 18320.54, + "probability": 0.9421 + }, + { + "start": 18320.76, + "end": 18321.28, + "probability": 0.5032 + }, + { + "start": 18321.42, + "end": 18321.8, + "probability": 0.2464 + }, + { + "start": 18321.82, + "end": 18324.14, + "probability": 0.8532 + }, + { + "start": 18324.58, + "end": 18325.7, + "probability": 0.9551 + }, + { + "start": 18325.8, + "end": 18330.04, + "probability": 0.9832 + }, + { + "start": 18330.74, + "end": 18332.4, + "probability": 0.7599 + }, + { + "start": 18332.46, + "end": 18333.32, + "probability": 0.7443 + }, + { + "start": 18333.44, + "end": 18336.62, + "probability": 0.7524 + }, + { + "start": 18336.98, + "end": 18338.96, + "probability": 0.9498 + }, + { + "start": 18339.78, + "end": 18342.04, + "probability": 0.9678 + }, + { + "start": 18342.24, + "end": 18343.56, + "probability": 0.8535 + }, + { + "start": 18343.58, + "end": 18344.52, + "probability": 0.5735 + }, + { + "start": 18344.9, + "end": 18345.82, + "probability": 0.7354 + }, + { + "start": 18346.02, + "end": 18348.02, + "probability": 0.7788 + }, + { + "start": 18348.08, + "end": 18349.96, + "probability": 0.9232 + }, + { + "start": 18350.64, + "end": 18354.0, + "probability": 0.9839 + }, + { + "start": 18354.0, + "end": 18357.12, + "probability": 0.6772 + }, + { + "start": 18357.2, + "end": 18357.24, + "probability": 0.4899 + }, + { + "start": 18357.24, + "end": 18358.32, + "probability": 0.9883 + }, + { + "start": 18359.08, + "end": 18361.4, + "probability": 0.8368 + }, + { + "start": 18361.62, + "end": 18363.52, + "probability": 0.9941 + }, + { + "start": 18363.88, + "end": 18365.18, + "probability": 0.9221 + }, + { + "start": 18365.28, + "end": 18365.98, + "probability": 0.7302 + }, + { + "start": 18366.68, + "end": 18369.04, + "probability": 0.9023 + }, + { + "start": 18369.24, + "end": 18371.48, + "probability": 0.9864 + }, + { + "start": 18372.28, + "end": 18376.94, + "probability": 0.7022 + }, + { + "start": 18376.94, + "end": 18380.68, + "probability": 0.9982 + }, + { + "start": 18381.06, + "end": 18382.34, + "probability": 0.9889 + }, + { + "start": 18382.46, + "end": 18384.76, + "probability": 0.9868 + }, + { + "start": 18385.44, + "end": 18386.48, + "probability": 0.8835 + }, + { + "start": 18387.1, + "end": 18394.18, + "probability": 0.9959 + }, + { + "start": 18394.66, + "end": 18396.16, + "probability": 0.8816 + }, + { + "start": 18396.78, + "end": 18397.96, + "probability": 0.7297 + }, + { + "start": 18398.0, + "end": 18400.04, + "probability": 0.9968 + }, + { + "start": 18400.3, + "end": 18401.46, + "probability": 0.9123 + }, + { + "start": 18401.7, + "end": 18402.36, + "probability": 0.9547 + }, + { + "start": 18402.44, + "end": 18403.16, + "probability": 0.4644 + }, + { + "start": 18403.38, + "end": 18406.86, + "probability": 0.75 + }, + { + "start": 18407.18, + "end": 18408.5, + "probability": 0.8203 + }, + { + "start": 18408.6, + "end": 18408.8, + "probability": 0.7947 + }, + { + "start": 18409.0, + "end": 18411.11, + "probability": 0.7063 + }, + { + "start": 18411.88, + "end": 18415.12, + "probability": 0.7782 + }, + { + "start": 18415.48, + "end": 18416.78, + "probability": 0.7991 + }, + { + "start": 18417.8, + "end": 18418.24, + "probability": 0.8343 + }, + { + "start": 18418.86, + "end": 18418.96, + "probability": 0.3967 + }, + { + "start": 18442.06, + "end": 18443.78, + "probability": 0.588 + }, + { + "start": 18447.64, + "end": 18448.86, + "probability": 0.8391 + }, + { + "start": 18449.46, + "end": 18451.12, + "probability": 0.5025 + }, + { + "start": 18452.14, + "end": 18452.66, + "probability": 0.9896 + }, + { + "start": 18455.16, + "end": 18455.62, + "probability": 0.8531 + }, + { + "start": 18455.82, + "end": 18456.3, + "probability": 0.807 + }, + { + "start": 18456.44, + "end": 18457.5, + "probability": 0.8952 + }, + { + "start": 18457.84, + "end": 18459.38, + "probability": 0.9549 + }, + { + "start": 18459.48, + "end": 18461.8, + "probability": 0.9072 + }, + { + "start": 18462.02, + "end": 18462.8, + "probability": 0.5389 + }, + { + "start": 18462.92, + "end": 18464.9, + "probability": 0.9807 + }, + { + "start": 18466.0, + "end": 18469.74, + "probability": 0.8075 + }, + { + "start": 18470.72, + "end": 18474.06, + "probability": 0.9973 + }, + { + "start": 18474.7, + "end": 18479.06, + "probability": 0.9681 + }, + { + "start": 18479.36, + "end": 18484.04, + "probability": 0.978 + }, + { + "start": 18484.24, + "end": 18485.45, + "probability": 0.9106 + }, + { + "start": 18487.54, + "end": 18489.3, + "probability": 0.9832 + }, + { + "start": 18490.46, + "end": 18496.48, + "probability": 0.9985 + }, + { + "start": 18497.2, + "end": 18500.01, + "probability": 0.9393 + }, + { + "start": 18500.4, + "end": 18505.78, + "probability": 0.9928 + }, + { + "start": 18505.9, + "end": 18509.18, + "probability": 0.7754 + }, + { + "start": 18509.22, + "end": 18510.16, + "probability": 0.7937 + }, + { + "start": 18511.14, + "end": 18515.64, + "probability": 0.6431 + }, + { + "start": 18515.64, + "end": 18518.8, + "probability": 0.9664 + }, + { + "start": 18519.56, + "end": 18521.68, + "probability": 0.7973 + }, + { + "start": 18522.7, + "end": 18528.44, + "probability": 0.9859 + }, + { + "start": 18528.5, + "end": 18530.78, + "probability": 0.8842 + }, + { + "start": 18530.94, + "end": 18531.54, + "probability": 0.6082 + }, + { + "start": 18531.68, + "end": 18532.08, + "probability": 0.7639 + }, + { + "start": 18532.12, + "end": 18533.6, + "probability": 0.9143 + }, + { + "start": 18535.92, + "end": 18541.18, + "probability": 0.6565 + }, + { + "start": 18541.3, + "end": 18542.64, + "probability": 0.3716 + }, + { + "start": 18543.22, + "end": 18544.52, + "probability": 0.9844 + }, + { + "start": 18545.28, + "end": 18547.42, + "probability": 0.7166 + }, + { + "start": 18547.72, + "end": 18550.66, + "probability": 0.7226 + }, + { + "start": 18550.92, + "end": 18555.03, + "probability": 0.9359 + }, + { + "start": 18555.58, + "end": 18556.62, + "probability": 0.7195 + }, + { + "start": 18558.0, + "end": 18559.08, + "probability": 0.3514 + }, + { + "start": 18559.44, + "end": 18562.64, + "probability": 0.9536 + }, + { + "start": 18563.66, + "end": 18566.64, + "probability": 0.9912 + }, + { + "start": 18567.0, + "end": 18570.12, + "probability": 0.6901 + }, + { + "start": 18570.24, + "end": 18573.76, + "probability": 0.8837 + }, + { + "start": 18574.32, + "end": 18577.58, + "probability": 0.9364 + }, + { + "start": 18577.88, + "end": 18578.98, + "probability": 0.8494 + }, + { + "start": 18579.06, + "end": 18583.7, + "probability": 0.825 + }, + { + "start": 18584.08, + "end": 18584.72, + "probability": 0.2789 + }, + { + "start": 18584.82, + "end": 18585.66, + "probability": 0.8355 + }, + { + "start": 18585.74, + "end": 18586.5, + "probability": 0.7787 + }, + { + "start": 18586.52, + "end": 18588.1, + "probability": 0.7485 + }, + { + "start": 18588.52, + "end": 18591.0, + "probability": 0.9541 + }, + { + "start": 18591.16, + "end": 18592.1, + "probability": 0.7598 + }, + { + "start": 18592.72, + "end": 18596.72, + "probability": 0.9304 + }, + { + "start": 18598.04, + "end": 18600.67, + "probability": 0.9849 + }, + { + "start": 18601.02, + "end": 18602.6, + "probability": 0.8223 + }, + { + "start": 18602.72, + "end": 18604.99, + "probability": 0.7904 + }, + { + "start": 18606.0, + "end": 18608.28, + "probability": 0.8653 + }, + { + "start": 18608.4, + "end": 18609.88, + "probability": 0.9239 + }, + { + "start": 18609.98, + "end": 18611.28, + "probability": 0.5125 + }, + { + "start": 18611.58, + "end": 18615.2, + "probability": 0.9462 + }, + { + "start": 18615.2, + "end": 18618.38, + "probability": 0.9932 + }, + { + "start": 18618.72, + "end": 18619.95, + "probability": 0.9114 + }, + { + "start": 18620.38, + "end": 18626.58, + "probability": 0.8107 + }, + { + "start": 18626.96, + "end": 18628.1, + "probability": 0.9409 + }, + { + "start": 18628.2, + "end": 18629.0, + "probability": 0.93 + }, + { + "start": 18629.12, + "end": 18630.26, + "probability": 0.9642 + }, + { + "start": 18630.36, + "end": 18631.18, + "probability": 0.8532 + }, + { + "start": 18631.6, + "end": 18632.86, + "probability": 0.9385 + }, + { + "start": 18634.02, + "end": 18639.58, + "probability": 0.8688 + }, + { + "start": 18639.74, + "end": 18645.34, + "probability": 0.9295 + }, + { + "start": 18645.46, + "end": 18646.7, + "probability": 0.9971 + }, + { + "start": 18648.77, + "end": 18651.84, + "probability": 0.998 + }, + { + "start": 18651.84, + "end": 18656.94, + "probability": 0.9847 + }, + { + "start": 18657.38, + "end": 18660.48, + "probability": 0.9852 + }, + { + "start": 18661.1, + "end": 18664.68, + "probability": 0.9926 + }, + { + "start": 18664.8, + "end": 18666.12, + "probability": 0.7939 + }, + { + "start": 18666.64, + "end": 18667.24, + "probability": 0.5011 + }, + { + "start": 18667.56, + "end": 18669.16, + "probability": 0.9914 + }, + { + "start": 18669.5, + "end": 18671.18, + "probability": 0.9365 + }, + { + "start": 18671.44, + "end": 18671.8, + "probability": 0.9164 + }, + { + "start": 18671.88, + "end": 18674.78, + "probability": 0.9311 + }, + { + "start": 18675.18, + "end": 18679.08, + "probability": 0.9819 + }, + { + "start": 18679.26, + "end": 18679.88, + "probability": 0.3698 + }, + { + "start": 18680.2, + "end": 18681.1, + "probability": 0.845 + }, + { + "start": 18681.16, + "end": 18684.66, + "probability": 0.9866 + }, + { + "start": 18685.14, + "end": 18688.2, + "probability": 0.9933 + }, + { + "start": 18688.58, + "end": 18691.84, + "probability": 0.9767 + }, + { + "start": 18691.84, + "end": 18696.84, + "probability": 0.9824 + }, + { + "start": 18697.66, + "end": 18699.8, + "probability": 0.9002 + }, + { + "start": 18699.92, + "end": 18700.86, + "probability": 0.907 + }, + { + "start": 18700.9, + "end": 18701.54, + "probability": 0.9493 + }, + { + "start": 18701.58, + "end": 18702.88, + "probability": 0.9691 + }, + { + "start": 18703.2, + "end": 18704.14, + "probability": 0.9727 + }, + { + "start": 18704.3, + "end": 18706.38, + "probability": 0.9707 + }, + { + "start": 18706.86, + "end": 18708.7, + "probability": 0.8674 + }, + { + "start": 18709.54, + "end": 18711.4, + "probability": 0.1115 + }, + { + "start": 18711.68, + "end": 18713.42, + "probability": 0.3188 + }, + { + "start": 18713.58, + "end": 18714.84, + "probability": 0.7236 + }, + { + "start": 18715.48, + "end": 18718.78, + "probability": 0.9927 + }, + { + "start": 18720.7, + "end": 18722.7, + "probability": 0.8551 + }, + { + "start": 18722.84, + "end": 18723.78, + "probability": 0.9709 + }, + { + "start": 18723.86, + "end": 18724.38, + "probability": 0.7877 + }, + { + "start": 18724.54, + "end": 18728.5, + "probability": 0.6681 + }, + { + "start": 18729.36, + "end": 18731.29, + "probability": 0.9447 + }, + { + "start": 18732.8, + "end": 18734.4, + "probability": 0.9795 + }, + { + "start": 18734.64, + "end": 18735.36, + "probability": 0.3506 + }, + { + "start": 18736.52, + "end": 18741.56, + "probability": 0.8925 + }, + { + "start": 18742.42, + "end": 18744.54, + "probability": 0.9519 + }, + { + "start": 18744.54, + "end": 18747.14, + "probability": 0.984 + }, + { + "start": 18747.9, + "end": 18751.62, + "probability": 0.9996 + }, + { + "start": 18752.08, + "end": 18754.84, + "probability": 0.9763 + }, + { + "start": 18755.42, + "end": 18756.84, + "probability": 0.9624 + }, + { + "start": 18757.7, + "end": 18759.72, + "probability": 0.9849 + }, + { + "start": 18760.5, + "end": 18763.54, + "probability": 0.9844 + }, + { + "start": 18764.28, + "end": 18765.82, + "probability": 0.8221 + }, + { + "start": 18765.94, + "end": 18766.68, + "probability": 0.5538 + }, + { + "start": 18767.28, + "end": 18770.12, + "probability": 0.9358 + }, + { + "start": 18770.16, + "end": 18770.74, + "probability": 0.923 + }, + { + "start": 18771.26, + "end": 18774.74, + "probability": 0.821 + }, + { + "start": 18775.24, + "end": 18779.14, + "probability": 0.8149 + }, + { + "start": 18783.72, + "end": 18786.56, + "probability": 0.7563 + }, + { + "start": 18787.1, + "end": 18788.88, + "probability": 0.8073 + }, + { + "start": 18791.68, + "end": 18792.14, + "probability": 0.9642 + }, + { + "start": 18792.2, + "end": 18794.08, + "probability": 0.9534 + }, + { + "start": 18794.18, + "end": 18795.3, + "probability": 0.7018 + }, + { + "start": 18795.8, + "end": 18796.78, + "probability": 0.7006 + }, + { + "start": 18796.84, + "end": 18797.16, + "probability": 0.4791 + }, + { + "start": 18797.26, + "end": 18798.24, + "probability": 0.9722 + }, + { + "start": 18799.82, + "end": 18800.0, + "probability": 0.6771 + }, + { + "start": 18800.1, + "end": 18800.64, + "probability": 0.5032 + }, + { + "start": 18800.8, + "end": 18801.18, + "probability": 0.5497 + }, + { + "start": 18801.24, + "end": 18804.8, + "probability": 0.9607 + }, + { + "start": 18805.36, + "end": 18807.12, + "probability": 0.9644 + }, + { + "start": 18807.76, + "end": 18810.36, + "probability": 0.8945 + }, + { + "start": 18810.48, + "end": 18814.12, + "probability": 0.7532 + }, + { + "start": 18814.74, + "end": 18814.88, + "probability": 0.3183 + }, + { + "start": 18814.98, + "end": 18815.14, + "probability": 0.9241 + }, + { + "start": 18815.24, + "end": 18815.92, + "probability": 0.8404 + }, + { + "start": 18815.98, + "end": 18816.74, + "probability": 0.7611 + }, + { + "start": 18816.86, + "end": 18820.96, + "probability": 0.9281 + }, + { + "start": 18821.4, + "end": 18823.28, + "probability": 0.9946 + }, + { + "start": 18823.34, + "end": 18825.64, + "probability": 0.981 + }, + { + "start": 18825.78, + "end": 18825.86, + "probability": 0.3204 + }, + { + "start": 18825.98, + "end": 18826.18, + "probability": 0.4096 + }, + { + "start": 18826.24, + "end": 18829.6, + "probability": 0.9523 + }, + { + "start": 18829.7, + "end": 18833.52, + "probability": 0.8651 + }, + { + "start": 18834.12, + "end": 18836.36, + "probability": 0.9305 + }, + { + "start": 18837.34, + "end": 18839.92, + "probability": 0.9908 + }, + { + "start": 18840.18, + "end": 18843.62, + "probability": 0.9408 + }, + { + "start": 18844.08, + "end": 18845.96, + "probability": 0.9932 + }, + { + "start": 18846.0, + "end": 18848.01, + "probability": 0.5305 + }, + { + "start": 18848.48, + "end": 18849.24, + "probability": 0.9031 + }, + { + "start": 18849.32, + "end": 18850.16, + "probability": 0.8538 + }, + { + "start": 18850.48, + "end": 18852.22, + "probability": 0.825 + }, + { + "start": 18852.74, + "end": 18856.82, + "probability": 0.9724 + }, + { + "start": 18857.78, + "end": 18862.64, + "probability": 0.8556 + }, + { + "start": 18862.86, + "end": 18864.48, + "probability": 0.9075 + }, + { + "start": 18864.52, + "end": 18866.14, + "probability": 0.7872 + }, + { + "start": 18866.24, + "end": 18867.96, + "probability": 0.8979 + }, + { + "start": 18868.24, + "end": 18869.68, + "probability": 0.986 + }, + { + "start": 18869.74, + "end": 18871.05, + "probability": 0.9885 + }, + { + "start": 18871.56, + "end": 18873.04, + "probability": 0.6683 + }, + { + "start": 18873.18, + "end": 18874.66, + "probability": 0.8783 + }, + { + "start": 18875.76, + "end": 18876.52, + "probability": 0.2346 + }, + { + "start": 18876.84, + "end": 18877.74, + "probability": 0.7521 + }, + { + "start": 18877.9, + "end": 18878.52, + "probability": 0.6507 + }, + { + "start": 18878.74, + "end": 18880.24, + "probability": 0.988 + }, + { + "start": 18880.32, + "end": 18882.16, + "probability": 0.7631 + }, + { + "start": 18882.5, + "end": 18883.96, + "probability": 0.707 + }, + { + "start": 18884.02, + "end": 18888.52, + "probability": 0.5949 + }, + { + "start": 18890.24, + "end": 18891.48, + "probability": 0.6659 + }, + { + "start": 18891.56, + "end": 18892.42, + "probability": 0.7648 + }, + { + "start": 18898.14, + "end": 18898.58, + "probability": 0.1146 + }, + { + "start": 18901.5, + "end": 18902.38, + "probability": 0.1397 + }, + { + "start": 18907.8, + "end": 18908.3, + "probability": 0.8043 + }, + { + "start": 18908.3, + "end": 18909.44, + "probability": 0.5488 + }, + { + "start": 18909.56, + "end": 18910.85, + "probability": 0.6652 + }, + { + "start": 18914.06, + "end": 18914.7, + "probability": 0.5878 + }, + { + "start": 18916.46, + "end": 18918.04, + "probability": 0.8253 + }, + { + "start": 18918.76, + "end": 18923.76, + "probability": 0.8588 + }, + { + "start": 18924.0, + "end": 18926.84, + "probability": 0.7487 + }, + { + "start": 18927.4, + "end": 18930.32, + "probability": 0.8522 + }, + { + "start": 18931.1, + "end": 18934.4, + "probability": 0.9486 + }, + { + "start": 18934.56, + "end": 18937.46, + "probability": 0.8979 + }, + { + "start": 18938.3, + "end": 18939.74, + "probability": 0.808 + }, + { + "start": 18941.06, + "end": 18944.04, + "probability": 0.2226 + }, + { + "start": 18968.0, + "end": 18968.78, + "probability": 0.5821 + }, + { + "start": 18969.62, + "end": 18970.48, + "probability": 0.6945 + }, + { + "start": 18971.4, + "end": 18976.06, + "probability": 0.9875 + }, + { + "start": 18976.72, + "end": 18978.48, + "probability": 0.7461 + }, + { + "start": 18979.18, + "end": 18980.14, + "probability": 0.9842 + }, + { + "start": 18980.24, + "end": 18981.98, + "probability": 0.9924 + }, + { + "start": 18982.3, + "end": 18983.61, + "probability": 0.9849 + }, + { + "start": 18984.2, + "end": 18985.68, + "probability": 0.9377 + }, + { + "start": 18985.88, + "end": 18986.4, + "probability": 0.444 + }, + { + "start": 18986.5, + "end": 18987.7, + "probability": 0.6815 + }, + { + "start": 18988.56, + "end": 18989.28, + "probability": 0.6577 + }, + { + "start": 18989.42, + "end": 18993.98, + "probability": 0.9889 + }, + { + "start": 18994.98, + "end": 18998.12, + "probability": 0.9672 + }, + { + "start": 18998.78, + "end": 19001.38, + "probability": 0.9713 + }, + { + "start": 19002.06, + "end": 19005.22, + "probability": 0.9895 + }, + { + "start": 19006.14, + "end": 19009.74, + "probability": 0.9976 + }, + { + "start": 19009.74, + "end": 19013.42, + "probability": 0.966 + }, + { + "start": 19014.36, + "end": 19017.96, + "probability": 0.9801 + }, + { + "start": 19019.02, + "end": 19022.18, + "probability": 0.9919 + }, + { + "start": 19022.18, + "end": 19025.88, + "probability": 0.9932 + }, + { + "start": 19026.56, + "end": 19030.16, + "probability": 0.8075 + }, + { + "start": 19030.48, + "end": 19033.94, + "probability": 0.9944 + }, + { + "start": 19035.08, + "end": 19038.42, + "probability": 0.9852 + }, + { + "start": 19038.98, + "end": 19041.86, + "probability": 0.9973 + }, + { + "start": 19042.72, + "end": 19044.16, + "probability": 0.9532 + }, + { + "start": 19044.34, + "end": 19045.2, + "probability": 0.4334 + }, + { + "start": 19045.46, + "end": 19047.98, + "probability": 0.9844 + }, + { + "start": 19048.2, + "end": 19048.68, + "probability": 0.6811 + }, + { + "start": 19048.8, + "end": 19053.64, + "probability": 0.9794 + }, + { + "start": 19054.38, + "end": 19054.88, + "probability": 0.7294 + }, + { + "start": 19055.02, + "end": 19058.62, + "probability": 0.9743 + }, + { + "start": 19059.04, + "end": 19062.6, + "probability": 0.6337 + }, + { + "start": 19063.94, + "end": 19070.58, + "probability": 0.9937 + }, + { + "start": 19071.26, + "end": 19073.56, + "probability": 0.7426 + }, + { + "start": 19074.32, + "end": 19075.22, + "probability": 0.7288 + }, + { + "start": 19075.8, + "end": 19076.85, + "probability": 0.4778 + }, + { + "start": 19077.36, + "end": 19078.2, + "probability": 0.8593 + }, + { + "start": 19078.58, + "end": 19082.98, + "probability": 0.9805 + }, + { + "start": 19083.74, + "end": 19086.62, + "probability": 0.7891 + }, + { + "start": 19087.22, + "end": 19089.88, + "probability": 0.9828 + }, + { + "start": 19090.46, + "end": 19091.04, + "probability": 0.7286 + }, + { + "start": 19091.52, + "end": 19095.28, + "probability": 0.984 + }, + { + "start": 19095.68, + "end": 19099.84, + "probability": 0.944 + }, + { + "start": 19099.84, + "end": 19104.34, + "probability": 0.9952 + }, + { + "start": 19105.08, + "end": 19110.01, + "probability": 0.988 + }, + { + "start": 19110.28, + "end": 19115.06, + "probability": 0.9932 + }, + { + "start": 19115.56, + "end": 19117.96, + "probability": 0.7366 + }, + { + "start": 19118.8, + "end": 19122.44, + "probability": 0.7746 + }, + { + "start": 19122.64, + "end": 19124.94, + "probability": 0.9952 + }, + { + "start": 19124.94, + "end": 19128.62, + "probability": 0.9985 + }, + { + "start": 19129.06, + "end": 19132.38, + "probability": 0.9943 + }, + { + "start": 19132.38, + "end": 19135.54, + "probability": 0.9993 + }, + { + "start": 19136.36, + "end": 19136.66, + "probability": 0.4467 + }, + { + "start": 19136.76, + "end": 19141.24, + "probability": 0.9835 + }, + { + "start": 19141.72, + "end": 19143.08, + "probability": 0.9937 + }, + { + "start": 19143.3, + "end": 19144.48, + "probability": 0.8287 + }, + { + "start": 19144.96, + "end": 19148.72, + "probability": 0.987 + }, + { + "start": 19149.42, + "end": 19152.8, + "probability": 0.9531 + }, + { + "start": 19153.34, + "end": 19154.44, + "probability": 0.8587 + }, + { + "start": 19154.62, + "end": 19156.38, + "probability": 0.9216 + }, + { + "start": 19156.68, + "end": 19157.66, + "probability": 0.6531 + }, + { + "start": 19157.82, + "end": 19158.94, + "probability": 0.8401 + }, + { + "start": 19159.86, + "end": 19161.46, + "probability": 0.9265 + }, + { + "start": 19161.54, + "end": 19164.88, + "probability": 0.9839 + }, + { + "start": 19164.88, + "end": 19168.28, + "probability": 0.9884 + }, + { + "start": 19168.46, + "end": 19168.62, + "probability": 0.4948 + }, + { + "start": 19169.08, + "end": 19171.0, + "probability": 0.9294 + }, + { + "start": 19171.16, + "end": 19171.86, + "probability": 0.0173 + }, + { + "start": 19171.86, + "end": 19171.86, + "probability": 0.0473 + }, + { + "start": 19171.86, + "end": 19175.38, + "probability": 0.8053 + }, + { + "start": 19175.94, + "end": 19178.9, + "probability": 0.8923 + }, + { + "start": 19179.64, + "end": 19180.26, + "probability": 0.5568 + }, + { + "start": 19180.28, + "end": 19181.4, + "probability": 0.7386 + }, + { + "start": 19181.68, + "end": 19185.06, + "probability": 0.9788 + }, + { + "start": 19185.52, + "end": 19187.16, + "probability": 0.7698 + }, + { + "start": 19187.48, + "end": 19188.86, + "probability": 0.9883 + }, + { + "start": 19190.0, + "end": 19191.2, + "probability": 0.852 + }, + { + "start": 19191.58, + "end": 19194.42, + "probability": 0.9248 + }, + { + "start": 19194.42, + "end": 19197.56, + "probability": 0.9967 + }, + { + "start": 19197.66, + "end": 19198.06, + "probability": 0.6638 + }, + { + "start": 19198.76, + "end": 19201.8, + "probability": 0.7281 + }, + { + "start": 19202.2, + "end": 19205.08, + "probability": 0.8597 + }, + { + "start": 19219.86, + "end": 19220.35, + "probability": 0.0993 + }, + { + "start": 19220.9, + "end": 19222.68, + "probability": 0.9837 + }, + { + "start": 19223.94, + "end": 19225.14, + "probability": 0.9095 + }, + { + "start": 19225.14, + "end": 19226.32, + "probability": 0.7468 + }, + { + "start": 19226.68, + "end": 19230.56, + "probability": 0.954 + }, + { + "start": 19230.58, + "end": 19231.56, + "probability": 0.9173 + }, + { + "start": 19232.9, + "end": 19235.64, + "probability": 0.7686 + }, + { + "start": 19235.82, + "end": 19236.51, + "probability": 0.4606 + }, + { + "start": 19236.62, + "end": 19237.46, + "probability": 0.5364 + }, + { + "start": 19237.56, + "end": 19240.2, + "probability": 0.9597 + }, + { + "start": 19240.32, + "end": 19245.16, + "probability": 0.9927 + }, + { + "start": 19245.74, + "end": 19247.17, + "probability": 0.8453 + }, + { + "start": 19247.56, + "end": 19251.08, + "probability": 0.9768 + }, + { + "start": 19251.18, + "end": 19253.28, + "probability": 0.9649 + }, + { + "start": 19254.3, + "end": 19258.06, + "probability": 0.9967 + }, + { + "start": 19258.86, + "end": 19262.54, + "probability": 0.9832 + }, + { + "start": 19263.12, + "end": 19265.34, + "probability": 0.976 + }, + { + "start": 19265.46, + "end": 19267.06, + "probability": 0.8826 + }, + { + "start": 19267.22, + "end": 19269.3, + "probability": 0.9609 + }, + { + "start": 19270.66, + "end": 19273.92, + "probability": 0.7847 + }, + { + "start": 19273.92, + "end": 19277.14, + "probability": 0.7433 + }, + { + "start": 19279.04, + "end": 19280.2, + "probability": 0.2984 + }, + { + "start": 19280.2, + "end": 19285.58, + "probability": 0.784 + }, + { + "start": 19286.62, + "end": 19289.1, + "probability": 0.9958 + }, + { + "start": 19289.1, + "end": 19291.34, + "probability": 0.9368 + }, + { + "start": 19292.62, + "end": 19293.42, + "probability": 0.5982 + }, + { + "start": 19293.54, + "end": 19295.18, + "probability": 0.9365 + }, + { + "start": 19295.34, + "end": 19296.08, + "probability": 0.586 + }, + { + "start": 19296.35, + "end": 19298.3, + "probability": 0.8795 + }, + { + "start": 19298.58, + "end": 19299.36, + "probability": 0.7884 + }, + { + "start": 19299.72, + "end": 19301.0, + "probability": 0.6493 + }, + { + "start": 19301.08, + "end": 19302.69, + "probability": 0.7177 + }, + { + "start": 19303.02, + "end": 19305.89, + "probability": 0.9941 + }, + { + "start": 19307.22, + "end": 19312.42, + "probability": 0.9747 + }, + { + "start": 19312.96, + "end": 19314.38, + "probability": 0.9976 + }, + { + "start": 19314.7, + "end": 19315.6, + "probability": 0.8017 + }, + { + "start": 19316.42, + "end": 19317.42, + "probability": 0.872 + }, + { + "start": 19317.48, + "end": 19318.56, + "probability": 0.9302 + }, + { + "start": 19318.7, + "end": 19321.74, + "probability": 0.9612 + }, + { + "start": 19322.02, + "end": 19323.42, + "probability": 0.9771 + }, + { + "start": 19324.34, + "end": 19326.5, + "probability": 0.9946 + }, + { + "start": 19326.56, + "end": 19327.54, + "probability": 0.6092 + }, + { + "start": 19328.4, + "end": 19331.14, + "probability": 0.9912 + }, + { + "start": 19331.14, + "end": 19335.22, + "probability": 0.9978 + }, + { + "start": 19335.3, + "end": 19335.64, + "probability": 0.7195 + }, + { + "start": 19335.66, + "end": 19336.54, + "probability": 0.9655 + }, + { + "start": 19336.7, + "end": 19337.26, + "probability": 0.9424 + }, + { + "start": 19337.64, + "end": 19338.28, + "probability": 0.9131 + }, + { + "start": 19338.4, + "end": 19338.94, + "probability": 0.9654 + }, + { + "start": 19340.48, + "end": 19344.5, + "probability": 0.9971 + }, + { + "start": 19346.02, + "end": 19349.92, + "probability": 0.967 + }, + { + "start": 19351.68, + "end": 19355.84, + "probability": 0.8804 + }, + { + "start": 19355.9, + "end": 19362.22, + "probability": 0.9796 + }, + { + "start": 19362.36, + "end": 19363.42, + "probability": 0.8267 + }, + { + "start": 19363.5, + "end": 19370.62, + "probability": 0.9932 + }, + { + "start": 19370.62, + "end": 19374.36, + "probability": 0.9506 + }, + { + "start": 19375.08, + "end": 19377.36, + "probability": 0.7128 + }, + { + "start": 19378.36, + "end": 19380.31, + "probability": 0.8739 + }, + { + "start": 19381.32, + "end": 19381.94, + "probability": 0.933 + }, + { + "start": 19382.1, + "end": 19388.94, + "probability": 0.9599 + }, + { + "start": 19388.94, + "end": 19396.06, + "probability": 0.9995 + }, + { + "start": 19396.2, + "end": 19397.52, + "probability": 0.8561 + }, + { + "start": 19398.54, + "end": 19403.1, + "probability": 0.9967 + }, + { + "start": 19403.3, + "end": 19405.54, + "probability": 0.9978 + }, + { + "start": 19405.66, + "end": 19406.2, + "probability": 0.6831 + }, + { + "start": 19406.56, + "end": 19411.2, + "probability": 0.9832 + }, + { + "start": 19411.32, + "end": 19414.86, + "probability": 0.9901 + }, + { + "start": 19415.06, + "end": 19415.52, + "probability": 0.8404 + }, + { + "start": 19415.6, + "end": 19416.7, + "probability": 0.9808 + }, + { + "start": 19417.52, + "end": 19420.98, + "probability": 0.9982 + }, + { + "start": 19421.16, + "end": 19424.7, + "probability": 0.9811 + }, + { + "start": 19425.58, + "end": 19425.8, + "probability": 0.7464 + }, + { + "start": 19426.14, + "end": 19426.92, + "probability": 0.5516 + }, + { + "start": 19426.92, + "end": 19428.36, + "probability": 0.7759 + }, + { + "start": 19430.24, + "end": 19431.44, + "probability": 0.523 + }, + { + "start": 19431.56, + "end": 19435.98, + "probability": 0.8919 + }, + { + "start": 19438.28, + "end": 19439.24, + "probability": 0.3363 + }, + { + "start": 19439.24, + "end": 19439.24, + "probability": 0.0832 + }, + { + "start": 19439.24, + "end": 19440.43, + "probability": 0.6157 + }, + { + "start": 19441.28, + "end": 19444.46, + "probability": 0.4835 + }, + { + "start": 19444.46, + "end": 19445.52, + "probability": 0.6836 + }, + { + "start": 19445.68, + "end": 19446.28, + "probability": 0.8208 + }, + { + "start": 19446.5, + "end": 19449.52, + "probability": 0.8728 + }, + { + "start": 19451.4, + "end": 19451.88, + "probability": 0.6671 + }, + { + "start": 19452.14, + "end": 19453.68, + "probability": 0.6305 + }, + { + "start": 19469.04, + "end": 19469.04, + "probability": 0.242 + }, + { + "start": 19469.04, + "end": 19471.44, + "probability": 0.586 + }, + { + "start": 19471.62, + "end": 19474.46, + "probability": 0.7295 + }, + { + "start": 19475.64, + "end": 19477.26, + "probability": 0.6473 + }, + { + "start": 19478.68, + "end": 19479.68, + "probability": 0.3125 + }, + { + "start": 19479.68, + "end": 19483.56, + "probability": 0.9474 + }, + { + "start": 19484.38, + "end": 19484.52, + "probability": 0.0001 + }, + { + "start": 19485.92, + "end": 19488.53, + "probability": 0.3123 + }, + { + "start": 19489.7, + "end": 19489.76, + "probability": 0.0855 + }, + { + "start": 19489.76, + "end": 19489.76, + "probability": 0.0461 + }, + { + "start": 19489.76, + "end": 19489.76, + "probability": 0.0801 + }, + { + "start": 19489.76, + "end": 19489.76, + "probability": 0.0133 + }, + { + "start": 19489.76, + "end": 19490.32, + "probability": 0.3325 + }, + { + "start": 19490.36, + "end": 19492.34, + "probability": 0.517 + }, + { + "start": 19494.34, + "end": 19496.08, + "probability": 0.7849 + }, + { + "start": 19497.08, + "end": 19498.32, + "probability": 0.6281 + }, + { + "start": 19499.72, + "end": 19499.92, + "probability": 0.6326 + }, + { + "start": 19499.92, + "end": 19502.32, + "probability": 0.8651 + }, + { + "start": 19502.32, + "end": 19505.2, + "probability": 0.9269 + }, + { + "start": 19506.4, + "end": 19510.31, + "probability": 0.9828 + }, + { + "start": 19510.7, + "end": 19517.22, + "probability": 0.9975 + }, + { + "start": 19517.82, + "end": 19521.42, + "probability": 0.9938 + }, + { + "start": 19522.32, + "end": 19527.68, + "probability": 0.9829 + }, + { + "start": 19529.22, + "end": 19532.68, + "probability": 0.6898 + }, + { + "start": 19532.78, + "end": 19533.32, + "probability": 0.6882 + }, + { + "start": 19534.13, + "end": 19534.76, + "probability": 0.0577 + }, + { + "start": 19534.76, + "end": 19536.36, + "probability": 0.5583 + }, + { + "start": 19537.0, + "end": 19540.48, + "probability": 0.8337 + }, + { + "start": 19541.4, + "end": 19546.48, + "probability": 0.9966 + }, + { + "start": 19547.06, + "end": 19552.1, + "probability": 0.9932 + }, + { + "start": 19552.58, + "end": 19553.52, + "probability": 0.9814 + }, + { + "start": 19553.62, + "end": 19556.76, + "probability": 0.9893 + }, + { + "start": 19556.86, + "end": 19558.78, + "probability": 0.8419 + }, + { + "start": 19559.12, + "end": 19561.8, + "probability": 0.9941 + }, + { + "start": 19563.24, + "end": 19566.7, + "probability": 0.9197 + }, + { + "start": 19566.96, + "end": 19567.66, + "probability": 0.7902 + }, + { + "start": 19567.7, + "end": 19568.3, + "probability": 0.8144 + }, + { + "start": 19568.3, + "end": 19571.28, + "probability": 0.8882 + }, + { + "start": 19571.28, + "end": 19574.82, + "probability": 0.8342 + }, + { + "start": 19575.46, + "end": 19577.24, + "probability": 0.9526 + }, + { + "start": 19577.54, + "end": 19578.52, + "probability": 0.7214 + }, + { + "start": 19578.62, + "end": 19580.06, + "probability": 0.9875 + }, + { + "start": 19580.7, + "end": 19585.32, + "probability": 0.8491 + }, + { + "start": 19586.02, + "end": 19589.5, + "probability": 0.9422 + }, + { + "start": 19590.04, + "end": 19594.48, + "probability": 0.98 + }, + { + "start": 19595.5, + "end": 19596.66, + "probability": 0.6826 + }, + { + "start": 19596.8, + "end": 19597.94, + "probability": 0.9363 + }, + { + "start": 19599.06, + "end": 19602.14, + "probability": 0.7852 + }, + { + "start": 19602.54, + "end": 19605.68, + "probability": 0.9919 + }, + { + "start": 19605.76, + "end": 19606.64, + "probability": 0.3919 + }, + { + "start": 19606.76, + "end": 19607.69, + "probability": 0.7546 + }, + { + "start": 19607.94, + "end": 19609.66, + "probability": 0.9056 + }, + { + "start": 19609.72, + "end": 19612.8, + "probability": 0.9698 + }, + { + "start": 19614.42, + "end": 19617.04, + "probability": 0.9796 + }, + { + "start": 19617.04, + "end": 19620.02, + "probability": 0.95 + }, + { + "start": 19620.22, + "end": 19620.68, + "probability": 0.9946 + }, + { + "start": 19621.46, + "end": 19625.24, + "probability": 0.9998 + }, + { + "start": 19625.9, + "end": 19629.4, + "probability": 0.6821 + }, + { + "start": 19630.0, + "end": 19630.61, + "probability": 0.9971 + }, + { + "start": 19631.32, + "end": 19633.28, + "probability": 0.9975 + }, + { + "start": 19633.86, + "end": 19636.58, + "probability": 0.9919 + }, + { + "start": 19636.88, + "end": 19643.18, + "probability": 0.9819 + }, + { + "start": 19644.06, + "end": 19651.22, + "probability": 0.9316 + }, + { + "start": 19651.62, + "end": 19654.52, + "probability": 0.9811 + }, + { + "start": 19655.34, + "end": 19656.65, + "probability": 0.9785 + }, + { + "start": 19657.08, + "end": 19659.98, + "probability": 0.9786 + }, + { + "start": 19660.1, + "end": 19662.92, + "probability": 0.9929 + }, + { + "start": 19663.34, + "end": 19664.86, + "probability": 0.9373 + }, + { + "start": 19665.7, + "end": 19666.82, + "probability": 0.8447 + }, + { + "start": 19666.9, + "end": 19667.84, + "probability": 0.6454 + }, + { + "start": 19668.1, + "end": 19672.68, + "probability": 0.7595 + }, + { + "start": 19672.68, + "end": 19676.18, + "probability": 0.9627 + }, + { + "start": 19677.64, + "end": 19679.16, + "probability": 0.998 + }, + { + "start": 19679.18, + "end": 19679.95, + "probability": 0.7834 + }, + { + "start": 19680.62, + "end": 19681.58, + "probability": 0.6596 + }, + { + "start": 19682.0, + "end": 19685.5, + "probability": 0.9407 + }, + { + "start": 19685.8, + "end": 19690.02, + "probability": 0.9905 + }, + { + "start": 19690.02, + "end": 19692.5, + "probability": 0.9982 + }, + { + "start": 19693.06, + "end": 19696.96, + "probability": 0.9829 + }, + { + "start": 19697.56, + "end": 19699.32, + "probability": 0.9989 + }, + { + "start": 19699.92, + "end": 19704.3, + "probability": 0.8776 + }, + { + "start": 19704.3, + "end": 19708.08, + "probability": 0.998 + }, + { + "start": 19708.12, + "end": 19708.72, + "probability": 0.4496 + }, + { + "start": 19708.98, + "end": 19710.44, + "probability": 0.5731 + }, + { + "start": 19710.94, + "end": 19714.5, + "probability": 0.8131 + }, + { + "start": 19715.12, + "end": 19717.3, + "probability": 0.9438 + }, + { + "start": 19717.64, + "end": 19719.32, + "probability": 0.8242 + }, + { + "start": 19719.52, + "end": 19719.86, + "probability": 0.3066 + }, + { + "start": 19719.88, + "end": 19720.72, + "probability": 0.5953 + }, + { + "start": 19721.18, + "end": 19722.54, + "probability": 0.5256 + }, + { + "start": 19722.82, + "end": 19723.02, + "probability": 0.721 + }, + { + "start": 19723.08, + "end": 19725.26, + "probability": 0.9435 + }, + { + "start": 19725.74, + "end": 19727.22, + "probability": 0.9694 + }, + { + "start": 19728.06, + "end": 19730.28, + "probability": 0.9712 + }, + { + "start": 19730.32, + "end": 19732.94, + "probability": 0.955 + }, + { + "start": 19733.32, + "end": 19735.02, + "probability": 0.9954 + }, + { + "start": 19735.36, + "end": 19737.58, + "probability": 0.885 + }, + { + "start": 19737.88, + "end": 19739.38, + "probability": 0.8025 + }, + { + "start": 19739.38, + "end": 19741.22, + "probability": 0.5012 + }, + { + "start": 19741.36, + "end": 19742.14, + "probability": 0.8111 + }, + { + "start": 19742.46, + "end": 19743.66, + "probability": 0.8647 + }, + { + "start": 19743.98, + "end": 19744.14, + "probability": 0.4576 + }, + { + "start": 19744.14, + "end": 19746.1, + "probability": 0.641 + }, + { + "start": 19749.8, + "end": 19752.52, + "probability": 0.6466 + }, + { + "start": 19753.12, + "end": 19754.02, + "probability": 0.8706 + }, + { + "start": 19755.02, + "end": 19757.4, + "probability": 0.6189 + }, + { + "start": 19757.4, + "end": 19762.18, + "probability": 0.9476 + }, + { + "start": 19762.76, + "end": 19763.74, + "probability": 0.6645 + }, + { + "start": 19763.86, + "end": 19767.12, + "probability": 0.9668 + }, + { + "start": 19767.32, + "end": 19768.48, + "probability": 0.7897 + }, + { + "start": 19768.56, + "end": 19772.98, + "probability": 0.9927 + }, + { + "start": 19773.22, + "end": 19777.28, + "probability": 0.9671 + }, + { + "start": 19777.6, + "end": 19779.42, + "probability": 0.9978 + }, + { + "start": 19779.48, + "end": 19782.24, + "probability": 0.9565 + }, + { + "start": 19783.2, + "end": 19787.56, + "probability": 0.8756 + }, + { + "start": 19788.24, + "end": 19793.9, + "probability": 0.9506 + }, + { + "start": 19793.9, + "end": 19797.98, + "probability": 0.9196 + }, + { + "start": 19798.16, + "end": 19799.14, + "probability": 0.9441 + }, + { + "start": 19800.32, + "end": 19804.0, + "probability": 0.9949 + }, + { + "start": 19805.2, + "end": 19807.12, + "probability": 0.6993 + }, + { + "start": 19808.48, + "end": 19811.34, + "probability": 0.9133 + }, + { + "start": 19812.08, + "end": 19818.92, + "probability": 0.9539 + }, + { + "start": 19819.78, + "end": 19821.1, + "probability": 0.6664 + }, + { + "start": 19822.25, + "end": 19827.78, + "probability": 0.8167 + }, + { + "start": 19829.5, + "end": 19832.04, + "probability": 0.7474 + }, + { + "start": 19834.18, + "end": 19839.78, + "probability": 0.9836 + }, + { + "start": 19840.34, + "end": 19841.78, + "probability": 0.9145 + }, + { + "start": 19843.5, + "end": 19847.3, + "probability": 0.9946 + }, + { + "start": 19847.38, + "end": 19848.84, + "probability": 0.8327 + }, + { + "start": 19849.0, + "end": 19849.94, + "probability": 0.8955 + }, + { + "start": 19850.38, + "end": 19852.66, + "probability": 0.7246 + }, + { + "start": 19853.48, + "end": 19856.02, + "probability": 0.876 + }, + { + "start": 19857.04, + "end": 19858.62, + "probability": 0.941 + }, + { + "start": 19859.34, + "end": 19861.84, + "probability": 0.9081 + }, + { + "start": 19862.76, + "end": 19865.06, + "probability": 0.9756 + }, + { + "start": 19865.36, + "end": 19866.44, + "probability": 0.8775 + }, + { + "start": 19866.94, + "end": 19871.3, + "probability": 0.8168 + }, + { + "start": 19871.74, + "end": 19874.11, + "probability": 0.9165 + }, + { + "start": 19875.04, + "end": 19879.62, + "probability": 0.9491 + }, + { + "start": 19880.46, + "end": 19881.34, + "probability": 0.5207 + }, + { + "start": 19882.38, + "end": 19885.82, + "probability": 0.9893 + }, + { + "start": 19885.96, + "end": 19888.24, + "probability": 0.9734 + }, + { + "start": 19890.12, + "end": 19897.08, + "probability": 0.9658 + }, + { + "start": 19897.32, + "end": 19900.02, + "probability": 0.9928 + }, + { + "start": 19900.68, + "end": 19902.92, + "probability": 0.693 + }, + { + "start": 19903.04, + "end": 19903.96, + "probability": 0.6136 + }, + { + "start": 19904.26, + "end": 19910.74, + "probability": 0.9941 + }, + { + "start": 19910.82, + "end": 19911.34, + "probability": 0.7676 + }, + { + "start": 19912.34, + "end": 19914.92, + "probability": 0.8389 + }, + { + "start": 19919.24, + "end": 19921.0, + "probability": 0.7965 + }, + { + "start": 19921.68, + "end": 19923.78, + "probability": 0.997 + }, + { + "start": 19924.04, + "end": 19925.5, + "probability": 0.8003 + }, + { + "start": 19926.54, + "end": 19927.46, + "probability": 0.6514 + }, + { + "start": 19928.0, + "end": 19930.64, + "probability": 0.873 + }, + { + "start": 19930.76, + "end": 19934.04, + "probability": 0.9199 + }, + { + "start": 19937.02, + "end": 19938.94, + "probability": 0.705 + }, + { + "start": 19939.06, + "end": 19939.9, + "probability": 0.6501 + }, + { + "start": 19940.2, + "end": 19941.94, + "probability": 0.8955 + }, + { + "start": 19942.18, + "end": 19946.28, + "probability": 0.9778 + }, + { + "start": 19948.2, + "end": 19949.84, + "probability": 0.499 + }, + { + "start": 19950.5, + "end": 19954.14, + "probability": 0.9738 + }, + { + "start": 19957.32, + "end": 19959.82, + "probability": 0.9138 + }, + { + "start": 19960.62, + "end": 19962.5, + "probability": 0.614 + }, + { + "start": 19963.44, + "end": 19965.8, + "probability": 0.534 + }, + { + "start": 19965.8, + "end": 19970.46, + "probability": 0.9106 + }, + { + "start": 19971.14, + "end": 19975.8, + "probability": 0.8594 + }, + { + "start": 19976.9, + "end": 19978.46, + "probability": 0.9688 + }, + { + "start": 19978.54, + "end": 19980.22, + "probability": 0.6035 + }, + { + "start": 19980.58, + "end": 19981.1, + "probability": 0.6899 + }, + { + "start": 19981.52, + "end": 19983.59, + "probability": 0.9771 + }, + { + "start": 19983.81, + "end": 19983.88, + "probability": 0.6276 + }, + { + "start": 19983.88, + "end": 19983.88, + "probability": 0.1212 + }, + { + "start": 19984.0, + "end": 19988.68, + "probability": 0.8276 + }, + { + "start": 19988.8, + "end": 19989.48, + "probability": 0.8654 + }, + { + "start": 19989.7, + "end": 19991.2, + "probability": 0.804 + }, + { + "start": 19991.22, + "end": 19993.36, + "probability": 0.6476 + }, + { + "start": 19993.36, + "end": 19995.32, + "probability": 0.5457 + }, + { + "start": 19995.8, + "end": 19996.08, + "probability": 0.6445 + }, + { + "start": 19996.16, + "end": 19997.48, + "probability": 0.8341 + }, + { + "start": 19997.54, + "end": 19998.82, + "probability": 0.8126 + }, + { + "start": 19998.88, + "end": 20003.52, + "probability": 0.8973 + }, + { + "start": 20003.72, + "end": 20003.92, + "probability": 0.7242 + }, + { + "start": 20005.58, + "end": 20006.18, + "probability": 0.7454 + }, + { + "start": 20006.54, + "end": 20007.54, + "probability": 0.7734 + }, + { + "start": 20008.46, + "end": 20010.22, + "probability": 0.3607 + }, + { + "start": 20010.94, + "end": 20013.68, + "probability": 0.9775 + }, + { + "start": 20014.34, + "end": 20017.16, + "probability": 0.9955 + }, + { + "start": 20017.42, + "end": 20020.5, + "probability": 0.9864 + }, + { + "start": 20021.68, + "end": 20022.5, + "probability": 0.8459 + }, + { + "start": 20022.56, + "end": 20023.16, + "probability": 0.9725 + }, + { + "start": 20023.2, + "end": 20024.12, + "probability": 0.8974 + }, + { + "start": 20024.16, + "end": 20027.78, + "probability": 0.987 + }, + { + "start": 20027.88, + "end": 20028.36, + "probability": 0.6106 + }, + { + "start": 20028.44, + "end": 20029.14, + "probability": 0.8967 + }, + { + "start": 20029.68, + "end": 20032.96, + "probability": 0.9916 + }, + { + "start": 20032.96, + "end": 20035.34, + "probability": 0.9974 + }, + { + "start": 20036.82, + "end": 20038.78, + "probability": 0.9897 + }, + { + "start": 20038.92, + "end": 20041.93, + "probability": 0.9813 + }, + { + "start": 20042.56, + "end": 20045.0, + "probability": 0.9863 + }, + { + "start": 20045.0, + "end": 20047.16, + "probability": 0.9949 + }, + { + "start": 20048.16, + "end": 20049.08, + "probability": 0.5469 + }, + { + "start": 20049.2, + "end": 20050.5, + "probability": 0.978 + }, + { + "start": 20050.58, + "end": 20051.04, + "probability": 0.5804 + }, + { + "start": 20051.12, + "end": 20055.04, + "probability": 0.9353 + }, + { + "start": 20055.16, + "end": 20056.26, + "probability": 0.7589 + }, + { + "start": 20057.5, + "end": 20060.2, + "probability": 0.9822 + }, + { + "start": 20060.2, + "end": 20064.12, + "probability": 0.9987 + }, + { + "start": 20064.68, + "end": 20066.55, + "probability": 0.9969 + }, + { + "start": 20066.66, + "end": 20068.78, + "probability": 0.9945 + }, + { + "start": 20069.88, + "end": 20070.56, + "probability": 0.7575 + }, + { + "start": 20071.56, + "end": 20073.96, + "probability": 0.9949 + }, + { + "start": 20073.96, + "end": 20077.58, + "probability": 0.9977 + }, + { + "start": 20077.74, + "end": 20081.5, + "probability": 0.9984 + }, + { + "start": 20081.5, + "end": 20084.62, + "probability": 0.9988 + }, + { + "start": 20084.94, + "end": 20085.44, + "probability": 0.474 + }, + { + "start": 20086.04, + "end": 20086.82, + "probability": 0.8743 + }, + { + "start": 20087.56, + "end": 20089.96, + "probability": 0.9433 + }, + { + "start": 20089.96, + "end": 20093.16, + "probability": 0.9991 + }, + { + "start": 20093.22, + "end": 20093.94, + "probability": 0.707 + }, + { + "start": 20094.72, + "end": 20096.66, + "probability": 0.9717 + }, + { + "start": 20096.66, + "end": 20098.88, + "probability": 0.998 + }, + { + "start": 20099.6, + "end": 20101.28, + "probability": 0.9912 + }, + { + "start": 20101.4, + "end": 20104.84, + "probability": 0.9929 + }, + { + "start": 20105.22, + "end": 20105.84, + "probability": 0.6967 + }, + { + "start": 20106.6, + "end": 20108.32, + "probability": 0.9275 + }, + { + "start": 20108.44, + "end": 20110.15, + "probability": 0.9248 + }, + { + "start": 20110.6, + "end": 20111.04, + "probability": 0.7399 + }, + { + "start": 20111.12, + "end": 20111.6, + "probability": 0.7404 + }, + { + "start": 20111.64, + "end": 20114.57, + "probability": 0.9946 + }, + { + "start": 20115.52, + "end": 20116.56, + "probability": 0.6984 + }, + { + "start": 20117.48, + "end": 20118.84, + "probability": 0.9823 + }, + { + "start": 20119.56, + "end": 20121.38, + "probability": 0.9885 + }, + { + "start": 20121.62, + "end": 20121.88, + "probability": 0.9694 + }, + { + "start": 20121.96, + "end": 20126.2, + "probability": 0.9794 + }, + { + "start": 20126.72, + "end": 20128.46, + "probability": 0.9773 + }, + { + "start": 20128.46, + "end": 20130.54, + "probability": 0.9961 + }, + { + "start": 20131.14, + "end": 20134.58, + "probability": 0.9836 + }, + { + "start": 20136.34, + "end": 20138.82, + "probability": 0.8073 + }, + { + "start": 20140.43, + "end": 20143.04, + "probability": 0.4789 + }, + { + "start": 20143.04, + "end": 20144.54, + "probability": 0.6275 + }, + { + "start": 20144.6, + "end": 20146.54, + "probability": 0.9175 + }, + { + "start": 20146.66, + "end": 20147.9, + "probability": 0.7499 + }, + { + "start": 20148.28, + "end": 20149.98, + "probability": 0.978 + }, + { + "start": 20150.4, + "end": 20153.74, + "probability": 0.9751 + }, + { + "start": 20155.42, + "end": 20156.24, + "probability": 0.8156 + }, + { + "start": 20156.46, + "end": 20159.22, + "probability": 0.9908 + }, + { + "start": 20159.98, + "end": 20161.76, + "probability": 0.9963 + }, + { + "start": 20161.76, + "end": 20164.32, + "probability": 0.9982 + }, + { + "start": 20164.44, + "end": 20164.66, + "probability": 0.5376 + }, + { + "start": 20164.68, + "end": 20166.82, + "probability": 0.9132 + }, + { + "start": 20167.32, + "end": 20170.28, + "probability": 0.9792 + }, + { + "start": 20170.86, + "end": 20171.72, + "probability": 0.9629 + }, + { + "start": 20172.22, + "end": 20173.08, + "probability": 0.9591 + }, + { + "start": 20173.2, + "end": 20174.7, + "probability": 0.7889 + }, + { + "start": 20174.76, + "end": 20176.88, + "probability": 0.8287 + }, + { + "start": 20177.06, + "end": 20179.66, + "probability": 0.9933 + }, + { + "start": 20179.72, + "end": 20182.07, + "probability": 0.9976 + }, + { + "start": 20182.34, + "end": 20188.32, + "probability": 0.9888 + }, + { + "start": 20188.66, + "end": 20193.04, + "probability": 0.967 + }, + { + "start": 20193.08, + "end": 20195.94, + "probability": 0.9917 + }, + { + "start": 20195.94, + "end": 20199.48, + "probability": 0.983 + }, + { + "start": 20199.66, + "end": 20200.04, + "probability": 0.7628 + }, + { + "start": 20200.54, + "end": 20202.06, + "probability": 0.7381 + }, + { + "start": 20202.22, + "end": 20205.42, + "probability": 0.8722 + }, + { + "start": 20208.03, + "end": 20211.14, + "probability": 0.5789 + }, + { + "start": 20228.6, + "end": 20229.72, + "probability": 0.4307 + }, + { + "start": 20230.26, + "end": 20231.48, + "probability": 0.7416 + }, + { + "start": 20232.14, + "end": 20238.92, + "probability": 0.9787 + }, + { + "start": 20239.08, + "end": 20243.72, + "probability": 0.9915 + }, + { + "start": 20244.18, + "end": 20246.07, + "probability": 0.964 + }, + { + "start": 20246.26, + "end": 20246.54, + "probability": 0.8516 + }, + { + "start": 20246.68, + "end": 20247.7, + "probability": 0.9141 + }, + { + "start": 20247.78, + "end": 20248.36, + "probability": 0.7189 + }, + { + "start": 20248.48, + "end": 20250.9, + "probability": 0.9773 + }, + { + "start": 20251.6, + "end": 20253.76, + "probability": 0.9934 + }, + { + "start": 20254.62, + "end": 20257.94, + "probability": 0.9626 + }, + { + "start": 20258.52, + "end": 20259.9, + "probability": 0.9483 + }, + { + "start": 20260.06, + "end": 20261.86, + "probability": 0.7364 + }, + { + "start": 20263.3, + "end": 20268.2, + "probability": 0.9736 + }, + { + "start": 20268.38, + "end": 20268.82, + "probability": 0.8567 + }, + { + "start": 20269.44, + "end": 20270.54, + "probability": 0.9848 + }, + { + "start": 20271.2, + "end": 20271.9, + "probability": 0.4559 + }, + { + "start": 20272.6, + "end": 20276.54, + "probability": 0.973 + }, + { + "start": 20277.0, + "end": 20279.44, + "probability": 0.8197 + }, + { + "start": 20279.58, + "end": 20279.98, + "probability": 0.5957 + }, + { + "start": 20280.02, + "end": 20282.48, + "probability": 0.9474 + }, + { + "start": 20283.06, + "end": 20284.26, + "probability": 0.8426 + }, + { + "start": 20284.8, + "end": 20286.34, + "probability": 0.7156 + }, + { + "start": 20286.56, + "end": 20289.4, + "probability": 0.8066 + }, + { + "start": 20289.82, + "end": 20291.48, + "probability": 0.5424 + }, + { + "start": 20292.14, + "end": 20293.44, + "probability": 0.6103 + }, + { + "start": 20295.88, + "end": 20297.8, + "probability": 0.5318 + }, + { + "start": 20297.94, + "end": 20300.92, + "probability": 0.7954 + }, + { + "start": 20300.92, + "end": 20302.76, + "probability": 0.9298 + }, + { + "start": 20303.54, + "end": 20306.69, + "probability": 0.9066 + }, + { + "start": 20307.06, + "end": 20310.96, + "probability": 0.9814 + }, + { + "start": 20311.38, + "end": 20318.02, + "probability": 0.9801 + }, + { + "start": 20318.6, + "end": 20319.32, + "probability": 0.8982 + }, + { + "start": 20319.98, + "end": 20322.1, + "probability": 0.7627 + }, + { + "start": 20322.7, + "end": 20327.98, + "probability": 0.9595 + }, + { + "start": 20328.44, + "end": 20329.96, + "probability": 0.9966 + }, + { + "start": 20330.8, + "end": 20335.0, + "probability": 0.9939 + }, + { + "start": 20335.02, + "end": 20336.46, + "probability": 0.2184 + }, + { + "start": 20337.18, + "end": 20339.22, + "probability": 0.0364 + }, + { + "start": 20339.26, + "end": 20341.64, + "probability": 0.283 + }, + { + "start": 20341.84, + "end": 20343.14, + "probability": 0.7848 + }, + { + "start": 20343.14, + "end": 20344.4, + "probability": 0.8644 + }, + { + "start": 20344.64, + "end": 20344.66, + "probability": 0.0336 + }, + { + "start": 20344.66, + "end": 20345.08, + "probability": 0.6323 + }, + { + "start": 20345.38, + "end": 20345.9, + "probability": 0.7691 + }, + { + "start": 20346.18, + "end": 20348.45, + "probability": 0.8683 + }, + { + "start": 20348.5, + "end": 20349.42, + "probability": 0.7612 + }, + { + "start": 20350.48, + "end": 20350.58, + "probability": 0.744 + }, + { + "start": 20350.58, + "end": 20350.58, + "probability": 0.1621 + }, + { + "start": 20350.58, + "end": 20350.58, + "probability": 0.046 + }, + { + "start": 20350.58, + "end": 20351.91, + "probability": 0.8386 + }, + { + "start": 20352.04, + "end": 20354.17, + "probability": 0.9651 + }, + { + "start": 20355.52, + "end": 20359.96, + "probability": 0.9426 + }, + { + "start": 20360.8, + "end": 20362.82, + "probability": 0.6108 + }, + { + "start": 20362.88, + "end": 20364.18, + "probability": 0.894 + }, + { + "start": 20364.4, + "end": 20365.62, + "probability": 0.9404 + }, + { + "start": 20365.86, + "end": 20368.44, + "probability": 0.9955 + }, + { + "start": 20368.62, + "end": 20370.26, + "probability": 0.9302 + }, + { + "start": 20370.78, + "end": 20370.82, + "probability": 0.5716 + }, + { + "start": 20371.0, + "end": 20372.14, + "probability": 0.9819 + }, + { + "start": 20372.32, + "end": 20374.78, + "probability": 0.9751 + }, + { + "start": 20375.04, + "end": 20378.36, + "probability": 0.9952 + }, + { + "start": 20378.36, + "end": 20382.32, + "probability": 0.8168 + }, + { + "start": 20382.66, + "end": 20384.5, + "probability": 0.7977 + }, + { + "start": 20384.8, + "end": 20388.6, + "probability": 0.9972 + }, + { + "start": 20388.68, + "end": 20389.24, + "probability": 0.7176 + }, + { + "start": 20389.58, + "end": 20391.72, + "probability": 0.9866 + }, + { + "start": 20392.06, + "end": 20393.04, + "probability": 0.9573 + }, + { + "start": 20393.12, + "end": 20396.22, + "probability": 0.995 + }, + { + "start": 20396.68, + "end": 20398.74, + "probability": 0.8139 + }, + { + "start": 20399.12, + "end": 20400.68, + "probability": 0.9648 + }, + { + "start": 20400.9, + "end": 20404.34, + "probability": 0.9917 + }, + { + "start": 20404.6, + "end": 20408.82, + "probability": 0.98 + }, + { + "start": 20408.92, + "end": 20410.28, + "probability": 0.8576 + }, + { + "start": 20410.4, + "end": 20411.4, + "probability": 0.8508 + }, + { + "start": 20411.92, + "end": 20416.98, + "probability": 0.9178 + }, + { + "start": 20416.98, + "end": 20419.94, + "probability": 0.9939 + }, + { + "start": 20420.4, + "end": 20423.38, + "probability": 0.9878 + }, + { + "start": 20424.36, + "end": 20426.0, + "probability": 0.8806 + }, + { + "start": 20426.1, + "end": 20426.62, + "probability": 0.8236 + }, + { + "start": 20426.78, + "end": 20429.82, + "probability": 0.9816 + }, + { + "start": 20430.12, + "end": 20433.0, + "probability": 0.9447 + }, + { + "start": 20433.38, + "end": 20435.6, + "probability": 0.9638 + }, + { + "start": 20436.1, + "end": 20437.42, + "probability": 0.9739 + }, + { + "start": 20437.46, + "end": 20438.54, + "probability": 0.9902 + }, + { + "start": 20438.64, + "end": 20439.04, + "probability": 0.3239 + }, + { + "start": 20439.06, + "end": 20440.2, + "probability": 0.7082 + }, + { + "start": 20440.32, + "end": 20441.08, + "probability": 0.7433 + }, + { + "start": 20441.98, + "end": 20445.34, + "probability": 0.977 + }, + { + "start": 20445.74, + "end": 20447.52, + "probability": 0.9595 + }, + { + "start": 20448.24, + "end": 20453.14, + "probability": 0.9951 + }, + { + "start": 20453.54, + "end": 20455.56, + "probability": 0.9398 + }, + { + "start": 20456.06, + "end": 20457.76, + "probability": 0.9686 + }, + { + "start": 20458.26, + "end": 20459.82, + "probability": 0.7644 + }, + { + "start": 20459.88, + "end": 20461.08, + "probability": 0.9984 + }, + { + "start": 20461.18, + "end": 20462.32, + "probability": 0.9244 + }, + { + "start": 20462.34, + "end": 20463.66, + "probability": 0.7324 + }, + { + "start": 20464.36, + "end": 20464.48, + "probability": 0.9131 + }, + { + "start": 20465.14, + "end": 20466.82, + "probability": 0.9827 + }, + { + "start": 20467.12, + "end": 20467.24, + "probability": 0.0757 + }, + { + "start": 20467.5, + "end": 20467.5, + "probability": 0.313 + }, + { + "start": 20467.5, + "end": 20468.94, + "probability": 0.6575 + }, + { + "start": 20469.04, + "end": 20471.44, + "probability": 0.0715 + }, + { + "start": 20471.92, + "end": 20475.78, + "probability": 0.9966 + }, + { + "start": 20476.4, + "end": 20481.9, + "probability": 0.9964 + }, + { + "start": 20482.14, + "end": 20485.74, + "probability": 0.8706 + }, + { + "start": 20486.44, + "end": 20488.1, + "probability": 0.9302 + }, + { + "start": 20489.02, + "end": 20491.2, + "probability": 0.8327 + }, + { + "start": 20491.9, + "end": 20494.3, + "probability": 0.9826 + }, + { + "start": 20494.3, + "end": 20496.76, + "probability": 0.9971 + }, + { + "start": 20496.94, + "end": 20499.34, + "probability": 0.9849 + }, + { + "start": 20499.42, + "end": 20500.66, + "probability": 0.8313 + }, + { + "start": 20500.94, + "end": 20505.52, + "probability": 0.9229 + }, + { + "start": 20505.52, + "end": 20509.54, + "probability": 0.9768 + }, + { + "start": 20509.78, + "end": 20511.14, + "probability": 0.999 + }, + { + "start": 20511.32, + "end": 20515.96, + "probability": 0.9639 + }, + { + "start": 20516.38, + "end": 20520.7, + "probability": 0.9901 + }, + { + "start": 20520.7, + "end": 20525.24, + "probability": 0.9983 + }, + { + "start": 20525.28, + "end": 20525.64, + "probability": 0.7753 + }, + { + "start": 20526.14, + "end": 20527.86, + "probability": 0.5179 + }, + { + "start": 20527.98, + "end": 20530.36, + "probability": 0.9897 + }, + { + "start": 20547.56, + "end": 20551.32, + "probability": 0.6644 + }, + { + "start": 20552.12, + "end": 20555.5, + "probability": 0.9199 + }, + { + "start": 20555.62, + "end": 20560.7, + "probability": 0.9097 + }, + { + "start": 20561.62, + "end": 20568.08, + "probability": 0.8319 + }, + { + "start": 20568.42, + "end": 20569.56, + "probability": 0.5631 + }, + { + "start": 20569.8, + "end": 20570.34, + "probability": 0.6897 + }, + { + "start": 20570.52, + "end": 20575.4, + "probability": 0.9017 + }, + { + "start": 20575.56, + "end": 20576.98, + "probability": 0.9683 + }, + { + "start": 20577.8, + "end": 20581.16, + "probability": 0.9854 + }, + { + "start": 20581.16, + "end": 20585.42, + "probability": 0.9622 + }, + { + "start": 20585.84, + "end": 20587.72, + "probability": 0.7382 + }, + { + "start": 20588.2, + "end": 20594.37, + "probability": 0.9312 + }, + { + "start": 20594.9, + "end": 20595.88, + "probability": 0.7984 + }, + { + "start": 20596.48, + "end": 20600.58, + "probability": 0.8556 + }, + { + "start": 20601.52, + "end": 20602.3, + "probability": 0.9618 + }, + { + "start": 20602.74, + "end": 20610.2, + "probability": 0.9653 + }, + { + "start": 20612.18, + "end": 20618.62, + "probability": 0.9519 + }, + { + "start": 20619.34, + "end": 20621.5, + "probability": 0.9948 + }, + { + "start": 20622.24, + "end": 20623.38, + "probability": 0.7581 + }, + { + "start": 20624.78, + "end": 20628.02, + "probability": 0.9287 + }, + { + "start": 20629.46, + "end": 20631.4, + "probability": 0.8855 + }, + { + "start": 20631.56, + "end": 20632.22, + "probability": 0.4102 + }, + { + "start": 20632.4, + "end": 20635.68, + "probability": 0.8754 + }, + { + "start": 20636.36, + "end": 20638.78, + "probability": 0.9655 + }, + { + "start": 20638.98, + "end": 20643.98, + "probability": 0.559 + }, + { + "start": 20644.1, + "end": 20644.94, + "probability": 0.7926 + }, + { + "start": 20645.68, + "end": 20646.32, + "probability": 0.4594 + }, + { + "start": 20646.88, + "end": 20648.04, + "probability": 0.1125 + }, + { + "start": 20648.04, + "end": 20648.38, + "probability": 0.3028 + }, + { + "start": 20648.66, + "end": 20650.6, + "probability": 0.4996 + }, + { + "start": 20651.14, + "end": 20653.74, + "probability": 0.9801 + }, + { + "start": 20654.74, + "end": 20656.3, + "probability": 0.9717 + }, + { + "start": 20656.9, + "end": 20658.26, + "probability": 0.729 + }, + { + "start": 20659.1, + "end": 20663.93, + "probability": 0.9912 + }, + { + "start": 20664.34, + "end": 20670.23, + "probability": 0.9285 + }, + { + "start": 20671.34, + "end": 20672.26, + "probability": 0.5051 + }, + { + "start": 20672.84, + "end": 20677.62, + "probability": 0.9782 + }, + { + "start": 20678.04, + "end": 20682.36, + "probability": 0.9363 + }, + { + "start": 20682.58, + "end": 20683.51, + "probability": 0.7544 + }, + { + "start": 20684.8, + "end": 20686.78, + "probability": 0.9377 + }, + { + "start": 20687.36, + "end": 20689.54, + "probability": 0.9917 + }, + { + "start": 20691.2, + "end": 20692.22, + "probability": 0.3466 + }, + { + "start": 20692.4, + "end": 20697.04, + "probability": 0.8777 + }, + { + "start": 20697.44, + "end": 20698.56, + "probability": 0.5542 + }, + { + "start": 20698.72, + "end": 20699.48, + "probability": 0.9164 + }, + { + "start": 20699.52, + "end": 20699.9, + "probability": 0.6704 + }, + { + "start": 20702.6, + "end": 20705.0, + "probability": 0.8088 + }, + { + "start": 20705.22, + "end": 20711.58, + "probability": 0.9696 + }, + { + "start": 20712.94, + "end": 20716.15, + "probability": 0.7935 + }, + { + "start": 20717.14, + "end": 20722.88, + "probability": 0.9092 + }, + { + "start": 20723.74, + "end": 20724.2, + "probability": 0.8159 + }, + { + "start": 20725.88, + "end": 20727.76, + "probability": 0.9982 + }, + { + "start": 20728.56, + "end": 20730.58, + "probability": 0.9656 + }, + { + "start": 20731.36, + "end": 20732.26, + "probability": 0.9626 + }, + { + "start": 20734.68, + "end": 20745.7, + "probability": 0.9932 + }, + { + "start": 20746.24, + "end": 20747.86, + "probability": 0.9218 + }, + { + "start": 20748.04, + "end": 20751.36, + "probability": 0.9978 + }, + { + "start": 20752.98, + "end": 20755.34, + "probability": 0.9821 + }, + { + "start": 20756.06, + "end": 20756.68, + "probability": 0.4319 + }, + { + "start": 20756.82, + "end": 20760.18, + "probability": 0.9857 + }, + { + "start": 20760.44, + "end": 20763.78, + "probability": 0.4647 + }, + { + "start": 20763.78, + "end": 20763.96, + "probability": 0.4454 + }, + { + "start": 20764.04, + "end": 20765.0, + "probability": 0.7236 + }, + { + "start": 20765.5, + "end": 20766.24, + "probability": 0.6264 + }, + { + "start": 20766.46, + "end": 20769.16, + "probability": 0.6005 + }, + { + "start": 20769.16, + "end": 20772.4, + "probability": 0.802 + }, + { + "start": 20773.22, + "end": 20776.16, + "probability": 0.8955 + }, + { + "start": 20776.44, + "end": 20778.4, + "probability": 0.3808 + }, + { + "start": 20778.42, + "end": 20782.32, + "probability": 0.9681 + }, + { + "start": 20782.58, + "end": 20785.16, + "probability": 0.8892 + }, + { + "start": 20785.16, + "end": 20786.2, + "probability": 0.4422 + }, + { + "start": 20786.32, + "end": 20786.56, + "probability": 0.6459 + }, + { + "start": 20788.34, + "end": 20790.46, + "probability": 0.8916 + }, + { + "start": 20790.56, + "end": 20792.68, + "probability": 0.9739 + }, + { + "start": 20792.88, + "end": 20794.62, + "probability": 0.9808 + }, + { + "start": 20810.94, + "end": 20812.46, + "probability": 0.5822 + }, + { + "start": 20813.22, + "end": 20817.72, + "probability": 0.9941 + }, + { + "start": 20817.72, + "end": 20825.88, + "probability": 0.9974 + }, + { + "start": 20825.96, + "end": 20827.54, + "probability": 0.7478 + }, + { + "start": 20828.06, + "end": 20829.88, + "probability": 0.9744 + }, + { + "start": 20830.02, + "end": 20832.92, + "probability": 0.9727 + }, + { + "start": 20833.6, + "end": 20835.44, + "probability": 0.9193 + }, + { + "start": 20836.14, + "end": 20837.72, + "probability": 0.8856 + }, + { + "start": 20839.02, + "end": 20843.2, + "probability": 0.933 + }, + { + "start": 20843.3, + "end": 20847.0, + "probability": 0.7232 + }, + { + "start": 20847.34, + "end": 20851.24, + "probability": 0.7167 + }, + { + "start": 20851.4, + "end": 20852.58, + "probability": 0.8225 + }, + { + "start": 20853.08, + "end": 20857.36, + "probability": 0.9817 + }, + { + "start": 20857.36, + "end": 20859.76, + "probability": 0.9886 + }, + { + "start": 20859.98, + "end": 20860.3, + "probability": 0.8537 + }, + { + "start": 20860.38, + "end": 20860.64, + "probability": 0.8001 + }, + { + "start": 20860.72, + "end": 20861.66, + "probability": 0.6755 + }, + { + "start": 20862.2, + "end": 20863.9, + "probability": 0.7856 + }, + { + "start": 20864.02, + "end": 20866.06, + "probability": 0.5524 + }, + { + "start": 20866.08, + "end": 20867.04, + "probability": 0.7055 + }, + { + "start": 20867.48, + "end": 20867.58, + "probability": 0.2886 + }, + { + "start": 20868.36, + "end": 20871.18, + "probability": 0.8839 + }, + { + "start": 20871.94, + "end": 20872.76, + "probability": 0.8051 + }, + { + "start": 20872.84, + "end": 20874.78, + "probability": 0.8696 + }, + { + "start": 20875.04, + "end": 20875.78, + "probability": 0.939 + }, + { + "start": 20876.1, + "end": 20880.6, + "probability": 0.94 + }, + { + "start": 20880.62, + "end": 20882.86, + "probability": 0.7364 + }, + { + "start": 20883.62, + "end": 20886.38, + "probability": 0.5093 + }, + { + "start": 20886.44, + "end": 20889.32, + "probability": 0.6793 + }, + { + "start": 20889.44, + "end": 20890.88, + "probability": 0.6185 + }, + { + "start": 20891.66, + "end": 20894.32, + "probability": 0.8949 + }, + { + "start": 20894.44, + "end": 20895.86, + "probability": 0.478 + }, + { + "start": 20895.94, + "end": 20896.36, + "probability": 0.3292 + }, + { + "start": 20896.44, + "end": 20898.74, + "probability": 0.5827 + }, + { + "start": 20899.14, + "end": 20901.86, + "probability": 0.5958 + }, + { + "start": 20901.94, + "end": 20902.96, + "probability": 0.9399 + }, + { + "start": 20904.34, + "end": 20904.68, + "probability": 0.1391 + }, + { + "start": 20904.68, + "end": 20904.68, + "probability": 0.2207 + }, + { + "start": 20904.68, + "end": 20905.87, + "probability": 0.8446 + }, + { + "start": 20906.7, + "end": 20908.24, + "probability": 0.8055 + }, + { + "start": 20908.98, + "end": 20912.12, + "probability": 0.6428 + }, + { + "start": 20912.22, + "end": 20912.98, + "probability": 0.5106 + }, + { + "start": 20913.06, + "end": 20916.06, + "probability": 0.9505 + }, + { + "start": 20916.06, + "end": 20918.68, + "probability": 0.7145 + }, + { + "start": 20919.04, + "end": 20919.4, + "probability": 0.4551 + }, + { + "start": 20919.52, + "end": 20922.14, + "probability": 0.933 + }, + { + "start": 20922.26, + "end": 20924.34, + "probability": 0.9338 + }, + { + "start": 20924.78, + "end": 20927.52, + "probability": 0.7545 + }, + { + "start": 20927.74, + "end": 20929.6, + "probability": 0.741 + }, + { + "start": 20929.6, + "end": 20930.24, + "probability": 0.6361 + }, + { + "start": 20930.72, + "end": 20930.78, + "probability": 0.3947 + }, + { + "start": 20930.9, + "end": 20935.15, + "probability": 0.4462 + }, + { + "start": 20935.5, + "end": 20936.18, + "probability": 0.3997 + }, + { + "start": 20936.4, + "end": 20940.72, + "probability": 0.9768 + }, + { + "start": 20940.72, + "end": 20943.48, + "probability": 0.991 + }, + { + "start": 20943.62, + "end": 20948.26, + "probability": 0.9389 + }, + { + "start": 20948.3, + "end": 20951.18, + "probability": 0.9902 + }, + { + "start": 20951.18, + "end": 20953.98, + "probability": 0.8892 + }, + { + "start": 20954.14, + "end": 20955.18, + "probability": 0.8078 + }, + { + "start": 20955.64, + "end": 20956.16, + "probability": 0.5282 + }, + { + "start": 20956.54, + "end": 20956.96, + "probability": 0.7796 + }, + { + "start": 20957.3, + "end": 20960.68, + "probability": 0.8893 + }, + { + "start": 20961.26, + "end": 20962.43, + "probability": 0.6395 + }, + { + "start": 20963.04, + "end": 20965.8, + "probability": 0.8805 + }, + { + "start": 20966.16, + "end": 20969.74, + "probability": 0.9359 + }, + { + "start": 20970.0, + "end": 20971.36, + "probability": 0.9326 + }, + { + "start": 20971.91, + "end": 20976.98, + "probability": 0.6731 + }, + { + "start": 20977.36, + "end": 20979.3, + "probability": 0.7718 + }, + { + "start": 20979.34, + "end": 20980.58, + "probability": 0.9644 + }, + { + "start": 20980.62, + "end": 20983.6, + "probability": 0.7079 + }, + { + "start": 20984.06, + "end": 20986.04, + "probability": 0.9744 + }, + { + "start": 20986.1, + "end": 20986.88, + "probability": 0.5729 + }, + { + "start": 20986.98, + "end": 20990.58, + "probability": 0.9657 + }, + { + "start": 20990.74, + "end": 20995.6, + "probability": 0.9874 + }, + { + "start": 20995.78, + "end": 21000.82, + "probability": 0.9976 + }, + { + "start": 21000.9, + "end": 21001.74, + "probability": 0.9805 + }, + { + "start": 21005.0, + "end": 21007.14, + "probability": 0.5611 + }, + { + "start": 21007.48, + "end": 21009.44, + "probability": 0.8061 + }, + { + "start": 21009.64, + "end": 21011.18, + "probability": 0.9893 + }, + { + "start": 21011.5, + "end": 21014.3, + "probability": 0.8701 + }, + { + "start": 21014.52, + "end": 21016.9, + "probability": 0.905 + }, + { + "start": 21017.44, + "end": 21019.0, + "probability": 0.7428 + }, + { + "start": 21019.12, + "end": 21019.32, + "probability": 0.5964 + }, + { + "start": 21019.68, + "end": 21021.1, + "probability": 0.5114 + }, + { + "start": 21021.16, + "end": 21023.7, + "probability": 0.9235 + }, + { + "start": 21025.61, + "end": 21027.16, + "probability": 0.655 + }, + { + "start": 21043.32, + "end": 21045.44, + "probability": 0.554 + }, + { + "start": 21046.76, + "end": 21047.98, + "probability": 0.8772 + }, + { + "start": 21048.16, + "end": 21048.68, + "probability": 0.8394 + }, + { + "start": 21049.0, + "end": 21051.22, + "probability": 0.8181 + }, + { + "start": 21051.3, + "end": 21052.76, + "probability": 0.9866 + }, + { + "start": 21053.8, + "end": 21053.8, + "probability": 0.0526 + }, + { + "start": 21053.8, + "end": 21056.56, + "probability": 0.7601 + }, + { + "start": 21056.68, + "end": 21058.04, + "probability": 0.9608 + }, + { + "start": 21058.1, + "end": 21059.12, + "probability": 0.8548 + }, + { + "start": 21059.24, + "end": 21059.84, + "probability": 0.5946 + }, + { + "start": 21059.92, + "end": 21060.98, + "probability": 0.7553 + }, + { + "start": 21061.46, + "end": 21064.64, + "probability": 0.1851 + }, + { + "start": 21064.64, + "end": 21066.86, + "probability": 0.9584 + }, + { + "start": 21067.68, + "end": 21068.68, + "probability": 0.9352 + }, + { + "start": 21069.56, + "end": 21070.74, + "probability": 0.8593 + }, + { + "start": 21070.86, + "end": 21072.54, + "probability": 0.9166 + }, + { + "start": 21072.66, + "end": 21074.44, + "probability": 0.7677 + }, + { + "start": 21074.94, + "end": 21075.68, + "probability": 0.9021 + }, + { + "start": 21077.38, + "end": 21079.9, + "probability": 0.9136 + }, + { + "start": 21080.16, + "end": 21081.74, + "probability": 0.8244 + }, + { + "start": 21081.78, + "end": 21083.38, + "probability": 0.9629 + }, + { + "start": 21084.42, + "end": 21086.84, + "probability": 0.9448 + }, + { + "start": 21086.9, + "end": 21087.88, + "probability": 0.9949 + }, + { + "start": 21088.58, + "end": 21089.44, + "probability": 0.657 + }, + { + "start": 21090.1, + "end": 21091.8, + "probability": 0.979 + }, + { + "start": 21093.1, + "end": 21094.09, + "probability": 0.9072 + }, + { + "start": 21095.08, + "end": 21095.96, + "probability": 0.7911 + }, + { + "start": 21097.32, + "end": 21098.77, + "probability": 0.9857 + }, + { + "start": 21099.74, + "end": 21100.72, + "probability": 0.9814 + }, + { + "start": 21101.54, + "end": 21102.14, + "probability": 0.399 + }, + { + "start": 21102.14, + "end": 21102.54, + "probability": 0.2452 + }, + { + "start": 21102.54, + "end": 21102.7, + "probability": 0.6929 + }, + { + "start": 21102.82, + "end": 21103.3, + "probability": 0.7163 + }, + { + "start": 21103.4, + "end": 21105.18, + "probability": 0.7567 + }, + { + "start": 21105.18, + "end": 21106.62, + "probability": 0.8249 + }, + { + "start": 21107.0, + "end": 21109.3, + "probability": 0.8903 + }, + { + "start": 21109.82, + "end": 21110.96, + "probability": 0.7392 + }, + { + "start": 21111.04, + "end": 21112.68, + "probability": 0.9943 + }, + { + "start": 21112.74, + "end": 21113.54, + "probability": 0.9746 + }, + { + "start": 21113.54, + "end": 21116.2, + "probability": 0.6833 + }, + { + "start": 21116.54, + "end": 21116.96, + "probability": 0.657 + }, + { + "start": 21117.16, + "end": 21118.06, + "probability": 0.9148 + }, + { + "start": 21118.42, + "end": 21118.88, + "probability": 0.6832 + }, + { + "start": 21118.92, + "end": 21119.33, + "probability": 0.6803 + }, + { + "start": 21120.34, + "end": 21122.66, + "probability": 0.9829 + }, + { + "start": 21123.66, + "end": 21124.3, + "probability": 0.678 + }, + { + "start": 21124.36, + "end": 21125.14, + "probability": 0.6028 + }, + { + "start": 21125.3, + "end": 21126.34, + "probability": 0.9736 + }, + { + "start": 21126.66, + "end": 21128.72, + "probability": 0.7114 + }, + { + "start": 21129.64, + "end": 21130.14, + "probability": 0.6392 + }, + { + "start": 21131.0, + "end": 21131.69, + "probability": 0.9506 + }, + { + "start": 21131.92, + "end": 21132.82, + "probability": 0.9823 + }, + { + "start": 21132.86, + "end": 21134.93, + "probability": 0.6283 + }, + { + "start": 21135.38, + "end": 21137.38, + "probability": 0.4972 + }, + { + "start": 21137.6, + "end": 21140.3, + "probability": 0.8585 + }, + { + "start": 21140.58, + "end": 21141.71, + "probability": 0.9486 + }, + { + "start": 21141.98, + "end": 21142.76, + "probability": 0.6714 + }, + { + "start": 21143.02, + "end": 21143.55, + "probability": 0.8921 + }, + { + "start": 21144.18, + "end": 21145.34, + "probability": 0.9037 + }, + { + "start": 21145.76, + "end": 21146.65, + "probability": 0.9746 + }, + { + "start": 21147.42, + "end": 21148.38, + "probability": 0.6785 + }, + { + "start": 21149.12, + "end": 21151.94, + "probability": 0.9508 + }, + { + "start": 21152.8, + "end": 21154.96, + "probability": 0.8289 + }, + { + "start": 21155.02, + "end": 21155.98, + "probability": 0.7129 + }, + { + "start": 21156.26, + "end": 21156.84, + "probability": 0.5021 + }, + { + "start": 21156.9, + "end": 21157.32, + "probability": 0.5596 + }, + { + "start": 21157.5, + "end": 21159.28, + "probability": 0.9846 + }, + { + "start": 21160.66, + "end": 21161.42, + "probability": 0.6138 + }, + { + "start": 21162.02, + "end": 21164.02, + "probability": 0.9922 + }, + { + "start": 21164.18, + "end": 21165.2, + "probability": 0.9153 + }, + { + "start": 21165.48, + "end": 21167.06, + "probability": 0.9937 + }, + { + "start": 21167.26, + "end": 21170.03, + "probability": 0.553 + }, + { + "start": 21171.6, + "end": 21172.8, + "probability": 0.9772 + }, + { + "start": 21173.52, + "end": 21178.66, + "probability": 0.6788 + }, + { + "start": 21179.62, + "end": 21180.58, + "probability": 0.5844 + }, + { + "start": 21181.18, + "end": 21184.32, + "probability": 0.9552 + }, + { + "start": 21184.54, + "end": 21187.24, + "probability": 0.9561 + }, + { + "start": 21189.72, + "end": 21192.46, + "probability": 0.7231 + }, + { + "start": 21193.46, + "end": 21194.12, + "probability": 0.8974 + }, + { + "start": 21194.92, + "end": 21196.84, + "probability": 0.8601 + }, + { + "start": 21197.58, + "end": 21198.56, + "probability": 0.8504 + }, + { + "start": 21198.8, + "end": 21200.28, + "probability": 0.9919 + }, + { + "start": 21200.4, + "end": 21201.94, + "probability": 0.9894 + }, + { + "start": 21202.12, + "end": 21205.08, + "probability": 0.994 + }, + { + "start": 21205.38, + "end": 21205.6, + "probability": 0.5787 + }, + { + "start": 21205.92, + "end": 21207.68, + "probability": 0.0597 + }, + { + "start": 21207.85, + "end": 21208.3, + "probability": 0.4177 + }, + { + "start": 21208.3, + "end": 21208.44, + "probability": 0.0819 + }, + { + "start": 21208.5, + "end": 21210.46, + "probability": 0.6746 + }, + { + "start": 21211.46, + "end": 21211.62, + "probability": 0.0336 + }, + { + "start": 21211.62, + "end": 21212.02, + "probability": 0.2237 + }, + { + "start": 21212.2, + "end": 21216.14, + "probability": 0.9159 + }, + { + "start": 21216.22, + "end": 21218.44, + "probability": 0.9849 + }, + { + "start": 21218.5, + "end": 21220.58, + "probability": 0.7436 + }, + { + "start": 21221.02, + "end": 21221.26, + "probability": 0.3838 + }, + { + "start": 21221.36, + "end": 21222.52, + "probability": 0.3914 + }, + { + "start": 21222.92, + "end": 21223.78, + "probability": 0.5021 + }, + { + "start": 21223.86, + "end": 21227.82, + "probability": 0.9937 + }, + { + "start": 21227.84, + "end": 21231.02, + "probability": 0.8804 + }, + { + "start": 21231.46, + "end": 21232.0, + "probability": 0.6786 + }, + { + "start": 21234.75, + "end": 21235.52, + "probability": 0.0549 + }, + { + "start": 21235.52, + "end": 21236.22, + "probability": 0.1409 + }, + { + "start": 21236.6, + "end": 21237.42, + "probability": 0.4135 + }, + { + "start": 21238.68, + "end": 21238.68, + "probability": 0.1788 + }, + { + "start": 21239.6, + "end": 21240.46, + "probability": 0.58 + }, + { + "start": 21241.39, + "end": 21245.44, + "probability": 0.4085 + }, + { + "start": 21254.32, + "end": 21254.92, + "probability": 0.1265 + }, + { + "start": 21256.59, + "end": 21258.02, + "probability": 0.0098 + }, + { + "start": 21258.02, + "end": 21258.02, + "probability": 0.0545 + }, + { + "start": 21258.02, + "end": 21258.56, + "probability": 0.0187 + }, + { + "start": 21258.64, + "end": 21259.12, + "probability": 0.1029 + }, + { + "start": 21272.2, + "end": 21274.1, + "probability": 0.4242 + }, + { + "start": 21275.02, + "end": 21276.76, + "probability": 0.8836 + }, + { + "start": 21276.86, + "end": 21277.58, + "probability": 0.235 + }, + { + "start": 21277.58, + "end": 21277.58, + "probability": 0.071 + }, + { + "start": 21277.58, + "end": 21277.58, + "probability": 0.2707 + }, + { + "start": 21277.58, + "end": 21278.64, + "probability": 0.1543 + }, + { + "start": 21282.12, + "end": 21282.12, + "probability": 0.0248 + }, + { + "start": 21282.12, + "end": 21282.12, + "probability": 0.0157 + }, + { + "start": 21282.12, + "end": 21282.12, + "probability": 0.2338 + }, + { + "start": 21282.12, + "end": 21282.12, + "probability": 0.0553 + }, + { + "start": 21282.12, + "end": 21282.12, + "probability": 0.0117 + }, + { + "start": 21282.12, + "end": 21282.12, + "probability": 0.1177 + }, + { + "start": 21282.12, + "end": 21285.76, + "probability": 0.4623 + }, + { + "start": 21286.48, + "end": 21289.5, + "probability": 0.9079 + }, + { + "start": 21290.74, + "end": 21291.76, + "probability": 0.8214 + }, + { + "start": 21292.94, + "end": 21298.1, + "probability": 0.9844 + }, + { + "start": 21299.42, + "end": 21304.16, + "probability": 0.999 + }, + { + "start": 21305.22, + "end": 21307.32, + "probability": 0.7485 + }, + { + "start": 21308.98, + "end": 21312.78, + "probability": 0.998 + }, + { + "start": 21313.92, + "end": 21319.38, + "probability": 0.9879 + }, + { + "start": 21319.38, + "end": 21324.98, + "probability": 0.9901 + }, + { + "start": 21325.88, + "end": 21331.82, + "probability": 0.9961 + }, + { + "start": 21332.46, + "end": 21334.48, + "probability": 0.9852 + }, + { + "start": 21335.7, + "end": 21336.97, + "probability": 0.7295 + }, + { + "start": 21338.62, + "end": 21342.8, + "probability": 0.9822 + }, + { + "start": 21342.8, + "end": 21345.16, + "probability": 0.9841 + }, + { + "start": 21345.98, + "end": 21347.58, + "probability": 0.9561 + }, + { + "start": 21348.4, + "end": 21350.92, + "probability": 0.9989 + }, + { + "start": 21351.98, + "end": 21355.16, + "probability": 0.9873 + }, + { + "start": 21356.1, + "end": 21357.8, + "probability": 0.9932 + }, + { + "start": 21358.48, + "end": 21362.72, + "probability": 0.992 + }, + { + "start": 21362.96, + "end": 21363.54, + "probability": 0.5698 + }, + { + "start": 21364.64, + "end": 21368.1, + "probability": 0.9548 + }, + { + "start": 21368.1, + "end": 21372.98, + "probability": 0.9994 + }, + { + "start": 21373.66, + "end": 21378.38, + "probability": 0.97 + }, + { + "start": 21379.42, + "end": 21381.24, + "probability": 0.8549 + }, + { + "start": 21381.44, + "end": 21381.66, + "probability": 0.5902 + }, + { + "start": 21381.74, + "end": 21387.26, + "probability": 0.9398 + }, + { + "start": 21387.26, + "end": 21391.56, + "probability": 0.9946 + }, + { + "start": 21391.98, + "end": 21392.62, + "probability": 0.4554 + }, + { + "start": 21392.7, + "end": 21393.34, + "probability": 0.8785 + }, + { + "start": 21394.24, + "end": 21397.22, + "probability": 0.9854 + }, + { + "start": 21398.02, + "end": 21400.28, + "probability": 0.9652 + }, + { + "start": 21400.94, + "end": 21406.64, + "probability": 0.9818 + }, + { + "start": 21407.12, + "end": 21410.02, + "probability": 0.9899 + }, + { + "start": 21410.96, + "end": 21413.04, + "probability": 0.9977 + }, + { + "start": 21413.82, + "end": 21415.14, + "probability": 0.9815 + }, + { + "start": 21415.92, + "end": 21416.84, + "probability": 0.771 + }, + { + "start": 21417.42, + "end": 21420.84, + "probability": 0.7508 + }, + { + "start": 21421.06, + "end": 21421.58, + "probability": 0.9717 + }, + { + "start": 21421.86, + "end": 21425.96, + "probability": 0.9465 + }, + { + "start": 21426.56, + "end": 21429.92, + "probability": 0.9576 + }, + { + "start": 21431.08, + "end": 21436.36, + "probability": 0.9985 + }, + { + "start": 21437.14, + "end": 21438.78, + "probability": 0.9935 + }, + { + "start": 21440.0, + "end": 21440.42, + "probability": 0.6173 + }, + { + "start": 21440.74, + "end": 21441.2, + "probability": 0.9771 + }, + { + "start": 21441.26, + "end": 21443.12, + "probability": 0.9289 + }, + { + "start": 21443.52, + "end": 21445.42, + "probability": 0.9778 + }, + { + "start": 21445.52, + "end": 21448.8, + "probability": 0.9908 + }, + { + "start": 21449.38, + "end": 21450.66, + "probability": 0.9077 + }, + { + "start": 21451.04, + "end": 21456.26, + "probability": 0.9911 + }, + { + "start": 21456.76, + "end": 21459.26, + "probability": 0.7734 + }, + { + "start": 21460.54, + "end": 21461.68, + "probability": 0.9941 + }, + { + "start": 21462.12, + "end": 21463.02, + "probability": 0.9486 + }, + { + "start": 21465.79, + "end": 21468.08, + "probability": 0.7565 + }, + { + "start": 21468.68, + "end": 21469.4, + "probability": 0.823 + }, + { + "start": 21470.98, + "end": 21473.78, + "probability": 0.9642 + }, + { + "start": 21474.42, + "end": 21475.1, + "probability": 0.9161 + }, + { + "start": 21475.36, + "end": 21475.6, + "probability": 0.8073 + }, + { + "start": 21477.04, + "end": 21477.58, + "probability": 0.7151 + }, + { + "start": 21477.8, + "end": 21481.6, + "probability": 0.9751 + }, + { + "start": 21496.7, + "end": 21499.44, + "probability": 0.5928 + }, + { + "start": 21500.34, + "end": 21503.06, + "probability": 0.955 + }, + { + "start": 21503.06, + "end": 21509.72, + "probability": 0.9853 + }, + { + "start": 21509.8, + "end": 21510.9, + "probability": 0.8657 + }, + { + "start": 21511.4, + "end": 21513.02, + "probability": 0.951 + }, + { + "start": 21513.94, + "end": 21514.94, + "probability": 0.9622 + }, + { + "start": 21515.6, + "end": 21517.46, + "probability": 0.8178 + }, + { + "start": 21518.8, + "end": 21519.84, + "probability": 0.5496 + }, + { + "start": 21520.22, + "end": 21521.28, + "probability": 0.5101 + }, + { + "start": 21521.4, + "end": 21521.89, + "probability": 0.8618 + }, + { + "start": 21522.68, + "end": 21523.4, + "probability": 0.0359 + }, + { + "start": 21523.4, + "end": 21527.0, + "probability": 0.9623 + }, + { + "start": 21527.08, + "end": 21530.38, + "probability": 0.9575 + }, + { + "start": 21530.42, + "end": 21531.28, + "probability": 0.513 + }, + { + "start": 21531.56, + "end": 21532.4, + "probability": 0.8127 + }, + { + "start": 21533.58, + "end": 21533.58, + "probability": 0.0748 + }, + { + "start": 21533.58, + "end": 21534.63, + "probability": 0.8962 + }, + { + "start": 21535.22, + "end": 21536.36, + "probability": 0.8245 + }, + { + "start": 21536.52, + "end": 21537.02, + "probability": 0.9164 + }, + { + "start": 21537.12, + "end": 21537.73, + "probability": 0.9844 + }, + { + "start": 21537.96, + "end": 21541.22, + "probability": 0.9792 + }, + { + "start": 21541.64, + "end": 21542.76, + "probability": 0.9509 + }, + { + "start": 21542.96, + "end": 21543.58, + "probability": 0.6262 + }, + { + "start": 21544.46, + "end": 21548.74, + "probability": 0.9777 + }, + { + "start": 21549.34, + "end": 21551.08, + "probability": 0.6304 + }, + { + "start": 21551.66, + "end": 21555.36, + "probability": 0.9971 + }, + { + "start": 21555.36, + "end": 21559.56, + "probability": 0.9355 + }, + { + "start": 21559.72, + "end": 21560.34, + "probability": 0.5934 + }, + { + "start": 21560.98, + "end": 21562.46, + "probability": 0.9839 + }, + { + "start": 21564.04, + "end": 21567.14, + "probability": 0.9636 + }, + { + "start": 21567.14, + "end": 21570.56, + "probability": 0.9465 + }, + { + "start": 21571.1, + "end": 21572.0, + "probability": 0.8107 + }, + { + "start": 21572.12, + "end": 21573.66, + "probability": 0.9257 + }, + { + "start": 21573.74, + "end": 21574.6, + "probability": 0.6614 + }, + { + "start": 21574.68, + "end": 21575.06, + "probability": 0.5057 + }, + { + "start": 21575.18, + "end": 21576.34, + "probability": 0.9117 + }, + { + "start": 21577.56, + "end": 21583.74, + "probability": 0.9341 + }, + { + "start": 21583.9, + "end": 21584.74, + "probability": 0.8949 + }, + { + "start": 21585.8, + "end": 21586.96, + "probability": 0.8496 + }, + { + "start": 21587.64, + "end": 21591.7, + "probability": 0.9574 + }, + { + "start": 21591.94, + "end": 21592.94, + "probability": 0.9451 + }, + { + "start": 21593.16, + "end": 21597.9, + "probability": 0.988 + }, + { + "start": 21599.2, + "end": 21599.62, + "probability": 0.0523 + }, + { + "start": 21599.62, + "end": 21601.88, + "probability": 0.6653 + }, + { + "start": 21602.38, + "end": 21606.1, + "probability": 0.9781 + }, + { + "start": 21606.1, + "end": 21608.17, + "probability": 0.9985 + }, + { + "start": 21609.66, + "end": 21610.86, + "probability": 0.3623 + }, + { + "start": 21612.56, + "end": 21614.32, + "probability": 0.8505 + }, + { + "start": 21614.42, + "end": 21615.3, + "probability": 0.6763 + }, + { + "start": 21615.34, + "end": 21617.74, + "probability": 0.9596 + }, + { + "start": 21617.98, + "end": 21618.62, + "probability": 0.9088 + }, + { + "start": 21618.68, + "end": 21619.0, + "probability": 0.9453 + }, + { + "start": 21619.1, + "end": 21621.76, + "probability": 0.9803 + }, + { + "start": 21622.12, + "end": 21624.0, + "probability": 0.9878 + }, + { + "start": 21624.72, + "end": 21625.64, + "probability": 0.7823 + }, + { + "start": 21626.24, + "end": 21628.56, + "probability": 0.9387 + }, + { + "start": 21629.02, + "end": 21629.78, + "probability": 0.9209 + }, + { + "start": 21630.54, + "end": 21631.74, + "probability": 0.9661 + }, + { + "start": 21632.14, + "end": 21632.76, + "probability": 0.93 + }, + { + "start": 21632.84, + "end": 21634.04, + "probability": 0.97 + }, + { + "start": 21635.36, + "end": 21636.52, + "probability": 0.6006 + }, + { + "start": 21636.8, + "end": 21637.66, + "probability": 0.7242 + }, + { + "start": 21638.28, + "end": 21640.71, + "probability": 0.9269 + }, + { + "start": 21641.04, + "end": 21641.92, + "probability": 0.8871 + }, + { + "start": 21642.1, + "end": 21643.65, + "probability": 0.9492 + }, + { + "start": 21644.62, + "end": 21645.84, + "probability": 0.8129 + }, + { + "start": 21645.84, + "end": 21646.96, + "probability": 0.7372 + }, + { + "start": 21647.42, + "end": 21651.98, + "probability": 0.9937 + }, + { + "start": 21652.24, + "end": 21653.78, + "probability": 0.4827 + }, + { + "start": 21655.3, + "end": 21657.18, + "probability": 0.8933 + }, + { + "start": 21657.34, + "end": 21658.52, + "probability": 0.8445 + }, + { + "start": 21658.66, + "end": 21661.52, + "probability": 0.974 + }, + { + "start": 21662.36, + "end": 21663.53, + "probability": 0.9965 + }, + { + "start": 21663.96, + "end": 21665.26, + "probability": 0.9976 + }, + { + "start": 21665.36, + "end": 21667.6, + "probability": 0.9899 + }, + { + "start": 21667.82, + "end": 21670.34, + "probability": 0.9962 + }, + { + "start": 21670.7, + "end": 21673.12, + "probability": 0.9983 + }, + { + "start": 21673.18, + "end": 21673.86, + "probability": 0.7735 + }, + { + "start": 21674.82, + "end": 21675.84, + "probability": 0.9481 + }, + { + "start": 21676.06, + "end": 21677.02, + "probability": 0.6444 + }, + { + "start": 21677.06, + "end": 21678.66, + "probability": 0.8628 + }, + { + "start": 21681.08, + "end": 21681.82, + "probability": 0.771 + }, + { + "start": 21681.9, + "end": 21683.26, + "probability": 0.9277 + }, + { + "start": 21683.34, + "end": 21684.16, + "probability": 0.9062 + }, + { + "start": 21684.62, + "end": 21685.6, + "probability": 0.9639 + }, + { + "start": 21686.3, + "end": 21688.56, + "probability": 0.9444 + }, + { + "start": 21689.44, + "end": 21692.12, + "probability": 0.9941 + }, + { + "start": 21692.6, + "end": 21693.64, + "probability": 0.8237 + }, + { + "start": 21693.9, + "end": 21695.6, + "probability": 0.9732 + }, + { + "start": 21696.42, + "end": 21697.08, + "probability": 0.5096 + }, + { + "start": 21697.3, + "end": 21699.02, + "probability": 0.918 + }, + { + "start": 21699.86, + "end": 21701.99, + "probability": 0.7651 + }, + { + "start": 21703.64, + "end": 21705.14, + "probability": 0.7825 + }, + { + "start": 21705.7, + "end": 21707.58, + "probability": 0.9113 + }, + { + "start": 21710.12, + "end": 21712.74, + "probability": 0.8496 + }, + { + "start": 21712.78, + "end": 21713.72, + "probability": 0.6144 + }, + { + "start": 21713.76, + "end": 21716.48, + "probability": 0.9707 + }, + { + "start": 21716.72, + "end": 21717.72, + "probability": 0.8153 + }, + { + "start": 21717.88, + "end": 21718.56, + "probability": 0.84 + }, + { + "start": 21719.04, + "end": 21721.04, + "probability": 0.9976 + }, + { + "start": 21721.2, + "end": 21721.2, + "probability": 0.001 + }, + { + "start": 21721.92, + "end": 21723.02, + "probability": 0.1819 + }, + { + "start": 21723.3, + "end": 21724.48, + "probability": 0.1437 + }, + { + "start": 21724.48, + "end": 21725.72, + "probability": 0.231 + }, + { + "start": 21728.92, + "end": 21729.08, + "probability": 0.2499 + }, + { + "start": 21729.08, + "end": 21730.22, + "probability": 0.5189 + }, + { + "start": 21730.22, + "end": 21730.22, + "probability": 0.4857 + }, + { + "start": 21730.22, + "end": 21731.8, + "probability": 0.2299 + }, + { + "start": 21731.82, + "end": 21733.92, + "probability": 0.6287 + }, + { + "start": 21734.2, + "end": 21735.74, + "probability": 0.8368 + }, + { + "start": 21735.86, + "end": 21737.16, + "probability": 0.8379 + }, + { + "start": 21737.16, + "end": 21738.64, + "probability": 0.7851 + }, + { + "start": 21738.7, + "end": 21744.3, + "probability": 0.9962 + }, + { + "start": 21744.3, + "end": 21748.1, + "probability": 0.9971 + }, + { + "start": 21748.94, + "end": 21750.62, + "probability": 0.0198 + }, + { + "start": 21750.72, + "end": 21750.8, + "probability": 0.3291 + }, + { + "start": 21751.22, + "end": 21752.66, + "probability": 0.9421 + }, + { + "start": 21752.74, + "end": 21755.24, + "probability": 0.8971 + }, + { + "start": 21755.34, + "end": 21759.12, + "probability": 0.9823 + }, + { + "start": 21761.9, + "end": 21762.1, + "probability": 0.0447 + }, + { + "start": 21762.1, + "end": 21762.1, + "probability": 0.2531 + }, + { + "start": 21762.1, + "end": 21763.74, + "probability": 0.7713 + }, + { + "start": 21764.56, + "end": 21765.6, + "probability": 0.7774 + }, + { + "start": 21765.76, + "end": 21768.0, + "probability": 0.9801 + }, + { + "start": 21768.02, + "end": 21771.06, + "probability": 0.988 + }, + { + "start": 21771.32, + "end": 21771.72, + "probability": 0.5731 + }, + { + "start": 21771.72, + "end": 21772.38, + "probability": 0.7087 + }, + { + "start": 21772.58, + "end": 21778.18, + "probability": 0.97 + }, + { + "start": 21778.68, + "end": 21780.7, + "probability": 0.966 + }, + { + "start": 21780.94, + "end": 21782.54, + "probability": 0.737 + }, + { + "start": 21782.92, + "end": 21784.92, + "probability": 0.9363 + }, + { + "start": 21785.26, + "end": 21786.32, + "probability": 0.3375 + }, + { + "start": 21786.86, + "end": 21788.8, + "probability": 0.9927 + }, + { + "start": 21788.92, + "end": 21790.88, + "probability": 0.8367 + }, + { + "start": 21791.28, + "end": 21791.5, + "probability": 0.1018 + }, + { + "start": 21791.5, + "end": 21792.18, + "probability": 0.4784 + }, + { + "start": 21792.8, + "end": 21793.59, + "probability": 0.8052 + }, + { + "start": 21794.04, + "end": 21795.14, + "probability": 0.4365 + }, + { + "start": 21795.6, + "end": 21797.12, + "probability": 0.8723 + }, + { + "start": 21797.38, + "end": 21800.52, + "probability": 0.9587 + }, + { + "start": 21800.64, + "end": 21805.26, + "probability": 0.9931 + }, + { + "start": 21805.5, + "end": 21805.9, + "probability": 0.8007 + }, + { + "start": 21805.96, + "end": 21806.62, + "probability": 0.9307 + }, + { + "start": 21806.94, + "end": 21807.08, + "probability": 0.4338 + }, + { + "start": 21807.86, + "end": 21813.52, + "probability": 0.988 + }, + { + "start": 21813.66, + "end": 21813.82, + "probability": 0.2863 + }, + { + "start": 21814.0, + "end": 21814.38, + "probability": 0.9666 + }, + { + "start": 21814.48, + "end": 21820.12, + "probability": 0.9604 + }, + { + "start": 21820.32, + "end": 21821.46, + "probability": 0.7773 + }, + { + "start": 21821.56, + "end": 21822.66, + "probability": 0.8091 + }, + { + "start": 21823.3, + "end": 21825.74, + "probability": 0.1128 + }, + { + "start": 21825.74, + "end": 21826.58, + "probability": 0.0056 + }, + { + "start": 21826.68, + "end": 21828.29, + "probability": 0.0932 + }, + { + "start": 21828.5, + "end": 21829.69, + "probability": 0.6427 + }, + { + "start": 21830.28, + "end": 21832.46, + "probability": 0.9609 + }, + { + "start": 21833.3, + "end": 21838.13, + "probability": 0.9124 + }, + { + "start": 21839.88, + "end": 21841.68, + "probability": 0.998 + }, + { + "start": 21842.2, + "end": 21845.52, + "probability": 0.8818 + }, + { + "start": 21845.72, + "end": 21846.04, + "probability": 0.5792 + }, + { + "start": 21847.94, + "end": 21848.54, + "probability": 0.0238 + }, + { + "start": 21848.54, + "end": 21849.39, + "probability": 0.7704 + }, + { + "start": 21849.88, + "end": 21852.22, + "probability": 0.2304 + }, + { + "start": 21852.36, + "end": 21853.84, + "probability": 0.6703 + }, + { + "start": 21854.3, + "end": 21858.74, + "probability": 0.9366 + }, + { + "start": 21858.74, + "end": 21861.2, + "probability": 0.967 + }, + { + "start": 21861.66, + "end": 21863.74, + "probability": 0.9954 + }, + { + "start": 21864.12, + "end": 21865.2, + "probability": 0.8798 + }, + { + "start": 21865.22, + "end": 21866.98, + "probability": 0.9933 + }, + { + "start": 21866.98, + "end": 21869.4, + "probability": 0.9908 + }, + { + "start": 21869.5, + "end": 21869.78, + "probability": 0.0752 + }, + { + "start": 21869.78, + "end": 21870.3, + "probability": 0.1429 + }, + { + "start": 21870.86, + "end": 21870.86, + "probability": 0.3327 + }, + { + "start": 21870.86, + "end": 21871.46, + "probability": 0.4717 + }, + { + "start": 21871.46, + "end": 21871.9, + "probability": 0.5587 + }, + { + "start": 21871.92, + "end": 21873.08, + "probability": 0.4774 + }, + { + "start": 21873.24, + "end": 21874.28, + "probability": 0.8398 + }, + { + "start": 21874.32, + "end": 21875.36, + "probability": 0.8287 + }, + { + "start": 21875.5, + "end": 21877.68, + "probability": 0.8543 + }, + { + "start": 21877.92, + "end": 21880.68, + "probability": 0.9824 + }, + { + "start": 21880.9, + "end": 21883.12, + "probability": 0.9077 + }, + { + "start": 21884.0, + "end": 21884.0, + "probability": 0.4271 + }, + { + "start": 21884.0, + "end": 21886.5, + "probability": 0.7535 + }, + { + "start": 21886.5, + "end": 21886.92, + "probability": 0.0218 + }, + { + "start": 21887.12, + "end": 21887.16, + "probability": 0.0083 + }, + { + "start": 21887.16, + "end": 21888.04, + "probability": 0.4792 + }, + { + "start": 21888.38, + "end": 21889.26, + "probability": 0.9141 + }, + { + "start": 21889.36, + "end": 21889.5, + "probability": 0.2585 + }, + { + "start": 21889.7, + "end": 21893.96, + "probability": 0.8245 + }, + { + "start": 21894.2, + "end": 21895.05, + "probability": 0.7236 + }, + { + "start": 21895.64, + "end": 21895.68, + "probability": 0.0723 + }, + { + "start": 21895.68, + "end": 21897.49, + "probability": 0.9814 + }, + { + "start": 21897.88, + "end": 21897.98, + "probability": 0.3157 + }, + { + "start": 21897.98, + "end": 21900.16, + "probability": 0.8563 + }, + { + "start": 21900.62, + "end": 21901.24, + "probability": 0.8827 + }, + { + "start": 21901.28, + "end": 21904.24, + "probability": 0.974 + }, + { + "start": 21904.24, + "end": 21905.58, + "probability": 0.0822 + }, + { + "start": 21905.58, + "end": 21907.96, + "probability": 0.6707 + }, + { + "start": 21908.08, + "end": 21908.24, + "probability": 0.1432 + }, + { + "start": 21908.24, + "end": 21909.28, + "probability": 0.2857 + }, + { + "start": 21909.34, + "end": 21909.8, + "probability": 0.7798 + }, + { + "start": 21909.98, + "end": 21910.89, + "probability": 0.5041 + }, + { + "start": 21911.18, + "end": 21912.1, + "probability": 0.4912 + }, + { + "start": 21912.1, + "end": 21912.5, + "probability": 0.5472 + }, + { + "start": 21912.5, + "end": 21915.76, + "probability": 0.9691 + }, + { + "start": 21915.9, + "end": 21921.0, + "probability": 0.9263 + }, + { + "start": 21921.26, + "end": 21922.36, + "probability": 0.8077 + }, + { + "start": 21922.6, + "end": 21924.28, + "probability": 0.9921 + }, + { + "start": 21924.54, + "end": 21924.86, + "probability": 0.5169 + }, + { + "start": 21924.92, + "end": 21926.21, + "probability": 0.9976 + }, + { + "start": 21927.38, + "end": 21928.88, + "probability": 0.908 + }, + { + "start": 21929.42, + "end": 21931.19, + "probability": 0.9979 + }, + { + "start": 21931.56, + "end": 21936.78, + "probability": 0.9752 + }, + { + "start": 21937.18, + "end": 21938.08, + "probability": 0.747 + }, + { + "start": 21938.48, + "end": 21939.22, + "probability": 0.7889 + }, + { + "start": 21939.62, + "end": 21942.44, + "probability": 0.9479 + }, + { + "start": 21942.74, + "end": 21943.66, + "probability": 0.8924 + }, + { + "start": 21944.2, + "end": 21947.04, + "probability": 0.9613 + }, + { + "start": 21947.4, + "end": 21950.44, + "probability": 0.128 + }, + { + "start": 21950.44, + "end": 21950.44, + "probability": 0.1287 + }, + { + "start": 21950.44, + "end": 21950.44, + "probability": 0.0189 + }, + { + "start": 21950.44, + "end": 21951.26, + "probability": 0.5147 + }, + { + "start": 21951.52, + "end": 21952.72, + "probability": 0.6635 + }, + { + "start": 21952.74, + "end": 21953.78, + "probability": 0.2942 + }, + { + "start": 21954.06, + "end": 21955.36, + "probability": 0.7426 + }, + { + "start": 21955.84, + "end": 21956.74, + "probability": 0.8674 + }, + { + "start": 21956.8, + "end": 21957.2, + "probability": 0.8485 + }, + { + "start": 21957.3, + "end": 21958.06, + "probability": 0.9175 + }, + { + "start": 21958.3, + "end": 21958.64, + "probability": 0.8185 + }, + { + "start": 21958.72, + "end": 21959.4, + "probability": 0.4011 + }, + { + "start": 21959.6, + "end": 21961.34, + "probability": 0.9448 + }, + { + "start": 21961.36, + "end": 21963.42, + "probability": 0.9841 + }, + { + "start": 21964.68, + "end": 21967.16, + "probability": 0.2684 + }, + { + "start": 21967.36, + "end": 21969.5, + "probability": 0.015 + }, + { + "start": 21970.1, + "end": 21970.26, + "probability": 0.0007 + }, + { + "start": 21970.26, + "end": 21970.34, + "probability": 0.2253 + }, + { + "start": 21970.34, + "end": 21970.44, + "probability": 0.2905 + }, + { + "start": 21970.44, + "end": 21972.48, + "probability": 0.6661 + }, + { + "start": 21972.54, + "end": 21973.44, + "probability": 0.847 + }, + { + "start": 21973.64, + "end": 21976.78, + "probability": 0.9976 + }, + { + "start": 21976.78, + "end": 21979.66, + "probability": 0.9844 + }, + { + "start": 21979.88, + "end": 21981.84, + "probability": 0.9588 + }, + { + "start": 21983.22, + "end": 21984.06, + "probability": 0.0337 + }, + { + "start": 21984.06, + "end": 21984.06, + "probability": 0.1691 + }, + { + "start": 21985.38, + "end": 21986.84, + "probability": 0.5548 + }, + { + "start": 21987.84, + "end": 21991.38, + "probability": 0.9626 + }, + { + "start": 21991.84, + "end": 21992.77, + "probability": 0.3448 + }, + { + "start": 21993.14, + "end": 21994.3, + "probability": 0.119 + }, + { + "start": 21994.76, + "end": 21998.0, + "probability": 0.0382 + }, + { + "start": 21998.48, + "end": 21998.48, + "probability": 0.0746 + }, + { + "start": 21998.48, + "end": 21999.36, + "probability": 0.1098 + }, + { + "start": 22000.18, + "end": 22007.36, + "probability": 0.939 + }, + { + "start": 22007.46, + "end": 22011.2, + "probability": 0.9947 + }, + { + "start": 22011.2, + "end": 22013.72, + "probability": 0.998 + }, + { + "start": 22014.42, + "end": 22016.2, + "probability": 0.2224 + }, + { + "start": 22016.22, + "end": 22017.44, + "probability": 0.7378 + }, + { + "start": 22017.52, + "end": 22018.34, + "probability": 0.7842 + }, + { + "start": 22018.34, + "end": 22019.44, + "probability": 0.2747 + }, + { + "start": 22019.44, + "end": 22022.2, + "probability": 0.2076 + }, + { + "start": 22022.2, + "end": 22022.2, + "probability": 0.1037 + }, + { + "start": 22022.2, + "end": 22024.48, + "probability": 0.5387 + }, + { + "start": 22025.24, + "end": 22026.72, + "probability": 0.7274 + }, + { + "start": 22026.9, + "end": 22028.32, + "probability": 0.8154 + }, + { + "start": 22028.32, + "end": 22034.17, + "probability": 0.9691 + }, + { + "start": 22034.34, + "end": 22036.9, + "probability": 0.9629 + }, + { + "start": 22037.14, + "end": 22037.72, + "probability": 0.6591 + }, + { + "start": 22038.5, + "end": 22039.92, + "probability": 0.4052 + }, + { + "start": 22039.92, + "end": 22040.8, + "probability": 0.4898 + }, + { + "start": 22041.2, + "end": 22042.16, + "probability": 0.9031 + }, + { + "start": 22042.64, + "end": 22043.7, + "probability": 0.8448 + }, + { + "start": 22043.72, + "end": 22044.94, + "probability": 0.7316 + }, + { + "start": 22045.02, + "end": 22045.08, + "probability": 0.7557 + }, + { + "start": 22045.08, + "end": 22046.04, + "probability": 0.9021 + }, + { + "start": 22046.18, + "end": 22046.52, + "probability": 0.3953 + }, + { + "start": 22046.74, + "end": 22048.44, + "probability": 0.9443 + }, + { + "start": 22048.54, + "end": 22049.86, + "probability": 0.9465 + }, + { + "start": 22050.4, + "end": 22051.98, + "probability": 0.8506 + }, + { + "start": 22053.12, + "end": 22053.18, + "probability": 0.0699 + }, + { + "start": 22053.18, + "end": 22054.48, + "probability": 0.9057 + }, + { + "start": 22056.82, + "end": 22057.84, + "probability": 0.9539 + }, + { + "start": 22057.94, + "end": 22063.78, + "probability": 0.9858 + }, + { + "start": 22064.04, + "end": 22067.44, + "probability": 0.9985 + }, + { + "start": 22068.52, + "end": 22069.18, + "probability": 0.6082 + }, + { + "start": 22069.58, + "end": 22071.33, + "probability": 0.9956 + }, + { + "start": 22071.78, + "end": 22072.41, + "probability": 0.817 + }, + { + "start": 22073.02, + "end": 22073.32, + "probability": 0.0241 + }, + { + "start": 22073.32, + "end": 22073.64, + "probability": 0.2345 + }, + { + "start": 22073.76, + "end": 22074.9, + "probability": 0.5419 + }, + { + "start": 22075.0, + "end": 22077.33, + "probability": 0.9473 + }, + { + "start": 22079.09, + "end": 22079.98, + "probability": 0.0107 + }, + { + "start": 22079.98, + "end": 22080.78, + "probability": 0.6989 + }, + { + "start": 22081.26, + "end": 22083.51, + "probability": 0.897 + }, + { + "start": 22084.12, + "end": 22087.5, + "probability": 0.998 + }, + { + "start": 22087.5, + "end": 22091.28, + "probability": 0.8655 + }, + { + "start": 22091.72, + "end": 22094.44, + "probability": 0.9817 + }, + { + "start": 22094.48, + "end": 22095.4, + "probability": 0.7536 + }, + { + "start": 22095.64, + "end": 22096.54, + "probability": 0.8652 + }, + { + "start": 22096.64, + "end": 22097.48, + "probability": 0.8474 + }, + { + "start": 22097.76, + "end": 22099.86, + "probability": 0.8162 + }, + { + "start": 22099.96, + "end": 22102.02, + "probability": 0.9791 + }, + { + "start": 22102.1, + "end": 22103.18, + "probability": 0.8061 + }, + { + "start": 22103.26, + "end": 22103.82, + "probability": 0.7675 + }, + { + "start": 22103.96, + "end": 22106.38, + "probability": 0.9839 + }, + { + "start": 22106.58, + "end": 22107.22, + "probability": 0.873 + }, + { + "start": 22107.28, + "end": 22110.74, + "probability": 0.995 + }, + { + "start": 22110.74, + "end": 22114.8, + "probability": 0.985 + }, + { + "start": 22114.8, + "end": 22115.38, + "probability": 0.7068 + }, + { + "start": 22115.74, + "end": 22118.16, + "probability": 0.5321 + }, + { + "start": 22118.78, + "end": 22119.28, + "probability": 0.024 + }, + { + "start": 22119.28, + "end": 22119.49, + "probability": 0.3986 + }, + { + "start": 22120.12, + "end": 22121.26, + "probability": 0.5733 + }, + { + "start": 22121.36, + "end": 22125.04, + "probability": 0.9455 + }, + { + "start": 22125.04, + "end": 22127.2, + "probability": 0.8941 + }, + { + "start": 22127.94, + "end": 22128.7, + "probability": 0.6359 + }, + { + "start": 22132.87, + "end": 22133.36, + "probability": 0.0087 + }, + { + "start": 22133.36, + "end": 22133.36, + "probability": 0.0396 + }, + { + "start": 22133.36, + "end": 22133.36, + "probability": 0.2703 + }, + { + "start": 22133.36, + "end": 22133.36, + "probability": 0.0226 + }, + { + "start": 22133.36, + "end": 22134.74, + "probability": 0.4002 + }, + { + "start": 22135.28, + "end": 22138.36, + "probability": 0.8045 + }, + { + "start": 22140.92, + "end": 22142.42, + "probability": 0.5336 + }, + { + "start": 22142.6, + "end": 22143.72, + "probability": 0.6937 + }, + { + "start": 22143.74, + "end": 22144.52, + "probability": 0.4746 + }, + { + "start": 22144.72, + "end": 22145.24, + "probability": 0.6526 + }, + { + "start": 22145.44, + "end": 22146.18, + "probability": 0.6243 + }, + { + "start": 22146.38, + "end": 22147.56, + "probability": 0.6317 + }, + { + "start": 22147.94, + "end": 22150.02, + "probability": 0.9023 + }, + { + "start": 22150.14, + "end": 22152.8, + "probability": 0.8965 + }, + { + "start": 22152.82, + "end": 22153.56, + "probability": 0.9559 + }, + { + "start": 22154.3, + "end": 22154.66, + "probability": 0.5185 + }, + { + "start": 22155.1, + "end": 22157.74, + "probability": 0.9766 + }, + { + "start": 22158.0, + "end": 22159.78, + "probability": 0.9105 + }, + { + "start": 22160.02, + "end": 22161.08, + "probability": 0.9589 + }, + { + "start": 22161.16, + "end": 22161.92, + "probability": 0.8689 + }, + { + "start": 22162.38, + "end": 22163.31, + "probability": 0.9438 + }, + { + "start": 22164.06, + "end": 22166.4, + "probability": 0.996 + }, + { + "start": 22166.6, + "end": 22167.54, + "probability": 0.9455 + }, + { + "start": 22167.78, + "end": 22169.08, + "probability": 0.6532 + }, + { + "start": 22169.18, + "end": 22172.86, + "probability": 0.9741 + }, + { + "start": 22173.32, + "end": 22178.12, + "probability": 0.8011 + }, + { + "start": 22178.44, + "end": 22181.9, + "probability": 0.9137 + }, + { + "start": 22182.08, + "end": 22182.52, + "probability": 0.9264 + }, + { + "start": 22183.3, + "end": 22183.96, + "probability": 0.8659 + }, + { + "start": 22184.12, + "end": 22186.22, + "probability": 0.6547 + }, + { + "start": 22196.62, + "end": 22198.02, + "probability": 0.6104 + }, + { + "start": 22198.14, + "end": 22198.78, + "probability": 0.1325 + }, + { + "start": 22199.04, + "end": 22202.58, + "probability": 0.9143 + }, + { + "start": 22203.5, + "end": 22204.46, + "probability": 0.9346 + }, + { + "start": 22204.52, + "end": 22206.86, + "probability": 0.7749 + }, + { + "start": 22207.6, + "end": 22209.46, + "probability": 0.6507 + }, + { + "start": 22210.02, + "end": 22213.24, + "probability": 0.9298 + }, + { + "start": 22213.64, + "end": 22217.9, + "probability": 0.9868 + }, + { + "start": 22218.62, + "end": 22219.82, + "probability": 0.6764 + }, + { + "start": 22220.36, + "end": 22222.56, + "probability": 0.9346 + }, + { + "start": 22223.5, + "end": 22224.82, + "probability": 0.8634 + }, + { + "start": 22225.54, + "end": 22226.89, + "probability": 0.9717 + }, + { + "start": 22227.34, + "end": 22230.22, + "probability": 0.9865 + }, + { + "start": 22231.22, + "end": 22232.2, + "probability": 0.7065 + }, + { + "start": 22232.54, + "end": 22233.74, + "probability": 0.864 + }, + { + "start": 22233.8, + "end": 22236.14, + "probability": 0.7218 + }, + { + "start": 22236.24, + "end": 22240.6, + "probability": 0.8804 + }, + { + "start": 22240.82, + "end": 22241.72, + "probability": 0.7999 + }, + { + "start": 22241.96, + "end": 22243.16, + "probability": 0.7214 + }, + { + "start": 22243.32, + "end": 22245.76, + "probability": 0.9253 + }, + { + "start": 22246.1, + "end": 22249.02, + "probability": 0.9932 + }, + { + "start": 22249.36, + "end": 22250.0, + "probability": 0.6023 + }, + { + "start": 22250.1, + "end": 22251.48, + "probability": 0.9524 + }, + { + "start": 22252.18, + "end": 22253.44, + "probability": 0.7708 + }, + { + "start": 22253.56, + "end": 22254.29, + "probability": 0.8652 + }, + { + "start": 22255.4, + "end": 22255.4, + "probability": 0.0365 + }, + { + "start": 22255.42, + "end": 22256.03, + "probability": 0.6907 + }, + { + "start": 22257.2, + "end": 22258.46, + "probability": 0.0862 + }, + { + "start": 22260.78, + "end": 22261.72, + "probability": 0.0434 + }, + { + "start": 22261.72, + "end": 22261.72, + "probability": 0.1062 + }, + { + "start": 22262.04, + "end": 22262.86, + "probability": 0.038 + }, + { + "start": 22262.86, + "end": 22263.56, + "probability": 0.1233 + }, + { + "start": 22263.82, + "end": 22264.84, + "probability": 0.2222 + }, + { + "start": 22268.04, + "end": 22269.78, + "probability": 0.2913 + }, + { + "start": 22270.58, + "end": 22272.32, + "probability": 0.3534 + }, + { + "start": 22273.36, + "end": 22274.22, + "probability": 0.6131 + }, + { + "start": 22274.36, + "end": 22276.25, + "probability": 0.286 + }, + { + "start": 22276.84, + "end": 22277.62, + "probability": 0.5819 + }, + { + "start": 22277.92, + "end": 22278.98, + "probability": 0.7144 + }, + { + "start": 22279.52, + "end": 22280.64, + "probability": 0.5238 + }, + { + "start": 22281.16, + "end": 22282.64, + "probability": 0.7998 + }, + { + "start": 22282.7, + "end": 22283.28, + "probability": 0.4011 + }, + { + "start": 22283.3, + "end": 22283.93, + "probability": 0.6418 + }, + { + "start": 22285.2, + "end": 22286.24, + "probability": 0.2484 + }, + { + "start": 22286.82, + "end": 22289.6, + "probability": 0.6403 + }, + { + "start": 22290.16, + "end": 22295.2, + "probability": 0.1167 + }, + { + "start": 22295.34, + "end": 22295.78, + "probability": 0.8016 + }, + { + "start": 22295.84, + "end": 22298.12, + "probability": 0.6356 + }, + { + "start": 22298.38, + "end": 22298.52, + "probability": 0.001 + }, + { + "start": 22298.66, + "end": 22301.94, + "probability": 0.7955 + }, + { + "start": 22301.94, + "end": 22303.6, + "probability": 0.6974 + }, + { + "start": 22303.74, + "end": 22308.18, + "probability": 0.9536 + }, + { + "start": 22308.26, + "end": 22311.86, + "probability": 0.1976 + }, + { + "start": 22313.46, + "end": 22314.04, + "probability": 0.3288 + }, + { + "start": 22315.86, + "end": 22317.3, + "probability": 0.2036 + }, + { + "start": 22319.14, + "end": 22319.8, + "probability": 0.3634 + }, + { + "start": 22327.6, + "end": 22328.28, + "probability": 0.0405 + }, + { + "start": 22328.42, + "end": 22331.58, + "probability": 0.7621 + }, + { + "start": 22331.68, + "end": 22335.98, + "probability": 0.811 + }, + { + "start": 22338.18, + "end": 22338.3, + "probability": 0.0784 + }, + { + "start": 22338.3, + "end": 22342.38, + "probability": 0.0319 + }, + { + "start": 22344.7, + "end": 22344.7, + "probability": 0.0075 + }, + { + "start": 22344.7, + "end": 22344.7, + "probability": 0.3413 + }, + { + "start": 22344.7, + "end": 22344.7, + "probability": 0.1169 + }, + { + "start": 22344.7, + "end": 22347.74, + "probability": 0.4369 + }, + { + "start": 22347.78, + "end": 22350.72, + "probability": 0.7788 + }, + { + "start": 22350.78, + "end": 22352.1, + "probability": 0.7484 + }, + { + "start": 22353.36, + "end": 22353.96, + "probability": 0.6921 + }, + { + "start": 22367.92, + "end": 22369.54, + "probability": 0.7417 + }, + { + "start": 22370.18, + "end": 22371.02, + "probability": 0.8774 + }, + { + "start": 22371.24, + "end": 22380.14, + "probability": 0.9604 + }, + { + "start": 22381.3, + "end": 22381.74, + "probability": 0.4785 + }, + { + "start": 22381.86, + "end": 22381.88, + "probability": 0.3643 + }, + { + "start": 22381.88, + "end": 22386.24, + "probability": 0.619 + }, + { + "start": 22387.48, + "end": 22390.14, + "probability": 0.4831 + }, + { + "start": 22390.98, + "end": 22393.94, + "probability": 0.7653 + }, + { + "start": 22394.02, + "end": 22395.22, + "probability": 0.9326 + }, + { + "start": 22395.42, + "end": 22397.06, + "probability": 0.6346 + }, + { + "start": 22398.12, + "end": 22398.9, + "probability": 0.5988 + }, + { + "start": 22399.12, + "end": 22399.74, + "probability": 0.3724 + }, + { + "start": 22399.88, + "end": 22400.5, + "probability": 0.8383 + }, + { + "start": 22400.68, + "end": 22401.6, + "probability": 0.9881 + }, + { + "start": 22401.74, + "end": 22409.88, + "probability": 0.9905 + }, + { + "start": 22410.7, + "end": 22417.06, + "probability": 0.8078 + }, + { + "start": 22418.06, + "end": 22420.41, + "probability": 0.8899 + }, + { + "start": 22422.18, + "end": 22425.62, + "probability": 0.9834 + }, + { + "start": 22425.8, + "end": 22426.7, + "probability": 0.95 + }, + { + "start": 22427.08, + "end": 22432.78, + "probability": 0.9968 + }, + { + "start": 22433.06, + "end": 22436.16, + "probability": 0.7083 + }, + { + "start": 22436.88, + "end": 22437.12, + "probability": 0.7679 + }, + { + "start": 22437.3, + "end": 22441.5, + "probability": 0.9051 + }, + { + "start": 22442.98, + "end": 22448.48, + "probability": 0.8955 + }, + { + "start": 22448.56, + "end": 22451.04, + "probability": 0.9948 + }, + { + "start": 22451.4, + "end": 22453.54, + "probability": 0.8738 + }, + { + "start": 22454.7, + "end": 22459.56, + "probability": 0.8472 + }, + { + "start": 22459.74, + "end": 22461.52, + "probability": 0.9886 + }, + { + "start": 22461.58, + "end": 22462.84, + "probability": 0.8449 + }, + { + "start": 22463.08, + "end": 22468.4, + "probability": 0.9497 + }, + { + "start": 22468.82, + "end": 22473.68, + "probability": 0.969 + }, + { + "start": 22474.42, + "end": 22476.72, + "probability": 0.8666 + }, + { + "start": 22477.36, + "end": 22481.02, + "probability": 0.9368 + }, + { + "start": 22481.44, + "end": 22484.06, + "probability": 0.5951 + }, + { + "start": 22484.18, + "end": 22486.24, + "probability": 0.8344 + }, + { + "start": 22486.26, + "end": 22487.53, + "probability": 0.8147 + }, + { + "start": 22488.16, + "end": 22492.25, + "probability": 0.9564 + }, + { + "start": 22492.84, + "end": 22493.53, + "probability": 0.7328 + }, + { + "start": 22494.08, + "end": 22498.2, + "probability": 0.9415 + }, + { + "start": 22498.66, + "end": 22501.54, + "probability": 0.9801 + }, + { + "start": 22501.84, + "end": 22505.48, + "probability": 0.8499 + }, + { + "start": 22505.56, + "end": 22506.94, + "probability": 0.9787 + }, + { + "start": 22507.28, + "end": 22509.32, + "probability": 0.988 + }, + { + "start": 22509.32, + "end": 22512.8, + "probability": 0.6791 + }, + { + "start": 22513.32, + "end": 22519.5, + "probability": 0.9758 + }, + { + "start": 22519.76, + "end": 22521.18, + "probability": 0.9756 + }, + { + "start": 22521.34, + "end": 22523.92, + "probability": 0.9827 + }, + { + "start": 22524.32, + "end": 22525.06, + "probability": 0.5749 + }, + { + "start": 22525.7, + "end": 22528.74, + "probability": 0.9733 + }, + { + "start": 22529.08, + "end": 22531.54, + "probability": 0.8297 + }, + { + "start": 22531.54, + "end": 22539.26, + "probability": 0.8564 + }, + { + "start": 22539.7, + "end": 22542.62, + "probability": 0.993 + }, + { + "start": 22542.84, + "end": 22543.34, + "probability": 0.7394 + }, + { + "start": 22543.82, + "end": 22544.44, + "probability": 0.6818 + }, + { + "start": 22544.62, + "end": 22546.28, + "probability": 0.8607 + }, + { + "start": 22546.34, + "end": 22547.44, + "probability": 0.8548 + }, + { + "start": 22548.8, + "end": 22553.04, + "probability": 0.8956 + }, + { + "start": 22572.14, + "end": 22573.22, + "probability": 0.4752 + }, + { + "start": 22575.7, + "end": 22579.78, + "probability": 0.8706 + }, + { + "start": 22580.14, + "end": 22581.12, + "probability": 0.644 + }, + { + "start": 22581.52, + "end": 22582.82, + "probability": 0.4797 + }, + { + "start": 22582.82, + "end": 22583.22, + "probability": 0.0934 + }, + { + "start": 22583.3, + "end": 22588.02, + "probability": 0.987 + }, + { + "start": 22588.7, + "end": 22591.7, + "probability": 0.9244 + }, + { + "start": 22592.44, + "end": 22593.26, + "probability": 0.452 + }, + { + "start": 22593.26, + "end": 22593.62, + "probability": 0.8311 + }, + { + "start": 22594.48, + "end": 22595.64, + "probability": 0.8973 + }, + { + "start": 22595.88, + "end": 22595.98, + "probability": 0.0099 + }, + { + "start": 22596.0, + "end": 22597.64, + "probability": 0.9954 + }, + { + "start": 22597.76, + "end": 22599.04, + "probability": 0.967 + }, + { + "start": 22599.54, + "end": 22600.42, + "probability": 0.9946 + }, + { + "start": 22600.56, + "end": 22601.41, + "probability": 0.6625 + }, + { + "start": 22601.6, + "end": 22603.7, + "probability": 0.8311 + }, + { + "start": 22604.22, + "end": 22604.7, + "probability": 0.9908 + }, + { + "start": 22606.08, + "end": 22606.68, + "probability": 0.8976 + }, + { + "start": 22606.8, + "end": 22611.17, + "probability": 0.9124 + }, + { + "start": 22611.52, + "end": 22618.18, + "probability": 0.9041 + }, + { + "start": 22619.12, + "end": 22619.12, + "probability": 0.5109 + }, + { + "start": 22619.12, + "end": 22625.52, + "probability": 0.9326 + }, + { + "start": 22626.68, + "end": 22629.66, + "probability": 0.9758 + }, + { + "start": 22629.82, + "end": 22631.84, + "probability": 0.9634 + }, + { + "start": 22632.64, + "end": 22635.62, + "probability": 0.985 + }, + { + "start": 22636.18, + "end": 22640.3, + "probability": 0.9904 + }, + { + "start": 22641.54, + "end": 22648.54, + "probability": 0.9422 + }, + { + "start": 22648.8, + "end": 22650.64, + "probability": 0.9139 + }, + { + "start": 22651.32, + "end": 22653.32, + "probability": 0.9847 + }, + { + "start": 22653.94, + "end": 22655.0, + "probability": 0.9841 + }, + { + "start": 22655.08, + "end": 22656.21, + "probability": 0.9729 + }, + { + "start": 22656.34, + "end": 22657.56, + "probability": 0.8528 + }, + { + "start": 22658.48, + "end": 22664.1, + "probability": 0.851 + }, + { + "start": 22664.22, + "end": 22666.36, + "probability": 0.9827 + }, + { + "start": 22666.68, + "end": 22668.42, + "probability": 0.9516 + }, + { + "start": 22668.6, + "end": 22670.14, + "probability": 0.8764 + }, + { + "start": 22670.82, + "end": 22671.44, + "probability": 0.4462 + }, + { + "start": 22671.66, + "end": 22673.4, + "probability": 0.9218 + }, + { + "start": 22673.44, + "end": 22675.56, + "probability": 0.9711 + }, + { + "start": 22676.12, + "end": 22681.04, + "probability": 0.928 + }, + { + "start": 22682.2, + "end": 22686.68, + "probability": 0.7463 + }, + { + "start": 22687.22, + "end": 22689.12, + "probability": 0.9711 + }, + { + "start": 22689.36, + "end": 22690.9, + "probability": 0.9708 + }, + { + "start": 22691.08, + "end": 22691.7, + "probability": 0.7766 + }, + { + "start": 22692.26, + "end": 22697.6, + "probability": 0.953 + }, + { + "start": 22698.58, + "end": 22700.64, + "probability": 0.9104 + }, + { + "start": 22700.74, + "end": 22704.08, + "probability": 0.9724 + }, + { + "start": 22704.72, + "end": 22706.78, + "probability": 0.9978 + }, + { + "start": 22706.9, + "end": 22708.7, + "probability": 0.9192 + }, + { + "start": 22708.82, + "end": 22712.26, + "probability": 0.7769 + }, + { + "start": 22712.9, + "end": 22714.44, + "probability": 0.9952 + }, + { + "start": 22716.34, + "end": 22717.2, + "probability": 0.2227 + }, + { + "start": 22717.2, + "end": 22718.8, + "probability": 0.749 + }, + { + "start": 22718.86, + "end": 22719.38, + "probability": 0.8388 + }, + { + "start": 22720.74, + "end": 22722.34, + "probability": 0.8007 + }, + { + "start": 22722.48, + "end": 22723.18, + "probability": 0.6174 + }, + { + "start": 22723.18, + "end": 22724.24, + "probability": 0.7864 + }, + { + "start": 22724.6, + "end": 22728.57, + "probability": 0.9385 + }, + { + "start": 22729.6, + "end": 22730.89, + "probability": 0.894 + }, + { + "start": 22731.04, + "end": 22733.96, + "probability": 0.999 + }, + { + "start": 22734.1, + "end": 22736.92, + "probability": 0.9971 + }, + { + "start": 22737.22, + "end": 22740.4, + "probability": 0.963 + }, + { + "start": 22740.66, + "end": 22741.87, + "probability": 0.9934 + }, + { + "start": 22741.92, + "end": 22743.94, + "probability": 0.9779 + }, + { + "start": 22745.06, + "end": 22748.4, + "probability": 0.9498 + }, + { + "start": 22748.88, + "end": 22750.98, + "probability": 0.9755 + }, + { + "start": 22751.08, + "end": 22752.78, + "probability": 0.9765 + }, + { + "start": 22752.86, + "end": 22755.14, + "probability": 0.9678 + }, + { + "start": 22755.26, + "end": 22759.52, + "probability": 0.9927 + }, + { + "start": 22759.86, + "end": 22759.88, + "probability": 0.0064 + }, + { + "start": 22760.02, + "end": 22760.4, + "probability": 0.8789 + }, + { + "start": 22760.5, + "end": 22765.46, + "probability": 0.9697 + }, + { + "start": 22765.6, + "end": 22767.0, + "probability": 0.6612 + }, + { + "start": 22767.1, + "end": 22767.34, + "probability": 0.8406 + }, + { + "start": 22767.38, + "end": 22769.1, + "probability": 0.9707 + }, + { + "start": 22769.58, + "end": 22773.58, + "probability": 0.9856 + }, + { + "start": 22774.32, + "end": 22777.76, + "probability": 0.8953 + }, + { + "start": 22777.9, + "end": 22777.97, + "probability": 0.2385 + }, + { + "start": 22778.42, + "end": 22779.2, + "probability": 0.6555 + }, + { + "start": 22779.2, + "end": 22780.15, + "probability": 0.9331 + }, + { + "start": 22780.74, + "end": 22783.82, + "probability": 0.6685 + }, + { + "start": 22784.3, + "end": 22784.98, + "probability": 0.6104 + }, + { + "start": 22785.12, + "end": 22785.98, + "probability": 0.2651 + }, + { + "start": 22786.62, + "end": 22789.7, + "probability": 0.7062 + }, + { + "start": 22790.02, + "end": 22790.66, + "probability": 0.9492 + }, + { + "start": 22790.8, + "end": 22791.6, + "probability": 0.6496 + }, + { + "start": 22791.7, + "end": 22792.34, + "probability": 0.6302 + }, + { + "start": 22792.66, + "end": 22793.0, + "probability": 0.5257 + }, + { + "start": 22793.12, + "end": 22794.66, + "probability": 0.8345 + }, + { + "start": 22795.68, + "end": 22798.96, + "probability": 0.7215 + }, + { + "start": 22799.86, + "end": 22802.46, + "probability": 0.9813 + }, + { + "start": 22803.04, + "end": 22804.26, + "probability": 0.9922 + }, + { + "start": 22804.42, + "end": 22806.58, + "probability": 0.9927 + }, + { + "start": 22806.76, + "end": 22808.42, + "probability": 0.7231 + }, + { + "start": 22809.28, + "end": 22810.9, + "probability": 0.9198 + }, + { + "start": 22811.68, + "end": 22812.62, + "probability": 0.7344 + }, + { + "start": 22813.1, + "end": 22815.46, + "probability": 0.9733 + }, + { + "start": 22815.48, + "end": 22816.32, + "probability": 0.9734 + }, + { + "start": 22816.42, + "end": 22817.84, + "probability": 0.9205 + }, + { + "start": 22818.76, + "end": 22820.74, + "probability": 0.9839 + }, + { + "start": 22821.2, + "end": 22823.66, + "probability": 0.7529 + }, + { + "start": 22823.88, + "end": 22825.14, + "probability": 0.9888 + }, + { + "start": 22825.64, + "end": 22826.86, + "probability": 0.9611 + }, + { + "start": 22827.54, + "end": 22830.58, + "probability": 0.9819 + }, + { + "start": 22831.12, + "end": 22833.5, + "probability": 0.9056 + }, + { + "start": 22833.6, + "end": 22834.56, + "probability": 0.7691 + }, + { + "start": 22835.04, + "end": 22836.92, + "probability": 0.437 + }, + { + "start": 22837.06, + "end": 22837.06, + "probability": 0.1081 + }, + { + "start": 22838.7, + "end": 22842.04, + "probability": 0.9932 + }, + { + "start": 22842.12, + "end": 22845.48, + "probability": 0.8688 + }, + { + "start": 22846.54, + "end": 22848.26, + "probability": 0.9482 + }, + { + "start": 22848.28, + "end": 22852.34, + "probability": 0.7702 + }, + { + "start": 22852.5, + "end": 22853.72, + "probability": 0.6861 + }, + { + "start": 22854.86, + "end": 22855.08, + "probability": 0.4469 + }, + { + "start": 22855.24, + "end": 22855.82, + "probability": 0.7595 + }, + { + "start": 22855.96, + "end": 22858.26, + "probability": 0.9912 + }, + { + "start": 22858.42, + "end": 22863.7, + "probability": 0.8886 + }, + { + "start": 22863.9, + "end": 22866.58, + "probability": 0.9032 + }, + { + "start": 22867.14, + "end": 22870.74, + "probability": 0.9974 + }, + { + "start": 22872.78, + "end": 22874.5, + "probability": 0.814 + }, + { + "start": 22875.84, + "end": 22879.52, + "probability": 0.8754 + }, + { + "start": 22880.4, + "end": 22882.44, + "probability": 0.8163 + }, + { + "start": 22882.5, + "end": 22884.02, + "probability": 0.5034 + }, + { + "start": 22884.78, + "end": 22885.86, + "probability": 0.9194 + }, + { + "start": 22886.2, + "end": 22889.48, + "probability": 0.9702 + }, + { + "start": 22889.6, + "end": 22890.44, + "probability": 0.5657 + }, + { + "start": 22890.78, + "end": 22893.36, + "probability": 0.8624 + }, + { + "start": 22895.06, + "end": 22896.6, + "probability": 0.9969 + }, + { + "start": 22897.04, + "end": 22897.62, + "probability": 0.7102 + }, + { + "start": 22898.24, + "end": 22899.01, + "probability": 0.5832 + }, + { + "start": 22899.6, + "end": 22904.96, + "probability": 0.9432 + }, + { + "start": 22905.1, + "end": 22910.84, + "probability": 0.9689 + }, + { + "start": 22910.98, + "end": 22911.24, + "probability": 0.8014 + }, + { + "start": 22911.38, + "end": 22913.64, + "probability": 0.377 + }, + { + "start": 22914.32, + "end": 22916.04, + "probability": 0.9762 + }, + { + "start": 22916.78, + "end": 22917.9, + "probability": 0.4088 + }, + { + "start": 22918.32, + "end": 22918.32, + "probability": 0.5892 + }, + { + "start": 22918.32, + "end": 22922.16, + "probability": 0.9023 + }, + { + "start": 22922.16, + "end": 22923.62, + "probability": 0.7679 + }, + { + "start": 22924.36, + "end": 22927.78, + "probability": 0.8584 + }, + { + "start": 22927.84, + "end": 22930.2, + "probability": 0.9961 + }, + { + "start": 22930.74, + "end": 22931.02, + "probability": 0.817 + }, + { + "start": 22931.94, + "end": 22935.92, + "probability": 0.9921 + }, + { + "start": 22935.92, + "end": 22939.54, + "probability": 0.9778 + }, + { + "start": 22939.92, + "end": 22941.38, + "probability": 0.9924 + }, + { + "start": 22941.94, + "end": 22942.73, + "probability": 0.8911 + }, + { + "start": 22943.36, + "end": 22944.04, + "probability": 0.92 + }, + { + "start": 22944.52, + "end": 22946.7, + "probability": 0.9962 + }, + { + "start": 22946.78, + "end": 22947.48, + "probability": 0.8282 + }, + { + "start": 22947.76, + "end": 22948.8, + "probability": 0.8267 + }, + { + "start": 22949.52, + "end": 22950.84, + "probability": 0.9783 + }, + { + "start": 22951.42, + "end": 22954.62, + "probability": 0.9091 + }, + { + "start": 22955.54, + "end": 22956.4, + "probability": 0.9712 + }, + { + "start": 22956.44, + "end": 22956.9, + "probability": 0.7762 + }, + { + "start": 22957.04, + "end": 22959.26, + "probability": 0.8171 + }, + { + "start": 22960.18, + "end": 22961.58, + "probability": 0.9109 + }, + { + "start": 22961.64, + "end": 22962.42, + "probability": 0.9759 + }, + { + "start": 22962.84, + "end": 22964.56, + "probability": 0.7968 + }, + { + "start": 22964.64, + "end": 22967.18, + "probability": 0.998 + }, + { + "start": 22968.14, + "end": 22973.38, + "probability": 0.9906 + }, + { + "start": 22974.74, + "end": 22977.92, + "probability": 0.9644 + }, + { + "start": 22978.08, + "end": 22981.22, + "probability": 0.834 + }, + { + "start": 22981.32, + "end": 22982.04, + "probability": 0.6656 + }, + { + "start": 22982.46, + "end": 22985.28, + "probability": 0.9937 + }, + { + "start": 22986.24, + "end": 22987.44, + "probability": 0.913 + }, + { + "start": 22987.52, + "end": 22988.48, + "probability": 0.9217 + }, + { + "start": 22988.98, + "end": 22990.6, + "probability": 0.9701 + }, + { + "start": 22991.12, + "end": 22991.99, + "probability": 0.9622 + }, + { + "start": 22992.6, + "end": 22993.62, + "probability": 0.4086 + }, + { + "start": 22994.64, + "end": 22996.48, + "probability": 0.5714 + }, + { + "start": 22997.1, + "end": 22998.18, + "probability": 0.8823 + }, + { + "start": 22998.24, + "end": 23000.48, + "probability": 0.9705 + }, + { + "start": 23000.58, + "end": 23001.2, + "probability": 0.7408 + }, + { + "start": 23002.08, + "end": 23003.64, + "probability": 0.7643 + }, + { + "start": 23003.76, + "end": 23006.44, + "probability": 0.9211 + }, + { + "start": 23006.46, + "end": 23006.9, + "probability": 0.9729 + }, + { + "start": 23007.48, + "end": 23010.46, + "probability": 0.9801 + }, + { + "start": 23011.0, + "end": 23012.32, + "probability": 0.8658 + }, + { + "start": 23012.98, + "end": 23018.16, + "probability": 0.9948 + }, + { + "start": 23018.78, + "end": 23020.34, + "probability": 0.9348 + }, + { + "start": 23021.18, + "end": 23022.3, + "probability": 0.8286 + }, + { + "start": 23022.92, + "end": 23024.64, + "probability": 0.5562 + }, + { + "start": 23025.48, + "end": 23028.94, + "probability": 0.9937 + }, + { + "start": 23029.24, + "end": 23031.48, + "probability": 0.9387 + }, + { + "start": 23031.9, + "end": 23033.2, + "probability": 0.8693 + }, + { + "start": 23034.22, + "end": 23037.06, + "probability": 0.9888 + }, + { + "start": 23038.34, + "end": 23040.86, + "probability": 0.9757 + }, + { + "start": 23041.92, + "end": 23044.44, + "probability": 0.7565 + }, + { + "start": 23045.0, + "end": 23046.42, + "probability": 0.9841 + }, + { + "start": 23046.5, + "end": 23047.28, + "probability": 0.9495 + }, + { + "start": 23047.36, + "end": 23048.13, + "probability": 0.7612 + }, + { + "start": 23048.98, + "end": 23050.68, + "probability": 0.8001 + }, + { + "start": 23051.9, + "end": 23054.38, + "probability": 0.8135 + }, + { + "start": 23055.12, + "end": 23060.7, + "probability": 0.984 + }, + { + "start": 23061.08, + "end": 23064.86, + "probability": 0.9956 + }, + { + "start": 23066.22, + "end": 23068.16, + "probability": 0.991 + }, + { + "start": 23068.66, + "end": 23070.15, + "probability": 0.9132 + }, + { + "start": 23070.6, + "end": 23071.74, + "probability": 0.8522 + }, + { + "start": 23072.0, + "end": 23072.79, + "probability": 0.7383 + }, + { + "start": 23073.3, + "end": 23074.48, + "probability": 0.9932 + }, + { + "start": 23074.64, + "end": 23075.6, + "probability": 0.8924 + }, + { + "start": 23076.36, + "end": 23078.62, + "probability": 0.9876 + }, + { + "start": 23078.62, + "end": 23083.1, + "probability": 0.9935 + }, + { + "start": 23083.44, + "end": 23087.22, + "probability": 0.8739 + }, + { + "start": 23087.45, + "end": 23089.96, + "probability": 0.9927 + }, + { + "start": 23090.1, + "end": 23090.44, + "probability": 0.6132 + }, + { + "start": 23091.22, + "end": 23092.02, + "probability": 0.8986 + }, + { + "start": 23092.12, + "end": 23092.82, + "probability": 0.8634 + }, + { + "start": 23092.86, + "end": 23093.84, + "probability": 0.9741 + }, + { + "start": 23094.34, + "end": 23094.94, + "probability": 0.7445 + }, + { + "start": 23097.38, + "end": 23099.24, + "probability": 0.9369 + }, + { + "start": 23099.26, + "end": 23100.88, + "probability": 0.8111 + }, + { + "start": 23100.88, + "end": 23104.42, + "probability": 0.9971 + }, + { + "start": 23105.32, + "end": 23107.72, + "probability": 0.9008 + }, + { + "start": 23108.66, + "end": 23111.56, + "probability": 0.9562 + }, + { + "start": 23113.1, + "end": 23114.59, + "probability": 0.9081 + }, + { + "start": 23115.28, + "end": 23117.24, + "probability": 0.7446 + }, + { + "start": 23118.28, + "end": 23118.86, + "probability": 0.849 + }, + { + "start": 23119.38, + "end": 23121.16, + "probability": 0.7324 + }, + { + "start": 23121.22, + "end": 23121.58, + "probability": 0.822 + }, + { + "start": 23122.96, + "end": 23125.04, + "probability": 0.7461 + }, + { + "start": 23125.68, + "end": 23128.7, + "probability": 0.6641 + }, + { + "start": 23129.36, + "end": 23131.9, + "probability": 0.7003 + }, + { + "start": 23134.14, + "end": 23135.78, + "probability": 0.9838 + }, + { + "start": 23137.18, + "end": 23140.68, + "probability": 0.989 + }, + { + "start": 23141.42, + "end": 23143.02, + "probability": 0.9677 + }, + { + "start": 23143.8, + "end": 23145.64, + "probability": 0.9428 + }, + { + "start": 23146.74, + "end": 23150.1, + "probability": 0.8608 + }, + { + "start": 23150.44, + "end": 23150.98, + "probability": 0.9034 + }, + { + "start": 23151.2, + "end": 23152.3, + "probability": 0.9952 + }, + { + "start": 23154.6, + "end": 23157.33, + "probability": 0.8984 + }, + { + "start": 23158.8, + "end": 23159.32, + "probability": 0.981 + }, + { + "start": 23159.86, + "end": 23159.96, + "probability": 0.9962 + }, + { + "start": 23160.98, + "end": 23163.98, + "probability": 0.9642 + }, + { + "start": 23165.28, + "end": 23167.32, + "probability": 0.8521 + }, + { + "start": 23167.48, + "end": 23169.64, + "probability": 0.8902 + }, + { + "start": 23170.3, + "end": 23172.56, + "probability": 0.9328 + }, + { + "start": 23173.5, + "end": 23179.54, + "probability": 0.9372 + }, + { + "start": 23180.3, + "end": 23182.34, + "probability": 0.9562 + }, + { + "start": 23183.6, + "end": 23183.78, + "probability": 0.418 + }, + { + "start": 23184.0, + "end": 23187.54, + "probability": 0.6924 + }, + { + "start": 23188.64, + "end": 23194.62, + "probability": 0.7509 + }, + { + "start": 23195.26, + "end": 23196.36, + "probability": 0.717 + }, + { + "start": 23198.08, + "end": 23198.8, + "probability": 0.6722 + }, + { + "start": 23200.02, + "end": 23200.38, + "probability": 0.3528 + }, + { + "start": 23200.42, + "end": 23202.5, + "probability": 0.9565 + }, + { + "start": 23202.6, + "end": 23203.56, + "probability": 0.7792 + }, + { + "start": 23203.64, + "end": 23204.7, + "probability": 0.8881 + }, + { + "start": 23205.08, + "end": 23205.98, + "probability": 0.7432 + }, + { + "start": 23206.86, + "end": 23207.84, + "probability": 0.9297 + }, + { + "start": 23208.82, + "end": 23211.82, + "probability": 0.991 + }, + { + "start": 23212.86, + "end": 23213.22, + "probability": 0.9648 + }, + { + "start": 23214.36, + "end": 23214.9, + "probability": 0.8017 + }, + { + "start": 23216.52, + "end": 23217.52, + "probability": 0.9112 + }, + { + "start": 23217.66, + "end": 23219.94, + "probability": 0.792 + }, + { + "start": 23220.06, + "end": 23220.68, + "probability": 0.8637 + }, + { + "start": 23220.76, + "end": 23221.32, + "probability": 0.6694 + }, + { + "start": 23221.68, + "end": 23225.66, + "probability": 0.9784 + }, + { + "start": 23226.72, + "end": 23228.12, + "probability": 0.8821 + }, + { + "start": 23228.78, + "end": 23230.44, + "probability": 0.9685 + }, + { + "start": 23230.88, + "end": 23232.24, + "probability": 0.9606 + }, + { + "start": 23232.3, + "end": 23233.54, + "probability": 0.829 + }, + { + "start": 23234.48, + "end": 23236.62, + "probability": 0.9888 + }, + { + "start": 23237.66, + "end": 23240.04, + "probability": 0.8355 + }, + { + "start": 23240.1, + "end": 23242.54, + "probability": 0.9966 + }, + { + "start": 23243.2, + "end": 23244.22, + "probability": 0.9946 + }, + { + "start": 23245.78, + "end": 23248.54, + "probability": 0.8908 + }, + { + "start": 23248.58, + "end": 23248.96, + "probability": 0.9809 + }, + { + "start": 23249.1, + "end": 23249.66, + "probability": 0.856 + }, + { + "start": 23249.72, + "end": 23250.24, + "probability": 0.3577 + }, + { + "start": 23250.68, + "end": 23254.3, + "probability": 0.7717 + }, + { + "start": 23254.38, + "end": 23254.44, + "probability": 0.0974 + }, + { + "start": 23254.44, + "end": 23256.28, + "probability": 0.8395 + }, + { + "start": 23257.94, + "end": 23261.32, + "probability": 0.8545 + }, + { + "start": 23263.0, + "end": 23264.16, + "probability": 0.7586 + }, + { + "start": 23264.4, + "end": 23268.36, + "probability": 0.9967 + }, + { + "start": 23268.84, + "end": 23270.54, + "probability": 0.9702 + }, + { + "start": 23271.4, + "end": 23272.1, + "probability": 0.9471 + }, + { + "start": 23273.5, + "end": 23274.38, + "probability": 0.7697 + }, + { + "start": 23274.98, + "end": 23275.58, + "probability": 0.7965 + }, + { + "start": 23277.18, + "end": 23277.7, + "probability": 0.9935 + }, + { + "start": 23278.44, + "end": 23282.08, + "probability": 0.8728 + }, + { + "start": 23283.26, + "end": 23287.1, + "probability": 0.9846 + }, + { + "start": 23287.7, + "end": 23288.34, + "probability": 0.6436 + }, + { + "start": 23288.96, + "end": 23290.66, + "probability": 0.9858 + }, + { + "start": 23292.1, + "end": 23293.48, + "probability": 0.9319 + }, + { + "start": 23294.3, + "end": 23295.04, + "probability": 0.96 + }, + { + "start": 23295.16, + "end": 23297.68, + "probability": 0.9844 + }, + { + "start": 23300.32, + "end": 23300.68, + "probability": 0.33 + }, + { + "start": 23300.68, + "end": 23301.3, + "probability": 0.3656 + }, + { + "start": 23301.42, + "end": 23301.98, + "probability": 0.7442 + }, + { + "start": 23302.1, + "end": 23303.06, + "probability": 0.9639 + }, + { + "start": 23303.52, + "end": 23304.82, + "probability": 0.9902 + }, + { + "start": 23305.14, + "end": 23306.32, + "probability": 0.9741 + }, + { + "start": 23306.84, + "end": 23309.64, + "probability": 0.8 + }, + { + "start": 23310.6, + "end": 23311.6, + "probability": 0.6868 + }, + { + "start": 23312.46, + "end": 23314.44, + "probability": 0.689 + }, + { + "start": 23314.44, + "end": 23318.26, + "probability": 0.97 + }, + { + "start": 23319.3, + "end": 23320.0, + "probability": 0.8043 + }, + { + "start": 23321.5, + "end": 23323.92, + "probability": 0.9473 + }, + { + "start": 23325.5, + "end": 23326.08, + "probability": 0.921 + }, + { + "start": 23326.96, + "end": 23329.5, + "probability": 0.9702 + }, + { + "start": 23330.36, + "end": 23332.26, + "probability": 0.9411 + }, + { + "start": 23332.44, + "end": 23332.48, + "probability": 0.4181 + }, + { + "start": 23332.58, + "end": 23332.68, + "probability": 0.8017 + }, + { + "start": 23332.78, + "end": 23334.06, + "probability": 0.9319 + }, + { + "start": 23334.1, + "end": 23335.68, + "probability": 0.9049 + }, + { + "start": 23335.8, + "end": 23336.1, + "probability": 0.9715 + }, + { + "start": 23337.34, + "end": 23337.84, + "probability": 0.9341 + }, + { + "start": 23338.9, + "end": 23340.8, + "probability": 0.9934 + }, + { + "start": 23341.76, + "end": 23344.4, + "probability": 0.9764 + }, + { + "start": 23345.42, + "end": 23347.18, + "probability": 0.9977 + }, + { + "start": 23347.8, + "end": 23349.57, + "probability": 0.996 + }, + { + "start": 23350.88, + "end": 23351.54, + "probability": 0.9762 + }, + { + "start": 23352.36, + "end": 23353.42, + "probability": 0.9761 + }, + { + "start": 23354.52, + "end": 23357.0, + "probability": 0.9951 + }, + { + "start": 23357.84, + "end": 23359.82, + "probability": 0.9578 + }, + { + "start": 23360.36, + "end": 23361.28, + "probability": 0.9093 + }, + { + "start": 23362.04, + "end": 23366.54, + "probability": 0.9921 + }, + { + "start": 23367.16, + "end": 23368.18, + "probability": 0.7427 + }, + { + "start": 23368.68, + "end": 23369.44, + "probability": 0.8987 + }, + { + "start": 23370.78, + "end": 23372.72, + "probability": 0.8175 + }, + { + "start": 23373.16, + "end": 23373.46, + "probability": 0.8374 + }, + { + "start": 23373.66, + "end": 23375.04, + "probability": 0.8123 + }, + { + "start": 23375.82, + "end": 23378.8, + "probability": 0.928 + }, + { + "start": 23379.7, + "end": 23382.66, + "probability": 0.925 + }, + { + "start": 23383.36, + "end": 23386.16, + "probability": 0.9635 + }, + { + "start": 23386.4, + "end": 23386.74, + "probability": 0.8272 + }, + { + "start": 23388.92, + "end": 23389.6, + "probability": 0.7943 + }, + { + "start": 23390.74, + "end": 23391.02, + "probability": 0.2866 + }, + { + "start": 23391.02, + "end": 23391.28, + "probability": 0.5921 + }, + { + "start": 23391.36, + "end": 23391.9, + "probability": 0.2956 + }, + { + "start": 23391.94, + "end": 23394.46, + "probability": 0.8444 + }, + { + "start": 23394.86, + "end": 23395.04, + "probability": 0.8163 + }, + { + "start": 23395.78, + "end": 23396.54, + "probability": 0.8198 + }, + { + "start": 23397.34, + "end": 23398.47, + "probability": 0.8626 + }, + { + "start": 23399.74, + "end": 23402.84, + "probability": 0.7509 + }, + { + "start": 23403.64, + "end": 23404.54, + "probability": 0.912 + }, + { + "start": 23404.7, + "end": 23405.4, + "probability": 0.7699 + }, + { + "start": 23406.34, + "end": 23409.22, + "probability": 0.7433 + }, + { + "start": 23412.42, + "end": 23414.18, + "probability": 0.4085 + }, + { + "start": 23414.42, + "end": 23417.34, + "probability": 0.822 + }, + { + "start": 23418.14, + "end": 23422.52, + "probability": 0.9197 + }, + { + "start": 23423.38, + "end": 23426.22, + "probability": 0.6853 + }, + { + "start": 23426.56, + "end": 23426.78, + "probability": 0.6041 + }, + { + "start": 23426.84, + "end": 23428.18, + "probability": 0.9971 + }, + { + "start": 23429.2, + "end": 23429.82, + "probability": 0.7533 + }, + { + "start": 23430.6, + "end": 23435.46, + "probability": 0.9966 + }, + { + "start": 23436.2, + "end": 23441.3, + "probability": 0.9832 + }, + { + "start": 23441.48, + "end": 23443.88, + "probability": 0.905 + }, + { + "start": 23443.96, + "end": 23446.98, + "probability": 0.9981 + }, + { + "start": 23447.68, + "end": 23448.36, + "probability": 0.6258 + }, + { + "start": 23448.74, + "end": 23456.1, + "probability": 0.9805 + }, + { + "start": 23456.64, + "end": 23460.94, + "probability": 0.9751 + }, + { + "start": 23461.52, + "end": 23464.7, + "probability": 0.6917 + }, + { + "start": 23465.52, + "end": 23468.82, + "probability": 0.5069 + }, + { + "start": 23468.82, + "end": 23470.38, + "probability": 0.2783 + }, + { + "start": 23470.84, + "end": 23472.3, + "probability": 0.4047 + }, + { + "start": 23472.56, + "end": 23476.48, + "probability": 0.7273 + }, + { + "start": 23476.62, + "end": 23476.8, + "probability": 0.648 + }, + { + "start": 23478.7, + "end": 23479.38, + "probability": 0.6213 + }, + { + "start": 23479.58, + "end": 23483.12, + "probability": 0.7255 + }, + { + "start": 23486.8, + "end": 23488.38, + "probability": 0.8383 + }, + { + "start": 23488.98, + "end": 23490.16, + "probability": 0.3956 + }, + { + "start": 23491.32, + "end": 23492.56, + "probability": 0.4318 + }, + { + "start": 23493.58, + "end": 23494.14, + "probability": 0.5423 + }, + { + "start": 23494.2, + "end": 23498.22, + "probability": 0.7659 + }, + { + "start": 23498.48, + "end": 23498.78, + "probability": 0.3889 + }, + { + "start": 23510.42, + "end": 23510.66, + "probability": 0.469 + }, + { + "start": 23510.66, + "end": 23512.66, + "probability": 0.1446 + }, + { + "start": 23513.42, + "end": 23515.18, + "probability": 0.3827 + }, + { + "start": 23519.0, + "end": 23519.92, + "probability": 0.3137 + }, + { + "start": 23520.84, + "end": 23523.88, + "probability": 0.8309 + }, + { + "start": 23524.6, + "end": 23527.4, + "probability": 0.1629 + }, + { + "start": 23527.4, + "end": 23527.5, + "probability": 0.0786 + }, + { + "start": 23528.04, + "end": 23529.54, + "probability": 0.3056 + }, + { + "start": 23530.7, + "end": 23533.34, + "probability": 0.7711 + }, + { + "start": 23533.9, + "end": 23535.8, + "probability": 0.0011 + }, + { + "start": 23538.2, + "end": 23538.9, + "probability": 0.3115 + }, + { + "start": 23549.38, + "end": 23550.64, + "probability": 0.4535 + }, + { + "start": 23550.86, + "end": 23553.9, + "probability": 0.0853 + }, + { + "start": 23553.9, + "end": 23554.95, + "probability": 0.1127 + }, + { + "start": 23555.34, + "end": 23558.7, + "probability": 0.9706 + }, + { + "start": 23558.96, + "end": 23561.72, + "probability": 0.4477 + }, + { + "start": 23561.72, + "end": 23564.86, + "probability": 0.1277 + }, + { + "start": 23571.02, + "end": 23571.3, + "probability": 0.0066 + }, + { + "start": 23572.58, + "end": 23576.32, + "probability": 0.6493 + }, + { + "start": 23576.86, + "end": 23577.62, + "probability": 0.6799 + }, + { + "start": 23578.6, + "end": 23579.42, + "probability": 0.7543 + }, + { + "start": 23579.54, + "end": 23580.14, + "probability": 0.897 + }, + { + "start": 23580.22, + "end": 23582.78, + "probability": 0.9715 + }, + { + "start": 23583.32, + "end": 23585.58, + "probability": 0.9533 + }, + { + "start": 23585.58, + "end": 23588.58, + "probability": 0.9546 + }, + { + "start": 23589.28, + "end": 23591.48, + "probability": 0.875 + }, + { + "start": 23592.0, + "end": 23595.22, + "probability": 0.8388 + }, + { + "start": 23596.42, + "end": 23597.12, + "probability": 0.7415 + }, + { + "start": 23597.24, + "end": 23597.68, + "probability": 0.8613 + }, + { + "start": 23597.78, + "end": 23600.66, + "probability": 0.9949 + }, + { + "start": 23601.86, + "end": 23605.16, + "probability": 0.8942 + }, + { + "start": 23606.26, + "end": 23612.6, + "probability": 0.832 + }, + { + "start": 23612.76, + "end": 23613.4, + "probability": 0.603 + }, + { + "start": 23613.82, + "end": 23616.34, + "probability": 0.8037 + }, + { + "start": 23616.94, + "end": 23617.2, + "probability": 0.8829 + }, + { + "start": 23617.9, + "end": 23621.06, + "probability": 0.9958 + }, + { + "start": 23621.06, + "end": 23623.78, + "probability": 0.7581 + }, + { + "start": 23624.94, + "end": 23630.38, + "probability": 0.9805 + }, + { + "start": 23632.22, + "end": 23632.82, + "probability": 0.5806 + }, + { + "start": 23634.1, + "end": 23638.82, + "probability": 0.6679 + }, + { + "start": 23639.5, + "end": 23641.84, + "probability": 0.9926 + }, + { + "start": 23642.66, + "end": 23645.8, + "probability": 0.7188 + }, + { + "start": 23646.66, + "end": 23650.4, + "probability": 0.9946 + }, + { + "start": 23651.56, + "end": 23655.54, + "probability": 0.8801 + }, + { + "start": 23656.74, + "end": 23658.36, + "probability": 0.7585 + }, + { + "start": 23659.04, + "end": 23662.3, + "probability": 0.8749 + }, + { + "start": 23663.04, + "end": 23663.9, + "probability": 0.8188 + }, + { + "start": 23664.44, + "end": 23669.36, + "probability": 0.9795 + }, + { + "start": 23670.94, + "end": 23672.14, + "probability": 0.7329 + }, + { + "start": 23672.72, + "end": 23675.44, + "probability": 0.9554 + }, + { + "start": 23676.76, + "end": 23677.3, + "probability": 0.4229 + }, + { + "start": 23678.28, + "end": 23681.34, + "probability": 0.1925 + }, + { + "start": 23681.52, + "end": 23682.4, + "probability": 0.7284 + }, + { + "start": 23682.76, + "end": 23685.4, + "probability": 0.9473 + }, + { + "start": 23686.34, + "end": 23692.08, + "probability": 0.9081 + }, + { + "start": 23692.62, + "end": 23694.44, + "probability": 0.9663 + }, + { + "start": 23695.54, + "end": 23700.7, + "probability": 0.9872 + }, + { + "start": 23704.64, + "end": 23708.24, + "probability": 0.9122 + }, + { + "start": 23708.8, + "end": 23710.78, + "probability": 0.948 + }, + { + "start": 23711.76, + "end": 23716.72, + "probability": 0.7735 + }, + { + "start": 23717.96, + "end": 23722.0, + "probability": 0.9777 + }, + { + "start": 23722.86, + "end": 23729.42, + "probability": 0.9695 + }, + { + "start": 23730.42, + "end": 23733.6, + "probability": 0.9833 + }, + { + "start": 23734.26, + "end": 23737.58, + "probability": 0.8909 + }, + { + "start": 23738.3, + "end": 23742.4, + "probability": 0.9791 + }, + { + "start": 23742.48, + "end": 23745.62, + "probability": 0.6993 + }, + { + "start": 23746.18, + "end": 23747.76, + "probability": 0.7556 + }, + { + "start": 23748.74, + "end": 23750.98, + "probability": 0.9552 + }, + { + "start": 23751.88, + "end": 23755.2, + "probability": 0.9412 + }, + { + "start": 23756.08, + "end": 23760.02, + "probability": 0.9772 + }, + { + "start": 23761.32, + "end": 23764.8, + "probability": 0.6765 + }, + { + "start": 23765.44, + "end": 23768.3, + "probability": 0.6411 + }, + { + "start": 23769.64, + "end": 23774.18, + "probability": 0.9461 + }, + { + "start": 23774.6, + "end": 23776.68, + "probability": 0.9773 + }, + { + "start": 23778.18, + "end": 23779.06, + "probability": 0.6903 + }, + { + "start": 23779.68, + "end": 23782.5, + "probability": 0.6724 + }, + { + "start": 23782.64, + "end": 23783.42, + "probability": 0.8371 + }, + { + "start": 23783.82, + "end": 23787.08, + "probability": 0.7866 + }, + { + "start": 23787.08, + "end": 23791.28, + "probability": 0.9572 + }, + { + "start": 23792.44, + "end": 23794.34, + "probability": 0.183 + }, + { + "start": 23795.34, + "end": 23802.52, + "probability": 0.8212 + }, + { + "start": 23802.52, + "end": 23805.34, + "probability": 0.8359 + }, + { + "start": 23805.92, + "end": 23809.9, + "probability": 0.9963 + }, + { + "start": 23810.38, + "end": 23813.36, + "probability": 0.7006 + }, + { + "start": 23814.02, + "end": 23815.46, + "probability": 0.953 + }, + { + "start": 23815.62, + "end": 23816.18, + "probability": 0.8749 + }, + { + "start": 23816.34, + "end": 23818.88, + "probability": 0.9392 + }, + { + "start": 23819.88, + "end": 23822.7, + "probability": 0.9824 + }, + { + "start": 23823.06, + "end": 23826.0, + "probability": 0.7927 + }, + { + "start": 23826.66, + "end": 23831.68, + "probability": 0.783 + }, + { + "start": 23832.94, + "end": 23833.56, + "probability": 0.8376 + }, + { + "start": 23834.7, + "end": 23834.96, + "probability": 0.8024 + }, + { + "start": 23836.36, + "end": 23839.0, + "probability": 0.7039 + }, + { + "start": 23839.86, + "end": 23845.9, + "probability": 0.8963 + }, + { + "start": 23846.38, + "end": 23847.68, + "probability": 0.9537 + }, + { + "start": 23848.46, + "end": 23852.9, + "probability": 0.8594 + }, + { + "start": 23853.58, + "end": 23855.86, + "probability": 0.7449 + }, + { + "start": 23856.52, + "end": 23858.08, + "probability": 0.6046 + }, + { + "start": 23858.58, + "end": 23860.36, + "probability": 0.8193 + }, + { + "start": 23860.58, + "end": 23863.54, + "probability": 0.8745 + }, + { + "start": 23864.12, + "end": 23869.16, + "probability": 0.9695 + }, + { + "start": 23869.24, + "end": 23874.08, + "probability": 0.8978 + }, + { + "start": 23874.72, + "end": 23878.1, + "probability": 0.9044 + }, + { + "start": 23878.12, + "end": 23881.54, + "probability": 0.8714 + }, + { + "start": 23882.02, + "end": 23883.64, + "probability": 0.9834 + }, + { + "start": 23884.04, + "end": 23884.68, + "probability": 0.4892 + }, + { + "start": 23884.98, + "end": 23887.18, + "probability": 0.9798 + }, + { + "start": 23887.46, + "end": 23891.13, + "probability": 0.9522 + }, + { + "start": 23892.34, + "end": 23892.58, + "probability": 0.8304 + }, + { + "start": 23894.46, + "end": 23895.06, + "probability": 0.7087 + }, + { + "start": 23895.62, + "end": 23896.86, + "probability": 0.547 + }, + { + "start": 23898.44, + "end": 23900.06, + "probability": 0.5607 + }, + { + "start": 23901.26, + "end": 23902.65, + "probability": 0.8692 + }, + { + "start": 23920.32, + "end": 23923.16, + "probability": 0.6617 + }, + { + "start": 23924.72, + "end": 23927.3, + "probability": 0.9436 + }, + { + "start": 23931.87, + "end": 23933.92, + "probability": 0.5426 + }, + { + "start": 23933.96, + "end": 23934.4, + "probability": 0.7429 + }, + { + "start": 23935.18, + "end": 23936.04, + "probability": 0.7036 + }, + { + "start": 23936.44, + "end": 23936.52, + "probability": 0.6807 + }, + { + "start": 23936.54, + "end": 23938.0, + "probability": 0.9638 + }, + { + "start": 23938.92, + "end": 23939.56, + "probability": 0.2929 + }, + { + "start": 23939.82, + "end": 23941.43, + "probability": 0.9763 + }, + { + "start": 23943.31, + "end": 23943.4, + "probability": 0.1304 + }, + { + "start": 23943.4, + "end": 23945.82, + "probability": 0.8689 + }, + { + "start": 23948.4, + "end": 23951.6, + "probability": 0.8424 + }, + { + "start": 23953.24, + "end": 23955.12, + "probability": 0.8458 + }, + { + "start": 23955.22, + "end": 23957.3, + "probability": 0.8616 + }, + { + "start": 23958.58, + "end": 23964.24, + "probability": 0.9463 + }, + { + "start": 23964.36, + "end": 23965.52, + "probability": 0.7531 + }, + { + "start": 23966.76, + "end": 23971.04, + "probability": 0.9617 + }, + { + "start": 23971.48, + "end": 23975.66, + "probability": 0.8831 + }, + { + "start": 23975.76, + "end": 23976.2, + "probability": 0.4 + }, + { + "start": 23976.78, + "end": 23980.18, + "probability": 0.9971 + }, + { + "start": 23980.78, + "end": 23986.65, + "probability": 0.8526 + }, + { + "start": 23988.02, + "end": 23989.42, + "probability": 0.9956 + }, + { + "start": 23991.4, + "end": 23992.76, + "probability": 0.9951 + }, + { + "start": 23997.16, + "end": 23999.26, + "probability": 0.8836 + }, + { + "start": 24000.0, + "end": 24000.94, + "probability": 0.41 + }, + { + "start": 24001.06, + "end": 24001.64, + "probability": 0.6082 + }, + { + "start": 24001.72, + "end": 24003.04, + "probability": 0.9243 + }, + { + "start": 24003.64, + "end": 24005.08, + "probability": 0.9814 + }, + { + "start": 24006.16, + "end": 24012.3, + "probability": 0.9756 + }, + { + "start": 24012.48, + "end": 24014.16, + "probability": 0.8175 + }, + { + "start": 24015.64, + "end": 24017.44, + "probability": 0.9805 + }, + { + "start": 24018.06, + "end": 24020.86, + "probability": 0.9811 + }, + { + "start": 24021.18, + "end": 24021.88, + "probability": 0.758 + }, + { + "start": 24022.46, + "end": 24023.44, + "probability": 0.7179 + }, + { + "start": 24024.06, + "end": 24028.32, + "probability": 0.9855 + }, + { + "start": 24028.32, + "end": 24031.6, + "probability": 0.8474 + }, + { + "start": 24032.08, + "end": 24035.34, + "probability": 0.9756 + }, + { + "start": 24035.8, + "end": 24036.76, + "probability": 0.7016 + }, + { + "start": 24037.62, + "end": 24039.0, + "probability": 0.9408 + }, + { + "start": 24039.8, + "end": 24043.94, + "probability": 0.8759 + }, + { + "start": 24043.94, + "end": 24048.48, + "probability": 0.9995 + }, + { + "start": 24048.98, + "end": 24049.92, + "probability": 0.7034 + }, + { + "start": 24050.36, + "end": 24051.08, + "probability": 0.8602 + }, + { + "start": 24052.14, + "end": 24054.48, + "probability": 0.997 + }, + { + "start": 24055.74, + "end": 24058.4, + "probability": 0.9913 + }, + { + "start": 24059.18, + "end": 24062.01, + "probability": 0.9959 + }, + { + "start": 24064.82, + "end": 24068.0, + "probability": 0.7961 + }, + { + "start": 24069.26, + "end": 24074.4, + "probability": 0.9635 + }, + { + "start": 24075.4, + "end": 24075.68, + "probability": 0.406 + }, + { + "start": 24075.96, + "end": 24078.86, + "probability": 0.9934 + }, + { + "start": 24079.86, + "end": 24081.4, + "probability": 0.9365 + }, + { + "start": 24082.22, + "end": 24082.74, + "probability": 0.793 + }, + { + "start": 24083.42, + "end": 24084.95, + "probability": 0.9297 + }, + { + "start": 24085.94, + "end": 24086.59, + "probability": 0.6143 + }, + { + "start": 24086.74, + "end": 24088.74, + "probability": 0.9893 + }, + { + "start": 24088.82, + "end": 24090.78, + "probability": 0.9883 + }, + { + "start": 24092.02, + "end": 24092.82, + "probability": 0.9206 + }, + { + "start": 24093.18, + "end": 24097.8, + "probability": 0.9065 + }, + { + "start": 24098.24, + "end": 24100.14, + "probability": 0.6929 + }, + { + "start": 24100.42, + "end": 24102.5, + "probability": 0.7846 + }, + { + "start": 24103.82, + "end": 24105.5, + "probability": 0.7927 + }, + { + "start": 24105.8, + "end": 24107.78, + "probability": 0.077 + }, + { + "start": 24109.82, + "end": 24109.82, + "probability": 0.009 + }, + { + "start": 24110.54, + "end": 24111.64, + "probability": 0.412 + }, + { + "start": 24111.76, + "end": 24114.66, + "probability": 0.9504 + }, + { + "start": 24114.66, + "end": 24115.68, + "probability": 0.3541 + }, + { + "start": 24115.8, + "end": 24118.24, + "probability": 0.746 + }, + { + "start": 24118.36, + "end": 24119.28, + "probability": 0.8677 + }, + { + "start": 24120.52, + "end": 24123.04, + "probability": 0.7109 + }, + { + "start": 24123.08, + "end": 24123.64, + "probability": 0.6411 + }, + { + "start": 24123.94, + "end": 24124.48, + "probability": 0.7816 + }, + { + "start": 24125.18, + "end": 24127.18, + "probability": 0.8473 + }, + { + "start": 24140.46, + "end": 24140.62, + "probability": 0.3443 + }, + { + "start": 24140.62, + "end": 24140.62, + "probability": 0.0454 + }, + { + "start": 24140.62, + "end": 24142.96, + "probability": 0.4885 + }, + { + "start": 24143.06, + "end": 24147.22, + "probability": 0.8232 + }, + { + "start": 24147.78, + "end": 24151.4, + "probability": 0.3279 + }, + { + "start": 24151.66, + "end": 24153.7, + "probability": 0.9188 + }, + { + "start": 24153.8, + "end": 24153.88, + "probability": 0.1909 + }, + { + "start": 24153.88, + "end": 24155.14, + "probability": 0.8188 + }, + { + "start": 24156.2, + "end": 24159.62, + "probability": 0.7059 + }, + { + "start": 24161.38, + "end": 24164.16, + "probability": 0.6605 + }, + { + "start": 24175.66, + "end": 24176.24, + "probability": 0.0006 + }, + { + "start": 24177.38, + "end": 24178.16, + "probability": 0.9935 + }, + { + "start": 24178.28, + "end": 24180.02, + "probability": 0.5361 + }, + { + "start": 24180.34, + "end": 24180.69, + "probability": 0.7123 + }, + { + "start": 24182.1, + "end": 24183.92, + "probability": 0.7334 + }, + { + "start": 24183.92, + "end": 24186.53, + "probability": 0.639 + }, + { + "start": 24187.32, + "end": 24188.06, + "probability": 0.9124 + }, + { + "start": 24191.96, + "end": 24195.88, + "probability": 0.7279 + }, + { + "start": 24197.78, + "end": 24197.84, + "probability": 0.687 + }, + { + "start": 24197.84, + "end": 24198.34, + "probability": 0.4624 + }, + { + "start": 24198.46, + "end": 24199.12, + "probability": 0.7199 + }, + { + "start": 24199.22, + "end": 24200.08, + "probability": 0.8973 + }, + { + "start": 24200.38, + "end": 24201.8, + "probability": 0.8748 + }, + { + "start": 24201.9, + "end": 24209.78, + "probability": 0.9662 + }, + { + "start": 24210.18, + "end": 24210.3, + "probability": 0.4245 + }, + { + "start": 24210.32, + "end": 24211.74, + "probability": 0.9243 + }, + { + "start": 24212.66, + "end": 24215.76, + "probability": 0.6419 + }, + { + "start": 24216.46, + "end": 24217.02, + "probability": 0.9221 + }, + { + "start": 24217.14, + "end": 24220.7, + "probability": 0.9715 + }, + { + "start": 24222.8, + "end": 24225.52, + "probability": 0.9909 + }, + { + "start": 24225.68, + "end": 24226.52, + "probability": 0.713 + }, + { + "start": 24227.04, + "end": 24228.62, + "probability": 0.7668 + }, + { + "start": 24229.18, + "end": 24233.72, + "probability": 0.8062 + }, + { + "start": 24234.62, + "end": 24236.07, + "probability": 0.9337 + }, + { + "start": 24237.42, + "end": 24242.16, + "probability": 0.9741 + }, + { + "start": 24243.0, + "end": 24244.9, + "probability": 0.9775 + }, + { + "start": 24244.98, + "end": 24245.64, + "probability": 0.8144 + }, + { + "start": 24245.76, + "end": 24247.28, + "probability": 0.8084 + }, + { + "start": 24247.86, + "end": 24248.7, + "probability": 0.9443 + }, + { + "start": 24249.96, + "end": 24250.22, + "probability": 0.4917 + }, + { + "start": 24250.34, + "end": 24255.2, + "probability": 0.9958 + }, + { + "start": 24255.2, + "end": 24261.24, + "probability": 0.9939 + }, + { + "start": 24262.72, + "end": 24264.94, + "probability": 0.9517 + }, + { + "start": 24266.0, + "end": 24270.6, + "probability": 0.9539 + }, + { + "start": 24271.86, + "end": 24276.5, + "probability": 0.988 + }, + { + "start": 24276.55, + "end": 24280.46, + "probability": 0.9885 + }, + { + "start": 24281.08, + "end": 24284.46, + "probability": 0.9613 + }, + { + "start": 24284.6, + "end": 24285.56, + "probability": 0.9559 + }, + { + "start": 24286.46, + "end": 24290.06, + "probability": 0.9458 + }, + { + "start": 24291.48, + "end": 24293.0, + "probability": 0.7336 + }, + { + "start": 24293.64, + "end": 24296.24, + "probability": 0.5295 + }, + { + "start": 24297.66, + "end": 24299.86, + "probability": 0.7102 + }, + { + "start": 24300.44, + "end": 24306.52, + "probability": 0.9846 + }, + { + "start": 24307.38, + "end": 24308.42, + "probability": 0.9168 + }, + { + "start": 24309.1, + "end": 24311.82, + "probability": 0.8707 + }, + { + "start": 24312.36, + "end": 24319.16, + "probability": 0.835 + }, + { + "start": 24319.34, + "end": 24321.78, + "probability": 0.8787 + }, + { + "start": 24321.84, + "end": 24325.64, + "probability": 0.9139 + }, + { + "start": 24326.7, + "end": 24331.18, + "probability": 0.9092 + }, + { + "start": 24331.7, + "end": 24335.18, + "probability": 0.9964 + }, + { + "start": 24335.54, + "end": 24336.5, + "probability": 0.9461 + }, + { + "start": 24336.9, + "end": 24341.7, + "probability": 0.9929 + }, + { + "start": 24342.34, + "end": 24347.44, + "probability": 0.9993 + }, + { + "start": 24348.02, + "end": 24348.92, + "probability": 0.7557 + }, + { + "start": 24349.88, + "end": 24350.76, + "probability": 0.5004 + }, + { + "start": 24351.34, + "end": 24355.19, + "probability": 0.9732 + }, + { + "start": 24356.02, + "end": 24356.48, + "probability": 0.6052 + }, + { + "start": 24356.66, + "end": 24359.18, + "probability": 0.989 + }, + { + "start": 24359.66, + "end": 24362.4, + "probability": 0.9398 + }, + { + "start": 24362.86, + "end": 24366.72, + "probability": 0.9942 + }, + { + "start": 24366.94, + "end": 24373.48, + "probability": 0.9928 + }, + { + "start": 24373.76, + "end": 24376.72, + "probability": 0.9772 + }, + { + "start": 24377.12, + "end": 24380.9, + "probability": 0.9868 + }, + { + "start": 24380.9, + "end": 24384.94, + "probability": 0.9014 + }, + { + "start": 24385.58, + "end": 24386.18, + "probability": 0.7944 + }, + { + "start": 24386.38, + "end": 24387.04, + "probability": 0.813 + }, + { + "start": 24387.38, + "end": 24390.28, + "probability": 0.9821 + }, + { + "start": 24390.68, + "end": 24391.12, + "probability": 0.5927 + }, + { + "start": 24391.22, + "end": 24392.26, + "probability": 0.973 + }, + { + "start": 24392.72, + "end": 24394.52, + "probability": 0.8529 + }, + { + "start": 24394.94, + "end": 24399.12, + "probability": 0.998 + }, + { + "start": 24399.54, + "end": 24402.7, + "probability": 0.9974 + }, + { + "start": 24403.28, + "end": 24404.42, + "probability": 0.9571 + }, + { + "start": 24404.82, + "end": 24406.92, + "probability": 0.9668 + }, + { + "start": 24407.16, + "end": 24407.86, + "probability": 0.4277 + }, + { + "start": 24408.0, + "end": 24408.86, + "probability": 0.9526 + }, + { + "start": 24409.3, + "end": 24414.44, + "probability": 0.9974 + }, + { + "start": 24414.44, + "end": 24417.52, + "probability": 0.9871 + }, + { + "start": 24417.94, + "end": 24418.36, + "probability": 0.8547 + }, + { + "start": 24419.46, + "end": 24420.6, + "probability": 0.6951 + }, + { + "start": 24420.7, + "end": 24421.56, + "probability": 0.8765 + }, + { + "start": 24422.56, + "end": 24423.9, + "probability": 0.2555 + }, + { + "start": 24426.52, + "end": 24428.64, + "probability": 0.9097 + }, + { + "start": 24429.44, + "end": 24432.46, + "probability": 0.7667 + }, + { + "start": 24437.62, + "end": 24439.62, + "probability": 0.6469 + }, + { + "start": 24439.68, + "end": 24440.12, + "probability": 0.6145 + }, + { + "start": 24440.28, + "end": 24442.82, + "probability": 0.2667 + }, + { + "start": 24445.78, + "end": 24446.08, + "probability": 0.5087 + }, + { + "start": 24451.36, + "end": 24453.62, + "probability": 0.0603 + }, + { + "start": 24454.02, + "end": 24455.5, + "probability": 0.1563 + }, + { + "start": 24455.64, + "end": 24455.76, + "probability": 0.027 + }, + { + "start": 24455.98, + "end": 24457.34, + "probability": 0.6225 + }, + { + "start": 24457.44, + "end": 24460.3, + "probability": 0.7522 + }, + { + "start": 24460.42, + "end": 24462.74, + "probability": 0.9312 + }, + { + "start": 24462.82, + "end": 24463.82, + "probability": 0.9905 + }, + { + "start": 24464.52, + "end": 24465.22, + "probability": 0.9672 + }, + { + "start": 24465.4, + "end": 24467.98, + "probability": 0.8892 + }, + { + "start": 24468.82, + "end": 24472.74, + "probability": 0.8647 + }, + { + "start": 24472.8, + "end": 24473.12, + "probability": 0.3572 + }, + { + "start": 24473.66, + "end": 24474.24, + "probability": 0.4779 + }, + { + "start": 24474.84, + "end": 24478.4, + "probability": 0.9572 + }, + { + "start": 24478.9, + "end": 24481.14, + "probability": 0.7868 + }, + { + "start": 24481.96, + "end": 24482.42, + "probability": 0.2612 + }, + { + "start": 24483.84, + "end": 24486.54, + "probability": 0.9438 + }, + { + "start": 24489.38, + "end": 24489.84, + "probability": 0.7196 + }, + { + "start": 24491.86, + "end": 24493.66, + "probability": 0.929 + }, + { + "start": 24493.74, + "end": 24496.16, + "probability": 0.8241 + }, + { + "start": 24496.9, + "end": 24499.48, + "probability": 0.4511 + }, + { + "start": 24500.54, + "end": 24502.3, + "probability": 0.9548 + }, + { + "start": 24502.38, + "end": 24504.28, + "probability": 0.8677 + }, + { + "start": 24504.28, + "end": 24506.28, + "probability": 0.8293 + }, + { + "start": 24507.18, + "end": 24508.14, + "probability": 0.9468 + }, + { + "start": 24509.0, + "end": 24510.25, + "probability": 0.8514 + }, + { + "start": 24512.16, + "end": 24515.88, + "probability": 0.7259 + }, + { + "start": 24516.48, + "end": 24518.7, + "probability": 0.9866 + }, + { + "start": 24519.18, + "end": 24520.38, + "probability": 0.7158 + }, + { + "start": 24520.52, + "end": 24521.62, + "probability": 0.942 + }, + { + "start": 24524.48, + "end": 24525.39, + "probability": 0.7394 + }, + { + "start": 24525.94, + "end": 24530.82, + "probability": 0.9646 + }, + { + "start": 24534.5, + "end": 24535.5, + "probability": 0.4697 + }, + { + "start": 24536.79, + "end": 24539.34, + "probability": 0.5359 + }, + { + "start": 24539.54, + "end": 24542.4, + "probability": 0.8011 + }, + { + "start": 24542.72, + "end": 24543.68, + "probability": 0.6366 + }, + { + "start": 24543.74, + "end": 24544.7, + "probability": 0.8031 + }, + { + "start": 24544.76, + "end": 24546.22, + "probability": 0.5426 + }, + { + "start": 24546.94, + "end": 24548.7, + "probability": 0.5944 + }, + { + "start": 24549.6, + "end": 24552.04, + "probability": 0.4992 + }, + { + "start": 24552.36, + "end": 24556.13, + "probability": 0.7596 + }, + { + "start": 24557.1, + "end": 24558.08, + "probability": 0.9915 + }, + { + "start": 24559.0, + "end": 24560.06, + "probability": 0.377 + }, + { + "start": 24562.24, + "end": 24563.06, + "probability": 0.9106 + }, + { + "start": 24563.72, + "end": 24565.94, + "probability": 0.9385 + }, + { + "start": 24568.36, + "end": 24570.24, + "probability": 0.5062 + }, + { + "start": 24572.42, + "end": 24577.12, + "probability": 0.5664 + }, + { + "start": 24577.74, + "end": 24580.62, + "probability": 0.7548 + }, + { + "start": 24581.2, + "end": 24584.4, + "probability": 0.8964 + }, + { + "start": 24585.16, + "end": 24586.94, + "probability": 0.9024 + }, + { + "start": 24591.8, + "end": 24594.82, + "probability": 0.7316 + }, + { + "start": 24594.96, + "end": 24596.98, + "probability": 0.9307 + }, + { + "start": 24598.32, + "end": 24599.94, + "probability": 0.9897 + }, + { + "start": 24601.88, + "end": 24602.86, + "probability": 0.9586 + }, + { + "start": 24602.92, + "end": 24603.68, + "probability": 0.9896 + }, + { + "start": 24603.78, + "end": 24605.06, + "probability": 0.2397 + }, + { + "start": 24610.3, + "end": 24615.32, + "probability": 0.9113 + }, + { + "start": 24621.46, + "end": 24621.46, + "probability": 0.0048 + }, + { + "start": 24621.46, + "end": 24623.55, + "probability": 0.5585 + }, + { + "start": 24624.2, + "end": 24625.34, + "probability": 0.8642 + }, + { + "start": 24625.56, + "end": 24628.88, + "probability": 0.9481 + }, + { + "start": 24630.5, + "end": 24630.7, + "probability": 0.3919 + }, + { + "start": 24631.7, + "end": 24632.48, + "probability": 0.4771 + }, + { + "start": 24633.4, + "end": 24635.14, + "probability": 0.8189 + }, + { + "start": 24635.18, + "end": 24637.72, + "probability": 0.4824 + }, + { + "start": 24638.96, + "end": 24643.06, + "probability": 0.8144 + }, + { + "start": 24643.06, + "end": 24645.42, + "probability": 0.8725 + }, + { + "start": 24646.72, + "end": 24648.92, + "probability": 0.8641 + }, + { + "start": 24649.9, + "end": 24653.72, + "probability": 0.9897 + }, + { + "start": 24654.78, + "end": 24655.66, + "probability": 0.3487 + }, + { + "start": 24655.72, + "end": 24659.7, + "probability": 0.7747 + }, + { + "start": 24659.7, + "end": 24662.76, + "probability": 0.9964 + }, + { + "start": 24664.02, + "end": 24668.06, + "probability": 0.9877 + }, + { + "start": 24668.9, + "end": 24670.28, + "probability": 0.7284 + }, + { + "start": 24671.1, + "end": 24673.68, + "probability": 0.9251 + }, + { + "start": 24675.88, + "end": 24679.42, + "probability": 0.8145 + }, + { + "start": 24680.3, + "end": 24681.12, + "probability": 0.4844 + }, + { + "start": 24681.32, + "end": 24684.42, + "probability": 0.7227 + }, + { + "start": 24685.68, + "end": 24689.86, + "probability": 0.9619 + }, + { + "start": 24691.14, + "end": 24693.52, + "probability": 0.9814 + }, + { + "start": 24693.52, + "end": 24696.12, + "probability": 0.9637 + }, + { + "start": 24697.24, + "end": 24699.02, + "probability": 0.9325 + }, + { + "start": 24699.02, + "end": 24701.94, + "probability": 0.9943 + }, + { + "start": 24702.62, + "end": 24705.4, + "probability": 0.7734 + }, + { + "start": 24706.18, + "end": 24707.94, + "probability": 0.8757 + }, + { + "start": 24708.92, + "end": 24714.34, + "probability": 0.8839 + }, + { + "start": 24714.34, + "end": 24717.98, + "probability": 0.8633 + }, + { + "start": 24729.2, + "end": 24730.64, + "probability": 0.6237 + }, + { + "start": 24731.16, + "end": 24732.24, + "probability": 0.7623 + }, + { + "start": 24734.6, + "end": 24735.54, + "probability": 0.8806 + }, + { + "start": 24735.62, + "end": 24740.5, + "probability": 0.9869 + }, + { + "start": 24741.66, + "end": 24744.28, + "probability": 0.9524 + }, + { + "start": 24745.38, + "end": 24748.72, + "probability": 0.9872 + }, + { + "start": 24748.72, + "end": 24751.8, + "probability": 0.998 + }, + { + "start": 24752.66, + "end": 24755.6, + "probability": 0.7426 + }, + { + "start": 24756.94, + "end": 24761.06, + "probability": 0.9277 + }, + { + "start": 24762.58, + "end": 24762.58, + "probability": 0.2489 + }, + { + "start": 24762.82, + "end": 24763.96, + "probability": 0.5888 + }, + { + "start": 24764.0, + "end": 24767.56, + "probability": 0.77 + }, + { + "start": 24767.64, + "end": 24768.86, + "probability": 0.556 + }, + { + "start": 24776.69, + "end": 24779.96, + "probability": 0.9376 + }, + { + "start": 24782.32, + "end": 24786.34, + "probability": 0.9667 + }, + { + "start": 24786.44, + "end": 24791.36, + "probability": 0.9009 + }, + { + "start": 24791.96, + "end": 24792.72, + "probability": 0.9993 + }, + { + "start": 24801.52, + "end": 24801.72, + "probability": 0.0025 + }, + { + "start": 24801.72, + "end": 24803.14, + "probability": 0.6233 + }, + { + "start": 24803.42, + "end": 24806.09, + "probability": 0.9677 + }, + { + "start": 24806.22, + "end": 24809.68, + "probability": 0.9911 + }, + { + "start": 24810.36, + "end": 24813.08, + "probability": 0.9987 + }, + { + "start": 24816.0, + "end": 24820.74, + "probability": 0.9768 + }, + { + "start": 24821.46, + "end": 24823.32, + "probability": 0.9947 + }, + { + "start": 24824.32, + "end": 24825.08, + "probability": 0.5788 + }, + { + "start": 24825.24, + "end": 24828.3, + "probability": 0.9854 + }, + { + "start": 24829.06, + "end": 24832.34, + "probability": 0.9969 + }, + { + "start": 24833.2, + "end": 24836.48, + "probability": 0.9974 + }, + { + "start": 24837.58, + "end": 24840.88, + "probability": 0.9052 + }, + { + "start": 24841.9, + "end": 24844.76, + "probability": 0.953 + }, + { + "start": 24845.42, + "end": 24848.06, + "probability": 0.8165 + }, + { + "start": 24849.0, + "end": 24851.88, + "probability": 0.5825 + }, + { + "start": 24852.6, + "end": 24856.96, + "probability": 0.9047 + }, + { + "start": 24857.1, + "end": 24858.66, + "probability": 0.8741 + }, + { + "start": 24859.68, + "end": 24860.24, + "probability": 0.5609 + }, + { + "start": 24860.4, + "end": 24861.46, + "probability": 0.7059 + }, + { + "start": 24861.46, + "end": 24870.44, + "probability": 0.8321 + }, + { + "start": 24871.02, + "end": 24871.88, + "probability": 0.8273 + }, + { + "start": 24872.56, + "end": 24873.6, + "probability": 0.968 + }, + { + "start": 24883.36, + "end": 24885.42, + "probability": 0.9067 + }, + { + "start": 24885.62, + "end": 24886.44, + "probability": 0.6437 + }, + { + "start": 24886.68, + "end": 24886.94, + "probability": 0.8364 + }, + { + "start": 24887.68, + "end": 24888.52, + "probability": 0.998 + }, + { + "start": 24889.46, + "end": 24890.7, + "probability": 0.9136 + }, + { + "start": 24898.54, + "end": 24899.34, + "probability": 0.5202 + }, + { + "start": 24899.54, + "end": 24900.44, + "probability": 0.7516 + }, + { + "start": 24900.52, + "end": 24903.76, + "probability": 0.9301 + }, + { + "start": 24904.44, + "end": 24907.66, + "probability": 0.9185 + }, + { + "start": 24908.68, + "end": 24910.38, + "probability": 0.8541 + }, + { + "start": 24910.6, + "end": 24913.32, + "probability": 0.8557 + }, + { + "start": 24914.22, + "end": 24918.64, + "probability": 0.861 + }, + { + "start": 24918.88, + "end": 24921.56, + "probability": 0.8631 + }, + { + "start": 24922.56, + "end": 24926.18, + "probability": 0.9583 + }, + { + "start": 24927.1, + "end": 24930.46, + "probability": 0.9779 + }, + { + "start": 24930.64, + "end": 24933.82, + "probability": 0.9743 + }, + { + "start": 24934.4, + "end": 24939.78, + "probability": 0.9951 + }, + { + "start": 24940.62, + "end": 24942.12, + "probability": 0.6121 + }, + { + "start": 24942.76, + "end": 24948.4, + "probability": 0.9647 + }, + { + "start": 24949.16, + "end": 24951.22, + "probability": 0.9811 + }, + { + "start": 24952.52, + "end": 24955.24, + "probability": 0.9897 + }, + { + "start": 24955.24, + "end": 24958.4, + "probability": 0.9553 + }, + { + "start": 24959.64, + "end": 24960.44, + "probability": 0.4275 + }, + { + "start": 24961.32, + "end": 24962.94, + "probability": 0.9871 + }, + { + "start": 24963.52, + "end": 24966.52, + "probability": 0.9954 + }, + { + "start": 24967.42, + "end": 24972.22, + "probability": 0.9797 + }, + { + "start": 24973.58, + "end": 24977.66, + "probability": 0.9115 + }, + { + "start": 24978.2, + "end": 24982.7, + "probability": 0.9771 + }, + { + "start": 24983.2, + "end": 24984.98, + "probability": 0.3985 + }, + { + "start": 24985.24, + "end": 24990.28, + "probability": 0.661 + }, + { + "start": 24991.0, + "end": 24992.3, + "probability": 0.9681 + }, + { + "start": 24992.82, + "end": 24996.1, + "probability": 0.8957 + }, + { + "start": 24996.8, + "end": 24998.54, + "probability": 0.9856 + }, + { + "start": 24998.8, + "end": 25000.17, + "probability": 0.9941 + }, + { + "start": 25000.72, + "end": 25002.4, + "probability": 0.9486 + }, + { + "start": 25002.88, + "end": 25005.24, + "probability": 0.9806 + }, + { + "start": 25005.78, + "end": 25009.7, + "probability": 0.8515 + }, + { + "start": 25010.05, + "end": 25013.62, + "probability": 0.9966 + }, + { + "start": 25013.74, + "end": 25016.58, + "probability": 0.9585 + }, + { + "start": 25017.04, + "end": 25019.54, + "probability": 0.8097 + }, + { + "start": 25019.7, + "end": 25020.3, + "probability": 0.9282 + }, + { + "start": 25021.02, + "end": 25025.48, + "probability": 0.8281 + }, + { + "start": 25025.52, + "end": 25027.46, + "probability": 0.7318 + }, + { + "start": 25028.16, + "end": 25029.38, + "probability": 0.5538 + }, + { + "start": 25029.94, + "end": 25032.08, + "probability": 0.9224 + }, + { + "start": 25032.26, + "end": 25036.96, + "probability": 0.9815 + }, + { + "start": 25038.46, + "end": 25042.46, + "probability": 0.8476 + }, + { + "start": 25042.58, + "end": 25046.34, + "probability": 0.9028 + }, + { + "start": 25047.1, + "end": 25050.66, + "probability": 0.8754 + }, + { + "start": 25051.24, + "end": 25055.1, + "probability": 0.9504 + }, + { + "start": 25055.32, + "end": 25055.91, + "probability": 0.5878 + }, + { + "start": 25056.84, + "end": 25058.08, + "probability": 0.7807 + }, + { + "start": 25059.18, + "end": 25060.64, + "probability": 0.8251 + }, + { + "start": 25061.2, + "end": 25065.14, + "probability": 0.828 + }, + { + "start": 25066.0, + "end": 25068.34, + "probability": 0.9794 + }, + { + "start": 25069.62, + "end": 25070.84, + "probability": 0.4886 + }, + { + "start": 25070.94, + "end": 25071.6, + "probability": 0.7797 + }, + { + "start": 25071.66, + "end": 25071.84, + "probability": 0.8752 + }, + { + "start": 25071.84, + "end": 25072.02, + "probability": 0.6808 + }, + { + "start": 25072.12, + "end": 25075.6, + "probability": 0.9897 + }, + { + "start": 25076.58, + "end": 25078.24, + "probability": 0.6496 + }, + { + "start": 25079.1, + "end": 25081.54, + "probability": 0.8618 + }, + { + "start": 25082.38, + "end": 25085.2, + "probability": 0.566 + }, + { + "start": 25085.84, + "end": 25088.18, + "probability": 0.8875 + }, + { + "start": 25089.16, + "end": 25091.66, + "probability": 0.5151 + }, + { + "start": 25092.32, + "end": 25095.36, + "probability": 0.5033 + }, + { + "start": 25095.72, + "end": 25097.24, + "probability": 0.5239 + }, + { + "start": 25097.98, + "end": 25102.02, + "probability": 0.9421 + }, + { + "start": 25103.28, + "end": 25104.2, + "probability": 0.4378 + }, + { + "start": 25106.72, + "end": 25109.62, + "probability": 0.8929 + }, + { + "start": 25109.78, + "end": 25115.37, + "probability": 0.9491 + }, + { + "start": 25116.46, + "end": 25120.86, + "probability": 0.9355 + }, + { + "start": 25121.5, + "end": 25123.62, + "probability": 0.9221 + }, + { + "start": 25124.16, + "end": 25126.9, + "probability": 0.9512 + }, + { + "start": 25127.98, + "end": 25131.16, + "probability": 0.5216 + }, + { + "start": 25131.98, + "end": 25135.06, + "probability": 0.8707 + }, + { + "start": 25135.08, + "end": 25138.64, + "probability": 0.9871 + }, + { + "start": 25139.44, + "end": 25145.45, + "probability": 0.9799 + }, + { + "start": 25145.94, + "end": 25147.78, + "probability": 0.8506 + }, + { + "start": 25148.58, + "end": 25151.52, + "probability": 0.9798 + }, + { + "start": 25151.96, + "end": 25154.0, + "probability": 0.9599 + }, + { + "start": 25154.28, + "end": 25157.84, + "probability": 0.9178 + }, + { + "start": 25158.6, + "end": 25159.14, + "probability": 0.9245 + }, + { + "start": 25159.24, + "end": 25161.18, + "probability": 0.9917 + }, + { + "start": 25161.22, + "end": 25167.82, + "probability": 0.9041 + }, + { + "start": 25167.96, + "end": 25169.22, + "probability": 0.5213 + }, + { + "start": 25169.7, + "end": 25170.86, + "probability": 0.6995 + }, + { + "start": 25171.99, + "end": 25174.86, + "probability": 0.8353 + }, + { + "start": 25175.74, + "end": 25178.7, + "probability": 0.9806 + }, + { + "start": 25179.24, + "end": 25180.98, + "probability": 0.998 + }, + { + "start": 25181.46, + "end": 25181.9, + "probability": 0.8671 + }, + { + "start": 25182.56, + "end": 25183.72, + "probability": 0.6389 + }, + { + "start": 25184.44, + "end": 25185.56, + "probability": 0.499 + }, + { + "start": 25186.1, + "end": 25188.56, + "probability": 0.6746 + }, + { + "start": 25189.48, + "end": 25190.9, + "probability": 0.7432 + }, + { + "start": 25192.54, + "end": 25193.43, + "probability": 0.4375 + }, + { + "start": 25193.84, + "end": 25195.96, + "probability": 0.8946 + }, + { + "start": 25196.48, + "end": 25197.54, + "probability": 0.6615 + }, + { + "start": 25198.44, + "end": 25200.06, + "probability": 0.7152 + }, + { + "start": 25200.78, + "end": 25201.44, + "probability": 0.7097 + }, + { + "start": 25202.72, + "end": 25203.26, + "probability": 0.826 + }, + { + "start": 25205.1, + "end": 25206.4, + "probability": 0.9365 + }, + { + "start": 25211.66, + "end": 25211.66, + "probability": 0.6936 + }, + { + "start": 25219.94, + "end": 25220.16, + "probability": 0.1891 + }, + { + "start": 25220.16, + "end": 25220.8, + "probability": 0.3826 + }, + { + "start": 25221.32, + "end": 25222.28, + "probability": 0.3816 + }, + { + "start": 25222.38, + "end": 25226.14, + "probability": 0.8516 + }, + { + "start": 25227.16, + "end": 25228.18, + "probability": 0.8511 + }, + { + "start": 25228.82, + "end": 25230.86, + "probability": 0.9268 + }, + { + "start": 25232.0, + "end": 25233.68, + "probability": 0.8336 + }, + { + "start": 25234.18, + "end": 25235.68, + "probability": 0.9461 + }, + { + "start": 25235.76, + "end": 25236.48, + "probability": 0.9485 + }, + { + "start": 25237.14, + "end": 25238.04, + "probability": 0.7291 + }, + { + "start": 25238.1, + "end": 25241.36, + "probability": 0.6966 + }, + { + "start": 25241.96, + "end": 25243.22, + "probability": 0.9198 + }, + { + "start": 25243.36, + "end": 25243.98, + "probability": 0.4889 + }, + { + "start": 25244.16, + "end": 25245.36, + "probability": 0.8277 + }, + { + "start": 25246.04, + "end": 25246.69, + "probability": 0.7393 + }, + { + "start": 25247.89, + "end": 25250.58, + "probability": 0.7497 + }, + { + "start": 25250.78, + "end": 25255.02, + "probability": 0.8459 + }, + { + "start": 25258.79, + "end": 25260.88, + "probability": 0.8075 + }, + { + "start": 25261.9, + "end": 25267.06, + "probability": 0.1694 + }, + { + "start": 25268.26, + "end": 25272.06, + "probability": 0.3502 + }, + { + "start": 25272.06, + "end": 25275.5, + "probability": 0.8609 + }, + { + "start": 25276.46, + "end": 25276.6, + "probability": 0.1668 + }, + { + "start": 25276.6, + "end": 25278.6, + "probability": 0.6808 + }, + { + "start": 25278.86, + "end": 25280.56, + "probability": 0.8358 + }, + { + "start": 25310.15, + "end": 25311.2, + "probability": 0.4806 + }, + { + "start": 25312.66, + "end": 25313.15, + "probability": 0.6707 + }, + { + "start": 25314.18, + "end": 25315.18, + "probability": 0.6335 + }, + { + "start": 25315.76, + "end": 25317.54, + "probability": 0.3642 + }, + { + "start": 25318.98, + "end": 25321.94, + "probability": 0.8853 + }, + { + "start": 25322.48, + "end": 25324.16, + "probability": 0.9741 + }, + { + "start": 25324.62, + "end": 25325.8, + "probability": 0.7331 + }, + { + "start": 25327.82, + "end": 25330.04, + "probability": 0.8106 + }, + { + "start": 25330.72, + "end": 25332.07, + "probability": 0.9347 + }, + { + "start": 25333.1, + "end": 25335.68, + "probability": 0.9734 + }, + { + "start": 25336.22, + "end": 25339.34, + "probability": 0.8152 + }, + { + "start": 25340.72, + "end": 25343.74, + "probability": 0.8868 + }, + { + "start": 25346.22, + "end": 25352.46, + "probability": 0.8682 + }, + { + "start": 25353.78, + "end": 25356.98, + "probability": 0.92 + }, + { + "start": 25357.6, + "end": 25359.44, + "probability": 0.9601 + }, + { + "start": 25360.64, + "end": 25361.74, + "probability": 0.5238 + }, + { + "start": 25361.78, + "end": 25363.5, + "probability": 0.2101 + }, + { + "start": 25363.56, + "end": 25364.3, + "probability": 0.8797 + }, + { + "start": 25364.54, + "end": 25365.1, + "probability": 0.6347 + }, + { + "start": 25366.16, + "end": 25367.1, + "probability": 0.1288 + }, + { + "start": 25368.18, + "end": 25368.56, + "probability": 0.1831 + }, + { + "start": 25369.82, + "end": 25371.94, + "probability": 0.3714 + }, + { + "start": 25372.04, + "end": 25373.04, + "probability": 0.487 + }, + { + "start": 25374.82, + "end": 25378.1, + "probability": 0.7586 + }, + { + "start": 25378.48, + "end": 25381.8, + "probability": 0.353 + }, + { + "start": 25381.9, + "end": 25382.92, + "probability": 0.9741 + }, + { + "start": 25383.3, + "end": 25384.84, + "probability": 0.7841 + }, + { + "start": 25385.72, + "end": 25386.5, + "probability": 0.7832 + }, + { + "start": 25386.9, + "end": 25396.14, + "probability": 0.0339 + }, + { + "start": 25396.24, + "end": 25399.87, + "probability": 0.1491 + }, + { + "start": 25402.0, + "end": 25402.72, + "probability": 0.0158 + }, + { + "start": 25404.57, + "end": 25405.68, + "probability": 0.0706 + }, + { + "start": 25405.68, + "end": 25406.8, + "probability": 0.0102 + }, + { + "start": 25408.2, + "end": 25408.2, + "probability": 0.0636 + }, + { + "start": 25408.2, + "end": 25408.2, + "probability": 0.3046 + }, + { + "start": 25408.2, + "end": 25408.2, + "probability": 0.2061 + }, + { + "start": 25408.2, + "end": 25408.2, + "probability": 0.2833 + }, + { + "start": 25408.2, + "end": 25408.2, + "probability": 0.0238 + }, + { + "start": 25408.2, + "end": 25408.2, + "probability": 0.0207 + }, + { + "start": 25408.2, + "end": 25410.66, + "probability": 0.7048 + }, + { + "start": 25411.5, + "end": 25414.5, + "probability": 0.7111 + }, + { + "start": 25415.18, + "end": 25418.16, + "probability": 0.9056 + }, + { + "start": 25418.74, + "end": 25419.84, + "probability": 0.8835 + }, + { + "start": 25420.04, + "end": 25420.98, + "probability": 0.9288 + }, + { + "start": 25421.38, + "end": 25424.2, + "probability": 0.6862 + }, + { + "start": 25424.32, + "end": 25427.84, + "probability": 0.8429 + }, + { + "start": 25427.98, + "end": 25429.04, + "probability": 0.9675 + }, + { + "start": 25429.9, + "end": 25434.02, + "probability": 0.9897 + }, + { + "start": 25435.0, + "end": 25436.82, + "probability": 0.9071 + }, + { + "start": 25437.38, + "end": 25439.24, + "probability": 0.8979 + }, + { + "start": 25440.04, + "end": 25443.6, + "probability": 0.9767 + }, + { + "start": 25444.38, + "end": 25445.68, + "probability": 0.8246 + }, + { + "start": 25446.38, + "end": 25446.74, + "probability": 0.9036 + }, + { + "start": 25447.44, + "end": 25450.46, + "probability": 0.9095 + }, + { + "start": 25451.16, + "end": 25452.47, + "probability": 0.9941 + }, + { + "start": 25453.4, + "end": 25456.82, + "probability": 0.9893 + }, + { + "start": 25457.6, + "end": 25460.58, + "probability": 0.6907 + }, + { + "start": 25460.74, + "end": 25465.74, + "probability": 0.9441 + }, + { + "start": 25466.26, + "end": 25468.48, + "probability": 0.0951 + }, + { + "start": 25468.48, + "end": 25471.2, + "probability": 0.0473 + }, + { + "start": 25471.24, + "end": 25472.88, + "probability": 0.9214 + }, + { + "start": 25474.34, + "end": 25477.12, + "probability": 0.086 + }, + { + "start": 25478.94, + "end": 25485.8, + "probability": 0.9957 + }, + { + "start": 25485.8, + "end": 25491.92, + "probability": 0.8464 + }, + { + "start": 25493.14, + "end": 25493.54, + "probability": 0.6543 + }, + { + "start": 25493.62, + "end": 25494.15, + "probability": 0.7919 + }, + { + "start": 25494.24, + "end": 25498.06, + "probability": 0.9825 + }, + { + "start": 25500.0, + "end": 25500.42, + "probability": 0.3655 + }, + { + "start": 25500.42, + "end": 25502.54, + "probability": 0.5635 + }, + { + "start": 25502.54, + "end": 25504.34, + "probability": 0.3509 + }, + { + "start": 25504.38, + "end": 25509.27, + "probability": 0.5389 + }, + { + "start": 25509.92, + "end": 25515.88, + "probability": 0.9866 + }, + { + "start": 25516.24, + "end": 25520.42, + "probability": 0.794 + }, + { + "start": 25521.7, + "end": 25524.52, + "probability": 0.95 + }, + { + "start": 25524.78, + "end": 25526.14, + "probability": 0.9528 + }, + { + "start": 25528.48, + "end": 25533.0, + "probability": 0.8448 + }, + { + "start": 25533.56, + "end": 25535.61, + "probability": 0.6976 + }, + { + "start": 25537.5, + "end": 25538.99, + "probability": 0.9951 + }, + { + "start": 25540.56, + "end": 25544.22, + "probability": 0.9038 + }, + { + "start": 25545.12, + "end": 25548.4, + "probability": 0.9802 + }, + { + "start": 25548.52, + "end": 25549.44, + "probability": 0.9481 + }, + { + "start": 25549.54, + "end": 25550.84, + "probability": 0.9903 + }, + { + "start": 25551.0, + "end": 25552.6, + "probability": 0.8933 + }, + { + "start": 25552.98, + "end": 25555.26, + "probability": 0.9808 + }, + { + "start": 25557.42, + "end": 25562.14, + "probability": 0.5469 + }, + { + "start": 25562.24, + "end": 25563.06, + "probability": 0.631 + }, + { + "start": 25563.4, + "end": 25564.5, + "probability": 0.7591 + }, + { + "start": 25564.84, + "end": 25567.28, + "probability": 0.9875 + }, + { + "start": 25567.6, + "end": 25568.96, + "probability": 0.9089 + }, + { + "start": 25569.38, + "end": 25571.52, + "probability": 0.9513 + }, + { + "start": 25571.84, + "end": 25573.42, + "probability": 0.6709 + }, + { + "start": 25573.82, + "end": 25574.4, + "probability": 0.6684 + }, + { + "start": 25575.14, + "end": 25577.9, + "probability": 0.5083 + }, + { + "start": 25578.68, + "end": 25581.58, + "probability": 0.7093 + }, + { + "start": 25582.0, + "end": 25589.2, + "probability": 0.9659 + }, + { + "start": 25589.8, + "end": 25594.08, + "probability": 0.9709 + }, + { + "start": 25594.92, + "end": 25602.54, + "probability": 0.6656 + }, + { + "start": 25603.66, + "end": 25608.64, + "probability": 0.8798 + }, + { + "start": 25609.12, + "end": 25610.45, + "probability": 0.9873 + }, + { + "start": 25610.96, + "end": 25616.34, + "probability": 0.9108 + }, + { + "start": 25617.16, + "end": 25617.26, + "probability": 0.3777 + }, + { + "start": 25619.28, + "end": 25623.62, + "probability": 0.9613 + }, + { + "start": 25624.4, + "end": 25624.8, + "probability": 0.6893 + }, + { + "start": 25624.88, + "end": 25630.82, + "probability": 0.931 + }, + { + "start": 25631.24, + "end": 25632.7, + "probability": 0.8637 + }, + { + "start": 25632.82, + "end": 25635.84, + "probability": 0.9362 + }, + { + "start": 25636.94, + "end": 25640.02, + "probability": 0.9668 + }, + { + "start": 25640.52, + "end": 25647.86, + "probability": 0.8154 + }, + { + "start": 25648.44, + "end": 25650.5, + "probability": 0.8103 + }, + { + "start": 25650.96, + "end": 25651.52, + "probability": 0.9835 + }, + { + "start": 25651.6, + "end": 25658.76, + "probability": 0.7941 + }, + { + "start": 25659.04, + "end": 25660.46, + "probability": 0.9399 + }, + { + "start": 25660.56, + "end": 25661.32, + "probability": 0.8657 + }, + { + "start": 25661.64, + "end": 25665.1, + "probability": 0.976 + }, + { + "start": 25665.16, + "end": 25666.08, + "probability": 0.8356 + }, + { + "start": 25666.8, + "end": 25669.26, + "probability": 0.4906 + }, + { + "start": 25669.26, + "end": 25669.36, + "probability": 0.6588 + }, + { + "start": 25669.6, + "end": 25670.78, + "probability": 0.7378 + }, + { + "start": 25671.28, + "end": 25672.38, + "probability": 0.2287 + }, + { + "start": 25672.48, + "end": 25675.34, + "probability": 0.6089 + }, + { + "start": 25675.34, + "end": 25675.7, + "probability": 0.3124 + }, + { + "start": 25675.84, + "end": 25680.62, + "probability": 0.901 + }, + { + "start": 25680.73, + "end": 25684.54, + "probability": 0.6247 + }, + { + "start": 25685.22, + "end": 25686.46, + "probability": 0.9115 + }, + { + "start": 25686.52, + "end": 25687.2, + "probability": 0.8989 + }, + { + "start": 25687.62, + "end": 25689.32, + "probability": 0.981 + }, + { + "start": 25689.7, + "end": 25690.54, + "probability": 0.9592 + }, + { + "start": 25692.14, + "end": 25692.74, + "probability": 0.5027 + }, + { + "start": 25693.14, + "end": 25698.08, + "probability": 0.9032 + }, + { + "start": 25698.14, + "end": 25698.7, + "probability": 0.626 + }, + { + "start": 25698.98, + "end": 25699.24, + "probability": 0.6356 + }, + { + "start": 25699.28, + "end": 25700.0, + "probability": 0.8126 + }, + { + "start": 25700.08, + "end": 25700.96, + "probability": 0.9678 + }, + { + "start": 25701.04, + "end": 25701.92, + "probability": 0.7789 + }, + { + "start": 25702.06, + "end": 25705.1, + "probability": 0.5625 + }, + { + "start": 25705.38, + "end": 25708.06, + "probability": 0.9817 + }, + { + "start": 25708.58, + "end": 25711.3, + "probability": 0.8499 + }, + { + "start": 25711.98, + "end": 25713.86, + "probability": 0.9746 + }, + { + "start": 25714.54, + "end": 25715.96, + "probability": 0.9138 + }, + { + "start": 25716.78, + "end": 25717.1, + "probability": 0.2691 + }, + { + "start": 25717.26, + "end": 25722.68, + "probability": 0.9797 + }, + { + "start": 25723.44, + "end": 25727.04, + "probability": 0.9952 + }, + { + "start": 25728.14, + "end": 25728.24, + "probability": 0.3272 + }, + { + "start": 25728.96, + "end": 25729.66, + "probability": 0.6542 + }, + { + "start": 25730.36, + "end": 25731.12, + "probability": 0.641 + }, + { + "start": 25731.22, + "end": 25734.68, + "probability": 0.9668 + }, + { + "start": 25735.14, + "end": 25739.93, + "probability": 0.9382 + }, + { + "start": 25741.0, + "end": 25746.47, + "probability": 0.8019 + }, + { + "start": 25747.0, + "end": 25752.76, + "probability": 0.8551 + }, + { + "start": 25752.8, + "end": 25755.9, + "probability": 0.8167 + }, + { + "start": 25756.34, + "end": 25757.46, + "probability": 0.3301 + }, + { + "start": 25757.48, + "end": 25757.92, + "probability": 0.73 + }, + { + "start": 25758.2, + "end": 25759.52, + "probability": 0.8892 + }, + { + "start": 25760.18, + "end": 25760.28, + "probability": 0.1375 + }, + { + "start": 25760.76, + "end": 25760.76, + "probability": 0.1324 + }, + { + "start": 25760.76, + "end": 25761.53, + "probability": 0.853 + }, + { + "start": 25761.96, + "end": 25762.55, + "probability": 0.9451 + }, + { + "start": 25763.54, + "end": 25765.62, + "probability": 0.6869 + }, + { + "start": 25766.12, + "end": 25771.72, + "probability": 0.9536 + }, + { + "start": 25772.22, + "end": 25781.26, + "probability": 0.9501 + }, + { + "start": 25781.26, + "end": 25783.04, + "probability": 0.368 + }, + { + "start": 25783.04, + "end": 25786.98, + "probability": 0.9299 + }, + { + "start": 25787.44, + "end": 25787.78, + "probability": 0.6581 + }, + { + "start": 25787.78, + "end": 25788.16, + "probability": 0.5397 + }, + { + "start": 25788.18, + "end": 25789.3, + "probability": 0.1448 + }, + { + "start": 25789.8, + "end": 25790.1, + "probability": 0.7264 + }, + { + "start": 25790.16, + "end": 25791.26, + "probability": 0.5245 + }, + { + "start": 25791.62, + "end": 25791.72, + "probability": 0.5715 + }, + { + "start": 25791.72, + "end": 25792.78, + "probability": 0.6195 + }, + { + "start": 25792.82, + "end": 25797.96, + "probability": 0.9834 + }, + { + "start": 25798.06, + "end": 25803.24, + "probability": 0.7441 + }, + { + "start": 25803.8, + "end": 25806.16, + "probability": 0.583 + }, + { + "start": 25806.56, + "end": 25808.21, + "probability": 0.8993 + }, + { + "start": 25808.88, + "end": 25812.86, + "probability": 0.9521 + }, + { + "start": 25813.2, + "end": 25814.84, + "probability": 0.7244 + }, + { + "start": 25815.48, + "end": 25815.88, + "probability": 0.4413 + }, + { + "start": 25816.04, + "end": 25817.94, + "probability": 0.9752 + }, + { + "start": 25818.22, + "end": 25819.92, + "probability": 0.6545 + }, + { + "start": 25820.02, + "end": 25823.82, + "probability": 0.9463 + }, + { + "start": 25823.92, + "end": 25825.06, + "probability": 0.9226 + }, + { + "start": 25825.68, + "end": 25826.68, + "probability": 0.0812 + }, + { + "start": 25826.94, + "end": 25828.76, + "probability": 0.2559 + }, + { + "start": 25828.76, + "end": 25829.82, + "probability": 0.4629 + }, + { + "start": 25829.86, + "end": 25831.12, + "probability": 0.7969 + }, + { + "start": 25831.46, + "end": 25831.82, + "probability": 0.7904 + }, + { + "start": 25831.84, + "end": 25832.04, + "probability": 0.8885 + }, + { + "start": 25832.12, + "end": 25833.3, + "probability": 0.8693 + }, + { + "start": 25833.4, + "end": 25834.16, + "probability": 0.8926 + }, + { + "start": 25834.8, + "end": 25837.57, + "probability": 0.4903 + }, + { + "start": 25838.04, + "end": 25839.3, + "probability": 0.7081 + }, + { + "start": 25840.46, + "end": 25840.98, + "probability": 0.6679 + }, + { + "start": 25841.4, + "end": 25842.98, + "probability": 0.8542 + }, + { + "start": 25843.18, + "end": 25846.32, + "probability": 0.7602 + }, + { + "start": 25847.32, + "end": 25847.78, + "probability": 0.1869 + }, + { + "start": 25847.88, + "end": 25848.77, + "probability": 0.8308 + }, + { + "start": 25849.94, + "end": 25850.72, + "probability": 0.2988 + }, + { + "start": 25850.72, + "end": 25852.06, + "probability": 0.4924 + }, + { + "start": 25853.68, + "end": 25855.14, + "probability": 0.7959 + }, + { + "start": 25856.16, + "end": 25858.84, + "probability": 0.8708 + }, + { + "start": 25859.66, + "end": 25860.38, + "probability": 0.8037 + }, + { + "start": 25860.46, + "end": 25860.72, + "probability": 0.6939 + }, + { + "start": 25860.78, + "end": 25861.94, + "probability": 0.9353 + }, + { + "start": 25862.0, + "end": 25863.16, + "probability": 0.8997 + }, + { + "start": 25863.8, + "end": 25864.24, + "probability": 0.8501 + }, + { + "start": 25864.42, + "end": 25868.64, + "probability": 0.8302 + }, + { + "start": 25868.82, + "end": 25870.2, + "probability": 0.9267 + }, + { + "start": 25872.9, + "end": 25873.5, + "probability": 0.3315 + }, + { + "start": 25873.5, + "end": 25873.5, + "probability": 0.4827 + }, + { + "start": 25873.5, + "end": 25874.44, + "probability": 0.3491 + }, + { + "start": 25874.44, + "end": 25878.54, + "probability": 0.7017 + }, + { + "start": 25878.8, + "end": 25880.96, + "probability": 0.9774 + }, + { + "start": 25881.48, + "end": 25884.14, + "probability": 0.9787 + }, + { + "start": 25886.04, + "end": 25886.12, + "probability": 0.0092 + }, + { + "start": 25886.12, + "end": 25886.12, + "probability": 0.4985 + }, + { + "start": 25886.12, + "end": 25887.34, + "probability": 0.2892 + }, + { + "start": 25887.68, + "end": 25887.92, + "probability": 0.298 + }, + { + "start": 25887.94, + "end": 25888.22, + "probability": 0.9205 + }, + { + "start": 25888.28, + "end": 25890.1, + "probability": 0.8628 + }, + { + "start": 25891.02, + "end": 25891.3, + "probability": 0.5344 + }, + { + "start": 25891.36, + "end": 25892.8, + "probability": 0.949 + }, + { + "start": 25892.8, + "end": 25894.74, + "probability": 0.5335 + }, + { + "start": 25894.82, + "end": 25895.34, + "probability": 0.9725 + }, + { + "start": 25896.0, + "end": 25896.74, + "probability": 0.6788 + }, + { + "start": 25896.88, + "end": 25897.04, + "probability": 0.6436 + }, + { + "start": 25897.06, + "end": 25897.32, + "probability": 0.7996 + }, + { + "start": 25897.5, + "end": 25897.94, + "probability": 0.6477 + }, + { + "start": 25898.32, + "end": 25899.58, + "probability": 0.7502 + }, + { + "start": 25900.14, + "end": 25901.12, + "probability": 0.8702 + }, + { + "start": 25901.96, + "end": 25905.24, + "probability": 0.9373 + }, + { + "start": 25906.28, + "end": 25907.94, + "probability": 0.9756 + }, + { + "start": 25909.72, + "end": 25911.3, + "probability": 0.4818 + }, + { + "start": 25911.84, + "end": 25913.7, + "probability": 0.7445 + }, + { + "start": 25913.76, + "end": 25920.44, + "probability": 0.8953 + }, + { + "start": 25920.64, + "end": 25922.3, + "probability": 0.8899 + }, + { + "start": 25922.6, + "end": 25924.48, + "probability": 0.9536 + }, + { + "start": 25924.56, + "end": 25925.86, + "probability": 0.9754 + }, + { + "start": 25926.36, + "end": 25928.98, + "probability": 0.2245 + }, + { + "start": 25929.32, + "end": 25929.96, + "probability": 0.3629 + }, + { + "start": 25930.08, + "end": 25931.18, + "probability": 0.9718 + }, + { + "start": 25931.24, + "end": 25933.04, + "probability": 0.6484 + }, + { + "start": 25933.84, + "end": 25935.46, + "probability": 0.5897 + }, + { + "start": 25935.5, + "end": 25936.22, + "probability": 0.8332 + }, + { + "start": 25936.38, + "end": 25937.46, + "probability": 0.7776 + }, + { + "start": 25937.46, + "end": 25939.22, + "probability": 0.4626 + }, + { + "start": 25939.22, + "end": 25940.52, + "probability": 0.9293 + }, + { + "start": 25940.72, + "end": 25942.04, + "probability": 0.9954 + }, + { + "start": 25943.14, + "end": 25944.48, + "probability": 0.4376 + }, + { + "start": 25944.58, + "end": 25944.82, + "probability": 0.4912 + }, + { + "start": 25945.04, + "end": 25945.65, + "probability": 0.1444 + }, + { + "start": 25946.16, + "end": 25946.24, + "probability": 0.0597 + }, + { + "start": 25946.24, + "end": 25947.6, + "probability": 0.3625 + }, + { + "start": 25948.2, + "end": 25948.48, + "probability": 0.4192 + }, + { + "start": 25948.5, + "end": 25950.34, + "probability": 0.789 + }, + { + "start": 25950.44, + "end": 25953.84, + "probability": 0.6431 + }, + { + "start": 25953.92, + "end": 25955.22, + "probability": 0.8268 + }, + { + "start": 25955.48, + "end": 25955.8, + "probability": 0.3594 + }, + { + "start": 25955.82, + "end": 25958.76, + "probability": 0.9014 + }, + { + "start": 25958.9, + "end": 25959.84, + "probability": 0.9804 + }, + { + "start": 25960.24, + "end": 25963.7, + "probability": 0.9664 + }, + { + "start": 25964.54, + "end": 25965.3, + "probability": 0.7053 + }, + { + "start": 25966.62, + "end": 25967.85, + "probability": 0.4644 + }, + { + "start": 25968.72, + "end": 25968.76, + "probability": 0.1931 + }, + { + "start": 25968.92, + "end": 25972.14, + "probability": 0.7863 + }, + { + "start": 25972.22, + "end": 25975.24, + "probability": 0.759 + }, + { + "start": 25975.38, + "end": 25976.56, + "probability": 0.8023 + }, + { + "start": 25977.16, + "end": 25980.56, + "probability": 0.9937 + }, + { + "start": 25981.2, + "end": 25985.71, + "probability": 0.9449 + }, + { + "start": 25986.42, + "end": 25987.08, + "probability": 0.5044 + }, + { + "start": 25989.32, + "end": 25990.18, + "probability": 0.1576 + }, + { + "start": 25990.74, + "end": 25994.0, + "probability": 0.9948 + }, + { + "start": 25994.66, + "end": 25995.4, + "probability": 0.5436 + }, + { + "start": 25996.14, + "end": 25998.7, + "probability": 0.9966 + }, + { + "start": 25998.7, + "end": 26002.52, + "probability": 0.988 + }, + { + "start": 26002.94, + "end": 26008.12, + "probability": 0.8789 + }, + { + "start": 26008.94, + "end": 26013.44, + "probability": 0.9493 + }, + { + "start": 26014.18, + "end": 26015.36, + "probability": 0.8692 + }, + { + "start": 26017.24, + "end": 26020.14, + "probability": 0.9948 + }, + { + "start": 26020.9, + "end": 26023.34, + "probability": 0.9964 + }, + { + "start": 26025.28, + "end": 26028.82, + "probability": 0.2335 + }, + { + "start": 26028.82, + "end": 26028.82, + "probability": 0.1663 + }, + { + "start": 26028.82, + "end": 26028.82, + "probability": 0.0974 + }, + { + "start": 26028.82, + "end": 26028.82, + "probability": 0.2091 + }, + { + "start": 26028.82, + "end": 26029.18, + "probability": 0.1654 + }, + { + "start": 26029.2, + "end": 26030.06, + "probability": 0.5675 + }, + { + "start": 26030.2, + "end": 26030.42, + "probability": 0.1605 + }, + { + "start": 26030.91, + "end": 26031.12, + "probability": 0.021 + }, + { + "start": 26031.12, + "end": 26034.34, + "probability": 0.2239 + }, + { + "start": 26034.42, + "end": 26034.52, + "probability": 0.106 + }, + { + "start": 26035.92, + "end": 26036.98, + "probability": 0.6579 + }, + { + "start": 26037.1, + "end": 26042.5, + "probability": 0.9072 + }, + { + "start": 26042.58, + "end": 26043.44, + "probability": 0.8933 + }, + { + "start": 26043.54, + "end": 26044.0, + "probability": 0.8831 + }, + { + "start": 26044.08, + "end": 26045.0, + "probability": 0.7984 + }, + { + "start": 26046.3, + "end": 26047.04, + "probability": 0.9382 + }, + { + "start": 26047.54, + "end": 26048.82, + "probability": 0.9442 + }, + { + "start": 26048.9, + "end": 26051.16, + "probability": 0.8246 + }, + { + "start": 26051.34, + "end": 26052.26, + "probability": 0.9315 + }, + { + "start": 26052.88, + "end": 26056.2, + "probability": 0.9098 + }, + { + "start": 26057.0, + "end": 26057.2, + "probability": 0.7426 + }, + { + "start": 26057.42, + "end": 26061.68, + "probability": 0.8694 + }, + { + "start": 26061.72, + "end": 26063.34, + "probability": 0.9613 + }, + { + "start": 26063.96, + "end": 26066.26, + "probability": 0.8921 + }, + { + "start": 26066.44, + "end": 26067.08, + "probability": 0.8167 + }, + { + "start": 26068.08, + "end": 26071.64, + "probability": 0.9435 + }, + { + "start": 26072.16, + "end": 26073.64, + "probability": 0.8289 + }, + { + "start": 26073.8, + "end": 26074.87, + "probability": 0.8488 + }, + { + "start": 26075.04, + "end": 26075.22, + "probability": 0.8214 + }, + { + "start": 26075.3, + "end": 26076.28, + "probability": 0.9807 + }, + { + "start": 26076.54, + "end": 26076.9, + "probability": 0.8076 + }, + { + "start": 26076.96, + "end": 26077.97, + "probability": 0.8727 + }, + { + "start": 26078.86, + "end": 26079.44, + "probability": 0.8264 + }, + { + "start": 26079.54, + "end": 26079.68, + "probability": 0.3742 + }, + { + "start": 26080.52, + "end": 26081.86, + "probability": 0.948 + }, + { + "start": 26082.26, + "end": 26084.56, + "probability": 0.8962 + }, + { + "start": 26084.98, + "end": 26087.14, + "probability": 0.9956 + }, + { + "start": 26087.42, + "end": 26089.11, + "probability": 0.8131 + }, + { + "start": 26089.52, + "end": 26090.64, + "probability": 0.691 + }, + { + "start": 26090.94, + "end": 26092.34, + "probability": 0.9752 + }, + { + "start": 26092.68, + "end": 26093.8, + "probability": 0.8884 + }, + { + "start": 26093.92, + "end": 26094.94, + "probability": 0.9658 + }, + { + "start": 26094.94, + "end": 26096.18, + "probability": 0.9906 + }, + { + "start": 26096.52, + "end": 26097.86, + "probability": 0.9797 + }, + { + "start": 26098.06, + "end": 26099.32, + "probability": 0.5537 + }, + { + "start": 26099.4, + "end": 26099.96, + "probability": 0.5631 + }, + { + "start": 26100.68, + "end": 26101.82, + "probability": 0.7197 + }, + { + "start": 26101.92, + "end": 26103.82, + "probability": 0.8247 + }, + { + "start": 26104.06, + "end": 26105.66, + "probability": 0.9203 + }, + { + "start": 26105.98, + "end": 26108.24, + "probability": 0.9731 + }, + { + "start": 26108.66, + "end": 26109.12, + "probability": 0.6571 + }, + { + "start": 26109.22, + "end": 26109.82, + "probability": 0.9097 + }, + { + "start": 26110.12, + "end": 26110.96, + "probability": 0.9824 + }, + { + "start": 26111.42, + "end": 26113.96, + "probability": 0.9976 + }, + { + "start": 26114.32, + "end": 26117.96, + "probability": 0.9983 + }, + { + "start": 26118.32, + "end": 26120.58, + "probability": 0.9064 + }, + { + "start": 26120.66, + "end": 26121.1, + "probability": 0.7765 + }, + { + "start": 26121.4, + "end": 26122.46, + "probability": 0.844 + }, + { + "start": 26122.94, + "end": 26123.04, + "probability": 0.6203 + }, + { + "start": 26123.04, + "end": 26124.79, + "probability": 0.9883 + }, + { + "start": 26126.14, + "end": 26126.42, + "probability": 0.7549 + }, + { + "start": 26127.02, + "end": 26127.56, + "probability": 0.7334 + }, + { + "start": 26127.56, + "end": 26128.92, + "probability": 0.6835 + }, + { + "start": 26130.0, + "end": 26131.9, + "probability": 0.5812 + }, + { + "start": 26132.3, + "end": 26134.73, + "probability": 0.6129 + }, + { + "start": 26135.66, + "end": 26138.1, + "probability": 0.9698 + }, + { + "start": 26138.8, + "end": 26140.78, + "probability": 0.7499 + }, + { + "start": 26149.08, + "end": 26150.66, + "probability": 0.0504 + }, + { + "start": 26152.72, + "end": 26153.68, + "probability": 0.3484 + }, + { + "start": 26154.6, + "end": 26154.9, + "probability": 0.4345 + }, + { + "start": 26154.9, + "end": 26155.02, + "probability": 0.0938 + }, + { + "start": 26155.42, + "end": 26157.28, + "probability": 0.5305 + }, + { + "start": 26157.6, + "end": 26158.36, + "probability": 0.526 + }, + { + "start": 26161.4, + "end": 26163.1, + "probability": 0.1065 + }, + { + "start": 26163.62, + "end": 26163.7, + "probability": 0.0307 + }, + { + "start": 26163.7, + "end": 26168.24, + "probability": 0.7543 + }, + { + "start": 26168.92, + "end": 26169.62, + "probability": 0.9064 + }, + { + "start": 26169.8, + "end": 26170.24, + "probability": 0.9121 + }, + { + "start": 26171.5, + "end": 26174.36, + "probability": 0.9396 + }, + { + "start": 26174.36, + "end": 26177.12, + "probability": 0.8172 + }, + { + "start": 26177.24, + "end": 26180.08, + "probability": 0.8622 + }, + { + "start": 26180.44, + "end": 26181.84, + "probability": 0.6046 + }, + { + "start": 26181.94, + "end": 26182.56, + "probability": 0.656 + }, + { + "start": 26187.0, + "end": 26188.12, + "probability": 0.4409 + }, + { + "start": 26188.36, + "end": 26188.86, + "probability": 0.8912 + }, + { + "start": 26190.06, + "end": 26190.38, + "probability": 0.2251 + }, + { + "start": 26190.42, + "end": 26192.12, + "probability": 0.949 + }, + { + "start": 26192.58, + "end": 26192.58, + "probability": 0.0934 + }, + { + "start": 26192.58, + "end": 26192.8, + "probability": 0.417 + }, + { + "start": 26192.98, + "end": 26193.62, + "probability": 0.6469 + }, + { + "start": 26194.66, + "end": 26194.96, + "probability": 0.6768 + }, + { + "start": 26195.36, + "end": 26195.76, + "probability": 0.9588 + }, + { + "start": 26196.08, + "end": 26198.75, + "probability": 0.7987 + }, + { + "start": 26200.14, + "end": 26204.76, + "probability": 0.989 + }, + { + "start": 26204.86, + "end": 26207.68, + "probability": 0.8402 + }, + { + "start": 26208.06, + "end": 26209.94, + "probability": 0.9484 + }, + { + "start": 26210.6, + "end": 26213.75, + "probability": 0.9824 + }, + { + "start": 26214.62, + "end": 26215.12, + "probability": 0.5934 + }, + { + "start": 26215.16, + "end": 26218.5, + "probability": 0.9204 + }, + { + "start": 26218.72, + "end": 26221.44, + "probability": 0.9674 + }, + { + "start": 26221.58, + "end": 26221.96, + "probability": 0.8676 + }, + { + "start": 26222.02, + "end": 26223.58, + "probability": 0.936 + }, + { + "start": 26224.38, + "end": 26226.4, + "probability": 0.7599 + }, + { + "start": 26226.56, + "end": 26228.12, + "probability": 0.855 + }, + { + "start": 26228.8, + "end": 26231.2, + "probability": 0.7191 + }, + { + "start": 26231.4, + "end": 26233.86, + "probability": 0.8309 + }, + { + "start": 26234.7, + "end": 26238.96, + "probability": 0.7808 + }, + { + "start": 26239.06, + "end": 26240.7, + "probability": 0.9351 + }, + { + "start": 26241.06, + "end": 26243.38, + "probability": 0.9371 + }, + { + "start": 26243.66, + "end": 26246.75, + "probability": 0.9971 + }, + { + "start": 26247.36, + "end": 26249.66, + "probability": 0.9746 + }, + { + "start": 26250.82, + "end": 26257.44, + "probability": 0.8142 + }, + { + "start": 26258.24, + "end": 26263.12, + "probability": 0.9205 + }, + { + "start": 26264.28, + "end": 26268.42, + "probability": 0.9082 + }, + { + "start": 26271.36, + "end": 26274.84, + "probability": 0.7286 + }, + { + "start": 26274.96, + "end": 26276.28, + "probability": 0.793 + }, + { + "start": 26276.5, + "end": 26282.22, + "probability": 0.9075 + }, + { + "start": 26282.66, + "end": 26286.24, + "probability": 0.9393 + }, + { + "start": 26286.34, + "end": 26286.96, + "probability": 0.4197 + }, + { + "start": 26288.05, + "end": 26291.18, + "probability": 0.9819 + }, + { + "start": 26291.72, + "end": 26294.3, + "probability": 0.7923 + }, + { + "start": 26294.84, + "end": 26297.98, + "probability": 0.96 + }, + { + "start": 26299.62, + "end": 26305.3, + "probability": 0.9941 + }, + { + "start": 26305.82, + "end": 26308.08, + "probability": 0.9644 + }, + { + "start": 26308.24, + "end": 26308.6, + "probability": 0.9504 + }, + { + "start": 26308.68, + "end": 26309.48, + "probability": 0.6736 + }, + { + "start": 26309.62, + "end": 26313.2, + "probability": 0.8273 + }, + { + "start": 26313.9, + "end": 26316.28, + "probability": 0.9473 + }, + { + "start": 26316.42, + "end": 26317.98, + "probability": 0.9373 + }, + { + "start": 26318.7, + "end": 26322.26, + "probability": 0.8544 + }, + { + "start": 26323.04, + "end": 26323.9, + "probability": 0.5034 + }, + { + "start": 26324.02, + "end": 26324.55, + "probability": 0.4611 + }, + { + "start": 26325.62, + "end": 26328.54, + "probability": 0.9352 + }, + { + "start": 26329.22, + "end": 26330.84, + "probability": 0.999 + }, + { + "start": 26331.0, + "end": 26331.77, + "probability": 0.8024 + }, + { + "start": 26331.98, + "end": 26332.6, + "probability": 0.4295 + }, + { + "start": 26332.78, + "end": 26336.08, + "probability": 0.8307 + }, + { + "start": 26336.38, + "end": 26337.96, + "probability": 0.9644 + }, + { + "start": 26338.46, + "end": 26340.04, + "probability": 0.8753 + }, + { + "start": 26340.12, + "end": 26341.6, + "probability": 0.6774 + }, + { + "start": 26342.26, + "end": 26345.1, + "probability": 0.8977 + }, + { + "start": 26345.28, + "end": 26346.66, + "probability": 0.9951 + }, + { + "start": 26346.84, + "end": 26352.56, + "probability": 0.9036 + }, + { + "start": 26354.28, + "end": 26358.18, + "probability": 0.7698 + }, + { + "start": 26358.72, + "end": 26359.32, + "probability": 0.8825 + }, + { + "start": 26359.5, + "end": 26365.54, + "probability": 0.9065 + }, + { + "start": 26365.66, + "end": 26367.6, + "probability": 0.7667 + }, + { + "start": 26367.76, + "end": 26368.32, + "probability": 0.7187 + }, + { + "start": 26368.42, + "end": 26369.16, + "probability": 0.8149 + }, + { + "start": 26369.2, + "end": 26369.56, + "probability": 0.3431 + }, + { + "start": 26369.56, + "end": 26371.16, + "probability": 0.5847 + }, + { + "start": 26371.32, + "end": 26372.67, + "probability": 0.7741 + }, + { + "start": 26373.44, + "end": 26375.78, + "probability": 0.9194 + }, + { + "start": 26376.18, + "end": 26376.52, + "probability": 0.9456 + }, + { + "start": 26377.08, + "end": 26377.18, + "probability": 0.7516 + }, + { + "start": 26377.76, + "end": 26377.86, + "probability": 0.3638 + }, + { + "start": 26378.7, + "end": 26381.11, + "probability": 0.6116 + }, + { + "start": 26381.5, + "end": 26382.32, + "probability": 0.624 + }, + { + "start": 26382.4, + "end": 26383.34, + "probability": 0.7627 + }, + { + "start": 26383.68, + "end": 26385.0, + "probability": 0.6689 + }, + { + "start": 26385.16, + "end": 26387.58, + "probability": 0.7474 + }, + { + "start": 26387.88, + "end": 26388.36, + "probability": 0.2942 + }, + { + "start": 26388.4, + "end": 26389.58, + "probability": 0.7013 + }, + { + "start": 26390.0, + "end": 26392.34, + "probability": 0.9873 + }, + { + "start": 26392.5, + "end": 26393.32, + "probability": 0.9463 + }, + { + "start": 26394.48, + "end": 26395.1, + "probability": 0.9094 + }, + { + "start": 26396.34, + "end": 26399.74, + "probability": 0.8147 + }, + { + "start": 26401.38, + "end": 26404.36, + "probability": 0.6426 + }, + { + "start": 26404.92, + "end": 26406.72, + "probability": 0.9825 + }, + { + "start": 26407.12, + "end": 26409.48, + "probability": 0.9355 + }, + { + "start": 26410.16, + "end": 26411.56, + "probability": 0.9083 + }, + { + "start": 26412.1, + "end": 26417.42, + "probability": 0.9556 + }, + { + "start": 26417.7, + "end": 26422.16, + "probability": 0.9709 + }, + { + "start": 26422.8, + "end": 26427.96, + "probability": 0.8833 + }, + { + "start": 26428.62, + "end": 26431.32, + "probability": 0.9958 + }, + { + "start": 26431.44, + "end": 26432.04, + "probability": 0.9009 + }, + { + "start": 26433.6, + "end": 26437.28, + "probability": 0.5951 + }, + { + "start": 26438.22, + "end": 26439.64, + "probability": 0.98 + }, + { + "start": 26440.12, + "end": 26442.18, + "probability": 0.6759 + }, + { + "start": 26442.74, + "end": 26446.94, + "probability": 0.7241 + }, + { + "start": 26447.22, + "end": 26448.7, + "probability": 0.7404 + }, + { + "start": 26449.04, + "end": 26451.58, + "probability": 0.9938 + }, + { + "start": 26453.2, + "end": 26457.1, + "probability": 0.8931 + }, + { + "start": 26458.54, + "end": 26461.82, + "probability": 0.7919 + }, + { + "start": 26462.32, + "end": 26462.94, + "probability": 0.5168 + }, + { + "start": 26463.64, + "end": 26467.91, + "probability": 0.5782 + }, + { + "start": 26468.28, + "end": 26470.15, + "probability": 0.7035 + }, + { + "start": 26470.64, + "end": 26471.6, + "probability": 0.8726 + }, + { + "start": 26472.16, + "end": 26473.72, + "probability": 0.9454 + }, + { + "start": 26474.36, + "end": 26476.44, + "probability": 0.984 + }, + { + "start": 26476.8, + "end": 26478.0, + "probability": 0.9697 + }, + { + "start": 26478.08, + "end": 26479.38, + "probability": 0.9927 + }, + { + "start": 26479.42, + "end": 26480.44, + "probability": 0.8535 + }, + { + "start": 26480.48, + "end": 26481.42, + "probability": 0.9294 + }, + { + "start": 26481.64, + "end": 26484.34, + "probability": 0.9551 + }, + { + "start": 26484.36, + "end": 26485.76, + "probability": 0.5537 + }, + { + "start": 26487.58, + "end": 26488.04, + "probability": 0.5071 + }, + { + "start": 26488.46, + "end": 26492.54, + "probability": 0.7722 + }, + { + "start": 26493.44, + "end": 26497.82, + "probability": 0.8594 + }, + { + "start": 26498.42, + "end": 26502.16, + "probability": 0.8929 + }, + { + "start": 26502.36, + "end": 26503.16, + "probability": 0.8279 + }, + { + "start": 26503.58, + "end": 26504.82, + "probability": 0.6467 + }, + { + "start": 26504.98, + "end": 26506.0, + "probability": 0.5551 + }, + { + "start": 26506.24, + "end": 26506.82, + "probability": 0.5788 + }, + { + "start": 26506.88, + "end": 26506.88, + "probability": 0.1727 + }, + { + "start": 26506.96, + "end": 26507.5, + "probability": 0.4737 + }, + { + "start": 26508.04, + "end": 26509.96, + "probability": 0.6809 + }, + { + "start": 26510.8, + "end": 26512.84, + "probability": 0.9227 + }, + { + "start": 26512.98, + "end": 26516.36, + "probability": 0.9946 + }, + { + "start": 26516.76, + "end": 26516.9, + "probability": 0.5588 + }, + { + "start": 26516.94, + "end": 26517.73, + "probability": 0.8628 + }, + { + "start": 26517.82, + "end": 26520.48, + "probability": 0.8511 + }, + { + "start": 26521.84, + "end": 26522.36, + "probability": 0.8014 + }, + { + "start": 26522.64, + "end": 26524.58, + "probability": 0.9697 + }, + { + "start": 26524.94, + "end": 26526.96, + "probability": 0.9276 + }, + { + "start": 26527.0, + "end": 26530.58, + "probability": 0.9624 + }, + { + "start": 26531.46, + "end": 26532.54, + "probability": 0.867 + }, + { + "start": 26533.16, + "end": 26539.2, + "probability": 0.9761 + }, + { + "start": 26539.88, + "end": 26542.68, + "probability": 0.798 + }, + { + "start": 26543.24, + "end": 26544.04, + "probability": 0.7175 + }, + { + "start": 26544.98, + "end": 26546.78, + "probability": 0.9556 + }, + { + "start": 26547.24, + "end": 26549.16, + "probability": 0.9878 + }, + { + "start": 26549.28, + "end": 26553.96, + "probability": 0.9786 + }, + { + "start": 26554.06, + "end": 26555.3, + "probability": 0.8645 + }, + { + "start": 26555.38, + "end": 26556.32, + "probability": 0.8446 + }, + { + "start": 26556.88, + "end": 26559.06, + "probability": 0.8226 + }, + { + "start": 26559.06, + "end": 26562.14, + "probability": 0.8693 + }, + { + "start": 26562.46, + "end": 26565.52, + "probability": 0.9899 + }, + { + "start": 26565.9, + "end": 26566.18, + "probability": 0.79 + }, + { + "start": 26566.38, + "end": 26567.78, + "probability": 0.6389 + }, + { + "start": 26568.0, + "end": 26568.62, + "probability": 0.8936 + }, + { + "start": 26568.64, + "end": 26569.94, + "probability": 0.6188 + }, + { + "start": 26570.56, + "end": 26572.56, + "probability": 0.6088 + }, + { + "start": 26572.68, + "end": 26574.62, + "probability": 0.8969 + }, + { + "start": 26575.78, + "end": 26577.74, + "probability": 0.9908 + }, + { + "start": 26578.32, + "end": 26580.02, + "probability": 0.8792 + }, + { + "start": 26580.04, + "end": 26580.42, + "probability": 0.5602 + }, + { + "start": 26580.5, + "end": 26582.34, + "probability": 0.9946 + }, + { + "start": 26582.72, + "end": 26583.88, + "probability": 0.8926 + }, + { + "start": 26584.62, + "end": 26585.58, + "probability": 0.8992 + }, + { + "start": 26586.1, + "end": 26586.12, + "probability": 0.6257 + }, + { + "start": 26586.22, + "end": 26590.22, + "probability": 0.9883 + }, + { + "start": 26590.36, + "end": 26593.05, + "probability": 0.625 + }, + { + "start": 26593.44, + "end": 26593.72, + "probability": 0.5415 + }, + { + "start": 26593.9, + "end": 26593.9, + "probability": 0.6669 + }, + { + "start": 26594.2, + "end": 26594.2, + "probability": 0.4362 + }, + { + "start": 26594.38, + "end": 26594.48, + "probability": 0.3562 + }, + { + "start": 26594.58, + "end": 26595.37, + "probability": 0.2517 + }, + { + "start": 26596.34, + "end": 26596.7, + "probability": 0.6604 + }, + { + "start": 26596.8, + "end": 26598.72, + "probability": 0.5391 + }, + { + "start": 26599.52, + "end": 26600.08, + "probability": 0.4696 + }, + { + "start": 26600.08, + "end": 26600.08, + "probability": 0.3128 + }, + { + "start": 26600.08, + "end": 26600.08, + "probability": 0.37 + }, + { + "start": 26600.12, + "end": 26600.98, + "probability": 0.6439 + }, + { + "start": 26602.42, + "end": 26604.56, + "probability": 0.0738 + }, + { + "start": 26605.94, + "end": 26609.68, + "probability": 0.807 + }, + { + "start": 26609.76, + "end": 26610.4, + "probability": 0.2632 + }, + { + "start": 26610.52, + "end": 26614.48, + "probability": 0.8965 + }, + { + "start": 26614.72, + "end": 26616.54, + "probability": 0.8831 + }, + { + "start": 26617.24, + "end": 26619.36, + "probability": 0.5167 + }, + { + "start": 26619.36, + "end": 26619.72, + "probability": 0.5708 + }, + { + "start": 26620.78, + "end": 26621.08, + "probability": 0.4234 + }, + { + "start": 26622.58, + "end": 26623.52, + "probability": 0.9595 + }, + { + "start": 26623.8, + "end": 26627.78, + "probability": 0.6644 + }, + { + "start": 26628.74, + "end": 26631.76, + "probability": 0.9902 + }, + { + "start": 26631.85, + "end": 26633.72, + "probability": 0.999 + }, + { + "start": 26635.56, + "end": 26640.38, + "probability": 0.9978 + }, + { + "start": 26641.06, + "end": 26642.02, + "probability": 0.9943 + }, + { + "start": 26643.68, + "end": 26644.66, + "probability": 0.7655 + }, + { + "start": 26645.62, + "end": 26649.54, + "probability": 0.9974 + }, + { + "start": 26650.12, + "end": 26651.1, + "probability": 0.9064 + }, + { + "start": 26652.02, + "end": 26656.12, + "probability": 0.9624 + }, + { + "start": 26656.6, + "end": 26657.2, + "probability": 0.8635 + }, + { + "start": 26658.26, + "end": 26660.0, + "probability": 0.9568 + }, + { + "start": 26660.54, + "end": 26660.78, + "probability": 0.6503 + }, + { + "start": 26661.76, + "end": 26666.76, + "probability": 0.8663 + }, + { + "start": 26668.58, + "end": 26674.68, + "probability": 0.9792 + }, + { + "start": 26675.82, + "end": 26677.9, + "probability": 0.9212 + }, + { + "start": 26678.8, + "end": 26679.6, + "probability": 0.8474 + }, + { + "start": 26680.62, + "end": 26683.5, + "probability": 0.9648 + }, + { + "start": 26684.86, + "end": 26688.04, + "probability": 0.9854 + }, + { + "start": 26688.78, + "end": 26692.12, + "probability": 0.9541 + }, + { + "start": 26693.18, + "end": 26693.9, + "probability": 0.5755 + }, + { + "start": 26694.28, + "end": 26697.16, + "probability": 0.9655 + }, + { + "start": 26698.18, + "end": 26699.8, + "probability": 0.988 + }, + { + "start": 26700.88, + "end": 26702.5, + "probability": 0.9121 + }, + { + "start": 26703.68, + "end": 26706.42, + "probability": 0.9873 + }, + { + "start": 26706.42, + "end": 26710.74, + "probability": 0.9868 + }, + { + "start": 26711.84, + "end": 26713.34, + "probability": 0.8731 + }, + { + "start": 26713.5, + "end": 26713.96, + "probability": 0.7675 + }, + { + "start": 26714.1, + "end": 26714.38, + "probability": 0.688 + }, + { + "start": 26714.82, + "end": 26716.38, + "probability": 0.9301 + }, + { + "start": 26717.06, + "end": 26720.26, + "probability": 0.9893 + }, + { + "start": 26721.24, + "end": 26722.28, + "probability": 0.9633 + }, + { + "start": 26722.72, + "end": 26723.36, + "probability": 0.9674 + }, + { + "start": 26723.74, + "end": 26724.34, + "probability": 0.909 + }, + { + "start": 26724.68, + "end": 26726.02, + "probability": 0.8629 + }, + { + "start": 26727.08, + "end": 26731.8, + "probability": 0.9572 + }, + { + "start": 26732.18, + "end": 26732.62, + "probability": 0.5271 + }, + { + "start": 26733.8, + "end": 26736.0, + "probability": 0.8621 + }, + { + "start": 26737.76, + "end": 26740.72, + "probability": 0.8923 + }, + { + "start": 26742.18, + "end": 26744.42, + "probability": 0.9989 + }, + { + "start": 26744.48, + "end": 26748.16, + "probability": 0.9955 + }, + { + "start": 26748.16, + "end": 26751.1, + "probability": 0.9865 + }, + { + "start": 26752.46, + "end": 26757.1, + "probability": 0.9424 + }, + { + "start": 26757.14, + "end": 26758.9, + "probability": 0.9597 + }, + { + "start": 26759.72, + "end": 26760.76, + "probability": 0.9901 + }, + { + "start": 26762.76, + "end": 26764.62, + "probability": 0.9752 + }, + { + "start": 26764.74, + "end": 26769.38, + "probability": 0.9965 + }, + { + "start": 26769.54, + "end": 26769.9, + "probability": 0.8465 + }, + { + "start": 26770.78, + "end": 26771.28, + "probability": 0.6764 + }, + { + "start": 26772.08, + "end": 26774.12, + "probability": 0.8477 + }, + { + "start": 26774.84, + "end": 26775.3, + "probability": 0.4548 + }, + { + "start": 26775.7, + "end": 26778.48, + "probability": 0.9565 + }, + { + "start": 26778.66, + "end": 26781.23, + "probability": 0.9945 + }, + { + "start": 26782.82, + "end": 26790.74, + "probability": 0.9629 + }, + { + "start": 26791.32, + "end": 26793.36, + "probability": 0.9898 + }, + { + "start": 26795.26, + "end": 26795.74, + "probability": 0.8412 + }, + { + "start": 26797.3, + "end": 26799.06, + "probability": 0.9253 + }, + { + "start": 26800.52, + "end": 26802.48, + "probability": 0.863 + }, + { + "start": 26802.76, + "end": 26803.62, + "probability": 0.8496 + }, + { + "start": 26803.89, + "end": 26806.36, + "probability": 0.5233 + }, + { + "start": 26808.04, + "end": 26812.24, + "probability": 0.9636 + }, + { + "start": 26812.4, + "end": 26813.94, + "probability": 0.8745 + }, + { + "start": 26814.56, + "end": 26815.42, + "probability": 0.597 + }, + { + "start": 26816.3, + "end": 26817.52, + "probability": 0.9502 + }, + { + "start": 26818.7, + "end": 26821.92, + "probability": 0.7377 + }, + { + "start": 26825.14, + "end": 26826.9, + "probability": 0.8636 + }, + { + "start": 26827.02, + "end": 26829.88, + "probability": 0.9794 + }, + { + "start": 26830.39, + "end": 26836.8, + "probability": 0.987 + }, + { + "start": 26837.62, + "end": 26840.01, + "probability": 0.9707 + }, + { + "start": 26841.7, + "end": 26845.98, + "probability": 0.9683 + }, + { + "start": 26846.3, + "end": 26847.9, + "probability": 0.4959 + }, + { + "start": 26847.96, + "end": 26849.46, + "probability": 0.9958 + }, + { + "start": 26849.98, + "end": 26851.0, + "probability": 0.8448 + }, + { + "start": 26851.5, + "end": 26851.96, + "probability": 0.8999 + }, + { + "start": 26852.06, + "end": 26854.1, + "probability": 0.8558 + }, + { + "start": 26854.58, + "end": 26855.24, + "probability": 0.6451 + }, + { + "start": 26855.38, + "end": 26856.78, + "probability": 0.9955 + }, + { + "start": 26858.08, + "end": 26860.66, + "probability": 0.9172 + }, + { + "start": 26860.82, + "end": 26861.86, + "probability": 0.9096 + }, + { + "start": 26862.16, + "end": 26864.08, + "probability": 0.9637 + }, + { + "start": 26864.54, + "end": 26865.7, + "probability": 0.9968 + }, + { + "start": 26866.94, + "end": 26869.52, + "probability": 0.9534 + }, + { + "start": 26870.04, + "end": 26870.36, + "probability": 0.94 + }, + { + "start": 26871.42, + "end": 26873.32, + "probability": 0.9717 + }, + { + "start": 26873.9, + "end": 26874.46, + "probability": 0.9821 + }, + { + "start": 26875.16, + "end": 26876.7, + "probability": 0.8351 + }, + { + "start": 26876.74, + "end": 26877.92, + "probability": 0.6929 + }, + { + "start": 26878.3, + "end": 26879.76, + "probability": 0.9494 + }, + { + "start": 26880.38, + "end": 26881.42, + "probability": 0.9194 + }, + { + "start": 26881.82, + "end": 26882.76, + "probability": 0.6338 + }, + { + "start": 26882.88, + "end": 26884.26, + "probability": 0.9462 + }, + { + "start": 26884.84, + "end": 26886.4, + "probability": 0.7963 + }, + { + "start": 26887.36, + "end": 26888.24, + "probability": 0.6191 + }, + { + "start": 26888.44, + "end": 26890.68, + "probability": 0.6511 + }, + { + "start": 26890.76, + "end": 26891.22, + "probability": 0.9403 + }, + { + "start": 26891.7, + "end": 26891.9, + "probability": 0.7397 + }, + { + "start": 26892.3, + "end": 26893.04, + "probability": 0.8916 + }, + { + "start": 26895.08, + "end": 26896.08, + "probability": 0.4134 + }, + { + "start": 26896.26, + "end": 26896.86, + "probability": 0.8088 + }, + { + "start": 26899.3, + "end": 26901.18, + "probability": 0.4868 + }, + { + "start": 26901.82, + "end": 26903.9, + "probability": 0.0455 + }, + { + "start": 26904.2, + "end": 26906.14, + "probability": 0.816 + }, + { + "start": 26907.36, + "end": 26909.76, + "probability": 0.8752 + }, + { + "start": 26911.16, + "end": 26912.14, + "probability": 0.4412 + }, + { + "start": 26912.4, + "end": 26918.22, + "probability": 0.9958 + }, + { + "start": 26919.76, + "end": 26924.02, + "probability": 0.8145 + }, + { + "start": 26926.31, + "end": 26926.96, + "probability": 0.2803 + }, + { + "start": 26927.04, + "end": 26929.58, + "probability": 0.6173 + }, + { + "start": 26930.34, + "end": 26931.18, + "probability": 0.8029 + }, + { + "start": 26931.22, + "end": 26935.04, + "probability": 0.9089 + }, + { + "start": 26935.16, + "end": 26936.16, + "probability": 0.8859 + }, + { + "start": 26936.86, + "end": 26937.66, + "probability": 0.6012 + }, + { + "start": 26938.32, + "end": 26941.68, + "probability": 0.9044 + }, + { + "start": 26950.82, + "end": 26951.48, + "probability": 0.5516 + }, + { + "start": 26951.6, + "end": 26953.64, + "probability": 0.975 + }, + { + "start": 26954.0, + "end": 26956.18, + "probability": 0.6827 + }, + { + "start": 26957.14, + "end": 26959.4, + "probability": 0.9543 + }, + { + "start": 26959.98, + "end": 26960.56, + "probability": 0.8001 + }, + { + "start": 26961.28, + "end": 26964.42, + "probability": 0.944 + }, + { + "start": 26965.98, + "end": 26966.72, + "probability": 0.5382 + }, + { + "start": 26966.76, + "end": 26967.7, + "probability": 0.807 + }, + { + "start": 26967.8, + "end": 26969.56, + "probability": 0.8701 + }, + { + "start": 26970.06, + "end": 26970.92, + "probability": 0.7761 + }, + { + "start": 26971.91, + "end": 26975.28, + "probability": 0.7156 + }, + { + "start": 26976.02, + "end": 26977.16, + "probability": 0.8538 + }, + { + "start": 26977.24, + "end": 26979.76, + "probability": 0.8223 + }, + { + "start": 26979.86, + "end": 26981.82, + "probability": 0.9282 + }, + { + "start": 26983.14, + "end": 26987.64, + "probability": 0.8162 + }, + { + "start": 26989.86, + "end": 26991.42, + "probability": 0.6071 + }, + { + "start": 26992.66, + "end": 26994.96, + "probability": 0.8257 + }, + { + "start": 26996.02, + "end": 26998.92, + "probability": 0.8478 + }, + { + "start": 26999.02, + "end": 27000.66, + "probability": 0.7472 + }, + { + "start": 27001.3, + "end": 27003.1, + "probability": 0.985 + }, + { + "start": 27003.36, + "end": 27003.7, + "probability": 0.2493 + }, + { + "start": 27003.7, + "end": 27006.38, + "probability": 0.9148 + }, + { + "start": 27006.96, + "end": 27009.66, + "probability": 0.9791 + }, + { + "start": 27009.8, + "end": 27012.78, + "probability": 0.9072 + }, + { + "start": 27013.46, + "end": 27014.16, + "probability": 0.9141 + }, + { + "start": 27014.28, + "end": 27018.0, + "probability": 0.9842 + }, + { + "start": 27018.52, + "end": 27022.16, + "probability": 0.9958 + }, + { + "start": 27022.74, + "end": 27028.5, + "probability": 0.664 + }, + { + "start": 27029.2, + "end": 27029.92, + "probability": 0.4208 + }, + { + "start": 27030.4, + "end": 27033.26, + "probability": 0.7863 + }, + { + "start": 27034.2, + "end": 27036.68, + "probability": 0.9878 + }, + { + "start": 27037.24, + "end": 27039.08, + "probability": 0.8131 + }, + { + "start": 27039.9, + "end": 27042.98, + "probability": 0.8079 + }, + { + "start": 27042.98, + "end": 27046.48, + "probability": 0.9095 + }, + { + "start": 27047.16, + "end": 27050.24, + "probability": 0.7521 + }, + { + "start": 27050.24, + "end": 27053.92, + "probability": 0.9682 + }, + { + "start": 27054.8, + "end": 27056.42, + "probability": 0.5318 + }, + { + "start": 27057.22, + "end": 27059.95, + "probability": 0.7389 + }, + { + "start": 27060.46, + "end": 27063.84, + "probability": 0.6095 + }, + { + "start": 27064.66, + "end": 27067.56, + "probability": 0.8831 + }, + { + "start": 27067.8, + "end": 27072.32, + "probability": 0.9929 + }, + { + "start": 27073.06, + "end": 27077.24, + "probability": 0.8417 + }, + { + "start": 27077.74, + "end": 27079.56, + "probability": 0.7681 + }, + { + "start": 27079.76, + "end": 27080.24, + "probability": 0.8625 + }, + { + "start": 27080.68, + "end": 27082.76, + "probability": 0.8025 + }, + { + "start": 27083.38, + "end": 27087.38, + "probability": 0.9814 + }, + { + "start": 27088.02, + "end": 27089.9, + "probability": 0.6498 + }, + { + "start": 27090.7, + "end": 27091.32, + "probability": 0.7327 + }, + { + "start": 27091.36, + "end": 27093.78, + "probability": 0.8024 + }, + { + "start": 27093.94, + "end": 27099.0, + "probability": 0.6574 + }, + { + "start": 27099.4, + "end": 27100.2, + "probability": 0.763 + }, + { + "start": 27101.02, + "end": 27101.58, + "probability": 0.7765 + }, + { + "start": 27101.64, + "end": 27104.56, + "probability": 0.7985 + }, + { + "start": 27105.02, + "end": 27106.18, + "probability": 0.9305 + }, + { + "start": 27106.8, + "end": 27108.16, + "probability": 0.8967 + }, + { + "start": 27108.8, + "end": 27110.06, + "probability": 0.9631 + }, + { + "start": 27110.18, + "end": 27111.26, + "probability": 0.9791 + }, + { + "start": 27111.4, + "end": 27112.12, + "probability": 0.734 + }, + { + "start": 27113.08, + "end": 27113.16, + "probability": 0.4023 + }, + { + "start": 27113.44, + "end": 27114.78, + "probability": 0.8441 + }, + { + "start": 27114.82, + "end": 27117.84, + "probability": 0.8264 + }, + { + "start": 27118.76, + "end": 27122.1, + "probability": 0.972 + }, + { + "start": 27122.16, + "end": 27124.82, + "probability": 0.829 + }, + { + "start": 27124.92, + "end": 27128.32, + "probability": 0.9822 + }, + { + "start": 27128.42, + "end": 27129.86, + "probability": 0.4961 + }, + { + "start": 27130.34, + "end": 27134.14, + "probability": 0.708 + }, + { + "start": 27134.28, + "end": 27134.82, + "probability": 0.7052 + }, + { + "start": 27135.74, + "end": 27136.94, + "probability": 0.682 + }, + { + "start": 27137.08, + "end": 27137.54, + "probability": 0.519 + }, + { + "start": 27137.94, + "end": 27140.64, + "probability": 0.9622 + }, + { + "start": 27141.46, + "end": 27143.74, + "probability": 0.4971 + }, + { + "start": 27154.92, + "end": 27155.1, + "probability": 0.4953 + }, + { + "start": 27155.1, + "end": 27156.04, + "probability": 0.7659 + }, + { + "start": 27156.54, + "end": 27158.0, + "probability": 0.7793 + }, + { + "start": 27158.22, + "end": 27160.02, + "probability": 0.9009 + }, + { + "start": 27160.44, + "end": 27160.8, + "probability": 0.7587 + }, + { + "start": 27161.14, + "end": 27161.34, + "probability": 0.479 + }, + { + "start": 27162.68, + "end": 27167.92, + "probability": 0.9734 + }, + { + "start": 27168.08, + "end": 27170.96, + "probability": 0.9228 + }, + { + "start": 27171.08, + "end": 27171.44, + "probability": 0.83 + }, + { + "start": 27171.54, + "end": 27172.0, + "probability": 0.9412 + }, + { + "start": 27172.08, + "end": 27172.6, + "probability": 0.9626 + }, + { + "start": 27172.76, + "end": 27173.74, + "probability": 0.9285 + }, + { + "start": 27174.6, + "end": 27175.0, + "probability": 0.7827 + }, + { + "start": 27175.08, + "end": 27179.88, + "probability": 0.9652 + }, + { + "start": 27180.62, + "end": 27186.24, + "probability": 0.9221 + }, + { + "start": 27186.24, + "end": 27190.7, + "probability": 0.9754 + }, + { + "start": 27191.36, + "end": 27191.96, + "probability": 0.5184 + }, + { + "start": 27192.74, + "end": 27194.37, + "probability": 0.9546 + }, + { + "start": 27194.66, + "end": 27196.06, + "probability": 0.7946 + }, + { + "start": 27196.52, + "end": 27198.0, + "probability": 0.9125 + }, + { + "start": 27198.16, + "end": 27199.58, + "probability": 0.893 + }, + { + "start": 27200.38, + "end": 27201.68, + "probability": 0.4605 + }, + { + "start": 27201.68, + "end": 27205.82, + "probability": 0.8392 + }, + { + "start": 27206.78, + "end": 27207.42, + "probability": 0.5252 + }, + { + "start": 27207.52, + "end": 27211.16, + "probability": 0.7491 + }, + { + "start": 27211.5, + "end": 27212.6, + "probability": 0.8367 + }, + { + "start": 27212.76, + "end": 27215.14, + "probability": 0.9515 + }, + { + "start": 27215.14, + "end": 27218.86, + "probability": 0.959 + }, + { + "start": 27219.7, + "end": 27222.64, + "probability": 0.842 + }, + { + "start": 27222.76, + "end": 27227.02, + "probability": 0.8347 + }, + { + "start": 27227.12, + "end": 27231.06, + "probability": 0.9579 + }, + { + "start": 27231.46, + "end": 27231.88, + "probability": 0.4968 + }, + { + "start": 27233.3, + "end": 27237.74, + "probability": 0.9832 + }, + { + "start": 27238.44, + "end": 27239.0, + "probability": 0.9258 + }, + { + "start": 27239.72, + "end": 27242.06, + "probability": 0.9865 + }, + { + "start": 27242.58, + "end": 27249.16, + "probability": 0.99 + }, + { + "start": 27250.06, + "end": 27250.76, + "probability": 0.7645 + }, + { + "start": 27250.86, + "end": 27253.0, + "probability": 0.9869 + }, + { + "start": 27253.0, + "end": 27257.08, + "probability": 0.9965 + }, + { + "start": 27257.92, + "end": 27262.42, + "probability": 0.8401 + }, + { + "start": 27262.96, + "end": 27263.46, + "probability": 0.5089 + }, + { + "start": 27264.9, + "end": 27265.56, + "probability": 0.4015 + }, + { + "start": 27265.82, + "end": 27269.72, + "probability": 0.9286 + }, + { + "start": 27269.72, + "end": 27275.5, + "probability": 0.9896 + }, + { + "start": 27276.32, + "end": 27279.32, + "probability": 0.8536 + }, + { + "start": 27280.12, + "end": 27283.62, + "probability": 0.9326 + }, + { + "start": 27284.4, + "end": 27287.38, + "probability": 0.9204 + }, + { + "start": 27287.38, + "end": 27291.72, + "probability": 0.9246 + }, + { + "start": 27291.9, + "end": 27292.2, + "probability": 0.4263 + }, + { + "start": 27292.32, + "end": 27296.38, + "probability": 0.9534 + }, + { + "start": 27296.38, + "end": 27301.14, + "probability": 0.8896 + }, + { + "start": 27301.3, + "end": 27307.42, + "probability": 0.9963 + }, + { + "start": 27308.76, + "end": 27312.02, + "probability": 0.9973 + }, + { + "start": 27312.1, + "end": 27315.0, + "probability": 0.7679 + }, + { + "start": 27315.2, + "end": 27316.0, + "probability": 0.6624 + }, + { + "start": 27316.66, + "end": 27318.28, + "probability": 0.6537 + }, + { + "start": 27318.72, + "end": 27318.76, + "probability": 0.222 + }, + { + "start": 27318.94, + "end": 27325.46, + "probability": 0.8237 + }, + { + "start": 27325.66, + "end": 27327.74, + "probability": 0.6599 + }, + { + "start": 27328.28, + "end": 27330.28, + "probability": 0.8926 + }, + { + "start": 27330.9, + "end": 27332.02, + "probability": 0.7871 + }, + { + "start": 27332.72, + "end": 27333.02, + "probability": 0.883 + }, + { + "start": 27340.52, + "end": 27341.82, + "probability": 0.5167 + }, + { + "start": 27343.82, + "end": 27344.68, + "probability": 0.7661 + }, + { + "start": 27347.64, + "end": 27347.64, + "probability": 0.3032 + }, + { + "start": 27347.64, + "end": 27347.64, + "probability": 0.1604 + }, + { + "start": 27347.64, + "end": 27347.8, + "probability": 0.1652 + }, + { + "start": 27349.06, + "end": 27351.38, + "probability": 0.4984 + }, + { + "start": 27351.5, + "end": 27353.7, + "probability": 0.9775 + }, + { + "start": 27354.46, + "end": 27356.04, + "probability": 0.7461 + }, + { + "start": 27356.1, + "end": 27359.3, + "probability": 0.1293 + }, + { + "start": 27359.76, + "end": 27360.32, + "probability": 0.8853 + }, + { + "start": 27360.54, + "end": 27361.52, + "probability": 0.9199 + }, + { + "start": 27361.56, + "end": 27362.6, + "probability": 0.7127 + }, + { + "start": 27363.46, + "end": 27365.68, + "probability": 0.972 + }, + { + "start": 27365.94, + "end": 27367.84, + "probability": 0.9106 + }, + { + "start": 27368.44, + "end": 27368.88, + "probability": 0.4973 + }, + { + "start": 27369.18, + "end": 27370.88, + "probability": 0.8093 + }, + { + "start": 27373.84, + "end": 27376.76, + "probability": 0.8886 + }, + { + "start": 27376.9, + "end": 27377.53, + "probability": 0.0088 + }, + { + "start": 27379.54, + "end": 27379.7, + "probability": 0.0549 + }, + { + "start": 27381.52, + "end": 27381.64, + "probability": 0.738 + }, + { + "start": 27382.46, + "end": 27383.0, + "probability": 0.094 + }, + { + "start": 27384.32, + "end": 27385.74, + "probability": 0.8572 + }, + { + "start": 27386.7, + "end": 27389.82, + "probability": 0.6459 + }, + { + "start": 27390.02, + "end": 27390.8, + "probability": 0.109 + }, + { + "start": 27391.18, + "end": 27391.28, + "probability": 0.3786 + }, + { + "start": 27391.96, + "end": 27392.38, + "probability": 0.4617 + }, + { + "start": 27392.44, + "end": 27393.94, + "probability": 0.8612 + }, + { + "start": 27394.9, + "end": 27397.82, + "probability": 0.9641 + }, + { + "start": 27397.86, + "end": 27398.26, + "probability": 0.2991 + }, + { + "start": 27398.3, + "end": 27398.42, + "probability": 0.4893 + }, + { + "start": 27398.68, + "end": 27401.34, + "probability": 0.9701 + }, + { + "start": 27401.46, + "end": 27402.58, + "probability": 0.9658 + }, + { + "start": 27403.32, + "end": 27404.28, + "probability": 0.9492 + }, + { + "start": 27404.4, + "end": 27407.06, + "probability": 0.7779 + }, + { + "start": 27407.14, + "end": 27413.06, + "probability": 0.9604 + }, + { + "start": 27414.94, + "end": 27417.4, + "probability": 0.9718 + }, + { + "start": 27418.22, + "end": 27421.74, + "probability": 1.0 + }, + { + "start": 27421.74, + "end": 27425.68, + "probability": 0.999 + }, + { + "start": 27426.62, + "end": 27429.54, + "probability": 0.5381 + }, + { + "start": 27429.68, + "end": 27433.42, + "probability": 0.8469 + }, + { + "start": 27434.14, + "end": 27436.34, + "probability": 0.6044 + }, + { + "start": 27436.68, + "end": 27437.28, + "probability": 0.8277 + }, + { + "start": 27437.36, + "end": 27439.26, + "probability": 0.8395 + }, + { + "start": 27439.7, + "end": 27442.08, + "probability": 0.9729 + }, + { + "start": 27442.24, + "end": 27445.2, + "probability": 0.9834 + }, + { + "start": 27445.98, + "end": 27450.68, + "probability": 0.813 + }, + { + "start": 27451.24, + "end": 27455.74, + "probability": 0.9734 + }, + { + "start": 27456.5, + "end": 27460.0, + "probability": 0.9061 + }, + { + "start": 27460.3, + "end": 27465.46, + "probability": 0.9172 + }, + { + "start": 27466.04, + "end": 27466.8, + "probability": 0.9332 + }, + { + "start": 27467.78, + "end": 27471.36, + "probability": 0.9937 + }, + { + "start": 27472.12, + "end": 27473.81, + "probability": 0.9134 + }, + { + "start": 27475.42, + "end": 27478.38, + "probability": 0.5569 + }, + { + "start": 27478.48, + "end": 27480.58, + "probability": 0.9709 + }, + { + "start": 27480.68, + "end": 27481.98, + "probability": 0.9661 + }, + { + "start": 27482.68, + "end": 27483.24, + "probability": 0.7971 + }, + { + "start": 27483.34, + "end": 27484.36, + "probability": 0.6274 + }, + { + "start": 27484.46, + "end": 27486.0, + "probability": 0.9203 + }, + { + "start": 27486.48, + "end": 27489.36, + "probability": 0.9795 + }, + { + "start": 27489.52, + "end": 27489.98, + "probability": 0.8663 + }, + { + "start": 27490.66, + "end": 27491.76, + "probability": 0.9292 + }, + { + "start": 27491.9, + "end": 27492.6, + "probability": 0.4715 + }, + { + "start": 27492.98, + "end": 27495.67, + "probability": 0.9326 + }, + { + "start": 27496.52, + "end": 27500.26, + "probability": 0.9639 + }, + { + "start": 27500.74, + "end": 27504.6, + "probability": 0.9922 + }, + { + "start": 27504.84, + "end": 27506.16, + "probability": 0.5035 + }, + { + "start": 27506.86, + "end": 27508.3, + "probability": 0.9757 + }, + { + "start": 27509.06, + "end": 27512.52, + "probability": 0.9536 + }, + { + "start": 27512.8, + "end": 27519.9, + "probability": 0.9785 + }, + { + "start": 27520.54, + "end": 27521.52, + "probability": 0.666 + }, + { + "start": 27521.92, + "end": 27524.0, + "probability": 0.8882 + }, + { + "start": 27524.42, + "end": 27525.24, + "probability": 0.3568 + }, + { + "start": 27525.9, + "end": 27526.54, + "probability": 0.4968 + }, + { + "start": 27526.86, + "end": 27528.94, + "probability": 0.6454 + }, + { + "start": 27529.0, + "end": 27535.22, + "probability": 0.9875 + }, + { + "start": 27535.76, + "end": 27536.64, + "probability": 0.9108 + }, + { + "start": 27537.02, + "end": 27537.3, + "probability": 0.9727 + }, + { + "start": 27538.78, + "end": 27540.58, + "probability": 0.7268 + }, + { + "start": 27540.62, + "end": 27545.04, + "probability": 0.8659 + }, + { + "start": 27545.76, + "end": 27547.62, + "probability": 0.7733 + }, + { + "start": 27548.24, + "end": 27549.1, + "probability": 0.6226 + }, + { + "start": 27549.16, + "end": 27553.84, + "probability": 0.9071 + }, + { + "start": 27554.28, + "end": 27555.2, + "probability": 0.7271 + }, + { + "start": 27555.2, + "end": 27555.96, + "probability": 0.9115 + }, + { + "start": 27556.56, + "end": 27561.14, + "probability": 0.8052 + }, + { + "start": 27564.2, + "end": 27564.84, + "probability": 0.8682 + }, + { + "start": 27565.78, + "end": 27570.42, + "probability": 0.9839 + }, + { + "start": 27571.02, + "end": 27572.9, + "probability": 0.9899 + }, + { + "start": 27573.76, + "end": 27576.72, + "probability": 0.9909 + }, + { + "start": 27577.32, + "end": 27578.64, + "probability": 0.9982 + }, + { + "start": 27578.9, + "end": 27581.62, + "probability": 0.9673 + }, + { + "start": 27582.72, + "end": 27583.4, + "probability": 0.7838 + }, + { + "start": 27584.52, + "end": 27586.78, + "probability": 0.9878 + }, + { + "start": 27586.86, + "end": 27588.22, + "probability": 0.8651 + }, + { + "start": 27588.74, + "end": 27590.38, + "probability": 0.9825 + }, + { + "start": 27590.72, + "end": 27596.68, + "probability": 0.9896 + }, + { + "start": 27597.18, + "end": 27598.22, + "probability": 0.7907 + }, + { + "start": 27598.32, + "end": 27598.94, + "probability": 0.8345 + }, + { + "start": 27599.7, + "end": 27601.46, + "probability": 0.7618 + }, + { + "start": 27602.04, + "end": 27607.44, + "probability": 0.9753 + }, + { + "start": 27608.36, + "end": 27610.1, + "probability": 0.9951 + }, + { + "start": 27611.02, + "end": 27612.66, + "probability": 0.7196 + }, + { + "start": 27613.4, + "end": 27617.74, + "probability": 0.9557 + }, + { + "start": 27618.51, + "end": 27622.02, + "probability": 0.7495 + }, + { + "start": 27622.6, + "end": 27627.84, + "probability": 0.8786 + }, + { + "start": 27628.18, + "end": 27629.2, + "probability": 0.8157 + }, + { + "start": 27629.66, + "end": 27630.55, + "probability": 0.9676 + }, + { + "start": 27631.04, + "end": 27635.62, + "probability": 0.9651 + }, + { + "start": 27635.66, + "end": 27636.88, + "probability": 0.7443 + }, + { + "start": 27637.38, + "end": 27640.36, + "probability": 0.6714 + }, + { + "start": 27640.64, + "end": 27641.7, + "probability": 0.8953 + }, + { + "start": 27642.2, + "end": 27644.82, + "probability": 0.9469 + }, + { + "start": 27645.62, + "end": 27652.22, + "probability": 0.9821 + }, + { + "start": 27652.96, + "end": 27656.16, + "probability": 0.8947 + }, + { + "start": 27656.62, + "end": 27658.93, + "probability": 0.6132 + }, + { + "start": 27659.28, + "end": 27662.88, + "probability": 0.5213 + }, + { + "start": 27664.3, + "end": 27665.52, + "probability": 0.8622 + }, + { + "start": 27668.08, + "end": 27668.58, + "probability": 0.9427 + }, + { + "start": 27668.64, + "end": 27671.84, + "probability": 0.682 + }, + { + "start": 27671.88, + "end": 27674.8, + "probability": 0.8986 + }, + { + "start": 27677.2, + "end": 27678.54, + "probability": 0.7781 + }, + { + "start": 27679.9, + "end": 27682.44, + "probability": 0.5593 + }, + { + "start": 27682.48, + "end": 27685.7, + "probability": 0.8246 + }, + { + "start": 27686.42, + "end": 27689.2, + "probability": 0.9963 + }, + { + "start": 27689.2, + "end": 27694.2, + "probability": 0.9006 + }, + { + "start": 27695.32, + "end": 27698.88, + "probability": 0.9636 + }, + { + "start": 27699.34, + "end": 27702.58, + "probability": 0.972 + }, + { + "start": 27702.8, + "end": 27704.6, + "probability": 0.9987 + }, + { + "start": 27705.14, + "end": 27709.58, + "probability": 0.6925 + }, + { + "start": 27710.36, + "end": 27715.16, + "probability": 0.9026 + }, + { + "start": 27715.16, + "end": 27719.32, + "probability": 0.9891 + }, + { + "start": 27719.44, + "end": 27720.88, + "probability": 0.9615 + }, + { + "start": 27721.88, + "end": 27721.98, + "probability": 0.3421 + }, + { + "start": 27722.02, + "end": 27725.22, + "probability": 0.8589 + }, + { + "start": 27725.42, + "end": 27726.62, + "probability": 0.5409 + }, + { + "start": 27727.28, + "end": 27730.18, + "probability": 0.9427 + }, + { + "start": 27730.7, + "end": 27732.66, + "probability": 0.9302 + }, + { + "start": 27732.72, + "end": 27734.04, + "probability": 0.9764 + }, + { + "start": 27734.1, + "end": 27738.8, + "probability": 0.996 + }, + { + "start": 27738.9, + "end": 27740.35, + "probability": 0.645 + }, + { + "start": 27741.1, + "end": 27743.2, + "probability": 0.6576 + }, + { + "start": 27743.66, + "end": 27747.0, + "probability": 0.9364 + }, + { + "start": 27747.78, + "end": 27750.8, + "probability": 0.759 + }, + { + "start": 27751.5, + "end": 27752.22, + "probability": 0.9088 + }, + { + "start": 27752.28, + "end": 27753.17, + "probability": 0.9676 + }, + { + "start": 27753.26, + "end": 27758.18, + "probability": 0.9585 + }, + { + "start": 27758.54, + "end": 27762.56, + "probability": 0.8877 + }, + { + "start": 27763.78, + "end": 27765.22, + "probability": 0.749 + }, + { + "start": 27765.4, + "end": 27768.98, + "probability": 0.8921 + }, + { + "start": 27769.76, + "end": 27773.78, + "probability": 0.9924 + }, + { + "start": 27773.9, + "end": 27777.48, + "probability": 0.9355 + }, + { + "start": 27777.9, + "end": 27779.68, + "probability": 0.8955 + }, + { + "start": 27780.28, + "end": 27784.86, + "probability": 0.9766 + }, + { + "start": 27785.66, + "end": 27787.68, + "probability": 0.7933 + }, + { + "start": 27787.96, + "end": 27792.26, + "probability": 0.9901 + }, + { + "start": 27792.34, + "end": 27793.46, + "probability": 0.7844 + }, + { + "start": 27793.92, + "end": 27796.62, + "probability": 0.8881 + }, + { + "start": 27796.82, + "end": 27799.12, + "probability": 0.983 + }, + { + "start": 27799.38, + "end": 27802.86, + "probability": 0.9319 + }, + { + "start": 27803.26, + "end": 27805.84, + "probability": 0.9907 + }, + { + "start": 27806.0, + "end": 27806.54, + "probability": 0.528 + }, + { + "start": 27806.92, + "end": 27807.52, + "probability": 0.6463 + }, + { + "start": 27808.02, + "end": 27810.98, + "probability": 0.7905 + }, + { + "start": 27811.6, + "end": 27815.54, + "probability": 0.9904 + }, + { + "start": 27816.08, + "end": 27818.68, + "probability": 0.872 + }, + { + "start": 27818.76, + "end": 27822.2, + "probability": 0.8547 + }, + { + "start": 27822.78, + "end": 27823.94, + "probability": 0.784 + }, + { + "start": 27823.98, + "end": 27825.22, + "probability": 0.8689 + }, + { + "start": 27825.32, + "end": 27828.42, + "probability": 0.9863 + }, + { + "start": 27829.5, + "end": 27831.38, + "probability": 0.928 + }, + { + "start": 27831.92, + "end": 27833.86, + "probability": 0.9165 + }, + { + "start": 27833.9, + "end": 27838.2, + "probability": 0.7118 + }, + { + "start": 27838.58, + "end": 27841.1, + "probability": 0.9807 + }, + { + "start": 27842.08, + "end": 27842.62, + "probability": 0.4612 + }, + { + "start": 27843.8, + "end": 27848.52, + "probability": 0.987 + }, + { + "start": 27848.52, + "end": 27852.98, + "probability": 0.958 + }, + { + "start": 27852.98, + "end": 27858.62, + "probability": 0.8498 + }, + { + "start": 27858.86, + "end": 27861.3, + "probability": 0.6663 + }, + { + "start": 27861.5, + "end": 27865.38, + "probability": 0.9509 + }, + { + "start": 27865.48, + "end": 27867.16, + "probability": 0.8698 + }, + { + "start": 27867.28, + "end": 27870.0, + "probability": 0.9818 + }, + { + "start": 27870.0, + "end": 27874.32, + "probability": 0.9877 + }, + { + "start": 27874.92, + "end": 27876.52, + "probability": 0.6845 + }, + { + "start": 27876.72, + "end": 27880.6, + "probability": 0.9845 + }, + { + "start": 27883.32, + "end": 27885.8, + "probability": 0.988 + }, + { + "start": 27885.9, + "end": 27886.8, + "probability": 0.9343 + }, + { + "start": 27886.92, + "end": 27887.64, + "probability": 0.9255 + }, + { + "start": 27887.88, + "end": 27889.7, + "probability": 0.9678 + }, + { + "start": 27889.88, + "end": 27890.76, + "probability": 0.5854 + }, + { + "start": 27891.4, + "end": 27893.38, + "probability": 0.5641 + }, + { + "start": 27893.84, + "end": 27896.5, + "probability": 0.9919 + }, + { + "start": 27897.44, + "end": 27903.22, + "probability": 0.9915 + }, + { + "start": 27903.78, + "end": 27906.64, + "probability": 0.9972 + }, + { + "start": 27906.98, + "end": 27909.34, + "probability": 0.7824 + }, + { + "start": 27909.52, + "end": 27910.66, + "probability": 0.9326 + }, + { + "start": 27910.98, + "end": 27915.62, + "probability": 0.9797 + }, + { + "start": 27916.18, + "end": 27920.58, + "probability": 0.9749 + }, + { + "start": 27920.58, + "end": 27924.66, + "probability": 0.9133 + }, + { + "start": 27924.66, + "end": 27928.94, + "probability": 0.9935 + }, + { + "start": 27929.24, + "end": 27931.29, + "probability": 0.6832 + }, + { + "start": 27931.94, + "end": 27934.44, + "probability": 0.8176 + }, + { + "start": 27935.54, + "end": 27936.28, + "probability": 0.581 + }, + { + "start": 27936.94, + "end": 27940.5, + "probability": 0.9769 + }, + { + "start": 27940.74, + "end": 27943.32, + "probability": 0.9709 + }, + { + "start": 27943.78, + "end": 27947.48, + "probability": 0.9893 + }, + { + "start": 27947.6, + "end": 27947.84, + "probability": 0.8041 + }, + { + "start": 27947.96, + "end": 27950.88, + "probability": 0.8178 + }, + { + "start": 27951.0, + "end": 27951.82, + "probability": 0.5704 + }, + { + "start": 27952.36, + "end": 27955.04, + "probability": 0.896 + }, + { + "start": 27955.24, + "end": 27956.83, + "probability": 0.9934 + }, + { + "start": 27957.2, + "end": 27959.6, + "probability": 0.9653 + }, + { + "start": 27960.32, + "end": 27961.02, + "probability": 0.5095 + }, + { + "start": 27961.06, + "end": 27961.9, + "probability": 0.7774 + }, + { + "start": 27962.0, + "end": 27962.58, + "probability": 0.9061 + }, + { + "start": 27962.62, + "end": 27964.02, + "probability": 0.875 + }, + { + "start": 27964.7, + "end": 27969.06, + "probability": 0.9689 + }, + { + "start": 27969.14, + "end": 27970.34, + "probability": 0.858 + }, + { + "start": 27970.42, + "end": 27970.74, + "probability": 0.8253 + }, + { + "start": 27970.74, + "end": 27971.54, + "probability": 0.8353 + }, + { + "start": 27971.68, + "end": 27971.78, + "probability": 0.6502 + }, + { + "start": 27972.16, + "end": 27976.12, + "probability": 0.9423 + }, + { + "start": 27977.12, + "end": 27979.4, + "probability": 0.7797 + }, + { + "start": 27979.4, + "end": 27982.16, + "probability": 0.9876 + }, + { + "start": 27982.64, + "end": 27984.56, + "probability": 0.8335 + }, + { + "start": 27985.04, + "end": 27987.04, + "probability": 0.8248 + }, + { + "start": 27987.18, + "end": 27991.0, + "probability": 0.663 + }, + { + "start": 27991.36, + "end": 27994.78, + "probability": 0.9812 + }, + { + "start": 27995.0, + "end": 27997.06, + "probability": 0.8836 + }, + { + "start": 27997.4, + "end": 27999.12, + "probability": 0.7175 + }, + { + "start": 27999.2, + "end": 28001.62, + "probability": 0.7669 + }, + { + "start": 28003.12, + "end": 28004.29, + "probability": 0.7109 + }, + { + "start": 28005.1, + "end": 28006.98, + "probability": 0.8042 + }, + { + "start": 28007.1, + "end": 28010.36, + "probability": 0.8142 + }, + { + "start": 28010.76, + "end": 28014.36, + "probability": 0.7966 + }, + { + "start": 28014.52, + "end": 28017.26, + "probability": 0.9808 + }, + { + "start": 28018.12, + "end": 28019.16, + "probability": 0.3007 + }, + { + "start": 28019.36, + "end": 28021.22, + "probability": 0.696 + }, + { + "start": 28021.5, + "end": 28025.32, + "probability": 0.9423 + }, + { + "start": 28025.38, + "end": 28028.92, + "probability": 0.9384 + }, + { + "start": 28028.96, + "end": 28032.92, + "probability": 0.8423 + }, + { + "start": 28033.0, + "end": 28035.18, + "probability": 0.9937 + }, + { + "start": 28035.68, + "end": 28038.18, + "probability": 0.9973 + }, + { + "start": 28038.62, + "end": 28040.66, + "probability": 0.9971 + }, + { + "start": 28044.14, + "end": 28045.04, + "probability": 0.1254 + }, + { + "start": 28045.04, + "end": 28047.94, + "probability": 0.9944 + }, + { + "start": 28048.0, + "end": 28049.8, + "probability": 0.7742 + }, + { + "start": 28050.34, + "end": 28055.28, + "probability": 0.9779 + }, + { + "start": 28055.54, + "end": 28056.22, + "probability": 0.6227 + }, + { + "start": 28056.84, + "end": 28057.8, + "probability": 0.5253 + }, + { + "start": 28058.92, + "end": 28061.76, + "probability": 0.9718 + }, + { + "start": 28062.1, + "end": 28064.02, + "probability": 0.6178 + }, + { + "start": 28064.02, + "end": 28067.5, + "probability": 0.9744 + }, + { + "start": 28067.54, + "end": 28073.66, + "probability": 0.9813 + }, + { + "start": 28073.8, + "end": 28075.98, + "probability": 0.8305 + }, + { + "start": 28076.06, + "end": 28077.25, + "probability": 0.9731 + }, + { + "start": 28078.46, + "end": 28081.96, + "probability": 0.9546 + }, + { + "start": 28082.1, + "end": 28084.56, + "probability": 0.9937 + }, + { + "start": 28084.86, + "end": 28086.62, + "probability": 0.7348 + }, + { + "start": 28089.08, + "end": 28091.02, + "probability": 0.2879 + }, + { + "start": 28092.06, + "end": 28093.0, + "probability": 0.1936 + }, + { + "start": 28094.98, + "end": 28096.24, + "probability": 0.746 + }, + { + "start": 28096.36, + "end": 28097.94, + "probability": 0.823 + }, + { + "start": 28098.02, + "end": 28100.26, + "probability": 0.6618 + }, + { + "start": 28100.3, + "end": 28104.7, + "probability": 0.9578 + }, + { + "start": 28104.78, + "end": 28106.66, + "probability": 0.1903 + }, + { + "start": 28106.8, + "end": 28108.23, + "probability": 0.5486 + }, + { + "start": 28109.36, + "end": 28109.7, + "probability": 0.197 + }, + { + "start": 28109.78, + "end": 28110.93, + "probability": 0.9536 + }, + { + "start": 28111.14, + "end": 28113.1, + "probability": 0.6789 + }, + { + "start": 28114.64, + "end": 28117.0, + "probability": 0.7472 + }, + { + "start": 28118.04, + "end": 28120.56, + "probability": 0.6298 + }, + { + "start": 28120.82, + "end": 28121.3, + "probability": 0.6268 + }, + { + "start": 28122.0, + "end": 28122.24, + "probability": 0.7179 + }, + { + "start": 28137.26, + "end": 28137.42, + "probability": 0.2681 + }, + { + "start": 28137.42, + "end": 28138.98, + "probability": 0.5321 + }, + { + "start": 28140.88, + "end": 28141.9, + "probability": 0.5184 + }, + { + "start": 28142.26, + "end": 28143.42, + "probability": 0.5033 + }, + { + "start": 28143.66, + "end": 28148.96, + "probability": 0.9328 + }, + { + "start": 28149.54, + "end": 28151.0, + "probability": 0.9834 + }, + { + "start": 28151.82, + "end": 28156.2, + "probability": 0.3148 + }, + { + "start": 28157.52, + "end": 28160.84, + "probability": 0.5822 + }, + { + "start": 28161.74, + "end": 28165.24, + "probability": 0.481 + }, + { + "start": 28166.16, + "end": 28166.72, + "probability": 0.5339 + }, + { + "start": 28166.78, + "end": 28171.84, + "probability": 0.9164 + }, + { + "start": 28180.14, + "end": 28182.62, + "probability": 0.6719 + }, + { + "start": 28185.98, + "end": 28189.58, + "probability": 0.9673 + }, + { + "start": 28191.2, + "end": 28193.98, + "probability": 0.962 + }, + { + "start": 28195.56, + "end": 28200.52, + "probability": 0.7749 + }, + { + "start": 28201.96, + "end": 28206.12, + "probability": 0.8841 + }, + { + "start": 28206.3, + "end": 28208.8, + "probability": 0.7586 + }, + { + "start": 28210.52, + "end": 28212.8, + "probability": 0.4676 + }, + { + "start": 28212.88, + "end": 28214.08, + "probability": 0.9707 + }, + { + "start": 28214.14, + "end": 28214.82, + "probability": 0.959 + }, + { + "start": 28215.52, + "end": 28216.14, + "probability": 0.3891 + }, + { + "start": 28216.14, + "end": 28216.8, + "probability": 0.7096 + }, + { + "start": 28216.96, + "end": 28220.9, + "probability": 0.8715 + }, + { + "start": 28221.98, + "end": 28222.68, + "probability": 0.7454 + }, + { + "start": 28222.74, + "end": 28226.08, + "probability": 0.9585 + }, + { + "start": 28226.78, + "end": 28227.74, + "probability": 0.9819 + }, + { + "start": 28228.42, + "end": 28228.96, + "probability": 0.951 + }, + { + "start": 28230.78, + "end": 28233.4, + "probability": 0.9888 + }, + { + "start": 28239.24, + "end": 28243.66, + "probability": 0.9297 + }, + { + "start": 28244.08, + "end": 28245.26, + "probability": 0.7157 + }, + { + "start": 28246.12, + "end": 28247.52, + "probability": 0.736 + }, + { + "start": 28247.7, + "end": 28249.2, + "probability": 0.8188 + }, + { + "start": 28249.86, + "end": 28250.96, + "probability": 0.7425 + }, + { + "start": 28252.04, + "end": 28254.92, + "probability": 0.9829 + }, + { + "start": 28255.08, + "end": 28260.32, + "probability": 0.9859 + }, + { + "start": 28260.88, + "end": 28268.88, + "probability": 0.984 + }, + { + "start": 28269.0, + "end": 28270.76, + "probability": 0.8254 + }, + { + "start": 28271.04, + "end": 28272.5, + "probability": 0.6193 + }, + { + "start": 28273.92, + "end": 28274.36, + "probability": 0.5061 + }, + { + "start": 28274.46, + "end": 28275.66, + "probability": 0.8488 + }, + { + "start": 28275.84, + "end": 28281.78, + "probability": 0.9951 + }, + { + "start": 28283.46, + "end": 28286.18, + "probability": 0.9295 + }, + { + "start": 28288.96, + "end": 28289.56, + "probability": 0.7825 + }, + { + "start": 28291.04, + "end": 28295.26, + "probability": 0.8931 + }, + { + "start": 28296.68, + "end": 28299.14, + "probability": 0.9861 + }, + { + "start": 28299.88, + "end": 28305.18, + "probability": 0.8687 + }, + { + "start": 28306.22, + "end": 28309.24, + "probability": 0.9977 + }, + { + "start": 28310.26, + "end": 28315.88, + "probability": 0.9604 + }, + { + "start": 28319.86, + "end": 28322.48, + "probability": 0.7188 + }, + { + "start": 28323.62, + "end": 28327.76, + "probability": 0.9805 + }, + { + "start": 28327.88, + "end": 28331.62, + "probability": 0.9601 + }, + { + "start": 28332.4, + "end": 28335.96, + "probability": 0.9835 + }, + { + "start": 28336.82, + "end": 28338.14, + "probability": 0.6959 + }, + { + "start": 28339.3, + "end": 28344.52, + "probability": 0.9697 + }, + { + "start": 28345.72, + "end": 28349.9, + "probability": 0.9896 + }, + { + "start": 28350.68, + "end": 28353.86, + "probability": 0.9901 + }, + { + "start": 28354.66, + "end": 28355.4, + "probability": 0.5032 + }, + { + "start": 28356.12, + "end": 28358.0, + "probability": 0.2824 + }, + { + "start": 28358.6, + "end": 28360.34, + "probability": 0.7569 + }, + { + "start": 28361.36, + "end": 28361.9, + "probability": 0.8881 + }, + { + "start": 28362.1, + "end": 28365.16, + "probability": 0.628 + }, + { + "start": 28365.18, + "end": 28368.3, + "probability": 0.932 + }, + { + "start": 28371.24, + "end": 28377.1, + "probability": 0.9849 + }, + { + "start": 28377.18, + "end": 28378.38, + "probability": 0.8428 + }, + { + "start": 28378.88, + "end": 28381.5, + "probability": 0.9899 + }, + { + "start": 28382.22, + "end": 28384.22, + "probability": 0.9889 + }, + { + "start": 28385.94, + "end": 28387.2, + "probability": 0.4418 + }, + { + "start": 28388.44, + "end": 28391.6, + "probability": 0.5928 + }, + { + "start": 28393.18, + "end": 28395.26, + "probability": 0.9659 + }, + { + "start": 28395.56, + "end": 28401.32, + "probability": 0.9146 + }, + { + "start": 28402.02, + "end": 28406.18, + "probability": 0.8188 + }, + { + "start": 28406.94, + "end": 28407.62, + "probability": 0.8375 + }, + { + "start": 28408.68, + "end": 28409.44, + "probability": 0.8495 + }, + { + "start": 28410.62, + "end": 28411.28, + "probability": 0.7742 + }, + { + "start": 28413.68, + "end": 28414.86, + "probability": 0.9493 + }, + { + "start": 28417.48, + "end": 28419.78, + "probability": 0.587 + }, + { + "start": 28420.4, + "end": 28423.64, + "probability": 0.6133 + }, + { + "start": 28425.16, + "end": 28427.76, + "probability": 0.9701 + }, + { + "start": 28428.34, + "end": 28430.66, + "probability": 0.9299 + }, + { + "start": 28431.0, + "end": 28434.84, + "probability": 0.6609 + }, + { + "start": 28435.46, + "end": 28436.44, + "probability": 0.9869 + }, + { + "start": 28437.78, + "end": 28440.86, + "probability": 0.6436 + }, + { + "start": 28441.58, + "end": 28442.88, + "probability": 0.9482 + }, + { + "start": 28443.1, + "end": 28444.48, + "probability": 0.877 + }, + { + "start": 28444.58, + "end": 28446.98, + "probability": 0.9615 + }, + { + "start": 28447.08, + "end": 28448.14, + "probability": 0.9876 + }, + { + "start": 28448.52, + "end": 28449.7, + "probability": 0.9933 + }, + { + "start": 28449.82, + "end": 28451.78, + "probability": 0.9752 + }, + { + "start": 28452.3, + "end": 28455.04, + "probability": 0.9335 + }, + { + "start": 28455.2, + "end": 28456.36, + "probability": 0.9438 + }, + { + "start": 28457.9, + "end": 28458.74, + "probability": 0.6961 + }, + { + "start": 28460.84, + "end": 28466.66, + "probability": 0.9398 + }, + { + "start": 28466.84, + "end": 28468.0, + "probability": 0.835 + }, + { + "start": 28468.7, + "end": 28471.32, + "probability": 0.8164 + }, + { + "start": 28471.54, + "end": 28473.66, + "probability": 0.8823 + }, + { + "start": 28473.72, + "end": 28476.7, + "probability": 0.9019 + }, + { + "start": 28477.98, + "end": 28483.22, + "probability": 0.9707 + }, + { + "start": 28484.5, + "end": 28488.24, + "probability": 0.6758 + }, + { + "start": 28489.84, + "end": 28491.26, + "probability": 0.8627 + }, + { + "start": 28491.5, + "end": 28493.82, + "probability": 0.9891 + }, + { + "start": 28494.44, + "end": 28495.68, + "probability": 0.7422 + }, + { + "start": 28496.28, + "end": 28498.38, + "probability": 0.9736 + }, + { + "start": 28498.48, + "end": 28500.06, + "probability": 0.99 + }, + { + "start": 28500.38, + "end": 28501.98, + "probability": 0.9194 + }, + { + "start": 28502.64, + "end": 28503.64, + "probability": 0.8753 + }, + { + "start": 28504.58, + "end": 28506.92, + "probability": 0.6052 + }, + { + "start": 28508.02, + "end": 28509.44, + "probability": 0.9924 + }, + { + "start": 28510.04, + "end": 28511.02, + "probability": 0.8558 + }, + { + "start": 28511.68, + "end": 28513.33, + "probability": 0.9759 + }, + { + "start": 28513.8, + "end": 28515.66, + "probability": 0.7794 + }, + { + "start": 28516.12, + "end": 28521.16, + "probability": 0.9746 + }, + { + "start": 28521.54, + "end": 28523.88, + "probability": 0.9404 + }, + { + "start": 28524.28, + "end": 28531.12, + "probability": 0.7903 + }, + { + "start": 28531.56, + "end": 28534.6, + "probability": 0.7547 + }, + { + "start": 28535.28, + "end": 28535.9, + "probability": 0.289 + }, + { + "start": 28537.16, + "end": 28537.62, + "probability": 0.9064 + }, + { + "start": 28539.14, + "end": 28540.36, + "probability": 0.9131 + }, + { + "start": 28541.36, + "end": 28548.9, + "probability": 0.9963 + }, + { + "start": 28549.32, + "end": 28551.96, + "probability": 0.9705 + }, + { + "start": 28552.02, + "end": 28554.7, + "probability": 0.9976 + }, + { + "start": 28555.68, + "end": 28556.0, + "probability": 0.0318 + }, + { + "start": 28557.58, + "end": 28560.58, + "probability": 0.8383 + }, + { + "start": 28561.1, + "end": 28562.62, + "probability": 0.7263 + }, + { + "start": 28563.14, + "end": 28565.05, + "probability": 0.8882 + }, + { + "start": 28565.88, + "end": 28567.72, + "probability": 0.894 + }, + { + "start": 28567.78, + "end": 28569.08, + "probability": 0.9634 + }, + { + "start": 28569.44, + "end": 28570.68, + "probability": 0.7895 + }, + { + "start": 28570.84, + "end": 28571.68, + "probability": 0.8448 + }, + { + "start": 28571.76, + "end": 28573.82, + "probability": 0.9702 + }, + { + "start": 28574.22, + "end": 28575.34, + "probability": 0.6894 + }, + { + "start": 28575.62, + "end": 28577.8, + "probability": 0.7034 + }, + { + "start": 28578.26, + "end": 28579.52, + "probability": 0.7432 + }, + { + "start": 28579.58, + "end": 28580.44, + "probability": 0.955 + }, + { + "start": 28580.54, + "end": 28582.12, + "probability": 0.7546 + }, + { + "start": 28582.18, + "end": 28583.52, + "probability": 0.7881 + }, + { + "start": 28583.76, + "end": 28585.36, + "probability": 0.8755 + }, + { + "start": 28585.72, + "end": 28586.58, + "probability": 0.8664 + }, + { + "start": 28586.82, + "end": 28589.04, + "probability": 0.8944 + }, + { + "start": 28589.06, + "end": 28589.92, + "probability": 0.8956 + }, + { + "start": 28590.04, + "end": 28591.14, + "probability": 0.6652 + }, + { + "start": 28591.4, + "end": 28591.86, + "probability": 0.5687 + }, + { + "start": 28592.56, + "end": 28593.04, + "probability": 0.8192 + }, + { + "start": 28593.22, + "end": 28594.36, + "probability": 0.7362 + }, + { + "start": 28594.54, + "end": 28596.88, + "probability": 0.7748 + }, + { + "start": 28597.14, + "end": 28598.64, + "probability": 0.9067 + }, + { + "start": 28598.7, + "end": 28601.44, + "probability": 0.9614 + }, + { + "start": 28601.54, + "end": 28602.38, + "probability": 0.6928 + }, + { + "start": 28602.46, + "end": 28603.62, + "probability": 0.9643 + }, + { + "start": 28603.66, + "end": 28604.06, + "probability": 0.9226 + }, + { + "start": 28604.24, + "end": 28604.46, + "probability": 0.8744 + }, + { + "start": 28605.04, + "end": 28606.48, + "probability": 0.6654 + }, + { + "start": 28606.6, + "end": 28609.82, + "probability": 0.6354 + }, + { + "start": 28610.7, + "end": 28611.4, + "probability": 0.9157 + }, + { + "start": 28612.78, + "end": 28613.62, + "probability": 0.7289 + }, + { + "start": 28616.66, + "end": 28617.28, + "probability": 0.7936 + }, + { + "start": 28618.16, + "end": 28619.34, + "probability": 0.904 + }, + { + "start": 28620.6, + "end": 28622.46, + "probability": 0.9077 + }, + { + "start": 28622.58, + "end": 28625.04, + "probability": 0.9911 + }, + { + "start": 28625.76, + "end": 28626.24, + "probability": 0.9663 + }, + { + "start": 28627.02, + "end": 28627.44, + "probability": 0.9101 + }, + { + "start": 28628.26, + "end": 28630.92, + "probability": 0.993 + }, + { + "start": 28632.1, + "end": 28637.07, + "probability": 0.9918 + }, + { + "start": 28638.5, + "end": 28640.3, + "probability": 0.9594 + }, + { + "start": 28640.52, + "end": 28644.34, + "probability": 0.9754 + }, + { + "start": 28645.31, + "end": 28646.72, + "probability": 0.9946 + }, + { + "start": 28648.24, + "end": 28649.44, + "probability": 0.8784 + }, + { + "start": 28650.74, + "end": 28651.48, + "probability": 0.5661 + }, + { + "start": 28652.02, + "end": 28653.4, + "probability": 0.909 + }, + { + "start": 28653.92, + "end": 28659.98, + "probability": 0.9881 + }, + { + "start": 28660.78, + "end": 28663.69, + "probability": 0.9819 + }, + { + "start": 28663.86, + "end": 28665.16, + "probability": 0.9505 + }, + { + "start": 28666.36, + "end": 28670.06, + "probability": 0.9956 + }, + { + "start": 28670.88, + "end": 28671.76, + "probability": 0.8735 + }, + { + "start": 28672.86, + "end": 28678.06, + "probability": 0.9617 + }, + { + "start": 28678.64, + "end": 28681.28, + "probability": 0.797 + }, + { + "start": 28681.9, + "end": 28682.98, + "probability": 0.6629 + }, + { + "start": 28683.76, + "end": 28686.2, + "probability": 0.7912 + }, + { + "start": 28686.54, + "end": 28686.98, + "probability": 0.471 + }, + { + "start": 28687.6, + "end": 28688.48, + "probability": 0.9388 + }, + { + "start": 28689.18, + "end": 28690.36, + "probability": 0.9253 + }, + { + "start": 28691.48, + "end": 28692.48, + "probability": 0.3069 + }, + { + "start": 28692.48, + "end": 28693.96, + "probability": 0.006 + }, + { + "start": 28694.86, + "end": 28696.07, + "probability": 0.9707 + }, + { + "start": 28698.73, + "end": 28701.12, + "probability": 0.776 + }, + { + "start": 28701.94, + "end": 28702.9, + "probability": 0.743 + }, + { + "start": 28703.24, + "end": 28706.14, + "probability": 0.9958 + }, + { + "start": 28706.22, + "end": 28709.34, + "probability": 0.9955 + }, + { + "start": 28709.9, + "end": 28710.98, + "probability": 0.9836 + }, + { + "start": 28712.1, + "end": 28716.38, + "probability": 0.981 + }, + { + "start": 28717.08, + "end": 28718.8, + "probability": 0.7721 + }, + { + "start": 28719.32, + "end": 28721.6, + "probability": 0.9776 + }, + { + "start": 28722.2, + "end": 28723.26, + "probability": 0.9958 + }, + { + "start": 28723.84, + "end": 28724.94, + "probability": 0.9701 + }, + { + "start": 28725.96, + "end": 28727.56, + "probability": 0.9815 + }, + { + "start": 28727.9, + "end": 28731.76, + "probability": 0.9795 + }, + { + "start": 28731.82, + "end": 28733.48, + "probability": 0.954 + }, + { + "start": 28734.1, + "end": 28734.76, + "probability": 0.9909 + }, + { + "start": 28735.54, + "end": 28740.36, + "probability": 0.9913 + }, + { + "start": 28740.58, + "end": 28741.68, + "probability": 0.0323 + }, + { + "start": 28741.92, + "end": 28742.06, + "probability": 0.6794 + }, + { + "start": 28742.58, + "end": 28743.94, + "probability": 0.7704 + }, + { + "start": 28744.08, + "end": 28745.38, + "probability": 0.6563 + }, + { + "start": 28745.74, + "end": 28748.28, + "probability": 0.6996 + }, + { + "start": 28748.28, + "end": 28748.91, + "probability": 0.2321 + }, + { + "start": 28749.4, + "end": 28749.98, + "probability": 0.3495 + }, + { + "start": 28750.12, + "end": 28750.84, + "probability": 0.549 + }, + { + "start": 28751.48, + "end": 28753.7, + "probability": 0.3704 + }, + { + "start": 28754.1, + "end": 28755.52, + "probability": 0.9031 + }, + { + "start": 28755.62, + "end": 28759.42, + "probability": 0.9898 + }, + { + "start": 28760.08, + "end": 28760.74, + "probability": 0.6407 + }, + { + "start": 28760.92, + "end": 28764.62, + "probability": 0.9867 + }, + { + "start": 28765.82, + "end": 28766.64, + "probability": 0.8234 + }, + { + "start": 28766.94, + "end": 28770.5, + "probability": 0.9697 + }, + { + "start": 28771.24, + "end": 28773.72, + "probability": 0.8387 + }, + { + "start": 28777.14, + "end": 28777.52, + "probability": 0.1477 + }, + { + "start": 28777.52, + "end": 28782.54, + "probability": 0.9621 + }, + { + "start": 28783.86, + "end": 28786.96, + "probability": 0.9711 + }, + { + "start": 28787.62, + "end": 28792.5, + "probability": 0.8479 + }, + { + "start": 28793.1, + "end": 28797.56, + "probability": 0.9785 + }, + { + "start": 28798.14, + "end": 28798.58, + "probability": 0.6025 + }, + { + "start": 28799.12, + "end": 28800.02, + "probability": 0.9739 + }, + { + "start": 28801.38, + "end": 28804.54, + "probability": 0.9901 + }, + { + "start": 28805.12, + "end": 28807.26, + "probability": 0.9988 + }, + { + "start": 28808.52, + "end": 28810.56, + "probability": 0.8294 + }, + { + "start": 28810.94, + "end": 28812.16, + "probability": 0.5097 + }, + { + "start": 28812.16, + "end": 28813.18, + "probability": 0.6803 + }, + { + "start": 28813.3, + "end": 28814.1, + "probability": 0.6454 + }, + { + "start": 28814.26, + "end": 28815.04, + "probability": 0.9578 + }, + { + "start": 28815.7, + "end": 28816.72, + "probability": 0.7449 + }, + { + "start": 28817.06, + "end": 28817.44, + "probability": 0.9838 + }, + { + "start": 28818.28, + "end": 28823.9, + "probability": 0.9282 + }, + { + "start": 28824.74, + "end": 28827.5, + "probability": 0.9894 + }, + { + "start": 28827.82, + "end": 28828.42, + "probability": 0.9899 + }, + { + "start": 28829.48, + "end": 28831.86, + "probability": 0.9971 + }, + { + "start": 28832.46, + "end": 28834.28, + "probability": 0.9986 + }, + { + "start": 28834.72, + "end": 28835.64, + "probability": 0.975 + }, + { + "start": 28836.46, + "end": 28838.76, + "probability": 0.9584 + }, + { + "start": 28839.4, + "end": 28841.86, + "probability": 0.9865 + }, + { + "start": 28842.66, + "end": 28845.94, + "probability": 0.9938 + }, + { + "start": 28846.98, + "end": 28850.36, + "probability": 0.9974 + }, + { + "start": 28850.36, + "end": 28853.04, + "probability": 0.9458 + }, + { + "start": 28855.02, + "end": 28857.38, + "probability": 0.9571 + }, + { + "start": 28857.94, + "end": 28862.18, + "probability": 0.8936 + }, + { + "start": 28862.82, + "end": 28865.56, + "probability": 0.8411 + }, + { + "start": 28865.86, + "end": 28867.82, + "probability": 0.9796 + }, + { + "start": 28869.9, + "end": 28874.54, + "probability": 0.9753 + }, + { + "start": 28875.28, + "end": 28876.94, + "probability": 0.8895 + }, + { + "start": 28877.88, + "end": 28880.18, + "probability": 0.9299 + }, + { + "start": 28881.1, + "end": 28884.5, + "probability": 0.9932 + }, + { + "start": 28885.24, + "end": 28886.84, + "probability": 0.9095 + }, + { + "start": 28888.86, + "end": 28892.74, + "probability": 0.8784 + }, + { + "start": 28893.35, + "end": 28895.44, + "probability": 0.9969 + }, + { + "start": 28895.82, + "end": 28900.32, + "probability": 0.9813 + }, + { + "start": 28900.58, + "end": 28902.84, + "probability": 0.9934 + }, + { + "start": 28905.08, + "end": 28909.96, + "probability": 0.9697 + }, + { + "start": 28910.6, + "end": 28914.64, + "probability": 0.9958 + }, + { + "start": 28914.64, + "end": 28918.32, + "probability": 0.9556 + }, + { + "start": 28918.92, + "end": 28919.86, + "probability": 0.8348 + }, + { + "start": 28920.28, + "end": 28921.32, + "probability": 0.7788 + }, + { + "start": 28921.4, + "end": 28922.76, + "probability": 0.9344 + }, + { + "start": 28923.68, + "end": 28926.92, + "probability": 0.9845 + }, + { + "start": 28928.2, + "end": 28930.44, + "probability": 0.81 + }, + { + "start": 28931.02, + "end": 28932.58, + "probability": 0.7758 + }, + { + "start": 28933.08, + "end": 28934.72, + "probability": 0.9098 + }, + { + "start": 28935.52, + "end": 28936.04, + "probability": 0.6158 + }, + { + "start": 28936.16, + "end": 28938.14, + "probability": 0.9513 + }, + { + "start": 28938.2, + "end": 28942.28, + "probability": 0.9376 + }, + { + "start": 28943.06, + "end": 28943.72, + "probability": 0.6691 + }, + { + "start": 28944.38, + "end": 28948.42, + "probability": 0.99 + }, + { + "start": 28948.66, + "end": 28949.48, + "probability": 0.8369 + }, + { + "start": 28951.18, + "end": 28953.52, + "probability": 0.987 + }, + { + "start": 28954.0, + "end": 28954.34, + "probability": 0.7994 + }, + { + "start": 28955.38, + "end": 28955.9, + "probability": 0.6961 + }, + { + "start": 28955.98, + "end": 28956.75, + "probability": 0.9553 + }, + { + "start": 28958.38, + "end": 28961.86, + "probability": 0.8264 + }, + { + "start": 28962.54, + "end": 28963.44, + "probability": 0.2604 + }, + { + "start": 28963.98, + "end": 28966.04, + "probability": 0.8408 + }, + { + "start": 28968.12, + "end": 28969.54, + "probability": 0.1376 + }, + { + "start": 28969.72, + "end": 28974.56, + "probability": 0.3345 + }, + { + "start": 28975.4, + "end": 28976.74, + "probability": 0.3054 + }, + { + "start": 28977.34, + "end": 28980.84, + "probability": 0.4951 + }, + { + "start": 28981.76, + "end": 28984.34, + "probability": 0.5765 + }, + { + "start": 28984.54, + "end": 28987.98, + "probability": 0.5592 + }, + { + "start": 28988.94, + "end": 28990.3, + "probability": 0.7193 + }, + { + "start": 28992.48, + "end": 28995.18, + "probability": 0.694 + }, + { + "start": 28995.54, + "end": 28999.16, + "probability": 0.1948 + }, + { + "start": 28999.22, + "end": 29001.58, + "probability": 0.3806 + }, + { + "start": 29002.18, + "end": 29006.18, + "probability": 0.9787 + }, + { + "start": 29006.62, + "end": 29009.82, + "probability": 0.5719 + }, + { + "start": 29010.13, + "end": 29012.46, + "probability": 0.3444 + }, + { + "start": 29012.54, + "end": 29013.6, + "probability": 0.762 + }, + { + "start": 29013.72, + "end": 29014.5, + "probability": 0.4849 + }, + { + "start": 29014.52, + "end": 29015.08, + "probability": 0.4909 + }, + { + "start": 29015.96, + "end": 29020.66, + "probability": 0.304 + }, + { + "start": 29020.8, + "end": 29021.89, + "probability": 0.9064 + }, + { + "start": 29022.5, + "end": 29023.74, + "probability": 0.7665 + }, + { + "start": 29023.94, + "end": 29026.98, + "probability": 0.5602 + }, + { + "start": 29027.06, + "end": 29027.7, + "probability": 0.7972 + }, + { + "start": 29027.76, + "end": 29028.8, + "probability": 0.8225 + }, + { + "start": 29028.82, + "end": 29029.12, + "probability": 0.5297 + }, + { + "start": 29030.1, + "end": 29030.68, + "probability": 0.9608 + }, + { + "start": 29031.08, + "end": 29032.16, + "probability": 0.9715 + }, + { + "start": 29032.24, + "end": 29033.8, + "probability": 0.8674 + }, + { + "start": 29033.98, + "end": 29034.72, + "probability": 0.7617 + }, + { + "start": 29036.42, + "end": 29039.26, + "probability": 0.3638 + }, + { + "start": 29039.67, + "end": 29043.3, + "probability": 0.4707 + }, + { + "start": 29046.62, + "end": 29047.46, + "probability": 0.4017 + }, + { + "start": 29047.56, + "end": 29050.16, + "probability": 0.6453 + }, + { + "start": 29050.82, + "end": 29052.46, + "probability": 0.8262 + }, + { + "start": 29052.56, + "end": 29052.9, + "probability": 0.003 + }, + { + "start": 29053.7, + "end": 29054.92, + "probability": 0.397 + }, + { + "start": 29055.26, + "end": 29055.98, + "probability": 0.222 + }, + { + "start": 29055.98, + "end": 29057.94, + "probability": 0.0664 + }, + { + "start": 29077.9, + "end": 29083.72, + "probability": 0.7323 + }, + { + "start": 29083.88, + "end": 29086.43, + "probability": 0.7086 + }, + { + "start": 29086.98, + "end": 29089.14, + "probability": 0.6635 + }, + { + "start": 29090.46, + "end": 29093.46, + "probability": 0.6648 + }, + { + "start": 29094.18, + "end": 29096.85, + "probability": 0.4026 + }, + { + "start": 29098.02, + "end": 29103.06, + "probability": 0.7595 + }, + { + "start": 29108.56, + "end": 29108.76, + "probability": 0.1942 + }, + { + "start": 29108.76, + "end": 29111.16, + "probability": 0.163 + }, + { + "start": 29112.02, + "end": 29116.16, + "probability": 0.4747 + }, + { + "start": 29116.16, + "end": 29121.5, + "probability": 0.4418 + }, + { + "start": 29122.54, + "end": 29128.74, + "probability": 0.7158 + }, + { + "start": 29129.7, + "end": 29131.04, + "probability": 0.6471 + }, + { + "start": 29131.58, + "end": 29132.82, + "probability": 0.3549 + }, + { + "start": 29132.82, + "end": 29132.92, + "probability": 0.296 + }, + { + "start": 29133.32, + "end": 29134.08, + "probability": 0.5024 + }, + { + "start": 29137.93, + "end": 29138.28, + "probability": 0.7289 + }, + { + "start": 29138.82, + "end": 29140.06, + "probability": 0.6548 + }, + { + "start": 29141.56, + "end": 29142.17, + "probability": 0.8616 + }, + { + "start": 29145.28, + "end": 29148.66, + "probability": 0.4999 + }, + { + "start": 29149.36, + "end": 29151.56, + "probability": 0.7466 + }, + { + "start": 29153.28, + "end": 29153.99, + "probability": 0.1283 + }, + { + "start": 29155.6, + "end": 29157.0, + "probability": 0.6095 + }, + { + "start": 29158.28, + "end": 29160.7, + "probability": 0.508 + }, + { + "start": 29161.8, + "end": 29166.06, + "probability": 0.9365 + }, + { + "start": 29166.24, + "end": 29166.34, + "probability": 0.8223 + }, + { + "start": 29167.3, + "end": 29169.08, + "probability": 0.7034 + }, + { + "start": 29169.62, + "end": 29172.8, + "probability": 0.8326 + }, + { + "start": 29173.64, + "end": 29179.68, + "probability": 0.8643 + }, + { + "start": 29180.38, + "end": 29182.52, + "probability": 0.9741 + }, + { + "start": 29183.4, + "end": 29184.16, + "probability": 0.7529 + }, + { + "start": 29184.32, + "end": 29188.72, + "probability": 0.824 + }, + { + "start": 29189.8, + "end": 29190.32, + "probability": 0.6284 + }, + { + "start": 29191.06, + "end": 29193.72, + "probability": 0.9619 + }, + { + "start": 29194.32, + "end": 29198.04, + "probability": 0.9191 + }, + { + "start": 29198.26, + "end": 29198.46, + "probability": 0.8773 + }, + { + "start": 29199.24, + "end": 29200.8, + "probability": 0.4087 + }, + { + "start": 29202.18, + "end": 29202.94, + "probability": 0.6664 + }, + { + "start": 29203.46, + "end": 29203.88, + "probability": 0.7828 + }, + { + "start": 29205.12, + "end": 29207.5, + "probability": 0.9709 + }, + { + "start": 29207.5, + "end": 29210.8, + "probability": 0.9609 + }, + { + "start": 29212.6, + "end": 29218.96, + "probability": 0.974 + }, + { + "start": 29221.38, + "end": 29222.5, + "probability": 0.0007 + }, + { + "start": 29223.14, + "end": 29229.04, + "probability": 0.9966 + }, + { + "start": 29229.78, + "end": 29232.2, + "probability": 0.3123 + }, + { + "start": 29233.0, + "end": 29237.38, + "probability": 0.9355 + }, + { + "start": 29238.28, + "end": 29245.12, + "probability": 0.998 + }, + { + "start": 29245.64, + "end": 29249.2, + "probability": 0.0595 + }, + { + "start": 29250.18, + "end": 29251.28, + "probability": 0.5892 + }, + { + "start": 29253.23, + "end": 29258.16, + "probability": 0.9483 + }, + { + "start": 29259.16, + "end": 29262.86, + "probability": 0.9828 + }, + { + "start": 29262.86, + "end": 29265.28, + "probability": 0.9704 + }, + { + "start": 29266.04, + "end": 29271.74, + "probability": 0.9828 + }, + { + "start": 29271.74, + "end": 29274.86, + "probability": 0.9806 + }, + { + "start": 29275.58, + "end": 29280.8, + "probability": 0.8652 + }, + { + "start": 29282.5, + "end": 29284.74, + "probability": 0.9683 + }, + { + "start": 29285.42, + "end": 29290.98, + "probability": 0.9724 + }, + { + "start": 29291.74, + "end": 29293.68, + "probability": 0.5878 + }, + { + "start": 29295.24, + "end": 29297.59, + "probability": 0.9932 + }, + { + "start": 29298.96, + "end": 29302.82, + "probability": 0.9162 + }, + { + "start": 29303.82, + "end": 29305.06, + "probability": 0.7047 + }, + { + "start": 29305.12, + "end": 29306.36, + "probability": 0.9234 + }, + { + "start": 29306.46, + "end": 29308.33, + "probability": 0.9529 + }, + { + "start": 29308.78, + "end": 29309.08, + "probability": 0.3303 + }, + { + "start": 29310.16, + "end": 29311.06, + "probability": 0.3963 + }, + { + "start": 29315.6, + "end": 29317.34, + "probability": 0.5495 + }, + { + "start": 29318.46, + "end": 29320.02, + "probability": 0.5093 + }, + { + "start": 29320.12, + "end": 29322.9, + "probability": 0.8896 + }, + { + "start": 29324.3, + "end": 29325.54, + "probability": 0.5276 + }, + { + "start": 29326.38, + "end": 29328.9, + "probability": 0.7676 + }, + { + "start": 29330.16, + "end": 29331.32, + "probability": 0.859 + }, + { + "start": 29332.46, + "end": 29334.9, + "probability": 0.7399 + }, + { + "start": 29334.9, + "end": 29336.26, + "probability": 0.911 + }, + { + "start": 29336.84, + "end": 29340.24, + "probability": 0.9839 + }, + { + "start": 29340.54, + "end": 29341.26, + "probability": 0.5727 + }, + { + "start": 29341.72, + "end": 29343.76, + "probability": 0.6901 + }, + { + "start": 29343.8, + "end": 29344.36, + "probability": 0.8017 + }, + { + "start": 29344.7, + "end": 29351.98, + "probability": 0.7698 + }, + { + "start": 29353.02, + "end": 29358.74, + "probability": 0.7173 + }, + { + "start": 29359.7, + "end": 29362.58, + "probability": 0.6622 + }, + { + "start": 29363.86, + "end": 29367.2, + "probability": 0.4734 + }, + { + "start": 29367.32, + "end": 29370.24, + "probability": 0.7687 + }, + { + "start": 29370.48, + "end": 29373.26, + "probability": 0.3704 + }, + { + "start": 29373.9, + "end": 29375.9, + "probability": 0.5212 + }, + { + "start": 29376.56, + "end": 29377.78, + "probability": 0.8265 + }, + { + "start": 29378.0, + "end": 29378.82, + "probability": 0.8024 + }, + { + "start": 29378.96, + "end": 29379.44, + "probability": 0.3417 + }, + { + "start": 29379.64, + "end": 29382.3, + "probability": 0.7995 + }, + { + "start": 29382.72, + "end": 29384.72, + "probability": 0.8193 + }, + { + "start": 29385.7, + "end": 29390.14, + "probability": 0.736 + }, + { + "start": 29390.6, + "end": 29393.06, + "probability": 0.8412 + }, + { + "start": 29393.56, + "end": 29394.16, + "probability": 0.4882 + }, + { + "start": 29394.22, + "end": 29394.9, + "probability": 0.7379 + }, + { + "start": 29395.36, + "end": 29398.48, + "probability": 0.9854 + }, + { + "start": 29398.5, + "end": 29401.42, + "probability": 0.9358 + }, + { + "start": 29401.72, + "end": 29403.04, + "probability": 0.931 + }, + { + "start": 29403.16, + "end": 29404.41, + "probability": 0.5594 + }, + { + "start": 29406.9, + "end": 29408.9, + "probability": 0.8285 + }, + { + "start": 29409.28, + "end": 29411.08, + "probability": 0.9722 + }, + { + "start": 29411.1, + "end": 29412.41, + "probability": 0.9956 + }, + { + "start": 29412.54, + "end": 29415.22, + "probability": 0.8195 + }, + { + "start": 29415.64, + "end": 29417.52, + "probability": 0.0278 + }, + { + "start": 29417.84, + "end": 29419.56, + "probability": 0.5764 + }, + { + "start": 29420.0, + "end": 29423.38, + "probability": 0.5185 + }, + { + "start": 29423.56, + "end": 29425.9, + "probability": 0.793 + }, + { + "start": 29426.28, + "end": 29427.5, + "probability": 0.9465 + }, + { + "start": 29427.54, + "end": 29430.86, + "probability": 0.9302 + }, + { + "start": 29431.34, + "end": 29433.28, + "probability": 0.8734 + }, + { + "start": 29433.32, + "end": 29434.28, + "probability": 0.9398 + }, + { + "start": 29434.32, + "end": 29438.56, + "probability": 0.9545 + }, + { + "start": 29439.92, + "end": 29442.96, + "probability": 0.7986 + }, + { + "start": 29443.04, + "end": 29443.66, + "probability": 0.8672 + }, + { + "start": 29443.8, + "end": 29445.14, + "probability": 0.7244 + }, + { + "start": 29445.22, + "end": 29446.76, + "probability": 0.9969 + }, + { + "start": 29447.24, + "end": 29450.4, + "probability": 0.9617 + }, + { + "start": 29450.9, + "end": 29453.96, + "probability": 0.5011 + }, + { + "start": 29454.38, + "end": 29456.14, + "probability": 0.5701 + }, + { + "start": 29456.22, + "end": 29457.58, + "probability": 0.9209 + }, + { + "start": 29457.74, + "end": 29458.44, + "probability": 0.63 + }, + { + "start": 29458.74, + "end": 29459.58, + "probability": 0.6994 + }, + { + "start": 29459.68, + "end": 29460.64, + "probability": 0.1079 + }, + { + "start": 29460.76, + "end": 29461.7, + "probability": 0.768 + }, + { + "start": 29461.8, + "end": 29462.32, + "probability": 0.5716 + }, + { + "start": 29462.4, + "end": 29464.5, + "probability": 0.7983 + }, + { + "start": 29464.78, + "end": 29466.1, + "probability": 0.6118 + }, + { + "start": 29466.12, + "end": 29466.98, + "probability": 0.8999 + }, + { + "start": 29467.5, + "end": 29470.3, + "probability": 0.9627 + }, + { + "start": 29470.34, + "end": 29470.78, + "probability": 0.6578 + }, + { + "start": 29470.88, + "end": 29473.04, + "probability": 0.7894 + }, + { + "start": 29473.48, + "end": 29476.68, + "probability": 0.9597 + }, + { + "start": 29476.74, + "end": 29477.0, + "probability": 0.5162 + }, + { + "start": 29477.0, + "end": 29477.68, + "probability": 0.2463 + }, + { + "start": 29478.04, + "end": 29483.06, + "probability": 0.9895 + }, + { + "start": 29484.18, + "end": 29487.3, + "probability": 0.9146 + } + ], + "segments_count": 10197, + "words_count": 50348, + "avg_words_per_segment": 4.9375, + "avg_segment_duration": 2.0944, + "avg_words_per_minute": 102.2734, + "plenum_id": "30305", + "duration": 29537.31, + "title": null, + "plenum_date": "2013-07-17" +} \ No newline at end of file