diff --git "a/35215/metadata.json" "b/35215/metadata.json" new file mode 100644--- /dev/null +++ "b/35215/metadata.json" @@ -0,0 +1,36572 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "35215", + "quality_score": 0.875, + "per_segment_quality_scores": [ + { + "start": 48.52, + "end": 48.94, + "probability": 0.7098 + }, + { + "start": 49.76, + "end": 51.08, + "probability": 0.7623 + }, + { + "start": 51.18, + "end": 52.58, + "probability": 0.9263 + }, + { + "start": 52.66, + "end": 54.22, + "probability": 0.955 + }, + { + "start": 54.36, + "end": 57.2, + "probability": 0.9715 + }, + { + "start": 57.2, + "end": 60.48, + "probability": 0.7848 + }, + { + "start": 61.12, + "end": 61.26, + "probability": 0.001 + }, + { + "start": 61.64, + "end": 62.92, + "probability": 0.6393 + }, + { + "start": 63.14, + "end": 65.14, + "probability": 0.9797 + }, + { + "start": 65.66, + "end": 66.42, + "probability": 0.7286 + }, + { + "start": 66.44, + "end": 70.94, + "probability": 0.8731 + }, + { + "start": 71.44, + "end": 72.94, + "probability": 0.7485 + }, + { + "start": 73.46, + "end": 76.26, + "probability": 0.999 + }, + { + "start": 76.26, + "end": 80.2, + "probability": 0.6555 + }, + { + "start": 80.26, + "end": 83.02, + "probability": 0.6057 + }, + { + "start": 83.56, + "end": 84.34, + "probability": 0.9541 + }, + { + "start": 87.38, + "end": 89.64, + "probability": 0.5973 + }, + { + "start": 89.8, + "end": 92.36, + "probability": 0.5398 + }, + { + "start": 93.42, + "end": 96.19, + "probability": 0.8624 + }, + { + "start": 96.88, + "end": 98.04, + "probability": 0.6037 + }, + { + "start": 98.44, + "end": 100.04, + "probability": 0.476 + }, + { + "start": 110.8, + "end": 111.54, + "probability": 0.0128 + }, + { + "start": 114.9, + "end": 115.69, + "probability": 0.1115 + }, + { + "start": 128.22, + "end": 133.08, + "probability": 0.0313 + }, + { + "start": 134.24, + "end": 135.68, + "probability": 0.4845 + }, + { + "start": 136.36, + "end": 138.58, + "probability": 0.1286 + }, + { + "start": 139.12, + "end": 139.76, + "probability": 0.0198 + }, + { + "start": 139.76, + "end": 139.76, + "probability": 0.0387 + }, + { + "start": 139.76, + "end": 139.94, + "probability": 0.0167 + }, + { + "start": 139.94, + "end": 139.94, + "probability": 0.1244 + }, + { + "start": 139.94, + "end": 139.94, + "probability": 0.099 + }, + { + "start": 139.94, + "end": 139.94, + "probability": 0.0322 + }, + { + "start": 139.94, + "end": 139.94, + "probability": 0.0388 + }, + { + "start": 139.94, + "end": 139.94, + "probability": 0.083 + }, + { + "start": 139.94, + "end": 139.94, + "probability": 0.06 + }, + { + "start": 139.94, + "end": 139.98, + "probability": 0.0196 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.24, + "end": 140.38, + "probability": 0.0553 + }, + { + "start": 140.38, + "end": 140.38, + "probability": 0.0358 + }, + { + "start": 140.38, + "end": 140.9, + "probability": 0.0121 + }, + { + "start": 140.9, + "end": 142.62, + "probability": 0.6592 + }, + { + "start": 143.58, + "end": 144.94, + "probability": 0.8661 + }, + { + "start": 145.04, + "end": 149.26, + "probability": 0.8016 + }, + { + "start": 149.86, + "end": 154.72, + "probability": 0.8109 + }, + { + "start": 155.36, + "end": 158.56, + "probability": 0.9919 + }, + { + "start": 159.12, + "end": 162.62, + "probability": 0.9718 + }, + { + "start": 162.66, + "end": 163.28, + "probability": 0.6569 + }, + { + "start": 174.04, + "end": 174.78, + "probability": 0.4043 + }, + { + "start": 175.52, + "end": 178.36, + "probability": 0.5645 + }, + { + "start": 179.94, + "end": 182.66, + "probability": 0.8899 + }, + { + "start": 184.0, + "end": 188.92, + "probability": 0.9783 + }, + { + "start": 190.34, + "end": 196.0, + "probability": 0.9441 + }, + { + "start": 197.04, + "end": 201.22, + "probability": 0.9948 + }, + { + "start": 202.7, + "end": 210.86, + "probability": 0.9762 + }, + { + "start": 211.66, + "end": 214.12, + "probability": 0.9854 + }, + { + "start": 215.46, + "end": 217.77, + "probability": 0.9517 + }, + { + "start": 218.92, + "end": 221.04, + "probability": 0.9947 + }, + { + "start": 222.76, + "end": 230.9, + "probability": 0.9922 + }, + { + "start": 231.92, + "end": 233.22, + "probability": 0.9941 + }, + { + "start": 235.14, + "end": 239.98, + "probability": 0.9824 + }, + { + "start": 240.86, + "end": 244.44, + "probability": 0.9918 + }, + { + "start": 245.5, + "end": 249.58, + "probability": 0.9432 + }, + { + "start": 250.14, + "end": 254.02, + "probability": 0.9883 + }, + { + "start": 254.66, + "end": 256.54, + "probability": 0.8799 + }, + { + "start": 257.02, + "end": 266.38, + "probability": 0.9232 + }, + { + "start": 267.48, + "end": 272.04, + "probability": 0.988 + }, + { + "start": 272.76, + "end": 275.42, + "probability": 0.9995 + }, + { + "start": 275.98, + "end": 276.98, + "probability": 0.6668 + }, + { + "start": 277.78, + "end": 279.76, + "probability": 0.9367 + }, + { + "start": 281.16, + "end": 283.88, + "probability": 0.9165 + }, + { + "start": 285.04, + "end": 292.44, + "probability": 0.9608 + }, + { + "start": 293.26, + "end": 297.8, + "probability": 0.9967 + }, + { + "start": 298.7, + "end": 304.26, + "probability": 0.9973 + }, + { + "start": 305.06, + "end": 309.0, + "probability": 0.989 + }, + { + "start": 310.76, + "end": 316.46, + "probability": 0.9105 + }, + { + "start": 317.14, + "end": 320.1, + "probability": 0.9884 + }, + { + "start": 320.7, + "end": 324.4, + "probability": 0.9751 + }, + { + "start": 324.58, + "end": 325.34, + "probability": 0.7309 + }, + { + "start": 326.96, + "end": 333.92, + "probability": 0.9921 + }, + { + "start": 335.16, + "end": 335.58, + "probability": 0.9465 + }, + { + "start": 337.74, + "end": 339.5, + "probability": 0.6341 + }, + { + "start": 341.26, + "end": 346.88, + "probability": 0.9842 + }, + { + "start": 346.94, + "end": 347.74, + "probability": 0.5741 + }, + { + "start": 348.42, + "end": 349.58, + "probability": 0.605 + }, + { + "start": 350.4, + "end": 356.04, + "probability": 0.905 + }, + { + "start": 356.22, + "end": 363.94, + "probability": 0.7808 + }, + { + "start": 364.34, + "end": 370.19, + "probability": 0.9832 + }, + { + "start": 372.68, + "end": 374.28, + "probability": 0.8641 + }, + { + "start": 374.74, + "end": 381.36, + "probability": 0.9742 + }, + { + "start": 382.24, + "end": 387.36, + "probability": 0.9976 + }, + { + "start": 387.96, + "end": 389.32, + "probability": 0.7219 + }, + { + "start": 389.94, + "end": 393.72, + "probability": 0.7058 + }, + { + "start": 394.28, + "end": 395.02, + "probability": 0.7766 + }, + { + "start": 395.02, + "end": 396.08, + "probability": 0.9677 + }, + { + "start": 396.64, + "end": 398.74, + "probability": 0.9914 + }, + { + "start": 398.92, + "end": 401.18, + "probability": 0.9962 + }, + { + "start": 401.22, + "end": 402.8, + "probability": 0.7627 + }, + { + "start": 403.56, + "end": 404.56, + "probability": 0.9958 + }, + { + "start": 405.3, + "end": 406.15, + "probability": 0.9893 + }, + { + "start": 407.52, + "end": 412.78, + "probability": 0.9252 + }, + { + "start": 412.88, + "end": 413.61, + "probability": 0.885 + }, + { + "start": 414.82, + "end": 416.8, + "probability": 0.9681 + }, + { + "start": 417.08, + "end": 419.8, + "probability": 0.9933 + }, + { + "start": 420.16, + "end": 424.24, + "probability": 0.9859 + }, + { + "start": 424.5, + "end": 425.7, + "probability": 0.9583 + }, + { + "start": 425.8, + "end": 430.38, + "probability": 0.9903 + }, + { + "start": 431.22, + "end": 435.14, + "probability": 0.9986 + }, + { + "start": 435.58, + "end": 439.5, + "probability": 0.9677 + }, + { + "start": 440.04, + "end": 445.54, + "probability": 0.9902 + }, + { + "start": 446.6, + "end": 447.12, + "probability": 0.7233 + }, + { + "start": 449.3, + "end": 450.16, + "probability": 0.9097 + }, + { + "start": 450.16, + "end": 450.98, + "probability": 0.7642 + }, + { + "start": 451.32, + "end": 452.18, + "probability": 0.8315 + }, + { + "start": 453.14, + "end": 455.62, + "probability": 0.9533 + }, + { + "start": 455.8, + "end": 456.84, + "probability": 0.7651 + }, + { + "start": 456.94, + "end": 457.62, + "probability": 0.9104 + }, + { + "start": 457.78, + "end": 461.04, + "probability": 0.9746 + }, + { + "start": 461.52, + "end": 464.8, + "probability": 0.9634 + }, + { + "start": 465.34, + "end": 468.18, + "probability": 0.9209 + }, + { + "start": 468.5, + "end": 475.88, + "probability": 0.9608 + }, + { + "start": 477.06, + "end": 477.44, + "probability": 0.33 + }, + { + "start": 477.46, + "end": 481.26, + "probability": 0.9918 + }, + { + "start": 481.46, + "end": 490.42, + "probability": 0.894 + }, + { + "start": 490.68, + "end": 491.72, + "probability": 0.796 + }, + { + "start": 492.2, + "end": 496.8, + "probability": 0.9485 + }, + { + "start": 497.2, + "end": 501.22, + "probability": 0.976 + }, + { + "start": 501.74, + "end": 505.78, + "probability": 0.9864 + }, + { + "start": 506.32, + "end": 510.82, + "probability": 0.9973 + }, + { + "start": 511.64, + "end": 516.02, + "probability": 0.9683 + }, + { + "start": 517.26, + "end": 519.52, + "probability": 0.9397 + }, + { + "start": 519.64, + "end": 521.82, + "probability": 0.9991 + }, + { + "start": 521.92, + "end": 525.06, + "probability": 0.9987 + }, + { + "start": 525.42, + "end": 530.62, + "probability": 0.9979 + }, + { + "start": 530.64, + "end": 534.16, + "probability": 0.9998 + }, + { + "start": 536.16, + "end": 538.28, + "probability": 0.5468 + }, + { + "start": 539.26, + "end": 539.7, + "probability": 0.5094 + }, + { + "start": 540.46, + "end": 546.05, + "probability": 0.9255 + }, + { + "start": 547.28, + "end": 550.94, + "probability": 0.9819 + }, + { + "start": 551.94, + "end": 554.66, + "probability": 0.9912 + }, + { + "start": 554.84, + "end": 557.1, + "probability": 0.9665 + }, + { + "start": 558.1, + "end": 564.5, + "probability": 0.9806 + }, + { + "start": 564.88, + "end": 566.85, + "probability": 0.9089 + }, + { + "start": 567.44, + "end": 574.0, + "probability": 0.9927 + }, + { + "start": 574.38, + "end": 576.02, + "probability": 0.7724 + }, + { + "start": 576.18, + "end": 578.56, + "probability": 0.7963 + }, + { + "start": 579.0, + "end": 582.43, + "probability": 0.995 + }, + { + "start": 583.74, + "end": 584.54, + "probability": 0.6152 + }, + { + "start": 585.28, + "end": 590.3, + "probability": 0.9697 + }, + { + "start": 591.08, + "end": 593.06, + "probability": 0.2873 + }, + { + "start": 593.66, + "end": 595.58, + "probability": 0.8996 + }, + { + "start": 595.92, + "end": 598.3, + "probability": 0.8045 + }, + { + "start": 598.54, + "end": 600.44, + "probability": 0.8548 + }, + { + "start": 600.54, + "end": 601.4, + "probability": 0.8079 + }, + { + "start": 602.08, + "end": 603.32, + "probability": 0.8283 + }, + { + "start": 605.28, + "end": 605.64, + "probability": 0.9011 + }, + { + "start": 607.04, + "end": 607.88, + "probability": 0.957 + }, + { + "start": 609.66, + "end": 610.68, + "probability": 0.4851 + }, + { + "start": 611.74, + "end": 615.48, + "probability": 0.9467 + }, + { + "start": 616.16, + "end": 621.22, + "probability": 0.9558 + }, + { + "start": 621.22, + "end": 627.12, + "probability": 0.7267 + }, + { + "start": 627.32, + "end": 627.96, + "probability": 0.195 + }, + { + "start": 627.96, + "end": 628.62, + "probability": 0.3055 + }, + { + "start": 628.92, + "end": 630.44, + "probability": 0.7987 + }, + { + "start": 630.8, + "end": 632.02, + "probability": 0.7516 + }, + { + "start": 632.34, + "end": 635.26, + "probability": 0.8471 + }, + { + "start": 635.54, + "end": 638.24, + "probability": 0.9717 + }, + { + "start": 638.8, + "end": 641.6, + "probability": 0.9888 + }, + { + "start": 641.6, + "end": 644.88, + "probability": 0.9954 + }, + { + "start": 646.93, + "end": 649.5, + "probability": 0.8654 + }, + { + "start": 650.88, + "end": 654.42, + "probability": 0.9207 + }, + { + "start": 655.46, + "end": 658.38, + "probability": 0.9839 + }, + { + "start": 658.86, + "end": 661.56, + "probability": 0.9917 + }, + { + "start": 662.74, + "end": 667.48, + "probability": 0.9874 + }, + { + "start": 667.84, + "end": 672.92, + "probability": 0.84 + }, + { + "start": 673.26, + "end": 674.78, + "probability": 0.8699 + }, + { + "start": 675.2, + "end": 677.62, + "probability": 0.9775 + }, + { + "start": 678.34, + "end": 679.18, + "probability": 0.9022 + }, + { + "start": 679.86, + "end": 681.21, + "probability": 0.9299 + }, + { + "start": 681.74, + "end": 682.98, + "probability": 0.8884 + }, + { + "start": 683.16, + "end": 687.14, + "probability": 0.9797 + }, + { + "start": 687.64, + "end": 689.59, + "probability": 0.999 + }, + { + "start": 690.34, + "end": 695.88, + "probability": 0.9958 + }, + { + "start": 696.38, + "end": 698.22, + "probability": 0.9868 + }, + { + "start": 698.48, + "end": 700.09, + "probability": 0.9966 + }, + { + "start": 700.82, + "end": 703.76, + "probability": 0.9931 + }, + { + "start": 704.18, + "end": 704.4, + "probability": 0.4187 + }, + { + "start": 704.58, + "end": 705.16, + "probability": 0.7068 + }, + { + "start": 705.42, + "end": 708.08, + "probability": 0.9738 + }, + { + "start": 710.44, + "end": 711.56, + "probability": 0.9167 + }, + { + "start": 712.4, + "end": 715.72, + "probability": 0.9897 + }, + { + "start": 715.88, + "end": 717.28, + "probability": 0.9099 + }, + { + "start": 717.64, + "end": 719.52, + "probability": 0.9965 + }, + { + "start": 719.62, + "end": 720.84, + "probability": 0.9819 + }, + { + "start": 721.14, + "end": 722.8, + "probability": 0.9854 + }, + { + "start": 723.36, + "end": 726.3, + "probability": 0.7259 + }, + { + "start": 726.92, + "end": 733.66, + "probability": 0.9775 + }, + { + "start": 733.92, + "end": 734.72, + "probability": 0.6618 + }, + { + "start": 734.96, + "end": 736.08, + "probability": 0.9311 + }, + { + "start": 736.32, + "end": 737.8, + "probability": 0.9534 + }, + { + "start": 737.88, + "end": 738.84, + "probability": 0.9622 + }, + { + "start": 739.18, + "end": 740.08, + "probability": 0.7061 + }, + { + "start": 740.46, + "end": 741.78, + "probability": 0.7859 + }, + { + "start": 742.06, + "end": 743.5, + "probability": 0.905 + }, + { + "start": 743.86, + "end": 744.36, + "probability": 0.5676 + }, + { + "start": 744.36, + "end": 749.12, + "probability": 0.9627 + }, + { + "start": 749.18, + "end": 751.5, + "probability": 0.9395 + }, + { + "start": 751.98, + "end": 753.16, + "probability": 0.9689 + }, + { + "start": 755.06, + "end": 757.02, + "probability": 0.5396 + }, + { + "start": 757.3, + "end": 759.72, + "probability": 0.9303 + }, + { + "start": 759.96, + "end": 761.48, + "probability": 0.9554 + }, + { + "start": 761.56, + "end": 764.02, + "probability": 0.8307 + }, + { + "start": 772.7, + "end": 772.88, + "probability": 0.1657 + }, + { + "start": 788.96, + "end": 791.4, + "probability": 0.8155 + }, + { + "start": 793.64, + "end": 798.26, + "probability": 0.9954 + }, + { + "start": 798.28, + "end": 803.74, + "probability": 0.9969 + }, + { + "start": 807.98, + "end": 812.66, + "probability": 0.999 + }, + { + "start": 813.72, + "end": 815.54, + "probability": 0.9888 + }, + { + "start": 815.7, + "end": 820.04, + "probability": 0.7892 + }, + { + "start": 820.96, + "end": 828.69, + "probability": 0.9906 + }, + { + "start": 829.74, + "end": 833.96, + "probability": 0.9648 + }, + { + "start": 835.44, + "end": 835.86, + "probability": 0.9258 + }, + { + "start": 837.04, + "end": 839.39, + "probability": 0.9856 + }, + { + "start": 840.96, + "end": 842.62, + "probability": 0.9679 + }, + { + "start": 844.02, + "end": 844.3, + "probability": 0.8338 + }, + { + "start": 844.4, + "end": 844.96, + "probability": 0.4887 + }, + { + "start": 845.06, + "end": 846.69, + "probability": 0.963 + }, + { + "start": 848.96, + "end": 851.5, + "probability": 0.9798 + }, + { + "start": 851.76, + "end": 854.34, + "probability": 0.918 + }, + { + "start": 854.68, + "end": 854.7, + "probability": 0.7009 + }, + { + "start": 854.8, + "end": 857.08, + "probability": 0.996 + }, + { + "start": 857.58, + "end": 860.88, + "probability": 0.965 + }, + { + "start": 861.2, + "end": 863.96, + "probability": 0.9844 + }, + { + "start": 863.96, + "end": 864.96, + "probability": 0.5118 + }, + { + "start": 865.08, + "end": 868.38, + "probability": 0.8043 + }, + { + "start": 868.4, + "end": 869.3, + "probability": 0.8003 + }, + { + "start": 869.56, + "end": 870.38, + "probability": 0.9331 + }, + { + "start": 870.48, + "end": 875.8, + "probability": 0.9658 + }, + { + "start": 876.14, + "end": 877.28, + "probability": 0.9937 + }, + { + "start": 877.42, + "end": 878.02, + "probability": 0.9664 + }, + { + "start": 878.22, + "end": 879.18, + "probability": 0.7254 + }, + { + "start": 879.9, + "end": 885.22, + "probability": 0.9423 + }, + { + "start": 885.42, + "end": 886.22, + "probability": 0.8215 + }, + { + "start": 886.44, + "end": 887.22, + "probability": 0.902 + }, + { + "start": 887.66, + "end": 888.88, + "probability": 0.967 + }, + { + "start": 890.44, + "end": 897.14, + "probability": 0.9982 + }, + { + "start": 897.24, + "end": 898.62, + "probability": 0.6506 + }, + { + "start": 899.06, + "end": 900.42, + "probability": 0.8643 + }, + { + "start": 900.54, + "end": 901.1, + "probability": 0.9285 + }, + { + "start": 901.84, + "end": 904.2, + "probability": 0.8993 + }, + { + "start": 904.36, + "end": 911.26, + "probability": 0.9671 + }, + { + "start": 911.86, + "end": 915.76, + "probability": 0.9373 + }, + { + "start": 916.92, + "end": 921.14, + "probability": 0.891 + }, + { + "start": 921.76, + "end": 922.1, + "probability": 0.6314 + }, + { + "start": 922.2, + "end": 923.14, + "probability": 0.6195 + }, + { + "start": 926.14, + "end": 929.18, + "probability": 0.9203 + }, + { + "start": 929.18, + "end": 932.36, + "probability": 0.9872 + }, + { + "start": 933.1, + "end": 937.34, + "probability": 0.9767 + }, + { + "start": 937.5, + "end": 941.42, + "probability": 0.9687 + }, + { + "start": 941.9, + "end": 943.09, + "probability": 0.5361 + }, + { + "start": 944.08, + "end": 944.88, + "probability": 0.8608 + }, + { + "start": 946.02, + "end": 948.9, + "probability": 0.9678 + }, + { + "start": 949.28, + "end": 949.94, + "probability": 0.9868 + }, + { + "start": 951.36, + "end": 954.4, + "probability": 0.993 + }, + { + "start": 954.88, + "end": 955.98, + "probability": 0.915 + }, + { + "start": 956.32, + "end": 957.18, + "probability": 0.619 + }, + { + "start": 957.6, + "end": 960.76, + "probability": 0.9941 + }, + { + "start": 961.12, + "end": 963.28, + "probability": 0.9922 + }, + { + "start": 964.14, + "end": 965.9, + "probability": 0.9699 + }, + { + "start": 966.12, + "end": 969.86, + "probability": 0.9302 + }, + { + "start": 970.58, + "end": 974.82, + "probability": 0.9277 + }, + { + "start": 975.24, + "end": 976.06, + "probability": 0.8163 + }, + { + "start": 976.28, + "end": 978.52, + "probability": 0.9644 + }, + { + "start": 981.34, + "end": 987.26, + "probability": 0.9329 + }, + { + "start": 988.0, + "end": 994.48, + "probability": 0.9644 + }, + { + "start": 995.26, + "end": 995.74, + "probability": 0.9544 + }, + { + "start": 997.36, + "end": 998.04, + "probability": 0.1707 + }, + { + "start": 998.6, + "end": 1001.49, + "probability": 0.9062 + }, + { + "start": 1002.5, + "end": 1003.24, + "probability": 0.9399 + }, + { + "start": 1003.74, + "end": 1004.98, + "probability": 0.9409 + }, + { + "start": 1005.04, + "end": 1009.44, + "probability": 0.6987 + }, + { + "start": 1009.68, + "end": 1011.58, + "probability": 0.3518 + }, + { + "start": 1012.32, + "end": 1016.12, + "probability": 0.9004 + }, + { + "start": 1016.2, + "end": 1017.76, + "probability": 0.8421 + }, + { + "start": 1017.9, + "end": 1019.08, + "probability": 0.7973 + }, + { + "start": 1019.4, + "end": 1022.76, + "probability": 0.9854 + }, + { + "start": 1022.8, + "end": 1023.7, + "probability": 0.5097 + }, + { + "start": 1023.82, + "end": 1025.32, + "probability": 0.9455 + }, + { + "start": 1026.68, + "end": 1028.19, + "probability": 0.9655 + }, + { + "start": 1028.96, + "end": 1030.42, + "probability": 0.9877 + }, + { + "start": 1030.5, + "end": 1033.72, + "probability": 0.9905 + }, + { + "start": 1033.72, + "end": 1034.58, + "probability": 0.3018 + }, + { + "start": 1034.58, + "end": 1034.96, + "probability": 0.7008 + }, + { + "start": 1035.02, + "end": 1035.1, + "probability": 0.6227 + }, + { + "start": 1035.1, + "end": 1036.46, + "probability": 0.7696 + }, + { + "start": 1036.88, + "end": 1037.24, + "probability": 0.8864 + }, + { + "start": 1037.28, + "end": 1038.22, + "probability": 0.9468 + }, + { + "start": 1039.12, + "end": 1042.26, + "probability": 0.9771 + }, + { + "start": 1043.02, + "end": 1046.04, + "probability": 0.8833 + }, + { + "start": 1046.32, + "end": 1046.58, + "probability": 0.2936 + }, + { + "start": 1046.78, + "end": 1050.32, + "probability": 0.7646 + }, + { + "start": 1050.78, + "end": 1054.38, + "probability": 0.8691 + }, + { + "start": 1054.84, + "end": 1057.22, + "probability": 0.9382 + }, + { + "start": 1057.58, + "end": 1057.82, + "probability": 0.6521 + }, + { + "start": 1057.88, + "end": 1059.16, + "probability": 0.8939 + }, + { + "start": 1060.02, + "end": 1060.72, + "probability": 0.9495 + }, + { + "start": 1060.78, + "end": 1062.8, + "probability": 0.8366 + }, + { + "start": 1063.18, + "end": 1063.96, + "probability": 0.9441 + }, + { + "start": 1064.22, + "end": 1064.94, + "probability": 0.8772 + }, + { + "start": 1065.8, + "end": 1066.87, + "probability": 0.9777 + }, + { + "start": 1067.22, + "end": 1069.36, + "probability": 0.934 + }, + { + "start": 1069.36, + "end": 1073.2, + "probability": 0.9556 + }, + { + "start": 1073.3, + "end": 1074.82, + "probability": 0.9888 + }, + { + "start": 1075.7, + "end": 1076.54, + "probability": 0.3594 + }, + { + "start": 1076.9, + "end": 1078.29, + "probability": 0.6143 + }, + { + "start": 1078.98, + "end": 1082.96, + "probability": 0.9829 + }, + { + "start": 1083.26, + "end": 1088.48, + "probability": 0.9827 + }, + { + "start": 1088.76, + "end": 1091.3, + "probability": 0.9274 + }, + { + "start": 1092.84, + "end": 1093.82, + "probability": 0.9624 + }, + { + "start": 1094.78, + "end": 1099.43, + "probability": 0.9792 + }, + { + "start": 1100.46, + "end": 1105.34, + "probability": 0.888 + }, + { + "start": 1106.74, + "end": 1111.3, + "probability": 0.6093 + }, + { + "start": 1111.9, + "end": 1114.84, + "probability": 0.8178 + }, + { + "start": 1115.48, + "end": 1117.38, + "probability": 0.4615 + }, + { + "start": 1120.18, + "end": 1122.6, + "probability": 0.8311 + }, + { + "start": 1122.74, + "end": 1123.15, + "probability": 0.7783 + }, + { + "start": 1124.2, + "end": 1125.62, + "probability": 0.9484 + }, + { + "start": 1126.0, + "end": 1126.86, + "probability": 0.9773 + }, + { + "start": 1127.24, + "end": 1129.68, + "probability": 0.9873 + }, + { + "start": 1129.7, + "end": 1134.06, + "probability": 0.9958 + }, + { + "start": 1134.66, + "end": 1139.24, + "probability": 0.8574 + }, + { + "start": 1140.28, + "end": 1141.96, + "probability": 0.9611 + }, + { + "start": 1142.58, + "end": 1143.1, + "probability": 0.7925 + }, + { + "start": 1143.44, + "end": 1148.78, + "probability": 0.9468 + }, + { + "start": 1149.78, + "end": 1154.12, + "probability": 0.9985 + }, + { + "start": 1155.7, + "end": 1157.56, + "probability": 0.8468 + }, + { + "start": 1157.94, + "end": 1158.36, + "probability": 0.9758 + }, + { + "start": 1159.02, + "end": 1161.74, + "probability": 0.9813 + }, + { + "start": 1162.56, + "end": 1164.26, + "probability": 0.9843 + }, + { + "start": 1164.86, + "end": 1165.97, + "probability": 0.9714 + }, + { + "start": 1167.44, + "end": 1168.36, + "probability": 0.9758 + }, + { + "start": 1168.44, + "end": 1169.38, + "probability": 0.9285 + }, + { + "start": 1169.4, + "end": 1172.4, + "probability": 0.998 + }, + { + "start": 1173.44, + "end": 1177.14, + "probability": 0.9888 + }, + { + "start": 1177.64, + "end": 1180.4, + "probability": 0.8317 + }, + { + "start": 1180.76, + "end": 1181.38, + "probability": 0.9324 + }, + { + "start": 1181.86, + "end": 1182.48, + "probability": 0.9916 + }, + { + "start": 1182.76, + "end": 1184.66, + "probability": 0.7864 + }, + { + "start": 1184.78, + "end": 1185.98, + "probability": 0.4991 + }, + { + "start": 1187.4, + "end": 1187.4, + "probability": 0.08 + }, + { + "start": 1187.4, + "end": 1188.53, + "probability": 0.9438 + }, + { + "start": 1188.78, + "end": 1190.5, + "probability": 0.9541 + }, + { + "start": 1190.6, + "end": 1193.08, + "probability": 0.9922 + }, + { + "start": 1193.68, + "end": 1196.34, + "probability": 0.9795 + }, + { + "start": 1196.92, + "end": 1197.52, + "probability": 0.5388 + }, + { + "start": 1197.54, + "end": 1198.92, + "probability": 0.9912 + }, + { + "start": 1199.3, + "end": 1205.54, + "probability": 0.9956 + }, + { + "start": 1206.22, + "end": 1208.94, + "probability": 0.8086 + }, + { + "start": 1209.82, + "end": 1217.76, + "probability": 0.9932 + }, + { + "start": 1218.78, + "end": 1222.54, + "probability": 0.963 + }, + { + "start": 1223.85, + "end": 1230.32, + "probability": 0.9658 + }, + { + "start": 1230.36, + "end": 1230.54, + "probability": 0.8161 + }, + { + "start": 1230.62, + "end": 1231.54, + "probability": 0.9589 + }, + { + "start": 1231.8, + "end": 1233.52, + "probability": 0.9114 + }, + { + "start": 1235.7, + "end": 1239.82, + "probability": 0.3842 + }, + { + "start": 1240.54, + "end": 1240.96, + "probability": 0.1394 + }, + { + "start": 1240.96, + "end": 1240.96, + "probability": 0.0882 + }, + { + "start": 1240.96, + "end": 1240.96, + "probability": 0.4838 + }, + { + "start": 1240.96, + "end": 1240.96, + "probability": 0.1054 + }, + { + "start": 1240.96, + "end": 1242.74, + "probability": 0.568 + }, + { + "start": 1242.78, + "end": 1245.68, + "probability": 0.5294 + }, + { + "start": 1245.68, + "end": 1248.96, + "probability": 0.8174 + }, + { + "start": 1249.06, + "end": 1249.22, + "probability": 0.5932 + }, + { + "start": 1250.08, + "end": 1254.2, + "probability": 0.9961 + }, + { + "start": 1254.62, + "end": 1255.9, + "probability": 0.8663 + }, + { + "start": 1256.06, + "end": 1258.92, + "probability": 0.9668 + }, + { + "start": 1259.08, + "end": 1259.8, + "probability": 0.7107 + }, + { + "start": 1260.34, + "end": 1260.98, + "probability": 0.9395 + }, + { + "start": 1261.28, + "end": 1263.8, + "probability": 0.9675 + }, + { + "start": 1263.92, + "end": 1265.24, + "probability": 0.9775 + }, + { + "start": 1265.6, + "end": 1266.96, + "probability": 0.9283 + }, + { + "start": 1267.58, + "end": 1268.54, + "probability": 0.8601 + }, + { + "start": 1268.72, + "end": 1271.82, + "probability": 0.7456 + }, + { + "start": 1271.96, + "end": 1272.98, + "probability": 0.9386 + }, + { + "start": 1273.04, + "end": 1274.02, + "probability": 0.9409 + }, + { + "start": 1274.56, + "end": 1275.64, + "probability": 0.9333 + }, + { + "start": 1276.18, + "end": 1276.38, + "probability": 0.4592 + }, + { + "start": 1276.78, + "end": 1280.94, + "probability": 0.9355 + }, + { + "start": 1281.1, + "end": 1283.74, + "probability": 0.9368 + }, + { + "start": 1283.78, + "end": 1285.0, + "probability": 0.7746 + }, + { + "start": 1285.3, + "end": 1285.52, + "probability": 0.5299 + }, + { + "start": 1285.6, + "end": 1286.48, + "probability": 0.9634 + }, + { + "start": 1286.66, + "end": 1287.6, + "probability": 0.7734 + }, + { + "start": 1288.12, + "end": 1288.66, + "probability": 0.5843 + }, + { + "start": 1288.98, + "end": 1291.92, + "probability": 0.929 + }, + { + "start": 1292.32, + "end": 1294.78, + "probability": 0.894 + }, + { + "start": 1295.06, + "end": 1295.38, + "probability": 0.4671 + }, + { + "start": 1295.56, + "end": 1299.22, + "probability": 0.8605 + }, + { + "start": 1299.54, + "end": 1301.3, + "probability": 0.8973 + }, + { + "start": 1301.56, + "end": 1302.52, + "probability": 0.8763 + }, + { + "start": 1302.64, + "end": 1303.96, + "probability": 0.9795 + }, + { + "start": 1304.74, + "end": 1306.8, + "probability": 0.8437 + }, + { + "start": 1307.0, + "end": 1310.16, + "probability": 0.9929 + }, + { + "start": 1310.78, + "end": 1312.04, + "probability": 0.9747 + }, + { + "start": 1312.08, + "end": 1312.46, + "probability": 0.8179 + }, + { + "start": 1313.2, + "end": 1316.62, + "probability": 0.9079 + }, + { + "start": 1317.52, + "end": 1319.92, + "probability": 0.8784 + }, + { + "start": 1319.92, + "end": 1322.4, + "probability": 0.9074 + }, + { + "start": 1322.52, + "end": 1323.49, + "probability": 0.9868 + }, + { + "start": 1324.5, + "end": 1326.54, + "probability": 0.4387 + }, + { + "start": 1327.94, + "end": 1327.94, + "probability": 0.389 + }, + { + "start": 1329.08, + "end": 1332.8, + "probability": 0.9141 + }, + { + "start": 1332.92, + "end": 1334.26, + "probability": 0.9296 + }, + { + "start": 1334.7, + "end": 1336.42, + "probability": 0.9279 + }, + { + "start": 1336.66, + "end": 1339.64, + "probability": 0.9736 + }, + { + "start": 1340.48, + "end": 1344.6, + "probability": 0.9957 + }, + { + "start": 1344.74, + "end": 1345.1, + "probability": 0.5563 + }, + { + "start": 1345.16, + "end": 1345.36, + "probability": 0.483 + }, + { + "start": 1345.74, + "end": 1348.36, + "probability": 0.5202 + }, + { + "start": 1348.72, + "end": 1349.33, + "probability": 0.5026 + }, + { + "start": 1349.76, + "end": 1351.96, + "probability": 0.6506 + }, + { + "start": 1352.4, + "end": 1353.0, + "probability": 0.4821 + }, + { + "start": 1353.08, + "end": 1353.78, + "probability": 0.811 + }, + { + "start": 1354.28, + "end": 1357.42, + "probability": 0.8416 + }, + { + "start": 1360.32, + "end": 1362.84, + "probability": 0.9426 + }, + { + "start": 1362.92, + "end": 1363.3, + "probability": 0.8531 + }, + { + "start": 1364.34, + "end": 1364.52, + "probability": 0.6234 + }, + { + "start": 1365.02, + "end": 1365.34, + "probability": 0.6368 + }, + { + "start": 1365.98, + "end": 1369.48, + "probability": 0.9438 + }, + { + "start": 1369.64, + "end": 1371.24, + "probability": 0.8602 + }, + { + "start": 1371.54, + "end": 1372.9, + "probability": 0.9432 + }, + { + "start": 1376.64, + "end": 1379.02, + "probability": 0.0683 + }, + { + "start": 1380.14, + "end": 1383.32, + "probability": 0.0499 + }, + { + "start": 1383.72, + "end": 1383.72, + "probability": 0.1301 + }, + { + "start": 1383.72, + "end": 1383.72, + "probability": 0.0535 + }, + { + "start": 1383.72, + "end": 1383.84, + "probability": 0.0141 + }, + { + "start": 1383.84, + "end": 1383.84, + "probability": 0.2055 + }, + { + "start": 1383.84, + "end": 1385.12, + "probability": 0.1912 + }, + { + "start": 1386.08, + "end": 1386.88, + "probability": 0.4182 + }, + { + "start": 1387.34, + "end": 1389.46, + "probability": 0.6722 + }, + { + "start": 1389.64, + "end": 1393.7, + "probability": 0.9689 + }, + { + "start": 1393.7, + "end": 1396.58, + "probability": 0.8207 + }, + { + "start": 1396.68, + "end": 1399.4, + "probability": 0.8398 + }, + { + "start": 1400.16, + "end": 1405.98, + "probability": 0.9792 + }, + { + "start": 1406.22, + "end": 1407.6, + "probability": 0.9463 + }, + { + "start": 1407.66, + "end": 1408.9, + "probability": 0.9377 + }, + { + "start": 1409.62, + "end": 1410.76, + "probability": 0.7961 + }, + { + "start": 1410.84, + "end": 1414.48, + "probability": 0.9849 + }, + { + "start": 1414.48, + "end": 1417.46, + "probability": 0.9854 + }, + { + "start": 1418.4, + "end": 1423.46, + "probability": 0.9027 + }, + { + "start": 1424.1, + "end": 1426.56, + "probability": 0.5034 + }, + { + "start": 1426.68, + "end": 1428.3, + "probability": 0.6502 + }, + { + "start": 1429.92, + "end": 1431.29, + "probability": 0.5233 + }, + { + "start": 1431.74, + "end": 1434.03, + "probability": 0.8974 + }, + { + "start": 1434.68, + "end": 1438.44, + "probability": 0.9782 + }, + { + "start": 1438.96, + "end": 1442.74, + "probability": 0.9899 + }, + { + "start": 1443.38, + "end": 1446.32, + "probability": 0.9487 + }, + { + "start": 1446.62, + "end": 1449.36, + "probability": 0.8136 + }, + { + "start": 1450.24, + "end": 1451.42, + "probability": 0.9752 + }, + { + "start": 1451.6, + "end": 1454.29, + "probability": 0.8765 + }, + { + "start": 1455.24, + "end": 1459.12, + "probability": 0.9755 + }, + { + "start": 1460.8, + "end": 1464.08, + "probability": 0.9964 + }, + { + "start": 1464.12, + "end": 1468.12, + "probability": 0.9667 + }, + { + "start": 1469.02, + "end": 1469.46, + "probability": 0.501 + }, + { + "start": 1469.64, + "end": 1473.78, + "probability": 0.9675 + }, + { + "start": 1473.94, + "end": 1479.56, + "probability": 0.9331 + }, + { + "start": 1479.56, + "end": 1483.42, + "probability": 0.9949 + }, + { + "start": 1483.8, + "end": 1488.12, + "probability": 0.9644 + }, + { + "start": 1488.38, + "end": 1490.06, + "probability": 0.9902 + }, + { + "start": 1491.08, + "end": 1497.18, + "probability": 0.9307 + }, + { + "start": 1497.62, + "end": 1500.14, + "probability": 0.9705 + }, + { + "start": 1501.3, + "end": 1502.18, + "probability": 0.8813 + }, + { + "start": 1502.36, + "end": 1504.52, + "probability": 0.9697 + }, + { + "start": 1504.62, + "end": 1508.08, + "probability": 0.9207 + }, + { + "start": 1508.08, + "end": 1512.04, + "probability": 0.9887 + }, + { + "start": 1512.14, + "end": 1513.96, + "probability": 0.8348 + }, + { + "start": 1514.44, + "end": 1519.2, + "probability": 0.958 + }, + { + "start": 1519.66, + "end": 1524.02, + "probability": 0.9775 + }, + { + "start": 1524.3, + "end": 1525.5, + "probability": 0.7189 + }, + { + "start": 1526.1, + "end": 1530.4, + "probability": 0.8215 + }, + { + "start": 1530.96, + "end": 1533.49, + "probability": 0.9941 + }, + { + "start": 1533.9, + "end": 1538.68, + "probability": 0.8594 + }, + { + "start": 1539.74, + "end": 1542.1, + "probability": 0.5545 + }, + { + "start": 1542.66, + "end": 1544.32, + "probability": 0.9028 + }, + { + "start": 1544.82, + "end": 1546.0, + "probability": 0.5913 + }, + { + "start": 1546.18, + "end": 1548.4, + "probability": 0.9307 + }, + { + "start": 1549.88, + "end": 1553.26, + "probability": 0.9746 + }, + { + "start": 1553.26, + "end": 1555.7, + "probability": 0.8778 + }, + { + "start": 1556.26, + "end": 1559.08, + "probability": 0.9827 + }, + { + "start": 1559.22, + "end": 1561.22, + "probability": 0.9788 + }, + { + "start": 1562.15, + "end": 1564.1, + "probability": 0.9901 + }, + { + "start": 1565.82, + "end": 1567.04, + "probability": 0.6678 + }, + { + "start": 1568.36, + "end": 1569.44, + "probability": 0.7052 + }, + { + "start": 1569.48, + "end": 1571.24, + "probability": 0.8819 + }, + { + "start": 1571.28, + "end": 1572.56, + "probability": 0.6671 + }, + { + "start": 1572.68, + "end": 1574.1, + "probability": 0.9343 + }, + { + "start": 1575.28, + "end": 1577.86, + "probability": 0.9389 + }, + { + "start": 1578.06, + "end": 1578.58, + "probability": 0.8284 + }, + { + "start": 1578.7, + "end": 1581.14, + "probability": 0.8563 + }, + { + "start": 1581.52, + "end": 1582.94, + "probability": 0.9312 + }, + { + "start": 1583.44, + "end": 1584.68, + "probability": 0.8972 + }, + { + "start": 1585.34, + "end": 1589.2, + "probability": 0.6543 + }, + { + "start": 1590.4, + "end": 1595.12, + "probability": 0.9372 + }, + { + "start": 1595.16, + "end": 1597.9, + "probability": 0.9986 + }, + { + "start": 1600.04, + "end": 1604.76, + "probability": 0.9241 + }, + { + "start": 1604.9, + "end": 1607.8, + "probability": 0.9575 + }, + { + "start": 1607.94, + "end": 1609.44, + "probability": 0.7977 + }, + { + "start": 1609.68, + "end": 1610.58, + "probability": 0.6474 + }, + { + "start": 1610.8, + "end": 1613.17, + "probability": 0.9908 + }, + { + "start": 1614.64, + "end": 1618.36, + "probability": 0.7634 + }, + { + "start": 1618.36, + "end": 1622.46, + "probability": 0.9966 + }, + { + "start": 1623.28, + "end": 1624.32, + "probability": 0.9287 + }, + { + "start": 1624.58, + "end": 1625.72, + "probability": 0.9644 + }, + { + "start": 1626.14, + "end": 1627.04, + "probability": 0.5901 + }, + { + "start": 1627.4, + "end": 1629.28, + "probability": 0.9274 + }, + { + "start": 1629.36, + "end": 1630.48, + "probability": 0.8452 + }, + { + "start": 1630.82, + "end": 1633.24, + "probability": 0.9821 + }, + { + "start": 1634.2, + "end": 1638.28, + "probability": 0.9927 + }, + { + "start": 1638.46, + "end": 1641.04, + "probability": 0.9554 + }, + { + "start": 1641.78, + "end": 1645.24, + "probability": 0.9382 + }, + { + "start": 1645.86, + "end": 1649.16, + "probability": 0.7631 + }, + { + "start": 1649.22, + "end": 1650.58, + "probability": 0.7532 + }, + { + "start": 1651.08, + "end": 1654.36, + "probability": 0.8879 + }, + { + "start": 1654.54, + "end": 1657.42, + "probability": 0.9771 + }, + { + "start": 1657.96, + "end": 1659.22, + "probability": 0.9243 + }, + { + "start": 1661.08, + "end": 1667.0, + "probability": 0.9729 + }, + { + "start": 1668.0, + "end": 1668.86, + "probability": 0.9097 + }, + { + "start": 1669.52, + "end": 1670.02, + "probability": 0.7389 + }, + { + "start": 1670.1, + "end": 1670.87, + "probability": 0.9355 + }, + { + "start": 1671.46, + "end": 1673.58, + "probability": 0.9173 + }, + { + "start": 1673.7, + "end": 1674.88, + "probability": 0.9945 + }, + { + "start": 1677.0, + "end": 1678.2, + "probability": 0.7028 + }, + { + "start": 1678.4, + "end": 1685.22, + "probability": 0.9722 + }, + { + "start": 1686.16, + "end": 1689.64, + "probability": 0.876 + }, + { + "start": 1690.38, + "end": 1692.57, + "probability": 0.9694 + }, + { + "start": 1693.04, + "end": 1693.64, + "probability": 0.8641 + }, + { + "start": 1693.72, + "end": 1695.72, + "probability": 0.7607 + }, + { + "start": 1695.82, + "end": 1698.64, + "probability": 0.7209 + }, + { + "start": 1698.96, + "end": 1700.24, + "probability": 0.7934 + }, + { + "start": 1700.36, + "end": 1700.9, + "probability": 0.6633 + }, + { + "start": 1701.04, + "end": 1702.92, + "probability": 0.9176 + }, + { + "start": 1703.26, + "end": 1704.44, + "probability": 0.698 + }, + { + "start": 1705.2, + "end": 1706.3, + "probability": 0.9463 + }, + { + "start": 1707.88, + "end": 1711.3, + "probability": 0.7967 + }, + { + "start": 1711.56, + "end": 1713.54, + "probability": 0.9303 + }, + { + "start": 1713.7, + "end": 1715.22, + "probability": 0.6521 + }, + { + "start": 1715.92, + "end": 1716.94, + "probability": 0.96 + }, + { + "start": 1717.24, + "end": 1717.9, + "probability": 0.8609 + }, + { + "start": 1718.4, + "end": 1720.42, + "probability": 0.995 + }, + { + "start": 1720.42, + "end": 1722.22, + "probability": 0.8845 + }, + { + "start": 1722.64, + "end": 1726.76, + "probability": 0.9717 + }, + { + "start": 1726.84, + "end": 1728.6, + "probability": 0.9808 + }, + { + "start": 1728.64, + "end": 1735.76, + "probability": 0.9775 + }, + { + "start": 1736.08, + "end": 1737.2, + "probability": 0.7737 + }, + { + "start": 1738.04, + "end": 1738.72, + "probability": 0.4057 + }, + { + "start": 1738.78, + "end": 1740.76, + "probability": 0.9631 + }, + { + "start": 1741.72, + "end": 1745.56, + "probability": 0.9948 + }, + { + "start": 1745.78, + "end": 1747.12, + "probability": 0.9612 + }, + { + "start": 1747.32, + "end": 1748.94, + "probability": 0.9609 + }, + { + "start": 1748.98, + "end": 1750.04, + "probability": 0.9895 + }, + { + "start": 1750.66, + "end": 1752.82, + "probability": 0.9836 + }, + { + "start": 1753.06, + "end": 1753.38, + "probability": 0.696 + }, + { + "start": 1753.38, + "end": 1755.53, + "probability": 0.9646 + }, + { + "start": 1757.44, + "end": 1758.64, + "probability": 0.9585 + }, + { + "start": 1759.4, + "end": 1763.54, + "probability": 0.9424 + }, + { + "start": 1764.06, + "end": 1769.04, + "probability": 0.7515 + }, + { + "start": 1769.48, + "end": 1772.36, + "probability": 0.7846 + }, + { + "start": 1772.52, + "end": 1773.54, + "probability": 0.8947 + }, + { + "start": 1774.2, + "end": 1775.0, + "probability": 0.6545 + }, + { + "start": 1776.4, + "end": 1777.69, + "probability": 0.9971 + }, + { + "start": 1778.18, + "end": 1778.82, + "probability": 0.8667 + }, + { + "start": 1778.86, + "end": 1783.38, + "probability": 0.9614 + }, + { + "start": 1783.38, + "end": 1788.54, + "probability": 0.9782 + }, + { + "start": 1788.72, + "end": 1789.24, + "probability": 0.665 + }, + { + "start": 1789.9, + "end": 1791.16, + "probability": 0.9622 + }, + { + "start": 1792.06, + "end": 1793.39, + "probability": 0.7957 + }, + { + "start": 1793.82, + "end": 1794.62, + "probability": 0.905 + }, + { + "start": 1794.64, + "end": 1798.54, + "probability": 0.9673 + }, + { + "start": 1798.76, + "end": 1799.34, + "probability": 0.675 + }, + { + "start": 1799.52, + "end": 1801.76, + "probability": 0.7434 + }, + { + "start": 1802.3, + "end": 1804.56, + "probability": 0.967 + }, + { + "start": 1804.72, + "end": 1805.42, + "probability": 0.7224 + }, + { + "start": 1805.56, + "end": 1806.22, + "probability": 0.4899 + }, + { + "start": 1806.3, + "end": 1807.93, + "probability": 0.5512 + }, + { + "start": 1808.62, + "end": 1810.52, + "probability": 0.637 + }, + { + "start": 1810.68, + "end": 1814.7, + "probability": 0.9319 + }, + { + "start": 1814.94, + "end": 1815.77, + "probability": 0.803 + }, + { + "start": 1816.14, + "end": 1818.08, + "probability": 0.8944 + }, + { + "start": 1818.12, + "end": 1819.2, + "probability": 0.8524 + }, + { + "start": 1819.36, + "end": 1820.84, + "probability": 0.3131 + }, + { + "start": 1820.84, + "end": 1822.18, + "probability": 0.6137 + }, + { + "start": 1822.26, + "end": 1823.02, + "probability": 0.7747 + }, + { + "start": 1823.72, + "end": 1826.86, + "probability": 0.7969 + }, + { + "start": 1826.96, + "end": 1829.92, + "probability": 0.0947 + }, + { + "start": 1829.92, + "end": 1832.56, + "probability": 0.5239 + }, + { + "start": 1832.56, + "end": 1835.9, + "probability": 0.9912 + }, + { + "start": 1836.54, + "end": 1837.58, + "probability": 0.9927 + }, + { + "start": 1837.68, + "end": 1838.78, + "probability": 0.9658 + }, + { + "start": 1838.92, + "end": 1841.98, + "probability": 0.9955 + }, + { + "start": 1843.24, + "end": 1845.32, + "probability": 0.5672 + }, + { + "start": 1845.64, + "end": 1847.92, + "probability": 0.8982 + }, + { + "start": 1848.34, + "end": 1850.24, + "probability": 0.8107 + }, + { + "start": 1851.12, + "end": 1858.88, + "probability": 0.6995 + }, + { + "start": 1859.32, + "end": 1861.64, + "probability": 0.7821 + }, + { + "start": 1861.94, + "end": 1863.56, + "probability": 0.9575 + }, + { + "start": 1863.76, + "end": 1865.08, + "probability": 0.9814 + }, + { + "start": 1865.68, + "end": 1869.81, + "probability": 0.9907 + }, + { + "start": 1870.18, + "end": 1873.9, + "probability": 0.7082 + }, + { + "start": 1874.78, + "end": 1877.2, + "probability": 0.873 + }, + { + "start": 1877.66, + "end": 1884.76, + "probability": 0.737 + }, + { + "start": 1884.76, + "end": 1888.16, + "probability": 0.9297 + }, + { + "start": 1888.42, + "end": 1888.92, + "probability": 0.5146 + }, + { + "start": 1889.04, + "end": 1891.71, + "probability": 0.9712 + }, + { + "start": 1892.12, + "end": 1894.0, + "probability": 0.5945 + }, + { + "start": 1894.1, + "end": 1894.77, + "probability": 0.7581 + }, + { + "start": 1896.46, + "end": 1898.82, + "probability": 0.9738 + }, + { + "start": 1899.36, + "end": 1902.66, + "probability": 0.9152 + }, + { + "start": 1902.92, + "end": 1906.8, + "probability": 0.983 + }, + { + "start": 1906.8, + "end": 1911.7, + "probability": 0.9988 + }, + { + "start": 1912.2, + "end": 1913.14, + "probability": 0.9951 + }, + { + "start": 1913.22, + "end": 1916.42, + "probability": 0.5279 + }, + { + "start": 1916.52, + "end": 1919.25, + "probability": 0.6592 + }, + { + "start": 1919.54, + "end": 1921.6, + "probability": 0.9761 + }, + { + "start": 1922.02, + "end": 1922.66, + "probability": 0.8208 + }, + { + "start": 1922.78, + "end": 1924.68, + "probability": 0.9272 + }, + { + "start": 1924.84, + "end": 1925.88, + "probability": 0.9145 + }, + { + "start": 1926.92, + "end": 1929.08, + "probability": 0.9552 + }, + { + "start": 1929.2, + "end": 1929.84, + "probability": 0.8472 + }, + { + "start": 1929.84, + "end": 1931.74, + "probability": 0.9679 + }, + { + "start": 1932.02, + "end": 1932.84, + "probability": 0.7949 + }, + { + "start": 1932.94, + "end": 1934.92, + "probability": 0.9761 + }, + { + "start": 1935.66, + "end": 1936.23, + "probability": 0.7849 + }, + { + "start": 1936.82, + "end": 1942.88, + "probability": 0.8246 + }, + { + "start": 1942.98, + "end": 1945.64, + "probability": 0.9502 + }, + { + "start": 1945.7, + "end": 1947.02, + "probability": 0.7741 + }, + { + "start": 1947.6, + "end": 1948.16, + "probability": 0.6913 + }, + { + "start": 1948.71, + "end": 1950.09, + "probability": 0.9473 + }, + { + "start": 1950.2, + "end": 1951.54, + "probability": 0.9817 + }, + { + "start": 1952.1, + "end": 1955.14, + "probability": 0.9912 + }, + { + "start": 1956.44, + "end": 1957.82, + "probability": 0.06 + }, + { + "start": 1957.9, + "end": 1958.96, + "probability": 0.7452 + }, + { + "start": 1959.26, + "end": 1959.8, + "probability": 0.7395 + }, + { + "start": 1959.86, + "end": 1962.0, + "probability": 0.8777 + }, + { + "start": 1962.02, + "end": 1963.66, + "probability": 0.7631 + }, + { + "start": 1964.2, + "end": 1966.36, + "probability": 0.9664 + }, + { + "start": 1966.82, + "end": 1968.98, + "probability": 0.8661 + }, + { + "start": 1969.12, + "end": 1969.9, + "probability": 0.5368 + }, + { + "start": 1969.96, + "end": 1975.08, + "probability": 0.965 + }, + { + "start": 1975.28, + "end": 1976.36, + "probability": 0.91 + }, + { + "start": 1976.82, + "end": 1978.84, + "probability": 0.8339 + }, + { + "start": 1979.54, + "end": 1981.0, + "probability": 0.9404 + }, + { + "start": 1981.1, + "end": 1983.18, + "probability": 0.994 + }, + { + "start": 1983.26, + "end": 1983.8, + "probability": 0.8469 + }, + { + "start": 1986.42, + "end": 1988.18, + "probability": 0.8308 + }, + { + "start": 1988.18, + "end": 1988.54, + "probability": 0.0023 + }, + { + "start": 1988.78, + "end": 1989.72, + "probability": 0.7382 + }, + { + "start": 1989.8, + "end": 1990.84, + "probability": 0.893 + }, + { + "start": 1991.58, + "end": 1993.36, + "probability": 0.9441 + }, + { + "start": 1993.36, + "end": 1995.32, + "probability": 0.9002 + }, + { + "start": 1995.96, + "end": 1998.92, + "probability": 0.8807 + }, + { + "start": 1998.92, + "end": 2000.62, + "probability": 0.2491 + }, + { + "start": 2000.62, + "end": 2002.28, + "probability": 0.4191 + }, + { + "start": 2002.4, + "end": 2004.14, + "probability": 0.2191 + }, + { + "start": 2004.14, + "end": 2006.78, + "probability": 0.823 + }, + { + "start": 2006.78, + "end": 2008.92, + "probability": 0.5174 + }, + { + "start": 2009.54, + "end": 2010.4, + "probability": 0.9111 + }, + { + "start": 2011.24, + "end": 2015.85, + "probability": 0.9958 + }, + { + "start": 2015.86, + "end": 2020.26, + "probability": 0.9786 + }, + { + "start": 2020.7, + "end": 2023.02, + "probability": 0.9138 + }, + { + "start": 2023.1, + "end": 2027.12, + "probability": 0.9844 + }, + { + "start": 2027.6, + "end": 2030.17, + "probability": 0.8801 + }, + { + "start": 2030.54, + "end": 2032.32, + "probability": 0.8223 + }, + { + "start": 2032.72, + "end": 2038.0, + "probability": 0.9641 + }, + { + "start": 2038.3, + "end": 2039.09, + "probability": 0.9509 + }, + { + "start": 2039.9, + "end": 2042.48, + "probability": 0.9667 + }, + { + "start": 2042.68, + "end": 2048.8, + "probability": 0.9884 + }, + { + "start": 2049.32, + "end": 2050.44, + "probability": 0.7832 + }, + { + "start": 2050.6, + "end": 2053.06, + "probability": 0.8688 + }, + { + "start": 2053.14, + "end": 2055.82, + "probability": 0.8046 + }, + { + "start": 2056.32, + "end": 2057.82, + "probability": 0.9423 + }, + { + "start": 2058.02, + "end": 2062.46, + "probability": 0.9387 + }, + { + "start": 2062.58, + "end": 2065.98, + "probability": 0.9403 + }, + { + "start": 2066.2, + "end": 2067.28, + "probability": 0.9671 + }, + { + "start": 2067.34, + "end": 2069.22, + "probability": 0.8044 + }, + { + "start": 2069.36, + "end": 2072.74, + "probability": 0.9147 + }, + { + "start": 2073.62, + "end": 2076.34, + "probability": 0.9257 + }, + { + "start": 2076.6, + "end": 2080.52, + "probability": 0.9961 + }, + { + "start": 2080.52, + "end": 2084.94, + "probability": 0.99 + }, + { + "start": 2084.94, + "end": 2085.1, + "probability": 0.7826 + }, + { + "start": 2085.66, + "end": 2087.92, + "probability": 0.9217 + }, + { + "start": 2088.4, + "end": 2091.04, + "probability": 0.988 + }, + { + "start": 2091.9, + "end": 2094.28, + "probability": 0.8407 + }, + { + "start": 2094.48, + "end": 2097.3, + "probability": 0.9492 + }, + { + "start": 2113.16, + "end": 2116.08, + "probability": 0.7208 + }, + { + "start": 2116.6, + "end": 2116.92, + "probability": 0.8445 + }, + { + "start": 2116.96, + "end": 2121.1, + "probability": 0.9819 + }, + { + "start": 2121.1, + "end": 2125.34, + "probability": 0.9988 + }, + { + "start": 2125.64, + "end": 2127.32, + "probability": 0.8691 + }, + { + "start": 2127.94, + "end": 2129.38, + "probability": 0.9673 + }, + { + "start": 2129.92, + "end": 2130.88, + "probability": 0.4504 + }, + { + "start": 2130.88, + "end": 2133.12, + "probability": 0.9663 + }, + { + "start": 2133.12, + "end": 2135.86, + "probability": 0.7055 + }, + { + "start": 2136.16, + "end": 2136.87, + "probability": 0.7998 + }, + { + "start": 2137.42, + "end": 2138.62, + "probability": 0.8092 + }, + { + "start": 2139.0, + "end": 2141.78, + "probability": 0.9576 + }, + { + "start": 2141.82, + "end": 2141.88, + "probability": 0.0083 + }, + { + "start": 2142.06, + "end": 2143.24, + "probability": 0.5072 + }, + { + "start": 2143.4, + "end": 2145.34, + "probability": 0.9351 + }, + { + "start": 2146.04, + "end": 2149.92, + "probability": 0.913 + }, + { + "start": 2149.94, + "end": 2153.04, + "probability": 0.9813 + }, + { + "start": 2153.62, + "end": 2155.08, + "probability": 0.6861 + }, + { + "start": 2156.22, + "end": 2156.98, + "probability": 0.6858 + }, + { + "start": 2157.06, + "end": 2160.26, + "probability": 0.8321 + }, + { + "start": 2160.68, + "end": 2162.1, + "probability": 0.9362 + }, + { + "start": 2162.1, + "end": 2164.14, + "probability": 0.7334 + }, + { + "start": 2164.58, + "end": 2165.56, + "probability": 0.2568 + }, + { + "start": 2167.44, + "end": 2167.76, + "probability": 0.0652 + }, + { + "start": 2167.76, + "end": 2167.76, + "probability": 0.2751 + }, + { + "start": 2167.76, + "end": 2167.76, + "probability": 0.0722 + }, + { + "start": 2167.76, + "end": 2172.74, + "probability": 0.7124 + }, + { + "start": 2172.9, + "end": 2175.75, + "probability": 0.9955 + }, + { + "start": 2176.42, + "end": 2179.46, + "probability": 0.8608 + }, + { + "start": 2179.76, + "end": 2181.24, + "probability": 0.9663 + }, + { + "start": 2181.7, + "end": 2182.18, + "probability": 0.588 + }, + { + "start": 2182.32, + "end": 2182.78, + "probability": 0.9258 + }, + { + "start": 2182.86, + "end": 2184.58, + "probability": 0.946 + }, + { + "start": 2184.84, + "end": 2186.48, + "probability": 0.9902 + }, + { + "start": 2186.82, + "end": 2187.68, + "probability": 0.9204 + }, + { + "start": 2187.7, + "end": 2189.72, + "probability": 0.9727 + }, + { + "start": 2189.92, + "end": 2190.41, + "probability": 0.7617 + }, + { + "start": 2191.02, + "end": 2193.38, + "probability": 0.5812 + }, + { + "start": 2194.2, + "end": 2194.2, + "probability": 0.1072 + }, + { + "start": 2194.2, + "end": 2195.2, + "probability": 0.9348 + }, + { + "start": 2195.68, + "end": 2198.84, + "probability": 0.8559 + }, + { + "start": 2199.1, + "end": 2200.34, + "probability": 0.8965 + }, + { + "start": 2200.7, + "end": 2204.42, + "probability": 0.9875 + }, + { + "start": 2204.6, + "end": 2206.96, + "probability": 0.8611 + }, + { + "start": 2207.66, + "end": 2210.06, + "probability": 0.8787 + }, + { + "start": 2210.76, + "end": 2211.38, + "probability": 0.6562 + }, + { + "start": 2212.08, + "end": 2213.0, + "probability": 0.7648 + }, + { + "start": 2213.46, + "end": 2217.04, + "probability": 0.9902 + }, + { + "start": 2217.8, + "end": 2220.74, + "probability": 0.8306 + }, + { + "start": 2221.62, + "end": 2224.52, + "probability": 0.9608 + }, + { + "start": 2225.54, + "end": 2227.06, + "probability": 0.9781 + }, + { + "start": 2227.46, + "end": 2230.16, + "probability": 0.9875 + }, + { + "start": 2230.48, + "end": 2231.32, + "probability": 0.768 + }, + { + "start": 2231.92, + "end": 2233.94, + "probability": 0.9596 + }, + { + "start": 2234.6, + "end": 2238.98, + "probability": 0.8818 + }, + { + "start": 2239.14, + "end": 2242.43, + "probability": 0.7334 + }, + { + "start": 2242.62, + "end": 2243.6, + "probability": 0.5503 + }, + { + "start": 2244.46, + "end": 2245.64, + "probability": 0.7889 + }, + { + "start": 2246.2, + "end": 2249.47, + "probability": 0.8787 + }, + { + "start": 2250.48, + "end": 2251.24, + "probability": 0.8776 + }, + { + "start": 2251.54, + "end": 2253.77, + "probability": 0.9941 + }, + { + "start": 2254.28, + "end": 2254.5, + "probability": 0.2501 + }, + { + "start": 2255.14, + "end": 2256.9, + "probability": 0.7324 + }, + { + "start": 2258.52, + "end": 2260.88, + "probability": 0.9892 + }, + { + "start": 2261.26, + "end": 2264.09, + "probability": 0.9846 + }, + { + "start": 2265.46, + "end": 2268.44, + "probability": 0.9675 + }, + { + "start": 2269.92, + "end": 2270.54, + "probability": 0.9395 + }, + { + "start": 2272.1, + "end": 2273.79, + "probability": 0.1109 + }, + { + "start": 2274.2, + "end": 2278.92, + "probability": 0.7392 + }, + { + "start": 2279.04, + "end": 2282.78, + "probability": 0.8827 + }, + { + "start": 2287.26, + "end": 2287.76, + "probability": 0.667 + }, + { + "start": 2288.68, + "end": 2288.72, + "probability": 0.0137 + }, + { + "start": 2288.72, + "end": 2288.72, + "probability": 0.0722 + }, + { + "start": 2288.72, + "end": 2289.18, + "probability": 0.2218 + }, + { + "start": 2289.38, + "end": 2289.54, + "probability": 0.5397 + }, + { + "start": 2289.62, + "end": 2291.58, + "probability": 0.9058 + }, + { + "start": 2291.62, + "end": 2292.08, + "probability": 0.6992 + }, + { + "start": 2292.32, + "end": 2294.17, + "probability": 0.9364 + }, + { + "start": 2294.8, + "end": 2296.08, + "probability": 0.9874 + }, + { + "start": 2297.48, + "end": 2298.32, + "probability": 0.723 + }, + { + "start": 2298.56, + "end": 2299.68, + "probability": 0.7094 + }, + { + "start": 2299.82, + "end": 2301.06, + "probability": 0.7555 + }, + { + "start": 2302.12, + "end": 2305.68, + "probability": 0.9807 + }, + { + "start": 2306.22, + "end": 2307.5, + "probability": 0.9661 + }, + { + "start": 2307.6, + "end": 2312.08, + "probability": 0.9924 + }, + { + "start": 2312.08, + "end": 2316.04, + "probability": 0.9255 + }, + { + "start": 2317.18, + "end": 2318.08, + "probability": 0.7415 + }, + { + "start": 2318.1, + "end": 2319.02, + "probability": 0.8763 + }, + { + "start": 2319.04, + "end": 2319.72, + "probability": 0.6728 + }, + { + "start": 2319.88, + "end": 2322.52, + "probability": 0.9567 + }, + { + "start": 2322.8, + "end": 2324.4, + "probability": 0.9715 + }, + { + "start": 2324.78, + "end": 2326.5, + "probability": 0.6789 + }, + { + "start": 2327.08, + "end": 2327.76, + "probability": 0.8321 + }, + { + "start": 2328.46, + "end": 2329.24, + "probability": 0.8701 + }, + { + "start": 2329.44, + "end": 2330.58, + "probability": 0.8935 + }, + { + "start": 2330.64, + "end": 2331.52, + "probability": 0.8935 + }, + { + "start": 2331.52, + "end": 2332.22, + "probability": 0.974 + }, + { + "start": 2332.36, + "end": 2333.2, + "probability": 0.9439 + }, + { + "start": 2333.2, + "end": 2335.0, + "probability": 0.616 + }, + { + "start": 2335.52, + "end": 2336.6, + "probability": 0.6787 + }, + { + "start": 2337.92, + "end": 2340.4, + "probability": 0.8624 + }, + { + "start": 2341.0, + "end": 2341.69, + "probability": 0.9321 + }, + { + "start": 2342.22, + "end": 2343.98, + "probability": 0.9688 + }, + { + "start": 2344.08, + "end": 2345.68, + "probability": 0.9928 + }, + { + "start": 2345.74, + "end": 2346.86, + "probability": 0.9414 + }, + { + "start": 2347.0, + "end": 2349.72, + "probability": 0.9456 + }, + { + "start": 2350.46, + "end": 2351.54, + "probability": 0.8547 + }, + { + "start": 2353.96, + "end": 2355.18, + "probability": 0.5403 + }, + { + "start": 2355.24, + "end": 2359.98, + "probability": 0.8405 + }, + { + "start": 2361.16, + "end": 2366.34, + "probability": 0.0446 + }, + { + "start": 2366.5, + "end": 2370.56, + "probability": 0.5427 + }, + { + "start": 2371.04, + "end": 2372.98, + "probability": 0.8983 + }, + { + "start": 2373.42, + "end": 2376.64, + "probability": 0.9484 + }, + { + "start": 2377.26, + "end": 2377.98, + "probability": 0.8462 + }, + { + "start": 2378.3, + "end": 2379.22, + "probability": 0.9801 + }, + { + "start": 2379.28, + "end": 2379.7, + "probability": 0.5605 + }, + { + "start": 2379.7, + "end": 2380.94, + "probability": 0.8304 + }, + { + "start": 2381.3, + "end": 2381.98, + "probability": 0.9876 + }, + { + "start": 2382.88, + "end": 2383.74, + "probability": 0.771 + }, + { + "start": 2384.1, + "end": 2384.84, + "probability": 0.9277 + }, + { + "start": 2385.04, + "end": 2386.06, + "probability": 0.9431 + }, + { + "start": 2386.14, + "end": 2387.9, + "probability": 0.8602 + }, + { + "start": 2388.22, + "end": 2390.08, + "probability": 0.8297 + }, + { + "start": 2390.64, + "end": 2395.23, + "probability": 0.8735 + }, + { + "start": 2396.64, + "end": 2399.42, + "probability": 0.9894 + }, + { + "start": 2400.1, + "end": 2404.98, + "probability": 0.8701 + }, + { + "start": 2405.06, + "end": 2406.2, + "probability": 0.7907 + }, + { + "start": 2406.6, + "end": 2408.74, + "probability": 0.9902 + }, + { + "start": 2408.86, + "end": 2411.9, + "probability": 0.9893 + }, + { + "start": 2411.94, + "end": 2412.16, + "probability": 0.0479 + }, + { + "start": 2412.7, + "end": 2415.7, + "probability": 0.9351 + }, + { + "start": 2416.88, + "end": 2418.9, + "probability": 0.2251 + }, + { + "start": 2418.9, + "end": 2423.22, + "probability": 0.6957 + }, + { + "start": 2423.22, + "end": 2423.22, + "probability": 0.0702 + }, + { + "start": 2423.22, + "end": 2425.08, + "probability": 0.8564 + }, + { + "start": 2425.36, + "end": 2427.25, + "probability": 0.9624 + }, + { + "start": 2427.56, + "end": 2432.18, + "probability": 0.9819 + }, + { + "start": 2432.5, + "end": 2433.24, + "probability": 0.5494 + }, + { + "start": 2433.46, + "end": 2435.44, + "probability": 0.9891 + }, + { + "start": 2435.72, + "end": 2436.91, + "probability": 0.9049 + }, + { + "start": 2437.44, + "end": 2439.18, + "probability": 0.8887 + }, + { + "start": 2439.34, + "end": 2440.2, + "probability": 0.8215 + }, + { + "start": 2440.6, + "end": 2443.02, + "probability": 0.764 + }, + { + "start": 2444.32, + "end": 2445.58, + "probability": 0.7449 + }, + { + "start": 2447.8, + "end": 2449.68, + "probability": 0.8764 + }, + { + "start": 2450.06, + "end": 2456.28, + "probability": 0.8363 + }, + { + "start": 2456.72, + "end": 2462.44, + "probability": 0.9361 + }, + { + "start": 2463.6, + "end": 2465.92, + "probability": 0.9749 + }, + { + "start": 2466.24, + "end": 2466.94, + "probability": 0.6585 + }, + { + "start": 2467.3, + "end": 2469.14, + "probability": 0.7758 + }, + { + "start": 2469.24, + "end": 2470.14, + "probability": 0.7918 + }, + { + "start": 2470.54, + "end": 2472.87, + "probability": 0.9953 + }, + { + "start": 2473.46, + "end": 2473.94, + "probability": 0.5676 + }, + { + "start": 2473.98, + "end": 2476.06, + "probability": 0.9733 + }, + { + "start": 2476.14, + "end": 2476.82, + "probability": 0.9308 + }, + { + "start": 2476.92, + "end": 2477.92, + "probability": 0.7755 + }, + { + "start": 2478.16, + "end": 2481.28, + "probability": 0.317 + }, + { + "start": 2481.42, + "end": 2482.44, + "probability": 0.8109 + }, + { + "start": 2482.5, + "end": 2482.76, + "probability": 0.416 + }, + { + "start": 2482.9, + "end": 2483.72, + "probability": 0.1201 + }, + { + "start": 2483.92, + "end": 2485.32, + "probability": 0.7776 + }, + { + "start": 2485.42, + "end": 2486.3, + "probability": 0.7044 + }, + { + "start": 2486.34, + "end": 2487.68, + "probability": 0.4714 + }, + { + "start": 2488.24, + "end": 2493.16, + "probability": 0.9912 + }, + { + "start": 2495.28, + "end": 2496.04, + "probability": 0.2158 + }, + { + "start": 2496.04, + "end": 2496.84, + "probability": 0.2991 + }, + { + "start": 2497.0, + "end": 2497.56, + "probability": 0.7952 + }, + { + "start": 2497.64, + "end": 2499.16, + "probability": 0.7943 + }, + { + "start": 2499.64, + "end": 2500.3, + "probability": 0.7095 + }, + { + "start": 2500.42, + "end": 2501.28, + "probability": 0.9028 + }, + { + "start": 2501.42, + "end": 2502.7, + "probability": 0.8563 + }, + { + "start": 2503.38, + "end": 2503.68, + "probability": 0.2559 + }, + { + "start": 2503.74, + "end": 2504.3, + "probability": 0.9482 + }, + { + "start": 2504.34, + "end": 2504.74, + "probability": 0.869 + }, + { + "start": 2505.18, + "end": 2506.46, + "probability": 0.9589 + }, + { + "start": 2506.5, + "end": 2511.5, + "probability": 0.9473 + }, + { + "start": 2512.18, + "end": 2513.2, + "probability": 0.8168 + }, + { + "start": 2513.64, + "end": 2514.28, + "probability": 0.2823 + }, + { + "start": 2514.38, + "end": 2514.92, + "probability": 0.3962 + }, + { + "start": 2515.84, + "end": 2517.36, + "probability": 0.7261 + }, + { + "start": 2517.46, + "end": 2517.88, + "probability": 0.6261 + }, + { + "start": 2519.08, + "end": 2519.98, + "probability": 0.0632 + }, + { + "start": 2520.02, + "end": 2520.7, + "probability": 0.2194 + }, + { + "start": 2520.86, + "end": 2526.98, + "probability": 0.8617 + }, + { + "start": 2527.68, + "end": 2529.68, + "probability": 0.9526 + }, + { + "start": 2530.42, + "end": 2530.88, + "probability": 0.86 + }, + { + "start": 2531.0, + "end": 2533.06, + "probability": 0.9979 + }, + { + "start": 2533.54, + "end": 2535.44, + "probability": 0.9785 + }, + { + "start": 2535.74, + "end": 2536.72, + "probability": 0.6111 + }, + { + "start": 2536.72, + "end": 2538.46, + "probability": 0.7196 + }, + { + "start": 2538.98, + "end": 2540.87, + "probability": 0.9426 + }, + { + "start": 2541.56, + "end": 2543.15, + "probability": 0.948 + }, + { + "start": 2544.4, + "end": 2546.2, + "probability": 0.8716 + }, + { + "start": 2546.88, + "end": 2550.76, + "probability": 0.971 + }, + { + "start": 2550.82, + "end": 2552.74, + "probability": 0.6976 + }, + { + "start": 2554.34, + "end": 2558.32, + "probability": 0.9499 + }, + { + "start": 2558.62, + "end": 2560.08, + "probability": 0.5915 + }, + { + "start": 2560.3, + "end": 2561.16, + "probability": 0.9142 + }, + { + "start": 2561.68, + "end": 2565.68, + "probability": 0.5079 + }, + { + "start": 2565.68, + "end": 2566.18, + "probability": 0.6689 + }, + { + "start": 2566.48, + "end": 2567.08, + "probability": 0.8172 + }, + { + "start": 2567.14, + "end": 2567.7, + "probability": 0.5112 + }, + { + "start": 2568.04, + "end": 2569.38, + "probability": 0.969 + }, + { + "start": 2569.98, + "end": 2571.0, + "probability": 0.5124 + }, + { + "start": 2571.1, + "end": 2571.38, + "probability": 0.8945 + }, + { + "start": 2572.14, + "end": 2573.24, + "probability": 0.7731 + }, + { + "start": 2573.3, + "end": 2575.58, + "probability": 0.8538 + }, + { + "start": 2575.66, + "end": 2577.92, + "probability": 0.9334 + }, + { + "start": 2578.14, + "end": 2583.08, + "probability": 0.9927 + }, + { + "start": 2583.14, + "end": 2584.94, + "probability": 0.8839 + }, + { + "start": 2585.96, + "end": 2586.48, + "probability": 0.9332 + }, + { + "start": 2587.12, + "end": 2588.9, + "probability": 0.6786 + }, + { + "start": 2589.44, + "end": 2589.52, + "probability": 0.052 + }, + { + "start": 2589.52, + "end": 2591.14, + "probability": 0.9307 + }, + { + "start": 2591.36, + "end": 2594.56, + "probability": 0.8667 + }, + { + "start": 2594.7, + "end": 2595.14, + "probability": 0.514 + }, + { + "start": 2595.28, + "end": 2595.88, + "probability": 0.9082 + }, + { + "start": 2595.94, + "end": 2597.68, + "probability": 0.8491 + }, + { + "start": 2597.68, + "end": 2599.58, + "probability": 0.953 + }, + { + "start": 2599.68, + "end": 2600.64, + "probability": 0.8359 + }, + { + "start": 2600.66, + "end": 2601.52, + "probability": 0.1985 + }, + { + "start": 2604.13, + "end": 2606.2, + "probability": 0.9509 + }, + { + "start": 2606.34, + "end": 2606.64, + "probability": 0.6413 + }, + { + "start": 2606.64, + "end": 2607.72, + "probability": 0.9808 + }, + { + "start": 2608.6, + "end": 2612.42, + "probability": 0.1871 + }, + { + "start": 2613.76, + "end": 2615.38, + "probability": 0.5473 + }, + { + "start": 2615.86, + "end": 2619.1, + "probability": 0.9618 + }, + { + "start": 2619.14, + "end": 2620.38, + "probability": 0.9639 + }, + { + "start": 2620.48, + "end": 2622.05, + "probability": 0.9961 + }, + { + "start": 2622.82, + "end": 2624.06, + "probability": 0.9492 + }, + { + "start": 2624.14, + "end": 2625.26, + "probability": 0.9485 + }, + { + "start": 2625.48, + "end": 2627.8, + "probability": 0.7681 + }, + { + "start": 2627.88, + "end": 2629.68, + "probability": 0.8685 + }, + { + "start": 2630.26, + "end": 2632.34, + "probability": 0.9442 + }, + { + "start": 2632.44, + "end": 2633.34, + "probability": 0.5175 + }, + { + "start": 2633.7, + "end": 2634.32, + "probability": 0.0217 + }, + { + "start": 2634.44, + "end": 2637.66, + "probability": 0.9832 + }, + { + "start": 2639.16, + "end": 2642.8, + "probability": 0.9459 + }, + { + "start": 2643.2, + "end": 2644.83, + "probability": 0.9492 + }, + { + "start": 2645.9, + "end": 2646.53, + "probability": 0.9734 + }, + { + "start": 2646.78, + "end": 2649.48, + "probability": 0.9223 + }, + { + "start": 2649.6, + "end": 2650.8, + "probability": 0.9937 + }, + { + "start": 2653.42, + "end": 2655.74, + "probability": 0.8633 + }, + { + "start": 2656.8, + "end": 2658.98, + "probability": 0.9862 + }, + { + "start": 2659.28, + "end": 2660.22, + "probability": 0.7586 + }, + { + "start": 2660.6, + "end": 2662.32, + "probability": 0.737 + }, + { + "start": 2662.58, + "end": 2663.82, + "probability": 0.9753 + }, + { + "start": 2664.2, + "end": 2665.04, + "probability": 0.9468 + }, + { + "start": 2666.3, + "end": 2668.54, + "probability": 0.9824 + }, + { + "start": 2668.9, + "end": 2669.56, + "probability": 0.8421 + }, + { + "start": 2669.64, + "end": 2670.7, + "probability": 0.9171 + }, + { + "start": 2670.96, + "end": 2671.32, + "probability": 0.7266 + }, + { + "start": 2671.42, + "end": 2672.18, + "probability": 0.7472 + }, + { + "start": 2672.46, + "end": 2673.5, + "probability": 0.9622 + }, + { + "start": 2673.7, + "end": 2675.12, + "probability": 0.8889 + }, + { + "start": 2675.68, + "end": 2677.74, + "probability": 0.9148 + }, + { + "start": 2678.4, + "end": 2681.38, + "probability": 0.818 + }, + { + "start": 2682.54, + "end": 2685.36, + "probability": 0.4152 + }, + { + "start": 2685.46, + "end": 2685.86, + "probability": 0.5892 + }, + { + "start": 2685.9, + "end": 2687.34, + "probability": 0.9408 + }, + { + "start": 2687.5, + "end": 2688.1, + "probability": 0.615 + }, + { + "start": 2688.86, + "end": 2692.62, + "probability": 0.9653 + }, + { + "start": 2692.88, + "end": 2694.2, + "probability": 0.9244 + }, + { + "start": 2694.72, + "end": 2698.14, + "probability": 0.9861 + }, + { + "start": 2698.44, + "end": 2699.4, + "probability": 0.9602 + }, + { + "start": 2699.68, + "end": 2701.3, + "probability": 0.992 + }, + { + "start": 2701.64, + "end": 2703.5, + "probability": 0.9968 + }, + { + "start": 2703.88, + "end": 2704.86, + "probability": 0.895 + }, + { + "start": 2705.96, + "end": 2707.26, + "probability": 0.2641 + }, + { + "start": 2708.0, + "end": 2710.62, + "probability": 0.8398 + }, + { + "start": 2711.0, + "end": 2712.42, + "probability": 0.9939 + }, + { + "start": 2712.8, + "end": 2713.08, + "probability": 0.058 + }, + { + "start": 2713.5, + "end": 2714.58, + "probability": 0.9174 + }, + { + "start": 2714.72, + "end": 2719.46, + "probability": 0.9907 + }, + { + "start": 2720.02, + "end": 2721.68, + "probability": 0.806 + }, + { + "start": 2722.04, + "end": 2725.78, + "probability": 0.5908 + }, + { + "start": 2726.02, + "end": 2726.16, + "probability": 0.0844 + }, + { + "start": 2726.16, + "end": 2729.82, + "probability": 0.7946 + }, + { + "start": 2729.98, + "end": 2731.5, + "probability": 0.7513 + }, + { + "start": 2731.68, + "end": 2732.48, + "probability": 0.9194 + }, + { + "start": 2732.58, + "end": 2733.64, + "probability": 0.932 + }, + { + "start": 2734.06, + "end": 2735.14, + "probability": 0.9153 + }, + { + "start": 2736.1, + "end": 2737.16, + "probability": 0.0446 + }, + { + "start": 2737.5, + "end": 2738.6, + "probability": 0.2335 + }, + { + "start": 2738.7, + "end": 2739.97, + "probability": 0.6932 + }, + { + "start": 2740.7, + "end": 2744.94, + "probability": 0.6818 + }, + { + "start": 2744.94, + "end": 2746.38, + "probability": 0.9167 + }, + { + "start": 2747.5, + "end": 2749.11, + "probability": 0.9855 + }, + { + "start": 2750.19, + "end": 2751.6, + "probability": 0.9263 + }, + { + "start": 2753.36, + "end": 2756.08, + "probability": 0.6109 + }, + { + "start": 2758.02, + "end": 2760.06, + "probability": 0.7908 + }, + { + "start": 2760.1, + "end": 2761.18, + "probability": 0.8492 + }, + { + "start": 2761.74, + "end": 2763.4, + "probability": 0.8656 + }, + { + "start": 2763.42, + "end": 2764.84, + "probability": 0.8288 + }, + { + "start": 2764.88, + "end": 2767.2, + "probability": 0.939 + }, + { + "start": 2767.64, + "end": 2768.04, + "probability": 0.854 + }, + { + "start": 2768.22, + "end": 2768.68, + "probability": 0.8612 + }, + { + "start": 2768.82, + "end": 2769.4, + "probability": 0.9095 + }, + { + "start": 2769.58, + "end": 2770.6, + "probability": 0.9892 + }, + { + "start": 2770.7, + "end": 2771.56, + "probability": 0.9563 + }, + { + "start": 2772.1, + "end": 2772.6, + "probability": 0.7737 + }, + { + "start": 2773.3, + "end": 2774.43, + "probability": 0.6174 + }, + { + "start": 2774.84, + "end": 2777.08, + "probability": 0.9691 + }, + { + "start": 2777.7, + "end": 2778.54, + "probability": 0.8149 + }, + { + "start": 2778.6, + "end": 2782.78, + "probability": 0.8767 + }, + { + "start": 2783.28, + "end": 2786.56, + "probability": 0.7915 + }, + { + "start": 2786.6, + "end": 2788.16, + "probability": 0.9083 + }, + { + "start": 2788.5, + "end": 2789.56, + "probability": 0.7732 + }, + { + "start": 2789.84, + "end": 2792.62, + "probability": 0.9837 + }, + { + "start": 2792.94, + "end": 2794.62, + "probability": 0.8875 + }, + { + "start": 2794.94, + "end": 2797.86, + "probability": 0.9646 + }, + { + "start": 2797.94, + "end": 2800.14, + "probability": 0.9806 + }, + { + "start": 2800.28, + "end": 2800.54, + "probability": 0.9154 + }, + { + "start": 2800.54, + "end": 2802.28, + "probability": 0.9751 + }, + { + "start": 2802.28, + "end": 2804.6, + "probability": 0.4194 + }, + { + "start": 2804.6, + "end": 2805.76, + "probability": 0.7991 + }, + { + "start": 2806.22, + "end": 2808.34, + "probability": 0.9893 + }, + { + "start": 2808.64, + "end": 2811.28, + "probability": 0.7368 + }, + { + "start": 2811.36, + "end": 2813.58, + "probability": 0.9887 + }, + { + "start": 2813.78, + "end": 2813.78, + "probability": 0.0403 + }, + { + "start": 2813.94, + "end": 2814.28, + "probability": 0.8439 + }, + { + "start": 2814.34, + "end": 2816.36, + "probability": 0.8319 + }, + { + "start": 2816.84, + "end": 2818.06, + "probability": 0.9143 + }, + { + "start": 2819.18, + "end": 2821.26, + "probability": 0.9585 + }, + { + "start": 2821.4, + "end": 2825.28, + "probability": 0.9707 + }, + { + "start": 2826.06, + "end": 2829.56, + "probability": 0.9175 + }, + { + "start": 2829.64, + "end": 2830.7, + "probability": 0.7649 + }, + { + "start": 2831.36, + "end": 2834.64, + "probability": 0.9826 + }, + { + "start": 2834.72, + "end": 2835.78, + "probability": 0.9437 + }, + { + "start": 2835.84, + "end": 2838.44, + "probability": 0.9731 + }, + { + "start": 2838.66, + "end": 2840.14, + "probability": 0.8533 + }, + { + "start": 2840.42, + "end": 2842.78, + "probability": 0.9875 + }, + { + "start": 2843.16, + "end": 2843.36, + "probability": 0.4183 + }, + { + "start": 2843.48, + "end": 2844.32, + "probability": 0.9342 + }, + { + "start": 2845.16, + "end": 2849.9, + "probability": 0.8816 + }, + { + "start": 2850.54, + "end": 2851.46, + "probability": 0.4456 + }, + { + "start": 2851.52, + "end": 2853.51, + "probability": 0.9751 + }, + { + "start": 2853.82, + "end": 2855.48, + "probability": 0.9062 + }, + { + "start": 2856.02, + "end": 2857.34, + "probability": 0.8184 + }, + { + "start": 2857.8, + "end": 2858.42, + "probability": 0.7563 + }, + { + "start": 2858.52, + "end": 2860.02, + "probability": 0.8548 + }, + { + "start": 2860.28, + "end": 2861.18, + "probability": 0.904 + }, + { + "start": 2861.48, + "end": 2862.44, + "probability": 0.8889 + }, + { + "start": 2862.54, + "end": 2866.94, + "probability": 0.9905 + }, + { + "start": 2867.12, + "end": 2871.96, + "probability": 0.9497 + }, + { + "start": 2872.14, + "end": 2873.14, + "probability": 0.6606 + }, + { + "start": 2873.68, + "end": 2874.74, + "probability": 0.8086 + }, + { + "start": 2874.84, + "end": 2875.48, + "probability": 0.8456 + }, + { + "start": 2875.54, + "end": 2876.32, + "probability": 0.776 + }, + { + "start": 2876.6, + "end": 2877.36, + "probability": 0.941 + }, + { + "start": 2877.6, + "end": 2878.56, + "probability": 0.9629 + }, + { + "start": 2878.86, + "end": 2879.98, + "probability": 0.6688 + }, + { + "start": 2880.66, + "end": 2882.66, + "probability": 0.9442 + }, + { + "start": 2883.48, + "end": 2884.76, + "probability": 0.9873 + }, + { + "start": 2885.26, + "end": 2885.92, + "probability": 0.4677 + }, + { + "start": 2885.98, + "end": 2886.66, + "probability": 0.9075 + }, + { + "start": 2887.06, + "end": 2888.64, + "probability": 0.9923 + }, + { + "start": 2888.76, + "end": 2889.92, + "probability": 0.9449 + }, + { + "start": 2890.64, + "end": 2891.1, + "probability": 0.5431 + }, + { + "start": 2891.18, + "end": 2892.1, + "probability": 0.9858 + }, + { + "start": 2892.12, + "end": 2892.61, + "probability": 0.9258 + }, + { + "start": 2892.98, + "end": 2894.0, + "probability": 0.7245 + }, + { + "start": 2894.24, + "end": 2895.14, + "probability": 0.771 + }, + { + "start": 2895.52, + "end": 2896.68, + "probability": 0.7805 + }, + { + "start": 2896.72, + "end": 2898.14, + "probability": 0.8324 + }, + { + "start": 2898.22, + "end": 2901.76, + "probability": 0.9321 + }, + { + "start": 2902.06, + "end": 2902.36, + "probability": 0.7016 + }, + { + "start": 2902.36, + "end": 2903.5, + "probability": 0.9533 + }, + { + "start": 2903.86, + "end": 2904.38, + "probability": 0.9858 + }, + { + "start": 2905.16, + "end": 2910.3, + "probability": 0.9455 + }, + { + "start": 2910.84, + "end": 2912.3, + "probability": 0.9531 + }, + { + "start": 2912.48, + "end": 2913.74, + "probability": 0.5353 + }, + { + "start": 2914.36, + "end": 2915.36, + "probability": 0.8777 + }, + { + "start": 2915.64, + "end": 2917.06, + "probability": 0.9249 + }, + { + "start": 2917.52, + "end": 2918.3, + "probability": 0.9331 + }, + { + "start": 2918.6, + "end": 2920.12, + "probability": 0.9086 + }, + { + "start": 2920.34, + "end": 2924.08, + "probability": 0.9812 + }, + { + "start": 2924.36, + "end": 2925.56, + "probability": 0.8174 + }, + { + "start": 2925.62, + "end": 2927.2, + "probability": 0.7511 + }, + { + "start": 2927.28, + "end": 2928.12, + "probability": 0.4573 + }, + { + "start": 2929.04, + "end": 2937.24, + "probability": 0.861 + }, + { + "start": 2937.32, + "end": 2937.52, + "probability": 0.5114 + }, + { + "start": 2937.6, + "end": 2938.8, + "probability": 0.5434 + }, + { + "start": 2938.96, + "end": 2940.7, + "probability": 0.5124 + }, + { + "start": 2940.8, + "end": 2944.06, + "probability": 0.3777 + }, + { + "start": 2945.54, + "end": 2946.64, + "probability": 0.2188 + }, + { + "start": 2946.9, + "end": 2947.3, + "probability": 0.0418 + }, + { + "start": 2948.7, + "end": 2950.1, + "probability": 0.7781 + }, + { + "start": 2950.64, + "end": 2952.12, + "probability": 0.3621 + }, + { + "start": 2952.68, + "end": 2954.94, + "probability": 0.838 + }, + { + "start": 2956.2, + "end": 2956.91, + "probability": 0.6592 + }, + { + "start": 2957.06, + "end": 2958.02, + "probability": 0.7257 + }, + { + "start": 2958.54, + "end": 2959.68, + "probability": 0.9924 + }, + { + "start": 2959.74, + "end": 2962.16, + "probability": 0.9981 + }, + { + "start": 2962.4, + "end": 2963.22, + "probability": 0.9976 + }, + { + "start": 2963.98, + "end": 2965.22, + "probability": 0.8257 + }, + { + "start": 2965.58, + "end": 2966.68, + "probability": 0.4931 + }, + { + "start": 2967.0, + "end": 2967.84, + "probability": 0.858 + }, + { + "start": 2968.3, + "end": 2969.52, + "probability": 0.9587 + }, + { + "start": 2969.64, + "end": 2970.68, + "probability": 0.6102 + }, + { + "start": 2970.96, + "end": 2973.08, + "probability": 0.8477 + }, + { + "start": 2973.76, + "end": 2974.78, + "probability": 0.7802 + }, + { + "start": 2974.86, + "end": 2975.32, + "probability": 0.8326 + }, + { + "start": 2975.5, + "end": 2976.52, + "probability": 0.9292 + }, + { + "start": 2976.68, + "end": 2977.6, + "probability": 0.573 + }, + { + "start": 2977.86, + "end": 2978.3, + "probability": 0.5912 + }, + { + "start": 2978.44, + "end": 2979.48, + "probability": 0.9492 + }, + { + "start": 2979.78, + "end": 2980.88, + "probability": 0.6925 + }, + { + "start": 2981.3, + "end": 2982.76, + "probability": 0.8679 + }, + { + "start": 2983.1, + "end": 2984.28, + "probability": 0.95 + }, + { + "start": 2984.62, + "end": 2985.62, + "probability": 0.2536 + }, + { + "start": 2985.76, + "end": 2987.1, + "probability": 0.9655 + }, + { + "start": 2987.22, + "end": 2988.2, + "probability": 0.907 + }, + { + "start": 2988.7, + "end": 2988.86, + "probability": 0.4163 + }, + { + "start": 2988.94, + "end": 2989.46, + "probability": 0.5792 + }, + { + "start": 2989.78, + "end": 2991.12, + "probability": 0.9597 + }, + { + "start": 2991.42, + "end": 2992.51, + "probability": 0.9902 + }, + { + "start": 2992.74, + "end": 2994.64, + "probability": 0.9827 + }, + { + "start": 2995.26, + "end": 2996.84, + "probability": 0.771 + }, + { + "start": 2997.38, + "end": 2997.54, + "probability": 0.7638 + }, + { + "start": 2997.68, + "end": 3001.16, + "probability": 0.873 + }, + { + "start": 3003.88, + "end": 3009.36, + "probability": 0.9935 + }, + { + "start": 3010.0, + "end": 3012.12, + "probability": 0.7522 + }, + { + "start": 3012.2, + "end": 3014.48, + "probability": 0.9329 + }, + { + "start": 3015.1, + "end": 3015.84, + "probability": 0.8872 + }, + { + "start": 3015.86, + "end": 3018.62, + "probability": 0.697 + }, + { + "start": 3019.88, + "end": 3022.3, + "probability": 0.8156 + }, + { + "start": 3022.84, + "end": 3026.26, + "probability": 0.9674 + }, + { + "start": 3027.04, + "end": 3029.12, + "probability": 0.4647 + }, + { + "start": 3030.54, + "end": 3034.24, + "probability": 0.9073 + }, + { + "start": 3034.24, + "end": 3037.36, + "probability": 0.9859 + }, + { + "start": 3038.0, + "end": 3040.9, + "probability": 0.9929 + }, + { + "start": 3041.52, + "end": 3045.4, + "probability": 0.9912 + }, + { + "start": 3045.48, + "end": 3046.12, + "probability": 0.6231 + }, + { + "start": 3047.02, + "end": 3048.62, + "probability": 0.955 + }, + { + "start": 3049.1, + "end": 3049.98, + "probability": 0.7216 + }, + { + "start": 3051.06, + "end": 3054.68, + "probability": 0.7734 + }, + { + "start": 3055.36, + "end": 3056.28, + "probability": 0.9844 + }, + { + "start": 3057.06, + "end": 3057.2, + "probability": 0.022 + }, + { + "start": 3057.2, + "end": 3057.8, + "probability": 0.9269 + }, + { + "start": 3058.18, + "end": 3063.1, + "probability": 0.982 + }, + { + "start": 3063.42, + "end": 3065.9, + "probability": 0.833 + }, + { + "start": 3065.9, + "end": 3067.76, + "probability": 0.9937 + }, + { + "start": 3068.86, + "end": 3073.02, + "probability": 0.839 + }, + { + "start": 3073.62, + "end": 3074.54, + "probability": 0.6566 + }, + { + "start": 3074.66, + "end": 3074.73, + "probability": 0.7773 + }, + { + "start": 3075.28, + "end": 3078.06, + "probability": 0.58 + }, + { + "start": 3078.52, + "end": 3081.06, + "probability": 0.7137 + }, + { + "start": 3081.48, + "end": 3084.66, + "probability": 0.9331 + }, + { + "start": 3085.04, + "end": 3086.1, + "probability": 0.7277 + }, + { + "start": 3089.0, + "end": 3094.6, + "probability": 0.744 + }, + { + "start": 3095.82, + "end": 3098.57, + "probability": 0.9609 + }, + { + "start": 3098.72, + "end": 3099.5, + "probability": 0.9248 + }, + { + "start": 3099.62, + "end": 3101.5, + "probability": 0.8171 + }, + { + "start": 3102.28, + "end": 3108.32, + "probability": 0.9648 + }, + { + "start": 3109.96, + "end": 3115.58, + "probability": 0.8818 + }, + { + "start": 3116.16, + "end": 3119.68, + "probability": 0.9709 + }, + { + "start": 3120.76, + "end": 3122.4, + "probability": 0.8732 + }, + { + "start": 3123.08, + "end": 3124.38, + "probability": 0.8696 + }, + { + "start": 3125.28, + "end": 3126.18, + "probability": 0.8337 + }, + { + "start": 3126.92, + "end": 3127.58, + "probability": 0.6799 + }, + { + "start": 3127.6, + "end": 3128.72, + "probability": 0.8888 + }, + { + "start": 3128.82, + "end": 3131.88, + "probability": 0.9083 + }, + { + "start": 3133.14, + "end": 3138.6, + "probability": 0.9753 + }, + { + "start": 3138.98, + "end": 3139.6, + "probability": 0.7766 + }, + { + "start": 3139.7, + "end": 3140.3, + "probability": 0.8196 + }, + { + "start": 3140.34, + "end": 3140.8, + "probability": 0.8499 + }, + { + "start": 3141.5, + "end": 3143.4, + "probability": 0.9242 + }, + { + "start": 3143.7, + "end": 3148.12, + "probability": 0.9449 + }, + { + "start": 3148.9, + "end": 3149.54, + "probability": 0.7194 + }, + { + "start": 3150.1, + "end": 3151.54, + "probability": 0.957 + }, + { + "start": 3151.62, + "end": 3152.26, + "probability": 0.9571 + }, + { + "start": 3152.34, + "end": 3153.94, + "probability": 0.8197 + }, + { + "start": 3154.38, + "end": 3155.06, + "probability": 0.8746 + }, + { + "start": 3155.18, + "end": 3155.56, + "probability": 0.7809 + }, + { + "start": 3155.98, + "end": 3156.16, + "probability": 0.7382 + }, + { + "start": 3156.7, + "end": 3160.4, + "probability": 0.9341 + }, + { + "start": 3160.54, + "end": 3161.22, + "probability": 0.7663 + }, + { + "start": 3162.06, + "end": 3164.54, + "probability": 0.914 + }, + { + "start": 3165.06, + "end": 3165.3, + "probability": 0.5646 + }, + { + "start": 3165.38, + "end": 3167.66, + "probability": 0.904 + }, + { + "start": 3167.86, + "end": 3169.2, + "probability": 0.8937 + }, + { + "start": 3169.6, + "end": 3170.62, + "probability": 0.9733 + }, + { + "start": 3170.72, + "end": 3171.02, + "probability": 0.908 + }, + { + "start": 3171.18, + "end": 3172.26, + "probability": 0.8245 + }, + { + "start": 3172.54, + "end": 3173.28, + "probability": 0.8464 + }, + { + "start": 3173.74, + "end": 3174.42, + "probability": 0.3706 + }, + { + "start": 3174.74, + "end": 3175.92, + "probability": 0.7668 + }, + { + "start": 3176.06, + "end": 3176.66, + "probability": 0.5773 + }, + { + "start": 3176.88, + "end": 3177.56, + "probability": 0.7585 + }, + { + "start": 3177.9, + "end": 3181.4, + "probability": 0.9814 + }, + { + "start": 3181.68, + "end": 3182.42, + "probability": 0.4864 + }, + { + "start": 3182.64, + "end": 3185.0, + "probability": 0.7792 + }, + { + "start": 3185.26, + "end": 3188.2, + "probability": 0.9636 + }, + { + "start": 3188.88, + "end": 3191.66, + "probability": 0.3271 + }, + { + "start": 3191.84, + "end": 3193.02, + "probability": 0.7866 + }, + { + "start": 3193.24, + "end": 3194.82, + "probability": 0.6276 + }, + { + "start": 3194.86, + "end": 3195.74, + "probability": 0.9389 + }, + { + "start": 3195.76, + "end": 3196.62, + "probability": 0.9343 + }, + { + "start": 3197.62, + "end": 3203.2, + "probability": 0.9244 + }, + { + "start": 3203.5, + "end": 3204.26, + "probability": 0.7629 + }, + { + "start": 3204.92, + "end": 3205.46, + "probability": 0.8945 + }, + { + "start": 3205.56, + "end": 3206.32, + "probability": 0.9148 + }, + { + "start": 3206.56, + "end": 3210.3, + "probability": 0.772 + }, + { + "start": 3211.3, + "end": 3212.02, + "probability": 0.8281 + }, + { + "start": 3212.9, + "end": 3213.36, + "probability": 0.6865 + }, + { + "start": 3213.7, + "end": 3214.48, + "probability": 0.7471 + }, + { + "start": 3214.74, + "end": 3217.0, + "probability": 0.9473 + }, + { + "start": 3217.68, + "end": 3219.72, + "probability": 0.9758 + }, + { + "start": 3219.84, + "end": 3220.84, + "probability": 0.9742 + }, + { + "start": 3221.0, + "end": 3223.72, + "probability": 0.6979 + }, + { + "start": 3223.94, + "end": 3225.6, + "probability": 0.7792 + }, + { + "start": 3225.7, + "end": 3226.61, + "probability": 0.7004 + }, + { + "start": 3226.94, + "end": 3228.18, + "probability": 0.6601 + }, + { + "start": 3228.28, + "end": 3230.52, + "probability": 0.9374 + }, + { + "start": 3231.08, + "end": 3234.12, + "probability": 0.7828 + }, + { + "start": 3234.7, + "end": 3235.92, + "probability": 0.9667 + }, + { + "start": 3236.5, + "end": 3238.12, + "probability": 0.9595 + }, + { + "start": 3238.92, + "end": 3240.0, + "probability": 0.6967 + }, + { + "start": 3240.6, + "end": 3242.26, + "probability": 0.7664 + }, + { + "start": 3242.56, + "end": 3243.66, + "probability": 0.9748 + }, + { + "start": 3243.7, + "end": 3244.66, + "probability": 0.7275 + }, + { + "start": 3244.94, + "end": 3245.68, + "probability": 0.9523 + }, + { + "start": 3246.46, + "end": 3248.36, + "probability": 0.9526 + }, + { + "start": 3248.42, + "end": 3250.94, + "probability": 0.9313 + }, + { + "start": 3251.56, + "end": 3252.97, + "probability": 0.9102 + }, + { + "start": 3253.16, + "end": 3255.93, + "probability": 0.9844 + }, + { + "start": 3256.64, + "end": 3259.56, + "probability": 0.8971 + }, + { + "start": 3259.7, + "end": 3260.54, + "probability": 0.6958 + }, + { + "start": 3261.04, + "end": 3264.36, + "probability": 0.9915 + }, + { + "start": 3264.64, + "end": 3265.6, + "probability": 0.6706 + }, + { + "start": 3266.12, + "end": 3268.84, + "probability": 0.6674 + }, + { + "start": 3269.5, + "end": 3271.92, + "probability": 0.8297 + }, + { + "start": 3272.7, + "end": 3274.14, + "probability": 0.7493 + }, + { + "start": 3274.28, + "end": 3275.52, + "probability": 0.9578 + }, + { + "start": 3275.66, + "end": 3277.04, + "probability": 0.8233 + }, + { + "start": 3277.48, + "end": 3278.48, + "probability": 0.7646 + }, + { + "start": 3278.66, + "end": 3279.12, + "probability": 0.4981 + }, + { + "start": 3279.12, + "end": 3281.8, + "probability": 0.9363 + }, + { + "start": 3281.84, + "end": 3282.46, + "probability": 0.5734 + }, + { + "start": 3283.3, + "end": 3284.6, + "probability": 0.9404 + }, + { + "start": 3285.58, + "end": 3286.95, + "probability": 0.8588 + }, + { + "start": 3287.9, + "end": 3290.8, + "probability": 0.9303 + }, + { + "start": 3290.84, + "end": 3291.46, + "probability": 0.6465 + }, + { + "start": 3291.54, + "end": 3292.53, + "probability": 0.6848 + }, + { + "start": 3292.82, + "end": 3295.8, + "probability": 0.7607 + }, + { + "start": 3296.02, + "end": 3298.72, + "probability": 0.6732 + }, + { + "start": 3298.92, + "end": 3300.82, + "probability": 0.9928 + }, + { + "start": 3301.02, + "end": 3303.2, + "probability": 0.9002 + }, + { + "start": 3303.28, + "end": 3304.44, + "probability": 0.6422 + }, + { + "start": 3304.64, + "end": 3306.32, + "probability": 0.7401 + }, + { + "start": 3306.7, + "end": 3308.06, + "probability": 0.7946 + }, + { + "start": 3308.3, + "end": 3309.98, + "probability": 0.8237 + }, + { + "start": 3310.6, + "end": 3311.28, + "probability": 0.9548 + }, + { + "start": 3311.56, + "end": 3314.38, + "probability": 0.9578 + }, + { + "start": 3314.48, + "end": 3315.46, + "probability": 0.9717 + }, + { + "start": 3315.78, + "end": 3317.36, + "probability": 0.5662 + }, + { + "start": 3317.42, + "end": 3318.56, + "probability": 0.577 + }, + { + "start": 3318.9, + "end": 3319.34, + "probability": 0.7427 + }, + { + "start": 3319.58, + "end": 3321.16, + "probability": 0.9318 + }, + { + "start": 3321.32, + "end": 3323.26, + "probability": 0.9921 + }, + { + "start": 3323.48, + "end": 3326.52, + "probability": 0.9525 + }, + { + "start": 3326.56, + "end": 3327.26, + "probability": 0.8463 + }, + { + "start": 3327.5, + "end": 3328.16, + "probability": 0.9699 + }, + { + "start": 3329.66, + "end": 3329.78, + "probability": 0.7133 + }, + { + "start": 3330.0, + "end": 3331.74, + "probability": 0.6856 + }, + { + "start": 3331.88, + "end": 3332.72, + "probability": 0.8086 + }, + { + "start": 3333.56, + "end": 3335.66, + "probability": 0.799 + }, + { + "start": 3335.76, + "end": 3336.96, + "probability": 0.7188 + }, + { + "start": 3337.02, + "end": 3338.82, + "probability": 0.6565 + }, + { + "start": 3340.46, + "end": 3343.82, + "probability": 0.4315 + }, + { + "start": 3345.18, + "end": 3347.28, + "probability": 0.4861 + }, + { + "start": 3347.28, + "end": 3347.46, + "probability": 0.4385 + }, + { + "start": 3347.86, + "end": 3349.26, + "probability": 0.5257 + }, + { + "start": 3351.84, + "end": 3354.86, + "probability": 0.9839 + }, + { + "start": 3354.9, + "end": 3356.0, + "probability": 0.9807 + }, + { + "start": 3356.2, + "end": 3357.94, + "probability": 0.8435 + }, + { + "start": 3358.04, + "end": 3358.52, + "probability": 0.5356 + }, + { + "start": 3359.24, + "end": 3360.98, + "probability": 0.9103 + }, + { + "start": 3361.42, + "end": 3362.74, + "probability": 0.0404 + }, + { + "start": 3362.9, + "end": 3366.22, + "probability": 0.7428 + }, + { + "start": 3366.28, + "end": 3366.96, + "probability": 0.6986 + }, + { + "start": 3367.06, + "end": 3367.96, + "probability": 0.9893 + }, + { + "start": 3368.38, + "end": 3369.46, + "probability": 0.7386 + }, + { + "start": 3370.6, + "end": 3371.74, + "probability": 0.5556 + }, + { + "start": 3372.08, + "end": 3374.1, + "probability": 0.8918 + }, + { + "start": 3374.38, + "end": 3375.26, + "probability": 0.7754 + }, + { + "start": 3375.56, + "end": 3380.36, + "probability": 0.6304 + }, + { + "start": 3381.18, + "end": 3382.48, + "probability": 0.799 + }, + { + "start": 3382.94, + "end": 3385.4, + "probability": 0.9859 + }, + { + "start": 3385.4, + "end": 3389.54, + "probability": 0.9363 + }, + { + "start": 3390.46, + "end": 3392.22, + "probability": 0.8247 + }, + { + "start": 3392.36, + "end": 3393.32, + "probability": 0.8665 + }, + { + "start": 3393.4, + "end": 3394.42, + "probability": 0.9179 + }, + { + "start": 3394.48, + "end": 3395.96, + "probability": 0.7913 + }, + { + "start": 3396.06, + "end": 3397.22, + "probability": 0.9364 + }, + { + "start": 3397.62, + "end": 3399.8, + "probability": 0.6692 + }, + { + "start": 3401.77, + "end": 3404.22, + "probability": 0.4254 + }, + { + "start": 3404.74, + "end": 3406.96, + "probability": 0.7612 + }, + { + "start": 3407.16, + "end": 3408.54, + "probability": 0.8196 + }, + { + "start": 3408.84, + "end": 3410.62, + "probability": 0.9588 + }, + { + "start": 3410.64, + "end": 3412.41, + "probability": 0.9578 + }, + { + "start": 3412.72, + "end": 3413.86, + "probability": 0.9379 + }, + { + "start": 3414.08, + "end": 3414.43, + "probability": 0.679 + }, + { + "start": 3415.02, + "end": 3416.62, + "probability": 0.9102 + }, + { + "start": 3416.86, + "end": 3418.28, + "probability": 0.8965 + }, + { + "start": 3420.6, + "end": 3421.07, + "probability": 0.9562 + }, + { + "start": 3422.02, + "end": 3422.54, + "probability": 0.8808 + }, + { + "start": 3422.66, + "end": 3423.6, + "probability": 0.9758 + }, + { + "start": 3423.68, + "end": 3424.46, + "probability": 0.9756 + }, + { + "start": 3424.56, + "end": 3425.3, + "probability": 0.5562 + }, + { + "start": 3425.76, + "end": 3427.38, + "probability": 0.5929 + }, + { + "start": 3428.02, + "end": 3429.1, + "probability": 0.4207 + }, + { + "start": 3429.62, + "end": 3433.68, + "probability": 0.8361 + }, + { + "start": 3434.04, + "end": 3434.86, + "probability": 0.8683 + }, + { + "start": 3435.26, + "end": 3435.78, + "probability": 0.9357 + }, + { + "start": 3435.9, + "end": 3436.36, + "probability": 0.9622 + }, + { + "start": 3436.52, + "end": 3436.74, + "probability": 0.9655 + }, + { + "start": 3436.9, + "end": 3437.28, + "probability": 0.9406 + }, + { + "start": 3437.76, + "end": 3438.2, + "probability": 0.3429 + }, + { + "start": 3438.22, + "end": 3442.78, + "probability": 0.9855 + }, + { + "start": 3442.86, + "end": 3443.22, + "probability": 0.6012 + }, + { + "start": 3443.36, + "end": 3444.76, + "probability": 0.8005 + }, + { + "start": 3444.86, + "end": 3445.4, + "probability": 0.6891 + }, + { + "start": 3445.46, + "end": 3447.13, + "probability": 0.5599 + }, + { + "start": 3447.88, + "end": 3448.82, + "probability": 0.9031 + }, + { + "start": 3449.04, + "end": 3450.22, + "probability": 0.7429 + }, + { + "start": 3450.3, + "end": 3451.74, + "probability": 0.9685 + }, + { + "start": 3451.74, + "end": 3453.3, + "probability": 0.886 + }, + { + "start": 3453.68, + "end": 3454.68, + "probability": 0.915 + }, + { + "start": 3454.7, + "end": 3456.1, + "probability": 0.9736 + }, + { + "start": 3456.6, + "end": 3458.12, + "probability": 0.9813 + }, + { + "start": 3458.79, + "end": 3461.74, + "probability": 0.7838 + }, + { + "start": 3462.22, + "end": 3462.44, + "probability": 0.6672 + }, + { + "start": 3463.0, + "end": 3464.28, + "probability": 0.991 + }, + { + "start": 3465.24, + "end": 3466.12, + "probability": 0.6581 + }, + { + "start": 3466.83, + "end": 3468.94, + "probability": 0.8638 + }, + { + "start": 3469.38, + "end": 3469.68, + "probability": 0.8461 + }, + { + "start": 3469.72, + "end": 3471.68, + "probability": 0.8578 + }, + { + "start": 3471.78, + "end": 3471.94, + "probability": 0.7328 + }, + { + "start": 3472.22, + "end": 3472.56, + "probability": 0.4836 + }, + { + "start": 3473.0, + "end": 3473.7, + "probability": 0.7788 + }, + { + "start": 3473.9, + "end": 3476.72, + "probability": 0.9116 + }, + { + "start": 3477.6, + "end": 3481.8, + "probability": 0.6156 + }, + { + "start": 3482.22, + "end": 3484.46, + "probability": 0.523 + }, + { + "start": 3484.98, + "end": 3485.62, + "probability": 0.6559 + }, + { + "start": 3485.82, + "end": 3486.08, + "probability": 0.8687 + }, + { + "start": 3486.14, + "end": 3486.56, + "probability": 0.8403 + }, + { + "start": 3486.62, + "end": 3488.14, + "probability": 0.9611 + }, + { + "start": 3488.3, + "end": 3489.12, + "probability": 0.8335 + }, + { + "start": 3489.18, + "end": 3489.8, + "probability": 0.9214 + }, + { + "start": 3489.9, + "end": 3490.72, + "probability": 0.8521 + }, + { + "start": 3491.18, + "end": 3492.8, + "probability": 0.9024 + }, + { + "start": 3492.8, + "end": 3494.88, + "probability": 0.9388 + }, + { + "start": 3495.06, + "end": 3497.12, + "probability": 0.9591 + }, + { + "start": 3497.16, + "end": 3497.88, + "probability": 0.6349 + }, + { + "start": 3497.94, + "end": 3499.72, + "probability": 0.5913 + }, + { + "start": 3500.4, + "end": 3501.36, + "probability": 0.5894 + }, + { + "start": 3502.2, + "end": 3504.92, + "probability": 0.9581 + }, + { + "start": 3505.26, + "end": 3508.23, + "probability": 0.6274 + }, + { + "start": 3508.7, + "end": 3509.08, + "probability": 0.8738 + }, + { + "start": 3509.8, + "end": 3510.88, + "probability": 0.9751 + }, + { + "start": 3511.16, + "end": 3513.4, + "probability": 0.6014 + }, + { + "start": 3513.76, + "end": 3515.28, + "probability": 0.8208 + }, + { + "start": 3515.54, + "end": 3516.56, + "probability": 0.4788 + }, + { + "start": 3516.78, + "end": 3517.02, + "probability": 0.4932 + }, + { + "start": 3517.02, + "end": 3519.66, + "probability": 0.8939 + }, + { + "start": 3519.77, + "end": 3522.13, + "probability": 0.9889 + }, + { + "start": 3522.82, + "end": 3524.26, + "probability": 0.5113 + }, + { + "start": 3524.82, + "end": 3529.32, + "probability": 0.7643 + }, + { + "start": 3529.32, + "end": 3532.9, + "probability": 0.9937 + }, + { + "start": 3533.12, + "end": 3534.32, + "probability": 0.9652 + }, + { + "start": 3534.82, + "end": 3536.4, + "probability": 0.8734 + }, + { + "start": 3537.08, + "end": 3540.58, + "probability": 0.7654 + }, + { + "start": 3540.58, + "end": 3545.18, + "probability": 0.9849 + }, + { + "start": 3546.06, + "end": 3548.38, + "probability": 0.9844 + }, + { + "start": 3548.64, + "end": 3550.56, + "probability": 0.9551 + }, + { + "start": 3550.96, + "end": 3553.62, + "probability": 0.9026 + }, + { + "start": 3553.8, + "end": 3556.74, + "probability": 0.9725 + }, + { + "start": 3557.28, + "end": 3558.1, + "probability": 0.9704 + }, + { + "start": 3558.16, + "end": 3559.0, + "probability": 0.9529 + }, + { + "start": 3559.14, + "end": 3560.06, + "probability": 0.9247 + }, + { + "start": 3560.2, + "end": 3560.72, + "probability": 0.978 + }, + { + "start": 3561.46, + "end": 3562.55, + "probability": 0.9868 + }, + { + "start": 3562.9, + "end": 3565.5, + "probability": 0.5849 + }, + { + "start": 3565.54, + "end": 3566.3, + "probability": 0.9778 + }, + { + "start": 3566.88, + "end": 3569.36, + "probability": 0.8546 + }, + { + "start": 3569.86, + "end": 3570.68, + "probability": 0.4873 + }, + { + "start": 3571.32, + "end": 3573.52, + "probability": 0.752 + }, + { + "start": 3573.58, + "end": 3574.66, + "probability": 0.8049 + }, + { + "start": 3575.0, + "end": 3576.36, + "probability": 0.6594 + }, + { + "start": 3576.44, + "end": 3577.52, + "probability": 0.9337 + }, + { + "start": 3578.02, + "end": 3580.2, + "probability": 0.9757 + }, + { + "start": 3580.64, + "end": 3583.32, + "probability": 0.959 + }, + { + "start": 3583.61, + "end": 3585.84, + "probability": 0.5777 + }, + { + "start": 3585.88, + "end": 3586.3, + "probability": 0.2603 + }, + { + "start": 3586.38, + "end": 3586.38, + "probability": 0.4275 + }, + { + "start": 3586.64, + "end": 3586.92, + "probability": 0.1184 + }, + { + "start": 3587.38, + "end": 3590.06, + "probability": 0.759 + }, + { + "start": 3590.16, + "end": 3590.86, + "probability": 0.5702 + }, + { + "start": 3592.18, + "end": 3594.72, + "probability": 0.2253 + }, + { + "start": 3595.36, + "end": 3597.24, + "probability": 0.5575 + }, + { + "start": 3598.02, + "end": 3599.88, + "probability": 0.8546 + }, + { + "start": 3599.96, + "end": 3601.28, + "probability": 0.7876 + }, + { + "start": 3601.48, + "end": 3601.78, + "probability": 0.7384 + }, + { + "start": 3602.78, + "end": 3603.46, + "probability": 0.5551 + }, + { + "start": 3603.78, + "end": 3606.58, + "probability": 0.7284 + }, + { + "start": 3606.64, + "end": 3607.52, + "probability": 0.8818 + }, + { + "start": 3608.04, + "end": 3610.28, + "probability": 0.9207 + }, + { + "start": 3610.64, + "end": 3611.62, + "probability": 0.9185 + }, + { + "start": 3611.68, + "end": 3612.1, + "probability": 0.8015 + }, + { + "start": 3612.5, + "end": 3615.96, + "probability": 0.7975 + }, + { + "start": 3615.96, + "end": 3618.28, + "probability": 0.8925 + }, + { + "start": 3618.88, + "end": 3622.04, + "probability": 0.9272 + }, + { + "start": 3622.04, + "end": 3626.16, + "probability": 0.8655 + }, + { + "start": 3626.24, + "end": 3628.14, + "probability": 0.9454 + }, + { + "start": 3628.36, + "end": 3633.04, + "probability": 0.9027 + }, + { + "start": 3633.4, + "end": 3634.15, + "probability": 0.0504 + }, + { + "start": 3635.04, + "end": 3637.18, + "probability": 0.8384 + }, + { + "start": 3637.72, + "end": 3638.26, + "probability": 0.708 + }, + { + "start": 3638.34, + "end": 3639.28, + "probability": 0.9426 + }, + { + "start": 3639.34, + "end": 3644.1, + "probability": 0.9282 + }, + { + "start": 3644.36, + "end": 3647.64, + "probability": 0.9597 + }, + { + "start": 3648.58, + "end": 3651.0, + "probability": 0.9665 + }, + { + "start": 3652.38, + "end": 3654.04, + "probability": 0.6618 + }, + { + "start": 3654.7, + "end": 3655.92, + "probability": 0.8628 + }, + { + "start": 3656.14, + "end": 3659.7, + "probability": 0.8729 + }, + { + "start": 3660.14, + "end": 3661.8, + "probability": 0.9878 + }, + { + "start": 3662.06, + "end": 3662.76, + "probability": 0.8614 + }, + { + "start": 3662.96, + "end": 3665.8, + "probability": 0.8881 + }, + { + "start": 3665.88, + "end": 3667.86, + "probability": 0.9272 + }, + { + "start": 3667.88, + "end": 3668.66, + "probability": 0.804 + }, + { + "start": 3668.96, + "end": 3672.48, + "probability": 0.9741 + }, + { + "start": 3672.48, + "end": 3675.5, + "probability": 0.9919 + }, + { + "start": 3675.76, + "end": 3679.68, + "probability": 0.8326 + }, + { + "start": 3679.78, + "end": 3681.94, + "probability": 0.986 + }, + { + "start": 3682.32, + "end": 3683.58, + "probability": 0.5112 + }, + { + "start": 3683.7, + "end": 3689.26, + "probability": 0.9456 + }, + { + "start": 3689.4, + "end": 3690.86, + "probability": 0.7898 + }, + { + "start": 3691.46, + "end": 3693.98, + "probability": 0.978 + }, + { + "start": 3694.02, + "end": 3696.14, + "probability": 0.9803 + }, + { + "start": 3696.28, + "end": 3697.48, + "probability": 0.8153 + }, + { + "start": 3698.06, + "end": 3698.26, + "probability": 0.2633 + }, + { + "start": 3698.7, + "end": 3699.94, + "probability": 0.9784 + }, + { + "start": 3700.02, + "end": 3705.86, + "probability": 0.9415 + }, + { + "start": 3705.92, + "end": 3706.9, + "probability": 0.9889 + }, + { + "start": 3707.3, + "end": 3707.48, + "probability": 0.2777 + }, + { + "start": 3707.54, + "end": 3708.08, + "probability": 0.5636 + }, + { + "start": 3708.4, + "end": 3709.36, + "probability": 0.9565 + }, + { + "start": 3710.31, + "end": 3714.84, + "probability": 0.9629 + }, + { + "start": 3715.14, + "end": 3716.4, + "probability": 0.9363 + }, + { + "start": 3716.8, + "end": 3718.0, + "probability": 0.6293 + }, + { + "start": 3718.04, + "end": 3719.96, + "probability": 0.9022 + }, + { + "start": 3720.26, + "end": 3722.88, + "probability": 0.7879 + }, + { + "start": 3722.88, + "end": 3725.42, + "probability": 0.8177 + }, + { + "start": 3725.54, + "end": 3726.52, + "probability": 0.9138 + }, + { + "start": 3726.62, + "end": 3728.48, + "probability": 0.9839 + }, + { + "start": 3729.26, + "end": 3730.56, + "probability": 0.8627 + }, + { + "start": 3730.6, + "end": 3731.34, + "probability": 0.72 + }, + { + "start": 3732.14, + "end": 3733.52, + "probability": 0.7814 + }, + { + "start": 3735.14, + "end": 3737.48, + "probability": 0.981 + }, + { + "start": 3738.2, + "end": 3739.5, + "probability": 0.896 + }, + { + "start": 3739.64, + "end": 3743.66, + "probability": 0.9123 + }, + { + "start": 3744.22, + "end": 3744.96, + "probability": 0.7724 + }, + { + "start": 3745.7, + "end": 3746.34, + "probability": 0.8521 + }, + { + "start": 3746.94, + "end": 3749.06, + "probability": 0.8944 + }, + { + "start": 3749.7, + "end": 3750.36, + "probability": 0.792 + }, + { + "start": 3752.22, + "end": 3753.08, + "probability": 0.9863 + }, + { + "start": 3754.12, + "end": 3755.68, + "probability": 0.4695 + }, + { + "start": 3757.71, + "end": 3760.88, + "probability": 0.9817 + }, + { + "start": 3761.64, + "end": 3763.08, + "probability": 0.9619 + }, + { + "start": 3763.5, + "end": 3764.96, + "probability": 0.9072 + }, + { + "start": 3765.02, + "end": 3767.38, + "probability": 0.9769 + }, + { + "start": 3767.54, + "end": 3768.82, + "probability": 0.993 + }, + { + "start": 3769.38, + "end": 3771.46, + "probability": 0.945 + }, + { + "start": 3772.06, + "end": 3773.56, + "probability": 0.8823 + }, + { + "start": 3774.96, + "end": 3777.5, + "probability": 0.7306 + }, + { + "start": 3778.02, + "end": 3781.04, + "probability": 0.9694 + }, + { + "start": 3781.04, + "end": 3784.18, + "probability": 0.9907 + }, + { + "start": 3785.3, + "end": 3787.76, + "probability": 0.962 + }, + { + "start": 3788.0, + "end": 3789.14, + "probability": 0.6874 + }, + { + "start": 3789.28, + "end": 3789.86, + "probability": 0.8378 + }, + { + "start": 3790.1, + "end": 3791.3, + "probability": 0.774 + }, + { + "start": 3791.8, + "end": 3792.72, + "probability": 0.4004 + }, + { + "start": 3793.64, + "end": 3794.14, + "probability": 0.3809 + }, + { + "start": 3794.46, + "end": 3797.98, + "probability": 0.029 + }, + { + "start": 3797.98, + "end": 3798.56, + "probability": 0.2476 + }, + { + "start": 3799.8, + "end": 3801.26, + "probability": 0.021 + }, + { + "start": 3801.26, + "end": 3801.26, + "probability": 0.1049 + }, + { + "start": 3801.26, + "end": 3801.26, + "probability": 0.0262 + }, + { + "start": 3801.26, + "end": 3802.56, + "probability": 0.0832 + }, + { + "start": 3802.56, + "end": 3807.48, + "probability": 0.642 + }, + { + "start": 3807.74, + "end": 3808.17, + "probability": 0.8045 + }, + { + "start": 3808.84, + "end": 3811.12, + "probability": 0.9629 + }, + { + "start": 3811.7, + "end": 3816.1, + "probability": 0.9673 + }, + { + "start": 3819.02, + "end": 3819.12, + "probability": 0.522 + }, + { + "start": 3819.76, + "end": 3821.1, + "probability": 0.4114 + }, + { + "start": 3821.54, + "end": 3828.49, + "probability": 0.0876 + }, + { + "start": 3831.62, + "end": 3832.65, + "probability": 0.302 + }, + { + "start": 3834.44, + "end": 3835.92, + "probability": 0.9609 + }, + { + "start": 3837.2, + "end": 3839.18, + "probability": 0.9801 + }, + { + "start": 3839.76, + "end": 3841.24, + "probability": 0.8589 + }, + { + "start": 3842.72, + "end": 3851.74, + "probability": 0.9971 + }, + { + "start": 3852.44, + "end": 3856.36, + "probability": 0.8752 + }, + { + "start": 3856.94, + "end": 3859.7, + "probability": 0.9946 + }, + { + "start": 3860.5, + "end": 3861.12, + "probability": 0.8681 + }, + { + "start": 3861.74, + "end": 3864.7, + "probability": 0.8586 + }, + { + "start": 3865.4, + "end": 3867.46, + "probability": 0.8187 + }, + { + "start": 3868.08, + "end": 3870.72, + "probability": 0.9448 + }, + { + "start": 3871.44, + "end": 3872.94, + "probability": 0.9801 + }, + { + "start": 3873.54, + "end": 3876.18, + "probability": 0.9678 + }, + { + "start": 3876.96, + "end": 3877.9, + "probability": 0.8229 + }, + { + "start": 3878.54, + "end": 3879.52, + "probability": 0.9411 + }, + { + "start": 3880.26, + "end": 3882.36, + "probability": 0.9214 + }, + { + "start": 3882.9, + "end": 3884.28, + "probability": 0.9558 + }, + { + "start": 3884.76, + "end": 3891.52, + "probability": 0.9487 + }, + { + "start": 3891.52, + "end": 3897.24, + "probability": 0.9927 + }, + { + "start": 3897.34, + "end": 3903.16, + "probability": 0.7661 + }, + { + "start": 3904.34, + "end": 3906.32, + "probability": 0.7124 + }, + { + "start": 3906.48, + "end": 3908.4, + "probability": 0.9946 + }, + { + "start": 3909.16, + "end": 3912.96, + "probability": 0.9755 + }, + { + "start": 3913.54, + "end": 3915.94, + "probability": 0.972 + }, + { + "start": 3916.48, + "end": 3918.7, + "probability": 0.9917 + }, + { + "start": 3919.62, + "end": 3923.4, + "probability": 0.6149 + }, + { + "start": 3923.74, + "end": 3928.18, + "probability": 0.9868 + }, + { + "start": 3928.26, + "end": 3930.82, + "probability": 0.8112 + }, + { + "start": 3931.16, + "end": 3938.14, + "probability": 0.974 + }, + { + "start": 3938.26, + "end": 3943.02, + "probability": 0.9934 + }, + { + "start": 3943.5, + "end": 3950.62, + "probability": 0.8916 + }, + { + "start": 3951.0, + "end": 3954.5, + "probability": 0.1786 + }, + { + "start": 3956.38, + "end": 3956.56, + "probability": 0.0464 + }, + { + "start": 3956.56, + "end": 3957.68, + "probability": 0.1741 + }, + { + "start": 3957.68, + "end": 3960.02, + "probability": 0.9514 + }, + { + "start": 3960.98, + "end": 3961.54, + "probability": 0.6848 + }, + { + "start": 3961.84, + "end": 3963.5, + "probability": 0.4231 + }, + { + "start": 3963.92, + "end": 3967.06, + "probability": 0.9694 + }, + { + "start": 3968.16, + "end": 3969.38, + "probability": 0.0237 + }, + { + "start": 3969.38, + "end": 3970.84, + "probability": 0.1785 + }, + { + "start": 3970.94, + "end": 3971.12, + "probability": 0.0584 + }, + { + "start": 3971.12, + "end": 3974.07, + "probability": 0.5972 + }, + { + "start": 3974.72, + "end": 3978.34, + "probability": 0.0493 + }, + { + "start": 3978.34, + "end": 3978.48, + "probability": 0.1118 + }, + { + "start": 3978.48, + "end": 3978.56, + "probability": 0.0384 + }, + { + "start": 3978.56, + "end": 3979.4, + "probability": 0.1919 + }, + { + "start": 3980.52, + "end": 3982.32, + "probability": 0.1121 + }, + { + "start": 3982.5, + "end": 3985.54, + "probability": 0.1296 + }, + { + "start": 3986.26, + "end": 3986.84, + "probability": 0.1702 + }, + { + "start": 3987.18, + "end": 3987.4, + "probability": 0.0854 + }, + { + "start": 3988.48, + "end": 3990.68, + "probability": 0.1112 + }, + { + "start": 3990.8, + "end": 3993.5, + "probability": 0.1298 + }, + { + "start": 4005.33, + "end": 4007.6, + "probability": 0.0889 + }, + { + "start": 4007.68, + "end": 4008.54, + "probability": 0.0526 + }, + { + "start": 4008.54, + "end": 4008.54, + "probability": 0.0057 + }, + { + "start": 4011.58, + "end": 4011.92, + "probability": 0.1574 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.0, + "end": 4042.0, + "probability": 0.0 + }, + { + "start": 4042.12, + "end": 4042.76, + "probability": 0.1215 + }, + { + "start": 4042.76, + "end": 4042.76, + "probability": 0.0181 + }, + { + "start": 4042.76, + "end": 4042.76, + "probability": 0.006 + }, + { + "start": 4042.76, + "end": 4045.52, + "probability": 0.5335 + }, + { + "start": 4045.56, + "end": 4056.14, + "probability": 0.7651 + }, + { + "start": 4056.64, + "end": 4058.88, + "probability": 0.7491 + }, + { + "start": 4059.92, + "end": 4065.94, + "probability": 0.9812 + }, + { + "start": 4065.94, + "end": 4070.84, + "probability": 0.9134 + }, + { + "start": 4072.1, + "end": 4073.42, + "probability": 0.9774 + }, + { + "start": 4074.96, + "end": 4076.48, + "probability": 0.8795 + }, + { + "start": 4078.53, + "end": 4079.44, + "probability": 0.5438 + }, + { + "start": 4079.44, + "end": 4081.42, + "probability": 0.623 + }, + { + "start": 4082.14, + "end": 4086.4, + "probability": 0.7995 + }, + { + "start": 4086.96, + "end": 4089.96, + "probability": 0.9023 + }, + { + "start": 4090.64, + "end": 4091.95, + "probability": 0.9673 + }, + { + "start": 4092.44, + "end": 4095.16, + "probability": 0.6511 + }, + { + "start": 4095.74, + "end": 4099.3, + "probability": 0.785 + }, + { + "start": 4099.8, + "end": 4101.5, + "probability": 0.8326 + }, + { + "start": 4101.7, + "end": 4102.22, + "probability": 0.5187 + }, + { + "start": 4102.42, + "end": 4103.92, + "probability": 0.9288 + }, + { + "start": 4104.14, + "end": 4105.92, + "probability": 0.9814 + }, + { + "start": 4106.44, + "end": 4108.52, + "probability": 0.7459 + }, + { + "start": 4109.24, + "end": 4112.16, + "probability": 0.6301 + }, + { + "start": 4112.74, + "end": 4114.78, + "probability": 0.579 + }, + { + "start": 4114.82, + "end": 4114.82, + "probability": 0.0613 + }, + { + "start": 4114.82, + "end": 4115.8, + "probability": 0.5615 + }, + { + "start": 4115.96, + "end": 4119.74, + "probability": 0.9494 + }, + { + "start": 4120.22, + "end": 4127.26, + "probability": 0.9938 + }, + { + "start": 4128.14, + "end": 4131.56, + "probability": 0.9602 + }, + { + "start": 4131.58, + "end": 4131.9, + "probability": 0.6278 + }, + { + "start": 4131.94, + "end": 4132.94, + "probability": 0.8516 + }, + { + "start": 4133.16, + "end": 4133.76, + "probability": 0.8277 + }, + { + "start": 4134.6, + "end": 4136.8, + "probability": 0.8468 + }, + { + "start": 4136.86, + "end": 4137.36, + "probability": 0.9071 + }, + { + "start": 4137.5, + "end": 4139.7, + "probability": 0.9894 + }, + { + "start": 4140.56, + "end": 4143.32, + "probability": 0.837 + }, + { + "start": 4144.1, + "end": 4148.46, + "probability": 0.8537 + }, + { + "start": 4148.58, + "end": 4149.1, + "probability": 0.9649 + }, + { + "start": 4149.22, + "end": 4150.3, + "probability": 0.2617 + }, + { + "start": 4150.98, + "end": 4154.38, + "probability": 0.9942 + }, + { + "start": 4155.12, + "end": 4160.86, + "probability": 0.8492 + }, + { + "start": 4160.98, + "end": 4163.42, + "probability": 0.9708 + }, + { + "start": 4163.46, + "end": 4167.1, + "probability": 0.9966 + }, + { + "start": 4168.32, + "end": 4169.74, + "probability": 0.9948 + }, + { + "start": 4170.3, + "end": 4172.44, + "probability": 0.9351 + }, + { + "start": 4173.52, + "end": 4176.64, + "probability": 0.9634 + }, + { + "start": 4176.82, + "end": 4179.88, + "probability": 0.9331 + }, + { + "start": 4180.38, + "end": 4182.36, + "probability": 0.6099 + }, + { + "start": 4183.06, + "end": 4185.76, + "probability": 0.9587 + }, + { + "start": 4186.54, + "end": 4187.8, + "probability": 0.5556 + }, + { + "start": 4188.44, + "end": 4190.68, + "probability": 0.9923 + }, + { + "start": 4190.8, + "end": 4192.1, + "probability": 0.9429 + }, + { + "start": 4192.46, + "end": 4195.64, + "probability": 0.9832 + }, + { + "start": 4195.74, + "end": 4197.14, + "probability": 0.9904 + }, + { + "start": 4197.22, + "end": 4201.6, + "probability": 0.9814 + }, + { + "start": 4202.22, + "end": 4204.96, + "probability": 0.9203 + }, + { + "start": 4205.06, + "end": 4205.99, + "probability": 0.8024 + }, + { + "start": 4206.48, + "end": 4208.88, + "probability": 0.8306 + }, + { + "start": 4209.78, + "end": 4211.58, + "probability": 0.9864 + }, + { + "start": 4211.86, + "end": 4213.88, + "probability": 0.9934 + }, + { + "start": 4214.62, + "end": 4214.62, + "probability": 0.1859 + }, + { + "start": 4214.62, + "end": 4215.78, + "probability": 0.4657 + }, + { + "start": 4216.4, + "end": 4221.66, + "probability": 0.9181 + }, + { + "start": 4222.2, + "end": 4227.42, + "probability": 0.7478 + }, + { + "start": 4228.44, + "end": 4231.88, + "probability": 0.8536 + }, + { + "start": 4232.62, + "end": 4238.18, + "probability": 0.6255 + }, + { + "start": 4238.9, + "end": 4238.9, + "probability": 0.0196 + }, + { + "start": 4240.2, + "end": 4240.96, + "probability": 0.998 + }, + { + "start": 4241.88, + "end": 4244.08, + "probability": 0.9829 + }, + { + "start": 4245.14, + "end": 4248.94, + "probability": 0.9923 + }, + { + "start": 4249.78, + "end": 4252.54, + "probability": 0.9963 + }, + { + "start": 4254.26, + "end": 4259.12, + "probability": 0.9927 + }, + { + "start": 4260.06, + "end": 4261.26, + "probability": 0.7886 + }, + { + "start": 4261.96, + "end": 4265.66, + "probability": 0.987 + }, + { + "start": 4266.54, + "end": 4270.34, + "probability": 0.8824 + }, + { + "start": 4271.06, + "end": 4273.24, + "probability": 0.9582 + }, + { + "start": 4273.8, + "end": 4280.38, + "probability": 0.8971 + }, + { + "start": 4281.04, + "end": 4282.56, + "probability": 0.9091 + }, + { + "start": 4283.22, + "end": 4284.34, + "probability": 0.9236 + }, + { + "start": 4284.84, + "end": 4291.44, + "probability": 0.979 + }, + { + "start": 4292.0, + "end": 4293.68, + "probability": 0.9833 + }, + { + "start": 4294.12, + "end": 4295.72, + "probability": 0.9919 + }, + { + "start": 4296.18, + "end": 4300.7, + "probability": 0.9564 + }, + { + "start": 4301.7, + "end": 4306.66, + "probability": 0.9753 + }, + { + "start": 4307.64, + "end": 4311.52, + "probability": 0.9208 + }, + { + "start": 4312.34, + "end": 4314.38, + "probability": 0.3037 + }, + { + "start": 4314.38, + "end": 4315.55, + "probability": 0.3006 + }, + { + "start": 4317.88, + "end": 4320.42, + "probability": 0.7985 + }, + { + "start": 4320.96, + "end": 4323.84, + "probability": 0.9443 + }, + { + "start": 4326.64, + "end": 4331.5, + "probability": 0.4821 + }, + { + "start": 4332.42, + "end": 4334.94, + "probability": 0.8972 + }, + { + "start": 4336.02, + "end": 4341.7, + "probability": 0.8259 + }, + { + "start": 4342.48, + "end": 4344.34, + "probability": 0.5897 + }, + { + "start": 4344.98, + "end": 4345.72, + "probability": 0.8556 + }, + { + "start": 4346.7, + "end": 4347.72, + "probability": 0.8657 + }, + { + "start": 4348.82, + "end": 4353.5, + "probability": 0.9759 + }, + { + "start": 4353.98, + "end": 4355.86, + "probability": 0.9629 + }, + { + "start": 4356.74, + "end": 4361.62, + "probability": 0.9928 + }, + { + "start": 4362.36, + "end": 4366.1, + "probability": 0.9976 + }, + { + "start": 4367.04, + "end": 4371.32, + "probability": 0.9924 + }, + { + "start": 4372.22, + "end": 4373.62, + "probability": 0.955 + }, + { + "start": 4374.14, + "end": 4374.66, + "probability": 0.6556 + }, + { + "start": 4375.54, + "end": 4381.28, + "probability": 0.9042 + }, + { + "start": 4382.02, + "end": 4385.1, + "probability": 0.8491 + }, + { + "start": 4385.54, + "end": 4388.12, + "probability": 0.8062 + }, + { + "start": 4388.28, + "end": 4391.14, + "probability": 0.965 + }, + { + "start": 4391.82, + "end": 4393.64, + "probability": 0.7915 + }, + { + "start": 4394.26, + "end": 4398.18, + "probability": 0.9668 + }, + { + "start": 4398.78, + "end": 4401.12, + "probability": 0.9934 + }, + { + "start": 4401.66, + "end": 4405.86, + "probability": 0.9878 + }, + { + "start": 4406.32, + "end": 4410.08, + "probability": 0.9412 + }, + { + "start": 4410.8, + "end": 4412.03, + "probability": 0.5002 + }, + { + "start": 4413.04, + "end": 4418.0, + "probability": 0.6542 + }, + { + "start": 4418.0, + "end": 4422.46, + "probability": 0.9292 + }, + { + "start": 4423.2, + "end": 4425.66, + "probability": 0.9373 + }, + { + "start": 4426.34, + "end": 4426.58, + "probability": 0.2607 + }, + { + "start": 4426.64, + "end": 4427.26, + "probability": 0.7096 + }, + { + "start": 4427.76, + "end": 4432.52, + "probability": 0.9295 + }, + { + "start": 4432.72, + "end": 4434.4, + "probability": 0.9457 + }, + { + "start": 4434.78, + "end": 4436.16, + "probability": 0.6215 + }, + { + "start": 4436.66, + "end": 4437.9, + "probability": 0.9714 + }, + { + "start": 4438.04, + "end": 4439.54, + "probability": 0.9261 + }, + { + "start": 4439.58, + "end": 4440.14, + "probability": 0.8782 + }, + { + "start": 4440.68, + "end": 4441.0, + "probability": 0.8407 + }, + { + "start": 4441.12, + "end": 4441.96, + "probability": 0.7533 + }, + { + "start": 4442.12, + "end": 4442.98, + "probability": 0.3759 + }, + { + "start": 4444.07, + "end": 4445.48, + "probability": 0.4099 + }, + { + "start": 4445.58, + "end": 4448.32, + "probability": 0.611 + }, + { + "start": 4449.04, + "end": 4451.68, + "probability": 0.9541 + }, + { + "start": 4451.78, + "end": 4452.38, + "probability": 0.5355 + }, + { + "start": 4452.52, + "end": 4453.22, + "probability": 0.6821 + }, + { + "start": 4453.32, + "end": 4455.68, + "probability": 0.4949 + }, + { + "start": 4455.68, + "end": 4455.7, + "probability": 0.4486 + }, + { + "start": 4455.92, + "end": 4459.3, + "probability": 0.9063 + }, + { + "start": 4460.71, + "end": 4461.82, + "probability": 0.0544 + }, + { + "start": 4461.82, + "end": 4462.74, + "probability": 0.735 + }, + { + "start": 4463.54, + "end": 4465.54, + "probability": 0.8391 + }, + { + "start": 4466.22, + "end": 4468.25, + "probability": 0.9556 + }, + { + "start": 4469.16, + "end": 4473.24, + "probability": 0.993 + }, + { + "start": 4474.36, + "end": 4478.44, + "probability": 0.9276 + }, + { + "start": 4479.44, + "end": 4483.76, + "probability": 0.9501 + }, + { + "start": 4484.46, + "end": 4485.27, + "probability": 0.9362 + }, + { + "start": 4486.24, + "end": 4487.26, + "probability": 0.9323 + }, + { + "start": 4487.8, + "end": 4489.26, + "probability": 0.9417 + }, + { + "start": 4489.7, + "end": 4492.26, + "probability": 0.8191 + }, + { + "start": 4492.86, + "end": 4495.14, + "probability": 0.9962 + }, + { + "start": 4495.22, + "end": 4496.24, + "probability": 0.4605 + }, + { + "start": 4496.24, + "end": 4496.24, + "probability": 0.2493 + }, + { + "start": 4496.24, + "end": 4496.68, + "probability": 0.4238 + }, + { + "start": 4496.9, + "end": 4497.66, + "probability": 0.8629 + }, + { + "start": 4498.4, + "end": 4504.12, + "probability": 0.9696 + }, + { + "start": 4505.16, + "end": 4509.34, + "probability": 0.927 + }, + { + "start": 4509.48, + "end": 4510.68, + "probability": 0.9634 + }, + { + "start": 4510.76, + "end": 4512.48, + "probability": 0.9019 + }, + { + "start": 4512.96, + "end": 4514.14, + "probability": 0.5176 + }, + { + "start": 4515.54, + "end": 4517.72, + "probability": 0.9978 + }, + { + "start": 4518.16, + "end": 4519.9, + "probability": 0.9971 + }, + { + "start": 4520.48, + "end": 4522.66, + "probability": 0.9581 + }, + { + "start": 4524.46, + "end": 4527.3, + "probability": 0.6702 + }, + { + "start": 4527.36, + "end": 4533.22, + "probability": 0.8875 + }, + { + "start": 4534.02, + "end": 4536.06, + "probability": 0.872 + }, + { + "start": 4536.4, + "end": 4537.82, + "probability": 0.7893 + }, + { + "start": 4538.86, + "end": 4542.74, + "probability": 0.6793 + }, + { + "start": 4543.12, + "end": 4543.22, + "probability": 0.3819 + }, + { + "start": 4544.84, + "end": 4548.06, + "probability": 0.9425 + }, + { + "start": 4548.24, + "end": 4552.82, + "probability": 0.7744 + }, + { + "start": 4553.08, + "end": 4553.72, + "probability": 0.988 + }, + { + "start": 4553.98, + "end": 4554.6, + "probability": 0.9917 + }, + { + "start": 4554.84, + "end": 4555.44, + "probability": 0.9341 + }, + { + "start": 4555.66, + "end": 4556.44, + "probability": 0.866 + }, + { + "start": 4556.68, + "end": 4557.14, + "probability": 0.7644 + }, + { + "start": 4557.34, + "end": 4558.3, + "probability": 0.9516 + }, + { + "start": 4558.34, + "end": 4560.12, + "probability": 0.841 + }, + { + "start": 4560.5, + "end": 4562.94, + "probability": 0.9767 + }, + { + "start": 4563.3, + "end": 4564.54, + "probability": 0.6784 + }, + { + "start": 4564.54, + "end": 4565.0, + "probability": 0.389 + }, + { + "start": 4565.38, + "end": 4566.74, + "probability": 0.4557 + }, + { + "start": 4566.76, + "end": 4568.36, + "probability": 0.9653 + }, + { + "start": 4568.36, + "end": 4569.38, + "probability": 0.4758 + }, + { + "start": 4569.38, + "end": 4569.4, + "probability": 0.3915 + }, + { + "start": 4569.4, + "end": 4573.5, + "probability": 0.632 + }, + { + "start": 4573.56, + "end": 4574.46, + "probability": 0.3948 + }, + { + "start": 4574.56, + "end": 4574.56, + "probability": 0.1065 + }, + { + "start": 4574.6, + "end": 4575.43, + "probability": 0.2708 + }, + { + "start": 4575.94, + "end": 4577.3, + "probability": 0.5373 + }, + { + "start": 4577.5, + "end": 4578.36, + "probability": 0.6421 + }, + { + "start": 4579.12, + "end": 4579.74, + "probability": 0.1823 + }, + { + "start": 4580.25, + "end": 4582.4, + "probability": 0.9473 + }, + { + "start": 4582.76, + "end": 4584.56, + "probability": 0.9518 + }, + { + "start": 4584.62, + "end": 4587.34, + "probability": 0.9888 + }, + { + "start": 4588.14, + "end": 4588.98, + "probability": 0.9976 + }, + { + "start": 4590.23, + "end": 4591.38, + "probability": 0.7624 + }, + { + "start": 4592.24, + "end": 4593.88, + "probability": 0.972 + }, + { + "start": 4594.7, + "end": 4599.28, + "probability": 0.9451 + }, + { + "start": 4599.46, + "end": 4600.44, + "probability": 0.7791 + }, + { + "start": 4600.52, + "end": 4600.96, + "probability": 0.4153 + }, + { + "start": 4602.14, + "end": 4602.95, + "probability": 0.8516 + }, + { + "start": 4603.82, + "end": 4605.26, + "probability": 0.8108 + }, + { + "start": 4605.84, + "end": 4608.28, + "probability": 0.8585 + }, + { + "start": 4608.72, + "end": 4609.74, + "probability": 0.7959 + }, + { + "start": 4609.96, + "end": 4612.62, + "probability": 0.9666 + }, + { + "start": 4612.66, + "end": 4613.1, + "probability": 0.8857 + }, + { + "start": 4613.16, + "end": 4613.84, + "probability": 0.8324 + }, + { + "start": 4614.1, + "end": 4616.35, + "probability": 0.9661 + }, + { + "start": 4616.66, + "end": 4618.32, + "probability": 0.744 + }, + { + "start": 4618.52, + "end": 4619.71, + "probability": 0.5764 + }, + { + "start": 4619.96, + "end": 4620.6, + "probability": 0.9138 + }, + { + "start": 4620.68, + "end": 4621.54, + "probability": 0.9351 + }, + { + "start": 4621.84, + "end": 4622.7, + "probability": 0.9568 + }, + { + "start": 4622.74, + "end": 4624.2, + "probability": 0.8632 + }, + { + "start": 4624.46, + "end": 4626.26, + "probability": 0.9868 + }, + { + "start": 4626.36, + "end": 4627.8, + "probability": 0.7726 + }, + { + "start": 4627.88, + "end": 4628.75, + "probability": 0.8721 + }, + { + "start": 4629.12, + "end": 4633.3, + "probability": 0.9805 + }, + { + "start": 4633.5, + "end": 4635.62, + "probability": 0.9878 + }, + { + "start": 4635.64, + "end": 4636.24, + "probability": 0.2682 + }, + { + "start": 4636.44, + "end": 4636.7, + "probability": 0.7832 + }, + { + "start": 4636.8, + "end": 4637.4, + "probability": 0.6403 + }, + { + "start": 4637.88, + "end": 4638.36, + "probability": 0.4682 + }, + { + "start": 4638.68, + "end": 4639.72, + "probability": 0.7377 + }, + { + "start": 4639.8, + "end": 4640.68, + "probability": 0.6047 + }, + { + "start": 4640.76, + "end": 4641.64, + "probability": 0.2381 + }, + { + "start": 4641.64, + "end": 4642.02, + "probability": 0.626 + }, + { + "start": 4642.34, + "end": 4644.18, + "probability": 0.713 + }, + { + "start": 4644.22, + "end": 4645.1, + "probability": 0.6166 + }, + { + "start": 4645.7, + "end": 4646.84, + "probability": 0.9895 + }, + { + "start": 4647.29, + "end": 4650.88, + "probability": 0.7597 + }, + { + "start": 4651.54, + "end": 4654.44, + "probability": 0.9954 + }, + { + "start": 4655.04, + "end": 4656.8, + "probability": 0.8324 + }, + { + "start": 4657.36, + "end": 4659.96, + "probability": 0.8152 + }, + { + "start": 4660.42, + "end": 4660.82, + "probability": 0.6932 + }, + { + "start": 4660.88, + "end": 4661.64, + "probability": 0.615 + }, + { + "start": 4662.08, + "end": 4663.82, + "probability": 0.8981 + }, + { + "start": 4664.4, + "end": 4665.8, + "probability": 0.5848 + }, + { + "start": 4666.34, + "end": 4669.44, + "probability": 0.9905 + }, + { + "start": 4669.72, + "end": 4670.18, + "probability": 0.9141 + }, + { + "start": 4670.56, + "end": 4671.52, + "probability": 0.9337 + }, + { + "start": 4671.98, + "end": 4674.68, + "probability": 0.9703 + }, + { + "start": 4674.88, + "end": 4676.56, + "probability": 0.9966 + }, + { + "start": 4677.32, + "end": 4679.24, + "probability": 0.5905 + }, + { + "start": 4679.34, + "end": 4685.84, + "probability": 0.8077 + }, + { + "start": 4686.04, + "end": 4687.18, + "probability": 0.8405 + }, + { + "start": 4687.22, + "end": 4687.63, + "probability": 0.9886 + }, + { + "start": 4687.94, + "end": 4688.56, + "probability": 0.625 + }, + { + "start": 4688.82, + "end": 4690.52, + "probability": 0.5251 + }, + { + "start": 4690.7, + "end": 4690.96, + "probability": 0.5315 + }, + { + "start": 4691.12, + "end": 4691.4, + "probability": 0.5678 + }, + { + "start": 4691.4, + "end": 4692.66, + "probability": 0.8626 + }, + { + "start": 4692.74, + "end": 4698.62, + "probability": 0.0247 + }, + { + "start": 4698.62, + "end": 4698.62, + "probability": 0.2513 + }, + { + "start": 4698.62, + "end": 4698.62, + "probability": 0.3358 + }, + { + "start": 4698.62, + "end": 4699.04, + "probability": 0.6161 + }, + { + "start": 4699.38, + "end": 4701.39, + "probability": 0.5277 + }, + { + "start": 4701.76, + "end": 4705.78, + "probability": 0.9727 + }, + { + "start": 4710.1, + "end": 4713.08, + "probability": 0.5817 + }, + { + "start": 4713.8, + "end": 4714.8, + "probability": 0.8243 + }, + { + "start": 4716.1, + "end": 4717.06, + "probability": 0.6846 + }, + { + "start": 4717.4, + "end": 4719.56, + "probability": 0.9705 + }, + { + "start": 4719.8, + "end": 4720.96, + "probability": 0.9244 + }, + { + "start": 4721.42, + "end": 4724.72, + "probability": 0.9971 + }, + { + "start": 4725.54, + "end": 4728.84, + "probability": 0.7873 + }, + { + "start": 4729.04, + "end": 4729.86, + "probability": 0.4419 + }, + { + "start": 4730.54, + "end": 4738.05, + "probability": 0.9956 + }, + { + "start": 4738.36, + "end": 4738.97, + "probability": 0.9701 + }, + { + "start": 4739.8, + "end": 4740.82, + "probability": 0.7258 + }, + { + "start": 4740.94, + "end": 4742.5, + "probability": 0.9805 + }, + { + "start": 4742.9, + "end": 4745.5, + "probability": 0.9934 + }, + { + "start": 4746.18, + "end": 4747.66, + "probability": 0.511 + }, + { + "start": 4748.12, + "end": 4749.82, + "probability": 0.9535 + }, + { + "start": 4750.1, + "end": 4753.02, + "probability": 0.8187 + }, + { + "start": 4753.9, + "end": 4758.05, + "probability": 0.8899 + }, + { + "start": 4758.5, + "end": 4758.9, + "probability": 0.0596 + }, + { + "start": 4758.94, + "end": 4760.64, + "probability": 0.1587 + }, + { + "start": 4761.84, + "end": 4765.46, + "probability": 0.0598 + }, + { + "start": 4766.55, + "end": 4773.06, + "probability": 0.266 + }, + { + "start": 4773.16, + "end": 4773.82, + "probability": 0.4541 + }, + { + "start": 4773.96, + "end": 4774.34, + "probability": 0.131 + }, + { + "start": 4774.82, + "end": 4774.96, + "probability": 0.4426 + }, + { + "start": 4774.96, + "end": 4775.76, + "probability": 0.221 + }, + { + "start": 4776.12, + "end": 4779.16, + "probability": 0.3916 + }, + { + "start": 4779.44, + "end": 4781.74, + "probability": 0.7205 + }, + { + "start": 4781.88, + "end": 4782.24, + "probability": 0.5943 + }, + { + "start": 4782.4, + "end": 4783.14, + "probability": 0.7487 + }, + { + "start": 4783.36, + "end": 4784.56, + "probability": 0.7383 + }, + { + "start": 4784.88, + "end": 4787.46, + "probability": 0.9845 + }, + { + "start": 4787.84, + "end": 4793.94, + "probability": 0.9924 + }, + { + "start": 4794.4, + "end": 4798.6, + "probability": 0.9982 + }, + { + "start": 4799.0, + "end": 4799.38, + "probability": 0.591 + }, + { + "start": 4799.48, + "end": 4801.26, + "probability": 0.9301 + }, + { + "start": 4802.02, + "end": 4803.84, + "probability": 0.9844 + }, + { + "start": 4804.28, + "end": 4809.18, + "probability": 0.9315 + }, + { + "start": 4809.26, + "end": 4810.94, + "probability": 0.9805 + }, + { + "start": 4811.2, + "end": 4814.03, + "probability": 0.9915 + }, + { + "start": 4814.6, + "end": 4815.98, + "probability": 0.8062 + }, + { + "start": 4817.0, + "end": 4818.58, + "probability": 0.9888 + }, + { + "start": 4819.08, + "end": 4820.3, + "probability": 0.8518 + }, + { + "start": 4821.0, + "end": 4822.06, + "probability": 0.7876 + }, + { + "start": 4822.72, + "end": 4827.12, + "probability": 0.7062 + }, + { + "start": 4827.56, + "end": 4828.3, + "probability": 0.8932 + }, + { + "start": 4828.78, + "end": 4830.4, + "probability": 0.9874 + }, + { + "start": 4830.88, + "end": 4833.58, + "probability": 0.8843 + }, + { + "start": 4833.66, + "end": 4837.08, + "probability": 0.801 + }, + { + "start": 4837.1, + "end": 4837.54, + "probability": 0.4048 + }, + { + "start": 4838.22, + "end": 4842.82, + "probability": 0.895 + }, + { + "start": 4843.4, + "end": 4844.64, + "probability": 0.9878 + }, + { + "start": 4845.22, + "end": 4847.12, + "probability": 0.7449 + }, + { + "start": 4847.14, + "end": 4847.5, + "probability": 0.8661 + }, + { + "start": 4847.82, + "end": 4848.74, + "probability": 0.8016 + }, + { + "start": 4849.14, + "end": 4850.12, + "probability": 0.6162 + }, + { + "start": 4850.46, + "end": 4854.68, + "probability": 0.8774 + }, + { + "start": 4855.36, + "end": 4857.5, + "probability": 0.9678 + }, + { + "start": 4858.6, + "end": 4861.08, + "probability": 0.9764 + }, + { + "start": 4861.64, + "end": 4863.59, + "probability": 0.7965 + }, + { + "start": 4863.78, + "end": 4864.04, + "probability": 0.2195 + }, + { + "start": 4864.68, + "end": 4867.12, + "probability": 0.7543 + }, + { + "start": 4867.2, + "end": 4870.28, + "probability": 0.8654 + }, + { + "start": 4871.38, + "end": 4872.46, + "probability": 0.9617 + }, + { + "start": 4873.34, + "end": 4875.74, + "probability": 0.9589 + }, + { + "start": 4876.46, + "end": 4878.28, + "probability": 0.9657 + }, + { + "start": 4878.92, + "end": 4881.08, + "probability": 0.9498 + }, + { + "start": 4881.7, + "end": 4883.82, + "probability": 0.9747 + }, + { + "start": 4884.64, + "end": 4885.66, + "probability": 0.8457 + }, + { + "start": 4885.74, + "end": 4889.78, + "probability": 0.873 + }, + { + "start": 4890.72, + "end": 4893.82, + "probability": 0.9973 + }, + { + "start": 4894.66, + "end": 4898.2, + "probability": 0.7462 + }, + { + "start": 4898.58, + "end": 4900.58, + "probability": 0.9954 + }, + { + "start": 4900.82, + "end": 4903.84, + "probability": 0.9878 + }, + { + "start": 4903.88, + "end": 4907.45, + "probability": 0.9985 + }, + { + "start": 4907.86, + "end": 4908.54, + "probability": 0.6166 + }, + { + "start": 4908.64, + "end": 4911.36, + "probability": 0.9973 + }, + { + "start": 4911.66, + "end": 4913.1, + "probability": 0.8622 + }, + { + "start": 4913.68, + "end": 4914.68, + "probability": 0.7995 + }, + { + "start": 4914.86, + "end": 4918.48, + "probability": 0.9067 + }, + { + "start": 4918.84, + "end": 4920.76, + "probability": 0.9217 + }, + { + "start": 4921.0, + "end": 4928.78, + "probability": 0.9706 + }, + { + "start": 4928.78, + "end": 4936.54, + "probability": 0.999 + }, + { + "start": 4937.1, + "end": 4937.1, + "probability": 0.0367 + }, + { + "start": 4937.12, + "end": 4939.21, + "probability": 0.9808 + }, + { + "start": 4939.36, + "end": 4940.98, + "probability": 0.0237 + }, + { + "start": 4942.26, + "end": 4942.54, + "probability": 0.1318 + }, + { + "start": 4942.54, + "end": 4943.4, + "probability": 0.3198 + }, + { + "start": 4944.1, + "end": 4948.68, + "probability": 0.9734 + }, + { + "start": 4949.24, + "end": 4952.36, + "probability": 0.9938 + }, + { + "start": 4952.78, + "end": 4958.86, + "probability": 0.9966 + }, + { + "start": 4959.42, + "end": 4961.84, + "probability": 0.8471 + }, + { + "start": 4961.84, + "end": 4965.84, + "probability": 0.9879 + }, + { + "start": 4966.3, + "end": 4967.42, + "probability": 0.7098 + }, + { + "start": 4967.82, + "end": 4969.5, + "probability": 0.9486 + }, + { + "start": 4969.78, + "end": 4972.18, + "probability": 0.7522 + }, + { + "start": 4972.64, + "end": 4973.78, + "probability": 0.9283 + }, + { + "start": 4974.1, + "end": 4976.44, + "probability": 0.8809 + }, + { + "start": 4976.52, + "end": 4977.15, + "probability": 0.9553 + }, + { + "start": 4977.56, + "end": 4978.34, + "probability": 0.7952 + }, + { + "start": 4978.88, + "end": 4980.18, + "probability": 0.9366 + }, + { + "start": 4980.26, + "end": 4981.5, + "probability": 0.967 + }, + { + "start": 4981.88, + "end": 4986.54, + "probability": 0.9272 + }, + { + "start": 4986.9, + "end": 4988.2, + "probability": 0.8905 + }, + { + "start": 4988.5, + "end": 4992.36, + "probability": 0.9152 + }, + { + "start": 4992.84, + "end": 4995.26, + "probability": 0.9467 + }, + { + "start": 4996.54, + "end": 5000.74, + "probability": 0.6663 + }, + { + "start": 5001.58, + "end": 5002.86, + "probability": 0.6651 + }, + { + "start": 5003.18, + "end": 5007.5, + "probability": 0.8959 + }, + { + "start": 5008.14, + "end": 5014.28, + "probability": 0.9578 + }, + { + "start": 5014.7, + "end": 5018.62, + "probability": 0.9271 + }, + { + "start": 5019.06, + "end": 5019.92, + "probability": 0.8026 + }, + { + "start": 5020.3, + "end": 5021.84, + "probability": 0.7977 + }, + { + "start": 5021.94, + "end": 5022.74, + "probability": 0.9506 + }, + { + "start": 5022.8, + "end": 5025.38, + "probability": 0.9196 + }, + { + "start": 5025.78, + "end": 5027.52, + "probability": 0.9667 + }, + { + "start": 5027.9, + "end": 5031.18, + "probability": 0.9381 + }, + { + "start": 5031.8, + "end": 5032.15, + "probability": 0.1483 + }, + { + "start": 5033.04, + "end": 5033.66, + "probability": 0.4913 + }, + { + "start": 5034.46, + "end": 5035.08, + "probability": 0.8141 + }, + { + "start": 5035.66, + "end": 5037.2, + "probability": 0.9836 + }, + { + "start": 5037.32, + "end": 5040.42, + "probability": 0.863 + }, + { + "start": 5040.74, + "end": 5043.02, + "probability": 0.8507 + }, + { + "start": 5043.38, + "end": 5045.8, + "probability": 0.9675 + }, + { + "start": 5046.2, + "end": 5050.1, + "probability": 0.9295 + }, + { + "start": 5050.46, + "end": 5050.8, + "probability": 0.8011 + }, + { + "start": 5051.32, + "end": 5051.44, + "probability": 0.0394 + }, + { + "start": 5051.44, + "end": 5052.5, + "probability": 0.5722 + }, + { + "start": 5052.66, + "end": 5055.7, + "probability": 0.9187 + }, + { + "start": 5055.8, + "end": 5058.2, + "probability": 0.9706 + }, + { + "start": 5058.3, + "end": 5061.18, + "probability": 0.503 + }, + { + "start": 5061.42, + "end": 5063.1, + "probability": 0.9402 + }, + { + "start": 5063.16, + "end": 5065.28, + "probability": 0.9862 + }, + { + "start": 5065.9, + "end": 5068.88, + "probability": 0.9271 + }, + { + "start": 5069.0, + "end": 5074.16, + "probability": 0.998 + }, + { + "start": 5075.1, + "end": 5075.4, + "probability": 0.7168 + }, + { + "start": 5075.56, + "end": 5079.96, + "probability": 0.8735 + }, + { + "start": 5080.74, + "end": 5082.9, + "probability": 0.4548 + }, + { + "start": 5083.04, + "end": 5084.6, + "probability": 0.6091 + }, + { + "start": 5085.0, + "end": 5088.46, + "probability": 0.9387 + }, + { + "start": 5089.52, + "end": 5092.36, + "probability": 0.9857 + }, + { + "start": 5092.68, + "end": 5094.72, + "probability": 0.8877 + }, + { + "start": 5094.76, + "end": 5095.26, + "probability": 0.8571 + }, + { + "start": 5095.6, + "end": 5097.96, + "probability": 0.9508 + }, + { + "start": 5109.8, + "end": 5110.0, + "probability": 0.5909 + }, + { + "start": 5111.0, + "end": 5111.62, + "probability": 0.6614 + }, + { + "start": 5111.64, + "end": 5112.18, + "probability": 0.4865 + }, + { + "start": 5112.44, + "end": 5119.76, + "probability": 0.983 + }, + { + "start": 5120.68, + "end": 5121.0, + "probability": 0.9073 + }, + { + "start": 5121.12, + "end": 5121.92, + "probability": 0.8302 + }, + { + "start": 5122.02, + "end": 5127.42, + "probability": 0.9241 + }, + { + "start": 5128.0, + "end": 5129.84, + "probability": 0.0478 + }, + { + "start": 5130.06, + "end": 5131.24, + "probability": 0.2585 + }, + { + "start": 5131.28, + "end": 5132.4, + "probability": 0.5187 + }, + { + "start": 5132.84, + "end": 5134.08, + "probability": 0.7573 + }, + { + "start": 5134.26, + "end": 5135.04, + "probability": 0.803 + }, + { + "start": 5135.12, + "end": 5143.16, + "probability": 0.9851 + }, + { + "start": 5144.44, + "end": 5149.26, + "probability": 0.9886 + }, + { + "start": 5150.12, + "end": 5150.92, + "probability": 0.7259 + }, + { + "start": 5151.02, + "end": 5151.86, + "probability": 0.7088 + }, + { + "start": 5151.98, + "end": 5152.88, + "probability": 0.7571 + }, + { + "start": 5153.38, + "end": 5157.5, + "probability": 0.9563 + }, + { + "start": 5158.38, + "end": 5161.62, + "probability": 0.9902 + }, + { + "start": 5161.62, + "end": 5164.74, + "probability": 0.9952 + }, + { + "start": 5165.94, + "end": 5167.58, + "probability": 0.9912 + }, + { + "start": 5167.58, + "end": 5168.24, + "probability": 0.5728 + }, + { + "start": 5168.48, + "end": 5170.28, + "probability": 0.9565 + }, + { + "start": 5170.32, + "end": 5172.43, + "probability": 0.7075 + }, + { + "start": 5175.28, + "end": 5175.3, + "probability": 0.0175 + }, + { + "start": 5175.3, + "end": 5177.98, + "probability": 0.3069 + }, + { + "start": 5179.36, + "end": 5182.92, + "probability": 0.9336 + }, + { + "start": 5183.54, + "end": 5185.68, + "probability": 0.9897 + }, + { + "start": 5186.1, + "end": 5187.26, + "probability": 0.9561 + }, + { + "start": 5187.42, + "end": 5188.44, + "probability": 0.6668 + }, + { + "start": 5188.66, + "end": 5190.16, + "probability": 0.9489 + }, + { + "start": 5190.64, + "end": 5192.98, + "probability": 0.9888 + }, + { + "start": 5193.54, + "end": 5194.32, + "probability": 0.7851 + }, + { + "start": 5194.42, + "end": 5195.24, + "probability": 0.8703 + }, + { + "start": 5195.32, + "end": 5196.12, + "probability": 0.8966 + }, + { + "start": 5196.12, + "end": 5197.02, + "probability": 0.9418 + }, + { + "start": 5197.02, + "end": 5197.9, + "probability": 0.9424 + }, + { + "start": 5197.98, + "end": 5199.74, + "probability": 0.8231 + }, + { + "start": 5200.6, + "end": 5201.28, + "probability": 0.8811 + }, + { + "start": 5201.38, + "end": 5202.08, + "probability": 0.6028 + }, + { + "start": 5202.24, + "end": 5203.94, + "probability": 0.9029 + }, + { + "start": 5204.02, + "end": 5208.0, + "probability": 0.9924 + }, + { + "start": 5208.64, + "end": 5210.46, + "probability": 0.9976 + }, + { + "start": 5210.54, + "end": 5211.9, + "probability": 0.9941 + }, + { + "start": 5212.06, + "end": 5212.55, + "probability": 0.8521 + }, + { + "start": 5212.96, + "end": 5216.02, + "probability": 0.7085 + }, + { + "start": 5216.82, + "end": 5221.38, + "probability": 0.9497 + }, + { + "start": 5222.5, + "end": 5227.64, + "probability": 0.985 + }, + { + "start": 5229.52, + "end": 5233.02, + "probability": 0.977 + }, + { + "start": 5234.36, + "end": 5235.54, + "probability": 0.8998 + }, + { + "start": 5235.72, + "end": 5236.9, + "probability": 0.6067 + }, + { + "start": 5236.96, + "end": 5240.28, + "probability": 0.9785 + }, + { + "start": 5240.28, + "end": 5245.14, + "probability": 0.9875 + }, + { + "start": 5245.58, + "end": 5248.14, + "probability": 0.9213 + }, + { + "start": 5249.26, + "end": 5250.38, + "probability": 0.8987 + }, + { + "start": 5250.7, + "end": 5251.98, + "probability": 0.8904 + }, + { + "start": 5252.04, + "end": 5253.9, + "probability": 0.9474 + }, + { + "start": 5254.44, + "end": 5256.06, + "probability": 0.9731 + }, + { + "start": 5256.12, + "end": 5258.74, + "probability": 0.9634 + }, + { + "start": 5259.22, + "end": 5262.92, + "probability": 0.9971 + }, + { + "start": 5263.86, + "end": 5268.14, + "probability": 0.9915 + }, + { + "start": 5268.38, + "end": 5269.88, + "probability": 0.5895 + }, + { + "start": 5270.06, + "end": 5274.38, + "probability": 0.9885 + }, + { + "start": 5275.76, + "end": 5279.87, + "probability": 0.984 + }, + { + "start": 5279.92, + "end": 5284.78, + "probability": 0.9946 + }, + { + "start": 5285.36, + "end": 5287.3, + "probability": 0.9812 + }, + { + "start": 5287.68, + "end": 5290.9, + "probability": 0.7566 + }, + { + "start": 5293.29, + "end": 5297.66, + "probability": 0.9808 + }, + { + "start": 5298.04, + "end": 5300.6, + "probability": 0.9249 + }, + { + "start": 5301.6, + "end": 5308.06, + "probability": 0.8608 + }, + { + "start": 5308.56, + "end": 5311.88, + "probability": 0.9495 + }, + { + "start": 5312.1, + "end": 5316.34, + "probability": 0.9889 + }, + { + "start": 5316.56, + "end": 5317.22, + "probability": 0.8566 + }, + { + "start": 5317.9, + "end": 5321.7, + "probability": 0.9202 + }, + { + "start": 5322.2, + "end": 5326.88, + "probability": 0.9656 + }, + { + "start": 5327.8, + "end": 5329.34, + "probability": 0.9608 + }, + { + "start": 5329.44, + "end": 5332.3, + "probability": 0.9642 + }, + { + "start": 5333.06, + "end": 5333.46, + "probability": 0.8405 + }, + { + "start": 5333.82, + "end": 5340.72, + "probability": 0.9501 + }, + { + "start": 5341.12, + "end": 5344.48, + "probability": 0.9908 + }, + { + "start": 5344.84, + "end": 5348.02, + "probability": 0.9966 + }, + { + "start": 5350.96, + "end": 5352.68, + "probability": 0.096 + }, + { + "start": 5354.12, + "end": 5357.14, + "probability": 0.7681 + }, + { + "start": 5357.28, + "end": 5359.28, + "probability": 0.9605 + }, + { + "start": 5359.38, + "end": 5359.8, + "probability": 0.5311 + }, + { + "start": 5359.8, + "end": 5360.62, + "probability": 0.1562 + }, + { + "start": 5360.82, + "end": 5361.16, + "probability": 0.4021 + }, + { + "start": 5361.22, + "end": 5361.92, + "probability": 0.5529 + }, + { + "start": 5362.06, + "end": 5365.12, + "probability": 0.8687 + }, + { + "start": 5365.26, + "end": 5366.72, + "probability": 0.9888 + }, + { + "start": 5367.18, + "end": 5368.74, + "probability": 0.8543 + }, + { + "start": 5369.28, + "end": 5372.08, + "probability": 0.993 + }, + { + "start": 5372.54, + "end": 5375.38, + "probability": 0.9906 + }, + { + "start": 5375.62, + "end": 5378.92, + "probability": 0.9793 + }, + { + "start": 5379.42, + "end": 5382.54, + "probability": 0.9922 + }, + { + "start": 5382.8, + "end": 5385.54, + "probability": 0.5811 + }, + { + "start": 5386.06, + "end": 5388.74, + "probability": 0.8431 + }, + { + "start": 5389.28, + "end": 5391.04, + "probability": 0.9658 + }, + { + "start": 5391.46, + "end": 5393.2, + "probability": 0.9778 + }, + { + "start": 5393.32, + "end": 5394.22, + "probability": 0.8562 + }, + { + "start": 5394.44, + "end": 5397.42, + "probability": 0.9975 + }, + { + "start": 5397.42, + "end": 5400.66, + "probability": 0.9995 + }, + { + "start": 5401.3, + "end": 5403.82, + "probability": 0.9956 + }, + { + "start": 5404.2, + "end": 5407.32, + "probability": 0.8974 + }, + { + "start": 5407.78, + "end": 5414.04, + "probability": 0.9923 + }, + { + "start": 5414.04, + "end": 5420.34, + "probability": 0.9976 + }, + { + "start": 5420.74, + "end": 5421.78, + "probability": 0.96 + }, + { + "start": 5422.54, + "end": 5422.84, + "probability": 0.7365 + }, + { + "start": 5423.06, + "end": 5423.84, + "probability": 0.7695 + }, + { + "start": 5424.0, + "end": 5426.88, + "probability": 0.9751 + }, + { + "start": 5426.96, + "end": 5429.1, + "probability": 0.7063 + }, + { + "start": 5429.22, + "end": 5430.24, + "probability": 0.9556 + }, + { + "start": 5431.02, + "end": 5431.86, + "probability": 0.7373 + }, + { + "start": 5432.04, + "end": 5436.02, + "probability": 0.8064 + }, + { + "start": 5436.24, + "end": 5438.46, + "probability": 0.984 + }, + { + "start": 5439.14, + "end": 5444.34, + "probability": 0.9386 + }, + { + "start": 5444.76, + "end": 5446.0, + "probability": 0.8928 + }, + { + "start": 5446.18, + "end": 5448.42, + "probability": 0.9538 + }, + { + "start": 5448.54, + "end": 5451.54, + "probability": 0.9606 + }, + { + "start": 5451.98, + "end": 5452.78, + "probability": 0.616 + }, + { + "start": 5453.4, + "end": 5458.3, + "probability": 0.8958 + }, + { + "start": 5458.96, + "end": 5463.16, + "probability": 0.9598 + }, + { + "start": 5464.86, + "end": 5466.66, + "probability": 0.1496 + }, + { + "start": 5466.82, + "end": 5466.82, + "probability": 0.0629 + }, + { + "start": 5466.82, + "end": 5467.76, + "probability": 0.458 + }, + { + "start": 5467.8, + "end": 5468.22, + "probability": 0.9361 + }, + { + "start": 5468.8, + "end": 5471.42, + "probability": 0.9745 + }, + { + "start": 5472.6, + "end": 5476.42, + "probability": 0.8088 + }, + { + "start": 5476.72, + "end": 5481.24, + "probability": 0.9854 + }, + { + "start": 5482.14, + "end": 5483.42, + "probability": 0.7739 + }, + { + "start": 5483.56, + "end": 5484.66, + "probability": 0.7662 + }, + { + "start": 5484.78, + "end": 5487.38, + "probability": 0.8967 + }, + { + "start": 5488.14, + "end": 5490.48, + "probability": 0.7988 + }, + { + "start": 5490.48, + "end": 5494.04, + "probability": 0.9981 + }, + { + "start": 5494.48, + "end": 5500.16, + "probability": 0.9962 + }, + { + "start": 5500.74, + "end": 5504.16, + "probability": 0.9941 + }, + { + "start": 5504.4, + "end": 5506.42, + "probability": 0.9985 + }, + { + "start": 5507.96, + "end": 5513.8, + "probability": 0.9945 + }, + { + "start": 5516.52, + "end": 5519.68, + "probability": 0.9911 + }, + { + "start": 5520.46, + "end": 5524.32, + "probability": 0.9753 + }, + { + "start": 5524.46, + "end": 5525.88, + "probability": 0.9736 + }, + { + "start": 5526.04, + "end": 5527.46, + "probability": 0.9884 + }, + { + "start": 5527.76, + "end": 5530.02, + "probability": 0.9965 + }, + { + "start": 5530.28, + "end": 5531.78, + "probability": 0.9456 + }, + { + "start": 5532.48, + "end": 5537.02, + "probability": 0.9972 + }, + { + "start": 5537.02, + "end": 5544.42, + "probability": 0.9981 + }, + { + "start": 5544.92, + "end": 5546.98, + "probability": 0.9927 + }, + { + "start": 5547.64, + "end": 5551.36, + "probability": 0.823 + }, + { + "start": 5551.52, + "end": 5552.52, + "probability": 0.7255 + }, + { + "start": 5552.6, + "end": 5554.66, + "probability": 0.9955 + }, + { + "start": 5555.14, + "end": 5557.86, + "probability": 0.8177 + }, + { + "start": 5558.56, + "end": 5560.14, + "probability": 0.2356 + }, + { + "start": 5560.14, + "end": 5560.78, + "probability": 0.3164 + }, + { + "start": 5560.78, + "end": 5561.14, + "probability": 0.0194 + }, + { + "start": 5561.14, + "end": 5561.48, + "probability": 0.126 + }, + { + "start": 5561.48, + "end": 5563.24, + "probability": 0.8274 + }, + { + "start": 5563.68, + "end": 5566.96, + "probability": 0.9897 + }, + { + "start": 5567.0, + "end": 5568.48, + "probability": 0.8749 + }, + { + "start": 5568.54, + "end": 5572.92, + "probability": 0.9451 + }, + { + "start": 5573.44, + "end": 5577.96, + "probability": 0.9952 + }, + { + "start": 5577.96, + "end": 5581.64, + "probability": 0.9972 + }, + { + "start": 5582.18, + "end": 5582.64, + "probability": 0.6596 + }, + { + "start": 5582.7, + "end": 5584.3, + "probability": 0.9001 + }, + { + "start": 5584.34, + "end": 5585.04, + "probability": 0.8521 + }, + { + "start": 5585.16, + "end": 5588.86, + "probability": 0.7242 + }, + { + "start": 5589.5, + "end": 5589.58, + "probability": 0.0628 + }, + { + "start": 5589.58, + "end": 5593.76, + "probability": 0.7963 + }, + { + "start": 5593.92, + "end": 5594.54, + "probability": 0.5759 + }, + { + "start": 5594.84, + "end": 5595.95, + "probability": 0.5351 + }, + { + "start": 5596.38, + "end": 5599.17, + "probability": 0.5146 + }, + { + "start": 5600.1, + "end": 5601.22, + "probability": 0.7167 + }, + { + "start": 5601.34, + "end": 5602.58, + "probability": 0.2102 + }, + { + "start": 5602.68, + "end": 5604.28, + "probability": 0.9171 + }, + { + "start": 5604.38, + "end": 5605.6, + "probability": 0.7835 + }, + { + "start": 5605.62, + "end": 5607.34, + "probability": 0.7422 + }, + { + "start": 5607.34, + "end": 5609.5, + "probability": 0.8761 + }, + { + "start": 5609.9, + "end": 5610.16, + "probability": 0.699 + }, + { + "start": 5610.18, + "end": 5610.18, + "probability": 0.5066 + }, + { + "start": 5610.3, + "end": 5616.32, + "probability": 0.9971 + }, + { + "start": 5616.5, + "end": 5617.8, + "probability": 0.5064 + }, + { + "start": 5617.82, + "end": 5621.4, + "probability": 0.9312 + }, + { + "start": 5622.06, + "end": 5625.58, + "probability": 0.9987 + }, + { + "start": 5626.4, + "end": 5626.54, + "probability": 0.6542 + }, + { + "start": 5626.96, + "end": 5629.0, + "probability": 0.92 + }, + { + "start": 5629.06, + "end": 5631.22, + "probability": 0.9719 + }, + { + "start": 5631.46, + "end": 5636.04, + "probability": 0.8785 + }, + { + "start": 5636.04, + "end": 5639.6, + "probability": 0.8029 + }, + { + "start": 5639.68, + "end": 5642.88, + "probability": 0.8219 + }, + { + "start": 5643.18, + "end": 5644.12, + "probability": 0.6616 + }, + { + "start": 5644.38, + "end": 5645.92, + "probability": 0.9363 + }, + { + "start": 5646.0, + "end": 5646.84, + "probability": 0.7148 + }, + { + "start": 5647.34, + "end": 5650.28, + "probability": 0.9775 + }, + { + "start": 5650.82, + "end": 5652.26, + "probability": 0.7723 + }, + { + "start": 5652.56, + "end": 5654.4, + "probability": 0.9393 + }, + { + "start": 5654.56, + "end": 5655.7, + "probability": 0.6876 + }, + { + "start": 5656.08, + "end": 5657.3, + "probability": 0.8028 + }, + { + "start": 5657.4, + "end": 5658.2, + "probability": 0.873 + }, + { + "start": 5658.52, + "end": 5659.1, + "probability": 0.5467 + }, + { + "start": 5659.32, + "end": 5660.54, + "probability": 0.8207 + }, + { + "start": 5661.74, + "end": 5664.04, + "probability": 0.9889 + }, + { + "start": 5664.44, + "end": 5668.36, + "probability": 0.9702 + }, + { + "start": 5669.42, + "end": 5675.14, + "probability": 0.9221 + }, + { + "start": 5675.38, + "end": 5676.04, + "probability": 0.6357 + }, + { + "start": 5676.4, + "end": 5679.34, + "probability": 0.9489 + }, + { + "start": 5679.92, + "end": 5682.62, + "probability": 0.9928 + }, + { + "start": 5683.42, + "end": 5684.26, + "probability": 0.6427 + }, + { + "start": 5685.94, + "end": 5686.98, + "probability": 0.1121 + }, + { + "start": 5687.0, + "end": 5687.0, + "probability": 0.0 + }, + { + "start": 5690.9, + "end": 5692.9, + "probability": 0.5103 + }, + { + "start": 5693.18, + "end": 5696.44, + "probability": 0.9951 + }, + { + "start": 5696.44, + "end": 5701.02, + "probability": 0.9688 + }, + { + "start": 5701.16, + "end": 5702.46, + "probability": 0.8484 + }, + { + "start": 5703.84, + "end": 5711.52, + "probability": 0.9847 + }, + { + "start": 5712.72, + "end": 5721.06, + "probability": 0.9628 + }, + { + "start": 5721.14, + "end": 5722.0, + "probability": 0.2901 + }, + { + "start": 5723.0, + "end": 5728.26, + "probability": 0.9897 + }, + { + "start": 5728.4, + "end": 5729.28, + "probability": 0.7969 + }, + { + "start": 5729.38, + "end": 5731.32, + "probability": 0.8382 + }, + { + "start": 5731.72, + "end": 5733.68, + "probability": 0.9897 + }, + { + "start": 5734.3, + "end": 5737.42, + "probability": 0.9381 + }, + { + "start": 5738.02, + "end": 5738.36, + "probability": 0.6347 + }, + { + "start": 5738.4, + "end": 5741.62, + "probability": 0.9781 + }, + { + "start": 5741.72, + "end": 5745.18, + "probability": 0.9676 + }, + { + "start": 5746.06, + "end": 5753.1, + "probability": 0.9814 + }, + { + "start": 5753.52, + "end": 5756.02, + "probability": 0.9521 + }, + { + "start": 5756.44, + "end": 5758.44, + "probability": 0.8677 + }, + { + "start": 5758.64, + "end": 5764.22, + "probability": 0.9395 + }, + { + "start": 5764.38, + "end": 5766.16, + "probability": 0.9326 + }, + { + "start": 5766.68, + "end": 5770.06, + "probability": 0.8359 + }, + { + "start": 5770.58, + "end": 5776.38, + "probability": 0.9983 + }, + { + "start": 5777.46, + "end": 5780.38, + "probability": 0.9958 + }, + { + "start": 5781.66, + "end": 5786.36, + "probability": 0.8158 + }, + { + "start": 5786.7, + "end": 5788.82, + "probability": 0.8404 + }, + { + "start": 5789.0, + "end": 5790.5, + "probability": 0.9593 + }, + { + "start": 5791.2, + "end": 5793.6, + "probability": 0.9944 + }, + { + "start": 5793.6, + "end": 5796.46, + "probability": 0.9961 + }, + { + "start": 5797.52, + "end": 5802.44, + "probability": 0.984 + }, + { + "start": 5802.96, + "end": 5805.92, + "probability": 0.8274 + }, + { + "start": 5806.12, + "end": 5806.62, + "probability": 0.3486 + }, + { + "start": 5806.8, + "end": 5810.68, + "probability": 0.9856 + }, + { + "start": 5810.78, + "end": 5811.76, + "probability": 0.8268 + }, + { + "start": 5812.3, + "end": 5815.02, + "probability": 0.9539 + }, + { + "start": 5815.58, + "end": 5816.88, + "probability": 0.8608 + }, + { + "start": 5817.0, + "end": 5817.8, + "probability": 0.8277 + }, + { + "start": 5818.0, + "end": 5822.76, + "probability": 0.9441 + }, + { + "start": 5823.24, + "end": 5824.52, + "probability": 0.9302 + }, + { + "start": 5825.22, + "end": 5826.54, + "probability": 0.8917 + }, + { + "start": 5826.94, + "end": 5827.92, + "probability": 0.9147 + }, + { + "start": 5828.36, + "end": 5829.34, + "probability": 0.74 + }, + { + "start": 5829.56, + "end": 5832.08, + "probability": 0.3411 + }, + { + "start": 5832.12, + "end": 5834.9, + "probability": 0.999 + }, + { + "start": 5835.58, + "end": 5838.6, + "probability": 0.9995 + }, + { + "start": 5838.6, + "end": 5841.5, + "probability": 0.9968 + }, + { + "start": 5842.06, + "end": 5847.38, + "probability": 0.9988 + }, + { + "start": 5848.34, + "end": 5848.34, + "probability": 0.0247 + }, + { + "start": 5848.34, + "end": 5849.08, + "probability": 0.6425 + }, + { + "start": 5849.16, + "end": 5849.98, + "probability": 0.7868 + }, + { + "start": 5850.44, + "end": 5851.94, + "probability": 0.7812 + }, + { + "start": 5852.5, + "end": 5857.02, + "probability": 0.9828 + }, + { + "start": 5857.58, + "end": 5859.76, + "probability": 0.9722 + }, + { + "start": 5860.08, + "end": 5863.86, + "probability": 0.9813 + }, + { + "start": 5864.5, + "end": 5866.44, + "probability": 0.9888 + }, + { + "start": 5866.8, + "end": 5871.16, + "probability": 0.988 + }, + { + "start": 5871.86, + "end": 5873.18, + "probability": 0.9542 + }, + { + "start": 5873.62, + "end": 5878.56, + "probability": 0.9958 + }, + { + "start": 5878.56, + "end": 5883.52, + "probability": 0.9969 + }, + { + "start": 5884.1, + "end": 5886.26, + "probability": 0.8554 + }, + { + "start": 5886.6, + "end": 5888.82, + "probability": 0.998 + }, + { + "start": 5889.14, + "end": 5890.24, + "probability": 0.8931 + }, + { + "start": 5890.34, + "end": 5891.48, + "probability": 0.9451 + }, + { + "start": 5891.92, + "end": 5893.32, + "probability": 0.9695 + }, + { + "start": 5893.84, + "end": 5894.74, + "probability": 0.9312 + }, + { + "start": 5895.02, + "end": 5895.86, + "probability": 0.7501 + }, + { + "start": 5896.2, + "end": 5900.3, + "probability": 0.9078 + }, + { + "start": 5900.86, + "end": 5904.14, + "probability": 0.9601 + }, + { + "start": 5904.46, + "end": 5906.78, + "probability": 0.6127 + }, + { + "start": 5906.86, + "end": 5909.4, + "probability": 0.7121 + }, + { + "start": 5909.88, + "end": 5910.84, + "probability": 0.3646 + }, + { + "start": 5911.8, + "end": 5914.12, + "probability": 0.6219 + }, + { + "start": 5929.5, + "end": 5932.4, + "probability": 0.9588 + }, + { + "start": 5933.34, + "end": 5934.7, + "probability": 0.7159 + }, + { + "start": 5935.18, + "end": 5941.62, + "probability": 0.7462 + }, + { + "start": 5942.44, + "end": 5943.58, + "probability": 0.8936 + }, + { + "start": 5943.86, + "end": 5945.52, + "probability": 0.9902 + }, + { + "start": 5945.68, + "end": 5946.28, + "probability": 0.8742 + }, + { + "start": 5946.54, + "end": 5947.9, + "probability": 0.717 + }, + { + "start": 5948.56, + "end": 5950.52, + "probability": 0.8027 + }, + { + "start": 5951.26, + "end": 5952.78, + "probability": 0.9893 + }, + { + "start": 5953.42, + "end": 5954.64, + "probability": 0.959 + }, + { + "start": 5954.64, + "end": 5957.18, + "probability": 0.9603 + }, + { + "start": 5957.24, + "end": 5957.62, + "probability": 0.0719 + }, + { + "start": 5957.62, + "end": 5957.7, + "probability": 0.2577 + }, + { + "start": 5957.86, + "end": 5960.22, + "probability": 0.821 + }, + { + "start": 5960.34, + "end": 5962.94, + "probability": 0.7389 + }, + { + "start": 5963.68, + "end": 5969.1, + "probability": 0.9833 + }, + { + "start": 5969.14, + "end": 5971.06, + "probability": 0.8771 + }, + { + "start": 5971.06, + "end": 5971.72, + "probability": 0.266 + }, + { + "start": 5971.72, + "end": 5971.72, + "probability": 0.0443 + }, + { + "start": 5971.72, + "end": 5971.86, + "probability": 0.3796 + }, + { + "start": 5971.9, + "end": 5972.74, + "probability": 0.7009 + }, + { + "start": 5972.9, + "end": 5973.4, + "probability": 0.3761 + }, + { + "start": 5973.4, + "end": 5976.7, + "probability": 0.4715 + }, + { + "start": 5977.06, + "end": 5979.0, + "probability": 0.9482 + }, + { + "start": 5979.6, + "end": 5983.86, + "probability": 0.9521 + }, + { + "start": 5984.18, + "end": 5985.49, + "probability": 0.7295 + }, + { + "start": 5985.76, + "end": 5986.24, + "probability": 0.181 + }, + { + "start": 5986.3, + "end": 5990.52, + "probability": 0.9519 + }, + { + "start": 5990.52, + "end": 5991.76, + "probability": 0.1979 + }, + { + "start": 5991.82, + "end": 5993.62, + "probability": 0.3922 + }, + { + "start": 5993.9, + "end": 6001.42, + "probability": 0.7737 + }, + { + "start": 6001.5, + "end": 6002.9, + "probability": 0.1689 + }, + { + "start": 6003.28, + "end": 6005.0, + "probability": 0.5001 + }, + { + "start": 6005.32, + "end": 6006.08, + "probability": 0.5526 + }, + { + "start": 6006.82, + "end": 6008.94, + "probability": 0.6539 + }, + { + "start": 6010.36, + "end": 6010.64, + "probability": 0.5536 + }, + { + "start": 6010.72, + "end": 6011.14, + "probability": 0.9346 + }, + { + "start": 6011.18, + "end": 6014.68, + "probability": 0.9938 + }, + { + "start": 6014.84, + "end": 6019.04, + "probability": 0.9768 + }, + { + "start": 6019.2, + "end": 6023.08, + "probability": 0.9965 + }, + { + "start": 6023.08, + "end": 6026.78, + "probability": 0.5237 + }, + { + "start": 6027.2, + "end": 6031.46, + "probability": 0.9903 + }, + { + "start": 6031.46, + "end": 6035.64, + "probability": 0.9869 + }, + { + "start": 6037.06, + "end": 6040.78, + "probability": 0.7749 + }, + { + "start": 6040.84, + "end": 6041.96, + "probability": 0.8843 + }, + { + "start": 6042.96, + "end": 6046.22, + "probability": 0.9604 + }, + { + "start": 6046.74, + "end": 6052.06, + "probability": 0.9869 + }, + { + "start": 6052.06, + "end": 6056.68, + "probability": 0.9989 + }, + { + "start": 6057.12, + "end": 6058.32, + "probability": 0.8956 + }, + { + "start": 6059.14, + "end": 6066.9, + "probability": 0.9965 + }, + { + "start": 6067.74, + "end": 6073.28, + "probability": 0.9961 + }, + { + "start": 6074.46, + "end": 6074.98, + "probability": 0.7015 + }, + { + "start": 6075.16, + "end": 6078.82, + "probability": 0.9699 + }, + { + "start": 6078.94, + "end": 6080.74, + "probability": 0.494 + }, + { + "start": 6081.54, + "end": 6083.36, + "probability": 0.8633 + }, + { + "start": 6083.42, + "end": 6086.94, + "probability": 0.9678 + }, + { + "start": 6087.46, + "end": 6090.0, + "probability": 0.9476 + }, + { + "start": 6090.06, + "end": 6092.54, + "probability": 0.9402 + }, + { + "start": 6092.64, + "end": 6098.14, + "probability": 0.9594 + }, + { + "start": 6099.04, + "end": 6103.96, + "probability": 0.9685 + }, + { + "start": 6104.64, + "end": 6106.08, + "probability": 0.5122 + }, + { + "start": 6106.68, + "end": 6107.42, + "probability": 0.5593 + }, + { + "start": 6107.42, + "end": 6108.94, + "probability": 0.7719 + }, + { + "start": 6109.34, + "end": 6110.72, + "probability": 0.8932 + }, + { + "start": 6111.28, + "end": 6114.5, + "probability": 0.824 + }, + { + "start": 6115.78, + "end": 6117.32, + "probability": 0.7931 + }, + { + "start": 6117.34, + "end": 6121.6, + "probability": 0.9153 + }, + { + "start": 6122.28, + "end": 6123.52, + "probability": 0.9146 + }, + { + "start": 6124.52, + "end": 6126.8, + "probability": 0.5233 + }, + { + "start": 6128.42, + "end": 6131.1, + "probability": 0.6284 + }, + { + "start": 6131.64, + "end": 6132.96, + "probability": 0.635 + }, + { + "start": 6132.96, + "end": 6133.24, + "probability": 0.782 + }, + { + "start": 6133.52, + "end": 6136.76, + "probability": 0.9951 + }, + { + "start": 6137.98, + "end": 6142.57, + "probability": 0.9456 + }, + { + "start": 6142.76, + "end": 6143.24, + "probability": 0.7057 + }, + { + "start": 6143.36, + "end": 6145.08, + "probability": 0.7628 + }, + { + "start": 6145.14, + "end": 6145.98, + "probability": 0.6575 + }, + { + "start": 6146.16, + "end": 6148.64, + "probability": 0.5031 + }, + { + "start": 6149.08, + "end": 6151.92, + "probability": 0.8743 + }, + { + "start": 6152.58, + "end": 6154.08, + "probability": 0.9458 + }, + { + "start": 6155.92, + "end": 6159.35, + "probability": 0.9919 + }, + { + "start": 6160.26, + "end": 6165.5, + "probability": 0.9393 + }, + { + "start": 6166.16, + "end": 6167.36, + "probability": 0.9902 + }, + { + "start": 6167.68, + "end": 6169.5, + "probability": 0.6192 + }, + { + "start": 6169.66, + "end": 6173.1, + "probability": 0.9352 + }, + { + "start": 6173.9, + "end": 6175.94, + "probability": 0.9619 + }, + { + "start": 6176.6, + "end": 6180.08, + "probability": 0.9946 + }, + { + "start": 6180.08, + "end": 6182.76, + "probability": 0.9954 + }, + { + "start": 6183.72, + "end": 6186.94, + "probability": 0.9872 + }, + { + "start": 6187.64, + "end": 6191.28, + "probability": 0.9387 + }, + { + "start": 6192.34, + "end": 6195.22, + "probability": 0.847 + }, + { + "start": 6195.28, + "end": 6197.54, + "probability": 0.9899 + }, + { + "start": 6198.68, + "end": 6201.98, + "probability": 0.9949 + }, + { + "start": 6202.68, + "end": 6208.14, + "probability": 0.9218 + }, + { + "start": 6208.98, + "end": 6211.52, + "probability": 0.9824 + }, + { + "start": 6212.32, + "end": 6217.18, + "probability": 0.4635 + }, + { + "start": 6217.88, + "end": 6221.38, + "probability": 0.9839 + }, + { + "start": 6223.22, + "end": 6225.36, + "probability": 0.9061 + }, + { + "start": 6225.36, + "end": 6228.3, + "probability": 0.9944 + }, + { + "start": 6228.92, + "end": 6233.98, + "probability": 0.9756 + }, + { + "start": 6234.84, + "end": 6237.58, + "probability": 0.8638 + }, + { + "start": 6238.3, + "end": 6239.06, + "probability": 0.7056 + }, + { + "start": 6239.12, + "end": 6242.52, + "probability": 0.9956 + }, + { + "start": 6243.2, + "end": 6246.76, + "probability": 0.9476 + }, + { + "start": 6246.76, + "end": 6251.64, + "probability": 0.9417 + }, + { + "start": 6252.28, + "end": 6255.72, + "probability": 0.9935 + }, + { + "start": 6255.72, + "end": 6260.66, + "probability": 0.9973 + }, + { + "start": 6261.36, + "end": 6261.86, + "probability": 0.7925 + }, + { + "start": 6262.32, + "end": 6263.9, + "probability": 0.9465 + }, + { + "start": 6264.1, + "end": 6266.68, + "probability": 0.9705 + }, + { + "start": 6268.18, + "end": 6271.68, + "probability": 0.709 + }, + { + "start": 6272.46, + "end": 6275.08, + "probability": 0.9968 + }, + { + "start": 6276.22, + "end": 6280.92, + "probability": 0.9666 + }, + { + "start": 6281.76, + "end": 6283.16, + "probability": 0.9888 + }, + { + "start": 6283.68, + "end": 6285.22, + "probability": 0.9996 + }, + { + "start": 6286.1, + "end": 6288.4, + "probability": 0.9857 + }, + { + "start": 6289.18, + "end": 6291.84, + "probability": 0.9951 + }, + { + "start": 6292.48, + "end": 6294.32, + "probability": 0.9601 + }, + { + "start": 6295.62, + "end": 6299.1, + "probability": 0.8262 + }, + { + "start": 6299.66, + "end": 6300.24, + "probability": 0.9195 + }, + { + "start": 6303.92, + "end": 6304.92, + "probability": 0.939 + }, + { + "start": 6305.12, + "end": 6305.66, + "probability": 0.3872 + }, + { + "start": 6305.72, + "end": 6308.72, + "probability": 0.8904 + }, + { + "start": 6308.72, + "end": 6311.0, + "probability": 0.6725 + }, + { + "start": 6311.32, + "end": 6314.68, + "probability": 0.9219 + }, + { + "start": 6315.4, + "end": 6317.54, + "probability": 0.9661 + }, + { + "start": 6318.4, + "end": 6320.22, + "probability": 0.9423 + }, + { + "start": 6321.04, + "end": 6325.73, + "probability": 0.991 + }, + { + "start": 6327.22, + "end": 6329.12, + "probability": 0.8288 + }, + { + "start": 6329.7, + "end": 6333.28, + "probability": 0.8919 + }, + { + "start": 6334.0, + "end": 6334.74, + "probability": 0.9656 + }, + { + "start": 6334.82, + "end": 6335.28, + "probability": 0.9434 + }, + { + "start": 6335.3, + "end": 6338.44, + "probability": 0.9727 + }, + { + "start": 6338.58, + "end": 6339.32, + "probability": 0.9468 + }, + { + "start": 6339.42, + "end": 6340.5, + "probability": 0.9307 + }, + { + "start": 6340.52, + "end": 6341.76, + "probability": 0.9562 + }, + { + "start": 6342.52, + "end": 6343.2, + "probability": 0.6583 + }, + { + "start": 6343.82, + "end": 6346.3, + "probability": 0.9961 + }, + { + "start": 6347.2, + "end": 6350.14, + "probability": 0.997 + }, + { + "start": 6351.5, + "end": 6356.14, + "probability": 0.859 + }, + { + "start": 6356.58, + "end": 6361.7, + "probability": 0.9945 + }, + { + "start": 6362.46, + "end": 6367.44, + "probability": 0.7941 + }, + { + "start": 6367.86, + "end": 6372.1, + "probability": 0.9045 + }, + { + "start": 6372.44, + "end": 6372.84, + "probability": 0.5212 + }, + { + "start": 6372.92, + "end": 6375.72, + "probability": 0.9712 + }, + { + "start": 6376.36, + "end": 6378.42, + "probability": 0.8567 + }, + { + "start": 6378.62, + "end": 6382.58, + "probability": 0.9949 + }, + { + "start": 6382.64, + "end": 6385.9, + "probability": 0.8406 + }, + { + "start": 6386.96, + "end": 6388.58, + "probability": 0.8085 + }, + { + "start": 6389.68, + "end": 6391.4, + "probability": 0.808 + }, + { + "start": 6391.58, + "end": 6394.24, + "probability": 0.8113 + }, + { + "start": 6394.36, + "end": 6394.76, + "probability": 0.7864 + }, + { + "start": 6395.6, + "end": 6400.62, + "probability": 0.9912 + }, + { + "start": 6400.84, + "end": 6403.08, + "probability": 0.9954 + }, + { + "start": 6406.1, + "end": 6407.32, + "probability": 0.8763 + }, + { + "start": 6408.36, + "end": 6412.98, + "probability": 0.9541 + }, + { + "start": 6413.9, + "end": 6418.12, + "probability": 0.984 + }, + { + "start": 6418.78, + "end": 6421.34, + "probability": 0.9976 + }, + { + "start": 6422.1, + "end": 6425.16, + "probability": 0.9836 + }, + { + "start": 6426.7, + "end": 6428.22, + "probability": 0.5394 + }, + { + "start": 6428.24, + "end": 6430.24, + "probability": 0.2099 + }, + { + "start": 6430.46, + "end": 6435.58, + "probability": 0.89 + }, + { + "start": 6437.28, + "end": 6440.08, + "probability": 0.9644 + }, + { + "start": 6440.78, + "end": 6443.78, + "probability": 0.9893 + }, + { + "start": 6443.82, + "end": 6447.94, + "probability": 0.9925 + }, + { + "start": 6449.04, + "end": 6451.88, + "probability": 0.9982 + }, + { + "start": 6452.48, + "end": 6459.18, + "probability": 0.984 + }, + { + "start": 6459.78, + "end": 6462.15, + "probability": 0.9373 + }, + { + "start": 6463.24, + "end": 6463.42, + "probability": 0.3899 + }, + { + "start": 6463.42, + "end": 6464.84, + "probability": 0.8104 + }, + { + "start": 6465.28, + "end": 6468.52, + "probability": 0.9966 + }, + { + "start": 6469.0, + "end": 6470.66, + "probability": 0.9313 + }, + { + "start": 6471.52, + "end": 6473.38, + "probability": 0.998 + }, + { + "start": 6473.98, + "end": 6476.8, + "probability": 0.9871 + }, + { + "start": 6477.3, + "end": 6479.5, + "probability": 0.994 + }, + { + "start": 6480.66, + "end": 6484.08, + "probability": 0.6595 + }, + { + "start": 6484.54, + "end": 6486.28, + "probability": 0.9765 + }, + { + "start": 6487.1, + "end": 6488.78, + "probability": 0.9959 + }, + { + "start": 6489.2, + "end": 6493.24, + "probability": 0.9832 + }, + { + "start": 6493.98, + "end": 6498.18, + "probability": 0.9873 + }, + { + "start": 6499.24, + "end": 6503.1, + "probability": 0.7651 + }, + { + "start": 6503.16, + "end": 6507.32, + "probability": 0.9813 + }, + { + "start": 6507.32, + "end": 6511.78, + "probability": 0.9785 + }, + { + "start": 6513.42, + "end": 6514.38, + "probability": 0.7474 + }, + { + "start": 6514.44, + "end": 6515.52, + "probability": 0.969 + }, + { + "start": 6515.58, + "end": 6517.2, + "probability": 0.7445 + }, + { + "start": 6518.96, + "end": 6521.08, + "probability": 0.974 + }, + { + "start": 6521.78, + "end": 6523.56, + "probability": 0.4138 + }, + { + "start": 6523.56, + "end": 6523.56, + "probability": 0.5316 + }, + { + "start": 6523.6, + "end": 6524.14, + "probability": 0.416 + }, + { + "start": 6524.64, + "end": 6528.69, + "probability": 0.999 + }, + { + "start": 6529.1, + "end": 6533.7, + "probability": 0.9951 + }, + { + "start": 6533.86, + "end": 6538.48, + "probability": 0.9768 + }, + { + "start": 6539.02, + "end": 6541.02, + "probability": 0.7625 + }, + { + "start": 6541.58, + "end": 6543.06, + "probability": 0.8169 + }, + { + "start": 6543.3, + "end": 6543.58, + "probability": 0.8557 + }, + { + "start": 6545.3, + "end": 6548.44, + "probability": 0.7876 + }, + { + "start": 6548.68, + "end": 6552.8, + "probability": 0.8748 + }, + { + "start": 6553.0, + "end": 6556.92, + "probability": 0.9719 + }, + { + "start": 6557.02, + "end": 6557.96, + "probability": 0.7531 + }, + { + "start": 6558.7, + "end": 6560.22, + "probability": 0.8174 + }, + { + "start": 6560.32, + "end": 6562.86, + "probability": 0.8574 + }, + { + "start": 6564.96, + "end": 6565.78, + "probability": 0.8047 + }, + { + "start": 6566.8, + "end": 6570.32, + "probability": 0.03 + }, + { + "start": 6570.32, + "end": 6570.44, + "probability": 0.0274 + }, + { + "start": 6570.44, + "end": 6570.44, + "probability": 0.3452 + }, + { + "start": 6570.44, + "end": 6571.8, + "probability": 0.4695 + }, + { + "start": 6572.68, + "end": 6573.9, + "probability": 0.7398 + }, + { + "start": 6574.74, + "end": 6575.98, + "probability": 0.9268 + }, + { + "start": 6576.04, + "end": 6577.9, + "probability": 0.9709 + }, + { + "start": 6578.06, + "end": 6579.33, + "probability": 0.9902 + }, + { + "start": 6580.14, + "end": 6581.8, + "probability": 0.7463 + }, + { + "start": 6583.38, + "end": 6586.98, + "probability": 0.9191 + }, + { + "start": 6587.54, + "end": 6592.18, + "probability": 0.9343 + }, + { + "start": 6593.32, + "end": 6597.54, + "probability": 0.7844 + }, + { + "start": 6598.3, + "end": 6598.72, + "probability": 0.5001 + }, + { + "start": 6598.78, + "end": 6599.82, + "probability": 0.7881 + }, + { + "start": 6600.26, + "end": 6601.86, + "probability": 0.9596 + }, + { + "start": 6602.66, + "end": 6603.42, + "probability": 0.7267 + }, + { + "start": 6604.14, + "end": 6606.88, + "probability": 0.907 + }, + { + "start": 6607.26, + "end": 6611.34, + "probability": 0.9795 + }, + { + "start": 6611.34, + "end": 6616.38, + "probability": 0.9771 + }, + { + "start": 6616.46, + "end": 6617.9, + "probability": 0.6873 + }, + { + "start": 6618.46, + "end": 6619.0, + "probability": 0.8299 + }, + { + "start": 6619.22, + "end": 6620.14, + "probability": 0.7962 + }, + { + "start": 6620.2, + "end": 6625.1, + "probability": 0.996 + }, + { + "start": 6625.84, + "end": 6631.4, + "probability": 0.9858 + }, + { + "start": 6632.58, + "end": 6635.57, + "probability": 0.8001 + }, + { + "start": 6635.96, + "end": 6638.64, + "probability": 0.9467 + }, + { + "start": 6638.8, + "end": 6639.56, + "probability": 0.6345 + }, + { + "start": 6640.3, + "end": 6644.82, + "probability": 0.9949 + }, + { + "start": 6644.82, + "end": 6650.0, + "probability": 0.9986 + }, + { + "start": 6650.56, + "end": 6652.74, + "probability": 0.7619 + }, + { + "start": 6653.24, + "end": 6658.58, + "probability": 0.9694 + }, + { + "start": 6661.18, + "end": 6665.02, + "probability": 0.836 + }, + { + "start": 6667.02, + "end": 6669.84, + "probability": 0.9237 + }, + { + "start": 6671.4, + "end": 6673.82, + "probability": 0.993 + }, + { + "start": 6675.62, + "end": 6677.12, + "probability": 0.9085 + }, + { + "start": 6678.72, + "end": 6679.66, + "probability": 0.7646 + }, + { + "start": 6680.5, + "end": 6682.09, + "probability": 0.9175 + }, + { + "start": 6684.46, + "end": 6686.09, + "probability": 0.8288 + }, + { + "start": 6687.48, + "end": 6688.18, + "probability": 0.9073 + }, + { + "start": 6689.16, + "end": 6691.72, + "probability": 0.7448 + }, + { + "start": 6692.44, + "end": 6696.96, + "probability": 0.9716 + }, + { + "start": 6697.96, + "end": 6702.58, + "probability": 0.9669 + }, + { + "start": 6703.7, + "end": 6707.58, + "probability": 0.9778 + }, + { + "start": 6707.72, + "end": 6708.46, + "probability": 0.7463 + }, + { + "start": 6708.76, + "end": 6710.08, + "probability": 0.8958 + }, + { + "start": 6712.62, + "end": 6714.26, + "probability": 0.803 + }, + { + "start": 6716.34, + "end": 6723.22, + "probability": 0.9677 + }, + { + "start": 6725.48, + "end": 6728.24, + "probability": 0.9802 + }, + { + "start": 6729.0, + "end": 6730.86, + "probability": 0.9714 + }, + { + "start": 6731.52, + "end": 6732.92, + "probability": 0.9971 + }, + { + "start": 6734.56, + "end": 6735.56, + "probability": 0.822 + }, + { + "start": 6735.84, + "end": 6736.84, + "probability": 0.8226 + }, + { + "start": 6737.2, + "end": 6738.14, + "probability": 0.8719 + }, + { + "start": 6738.46, + "end": 6740.8, + "probability": 0.9302 + }, + { + "start": 6740.84, + "end": 6742.48, + "probability": 0.6133 + }, + { + "start": 6744.42, + "end": 6745.02, + "probability": 0.6781 + }, + { + "start": 6747.48, + "end": 6750.48, + "probability": 0.9076 + }, + { + "start": 6751.74, + "end": 6752.88, + "probability": 0.6773 + }, + { + "start": 6754.38, + "end": 6757.26, + "probability": 0.994 + }, + { + "start": 6759.06, + "end": 6759.94, + "probability": 0.5016 + }, + { + "start": 6760.08, + "end": 6761.82, + "probability": 0.8889 + }, + { + "start": 6762.04, + "end": 6764.1, + "probability": 0.6677 + }, + { + "start": 6764.78, + "end": 6768.36, + "probability": 0.986 + }, + { + "start": 6768.42, + "end": 6769.3, + "probability": 0.6958 + }, + { + "start": 6770.34, + "end": 6771.92, + "probability": 0.8092 + }, + { + "start": 6771.96, + "end": 6773.32, + "probability": 0.8239 + }, + { + "start": 6774.52, + "end": 6776.44, + "probability": 0.9561 + }, + { + "start": 6792.1, + "end": 6793.24, + "probability": 0.7773 + }, + { + "start": 6795.42, + "end": 6795.94, + "probability": 0.7744 + }, + { + "start": 6796.34, + "end": 6798.48, + "probability": 0.6646 + }, + { + "start": 6798.7, + "end": 6798.9, + "probability": 0.3423 + }, + { + "start": 6799.14, + "end": 6800.82, + "probability": 0.8616 + }, + { + "start": 6803.54, + "end": 6805.46, + "probability": 0.3202 + }, + { + "start": 6805.46, + "end": 6806.37, + "probability": 0.1198 + }, + { + "start": 6808.32, + "end": 6811.08, + "probability": 0.9078 + }, + { + "start": 6811.14, + "end": 6812.0, + "probability": 0.5577 + }, + { + "start": 6813.16, + "end": 6814.36, + "probability": 0.6006 + }, + { + "start": 6815.32, + "end": 6816.86, + "probability": 0.903 + }, + { + "start": 6816.9, + "end": 6817.58, + "probability": 0.5035 + }, + { + "start": 6818.52, + "end": 6820.62, + "probability": 0.5743 + }, + { + "start": 6821.28, + "end": 6822.74, + "probability": 0.9179 + }, + { + "start": 6822.8, + "end": 6827.88, + "probability": 0.8749 + }, + { + "start": 6828.44, + "end": 6831.7, + "probability": 0.9116 + }, + { + "start": 6832.46, + "end": 6833.1, + "probability": 0.4138 + }, + { + "start": 6833.18, + "end": 6838.14, + "probability": 0.9037 + }, + { + "start": 6838.5, + "end": 6839.42, + "probability": 0.9584 + }, + { + "start": 6839.5, + "end": 6840.26, + "probability": 0.0249 + }, + { + "start": 6841.12, + "end": 6841.58, + "probability": 0.222 + }, + { + "start": 6842.38, + "end": 6844.26, + "probability": 0.7491 + }, + { + "start": 6845.32, + "end": 6846.51, + "probability": 0.7273 + }, + { + "start": 6848.2, + "end": 6852.26, + "probability": 0.6949 + }, + { + "start": 6852.86, + "end": 6855.58, + "probability": 0.7803 + }, + { + "start": 6855.66, + "end": 6856.78, + "probability": 0.9108 + }, + { + "start": 6857.16, + "end": 6858.7, + "probability": 0.4575 + }, + { + "start": 6858.82, + "end": 6862.16, + "probability": 0.9753 + }, + { + "start": 6862.16, + "end": 6864.46, + "probability": 0.6137 + }, + { + "start": 6864.7, + "end": 6866.28, + "probability": 0.8514 + }, + { + "start": 6866.82, + "end": 6869.22, + "probability": 0.957 + }, + { + "start": 6869.44, + "end": 6874.24, + "probability": 0.91 + }, + { + "start": 6874.52, + "end": 6875.1, + "probability": 0.0923 + }, + { + "start": 6875.12, + "end": 6876.78, + "probability": 0.8143 + }, + { + "start": 6877.6, + "end": 6880.94, + "probability": 0.9824 + }, + { + "start": 6881.22, + "end": 6885.5, + "probability": 0.9895 + }, + { + "start": 6886.06, + "end": 6889.78, + "probability": 0.9889 + }, + { + "start": 6889.82, + "end": 6890.66, + "probability": 0.7866 + }, + { + "start": 6890.9, + "end": 6891.82, + "probability": 0.8589 + }, + { + "start": 6891.96, + "end": 6892.44, + "probability": 0.9937 + }, + { + "start": 6893.08, + "end": 6893.93, + "probability": 0.9648 + }, + { + "start": 6894.0, + "end": 6895.86, + "probability": 0.955 + }, + { + "start": 6897.02, + "end": 6900.06, + "probability": 0.939 + }, + { + "start": 6900.1, + "end": 6902.52, + "probability": 0.843 + }, + { + "start": 6902.76, + "end": 6904.72, + "probability": 0.9874 + }, + { + "start": 6905.14, + "end": 6906.97, + "probability": 0.9866 + }, + { + "start": 6907.22, + "end": 6907.84, + "probability": 0.6751 + }, + { + "start": 6908.02, + "end": 6910.2, + "probability": 0.9634 + }, + { + "start": 6910.74, + "end": 6914.42, + "probability": 0.8911 + }, + { + "start": 6914.6, + "end": 6916.06, + "probability": 0.9255 + }, + { + "start": 6916.14, + "end": 6919.68, + "probability": 0.8643 + }, + { + "start": 6920.1, + "end": 6920.58, + "probability": 0.3173 + }, + { + "start": 6920.58, + "end": 6920.58, + "probability": 0.5698 + }, + { + "start": 6920.58, + "end": 6920.58, + "probability": 0.2878 + }, + { + "start": 6920.7, + "end": 6924.31, + "probability": 0.8455 + }, + { + "start": 6924.8, + "end": 6925.36, + "probability": 0.0235 + }, + { + "start": 6925.36, + "end": 6925.36, + "probability": 0.0691 + }, + { + "start": 6925.36, + "end": 6929.5, + "probability": 0.9224 + }, + { + "start": 6930.08, + "end": 6930.08, + "probability": 0.2006 + }, + { + "start": 6930.08, + "end": 6930.08, + "probability": 0.3384 + }, + { + "start": 6930.08, + "end": 6930.08, + "probability": 0.2574 + }, + { + "start": 6930.08, + "end": 6932.88, + "probability": 0.9766 + }, + { + "start": 6935.76, + "end": 6936.22, + "probability": 0.0235 + }, + { + "start": 6936.22, + "end": 6936.22, + "probability": 0.1774 + }, + { + "start": 6936.22, + "end": 6937.16, + "probability": 0.1861 + }, + { + "start": 6937.26, + "end": 6939.4, + "probability": 0.4367 + }, + { + "start": 6939.88, + "end": 6944.04, + "probability": 0.5864 + }, + { + "start": 6944.16, + "end": 6945.28, + "probability": 0.5772 + }, + { + "start": 6945.84, + "end": 6947.99, + "probability": 0.7949 + }, + { + "start": 6948.92, + "end": 6951.14, + "probability": 0.8629 + }, + { + "start": 6951.5, + "end": 6952.72, + "probability": 0.6932 + }, + { + "start": 6952.88, + "end": 6954.3, + "probability": 0.8653 + }, + { + "start": 6954.56, + "end": 6955.21, + "probability": 0.7606 + }, + { + "start": 6955.32, + "end": 6957.62, + "probability": 0.918 + }, + { + "start": 6957.7, + "end": 6960.6, + "probability": 0.994 + }, + { + "start": 6960.74, + "end": 6963.1, + "probability": 0.9348 + }, + { + "start": 6963.48, + "end": 6966.58, + "probability": 0.9125 + }, + { + "start": 6966.7, + "end": 6968.66, + "probability": 0.8591 + }, + { + "start": 6969.22, + "end": 6969.82, + "probability": 0.61 + }, + { + "start": 6969.96, + "end": 6970.32, + "probability": 0.4929 + }, + { + "start": 6970.34, + "end": 6976.02, + "probability": 0.806 + }, + { + "start": 6976.02, + "end": 6979.4, + "probability": 0.9573 + }, + { + "start": 6979.84, + "end": 6982.34, + "probability": 0.9821 + }, + { + "start": 6982.42, + "end": 6985.66, + "probability": 0.9926 + }, + { + "start": 6985.8, + "end": 6986.76, + "probability": 0.7015 + }, + { + "start": 6987.06, + "end": 6988.92, + "probability": 0.7368 + }, + { + "start": 6989.22, + "end": 6991.68, + "probability": 0.9897 + }, + { + "start": 6991.84, + "end": 6992.4, + "probability": 0.7937 + }, + { + "start": 6992.46, + "end": 6992.84, + "probability": 0.4918 + }, + { + "start": 6992.86, + "end": 6995.18, + "probability": 0.9751 + }, + { + "start": 6995.42, + "end": 6997.32, + "probability": 0.9942 + }, + { + "start": 6997.32, + "end": 6999.22, + "probability": 0.9971 + }, + { + "start": 6999.34, + "end": 6999.78, + "probability": 0.7432 + }, + { + "start": 7000.1, + "end": 7000.72, + "probability": 0.589 + }, + { + "start": 7000.78, + "end": 7002.06, + "probability": 0.967 + }, + { + "start": 7002.12, + "end": 7002.64, + "probability": 0.4362 + }, + { + "start": 7002.7, + "end": 7004.24, + "probability": 0.9902 + }, + { + "start": 7022.78, + "end": 7023.92, + "probability": 0.6534 + }, + { + "start": 7025.0, + "end": 7026.35, + "probability": 0.7974 + }, + { + "start": 7027.78, + "end": 7033.6, + "probability": 0.8495 + }, + { + "start": 7033.6, + "end": 7033.8, + "probability": 0.4038 + }, + { + "start": 7034.72, + "end": 7034.96, + "probability": 0.6628 + }, + { + "start": 7035.86, + "end": 7036.94, + "probability": 0.7184 + }, + { + "start": 7038.7, + "end": 7040.32, + "probability": 0.3227 + }, + { + "start": 7041.88, + "end": 7043.0, + "probability": 0.4175 + }, + { + "start": 7045.7, + "end": 7046.79, + "probability": 0.9824 + }, + { + "start": 7047.32, + "end": 7049.18, + "probability": 0.9244 + }, + { + "start": 7049.64, + "end": 7050.84, + "probability": 0.9956 + }, + { + "start": 7051.12, + "end": 7052.68, + "probability": 0.9993 + }, + { + "start": 7053.62, + "end": 7054.9, + "probability": 0.9868 + }, + { + "start": 7056.58, + "end": 7059.92, + "probability": 0.9285 + }, + { + "start": 7061.48, + "end": 7063.36, + "probability": 0.9881 + }, + { + "start": 7063.5, + "end": 7065.48, + "probability": 0.7435 + }, + { + "start": 7065.62, + "end": 7067.08, + "probability": 0.5561 + }, + { + "start": 7068.08, + "end": 7069.7, + "probability": 0.2997 + }, + { + "start": 7070.48, + "end": 7071.6, + "probability": 0.3646 + }, + { + "start": 7071.9, + "end": 7073.96, + "probability": 0.7803 + }, + { + "start": 7074.18, + "end": 7074.86, + "probability": 0.6971 + }, + { + "start": 7075.46, + "end": 7077.06, + "probability": 0.8047 + }, + { + "start": 7077.16, + "end": 7078.02, + "probability": 0.7294 + }, + { + "start": 7080.02, + "end": 7081.4, + "probability": 0.3876 + }, + { + "start": 7081.7, + "end": 7086.58, + "probability": 0.7545 + }, + { + "start": 7088.02, + "end": 7092.92, + "probability": 0.8838 + }, + { + "start": 7093.62, + "end": 7093.98, + "probability": 0.7661 + }, + { + "start": 7094.16, + "end": 7095.0, + "probability": 0.6406 + }, + { + "start": 7095.06, + "end": 7097.36, + "probability": 0.8125 + }, + { + "start": 7097.46, + "end": 7102.14, + "probability": 0.9817 + }, + { + "start": 7104.06, + "end": 7105.14, + "probability": 0.8026 + }, + { + "start": 7105.36, + "end": 7106.88, + "probability": 0.663 + }, + { + "start": 7107.54, + "end": 7109.26, + "probability": 0.8954 + }, + { + "start": 7110.02, + "end": 7111.02, + "probability": 0.9985 + }, + { + "start": 7112.4, + "end": 7113.76, + "probability": 0.9946 + }, + { + "start": 7113.94, + "end": 7115.72, + "probability": 0.4584 + }, + { + "start": 7116.58, + "end": 7117.68, + "probability": 0.8838 + }, + { + "start": 7118.44, + "end": 7119.12, + "probability": 0.9615 + }, + { + "start": 7120.5, + "end": 7122.16, + "probability": 0.8306 + }, + { + "start": 7122.76, + "end": 7126.64, + "probability": 0.6655 + }, + { + "start": 7127.62, + "end": 7128.96, + "probability": 0.9967 + }, + { + "start": 7129.7, + "end": 7133.04, + "probability": 0.9714 + }, + { + "start": 7133.18, + "end": 7133.62, + "probability": 0.2611 + }, + { + "start": 7134.6, + "end": 7136.22, + "probability": 0.9517 + }, + { + "start": 7139.9, + "end": 7143.2, + "probability": 0.9951 + }, + { + "start": 7144.78, + "end": 7146.82, + "probability": 0.8029 + }, + { + "start": 7147.64, + "end": 7148.68, + "probability": 0.9213 + }, + { + "start": 7149.54, + "end": 7149.96, + "probability": 0.9784 + }, + { + "start": 7150.9, + "end": 7155.12, + "probability": 0.8944 + }, + { + "start": 7156.12, + "end": 7157.54, + "probability": 0.7606 + }, + { + "start": 7158.28, + "end": 7160.96, + "probability": 0.9662 + }, + { + "start": 7162.06, + "end": 7163.76, + "probability": 0.9679 + }, + { + "start": 7164.22, + "end": 7164.98, + "probability": 0.8696 + }, + { + "start": 7165.4, + "end": 7166.7, + "probability": 0.5957 + }, + { + "start": 7167.9, + "end": 7171.56, + "probability": 0.8787 + }, + { + "start": 7173.14, + "end": 7176.24, + "probability": 0.9531 + }, + { + "start": 7177.2, + "end": 7181.04, + "probability": 0.9697 + }, + { + "start": 7182.42, + "end": 7183.78, + "probability": 0.8934 + }, + { + "start": 7185.4, + "end": 7186.16, + "probability": 0.6292 + }, + { + "start": 7186.26, + "end": 7187.68, + "probability": 0.9041 + }, + { + "start": 7187.78, + "end": 7189.64, + "probability": 0.6721 + }, + { + "start": 7191.24, + "end": 7192.56, + "probability": 0.8681 + }, + { + "start": 7193.38, + "end": 7197.1, + "probability": 0.6749 + }, + { + "start": 7197.12, + "end": 7197.92, + "probability": 0.8467 + }, + { + "start": 7201.8, + "end": 7202.8, + "probability": 0.8766 + }, + { + "start": 7203.34, + "end": 7204.92, + "probability": 0.8493 + }, + { + "start": 7206.08, + "end": 7206.72, + "probability": 0.6375 + }, + { + "start": 7208.04, + "end": 7209.56, + "probability": 0.9315 + }, + { + "start": 7210.3, + "end": 7210.9, + "probability": 0.5284 + }, + { + "start": 7210.96, + "end": 7212.32, + "probability": 0.9478 + }, + { + "start": 7213.96, + "end": 7217.98, + "probability": 0.4169 + }, + { + "start": 7218.2, + "end": 7218.56, + "probability": 0.2844 + }, + { + "start": 7218.56, + "end": 7219.0, + "probability": 0.1971 + }, + { + "start": 7219.0, + "end": 7219.68, + "probability": 0.5046 + }, + { + "start": 7219.72, + "end": 7223.68, + "probability": 0.992 + }, + { + "start": 7223.96, + "end": 7225.28, + "probability": 0.9604 + }, + { + "start": 7226.18, + "end": 7228.74, + "probability": 0.9025 + }, + { + "start": 7229.3, + "end": 7230.46, + "probability": 0.9417 + }, + { + "start": 7231.26, + "end": 7233.1, + "probability": 0.9965 + }, + { + "start": 7233.78, + "end": 7236.24, + "probability": 0.4209 + }, + { + "start": 7237.34, + "end": 7238.21, + "probability": 0.9375 + }, + { + "start": 7239.12, + "end": 7241.84, + "probability": 0.9437 + }, + { + "start": 7242.7, + "end": 7242.72, + "probability": 0.0624 + }, + { + "start": 7242.72, + "end": 7244.52, + "probability": 0.8745 + }, + { + "start": 7245.9, + "end": 7249.14, + "probability": 0.5921 + }, + { + "start": 7249.98, + "end": 7252.3, + "probability": 0.733 + }, + { + "start": 7252.46, + "end": 7252.88, + "probability": 0.8098 + }, + { + "start": 7252.94, + "end": 7253.26, + "probability": 0.9423 + }, + { + "start": 7253.54, + "end": 7254.26, + "probability": 0.2692 + }, + { + "start": 7254.66, + "end": 7255.52, + "probability": 0.4821 + }, + { + "start": 7256.06, + "end": 7257.86, + "probability": 0.258 + }, + { + "start": 7259.08, + "end": 7259.84, + "probability": 0.3683 + }, + { + "start": 7259.86, + "end": 7260.36, + "probability": 0.6439 + }, + { + "start": 7260.4, + "end": 7261.68, + "probability": 0.5502 + }, + { + "start": 7261.78, + "end": 7263.2, + "probability": 0.2806 + }, + { + "start": 7263.38, + "end": 7263.62, + "probability": 0.6186 + }, + { + "start": 7264.62, + "end": 7265.26, + "probability": 0.5734 + }, + { + "start": 7265.34, + "end": 7267.96, + "probability": 0.9088 + }, + { + "start": 7269.0, + "end": 7271.12, + "probability": 0.7451 + }, + { + "start": 7272.1, + "end": 7273.6, + "probability": 0.8757 + }, + { + "start": 7273.76, + "end": 7276.94, + "probability": 0.8527 + }, + { + "start": 7277.74, + "end": 7278.96, + "probability": 0.915 + }, + { + "start": 7279.66, + "end": 7281.06, + "probability": 0.9763 + }, + { + "start": 7281.46, + "end": 7284.44, + "probability": 0.9524 + }, + { + "start": 7285.16, + "end": 7287.76, + "probability": 0.9728 + }, + { + "start": 7287.86, + "end": 7289.48, + "probability": 0.9875 + }, + { + "start": 7289.62, + "end": 7290.18, + "probability": 0.5112 + }, + { + "start": 7290.2, + "end": 7291.52, + "probability": 0.9886 + }, + { + "start": 7291.96, + "end": 7293.86, + "probability": 0.6031 + }, + { + "start": 7298.1, + "end": 7298.82, + "probability": 0.2448 + }, + { + "start": 7299.22, + "end": 7300.26, + "probability": 0.317 + }, + { + "start": 7300.36, + "end": 7300.98, + "probability": 0.0457 + }, + { + "start": 7324.92, + "end": 7325.24, + "probability": 0.5437 + }, + { + "start": 7325.76, + "end": 7329.12, + "probability": 0.9075 + }, + { + "start": 7329.12, + "end": 7332.88, + "probability": 0.9587 + }, + { + "start": 7333.6, + "end": 7335.84, + "probability": 0.9897 + }, + { + "start": 7337.62, + "end": 7338.0, + "probability": 0.54 + }, + { + "start": 7338.06, + "end": 7339.86, + "probability": 0.7455 + }, + { + "start": 7340.04, + "end": 7340.72, + "probability": 0.485 + }, + { + "start": 7340.84, + "end": 7341.3, + "probability": 0.6702 + }, + { + "start": 7341.48, + "end": 7342.46, + "probability": 0.8225 + }, + { + "start": 7343.32, + "end": 7345.44, + "probability": 0.6887 + }, + { + "start": 7346.62, + "end": 7347.6, + "probability": 0.7643 + }, + { + "start": 7348.04, + "end": 7352.26, + "probability": 0.7734 + }, + { + "start": 7352.4, + "end": 7359.26, + "probability": 0.8507 + }, + { + "start": 7359.36, + "end": 7360.1, + "probability": 0.795 + }, + { + "start": 7362.44, + "end": 7364.98, + "probability": 0.8777 + }, + { + "start": 7366.66, + "end": 7368.96, + "probability": 0.9426 + }, + { + "start": 7368.96, + "end": 7372.68, + "probability": 0.9984 + }, + { + "start": 7373.92, + "end": 7377.6, + "probability": 0.9246 + }, + { + "start": 7378.44, + "end": 7380.86, + "probability": 0.9307 + }, + { + "start": 7382.74, + "end": 7387.62, + "probability": 0.988 + }, + { + "start": 7388.78, + "end": 7393.32, + "probability": 0.9209 + }, + { + "start": 7393.32, + "end": 7397.53, + "probability": 0.8206 + }, + { + "start": 7398.34, + "end": 7401.88, + "probability": 0.9417 + }, + { + "start": 7402.74, + "end": 7403.87, + "probability": 0.7988 + }, + { + "start": 7404.74, + "end": 7407.96, + "probability": 0.9277 + }, + { + "start": 7408.88, + "end": 7412.08, + "probability": 0.9344 + }, + { + "start": 7412.68, + "end": 7414.84, + "probability": 0.9904 + }, + { + "start": 7415.54, + "end": 7417.76, + "probability": 0.612 + }, + { + "start": 7418.88, + "end": 7422.38, + "probability": 0.8116 + }, + { + "start": 7423.28, + "end": 7429.98, + "probability": 0.838 + }, + { + "start": 7430.16, + "end": 7431.6, + "probability": 0.8044 + }, + { + "start": 7432.38, + "end": 7437.38, + "probability": 0.897 + }, + { + "start": 7437.56, + "end": 7439.11, + "probability": 0.079 + }, + { + "start": 7440.1, + "end": 7444.58, + "probability": 0.9658 + }, + { + "start": 7444.74, + "end": 7446.0, + "probability": 0.938 + }, + { + "start": 7446.52, + "end": 7453.2, + "probability": 0.8271 + }, + { + "start": 7453.24, + "end": 7455.44, + "probability": 0.9029 + }, + { + "start": 7455.46, + "end": 7456.54, + "probability": 0.6742 + }, + { + "start": 7458.54, + "end": 7458.82, + "probability": 0.1445 + }, + { + "start": 7458.82, + "end": 7459.3, + "probability": 0.3142 + }, + { + "start": 7459.44, + "end": 7460.84, + "probability": 0.9219 + }, + { + "start": 7461.1, + "end": 7462.3, + "probability": 0.5396 + }, + { + "start": 7462.44, + "end": 7465.44, + "probability": 0.6851 + }, + { + "start": 7465.64, + "end": 7467.08, + "probability": 0.8965 + }, + { + "start": 7467.16, + "end": 7468.62, + "probability": 0.6461 + }, + { + "start": 7468.88, + "end": 7470.4, + "probability": 0.3552 + }, + { + "start": 7470.68, + "end": 7478.38, + "probability": 0.8856 + }, + { + "start": 7478.54, + "end": 7479.56, + "probability": 0.6146 + }, + { + "start": 7479.94, + "end": 7481.94, + "probability": 0.5108 + }, + { + "start": 7483.1, + "end": 7484.28, + "probability": 0.5773 + }, + { + "start": 7484.38, + "end": 7486.05, + "probability": 0.4913 + }, + { + "start": 7487.02, + "end": 7487.26, + "probability": 0.4725 + }, + { + "start": 7487.8, + "end": 7488.48, + "probability": 0.1498 + }, + { + "start": 7488.58, + "end": 7491.01, + "probability": 0.4081 + }, + { + "start": 7491.5, + "end": 7492.64, + "probability": 0.876 + }, + { + "start": 7493.7, + "end": 7495.4, + "probability": 0.7496 + }, + { + "start": 7495.94, + "end": 7497.0, + "probability": 0.4408 + }, + { + "start": 7497.08, + "end": 7497.6, + "probability": 0.5793 + }, + { + "start": 7497.78, + "end": 7497.84, + "probability": 0.7098 + }, + { + "start": 7497.84, + "end": 7499.2, + "probability": 0.6392 + }, + { + "start": 7499.32, + "end": 7500.48, + "probability": 0.8923 + }, + { + "start": 7501.14, + "end": 7501.2, + "probability": 0.0242 + }, + { + "start": 7501.2, + "end": 7501.2, + "probability": 0.0342 + }, + { + "start": 7501.2, + "end": 7505.1, + "probability": 0.9802 + }, + { + "start": 7505.68, + "end": 7507.44, + "probability": 0.8744 + }, + { + "start": 7508.06, + "end": 7509.22, + "probability": 0.9434 + }, + { + "start": 7509.3, + "end": 7513.34, + "probability": 0.9349 + }, + { + "start": 7514.1, + "end": 7519.42, + "probability": 0.9471 + }, + { + "start": 7519.56, + "end": 7520.54, + "probability": 0.7251 + }, + { + "start": 7521.4, + "end": 7523.32, + "probability": 0.798 + }, + { + "start": 7523.36, + "end": 7526.22, + "probability": 0.941 + }, + { + "start": 7527.28, + "end": 7532.2, + "probability": 0.5943 + }, + { + "start": 7532.88, + "end": 7537.24, + "probability": 0.9538 + }, + { + "start": 7537.58, + "end": 7542.74, + "probability": 0.9824 + }, + { + "start": 7543.64, + "end": 7543.64, + "probability": 0.426 + }, + { + "start": 7543.64, + "end": 7544.6, + "probability": 0.7128 + }, + { + "start": 7544.96, + "end": 7547.86, + "probability": 0.8508 + }, + { + "start": 7548.42, + "end": 7550.48, + "probability": 0.996 + }, + { + "start": 7551.2, + "end": 7553.2, + "probability": 0.9509 + }, + { + "start": 7553.74, + "end": 7555.92, + "probability": 0.8721 + }, + { + "start": 7556.94, + "end": 7560.0, + "probability": 0.7702 + }, + { + "start": 7560.6, + "end": 7561.46, + "probability": 0.5956 + }, + { + "start": 7561.54, + "end": 7562.36, + "probability": 0.8228 + }, + { + "start": 7562.78, + "end": 7563.28, + "probability": 0.5386 + }, + { + "start": 7563.4, + "end": 7564.52, + "probability": 0.661 + }, + { + "start": 7565.08, + "end": 7570.18, + "probability": 0.9863 + }, + { + "start": 7570.74, + "end": 7575.84, + "probability": 0.982 + }, + { + "start": 7578.0, + "end": 7584.48, + "probability": 0.7978 + }, + { + "start": 7585.12, + "end": 7585.12, + "probability": 0.0024 + }, + { + "start": 7585.12, + "end": 7586.92, + "probability": 0.6708 + }, + { + "start": 7587.46, + "end": 7589.2, + "probability": 0.9001 + }, + { + "start": 7589.6, + "end": 7589.84, + "probability": 0.3803 + }, + { + "start": 7589.84, + "end": 7589.84, + "probability": 0.3969 + }, + { + "start": 7589.84, + "end": 7589.84, + "probability": 0.1778 + }, + { + "start": 7589.84, + "end": 7594.46, + "probability": 0.947 + }, + { + "start": 7595.54, + "end": 7599.26, + "probability": 0.8633 + }, + { + "start": 7599.82, + "end": 7606.88, + "probability": 0.9613 + }, + { + "start": 7607.34, + "end": 7608.7, + "probability": 0.664 + }, + { + "start": 7609.1, + "end": 7609.34, + "probability": 0.278 + }, + { + "start": 7609.36, + "end": 7609.52, + "probability": 0.6213 + }, + { + "start": 7609.58, + "end": 7611.52, + "probability": 0.7758 + }, + { + "start": 7612.96, + "end": 7616.4, + "probability": 0.9897 + }, + { + "start": 7616.5, + "end": 7617.04, + "probability": 0.715 + }, + { + "start": 7617.74, + "end": 7619.66, + "probability": 0.9402 + }, + { + "start": 7619.78, + "end": 7621.06, + "probability": 0.8282 + }, + { + "start": 7621.12, + "end": 7621.64, + "probability": 0.4947 + }, + { + "start": 7621.78, + "end": 7622.64, + "probability": 0.7549 + }, + { + "start": 7626.94, + "end": 7627.08, + "probability": 0.2821 + }, + { + "start": 7634.12, + "end": 7634.38, + "probability": 0.0042 + }, + { + "start": 7634.42, + "end": 7634.42, + "probability": 0.1091 + }, + { + "start": 7634.42, + "end": 7634.42, + "probability": 0.0176 + }, + { + "start": 7634.42, + "end": 7634.42, + "probability": 0.0147 + }, + { + "start": 7634.42, + "end": 7635.24, + "probability": 0.7676 + }, + { + "start": 7635.44, + "end": 7636.56, + "probability": 0.4972 + }, + { + "start": 7637.56, + "end": 7638.2, + "probability": 0.6559 + }, + { + "start": 7638.26, + "end": 7641.3, + "probability": 0.9713 + }, + { + "start": 7642.18, + "end": 7643.89, + "probability": 0.4963 + }, + { + "start": 7644.9, + "end": 7646.98, + "probability": 0.9696 + }, + { + "start": 7647.02, + "end": 7648.64, + "probability": 0.9749 + }, + { + "start": 7649.34, + "end": 7651.48, + "probability": 0.9564 + }, + { + "start": 7652.72, + "end": 7653.34, + "probability": 0.673 + }, + { + "start": 7653.44, + "end": 7654.76, + "probability": 0.8443 + }, + { + "start": 7654.84, + "end": 7655.38, + "probability": 0.8518 + }, + { + "start": 7655.88, + "end": 7656.58, + "probability": 0.922 + }, + { + "start": 7657.44, + "end": 7661.78, + "probability": 0.6192 + }, + { + "start": 7661.78, + "end": 7662.24, + "probability": 0.4878 + }, + { + "start": 7662.8, + "end": 7664.1, + "probability": 0.9275 + }, + { + "start": 7664.16, + "end": 7665.35, + "probability": 0.9453 + }, + { + "start": 7666.5, + "end": 7668.04, + "probability": 0.4812 + }, + { + "start": 7668.7, + "end": 7670.52, + "probability": 0.9815 + }, + { + "start": 7671.28, + "end": 7671.94, + "probability": 0.8219 + }, + { + "start": 7672.08, + "end": 7672.81, + "probability": 0.9811 + }, + { + "start": 7672.94, + "end": 7674.06, + "probability": 0.9252 + }, + { + "start": 7674.86, + "end": 7678.66, + "probability": 0.9518 + }, + { + "start": 7678.9, + "end": 7680.48, + "probability": 0.7522 + }, + { + "start": 7680.9, + "end": 7681.1, + "probability": 0.7097 + }, + { + "start": 7682.12, + "end": 7682.34, + "probability": 0.4363 + }, + { + "start": 7682.4, + "end": 7683.08, + "probability": 0.875 + }, + { + "start": 7683.16, + "end": 7684.46, + "probability": 0.83 + }, + { + "start": 7685.04, + "end": 7685.82, + "probability": 0.9452 + }, + { + "start": 7686.78, + "end": 7687.64, + "probability": 0.5226 + }, + { + "start": 7689.02, + "end": 7689.02, + "probability": 0.193 + }, + { + "start": 7689.02, + "end": 7691.24, + "probability": 0.8966 + }, + { + "start": 7691.3, + "end": 7692.36, + "probability": 0.9849 + }, + { + "start": 7692.52, + "end": 7693.2, + "probability": 0.7753 + }, + { + "start": 7693.86, + "end": 7696.7, + "probability": 0.9467 + }, + { + "start": 7696.7, + "end": 7700.1, + "probability": 0.9891 + }, + { + "start": 7700.62, + "end": 7700.9, + "probability": 0.9312 + }, + { + "start": 7700.98, + "end": 7701.91, + "probability": 0.9625 + }, + { + "start": 7702.92, + "end": 7703.54, + "probability": 0.7373 + }, + { + "start": 7704.52, + "end": 7705.63, + "probability": 0.8591 + }, + { + "start": 7706.32, + "end": 7707.5, + "probability": 0.7241 + }, + { + "start": 7707.6, + "end": 7709.66, + "probability": 0.9646 + }, + { + "start": 7710.26, + "end": 7712.08, + "probability": 0.9057 + }, + { + "start": 7712.26, + "end": 7712.26, + "probability": 0.1959 + }, + { + "start": 7712.26, + "end": 7713.92, + "probability": 0.8711 + }, + { + "start": 7714.42, + "end": 7715.12, + "probability": 0.4435 + }, + { + "start": 7716.0, + "end": 7717.12, + "probability": 0.8641 + }, + { + "start": 7717.16, + "end": 7719.42, + "probability": 0.8802 + }, + { + "start": 7720.16, + "end": 7721.92, + "probability": 0.9486 + }, + { + "start": 7722.7, + "end": 7723.26, + "probability": 0.9614 + }, + { + "start": 7723.62, + "end": 7724.66, + "probability": 0.948 + }, + { + "start": 7724.66, + "end": 7726.3, + "probability": 0.9725 + }, + { + "start": 7726.8, + "end": 7727.47, + "probability": 0.5141 + }, + { + "start": 7727.92, + "end": 7729.56, + "probability": 0.735 + }, + { + "start": 7730.52, + "end": 7731.12, + "probability": 0.4976 + }, + { + "start": 7731.16, + "end": 7731.64, + "probability": 0.8508 + }, + { + "start": 7731.9, + "end": 7733.54, + "probability": 0.9858 + }, + { + "start": 7734.24, + "end": 7734.92, + "probability": 0.9757 + }, + { + "start": 7735.08, + "end": 7735.24, + "probability": 0.9577 + }, + { + "start": 7735.48, + "end": 7736.18, + "probability": 0.751 + }, + { + "start": 7736.58, + "end": 7737.06, + "probability": 0.7712 + }, + { + "start": 7737.18, + "end": 7739.22, + "probability": 0.7237 + }, + { + "start": 7739.92, + "end": 7741.3, + "probability": 0.9341 + }, + { + "start": 7741.46, + "end": 7746.34, + "probability": 0.6945 + }, + { + "start": 7747.54, + "end": 7748.56, + "probability": 0.6865 + }, + { + "start": 7748.68, + "end": 7749.0, + "probability": 0.5549 + }, + { + "start": 7749.12, + "end": 7750.06, + "probability": 0.694 + }, + { + "start": 7750.12, + "end": 7751.78, + "probability": 0.5922 + }, + { + "start": 7752.32, + "end": 7753.2, + "probability": 0.85 + }, + { + "start": 7753.86, + "end": 7754.78, + "probability": 0.6082 + }, + { + "start": 7755.5, + "end": 7756.34, + "probability": 0.9812 + }, + { + "start": 7756.8, + "end": 7758.22, + "probability": 0.9248 + }, + { + "start": 7758.6, + "end": 7760.94, + "probability": 0.9915 + }, + { + "start": 7761.54, + "end": 7763.1, + "probability": 0.5672 + }, + { + "start": 7763.66, + "end": 7766.34, + "probability": 0.7132 + }, + { + "start": 7766.82, + "end": 7767.4, + "probability": 0.5518 + }, + { + "start": 7767.5, + "end": 7767.78, + "probability": 0.8102 + }, + { + "start": 7767.9, + "end": 7768.38, + "probability": 0.786 + }, + { + "start": 7768.78, + "end": 7771.42, + "probability": 0.9839 + }, + { + "start": 7771.46, + "end": 7773.82, + "probability": 0.7592 + }, + { + "start": 7774.14, + "end": 7774.36, + "probability": 0.5972 + }, + { + "start": 7774.44, + "end": 7775.08, + "probability": 0.596 + }, + { + "start": 7775.86, + "end": 7777.08, + "probability": 0.9597 + }, + { + "start": 7777.16, + "end": 7778.38, + "probability": 0.9954 + }, + { + "start": 7778.74, + "end": 7782.02, + "probability": 0.9875 + }, + { + "start": 7782.14, + "end": 7785.06, + "probability": 0.725 + }, + { + "start": 7785.2, + "end": 7787.88, + "probability": 0.8771 + }, + { + "start": 7788.32, + "end": 7789.5, + "probability": 0.8877 + }, + { + "start": 7789.58, + "end": 7792.66, + "probability": 0.9678 + }, + { + "start": 7793.3, + "end": 7793.56, + "probability": 0.4996 + }, + { + "start": 7793.66, + "end": 7794.26, + "probability": 0.6965 + }, + { + "start": 7794.38, + "end": 7795.44, + "probability": 0.906 + }, + { + "start": 7795.5, + "end": 7796.11, + "probability": 0.9318 + }, + { + "start": 7796.28, + "end": 7797.1, + "probability": 0.8015 + }, + { + "start": 7797.78, + "end": 7799.48, + "probability": 0.9478 + }, + { + "start": 7799.58, + "end": 7800.56, + "probability": 0.9958 + }, + { + "start": 7801.24, + "end": 7802.44, + "probability": 0.9674 + }, + { + "start": 7802.76, + "end": 7804.6, + "probability": 0.9337 + }, + { + "start": 7805.28, + "end": 7806.88, + "probability": 0.9957 + }, + { + "start": 7806.96, + "end": 7807.3, + "probability": 0.7836 + }, + { + "start": 7807.78, + "end": 7809.36, + "probability": 0.9951 + }, + { + "start": 7809.52, + "end": 7811.68, + "probability": 0.9949 + }, + { + "start": 7811.68, + "end": 7814.38, + "probability": 0.999 + }, + { + "start": 7815.1, + "end": 7816.82, + "probability": 0.7448 + }, + { + "start": 7816.92, + "end": 7817.34, + "probability": 0.7755 + }, + { + "start": 7817.58, + "end": 7820.22, + "probability": 0.6463 + }, + { + "start": 7820.22, + "end": 7821.1, + "probability": 0.264 + }, + { + "start": 7822.2, + "end": 7824.08, + "probability": 0.508 + }, + { + "start": 7824.88, + "end": 7825.84, + "probability": 0.8073 + }, + { + "start": 7826.2, + "end": 7826.74, + "probability": 0.9905 + }, + { + "start": 7827.0, + "end": 7827.42, + "probability": 0.9041 + }, + { + "start": 7827.42, + "end": 7828.7, + "probability": 0.9787 + }, + { + "start": 7829.36, + "end": 7831.44, + "probability": 0.9854 + }, + { + "start": 7832.02, + "end": 7832.84, + "probability": 0.7184 + }, + { + "start": 7833.0, + "end": 7834.18, + "probability": 0.9625 + }, + { + "start": 7834.5, + "end": 7836.25, + "probability": 0.9912 + }, + { + "start": 7836.54, + "end": 7838.94, + "probability": 0.882 + }, + { + "start": 7839.58, + "end": 7840.36, + "probability": 0.9727 + }, + { + "start": 7841.88, + "end": 7842.68, + "probability": 0.7568 + }, + { + "start": 7842.78, + "end": 7844.54, + "probability": 0.6925 + }, + { + "start": 7844.62, + "end": 7845.82, + "probability": 0.527 + }, + { + "start": 7845.84, + "end": 7847.9, + "probability": 0.6076 + }, + { + "start": 7848.52, + "end": 7849.52, + "probability": 0.9584 + }, + { + "start": 7854.68, + "end": 7857.24, + "probability": 0.5657 + }, + { + "start": 7857.48, + "end": 7858.58, + "probability": 0.6029 + }, + { + "start": 7859.8, + "end": 7860.64, + "probability": 0.8045 + }, + { + "start": 7861.68, + "end": 7868.74, + "probability": 0.9773 + }, + { + "start": 7869.26, + "end": 7873.58, + "probability": 0.7213 + }, + { + "start": 7874.36, + "end": 7874.8, + "probability": 0.1804 + }, + { + "start": 7874.8, + "end": 7879.7, + "probability": 0.9948 + }, + { + "start": 7880.26, + "end": 7881.64, + "probability": 0.8516 + }, + { + "start": 7881.78, + "end": 7882.0, + "probability": 0.4384 + }, + { + "start": 7882.18, + "end": 7883.3, + "probability": 0.5742 + }, + { + "start": 7883.36, + "end": 7884.92, + "probability": 0.745 + }, + { + "start": 7885.04, + "end": 7886.68, + "probability": 0.7431 + }, + { + "start": 7886.96, + "end": 7889.06, + "probability": 0.7692 + }, + { + "start": 7889.06, + "end": 7889.6, + "probability": 0.1213 + }, + { + "start": 7889.78, + "end": 7894.42, + "probability": 0.9966 + }, + { + "start": 7895.02, + "end": 7895.68, + "probability": 0.7713 + }, + { + "start": 7895.72, + "end": 7896.65, + "probability": 0.9766 + }, + { + "start": 7896.74, + "end": 7901.64, + "probability": 0.9814 + }, + { + "start": 7902.34, + "end": 7905.8, + "probability": 0.8887 + }, + { + "start": 7905.8, + "end": 7910.54, + "probability": 0.9863 + }, + { + "start": 7910.66, + "end": 7912.54, + "probability": 0.96 + }, + { + "start": 7913.0, + "end": 7914.2, + "probability": 0.8274 + }, + { + "start": 7915.22, + "end": 7920.82, + "probability": 0.9933 + }, + { + "start": 7920.88, + "end": 7923.34, + "probability": 0.9947 + }, + { + "start": 7923.74, + "end": 7925.76, + "probability": 0.8651 + }, + { + "start": 7925.82, + "end": 7926.9, + "probability": 0.7133 + }, + { + "start": 7928.34, + "end": 7933.56, + "probability": 0.9128 + }, + { + "start": 7934.24, + "end": 7940.64, + "probability": 0.9973 + }, + { + "start": 7941.48, + "end": 7944.54, + "probability": 0.7905 + }, + { + "start": 7944.9, + "end": 7945.92, + "probability": 0.6371 + }, + { + "start": 7946.26, + "end": 7951.18, + "probability": 0.9928 + }, + { + "start": 7951.78, + "end": 7954.0, + "probability": 0.9834 + }, + { + "start": 7954.52, + "end": 7958.6, + "probability": 0.6539 + }, + { + "start": 7958.74, + "end": 7960.02, + "probability": 0.929 + }, + { + "start": 7960.86, + "end": 7963.62, + "probability": 0.9951 + }, + { + "start": 7963.98, + "end": 7964.44, + "probability": 0.9299 + }, + { + "start": 7964.54, + "end": 7965.54, + "probability": 0.6817 + }, + { + "start": 7965.66, + "end": 7967.56, + "probability": 0.7952 + }, + { + "start": 7969.06, + "end": 7969.9, + "probability": 0.7475 + }, + { + "start": 7970.04, + "end": 7971.46, + "probability": 0.9455 + }, + { + "start": 7971.64, + "end": 7975.08, + "probability": 0.9796 + }, + { + "start": 7975.92, + "end": 7977.86, + "probability": 0.9537 + }, + { + "start": 7978.64, + "end": 7979.84, + "probability": 0.6057 + }, + { + "start": 7979.98, + "end": 7982.24, + "probability": 0.8556 + }, + { + "start": 7982.5, + "end": 7983.6, + "probability": 0.7436 + }, + { + "start": 7983.66, + "end": 7984.88, + "probability": 0.9221 + }, + { + "start": 7985.16, + "end": 7986.76, + "probability": 0.9543 + }, + { + "start": 7987.0, + "end": 7988.82, + "probability": 0.9433 + }, + { + "start": 7989.34, + "end": 7990.71, + "probability": 0.9915 + }, + { + "start": 7991.42, + "end": 7995.74, + "probability": 0.9579 + }, + { + "start": 7996.36, + "end": 7996.8, + "probability": 0.8986 + }, + { + "start": 7997.94, + "end": 8002.06, + "probability": 0.9818 + }, + { + "start": 8002.06, + "end": 8006.52, + "probability": 0.9973 + }, + { + "start": 8007.84, + "end": 8010.16, + "probability": 0.8521 + }, + { + "start": 8010.26, + "end": 8012.22, + "probability": 0.9956 + }, + { + "start": 8012.94, + "end": 8014.1, + "probability": 0.9775 + }, + { + "start": 8014.72, + "end": 8016.94, + "probability": 0.953 + }, + { + "start": 8017.5, + "end": 8019.82, + "probability": 0.9977 + }, + { + "start": 8020.54, + "end": 8024.42, + "probability": 0.8937 + }, + { + "start": 8025.1, + "end": 8026.58, + "probability": 0.9762 + }, + { + "start": 8027.78, + "end": 8031.14, + "probability": 0.9904 + }, + { + "start": 8031.84, + "end": 8035.36, + "probability": 0.9857 + }, + { + "start": 8036.16, + "end": 8037.5, + "probability": 0.8204 + }, + { + "start": 8037.62, + "end": 8040.26, + "probability": 0.5591 + }, + { + "start": 8040.6, + "end": 8041.78, + "probability": 0.968 + }, + { + "start": 8042.26, + "end": 8042.64, + "probability": 0.7131 + }, + { + "start": 8042.86, + "end": 8044.5, + "probability": 0.9573 + }, + { + "start": 8044.64, + "end": 8048.56, + "probability": 0.9734 + }, + { + "start": 8049.5, + "end": 8050.4, + "probability": 0.8912 + }, + { + "start": 8051.02, + "end": 8051.92, + "probability": 0.9863 + }, + { + "start": 8052.08, + "end": 8052.98, + "probability": 0.6808 + }, + { + "start": 8053.48, + "end": 8059.26, + "probability": 0.9839 + }, + { + "start": 8059.26, + "end": 8060.59, + "probability": 0.8292 + }, + { + "start": 8062.0, + "end": 8063.64, + "probability": 0.6653 + }, + { + "start": 8063.64, + "end": 8063.64, + "probability": 0.149 + }, + { + "start": 8063.64, + "end": 8066.54, + "probability": 0.9148 + }, + { + "start": 8067.02, + "end": 8067.72, + "probability": 0.9639 + }, + { + "start": 8068.2, + "end": 8069.01, + "probability": 0.9867 + }, + { + "start": 8069.48, + "end": 8070.45, + "probability": 0.9609 + }, + { + "start": 8070.82, + "end": 8075.14, + "probability": 0.9459 + }, + { + "start": 8075.14, + "end": 8078.52, + "probability": 0.9723 + }, + { + "start": 8079.06, + "end": 8081.76, + "probability": 0.9714 + }, + { + "start": 8083.08, + "end": 8083.54, + "probability": 0.2935 + }, + { + "start": 8083.82, + "end": 8084.38, + "probability": 0.6207 + }, + { + "start": 8084.42, + "end": 8085.16, + "probability": 0.7213 + }, + { + "start": 8085.46, + "end": 8087.14, + "probability": 0.8174 + }, + { + "start": 8087.28, + "end": 8089.4, + "probability": 0.9928 + }, + { + "start": 8089.8, + "end": 8091.32, + "probability": 0.8534 + }, + { + "start": 8091.36, + "end": 8092.87, + "probability": 0.9587 + }, + { + "start": 8096.76, + "end": 8098.38, + "probability": 0.7334 + }, + { + "start": 8121.68, + "end": 8123.82, + "probability": 0.8031 + }, + { + "start": 8127.32, + "end": 8131.36, + "probability": 0.9937 + }, + { + "start": 8132.74, + "end": 8135.04, + "probability": 0.9974 + }, + { + "start": 8136.28, + "end": 8139.16, + "probability": 0.9845 + }, + { + "start": 8140.8, + "end": 8143.34, + "probability": 0.9678 + }, + { + "start": 8144.62, + "end": 8145.14, + "probability": 0.9851 + }, + { + "start": 8145.8, + "end": 8148.04, + "probability": 0.6468 + }, + { + "start": 8152.7, + "end": 8154.1, + "probability": 0.9973 + }, + { + "start": 8155.48, + "end": 8158.56, + "probability": 0.9701 + }, + { + "start": 8162.35, + "end": 8165.68, + "probability": 0.9883 + }, + { + "start": 8166.48, + "end": 8168.36, + "probability": 0.9737 + }, + { + "start": 8169.24, + "end": 8170.96, + "probability": 0.9837 + }, + { + "start": 8172.68, + "end": 8173.72, + "probability": 0.4281 + }, + { + "start": 8174.48, + "end": 8176.56, + "probability": 0.9551 + }, + { + "start": 8178.78, + "end": 8180.9, + "probability": 0.8972 + }, + { + "start": 8182.2, + "end": 8182.2, + "probability": 0.5406 + }, + { + "start": 8182.72, + "end": 8185.62, + "probability": 0.936 + }, + { + "start": 8185.72, + "end": 8189.72, + "probability": 0.9421 + }, + { + "start": 8190.74, + "end": 8191.6, + "probability": 0.565 + }, + { + "start": 8191.72, + "end": 8193.09, + "probability": 0.9927 + }, + { + "start": 8193.54, + "end": 8199.94, + "probability": 0.9557 + }, + { + "start": 8201.34, + "end": 8201.46, + "probability": 0.0634 + }, + { + "start": 8202.04, + "end": 8202.94, + "probability": 0.9363 + }, + { + "start": 8203.5, + "end": 8207.11, + "probability": 0.8018 + }, + { + "start": 8207.28, + "end": 8207.72, + "probability": 0.4726 + }, + { + "start": 8207.88, + "end": 8209.16, + "probability": 0.6837 + }, + { + "start": 8210.0, + "end": 8216.4, + "probability": 0.8403 + }, + { + "start": 8217.08, + "end": 8220.16, + "probability": 0.9775 + }, + { + "start": 8223.04, + "end": 8224.76, + "probability": 0.9415 + }, + { + "start": 8225.2, + "end": 8226.28, + "probability": 0.9016 + }, + { + "start": 8226.9, + "end": 8230.72, + "probability": 0.9542 + }, + { + "start": 8230.78, + "end": 8231.86, + "probability": 0.8122 + }, + { + "start": 8232.9, + "end": 8233.48, + "probability": 0.3876 + }, + { + "start": 8234.4, + "end": 8238.4, + "probability": 0.9646 + }, + { + "start": 8238.5, + "end": 8239.58, + "probability": 0.7992 + }, + { + "start": 8239.86, + "end": 8241.14, + "probability": 0.9241 + }, + { + "start": 8241.86, + "end": 8244.44, + "probability": 0.8108 + }, + { + "start": 8246.4, + "end": 8248.44, + "probability": 0.6379 + }, + { + "start": 8248.58, + "end": 8252.94, + "probability": 0.9365 + }, + { + "start": 8252.94, + "end": 8257.62, + "probability": 0.8982 + }, + { + "start": 8258.48, + "end": 8260.36, + "probability": 0.8256 + }, + { + "start": 8260.52, + "end": 8261.7, + "probability": 0.9391 + }, + { + "start": 8262.6, + "end": 8264.17, + "probability": 0.7672 + }, + { + "start": 8264.42, + "end": 8271.82, + "probability": 0.9868 + }, + { + "start": 8271.9, + "end": 8273.1, + "probability": 0.8117 + }, + { + "start": 8273.53, + "end": 8276.7, + "probability": 0.518 + }, + { + "start": 8277.22, + "end": 8279.68, + "probability": 0.8727 + }, + { + "start": 8280.2, + "end": 8281.68, + "probability": 0.9243 + }, + { + "start": 8283.64, + "end": 8285.86, + "probability": 0.3873 + }, + { + "start": 8285.86, + "end": 8286.66, + "probability": 0.7621 + }, + { + "start": 8288.3, + "end": 8289.7, + "probability": 0.9758 + }, + { + "start": 8289.96, + "end": 8295.76, + "probability": 0.9952 + }, + { + "start": 8296.66, + "end": 8299.36, + "probability": 0.9686 + }, + { + "start": 8299.46, + "end": 8302.68, + "probability": 0.9272 + }, + { + "start": 8303.3, + "end": 8310.76, + "probability": 0.3059 + }, + { + "start": 8310.76, + "end": 8311.78, + "probability": 0.1365 + }, + { + "start": 8312.52, + "end": 8317.08, + "probability": 0.9038 + }, + { + "start": 8318.12, + "end": 8320.9, + "probability": 0.8936 + }, + { + "start": 8320.96, + "end": 8322.14, + "probability": 0.6903 + }, + { + "start": 8322.34, + "end": 8324.0, + "probability": 0.9766 + }, + { + "start": 8324.76, + "end": 8326.0, + "probability": 0.9347 + }, + { + "start": 8326.76, + "end": 8329.16, + "probability": 0.9633 + }, + { + "start": 8329.88, + "end": 8333.62, + "probability": 0.948 + }, + { + "start": 8334.34, + "end": 8335.7, + "probability": 0.9311 + }, + { + "start": 8335.84, + "end": 8337.26, + "probability": 0.9764 + }, + { + "start": 8337.58, + "end": 8338.9, + "probability": 0.9197 + }, + { + "start": 8338.96, + "end": 8341.18, + "probability": 0.925 + }, + { + "start": 8342.43, + "end": 8344.4, + "probability": 0.0335 + }, + { + "start": 8344.4, + "end": 8345.34, + "probability": 0.2856 + }, + { + "start": 8345.94, + "end": 8345.94, + "probability": 0.2379 + }, + { + "start": 8346.56, + "end": 8349.02, + "probability": 0.9897 + }, + { + "start": 8349.52, + "end": 8351.42, + "probability": 0.9157 + }, + { + "start": 8351.42, + "end": 8352.77, + "probability": 0.765 + }, + { + "start": 8352.84, + "end": 8354.48, + "probability": 0.7805 + }, + { + "start": 8354.78, + "end": 8355.22, + "probability": 0.9273 + }, + { + "start": 8355.34, + "end": 8359.93, + "probability": 0.9727 + }, + { + "start": 8360.42, + "end": 8362.68, + "probability": 0.5656 + }, + { + "start": 8363.78, + "end": 8364.58, + "probability": 0.28 + }, + { + "start": 8364.58, + "end": 8367.66, + "probability": 0.9072 + }, + { + "start": 8369.24, + "end": 8370.8, + "probability": 0.993 + }, + { + "start": 8370.86, + "end": 8371.44, + "probability": 0.9878 + }, + { + "start": 8371.52, + "end": 8372.1, + "probability": 0.8935 + }, + { + "start": 8372.48, + "end": 8374.04, + "probability": 0.8162 + }, + { + "start": 8375.2, + "end": 8377.24, + "probability": 0.8468 + }, + { + "start": 8377.28, + "end": 8379.61, + "probability": 0.857 + }, + { + "start": 8380.5, + "end": 8381.14, + "probability": 0.6437 + }, + { + "start": 8381.16, + "end": 8382.36, + "probability": 0.9561 + }, + { + "start": 8383.16, + "end": 8386.68, + "probability": 0.8869 + }, + { + "start": 8387.02, + "end": 8387.76, + "probability": 0.7425 + }, + { + "start": 8387.92, + "end": 8388.84, + "probability": 0.754 + }, + { + "start": 8389.1, + "end": 8391.4, + "probability": 0.9487 + }, + { + "start": 8391.54, + "end": 8392.22, + "probability": 0.9512 + }, + { + "start": 8392.34, + "end": 8393.38, + "probability": 0.6805 + }, + { + "start": 8393.98, + "end": 8396.2, + "probability": 0.988 + }, + { + "start": 8396.22, + "end": 8400.38, + "probability": 0.9833 + }, + { + "start": 8400.48, + "end": 8401.44, + "probability": 0.9172 + }, + { + "start": 8401.5, + "end": 8404.04, + "probability": 0.9724 + }, + { + "start": 8404.22, + "end": 8404.68, + "probability": 0.7557 + }, + { + "start": 8404.7, + "end": 8405.02, + "probability": 0.5221 + }, + { + "start": 8405.06, + "end": 8405.94, + "probability": 0.6472 + }, + { + "start": 8405.94, + "end": 8407.3, + "probability": 0.4367 + }, + { + "start": 8407.4, + "end": 8409.48, + "probability": 0.8063 + }, + { + "start": 8410.76, + "end": 8411.42, + "probability": 0.8784 + }, + { + "start": 8416.04, + "end": 8419.1, + "probability": 0.6103 + }, + { + "start": 8419.32, + "end": 8419.52, + "probability": 0.616 + }, + { + "start": 8419.62, + "end": 8422.76, + "probability": 0.8844 + }, + { + "start": 8423.74, + "end": 8431.0, + "probability": 0.9712 + }, + { + "start": 8431.88, + "end": 8438.0, + "probability": 0.9963 + }, + { + "start": 8439.12, + "end": 8439.88, + "probability": 0.7996 + }, + { + "start": 8441.62, + "end": 8445.7, + "probability": 0.9931 + }, + { + "start": 8445.92, + "end": 8449.88, + "probability": 0.9956 + }, + { + "start": 8450.95, + "end": 8452.92, + "probability": 0.9795 + }, + { + "start": 8453.06, + "end": 8453.84, + "probability": 0.8312 + }, + { + "start": 8453.98, + "end": 8455.82, + "probability": 0.9834 + }, + { + "start": 8459.26, + "end": 8461.92, + "probability": 0.4206 + }, + { + "start": 8462.88, + "end": 8464.52, + "probability": 0.6959 + }, + { + "start": 8464.88, + "end": 8469.02, + "probability": 0.9196 + }, + { + "start": 8469.78, + "end": 8475.66, + "probability": 0.9135 + }, + { + "start": 8475.84, + "end": 8477.04, + "probability": 0.9295 + }, + { + "start": 8477.32, + "end": 8480.02, + "probability": 0.9246 + }, + { + "start": 8480.12, + "end": 8481.96, + "probability": 0.8373 + }, + { + "start": 8482.46, + "end": 8484.66, + "probability": 0.6893 + }, + { + "start": 8485.48, + "end": 8488.48, + "probability": 0.8359 + }, + { + "start": 8489.14, + "end": 8490.84, + "probability": 0.7294 + }, + { + "start": 8491.3, + "end": 8492.28, + "probability": 0.5312 + }, + { + "start": 8492.44, + "end": 8493.48, + "probability": 0.2634 + }, + { + "start": 8493.64, + "end": 8497.6, + "probability": 0.7763 + }, + { + "start": 8497.66, + "end": 8498.82, + "probability": 0.7715 + }, + { + "start": 8499.02, + "end": 8501.46, + "probability": 0.8326 + }, + { + "start": 8501.54, + "end": 8503.2, + "probability": 0.9761 + }, + { + "start": 8503.52, + "end": 8505.46, + "probability": 0.9267 + }, + { + "start": 8505.58, + "end": 8507.72, + "probability": 0.8273 + }, + { + "start": 8507.94, + "end": 8509.5, + "probability": 0.9883 + }, + { + "start": 8509.62, + "end": 8513.88, + "probability": 0.8809 + }, + { + "start": 8514.26, + "end": 8516.58, + "probability": 0.978 + }, + { + "start": 8517.28, + "end": 8518.98, + "probability": 0.9269 + }, + { + "start": 8519.34, + "end": 8522.5, + "probability": 0.9434 + }, + { + "start": 8522.72, + "end": 8524.21, + "probability": 0.7987 + }, + { + "start": 8524.7, + "end": 8530.6, + "probability": 0.8022 + }, + { + "start": 8530.6, + "end": 8536.2, + "probability": 0.9939 + }, + { + "start": 8536.54, + "end": 8540.96, + "probability": 0.9964 + }, + { + "start": 8540.96, + "end": 8546.76, + "probability": 0.9969 + }, + { + "start": 8547.42, + "end": 8551.4, + "probability": 0.9968 + }, + { + "start": 8552.34, + "end": 8554.28, + "probability": 0.936 + }, + { + "start": 8554.46, + "end": 8560.48, + "probability": 0.9926 + }, + { + "start": 8560.56, + "end": 8563.36, + "probability": 0.9438 + }, + { + "start": 8563.98, + "end": 8567.36, + "probability": 0.9902 + }, + { + "start": 8567.56, + "end": 8571.14, + "probability": 0.9214 + }, + { + "start": 8571.34, + "end": 8580.46, + "probability": 0.9257 + }, + { + "start": 8581.04, + "end": 8582.42, + "probability": 0.9129 + }, + { + "start": 8582.58, + "end": 8588.84, + "probability": 0.9927 + }, + { + "start": 8589.5, + "end": 8593.6, + "probability": 0.9526 + }, + { + "start": 8593.88, + "end": 8597.18, + "probability": 0.9822 + }, + { + "start": 8597.5, + "end": 8600.42, + "probability": 0.7897 + }, + { + "start": 8600.54, + "end": 8606.14, + "probability": 0.6369 + }, + { + "start": 8606.46, + "end": 8612.86, + "probability": 0.9365 + }, + { + "start": 8612.96, + "end": 8613.22, + "probability": 0.6328 + }, + { + "start": 8613.7, + "end": 8616.0, + "probability": 0.723 + }, + { + "start": 8616.14, + "end": 8619.98, + "probability": 0.6711 + }, + { + "start": 8620.08, + "end": 8621.24, + "probability": 0.7302 + }, + { + "start": 8621.26, + "end": 8621.96, + "probability": 0.4542 + }, + { + "start": 8624.98, + "end": 8626.64, + "probability": 0.9118 + }, + { + "start": 8629.73, + "end": 8631.7, + "probability": 0.6429 + }, + { + "start": 8651.64, + "end": 8652.44, + "probability": 0.6254 + }, + { + "start": 8652.96, + "end": 8656.92, + "probability": 0.6284 + }, + { + "start": 8656.96, + "end": 8658.16, + "probability": 0.7009 + }, + { + "start": 8658.22, + "end": 8658.42, + "probability": 0.6125 + }, + { + "start": 8658.58, + "end": 8663.34, + "probability": 0.8979 + }, + { + "start": 8663.5, + "end": 8666.52, + "probability": 0.9875 + }, + { + "start": 8666.76, + "end": 8667.92, + "probability": 0.9737 + }, + { + "start": 8668.04, + "end": 8670.72, + "probability": 0.9642 + }, + { + "start": 8670.76, + "end": 8671.34, + "probability": 0.6445 + }, + { + "start": 8672.38, + "end": 8676.54, + "probability": 0.8836 + }, + { + "start": 8677.06, + "end": 8683.58, + "probability": 0.6485 + }, + { + "start": 8684.5, + "end": 8685.26, + "probability": 0.5118 + }, + { + "start": 8685.42, + "end": 8687.44, + "probability": 0.986 + }, + { + "start": 8687.82, + "end": 8691.12, + "probability": 0.9437 + }, + { + "start": 8691.2, + "end": 8692.1, + "probability": 0.768 + }, + { + "start": 8692.28, + "end": 8693.86, + "probability": 0.8594 + }, + { + "start": 8693.98, + "end": 8697.4, + "probability": 0.8882 + }, + { + "start": 8697.78, + "end": 8699.2, + "probability": 0.1988 + }, + { + "start": 8699.84, + "end": 8704.28, + "probability": 0.6499 + }, + { + "start": 8705.02, + "end": 8705.74, + "probability": 0.5385 + }, + { + "start": 8706.65, + "end": 8707.0, + "probability": 0.0205 + }, + { + "start": 8707.0, + "end": 8707.0, + "probability": 0.7353 + }, + { + "start": 8707.12, + "end": 8708.06, + "probability": 0.8708 + }, + { + "start": 8708.38, + "end": 8712.68, + "probability": 0.7796 + }, + { + "start": 8712.68, + "end": 8715.64, + "probability": 0.6319 + }, + { + "start": 8716.24, + "end": 8716.94, + "probability": 0.6826 + }, + { + "start": 8716.96, + "end": 8719.05, + "probability": 0.6666 + }, + { + "start": 8719.22, + "end": 8724.44, + "probability": 0.8222 + }, + { + "start": 8724.94, + "end": 8725.7, + "probability": 0.8184 + }, + { + "start": 8725.8, + "end": 8726.32, + "probability": 0.8922 + }, + { + "start": 8727.3, + "end": 8729.84, + "probability": 0.9816 + }, + { + "start": 8731.02, + "end": 8734.32, + "probability": 0.5542 + }, + { + "start": 8734.84, + "end": 8735.76, + "probability": 0.6405 + }, + { + "start": 8736.08, + "end": 8736.78, + "probability": 0.7574 + }, + { + "start": 8736.82, + "end": 8740.88, + "probability": 0.8508 + }, + { + "start": 8741.24, + "end": 8742.36, + "probability": 0.9291 + }, + { + "start": 8742.72, + "end": 8742.9, + "probability": 0.5158 + }, + { + "start": 8744.16, + "end": 8744.54, + "probability": 0.0423 + }, + { + "start": 8745.0, + "end": 8747.83, + "probability": 0.4677 + }, + { + "start": 8748.08, + "end": 8749.5, + "probability": 0.7651 + }, + { + "start": 8750.08, + "end": 8751.0, + "probability": 0.6889 + }, + { + "start": 8751.02, + "end": 8751.98, + "probability": 0.8783 + }, + { + "start": 8752.22, + "end": 8753.6, + "probability": 0.9595 + }, + { + "start": 8753.7, + "end": 8754.2, + "probability": 0.6774 + }, + { + "start": 8755.78, + "end": 8758.15, + "probability": 0.0178 + }, + { + "start": 8764.98, + "end": 8765.02, + "probability": 0.0278 + }, + { + "start": 8765.02, + "end": 8765.02, + "probability": 0.1561 + }, + { + "start": 8765.02, + "end": 8765.02, + "probability": 0.1298 + }, + { + "start": 8765.02, + "end": 8767.08, + "probability": 0.6355 + }, + { + "start": 8767.32, + "end": 8770.08, + "probability": 0.9184 + }, + { + "start": 8770.12, + "end": 8772.78, + "probability": 0.9395 + }, + { + "start": 8772.9, + "end": 8773.65, + "probability": 0.4626 + }, + { + "start": 8774.7, + "end": 8774.84, + "probability": 0.5177 + }, + { + "start": 8774.94, + "end": 8777.44, + "probability": 0.9395 + }, + { + "start": 8777.84, + "end": 8778.34, + "probability": 0.8286 + }, + { + "start": 8778.78, + "end": 8779.28, + "probability": 0.7651 + }, + { + "start": 8779.5, + "end": 8780.38, + "probability": 0.8885 + }, + { + "start": 8780.7, + "end": 8782.92, + "probability": 0.8191 + }, + { + "start": 8783.44, + "end": 8786.66, + "probability": 0.9572 + }, + { + "start": 8786.94, + "end": 8791.1, + "probability": 0.7832 + }, + { + "start": 8791.16, + "end": 8791.68, + "probability": 0.6955 + }, + { + "start": 8792.02, + "end": 8793.29, + "probability": 0.5547 + }, + { + "start": 8793.8, + "end": 8794.0, + "probability": 0.7461 + }, + { + "start": 8794.04, + "end": 8797.82, + "probability": 0.9253 + }, + { + "start": 8798.38, + "end": 8800.62, + "probability": 0.9806 + }, + { + "start": 8800.72, + "end": 8806.24, + "probability": 0.9886 + }, + { + "start": 8806.96, + "end": 8810.9, + "probability": 0.9872 + }, + { + "start": 8811.28, + "end": 8812.24, + "probability": 0.8427 + }, + { + "start": 8812.36, + "end": 8813.4, + "probability": 0.6911 + }, + { + "start": 8813.4, + "end": 8816.36, + "probability": 0.9925 + }, + { + "start": 8816.4, + "end": 8819.56, + "probability": 0.9959 + }, + { + "start": 8820.0, + "end": 8824.5, + "probability": 0.861 + }, + { + "start": 8824.68, + "end": 8825.82, + "probability": 0.779 + }, + { + "start": 8825.9, + "end": 8829.9, + "probability": 0.8792 + }, + { + "start": 8830.56, + "end": 8837.38, + "probability": 0.9709 + }, + { + "start": 8839.04, + "end": 8840.88, + "probability": 0.8178 + }, + { + "start": 8841.86, + "end": 8842.8, + "probability": 0.6399 + }, + { + "start": 8843.86, + "end": 8846.52, + "probability": 0.4738 + }, + { + "start": 8847.14, + "end": 8848.16, + "probability": 0.7639 + }, + { + "start": 8848.3, + "end": 8850.08, + "probability": 0.9821 + }, + { + "start": 8850.22, + "end": 8850.32, + "probability": 0.8627 + }, + { + "start": 8850.58, + "end": 8851.16, + "probability": 0.7267 + }, + { + "start": 8851.3, + "end": 8855.0, + "probability": 0.9485 + }, + { + "start": 8855.0, + "end": 8858.34, + "probability": 0.9912 + }, + { + "start": 8858.56, + "end": 8859.54, + "probability": 0.8663 + }, + { + "start": 8859.96, + "end": 8861.06, + "probability": 0.3785 + }, + { + "start": 8861.28, + "end": 8863.1, + "probability": 0.8624 + }, + { + "start": 8863.5, + "end": 8864.34, + "probability": 0.9404 + }, + { + "start": 8864.46, + "end": 8865.07, + "probability": 0.9165 + }, + { + "start": 8865.22, + "end": 8866.11, + "probability": 0.8032 + }, + { + "start": 8866.84, + "end": 8868.46, + "probability": 0.9154 + }, + { + "start": 8868.52, + "end": 8869.64, + "probability": 0.7556 + }, + { + "start": 8870.06, + "end": 8871.26, + "probability": 0.5875 + }, + { + "start": 8872.74, + "end": 8878.28, + "probability": 0.9927 + }, + { + "start": 8878.5, + "end": 8880.86, + "probability": 0.9763 + }, + { + "start": 8883.16, + "end": 8885.07, + "probability": 0.9946 + }, + { + "start": 8886.5, + "end": 8888.42, + "probability": 0.7508 + }, + { + "start": 8889.8, + "end": 8894.86, + "probability": 0.9722 + }, + { + "start": 8896.44, + "end": 8900.44, + "probability": 0.9575 + }, + { + "start": 8901.76, + "end": 8905.14, + "probability": 0.9987 + }, + { + "start": 8906.62, + "end": 8907.06, + "probability": 0.0348 + }, + { + "start": 8907.06, + "end": 8908.22, + "probability": 0.861 + }, + { + "start": 8908.7, + "end": 8916.62, + "probability": 0.9173 + }, + { + "start": 8917.0, + "end": 8918.66, + "probability": 0.2118 + }, + { + "start": 8918.72, + "end": 8926.62, + "probability": 0.9265 + }, + { + "start": 8927.86, + "end": 8933.22, + "probability": 0.9871 + }, + { + "start": 8934.16, + "end": 8936.74, + "probability": 0.8066 + }, + { + "start": 8937.58, + "end": 8939.16, + "probability": 0.9648 + }, + { + "start": 8940.82, + "end": 8941.74, + "probability": 0.9373 + }, + { + "start": 8941.84, + "end": 8942.78, + "probability": 0.8082 + }, + { + "start": 8943.43, + "end": 8944.84, + "probability": 0.8832 + }, + { + "start": 8944.88, + "end": 8945.94, + "probability": 0.9233 + }, + { + "start": 8946.26, + "end": 8946.62, + "probability": 0.976 + }, + { + "start": 8947.34, + "end": 8949.18, + "probability": 0.6185 + }, + { + "start": 8949.84, + "end": 8952.96, + "probability": 0.9279 + }, + { + "start": 8953.36, + "end": 8955.24, + "probability": 0.996 + }, + { + "start": 8956.0, + "end": 8956.12, + "probability": 0.8267 + }, + { + "start": 8956.18, + "end": 8961.38, + "probability": 0.9858 + }, + { + "start": 8961.8, + "end": 8962.7, + "probability": 0.8283 + }, + { + "start": 8963.0, + "end": 8963.1, + "probability": 0.7118 + }, + { + "start": 8963.18, + "end": 8964.12, + "probability": 0.9971 + }, + { + "start": 8964.2, + "end": 8968.98, + "probability": 0.9985 + }, + { + "start": 8970.32, + "end": 8970.32, + "probability": 0.3316 + }, + { + "start": 8970.32, + "end": 8971.1, + "probability": 0.6121 + }, + { + "start": 8971.1, + "end": 8972.52, + "probability": 0.9951 + }, + { + "start": 8972.58, + "end": 8972.78, + "probability": 0.0458 + }, + { + "start": 8972.88, + "end": 8973.86, + "probability": 0.4798 + }, + { + "start": 8973.92, + "end": 8973.92, + "probability": 0.7664 + }, + { + "start": 8973.98, + "end": 8975.76, + "probability": 0.9331 + }, + { + "start": 8976.2, + "end": 8977.69, + "probability": 0.9883 + }, + { + "start": 8978.46, + "end": 8980.26, + "probability": 0.9162 + }, + { + "start": 8980.32, + "end": 8981.88, + "probability": 0.7348 + }, + { + "start": 8982.18, + "end": 8983.31, + "probability": 0.9888 + }, + { + "start": 8983.8, + "end": 8985.22, + "probability": 0.8196 + }, + { + "start": 8985.58, + "end": 8985.62, + "probability": 0.1005 + }, + { + "start": 8985.62, + "end": 8989.2, + "probability": 0.7355 + }, + { + "start": 8989.9, + "end": 8990.06, + "probability": 0.1555 + }, + { + "start": 8990.06, + "end": 8990.06, + "probability": 0.008 + }, + { + "start": 8990.06, + "end": 8990.06, + "probability": 0.1014 + }, + { + "start": 8990.28, + "end": 8990.52, + "probability": 0.6392 + }, + { + "start": 8990.58, + "end": 8991.7, + "probability": 0.5296 + }, + { + "start": 8991.92, + "end": 8992.76, + "probability": 0.5678 + }, + { + "start": 8993.42, + "end": 8994.1, + "probability": 0.5135 + }, + { + "start": 8994.16, + "end": 8994.98, + "probability": 0.9583 + }, + { + "start": 8995.1, + "end": 8995.9, + "probability": 0.8067 + }, + { + "start": 8995.94, + "end": 8996.74, + "probability": 0.8688 + }, + { + "start": 8997.02, + "end": 8999.16, + "probability": 0.9872 + }, + { + "start": 8999.16, + "end": 9001.84, + "probability": 0.9966 + }, + { + "start": 9002.22, + "end": 9003.62, + "probability": 0.6974 + }, + { + "start": 9004.16, + "end": 9005.53, + "probability": 0.9504 + }, + { + "start": 9005.9, + "end": 9007.08, + "probability": 0.0889 + }, + { + "start": 9007.7, + "end": 9008.46, + "probability": 0.8724 + }, + { + "start": 9009.34, + "end": 9010.66, + "probability": 0.9521 + }, + { + "start": 9011.0, + "end": 9012.08, + "probability": 0.9068 + }, + { + "start": 9012.2, + "end": 9012.56, + "probability": 0.9132 + }, + { + "start": 9012.62, + "end": 9013.73, + "probability": 0.9841 + }, + { + "start": 9014.58, + "end": 9016.06, + "probability": 0.9232 + }, + { + "start": 9016.26, + "end": 9016.88, + "probability": 0.6915 + }, + { + "start": 9017.3, + "end": 9019.52, + "probability": 0.923 + }, + { + "start": 9020.04, + "end": 9021.2, + "probability": 0.6609 + }, + { + "start": 9021.26, + "end": 9022.74, + "probability": 0.8664 + }, + { + "start": 9023.94, + "end": 9030.78, + "probability": 0.911 + }, + { + "start": 9031.06, + "end": 9036.86, + "probability": 0.9574 + }, + { + "start": 9037.18, + "end": 9039.38, + "probability": 0.9554 + }, + { + "start": 9040.04, + "end": 9041.0, + "probability": 0.6843 + }, + { + "start": 9041.08, + "end": 9042.02, + "probability": 0.9641 + }, + { + "start": 9042.06, + "end": 9042.92, + "probability": 0.6156 + }, + { + "start": 9043.24, + "end": 9044.6, + "probability": 0.9612 + }, + { + "start": 9044.68, + "end": 9046.5, + "probability": 0.8993 + }, + { + "start": 9046.74, + "end": 9051.26, + "probability": 0.9907 + }, + { + "start": 9051.58, + "end": 9053.76, + "probability": 0.9987 + }, + { + "start": 9054.04, + "end": 9054.94, + "probability": 0.9156 + }, + { + "start": 9055.02, + "end": 9055.96, + "probability": 0.9606 + }, + { + "start": 9056.06, + "end": 9060.3, + "probability": 0.8972 + }, + { + "start": 9060.6, + "end": 9062.27, + "probability": 0.957 + }, + { + "start": 9062.78, + "end": 9068.6, + "probability": 0.7099 + }, + { + "start": 9068.74, + "end": 9073.56, + "probability": 0.9897 + }, + { + "start": 9073.96, + "end": 9075.24, + "probability": 0.5838 + }, + { + "start": 9075.34, + "end": 9075.88, + "probability": 0.7467 + }, + { + "start": 9075.98, + "end": 9080.42, + "probability": 0.8921 + }, + { + "start": 9080.6, + "end": 9081.36, + "probability": 0.8113 + }, + { + "start": 9081.54, + "end": 9082.22, + "probability": 0.4275 + }, + { + "start": 9082.26, + "end": 9085.84, + "probability": 0.9957 + }, + { + "start": 9085.84, + "end": 9089.9, + "probability": 0.9901 + }, + { + "start": 9089.98, + "end": 9091.66, + "probability": 0.7828 + }, + { + "start": 9091.8, + "end": 9092.16, + "probability": 0.731 + }, + { + "start": 9092.22, + "end": 9094.9, + "probability": 0.9898 + }, + { + "start": 9094.96, + "end": 9095.28, + "probability": 0.7985 + }, + { + "start": 9095.68, + "end": 9097.66, + "probability": 0.8918 + }, + { + "start": 9097.78, + "end": 9100.8, + "probability": 0.7077 + }, + { + "start": 9103.04, + "end": 9107.26, + "probability": 0.7288 + }, + { + "start": 9107.34, + "end": 9110.76, + "probability": 0.9907 + }, + { + "start": 9111.48, + "end": 9112.38, + "probability": 0.7504 + }, + { + "start": 9112.7, + "end": 9113.48, + "probability": 0.8641 + }, + { + "start": 9113.76, + "end": 9114.98, + "probability": 0.7175 + }, + { + "start": 9123.84, + "end": 9123.84, + "probability": 0.3554 + }, + { + "start": 9126.34, + "end": 9128.52, + "probability": 0.0463 + }, + { + "start": 9134.14, + "end": 9137.64, + "probability": 0.4945 + }, + { + "start": 9138.08, + "end": 9141.5, + "probability": 0.7636 + }, + { + "start": 9142.4, + "end": 9145.74, + "probability": 0.7584 + }, + { + "start": 9145.88, + "end": 9148.9, + "probability": 0.9704 + }, + { + "start": 9149.62, + "end": 9150.38, + "probability": 0.683 + }, + { + "start": 9150.66, + "end": 9151.28, + "probability": 0.692 + }, + { + "start": 9151.48, + "end": 9152.96, + "probability": 0.7755 + }, + { + "start": 9153.26, + "end": 9155.88, + "probability": 0.0092 + }, + { + "start": 9156.26, + "end": 9160.3, + "probability": 0.0992 + }, + { + "start": 9168.76, + "end": 9172.6, + "probability": 0.3772 + }, + { + "start": 9173.12, + "end": 9176.5, + "probability": 0.8401 + }, + { + "start": 9176.56, + "end": 9177.76, + "probability": 0.5797 + }, + { + "start": 9178.56, + "end": 9180.8, + "probability": 0.9356 + }, + { + "start": 9180.8, + "end": 9184.46, + "probability": 0.8168 + }, + { + "start": 9185.84, + "end": 9188.2, + "probability": 0.7061 + }, + { + "start": 9188.86, + "end": 9189.32, + "probability": 0.8589 + }, + { + "start": 9191.06, + "end": 9194.94, + "probability": 0.5777 + }, + { + "start": 9195.48, + "end": 9198.86, + "probability": 0.9979 + }, + { + "start": 9199.26, + "end": 9199.92, + "probability": 0.7197 + }, + { + "start": 9200.0, + "end": 9200.6, + "probability": 0.6851 + }, + { + "start": 9200.62, + "end": 9201.68, + "probability": 0.6969 + }, + { + "start": 9218.38, + "end": 9218.48, + "probability": 0.2159 + }, + { + "start": 9218.48, + "end": 9223.98, + "probability": 0.7377 + }, + { + "start": 9224.5, + "end": 9226.64, + "probability": 0.6159 + }, + { + "start": 9227.0, + "end": 9230.02, + "probability": 0.9572 + }, + { + "start": 9230.92, + "end": 9231.62, + "probability": 0.0312 + }, + { + "start": 9235.48, + "end": 9240.58, + "probability": 0.9949 + }, + { + "start": 9240.72, + "end": 9241.64, + "probability": 0.407 + }, + { + "start": 9242.0, + "end": 9245.32, + "probability": 0.8555 + }, + { + "start": 9247.18, + "end": 9250.73, + "probability": 0.8447 + }, + { + "start": 9251.58, + "end": 9252.5, + "probability": 0.4878 + }, + { + "start": 9252.66, + "end": 9254.3, + "probability": 0.4045 + }, + { + "start": 9254.68, + "end": 9259.64, + "probability": 0.993 + }, + { + "start": 9259.72, + "end": 9260.32, + "probability": 0.4171 + }, + { + "start": 9260.4, + "end": 9261.0, + "probability": 0.5984 + }, + { + "start": 9261.12, + "end": 9262.2, + "probability": 0.7545 + }, + { + "start": 9267.2, + "end": 9271.48, + "probability": 0.1202 + }, + { + "start": 9271.86, + "end": 9272.48, + "probability": 0.691 + }, + { + "start": 9272.76, + "end": 9278.2, + "probability": 0.5238 + }, + { + "start": 9278.2, + "end": 9278.66, + "probability": 0.181 + }, + { + "start": 9278.76, + "end": 9279.9, + "probability": 0.8084 + }, + { + "start": 9280.62, + "end": 9284.12, + "probability": 0.7553 + }, + { + "start": 9284.8, + "end": 9286.9, + "probability": 0.8427 + }, + { + "start": 9287.0, + "end": 9289.38, + "probability": 0.5973 + }, + { + "start": 9289.72, + "end": 9292.88, + "probability": 0.9535 + }, + { + "start": 9294.86, + "end": 9295.78, + "probability": 0.8277 + }, + { + "start": 9295.86, + "end": 9296.28, + "probability": 0.8647 + }, + { + "start": 9296.44, + "end": 9300.57, + "probability": 0.5344 + }, + { + "start": 9300.76, + "end": 9304.48, + "probability": 0.7265 + }, + { + "start": 9304.94, + "end": 9304.94, + "probability": 0.0852 + }, + { + "start": 9304.94, + "end": 9307.34, + "probability": 0.6817 + }, + { + "start": 9307.42, + "end": 9308.3, + "probability": 0.8204 + }, + { + "start": 9314.6, + "end": 9315.3, + "probability": 0.5222 + }, + { + "start": 9315.54, + "end": 9316.14, + "probability": 0.655 + }, + { + "start": 9316.16, + "end": 9316.74, + "probability": 0.8299 + }, + { + "start": 9316.84, + "end": 9318.22, + "probability": 0.8618 + }, + { + "start": 9318.72, + "end": 9320.46, + "probability": 0.9678 + }, + { + "start": 9320.5, + "end": 9321.88, + "probability": 0.4 + }, + { + "start": 9321.9, + "end": 9322.56, + "probability": 0.3563 + }, + { + "start": 9322.74, + "end": 9324.42, + "probability": 0.736 + }, + { + "start": 9324.52, + "end": 9327.63, + "probability": 0.9492 + }, + { + "start": 9328.28, + "end": 9332.2, + "probability": 0.791 + }, + { + "start": 9332.84, + "end": 9335.8, + "probability": 0.9595 + }, + { + "start": 9335.8, + "end": 9339.12, + "probability": 0.9691 + }, + { + "start": 9339.98, + "end": 9343.18, + "probability": 0.9942 + }, + { + "start": 9343.18, + "end": 9347.0, + "probability": 0.9977 + }, + { + "start": 9347.6, + "end": 9349.84, + "probability": 0.9899 + }, + { + "start": 9350.38, + "end": 9350.98, + "probability": 0.3357 + }, + { + "start": 9351.02, + "end": 9356.34, + "probability": 0.9923 + }, + { + "start": 9357.11, + "end": 9357.32, + "probability": 0.0361 + }, + { + "start": 9357.34, + "end": 9359.84, + "probability": 0.6938 + }, + { + "start": 9359.92, + "end": 9363.0, + "probability": 0.6826 + }, + { + "start": 9363.06, + "end": 9364.36, + "probability": 0.731 + }, + { + "start": 9364.84, + "end": 9371.14, + "probability": 0.7656 + }, + { + "start": 9371.14, + "end": 9375.82, + "probability": 0.9512 + }, + { + "start": 9375.92, + "end": 9376.16, + "probability": 0.875 + }, + { + "start": 9376.2, + "end": 9377.48, + "probability": 0.9628 + }, + { + "start": 9377.52, + "end": 9380.8, + "probability": 0.9192 + }, + { + "start": 9381.14, + "end": 9384.44, + "probability": 0.5868 + }, + { + "start": 9385.24, + "end": 9388.54, + "probability": 0.9989 + }, + { + "start": 9388.54, + "end": 9390.94, + "probability": 0.9989 + }, + { + "start": 9391.02, + "end": 9391.84, + "probability": 0.7853 + }, + { + "start": 9392.36, + "end": 9393.06, + "probability": 0.518 + }, + { + "start": 9393.36, + "end": 9394.8, + "probability": 0.6371 + }, + { + "start": 9394.98, + "end": 9398.15, + "probability": 0.9854 + }, + { + "start": 9398.7, + "end": 9404.02, + "probability": 0.6812 + }, + { + "start": 9404.6, + "end": 9407.23, + "probability": 0.989 + }, + { + "start": 9407.86, + "end": 9410.46, + "probability": 0.7825 + }, + { + "start": 9412.2, + "end": 9413.36, + "probability": 0.9852 + }, + { + "start": 9414.02, + "end": 9416.54, + "probability": 0.8044 + }, + { + "start": 9417.49, + "end": 9420.56, + "probability": 0.8697 + }, + { + "start": 9420.66, + "end": 9421.14, + "probability": 0.6235 + }, + { + "start": 9440.1, + "end": 9443.56, + "probability": 0.8266 + }, + { + "start": 9447.64, + "end": 9449.48, + "probability": 0.765 + }, + { + "start": 9451.06, + "end": 9453.56, + "probability": 0.5526 + }, + { + "start": 9454.76, + "end": 9459.24, + "probability": 0.9709 + }, + { + "start": 9459.24, + "end": 9464.88, + "probability": 0.9468 + }, + { + "start": 9466.18, + "end": 9469.6, + "probability": 0.6951 + }, + { + "start": 9469.66, + "end": 9471.47, + "probability": 0.7412 + }, + { + "start": 9472.06, + "end": 9477.7, + "probability": 0.9652 + }, + { + "start": 9477.7, + "end": 9484.54, + "probability": 0.9935 + }, + { + "start": 9485.06, + "end": 9488.28, + "probability": 0.9653 + }, + { + "start": 9488.28, + "end": 9493.76, + "probability": 0.9916 + }, + { + "start": 9494.88, + "end": 9503.44, + "probability": 0.9867 + }, + { + "start": 9503.94, + "end": 9505.92, + "probability": 0.9379 + }, + { + "start": 9505.98, + "end": 9508.66, + "probability": 0.9956 + }, + { + "start": 9509.28, + "end": 9510.3, + "probability": 0.926 + }, + { + "start": 9510.38, + "end": 9512.95, + "probability": 0.99 + }, + { + "start": 9513.08, + "end": 9514.46, + "probability": 0.9121 + }, + { + "start": 9514.52, + "end": 9516.74, + "probability": 0.9171 + }, + { + "start": 9517.44, + "end": 9522.04, + "probability": 0.9159 + }, + { + "start": 9522.86, + "end": 9525.08, + "probability": 0.6984 + }, + { + "start": 9526.2, + "end": 9532.28, + "probability": 0.9639 + }, + { + "start": 9533.36, + "end": 9538.98, + "probability": 0.9624 + }, + { + "start": 9539.04, + "end": 9540.62, + "probability": 0.8765 + }, + { + "start": 9541.02, + "end": 9544.22, + "probability": 0.9389 + }, + { + "start": 9544.22, + "end": 9547.8, + "probability": 0.7452 + }, + { + "start": 9547.94, + "end": 9548.68, + "probability": 0.6467 + }, + { + "start": 9549.48, + "end": 9551.36, + "probability": 0.9236 + }, + { + "start": 9552.52, + "end": 9554.9, + "probability": 0.9626 + }, + { + "start": 9555.06, + "end": 9556.98, + "probability": 0.9661 + }, + { + "start": 9558.38, + "end": 9562.22, + "probability": 0.9222 + }, + { + "start": 9562.68, + "end": 9564.4, + "probability": 0.6102 + }, + { + "start": 9565.2, + "end": 9568.43, + "probability": 0.9417 + }, + { + "start": 9569.08, + "end": 9570.28, + "probability": 0.6195 + }, + { + "start": 9570.72, + "end": 9571.8, + "probability": 0.8302 + }, + { + "start": 9572.18, + "end": 9575.56, + "probability": 0.9971 + }, + { + "start": 9575.56, + "end": 9579.88, + "probability": 0.9803 + }, + { + "start": 9579.94, + "end": 9581.28, + "probability": 0.5597 + }, + { + "start": 9581.76, + "end": 9584.4, + "probability": 0.9275 + }, + { + "start": 9584.8, + "end": 9585.38, + "probability": 0.595 + }, + { + "start": 9585.5, + "end": 9589.79, + "probability": 0.9823 + }, + { + "start": 9590.3, + "end": 9591.62, + "probability": 0.8735 + }, + { + "start": 9592.2, + "end": 9594.62, + "probability": 0.791 + }, + { + "start": 9595.56, + "end": 9595.68, + "probability": 0.4778 + }, + { + "start": 9595.96, + "end": 9600.48, + "probability": 0.9422 + }, + { + "start": 9600.84, + "end": 9603.14, + "probability": 0.9446 + }, + { + "start": 9603.56, + "end": 9607.98, + "probability": 0.8436 + }, + { + "start": 9608.22, + "end": 9609.65, + "probability": 0.9541 + }, + { + "start": 9610.9, + "end": 9612.92, + "probability": 0.7769 + }, + { + "start": 9613.0, + "end": 9615.01, + "probability": 0.8926 + }, + { + "start": 9615.44, + "end": 9620.4, + "probability": 0.9741 + }, + { + "start": 9621.34, + "end": 9624.62, + "probability": 0.8417 + }, + { + "start": 9625.14, + "end": 9629.04, + "probability": 0.9945 + }, + { + "start": 9629.04, + "end": 9632.62, + "probability": 0.9963 + }, + { + "start": 9633.26, + "end": 9636.22, + "probability": 0.9518 + }, + { + "start": 9636.42, + "end": 9637.42, + "probability": 0.9238 + }, + { + "start": 9637.42, + "end": 9641.38, + "probability": 0.6542 + }, + { + "start": 9641.44, + "end": 9643.13, + "probability": 0.7893 + }, + { + "start": 9643.28, + "end": 9646.17, + "probability": 0.4092 + }, + { + "start": 9646.9, + "end": 9647.84, + "probability": 0.9465 + }, + { + "start": 9647.9, + "end": 9650.08, + "probability": 0.8627 + }, + { + "start": 9650.64, + "end": 9653.85, + "probability": 0.6149 + }, + { + "start": 9654.06, + "end": 9658.56, + "probability": 0.9728 + }, + { + "start": 9658.64, + "end": 9658.8, + "probability": 0.6176 + }, + { + "start": 9658.8, + "end": 9660.28, + "probability": 0.8821 + }, + { + "start": 9660.28, + "end": 9661.4, + "probability": 0.8188 + }, + { + "start": 9664.12, + "end": 9665.26, + "probability": 0.5947 + }, + { + "start": 9665.62, + "end": 9667.79, + "probability": 0.6536 + }, + { + "start": 9671.96, + "end": 9673.28, + "probability": 0.8201 + }, + { + "start": 9674.08, + "end": 9676.96, + "probability": 0.8982 + }, + { + "start": 9679.68, + "end": 9681.66, + "probability": 0.827 + }, + { + "start": 9681.74, + "end": 9683.95, + "probability": 0.9785 + }, + { + "start": 9685.46, + "end": 9686.68, + "probability": 0.408 + }, + { + "start": 9688.22, + "end": 9690.64, + "probability": 0.7384 + }, + { + "start": 9690.68, + "end": 9695.7, + "probability": 0.7843 + }, + { + "start": 9696.03, + "end": 9699.56, + "probability": 0.9769 + }, + { + "start": 9699.62, + "end": 9701.18, + "probability": 0.5652 + }, + { + "start": 9701.24, + "end": 9703.3, + "probability": 0.6685 + }, + { + "start": 9703.4, + "end": 9708.06, + "probability": 0.8978 + }, + { + "start": 9708.2, + "end": 9713.43, + "probability": 0.4877 + }, + { + "start": 9714.32, + "end": 9717.22, + "probability": 0.7887 + }, + { + "start": 9717.32, + "end": 9717.32, + "probability": 0.2344 + }, + { + "start": 9717.34, + "end": 9717.94, + "probability": 0.6959 + }, + { + "start": 9718.04, + "end": 9718.78, + "probability": 0.6869 + }, + { + "start": 9719.26, + "end": 9720.3, + "probability": 0.8817 + }, + { + "start": 9722.24, + "end": 9724.04, + "probability": 0.1198 + }, + { + "start": 9724.98, + "end": 9725.6, + "probability": 0.0236 + }, + { + "start": 9742.72, + "end": 9742.72, + "probability": 0.6589 + }, + { + "start": 9742.72, + "end": 9744.04, + "probability": 0.186 + }, + { + "start": 9744.88, + "end": 9746.42, + "probability": 0.7086 + }, + { + "start": 9746.52, + "end": 9752.76, + "probability": 0.6585 + }, + { + "start": 9752.8, + "end": 9758.12, + "probability": 0.9829 + }, + { + "start": 9761.08, + "end": 9763.68, + "probability": 0.8707 + }, + { + "start": 9764.0, + "end": 9764.26, + "probability": 0.6539 + }, + { + "start": 9764.36, + "end": 9765.43, + "probability": 0.5041 + }, + { + "start": 9765.8, + "end": 9769.16, + "probability": 0.5237 + }, + { + "start": 9769.26, + "end": 9770.52, + "probability": 0.0891 + }, + { + "start": 9770.58, + "end": 9771.0, + "probability": 0.0001 + }, + { + "start": 9772.08, + "end": 9773.56, + "probability": 0.6431 + }, + { + "start": 9773.56, + "end": 9773.98, + "probability": 0.7263 + }, + { + "start": 9774.76, + "end": 9775.78, + "probability": 0.546 + }, + { + "start": 9775.82, + "end": 9778.64, + "probability": 0.8223 + }, + { + "start": 9778.72, + "end": 9783.62, + "probability": 0.9448 + }, + { + "start": 9783.86, + "end": 9788.4, + "probability": 0.9672 + }, + { + "start": 9788.46, + "end": 9789.12, + "probability": 0.6188 + }, + { + "start": 9789.18, + "end": 9791.42, + "probability": 0.9152 + }, + { + "start": 9791.78, + "end": 9792.9, + "probability": 0.7619 + }, + { + "start": 9792.94, + "end": 9793.42, + "probability": 0.657 + }, + { + "start": 9793.42, + "end": 9794.66, + "probability": 0.881 + }, + { + "start": 9794.68, + "end": 9799.04, + "probability": 0.9048 + }, + { + "start": 9799.32, + "end": 9801.3, + "probability": 0.8033 + }, + { + "start": 9801.42, + "end": 9802.64, + "probability": 0.7383 + }, + { + "start": 9802.9, + "end": 9805.65, + "probability": 0.9241 + }, + { + "start": 9806.44, + "end": 9807.56, + "probability": 0.8723 + }, + { + "start": 9807.64, + "end": 9808.78, + "probability": 0.7007 + }, + { + "start": 9808.88, + "end": 9810.32, + "probability": 0.9725 + }, + { + "start": 9810.46, + "end": 9812.13, + "probability": 0.8688 + }, + { + "start": 9814.24, + "end": 9819.98, + "probability": 0.9738 + }, + { + "start": 9820.5, + "end": 9822.14, + "probability": 0.9894 + }, + { + "start": 9822.22, + "end": 9824.12, + "probability": 0.9878 + }, + { + "start": 9824.62, + "end": 9826.8, + "probability": 0.6646 + }, + { + "start": 9827.3, + "end": 9828.35, + "probability": 0.5228 + }, + { + "start": 9829.12, + "end": 9830.04, + "probability": 0.3744 + }, + { + "start": 9830.66, + "end": 9832.02, + "probability": 0.7548 + }, + { + "start": 9832.52, + "end": 9834.76, + "probability": 0.2008 + }, + { + "start": 9835.3, + "end": 9836.64, + "probability": 0.4674 + }, + { + "start": 9836.76, + "end": 9838.48, + "probability": 0.0483 + }, + { + "start": 9839.05, + "end": 9842.18, + "probability": 0.3052 + }, + { + "start": 9859.82, + "end": 9863.24, + "probability": 0.5905 + }, + { + "start": 9863.62, + "end": 9867.18, + "probability": 0.5088 + }, + { + "start": 9867.26, + "end": 9868.28, + "probability": 0.095 + }, + { + "start": 9868.64, + "end": 9872.48, + "probability": 0.8356 + }, + { + "start": 9872.56, + "end": 9874.36, + "probability": 0.8706 + }, + { + "start": 9874.78, + "end": 9875.06, + "probability": 0.7913 + }, + { + "start": 9875.2, + "end": 9876.54, + "probability": 0.7538 + }, + { + "start": 9876.58, + "end": 9878.6, + "probability": 0.7406 + }, + { + "start": 9878.68, + "end": 9880.96, + "probability": 0.7523 + }, + { + "start": 9881.98, + "end": 9883.92, + "probability": 0.6823 + }, + { + "start": 9883.96, + "end": 9887.06, + "probability": 0.9828 + }, + { + "start": 9887.06, + "end": 9890.74, + "probability": 0.5794 + }, + { + "start": 9890.8, + "end": 9892.52, + "probability": 0.5962 + }, + { + "start": 9892.8, + "end": 9895.2, + "probability": 0.7856 + }, + { + "start": 9895.84, + "end": 9898.92, + "probability": 0.608 + }, + { + "start": 9899.74, + "end": 9905.98, + "probability": 0.919 + }, + { + "start": 9906.22, + "end": 9912.12, + "probability": 0.846 + }, + { + "start": 9912.32, + "end": 9913.86, + "probability": 0.3603 + }, + { + "start": 9913.88, + "end": 9916.72, + "probability": 0.9157 + }, + { + "start": 9917.22, + "end": 9919.2, + "probability": 0.253 + }, + { + "start": 9919.68, + "end": 9920.84, + "probability": 0.5452 + }, + { + "start": 9920.94, + "end": 9927.08, + "probability": 0.9092 + }, + { + "start": 9927.16, + "end": 9928.64, + "probability": 0.0435 + }, + { + "start": 9929.02, + "end": 9930.42, + "probability": 0.8782 + }, + { + "start": 9930.56, + "end": 9934.98, + "probability": 0.9398 + }, + { + "start": 9935.36, + "end": 9938.74, + "probability": 0.9593 + }, + { + "start": 9938.88, + "end": 9941.88, + "probability": 0.716 + }, + { + "start": 9947.14, + "end": 9947.48, + "probability": 0.5126 + }, + { + "start": 9973.1, + "end": 9974.56, + "probability": 0.6773 + }, + { + "start": 9974.7, + "end": 9975.6, + "probability": 0.7901 + }, + { + "start": 9975.74, + "end": 9980.49, + "probability": 0.8289 + }, + { + "start": 9980.66, + "end": 9982.68, + "probability": 0.5899 + }, + { + "start": 9982.68, + "end": 9987.62, + "probability": 0.8369 + }, + { + "start": 9988.94, + "end": 9993.2, + "probability": 0.5577 + }, + { + "start": 9993.68, + "end": 9995.54, + "probability": 0.1485 + }, + { + "start": 9995.74, + "end": 9997.9, + "probability": 0.9388 + }, + { + "start": 9998.14, + "end": 10003.66, + "probability": 0.978 + }, + { + "start": 10003.66, + "end": 10012.86, + "probability": 0.8755 + }, + { + "start": 10012.86, + "end": 10016.3, + "probability": 0.9956 + }, + { + "start": 10016.98, + "end": 10021.5, + "probability": 0.9772 + }, + { + "start": 10021.5, + "end": 10026.8, + "probability": 0.969 + }, + { + "start": 10027.34, + "end": 10030.68, + "probability": 0.9965 + }, + { + "start": 10030.68, + "end": 10036.34, + "probability": 0.8399 + }, + { + "start": 10036.68, + "end": 10042.18, + "probability": 0.8438 + }, + { + "start": 10042.18, + "end": 10050.32, + "probability": 0.9849 + }, + { + "start": 10050.8, + "end": 10053.54, + "probability": 0.5099 + }, + { + "start": 10054.5, + "end": 10061.68, + "probability": 0.7316 + }, + { + "start": 10061.68, + "end": 10068.4, + "probability": 0.9964 + }, + { + "start": 10068.74, + "end": 10073.62, + "probability": 0.9638 + }, + { + "start": 10073.94, + "end": 10077.58, + "probability": 0.9428 + }, + { + "start": 10078.26, + "end": 10080.5, + "probability": 0.9352 + }, + { + "start": 10080.62, + "end": 10085.42, + "probability": 0.8862 + }, + { + "start": 10086.0, + "end": 10088.92, + "probability": 0.939 + }, + { + "start": 10088.95, + "end": 10095.72, + "probability": 0.9205 + }, + { + "start": 10096.58, + "end": 10102.17, + "probability": 0.981 + }, + { + "start": 10102.62, + "end": 10105.2, + "probability": 0.9951 + }, + { + "start": 10105.3, + "end": 10107.1, + "probability": 0.9867 + }, + { + "start": 10107.32, + "end": 10107.88, + "probability": 0.5115 + }, + { + "start": 10108.3, + "end": 10108.46, + "probability": 0.4055 + }, + { + "start": 10108.64, + "end": 10114.36, + "probability": 0.9727 + }, + { + "start": 10114.58, + "end": 10115.54, + "probability": 0.8805 + }, + { + "start": 10115.54, + "end": 10117.22, + "probability": 0.8241 + }, + { + "start": 10117.3, + "end": 10119.8, + "probability": 0.8974 + }, + { + "start": 10120.34, + "end": 10127.28, + "probability": 0.9198 + }, + { + "start": 10127.6, + "end": 10129.56, + "probability": 0.9766 + }, + { + "start": 10130.24, + "end": 10136.18, + "probability": 0.9866 + }, + { + "start": 10136.18, + "end": 10140.5, + "probability": 0.9945 + }, + { + "start": 10140.7, + "end": 10146.16, + "probability": 0.801 + }, + { + "start": 10146.38, + "end": 10148.28, + "probability": 0.8582 + }, + { + "start": 10148.98, + "end": 10151.56, + "probability": 0.8521 + }, + { + "start": 10151.64, + "end": 10154.92, + "probability": 0.9875 + }, + { + "start": 10154.92, + "end": 10156.98, + "probability": 0.9828 + }, + { + "start": 10157.46, + "end": 10160.2, + "probability": 0.9169 + }, + { + "start": 10160.2, + "end": 10162.64, + "probability": 0.9411 + }, + { + "start": 10162.94, + "end": 10163.44, + "probability": 0.5973 + }, + { + "start": 10163.66, + "end": 10164.34, + "probability": 0.5592 + }, + { + "start": 10164.38, + "end": 10164.86, + "probability": 0.5881 + }, + { + "start": 10164.96, + "end": 10166.7, + "probability": 0.8363 + }, + { + "start": 10166.72, + "end": 10170.42, + "probability": 0.7743 + }, + { + "start": 10170.62, + "end": 10176.44, + "probability": 0.8066 + }, + { + "start": 10178.02, + "end": 10180.84, + "probability": 0.356 + }, + { + "start": 10181.42, + "end": 10182.02, + "probability": 0.5852 + }, + { + "start": 10182.12, + "end": 10182.8, + "probability": 0.6753 + }, + { + "start": 10183.22, + "end": 10184.08, + "probability": 0.7886 + }, + { + "start": 10189.06, + "end": 10190.12, + "probability": 0.7065 + }, + { + "start": 10190.78, + "end": 10194.78, + "probability": 0.004 + }, + { + "start": 10200.92, + "end": 10203.76, + "probability": 0.7453 + }, + { + "start": 10203.86, + "end": 10206.42, + "probability": 0.8553 + }, + { + "start": 10207.0, + "end": 10208.64, + "probability": 0.6008 + }, + { + "start": 10209.86, + "end": 10211.44, + "probability": 0.932 + }, + { + "start": 10211.54, + "end": 10215.64, + "probability": 0.8951 + }, + { + "start": 10217.0, + "end": 10217.48, + "probability": 0.6615 + }, + { + "start": 10217.6, + "end": 10218.16, + "probability": 0.7243 + }, + { + "start": 10218.36, + "end": 10218.78, + "probability": 0.8742 + }, + { + "start": 10237.72, + "end": 10241.04, + "probability": 0.6534 + }, + { + "start": 10241.04, + "end": 10242.82, + "probability": 0.1096 + }, + { + "start": 10243.02, + "end": 10243.78, + "probability": 0.14 + }, + { + "start": 10251.4, + "end": 10251.68, + "probability": 0.0774 + }, + { + "start": 10251.68, + "end": 10251.68, + "probability": 0.082 + }, + { + "start": 10251.68, + "end": 10256.09, + "probability": 0.0979 + }, + { + "start": 10258.62, + "end": 10259.62, + "probability": 0.0267 + }, + { + "start": 10261.52, + "end": 10265.74, + "probability": 0.147 + }, + { + "start": 10266.59, + "end": 10267.13, + "probability": 0.0647 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.0, + "end": 10391.0, + "probability": 0.0 + }, + { + "start": 10391.28, + "end": 10392.14, + "probability": 0.1205 + }, + { + "start": 10392.62, + "end": 10395.2, + "probability": 0.8457 + }, + { + "start": 10395.2, + "end": 10398.83, + "probability": 0.9333 + }, + { + "start": 10399.18, + "end": 10401.76, + "probability": 0.9889 + }, + { + "start": 10401.76, + "end": 10404.04, + "probability": 0.995 + }, + { + "start": 10404.72, + "end": 10406.16, + "probability": 0.8264 + }, + { + "start": 10406.24, + "end": 10409.1, + "probability": 0.9946 + }, + { + "start": 10409.16, + "end": 10409.58, + "probability": 0.828 + }, + { + "start": 10409.64, + "end": 10411.64, + "probability": 0.9666 + }, + { + "start": 10411.7, + "end": 10413.26, + "probability": 0.591 + }, + { + "start": 10413.48, + "end": 10416.3, + "probability": 0.9731 + }, + { + "start": 10416.34, + "end": 10420.56, + "probability": 0.8027 + }, + { + "start": 10421.14, + "end": 10425.18, + "probability": 0.9235 + }, + { + "start": 10425.26, + "end": 10426.24, + "probability": 0.5963 + }, + { + "start": 10426.36, + "end": 10427.66, + "probability": 0.6568 + }, + { + "start": 10428.44, + "end": 10431.88, + "probability": 0.9224 + }, + { + "start": 10432.3, + "end": 10432.67, + "probability": 0.5909 + }, + { + "start": 10433.78, + "end": 10434.24, + "probability": 0.3424 + }, + { + "start": 10434.32, + "end": 10434.54, + "probability": 0.5406 + }, + { + "start": 10434.82, + "end": 10436.17, + "probability": 0.7671 + }, + { + "start": 10436.4, + "end": 10437.02, + "probability": 0.3184 + }, + { + "start": 10437.73, + "end": 10445.22, + "probability": 0.6642 + }, + { + "start": 10445.22, + "end": 10450.8, + "probability": 0.7653 + }, + { + "start": 10451.18, + "end": 10453.12, + "probability": 0.0947 + }, + { + "start": 10454.98, + "end": 10455.4, + "probability": 0.8291 + }, + { + "start": 10456.57, + "end": 10457.02, + "probability": 0.04 + }, + { + "start": 10466.44, + "end": 10466.44, + "probability": 0.1436 + }, + { + "start": 10466.44, + "end": 10466.44, + "probability": 0.1192 + }, + { + "start": 10466.44, + "end": 10466.44, + "probability": 0.0417 + }, + { + "start": 10466.44, + "end": 10466.68, + "probability": 0.0495 + }, + { + "start": 10480.08, + "end": 10482.76, + "probability": 0.7046 + }, + { + "start": 10483.18, + "end": 10484.5, + "probability": 0.9249 + }, + { + "start": 10484.96, + "end": 10486.38, + "probability": 0.9358 + }, + { + "start": 10487.54, + "end": 10489.48, + "probability": 0.8899 + }, + { + "start": 10489.86, + "end": 10490.42, + "probability": 0.633 + }, + { + "start": 10490.46, + "end": 10490.94, + "probability": 0.6633 + }, + { + "start": 10490.94, + "end": 10491.54, + "probability": 0.8935 + }, + { + "start": 10503.4, + "end": 10503.76, + "probability": 0.5242 + }, + { + "start": 10504.44, + "end": 10504.92, + "probability": 0.6209 + }, + { + "start": 10519.91, + "end": 10523.62, + "probability": 0.9385 + }, + { + "start": 10523.62, + "end": 10525.76, + "probability": 0.3892 + }, + { + "start": 10526.14, + "end": 10527.22, + "probability": 0.1738 + }, + { + "start": 10527.48, + "end": 10528.64, + "probability": 0.1164 + }, + { + "start": 10529.38, + "end": 10530.8, + "probability": 0.1761 + }, + { + "start": 10531.58, + "end": 10533.5, + "probability": 0.6945 + }, + { + "start": 10533.8, + "end": 10535.8, + "probability": 0.0628 + }, + { + "start": 10535.8, + "end": 10539.14, + "probability": 0.1018 + }, + { + "start": 10539.14, + "end": 10539.23, + "probability": 0.1297 + }, + { + "start": 10542.18, + "end": 10542.54, + "probability": 0.005 + }, + { + "start": 10543.16, + "end": 10547.46, + "probability": 0.0652 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10577.0, + "end": 10577.0, + "probability": 0.0 + }, + { + "start": 10578.58, + "end": 10578.92, + "probability": 0.2419 + }, + { + "start": 10582.32, + "end": 10582.62, + "probability": 0.0522 + }, + { + "start": 10582.62, + "end": 10583.0, + "probability": 0.085 + }, + { + "start": 10583.0, + "end": 10583.0, + "probability": 0.0179 + }, + { + "start": 10583.0, + "end": 10584.94, + "probability": 0.1426 + }, + { + "start": 10587.12, + "end": 10587.12, + "probability": 0.0225 + }, + { + "start": 10587.12, + "end": 10587.12, + "probability": 0.0817 + }, + { + "start": 10587.12, + "end": 10587.12, + "probability": 0.2698 + }, + { + "start": 10587.12, + "end": 10590.16, + "probability": 0.9132 + }, + { + "start": 10590.16, + "end": 10595.3, + "probability": 0.9805 + }, + { + "start": 10596.04, + "end": 10596.3, + "probability": 0.2703 + }, + { + "start": 10596.32, + "end": 10598.1, + "probability": 0.7368 + }, + { + "start": 10598.18, + "end": 10599.7, + "probability": 0.5188 + }, + { + "start": 10599.82, + "end": 10603.24, + "probability": 0.9831 + }, + { + "start": 10604.68, + "end": 10607.04, + "probability": 0.9756 + }, + { + "start": 10608.02, + "end": 10610.34, + "probability": 0.8939 + }, + { + "start": 10610.44, + "end": 10614.66, + "probability": 0.7873 + }, + { + "start": 10614.76, + "end": 10615.06, + "probability": 0.6995 + }, + { + "start": 10615.18, + "end": 10617.64, + "probability": 0.9756 + }, + { + "start": 10617.64, + "end": 10620.24, + "probability": 0.96 + }, + { + "start": 10620.98, + "end": 10621.74, + "probability": 0.806 + }, + { + "start": 10621.84, + "end": 10623.64, + "probability": 0.9019 + }, + { + "start": 10624.08, + "end": 10624.74, + "probability": 0.7811 + }, + { + "start": 10624.84, + "end": 10625.42, + "probability": 0.5133 + }, + { + "start": 10625.52, + "end": 10626.46, + "probability": 0.9553 + }, + { + "start": 10626.74, + "end": 10627.6, + "probability": 0.6916 + }, + { + "start": 10627.64, + "end": 10630.06, + "probability": 0.8263 + }, + { + "start": 10630.24, + "end": 10632.7, + "probability": 0.9805 + }, + { + "start": 10632.7, + "end": 10636.66, + "probability": 0.9907 + }, + { + "start": 10636.82, + "end": 10641.22, + "probability": 0.7514 + }, + { + "start": 10641.22, + "end": 10644.5, + "probability": 0.9877 + }, + { + "start": 10646.68, + "end": 10651.12, + "probability": 0.9558 + }, + { + "start": 10652.62, + "end": 10653.66, + "probability": 0.7183 + }, + { + "start": 10653.74, + "end": 10657.58, + "probability": 0.9698 + }, + { + "start": 10657.86, + "end": 10661.51, + "probability": 0.9922 + }, + { + "start": 10661.84, + "end": 10666.46, + "probability": 0.9982 + }, + { + "start": 10666.54, + "end": 10671.26, + "probability": 0.8866 + }, + { + "start": 10671.84, + "end": 10675.0, + "probability": 0.9911 + }, + { + "start": 10675.44, + "end": 10676.82, + "probability": 0.9971 + }, + { + "start": 10678.68, + "end": 10683.16, + "probability": 0.9857 + }, + { + "start": 10683.28, + "end": 10684.84, + "probability": 0.9873 + }, + { + "start": 10685.4, + "end": 10687.48, + "probability": 0.9725 + }, + { + "start": 10687.48, + "end": 10690.92, + "probability": 0.9754 + }, + { + "start": 10691.0, + "end": 10696.9, + "probability": 0.9185 + }, + { + "start": 10697.06, + "end": 10701.16, + "probability": 0.9937 + }, + { + "start": 10701.22, + "end": 10705.36, + "probability": 0.9845 + }, + { + "start": 10706.26, + "end": 10709.72, + "probability": 0.9807 + }, + { + "start": 10710.14, + "end": 10714.68, + "probability": 0.9782 + }, + { + "start": 10715.2, + "end": 10716.64, + "probability": 0.9908 + }, + { + "start": 10717.12, + "end": 10718.74, + "probability": 0.7422 + }, + { + "start": 10718.84, + "end": 10721.52, + "probability": 0.9463 + }, + { + "start": 10721.52, + "end": 10725.9, + "probability": 0.9661 + }, + { + "start": 10726.48, + "end": 10728.38, + "probability": 0.9158 + }, + { + "start": 10729.36, + "end": 10729.84, + "probability": 0.7746 + }, + { + "start": 10729.94, + "end": 10734.06, + "probability": 0.8778 + }, + { + "start": 10734.06, + "end": 10737.7, + "probability": 0.9917 + }, + { + "start": 10738.34, + "end": 10741.88, + "probability": 0.9354 + }, + { + "start": 10742.22, + "end": 10744.4, + "probability": 0.9291 + }, + { + "start": 10744.44, + "end": 10747.57, + "probability": 0.9644 + }, + { + "start": 10747.7, + "end": 10751.54, + "probability": 0.8104 + }, + { + "start": 10752.1, + "end": 10754.98, + "probability": 0.3991 + }, + { + "start": 10755.1, + "end": 10756.56, + "probability": 0.8206 + }, + { + "start": 10757.22, + "end": 10758.76, + "probability": 0.7422 + }, + { + "start": 10758.84, + "end": 10762.26, + "probability": 0.9462 + }, + { + "start": 10762.98, + "end": 10768.94, + "probability": 0.5006 + }, + { + "start": 10769.1, + "end": 10770.3, + "probability": 0.8769 + }, + { + "start": 10770.42, + "end": 10771.46, + "probability": 0.5999 + }, + { + "start": 10771.6, + "end": 10773.26, + "probability": 0.5377 + }, + { + "start": 10773.32, + "end": 10773.6, + "probability": 0.8576 + }, + { + "start": 10774.34, + "end": 10774.58, + "probability": 0.2645 + }, + { + "start": 10774.58, + "end": 10774.74, + "probability": 0.594 + }, + { + "start": 10774.88, + "end": 10778.7, + "probability": 0.9224 + }, + { + "start": 10778.82, + "end": 10782.12, + "probability": 0.8444 + }, + { + "start": 10782.62, + "end": 10784.54, + "probability": 0.7469 + }, + { + "start": 10784.72, + "end": 10785.5, + "probability": 0.9772 + }, + { + "start": 10785.72, + "end": 10789.1, + "probability": 0.9873 + }, + { + "start": 10789.1, + "end": 10792.12, + "probability": 0.5117 + }, + { + "start": 10792.14, + "end": 10793.5, + "probability": 0.106 + }, + { + "start": 10793.58, + "end": 10794.38, + "probability": 0.9414 + }, + { + "start": 10795.4, + "end": 10795.98, + "probability": 0.6854 + }, + { + "start": 10796.04, + "end": 10796.5, + "probability": 0.6929 + }, + { + "start": 10796.54, + "end": 10796.96, + "probability": 0.8742 + }, + { + "start": 10800.16, + "end": 10800.46, + "probability": 0.0013 + }, + { + "start": 10807.54, + "end": 10807.68, + "probability": 0.0184 + }, + { + "start": 10807.68, + "end": 10807.78, + "probability": 0.1045 + }, + { + "start": 10807.78, + "end": 10807.78, + "probability": 0.0135 + }, + { + "start": 10807.78, + "end": 10807.9, + "probability": 0.0204 + }, + { + "start": 10807.9, + "end": 10808.06, + "probability": 0.0193 + }, + { + "start": 10824.2, + "end": 10825.92, + "probability": 0.023 + }, + { + "start": 10828.88, + "end": 10833.1, + "probability": 0.4592 + }, + { + "start": 10833.42, + "end": 10835.86, + "probability": 0.6803 + }, + { + "start": 10837.34, + "end": 10837.86, + "probability": 0.6269 + }, + { + "start": 10837.94, + "end": 10838.82, + "probability": 0.6837 + }, + { + "start": 10840.8, + "end": 10841.64, + "probability": 0.0036 + }, + { + "start": 10853.6, + "end": 10854.24, + "probability": 0.3824 + }, + { + "start": 10863.0, + "end": 10863.4, + "probability": 0.0201 + }, + { + "start": 10863.4, + "end": 10863.68, + "probability": 0.0296 + }, + { + "start": 10863.68, + "end": 10863.68, + "probability": 0.124 + }, + { + "start": 10863.68, + "end": 10865.58, + "probability": 0.6142 + }, + { + "start": 10865.66, + "end": 10866.86, + "probability": 0.9235 + }, + { + "start": 10867.44, + "end": 10870.82, + "probability": 0.4591 + }, + { + "start": 10870.82, + "end": 10873.28, + "probability": 0.7752 + }, + { + "start": 10873.68, + "end": 10877.94, + "probability": 0.525 + }, + { + "start": 10878.16, + "end": 10879.32, + "probability": 0.7278 + }, + { + "start": 10879.82, + "end": 10880.7, + "probability": 0.7338 + }, + { + "start": 10880.94, + "end": 10885.2, + "probability": 0.9205 + }, + { + "start": 10885.34, + "end": 10886.44, + "probability": 0.8576 + }, + { + "start": 10886.64, + "end": 10888.82, + "probability": 0.9504 + }, + { + "start": 10888.86, + "end": 10890.22, + "probability": 0.9247 + }, + { + "start": 10890.24, + "end": 10893.52, + "probability": 0.8268 + }, + { + "start": 10893.62, + "end": 10896.84, + "probability": 0.9144 + }, + { + "start": 10896.92, + "end": 10897.36, + "probability": 0.7256 + }, + { + "start": 10897.46, + "end": 10898.64, + "probability": 0.9924 + }, + { + "start": 10898.76, + "end": 10899.46, + "probability": 0.6197 + }, + { + "start": 10900.24, + "end": 10900.86, + "probability": 0.9023 + }, + { + "start": 10902.8, + "end": 10906.0, + "probability": 0.9532 + }, + { + "start": 10906.04, + "end": 10907.5, + "probability": 0.6718 + }, + { + "start": 10908.06, + "end": 10911.22, + "probability": 0.9635 + }, + { + "start": 10911.72, + "end": 10912.4, + "probability": 0.959 + }, + { + "start": 10912.6, + "end": 10913.06, + "probability": 0.727 + }, + { + "start": 10914.6, + "end": 10917.42, + "probability": 0.9387 + }, + { + "start": 10917.98, + "end": 10919.8, + "probability": 0.8901 + }, + { + "start": 10920.34, + "end": 10923.78, + "probability": 0.8765 + }, + { + "start": 10924.32, + "end": 10926.17, + "probability": 0.0753 + }, + { + "start": 10927.0, + "end": 10927.96, + "probability": 0.6954 + }, + { + "start": 10928.32, + "end": 10931.6, + "probability": 0.9932 + }, + { + "start": 10931.62, + "end": 10932.0, + "probability": 0.8585 + }, + { + "start": 10933.1, + "end": 10933.32, + "probability": 0.0138 + }, + { + "start": 10959.64, + "end": 10960.76, + "probability": 0.3841 + }, + { + "start": 10960.8, + "end": 10962.19, + "probability": 0.5908 + }, + { + "start": 10962.48, + "end": 10966.78, + "probability": 0.8705 + }, + { + "start": 10966.78, + "end": 10970.34, + "probability": 0.802 + }, + { + "start": 10970.44, + "end": 10973.14, + "probability": 0.1912 + }, + { + "start": 10973.28, + "end": 10975.2, + "probability": 0.9992 + }, + { + "start": 10975.98, + "end": 10978.1, + "probability": 0.6323 + }, + { + "start": 10978.16, + "end": 10981.08, + "probability": 0.707 + }, + { + "start": 10981.92, + "end": 10985.62, + "probability": 0.9407 + }, + { + "start": 10986.06, + "end": 10988.92, + "probability": 0.2328 + }, + { + "start": 10988.94, + "end": 10991.03, + "probability": 0.6036 + }, + { + "start": 10991.46, + "end": 10992.86, + "probability": 0.658 + }, + { + "start": 10993.8, + "end": 10997.98, + "probability": 0.9169 + }, + { + "start": 10998.58, + "end": 11001.9, + "probability": 0.9879 + }, + { + "start": 11002.54, + "end": 11005.72, + "probability": 0.9811 + }, + { + "start": 11005.72, + "end": 11010.04, + "probability": 0.9676 + }, + { + "start": 11011.5, + "end": 11015.14, + "probability": 0.9983 + }, + { + "start": 11015.98, + "end": 11022.58, + "probability": 0.9736 + }, + { + "start": 11023.12, + "end": 11026.6, + "probability": 0.8975 + }, + { + "start": 11027.12, + "end": 11029.8, + "probability": 0.997 + }, + { + "start": 11029.8, + "end": 11032.94, + "probability": 0.9984 + }, + { + "start": 11033.92, + "end": 11036.36, + "probability": 0.999 + }, + { + "start": 11036.36, + "end": 11040.14, + "probability": 0.9824 + }, + { + "start": 11040.78, + "end": 11045.34, + "probability": 0.7171 + }, + { + "start": 11046.02, + "end": 11049.28, + "probability": 0.9881 + }, + { + "start": 11049.9, + "end": 11055.94, + "probability": 0.8741 + }, + { + "start": 11056.06, + "end": 11059.7, + "probability": 0.6104 + }, + { + "start": 11060.3, + "end": 11061.62, + "probability": 0.3923 + }, + { + "start": 11063.02, + "end": 11068.2, + "probability": 0.8576 + }, + { + "start": 11068.7, + "end": 11072.16, + "probability": 0.7511 + }, + { + "start": 11072.16, + "end": 11076.6, + "probability": 0.8623 + }, + { + "start": 11076.86, + "end": 11083.4, + "probability": 0.9033 + }, + { + "start": 11083.62, + "end": 11084.92, + "probability": 0.5237 + }, + { + "start": 11086.0, + "end": 11090.38, + "probability": 0.9435 + }, + { + "start": 11090.38, + "end": 11090.7, + "probability": 0.8733 + }, + { + "start": 11090.72, + "end": 11094.51, + "probability": 0.5684 + }, + { + "start": 11094.9, + "end": 11100.3, + "probability": 0.8885 + }, + { + "start": 11100.48, + "end": 11101.36, + "probability": 0.9343 + }, + { + "start": 11101.46, + "end": 11103.96, + "probability": 0.849 + }, + { + "start": 11105.0, + "end": 11107.44, + "probability": 0.964 + }, + { + "start": 11108.48, + "end": 11110.64, + "probability": 0.9858 + }, + { + "start": 11110.64, + "end": 11113.46, + "probability": 0.9717 + }, + { + "start": 11113.96, + "end": 11118.0, + "probability": 0.7026 + }, + { + "start": 11118.54, + "end": 11121.58, + "probability": 0.5772 + }, + { + "start": 11122.18, + "end": 11125.08, + "probability": 0.9597 + }, + { + "start": 11127.64, + "end": 11130.38, + "probability": 0.9622 + }, + { + "start": 11130.56, + "end": 11132.62, + "probability": 0.9454 + }, + { + "start": 11133.08, + "end": 11135.72, + "probability": 0.6823 + }, + { + "start": 11136.4, + "end": 11137.16, + "probability": 0.6113 + }, + { + "start": 11137.44, + "end": 11138.72, + "probability": 0.8584 + }, + { + "start": 11139.32, + "end": 11140.02, + "probability": 0.8998 + }, + { + "start": 11140.14, + "end": 11141.46, + "probability": 0.9531 + }, + { + "start": 11142.68, + "end": 11143.74, + "probability": 0.5576 + }, + { + "start": 11143.96, + "end": 11146.02, + "probability": 0.9801 + }, + { + "start": 11146.62, + "end": 11148.34, + "probability": 0.8646 + }, + { + "start": 11157.48, + "end": 11158.44, + "probability": 0.186 + }, + { + "start": 11158.58, + "end": 11158.58, + "probability": 0.3328 + }, + { + "start": 11158.58, + "end": 11159.52, + "probability": 0.581 + }, + { + "start": 11159.82, + "end": 11162.46, + "probability": 0.9928 + }, + { + "start": 11163.14, + "end": 11165.31, + "probability": 0.9006 + }, + { + "start": 11167.74, + "end": 11172.64, + "probability": 0.8795 + }, + { + "start": 11172.8, + "end": 11175.16, + "probability": 0.7886 + }, + { + "start": 11175.22, + "end": 11176.5, + "probability": 0.8873 + }, + { + "start": 11176.74, + "end": 11182.04, + "probability": 0.9684 + }, + { + "start": 11182.04, + "end": 11186.22, + "probability": 0.9969 + }, + { + "start": 11187.14, + "end": 11187.66, + "probability": 0.8974 + }, + { + "start": 11189.78, + "end": 11190.51, + "probability": 0.9406 + }, + { + "start": 11192.28, + "end": 11195.94, + "probability": 0.9439 + }, + { + "start": 11196.38, + "end": 11197.36, + "probability": 0.7159 + }, + { + "start": 11197.72, + "end": 11198.36, + "probability": 0.818 + }, + { + "start": 11198.5, + "end": 11200.61, + "probability": 0.9826 + }, + { + "start": 11201.14, + "end": 11204.44, + "probability": 0.9613 + }, + { + "start": 11204.8, + "end": 11206.62, + "probability": 0.9946 + }, + { + "start": 11207.58, + "end": 11212.2, + "probability": 0.6665 + }, + { + "start": 11213.08, + "end": 11213.22, + "probability": 0.559 + }, + { + "start": 11213.22, + "end": 11213.96, + "probability": 0.4369 + }, + { + "start": 11213.96, + "end": 11214.26, + "probability": 0.5101 + }, + { + "start": 11214.5, + "end": 11215.56, + "probability": 0.9116 + }, + { + "start": 11215.8, + "end": 11220.42, + "probability": 0.9811 + }, + { + "start": 11221.06, + "end": 11221.9, + "probability": 0.9697 + }, + { + "start": 11222.5, + "end": 11223.96, + "probability": 0.9839 + }, + { + "start": 11224.42, + "end": 11231.34, + "probability": 0.9906 + }, + { + "start": 11231.5, + "end": 11232.2, + "probability": 0.6047 + }, + { + "start": 11232.66, + "end": 11233.58, + "probability": 0.9909 + }, + { + "start": 11233.8, + "end": 11234.74, + "probability": 0.9712 + }, + { + "start": 11235.04, + "end": 11238.02, + "probability": 0.9702 + }, + { + "start": 11238.24, + "end": 11238.9, + "probability": 0.8387 + }, + { + "start": 11238.9, + "end": 11240.06, + "probability": 0.9818 + }, + { + "start": 11240.32, + "end": 11241.3, + "probability": 0.9725 + }, + { + "start": 11241.62, + "end": 11242.64, + "probability": 0.9833 + }, + { + "start": 11243.12, + "end": 11246.4, + "probability": 0.9727 + }, + { + "start": 11246.78, + "end": 11247.64, + "probability": 0.6521 + }, + { + "start": 11247.78, + "end": 11248.06, + "probability": 0.7665 + }, + { + "start": 11248.14, + "end": 11250.58, + "probability": 0.9034 + }, + { + "start": 11251.06, + "end": 11253.62, + "probability": 0.9257 + }, + { + "start": 11253.68, + "end": 11254.23, + "probability": 0.9814 + }, + { + "start": 11254.46, + "end": 11257.1, + "probability": 0.8862 + }, + { + "start": 11257.62, + "end": 11258.94, + "probability": 0.5283 + }, + { + "start": 11259.02, + "end": 11259.88, + "probability": 0.793 + }, + { + "start": 11260.0, + "end": 11261.42, + "probability": 0.7028 + }, + { + "start": 11261.42, + "end": 11263.02, + "probability": 0.9205 + }, + { + "start": 11263.96, + "end": 11266.64, + "probability": 0.983 + }, + { + "start": 11266.9, + "end": 11270.94, + "probability": 0.9291 + }, + { + "start": 11271.28, + "end": 11273.56, + "probability": 0.9907 + }, + { + "start": 11274.04, + "end": 11275.22, + "probability": 0.8382 + }, + { + "start": 11275.9, + "end": 11277.2, + "probability": 0.979 + }, + { + "start": 11277.5, + "end": 11279.6, + "probability": 0.9872 + }, + { + "start": 11280.02, + "end": 11281.66, + "probability": 0.9969 + }, + { + "start": 11283.3, + "end": 11287.08, + "probability": 0.9545 + }, + { + "start": 11287.74, + "end": 11288.32, + "probability": 0.951 + }, + { + "start": 11289.1, + "end": 11292.48, + "probability": 0.8055 + }, + { + "start": 11293.28, + "end": 11297.02, + "probability": 0.887 + }, + { + "start": 11297.12, + "end": 11301.4, + "probability": 0.9852 + }, + { + "start": 11302.08, + "end": 11305.12, + "probability": 0.9208 + }, + { + "start": 11305.84, + "end": 11308.12, + "probability": 0.8564 + }, + { + "start": 11308.44, + "end": 11309.12, + "probability": 0.8861 + }, + { + "start": 11309.22, + "end": 11309.82, + "probability": 0.9102 + }, + { + "start": 11309.9, + "end": 11311.03, + "probability": 0.7333 + }, + { + "start": 11311.86, + "end": 11315.8, + "probability": 0.9932 + }, + { + "start": 11316.4, + "end": 11318.84, + "probability": 0.9597 + }, + { + "start": 11319.76, + "end": 11322.58, + "probability": 0.8787 + }, + { + "start": 11322.64, + "end": 11324.78, + "probability": 0.7871 + }, + { + "start": 11325.38, + "end": 11332.04, + "probability": 0.9973 + }, + { + "start": 11332.2, + "end": 11332.44, + "probability": 0.6193 + }, + { + "start": 11332.64, + "end": 11334.58, + "probability": 0.974 + }, + { + "start": 11334.88, + "end": 11336.7, + "probability": 0.9403 + }, + { + "start": 11337.28, + "end": 11338.84, + "probability": 0.8146 + }, + { + "start": 11339.0, + "end": 11339.74, + "probability": 0.7318 + }, + { + "start": 11339.92, + "end": 11341.36, + "probability": 0.821 + }, + { + "start": 11341.78, + "end": 11342.7, + "probability": 0.8067 + }, + { + "start": 11343.02, + "end": 11345.1, + "probability": 0.9766 + }, + { + "start": 11345.14, + "end": 11346.06, + "probability": 0.9689 + }, + { + "start": 11346.44, + "end": 11347.64, + "probability": 0.889 + }, + { + "start": 11348.2, + "end": 11349.18, + "probability": 0.924 + }, + { + "start": 11349.82, + "end": 11351.1, + "probability": 0.6064 + }, + { + "start": 11351.66, + "end": 11352.56, + "probability": 0.5903 + }, + { + "start": 11352.86, + "end": 11355.32, + "probability": 0.8447 + }, + { + "start": 11355.44, + "end": 11356.84, + "probability": 0.8896 + }, + { + "start": 11357.9, + "end": 11358.36, + "probability": 0.4832 + }, + { + "start": 11358.8, + "end": 11360.46, + "probability": 0.9585 + }, + { + "start": 11362.34, + "end": 11363.06, + "probability": 0.0561 + }, + { + "start": 11363.16, + "end": 11364.02, + "probability": 0.2432 + }, + { + "start": 11370.68, + "end": 11370.78, + "probability": 0.0256 + }, + { + "start": 11370.78, + "end": 11373.2, + "probability": 0.9031 + }, + { + "start": 11383.12, + "end": 11385.54, + "probability": 0.5076 + }, + { + "start": 11385.56, + "end": 11386.6, + "probability": 0.3249 + }, + { + "start": 11387.4, + "end": 11388.08, + "probability": 0.7106 + }, + { + "start": 11388.18, + "end": 11390.62, + "probability": 0.9805 + }, + { + "start": 11390.82, + "end": 11391.76, + "probability": 0.5852 + }, + { + "start": 11392.1, + "end": 11393.9, + "probability": 0.9139 + }, + { + "start": 11393.94, + "end": 11396.22, + "probability": 0.9482 + }, + { + "start": 11397.14, + "end": 11402.51, + "probability": 0.9902 + }, + { + "start": 11403.48, + "end": 11407.1, + "probability": 0.9313 + }, + { + "start": 11407.1, + "end": 11410.5, + "probability": 0.9913 + }, + { + "start": 11411.26, + "end": 11412.86, + "probability": 0.9473 + }, + { + "start": 11412.92, + "end": 11414.27, + "probability": 0.9897 + }, + { + "start": 11414.42, + "end": 11416.42, + "probability": 0.8512 + }, + { + "start": 11417.12, + "end": 11421.1, + "probability": 0.9091 + }, + { + "start": 11421.74, + "end": 11424.14, + "probability": 0.914 + }, + { + "start": 11425.38, + "end": 11427.76, + "probability": 0.7024 + }, + { + "start": 11428.48, + "end": 11431.62, + "probability": 0.8426 + }, + { + "start": 11431.62, + "end": 11435.78, + "probability": 0.5316 + }, + { + "start": 11436.28, + "end": 11438.86, + "probability": 0.8198 + }, + { + "start": 11439.92, + "end": 11440.7, + "probability": 0.7327 + }, + { + "start": 11440.82, + "end": 11441.8, + "probability": 0.6569 + }, + { + "start": 11441.84, + "end": 11443.02, + "probability": 0.9435 + }, + { + "start": 11443.12, + "end": 11444.42, + "probability": 0.8707 + }, + { + "start": 11445.16, + "end": 11447.98, + "probability": 0.8315 + }, + { + "start": 11448.14, + "end": 11451.24, + "probability": 0.9905 + }, + { + "start": 11451.24, + "end": 11454.7, + "probability": 0.9862 + }, + { + "start": 11454.82, + "end": 11455.6, + "probability": 0.3478 + }, + { + "start": 11456.12, + "end": 11459.16, + "probability": 0.9208 + }, + { + "start": 11459.6, + "end": 11462.78, + "probability": 0.9023 + }, + { + "start": 11462.8, + "end": 11465.52, + "probability": 0.8864 + }, + { + "start": 11466.08, + "end": 11468.26, + "probability": 0.9927 + }, + { + "start": 11468.26, + "end": 11472.12, + "probability": 0.8914 + }, + { + "start": 11472.34, + "end": 11476.22, + "probability": 0.9875 + }, + { + "start": 11477.0, + "end": 11479.73, + "probability": 0.9906 + }, + { + "start": 11480.16, + "end": 11484.86, + "probability": 0.9053 + }, + { + "start": 11485.78, + "end": 11489.22, + "probability": 0.9982 + }, + { + "start": 11489.3, + "end": 11490.96, + "probability": 0.9609 + }, + { + "start": 11491.08, + "end": 11493.0, + "probability": 0.8759 + }, + { + "start": 11493.0, + "end": 11497.4, + "probability": 0.9777 + }, + { + "start": 11497.58, + "end": 11497.86, + "probability": 0.4701 + }, + { + "start": 11498.64, + "end": 11499.26, + "probability": 0.5291 + }, + { + "start": 11499.26, + "end": 11500.06, + "probability": 0.8235 + }, + { + "start": 11501.38, + "end": 11505.62, + "probability": 0.9362 + }, + { + "start": 11505.74, + "end": 11507.68, + "probability": 0.9835 + }, + { + "start": 11507.76, + "end": 11508.54, + "probability": 0.7795 + }, + { + "start": 11509.16, + "end": 11513.64, + "probability": 0.981 + }, + { + "start": 11513.64, + "end": 11516.26, + "probability": 0.9843 + }, + { + "start": 11516.36, + "end": 11518.48, + "probability": 0.7549 + }, + { + "start": 11519.0, + "end": 11520.83, + "probability": 0.9563 + }, + { + "start": 11521.48, + "end": 11523.88, + "probability": 0.9966 + }, + { + "start": 11524.7, + "end": 11528.86, + "probability": 0.9974 + }, + { + "start": 11529.62, + "end": 11531.18, + "probability": 0.9616 + }, + { + "start": 11531.2, + "end": 11535.82, + "probability": 0.9835 + }, + { + "start": 11536.44, + "end": 11538.64, + "probability": 0.9237 + }, + { + "start": 11538.84, + "end": 11544.46, + "probability": 0.8064 + }, + { + "start": 11545.58, + "end": 11549.0, + "probability": 0.8934 + }, + { + "start": 11549.0, + "end": 11551.7, + "probability": 0.978 + }, + { + "start": 11552.36, + "end": 11554.28, + "probability": 0.9425 + }, + { + "start": 11554.62, + "end": 11559.9, + "probability": 0.8524 + }, + { + "start": 11560.42, + "end": 11560.98, + "probability": 0.6655 + }, + { + "start": 11561.28, + "end": 11562.62, + "probability": 0.8196 + }, + { + "start": 11563.0, + "end": 11564.79, + "probability": 0.8164 + }, + { + "start": 11565.8, + "end": 11566.26, + "probability": 0.8445 + }, + { + "start": 11566.4, + "end": 11567.03, + "probability": 0.5441 + }, + { + "start": 11567.68, + "end": 11568.86, + "probability": 0.8245 + }, + { + "start": 11569.16, + "end": 11571.44, + "probability": 0.6384 + }, + { + "start": 11571.72, + "end": 11573.6, + "probability": 0.9229 + }, + { + "start": 11574.06, + "end": 11577.44, + "probability": 0.9966 + }, + { + "start": 11577.7, + "end": 11578.37, + "probability": 0.8306 + }, + { + "start": 11578.52, + "end": 11579.86, + "probability": 0.805 + }, + { + "start": 11580.46, + "end": 11582.84, + "probability": 0.9922 + }, + { + "start": 11583.0, + "end": 11584.16, + "probability": 0.884 + }, + { + "start": 11584.5, + "end": 11586.62, + "probability": 0.9545 + }, + { + "start": 11586.66, + "end": 11588.9, + "probability": 0.9854 + }, + { + "start": 11589.02, + "end": 11589.98, + "probability": 0.8596 + }, + { + "start": 11590.3, + "end": 11592.28, + "probability": 0.9207 + }, + { + "start": 11592.7, + "end": 11597.2, + "probability": 0.8868 + }, + { + "start": 11597.34, + "end": 11599.69, + "probability": 0.9907 + }, + { + "start": 11600.62, + "end": 11603.82, + "probability": 0.9219 + }, + { + "start": 11603.84, + "end": 11604.14, + "probability": 0.4897 + }, + { + "start": 11604.24, + "end": 11607.62, + "probability": 0.9714 + }, + { + "start": 11607.66, + "end": 11609.02, + "probability": 0.1845 + }, + { + "start": 11609.44, + "end": 11611.82, + "probability": 0.7288 + }, + { + "start": 11611.82, + "end": 11615.38, + "probability": 0.8842 + }, + { + "start": 11615.5, + "end": 11617.46, + "probability": 0.8896 + }, + { + "start": 11617.7, + "end": 11621.04, + "probability": 0.9746 + }, + { + "start": 11621.92, + "end": 11622.06, + "probability": 0.2472 + }, + { + "start": 11622.06, + "end": 11623.58, + "probability": 0.512 + }, + { + "start": 11623.76, + "end": 11626.22, + "probability": 0.7235 + }, + { + "start": 11626.28, + "end": 11626.38, + "probability": 0.9568 + }, + { + "start": 11638.06, + "end": 11640.42, + "probability": 0.6865 + }, + { + "start": 11642.12, + "end": 11644.12, + "probability": 0.6096 + }, + { + "start": 11645.66, + "end": 11647.52, + "probability": 0.9543 + }, + { + "start": 11648.44, + "end": 11652.4, + "probability": 0.693 + }, + { + "start": 11655.74, + "end": 11661.68, + "probability": 0.7051 + }, + { + "start": 11663.56, + "end": 11670.66, + "probability": 0.9752 + }, + { + "start": 11670.76, + "end": 11672.78, + "probability": 0.8856 + }, + { + "start": 11674.16, + "end": 11675.18, + "probability": 0.9119 + }, + { + "start": 11676.04, + "end": 11677.36, + "probability": 0.9868 + }, + { + "start": 11678.32, + "end": 11682.4, + "probability": 0.9637 + }, + { + "start": 11683.4, + "end": 11685.56, + "probability": 0.8753 + }, + { + "start": 11685.91, + "end": 11691.86, + "probability": 0.9656 + }, + { + "start": 11694.34, + "end": 11700.1, + "probability": 0.8408 + }, + { + "start": 11701.56, + "end": 11702.72, + "probability": 0.9958 + }, + { + "start": 11705.26, + "end": 11708.02, + "probability": 0.9925 + }, + { + "start": 11709.32, + "end": 11710.38, + "probability": 0.8726 + }, + { + "start": 11711.76, + "end": 11715.32, + "probability": 0.7468 + }, + { + "start": 11715.86, + "end": 11717.02, + "probability": 0.7214 + }, + { + "start": 11719.54, + "end": 11722.16, + "probability": 0.9844 + }, + { + "start": 11723.08, + "end": 11726.48, + "probability": 0.8847 + }, + { + "start": 11727.32, + "end": 11729.1, + "probability": 0.9727 + }, + { + "start": 11729.86, + "end": 11731.72, + "probability": 0.9236 + }, + { + "start": 11733.14, + "end": 11735.42, + "probability": 0.6295 + }, + { + "start": 11736.14, + "end": 11738.76, + "probability": 0.8606 + }, + { + "start": 11740.26, + "end": 11742.02, + "probability": 0.8201 + }, + { + "start": 11742.08, + "end": 11744.32, + "probability": 0.9541 + }, + { + "start": 11744.96, + "end": 11747.3, + "probability": 0.9465 + }, + { + "start": 11748.36, + "end": 11750.38, + "probability": 0.9956 + }, + { + "start": 11751.56, + "end": 11753.98, + "probability": 0.9976 + }, + { + "start": 11754.7, + "end": 11756.74, + "probability": 0.8949 + }, + { + "start": 11757.42, + "end": 11758.34, + "probability": 0.729 + }, + { + "start": 11759.1, + "end": 11762.04, + "probability": 0.9596 + }, + { + "start": 11762.92, + "end": 11765.16, + "probability": 0.8372 + }, + { + "start": 11765.84, + "end": 11767.82, + "probability": 0.9638 + }, + { + "start": 11768.38, + "end": 11771.9, + "probability": 0.7496 + }, + { + "start": 11772.54, + "end": 11773.76, + "probability": 0.6483 + }, + { + "start": 11774.98, + "end": 11778.08, + "probability": 0.8082 + }, + { + "start": 11778.18, + "end": 11783.14, + "probability": 0.719 + }, + { + "start": 11783.14, + "end": 11789.12, + "probability": 0.7922 + }, + { + "start": 11789.24, + "end": 11789.92, + "probability": 0.7329 + }, + { + "start": 11790.34, + "end": 11791.6, + "probability": 0.2278 + }, + { + "start": 11791.94, + "end": 11792.94, + "probability": 0.9419 + }, + { + "start": 11793.76, + "end": 11796.67, + "probability": 0.9561 + }, + { + "start": 11799.44, + "end": 11800.9, + "probability": 0.616 + }, + { + "start": 11801.42, + "end": 11802.24, + "probability": 0.8311 + }, + { + "start": 11802.98, + "end": 11804.92, + "probability": 0.7271 + }, + { + "start": 11805.58, + "end": 11806.71, + "probability": 0.8313 + }, + { + "start": 11807.34, + "end": 11809.48, + "probability": 0.7598 + }, + { + "start": 11810.04, + "end": 11812.84, + "probability": 0.9883 + }, + { + "start": 11813.28, + "end": 11814.7, + "probability": 0.7505 + }, + { + "start": 11815.1, + "end": 11818.09, + "probability": 0.9938 + }, + { + "start": 11818.12, + "end": 11822.24, + "probability": 0.9676 + }, + { + "start": 11823.04, + "end": 11827.92, + "probability": 0.8982 + }, + { + "start": 11828.28, + "end": 11829.2, + "probability": 0.4675 + }, + { + "start": 11829.28, + "end": 11834.56, + "probability": 0.604 + }, + { + "start": 11834.56, + "end": 11834.6, + "probability": 0.025 + }, + { + "start": 11834.6, + "end": 11834.98, + "probability": 0.0532 + }, + { + "start": 11835.26, + "end": 11837.76, + "probability": 0.874 + }, + { + "start": 11837.94, + "end": 11838.42, + "probability": 0.8044 + }, + { + "start": 11839.08, + "end": 11841.0, + "probability": 0.8103 + }, + { + "start": 11841.34, + "end": 11843.72, + "probability": 0.908 + }, + { + "start": 11852.26, + "end": 11853.12, + "probability": 0.3082 + }, + { + "start": 11863.78, + "end": 11869.26, + "probability": 0.7703 + }, + { + "start": 11869.8, + "end": 11870.32, + "probability": 0.3226 + }, + { + "start": 11870.9, + "end": 11872.77, + "probability": 0.2662 + }, + { + "start": 11877.8, + "end": 11879.22, + "probability": 0.614 + }, + { + "start": 11880.32, + "end": 11881.28, + "probability": 0.0316 + }, + { + "start": 11881.82, + "end": 11882.59, + "probability": 0.0124 + }, + { + "start": 11886.76, + "end": 11887.34, + "probability": 0.1243 + }, + { + "start": 11889.34, + "end": 11894.04, + "probability": 0.1268 + }, + { + "start": 11894.16, + "end": 11895.94, + "probability": 0.0533 + }, + { + "start": 11896.62, + "end": 11899.82, + "probability": 0.0727 + }, + { + "start": 11900.72, + "end": 11902.76, + "probability": 0.0659 + }, + { + "start": 11903.72, + "end": 11906.5, + "probability": 0.0736 + }, + { + "start": 11917.64, + "end": 11919.62, + "probability": 0.0075 + }, + { + "start": 11921.32, + "end": 11921.96, + "probability": 0.1338 + }, + { + "start": 11921.96, + "end": 11922.46, + "probability": 0.0004 + }, + { + "start": 11930.82, + "end": 11931.66, + "probability": 0.0426 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.0, + "end": 11940.0, + "probability": 0.0 + }, + { + "start": 11940.44, + "end": 11940.62, + "probability": 0.1585 + }, + { + "start": 11940.62, + "end": 11940.62, + "probability": 0.381 + }, + { + "start": 11940.62, + "end": 11940.7, + "probability": 0.0805 + }, + { + "start": 11940.86, + "end": 11941.3, + "probability": 0.1735 + }, + { + "start": 11941.52, + "end": 11942.43, + "probability": 0.705 + }, + { + "start": 11943.36, + "end": 11944.24, + "probability": 0.8583 + }, + { + "start": 11945.2, + "end": 11948.44, + "probability": 0.9907 + }, + { + "start": 11948.58, + "end": 11949.66, + "probability": 0.9514 + }, + { + "start": 11949.74, + "end": 11950.2, + "probability": 0.4784 + }, + { + "start": 11952.34, + "end": 11953.04, + "probability": 0.7015 + }, + { + "start": 11953.98, + "end": 11959.18, + "probability": 0.9919 + }, + { + "start": 11959.26, + "end": 11960.84, + "probability": 0.9402 + }, + { + "start": 11961.3, + "end": 11963.74, + "probability": 0.6949 + }, + { + "start": 11963.8, + "end": 11965.46, + "probability": 0.999 + }, + { + "start": 11966.06, + "end": 11968.66, + "probability": 0.8496 + }, + { + "start": 11969.4, + "end": 11973.62, + "probability": 0.9549 + }, + { + "start": 11973.62, + "end": 11976.72, + "probability": 0.4741 + }, + { + "start": 11976.8, + "end": 11980.34, + "probability": 0.1095 + }, + { + "start": 11980.38, + "end": 11980.8, + "probability": 0.443 + }, + { + "start": 11980.84, + "end": 11981.32, + "probability": 0.5636 + }, + { + "start": 11981.38, + "end": 11986.53, + "probability": 0.7459 + }, + { + "start": 11987.4, + "end": 11991.98, + "probability": 0.6385 + }, + { + "start": 11991.98, + "end": 11996.0, + "probability": 0.9645 + }, + { + "start": 11996.76, + "end": 11999.46, + "probability": 0.9988 + }, + { + "start": 11999.46, + "end": 12002.96, + "probability": 0.8909 + }, + { + "start": 12003.46, + "end": 12003.76, + "probability": 0.6362 + }, + { + "start": 12005.66, + "end": 12007.62, + "probability": 0.9497 + }, + { + "start": 12007.68, + "end": 12009.62, + "probability": 0.684 + }, + { + "start": 12009.8, + "end": 12011.44, + "probability": 0.7462 + }, + { + "start": 12011.98, + "end": 12013.16, + "probability": 0.9388 + }, + { + "start": 12027.08, + "end": 12027.86, + "probability": 0.0791 + }, + { + "start": 12027.86, + "end": 12028.6, + "probability": 0.7345 + }, + { + "start": 12028.62, + "end": 12029.26, + "probability": 0.7072 + }, + { + "start": 12029.32, + "end": 12030.7, + "probability": 0.9451 + }, + { + "start": 12031.62, + "end": 12033.6, + "probability": 0.8741 + }, + { + "start": 12033.72, + "end": 12035.34, + "probability": 0.9285 + }, + { + "start": 12036.46, + "end": 12036.92, + "probability": 0.6111 + }, + { + "start": 12037.02, + "end": 12041.44, + "probability": 0.8858 + }, + { + "start": 12041.48, + "end": 12042.48, + "probability": 0.3767 + }, + { + "start": 12043.85, + "end": 12046.94, + "probability": 0.5162 + }, + { + "start": 12048.26, + "end": 12049.5, + "probability": 0.8477 + }, + { + "start": 12049.64, + "end": 12057.12, + "probability": 0.9204 + }, + { + "start": 12058.5, + "end": 12063.76, + "probability": 0.9101 + }, + { + "start": 12064.86, + "end": 12069.86, + "probability": 0.9897 + }, + { + "start": 12071.08, + "end": 12071.8, + "probability": 0.0296 + }, + { + "start": 12071.8, + "end": 12073.62, + "probability": 0.545 + }, + { + "start": 12074.1, + "end": 12077.76, + "probability": 0.9697 + }, + { + "start": 12077.76, + "end": 12083.58, + "probability": 0.9396 + }, + { + "start": 12083.98, + "end": 12085.32, + "probability": 0.9758 + }, + { + "start": 12086.2, + "end": 12088.18, + "probability": 0.6754 + }, + { + "start": 12088.8, + "end": 12091.94, + "probability": 0.7808 + }, + { + "start": 12092.62, + "end": 12094.6, + "probability": 0.9535 + }, + { + "start": 12095.54, + "end": 12097.36, + "probability": 0.9522 + }, + { + "start": 12098.34, + "end": 12100.5, + "probability": 0.886 + }, + { + "start": 12101.36, + "end": 12102.76, + "probability": 0.7205 + }, + { + "start": 12102.96, + "end": 12106.88, + "probability": 0.9512 + }, + { + "start": 12107.0, + "end": 12109.5, + "probability": 0.4998 + }, + { + "start": 12109.62, + "end": 12110.84, + "probability": 0.9836 + }, + { + "start": 12112.02, + "end": 12113.2, + "probability": 0.865 + }, + { + "start": 12114.34, + "end": 12116.78, + "probability": 0.9422 + }, + { + "start": 12117.9, + "end": 12120.2, + "probability": 0.9585 + }, + { + "start": 12121.46, + "end": 12123.16, + "probability": 0.8708 + }, + { + "start": 12124.3, + "end": 12125.9, + "probability": 0.9821 + }, + { + "start": 12126.44, + "end": 12129.36, + "probability": 0.9429 + }, + { + "start": 12129.98, + "end": 12130.48, + "probability": 0.4617 + }, + { + "start": 12130.5, + "end": 12132.84, + "probability": 0.8936 + }, + { + "start": 12134.3, + "end": 12135.26, + "probability": 0.8138 + }, + { + "start": 12136.54, + "end": 12140.24, + "probability": 0.9556 + }, + { + "start": 12141.16, + "end": 12144.7, + "probability": 0.9684 + }, + { + "start": 12145.54, + "end": 12146.7, + "probability": 0.8984 + }, + { + "start": 12147.26, + "end": 12150.54, + "probability": 0.91 + }, + { + "start": 12151.42, + "end": 12154.24, + "probability": 0.7414 + }, + { + "start": 12155.14, + "end": 12162.0, + "probability": 0.7928 + }, + { + "start": 12162.06, + "end": 12166.46, + "probability": 0.7266 + }, + { + "start": 12167.3, + "end": 12168.58, + "probability": 0.9624 + }, + { + "start": 12168.78, + "end": 12174.78, + "probability": 0.8154 + }, + { + "start": 12175.52, + "end": 12176.76, + "probability": 0.7564 + }, + { + "start": 12178.86, + "end": 12181.78, + "probability": 0.9209 + }, + { + "start": 12182.6, + "end": 12186.58, + "probability": 0.8892 + }, + { + "start": 12187.42, + "end": 12192.31, + "probability": 0.9316 + }, + { + "start": 12193.18, + "end": 12197.86, + "probability": 0.8572 + }, + { + "start": 12198.24, + "end": 12199.54, + "probability": 0.9385 + }, + { + "start": 12199.7, + "end": 12203.48, + "probability": 0.7651 + }, + { + "start": 12204.56, + "end": 12206.28, + "probability": 0.9821 + }, + { + "start": 12208.24, + "end": 12210.38, + "probability": 0.771 + }, + { + "start": 12210.64, + "end": 12212.48, + "probability": 0.9603 + }, + { + "start": 12212.58, + "end": 12214.44, + "probability": 0.7554 + }, + { + "start": 12215.94, + "end": 12221.26, + "probability": 0.0322 + }, + { + "start": 12224.54, + "end": 12225.76, + "probability": 0.0334 + }, + { + "start": 12227.1, + "end": 12231.68, + "probability": 0.115 + }, + { + "start": 12231.82, + "end": 12234.2, + "probability": 0.2876 + }, + { + "start": 12235.0, + "end": 12237.78, + "probability": 0.814 + }, + { + "start": 12237.9, + "end": 12239.64, + "probability": 0.4591 + }, + { + "start": 12240.22, + "end": 12241.38, + "probability": 0.9639 + }, + { + "start": 12242.44, + "end": 12244.02, + "probability": 0.9097 + }, + { + "start": 12246.26, + "end": 12247.88, + "probability": 0.6952 + }, + { + "start": 12248.44, + "end": 12251.42, + "probability": 0.689 + }, + { + "start": 12251.94, + "end": 12252.5, + "probability": 0.2365 + }, + { + "start": 12253.02, + "end": 12255.44, + "probability": 0.9756 + }, + { + "start": 12255.64, + "end": 12257.62, + "probability": 0.2712 + }, + { + "start": 12258.02, + "end": 12258.96, + "probability": 0.5637 + }, + { + "start": 12259.56, + "end": 12262.38, + "probability": 0.8917 + }, + { + "start": 12262.42, + "end": 12263.04, + "probability": 0.9258 + }, + { + "start": 12284.42, + "end": 12285.58, + "probability": 0.4399 + }, + { + "start": 12286.94, + "end": 12288.84, + "probability": 0.9287 + }, + { + "start": 12289.54, + "end": 12291.12, + "probability": 0.931 + }, + { + "start": 12291.74, + "end": 12293.02, + "probability": 0.7349 + }, + { + "start": 12294.04, + "end": 12299.92, + "probability": 0.995 + }, + { + "start": 12299.92, + "end": 12306.04, + "probability": 0.9883 + }, + { + "start": 12306.88, + "end": 12307.58, + "probability": 0.7521 + }, + { + "start": 12307.64, + "end": 12308.44, + "probability": 0.8786 + }, + { + "start": 12308.48, + "end": 12311.94, + "probability": 0.9019 + }, + { + "start": 12312.48, + "end": 12319.36, + "probability": 0.9683 + }, + { + "start": 12320.24, + "end": 12323.6, + "probability": 0.9945 + }, + { + "start": 12323.6, + "end": 12327.82, + "probability": 0.9881 + }, + { + "start": 12328.54, + "end": 12332.04, + "probability": 0.9672 + }, + { + "start": 12332.52, + "end": 12335.4, + "probability": 0.8042 + }, + { + "start": 12335.4, + "end": 12340.22, + "probability": 0.9836 + }, + { + "start": 12341.18, + "end": 12348.38, + "probability": 0.8735 + }, + { + "start": 12349.0, + "end": 12351.84, + "probability": 0.9416 + }, + { + "start": 12351.94, + "end": 12352.96, + "probability": 0.9705 + }, + { + "start": 12353.38, + "end": 12357.8, + "probability": 0.9826 + }, + { + "start": 12357.8, + "end": 12362.42, + "probability": 0.9285 + }, + { + "start": 12363.56, + "end": 12366.06, + "probability": 0.965 + }, + { + "start": 12366.26, + "end": 12368.98, + "probability": 0.9915 + }, + { + "start": 12368.98, + "end": 12372.44, + "probability": 0.9896 + }, + { + "start": 12373.8, + "end": 12374.91, + "probability": 0.8129 + }, + { + "start": 12375.86, + "end": 12376.72, + "probability": 0.6795 + }, + { + "start": 12377.6, + "end": 12382.14, + "probability": 0.9897 + }, + { + "start": 12382.36, + "end": 12385.8, + "probability": 0.9755 + }, + { + "start": 12386.56, + "end": 12390.16, + "probability": 0.9941 + }, + { + "start": 12390.16, + "end": 12394.56, + "probability": 0.9851 + }, + { + "start": 12395.52, + "end": 12399.96, + "probability": 0.9187 + }, + { + "start": 12400.22, + "end": 12402.54, + "probability": 0.9235 + }, + { + "start": 12403.56, + "end": 12405.0, + "probability": 0.72 + }, + { + "start": 12405.58, + "end": 12405.76, + "probability": 0.0368 + }, + { + "start": 12405.76, + "end": 12406.02, + "probability": 0.5505 + }, + { + "start": 12406.62, + "end": 12408.32, + "probability": 0.8413 + }, + { + "start": 12408.6, + "end": 12410.82, + "probability": 0.7469 + }, + { + "start": 12411.28, + "end": 12415.84, + "probability": 0.9008 + }, + { + "start": 12416.24, + "end": 12416.82, + "probability": 0.818 + }, + { + "start": 12417.96, + "end": 12420.5, + "probability": 0.855 + }, + { + "start": 12420.96, + "end": 12423.92, + "probability": 0.9887 + }, + { + "start": 12424.2, + "end": 12427.48, + "probability": 0.9415 + }, + { + "start": 12428.16, + "end": 12428.22, + "probability": 0.0291 + }, + { + "start": 12428.24, + "end": 12428.54, + "probability": 0.5464 + }, + { + "start": 12429.2, + "end": 12431.44, + "probability": 0.9014 + }, + { + "start": 12438.96, + "end": 12440.32, + "probability": 0.6918 + }, + { + "start": 12450.34, + "end": 12452.3, + "probability": 0.7437 + }, + { + "start": 12454.5, + "end": 12457.94, + "probability": 0.7181 + }, + { + "start": 12459.92, + "end": 12461.04, + "probability": 0.9369 + }, + { + "start": 12461.24, + "end": 12464.66, + "probability": 0.9128 + }, + { + "start": 12465.72, + "end": 12468.16, + "probability": 0.8494 + }, + { + "start": 12468.28, + "end": 12471.44, + "probability": 0.9972 + }, + { + "start": 12472.22, + "end": 12478.09, + "probability": 0.9828 + }, + { + "start": 12478.8, + "end": 12480.76, + "probability": 0.9315 + }, + { + "start": 12481.78, + "end": 12486.48, + "probability": 0.9299 + }, + { + "start": 12486.9, + "end": 12491.22, + "probability": 0.9388 + }, + { + "start": 12492.08, + "end": 12497.98, + "probability": 0.9933 + }, + { + "start": 12498.08, + "end": 12498.72, + "probability": 0.7291 + }, + { + "start": 12498.82, + "end": 12499.82, + "probability": 0.8662 + }, + { + "start": 12499.88, + "end": 12500.54, + "probability": 0.7865 + }, + { + "start": 12500.62, + "end": 12501.24, + "probability": 0.9257 + }, + { + "start": 12501.32, + "end": 12502.2, + "probability": 0.5441 + }, + { + "start": 12502.94, + "end": 12507.48, + "probability": 0.9954 + }, + { + "start": 12507.48, + "end": 12511.74, + "probability": 0.8656 + }, + { + "start": 12512.3, + "end": 12515.72, + "probability": 0.8983 + }, + { + "start": 12515.84, + "end": 12518.1, + "probability": 0.9361 + }, + { + "start": 12518.36, + "end": 12518.9, + "probability": 0.7396 + }, + { + "start": 12519.28, + "end": 12520.82, + "probability": 0.7724 + }, + { + "start": 12520.86, + "end": 12526.06, + "probability": 0.9862 + }, + { + "start": 12526.8, + "end": 12528.6, + "probability": 0.9462 + }, + { + "start": 12528.96, + "end": 12532.4, + "probability": 0.8612 + }, + { + "start": 12532.54, + "end": 12535.74, + "probability": 0.9889 + }, + { + "start": 12536.02, + "end": 12536.98, + "probability": 0.942 + }, + { + "start": 12537.14, + "end": 12539.3, + "probability": 0.9435 + }, + { + "start": 12539.68, + "end": 12541.78, + "probability": 0.9513 + }, + { + "start": 12541.92, + "end": 12543.24, + "probability": 0.9449 + }, + { + "start": 12543.5, + "end": 12546.0, + "probability": 0.9822 + }, + { + "start": 12546.78, + "end": 12548.66, + "probability": 0.9106 + }, + { + "start": 12549.36, + "end": 12551.18, + "probability": 0.5067 + }, + { + "start": 12551.32, + "end": 12552.31, + "probability": 0.8282 + }, + { + "start": 12553.1, + "end": 12554.3, + "probability": 0.8051 + }, + { + "start": 12554.64, + "end": 12556.24, + "probability": 0.9688 + }, + { + "start": 12556.4, + "end": 12558.22, + "probability": 0.6602 + }, + { + "start": 12558.26, + "end": 12562.56, + "probability": 0.9543 + }, + { + "start": 12562.96, + "end": 12565.4, + "probability": 0.9899 + }, + { + "start": 12565.4, + "end": 12569.34, + "probability": 0.9506 + }, + { + "start": 12569.46, + "end": 12574.38, + "probability": 0.9723 + }, + { + "start": 12575.12, + "end": 12575.8, + "probability": 0.864 + }, + { + "start": 12576.24, + "end": 12577.68, + "probability": 0.6724 + }, + { + "start": 12578.14, + "end": 12581.62, + "probability": 0.9975 + }, + { + "start": 12581.62, + "end": 12586.06, + "probability": 0.9725 + }, + { + "start": 12586.12, + "end": 12589.44, + "probability": 0.9608 + }, + { + "start": 12589.54, + "end": 12590.11, + "probability": 0.8729 + }, + { + "start": 12590.6, + "end": 12595.64, + "probability": 0.9835 + }, + { + "start": 12596.06, + "end": 12598.2, + "probability": 0.859 + }, + { + "start": 12598.32, + "end": 12601.06, + "probability": 0.9316 + }, + { + "start": 12601.16, + "end": 12602.86, + "probability": 0.9385 + }, + { + "start": 12602.94, + "end": 12603.82, + "probability": 0.8385 + }, + { + "start": 12604.52, + "end": 12607.88, + "probability": 0.9765 + }, + { + "start": 12608.24, + "end": 12609.9, + "probability": 0.7415 + }, + { + "start": 12610.38, + "end": 12610.78, + "probability": 0.5641 + }, + { + "start": 12610.82, + "end": 12615.06, + "probability": 0.8908 + }, + { + "start": 12615.44, + "end": 12616.26, + "probability": 0.9482 + }, + { + "start": 12616.64, + "end": 12620.9, + "probability": 0.9927 + }, + { + "start": 12621.38, + "end": 12625.22, + "probability": 0.9165 + }, + { + "start": 12625.34, + "end": 12625.62, + "probability": 0.5194 + }, + { + "start": 12625.8, + "end": 12626.28, + "probability": 0.4239 + }, + { + "start": 12626.3, + "end": 12627.8, + "probability": 0.7593 + }, + { + "start": 12627.92, + "end": 12632.14, + "probability": 0.9492 + }, + { + "start": 12632.5, + "end": 12636.18, + "probability": 0.9863 + }, + { + "start": 12636.18, + "end": 12638.94, + "probability": 0.9321 + }, + { + "start": 12639.02, + "end": 12641.7, + "probability": 0.9001 + }, + { + "start": 12641.72, + "end": 12642.42, + "probability": 0.6691 + }, + { + "start": 12643.12, + "end": 12644.52, + "probability": 0.9873 + }, + { + "start": 12644.56, + "end": 12647.04, + "probability": 0.975 + }, + { + "start": 12647.56, + "end": 12649.04, + "probability": 0.5834 + }, + { + "start": 12649.32, + "end": 12650.22, + "probability": 0.5421 + }, + { + "start": 12650.32, + "end": 12652.36, + "probability": 0.7494 + }, + { + "start": 12652.6, + "end": 12652.84, + "probability": 0.7163 + }, + { + "start": 12653.74, + "end": 12656.14, + "probability": 0.9663 + }, + { + "start": 12656.34, + "end": 12657.86, + "probability": 0.8679 + }, + { + "start": 12658.44, + "end": 12659.02, + "probability": 0.4836 + }, + { + "start": 12659.2, + "end": 12661.18, + "probability": 0.9705 + }, + { + "start": 12661.56, + "end": 12663.28, + "probability": 0.8116 + }, + { + "start": 12672.36, + "end": 12674.36, + "probability": 0.5936 + }, + { + "start": 12681.0, + "end": 12681.48, + "probability": 0.5095 + }, + { + "start": 12682.02, + "end": 12682.84, + "probability": 0.3994 + }, + { + "start": 12682.88, + "end": 12683.96, + "probability": 0.7566 + }, + { + "start": 12684.18, + "end": 12690.12, + "probability": 0.9837 + }, + { + "start": 12690.12, + "end": 12695.14, + "probability": 0.9654 + }, + { + "start": 12696.74, + "end": 12700.66, + "probability": 0.8062 + }, + { + "start": 12700.8, + "end": 12706.42, + "probability": 0.9945 + }, + { + "start": 12706.46, + "end": 12707.26, + "probability": 0.6678 + }, + { + "start": 12707.48, + "end": 12709.32, + "probability": 0.9761 + }, + { + "start": 12710.38, + "end": 12715.36, + "probability": 0.9595 + }, + { + "start": 12715.9, + "end": 12717.28, + "probability": 0.8745 + }, + { + "start": 12717.92, + "end": 12721.36, + "probability": 0.9488 + }, + { + "start": 12722.3, + "end": 12724.96, + "probability": 0.9857 + }, + { + "start": 12725.5, + "end": 12729.54, + "probability": 0.9644 + }, + { + "start": 12729.84, + "end": 12730.46, + "probability": 0.9449 + }, + { + "start": 12731.52, + "end": 12734.56, + "probability": 0.9565 + }, + { + "start": 12735.4, + "end": 12736.82, + "probability": 0.9777 + }, + { + "start": 12737.42, + "end": 12743.72, + "probability": 0.87 + }, + { + "start": 12743.76, + "end": 12744.74, + "probability": 0.7632 + }, + { + "start": 12744.82, + "end": 12745.72, + "probability": 0.936 + }, + { + "start": 12746.48, + "end": 12747.87, + "probability": 0.8167 + }, + { + "start": 12748.1, + "end": 12750.58, + "probability": 0.9746 + }, + { + "start": 12751.94, + "end": 12753.14, + "probability": 0.8368 + }, + { + "start": 12753.22, + "end": 12755.58, + "probability": 0.9927 + }, + { + "start": 12756.28, + "end": 12759.06, + "probability": 0.972 + }, + { + "start": 12759.92, + "end": 12765.76, + "probability": 0.9573 + }, + { + "start": 12766.28, + "end": 12767.68, + "probability": 0.7187 + }, + { + "start": 12768.7, + "end": 12770.92, + "probability": 0.9914 + }, + { + "start": 12771.0, + "end": 12772.56, + "probability": 0.8668 + }, + { + "start": 12772.64, + "end": 12775.25, + "probability": 0.9077 + }, + { + "start": 12776.22, + "end": 12780.06, + "probability": 0.9824 + }, + { + "start": 12780.32, + "end": 12781.58, + "probability": 0.9988 + }, + { + "start": 12781.7, + "end": 12782.19, + "probability": 0.8727 + }, + { + "start": 12782.54, + "end": 12783.32, + "probability": 0.8497 + }, + { + "start": 12783.34, + "end": 12784.42, + "probability": 0.9343 + }, + { + "start": 12784.62, + "end": 12785.16, + "probability": 0.8199 + }, + { + "start": 12785.22, + "end": 12787.2, + "probability": 0.9357 + }, + { + "start": 12787.26, + "end": 12790.82, + "probability": 0.9673 + }, + { + "start": 12790.9, + "end": 12791.18, + "probability": 0.4776 + }, + { + "start": 12791.18, + "end": 12793.5, + "probability": 0.9938 + }, + { + "start": 12793.5, + "end": 12796.1, + "probability": 0.9702 + }, + { + "start": 12796.56, + "end": 12798.7, + "probability": 0.9688 + }, + { + "start": 12798.96, + "end": 12800.98, + "probability": 0.7597 + }, + { + "start": 12801.3, + "end": 12803.32, + "probability": 0.9341 + }, + { + "start": 12803.56, + "end": 12804.5, + "probability": 0.7037 + }, + { + "start": 12804.88, + "end": 12806.52, + "probability": 0.8112 + }, + { + "start": 12806.54, + "end": 12807.46, + "probability": 0.8747 + }, + { + "start": 12808.02, + "end": 12810.04, + "probability": 0.5494 + }, + { + "start": 12810.86, + "end": 12813.08, + "probability": 0.7664 + }, + { + "start": 12813.24, + "end": 12818.26, + "probability": 0.8844 + }, + { + "start": 12824.86, + "end": 12825.7, + "probability": 0.8761 + }, + { + "start": 12826.24, + "end": 12826.84, + "probability": 0.5959 + }, + { + "start": 12838.62, + "end": 12839.1, + "probability": 0.0429 + }, + { + "start": 12839.32, + "end": 12840.06, + "probability": 0.6899 + }, + { + "start": 12840.1, + "end": 12841.3, + "probability": 0.8475 + }, + { + "start": 12841.32, + "end": 12842.0, + "probability": 0.8097 + }, + { + "start": 12843.02, + "end": 12848.7, + "probability": 0.7262 + }, + { + "start": 12850.12, + "end": 12851.94, + "probability": 0.801 + }, + { + "start": 12852.02, + "end": 12855.22, + "probability": 0.7949 + }, + { + "start": 12855.82, + "end": 12857.88, + "probability": 0.9984 + }, + { + "start": 12858.68, + "end": 12860.72, + "probability": 0.7878 + }, + { + "start": 12862.06, + "end": 12865.46, + "probability": 0.9593 + }, + { + "start": 12865.64, + "end": 12866.72, + "probability": 0.5251 + }, + { + "start": 12867.84, + "end": 12872.28, + "probability": 0.9667 + }, + { + "start": 12872.98, + "end": 12873.84, + "probability": 0.8537 + }, + { + "start": 12875.5, + "end": 12878.04, + "probability": 0.8612 + }, + { + "start": 12878.86, + "end": 12882.32, + "probability": 0.8127 + }, + { + "start": 12883.04, + "end": 12886.79, + "probability": 0.674 + }, + { + "start": 12888.08, + "end": 12889.95, + "probability": 0.9609 + }, + { + "start": 12890.96, + "end": 12897.04, + "probability": 0.9307 + }, + { + "start": 12897.14, + "end": 12898.22, + "probability": 0.7563 + }, + { + "start": 12899.12, + "end": 12900.64, + "probability": 0.9095 + }, + { + "start": 12901.42, + "end": 12903.22, + "probability": 0.9375 + }, + { + "start": 12903.78, + "end": 12905.5, + "probability": 0.9783 + }, + { + "start": 12906.32, + "end": 12911.62, + "probability": 0.7849 + }, + { + "start": 12912.18, + "end": 12915.92, + "probability": 0.8574 + }, + { + "start": 12916.64, + "end": 12918.26, + "probability": 0.6503 + }, + { + "start": 12918.42, + "end": 12919.78, + "probability": 0.4436 + }, + { + "start": 12919.92, + "end": 12920.34, + "probability": 0.8942 + }, + { + "start": 12920.36, + "end": 12922.88, + "probability": 0.8673 + }, + { + "start": 12923.96, + "end": 12925.88, + "probability": 0.9195 + }, + { + "start": 12926.4, + "end": 12927.1, + "probability": 0.8385 + }, + { + "start": 12927.44, + "end": 12932.5, + "probability": 0.9878 + }, + { + "start": 12933.1, + "end": 12935.6, + "probability": 0.7202 + }, + { + "start": 12936.3, + "end": 12941.58, + "probability": 0.9755 + }, + { + "start": 12942.26, + "end": 12952.93, + "probability": 0.7776 + }, + { + "start": 12953.16, + "end": 12954.56, + "probability": 0.6635 + }, + { + "start": 12955.16, + "end": 12955.98, + "probability": 0.8064 + }, + { + "start": 12956.18, + "end": 12956.99, + "probability": 0.6701 + }, + { + "start": 12958.06, + "end": 12960.36, + "probability": 0.899 + }, + { + "start": 12961.36, + "end": 12963.22, + "probability": 0.9412 + }, + { + "start": 12964.26, + "end": 12967.8, + "probability": 0.9327 + }, + { + "start": 12968.3, + "end": 12969.52, + "probability": 0.85 + }, + { + "start": 12970.46, + "end": 12974.92, + "probability": 0.6965 + }, + { + "start": 12976.26, + "end": 12979.36, + "probability": 0.9559 + }, + { + "start": 12979.92, + "end": 12981.92, + "probability": 0.9445 + }, + { + "start": 12982.44, + "end": 12984.18, + "probability": 0.8078 + }, + { + "start": 12984.26, + "end": 12990.4, + "probability": 0.8076 + }, + { + "start": 12990.68, + "end": 12992.6, + "probability": 0.9216 + }, + { + "start": 12993.06, + "end": 12997.92, + "probability": 0.7464 + }, + { + "start": 12998.44, + "end": 12999.78, + "probability": 0.8302 + }, + { + "start": 12999.84, + "end": 13000.58, + "probability": 0.6802 + }, + { + "start": 13000.74, + "end": 13001.98, + "probability": 0.8436 + }, + { + "start": 13002.24, + "end": 13003.0, + "probability": 0.3405 + }, + { + "start": 13003.12, + "end": 13004.16, + "probability": 0.7699 + }, + { + "start": 13004.46, + "end": 13005.34, + "probability": 0.3768 + }, + { + "start": 13005.46, + "end": 13006.92, + "probability": 0.7887 + }, + { + "start": 13007.32, + "end": 13009.3, + "probability": 0.8851 + }, + { + "start": 13009.72, + "end": 13011.84, + "probability": 0.8966 + }, + { + "start": 13011.98, + "end": 13012.34, + "probability": 0.2439 + }, + { + "start": 13012.42, + "end": 13014.24, + "probability": 0.6895 + }, + { + "start": 13014.54, + "end": 13016.44, + "probability": 0.9456 + }, + { + "start": 13017.04, + "end": 13017.58, + "probability": 0.1982 + }, + { + "start": 13017.58, + "end": 13022.68, + "probability": 0.9792 + }, + { + "start": 13023.18, + "end": 13025.18, + "probability": 0.8149 + }, + { + "start": 13025.2, + "end": 13027.26, + "probability": 0.9047 + }, + { + "start": 13027.26, + "end": 13028.22, + "probability": 0.5651 + }, + { + "start": 13040.8, + "end": 13042.64, + "probability": 0.2592 + }, + { + "start": 13052.62, + "end": 13055.94, + "probability": 0.671 + }, + { + "start": 13056.46, + "end": 13059.36, + "probability": 0.7931 + }, + { + "start": 13059.5, + "end": 13061.18, + "probability": 0.1502 + }, + { + "start": 13063.57, + "end": 13068.27, + "probability": 0.7423 + }, + { + "start": 13070.06, + "end": 13071.08, + "probability": 0.0582 + }, + { + "start": 13086.92, + "end": 13087.02, + "probability": 0.0984 + }, + { + "start": 13087.56, + "end": 13088.3, + "probability": 0.0698 + }, + { + "start": 13089.02, + "end": 13091.22, + "probability": 0.0165 + }, + { + "start": 13091.99, + "end": 13094.44, + "probability": 0.0448 + }, + { + "start": 13095.68, + "end": 13097.09, + "probability": 0.0321 + }, + { + "start": 13118.7, + "end": 13120.62, + "probability": 0.0232 + }, + { + "start": 13120.62, + "end": 13120.9, + "probability": 0.0638 + }, + { + "start": 13120.9, + "end": 13120.9, + "probability": 0.138 + }, + { + "start": 13122.32, + "end": 13123.66, + "probability": 0.0482 + }, + { + "start": 13125.64, + "end": 13127.76, + "probability": 0.1491 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0 + }, + { + "start": 13128.0, + "end": 13128.0, + "probability": 0.0252 + }, + { + "start": 13128.0, + "end": 13129.34, + "probability": 0.0956 + }, + { + "start": 13130.26, + "end": 13136.2, + "probability": 0.734 + }, + { + "start": 13136.58, + "end": 13140.44, + "probability": 0.9411 + }, + { + "start": 13140.92, + "end": 13143.53, + "probability": 0.8272 + }, + { + "start": 13143.74, + "end": 13148.16, + "probability": 0.7356 + }, + { + "start": 13149.54, + "end": 13152.3, + "probability": 0.7611 + }, + { + "start": 13152.52, + "end": 13153.4, + "probability": 0.8499 + }, + { + "start": 13153.84, + "end": 13157.0, + "probability": 0.9959 + }, + { + "start": 13157.0, + "end": 13160.16, + "probability": 0.9438 + }, + { + "start": 13160.5, + "end": 13160.88, + "probability": 0.1591 + }, + { + "start": 13160.88, + "end": 13162.38, + "probability": 0.6314 + }, + { + "start": 13162.48, + "end": 13163.58, + "probability": 0.9458 + }, + { + "start": 13163.72, + "end": 13168.64, + "probability": 0.9826 + }, + { + "start": 13169.44, + "end": 13172.72, + "probability": 0.8391 + }, + { + "start": 13173.26, + "end": 13178.64, + "probability": 0.9602 + }, + { + "start": 13179.32, + "end": 13180.3, + "probability": 0.6497 + }, + { + "start": 13180.52, + "end": 13182.24, + "probability": 0.983 + }, + { + "start": 13183.6, + "end": 13186.52, + "probability": 0.7605 + }, + { + "start": 13187.14, + "end": 13191.8, + "probability": 0.9542 + }, + { + "start": 13192.8, + "end": 13195.24, + "probability": 0.8306 + }, + { + "start": 13195.38, + "end": 13196.98, + "probability": 0.8993 + }, + { + "start": 13197.1, + "end": 13199.5, + "probability": 0.8771 + }, + { + "start": 13199.56, + "end": 13201.14, + "probability": 0.8109 + }, + { + "start": 13219.1, + "end": 13220.86, + "probability": 0.1596 + }, + { + "start": 13221.7, + "end": 13222.82, + "probability": 0.4192 + }, + { + "start": 13223.68, + "end": 13226.36, + "probability": 0.9455 + }, + { + "start": 13226.4, + "end": 13227.54, + "probability": 0.9664 + }, + { + "start": 13228.2, + "end": 13230.18, + "probability": 0.9777 + }, + { + "start": 13230.59, + "end": 13231.16, + "probability": 0.2665 + }, + { + "start": 13231.72, + "end": 13234.92, + "probability": 0.6776 + }, + { + "start": 13234.96, + "end": 13236.33, + "probability": 0.6794 + }, + { + "start": 13237.1, + "end": 13239.34, + "probability": 0.8824 + }, + { + "start": 13239.68, + "end": 13242.2, + "probability": 0.9491 + }, + { + "start": 13244.44, + "end": 13244.72, + "probability": 0.7766 + }, + { + "start": 13245.06, + "end": 13245.92, + "probability": 0.6794 + }, + { + "start": 13246.1, + "end": 13247.06, + "probability": 0.3895 + }, + { + "start": 13247.12, + "end": 13248.14, + "probability": 0.5682 + }, + { + "start": 13249.94, + "end": 13250.94, + "probability": 0.5295 + }, + { + "start": 13251.2, + "end": 13255.58, + "probability": 0.9019 + }, + { + "start": 13255.64, + "end": 13258.22, + "probability": 0.4556 + }, + { + "start": 13258.8, + "end": 13259.5, + "probability": 0.9802 + }, + { + "start": 13260.42, + "end": 13261.96, + "probability": 0.6451 + }, + { + "start": 13262.08, + "end": 13263.56, + "probability": 0.5126 + }, + { + "start": 13264.84, + "end": 13265.98, + "probability": 0.9134 + }, + { + "start": 13266.6, + "end": 13268.34, + "probability": 0.8113 + }, + { + "start": 13268.68, + "end": 13271.0, + "probability": 0.9617 + }, + { + "start": 13271.56, + "end": 13273.28, + "probability": 0.9706 + }, + { + "start": 13273.42, + "end": 13274.52, + "probability": 0.8508 + }, + { + "start": 13274.98, + "end": 13276.72, + "probability": 0.7649 + }, + { + "start": 13277.3, + "end": 13280.38, + "probability": 0.8942 + }, + { + "start": 13281.0, + "end": 13283.44, + "probability": 0.9694 + }, + { + "start": 13283.52, + "end": 13287.58, + "probability": 0.953 + }, + { + "start": 13288.54, + "end": 13290.88, + "probability": 0.7651 + }, + { + "start": 13291.08, + "end": 13296.28, + "probability": 0.7339 + }, + { + "start": 13296.4, + "end": 13297.6, + "probability": 0.7838 + }, + { + "start": 13297.72, + "end": 13303.1, + "probability": 0.7803 + }, + { + "start": 13303.82, + "end": 13305.2, + "probability": 0.5295 + }, + { + "start": 13305.32, + "end": 13306.89, + "probability": 0.7607 + }, + { + "start": 13310.2, + "end": 13310.2, + "probability": 0.0701 + }, + { + "start": 13310.2, + "end": 13310.88, + "probability": 0.5312 + }, + { + "start": 13311.24, + "end": 13314.06, + "probability": 0.9035 + }, + { + "start": 13314.44, + "end": 13317.64, + "probability": 0.9371 + }, + { + "start": 13318.36, + "end": 13323.42, + "probability": 0.988 + }, + { + "start": 13323.58, + "end": 13324.64, + "probability": 0.9838 + }, + { + "start": 13324.78, + "end": 13325.78, + "probability": 0.7985 + }, + { + "start": 13325.92, + "end": 13328.4, + "probability": 0.9872 + }, + { + "start": 13328.92, + "end": 13329.94, + "probability": 0.8158 + }, + { + "start": 13330.88, + "end": 13331.5, + "probability": 0.6997 + }, + { + "start": 13331.56, + "end": 13335.2, + "probability": 0.9966 + }, + { + "start": 13335.2, + "end": 13338.48, + "probability": 0.9873 + }, + { + "start": 13338.74, + "end": 13341.42, + "probability": 0.53 + }, + { + "start": 13341.5, + "end": 13342.76, + "probability": 0.8986 + }, + { + "start": 13342.82, + "end": 13344.64, + "probability": 0.7659 + }, + { + "start": 13344.98, + "end": 13349.1, + "probability": 0.9205 + }, + { + "start": 13349.16, + "end": 13350.12, + "probability": 0.4599 + }, + { + "start": 13350.26, + "end": 13350.42, + "probability": 0.7775 + }, + { + "start": 13351.58, + "end": 13352.2, + "probability": 0.7878 + }, + { + "start": 13353.14, + "end": 13354.34, + "probability": 0.499 + }, + { + "start": 13354.54, + "end": 13356.98, + "probability": 0.7552 + }, + { + "start": 13357.5, + "end": 13359.02, + "probability": 0.9829 + }, + { + "start": 13361.82, + "end": 13363.86, + "probability": 0.746 + }, + { + "start": 13363.9, + "end": 13364.68, + "probability": 0.7961 + }, + { + "start": 13376.3, + "end": 13378.72, + "probability": 0.5266 + }, + { + "start": 13380.32, + "end": 13385.56, + "probability": 0.9926 + }, + { + "start": 13388.42, + "end": 13395.26, + "probability": 0.9817 + }, + { + "start": 13395.92, + "end": 13396.76, + "probability": 0.9264 + }, + { + "start": 13396.86, + "end": 13399.06, + "probability": 0.8909 + }, + { + "start": 13399.28, + "end": 13401.16, + "probability": 0.9391 + }, + { + "start": 13402.36, + "end": 13407.68, + "probability": 0.9666 + }, + { + "start": 13408.4, + "end": 13410.0, + "probability": 0.7713 + }, + { + "start": 13410.86, + "end": 13412.56, + "probability": 0.9921 + }, + { + "start": 13413.28, + "end": 13416.34, + "probability": 0.654 + }, + { + "start": 13417.3, + "end": 13418.61, + "probability": 0.8679 + }, + { + "start": 13419.64, + "end": 13421.52, + "probability": 0.7989 + }, + { + "start": 13422.14, + "end": 13425.62, + "probability": 0.8529 + }, + { + "start": 13426.24, + "end": 13427.28, + "probability": 0.771 + }, + { + "start": 13428.1, + "end": 13429.56, + "probability": 0.7077 + }, + { + "start": 13430.16, + "end": 13431.98, + "probability": 0.9561 + }, + { + "start": 13432.64, + "end": 13434.1, + "probability": 0.9112 + }, + { + "start": 13435.18, + "end": 13440.96, + "probability": 0.9759 + }, + { + "start": 13442.94, + "end": 13446.48, + "probability": 0.9865 + }, + { + "start": 13446.8, + "end": 13448.54, + "probability": 0.9414 + }, + { + "start": 13449.46, + "end": 13450.35, + "probability": 0.9915 + }, + { + "start": 13451.22, + "end": 13455.86, + "probability": 0.998 + }, + { + "start": 13456.94, + "end": 13458.36, + "probability": 0.9943 + }, + { + "start": 13459.04, + "end": 13464.96, + "probability": 0.9846 + }, + { + "start": 13466.1, + "end": 13469.58, + "probability": 0.9537 + }, + { + "start": 13470.32, + "end": 13471.8, + "probability": 0.7842 + }, + { + "start": 13472.24, + "end": 13476.72, + "probability": 0.9904 + }, + { + "start": 13477.44, + "end": 13479.9, + "probability": 0.9907 + }, + { + "start": 13480.42, + "end": 13482.74, + "probability": 0.9937 + }, + { + "start": 13483.14, + "end": 13486.66, + "probability": 0.9634 + }, + { + "start": 13487.26, + "end": 13490.12, + "probability": 0.9893 + }, + { + "start": 13490.14, + "end": 13490.72, + "probability": 0.8103 + }, + { + "start": 13491.22, + "end": 13493.54, + "probability": 0.9551 + }, + { + "start": 13493.62, + "end": 13494.08, + "probability": 0.885 + }, + { + "start": 13494.64, + "end": 13496.8, + "probability": 0.981 + }, + { + "start": 13497.64, + "end": 13503.44, + "probability": 0.8007 + }, + { + "start": 13503.44, + "end": 13508.44, + "probability": 0.8413 + }, + { + "start": 13509.48, + "end": 13513.56, + "probability": 0.8333 + }, + { + "start": 13514.32, + "end": 13516.08, + "probability": 0.8138 + }, + { + "start": 13517.0, + "end": 13519.58, + "probability": 0.9884 + }, + { + "start": 13521.3, + "end": 13521.76, + "probability": 0.3167 + }, + { + "start": 13521.78, + "end": 13522.14, + "probability": 0.5773 + }, + { + "start": 13522.22, + "end": 13524.02, + "probability": 0.6513 + }, + { + "start": 13524.2, + "end": 13525.54, + "probability": 0.8969 + }, + { + "start": 13526.78, + "end": 13528.04, + "probability": 0.9272 + }, + { + "start": 13528.86, + "end": 13530.88, + "probability": 0.6198 + }, + { + "start": 13530.94, + "end": 13532.56, + "probability": 0.8737 + }, + { + "start": 13532.62, + "end": 13535.0, + "probability": 0.9921 + }, + { + "start": 13535.2, + "end": 13536.04, + "probability": 0.839 + }, + { + "start": 13536.12, + "end": 13536.64, + "probability": 0.847 + }, + { + "start": 13536.72, + "end": 13541.58, + "probability": 0.982 + }, + { + "start": 13541.64, + "end": 13542.5, + "probability": 0.9768 + }, + { + "start": 13543.28, + "end": 13546.7, + "probability": 0.95 + }, + { + "start": 13546.9, + "end": 13548.16, + "probability": 0.9623 + }, + { + "start": 13548.58, + "end": 13550.38, + "probability": 0.9928 + }, + { + "start": 13550.58, + "end": 13551.74, + "probability": 0.953 + }, + { + "start": 13552.26, + "end": 13555.64, + "probability": 0.9911 + }, + { + "start": 13555.72, + "end": 13557.36, + "probability": 0.7427 + }, + { + "start": 13557.74, + "end": 13561.1, + "probability": 0.9083 + }, + { + "start": 13561.1, + "end": 13566.38, + "probability": 0.9688 + }, + { + "start": 13566.8, + "end": 13569.5, + "probability": 0.9953 + }, + { + "start": 13569.94, + "end": 13574.06, + "probability": 0.9468 + }, + { + "start": 13574.18, + "end": 13576.66, + "probability": 0.858 + }, + { + "start": 13576.74, + "end": 13578.5, + "probability": 0.9678 + }, + { + "start": 13578.58, + "end": 13580.18, + "probability": 0.9648 + }, + { + "start": 13580.24, + "end": 13581.44, + "probability": 0.8586 + }, + { + "start": 13581.6, + "end": 13584.98, + "probability": 0.9948 + }, + { + "start": 13584.98, + "end": 13588.88, + "probability": 0.9633 + }, + { + "start": 13589.12, + "end": 13591.62, + "probability": 0.7401 + }, + { + "start": 13591.78, + "end": 13592.3, + "probability": 0.8413 + }, + { + "start": 13592.4, + "end": 13593.56, + "probability": 0.9613 + }, + { + "start": 13593.8, + "end": 13595.76, + "probability": 0.989 + }, + { + "start": 13595.94, + "end": 13596.8, + "probability": 0.6277 + }, + { + "start": 13597.16, + "end": 13600.9, + "probability": 0.9922 + }, + { + "start": 13601.16, + "end": 13601.38, + "probability": 0.6953 + }, + { + "start": 13601.84, + "end": 13604.5, + "probability": 0.823 + }, + { + "start": 13604.76, + "end": 13606.42, + "probability": 0.9201 + }, + { + "start": 13606.52, + "end": 13607.18, + "probability": 0.7931 + }, + { + "start": 13607.34, + "end": 13608.92, + "probability": 0.8559 + }, + { + "start": 13609.0, + "end": 13609.72, + "probability": 0.9076 + }, + { + "start": 13610.34, + "end": 13612.66, + "probability": 0.8677 + }, + { + "start": 13613.24, + "end": 13615.46, + "probability": 0.9608 + }, + { + "start": 13615.9, + "end": 13619.5, + "probability": 0.7544 + }, + { + "start": 13620.14, + "end": 13622.7, + "probability": 0.8708 + }, + { + "start": 13623.34, + "end": 13625.31, + "probability": 0.1022 + }, + { + "start": 13627.34, + "end": 13628.78, + "probability": 0.9715 + }, + { + "start": 13639.44, + "end": 13641.86, + "probability": 0.6382 + }, + { + "start": 13644.48, + "end": 13646.32, + "probability": 0.9589 + }, + { + "start": 13646.46, + "end": 13648.75, + "probability": 0.9972 + }, + { + "start": 13651.56, + "end": 13657.7, + "probability": 0.8703 + }, + { + "start": 13659.0, + "end": 13665.0, + "probability": 0.9241 + }, + { + "start": 13665.58, + "end": 13668.28, + "probability": 0.9932 + }, + { + "start": 13669.34, + "end": 13674.0, + "probability": 0.7608 + }, + { + "start": 13677.08, + "end": 13683.78, + "probability": 0.9871 + }, + { + "start": 13684.38, + "end": 13687.4, + "probability": 0.9893 + }, + { + "start": 13688.3, + "end": 13692.88, + "probability": 0.826 + }, + { + "start": 13694.32, + "end": 13698.32, + "probability": 0.7542 + }, + { + "start": 13699.1, + "end": 13700.08, + "probability": 0.5584 + }, + { + "start": 13700.44, + "end": 13704.12, + "probability": 0.9264 + }, + { + "start": 13704.5, + "end": 13705.94, + "probability": 0.7863 + }, + { + "start": 13706.08, + "end": 13707.28, + "probability": 0.9125 + }, + { + "start": 13707.66, + "end": 13709.8, + "probability": 0.8806 + }, + { + "start": 13710.26, + "end": 13711.7, + "probability": 0.8041 + }, + { + "start": 13712.22, + "end": 13714.54, + "probability": 0.9814 + }, + { + "start": 13715.42, + "end": 13720.2, + "probability": 0.9433 + }, + { + "start": 13720.72, + "end": 13727.68, + "probability": 0.9385 + }, + { + "start": 13728.08, + "end": 13732.32, + "probability": 0.973 + }, + { + "start": 13732.88, + "end": 13737.5, + "probability": 0.8436 + }, + { + "start": 13737.82, + "end": 13740.2, + "probability": 0.9138 + }, + { + "start": 13740.98, + "end": 13746.43, + "probability": 0.9714 + }, + { + "start": 13746.6, + "end": 13752.82, + "probability": 0.888 + }, + { + "start": 13753.74, + "end": 13757.78, + "probability": 0.8355 + }, + { + "start": 13758.42, + "end": 13766.26, + "probability": 0.9656 + }, + { + "start": 13766.26, + "end": 13772.48, + "probability": 0.9902 + }, + { + "start": 13772.98, + "end": 13777.26, + "probability": 0.9892 + }, + { + "start": 13778.02, + "end": 13780.14, + "probability": 0.9856 + }, + { + "start": 13780.92, + "end": 13782.92, + "probability": 0.8315 + }, + { + "start": 13783.7, + "end": 13787.88, + "probability": 0.7015 + }, + { + "start": 13788.52, + "end": 13789.02, + "probability": 0.592 + }, + { + "start": 13789.44, + "end": 13789.94, + "probability": 0.7203 + }, + { + "start": 13790.02, + "end": 13792.66, + "probability": 0.9769 + }, + { + "start": 13793.04, + "end": 13794.62, + "probability": 0.6149 + }, + { + "start": 13795.2, + "end": 13799.8, + "probability": 0.9949 + }, + { + "start": 13800.4, + "end": 13805.78, + "probability": 0.9942 + }, + { + "start": 13806.58, + "end": 13809.12, + "probability": 0.9734 + }, + { + "start": 13809.8, + "end": 13810.78, + "probability": 0.8343 + }, + { + "start": 13811.58, + "end": 13818.94, + "probability": 0.8157 + }, + { + "start": 13819.64, + "end": 13821.84, + "probability": 0.9966 + }, + { + "start": 13822.38, + "end": 13823.15, + "probability": 0.6736 + }, + { + "start": 13823.84, + "end": 13825.34, + "probability": 0.0759 + }, + { + "start": 13825.34, + "end": 13826.72, + "probability": 0.6468 + }, + { + "start": 13827.42, + "end": 13830.5, + "probability": 0.8222 + }, + { + "start": 13831.36, + "end": 13834.32, + "probability": 0.9095 + }, + { + "start": 13835.02, + "end": 13837.26, + "probability": 0.9802 + }, + { + "start": 13837.32, + "end": 13837.51, + "probability": 0.3231 + }, + { + "start": 13839.1, + "end": 13839.7, + "probability": 0.0851 + }, + { + "start": 13839.7, + "end": 13839.7, + "probability": 0.0289 + }, + { + "start": 13839.7, + "end": 13842.03, + "probability": 0.7808 + }, + { + "start": 13842.58, + "end": 13844.04, + "probability": 0.4131 + }, + { + "start": 13844.42, + "end": 13846.46, + "probability": 0.8069 + }, + { + "start": 13846.7, + "end": 13848.48, + "probability": 0.8506 + }, + { + "start": 13849.34, + "end": 13851.02, + "probability": 0.891 + }, + { + "start": 13854.26, + "end": 13854.46, + "probability": 0.228 + }, + { + "start": 13855.4, + "end": 13855.4, + "probability": 0.1327 + }, + { + "start": 13868.0, + "end": 13872.94, + "probability": 0.2993 + }, + { + "start": 13872.94, + "end": 13875.66, + "probability": 0.9679 + }, + { + "start": 13875.84, + "end": 13877.86, + "probability": 0.2528 + }, + { + "start": 13878.3, + "end": 13882.76, + "probability": 0.8281 + }, + { + "start": 13883.16, + "end": 13884.02, + "probability": 0.5294 + }, + { + "start": 13885.24, + "end": 13885.24, + "probability": 0.0642 + }, + { + "start": 13885.24, + "end": 13885.7, + "probability": 0.4561 + }, + { + "start": 13888.02, + "end": 13888.74, + "probability": 0.0176 + }, + { + "start": 13889.34, + "end": 13890.68, + "probability": 0.0738 + }, + { + "start": 13891.76, + "end": 13892.44, + "probability": 0.0379 + }, + { + "start": 13893.08, + "end": 13893.66, + "probability": 0.0419 + }, + { + "start": 13895.06, + "end": 13895.24, + "probability": 0.0925 + }, + { + "start": 13895.24, + "end": 13898.23, + "probability": 0.124 + }, + { + "start": 13899.22, + "end": 13899.4, + "probability": 0.0126 + }, + { + "start": 13899.4, + "end": 13903.73, + "probability": 0.0227 + }, + { + "start": 13917.02, + "end": 13920.5, + "probability": 0.2327 + }, + { + "start": 13922.8, + "end": 13923.78, + "probability": 0.0575 + }, + { + "start": 13924.38, + "end": 13925.06, + "probability": 0.0246 + }, + { + "start": 13925.06, + "end": 13925.06, + "probability": 0.0045 + }, + { + "start": 13925.06, + "end": 13925.72, + "probability": 0.0659 + }, + { + "start": 13925.72, + "end": 13925.86, + "probability": 0.0745 + }, + { + "start": 13925.86, + "end": 13925.86, + "probability": 0.0317 + }, + { + "start": 13925.86, + "end": 13926.06, + "probability": 0.1035 + }, + { + "start": 13926.06, + "end": 13926.46, + "probability": 0.0279 + }, + { + "start": 13927.0, + "end": 13927.0, + "probability": 0.0 + }, + { + "start": 13927.0, + "end": 13927.0, + "probability": 0.0 + }, + { + "start": 13927.0, + "end": 13927.0, + "probability": 0.0 + }, + { + "start": 13927.0, + "end": 13927.0, + "probability": 0.0 + }, + { + "start": 13927.0, + "end": 13927.0, + "probability": 0.0 + }, + { + "start": 13946.32, + "end": 13947.72, + "probability": 0.1067 + }, + { + "start": 13947.72, + "end": 13949.84, + "probability": 0.1161 + }, + { + "start": 13949.84, + "end": 13952.78, + "probability": 0.0315 + }, + { + "start": 13952.78, + "end": 13954.84, + "probability": 0.0489 + }, + { + "start": 13955.1, + "end": 13955.94, + "probability": 0.0138 + }, + { + "start": 13956.64, + "end": 13960.06, + "probability": 0.026 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.0, + "end": 14062.0, + "probability": 0.0 + }, + { + "start": 14062.1, + "end": 14062.14, + "probability": 0.069 + }, + { + "start": 14062.14, + "end": 14062.6, + "probability": 0.0157 + }, + { + "start": 14062.8, + "end": 14063.42, + "probability": 0.7277 + }, + { + "start": 14071.16, + "end": 14073.16, + "probability": 0.4513 + }, + { + "start": 14075.0, + "end": 14076.4, + "probability": 0.8822 + }, + { + "start": 14077.98, + "end": 14078.14, + "probability": 0.1978 + }, + { + "start": 14078.2, + "end": 14083.72, + "probability": 0.6382 + }, + { + "start": 14085.7, + "end": 14091.6, + "probability": 0.9899 + }, + { + "start": 14092.48, + "end": 14093.84, + "probability": 0.7737 + }, + { + "start": 14095.72, + "end": 14096.35, + "probability": 0.7863 + }, + { + "start": 14098.32, + "end": 14100.12, + "probability": 0.87 + }, + { + "start": 14100.6, + "end": 14103.32, + "probability": 0.994 + }, + { + "start": 14103.4, + "end": 14104.34, + "probability": 0.9834 + }, + { + "start": 14105.52, + "end": 14109.34, + "probability": 0.8807 + }, + { + "start": 14110.78, + "end": 14113.18, + "probability": 0.9976 + }, + { + "start": 14113.5, + "end": 14114.62, + "probability": 0.7799 + }, + { + "start": 14115.08, + "end": 14116.38, + "probability": 0.7906 + }, + { + "start": 14117.46, + "end": 14119.86, + "probability": 0.9346 + }, + { + "start": 14120.5, + "end": 14122.14, + "probability": 0.6722 + }, + { + "start": 14122.22, + "end": 14123.12, + "probability": 0.7917 + }, + { + "start": 14123.62, + "end": 14124.98, + "probability": 0.8631 + }, + { + "start": 14125.48, + "end": 14126.72, + "probability": 0.9823 + }, + { + "start": 14127.4, + "end": 14129.58, + "probability": 0.7727 + }, + { + "start": 14129.74, + "end": 14131.94, + "probability": 0.975 + }, + { + "start": 14132.56, + "end": 14133.9, + "probability": 0.8785 + }, + { + "start": 14134.54, + "end": 14135.54, + "probability": 0.97 + }, + { + "start": 14135.68, + "end": 14140.9, + "probability": 0.996 + }, + { + "start": 14141.02, + "end": 14141.68, + "probability": 0.677 + }, + { + "start": 14142.09, + "end": 14145.82, + "probability": 0.9424 + }, + { + "start": 14148.16, + "end": 14151.24, + "probability": 0.7293 + }, + { + "start": 14151.26, + "end": 14153.46, + "probability": 0.1765 + }, + { + "start": 14154.52, + "end": 14155.54, + "probability": 0.9155 + }, + { + "start": 14155.66, + "end": 14161.5, + "probability": 0.9835 + }, + { + "start": 14161.6, + "end": 14163.1, + "probability": 0.9825 + }, + { + "start": 14165.08, + "end": 14169.86, + "probability": 0.9613 + }, + { + "start": 14171.02, + "end": 14176.62, + "probability": 0.9775 + }, + { + "start": 14176.62, + "end": 14181.08, + "probability": 0.9875 + }, + { + "start": 14182.04, + "end": 14185.92, + "probability": 0.988 + }, + { + "start": 14187.04, + "end": 14189.98, + "probability": 0.9902 + }, + { + "start": 14190.06, + "end": 14191.4, + "probability": 0.9486 + }, + { + "start": 14192.72, + "end": 14193.5, + "probability": 0.504 + }, + { + "start": 14193.52, + "end": 14198.64, + "probability": 0.8964 + }, + { + "start": 14198.8, + "end": 14203.72, + "probability": 0.9938 + }, + { + "start": 14204.62, + "end": 14207.62, + "probability": 0.9089 + }, + { + "start": 14208.62, + "end": 14212.18, + "probability": 0.9971 + }, + { + "start": 14212.18, + "end": 14216.46, + "probability": 0.9978 + }, + { + "start": 14217.7, + "end": 14221.9, + "probability": 0.9752 + }, + { + "start": 14222.36, + "end": 14224.04, + "probability": 0.7585 + }, + { + "start": 14224.46, + "end": 14225.58, + "probability": 0.6933 + }, + { + "start": 14225.64, + "end": 14230.22, + "probability": 0.9813 + }, + { + "start": 14231.22, + "end": 14237.08, + "probability": 0.9862 + }, + { + "start": 14237.18, + "end": 14240.9, + "probability": 0.9707 + }, + { + "start": 14241.38, + "end": 14244.32, + "probability": 0.8628 + }, + { + "start": 14244.96, + "end": 14249.8, + "probability": 0.6959 + }, + { + "start": 14249.86, + "end": 14252.56, + "probability": 0.6048 + }, + { + "start": 14253.0, + "end": 14253.48, + "probability": 0.6691 + }, + { + "start": 14254.28, + "end": 14257.3, + "probability": 0.8689 + }, + { + "start": 14257.36, + "end": 14259.5, + "probability": 0.9163 + }, + { + "start": 14260.24, + "end": 14263.22, + "probability": 0.7193 + }, + { + "start": 14263.68, + "end": 14265.88, + "probability": 0.9854 + }, + { + "start": 14266.96, + "end": 14268.58, + "probability": 0.8241 + }, + { + "start": 14268.96, + "end": 14268.96, + "probability": 0.0378 + }, + { + "start": 14268.96, + "end": 14271.1, + "probability": 0.4319 + }, + { + "start": 14271.86, + "end": 14273.3, + "probability": 0.9037 + }, + { + "start": 14273.34, + "end": 14274.2, + "probability": 0.7245 + }, + { + "start": 14274.66, + "end": 14276.04, + "probability": 0.939 + }, + { + "start": 14276.14, + "end": 14276.8, + "probability": 0.8969 + }, + { + "start": 14276.92, + "end": 14278.24, + "probability": 0.8666 + }, + { + "start": 14278.8, + "end": 14279.5, + "probability": 0.958 + }, + { + "start": 14279.66, + "end": 14280.66, + "probability": 0.8253 + }, + { + "start": 14280.82, + "end": 14282.56, + "probability": 0.6351 + }, + { + "start": 14282.56, + "end": 14283.06, + "probability": 0.9193 + }, + { + "start": 14290.76, + "end": 14292.88, + "probability": 0.6499 + }, + { + "start": 14294.5, + "end": 14299.4, + "probability": 0.8146 + }, + { + "start": 14300.54, + "end": 14304.32, + "probability": 0.9929 + }, + { + "start": 14305.14, + "end": 14308.06, + "probability": 0.7762 + }, + { + "start": 14308.16, + "end": 14309.04, + "probability": 0.8303 + }, + { + "start": 14309.34, + "end": 14311.22, + "probability": 0.9823 + }, + { + "start": 14311.24, + "end": 14313.86, + "probability": 0.7187 + }, + { + "start": 14313.94, + "end": 14314.74, + "probability": 0.598 + }, + { + "start": 14316.04, + "end": 14321.04, + "probability": 0.0721 + }, + { + "start": 14323.24, + "end": 14323.24, + "probability": 0.0055 + }, + { + "start": 14323.24, + "end": 14323.24, + "probability": 0.0799 + }, + { + "start": 14323.24, + "end": 14323.24, + "probability": 0.1719 + }, + { + "start": 14323.24, + "end": 14323.24, + "probability": 0.0913 + }, + { + "start": 14323.24, + "end": 14323.24, + "probability": 0.0178 + }, + { + "start": 14323.24, + "end": 14325.42, + "probability": 0.7731 + }, + { + "start": 14325.64, + "end": 14326.42, + "probability": 0.6998 + }, + { + "start": 14326.42, + "end": 14326.82, + "probability": 0.8047 + }, + { + "start": 14327.68, + "end": 14328.86, + "probability": 0.9172 + }, + { + "start": 14329.18, + "end": 14330.0, + "probability": 0.4401 + }, + { + "start": 14330.14, + "end": 14333.74, + "probability": 0.8997 + }, + { + "start": 14335.24, + "end": 14336.88, + "probability": 0.7625 + }, + { + "start": 14338.24, + "end": 14340.38, + "probability": 0.9068 + }, + { + "start": 14340.42, + "end": 14341.3, + "probability": 0.6891 + }, + { + "start": 14341.36, + "end": 14342.28, + "probability": 0.7637 + }, + { + "start": 14343.22, + "end": 14344.28, + "probability": 0.9301 + }, + { + "start": 14344.64, + "end": 14348.56, + "probability": 0.854 + }, + { + "start": 14349.38, + "end": 14353.1, + "probability": 0.9957 + }, + { + "start": 14353.86, + "end": 14354.64, + "probability": 0.4353 + }, + { + "start": 14354.66, + "end": 14355.46, + "probability": 0.705 + }, + { + "start": 14355.82, + "end": 14357.0, + "probability": 0.8937 + }, + { + "start": 14357.06, + "end": 14358.71, + "probability": 0.9744 + }, + { + "start": 14359.34, + "end": 14361.8, + "probability": 0.9707 + }, + { + "start": 14361.86, + "end": 14367.22, + "probability": 0.892 + }, + { + "start": 14367.84, + "end": 14369.96, + "probability": 0.958 + }, + { + "start": 14370.64, + "end": 14374.02, + "probability": 0.9541 + }, + { + "start": 14374.3, + "end": 14377.74, + "probability": 0.9504 + }, + { + "start": 14378.54, + "end": 14382.78, + "probability": 0.9352 + }, + { + "start": 14382.86, + "end": 14383.46, + "probability": 0.5738 + }, + { + "start": 14383.54, + "end": 14388.66, + "probability": 0.8256 + }, + { + "start": 14388.66, + "end": 14393.42, + "probability": 0.9909 + }, + { + "start": 14394.08, + "end": 14395.21, + "probability": 0.9561 + }, + { + "start": 14395.88, + "end": 14398.68, + "probability": 0.5234 + }, + { + "start": 14399.56, + "end": 14402.42, + "probability": 0.9873 + }, + { + "start": 14402.42, + "end": 14404.78, + "probability": 0.867 + }, + { + "start": 14405.56, + "end": 14408.42, + "probability": 0.9741 + }, + { + "start": 14408.72, + "end": 14410.12, + "probability": 0.7757 + }, + { + "start": 14410.52, + "end": 14411.14, + "probability": 0.5669 + }, + { + "start": 14411.16, + "end": 14411.66, + "probability": 0.5727 + }, + { + "start": 14412.22, + "end": 14413.98, + "probability": 0.8259 + }, + { + "start": 14414.46, + "end": 14415.22, + "probability": 0.514 + }, + { + "start": 14415.32, + "end": 14417.62, + "probability": 0.8628 + }, + { + "start": 14418.14, + "end": 14420.5, + "probability": 0.9658 + }, + { + "start": 14420.84, + "end": 14422.6, + "probability": 0.9897 + }, + { + "start": 14422.8, + "end": 14424.22, + "probability": 0.6561 + }, + { + "start": 14424.28, + "end": 14426.24, + "probability": 0.8688 + }, + { + "start": 14426.58, + "end": 14427.38, + "probability": 0.7572 + }, + { + "start": 14427.52, + "end": 14430.14, + "probability": 0.9849 + }, + { + "start": 14430.68, + "end": 14433.56, + "probability": 0.918 + }, + { + "start": 14433.66, + "end": 14435.1, + "probability": 0.5768 + }, + { + "start": 14435.76, + "end": 14436.6, + "probability": 0.6813 + }, + { + "start": 14436.7, + "end": 14438.05, + "probability": 0.4971 + }, + { + "start": 14438.72, + "end": 14442.82, + "probability": 0.983 + }, + { + "start": 14442.96, + "end": 14443.58, + "probability": 0.9462 + }, + { + "start": 14443.72, + "end": 14445.06, + "probability": 0.8962 + }, + { + "start": 14445.3, + "end": 14448.02, + "probability": 0.8057 + }, + { + "start": 14448.06, + "end": 14451.94, + "probability": 0.631 + }, + { + "start": 14452.06, + "end": 14452.84, + "probability": 0.8068 + }, + { + "start": 14453.2, + "end": 14456.66, + "probability": 0.9509 + }, + { + "start": 14457.46, + "end": 14459.46, + "probability": 0.8277 + }, + { + "start": 14459.52, + "end": 14463.72, + "probability": 0.8923 + }, + { + "start": 14463.88, + "end": 14465.48, + "probability": 0.9777 + }, + { + "start": 14466.18, + "end": 14468.74, + "probability": 0.7017 + }, + { + "start": 14469.12, + "end": 14472.56, + "probability": 0.9397 + }, + { + "start": 14473.34, + "end": 14474.43, + "probability": 0.6872 + }, + { + "start": 14474.92, + "end": 14477.0, + "probability": 0.9937 + }, + { + "start": 14477.44, + "end": 14480.38, + "probability": 0.9875 + }, + { + "start": 14480.9, + "end": 14482.5, + "probability": 0.8499 + }, + { + "start": 14483.08, + "end": 14485.54, + "probability": 0.9746 + }, + { + "start": 14485.62, + "end": 14489.0, + "probability": 0.8194 + }, + { + "start": 14489.48, + "end": 14491.98, + "probability": 0.9898 + }, + { + "start": 14492.14, + "end": 14492.92, + "probability": 0.8354 + }, + { + "start": 14493.42, + "end": 14493.42, + "probability": 0.5864 + }, + { + "start": 14493.42, + "end": 14495.14, + "probability": 0.8948 + }, + { + "start": 14495.98, + "end": 14497.47, + "probability": 0.9548 + }, + { + "start": 14497.88, + "end": 14501.05, + "probability": 0.687 + }, + { + "start": 14501.42, + "end": 14507.68, + "probability": 0.8434 + }, + { + "start": 14507.8, + "end": 14508.08, + "probability": 0.727 + }, + { + "start": 14508.24, + "end": 14509.32, + "probability": 0.6529 + }, + { + "start": 14509.48, + "end": 14511.14, + "probability": 0.637 + }, + { + "start": 14511.2, + "end": 14511.68, + "probability": 0.4648 + }, + { + "start": 14511.92, + "end": 14512.68, + "probability": 0.8105 + }, + { + "start": 14512.86, + "end": 14513.92, + "probability": 0.9602 + }, + { + "start": 14538.94, + "end": 14540.94, + "probability": 0.6849 + }, + { + "start": 14542.42, + "end": 14543.88, + "probability": 0.9932 + }, + { + "start": 14545.84, + "end": 14548.0, + "probability": 0.9971 + }, + { + "start": 14549.28, + "end": 14549.71, + "probability": 0.9948 + }, + { + "start": 14551.8, + "end": 14554.58, + "probability": 0.9656 + }, + { + "start": 14556.44, + "end": 14560.06, + "probability": 0.9749 + }, + { + "start": 14561.2, + "end": 14561.92, + "probability": 0.4724 + }, + { + "start": 14562.04, + "end": 14562.48, + "probability": 0.8566 + }, + { + "start": 14562.64, + "end": 14563.2, + "probability": 0.8056 + }, + { + "start": 14563.81, + "end": 14569.7, + "probability": 0.9915 + }, + { + "start": 14570.64, + "end": 14574.72, + "probability": 0.8821 + }, + { + "start": 14575.18, + "end": 14579.32, + "probability": 0.5878 + }, + { + "start": 14579.7, + "end": 14580.18, + "probability": 0.7877 + }, + { + "start": 14580.88, + "end": 14583.06, + "probability": 0.7909 + }, + { + "start": 14583.92, + "end": 14587.54, + "probability": 0.9585 + }, + { + "start": 14588.2, + "end": 14591.24, + "probability": 0.8721 + }, + { + "start": 14592.48, + "end": 14593.18, + "probability": 0.9321 + }, + { + "start": 14593.62, + "end": 14594.46, + "probability": 0.8791 + }, + { + "start": 14595.52, + "end": 14597.54, + "probability": 0.7754 + }, + { + "start": 14598.12, + "end": 14600.61, + "probability": 0.993 + }, + { + "start": 14600.76, + "end": 14605.28, + "probability": 0.9918 + }, + { + "start": 14606.98, + "end": 14607.72, + "probability": 0.7253 + }, + { + "start": 14608.84, + "end": 14609.58, + "probability": 0.973 + }, + { + "start": 14612.84, + "end": 14614.13, + "probability": 0.9204 + }, + { + "start": 14615.8, + "end": 14621.06, + "probability": 0.9971 + }, + { + "start": 14622.04, + "end": 14625.56, + "probability": 0.9961 + }, + { + "start": 14626.34, + "end": 14629.3, + "probability": 0.9499 + }, + { + "start": 14630.5, + "end": 14633.38, + "probability": 0.9956 + }, + { + "start": 14634.54, + "end": 14638.5, + "probability": 0.9949 + }, + { + "start": 14639.08, + "end": 14640.58, + "probability": 0.7287 + }, + { + "start": 14641.24, + "end": 14645.26, + "probability": 0.9595 + }, + { + "start": 14646.58, + "end": 14653.34, + "probability": 0.9744 + }, + { + "start": 14654.22, + "end": 14657.46, + "probability": 0.8614 + }, + { + "start": 14657.92, + "end": 14663.38, + "probability": 0.8478 + }, + { + "start": 14664.02, + "end": 14668.64, + "probability": 0.9938 + }, + { + "start": 14668.64, + "end": 14672.62, + "probability": 0.9713 + }, + { + "start": 14672.78, + "end": 14674.09, + "probability": 0.5813 + }, + { + "start": 14674.64, + "end": 14675.28, + "probability": 0.7654 + }, + { + "start": 14675.76, + "end": 14678.54, + "probability": 0.8984 + }, + { + "start": 14678.86, + "end": 14679.86, + "probability": 0.9046 + }, + { + "start": 14680.22, + "end": 14680.96, + "probability": 0.6305 + }, + { + "start": 14681.48, + "end": 14686.46, + "probability": 0.9473 + }, + { + "start": 14687.12, + "end": 14688.5, + "probability": 0.6704 + }, + { + "start": 14688.8, + "end": 14696.7, + "probability": 0.9525 + }, + { + "start": 14697.32, + "end": 14698.42, + "probability": 0.7677 + }, + { + "start": 14699.0, + "end": 14701.54, + "probability": 0.9801 + }, + { + "start": 14701.6, + "end": 14704.96, + "probability": 0.9846 + }, + { + "start": 14706.06, + "end": 14707.18, + "probability": 0.7799 + }, + { + "start": 14708.04, + "end": 14709.66, + "probability": 0.6583 + }, + { + "start": 14709.76, + "end": 14714.5, + "probability": 0.8848 + }, + { + "start": 14714.5, + "end": 14720.12, + "probability": 0.9773 + }, + { + "start": 14720.5, + "end": 14722.16, + "probability": 0.9955 + }, + { + "start": 14722.3, + "end": 14726.78, + "probability": 0.8061 + }, + { + "start": 14726.92, + "end": 14728.48, + "probability": 0.6189 + }, + { + "start": 14728.58, + "end": 14729.96, + "probability": 0.5132 + }, + { + "start": 14730.06, + "end": 14731.52, + "probability": 0.964 + }, + { + "start": 14731.76, + "end": 14733.6, + "probability": 0.7209 + }, + { + "start": 14733.72, + "end": 14737.42, + "probability": 0.7917 + }, + { + "start": 14738.08, + "end": 14739.44, + "probability": 0.8193 + }, + { + "start": 14753.88, + "end": 14754.08, + "probability": 0.2912 + }, + { + "start": 14754.22, + "end": 14755.36, + "probability": 0.6646 + }, + { + "start": 14755.52, + "end": 14756.6, + "probability": 0.7363 + }, + { + "start": 14756.78, + "end": 14757.34, + "probability": 0.8082 + }, + { + "start": 14757.78, + "end": 14761.84, + "probability": 0.8633 + }, + { + "start": 14761.84, + "end": 14763.46, + "probability": 0.786 + }, + { + "start": 14763.78, + "end": 14765.72, + "probability": 0.6328 + }, + { + "start": 14766.02, + "end": 14769.14, + "probability": 0.9917 + }, + { + "start": 14769.72, + "end": 14772.1, + "probability": 0.964 + }, + { + "start": 14772.9, + "end": 14779.14, + "probability": 0.8809 + }, + { + "start": 14779.14, + "end": 14782.88, + "probability": 0.9946 + }, + { + "start": 14783.0, + "end": 14783.84, + "probability": 0.5223 + }, + { + "start": 14784.18, + "end": 14784.5, + "probability": 0.4252 + }, + { + "start": 14784.62, + "end": 14785.8, + "probability": 0.0263 + }, + { + "start": 14785.8, + "end": 14788.18, + "probability": 0.0199 + }, + { + "start": 14788.92, + "end": 14788.92, + "probability": 0.009 + }, + { + "start": 14788.92, + "end": 14788.92, + "probability": 0.0181 + }, + { + "start": 14788.92, + "end": 14790.16, + "probability": 0.5195 + }, + { + "start": 14790.82, + "end": 14793.04, + "probability": 0.8656 + }, + { + "start": 14793.04, + "end": 14796.0, + "probability": 0.9795 + }, + { + "start": 14796.4, + "end": 14798.16, + "probability": 0.9886 + }, + { + "start": 14798.66, + "end": 14799.74, + "probability": 0.9674 + }, + { + "start": 14800.2, + "end": 14804.16, + "probability": 0.8809 + }, + { + "start": 14804.38, + "end": 14804.98, + "probability": 0.9321 + }, + { + "start": 14805.5, + "end": 14808.37, + "probability": 0.7987 + }, + { + "start": 14808.64, + "end": 14810.52, + "probability": 0.9749 + }, + { + "start": 14811.16, + "end": 14815.64, + "probability": 0.9966 + }, + { + "start": 14816.18, + "end": 14818.92, + "probability": 0.907 + }, + { + "start": 14819.36, + "end": 14820.86, + "probability": 0.9932 + }, + { + "start": 14821.54, + "end": 14825.82, + "probability": 0.9893 + }, + { + "start": 14826.14, + "end": 14827.48, + "probability": 0.9556 + }, + { + "start": 14827.88, + "end": 14831.0, + "probability": 0.9969 + }, + { + "start": 14833.16, + "end": 14833.82, + "probability": 0.4469 + }, + { + "start": 14834.54, + "end": 14839.1, + "probability": 0.9885 + }, + { + "start": 14839.1, + "end": 14842.42, + "probability": 0.995 + }, + { + "start": 14842.62, + "end": 14843.36, + "probability": 0.9927 + }, + { + "start": 14843.5, + "end": 14845.08, + "probability": 0.9545 + }, + { + "start": 14845.5, + "end": 14847.38, + "probability": 0.998 + }, + { + "start": 14847.64, + "end": 14848.76, + "probability": 0.6573 + }, + { + "start": 14849.04, + "end": 14853.82, + "probability": 0.9962 + }, + { + "start": 14854.6, + "end": 14857.98, + "probability": 0.9933 + }, + { + "start": 14858.32, + "end": 14859.3, + "probability": 0.9146 + }, + { + "start": 14859.48, + "end": 14862.92, + "probability": 0.9927 + }, + { + "start": 14863.42, + "end": 14867.42, + "probability": 0.8387 + }, + { + "start": 14867.82, + "end": 14869.88, + "probability": 0.983 + }, + { + "start": 14869.96, + "end": 14870.74, + "probability": 0.6885 + }, + { + "start": 14871.7, + "end": 14872.86, + "probability": 0.8317 + }, + { + "start": 14874.28, + "end": 14875.88, + "probability": 0.7545 + }, + { + "start": 14875.96, + "end": 14882.69, + "probability": 0.9794 + }, + { + "start": 14884.0, + "end": 14884.76, + "probability": 0.9433 + }, + { + "start": 14885.6, + "end": 14886.6, + "probability": 0.7549 + }, + { + "start": 14886.98, + "end": 14889.28, + "probability": 0.7772 + }, + { + "start": 14889.74, + "end": 14891.34, + "probability": 0.9895 + }, + { + "start": 14891.4, + "end": 14891.58, + "probability": 0.9366 + }, + { + "start": 14891.62, + "end": 14897.36, + "probability": 0.9943 + }, + { + "start": 14897.36, + "end": 14902.5, + "probability": 0.9856 + }, + { + "start": 14902.92, + "end": 14904.2, + "probability": 0.9854 + }, + { + "start": 14904.28, + "end": 14907.22, + "probability": 0.8851 + }, + { + "start": 14907.94, + "end": 14908.36, + "probability": 0.3269 + }, + { + "start": 14908.56, + "end": 14909.42, + "probability": 0.752 + }, + { + "start": 14909.56, + "end": 14911.38, + "probability": 0.9715 + }, + { + "start": 14911.6, + "end": 14912.84, + "probability": 0.9285 + }, + { + "start": 14913.28, + "end": 14913.76, + "probability": 0.8672 + }, + { + "start": 14913.88, + "end": 14914.88, + "probability": 0.8919 + }, + { + "start": 14914.9, + "end": 14917.38, + "probability": 0.9345 + }, + { + "start": 14918.2, + "end": 14922.08, + "probability": 0.9928 + }, + { + "start": 14922.08, + "end": 14926.92, + "probability": 0.9773 + }, + { + "start": 14927.26, + "end": 14929.14, + "probability": 0.6459 + }, + { + "start": 14929.62, + "end": 14932.56, + "probability": 0.9418 + }, + { + "start": 14932.6, + "end": 14934.34, + "probability": 0.978 + }, + { + "start": 14935.02, + "end": 14935.58, + "probability": 0.533 + }, + { + "start": 14935.86, + "end": 14937.4, + "probability": 0.6003 + }, + { + "start": 14937.46, + "end": 14940.74, + "probability": 0.9296 + }, + { + "start": 14941.78, + "end": 14945.44, + "probability": 0.0666 + }, + { + "start": 14956.34, + "end": 14956.34, + "probability": 0.077 + }, + { + "start": 14956.34, + "end": 14956.36, + "probability": 0.0161 + }, + { + "start": 14956.36, + "end": 14956.36, + "probability": 0.0801 + }, + { + "start": 14956.42, + "end": 14956.54, + "probability": 0.0318 + }, + { + "start": 14956.54, + "end": 14956.62, + "probability": 0.0367 + }, + { + "start": 14966.7, + "end": 14970.06, + "probability": 0.8195 + }, + { + "start": 14970.5, + "end": 14972.6, + "probability": 0.233 + }, + { + "start": 14973.0, + "end": 14976.46, + "probability": 0.9736 + }, + { + "start": 14976.72, + "end": 14977.54, + "probability": 0.9349 + }, + { + "start": 14978.76, + "end": 14981.12, + "probability": 0.7482 + }, + { + "start": 14981.76, + "end": 14983.34, + "probability": 0.8055 + }, + { + "start": 14983.4, + "end": 14984.0, + "probability": 0.9443 + }, + { + "start": 14984.74, + "end": 14986.12, + "probability": 0.771 + }, + { + "start": 14986.2, + "end": 14987.72, + "probability": 0.5073 + }, + { + "start": 14987.82, + "end": 14988.98, + "probability": 0.2222 + }, + { + "start": 14988.98, + "end": 14992.62, + "probability": 0.9524 + }, + { + "start": 14993.9, + "end": 14995.04, + "probability": 0.3096 + }, + { + "start": 14995.04, + "end": 14998.66, + "probability": 0.8778 + }, + { + "start": 15000.66, + "end": 15001.6, + "probability": 0.5399 + }, + { + "start": 15008.81, + "end": 15013.34, + "probability": 0.7998 + }, + { + "start": 15013.4, + "end": 15014.37, + "probability": 0.1066 + }, + { + "start": 15015.7, + "end": 15020.02, + "probability": 0.7339 + }, + { + "start": 15020.66, + "end": 15023.48, + "probability": 0.3889 + }, + { + "start": 15024.08, + "end": 15028.26, + "probability": 0.9829 + }, + { + "start": 15028.3, + "end": 15029.02, + "probability": 0.6961 + }, + { + "start": 15035.85, + "end": 15037.68, + "probability": 0.8673 + }, + { + "start": 15037.8, + "end": 15040.82, + "probability": 0.8843 + }, + { + "start": 15040.94, + "end": 15041.76, + "probability": 0.9688 + }, + { + "start": 15048.66, + "end": 15051.09, + "probability": 0.5541 + }, + { + "start": 15051.58, + "end": 15057.94, + "probability": 0.103 + }, + { + "start": 15058.86, + "end": 15061.2, + "probability": 0.0556 + }, + { + "start": 15063.78, + "end": 15065.36, + "probability": 0.3562 + }, + { + "start": 15065.48, + "end": 15066.76, + "probability": 0.7897 + }, + { + "start": 15066.88, + "end": 15070.12, + "probability": 0.6763 + }, + { + "start": 15070.3, + "end": 15074.08, + "probability": 0.7389 + }, + { + "start": 15074.08, + "end": 15076.3, + "probability": 0.6699 + }, + { + "start": 15076.92, + "end": 15079.84, + "probability": 0.8663 + }, + { + "start": 15079.84, + "end": 15083.54, + "probability": 0.9223 + }, + { + "start": 15083.76, + "end": 15084.96, + "probability": 0.1833 + }, + { + "start": 15085.06, + "end": 15086.92, + "probability": 0.96 + }, + { + "start": 15087.2, + "end": 15088.5, + "probability": 0.6819 + }, + { + "start": 15088.94, + "end": 15092.6, + "probability": 0.9047 + }, + { + "start": 15093.18, + "end": 15096.16, + "probability": 0.9951 + }, + { + "start": 15096.28, + "end": 15098.38, + "probability": 0.7498 + }, + { + "start": 15098.64, + "end": 15100.84, + "probability": 0.6925 + }, + { + "start": 15101.06, + "end": 15102.2, + "probability": 0.9128 + }, + { + "start": 15102.82, + "end": 15103.64, + "probability": 0.6301 + }, + { + "start": 15103.72, + "end": 15108.76, + "probability": 0.9945 + }, + { + "start": 15109.44, + "end": 15115.22, + "probability": 0.9388 + }, + { + "start": 15115.88, + "end": 15119.38, + "probability": 0.9871 + }, + { + "start": 15119.38, + "end": 15122.64, + "probability": 0.9912 + }, + { + "start": 15123.14, + "end": 15125.04, + "probability": 0.452 + }, + { + "start": 15125.1, + "end": 15129.52, + "probability": 0.9119 + }, + { + "start": 15129.52, + "end": 15132.76, + "probability": 0.9509 + }, + { + "start": 15133.44, + "end": 15136.2, + "probability": 0.8968 + }, + { + "start": 15136.84, + "end": 15139.54, + "probability": 0.8199 + }, + { + "start": 15139.68, + "end": 15141.65, + "probability": 0.8591 + }, + { + "start": 15142.18, + "end": 15144.34, + "probability": 0.9023 + }, + { + "start": 15144.98, + "end": 15147.88, + "probability": 0.9447 + }, + { + "start": 15147.88, + "end": 15153.02, + "probability": 0.9799 + }, + { + "start": 15153.82, + "end": 15158.38, + "probability": 0.9547 + }, + { + "start": 15158.7, + "end": 15159.3, + "probability": 0.7732 + }, + { + "start": 15159.88, + "end": 15163.58, + "probability": 0.7006 + }, + { + "start": 15163.98, + "end": 15164.3, + "probability": 0.4838 + }, + { + "start": 15164.64, + "end": 15166.84, + "probability": 0.7803 + }, + { + "start": 15166.84, + "end": 15169.42, + "probability": 0.964 + }, + { + "start": 15169.94, + "end": 15171.7, + "probability": 0.9943 + }, + { + "start": 15172.56, + "end": 15178.1, + "probability": 0.9992 + }, + { + "start": 15178.1, + "end": 15185.1, + "probability": 0.9963 + }, + { + "start": 15185.62, + "end": 15189.16, + "probability": 0.9185 + }, + { + "start": 15189.16, + "end": 15193.54, + "probability": 0.9819 + }, + { + "start": 15193.72, + "end": 15194.18, + "probability": 0.7494 + }, + { + "start": 15195.62, + "end": 15198.26, + "probability": 0.9768 + }, + { + "start": 15198.64, + "end": 15201.04, + "probability": 0.9387 + }, + { + "start": 15201.86, + "end": 15204.06, + "probability": 0.715 + }, + { + "start": 15204.32, + "end": 15206.18, + "probability": 0.8348 + }, + { + "start": 15207.0, + "end": 15207.6, + "probability": 0.7811 + }, + { + "start": 15208.04, + "end": 15208.86, + "probability": 0.6498 + }, + { + "start": 15208.9, + "end": 15209.6, + "probability": 0.8967 + }, + { + "start": 15209.62, + "end": 15211.95, + "probability": 0.9814 + }, + { + "start": 15212.64, + "end": 15214.3, + "probability": 0.2863 + }, + { + "start": 15216.14, + "end": 15218.06, + "probability": 0.2602 + }, + { + "start": 15218.06, + "end": 15218.9, + "probability": 0.7165 + }, + { + "start": 15219.7, + "end": 15220.52, + "probability": 0.0161 + }, + { + "start": 15223.14, + "end": 15223.78, + "probability": 0.3285 + }, + { + "start": 15225.66, + "end": 15225.94, + "probability": 0.0186 + }, + { + "start": 15236.16, + "end": 15237.5, + "probability": 0.0575 + }, + { + "start": 15239.6, + "end": 15241.02, + "probability": 0.9655 + }, + { + "start": 15241.06, + "end": 15242.26, + "probability": 0.947 + }, + { + "start": 15242.4, + "end": 15244.08, + "probability": 0.9875 + }, + { + "start": 15244.66, + "end": 15247.58, + "probability": 0.9521 + }, + { + "start": 15248.14, + "end": 15252.08, + "probability": 0.9902 + }, + { + "start": 15252.08, + "end": 15256.4, + "probability": 0.8659 + }, + { + "start": 15256.5, + "end": 15260.3, + "probability": 0.9817 + }, + { + "start": 15260.3, + "end": 15265.0, + "probability": 0.999 + }, + { + "start": 15265.54, + "end": 15268.0, + "probability": 0.8245 + }, + { + "start": 15268.4, + "end": 15272.66, + "probability": 0.9048 + }, + { + "start": 15273.28, + "end": 15278.26, + "probability": 0.9981 + }, + { + "start": 15279.04, + "end": 15284.54, + "probability": 0.9531 + }, + { + "start": 15284.92, + "end": 15287.1, + "probability": 0.8854 + }, + { + "start": 15287.44, + "end": 15290.62, + "probability": 0.953 + }, + { + "start": 15291.06, + "end": 15291.96, + "probability": 0.9761 + }, + { + "start": 15292.9, + "end": 15297.0, + "probability": 0.9688 + }, + { + "start": 15297.0, + "end": 15300.66, + "probability": 0.9751 + }, + { + "start": 15301.52, + "end": 15303.3, + "probability": 0.874 + }, + { + "start": 15303.36, + "end": 15305.06, + "probability": 0.7441 + }, + { + "start": 15305.12, + "end": 15311.28, + "probability": 0.9727 + }, + { + "start": 15311.32, + "end": 15312.4, + "probability": 0.9842 + }, + { + "start": 15313.5, + "end": 15316.64, + "probability": 0.8728 + }, + { + "start": 15316.64, + "end": 15321.1, + "probability": 0.9861 + }, + { + "start": 15321.9, + "end": 15323.92, + "probability": 0.7432 + }, + { + "start": 15324.15, + "end": 15324.6, + "probability": 0.9577 + }, + { + "start": 15324.68, + "end": 15325.9, + "probability": 0.9436 + }, + { + "start": 15326.86, + "end": 15327.4, + "probability": 0.7645 + }, + { + "start": 15327.64, + "end": 15331.6, + "probability": 0.9496 + }, + { + "start": 15332.1, + "end": 15335.26, + "probability": 0.9906 + }, + { + "start": 15336.18, + "end": 15336.82, + "probability": 0.6767 + }, + { + "start": 15336.9, + "end": 15340.62, + "probability": 0.9539 + }, + { + "start": 15340.62, + "end": 15343.5, + "probability": 0.9391 + }, + { + "start": 15343.94, + "end": 15344.84, + "probability": 0.9612 + }, + { + "start": 15344.9, + "end": 15345.56, + "probability": 0.9754 + }, + { + "start": 15345.62, + "end": 15346.3, + "probability": 0.9701 + }, + { + "start": 15346.34, + "end": 15349.4, + "probability": 0.9956 + }, + { + "start": 15349.4, + "end": 15352.72, + "probability": 0.9987 + }, + { + "start": 15352.92, + "end": 15354.54, + "probability": 0.3166 + }, + { + "start": 15354.74, + "end": 15358.11, + "probability": 0.9317 + }, + { + "start": 15358.58, + "end": 15363.72, + "probability": 0.9926 + }, + { + "start": 15364.14, + "end": 15365.86, + "probability": 0.957 + }, + { + "start": 15366.62, + "end": 15368.56, + "probability": 0.7984 + }, + { + "start": 15368.6, + "end": 15369.28, + "probability": 0.5516 + }, + { + "start": 15369.34, + "end": 15371.68, + "probability": 0.7881 + }, + { + "start": 15371.76, + "end": 15372.78, + "probability": 0.8955 + }, + { + "start": 15373.1, + "end": 15376.82, + "probability": 0.9384 + }, + { + "start": 15377.0, + "end": 15377.54, + "probability": 0.9057 + }, + { + "start": 15377.66, + "end": 15379.92, + "probability": 0.9857 + }, + { + "start": 15381.22, + "end": 15383.73, + "probability": 0.9776 + }, + { + "start": 15384.52, + "end": 15387.54, + "probability": 0.6318 + }, + { + "start": 15388.6, + "end": 15390.06, + "probability": 0.9858 + }, + { + "start": 15390.1, + "end": 15390.96, + "probability": 0.662 + }, + { + "start": 15391.04, + "end": 15393.08, + "probability": 0.9942 + }, + { + "start": 15393.08, + "end": 15395.6, + "probability": 0.9886 + }, + { + "start": 15395.74, + "end": 15396.84, + "probability": 0.8595 + }, + { + "start": 15397.98, + "end": 15401.4, + "probability": 0.9166 + }, + { + "start": 15401.4, + "end": 15404.42, + "probability": 0.8194 + }, + { + "start": 15404.84, + "end": 15408.02, + "probability": 0.8091 + }, + { + "start": 15408.02, + "end": 15410.76, + "probability": 0.9564 + }, + { + "start": 15411.22, + "end": 15414.08, + "probability": 0.9585 + }, + { + "start": 15414.08, + "end": 15418.14, + "probability": 0.9807 + }, + { + "start": 15418.3, + "end": 15418.52, + "probability": 0.2733 + }, + { + "start": 15418.52, + "end": 15420.08, + "probability": 0.8982 + }, + { + "start": 15420.16, + "end": 15421.24, + "probability": 0.7711 + }, + { + "start": 15421.4, + "end": 15421.98, + "probability": 0.6673 + }, + { + "start": 15422.1, + "end": 15423.4, + "probability": 0.9748 + }, + { + "start": 15423.52, + "end": 15424.22, + "probability": 0.5788 + }, + { + "start": 15424.7, + "end": 15425.88, + "probability": 0.7887 + }, + { + "start": 15426.04, + "end": 15426.92, + "probability": 0.9478 + }, + { + "start": 15427.26, + "end": 15429.02, + "probability": 0.9875 + }, + { + "start": 15429.16, + "end": 15429.76, + "probability": 0.9533 + }, + { + "start": 15430.24, + "end": 15431.78, + "probability": 0.7853 + }, + { + "start": 15432.3, + "end": 15437.44, + "probability": 0.8421 + }, + { + "start": 15438.18, + "end": 15438.6, + "probability": 0.1922 + }, + { + "start": 15438.6, + "end": 15438.6, + "probability": 0.3527 + }, + { + "start": 15438.6, + "end": 15439.36, + "probability": 0.5434 + }, + { + "start": 15439.36, + "end": 15439.66, + "probability": 0.6686 + }, + { + "start": 15439.88, + "end": 15441.34, + "probability": 0.9053 + }, + { + "start": 15441.76, + "end": 15442.4, + "probability": 0.8063 + }, + { + "start": 15442.8, + "end": 15444.26, + "probability": 0.96 + }, + { + "start": 15444.86, + "end": 15447.52, + "probability": 0.8406 + }, + { + "start": 15447.94, + "end": 15449.42, + "probability": 0.3463 + }, + { + "start": 15449.42, + "end": 15450.22, + "probability": 0.7596 + }, + { + "start": 15450.56, + "end": 15451.72, + "probability": 0.7422 + }, + { + "start": 15451.74, + "end": 15452.42, + "probability": 0.9058 + }, + { + "start": 15452.86, + "end": 15453.5, + "probability": 0.6595 + }, + { + "start": 15453.5, + "end": 15453.5, + "probability": 0.9486 + }, + { + "start": 15453.5, + "end": 15454.06, + "probability": 0.9656 + }, + { + "start": 15455.12, + "end": 15455.88, + "probability": 0.9535 + }, + { + "start": 15457.34, + "end": 15459.3, + "probability": 0.6364 + }, + { + "start": 15459.3, + "end": 15459.3, + "probability": 0.5616 + }, + { + "start": 15459.3, + "end": 15460.88, + "probability": 0.6604 + }, + { + "start": 15461.18, + "end": 15463.64, + "probability": 0.8546 + }, + { + "start": 15463.76, + "end": 15465.12, + "probability": 0.8165 + }, + { + "start": 15466.84, + "end": 15466.98, + "probability": 0.318 + }, + { + "start": 15467.82, + "end": 15470.8, + "probability": 0.194 + }, + { + "start": 15471.66, + "end": 15474.07, + "probability": 0.0208 + }, + { + "start": 15480.77, + "end": 15481.12, + "probability": 0.2044 + }, + { + "start": 15481.12, + "end": 15482.92, + "probability": 0.6276 + }, + { + "start": 15484.16, + "end": 15486.94, + "probability": 0.5798 + }, + { + "start": 15487.02, + "end": 15488.72, + "probability": 0.2217 + }, + { + "start": 15489.34, + "end": 15490.88, + "probability": 0.9574 + }, + { + "start": 15491.2, + "end": 15494.48, + "probability": 0.9424 + }, + { + "start": 15495.24, + "end": 15498.5, + "probability": 0.9473 + }, + { + "start": 15498.5, + "end": 15503.66, + "probability": 0.9896 + }, + { + "start": 15503.66, + "end": 15508.06, + "probability": 0.8314 + }, + { + "start": 15508.32, + "end": 15514.32, + "probability": 0.8077 + }, + { + "start": 15514.36, + "end": 15515.02, + "probability": 0.8759 + }, + { + "start": 15527.88, + "end": 15530.4, + "probability": 0.5599 + }, + { + "start": 15531.34, + "end": 15535.1, + "probability": 0.6766 + }, + { + "start": 15535.24, + "end": 15537.86, + "probability": 0.9176 + }, + { + "start": 15538.56, + "end": 15540.76, + "probability": 0.8956 + }, + { + "start": 15541.48, + "end": 15542.5, + "probability": 0.1105 + }, + { + "start": 15543.24, + "end": 15545.56, + "probability": 0.9834 + }, + { + "start": 15545.56, + "end": 15548.18, + "probability": 0.965 + }, + { + "start": 15548.56, + "end": 15552.76, + "probability": 0.9956 + }, + { + "start": 15553.14, + "end": 15556.16, + "probability": 0.9709 + }, + { + "start": 15556.36, + "end": 15556.68, + "probability": 0.6073 + }, + { + "start": 15557.98, + "end": 15561.04, + "probability": 0.9148 + }, + { + "start": 15561.06, + "end": 15564.76, + "probability": 0.9957 + }, + { + "start": 15565.36, + "end": 15568.08, + "probability": 0.4546 + }, + { + "start": 15568.24, + "end": 15569.48, + "probability": 0.3496 + }, + { + "start": 15570.75, + "end": 15574.72, + "probability": 0.9795 + }, + { + "start": 15576.06, + "end": 15576.06, + "probability": 0.3246 + }, + { + "start": 15576.06, + "end": 15579.42, + "probability": 0.8128 + }, + { + "start": 15579.88, + "end": 15583.46, + "probability": 0.9504 + }, + { + "start": 15583.54, + "end": 15584.3, + "probability": 0.6543 + }, + { + "start": 15586.02, + "end": 15590.06, + "probability": 0.8685 + }, + { + "start": 15590.2, + "end": 15591.37, + "probability": 0.1728 + }, + { + "start": 15592.18, + "end": 15594.16, + "probability": 0.7474 + }, + { + "start": 15594.84, + "end": 15596.56, + "probability": 0.8526 + }, + { + "start": 15607.24, + "end": 15609.32, + "probability": 0.9666 + }, + { + "start": 15609.38, + "end": 15610.24, + "probability": 0.8836 + }, + { + "start": 15611.25, + "end": 15614.7, + "probability": 0.5028 + }, + { + "start": 15614.74, + "end": 15616.99, + "probability": 0.886 + }, + { + "start": 15617.98, + "end": 15619.18, + "probability": 0.9434 + }, + { + "start": 15619.28, + "end": 15621.14, + "probability": 0.934 + }, + { + "start": 15621.22, + "end": 15621.8, + "probability": 0.7044 + }, + { + "start": 15623.0, + "end": 15624.16, + "probability": 0.4346 + }, + { + "start": 15624.72, + "end": 15625.28, + "probability": 0.8156 + }, + { + "start": 15626.7, + "end": 15627.56, + "probability": 0.7213 + }, + { + "start": 15631.48, + "end": 15634.46, + "probability": 0.9908 + }, + { + "start": 15636.3, + "end": 15639.98, + "probability": 0.7555 + }, + { + "start": 15641.04, + "end": 15644.74, + "probability": 0.9919 + }, + { + "start": 15646.58, + "end": 15649.8, + "probability": 0.9981 + }, + { + "start": 15651.24, + "end": 15653.44, + "probability": 0.9987 + }, + { + "start": 15655.0, + "end": 15656.48, + "probability": 0.9385 + }, + { + "start": 15659.32, + "end": 15661.34, + "probability": 0.8611 + }, + { + "start": 15663.38, + "end": 15670.08, + "probability": 0.6042 + }, + { + "start": 15671.78, + "end": 15672.69, + "probability": 0.9009 + }, + { + "start": 15674.1, + "end": 15675.78, + "probability": 0.9823 + }, + { + "start": 15676.34, + "end": 15680.68, + "probability": 0.7508 + }, + { + "start": 15681.18, + "end": 15682.04, + "probability": 0.8484 + }, + { + "start": 15682.1, + "end": 15682.72, + "probability": 0.9204 + }, + { + "start": 15682.86, + "end": 15683.86, + "probability": 0.9108 + }, + { + "start": 15685.6, + "end": 15687.54, + "probability": 0.9156 + }, + { + "start": 15690.18, + "end": 15691.28, + "probability": 0.9698 + }, + { + "start": 15691.96, + "end": 15693.4, + "probability": 0.978 + }, + { + "start": 15694.48, + "end": 15695.42, + "probability": 0.9744 + }, + { + "start": 15698.56, + "end": 15701.9, + "probability": 0.9092 + }, + { + "start": 15702.5, + "end": 15705.48, + "probability": 0.9888 + }, + { + "start": 15707.76, + "end": 15713.4, + "probability": 0.9963 + }, + { + "start": 15713.7, + "end": 15714.84, + "probability": 0.9687 + }, + { + "start": 15716.36, + "end": 15718.5, + "probability": 0.8782 + }, + { + "start": 15719.74, + "end": 15725.06, + "probability": 0.9878 + }, + { + "start": 15726.1, + "end": 15729.36, + "probability": 0.9941 + }, + { + "start": 15731.16, + "end": 15732.88, + "probability": 0.9895 + }, + { + "start": 15733.82, + "end": 15737.76, + "probability": 0.9702 + }, + { + "start": 15739.48, + "end": 15741.3, + "probability": 0.9995 + }, + { + "start": 15741.44, + "end": 15744.47, + "probability": 0.9845 + }, + { + "start": 15747.34, + "end": 15752.78, + "probability": 0.9909 + }, + { + "start": 15752.94, + "end": 15753.48, + "probability": 0.5006 + }, + { + "start": 15753.56, + "end": 15753.82, + "probability": 0.9249 + }, + { + "start": 15753.84, + "end": 15754.8, + "probability": 0.722 + }, + { + "start": 15754.88, + "end": 15756.34, + "probability": 0.5208 + }, + { + "start": 15756.44, + "end": 15763.58, + "probability": 0.6997 + }, + { + "start": 15763.76, + "end": 15764.0, + "probability": 0.8079 + }, + { + "start": 15764.0, + "end": 15764.82, + "probability": 0.9634 + }, + { + "start": 15764.94, + "end": 15767.1, + "probability": 0.9909 + }, + { + "start": 15768.2, + "end": 15769.36, + "probability": 0.7384 + }, + { + "start": 15771.0, + "end": 15772.88, + "probability": 0.7183 + }, + { + "start": 15774.64, + "end": 15779.76, + "probability": 0.9312 + }, + { + "start": 15779.94, + "end": 15781.74, + "probability": 0.8919 + }, + { + "start": 15781.82, + "end": 15784.22, + "probability": 0.9561 + }, + { + "start": 15785.36, + "end": 15786.34, + "probability": 0.8638 + }, + { + "start": 15787.18, + "end": 15788.34, + "probability": 0.8875 + }, + { + "start": 15788.4, + "end": 15790.68, + "probability": 0.9869 + }, + { + "start": 15790.74, + "end": 15791.9, + "probability": 0.666 + }, + { + "start": 15793.18, + "end": 15794.86, + "probability": 0.9941 + }, + { + "start": 15794.94, + "end": 15796.46, + "probability": 0.9784 + }, + { + "start": 15796.48, + "end": 15798.68, + "probability": 0.9963 + }, + { + "start": 15799.3, + "end": 15801.76, + "probability": 0.9985 + }, + { + "start": 15803.22, + "end": 15804.36, + "probability": 0.5786 + }, + { + "start": 15804.5, + "end": 15805.22, + "probability": 0.9541 + }, + { + "start": 15806.26, + "end": 15810.84, + "probability": 0.9651 + }, + { + "start": 15812.18, + "end": 15814.04, + "probability": 0.9706 + }, + { + "start": 15814.88, + "end": 15815.96, + "probability": 0.9536 + }, + { + "start": 15816.38, + "end": 15819.72, + "probability": 0.9755 + }, + { + "start": 15822.16, + "end": 15826.8, + "probability": 0.9618 + }, + { + "start": 15827.54, + "end": 15829.62, + "probability": 0.7919 + }, + { + "start": 15829.94, + "end": 15834.5, + "probability": 0.903 + }, + { + "start": 15834.88, + "end": 15839.28, + "probability": 0.9937 + }, + { + "start": 15839.4, + "end": 15840.38, + "probability": 0.9865 + }, + { + "start": 15842.02, + "end": 15844.32, + "probability": 0.9792 + }, + { + "start": 15844.5, + "end": 15846.82, + "probability": 0.9971 + }, + { + "start": 15847.9, + "end": 15849.14, + "probability": 0.9502 + }, + { + "start": 15850.1, + "end": 15851.84, + "probability": 0.9904 + }, + { + "start": 15852.66, + "end": 15854.96, + "probability": 0.9018 + }, + { + "start": 15855.06, + "end": 15855.62, + "probability": 0.2173 + }, + { + "start": 15856.04, + "end": 15859.14, + "probability": 0.9713 + }, + { + "start": 15860.54, + "end": 15862.38, + "probability": 0.9451 + }, + { + "start": 15862.4, + "end": 15863.88, + "probability": 0.8677 + }, + { + "start": 15865.28, + "end": 15866.2, + "probability": 0.7798 + }, + { + "start": 15867.24, + "end": 15868.4, + "probability": 0.9615 + }, + { + "start": 15868.48, + "end": 15869.52, + "probability": 0.9361 + }, + { + "start": 15869.56, + "end": 15870.42, + "probability": 0.9752 + }, + { + "start": 15870.5, + "end": 15871.9, + "probability": 0.9425 + }, + { + "start": 15872.78, + "end": 15877.0, + "probability": 0.6913 + }, + { + "start": 15878.74, + "end": 15878.94, + "probability": 0.4934 + }, + { + "start": 15879.26, + "end": 15880.62, + "probability": 0.6293 + }, + { + "start": 15880.98, + "end": 15881.94, + "probability": 0.6808 + }, + { + "start": 15882.08, + "end": 15882.29, + "probability": 0.8136 + }, + { + "start": 15882.92, + "end": 15885.46, + "probability": 0.9834 + }, + { + "start": 15885.54, + "end": 15886.34, + "probability": 0.8075 + }, + { + "start": 15887.98, + "end": 15890.22, + "probability": 0.9893 + }, + { + "start": 15891.8, + "end": 15895.12, + "probability": 0.9922 + }, + { + "start": 15896.3, + "end": 15900.16, + "probability": 0.9973 + }, + { + "start": 15900.22, + "end": 15901.62, + "probability": 0.9988 + }, + { + "start": 15901.66, + "end": 15903.26, + "probability": 0.9949 + }, + { + "start": 15904.0, + "end": 15905.2, + "probability": 0.9775 + }, + { + "start": 15906.8, + "end": 15907.56, + "probability": 0.7906 + }, + { + "start": 15909.46, + "end": 15911.54, + "probability": 0.9946 + }, + { + "start": 15912.32, + "end": 15912.82, + "probability": 0.7681 + }, + { + "start": 15913.62, + "end": 15915.38, + "probability": 0.8818 + }, + { + "start": 15915.44, + "end": 15919.76, + "probability": 0.9679 + }, + { + "start": 15920.44, + "end": 15922.54, + "probability": 0.9623 + }, + { + "start": 15924.1, + "end": 15925.76, + "probability": 0.9907 + }, + { + "start": 15925.88, + "end": 15928.12, + "probability": 0.9845 + }, + { + "start": 15929.1, + "end": 15929.64, + "probability": 0.9856 + }, + { + "start": 15930.66, + "end": 15933.32, + "probability": 0.9002 + }, + { + "start": 15935.38, + "end": 15936.26, + "probability": 0.9561 + }, + { + "start": 15936.46, + "end": 15939.54, + "probability": 0.9876 + }, + { + "start": 15939.88, + "end": 15941.08, + "probability": 0.916 + }, + { + "start": 15942.6, + "end": 15944.1, + "probability": 0.9961 + }, + { + "start": 15944.2, + "end": 15945.38, + "probability": 0.9554 + }, + { + "start": 15945.4, + "end": 15946.58, + "probability": 0.99 + }, + { + "start": 15948.98, + "end": 15954.24, + "probability": 0.9954 + }, + { + "start": 15955.02, + "end": 15956.9, + "probability": 0.8816 + }, + { + "start": 15958.42, + "end": 15959.82, + "probability": 0.9692 + }, + { + "start": 15960.0, + "end": 15964.76, + "probability": 0.9446 + }, + { + "start": 15965.62, + "end": 15966.76, + "probability": 0.9858 + }, + { + "start": 15966.92, + "end": 15969.36, + "probability": 0.816 + }, + { + "start": 15969.98, + "end": 15971.74, + "probability": 0.8802 + }, + { + "start": 15973.02, + "end": 15973.7, + "probability": 0.9603 + }, + { + "start": 15974.78, + "end": 15976.5, + "probability": 0.9231 + }, + { + "start": 15977.5, + "end": 15979.06, + "probability": 0.9961 + }, + { + "start": 15982.37, + "end": 15984.07, + "probability": 0.9937 + }, + { + "start": 15984.24, + "end": 15988.16, + "probability": 0.924 + }, + { + "start": 15989.48, + "end": 15990.72, + "probability": 0.9978 + }, + { + "start": 15991.7, + "end": 15993.52, + "probability": 0.8805 + }, + { + "start": 15995.26, + "end": 16001.74, + "probability": 0.9784 + }, + { + "start": 16002.34, + "end": 16003.26, + "probability": 0.3473 + }, + { + "start": 16003.88, + "end": 16004.58, + "probability": 0.7581 + }, + { + "start": 16005.66, + "end": 16007.6, + "probability": 0.9972 + }, + { + "start": 16007.72, + "end": 16009.32, + "probability": 0.9607 + }, + { + "start": 16010.76, + "end": 16011.84, + "probability": 0.9947 + }, + { + "start": 16012.52, + "end": 16015.44, + "probability": 0.9977 + }, + { + "start": 16016.22, + "end": 16017.41, + "probability": 0.9668 + }, + { + "start": 16018.4, + "end": 16021.08, + "probability": 0.9847 + }, + { + "start": 16021.1, + "end": 16021.72, + "probability": 0.493 + }, + { + "start": 16021.84, + "end": 16022.68, + "probability": 0.9418 + }, + { + "start": 16024.14, + "end": 16026.0, + "probability": 0.9865 + }, + { + "start": 16027.38, + "end": 16028.06, + "probability": 0.9724 + }, + { + "start": 16029.6, + "end": 16030.24, + "probability": 0.4786 + }, + { + "start": 16030.28, + "end": 16032.11, + "probability": 0.9516 + }, + { + "start": 16032.32, + "end": 16033.31, + "probability": 0.9861 + }, + { + "start": 16033.78, + "end": 16035.6, + "probability": 0.9873 + }, + { + "start": 16036.26, + "end": 16037.94, + "probability": 0.6949 + }, + { + "start": 16038.76, + "end": 16040.34, + "probability": 0.9572 + }, + { + "start": 16042.58, + "end": 16043.8, + "probability": 0.9965 + }, + { + "start": 16044.6, + "end": 16047.54, + "probability": 0.812 + }, + { + "start": 16048.68, + "end": 16052.74, + "probability": 0.9787 + }, + { + "start": 16053.26, + "end": 16053.84, + "probability": 0.9439 + }, + { + "start": 16054.6, + "end": 16056.74, + "probability": 0.9843 + }, + { + "start": 16056.86, + "end": 16057.26, + "probability": 0.401 + }, + { + "start": 16057.52, + "end": 16057.82, + "probability": 0.506 + }, + { + "start": 16059.2, + "end": 16062.58, + "probability": 0.853 + }, + { + "start": 16063.74, + "end": 16066.38, + "probability": 0.9301 + }, + { + "start": 16067.1, + "end": 16067.82, + "probability": 0.9762 + }, + { + "start": 16068.4, + "end": 16069.28, + "probability": 0.9907 + }, + { + "start": 16070.48, + "end": 16071.66, + "probability": 0.9591 + }, + { + "start": 16073.5, + "end": 16075.92, + "probability": 0.9614 + }, + { + "start": 16076.8, + "end": 16078.76, + "probability": 0.9408 + }, + { + "start": 16079.32, + "end": 16083.76, + "probability": 0.991 + }, + { + "start": 16084.66, + "end": 16086.3, + "probability": 0.9984 + }, + { + "start": 16086.52, + "end": 16089.38, + "probability": 0.9966 + }, + { + "start": 16091.58, + "end": 16092.2, + "probability": 0.7565 + }, + { + "start": 16093.74, + "end": 16096.94, + "probability": 0.7314 + }, + { + "start": 16097.12, + "end": 16100.46, + "probability": 0.8997 + }, + { + "start": 16101.4, + "end": 16104.8, + "probability": 0.7948 + }, + { + "start": 16105.44, + "end": 16107.1, + "probability": 0.9392 + }, + { + "start": 16108.16, + "end": 16109.28, + "probability": 0.8391 + }, + { + "start": 16110.78, + "end": 16112.6, + "probability": 0.9823 + }, + { + "start": 16114.0, + "end": 16114.76, + "probability": 0.8464 + }, + { + "start": 16114.82, + "end": 16116.81, + "probability": 0.9287 + }, + { + "start": 16116.98, + "end": 16117.98, + "probability": 0.6818 + }, + { + "start": 16118.1, + "end": 16118.92, + "probability": 0.9126 + }, + { + "start": 16120.1, + "end": 16120.92, + "probability": 0.931 + }, + { + "start": 16121.78, + "end": 16123.72, + "probability": 0.9928 + }, + { + "start": 16123.9, + "end": 16124.66, + "probability": 0.9881 + }, + { + "start": 16125.14, + "end": 16126.5, + "probability": 0.9863 + }, + { + "start": 16127.18, + "end": 16131.9, + "probability": 0.8701 + }, + { + "start": 16132.0, + "end": 16133.9, + "probability": 0.772 + }, + { + "start": 16134.4, + "end": 16135.86, + "probability": 0.982 + }, + { + "start": 16136.24, + "end": 16137.54, + "probability": 0.8281 + }, + { + "start": 16138.46, + "end": 16141.01, + "probability": 0.9863 + }, + { + "start": 16142.42, + "end": 16143.58, + "probability": 0.9878 + }, + { + "start": 16145.72, + "end": 16147.7, + "probability": 0.9968 + }, + { + "start": 16149.7, + "end": 16152.74, + "probability": 0.9446 + }, + { + "start": 16153.36, + "end": 16155.2, + "probability": 0.8747 + }, + { + "start": 16155.2, + "end": 16158.36, + "probability": 0.9982 + }, + { + "start": 16161.08, + "end": 16163.46, + "probability": 0.9972 + }, + { + "start": 16165.28, + "end": 16165.64, + "probability": 0.8108 + }, + { + "start": 16167.02, + "end": 16168.14, + "probability": 0.993 + }, + { + "start": 16169.16, + "end": 16171.88, + "probability": 0.7153 + }, + { + "start": 16172.86, + "end": 16176.56, + "probability": 0.9328 + }, + { + "start": 16178.54, + "end": 16181.74, + "probability": 0.9938 + }, + { + "start": 16182.7, + "end": 16184.66, + "probability": 0.9869 + }, + { + "start": 16185.54, + "end": 16191.42, + "probability": 0.9966 + }, + { + "start": 16191.42, + "end": 16195.1, + "probability": 0.9961 + }, + { + "start": 16195.86, + "end": 16198.44, + "probability": 0.8496 + }, + { + "start": 16199.7, + "end": 16200.5, + "probability": 0.0181 + }, + { + "start": 16201.28, + "end": 16202.86, + "probability": 0.5675 + }, + { + "start": 16202.9, + "end": 16203.08, + "probability": 0.2803 + }, + { + "start": 16203.08, + "end": 16203.08, + "probability": 0.2747 + }, + { + "start": 16203.08, + "end": 16205.82, + "probability": 0.0739 + }, + { + "start": 16205.82, + "end": 16206.72, + "probability": 0.1603 + }, + { + "start": 16207.56, + "end": 16209.52, + "probability": 0.9812 + }, + { + "start": 16209.52, + "end": 16213.52, + "probability": 0.0671 + }, + { + "start": 16213.52, + "end": 16215.64, + "probability": 0.9585 + }, + { + "start": 16216.42, + "end": 16218.08, + "probability": 0.8108 + }, + { + "start": 16218.23, + "end": 16219.04, + "probability": 0.5095 + }, + { + "start": 16219.12, + "end": 16222.26, + "probability": 0.2359 + }, + { + "start": 16222.26, + "end": 16222.8, + "probability": 0.3738 + }, + { + "start": 16224.64, + "end": 16229.82, + "probability": 0.8359 + }, + { + "start": 16229.82, + "end": 16232.31, + "probability": 0.9967 + }, + { + "start": 16233.6, + "end": 16234.62, + "probability": 0.5782 + }, + { + "start": 16235.4, + "end": 16239.54, + "probability": 0.9906 + }, + { + "start": 16239.98, + "end": 16246.2, + "probability": 0.9971 + }, + { + "start": 16246.2, + "end": 16253.74, + "probability": 0.9588 + }, + { + "start": 16253.94, + "end": 16255.32, + "probability": 0.748 + }, + { + "start": 16256.64, + "end": 16258.86, + "probability": 0.8012 + }, + { + "start": 16260.45, + "end": 16262.52, + "probability": 0.922 + }, + { + "start": 16262.6, + "end": 16264.64, + "probability": 0.9648 + }, + { + "start": 16265.4, + "end": 16269.42, + "probability": 0.988 + }, + { + "start": 16270.04, + "end": 16273.4, + "probability": 0.7904 + }, + { + "start": 16274.06, + "end": 16276.52, + "probability": 0.9926 + }, + { + "start": 16277.26, + "end": 16279.32, + "probability": 0.7917 + }, + { + "start": 16279.44, + "end": 16283.28, + "probability": 0.9331 + }, + { + "start": 16283.68, + "end": 16287.2, + "probability": 0.8535 + }, + { + "start": 16287.68, + "end": 16288.02, + "probability": 0.7319 + }, + { + "start": 16288.08, + "end": 16288.36, + "probability": 0.446 + }, + { + "start": 16288.36, + "end": 16290.28, + "probability": 0.8203 + }, + { + "start": 16290.7, + "end": 16292.66, + "probability": 0.8064 + }, + { + "start": 16293.14, + "end": 16295.0, + "probability": 0.8524 + }, + { + "start": 16299.4, + "end": 16301.32, + "probability": 0.6279 + }, + { + "start": 16302.0, + "end": 16302.68, + "probability": 0.1844 + }, + { + "start": 16304.96, + "end": 16305.61, + "probability": 0.5807 + }, + { + "start": 16312.46, + "end": 16314.48, + "probability": 0.3369 + }, + { + "start": 16316.02, + "end": 16316.02, + "probability": 0.0204 + }, + { + "start": 16316.1, + "end": 16317.58, + "probability": 0.1273 + }, + { + "start": 16319.74, + "end": 16325.76, + "probability": 0.5116 + }, + { + "start": 16327.0, + "end": 16327.84, + "probability": 0.757 + }, + { + "start": 16327.84, + "end": 16328.48, + "probability": 0.2051 + }, + { + "start": 16329.96, + "end": 16332.6, + "probability": 0.6309 + }, + { + "start": 16337.66, + "end": 16339.08, + "probability": 0.8408 + }, + { + "start": 16340.68, + "end": 16344.14, + "probability": 0.9229 + }, + { + "start": 16344.3, + "end": 16347.44, + "probability": 0.9861 + }, + { + "start": 16347.54, + "end": 16349.28, + "probability": 0.3111 + }, + { + "start": 16349.4, + "end": 16351.2, + "probability": 0.8836 + }, + { + "start": 16351.48, + "end": 16353.42, + "probability": 0.1295 + }, + { + "start": 16353.54, + "end": 16354.54, + "probability": 0.3663 + }, + { + "start": 16354.56, + "end": 16355.04, + "probability": 0.5119 + }, + { + "start": 16355.2, + "end": 16356.5, + "probability": 0.546 + }, + { + "start": 16356.64, + "end": 16362.06, + "probability": 0.9572 + }, + { + "start": 16363.52, + "end": 16366.41, + "probability": 0.9763 + }, + { + "start": 16366.58, + "end": 16368.2, + "probability": 0.8793 + }, + { + "start": 16369.88, + "end": 16371.18, + "probability": 0.7666 + }, + { + "start": 16371.84, + "end": 16377.36, + "probability": 0.9206 + }, + { + "start": 16378.1, + "end": 16380.22, + "probability": 0.9956 + }, + { + "start": 16381.0, + "end": 16389.88, + "probability": 0.8364 + }, + { + "start": 16390.66, + "end": 16390.78, + "probability": 0.5006 + }, + { + "start": 16391.56, + "end": 16394.12, + "probability": 0.9863 + }, + { + "start": 16394.22, + "end": 16394.76, + "probability": 0.5824 + }, + { + "start": 16394.84, + "end": 16396.22, + "probability": 0.8907 + }, + { + "start": 16396.82, + "end": 16398.69, + "probability": 0.8848 + }, + { + "start": 16400.08, + "end": 16401.54, + "probability": 0.9516 + }, + { + "start": 16401.92, + "end": 16405.3, + "probability": 0.953 + }, + { + "start": 16405.98, + "end": 16408.4, + "probability": 0.6892 + }, + { + "start": 16408.68, + "end": 16413.44, + "probability": 0.6231 + }, + { + "start": 16413.62, + "end": 16417.58, + "probability": 0.862 + }, + { + "start": 16417.84, + "end": 16420.96, + "probability": 0.38 + }, + { + "start": 16421.0, + "end": 16422.56, + "probability": 0.8765 + }, + { + "start": 16422.74, + "end": 16423.16, + "probability": 0.2237 + }, + { + "start": 16423.5, + "end": 16424.78, + "probability": 0.8742 + }, + { + "start": 16425.08, + "end": 16425.7, + "probability": 0.7324 + }, + { + "start": 16425.94, + "end": 16427.08, + "probability": 0.9958 + }, + { + "start": 16427.1, + "end": 16428.68, + "probability": 0.5076 + }, + { + "start": 16428.9, + "end": 16430.22, + "probability": 0.9929 + }, + { + "start": 16431.0, + "end": 16431.12, + "probability": 0.0351 + }, + { + "start": 16431.78, + "end": 16433.12, + "probability": 0.9927 + }, + { + "start": 16433.12, + "end": 16433.92, + "probability": 0.0691 + }, + { + "start": 16434.02, + "end": 16434.48, + "probability": 0.4638 + }, + { + "start": 16434.62, + "end": 16434.9, + "probability": 0.2515 + }, + { + "start": 16435.16, + "end": 16435.54, + "probability": 0.2016 + }, + { + "start": 16436.7, + "end": 16439.3, + "probability": 0.7861 + }, + { + "start": 16442.02, + "end": 16443.88, + "probability": 0.7577 + }, + { + "start": 16445.18, + "end": 16446.86, + "probability": 0.8762 + }, + { + "start": 16448.52, + "end": 16450.92, + "probability": 0.9809 + }, + { + "start": 16450.96, + "end": 16451.74, + "probability": 0.8806 + }, + { + "start": 16451.98, + "end": 16452.8, + "probability": 0.7061 + }, + { + "start": 16453.62, + "end": 16458.92, + "probability": 0.9819 + }, + { + "start": 16458.92, + "end": 16461.55, + "probability": 0.9795 + }, + { + "start": 16462.7, + "end": 16465.86, + "probability": 0.8876 + }, + { + "start": 16466.52, + "end": 16471.6, + "probability": 0.9606 + }, + { + "start": 16472.46, + "end": 16474.42, + "probability": 0.9912 + }, + { + "start": 16476.26, + "end": 16478.16, + "probability": 0.7234 + }, + { + "start": 16480.78, + "end": 16483.72, + "probability": 0.9902 + }, + { + "start": 16485.16, + "end": 16490.24, + "probability": 0.9845 + }, + { + "start": 16490.82, + "end": 16493.14, + "probability": 0.7599 + }, + { + "start": 16494.14, + "end": 16495.98, + "probability": 0.3066 + }, + { + "start": 16496.12, + "end": 16502.26, + "probability": 0.7896 + }, + { + "start": 16503.0, + "end": 16504.04, + "probability": 0.1184 + }, + { + "start": 16504.74, + "end": 16507.02, + "probability": 0.3066 + }, + { + "start": 16507.02, + "end": 16508.58, + "probability": 0.1948 + }, + { + "start": 16509.12, + "end": 16510.04, + "probability": 0.3847 + }, + { + "start": 16510.38, + "end": 16511.35, + "probability": 0.5386 + }, + { + "start": 16511.36, + "end": 16512.48, + "probability": 0.7604 + }, + { + "start": 16514.28, + "end": 16515.82, + "probability": 0.9929 + }, + { + "start": 16515.92, + "end": 16517.34, + "probability": 0.9391 + }, + { + "start": 16518.7, + "end": 16521.98, + "probability": 0.7967 + }, + { + "start": 16522.85, + "end": 16524.74, + "probability": 0.0226 + }, + { + "start": 16524.74, + "end": 16524.96, + "probability": 0.1924 + }, + { + "start": 16525.74, + "end": 16527.03, + "probability": 0.433 + }, + { + "start": 16527.76, + "end": 16530.54, + "probability": 0.1434 + }, + { + "start": 16530.54, + "end": 16530.56, + "probability": 0.0506 + }, + { + "start": 16530.56, + "end": 16530.64, + "probability": 0.0927 + }, + { + "start": 16530.64, + "end": 16530.9, + "probability": 0.2944 + }, + { + "start": 16531.56, + "end": 16533.22, + "probability": 0.8955 + }, + { + "start": 16534.78, + "end": 16537.5, + "probability": 0.9012 + }, + { + "start": 16537.74, + "end": 16538.36, + "probability": 0.7371 + }, + { + "start": 16538.56, + "end": 16538.8, + "probability": 0.7842 + }, + { + "start": 16538.94, + "end": 16539.62, + "probability": 0.7599 + }, + { + "start": 16539.68, + "end": 16541.1, + "probability": 0.9531 + }, + { + "start": 16541.72, + "end": 16543.1, + "probability": 0.742 + }, + { + "start": 16543.28, + "end": 16544.96, + "probability": 0.8435 + }, + { + "start": 16545.1, + "end": 16546.78, + "probability": 0.6818 + }, + { + "start": 16547.08, + "end": 16548.42, + "probability": 0.7445 + }, + { + "start": 16548.72, + "end": 16550.5, + "probability": 0.5923 + }, + { + "start": 16550.56, + "end": 16552.48, + "probability": 0.4666 + }, + { + "start": 16552.9, + "end": 16554.2, + "probability": 0.4633 + }, + { + "start": 16555.4, + "end": 16556.32, + "probability": 0.1665 + }, + { + "start": 16556.52, + "end": 16559.24, + "probability": 0.8682 + }, + { + "start": 16560.36, + "end": 16561.76, + "probability": 0.9702 + }, + { + "start": 16562.32, + "end": 16563.2, + "probability": 0.7566 + }, + { + "start": 16563.2, + "end": 16563.28, + "probability": 0.6612 + }, + { + "start": 16563.28, + "end": 16563.64, + "probability": 0.5517 + }, + { + "start": 16563.76, + "end": 16565.46, + "probability": 0.3926 + }, + { + "start": 16565.46, + "end": 16569.06, + "probability": 0.9405 + }, + { + "start": 16569.54, + "end": 16571.13, + "probability": 0.9438 + }, + { + "start": 16571.38, + "end": 16571.64, + "probability": 0.4076 + }, + { + "start": 16571.72, + "end": 16578.2, + "probability": 0.9823 + }, + { + "start": 16578.38, + "end": 16582.4, + "probability": 0.9612 + }, + { + "start": 16582.4, + "end": 16584.76, + "probability": 0.9867 + }, + { + "start": 16585.48, + "end": 16587.22, + "probability": 0.6465 + }, + { + "start": 16587.34, + "end": 16588.86, + "probability": 0.8745 + }, + { + "start": 16593.51, + "end": 16596.3, + "probability": 0.7422 + }, + { + "start": 16608.36, + "end": 16608.64, + "probability": 0.1093 + }, + { + "start": 16612.42, + "end": 16613.28, + "probability": 0.6054 + }, + { + "start": 16613.94, + "end": 16615.22, + "probability": 0.5917 + }, + { + "start": 16616.56, + "end": 16618.32, + "probability": 0.7668 + }, + { + "start": 16620.76, + "end": 16621.48, + "probability": 0.7873 + }, + { + "start": 16622.16, + "end": 16630.32, + "probability": 0.9868 + }, + { + "start": 16632.6, + "end": 16634.74, + "probability": 0.58 + }, + { + "start": 16636.32, + "end": 16641.38, + "probability": 0.6666 + }, + { + "start": 16643.06, + "end": 16647.86, + "probability": 0.9285 + }, + { + "start": 16647.86, + "end": 16649.48, + "probability": 0.8784 + }, + { + "start": 16649.72, + "end": 16651.64, + "probability": 0.8124 + }, + { + "start": 16652.5, + "end": 16655.08, + "probability": 0.9956 + }, + { + "start": 16655.92, + "end": 16657.86, + "probability": 0.7586 + }, + { + "start": 16658.0, + "end": 16661.18, + "probability": 0.8945 + }, + { + "start": 16661.76, + "end": 16662.92, + "probability": 0.9873 + }, + { + "start": 16663.48, + "end": 16665.3, + "probability": 0.9823 + }, + { + "start": 16665.48, + "end": 16666.21, + "probability": 0.8904 + }, + { + "start": 16666.68, + "end": 16668.54, + "probability": 0.9307 + }, + { + "start": 16668.58, + "end": 16669.9, + "probability": 0.9678 + }, + { + "start": 16669.96, + "end": 16670.74, + "probability": 0.9069 + }, + { + "start": 16672.62, + "end": 16676.06, + "probability": 0.9976 + }, + { + "start": 16677.66, + "end": 16678.7, + "probability": 0.6324 + }, + { + "start": 16678.84, + "end": 16680.08, + "probability": 0.6808 + }, + { + "start": 16680.18, + "end": 16681.55, + "probability": 0.8534 + }, + { + "start": 16682.46, + "end": 16686.06, + "probability": 0.9143 + }, + { + "start": 16687.56, + "end": 16688.38, + "probability": 0.7977 + }, + { + "start": 16689.54, + "end": 16691.46, + "probability": 0.8894 + }, + { + "start": 16691.56, + "end": 16695.24, + "probability": 0.96 + }, + { + "start": 16695.84, + "end": 16698.98, + "probability": 0.8999 + }, + { + "start": 16699.24, + "end": 16700.04, + "probability": 0.8375 + }, + { + "start": 16700.62, + "end": 16704.82, + "probability": 0.99 + }, + { + "start": 16705.92, + "end": 16708.16, + "probability": 0.8911 + }, + { + "start": 16708.44, + "end": 16709.05, + "probability": 0.8752 + }, + { + "start": 16709.5, + "end": 16712.72, + "probability": 0.9917 + }, + { + "start": 16713.06, + "end": 16713.76, + "probability": 0.7008 + }, + { + "start": 16714.26, + "end": 16719.14, + "probability": 0.9612 + }, + { + "start": 16719.14, + "end": 16723.08, + "probability": 0.9707 + }, + { + "start": 16723.38, + "end": 16724.54, + "probability": 0.9577 + }, + { + "start": 16726.4, + "end": 16727.3, + "probability": 0.5696 + }, + { + "start": 16727.9, + "end": 16729.78, + "probability": 0.6256 + }, + { + "start": 16729.92, + "end": 16732.02, + "probability": 0.8841 + }, + { + "start": 16732.56, + "end": 16737.42, + "probability": 0.9881 + }, + { + "start": 16737.82, + "end": 16742.24, + "probability": 0.9894 + }, + { + "start": 16742.38, + "end": 16743.34, + "probability": 0.8864 + }, + { + "start": 16744.02, + "end": 16745.36, + "probability": 0.631 + }, + { + "start": 16745.48, + "end": 16748.68, + "probability": 0.9529 + }, + { + "start": 16749.3, + "end": 16753.0, + "probability": 0.9861 + }, + { + "start": 16753.14, + "end": 16754.32, + "probability": 0.8254 + }, + { + "start": 16754.64, + "end": 16757.34, + "probability": 0.9957 + }, + { + "start": 16757.46, + "end": 16758.02, + "probability": 0.8097 + }, + { + "start": 16758.58, + "end": 16762.36, + "probability": 0.9756 + }, + { + "start": 16763.0, + "end": 16764.44, + "probability": 0.7969 + }, + { + "start": 16764.9, + "end": 16766.96, + "probability": 0.9205 + }, + { + "start": 16767.56, + "end": 16768.3, + "probability": 0.6628 + }, + { + "start": 16768.8, + "end": 16772.08, + "probability": 0.9453 + }, + { + "start": 16772.74, + "end": 16776.94, + "probability": 0.9094 + }, + { + "start": 16777.18, + "end": 16778.8, + "probability": 0.5447 + }, + { + "start": 16778.94, + "end": 16779.68, + "probability": 0.735 + }, + { + "start": 16779.72, + "end": 16780.72, + "probability": 0.5841 + }, + { + "start": 16780.8, + "end": 16782.64, + "probability": 0.9877 + }, + { + "start": 16782.92, + "end": 16783.9, + "probability": 0.8556 + }, + { + "start": 16784.3, + "end": 16786.32, + "probability": 0.9283 + }, + { + "start": 16786.96, + "end": 16788.72, + "probability": 0.9941 + }, + { + "start": 16789.04, + "end": 16791.52, + "probability": 0.9117 + }, + { + "start": 16791.96, + "end": 16794.62, + "probability": 0.9683 + }, + { + "start": 16794.9, + "end": 16796.25, + "probability": 0.9265 + }, + { + "start": 16796.52, + "end": 16802.06, + "probability": 0.9949 + }, + { + "start": 16802.34, + "end": 16803.24, + "probability": 0.8927 + }, + { + "start": 16803.32, + "end": 16804.02, + "probability": 0.8185 + }, + { + "start": 16804.04, + "end": 16804.78, + "probability": 0.4995 + }, + { + "start": 16805.08, + "end": 16809.02, + "probability": 0.9986 + }, + { + "start": 16809.3, + "end": 16810.38, + "probability": 0.8964 + }, + { + "start": 16810.44, + "end": 16812.18, + "probability": 0.8744 + }, + { + "start": 16812.52, + "end": 16812.86, + "probability": 0.6172 + }, + { + "start": 16813.12, + "end": 16813.84, + "probability": 0.7197 + }, + { + "start": 16813.96, + "end": 16815.02, + "probability": 0.9566 + }, + { + "start": 16815.14, + "end": 16815.46, + "probability": 0.375 + }, + { + "start": 16815.66, + "end": 16816.12, + "probability": 0.2589 + }, + { + "start": 16816.16, + "end": 16818.08, + "probability": 0.7585 + }, + { + "start": 16818.18, + "end": 16818.34, + "probability": 0.6144 + }, + { + "start": 16818.4, + "end": 16820.1, + "probability": 0.8593 + }, + { + "start": 16820.16, + "end": 16821.9, + "probability": 0.606 + }, + { + "start": 16822.5, + "end": 16824.06, + "probability": 0.7266 + }, + { + "start": 16824.12, + "end": 16825.02, + "probability": 0.856 + }, + { + "start": 16825.2, + "end": 16828.0, + "probability": 0.7857 + }, + { + "start": 16836.62, + "end": 16837.11, + "probability": 0.7404 + }, + { + "start": 16837.58, + "end": 16838.26, + "probability": 0.2456 + }, + { + "start": 16838.32, + "end": 16838.91, + "probability": 0.9558 + }, + { + "start": 16839.4, + "end": 16841.38, + "probability": 0.3468 + }, + { + "start": 16841.38, + "end": 16841.58, + "probability": 0.0139 + }, + { + "start": 16841.58, + "end": 16843.09, + "probability": 0.557 + }, + { + "start": 16844.9, + "end": 16845.68, + "probability": 0.9973 + }, + { + "start": 16847.94, + "end": 16849.72, + "probability": 0.9883 + }, + { + "start": 16851.44, + "end": 16852.46, + "probability": 0.9139 + }, + { + "start": 16852.62, + "end": 16859.6, + "probability": 0.8884 + }, + { + "start": 16859.66, + "end": 16861.0, + "probability": 0.9979 + }, + { + "start": 16862.16, + "end": 16865.9, + "probability": 0.8528 + }, + { + "start": 16867.74, + "end": 16869.18, + "probability": 0.9929 + }, + { + "start": 16869.32, + "end": 16869.4, + "probability": 0.6008 + }, + { + "start": 16869.48, + "end": 16869.6, + "probability": 0.4622 + }, + { + "start": 16869.62, + "end": 16870.56, + "probability": 0.8741 + }, + { + "start": 16871.02, + "end": 16872.3, + "probability": 0.669 + }, + { + "start": 16872.3, + "end": 16873.67, + "probability": 0.9958 + }, + { + "start": 16874.42, + "end": 16875.68, + "probability": 0.9976 + }, + { + "start": 16876.66, + "end": 16877.72, + "probability": 0.8087 + }, + { + "start": 16878.64, + "end": 16881.19, + "probability": 0.9875 + }, + { + "start": 16882.6, + "end": 16883.82, + "probability": 0.9407 + }, + { + "start": 16885.34, + "end": 16885.34, + "probability": 0.978 + }, + { + "start": 16887.66, + "end": 16889.64, + "probability": 0.99 + }, + { + "start": 16890.78, + "end": 16892.58, + "probability": 0.9195 + }, + { + "start": 16893.58, + "end": 16895.83, + "probability": 0.9893 + }, + { + "start": 16896.58, + "end": 16900.68, + "probability": 0.9077 + }, + { + "start": 16902.32, + "end": 16904.66, + "probability": 0.815 + }, + { + "start": 16904.78, + "end": 16907.92, + "probability": 0.9623 + }, + { + "start": 16908.02, + "end": 16909.74, + "probability": 0.9277 + }, + { + "start": 16910.42, + "end": 16912.36, + "probability": 0.7235 + }, + { + "start": 16913.12, + "end": 16914.48, + "probability": 0.5365 + }, + { + "start": 16916.78, + "end": 16917.56, + "probability": 0.9739 + }, + { + "start": 16917.7, + "end": 16918.77, + "probability": 0.718 + }, + { + "start": 16919.14, + "end": 16920.48, + "probability": 0.6732 + }, + { + "start": 16921.3, + "end": 16925.94, + "probability": 0.7903 + }, + { + "start": 16926.86, + "end": 16930.36, + "probability": 0.9812 + }, + { + "start": 16930.96, + "end": 16936.32, + "probability": 0.9913 + }, + { + "start": 16936.46, + "end": 16937.16, + "probability": 0.5729 + }, + { + "start": 16937.22, + "end": 16939.96, + "probability": 0.9035 + }, + { + "start": 16940.1, + "end": 16942.54, + "probability": 0.9795 + }, + { + "start": 16942.62, + "end": 16947.5, + "probability": 0.9134 + }, + { + "start": 16948.04, + "end": 16948.46, + "probability": 0.8457 + }, + { + "start": 16948.58, + "end": 16951.18, + "probability": 0.9777 + }, + { + "start": 16951.38, + "end": 16957.6, + "probability": 0.689 + }, + { + "start": 16958.02, + "end": 16959.92, + "probability": 0.9871 + }, + { + "start": 16961.58, + "end": 16962.75, + "probability": 0.9434 + }, + { + "start": 16963.1, + "end": 16964.6, + "probability": 0.9491 + }, + { + "start": 16964.68, + "end": 16968.48, + "probability": 0.651 + }, + { + "start": 16969.04, + "end": 16974.36, + "probability": 0.9824 + }, + { + "start": 16975.82, + "end": 16976.26, + "probability": 0.4387 + }, + { + "start": 16976.26, + "end": 16978.74, + "probability": 0.8704 + }, + { + "start": 16978.88, + "end": 16979.38, + "probability": 0.9719 + }, + { + "start": 16979.5, + "end": 16980.74, + "probability": 0.9466 + }, + { + "start": 16981.14, + "end": 16986.44, + "probability": 0.9937 + }, + { + "start": 16987.46, + "end": 16988.7, + "probability": 0.8448 + }, + { + "start": 16989.68, + "end": 16993.02, + "probability": 0.9543 + }, + { + "start": 16993.58, + "end": 16994.96, + "probability": 0.9778 + }, + { + "start": 16995.62, + "end": 16996.72, + "probability": 0.7355 + }, + { + "start": 16997.4, + "end": 16998.26, + "probability": 0.9385 + }, + { + "start": 16998.32, + "end": 17002.32, + "probability": 0.9037 + }, + { + "start": 17002.68, + "end": 17005.07, + "probability": 0.7634 + }, + { + "start": 17005.66, + "end": 17008.4, + "probability": 0.9937 + }, + { + "start": 17008.4, + "end": 17012.64, + "probability": 0.9976 + }, + { + "start": 17012.7, + "end": 17014.98, + "probability": 0.5729 + }, + { + "start": 17015.26, + "end": 17016.82, + "probability": 0.9313 + }, + { + "start": 17018.53, + "end": 17022.1, + "probability": 0.9907 + }, + { + "start": 17022.62, + "end": 17024.98, + "probability": 0.4556 + }, + { + "start": 17025.9, + "end": 17027.8, + "probability": 0.9045 + }, + { + "start": 17028.54, + "end": 17030.04, + "probability": 0.9469 + }, + { + "start": 17031.42, + "end": 17033.72, + "probability": 0.9958 + }, + { + "start": 17035.7, + "end": 17036.48, + "probability": 0.9892 + }, + { + "start": 17037.82, + "end": 17038.74, + "probability": 0.482 + }, + { + "start": 17040.22, + "end": 17041.48, + "probability": 0.7063 + }, + { + "start": 17043.3, + "end": 17045.72, + "probability": 0.9944 + }, + { + "start": 17045.72, + "end": 17049.92, + "probability": 0.8299 + }, + { + "start": 17050.64, + "end": 17052.5, + "probability": 0.9888 + }, + { + "start": 17052.78, + "end": 17055.64, + "probability": 0.9967 + }, + { + "start": 17055.98, + "end": 17058.94, + "probability": 0.936 + }, + { + "start": 17058.94, + "end": 17059.79, + "probability": 0.8772 + }, + { + "start": 17060.04, + "end": 17060.69, + "probability": 0.9536 + }, + { + "start": 17061.0, + "end": 17061.0, + "probability": 0.3535 + }, + { + "start": 17061.0, + "end": 17061.44, + "probability": 0.8589 + }, + { + "start": 17061.86, + "end": 17062.3, + "probability": 0.7566 + }, + { + "start": 17062.4, + "end": 17063.32, + "probability": 0.7489 + }, + { + "start": 17063.7, + "end": 17064.43, + "probability": 0.9218 + }, + { + "start": 17065.18, + "end": 17069.38, + "probability": 0.8549 + }, + { + "start": 17069.92, + "end": 17071.82, + "probability": 0.761 + }, + { + "start": 17073.2, + "end": 17075.96, + "probability": 0.9922 + }, + { + "start": 17076.18, + "end": 17076.56, + "probability": 0.8438 + }, + { + "start": 17076.64, + "end": 17077.68, + "probability": 0.9399 + }, + { + "start": 17077.96, + "end": 17079.22, + "probability": 0.8439 + }, + { + "start": 17079.52, + "end": 17080.81, + "probability": 0.8215 + }, + { + "start": 17081.32, + "end": 17083.12, + "probability": 0.5609 + }, + { + "start": 17083.88, + "end": 17084.06, + "probability": 0.0248 + }, + { + "start": 17084.06, + "end": 17084.06, + "probability": 0.3758 + }, + { + "start": 17084.06, + "end": 17085.38, + "probability": 0.2026 + }, + { + "start": 17085.38, + "end": 17087.76, + "probability": 0.8032 + }, + { + "start": 17087.84, + "end": 17089.6, + "probability": 0.7102 + }, + { + "start": 17089.66, + "end": 17092.58, + "probability": 0.7925 + }, + { + "start": 17093.82, + "end": 17095.66, + "probability": 0.6536 + }, + { + "start": 17095.94, + "end": 17100.12, + "probability": 0.6519 + }, + { + "start": 17100.3, + "end": 17104.04, + "probability": 0.6652 + }, + { + "start": 17104.28, + "end": 17107.48, + "probability": 0.2355 + }, + { + "start": 17110.99, + "end": 17115.38, + "probability": 0.7699 + }, + { + "start": 17116.34, + "end": 17118.12, + "probability": 0.7571 + }, + { + "start": 17119.46, + "end": 17121.0, + "probability": 0.9242 + }, + { + "start": 17121.7, + "end": 17124.04, + "probability": 0.9792 + }, + { + "start": 17124.4, + "end": 17125.38, + "probability": 0.7047 + }, + { + "start": 17127.84, + "end": 17128.9, + "probability": 0.9949 + }, + { + "start": 17130.52, + "end": 17131.18, + "probability": 0.9241 + }, + { + "start": 17132.56, + "end": 17135.4, + "probability": 0.9888 + }, + { + "start": 17135.98, + "end": 17137.4, + "probability": 0.9959 + }, + { + "start": 17138.6, + "end": 17140.04, + "probability": 0.9106 + }, + { + "start": 17141.04, + "end": 17142.28, + "probability": 0.8955 + }, + { + "start": 17142.82, + "end": 17144.9, + "probability": 0.901 + }, + { + "start": 17146.36, + "end": 17150.64, + "probability": 0.917 + }, + { + "start": 17150.72, + "end": 17151.42, + "probability": 0.8081 + }, + { + "start": 17151.6, + "end": 17152.7, + "probability": 0.4917 + }, + { + "start": 17152.86, + "end": 17153.61, + "probability": 0.7886 + }, + { + "start": 17154.0, + "end": 17155.82, + "probability": 0.6785 + }, + { + "start": 17156.66, + "end": 17157.68, + "probability": 0.8346 + }, + { + "start": 17158.26, + "end": 17159.54, + "probability": 0.9433 + }, + { + "start": 17161.3, + "end": 17163.76, + "probability": 0.9686 + }, + { + "start": 17163.84, + "end": 17167.0, + "probability": 0.9931 + }, + { + "start": 17168.8, + "end": 17169.6, + "probability": 0.8572 + }, + { + "start": 17172.18, + "end": 17179.74, + "probability": 0.9876 + }, + { + "start": 17179.78, + "end": 17181.36, + "probability": 0.9971 + }, + { + "start": 17182.0, + "end": 17182.86, + "probability": 0.7634 + }, + { + "start": 17183.22, + "end": 17185.76, + "probability": 0.9915 + }, + { + "start": 17186.32, + "end": 17187.44, + "probability": 0.9718 + }, + { + "start": 17187.62, + "end": 17188.4, + "probability": 0.9934 + }, + { + "start": 17188.6, + "end": 17193.68, + "probability": 0.9949 + }, + { + "start": 17193.88, + "end": 17195.5, + "probability": 0.6669 + }, + { + "start": 17196.1, + "end": 17198.5, + "probability": 0.3879 + }, + { + "start": 17199.0, + "end": 17200.22, + "probability": 0.8921 + }, + { + "start": 17200.44, + "end": 17203.4, + "probability": 0.9378 + }, + { + "start": 17203.4, + "end": 17206.94, + "probability": 0.9803 + }, + { + "start": 17207.9, + "end": 17208.8, + "probability": 0.7222 + }, + { + "start": 17209.26, + "end": 17211.1, + "probability": 0.9258 + }, + { + "start": 17211.26, + "end": 17214.36, + "probability": 0.749 + }, + { + "start": 17214.62, + "end": 17215.24, + "probability": 0.8905 + }, + { + "start": 17215.54, + "end": 17216.22, + "probability": 0.7234 + }, + { + "start": 17216.9, + "end": 17219.04, + "probability": 0.93 + }, + { + "start": 17219.08, + "end": 17220.84, + "probability": 0.6626 + }, + { + "start": 17220.86, + "end": 17222.02, + "probability": 0.4157 + }, + { + "start": 17222.47, + "end": 17224.22, + "probability": 0.6682 + }, + { + "start": 17224.22, + "end": 17225.2, + "probability": 0.8901 + }, + { + "start": 17225.58, + "end": 17226.94, + "probability": 0.9828 + }, + { + "start": 17227.34, + "end": 17230.06, + "probability": 0.9036 + }, + { + "start": 17230.52, + "end": 17231.7, + "probability": 0.8286 + }, + { + "start": 17231.82, + "end": 17232.16, + "probability": 0.1224 + }, + { + "start": 17232.16, + "end": 17232.72, + "probability": 0.3803 + }, + { + "start": 17233.02, + "end": 17234.88, + "probability": 0.8047 + }, + { + "start": 17235.5, + "end": 17238.7, + "probability": 0.9922 + }, + { + "start": 17238.78, + "end": 17239.77, + "probability": 0.9753 + }, + { + "start": 17240.48, + "end": 17241.52, + "probability": 0.849 + }, + { + "start": 17241.78, + "end": 17242.52, + "probability": 0.6645 + }, + { + "start": 17243.2, + "end": 17244.35, + "probability": 0.7301 + }, + { + "start": 17244.82, + "end": 17245.26, + "probability": 0.8664 + }, + { + "start": 17245.62, + "end": 17247.1, + "probability": 0.949 + }, + { + "start": 17247.34, + "end": 17248.25, + "probability": 0.6888 + }, + { + "start": 17248.64, + "end": 17255.16, + "probability": 0.9927 + }, + { + "start": 17255.3, + "end": 17255.78, + "probability": 0.8984 + }, + { + "start": 17255.88, + "end": 17256.44, + "probability": 0.9526 + }, + { + "start": 17256.56, + "end": 17258.63, + "probability": 0.9918 + }, + { + "start": 17259.12, + "end": 17261.22, + "probability": 0.9467 + }, + { + "start": 17262.06, + "end": 17263.22, + "probability": 0.7814 + }, + { + "start": 17263.52, + "end": 17265.04, + "probability": 0.6952 + }, + { + "start": 17265.14, + "end": 17266.76, + "probability": 0.9989 + }, + { + "start": 17267.26, + "end": 17268.76, + "probability": 0.9719 + }, + { + "start": 17269.06, + "end": 17270.57, + "probability": 0.9138 + }, + { + "start": 17270.98, + "end": 17275.48, + "probability": 0.9941 + }, + { + "start": 17275.6, + "end": 17276.18, + "probability": 0.8328 + }, + { + "start": 17277.66, + "end": 17281.6, + "probability": 0.8512 + }, + { + "start": 17281.76, + "end": 17283.82, + "probability": 0.9553 + }, + { + "start": 17283.94, + "end": 17284.52, + "probability": 0.1311 + }, + { + "start": 17285.56, + "end": 17290.2, + "probability": 0.1157 + }, + { + "start": 17292.48, + "end": 17293.2, + "probability": 0.0451 + }, + { + "start": 17297.68, + "end": 17299.22, + "probability": 0.7719 + }, + { + "start": 17301.16, + "end": 17301.16, + "probability": 0.3787 + }, + { + "start": 17301.16, + "end": 17302.08, + "probability": 0.0376 + }, + { + "start": 17306.16, + "end": 17307.2, + "probability": 0.6335 + }, + { + "start": 17307.28, + "end": 17308.34, + "probability": 0.9468 + }, + { + "start": 17308.46, + "end": 17311.16, + "probability": 0.9547 + }, + { + "start": 17311.26, + "end": 17312.08, + "probability": 0.862 + }, + { + "start": 17312.24, + "end": 17313.46, + "probability": 0.9927 + }, + { + "start": 17314.54, + "end": 17317.5, + "probability": 0.7154 + }, + { + "start": 17317.98, + "end": 17319.14, + "probability": 0.9021 + }, + { + "start": 17319.86, + "end": 17323.0, + "probability": 0.7519 + }, + { + "start": 17324.4, + "end": 17324.44, + "probability": 0.1955 + }, + { + "start": 17324.44, + "end": 17324.44, + "probability": 0.1352 + }, + { + "start": 17324.58, + "end": 17328.22, + "probability": 0.7095 + }, + { + "start": 17328.4, + "end": 17331.32, + "probability": 0.4907 + }, + { + "start": 17331.46, + "end": 17334.32, + "probability": 0.289 + }, + { + "start": 17335.2, + "end": 17336.82, + "probability": 0.2869 + }, + { + "start": 17337.16, + "end": 17339.32, + "probability": 0.6666 + }, + { + "start": 17340.12, + "end": 17344.38, + "probability": 0.9617 + }, + { + "start": 17345.38, + "end": 17348.04, + "probability": 0.9555 + }, + { + "start": 17349.12, + "end": 17352.74, + "probability": 0.8251 + }, + { + "start": 17353.64, + "end": 17356.7, + "probability": 0.8419 + }, + { + "start": 17357.24, + "end": 17362.3, + "probability": 0.9181 + }, + { + "start": 17363.24, + "end": 17364.44, + "probability": 0.9811 + }, + { + "start": 17365.8, + "end": 17367.18, + "probability": 0.915 + }, + { + "start": 17367.32, + "end": 17367.8, + "probability": 0.8533 + }, + { + "start": 17370.0, + "end": 17370.54, + "probability": 0.8174 + }, + { + "start": 17371.7, + "end": 17377.72, + "probability": 0.9632 + }, + { + "start": 17378.34, + "end": 17379.3, + "probability": 0.981 + }, + { + "start": 17380.06, + "end": 17381.92, + "probability": 0.9966 + }, + { + "start": 17382.38, + "end": 17386.62, + "probability": 0.9908 + }, + { + "start": 17387.38, + "end": 17388.78, + "probability": 0.9253 + }, + { + "start": 17389.42, + "end": 17390.46, + "probability": 0.8763 + }, + { + "start": 17391.14, + "end": 17393.86, + "probability": 0.9079 + }, + { + "start": 17394.86, + "end": 17395.96, + "probability": 0.8649 + }, + { + "start": 17396.58, + "end": 17397.18, + "probability": 0.8219 + }, + { + "start": 17397.26, + "end": 17398.0, + "probability": 0.8498 + }, + { + "start": 17398.08, + "end": 17398.54, + "probability": 0.9753 + }, + { + "start": 17398.62, + "end": 17399.5, + "probability": 0.9485 + }, + { + "start": 17399.6, + "end": 17400.72, + "probability": 0.7088 + }, + { + "start": 17400.78, + "end": 17402.26, + "probability": 0.9841 + }, + { + "start": 17403.28, + "end": 17403.88, + "probability": 0.7971 + }, + { + "start": 17404.42, + "end": 17406.56, + "probability": 0.9382 + }, + { + "start": 17407.05, + "end": 17409.34, + "probability": 0.632 + }, + { + "start": 17411.28, + "end": 17415.42, + "probability": 0.8835 + }, + { + "start": 17416.38, + "end": 17419.62, + "probability": 0.8228 + }, + { + "start": 17419.94, + "end": 17421.64, + "probability": 0.9974 + }, + { + "start": 17421.98, + "end": 17423.56, + "probability": 0.5646 + }, + { + "start": 17432.08, + "end": 17435.18, + "probability": 0.4705 + }, + { + "start": 17435.28, + "end": 17437.14, + "probability": 0.9049 + }, + { + "start": 17437.44, + "end": 17439.58, + "probability": 0.6789 + }, + { + "start": 17440.33, + "end": 17443.52, + "probability": 0.4809 + }, + { + "start": 17443.88, + "end": 17447.2, + "probability": 0.7683 + }, + { + "start": 17447.28, + "end": 17447.7, + "probability": 0.8772 + }, + { + "start": 17447.76, + "end": 17448.61, + "probability": 0.5606 + }, + { + "start": 17449.44, + "end": 17452.92, + "probability": 0.9644 + }, + { + "start": 17453.78, + "end": 17458.3, + "probability": 0.9695 + }, + { + "start": 17458.3, + "end": 17462.2, + "probability": 0.7837 + }, + { + "start": 17462.88, + "end": 17465.48, + "probability": 0.9377 + }, + { + "start": 17466.88, + "end": 17468.7, + "probability": 0.9704 + }, + { + "start": 17469.58, + "end": 17471.96, + "probability": 0.9261 + }, + { + "start": 17472.12, + "end": 17473.96, + "probability": 0.8789 + }, + { + "start": 17474.58, + "end": 17475.46, + "probability": 0.929 + }, + { + "start": 17476.06, + "end": 17476.54, + "probability": 0.9845 + }, + { + "start": 17478.0, + "end": 17480.66, + "probability": 0.6523 + }, + { + "start": 17481.26, + "end": 17483.92, + "probability": 0.9365 + }, + { + "start": 17485.22, + "end": 17486.66, + "probability": 0.7908 + }, + { + "start": 17486.86, + "end": 17488.28, + "probability": 0.869 + }, + { + "start": 17488.36, + "end": 17489.78, + "probability": 0.9905 + }, + { + "start": 17489.86, + "end": 17490.86, + "probability": 0.6831 + }, + { + "start": 17491.3, + "end": 17493.31, + "probability": 0.8164 + }, + { + "start": 17493.44, + "end": 17493.7, + "probability": 0.3066 + }, + { + "start": 17494.2, + "end": 17494.98, + "probability": 0.8208 + }, + { + "start": 17495.16, + "end": 17496.32, + "probability": 0.8084 + }, + { + "start": 17496.72, + "end": 17500.74, + "probability": 0.9971 + }, + { + "start": 17500.96, + "end": 17503.86, + "probability": 0.8737 + }, + { + "start": 17503.96, + "end": 17505.49, + "probability": 0.8892 + }, + { + "start": 17505.6, + "end": 17506.26, + "probability": 0.7243 + }, + { + "start": 17507.02, + "end": 17508.82, + "probability": 0.857 + }, + { + "start": 17510.54, + "end": 17511.62, + "probability": 0.8078 + }, + { + "start": 17511.72, + "end": 17512.26, + "probability": 0.95 + }, + { + "start": 17512.36, + "end": 17514.24, + "probability": 0.9648 + }, + { + "start": 17519.82, + "end": 17520.2, + "probability": 0.8212 + }, + { + "start": 17523.65, + "end": 17525.46, + "probability": 0.6958 + }, + { + "start": 17525.62, + "end": 17527.5, + "probability": 0.5254 + }, + { + "start": 17531.02, + "end": 17533.92, + "probability": 0.8932 + }, + { + "start": 17535.06, + "end": 17539.52, + "probability": 0.9691 + }, + { + "start": 17540.62, + "end": 17541.67, + "probability": 0.2388 + }, + { + "start": 17543.48, + "end": 17544.14, + "probability": 0.7902 + }, + { + "start": 17545.12, + "end": 17547.96, + "probability": 0.9144 + }, + { + "start": 17548.68, + "end": 17549.68, + "probability": 0.9401 + }, + { + "start": 17550.74, + "end": 17554.44, + "probability": 0.9401 + }, + { + "start": 17555.3, + "end": 17556.24, + "probability": 0.9203 + }, + { + "start": 17557.08, + "end": 17562.06, + "probability": 0.9944 + }, + { + "start": 17563.52, + "end": 17566.58, + "probability": 0.8619 + }, + { + "start": 17567.46, + "end": 17568.34, + "probability": 0.9722 + }, + { + "start": 17569.0, + "end": 17569.7, + "probability": 0.9591 + }, + { + "start": 17570.06, + "end": 17575.12, + "probability": 0.8062 + }, + { + "start": 17575.4, + "end": 17576.84, + "probability": 0.9463 + }, + { + "start": 17576.98, + "end": 17577.56, + "probability": 0.8585 + }, + { + "start": 17577.6, + "end": 17578.6, + "probability": 0.9806 + }, + { + "start": 17578.96, + "end": 17580.8, + "probability": 0.9669 + }, + { + "start": 17581.64, + "end": 17586.9, + "probability": 0.8987 + }, + { + "start": 17587.72, + "end": 17588.0, + "probability": 0.6729 + }, + { + "start": 17588.22, + "end": 17589.54, + "probability": 0.7913 + }, + { + "start": 17589.6, + "end": 17590.78, + "probability": 0.9539 + }, + { + "start": 17590.84, + "end": 17591.36, + "probability": 0.9468 + }, + { + "start": 17591.9, + "end": 17593.42, + "probability": 0.796 + }, + { + "start": 17594.06, + "end": 17595.66, + "probability": 0.9526 + }, + { + "start": 17596.3, + "end": 17604.64, + "probability": 0.9522 + }, + { + "start": 17605.08, + "end": 17605.7, + "probability": 0.1914 + }, + { + "start": 17605.96, + "end": 17608.08, + "probability": 0.8902 + }, + { + "start": 17608.56, + "end": 17609.54, + "probability": 0.8844 + }, + { + "start": 17609.78, + "end": 17612.04, + "probability": 0.9665 + }, + { + "start": 17612.46, + "end": 17613.58, + "probability": 0.6995 + }, + { + "start": 17613.84, + "end": 17618.8, + "probability": 0.9829 + }, + { + "start": 17619.18, + "end": 17621.18, + "probability": 0.9927 + }, + { + "start": 17621.9, + "end": 17623.06, + "probability": 0.9922 + }, + { + "start": 17623.8, + "end": 17624.32, + "probability": 0.6761 + }, + { + "start": 17624.92, + "end": 17627.7, + "probability": 0.9072 + }, + { + "start": 17628.16, + "end": 17631.2, + "probability": 0.9792 + }, + { + "start": 17631.42, + "end": 17632.46, + "probability": 0.9858 + }, + { + "start": 17633.74, + "end": 17635.62, + "probability": 0.9886 + }, + { + "start": 17636.26, + "end": 17638.68, + "probability": 0.6938 + }, + { + "start": 17638.68, + "end": 17642.48, + "probability": 0.9879 + }, + { + "start": 17643.0, + "end": 17643.8, + "probability": 0.9362 + }, + { + "start": 17644.28, + "end": 17650.62, + "probability": 0.9915 + }, + { + "start": 17651.08, + "end": 17651.98, + "probability": 0.9771 + }, + { + "start": 17652.52, + "end": 17655.46, + "probability": 0.9063 + }, + { + "start": 17657.12, + "end": 17659.46, + "probability": 0.9722 + }, + { + "start": 17660.54, + "end": 17662.44, + "probability": 0.765 + }, + { + "start": 17662.98, + "end": 17664.44, + "probability": 0.6977 + }, + { + "start": 17665.78, + "end": 17666.78, + "probability": 0.9021 + }, + { + "start": 17667.46, + "end": 17670.58, + "probability": 0.9893 + }, + { + "start": 17671.24, + "end": 17672.24, + "probability": 0.7393 + }, + { + "start": 17672.7, + "end": 17673.56, + "probability": 0.8799 + }, + { + "start": 17673.56, + "end": 17675.86, + "probability": 0.6891 + }, + { + "start": 17676.24, + "end": 17681.86, + "probability": 0.8616 + }, + { + "start": 17682.42, + "end": 17685.28, + "probability": 0.9227 + }, + { + "start": 17685.9, + "end": 17688.04, + "probability": 0.9663 + }, + { + "start": 17688.68, + "end": 17690.54, + "probability": 0.9941 + }, + { + "start": 17691.16, + "end": 17693.84, + "probability": 0.9132 + }, + { + "start": 17694.34, + "end": 17695.92, + "probability": 0.9854 + }, + { + "start": 17696.44, + "end": 17697.58, + "probability": 0.6997 + }, + { + "start": 17698.24, + "end": 17698.54, + "probability": 0.6981 + }, + { + "start": 17698.7, + "end": 17699.62, + "probability": 0.7504 + }, + { + "start": 17699.94, + "end": 17702.21, + "probability": 0.8768 + }, + { + "start": 17702.82, + "end": 17703.94, + "probability": 0.9713 + }, + { + "start": 17704.04, + "end": 17708.94, + "probability": 0.7132 + }, + { + "start": 17709.72, + "end": 17711.04, + "probability": 0.9502 + }, + { + "start": 17711.12, + "end": 17712.58, + "probability": 0.9458 + }, + { + "start": 17712.78, + "end": 17713.78, + "probability": 0.9782 + }, + { + "start": 17714.02, + "end": 17717.06, + "probability": 0.9865 + }, + { + "start": 17717.32, + "end": 17717.98, + "probability": 0.7826 + }, + { + "start": 17718.38, + "end": 17719.67, + "probability": 0.7732 + }, + { + "start": 17719.98, + "end": 17720.59, + "probability": 0.8719 + }, + { + "start": 17720.9, + "end": 17726.06, + "probability": 0.9722 + }, + { + "start": 17726.06, + "end": 17729.74, + "probability": 0.8966 + }, + { + "start": 17730.04, + "end": 17730.63, + "probability": 0.968 + }, + { + "start": 17731.4, + "end": 17731.74, + "probability": 0.87 + }, + { + "start": 17732.96, + "end": 17734.9, + "probability": 0.8062 + }, + { + "start": 17735.0, + "end": 17736.93, + "probability": 0.8556 + }, + { + "start": 17737.0, + "end": 17737.74, + "probability": 0.8853 + }, + { + "start": 17742.1, + "end": 17744.18, + "probability": 0.9802 + }, + { + "start": 17745.32, + "end": 17748.5, + "probability": 0.8812 + }, + { + "start": 17748.62, + "end": 17750.78, + "probability": 0.5582 + }, + { + "start": 17752.46, + "end": 17757.4, + "probability": 0.9857 + }, + { + "start": 17759.98, + "end": 17760.36, + "probability": 0.0901 + }, + { + "start": 17761.48, + "end": 17764.68, + "probability": 0.6284 + }, + { + "start": 17764.9, + "end": 17765.92, + "probability": 0.4562 + }, + { + "start": 17766.12, + "end": 17768.86, + "probability": 0.066 + }, + { + "start": 17769.86, + "end": 17771.52, + "probability": 0.705 + }, + { + "start": 17773.54, + "end": 17777.1, + "probability": 0.9443 + }, + { + "start": 17777.98, + "end": 17779.98, + "probability": 0.9842 + }, + { + "start": 17780.78, + "end": 17782.38, + "probability": 0.9077 + }, + { + "start": 17782.76, + "end": 17783.46, + "probability": 0.0287 + }, + { + "start": 17783.87, + "end": 17787.28, + "probability": 0.6696 + }, + { + "start": 17787.62, + "end": 17789.03, + "probability": 0.9702 + }, + { + "start": 17790.18, + "end": 17795.1, + "probability": 0.9855 + }, + { + "start": 17795.78, + "end": 17796.9, + "probability": 0.0523 + }, + { + "start": 17797.14, + "end": 17800.94, + "probability": 0.7609 + }, + { + "start": 17801.3, + "end": 17802.65, + "probability": 0.8728 + }, + { + "start": 17802.92, + "end": 17806.78, + "probability": 0.9897 + }, + { + "start": 17807.4, + "end": 17809.74, + "probability": 0.902 + }, + { + "start": 17811.68, + "end": 17813.48, + "probability": 0.998 + }, + { + "start": 17813.62, + "end": 17817.32, + "probability": 0.958 + }, + { + "start": 17819.46, + "end": 17822.94, + "probability": 0.9844 + }, + { + "start": 17824.62, + "end": 17826.68, + "probability": 0.5241 + }, + { + "start": 17826.82, + "end": 17827.62, + "probability": 0.9199 + }, + { + "start": 17827.68, + "end": 17830.14, + "probability": 0.7508 + }, + { + "start": 17830.26, + "end": 17831.56, + "probability": 0.1563 + }, + { + "start": 17831.56, + "end": 17833.4, + "probability": 0.2182 + }, + { + "start": 17833.76, + "end": 17834.5, + "probability": 0.4557 + }, + { + "start": 17834.68, + "end": 17836.18, + "probability": 0.4369 + }, + { + "start": 17836.18, + "end": 17837.68, + "probability": 0.8359 + }, + { + "start": 17837.84, + "end": 17840.02, + "probability": 0.8953 + }, + { + "start": 17840.54, + "end": 17841.4, + "probability": 0.8708 + }, + { + "start": 17841.52, + "end": 17843.48, + "probability": 0.3085 + }, + { + "start": 17844.96, + "end": 17846.12, + "probability": 0.003 + }, + { + "start": 17848.24, + "end": 17850.38, + "probability": 0.5267 + }, + { + "start": 17850.58, + "end": 17854.92, + "probability": 0.6577 + }, + { + "start": 17855.02, + "end": 17856.12, + "probability": 0.6412 + }, + { + "start": 17857.54, + "end": 17857.8, + "probability": 0.7279 + }, + { + "start": 17857.86, + "end": 17859.92, + "probability": 0.9539 + }, + { + "start": 17859.92, + "end": 17861.04, + "probability": 0.99 + }, + { + "start": 17861.64, + "end": 17862.09, + "probability": 0.6235 + }, + { + "start": 17862.36, + "end": 17865.82, + "probability": 0.8729 + }, + { + "start": 17866.42, + "end": 17869.12, + "probability": 0.9824 + }, + { + "start": 17870.1, + "end": 17872.36, + "probability": 0.7601 + }, + { + "start": 17873.48, + "end": 17875.91, + "probability": 0.8194 + }, + { + "start": 17876.8, + "end": 17879.7, + "probability": 0.3343 + }, + { + "start": 17879.88, + "end": 17881.38, + "probability": 0.142 + }, + { + "start": 17882.58, + "end": 17884.78, + "probability": 0.1201 + }, + { + "start": 17884.96, + "end": 17887.23, + "probability": 0.6281 + }, + { + "start": 17887.73, + "end": 17891.32, + "probability": 0.8525 + }, + { + "start": 17892.04, + "end": 17892.96, + "probability": 0.7472 + }, + { + "start": 17894.8, + "end": 17895.16, + "probability": 0.575 + }, + { + "start": 17895.42, + "end": 17896.3, + "probability": 0.6887 + }, + { + "start": 17896.62, + "end": 17900.16, + "probability": 0.8606 + }, + { + "start": 17900.26, + "end": 17902.38, + "probability": 0.7438 + }, + { + "start": 17902.54, + "end": 17903.42, + "probability": 0.9603 + }, + { + "start": 17904.88, + "end": 17905.72, + "probability": 0.5807 + }, + { + "start": 17905.74, + "end": 17906.56, + "probability": 0.8249 + }, + { + "start": 17906.64, + "end": 17907.38, + "probability": 0.7036 + }, + { + "start": 17908.2, + "end": 17910.02, + "probability": 0.9971 + }, + { + "start": 17910.06, + "end": 17911.4, + "probability": 0.3777 + }, + { + "start": 17911.4, + "end": 17912.66, + "probability": 0.425 + }, + { + "start": 17912.66, + "end": 17913.84, + "probability": 0.3221 + }, + { + "start": 17913.96, + "end": 17915.54, + "probability": 0.9812 + }, + { + "start": 17915.64, + "end": 17916.3, + "probability": 0.5907 + }, + { + "start": 17916.38, + "end": 17916.94, + "probability": 0.9823 + }, + { + "start": 17917.32, + "end": 17917.42, + "probability": 0.0283 + }, + { + "start": 17918.71, + "end": 17920.8, + "probability": 0.8066 + }, + { + "start": 17921.3, + "end": 17921.92, + "probability": 0.8251 + }, + { + "start": 17922.32, + "end": 17923.16, + "probability": 0.444 + }, + { + "start": 17923.26, + "end": 17924.58, + "probability": 0.5288 + }, + { + "start": 17924.84, + "end": 17925.6, + "probability": 0.3818 + }, + { + "start": 17925.6, + "end": 17928.02, + "probability": 0.4211 + }, + { + "start": 17928.1, + "end": 17928.9, + "probability": 0.5154 + }, + { + "start": 17928.96, + "end": 17932.44, + "probability": 0.2508 + }, + { + "start": 17932.92, + "end": 17935.24, + "probability": 0.0662 + }, + { + "start": 17937.07, + "end": 17937.14, + "probability": 0.041 + }, + { + "start": 17937.14, + "end": 17940.56, + "probability": 0.2853 + }, + { + "start": 17940.98, + "end": 17941.1, + "probability": 0.049 + }, + { + "start": 17941.1, + "end": 17941.1, + "probability": 0.0225 + }, + { + "start": 17941.1, + "end": 17941.1, + "probability": 0.0107 + }, + { + "start": 17941.1, + "end": 17941.56, + "probability": 0.2659 + }, + { + "start": 17941.72, + "end": 17942.52, + "probability": 0.1124 + }, + { + "start": 17942.84, + "end": 17944.83, + "probability": 0.6777 + }, + { + "start": 17945.58, + "end": 17947.46, + "probability": 0.2737 + }, + { + "start": 17947.5, + "end": 17949.82, + "probability": 0.6375 + }, + { + "start": 17950.64, + "end": 17951.28, + "probability": 0.3729 + }, + { + "start": 17951.46, + "end": 17953.7, + "probability": 0.0265 + }, + { + "start": 17954.2, + "end": 17954.2, + "probability": 0.0294 + }, + { + "start": 17956.98, + "end": 17957.94, + "probability": 0.4088 + }, + { + "start": 17957.94, + "end": 17961.86, + "probability": 0.7018 + }, + { + "start": 17962.4, + "end": 17964.98, + "probability": 0.9036 + }, + { + "start": 17965.1, + "end": 17965.6, + "probability": 0.2664 + }, + { + "start": 17965.6, + "end": 17966.88, + "probability": 0.3953 + }, + { + "start": 17967.04, + "end": 17968.88, + "probability": 0.153 + }, + { + "start": 17969.0, + "end": 17972.18, + "probability": 0.3281 + }, + { + "start": 17973.24, + "end": 17975.4, + "probability": 0.7859 + }, + { + "start": 17975.54, + "end": 17976.16, + "probability": 0.6722 + }, + { + "start": 17978.1, + "end": 17979.88, + "probability": 0.0929 + }, + { + "start": 17980.44, + "end": 17982.08, + "probability": 0.2717 + }, + { + "start": 17982.08, + "end": 17983.78, + "probability": 0.364 + }, + { + "start": 17984.64, + "end": 17987.56, + "probability": 0.5242 + }, + { + "start": 17988.06, + "end": 17989.1, + "probability": 0.0599 + }, + { + "start": 17989.24, + "end": 17990.02, + "probability": 0.7564 + }, + { + "start": 17990.12, + "end": 17990.28, + "probability": 0.4364 + }, + { + "start": 17990.4, + "end": 17990.5, + "probability": 0.2297 + }, + { + "start": 17990.5, + "end": 17991.92, + "probability": 0.8109 + }, + { + "start": 17992.5, + "end": 17994.33, + "probability": 0.7322 + }, + { + "start": 17995.46, + "end": 17996.54, + "probability": 0.3236 + }, + { + "start": 17996.62, + "end": 17998.22, + "probability": 0.4829 + }, + { + "start": 17998.22, + "end": 17998.7, + "probability": 0.2019 + }, + { + "start": 17999.4, + "end": 18002.64, + "probability": 0.8649 + }, + { + "start": 18004.48, + "end": 18005.98, + "probability": 0.9539 + }, + { + "start": 18006.3, + "end": 18013.04, + "probability": 0.9305 + }, + { + "start": 18013.72, + "end": 18018.38, + "probability": 0.8617 + }, + { + "start": 18019.46, + "end": 18022.8, + "probability": 0.9871 + }, + { + "start": 18022.8, + "end": 18025.64, + "probability": 0.8475 + }, + { + "start": 18026.46, + "end": 18027.2, + "probability": 0.4993 + }, + { + "start": 18027.44, + "end": 18028.57, + "probability": 0.7331 + }, + { + "start": 18029.12, + "end": 18033.02, + "probability": 0.9637 + }, + { + "start": 18033.54, + "end": 18034.98, + "probability": 0.8468 + }, + { + "start": 18035.04, + "end": 18035.78, + "probability": 0.5871 + }, + { + "start": 18036.1, + "end": 18037.58, + "probability": 0.799 + }, + { + "start": 18037.74, + "end": 18038.1, + "probability": 0.4202 + }, + { + "start": 18038.38, + "end": 18042.84, + "probability": 0.8793 + }, + { + "start": 18043.84, + "end": 18044.57, + "probability": 0.1088 + }, + { + "start": 18044.96, + "end": 18045.78, + "probability": 0.2356 + }, + { + "start": 18046.0, + "end": 18046.88, + "probability": 0.2585 + }, + { + "start": 18047.02, + "end": 18049.66, + "probability": 0.9136 + }, + { + "start": 18049.9, + "end": 18053.48, + "probability": 0.875 + }, + { + "start": 18053.96, + "end": 18057.9, + "probability": 0.5508 + }, + { + "start": 18058.48, + "end": 18060.14, + "probability": 0.5974 + }, + { + "start": 18060.86, + "end": 18062.44, + "probability": 0.6577 + }, + { + "start": 18063.52, + "end": 18066.98, + "probability": 0.9754 + }, + { + "start": 18068.12, + "end": 18072.12, + "probability": 0.992 + }, + { + "start": 18072.42, + "end": 18073.13, + "probability": 0.8644 + }, + { + "start": 18074.0, + "end": 18078.1, + "probability": 0.8224 + }, + { + "start": 18080.32, + "end": 18080.34, + "probability": 0.129 + }, + { + "start": 18080.34, + "end": 18080.34, + "probability": 0.1207 + }, + { + "start": 18080.34, + "end": 18080.34, + "probability": 0.0302 + }, + { + "start": 18080.34, + "end": 18081.04, + "probability": 0.2507 + }, + { + "start": 18081.6, + "end": 18082.06, + "probability": 0.1635 + }, + { + "start": 18082.6, + "end": 18086.46, + "probability": 0.8458 + }, + { + "start": 18086.88, + "end": 18087.9, + "probability": 0.9629 + }, + { + "start": 18089.1, + "end": 18091.2, + "probability": 0.9309 + }, + { + "start": 18091.34, + "end": 18092.26, + "probability": 0.4105 + }, + { + "start": 18092.52, + "end": 18094.61, + "probability": 0.9749 + }, + { + "start": 18095.14, + "end": 18095.4, + "probability": 0.0784 + }, + { + "start": 18095.7, + "end": 18095.7, + "probability": 0.1314 + }, + { + "start": 18095.7, + "end": 18097.68, + "probability": 0.3011 + }, + { + "start": 18097.9, + "end": 18099.86, + "probability": 0.6282 + }, + { + "start": 18100.42, + "end": 18100.94, + "probability": 0.4184 + }, + { + "start": 18101.28, + "end": 18103.5, + "probability": 0.8817 + }, + { + "start": 18104.48, + "end": 18105.2, + "probability": 0.2838 + }, + { + "start": 18105.2, + "end": 18105.36, + "probability": 0.1656 + }, + { + "start": 18105.4, + "end": 18106.88, + "probability": 0.7138 + }, + { + "start": 18107.02, + "end": 18109.62, + "probability": 0.8855 + }, + { + "start": 18110.2, + "end": 18113.26, + "probability": 0.9448 + }, + { + "start": 18113.92, + "end": 18116.59, + "probability": 0.9785 + }, + { + "start": 18116.88, + "end": 18117.64, + "probability": 0.6815 + }, + { + "start": 18119.29, + "end": 18121.37, + "probability": 0.135 + }, + { + "start": 18121.42, + "end": 18122.23, + "probability": 0.2746 + }, + { + "start": 18123.88, + "end": 18126.1, + "probability": 0.8177 + }, + { + "start": 18126.52, + "end": 18127.18, + "probability": 0.5011 + }, + { + "start": 18127.44, + "end": 18129.08, + "probability": 0.7392 + }, + { + "start": 18129.18, + "end": 18129.84, + "probability": 0.9471 + }, + { + "start": 18129.92, + "end": 18130.28, + "probability": 0.6137 + }, + { + "start": 18130.94, + "end": 18132.56, + "probability": 0.0957 + }, + { + "start": 18134.36, + "end": 18134.38, + "probability": 0.0021 + }, + { + "start": 18134.38, + "end": 18136.58, + "probability": 0.0353 + }, + { + "start": 18136.86, + "end": 18139.0, + "probability": 0.6835 + }, + { + "start": 18140.66, + "end": 18144.76, + "probability": 0.5959 + }, + { + "start": 18144.88, + "end": 18145.14, + "probability": 0.8937 + }, + { + "start": 18145.26, + "end": 18147.4, + "probability": 0.9976 + }, + { + "start": 18148.14, + "end": 18148.8, + "probability": 0.5559 + }, + { + "start": 18149.34, + "end": 18152.54, + "probability": 0.8971 + }, + { + "start": 18153.08, + "end": 18154.23, + "probability": 0.9251 + }, + { + "start": 18154.9, + "end": 18157.83, + "probability": 0.7011 + }, + { + "start": 18158.26, + "end": 18162.16, + "probability": 0.9652 + }, + { + "start": 18162.52, + "end": 18163.54, + "probability": 0.8721 + }, + { + "start": 18163.81, + "end": 18165.41, + "probability": 0.9907 + }, + { + "start": 18165.96, + "end": 18168.92, + "probability": 0.9044 + }, + { + "start": 18168.92, + "end": 18170.2, + "probability": 0.6796 + }, + { + "start": 18170.36, + "end": 18173.88, + "probability": 0.9262 + }, + { + "start": 18174.16, + "end": 18175.82, + "probability": 0.9385 + }, + { + "start": 18176.12, + "end": 18178.26, + "probability": 0.9313 + }, + { + "start": 18178.46, + "end": 18178.52, + "probability": 0.0307 + }, + { + "start": 18178.52, + "end": 18179.54, + "probability": 0.9103 + }, + { + "start": 18179.62, + "end": 18180.6, + "probability": 0.3286 + }, + { + "start": 18180.6, + "end": 18181.42, + "probability": 0.7418 + }, + { + "start": 18182.37, + "end": 18184.48, + "probability": 0.7255 + }, + { + "start": 18184.52, + "end": 18187.22, + "probability": 0.8416 + }, + { + "start": 18187.5, + "end": 18191.04, + "probability": 0.9763 + }, + { + "start": 18191.44, + "end": 18196.38, + "probability": 0.977 + }, + { + "start": 18197.78, + "end": 18199.06, + "probability": 0.7182 + }, + { + "start": 18199.4, + "end": 18201.38, + "probability": 0.9845 + }, + { + "start": 18201.46, + "end": 18202.42, + "probability": 0.9091 + }, + { + "start": 18202.68, + "end": 18203.74, + "probability": 0.9551 + }, + { + "start": 18204.16, + "end": 18205.36, + "probability": 0.8757 + }, + { + "start": 18205.98, + "end": 18207.53, + "probability": 0.5815 + }, + { + "start": 18209.5, + "end": 18211.94, + "probability": 0.5045 + }, + { + "start": 18212.16, + "end": 18212.16, + "probability": 0.0521 + }, + { + "start": 18212.16, + "end": 18212.74, + "probability": 0.3522 + }, + { + "start": 18212.76, + "end": 18214.7, + "probability": 0.9434 + }, + { + "start": 18214.84, + "end": 18216.18, + "probability": 0.8694 + }, + { + "start": 18217.58, + "end": 18217.74, + "probability": 0.6487 + }, + { + "start": 18217.74, + "end": 18218.06, + "probability": 0.6264 + }, + { + "start": 18219.18, + "end": 18221.28, + "probability": 0.5053 + }, + { + "start": 18233.42, + "end": 18235.52, + "probability": 0.846 + }, + { + "start": 18240.04, + "end": 18244.11, + "probability": 0.6616 + }, + { + "start": 18244.76, + "end": 18246.66, + "probability": 0.884 + }, + { + "start": 18247.54, + "end": 18249.28, + "probability": 0.9719 + }, + { + "start": 18249.86, + "end": 18253.4, + "probability": 0.9651 + }, + { + "start": 18254.12, + "end": 18260.06, + "probability": 0.9858 + }, + { + "start": 18260.32, + "end": 18262.78, + "probability": 0.998 + }, + { + "start": 18262.78, + "end": 18265.82, + "probability": 0.9967 + }, + { + "start": 18267.06, + "end": 18268.96, + "probability": 0.8101 + }, + { + "start": 18269.02, + "end": 18269.96, + "probability": 0.5751 + }, + { + "start": 18270.08, + "end": 18273.0, + "probability": 0.9617 + }, + { + "start": 18273.06, + "end": 18277.7, + "probability": 0.9583 + }, + { + "start": 18278.22, + "end": 18282.92, + "probability": 0.9235 + }, + { + "start": 18283.2, + "end": 18285.43, + "probability": 0.9103 + }, + { + "start": 18285.7, + "end": 18287.92, + "probability": 0.9541 + }, + { + "start": 18288.36, + "end": 18289.7, + "probability": 0.6706 + }, + { + "start": 18289.8, + "end": 18291.06, + "probability": 0.7093 + }, + { + "start": 18291.62, + "end": 18294.3, + "probability": 0.8783 + }, + { + "start": 18294.38, + "end": 18296.58, + "probability": 0.8414 + }, + { + "start": 18297.74, + "end": 18298.78, + "probability": 0.8687 + }, + { + "start": 18299.18, + "end": 18302.84, + "probability": 0.996 + }, + { + "start": 18302.84, + "end": 18308.1, + "probability": 0.9928 + }, + { + "start": 18308.86, + "end": 18312.12, + "probability": 0.9946 + }, + { + "start": 18312.12, + "end": 18314.58, + "probability": 0.9943 + }, + { + "start": 18315.84, + "end": 18318.96, + "probability": 0.9314 + }, + { + "start": 18318.96, + "end": 18321.68, + "probability": 0.9897 + }, + { + "start": 18323.3, + "end": 18324.26, + "probability": 0.3976 + }, + { + "start": 18326.38, + "end": 18327.58, + "probability": 0.9084 + }, + { + "start": 18327.64, + "end": 18331.28, + "probability": 0.6755 + }, + { + "start": 18331.36, + "end": 18333.26, + "probability": 0.9194 + }, + { + "start": 18333.44, + "end": 18334.88, + "probability": 0.949 + }, + { + "start": 18335.26, + "end": 18337.52, + "probability": 0.9697 + }, + { + "start": 18338.4, + "end": 18341.06, + "probability": 0.8128 + }, + { + "start": 18341.12, + "end": 18344.62, + "probability": 0.9767 + }, + { + "start": 18345.12, + "end": 18346.84, + "probability": 0.9693 + }, + { + "start": 18347.24, + "end": 18348.76, + "probability": 0.9082 + }, + { + "start": 18349.26, + "end": 18352.37, + "probability": 0.9761 + }, + { + "start": 18352.52, + "end": 18355.16, + "probability": 0.939 + }, + { + "start": 18355.58, + "end": 18359.62, + "probability": 0.9937 + }, + { + "start": 18360.04, + "end": 18364.28, + "probability": 0.8885 + }, + { + "start": 18364.7, + "end": 18367.1, + "probability": 0.9897 + }, + { + "start": 18367.48, + "end": 18369.62, + "probability": 0.7941 + }, + { + "start": 18369.8, + "end": 18373.66, + "probability": 0.9568 + }, + { + "start": 18373.86, + "end": 18376.88, + "probability": 0.6436 + }, + { + "start": 18377.3, + "end": 18378.07, + "probability": 0.444 + }, + { + "start": 18378.48, + "end": 18379.01, + "probability": 0.0455 + }, + { + "start": 18379.96, + "end": 18381.1, + "probability": 0.4858 + }, + { + "start": 18381.26, + "end": 18384.2, + "probability": 0.5918 + }, + { + "start": 18384.4, + "end": 18384.4, + "probability": 0.1116 + }, + { + "start": 18384.4, + "end": 18386.74, + "probability": 0.7601 + }, + { + "start": 18386.74, + "end": 18389.63, + "probability": 0.6249 + }, + { + "start": 18389.72, + "end": 18392.3, + "probability": 0.7585 + }, + { + "start": 18392.44, + "end": 18393.94, + "probability": 0.7028 + }, + { + "start": 18394.38, + "end": 18394.96, + "probability": 0.1386 + }, + { + "start": 18395.12, + "end": 18395.14, + "probability": 0.0709 + }, + { + "start": 18395.14, + "end": 18395.14, + "probability": 0.1936 + }, + { + "start": 18395.36, + "end": 18396.76, + "probability": 0.2385 + }, + { + "start": 18397.96, + "end": 18399.54, + "probability": 0.1723 + }, + { + "start": 18399.54, + "end": 18400.38, + "probability": 0.4272 + }, + { + "start": 18401.02, + "end": 18401.36, + "probability": 0.1143 + }, + { + "start": 18401.36, + "end": 18401.36, + "probability": 0.1651 + }, + { + "start": 18401.36, + "end": 18401.36, + "probability": 0.1733 + }, + { + "start": 18401.36, + "end": 18402.06, + "probability": 0.207 + }, + { + "start": 18402.32, + "end": 18402.8, + "probability": 0.1149 + }, + { + "start": 18402.88, + "end": 18402.92, + "probability": 0.3358 + }, + { + "start": 18402.92, + "end": 18402.92, + "probability": 0.0308 + }, + { + "start": 18402.92, + "end": 18403.62, + "probability": 0.5412 + }, + { + "start": 18404.54, + "end": 18406.24, + "probability": 0.7055 + }, + { + "start": 18406.32, + "end": 18409.44, + "probability": 0.9224 + }, + { + "start": 18409.44, + "end": 18409.74, + "probability": 0.7935 + }, + { + "start": 18410.22, + "end": 18415.02, + "probability": 0.9917 + }, + { + "start": 18415.84, + "end": 18416.42, + "probability": 0.9595 + }, + { + "start": 18417.06, + "end": 18417.16, + "probability": 0.3057 + }, + { + "start": 18417.16, + "end": 18418.04, + "probability": 0.7431 + }, + { + "start": 18418.12, + "end": 18419.22, + "probability": 0.6707 + }, + { + "start": 18419.82, + "end": 18421.06, + "probability": 0.9497 + }, + { + "start": 18421.46, + "end": 18422.04, + "probability": 0.8415 + }, + { + "start": 18422.58, + "end": 18423.3, + "probability": 0.7991 + }, + { + "start": 18424.04, + "end": 18425.72, + "probability": 0.7077 + }, + { + "start": 18425.9, + "end": 18427.4, + "probability": 0.8426 + }, + { + "start": 18427.7, + "end": 18429.6, + "probability": 0.8994 + }, + { + "start": 18429.74, + "end": 18431.36, + "probability": 0.7484 + }, + { + "start": 18431.76, + "end": 18434.8, + "probability": 0.9829 + }, + { + "start": 18435.12, + "end": 18437.62, + "probability": 0.8594 + }, + { + "start": 18437.9, + "end": 18439.32, + "probability": 0.8882 + }, + { + "start": 18439.58, + "end": 18440.07, + "probability": 0.9297 + }, + { + "start": 18440.62, + "end": 18442.61, + "probability": 0.8796 + }, + { + "start": 18443.26, + "end": 18445.71, + "probability": 0.9904 + }, + { + "start": 18446.3, + "end": 18448.54, + "probability": 0.8979 + }, + { + "start": 18449.32, + "end": 18450.37, + "probability": 0.907 + }, + { + "start": 18450.68, + "end": 18456.4, + "probability": 0.9604 + }, + { + "start": 18456.5, + "end": 18457.44, + "probability": 0.7001 + }, + { + "start": 18457.92, + "end": 18459.54, + "probability": 0.9693 + }, + { + "start": 18459.8, + "end": 18462.06, + "probability": 0.8793 + }, + { + "start": 18462.46, + "end": 18466.18, + "probability": 0.9943 + }, + { + "start": 18466.34, + "end": 18469.04, + "probability": 0.9347 + }, + { + "start": 18469.04, + "end": 18473.0, + "probability": 0.9108 + }, + { + "start": 18473.46, + "end": 18475.56, + "probability": 0.9954 + }, + { + "start": 18475.88, + "end": 18476.93, + "probability": 0.9755 + }, + { + "start": 18476.98, + "end": 18478.04, + "probability": 0.9824 + }, + { + "start": 18478.04, + "end": 18480.58, + "probability": 0.9886 + }, + { + "start": 18480.58, + "end": 18481.28, + "probability": 0.5013 + }, + { + "start": 18481.4, + "end": 18481.92, + "probability": 0.4233 + }, + { + "start": 18481.96, + "end": 18482.0, + "probability": 0.5074 + }, + { + "start": 18482.0, + "end": 18483.78, + "probability": 0.9514 + }, + { + "start": 18484.3, + "end": 18487.27, + "probability": 0.9067 + }, + { + "start": 18487.54, + "end": 18489.8, + "probability": 0.9958 + }, + { + "start": 18489.86, + "end": 18490.68, + "probability": 0.6152 + }, + { + "start": 18490.68, + "end": 18492.32, + "probability": 0.8511 + }, + { + "start": 18492.54, + "end": 18495.68, + "probability": 0.8939 + }, + { + "start": 18495.74, + "end": 18495.88, + "probability": 0.4263 + }, + { + "start": 18495.88, + "end": 18497.28, + "probability": 0.9362 + }, + { + "start": 18498.36, + "end": 18498.74, + "probability": 0.0797 + }, + { + "start": 18498.74, + "end": 18499.34, + "probability": 0.5518 + }, + { + "start": 18499.46, + "end": 18499.96, + "probability": 0.4643 + }, + { + "start": 18499.98, + "end": 18501.26, + "probability": 0.8732 + }, + { + "start": 18511.64, + "end": 18513.08, + "probability": 0.7914 + }, + { + "start": 18515.48, + "end": 18516.28, + "probability": 0.6629 + }, + { + "start": 18516.64, + "end": 18519.86, + "probability": 0.6839 + }, + { + "start": 18521.34, + "end": 18523.72, + "probability": 0.962 + }, + { + "start": 18524.62, + "end": 18527.92, + "probability": 0.9782 + }, + { + "start": 18530.38, + "end": 18535.4, + "probability": 0.6702 + }, + { + "start": 18536.92, + "end": 18539.88, + "probability": 0.9897 + }, + { + "start": 18540.28, + "end": 18543.14, + "probability": 0.9951 + }, + { + "start": 18543.92, + "end": 18545.28, + "probability": 0.9506 + }, + { + "start": 18545.86, + "end": 18548.5, + "probability": 0.9604 + }, + { + "start": 18548.76, + "end": 18549.3, + "probability": 0.8296 + }, + { + "start": 18550.56, + "end": 18551.75, + "probability": 0.9707 + }, + { + "start": 18553.1, + "end": 18555.5, + "probability": 0.9488 + }, + { + "start": 18556.46, + "end": 18558.6, + "probability": 0.8351 + }, + { + "start": 18559.26, + "end": 18561.9, + "probability": 0.8647 + }, + { + "start": 18562.64, + "end": 18564.02, + "probability": 0.9814 + }, + { + "start": 18565.2, + "end": 18568.18, + "probability": 0.9135 + }, + { + "start": 18568.36, + "end": 18569.16, + "probability": 0.9119 + }, + { + "start": 18569.6, + "end": 18570.92, + "probability": 0.9893 + }, + { + "start": 18572.56, + "end": 18576.42, + "probability": 0.9473 + }, + { + "start": 18576.72, + "end": 18578.5, + "probability": 0.7303 + }, + { + "start": 18579.3, + "end": 18579.8, + "probability": 0.9077 + }, + { + "start": 18580.16, + "end": 18580.38, + "probability": 0.3398 + }, + { + "start": 18580.42, + "end": 18585.28, + "probability": 0.981 + }, + { + "start": 18586.14, + "end": 18586.76, + "probability": 0.5066 + }, + { + "start": 18587.02, + "end": 18587.84, + "probability": 0.9219 + }, + { + "start": 18588.06, + "end": 18590.8, + "probability": 0.9929 + }, + { + "start": 18590.8, + "end": 18595.04, + "probability": 0.9483 + }, + { + "start": 18595.3, + "end": 18596.46, + "probability": 0.9688 + }, + { + "start": 18596.48, + "end": 18597.54, + "probability": 0.7522 + }, + { + "start": 18597.86, + "end": 18599.72, + "probability": 0.9581 + }, + { + "start": 18599.86, + "end": 18600.92, + "probability": 0.7417 + }, + { + "start": 18601.98, + "end": 18602.88, + "probability": 0.5537 + }, + { + "start": 18603.28, + "end": 18604.38, + "probability": 0.9704 + }, + { + "start": 18605.5, + "end": 18606.86, + "probability": 0.9832 + }, + { + "start": 18607.64, + "end": 18608.93, + "probability": 0.9951 + }, + { + "start": 18609.16, + "end": 18612.54, + "probability": 0.7948 + }, + { + "start": 18613.12, + "end": 18614.6, + "probability": 0.7561 + }, + { + "start": 18615.26, + "end": 18617.54, + "probability": 0.8697 + }, + { + "start": 18617.84, + "end": 18623.16, + "probability": 0.7952 + }, + { + "start": 18624.94, + "end": 18629.26, + "probability": 0.6858 + }, + { + "start": 18629.72, + "end": 18634.62, + "probability": 0.9875 + }, + { + "start": 18635.26, + "end": 18636.12, + "probability": 0.8972 + }, + { + "start": 18636.6, + "end": 18637.84, + "probability": 0.9404 + }, + { + "start": 18637.94, + "end": 18638.56, + "probability": 0.6533 + }, + { + "start": 18638.6, + "end": 18640.0, + "probability": 0.7699 + }, + { + "start": 18640.06, + "end": 18640.79, + "probability": 0.7819 + }, + { + "start": 18640.94, + "end": 18642.32, + "probability": 0.9727 + }, + { + "start": 18642.84, + "end": 18644.32, + "probability": 0.9889 + }, + { + "start": 18644.74, + "end": 18646.28, + "probability": 0.5668 + }, + { + "start": 18646.55, + "end": 18648.68, + "probability": 0.9178 + }, + { + "start": 18648.74, + "end": 18649.42, + "probability": 0.5563 + }, + { + "start": 18649.48, + "end": 18650.26, + "probability": 0.7737 + }, + { + "start": 18650.4, + "end": 18651.78, + "probability": 0.9384 + }, + { + "start": 18652.14, + "end": 18654.26, + "probability": 0.9701 + }, + { + "start": 18654.58, + "end": 18655.76, + "probability": 0.5037 + }, + { + "start": 18655.8, + "end": 18656.84, + "probability": 0.5393 + }, + { + "start": 18656.98, + "end": 18659.56, + "probability": 0.9824 + }, + { + "start": 18659.72, + "end": 18661.31, + "probability": 0.665 + }, + { + "start": 18662.08, + "end": 18666.1, + "probability": 0.9686 + }, + { + "start": 18666.2, + "end": 18666.3, + "probability": 0.4657 + }, + { + "start": 18669.74, + "end": 18670.34, + "probability": 0.0715 + }, + { + "start": 18670.34, + "end": 18670.34, + "probability": 0.0143 + }, + { + "start": 18670.34, + "end": 18674.8, + "probability": 0.8643 + }, + { + "start": 18674.94, + "end": 18675.62, + "probability": 0.6869 + }, + { + "start": 18675.64, + "end": 18679.36, + "probability": 0.7176 + }, + { + "start": 18680.16, + "end": 18680.98, + "probability": 0.7852 + }, + { + "start": 18681.94, + "end": 18683.78, + "probability": 0.5999 + }, + { + "start": 18683.86, + "end": 18685.12, + "probability": 0.4468 + }, + { + "start": 18686.77, + "end": 18689.82, + "probability": 0.981 + }, + { + "start": 18689.88, + "end": 18690.84, + "probability": 0.9768 + }, + { + "start": 18690.88, + "end": 18691.5, + "probability": 0.722 + }, + { + "start": 18691.65, + "end": 18693.28, + "probability": 0.8315 + }, + { + "start": 18693.34, + "end": 18694.28, + "probability": 0.5754 + }, + { + "start": 18694.38, + "end": 18695.18, + "probability": 0.7799 + }, + { + "start": 18695.18, + "end": 18696.82, + "probability": 0.6338 + }, + { + "start": 18697.82, + "end": 18701.29, + "probability": 0.699 + }, + { + "start": 18702.74, + "end": 18705.34, + "probability": 0.9294 + }, + { + "start": 18705.34, + "end": 18705.78, + "probability": 0.7388 + }, + { + "start": 18705.9, + "end": 18706.99, + "probability": 0.9223 + }, + { + "start": 18707.94, + "end": 18709.22, + "probability": 0.5665 + }, + { + "start": 18709.4, + "end": 18710.44, + "probability": 0.9474 + }, + { + "start": 18710.54, + "end": 18712.04, + "probability": 0.7136 + }, + { + "start": 18712.84, + "end": 18715.7, + "probability": 0.9875 + }, + { + "start": 18716.22, + "end": 18717.93, + "probability": 0.9355 + }, + { + "start": 18718.06, + "end": 18719.26, + "probability": 0.9091 + }, + { + "start": 18719.4, + "end": 18723.86, + "probability": 0.6039 + }, + { + "start": 18724.18, + "end": 18725.78, + "probability": 0.5397 + }, + { + "start": 18726.57, + "end": 18729.28, + "probability": 0.7792 + }, + { + "start": 18729.63, + "end": 18731.53, + "probability": 0.7886 + }, + { + "start": 18731.86, + "end": 18731.86, + "probability": 0.584 + }, + { + "start": 18731.86, + "end": 18734.18, + "probability": 0.8625 + }, + { + "start": 18736.96, + "end": 18737.02, + "probability": 0.1309 + }, + { + "start": 18737.02, + "end": 18738.38, + "probability": 0.6876 + }, + { + "start": 18738.44, + "end": 18739.14, + "probability": 0.5664 + }, + { + "start": 18739.26, + "end": 18740.14, + "probability": 0.8549 + }, + { + "start": 18740.28, + "end": 18741.42, + "probability": 0.8872 + }, + { + "start": 18748.24, + "end": 18751.54, + "probability": 0.7193 + }, + { + "start": 18751.88, + "end": 18752.78, + "probability": 0.5999 + }, + { + "start": 18753.02, + "end": 18753.86, + "probability": 0.5809 + }, + { + "start": 18754.0, + "end": 18755.32, + "probability": 0.7608 + }, + { + "start": 18755.4, + "end": 18756.94, + "probability": 0.7402 + }, + { + "start": 18757.5, + "end": 18758.42, + "probability": 0.8708 + }, + { + "start": 18759.46, + "end": 18761.82, + "probability": 0.9574 + }, + { + "start": 18761.9, + "end": 18765.9, + "probability": 0.9773 + }, + { + "start": 18766.16, + "end": 18767.12, + "probability": 0.8984 + }, + { + "start": 18768.1, + "end": 18772.58, + "probability": 0.9906 + }, + { + "start": 18773.24, + "end": 18778.3, + "probability": 0.9926 + }, + { + "start": 18778.3, + "end": 18786.22, + "probability": 0.9866 + }, + { + "start": 18786.31, + "end": 18792.62, + "probability": 0.9194 + }, + { + "start": 18793.0, + "end": 18793.72, + "probability": 0.5202 + }, + { + "start": 18793.76, + "end": 18794.87, + "probability": 0.5699 + }, + { + "start": 18795.22, + "end": 18796.18, + "probability": 0.9642 + }, + { + "start": 18796.7, + "end": 18797.78, + "probability": 0.9919 + }, + { + "start": 18798.38, + "end": 18801.62, + "probability": 0.9037 + }, + { + "start": 18802.0, + "end": 18805.56, + "probability": 0.9976 + }, + { + "start": 18805.68, + "end": 18806.66, + "probability": 0.6626 + }, + { + "start": 18806.78, + "end": 18808.82, + "probability": 0.8635 + }, + { + "start": 18809.0, + "end": 18812.18, + "probability": 0.9966 + }, + { + "start": 18812.5, + "end": 18815.46, + "probability": 0.9911 + }, + { + "start": 18815.98, + "end": 18818.1, + "probability": 0.8049 + }, + { + "start": 18818.84, + "end": 18820.32, + "probability": 0.7588 + }, + { + "start": 18820.32, + "end": 18821.84, + "probability": 0.8019 + }, + { + "start": 18821.9, + "end": 18824.52, + "probability": 0.8765 + }, + { + "start": 18825.58, + "end": 18828.8, + "probability": 0.9769 + }, + { + "start": 18829.1, + "end": 18832.4, + "probability": 0.9923 + }, + { + "start": 18832.46, + "end": 18832.72, + "probability": 0.6686 + }, + { + "start": 18832.8, + "end": 18833.72, + "probability": 0.8114 + }, + { + "start": 18834.16, + "end": 18834.66, + "probability": 0.9268 + }, + { + "start": 18834.74, + "end": 18839.48, + "probability": 0.7754 + }, + { + "start": 18839.9, + "end": 18843.7, + "probability": 0.9597 + }, + { + "start": 18844.34, + "end": 18845.3, + "probability": 0.6809 + }, + { + "start": 18846.08, + "end": 18852.02, + "probability": 0.9295 + }, + { + "start": 18852.72, + "end": 18856.58, + "probability": 0.936 + }, + { + "start": 18856.6, + "end": 18858.14, + "probability": 0.8242 + }, + { + "start": 18858.42, + "end": 18863.32, + "probability": 0.9565 + }, + { + "start": 18863.5, + "end": 18865.94, + "probability": 0.9724 + }, + { + "start": 18866.38, + "end": 18869.52, + "probability": 0.9668 + }, + { + "start": 18869.9, + "end": 18873.36, + "probability": 0.9796 + }, + { + "start": 18873.86, + "end": 18877.16, + "probability": 0.9855 + }, + { + "start": 18877.42, + "end": 18880.14, + "probability": 0.9771 + }, + { + "start": 18880.3, + "end": 18882.32, + "probability": 0.9917 + }, + { + "start": 18882.62, + "end": 18884.96, + "probability": 0.9663 + }, + { + "start": 18885.3, + "end": 18887.21, + "probability": 0.9595 + }, + { + "start": 18887.48, + "end": 18891.76, + "probability": 0.0946 + }, + { + "start": 18891.8, + "end": 18893.81, + "probability": 0.5057 + }, + { + "start": 18894.22, + "end": 18896.17, + "probability": 0.8748 + }, + { + "start": 18896.56, + "end": 18897.84, + "probability": 0.6207 + }, + { + "start": 18898.06, + "end": 18903.42, + "probability": 0.6538 + }, + { + "start": 18903.66, + "end": 18905.48, + "probability": 0.2552 + }, + { + "start": 18905.58, + "end": 18907.06, + "probability": 0.952 + }, + { + "start": 18907.1, + "end": 18909.66, + "probability": 0.9766 + }, + { + "start": 18909.96, + "end": 18911.84, + "probability": 0.7632 + }, + { + "start": 18912.1, + "end": 18916.12, + "probability": 0.9167 + }, + { + "start": 18916.46, + "end": 18921.2, + "probability": 0.978 + }, + { + "start": 18921.48, + "end": 18922.84, + "probability": 0.9003 + }, + { + "start": 18922.94, + "end": 18924.0, + "probability": 0.9077 + }, + { + "start": 18924.12, + "end": 18925.98, + "probability": 0.9454 + }, + { + "start": 18926.26, + "end": 18927.94, + "probability": 0.9089 + }, + { + "start": 18927.98, + "end": 18932.24, + "probability": 0.8996 + }, + { + "start": 18932.24, + "end": 18936.66, + "probability": 0.9983 + }, + { + "start": 18937.12, + "end": 18939.86, + "probability": 0.9744 + }, + { + "start": 18939.9, + "end": 18941.22, + "probability": 0.6855 + }, + { + "start": 18941.94, + "end": 18946.72, + "probability": 0.9904 + }, + { + "start": 18946.84, + "end": 18950.4, + "probability": 0.9273 + }, + { + "start": 18950.72, + "end": 18951.84, + "probability": 0.337 + }, + { + "start": 18952.04, + "end": 18954.3, + "probability": 0.8995 + }, + { + "start": 18954.68, + "end": 18956.38, + "probability": 0.7947 + }, + { + "start": 18956.44, + "end": 18957.62, + "probability": 0.5106 + }, + { + "start": 18957.84, + "end": 18958.5, + "probability": 0.429 + }, + { + "start": 18958.56, + "end": 18960.38, + "probability": 0.9214 + }, + { + "start": 18961.6, + "end": 18961.76, + "probability": 0.0887 + }, + { + "start": 18985.82, + "end": 18988.22, + "probability": 0.5971 + }, + { + "start": 18988.22, + "end": 18991.34, + "probability": 0.085 + }, + { + "start": 18991.34, + "end": 18991.56, + "probability": 0.0168 + }, + { + "start": 18995.22, + "end": 19001.08, + "probability": 0.4862 + }, + { + "start": 19001.62, + "end": 19002.58, + "probability": 0.8083 + }, + { + "start": 19003.5, + "end": 19005.36, + "probability": 0.4325 + }, + { + "start": 19005.96, + "end": 19008.3, + "probability": 0.89 + }, + { + "start": 19009.38, + "end": 19010.56, + "probability": 0.7802 + }, + { + "start": 19011.5, + "end": 19011.95, + "probability": 0.9548 + }, + { + "start": 19013.38, + "end": 19014.32, + "probability": 0.4978 + }, + { + "start": 19014.44, + "end": 19016.52, + "probability": 0.8789 + }, + { + "start": 19018.48, + "end": 19019.42, + "probability": 0.9627 + }, + { + "start": 19019.5, + "end": 19020.58, + "probability": 0.8879 + }, + { + "start": 19021.14, + "end": 19021.9, + "probability": 0.9053 + }, + { + "start": 19022.0, + "end": 19023.68, + "probability": 0.9248 + }, + { + "start": 19024.06, + "end": 19024.9, + "probability": 0.9777 + }, + { + "start": 19025.58, + "end": 19027.84, + "probability": 0.9932 + }, + { + "start": 19027.9, + "end": 19029.19, + "probability": 0.8616 + }, + { + "start": 19029.34, + "end": 19029.78, + "probability": 0.5313 + }, + { + "start": 19030.92, + "end": 19031.84, + "probability": 0.5474 + }, + { + "start": 19032.7, + "end": 19035.66, + "probability": 0.9771 + }, + { + "start": 19036.0, + "end": 19036.57, + "probability": 0.7074 + }, + { + "start": 19036.66, + "end": 19037.1, + "probability": 0.688 + }, + { + "start": 19037.28, + "end": 19040.44, + "probability": 0.8187 + }, + { + "start": 19040.62, + "end": 19042.04, + "probability": 0.8561 + }, + { + "start": 19042.72, + "end": 19044.08, + "probability": 0.9625 + }, + { + "start": 19045.22, + "end": 19048.66, + "probability": 0.9514 + }, + { + "start": 19049.16, + "end": 19050.66, + "probability": 0.7745 + }, + { + "start": 19051.12, + "end": 19052.14, + "probability": 0.8664 + }, + { + "start": 19052.76, + "end": 19053.6, + "probability": 0.5149 + }, + { + "start": 19053.62, + "end": 19056.46, + "probability": 0.9717 + }, + { + "start": 19056.86, + "end": 19058.16, + "probability": 0.8413 + }, + { + "start": 19058.66, + "end": 19059.26, + "probability": 0.8801 + }, + { + "start": 19060.7, + "end": 19061.66, + "probability": 0.9894 + }, + { + "start": 19063.04, + "end": 19066.88, + "probability": 0.9326 + }, + { + "start": 19073.64, + "end": 19075.9, + "probability": 0.0789 + }, + { + "start": 19076.52, + "end": 19077.16, + "probability": 0.0509 + }, + { + "start": 19077.16, + "end": 19077.4, + "probability": 0.1982 + }, + { + "start": 19078.42, + "end": 19084.64, + "probability": 0.8942 + }, + { + "start": 19085.32, + "end": 19086.4, + "probability": 0.9875 + }, + { + "start": 19086.44, + "end": 19087.7, + "probability": 0.7942 + }, + { + "start": 19087.8, + "end": 19089.0, + "probability": 0.9003 + }, + { + "start": 19089.44, + "end": 19091.2, + "probability": 0.9893 + }, + { + "start": 19091.32, + "end": 19093.24, + "probability": 0.6011 + }, + { + "start": 19093.62, + "end": 19094.46, + "probability": 0.8575 + }, + { + "start": 19094.7, + "end": 19095.64, + "probability": 0.9076 + }, + { + "start": 19095.72, + "end": 19096.66, + "probability": 0.9773 + }, + { + "start": 19097.02, + "end": 19100.62, + "probability": 0.8269 + }, + { + "start": 19101.48, + "end": 19103.42, + "probability": 0.9749 + }, + { + "start": 19103.48, + "end": 19104.46, + "probability": 0.9731 + }, + { + "start": 19104.72, + "end": 19105.54, + "probability": 0.2491 + }, + { + "start": 19106.1, + "end": 19108.06, + "probability": 0.9954 + }, + { + "start": 19108.58, + "end": 19110.18, + "probability": 0.8779 + }, + { + "start": 19110.34, + "end": 19111.22, + "probability": 0.9832 + }, + { + "start": 19111.42, + "end": 19112.12, + "probability": 0.9011 + }, + { + "start": 19112.18, + "end": 19112.9, + "probability": 0.9762 + }, + { + "start": 19113.12, + "end": 19114.06, + "probability": 0.653 + }, + { + "start": 19114.12, + "end": 19116.84, + "probability": 0.9648 + }, + { + "start": 19117.92, + "end": 19121.3, + "probability": 0.7076 + }, + { + "start": 19121.88, + "end": 19123.58, + "probability": 0.9802 + }, + { + "start": 19124.42, + "end": 19125.68, + "probability": 0.8661 + }, + { + "start": 19126.88, + "end": 19127.64, + "probability": 0.5876 + }, + { + "start": 19128.14, + "end": 19129.74, + "probability": 0.9478 + }, + { + "start": 19129.82, + "end": 19131.42, + "probability": 0.7774 + }, + { + "start": 19132.02, + "end": 19133.64, + "probability": 0.9862 + }, + { + "start": 19134.42, + "end": 19136.06, + "probability": 0.9152 + }, + { + "start": 19136.66, + "end": 19140.5, + "probability": 0.9631 + }, + { + "start": 19140.92, + "end": 19143.1, + "probability": 0.9821 + }, + { + "start": 19143.24, + "end": 19145.04, + "probability": 0.8811 + }, + { + "start": 19145.3, + "end": 19146.16, + "probability": 0.9583 + }, + { + "start": 19146.28, + "end": 19147.14, + "probability": 0.7239 + }, + { + "start": 19147.86, + "end": 19149.72, + "probability": 0.8941 + }, + { + "start": 19149.86, + "end": 19151.98, + "probability": 0.8853 + }, + { + "start": 19152.16, + "end": 19156.36, + "probability": 0.9957 + }, + { + "start": 19157.6, + "end": 19159.54, + "probability": 0.998 + }, + { + "start": 19160.34, + "end": 19161.64, + "probability": 0.9416 + }, + { + "start": 19161.7, + "end": 19163.78, + "probability": 0.9102 + }, + { + "start": 19164.26, + "end": 19164.32, + "probability": 0.0515 + }, + { + "start": 19164.64, + "end": 19167.36, + "probability": 0.98 + }, + { + "start": 19167.48, + "end": 19169.11, + "probability": 0.9406 + }, + { + "start": 19169.5, + "end": 19172.28, + "probability": 0.9972 + }, + { + "start": 19172.66, + "end": 19177.32, + "probability": 0.9878 + }, + { + "start": 19177.44, + "end": 19183.34, + "probability": 0.8728 + }, + { + "start": 19183.98, + "end": 19187.8, + "probability": 0.9838 + }, + { + "start": 19187.8, + "end": 19188.38, + "probability": 0.6165 + }, + { + "start": 19188.44, + "end": 19188.48, + "probability": 0.2341 + }, + { + "start": 19188.48, + "end": 19190.32, + "probability": 0.9792 + }, + { + "start": 19191.16, + "end": 19192.7, + "probability": 0.937 + }, + { + "start": 19193.64, + "end": 19196.44, + "probability": 0.8765 + }, + { + "start": 19197.18, + "end": 19200.76, + "probability": 0.9984 + }, + { + "start": 19201.92, + "end": 19203.68, + "probability": 0.8561 + }, + { + "start": 19203.8, + "end": 19205.88, + "probability": 0.9313 + }, + { + "start": 19206.34, + "end": 19207.82, + "probability": 0.9655 + }, + { + "start": 19207.92, + "end": 19209.09, + "probability": 0.9263 + }, + { + "start": 19210.36, + "end": 19212.12, + "probability": 0.9609 + }, + { + "start": 19212.68, + "end": 19214.92, + "probability": 0.9919 + }, + { + "start": 19215.56, + "end": 19216.78, + "probability": 0.9937 + }, + { + "start": 19217.7, + "end": 19218.98, + "probability": 0.9066 + }, + { + "start": 19219.24, + "end": 19220.43, + "probability": 0.964 + }, + { + "start": 19221.02, + "end": 19222.18, + "probability": 0.94 + }, + { + "start": 19222.3, + "end": 19223.22, + "probability": 0.279 + }, + { + "start": 19223.24, + "end": 19225.9, + "probability": 0.6818 + }, + { + "start": 19226.48, + "end": 19226.74, + "probability": 0.0675 + }, + { + "start": 19226.74, + "end": 19226.74, + "probability": 0.0815 + }, + { + "start": 19226.74, + "end": 19227.02, + "probability": 0.1006 + }, + { + "start": 19227.82, + "end": 19233.14, + "probability": 0.9926 + }, + { + "start": 19233.28, + "end": 19234.1, + "probability": 0.5281 + }, + { + "start": 19234.34, + "end": 19235.04, + "probability": 0.5916 + }, + { + "start": 19235.34, + "end": 19238.12, + "probability": 0.9776 + }, + { + "start": 19238.68, + "end": 19240.14, + "probability": 0.7485 + }, + { + "start": 19240.2, + "end": 19241.2, + "probability": 0.739 + }, + { + "start": 19241.86, + "end": 19242.44, + "probability": 0.7135 + }, + { + "start": 19242.58, + "end": 19242.98, + "probability": 0.4929 + }, + { + "start": 19242.98, + "end": 19244.62, + "probability": 0.7815 + }, + { + "start": 19245.6, + "end": 19249.14, + "probability": 0.8755 + }, + { + "start": 19249.64, + "end": 19253.24, + "probability": 0.9554 + }, + { + "start": 19253.56, + "end": 19254.14, + "probability": 0.4286 + }, + { + "start": 19254.38, + "end": 19257.0, + "probability": 0.9701 + }, + { + "start": 19263.76, + "end": 19263.78, + "probability": 0.0172 + }, + { + "start": 19263.78, + "end": 19263.78, + "probability": 0.182 + }, + { + "start": 19263.78, + "end": 19263.78, + "probability": 0.0874 + }, + { + "start": 19263.78, + "end": 19263.78, + "probability": 0.2765 + }, + { + "start": 19263.78, + "end": 19263.78, + "probability": 0.0892 + }, + { + "start": 19263.78, + "end": 19263.78, + "probability": 0.0183 + }, + { + "start": 19285.24, + "end": 19288.16, + "probability": 0.6169 + }, + { + "start": 19288.72, + "end": 19289.06, + "probability": 0.5869 + }, + { + "start": 19289.2, + "end": 19290.58, + "probability": 0.9453 + }, + { + "start": 19290.72, + "end": 19291.98, + "probability": 0.8899 + }, + { + "start": 19293.12, + "end": 19293.76, + "probability": 0.9951 + }, + { + "start": 19297.1, + "end": 19299.6, + "probability": 0.9818 + }, + { + "start": 19300.8, + "end": 19302.73, + "probability": 0.6371 + }, + { + "start": 19303.78, + "end": 19305.66, + "probability": 0.6558 + }, + { + "start": 19306.24, + "end": 19307.36, + "probability": 0.9084 + }, + { + "start": 19308.2, + "end": 19311.44, + "probability": 0.8677 + }, + { + "start": 19312.32, + "end": 19316.08, + "probability": 0.9808 + }, + { + "start": 19317.02, + "end": 19320.52, + "probability": 0.9918 + }, + { + "start": 19320.52, + "end": 19323.02, + "probability": 0.9713 + }, + { + "start": 19323.9, + "end": 19330.06, + "probability": 0.9977 + }, + { + "start": 19330.16, + "end": 19332.03, + "probability": 0.9937 + }, + { + "start": 19332.62, + "end": 19338.26, + "probability": 0.8471 + }, + { + "start": 19338.34, + "end": 19340.3, + "probability": 0.8642 + }, + { + "start": 19340.7, + "end": 19341.26, + "probability": 0.6497 + }, + { + "start": 19341.46, + "end": 19342.44, + "probability": 0.9097 + }, + { + "start": 19342.52, + "end": 19342.84, + "probability": 0.5374 + }, + { + "start": 19342.86, + "end": 19343.56, + "probability": 0.7355 + }, + { + "start": 19343.66, + "end": 19344.46, + "probability": 0.9575 + }, + { + "start": 19344.62, + "end": 19345.96, + "probability": 0.7321 + }, + { + "start": 19346.98, + "end": 19348.22, + "probability": 0.8921 + }, + { + "start": 19348.36, + "end": 19349.16, + "probability": 0.9339 + }, + { + "start": 19349.34, + "end": 19350.73, + "probability": 0.583 + }, + { + "start": 19350.88, + "end": 19351.74, + "probability": 0.8422 + }, + { + "start": 19351.82, + "end": 19352.04, + "probability": 0.6957 + }, + { + "start": 19352.2, + "end": 19353.42, + "probability": 0.9476 + }, + { + "start": 19353.78, + "end": 19355.24, + "probability": 0.6161 + }, + { + "start": 19355.68, + "end": 19357.13, + "probability": 0.7039 + }, + { + "start": 19357.52, + "end": 19358.74, + "probability": 0.7578 + }, + { + "start": 19358.82, + "end": 19364.04, + "probability": 0.9665 + }, + { + "start": 19364.04, + "end": 19369.94, + "probability": 0.993 + }, + { + "start": 19370.2, + "end": 19371.62, + "probability": 0.951 + }, + { + "start": 19371.94, + "end": 19372.72, + "probability": 0.9393 + }, + { + "start": 19372.98, + "end": 19375.84, + "probability": 0.9647 + }, + { + "start": 19376.08, + "end": 19376.74, + "probability": 0.4932 + }, + { + "start": 19377.64, + "end": 19379.44, + "probability": 0.9147 + }, + { + "start": 19379.82, + "end": 19381.92, + "probability": 0.9809 + }, + { + "start": 19382.5, + "end": 19386.22, + "probability": 0.7905 + }, + { + "start": 19386.86, + "end": 19392.62, + "probability": 0.8363 + }, + { + "start": 19393.0, + "end": 19394.57, + "probability": 0.8555 + }, + { + "start": 19395.32, + "end": 19397.24, + "probability": 0.558 + }, + { + "start": 19397.4, + "end": 19399.34, + "probability": 0.6732 + }, + { + "start": 19400.12, + "end": 19404.96, + "probability": 0.9213 + }, + { + "start": 19404.96, + "end": 19408.78, + "probability": 0.998 + }, + { + "start": 19409.14, + "end": 19411.22, + "probability": 0.9668 + }, + { + "start": 19411.5, + "end": 19412.92, + "probability": 0.9852 + }, + { + "start": 19413.08, + "end": 19414.57, + "probability": 0.9944 + }, + { + "start": 19415.8, + "end": 19416.04, + "probability": 0.0022 + }, + { + "start": 19416.6, + "end": 19418.99, + "probability": 0.3511 + }, + { + "start": 19419.06, + "end": 19419.6, + "probability": 0.7162 + }, + { + "start": 19419.84, + "end": 19420.26, + "probability": 0.0691 + }, + { + "start": 19420.34, + "end": 19423.14, + "probability": 0.6925 + }, + { + "start": 19423.38, + "end": 19424.52, + "probability": 0.7256 + }, + { + "start": 19424.56, + "end": 19427.66, + "probability": 0.9661 + }, + { + "start": 19429.54, + "end": 19430.84, + "probability": 0.4855 + }, + { + "start": 19432.62, + "end": 19436.92, + "probability": 0.1306 + }, + { + "start": 19437.2, + "end": 19437.38, + "probability": 0.2176 + }, + { + "start": 19437.38, + "end": 19439.44, + "probability": 0.9789 + }, + { + "start": 19439.9, + "end": 19441.72, + "probability": 0.9391 + }, + { + "start": 19441.88, + "end": 19444.16, + "probability": 0.9484 + }, + { + "start": 19445.94, + "end": 19446.1, + "probability": 0.7647 + }, + { + "start": 19446.1, + "end": 19447.16, + "probability": 0.8635 + }, + { + "start": 19447.26, + "end": 19449.54, + "probability": 0.5836 + }, + { + "start": 19449.62, + "end": 19451.67, + "probability": 0.8062 + }, + { + "start": 19451.88, + "end": 19452.86, + "probability": 0.9728 + }, + { + "start": 19454.72, + "end": 19454.98, + "probability": 0.2062 + }, + { + "start": 19454.98, + "end": 19454.98, + "probability": 0.0372 + }, + { + "start": 19454.98, + "end": 19455.62, + "probability": 0.3649 + }, + { + "start": 19456.72, + "end": 19459.02, + "probability": 0.4741 + }, + { + "start": 19459.04, + "end": 19460.8, + "probability": 0.5827 + }, + { + "start": 19461.0, + "end": 19466.06, + "probability": 0.6272 + }, + { + "start": 19466.24, + "end": 19467.24, + "probability": 0.2849 + }, + { + "start": 19468.4, + "end": 19471.68, + "probability": 0.7126 + }, + { + "start": 19472.94, + "end": 19477.82, + "probability": 0.9541 + }, + { + "start": 19479.46, + "end": 19486.58, + "probability": 0.9917 + }, + { + "start": 19487.94, + "end": 19489.46, + "probability": 0.9993 + }, + { + "start": 19490.48, + "end": 19492.56, + "probability": 0.9684 + }, + { + "start": 19493.78, + "end": 19496.0, + "probability": 0.9748 + }, + { + "start": 19496.5, + "end": 19498.09, + "probability": 0.751 + }, + { + "start": 19499.16, + "end": 19499.16, + "probability": 0.0154 + }, + { + "start": 19499.16, + "end": 19503.98, + "probability": 0.9728 + }, + { + "start": 19504.02, + "end": 19505.7, + "probability": 0.9836 + }, + { + "start": 19505.78, + "end": 19510.34, + "probability": 0.9829 + }, + { + "start": 19510.34, + "end": 19514.14, + "probability": 0.9357 + }, + { + "start": 19514.76, + "end": 19516.96, + "probability": 0.9531 + }, + { + "start": 19517.96, + "end": 19519.61, + "probability": 0.6868 + }, + { + "start": 19519.8, + "end": 19521.34, + "probability": 0.2264 + }, + { + "start": 19521.38, + "end": 19521.8, + "probability": 0.5786 + }, + { + "start": 19522.12, + "end": 19523.96, + "probability": 0.5749 + }, + { + "start": 19527.07, + "end": 19527.5, + "probability": 0.5826 + }, + { + "start": 19527.5, + "end": 19527.76, + "probability": 0.0936 + }, + { + "start": 19527.96, + "end": 19528.86, + "probability": 0.5267 + }, + { + "start": 19528.86, + "end": 19534.48, + "probability": 0.965 + }, + { + "start": 19535.7, + "end": 19538.04, + "probability": 0.913 + }, + { + "start": 19538.88, + "end": 19539.68, + "probability": 0.4906 + }, + { + "start": 19539.9, + "end": 19544.04, + "probability": 0.9933 + }, + { + "start": 19544.48, + "end": 19545.29, + "probability": 0.6731 + }, + { + "start": 19545.44, + "end": 19546.18, + "probability": 0.8665 + }, + { + "start": 19546.32, + "end": 19547.34, + "probability": 0.7792 + }, + { + "start": 19547.56, + "end": 19548.05, + "probability": 0.9412 + }, + { + "start": 19548.44, + "end": 19549.38, + "probability": 0.8764 + }, + { + "start": 19549.42, + "end": 19551.34, + "probability": 0.8753 + }, + { + "start": 19552.44, + "end": 19554.78, + "probability": 0.9663 + }, + { + "start": 19555.0, + "end": 19556.12, + "probability": 0.9675 + }, + { + "start": 19556.38, + "end": 19558.02, + "probability": 0.9908 + }, + { + "start": 19558.08, + "end": 19562.18, + "probability": 0.8236 + }, + { + "start": 19562.28, + "end": 19567.54, + "probability": 0.7359 + }, + { + "start": 19568.22, + "end": 19572.02, + "probability": 0.9877 + }, + { + "start": 19572.52, + "end": 19572.78, + "probability": 0.626 + }, + { + "start": 19572.84, + "end": 19574.36, + "probability": 0.9569 + }, + { + "start": 19574.76, + "end": 19577.54, + "probability": 0.9873 + }, + { + "start": 19577.54, + "end": 19580.78, + "probability": 0.998 + }, + { + "start": 19580.78, + "end": 19583.6, + "probability": 0.9628 + }, + { + "start": 19583.6, + "end": 19586.86, + "probability": 0.9509 + }, + { + "start": 19586.94, + "end": 19587.38, + "probability": 0.6732 + }, + { + "start": 19587.64, + "end": 19589.98, + "probability": 0.9859 + }, + { + "start": 19590.02, + "end": 19592.06, + "probability": 0.9444 + }, + { + "start": 19594.02, + "end": 19597.04, + "probability": 0.0908 + }, + { + "start": 19611.66, + "end": 19617.54, + "probability": 0.8253 + }, + { + "start": 19617.7, + "end": 19621.14, + "probability": 0.261 + }, + { + "start": 19621.7, + "end": 19623.34, + "probability": 0.1436 + }, + { + "start": 19624.24, + "end": 19628.3, + "probability": 0.6531 + }, + { + "start": 19628.94, + "end": 19631.96, + "probability": 0.7805 + }, + { + "start": 19635.44, + "end": 19635.44, + "probability": 0.0 + }, + { + "start": 19646.15, + "end": 19646.82, + "probability": 0.016 + }, + { + "start": 19646.82, + "end": 19648.32, + "probability": 0.0351 + }, + { + "start": 19648.32, + "end": 19650.14, + "probability": 0.0141 + }, + { + "start": 19652.18, + "end": 19656.34, + "probability": 0.0662 + }, + { + "start": 19657.14, + "end": 19660.4, + "probability": 0.073 + }, + { + "start": 19664.5, + "end": 19665.24, + "probability": 0.1404 + }, + { + "start": 19665.24, + "end": 19667.98, + "probability": 0.0484 + }, + { + "start": 19668.0, + "end": 19670.12, + "probability": 0.0601 + }, + { + "start": 19670.12, + "end": 19671.52, + "probability": 0.0366 + }, + { + "start": 19671.74, + "end": 19671.98, + "probability": 0.3032 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.0, + "end": 19672.0, + "probability": 0.0 + }, + { + "start": 19672.14, + "end": 19672.14, + "probability": 0.3451 + }, + { + "start": 19672.14, + "end": 19672.72, + "probability": 0.3479 + }, + { + "start": 19673.8, + "end": 19674.58, + "probability": 0.3098 + }, + { + "start": 19675.4, + "end": 19679.22, + "probability": 0.9448 + }, + { + "start": 19679.44, + "end": 19679.86, + "probability": 0.5294 + }, + { + "start": 19680.08, + "end": 19681.32, + "probability": 0.1537 + }, + { + "start": 19681.52, + "end": 19682.82, + "probability": 0.5589 + }, + { + "start": 19683.74, + "end": 19688.0, + "probability": 0.3148 + }, + { + "start": 19688.22, + "end": 19692.36, + "probability": 0.6222 + }, + { + "start": 19692.74, + "end": 19694.38, + "probability": 0.7624 + }, + { + "start": 19694.38, + "end": 19696.0, + "probability": 0.4191 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.0, + "end": 19809.0, + "probability": 0.0 + }, + { + "start": 19809.48, + "end": 19815.12, + "probability": 0.3446 + }, + { + "start": 19815.12, + "end": 19820.02, + "probability": 0.0564 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + }, + { + "start": 19911.9, + "end": 19911.9, + "probability": 0.0 + } + ], + "segments_count": 7311, + "words_count": 35393, + "avg_words_per_segment": 4.8411, + "avg_segment_duration": 2.0089, + "avg_words_per_minute": 106.6488, + "plenum_id": "35215", + "duration": 19911.9, + "title": null, + "plenum_date": "2014-02-17" +} \ No newline at end of file