diff --git "a/38226/metadata.json" "b/38226/metadata.json" new file mode 100644--- /dev/null +++ "b/38226/metadata.json" @@ -0,0 +1,22892 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38226", + "quality_score": 0.9021, + "per_segment_quality_scores": [ + { + "start": 39.62, + "end": 42.98, + "probability": 0.6945 + }, + { + "start": 44.48, + "end": 49.72, + "probability": 0.9292 + }, + { + "start": 50.12, + "end": 51.38, + "probability": 0.9896 + }, + { + "start": 52.72, + "end": 54.94, + "probability": 0.743 + }, + { + "start": 55.6, + "end": 57.22, + "probability": 0.9193 + }, + { + "start": 57.7, + "end": 59.42, + "probability": 0.9691 + }, + { + "start": 60.1, + "end": 63.56, + "probability": 0.8514 + }, + { + "start": 64.04, + "end": 65.5, + "probability": 0.7017 + }, + { + "start": 66.0, + "end": 67.9, + "probability": 0.9845 + }, + { + "start": 68.64, + "end": 69.42, + "probability": 0.7654 + }, + { + "start": 69.48, + "end": 75.28, + "probability": 0.9002 + }, + { + "start": 75.44, + "end": 76.52, + "probability": 0.5692 + }, + { + "start": 77.4, + "end": 80.14, + "probability": 0.9326 + }, + { + "start": 80.8, + "end": 84.16, + "probability": 0.5427 + }, + { + "start": 85.04, + "end": 85.86, + "probability": 0.9663 + }, + { + "start": 89.07, + "end": 90.94, + "probability": 0.6388 + }, + { + "start": 90.94, + "end": 92.68, + "probability": 0.7344 + }, + { + "start": 93.22, + "end": 97.72, + "probability": 0.9583 + }, + { + "start": 98.24, + "end": 99.36, + "probability": 0.5787 + }, + { + "start": 100.2, + "end": 101.96, + "probability": 0.662 + }, + { + "start": 103.05, + "end": 105.48, + "probability": 0.1415 + }, + { + "start": 106.18, + "end": 107.0, + "probability": 0.0535 + }, + { + "start": 107.02, + "end": 108.14, + "probability": 0.0269 + }, + { + "start": 108.14, + "end": 108.14, + "probability": 0.1 + }, + { + "start": 108.14, + "end": 108.62, + "probability": 0.5642 + }, + { + "start": 121.62, + "end": 125.18, + "probability": 0.0479 + }, + { + "start": 125.18, + "end": 126.43, + "probability": 0.1387 + }, + { + "start": 127.74, + "end": 131.22, + "probability": 0.2642 + }, + { + "start": 144.28, + "end": 144.52, + "probability": 0.0447 + }, + { + "start": 144.52, + "end": 146.08, + "probability": 0.1068 + }, + { + "start": 146.27, + "end": 146.39, + "probability": 0.0442 + }, + { + "start": 148.18, + "end": 148.18, + "probability": 0.0307 + }, + { + "start": 148.5, + "end": 148.86, + "probability": 0.4103 + }, + { + "start": 148.96, + "end": 149.39, + "probability": 0.3414 + }, + { + "start": 151.52, + "end": 154.4, + "probability": 0.0965 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.0, + "end": 215.0, + "probability": 0.0 + }, + { + "start": 215.54, + "end": 217.92, + "probability": 0.7122 + }, + { + "start": 218.34, + "end": 220.12, + "probability": 0.8885 + }, + { + "start": 221.32, + "end": 223.2, + "probability": 0.9596 + }, + { + "start": 225.44, + "end": 227.7, + "probability": 0.8328 + }, + { + "start": 227.82, + "end": 229.1, + "probability": 0.464 + }, + { + "start": 229.22, + "end": 230.4, + "probability": 0.9952 + }, + { + "start": 232.36, + "end": 232.94, + "probability": 0.6311 + }, + { + "start": 233.16, + "end": 234.76, + "probability": 0.2731 + }, + { + "start": 235.04, + "end": 237.89, + "probability": 0.6995 + }, + { + "start": 238.12, + "end": 240.52, + "probability": 0.9228 + }, + { + "start": 240.96, + "end": 244.0, + "probability": 0.4025 + }, + { + "start": 244.72, + "end": 247.1, + "probability": 0.84 + }, + { + "start": 248.0, + "end": 249.56, + "probability": 0.8791 + }, + { + "start": 251.96, + "end": 256.48, + "probability": 0.6225 + }, + { + "start": 257.24, + "end": 258.44, + "probability": 0.9924 + }, + { + "start": 261.68, + "end": 265.58, + "probability": 0.9739 + }, + { + "start": 266.42, + "end": 268.72, + "probability": 0.9971 + }, + { + "start": 270.02, + "end": 274.48, + "probability": 0.9658 + }, + { + "start": 274.9, + "end": 276.8, + "probability": 0.855 + }, + { + "start": 278.72, + "end": 281.44, + "probability": 0.7498 + }, + { + "start": 281.56, + "end": 282.66, + "probability": 0.9419 + }, + { + "start": 282.66, + "end": 284.84, + "probability": 0.9924 + }, + { + "start": 285.48, + "end": 286.88, + "probability": 0.7465 + }, + { + "start": 287.4, + "end": 287.66, + "probability": 0.0503 + }, + { + "start": 287.66, + "end": 288.42, + "probability": 0.6493 + }, + { + "start": 288.42, + "end": 289.34, + "probability": 0.5014 + }, + { + "start": 289.42, + "end": 290.56, + "probability": 0.7308 + }, + { + "start": 290.92, + "end": 291.44, + "probability": 0.674 + }, + { + "start": 292.48, + "end": 294.46, + "probability": 0.9843 + }, + { + "start": 296.04, + "end": 297.38, + "probability": 0.7559 + }, + { + "start": 298.34, + "end": 300.04, + "probability": 0.9182 + }, + { + "start": 300.94, + "end": 301.84, + "probability": 0.7546 + }, + { + "start": 302.14, + "end": 304.12, + "probability": 0.9304 + }, + { + "start": 305.44, + "end": 307.64, + "probability": 0.8789 + }, + { + "start": 308.88, + "end": 312.78, + "probability": 0.9987 + }, + { + "start": 313.66, + "end": 315.54, + "probability": 0.998 + }, + { + "start": 316.64, + "end": 317.12, + "probability": 0.7557 + }, + { + "start": 317.98, + "end": 321.3, + "probability": 0.8143 + }, + { + "start": 322.08, + "end": 323.64, + "probability": 0.6623 + }, + { + "start": 323.92, + "end": 325.98, + "probability": 0.8684 + }, + { + "start": 326.02, + "end": 329.4, + "probability": 0.7911 + }, + { + "start": 329.82, + "end": 330.64, + "probability": 0.5115 + }, + { + "start": 330.76, + "end": 331.75, + "probability": 0.9365 + }, + { + "start": 332.54, + "end": 332.84, + "probability": 0.8638 + }, + { + "start": 334.22, + "end": 336.0, + "probability": 0.9944 + }, + { + "start": 337.4, + "end": 339.44, + "probability": 0.9923 + }, + { + "start": 340.64, + "end": 342.12, + "probability": 0.8809 + }, + { + "start": 343.2, + "end": 345.02, + "probability": 0.7427 + }, + { + "start": 345.16, + "end": 345.6, + "probability": 0.4579 + }, + { + "start": 346.06, + "end": 347.92, + "probability": 0.9023 + }, + { + "start": 347.96, + "end": 348.62, + "probability": 0.9832 + }, + { + "start": 349.66, + "end": 351.1, + "probability": 0.8536 + }, + { + "start": 351.2, + "end": 353.56, + "probability": 0.9427 + }, + { + "start": 354.5, + "end": 359.18, + "probability": 0.9087 + }, + { + "start": 360.04, + "end": 363.08, + "probability": 0.9977 + }, + { + "start": 363.62, + "end": 364.82, + "probability": 0.57 + }, + { + "start": 366.34, + "end": 370.4, + "probability": 0.826 + }, + { + "start": 372.18, + "end": 374.92, + "probability": 0.7963 + }, + { + "start": 375.06, + "end": 382.32, + "probability": 0.4698 + }, + { + "start": 384.88, + "end": 385.58, + "probability": 0.7179 + }, + { + "start": 386.5, + "end": 387.36, + "probability": 0.9226 + }, + { + "start": 388.2, + "end": 388.9, + "probability": 0.8606 + }, + { + "start": 391.68, + "end": 392.5, + "probability": 0.8577 + }, + { + "start": 393.6, + "end": 395.2, + "probability": 0.6339 + }, + { + "start": 396.68, + "end": 399.4, + "probability": 0.9436 + }, + { + "start": 400.78, + "end": 402.86, + "probability": 0.9894 + }, + { + "start": 402.94, + "end": 404.64, + "probability": 0.8541 + }, + { + "start": 405.16, + "end": 405.69, + "probability": 0.8849 + }, + { + "start": 406.78, + "end": 408.34, + "probability": 0.9429 + }, + { + "start": 409.34, + "end": 413.1, + "probability": 0.9829 + }, + { + "start": 413.16, + "end": 414.06, + "probability": 0.5933 + }, + { + "start": 415.06, + "end": 418.84, + "probability": 0.9966 + }, + { + "start": 419.68, + "end": 420.42, + "probability": 0.7072 + }, + { + "start": 421.28, + "end": 423.26, + "probability": 0.626 + }, + { + "start": 424.5, + "end": 426.5, + "probability": 0.8869 + }, + { + "start": 428.38, + "end": 429.06, + "probability": 0.9158 + }, + { + "start": 429.14, + "end": 429.22, + "probability": 0.3668 + }, + { + "start": 429.24, + "end": 430.38, + "probability": 0.9766 + }, + { + "start": 430.44, + "end": 435.26, + "probability": 0.8132 + }, + { + "start": 435.4, + "end": 436.86, + "probability": 0.7499 + }, + { + "start": 437.88, + "end": 439.06, + "probability": 0.3937 + }, + { + "start": 439.14, + "end": 439.56, + "probability": 0.8506 + }, + { + "start": 440.2, + "end": 443.0, + "probability": 0.7914 + }, + { + "start": 443.94, + "end": 445.85, + "probability": 0.915 + }, + { + "start": 446.42, + "end": 447.34, + "probability": 0.9593 + }, + { + "start": 449.26, + "end": 450.24, + "probability": 0.7741 + }, + { + "start": 450.82, + "end": 454.78, + "probability": 0.7221 + }, + { + "start": 455.78, + "end": 458.46, + "probability": 0.9805 + }, + { + "start": 459.3, + "end": 460.36, + "probability": 0.8098 + }, + { + "start": 460.94, + "end": 463.48, + "probability": 0.9946 + }, + { + "start": 463.8, + "end": 468.28, + "probability": 0.9895 + }, + { + "start": 468.62, + "end": 471.96, + "probability": 0.8098 + }, + { + "start": 472.56, + "end": 476.07, + "probability": 0.908 + }, + { + "start": 476.42, + "end": 480.04, + "probability": 0.9969 + }, + { + "start": 481.36, + "end": 483.06, + "probability": 0.783 + }, + { + "start": 484.14, + "end": 485.02, + "probability": 0.9028 + }, + { + "start": 485.66, + "end": 486.64, + "probability": 0.8496 + }, + { + "start": 487.72, + "end": 490.12, + "probability": 0.8652 + }, + { + "start": 490.88, + "end": 493.06, + "probability": 0.964 + }, + { + "start": 494.18, + "end": 495.16, + "probability": 0.7232 + }, + { + "start": 495.76, + "end": 496.74, + "probability": 0.8486 + }, + { + "start": 497.58, + "end": 497.94, + "probability": 0.5633 + }, + { + "start": 498.52, + "end": 502.8, + "probability": 0.981 + }, + { + "start": 503.54, + "end": 504.99, + "probability": 0.7378 + }, + { + "start": 505.52, + "end": 505.96, + "probability": 0.4997 + }, + { + "start": 505.96, + "end": 508.06, + "probability": 0.8481 + }, + { + "start": 508.64, + "end": 509.84, + "probability": 0.9485 + }, + { + "start": 510.54, + "end": 512.76, + "probability": 0.9822 + }, + { + "start": 513.74, + "end": 515.58, + "probability": 0.8911 + }, + { + "start": 515.9, + "end": 517.04, + "probability": 0.8804 + }, + { + "start": 517.6, + "end": 519.86, + "probability": 0.8295 + }, + { + "start": 520.56, + "end": 521.54, + "probability": 0.9805 + }, + { + "start": 522.16, + "end": 522.9, + "probability": 0.7995 + }, + { + "start": 523.48, + "end": 525.7, + "probability": 0.9458 + }, + { + "start": 526.42, + "end": 526.98, + "probability": 0.8638 + }, + { + "start": 527.9, + "end": 528.75, + "probability": 0.9299 + }, + { + "start": 529.04, + "end": 533.26, + "probability": 0.9503 + }, + { + "start": 533.44, + "end": 534.72, + "probability": 0.9425 + }, + { + "start": 535.32, + "end": 536.14, + "probability": 0.8794 + }, + { + "start": 536.88, + "end": 539.32, + "probability": 0.9914 + }, + { + "start": 539.36, + "end": 540.4, + "probability": 0.9669 + }, + { + "start": 541.1, + "end": 543.24, + "probability": 0.9832 + }, + { + "start": 543.86, + "end": 546.72, + "probability": 0.7637 + }, + { + "start": 546.92, + "end": 550.02, + "probability": 0.9817 + }, + { + "start": 550.44, + "end": 551.12, + "probability": 0.9862 + }, + { + "start": 551.66, + "end": 552.32, + "probability": 0.9706 + }, + { + "start": 552.96, + "end": 555.5, + "probability": 0.9923 + }, + { + "start": 556.0, + "end": 557.34, + "probability": 0.7983 + }, + { + "start": 558.06, + "end": 558.46, + "probability": 0.8034 + }, + { + "start": 559.12, + "end": 560.44, + "probability": 0.9839 + }, + { + "start": 560.66, + "end": 563.92, + "probability": 0.8703 + }, + { + "start": 564.62, + "end": 565.2, + "probability": 0.5072 + }, + { + "start": 565.92, + "end": 566.32, + "probability": 0.9538 + }, + { + "start": 566.96, + "end": 568.92, + "probability": 0.3956 + }, + { + "start": 569.84, + "end": 570.68, + "probability": 0.9189 + }, + { + "start": 571.78, + "end": 573.23, + "probability": 0.6593 + }, + { + "start": 574.04, + "end": 575.14, + "probability": 0.8915 + }, + { + "start": 575.68, + "end": 577.56, + "probability": 0.9619 + }, + { + "start": 578.42, + "end": 579.94, + "probability": 0.6434 + }, + { + "start": 580.16, + "end": 580.92, + "probability": 0.9009 + }, + { + "start": 580.92, + "end": 582.62, + "probability": 0.6904 + }, + { + "start": 582.86, + "end": 584.43, + "probability": 0.9736 + }, + { + "start": 585.58, + "end": 586.2, + "probability": 0.775 + }, + { + "start": 586.7, + "end": 588.1, + "probability": 0.8995 + }, + { + "start": 588.16, + "end": 589.28, + "probability": 0.8118 + }, + { + "start": 589.8, + "end": 592.72, + "probability": 0.7111 + }, + { + "start": 593.2, + "end": 593.98, + "probability": 0.9879 + }, + { + "start": 594.52, + "end": 595.3, + "probability": 0.8475 + }, + { + "start": 596.68, + "end": 599.92, + "probability": 0.5858 + }, + { + "start": 601.28, + "end": 601.76, + "probability": 0.5838 + }, + { + "start": 602.82, + "end": 604.1, + "probability": 0.9148 + }, + { + "start": 604.7, + "end": 607.58, + "probability": 0.9818 + }, + { + "start": 608.1, + "end": 609.78, + "probability": 0.9332 + }, + { + "start": 610.24, + "end": 612.46, + "probability": 0.9192 + }, + { + "start": 612.6, + "end": 613.68, + "probability": 0.9952 + }, + { + "start": 614.04, + "end": 614.52, + "probability": 0.7808 + }, + { + "start": 614.98, + "end": 615.52, + "probability": 0.8216 + }, + { + "start": 615.62, + "end": 616.79, + "probability": 0.9644 + }, + { + "start": 617.5, + "end": 618.28, + "probability": 0.9597 + }, + { + "start": 618.92, + "end": 620.44, + "probability": 0.8725 + }, + { + "start": 620.92, + "end": 622.48, + "probability": 0.9814 + }, + { + "start": 622.68, + "end": 623.5, + "probability": 0.9932 + }, + { + "start": 624.2, + "end": 625.48, + "probability": 0.8154 + }, + { + "start": 626.02, + "end": 627.98, + "probability": 0.7746 + }, + { + "start": 628.94, + "end": 630.28, + "probability": 0.9424 + }, + { + "start": 630.38, + "end": 631.2, + "probability": 0.7983 + }, + { + "start": 631.26, + "end": 632.08, + "probability": 0.9352 + }, + { + "start": 632.1, + "end": 632.98, + "probability": 0.9099 + }, + { + "start": 633.62, + "end": 634.36, + "probability": 0.8966 + }, + { + "start": 634.44, + "end": 635.48, + "probability": 0.5206 + }, + { + "start": 635.82, + "end": 636.58, + "probability": 0.744 + }, + { + "start": 637.1, + "end": 637.94, + "probability": 0.9758 + }, + { + "start": 639.1, + "end": 641.56, + "probability": 0.9951 + }, + { + "start": 642.64, + "end": 643.76, + "probability": 0.9847 + }, + { + "start": 644.34, + "end": 645.88, + "probability": 0.7837 + }, + { + "start": 646.16, + "end": 647.3, + "probability": 0.9644 + }, + { + "start": 647.64, + "end": 650.5, + "probability": 0.9984 + }, + { + "start": 651.26, + "end": 655.72, + "probability": 0.9971 + }, + { + "start": 655.72, + "end": 658.96, + "probability": 0.9417 + }, + { + "start": 659.94, + "end": 662.8, + "probability": 0.9734 + }, + { + "start": 663.02, + "end": 664.02, + "probability": 0.7092 + }, + { + "start": 664.88, + "end": 668.28, + "probability": 0.9512 + }, + { + "start": 668.96, + "end": 670.82, + "probability": 0.8901 + }, + { + "start": 671.48, + "end": 672.76, + "probability": 0.9272 + }, + { + "start": 673.44, + "end": 674.64, + "probability": 0.7595 + }, + { + "start": 674.82, + "end": 675.82, + "probability": 0.8815 + }, + { + "start": 675.88, + "end": 675.92, + "probability": 0.3772 + }, + { + "start": 675.92, + "end": 678.36, + "probability": 0.9581 + }, + { + "start": 679.18, + "end": 682.34, + "probability": 0.9702 + }, + { + "start": 682.96, + "end": 685.4, + "probability": 0.9971 + }, + { + "start": 685.92, + "end": 687.28, + "probability": 0.9848 + }, + { + "start": 687.32, + "end": 690.8, + "probability": 0.8989 + }, + { + "start": 691.56, + "end": 693.3, + "probability": 0.8174 + }, + { + "start": 694.18, + "end": 695.6, + "probability": 0.9051 + }, + { + "start": 695.76, + "end": 697.46, + "probability": 0.369 + }, + { + "start": 697.88, + "end": 698.9, + "probability": 0.9762 + }, + { + "start": 699.32, + "end": 701.16, + "probability": 0.8815 + }, + { + "start": 702.24, + "end": 705.82, + "probability": 0.9859 + }, + { + "start": 705.88, + "end": 706.72, + "probability": 0.943 + }, + { + "start": 707.5, + "end": 709.88, + "probability": 0.9635 + }, + { + "start": 710.08, + "end": 712.46, + "probability": 0.6143 + }, + { + "start": 712.76, + "end": 713.74, + "probability": 0.6752 + }, + { + "start": 714.24, + "end": 715.69, + "probability": 0.9559 + }, + { + "start": 716.08, + "end": 717.24, + "probability": 0.8795 + }, + { + "start": 717.54, + "end": 719.94, + "probability": 0.9872 + }, + { + "start": 720.62, + "end": 724.36, + "probability": 0.996 + }, + { + "start": 724.9, + "end": 728.64, + "probability": 0.8202 + }, + { + "start": 729.22, + "end": 731.24, + "probability": 0.8059 + }, + { + "start": 731.84, + "end": 733.56, + "probability": 0.9789 + }, + { + "start": 734.32, + "end": 737.96, + "probability": 0.9699 + }, + { + "start": 738.6, + "end": 741.0, + "probability": 0.9673 + }, + { + "start": 741.26, + "end": 741.6, + "probability": 0.7785 + }, + { + "start": 742.74, + "end": 745.44, + "probability": 0.9441 + }, + { + "start": 745.5, + "end": 748.84, + "probability": 0.9461 + }, + { + "start": 749.96, + "end": 751.82, + "probability": 0.9809 + }, + { + "start": 752.72, + "end": 759.26, + "probability": 0.9142 + }, + { + "start": 759.66, + "end": 761.08, + "probability": 0.8098 + }, + { + "start": 761.6, + "end": 764.18, + "probability": 0.8219 + }, + { + "start": 764.64, + "end": 767.5, + "probability": 0.9894 + }, + { + "start": 768.2, + "end": 769.46, + "probability": 0.8125 + }, + { + "start": 769.52, + "end": 770.06, + "probability": 0.6683 + }, + { + "start": 788.96, + "end": 790.75, + "probability": 0.8984 + }, + { + "start": 792.54, + "end": 793.34, + "probability": 0.8384 + }, + { + "start": 794.82, + "end": 797.04, + "probability": 0.8472 + }, + { + "start": 799.62, + "end": 801.72, + "probability": 0.9261 + }, + { + "start": 802.92, + "end": 805.32, + "probability": 0.8447 + }, + { + "start": 806.04, + "end": 807.78, + "probability": 0.5939 + }, + { + "start": 808.78, + "end": 810.4, + "probability": 0.9736 + }, + { + "start": 811.54, + "end": 812.54, + "probability": 0.9691 + }, + { + "start": 813.5, + "end": 813.8, + "probability": 0.9609 + }, + { + "start": 815.1, + "end": 816.82, + "probability": 0.8527 + }, + { + "start": 817.76, + "end": 818.98, + "probability": 0.9268 + }, + { + "start": 819.24, + "end": 822.08, + "probability": 0.9459 + }, + { + "start": 822.28, + "end": 823.64, + "probability": 0.8855 + }, + { + "start": 824.34, + "end": 824.98, + "probability": 0.8305 + }, + { + "start": 825.72, + "end": 827.34, + "probability": 0.9529 + }, + { + "start": 827.4, + "end": 828.2, + "probability": 0.8661 + }, + { + "start": 828.6, + "end": 830.06, + "probability": 0.9633 + }, + { + "start": 830.62, + "end": 833.14, + "probability": 0.9698 + }, + { + "start": 833.74, + "end": 835.68, + "probability": 0.9884 + }, + { + "start": 835.78, + "end": 836.44, + "probability": 0.9468 + }, + { + "start": 836.64, + "end": 838.16, + "probability": 0.5387 + }, + { + "start": 838.68, + "end": 839.18, + "probability": 0.6279 + }, + { + "start": 839.86, + "end": 842.26, + "probability": 0.9175 + }, + { + "start": 845.15, + "end": 848.58, + "probability": 0.8752 + }, + { + "start": 849.26, + "end": 849.68, + "probability": 0.0355 + }, + { + "start": 851.2, + "end": 851.72, + "probability": 0.3355 + }, + { + "start": 851.72, + "end": 852.8, + "probability": 0.4055 + }, + { + "start": 852.98, + "end": 854.06, + "probability": 0.4193 + }, + { + "start": 854.58, + "end": 855.2, + "probability": 0.8905 + }, + { + "start": 855.42, + "end": 857.16, + "probability": 0.8027 + }, + { + "start": 857.32, + "end": 858.25, + "probability": 0.9294 + }, + { + "start": 859.14, + "end": 861.0, + "probability": 0.7073 + }, + { + "start": 861.1, + "end": 864.2, + "probability": 0.7538 + }, + { + "start": 864.22, + "end": 864.6, + "probability": 0.7925 + }, + { + "start": 864.64, + "end": 865.04, + "probability": 0.8647 + }, + { + "start": 865.44, + "end": 866.92, + "probability": 0.4111 + }, + { + "start": 867.0, + "end": 869.42, + "probability": 0.9534 + }, + { + "start": 870.12, + "end": 870.84, + "probability": 0.9263 + }, + { + "start": 871.36, + "end": 872.58, + "probability": 0.5765 + }, + { + "start": 873.66, + "end": 874.82, + "probability": 0.2208 + }, + { + "start": 874.98, + "end": 877.46, + "probability": 0.9546 + }, + { + "start": 877.68, + "end": 878.9, + "probability": 0.9224 + }, + { + "start": 879.32, + "end": 881.22, + "probability": 0.8407 + }, + { + "start": 881.4, + "end": 882.68, + "probability": 0.6794 + }, + { + "start": 883.36, + "end": 884.0, + "probability": 0.7804 + }, + { + "start": 884.18, + "end": 885.54, + "probability": 0.9395 + }, + { + "start": 887.76, + "end": 889.66, + "probability": 0.938 + }, + { + "start": 891.08, + "end": 892.16, + "probability": 0.9623 + }, + { + "start": 893.22, + "end": 894.16, + "probability": 0.9795 + }, + { + "start": 895.0, + "end": 895.7, + "probability": 0.9038 + }, + { + "start": 897.0, + "end": 899.48, + "probability": 0.8723 + }, + { + "start": 900.26, + "end": 901.22, + "probability": 0.9258 + }, + { + "start": 901.78, + "end": 903.12, + "probability": 0.9334 + }, + { + "start": 903.18, + "end": 905.99, + "probability": 0.854 + }, + { + "start": 907.24, + "end": 908.18, + "probability": 0.9075 + }, + { + "start": 908.52, + "end": 910.0, + "probability": 0.4197 + }, + { + "start": 910.26, + "end": 910.42, + "probability": 0.8843 + }, + { + "start": 911.14, + "end": 913.7, + "probability": 0.8059 + }, + { + "start": 914.92, + "end": 916.54, + "probability": 0.9354 + }, + { + "start": 916.62, + "end": 916.98, + "probability": 0.4113 + }, + { + "start": 917.16, + "end": 917.64, + "probability": 0.621 + }, + { + "start": 917.68, + "end": 918.07, + "probability": 0.9626 + }, + { + "start": 918.26, + "end": 919.04, + "probability": 0.595 + }, + { + "start": 919.5, + "end": 921.24, + "probability": 0.8755 + }, + { + "start": 921.88, + "end": 923.9, + "probability": 0.9867 + }, + { + "start": 924.26, + "end": 926.28, + "probability": 0.0892 + }, + { + "start": 926.28, + "end": 929.38, + "probability": 0.9725 + }, + { + "start": 930.22, + "end": 930.58, + "probability": 0.9149 + }, + { + "start": 931.66, + "end": 932.83, + "probability": 0.8766 + }, + { + "start": 932.94, + "end": 934.57, + "probability": 0.9976 + }, + { + "start": 934.68, + "end": 936.72, + "probability": 0.9933 + }, + { + "start": 939.32, + "end": 941.32, + "probability": 0.8335 + }, + { + "start": 943.24, + "end": 943.42, + "probability": 0.6205 + }, + { + "start": 944.04, + "end": 945.32, + "probability": 0.834 + }, + { + "start": 945.9, + "end": 949.6, + "probability": 0.7541 + }, + { + "start": 950.7, + "end": 955.08, + "probability": 0.9634 + }, + { + "start": 957.0, + "end": 960.16, + "probability": 0.6245 + }, + { + "start": 960.7, + "end": 961.9, + "probability": 0.7911 + }, + { + "start": 963.89, + "end": 966.3, + "probability": 0.4692 + }, + { + "start": 966.38, + "end": 966.88, + "probability": 0.8878 + }, + { + "start": 967.0, + "end": 967.78, + "probability": 0.6396 + }, + { + "start": 968.34, + "end": 971.5, + "probability": 0.7937 + }, + { + "start": 971.5, + "end": 974.86, + "probability": 0.8131 + }, + { + "start": 976.08, + "end": 982.2, + "probability": 0.9722 + }, + { + "start": 983.2, + "end": 987.32, + "probability": 0.9266 + }, + { + "start": 987.52, + "end": 988.14, + "probability": 0.8931 + }, + { + "start": 988.38, + "end": 988.9, + "probability": 0.7869 + }, + { + "start": 989.18, + "end": 991.18, + "probability": 0.9978 + }, + { + "start": 991.74, + "end": 994.66, + "probability": 0.9777 + }, + { + "start": 995.42, + "end": 1000.18, + "probability": 0.9881 + }, + { + "start": 1000.36, + "end": 1002.02, + "probability": 0.8948 + }, + { + "start": 1002.32, + "end": 1004.74, + "probability": 0.7708 + }, + { + "start": 1004.78, + "end": 1005.98, + "probability": 0.5775 + }, + { + "start": 1006.02, + "end": 1006.5, + "probability": 0.3942 + }, + { + "start": 1006.54, + "end": 1007.78, + "probability": 0.9263 + }, + { + "start": 1008.68, + "end": 1008.9, + "probability": 0.6614 + }, + { + "start": 1009.88, + "end": 1010.84, + "probability": 0.9661 + }, + { + "start": 1010.98, + "end": 1013.72, + "probability": 0.9137 + }, + { + "start": 1014.08, + "end": 1015.46, + "probability": 0.9619 + }, + { + "start": 1015.5, + "end": 1016.34, + "probability": 0.7847 + }, + { + "start": 1016.72, + "end": 1017.52, + "probability": 0.6336 + }, + { + "start": 1017.92, + "end": 1018.29, + "probability": 0.8601 + }, + { + "start": 1019.54, + "end": 1020.36, + "probability": 0.7949 + }, + { + "start": 1020.62, + "end": 1026.64, + "probability": 0.9725 + }, + { + "start": 1026.68, + "end": 1028.06, + "probability": 0.9648 + }, + { + "start": 1028.12, + "end": 1029.04, + "probability": 0.7476 + }, + { + "start": 1029.74, + "end": 1035.16, + "probability": 0.8713 + }, + { + "start": 1036.28, + "end": 1038.56, + "probability": 0.8144 + }, + { + "start": 1039.66, + "end": 1040.48, + "probability": 0.7816 + }, + { + "start": 1040.98, + "end": 1041.54, + "probability": 0.7587 + }, + { + "start": 1042.18, + "end": 1043.64, + "probability": 0.8195 + }, + { + "start": 1044.26, + "end": 1044.56, + "probability": 0.3842 + }, + { + "start": 1045.12, + "end": 1048.14, + "probability": 0.9854 + }, + { + "start": 1049.22, + "end": 1050.96, + "probability": 0.8525 + }, + { + "start": 1051.06, + "end": 1051.74, + "probability": 0.8647 + }, + { + "start": 1051.86, + "end": 1053.68, + "probability": 0.9241 + }, + { + "start": 1054.92, + "end": 1057.78, + "probability": 0.9282 + }, + { + "start": 1058.32, + "end": 1061.22, + "probability": 0.8953 + }, + { + "start": 1062.06, + "end": 1062.43, + "probability": 0.9694 + }, + { + "start": 1063.56, + "end": 1064.06, + "probability": 0.962 + }, + { + "start": 1065.0, + "end": 1066.74, + "probability": 0.9819 + }, + { + "start": 1067.98, + "end": 1069.84, + "probability": 0.9656 + }, + { + "start": 1071.48, + "end": 1072.3, + "probability": 0.6277 + }, + { + "start": 1072.46, + "end": 1073.14, + "probability": 0.787 + }, + { + "start": 1073.2, + "end": 1075.46, + "probability": 0.9128 + }, + { + "start": 1076.42, + "end": 1079.14, + "probability": 0.8866 + }, + { + "start": 1079.22, + "end": 1080.94, + "probability": 0.9387 + }, + { + "start": 1081.06, + "end": 1082.51, + "probability": 0.983 + }, + { + "start": 1082.96, + "end": 1085.04, + "probability": 0.9874 + }, + { + "start": 1085.1, + "end": 1088.18, + "probability": 0.9701 + }, + { + "start": 1088.18, + "end": 1091.7, + "probability": 0.936 + }, + { + "start": 1091.82, + "end": 1092.5, + "probability": 0.8037 + }, + { + "start": 1092.6, + "end": 1092.9, + "probability": 0.8218 + }, + { + "start": 1092.96, + "end": 1093.18, + "probability": 0.7021 + }, + { + "start": 1094.34, + "end": 1095.94, + "probability": 0.9985 + }, + { + "start": 1096.64, + "end": 1100.46, + "probability": 0.9363 + }, + { + "start": 1101.22, + "end": 1103.3, + "probability": 0.8911 + }, + { + "start": 1103.54, + "end": 1104.72, + "probability": 0.9366 + }, + { + "start": 1105.1, + "end": 1109.06, + "probability": 0.9903 + }, + { + "start": 1109.18, + "end": 1110.26, + "probability": 0.8693 + }, + { + "start": 1111.18, + "end": 1113.9, + "probability": 0.9545 + }, + { + "start": 1114.58, + "end": 1115.9, + "probability": 0.9964 + }, + { + "start": 1116.02, + "end": 1117.54, + "probability": 0.9709 + }, + { + "start": 1117.92, + "end": 1119.22, + "probability": 0.9937 + }, + { + "start": 1119.86, + "end": 1121.4, + "probability": 0.9834 + }, + { + "start": 1121.7, + "end": 1123.04, + "probability": 0.9834 + }, + { + "start": 1123.42, + "end": 1126.0, + "probability": 0.9424 + }, + { + "start": 1126.32, + "end": 1127.24, + "probability": 0.9034 + }, + { + "start": 1127.98, + "end": 1129.54, + "probability": 0.917 + }, + { + "start": 1129.72, + "end": 1131.38, + "probability": 0.7065 + }, + { + "start": 1132.06, + "end": 1134.1, + "probability": 0.9746 + }, + { + "start": 1135.06, + "end": 1135.52, + "probability": 0.1896 + }, + { + "start": 1135.88, + "end": 1137.31, + "probability": 0.8702 + }, + { + "start": 1137.74, + "end": 1142.32, + "probability": 0.9878 + }, + { + "start": 1142.78, + "end": 1144.82, + "probability": 0.9829 + }, + { + "start": 1145.42, + "end": 1146.08, + "probability": 0.6527 + }, + { + "start": 1146.2, + "end": 1146.6, + "probability": 0.9073 + }, + { + "start": 1147.4, + "end": 1148.78, + "probability": 0.9968 + }, + { + "start": 1150.56, + "end": 1151.42, + "probability": 0.8457 + }, + { + "start": 1151.66, + "end": 1152.7, + "probability": 0.863 + }, + { + "start": 1152.82, + "end": 1152.92, + "probability": 0.8924 + }, + { + "start": 1153.14, + "end": 1153.66, + "probability": 0.825 + }, + { + "start": 1153.72, + "end": 1154.41, + "probability": 0.9756 + }, + { + "start": 1154.78, + "end": 1156.84, + "probability": 0.9875 + }, + { + "start": 1156.98, + "end": 1158.44, + "probability": 0.9059 + }, + { + "start": 1158.84, + "end": 1159.14, + "probability": 0.3417 + }, + { + "start": 1159.14, + "end": 1160.54, + "probability": 0.6494 + }, + { + "start": 1161.4, + "end": 1162.94, + "probability": 0.9061 + }, + { + "start": 1163.26, + "end": 1165.48, + "probability": 0.9482 + }, + { + "start": 1166.42, + "end": 1167.58, + "probability": 0.6226 + }, + { + "start": 1167.68, + "end": 1168.18, + "probability": 0.8352 + }, + { + "start": 1168.44, + "end": 1171.04, + "probability": 0.9854 + }, + { + "start": 1171.46, + "end": 1173.04, + "probability": 0.9213 + }, + { + "start": 1173.54, + "end": 1174.4, + "probability": 0.7043 + }, + { + "start": 1174.98, + "end": 1175.5, + "probability": 0.8374 + }, + { + "start": 1176.32, + "end": 1178.38, + "probability": 0.1682 + }, + { + "start": 1178.98, + "end": 1179.08, + "probability": 0.6084 + }, + { + "start": 1179.08, + "end": 1181.34, + "probability": 0.6771 + }, + { + "start": 1181.66, + "end": 1186.2, + "probability": 0.5653 + }, + { + "start": 1186.74, + "end": 1188.12, + "probability": 0.8288 + }, + { + "start": 1188.2, + "end": 1189.24, + "probability": 0.8318 + }, + { + "start": 1189.6, + "end": 1191.94, + "probability": 0.8799 + }, + { + "start": 1192.56, + "end": 1195.68, + "probability": 0.7451 + }, + { + "start": 1196.04, + "end": 1196.94, + "probability": 0.5929 + }, + { + "start": 1198.1, + "end": 1201.74, + "probability": 0.9209 + }, + { + "start": 1201.74, + "end": 1202.16, + "probability": 0.3431 + }, + { + "start": 1202.9, + "end": 1203.74, + "probability": 0.7391 + }, + { + "start": 1204.6, + "end": 1208.1, + "probability": 0.9949 + }, + { + "start": 1208.44, + "end": 1210.62, + "probability": 0.8047 + }, + { + "start": 1211.16, + "end": 1212.08, + "probability": 0.8977 + }, + { + "start": 1213.14, + "end": 1215.4, + "probability": 0.9318 + }, + { + "start": 1215.8, + "end": 1216.6, + "probability": 0.5703 + }, + { + "start": 1216.68, + "end": 1216.98, + "probability": 0.7076 + }, + { + "start": 1217.52, + "end": 1218.74, + "probability": 0.7542 + }, + { + "start": 1219.06, + "end": 1219.96, + "probability": 0.9455 + }, + { + "start": 1220.28, + "end": 1222.58, + "probability": 0.8258 + }, + { + "start": 1222.98, + "end": 1226.28, + "probability": 0.9653 + }, + { + "start": 1226.86, + "end": 1231.8, + "probability": 0.9738 + }, + { + "start": 1232.44, + "end": 1232.94, + "probability": 0.7316 + }, + { + "start": 1233.68, + "end": 1235.16, + "probability": 0.9082 + }, + { + "start": 1235.52, + "end": 1238.94, + "probability": 0.998 + }, + { + "start": 1239.14, + "end": 1240.42, + "probability": 0.8238 + }, + { + "start": 1241.14, + "end": 1244.2, + "probability": 0.9997 + }, + { + "start": 1244.34, + "end": 1244.9, + "probability": 0.6715 + }, + { + "start": 1245.28, + "end": 1246.46, + "probability": 0.9966 + }, + { + "start": 1247.06, + "end": 1251.66, + "probability": 0.9836 + }, + { + "start": 1251.88, + "end": 1253.54, + "probability": 0.9725 + }, + { + "start": 1253.84, + "end": 1254.74, + "probability": 0.6541 + }, + { + "start": 1255.04, + "end": 1256.38, + "probability": 0.6978 + }, + { + "start": 1256.68, + "end": 1258.18, + "probability": 0.9443 + }, + { + "start": 1258.26, + "end": 1259.54, + "probability": 0.8638 + }, + { + "start": 1259.9, + "end": 1264.57, + "probability": 0.8509 + }, + { + "start": 1264.68, + "end": 1264.76, + "probability": 0.4641 + }, + { + "start": 1265.0, + "end": 1265.44, + "probability": 0.6922 + }, + { + "start": 1265.48, + "end": 1269.02, + "probability": 0.9358 + }, + { + "start": 1269.78, + "end": 1271.3, + "probability": 0.5771 + }, + { + "start": 1278.3, + "end": 1279.02, + "probability": 0.8419 + }, + { + "start": 1280.36, + "end": 1283.5, + "probability": 0.9736 + }, + { + "start": 1284.0, + "end": 1284.24, + "probability": 0.451 + }, + { + "start": 1284.52, + "end": 1285.04, + "probability": 0.9669 + }, + { + "start": 1285.62, + "end": 1286.98, + "probability": 0.9259 + }, + { + "start": 1287.4, + "end": 1291.04, + "probability": 0.9877 + }, + { + "start": 1291.44, + "end": 1292.92, + "probability": 0.9546 + }, + { + "start": 1293.96, + "end": 1295.92, + "probability": 0.8399 + }, + { + "start": 1296.58, + "end": 1298.14, + "probability": 0.7017 + }, + { + "start": 1299.46, + "end": 1300.22, + "probability": 0.8243 + }, + { + "start": 1300.78, + "end": 1305.04, + "probability": 0.7125 + }, + { + "start": 1305.18, + "end": 1306.22, + "probability": 0.7324 + }, + { + "start": 1306.48, + "end": 1308.36, + "probability": 0.9353 + }, + { + "start": 1308.46, + "end": 1309.84, + "probability": 0.6763 + }, + { + "start": 1310.6, + "end": 1314.26, + "probability": 0.663 + }, + { + "start": 1314.98, + "end": 1317.94, + "probability": 0.8551 + }, + { + "start": 1318.12, + "end": 1319.58, + "probability": 0.7368 + }, + { + "start": 1321.68, + "end": 1322.24, + "probability": 0.6085 + }, + { + "start": 1322.34, + "end": 1323.88, + "probability": 0.6206 + }, + { + "start": 1324.16, + "end": 1326.26, + "probability": 0.739 + }, + { + "start": 1326.77, + "end": 1328.6, + "probability": 0.9608 + }, + { + "start": 1328.92, + "end": 1330.88, + "probability": 0.8433 + }, + { + "start": 1331.46, + "end": 1333.12, + "probability": 0.9475 + }, + { + "start": 1333.64, + "end": 1336.42, + "probability": 0.9358 + }, + { + "start": 1336.56, + "end": 1338.72, + "probability": 0.9553 + }, + { + "start": 1338.84, + "end": 1340.08, + "probability": 0.7339 + }, + { + "start": 1340.26, + "end": 1340.77, + "probability": 0.4604 + }, + { + "start": 1341.64, + "end": 1342.5, + "probability": 0.7689 + }, + { + "start": 1342.76, + "end": 1344.16, + "probability": 0.7733 + }, + { + "start": 1344.3, + "end": 1345.3, + "probability": 0.598 + }, + { + "start": 1345.7, + "end": 1347.34, + "probability": 0.9766 + }, + { + "start": 1347.46, + "end": 1348.86, + "probability": 0.8774 + }, + { + "start": 1349.16, + "end": 1349.76, + "probability": 0.7403 + }, + { + "start": 1350.14, + "end": 1350.7, + "probability": 0.8527 + }, + { + "start": 1354.11, + "end": 1357.24, + "probability": 0.9685 + }, + { + "start": 1357.44, + "end": 1360.16, + "probability": 0.7284 + }, + { + "start": 1360.34, + "end": 1363.28, + "probability": 0.9805 + }, + { + "start": 1363.64, + "end": 1364.48, + "probability": 0.8939 + }, + { + "start": 1364.76, + "end": 1366.2, + "probability": 0.9819 + }, + { + "start": 1366.58, + "end": 1368.76, + "probability": 0.9887 + }, + { + "start": 1369.24, + "end": 1371.5, + "probability": 0.477 + }, + { + "start": 1371.74, + "end": 1374.28, + "probability": 0.9098 + }, + { + "start": 1374.64, + "end": 1375.08, + "probability": 0.6163 + }, + { + "start": 1375.1, + "end": 1375.26, + "probability": 0.7041 + }, + { + "start": 1375.4, + "end": 1376.76, + "probability": 0.9912 + }, + { + "start": 1376.9, + "end": 1379.24, + "probability": 0.9632 + }, + { + "start": 1379.38, + "end": 1383.27, + "probability": 0.8457 + }, + { + "start": 1383.8, + "end": 1385.3, + "probability": 0.4582 + }, + { + "start": 1385.3, + "end": 1387.54, + "probability": 0.9966 + }, + { + "start": 1387.76, + "end": 1391.6, + "probability": 0.4664 + }, + { + "start": 1391.6, + "end": 1392.76, + "probability": 0.7838 + }, + { + "start": 1392.96, + "end": 1394.18, + "probability": 0.7512 + }, + { + "start": 1394.34, + "end": 1394.96, + "probability": 0.6101 + }, + { + "start": 1395.3, + "end": 1396.08, + "probability": 0.7105 + }, + { + "start": 1396.58, + "end": 1399.12, + "probability": 0.9595 + }, + { + "start": 1399.76, + "end": 1400.96, + "probability": 0.9929 + }, + { + "start": 1401.08, + "end": 1402.54, + "probability": 0.6572 + }, + { + "start": 1402.86, + "end": 1404.98, + "probability": 0.9966 + }, + { + "start": 1405.46, + "end": 1409.2, + "probability": 0.958 + }, + { + "start": 1411.2, + "end": 1411.66, + "probability": 0.6248 + }, + { + "start": 1411.78, + "end": 1412.64, + "probability": 0.9108 + }, + { + "start": 1412.76, + "end": 1413.84, + "probability": 0.9934 + }, + { + "start": 1414.0, + "end": 1418.8, + "probability": 0.9843 + }, + { + "start": 1418.84, + "end": 1420.28, + "probability": 0.7545 + }, + { + "start": 1420.36, + "end": 1422.14, + "probability": 0.9602 + }, + { + "start": 1422.52, + "end": 1423.08, + "probability": 0.8227 + }, + { + "start": 1423.44, + "end": 1426.0, + "probability": 0.0419 + }, + { + "start": 1426.0, + "end": 1426.78, + "probability": 0.3005 + }, + { + "start": 1427.18, + "end": 1431.34, + "probability": 0.7305 + }, + { + "start": 1431.74, + "end": 1436.72, + "probability": 0.7799 + }, + { + "start": 1436.8, + "end": 1440.94, + "probability": 0.9717 + }, + { + "start": 1441.5, + "end": 1442.84, + "probability": 0.5219 + }, + { + "start": 1443.12, + "end": 1444.26, + "probability": 0.674 + }, + { + "start": 1444.94, + "end": 1447.98, + "probability": 0.8771 + }, + { + "start": 1448.16, + "end": 1449.58, + "probability": 0.9917 + }, + { + "start": 1449.6, + "end": 1450.04, + "probability": 0.7018 + }, + { + "start": 1450.18, + "end": 1450.9, + "probability": 0.7257 + }, + { + "start": 1451.2, + "end": 1451.57, + "probability": 0.7915 + }, + { + "start": 1452.14, + "end": 1453.22, + "probability": 0.4294 + }, + { + "start": 1453.28, + "end": 1454.28, + "probability": 0.7908 + }, + { + "start": 1455.14, + "end": 1457.2, + "probability": 0.9526 + }, + { + "start": 1458.08, + "end": 1459.18, + "probability": 0.5463 + }, + { + "start": 1459.26, + "end": 1459.7, + "probability": 0.0663 + }, + { + "start": 1459.84, + "end": 1460.38, + "probability": 0.4507 + }, + { + "start": 1461.59, + "end": 1465.02, + "probability": 0.8535 + }, + { + "start": 1465.58, + "end": 1466.36, + "probability": 0.7197 + }, + { + "start": 1466.62, + "end": 1471.32, + "probability": 0.934 + }, + { + "start": 1471.48, + "end": 1473.8, + "probability": 0.9561 + }, + { + "start": 1474.48, + "end": 1474.7, + "probability": 0.8823 + }, + { + "start": 1475.22, + "end": 1479.66, + "probability": 0.9649 + }, + { + "start": 1480.44, + "end": 1482.28, + "probability": 0.9735 + }, + { + "start": 1483.14, + "end": 1487.4, + "probability": 0.9967 + }, + { + "start": 1487.56, + "end": 1488.7, + "probability": 0.7948 + }, + { + "start": 1488.76, + "end": 1490.74, + "probability": 0.7255 + }, + { + "start": 1491.36, + "end": 1494.42, + "probability": 0.9593 + }, + { + "start": 1495.96, + "end": 1497.88, + "probability": 0.9625 + }, + { + "start": 1498.68, + "end": 1500.06, + "probability": 0.7218 + }, + { + "start": 1502.86, + "end": 1504.7, + "probability": 0.7326 + }, + { + "start": 1505.5, + "end": 1507.1, + "probability": 0.6353 + }, + { + "start": 1508.5, + "end": 1509.8, + "probability": 0.9379 + }, + { + "start": 1510.04, + "end": 1514.6, + "probability": 0.8034 + }, + { + "start": 1515.6, + "end": 1517.02, + "probability": 0.9846 + }, + { + "start": 1518.3, + "end": 1519.75, + "probability": 0.8702 + }, + { + "start": 1521.22, + "end": 1525.0, + "probability": 0.9948 + }, + { + "start": 1526.28, + "end": 1526.84, + "probability": 0.6738 + }, + { + "start": 1526.98, + "end": 1527.5, + "probability": 0.8078 + }, + { + "start": 1527.62, + "end": 1528.54, + "probability": 0.7445 + }, + { + "start": 1528.7, + "end": 1530.18, + "probability": 0.9567 + }, + { + "start": 1531.8, + "end": 1535.34, + "probability": 0.9521 + }, + { + "start": 1536.76, + "end": 1537.44, + "probability": 0.832 + }, + { + "start": 1537.74, + "end": 1539.71, + "probability": 0.9298 + }, + { + "start": 1540.14, + "end": 1541.06, + "probability": 0.9883 + }, + { + "start": 1542.24, + "end": 1543.58, + "probability": 0.8625 + }, + { + "start": 1545.28, + "end": 1549.26, + "probability": 0.9954 + }, + { + "start": 1550.84, + "end": 1554.47, + "probability": 0.7059 + }, + { + "start": 1555.78, + "end": 1557.16, + "probability": 0.9888 + }, + { + "start": 1557.32, + "end": 1557.74, + "probability": 0.6731 + }, + { + "start": 1557.82, + "end": 1558.76, + "probability": 0.417 + }, + { + "start": 1558.92, + "end": 1563.72, + "probability": 0.9487 + }, + { + "start": 1565.76, + "end": 1571.14, + "probability": 0.9708 + }, + { + "start": 1571.2, + "end": 1572.0, + "probability": 0.736 + }, + { + "start": 1573.64, + "end": 1574.62, + "probability": 0.8711 + }, + { + "start": 1574.76, + "end": 1575.6, + "probability": 0.9061 + }, + { + "start": 1575.72, + "end": 1576.9, + "probability": 0.9709 + }, + { + "start": 1578.46, + "end": 1579.7, + "probability": 0.7912 + }, + { + "start": 1581.42, + "end": 1587.14, + "probability": 0.8484 + }, + { + "start": 1587.14, + "end": 1588.48, + "probability": 0.977 + }, + { + "start": 1589.1, + "end": 1591.88, + "probability": 0.9948 + }, + { + "start": 1592.57, + "end": 1594.84, + "probability": 0.9263 + }, + { + "start": 1597.58, + "end": 1598.1, + "probability": 0.955 + }, + { + "start": 1599.34, + "end": 1601.76, + "probability": 0.9834 + }, + { + "start": 1602.72, + "end": 1606.5, + "probability": 0.9907 + }, + { + "start": 1608.2, + "end": 1608.84, + "probability": 0.4593 + }, + { + "start": 1609.04, + "end": 1610.98, + "probability": 0.7886 + }, + { + "start": 1611.06, + "end": 1612.08, + "probability": 0.4147 + }, + { + "start": 1612.14, + "end": 1616.3, + "probability": 0.8238 + }, + { + "start": 1616.82, + "end": 1620.1, + "probability": 0.9553 + }, + { + "start": 1620.9, + "end": 1623.42, + "probability": 0.8306 + }, + { + "start": 1625.82, + "end": 1626.72, + "probability": 0.9963 + }, + { + "start": 1629.14, + "end": 1629.4, + "probability": 0.2725 + }, + { + "start": 1630.14, + "end": 1631.22, + "probability": 0.9376 + }, + { + "start": 1632.4, + "end": 1634.1, + "probability": 0.9846 + }, + { + "start": 1635.3, + "end": 1637.5, + "probability": 0.7955 + }, + { + "start": 1638.44, + "end": 1641.06, + "probability": 0.9847 + }, + { + "start": 1642.3, + "end": 1644.26, + "probability": 0.991 + }, + { + "start": 1646.24, + "end": 1647.18, + "probability": 0.999 + }, + { + "start": 1648.5, + "end": 1650.86, + "probability": 0.9888 + }, + { + "start": 1653.16, + "end": 1655.18, + "probability": 0.9193 + }, + { + "start": 1656.38, + "end": 1657.6, + "probability": 0.999 + }, + { + "start": 1658.84, + "end": 1663.38, + "probability": 0.9948 + }, + { + "start": 1665.46, + "end": 1668.44, + "probability": 0.8758 + }, + { + "start": 1670.0, + "end": 1673.04, + "probability": 0.9855 + }, + { + "start": 1674.24, + "end": 1677.14, + "probability": 0.8012 + }, + { + "start": 1678.06, + "end": 1683.74, + "probability": 0.9758 + }, + { + "start": 1683.86, + "end": 1684.86, + "probability": 0.9814 + }, + { + "start": 1686.82, + "end": 1687.96, + "probability": 0.837 + }, + { + "start": 1688.98, + "end": 1691.46, + "probability": 0.9109 + }, + { + "start": 1692.74, + "end": 1693.44, + "probability": 0.6067 + }, + { + "start": 1694.46, + "end": 1696.9, + "probability": 0.9847 + }, + { + "start": 1697.32, + "end": 1700.56, + "probability": 0.9834 + }, + { + "start": 1700.92, + "end": 1701.92, + "probability": 0.8959 + }, + { + "start": 1702.84, + "end": 1704.12, + "probability": 0.9424 + }, + { + "start": 1704.68, + "end": 1705.45, + "probability": 0.834 + }, + { + "start": 1705.62, + "end": 1708.16, + "probability": 0.936 + }, + { + "start": 1709.06, + "end": 1709.82, + "probability": 0.8848 + }, + { + "start": 1711.82, + "end": 1715.64, + "probability": 0.9971 + }, + { + "start": 1715.64, + "end": 1717.72, + "probability": 0.9985 + }, + { + "start": 1719.82, + "end": 1721.16, + "probability": 0.8804 + }, + { + "start": 1723.66, + "end": 1724.4, + "probability": 0.9615 + }, + { + "start": 1726.56, + "end": 1729.74, + "probability": 0.9543 + }, + { + "start": 1730.7, + "end": 1733.86, + "probability": 0.9854 + }, + { + "start": 1733.94, + "end": 1734.6, + "probability": 0.884 + }, + { + "start": 1736.18, + "end": 1737.56, + "probability": 0.8313 + }, + { + "start": 1737.7, + "end": 1740.76, + "probability": 0.908 + }, + { + "start": 1742.6, + "end": 1743.0, + "probability": 0.6902 + }, + { + "start": 1744.7, + "end": 1744.8, + "probability": 0.6678 + }, + { + "start": 1745.06, + "end": 1747.7, + "probability": 0.9858 + }, + { + "start": 1748.78, + "end": 1751.8, + "probability": 0.98 + }, + { + "start": 1752.0, + "end": 1755.2, + "probability": 0.9742 + }, + { + "start": 1755.86, + "end": 1758.42, + "probability": 0.9995 + }, + { + "start": 1760.1, + "end": 1762.12, + "probability": 0.9265 + }, + { + "start": 1763.0, + "end": 1763.64, + "probability": 0.703 + }, + { + "start": 1764.26, + "end": 1767.4, + "probability": 0.9888 + }, + { + "start": 1768.74, + "end": 1774.86, + "probability": 0.9899 + }, + { + "start": 1776.66, + "end": 1778.5, + "probability": 0.9941 + }, + { + "start": 1779.58, + "end": 1782.36, + "probability": 0.8838 + }, + { + "start": 1783.32, + "end": 1787.22, + "probability": 0.9408 + }, + { + "start": 1787.22, + "end": 1791.6, + "probability": 0.9474 + }, + { + "start": 1793.56, + "end": 1794.36, + "probability": 0.7561 + }, + { + "start": 1795.12, + "end": 1796.1, + "probability": 0.7086 + }, + { + "start": 1797.16, + "end": 1797.46, + "probability": 0.9411 + }, + { + "start": 1798.5, + "end": 1800.48, + "probability": 0.9467 + }, + { + "start": 1803.52, + "end": 1804.12, + "probability": 0.9688 + }, + { + "start": 1805.98, + "end": 1807.08, + "probability": 0.6326 + }, + { + "start": 1807.22, + "end": 1808.64, + "probability": 0.8883 + }, + { + "start": 1808.76, + "end": 1809.08, + "probability": 0.395 + }, + { + "start": 1809.46, + "end": 1810.76, + "probability": 0.9875 + }, + { + "start": 1811.24, + "end": 1812.72, + "probability": 0.9966 + }, + { + "start": 1813.78, + "end": 1814.32, + "probability": 0.7401 + }, + { + "start": 1816.5, + "end": 1817.26, + "probability": 0.9912 + }, + { + "start": 1818.84, + "end": 1819.72, + "probability": 0.7138 + }, + { + "start": 1820.38, + "end": 1824.3, + "probability": 0.9626 + }, + { + "start": 1825.72, + "end": 1828.56, + "probability": 0.9662 + }, + { + "start": 1830.44, + "end": 1832.58, + "probability": 0.9775 + }, + { + "start": 1834.72, + "end": 1836.04, + "probability": 0.9917 + }, + { + "start": 1837.82, + "end": 1839.2, + "probability": 0.8245 + }, + { + "start": 1840.54, + "end": 1842.58, + "probability": 0.976 + }, + { + "start": 1844.0, + "end": 1844.34, + "probability": 0.9185 + }, + { + "start": 1845.04, + "end": 1845.86, + "probability": 0.9803 + }, + { + "start": 1846.94, + "end": 1850.54, + "probability": 0.9916 + }, + { + "start": 1850.58, + "end": 1851.22, + "probability": 0.7036 + }, + { + "start": 1852.04, + "end": 1853.56, + "probability": 0.6969 + }, + { + "start": 1853.68, + "end": 1855.96, + "probability": 0.8648 + }, + { + "start": 1857.32, + "end": 1858.34, + "probability": 0.6419 + }, + { + "start": 1859.38, + "end": 1862.16, + "probability": 0.9876 + }, + { + "start": 1863.22, + "end": 1866.16, + "probability": 0.9951 + }, + { + "start": 1868.32, + "end": 1871.92, + "probability": 0.9741 + }, + { + "start": 1872.56, + "end": 1877.36, + "probability": 0.9976 + }, + { + "start": 1877.44, + "end": 1878.2, + "probability": 0.6411 + }, + { + "start": 1878.32, + "end": 1880.4, + "probability": 0.7555 + }, + { + "start": 1882.02, + "end": 1886.16, + "probability": 0.9846 + }, + { + "start": 1887.88, + "end": 1889.92, + "probability": 0.8596 + }, + { + "start": 1891.54, + "end": 1892.7, + "probability": 0.9143 + }, + { + "start": 1892.86, + "end": 1897.38, + "probability": 0.9019 + }, + { + "start": 1897.48, + "end": 1898.57, + "probability": 0.9695 + }, + { + "start": 1898.7, + "end": 1899.57, + "probability": 0.9459 + }, + { + "start": 1900.34, + "end": 1903.33, + "probability": 0.9628 + }, + { + "start": 1904.22, + "end": 1905.32, + "probability": 0.9116 + }, + { + "start": 1906.08, + "end": 1908.5, + "probability": 0.9878 + }, + { + "start": 1909.82, + "end": 1914.14, + "probability": 0.9818 + }, + { + "start": 1915.5, + "end": 1918.32, + "probability": 0.8515 + }, + { + "start": 1919.1, + "end": 1920.18, + "probability": 0.8488 + }, + { + "start": 1920.96, + "end": 1923.24, + "probability": 0.8444 + }, + { + "start": 1923.36, + "end": 1926.6, + "probability": 0.9712 + }, + { + "start": 1928.04, + "end": 1931.32, + "probability": 0.9715 + }, + { + "start": 1932.6, + "end": 1934.16, + "probability": 0.8964 + }, + { + "start": 1934.22, + "end": 1936.26, + "probability": 0.9783 + }, + { + "start": 1936.66, + "end": 1938.66, + "probability": 0.8479 + }, + { + "start": 1939.22, + "end": 1939.96, + "probability": 0.9103 + }, + { + "start": 1940.64, + "end": 1942.7, + "probability": 0.9852 + }, + { + "start": 1943.16, + "end": 1945.16, + "probability": 0.7602 + }, + { + "start": 1945.36, + "end": 1945.9, + "probability": 0.5952 + }, + { + "start": 1946.52, + "end": 1947.28, + "probability": 0.5547 + }, + { + "start": 1947.42, + "end": 1948.18, + "probability": 0.9766 + }, + { + "start": 1948.32, + "end": 1949.24, + "probability": 0.9806 + }, + { + "start": 1950.48, + "end": 1951.7, + "probability": 0.994 + }, + { + "start": 1951.82, + "end": 1954.54, + "probability": 0.9729 + }, + { + "start": 1954.54, + "end": 1958.02, + "probability": 0.994 + }, + { + "start": 1958.06, + "end": 1962.34, + "probability": 0.9628 + }, + { + "start": 1963.32, + "end": 1964.42, + "probability": 0.7071 + }, + { + "start": 1964.46, + "end": 1966.64, + "probability": 0.992 + }, + { + "start": 1969.04, + "end": 1970.83, + "probability": 0.7671 + }, + { + "start": 1971.88, + "end": 1973.26, + "probability": 0.9229 + }, + { + "start": 1974.46, + "end": 1976.8, + "probability": 0.92 + }, + { + "start": 1977.54, + "end": 1980.32, + "probability": 0.9977 + }, + { + "start": 1981.24, + "end": 1983.78, + "probability": 0.8365 + }, + { + "start": 1984.94, + "end": 1986.58, + "probability": 0.9887 + }, + { + "start": 1987.48, + "end": 1990.66, + "probability": 0.9808 + }, + { + "start": 1991.22, + "end": 1994.56, + "probability": 0.9141 + }, + { + "start": 1995.46, + "end": 1998.42, + "probability": 0.9478 + }, + { + "start": 1999.62, + "end": 2001.54, + "probability": 0.8032 + }, + { + "start": 2003.36, + "end": 2004.52, + "probability": 0.8139 + }, + { + "start": 2004.92, + "end": 2007.72, + "probability": 0.8136 + }, + { + "start": 2008.88, + "end": 2009.86, + "probability": 0.9072 + }, + { + "start": 2010.68, + "end": 2012.46, + "probability": 0.9952 + }, + { + "start": 2012.46, + "end": 2013.44, + "probability": 0.7122 + }, + { + "start": 2014.34, + "end": 2016.62, + "probability": 0.9925 + }, + { + "start": 2016.7, + "end": 2017.84, + "probability": 0.8943 + }, + { + "start": 2018.98, + "end": 2019.3, + "probability": 0.7831 + }, + { + "start": 2019.4, + "end": 2019.66, + "probability": 0.9105 + }, + { + "start": 2019.74, + "end": 2021.82, + "probability": 0.9889 + }, + { + "start": 2022.58, + "end": 2024.76, + "probability": 0.7963 + }, + { + "start": 2025.28, + "end": 2031.2, + "probability": 0.9948 + }, + { + "start": 2031.66, + "end": 2033.12, + "probability": 0.96 + }, + { + "start": 2033.6, + "end": 2034.71, + "probability": 0.8911 + }, + { + "start": 2036.04, + "end": 2037.86, + "probability": 0.8921 + }, + { + "start": 2039.0, + "end": 2039.46, + "probability": 0.9546 + }, + { + "start": 2040.16, + "end": 2041.9, + "probability": 0.9987 + }, + { + "start": 2043.24, + "end": 2044.46, + "probability": 0.928 + }, + { + "start": 2045.72, + "end": 2047.6, + "probability": 0.8252 + }, + { + "start": 2048.66, + "end": 2050.66, + "probability": 0.9971 + }, + { + "start": 2050.72, + "end": 2051.8, + "probability": 0.8003 + }, + { + "start": 2052.82, + "end": 2053.92, + "probability": 0.9575 + }, + { + "start": 2055.06, + "end": 2058.88, + "probability": 0.9294 + }, + { + "start": 2060.36, + "end": 2062.98, + "probability": 0.9562 + }, + { + "start": 2063.72, + "end": 2066.36, + "probability": 0.9803 + }, + { + "start": 2068.4, + "end": 2071.78, + "probability": 0.9944 + }, + { + "start": 2073.08, + "end": 2074.04, + "probability": 0.9619 + }, + { + "start": 2074.12, + "end": 2076.02, + "probability": 0.8555 + }, + { + "start": 2076.92, + "end": 2079.34, + "probability": 0.8568 + }, + { + "start": 2080.94, + "end": 2083.52, + "probability": 0.9349 + }, + { + "start": 2085.74, + "end": 2087.72, + "probability": 0.8631 + }, + { + "start": 2089.7, + "end": 2090.9, + "probability": 0.4132 + }, + { + "start": 2091.82, + "end": 2094.28, + "probability": 0.6632 + }, + { + "start": 2095.4, + "end": 2098.94, + "probability": 0.9655 + }, + { + "start": 2100.1, + "end": 2100.73, + "probability": 0.8499 + }, + { + "start": 2103.1, + "end": 2104.24, + "probability": 0.9636 + }, + { + "start": 2106.52, + "end": 2107.8, + "probability": 0.9804 + }, + { + "start": 2107.98, + "end": 2109.08, + "probability": 0.9678 + }, + { + "start": 2109.3, + "end": 2111.14, + "probability": 0.8976 + }, + { + "start": 2111.24, + "end": 2111.82, + "probability": 0.8877 + }, + { + "start": 2112.1, + "end": 2113.7, + "probability": 0.9611 + }, + { + "start": 2113.78, + "end": 2115.06, + "probability": 0.7681 + }, + { + "start": 2117.74, + "end": 2120.18, + "probability": 0.9927 + }, + { + "start": 2120.28, + "end": 2122.34, + "probability": 0.9495 + }, + { + "start": 2123.46, + "end": 2124.88, + "probability": 0.923 + }, + { + "start": 2124.96, + "end": 2126.24, + "probability": 0.9751 + }, + { + "start": 2126.7, + "end": 2130.58, + "probability": 0.9946 + }, + { + "start": 2131.34, + "end": 2133.8, + "probability": 0.8424 + }, + { + "start": 2135.0, + "end": 2136.5, + "probability": 0.8306 + }, + { + "start": 2136.52, + "end": 2138.76, + "probability": 0.888 + }, + { + "start": 2140.34, + "end": 2141.76, + "probability": 0.999 + }, + { + "start": 2142.48, + "end": 2145.36, + "probability": 0.9766 + }, + { + "start": 2145.36, + "end": 2151.44, + "probability": 0.9268 + }, + { + "start": 2152.5, + "end": 2153.02, + "probability": 0.7291 + }, + { + "start": 2154.08, + "end": 2156.02, + "probability": 0.8613 + }, + { + "start": 2157.14, + "end": 2160.38, + "probability": 0.9818 + }, + { + "start": 2161.22, + "end": 2162.04, + "probability": 0.8641 + }, + { + "start": 2163.72, + "end": 2166.12, + "probability": 0.9951 + }, + { + "start": 2166.16, + "end": 2167.88, + "probability": 0.9473 + }, + { + "start": 2169.22, + "end": 2171.08, + "probability": 0.9709 + }, + { + "start": 2171.24, + "end": 2172.96, + "probability": 0.8923 + }, + { + "start": 2174.16, + "end": 2179.42, + "probability": 0.8872 + }, + { + "start": 2180.8, + "end": 2181.92, + "probability": 0.9737 + }, + { + "start": 2183.24, + "end": 2184.23, + "probability": 0.6108 + }, + { + "start": 2185.44, + "end": 2187.46, + "probability": 0.8984 + }, + { + "start": 2189.04, + "end": 2194.36, + "probability": 0.7011 + }, + { + "start": 2195.28, + "end": 2197.8, + "probability": 0.9889 + }, + { + "start": 2198.68, + "end": 2201.08, + "probability": 0.4859 + }, + { + "start": 2201.38, + "end": 2204.02, + "probability": 0.9919 + }, + { + "start": 2204.76, + "end": 2207.2, + "probability": 0.9902 + }, + { + "start": 2221.74, + "end": 2221.84, + "probability": 0.0603 + }, + { + "start": 2221.84, + "end": 2223.1, + "probability": 0.7966 + }, + { + "start": 2223.16, + "end": 2223.98, + "probability": 0.6202 + }, + { + "start": 2225.72, + "end": 2227.28, + "probability": 0.868 + }, + { + "start": 2229.58, + "end": 2233.06, + "probability": 0.892 + }, + { + "start": 2234.82, + "end": 2238.82, + "probability": 0.8853 + }, + { + "start": 2238.88, + "end": 2240.24, + "probability": 0.8787 + }, + { + "start": 2241.08, + "end": 2241.54, + "probability": 0.8528 + }, + { + "start": 2242.22, + "end": 2245.08, + "probability": 0.9747 + }, + { + "start": 2245.88, + "end": 2250.36, + "probability": 0.9431 + }, + { + "start": 2252.02, + "end": 2256.96, + "probability": 0.9884 + }, + { + "start": 2258.48, + "end": 2259.56, + "probability": 0.8882 + }, + { + "start": 2260.38, + "end": 2263.08, + "probability": 0.8776 + }, + { + "start": 2263.48, + "end": 2264.41, + "probability": 0.8157 + }, + { + "start": 2265.18, + "end": 2266.16, + "probability": 0.6755 + }, + { + "start": 2268.4, + "end": 2270.8, + "probability": 0.9474 + }, + { + "start": 2271.06, + "end": 2275.84, + "probability": 0.9568 + }, + { + "start": 2277.88, + "end": 2282.76, + "probability": 0.9263 + }, + { + "start": 2283.64, + "end": 2286.68, + "probability": 0.9976 + }, + { + "start": 2288.2, + "end": 2290.26, + "probability": 0.915 + }, + { + "start": 2290.72, + "end": 2292.94, + "probability": 0.9778 + }, + { + "start": 2295.24, + "end": 2298.36, + "probability": 0.9893 + }, + { + "start": 2299.46, + "end": 2301.1, + "probability": 0.9924 + }, + { + "start": 2301.88, + "end": 2308.16, + "probability": 0.9546 + }, + { + "start": 2308.58, + "end": 2312.04, + "probability": 0.8633 + }, + { + "start": 2312.6, + "end": 2317.1, + "probability": 0.9226 + }, + { + "start": 2317.62, + "end": 2326.54, + "probability": 0.9798 + }, + { + "start": 2328.2, + "end": 2328.2, + "probability": 0.897 + }, + { + "start": 2328.9, + "end": 2329.56, + "probability": 0.8453 + }, + { + "start": 2331.46, + "end": 2334.38, + "probability": 0.5414 + }, + { + "start": 2335.42, + "end": 2338.62, + "probability": 0.8322 + }, + { + "start": 2338.62, + "end": 2342.56, + "probability": 0.9751 + }, + { + "start": 2342.7, + "end": 2344.92, + "probability": 0.6595 + }, + { + "start": 2345.8, + "end": 2347.8, + "probability": 0.8798 + }, + { + "start": 2350.96, + "end": 2354.8, + "probability": 0.986 + }, + { + "start": 2354.8, + "end": 2359.22, + "probability": 0.9977 + }, + { + "start": 2360.32, + "end": 2362.16, + "probability": 0.993 + }, + { + "start": 2363.7, + "end": 2368.04, + "probability": 0.9604 + }, + { + "start": 2368.04, + "end": 2373.06, + "probability": 0.999 + }, + { + "start": 2373.26, + "end": 2374.22, + "probability": 0.8642 + }, + { + "start": 2374.24, + "end": 2377.65, + "probability": 0.9945 + }, + { + "start": 2377.88, + "end": 2380.36, + "probability": 0.9755 + }, + { + "start": 2382.88, + "end": 2387.12, + "probability": 0.8662 + }, + { + "start": 2387.84, + "end": 2389.54, + "probability": 0.9883 + }, + { + "start": 2389.8, + "end": 2391.56, + "probability": 0.9955 + }, + { + "start": 2391.56, + "end": 2395.5, + "probability": 0.9086 + }, + { + "start": 2396.36, + "end": 2398.2, + "probability": 0.9818 + }, + { + "start": 2399.12, + "end": 2401.04, + "probability": 0.7358 + }, + { + "start": 2402.34, + "end": 2404.52, + "probability": 0.9941 + }, + { + "start": 2406.12, + "end": 2411.7, + "probability": 0.9509 + }, + { + "start": 2412.94, + "end": 2413.67, + "probability": 0.7712 + }, + { + "start": 2414.96, + "end": 2419.24, + "probability": 0.856 + }, + { + "start": 2419.76, + "end": 2421.32, + "probability": 0.8518 + }, + { + "start": 2421.4, + "end": 2423.1, + "probability": 0.9089 + }, + { + "start": 2423.6, + "end": 2428.68, + "probability": 0.9519 + }, + { + "start": 2429.2, + "end": 2429.96, + "probability": 0.9396 + }, + { + "start": 2431.08, + "end": 2432.35, + "probability": 0.9854 + }, + { + "start": 2433.1, + "end": 2434.6, + "probability": 0.946 + }, + { + "start": 2434.7, + "end": 2439.82, + "probability": 0.9626 + }, + { + "start": 2439.84, + "end": 2442.14, + "probability": 0.9914 + }, + { + "start": 2442.24, + "end": 2443.42, + "probability": 0.9773 + }, + { + "start": 2444.42, + "end": 2447.56, + "probability": 0.9965 + }, + { + "start": 2448.42, + "end": 2453.74, + "probability": 0.7498 + }, + { + "start": 2455.18, + "end": 2458.62, + "probability": 0.8776 + }, + { + "start": 2459.4, + "end": 2466.24, + "probability": 0.8784 + }, + { + "start": 2467.0, + "end": 2467.0, + "probability": 0.8135 + }, + { + "start": 2468.78, + "end": 2473.98, + "probability": 0.8729 + }, + { + "start": 2474.52, + "end": 2477.86, + "probability": 0.928 + }, + { + "start": 2478.4, + "end": 2480.08, + "probability": 0.9948 + }, + { + "start": 2481.2, + "end": 2481.9, + "probability": 0.9799 + }, + { + "start": 2482.66, + "end": 2487.24, + "probability": 0.8472 + }, + { + "start": 2488.06, + "end": 2492.34, + "probability": 0.9418 + }, + { + "start": 2493.0, + "end": 2494.88, + "probability": 0.9723 + }, + { + "start": 2495.62, + "end": 2498.86, + "probability": 0.939 + }, + { + "start": 2499.38, + "end": 2500.4, + "probability": 0.8099 + }, + { + "start": 2500.76, + "end": 2504.7, + "probability": 0.8954 + }, + { + "start": 2506.16, + "end": 2508.16, + "probability": 0.8228 + }, + { + "start": 2508.86, + "end": 2514.5, + "probability": 0.9162 + }, + { + "start": 2514.86, + "end": 2517.1, + "probability": 0.9172 + }, + { + "start": 2518.7, + "end": 2521.32, + "probability": 0.8524 + }, + { + "start": 2522.04, + "end": 2526.14, + "probability": 0.9565 + }, + { + "start": 2527.1, + "end": 2527.68, + "probability": 0.9966 + }, + { + "start": 2528.66, + "end": 2531.96, + "probability": 0.9487 + }, + { + "start": 2533.26, + "end": 2535.1, + "probability": 0.8524 + }, + { + "start": 2535.28, + "end": 2537.36, + "probability": 0.9924 + }, + { + "start": 2537.68, + "end": 2539.03, + "probability": 0.998 + }, + { + "start": 2540.88, + "end": 2541.64, + "probability": 0.9645 + }, + { + "start": 2542.18, + "end": 2543.36, + "probability": 0.9731 + }, + { + "start": 2544.24, + "end": 2546.38, + "probability": 0.9725 + }, + { + "start": 2546.56, + "end": 2549.84, + "probability": 0.9692 + }, + { + "start": 2550.78, + "end": 2553.48, + "probability": 0.9837 + }, + { + "start": 2553.56, + "end": 2554.28, + "probability": 0.8779 + }, + { + "start": 2554.48, + "end": 2556.62, + "probability": 0.9219 + }, + { + "start": 2557.0, + "end": 2563.2, + "probability": 0.916 + }, + { + "start": 2563.88, + "end": 2564.56, + "probability": 0.5423 + }, + { + "start": 2565.68, + "end": 2567.93, + "probability": 0.9958 + }, + { + "start": 2568.2, + "end": 2573.56, + "probability": 0.9791 + }, + { + "start": 2574.04, + "end": 2575.74, + "probability": 0.955 + }, + { + "start": 2576.12, + "end": 2577.4, + "probability": 0.9774 + }, + { + "start": 2578.06, + "end": 2580.16, + "probability": 0.9819 + }, + { + "start": 2581.06, + "end": 2581.62, + "probability": 0.813 + }, + { + "start": 2582.82, + "end": 2585.98, + "probability": 0.8839 + }, + { + "start": 2588.72, + "end": 2590.96, + "probability": 0.863 + }, + { + "start": 2591.36, + "end": 2594.3, + "probability": 0.9871 + }, + { + "start": 2596.62, + "end": 2599.24, + "probability": 0.8804 + }, + { + "start": 2599.92, + "end": 2602.48, + "probability": 0.9165 + }, + { + "start": 2603.46, + "end": 2604.32, + "probability": 0.9459 + }, + { + "start": 2605.34, + "end": 2609.26, + "probability": 0.997 + }, + { + "start": 2610.5, + "end": 2610.98, + "probability": 0.705 + }, + { + "start": 2611.36, + "end": 2612.18, + "probability": 0.9835 + }, + { + "start": 2612.28, + "end": 2614.9, + "probability": 0.9492 + }, + { + "start": 2615.0, + "end": 2615.88, + "probability": 0.6014 + }, + { + "start": 2616.22, + "end": 2620.12, + "probability": 0.9077 + }, + { + "start": 2620.5, + "end": 2622.55, + "probability": 0.9941 + }, + { + "start": 2623.92, + "end": 2626.26, + "probability": 0.7812 + }, + { + "start": 2626.84, + "end": 2628.68, + "probability": 0.7607 + }, + { + "start": 2629.22, + "end": 2630.44, + "probability": 0.8867 + }, + { + "start": 2630.6, + "end": 2633.76, + "probability": 0.9267 + }, + { + "start": 2635.88, + "end": 2636.84, + "probability": 0.9507 + }, + { + "start": 2637.74, + "end": 2638.98, + "probability": 0.5334 + }, + { + "start": 2640.6, + "end": 2643.52, + "probability": 0.9478 + }, + { + "start": 2643.58, + "end": 2644.4, + "probability": 0.9623 + }, + { + "start": 2644.44, + "end": 2645.6, + "probability": 0.9516 + }, + { + "start": 2646.42, + "end": 2651.32, + "probability": 0.9753 + }, + { + "start": 2652.64, + "end": 2655.12, + "probability": 0.6813 + }, + { + "start": 2656.62, + "end": 2661.7, + "probability": 0.9225 + }, + { + "start": 2662.84, + "end": 2664.5, + "probability": 0.9441 + }, + { + "start": 2666.14, + "end": 2668.88, + "probability": 0.8262 + }, + { + "start": 2669.16, + "end": 2671.18, + "probability": 0.9033 + }, + { + "start": 2673.18, + "end": 2674.68, + "probability": 0.9501 + }, + { + "start": 2675.3, + "end": 2678.64, + "probability": 0.9934 + }, + { + "start": 2679.7, + "end": 2680.74, + "probability": 0.9565 + }, + { + "start": 2682.16, + "end": 2684.44, + "probability": 0.4069 + }, + { + "start": 2684.94, + "end": 2685.36, + "probability": 0.9336 + }, + { + "start": 2685.68, + "end": 2686.4, + "probability": 0.8114 + }, + { + "start": 2686.48, + "end": 2687.2, + "probability": 0.8387 + }, + { + "start": 2687.96, + "end": 2688.74, + "probability": 0.9777 + }, + { + "start": 2689.06, + "end": 2690.02, + "probability": 0.7104 + }, + { + "start": 2690.64, + "end": 2693.8, + "probability": 0.8028 + }, + { + "start": 2695.38, + "end": 2696.74, + "probability": 0.9359 + }, + { + "start": 2697.16, + "end": 2697.9, + "probability": 0.927 + }, + { + "start": 2698.48, + "end": 2699.76, + "probability": 0.9727 + }, + { + "start": 2699.88, + "end": 2703.48, + "probability": 0.9375 + }, + { + "start": 2704.12, + "end": 2706.65, + "probability": 0.62 + }, + { + "start": 2708.32, + "end": 2710.72, + "probability": 0.9893 + }, + { + "start": 2711.22, + "end": 2713.93, + "probability": 0.9863 + }, + { + "start": 2714.74, + "end": 2718.7, + "probability": 0.9717 + }, + { + "start": 2719.58, + "end": 2722.06, + "probability": 0.9872 + }, + { + "start": 2723.12, + "end": 2724.42, + "probability": 0.7986 + }, + { + "start": 2725.54, + "end": 2728.76, + "probability": 0.9932 + }, + { + "start": 2729.02, + "end": 2729.56, + "probability": 0.552 + }, + { + "start": 2729.92, + "end": 2732.76, + "probability": 0.9751 + }, + { + "start": 2733.22, + "end": 2733.59, + "probability": 0.999 + }, + { + "start": 2735.26, + "end": 2740.06, + "probability": 0.8144 + }, + { + "start": 2740.06, + "end": 2744.2, + "probability": 0.9901 + }, + { + "start": 2744.38, + "end": 2748.52, + "probability": 0.9697 + }, + { + "start": 2751.4, + "end": 2755.14, + "probability": 0.9954 + }, + { + "start": 2755.28, + "end": 2755.8, + "probability": 0.8462 + }, + { + "start": 2755.84, + "end": 2758.62, + "probability": 0.8388 + }, + { + "start": 2758.72, + "end": 2760.26, + "probability": 0.8967 + }, + { + "start": 2760.82, + "end": 2761.42, + "probability": 0.6856 + }, + { + "start": 2762.56, + "end": 2766.36, + "probability": 0.6783 + }, + { + "start": 2766.84, + "end": 2767.32, + "probability": 0.8405 + }, + { + "start": 2768.2, + "end": 2772.12, + "probability": 0.8486 + }, + { + "start": 2772.58, + "end": 2773.24, + "probability": 0.8358 + }, + { + "start": 2774.44, + "end": 2777.48, + "probability": 0.9574 + }, + { + "start": 2777.98, + "end": 2781.94, + "probability": 0.8837 + }, + { + "start": 2782.74, + "end": 2786.98, + "probability": 0.9612 + }, + { + "start": 2787.12, + "end": 2790.0, + "probability": 0.9639 + }, + { + "start": 2790.62, + "end": 2792.06, + "probability": 0.9063 + }, + { + "start": 2792.14, + "end": 2792.88, + "probability": 0.9115 + }, + { + "start": 2793.32, + "end": 2794.52, + "probability": 0.8547 + }, + { + "start": 2794.8, + "end": 2796.02, + "probability": 0.7743 + }, + { + "start": 2797.28, + "end": 2799.32, + "probability": 0.5429 + }, + { + "start": 2800.2, + "end": 2802.64, + "probability": 0.8439 + }, + { + "start": 2803.28, + "end": 2805.68, + "probability": 0.4836 + }, + { + "start": 2806.28, + "end": 2811.8, + "probability": 0.8997 + }, + { + "start": 2812.2, + "end": 2816.46, + "probability": 0.996 + }, + { + "start": 2817.04, + "end": 2819.24, + "probability": 0.9573 + }, + { + "start": 2819.7, + "end": 2821.54, + "probability": 0.979 + }, + { + "start": 2822.14, + "end": 2824.28, + "probability": 0.9776 + }, + { + "start": 2824.94, + "end": 2826.5, + "probability": 0.9863 + }, + { + "start": 2826.96, + "end": 2833.26, + "probability": 0.7839 + }, + { + "start": 2833.48, + "end": 2834.72, + "probability": 0.5254 + }, + { + "start": 2835.34, + "end": 2835.7, + "probability": 0.8297 + }, + { + "start": 2836.06, + "end": 2839.34, + "probability": 0.7827 + }, + { + "start": 2839.94, + "end": 2841.7, + "probability": 0.6364 + }, + { + "start": 2842.34, + "end": 2846.22, + "probability": 0.9468 + }, + { + "start": 2846.22, + "end": 2849.48, + "probability": 0.9477 + }, + { + "start": 2850.7, + "end": 2851.08, + "probability": 0.1006 + }, + { + "start": 2851.82, + "end": 2857.41, + "probability": 0.798 + }, + { + "start": 2857.88, + "end": 2859.1, + "probability": 0.8398 + }, + { + "start": 2859.6, + "end": 2860.38, + "probability": 0.8189 + }, + { + "start": 2860.88, + "end": 2861.18, + "probability": 0.8312 + }, + { + "start": 2861.68, + "end": 2865.88, + "probability": 0.9651 + }, + { + "start": 2866.3, + "end": 2868.1, + "probability": 0.9909 + }, + { + "start": 2868.34, + "end": 2871.02, + "probability": 0.7481 + }, + { + "start": 2871.2, + "end": 2871.34, + "probability": 0.4459 + }, + { + "start": 2873.02, + "end": 2873.34, + "probability": 0.9326 + }, + { + "start": 2873.76, + "end": 2877.88, + "probability": 0.8974 + }, + { + "start": 2878.34, + "end": 2880.28, + "probability": 0.961 + }, + { + "start": 2880.7, + "end": 2881.08, + "probability": 0.7819 + }, + { + "start": 2881.74, + "end": 2883.56, + "probability": 0.9107 + }, + { + "start": 2883.76, + "end": 2888.96, + "probability": 0.9833 + }, + { + "start": 2889.08, + "end": 2890.42, + "probability": 0.9458 + }, + { + "start": 2891.02, + "end": 2892.82, + "probability": 0.73 + }, + { + "start": 2893.74, + "end": 2894.58, + "probability": 0.7153 + }, + { + "start": 2895.02, + "end": 2896.12, + "probability": 0.8981 + }, + { + "start": 2896.74, + "end": 2898.82, + "probability": 0.9459 + }, + { + "start": 2904.96, + "end": 2907.34, + "probability": 0.7369 + }, + { + "start": 2910.42, + "end": 2913.78, + "probability": 0.9949 + }, + { + "start": 2914.38, + "end": 2916.14, + "probability": 0.6847 + }, + { + "start": 2916.72, + "end": 2916.9, + "probability": 0.9978 + }, + { + "start": 2917.72, + "end": 2921.88, + "probability": 0.9154 + }, + { + "start": 2922.8, + "end": 2924.1, + "probability": 0.7297 + }, + { + "start": 2924.18, + "end": 2929.22, + "probability": 0.9965 + }, + { + "start": 2929.98, + "end": 2930.74, + "probability": 0.9746 + }, + { + "start": 2933.58, + "end": 2934.2, + "probability": 0.245 + }, + { + "start": 2935.3, + "end": 2937.14, + "probability": 0.8801 + }, + { + "start": 2937.28, + "end": 2937.4, + "probability": 0.447 + }, + { + "start": 2937.7, + "end": 2939.16, + "probability": 0.7363 + }, + { + "start": 2940.82, + "end": 2943.66, + "probability": 0.9443 + }, + { + "start": 2944.3, + "end": 2946.16, + "probability": 0.9822 + }, + { + "start": 2947.8, + "end": 2948.1, + "probability": 0.7124 + }, + { + "start": 2948.62, + "end": 2949.16, + "probability": 0.9708 + }, + { + "start": 2949.48, + "end": 2954.36, + "probability": 0.9744 + }, + { + "start": 2955.96, + "end": 2956.78, + "probability": 0.9062 + }, + { + "start": 2957.0, + "end": 2961.62, + "probability": 0.9966 + }, + { + "start": 2962.46, + "end": 2964.52, + "probability": 0.0877 + }, + { + "start": 2965.12, + "end": 2965.92, + "probability": 0.2946 + }, + { + "start": 2966.0, + "end": 2966.78, + "probability": 0.8777 + }, + { + "start": 2966.82, + "end": 2967.5, + "probability": 0.5468 + }, + { + "start": 2967.56, + "end": 2968.66, + "probability": 0.906 + }, + { + "start": 2969.08, + "end": 2971.64, + "probability": 0.7283 + }, + { + "start": 2972.0, + "end": 2974.86, + "probability": 0.9838 + }, + { + "start": 2975.7, + "end": 2976.88, + "probability": 0.9983 + }, + { + "start": 2978.38, + "end": 2979.4, + "probability": 0.9375 + }, + { + "start": 2980.58, + "end": 2980.98, + "probability": 0.7255 + }, + { + "start": 2981.5, + "end": 2982.02, + "probability": 0.8428 + }, + { + "start": 2982.58, + "end": 2983.16, + "probability": 0.8881 + }, + { + "start": 2984.28, + "end": 2984.5, + "probability": 0.9839 + }, + { + "start": 2985.22, + "end": 2985.5, + "probability": 0.3359 + }, + { + "start": 2985.5, + "end": 2987.12, + "probability": 0.6055 + }, + { + "start": 2987.2, + "end": 2988.86, + "probability": 0.8743 + }, + { + "start": 2989.42, + "end": 2994.2, + "probability": 0.9749 + }, + { + "start": 2995.66, + "end": 2998.16, + "probability": 0.9933 + }, + { + "start": 2998.4, + "end": 3000.28, + "probability": 0.9889 + }, + { + "start": 3000.96, + "end": 3004.06, + "probability": 0.9286 + }, + { + "start": 3004.5, + "end": 3008.6, + "probability": 0.6761 + }, + { + "start": 3008.72, + "end": 3009.31, + "probability": 0.8693 + }, + { + "start": 3010.02, + "end": 3011.1, + "probability": 0.7188 + }, + { + "start": 3011.78, + "end": 3015.56, + "probability": 0.9891 + }, + { + "start": 3016.48, + "end": 3017.48, + "probability": 0.647 + }, + { + "start": 3018.3, + "end": 3020.56, + "probability": 0.9364 + }, + { + "start": 3021.2, + "end": 3022.8, + "probability": 0.9766 + }, + { + "start": 3023.44, + "end": 3024.26, + "probability": 0.9608 + }, + { + "start": 3024.92, + "end": 3027.04, + "probability": 0.8661 + }, + { + "start": 3028.14, + "end": 3030.3, + "probability": 0.9917 + }, + { + "start": 3031.02, + "end": 3031.7, + "probability": 0.7396 + }, + { + "start": 3031.94, + "end": 3032.9, + "probability": 0.925 + }, + { + "start": 3033.2, + "end": 3037.2, + "probability": 0.9863 + }, + { + "start": 3037.96, + "end": 3041.32, + "probability": 0.9512 + }, + { + "start": 3041.84, + "end": 3045.38, + "probability": 0.9711 + }, + { + "start": 3045.56, + "end": 3046.48, + "probability": 0.9861 + }, + { + "start": 3046.74, + "end": 3047.54, + "probability": 0.9902 + }, + { + "start": 3049.6, + "end": 3054.82, + "probability": 0.9919 + }, + { + "start": 3055.9, + "end": 3058.36, + "probability": 0.9648 + }, + { + "start": 3058.56, + "end": 3059.08, + "probability": 0.4783 + }, + { + "start": 3059.68, + "end": 3060.38, + "probability": 0.9393 + }, + { + "start": 3062.04, + "end": 3064.44, + "probability": 0.9969 + }, + { + "start": 3065.8, + "end": 3067.6, + "probability": 0.9963 + }, + { + "start": 3068.1, + "end": 3070.58, + "probability": 0.9983 + }, + { + "start": 3071.02, + "end": 3072.12, + "probability": 0.9975 + }, + { + "start": 3072.64, + "end": 3073.68, + "probability": 0.9666 + }, + { + "start": 3074.42, + "end": 3077.72, + "probability": 0.7636 + }, + { + "start": 3078.78, + "end": 3079.26, + "probability": 0.9121 + }, + { + "start": 3080.02, + "end": 3081.46, + "probability": 0.9946 + }, + { + "start": 3081.5, + "end": 3083.54, + "probability": 0.9866 + }, + { + "start": 3085.16, + "end": 3085.92, + "probability": 0.9485 + }, + { + "start": 3086.42, + "end": 3087.42, + "probability": 0.9588 + }, + { + "start": 3087.5, + "end": 3087.64, + "probability": 0.9016 + }, + { + "start": 3087.7, + "end": 3089.36, + "probability": 0.9964 + }, + { + "start": 3090.5, + "end": 3094.82, + "probability": 0.9879 + }, + { + "start": 3096.26, + "end": 3099.84, + "probability": 0.998 + }, + { + "start": 3100.54, + "end": 3102.27, + "probability": 0.5993 + }, + { + "start": 3103.7, + "end": 3105.18, + "probability": 0.7242 + }, + { + "start": 3106.94, + "end": 3108.68, + "probability": 0.9746 + }, + { + "start": 3109.66, + "end": 3111.18, + "probability": 0.9889 + }, + { + "start": 3111.46, + "end": 3112.96, + "probability": 0.8613 + }, + { + "start": 3113.66, + "end": 3114.56, + "probability": 0.9009 + }, + { + "start": 3115.46, + "end": 3116.42, + "probability": 0.9681 + }, + { + "start": 3117.02, + "end": 3118.64, + "probability": 0.9783 + }, + { + "start": 3119.12, + "end": 3120.4, + "probability": 0.1724 + }, + { + "start": 3120.6, + "end": 3126.1, + "probability": 0.0877 + }, + { + "start": 3126.28, + "end": 3128.28, + "probability": 0.1553 + }, + { + "start": 3128.28, + "end": 3128.44, + "probability": 0.3449 + }, + { + "start": 3128.76, + "end": 3132.3, + "probability": 0.9937 + }, + { + "start": 3132.44, + "end": 3133.21, + "probability": 0.7319 + }, + { + "start": 3134.82, + "end": 3135.06, + "probability": 0.2045 + }, + { + "start": 3135.22, + "end": 3137.16, + "probability": 0.9648 + }, + { + "start": 3137.2, + "end": 3138.51, + "probability": 0.9939 + }, + { + "start": 3138.66, + "end": 3139.46, + "probability": 0.8516 + }, + { + "start": 3139.48, + "end": 3143.72, + "probability": 0.9048 + }, + { + "start": 3143.72, + "end": 3149.74, + "probability": 0.8121 + }, + { + "start": 3149.92, + "end": 3155.8, + "probability": 0.9753 + }, + { + "start": 3157.06, + "end": 3161.56, + "probability": 0.1074 + }, + { + "start": 3161.56, + "end": 3162.26, + "probability": 0.0809 + }, + { + "start": 3164.88, + "end": 3166.5, + "probability": 0.8096 + }, + { + "start": 3166.62, + "end": 3167.72, + "probability": 0.3592 + }, + { + "start": 3167.72, + "end": 3169.38, + "probability": 0.7944 + }, + { + "start": 3170.1, + "end": 3175.36, + "probability": 0.6292 + }, + { + "start": 3175.58, + "end": 3179.9, + "probability": 0.6785 + }, + { + "start": 3181.99, + "end": 3182.78, + "probability": 0.5076 + }, + { + "start": 3183.84, + "end": 3183.84, + "probability": 0.1594 + }, + { + "start": 3183.86, + "end": 3183.86, + "probability": 0.1363 + }, + { + "start": 3183.86, + "end": 3183.86, + "probability": 0.0522 + }, + { + "start": 3183.86, + "end": 3185.82, + "probability": 0.5253 + }, + { + "start": 3186.82, + "end": 3187.02, + "probability": 0.0955 + }, + { + "start": 3187.18, + "end": 3187.94, + "probability": 0.2366 + }, + { + "start": 3188.02, + "end": 3188.74, + "probability": 0.0697 + }, + { + "start": 3188.74, + "end": 3189.58, + "probability": 0.0413 + }, + { + "start": 3189.7, + "end": 3191.24, + "probability": 0.3931 + }, + { + "start": 3193.82, + "end": 3193.82, + "probability": 0.5589 + }, + { + "start": 3193.82, + "end": 3195.98, + "probability": 0.4783 + }, + { + "start": 3196.08, + "end": 3196.36, + "probability": 0.2776 + }, + { + "start": 3196.46, + "end": 3199.26, + "probability": 0.8624 + }, + { + "start": 3199.3, + "end": 3200.66, + "probability": 0.2283 + }, + { + "start": 3200.72, + "end": 3204.82, + "probability": 0.7513 + }, + { + "start": 3204.98, + "end": 3204.98, + "probability": 0.4034 + }, + { + "start": 3205.06, + "end": 3206.64, + "probability": 0.3475 + }, + { + "start": 3206.72, + "end": 3209.72, + "probability": 0.1819 + }, + { + "start": 3209.86, + "end": 3209.96, + "probability": 0.0184 + }, + { + "start": 3209.96, + "end": 3210.72, + "probability": 0.0368 + }, + { + "start": 3211.22, + "end": 3211.88, + "probability": 0.6105 + }, + { + "start": 3211.9, + "end": 3217.9, + "probability": 0.878 + }, + { + "start": 3217.9, + "end": 3218.76, + "probability": 0.8362 + }, + { + "start": 3219.08, + "end": 3221.34, + "probability": 0.9687 + }, + { + "start": 3221.84, + "end": 3222.73, + "probability": 0.9897 + }, + { + "start": 3223.2, + "end": 3226.65, + "probability": 0.8163 + }, + { + "start": 3226.9, + "end": 3228.82, + "probability": 0.5595 + }, + { + "start": 3228.98, + "end": 3231.3, + "probability": 0.9082 + }, + { + "start": 3231.54, + "end": 3232.38, + "probability": 0.8263 + }, + { + "start": 3232.42, + "end": 3236.04, + "probability": 0.8372 + }, + { + "start": 3236.14, + "end": 3238.26, + "probability": 0.703 + }, + { + "start": 3238.52, + "end": 3239.06, + "probability": 0.5484 + }, + { + "start": 3239.38, + "end": 3240.72, + "probability": 0.9914 + }, + { + "start": 3241.02, + "end": 3242.08, + "probability": 0.9359 + }, + { + "start": 3242.48, + "end": 3243.4, + "probability": 0.696 + }, + { + "start": 3243.46, + "end": 3244.36, + "probability": 0.9309 + }, + { + "start": 3244.54, + "end": 3246.76, + "probability": 0.9645 + }, + { + "start": 3246.86, + "end": 3247.16, + "probability": 0.8323 + }, + { + "start": 3247.34, + "end": 3250.14, + "probability": 0.7951 + }, + { + "start": 3250.6, + "end": 3251.64, + "probability": 0.8762 + }, + { + "start": 3252.27, + "end": 3253.38, + "probability": 0.0407 + }, + { + "start": 3253.38, + "end": 3254.16, + "probability": 0.0639 + }, + { + "start": 3254.78, + "end": 3255.6, + "probability": 0.6135 + }, + { + "start": 3255.78, + "end": 3259.68, + "probability": 0.9743 + }, + { + "start": 3259.68, + "end": 3260.14, + "probability": 0.6536 + }, + { + "start": 3260.14, + "end": 3262.8, + "probability": 0.2757 + }, + { + "start": 3262.84, + "end": 3263.84, + "probability": 0.2336 + }, + { + "start": 3267.16, + "end": 3267.16, + "probability": 0.1198 + }, + { + "start": 3267.16, + "end": 3267.16, + "probability": 0.0967 + }, + { + "start": 3267.16, + "end": 3267.16, + "probability": 0.4505 + }, + { + "start": 3267.16, + "end": 3267.66, + "probability": 0.4465 + }, + { + "start": 3267.68, + "end": 3270.56, + "probability": 0.7679 + }, + { + "start": 3271.2, + "end": 3272.66, + "probability": 0.8145 + }, + { + "start": 3275.76, + "end": 3279.28, + "probability": 0.8462 + }, + { + "start": 3279.38, + "end": 3280.18, + "probability": 0.8648 + }, + { + "start": 3280.22, + "end": 3281.28, + "probability": 0.2031 + }, + { + "start": 3281.5, + "end": 3283.08, + "probability": 0.8933 + }, + { + "start": 3283.1, + "end": 3287.1, + "probability": 0.9985 + }, + { + "start": 3287.86, + "end": 3289.46, + "probability": 0.7661 + }, + { + "start": 3289.9, + "end": 3290.78, + "probability": 0.1721 + }, + { + "start": 3291.48, + "end": 3293.12, + "probability": 0.7808 + }, + { + "start": 3293.46, + "end": 3294.66, + "probability": 0.8955 + }, + { + "start": 3295.24, + "end": 3297.1, + "probability": 0.8479 + }, + { + "start": 3297.2, + "end": 3299.14, + "probability": 0.8517 + }, + { + "start": 3299.3, + "end": 3300.36, + "probability": 0.8104 + }, + { + "start": 3300.48, + "end": 3305.48, + "probability": 0.8694 + }, + { + "start": 3305.56, + "end": 3306.74, + "probability": 0.7537 + }, + { + "start": 3306.96, + "end": 3307.76, + "probability": 0.7072 + }, + { + "start": 3308.66, + "end": 3311.14, + "probability": 0.168 + }, + { + "start": 3311.14, + "end": 3311.14, + "probability": 0.0311 + }, + { + "start": 3311.14, + "end": 3311.14, + "probability": 0.4934 + }, + { + "start": 3311.14, + "end": 3311.14, + "probability": 0.1373 + }, + { + "start": 3311.14, + "end": 3313.46, + "probability": 0.6182 + }, + { + "start": 3313.64, + "end": 3315.08, + "probability": 0.5231 + }, + { + "start": 3315.2, + "end": 3315.66, + "probability": 0.6106 + }, + { + "start": 3315.86, + "end": 3316.28, + "probability": 0.6885 + }, + { + "start": 3316.3, + "end": 3319.3, + "probability": 0.3833 + }, + { + "start": 3319.4, + "end": 3319.6, + "probability": 0.0771 + }, + { + "start": 3320.3, + "end": 3321.0, + "probability": 0.0482 + }, + { + "start": 3321.0, + "end": 3321.68, + "probability": 0.1865 + }, + { + "start": 3321.68, + "end": 3326.08, + "probability": 0.6839 + }, + { + "start": 3326.32, + "end": 3327.4, + "probability": 0.6302 + }, + { + "start": 3327.64, + "end": 3328.08, + "probability": 0.1387 + }, + { + "start": 3328.08, + "end": 3334.72, + "probability": 0.8772 + }, + { + "start": 3334.98, + "end": 3337.92, + "probability": 0.8873 + }, + { + "start": 3338.56, + "end": 3341.72, + "probability": 0.9331 + }, + { + "start": 3342.04, + "end": 3342.94, + "probability": 0.4128 + }, + { + "start": 3342.94, + "end": 3343.84, + "probability": 0.8819 + }, + { + "start": 3344.06, + "end": 3344.9, + "probability": 0.1256 + }, + { + "start": 3344.94, + "end": 3345.82, + "probability": 0.9192 + }, + { + "start": 3345.94, + "end": 3347.34, + "probability": 0.728 + }, + { + "start": 3348.14, + "end": 3351.52, + "probability": 0.9429 + }, + { + "start": 3351.88, + "end": 3354.78, + "probability": 0.8192 + }, + { + "start": 3354.8, + "end": 3356.42, + "probability": 0.938 + }, + { + "start": 3356.52, + "end": 3360.34, + "probability": 0.8391 + }, + { + "start": 3360.36, + "end": 3363.02, + "probability": 0.2175 + }, + { + "start": 3364.96, + "end": 3365.24, + "probability": 0.002 + }, + { + "start": 3365.24, + "end": 3365.3, + "probability": 0.0146 + }, + { + "start": 3365.3, + "end": 3365.3, + "probability": 0.03 + }, + { + "start": 3365.3, + "end": 3365.3, + "probability": 0.0943 + }, + { + "start": 3365.3, + "end": 3366.04, + "probability": 0.0553 + }, + { + "start": 3366.78, + "end": 3367.14, + "probability": 0.136 + }, + { + "start": 3370.18, + "end": 3372.0, + "probability": 0.6975 + }, + { + "start": 3372.44, + "end": 3373.18, + "probability": 0.3826 + }, + { + "start": 3373.52, + "end": 3373.72, + "probability": 0.4501 + }, + { + "start": 3373.84, + "end": 3375.26, + "probability": 0.1206 + }, + { + "start": 3375.4, + "end": 3376.0, + "probability": 0.2489 + }, + { + "start": 3376.44, + "end": 3377.86, + "probability": 0.6151 + }, + { + "start": 3378.16, + "end": 3379.34, + "probability": 0.7593 + }, + { + "start": 3379.34, + "end": 3382.32, + "probability": 0.5503 + }, + { + "start": 3382.34, + "end": 3382.94, + "probability": 0.8001 + }, + { + "start": 3382.98, + "end": 3385.02, + "probability": 0.8507 + }, + { + "start": 3385.04, + "end": 3386.02, + "probability": 0.3221 + }, + { + "start": 3386.88, + "end": 3390.16, + "probability": 0.1776 + }, + { + "start": 3390.32, + "end": 3394.4, + "probability": 0.974 + }, + { + "start": 3394.98, + "end": 3396.04, + "probability": 0.4643 + }, + { + "start": 3396.84, + "end": 3398.3, + "probability": 0.6961 + }, + { + "start": 3398.42, + "end": 3400.02, + "probability": 0.3289 + }, + { + "start": 3400.7, + "end": 3402.3, + "probability": 0.8787 + }, + { + "start": 3402.66, + "end": 3404.94, + "probability": 0.875 + }, + { + "start": 3405.6, + "end": 3406.02, + "probability": 0.1896 + }, + { + "start": 3406.46, + "end": 3407.0, + "probability": 0.299 + }, + { + "start": 3407.22, + "end": 3407.34, + "probability": 0.0453 + }, + { + "start": 3407.34, + "end": 3408.14, + "probability": 0.95 + }, + { + "start": 3408.36, + "end": 3409.34, + "probability": 0.6616 + }, + { + "start": 3409.48, + "end": 3413.56, + "probability": 0.9014 + }, + { + "start": 3413.66, + "end": 3418.18, + "probability": 0.9774 + }, + { + "start": 3418.32, + "end": 3419.72, + "probability": 0.9923 + }, + { + "start": 3419.82, + "end": 3423.92, + "probability": 0.9938 + }, + { + "start": 3424.38, + "end": 3425.14, + "probability": 0.9482 + }, + { + "start": 3425.64, + "end": 3433.2, + "probability": 0.9927 + }, + { + "start": 3434.04, + "end": 3435.16, + "probability": 0.9446 + }, + { + "start": 3436.28, + "end": 3436.28, + "probability": 0.4805 + }, + { + "start": 3436.28, + "end": 3439.2, + "probability": 0.8169 + }, + { + "start": 3439.54, + "end": 3440.52, + "probability": 0.3834 + }, + { + "start": 3440.52, + "end": 3442.12, + "probability": 0.8799 + }, + { + "start": 3442.94, + "end": 3447.24, + "probability": 0.5297 + }, + { + "start": 3447.28, + "end": 3447.88, + "probability": 0.4515 + }, + { + "start": 3448.4, + "end": 3451.66, + "probability": 0.7813 + }, + { + "start": 3451.8, + "end": 3452.36, + "probability": 0.0993 + }, + { + "start": 3452.36, + "end": 3456.14, + "probability": 0.9757 + }, + { + "start": 3456.22, + "end": 3456.22, + "probability": 0.4079 + }, + { + "start": 3456.22, + "end": 3456.22, + "probability": 0.4006 + }, + { + "start": 3456.22, + "end": 3457.04, + "probability": 0.4902 + }, + { + "start": 3457.06, + "end": 3457.78, + "probability": 0.9841 + }, + { + "start": 3457.94, + "end": 3459.72, + "probability": 0.7518 + }, + { + "start": 3460.98, + "end": 3462.4, + "probability": 0.8942 + }, + { + "start": 3463.42, + "end": 3464.15, + "probability": 0.7961 + }, + { + "start": 3464.42, + "end": 3465.66, + "probability": 0.969 + }, + { + "start": 3467.2, + "end": 3472.28, + "probability": 0.9932 + }, + { + "start": 3473.0, + "end": 3475.04, + "probability": 0.8616 + }, + { + "start": 3476.42, + "end": 3477.98, + "probability": 0.975 + }, + { + "start": 3479.32, + "end": 3481.34, + "probability": 0.8911 + }, + { + "start": 3482.48, + "end": 3483.22, + "probability": 0.641 + }, + { + "start": 3483.46, + "end": 3483.89, + "probability": 0.9001 + }, + { + "start": 3484.9, + "end": 3487.62, + "probability": 0.9717 + }, + { + "start": 3488.28, + "end": 3489.72, + "probability": 0.9829 + }, + { + "start": 3490.34, + "end": 3491.72, + "probability": 0.7665 + }, + { + "start": 3492.44, + "end": 3494.72, + "probability": 0.9876 + }, + { + "start": 3496.02, + "end": 3496.98, + "probability": 0.4172 + }, + { + "start": 3497.1, + "end": 3497.2, + "probability": 0.1461 + }, + { + "start": 3497.74, + "end": 3498.98, + "probability": 0.9971 + }, + { + "start": 3502.16, + "end": 3504.16, + "probability": 0.9356 + }, + { + "start": 3504.56, + "end": 3507.26, + "probability": 0.2134 + }, + { + "start": 3507.26, + "end": 3508.84, + "probability": 0.5968 + }, + { + "start": 3509.1, + "end": 3511.22, + "probability": 0.1319 + }, + { + "start": 3512.2, + "end": 3512.62, + "probability": 0.2636 + }, + { + "start": 3512.84, + "end": 3516.0, + "probability": 0.6942 + }, + { + "start": 3516.42, + "end": 3518.78, + "probability": 0.692 + }, + { + "start": 3519.08, + "end": 3522.7, + "probability": 0.0788 + }, + { + "start": 3522.78, + "end": 3523.23, + "probability": 0.7252 + }, + { + "start": 3523.54, + "end": 3529.0, + "probability": 0.995 + }, + { + "start": 3529.82, + "end": 3531.6, + "probability": 0.9948 + }, + { + "start": 3531.7, + "end": 3535.12, + "probability": 0.9727 + }, + { + "start": 3536.2, + "end": 3537.92, + "probability": 0.7485 + }, + { + "start": 3538.02, + "end": 3540.48, + "probability": 0.9897 + }, + { + "start": 3540.54, + "end": 3541.12, + "probability": 0.9574 + }, + { + "start": 3541.54, + "end": 3542.44, + "probability": 0.1428 + }, + { + "start": 3543.1, + "end": 3543.96, + "probability": 0.7584 + }, + { + "start": 3544.24, + "end": 3544.9, + "probability": 0.9788 + }, + { + "start": 3544.98, + "end": 3546.38, + "probability": 0.9622 + }, + { + "start": 3546.76, + "end": 3548.68, + "probability": 0.83 + }, + { + "start": 3550.0, + "end": 3551.78, + "probability": 0.8007 + }, + { + "start": 3552.08, + "end": 3553.4, + "probability": 0.9438 + }, + { + "start": 3554.5, + "end": 3556.46, + "probability": 0.923 + }, + { + "start": 3558.68, + "end": 3562.12, + "probability": 0.9862 + }, + { + "start": 3562.64, + "end": 3563.12, + "probability": 0.5074 + }, + { + "start": 3563.18, + "end": 3563.54, + "probability": 0.7367 + }, + { + "start": 3563.62, + "end": 3564.16, + "probability": 0.8397 + }, + { + "start": 3564.26, + "end": 3564.66, + "probability": 0.7732 + }, + { + "start": 3565.08, + "end": 3565.79, + "probability": 0.8955 + }, + { + "start": 3566.28, + "end": 3567.78, + "probability": 0.8669 + }, + { + "start": 3568.58, + "end": 3573.18, + "probability": 0.9422 + }, + { + "start": 3575.46, + "end": 3579.06, + "probability": 0.9092 + }, + { + "start": 3579.2, + "end": 3580.44, + "probability": 0.3593 + }, + { + "start": 3580.44, + "end": 3582.98, + "probability": 0.8795 + }, + { + "start": 3583.14, + "end": 3584.26, + "probability": 0.6915 + }, + { + "start": 3584.26, + "end": 3584.44, + "probability": 0.6551 + }, + { + "start": 3585.34, + "end": 3587.4, + "probability": 0.9017 + }, + { + "start": 3588.34, + "end": 3588.8, + "probability": 0.5815 + }, + { + "start": 3590.82, + "end": 3593.48, + "probability": 0.9879 + }, + { + "start": 3593.64, + "end": 3597.34, + "probability": 0.9575 + }, + { + "start": 3598.68, + "end": 3599.84, + "probability": 0.6709 + }, + { + "start": 3600.74, + "end": 3601.42, + "probability": 0.9399 + }, + { + "start": 3602.98, + "end": 3604.0, + "probability": 0.5906 + }, + { + "start": 3604.78, + "end": 3605.54, + "probability": 0.7551 + }, + { + "start": 3607.1, + "end": 3611.02, + "probability": 0.9873 + }, + { + "start": 3611.14, + "end": 3611.88, + "probability": 0.9664 + }, + { + "start": 3612.68, + "end": 3612.84, + "probability": 0.6403 + }, + { + "start": 3613.94, + "end": 3614.7, + "probability": 0.9182 + }, + { + "start": 3615.92, + "end": 3617.9, + "probability": 0.9968 + }, + { + "start": 3618.36, + "end": 3620.96, + "probability": 0.8923 + }, + { + "start": 3620.98, + "end": 3621.9, + "probability": 0.9425 + }, + { + "start": 3622.82, + "end": 3624.03, + "probability": 0.9458 + }, + { + "start": 3624.96, + "end": 3626.96, + "probability": 0.9677 + }, + { + "start": 3627.36, + "end": 3629.1, + "probability": 0.6267 + }, + { + "start": 3629.1, + "end": 3629.4, + "probability": 0.4825 + }, + { + "start": 3630.32, + "end": 3631.88, + "probability": 0.9714 + }, + { + "start": 3632.74, + "end": 3637.21, + "probability": 0.977 + }, + { + "start": 3637.28, + "end": 3641.28, + "probability": 0.9974 + }, + { + "start": 3641.86, + "end": 3644.24, + "probability": 0.8192 + }, + { + "start": 3645.12, + "end": 3645.7, + "probability": 0.0216 + }, + { + "start": 3645.7, + "end": 3647.36, + "probability": 0.9722 + }, + { + "start": 3649.18, + "end": 3652.79, + "probability": 0.9635 + }, + { + "start": 3653.18, + "end": 3655.44, + "probability": 0.7919 + }, + { + "start": 3656.42, + "end": 3657.04, + "probability": 0.8309 + }, + { + "start": 3658.32, + "end": 3661.18, + "probability": 0.8903 + }, + { + "start": 3661.88, + "end": 3663.12, + "probability": 0.9814 + }, + { + "start": 3663.84, + "end": 3665.16, + "probability": 0.713 + }, + { + "start": 3665.86, + "end": 3669.1, + "probability": 0.666 + }, + { + "start": 3671.18, + "end": 3673.8, + "probability": 0.9937 + }, + { + "start": 3674.32, + "end": 3674.84, + "probability": 0.9613 + }, + { + "start": 3676.76, + "end": 3677.74, + "probability": 0.8123 + }, + { + "start": 3677.92, + "end": 3681.9, + "probability": 0.9781 + }, + { + "start": 3684.36, + "end": 3685.52, + "probability": 0.9934 + }, + { + "start": 3686.3, + "end": 3688.56, + "probability": 0.9111 + }, + { + "start": 3689.1, + "end": 3690.02, + "probability": 0.768 + }, + { + "start": 3690.12, + "end": 3691.24, + "probability": 0.7797 + }, + { + "start": 3691.64, + "end": 3692.58, + "probability": 0.6692 + }, + { + "start": 3692.74, + "end": 3694.46, + "probability": 0.9769 + }, + { + "start": 3695.92, + "end": 3696.78, + "probability": 0.9949 + }, + { + "start": 3699.66, + "end": 3703.6, + "probability": 0.6932 + }, + { + "start": 3705.06, + "end": 3709.4, + "probability": 0.9228 + }, + { + "start": 3710.12, + "end": 3711.76, + "probability": 0.9956 + }, + { + "start": 3711.92, + "end": 3713.24, + "probability": 0.715 + }, + { + "start": 3713.24, + "end": 3713.64, + "probability": 0.7065 + }, + { + "start": 3715.16, + "end": 3719.46, + "probability": 0.99 + }, + { + "start": 3719.72, + "end": 3721.46, + "probability": 0.8018 + }, + { + "start": 3721.52, + "end": 3721.87, + "probability": 0.0788 + }, + { + "start": 3722.52, + "end": 3725.0, + "probability": 0.5076 + }, + { + "start": 3725.96, + "end": 3727.22, + "probability": 0.4916 + }, + { + "start": 3727.68, + "end": 3731.74, + "probability": 0.4284 + }, + { + "start": 3732.52, + "end": 3737.08, + "probability": 0.6703 + }, + { + "start": 3737.08, + "end": 3738.84, + "probability": 0.9292 + }, + { + "start": 3738.96, + "end": 3743.68, + "probability": 0.7658 + }, + { + "start": 3743.78, + "end": 3745.02, + "probability": 0.8446 + }, + { + "start": 3745.86, + "end": 3749.46, + "probability": 0.7063 + }, + { + "start": 3749.58, + "end": 3750.79, + "probability": 0.8356 + }, + { + "start": 3751.56, + "end": 3752.5, + "probability": 0.8691 + }, + { + "start": 3753.63, + "end": 3755.3, + "probability": 0.8152 + }, + { + "start": 3755.44, + "end": 3756.28, + "probability": 0.9937 + }, + { + "start": 3758.5, + "end": 3759.86, + "probability": 0.718 + }, + { + "start": 3760.38, + "end": 3761.68, + "probability": 0.7057 + }, + { + "start": 3762.52, + "end": 3763.54, + "probability": 0.8742 + }, + { + "start": 3764.58, + "end": 3765.64, + "probability": 0.9155 + }, + { + "start": 3767.76, + "end": 3769.94, + "probability": 0.9505 + }, + { + "start": 3770.32, + "end": 3771.2, + "probability": 0.9043 + }, + { + "start": 3771.6, + "end": 3773.06, + "probability": 0.9848 + }, + { + "start": 3779.58, + "end": 3782.62, + "probability": 0.962 + }, + { + "start": 3782.62, + "end": 3785.28, + "probability": 0.9826 + }, + { + "start": 3785.42, + "end": 3786.42, + "probability": 0.5927 + }, + { + "start": 3787.08, + "end": 3788.04, + "probability": 0.8888 + }, + { + "start": 3788.14, + "end": 3789.42, + "probability": 0.9176 + }, + { + "start": 3789.58, + "end": 3790.7, + "probability": 0.9552 + }, + { + "start": 3791.12, + "end": 3791.98, + "probability": 0.7061 + }, + { + "start": 3792.16, + "end": 3793.0, + "probability": 0.96 + }, + { + "start": 3793.52, + "end": 3794.66, + "probability": 0.9697 + }, + { + "start": 3796.16, + "end": 3798.74, + "probability": 0.854 + }, + { + "start": 3798.84, + "end": 3801.98, + "probability": 0.9181 + }, + { + "start": 3802.18, + "end": 3803.44, + "probability": 0.9961 + }, + { + "start": 3804.64, + "end": 3807.64, + "probability": 0.8391 + }, + { + "start": 3809.2, + "end": 3811.8, + "probability": 0.972 + }, + { + "start": 3813.06, + "end": 3813.84, + "probability": 0.8957 + }, + { + "start": 3814.84, + "end": 3815.8, + "probability": 0.9502 + }, + { + "start": 3816.52, + "end": 3817.42, + "probability": 0.9595 + }, + { + "start": 3818.18, + "end": 3819.62, + "probability": 0.9427 + }, + { + "start": 3819.84, + "end": 3820.62, + "probability": 0.6147 + }, + { + "start": 3821.84, + "end": 3824.92, + "probability": 0.9473 + }, + { + "start": 3825.1, + "end": 3825.8, + "probability": 0.5899 + }, + { + "start": 3825.82, + "end": 3826.9, + "probability": 0.9238 + }, + { + "start": 3828.76, + "end": 3830.06, + "probability": 0.6823 + }, + { + "start": 3831.5, + "end": 3833.86, + "probability": 0.5947 + }, + { + "start": 3833.86, + "end": 3836.48, + "probability": 0.3069 + }, + { + "start": 3836.74, + "end": 3837.62, + "probability": 0.0218 + }, + { + "start": 3837.62, + "end": 3837.62, + "probability": 0.15 + }, + { + "start": 3837.62, + "end": 3837.62, + "probability": 0.2279 + }, + { + "start": 3837.62, + "end": 3838.4, + "probability": 0.292 + }, + { + "start": 3839.24, + "end": 3841.58, + "probability": 0.6178 + }, + { + "start": 3843.1, + "end": 3845.9, + "probability": 0.9878 + }, + { + "start": 3846.82, + "end": 3849.06, + "probability": 0.9986 + }, + { + "start": 3849.06, + "end": 3852.04, + "probability": 0.9851 + }, + { + "start": 3852.98, + "end": 3854.88, + "probability": 0.9918 + }, + { + "start": 3855.42, + "end": 3856.24, + "probability": 0.9753 + }, + { + "start": 3858.26, + "end": 3858.82, + "probability": 0.5314 + }, + { + "start": 3858.92, + "end": 3859.96, + "probability": 0.6973 + }, + { + "start": 3859.96, + "end": 3861.82, + "probability": 0.9414 + }, + { + "start": 3861.88, + "end": 3862.88, + "probability": 0.8965 + }, + { + "start": 3866.02, + "end": 3869.1, + "probability": 0.9081 + }, + { + "start": 3869.66, + "end": 3871.16, + "probability": 0.9976 + }, + { + "start": 3872.24, + "end": 3873.84, + "probability": 0.733 + }, + { + "start": 3873.84, + "end": 3876.58, + "probability": 0.9902 + }, + { + "start": 3876.96, + "end": 3879.46, + "probability": 0.9795 + }, + { + "start": 3880.58, + "end": 3881.22, + "probability": 0.7904 + }, + { + "start": 3882.2, + "end": 3882.9, + "probability": 0.9502 + }, + { + "start": 3883.64, + "end": 3887.98, + "probability": 0.9814 + }, + { + "start": 3889.42, + "end": 3890.1, + "probability": 0.6636 + }, + { + "start": 3890.74, + "end": 3892.1, + "probability": 0.7613 + }, + { + "start": 3892.94, + "end": 3895.98, + "probability": 0.74 + }, + { + "start": 3896.06, + "end": 3897.18, + "probability": 0.9488 + }, + { + "start": 3897.96, + "end": 3899.56, + "probability": 0.9834 + }, + { + "start": 3901.24, + "end": 3903.34, + "probability": 0.938 + }, + { + "start": 3904.44, + "end": 3910.86, + "probability": 0.9802 + }, + { + "start": 3911.3, + "end": 3915.16, + "probability": 0.9863 + }, + { + "start": 3915.32, + "end": 3916.06, + "probability": 0.6528 + }, + { + "start": 3916.16, + "end": 3919.34, + "probability": 0.8385 + }, + { + "start": 3920.86, + "end": 3923.3, + "probability": 0.9753 + }, + { + "start": 3923.62, + "end": 3927.18, + "probability": 0.979 + }, + { + "start": 3929.0, + "end": 3930.64, + "probability": 0.9391 + }, + { + "start": 3931.34, + "end": 3932.5, + "probability": 0.7628 + }, + { + "start": 3934.62, + "end": 3938.62, + "probability": 0.9824 + }, + { + "start": 3938.8, + "end": 3939.3, + "probability": 0.9473 + }, + { + "start": 3940.82, + "end": 3944.42, + "probability": 0.9276 + }, + { + "start": 3945.08, + "end": 3947.56, + "probability": 0.9853 + }, + { + "start": 3948.2, + "end": 3952.38, + "probability": 0.9794 + }, + { + "start": 3952.38, + "end": 3958.24, + "probability": 0.9931 + }, + { + "start": 3958.32, + "end": 3959.8, + "probability": 0.9863 + }, + { + "start": 3960.5, + "end": 3961.62, + "probability": 0.5362 + }, + { + "start": 3961.7, + "end": 3963.0, + "probability": 0.4286 + }, + { + "start": 3963.16, + "end": 3966.0, + "probability": 0.7995 + }, + { + "start": 3966.22, + "end": 3967.28, + "probability": 0.9262 + }, + { + "start": 3969.02, + "end": 3969.84, + "probability": 0.998 + }, + { + "start": 3969.86, + "end": 3970.4, + "probability": 0.8599 + }, + { + "start": 3970.48, + "end": 3970.78, + "probability": 0.7636 + }, + { + "start": 3971.12, + "end": 3971.34, + "probability": 0.4595 + }, + { + "start": 3971.86, + "end": 3974.56, + "probability": 0.8102 + }, + { + "start": 3974.94, + "end": 3975.5, + "probability": 0.7634 + }, + { + "start": 3975.54, + "end": 3978.94, + "probability": 0.8537 + }, + { + "start": 3979.48, + "end": 3980.28, + "probability": 0.8209 + }, + { + "start": 3980.46, + "end": 3980.84, + "probability": 0.9015 + }, + { + "start": 3981.16, + "end": 3981.98, + "probability": 0.5927 + }, + { + "start": 3982.12, + "end": 3984.26, + "probability": 0.9577 + }, + { + "start": 3985.28, + "end": 3987.44, + "probability": 0.6661 + }, + { + "start": 3988.0, + "end": 3993.87, + "probability": 0.9924 + }, + { + "start": 3994.58, + "end": 3998.5, + "probability": 0.1419 + }, + { + "start": 3998.88, + "end": 3999.8, + "probability": 0.8709 + }, + { + "start": 3999.92, + "end": 4001.2, + "probability": 0.9725 + }, + { + "start": 4001.5, + "end": 4002.7, + "probability": 0.9985 + }, + { + "start": 4002.94, + "end": 4005.6, + "probability": 0.9946 + }, + { + "start": 4007.02, + "end": 4009.14, + "probability": 0.6626 + }, + { + "start": 4010.34, + "end": 4012.44, + "probability": 0.9569 + }, + { + "start": 4013.08, + "end": 4014.72, + "probability": 0.876 + }, + { + "start": 4015.72, + "end": 4018.3, + "probability": 0.8171 + }, + { + "start": 4018.36, + "end": 4019.26, + "probability": 0.3878 + }, + { + "start": 4019.46, + "end": 4019.46, + "probability": 0.0364 + }, + { + "start": 4019.46, + "end": 4019.76, + "probability": 0.4907 + }, + { + "start": 4020.38, + "end": 4021.66, + "probability": 0.7174 + }, + { + "start": 4021.74, + "end": 4022.8, + "probability": 0.4515 + }, + { + "start": 4022.82, + "end": 4024.06, + "probability": 0.7354 + }, + { + "start": 4024.2, + "end": 4025.32, + "probability": 0.844 + }, + { + "start": 4025.92, + "end": 4027.54, + "probability": 0.8021 + }, + { + "start": 4027.92, + "end": 4029.18, + "probability": 0.9424 + }, + { + "start": 4029.28, + "end": 4030.34, + "probability": 0.9462 + }, + { + "start": 4030.38, + "end": 4033.05, + "probability": 0.7859 + }, + { + "start": 4033.84, + "end": 4035.32, + "probability": 0.9123 + }, + { + "start": 4035.58, + "end": 4036.34, + "probability": 0.8535 + }, + { + "start": 4036.48, + "end": 4037.34, + "probability": 0.8735 + }, + { + "start": 4037.78, + "end": 4039.24, + "probability": 0.9478 + }, + { + "start": 4040.24, + "end": 4042.1, + "probability": 0.9415 + }, + { + "start": 4044.6, + "end": 4045.26, + "probability": 0.6013 + }, + { + "start": 4045.86, + "end": 4048.82, + "probability": 0.9263 + }, + { + "start": 4049.2, + "end": 4049.94, + "probability": 0.4291 + }, + { + "start": 4049.94, + "end": 4051.58, + "probability": 0.6588 + }, + { + "start": 4052.24, + "end": 4053.82, + "probability": 0.9634 + }, + { + "start": 4054.14, + "end": 4058.44, + "probability": 0.8256 + }, + { + "start": 4058.48, + "end": 4059.24, + "probability": 0.703 + }, + { + "start": 4059.54, + "end": 4061.3, + "probability": 0.3427 + }, + { + "start": 4061.44, + "end": 4062.72, + "probability": 0.6517 + }, + { + "start": 4063.78, + "end": 4066.42, + "probability": 0.9672 + }, + { + "start": 4067.38, + "end": 4068.88, + "probability": 0.9233 + }, + { + "start": 4068.94, + "end": 4070.1, + "probability": 0.7578 + }, + { + "start": 4070.18, + "end": 4070.69, + "probability": 0.64 + }, + { + "start": 4071.22, + "end": 4071.48, + "probability": 0.0476 + }, + { + "start": 4071.72, + "end": 4072.84, + "probability": 0.845 + }, + { + "start": 4073.98, + "end": 4076.42, + "probability": 0.5133 + }, + { + "start": 4076.86, + "end": 4076.88, + "probability": 0.3356 + }, + { + "start": 4076.88, + "end": 4077.66, + "probability": 0.6962 + }, + { + "start": 4077.88, + "end": 4078.8, + "probability": 0.665 + }, + { + "start": 4078.98, + "end": 4081.14, + "probability": 0.7506 + }, + { + "start": 4081.32, + "end": 4081.76, + "probability": 0.4125 + }, + { + "start": 4082.34, + "end": 4084.6, + "probability": 0.9526 + }, + { + "start": 4084.72, + "end": 4086.34, + "probability": 0.9396 + }, + { + "start": 4087.64, + "end": 4087.82, + "probability": 0.7199 + }, + { + "start": 4090.76, + "end": 4091.94, + "probability": 0.604 + }, + { + "start": 4094.58, + "end": 4096.08, + "probability": 0.9946 + }, + { + "start": 4097.86, + "end": 4100.12, + "probability": 0.9969 + }, + { + "start": 4100.82, + "end": 4104.34, + "probability": 0.9886 + }, + { + "start": 4105.3, + "end": 4106.27, + "probability": 0.9985 + }, + { + "start": 4106.98, + "end": 4108.72, + "probability": 0.8142 + }, + { + "start": 4109.42, + "end": 4111.04, + "probability": 0.9534 + }, + { + "start": 4111.4, + "end": 4112.08, + "probability": 0.8127 + }, + { + "start": 4112.24, + "end": 4112.38, + "probability": 0.2503 + }, + { + "start": 4112.68, + "end": 4116.28, + "probability": 0.9819 + }, + { + "start": 4118.52, + "end": 4119.88, + "probability": 0.8955 + }, + { + "start": 4120.5, + "end": 4121.42, + "probability": 0.3178 + }, + { + "start": 4121.96, + "end": 4125.38, + "probability": 0.9379 + }, + { + "start": 4126.28, + "end": 4130.0, + "probability": 0.9243 + }, + { + "start": 4130.54, + "end": 4133.58, + "probability": 0.9943 + }, + { + "start": 4134.7, + "end": 4135.34, + "probability": 0.9404 + }, + { + "start": 4135.92, + "end": 4137.68, + "probability": 0.9944 + }, + { + "start": 4139.24, + "end": 4139.9, + "probability": 0.8888 + }, + { + "start": 4140.44, + "end": 4142.4, + "probability": 0.9339 + }, + { + "start": 4142.52, + "end": 4143.01, + "probability": 0.9058 + }, + { + "start": 4143.18, + "end": 4145.44, + "probability": 0.8506 + }, + { + "start": 4146.92, + "end": 4148.38, + "probability": 0.9448 + }, + { + "start": 4149.24, + "end": 4150.08, + "probability": 0.96 + }, + { + "start": 4151.52, + "end": 4153.08, + "probability": 0.975 + }, + { + "start": 4153.12, + "end": 4156.12, + "probability": 0.8846 + }, + { + "start": 4156.7, + "end": 4157.06, + "probability": 0.2303 + }, + { + "start": 4158.3, + "end": 4159.66, + "probability": 0.9395 + }, + { + "start": 4159.76, + "end": 4164.34, + "probability": 0.8884 + }, + { + "start": 4164.6, + "end": 4164.82, + "probability": 0.7572 + }, + { + "start": 4165.92, + "end": 4169.1, + "probability": 0.9709 + }, + { + "start": 4169.36, + "end": 4170.34, + "probability": 0.659 + }, + { + "start": 4170.58, + "end": 4173.02, + "probability": 0.6839 + }, + { + "start": 4173.78, + "end": 4176.46, + "probability": 0.9929 + }, + { + "start": 4176.46, + "end": 4179.74, + "probability": 0.9974 + }, + { + "start": 4180.64, + "end": 4183.54, + "probability": 0.9556 + }, + { + "start": 4200.44, + "end": 4202.94, + "probability": 0.6752 + }, + { + "start": 4204.14, + "end": 4208.56, + "probability": 0.9941 + }, + { + "start": 4209.6, + "end": 4210.38, + "probability": 0.7831 + }, + { + "start": 4211.08, + "end": 4212.46, + "probability": 0.9852 + }, + { + "start": 4214.22, + "end": 4216.86, + "probability": 0.8812 + }, + { + "start": 4217.98, + "end": 4220.46, + "probability": 0.9843 + }, + { + "start": 4221.16, + "end": 4224.68, + "probability": 0.9935 + }, + { + "start": 4226.04, + "end": 4226.7, + "probability": 0.7688 + }, + { + "start": 4226.84, + "end": 4227.58, + "probability": 0.6339 + }, + { + "start": 4227.68, + "end": 4230.18, + "probability": 0.9232 + }, + { + "start": 4231.06, + "end": 4235.54, + "probability": 0.9637 + }, + { + "start": 4236.06, + "end": 4238.7, + "probability": 0.9303 + }, + { + "start": 4240.36, + "end": 4245.4, + "probability": 0.9922 + }, + { + "start": 4245.4, + "end": 4250.72, + "probability": 0.9988 + }, + { + "start": 4251.78, + "end": 4257.2, + "probability": 0.9964 + }, + { + "start": 4258.58, + "end": 4259.58, + "probability": 0.8245 + }, + { + "start": 4260.18, + "end": 4261.62, + "probability": 0.9948 + }, + { + "start": 4262.62, + "end": 4267.4, + "probability": 0.9684 + }, + { + "start": 4268.34, + "end": 4272.64, + "probability": 0.9586 + }, + { + "start": 4273.4, + "end": 4276.4, + "probability": 0.9686 + }, + { + "start": 4277.44, + "end": 4280.24, + "probability": 0.968 + }, + { + "start": 4280.96, + "end": 4287.24, + "probability": 0.9954 + }, + { + "start": 4288.5, + "end": 4291.32, + "probability": 0.9923 + }, + { + "start": 4292.1, + "end": 4295.34, + "probability": 0.9801 + }, + { + "start": 4296.4, + "end": 4297.84, + "probability": 0.9297 + }, + { + "start": 4298.36, + "end": 4300.24, + "probability": 0.9689 + }, + { + "start": 4301.28, + "end": 4303.48, + "probability": 0.9945 + }, + { + "start": 4304.0, + "end": 4304.54, + "probability": 0.8226 + }, + { + "start": 4305.52, + "end": 4309.68, + "probability": 0.9794 + }, + { + "start": 4310.88, + "end": 4312.58, + "probability": 0.7805 + }, + { + "start": 4313.86, + "end": 4319.06, + "probability": 0.8162 + }, + { + "start": 4319.3, + "end": 4319.82, + "probability": 0.58 + }, + { + "start": 4319.98, + "end": 4320.38, + "probability": 0.6643 + }, + { + "start": 4320.94, + "end": 4323.16, + "probability": 0.9688 + }, + { + "start": 4323.62, + "end": 4325.62, + "probability": 0.9435 + }, + { + "start": 4326.38, + "end": 4329.06, + "probability": 0.8871 + }, + { + "start": 4329.64, + "end": 4331.6, + "probability": 0.9761 + }, + { + "start": 4332.8, + "end": 4336.16, + "probability": 0.9985 + }, + { + "start": 4336.9, + "end": 4339.98, + "probability": 0.9893 + }, + { + "start": 4340.44, + "end": 4341.48, + "probability": 0.9255 + }, + { + "start": 4341.8, + "end": 4341.9, + "probability": 0.8607 + }, + { + "start": 4342.88, + "end": 4345.76, + "probability": 0.9748 + }, + { + "start": 4346.84, + "end": 4347.84, + "probability": 0.7716 + }, + { + "start": 4348.56, + "end": 4351.62, + "probability": 0.9985 + }, + { + "start": 4351.62, + "end": 4356.0, + "probability": 0.9915 + }, + { + "start": 4357.52, + "end": 4360.28, + "probability": 0.7724 + }, + { + "start": 4360.64, + "end": 4367.58, + "probability": 0.9906 + }, + { + "start": 4368.5, + "end": 4370.26, + "probability": 0.9926 + }, + { + "start": 4370.84, + "end": 4375.47, + "probability": 0.9178 + }, + { + "start": 4376.34, + "end": 4380.18, + "probability": 0.9846 + }, + { + "start": 4381.9, + "end": 4385.62, + "probability": 0.8544 + }, + { + "start": 4385.92, + "end": 4390.02, + "probability": 0.9941 + }, + { + "start": 4391.64, + "end": 4393.18, + "probability": 0.7269 + }, + { + "start": 4393.78, + "end": 4396.68, + "probability": 0.9401 + }, + { + "start": 4397.54, + "end": 4398.1, + "probability": 0.8074 + }, + { + "start": 4399.46, + "end": 4400.4, + "probability": 0.6734 + }, + { + "start": 4401.18, + "end": 4403.1, + "probability": 0.9978 + }, + { + "start": 4403.76, + "end": 4409.56, + "probability": 0.9909 + }, + { + "start": 4410.1, + "end": 4410.66, + "probability": 0.3484 + }, + { + "start": 4411.28, + "end": 4412.84, + "probability": 0.9405 + }, + { + "start": 4413.56, + "end": 4414.7, + "probability": 0.9677 + }, + { + "start": 4415.2, + "end": 4419.02, + "probability": 0.9707 + }, + { + "start": 4420.56, + "end": 4420.68, + "probability": 0.5007 + }, + { + "start": 4420.78, + "end": 4424.88, + "probability": 0.9952 + }, + { + "start": 4425.16, + "end": 4430.2, + "probability": 0.9893 + }, + { + "start": 4432.54, + "end": 4434.11, + "probability": 0.9033 + }, + { + "start": 4434.66, + "end": 4438.16, + "probability": 0.9956 + }, + { + "start": 4438.82, + "end": 4443.34, + "probability": 0.9911 + }, + { + "start": 4443.34, + "end": 4447.9, + "probability": 0.9824 + }, + { + "start": 4449.14, + "end": 4450.12, + "probability": 0.5849 + }, + { + "start": 4450.72, + "end": 4455.04, + "probability": 0.9622 + }, + { + "start": 4455.62, + "end": 4462.26, + "probability": 0.9661 + }, + { + "start": 4463.12, + "end": 4466.38, + "probability": 0.925 + }, + { + "start": 4467.6, + "end": 4471.82, + "probability": 0.9005 + }, + { + "start": 4472.6, + "end": 4474.96, + "probability": 0.8276 + }, + { + "start": 4475.8, + "end": 4478.96, + "probability": 0.9856 + }, + { + "start": 4479.38, + "end": 4482.0, + "probability": 0.9812 + }, + { + "start": 4484.6, + "end": 4486.57, + "probability": 0.8848 + }, + { + "start": 4486.86, + "end": 4488.02, + "probability": 0.9096 + }, + { + "start": 4488.12, + "end": 4492.08, + "probability": 0.9136 + }, + { + "start": 4492.68, + "end": 4496.64, + "probability": 0.9922 + }, + { + "start": 4497.58, + "end": 4498.77, + "probability": 0.9686 + }, + { + "start": 4499.4, + "end": 4502.94, + "probability": 0.978 + }, + { + "start": 4503.78, + "end": 4505.96, + "probability": 0.9719 + }, + { + "start": 4506.62, + "end": 4508.84, + "probability": 0.8649 + }, + { + "start": 4509.9, + "end": 4513.82, + "probability": 0.9966 + }, + { + "start": 4514.5, + "end": 4518.64, + "probability": 0.9773 + }, + { + "start": 4519.22, + "end": 4522.12, + "probability": 0.9929 + }, + { + "start": 4522.86, + "end": 4527.58, + "probability": 0.9969 + }, + { + "start": 4528.26, + "end": 4529.84, + "probability": 0.9851 + }, + { + "start": 4531.44, + "end": 4532.98, + "probability": 0.9712 + }, + { + "start": 4533.44, + "end": 4537.64, + "probability": 0.9969 + }, + { + "start": 4537.64, + "end": 4541.58, + "probability": 0.9854 + }, + { + "start": 4543.5, + "end": 4545.66, + "probability": 0.7633 + }, + { + "start": 4546.38, + "end": 4550.72, + "probability": 0.9943 + }, + { + "start": 4551.92, + "end": 4556.52, + "probability": 0.9854 + }, + { + "start": 4557.5, + "end": 4561.0, + "probability": 0.9992 + }, + { + "start": 4562.92, + "end": 4564.61, + "probability": 0.9954 + }, + { + "start": 4565.4, + "end": 4569.14, + "probability": 0.8638 + }, + { + "start": 4569.64, + "end": 4572.66, + "probability": 0.9213 + }, + { + "start": 4574.08, + "end": 4575.5, + "probability": 0.5614 + }, + { + "start": 4576.24, + "end": 4577.3, + "probability": 0.8755 + }, + { + "start": 4577.54, + "end": 4578.58, + "probability": 0.7301 + }, + { + "start": 4578.82, + "end": 4583.24, + "probability": 0.9869 + }, + { + "start": 4583.82, + "end": 4587.02, + "probability": 0.9897 + }, + { + "start": 4587.52, + "end": 4589.78, + "probability": 0.9556 + }, + { + "start": 4590.18, + "end": 4593.76, + "probability": 0.996 + }, + { + "start": 4594.82, + "end": 4595.98, + "probability": 0.7567 + }, + { + "start": 4596.02, + "end": 4600.66, + "probability": 0.9857 + }, + { + "start": 4600.66, + "end": 4605.64, + "probability": 0.9957 + }, + { + "start": 4606.58, + "end": 4608.18, + "probability": 0.9846 + }, + { + "start": 4609.36, + "end": 4611.78, + "probability": 0.9901 + }, + { + "start": 4612.46, + "end": 4615.68, + "probability": 0.9499 + }, + { + "start": 4616.3, + "end": 4619.3, + "probability": 0.9558 + }, + { + "start": 4620.34, + "end": 4622.66, + "probability": 0.9841 + }, + { + "start": 4623.62, + "end": 4624.82, + "probability": 0.9166 + }, + { + "start": 4625.86, + "end": 4627.02, + "probability": 0.9193 + }, + { + "start": 4627.42, + "end": 4630.86, + "probability": 0.7266 + }, + { + "start": 4631.04, + "end": 4632.7, + "probability": 0.9902 + }, + { + "start": 4633.76, + "end": 4635.76, + "probability": 0.8465 + }, + { + "start": 4636.3, + "end": 4640.1, + "probability": 0.9927 + }, + { + "start": 4641.32, + "end": 4645.36, + "probability": 0.9891 + }, + { + "start": 4645.36, + "end": 4650.38, + "probability": 0.9262 + }, + { + "start": 4651.26, + "end": 4653.44, + "probability": 0.9726 + }, + { + "start": 4654.5, + "end": 4655.28, + "probability": 0.6582 + }, + { + "start": 4655.34, + "end": 4656.0, + "probability": 0.7851 + }, + { + "start": 4656.42, + "end": 4658.76, + "probability": 0.9897 + }, + { + "start": 4659.32, + "end": 4666.16, + "probability": 0.9902 + }, + { + "start": 4666.16, + "end": 4671.74, + "probability": 0.988 + }, + { + "start": 4672.5, + "end": 4672.92, + "probability": 0.4654 + }, + { + "start": 4673.1, + "end": 4677.36, + "probability": 0.9932 + }, + { + "start": 4677.36, + "end": 4680.62, + "probability": 0.999 + }, + { + "start": 4681.28, + "end": 4685.66, + "probability": 0.995 + }, + { + "start": 4686.0, + "end": 4688.68, + "probability": 0.9585 + }, + { + "start": 4689.76, + "end": 4690.6, + "probability": 0.5284 + }, + { + "start": 4691.48, + "end": 4694.72, + "probability": 0.9977 + }, + { + "start": 4695.14, + "end": 4699.54, + "probability": 0.9745 + }, + { + "start": 4699.86, + "end": 4704.9, + "probability": 0.9983 + }, + { + "start": 4704.9, + "end": 4708.7, + "probability": 0.9962 + }, + { + "start": 4709.62, + "end": 4711.56, + "probability": 0.5869 + }, + { + "start": 4712.2, + "end": 4714.12, + "probability": 0.9927 + }, + { + "start": 4714.74, + "end": 4717.3, + "probability": 0.7472 + }, + { + "start": 4717.66, + "end": 4721.78, + "probability": 0.9838 + }, + { + "start": 4722.48, + "end": 4724.42, + "probability": 0.9517 + }, + { + "start": 4725.42, + "end": 4726.36, + "probability": 0.9246 + }, + { + "start": 4727.04, + "end": 4728.36, + "probability": 0.9548 + }, + { + "start": 4728.92, + "end": 4730.82, + "probability": 0.7344 + }, + { + "start": 4731.74, + "end": 4735.82, + "probability": 0.994 + }, + { + "start": 4735.82, + "end": 4741.96, + "probability": 0.9664 + }, + { + "start": 4742.52, + "end": 4745.54, + "probability": 0.9879 + }, + { + "start": 4746.82, + "end": 4750.9, + "probability": 0.9274 + }, + { + "start": 4751.52, + "end": 4757.18, + "probability": 0.8672 + }, + { + "start": 4757.56, + "end": 4759.6, + "probability": 0.9837 + }, + { + "start": 4760.28, + "end": 4761.86, + "probability": 0.9827 + }, + { + "start": 4762.54, + "end": 4762.94, + "probability": 0.7169 + }, + { + "start": 4763.68, + "end": 4767.12, + "probability": 0.9693 + }, + { + "start": 4767.12, + "end": 4770.46, + "probability": 0.955 + }, + { + "start": 4770.94, + "end": 4771.84, + "probability": 0.8115 + }, + { + "start": 4771.86, + "end": 4772.36, + "probability": 0.6311 + }, + { + "start": 4772.76, + "end": 4773.5, + "probability": 0.5981 + }, + { + "start": 4776.22, + "end": 4781.86, + "probability": 0.9816 + }, + { + "start": 4782.58, + "end": 4786.76, + "probability": 0.9567 + }, + { + "start": 4787.8, + "end": 4788.12, + "probability": 0.8167 + }, + { + "start": 4788.82, + "end": 4791.56, + "probability": 0.9839 + }, + { + "start": 4792.6, + "end": 4794.9, + "probability": 0.7946 + }, + { + "start": 4795.5, + "end": 4796.92, + "probability": 0.8974 + }, + { + "start": 4797.1, + "end": 4800.82, + "probability": 0.9615 + }, + { + "start": 4802.1, + "end": 4802.66, + "probability": 0.788 + }, + { + "start": 4802.72, + "end": 4808.02, + "probability": 0.958 + }, + { + "start": 4808.72, + "end": 4812.34, + "probability": 0.9871 + }, + { + "start": 4812.34, + "end": 4816.1, + "probability": 0.9871 + }, + { + "start": 4817.1, + "end": 4817.42, + "probability": 0.5295 + }, + { + "start": 4817.9, + "end": 4819.08, + "probability": 0.7694 + }, + { + "start": 4819.42, + "end": 4821.92, + "probability": 0.9731 + }, + { + "start": 4822.46, + "end": 4824.86, + "probability": 0.9832 + }, + { + "start": 4825.38, + "end": 4828.7, + "probability": 0.9572 + }, + { + "start": 4829.24, + "end": 4831.9, + "probability": 0.6643 + }, + { + "start": 4832.46, + "end": 4834.04, + "probability": 0.8599 + }, + { + "start": 4834.6, + "end": 4837.1, + "probability": 0.962 + }, + { + "start": 4837.56, + "end": 4839.14, + "probability": 0.9564 + }, + { + "start": 4839.68, + "end": 4843.36, + "probability": 0.9499 + }, + { + "start": 4843.82, + "end": 4849.74, + "probability": 0.9868 + }, + { + "start": 4850.62, + "end": 4852.12, + "probability": 0.7225 + }, + { + "start": 4852.68, + "end": 4854.88, + "probability": 0.9749 + }, + { + "start": 4856.44, + "end": 4860.16, + "probability": 0.9013 + }, + { + "start": 4860.76, + "end": 4864.32, + "probability": 0.7717 + }, + { + "start": 4865.64, + "end": 4867.66, + "probability": 0.805 + }, + { + "start": 4868.56, + "end": 4871.62, + "probability": 0.9938 + }, + { + "start": 4872.72, + "end": 4876.82, + "probability": 0.998 + }, + { + "start": 4877.34, + "end": 4881.2, + "probability": 0.9883 + }, + { + "start": 4881.52, + "end": 4884.38, + "probability": 0.9833 + }, + { + "start": 4884.8, + "end": 4889.12, + "probability": 0.992 + }, + { + "start": 4889.52, + "end": 4893.92, + "probability": 0.9595 + }, + { + "start": 4894.44, + "end": 4896.82, + "probability": 0.9802 + }, + { + "start": 4897.22, + "end": 4898.44, + "probability": 0.9128 + }, + { + "start": 4898.82, + "end": 4901.18, + "probability": 0.8686 + }, + { + "start": 4901.86, + "end": 4902.08, + "probability": 0.6376 + }, + { + "start": 4902.48, + "end": 4904.8, + "probability": 0.9692 + }, + { + "start": 4905.0, + "end": 4905.56, + "probability": 0.6769 + }, + { + "start": 4906.1, + "end": 4909.16, + "probability": 0.9722 + }, + { + "start": 4933.82, + "end": 4935.04, + "probability": 0.6225 + }, + { + "start": 4936.32, + "end": 4937.84, + "probability": 0.9113 + }, + { + "start": 4939.74, + "end": 4943.62, + "probability": 0.9964 + }, + { + "start": 4943.62, + "end": 4948.52, + "probability": 0.9888 + }, + { + "start": 4949.54, + "end": 4950.56, + "probability": 0.9768 + }, + { + "start": 4951.3, + "end": 4956.3, + "probability": 0.9866 + }, + { + "start": 4958.1, + "end": 4958.68, + "probability": 0.9451 + }, + { + "start": 4961.42, + "end": 4962.48, + "probability": 0.4396 + }, + { + "start": 4963.08, + "end": 4965.48, + "probability": 0.8505 + }, + { + "start": 4966.48, + "end": 4968.78, + "probability": 0.7249 + }, + { + "start": 4969.84, + "end": 4971.4, + "probability": 0.8748 + }, + { + "start": 4973.52, + "end": 4979.54, + "probability": 0.3318 + }, + { + "start": 4981.68, + "end": 4985.89, + "probability": 0.932 + }, + { + "start": 4987.4, + "end": 4995.56, + "probability": 0.9883 + }, + { + "start": 4998.06, + "end": 5002.76, + "probability": 0.9945 + }, + { + "start": 5003.68, + "end": 5004.02, + "probability": 0.3216 + }, + { + "start": 5005.0, + "end": 5009.3, + "probability": 0.9976 + }, + { + "start": 5009.3, + "end": 5013.14, + "probability": 0.9904 + }, + { + "start": 5015.08, + "end": 5015.46, + "probability": 0.5041 + }, + { + "start": 5015.7, + "end": 5021.58, + "probability": 0.9893 + }, + { + "start": 5022.4, + "end": 5025.48, + "probability": 0.9732 + }, + { + "start": 5026.24, + "end": 5029.58, + "probability": 0.8721 + }, + { + "start": 5030.7, + "end": 5033.56, + "probability": 0.7212 + }, + { + "start": 5034.12, + "end": 5036.52, + "probability": 0.3474 + }, + { + "start": 5036.52, + "end": 5036.59, + "probability": 0.1162 + }, + { + "start": 5037.3, + "end": 5038.88, + "probability": 0.2251 + }, + { + "start": 5038.9, + "end": 5039.26, + "probability": 0.1232 + }, + { + "start": 5039.26, + "end": 5040.62, + "probability": 0.7566 + }, + { + "start": 5040.7, + "end": 5042.54, + "probability": 0.3914 + }, + { + "start": 5043.64, + "end": 5044.1, + "probability": 0.3967 + }, + { + "start": 5044.14, + "end": 5047.18, + "probability": 0.8476 + }, + { + "start": 5048.64, + "end": 5050.72, + "probability": 0.537 + }, + { + "start": 5051.58, + "end": 5053.8, + "probability": 0.6997 + }, + { + "start": 5054.38, + "end": 5056.22, + "probability": 0.9504 + }, + { + "start": 5056.42, + "end": 5056.84, + "probability": 0.5348 + }, + { + "start": 5056.84, + "end": 5058.44, + "probability": 0.9464 + }, + { + "start": 5060.14, + "end": 5063.4, + "probability": 0.9771 + }, + { + "start": 5063.56, + "end": 5067.22, + "probability": 0.9989 + }, + { + "start": 5067.22, + "end": 5071.12, + "probability": 0.981 + }, + { + "start": 5072.2, + "end": 5073.04, + "probability": 0.671 + }, + { + "start": 5074.06, + "end": 5080.58, + "probability": 0.9978 + }, + { + "start": 5081.8, + "end": 5083.22, + "probability": 0.9718 + }, + { + "start": 5083.44, + "end": 5086.44, + "probability": 0.9882 + }, + { + "start": 5086.44, + "end": 5090.68, + "probability": 0.9975 + }, + { + "start": 5091.7, + "end": 5093.46, + "probability": 0.9832 + }, + { + "start": 5094.16, + "end": 5096.7, + "probability": 0.8904 + }, + { + "start": 5097.52, + "end": 5099.66, + "probability": 0.9636 + }, + { + "start": 5100.78, + "end": 5102.29, + "probability": 0.9446 + }, + { + "start": 5102.64, + "end": 5104.24, + "probability": 0.958 + }, + { + "start": 5104.32, + "end": 5105.34, + "probability": 0.9561 + }, + { + "start": 5106.22, + "end": 5111.14, + "probability": 0.9721 + }, + { + "start": 5111.44, + "end": 5116.24, + "probability": 0.9865 + }, + { + "start": 5117.6, + "end": 5124.7, + "probability": 0.9907 + }, + { + "start": 5125.16, + "end": 5131.76, + "probability": 0.8962 + }, + { + "start": 5132.58, + "end": 5141.08, + "probability": 0.9886 + }, + { + "start": 5142.54, + "end": 5147.86, + "probability": 0.9938 + }, + { + "start": 5148.73, + "end": 5150.08, + "probability": 0.0163 + }, + { + "start": 5150.08, + "end": 5151.62, + "probability": 0.4933 + }, + { + "start": 5151.62, + "end": 5158.6, + "probability": 0.7892 + }, + { + "start": 5159.36, + "end": 5160.96, + "probability": 0.7757 + }, + { + "start": 5161.18, + "end": 5166.92, + "probability": 0.9912 + }, + { + "start": 5167.58, + "end": 5171.74, + "probability": 0.9872 + }, + { + "start": 5172.72, + "end": 5178.02, + "probability": 0.7692 + }, + { + "start": 5179.04, + "end": 5182.46, + "probability": 0.9993 + }, + { + "start": 5183.32, + "end": 5185.9, + "probability": 0.9982 + }, + { + "start": 5186.52, + "end": 5192.86, + "probability": 0.995 + }, + { + "start": 5193.9, + "end": 5197.22, + "probability": 0.9482 + }, + { + "start": 5197.98, + "end": 5202.82, + "probability": 0.9939 + }, + { + "start": 5203.98, + "end": 5207.71, + "probability": 0.9837 + }, + { + "start": 5208.14, + "end": 5213.4, + "probability": 0.9927 + }, + { + "start": 5213.9, + "end": 5219.28, + "probability": 0.6724 + }, + { + "start": 5219.7, + "end": 5221.16, + "probability": 0.9313 + }, + { + "start": 5221.92, + "end": 5223.7, + "probability": 0.8997 + }, + { + "start": 5224.08, + "end": 5226.18, + "probability": 0.8969 + }, + { + "start": 5226.24, + "end": 5226.96, + "probability": 0.5492 + }, + { + "start": 5226.96, + "end": 5230.78, + "probability": 0.9176 + }, + { + "start": 5231.3, + "end": 5235.7, + "probability": 0.9968 + }, + { + "start": 5236.08, + "end": 5238.64, + "probability": 0.9946 + }, + { + "start": 5239.08, + "end": 5244.64, + "probability": 0.9868 + }, + { + "start": 5245.52, + "end": 5246.42, + "probability": 0.949 + }, + { + "start": 5247.4, + "end": 5250.76, + "probability": 0.8401 + }, + { + "start": 5251.48, + "end": 5252.52, + "probability": 0.6587 + }, + { + "start": 5253.34, + "end": 5257.14, + "probability": 0.9805 + }, + { + "start": 5257.52, + "end": 5260.24, + "probability": 0.9902 + }, + { + "start": 5262.5, + "end": 5264.3, + "probability": 0.7149 + }, + { + "start": 5264.58, + "end": 5265.02, + "probability": 0.4358 + }, + { + "start": 5265.14, + "end": 5268.84, + "probability": 0.9127 + }, + { + "start": 5269.64, + "end": 5271.26, + "probability": 0.6929 + }, + { + "start": 5271.44, + "end": 5273.0, + "probability": 0.9939 + }, + { + "start": 5273.14, + "end": 5273.58, + "probability": 0.9383 + }, + { + "start": 5274.66, + "end": 5279.8, + "probability": 0.929 + }, + { + "start": 5280.82, + "end": 5285.5, + "probability": 0.9648 + }, + { + "start": 5286.96, + "end": 5290.38, + "probability": 0.9928 + }, + { + "start": 5290.8, + "end": 5293.32, + "probability": 0.9648 + }, + { + "start": 5294.04, + "end": 5297.64, + "probability": 0.7244 + }, + { + "start": 5300.44, + "end": 5306.86, + "probability": 0.9103 + }, + { + "start": 5307.4, + "end": 5310.16, + "probability": 0.9691 + }, + { + "start": 5310.16, + "end": 5313.94, + "probability": 0.9099 + }, + { + "start": 5314.8, + "end": 5315.6, + "probability": 0.8439 + }, + { + "start": 5316.16, + "end": 5319.5, + "probability": 0.7823 + }, + { + "start": 5320.14, + "end": 5325.82, + "probability": 0.9971 + }, + { + "start": 5325.82, + "end": 5325.82, + "probability": 0.6072 + }, + { + "start": 5325.82, + "end": 5327.32, + "probability": 0.9512 + }, + { + "start": 5327.46, + "end": 5328.62, + "probability": 0.5836 + }, + { + "start": 5328.78, + "end": 5329.22, + "probability": 0.8136 + }, + { + "start": 5330.3, + "end": 5331.72, + "probability": 0.8384 + }, + { + "start": 5331.9, + "end": 5333.52, + "probability": 0.3022 + }, + { + "start": 5333.64, + "end": 5334.42, + "probability": 0.6264 + }, + { + "start": 5334.86, + "end": 5335.8, + "probability": 0.9741 + }, + { + "start": 5336.04, + "end": 5336.84, + "probability": 0.8168 + }, + { + "start": 5337.16, + "end": 5337.26, + "probability": 0.174 + }, + { + "start": 5337.26, + "end": 5337.26, + "probability": 0.2627 + }, + { + "start": 5337.26, + "end": 5339.13, + "probability": 0.903 + }, + { + "start": 5339.82, + "end": 5341.2, + "probability": 0.9551 + }, + { + "start": 5341.4, + "end": 5341.66, + "probability": 0.8406 + }, + { + "start": 5341.72, + "end": 5345.48, + "probability": 0.9224 + }, + { + "start": 5345.94, + "end": 5347.4, + "probability": 0.9847 + }, + { + "start": 5347.76, + "end": 5348.38, + "probability": 0.6735 + }, + { + "start": 5348.42, + "end": 5349.14, + "probability": 0.665 + }, + { + "start": 5349.18, + "end": 5349.7, + "probability": 0.8805 + }, + { + "start": 5350.44, + "end": 5351.86, + "probability": 0.8779 + }, + { + "start": 5352.16, + "end": 5354.8, + "probability": 0.9963 + }, + { + "start": 5354.92, + "end": 5356.48, + "probability": 0.9828 + }, + { + "start": 5356.88, + "end": 5358.32, + "probability": 0.9856 + }, + { + "start": 5358.4, + "end": 5359.18, + "probability": 0.4686 + }, + { + "start": 5359.82, + "end": 5360.72, + "probability": 0.8649 + }, + { + "start": 5360.82, + "end": 5362.24, + "probability": 0.8784 + }, + { + "start": 5362.64, + "end": 5363.52, + "probability": 0.7195 + }, + { + "start": 5363.72, + "end": 5364.34, + "probability": 0.6052 + }, + { + "start": 5364.46, + "end": 5365.88, + "probability": 0.7776 + }, + { + "start": 5365.96, + "end": 5370.76, + "probability": 0.891 + }, + { + "start": 5371.06, + "end": 5371.8, + "probability": 0.8526 + }, + { + "start": 5372.66, + "end": 5372.8, + "probability": 0.7988 + }, + { + "start": 5373.06, + "end": 5374.1, + "probability": 0.6644 + }, + { + "start": 5374.22, + "end": 5375.86, + "probability": 0.8123 + }, + { + "start": 5375.94, + "end": 5378.7, + "probability": 0.7676 + }, + { + "start": 5379.21, + "end": 5380.66, + "probability": 0.6226 + }, + { + "start": 5380.78, + "end": 5383.8, + "probability": 0.8191 + }, + { + "start": 5384.72, + "end": 5389.52, + "probability": 0.8898 + }, + { + "start": 5390.4, + "end": 5393.1, + "probability": 0.7567 + }, + { + "start": 5393.64, + "end": 5395.16, + "probability": 0.2371 + }, + { + "start": 5395.22, + "end": 5397.71, + "probability": 0.3009 + }, + { + "start": 5397.76, + "end": 5400.6, + "probability": 0.9055 + }, + { + "start": 5400.62, + "end": 5401.02, + "probability": 0.2418 + }, + { + "start": 5401.06, + "end": 5402.51, + "probability": 0.8635 + }, + { + "start": 5403.22, + "end": 5405.78, + "probability": 0.9114 + }, + { + "start": 5406.08, + "end": 5407.42, + "probability": 0.9917 + }, + { + "start": 5407.54, + "end": 5408.68, + "probability": 0.9413 + }, + { + "start": 5409.18, + "end": 5413.0, + "probability": 0.9893 + }, + { + "start": 5413.28, + "end": 5416.58, + "probability": 0.6114 + }, + { + "start": 5417.12, + "end": 5417.12, + "probability": 0.8208 + }, + { + "start": 5417.74, + "end": 5420.82, + "probability": 0.9961 + }, + { + "start": 5421.36, + "end": 5423.46, + "probability": 0.9938 + }, + { + "start": 5423.98, + "end": 5429.18, + "probability": 0.9976 + }, + { + "start": 5429.88, + "end": 5432.49, + "probability": 0.8491 + }, + { + "start": 5434.16, + "end": 5435.67, + "probability": 0.5485 + }, + { + "start": 5436.32, + "end": 5437.34, + "probability": 0.3989 + }, + { + "start": 5437.38, + "end": 5438.0, + "probability": 0.4572 + }, + { + "start": 5438.76, + "end": 5443.48, + "probability": 0.9987 + }, + { + "start": 5444.19, + "end": 5445.38, + "probability": 0.7207 + }, + { + "start": 5445.7, + "end": 5446.44, + "probability": 0.1768 + }, + { + "start": 5446.54, + "end": 5448.74, + "probability": 0.8232 + }, + { + "start": 5448.86, + "end": 5449.28, + "probability": 0.6886 + }, + { + "start": 5449.46, + "end": 5450.54, + "probability": 0.8876 + }, + { + "start": 5450.54, + "end": 5451.38, + "probability": 0.4722 + }, + { + "start": 5451.54, + "end": 5453.54, + "probability": 0.6159 + }, + { + "start": 5453.8, + "end": 5456.04, + "probability": 0.5975 + }, + { + "start": 5456.04, + "end": 5457.84, + "probability": 0.3049 + }, + { + "start": 5458.02, + "end": 5458.56, + "probability": 0.5321 + }, + { + "start": 5458.56, + "end": 5459.66, + "probability": 0.4956 + }, + { + "start": 5459.68, + "end": 5460.59, + "probability": 0.6325 + }, + { + "start": 5461.52, + "end": 5464.66, + "probability": 0.6823 + }, + { + "start": 5465.02, + "end": 5465.54, + "probability": 0.3078 + }, + { + "start": 5465.66, + "end": 5466.52, + "probability": 0.6716 + }, + { + "start": 5466.52, + "end": 5468.34, + "probability": 0.8447 + }, + { + "start": 5470.92, + "end": 5471.78, + "probability": 0.2401 + }, + { + "start": 5471.78, + "end": 5473.82, + "probability": 0.9886 + }, + { + "start": 5474.72, + "end": 5475.12, + "probability": 0.6086 + }, + { + "start": 5475.36, + "end": 5477.14, + "probability": 0.639 + }, + { + "start": 5478.3, + "end": 5481.1, + "probability": 0.9771 + }, + { + "start": 5481.1, + "end": 5486.38, + "probability": 0.9561 + }, + { + "start": 5486.66, + "end": 5489.7, + "probability": 0.8818 + }, + { + "start": 5490.16, + "end": 5491.24, + "probability": 0.8292 + }, + { + "start": 5491.52, + "end": 5495.96, + "probability": 0.9325 + }, + { + "start": 5496.1, + "end": 5499.94, + "probability": 0.9554 + }, + { + "start": 5500.68, + "end": 5503.46, + "probability": 0.8843 + }, + { + "start": 5503.8, + "end": 5504.9, + "probability": 0.522 + }, + { + "start": 5505.4, + "end": 5509.11, + "probability": 0.9434 + }, + { + "start": 5509.88, + "end": 5510.9, + "probability": 0.6905 + }, + { + "start": 5511.36, + "end": 5513.9, + "probability": 0.9543 + }, + { + "start": 5514.66, + "end": 5516.94, + "probability": 0.9805 + }, + { + "start": 5517.44, + "end": 5520.1, + "probability": 0.9559 + }, + { + "start": 5520.22, + "end": 5520.9, + "probability": 0.8137 + }, + { + "start": 5520.96, + "end": 5522.56, + "probability": 0.9979 + }, + { + "start": 5522.98, + "end": 5525.04, + "probability": 0.862 + }, + { + "start": 5525.18, + "end": 5526.08, + "probability": 0.5787 + }, + { + "start": 5526.18, + "end": 5528.26, + "probability": 0.9489 + }, + { + "start": 5528.62, + "end": 5529.8, + "probability": 0.9792 + }, + { + "start": 5529.88, + "end": 5531.0, + "probability": 0.8452 + }, + { + "start": 5531.1, + "end": 5532.08, + "probability": 0.9251 + }, + { + "start": 5532.94, + "end": 5538.3, + "probability": 0.9512 + }, + { + "start": 5538.94, + "end": 5542.77, + "probability": 0.918 + }, + { + "start": 5543.28, + "end": 5546.78, + "probability": 0.7437 + }, + { + "start": 5547.44, + "end": 5553.82, + "probability": 0.9628 + }, + { + "start": 5554.64, + "end": 5560.78, + "probability": 0.9478 + }, + { + "start": 5560.78, + "end": 5567.78, + "probability": 0.9986 + }, + { + "start": 5567.92, + "end": 5568.36, + "probability": 0.7533 + }, + { + "start": 5569.3, + "end": 5573.26, + "probability": 0.9458 + }, + { + "start": 5573.34, + "end": 5575.82, + "probability": 0.8989 + }, + { + "start": 5577.0, + "end": 5580.48, + "probability": 0.7248 + }, + { + "start": 5581.18, + "end": 5583.08, + "probability": 0.8631 + }, + { + "start": 5584.28, + "end": 5585.36, + "probability": 0.9744 + }, + { + "start": 5585.74, + "end": 5586.26, + "probability": 0.8723 + }, + { + "start": 5586.9, + "end": 5587.84, + "probability": 0.8541 + }, + { + "start": 5587.94, + "end": 5588.42, + "probability": 0.7067 + }, + { + "start": 5588.68, + "end": 5589.7, + "probability": 0.538 + }, + { + "start": 5591.36, + "end": 5594.04, + "probability": 0.7706 + }, + { + "start": 5594.72, + "end": 5597.7, + "probability": 0.9649 + }, + { + "start": 5597.76, + "end": 5598.3, + "probability": 0.6579 + }, + { + "start": 5598.4, + "end": 5599.16, + "probability": 0.7031 + }, + { + "start": 5599.58, + "end": 5601.44, + "probability": 0.5789 + }, + { + "start": 5602.32, + "end": 5607.9, + "probability": 0.9574 + }, + { + "start": 5609.4, + "end": 5611.62, + "probability": 0.7819 + }, + { + "start": 5614.82, + "end": 5616.76, + "probability": 0.7917 + }, + { + "start": 5617.88, + "end": 5618.4, + "probability": 0.8025 + }, + { + "start": 5619.62, + "end": 5627.02, + "probability": 0.9402 + }, + { + "start": 5627.76, + "end": 5631.62, + "probability": 0.9298 + }, + { + "start": 5631.62, + "end": 5635.72, + "probability": 0.8606 + }, + { + "start": 5636.72, + "end": 5640.26, + "probability": 0.8464 + }, + { + "start": 5641.08, + "end": 5643.88, + "probability": 0.9985 + }, + { + "start": 5645.06, + "end": 5648.13, + "probability": 0.993 + }, + { + "start": 5649.08, + "end": 5653.64, + "probability": 0.992 + }, + { + "start": 5653.7, + "end": 5658.28, + "probability": 0.9562 + }, + { + "start": 5659.02, + "end": 5662.14, + "probability": 0.9825 + }, + { + "start": 5663.9, + "end": 5665.72, + "probability": 0.974 + }, + { + "start": 5667.2, + "end": 5667.96, + "probability": 0.903 + }, + { + "start": 5668.52, + "end": 5673.1, + "probability": 0.9821 + }, + { + "start": 5673.3, + "end": 5675.08, + "probability": 0.9902 + }, + { + "start": 5675.96, + "end": 5678.42, + "probability": 0.9945 + }, + { + "start": 5679.16, + "end": 5681.8, + "probability": 0.9962 + }, + { + "start": 5681.96, + "end": 5684.09, + "probability": 0.9795 + }, + { + "start": 5685.7, + "end": 5688.5, + "probability": 0.9885 + }, + { + "start": 5689.78, + "end": 5690.32, + "probability": 0.374 + }, + { + "start": 5690.4, + "end": 5691.78, + "probability": 0.7714 + }, + { + "start": 5692.4, + "end": 5694.96, + "probability": 0.8442 + }, + { + "start": 5695.9, + "end": 5696.0, + "probability": 0.1253 + }, + { + "start": 5696.0, + "end": 5698.44, + "probability": 0.9586 + }, + { + "start": 5699.18, + "end": 5701.46, + "probability": 0.807 + }, + { + "start": 5702.16, + "end": 5702.52, + "probability": 0.1686 + }, + { + "start": 5703.6, + "end": 5706.86, + "probability": 0.7825 + }, + { + "start": 5707.4, + "end": 5713.4, + "probability": 0.9525 + }, + { + "start": 5716.06, + "end": 5719.28, + "probability": 0.9781 + }, + { + "start": 5720.78, + "end": 5728.68, + "probability": 0.9924 + }, + { + "start": 5730.04, + "end": 5733.9, + "probability": 0.8988 + }, + { + "start": 5734.08, + "end": 5737.34, + "probability": 0.9502 + }, + { + "start": 5740.39, + "end": 5745.76, + "probability": 0.9785 + }, + { + "start": 5746.72, + "end": 5749.44, + "probability": 0.9769 + }, + { + "start": 5750.74, + "end": 5755.36, + "probability": 0.9808 + }, + { + "start": 5756.06, + "end": 5757.2, + "probability": 0.7823 + }, + { + "start": 5757.34, + "end": 5763.8, + "probability": 0.9941 + }, + { + "start": 5764.4, + "end": 5769.12, + "probability": 0.9889 + }, + { + "start": 5769.5, + "end": 5770.52, + "probability": 0.9171 + }, + { + "start": 5770.68, + "end": 5771.66, + "probability": 0.978 + }, + { + "start": 5771.76, + "end": 5773.34, + "probability": 0.9136 + }, + { + "start": 5773.8, + "end": 5779.74, + "probability": 0.9978 + }, + { + "start": 5780.54, + "end": 5786.18, + "probability": 0.9883 + }, + { + "start": 5786.62, + "end": 5790.8, + "probability": 0.9574 + }, + { + "start": 5791.64, + "end": 5792.54, + "probability": 0.978 + }, + { + "start": 5795.08, + "end": 5798.54, + "probability": 0.605 + }, + { + "start": 5799.24, + "end": 5801.22, + "probability": 0.448 + }, + { + "start": 5802.04, + "end": 5805.26, + "probability": 0.8603 + }, + { + "start": 5805.4, + "end": 5806.7, + "probability": 0.9415 + }, + { + "start": 5806.78, + "end": 5807.54, + "probability": 0.7885 + }, + { + "start": 5807.76, + "end": 5809.12, + "probability": 0.9954 + }, + { + "start": 5809.48, + "end": 5815.22, + "probability": 0.9867 + }, + { + "start": 5815.8, + "end": 5816.98, + "probability": 0.7447 + }, + { + "start": 5817.54, + "end": 5821.62, + "probability": 0.9955 + }, + { + "start": 5821.62, + "end": 5824.72, + "probability": 0.9119 + }, + { + "start": 5825.52, + "end": 5826.22, + "probability": 0.8391 + }, + { + "start": 5826.82, + "end": 5828.88, + "probability": 0.9473 + }, + { + "start": 5829.38, + "end": 5832.22, + "probability": 0.9692 + }, + { + "start": 5832.36, + "end": 5833.2, + "probability": 0.452 + }, + { + "start": 5833.56, + "end": 5834.87, + "probability": 0.6442 + }, + { + "start": 5835.44, + "end": 5839.7, + "probability": 0.9858 + }, + { + "start": 5840.18, + "end": 5845.92, + "probability": 0.9826 + }, + { + "start": 5846.2, + "end": 5850.8, + "probability": 0.998 + }, + { + "start": 5851.22, + "end": 5855.24, + "probability": 0.9995 + }, + { + "start": 5855.24, + "end": 5860.58, + "probability": 0.8395 + }, + { + "start": 5861.3, + "end": 5867.2, + "probability": 0.9841 + }, + { + "start": 5867.26, + "end": 5868.48, + "probability": 0.9162 + }, + { + "start": 5868.76, + "end": 5871.06, + "probability": 0.9131 + }, + { + "start": 5871.2, + "end": 5874.1, + "probability": 0.9975 + }, + { + "start": 5874.4, + "end": 5875.73, + "probability": 0.9937 + }, + { + "start": 5876.22, + "end": 5877.39, + "probability": 0.8338 + }, + { + "start": 5877.56, + "end": 5878.78, + "probability": 0.6363 + }, + { + "start": 5879.88, + "end": 5885.64, + "probability": 0.0795 + }, + { + "start": 5888.24, + "end": 5890.34, + "probability": 0.069 + }, + { + "start": 5890.38, + "end": 5891.16, + "probability": 0.1933 + }, + { + "start": 5896.9, + "end": 5898.52, + "probability": 0.4733 + }, + { + "start": 5900.54, + "end": 5904.2, + "probability": 0.1788 + }, + { + "start": 5904.2, + "end": 5904.5, + "probability": 0.0296 + }, + { + "start": 5915.96, + "end": 5916.06, + "probability": 0.0184 + }, + { + "start": 5927.38, + "end": 5929.4, + "probability": 0.0442 + }, + { + "start": 5932.26, + "end": 5933.18, + "probability": 0.0526 + }, + { + "start": 5933.18, + "end": 5933.22, + "probability": 0.0278 + }, + { + "start": 5933.22, + "end": 5938.5, + "probability": 0.1747 + }, + { + "start": 5939.0, + "end": 5939.86, + "probability": 0.126 + }, + { + "start": 5939.96, + "end": 5941.56, + "probability": 0.0809 + }, + { + "start": 5949.36, + "end": 5950.44, + "probability": 0.0936 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.0, + "end": 5983.0, + "probability": 0.0 + }, + { + "start": 5983.24, + "end": 5986.56, + "probability": 0.5822 + }, + { + "start": 5986.68, + "end": 5990.78, + "probability": 0.8019 + }, + { + "start": 5991.08, + "end": 5993.04, + "probability": 0.7886 + }, + { + "start": 5993.1, + "end": 5994.06, + "probability": 0.884 + }, + { + "start": 5994.1, + "end": 5995.32, + "probability": 0.4955 + }, + { + "start": 5995.36, + "end": 5996.36, + "probability": 0.8085 + }, + { + "start": 5996.46, + "end": 5999.88, + "probability": 0.8515 + }, + { + "start": 5999.88, + "end": 6001.74, + "probability": 0.592 + }, + { + "start": 6002.16, + "end": 6003.36, + "probability": 0.6462 + }, + { + "start": 6003.46, + "end": 6003.88, + "probability": 0.5047 + }, + { + "start": 6003.92, + "end": 6004.22, + "probability": 0.8389 + }, + { + "start": 6005.68, + "end": 6006.8, + "probability": 0.9169 + }, + { + "start": 6006.86, + "end": 6007.78, + "probability": 0.9427 + }, + { + "start": 6007.84, + "end": 6008.32, + "probability": 0.753 + }, + { + "start": 6008.48, + "end": 6008.96, + "probability": 0.7879 + }, + { + "start": 6009.1, + "end": 6012.18, + "probability": 0.8091 + }, + { + "start": 6012.26, + "end": 6013.58, + "probability": 0.9614 + }, + { + "start": 6013.72, + "end": 6015.54, + "probability": 0.9667 + }, + { + "start": 6016.16, + "end": 6018.78, + "probability": 0.9826 + }, + { + "start": 6020.18, + "end": 6022.18, + "probability": 0.8632 + }, + { + "start": 6022.42, + "end": 6027.44, + "probability": 0.9936 + }, + { + "start": 6028.0, + "end": 6029.22, + "probability": 0.8768 + }, + { + "start": 6030.32, + "end": 6030.88, + "probability": 0.7663 + }, + { + "start": 6031.44, + "end": 6031.96, + "probability": 0.8062 + }, + { + "start": 6032.64, + "end": 6036.0, + "probability": 0.8398 + }, + { + "start": 6036.04, + "end": 6036.52, + "probability": 0.867 + }, + { + "start": 6036.6, + "end": 6037.28, + "probability": 0.8242 + }, + { + "start": 6038.38, + "end": 6040.72, + "probability": 0.9167 + }, + { + "start": 6041.24, + "end": 6042.06, + "probability": 0.9758 + }, + { + "start": 6042.16, + "end": 6042.76, + "probability": 0.4571 + }, + { + "start": 6042.82, + "end": 6043.86, + "probability": 0.9714 + }, + { + "start": 6044.04, + "end": 6045.4, + "probability": 0.9628 + }, + { + "start": 6046.1, + "end": 6049.22, + "probability": 0.6764 + }, + { + "start": 6049.7, + "end": 6051.9, + "probability": 0.9447 + }, + { + "start": 6052.62, + "end": 6054.4, + "probability": 0.96 + }, + { + "start": 6054.52, + "end": 6055.56, + "probability": 0.9238 + }, + { + "start": 6055.68, + "end": 6057.0, + "probability": 0.9279 + }, + { + "start": 6058.1, + "end": 6060.24, + "probability": 0.9403 + }, + { + "start": 6060.3, + "end": 6062.82, + "probability": 0.853 + }, + { + "start": 6062.86, + "end": 6063.44, + "probability": 0.7539 + }, + { + "start": 6063.54, + "end": 6066.14, + "probability": 0.8461 + }, + { + "start": 6066.28, + "end": 6068.05, + "probability": 0.9863 + }, + { + "start": 6068.84, + "end": 6069.36, + "probability": 0.6599 + }, + { + "start": 6070.63, + "end": 6073.17, + "probability": 0.7219 + }, + { + "start": 6073.68, + "end": 6074.4, + "probability": 0.8058 + }, + { + "start": 6074.4, + "end": 6077.34, + "probability": 0.6681 + }, + { + "start": 6077.52, + "end": 6079.38, + "probability": 0.6067 + }, + { + "start": 6079.44, + "end": 6081.08, + "probability": 0.9727 + }, + { + "start": 6081.22, + "end": 6081.56, + "probability": 0.3842 + }, + { + "start": 6081.68, + "end": 6082.84, + "probability": 0.8812 + }, + { + "start": 6083.4, + "end": 6084.6, + "probability": 0.7406 + }, + { + "start": 6085.52, + "end": 6087.54, + "probability": 0.385 + }, + { + "start": 6087.54, + "end": 6088.0, + "probability": 0.6563 + }, + { + "start": 6088.16, + "end": 6090.3, + "probability": 0.9827 + }, + { + "start": 6090.48, + "end": 6091.88, + "probability": 0.9628 + }, + { + "start": 6091.92, + "end": 6092.88, + "probability": 0.5306 + }, + { + "start": 6093.14, + "end": 6095.56, + "probability": 0.9937 + }, + { + "start": 6095.64, + "end": 6099.32, + "probability": 0.7615 + }, + { + "start": 6099.52, + "end": 6100.86, + "probability": 0.2938 + }, + { + "start": 6100.96, + "end": 6101.78, + "probability": 0.2724 + }, + { + "start": 6101.96, + "end": 6102.7, + "probability": 0.2364 + }, + { + "start": 6102.96, + "end": 6103.8, + "probability": 0.3484 + }, + { + "start": 6104.0, + "end": 6104.91, + "probability": 0.7372 + }, + { + "start": 6105.42, + "end": 6108.42, + "probability": 0.7446 + }, + { + "start": 6108.42, + "end": 6108.42, + "probability": 0.6755 + }, + { + "start": 6108.54, + "end": 6109.12, + "probability": 0.4287 + }, + { + "start": 6109.74, + "end": 6110.64, + "probability": 0.9637 + }, + { + "start": 6110.68, + "end": 6113.34, + "probability": 0.9822 + }, + { + "start": 6113.34, + "end": 6116.54, + "probability": 0.9704 + }, + { + "start": 6116.64, + "end": 6117.28, + "probability": 0.8942 + }, + { + "start": 6118.12, + "end": 6119.82, + "probability": 0.4011 + }, + { + "start": 6119.88, + "end": 6120.1, + "probability": 0.8527 + }, + { + "start": 6120.14, + "end": 6122.84, + "probability": 0.9923 + }, + { + "start": 6122.84, + "end": 6125.14, + "probability": 0.9941 + }, + { + "start": 6125.2, + "end": 6125.74, + "probability": 0.8716 + }, + { + "start": 6126.12, + "end": 6129.62, + "probability": 0.9888 + }, + { + "start": 6130.32, + "end": 6133.26, + "probability": 0.9924 + }, + { + "start": 6134.12, + "end": 6134.82, + "probability": 0.7994 + }, + { + "start": 6135.32, + "end": 6135.9, + "probability": 0.075 + }, + { + "start": 6136.08, + "end": 6138.92, + "probability": 0.9956 + }, + { + "start": 6138.92, + "end": 6142.76, + "probability": 0.9964 + }, + { + "start": 6142.82, + "end": 6144.16, + "probability": 0.9899 + }, + { + "start": 6144.68, + "end": 6144.9, + "probability": 0.9127 + }, + { + "start": 6145.42, + "end": 6148.46, + "probability": 0.9554 + }, + { + "start": 6148.6, + "end": 6149.22, + "probability": 0.3274 + }, + { + "start": 6149.42, + "end": 6153.06, + "probability": 0.4976 + }, + { + "start": 6153.44, + "end": 6155.36, + "probability": 0.9907 + }, + { + "start": 6155.78, + "end": 6156.5, + "probability": 0.4465 + }, + { + "start": 6156.56, + "end": 6158.02, + "probability": 0.9658 + }, + { + "start": 6161.6, + "end": 6165.14, + "probability": 0.854 + }, + { + "start": 6169.88, + "end": 6172.78, + "probability": 0.7976 + }, + { + "start": 6182.46, + "end": 6183.72, + "probability": 0.6697 + }, + { + "start": 6184.44, + "end": 6185.32, + "probability": 0.7302 + }, + { + "start": 6186.4, + "end": 6188.24, + "probability": 0.6561 + }, + { + "start": 6188.94, + "end": 6191.2, + "probability": 0.877 + }, + { + "start": 6191.88, + "end": 6196.1, + "probability": 0.8096 + }, + { + "start": 6197.02, + "end": 6198.72, + "probability": 0.5728 + }, + { + "start": 6201.01, + "end": 6202.55, + "probability": 0.2936 + }, + { + "start": 6203.4, + "end": 6203.93, + "probability": 0.0635 + }, + { + "start": 6204.42, + "end": 6207.52, + "probability": 0.653 + }, + { + "start": 6207.7, + "end": 6210.54, + "probability": 0.8558 + }, + { + "start": 6211.22, + "end": 6215.9, + "probability": 0.815 + }, + { + "start": 6215.9, + "end": 6217.94, + "probability": 0.6836 + }, + { + "start": 6218.04, + "end": 6219.24, + "probability": 0.849 + }, + { + "start": 6219.58, + "end": 6221.06, + "probability": 0.895 + }, + { + "start": 6221.8, + "end": 6223.63, + "probability": 0.7529 + }, + { + "start": 6224.22, + "end": 6225.16, + "probability": 0.8943 + }, + { + "start": 6225.62, + "end": 6226.02, + "probability": 0.5308 + }, + { + "start": 6226.04, + "end": 6226.5, + "probability": 0.9165 + }, + { + "start": 6226.56, + "end": 6227.33, + "probability": 0.7495 + }, + { + "start": 6227.8, + "end": 6231.2, + "probability": 0.7007 + }, + { + "start": 6231.28, + "end": 6231.9, + "probability": 0.5605 + }, + { + "start": 6233.61, + "end": 6236.31, + "probability": 0.9009 + }, + { + "start": 6236.72, + "end": 6238.8, + "probability": 0.7119 + }, + { + "start": 6239.2, + "end": 6240.12, + "probability": 0.636 + }, + { + "start": 6240.22, + "end": 6240.86, + "probability": 0.0518 + }, + { + "start": 6240.94, + "end": 6241.04, + "probability": 0.0449 + }, + { + "start": 6241.04, + "end": 6242.5, + "probability": 0.1657 + }, + { + "start": 6242.5, + "end": 6242.88, + "probability": 0.074 + }, + { + "start": 6242.88, + "end": 6243.64, + "probability": 0.0497 + }, + { + "start": 6244.52, + "end": 6244.94, + "probability": 0.0198 + }, + { + "start": 6246.46, + "end": 6247.6, + "probability": 0.1569 + }, + { + "start": 6248.06, + "end": 6248.6, + "probability": 0.3503 + }, + { + "start": 6248.68, + "end": 6248.9, + "probability": 0.248 + }, + { + "start": 6249.02, + "end": 6250.42, + "probability": 0.3902 + }, + { + "start": 6250.6, + "end": 6257.65, + "probability": 0.6071 + }, + { + "start": 6258.96, + "end": 6261.66, + "probability": 0.6418 + }, + { + "start": 6261.76, + "end": 6262.0, + "probability": 0.3767 + }, + { + "start": 6262.32, + "end": 6263.04, + "probability": 0.6839 + }, + { + "start": 6263.08, + "end": 6263.18, + "probability": 0.2073 + }, + { + "start": 6263.28, + "end": 6264.28, + "probability": 0.817 + }, + { + "start": 6264.58, + "end": 6270.82, + "probability": 0.3728 + }, + { + "start": 6272.16, + "end": 6274.44, + "probability": 0.232 + }, + { + "start": 6274.58, + "end": 6276.12, + "probability": 0.2059 + }, + { + "start": 6276.12, + "end": 6278.42, + "probability": 0.5006 + }, + { + "start": 6278.82, + "end": 6279.86, + "probability": 0.54 + }, + { + "start": 6280.32, + "end": 6281.04, + "probability": 0.761 + }, + { + "start": 6281.32, + "end": 6283.63, + "probability": 0.2585 + }, + { + "start": 6287.62, + "end": 6288.56, + "probability": 0.0287 + }, + { + "start": 6288.76, + "end": 6288.76, + "probability": 0.2271 + }, + { + "start": 6288.82, + "end": 6290.36, + "probability": 0.8478 + }, + { + "start": 6290.54, + "end": 6292.32, + "probability": 0.4521 + }, + { + "start": 6292.34, + "end": 6293.9, + "probability": 0.9023 + }, + { + "start": 6294.0, + "end": 6295.04, + "probability": 0.4182 + }, + { + "start": 6295.06, + "end": 6298.86, + "probability": 0.5708 + }, + { + "start": 6299.02, + "end": 6299.98, + "probability": 0.2969 + }, + { + "start": 6301.76, + "end": 6303.76, + "probability": 0.5174 + }, + { + "start": 6304.44, + "end": 6307.58, + "probability": 0.9426 + }, + { + "start": 6308.72, + "end": 6309.26, + "probability": 0.9287 + }, + { + "start": 6310.22, + "end": 6311.62, + "probability": 0.8307 + }, + { + "start": 6312.92, + "end": 6314.96, + "probability": 0.9844 + }, + { + "start": 6315.48, + "end": 6316.32, + "probability": 0.9354 + }, + { + "start": 6316.8, + "end": 6317.74, + "probability": 0.7395 + }, + { + "start": 6317.92, + "end": 6318.04, + "probability": 0.248 + }, + { + "start": 6318.04, + "end": 6319.98, + "probability": 0.9879 + }, + { + "start": 6320.02, + "end": 6320.94, + "probability": 0.9376 + }, + { + "start": 6321.06, + "end": 6322.24, + "probability": 0.8779 + }, + { + "start": 6324.04, + "end": 6325.23, + "probability": 0.731 + }, + { + "start": 6325.86, + "end": 6330.48, + "probability": 0.9247 + }, + { + "start": 6331.08, + "end": 6334.16, + "probability": 0.7458 + }, + { + "start": 6334.82, + "end": 6337.34, + "probability": 0.6042 + }, + { + "start": 6337.92, + "end": 6339.52, + "probability": 0.8964 + }, + { + "start": 6340.74, + "end": 6341.92, + "probability": 0.9851 + }, + { + "start": 6341.92, + "end": 6344.86, + "probability": 0.9433 + }, + { + "start": 6345.36, + "end": 6345.73, + "probability": 0.5119 + }, + { + "start": 6348.22, + "end": 6350.1, + "probability": 0.7896 + }, + { + "start": 6350.78, + "end": 6354.08, + "probability": 0.6061 + }, + { + "start": 6354.68, + "end": 6356.56, + "probability": 0.9763 + }, + { + "start": 6356.96, + "end": 6360.48, + "probability": 0.9879 + }, + { + "start": 6361.14, + "end": 6362.7, + "probability": 0.9692 + }, + { + "start": 6363.06, + "end": 6365.22, + "probability": 0.6294 + }, + { + "start": 6365.66, + "end": 6366.66, + "probability": 0.6582 + }, + { + "start": 6367.08, + "end": 6369.04, + "probability": 0.5173 + }, + { + "start": 6369.22, + "end": 6371.16, + "probability": 0.4798 + }, + { + "start": 6371.44, + "end": 6373.0, + "probability": 0.7026 + }, + { + "start": 6373.14, + "end": 6375.54, + "probability": 0.7696 + }, + { + "start": 6375.72, + "end": 6377.78, + "probability": 0.7362 + }, + { + "start": 6377.92, + "end": 6379.68, + "probability": 0.9534 + }, + { + "start": 6380.18, + "end": 6382.02, + "probability": 0.9959 + }, + { + "start": 6382.48, + "end": 6383.5, + "probability": 0.7869 + }, + { + "start": 6383.58, + "end": 6384.38, + "probability": 0.7693 + }, + { + "start": 6384.56, + "end": 6385.7, + "probability": 0.8445 + }, + { + "start": 6386.1, + "end": 6387.86, + "probability": 0.9471 + }, + { + "start": 6387.96, + "end": 6390.32, + "probability": 0.8073 + }, + { + "start": 6390.98, + "end": 6391.48, + "probability": 0.9532 + }, + { + "start": 6392.06, + "end": 6392.62, + "probability": 0.9794 + }, + { + "start": 6393.18, + "end": 6395.78, + "probability": 0.6246 + }, + { + "start": 6396.02, + "end": 6397.4, + "probability": 0.473 + }, + { + "start": 6397.44, + "end": 6398.51, + "probability": 0.1124 + }, + { + "start": 6400.02, + "end": 6401.5, + "probability": 0.9237 + }, + { + "start": 6402.04, + "end": 6402.98, + "probability": 0.0746 + }, + { + "start": 6402.98, + "end": 6404.58, + "probability": 0.738 + }, + { + "start": 6405.2, + "end": 6406.34, + "probability": 0.8885 + }, + { + "start": 6406.84, + "end": 6411.46, + "probability": 0.9754 + }, + { + "start": 6411.52, + "end": 6412.06, + "probability": 0.6061 + }, + { + "start": 6412.38, + "end": 6413.26, + "probability": 0.9172 + }, + { + "start": 6413.84, + "end": 6417.64, + "probability": 0.5195 + }, + { + "start": 6417.74, + "end": 6418.48, + "probability": 0.7633 + }, + { + "start": 6418.6, + "end": 6419.48, + "probability": 0.696 + }, + { + "start": 6419.56, + "end": 6423.58, + "probability": 0.5553 + }, + { + "start": 6423.66, + "end": 6426.94, + "probability": 0.686 + }, + { + "start": 6427.26, + "end": 6429.05, + "probability": 0.8168 + }, + { + "start": 6429.24, + "end": 6429.58, + "probability": 0.4639 + }, + { + "start": 6429.58, + "end": 6431.34, + "probability": 0.8794 + }, + { + "start": 6431.44, + "end": 6433.36, + "probability": 0.9221 + }, + { + "start": 6433.8, + "end": 6434.48, + "probability": 0.4004 + }, + { + "start": 6434.5, + "end": 6435.96, + "probability": 0.9095 + }, + { + "start": 6443.28, + "end": 6444.12, + "probability": 0.0755 + }, + { + "start": 6444.98, + "end": 6445.52, + "probability": 0.1606 + }, + { + "start": 6445.52, + "end": 6445.7, + "probability": 0.1036 + }, + { + "start": 6445.7, + "end": 6446.16, + "probability": 0.0557 + }, + { + "start": 6446.16, + "end": 6446.64, + "probability": 0.2979 + }, + { + "start": 6446.64, + "end": 6446.64, + "probability": 0.04 + }, + { + "start": 6454.18, + "end": 6454.28, + "probability": 0.1684 + }, + { + "start": 6454.28, + "end": 6454.7, + "probability": 0.0372 + }, + { + "start": 6454.7, + "end": 6454.7, + "probability": 0.0469 + }, + { + "start": 6454.7, + "end": 6454.7, + "probability": 0.0538 + }, + { + "start": 6454.7, + "end": 6454.78, + "probability": 0.1502 + }, + { + "start": 6454.78, + "end": 6455.52, + "probability": 0.1123 + }, + { + "start": 6459.68, + "end": 6461.08, + "probability": 0.1439 + }, + { + "start": 6462.8, + "end": 6462.8, + "probability": 0.0 + }, + { + "start": 6466.36, + "end": 6467.46, + "probability": 0.1283 + }, + { + "start": 6469.82, + "end": 6469.82, + "probability": 0.0 + }, + { + "start": 6471.28, + "end": 6472.5, + "probability": 0.0176 + }, + { + "start": 6475.28, + "end": 6476.08, + "probability": 0.0193 + }, + { + "start": 6477.34, + "end": 6477.7, + "probability": 0.2437 + }, + { + "start": 6507.72, + "end": 6508.84, + "probability": 0.0023 + }, + { + "start": 6509.94, + "end": 6510.72, + "probability": 0.0 + }, + { + "start": 6533.54, + "end": 6535.32, + "probability": 0.6248 + }, + { + "start": 6536.96, + "end": 6538.36, + "probability": 0.261 + }, + { + "start": 6543.34, + "end": 6544.06, + "probability": 0.7025 + }, + { + "start": 6545.58, + "end": 6547.86, + "probability": 0.9632 + }, + { + "start": 6549.0, + "end": 6550.3, + "probability": 0.9656 + }, + { + "start": 6554.16, + "end": 6556.74, + "probability": 0.9585 + }, + { + "start": 6558.06, + "end": 6560.82, + "probability": 0.9359 + }, + { + "start": 6561.84, + "end": 6564.47, + "probability": 0.9941 + }, + { + "start": 6565.4, + "end": 6567.33, + "probability": 0.9927 + }, + { + "start": 6568.86, + "end": 6569.46, + "probability": 0.1013 + }, + { + "start": 6570.22, + "end": 6571.9, + "probability": 0.8473 + }, + { + "start": 6572.22, + "end": 6573.22, + "probability": 0.2147 + }, + { + "start": 6573.32, + "end": 6575.08, + "probability": 0.9677 + }, + { + "start": 6575.22, + "end": 6578.1, + "probability": 0.7385 + }, + { + "start": 6579.26, + "end": 6580.78, + "probability": 0.2583 + }, + { + "start": 6582.86, + "end": 6583.12, + "probability": 0.0565 + }, + { + "start": 6583.12, + "end": 6586.44, + "probability": 0.7204 + }, + { + "start": 6586.52, + "end": 6589.15, + "probability": 0.6736 + }, + { + "start": 6589.28, + "end": 6595.74, + "probability": 0.9519 + }, + { + "start": 6596.4, + "end": 6598.1, + "probability": 0.9971 + }, + { + "start": 6598.54, + "end": 6599.5, + "probability": 0.7141 + }, + { + "start": 6599.82, + "end": 6600.0, + "probability": 0.5573 + }, + { + "start": 6601.44, + "end": 6602.6, + "probability": 0.7649 + }, + { + "start": 6602.72, + "end": 6604.13, + "probability": 0.7994 + }, + { + "start": 6606.04, + "end": 6611.94, + "probability": 0.9752 + }, + { + "start": 6612.9, + "end": 6613.92, + "probability": 0.5519 + }, + { + "start": 6614.38, + "end": 6619.54, + "probability": 0.9849 + }, + { + "start": 6620.12, + "end": 6621.56, + "probability": 0.8672 + }, + { + "start": 6622.6, + "end": 6623.56, + "probability": 0.7899 + }, + { + "start": 6625.88, + "end": 6627.48, + "probability": 0.9408 + }, + { + "start": 6628.14, + "end": 6630.6, + "probability": 0.8848 + }, + { + "start": 6630.88, + "end": 6635.24, + "probability": 0.9136 + }, + { + "start": 6636.26, + "end": 6638.36, + "probability": 0.5843 + }, + { + "start": 6640.16, + "end": 6641.74, + "probability": 0.9954 + }, + { + "start": 6642.76, + "end": 6647.1, + "probability": 0.9954 + }, + { + "start": 6647.92, + "end": 6652.03, + "probability": 0.7275 + }, + { + "start": 6652.44, + "end": 6653.56, + "probability": 0.858 + }, + { + "start": 6653.97, + "end": 6654.74, + "probability": 0.1406 + }, + { + "start": 6656.84, + "end": 6662.42, + "probability": 0.7367 + }, + { + "start": 6662.62, + "end": 6663.05, + "probability": 0.0879 + }, + { + "start": 6664.81, + "end": 6666.28, + "probability": 0.1365 + }, + { + "start": 6666.28, + "end": 6666.4, + "probability": 0.2715 + }, + { + "start": 6666.4, + "end": 6666.4, + "probability": 0.3209 + }, + { + "start": 6666.4, + "end": 6667.26, + "probability": 0.6983 + }, + { + "start": 6667.44, + "end": 6669.31, + "probability": 0.4841 + }, + { + "start": 6669.58, + "end": 6671.76, + "probability": 0.4469 + }, + { + "start": 6673.26, + "end": 6674.2, + "probability": 0.8384 + }, + { + "start": 6681.02, + "end": 6681.92, + "probability": 0.0222 + }, + { + "start": 6681.92, + "end": 6683.76, + "probability": 0.799 + }, + { + "start": 6683.9, + "end": 6687.9, + "probability": 0.994 + }, + { + "start": 6688.44, + "end": 6689.54, + "probability": 0.7161 + }, + { + "start": 6690.74, + "end": 6693.06, + "probability": 0.9976 + }, + { + "start": 6693.84, + "end": 6695.7, + "probability": 0.7852 + }, + { + "start": 6696.92, + "end": 6700.04, + "probability": 0.9299 + }, + { + "start": 6701.58, + "end": 6702.12, + "probability": 0.938 + }, + { + "start": 6703.3, + "end": 6705.14, + "probability": 0.8244 + }, + { + "start": 6708.3, + "end": 6712.06, + "probability": 0.9808 + }, + { + "start": 6714.28, + "end": 6715.1, + "probability": 0.522 + }, + { + "start": 6715.98, + "end": 6718.32, + "probability": 0.7625 + }, + { + "start": 6719.36, + "end": 6721.02, + "probability": 0.9038 + }, + { + "start": 6722.1, + "end": 6724.08, + "probability": 0.9517 + }, + { + "start": 6725.0, + "end": 6726.2, + "probability": 0.9801 + }, + { + "start": 6726.32, + "end": 6729.34, + "probability": 0.8044 + }, + { + "start": 6730.36, + "end": 6732.44, + "probability": 0.9966 + }, + { + "start": 6733.14, + "end": 6735.54, + "probability": 0.6531 + }, + { + "start": 6736.2, + "end": 6737.42, + "probability": 0.979 + }, + { + "start": 6738.62, + "end": 6740.76, + "probability": 0.6539 + }, + { + "start": 6742.24, + "end": 6743.34, + "probability": 0.9842 + }, + { + "start": 6743.48, + "end": 6747.34, + "probability": 0.7708 + }, + { + "start": 6748.26, + "end": 6750.3, + "probability": 0.9771 + }, + { + "start": 6750.74, + "end": 6755.08, + "probability": 0.9222 + }, + { + "start": 6755.56, + "end": 6760.74, + "probability": 0.7814 + }, + { + "start": 6761.1, + "end": 6761.56, + "probability": 0.8979 + }, + { + "start": 6762.0, + "end": 6764.78, + "probability": 0.9788 + }, + { + "start": 6764.88, + "end": 6767.5, + "probability": 0.9003 + }, + { + "start": 6768.42, + "end": 6769.06, + "probability": 0.4732 + }, + { + "start": 6770.42, + "end": 6772.12, + "probability": 0.8887 + }, + { + "start": 6793.34, + "end": 6794.02, + "probability": 0.7069 + }, + { + "start": 6794.72, + "end": 6797.02, + "probability": 0.5755 + }, + { + "start": 6797.56, + "end": 6800.28, + "probability": 0.9587 + }, + { + "start": 6817.74, + "end": 6821.02, + "probability": 0.8395 + }, + { + "start": 6821.22, + "end": 6824.46, + "probability": 0.9949 + }, + { + "start": 6824.94, + "end": 6830.02, + "probability": 0.9725 + }, + { + "start": 6830.22, + "end": 6830.44, + "probability": 0.5829 + }, + { + "start": 6831.36, + "end": 6834.84, + "probability": 0.8672 + }, + { + "start": 6835.6, + "end": 6839.67, + "probability": 0.502 + }, + { + "start": 6840.28, + "end": 6842.8, + "probability": 0.9772 + }, + { + "start": 6843.52, + "end": 6844.22, + "probability": 0.7073 + }, + { + "start": 6844.56, + "end": 6846.32, + "probability": 0.8257 + }, + { + "start": 6846.32, + "end": 6846.46, + "probability": 0.253 + }, + { + "start": 6847.02, + "end": 6847.9, + "probability": 0.535 + }, + { + "start": 6851.84, + "end": 6855.12, + "probability": 0.8535 + }, + { + "start": 6855.86, + "end": 6857.12, + "probability": 0.8179 + }, + { + "start": 6858.16, + "end": 6861.42, + "probability": 0.8679 + }, + { + "start": 6862.36, + "end": 6864.24, + "probability": 0.8855 + }, + { + "start": 6865.2, + "end": 6869.0, + "probability": 0.981 + }, + { + "start": 6869.86, + "end": 6870.26, + "probability": 0.9884 + }, + { + "start": 6870.94, + "end": 6877.64, + "probability": 0.9912 + }, + { + "start": 6878.62, + "end": 6881.7, + "probability": 0.7582 + }, + { + "start": 6882.8, + "end": 6886.42, + "probability": 0.9938 + }, + { + "start": 6886.58, + "end": 6888.76, + "probability": 0.9904 + }, + { + "start": 6890.1, + "end": 6893.5, + "probability": 0.9589 + }, + { + "start": 6894.38, + "end": 6897.1, + "probability": 0.796 + }, + { + "start": 6899.18, + "end": 6899.54, + "probability": 0.7144 + }, + { + "start": 6901.84, + "end": 6907.34, + "probability": 0.9308 + }, + { + "start": 6908.5, + "end": 6913.26, + "probability": 0.9985 + }, + { + "start": 6913.64, + "end": 6915.55, + "probability": 0.9969 + }, + { + "start": 6915.82, + "end": 6918.08, + "probability": 0.8363 + }, + { + "start": 6919.28, + "end": 6923.72, + "probability": 0.9812 + }, + { + "start": 6926.18, + "end": 6927.94, + "probability": 0.9927 + }, + { + "start": 6928.4, + "end": 6932.92, + "probability": 0.9853 + }, + { + "start": 6934.7, + "end": 6937.92, + "probability": 0.8574 + }, + { + "start": 6938.12, + "end": 6939.42, + "probability": 0.3948 + }, + { + "start": 6939.88, + "end": 6942.44, + "probability": 0.9685 + }, + { + "start": 6942.76, + "end": 6945.48, + "probability": 0.8639 + }, + { + "start": 6946.42, + "end": 6948.9, + "probability": 0.4842 + }, + { + "start": 6949.0, + "end": 6952.6, + "probability": 0.9924 + }, + { + "start": 6953.8, + "end": 6955.86, + "probability": 0.9437 + }, + { + "start": 6957.0, + "end": 6960.72, + "probability": 0.9927 + }, + { + "start": 6960.84, + "end": 6967.46, + "probability": 0.6858 + }, + { + "start": 6968.38, + "end": 6973.6, + "probability": 0.6078 + }, + { + "start": 6973.6, + "end": 6976.76, + "probability": 0.9902 + }, + { + "start": 6977.48, + "end": 6979.48, + "probability": 0.9469 + }, + { + "start": 6980.56, + "end": 6984.72, + "probability": 0.9979 + }, + { + "start": 6986.48, + "end": 6989.46, + "probability": 0.9399 + }, + { + "start": 6990.84, + "end": 6992.26, + "probability": 0.5148 + }, + { + "start": 6992.3, + "end": 6994.82, + "probability": 0.6422 + }, + { + "start": 6994.92, + "end": 6995.26, + "probability": 0.8666 + }, + { + "start": 6996.36, + "end": 6997.74, + "probability": 0.8481 + }, + { + "start": 6999.08, + "end": 6999.92, + "probability": 0.7778 + }, + { + "start": 7000.12, + "end": 7002.2, + "probability": 0.9858 + }, + { + "start": 7002.46, + "end": 7005.62, + "probability": 0.9949 + }, + { + "start": 7006.8, + "end": 7009.12, + "probability": 0.9888 + }, + { + "start": 7009.28, + "end": 7011.44, + "probability": 0.9878 + }, + { + "start": 7012.1, + "end": 7014.68, + "probability": 0.934 + }, + { + "start": 7015.86, + "end": 7022.8, + "probability": 0.9679 + }, + { + "start": 7023.22, + "end": 7025.34, + "probability": 0.9946 + }, + { + "start": 7026.66, + "end": 7026.72, + "probability": 0.3184 + }, + { + "start": 7026.72, + "end": 7030.34, + "probability": 0.6222 + }, + { + "start": 7032.04, + "end": 7034.16, + "probability": 0.5113 + }, + { + "start": 7035.16, + "end": 7037.04, + "probability": 0.9774 + }, + { + "start": 7038.38, + "end": 7040.92, + "probability": 0.9941 + }, + { + "start": 7041.76, + "end": 7046.36, + "probability": 0.9965 + }, + { + "start": 7046.4, + "end": 7047.6, + "probability": 0.863 + }, + { + "start": 7048.52, + "end": 7051.14, + "probability": 0.9964 + }, + { + "start": 7052.02, + "end": 7056.92, + "probability": 0.9944 + }, + { + "start": 7057.28, + "end": 7061.64, + "probability": 0.9795 + }, + { + "start": 7062.1, + "end": 7062.98, + "probability": 0.9014 + }, + { + "start": 7063.02, + "end": 7065.22, + "probability": 0.8821 + }, + { + "start": 7066.06, + "end": 7068.66, + "probability": 0.9839 + }, + { + "start": 7068.76, + "end": 7071.38, + "probability": 0.9521 + }, + { + "start": 7071.52, + "end": 7072.62, + "probability": 0.8334 + }, + { + "start": 7072.68, + "end": 7074.02, + "probability": 0.6575 + }, + { + "start": 7074.92, + "end": 7077.0, + "probability": 0.9302 + }, + { + "start": 7077.56, + "end": 7081.28, + "probability": 0.8234 + }, + { + "start": 7081.92, + "end": 7084.76, + "probability": 0.9878 + }, + { + "start": 7084.76, + "end": 7087.9, + "probability": 0.9935 + }, + { + "start": 7088.1, + "end": 7088.58, + "probability": 0.7884 + }, + { + "start": 7089.34, + "end": 7091.84, + "probability": 0.9219 + }, + { + "start": 7092.48, + "end": 7094.5, + "probability": 0.8446 + }, + { + "start": 7096.58, + "end": 7098.52, + "probability": 0.6009 + }, + { + "start": 7109.56, + "end": 7109.98, + "probability": 0.5132 + }, + { + "start": 7111.22, + "end": 7113.22, + "probability": 0.9778 + }, + { + "start": 7114.24, + "end": 7116.92, + "probability": 0.786 + }, + { + "start": 7118.32, + "end": 7119.46, + "probability": 0.7892 + }, + { + "start": 7119.66, + "end": 7122.41, + "probability": 0.9922 + }, + { + "start": 7123.94, + "end": 7124.58, + "probability": 0.8047 + }, + { + "start": 7125.22, + "end": 7127.06, + "probability": 0.8893 + }, + { + "start": 7128.2, + "end": 7129.96, + "probability": 0.9629 + }, + { + "start": 7130.92, + "end": 7132.72, + "probability": 0.2175 + }, + { + "start": 7133.04, + "end": 7134.84, + "probability": 0.7457 + }, + { + "start": 7135.58, + "end": 7135.58, + "probability": 0.0433 + }, + { + "start": 7135.76, + "end": 7136.48, + "probability": 0.4867 + }, + { + "start": 7136.6, + "end": 7140.7, + "probability": 0.7792 + }, + { + "start": 7140.94, + "end": 7141.58, + "probability": 0.2843 + }, + { + "start": 7142.48, + "end": 7145.96, + "probability": 0.7785 + }, + { + "start": 7146.94, + "end": 7149.44, + "probability": 0.9552 + }, + { + "start": 7150.72, + "end": 7151.7, + "probability": 0.9013 + }, + { + "start": 7152.0, + "end": 7156.84, + "probability": 0.9849 + }, + { + "start": 7159.34, + "end": 7161.44, + "probability": 0.9492 + }, + { + "start": 7162.12, + "end": 7163.94, + "probability": 0.9387 + }, + { + "start": 7165.72, + "end": 7169.54, + "probability": 0.7766 + }, + { + "start": 7171.88, + "end": 7173.3, + "probability": 0.5854 + }, + { + "start": 7174.1, + "end": 7178.4, + "probability": 0.6031 + }, + { + "start": 7179.44, + "end": 7180.5, + "probability": 0.9511 + }, + { + "start": 7181.74, + "end": 7183.78, + "probability": 0.8158 + }, + { + "start": 7184.92, + "end": 7185.4, + "probability": 0.9852 + }, + { + "start": 7186.66, + "end": 7189.5, + "probability": 0.8354 + }, + { + "start": 7189.72, + "end": 7195.0, + "probability": 0.5306 + }, + { + "start": 7196.84, + "end": 7197.26, + "probability": 0.2469 + }, + { + "start": 7197.26, + "end": 7199.9, + "probability": 0.8088 + }, + { + "start": 7201.34, + "end": 7206.14, + "probability": 0.6645 + }, + { + "start": 7208.08, + "end": 7208.64, + "probability": 0.6698 + }, + { + "start": 7210.22, + "end": 7215.58, + "probability": 0.9271 + }, + { + "start": 7216.34, + "end": 7219.08, + "probability": 0.965 + }, + { + "start": 7219.74, + "end": 7226.33, + "probability": 0.9937 + }, + { + "start": 7227.42, + "end": 7229.22, + "probability": 0.8647 + }, + { + "start": 7229.34, + "end": 7230.08, + "probability": 0.8009 + }, + { + "start": 7230.22, + "end": 7233.28, + "probability": 0.8423 + }, + { + "start": 7235.0, + "end": 7235.86, + "probability": 0.6645 + }, + { + "start": 7236.76, + "end": 7239.8, + "probability": 0.9761 + }, + { + "start": 7239.9, + "end": 7242.0, + "probability": 0.9837 + }, + { + "start": 7243.1, + "end": 7243.66, + "probability": 0.9146 + }, + { + "start": 7245.42, + "end": 7246.88, + "probability": 0.7566 + }, + { + "start": 7247.72, + "end": 7249.0, + "probability": 0.8527 + }, + { + "start": 7250.6, + "end": 7254.14, + "probability": 0.7867 + }, + { + "start": 7257.54, + "end": 7259.14, + "probability": 0.7669 + }, + { + "start": 7260.62, + "end": 7262.0, + "probability": 0.8105 + }, + { + "start": 7262.82, + "end": 7266.13, + "probability": 0.9885 + }, + { + "start": 7268.0, + "end": 7270.7, + "probability": 0.9985 + }, + { + "start": 7271.3, + "end": 7272.44, + "probability": 0.8578 + }, + { + "start": 7273.0, + "end": 7275.86, + "probability": 0.9569 + }, + { + "start": 7276.38, + "end": 7280.64, + "probability": 0.8624 + }, + { + "start": 7281.04, + "end": 7283.96, + "probability": 0.8876 + }, + { + "start": 7285.84, + "end": 7286.16, + "probability": 0.7639 + }, + { + "start": 7286.24, + "end": 7286.82, + "probability": 0.6661 + }, + { + "start": 7287.06, + "end": 7291.26, + "probability": 0.9414 + }, + { + "start": 7291.72, + "end": 7294.8, + "probability": 0.9679 + }, + { + "start": 7294.96, + "end": 7295.96, + "probability": 0.9756 + }, + { + "start": 7296.34, + "end": 7297.04, + "probability": 0.6659 + }, + { + "start": 7297.84, + "end": 7301.48, + "probability": 0.9531 + }, + { + "start": 7301.54, + "end": 7303.66, + "probability": 0.9315 + }, + { + "start": 7303.98, + "end": 7305.76, + "probability": 0.8945 + }, + { + "start": 7306.68, + "end": 7308.38, + "probability": 0.3702 + }, + { + "start": 7308.62, + "end": 7309.14, + "probability": 0.7124 + }, + { + "start": 7309.24, + "end": 7310.42, + "probability": 0.9435 + }, + { + "start": 7311.04, + "end": 7313.92, + "probability": 0.9064 + }, + { + "start": 7314.4, + "end": 7316.12, + "probability": 0.8974 + }, + { + "start": 7316.8, + "end": 7317.52, + "probability": 0.9816 + }, + { + "start": 7318.3, + "end": 7320.16, + "probability": 0.3242 + }, + { + "start": 7320.76, + "end": 7328.26, + "probability": 0.9635 + }, + { + "start": 7328.26, + "end": 7331.22, + "probability": 0.9988 + }, + { + "start": 7331.8, + "end": 7334.18, + "probability": 0.9229 + }, + { + "start": 7334.72, + "end": 7337.54, + "probability": 0.9516 + }, + { + "start": 7338.16, + "end": 7345.72, + "probability": 0.9808 + }, + { + "start": 7346.08, + "end": 7346.72, + "probability": 0.5339 + }, + { + "start": 7346.92, + "end": 7347.64, + "probability": 0.6135 + }, + { + "start": 7347.82, + "end": 7350.38, + "probability": 0.8375 + }, + { + "start": 7350.96, + "end": 7353.24, + "probability": 0.9493 + }, + { + "start": 7353.7, + "end": 7354.46, + "probability": 0.463 + }, + { + "start": 7354.66, + "end": 7356.28, + "probability": 0.9893 + }, + { + "start": 7360.66, + "end": 7362.32, + "probability": 0.7255 + }, + { + "start": 7362.94, + "end": 7364.34, + "probability": 0.926 + }, + { + "start": 7367.06, + "end": 7367.66, + "probability": 0.7137 + }, + { + "start": 7368.74, + "end": 7369.94, + "probability": 0.6659 + }, + { + "start": 7371.4, + "end": 7372.34, + "probability": 0.7689 + }, + { + "start": 7376.48, + "end": 7377.76, + "probability": 0.0778 + }, + { + "start": 7380.78, + "end": 7384.46, + "probability": 0.7734 + }, + { + "start": 7386.3, + "end": 7386.56, + "probability": 0.5712 + }, + { + "start": 7387.66, + "end": 7391.18, + "probability": 0.9955 + }, + { + "start": 7393.28, + "end": 7397.28, + "probability": 0.9193 + }, + { + "start": 7400.28, + "end": 7402.16, + "probability": 0.7446 + }, + { + "start": 7403.76, + "end": 7406.68, + "probability": 0.9878 + }, + { + "start": 7408.4, + "end": 7410.58, + "probability": 0.957 + }, + { + "start": 7411.98, + "end": 7420.56, + "probability": 0.9674 + }, + { + "start": 7422.64, + "end": 7423.6, + "probability": 0.6925 + }, + { + "start": 7425.12, + "end": 7426.0, + "probability": 0.9429 + }, + { + "start": 7427.7, + "end": 7429.36, + "probability": 0.959 + }, + { + "start": 7431.1, + "end": 7432.18, + "probability": 0.9884 + }, + { + "start": 7435.62, + "end": 7437.94, + "probability": 0.5872 + }, + { + "start": 7438.74, + "end": 7440.84, + "probability": 0.159 + }, + { + "start": 7441.36, + "end": 7444.16, + "probability": 0.7581 + }, + { + "start": 7444.22, + "end": 7445.6, + "probability": 0.909 + }, + { + "start": 7447.48, + "end": 7449.74, + "probability": 0.8838 + }, + { + "start": 7451.48, + "end": 7454.04, + "probability": 0.5696 + }, + { + "start": 7454.32, + "end": 7455.36, + "probability": 0.7397 + }, + { + "start": 7456.78, + "end": 7457.76, + "probability": 0.9776 + }, + { + "start": 7458.62, + "end": 7459.7, + "probability": 0.9143 + }, + { + "start": 7459.92, + "end": 7463.92, + "probability": 0.8875 + }, + { + "start": 7464.54, + "end": 7466.14, + "probability": 0.6292 + }, + { + "start": 7467.18, + "end": 7472.38, + "probability": 0.9902 + }, + { + "start": 7473.56, + "end": 7477.58, + "probability": 0.9724 + }, + { + "start": 7478.18, + "end": 7479.54, + "probability": 0.9199 + }, + { + "start": 7480.5, + "end": 7481.28, + "probability": 0.5715 + }, + { + "start": 7481.92, + "end": 7484.02, + "probability": 0.6812 + }, + { + "start": 7485.42, + "end": 7490.88, + "probability": 0.9672 + }, + { + "start": 7491.96, + "end": 7497.12, + "probability": 0.9249 + }, + { + "start": 7498.68, + "end": 7501.18, + "probability": 0.9675 + }, + { + "start": 7501.24, + "end": 7501.74, + "probability": 0.8953 + }, + { + "start": 7501.82, + "end": 7502.34, + "probability": 0.4677 + }, + { + "start": 7503.4, + "end": 7505.34, + "probability": 0.9102 + }, + { + "start": 7505.44, + "end": 7506.28, + "probability": 0.5252 + }, + { + "start": 7506.74, + "end": 7508.66, + "probability": 0.3792 + }, + { + "start": 7510.2, + "end": 7510.6, + "probability": 0.314 + }, + { + "start": 7511.72, + "end": 7514.53, + "probability": 0.9885 + }, + { + "start": 7515.62, + "end": 7516.44, + "probability": 0.7107 + }, + { + "start": 7516.56, + "end": 7517.28, + "probability": 0.3953 + }, + { + "start": 7518.7, + "end": 7521.08, + "probability": 0.7229 + }, + { + "start": 7522.56, + "end": 7525.36, + "probability": 0.9604 + }, + { + "start": 7527.24, + "end": 7529.24, + "probability": 0.7944 + }, + { + "start": 7530.04, + "end": 7532.6, + "probability": 0.8988 + }, + { + "start": 7533.4, + "end": 7537.0, + "probability": 0.7561 + }, + { + "start": 7537.82, + "end": 7545.66, + "probability": 0.5328 + }, + { + "start": 7546.22, + "end": 7546.84, + "probability": 0.3635 + }, + { + "start": 7547.26, + "end": 7548.94, + "probability": 0.655 + }, + { + "start": 7549.96, + "end": 7551.84, + "probability": 0.8464 + }, + { + "start": 7553.98, + "end": 7557.92, + "probability": 0.8417 + }, + { + "start": 7560.82, + "end": 7561.0, + "probability": 0.5263 + }, + { + "start": 7561.0, + "end": 7561.3, + "probability": 0.1426 + }, + { + "start": 7561.84, + "end": 7563.16, + "probability": 0.3603 + }, + { + "start": 7565.58, + "end": 7566.84, + "probability": 0.0402 + }, + { + "start": 7567.0, + "end": 7567.46, + "probability": 0.4208 + }, + { + "start": 7567.7, + "end": 7568.28, + "probability": 0.6586 + }, + { + "start": 7568.34, + "end": 7569.3, + "probability": 0.4791 + }, + { + "start": 7569.62, + "end": 7571.26, + "probability": 0.5779 + }, + { + "start": 7572.18, + "end": 7573.78, + "probability": 0.7591 + }, + { + "start": 7573.92, + "end": 7575.34, + "probability": 0.5365 + }, + { + "start": 7575.84, + "end": 7579.72, + "probability": 0.5403 + }, + { + "start": 7580.28, + "end": 7580.66, + "probability": 0.4567 + }, + { + "start": 7580.68, + "end": 7585.72, + "probability": 0.7989 + }, + { + "start": 7586.76, + "end": 7587.7, + "probability": 0.5111 + }, + { + "start": 7588.28, + "end": 7590.88, + "probability": 0.7767 + }, + { + "start": 7591.44, + "end": 7593.74, + "probability": 0.9853 + }, + { + "start": 7594.28, + "end": 7596.64, + "probability": 0.8532 + }, + { + "start": 7597.44, + "end": 7601.2, + "probability": 0.4602 + }, + { + "start": 7601.3, + "end": 7601.92, + "probability": 0.3244 + }, + { + "start": 7602.48, + "end": 7604.84, + "probability": 0.9667 + }, + { + "start": 7605.82, + "end": 7606.16, + "probability": 0.7731 + }, + { + "start": 7606.42, + "end": 7606.74, + "probability": 0.8645 + }, + { + "start": 7607.5, + "end": 7609.2, + "probability": 0.7395 + }, + { + "start": 7609.28, + "end": 7613.68, + "probability": 0.5185 + }, + { + "start": 7614.4, + "end": 7616.26, + "probability": 0.8257 + }, + { + "start": 7626.68, + "end": 7627.38, + "probability": 0.5746 + }, + { + "start": 7628.6, + "end": 7629.32, + "probability": 0.9402 + }, + { + "start": 7630.94, + "end": 7631.94, + "probability": 0.9434 + }, + { + "start": 7633.16, + "end": 7634.88, + "probability": 0.9154 + }, + { + "start": 7636.12, + "end": 7639.5, + "probability": 0.9969 + }, + { + "start": 7639.6, + "end": 7640.42, + "probability": 0.7816 + }, + { + "start": 7640.98, + "end": 7642.54, + "probability": 0.8855 + }, + { + "start": 7643.32, + "end": 7650.36, + "probability": 0.9987 + }, + { + "start": 7651.02, + "end": 7654.76, + "probability": 0.9985 + }, + { + "start": 7656.29, + "end": 7660.2, + "probability": 0.9983 + }, + { + "start": 7661.16, + "end": 7662.53, + "probability": 0.9946 + }, + { + "start": 7663.08, + "end": 7664.14, + "probability": 0.9927 + }, + { + "start": 7664.38, + "end": 7667.66, + "probability": 0.8866 + }, + { + "start": 7667.84, + "end": 7668.32, + "probability": 0.6772 + }, + { + "start": 7669.1, + "end": 7670.4, + "probability": 0.9972 + }, + { + "start": 7670.86, + "end": 7672.2, + "probability": 0.9702 + }, + { + "start": 7673.16, + "end": 7674.46, + "probability": 0.9883 + }, + { + "start": 7675.72, + "end": 7678.78, + "probability": 0.9443 + }, + { + "start": 7679.32, + "end": 7680.62, + "probability": 0.9082 + }, + { + "start": 7681.74, + "end": 7683.22, + "probability": 0.7062 + }, + { + "start": 7683.42, + "end": 7687.92, + "probability": 0.7349 + }, + { + "start": 7688.02, + "end": 7690.3, + "probability": 0.9004 + }, + { + "start": 7691.32, + "end": 7694.04, + "probability": 0.9659 + }, + { + "start": 7694.04, + "end": 7697.32, + "probability": 0.9697 + }, + { + "start": 7697.78, + "end": 7698.98, + "probability": 0.9979 + }, + { + "start": 7699.9, + "end": 7699.94, + "probability": 0.6208 + }, + { + "start": 7700.06, + "end": 7700.62, + "probability": 0.6047 + }, + { + "start": 7700.72, + "end": 7701.06, + "probability": 0.8106 + }, + { + "start": 7701.16, + "end": 7703.8, + "probability": 0.9315 + }, + { + "start": 7704.5, + "end": 7704.7, + "probability": 0.5444 + }, + { + "start": 7706.84, + "end": 7708.3, + "probability": 0.9922 + }, + { + "start": 7709.52, + "end": 7711.84, + "probability": 0.9187 + }, + { + "start": 7713.52, + "end": 7714.82, + "probability": 0.9458 + }, + { + "start": 7715.0, + "end": 7716.12, + "probability": 0.1471 + }, + { + "start": 7716.44, + "end": 7718.42, + "probability": 0.9199 + }, + { + "start": 7718.78, + "end": 7719.48, + "probability": 0.312 + }, + { + "start": 7719.76, + "end": 7721.74, + "probability": 0.6197 + }, + { + "start": 7721.8, + "end": 7722.48, + "probability": 0.7158 + }, + { + "start": 7723.25, + "end": 7724.76, + "probability": 0.0209 + }, + { + "start": 7724.92, + "end": 7725.5, + "probability": 0.5128 + }, + { + "start": 7725.58, + "end": 7728.94, + "probability": 0.9631 + }, + { + "start": 7729.14, + "end": 7730.22, + "probability": 0.6129 + }, + { + "start": 7730.24, + "end": 7732.5, + "probability": 0.5848 + }, + { + "start": 7732.64, + "end": 7733.22, + "probability": 0.9264 + }, + { + "start": 7733.44, + "end": 7734.86, + "probability": 0.9205 + }, + { + "start": 7734.96, + "end": 7735.34, + "probability": 0.8868 + }, + { + "start": 7735.4, + "end": 7737.16, + "probability": 0.9349 + }, + { + "start": 7738.1, + "end": 7741.36, + "probability": 0.9935 + }, + { + "start": 7741.36, + "end": 7743.8, + "probability": 0.8963 + }, + { + "start": 7745.98, + "end": 7747.0, + "probability": 0.707 + }, + { + "start": 7747.8, + "end": 7749.84, + "probability": 0.7886 + }, + { + "start": 7751.08, + "end": 7752.26, + "probability": 0.9456 + }, + { + "start": 7752.9, + "end": 7757.8, + "probability": 0.9902 + }, + { + "start": 7758.44, + "end": 7761.42, + "probability": 0.9963 + }, + { + "start": 7762.54, + "end": 7763.94, + "probability": 0.6978 + }, + { + "start": 7765.3, + "end": 7765.82, + "probability": 0.7879 + }, + { + "start": 7766.52, + "end": 7768.0, + "probability": 0.8178 + }, + { + "start": 7769.28, + "end": 7771.08, + "probability": 0.8826 + }, + { + "start": 7771.18, + "end": 7772.5, + "probability": 0.9913 + }, + { + "start": 7773.4, + "end": 7774.6, + "probability": 0.9964 + }, + { + "start": 7775.2, + "end": 7776.12, + "probability": 0.9658 + }, + { + "start": 7776.28, + "end": 7776.92, + "probability": 0.8704 + }, + { + "start": 7776.98, + "end": 7780.3, + "probability": 0.9866 + }, + { + "start": 7780.88, + "end": 7785.26, + "probability": 0.8721 + }, + { + "start": 7787.1, + "end": 7787.92, + "probability": 0.8444 + }, + { + "start": 7788.36, + "end": 7788.84, + "probability": 0.8998 + }, + { + "start": 7789.34, + "end": 7790.5, + "probability": 0.971 + }, + { + "start": 7792.72, + "end": 7794.66, + "probability": 0.9705 + }, + { + "start": 7794.8, + "end": 7797.16, + "probability": 0.7437 + }, + { + "start": 7797.78, + "end": 7799.5, + "probability": 0.8437 + }, + { + "start": 7801.74, + "end": 7803.48, + "probability": 0.2238 + }, + { + "start": 7803.6, + "end": 7804.14, + "probability": 0.661 + }, + { + "start": 7804.28, + "end": 7804.68, + "probability": 0.9678 + }, + { + "start": 7805.18, + "end": 7806.98, + "probability": 0.8609 + }, + { + "start": 7807.02, + "end": 7808.08, + "probability": 0.9917 + }, + { + "start": 7809.58, + "end": 7815.86, + "probability": 0.9489 + }, + { + "start": 7817.12, + "end": 7819.98, + "probability": 0.911 + }, + { + "start": 7820.84, + "end": 7823.62, + "probability": 0.9839 + }, + { + "start": 7824.68, + "end": 7827.02, + "probability": 0.6906 + }, + { + "start": 7827.02, + "end": 7828.94, + "probability": 0.9062 + }, + { + "start": 7829.44, + "end": 7831.56, + "probability": 0.9092 + }, + { + "start": 7831.86, + "end": 7832.46, + "probability": 0.9868 + }, + { + "start": 7833.1, + "end": 7835.7, + "probability": 0.9184 + }, + { + "start": 7836.96, + "end": 7837.16, + "probability": 0.7124 + }, + { + "start": 7837.76, + "end": 7839.8, + "probability": 0.9033 + }, + { + "start": 7840.84, + "end": 7842.9, + "probability": 0.7291 + }, + { + "start": 7843.46, + "end": 7845.56, + "probability": 0.9915 + }, + { + "start": 7845.66, + "end": 7847.95, + "probability": 0.8992 + }, + { + "start": 7848.5, + "end": 7852.2, + "probability": 0.9789 + }, + { + "start": 7852.58, + "end": 7858.48, + "probability": 0.8545 + }, + { + "start": 7858.9, + "end": 7859.56, + "probability": 0.8231 + }, + { + "start": 7859.7, + "end": 7860.6, + "probability": 0.8553 + }, + { + "start": 7862.02, + "end": 7862.6, + "probability": 0.5801 + }, + { + "start": 7863.16, + "end": 7864.0, + "probability": 0.651 + }, + { + "start": 7864.66, + "end": 7865.56, + "probability": 0.8525 + }, + { + "start": 7865.56, + "end": 7866.48, + "probability": 0.5866 + }, + { + "start": 7866.56, + "end": 7868.2, + "probability": 0.9552 + }, + { + "start": 7868.78, + "end": 7869.71, + "probability": 0.8296 + }, + { + "start": 7869.96, + "end": 7870.8, + "probability": 0.7438 + }, + { + "start": 7871.58, + "end": 7871.58, + "probability": 0.0575 + }, + { + "start": 7871.58, + "end": 7872.2, + "probability": 0.2019 + }, + { + "start": 7872.84, + "end": 7876.06, + "probability": 0.6815 + }, + { + "start": 7876.1, + "end": 7877.36, + "probability": 0.1846 + }, + { + "start": 7877.42, + "end": 7878.8, + "probability": 0.5142 + }, + { + "start": 7879.08, + "end": 7881.8, + "probability": 0.7306 + }, + { + "start": 7881.92, + "end": 7886.42, + "probability": 0.9884 + }, + { + "start": 7886.88, + "end": 7889.16, + "probability": 0.918 + }, + { + "start": 7889.24, + "end": 7891.74, + "probability": 0.8821 + }, + { + "start": 7892.06, + "end": 7893.7, + "probability": 0.7497 + }, + { + "start": 7894.04, + "end": 7897.42, + "probability": 0.9604 + }, + { + "start": 7897.72, + "end": 7901.04, + "probability": 0.9661 + }, + { + "start": 7901.64, + "end": 7901.8, + "probability": 0.2433 + }, + { + "start": 7901.8, + "end": 7903.44, + "probability": 0.7093 + }, + { + "start": 7903.82, + "end": 7906.8, + "probability": 0.933 + }, + { + "start": 7907.28, + "end": 7907.8, + "probability": 0.9458 + }, + { + "start": 7908.38, + "end": 7910.5, + "probability": 0.8062 + }, + { + "start": 7910.82, + "end": 7912.72, + "probability": 0.9939 + }, + { + "start": 7914.22, + "end": 7915.44, + "probability": 0.8221 + }, + { + "start": 7916.0, + "end": 7916.82, + "probability": 0.9794 + }, + { + "start": 7917.62, + "end": 7923.2, + "probability": 0.8229 + }, + { + "start": 7923.72, + "end": 7927.02, + "probability": 0.7713 + }, + { + "start": 7927.32, + "end": 7927.7, + "probability": 0.7212 + }, + { + "start": 7928.4, + "end": 7931.0, + "probability": 0.8514 + }, + { + "start": 7931.5, + "end": 7932.3, + "probability": 0.8573 + }, + { + "start": 7932.8, + "end": 7935.68, + "probability": 0.9762 + }, + { + "start": 7935.72, + "end": 7939.24, + "probability": 0.9939 + }, + { + "start": 7939.36, + "end": 7940.94, + "probability": 0.832 + }, + { + "start": 7941.26, + "end": 7942.08, + "probability": 0.8795 + }, + { + "start": 7942.28, + "end": 7943.47, + "probability": 0.9414 + }, + { + "start": 7943.92, + "end": 7944.14, + "probability": 0.6352 + }, + { + "start": 7944.18, + "end": 7944.62, + "probability": 0.5248 + }, + { + "start": 7945.28, + "end": 7946.6, + "probability": 0.5952 + }, + { + "start": 7947.16, + "end": 7951.84, + "probability": 0.905 + }, + { + "start": 7952.44, + "end": 7954.46, + "probability": 0.879 + }, + { + "start": 7954.7, + "end": 7957.02, + "probability": 0.747 + }, + { + "start": 7957.3, + "end": 7957.66, + "probability": 0.982 + }, + { + "start": 7958.58, + "end": 7960.98, + "probability": 0.9824 + }, + { + "start": 7961.5, + "end": 7963.48, + "probability": 0.8649 + }, + { + "start": 7964.27, + "end": 7967.06, + "probability": 0.9285 + }, + { + "start": 7977.96, + "end": 7978.06, + "probability": 0.4679 + }, + { + "start": 7978.68, + "end": 7980.38, + "probability": 0.7832 + }, + { + "start": 7982.14, + "end": 7985.74, + "probability": 0.9697 + }, + { + "start": 7987.18, + "end": 7989.94, + "probability": 0.9404 + }, + { + "start": 7991.28, + "end": 7992.44, + "probability": 0.8446 + }, + { + "start": 7994.02, + "end": 7996.72, + "probability": 0.9465 + }, + { + "start": 7998.32, + "end": 8002.32, + "probability": 0.915 + }, + { + "start": 8003.22, + "end": 8004.08, + "probability": 0.8081 + }, + { + "start": 8004.8, + "end": 8007.52, + "probability": 0.9851 + }, + { + "start": 8008.32, + "end": 8010.52, + "probability": 0.7458 + }, + { + "start": 8011.82, + "end": 8013.2, + "probability": 0.8463 + }, + { + "start": 8016.44, + "end": 8020.2, + "probability": 0.6959 + }, + { + "start": 8021.56, + "end": 8023.82, + "probability": 0.9908 + }, + { + "start": 8025.04, + "end": 8031.18, + "probability": 0.9924 + }, + { + "start": 8032.76, + "end": 8033.26, + "probability": 0.0097 + }, + { + "start": 8033.58, + "end": 8033.72, + "probability": 0.0996 + }, + { + "start": 8036.12, + "end": 8036.94, + "probability": 0.5879 + }, + { + "start": 8038.18, + "end": 8040.1, + "probability": 0.8831 + }, + { + "start": 8040.46, + "end": 8042.28, + "probability": 0.4468 + }, + { + "start": 8042.28, + "end": 8042.28, + "probability": 0.0985 + }, + { + "start": 8042.28, + "end": 8042.98, + "probability": 0.3267 + }, + { + "start": 8043.04, + "end": 8048.68, + "probability": 0.9685 + }, + { + "start": 8048.82, + "end": 8049.54, + "probability": 0.6482 + }, + { + "start": 8049.66, + "end": 8050.0, + "probability": 0.5296 + }, + { + "start": 8054.86, + "end": 8056.22, + "probability": 0.4196 + }, + { + "start": 8056.92, + "end": 8058.58, + "probability": 0.9961 + }, + { + "start": 8059.36, + "end": 8059.8, + "probability": 0.9091 + }, + { + "start": 8060.66, + "end": 8064.1, + "probability": 0.9601 + }, + { + "start": 8064.54, + "end": 8065.22, + "probability": 0.7109 + }, + { + "start": 8065.68, + "end": 8072.69, + "probability": 0.9159 + }, + { + "start": 8073.38, + "end": 8079.1, + "probability": 0.3503 + }, + { + "start": 8080.28, + "end": 8084.08, + "probability": 0.6024 + }, + { + "start": 8084.84, + "end": 8085.1, + "probability": 0.9684 + }, + { + "start": 8087.66, + "end": 8088.66, + "probability": 0.2983 + }, + { + "start": 8088.84, + "end": 8096.28, + "probability": 0.9815 + }, + { + "start": 8097.5, + "end": 8101.36, + "probability": 0.9233 + }, + { + "start": 8105.75, + "end": 8108.04, + "probability": 0.999 + }, + { + "start": 8108.58, + "end": 8110.04, + "probability": 0.9834 + }, + { + "start": 8111.32, + "end": 8116.92, + "probability": 0.974 + }, + { + "start": 8117.14, + "end": 8117.58, + "probability": 0.4975 + }, + { + "start": 8118.44, + "end": 8121.62, + "probability": 0.58 + }, + { + "start": 8122.9, + "end": 8123.74, + "probability": 0.9995 + }, + { + "start": 8124.88, + "end": 8127.7, + "probability": 0.9905 + }, + { + "start": 8128.64, + "end": 8131.42, + "probability": 0.7805 + }, + { + "start": 8132.54, + "end": 8137.06, + "probability": 0.9776 + }, + { + "start": 8138.08, + "end": 8145.26, + "probability": 0.9888 + }, + { + "start": 8146.06, + "end": 8152.22, + "probability": 0.991 + }, + { + "start": 8152.76, + "end": 8155.5, + "probability": 0.9666 + }, + { + "start": 8156.14, + "end": 8156.4, + "probability": 0.6218 + }, + { + "start": 8157.34, + "end": 8158.32, + "probability": 0.7421 + }, + { + "start": 8161.39, + "end": 8164.9, + "probability": 0.6681 + }, + { + "start": 8165.42, + "end": 8167.7, + "probability": 0.6255 + }, + { + "start": 8167.76, + "end": 8168.28, + "probability": 0.9404 + }, + { + "start": 8169.32, + "end": 8171.12, + "probability": 0.8757 + }, + { + "start": 8172.86, + "end": 8176.2, + "probability": 0.2064 + }, + { + "start": 8176.2, + "end": 8176.3, + "probability": 0.002 + }, + { + "start": 8176.3, + "end": 8177.44, + "probability": 0.814 + }, + { + "start": 8178.04, + "end": 8178.3, + "probability": 0.2023 + }, + { + "start": 8178.3, + "end": 8178.3, + "probability": 0.1295 + }, + { + "start": 8178.3, + "end": 8178.54, + "probability": 0.6906 + }, + { + "start": 8178.62, + "end": 8179.54, + "probability": 0.7718 + }, + { + "start": 8180.6, + "end": 8182.96, + "probability": 0.9394 + }, + { + "start": 8183.6, + "end": 8187.52, + "probability": 0.9632 + }, + { + "start": 8188.18, + "end": 8191.52, + "probability": 0.2979 + }, + { + "start": 8192.72, + "end": 8193.76, + "probability": 0.7106 + }, + { + "start": 8194.2, + "end": 8197.62, + "probability": 0.9775 + }, + { + "start": 8197.72, + "end": 8198.92, + "probability": 0.8457 + }, + { + "start": 8199.62, + "end": 8203.36, + "probability": 0.9131 + }, + { + "start": 8203.86, + "end": 8204.5, + "probability": 0.8194 + }, + { + "start": 8205.06, + "end": 8211.14, + "probability": 0.8613 + }, + { + "start": 8212.23, + "end": 8215.44, + "probability": 0.9901 + }, + { + "start": 8215.94, + "end": 8216.84, + "probability": 0.8184 + }, + { + "start": 8219.1, + "end": 8219.8, + "probability": 0.6105 + }, + { + "start": 8220.86, + "end": 8224.34, + "probability": 0.84 + }, + { + "start": 8224.4, + "end": 8225.1, + "probability": 0.7416 + }, + { + "start": 8225.44, + "end": 8226.24, + "probability": 0.5399 + }, + { + "start": 8226.7, + "end": 8227.86, + "probability": 0.8299 + }, + { + "start": 8227.88, + "end": 8232.18, + "probability": 0.8313 + }, + { + "start": 8232.34, + "end": 8232.62, + "probability": 0.3972 + }, + { + "start": 8232.7, + "end": 8235.14, + "probability": 0.5107 + }, + { + "start": 8236.02, + "end": 8236.86, + "probability": 0.5251 + }, + { + "start": 8237.02, + "end": 8237.26, + "probability": 0.0051 + }, + { + "start": 8237.26, + "end": 8237.26, + "probability": 0.1756 + }, + { + "start": 8237.26, + "end": 8238.85, + "probability": 0.1723 + }, + { + "start": 8240.02, + "end": 8242.9, + "probability": 0.599 + }, + { + "start": 8244.38, + "end": 8246.24, + "probability": 0.5278 + }, + { + "start": 8246.32, + "end": 8248.31, + "probability": 0.7822 + }, + { + "start": 8249.92, + "end": 8250.92, + "probability": 0.8872 + }, + { + "start": 8252.02, + "end": 8254.56, + "probability": 0.9492 + }, + { + "start": 8254.94, + "end": 8257.5, + "probability": 0.6654 + }, + { + "start": 8258.04, + "end": 8261.64, + "probability": 0.7918 + }, + { + "start": 8262.1, + "end": 8265.02, + "probability": 0.9048 + }, + { + "start": 8265.18, + "end": 8267.84, + "probability": 0.8453 + }, + { + "start": 8267.84, + "end": 8272.9, + "probability": 0.9683 + }, + { + "start": 8273.78, + "end": 8274.62, + "probability": 0.3907 + }, + { + "start": 8275.06, + "end": 8279.28, + "probability": 0.6567 + }, + { + "start": 8279.48, + "end": 8281.16, + "probability": 0.5312 + }, + { + "start": 8281.16, + "end": 8281.2, + "probability": 0.0706 + }, + { + "start": 8281.2, + "end": 8281.2, + "probability": 0.1795 + }, + { + "start": 8281.58, + "end": 8285.54, + "probability": 0.6101 + }, + { + "start": 8286.44, + "end": 8290.38, + "probability": 0.7471 + }, + { + "start": 8290.44, + "end": 8290.44, + "probability": 0.0253 + }, + { + "start": 8290.44, + "end": 8290.44, + "probability": 0.0243 + }, + { + "start": 8290.44, + "end": 8291.92, + "probability": 0.6543 + }, + { + "start": 8292.26, + "end": 8293.72, + "probability": 0.9197 + }, + { + "start": 8294.32, + "end": 8295.36, + "probability": 0.5761 + }, + { + "start": 8295.92, + "end": 8298.32, + "probability": 0.9705 + }, + { + "start": 8299.36, + "end": 8301.2, + "probability": 0.9585 + }, + { + "start": 8313.43, + "end": 8315.99, + "probability": 0.7482 + }, + { + "start": 8316.6, + "end": 8317.94, + "probability": 0.9653 + }, + { + "start": 8320.18, + "end": 8322.96, + "probability": 0.8734 + }, + { + "start": 8324.16, + "end": 8325.44, + "probability": 0.6148 + }, + { + "start": 8327.48, + "end": 8330.58, + "probability": 0.9805 + }, + { + "start": 8330.76, + "end": 8334.92, + "probability": 0.9896 + }, + { + "start": 8336.02, + "end": 8337.68, + "probability": 0.9832 + }, + { + "start": 8339.04, + "end": 8340.2, + "probability": 0.7921 + }, + { + "start": 8341.12, + "end": 8345.48, + "probability": 0.9614 + }, + { + "start": 8346.28, + "end": 8347.94, + "probability": 0.9211 + }, + { + "start": 8348.6, + "end": 8349.45, + "probability": 0.8524 + }, + { + "start": 8349.72, + "end": 8352.52, + "probability": 0.2827 + }, + { + "start": 8353.2, + "end": 8355.82, + "probability": 0.799 + }, + { + "start": 8356.16, + "end": 8356.16, + "probability": 0.1639 + }, + { + "start": 8356.16, + "end": 8357.54, + "probability": 0.5348 + }, + { + "start": 8358.08, + "end": 8360.68, + "probability": 0.2968 + }, + { + "start": 8361.38, + "end": 8363.5, + "probability": 0.7195 + }, + { + "start": 8368.76, + "end": 8373.14, + "probability": 0.9869 + }, + { + "start": 8373.14, + "end": 8379.44, + "probability": 0.9927 + }, + { + "start": 8380.48, + "end": 8382.4, + "probability": 0.9657 + }, + { + "start": 8382.62, + "end": 8382.9, + "probability": 0.6975 + }, + { + "start": 8382.94, + "end": 8386.26, + "probability": 0.9952 + }, + { + "start": 8387.48, + "end": 8389.0, + "probability": 0.8194 + }, + { + "start": 8390.14, + "end": 8392.62, + "probability": 0.9855 + }, + { + "start": 8392.82, + "end": 8393.96, + "probability": 0.7483 + }, + { + "start": 8394.78, + "end": 8398.14, + "probability": 0.998 + }, + { + "start": 8400.3, + "end": 8402.88, + "probability": 0.9901 + }, + { + "start": 8404.48, + "end": 8406.26, + "probability": 0.8903 + }, + { + "start": 8408.36, + "end": 8411.56, + "probability": 0.9574 + }, + { + "start": 8413.9, + "end": 8422.58, + "probability": 0.9182 + }, + { + "start": 8424.3, + "end": 8427.18, + "probability": 0.8644 + }, + { + "start": 8427.8, + "end": 8434.22, + "probability": 0.9899 + }, + { + "start": 8436.4, + "end": 8440.64, + "probability": 0.9294 + }, + { + "start": 8441.94, + "end": 8447.42, + "probability": 0.9959 + }, + { + "start": 8447.64, + "end": 8452.78, + "probability": 0.9469 + }, + { + "start": 8452.78, + "end": 8457.08, + "probability": 0.9727 + }, + { + "start": 8457.9, + "end": 8459.16, + "probability": 0.6265 + }, + { + "start": 8460.04, + "end": 8466.3, + "probability": 0.9681 + }, + { + "start": 8466.48, + "end": 8467.72, + "probability": 0.9784 + }, + { + "start": 8467.88, + "end": 8469.28, + "probability": 0.946 + }, + { + "start": 8469.8, + "end": 8473.04, + "probability": 0.9961 + }, + { + "start": 8474.86, + "end": 8478.66, + "probability": 0.9974 + }, + { + "start": 8478.66, + "end": 8483.68, + "probability": 0.9956 + }, + { + "start": 8484.98, + "end": 8493.36, + "probability": 0.9825 + }, + { + "start": 8494.16, + "end": 8494.7, + "probability": 0.5138 + }, + { + "start": 8494.76, + "end": 8497.02, + "probability": 0.9941 + }, + { + "start": 8497.52, + "end": 8498.92, + "probability": 0.9663 + }, + { + "start": 8499.28, + "end": 8500.94, + "probability": 0.9563 + }, + { + "start": 8502.62, + "end": 8505.48, + "probability": 0.9928 + }, + { + "start": 8507.74, + "end": 8511.2, + "probability": 0.9964 + }, + { + "start": 8511.7, + "end": 8512.88, + "probability": 0.7213 + }, + { + "start": 8513.28, + "end": 8515.72, + "probability": 0.5758 + }, + { + "start": 8515.86, + "end": 8516.44, + "probability": 0.7758 + }, + { + "start": 8516.62, + "end": 8518.46, + "probability": 0.7746 + }, + { + "start": 8518.7, + "end": 8522.06, + "probability": 0.9531 + }, + { + "start": 8522.6, + "end": 8523.8, + "probability": 0.9946 + }, + { + "start": 8526.04, + "end": 8528.52, + "probability": 0.8735 + }, + { + "start": 8530.34, + "end": 8531.46, + "probability": 0.972 + }, + { + "start": 8532.72, + "end": 8536.28, + "probability": 0.8443 + }, + { + "start": 8538.34, + "end": 8541.26, + "probability": 0.893 + }, + { + "start": 8542.12, + "end": 8547.56, + "probability": 0.96 + }, + { + "start": 8547.74, + "end": 8549.68, + "probability": 0.9939 + }, + { + "start": 8551.74, + "end": 8554.72, + "probability": 0.9212 + }, + { + "start": 8555.3, + "end": 8561.98, + "probability": 0.991 + }, + { + "start": 8563.3, + "end": 8568.1, + "probability": 0.8662 + }, + { + "start": 8570.12, + "end": 8573.8, + "probability": 0.9501 + }, + { + "start": 8574.88, + "end": 8578.1, + "probability": 0.9036 + }, + { + "start": 8578.72, + "end": 8586.22, + "probability": 0.9755 + }, + { + "start": 8586.48, + "end": 8587.96, + "probability": 0.9888 + }, + { + "start": 8588.12, + "end": 8589.78, + "probability": 0.9118 + }, + { + "start": 8590.88, + "end": 8595.14, + "probability": 0.984 + }, + { + "start": 8596.42, + "end": 8597.16, + "probability": 0.5047 + }, + { + "start": 8598.7, + "end": 8600.82, + "probability": 0.993 + }, + { + "start": 8601.6, + "end": 8603.02, + "probability": 0.8246 + }, + { + "start": 8605.8, + "end": 8606.98, + "probability": 0.7591 + }, + { + "start": 8607.4, + "end": 8612.98, + "probability": 0.9898 + }, + { + "start": 8613.58, + "end": 8618.2, + "probability": 0.9928 + }, + { + "start": 8619.36, + "end": 8621.98, + "probability": 0.7799 + }, + { + "start": 8623.06, + "end": 8624.2, + "probability": 0.9345 + }, + { + "start": 8624.3, + "end": 8625.12, + "probability": 0.8444 + }, + { + "start": 8625.22, + "end": 8627.82, + "probability": 0.9911 + }, + { + "start": 8628.66, + "end": 8633.12, + "probability": 0.9535 + }, + { + "start": 8633.16, + "end": 8636.74, + "probability": 0.9873 + }, + { + "start": 8637.32, + "end": 8638.62, + "probability": 0.8478 + }, + { + "start": 8638.9, + "end": 8641.08, + "probability": 0.9139 + }, + { + "start": 8641.24, + "end": 8641.62, + "probability": 0.3651 + }, + { + "start": 8642.0, + "end": 8644.12, + "probability": 0.9976 + }, + { + "start": 8645.02, + "end": 8645.1, + "probability": 0.398 + }, + { + "start": 8645.1, + "end": 8645.1, + "probability": 0.0561 + }, + { + "start": 8645.1, + "end": 8648.74, + "probability": 0.9819 + }, + { + "start": 8649.52, + "end": 8651.4, + "probability": 0.9761 + }, + { + "start": 8651.48, + "end": 8656.46, + "probability": 0.9701 + }, + { + "start": 8673.47, + "end": 8673.7, + "probability": 0.0124 + }, + { + "start": 8673.7, + "end": 8673.72, + "probability": 0.3341 + }, + { + "start": 8673.72, + "end": 8673.72, + "probability": 0.175 + }, + { + "start": 8673.72, + "end": 8673.72, + "probability": 0.0128 + }, + { + "start": 8673.72, + "end": 8673.72, + "probability": 0.1264 + }, + { + "start": 8673.72, + "end": 8673.72, + "probability": 0.0145 + }, + { + "start": 8673.72, + "end": 8673.72, + "probability": 0.0608 + }, + { + "start": 8768.0, + "end": 8768.0, + "probability": 0.0 + }, + { + "start": 8768.0, + "end": 8768.0, + "probability": 0.0 + }, + { + "start": 8768.0, + "end": 8768.0, + "probability": 0.0 + }, + { + "start": 8769.2, + "end": 8769.62, + "probability": 0.696 + }, + { + "start": 8771.18, + "end": 8773.48, + "probability": 0.6111 + }, + { + "start": 8777.7, + "end": 8780.14, + "probability": 0.8311 + }, + { + "start": 8781.64, + "end": 8783.5, + "probability": 0.6099 + }, + { + "start": 8787.94, + "end": 8790.4, + "probability": 0.9991 + }, + { + "start": 8791.6, + "end": 8796.44, + "probability": 0.999 + }, + { + "start": 8796.58, + "end": 8797.16, + "probability": 0.8746 + }, + { + "start": 8797.3, + "end": 8797.82, + "probability": 0.9616 + }, + { + "start": 8798.94, + "end": 8800.6, + "probability": 0.9818 + }, + { + "start": 8802.52, + "end": 8803.76, + "probability": 0.9993 + }, + { + "start": 8805.1, + "end": 8807.96, + "probability": 0.9781 + }, + { + "start": 8808.86, + "end": 8809.82, + "probability": 0.9852 + }, + { + "start": 8811.26, + "end": 8813.98, + "probability": 0.8722 + }, + { + "start": 8815.45, + "end": 8816.48, + "probability": 0.2004 + }, + { + "start": 8816.98, + "end": 8816.98, + "probability": 0.4472 + }, + { + "start": 8816.98, + "end": 8819.22, + "probability": 0.7721 + }, + { + "start": 8819.82, + "end": 8823.78, + "probability": 0.964 + }, + { + "start": 8825.54, + "end": 8825.64, + "probability": 0.0836 + }, + { + "start": 8825.64, + "end": 8826.98, + "probability": 0.7769 + }, + { + "start": 8828.36, + "end": 8839.21, + "probability": 0.9976 + }, + { + "start": 8841.24, + "end": 8845.22, + "probability": 0.9989 + }, + { + "start": 8846.8, + "end": 8850.16, + "probability": 0.7899 + }, + { + "start": 8851.02, + "end": 8853.38, + "probability": 0.8005 + }, + { + "start": 8853.98, + "end": 8858.08, + "probability": 0.9675 + }, + { + "start": 8860.94, + "end": 8862.5, + "probability": 0.8017 + }, + { + "start": 8868.19, + "end": 8872.0, + "probability": 0.913 + }, + { + "start": 8873.44, + "end": 8875.42, + "probability": 0.7671 + }, + { + "start": 8876.58, + "end": 8878.66, + "probability": 0.9695 + }, + { + "start": 8880.54, + "end": 8883.06, + "probability": 0.9851 + }, + { + "start": 8883.74, + "end": 8885.2, + "probability": 0.9795 + }, + { + "start": 8887.28, + "end": 8889.78, + "probability": 0.9766 + }, + { + "start": 8890.88, + "end": 8893.88, + "probability": 0.962 + }, + { + "start": 8895.02, + "end": 8896.66, + "probability": 0.9924 + }, + { + "start": 8898.18, + "end": 8905.52, + "probability": 0.9968 + }, + { + "start": 8906.74, + "end": 8912.86, + "probability": 0.9698 + }, + { + "start": 8913.44, + "end": 8916.54, + "probability": 0.9961 + }, + { + "start": 8918.68, + "end": 8919.48, + "probability": 0.7293 + }, + { + "start": 8920.28, + "end": 8922.76, + "probability": 0.8726 + }, + { + "start": 8923.26, + "end": 8925.0, + "probability": 0.9529 + }, + { + "start": 8925.36, + "end": 8926.26, + "probability": 0.8947 + }, + { + "start": 8926.92, + "end": 8927.56, + "probability": 0.9778 + }, + { + "start": 8933.36, + "end": 8937.42, + "probability": 0.8629 + }, + { + "start": 8938.28, + "end": 8940.36, + "probability": 0.9435 + }, + { + "start": 8941.74, + "end": 8942.34, + "probability": 0.9823 + }, + { + "start": 8943.08, + "end": 8944.04, + "probability": 0.8959 + }, + { + "start": 8945.02, + "end": 8946.3, + "probability": 0.9936 + }, + { + "start": 8946.96, + "end": 8947.48, + "probability": 0.9816 + }, + { + "start": 8948.04, + "end": 8951.74, + "probability": 0.9622 + }, + { + "start": 8952.22, + "end": 8955.28, + "probability": 0.991 + }, + { + "start": 8955.8, + "end": 8961.06, + "probability": 0.8611 + }, + { + "start": 8961.76, + "end": 8964.26, + "probability": 0.9634 + }, + { + "start": 8964.84, + "end": 8969.56, + "probability": 0.9961 + }, + { + "start": 8970.1, + "end": 8974.42, + "probability": 0.9856 + }, + { + "start": 8977.86, + "end": 8979.74, + "probability": 0.8451 + }, + { + "start": 8981.82, + "end": 8982.76, + "probability": 0.5204 + }, + { + "start": 8984.14, + "end": 8990.78, + "probability": 0.9016 + }, + { + "start": 8991.48, + "end": 8992.8, + "probability": 0.6076 + }, + { + "start": 8992.82, + "end": 8995.14, + "probability": 0.9779 + }, + { + "start": 8995.42, + "end": 8997.94, + "probability": 0.9325 + }, + { + "start": 8998.04, + "end": 8999.54, + "probability": 0.7615 + }, + { + "start": 9000.0, + "end": 9006.66, + "probability": 0.9915 + }, + { + "start": 9008.74, + "end": 9014.9, + "probability": 0.0452 + }, + { + "start": 9016.16, + "end": 9017.52, + "probability": 0.9565 + }, + { + "start": 9018.36, + "end": 9019.5, + "probability": 0.6485 + }, + { + "start": 9021.68, + "end": 9024.38, + "probability": 0.9698 + }, + { + "start": 9026.62, + "end": 9032.42, + "probability": 0.9922 + }, + { + "start": 9034.06, + "end": 9039.96, + "probability": 0.9947 + }, + { + "start": 9041.0, + "end": 9045.89, + "probability": 0.9956 + }, + { + "start": 9046.5, + "end": 9051.56, + "probability": 0.9628 + }, + { + "start": 9052.92, + "end": 9057.83, + "probability": 0.7643 + }, + { + "start": 9058.2, + "end": 9063.55, + "probability": 0.9127 + }, + { + "start": 9064.22, + "end": 9065.06, + "probability": 0.9902 + }, + { + "start": 9065.76, + "end": 9066.98, + "probability": 0.8761 + }, + { + "start": 9068.34, + "end": 9068.86, + "probability": 0.0813 + }, + { + "start": 9076.28, + "end": 9076.56, + "probability": 0.2788 + }, + { + "start": 9078.92, + "end": 9079.76, + "probability": 0.0616 + }, + { + "start": 9081.58, + "end": 9081.68, + "probability": 0.2644 + }, + { + "start": 9081.68, + "end": 9087.96, + "probability": 0.9806 + }, + { + "start": 9088.08, + "end": 9089.4, + "probability": 0.8672 + }, + { + "start": 9089.56, + "end": 9094.02, + "probability": 0.9894 + }, + { + "start": 9094.52, + "end": 9096.68, + "probability": 0.9985 + }, + { + "start": 9097.18, + "end": 9099.94, + "probability": 0.9575 + }, + { + "start": 9100.24, + "end": 9101.84, + "probability": 0.562 + }, + { + "start": 9103.2, + "end": 9107.3, + "probability": 0.5126 + }, + { + "start": 9107.78, + "end": 9109.06, + "probability": 0.7066 + }, + { + "start": 9109.26, + "end": 9110.42, + "probability": 0.8683 + }, + { + "start": 9110.6, + "end": 9114.66, + "probability": 0.9761 + }, + { + "start": 9114.9, + "end": 9119.24, + "probability": 0.9017 + }, + { + "start": 9119.92, + "end": 9121.1, + "probability": 0.1339 + }, + { + "start": 9121.98, + "end": 9121.98, + "probability": 0.0563 + }, + { + "start": 9121.98, + "end": 9124.96, + "probability": 0.9802 + }, + { + "start": 9125.12, + "end": 9125.76, + "probability": 0.9377 + }, + { + "start": 9126.96, + "end": 9128.94, + "probability": 0.6279 + }, + { + "start": 9130.2, + "end": 9131.98, + "probability": 0.9916 + }, + { + "start": 9133.66, + "end": 9136.9, + "probability": 0.8996 + }, + { + "start": 9138.16, + "end": 9142.4, + "probability": 0.9946 + }, + { + "start": 9143.38, + "end": 9144.38, + "probability": 0.8872 + }, + { + "start": 9145.14, + "end": 9145.8, + "probability": 0.9775 + }, + { + "start": 9146.74, + "end": 9147.32, + "probability": 0.762 + }, + { + "start": 9147.34, + "end": 9148.1, + "probability": 0.8569 + }, + { + "start": 9148.8, + "end": 9150.94, + "probability": 0.9961 + }, + { + "start": 9151.86, + "end": 9152.56, + "probability": 0.9524 + }, + { + "start": 9153.22, + "end": 9154.58, + "probability": 0.9568 + }, + { + "start": 9155.72, + "end": 9160.24, + "probability": 0.9922 + }, + { + "start": 9162.34, + "end": 9166.68, + "probability": 0.9953 + }, + { + "start": 9168.18, + "end": 9170.12, + "probability": 0.5222 + }, + { + "start": 9170.64, + "end": 9173.0, + "probability": 0.9146 + }, + { + "start": 9173.46, + "end": 9176.64, + "probability": 0.989 + }, + { + "start": 9177.18, + "end": 9179.54, + "probability": 0.9543 + }, + { + "start": 9180.24, + "end": 9181.96, + "probability": 0.9044 + }, + { + "start": 9182.8, + "end": 9183.64, + "probability": 0.9181 + }, + { + "start": 9184.34, + "end": 9189.38, + "probability": 0.994 + }, + { + "start": 9190.34, + "end": 9191.3, + "probability": 0.5129 + }, + { + "start": 9192.26, + "end": 9193.96, + "probability": 0.994 + }, + { + "start": 9194.7, + "end": 9195.96, + "probability": 0.6436 + }, + { + "start": 9205.54, + "end": 9207.84, + "probability": 0.9542 + }, + { + "start": 9209.68, + "end": 9210.34, + "probability": 0.8651 + }, + { + "start": 9211.38, + "end": 9213.34, + "probability": 0.9792 + }, + { + "start": 9214.54, + "end": 9216.78, + "probability": 0.9851 + }, + { + "start": 9218.32, + "end": 9222.58, + "probability": 0.7981 + }, + { + "start": 9223.4, + "end": 9224.68, + "probability": 0.7383 + }, + { + "start": 9225.66, + "end": 9227.28, + "probability": 0.9641 + }, + { + "start": 9227.64, + "end": 9230.98, + "probability": 0.6705 + }, + { + "start": 9231.64, + "end": 9233.74, + "probability": 0.9351 + }, + { + "start": 9235.26, + "end": 9237.28, + "probability": 0.8898 + }, + { + "start": 9238.0, + "end": 9241.86, + "probability": 0.9559 + }, + { + "start": 9241.86, + "end": 9247.64, + "probability": 0.8616 + }, + { + "start": 9248.22, + "end": 9250.52, + "probability": 0.7705 + }, + { + "start": 9251.3, + "end": 9253.26, + "probability": 0.9501 + }, + { + "start": 9253.88, + "end": 9256.44, + "probability": 0.9835 + }, + { + "start": 9260.14, + "end": 9261.0, + "probability": 0.8508 + }, + { + "start": 9262.62, + "end": 9263.9, + "probability": 0.9461 + }, + { + "start": 9266.52, + "end": 9268.1, + "probability": 0.9877 + }, + { + "start": 9269.46, + "end": 9272.16, + "probability": 0.9782 + }, + { + "start": 9273.38, + "end": 9276.34, + "probability": 0.747 + }, + { + "start": 9276.42, + "end": 9276.96, + "probability": 0.7443 + }, + { + "start": 9280.16, + "end": 9281.84, + "probability": 0.578 + }, + { + "start": 9288.86, + "end": 9290.54, + "probability": 0.7302 + }, + { + "start": 9297.38, + "end": 9300.66, + "probability": 0.8669 + }, + { + "start": 9301.44, + "end": 9305.72, + "probability": 0.9922 + }, + { + "start": 9305.76, + "end": 9308.24, + "probability": 0.9662 + }, + { + "start": 9309.56, + "end": 9311.42, + "probability": 0.5569 + }, + { + "start": 9311.8, + "end": 9314.48, + "probability": 0.9972 + }, + { + "start": 9315.24, + "end": 9317.3, + "probability": 0.9607 + }, + { + "start": 9318.78, + "end": 9320.12, + "probability": 0.598 + }, + { + "start": 9320.82, + "end": 9321.2, + "probability": 0.2781 + }, + { + "start": 9322.18, + "end": 9324.16, + "probability": 0.4605 + }, + { + "start": 9325.52, + "end": 9328.54, + "probability": 0.9071 + }, + { + "start": 9328.68, + "end": 9331.2, + "probability": 0.9836 + }, + { + "start": 9332.28, + "end": 9332.76, + "probability": 0.5244 + }, + { + "start": 9333.46, + "end": 9336.46, + "probability": 0.8687 + }, + { + "start": 9337.74, + "end": 9339.64, + "probability": 0.9294 + }, + { + "start": 9340.22, + "end": 9342.52, + "probability": 0.9268 + }, + { + "start": 9344.4, + "end": 9349.12, + "probability": 0.9902 + }, + { + "start": 9349.52, + "end": 9352.04, + "probability": 0.9545 + }, + { + "start": 9355.78, + "end": 9359.24, + "probability": 0.9599 + }, + { + "start": 9361.14, + "end": 9361.96, + "probability": 0.8556 + }, + { + "start": 9362.6, + "end": 9363.44, + "probability": 0.8926 + }, + { + "start": 9363.86, + "end": 9365.16, + "probability": 0.6098 + }, + { + "start": 9365.48, + "end": 9367.0, + "probability": 0.9354 + }, + { + "start": 9367.64, + "end": 9369.88, + "probability": 0.9668 + }, + { + "start": 9370.72, + "end": 9374.22, + "probability": 0.9951 + }, + { + "start": 9375.52, + "end": 9378.24, + "probability": 0.9997 + }, + { + "start": 9379.38, + "end": 9380.88, + "probability": 0.7309 + }, + { + "start": 9381.5, + "end": 9384.62, + "probability": 0.9927 + }, + { + "start": 9385.26, + "end": 9386.26, + "probability": 0.7627 + }, + { + "start": 9386.82, + "end": 9388.12, + "probability": 0.3314 + }, + { + "start": 9389.2, + "end": 9389.7, + "probability": 0.0874 + }, + { + "start": 9391.32, + "end": 9393.04, + "probability": 0.8295 + }, + { + "start": 9393.32, + "end": 9394.84, + "probability": 0.907 + }, + { + "start": 9396.28, + "end": 9400.58, + "probability": 0.8993 + }, + { + "start": 9400.94, + "end": 9404.08, + "probability": 0.8499 + }, + { + "start": 9404.98, + "end": 9406.84, + "probability": 0.9225 + }, + { + "start": 9407.18, + "end": 9409.26, + "probability": 0.7329 + }, + { + "start": 9412.02, + "end": 9414.78, + "probability": 0.8861 + }, + { + "start": 9414.78, + "end": 9417.78, + "probability": 0.9966 + }, + { + "start": 9418.22, + "end": 9421.6, + "probability": 0.78 + }, + { + "start": 9422.0, + "end": 9424.9, + "probability": 0.9941 + }, + { + "start": 9425.08, + "end": 9425.48, + "probability": 0.3337 + }, + { + "start": 9425.54, + "end": 9426.04, + "probability": 0.4861 + }, + { + "start": 9426.14, + "end": 9426.92, + "probability": 0.6571 + }, + { + "start": 9443.44, + "end": 9445.52, + "probability": 0.2053 + }, + { + "start": 9446.46, + "end": 9452.68, + "probability": 0.9619 + }, + { + "start": 9453.44, + "end": 9454.94, + "probability": 0.9463 + }, + { + "start": 9454.98, + "end": 9455.88, + "probability": 0.9771 + }, + { + "start": 9456.16, + "end": 9459.64, + "probability": 0.7576 + }, + { + "start": 9460.22, + "end": 9462.58, + "probability": 0.8164 + }, + { + "start": 9462.72, + "end": 9464.52, + "probability": 0.8038 + }, + { + "start": 9465.16, + "end": 9469.34, + "probability": 0.8329 + }, + { + "start": 9469.46, + "end": 9470.6, + "probability": 0.8096 + }, + { + "start": 9471.0, + "end": 9472.58, + "probability": 0.9369 + }, + { + "start": 9473.0, + "end": 9475.56, + "probability": 0.9697 + }, + { + "start": 9476.02, + "end": 9476.56, + "probability": 0.4665 + }, + { + "start": 9476.66, + "end": 9477.24, + "probability": 0.5369 + }, + { + "start": 9477.28, + "end": 9477.92, + "probability": 0.6446 + }, + { + "start": 9493.58, + "end": 9494.4, + "probability": 0.1127 + }, + { + "start": 9494.4, + "end": 9494.4, + "probability": 0.1798 + }, + { + "start": 9495.1, + "end": 9496.96, + "probability": 0.6169 + }, + { + "start": 9497.14, + "end": 9499.66, + "probability": 0.9543 + }, + { + "start": 9500.76, + "end": 9501.12, + "probability": 0.2538 + }, + { + "start": 9501.22, + "end": 9506.42, + "probability": 0.8932 + }, + { + "start": 9506.56, + "end": 9507.88, + "probability": 0.8027 + }, + { + "start": 9508.3, + "end": 9511.32, + "probability": 0.9639 + }, + { + "start": 9511.36, + "end": 9511.92, + "probability": 0.3339 + }, + { + "start": 9512.0, + "end": 9512.56, + "probability": 0.4238 + }, + { + "start": 9512.58, + "end": 9513.16, + "probability": 0.5266 + }, + { + "start": 9516.6, + "end": 9519.78, + "probability": 0.5328 + }, + { + "start": 9522.14, + "end": 9522.14, + "probability": 0.0219 + }, + { + "start": 9522.14, + "end": 9522.18, + "probability": 0.0156 + }, + { + "start": 9522.18, + "end": 9522.5, + "probability": 0.0659 + }, + { + "start": 9522.5, + "end": 9522.5, + "probability": 0.0012 + }, + { + "start": 9533.06, + "end": 9535.54, + "probability": 0.436 + }, + { + "start": 9536.68, + "end": 9541.9, + "probability": 0.6531 + }, + { + "start": 9542.62, + "end": 9545.26, + "probability": 0.9761 + }, + { + "start": 9545.4, + "end": 9548.42, + "probability": 0.9939 + }, + { + "start": 9548.5, + "end": 9549.4, + "probability": 0.0985 + }, + { + "start": 9550.96, + "end": 9551.56, + "probability": 0.1731 + }, + { + "start": 9551.96, + "end": 9554.2, + "probability": 0.0188 + }, + { + "start": 9568.14, + "end": 9568.52, + "probability": 0.1894 + }, + { + "start": 9568.52, + "end": 9568.58, + "probability": 0.3115 + }, + { + "start": 9568.58, + "end": 9568.58, + "probability": 0.0967 + }, + { + "start": 9571.9, + "end": 9578.66, + "probability": 0.1634 + }, + { + "start": 9583.02, + "end": 9587.3, + "probability": 0.0307 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.0, + "end": 9631.0, + "probability": 0.0 + }, + { + "start": 9631.78, + "end": 9631.96, + "probability": 0.0187 + }, + { + "start": 9631.96, + "end": 9633.72, + "probability": 0.564 + }, + { + "start": 9634.06, + "end": 9637.66, + "probability": 0.936 + }, + { + "start": 9637.66, + "end": 9638.92, + "probability": 0.7487 + }, + { + "start": 9639.06, + "end": 9640.3, + "probability": 0.8105 + }, + { + "start": 9640.34, + "end": 9642.76, + "probability": 0.99 + }, + { + "start": 9642.94, + "end": 9646.8, + "probability": 0.7196 + }, + { + "start": 9646.9, + "end": 9648.32, + "probability": 0.8087 + }, + { + "start": 9649.56, + "end": 9650.14, + "probability": 0.3906 + }, + { + "start": 9650.4, + "end": 9656.76, + "probability": 0.9432 + }, + { + "start": 9657.3, + "end": 9662.94, + "probability": 0.9971 + }, + { + "start": 9663.66, + "end": 9664.92, + "probability": 0.9897 + }, + { + "start": 9666.34, + "end": 9668.16, + "probability": 0.7044 + }, + { + "start": 9670.02, + "end": 9674.48, + "probability": 0.5969 + }, + { + "start": 9674.52, + "end": 9675.54, + "probability": 0.6425 + }, + { + "start": 9676.12, + "end": 9677.56, + "probability": 0.9854 + }, + { + "start": 9677.64, + "end": 9679.06, + "probability": 0.974 + }, + { + "start": 9679.18, + "end": 9680.34, + "probability": 0.9917 + }, + { + "start": 9692.44, + "end": 9694.68, + "probability": 0.6945 + }, + { + "start": 9696.48, + "end": 9698.62, + "probability": 0.7239 + }, + { + "start": 9698.68, + "end": 9699.38, + "probability": 0.788 + }, + { + "start": 9699.52, + "end": 9703.34, + "probability": 0.9749 + }, + { + "start": 9707.88, + "end": 9709.98, + "probability": 0.969 + }, + { + "start": 9710.5, + "end": 9711.44, + "probability": 0.9594 + }, + { + "start": 9711.52, + "end": 9712.54, + "probability": 0.9155 + }, + { + "start": 9712.74, + "end": 9716.52, + "probability": 0.5281 + }, + { + "start": 9717.3, + "end": 9719.84, + "probability": 0.9536 + }, + { + "start": 9719.84, + "end": 9722.54, + "probability": 0.9429 + }, + { + "start": 9723.02, + "end": 9724.3, + "probability": 0.9377 + }, + { + "start": 9725.22, + "end": 9728.78, + "probability": 0.9928 + }, + { + "start": 9728.84, + "end": 9731.08, + "probability": 0.9788 + }, + { + "start": 9731.86, + "end": 9734.32, + "probability": 0.8955 + }, + { + "start": 9734.32, + "end": 9737.02, + "probability": 0.8827 + }, + { + "start": 9737.64, + "end": 9739.24, + "probability": 0.9047 + }, + { + "start": 9740.08, + "end": 9740.76, + "probability": 0.8877 + }, + { + "start": 9740.88, + "end": 9741.82, + "probability": 0.4309 + }, + { + "start": 9741.94, + "end": 9743.36, + "probability": 0.8745 + }, + { + "start": 9743.4, + "end": 9745.48, + "probability": 0.9538 + }, + { + "start": 9746.46, + "end": 9748.36, + "probability": 0.8335 + }, + { + "start": 9748.5, + "end": 9750.94, + "probability": 0.8835 + }, + { + "start": 9751.04, + "end": 9753.74, + "probability": 0.8949 + }, + { + "start": 9754.08, + "end": 9756.38, + "probability": 0.9889 + }, + { + "start": 9757.06, + "end": 9759.84, + "probability": 0.9271 + }, + { + "start": 9760.4, + "end": 9763.7, + "probability": 0.9928 + }, + { + "start": 9763.7, + "end": 9766.5, + "probability": 0.9976 + }, + { + "start": 9767.04, + "end": 9768.19, + "probability": 0.7785 + }, + { + "start": 9768.74, + "end": 9771.58, + "probability": 0.7482 + }, + { + "start": 9772.12, + "end": 9772.72, + "probability": 0.7324 + }, + { + "start": 9772.9, + "end": 9776.24, + "probability": 0.8843 + }, + { + "start": 9776.62, + "end": 9777.98, + "probability": 0.717 + }, + { + "start": 9778.28, + "end": 9781.3, + "probability": 0.9802 + }, + { + "start": 9781.64, + "end": 9782.86, + "probability": 0.9803 + }, + { + "start": 9784.92, + "end": 9785.62, + "probability": 0.3965 + }, + { + "start": 9785.82, + "end": 9786.16, + "probability": 0.4287 + }, + { + "start": 9786.34, + "end": 9786.98, + "probability": 0.7906 + }, + { + "start": 9787.1, + "end": 9787.98, + "probability": 0.4763 + }, + { + "start": 9788.08, + "end": 9788.94, + "probability": 0.8111 + }, + { + "start": 9789.1, + "end": 9790.06, + "probability": 0.7648 + }, + { + "start": 9790.14, + "end": 9791.06, + "probability": 0.8577 + }, + { + "start": 9791.16, + "end": 9791.8, + "probability": 0.7086 + }, + { + "start": 9791.88, + "end": 9792.34, + "probability": 0.8901 + }, + { + "start": 9792.54, + "end": 9793.3, + "probability": 0.7258 + }, + { + "start": 9793.76, + "end": 9797.3, + "probability": 0.9456 + }, + { + "start": 9797.76, + "end": 9799.48, + "probability": 0.9862 + }, + { + "start": 9801.42, + "end": 9803.44, + "probability": 0.8348 + }, + { + "start": 9804.48, + "end": 9805.74, + "probability": 0.9937 + }, + { + "start": 9806.76, + "end": 9809.72, + "probability": 0.9852 + }, + { + "start": 9811.14, + "end": 9817.92, + "probability": 0.9798 + }, + { + "start": 9818.64, + "end": 9821.12, + "probability": 0.9961 + }, + { + "start": 9821.78, + "end": 9824.94, + "probability": 0.9871 + }, + { + "start": 9825.6, + "end": 9827.6, + "probability": 0.7616 + }, + { + "start": 9828.5, + "end": 9830.46, + "probability": 0.6976 + }, + { + "start": 9831.74, + "end": 9835.2, + "probability": 0.878 + }, + { + "start": 9836.04, + "end": 9840.46, + "probability": 0.9567 + }, + { + "start": 9840.58, + "end": 9841.28, + "probability": 0.3419 + }, + { + "start": 9841.38, + "end": 9843.22, + "probability": 0.8481 + }, + { + "start": 9844.18, + "end": 9846.44, + "probability": 0.9471 + }, + { + "start": 9846.54, + "end": 9847.36, + "probability": 0.8215 + }, + { + "start": 9847.78, + "end": 9850.34, + "probability": 0.9782 + }, + { + "start": 9850.76, + "end": 9854.98, + "probability": 0.9669 + }, + { + "start": 9855.04, + "end": 9857.16, + "probability": 0.9758 + }, + { + "start": 9857.62, + "end": 9860.86, + "probability": 0.9985 + }, + { + "start": 9861.24, + "end": 9863.22, + "probability": 0.9922 + }, + { + "start": 9864.4, + "end": 9868.66, + "probability": 0.9757 + }, + { + "start": 9869.54, + "end": 9872.1, + "probability": 0.8392 + }, + { + "start": 9872.16, + "end": 9873.1, + "probability": 0.9929 + }, + { + "start": 9875.02, + "end": 9877.14, + "probability": 0.4189 + }, + { + "start": 9877.26, + "end": 9879.1, + "probability": 0.8569 + }, + { + "start": 9879.42, + "end": 9882.8, + "probability": 0.9636 + }, + { + "start": 9884.12, + "end": 9885.56, + "probability": 0.4165 + }, + { + "start": 9886.12, + "end": 9887.34, + "probability": 0.9376 + }, + { + "start": 9887.78, + "end": 9891.8, + "probability": 0.9831 + }, + { + "start": 9891.9, + "end": 9893.3, + "probability": 0.8826 + }, + { + "start": 9893.92, + "end": 9895.98, + "probability": 0.9752 + }, + { + "start": 9896.06, + "end": 9896.42, + "probability": 0.8427 + }, + { + "start": 9896.48, + "end": 9900.84, + "probability": 0.9552 + }, + { + "start": 9900.88, + "end": 9902.0, + "probability": 0.8782 + }, + { + "start": 9902.82, + "end": 9907.58, + "probability": 0.9777 + }, + { + "start": 9907.7, + "end": 9910.92, + "probability": 0.9756 + }, + { + "start": 9911.28, + "end": 9913.78, + "probability": 0.8319 + }, + { + "start": 9914.1, + "end": 9916.08, + "probability": 0.9889 + }, + { + "start": 9916.74, + "end": 9917.32, + "probability": 0.7363 + }, + { + "start": 9917.5, + "end": 9919.2, + "probability": 0.9852 + }, + { + "start": 9919.56, + "end": 9924.52, + "probability": 0.9984 + }, + { + "start": 9926.02, + "end": 9929.28, + "probability": 0.9772 + }, + { + "start": 9929.44, + "end": 9930.0, + "probability": 0.8236 + }, + { + "start": 9930.14, + "end": 9931.9, + "probability": 0.9909 + }, + { + "start": 9932.58, + "end": 9932.78, + "probability": 0.5674 + }, + { + "start": 9932.84, + "end": 9935.62, + "probability": 0.8948 + }, + { + "start": 9935.8, + "end": 9937.96, + "probability": 0.9807 + }, + { + "start": 9938.02, + "end": 9939.0, + "probability": 0.958 + }, + { + "start": 9939.14, + "end": 9939.52, + "probability": 0.3769 + }, + { + "start": 9939.58, + "end": 9940.42, + "probability": 0.9585 + }, + { + "start": 9940.82, + "end": 9942.4, + "probability": 0.8688 + }, + { + "start": 9942.98, + "end": 9948.24, + "probability": 0.9856 + }, + { + "start": 9948.36, + "end": 9948.58, + "probability": 0.7001 + }, + { + "start": 9949.62, + "end": 9951.6, + "probability": 0.9355 + }, + { + "start": 9951.62, + "end": 9952.16, + "probability": 0.8313 + }, + { + "start": 9952.26, + "end": 9956.9, + "probability": 0.9819 + }, + { + "start": 9957.08, + "end": 9958.34, + "probability": 0.8986 + }, + { + "start": 9959.22, + "end": 9961.66, + "probability": 0.9274 + }, + { + "start": 9962.38, + "end": 9967.36, + "probability": 0.9858 + }, + { + "start": 9967.4, + "end": 9967.8, + "probability": 0.8304 + }, + { + "start": 9968.04, + "end": 9969.96, + "probability": 0.5876 + }, + { + "start": 9970.1, + "end": 9972.0, + "probability": 0.9128 + }, + { + "start": 9973.86, + "end": 9975.34, + "probability": 0.8369 + }, + { + "start": 9975.96, + "end": 9979.22, + "probability": 0.9734 + }, + { + "start": 9980.98, + "end": 9984.14, + "probability": 0.8249 + }, + { + "start": 9986.7, + "end": 9987.46, + "probability": 0.7937 + }, + { + "start": 9990.56, + "end": 9991.72, + "probability": 0.9476 + }, + { + "start": 9993.1, + "end": 9995.42, + "probability": 0.6796 + }, + { + "start": 9995.74, + "end": 9995.8, + "probability": 0.344 + }, + { + "start": 9995.8, + "end": 9996.58, + "probability": 0.6965 + }, + { + "start": 9996.7, + "end": 9997.88, + "probability": 0.8232 + }, + { + "start": 9999.06, + "end": 10004.06, + "probability": 0.8586 + }, + { + "start": 10004.2, + "end": 10006.48, + "probability": 0.9751 + }, + { + "start": 10007.12, + "end": 10009.92, + "probability": 0.9778 + }, + { + "start": 10010.36, + "end": 10013.24, + "probability": 0.9087 + }, + { + "start": 10014.0, + "end": 10015.68, + "probability": 0.8986 + }, + { + "start": 10015.8, + "end": 10019.38, + "probability": 0.9429 + }, + { + "start": 10019.94, + "end": 10020.88, + "probability": 0.8546 + }, + { + "start": 10020.98, + "end": 10023.3, + "probability": 0.7031 + }, + { + "start": 10023.38, + "end": 10023.72, + "probability": 0.6154 + }, + { + "start": 10023.78, + "end": 10025.0, + "probability": 0.8018 + }, + { + "start": 10025.14, + "end": 10026.86, + "probability": 0.6683 + }, + { + "start": 10027.36, + "end": 10030.08, + "probability": 0.8069 + }, + { + "start": 10031.64, + "end": 10033.86, + "probability": 0.9941 + }, + { + "start": 10034.66, + "end": 10035.86, + "probability": 0.4664 + }, + { + "start": 10036.28, + "end": 10037.76, + "probability": 0.9466 + }, + { + "start": 10038.12, + "end": 10041.04, + "probability": 0.7391 + }, + { + "start": 10041.86, + "end": 10043.76, + "probability": 0.9797 + }, + { + "start": 10043.98, + "end": 10047.5, + "probability": 0.9707 + }, + { + "start": 10047.5, + "end": 10052.22, + "probability": 0.9966 + }, + { + "start": 10052.98, + "end": 10053.88, + "probability": 0.5416 + }, + { + "start": 10054.42, + "end": 10054.98, + "probability": 0.8526 + }, + { + "start": 10055.1, + "end": 10056.06, + "probability": 0.9097 + }, + { + "start": 10056.48, + "end": 10063.78, + "probability": 0.9792 + }, + { + "start": 10064.26, + "end": 10067.56, + "probability": 0.9878 + }, + { + "start": 10067.68, + "end": 10069.9, + "probability": 0.9067 + }, + { + "start": 10070.4, + "end": 10071.8, + "probability": 0.908 + }, + { + "start": 10072.62, + "end": 10075.14, + "probability": 0.9654 + }, + { + "start": 10075.78, + "end": 10077.24, + "probability": 0.9704 + }, + { + "start": 10077.78, + "end": 10080.74, + "probability": 0.8852 + }, + { + "start": 10081.24, + "end": 10086.66, + "probability": 0.9061 + }, + { + "start": 10087.86, + "end": 10087.88, + "probability": 0.3935 + }, + { + "start": 10087.88, + "end": 10088.65, + "probability": 0.6865 + }, + { + "start": 10089.78, + "end": 10090.4, + "probability": 0.9736 + }, + { + "start": 10091.22, + "end": 10094.52, + "probability": 0.8606 + }, + { + "start": 10094.84, + "end": 10096.34, + "probability": 0.9656 + }, + { + "start": 10096.88, + "end": 10097.54, + "probability": 0.6087 + }, + { + "start": 10098.36, + "end": 10102.1, + "probability": 0.9143 + }, + { + "start": 10102.16, + "end": 10103.0, + "probability": 0.8489 + }, + { + "start": 10103.04, + "end": 10104.78, + "probability": 0.9784 + }, + { + "start": 10104.9, + "end": 10106.52, + "probability": 0.9503 + }, + { + "start": 10107.3, + "end": 10109.98, + "probability": 0.958 + }, + { + "start": 10110.38, + "end": 10115.46, + "probability": 0.9858 + }, + { + "start": 10116.96, + "end": 10118.08, + "probability": 0.9702 + }, + { + "start": 10119.06, + "end": 10120.82, + "probability": 0.9663 + }, + { + "start": 10120.96, + "end": 10123.02, + "probability": 0.9805 + }, + { + "start": 10125.64, + "end": 10126.38, + "probability": 0.8418 + }, + { + "start": 10127.42, + "end": 10128.48, + "probability": 0.9188 + }, + { + "start": 10130.14, + "end": 10131.42, + "probability": 0.9684 + }, + { + "start": 10132.72, + "end": 10135.12, + "probability": 0.9855 + }, + { + "start": 10135.66, + "end": 10141.96, + "probability": 0.9907 + }, + { + "start": 10142.18, + "end": 10143.19, + "probability": 0.9171 + }, + { + "start": 10143.6, + "end": 10147.06, + "probability": 0.9948 + }, + { + "start": 10147.9, + "end": 10149.71, + "probability": 0.9207 + }, + { + "start": 10149.92, + "end": 10152.84, + "probability": 0.4906 + }, + { + "start": 10152.84, + "end": 10152.96, + "probability": 0.3131 + }, + { + "start": 10152.96, + "end": 10153.36, + "probability": 0.5508 + }, + { + "start": 10153.42, + "end": 10155.38, + "probability": 0.7304 + }, + { + "start": 10156.46, + "end": 10157.18, + "probability": 0.8429 + }, + { + "start": 10157.18, + "end": 10160.66, + "probability": 0.4781 + }, + { + "start": 10160.66, + "end": 10163.0, + "probability": 0.8267 + }, + { + "start": 10163.32, + "end": 10164.32, + "probability": 0.9827 + }, + { + "start": 10164.52, + "end": 10165.38, + "probability": 0.87 + }, + { + "start": 10166.0, + "end": 10166.78, + "probability": 0.9423 + }, + { + "start": 10167.98, + "end": 10169.02, + "probability": 0.9749 + }, + { + "start": 10170.54, + "end": 10172.88, + "probability": 0.978 + }, + { + "start": 10172.94, + "end": 10175.32, + "probability": 0.9825 + }, + { + "start": 10175.4, + "end": 10177.56, + "probability": 0.9086 + }, + { + "start": 10178.36, + "end": 10180.28, + "probability": 0.9603 + }, + { + "start": 10180.5, + "end": 10180.82, + "probability": 0.5355 + }, + { + "start": 10181.02, + "end": 10183.72, + "probability": 0.9762 + }, + { + "start": 10184.76, + "end": 10185.52, + "probability": 0.7379 + }, + { + "start": 10185.58, + "end": 10186.14, + "probability": 0.7862 + }, + { + "start": 10186.76, + "end": 10191.34, + "probability": 0.9884 + }, + { + "start": 10191.88, + "end": 10193.04, + "probability": 0.9607 + }, + { + "start": 10193.18, + "end": 10193.66, + "probability": 0.6644 + }, + { + "start": 10194.1, + "end": 10194.72, + "probability": 0.3074 + }, + { + "start": 10194.84, + "end": 10199.12, + "probability": 0.9766 + }, + { + "start": 10199.24, + "end": 10201.74, + "probability": 0.7165 + }, + { + "start": 10201.86, + "end": 10202.94, + "probability": 0.6582 + }, + { + "start": 10203.88, + "end": 10206.6, + "probability": 0.7659 + }, + { + "start": 10207.04, + "end": 10211.3, + "probability": 0.9619 + }, + { + "start": 10211.64, + "end": 10211.9, + "probability": 0.834 + }, + { + "start": 10212.42, + "end": 10214.76, + "probability": 0.9177 + }, + { + "start": 10214.86, + "end": 10216.69, + "probability": 0.7278 + }, + { + "start": 10218.28, + "end": 10219.66, + "probability": 0.7631 + }, + { + "start": 10220.7, + "end": 10223.5, + "probability": 0.9434 + }, + { + "start": 10223.8, + "end": 10224.44, + "probability": 0.9349 + }, + { + "start": 10224.56, + "end": 10226.73, + "probability": 0.5506 + }, + { + "start": 10228.76, + "end": 10231.34, + "probability": 0.9878 + }, + { + "start": 10231.42, + "end": 10232.18, + "probability": 0.8138 + }, + { + "start": 10232.62, + "end": 10234.14, + "probability": 0.9593 + }, + { + "start": 10234.38, + "end": 10235.04, + "probability": 0.6275 + }, + { + "start": 10235.12, + "end": 10236.46, + "probability": 0.959 + }, + { + "start": 10239.72, + "end": 10240.52, + "probability": 0.9243 + }, + { + "start": 10245.54, + "end": 10247.74, + "probability": 0.7625 + }, + { + "start": 10248.32, + "end": 10249.32, + "probability": 0.0024 + }, + { + "start": 10261.26, + "end": 10264.12, + "probability": 0.5454 + }, + { + "start": 10264.8, + "end": 10266.8, + "probability": 0.7796 + }, + { + "start": 10268.14, + "end": 10269.98, + "probability": 0.844 + }, + { + "start": 10271.1, + "end": 10276.18, + "probability": 0.949 + }, + { + "start": 10276.34, + "end": 10276.7, + "probability": 0.7428 + }, + { + "start": 10276.72, + "end": 10276.88, + "probability": 0.8938 + }, + { + "start": 10277.06, + "end": 10277.68, + "probability": 0.6574 + }, + { + "start": 10278.12, + "end": 10279.74, + "probability": 0.6054 + }, + { + "start": 10279.86, + "end": 10280.0, + "probability": 0.7036 + }, + { + "start": 10280.32, + "end": 10282.24, + "probability": 0.8161 + }, + { + "start": 10282.78, + "end": 10286.98, + "probability": 0.7809 + }, + { + "start": 10287.74, + "end": 10289.78, + "probability": 0.9708 + }, + { + "start": 10292.2, + "end": 10293.9, + "probability": 0.9746 + }, + { + "start": 10295.26, + "end": 10298.94, + "probability": 0.7821 + }, + { + "start": 10299.72, + "end": 10301.24, + "probability": 0.9965 + }, + { + "start": 10302.16, + "end": 10304.72, + "probability": 0.9983 + }, + { + "start": 10306.0, + "end": 10309.46, + "probability": 0.9941 + }, + { + "start": 10311.08, + "end": 10312.54, + "probability": 0.9596 + }, + { + "start": 10313.66, + "end": 10316.44, + "probability": 0.993 + }, + { + "start": 10317.52, + "end": 10320.04, + "probability": 0.9879 + }, + { + "start": 10320.88, + "end": 10324.7, + "probability": 0.9853 + }, + { + "start": 10325.08, + "end": 10330.46, + "probability": 0.9871 + }, + { + "start": 10330.7, + "end": 10331.24, + "probability": 0.8572 + }, + { + "start": 10331.34, + "end": 10333.3, + "probability": 0.752 + }, + { + "start": 10333.7, + "end": 10334.02, + "probability": 0.6439 + }, + { + "start": 10334.1, + "end": 10334.68, + "probability": 0.8723 + }, + { + "start": 10335.08, + "end": 10335.78, + "probability": 0.9284 + }, + { + "start": 10335.92, + "end": 10338.46, + "probability": 0.8928 + }, + { + "start": 10339.94, + "end": 10340.38, + "probability": 0.8171 + }, + { + "start": 10340.66, + "end": 10341.94, + "probability": 0.9434 + }, + { + "start": 10342.0, + "end": 10344.78, + "probability": 0.9956 + }, + { + "start": 10345.78, + "end": 10348.2, + "probability": 0.9924 + }, + { + "start": 10349.12, + "end": 10350.18, + "probability": 0.9932 + }, + { + "start": 10350.4, + "end": 10352.72, + "probability": 0.9703 + }, + { + "start": 10353.28, + "end": 10355.6, + "probability": 0.9952 + }, + { + "start": 10356.18, + "end": 10356.96, + "probability": 0.9497 + }, + { + "start": 10357.1, + "end": 10360.64, + "probability": 0.9492 + }, + { + "start": 10361.24, + "end": 10366.12, + "probability": 0.8675 + }, + { + "start": 10366.8, + "end": 10368.64, + "probability": 0.9978 + }, + { + "start": 10369.2, + "end": 10373.72, + "probability": 0.9753 + }, + { + "start": 10374.28, + "end": 10377.6, + "probability": 0.987 + }, + { + "start": 10378.62, + "end": 10381.0, + "probability": 0.9054 + }, + { + "start": 10382.16, + "end": 10382.66, + "probability": 0.8701 + }, + { + "start": 10382.86, + "end": 10383.77, + "probability": 0.7394 + }, + { + "start": 10384.94, + "end": 10385.82, + "probability": 0.908 + }, + { + "start": 10386.18, + "end": 10388.68, + "probability": 0.9719 + }, + { + "start": 10388.68, + "end": 10389.9, + "probability": 0.851 + }, + { + "start": 10390.14, + "end": 10393.2, + "probability": 0.9608 + }, + { + "start": 10393.84, + "end": 10396.28, + "probability": 0.9846 + }, + { + "start": 10397.34, + "end": 10398.08, + "probability": 0.7251 + }, + { + "start": 10398.24, + "end": 10399.72, + "probability": 0.9591 + }, + { + "start": 10400.66, + "end": 10401.35, + "probability": 0.9652 + }, + { + "start": 10401.64, + "end": 10404.72, + "probability": 0.9775 + }, + { + "start": 10404.88, + "end": 10406.44, + "probability": 0.6503 + }, + { + "start": 10406.52, + "end": 10407.06, + "probability": 0.4389 + }, + { + "start": 10407.26, + "end": 10409.26, + "probability": 0.8929 + }, + { + "start": 10410.16, + "end": 10413.12, + "probability": 0.8745 + }, + { + "start": 10414.4, + "end": 10415.7, + "probability": 0.7574 + }, + { + "start": 10416.72, + "end": 10420.02, + "probability": 0.9574 + }, + { + "start": 10422.26, + "end": 10425.56, + "probability": 0.98 + }, + { + "start": 10426.1, + "end": 10428.78, + "probability": 0.7905 + }, + { + "start": 10429.76, + "end": 10433.16, + "probability": 0.9976 + }, + { + "start": 10433.78, + "end": 10439.08, + "probability": 0.9966 + }, + { + "start": 10439.48, + "end": 10440.48, + "probability": 0.7733 + }, + { + "start": 10440.48, + "end": 10440.84, + "probability": 0.8399 + }, + { + "start": 10441.48, + "end": 10442.68, + "probability": 0.7968 + }, + { + "start": 10443.22, + "end": 10444.04, + "probability": 0.9834 + }, + { + "start": 10444.86, + "end": 10445.66, + "probability": 0.9624 + }, + { + "start": 10445.74, + "end": 10446.62, + "probability": 0.8896 + }, + { + "start": 10447.02, + "end": 10449.89, + "probability": 0.8545 + }, + { + "start": 10450.74, + "end": 10453.74, + "probability": 0.9748 + }, + { + "start": 10454.42, + "end": 10457.32, + "probability": 0.9114 + }, + { + "start": 10457.84, + "end": 10460.16, + "probability": 0.9734 + }, + { + "start": 10461.56, + "end": 10462.22, + "probability": 0.2487 + }, + { + "start": 10463.48, + "end": 10464.7, + "probability": 0.9014 + }, + { + "start": 10464.74, + "end": 10467.32, + "probability": 0.9169 + }, + { + "start": 10467.34, + "end": 10467.56, + "probability": 0.5741 + }, + { + "start": 10467.84, + "end": 10468.27, + "probability": 0.8322 + }, + { + "start": 10469.26, + "end": 10471.07, + "probability": 0.8579 + }, + { + "start": 10471.98, + "end": 10473.06, + "probability": 0.9769 + }, + { + "start": 10473.18, + "end": 10473.98, + "probability": 0.9105 + }, + { + "start": 10474.8, + "end": 10476.24, + "probability": 0.9681 + }, + { + "start": 10476.38, + "end": 10480.54, + "probability": 0.9482 + }, + { + "start": 10481.7, + "end": 10483.52, + "probability": 0.998 + }, + { + "start": 10484.22, + "end": 10485.94, + "probability": 0.9929 + }, + { + "start": 10486.48, + "end": 10486.98, + "probability": 0.4303 + }, + { + "start": 10487.54, + "end": 10490.92, + "probability": 0.9575 + }, + { + "start": 10491.64, + "end": 10492.68, + "probability": 0.3857 + }, + { + "start": 10493.26, + "end": 10496.32, + "probability": 0.7549 + }, + { + "start": 10496.86, + "end": 10499.56, + "probability": 0.7624 + }, + { + "start": 10499.7, + "end": 10502.24, + "probability": 0.9885 + }, + { + "start": 10502.4, + "end": 10504.34, + "probability": 0.9554 + }, + { + "start": 10505.1, + "end": 10507.66, + "probability": 0.5601 + }, + { + "start": 10507.74, + "end": 10508.64, + "probability": 0.5723 + }, + { + "start": 10508.94, + "end": 10509.76, + "probability": 0.8019 + }, + { + "start": 10509.8, + "end": 10511.36, + "probability": 0.7944 + }, + { + "start": 10511.46, + "end": 10513.42, + "probability": 0.9274 + }, + { + "start": 10513.82, + "end": 10514.76, + "probability": 0.9119 + }, + { + "start": 10515.56, + "end": 10516.7, + "probability": 0.7323 + }, + { + "start": 10516.78, + "end": 10517.48, + "probability": 0.9498 + }, + { + "start": 10517.52, + "end": 10518.1, + "probability": 0.9561 + }, + { + "start": 10519.1, + "end": 10521.12, + "probability": 0.9709 + }, + { + "start": 10521.54, + "end": 10522.9, + "probability": 0.8733 + }, + { + "start": 10523.2, + "end": 10524.18, + "probability": 0.9653 + }, + { + "start": 10525.0, + "end": 10527.12, + "probability": 0.9341 + }, + { + "start": 10527.76, + "end": 10528.84, + "probability": 0.9016 + }, + { + "start": 10528.9, + "end": 10530.28, + "probability": 0.9884 + }, + { + "start": 10530.48, + "end": 10533.88, + "probability": 0.8393 + }, + { + "start": 10534.92, + "end": 10537.78, + "probability": 0.8711 + }, + { + "start": 10537.9, + "end": 10539.68, + "probability": 0.9819 + }, + { + "start": 10539.76, + "end": 10540.64, + "probability": 0.6458 + }, + { + "start": 10541.12, + "end": 10543.08, + "probability": 0.9358 + }, + { + "start": 10546.46, + "end": 10547.86, + "probability": 0.2325 + }, + { + "start": 10548.38, + "end": 10549.86, + "probability": 0.7962 + }, + { + "start": 10551.34, + "end": 10554.84, + "probability": 0.8853 + }, + { + "start": 10554.88, + "end": 10556.48, + "probability": 0.9626 + }, + { + "start": 10557.14, + "end": 10557.3, + "probability": 0.5169 + }, + { + "start": 10557.36, + "end": 10557.94, + "probability": 0.4663 + }, + { + "start": 10558.3, + "end": 10560.36, + "probability": 0.8048 + }, + { + "start": 10562.1, + "end": 10564.18, + "probability": 0.9218 + }, + { + "start": 10565.56, + "end": 10566.06, + "probability": 0.9196 + }, + { + "start": 10566.14, + "end": 10566.62, + "probability": 0.9255 + }, + { + "start": 10566.64, + "end": 10568.43, + "probability": 0.9487 + }, + { + "start": 10570.36, + "end": 10572.06, + "probability": 0.7861 + }, + { + "start": 10573.26, + "end": 10574.04, + "probability": 0.6574 + }, + { + "start": 10574.9, + "end": 10575.96, + "probability": 0.9626 + }, + { + "start": 10577.22, + "end": 10578.14, + "probability": 0.9357 + }, + { + "start": 10578.72, + "end": 10579.55, + "probability": 0.9663 + }, + { + "start": 10580.26, + "end": 10581.02, + "probability": 0.8704 + }, + { + "start": 10581.62, + "end": 10582.84, + "probability": 0.5546 + }, + { + "start": 10583.36, + "end": 10584.22, + "probability": 0.9019 + }, + { + "start": 10585.68, + "end": 10586.56, + "probability": 0.7598 + }, + { + "start": 10586.6, + "end": 10588.66, + "probability": 0.6479 + }, + { + "start": 10588.78, + "end": 10590.14, + "probability": 0.8818 + }, + { + "start": 10590.26, + "end": 10590.7, + "probability": 0.8646 + }, + { + "start": 10590.82, + "end": 10591.8, + "probability": 0.9053 + }, + { + "start": 10592.88, + "end": 10595.1, + "probability": 0.9359 + }, + { + "start": 10596.46, + "end": 10598.12, + "probability": 0.9653 + }, + { + "start": 10598.26, + "end": 10598.89, + "probability": 0.6968 + }, + { + "start": 10599.96, + "end": 10600.1, + "probability": 0.0642 + }, + { + "start": 10601.34, + "end": 10603.72, + "probability": 0.0459 + }, + { + "start": 10603.88, + "end": 10604.31, + "probability": 0.4315 + }, + { + "start": 10605.74, + "end": 10607.58, + "probability": 0.741 + }, + { + "start": 10608.18, + "end": 10612.42, + "probability": 0.8829 + }, + { + "start": 10614.1, + "end": 10614.94, + "probability": 0.8564 + }, + { + "start": 10615.26, + "end": 10615.3, + "probability": 0.1268 + }, + { + "start": 10615.3, + "end": 10616.02, + "probability": 0.8123 + }, + { + "start": 10616.14, + "end": 10617.66, + "probability": 0.9592 + }, + { + "start": 10617.7, + "end": 10618.0, + "probability": 0.9379 + }, + { + "start": 10618.48, + "end": 10621.26, + "probability": 0.6393 + }, + { + "start": 10621.26, + "end": 10624.17, + "probability": 0.8829 + }, + { + "start": 10624.22, + "end": 10624.94, + "probability": 0.6535 + }, + { + "start": 10625.24, + "end": 10625.42, + "probability": 0.0761 + }, + { + "start": 10625.46, + "end": 10625.8, + "probability": 0.188 + }, + { + "start": 10625.86, + "end": 10626.16, + "probability": 0.7854 + }, + { + "start": 10626.98, + "end": 10628.4, + "probability": 0.5406 + }, + { + "start": 10629.18, + "end": 10632.56, + "probability": 0.8667 + }, + { + "start": 10632.94, + "end": 10634.28, + "probability": 0.9041 + }, + { + "start": 10636.38, + "end": 10636.96, + "probability": 0.8152 + }, + { + "start": 10637.2, + "end": 10638.32, + "probability": 0.4853 + }, + { + "start": 10638.42, + "end": 10640.78, + "probability": 0.465 + }, + { + "start": 10642.13, + "end": 10645.34, + "probability": 0.7435 + }, + { + "start": 10645.76, + "end": 10649.9, + "probability": 0.951 + }, + { + "start": 10650.4, + "end": 10655.06, + "probability": 0.9751 + }, + { + "start": 10655.72, + "end": 10658.06, + "probability": 0.6891 + }, + { + "start": 10658.68, + "end": 10658.8, + "probability": 0.5949 + }, + { + "start": 10658.98, + "end": 10662.16, + "probability": 0.8654 + }, + { + "start": 10662.3, + "end": 10663.22, + "probability": 0.9633 + }, + { + "start": 10664.9, + "end": 10665.99, + "probability": 0.9631 + }, + { + "start": 10667.6, + "end": 10670.26, + "probability": 0.8603 + }, + { + "start": 10670.66, + "end": 10673.72, + "probability": 0.9757 + }, + { + "start": 10674.28, + "end": 10675.86, + "probability": 0.9905 + }, + { + "start": 10676.64, + "end": 10679.52, + "probability": 0.5206 + }, + { + "start": 10680.04, + "end": 10680.9, + "probability": 0.6315 + }, + { + "start": 10681.06, + "end": 10681.81, + "probability": 0.9592 + }, + { + "start": 10682.42, + "end": 10684.06, + "probability": 0.9708 + }, + { + "start": 10685.08, + "end": 10686.18, + "probability": 0.8047 + }, + { + "start": 10686.86, + "end": 10688.58, + "probability": 0.9971 + }, + { + "start": 10688.62, + "end": 10689.42, + "probability": 0.8623 + }, + { + "start": 10689.48, + "end": 10690.28, + "probability": 0.9494 + }, + { + "start": 10690.36, + "end": 10690.78, + "probability": 0.4801 + }, + { + "start": 10691.3, + "end": 10691.65, + "probability": 0.853 + }, + { + "start": 10692.78, + "end": 10694.52, + "probability": 0.4375 + }, + { + "start": 10695.86, + "end": 10699.78, + "probability": 0.8825 + }, + { + "start": 10699.82, + "end": 10700.84, + "probability": 0.491 + }, + { + "start": 10700.84, + "end": 10702.94, + "probability": 0.9579 + }, + { + "start": 10703.04, + "end": 10704.24, + "probability": 0.6709 + }, + { + "start": 10704.66, + "end": 10707.46, + "probability": 0.9588 + }, + { + "start": 10707.86, + "end": 10708.7, + "probability": 0.9076 + }, + { + "start": 10709.08, + "end": 10709.5, + "probability": 0.7385 + }, + { + "start": 10709.6, + "end": 10710.02, + "probability": 0.9128 + }, + { + "start": 10713.0, + "end": 10715.14, + "probability": 0.6083 + }, + { + "start": 10716.64, + "end": 10720.42, + "probability": 0.728 + }, + { + "start": 10720.46, + "end": 10721.08, + "probability": 0.8319 + }, + { + "start": 10721.16, + "end": 10725.46, + "probability": 0.9107 + }, + { + "start": 10726.16, + "end": 10728.78, + "probability": 0.9578 + }, + { + "start": 10728.84, + "end": 10729.79, + "probability": 0.2766 + }, + { + "start": 10730.14, + "end": 10732.92, + "probability": 0.8859 + }, + { + "start": 10733.36, + "end": 10734.22, + "probability": 0.8613 + }, + { + "start": 10734.94, + "end": 10735.76, + "probability": 0.7661 + }, + { + "start": 10735.76, + "end": 10736.26, + "probability": 0.5088 + }, + { + "start": 10736.36, + "end": 10738.38, + "probability": 0.7151 + }, + { + "start": 10738.8, + "end": 10743.06, + "probability": 0.776 + }, + { + "start": 10743.16, + "end": 10746.28, + "probability": 0.0848 + }, + { + "start": 10747.54, + "end": 10747.83, + "probability": 0.1822 + }, + { + "start": 10749.12, + "end": 10750.46, + "probability": 0.823 + }, + { + "start": 10750.52, + "end": 10751.98, + "probability": 0.9564 + }, + { + "start": 10752.32, + "end": 10753.48, + "probability": 0.9795 + }, + { + "start": 10753.84, + "end": 10754.64, + "probability": 0.8554 + }, + { + "start": 10754.7, + "end": 10755.82, + "probability": 0.9442 + }, + { + "start": 10755.98, + "end": 10757.04, + "probability": 0.9392 + }, + { + "start": 10757.1, + "end": 10757.86, + "probability": 0.7914 + }, + { + "start": 10758.16, + "end": 10758.62, + "probability": 0.372 + }, + { + "start": 10758.96, + "end": 10760.04, + "probability": 0.7586 + }, + { + "start": 10760.14, + "end": 10760.62, + "probability": 0.396 + }, + { + "start": 10760.62, + "end": 10761.0, + "probability": 0.5065 + }, + { + "start": 10761.12, + "end": 10763.58, + "probability": 0.6161 + }, + { + "start": 10763.68, + "end": 10765.36, + "probability": 0.9406 + }, + { + "start": 10765.66, + "end": 10766.15, + "probability": 0.9623 + }, + { + "start": 10766.52, + "end": 10767.88, + "probability": 0.7519 + }, + { + "start": 10767.9, + "end": 10770.56, + "probability": 0.9066 + }, + { + "start": 10770.74, + "end": 10770.86, + "probability": 0.1535 + }, + { + "start": 10771.0, + "end": 10773.12, + "probability": 0.9401 + }, + { + "start": 10773.2, + "end": 10775.38, + "probability": 0.9893 + }, + { + "start": 10776.0, + "end": 10776.37, + "probability": 0.8652 + }, + { + "start": 10776.46, + "end": 10777.52, + "probability": 0.9653 + }, + { + "start": 10777.6, + "end": 10782.74, + "probability": 0.982 + }, + { + "start": 10783.2, + "end": 10783.69, + "probability": 0.7471 + }, + { + "start": 10783.9, + "end": 10784.66, + "probability": 0.0486 + }, + { + "start": 10784.92, + "end": 10786.22, + "probability": 0.6685 + }, + { + "start": 10786.66, + "end": 10788.6, + "probability": 0.8467 + }, + { + "start": 10788.74, + "end": 10789.24, + "probability": 0.9912 + }, + { + "start": 10789.88, + "end": 10791.26, + "probability": 0.8991 + }, + { + "start": 10791.38, + "end": 10791.84, + "probability": 0.5956 + }, + { + "start": 10792.34, + "end": 10793.82, + "probability": 0.8933 + }, + { + "start": 10794.34, + "end": 10797.02, + "probability": 0.9497 + }, + { + "start": 10797.82, + "end": 10799.86, + "probability": 0.9243 + }, + { + "start": 10800.0, + "end": 10801.74, + "probability": 0.9939 + }, + { + "start": 10802.28, + "end": 10802.46, + "probability": 0.9827 + }, + { + "start": 10803.08, + "end": 10804.12, + "probability": 0.807 + }, + { + "start": 10806.97, + "end": 10809.74, + "probability": 0.9739 + }, + { + "start": 10809.86, + "end": 10811.86, + "probability": 0.7725 + }, + { + "start": 10815.42, + "end": 10817.2, + "probability": 0.9717 + }, + { + "start": 10817.26, + "end": 10818.98, + "probability": 0.5099 + }, + { + "start": 10819.0, + "end": 10819.64, + "probability": 0.446 + }, + { + "start": 10819.64, + "end": 10820.64, + "probability": 0.7251 + }, + { + "start": 10821.36, + "end": 10822.63, + "probability": 0.8097 + }, + { + "start": 10824.3, + "end": 10827.14, + "probability": 0.8688 + }, + { + "start": 10827.46, + "end": 10828.56, + "probability": 0.9895 + }, + { + "start": 10828.66, + "end": 10829.77, + "probability": 0.9801 + }, + { + "start": 10829.96, + "end": 10830.28, + "probability": 0.6607 + }, + { + "start": 10831.38, + "end": 10833.34, + "probability": 0.8297 + }, + { + "start": 10834.02, + "end": 10836.72, + "probability": 0.8359 + }, + { + "start": 10837.6, + "end": 10839.84, + "probability": 0.934 + }, + { + "start": 10842.7, + "end": 10842.8, + "probability": 0.0323 + }, + { + "start": 10842.8, + "end": 10842.88, + "probability": 0.4464 + }, + { + "start": 10845.56, + "end": 10846.08, + "probability": 0.6478 + }, + { + "start": 10846.2, + "end": 10848.28, + "probability": 0.6554 + }, + { + "start": 10848.48, + "end": 10849.72, + "probability": 0.5342 + }, + { + "start": 10849.78, + "end": 10851.94, + "probability": 0.9443 + }, + { + "start": 10853.72, + "end": 10854.54, + "probability": 0.2838 + }, + { + "start": 10854.74, + "end": 10855.3, + "probability": 0.7608 + }, + { + "start": 10855.34, + "end": 10859.54, + "probability": 0.9206 + }, + { + "start": 10859.62, + "end": 10862.26, + "probability": 0.957 + }, + { + "start": 10863.58, + "end": 10864.26, + "probability": 0.084 + }, + { + "start": 10864.26, + "end": 10864.32, + "probability": 0.1985 + }, + { + "start": 10864.32, + "end": 10866.22, + "probability": 0.7178 + }, + { + "start": 10867.3, + "end": 10871.09, + "probability": 0.9033 + }, + { + "start": 10872.28, + "end": 10872.74, + "probability": 0.4962 + }, + { + "start": 10872.74, + "end": 10874.12, + "probability": 0.4153 + }, + { + "start": 10874.36, + "end": 10874.6, + "probability": 0.32 + }, + { + "start": 10874.64, + "end": 10875.04, + "probability": 0.9408 + }, + { + "start": 10877.3, + "end": 10879.86, + "probability": 0.8882 + }, + { + "start": 10880.98, + "end": 10881.64, + "probability": 0.7231 + }, + { + "start": 10882.6, + "end": 10884.62, + "probability": 0.9949 + }, + { + "start": 10884.66, + "end": 10887.56, + "probability": 0.9976 + }, + { + "start": 10890.58, + "end": 10891.5, + "probability": 0.9543 + }, + { + "start": 10893.12, + "end": 10893.63, + "probability": 0.9785 + }, + { + "start": 10894.6, + "end": 10899.3, + "probability": 0.9766 + }, + { + "start": 10899.86, + "end": 10901.74, + "probability": 0.615 + }, + { + "start": 10902.8, + "end": 10905.08, + "probability": 0.4117 + }, + { + "start": 10905.3, + "end": 10907.01, + "probability": 0.9237 + }, + { + "start": 10907.08, + "end": 10907.64, + "probability": 0.9886 + }, + { + "start": 10908.46, + "end": 10912.16, + "probability": 0.9353 + }, + { + "start": 10912.22, + "end": 10913.2, + "probability": 0.8259 + }, + { + "start": 10914.9, + "end": 10917.08, + "probability": 0.8417 + }, + { + "start": 10918.76, + "end": 10920.68, + "probability": 0.9976 + }, + { + "start": 10921.82, + "end": 10922.82, + "probability": 0.6942 + }, + { + "start": 10924.02, + "end": 10926.64, + "probability": 0.9775 + }, + { + "start": 10929.26, + "end": 10930.32, + "probability": 0.9012 + }, + { + "start": 10930.92, + "end": 10932.94, + "probability": 0.963 + }, + { + "start": 10934.78, + "end": 10936.32, + "probability": 0.9149 + }, + { + "start": 10937.0, + "end": 10937.6, + "probability": 0.9802 + }, + { + "start": 10938.14, + "end": 10939.12, + "probability": 0.7837 + }, + { + "start": 10941.28, + "end": 10943.36, + "probability": 0.7588 + }, + { + "start": 10946.06, + "end": 10948.38, + "probability": 0.8313 + }, + { + "start": 10950.12, + "end": 10951.74, + "probability": 0.9902 + }, + { + "start": 10953.1, + "end": 10956.12, + "probability": 0.7948 + }, + { + "start": 10956.32, + "end": 10957.34, + "probability": 0.8607 + }, + { + "start": 10958.56, + "end": 10960.16, + "probability": 0.9052 + }, + { + "start": 10961.32, + "end": 10962.64, + "probability": 0.5053 + }, + { + "start": 10962.76, + "end": 10963.6, + "probability": 0.8939 + }, + { + "start": 10964.04, + "end": 10965.2, + "probability": 0.9629 + }, + { + "start": 10965.52, + "end": 10966.58, + "probability": 0.8154 + }, + { + "start": 10967.32, + "end": 10969.44, + "probability": 0.9945 + }, + { + "start": 10971.89, + "end": 10976.6, + "probability": 0.7793 + }, + { + "start": 10980.64, + "end": 10981.62, + "probability": 0.5845 + }, + { + "start": 10982.85, + "end": 10984.88, + "probability": 0.7361 + }, + { + "start": 10984.94, + "end": 10987.04, + "probability": 0.9229 + }, + { + "start": 10987.66, + "end": 10992.16, + "probability": 0.9917 + }, + { + "start": 10994.18, + "end": 10999.5, + "probability": 0.8276 + }, + { + "start": 11000.38, + "end": 11002.02, + "probability": 0.9777 + }, + { + "start": 11003.3, + "end": 11004.38, + "probability": 0.9986 + }, + { + "start": 11006.24, + "end": 11010.88, + "probability": 0.4198 + }, + { + "start": 11012.5, + "end": 11014.14, + "probability": 0.8906 + }, + { + "start": 11015.02, + "end": 11017.36, + "probability": 0.678 + }, + { + "start": 11018.56, + "end": 11019.24, + "probability": 0.237 + }, + { + "start": 11019.44, + "end": 11021.94, + "probability": 0.8897 + }, + { + "start": 11022.5, + "end": 11024.3, + "probability": 0.9701 + }, + { + "start": 11024.42, + "end": 11025.48, + "probability": 0.958 + }, + { + "start": 11026.28, + "end": 11028.18, + "probability": 0.9644 + }, + { + "start": 11028.64, + "end": 11028.92, + "probability": 0.7783 + }, + { + "start": 11029.02, + "end": 11032.4, + "probability": 0.8813 + }, + { + "start": 11032.7, + "end": 11034.32, + "probability": 0.9653 + }, + { + "start": 11034.52, + "end": 11035.24, + "probability": 0.8646 + }, + { + "start": 11036.18, + "end": 11038.14, + "probability": 0.9958 + }, + { + "start": 11039.0, + "end": 11041.98, + "probability": 0.6477 + }, + { + "start": 11042.02, + "end": 11042.74, + "probability": 0.598 + }, + { + "start": 11043.24, + "end": 11048.04, + "probability": 0.9883 + }, + { + "start": 11048.74, + "end": 11050.86, + "probability": 0.5154 + }, + { + "start": 11051.12, + "end": 11052.5, + "probability": 0.7145 + }, + { + "start": 11053.6, + "end": 11055.26, + "probability": 0.9795 + }, + { + "start": 11056.44, + "end": 11057.56, + "probability": 0.9679 + }, + { + "start": 11057.58, + "end": 11058.86, + "probability": 0.9399 + }, + { + "start": 11059.0, + "end": 11060.4, + "probability": 0.9849 + }, + { + "start": 11061.28, + "end": 11061.78, + "probability": 0.946 + }, + { + "start": 11063.46, + "end": 11064.32, + "probability": 0.8213 + }, + { + "start": 11064.32, + "end": 11065.02, + "probability": 0.5959 + }, + { + "start": 11065.54, + "end": 11069.64, + "probability": 0.8595 + }, + { + "start": 11069.7, + "end": 11070.96, + "probability": 0.6926 + }, + { + "start": 11071.1, + "end": 11072.17, + "probability": 0.4511 + }, + { + "start": 11073.04, + "end": 11074.48, + "probability": 0.8425 + }, + { + "start": 11074.5, + "end": 11074.68, + "probability": 0.6475 + }, + { + "start": 11074.7, + "end": 11076.34, + "probability": 0.991 + }, + { + "start": 11076.94, + "end": 11077.4, + "probability": 0.572 + }, + { + "start": 11077.56, + "end": 11078.06, + "probability": 0.4246 + }, + { + "start": 11079.8, + "end": 11081.08, + "probability": 0.8164 + }, + { + "start": 11082.6, + "end": 11083.3, + "probability": 0.9836 + }, + { + "start": 11084.96, + "end": 11085.94, + "probability": 0.743 + }, + { + "start": 11086.78, + "end": 11088.82, + "probability": 0.7962 + }, + { + "start": 11089.94, + "end": 11092.18, + "probability": 0.9956 + }, + { + "start": 11092.28, + "end": 11092.86, + "probability": 0.8984 + }, + { + "start": 11094.39, + "end": 11096.09, + "probability": 0.793 + }, + { + "start": 11096.4, + "end": 11097.42, + "probability": 0.2247 + }, + { + "start": 11097.42, + "end": 11098.81, + "probability": 0.9966 + }, + { + "start": 11099.38, + "end": 11100.86, + "probability": 0.8811 + }, + { + "start": 11101.14, + "end": 11101.92, + "probability": 0.9865 + }, + { + "start": 11102.9, + "end": 11105.04, + "probability": 0.6715 + }, + { + "start": 11106.64, + "end": 11110.04, + "probability": 0.96 + }, + { + "start": 11110.7, + "end": 11113.12, + "probability": 0.9897 + }, + { + "start": 11114.28, + "end": 11118.46, + "probability": 0.894 + }, + { + "start": 11118.86, + "end": 11120.42, + "probability": 0.9861 + }, + { + "start": 11120.58, + "end": 11122.46, + "probability": 0.8385 + }, + { + "start": 11122.82, + "end": 11124.32, + "probability": 0.792 + }, + { + "start": 11124.82, + "end": 11126.76, + "probability": 0.6638 + }, + { + "start": 11129.68, + "end": 11131.34, + "probability": 0.4464 + }, + { + "start": 11131.42, + "end": 11135.72, + "probability": 0.7108 + }, + { + "start": 11137.8, + "end": 11139.88, + "probability": 0.818 + }, + { + "start": 11140.02, + "end": 11141.02, + "probability": 0.9091 + }, + { + "start": 11142.48, + "end": 11147.12, + "probability": 0.6507 + }, + { + "start": 11147.6, + "end": 11148.2, + "probability": 0.291 + }, + { + "start": 11148.3, + "end": 11149.7, + "probability": 0.6713 + }, + { + "start": 11150.08, + "end": 11150.68, + "probability": 0.199 + }, + { + "start": 11150.82, + "end": 11152.38, + "probability": 0.5477 + }, + { + "start": 11152.64, + "end": 11153.84, + "probability": 0.3456 + }, + { + "start": 11153.92, + "end": 11154.44, + "probability": 0.6824 + }, + { + "start": 11154.54, + "end": 11154.8, + "probability": 0.5381 + }, + { + "start": 11154.82, + "end": 11156.16, + "probability": 0.9866 + }, + { + "start": 11156.42, + "end": 11162.12, + "probability": 0.8853 + }, + { + "start": 11162.18, + "end": 11163.3, + "probability": 0.7662 + }, + { + "start": 11163.56, + "end": 11166.88, + "probability": 0.9688 + }, + { + "start": 11166.92, + "end": 11167.4, + "probability": 0.6304 + }, + { + "start": 11167.94, + "end": 11171.64, + "probability": 0.7174 + }, + { + "start": 11172.08, + "end": 11173.98, + "probability": 0.1875 + }, + { + "start": 11173.98, + "end": 11175.12, + "probability": 0.7806 + }, + { + "start": 11175.14, + "end": 11175.92, + "probability": 0.6044 + }, + { + "start": 11178.24, + "end": 11182.2, + "probability": 0.8129 + }, + { + "start": 11183.96, + "end": 11185.58, + "probability": 0.4705 + }, + { + "start": 11185.58, + "end": 11186.1, + "probability": 0.3355 + }, + { + "start": 11186.34, + "end": 11188.76, + "probability": 0.3948 + }, + { + "start": 11209.3, + "end": 11210.46, + "probability": 0.8958 + }, + { + "start": 11217.8, + "end": 11220.46, + "probability": 0.6794 + }, + { + "start": 11222.16, + "end": 11223.96, + "probability": 0.4563 + }, + { + "start": 11224.1, + "end": 11230.12, + "probability": 0.9949 + }, + { + "start": 11232.62, + "end": 11232.82, + "probability": 0.8796 + }, + { + "start": 11234.06, + "end": 11234.66, + "probability": 0.5633 + }, + { + "start": 11235.46, + "end": 11237.32, + "probability": 0.9829 + }, + { + "start": 11238.48, + "end": 11241.52, + "probability": 0.7612 + }, + { + "start": 11244.74, + "end": 11247.18, + "probability": 0.6876 + }, + { + "start": 11248.13, + "end": 11252.08, + "probability": 0.8846 + }, + { + "start": 11252.98, + "end": 11254.28, + "probability": 0.9768 + }, + { + "start": 11255.98, + "end": 11256.44, + "probability": 0.4468 + }, + { + "start": 11256.56, + "end": 11261.3, + "probability": 0.6659 + }, + { + "start": 11261.3, + "end": 11264.62, + "probability": 0.9863 + }, + { + "start": 11265.6, + "end": 11269.02, + "probability": 0.9162 + }, + { + "start": 11269.9, + "end": 11274.6, + "probability": 0.4138 + }, + { + "start": 11274.98, + "end": 11280.28, + "probability": 0.8839 + }, + { + "start": 11281.72, + "end": 11284.26, + "probability": 0.9302 + }, + { + "start": 11285.48, + "end": 11288.26, + "probability": 0.8862 + }, + { + "start": 11288.98, + "end": 11291.14, + "probability": 0.9939 + }, + { + "start": 11291.92, + "end": 11292.12, + "probability": 0.5726 + }, + { + "start": 11292.22, + "end": 11296.5, + "probability": 0.9946 + }, + { + "start": 11296.7, + "end": 11297.33, + "probability": 0.2632 + }, + { + "start": 11299.04, + "end": 11300.46, + "probability": 0.8975 + }, + { + "start": 11301.68, + "end": 11305.64, + "probability": 0.9936 + }, + { + "start": 11305.64, + "end": 11308.78, + "probability": 0.9958 + }, + { + "start": 11310.1, + "end": 11310.86, + "probability": 0.9334 + }, + { + "start": 11310.98, + "end": 11311.73, + "probability": 0.8497 + }, + { + "start": 11311.82, + "end": 11312.68, + "probability": 0.9619 + }, + { + "start": 11313.66, + "end": 11317.02, + "probability": 0.7458 + }, + { + "start": 11317.22, + "end": 11319.98, + "probability": 0.9312 + }, + { + "start": 11321.72, + "end": 11324.72, + "probability": 0.8888 + }, + { + "start": 11327.26, + "end": 11333.78, + "probability": 0.6061 + }, + { + "start": 11336.36, + "end": 11338.3, + "probability": 0.844 + }, + { + "start": 11339.52, + "end": 11343.18, + "probability": 0.8228 + }, + { + "start": 11344.0, + "end": 11346.18, + "probability": 0.9831 + }, + { + "start": 11347.3, + "end": 11351.88, + "probability": 0.9033 + }, + { + "start": 11352.82, + "end": 11353.9, + "probability": 0.8164 + }, + { + "start": 11353.9, + "end": 11354.3, + "probability": 0.4774 + }, + { + "start": 11354.42, + "end": 11355.18, + "probability": 0.7256 + }, + { + "start": 11355.24, + "end": 11357.54, + "probability": 0.963 + }, + { + "start": 11358.62, + "end": 11360.3, + "probability": 0.7212 + }, + { + "start": 11361.48, + "end": 11361.92, + "probability": 0.8138 + }, + { + "start": 11362.3, + "end": 11363.76, + "probability": 0.9517 + }, + { + "start": 11364.16, + "end": 11367.26, + "probability": 0.8926 + }, + { + "start": 11368.0, + "end": 11368.86, + "probability": 0.9657 + }, + { + "start": 11369.08, + "end": 11369.94, + "probability": 0.9321 + }, + { + "start": 11370.28, + "end": 11373.9, + "probability": 0.9873 + }, + { + "start": 11374.0, + "end": 11376.58, + "probability": 0.9881 + }, + { + "start": 11377.38, + "end": 11380.08, + "probability": 0.9847 + }, + { + "start": 11380.9, + "end": 11382.34, + "probability": 0.8521 + }, + { + "start": 11383.4, + "end": 11384.74, + "probability": 0.8794 + }, + { + "start": 11385.28, + "end": 11385.84, + "probability": 0.9688 + }, + { + "start": 11387.44, + "end": 11391.42, + "probability": 0.8789 + }, + { + "start": 11391.62, + "end": 11392.48, + "probability": 0.8643 + }, + { + "start": 11393.12, + "end": 11396.38, + "probability": 0.9828 + }, + { + "start": 11396.9, + "end": 11399.1, + "probability": 0.8282 + }, + { + "start": 11399.36, + "end": 11400.8, + "probability": 0.9683 + }, + { + "start": 11401.0, + "end": 11401.24, + "probability": 0.5253 + }, + { + "start": 11401.7, + "end": 11403.64, + "probability": 0.8792 + }, + { + "start": 11403.78, + "end": 11404.63, + "probability": 0.9426 + }, + { + "start": 11405.52, + "end": 11406.44, + "probability": 0.5339 + }, + { + "start": 11406.52, + "end": 11407.08, + "probability": 0.517 + }, + { + "start": 11407.14, + "end": 11408.72, + "probability": 0.7883 + }, + { + "start": 11408.76, + "end": 11409.96, + "probability": 0.2077 + }, + { + "start": 11410.1, + "end": 11411.64, + "probability": 0.9774 + }, + { + "start": 11430.0, + "end": 11431.94, + "probability": 0.5661 + }, + { + "start": 11432.98, + "end": 11434.72, + "probability": 0.615 + }, + { + "start": 11435.5, + "end": 11437.84, + "probability": 0.9456 + }, + { + "start": 11437.94, + "end": 11438.99, + "probability": 0.9268 + }, + { + "start": 11440.18, + "end": 11442.19, + "probability": 0.9635 + }, + { + "start": 11442.4, + "end": 11443.16, + "probability": 0.884 + }, + { + "start": 11443.62, + "end": 11444.24, + "probability": 0.5069 + }, + { + "start": 11444.82, + "end": 11445.1, + "probability": 0.3512 + }, + { + "start": 11445.3, + "end": 11445.79, + "probability": 0.8365 + }, + { + "start": 11446.14, + "end": 11448.08, + "probability": 0.7705 + }, + { + "start": 11448.26, + "end": 11451.46, + "probability": 0.8356 + }, + { + "start": 11452.04, + "end": 11454.21, + "probability": 0.9097 + }, + { + "start": 11454.78, + "end": 11456.88, + "probability": 0.9364 + }, + { + "start": 11457.38, + "end": 11458.3, + "probability": 0.8061 + }, + { + "start": 11458.32, + "end": 11459.42, + "probability": 0.813 + }, + { + "start": 11460.32, + "end": 11465.48, + "probability": 0.9752 + }, + { + "start": 11465.62, + "end": 11467.94, + "probability": 0.9167 + }, + { + "start": 11468.04, + "end": 11470.72, + "probability": 0.9336 + }, + { + "start": 11471.26, + "end": 11472.82, + "probability": 0.9078 + }, + { + "start": 11472.94, + "end": 11479.78, + "probability": 0.8262 + }, + { + "start": 11480.14, + "end": 11481.46, + "probability": 0.9973 + }, + { + "start": 11481.6, + "end": 11485.04, + "probability": 0.8746 + }, + { + "start": 11485.64, + "end": 11486.7, + "probability": 0.936 + }, + { + "start": 11486.84, + "end": 11489.39, + "probability": 0.9965 + }, + { + "start": 11489.72, + "end": 11493.14, + "probability": 0.9255 + }, + { + "start": 11494.22, + "end": 11497.0, + "probability": 0.8762 + }, + { + "start": 11502.19, + "end": 11506.2, + "probability": 0.9751 + }, + { + "start": 11506.86, + "end": 11508.18, + "probability": 0.9847 + }, + { + "start": 11509.1, + "end": 11512.48, + "probability": 0.9955 + }, + { + "start": 11514.16, + "end": 11517.96, + "probability": 0.9509 + }, + { + "start": 11518.64, + "end": 11520.88, + "probability": 0.7031 + }, + { + "start": 11521.74, + "end": 11524.8, + "probability": 0.7452 + }, + { + "start": 11526.02, + "end": 11529.94, + "probability": 0.8452 + }, + { + "start": 11530.1, + "end": 11531.78, + "probability": 0.9485 + }, + { + "start": 11532.18, + "end": 11538.3, + "probability": 0.9313 + }, + { + "start": 11538.94, + "end": 11540.06, + "probability": 0.8007 + }, + { + "start": 11541.08, + "end": 11541.86, + "probability": 0.4349 + }, + { + "start": 11542.12, + "end": 11543.37, + "probability": 0.97 + }, + { + "start": 11543.94, + "end": 11545.33, + "probability": 0.9554 + }, + { + "start": 11546.54, + "end": 11546.98, + "probability": 0.7282 + }, + { + "start": 11547.14, + "end": 11547.4, + "probability": 0.8897 + }, + { + "start": 11547.5, + "end": 11551.76, + "probability": 0.9007 + }, + { + "start": 11552.22, + "end": 11554.48, + "probability": 0.9753 + }, + { + "start": 11554.82, + "end": 11557.93, + "probability": 0.8732 + }, + { + "start": 11558.38, + "end": 11559.68, + "probability": 0.8833 + }, + { + "start": 11560.72, + "end": 11562.74, + "probability": 0.9558 + }, + { + "start": 11563.14, + "end": 11564.04, + "probability": 0.4842 + }, + { + "start": 11564.08, + "end": 11564.88, + "probability": 0.8872 + }, + { + "start": 11565.52, + "end": 11565.78, + "probability": 0.986 + }, + { + "start": 11566.48, + "end": 11567.16, + "probability": 0.7406 + }, + { + "start": 11567.36, + "end": 11567.9, + "probability": 0.8033 + }, + { + "start": 11569.06, + "end": 11570.47, + "probability": 0.7774 + }, + { + "start": 11571.34, + "end": 11575.68, + "probability": 0.6728 + }, + { + "start": 11576.3, + "end": 11577.14, + "probability": 0.9448 + }, + { + "start": 11578.1, + "end": 11583.12, + "probability": 0.9751 + }, + { + "start": 11584.73, + "end": 11587.28, + "probability": 0.9702 + }, + { + "start": 11588.04, + "end": 11589.82, + "probability": 0.78 + }, + { + "start": 11589.86, + "end": 11591.64, + "probability": 0.5748 + }, + { + "start": 11592.3, + "end": 11597.0, + "probability": 0.9914 + }, + { + "start": 11597.06, + "end": 11598.62, + "probability": 0.9571 + }, + { + "start": 11599.1, + "end": 11603.3, + "probability": 0.9851 + }, + { + "start": 11603.46, + "end": 11603.86, + "probability": 0.4342 + }, + { + "start": 11603.96, + "end": 11605.44, + "probability": 0.6948 + }, + { + "start": 11605.98, + "end": 11608.24, + "probability": 0.6041 + }, + { + "start": 11608.98, + "end": 11610.86, + "probability": 0.9495 + }, + { + "start": 11611.86, + "end": 11615.2, + "probability": 0.9462 + }, + { + "start": 11616.06, + "end": 11619.68, + "probability": 0.8937 + }, + { + "start": 11619.68, + "end": 11624.28, + "probability": 0.9198 + }, + { + "start": 11624.92, + "end": 11628.64, + "probability": 0.9167 + }, + { + "start": 11629.6, + "end": 11629.74, + "probability": 0.1856 + }, + { + "start": 11629.74, + "end": 11631.21, + "probability": 0.7661 + }, + { + "start": 11631.9, + "end": 11633.1, + "probability": 0.7671 + }, + { + "start": 11634.06, + "end": 11635.66, + "probability": 0.0844 + }, + { + "start": 11635.68, + "end": 11635.84, + "probability": 0.2215 + }, + { + "start": 11636.79, + "end": 11637.28, + "probability": 0.1349 + }, + { + "start": 11637.28, + "end": 11638.77, + "probability": 0.4157 + }, + { + "start": 11639.76, + "end": 11644.5, + "probability": 0.9157 + }, + { + "start": 11644.82, + "end": 11645.48, + "probability": 0.9259 + }, + { + "start": 11645.56, + "end": 11646.1, + "probability": 0.8774 + }, + { + "start": 11646.6, + "end": 11648.46, + "probability": 0.5827 + }, + { + "start": 11648.46, + "end": 11650.5, + "probability": 0.6689 + }, + { + "start": 11651.14, + "end": 11656.58, + "probability": 0.9907 + }, + { + "start": 11657.08, + "end": 11660.54, + "probability": 0.9927 + }, + { + "start": 11661.5, + "end": 11664.08, + "probability": 0.9985 + }, + { + "start": 11664.08, + "end": 11667.98, + "probability": 0.9686 + }, + { + "start": 11668.08, + "end": 11669.83, + "probability": 0.8105 + }, + { + "start": 11669.96, + "end": 11670.49, + "probability": 0.4985 + }, + { + "start": 11671.3, + "end": 11672.71, + "probability": 0.8552 + }, + { + "start": 11673.56, + "end": 11678.3, + "probability": 0.688 + }, + { + "start": 11678.3, + "end": 11678.72, + "probability": 0.6014 + }, + { + "start": 11678.74, + "end": 11681.58, + "probability": 0.967 + }, + { + "start": 11682.28, + "end": 11683.9, + "probability": 0.5089 + }, + { + "start": 11684.46, + "end": 11686.18, + "probability": 0.7661 + }, + { + "start": 11686.56, + "end": 11688.42, + "probability": 0.3807 + }, + { + "start": 11688.9, + "end": 11690.5, + "probability": 0.6917 + }, + { + "start": 11690.7, + "end": 11691.11, + "probability": 0.8843 + }, + { + "start": 11691.46, + "end": 11696.28, + "probability": 0.9623 + }, + { + "start": 11696.3, + "end": 11700.6, + "probability": 0.8932 + }, + { + "start": 11701.1, + "end": 11702.6, + "probability": 0.7619 + }, + { + "start": 11702.64, + "end": 11704.86, + "probability": 0.86 + }, + { + "start": 11705.76, + "end": 11707.1, + "probability": 0.8174 + }, + { + "start": 11708.02, + "end": 11710.94, + "probability": 0.9453 + }, + { + "start": 11712.14, + "end": 11714.38, + "probability": 0.9701 + }, + { + "start": 11736.46, + "end": 11737.52, + "probability": 0.4817 + }, + { + "start": 11737.62, + "end": 11738.64, + "probability": 0.8268 + }, + { + "start": 11738.94, + "end": 11742.62, + "probability": 0.7659 + }, + { + "start": 11746.9, + "end": 11753.58, + "probability": 0.9868 + }, + { + "start": 11754.84, + "end": 11755.36, + "probability": 0.8043 + }, + { + "start": 11757.08, + "end": 11757.67, + "probability": 0.8174 + }, + { + "start": 11760.2, + "end": 11760.34, + "probability": 0.4403 + }, + { + "start": 11761.9, + "end": 11766.22, + "probability": 0.9219 + }, + { + "start": 11766.96, + "end": 11769.8, + "probability": 0.9756 + }, + { + "start": 11771.88, + "end": 11774.76, + "probability": 0.7221 + }, + { + "start": 11774.86, + "end": 11780.18, + "probability": 0.7523 + }, + { + "start": 11781.18, + "end": 11783.7, + "probability": 0.9961 + }, + { + "start": 11783.82, + "end": 11785.5, + "probability": 0.8333 + }, + { + "start": 11785.68, + "end": 11786.11, + "probability": 0.7183 + }, + { + "start": 11787.14, + "end": 11790.86, + "probability": 0.9839 + }, + { + "start": 11791.42, + "end": 11792.6, + "probability": 0.5335 + }, + { + "start": 11793.22, + "end": 11796.32, + "probability": 0.8945 + }, + { + "start": 11796.4, + "end": 11797.44, + "probability": 0.7569 + }, + { + "start": 11798.1, + "end": 11800.45, + "probability": 0.9829 + }, + { + "start": 11801.16, + "end": 11803.4, + "probability": 0.9966 + }, + { + "start": 11804.26, + "end": 11807.52, + "probability": 0.9805 + }, + { + "start": 11808.16, + "end": 11809.34, + "probability": 0.965 + }, + { + "start": 11809.58, + "end": 11809.9, + "probability": 0.6956 + }, + { + "start": 11809.98, + "end": 11810.62, + "probability": 0.7281 + }, + { + "start": 11810.82, + "end": 11814.2, + "probability": 0.9583 + }, + { + "start": 11814.3, + "end": 11815.3, + "probability": 0.85 + }, + { + "start": 11816.06, + "end": 11819.88, + "probability": 0.8792 + }, + { + "start": 11819.88, + "end": 11822.4, + "probability": 0.8788 + }, + { + "start": 11822.8, + "end": 11824.58, + "probability": 0.9854 + }, + { + "start": 11825.3, + "end": 11826.74, + "probability": 0.7812 + }, + { + "start": 11827.66, + "end": 11832.16, + "probability": 0.9272 + }, + { + "start": 11832.24, + "end": 11832.58, + "probability": 0.2727 + }, + { + "start": 11832.84, + "end": 11833.4, + "probability": 0.8376 + }, + { + "start": 11833.96, + "end": 11836.88, + "probability": 0.7933 + }, + { + "start": 11837.88, + "end": 11842.6, + "probability": 0.9884 + }, + { + "start": 11843.18, + "end": 11844.32, + "probability": 0.9194 + }, + { + "start": 11844.88, + "end": 11850.5, + "probability": 0.9937 + }, + { + "start": 11850.5, + "end": 11853.7, + "probability": 0.9943 + }, + { + "start": 11853.82, + "end": 11856.53, + "probability": 0.9932 + }, + { + "start": 11857.66, + "end": 11859.94, + "probability": 0.9961 + }, + { + "start": 11860.5, + "end": 11861.46, + "probability": 0.8424 + }, + { + "start": 11861.8, + "end": 11863.04, + "probability": 0.8606 + }, + { + "start": 11863.32, + "end": 11864.14, + "probability": 0.9011 + }, + { + "start": 11864.4, + "end": 11865.8, + "probability": 0.9904 + }, + { + "start": 11865.88, + "end": 11866.94, + "probability": 0.9977 + }, + { + "start": 11868.6, + "end": 11870.3, + "probability": 0.9614 + }, + { + "start": 11870.8, + "end": 11874.0, + "probability": 0.9497 + }, + { + "start": 11874.18, + "end": 11874.78, + "probability": 0.7445 + }, + { + "start": 11876.68, + "end": 11877.56, + "probability": 0.7308 + }, + { + "start": 11878.14, + "end": 11880.12, + "probability": 0.8214 + }, + { + "start": 11880.26, + "end": 11881.1, + "probability": 0.7684 + }, + { + "start": 11881.56, + "end": 11882.5, + "probability": 0.9714 + }, + { + "start": 11882.98, + "end": 11884.16, + "probability": 0.4599 + }, + { + "start": 11887.06, + "end": 11888.68, + "probability": 0.9225 + }, + { + "start": 11888.8, + "end": 11889.29, + "probability": 0.8921 + }, + { + "start": 11889.9, + "end": 11890.56, + "probability": 0.9155 + }, + { + "start": 11891.62, + "end": 11893.5, + "probability": 0.9866 + }, + { + "start": 11893.58, + "end": 11894.4, + "probability": 0.9154 + }, + { + "start": 11895.58, + "end": 11896.86, + "probability": 0.9962 + }, + { + "start": 11897.32, + "end": 11899.68, + "probability": 0.9476 + }, + { + "start": 11899.8, + "end": 11900.4, + "probability": 0.6521 + }, + { + "start": 11901.16, + "end": 11904.0, + "probability": 0.9847 + }, + { + "start": 11904.9, + "end": 11907.1, + "probability": 0.9796 + }, + { + "start": 11907.78, + "end": 11910.86, + "probability": 0.959 + }, + { + "start": 11912.4, + "end": 11915.52, + "probability": 0.9958 + }, + { + "start": 11916.32, + "end": 11918.36, + "probability": 0.7246 + }, + { + "start": 11918.5, + "end": 11919.7, + "probability": 0.8766 + }, + { + "start": 11920.0, + "end": 11920.72, + "probability": 0.8845 + }, + { + "start": 11920.94, + "end": 11922.48, + "probability": 0.6561 + }, + { + "start": 11923.36, + "end": 11929.78, + "probability": 0.989 + }, + { + "start": 11929.86, + "end": 11931.34, + "probability": 0.8623 + }, + { + "start": 11932.56, + "end": 11937.52, + "probability": 0.8082 + }, + { + "start": 11937.86, + "end": 11938.1, + "probability": 0.0217 + }, + { + "start": 11938.1, + "end": 11940.14, + "probability": 0.9645 + }, + { + "start": 11940.48, + "end": 11940.7, + "probability": 0.8136 + }, + { + "start": 11941.64, + "end": 11942.8, + "probability": 0.7833 + }, + { + "start": 11943.38, + "end": 11945.68, + "probability": 0.9387 + }, + { + "start": 11947.42, + "end": 11948.36, + "probability": 0.5921 + }, + { + "start": 11949.52, + "end": 11951.94, + "probability": 0.7863 + }, + { + "start": 11955.14, + "end": 11957.54, + "probability": 0.9445 + }, + { + "start": 11958.14, + "end": 11958.66, + "probability": 0.9609 + }, + { + "start": 11959.8, + "end": 11961.36, + "probability": 0.9374 + }, + { + "start": 11962.14, + "end": 11964.4, + "probability": 0.7896 + }, + { + "start": 11965.64, + "end": 11967.04, + "probability": 0.8012 + }, + { + "start": 11969.04, + "end": 11972.92, + "probability": 0.9956 + }, + { + "start": 11974.76, + "end": 11976.02, + "probability": 0.9662 + }, + { + "start": 11976.5, + "end": 11979.1, + "probability": 0.9745 + }, + { + "start": 11979.22, + "end": 11980.36, + "probability": 0.9442 + }, + { + "start": 11982.12, + "end": 11984.88, + "probability": 0.7534 + }, + { + "start": 11985.72, + "end": 11986.84, + "probability": 0.6864 + }, + { + "start": 11988.24, + "end": 11991.54, + "probability": 0.8951 + }, + { + "start": 11992.74, + "end": 11995.14, + "probability": 0.9985 + }, + { + "start": 11996.5, + "end": 11999.04, + "probability": 0.8751 + }, + { + "start": 12000.08, + "end": 12001.24, + "probability": 0.8918 + }, + { + "start": 12002.56, + "end": 12003.42, + "probability": 0.8358 + }, + { + "start": 12004.46, + "end": 12007.56, + "probability": 0.9937 + }, + { + "start": 12008.28, + "end": 12010.9, + "probability": 0.9275 + }, + { + "start": 12012.4, + "end": 12014.26, + "probability": 0.9772 + }, + { + "start": 12014.88, + "end": 12017.04, + "probability": 0.9943 + }, + { + "start": 12017.74, + "end": 12018.74, + "probability": 0.8794 + }, + { + "start": 12018.76, + "end": 12021.32, + "probability": 0.9178 + }, + { + "start": 12022.44, + "end": 12022.96, + "probability": 0.5058 + }, + { + "start": 12023.0, + "end": 12024.0, + "probability": 0.9441 + }, + { + "start": 12024.34, + "end": 12027.86, + "probability": 0.9331 + }, + { + "start": 12028.4, + "end": 12031.76, + "probability": 0.9677 + }, + { + "start": 12031.9, + "end": 12032.97, + "probability": 0.4723 + }, + { + "start": 12034.02, + "end": 12039.4, + "probability": 0.952 + }, + { + "start": 12040.04, + "end": 12041.76, + "probability": 0.8286 + }, + { + "start": 12041.94, + "end": 12045.49, + "probability": 0.9455 + }, + { + "start": 12047.46, + "end": 12049.9, + "probability": 0.5871 + }, + { + "start": 12050.06, + "end": 12050.06, + "probability": 0.1615 + }, + { + "start": 12050.06, + "end": 12052.04, + "probability": 0.5388 + }, + { + "start": 12052.86, + "end": 12053.4, + "probability": 0.9802 + }, + { + "start": 12053.92, + "end": 12058.16, + "probability": 0.8711 + }, + { + "start": 12059.12, + "end": 12060.96, + "probability": 0.9404 + }, + { + "start": 12061.04, + "end": 12062.57, + "probability": 0.9399 + }, + { + "start": 12063.54, + "end": 12065.7, + "probability": 0.8458 + }, + { + "start": 12066.74, + "end": 12067.47, + "probability": 0.8672 + }, + { + "start": 12068.82, + "end": 12071.22, + "probability": 0.7497 + }, + { + "start": 12072.22, + "end": 12073.92, + "probability": 0.7084 + }, + { + "start": 12074.66, + "end": 12075.9, + "probability": 0.7596 + }, + { + "start": 12075.94, + "end": 12076.88, + "probability": 0.9774 + }, + { + "start": 12076.98, + "end": 12079.76, + "probability": 0.9777 + }, + { + "start": 12080.68, + "end": 12084.88, + "probability": 0.9955 + }, + { + "start": 12085.84, + "end": 12087.16, + "probability": 0.9888 + }, + { + "start": 12087.36, + "end": 12090.8, + "probability": 0.9928 + }, + { + "start": 12090.8, + "end": 12093.7, + "probability": 0.9563 + }, + { + "start": 12093.98, + "end": 12098.46, + "probability": 0.8954 + }, + { + "start": 12099.86, + "end": 12102.18, + "probability": 0.8483 + }, + { + "start": 12104.48, + "end": 12108.0, + "probability": 0.9894 + }, + { + "start": 12108.0, + "end": 12109.92, + "probability": 0.8773 + }, + { + "start": 12110.06, + "end": 12113.9, + "probability": 0.8237 + }, + { + "start": 12115.84, + "end": 12117.71, + "probability": 0.7515 + }, + { + "start": 12118.56, + "end": 12120.44, + "probability": 0.9032 + }, + { + "start": 12120.84, + "end": 12122.2, + "probability": 0.8285 + }, + { + "start": 12122.38, + "end": 12123.52, + "probability": 0.9785 + }, + { + "start": 12124.46, + "end": 12126.08, + "probability": 0.3097 + }, + { + "start": 12126.12, + "end": 12130.68, + "probability": 0.9755 + }, + { + "start": 12131.2, + "end": 12133.36, + "probability": 0.9961 + }, + { + "start": 12133.74, + "end": 12135.56, + "probability": 0.9946 + }, + { + "start": 12136.0, + "end": 12138.12, + "probability": 0.7099 + }, + { + "start": 12138.66, + "end": 12141.8, + "probability": 0.9909 + }, + { + "start": 12142.18, + "end": 12144.8, + "probability": 0.9932 + }, + { + "start": 12145.58, + "end": 12147.74, + "probability": 0.9863 + }, + { + "start": 12148.3, + "end": 12150.78, + "probability": 0.8362 + }, + { + "start": 12150.96, + "end": 12151.36, + "probability": 0.8065 + }, + { + "start": 12151.68, + "end": 12152.76, + "probability": 0.6575 + }, + { + "start": 12154.46, + "end": 12157.46, + "probability": 0.9665 + }, + { + "start": 12157.54, + "end": 12158.04, + "probability": 0.7719 + }, + { + "start": 12158.06, + "end": 12159.84, + "probability": 0.9576 + }, + { + "start": 12169.16, + "end": 12171.28, + "probability": 0.6114 + }, + { + "start": 12172.54, + "end": 12174.78, + "probability": 0.9832 + }, + { + "start": 12174.88, + "end": 12178.66, + "probability": 0.9265 + }, + { + "start": 12178.8, + "end": 12180.78, + "probability": 0.9371 + }, + { + "start": 12180.84, + "end": 12184.76, + "probability": 0.974 + }, + { + "start": 12185.46, + "end": 12187.66, + "probability": 0.9834 + }, + { + "start": 12189.48, + "end": 12192.42, + "probability": 0.9966 + }, + { + "start": 12192.66, + "end": 12193.58, + "probability": 0.5334 + }, + { + "start": 12195.16, + "end": 12200.24, + "probability": 0.9845 + }, + { + "start": 12200.24, + "end": 12203.48, + "probability": 0.9659 + }, + { + "start": 12204.86, + "end": 12209.12, + "probability": 0.9822 + }, + { + "start": 12209.74, + "end": 12214.0, + "probability": 0.6637 + }, + { + "start": 12215.06, + "end": 12219.84, + "probability": 0.9856 + }, + { + "start": 12220.4, + "end": 12221.16, + "probability": 0.8767 + }, + { + "start": 12221.44, + "end": 12222.9, + "probability": 0.942 + }, + { + "start": 12223.88, + "end": 12225.78, + "probability": 0.7469 + }, + { + "start": 12227.1, + "end": 12232.76, + "probability": 0.9556 + }, + { + "start": 12232.96, + "end": 12234.68, + "probability": 0.8473 + }, + { + "start": 12234.86, + "end": 12235.74, + "probability": 0.8146 + }, + { + "start": 12235.88, + "end": 12236.72, + "probability": 0.7297 + }, + { + "start": 12238.06, + "end": 12240.06, + "probability": 0.9688 + }, + { + "start": 12240.92, + "end": 12248.2, + "probability": 0.9768 + }, + { + "start": 12248.42, + "end": 12250.68, + "probability": 0.8424 + }, + { + "start": 12251.64, + "end": 12252.12, + "probability": 0.6678 + }, + { + "start": 12253.14, + "end": 12256.56, + "probability": 0.7227 + }, + { + "start": 12256.72, + "end": 12260.86, + "probability": 0.5402 + }, + { + "start": 12261.66, + "end": 12262.96, + "probability": 0.844 + }, + { + "start": 12263.78, + "end": 12264.4, + "probability": 0.4212 + }, + { + "start": 12264.42, + "end": 12265.16, + "probability": 0.7002 + }, + { + "start": 12265.8, + "end": 12266.34, + "probability": 0.9436 + }, + { + "start": 12267.42, + "end": 12268.24, + "probability": 0.9828 + }, + { + "start": 12268.98, + "end": 12270.44, + "probability": 0.8407 + }, + { + "start": 12271.98, + "end": 12274.2, + "probability": 0.1531 + }, + { + "start": 12286.62, + "end": 12287.34, + "probability": 0.0428 + }, + { + "start": 12287.34, + "end": 12287.34, + "probability": 0.5143 + }, + { + "start": 12287.34, + "end": 12291.1, + "probability": 0.8762 + }, + { + "start": 12291.7, + "end": 12293.0, + "probability": 0.4826 + }, + { + "start": 12293.3, + "end": 12296.66, + "probability": 0.9664 + }, + { + "start": 12297.04, + "end": 12298.14, + "probability": 0.8296 + }, + { + "start": 12298.3, + "end": 12299.3, + "probability": 0.5449 + }, + { + "start": 12300.42, + "end": 12302.62, + "probability": 0.8766 + }, + { + "start": 12303.38, + "end": 12303.48, + "probability": 0.0644 + }, + { + "start": 12303.48, + "end": 12305.02, + "probability": 0.7287 + }, + { + "start": 12305.14, + "end": 12309.2, + "probability": 0.5391 + }, + { + "start": 12309.26, + "end": 12314.12, + "probability": 0.8133 + }, + { + "start": 12314.62, + "end": 12317.46, + "probability": 0.697 + }, + { + "start": 12328.88, + "end": 12330.0, + "probability": 0.452 + }, + { + "start": 12330.62, + "end": 12331.22, + "probability": 0.8117 + }, + { + "start": 12332.62, + "end": 12337.07, + "probability": 0.6091 + }, + { + "start": 12337.98, + "end": 12340.3, + "probability": 0.993 + }, + { + "start": 12340.3, + "end": 12342.7, + "probability": 0.9838 + }, + { + "start": 12344.16, + "end": 12344.3, + "probability": 0.0906 + }, + { + "start": 12345.18, + "end": 12348.2, + "probability": 0.6833 + }, + { + "start": 12348.8, + "end": 12351.28, + "probability": 0.9919 + }, + { + "start": 12351.28, + "end": 12351.88, + "probability": 0.8219 + }, + { + "start": 12352.04, + "end": 12354.32, + "probability": 0.9745 + }, + { + "start": 12354.64, + "end": 12354.74, + "probability": 0.7297 + }, + { + "start": 12355.54, + "end": 12356.58, + "probability": 0.598 + }, + { + "start": 12357.5, + "end": 12358.82, + "probability": 0.6209 + }, + { + "start": 12359.42, + "end": 12362.44, + "probability": 0.9932 + }, + { + "start": 12362.44, + "end": 12364.92, + "probability": 0.9885 + }, + { + "start": 12371.86, + "end": 12372.82, + "probability": 0.6003 + }, + { + "start": 12372.98, + "end": 12375.78, + "probability": 0.6919 + }, + { + "start": 12375.86, + "end": 12379.56, + "probability": 0.9226 + }, + { + "start": 12380.06, + "end": 12382.28, + "probability": 0.981 + }, + { + "start": 12382.94, + "end": 12383.9, + "probability": 0.8843 + }, + { + "start": 12384.06, + "end": 12387.86, + "probability": 0.889 + }, + { + "start": 12388.5, + "end": 12391.32, + "probability": 0.9966 + }, + { + "start": 12391.94, + "end": 12397.6, + "probability": 0.9924 + }, + { + "start": 12398.64, + "end": 12403.14, + "probability": 0.7649 + }, + { + "start": 12403.62, + "end": 12406.82, + "probability": 0.9879 + }, + { + "start": 12408.8, + "end": 12409.86, + "probability": 0.7095 + }, + { + "start": 12414.04, + "end": 12415.4, + "probability": 0.5132 + }, + { + "start": 12415.66, + "end": 12420.38, + "probability": 0.9888 + }, + { + "start": 12421.46, + "end": 12422.52, + "probability": 0.9961 + }, + { + "start": 12423.26, + "end": 12424.02, + "probability": 0.6213 + }, + { + "start": 12424.44, + "end": 12424.5, + "probability": 0.5334 + }, + { + "start": 12424.5, + "end": 12426.78, + "probability": 0.9609 + }, + { + "start": 12426.88, + "end": 12430.9, + "probability": 0.7989 + }, + { + "start": 12431.02, + "end": 12432.7, + "probability": 0.994 + }, + { + "start": 12433.34, + "end": 12436.62, + "probability": 0.9884 + }, + { + "start": 12437.32, + "end": 12439.69, + "probability": 0.9543 + }, + { + "start": 12439.98, + "end": 12440.86, + "probability": 0.8975 + }, + { + "start": 12441.42, + "end": 12443.28, + "probability": 0.4665 + }, + { + "start": 12443.48, + "end": 12445.1, + "probability": 0.6718 + }, + { + "start": 12445.5, + "end": 12447.04, + "probability": 0.691 + }, + { + "start": 12447.28, + "end": 12448.26, + "probability": 0.9954 + }, + { + "start": 12449.54, + "end": 12452.48, + "probability": 0.5147 + }, + { + "start": 12452.88, + "end": 12456.82, + "probability": 0.9829 + }, + { + "start": 12460.12, + "end": 12463.92, + "probability": 0.0273 + }, + { + "start": 12464.52, + "end": 12467.08, + "probability": 0.1257 + }, + { + "start": 12467.52, + "end": 12468.26, + "probability": 0.1365 + }, + { + "start": 12469.68, + "end": 12469.68, + "probability": 0.3194 + }, + { + "start": 12469.94, + "end": 12470.0, + "probability": 0.2854 + }, + { + "start": 12471.58, + "end": 12471.98, + "probability": 0.5183 + }, + { + "start": 12471.98, + "end": 12472.38, + "probability": 0.3883 + }, + { + "start": 12472.98, + "end": 12472.98, + "probability": 0.0385 + }, + { + "start": 12472.98, + "end": 12475.1, + "probability": 0.5331 + }, + { + "start": 12475.84, + "end": 12477.74, + "probability": 0.8447 + }, + { + "start": 12477.84, + "end": 12478.4, + "probability": 0.7051 + }, + { + "start": 12478.54, + "end": 12479.72, + "probability": 0.9482 + }, + { + "start": 12480.36, + "end": 12481.32, + "probability": 0.3881 + }, + { + "start": 12485.34, + "end": 12488.08, + "probability": 0.5822 + }, + { + "start": 12488.38, + "end": 12492.4, + "probability": 0.9426 + }, + { + "start": 12492.4, + "end": 12494.3, + "probability": 0.999 + }, + { + "start": 12494.74, + "end": 12495.54, + "probability": 0.5532 + }, + { + "start": 12496.08, + "end": 12498.56, + "probability": 0.9799 + }, + { + "start": 12499.4, + "end": 12501.72, + "probability": 0.8911 + }, + { + "start": 12502.04, + "end": 12504.52, + "probability": 0.7549 + }, + { + "start": 12504.7, + "end": 12506.08, + "probability": 0.9187 + }, + { + "start": 12508.8, + "end": 12509.8, + "probability": 0.6954 + }, + { + "start": 12510.7, + "end": 12513.18, + "probability": 0.7441 + }, + { + "start": 12515.74, + "end": 12516.5, + "probability": 0.8812 + }, + { + "start": 12517.66, + "end": 12520.22, + "probability": 0.9309 + }, + { + "start": 12520.96, + "end": 12522.0, + "probability": 0.638 + }, + { + "start": 12522.16, + "end": 12524.18, + "probability": 0.9876 + }, + { + "start": 12524.66, + "end": 12525.85, + "probability": 0.0128 + }, + { + "start": 12526.38, + "end": 12528.24, + "probability": 0.9449 + }, + { + "start": 12530.08, + "end": 12530.94, + "probability": 0.6029 + }, + { + "start": 12531.48, + "end": 12533.56, + "probability": 0.5945 + }, + { + "start": 12534.74, + "end": 12538.7, + "probability": 0.8371 + }, + { + "start": 12540.1, + "end": 12543.94, + "probability": 0.8443 + }, + { + "start": 12545.28, + "end": 12546.16, + "probability": 0.5779 + }, + { + "start": 12546.6, + "end": 12548.1, + "probability": 0.9465 + }, + { + "start": 12549.36, + "end": 12549.88, + "probability": 0.9313 + }, + { + "start": 12550.52, + "end": 12552.92, + "probability": 0.0753 + }, + { + "start": 12552.92, + "end": 12553.6, + "probability": 0.1483 + }, + { + "start": 12553.8, + "end": 12553.8, + "probability": 0.3323 + }, + { + "start": 12553.8, + "end": 12554.32, + "probability": 0.6478 + }, + { + "start": 12557.5, + "end": 12559.32, + "probability": 0.1156 + }, + { + "start": 12563.7, + "end": 12565.34, + "probability": 0.8208 + }, + { + "start": 12566.44, + "end": 12567.52, + "probability": 0.5121 + }, + { + "start": 12567.8, + "end": 12569.52, + "probability": 0.9352 + }, + { + "start": 12569.7, + "end": 12570.95, + "probability": 0.9956 + }, + { + "start": 12572.06, + "end": 12573.5, + "probability": 0.998 + }, + { + "start": 12573.6, + "end": 12574.36, + "probability": 0.9329 + }, + { + "start": 12574.4, + "end": 12575.56, + "probability": 0.9744 + }, + { + "start": 12576.1, + "end": 12577.52, + "probability": 0.9915 + }, + { + "start": 12578.1, + "end": 12579.18, + "probability": 0.9457 + }, + { + "start": 12579.74, + "end": 12580.94, + "probability": 0.9314 + }, + { + "start": 12582.16, + "end": 12583.9, + "probability": 0.5658 + }, + { + "start": 12584.62, + "end": 12587.22, + "probability": 0.9973 + }, + { + "start": 12587.98, + "end": 12590.26, + "probability": 0.9844 + }, + { + "start": 12590.36, + "end": 12591.34, + "probability": 0.9695 + }, + { + "start": 12591.36, + "end": 12592.14, + "probability": 0.9256 + }, + { + "start": 12592.66, + "end": 12594.08, + "probability": 0.4176 + }, + { + "start": 12594.68, + "end": 12595.72, + "probability": 0.6937 + }, + { + "start": 12595.72, + "end": 12598.88, + "probability": 0.8433 + }, + { + "start": 12598.94, + "end": 12598.98, + "probability": 0.7651 + }, + { + "start": 12599.0, + "end": 12600.24, + "probability": 0.9531 + }, + { + "start": 12600.42, + "end": 12603.12, + "probability": 0.9293 + }, + { + "start": 12603.44, + "end": 12605.4, + "probability": 0.8063 + }, + { + "start": 12605.58, + "end": 12605.98, + "probability": 0.4566 + }, + { + "start": 12606.04, + "end": 12607.68, + "probability": 0.2385 + }, + { + "start": 12607.74, + "end": 12609.92, + "probability": 0.8934 + }, + { + "start": 12610.33, + "end": 12611.12, + "probability": 0.3911 + }, + { + "start": 12611.14, + "end": 12614.31, + "probability": 0.9904 + }, + { + "start": 12614.54, + "end": 12615.96, + "probability": 0.8987 + }, + { + "start": 12616.56, + "end": 12618.32, + "probability": 0.7171 + }, + { + "start": 12618.48, + "end": 12621.16, + "probability": 0.7137 + }, + { + "start": 12622.08, + "end": 12622.82, + "probability": 0.6574 + }, + { + "start": 12623.62, + "end": 12626.4, + "probability": 0.9043 + }, + { + "start": 12627.7, + "end": 12628.56, + "probability": 0.7747 + }, + { + "start": 12629.1, + "end": 12632.26, + "probability": 0.8023 + }, + { + "start": 12633.76, + "end": 12634.84, + "probability": 0.7961 + }, + { + "start": 12635.22, + "end": 12636.94, + "probability": 0.9957 + }, + { + "start": 12637.48, + "end": 12637.88, + "probability": 0.5401 + }, + { + "start": 12638.5, + "end": 12640.06, + "probability": 0.7983 + }, + { + "start": 12641.14, + "end": 12642.7, + "probability": 0.9776 + }, + { + "start": 12642.8, + "end": 12644.44, + "probability": 0.809 + }, + { + "start": 12645.82, + "end": 12648.06, + "probability": 0.9188 + }, + { + "start": 12649.16, + "end": 12650.08, + "probability": 0.0103 + }, + { + "start": 12671.18, + "end": 12673.48, + "probability": 0.6474 + }, + { + "start": 12675.04, + "end": 12675.82, + "probability": 0.796 + }, + { + "start": 12677.46, + "end": 12679.62, + "probability": 0.7809 + }, + { + "start": 12683.46, + "end": 12686.31, + "probability": 0.9922 + }, + { + "start": 12687.18, + "end": 12693.96, + "probability": 0.8441 + }, + { + "start": 12694.86, + "end": 12696.08, + "probability": 0.9979 + }, + { + "start": 12697.2, + "end": 12699.76, + "probability": 0.6601 + }, + { + "start": 12701.24, + "end": 12703.08, + "probability": 0.9958 + }, + { + "start": 12704.26, + "end": 12707.6, + "probability": 0.7565 + }, + { + "start": 12708.54, + "end": 12710.46, + "probability": 0.8351 + }, + { + "start": 12711.1, + "end": 12715.3, + "probability": 0.9298 + }, + { + "start": 12715.9, + "end": 12718.54, + "probability": 0.9916 + }, + { + "start": 12719.12, + "end": 12722.88, + "probability": 0.998 + }, + { + "start": 12724.56, + "end": 12731.52, + "probability": 0.9938 + }, + { + "start": 12732.18, + "end": 12735.98, + "probability": 0.9989 + }, + { + "start": 12735.98, + "end": 12739.86, + "probability": 0.9998 + }, + { + "start": 12740.58, + "end": 12742.66, + "probability": 0.9875 + }, + { + "start": 12743.24, + "end": 12745.13, + "probability": 0.6661 + }, + { + "start": 12746.02, + "end": 12748.32, + "probability": 0.9919 + }, + { + "start": 12748.92, + "end": 12750.36, + "probability": 0.9317 + }, + { + "start": 12750.6, + "end": 12754.4, + "probability": 0.7876 + }, + { + "start": 12755.4, + "end": 12758.24, + "probability": 0.9884 + }, + { + "start": 12760.06, + "end": 12761.84, + "probability": 0.6178 + }, + { + "start": 12762.28, + "end": 12763.8, + "probability": 0.8052 + }, + { + "start": 12764.14, + "end": 12765.16, + "probability": 0.6962 + }, + { + "start": 12765.18, + "end": 12765.96, + "probability": 0.3006 + }, + { + "start": 12766.12, + "end": 12768.15, + "probability": 0.7583 + }, + { + "start": 12769.4, + "end": 12770.74, + "probability": 0.9778 + }, + { + "start": 12773.12, + "end": 12774.78, + "probability": 0.478 + }, + { + "start": 12776.58, + "end": 12780.54, + "probability": 0.7465 + }, + { + "start": 12781.28, + "end": 12787.64, + "probability": 0.9951 + }, + { + "start": 12787.7, + "end": 12788.33, + "probability": 0.7166 + }, + { + "start": 12789.14, + "end": 12794.1, + "probability": 0.7803 + }, + { + "start": 12794.72, + "end": 12796.14, + "probability": 0.9786 + }, + { + "start": 12797.26, + "end": 12799.84, + "probability": 0.8068 + }, + { + "start": 12800.94, + "end": 12804.18, + "probability": 0.7505 + }, + { + "start": 12804.98, + "end": 12807.06, + "probability": 0.7431 + }, + { + "start": 12807.78, + "end": 12811.22, + "probability": 0.7648 + }, + { + "start": 12811.66, + "end": 12812.5, + "probability": 0.6197 + }, + { + "start": 12813.88, + "end": 12816.9, + "probability": 0.855 + }, + { + "start": 12818.32, + "end": 12820.34, + "probability": 0.9649 + }, + { + "start": 12820.88, + "end": 12822.46, + "probability": 0.7134 + }, + { + "start": 12823.16, + "end": 12825.26, + "probability": 0.9845 + }, + { + "start": 12825.7, + "end": 12826.51, + "probability": 0.947 + }, + { + "start": 12827.56, + "end": 12828.7, + "probability": 0.8662 + }, + { + "start": 12829.46, + "end": 12830.54, + "probability": 0.856 + }, + { + "start": 12831.12, + "end": 12831.9, + "probability": 0.7901 + }, + { + "start": 12832.54, + "end": 12837.74, + "probability": 0.9789 + }, + { + "start": 12838.22, + "end": 12841.12, + "probability": 0.8994 + }, + { + "start": 12841.62, + "end": 12847.38, + "probability": 0.9806 + }, + { + "start": 12847.86, + "end": 12849.1, + "probability": 0.9882 + }, + { + "start": 12850.34, + "end": 12852.08, + "probability": 0.7496 + }, + { + "start": 12852.36, + "end": 12853.4, + "probability": 0.7092 + }, + { + "start": 12853.5, + "end": 12856.06, + "probability": 0.8634 + }, + { + "start": 12857.36, + "end": 12857.8, + "probability": 0.717 + }, + { + "start": 12866.66, + "end": 12867.34, + "probability": 0.2905 + }, + { + "start": 12867.42, + "end": 12873.04, + "probability": 0.5086 + }, + { + "start": 12873.06, + "end": 12874.88, + "probability": 0.9858 + }, + { + "start": 12876.58, + "end": 12878.62, + "probability": 0.6439 + }, + { + "start": 12879.28, + "end": 12879.92, + "probability": 0.8089 + }, + { + "start": 12880.12, + "end": 12880.12, + "probability": 0.0382 + }, + { + "start": 12898.86, + "end": 12899.82, + "probability": 0.0451 + }, + { + "start": 12899.82, + "end": 12901.38, + "probability": 0.5067 + }, + { + "start": 12901.74, + "end": 12903.86, + "probability": 0.6972 + }, + { + "start": 12911.04, + "end": 12911.36, + "probability": 0.2257 + }, + { + "start": 12914.2, + "end": 12918.68, + "probability": 0.9845 + }, + { + "start": 12920.2, + "end": 12921.64, + "probability": 0.7374 + }, + { + "start": 12921.7, + "end": 12923.14, + "probability": 0.8637 + }, + { + "start": 12923.34, + "end": 12926.82, + "probability": 0.9224 + }, + { + "start": 12927.62, + "end": 12930.72, + "probability": 0.5382 + }, + { + "start": 12930.72, + "end": 12931.42, + "probability": 0.5255 + }, + { + "start": 12931.5, + "end": 12933.6, + "probability": 0.9814 + }, + { + "start": 12936.22, + "end": 12937.58, + "probability": 0.5607 + }, + { + "start": 12938.96, + "end": 12939.18, + "probability": 0.704 + }, + { + "start": 12939.88, + "end": 12942.54, + "probability": 0.9657 + }, + { + "start": 12942.54, + "end": 12946.18, + "probability": 0.8751 + }, + { + "start": 12946.64, + "end": 12951.16, + "probability": 0.9933 + }, + { + "start": 12951.16, + "end": 12954.88, + "probability": 0.9866 + }, + { + "start": 12956.24, + "end": 12959.08, + "probability": 0.8084 + }, + { + "start": 12962.5, + "end": 12963.32, + "probability": 0.4511 + }, + { + "start": 12964.5, + "end": 12966.79, + "probability": 0.9126 + }, + { + "start": 12968.54, + "end": 12970.16, + "probability": 0.9914 + }, + { + "start": 12971.02, + "end": 12971.94, + "probability": 0.9712 + }, + { + "start": 12972.52, + "end": 12974.12, + "probability": 0.9878 + }, + { + "start": 12975.92, + "end": 12976.78, + "probability": 0.9658 + }, + { + "start": 12977.34, + "end": 12979.26, + "probability": 0.9981 + }, + { + "start": 12980.72, + "end": 12981.68, + "probability": 0.9814 + }, + { + "start": 12982.38, + "end": 12983.72, + "probability": 0.7599 + }, + { + "start": 12984.74, + "end": 12985.82, + "probability": 0.7751 + }, + { + "start": 12986.44, + "end": 12987.94, + "probability": 0.8934 + }, + { + "start": 12989.32, + "end": 12991.12, + "probability": 0.975 + }, + { + "start": 12991.68, + "end": 12994.08, + "probability": 0.9865 + }, + { + "start": 12995.52, + "end": 13000.42, + "probability": 0.939 + }, + { + "start": 13000.76, + "end": 13005.66, + "probability": 0.9976 + }, + { + "start": 13005.66, + "end": 13010.02, + "probability": 0.9974 + }, + { + "start": 13016.24, + "end": 13017.06, + "probability": 0.5038 + }, + { + "start": 13017.14, + "end": 13017.58, + "probability": 0.4429 + }, + { + "start": 13017.66, + "end": 13018.4, + "probability": 0.6458 + }, + { + "start": 13035.64, + "end": 13036.7, + "probability": 0.0214 + }, + { + "start": 13036.7, + "end": 13038.67, + "probability": 0.9247 + }, + { + "start": 13040.68, + "end": 13042.6, + "probability": 0.8778 + }, + { + "start": 13044.14, + "end": 13045.9, + "probability": 0.7253 + }, + { + "start": 13045.92, + "end": 13046.42, + "probability": 0.8926 + }, + { + "start": 13053.28, + "end": 13057.52, + "probability": 0.8103 + }, + { + "start": 13057.78, + "end": 13058.94, + "probability": 0.0003 + }, + { + "start": 13062.66, + "end": 13064.06, + "probability": 0.4934 + }, + { + "start": 13064.06, + "end": 13066.12, + "probability": 0.9927 + }, + { + "start": 13066.68, + "end": 13071.42, + "probability": 0.9724 + }, + { + "start": 13072.02, + "end": 16272.0, + "probability": 0.9887 + }, + { + "start": 16272.0, + "end": 16272.0, + "probability": 0.0 + }, + { + "start": 16272.0, + "end": 16272.0, + "probability": 0.0 + }, + { + "start": 16272.0, + "end": 16272.0, + "probability": 0.0 + }, + { + "start": 16272.0, + "end": 16272.0, + "probability": 0.0 + }, + { + "start": 16272.26, + "end": 16273.42, + "probability": 0.6047 + }, + { + "start": 16276.29, + "end": 16278.72, + "probability": 0.8761 + }, + { + "start": 16278.78, + "end": 16279.08, + "probability": 0.4467 + }, + { + "start": 16279.16, + "end": 16280.16, + "probability": 0.7426 + }, + { + "start": 16280.5, + "end": 16286.26, + "probability": 0.9383 + }, + { + "start": 16286.26, + "end": 16289.1, + "probability": 0.9957 + }, + { + "start": 16290.44, + "end": 16290.6, + "probability": 0.0016 + } + ], + "segments_count": 4575, + "words_count": 21834, + "avg_words_per_segment": 4.7725, + "avg_segment_duration": 2.6894, + "avg_words_per_minute": 80.2697, + "plenum_id": "38226", + "duration": 16320.47, + "title": null, + "plenum_date": "2014-06-30" +} \ No newline at end of file