diff --git "a/55824/metadata.json" "b/55824/metadata.json" new file mode 100644--- /dev/null +++ "b/55824/metadata.json" @@ -0,0 +1,50787 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "55824", + "quality_score": 0.7949, + "per_segment_quality_scores": [ + { + "start": 25.86, + "end": 25.86, + "probability": 0.1395 + }, + { + "start": 25.86, + "end": 27.1, + "probability": 0.7153 + }, + { + "start": 27.24, + "end": 28.56, + "probability": 0.7996 + }, + { + "start": 28.64, + "end": 30.06, + "probability": 0.9169 + }, + { + "start": 30.16, + "end": 30.9, + "probability": 0.7372 + }, + { + "start": 30.9, + "end": 31.86, + "probability": 0.7139 + }, + { + "start": 32.44, + "end": 36.34, + "probability": 0.8859 + }, + { + "start": 38.2, + "end": 38.22, + "probability": 0.4546 + }, + { + "start": 38.22, + "end": 40.84, + "probability": 0.3675 + }, + { + "start": 40.88, + "end": 42.12, + "probability": 0.9279 + }, + { + "start": 42.74, + "end": 45.98, + "probability": 0.7334 + }, + { + "start": 46.08, + "end": 47.5, + "probability": 0.9459 + }, + { + "start": 47.84, + "end": 51.54, + "probability": 0.8225 + }, + { + "start": 52.42, + "end": 56.52, + "probability": 0.7649 + }, + { + "start": 59.26, + "end": 59.8, + "probability": 0.217 + }, + { + "start": 70.78, + "end": 72.38, + "probability": 0.7409 + }, + { + "start": 73.7, + "end": 75.98, + "probability": 0.4755 + }, + { + "start": 76.48, + "end": 78.92, + "probability": 0.0464 + }, + { + "start": 78.92, + "end": 79.3, + "probability": 0.0306 + }, + { + "start": 79.5, + "end": 80.78, + "probability": 0.5576 + }, + { + "start": 81.61, + "end": 84.02, + "probability": 0.2581 + }, + { + "start": 85.72, + "end": 87.24, + "probability": 0.0219 + }, + { + "start": 87.32, + "end": 87.46, + "probability": 0.009 + }, + { + "start": 87.58, + "end": 91.3, + "probability": 0.0892 + }, + { + "start": 91.56, + "end": 92.8, + "probability": 0.1421 + }, + { + "start": 97.14, + "end": 100.32, + "probability": 0.0374 + }, + { + "start": 100.88, + "end": 106.22, + "probability": 0.0257 + }, + { + "start": 106.68, + "end": 111.24, + "probability": 0.0423 + }, + { + "start": 111.58, + "end": 113.9, + "probability": 0.0462 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.2, + "end": 125.8, + "probability": 0.211 + }, + { + "start": 126.86, + "end": 130.86, + "probability": 0.8193 + }, + { + "start": 130.92, + "end": 131.68, + "probability": 0.7425 + }, + { + "start": 134.41, + "end": 138.48, + "probability": 0.9965 + }, + { + "start": 138.94, + "end": 139.36, + "probability": 0.8512 + }, + { + "start": 146.32, + "end": 149.53, + "probability": 0.7309 + }, + { + "start": 149.6, + "end": 151.64, + "probability": 0.8474 + }, + { + "start": 158.28, + "end": 160.15, + "probability": 0.7759 + }, + { + "start": 161.08, + "end": 164.26, + "probability": 0.9144 + }, + { + "start": 164.8, + "end": 165.88, + "probability": 0.7579 + }, + { + "start": 166.4, + "end": 169.86, + "probability": 0.9625 + }, + { + "start": 170.44, + "end": 178.7, + "probability": 0.9145 + }, + { + "start": 178.86, + "end": 182.48, + "probability": 0.9365 + }, + { + "start": 182.92, + "end": 188.6, + "probability": 0.9928 + }, + { + "start": 189.0, + "end": 189.52, + "probability": 0.9204 + }, + { + "start": 189.62, + "end": 190.52, + "probability": 0.8784 + }, + { + "start": 190.58, + "end": 192.78, + "probability": 0.774 + }, + { + "start": 193.14, + "end": 194.56, + "probability": 0.4115 + }, + { + "start": 194.62, + "end": 197.04, + "probability": 0.9929 + }, + { + "start": 197.54, + "end": 198.66, + "probability": 0.8699 + }, + { + "start": 198.84, + "end": 199.82, + "probability": 0.7834 + }, + { + "start": 199.92, + "end": 201.36, + "probability": 0.9346 + }, + { + "start": 201.7, + "end": 203.68, + "probability": 0.9306 + }, + { + "start": 203.76, + "end": 206.78, + "probability": 0.7923 + }, + { + "start": 206.9, + "end": 207.46, + "probability": 0.5911 + }, + { + "start": 207.54, + "end": 208.04, + "probability": 0.9334 + }, + { + "start": 208.66, + "end": 209.68, + "probability": 0.9663 + }, + { + "start": 209.98, + "end": 211.86, + "probability": 0.993 + }, + { + "start": 211.88, + "end": 215.22, + "probability": 0.9767 + }, + { + "start": 215.6, + "end": 216.76, + "probability": 0.8281 + }, + { + "start": 216.84, + "end": 217.02, + "probability": 0.566 + }, + { + "start": 217.54, + "end": 219.42, + "probability": 0.7278 + }, + { + "start": 219.68, + "end": 222.1, + "probability": 0.9653 + }, + { + "start": 223.22, + "end": 225.88, + "probability": 0.7082 + }, + { + "start": 233.64, + "end": 237.64, + "probability": 0.9534 + }, + { + "start": 239.16, + "end": 244.84, + "probability": 0.9916 + }, + { + "start": 246.1, + "end": 251.52, + "probability": 0.9797 + }, + { + "start": 252.72, + "end": 256.5, + "probability": 0.978 + }, + { + "start": 256.84, + "end": 263.94, + "probability": 0.9357 + }, + { + "start": 264.14, + "end": 266.72, + "probability": 0.9672 + }, + { + "start": 267.88, + "end": 272.1, + "probability": 0.9966 + }, + { + "start": 272.44, + "end": 274.13, + "probability": 0.9995 + }, + { + "start": 274.88, + "end": 277.89, + "probability": 0.938 + }, + { + "start": 278.62, + "end": 281.86, + "probability": 0.5919 + }, + { + "start": 282.06, + "end": 287.46, + "probability": 0.9802 + }, + { + "start": 287.56, + "end": 292.76, + "probability": 0.9858 + }, + { + "start": 293.08, + "end": 294.72, + "probability": 0.9966 + }, + { + "start": 295.28, + "end": 299.9, + "probability": 0.9932 + }, + { + "start": 300.54, + "end": 303.54, + "probability": 0.8786 + }, + { + "start": 303.54, + "end": 305.44, + "probability": 0.9925 + }, + { + "start": 306.0, + "end": 309.86, + "probability": 0.9783 + }, + { + "start": 309.98, + "end": 310.2, + "probability": 0.7184 + }, + { + "start": 310.56, + "end": 312.22, + "probability": 0.8438 + }, + { + "start": 312.32, + "end": 314.58, + "probability": 0.5288 + }, + { + "start": 315.48, + "end": 317.6, + "probability": 0.7367 + }, + { + "start": 319.74, + "end": 322.38, + "probability": 0.7809 + }, + { + "start": 323.2, + "end": 326.08, + "probability": 0.9937 + }, + { + "start": 326.08, + "end": 330.42, + "probability": 0.9749 + }, + { + "start": 331.48, + "end": 334.14, + "probability": 0.4743 + }, + { + "start": 335.28, + "end": 339.6, + "probability": 0.9531 + }, + { + "start": 340.56, + "end": 344.02, + "probability": 0.9287 + }, + { + "start": 344.8, + "end": 349.7, + "probability": 0.9261 + }, + { + "start": 350.74, + "end": 355.88, + "probability": 0.9558 + }, + { + "start": 357.18, + "end": 359.18, + "probability": 0.9956 + }, + { + "start": 360.06, + "end": 363.18, + "probability": 0.9774 + }, + { + "start": 364.76, + "end": 366.48, + "probability": 0.9948 + }, + { + "start": 366.66, + "end": 368.01, + "probability": 0.9966 + }, + { + "start": 368.22, + "end": 371.7, + "probability": 0.9976 + }, + { + "start": 371.7, + "end": 375.08, + "probability": 0.6128 + }, + { + "start": 375.62, + "end": 379.06, + "probability": 0.8258 + }, + { + "start": 379.26, + "end": 381.96, + "probability": 0.992 + }, + { + "start": 382.2, + "end": 384.16, + "probability": 0.9471 + }, + { + "start": 384.8, + "end": 386.2, + "probability": 0.3387 + }, + { + "start": 386.44, + "end": 387.0, + "probability": 0.9788 + }, + { + "start": 387.14, + "end": 388.36, + "probability": 0.9775 + }, + { + "start": 388.98, + "end": 390.18, + "probability": 0.9881 + }, + { + "start": 390.42, + "end": 393.52, + "probability": 0.8379 + }, + { + "start": 393.86, + "end": 395.06, + "probability": 0.9095 + }, + { + "start": 396.29, + "end": 399.2, + "probability": 0.7921 + }, + { + "start": 399.62, + "end": 401.04, + "probability": 0.9968 + }, + { + "start": 401.06, + "end": 402.16, + "probability": 0.9299 + }, + { + "start": 402.48, + "end": 405.86, + "probability": 0.9651 + }, + { + "start": 406.18, + "end": 406.92, + "probability": 0.7482 + }, + { + "start": 407.26, + "end": 412.14, + "probability": 0.7108 + }, + { + "start": 412.74, + "end": 413.02, + "probability": 0.4864 + }, + { + "start": 413.52, + "end": 415.04, + "probability": 0.6188 + }, + { + "start": 415.12, + "end": 417.24, + "probability": 0.8331 + }, + { + "start": 417.64, + "end": 419.86, + "probability": 0.7122 + }, + { + "start": 427.36, + "end": 428.1, + "probability": 0.7298 + }, + { + "start": 428.44, + "end": 429.38, + "probability": 0.9505 + }, + { + "start": 429.52, + "end": 435.76, + "probability": 0.9287 + }, + { + "start": 437.38, + "end": 437.48, + "probability": 0.3152 + }, + { + "start": 437.48, + "end": 439.68, + "probability": 0.9642 + }, + { + "start": 440.46, + "end": 442.46, + "probability": 0.979 + }, + { + "start": 443.02, + "end": 444.76, + "probability": 0.9495 + }, + { + "start": 445.56, + "end": 446.26, + "probability": 0.739 + }, + { + "start": 446.64, + "end": 448.26, + "probability": 0.9413 + }, + { + "start": 449.24, + "end": 451.22, + "probability": 0.9116 + }, + { + "start": 451.82, + "end": 457.76, + "probability": 0.9784 + }, + { + "start": 458.26, + "end": 460.24, + "probability": 0.9684 + }, + { + "start": 460.44, + "end": 463.46, + "probability": 0.9395 + }, + { + "start": 463.96, + "end": 466.24, + "probability": 0.5886 + }, + { + "start": 466.3, + "end": 467.3, + "probability": 0.824 + }, + { + "start": 468.42, + "end": 469.94, + "probability": 0.9408 + }, + { + "start": 470.2, + "end": 473.92, + "probability": 0.9905 + }, + { + "start": 474.58, + "end": 476.2, + "probability": 0.9443 + }, + { + "start": 476.34, + "end": 476.98, + "probability": 0.9322 + }, + { + "start": 477.08, + "end": 477.82, + "probability": 0.9761 + }, + { + "start": 478.32, + "end": 479.06, + "probability": 0.993 + }, + { + "start": 479.24, + "end": 480.22, + "probability": 0.6781 + }, + { + "start": 480.88, + "end": 486.5, + "probability": 0.9695 + }, + { + "start": 486.58, + "end": 487.46, + "probability": 0.7745 + }, + { + "start": 487.64, + "end": 488.6, + "probability": 0.7324 + }, + { + "start": 488.68, + "end": 490.06, + "probability": 0.9644 + }, + { + "start": 490.48, + "end": 492.74, + "probability": 0.9783 + }, + { + "start": 492.76, + "end": 493.86, + "probability": 0.8545 + }, + { + "start": 493.9, + "end": 494.38, + "probability": 0.7654 + }, + { + "start": 494.66, + "end": 496.98, + "probability": 0.9307 + }, + { + "start": 497.08, + "end": 497.82, + "probability": 0.7374 + }, + { + "start": 497.9, + "end": 499.86, + "probability": 0.8545 + }, + { + "start": 500.3, + "end": 503.52, + "probability": 0.9805 + }, + { + "start": 503.96, + "end": 508.34, + "probability": 0.9763 + }, + { + "start": 508.8, + "end": 510.24, + "probability": 0.9858 + }, + { + "start": 510.44, + "end": 511.0, + "probability": 0.8812 + }, + { + "start": 511.12, + "end": 511.64, + "probability": 0.6955 + }, + { + "start": 511.72, + "end": 513.16, + "probability": 0.9473 + }, + { + "start": 513.58, + "end": 514.58, + "probability": 0.8667 + }, + { + "start": 514.62, + "end": 518.28, + "probability": 0.9603 + }, + { + "start": 518.8, + "end": 520.28, + "probability": 0.651 + }, + { + "start": 520.52, + "end": 523.0, + "probability": 0.6323 + }, + { + "start": 523.58, + "end": 525.62, + "probability": 0.8489 + }, + { + "start": 530.0, + "end": 531.54, + "probability": 0.5489 + }, + { + "start": 532.1, + "end": 532.52, + "probability": 0.4734 + }, + { + "start": 532.62, + "end": 534.98, + "probability": 0.5524 + }, + { + "start": 535.12, + "end": 535.46, + "probability": 0.3531 + }, + { + "start": 535.6, + "end": 536.74, + "probability": 0.6827 + }, + { + "start": 537.1, + "end": 537.82, + "probability": 0.7321 + }, + { + "start": 537.88, + "end": 538.2, + "probability": 0.549 + }, + { + "start": 538.22, + "end": 538.72, + "probability": 0.9414 + }, + { + "start": 539.6, + "end": 542.92, + "probability": 0.8656 + }, + { + "start": 543.94, + "end": 544.56, + "probability": 0.6249 + }, + { + "start": 544.68, + "end": 546.58, + "probability": 0.9867 + }, + { + "start": 547.5, + "end": 550.26, + "probability": 0.6923 + }, + { + "start": 550.28, + "end": 551.48, + "probability": 0.8223 + }, + { + "start": 552.1, + "end": 555.14, + "probability": 0.9857 + }, + { + "start": 555.88, + "end": 556.44, + "probability": 0.6739 + }, + { + "start": 556.6, + "end": 559.12, + "probability": 0.9831 + }, + { + "start": 559.24, + "end": 559.6, + "probability": 0.9517 + }, + { + "start": 559.74, + "end": 560.22, + "probability": 0.797 + }, + { + "start": 560.82, + "end": 563.58, + "probability": 0.9479 + }, + { + "start": 564.3, + "end": 565.44, + "probability": 0.9839 + }, + { + "start": 566.14, + "end": 569.4, + "probability": 0.9819 + }, + { + "start": 569.52, + "end": 571.12, + "probability": 0.7539 + }, + { + "start": 571.72, + "end": 576.74, + "probability": 0.8564 + }, + { + "start": 577.1, + "end": 577.36, + "probability": 0.7386 + }, + { + "start": 578.42, + "end": 580.14, + "probability": 0.665 + }, + { + "start": 580.42, + "end": 583.24, + "probability": 0.9478 + }, + { + "start": 583.24, + "end": 584.08, + "probability": 0.3953 + }, + { + "start": 584.08, + "end": 586.4, + "probability": 0.9312 + }, + { + "start": 587.8, + "end": 590.63, + "probability": 0.5493 + }, + { + "start": 596.22, + "end": 603.04, + "probability": 0.9918 + }, + { + "start": 603.1, + "end": 603.64, + "probability": 0.5902 + }, + { + "start": 603.8, + "end": 604.42, + "probability": 0.6375 + }, + { + "start": 604.52, + "end": 605.12, + "probability": 0.6517 + }, + { + "start": 606.06, + "end": 609.38, + "probability": 0.9304 + }, + { + "start": 610.06, + "end": 613.22, + "probability": 0.9972 + }, + { + "start": 613.68, + "end": 615.72, + "probability": 0.9689 + }, + { + "start": 615.84, + "end": 617.26, + "probability": 0.9919 + }, + { + "start": 617.42, + "end": 618.68, + "probability": 0.9077 + }, + { + "start": 619.18, + "end": 620.02, + "probability": 0.8866 + }, + { + "start": 620.86, + "end": 623.74, + "probability": 0.9839 + }, + { + "start": 624.26, + "end": 627.66, + "probability": 0.8933 + }, + { + "start": 629.98, + "end": 632.54, + "probability": 0.963 + }, + { + "start": 633.16, + "end": 634.08, + "probability": 0.8208 + }, + { + "start": 634.38, + "end": 634.78, + "probability": 0.4505 + }, + { + "start": 634.9, + "end": 636.14, + "probability": 0.9849 + }, + { + "start": 636.18, + "end": 637.94, + "probability": 0.7671 + }, + { + "start": 638.48, + "end": 641.22, + "probability": 0.866 + }, + { + "start": 641.36, + "end": 642.8, + "probability": 0.9484 + }, + { + "start": 643.8, + "end": 645.88, + "probability": 0.9116 + }, + { + "start": 646.24, + "end": 648.02, + "probability": 0.9636 + }, + { + "start": 648.08, + "end": 648.68, + "probability": 0.6851 + }, + { + "start": 648.8, + "end": 650.72, + "probability": 0.8648 + }, + { + "start": 650.82, + "end": 651.02, + "probability": 0.8291 + }, + { + "start": 651.56, + "end": 652.28, + "probability": 0.2982 + }, + { + "start": 652.88, + "end": 653.94, + "probability": 0.7913 + }, + { + "start": 654.62, + "end": 656.84, + "probability": 0.9782 + }, + { + "start": 657.02, + "end": 657.72, + "probability": 0.8488 + }, + { + "start": 658.14, + "end": 659.58, + "probability": 0.9717 + }, + { + "start": 659.76, + "end": 661.06, + "probability": 0.895 + }, + { + "start": 661.72, + "end": 664.58, + "probability": 0.7504 + }, + { + "start": 664.64, + "end": 665.04, + "probability": 0.7223 + }, + { + "start": 666.5, + "end": 668.4, + "probability": 0.6561 + }, + { + "start": 668.82, + "end": 670.84, + "probability": 0.9718 + }, + { + "start": 671.34, + "end": 674.06, + "probability": 0.641 + }, + { + "start": 674.3, + "end": 678.0, + "probability": 0.765 + }, + { + "start": 680.84, + "end": 681.04, + "probability": 0.5644 + }, + { + "start": 681.5, + "end": 682.32, + "probability": 0.7902 + }, + { + "start": 682.74, + "end": 684.12, + "probability": 0.9971 + }, + { + "start": 684.66, + "end": 685.96, + "probability": 0.8452 + }, + { + "start": 686.6, + "end": 688.06, + "probability": 0.8011 + }, + { + "start": 688.16, + "end": 690.52, + "probability": 0.8767 + }, + { + "start": 691.36, + "end": 694.9, + "probability": 0.9601 + }, + { + "start": 695.78, + "end": 697.9, + "probability": 0.9934 + }, + { + "start": 698.5, + "end": 701.0, + "probability": 0.9119 + }, + { + "start": 701.5, + "end": 702.32, + "probability": 0.9282 + }, + { + "start": 702.48, + "end": 703.56, + "probability": 0.7222 + }, + { + "start": 703.64, + "end": 704.55, + "probability": 0.9495 + }, + { + "start": 704.94, + "end": 706.3, + "probability": 0.9512 + }, + { + "start": 706.72, + "end": 708.96, + "probability": 0.8574 + }, + { + "start": 709.52, + "end": 715.34, + "probability": 0.9307 + }, + { + "start": 715.48, + "end": 716.1, + "probability": 0.5743 + }, + { + "start": 716.18, + "end": 717.34, + "probability": 0.9867 + }, + { + "start": 717.96, + "end": 721.52, + "probability": 0.8665 + }, + { + "start": 722.12, + "end": 722.7, + "probability": 0.51 + }, + { + "start": 723.06, + "end": 724.64, + "probability": 0.8911 + }, + { + "start": 724.74, + "end": 726.0, + "probability": 0.9932 + }, + { + "start": 726.32, + "end": 727.76, + "probability": 0.9224 + }, + { + "start": 728.04, + "end": 729.24, + "probability": 0.9588 + }, + { + "start": 729.42, + "end": 731.02, + "probability": 0.9873 + }, + { + "start": 731.42, + "end": 733.46, + "probability": 0.9888 + }, + { + "start": 733.86, + "end": 738.28, + "probability": 0.6699 + }, + { + "start": 738.44, + "end": 740.22, + "probability": 0.818 + }, + { + "start": 740.72, + "end": 742.12, + "probability": 0.7046 + }, + { + "start": 742.54, + "end": 743.7, + "probability": 0.9895 + }, + { + "start": 744.16, + "end": 747.1, + "probability": 0.965 + }, + { + "start": 747.54, + "end": 749.42, + "probability": 0.2298 + }, + { + "start": 749.62, + "end": 750.78, + "probability": 0.9048 + }, + { + "start": 750.82, + "end": 750.98, + "probability": 0.5249 + }, + { + "start": 751.56, + "end": 752.52, + "probability": 0.7857 + }, + { + "start": 752.94, + "end": 754.0, + "probability": 0.8853 + }, + { + "start": 754.28, + "end": 756.44, + "probability": 0.9715 + }, + { + "start": 756.78, + "end": 758.74, + "probability": 0.972 + }, + { + "start": 759.26, + "end": 760.48, + "probability": 0.9563 + }, + { + "start": 760.62, + "end": 763.26, + "probability": 0.985 + }, + { + "start": 763.66, + "end": 767.0, + "probability": 0.7564 + }, + { + "start": 767.3, + "end": 768.33, + "probability": 0.9842 + }, + { + "start": 768.78, + "end": 769.82, + "probability": 0.9714 + }, + { + "start": 770.02, + "end": 770.7, + "probability": 0.5858 + }, + { + "start": 770.9, + "end": 773.08, + "probability": 0.8259 + }, + { + "start": 773.42, + "end": 774.26, + "probability": 0.8807 + }, + { + "start": 774.54, + "end": 774.9, + "probability": 0.7831 + }, + { + "start": 774.94, + "end": 775.6, + "probability": 0.971 + }, + { + "start": 776.5, + "end": 778.24, + "probability": 0.7175 + }, + { + "start": 778.34, + "end": 780.84, + "probability": 0.7437 + }, + { + "start": 780.94, + "end": 782.38, + "probability": 0.8599 + }, + { + "start": 787.98, + "end": 789.68, + "probability": 0.2263 + }, + { + "start": 789.78, + "end": 790.84, + "probability": 0.6624 + }, + { + "start": 791.82, + "end": 794.04, + "probability": 0.6841 + }, + { + "start": 794.16, + "end": 796.62, + "probability": 0.9028 + }, + { + "start": 796.96, + "end": 798.62, + "probability": 0.922 + }, + { + "start": 798.88, + "end": 801.76, + "probability": 0.9326 + }, + { + "start": 801.82, + "end": 802.92, + "probability": 0.7302 + }, + { + "start": 802.92, + "end": 804.96, + "probability": 0.9419 + }, + { + "start": 805.8, + "end": 807.88, + "probability": 0.9966 + }, + { + "start": 808.86, + "end": 812.76, + "probability": 0.9299 + }, + { + "start": 812.76, + "end": 817.0, + "probability": 0.9341 + }, + { + "start": 817.94, + "end": 818.6, + "probability": 0.7201 + }, + { + "start": 819.24, + "end": 823.74, + "probability": 0.962 + }, + { + "start": 824.46, + "end": 825.26, + "probability": 0.8534 + }, + { + "start": 825.36, + "end": 825.86, + "probability": 0.9343 + }, + { + "start": 825.96, + "end": 826.36, + "probability": 0.7051 + }, + { + "start": 826.42, + "end": 831.6, + "probability": 0.9122 + }, + { + "start": 831.68, + "end": 837.04, + "probability": 0.9911 + }, + { + "start": 837.74, + "end": 840.12, + "probability": 0.9246 + }, + { + "start": 840.34, + "end": 840.58, + "probability": 0.3953 + }, + { + "start": 840.58, + "end": 845.06, + "probability": 0.8971 + }, + { + "start": 845.06, + "end": 846.32, + "probability": 0.8352 + }, + { + "start": 846.72, + "end": 848.08, + "probability": 0.9125 + }, + { + "start": 848.22, + "end": 850.0, + "probability": 0.7072 + }, + { + "start": 850.08, + "end": 852.1, + "probability": 0.8257 + }, + { + "start": 852.98, + "end": 855.34, + "probability": 0.7165 + }, + { + "start": 855.7, + "end": 856.5, + "probability": 0.8955 + }, + { + "start": 856.66, + "end": 858.52, + "probability": 0.9849 + }, + { + "start": 858.72, + "end": 861.84, + "probability": 0.7617 + }, + { + "start": 862.0, + "end": 864.9, + "probability": 0.7771 + }, + { + "start": 864.94, + "end": 868.0, + "probability": 0.9056 + }, + { + "start": 869.32, + "end": 869.62, + "probability": 0.8134 + }, + { + "start": 869.7, + "end": 869.9, + "probability": 0.7811 + }, + { + "start": 870.04, + "end": 873.34, + "probability": 0.7409 + }, + { + "start": 873.38, + "end": 873.78, + "probability": 0.4825 + }, + { + "start": 873.9, + "end": 874.08, + "probability": 0.8844 + }, + { + "start": 874.18, + "end": 874.54, + "probability": 0.9248 + }, + { + "start": 875.35, + "end": 877.3, + "probability": 0.7731 + }, + { + "start": 878.3, + "end": 880.34, + "probability": 0.5864 + }, + { + "start": 880.46, + "end": 883.62, + "probability": 0.7846 + }, + { + "start": 883.62, + "end": 886.47, + "probability": 0.9678 + }, + { + "start": 887.04, + "end": 889.82, + "probability": 0.9151 + }, + { + "start": 890.36, + "end": 891.0, + "probability": 0.9876 + }, + { + "start": 891.14, + "end": 892.38, + "probability": 0.6594 + }, + { + "start": 892.5, + "end": 892.78, + "probability": 0.8523 + }, + { + "start": 893.08, + "end": 894.06, + "probability": 0.9111 + }, + { + "start": 894.42, + "end": 895.76, + "probability": 0.8091 + }, + { + "start": 895.9, + "end": 896.46, + "probability": 0.4888 + }, + { + "start": 897.32, + "end": 900.67, + "probability": 0.8728 + }, + { + "start": 901.62, + "end": 903.63, + "probability": 0.9943 + }, + { + "start": 904.22, + "end": 905.74, + "probability": 0.7189 + }, + { + "start": 906.48, + "end": 907.58, + "probability": 0.6443 + }, + { + "start": 908.36, + "end": 909.06, + "probability": 0.9961 + }, + { + "start": 909.64, + "end": 910.84, + "probability": 0.9932 + }, + { + "start": 911.02, + "end": 911.74, + "probability": 0.9157 + }, + { + "start": 912.42, + "end": 913.04, + "probability": 0.7961 + }, + { + "start": 913.16, + "end": 913.88, + "probability": 0.8999 + }, + { + "start": 914.0, + "end": 915.54, + "probability": 0.84 + }, + { + "start": 916.34, + "end": 918.34, + "probability": 0.9429 + }, + { + "start": 918.42, + "end": 923.5, + "probability": 0.9922 + }, + { + "start": 923.56, + "end": 926.62, + "probability": 0.9748 + }, + { + "start": 926.74, + "end": 931.58, + "probability": 0.9902 + }, + { + "start": 931.74, + "end": 932.34, + "probability": 0.6478 + }, + { + "start": 932.8, + "end": 934.24, + "probability": 0.9165 + }, + { + "start": 934.7, + "end": 936.68, + "probability": 0.8232 + }, + { + "start": 936.74, + "end": 937.7, + "probability": 0.9795 + }, + { + "start": 937.78, + "end": 940.99, + "probability": 0.9918 + }, + { + "start": 942.04, + "end": 943.02, + "probability": 0.8113 + }, + { + "start": 943.16, + "end": 943.54, + "probability": 0.6613 + }, + { + "start": 943.74, + "end": 944.44, + "probability": 0.8107 + }, + { + "start": 944.54, + "end": 947.22, + "probability": 0.9812 + }, + { + "start": 947.54, + "end": 950.28, + "probability": 0.9834 + }, + { + "start": 950.36, + "end": 955.1, + "probability": 0.9902 + }, + { + "start": 955.38, + "end": 956.54, + "probability": 0.7664 + }, + { + "start": 956.82, + "end": 957.76, + "probability": 0.828 + }, + { + "start": 957.86, + "end": 958.58, + "probability": 0.8605 + }, + { + "start": 958.62, + "end": 959.56, + "probability": 0.8505 + }, + { + "start": 959.96, + "end": 960.62, + "probability": 0.413 + }, + { + "start": 960.72, + "end": 961.08, + "probability": 0.6637 + }, + { + "start": 961.38, + "end": 961.84, + "probability": 0.5604 + }, + { + "start": 961.9, + "end": 962.92, + "probability": 0.9047 + }, + { + "start": 963.36, + "end": 965.78, + "probability": 0.9726 + }, + { + "start": 966.0, + "end": 968.0, + "probability": 0.9548 + }, + { + "start": 968.24, + "end": 968.92, + "probability": 0.7528 + }, + { + "start": 969.4, + "end": 971.04, + "probability": 0.856 + }, + { + "start": 971.08, + "end": 971.6, + "probability": 0.8358 + }, + { + "start": 974.02, + "end": 974.02, + "probability": 0.0147 + }, + { + "start": 974.02, + "end": 975.0, + "probability": 0.3786 + }, + { + "start": 975.38, + "end": 978.56, + "probability": 0.9558 + }, + { + "start": 978.82, + "end": 979.56, + "probability": 0.6615 + }, + { + "start": 979.68, + "end": 981.3, + "probability": 0.842 + }, + { + "start": 981.66, + "end": 982.72, + "probability": 0.8551 + }, + { + "start": 982.76, + "end": 983.94, + "probability": 0.7482 + }, + { + "start": 984.34, + "end": 984.94, + "probability": 0.9337 + }, + { + "start": 985.02, + "end": 986.16, + "probability": 0.8667 + }, + { + "start": 986.28, + "end": 987.74, + "probability": 0.9966 + }, + { + "start": 988.08, + "end": 991.44, + "probability": 0.9728 + }, + { + "start": 991.86, + "end": 992.44, + "probability": 0.603 + }, + { + "start": 992.48, + "end": 992.98, + "probability": 0.7095 + }, + { + "start": 993.72, + "end": 994.27, + "probability": 0.7154 + }, + { + "start": 994.34, + "end": 995.98, + "probability": 0.7323 + }, + { + "start": 996.34, + "end": 997.14, + "probability": 0.965 + }, + { + "start": 997.2, + "end": 998.0, + "probability": 0.7192 + }, + { + "start": 998.1, + "end": 999.94, + "probability": 0.8164 + }, + { + "start": 1000.04, + "end": 1002.8, + "probability": 0.8311 + }, + { + "start": 1003.42, + "end": 1005.14, + "probability": 0.645 + }, + { + "start": 1006.04, + "end": 1008.06, + "probability": 0.958 + }, + { + "start": 1008.52, + "end": 1011.0, + "probability": 0.9862 + }, + { + "start": 1011.56, + "end": 1012.48, + "probability": 0.9596 + }, + { + "start": 1012.54, + "end": 1015.22, + "probability": 0.8546 + }, + { + "start": 1015.6, + "end": 1016.84, + "probability": 0.9255 + }, + { + "start": 1017.22, + "end": 1017.96, + "probability": 0.9556 + }, + { + "start": 1018.12, + "end": 1021.3, + "probability": 0.8274 + }, + { + "start": 1021.34, + "end": 1022.0, + "probability": 0.8414 + }, + { + "start": 1022.04, + "end": 1022.46, + "probability": 0.7202 + }, + { + "start": 1022.58, + "end": 1023.54, + "probability": 0.701 + }, + { + "start": 1024.24, + "end": 1025.26, + "probability": 0.6324 + }, + { + "start": 1025.38, + "end": 1026.26, + "probability": 0.699 + }, + { + "start": 1026.34, + "end": 1027.28, + "probability": 0.6343 + }, + { + "start": 1027.71, + "end": 1030.44, + "probability": 0.8574 + }, + { + "start": 1030.74, + "end": 1032.65, + "probability": 0.9919 + }, + { + "start": 1032.88, + "end": 1036.54, + "probability": 0.9735 + }, + { + "start": 1036.62, + "end": 1037.0, + "probability": 0.7617 + }, + { + "start": 1037.44, + "end": 1038.98, + "probability": 0.9373 + }, + { + "start": 1039.08, + "end": 1040.46, + "probability": 0.8417 + }, + { + "start": 1041.3, + "end": 1043.6, + "probability": 0.7663 + }, + { + "start": 1043.66, + "end": 1046.1, + "probability": 0.8973 + }, + { + "start": 1046.26, + "end": 1050.0, + "probability": 0.9256 + }, + { + "start": 1050.1, + "end": 1051.84, + "probability": 0.9083 + }, + { + "start": 1051.98, + "end": 1053.12, + "probability": 0.973 + }, + { + "start": 1053.46, + "end": 1054.04, + "probability": 0.4742 + }, + { + "start": 1054.3, + "end": 1055.46, + "probability": 0.7589 + }, + { + "start": 1055.6, + "end": 1056.56, + "probability": 0.8607 + }, + { + "start": 1056.92, + "end": 1059.32, + "probability": 0.939 + }, + { + "start": 1059.68, + "end": 1061.1, + "probability": 0.9592 + }, + { + "start": 1061.54, + "end": 1062.42, + "probability": 0.8042 + }, + { + "start": 1062.68, + "end": 1062.92, + "probability": 0.9392 + }, + { + "start": 1062.98, + "end": 1063.26, + "probability": 0.7944 + }, + { + "start": 1063.36, + "end": 1065.83, + "probability": 0.7279 + }, + { + "start": 1066.64, + "end": 1068.3, + "probability": 0.4488 + }, + { + "start": 1068.42, + "end": 1070.92, + "probability": 0.8684 + }, + { + "start": 1071.04, + "end": 1075.04, + "probability": 0.9903 + }, + { + "start": 1075.24, + "end": 1077.84, + "probability": 0.9915 + }, + { + "start": 1078.08, + "end": 1080.78, + "probability": 0.9969 + }, + { + "start": 1081.88, + "end": 1085.78, + "probability": 0.9979 + }, + { + "start": 1085.82, + "end": 1086.18, + "probability": 0.7531 + }, + { + "start": 1086.68, + "end": 1088.82, + "probability": 0.6569 + }, + { + "start": 1088.9, + "end": 1091.08, + "probability": 0.7493 + }, + { + "start": 1091.6, + "end": 1093.2, + "probability": 0.5382 + }, + { + "start": 1096.08, + "end": 1096.96, + "probability": 0.5617 + }, + { + "start": 1097.04, + "end": 1098.28, + "probability": 0.7543 + }, + { + "start": 1098.4, + "end": 1099.5, + "probability": 0.9214 + }, + { + "start": 1100.0, + "end": 1100.78, + "probability": 0.5065 + }, + { + "start": 1100.86, + "end": 1102.4, + "probability": 0.7886 + }, + { + "start": 1103.36, + "end": 1105.5, + "probability": 0.9657 + }, + { + "start": 1108.78, + "end": 1115.23, + "probability": 0.9956 + }, + { + "start": 1116.98, + "end": 1118.66, + "probability": 0.8758 + }, + { + "start": 1119.58, + "end": 1120.2, + "probability": 0.6702 + }, + { + "start": 1121.68, + "end": 1125.5, + "probability": 0.9759 + }, + { + "start": 1126.3, + "end": 1132.44, + "probability": 0.978 + }, + { + "start": 1134.14, + "end": 1138.64, + "probability": 0.9508 + }, + { + "start": 1139.02, + "end": 1142.23, + "probability": 0.8696 + }, + { + "start": 1143.2, + "end": 1146.52, + "probability": 0.9438 + }, + { + "start": 1147.14, + "end": 1150.08, + "probability": 0.9664 + }, + { + "start": 1150.3, + "end": 1152.22, + "probability": 0.9906 + }, + { + "start": 1152.66, + "end": 1154.6, + "probability": 0.9937 + }, + { + "start": 1154.82, + "end": 1155.06, + "probability": 0.7363 + }, + { + "start": 1156.34, + "end": 1158.16, + "probability": 0.6742 + }, + { + "start": 1158.22, + "end": 1159.94, + "probability": 0.7743 + }, + { + "start": 1160.06, + "end": 1162.36, + "probability": 0.9337 + }, + { + "start": 1169.44, + "end": 1170.62, + "probability": 0.4275 + }, + { + "start": 1171.66, + "end": 1175.48, + "probability": 0.96 + }, + { + "start": 1176.36, + "end": 1179.36, + "probability": 0.7556 + }, + { + "start": 1179.42, + "end": 1182.98, + "probability": 0.9478 + }, + { + "start": 1183.78, + "end": 1186.92, + "probability": 0.7501 + }, + { + "start": 1187.0, + "end": 1191.28, + "probability": 0.9882 + }, + { + "start": 1192.08, + "end": 1195.68, + "probability": 0.9475 + }, + { + "start": 1195.68, + "end": 1199.68, + "probability": 0.9777 + }, + { + "start": 1200.62, + "end": 1202.72, + "probability": 0.9913 + }, + { + "start": 1202.84, + "end": 1203.99, + "probability": 0.8502 + }, + { + "start": 1204.66, + "end": 1206.44, + "probability": 0.9963 + }, + { + "start": 1207.42, + "end": 1209.62, + "probability": 0.7273 + }, + { + "start": 1210.8, + "end": 1216.76, + "probability": 0.9933 + }, + { + "start": 1217.68, + "end": 1222.42, + "probability": 0.8688 + }, + { + "start": 1223.7, + "end": 1229.66, + "probability": 0.985 + }, + { + "start": 1230.88, + "end": 1235.14, + "probability": 0.868 + }, + { + "start": 1235.3, + "end": 1238.36, + "probability": 0.911 + }, + { + "start": 1238.9, + "end": 1240.76, + "probability": 0.7686 + }, + { + "start": 1241.72, + "end": 1243.52, + "probability": 0.7827 + }, + { + "start": 1244.04, + "end": 1245.16, + "probability": 0.9248 + }, + { + "start": 1246.14, + "end": 1248.2, + "probability": 0.9281 + }, + { + "start": 1249.2, + "end": 1250.96, + "probability": 0.9867 + }, + { + "start": 1251.5, + "end": 1252.8, + "probability": 0.9764 + }, + { + "start": 1253.64, + "end": 1256.96, + "probability": 0.9416 + }, + { + "start": 1257.96, + "end": 1258.54, + "probability": 0.8831 + }, + { + "start": 1258.66, + "end": 1260.07, + "probability": 0.8022 + }, + { + "start": 1260.82, + "end": 1263.18, + "probability": 0.9775 + }, + { + "start": 1263.58, + "end": 1266.02, + "probability": 0.9839 + }, + { + "start": 1266.66, + "end": 1268.22, + "probability": 0.497 + }, + { + "start": 1268.32, + "end": 1270.28, + "probability": 0.8293 + }, + { + "start": 1271.9, + "end": 1274.64, + "probability": 0.9375 + }, + { + "start": 1277.92, + "end": 1278.52, + "probability": 0.7357 + }, + { + "start": 1278.64, + "end": 1284.23, + "probability": 0.981 + }, + { + "start": 1284.24, + "end": 1291.4, + "probability": 0.9932 + }, + { + "start": 1292.9, + "end": 1296.4, + "probability": 0.8253 + }, + { + "start": 1296.54, + "end": 1299.18, + "probability": 0.8655 + }, + { + "start": 1299.86, + "end": 1303.62, + "probability": 0.9777 + }, + { + "start": 1304.38, + "end": 1307.86, + "probability": 0.8874 + }, + { + "start": 1308.16, + "end": 1310.54, + "probability": 0.8984 + }, + { + "start": 1310.6, + "end": 1311.76, + "probability": 0.9685 + }, + { + "start": 1311.84, + "end": 1312.14, + "probability": 0.4532 + }, + { + "start": 1312.78, + "end": 1316.22, + "probability": 0.5082 + }, + { + "start": 1316.92, + "end": 1322.4, + "probability": 0.9906 + }, + { + "start": 1323.02, + "end": 1327.22, + "probability": 0.9786 + }, + { + "start": 1327.4, + "end": 1331.82, + "probability": 0.9447 + }, + { + "start": 1332.74, + "end": 1333.24, + "probability": 0.7496 + }, + { + "start": 1333.38, + "end": 1338.42, + "probability": 0.9846 + }, + { + "start": 1338.44, + "end": 1340.38, + "probability": 0.9838 + }, + { + "start": 1341.48, + "end": 1346.2, + "probability": 0.7006 + }, + { + "start": 1349.1, + "end": 1353.9, + "probability": 0.9948 + }, + { + "start": 1354.24, + "end": 1357.74, + "probability": 0.9916 + }, + { + "start": 1358.08, + "end": 1358.26, + "probability": 0.6187 + }, + { + "start": 1358.62, + "end": 1360.58, + "probability": 0.6511 + }, + { + "start": 1361.46, + "end": 1363.92, + "probability": 0.7723 + }, + { + "start": 1364.42, + "end": 1365.54, + "probability": 0.5735 + }, + { + "start": 1365.56, + "end": 1367.18, + "probability": 0.9621 + }, + { + "start": 1368.06, + "end": 1369.31, + "probability": 0.6414 + }, + { + "start": 1369.72, + "end": 1371.26, + "probability": 0.9549 + }, + { + "start": 1371.74, + "end": 1373.66, + "probability": 0.9364 + }, + { + "start": 1373.78, + "end": 1379.74, + "probability": 0.9934 + }, + { + "start": 1379.98, + "end": 1384.06, + "probability": 0.9901 + }, + { + "start": 1384.44, + "end": 1385.98, + "probability": 0.7437 + }, + { + "start": 1386.62, + "end": 1387.44, + "probability": 0.8154 + }, + { + "start": 1387.74, + "end": 1389.24, + "probability": 0.9241 + }, + { + "start": 1389.34, + "end": 1389.72, + "probability": 0.7891 + }, + { + "start": 1389.88, + "end": 1392.58, + "probability": 0.9698 + }, + { + "start": 1393.42, + "end": 1397.04, + "probability": 0.9244 + }, + { + "start": 1397.04, + "end": 1398.98, + "probability": 0.9313 + }, + { + "start": 1399.4, + "end": 1401.92, + "probability": 0.9989 + }, + { + "start": 1401.92, + "end": 1405.38, + "probability": 0.8709 + }, + { + "start": 1405.76, + "end": 1414.12, + "probability": 0.9642 + }, + { + "start": 1414.28, + "end": 1415.84, + "probability": 0.754 + }, + { + "start": 1416.36, + "end": 1417.5, + "probability": 0.4622 + }, + { + "start": 1418.22, + "end": 1421.28, + "probability": 0.8809 + }, + { + "start": 1422.0, + "end": 1424.3, + "probability": 0.9604 + }, + { + "start": 1424.42, + "end": 1431.22, + "probability": 0.669 + }, + { + "start": 1431.28, + "end": 1435.9, + "probability": 0.9539 + }, + { + "start": 1436.2, + "end": 1437.78, + "probability": 0.9147 + }, + { + "start": 1438.22, + "end": 1442.24, + "probability": 0.9814 + }, + { + "start": 1442.24, + "end": 1446.72, + "probability": 0.9751 + }, + { + "start": 1446.82, + "end": 1451.94, + "probability": 0.8205 + }, + { + "start": 1452.1, + "end": 1455.4, + "probability": 0.9837 + }, + { + "start": 1455.4, + "end": 1458.04, + "probability": 0.9889 + }, + { + "start": 1458.54, + "end": 1458.88, + "probability": 0.8531 + }, + { + "start": 1459.42, + "end": 1459.66, + "probability": 0.7813 + }, + { + "start": 1460.22, + "end": 1462.08, + "probability": 0.6121 + }, + { + "start": 1462.28, + "end": 1464.0, + "probability": 0.693 + }, + { + "start": 1464.5, + "end": 1466.62, + "probability": 0.9318 + }, + { + "start": 1467.98, + "end": 1469.82, + "probability": 0.6093 + }, + { + "start": 1470.68, + "end": 1471.84, + "probability": 0.957 + }, + { + "start": 1472.62, + "end": 1474.68, + "probability": 0.8772 + }, + { + "start": 1475.8, + "end": 1479.78, + "probability": 0.9932 + }, + { + "start": 1481.6, + "end": 1485.16, + "probability": 0.597 + }, + { + "start": 1486.02, + "end": 1487.28, + "probability": 0.8837 + }, + { + "start": 1488.74, + "end": 1490.74, + "probability": 0.9385 + }, + { + "start": 1491.3, + "end": 1494.22, + "probability": 0.8788 + }, + { + "start": 1495.62, + "end": 1497.14, + "probability": 0.7907 + }, + { + "start": 1497.92, + "end": 1498.92, + "probability": 0.6854 + }, + { + "start": 1499.66, + "end": 1502.28, + "probability": 0.8179 + }, + { + "start": 1502.8, + "end": 1505.48, + "probability": 0.9434 + }, + { + "start": 1505.6, + "end": 1506.12, + "probability": 0.6822 + }, + { + "start": 1506.8, + "end": 1510.56, + "probability": 0.7915 + }, + { + "start": 1511.26, + "end": 1513.0, + "probability": 0.7702 + }, + { + "start": 1513.98, + "end": 1514.92, + "probability": 0.511 + }, + { + "start": 1515.95, + "end": 1518.9, + "probability": 0.8369 + }, + { + "start": 1520.72, + "end": 1522.5, + "probability": 0.8962 + }, + { + "start": 1523.08, + "end": 1528.06, + "probability": 0.7778 + }, + { + "start": 1528.7, + "end": 1533.86, + "probability": 0.9113 + }, + { + "start": 1534.0, + "end": 1535.46, + "probability": 0.9566 + }, + { + "start": 1535.68, + "end": 1539.14, + "probability": 0.9574 + }, + { + "start": 1539.28, + "end": 1539.84, + "probability": 0.7187 + }, + { + "start": 1540.34, + "end": 1542.88, + "probability": 0.504 + }, + { + "start": 1543.36, + "end": 1547.42, + "probability": 0.8584 + }, + { + "start": 1548.28, + "end": 1550.44, + "probability": 0.9163 + }, + { + "start": 1550.52, + "end": 1551.96, + "probability": 0.8344 + }, + { + "start": 1552.16, + "end": 1553.8, + "probability": 0.8727 + }, + { + "start": 1555.16, + "end": 1563.7, + "probability": 0.856 + }, + { + "start": 1564.82, + "end": 1566.98, + "probability": 0.6554 + }, + { + "start": 1567.12, + "end": 1568.7, + "probability": 0.9471 + }, + { + "start": 1572.9, + "end": 1574.4, + "probability": 0.8707 + }, + { + "start": 1574.5, + "end": 1576.18, + "probability": 0.7396 + }, + { + "start": 1577.12, + "end": 1578.2, + "probability": 0.644 + }, + { + "start": 1578.32, + "end": 1585.4, + "probability": 0.98 + }, + { + "start": 1586.04, + "end": 1587.12, + "probability": 0.9766 + }, + { + "start": 1588.58, + "end": 1591.82, + "probability": 0.9448 + }, + { + "start": 1592.52, + "end": 1596.14, + "probability": 0.9938 + }, + { + "start": 1596.14, + "end": 1600.6, + "probability": 0.9909 + }, + { + "start": 1600.94, + "end": 1601.2, + "probability": 0.4767 + }, + { + "start": 1601.24, + "end": 1602.52, + "probability": 0.8362 + }, + { + "start": 1602.92, + "end": 1603.92, + "probability": 0.8748 + }, + { + "start": 1604.42, + "end": 1604.78, + "probability": 0.4835 + }, + { + "start": 1604.86, + "end": 1607.0, + "probability": 0.9887 + }, + { + "start": 1607.32, + "end": 1609.42, + "probability": 0.7823 + }, + { + "start": 1609.74, + "end": 1611.34, + "probability": 0.9618 + }, + { + "start": 1611.38, + "end": 1614.06, + "probability": 0.9877 + }, + { + "start": 1614.16, + "end": 1616.96, + "probability": 0.9791 + }, + { + "start": 1617.08, + "end": 1618.4, + "probability": 0.3606 + }, + { + "start": 1618.8, + "end": 1619.12, + "probability": 0.6402 + }, + { + "start": 1619.2, + "end": 1623.14, + "probability": 0.9809 + }, + { + "start": 1623.82, + "end": 1627.58, + "probability": 0.771 + }, + { + "start": 1628.32, + "end": 1628.32, + "probability": 0.1032 + }, + { + "start": 1628.32, + "end": 1628.32, + "probability": 0.163 + }, + { + "start": 1628.32, + "end": 1631.76, + "probability": 0.5012 + }, + { + "start": 1632.14, + "end": 1634.82, + "probability": 0.9738 + }, + { + "start": 1634.82, + "end": 1636.9, + "probability": 0.826 + }, + { + "start": 1637.3, + "end": 1637.98, + "probability": 0.5182 + }, + { + "start": 1638.1, + "end": 1638.72, + "probability": 0.7297 + }, + { + "start": 1638.9, + "end": 1639.98, + "probability": 0.7421 + }, + { + "start": 1640.2, + "end": 1642.56, + "probability": 0.7502 + }, + { + "start": 1642.76, + "end": 1646.82, + "probability": 0.9629 + }, + { + "start": 1646.88, + "end": 1649.52, + "probability": 0.9851 + }, + { + "start": 1649.68, + "end": 1652.9, + "probability": 0.9922 + }, + { + "start": 1653.2, + "end": 1655.0, + "probability": 0.9882 + }, + { + "start": 1655.54, + "end": 1656.14, + "probability": 0.893 + }, + { + "start": 1656.58, + "end": 1658.16, + "probability": 0.99 + }, + { + "start": 1658.62, + "end": 1661.82, + "probability": 0.9917 + }, + { + "start": 1661.82, + "end": 1666.52, + "probability": 0.9836 + }, + { + "start": 1666.54, + "end": 1667.68, + "probability": 0.7455 + }, + { + "start": 1668.12, + "end": 1671.0, + "probability": 0.9692 + }, + { + "start": 1671.0, + "end": 1673.42, + "probability": 0.974 + }, + { + "start": 1673.76, + "end": 1675.7, + "probability": 0.9907 + }, + { + "start": 1676.12, + "end": 1678.34, + "probability": 0.854 + }, + { + "start": 1678.44, + "end": 1679.12, + "probability": 0.8777 + }, + { + "start": 1679.18, + "end": 1684.26, + "probability": 0.947 + }, + { + "start": 1684.6, + "end": 1686.88, + "probability": 0.9074 + }, + { + "start": 1687.26, + "end": 1688.24, + "probability": 0.9523 + }, + { + "start": 1688.26, + "end": 1692.86, + "probability": 0.9956 + }, + { + "start": 1693.14, + "end": 1696.76, + "probability": 0.9941 + }, + { + "start": 1697.54, + "end": 1699.38, + "probability": 0.6228 + }, + { + "start": 1699.5, + "end": 1701.28, + "probability": 0.691 + }, + { + "start": 1702.22, + "end": 1703.92, + "probability": 0.8674 + }, + { + "start": 1711.16, + "end": 1712.22, + "probability": 0.6725 + }, + { + "start": 1712.44, + "end": 1720.54, + "probability": 0.798 + }, + { + "start": 1721.04, + "end": 1729.08, + "probability": 0.7832 + }, + { + "start": 1729.82, + "end": 1735.1, + "probability": 0.9255 + }, + { + "start": 1737.88, + "end": 1740.84, + "probability": 0.9636 + }, + { + "start": 1741.0, + "end": 1741.68, + "probability": 0.8472 + }, + { + "start": 1741.82, + "end": 1746.51, + "probability": 0.795 + }, + { + "start": 1746.84, + "end": 1752.54, + "probability": 0.7003 + }, + { + "start": 1753.44, + "end": 1756.66, + "probability": 0.9648 + }, + { + "start": 1756.72, + "end": 1759.46, + "probability": 0.9362 + }, + { + "start": 1760.32, + "end": 1763.5, + "probability": 0.7926 + }, + { + "start": 1764.1, + "end": 1768.08, + "probability": 0.9891 + }, + { + "start": 1768.28, + "end": 1771.83, + "probability": 0.8683 + }, + { + "start": 1772.16, + "end": 1775.12, + "probability": 0.9641 + }, + { + "start": 1775.22, + "end": 1778.58, + "probability": 0.9873 + }, + { + "start": 1779.52, + "end": 1780.16, + "probability": 0.5024 + }, + { + "start": 1780.96, + "end": 1784.24, + "probability": 0.9713 + }, + { + "start": 1785.08, + "end": 1786.06, + "probability": 0.7237 + }, + { + "start": 1786.16, + "end": 1792.38, + "probability": 0.9645 + }, + { + "start": 1792.88, + "end": 1796.82, + "probability": 0.9937 + }, + { + "start": 1797.82, + "end": 1799.14, + "probability": 0.9919 + }, + { + "start": 1799.4, + "end": 1800.58, + "probability": 0.7632 + }, + { + "start": 1801.06, + "end": 1805.98, + "probability": 0.9812 + }, + { + "start": 1806.0, + "end": 1808.84, + "probability": 0.8314 + }, + { + "start": 1809.2, + "end": 1810.3, + "probability": 0.4363 + }, + { + "start": 1810.36, + "end": 1813.1, + "probability": 0.9625 + }, + { + "start": 1813.62, + "end": 1818.16, + "probability": 0.9705 + }, + { + "start": 1818.16, + "end": 1822.14, + "probability": 0.9219 + }, + { + "start": 1822.72, + "end": 1824.92, + "probability": 0.4664 + }, + { + "start": 1825.2, + "end": 1826.46, + "probability": 0.9142 + }, + { + "start": 1826.5, + "end": 1826.9, + "probability": 0.9219 + }, + { + "start": 1826.94, + "end": 1827.36, + "probability": 0.709 + }, + { + "start": 1827.84, + "end": 1828.26, + "probability": 0.7225 + }, + { + "start": 1828.44, + "end": 1831.12, + "probability": 0.9748 + }, + { + "start": 1833.32, + "end": 1838.78, + "probability": 0.5722 + }, + { + "start": 1840.54, + "end": 1845.82, + "probability": 0.83 + }, + { + "start": 1846.56, + "end": 1847.74, + "probability": 0.9375 + }, + { + "start": 1849.38, + "end": 1855.0, + "probability": 0.929 + }, + { + "start": 1855.9, + "end": 1861.17, + "probability": 0.7051 + }, + { + "start": 1862.14, + "end": 1863.62, + "probability": 0.6914 + }, + { + "start": 1864.62, + "end": 1864.98, + "probability": 0.5496 + }, + { + "start": 1865.6, + "end": 1869.64, + "probability": 0.9663 + }, + { + "start": 1871.1, + "end": 1878.1, + "probability": 0.9941 + }, + { + "start": 1878.1, + "end": 1885.86, + "probability": 0.9637 + }, + { + "start": 1887.98, + "end": 1891.94, + "probability": 0.2115 + }, + { + "start": 1892.74, + "end": 1896.56, + "probability": 0.9347 + }, + { + "start": 1897.42, + "end": 1901.06, + "probability": 0.9077 + }, + { + "start": 1902.16, + "end": 1907.52, + "probability": 0.9136 + }, + { + "start": 1908.4, + "end": 1911.82, + "probability": 0.9824 + }, + { + "start": 1912.56, + "end": 1914.66, + "probability": 0.7925 + }, + { + "start": 1915.5, + "end": 1920.08, + "probability": 0.9378 + }, + { + "start": 1920.62, + "end": 1923.3, + "probability": 0.7105 + }, + { + "start": 1923.3, + "end": 1928.0, + "probability": 0.9931 + }, + { + "start": 1928.58, + "end": 1930.48, + "probability": 0.7396 + }, + { + "start": 1931.08, + "end": 1936.6, + "probability": 0.7424 + }, + { + "start": 1937.5, + "end": 1942.44, + "probability": 0.9967 + }, + { + "start": 1943.1, + "end": 1945.62, + "probability": 0.9858 + }, + { + "start": 1946.12, + "end": 1947.3, + "probability": 0.9513 + }, + { + "start": 1947.74, + "end": 1949.74, + "probability": 0.6839 + }, + { + "start": 1950.16, + "end": 1950.44, + "probability": 0.6335 + }, + { + "start": 1951.08, + "end": 1953.18, + "probability": 0.9404 + }, + { + "start": 1953.24, + "end": 1957.2, + "probability": 0.8079 + }, + { + "start": 1957.96, + "end": 1959.06, + "probability": 0.9365 + }, + { + "start": 1959.14, + "end": 1960.22, + "probability": 0.9724 + }, + { + "start": 1960.28, + "end": 1962.82, + "probability": 0.9858 + }, + { + "start": 1962.96, + "end": 1963.5, + "probability": 0.7143 + }, + { + "start": 1963.68, + "end": 1964.46, + "probability": 0.8346 + }, + { + "start": 1965.14, + "end": 1968.48, + "probability": 0.9901 + }, + { + "start": 1969.06, + "end": 1970.74, + "probability": 0.9918 + }, + { + "start": 1971.44, + "end": 1977.26, + "probability": 0.8802 + }, + { + "start": 1977.38, + "end": 1979.7, + "probability": 0.9117 + }, + { + "start": 1979.94, + "end": 1981.94, + "probability": 0.8407 + }, + { + "start": 1982.34, + "end": 1984.24, + "probability": 0.97 + }, + { + "start": 1984.66, + "end": 1989.44, + "probability": 0.9955 + }, + { + "start": 1989.78, + "end": 1990.72, + "probability": 0.4653 + }, + { + "start": 1991.42, + "end": 1993.12, + "probability": 0.6201 + }, + { + "start": 1993.52, + "end": 1998.54, + "probability": 0.7687 + }, + { + "start": 1998.7, + "end": 2001.52, + "probability": 0.9079 + }, + { + "start": 2002.14, + "end": 2003.6, + "probability": 0.9364 + }, + { + "start": 2005.26, + "end": 2006.78, + "probability": 0.9867 + }, + { + "start": 2006.86, + "end": 2009.94, + "probability": 0.998 + }, + { + "start": 2010.08, + "end": 2014.98, + "probability": 0.9639 + }, + { + "start": 2015.1, + "end": 2016.52, + "probability": 0.7732 + }, + { + "start": 2016.92, + "end": 2021.26, + "probability": 0.9974 + }, + { + "start": 2021.7, + "end": 2021.96, + "probability": 0.7026 + }, + { + "start": 2022.16, + "end": 2023.76, + "probability": 0.8806 + }, + { + "start": 2023.9, + "end": 2025.78, + "probability": 0.933 + }, + { + "start": 2028.3, + "end": 2029.66, + "probability": 0.5184 + }, + { + "start": 2031.28, + "end": 2036.76, + "probability": 0.9772 + }, + { + "start": 2036.88, + "end": 2042.26, + "probability": 0.9749 + }, + { + "start": 2042.92, + "end": 2050.35, + "probability": 0.8268 + }, + { + "start": 2050.76, + "end": 2054.28, + "probability": 0.9511 + }, + { + "start": 2054.34, + "end": 2056.38, + "probability": 0.8635 + }, + { + "start": 2056.66, + "end": 2057.6, + "probability": 0.7676 + }, + { + "start": 2058.08, + "end": 2058.38, + "probability": 0.8243 + }, + { + "start": 2058.44, + "end": 2058.7, + "probability": 0.8636 + }, + { + "start": 2058.84, + "end": 2059.48, + "probability": 0.554 + }, + { + "start": 2059.86, + "end": 2066.2, + "probability": 0.8787 + }, + { + "start": 2066.74, + "end": 2072.99, + "probability": 0.9517 + }, + { + "start": 2074.46, + "end": 2075.06, + "probability": 0.3589 + }, + { + "start": 2075.18, + "end": 2076.32, + "probability": 0.9544 + }, + { + "start": 2077.0, + "end": 2079.18, + "probability": 0.6215 + }, + { + "start": 2079.72, + "end": 2082.62, + "probability": 0.973 + }, + { + "start": 2084.02, + "end": 2086.14, + "probability": 0.6785 + }, + { + "start": 2086.36, + "end": 2089.2, + "probability": 0.8548 + }, + { + "start": 2089.7, + "end": 2091.44, + "probability": 0.7711 + }, + { + "start": 2092.24, + "end": 2096.46, + "probability": 0.9198 + }, + { + "start": 2096.58, + "end": 2096.88, + "probability": 0.7248 + }, + { + "start": 2097.22, + "end": 2097.92, + "probability": 0.5732 + }, + { + "start": 2098.46, + "end": 2102.22, + "probability": 0.9849 + }, + { + "start": 2102.58, + "end": 2105.52, + "probability": 0.9435 + }, + { + "start": 2105.64, + "end": 2106.2, + "probability": 0.8863 + }, + { + "start": 2106.28, + "end": 2108.42, + "probability": 0.9206 + }, + { + "start": 2109.2, + "end": 2111.68, + "probability": 0.9666 + }, + { + "start": 2111.78, + "end": 2112.08, + "probability": 0.3976 + }, + { + "start": 2112.48, + "end": 2117.18, + "probability": 0.9347 + }, + { + "start": 2117.46, + "end": 2117.66, + "probability": 0.722 + }, + { + "start": 2118.08, + "end": 2119.8, + "probability": 0.8298 + }, + { + "start": 2119.9, + "end": 2122.52, + "probability": 0.9519 + }, + { + "start": 2124.02, + "end": 2124.8, + "probability": 0.6447 + }, + { + "start": 2125.08, + "end": 2125.72, + "probability": 0.6899 + }, + { + "start": 2126.0, + "end": 2129.56, + "probability": 0.9918 + }, + { + "start": 2130.18, + "end": 2132.08, + "probability": 0.9476 + }, + { + "start": 2132.28, + "end": 2133.3, + "probability": 0.9938 + }, + { + "start": 2134.58, + "end": 2137.62, + "probability": 0.9823 + }, + { + "start": 2138.2, + "end": 2139.06, + "probability": 0.9792 + }, + { + "start": 2140.24, + "end": 2142.28, + "probability": 0.3182 + }, + { + "start": 2143.28, + "end": 2143.52, + "probability": 0.3786 + }, + { + "start": 2143.74, + "end": 2150.0, + "probability": 0.9525 + }, + { + "start": 2151.26, + "end": 2156.34, + "probability": 0.9047 + }, + { + "start": 2156.96, + "end": 2158.12, + "probability": 0.9489 + }, + { + "start": 2158.76, + "end": 2159.9, + "probability": 0.9253 + }, + { + "start": 2160.5, + "end": 2163.62, + "probability": 0.9972 + }, + { + "start": 2164.28, + "end": 2165.12, + "probability": 0.7277 + }, + { + "start": 2166.3, + "end": 2172.68, + "probability": 0.9409 + }, + { + "start": 2172.88, + "end": 2175.34, + "probability": 0.7043 + }, + { + "start": 2175.44, + "end": 2179.16, + "probability": 0.9695 + }, + { + "start": 2179.38, + "end": 2180.46, + "probability": 0.5257 + }, + { + "start": 2182.1, + "end": 2182.4, + "probability": 0.3872 + }, + { + "start": 2183.42, + "end": 2183.94, + "probability": 0.7516 + }, + { + "start": 2184.22, + "end": 2187.96, + "probability": 0.8299 + }, + { + "start": 2188.96, + "end": 2190.2, + "probability": 0.9363 + }, + { + "start": 2191.24, + "end": 2195.14, + "probability": 0.9617 + }, + { + "start": 2196.28, + "end": 2198.2, + "probability": 0.9672 + }, + { + "start": 2198.66, + "end": 2200.49, + "probability": 0.9777 + }, + { + "start": 2202.26, + "end": 2203.22, + "probability": 0.7416 + }, + { + "start": 2203.78, + "end": 2205.16, + "probability": 0.7086 + }, + { + "start": 2205.84, + "end": 2207.04, + "probability": 0.5962 + }, + { + "start": 2207.1, + "end": 2208.98, + "probability": 0.947 + }, + { + "start": 2209.56, + "end": 2212.3, + "probability": 0.7769 + }, + { + "start": 2212.82, + "end": 2215.74, + "probability": 0.9941 + }, + { + "start": 2216.38, + "end": 2220.22, + "probability": 0.9044 + }, + { + "start": 2220.36, + "end": 2226.58, + "probability": 0.9806 + }, + { + "start": 2227.18, + "end": 2227.58, + "probability": 0.9039 + }, + { + "start": 2228.38, + "end": 2230.02, + "probability": 0.8096 + }, + { + "start": 2230.24, + "end": 2231.6, + "probability": 0.9563 + }, + { + "start": 2232.04, + "end": 2237.06, + "probability": 0.9724 + }, + { + "start": 2237.66, + "end": 2238.1, + "probability": 0.4721 + }, + { + "start": 2238.18, + "end": 2239.08, + "probability": 0.9352 + }, + { + "start": 2239.24, + "end": 2243.7, + "probability": 0.948 + }, + { + "start": 2244.1, + "end": 2246.26, + "probability": 0.8474 + }, + { + "start": 2246.88, + "end": 2248.26, + "probability": 0.7998 + }, + { + "start": 2248.82, + "end": 2251.06, + "probability": 0.994 + }, + { + "start": 2251.74, + "end": 2254.72, + "probability": 0.9868 + }, + { + "start": 2255.22, + "end": 2259.08, + "probability": 0.9881 + }, + { + "start": 2259.68, + "end": 2261.24, + "probability": 0.9797 + }, + { + "start": 2261.46, + "end": 2264.38, + "probability": 0.9849 + }, + { + "start": 2264.44, + "end": 2268.28, + "probability": 0.926 + }, + { + "start": 2268.7, + "end": 2271.1, + "probability": 0.9976 + }, + { + "start": 2271.72, + "end": 2275.96, + "probability": 0.9982 + }, + { + "start": 2276.04, + "end": 2276.24, + "probability": 0.7044 + }, + { + "start": 2277.14, + "end": 2280.62, + "probability": 0.8721 + }, + { + "start": 2280.84, + "end": 2281.8, + "probability": 0.9169 + }, + { + "start": 2281.84, + "end": 2286.88, + "probability": 0.9925 + }, + { + "start": 2287.56, + "end": 2289.96, + "probability": 0.9753 + }, + { + "start": 2290.0, + "end": 2292.46, + "probability": 0.9761 + }, + { + "start": 2293.42, + "end": 2294.3, + "probability": 0.7821 + }, + { + "start": 2294.48, + "end": 2298.0, + "probability": 0.981 + }, + { + "start": 2298.58, + "end": 2301.88, + "probability": 0.7337 + }, + { + "start": 2303.14, + "end": 2304.64, + "probability": 0.8711 + }, + { + "start": 2305.3, + "end": 2309.78, + "probability": 0.9871 + }, + { + "start": 2310.2, + "end": 2311.88, + "probability": 0.8529 + }, + { + "start": 2312.02, + "end": 2312.26, + "probability": 0.6623 + }, + { + "start": 2312.48, + "end": 2316.96, + "probability": 0.8519 + }, + { + "start": 2317.84, + "end": 2319.97, + "probability": 0.9749 + }, + { + "start": 2320.52, + "end": 2322.96, + "probability": 0.8058 + }, + { + "start": 2324.0, + "end": 2326.74, + "probability": 0.9151 + }, + { + "start": 2326.78, + "end": 2330.42, + "probability": 0.7289 + }, + { + "start": 2330.74, + "end": 2331.74, + "probability": 0.9407 + }, + { + "start": 2331.8, + "end": 2333.04, + "probability": 0.9623 + }, + { + "start": 2333.24, + "end": 2335.0, + "probability": 0.7928 + }, + { + "start": 2335.0, + "end": 2335.5, + "probability": 0.6052 + }, + { + "start": 2336.1, + "end": 2338.98, + "probability": 0.935 + }, + { + "start": 2339.38, + "end": 2341.66, + "probability": 0.8135 + }, + { + "start": 2341.8, + "end": 2343.02, + "probability": 0.9669 + }, + { + "start": 2343.42, + "end": 2344.02, + "probability": 0.9861 + }, + { + "start": 2344.72, + "end": 2345.5, + "probability": 0.53 + }, + { + "start": 2346.3, + "end": 2349.2, + "probability": 0.8332 + }, + { + "start": 2349.3, + "end": 2353.83, + "probability": 0.9683 + }, + { + "start": 2353.96, + "end": 2357.04, + "probability": 0.9919 + }, + { + "start": 2357.8, + "end": 2358.8, + "probability": 0.8611 + }, + { + "start": 2358.86, + "end": 2364.6, + "probability": 0.9575 + }, + { + "start": 2365.14, + "end": 2370.06, + "probability": 0.9955 + }, + { + "start": 2371.34, + "end": 2375.88, + "probability": 0.9822 + }, + { + "start": 2375.98, + "end": 2378.86, + "probability": 0.8636 + }, + { + "start": 2378.86, + "end": 2382.48, + "probability": 0.988 + }, + { + "start": 2382.88, + "end": 2386.34, + "probability": 0.975 + }, + { + "start": 2386.34, + "end": 2389.56, + "probability": 0.9979 + }, + { + "start": 2389.9, + "end": 2391.16, + "probability": 0.9235 + }, + { + "start": 2391.54, + "end": 2393.4, + "probability": 0.878 + }, + { + "start": 2393.72, + "end": 2396.66, + "probability": 0.985 + }, + { + "start": 2398.14, + "end": 2402.28, + "probability": 0.9272 + }, + { + "start": 2402.36, + "end": 2404.94, + "probability": 0.9963 + }, + { + "start": 2405.36, + "end": 2406.12, + "probability": 0.4987 + }, + { + "start": 2406.22, + "end": 2408.7, + "probability": 0.9916 + }, + { + "start": 2408.7, + "end": 2411.44, + "probability": 0.9112 + }, + { + "start": 2412.98, + "end": 2414.88, + "probability": 0.9278 + }, + { + "start": 2414.98, + "end": 2416.34, + "probability": 0.952 + }, + { + "start": 2416.42, + "end": 2418.84, + "probability": 0.9772 + }, + { + "start": 2419.22, + "end": 2425.86, + "probability": 0.9915 + }, + { + "start": 2425.98, + "end": 2429.4, + "probability": 0.5514 + }, + { + "start": 2430.64, + "end": 2433.66, + "probability": 0.9861 + }, + { + "start": 2434.18, + "end": 2437.56, + "probability": 0.9811 + }, + { + "start": 2438.22, + "end": 2438.66, + "probability": 0.5646 + }, + { + "start": 2439.78, + "end": 2441.52, + "probability": 0.7611 + }, + { + "start": 2446.38, + "end": 2446.76, + "probability": 0.0717 + }, + { + "start": 2446.76, + "end": 2446.76, + "probability": 0.0339 + }, + { + "start": 2446.76, + "end": 2446.97, + "probability": 0.5878 + }, + { + "start": 2447.34, + "end": 2448.62, + "probability": 0.803 + }, + { + "start": 2448.76, + "end": 2449.3, + "probability": 0.5443 + }, + { + "start": 2449.48, + "end": 2450.98, + "probability": 0.8866 + }, + { + "start": 2453.76, + "end": 2455.28, + "probability": 0.9146 + }, + { + "start": 2457.2, + "end": 2457.94, + "probability": 0.7294 + }, + { + "start": 2458.86, + "end": 2459.48, + "probability": 0.6672 + }, + { + "start": 2460.4, + "end": 2462.18, + "probability": 0.9214 + }, + { + "start": 2462.86, + "end": 2465.24, + "probability": 0.8302 + }, + { + "start": 2466.58, + "end": 2469.32, + "probability": 0.9987 + }, + { + "start": 2469.5, + "end": 2470.82, + "probability": 0.9937 + }, + { + "start": 2471.04, + "end": 2472.59, + "probability": 0.9453 + }, + { + "start": 2473.72, + "end": 2478.62, + "probability": 0.8573 + }, + { + "start": 2478.78, + "end": 2479.98, + "probability": 0.8224 + }, + { + "start": 2481.2, + "end": 2483.34, + "probability": 0.6376 + }, + { + "start": 2484.84, + "end": 2487.28, + "probability": 0.8552 + }, + { + "start": 2487.5, + "end": 2490.06, + "probability": 0.9811 + }, + { + "start": 2490.22, + "end": 2492.98, + "probability": 0.8841 + }, + { + "start": 2493.82, + "end": 2495.74, + "probability": 0.8519 + }, + { + "start": 2496.4, + "end": 2497.55, + "probability": 0.885 + }, + { + "start": 2498.04, + "end": 2500.0, + "probability": 0.6896 + }, + { + "start": 2500.18, + "end": 2502.98, + "probability": 0.7675 + }, + { + "start": 2503.68, + "end": 2504.5, + "probability": 0.6026 + }, + { + "start": 2504.6, + "end": 2505.14, + "probability": 0.8134 + }, + { + "start": 2505.42, + "end": 2507.6, + "probability": 0.6132 + }, + { + "start": 2508.04, + "end": 2510.18, + "probability": 0.8513 + }, + { + "start": 2510.18, + "end": 2510.46, + "probability": 0.8043 + }, + { + "start": 2511.14, + "end": 2513.69, + "probability": 0.7809 + }, + { + "start": 2514.92, + "end": 2516.06, + "probability": 0.7383 + }, + { + "start": 2516.66, + "end": 2519.82, + "probability": 0.909 + }, + { + "start": 2522.86, + "end": 2527.6, + "probability": 0.617 + }, + { + "start": 2527.68, + "end": 2528.32, + "probability": 0.804 + }, + { + "start": 2528.4, + "end": 2529.12, + "probability": 0.4626 + }, + { + "start": 2529.56, + "end": 2530.74, + "probability": 0.9133 + }, + { + "start": 2530.92, + "end": 2533.3, + "probability": 0.7103 + }, + { + "start": 2533.36, + "end": 2535.35, + "probability": 0.712 + }, + { + "start": 2535.92, + "end": 2538.88, + "probability": 0.6611 + }, + { + "start": 2539.9, + "end": 2544.02, + "probability": 0.91 + }, + { + "start": 2545.08, + "end": 2546.1, + "probability": 0.8086 + }, + { + "start": 2546.18, + "end": 2548.34, + "probability": 0.9246 + }, + { + "start": 2548.34, + "end": 2552.78, + "probability": 0.9708 + }, + { + "start": 2553.36, + "end": 2554.4, + "probability": 0.7246 + }, + { + "start": 2554.6, + "end": 2558.94, + "probability": 0.9802 + }, + { + "start": 2559.0, + "end": 2563.74, + "probability": 0.8702 + }, + { + "start": 2564.04, + "end": 2566.12, + "probability": 0.9271 + }, + { + "start": 2566.2, + "end": 2566.62, + "probability": 0.6772 + }, + { + "start": 2567.34, + "end": 2567.72, + "probability": 0.3997 + }, + { + "start": 2567.78, + "end": 2568.56, + "probability": 0.9103 + }, + { + "start": 2569.9, + "end": 2571.06, + "probability": 0.662 + }, + { + "start": 2572.24, + "end": 2577.62, + "probability": 0.887 + }, + { + "start": 2578.62, + "end": 2579.58, + "probability": 0.9189 + }, + { + "start": 2581.12, + "end": 2581.44, + "probability": 0.5735 + }, + { + "start": 2581.62, + "end": 2582.4, + "probability": 0.6539 + }, + { + "start": 2582.82, + "end": 2584.94, + "probability": 0.9429 + }, + { + "start": 2585.0, + "end": 2585.94, + "probability": 0.6281 + }, + { + "start": 2586.22, + "end": 2589.76, + "probability": 0.9762 + }, + { + "start": 2589.86, + "end": 2592.29, + "probability": 0.8105 + }, + { + "start": 2592.64, + "end": 2593.6, + "probability": 0.9683 + }, + { + "start": 2593.74, + "end": 2599.36, + "probability": 0.998 + }, + { + "start": 2599.52, + "end": 2601.52, + "probability": 0.6586 + }, + { + "start": 2602.28, + "end": 2602.92, + "probability": 0.7356 + }, + { + "start": 2603.79, + "end": 2605.38, + "probability": 0.6842 + }, + { + "start": 2606.16, + "end": 2610.8, + "probability": 0.6957 + }, + { + "start": 2611.98, + "end": 2613.85, + "probability": 0.8804 + }, + { + "start": 2613.98, + "end": 2616.28, + "probability": 0.5685 + }, + { + "start": 2617.38, + "end": 2618.78, + "probability": 0.8918 + }, + { + "start": 2619.6, + "end": 2624.44, + "probability": 0.8934 + }, + { + "start": 2625.1, + "end": 2628.32, + "probability": 0.9801 + }, + { + "start": 2628.84, + "end": 2633.34, + "probability": 0.9983 + }, + { + "start": 2633.48, + "end": 2634.38, + "probability": 0.9068 + }, + { + "start": 2634.48, + "end": 2638.3, + "probability": 0.7135 + }, + { + "start": 2638.64, + "end": 2640.16, + "probability": 0.9812 + }, + { + "start": 2640.98, + "end": 2644.54, + "probability": 0.8616 + }, + { + "start": 2644.72, + "end": 2645.92, + "probability": 0.9707 + }, + { + "start": 2645.96, + "end": 2646.74, + "probability": 0.3818 + }, + { + "start": 2646.9, + "end": 2648.18, + "probability": 0.9236 + }, + { + "start": 2648.24, + "end": 2648.76, + "probability": 0.9586 + }, + { + "start": 2648.78, + "end": 2649.46, + "probability": 0.9844 + }, + { + "start": 2649.5, + "end": 2650.54, + "probability": 0.9707 + }, + { + "start": 2650.96, + "end": 2652.12, + "probability": 0.9466 + }, + { + "start": 2652.14, + "end": 2652.9, + "probability": 0.9747 + }, + { + "start": 2652.98, + "end": 2653.76, + "probability": 0.8097 + }, + { + "start": 2653.78, + "end": 2656.0, + "probability": 0.9732 + }, + { + "start": 2656.52, + "end": 2657.52, + "probability": 0.382 + }, + { + "start": 2657.52, + "end": 2659.46, + "probability": 0.8494 + }, + { + "start": 2659.6, + "end": 2660.3, + "probability": 0.8831 + }, + { + "start": 2660.42, + "end": 2667.7, + "probability": 0.9512 + }, + { + "start": 2667.88, + "end": 2670.92, + "probability": 0.8872 + }, + { + "start": 2671.38, + "end": 2674.3, + "probability": 0.9869 + }, + { + "start": 2674.3, + "end": 2677.92, + "probability": 0.9823 + }, + { + "start": 2677.98, + "end": 2680.12, + "probability": 0.8467 + }, + { + "start": 2680.42, + "end": 2683.28, + "probability": 0.9268 + }, + { + "start": 2683.68, + "end": 2685.24, + "probability": 0.52 + }, + { + "start": 2685.74, + "end": 2686.72, + "probability": 0.6052 + }, + { + "start": 2686.92, + "end": 2687.22, + "probability": 0.6772 + }, + { + "start": 2687.3, + "end": 2688.64, + "probability": 0.5191 + }, + { + "start": 2688.7, + "end": 2689.88, + "probability": 0.8642 + }, + { + "start": 2690.1, + "end": 2691.2, + "probability": 0.6055 + }, + { + "start": 2691.5, + "end": 2696.18, + "probability": 0.8893 + }, + { + "start": 2696.5, + "end": 2697.96, + "probability": 0.9557 + }, + { + "start": 2698.26, + "end": 2698.94, + "probability": 0.2645 + }, + { + "start": 2699.1, + "end": 2699.42, + "probability": 0.0961 + }, + { + "start": 2700.2, + "end": 2704.86, + "probability": 0.7827 + }, + { + "start": 2705.38, + "end": 2707.84, + "probability": 0.8762 + }, + { + "start": 2708.18, + "end": 2712.74, + "probability": 0.9785 + }, + { + "start": 2712.9, + "end": 2715.1, + "probability": 0.7399 + }, + { + "start": 2715.48, + "end": 2717.46, + "probability": 0.8639 + }, + { + "start": 2717.58, + "end": 2720.86, + "probability": 0.6472 + }, + { + "start": 2721.06, + "end": 2722.64, + "probability": 0.5121 + }, + { + "start": 2725.2, + "end": 2726.1, + "probability": 0.5188 + }, + { + "start": 2726.2, + "end": 2726.48, + "probability": 0.3651 + }, + { + "start": 2726.6, + "end": 2728.16, + "probability": 0.7903 + }, + { + "start": 2728.84, + "end": 2729.52, + "probability": 0.295 + }, + { + "start": 2730.1, + "end": 2731.82, + "probability": 0.8295 + }, + { + "start": 2732.24, + "end": 2734.4, + "probability": 0.6184 + }, + { + "start": 2735.02, + "end": 2738.42, + "probability": 0.8135 + }, + { + "start": 2739.6, + "end": 2740.38, + "probability": 0.7869 + }, + { + "start": 2741.68, + "end": 2744.32, + "probability": 0.9889 + }, + { + "start": 2744.4, + "end": 2745.54, + "probability": 0.9539 + }, + { + "start": 2745.68, + "end": 2746.26, + "probability": 0.71 + }, + { + "start": 2746.38, + "end": 2747.94, + "probability": 0.9806 + }, + { + "start": 2748.26, + "end": 2749.2, + "probability": 0.9894 + }, + { + "start": 2749.24, + "end": 2752.73, + "probability": 0.9956 + }, + { + "start": 2753.06, + "end": 2755.24, + "probability": 0.9692 + }, + { + "start": 2755.36, + "end": 2756.58, + "probability": 0.9329 + }, + { + "start": 2757.08, + "end": 2758.22, + "probability": 0.7448 + }, + { + "start": 2758.58, + "end": 2758.84, + "probability": 0.2761 + }, + { + "start": 2758.88, + "end": 2759.72, + "probability": 0.6522 + }, + { + "start": 2759.82, + "end": 2760.28, + "probability": 0.9178 + }, + { + "start": 2760.36, + "end": 2764.72, + "probability": 0.9865 + }, + { + "start": 2764.9, + "end": 2766.8, + "probability": 0.5538 + }, + { + "start": 2766.98, + "end": 2771.15, + "probability": 0.9814 + }, + { + "start": 2773.08, + "end": 2775.3, + "probability": 0.8624 + }, + { + "start": 2776.28, + "end": 2777.56, + "probability": 0.9002 + }, + { + "start": 2777.7, + "end": 2781.18, + "probability": 0.9638 + }, + { + "start": 2782.12, + "end": 2785.4, + "probability": 0.9677 + }, + { + "start": 2786.08, + "end": 2788.2, + "probability": 0.9286 + }, + { + "start": 2788.82, + "end": 2790.72, + "probability": 0.8863 + }, + { + "start": 2792.38, + "end": 2799.42, + "probability": 0.9283 + }, + { + "start": 2799.46, + "end": 2805.74, + "probability": 0.5826 + }, + { + "start": 2805.96, + "end": 2806.56, + "probability": 0.5978 + }, + { + "start": 2806.68, + "end": 2807.42, + "probability": 0.5242 + }, + { + "start": 2807.42, + "end": 2808.9, + "probability": 0.5521 + }, + { + "start": 2809.8, + "end": 2810.74, + "probability": 0.5852 + }, + { + "start": 2811.1, + "end": 2812.61, + "probability": 0.5617 + }, + { + "start": 2813.54, + "end": 2814.74, + "probability": 0.1322 + }, + { + "start": 2815.16, + "end": 2815.72, + "probability": 0.5901 + }, + { + "start": 2817.39, + "end": 2820.48, + "probability": 0.9626 + }, + { + "start": 2820.54, + "end": 2821.3, + "probability": 0.484 + }, + { + "start": 2821.68, + "end": 2827.46, + "probability": 0.9858 + }, + { + "start": 2828.02, + "end": 2831.26, + "probability": 0.5534 + }, + { + "start": 2831.36, + "end": 2833.68, + "probability": 0.7387 + }, + { + "start": 2834.6, + "end": 2839.8, + "probability": 0.9604 + }, + { + "start": 2840.42, + "end": 2843.14, + "probability": 0.5169 + }, + { + "start": 2843.82, + "end": 2845.81, + "probability": 0.7424 + }, + { + "start": 2845.96, + "end": 2847.36, + "probability": 0.8571 + }, + { + "start": 2848.33, + "end": 2850.66, + "probability": 0.8135 + }, + { + "start": 2851.56, + "end": 2861.06, + "probability": 0.9667 + }, + { + "start": 2861.06, + "end": 2868.92, + "probability": 0.991 + }, + { + "start": 2870.14, + "end": 2870.58, + "probability": 0.8536 + }, + { + "start": 2870.76, + "end": 2871.76, + "probability": 0.7355 + }, + { + "start": 2873.2, + "end": 2875.56, + "probability": 0.7189 + }, + { + "start": 2875.98, + "end": 2877.36, + "probability": 0.703 + }, + { + "start": 2877.4, + "end": 2877.78, + "probability": 0.7046 + }, + { + "start": 2878.52, + "end": 2882.22, + "probability": 0.659 + }, + { + "start": 2890.84, + "end": 2892.66, + "probability": 0.7974 + }, + { + "start": 2893.2, + "end": 2894.2, + "probability": 0.9954 + }, + { + "start": 2895.52, + "end": 2896.4, + "probability": 0.881 + }, + { + "start": 2896.64, + "end": 2898.86, + "probability": 0.9378 + }, + { + "start": 2898.9, + "end": 2900.16, + "probability": 0.9644 + }, + { + "start": 2900.52, + "end": 2901.71, + "probability": 0.9657 + }, + { + "start": 2902.3, + "end": 2903.24, + "probability": 0.9969 + }, + { + "start": 2903.56, + "end": 2905.46, + "probability": 0.9706 + }, + { + "start": 2905.66, + "end": 2906.6, + "probability": 0.5419 + }, + { + "start": 2906.78, + "end": 2908.68, + "probability": 0.9903 + }, + { + "start": 2908.92, + "end": 2913.76, + "probability": 0.8232 + }, + { + "start": 2914.18, + "end": 2915.44, + "probability": 0.9315 + }, + { + "start": 2916.56, + "end": 2917.42, + "probability": 0.77 + }, + { + "start": 2919.16, + "end": 2920.72, + "probability": 0.9165 + }, + { + "start": 2921.46, + "end": 2923.28, + "probability": 0.8145 + }, + { + "start": 2924.18, + "end": 2929.54, + "probability": 0.8367 + }, + { + "start": 2929.84, + "end": 2933.8, + "probability": 0.9468 + }, + { + "start": 2934.42, + "end": 2935.04, + "probability": 0.9133 + }, + { + "start": 2935.04, + "end": 2936.28, + "probability": 0.8216 + }, + { + "start": 2936.72, + "end": 2937.86, + "probability": 0.9868 + }, + { + "start": 2938.1, + "end": 2939.32, + "probability": 0.9743 + }, + { + "start": 2940.34, + "end": 2941.8, + "probability": 0.9901 + }, + { + "start": 2941.86, + "end": 2942.4, + "probability": 0.9798 + }, + { + "start": 2943.0, + "end": 2943.72, + "probability": 0.7161 + }, + { + "start": 2944.18, + "end": 2944.74, + "probability": 0.8386 + }, + { + "start": 2945.2, + "end": 2946.32, + "probability": 0.8389 + }, + { + "start": 2946.62, + "end": 2947.46, + "probability": 0.8857 + }, + { + "start": 2947.98, + "end": 2949.36, + "probability": 0.9009 + }, + { + "start": 2950.04, + "end": 2951.76, + "probability": 0.9758 + }, + { + "start": 2951.84, + "end": 2953.76, + "probability": 0.6683 + }, + { + "start": 2953.9, + "end": 2956.2, + "probability": 0.7685 + }, + { + "start": 2956.28, + "end": 2957.2, + "probability": 0.8265 + }, + { + "start": 2957.24, + "end": 2958.26, + "probability": 0.9331 + }, + { + "start": 2958.34, + "end": 2960.96, + "probability": 0.7433 + }, + { + "start": 2961.34, + "end": 2962.76, + "probability": 0.7771 + }, + { + "start": 2963.54, + "end": 2965.86, + "probability": 0.8967 + }, + { + "start": 2966.82, + "end": 2968.4, + "probability": 0.9102 + }, + { + "start": 2968.56, + "end": 2969.56, + "probability": 0.7068 + }, + { + "start": 2969.8, + "end": 2970.36, + "probability": 0.8088 + }, + { + "start": 2970.66, + "end": 2971.34, + "probability": 0.7429 + }, + { + "start": 2974.04, + "end": 2974.8, + "probability": 0.5064 + }, + { + "start": 2975.56, + "end": 2976.48, + "probability": 0.2406 + }, + { + "start": 2976.48, + "end": 2978.32, + "probability": 0.8689 + }, + { + "start": 2979.23, + "end": 2981.22, + "probability": 0.8772 + }, + { + "start": 2981.4, + "end": 2985.34, + "probability": 0.8721 + }, + { + "start": 2985.38, + "end": 2985.84, + "probability": 0.876 + }, + { + "start": 2986.48, + "end": 2989.54, + "probability": 0.9866 + }, + { + "start": 2989.9, + "end": 2990.54, + "probability": 0.5598 + }, + { + "start": 2990.94, + "end": 2992.34, + "probability": 0.8379 + }, + { + "start": 2992.44, + "end": 2995.56, + "probability": 0.7391 + }, + { + "start": 2996.0, + "end": 2996.84, + "probability": 0.846 + }, + { + "start": 2997.6, + "end": 3001.4, + "probability": 0.9354 + }, + { + "start": 3002.4, + "end": 3005.68, + "probability": 0.2968 + }, + { + "start": 3005.88, + "end": 3008.66, + "probability": 0.8952 + }, + { + "start": 3008.88, + "end": 3009.72, + "probability": 0.8464 + }, + { + "start": 3009.8, + "end": 3010.78, + "probability": 0.766 + }, + { + "start": 3010.94, + "end": 3011.94, + "probability": 0.94 + }, + { + "start": 3012.14, + "end": 3013.44, + "probability": 0.876 + }, + { + "start": 3013.58, + "end": 3016.14, + "probability": 0.8981 + }, + { + "start": 3016.24, + "end": 3016.9, + "probability": 0.9389 + }, + { + "start": 3017.14, + "end": 3018.06, + "probability": 0.6742 + }, + { + "start": 3018.42, + "end": 3021.96, + "probability": 0.9932 + }, + { + "start": 3021.96, + "end": 3024.52, + "probability": 0.9535 + }, + { + "start": 3024.78, + "end": 3026.7, + "probability": 0.8949 + }, + { + "start": 3026.82, + "end": 3031.5, + "probability": 0.9906 + }, + { + "start": 3031.68, + "end": 3034.72, + "probability": 0.9842 + }, + { + "start": 3037.52, + "end": 3038.96, + "probability": 0.4758 + }, + { + "start": 3039.02, + "end": 3040.06, + "probability": 0.6448 + }, + { + "start": 3040.3, + "end": 3041.1, + "probability": 0.7137 + }, + { + "start": 3041.16, + "end": 3043.02, + "probability": 0.9678 + }, + { + "start": 3043.42, + "end": 3044.1, + "probability": 0.7637 + }, + { + "start": 3044.1, + "end": 3044.76, + "probability": 0.5722 + }, + { + "start": 3045.04, + "end": 3047.24, + "probability": 0.805 + }, + { + "start": 3051.48, + "end": 3052.44, + "probability": 0.7307 + }, + { + "start": 3052.48, + "end": 3059.06, + "probability": 0.9556 + }, + { + "start": 3059.06, + "end": 3064.32, + "probability": 0.9777 + }, + { + "start": 3065.12, + "end": 3066.82, + "probability": 0.8868 + }, + { + "start": 3067.78, + "end": 3074.1, + "probability": 0.9954 + }, + { + "start": 3074.84, + "end": 3076.97, + "probability": 0.9774 + }, + { + "start": 3078.08, + "end": 3079.28, + "probability": 0.9357 + }, + { + "start": 3079.56, + "end": 3080.54, + "probability": 0.8271 + }, + { + "start": 3081.24, + "end": 3082.76, + "probability": 0.9964 + }, + { + "start": 3085.6, + "end": 3086.24, + "probability": 0.6098 + }, + { + "start": 3087.12, + "end": 3088.38, + "probability": 0.2718 + }, + { + "start": 3088.54, + "end": 3093.64, + "probability": 0.6539 + }, + { + "start": 3093.72, + "end": 3094.88, + "probability": 0.8275 + }, + { + "start": 3095.82, + "end": 3100.7, + "probability": 0.9729 + }, + { + "start": 3101.36, + "end": 3108.1, + "probability": 0.6661 + }, + { + "start": 3108.68, + "end": 3109.62, + "probability": 0.8318 + }, + { + "start": 3109.72, + "end": 3114.54, + "probability": 0.9486 + }, + { + "start": 3114.84, + "end": 3117.13, + "probability": 0.9956 + }, + { + "start": 3117.52, + "end": 3121.88, + "probability": 0.9688 + }, + { + "start": 3122.31, + "end": 3126.24, + "probability": 0.9922 + }, + { + "start": 3128.06, + "end": 3129.32, + "probability": 0.5186 + }, + { + "start": 3129.32, + "end": 3129.46, + "probability": 0.3337 + }, + { + "start": 3129.74, + "end": 3131.66, + "probability": 0.7404 + }, + { + "start": 3131.66, + "end": 3132.18, + "probability": 0.8414 + }, + { + "start": 3133.56, + "end": 3135.04, + "probability": 0.7004 + }, + { + "start": 3135.1, + "end": 3136.0, + "probability": 0.8521 + }, + { + "start": 3140.42, + "end": 3141.64, + "probability": 0.5281 + }, + { + "start": 3141.86, + "end": 3142.88, + "probability": 0.9246 + }, + { + "start": 3143.48, + "end": 3146.82, + "probability": 0.9893 + }, + { + "start": 3147.08, + "end": 3148.78, + "probability": 0.9058 + }, + { + "start": 3148.78, + "end": 3151.85, + "probability": 0.611 + }, + { + "start": 3152.68, + "end": 3155.98, + "probability": 0.9648 + }, + { + "start": 3155.98, + "end": 3156.64, + "probability": 0.4954 + }, + { + "start": 3156.64, + "end": 3157.04, + "probability": 0.2631 + }, + { + "start": 3157.48, + "end": 3157.48, + "probability": 0.752 + }, + { + "start": 3157.48, + "end": 3164.48, + "probability": 0.9624 + }, + { + "start": 3165.02, + "end": 3165.28, + "probability": 0.886 + }, + { + "start": 3165.92, + "end": 3166.66, + "probability": 0.6413 + }, + { + "start": 3167.02, + "end": 3168.56, + "probability": 0.9116 + }, + { + "start": 3168.98, + "end": 3170.96, + "probability": 0.873 + }, + { + "start": 3171.08, + "end": 3172.94, + "probability": 0.1586 + }, + { + "start": 3173.34, + "end": 3176.54, + "probability": 0.6601 + }, + { + "start": 3177.24, + "end": 3177.94, + "probability": 0.8408 + }, + { + "start": 3178.02, + "end": 3179.86, + "probability": 0.747 + }, + { + "start": 3179.98, + "end": 3181.54, + "probability": 0.8222 + }, + { + "start": 3181.6, + "end": 3182.38, + "probability": 0.4989 + }, + { + "start": 3182.42, + "end": 3184.2, + "probability": 0.931 + }, + { + "start": 3184.3, + "end": 3184.86, + "probability": 0.8462 + }, + { + "start": 3185.4, + "end": 3185.5, + "probability": 0.336 + }, + { + "start": 3185.92, + "end": 3189.98, + "probability": 0.9918 + }, + { + "start": 3190.24, + "end": 3191.72, + "probability": 0.841 + }, + { + "start": 3191.8, + "end": 3192.32, + "probability": 0.6435 + }, + { + "start": 3192.44, + "end": 3193.44, + "probability": 0.6738 + }, + { + "start": 3194.56, + "end": 3196.26, + "probability": 0.9712 + }, + { + "start": 3196.54, + "end": 3197.24, + "probability": 0.071 + }, + { + "start": 3197.32, + "end": 3198.1, + "probability": 0.7464 + }, + { + "start": 3198.14, + "end": 3199.97, + "probability": 0.8591 + }, + { + "start": 3200.26, + "end": 3200.92, + "probability": 0.7461 + }, + { + "start": 3201.02, + "end": 3202.66, + "probability": 0.9668 + }, + { + "start": 3203.04, + "end": 3205.92, + "probability": 0.9401 + }, + { + "start": 3206.94, + "end": 3207.78, + "probability": 0.6169 + }, + { + "start": 3208.02, + "end": 3211.12, + "probability": 0.9373 + }, + { + "start": 3211.56, + "end": 3213.92, + "probability": 0.9139 + }, + { + "start": 3213.96, + "end": 3215.94, + "probability": 0.9112 + }, + { + "start": 3215.96, + "end": 3217.45, + "probability": 0.983 + }, + { + "start": 3217.62, + "end": 3219.24, + "probability": 0.8656 + }, + { + "start": 3219.26, + "end": 3221.5, + "probability": 0.9912 + }, + { + "start": 3221.5, + "end": 3224.74, + "probability": 0.8327 + }, + { + "start": 3225.02, + "end": 3226.12, + "probability": 0.3032 + }, + { + "start": 3226.42, + "end": 3230.74, + "probability": 0.6085 + }, + { + "start": 3231.32, + "end": 3232.62, + "probability": 0.9902 + }, + { + "start": 3232.78, + "end": 3234.32, + "probability": 0.9275 + }, + { + "start": 3234.7, + "end": 3236.86, + "probability": 0.9946 + }, + { + "start": 3237.28, + "end": 3238.48, + "probability": 0.9056 + }, + { + "start": 3238.56, + "end": 3239.2, + "probability": 0.5758 + }, + { + "start": 3240.23, + "end": 3247.08, + "probability": 0.9508 + }, + { + "start": 3247.26, + "end": 3248.02, + "probability": 0.7134 + }, + { + "start": 3248.16, + "end": 3251.94, + "probability": 0.53 + }, + { + "start": 3252.16, + "end": 3254.94, + "probability": 0.96 + }, + { + "start": 3255.1, + "end": 3255.52, + "probability": 0.6623 + }, + { + "start": 3256.28, + "end": 3256.4, + "probability": 0.1843 + }, + { + "start": 3256.4, + "end": 3259.68, + "probability": 0.8551 + }, + { + "start": 3260.2, + "end": 3262.2, + "probability": 0.8702 + }, + { + "start": 3262.48, + "end": 3265.0, + "probability": 0.9101 + }, + { + "start": 3265.34, + "end": 3267.6, + "probability": 0.9203 + }, + { + "start": 3267.68, + "end": 3268.62, + "probability": 0.4087 + }, + { + "start": 3268.84, + "end": 3272.66, + "probability": 0.985 + }, + { + "start": 3272.82, + "end": 3275.52, + "probability": 0.9544 + }, + { + "start": 3275.74, + "end": 3276.36, + "probability": 0.9111 + }, + { + "start": 3276.46, + "end": 3277.68, + "probability": 0.8602 + }, + { + "start": 3278.16, + "end": 3278.26, + "probability": 0.1526 + }, + { + "start": 3278.26, + "end": 3279.06, + "probability": 0.0865 + }, + { + "start": 3279.48, + "end": 3281.62, + "probability": 0.7126 + }, + { + "start": 3281.68, + "end": 3288.16, + "probability": 0.5712 + }, + { + "start": 3288.64, + "end": 3290.12, + "probability": 0.5289 + }, + { + "start": 3290.58, + "end": 3291.38, + "probability": 0.7469 + }, + { + "start": 3291.44, + "end": 3292.21, + "probability": 0.9686 + }, + { + "start": 3292.36, + "end": 3293.5, + "probability": 0.7485 + }, + { + "start": 3293.96, + "end": 3294.2, + "probability": 0.6222 + }, + { + "start": 3294.3, + "end": 3296.08, + "probability": 0.9163 + }, + { + "start": 3296.72, + "end": 3297.16, + "probability": 0.6528 + }, + { + "start": 3297.3, + "end": 3299.44, + "probability": 0.7686 + }, + { + "start": 3299.58, + "end": 3300.15, + "probability": 0.9596 + }, + { + "start": 3300.34, + "end": 3302.8, + "probability": 0.9055 + }, + { + "start": 3303.26, + "end": 3303.92, + "probability": 0.9601 + }, + { + "start": 3304.52, + "end": 3306.12, + "probability": 0.9121 + }, + { + "start": 3306.36, + "end": 3307.56, + "probability": 0.7812 + }, + { + "start": 3307.8, + "end": 3309.38, + "probability": 0.7209 + }, + { + "start": 3310.12, + "end": 3311.8, + "probability": 0.9103 + }, + { + "start": 3312.26, + "end": 3315.84, + "probability": 0.9819 + }, + { + "start": 3316.6, + "end": 3318.48, + "probability": 0.7056 + }, + { + "start": 3318.96, + "end": 3320.36, + "probability": 0.8931 + }, + { + "start": 3320.62, + "end": 3322.8, + "probability": 0.8335 + }, + { + "start": 3323.0, + "end": 3325.34, + "probability": 0.7745 + }, + { + "start": 3325.34, + "end": 3328.76, + "probability": 0.9805 + }, + { + "start": 3328.96, + "end": 3330.46, + "probability": 0.861 + }, + { + "start": 3332.88, + "end": 3333.72, + "probability": 0.4679 + }, + { + "start": 3333.82, + "end": 3335.54, + "probability": 0.6712 + }, + { + "start": 3335.88, + "end": 3338.36, + "probability": 0.9806 + }, + { + "start": 3338.46, + "end": 3338.86, + "probability": 0.7783 + }, + { + "start": 3338.9, + "end": 3339.4, + "probability": 0.3841 + }, + { + "start": 3339.8, + "end": 3341.78, + "probability": 0.9655 + }, + { + "start": 3343.32, + "end": 3344.58, + "probability": 0.6713 + }, + { + "start": 3344.58, + "end": 3345.0, + "probability": 0.2495 + }, + { + "start": 3346.76, + "end": 3347.12, + "probability": 0.0485 + }, + { + "start": 3347.58, + "end": 3350.98, + "probability": 0.8846 + }, + { + "start": 3351.56, + "end": 3354.74, + "probability": 0.7935 + }, + { + "start": 3355.08, + "end": 3357.4, + "probability": 0.8621 + }, + { + "start": 3357.46, + "end": 3359.56, + "probability": 0.6772 + }, + { + "start": 3359.82, + "end": 3360.3, + "probability": 0.1196 + }, + { + "start": 3360.6, + "end": 3361.72, + "probability": 0.7222 + }, + { + "start": 3362.16, + "end": 3362.8, + "probability": 0.4499 + }, + { + "start": 3362.92, + "end": 3364.44, + "probability": 0.8054 + }, + { + "start": 3364.82, + "end": 3365.3, + "probability": 0.5554 + }, + { + "start": 3365.3, + "end": 3366.08, + "probability": 0.9238 + }, + { + "start": 3366.24, + "end": 3366.76, + "probability": 0.7971 + }, + { + "start": 3366.84, + "end": 3367.62, + "probability": 0.8739 + }, + { + "start": 3367.96, + "end": 3368.8, + "probability": 0.7406 + }, + { + "start": 3369.16, + "end": 3370.02, + "probability": 0.8283 + }, + { + "start": 3370.38, + "end": 3371.08, + "probability": 0.8381 + }, + { + "start": 3371.36, + "end": 3372.14, + "probability": 0.9582 + }, + { + "start": 3372.6, + "end": 3373.12, + "probability": 0.7458 + }, + { + "start": 3373.76, + "end": 3373.94, + "probability": 0.4873 + }, + { + "start": 3374.02, + "end": 3374.76, + "probability": 0.4353 + }, + { + "start": 3374.78, + "end": 3376.16, + "probability": 0.6879 + }, + { + "start": 3376.58, + "end": 3376.92, + "probability": 0.2984 + }, + { + "start": 3377.12, + "end": 3381.52, + "probability": 0.9355 + }, + { + "start": 3382.12, + "end": 3384.94, + "probability": 0.9312 + }, + { + "start": 3385.52, + "end": 3389.42, + "probability": 0.9902 + }, + { + "start": 3389.5, + "end": 3390.16, + "probability": 0.7527 + }, + { + "start": 3390.24, + "end": 3391.43, + "probability": 0.7521 + }, + { + "start": 3391.9, + "end": 3393.44, + "probability": 0.7274 + }, + { + "start": 3393.7, + "end": 3396.4, + "probability": 0.9617 + }, + { + "start": 3397.06, + "end": 3401.6, + "probability": 0.9879 + }, + { + "start": 3402.16, + "end": 3404.64, + "probability": 0.722 + }, + { + "start": 3405.04, + "end": 3410.2, + "probability": 0.9552 + }, + { + "start": 3410.44, + "end": 3411.98, + "probability": 0.8018 + }, + { + "start": 3412.42, + "end": 3413.58, + "probability": 0.756 + }, + { + "start": 3413.86, + "end": 3416.22, + "probability": 0.936 + }, + { + "start": 3416.96, + "end": 3419.46, + "probability": 0.95 + }, + { + "start": 3419.92, + "end": 3421.94, + "probability": 0.686 + }, + { + "start": 3422.12, + "end": 3423.46, + "probability": 0.8521 + }, + { + "start": 3423.52, + "end": 3424.52, + "probability": 0.8505 + }, + { + "start": 3424.82, + "end": 3426.96, + "probability": 0.6819 + }, + { + "start": 3428.02, + "end": 3430.2, + "probability": 0.6553 + }, + { + "start": 3430.68, + "end": 3432.06, + "probability": 0.9031 + }, + { + "start": 3432.2, + "end": 3432.78, + "probability": 0.5639 + }, + { + "start": 3433.44, + "end": 3435.54, + "probability": 0.9822 + }, + { + "start": 3435.6, + "end": 3436.44, + "probability": 0.1634 + }, + { + "start": 3436.54, + "end": 3439.62, + "probability": 0.7988 + }, + { + "start": 3440.02, + "end": 3441.92, + "probability": 0.8237 + }, + { + "start": 3442.04, + "end": 3443.53, + "probability": 0.9775 + }, + { + "start": 3443.92, + "end": 3447.1, + "probability": 0.9678 + }, + { + "start": 3447.66, + "end": 3451.76, + "probability": 0.7925 + }, + { + "start": 3452.22, + "end": 3454.12, + "probability": 0.9971 + }, + { + "start": 3454.74, + "end": 3458.3, + "probability": 0.6201 + }, + { + "start": 3458.42, + "end": 3461.26, + "probability": 0.8597 + }, + { + "start": 3461.58, + "end": 3462.38, + "probability": 0.3154 + }, + { + "start": 3462.48, + "end": 3466.3, + "probability": 0.703 + }, + { + "start": 3467.16, + "end": 3471.26, + "probability": 0.9182 + }, + { + "start": 3471.38, + "end": 3474.84, + "probability": 0.6757 + }, + { + "start": 3475.3, + "end": 3476.76, + "probability": 0.6021 + }, + { + "start": 3476.94, + "end": 3483.93, + "probability": 0.3214 + }, + { + "start": 3485.94, + "end": 3486.08, + "probability": 0.0446 + }, + { + "start": 3486.08, + "end": 3488.9, + "probability": 0.1808 + }, + { + "start": 3489.3, + "end": 3490.8, + "probability": 0.77 + }, + { + "start": 3491.1, + "end": 3493.28, + "probability": 0.8018 + }, + { + "start": 3493.3, + "end": 3494.66, + "probability": 0.6729 + }, + { + "start": 3495.08, + "end": 3498.14, + "probability": 0.9834 + }, + { + "start": 3498.3, + "end": 3499.34, + "probability": 0.3778 + }, + { + "start": 3499.38, + "end": 3499.38, + "probability": 0.3479 + }, + { + "start": 3499.6, + "end": 3501.52, + "probability": 0.856 + }, + { + "start": 3501.8, + "end": 3505.5, + "probability": 0.9441 + }, + { + "start": 3505.6, + "end": 3505.96, + "probability": 0.7589 + }, + { + "start": 3506.1, + "end": 3507.86, + "probability": 0.5508 + }, + { + "start": 3507.94, + "end": 3510.08, + "probability": 0.7591 + }, + { + "start": 3512.18, + "end": 3515.28, + "probability": 0.6899 + }, + { + "start": 3515.92, + "end": 3517.64, + "probability": 0.7559 + }, + { + "start": 3518.66, + "end": 3520.6, + "probability": 0.884 + }, + { + "start": 3521.24, + "end": 3524.4, + "probability": 0.6473 + }, + { + "start": 3525.02, + "end": 3526.34, + "probability": 0.9858 + }, + { + "start": 3526.88, + "end": 3527.98, + "probability": 0.9017 + }, + { + "start": 3528.1, + "end": 3529.44, + "probability": 0.9688 + }, + { + "start": 3529.74, + "end": 3531.08, + "probability": 0.9827 + }, + { + "start": 3531.26, + "end": 3533.04, + "probability": 0.9524 + }, + { + "start": 3533.76, + "end": 3536.08, + "probability": 0.9828 + }, + { + "start": 3536.54, + "end": 3538.26, + "probability": 0.6919 + }, + { + "start": 3538.94, + "end": 3540.12, + "probability": 0.7603 + }, + { + "start": 3540.26, + "end": 3545.56, + "probability": 0.9902 + }, + { + "start": 3545.68, + "end": 3548.36, + "probability": 0.9937 + }, + { + "start": 3548.42, + "end": 3549.16, + "probability": 0.8015 + }, + { + "start": 3549.7, + "end": 3553.84, + "probability": 0.7151 + }, + { + "start": 3554.0, + "end": 3555.23, + "probability": 0.9045 + }, + { + "start": 3555.46, + "end": 3557.19, + "probability": 0.9937 + }, + { + "start": 3557.48, + "end": 3559.17, + "probability": 0.9214 + }, + { + "start": 3559.64, + "end": 3561.08, + "probability": 0.7196 + }, + { + "start": 3561.89, + "end": 3563.46, + "probability": 0.9596 + }, + { + "start": 3563.8, + "end": 3566.72, + "probability": 0.9824 + }, + { + "start": 3566.78, + "end": 3568.32, + "probability": 0.989 + }, + { + "start": 3568.36, + "end": 3569.83, + "probability": 0.7859 + }, + { + "start": 3570.04, + "end": 3571.14, + "probability": 0.8447 + }, + { + "start": 3571.42, + "end": 3575.18, + "probability": 0.8042 + }, + { + "start": 3575.4, + "end": 3576.06, + "probability": 0.8729 + }, + { + "start": 3576.1, + "end": 3576.52, + "probability": 0.8889 + }, + { + "start": 3576.7, + "end": 3577.02, + "probability": 0.7561 + }, + { + "start": 3577.34, + "end": 3579.4, + "probability": 0.757 + }, + { + "start": 3579.52, + "end": 3580.26, + "probability": 0.6122 + }, + { + "start": 3580.32, + "end": 3580.92, + "probability": 0.5862 + }, + { + "start": 3580.94, + "end": 3581.68, + "probability": 0.7955 + }, + { + "start": 3581.94, + "end": 3582.7, + "probability": 0.66 + }, + { + "start": 3583.34, + "end": 3585.58, + "probability": 0.5879 + }, + { + "start": 3585.96, + "end": 3586.9, + "probability": 0.7986 + }, + { + "start": 3587.1, + "end": 3587.74, + "probability": 0.7382 + }, + { + "start": 3587.86, + "end": 3595.58, + "probability": 0.8275 + }, + { + "start": 3595.68, + "end": 3596.9, + "probability": 0.6089 + }, + { + "start": 3597.14, + "end": 3597.78, + "probability": 0.7639 + }, + { + "start": 3597.84, + "end": 3598.96, + "probability": 0.6703 + }, + { + "start": 3599.1, + "end": 3602.74, + "probability": 0.8018 + }, + { + "start": 3602.74, + "end": 3606.2, + "probability": 0.9528 + }, + { + "start": 3606.6, + "end": 3608.12, + "probability": 0.8953 + }, + { + "start": 3608.18, + "end": 3611.98, + "probability": 0.639 + }, + { + "start": 3612.06, + "end": 3614.18, + "probability": 0.7631 + }, + { + "start": 3614.42, + "end": 3617.0, + "probability": 0.7705 + }, + { + "start": 3617.28, + "end": 3623.76, + "probability": 0.8423 + }, + { + "start": 3624.28, + "end": 3626.5, + "probability": 0.6421 + }, + { + "start": 3627.24, + "end": 3628.99, + "probability": 0.4946 + }, + { + "start": 3629.42, + "end": 3631.34, + "probability": 0.9292 + }, + { + "start": 3631.82, + "end": 3632.98, + "probability": 0.8979 + }, + { + "start": 3633.08, + "end": 3634.4, + "probability": 0.8066 + }, + { + "start": 3635.0, + "end": 3636.72, + "probability": 0.8857 + }, + { + "start": 3637.4, + "end": 3641.1, + "probability": 0.9474 + }, + { + "start": 3641.5, + "end": 3642.52, + "probability": 0.8552 + }, + { + "start": 3642.56, + "end": 3642.98, + "probability": 0.7997 + }, + { + "start": 3643.04, + "end": 3643.66, + "probability": 0.8934 + }, + { + "start": 3644.22, + "end": 3644.82, + "probability": 0.417 + }, + { + "start": 3645.66, + "end": 3650.24, + "probability": 0.5056 + }, + { + "start": 3650.7, + "end": 3652.45, + "probability": 0.7913 + }, + { + "start": 3652.78, + "end": 3655.72, + "probability": 0.6348 + }, + { + "start": 3655.84, + "end": 3657.92, + "probability": 0.9904 + }, + { + "start": 3658.06, + "end": 3661.48, + "probability": 0.8122 + }, + { + "start": 3661.5, + "end": 3665.58, + "probability": 0.9694 + }, + { + "start": 3665.68, + "end": 3667.08, + "probability": 0.7014 + }, + { + "start": 3667.5, + "end": 3668.56, + "probability": 0.9724 + }, + { + "start": 3668.64, + "end": 3669.96, + "probability": 0.7508 + }, + { + "start": 3670.1, + "end": 3670.8, + "probability": 0.682 + }, + { + "start": 3670.9, + "end": 3671.54, + "probability": 0.4841 + }, + { + "start": 3672.7, + "end": 3675.8, + "probability": 0.9492 + }, + { + "start": 3676.34, + "end": 3676.48, + "probability": 0.9165 + }, + { + "start": 3676.66, + "end": 3677.46, + "probability": 0.7145 + }, + { + "start": 3677.6, + "end": 3679.98, + "probability": 0.9751 + }, + { + "start": 3680.24, + "end": 3681.0, + "probability": 0.8184 + }, + { + "start": 3681.16, + "end": 3681.94, + "probability": 0.8204 + }, + { + "start": 3682.04, + "end": 3687.06, + "probability": 0.899 + }, + { + "start": 3687.06, + "end": 3690.96, + "probability": 0.9769 + }, + { + "start": 3691.04, + "end": 3692.0, + "probability": 0.4346 + }, + { + "start": 3692.46, + "end": 3693.56, + "probability": 0.734 + }, + { + "start": 3693.66, + "end": 3694.52, + "probability": 0.3979 + }, + { + "start": 3694.74, + "end": 3695.86, + "probability": 0.909 + }, + { + "start": 3696.02, + "end": 3697.6, + "probability": 0.9979 + }, + { + "start": 3698.3, + "end": 3700.38, + "probability": 0.8797 + }, + { + "start": 3700.56, + "end": 3702.26, + "probability": 0.6367 + }, + { + "start": 3702.7, + "end": 3703.68, + "probability": 0.6588 + }, + { + "start": 3704.14, + "end": 3704.42, + "probability": 0.7482 + }, + { + "start": 3704.56, + "end": 3707.38, + "probability": 0.9625 + }, + { + "start": 3707.82, + "end": 3709.8, + "probability": 0.8905 + }, + { + "start": 3709.86, + "end": 3711.34, + "probability": 0.9469 + }, + { + "start": 3711.62, + "end": 3713.62, + "probability": 0.8212 + }, + { + "start": 3713.94, + "end": 3717.3, + "probability": 0.6373 + }, + { + "start": 3718.32, + "end": 3720.0, + "probability": 0.8382 + }, + { + "start": 3721.83, + "end": 3724.9, + "probability": 0.7912 + }, + { + "start": 3725.94, + "end": 3727.3, + "probability": 0.9138 + }, + { + "start": 3727.32, + "end": 3730.74, + "probability": 0.991 + }, + { + "start": 3730.82, + "end": 3731.02, + "probability": 0.451 + }, + { + "start": 3731.26, + "end": 3734.5, + "probability": 0.7986 + }, + { + "start": 3734.56, + "end": 3735.54, + "probability": 0.9045 + }, + { + "start": 3736.06, + "end": 3738.58, + "probability": 0.9785 + }, + { + "start": 3740.0, + "end": 3743.8, + "probability": 0.9937 + }, + { + "start": 3743.8, + "end": 3749.42, + "probability": 0.9995 + }, + { + "start": 3750.8, + "end": 3752.64, + "probability": 0.8511 + }, + { + "start": 3754.06, + "end": 3757.68, + "probability": 0.9651 + }, + { + "start": 3757.76, + "end": 3758.44, + "probability": 0.9486 + }, + { + "start": 3758.78, + "end": 3759.86, + "probability": 0.7578 + }, + { + "start": 3760.98, + "end": 3764.42, + "probability": 0.858 + }, + { + "start": 3765.96, + "end": 3766.48, + "probability": 0.8569 + }, + { + "start": 3767.96, + "end": 3774.06, + "probability": 0.9907 + }, + { + "start": 3774.34, + "end": 3780.64, + "probability": 0.9888 + }, + { + "start": 3781.74, + "end": 3783.0, + "probability": 0.8482 + }, + { + "start": 3783.18, + "end": 3784.54, + "probability": 0.9893 + }, + { + "start": 3784.7, + "end": 3788.2, + "probability": 0.9939 + }, + { + "start": 3788.24, + "end": 3789.42, + "probability": 0.8846 + }, + { + "start": 3790.72, + "end": 3791.54, + "probability": 0.7993 + }, + { + "start": 3792.86, + "end": 3793.52, + "probability": 0.6186 + }, + { + "start": 3793.92, + "end": 3794.86, + "probability": 0.947 + }, + { + "start": 3794.86, + "end": 3797.61, + "probability": 0.8901 + }, + { + "start": 3799.58, + "end": 3802.4, + "probability": 0.9926 + }, + { + "start": 3802.42, + "end": 3803.66, + "probability": 0.9439 + }, + { + "start": 3803.94, + "end": 3805.04, + "probability": 0.9352 + }, + { + "start": 3806.32, + "end": 3806.72, + "probability": 0.9568 + }, + { + "start": 3808.16, + "end": 3812.2, + "probability": 0.9877 + }, + { + "start": 3812.62, + "end": 3813.2, + "probability": 0.7665 + }, + { + "start": 3814.62, + "end": 3817.18, + "probability": 0.9961 + }, + { + "start": 3817.38, + "end": 3819.88, + "probability": 0.9935 + }, + { + "start": 3820.98, + "end": 3821.84, + "probability": 0.9481 + }, + { + "start": 3821.94, + "end": 3823.2, + "probability": 0.8563 + }, + { + "start": 3823.34, + "end": 3828.34, + "probability": 0.9857 + }, + { + "start": 3828.48, + "end": 3828.96, + "probability": 0.4615 + }, + { + "start": 3829.36, + "end": 3829.82, + "probability": 0.6696 + }, + { + "start": 3830.64, + "end": 3830.64, + "probability": 0.2043 + }, + { + "start": 3830.64, + "end": 3832.28, + "probability": 0.6432 + }, + { + "start": 3832.3, + "end": 3833.16, + "probability": 0.7008 + }, + { + "start": 3834.22, + "end": 3835.8, + "probability": 0.925 + }, + { + "start": 3836.08, + "end": 3837.56, + "probability": 0.7549 + }, + { + "start": 3838.36, + "end": 3839.34, + "probability": 0.924 + }, + { + "start": 3839.58, + "end": 3840.36, + "probability": 0.9946 + }, + { + "start": 3840.42, + "end": 3841.24, + "probability": 0.9688 + }, + { + "start": 3841.98, + "end": 3844.16, + "probability": 0.4132 + }, + { + "start": 3844.16, + "end": 3845.02, + "probability": 0.875 + }, + { + "start": 3845.52, + "end": 3847.93, + "probability": 0.8826 + }, + { + "start": 3848.84, + "end": 3849.4, + "probability": 0.8711 + }, + { + "start": 3850.46, + "end": 3852.36, + "probability": 0.0097 + }, + { + "start": 3852.36, + "end": 3852.36, + "probability": 0.2175 + }, + { + "start": 3852.36, + "end": 3852.94, + "probability": 0.5849 + }, + { + "start": 3853.04, + "end": 3853.46, + "probability": 0.3853 + }, + { + "start": 3853.56, + "end": 3854.48, + "probability": 0.8768 + }, + { + "start": 3854.48, + "end": 3856.72, + "probability": 0.8537 + }, + { + "start": 3856.74, + "end": 3858.48, + "probability": 0.501 + }, + { + "start": 3858.56, + "end": 3860.74, + "probability": 0.8254 + }, + { + "start": 3861.06, + "end": 3861.44, + "probability": 0.6322 + }, + { + "start": 3861.44, + "end": 3864.18, + "probability": 0.9537 + }, + { + "start": 3864.32, + "end": 3865.36, + "probability": 0.5974 + }, + { + "start": 3865.46, + "end": 3866.36, + "probability": 0.8853 + }, + { + "start": 3866.48, + "end": 3866.6, + "probability": 0.4007 + }, + { + "start": 3866.88, + "end": 3868.36, + "probability": 0.9802 + }, + { + "start": 3868.56, + "end": 3870.34, + "probability": 0.9914 + }, + { + "start": 3870.42, + "end": 3870.9, + "probability": 0.9165 + }, + { + "start": 3871.28, + "end": 3872.72, + "probability": 0.7699 + }, + { + "start": 3873.28, + "end": 3876.76, + "probability": 0.8362 + }, + { + "start": 3877.1, + "end": 3879.46, + "probability": 0.7949 + }, + { + "start": 3880.44, + "end": 3882.46, + "probability": 0.9959 + }, + { + "start": 3883.0, + "end": 3884.39, + "probability": 0.9678 + }, + { + "start": 3885.08, + "end": 3887.5, + "probability": 0.669 + }, + { + "start": 3888.12, + "end": 3888.94, + "probability": 0.7466 + }, + { + "start": 3889.52, + "end": 3893.06, + "probability": 0.9446 + }, + { + "start": 3894.08, + "end": 3896.98, + "probability": 0.9044 + }, + { + "start": 3898.04, + "end": 3900.02, + "probability": 0.8337 + }, + { + "start": 3900.58, + "end": 3901.52, + "probability": 0.859 + }, + { + "start": 3901.74, + "end": 3902.6, + "probability": 0.834 + }, + { + "start": 3902.68, + "end": 3903.66, + "probability": 0.8888 + }, + { + "start": 3903.8, + "end": 3905.24, + "probability": 0.9412 + }, + { + "start": 3905.44, + "end": 3906.32, + "probability": 0.8997 + }, + { + "start": 3906.44, + "end": 3907.12, + "probability": 0.7633 + }, + { + "start": 3907.16, + "end": 3907.84, + "probability": 0.8057 + }, + { + "start": 3908.66, + "end": 3910.22, + "probability": 0.6434 + }, + { + "start": 3910.46, + "end": 3911.44, + "probability": 0.9883 + }, + { + "start": 3911.58, + "end": 3912.22, + "probability": 0.9316 + }, + { + "start": 3912.24, + "end": 3912.8, + "probability": 0.7443 + }, + { + "start": 3912.84, + "end": 3914.3, + "probability": 0.6668 + }, + { + "start": 3914.44, + "end": 3914.88, + "probability": 0.5281 + }, + { + "start": 3915.02, + "end": 3915.62, + "probability": 0.5147 + }, + { + "start": 3915.92, + "end": 3917.92, + "probability": 0.9321 + }, + { + "start": 3918.22, + "end": 3920.52, + "probability": 0.9834 + }, + { + "start": 3920.76, + "end": 3921.28, + "probability": 0.4911 + }, + { + "start": 3921.7, + "end": 3922.38, + "probability": 0.9203 + }, + { + "start": 3922.92, + "end": 3923.3, + "probability": 0.8264 + }, + { + "start": 3923.96, + "end": 3926.8, + "probability": 0.9363 + }, + { + "start": 3926.86, + "end": 3929.76, + "probability": 0.9861 + }, + { + "start": 3929.96, + "end": 3932.98, + "probability": 0.9181 + }, + { + "start": 3933.06, + "end": 3934.76, + "probability": 0.8714 + }, + { + "start": 3935.28, + "end": 3937.48, + "probability": 0.9638 + }, + { + "start": 3937.92, + "end": 3940.3, + "probability": 0.8657 + }, + { + "start": 3940.34, + "end": 3941.42, + "probability": 0.8268 + }, + { + "start": 3941.98, + "end": 3944.7, + "probability": 0.9511 + }, + { + "start": 3944.8, + "end": 3945.84, + "probability": 0.8237 + }, + { + "start": 3946.0, + "end": 3948.12, + "probability": 0.8393 + }, + { + "start": 3948.52, + "end": 3949.88, + "probability": 0.9767 + }, + { + "start": 3950.58, + "end": 3952.4, + "probability": 0.8788 + }, + { + "start": 3952.46, + "end": 3958.36, + "probability": 0.8854 + }, + { + "start": 3958.82, + "end": 3961.0, + "probability": 0.5637 + }, + { + "start": 3961.12, + "end": 3962.4, + "probability": 0.9819 + }, + { + "start": 3963.04, + "end": 3963.14, + "probability": 0.3003 + }, + { + "start": 3963.82, + "end": 3968.86, + "probability": 0.9572 + }, + { + "start": 3968.86, + "end": 3974.84, + "probability": 0.984 + }, + { + "start": 3975.06, + "end": 3978.54, + "probability": 0.9349 + }, + { + "start": 3978.6, + "end": 3978.76, + "probability": 0.3305 + }, + { + "start": 3978.88, + "end": 3979.7, + "probability": 0.6934 + }, + { + "start": 3979.78, + "end": 3981.26, + "probability": 0.5717 + }, + { + "start": 3983.02, + "end": 3983.62, + "probability": 0.6307 + }, + { + "start": 3983.68, + "end": 3984.7, + "probability": 0.9234 + }, + { + "start": 3984.78, + "end": 3985.34, + "probability": 0.6795 + }, + { + "start": 3985.56, + "end": 3985.84, + "probability": 0.8352 + }, + { + "start": 3985.9, + "end": 3986.42, + "probability": 0.7069 + }, + { + "start": 3986.5, + "end": 3987.27, + "probability": 0.9714 + }, + { + "start": 3987.98, + "end": 3989.76, + "probability": 0.8567 + }, + { + "start": 3990.1, + "end": 3995.16, + "probability": 0.8723 + }, + { + "start": 3995.92, + "end": 3997.0, + "probability": 0.8525 + }, + { + "start": 3997.38, + "end": 3998.72, + "probability": 0.5294 + }, + { + "start": 3998.84, + "end": 3999.06, + "probability": 0.5308 + }, + { + "start": 3999.06, + "end": 4002.0, + "probability": 0.9561 + }, + { + "start": 4002.52, + "end": 4004.62, + "probability": 0.9468 + }, + { + "start": 4005.0, + "end": 4007.16, + "probability": 0.5957 + }, + { + "start": 4007.76, + "end": 4011.28, + "probability": 0.9701 + }, + { + "start": 4011.36, + "end": 4012.18, + "probability": 0.8476 + }, + { + "start": 4012.82, + "end": 4013.06, + "probability": 0.3517 + }, + { + "start": 4013.64, + "end": 4014.58, + "probability": 0.8696 + }, + { + "start": 4015.16, + "end": 4017.92, + "probability": 0.8962 + }, + { + "start": 4017.98, + "end": 4021.8, + "probability": 0.9092 + }, + { + "start": 4022.64, + "end": 4025.3, + "probability": 0.9524 + }, + { + "start": 4025.62, + "end": 4026.3, + "probability": 0.8201 + }, + { + "start": 4026.92, + "end": 4027.52, + "probability": 0.3764 + }, + { + "start": 4028.32, + "end": 4029.54, + "probability": 0.9585 + }, + { + "start": 4030.02, + "end": 4030.76, + "probability": 0.6689 + }, + { + "start": 4030.84, + "end": 4031.54, + "probability": 0.8093 + }, + { + "start": 4031.88, + "end": 4032.75, + "probability": 0.8168 + }, + { + "start": 4036.12, + "end": 4040.7, + "probability": 0.9877 + }, + { + "start": 4042.6, + "end": 4045.6, + "probability": 0.761 + }, + { + "start": 4045.84, + "end": 4047.24, + "probability": 0.9958 + }, + { + "start": 4048.28, + "end": 4049.22, + "probability": 0.8433 + }, + { + "start": 4049.28, + "end": 4049.77, + "probability": 0.7471 + }, + { + "start": 4050.18, + "end": 4053.3, + "probability": 0.9919 + }, + { + "start": 4053.7, + "end": 4055.58, + "probability": 0.8088 + }, + { + "start": 4055.76, + "end": 4056.72, + "probability": 0.9207 + }, + { + "start": 4056.82, + "end": 4058.14, + "probability": 0.858 + }, + { + "start": 4058.74, + "end": 4060.84, + "probability": 0.9761 + }, + { + "start": 4061.42, + "end": 4062.54, + "probability": 0.5219 + }, + { + "start": 4062.7, + "end": 4065.2, + "probability": 0.4474 + }, + { + "start": 4065.32, + "end": 4067.4, + "probability": 0.7266 + }, + { + "start": 4073.76, + "end": 4076.16, + "probability": 0.7034 + }, + { + "start": 4077.36, + "end": 4082.08, + "probability": 0.9755 + }, + { + "start": 4083.18, + "end": 4086.16, + "probability": 0.8108 + }, + { + "start": 4087.76, + "end": 4091.44, + "probability": 0.9728 + }, + { + "start": 4093.2, + "end": 4096.34, + "probability": 0.981 + }, + { + "start": 4098.12, + "end": 4099.74, + "probability": 0.9478 + }, + { + "start": 4099.78, + "end": 4101.5, + "probability": 0.8448 + }, + { + "start": 4101.72, + "end": 4105.72, + "probability": 0.9655 + }, + { + "start": 4106.38, + "end": 4106.86, + "probability": 0.7888 + }, + { + "start": 4107.44, + "end": 4113.08, + "probability": 0.674 + }, + { + "start": 4113.64, + "end": 4114.6, + "probability": 0.8129 + }, + { + "start": 4116.0, + "end": 4118.66, + "probability": 0.7827 + }, + { + "start": 4119.9, + "end": 4120.9, + "probability": 0.5184 + }, + { + "start": 4120.9, + "end": 4124.7, + "probability": 0.8695 + }, + { + "start": 4125.06, + "end": 4126.2, + "probability": 0.8663 + }, + { + "start": 4126.88, + "end": 4129.28, + "probability": 0.9802 + }, + { + "start": 4129.7, + "end": 4131.48, + "probability": 0.699 + }, + { + "start": 4132.04, + "end": 4135.8, + "probability": 0.864 + }, + { + "start": 4137.98, + "end": 4139.08, + "probability": 0.7407 + }, + { + "start": 4139.8, + "end": 4141.08, + "probability": 0.9089 + }, + { + "start": 4141.32, + "end": 4142.7, + "probability": 0.8892 + }, + { + "start": 4142.78, + "end": 4145.76, + "probability": 0.9565 + }, + { + "start": 4146.82, + "end": 4151.3, + "probability": 0.9818 + }, + { + "start": 4151.68, + "end": 4152.55, + "probability": 0.9309 + }, + { + "start": 4152.94, + "end": 4153.86, + "probability": 0.9362 + }, + { + "start": 4154.58, + "end": 4159.18, + "probability": 0.9453 + }, + { + "start": 4159.76, + "end": 4161.09, + "probability": 0.9573 + }, + { + "start": 4161.52, + "end": 4165.04, + "probability": 0.9844 + }, + { + "start": 4165.56, + "end": 4169.0, + "probability": 0.9902 + }, + { + "start": 4169.62, + "end": 4171.42, + "probability": 0.8972 + }, + { + "start": 4171.78, + "end": 4173.48, + "probability": 0.9337 + }, + { + "start": 4173.52, + "end": 4175.12, + "probability": 0.9155 + }, + { + "start": 4175.6, + "end": 4178.7, + "probability": 0.9944 + }, + { + "start": 4179.46, + "end": 4181.72, + "probability": 0.9829 + }, + { + "start": 4182.3, + "end": 4185.92, + "probability": 0.6421 + }, + { + "start": 4186.26, + "end": 4191.86, + "probability": 0.9801 + }, + { + "start": 4192.1, + "end": 4192.8, + "probability": 0.6018 + }, + { + "start": 4193.24, + "end": 4194.88, + "probability": 0.9902 + }, + { + "start": 4195.2, + "end": 4196.88, + "probability": 0.7768 + }, + { + "start": 4197.0, + "end": 4197.76, + "probability": 0.879 + }, + { + "start": 4198.18, + "end": 4200.7, + "probability": 0.9932 + }, + { + "start": 4201.22, + "end": 4204.58, + "probability": 0.94 + }, + { + "start": 4205.42, + "end": 4205.64, + "probability": 0.1136 + }, + { + "start": 4205.64, + "end": 4205.88, + "probability": 0.3778 + }, + { + "start": 4205.88, + "end": 4207.16, + "probability": 0.8628 + }, + { + "start": 4207.24, + "end": 4207.62, + "probability": 0.778 + }, + { + "start": 4207.66, + "end": 4210.8, + "probability": 0.9677 + }, + { + "start": 4211.02, + "end": 4211.44, + "probability": 0.9722 + }, + { + "start": 4212.69, + "end": 4213.32, + "probability": 0.0819 + }, + { + "start": 4213.32, + "end": 4213.32, + "probability": 0.0249 + }, + { + "start": 4213.32, + "end": 4213.32, + "probability": 0.2435 + }, + { + "start": 4213.32, + "end": 4214.03, + "probability": 0.4201 + }, + { + "start": 4214.36, + "end": 4214.86, + "probability": 0.388 + }, + { + "start": 4214.98, + "end": 4218.7, + "probability": 0.824 + }, + { + "start": 4218.96, + "end": 4220.91, + "probability": 0.9402 + }, + { + "start": 4221.64, + "end": 4223.74, + "probability": 0.8838 + }, + { + "start": 4223.94, + "end": 4226.06, + "probability": 0.4396 + }, + { + "start": 4226.1, + "end": 4226.86, + "probability": 0.7877 + }, + { + "start": 4227.26, + "end": 4228.74, + "probability": 0.7144 + }, + { + "start": 4229.2, + "end": 4233.38, + "probability": 0.9476 + }, + { + "start": 4233.48, + "end": 4233.94, + "probability": 0.9279 + }, + { + "start": 4234.3, + "end": 4234.9, + "probability": 0.5048 + }, + { + "start": 4235.1, + "end": 4236.24, + "probability": 0.7608 + }, + { + "start": 4236.58, + "end": 4241.52, + "probability": 0.7935 + }, + { + "start": 4243.32, + "end": 4243.56, + "probability": 0.0024 + }, + { + "start": 4243.56, + "end": 4243.74, + "probability": 0.1868 + }, + { + "start": 4244.68, + "end": 4246.18, + "probability": 0.7347 + }, + { + "start": 4246.92, + "end": 4248.98, + "probability": 0.7316 + }, + { + "start": 4249.92, + "end": 4251.06, + "probability": 0.6094 + }, + { + "start": 4251.66, + "end": 4252.32, + "probability": 0.4399 + }, + { + "start": 4252.44, + "end": 4254.08, + "probability": 0.6567 + }, + { + "start": 4254.42, + "end": 4256.22, + "probability": 0.9609 + }, + { + "start": 4256.36, + "end": 4259.54, + "probability": 0.9814 + }, + { + "start": 4259.74, + "end": 4260.4, + "probability": 0.7275 + }, + { + "start": 4261.24, + "end": 4262.02, + "probability": 0.8421 + }, + { + "start": 4262.66, + "end": 4265.7, + "probability": 0.7091 + }, + { + "start": 4266.06, + "end": 4267.82, + "probability": 0.9629 + }, + { + "start": 4268.76, + "end": 4270.2, + "probability": 0.9813 + }, + { + "start": 4270.26, + "end": 4271.6, + "probability": 0.9524 + }, + { + "start": 4271.66, + "end": 4274.92, + "probability": 0.7957 + }, + { + "start": 4275.48, + "end": 4278.8, + "probability": 0.9404 + }, + { + "start": 4279.58, + "end": 4281.7, + "probability": 0.8106 + }, + { + "start": 4281.84, + "end": 4282.9, + "probability": 0.9713 + }, + { + "start": 4282.98, + "end": 4284.5, + "probability": 0.855 + }, + { + "start": 4284.66, + "end": 4285.3, + "probability": 0.7212 + }, + { + "start": 4286.0, + "end": 4287.0, + "probability": 0.8181 + }, + { + "start": 4287.2, + "end": 4288.08, + "probability": 0.9177 + }, + { + "start": 4289.07, + "end": 4293.28, + "probability": 0.9407 + }, + { + "start": 4293.72, + "end": 4294.2, + "probability": 0.9443 + }, + { + "start": 4294.28, + "end": 4295.08, + "probability": 0.7054 + }, + { + "start": 4295.26, + "end": 4300.1, + "probability": 0.9875 + }, + { + "start": 4300.48, + "end": 4303.2, + "probability": 0.9674 + }, + { + "start": 4303.22, + "end": 4304.28, + "probability": 0.983 + }, + { + "start": 4304.32, + "end": 4305.54, + "probability": 0.9736 + }, + { + "start": 4306.37, + "end": 4308.38, + "probability": 0.9263 + }, + { + "start": 4308.84, + "end": 4309.16, + "probability": 0.2613 + }, + { + "start": 4309.18, + "end": 4311.16, + "probability": 0.8164 + }, + { + "start": 4311.32, + "end": 4312.72, + "probability": 0.9717 + }, + { + "start": 4312.84, + "end": 4314.08, + "probability": 0.7146 + }, + { + "start": 4314.18, + "end": 4314.7, + "probability": 0.8206 + }, + { + "start": 4315.32, + "end": 4316.16, + "probability": 0.9018 + }, + { + "start": 4316.56, + "end": 4317.68, + "probability": 0.7412 + }, + { + "start": 4318.14, + "end": 4319.14, + "probability": 0.9631 + }, + { + "start": 4319.2, + "end": 4319.79, + "probability": 0.8873 + }, + { + "start": 4320.2, + "end": 4322.7, + "probability": 0.9821 + }, + { + "start": 4322.84, + "end": 4323.5, + "probability": 0.98 + }, + { + "start": 4323.58, + "end": 4323.9, + "probability": 0.7018 + }, + { + "start": 4324.78, + "end": 4325.48, + "probability": 0.9775 + }, + { + "start": 4325.48, + "end": 4326.7, + "probability": 0.9819 + }, + { + "start": 4326.74, + "end": 4328.1, + "probability": 0.9209 + }, + { + "start": 4328.18, + "end": 4328.48, + "probability": 0.887 + }, + { + "start": 4328.8, + "end": 4330.06, + "probability": 0.3374 + }, + { + "start": 4330.54, + "end": 4332.84, + "probability": 0.858 + }, + { + "start": 4332.9, + "end": 4334.76, + "probability": 0.9453 + }, + { + "start": 4335.4, + "end": 4340.92, + "probability": 0.4908 + }, + { + "start": 4341.18, + "end": 4344.36, + "probability": 0.8848 + }, + { + "start": 4346.3, + "end": 4350.86, + "probability": 0.3637 + }, + { + "start": 4350.86, + "end": 4351.32, + "probability": 0.0395 + }, + { + "start": 4352.1, + "end": 4353.54, + "probability": 0.513 + }, + { + "start": 4354.18, + "end": 4358.24, + "probability": 0.5588 + }, + { + "start": 4358.5, + "end": 4359.16, + "probability": 0.1093 + }, + { + "start": 4359.4, + "end": 4359.78, + "probability": 0.2857 + }, + { + "start": 4360.04, + "end": 4365.18, + "probability": 0.9011 + }, + { + "start": 4365.18, + "end": 4367.28, + "probability": 0.7222 + }, + { + "start": 4367.62, + "end": 4369.82, + "probability": 0.8884 + }, + { + "start": 4371.46, + "end": 4372.36, + "probability": 0.9098 + }, + { + "start": 4372.5, + "end": 4373.48, + "probability": 0.9895 + }, + { + "start": 4373.88, + "end": 4377.06, + "probability": 0.7964 + }, + { + "start": 4377.34, + "end": 4381.22, + "probability": 0.823 + }, + { + "start": 4381.66, + "end": 4384.8, + "probability": 0.5613 + }, + { + "start": 4385.38, + "end": 4387.96, + "probability": 0.7713 + }, + { + "start": 4388.08, + "end": 4389.34, + "probability": 0.7615 + }, + { + "start": 4389.4, + "end": 4392.6, + "probability": 0.7475 + }, + { + "start": 4393.22, + "end": 4395.18, + "probability": 0.9146 + }, + { + "start": 4395.3, + "end": 4397.52, + "probability": 0.854 + }, + { + "start": 4397.66, + "end": 4398.06, + "probability": 0.843 + }, + { + "start": 4398.24, + "end": 4398.4, + "probability": 0.7837 + }, + { + "start": 4398.54, + "end": 4404.6, + "probability": 0.7067 + }, + { + "start": 4405.12, + "end": 4406.9, + "probability": 0.8571 + }, + { + "start": 4406.96, + "end": 4407.54, + "probability": 0.6869 + }, + { + "start": 4408.08, + "end": 4410.04, + "probability": 0.8318 + }, + { + "start": 4410.1, + "end": 4412.34, + "probability": 0.9791 + }, + { + "start": 4412.54, + "end": 4415.28, + "probability": 0.8823 + }, + { + "start": 4415.66, + "end": 4416.28, + "probability": 0.3519 + }, + { + "start": 4416.66, + "end": 4417.7, + "probability": 0.6807 + }, + { + "start": 4417.72, + "end": 4418.98, + "probability": 0.8927 + }, + { + "start": 4419.76, + "end": 4422.66, + "probability": 0.8235 + }, + { + "start": 4423.38, + "end": 4425.04, + "probability": 0.8774 + }, + { + "start": 4425.4, + "end": 4428.4, + "probability": 0.866 + }, + { + "start": 4428.84, + "end": 4431.1, + "probability": 0.9854 + }, + { + "start": 4431.18, + "end": 4433.16, + "probability": 0.8185 + }, + { + "start": 4433.24, + "end": 4435.34, + "probability": 0.9919 + }, + { + "start": 4435.84, + "end": 4439.42, + "probability": 0.9949 + }, + { + "start": 4439.42, + "end": 4443.12, + "probability": 0.9884 + }, + { + "start": 4443.44, + "end": 4448.0, + "probability": 0.9819 + }, + { + "start": 4448.52, + "end": 4451.02, + "probability": 0.8334 + }, + { + "start": 4451.96, + "end": 4454.78, + "probability": 0.8904 + }, + { + "start": 4454.84, + "end": 4458.08, + "probability": 0.8018 + }, + { + "start": 4458.8, + "end": 4463.82, + "probability": 0.9619 + }, + { + "start": 4463.92, + "end": 4465.86, + "probability": 0.9766 + }, + { + "start": 4467.26, + "end": 4468.18, + "probability": 0.7726 + }, + { + "start": 4471.8, + "end": 4472.82, + "probability": 0.7135 + }, + { + "start": 4474.82, + "end": 4478.12, + "probability": 0.8775 + }, + { + "start": 4479.49, + "end": 4481.42, + "probability": 0.9623 + }, + { + "start": 4482.99, + "end": 4486.28, + "probability": 0.9004 + }, + { + "start": 4486.96, + "end": 4487.06, + "probability": 0.6283 + }, + { + "start": 4487.06, + "end": 4487.34, + "probability": 0.5536 + }, + { + "start": 4487.34, + "end": 4487.48, + "probability": 0.6854 + }, + { + "start": 4487.52, + "end": 4490.8, + "probability": 0.8463 + }, + { + "start": 4491.02, + "end": 4493.14, + "probability": 0.3602 + }, + { + "start": 4493.34, + "end": 4494.0, + "probability": 0.1972 + }, + { + "start": 4494.01, + "end": 4495.68, + "probability": 0.861 + }, + { + "start": 4498.58, + "end": 4500.46, + "probability": 0.8829 + }, + { + "start": 4500.62, + "end": 4502.9, + "probability": 0.7659 + }, + { + "start": 4503.44, + "end": 4506.66, + "probability": 0.9036 + }, + { + "start": 4507.82, + "end": 4511.62, + "probability": 0.9007 + }, + { + "start": 4512.0, + "end": 4513.26, + "probability": 0.9324 + }, + { + "start": 4513.3, + "end": 4515.21, + "probability": 0.9624 + }, + { + "start": 4515.4, + "end": 4519.58, + "probability": 0.8779 + }, + { + "start": 4520.0, + "end": 4523.16, + "probability": 0.7757 + }, + { + "start": 4523.26, + "end": 4524.49, + "probability": 0.8428 + }, + { + "start": 4524.9, + "end": 4526.72, + "probability": 0.9385 + }, + { + "start": 4527.08, + "end": 4533.26, + "probability": 0.9944 + }, + { + "start": 4533.44, + "end": 4534.7, + "probability": 0.6368 + }, + { + "start": 4534.7, + "end": 4535.74, + "probability": 0.709 + }, + { + "start": 4535.78, + "end": 4539.14, + "probability": 0.6478 + }, + { + "start": 4539.42, + "end": 4542.16, + "probability": 0.9941 + }, + { + "start": 4543.23, + "end": 4544.8, + "probability": 0.4082 + }, + { + "start": 4544.82, + "end": 4545.64, + "probability": 0.5625 + }, + { + "start": 4545.72, + "end": 4546.66, + "probability": 0.9951 + }, + { + "start": 4547.1, + "end": 4547.57, + "probability": 0.861 + }, + { + "start": 4548.14, + "end": 4548.64, + "probability": 0.5391 + }, + { + "start": 4548.64, + "end": 4551.74, + "probability": 0.8854 + }, + { + "start": 4551.74, + "end": 4556.86, + "probability": 0.7987 + }, + { + "start": 4557.7, + "end": 4558.65, + "probability": 0.47 + }, + { + "start": 4558.84, + "end": 4558.94, + "probability": 0.1876 + }, + { + "start": 4559.04, + "end": 4559.84, + "probability": 0.4681 + }, + { + "start": 4559.92, + "end": 4561.52, + "probability": 0.9468 + }, + { + "start": 4561.64, + "end": 4564.48, + "probability": 0.9946 + }, + { + "start": 4564.54, + "end": 4565.24, + "probability": 0.9457 + }, + { + "start": 4565.72, + "end": 4568.04, + "probability": 0.864 + }, + { + "start": 4568.9, + "end": 4570.73, + "probability": 0.7765 + }, + { + "start": 4571.74, + "end": 4572.36, + "probability": 0.7142 + }, + { + "start": 4574.96, + "end": 4577.94, + "probability": 0.7616 + }, + { + "start": 4578.02, + "end": 4578.02, + "probability": 0.001 + }, + { + "start": 4578.66, + "end": 4580.3, + "probability": 0.2274 + }, + { + "start": 4580.58, + "end": 4581.08, + "probability": 0.6122 + }, + { + "start": 4581.68, + "end": 4585.76, + "probability": 0.7187 + }, + { + "start": 4585.96, + "end": 4586.7, + "probability": 0.2304 + }, + { + "start": 4586.7, + "end": 4586.84, + "probability": 0.3877 + }, + { + "start": 4587.28, + "end": 4587.88, + "probability": 0.6091 + }, + { + "start": 4588.28, + "end": 4589.58, + "probability": 0.4964 + }, + { + "start": 4589.66, + "end": 4592.26, + "probability": 0.9136 + }, + { + "start": 4592.36, + "end": 4597.22, + "probability": 0.8077 + }, + { + "start": 4597.48, + "end": 4598.44, + "probability": 0.7763 + }, + { + "start": 4598.58, + "end": 4600.9, + "probability": 0.7945 + }, + { + "start": 4603.26, + "end": 4603.86, + "probability": 0.7451 + }, + { + "start": 4604.08, + "end": 4604.36, + "probability": 0.5524 + }, + { + "start": 4604.44, + "end": 4606.08, + "probability": 0.8224 + }, + { + "start": 4606.12, + "end": 4606.9, + "probability": 0.8234 + }, + { + "start": 4606.9, + "end": 4607.5, + "probability": 0.7154 + }, + { + "start": 4607.6, + "end": 4608.2, + "probability": 0.8451 + }, + { + "start": 4608.26, + "end": 4615.0, + "probability": 0.6739 + }, + { + "start": 4615.56, + "end": 4618.02, + "probability": 0.7239 + }, + { + "start": 4618.68, + "end": 4622.44, + "probability": 0.9807 + }, + { + "start": 4622.44, + "end": 4628.49, + "probability": 0.9538 + }, + { + "start": 4629.7, + "end": 4631.86, + "probability": 0.9955 + }, + { + "start": 4631.98, + "end": 4633.43, + "probability": 0.9878 + }, + { + "start": 4633.88, + "end": 4639.74, + "probability": 0.9648 + }, + { + "start": 4640.2, + "end": 4645.36, + "probability": 0.9648 + }, + { + "start": 4645.36, + "end": 4650.16, + "probability": 0.9941 + }, + { + "start": 4650.3, + "end": 4653.32, + "probability": 0.9799 + }, + { + "start": 4653.78, + "end": 4656.94, + "probability": 0.998 + }, + { + "start": 4658.68, + "end": 4664.4, + "probability": 0.961 + }, + { + "start": 4664.76, + "end": 4669.3, + "probability": 0.9357 + }, + { + "start": 4669.3, + "end": 4673.3, + "probability": 0.9968 + }, + { + "start": 4673.88, + "end": 4675.22, + "probability": 0.9785 + }, + { + "start": 4675.38, + "end": 4676.74, + "probability": 0.7784 + }, + { + "start": 4677.06, + "end": 4681.02, + "probability": 0.9913 + }, + { + "start": 4681.02, + "end": 4688.18, + "probability": 0.9883 + }, + { + "start": 4688.52, + "end": 4689.2, + "probability": 0.8623 + }, + { + "start": 4689.28, + "end": 4689.7, + "probability": 0.8216 + }, + { + "start": 4689.78, + "end": 4694.2, + "probability": 0.7647 + }, + { + "start": 4694.98, + "end": 4695.26, + "probability": 0.3067 + }, + { + "start": 4695.32, + "end": 4697.6, + "probability": 0.6695 + }, + { + "start": 4697.74, + "end": 4700.22, + "probability": 0.9731 + }, + { + "start": 4700.26, + "end": 4703.4, + "probability": 0.9962 + }, + { + "start": 4703.74, + "end": 4706.0, + "probability": 0.9782 + }, + { + "start": 4706.1, + "end": 4709.82, + "probability": 0.7981 + }, + { + "start": 4710.58, + "end": 4712.22, + "probability": 0.9166 + }, + { + "start": 4712.66, + "end": 4714.54, + "probability": 0.7218 + }, + { + "start": 4714.84, + "end": 4715.08, + "probability": 0.7663 + }, + { + "start": 4715.6, + "end": 4716.24, + "probability": 0.4881 + }, + { + "start": 4716.3, + "end": 4717.1, + "probability": 0.565 + }, + { + "start": 4717.28, + "end": 4722.8, + "probability": 0.8302 + }, + { + "start": 4724.74, + "end": 4729.08, + "probability": 0.988 + }, + { + "start": 4729.74, + "end": 4733.18, + "probability": 0.9131 + }, + { + "start": 4733.28, + "end": 4733.87, + "probability": 0.913 + }, + { + "start": 4734.26, + "end": 4735.07, + "probability": 0.7842 + }, + { + "start": 4735.18, + "end": 4735.44, + "probability": 0.3943 + }, + { + "start": 4737.68, + "end": 4738.88, + "probability": 0.6669 + }, + { + "start": 4739.24, + "end": 4744.82, + "probability": 0.9154 + }, + { + "start": 4745.5, + "end": 4746.88, + "probability": 0.6362 + }, + { + "start": 4747.16, + "end": 4748.2, + "probability": 0.7916 + }, + { + "start": 4748.24, + "end": 4749.38, + "probability": 0.8533 + }, + { + "start": 4749.88, + "end": 4751.46, + "probability": 0.9435 + }, + { + "start": 4751.72, + "end": 4752.52, + "probability": 0.9839 + }, + { + "start": 4752.7, + "end": 4754.0, + "probability": 0.9348 + }, + { + "start": 4754.38, + "end": 4758.44, + "probability": 0.0545 + }, + { + "start": 4758.44, + "end": 4759.2, + "probability": 0.2144 + }, + { + "start": 4759.78, + "end": 4764.26, + "probability": 0.698 + }, + { + "start": 4765.91, + "end": 4769.97, + "probability": 0.77 + }, + { + "start": 4770.24, + "end": 4770.86, + "probability": 0.8326 + }, + { + "start": 4770.96, + "end": 4771.46, + "probability": 0.783 + }, + { + "start": 4771.54, + "end": 4772.08, + "probability": 0.9339 + }, + { + "start": 4772.12, + "end": 4776.38, + "probability": 0.8589 + }, + { + "start": 4776.94, + "end": 4779.74, + "probability": 0.1193 + }, + { + "start": 4780.36, + "end": 4781.3, + "probability": 0.4763 + }, + { + "start": 4781.4, + "end": 4782.28, + "probability": 0.8199 + }, + { + "start": 4782.86, + "end": 4784.6, + "probability": 0.6651 + }, + { + "start": 4784.76, + "end": 4786.45, + "probability": 0.7756 + }, + { + "start": 4787.16, + "end": 4787.68, + "probability": 0.6053 + }, + { + "start": 4788.64, + "end": 4791.2, + "probability": 0.9538 + }, + { + "start": 4791.26, + "end": 4792.16, + "probability": 0.7076 + }, + { + "start": 4792.26, + "end": 4793.68, + "probability": 0.8306 + }, + { + "start": 4793.8, + "end": 4795.36, + "probability": 0.9292 + }, + { + "start": 4799.52, + "end": 4801.46, + "probability": 0.5201 + }, + { + "start": 4801.91, + "end": 4805.44, + "probability": 0.962 + }, + { + "start": 4805.44, + "end": 4807.88, + "probability": 0.9718 + }, + { + "start": 4811.08, + "end": 4813.46, + "probability": 0.8573 + }, + { + "start": 4813.48, + "end": 4814.48, + "probability": 0.96 + }, + { + "start": 4815.35, + "end": 4818.02, + "probability": 0.8917 + }, + { + "start": 4818.24, + "end": 4819.46, + "probability": 0.9595 + }, + { + "start": 4821.0, + "end": 4822.62, + "probability": 0.9077 + }, + { + "start": 4823.84, + "end": 4827.18, + "probability": 0.9072 + }, + { + "start": 4827.38, + "end": 4832.64, + "probability": 0.9109 + }, + { + "start": 4832.76, + "end": 4835.98, + "probability": 0.9899 + }, + { + "start": 4837.56, + "end": 4839.26, + "probability": 0.9683 + }, + { + "start": 4839.72, + "end": 4840.5, + "probability": 0.4969 + }, + { + "start": 4840.66, + "end": 4843.2, + "probability": 0.9379 + }, + { + "start": 4843.4, + "end": 4846.46, + "probability": 0.5759 + }, + { + "start": 4847.88, + "end": 4850.02, + "probability": 0.9724 + }, + { + "start": 4851.36, + "end": 4852.28, + "probability": 0.9422 + }, + { + "start": 4852.44, + "end": 4856.42, + "probability": 0.9494 + }, + { + "start": 4856.46, + "end": 4860.46, + "probability": 0.9214 + }, + { + "start": 4861.84, + "end": 4863.78, + "probability": 0.7205 + }, + { + "start": 4865.52, + "end": 4872.46, + "probability": 0.9579 + }, + { + "start": 4872.58, + "end": 4874.08, + "probability": 0.9339 + }, + { + "start": 4874.28, + "end": 4878.06, + "probability": 0.9816 + }, + { + "start": 4879.02, + "end": 4880.86, + "probability": 0.9572 + }, + { + "start": 4881.2, + "end": 4886.84, + "probability": 0.9814 + }, + { + "start": 4887.72, + "end": 4891.5, + "probability": 0.7051 + }, + { + "start": 4892.66, + "end": 4894.44, + "probability": 0.9824 + }, + { + "start": 4894.8, + "end": 4897.94, + "probability": 0.9961 + }, + { + "start": 4898.02, + "end": 4898.94, + "probability": 0.2287 + }, + { + "start": 4898.94, + "end": 4899.52, + "probability": 0.7415 + }, + { + "start": 4900.76, + "end": 4901.92, + "probability": 0.9347 + }, + { + "start": 4902.02, + "end": 4902.94, + "probability": 0.9562 + }, + { + "start": 4903.32, + "end": 4904.24, + "probability": 0.8523 + }, + { + "start": 4904.54, + "end": 4906.8, + "probability": 0.9907 + }, + { + "start": 4907.36, + "end": 4908.98, + "probability": 0.9933 + }, + { + "start": 4910.96, + "end": 4912.42, + "probability": 0.4999 + }, + { + "start": 4912.46, + "end": 4913.96, + "probability": 0.9639 + }, + { + "start": 4914.5, + "end": 4916.16, + "probability": 0.9973 + }, + { + "start": 4916.28, + "end": 4918.04, + "probability": 0.9805 + }, + { + "start": 4918.12, + "end": 4919.82, + "probability": 0.926 + }, + { + "start": 4920.06, + "end": 4920.6, + "probability": 0.4768 + }, + { + "start": 4920.66, + "end": 4921.3, + "probability": 0.6688 + }, + { + "start": 4922.04, + "end": 4924.02, + "probability": 0.9932 + }, + { + "start": 4925.02, + "end": 4927.86, + "probability": 0.9937 + }, + { + "start": 4928.66, + "end": 4929.6, + "probability": 0.9916 + }, + { + "start": 4930.34, + "end": 4934.68, + "probability": 0.992 + }, + { + "start": 4935.64, + "end": 4937.06, + "probability": 0.9178 + }, + { + "start": 4937.14, + "end": 4942.58, + "probability": 0.9442 + }, + { + "start": 4943.78, + "end": 4945.1, + "probability": 0.895 + }, + { + "start": 4945.16, + "end": 4946.76, + "probability": 0.9074 + }, + { + "start": 4947.29, + "end": 4949.2, + "probability": 0.9907 + }, + { + "start": 4949.46, + "end": 4951.92, + "probability": 0.9749 + }, + { + "start": 4952.32, + "end": 4953.0, + "probability": 0.6229 + }, + { + "start": 4953.06, + "end": 4953.66, + "probability": 0.9265 + }, + { + "start": 4953.92, + "end": 4956.38, + "probability": 0.8516 + }, + { + "start": 4956.66, + "end": 4957.66, + "probability": 0.4534 + }, + { + "start": 4958.22, + "end": 4960.38, + "probability": 0.6777 + }, + { + "start": 4961.1, + "end": 4962.12, + "probability": 0.2507 + }, + { + "start": 4962.32, + "end": 4963.58, + "probability": 0.476 + }, + { + "start": 4964.14, + "end": 4964.66, + "probability": 0.2203 + }, + { + "start": 4964.76, + "end": 4965.13, + "probability": 0.248 + }, + { + "start": 4967.08, + "end": 4967.18, + "probability": 0.7443 + }, + { + "start": 4968.1, + "end": 4970.36, + "probability": 0.7887 + }, + { + "start": 4970.74, + "end": 4972.0, + "probability": 0.4534 + }, + { + "start": 4972.3, + "end": 4973.22, + "probability": 0.7162 + }, + { + "start": 4973.64, + "end": 4973.86, + "probability": 0.58 + }, + { + "start": 4978.02, + "end": 4978.66, + "probability": 0.4949 + }, + { + "start": 4978.8, + "end": 4981.28, + "probability": 0.5927 + }, + { + "start": 4983.3, + "end": 4984.16, + "probability": 0.6973 + }, + { + "start": 4984.34, + "end": 4985.3, + "probability": 0.6339 + }, + { + "start": 4985.56, + "end": 4985.76, + "probability": 0.6643 + }, + { + "start": 4986.16, + "end": 4988.22, + "probability": 0.982 + }, + { + "start": 4988.86, + "end": 4990.3, + "probability": 0.9871 + }, + { + "start": 4991.54, + "end": 4995.34, + "probability": 0.6188 + }, + { + "start": 4995.5, + "end": 4997.58, + "probability": 0.8809 + }, + { + "start": 4997.74, + "end": 4998.21, + "probability": 0.5898 + }, + { + "start": 4998.98, + "end": 5000.48, + "probability": 0.8096 + }, + { + "start": 5001.14, + "end": 5003.12, + "probability": 0.994 + }, + { + "start": 5004.38, + "end": 5007.34, + "probability": 0.6472 + }, + { + "start": 5008.38, + "end": 5008.88, + "probability": 0.6909 + }, + { + "start": 5009.74, + "end": 5010.68, + "probability": 0.5175 + }, + { + "start": 5011.4, + "end": 5012.56, + "probability": 0.7486 + }, + { + "start": 5012.64, + "end": 5012.86, + "probability": 0.5423 + }, + { + "start": 5013.06, + "end": 5013.36, + "probability": 0.8104 + }, + { + "start": 5013.78, + "end": 5015.8, + "probability": 0.8967 + }, + { + "start": 5016.58, + "end": 5019.36, + "probability": 0.811 + }, + { + "start": 5019.64, + "end": 5021.0, + "probability": 0.6221 + }, + { + "start": 5021.24, + "end": 5023.64, + "probability": 0.4055 + }, + { + "start": 5023.68, + "end": 5023.84, + "probability": 0.5119 + }, + { + "start": 5024.12, + "end": 5025.76, + "probability": 0.7259 + }, + { + "start": 5025.9, + "end": 5026.92, + "probability": 0.5953 + }, + { + "start": 5027.28, + "end": 5028.02, + "probability": 0.8611 + }, + { + "start": 5028.64, + "end": 5029.84, + "probability": 0.8101 + }, + { + "start": 5030.2, + "end": 5032.34, + "probability": 0.8196 + }, + { + "start": 5032.56, + "end": 5035.26, + "probability": 0.8494 + }, + { + "start": 5035.8, + "end": 5037.24, + "probability": 0.5874 + }, + { + "start": 5037.46, + "end": 5037.86, + "probability": 0.5342 + }, + { + "start": 5038.52, + "end": 5040.26, + "probability": 0.735 + }, + { + "start": 5041.94, + "end": 5042.54, + "probability": 0.9928 + }, + { + "start": 5043.82, + "end": 5045.72, + "probability": 0.8629 + }, + { + "start": 5046.26, + "end": 5048.36, + "probability": 0.6564 + }, + { + "start": 5048.94, + "end": 5052.84, + "probability": 0.7525 + }, + { + "start": 5053.32, + "end": 5056.16, + "probability": 0.7485 + }, + { + "start": 5057.19, + "end": 5061.34, + "probability": 0.519 + }, + { + "start": 5061.34, + "end": 5062.36, + "probability": 0.5193 + }, + { + "start": 5062.56, + "end": 5065.28, + "probability": 0.6453 + }, + { + "start": 5065.6, + "end": 5066.32, + "probability": 0.7857 + }, + { + "start": 5066.5, + "end": 5067.64, + "probability": 0.8456 + }, + { + "start": 5067.74, + "end": 5068.52, + "probability": 0.6438 + }, + { + "start": 5068.9, + "end": 5070.74, + "probability": 0.6647 + }, + { + "start": 5070.96, + "end": 5073.04, + "probability": 0.8014 + }, + { + "start": 5076.14, + "end": 5076.56, + "probability": 0.3249 + }, + { + "start": 5076.56, + "end": 5076.56, + "probability": 0.0918 + }, + { + "start": 5076.56, + "end": 5077.7, + "probability": 0.1583 + }, + { + "start": 5078.0, + "end": 5079.44, + "probability": 0.8476 + }, + { + "start": 5080.26, + "end": 5080.3, + "probability": 0.9097 + }, + { + "start": 5080.82, + "end": 5083.76, + "probability": 0.9851 + }, + { + "start": 5084.1, + "end": 5085.11, + "probability": 0.8478 + }, + { + "start": 5085.76, + "end": 5087.32, + "probability": 0.7586 + }, + { + "start": 5088.3, + "end": 5088.56, + "probability": 0.0086 + }, + { + "start": 5088.56, + "end": 5089.1, + "probability": 0.3097 + }, + { + "start": 5089.1, + "end": 5090.33, + "probability": 0.7809 + }, + { + "start": 5091.0, + "end": 5094.06, + "probability": 0.7256 + }, + { + "start": 5094.24, + "end": 5098.92, + "probability": 0.9715 + }, + { + "start": 5098.98, + "end": 5100.95, + "probability": 0.9832 + }, + { + "start": 5101.36, + "end": 5103.02, + "probability": 0.8364 + }, + { + "start": 5103.24, + "end": 5104.22, + "probability": 0.7071 + }, + { + "start": 5104.52, + "end": 5107.26, + "probability": 0.8325 + }, + { + "start": 5107.52, + "end": 5107.96, + "probability": 0.9523 + }, + { + "start": 5108.32, + "end": 5108.81, + "probability": 0.9567 + }, + { + "start": 5110.0, + "end": 5111.36, + "probability": 0.7265 + }, + { + "start": 5112.0, + "end": 5116.18, + "probability": 0.843 + }, + { + "start": 5116.74, + "end": 5118.08, + "probability": 0.7859 + }, + { + "start": 5118.22, + "end": 5120.42, + "probability": 0.7801 + }, + { + "start": 5120.68, + "end": 5121.54, + "probability": 0.9552 + }, + { + "start": 5121.86, + "end": 5124.88, + "probability": 0.9707 + }, + { + "start": 5125.04, + "end": 5125.04, + "probability": 0.1588 + }, + { + "start": 5125.04, + "end": 5125.88, + "probability": 0.5575 + }, + { + "start": 5126.02, + "end": 5130.46, + "probability": 0.8559 + }, + { + "start": 5130.64, + "end": 5130.86, + "probability": 0.7052 + }, + { + "start": 5131.22, + "end": 5131.68, + "probability": 0.695 + }, + { + "start": 5131.9, + "end": 5132.41, + "probability": 0.981 + }, + { + "start": 5132.62, + "end": 5133.2, + "probability": 0.7707 + }, + { + "start": 5133.26, + "end": 5134.85, + "probability": 0.9883 + }, + { + "start": 5135.14, + "end": 5139.26, + "probability": 0.9756 + }, + { + "start": 5139.5, + "end": 5143.22, + "probability": 0.9274 + }, + { + "start": 5143.22, + "end": 5146.88, + "probability": 0.9861 + }, + { + "start": 5147.2, + "end": 5148.34, + "probability": 0.5111 + }, + { + "start": 5151.24, + "end": 5152.06, + "probability": 0.1799 + }, + { + "start": 5152.06, + "end": 5152.58, + "probability": 0.2437 + }, + { + "start": 5161.92, + "end": 5162.66, + "probability": 0.6823 + }, + { + "start": 5162.68, + "end": 5164.7, + "probability": 0.9529 + }, + { + "start": 5165.4, + "end": 5167.84, + "probability": 0.9788 + }, + { + "start": 5167.96, + "end": 5169.36, + "probability": 0.8843 + }, + { + "start": 5171.16, + "end": 5176.72, + "probability": 0.8101 + }, + { + "start": 5176.72, + "end": 5180.58, + "probability": 0.9969 + }, + { + "start": 5181.26, + "end": 5183.1, + "probability": 0.474 + }, + { + "start": 5183.62, + "end": 5185.8, + "probability": 0.9667 + }, + { + "start": 5185.88, + "end": 5186.3, + "probability": 0.6255 + }, + { + "start": 5186.4, + "end": 5187.78, + "probability": 0.7613 + }, + { + "start": 5187.98, + "end": 5188.54, + "probability": 0.5282 + }, + { + "start": 5188.64, + "end": 5189.92, + "probability": 0.9741 + }, + { + "start": 5190.02, + "end": 5191.14, + "probability": 0.845 + }, + { + "start": 5191.78, + "end": 5194.5, + "probability": 0.9355 + }, + { + "start": 5195.12, + "end": 5197.24, + "probability": 0.9936 + }, + { + "start": 5197.48, + "end": 5200.28, + "probability": 0.9474 + }, + { + "start": 5200.68, + "end": 5202.15, + "probability": 0.9896 + }, + { + "start": 5202.3, + "end": 5206.54, + "probability": 0.9674 + }, + { + "start": 5207.0, + "end": 5207.84, + "probability": 0.7715 + }, + { + "start": 5207.88, + "end": 5209.3, + "probability": 0.949 + }, + { + "start": 5209.7, + "end": 5212.88, + "probability": 0.989 + }, + { + "start": 5213.54, + "end": 5213.8, + "probability": 0.7151 + }, + { + "start": 5213.96, + "end": 5215.34, + "probability": 0.809 + }, + { + "start": 5215.46, + "end": 5217.78, + "probability": 0.9412 + }, + { + "start": 5217.82, + "end": 5218.48, + "probability": 0.9365 + }, + { + "start": 5218.76, + "end": 5219.46, + "probability": 0.844 + }, + { + "start": 5219.76, + "end": 5220.4, + "probability": 0.7444 + }, + { + "start": 5220.44, + "end": 5222.7, + "probability": 0.9898 + }, + { + "start": 5222.7, + "end": 5225.98, + "probability": 0.996 + }, + { + "start": 5226.04, + "end": 5227.16, + "probability": 0.9652 + }, + { + "start": 5228.24, + "end": 5228.66, + "probability": 0.9255 + }, + { + "start": 5228.8, + "end": 5234.32, + "probability": 0.8369 + }, + { + "start": 5234.4, + "end": 5234.8, + "probability": 0.6051 + }, + { + "start": 5234.88, + "end": 5236.04, + "probability": 0.7433 + }, + { + "start": 5236.44, + "end": 5237.68, + "probability": 0.9177 + }, + { + "start": 5237.78, + "end": 5239.94, + "probability": 0.9811 + }, + { + "start": 5240.82, + "end": 5245.46, + "probability": 0.6821 + }, + { + "start": 5246.0, + "end": 5247.48, + "probability": 0.9899 + }, + { + "start": 5247.56, + "end": 5249.78, + "probability": 0.9146 + }, + { + "start": 5250.6, + "end": 5251.58, + "probability": 0.7618 + }, + { + "start": 5251.72, + "end": 5256.54, + "probability": 0.9656 + }, + { + "start": 5256.68, + "end": 5259.14, + "probability": 0.9677 + }, + { + "start": 5259.62, + "end": 5260.98, + "probability": 0.9876 + }, + { + "start": 5261.66, + "end": 5262.22, + "probability": 0.527 + }, + { + "start": 5262.34, + "end": 5265.74, + "probability": 0.9989 + }, + { + "start": 5265.82, + "end": 5267.24, + "probability": 0.9976 + }, + { + "start": 5268.3, + "end": 5270.84, + "probability": 0.9344 + }, + { + "start": 5270.9, + "end": 5272.68, + "probability": 0.7545 + }, + { + "start": 5272.78, + "end": 5274.78, + "probability": 0.9779 + }, + { + "start": 5275.38, + "end": 5278.44, + "probability": 0.9657 + }, + { + "start": 5278.56, + "end": 5279.58, + "probability": 0.7792 + }, + { + "start": 5279.98, + "end": 5282.14, + "probability": 0.9751 + }, + { + "start": 5282.26, + "end": 5283.54, + "probability": 0.9889 + }, + { + "start": 5283.98, + "end": 5285.52, + "probability": 0.8093 + }, + { + "start": 5285.8, + "end": 5287.86, + "probability": 0.998 + }, + { + "start": 5288.08, + "end": 5289.28, + "probability": 0.4772 + }, + { + "start": 5289.32, + "end": 5290.08, + "probability": 0.5131 + }, + { + "start": 5290.24, + "end": 5290.7, + "probability": 0.6211 + }, + { + "start": 5291.0, + "end": 5293.48, + "probability": 0.7548 + }, + { + "start": 5293.6, + "end": 5295.34, + "probability": 0.7789 + }, + { + "start": 5295.48, + "end": 5298.72, + "probability": 0.9468 + }, + { + "start": 5298.9, + "end": 5299.8, + "probability": 0.8967 + }, + { + "start": 5300.1, + "end": 5300.62, + "probability": 0.7828 + }, + { + "start": 5301.14, + "end": 5303.36, + "probability": 0.7514 + }, + { + "start": 5303.84, + "end": 5305.46, + "probability": 0.884 + }, + { + "start": 5305.64, + "end": 5306.3, + "probability": 0.5817 + }, + { + "start": 5306.4, + "end": 5307.06, + "probability": 0.4959 + }, + { + "start": 5307.56, + "end": 5309.92, + "probability": 0.8204 + }, + { + "start": 5310.68, + "end": 5315.54, + "probability": 0.661 + }, + { + "start": 5317.18, + "end": 5323.8, + "probability": 0.8147 + }, + { + "start": 5325.08, + "end": 5325.58, + "probability": 0.418 + }, + { + "start": 5325.74, + "end": 5326.64, + "probability": 0.2608 + }, + { + "start": 5327.06, + "end": 5329.78, + "probability": 0.7862 + }, + { + "start": 5329.96, + "end": 5332.52, + "probability": 0.9834 + }, + { + "start": 5332.8, + "end": 5334.02, + "probability": 0.8495 + }, + { + "start": 5334.36, + "end": 5338.02, + "probability": 0.9613 + }, + { + "start": 5338.04, + "end": 5343.86, + "probability": 0.8463 + }, + { + "start": 5344.38, + "end": 5345.1, + "probability": 0.8772 + }, + { + "start": 5345.5, + "end": 5345.88, + "probability": 0.5466 + }, + { + "start": 5345.88, + "end": 5345.88, + "probability": 0.7109 + }, + { + "start": 5345.88, + "end": 5349.24, + "probability": 0.7496 + }, + { + "start": 5349.34, + "end": 5349.74, + "probability": 0.3852 + }, + { + "start": 5349.8, + "end": 5350.62, + "probability": 0.5125 + }, + { + "start": 5350.84, + "end": 5352.7, + "probability": 0.8489 + }, + { + "start": 5352.98, + "end": 5354.34, + "probability": 0.9717 + }, + { + "start": 5355.02, + "end": 5356.88, + "probability": 0.9743 + }, + { + "start": 5357.54, + "end": 5358.0, + "probability": 0.2203 + }, + { + "start": 5359.7, + "end": 5360.54, + "probability": 0.9927 + }, + { + "start": 5360.68, + "end": 5363.38, + "probability": 0.6095 + }, + { + "start": 5364.18, + "end": 5368.44, + "probability": 0.9171 + }, + { + "start": 5368.68, + "end": 5368.96, + "probability": 0.2751 + }, + { + "start": 5369.08, + "end": 5370.26, + "probability": 0.8433 + }, + { + "start": 5371.5, + "end": 5373.34, + "probability": 0.6829 + }, + { + "start": 5376.6, + "end": 5377.12, + "probability": 0.2992 + }, + { + "start": 5377.93, + "end": 5379.4, + "probability": 0.9476 + }, + { + "start": 5379.46, + "end": 5383.26, + "probability": 0.9854 + }, + { + "start": 5383.26, + "end": 5386.86, + "probability": 0.6535 + }, + { + "start": 5386.88, + "end": 5387.95, + "probability": 0.233 + }, + { + "start": 5388.3, + "end": 5390.02, + "probability": 0.4999 + }, + { + "start": 5390.78, + "end": 5392.34, + "probability": 0.8281 + }, + { + "start": 5392.38, + "end": 5393.16, + "probability": 0.6085 + }, + { + "start": 5393.22, + "end": 5393.6, + "probability": 0.8535 + }, + { + "start": 5393.96, + "end": 5394.54, + "probability": 0.7388 + }, + { + "start": 5395.06, + "end": 5395.24, + "probability": 0.6887 + }, + { + "start": 5395.36, + "end": 5395.64, + "probability": 0.8769 + }, + { + "start": 5395.76, + "end": 5396.82, + "probability": 0.9721 + }, + { + "start": 5396.86, + "end": 5398.12, + "probability": 0.968 + }, + { + "start": 5398.42, + "end": 5400.14, + "probability": 0.9225 + }, + { + "start": 5400.42, + "end": 5402.38, + "probability": 0.9717 + }, + { + "start": 5402.44, + "end": 5406.52, + "probability": 0.9746 + }, + { + "start": 5406.64, + "end": 5407.66, + "probability": 0.7224 + }, + { + "start": 5407.78, + "end": 5410.07, + "probability": 0.981 + }, + { + "start": 5410.3, + "end": 5411.24, + "probability": 0.6211 + }, + { + "start": 5411.5, + "end": 5412.06, + "probability": 0.577 + }, + { + "start": 5412.38, + "end": 5414.86, + "probability": 0.9224 + }, + { + "start": 5414.92, + "end": 5416.62, + "probability": 0.7023 + }, + { + "start": 5417.02, + "end": 5418.92, + "probability": 0.8154 + }, + { + "start": 5419.0, + "end": 5420.34, + "probability": 0.9621 + }, + { + "start": 5420.38, + "end": 5421.18, + "probability": 0.8426 + }, + { + "start": 5421.38, + "end": 5422.22, + "probability": 0.7597 + }, + { + "start": 5422.4, + "end": 5424.8, + "probability": 0.9287 + }, + { + "start": 5425.12, + "end": 5426.36, + "probability": 0.8993 + }, + { + "start": 5426.64, + "end": 5427.58, + "probability": 0.9574 + }, + { + "start": 5428.24, + "end": 5430.04, + "probability": 0.8888 + }, + { + "start": 5430.44, + "end": 5432.24, + "probability": 0.9495 + }, + { + "start": 5432.8, + "end": 5433.66, + "probability": 0.8339 + }, + { + "start": 5433.92, + "end": 5438.38, + "probability": 0.9968 + }, + { + "start": 5438.86, + "end": 5439.78, + "probability": 0.9971 + }, + { + "start": 5440.54, + "end": 5444.84, + "probability": 0.9355 + }, + { + "start": 5445.26, + "end": 5447.76, + "probability": 0.9725 + }, + { + "start": 5448.24, + "end": 5450.12, + "probability": 0.7177 + }, + { + "start": 5450.9, + "end": 5453.48, + "probability": 0.7614 + }, + { + "start": 5453.9, + "end": 5454.42, + "probability": 0.4975 + }, + { + "start": 5454.42, + "end": 5454.9, + "probability": 0.742 + }, + { + "start": 5454.98, + "end": 5456.3, + "probability": 0.9282 + }, + { + "start": 5457.02, + "end": 5457.12, + "probability": 0.0902 + }, + { + "start": 5457.12, + "end": 5458.78, + "probability": 0.7385 + }, + { + "start": 5458.94, + "end": 5461.58, + "probability": 0.7803 + }, + { + "start": 5462.22, + "end": 5463.7, + "probability": 0.9833 + }, + { + "start": 5464.42, + "end": 5466.44, + "probability": 0.9128 + }, + { + "start": 5467.3, + "end": 5468.38, + "probability": 0.5195 + }, + { + "start": 5469.08, + "end": 5472.14, + "probability": 0.9467 + }, + { + "start": 5472.14, + "end": 5475.82, + "probability": 0.9893 + }, + { + "start": 5476.5, + "end": 5477.02, + "probability": 0.8043 + }, + { + "start": 5477.16, + "end": 5477.6, + "probability": 0.9614 + }, + { + "start": 5477.72, + "end": 5480.2, + "probability": 0.9712 + }, + { + "start": 5480.58, + "end": 5482.74, + "probability": 0.9709 + }, + { + "start": 5483.34, + "end": 5484.82, + "probability": 0.6482 + }, + { + "start": 5484.94, + "end": 5485.4, + "probability": 0.9204 + }, + { + "start": 5485.44, + "end": 5486.96, + "probability": 0.9762 + }, + { + "start": 5487.72, + "end": 5492.14, + "probability": 0.9336 + }, + { + "start": 5492.6, + "end": 5497.56, + "probability": 0.9887 + }, + { + "start": 5497.98, + "end": 5499.34, + "probability": 0.8787 + }, + { + "start": 5499.48, + "end": 5500.96, + "probability": 0.8995 + }, + { + "start": 5501.4, + "end": 5503.47, + "probability": 0.9499 + }, + { + "start": 5503.9, + "end": 5505.58, + "probability": 0.9686 + }, + { + "start": 5505.96, + "end": 5509.32, + "probability": 0.881 + }, + { + "start": 5509.74, + "end": 5511.72, + "probability": 0.8167 + }, + { + "start": 5514.22, + "end": 5517.28, + "probability": 0.9854 + }, + { + "start": 5517.46, + "end": 5521.88, + "probability": 0.9913 + }, + { + "start": 5522.26, + "end": 5524.7, + "probability": 0.9919 + }, + { + "start": 5524.7, + "end": 5528.66, + "probability": 0.9777 + }, + { + "start": 5529.02, + "end": 5533.72, + "probability": 0.9749 + }, + { + "start": 5534.14, + "end": 5537.92, + "probability": 0.9565 + }, + { + "start": 5537.92, + "end": 5542.56, + "probability": 0.9785 + }, + { + "start": 5542.62, + "end": 5546.22, + "probability": 0.9803 + }, + { + "start": 5547.0, + "end": 5549.38, + "probability": 0.9886 + }, + { + "start": 5549.38, + "end": 5552.38, + "probability": 0.9873 + }, + { + "start": 5552.72, + "end": 5552.94, + "probability": 0.6188 + }, + { + "start": 5553.98, + "end": 5555.4, + "probability": 0.6443 + }, + { + "start": 5555.46, + "end": 5557.38, + "probability": 0.8918 + }, + { + "start": 5557.42, + "end": 5558.8, + "probability": 0.0614 + }, + { + "start": 5562.0, + "end": 5562.0, + "probability": 0.0011 + }, + { + "start": 5563.44, + "end": 5565.1, + "probability": 0.1264 + }, + { + "start": 5565.76, + "end": 5566.08, + "probability": 0.1132 + }, + { + "start": 5566.56, + "end": 5568.46, + "probability": 0.7166 + }, + { + "start": 5568.52, + "end": 5570.7, + "probability": 0.7551 + }, + { + "start": 5571.09, + "end": 5572.38, + "probability": 0.8066 + }, + { + "start": 5572.44, + "end": 5574.81, + "probability": 0.898 + }, + { + "start": 5576.32, + "end": 5577.06, + "probability": 0.5445 + }, + { + "start": 5577.3, + "end": 5580.4, + "probability": 0.84 + }, + { + "start": 5581.64, + "end": 5584.16, + "probability": 0.8918 + }, + { + "start": 5584.9, + "end": 5586.56, + "probability": 0.7502 + }, + { + "start": 5587.12, + "end": 5588.86, + "probability": 0.8804 + }, + { + "start": 5590.44, + "end": 5591.48, + "probability": 0.8425 + }, + { + "start": 5591.96, + "end": 5593.74, + "probability": 0.7735 + }, + { + "start": 5593.94, + "end": 5594.68, + "probability": 0.6626 + }, + { + "start": 5595.48, + "end": 5597.0, + "probability": 0.7535 + }, + { + "start": 5597.38, + "end": 5598.72, + "probability": 0.9405 + }, + { + "start": 5598.78, + "end": 5599.5, + "probability": 0.9192 + }, + { + "start": 5600.32, + "end": 5602.88, + "probability": 0.9784 + }, + { + "start": 5602.94, + "end": 5604.92, + "probability": 0.8325 + }, + { + "start": 5605.24, + "end": 5605.62, + "probability": 0.7355 + }, + { + "start": 5606.02, + "end": 5607.62, + "probability": 0.8499 + }, + { + "start": 5608.16, + "end": 5612.08, + "probability": 0.9434 + }, + { + "start": 5612.82, + "end": 5614.32, + "probability": 0.8316 + }, + { + "start": 5615.5, + "end": 5617.72, + "probability": 0.8304 + }, + { + "start": 5618.54, + "end": 5619.92, + "probability": 0.8296 + }, + { + "start": 5620.88, + "end": 5626.62, + "probability": 0.8735 + }, + { + "start": 5628.2, + "end": 5629.26, + "probability": 0.8511 + }, + { + "start": 5630.26, + "end": 5631.26, + "probability": 0.8765 + }, + { + "start": 5631.66, + "end": 5632.92, + "probability": 0.9388 + }, + { + "start": 5633.04, + "end": 5633.47, + "probability": 0.4467 + }, + { + "start": 5634.36, + "end": 5636.54, + "probability": 0.7854 + }, + { + "start": 5636.68, + "end": 5638.9, + "probability": 0.9508 + }, + { + "start": 5639.16, + "end": 5641.46, + "probability": 0.9707 + }, + { + "start": 5641.5, + "end": 5642.54, + "probability": 0.7575 + }, + { + "start": 5642.82, + "end": 5645.64, + "probability": 0.8915 + }, + { + "start": 5646.72, + "end": 5647.38, + "probability": 0.8925 + }, + { + "start": 5648.1, + "end": 5649.14, + "probability": 0.2842 + }, + { + "start": 5649.2, + "end": 5651.0, + "probability": 0.6046 + }, + { + "start": 5651.1, + "end": 5652.16, + "probability": 0.9162 + }, + { + "start": 5652.32, + "end": 5653.28, + "probability": 0.8416 + }, + { + "start": 5653.64, + "end": 5656.22, + "probability": 0.8488 + }, + { + "start": 5656.46, + "end": 5658.2, + "probability": 0.9058 + }, + { + "start": 5658.36, + "end": 5659.18, + "probability": 0.673 + }, + { + "start": 5659.32, + "end": 5661.04, + "probability": 0.9593 + }, + { + "start": 5661.62, + "end": 5662.84, + "probability": 0.5781 + }, + { + "start": 5663.78, + "end": 5664.52, + "probability": 0.9405 + }, + { + "start": 5664.82, + "end": 5666.52, + "probability": 0.9104 + }, + { + "start": 5666.8, + "end": 5667.88, + "probability": 0.9106 + }, + { + "start": 5668.16, + "end": 5672.38, + "probability": 0.9734 + }, + { + "start": 5672.58, + "end": 5673.08, + "probability": 0.655 + }, + { + "start": 5673.38, + "end": 5675.02, + "probability": 0.695 + }, + { + "start": 5675.1, + "end": 5677.18, + "probability": 0.8608 + }, + { + "start": 5677.22, + "end": 5680.14, + "probability": 0.8994 + }, + { + "start": 5681.3, + "end": 5682.92, + "probability": 0.0237 + }, + { + "start": 5683.44, + "end": 5683.78, + "probability": 0.5856 + }, + { + "start": 5685.13, + "end": 5689.54, + "probability": 0.9917 + }, + { + "start": 5690.52, + "end": 5691.68, + "probability": 0.6227 + }, + { + "start": 5692.28, + "end": 5694.96, + "probability": 0.98 + }, + { + "start": 5696.46, + "end": 5698.88, + "probability": 0.7708 + }, + { + "start": 5698.88, + "end": 5699.68, + "probability": 0.9383 + }, + { + "start": 5700.04, + "end": 5704.54, + "probability": 0.987 + }, + { + "start": 5704.9, + "end": 5706.06, + "probability": 0.1164 + }, + { + "start": 5706.18, + "end": 5708.7, + "probability": 0.9899 + }, + { + "start": 5709.14, + "end": 5712.0, + "probability": 0.8562 + }, + { + "start": 5712.2, + "end": 5713.63, + "probability": 0.9484 + }, + { + "start": 5715.54, + "end": 5715.54, + "probability": 0.0581 + }, + { + "start": 5715.54, + "end": 5716.44, + "probability": 0.3211 + }, + { + "start": 5717.12, + "end": 5719.46, + "probability": 0.5788 + }, + { + "start": 5719.66, + "end": 5722.1, + "probability": 0.6361 + }, + { + "start": 5722.66, + "end": 5727.44, + "probability": 0.8208 + }, + { + "start": 5729.88, + "end": 5730.7, + "probability": 0.5001 + }, + { + "start": 5730.78, + "end": 5731.94, + "probability": 0.724 + }, + { + "start": 5732.06, + "end": 5733.22, + "probability": 0.7792 + }, + { + "start": 5733.42, + "end": 5734.2, + "probability": 0.5992 + }, + { + "start": 5734.5, + "end": 5736.56, + "probability": 0.8988 + }, + { + "start": 5737.38, + "end": 5739.2, + "probability": 0.9438 + }, + { + "start": 5739.92, + "end": 5741.58, + "probability": 0.8364 + }, + { + "start": 5741.8, + "end": 5743.72, + "probability": 0.8897 + }, + { + "start": 5744.26, + "end": 5744.82, + "probability": 0.834 + }, + { + "start": 5745.42, + "end": 5746.7, + "probability": 0.998 + }, + { + "start": 5746.78, + "end": 5749.05, + "probability": 0.9894 + }, + { + "start": 5750.02, + "end": 5751.02, + "probability": 0.9911 + }, + { + "start": 5751.88, + "end": 5753.24, + "probability": 0.8613 + }, + { + "start": 5753.76, + "end": 5758.7, + "probability": 0.9521 + }, + { + "start": 5759.5, + "end": 5761.12, + "probability": 0.9971 + }, + { + "start": 5762.1, + "end": 5768.82, + "probability": 0.9959 + }, + { + "start": 5769.78, + "end": 5770.64, + "probability": 0.4946 + }, + { + "start": 5771.3, + "end": 5774.72, + "probability": 0.9155 + }, + { + "start": 5775.76, + "end": 5777.82, + "probability": 0.9707 + }, + { + "start": 5778.46, + "end": 5783.02, + "probability": 0.9467 + }, + { + "start": 5783.68, + "end": 5786.3, + "probability": 0.7139 + }, + { + "start": 5786.48, + "end": 5787.56, + "probability": 0.8516 + }, + { + "start": 5787.62, + "end": 5788.14, + "probability": 0.8428 + }, + { + "start": 5788.18, + "end": 5788.96, + "probability": 0.6328 + }, + { + "start": 5789.06, + "end": 5790.08, + "probability": 0.8893 + }, + { + "start": 5790.52, + "end": 5790.96, + "probability": 0.9208 + }, + { + "start": 5791.16, + "end": 5792.54, + "probability": 0.9705 + }, + { + "start": 5792.66, + "end": 5793.62, + "probability": 0.9442 + }, + { + "start": 5793.7, + "end": 5795.04, + "probability": 0.9631 + }, + { + "start": 5795.92, + "end": 5798.24, + "probability": 0.9874 + }, + { + "start": 5798.46, + "end": 5801.12, + "probability": 0.9302 + }, + { + "start": 5801.18, + "end": 5804.84, + "probability": 0.9911 + }, + { + "start": 5805.8, + "end": 5806.56, + "probability": 0.9034 + }, + { + "start": 5806.74, + "end": 5807.44, + "probability": 0.9336 + }, + { + "start": 5807.48, + "end": 5812.98, + "probability": 0.9265 + }, + { + "start": 5813.64, + "end": 5816.24, + "probability": 0.9977 + }, + { + "start": 5816.78, + "end": 5820.1, + "probability": 0.9944 + }, + { + "start": 5820.84, + "end": 5823.16, + "probability": 0.8499 + }, + { + "start": 5823.9, + "end": 5825.36, + "probability": 0.853 + }, + { + "start": 5825.42, + "end": 5827.14, + "probability": 0.9938 + }, + { + "start": 5828.02, + "end": 5829.66, + "probability": 0.9597 + }, + { + "start": 5830.4, + "end": 5832.48, + "probability": 0.853 + }, + { + "start": 5832.56, + "end": 5832.78, + "probability": 0.6338 + }, + { + "start": 5833.16, + "end": 5834.24, + "probability": 0.5527 + }, + { + "start": 5834.24, + "end": 5834.89, + "probability": 0.5007 + }, + { + "start": 5835.66, + "end": 5837.1, + "probability": 0.9305 + }, + { + "start": 5838.2, + "end": 5839.6, + "probability": 0.8755 + }, + { + "start": 5840.6, + "end": 5841.62, + "probability": 0.8763 + }, + { + "start": 5843.2, + "end": 5845.14, + "probability": 0.9621 + }, + { + "start": 5846.4, + "end": 5848.7, + "probability": 0.9836 + }, + { + "start": 5848.86, + "end": 5850.72, + "probability": 0.9325 + }, + { + "start": 5851.24, + "end": 5853.62, + "probability": 0.8867 + }, + { + "start": 5854.24, + "end": 5857.08, + "probability": 0.9976 + }, + { + "start": 5858.26, + "end": 5860.68, + "probability": 0.8499 + }, + { + "start": 5861.02, + "end": 5863.64, + "probability": 0.9927 + }, + { + "start": 5864.3, + "end": 5868.56, + "probability": 0.7961 + }, + { + "start": 5868.88, + "end": 5870.21, + "probability": 0.9463 + }, + { + "start": 5870.32, + "end": 5871.14, + "probability": 0.9957 + }, + { + "start": 5871.22, + "end": 5875.12, + "probability": 0.9466 + }, + { + "start": 5875.42, + "end": 5875.82, + "probability": 0.8584 + }, + { + "start": 5876.5, + "end": 5878.16, + "probability": 0.9971 + }, + { + "start": 5878.3, + "end": 5881.96, + "probability": 0.9803 + }, + { + "start": 5882.04, + "end": 5882.5, + "probability": 0.775 + }, + { + "start": 5882.7, + "end": 5883.36, + "probability": 0.9461 + }, + { + "start": 5883.7, + "end": 5884.39, + "probability": 0.9512 + }, + { + "start": 5884.78, + "end": 5886.31, + "probability": 0.8218 + }, + { + "start": 5886.7, + "end": 5887.48, + "probability": 0.7992 + }, + { + "start": 5887.68, + "end": 5888.84, + "probability": 0.8932 + }, + { + "start": 5888.88, + "end": 5890.44, + "probability": 0.9876 + }, + { + "start": 5890.48, + "end": 5890.91, + "probability": 0.5045 + }, + { + "start": 5891.36, + "end": 5893.54, + "probability": 0.7186 + }, + { + "start": 5893.62, + "end": 5894.32, + "probability": 0.8751 + }, + { + "start": 5894.84, + "end": 5895.66, + "probability": 0.7322 + }, + { + "start": 5896.02, + "end": 5896.82, + "probability": 0.9667 + }, + { + "start": 5896.94, + "end": 5900.08, + "probability": 0.8842 + }, + { + "start": 5900.58, + "end": 5903.26, + "probability": 0.8948 + }, + { + "start": 5903.62, + "end": 5905.04, + "probability": 0.9741 + }, + { + "start": 5905.68, + "end": 5907.54, + "probability": 0.7408 + }, + { + "start": 5907.74, + "end": 5910.3, + "probability": 0.8944 + }, + { + "start": 5910.66, + "end": 5911.32, + "probability": 0.4584 + }, + { + "start": 5911.36, + "end": 5914.28, + "probability": 0.9329 + }, + { + "start": 5915.5, + "end": 5917.26, + "probability": 0.7915 + }, + { + "start": 5917.66, + "end": 5921.38, + "probability": 0.753 + }, + { + "start": 5921.81, + "end": 5923.82, + "probability": 0.8312 + }, + { + "start": 5923.98, + "end": 5924.54, + "probability": 0.8636 + }, + { + "start": 5924.7, + "end": 5925.88, + "probability": 0.8811 + }, + { + "start": 5925.96, + "end": 5929.86, + "probability": 0.9465 + }, + { + "start": 5930.2, + "end": 5931.0, + "probability": 0.2797 + }, + { + "start": 5931.08, + "end": 5932.74, + "probability": 0.7517 + }, + { + "start": 5933.18, + "end": 5934.04, + "probability": 0.8667 + }, + { + "start": 5934.24, + "end": 5937.34, + "probability": 0.9884 + }, + { + "start": 5937.8, + "end": 5939.46, + "probability": 0.8494 + }, + { + "start": 5939.76, + "end": 5941.06, + "probability": 0.3264 + }, + { + "start": 5941.4, + "end": 5941.96, + "probability": 0.7449 + }, + { + "start": 5942.02, + "end": 5942.4, + "probability": 0.4236 + }, + { + "start": 5942.54, + "end": 5943.6, + "probability": 0.5115 + }, + { + "start": 5943.82, + "end": 5945.3, + "probability": 0.7734 + }, + { + "start": 5945.92, + "end": 5951.1, + "probability": 0.5813 + }, + { + "start": 5951.86, + "end": 5952.3, + "probability": 0.8 + }, + { + "start": 5952.88, + "end": 5956.3, + "probability": 0.9442 + }, + { + "start": 5956.98, + "end": 5958.8, + "probability": 0.9075 + }, + { + "start": 5958.94, + "end": 5959.82, + "probability": 0.9127 + }, + { + "start": 5959.94, + "end": 5961.16, + "probability": 0.9721 + }, + { + "start": 5961.32, + "end": 5962.88, + "probability": 0.8501 + }, + { + "start": 5962.92, + "end": 5963.96, + "probability": 0.7588 + }, + { + "start": 5963.98, + "end": 5965.54, + "probability": 0.6665 + }, + { + "start": 5965.58, + "end": 5967.14, + "probability": 0.6626 + }, + { + "start": 5967.26, + "end": 5970.52, + "probability": 0.9901 + }, + { + "start": 5971.12, + "end": 5971.74, + "probability": 0.7761 + }, + { + "start": 5972.1, + "end": 5972.74, + "probability": 0.6619 + }, + { + "start": 5972.76, + "end": 5973.51, + "probability": 0.9692 + }, + { + "start": 5973.86, + "end": 5974.02, + "probability": 0.6885 + }, + { + "start": 5974.32, + "end": 5974.7, + "probability": 0.8778 + }, + { + "start": 5974.76, + "end": 5974.98, + "probability": 0.4706 + }, + { + "start": 5975.26, + "end": 5975.84, + "probability": 0.6966 + }, + { + "start": 5976.18, + "end": 5977.5, + "probability": 0.7528 + }, + { + "start": 5978.54, + "end": 5979.48, + "probability": 0.5203 + }, + { + "start": 5979.56, + "end": 5982.42, + "probability": 0.5717 + }, + { + "start": 5989.86, + "end": 5990.82, + "probability": 0.6799 + }, + { + "start": 5990.96, + "end": 5995.8, + "probability": 0.939 + }, + { + "start": 5996.96, + "end": 6001.04, + "probability": 0.7752 + }, + { + "start": 6001.6, + "end": 6003.72, + "probability": 0.7201 + }, + { + "start": 6004.24, + "end": 6006.46, + "probability": 0.8137 + }, + { + "start": 6007.04, + "end": 6010.52, + "probability": 0.9631 + }, + { + "start": 6010.62, + "end": 6012.48, + "probability": 0.9684 + }, + { + "start": 6012.54, + "end": 6013.06, + "probability": 0.5091 + }, + { + "start": 6013.22, + "end": 6013.92, + "probability": 0.7351 + }, + { + "start": 6014.62, + "end": 6016.08, + "probability": 0.942 + }, + { + "start": 6016.14, + "end": 6016.72, + "probability": 0.5742 + }, + { + "start": 6016.9, + "end": 6018.06, + "probability": 0.9124 + }, + { + "start": 6018.56, + "end": 6021.6, + "probability": 0.9885 + }, + { + "start": 6021.6, + "end": 6026.54, + "probability": 0.8912 + }, + { + "start": 6027.1, + "end": 6028.44, + "probability": 0.6461 + }, + { + "start": 6029.4, + "end": 6031.66, + "probability": 0.8738 + }, + { + "start": 6032.34, + "end": 6034.08, + "probability": 0.8625 + }, + { + "start": 6034.22, + "end": 6038.1, + "probability": 0.8882 + }, + { + "start": 6038.64, + "end": 6040.56, + "probability": 0.8742 + }, + { + "start": 6041.59, + "end": 6046.68, + "probability": 0.6454 + }, + { + "start": 6046.92, + "end": 6053.1, + "probability": 0.7891 + }, + { + "start": 6053.76, + "end": 6059.72, + "probability": 0.8446 + }, + { + "start": 6060.08, + "end": 6062.54, + "probability": 0.7564 + }, + { + "start": 6063.42, + "end": 6065.42, + "probability": 0.8944 + }, + { + "start": 6065.76, + "end": 6070.84, + "probability": 0.9834 + }, + { + "start": 6071.24, + "end": 6075.36, + "probability": 0.8793 + }, + { + "start": 6075.86, + "end": 6077.11, + "probability": 0.8268 + }, + { + "start": 6077.72, + "end": 6081.8, + "probability": 0.9358 + }, + { + "start": 6081.86, + "end": 6085.18, + "probability": 0.9934 + }, + { + "start": 6085.8, + "end": 6089.08, + "probability": 0.9552 + }, + { + "start": 6089.72, + "end": 6090.64, + "probability": 0.5554 + }, + { + "start": 6091.06, + "end": 6091.72, + "probability": 0.4904 + }, + { + "start": 6092.18, + "end": 6095.82, + "probability": 0.9635 + }, + { + "start": 6096.3, + "end": 6099.44, + "probability": 0.9525 + }, + { + "start": 6099.98, + "end": 6105.76, + "probability": 0.9917 + }, + { + "start": 6106.36, + "end": 6106.78, + "probability": 0.6852 + }, + { + "start": 6106.88, + "end": 6112.28, + "probability": 0.9813 + }, + { + "start": 6112.28, + "end": 6116.4, + "probability": 0.998 + }, + { + "start": 6116.64, + "end": 6117.74, + "probability": 0.9401 + }, + { + "start": 6117.92, + "end": 6117.92, + "probability": 0.2918 + }, + { + "start": 6118.0, + "end": 6118.74, + "probability": 0.8842 + }, + { + "start": 6120.12, + "end": 6120.96, + "probability": 0.7447 + }, + { + "start": 6124.82, + "end": 6125.32, + "probability": 0.7213 + }, + { + "start": 6126.78, + "end": 6132.1, + "probability": 0.9478 + }, + { + "start": 6133.12, + "end": 6134.94, + "probability": 0.9807 + }, + { + "start": 6135.86, + "end": 6136.66, + "probability": 0.8037 + }, + { + "start": 6137.32, + "end": 6139.42, + "probability": 0.9961 + }, + { + "start": 6140.1, + "end": 6140.89, + "probability": 0.9728 + }, + { + "start": 6141.48, + "end": 6143.32, + "probability": 0.9575 + }, + { + "start": 6144.04, + "end": 6146.12, + "probability": 0.7804 + }, + { + "start": 6146.58, + "end": 6146.74, + "probability": 0.5627 + }, + { + "start": 6147.12, + "end": 6147.22, + "probability": 0.0638 + }, + { + "start": 6147.68, + "end": 6149.14, + "probability": 0.746 + }, + { + "start": 6149.68, + "end": 6151.32, + "probability": 0.871 + }, + { + "start": 6152.02, + "end": 6152.98, + "probability": 0.986 + }, + { + "start": 6153.8, + "end": 6155.0, + "probability": 0.9664 + }, + { + "start": 6155.42, + "end": 6157.33, + "probability": 0.7961 + }, + { + "start": 6157.44, + "end": 6158.91, + "probability": 0.3352 + }, + { + "start": 6159.44, + "end": 6159.85, + "probability": 0.5197 + }, + { + "start": 6160.68, + "end": 6161.82, + "probability": 0.7834 + }, + { + "start": 6162.96, + "end": 6163.54, + "probability": 0.718 + }, + { + "start": 6163.74, + "end": 6164.74, + "probability": 0.9771 + }, + { + "start": 6165.44, + "end": 6165.98, + "probability": 0.9475 + }, + { + "start": 6166.52, + "end": 6167.64, + "probability": 0.9586 + }, + { + "start": 6168.24, + "end": 6169.92, + "probability": 0.8669 + }, + { + "start": 6170.72, + "end": 6172.7, + "probability": 0.7396 + }, + { + "start": 6172.74, + "end": 6173.75, + "probability": 0.7388 + }, + { + "start": 6175.02, + "end": 6176.3, + "probability": 0.772 + }, + { + "start": 6176.34, + "end": 6178.64, + "probability": 0.9966 + }, + { + "start": 6179.3, + "end": 6181.44, + "probability": 0.9702 + }, + { + "start": 6181.9, + "end": 6187.54, + "probability": 0.94 + }, + { + "start": 6187.7, + "end": 6191.12, + "probability": 0.9646 + }, + { + "start": 6191.56, + "end": 6192.62, + "probability": 0.3909 + }, + { + "start": 6193.36, + "end": 6194.56, + "probability": 0.9495 + }, + { + "start": 6194.6, + "end": 6195.7, + "probability": 0.9012 + }, + { + "start": 6195.8, + "end": 6196.91, + "probability": 0.7545 + }, + { + "start": 6197.42, + "end": 6199.7, + "probability": 0.9683 + }, + { + "start": 6200.12, + "end": 6201.24, + "probability": 0.9064 + }, + { + "start": 6201.34, + "end": 6204.6, + "probability": 0.9954 + }, + { + "start": 6204.74, + "end": 6205.88, + "probability": 0.6376 + }, + { + "start": 6205.96, + "end": 6206.76, + "probability": 0.9604 + }, + { + "start": 6206.92, + "end": 6207.94, + "probability": 0.5284 + }, + { + "start": 6208.02, + "end": 6209.78, + "probability": 0.9482 + }, + { + "start": 6210.86, + "end": 6211.9, + "probability": 0.9594 + }, + { + "start": 6212.02, + "end": 6212.88, + "probability": 0.9561 + }, + { + "start": 6212.98, + "end": 6214.68, + "probability": 0.8761 + }, + { + "start": 6214.86, + "end": 6217.64, + "probability": 0.9698 + }, + { + "start": 6221.1, + "end": 6222.38, + "probability": 0.5842 + }, + { + "start": 6223.38, + "end": 6223.96, + "probability": 0.7432 + }, + { + "start": 6224.14, + "end": 6227.6, + "probability": 0.8569 + }, + { + "start": 6227.6, + "end": 6233.46, + "probability": 0.996 + }, + { + "start": 6234.16, + "end": 6235.52, + "probability": 0.8537 + }, + { + "start": 6236.42, + "end": 6240.4, + "probability": 0.959 + }, + { + "start": 6240.4, + "end": 6244.84, + "probability": 0.9414 + }, + { + "start": 6246.3, + "end": 6247.62, + "probability": 0.6145 + }, + { + "start": 6247.8, + "end": 6249.72, + "probability": 0.994 + }, + { + "start": 6249.9, + "end": 6252.82, + "probability": 0.8834 + }, + { + "start": 6253.38, + "end": 6254.64, + "probability": 0.8799 + }, + { + "start": 6255.2, + "end": 6258.0, + "probability": 0.9207 + }, + { + "start": 6258.52, + "end": 6259.82, + "probability": 0.9134 + }, + { + "start": 6260.76, + "end": 6263.18, + "probability": 0.7531 + }, + { + "start": 6263.36, + "end": 6266.56, + "probability": 0.9476 + }, + { + "start": 6267.18, + "end": 6268.06, + "probability": 0.837 + }, + { + "start": 6268.14, + "end": 6269.16, + "probability": 0.247 + }, + { + "start": 6269.22, + "end": 6269.62, + "probability": 0.5954 + }, + { + "start": 6269.74, + "end": 6273.06, + "probability": 0.7465 + }, + { + "start": 6273.3, + "end": 6274.5, + "probability": 0.687 + }, + { + "start": 6274.6, + "end": 6275.72, + "probability": 0.7437 + }, + { + "start": 6276.34, + "end": 6278.42, + "probability": 0.889 + }, + { + "start": 6278.94, + "end": 6279.86, + "probability": 0.8147 + }, + { + "start": 6280.12, + "end": 6280.74, + "probability": 0.933 + }, + { + "start": 6280.9, + "end": 6281.68, + "probability": 0.9047 + }, + { + "start": 6281.76, + "end": 6282.32, + "probability": 0.9644 + }, + { + "start": 6282.38, + "end": 6282.86, + "probability": 0.9791 + }, + { + "start": 6283.12, + "end": 6283.54, + "probability": 0.979 + }, + { + "start": 6283.84, + "end": 6284.82, + "probability": 0.7871 + }, + { + "start": 6285.2, + "end": 6288.5, + "probability": 0.9869 + }, + { + "start": 6288.5, + "end": 6291.62, + "probability": 0.9593 + }, + { + "start": 6291.98, + "end": 6294.16, + "probability": 0.8166 + }, + { + "start": 6294.16, + "end": 6296.4, + "probability": 0.9932 + }, + { + "start": 6296.48, + "end": 6297.26, + "probability": 0.6216 + }, + { + "start": 6297.62, + "end": 6298.5, + "probability": 0.9551 + }, + { + "start": 6298.6, + "end": 6299.82, + "probability": 0.979 + }, + { + "start": 6300.28, + "end": 6304.26, + "probability": 0.9712 + }, + { + "start": 6304.44, + "end": 6305.64, + "probability": 0.4942 + }, + { + "start": 6305.84, + "end": 6306.6, + "probability": 0.6316 + }, + { + "start": 6309.42, + "end": 6311.44, + "probability": 0.8399 + }, + { + "start": 6312.44, + "end": 6313.64, + "probability": 0.9946 + }, + { + "start": 6315.14, + "end": 6316.48, + "probability": 0.9781 + }, + { + "start": 6316.58, + "end": 6318.5, + "probability": 0.8165 + }, + { + "start": 6319.38, + "end": 6321.0, + "probability": 0.9571 + }, + { + "start": 6321.12, + "end": 6323.8, + "probability": 0.9589 + }, + { + "start": 6324.58, + "end": 6326.34, + "probability": 0.4635 + }, + { + "start": 6326.5, + "end": 6327.4, + "probability": 0.7491 + }, + { + "start": 6327.56, + "end": 6330.04, + "probability": 0.8486 + }, + { + "start": 6330.5, + "end": 6335.68, + "probability": 0.9385 + }, + { + "start": 6336.38, + "end": 6338.78, + "probability": 0.8728 + }, + { + "start": 6338.92, + "end": 6339.82, + "probability": 0.9731 + }, + { + "start": 6341.24, + "end": 6345.78, + "probability": 0.7835 + }, + { + "start": 6346.96, + "end": 6348.08, + "probability": 0.4002 + }, + { + "start": 6348.37, + "end": 6351.02, + "probability": 0.6008 + }, + { + "start": 6351.08, + "end": 6356.23, + "probability": 0.9928 + }, + { + "start": 6356.62, + "end": 6360.28, + "probability": 0.9975 + }, + { + "start": 6363.72, + "end": 6364.46, + "probability": 0.8508 + }, + { + "start": 6364.62, + "end": 6365.42, + "probability": 0.8669 + }, + { + "start": 6365.56, + "end": 6366.86, + "probability": 0.673 + }, + { + "start": 6366.92, + "end": 6368.34, + "probability": 0.7384 + }, + { + "start": 6369.72, + "end": 6373.44, + "probability": 0.863 + }, + { + "start": 6373.44, + "end": 6375.74, + "probability": 0.9892 + }, + { + "start": 6376.38, + "end": 6377.32, + "probability": 0.9819 + }, + { + "start": 6377.4, + "end": 6378.66, + "probability": 0.9882 + }, + { + "start": 6378.82, + "end": 6380.26, + "probability": 0.8987 + }, + { + "start": 6380.36, + "end": 6384.26, + "probability": 0.9966 + }, + { + "start": 6385.16, + "end": 6387.6, + "probability": 0.7989 + }, + { + "start": 6387.74, + "end": 6388.68, + "probability": 0.864 + }, + { + "start": 6391.02, + "end": 6394.52, + "probability": 0.9724 + }, + { + "start": 6394.52, + "end": 6397.06, + "probability": 0.861 + }, + { + "start": 6397.62, + "end": 6399.4, + "probability": 0.5707 + }, + { + "start": 6400.12, + "end": 6402.72, + "probability": 0.5517 + }, + { + "start": 6403.81, + "end": 6404.22, + "probability": 0.1044 + }, + { + "start": 6404.22, + "end": 6407.08, + "probability": 0.9744 + }, + { + "start": 6407.08, + "end": 6408.84, + "probability": 0.7502 + }, + { + "start": 6408.9, + "end": 6410.56, + "probability": 0.797 + }, + { + "start": 6411.12, + "end": 6414.98, + "probability": 0.8986 + }, + { + "start": 6415.22, + "end": 6415.36, + "probability": 0.5908 + }, + { + "start": 6415.86, + "end": 6417.92, + "probability": 0.7573 + }, + { + "start": 6418.38, + "end": 6420.82, + "probability": 0.7711 + }, + { + "start": 6420.9, + "end": 6427.14, + "probability": 0.9545 + }, + { + "start": 6427.14, + "end": 6431.44, + "probability": 0.7244 + }, + { + "start": 6431.44, + "end": 6434.3, + "probability": 0.9867 + }, + { + "start": 6434.32, + "end": 6436.96, + "probability": 0.9971 + }, + { + "start": 6437.22, + "end": 6438.72, + "probability": 0.6799 + }, + { + "start": 6439.22, + "end": 6442.22, + "probability": 0.8234 + }, + { + "start": 6443.06, + "end": 6445.5, + "probability": 0.9816 + }, + { + "start": 6445.84, + "end": 6448.26, + "probability": 0.6969 + }, + { + "start": 6448.58, + "end": 6451.22, + "probability": 0.9952 + }, + { + "start": 6451.36, + "end": 6452.78, + "probability": 0.7335 + }, + { + "start": 6452.94, + "end": 6454.29, + "probability": 0.7825 + }, + { + "start": 6454.76, + "end": 6458.16, + "probability": 0.9191 + }, + { + "start": 6458.36, + "end": 6459.78, + "probability": 0.9297 + }, + { + "start": 6460.23, + "end": 6462.0, + "probability": 0.7904 + }, + { + "start": 6462.2, + "end": 6464.68, + "probability": 0.6332 + }, + { + "start": 6464.76, + "end": 6466.62, + "probability": 0.9873 + }, + { + "start": 6467.0, + "end": 6468.16, + "probability": 0.9834 + }, + { + "start": 6469.08, + "end": 6469.08, + "probability": 0.4823 + }, + { + "start": 6469.08, + "end": 6469.9, + "probability": 0.486 + }, + { + "start": 6469.94, + "end": 6469.94, + "probability": 0.1238 + }, + { + "start": 6470.04, + "end": 6470.68, + "probability": 0.5712 + }, + { + "start": 6470.82, + "end": 6472.84, + "probability": 0.8748 + }, + { + "start": 6474.3, + "end": 6475.96, + "probability": 0.5974 + }, + { + "start": 6481.58, + "end": 6482.5, + "probability": 0.7611 + }, + { + "start": 6482.66, + "end": 6483.2, + "probability": 0.8803 + }, + { + "start": 6483.26, + "end": 6487.92, + "probability": 0.9933 + }, + { + "start": 6489.16, + "end": 6490.14, + "probability": 0.8142 + }, + { + "start": 6490.72, + "end": 6491.66, + "probability": 0.7344 + }, + { + "start": 6491.68, + "end": 6493.94, + "probability": 0.9943 + }, + { + "start": 6494.9, + "end": 6496.1, + "probability": 0.8124 + }, + { + "start": 6496.4, + "end": 6497.56, + "probability": 0.791 + }, + { + "start": 6498.12, + "end": 6498.32, + "probability": 0.0613 + }, + { + "start": 6498.32, + "end": 6501.74, + "probability": 0.9292 + }, + { + "start": 6501.8, + "end": 6504.0, + "probability": 0.8386 + }, + { + "start": 6504.72, + "end": 6506.6, + "probability": 0.7375 + }, + { + "start": 6506.64, + "end": 6507.04, + "probability": 0.8191 + }, + { + "start": 6507.12, + "end": 6509.54, + "probability": 0.0006 + }, + { + "start": 6509.82, + "end": 6510.62, + "probability": 0.5773 + }, + { + "start": 6511.38, + "end": 6511.54, + "probability": 0.5342 + }, + { + "start": 6511.54, + "end": 6515.0, + "probability": 0.7551 + }, + { + "start": 6516.12, + "end": 6520.18, + "probability": 0.9705 + }, + { + "start": 6520.72, + "end": 6522.46, + "probability": 0.7973 + }, + { + "start": 6523.22, + "end": 6525.04, + "probability": 0.9861 + }, + { + "start": 6525.58, + "end": 6529.46, + "probability": 0.984 + }, + { + "start": 6530.04, + "end": 6533.06, + "probability": 0.7371 + }, + { + "start": 6533.6, + "end": 6535.22, + "probability": 0.8505 + }, + { + "start": 6535.42, + "end": 6537.04, + "probability": 0.9704 + }, + { + "start": 6537.36, + "end": 6537.76, + "probability": 0.5105 + }, + { + "start": 6537.96, + "end": 6538.44, + "probability": 0.714 + }, + { + "start": 6538.52, + "end": 6541.28, + "probability": 0.9819 + }, + { + "start": 6541.58, + "end": 6543.56, + "probability": 0.9883 + }, + { + "start": 6543.56, + "end": 6547.96, + "probability": 0.9634 + }, + { + "start": 6548.3, + "end": 6549.24, + "probability": 0.917 + }, + { + "start": 6549.86, + "end": 6554.04, + "probability": 0.9838 + }, + { + "start": 6554.68, + "end": 6557.52, + "probability": 0.9012 + }, + { + "start": 6558.18, + "end": 6560.9, + "probability": 0.8823 + }, + { + "start": 6561.92, + "end": 6562.7, + "probability": 0.8312 + }, + { + "start": 6562.82, + "end": 6566.22, + "probability": 0.9412 + }, + { + "start": 6566.68, + "end": 6567.32, + "probability": 0.6002 + }, + { + "start": 6567.58, + "end": 6569.12, + "probability": 0.8135 + }, + { + "start": 6569.66, + "end": 6571.28, + "probability": 0.9228 + }, + { + "start": 6571.64, + "end": 6576.9, + "probability": 0.9068 + }, + { + "start": 6577.3, + "end": 6578.76, + "probability": 0.8681 + }, + { + "start": 6579.22, + "end": 6580.04, + "probability": 0.223 + }, + { + "start": 6580.36, + "end": 6581.2, + "probability": 0.5388 + }, + { + "start": 6581.44, + "end": 6583.06, + "probability": 0.8595 + }, + { + "start": 6585.54, + "end": 6586.04, + "probability": 0.7277 + }, + { + "start": 6586.66, + "end": 6590.76, + "probability": 0.8035 + }, + { + "start": 6591.38, + "end": 6592.96, + "probability": 0.7996 + }, + { + "start": 6593.9, + "end": 6596.24, + "probability": 0.9653 + }, + { + "start": 6597.52, + "end": 6603.11, + "probability": 0.8633 + }, + { + "start": 6603.72, + "end": 6604.72, + "probability": 0.9246 + }, + { + "start": 6605.0, + "end": 6605.52, + "probability": 0.3086 + }, + { + "start": 6605.82, + "end": 6606.8, + "probability": 0.5315 + }, + { + "start": 6606.9, + "end": 6608.54, + "probability": 0.9951 + }, + { + "start": 6609.26, + "end": 6610.32, + "probability": 0.9453 + }, + { + "start": 6611.28, + "end": 6614.96, + "probability": 0.8829 + }, + { + "start": 6616.38, + "end": 6621.64, + "probability": 0.9667 + }, + { + "start": 6623.1, + "end": 6624.32, + "probability": 0.886 + }, + { + "start": 6624.38, + "end": 6627.1, + "probability": 0.8038 + }, + { + "start": 6627.52, + "end": 6628.88, + "probability": 0.7055 + }, + { + "start": 6629.0, + "end": 6629.18, + "probability": 0.8783 + }, + { + "start": 6629.28, + "end": 6631.64, + "probability": 0.9131 + }, + { + "start": 6632.3, + "end": 6634.08, + "probability": 0.6716 + }, + { + "start": 6634.22, + "end": 6635.34, + "probability": 0.9814 + }, + { + "start": 6635.42, + "end": 6636.08, + "probability": 0.2461 + }, + { + "start": 6636.08, + "end": 6637.34, + "probability": 0.1716 + }, + { + "start": 6637.46, + "end": 6641.14, + "probability": 0.6637 + }, + { + "start": 6641.8, + "end": 6642.96, + "probability": 0.9415 + }, + { + "start": 6643.06, + "end": 6645.18, + "probability": 0.4235 + }, + { + "start": 6646.54, + "end": 6648.76, + "probability": 0.3835 + }, + { + "start": 6648.76, + "end": 6650.42, + "probability": 0.5768 + }, + { + "start": 6650.54, + "end": 6652.86, + "probability": 0.8043 + }, + { + "start": 6653.42, + "end": 6655.12, + "probability": 0.7604 + }, + { + "start": 6655.58, + "end": 6658.5, + "probability": 0.8493 + }, + { + "start": 6659.04, + "end": 6661.52, + "probability": 0.7199 + }, + { + "start": 6662.41, + "end": 6664.64, + "probability": 0.8092 + }, + { + "start": 6665.02, + "end": 6669.86, + "probability": 0.9735 + }, + { + "start": 6670.86, + "end": 6672.02, + "probability": 0.6731 + }, + { + "start": 6672.52, + "end": 6675.64, + "probability": 0.8205 + }, + { + "start": 6676.06, + "end": 6680.42, + "probability": 0.9961 + }, + { + "start": 6680.6, + "end": 6681.3, + "probability": 0.6267 + }, + { + "start": 6681.66, + "end": 6683.82, + "probability": 0.8219 + }, + { + "start": 6684.0, + "end": 6684.56, + "probability": 0.2568 + }, + { + "start": 6684.79, + "end": 6686.66, + "probability": 0.9376 + }, + { + "start": 6686.86, + "end": 6688.0, + "probability": 0.9922 + }, + { + "start": 6688.88, + "end": 6697.48, + "probability": 0.9521 + }, + { + "start": 6698.14, + "end": 6699.44, + "probability": 0.5246 + }, + { + "start": 6700.92, + "end": 6702.04, + "probability": 0.1127 + }, + { + "start": 6702.04, + "end": 6702.04, + "probability": 0.2282 + }, + { + "start": 6702.04, + "end": 6706.58, + "probability": 0.3777 + }, + { + "start": 6708.59, + "end": 6711.88, + "probability": 0.9832 + }, + { + "start": 6712.26, + "end": 6714.52, + "probability": 0.9946 + }, + { + "start": 6714.58, + "end": 6716.86, + "probability": 0.9972 + }, + { + "start": 6718.58, + "end": 6719.92, + "probability": 0.9674 + }, + { + "start": 6720.12, + "end": 6722.78, + "probability": 0.023 + }, + { + "start": 6722.78, + "end": 6724.36, + "probability": 0.7791 + }, + { + "start": 6724.36, + "end": 6726.4, + "probability": 0.8046 + }, + { + "start": 6726.4, + "end": 6729.4, + "probability": 0.9849 + }, + { + "start": 6729.84, + "end": 6731.5, + "probability": 0.6388 + }, + { + "start": 6732.16, + "end": 6734.54, + "probability": 0.6872 + }, + { + "start": 6737.52, + "end": 6739.7, + "probability": 0.7914 + }, + { + "start": 6740.92, + "end": 6741.86, + "probability": 0.9703 + }, + { + "start": 6742.74, + "end": 6744.84, + "probability": 0.9985 + }, + { + "start": 6747.08, + "end": 6748.38, + "probability": 0.8838 + }, + { + "start": 6751.04, + "end": 6759.2, + "probability": 0.939 + }, + { + "start": 6759.52, + "end": 6767.2, + "probability": 0.7976 + }, + { + "start": 6767.48, + "end": 6770.88, + "probability": 0.8911 + }, + { + "start": 6771.42, + "end": 6772.8, + "probability": 0.5373 + }, + { + "start": 6773.46, + "end": 6774.18, + "probability": 0.9184 + }, + { + "start": 6774.98, + "end": 6775.54, + "probability": 0.258 + }, + { + "start": 6776.26, + "end": 6780.04, + "probability": 0.8426 + }, + { + "start": 6780.3, + "end": 6781.58, + "probability": 0.7568 + }, + { + "start": 6782.04, + "end": 6783.82, + "probability": 0.9454 + }, + { + "start": 6784.54, + "end": 6788.04, + "probability": 0.9808 + }, + { + "start": 6788.16, + "end": 6791.68, + "probability": 0.7739 + }, + { + "start": 6791.88, + "end": 6797.78, + "probability": 0.8791 + }, + { + "start": 6798.1, + "end": 6800.34, + "probability": 0.4929 + }, + { + "start": 6800.76, + "end": 6805.76, + "probability": 0.8306 + }, + { + "start": 6806.4, + "end": 6807.22, + "probability": 0.842 + }, + { + "start": 6807.34, + "end": 6808.04, + "probability": 0.4392 + }, + { + "start": 6808.1, + "end": 6808.94, + "probability": 0.7321 + }, + { + "start": 6810.56, + "end": 6813.74, + "probability": 0.9927 + }, + { + "start": 6815.21, + "end": 6817.16, + "probability": 0.9777 + }, + { + "start": 6817.88, + "end": 6819.35, + "probability": 0.9595 + }, + { + "start": 6820.16, + "end": 6822.2, + "probability": 0.9768 + }, + { + "start": 6823.76, + "end": 6825.14, + "probability": 0.9906 + }, + { + "start": 6827.36, + "end": 6828.44, + "probability": 0.748 + }, + { + "start": 6828.82, + "end": 6830.12, + "probability": 0.8923 + }, + { + "start": 6830.42, + "end": 6831.82, + "probability": 0.7001 + }, + { + "start": 6831.92, + "end": 6832.77, + "probability": 0.8132 + }, + { + "start": 6832.96, + "end": 6834.34, + "probability": 0.8004 + }, + { + "start": 6834.38, + "end": 6835.02, + "probability": 0.699 + }, + { + "start": 6835.46, + "end": 6837.32, + "probability": 0.9878 + }, + { + "start": 6838.04, + "end": 6841.12, + "probability": 0.9072 + }, + { + "start": 6841.34, + "end": 6844.74, + "probability": 0.766 + }, + { + "start": 6845.38, + "end": 6846.8, + "probability": 0.7977 + }, + { + "start": 6847.44, + "end": 6851.02, + "probability": 0.7663 + }, + { + "start": 6851.98, + "end": 6854.74, + "probability": 0.9817 + }, + { + "start": 6855.16, + "end": 6857.52, + "probability": 0.9443 + }, + { + "start": 6857.88, + "end": 6859.98, + "probability": 0.8033 + }, + { + "start": 6859.98, + "end": 6862.24, + "probability": 0.9888 + }, + { + "start": 6862.74, + "end": 6867.86, + "probability": 0.7526 + }, + { + "start": 6868.44, + "end": 6876.1, + "probability": 0.9329 + }, + { + "start": 6876.44, + "end": 6879.42, + "probability": 0.3127 + }, + { + "start": 6879.42, + "end": 6879.46, + "probability": 0.0225 + }, + { + "start": 6879.46, + "end": 6881.74, + "probability": 0.9834 + }, + { + "start": 6881.8, + "end": 6883.86, + "probability": 0.8951 + }, + { + "start": 6884.54, + "end": 6888.08, + "probability": 0.9133 + }, + { + "start": 6888.6, + "end": 6889.2, + "probability": 0.4631 + }, + { + "start": 6892.02, + "end": 6892.38, + "probability": 0.0382 + }, + { + "start": 6892.38, + "end": 6892.38, + "probability": 0.0915 + }, + { + "start": 6892.38, + "end": 6892.84, + "probability": 0.6144 + }, + { + "start": 6892.84, + "end": 6893.24, + "probability": 0.5543 + }, + { + "start": 6893.52, + "end": 6893.7, + "probability": 0.6163 + }, + { + "start": 6893.82, + "end": 6893.82, + "probability": 0.6154 + }, + { + "start": 6893.9, + "end": 6893.96, + "probability": 0.4897 + }, + { + "start": 6893.96, + "end": 6894.0, + "probability": 0.4409 + }, + { + "start": 6894.0, + "end": 6895.5, + "probability": 0.5784 + }, + { + "start": 6896.1, + "end": 6896.7, + "probability": 0.6914 + }, + { + "start": 6896.7, + "end": 6898.42, + "probability": 0.6937 + }, + { + "start": 6900.62, + "end": 6900.84, + "probability": 0.1349 + }, + { + "start": 6901.2, + "end": 6901.2, + "probability": 0.0615 + }, + { + "start": 6901.2, + "end": 6902.96, + "probability": 0.6235 + }, + { + "start": 6904.46, + "end": 6907.04, + "probability": 0.378 + }, + { + "start": 6908.4, + "end": 6908.6, + "probability": 0.0429 + }, + { + "start": 6908.6, + "end": 6908.92, + "probability": 0.2386 + }, + { + "start": 6908.96, + "end": 6909.18, + "probability": 0.5754 + }, + { + "start": 6909.28, + "end": 6910.06, + "probability": 0.7101 + }, + { + "start": 6910.36, + "end": 6911.9, + "probability": 0.6665 + }, + { + "start": 6912.06, + "end": 6916.13, + "probability": 0.992 + }, + { + "start": 6916.64, + "end": 6918.06, + "probability": 0.6054 + }, + { + "start": 6918.2, + "end": 6921.56, + "probability": 0.7892 + }, + { + "start": 6921.96, + "end": 6926.56, + "probability": 0.9066 + }, + { + "start": 6926.74, + "end": 6930.25, + "probability": 0.9793 + }, + { + "start": 6930.58, + "end": 6932.48, + "probability": 0.3096 + }, + { + "start": 6932.6, + "end": 6932.92, + "probability": 0.826 + }, + { + "start": 6933.06, + "end": 6934.04, + "probability": 0.7983 + }, + { + "start": 6934.38, + "end": 6940.32, + "probability": 0.9106 + }, + { + "start": 6940.38, + "end": 6943.98, + "probability": 0.2624 + }, + { + "start": 6943.98, + "end": 6945.12, + "probability": 0.9386 + }, + { + "start": 6945.46, + "end": 6947.4, + "probability": 0.9897 + }, + { + "start": 6947.88, + "end": 6948.88, + "probability": 0.9897 + }, + { + "start": 6948.96, + "end": 6951.2, + "probability": 0.9677 + }, + { + "start": 6951.3, + "end": 6952.5, + "probability": 0.9009 + }, + { + "start": 6952.52, + "end": 6953.36, + "probability": 0.8743 + }, + { + "start": 6953.7, + "end": 6956.43, + "probability": 0.6884 + }, + { + "start": 6957.34, + "end": 6959.86, + "probability": 0.797 + }, + { + "start": 6960.32, + "end": 6961.3, + "probability": 0.9796 + }, + { + "start": 6962.94, + "end": 6964.34, + "probability": 0.5558 + }, + { + "start": 6964.34, + "end": 6966.22, + "probability": 0.898 + }, + { + "start": 6969.08, + "end": 6970.32, + "probability": 0.0494 + }, + { + "start": 6970.32, + "end": 6970.32, + "probability": 0.104 + }, + { + "start": 6970.32, + "end": 6970.78, + "probability": 0.1283 + }, + { + "start": 6971.06, + "end": 6971.24, + "probability": 0.5782 + }, + { + "start": 6975.6, + "end": 6977.42, + "probability": 0.6983 + }, + { + "start": 6978.04, + "end": 6980.98, + "probability": 0.9092 + }, + { + "start": 6981.8, + "end": 6983.36, + "probability": 0.8789 + }, + { + "start": 6983.4, + "end": 6984.56, + "probability": 0.9832 + }, + { + "start": 6985.07, + "end": 6990.54, + "probability": 0.7089 + }, + { + "start": 6991.14, + "end": 6993.9, + "probability": 0.2227 + }, + { + "start": 6993.98, + "end": 6996.3, + "probability": 0.968 + }, + { + "start": 6996.3, + "end": 6999.48, + "probability": 0.9281 + }, + { + "start": 6999.56, + "end": 7000.3, + "probability": 0.6722 + }, + { + "start": 7000.48, + "end": 7001.42, + "probability": 0.6479 + }, + { + "start": 7002.8, + "end": 7006.88, + "probability": 0.9604 + }, + { + "start": 7007.38, + "end": 7012.58, + "probability": 0.9368 + }, + { + "start": 7012.66, + "end": 7014.92, + "probability": 0.9636 + }, + { + "start": 7015.6, + "end": 7018.14, + "probability": 0.9449 + }, + { + "start": 7018.7, + "end": 7019.6, + "probability": 0.3996 + }, + { + "start": 7019.94, + "end": 7026.68, + "probability": 0.7842 + }, + { + "start": 7026.78, + "end": 7028.32, + "probability": 0.8739 + }, + { + "start": 7029.02, + "end": 7032.94, + "probability": 0.7393 + }, + { + "start": 7033.83, + "end": 7036.0, + "probability": 0.9927 + }, + { + "start": 7036.16, + "end": 7038.76, + "probability": 0.843 + }, + { + "start": 7038.92, + "end": 7042.04, + "probability": 0.7725 + }, + { + "start": 7042.5, + "end": 7044.23, + "probability": 0.9399 + }, + { + "start": 7044.5, + "end": 7045.82, + "probability": 0.9737 + }, + { + "start": 7046.34, + "end": 7047.9, + "probability": 0.8735 + }, + { + "start": 7048.3, + "end": 7049.4, + "probability": 0.8266 + }, + { + "start": 7049.56, + "end": 7050.86, + "probability": 0.9658 + }, + { + "start": 7052.1, + "end": 7055.54, + "probability": 0.7569 + }, + { + "start": 7056.1, + "end": 7058.78, + "probability": 0.6647 + }, + { + "start": 7059.14, + "end": 7062.9, + "probability": 0.9495 + }, + { + "start": 7064.18, + "end": 7067.06, + "probability": 0.7497 + }, + { + "start": 7067.1, + "end": 7068.44, + "probability": 0.229 + }, + { + "start": 7068.92, + "end": 7070.1, + "probability": 0.8541 + }, + { + "start": 7070.3, + "end": 7074.76, + "probability": 0.8689 + }, + { + "start": 7074.76, + "end": 7077.52, + "probability": 0.2201 + }, + { + "start": 7077.62, + "end": 7078.38, + "probability": 0.9121 + }, + { + "start": 7078.46, + "end": 7079.24, + "probability": 0.9922 + }, + { + "start": 7079.97, + "end": 7084.0, + "probability": 0.8183 + }, + { + "start": 7084.88, + "end": 7090.14, + "probability": 0.96 + }, + { + "start": 7090.64, + "end": 7096.16, + "probability": 0.619 + }, + { + "start": 7096.36, + "end": 7099.54, + "probability": 0.967 + }, + { + "start": 7103.5, + "end": 7104.4, + "probability": 0.6553 + }, + { + "start": 7104.5, + "end": 7107.88, + "probability": 0.8989 + }, + { + "start": 7108.2, + "end": 7111.82, + "probability": 0.8546 + }, + { + "start": 7111.82, + "end": 7113.94, + "probability": 0.9924 + }, + { + "start": 7114.58, + "end": 7116.82, + "probability": 0.9691 + }, + { + "start": 7117.6, + "end": 7120.56, + "probability": 0.9059 + }, + { + "start": 7121.12, + "end": 7123.78, + "probability": 0.97 + }, + { + "start": 7123.86, + "end": 7125.92, + "probability": 0.9886 + }, + { + "start": 7126.92, + "end": 7128.0, + "probability": 0.7338 + }, + { + "start": 7128.54, + "end": 7129.44, + "probability": 0.973 + }, + { + "start": 7129.66, + "end": 7133.0, + "probability": 0.7998 + }, + { + "start": 7133.06, + "end": 7135.54, + "probability": 0.6646 + }, + { + "start": 7135.88, + "end": 7137.86, + "probability": 0.8116 + }, + { + "start": 7138.06, + "end": 7138.8, + "probability": 0.498 + }, + { + "start": 7139.22, + "end": 7143.3, + "probability": 0.964 + }, + { + "start": 7144.98, + "end": 7147.26, + "probability": 0.7464 + }, + { + "start": 7148.46, + "end": 7149.38, + "probability": 0.9535 + }, + { + "start": 7151.04, + "end": 7152.26, + "probability": 0.5166 + }, + { + "start": 7152.28, + "end": 7152.58, + "probability": 0.4094 + }, + { + "start": 7152.64, + "end": 7153.18, + "probability": 0.9682 + }, + { + "start": 7155.28, + "end": 7156.74, + "probability": 0.8217 + }, + { + "start": 7160.14, + "end": 7163.0, + "probability": 0.3353 + }, + { + "start": 7163.24, + "end": 7167.0, + "probability": 0.6765 + }, + { + "start": 7167.87, + "end": 7170.28, + "probability": 0.7362 + }, + { + "start": 7171.14, + "end": 7174.46, + "probability": 0.9862 + }, + { + "start": 7174.46, + "end": 7177.3, + "probability": 0.9342 + }, + { + "start": 7177.38, + "end": 7179.8, + "probability": 0.9926 + }, + { + "start": 7180.42, + "end": 7182.54, + "probability": 0.8881 + }, + { + "start": 7183.74, + "end": 7186.76, + "probability": 0.293 + }, + { + "start": 7187.08, + "end": 7189.34, + "probability": 0.9984 + }, + { + "start": 7189.52, + "end": 7190.24, + "probability": 0.7216 + }, + { + "start": 7190.32, + "end": 7191.64, + "probability": 0.8381 + }, + { + "start": 7191.72, + "end": 7194.02, + "probability": 0.9961 + }, + { + "start": 7195.08, + "end": 7199.14, + "probability": 0.9862 + }, + { + "start": 7199.28, + "end": 7200.56, + "probability": 0.9868 + }, + { + "start": 7201.2, + "end": 7202.18, + "probability": 0.8286 + }, + { + "start": 7203.24, + "end": 7207.32, + "probability": 0.9949 + }, + { + "start": 7208.08, + "end": 7211.42, + "probability": 0.9158 + }, + { + "start": 7214.16, + "end": 7216.64, + "probability": 0.8604 + }, + { + "start": 7216.7, + "end": 7217.82, + "probability": 0.9896 + }, + { + "start": 7218.62, + "end": 7219.66, + "probability": 0.9628 + }, + { + "start": 7220.16, + "end": 7222.48, + "probability": 0.9453 + }, + { + "start": 7222.66, + "end": 7224.16, + "probability": 0.8852 + }, + { + "start": 7225.44, + "end": 7227.22, + "probability": 0.9276 + }, + { + "start": 7227.92, + "end": 7232.14, + "probability": 0.9877 + }, + { + "start": 7232.84, + "end": 7236.08, + "probability": 0.9961 + }, + { + "start": 7236.08, + "end": 7238.56, + "probability": 0.9906 + }, + { + "start": 7239.42, + "end": 7241.3, + "probability": 0.9751 + }, + { + "start": 7242.34, + "end": 7247.6, + "probability": 0.934 + }, + { + "start": 7248.44, + "end": 7249.76, + "probability": 0.8781 + }, + { + "start": 7250.2, + "end": 7251.12, + "probability": 0.6665 + }, + { + "start": 7251.22, + "end": 7253.4, + "probability": 0.9638 + }, + { + "start": 7253.84, + "end": 7257.7, + "probability": 0.9641 + }, + { + "start": 7258.56, + "end": 7263.92, + "probability": 0.9724 + }, + { + "start": 7264.36, + "end": 7268.48, + "probability": 0.9526 + }, + { + "start": 7269.66, + "end": 7273.58, + "probability": 0.854 + }, + { + "start": 7274.62, + "end": 7277.3, + "probability": 0.7434 + }, + { + "start": 7277.5, + "end": 7278.76, + "probability": 0.5705 + }, + { + "start": 7278.84, + "end": 7283.1, + "probability": 0.9951 + }, + { + "start": 7283.82, + "end": 7285.8, + "probability": 0.7439 + }, + { + "start": 7286.54, + "end": 7290.02, + "probability": 0.6749 + }, + { + "start": 7290.26, + "end": 7291.18, + "probability": 0.8742 + }, + { + "start": 7292.7, + "end": 7297.58, + "probability": 0.9862 + }, + { + "start": 7298.12, + "end": 7300.42, + "probability": 0.9856 + }, + { + "start": 7300.58, + "end": 7302.92, + "probability": 0.9927 + }, + { + "start": 7302.92, + "end": 7305.86, + "probability": 0.9865 + }, + { + "start": 7305.94, + "end": 7306.5, + "probability": 0.5912 + }, + { + "start": 7306.94, + "end": 7307.36, + "probability": 0.7288 + }, + { + "start": 7307.48, + "end": 7308.78, + "probability": 0.796 + }, + { + "start": 7310.06, + "end": 7313.0, + "probability": 0.7471 + }, + { + "start": 7313.22, + "end": 7316.24, + "probability": 0.9781 + }, + { + "start": 7317.0, + "end": 7322.68, + "probability": 0.9908 + }, + { + "start": 7323.66, + "end": 7326.77, + "probability": 0.992 + }, + { + "start": 7327.5, + "end": 7328.7, + "probability": 0.9712 + }, + { + "start": 7329.14, + "end": 7331.52, + "probability": 0.8526 + }, + { + "start": 7332.06, + "end": 7335.44, + "probability": 0.9761 + }, + { + "start": 7336.32, + "end": 7341.14, + "probability": 0.8986 + }, + { + "start": 7341.4, + "end": 7343.82, + "probability": 0.9988 + }, + { + "start": 7344.48, + "end": 7346.72, + "probability": 0.9836 + }, + { + "start": 7347.6, + "end": 7348.26, + "probability": 0.8123 + }, + { + "start": 7348.4, + "end": 7352.14, + "probability": 0.959 + }, + { + "start": 7352.82, + "end": 7355.42, + "probability": 0.9994 + }, + { + "start": 7356.82, + "end": 7362.46, + "probability": 0.9957 + }, + { + "start": 7362.82, + "end": 7364.5, + "probability": 0.9103 + }, + { + "start": 7365.0, + "end": 7366.2, + "probability": 0.9636 + }, + { + "start": 7367.32, + "end": 7371.26, + "probability": 0.9802 + }, + { + "start": 7371.38, + "end": 7373.06, + "probability": 0.9952 + }, + { + "start": 7373.83, + "end": 7374.28, + "probability": 0.3429 + }, + { + "start": 7374.28, + "end": 7379.6, + "probability": 0.9676 + }, + { + "start": 7379.64, + "end": 7381.02, + "probability": 0.9124 + }, + { + "start": 7382.02, + "end": 7384.0, + "probability": 0.9912 + }, + { + "start": 7385.54, + "end": 7388.28, + "probability": 0.7133 + }, + { + "start": 7389.0, + "end": 7389.94, + "probability": 0.9741 + }, + { + "start": 7390.64, + "end": 7392.52, + "probability": 0.748 + }, + { + "start": 7392.66, + "end": 7394.18, + "probability": 0.8597 + }, + { + "start": 7394.66, + "end": 7397.0, + "probability": 0.9982 + }, + { + "start": 7397.78, + "end": 7400.6, + "probability": 0.9719 + }, + { + "start": 7401.74, + "end": 7405.22, + "probability": 0.9782 + }, + { + "start": 7405.82, + "end": 7407.78, + "probability": 0.9984 + }, + { + "start": 7408.72, + "end": 7409.78, + "probability": 0.6414 + }, + { + "start": 7410.28, + "end": 7413.0, + "probability": 0.7264 + }, + { + "start": 7413.68, + "end": 7415.06, + "probability": 0.8549 + }, + { + "start": 7415.52, + "end": 7416.16, + "probability": 0.4978 + }, + { + "start": 7416.28, + "end": 7416.82, + "probability": 0.6403 + }, + { + "start": 7417.52, + "end": 7418.4, + "probability": 0.2445 + }, + { + "start": 7419.56, + "end": 7420.3, + "probability": 0.7645 + }, + { + "start": 7421.74, + "end": 7422.78, + "probability": 0.7709 + }, + { + "start": 7423.76, + "end": 7424.12, + "probability": 0.415 + }, + { + "start": 7424.14, + "end": 7424.18, + "probability": 0.5468 + }, + { + "start": 7424.18, + "end": 7426.78, + "probability": 0.887 + }, + { + "start": 7427.54, + "end": 7429.19, + "probability": 0.7924 + }, + { + "start": 7429.26, + "end": 7433.08, + "probability": 0.7305 + }, + { + "start": 7433.7, + "end": 7436.44, + "probability": 0.9752 + }, + { + "start": 7438.3, + "end": 7441.74, + "probability": 0.9375 + }, + { + "start": 7441.88, + "end": 7445.04, + "probability": 0.936 + }, + { + "start": 7445.18, + "end": 7447.3, + "probability": 0.9905 + }, + { + "start": 7448.22, + "end": 7448.68, + "probability": 0.7452 + }, + { + "start": 7449.02, + "end": 7451.62, + "probability": 0.9719 + }, + { + "start": 7451.7, + "end": 7452.6, + "probability": 0.7269 + }, + { + "start": 7453.12, + "end": 7456.92, + "probability": 0.9702 + }, + { + "start": 7457.86, + "end": 7460.9, + "probability": 0.9771 + }, + { + "start": 7461.72, + "end": 7461.96, + "probability": 0.6539 + }, + { + "start": 7462.08, + "end": 7464.54, + "probability": 0.8911 + }, + { + "start": 7464.6, + "end": 7467.02, + "probability": 0.9262 + }, + { + "start": 7467.02, + "end": 7469.58, + "probability": 0.9745 + }, + { + "start": 7470.4, + "end": 7472.4, + "probability": 0.9962 + }, + { + "start": 7473.28, + "end": 7475.76, + "probability": 0.9746 + }, + { + "start": 7475.76, + "end": 7480.04, + "probability": 0.9961 + }, + { + "start": 7480.86, + "end": 7485.54, + "probability": 0.9902 + }, + { + "start": 7486.02, + "end": 7486.22, + "probability": 0.6648 + }, + { + "start": 7486.8, + "end": 7488.02, + "probability": 0.9159 + }, + { + "start": 7488.82, + "end": 7490.42, + "probability": 0.8897 + }, + { + "start": 7490.86, + "end": 7491.6, + "probability": 0.9753 + }, + { + "start": 7492.1, + "end": 7496.18, + "probability": 0.9162 + }, + { + "start": 7496.44, + "end": 7498.74, + "probability": 0.994 + }, + { + "start": 7498.74, + "end": 7501.7, + "probability": 0.9995 + }, + { + "start": 7502.32, + "end": 7504.5, + "probability": 0.9357 + }, + { + "start": 7505.12, + "end": 7506.84, + "probability": 0.8474 + }, + { + "start": 7507.26, + "end": 7510.1, + "probability": 0.9947 + }, + { + "start": 7511.1, + "end": 7511.3, + "probability": 0.6032 + }, + { + "start": 7512.22, + "end": 7514.5, + "probability": 0.9543 + }, + { + "start": 7515.2, + "end": 7518.14, + "probability": 0.9821 + }, + { + "start": 7518.22, + "end": 7521.08, + "probability": 0.8516 + }, + { + "start": 7521.84, + "end": 7525.7, + "probability": 0.9792 + }, + { + "start": 7527.76, + "end": 7530.18, + "probability": 0.9498 + }, + { + "start": 7532.34, + "end": 7533.78, + "probability": 0.7711 + }, + { + "start": 7535.74, + "end": 7539.3, + "probability": 0.9595 + }, + { + "start": 7539.6, + "end": 7541.98, + "probability": 0.9702 + }, + { + "start": 7542.46, + "end": 7547.22, + "probability": 0.9672 + }, + { + "start": 7548.44, + "end": 7549.4, + "probability": 0.9703 + }, + { + "start": 7549.56, + "end": 7553.92, + "probability": 0.981 + }, + { + "start": 7553.92, + "end": 7557.06, + "probability": 0.8695 + }, + { + "start": 7558.58, + "end": 7560.04, + "probability": 0.9967 + }, + { + "start": 7562.36, + "end": 7563.23, + "probability": 0.9755 + }, + { + "start": 7563.48, + "end": 7566.46, + "probability": 0.8821 + }, + { + "start": 7566.64, + "end": 7567.38, + "probability": 0.8464 + }, + { + "start": 7567.58, + "end": 7570.93, + "probability": 0.9946 + }, + { + "start": 7572.16, + "end": 7576.48, + "probability": 0.9937 + }, + { + "start": 7576.48, + "end": 7581.54, + "probability": 0.842 + }, + { + "start": 7582.58, + "end": 7586.08, + "probability": 0.9902 + }, + { + "start": 7588.02, + "end": 7594.54, + "probability": 0.6569 + }, + { + "start": 7594.78, + "end": 7595.8, + "probability": 0.6753 + }, + { + "start": 7595.9, + "end": 7598.38, + "probability": 0.9727 + }, + { + "start": 7600.96, + "end": 7601.94, + "probability": 0.9956 + }, + { + "start": 7603.2, + "end": 7604.02, + "probability": 0.9616 + }, + { + "start": 7607.36, + "end": 7610.44, + "probability": 0.76 + }, + { + "start": 7610.6, + "end": 7610.84, + "probability": 0.3405 + }, + { + "start": 7612.02, + "end": 7612.44, + "probability": 0.0267 + }, + { + "start": 7612.44, + "end": 7614.1, + "probability": 0.4392 + }, + { + "start": 7614.1, + "end": 7614.88, + "probability": 0.3906 + }, + { + "start": 7615.36, + "end": 7618.08, + "probability": 0.479 + }, + { + "start": 7618.16, + "end": 7618.56, + "probability": 0.7433 + }, + { + "start": 7619.98, + "end": 7623.62, + "probability": 0.9937 + }, + { + "start": 7623.62, + "end": 7629.6, + "probability": 0.9886 + }, + { + "start": 7630.32, + "end": 7632.32, + "probability": 0.706 + }, + { + "start": 7633.54, + "end": 7634.96, + "probability": 0.7042 + }, + { + "start": 7635.14, + "end": 7636.52, + "probability": 0.992 + }, + { + "start": 7637.42, + "end": 7639.26, + "probability": 0.9018 + }, + { + "start": 7639.56, + "end": 7642.44, + "probability": 0.9668 + }, + { + "start": 7643.22, + "end": 7643.56, + "probability": 0.9172 + }, + { + "start": 7643.64, + "end": 7644.44, + "probability": 0.9837 + }, + { + "start": 7644.52, + "end": 7647.48, + "probability": 0.9082 + }, + { + "start": 7648.86, + "end": 7651.32, + "probability": 0.9506 + }, + { + "start": 7651.82, + "end": 7654.64, + "probability": 0.9685 + }, + { + "start": 7654.72, + "end": 7656.62, + "probability": 0.9316 + }, + { + "start": 7657.0, + "end": 7657.8, + "probability": 0.8313 + }, + { + "start": 7658.2, + "end": 7661.0, + "probability": 0.9818 + }, + { + "start": 7661.5, + "end": 7665.3, + "probability": 0.8799 + }, + { + "start": 7665.68, + "end": 7668.4, + "probability": 0.9912 + }, + { + "start": 7668.6, + "end": 7669.32, + "probability": 0.9526 + }, + { + "start": 7670.28, + "end": 7671.68, + "probability": 0.6807 + }, + { + "start": 7671.72, + "end": 7672.53, + "probability": 0.7456 + }, + { + "start": 7672.96, + "end": 7676.54, + "probability": 0.9804 + }, + { + "start": 7676.68, + "end": 7679.72, + "probability": 0.9972 + }, + { + "start": 7680.58, + "end": 7682.81, + "probability": 0.9661 + }, + { + "start": 7684.84, + "end": 7686.93, + "probability": 0.6759 + }, + { + "start": 7688.52, + "end": 7692.5, + "probability": 0.9452 + }, + { + "start": 7693.34, + "end": 7699.28, + "probability": 0.6442 + }, + { + "start": 7700.04, + "end": 7703.1, + "probability": 0.9362 + }, + { + "start": 7703.64, + "end": 7711.16, + "probability": 0.9434 + }, + { + "start": 7715.56, + "end": 7717.88, + "probability": 0.5141 + }, + { + "start": 7718.02, + "end": 7718.4, + "probability": 0.2717 + }, + { + "start": 7718.52, + "end": 7720.12, + "probability": 0.9466 + }, + { + "start": 7720.58, + "end": 7722.52, + "probability": 0.9878 + }, + { + "start": 7724.68, + "end": 7726.4, + "probability": 0.9868 + }, + { + "start": 7726.56, + "end": 7727.94, + "probability": 0.6826 + }, + { + "start": 7728.08, + "end": 7729.46, + "probability": 0.8627 + }, + { + "start": 7729.96, + "end": 7730.44, + "probability": 0.9583 + }, + { + "start": 7731.14, + "end": 7736.76, + "probability": 0.9779 + }, + { + "start": 7736.82, + "end": 7737.72, + "probability": 0.7851 + }, + { + "start": 7738.1, + "end": 7738.5, + "probability": 0.9012 + }, + { + "start": 7738.72, + "end": 7739.48, + "probability": 0.8106 + }, + { + "start": 7739.86, + "end": 7742.24, + "probability": 0.933 + }, + { + "start": 7742.74, + "end": 7745.1, + "probability": 0.8977 + }, + { + "start": 7745.52, + "end": 7746.86, + "probability": 0.8461 + }, + { + "start": 7746.94, + "end": 7747.74, + "probability": 0.9705 + }, + { + "start": 7748.32, + "end": 7748.42, + "probability": 0.5058 + }, + { + "start": 7748.68, + "end": 7750.18, + "probability": 0.8859 + }, + { + "start": 7750.46, + "end": 7751.48, + "probability": 0.7999 + }, + { + "start": 7751.5, + "end": 7752.58, + "probability": 0.8737 + }, + { + "start": 7752.92, + "end": 7755.94, + "probability": 0.9521 + }, + { + "start": 7756.1, + "end": 7756.78, + "probability": 0.9058 + }, + { + "start": 7756.9, + "end": 7757.46, + "probability": 0.8082 + }, + { + "start": 7758.34, + "end": 7759.22, + "probability": 0.9368 + }, + { + "start": 7760.14, + "end": 7761.76, + "probability": 0.9955 + }, + { + "start": 7761.78, + "end": 7762.32, + "probability": 0.4833 + }, + { + "start": 7762.34, + "end": 7763.72, + "probability": 0.5372 + }, + { + "start": 7763.76, + "end": 7765.92, + "probability": 0.9844 + }, + { + "start": 7766.68, + "end": 7773.26, + "probability": 0.9915 + }, + { + "start": 7773.36, + "end": 7774.1, + "probability": 0.7304 + }, + { + "start": 7774.54, + "end": 7777.18, + "probability": 0.6715 + }, + { + "start": 7777.24, + "end": 7779.3, + "probability": 0.7259 + }, + { + "start": 7780.24, + "end": 7782.6, + "probability": 0.793 + }, + { + "start": 7788.86, + "end": 7789.52, + "probability": 0.5015 + }, + { + "start": 7789.88, + "end": 7790.82, + "probability": 0.9668 + }, + { + "start": 7791.04, + "end": 7795.86, + "probability": 0.911 + }, + { + "start": 7796.7, + "end": 7798.74, + "probability": 0.9499 + }, + { + "start": 7798.84, + "end": 7800.22, + "probability": 0.9785 + }, + { + "start": 7801.3, + "end": 7805.72, + "probability": 0.9729 + }, + { + "start": 7806.32, + "end": 7807.48, + "probability": 0.9902 + }, + { + "start": 7808.26, + "end": 7811.58, + "probability": 0.7908 + }, + { + "start": 7812.22, + "end": 7812.68, + "probability": 0.283 + }, + { + "start": 7813.6, + "end": 7815.88, + "probability": 0.9764 + }, + { + "start": 7816.32, + "end": 7816.98, + "probability": 0.7092 + }, + { + "start": 7818.16, + "end": 7821.52, + "probability": 0.7141 + }, + { + "start": 7822.14, + "end": 7826.3, + "probability": 0.8325 + }, + { + "start": 7826.76, + "end": 7827.08, + "probability": 0.6235 + }, + { + "start": 7827.3, + "end": 7827.46, + "probability": 0.5869 + }, + { + "start": 7827.66, + "end": 7828.46, + "probability": 0.7351 + }, + { + "start": 7828.74, + "end": 7829.16, + "probability": 0.9376 + }, + { + "start": 7829.28, + "end": 7830.1, + "probability": 0.8423 + }, + { + "start": 7830.32, + "end": 7834.6, + "probability": 0.9767 + }, + { + "start": 7835.56, + "end": 7836.94, + "probability": 0.3911 + }, + { + "start": 7837.2, + "end": 7840.16, + "probability": 0.9357 + }, + { + "start": 7840.52, + "end": 7841.2, + "probability": 0.9637 + }, + { + "start": 7841.3, + "end": 7843.18, + "probability": 0.9479 + }, + { + "start": 7843.8, + "end": 7847.54, + "probability": 0.9744 + }, + { + "start": 7848.28, + "end": 7849.52, + "probability": 0.8722 + }, + { + "start": 7849.64, + "end": 7850.24, + "probability": 0.8947 + }, + { + "start": 7850.26, + "end": 7852.68, + "probability": 0.9951 + }, + { + "start": 7852.74, + "end": 7853.24, + "probability": 0.6163 + }, + { + "start": 7853.76, + "end": 7855.7, + "probability": 0.8468 + }, + { + "start": 7856.3, + "end": 7859.22, + "probability": 0.7136 + }, + { + "start": 7859.62, + "end": 7864.3, + "probability": 0.9955 + }, + { + "start": 7864.9, + "end": 7866.24, + "probability": 0.9315 + }, + { + "start": 7866.28, + "end": 7870.86, + "probability": 0.9072 + }, + { + "start": 7870.96, + "end": 7872.8, + "probability": 0.9312 + }, + { + "start": 7873.28, + "end": 7876.18, + "probability": 0.9567 + }, + { + "start": 7876.76, + "end": 7878.54, + "probability": 0.9521 + }, + { + "start": 7879.02, + "end": 7884.56, + "probability": 0.9437 + }, + { + "start": 7884.66, + "end": 7885.38, + "probability": 0.9556 + }, + { + "start": 7886.04, + "end": 7888.58, + "probability": 0.9858 + }, + { + "start": 7889.14, + "end": 7891.6, + "probability": 0.7961 + }, + { + "start": 7891.7, + "end": 7892.44, + "probability": 0.7227 + }, + { + "start": 7892.5, + "end": 7893.16, + "probability": 0.7004 + }, + { + "start": 7893.94, + "end": 7896.67, + "probability": 0.9453 + }, + { + "start": 7898.12, + "end": 7899.96, + "probability": 0.9637 + }, + { + "start": 7900.42, + "end": 7902.9, + "probability": 0.9958 + }, + { + "start": 7903.28, + "end": 7904.24, + "probability": 0.9988 + }, + { + "start": 7904.72, + "end": 7906.6, + "probability": 0.9619 + }, + { + "start": 7907.2, + "end": 7912.04, + "probability": 0.8914 + }, + { + "start": 7912.48, + "end": 7913.78, + "probability": 0.9705 + }, + { + "start": 7914.02, + "end": 7914.42, + "probability": 0.7995 + }, + { + "start": 7914.96, + "end": 7917.22, + "probability": 0.9853 + }, + { + "start": 7917.7, + "end": 7918.12, + "probability": 0.8855 + }, + { + "start": 7918.74, + "end": 7919.24, + "probability": 0.7021 + }, + { + "start": 7919.36, + "end": 7920.56, + "probability": 0.8459 + }, + { + "start": 7920.9, + "end": 7923.24, + "probability": 0.9878 + }, + { + "start": 7923.24, + "end": 7927.32, + "probability": 0.9971 + }, + { + "start": 7927.68, + "end": 7931.28, + "probability": 0.9988 + }, + { + "start": 7931.72, + "end": 7932.3, + "probability": 0.9182 + }, + { + "start": 7932.64, + "end": 7934.12, + "probability": 0.9774 + }, + { + "start": 7934.32, + "end": 7937.0, + "probability": 0.6184 + }, + { + "start": 7937.08, + "end": 7939.8, + "probability": 0.995 + }, + { + "start": 7939.8, + "end": 7942.92, + "probability": 0.9235 + }, + { + "start": 7943.04, + "end": 7944.3, + "probability": 0.7679 + }, + { + "start": 7944.78, + "end": 7946.33, + "probability": 0.8489 + }, + { + "start": 7947.1, + "end": 7951.58, + "probability": 0.9745 + }, + { + "start": 7952.18, + "end": 7957.5, + "probability": 0.6737 + }, + { + "start": 7958.2, + "end": 7961.84, + "probability": 0.976 + }, + { + "start": 7962.48, + "end": 7963.72, + "probability": 0.991 + }, + { + "start": 7964.24, + "end": 7967.63, + "probability": 0.8249 + }, + { + "start": 7969.2, + "end": 7969.26, + "probability": 0.6165 + }, + { + "start": 7969.68, + "end": 7969.68, + "probability": 0.0685 + }, + { + "start": 7969.68, + "end": 7969.68, + "probability": 0.3836 + }, + { + "start": 7969.68, + "end": 7969.92, + "probability": 0.3458 + }, + { + "start": 7970.04, + "end": 7970.62, + "probability": 0.9258 + }, + { + "start": 7970.7, + "end": 7972.04, + "probability": 0.8699 + }, + { + "start": 7972.42, + "end": 7972.88, + "probability": 0.9717 + }, + { + "start": 7972.96, + "end": 7975.08, + "probability": 0.9858 + }, + { + "start": 7975.64, + "end": 7976.37, + "probability": 0.8347 + }, + { + "start": 7977.14, + "end": 7977.8, + "probability": 0.8438 + }, + { + "start": 7978.34, + "end": 7978.44, + "probability": 0.2488 + }, + { + "start": 7978.46, + "end": 7982.48, + "probability": 0.7878 + }, + { + "start": 7982.88, + "end": 7985.62, + "probability": 0.8115 + }, + { + "start": 7985.72, + "end": 7985.96, + "probability": 0.6309 + }, + { + "start": 7986.02, + "end": 7987.76, + "probability": 0.9497 + }, + { + "start": 7987.88, + "end": 7989.38, + "probability": 0.7172 + }, + { + "start": 7989.86, + "end": 7990.4, + "probability": 0.3818 + }, + { + "start": 7990.4, + "end": 7991.96, + "probability": 0.9394 + }, + { + "start": 7997.92, + "end": 8000.26, + "probability": 0.5712 + }, + { + "start": 8006.78, + "end": 8008.14, + "probability": 0.9634 + }, + { + "start": 8012.42, + "end": 8013.88, + "probability": 0.6325 + }, + { + "start": 8014.74, + "end": 8020.12, + "probability": 0.9684 + }, + { + "start": 8020.8, + "end": 8021.5, + "probability": 0.8372 + }, + { + "start": 8022.62, + "end": 8022.98, + "probability": 0.9211 + }, + { + "start": 8023.02, + "end": 8023.98, + "probability": 0.8472 + }, + { + "start": 8024.16, + "end": 8024.56, + "probability": 0.7427 + }, + { + "start": 8024.56, + "end": 8027.96, + "probability": 0.9683 + }, + { + "start": 8028.32, + "end": 8028.56, + "probability": 0.7149 + }, + { + "start": 8029.86, + "end": 8030.16, + "probability": 0.2911 + }, + { + "start": 8030.18, + "end": 8032.54, + "probability": 0.7769 + }, + { + "start": 8033.16, + "end": 8039.66, + "probability": 0.9921 + }, + { + "start": 8041.26, + "end": 8042.62, + "probability": 0.9965 + }, + { + "start": 8044.26, + "end": 8047.86, + "probability": 0.9958 + }, + { + "start": 8048.78, + "end": 8049.86, + "probability": 0.8901 + }, + { + "start": 8050.0, + "end": 8051.14, + "probability": 0.7307 + }, + { + "start": 8051.14, + "end": 8057.22, + "probability": 0.9968 + }, + { + "start": 8058.5, + "end": 8059.84, + "probability": 0.7527 + }, + { + "start": 8060.81, + "end": 8063.58, + "probability": 0.2152 + }, + { + "start": 8064.52, + "end": 8066.82, + "probability": 0.9946 + }, + { + "start": 8067.74, + "end": 8070.04, + "probability": 0.9244 + }, + { + "start": 8071.22, + "end": 8077.16, + "probability": 0.9917 + }, + { + "start": 8078.26, + "end": 8081.02, + "probability": 0.9513 + }, + { + "start": 8081.02, + "end": 8085.02, + "probability": 0.9934 + }, + { + "start": 8085.48, + "end": 8089.24, + "probability": 0.9738 + }, + { + "start": 8090.24, + "end": 8097.06, + "probability": 0.9956 + }, + { + "start": 8098.7, + "end": 8102.66, + "probability": 0.9807 + }, + { + "start": 8103.68, + "end": 8105.46, + "probability": 0.9976 + }, + { + "start": 8106.46, + "end": 8110.04, + "probability": 0.9138 + }, + { + "start": 8111.08, + "end": 8114.72, + "probability": 0.8686 + }, + { + "start": 8115.28, + "end": 8117.36, + "probability": 0.8907 + }, + { + "start": 8118.24, + "end": 8121.6, + "probability": 0.951 + }, + { + "start": 8122.6, + "end": 8124.04, + "probability": 0.9028 + }, + { + "start": 8124.68, + "end": 8127.98, + "probability": 0.9897 + }, + { + "start": 8128.66, + "end": 8131.5, + "probability": 0.9984 + }, + { + "start": 8132.72, + "end": 8136.04, + "probability": 0.9593 + }, + { + "start": 8136.72, + "end": 8137.74, + "probability": 0.7579 + }, + { + "start": 8138.46, + "end": 8140.0, + "probability": 0.9727 + }, + { + "start": 8140.54, + "end": 8141.82, + "probability": 0.9038 + }, + { + "start": 8142.52, + "end": 8144.78, + "probability": 0.9832 + }, + { + "start": 8145.66, + "end": 8147.88, + "probability": 0.9973 + }, + { + "start": 8148.76, + "end": 8150.48, + "probability": 0.979 + }, + { + "start": 8151.14, + "end": 8154.62, + "probability": 0.9834 + }, + { + "start": 8155.86, + "end": 8157.92, + "probability": 0.9633 + }, + { + "start": 8158.5, + "end": 8160.2, + "probability": 0.8396 + }, + { + "start": 8160.66, + "end": 8164.46, + "probability": 0.9804 + }, + { + "start": 8165.1, + "end": 8167.82, + "probability": 0.9267 + }, + { + "start": 8168.8, + "end": 8170.44, + "probability": 0.8363 + }, + { + "start": 8171.0, + "end": 8172.58, + "probability": 0.9618 + }, + { + "start": 8173.6, + "end": 8176.06, + "probability": 0.9706 + }, + { + "start": 8176.22, + "end": 8176.44, + "probability": 0.4925 + }, + { + "start": 8176.6, + "end": 8177.06, + "probability": 0.4559 + }, + { + "start": 8177.12, + "end": 8177.7, + "probability": 0.9047 + }, + { + "start": 8177.86, + "end": 8179.0, + "probability": 0.9288 + }, + { + "start": 8179.46, + "end": 8182.0, + "probability": 0.9509 + }, + { + "start": 8182.64, + "end": 8186.04, + "probability": 0.9092 + }, + { + "start": 8186.9, + "end": 8193.62, + "probability": 0.9918 + }, + { + "start": 8194.7, + "end": 8196.94, + "probability": 0.8572 + }, + { + "start": 8197.0, + "end": 8200.34, + "probability": 0.979 + }, + { + "start": 8200.34, + "end": 8202.82, + "probability": 0.9946 + }, + { + "start": 8203.5, + "end": 8205.16, + "probability": 0.5206 + }, + { + "start": 8205.22, + "end": 8207.0, + "probability": 0.9341 + }, + { + "start": 8207.44, + "end": 8208.18, + "probability": 0.3915 + }, + { + "start": 8208.18, + "end": 8209.96, + "probability": 0.9757 + }, + { + "start": 8212.3, + "end": 8214.84, + "probability": 0.4816 + }, + { + "start": 8219.78, + "end": 8221.78, + "probability": 0.7648 + }, + { + "start": 8222.56, + "end": 8223.5, + "probability": 0.8371 + }, + { + "start": 8224.42, + "end": 8231.66, + "probability": 0.675 + }, + { + "start": 8231.74, + "end": 8234.34, + "probability": 0.7856 + }, + { + "start": 8234.96, + "end": 8238.5, + "probability": 0.9175 + }, + { + "start": 8241.19, + "end": 8241.26, + "probability": 0.08 + }, + { + "start": 8241.26, + "end": 8241.84, + "probability": 0.4424 + }, + { + "start": 8242.18, + "end": 8245.14, + "probability": 0.6346 + }, + { + "start": 8245.68, + "end": 8248.98, + "probability": 0.9129 + }, + { + "start": 8249.46, + "end": 8251.52, + "probability": 0.9151 + }, + { + "start": 8252.1, + "end": 8253.09, + "probability": 0.7896 + }, + { + "start": 8254.68, + "end": 8256.16, + "probability": 0.8291 + }, + { + "start": 8256.38, + "end": 8256.64, + "probability": 0.493 + }, + { + "start": 8256.86, + "end": 8260.56, + "probability": 0.7948 + }, + { + "start": 8261.1, + "end": 8263.48, + "probability": 0.9619 + }, + { + "start": 8263.98, + "end": 8266.86, + "probability": 0.9819 + }, + { + "start": 8266.86, + "end": 8269.56, + "probability": 0.999 + }, + { + "start": 8270.08, + "end": 8277.42, + "probability": 0.9774 + }, + { + "start": 8277.84, + "end": 8279.84, + "probability": 0.6879 + }, + { + "start": 8280.26, + "end": 8283.08, + "probability": 0.8765 + }, + { + "start": 8283.6, + "end": 8285.04, + "probability": 0.9171 + }, + { + "start": 8285.14, + "end": 8285.94, + "probability": 0.7356 + }, + { + "start": 8286.32, + "end": 8288.48, + "probability": 0.9951 + }, + { + "start": 8289.28, + "end": 8290.18, + "probability": 0.663 + }, + { + "start": 8290.24, + "end": 8293.31, + "probability": 0.948 + }, + { + "start": 8293.86, + "end": 8299.24, + "probability": 0.808 + }, + { + "start": 8299.8, + "end": 8300.34, + "probability": 0.6855 + }, + { + "start": 8301.0, + "end": 8301.6, + "probability": 0.8325 + }, + { + "start": 8301.7, + "end": 8302.72, + "probability": 0.5293 + }, + { + "start": 8303.27, + "end": 8306.02, + "probability": 0.35 + }, + { + "start": 8306.2, + "end": 8306.78, + "probability": 0.7744 + }, + { + "start": 8306.9, + "end": 8307.8, + "probability": 0.897 + }, + { + "start": 8308.0, + "end": 8311.88, + "probability": 0.875 + }, + { + "start": 8313.04, + "end": 8315.78, + "probability": 0.9451 + }, + { + "start": 8316.42, + "end": 8320.32, + "probability": 0.9851 + }, + { + "start": 8320.86, + "end": 8324.88, + "probability": 0.9479 + }, + { + "start": 8325.48, + "end": 8329.36, + "probability": 0.8439 + }, + { + "start": 8329.54, + "end": 8331.22, + "probability": 0.7673 + }, + { + "start": 8331.74, + "end": 8331.98, + "probability": 0.5696 + }, + { + "start": 8332.04, + "end": 8332.78, + "probability": 0.731 + }, + { + "start": 8333.28, + "end": 8335.4, + "probability": 0.8403 + }, + { + "start": 8336.44, + "end": 8338.94, + "probability": 0.8701 + }, + { + "start": 8339.2, + "end": 8340.59, + "probability": 0.9771 + }, + { + "start": 8341.14, + "end": 8341.58, + "probability": 0.672 + }, + { + "start": 8342.26, + "end": 8342.5, + "probability": 0.5291 + }, + { + "start": 8343.7, + "end": 8347.8, + "probability": 0.9124 + }, + { + "start": 8347.8, + "end": 8351.26, + "probability": 0.9524 + }, + { + "start": 8352.56, + "end": 8353.74, + "probability": 0.8546 + }, + { + "start": 8353.94, + "end": 8354.9, + "probability": 0.979 + }, + { + "start": 8355.32, + "end": 8356.04, + "probability": 0.592 + }, + { + "start": 8356.52, + "end": 8357.08, + "probability": 0.894 + }, + { + "start": 8357.14, + "end": 8358.98, + "probability": 0.712 + }, + { + "start": 8359.34, + "end": 8360.7, + "probability": 0.9739 + }, + { + "start": 8361.94, + "end": 8363.1, + "probability": 0.9966 + }, + { + "start": 8363.4, + "end": 8368.18, + "probability": 0.9814 + }, + { + "start": 8368.66, + "end": 8369.39, + "probability": 0.9417 + }, + { + "start": 8370.22, + "end": 8373.26, + "probability": 0.9834 + }, + { + "start": 8373.44, + "end": 8374.58, + "probability": 0.1368 + }, + { + "start": 8375.62, + "end": 8379.62, + "probability": 0.9452 + }, + { + "start": 8380.02, + "end": 8380.92, + "probability": 0.9751 + }, + { + "start": 8381.3, + "end": 8381.84, + "probability": 0.6786 + }, + { + "start": 8382.22, + "end": 8382.68, + "probability": 0.7445 + }, + { + "start": 8382.86, + "end": 8383.6, + "probability": 0.7128 + }, + { + "start": 8383.94, + "end": 8385.94, + "probability": 0.8752 + }, + { + "start": 8386.8, + "end": 8388.06, + "probability": 0.7899 + }, + { + "start": 8388.14, + "end": 8388.88, + "probability": 0.5853 + }, + { + "start": 8389.1, + "end": 8392.04, + "probability": 0.9398 + }, + { + "start": 8392.4, + "end": 8393.04, + "probability": 0.9627 + }, + { + "start": 8393.14, + "end": 8397.18, + "probability": 0.9782 + }, + { + "start": 8397.18, + "end": 8399.84, + "probability": 0.8901 + }, + { + "start": 8400.2, + "end": 8401.94, + "probability": 0.9512 + }, + { + "start": 8403.48, + "end": 8408.56, + "probability": 0.9822 + }, + { + "start": 8408.66, + "end": 8410.04, + "probability": 0.5165 + }, + { + "start": 8410.22, + "end": 8410.38, + "probability": 0.2756 + }, + { + "start": 8411.32, + "end": 8412.95, + "probability": 0.9375 + }, + { + "start": 8413.38, + "end": 8415.88, + "probability": 0.8123 + }, + { + "start": 8416.0, + "end": 8416.0, + "probability": 0.3998 + }, + { + "start": 8416.48, + "end": 8417.0, + "probability": 0.9766 + }, + { + "start": 8417.28, + "end": 8419.01, + "probability": 0.8079 + }, + { + "start": 8419.4, + "end": 8424.1, + "probability": 0.9434 + }, + { + "start": 8424.43, + "end": 8429.08, + "probability": 0.9048 + }, + { + "start": 8429.08, + "end": 8435.34, + "probability": 0.9812 + }, + { + "start": 8435.62, + "end": 8436.44, + "probability": 0.6145 + }, + { + "start": 8436.72, + "end": 8438.82, + "probability": 0.9409 + }, + { + "start": 8438.9, + "end": 8439.73, + "probability": 0.6249 + }, + { + "start": 8440.68, + "end": 8441.6, + "probability": 0.6727 + }, + { + "start": 8443.48, + "end": 8445.6, + "probability": 0.8046 + }, + { + "start": 8452.46, + "end": 8457.02, + "probability": 0.8727 + }, + { + "start": 8465.1, + "end": 8465.22, + "probability": 0.0127 + }, + { + "start": 8465.22, + "end": 8466.7, + "probability": 0.7007 + }, + { + "start": 8467.98, + "end": 8471.26, + "probability": 0.8093 + }, + { + "start": 8472.4, + "end": 8476.04, + "probability": 0.7191 + }, + { + "start": 8476.16, + "end": 8478.12, + "probability": 0.9585 + }, + { + "start": 8478.68, + "end": 8480.24, + "probability": 0.9819 + }, + { + "start": 8480.68, + "end": 8482.02, + "probability": 0.641 + }, + { + "start": 8482.94, + "end": 8483.82, + "probability": 0.0472 + }, + { + "start": 8486.1, + "end": 8487.38, + "probability": 0.6934 + }, + { + "start": 8488.14, + "end": 8489.34, + "probability": 0.9155 + }, + { + "start": 8490.4, + "end": 8496.52, + "probability": 0.9927 + }, + { + "start": 8496.52, + "end": 8500.36, + "probability": 0.9619 + }, + { + "start": 8501.04, + "end": 8502.76, + "probability": 0.9679 + }, + { + "start": 8503.44, + "end": 8506.94, + "probability": 0.9941 + }, + { + "start": 8507.7, + "end": 8507.82, + "probability": 0.7412 + }, + { + "start": 8507.98, + "end": 8510.08, + "probability": 0.9924 + }, + { + "start": 8510.17, + "end": 8516.16, + "probability": 0.8283 + }, + { + "start": 8516.74, + "end": 8518.16, + "probability": 0.9814 + }, + { + "start": 8519.82, + "end": 8522.86, + "probability": 0.9595 + }, + { + "start": 8523.34, + "end": 8528.18, + "probability": 0.993 + }, + { + "start": 8528.34, + "end": 8530.74, + "probability": 0.9771 + }, + { + "start": 8531.14, + "end": 8533.46, + "probability": 0.9678 + }, + { + "start": 8535.1, + "end": 8536.82, + "probability": 0.8555 + }, + { + "start": 8537.72, + "end": 8539.06, + "probability": 0.7944 + }, + { + "start": 8539.86, + "end": 8541.88, + "probability": 0.9946 + }, + { + "start": 8542.96, + "end": 8545.5, + "probability": 0.9812 + }, + { + "start": 8545.54, + "end": 8547.17, + "probability": 0.9301 + }, + { + "start": 8547.66, + "end": 8548.9, + "probability": 0.8177 + }, + { + "start": 8549.8, + "end": 8551.22, + "probability": 0.8746 + }, + { + "start": 8551.3, + "end": 8553.56, + "probability": 0.9976 + }, + { + "start": 8554.28, + "end": 8555.52, + "probability": 0.942 + }, + { + "start": 8556.22, + "end": 8558.92, + "probability": 0.8947 + }, + { + "start": 8559.04, + "end": 8561.82, + "probability": 0.9989 + }, + { + "start": 8562.52, + "end": 8563.36, + "probability": 0.9448 + }, + { + "start": 8563.98, + "end": 8565.96, + "probability": 0.9969 + }, + { + "start": 8566.48, + "end": 8568.14, + "probability": 0.995 + }, + { + "start": 8568.68, + "end": 8569.84, + "probability": 0.1857 + }, + { + "start": 8570.58, + "end": 8573.14, + "probability": 0.9854 + }, + { + "start": 8573.62, + "end": 8575.38, + "probability": 0.975 + }, + { + "start": 8575.92, + "end": 8577.58, + "probability": 0.9402 + }, + { + "start": 8578.0, + "end": 8579.28, + "probability": 0.967 + }, + { + "start": 8580.0, + "end": 8584.2, + "probability": 0.9944 + }, + { + "start": 8584.34, + "end": 8586.86, + "probability": 0.7793 + }, + { + "start": 8587.02, + "end": 8588.48, + "probability": 0.9523 + }, + { + "start": 8588.82, + "end": 8589.38, + "probability": 0.7408 + }, + { + "start": 8590.5, + "end": 8592.28, + "probability": 0.6449 + }, + { + "start": 8592.78, + "end": 8594.48, + "probability": 0.6536 + }, + { + "start": 8594.9, + "end": 8595.76, + "probability": 0.5393 + }, + { + "start": 8596.26, + "end": 8597.66, + "probability": 0.9678 + }, + { + "start": 8598.08, + "end": 8598.96, + "probability": 0.3027 + }, + { + "start": 8599.3, + "end": 8601.42, + "probability": 0.6021 + }, + { + "start": 8603.18, + "end": 8605.02, + "probability": 0.9881 + }, + { + "start": 8614.68, + "end": 8615.2, + "probability": 0.6585 + }, + { + "start": 8615.4, + "end": 8615.92, + "probability": 0.6084 + }, + { + "start": 8616.06, + "end": 8617.22, + "probability": 0.7502 + }, + { + "start": 8617.3, + "end": 8626.12, + "probability": 0.9872 + }, + { + "start": 8627.6, + "end": 8629.34, + "probability": 0.5277 + }, + { + "start": 8631.66, + "end": 8633.76, + "probability": 0.6387 + }, + { + "start": 8634.3, + "end": 8636.1, + "probability": 0.9482 + }, + { + "start": 8636.42, + "end": 8637.86, + "probability": 0.6241 + }, + { + "start": 8638.02, + "end": 8641.94, + "probability": 0.935 + }, + { + "start": 8644.08, + "end": 8645.12, + "probability": 0.8867 + }, + { + "start": 8646.34, + "end": 8653.28, + "probability": 0.9612 + }, + { + "start": 8658.36, + "end": 8664.28, + "probability": 0.6979 + }, + { + "start": 8665.84, + "end": 8665.9, + "probability": 0.004 + }, + { + "start": 8666.78, + "end": 8667.84, + "probability": 0.6678 + }, + { + "start": 8670.84, + "end": 8672.76, + "probability": 0.8812 + }, + { + "start": 8674.76, + "end": 8682.78, + "probability": 0.9275 + }, + { + "start": 8683.84, + "end": 8685.46, + "probability": 0.9237 + }, + { + "start": 8687.06, + "end": 8688.68, + "probability": 0.9895 + }, + { + "start": 8690.26, + "end": 8691.35, + "probability": 0.494 + }, + { + "start": 8694.61, + "end": 8698.66, + "probability": 0.9745 + }, + { + "start": 8699.6, + "end": 8700.1, + "probability": 0.7212 + }, + { + "start": 8701.66, + "end": 8702.96, + "probability": 0.889 + }, + { + "start": 8703.14, + "end": 8705.04, + "probability": 0.8902 + }, + { + "start": 8706.04, + "end": 8707.8, + "probability": 0.9646 + }, + { + "start": 8709.12, + "end": 8717.9, + "probability": 0.9968 + }, + { + "start": 8718.38, + "end": 8719.14, + "probability": 0.9445 + }, + { + "start": 8720.72, + "end": 8721.58, + "probability": 0.407 + }, + { + "start": 8722.14, + "end": 8726.0, + "probability": 0.9933 + }, + { + "start": 8727.48, + "end": 8729.76, + "probability": 0.9139 + }, + { + "start": 8732.78, + "end": 8740.92, + "probability": 0.9575 + }, + { + "start": 8742.1, + "end": 8747.72, + "probability": 0.9708 + }, + { + "start": 8749.14, + "end": 8751.81, + "probability": 0.8586 + }, + { + "start": 8752.46, + "end": 8755.94, + "probability": 0.8088 + }, + { + "start": 8756.28, + "end": 8761.14, + "probability": 0.8418 + }, + { + "start": 8763.68, + "end": 8764.06, + "probability": 0.627 + }, + { + "start": 8765.22, + "end": 8767.46, + "probability": 0.8391 + }, + { + "start": 8768.92, + "end": 8773.6, + "probability": 0.9329 + }, + { + "start": 8773.74, + "end": 8775.24, + "probability": 0.9191 + }, + { + "start": 8775.78, + "end": 8778.14, + "probability": 0.9799 + }, + { + "start": 8779.1, + "end": 8783.62, + "probability": 0.5247 + }, + { + "start": 8784.44, + "end": 8789.26, + "probability": 0.7729 + }, + { + "start": 8790.84, + "end": 8793.74, + "probability": 0.816 + }, + { + "start": 8794.66, + "end": 8795.9, + "probability": 0.7497 + }, + { + "start": 8795.98, + "end": 8797.3, + "probability": 0.4775 + }, + { + "start": 8797.38, + "end": 8798.66, + "probability": 0.777 + }, + { + "start": 8800.16, + "end": 8800.16, + "probability": 0.9219 + }, + { + "start": 8801.08, + "end": 8806.12, + "probability": 0.9862 + }, + { + "start": 8807.44, + "end": 8809.26, + "probability": 0.6542 + }, + { + "start": 8809.38, + "end": 8810.74, + "probability": 0.8989 + }, + { + "start": 8811.92, + "end": 8815.78, + "probability": 0.7578 + }, + { + "start": 8822.16, + "end": 8824.12, + "probability": 0.9717 + }, + { + "start": 8824.2, + "end": 8825.48, + "probability": 0.8319 + }, + { + "start": 8825.58, + "end": 8827.06, + "probability": 0.9661 + }, + { + "start": 8829.78, + "end": 8831.14, + "probability": 0.0287 + }, + { + "start": 8833.18, + "end": 8834.56, + "probability": 0.5271 + }, + { + "start": 8836.77, + "end": 8840.12, + "probability": 0.8211 + }, + { + "start": 8840.78, + "end": 8843.14, + "probability": 0.6913 + }, + { + "start": 8845.62, + "end": 8846.62, + "probability": 0.8392 + }, + { + "start": 8846.72, + "end": 8849.26, + "probability": 0.9778 + }, + { + "start": 8849.42, + "end": 8850.2, + "probability": 0.3326 + }, + { + "start": 8852.06, + "end": 8853.52, + "probability": 0.9366 + }, + { + "start": 8854.62, + "end": 8855.74, + "probability": 0.9342 + }, + { + "start": 8856.82, + "end": 8859.06, + "probability": 0.9904 + }, + { + "start": 8859.6, + "end": 8864.3, + "probability": 0.9608 + }, + { + "start": 8864.56, + "end": 8864.96, + "probability": 0.1539 + }, + { + "start": 8867.4, + "end": 8868.54, + "probability": 0.7643 + }, + { + "start": 8869.28, + "end": 8870.82, + "probability": 0.9842 + }, + { + "start": 8871.62, + "end": 8874.18, + "probability": 0.6601 + }, + { + "start": 8874.6, + "end": 8875.24, + "probability": 0.1249 + }, + { + "start": 8876.38, + "end": 8877.4, + "probability": 0.8279 + }, + { + "start": 8878.58, + "end": 8880.28, + "probability": 0.5398 + }, + { + "start": 8880.8, + "end": 8882.4, + "probability": 0.8097 + }, + { + "start": 8882.48, + "end": 8883.17, + "probability": 0.9512 + }, + { + "start": 8886.06, + "end": 8887.9, + "probability": 0.7785 + }, + { + "start": 8888.72, + "end": 8890.14, + "probability": 0.7358 + }, + { + "start": 8891.86, + "end": 8892.58, + "probability": 0.8468 + }, + { + "start": 8894.82, + "end": 8896.44, + "probability": 0.7941 + }, + { + "start": 8897.5, + "end": 8897.9, + "probability": 0.8436 + }, + { + "start": 8899.2, + "end": 8905.02, + "probability": 0.8369 + }, + { + "start": 8906.18, + "end": 8910.38, + "probability": 0.9349 + }, + { + "start": 8911.56, + "end": 8913.64, + "probability": 0.5917 + }, + { + "start": 8914.88, + "end": 8915.92, + "probability": 0.8011 + }, + { + "start": 8917.7, + "end": 8921.68, + "probability": 0.7133 + }, + { + "start": 8921.74, + "end": 8923.44, + "probability": 0.6103 + }, + { + "start": 8923.52, + "end": 8924.1, + "probability": 0.7318 + }, + { + "start": 8925.04, + "end": 8926.34, + "probability": 0.7511 + }, + { + "start": 8926.88, + "end": 8928.14, + "probability": 0.9475 + }, + { + "start": 8928.5, + "end": 8930.0, + "probability": 0.8665 + }, + { + "start": 8930.24, + "end": 8930.84, + "probability": 0.9416 + }, + { + "start": 8932.34, + "end": 8934.16, + "probability": 0.9978 + }, + { + "start": 8935.02, + "end": 8935.84, + "probability": 0.7009 + }, + { + "start": 8937.0, + "end": 8938.22, + "probability": 0.9712 + }, + { + "start": 8938.36, + "end": 8939.82, + "probability": 0.7962 + }, + { + "start": 8939.86, + "end": 8940.96, + "probability": 0.9136 + }, + { + "start": 8941.74, + "end": 8942.25, + "probability": 0.8255 + }, + { + "start": 8942.88, + "end": 8944.66, + "probability": 0.9937 + }, + { + "start": 8945.2, + "end": 8948.0, + "probability": 0.672 + }, + { + "start": 8949.78, + "end": 8950.02, + "probability": 0.023 + }, + { + "start": 8950.02, + "end": 8953.26, + "probability": 0.5924 + }, + { + "start": 8954.92, + "end": 8959.4, + "probability": 0.872 + }, + { + "start": 8959.6, + "end": 8960.52, + "probability": 0.6548 + }, + { + "start": 8961.12, + "end": 8962.06, + "probability": 0.9133 + }, + { + "start": 8962.24, + "end": 8963.04, + "probability": 0.7018 + }, + { + "start": 8963.12, + "end": 8964.2, + "probability": 0.8848 + }, + { + "start": 8964.26, + "end": 8965.18, + "probability": 0.591 + }, + { + "start": 8965.64, + "end": 8967.82, + "probability": 0.8236 + }, + { + "start": 8968.48, + "end": 8970.68, + "probability": 0.9705 + }, + { + "start": 8972.18, + "end": 8973.84, + "probability": 0.8687 + }, + { + "start": 8975.54, + "end": 8977.38, + "probability": 0.7786 + }, + { + "start": 8977.54, + "end": 8980.38, + "probability": 0.7072 + }, + { + "start": 8980.9, + "end": 8982.26, + "probability": 0.6144 + }, + { + "start": 8982.94, + "end": 8984.42, + "probability": 0.891 + }, + { + "start": 8985.06, + "end": 8985.88, + "probability": 0.7651 + }, + { + "start": 8995.18, + "end": 8995.88, + "probability": 0.7579 + }, + { + "start": 8996.64, + "end": 9000.84, + "probability": 0.9105 + }, + { + "start": 9003.0, + "end": 9004.76, + "probability": 0.3586 + }, + { + "start": 9005.52, + "end": 9007.27, + "probability": 0.897 + }, + { + "start": 9008.44, + "end": 9012.06, + "probability": 0.8346 + }, + { + "start": 9012.74, + "end": 9016.96, + "probability": 0.9897 + }, + { + "start": 9017.58, + "end": 9021.9, + "probability": 0.7885 + }, + { + "start": 9022.12, + "end": 9025.3, + "probability": 0.9239 + }, + { + "start": 9026.14, + "end": 9027.7, + "probability": 0.6088 + }, + { + "start": 9027.86, + "end": 9031.88, + "probability": 0.8533 + }, + { + "start": 9031.98, + "end": 9034.94, + "probability": 0.6869 + }, + { + "start": 9035.84, + "end": 9037.46, + "probability": 0.989 + }, + { + "start": 9038.56, + "end": 9040.46, + "probability": 0.8856 + }, + { + "start": 9043.44, + "end": 9048.28, + "probability": 0.9692 + }, + { + "start": 9049.52, + "end": 9051.88, + "probability": 0.5304 + }, + { + "start": 9052.4, + "end": 9052.72, + "probability": 0.9954 + }, + { + "start": 9053.58, + "end": 9054.86, + "probability": 0.9229 + }, + { + "start": 9056.12, + "end": 9057.74, + "probability": 0.7852 + }, + { + "start": 9058.38, + "end": 9065.06, + "probability": 0.9167 + }, + { + "start": 9066.62, + "end": 9072.04, + "probability": 0.8307 + }, + { + "start": 9073.46, + "end": 9075.86, + "probability": 0.4885 + }, + { + "start": 9076.48, + "end": 9076.98, + "probability": 0.3366 + }, + { + "start": 9077.12, + "end": 9079.7, + "probability": 0.9805 + }, + { + "start": 9080.16, + "end": 9081.88, + "probability": 0.8754 + }, + { + "start": 9082.78, + "end": 9084.74, + "probability": 0.7525 + }, + { + "start": 9085.1, + "end": 9086.18, + "probability": 0.7856 + }, + { + "start": 9086.66, + "end": 9088.24, + "probability": 0.9814 + }, + { + "start": 9088.84, + "end": 9093.6, + "probability": 0.9976 + }, + { + "start": 9093.64, + "end": 9094.62, + "probability": 0.7079 + }, + { + "start": 9095.34, + "end": 9096.94, + "probability": 0.9971 + }, + { + "start": 9097.82, + "end": 9099.48, + "probability": 0.8602 + }, + { + "start": 9100.06, + "end": 9102.44, + "probability": 0.9567 + }, + { + "start": 9102.5, + "end": 9103.98, + "probability": 0.8407 + }, + { + "start": 9104.82, + "end": 9106.2, + "probability": 0.8511 + }, + { + "start": 9106.98, + "end": 9108.34, + "probability": 0.6796 + }, + { + "start": 9108.34, + "end": 9110.8, + "probability": 0.5174 + }, + { + "start": 9110.8, + "end": 9114.64, + "probability": 0.7932 + }, + { + "start": 9115.04, + "end": 9115.04, + "probability": 0.3257 + }, + { + "start": 9115.04, + "end": 9117.38, + "probability": 0.643 + }, + { + "start": 9117.5, + "end": 9117.86, + "probability": 0.6222 + }, + { + "start": 9119.12, + "end": 9119.54, + "probability": 0.0341 + }, + { + "start": 9119.54, + "end": 9120.33, + "probability": 0.0477 + }, + { + "start": 9120.96, + "end": 9121.72, + "probability": 0.3974 + }, + { + "start": 9122.74, + "end": 9127.38, + "probability": 0.4748 + }, + { + "start": 9127.5, + "end": 9134.32, + "probability": 0.8855 + }, + { + "start": 9134.48, + "end": 9135.86, + "probability": 0.9749 + }, + { + "start": 9136.62, + "end": 9141.42, + "probability": 0.9663 + }, + { + "start": 9142.62, + "end": 9148.2, + "probability": 0.9876 + }, + { + "start": 9148.72, + "end": 9151.65, + "probability": 0.8408 + }, + { + "start": 9152.08, + "end": 9154.56, + "probability": 0.7471 + }, + { + "start": 9155.78, + "end": 9158.7, + "probability": 0.7209 + }, + { + "start": 9158.78, + "end": 9160.22, + "probability": 0.905 + }, + { + "start": 9160.38, + "end": 9161.68, + "probability": 0.9888 + }, + { + "start": 9161.76, + "end": 9162.58, + "probability": 0.8537 + }, + { + "start": 9163.1, + "end": 9163.76, + "probability": 0.7426 + }, + { + "start": 9164.3, + "end": 9164.92, + "probability": 0.4644 + }, + { + "start": 9165.04, + "end": 9168.14, + "probability": 0.9634 + }, + { + "start": 9168.2, + "end": 9168.88, + "probability": 0.9239 + }, + { + "start": 9168.98, + "end": 9170.18, + "probability": 0.9956 + }, + { + "start": 9170.64, + "end": 9172.12, + "probability": 0.8239 + }, + { + "start": 9172.18, + "end": 9174.96, + "probability": 0.9883 + }, + { + "start": 9175.1, + "end": 9176.18, + "probability": 0.9017 + }, + { + "start": 9176.7, + "end": 9177.5, + "probability": 0.6654 + }, + { + "start": 9177.58, + "end": 9182.0, + "probability": 0.8613 + }, + { + "start": 9182.32, + "end": 9183.26, + "probability": 0.8281 + }, + { + "start": 9184.1, + "end": 9184.88, + "probability": 0.7783 + }, + { + "start": 9185.56, + "end": 9188.14, + "probability": 0.9869 + }, + { + "start": 9189.2, + "end": 9196.74, + "probability": 0.9844 + }, + { + "start": 9196.86, + "end": 9199.64, + "probability": 0.9419 + }, + { + "start": 9200.4, + "end": 9205.76, + "probability": 0.9783 + }, + { + "start": 9207.0, + "end": 9209.84, + "probability": 0.7614 + }, + { + "start": 9209.94, + "end": 9210.92, + "probability": 0.9209 + }, + { + "start": 9211.64, + "end": 9214.98, + "probability": 0.6967 + }, + { + "start": 9222.72, + "end": 9225.08, + "probability": 0.7097 + }, + { + "start": 9225.76, + "end": 9227.0, + "probability": 0.3773 + }, + { + "start": 9227.16, + "end": 9228.2, + "probability": 0.7297 + }, + { + "start": 9229.76, + "end": 9232.44, + "probability": 0.9933 + }, + { + "start": 9232.98, + "end": 9239.62, + "probability": 0.9832 + }, + { + "start": 9239.84, + "end": 9243.7, + "probability": 0.9839 + }, + { + "start": 9243.98, + "end": 9245.0, + "probability": 0.8127 + }, + { + "start": 9245.14, + "end": 9245.82, + "probability": 0.7776 + }, + { + "start": 9245.9, + "end": 9246.46, + "probability": 0.9762 + }, + { + "start": 9248.22, + "end": 9250.89, + "probability": 0.9893 + }, + { + "start": 9250.94, + "end": 9256.18, + "probability": 0.9849 + }, + { + "start": 9256.92, + "end": 9258.92, + "probability": 0.8522 + }, + { + "start": 9259.72, + "end": 9261.3, + "probability": 0.84 + }, + { + "start": 9262.18, + "end": 9264.62, + "probability": 0.8404 + }, + { + "start": 9265.94, + "end": 9272.26, + "probability": 0.8259 + }, + { + "start": 9273.12, + "end": 9274.98, + "probability": 0.7061 + }, + { + "start": 9276.99, + "end": 9277.48, + "probability": 0.1555 + }, + { + "start": 9277.48, + "end": 9280.94, + "probability": 0.695 + }, + { + "start": 9281.08, + "end": 9281.6, + "probability": 0.6275 + }, + { + "start": 9282.7, + "end": 9283.7, + "probability": 0.4719 + }, + { + "start": 9284.76, + "end": 9287.52, + "probability": 0.8543 + }, + { + "start": 9288.08, + "end": 9289.96, + "probability": 0.8449 + }, + { + "start": 9290.94, + "end": 9294.5, + "probability": 0.7498 + }, + { + "start": 9295.18, + "end": 9300.16, + "probability": 0.9777 + }, + { + "start": 9300.56, + "end": 9304.44, + "probability": 0.6176 + }, + { + "start": 9305.66, + "end": 9308.28, + "probability": 0.971 + }, + { + "start": 9308.5, + "end": 9308.96, + "probability": 0.6497 + }, + { + "start": 9309.06, + "end": 9314.5, + "probability": 0.9929 + }, + { + "start": 9314.62, + "end": 9316.58, + "probability": 0.9951 + }, + { + "start": 9317.36, + "end": 9317.82, + "probability": 0.4845 + }, + { + "start": 9317.96, + "end": 9318.16, + "probability": 0.559 + }, + { + "start": 9318.24, + "end": 9321.12, + "probability": 0.9551 + }, + { + "start": 9321.32, + "end": 9324.2, + "probability": 0.8201 + }, + { + "start": 9324.26, + "end": 9325.14, + "probability": 0.9915 + }, + { + "start": 9325.74, + "end": 9328.02, + "probability": 0.9404 + }, + { + "start": 9328.48, + "end": 9329.3, + "probability": 0.9161 + }, + { + "start": 9330.1, + "end": 9331.02, + "probability": 0.7651 + }, + { + "start": 9331.82, + "end": 9336.52, + "probability": 0.8587 + }, + { + "start": 9337.86, + "end": 9340.72, + "probability": 0.6768 + }, + { + "start": 9341.14, + "end": 9343.64, + "probability": 0.9875 + }, + { + "start": 9344.64, + "end": 9346.1, + "probability": 0.768 + }, + { + "start": 9346.4, + "end": 9351.08, + "probability": 0.8573 + }, + { + "start": 9352.1, + "end": 9353.14, + "probability": 0.8599 + }, + { + "start": 9353.56, + "end": 9355.75, + "probability": 0.9043 + }, + { + "start": 9356.56, + "end": 9361.6, + "probability": 0.9881 + }, + { + "start": 9362.14, + "end": 9362.4, + "probability": 0.5718 + }, + { + "start": 9362.86, + "end": 9367.22, + "probability": 0.9913 + }, + { + "start": 9367.94, + "end": 9372.08, + "probability": 0.9917 + }, + { + "start": 9373.3, + "end": 9375.9, + "probability": 0.9432 + }, + { + "start": 9376.42, + "end": 9377.3, + "probability": 0.7452 + }, + { + "start": 9377.4, + "end": 9379.18, + "probability": 0.8047 + }, + { + "start": 9379.5, + "end": 9383.88, + "probability": 0.6205 + }, + { + "start": 9384.14, + "end": 9384.96, + "probability": 0.8941 + }, + { + "start": 9385.56, + "end": 9388.7, + "probability": 0.9702 + }, + { + "start": 9389.24, + "end": 9394.62, + "probability": 0.8533 + }, + { + "start": 9394.62, + "end": 9396.78, + "probability": 0.9776 + }, + { + "start": 9397.3, + "end": 9399.5, + "probability": 0.7121 + }, + { + "start": 9399.94, + "end": 9402.43, + "probability": 0.9124 + }, + { + "start": 9402.82, + "end": 9403.46, + "probability": 0.5472 + }, + { + "start": 9403.7, + "end": 9405.5, + "probability": 0.9196 + }, + { + "start": 9415.1, + "end": 9416.64, + "probability": 0.9619 + }, + { + "start": 9420.94, + "end": 9422.76, + "probability": 0.4362 + }, + { + "start": 9423.3, + "end": 9423.44, + "probability": 0.2471 + }, + { + "start": 9423.46, + "end": 9424.52, + "probability": 0.5341 + }, + { + "start": 9425.32, + "end": 9425.9, + "probability": 0.4343 + }, + { + "start": 9425.9, + "end": 9427.46, + "probability": 0.7537 + }, + { + "start": 9427.72, + "end": 9427.84, + "probability": 0.2175 + }, + { + "start": 9428.69, + "end": 9429.6, + "probability": 0.3255 + }, + { + "start": 9429.76, + "end": 9431.48, + "probability": 0.9849 + }, + { + "start": 9431.7, + "end": 9432.16, + "probability": 0.8716 + }, + { + "start": 9432.36, + "end": 9432.86, + "probability": 0.3839 + }, + { + "start": 9433.74, + "end": 9434.16, + "probability": 0.3835 + }, + { + "start": 9434.56, + "end": 9436.9, + "probability": 0.8778 + }, + { + "start": 9436.94, + "end": 9437.22, + "probability": 0.6091 + }, + { + "start": 9438.3, + "end": 9438.6, + "probability": 0.6279 + }, + { + "start": 9438.98, + "end": 9440.68, + "probability": 0.4421 + }, + { + "start": 9440.68, + "end": 9441.34, + "probability": 0.2489 + }, + { + "start": 9442.5, + "end": 9445.78, + "probability": 0.9655 + }, + { + "start": 9445.98, + "end": 9446.1, + "probability": 0.5589 + }, + { + "start": 9446.1, + "end": 9446.1, + "probability": 0.2604 + }, + { + "start": 9446.1, + "end": 9446.1, + "probability": 0.3671 + }, + { + "start": 9446.1, + "end": 9447.94, + "probability": 0.6702 + }, + { + "start": 9448.0, + "end": 9448.14, + "probability": 0.7959 + }, + { + "start": 9448.22, + "end": 9448.88, + "probability": 0.5003 + }, + { + "start": 9448.96, + "end": 9449.28, + "probability": 0.6798 + }, + { + "start": 9449.38, + "end": 9449.8, + "probability": 0.5033 + }, + { + "start": 9449.82, + "end": 9450.97, + "probability": 0.9426 + }, + { + "start": 9451.24, + "end": 9451.76, + "probability": 0.6495 + }, + { + "start": 9453.24, + "end": 9455.82, + "probability": 0.8909 + }, + { + "start": 9455.88, + "end": 9455.9, + "probability": 0.1522 + }, + { + "start": 9455.9, + "end": 9456.82, + "probability": 0.6649 + }, + { + "start": 9456.9, + "end": 9457.6, + "probability": 0.5724 + }, + { + "start": 9457.68, + "end": 9458.82, + "probability": 0.7858 + }, + { + "start": 9459.24, + "end": 9459.74, + "probability": 0.9032 + }, + { + "start": 9461.58, + "end": 9466.16, + "probability": 0.8935 + }, + { + "start": 9466.48, + "end": 9467.38, + "probability": 0.1654 + }, + { + "start": 9468.92, + "end": 9469.46, + "probability": 0.7268 + }, + { + "start": 9469.86, + "end": 9471.42, + "probability": 0.9946 + }, + { + "start": 9471.56, + "end": 9473.74, + "probability": 0.856 + }, + { + "start": 9473.9, + "end": 9475.41, + "probability": 0.251 + }, + { + "start": 9475.72, + "end": 9475.74, + "probability": 0.387 + }, + { + "start": 9475.82, + "end": 9476.96, + "probability": 0.7002 + }, + { + "start": 9477.28, + "end": 9477.42, + "probability": 0.3268 + }, + { + "start": 9477.52, + "end": 9477.9, + "probability": 0.8661 + }, + { + "start": 9478.0, + "end": 9484.2, + "probability": 0.9562 + }, + { + "start": 9485.04, + "end": 9488.24, + "probability": 0.9313 + }, + { + "start": 9488.24, + "end": 9491.84, + "probability": 0.9905 + }, + { + "start": 9491.86, + "end": 9492.22, + "probability": 0.3305 + }, + { + "start": 9492.3, + "end": 9492.64, + "probability": 0.36 + }, + { + "start": 9493.12, + "end": 9494.36, + "probability": 0.9243 + }, + { + "start": 9494.46, + "end": 9494.46, + "probability": 0.2741 + }, + { + "start": 9494.46, + "end": 9496.1, + "probability": 0.9706 + }, + { + "start": 9496.4, + "end": 9497.24, + "probability": 0.8677 + }, + { + "start": 9497.7, + "end": 9502.04, + "probability": 0.722 + }, + { + "start": 9502.16, + "end": 9503.04, + "probability": 0.6548 + }, + { + "start": 9503.06, + "end": 9503.42, + "probability": 0.9719 + }, + { + "start": 9503.96, + "end": 9505.92, + "probability": 0.835 + }, + { + "start": 9506.78, + "end": 9508.9, + "probability": 0.9851 + }, + { + "start": 9509.8, + "end": 9511.98, + "probability": 0.9827 + }, + { + "start": 9512.82, + "end": 9514.12, + "probability": 0.4859 + }, + { + "start": 9514.22, + "end": 9515.08, + "probability": 0.9701 + }, + { + "start": 9515.48, + "end": 9516.52, + "probability": 0.9733 + }, + { + "start": 9516.84, + "end": 9519.22, + "probability": 0.9714 + }, + { + "start": 9520.0, + "end": 9522.08, + "probability": 0.9551 + }, + { + "start": 9522.32, + "end": 9524.36, + "probability": 0.9778 + }, + { + "start": 9525.24, + "end": 9527.6, + "probability": 0.9006 + }, + { + "start": 9528.82, + "end": 9530.28, + "probability": 0.9873 + }, + { + "start": 9530.92, + "end": 9534.44, + "probability": 0.9798 + }, + { + "start": 9535.18, + "end": 9537.78, + "probability": 0.9669 + }, + { + "start": 9538.02, + "end": 9538.74, + "probability": 0.7281 + }, + { + "start": 9539.0, + "end": 9539.3, + "probability": 0.4739 + }, + { + "start": 9540.7, + "end": 9544.2, + "probability": 0.9598 + }, + { + "start": 9544.72, + "end": 9545.74, + "probability": 0.6428 + }, + { + "start": 9547.6, + "end": 9547.84, + "probability": 0.4543 + }, + { + "start": 9547.92, + "end": 9549.42, + "probability": 0.6273 + }, + { + "start": 9549.52, + "end": 9553.78, + "probability": 0.6851 + }, + { + "start": 9554.86, + "end": 9556.9, + "probability": 0.9927 + }, + { + "start": 9558.24, + "end": 9559.06, + "probability": 0.9067 + }, + { + "start": 9560.42, + "end": 9563.32, + "probability": 0.9949 + }, + { + "start": 9563.38, + "end": 9564.6, + "probability": 0.7644 + }, + { + "start": 9564.78, + "end": 9567.04, + "probability": 0.9977 + }, + { + "start": 9567.3, + "end": 9568.56, + "probability": 0.888 + }, + { + "start": 9568.92, + "end": 9572.46, + "probability": 0.964 + }, + { + "start": 9573.64, + "end": 9576.34, + "probability": 0.9302 + }, + { + "start": 9577.18, + "end": 9579.36, + "probability": 0.9924 + }, + { + "start": 9581.36, + "end": 9584.12, + "probability": 0.941 + }, + { + "start": 9584.2, + "end": 9586.5, + "probability": 0.8913 + }, + { + "start": 9588.94, + "end": 9590.12, + "probability": 0.941 + }, + { + "start": 9590.82, + "end": 9594.44, + "probability": 0.948 + }, + { + "start": 9595.0, + "end": 9599.24, + "probability": 0.911 + }, + { + "start": 9600.08, + "end": 9601.6, + "probability": 0.8027 + }, + { + "start": 9602.42, + "end": 9603.94, + "probability": 0.9951 + }, + { + "start": 9605.82, + "end": 9608.14, + "probability": 0.7109 + }, + { + "start": 9608.92, + "end": 9611.32, + "probability": 0.773 + }, + { + "start": 9611.48, + "end": 9613.12, + "probability": 0.9476 + }, + { + "start": 9613.86, + "end": 9615.92, + "probability": 0.9136 + }, + { + "start": 9617.88, + "end": 9618.96, + "probability": 0.8345 + }, + { + "start": 9619.78, + "end": 9625.46, + "probability": 0.9134 + }, + { + "start": 9627.0, + "end": 9629.5, + "probability": 0.9927 + }, + { + "start": 9629.7, + "end": 9631.06, + "probability": 0.9485 + }, + { + "start": 9631.14, + "end": 9632.35, + "probability": 0.9756 + }, + { + "start": 9634.32, + "end": 9637.76, + "probability": 0.9873 + }, + { + "start": 9638.78, + "end": 9640.88, + "probability": 0.9329 + }, + { + "start": 9641.08, + "end": 9645.68, + "probability": 0.9559 + }, + { + "start": 9646.54, + "end": 9648.9, + "probability": 0.749 + }, + { + "start": 9649.04, + "end": 9650.0, + "probability": 0.8967 + }, + { + "start": 9650.14, + "end": 9653.28, + "probability": 0.9829 + }, + { + "start": 9654.04, + "end": 9658.7, + "probability": 0.986 + }, + { + "start": 9659.84, + "end": 9664.4, + "probability": 0.9973 + }, + { + "start": 9665.02, + "end": 9668.8, + "probability": 0.7823 + }, + { + "start": 9669.22, + "end": 9670.52, + "probability": 0.8735 + }, + { + "start": 9671.02, + "end": 9673.32, + "probability": 0.9281 + }, + { + "start": 9673.52, + "end": 9674.14, + "probability": 0.5709 + }, + { + "start": 9674.34, + "end": 9680.02, + "probability": 0.8633 + }, + { + "start": 9680.18, + "end": 9681.28, + "probability": 0.4755 + }, + { + "start": 9681.38, + "end": 9683.34, + "probability": 0.9736 + }, + { + "start": 9684.0, + "end": 9684.14, + "probability": 0.6119 + }, + { + "start": 9684.22, + "end": 9685.56, + "probability": 0.9429 + }, + { + "start": 9685.66, + "end": 9687.72, + "probability": 0.9258 + }, + { + "start": 9688.56, + "end": 9689.1, + "probability": 0.7617 + }, + { + "start": 9689.46, + "end": 9690.98, + "probability": 0.9966 + }, + { + "start": 9691.98, + "end": 9692.34, + "probability": 0.5436 + }, + { + "start": 9692.4, + "end": 9696.44, + "probability": 0.8595 + }, + { + "start": 9696.44, + "end": 9698.88, + "probability": 0.9484 + }, + { + "start": 9699.54, + "end": 9701.42, + "probability": 0.8752 + }, + { + "start": 9701.56, + "end": 9704.88, + "probability": 0.5348 + }, + { + "start": 9704.88, + "end": 9708.54, + "probability": 0.9946 + }, + { + "start": 9709.42, + "end": 9712.5, + "probability": 0.811 + }, + { + "start": 9712.66, + "end": 9717.52, + "probability": 0.9082 + }, + { + "start": 9718.26, + "end": 9722.68, + "probability": 0.9814 + }, + { + "start": 9722.74, + "end": 9725.48, + "probability": 0.9987 + }, + { + "start": 9725.94, + "end": 9729.04, + "probability": 0.9918 + }, + { + "start": 9729.32, + "end": 9731.56, + "probability": 0.9932 + }, + { + "start": 9731.96, + "end": 9732.18, + "probability": 0.7489 + }, + { + "start": 9732.26, + "end": 9735.28, + "probability": 0.853 + }, + { + "start": 9735.58, + "end": 9737.38, + "probability": 0.7974 + }, + { + "start": 9737.74, + "end": 9738.38, + "probability": 0.4281 + }, + { + "start": 9738.7, + "end": 9741.2, + "probability": 0.8817 + }, + { + "start": 9751.58, + "end": 9752.34, + "probability": 0.7367 + }, + { + "start": 9754.9, + "end": 9755.68, + "probability": 0.756 + }, + { + "start": 9755.96, + "end": 9756.56, + "probability": 0.8874 + }, + { + "start": 9756.82, + "end": 9758.72, + "probability": 0.7694 + }, + { + "start": 9760.72, + "end": 9761.6, + "probability": 0.9447 + }, + { + "start": 9762.76, + "end": 9763.34, + "probability": 0.9543 + }, + { + "start": 9764.56, + "end": 9766.24, + "probability": 0.9743 + }, + { + "start": 9767.26, + "end": 9770.48, + "probability": 0.9904 + }, + { + "start": 9771.22, + "end": 9773.5, + "probability": 0.9013 + }, + { + "start": 9774.94, + "end": 9776.16, + "probability": 0.9927 + }, + { + "start": 9777.92, + "end": 9780.48, + "probability": 0.9603 + }, + { + "start": 9781.62, + "end": 9782.34, + "probability": 0.9873 + }, + { + "start": 9783.0, + "end": 9783.94, + "probability": 0.994 + }, + { + "start": 9784.58, + "end": 9786.44, + "probability": 0.9924 + }, + { + "start": 9787.66, + "end": 9790.54, + "probability": 0.9927 + }, + { + "start": 9791.02, + "end": 9791.51, + "probability": 0.9634 + }, + { + "start": 9792.22, + "end": 9793.4, + "probability": 0.6831 + }, + { + "start": 9794.1, + "end": 9797.02, + "probability": 0.9849 + }, + { + "start": 9798.98, + "end": 9804.94, + "probability": 0.9938 + }, + { + "start": 9805.5, + "end": 9806.38, + "probability": 0.9496 + }, + { + "start": 9806.96, + "end": 9811.3, + "probability": 0.9695 + }, + { + "start": 9813.02, + "end": 9813.6, + "probability": 0.7478 + }, + { + "start": 9815.22, + "end": 9817.1, + "probability": 0.8182 + }, + { + "start": 9817.64, + "end": 9819.1, + "probability": 0.9956 + }, + { + "start": 9821.4, + "end": 9825.36, + "probability": 0.9973 + }, + { + "start": 9827.5, + "end": 9828.44, + "probability": 0.7672 + }, + { + "start": 9829.24, + "end": 9830.88, + "probability": 0.984 + }, + { + "start": 9832.06, + "end": 9833.52, + "probability": 0.9776 + }, + { + "start": 9834.68, + "end": 9836.42, + "probability": 0.8459 + }, + { + "start": 9838.28, + "end": 9839.54, + "probability": 0.7795 + }, + { + "start": 9840.88, + "end": 9844.48, + "probability": 0.9569 + }, + { + "start": 9845.7, + "end": 9848.33, + "probability": 0.998 + }, + { + "start": 9850.36, + "end": 9854.4, + "probability": 0.9697 + }, + { + "start": 9855.84, + "end": 9858.02, + "probability": 0.5905 + }, + { + "start": 9859.62, + "end": 9860.68, + "probability": 0.9138 + }, + { + "start": 9862.12, + "end": 9863.72, + "probability": 0.7554 + }, + { + "start": 9864.7, + "end": 9865.98, + "probability": 0.843 + }, + { + "start": 9867.4, + "end": 9870.72, + "probability": 0.9123 + }, + { + "start": 9872.38, + "end": 9876.9, + "probability": 0.9258 + }, + { + "start": 9878.92, + "end": 9882.12, + "probability": 0.8739 + }, + { + "start": 9883.24, + "end": 9884.14, + "probability": 0.9255 + }, + { + "start": 9885.36, + "end": 9893.08, + "probability": 0.9395 + }, + { + "start": 9893.16, + "end": 9894.12, + "probability": 0.8549 + }, + { + "start": 9894.92, + "end": 9898.14, + "probability": 0.9927 + }, + { + "start": 9898.22, + "end": 9899.3, + "probability": 0.8373 + }, + { + "start": 9900.08, + "end": 9902.48, + "probability": 0.937 + }, + { + "start": 9903.98, + "end": 9904.3, + "probability": 0.5441 + }, + { + "start": 9904.4, + "end": 9907.16, + "probability": 0.7822 + }, + { + "start": 9907.28, + "end": 9907.62, + "probability": 0.1226 + }, + { + "start": 9908.86, + "end": 9910.56, + "probability": 0.6606 + }, + { + "start": 9912.24, + "end": 9915.98, + "probability": 0.8027 + }, + { + "start": 9916.68, + "end": 9919.76, + "probability": 0.8339 + }, + { + "start": 9920.82, + "end": 9924.7, + "probability": 0.9514 + }, + { + "start": 9924.7, + "end": 9927.78, + "probability": 0.9914 + }, + { + "start": 9929.0, + "end": 9931.7, + "probability": 0.8561 + }, + { + "start": 9932.02, + "end": 9933.96, + "probability": 0.8099 + }, + { + "start": 9934.92, + "end": 9937.44, + "probability": 0.9753 + }, + { + "start": 9938.08, + "end": 9939.26, + "probability": 0.8068 + }, + { + "start": 9939.6, + "end": 9943.62, + "probability": 0.8878 + }, + { + "start": 9943.98, + "end": 9945.14, + "probability": 0.6019 + }, + { + "start": 9945.24, + "end": 9945.24, + "probability": 0.4354 + }, + { + "start": 9945.38, + "end": 9948.56, + "probability": 0.7253 + }, + { + "start": 9949.12, + "end": 9954.36, + "probability": 0.7657 + }, + { + "start": 9954.92, + "end": 9959.3, + "probability": 0.922 + }, + { + "start": 9959.3, + "end": 9965.5, + "probability": 0.7244 + }, + { + "start": 9965.88, + "end": 9969.58, + "probability": 0.9818 + }, + { + "start": 9969.86, + "end": 9970.14, + "probability": 0.6684 + }, + { + "start": 9970.58, + "end": 9972.82, + "probability": 0.8023 + }, + { + "start": 9973.2, + "end": 9976.3, + "probability": 0.6138 + }, + { + "start": 9977.04, + "end": 9978.24, + "probability": 0.9471 + }, + { + "start": 9978.88, + "end": 9980.18, + "probability": 0.804 + }, + { + "start": 9994.04, + "end": 9996.36, + "probability": 0.6453 + }, + { + "start": 9997.76, + "end": 9997.76, + "probability": 0.1317 + }, + { + "start": 9997.76, + "end": 10001.04, + "probability": 0.6663 + }, + { + "start": 10001.14, + "end": 10003.22, + "probability": 0.8305 + }, + { + "start": 10004.26, + "end": 10004.6, + "probability": 0.8243 + }, + { + "start": 10005.3, + "end": 10005.7, + "probability": 0.6705 + }, + { + "start": 10006.52, + "end": 10009.34, + "probability": 0.1639 + }, + { + "start": 10010.1, + "end": 10015.68, + "probability": 0.5582 + }, + { + "start": 10016.24, + "end": 10017.68, + "probability": 0.8136 + }, + { + "start": 10017.82, + "end": 10018.46, + "probability": 0.7704 + }, + { + "start": 10018.9, + "end": 10019.9, + "probability": 0.5739 + }, + { + "start": 10019.96, + "end": 10023.08, + "probability": 0.9591 + }, + { + "start": 10023.44, + "end": 10024.32, + "probability": 0.7939 + }, + { + "start": 10024.84, + "end": 10026.0, + "probability": 0.7977 + }, + { + "start": 10026.42, + "end": 10029.04, + "probability": 0.97 + }, + { + "start": 10029.28, + "end": 10038.3, + "probability": 0.793 + }, + { + "start": 10038.68, + "end": 10041.8, + "probability": 0.673 + }, + { + "start": 10042.16, + "end": 10042.48, + "probability": 0.1863 + }, + { + "start": 10042.62, + "end": 10045.92, + "probability": 0.9543 + }, + { + "start": 10046.76, + "end": 10048.58, + "probability": 0.9224 + }, + { + "start": 10048.76, + "end": 10053.48, + "probability": 0.8304 + }, + { + "start": 10053.48, + "end": 10058.74, + "probability": 0.8275 + }, + { + "start": 10059.36, + "end": 10065.58, + "probability": 0.9783 + }, + { + "start": 10066.12, + "end": 10067.64, + "probability": 0.9943 + }, + { + "start": 10068.06, + "end": 10069.0, + "probability": 0.6861 + }, + { + "start": 10069.14, + "end": 10071.04, + "probability": 0.9285 + }, + { + "start": 10071.24, + "end": 10072.1, + "probability": 0.627 + }, + { + "start": 10072.22, + "end": 10073.06, + "probability": 0.6922 + }, + { + "start": 10073.64, + "end": 10076.28, + "probability": 0.9769 + }, + { + "start": 10076.68, + "end": 10077.54, + "probability": 0.9712 + }, + { + "start": 10078.02, + "end": 10079.48, + "probability": 0.99 + }, + { + "start": 10079.98, + "end": 10082.76, + "probability": 0.9597 + }, + { + "start": 10083.7, + "end": 10085.96, + "probability": 0.6707 + }, + { + "start": 10086.62, + "end": 10087.24, + "probability": 0.7981 + }, + { + "start": 10087.92, + "end": 10091.92, + "probability": 0.985 + }, + { + "start": 10092.6, + "end": 10097.3, + "probability": 0.9778 + }, + { + "start": 10097.3, + "end": 10102.84, + "probability": 0.9882 + }, + { + "start": 10102.88, + "end": 10107.12, + "probability": 0.9959 + }, + { + "start": 10107.72, + "end": 10113.16, + "probability": 0.9268 + }, + { + "start": 10113.58, + "end": 10114.54, + "probability": 0.7198 + }, + { + "start": 10114.94, + "end": 10116.0, + "probability": 0.6405 + }, + { + "start": 10116.36, + "end": 10116.68, + "probability": 0.8318 + }, + { + "start": 10117.18, + "end": 10118.2, + "probability": 0.6559 + }, + { + "start": 10118.54, + "end": 10120.84, + "probability": 0.9905 + }, + { + "start": 10121.04, + "end": 10123.6, + "probability": 0.7424 + }, + { + "start": 10124.18, + "end": 10126.8, + "probability": 0.967 + }, + { + "start": 10127.14, + "end": 10127.8, + "probability": 0.9285 + }, + { + "start": 10128.24, + "end": 10134.0, + "probability": 0.9685 + }, + { + "start": 10134.62, + "end": 10138.76, + "probability": 0.6389 + }, + { + "start": 10139.28, + "end": 10142.9, + "probability": 0.7039 + }, + { + "start": 10143.4, + "end": 10145.44, + "probability": 0.916 + }, + { + "start": 10157.54, + "end": 10161.88, + "probability": 0.0867 + }, + { + "start": 10164.52, + "end": 10168.88, + "probability": 0.0465 + }, + { + "start": 10168.88, + "end": 10169.02, + "probability": 0.1788 + }, + { + "start": 10169.02, + "end": 10169.02, + "probability": 0.0691 + }, + { + "start": 10169.02, + "end": 10174.26, + "probability": 0.3505 + }, + { + "start": 10174.54, + "end": 10182.56, + "probability": 0.6093 + }, + { + "start": 10182.56, + "end": 10182.56, + "probability": 0.0463 + }, + { + "start": 10182.56, + "end": 10182.56, + "probability": 0.0098 + }, + { + "start": 10182.56, + "end": 10182.56, + "probability": 0.0834 + }, + { + "start": 10182.56, + "end": 10182.68, + "probability": 0.2441 + }, + { + "start": 10183.84, + "end": 10185.98, + "probability": 0.5192 + }, + { + "start": 10186.62, + "end": 10189.7, + "probability": 0.7274 + }, + { + "start": 10192.14, + "end": 10195.34, + "probability": 0.7478 + }, + { + "start": 10203.76, + "end": 10205.06, + "probability": 0.8366 + }, + { + "start": 10207.0, + "end": 10210.32, + "probability": 0.7387 + }, + { + "start": 10212.24, + "end": 10214.66, + "probability": 0.9708 + }, + { + "start": 10216.1, + "end": 10217.74, + "probability": 0.9736 + }, + { + "start": 10219.38, + "end": 10221.0, + "probability": 0.9803 + }, + { + "start": 10221.74, + "end": 10222.38, + "probability": 0.3403 + }, + { + "start": 10224.92, + "end": 10231.34, + "probability": 0.9296 + }, + { + "start": 10234.36, + "end": 10236.52, + "probability": 0.9959 + }, + { + "start": 10238.58, + "end": 10242.4, + "probability": 0.9432 + }, + { + "start": 10245.06, + "end": 10246.94, + "probability": 0.9844 + }, + { + "start": 10250.46, + "end": 10251.96, + "probability": 0.8037 + }, + { + "start": 10252.8, + "end": 10257.76, + "probability": 0.9592 + }, + { + "start": 10258.82, + "end": 10260.84, + "probability": 0.7453 + }, + { + "start": 10263.7, + "end": 10266.4, + "probability": 0.6636 + }, + { + "start": 10266.96, + "end": 10268.62, + "probability": 0.8333 + }, + { + "start": 10270.78, + "end": 10271.02, + "probability": 0.4459 + }, + { + "start": 10271.14, + "end": 10273.88, + "probability": 0.98 + }, + { + "start": 10275.44, + "end": 10276.38, + "probability": 0.3473 + }, + { + "start": 10276.38, + "end": 10277.68, + "probability": 0.4297 + }, + { + "start": 10278.3, + "end": 10278.68, + "probability": 0.6072 + }, + { + "start": 10278.8, + "end": 10279.7, + "probability": 0.942 + }, + { + "start": 10280.43, + "end": 10280.55, + "probability": 0.0035 + }, + { + "start": 10281.36, + "end": 10283.66, + "probability": 0.8654 + }, + { + "start": 10284.5, + "end": 10288.56, + "probability": 0.7164 + }, + { + "start": 10288.7, + "end": 10289.57, + "probability": 0.4948 + }, + { + "start": 10289.88, + "end": 10290.84, + "probability": 0.8264 + }, + { + "start": 10292.88, + "end": 10293.22, + "probability": 0.7077 + }, + { + "start": 10293.28, + "end": 10297.0, + "probability": 0.9543 + }, + { + "start": 10297.12, + "end": 10297.7, + "probability": 0.5228 + }, + { + "start": 10299.22, + "end": 10301.88, + "probability": 0.8712 + }, + { + "start": 10303.34, + "end": 10303.34, + "probability": 0.1233 + }, + { + "start": 10303.34, + "end": 10306.74, + "probability": 0.7174 + }, + { + "start": 10307.54, + "end": 10307.9, + "probability": 0.8019 + }, + { + "start": 10308.36, + "end": 10310.78, + "probability": 0.8666 + }, + { + "start": 10311.36, + "end": 10312.88, + "probability": 0.6402 + }, + { + "start": 10313.28, + "end": 10314.34, + "probability": 0.9118 + }, + { + "start": 10314.6, + "end": 10316.2, + "probability": 0.9428 + }, + { + "start": 10317.74, + "end": 10319.68, + "probability": 0.6262 + }, + { + "start": 10320.62, + "end": 10322.54, + "probability": 0.7922 + }, + { + "start": 10323.32, + "end": 10326.36, + "probability": 0.6799 + }, + { + "start": 10327.66, + "end": 10329.2, + "probability": 0.7783 + }, + { + "start": 10330.76, + "end": 10332.68, + "probability": 0.7087 + }, + { + "start": 10333.28, + "end": 10333.62, + "probability": 0.8596 + }, + { + "start": 10333.7, + "end": 10334.46, + "probability": 0.899 + }, + { + "start": 10334.8, + "end": 10338.1, + "probability": 0.785 + }, + { + "start": 10338.22, + "end": 10340.96, + "probability": 0.112 + }, + { + "start": 10340.96, + "end": 10341.6, + "probability": 0.2505 + }, + { + "start": 10341.84, + "end": 10345.92, + "probability": 0.5917 + }, + { + "start": 10346.82, + "end": 10347.8, + "probability": 0.4889 + }, + { + "start": 10347.98, + "end": 10348.08, + "probability": 0.0845 + }, + { + "start": 10348.08, + "end": 10349.38, + "probability": 0.7273 + }, + { + "start": 10349.7, + "end": 10349.9, + "probability": 0.1509 + }, + { + "start": 10350.08, + "end": 10352.39, + "probability": 0.4988 + }, + { + "start": 10352.52, + "end": 10354.0, + "probability": 0.8446 + }, + { + "start": 10354.08, + "end": 10357.28, + "probability": 0.1589 + }, + { + "start": 10357.5, + "end": 10358.54, + "probability": 0.6107 + }, + { + "start": 10359.12, + "end": 10360.46, + "probability": 0.7995 + }, + { + "start": 10362.0, + "end": 10362.56, + "probability": 0.5282 + }, + { + "start": 10362.6, + "end": 10367.82, + "probability": 0.755 + }, + { + "start": 10368.58, + "end": 10369.8, + "probability": 0.376 + }, + { + "start": 10371.06, + "end": 10372.64, + "probability": 0.8679 + }, + { + "start": 10373.16, + "end": 10373.72, + "probability": 0.2265 + }, + { + "start": 10374.46, + "end": 10375.52, + "probability": 0.4188 + }, + { + "start": 10376.24, + "end": 10378.26, + "probability": 0.7146 + }, + { + "start": 10379.32, + "end": 10380.91, + "probability": 0.1899 + }, + { + "start": 10385.64, + "end": 10385.78, + "probability": 0.0185 + }, + { + "start": 10385.78, + "end": 10385.78, + "probability": 0.0355 + }, + { + "start": 10385.78, + "end": 10385.78, + "probability": 0.1016 + }, + { + "start": 10385.78, + "end": 10385.78, + "probability": 0.3286 + }, + { + "start": 10385.78, + "end": 10390.02, + "probability": 0.5198 + }, + { + "start": 10390.14, + "end": 10390.74, + "probability": 0.8905 + }, + { + "start": 10391.78, + "end": 10391.78, + "probability": 0.0994 + }, + { + "start": 10391.84, + "end": 10395.06, + "probability": 0.5974 + }, + { + "start": 10395.46, + "end": 10399.98, + "probability": 0.883 + }, + { + "start": 10400.58, + "end": 10406.34, + "probability": 0.9184 + }, + { + "start": 10406.34, + "end": 10412.82, + "probability": 0.8825 + }, + { + "start": 10413.28, + "end": 10413.28, + "probability": 0.5938 + }, + { + "start": 10413.42, + "end": 10414.32, + "probability": 0.8496 + }, + { + "start": 10414.96, + "end": 10415.96, + "probability": 0.6922 + }, + { + "start": 10416.06, + "end": 10417.3, + "probability": 0.9591 + }, + { + "start": 10418.06, + "end": 10419.14, + "probability": 0.1634 + }, + { + "start": 10419.26, + "end": 10420.84, + "probability": 0.6221 + }, + { + "start": 10423.32, + "end": 10424.68, + "probability": 0.2351 + }, + { + "start": 10424.68, + "end": 10427.74, + "probability": 0.8602 + }, + { + "start": 10427.76, + "end": 10429.16, + "probability": 0.6863 + }, + { + "start": 10429.3, + "end": 10431.6, + "probability": 0.548 + }, + { + "start": 10431.68, + "end": 10431.68, + "probability": 0.455 + }, + { + "start": 10431.68, + "end": 10433.24, + "probability": 0.485 + }, + { + "start": 10433.56, + "end": 10436.8, + "probability": 0.8167 + }, + { + "start": 10437.46, + "end": 10437.48, + "probability": 0.2199 + }, + { + "start": 10437.48, + "end": 10438.0, + "probability": 0.4942 + }, + { + "start": 10438.66, + "end": 10441.06, + "probability": 0.896 + }, + { + "start": 10441.08, + "end": 10441.48, + "probability": 0.82 + }, + { + "start": 10441.88, + "end": 10444.5, + "probability": 0.8 + }, + { + "start": 10445.0, + "end": 10448.3, + "probability": 0.7511 + }, + { + "start": 10448.7, + "end": 10449.42, + "probability": 0.3945 + }, + { + "start": 10449.56, + "end": 10451.22, + "probability": 0.9552 + }, + { + "start": 10451.74, + "end": 10455.18, + "probability": 0.9164 + }, + { + "start": 10455.62, + "end": 10456.62, + "probability": 0.8319 + }, + { + "start": 10457.3, + "end": 10458.34, + "probability": 0.7769 + }, + { + "start": 10459.18, + "end": 10461.62, + "probability": 0.9768 + }, + { + "start": 10463.7, + "end": 10467.86, + "probability": 0.9146 + }, + { + "start": 10467.94, + "end": 10468.78, + "probability": 0.5623 + }, + { + "start": 10470.02, + "end": 10474.64, + "probability": 0.9394 + }, + { + "start": 10474.78, + "end": 10475.54, + "probability": 0.3352 + }, + { + "start": 10478.74, + "end": 10481.2, + "probability": 0.9983 + }, + { + "start": 10481.32, + "end": 10483.22, + "probability": 0.9532 + }, + { + "start": 10483.28, + "end": 10490.32, + "probability": 0.9796 + }, + { + "start": 10491.26, + "end": 10492.74, + "probability": 0.5229 + }, + { + "start": 10493.44, + "end": 10499.64, + "probability": 0.9939 + }, + { + "start": 10500.18, + "end": 10502.18, + "probability": 0.7428 + }, + { + "start": 10502.44, + "end": 10507.14, + "probability": 0.9912 + }, + { + "start": 10507.56, + "end": 10509.5, + "probability": 0.8652 + }, + { + "start": 10510.18, + "end": 10513.68, + "probability": 0.7615 + }, + { + "start": 10513.9, + "end": 10516.24, + "probability": 0.8768 + }, + { + "start": 10517.0, + "end": 10520.52, + "probability": 0.9072 + }, + { + "start": 10520.84, + "end": 10526.14, + "probability": 0.9746 + }, + { + "start": 10526.14, + "end": 10530.14, + "probability": 0.9024 + }, + { + "start": 10530.46, + "end": 10531.76, + "probability": 0.8028 + }, + { + "start": 10531.94, + "end": 10537.6, + "probability": 0.9741 + }, + { + "start": 10537.78, + "end": 10542.3, + "probability": 0.9794 + }, + { + "start": 10542.3, + "end": 10546.08, + "probability": 0.968 + }, + { + "start": 10546.3, + "end": 10549.3, + "probability": 0.8887 + }, + { + "start": 10549.44, + "end": 10550.4, + "probability": 0.9251 + }, + { + "start": 10551.44, + "end": 10557.88, + "probability": 0.9448 + }, + { + "start": 10558.24, + "end": 10560.26, + "probability": 0.7461 + }, + { + "start": 10560.42, + "end": 10564.24, + "probability": 0.9922 + }, + { + "start": 10564.92, + "end": 10565.88, + "probability": 0.6695 + }, + { + "start": 10566.1, + "end": 10577.04, + "probability": 0.9464 + }, + { + "start": 10577.24, + "end": 10580.26, + "probability": 0.9566 + }, + { + "start": 10580.82, + "end": 10583.34, + "probability": 0.9974 + }, + { + "start": 10583.88, + "end": 10585.32, + "probability": 0.7891 + }, + { + "start": 10586.32, + "end": 10589.78, + "probability": 0.9941 + }, + { + "start": 10589.86, + "end": 10592.68, + "probability": 0.8892 + }, + { + "start": 10592.9, + "end": 10593.94, + "probability": 0.793 + }, + { + "start": 10594.14, + "end": 10598.62, + "probability": 0.9825 + }, + { + "start": 10599.16, + "end": 10603.04, + "probability": 0.6806 + }, + { + "start": 10603.6, + "end": 10604.04, + "probability": 0.5138 + }, + { + "start": 10604.58, + "end": 10609.62, + "probability": 0.9572 + }, + { + "start": 10610.02, + "end": 10613.28, + "probability": 0.9687 + }, + { + "start": 10614.08, + "end": 10621.16, + "probability": 0.989 + }, + { + "start": 10621.7, + "end": 10624.16, + "probability": 0.9281 + }, + { + "start": 10625.44, + "end": 10626.64, + "probability": 0.6187 + }, + { + "start": 10626.78, + "end": 10629.44, + "probability": 0.9849 + }, + { + "start": 10629.8, + "end": 10635.2, + "probability": 0.9673 + }, + { + "start": 10636.14, + "end": 10640.48, + "probability": 0.9853 + }, + { + "start": 10641.88, + "end": 10644.84, + "probability": 0.6649 + }, + { + "start": 10645.64, + "end": 10648.84, + "probability": 0.8376 + }, + { + "start": 10649.8, + "end": 10651.84, + "probability": 0.9514 + }, + { + "start": 10653.5, + "end": 10654.94, + "probability": 0.5301 + }, + { + "start": 10656.41, + "end": 10660.1, + "probability": 0.9431 + }, + { + "start": 10660.42, + "end": 10663.9, + "probability": 0.9363 + }, + { + "start": 10664.38, + "end": 10665.78, + "probability": 0.5483 + }, + { + "start": 10665.86, + "end": 10666.66, + "probability": 0.8833 + }, + { + "start": 10670.06, + "end": 10673.44, + "probability": 0.7552 + }, + { + "start": 10674.08, + "end": 10678.68, + "probability": 0.9495 + }, + { + "start": 10679.24, + "end": 10682.08, + "probability": 0.9956 + }, + { + "start": 10683.38, + "end": 10684.32, + "probability": 0.7495 + }, + { + "start": 10684.42, + "end": 10685.48, + "probability": 0.6885 + }, + { + "start": 10685.62, + "end": 10687.74, + "probability": 0.9235 + }, + { + "start": 10688.32, + "end": 10690.12, + "probability": 0.8271 + }, + { + "start": 10690.92, + "end": 10692.34, + "probability": 0.9968 + }, + { + "start": 10692.94, + "end": 10694.66, + "probability": 0.8041 + }, + { + "start": 10695.3, + "end": 10696.64, + "probability": 0.9009 + }, + { + "start": 10696.82, + "end": 10697.44, + "probability": 0.742 + }, + { + "start": 10702.72, + "end": 10706.6, + "probability": 0.5966 + }, + { + "start": 10707.38, + "end": 10708.06, + "probability": 0.8263 + }, + { + "start": 10708.16, + "end": 10709.36, + "probability": 0.7413 + }, + { + "start": 10709.72, + "end": 10714.94, + "probability": 0.9765 + }, + { + "start": 10715.62, + "end": 10718.92, + "probability": 0.9873 + }, + { + "start": 10719.36, + "end": 10721.06, + "probability": 0.6183 + }, + { + "start": 10721.92, + "end": 10724.76, + "probability": 0.958 + }, + { + "start": 10725.36, + "end": 10729.08, + "probability": 0.9327 + }, + { + "start": 10729.44, + "end": 10733.4, + "probability": 0.9773 + }, + { + "start": 10735.0, + "end": 10739.04, + "probability": 0.9461 + }, + { + "start": 10739.8, + "end": 10743.68, + "probability": 0.9948 + }, + { + "start": 10743.7, + "end": 10747.88, + "probability": 0.9966 + }, + { + "start": 10748.98, + "end": 10752.76, + "probability": 0.9526 + }, + { + "start": 10753.78, + "end": 10755.42, + "probability": 0.8495 + }, + { + "start": 10755.64, + "end": 10759.26, + "probability": 0.9692 + }, + { + "start": 10759.26, + "end": 10762.02, + "probability": 0.9085 + }, + { + "start": 10762.72, + "end": 10768.88, + "probability": 0.9598 + }, + { + "start": 10768.9, + "end": 10770.6, + "probability": 0.8921 + }, + { + "start": 10771.06, + "end": 10774.74, + "probability": 0.971 + }, + { + "start": 10775.46, + "end": 10779.22, + "probability": 0.9534 + }, + { + "start": 10779.56, + "end": 10782.72, + "probability": 0.9564 + }, + { + "start": 10783.9, + "end": 10786.7, + "probability": 0.8971 + }, + { + "start": 10786.7, + "end": 10790.58, + "probability": 0.9769 + }, + { + "start": 10791.58, + "end": 10793.0, + "probability": 0.9662 + }, + { + "start": 10793.16, + "end": 10794.96, + "probability": 0.9316 + }, + { + "start": 10795.26, + "end": 10796.98, + "probability": 0.5891 + }, + { + "start": 10797.14, + "end": 10797.66, + "probability": 0.6913 + }, + { + "start": 10798.24, + "end": 10800.6, + "probability": 0.6301 + }, + { + "start": 10801.14, + "end": 10801.76, + "probability": 0.9157 + }, + { + "start": 10802.32, + "end": 10805.78, + "probability": 0.9482 + }, + { + "start": 10805.92, + "end": 10806.92, + "probability": 0.701 + }, + { + "start": 10807.52, + "end": 10812.48, + "probability": 0.9634 + }, + { + "start": 10812.48, + "end": 10819.48, + "probability": 0.9388 + }, + { + "start": 10819.82, + "end": 10821.06, + "probability": 0.9622 + }, + { + "start": 10821.58, + "end": 10825.62, + "probability": 0.9748 + }, + { + "start": 10826.18, + "end": 10827.18, + "probability": 0.2995 + }, + { + "start": 10830.1, + "end": 10832.08, + "probability": 0.6592 + }, + { + "start": 10833.98, + "end": 10837.22, + "probability": 0.7084 + }, + { + "start": 10837.66, + "end": 10843.98, + "probability": 0.972 + }, + { + "start": 10844.02, + "end": 10845.12, + "probability": 0.9883 + }, + { + "start": 10845.38, + "end": 10845.48, + "probability": 0.7619 + }, + { + "start": 10846.04, + "end": 10848.96, + "probability": 0.6581 + }, + { + "start": 10849.02, + "end": 10851.02, + "probability": 0.8945 + }, + { + "start": 10851.46, + "end": 10852.18, + "probability": 0.4047 + }, + { + "start": 10852.2, + "end": 10853.84, + "probability": 0.8896 + }, + { + "start": 10854.0, + "end": 10856.2, + "probability": 0.6689 + }, + { + "start": 10856.2, + "end": 10858.06, + "probability": 0.5667 + }, + { + "start": 10875.16, + "end": 10875.34, + "probability": 0.3026 + }, + { + "start": 10875.36, + "end": 10875.98, + "probability": 0.7576 + }, + { + "start": 10877.68, + "end": 10879.78, + "probability": 0.6724 + }, + { + "start": 10882.3, + "end": 10884.86, + "probability": 0.8584 + }, + { + "start": 10887.6, + "end": 10889.04, + "probability": 0.9968 + }, + { + "start": 10890.22, + "end": 10891.76, + "probability": 0.973 + }, + { + "start": 10893.26, + "end": 10894.26, + "probability": 0.9814 + }, + { + "start": 10895.02, + "end": 10898.51, + "probability": 0.9473 + }, + { + "start": 10900.18, + "end": 10902.02, + "probability": 0.9564 + }, + { + "start": 10904.26, + "end": 10905.58, + "probability": 0.7701 + }, + { + "start": 10907.74, + "end": 10909.6, + "probability": 0.9988 + }, + { + "start": 10910.52, + "end": 10912.04, + "probability": 0.8604 + }, + { + "start": 10914.36, + "end": 10924.6, + "probability": 0.9958 + }, + { + "start": 10926.34, + "end": 10926.86, + "probability": 0.9642 + }, + { + "start": 10929.56, + "end": 10933.38, + "probability": 0.9099 + }, + { + "start": 10933.38, + "end": 10938.0, + "probability": 0.867 + }, + { + "start": 10941.04, + "end": 10941.6, + "probability": 0.9739 + }, + { + "start": 10942.88, + "end": 10947.58, + "probability": 0.995 + }, + { + "start": 10947.58, + "end": 10952.66, + "probability": 0.995 + }, + { + "start": 10952.76, + "end": 10955.82, + "probability": 0.5026 + }, + { + "start": 10956.7, + "end": 10957.12, + "probability": 0.6842 + }, + { + "start": 10958.02, + "end": 10959.34, + "probability": 0.8187 + }, + { + "start": 10960.94, + "end": 10962.54, + "probability": 0.5768 + }, + { + "start": 10963.48, + "end": 10964.46, + "probability": 0.8924 + }, + { + "start": 10965.86, + "end": 10970.74, + "probability": 0.9619 + }, + { + "start": 10972.2, + "end": 10973.44, + "probability": 0.9838 + }, + { + "start": 10974.4, + "end": 10977.08, + "probability": 0.87 + }, + { + "start": 10978.18, + "end": 10981.9, + "probability": 0.9812 + }, + { + "start": 10983.44, + "end": 10984.36, + "probability": 0.4307 + }, + { + "start": 10985.76, + "end": 10987.42, + "probability": 0.7037 + }, + { + "start": 10989.92, + "end": 10992.02, + "probability": 0.9546 + }, + { + "start": 10993.48, + "end": 10994.7, + "probability": 0.9911 + }, + { + "start": 10995.92, + "end": 10998.82, + "probability": 0.9668 + }, + { + "start": 10998.94, + "end": 11001.24, + "probability": 0.8042 + }, + { + "start": 11002.22, + "end": 11005.84, + "probability": 0.8428 + }, + { + "start": 11006.0, + "end": 11008.38, + "probability": 0.9883 + }, + { + "start": 11009.48, + "end": 11010.71, + "probability": 0.9974 + }, + { + "start": 11012.22, + "end": 11013.91, + "probability": 0.8554 + }, + { + "start": 11015.1, + "end": 11015.86, + "probability": 0.852 + }, + { + "start": 11016.5, + "end": 11017.96, + "probability": 0.8066 + }, + { + "start": 11018.08, + "end": 11018.62, + "probability": 0.9336 + }, + { + "start": 11019.36, + "end": 11027.22, + "probability": 0.9933 + }, + { + "start": 11028.54, + "end": 11029.36, + "probability": 0.7071 + }, + { + "start": 11031.24, + "end": 11034.78, + "probability": 0.8945 + }, + { + "start": 11036.5, + "end": 11037.58, + "probability": 0.6171 + }, + { + "start": 11038.48, + "end": 11039.68, + "probability": 0.9902 + }, + { + "start": 11040.64, + "end": 11042.86, + "probability": 0.7985 + }, + { + "start": 11043.84, + "end": 11046.2, + "probability": 0.8941 + }, + { + "start": 11046.88, + "end": 11049.14, + "probability": 0.9725 + }, + { + "start": 11049.64, + "end": 11052.3, + "probability": 0.99 + }, + { + "start": 11052.56, + "end": 11054.4, + "probability": 0.6663 + }, + { + "start": 11056.56, + "end": 11060.74, + "probability": 0.8859 + }, + { + "start": 11061.44, + "end": 11061.84, + "probability": 0.5569 + }, + { + "start": 11061.86, + "end": 11062.24, + "probability": 0.6102 + }, + { + "start": 11062.24, + "end": 11064.06, + "probability": 0.9927 + }, + { + "start": 11064.24, + "end": 11067.2, + "probability": 0.5936 + }, + { + "start": 11067.42, + "end": 11071.88, + "probability": 0.9446 + }, + { + "start": 11072.0, + "end": 11072.2, + "probability": 0.2563 + }, + { + "start": 11072.2, + "end": 11072.42, + "probability": 0.7448 + }, + { + "start": 11073.18, + "end": 11074.58, + "probability": 0.926 + }, + { + "start": 11075.64, + "end": 11076.38, + "probability": 0.6388 + }, + { + "start": 11078.18, + "end": 11080.14, + "probability": 0.9705 + }, + { + "start": 11081.02, + "end": 11081.7, + "probability": 0.9018 + }, + { + "start": 11082.2, + "end": 11083.26, + "probability": 0.9956 + }, + { + "start": 11084.2, + "end": 11088.24, + "probability": 0.9664 + }, + { + "start": 11100.76, + "end": 11100.96, + "probability": 0.7623 + }, + { + "start": 11104.3, + "end": 11106.72, + "probability": 0.5869 + }, + { + "start": 11107.38, + "end": 11107.82, + "probability": 0.6894 + }, + { + "start": 11117.3, + "end": 11117.3, + "probability": 0.1723 + }, + { + "start": 11117.3, + "end": 11117.98, + "probability": 0.5086 + }, + { + "start": 11117.98, + "end": 11119.6, + "probability": 0.4498 + }, + { + "start": 11119.6, + "end": 11120.1, + "probability": 0.4329 + }, + { + "start": 11120.16, + "end": 11123.86, + "probability": 0.9933 + }, + { + "start": 11124.1, + "end": 11125.5, + "probability": 0.7188 + }, + { + "start": 11126.7, + "end": 11127.98, + "probability": 0.637 + }, + { + "start": 11128.58, + "end": 11130.18, + "probability": 0.883 + }, + { + "start": 11131.38, + "end": 11136.24, + "probability": 0.9894 + }, + { + "start": 11136.24, + "end": 11141.42, + "probability": 0.9492 + }, + { + "start": 11141.5, + "end": 11143.58, + "probability": 0.9983 + }, + { + "start": 11144.6, + "end": 11147.6, + "probability": 0.9325 + }, + { + "start": 11148.62, + "end": 11152.74, + "probability": 0.8484 + }, + { + "start": 11153.3, + "end": 11156.62, + "probability": 0.5615 + }, + { + "start": 11157.22, + "end": 11158.86, + "probability": 0.9565 + }, + { + "start": 11159.6, + "end": 11163.3, + "probability": 0.9719 + }, + { + "start": 11163.98, + "end": 11166.54, + "probability": 0.8602 + }, + { + "start": 11167.4, + "end": 11173.26, + "probability": 0.998 + }, + { + "start": 11174.18, + "end": 11178.08, + "probability": 0.8289 + }, + { + "start": 11179.6, + "end": 11180.42, + "probability": 0.1187 + }, + { + "start": 11180.62, + "end": 11185.66, + "probability": 0.8777 + }, + { + "start": 11186.3, + "end": 11190.44, + "probability": 0.9766 + }, + { + "start": 11192.1, + "end": 11195.84, + "probability": 0.8651 + }, + { + "start": 11197.08, + "end": 11200.36, + "probability": 0.9565 + }, + { + "start": 11200.74, + "end": 11202.88, + "probability": 0.9287 + }, + { + "start": 11203.0, + "end": 11205.4, + "probability": 0.9446 + }, + { + "start": 11208.22, + "end": 11212.32, + "probability": 0.6856 + }, + { + "start": 11213.42, + "end": 11218.02, + "probability": 0.5866 + }, + { + "start": 11220.15, + "end": 11222.9, + "probability": 0.6015 + }, + { + "start": 11222.96, + "end": 11223.92, + "probability": 0.7129 + }, + { + "start": 11224.26, + "end": 11224.96, + "probability": 0.6763 + }, + { + "start": 11224.96, + "end": 11226.3, + "probability": 0.7157 + }, + { + "start": 11227.72, + "end": 11232.48, + "probability": 0.5494 + }, + { + "start": 11233.14, + "end": 11234.72, + "probability": 0.6184 + }, + { + "start": 11235.36, + "end": 11238.0, + "probability": 0.9948 + }, + { + "start": 11238.12, + "end": 11239.26, + "probability": 0.5523 + }, + { + "start": 11239.32, + "end": 11241.72, + "probability": 0.7427 + }, + { + "start": 11241.8, + "end": 11243.5, + "probability": 0.7431 + }, + { + "start": 11243.5, + "end": 11246.06, + "probability": 0.8135 + }, + { + "start": 11246.1, + "end": 11248.5, + "probability": 0.0287 + }, + { + "start": 11248.5, + "end": 11248.5, + "probability": 0.6246 + }, + { + "start": 11250.29, + "end": 11257.42, + "probability": 0.9913 + }, + { + "start": 11258.62, + "end": 11267.64, + "probability": 0.986 + }, + { + "start": 11268.2, + "end": 11269.98, + "probability": 0.8877 + }, + { + "start": 11270.0, + "end": 11277.04, + "probability": 0.99 + }, + { + "start": 11277.64, + "end": 11281.56, + "probability": 0.8873 + }, + { + "start": 11282.18, + "end": 11282.18, + "probability": 0.1134 + }, + { + "start": 11282.22, + "end": 11285.78, + "probability": 0.7817 + }, + { + "start": 11286.32, + "end": 11288.82, + "probability": 0.6226 + }, + { + "start": 11288.9, + "end": 11290.46, + "probability": 0.9956 + }, + { + "start": 11290.58, + "end": 11292.12, + "probability": 0.9932 + }, + { + "start": 11292.3, + "end": 11293.36, + "probability": 0.9186 + }, + { + "start": 11293.5, + "end": 11294.94, + "probability": 0.9949 + }, + { + "start": 11295.68, + "end": 11298.98, + "probability": 0.761 + }, + { + "start": 11299.66, + "end": 11301.94, + "probability": 0.7065 + }, + { + "start": 11302.02, + "end": 11302.66, + "probability": 0.6092 + }, + { + "start": 11302.72, + "end": 11305.16, + "probability": 0.7838 + }, + { + "start": 11305.3, + "end": 11306.24, + "probability": 0.3423 + }, + { + "start": 11306.42, + "end": 11307.22, + "probability": 0.4377 + }, + { + "start": 11307.36, + "end": 11310.4, + "probability": 0.7916 + }, + { + "start": 11310.42, + "end": 11314.02, + "probability": 0.9048 + }, + { + "start": 11314.08, + "end": 11315.76, + "probability": 0.5901 + }, + { + "start": 11315.76, + "end": 11316.54, + "probability": 0.9375 + }, + { + "start": 11316.54, + "end": 11318.32, + "probability": 0.6669 + }, + { + "start": 11319.3, + "end": 11320.38, + "probability": 0.8715 + }, + { + "start": 11320.9, + "end": 11322.0, + "probability": 0.6701 + }, + { + "start": 11322.78, + "end": 11324.24, + "probability": 0.942 + }, + { + "start": 11329.14, + "end": 11329.52, + "probability": 0.3037 + }, + { + "start": 11330.08, + "end": 11330.98, + "probability": 0.2796 + }, + { + "start": 11331.14, + "end": 11334.01, + "probability": 0.8179 + }, + { + "start": 11334.48, + "end": 11338.06, + "probability": 0.5767 + }, + { + "start": 11338.5, + "end": 11339.42, + "probability": 0.4516 + }, + { + "start": 11340.85, + "end": 11341.64, + "probability": 0.4972 + }, + { + "start": 11342.34, + "end": 11343.12, + "probability": 0.5533 + }, + { + "start": 11343.12, + "end": 11343.72, + "probability": 0.6656 + }, + { + "start": 11343.86, + "end": 11345.68, + "probability": 0.2735 + }, + { + "start": 11346.46, + "end": 11348.78, + "probability": 0.4411 + }, + { + "start": 11348.78, + "end": 11349.84, + "probability": 0.9331 + }, + { + "start": 11349.94, + "end": 11350.46, + "probability": 0.0149 + }, + { + "start": 11351.83, + "end": 11355.02, + "probability": 0.1747 + }, + { + "start": 11356.16, + "end": 11357.1, + "probability": 0.376 + }, + { + "start": 11357.7, + "end": 11358.9, + "probability": 0.2005 + }, + { + "start": 11359.14, + "end": 11362.14, + "probability": 0.0651 + }, + { + "start": 11362.52, + "end": 11364.36, + "probability": 0.6608 + }, + { + "start": 11364.64, + "end": 11367.82, + "probability": 0.0573 + }, + { + "start": 11367.82, + "end": 11368.4, + "probability": 0.2711 + }, + { + "start": 11368.4, + "end": 11370.98, + "probability": 0.631 + }, + { + "start": 11371.16, + "end": 11371.78, + "probability": 0.6851 + }, + { + "start": 11371.84, + "end": 11373.74, + "probability": 0.6089 + }, + { + "start": 11374.16, + "end": 11374.54, + "probability": 0.8759 + }, + { + "start": 11374.64, + "end": 11377.68, + "probability": 0.9624 + }, + { + "start": 11377.76, + "end": 11378.8, + "probability": 0.9727 + }, + { + "start": 11379.8, + "end": 11382.0, + "probability": 0.754 + }, + { + "start": 11382.06, + "end": 11383.54, + "probability": 0.9583 + }, + { + "start": 11383.72, + "end": 11384.6, + "probability": 0.9824 + }, + { + "start": 11385.0, + "end": 11385.36, + "probability": 0.8301 + }, + { + "start": 11385.42, + "end": 11387.36, + "probability": 0.9006 + }, + { + "start": 11387.36, + "end": 11387.38, + "probability": 0.0009 + }, + { + "start": 11390.12, + "end": 11391.54, + "probability": 0.4401 + }, + { + "start": 11391.7, + "end": 11391.7, + "probability": 0.1765 + }, + { + "start": 11391.7, + "end": 11391.7, + "probability": 0.5302 + }, + { + "start": 11391.7, + "end": 11395.47, + "probability": 0.7405 + }, + { + "start": 11397.16, + "end": 11400.22, + "probability": 0.9375 + }, + { + "start": 11401.4, + "end": 11404.26, + "probability": 0.0948 + }, + { + "start": 11404.34, + "end": 11406.64, + "probability": 0.8326 + }, + { + "start": 11406.78, + "end": 11408.46, + "probability": 0.769 + }, + { + "start": 11408.7, + "end": 11410.56, + "probability": 0.7096 + }, + { + "start": 11410.72, + "end": 11413.54, + "probability": 0.5858 + }, + { + "start": 11414.5, + "end": 11416.14, + "probability": 0.8008 + }, + { + "start": 11416.44, + "end": 11420.7, + "probability": 0.6205 + }, + { + "start": 11421.02, + "end": 11422.46, + "probability": 0.9824 + }, + { + "start": 11423.28, + "end": 11424.08, + "probability": 0.9741 + }, + { + "start": 11424.36, + "end": 11426.36, + "probability": 0.8145 + }, + { + "start": 11427.18, + "end": 11434.54, + "probability": 0.9744 + }, + { + "start": 11434.6, + "end": 11437.92, + "probability": 0.7042 + }, + { + "start": 11438.82, + "end": 11441.0, + "probability": 0.9897 + }, + { + "start": 11441.84, + "end": 11445.54, + "probability": 0.9976 + }, + { + "start": 11447.74, + "end": 11448.96, + "probability": 0.7571 + }, + { + "start": 11449.8, + "end": 11452.12, + "probability": 0.8942 + }, + { + "start": 11452.34, + "end": 11453.42, + "probability": 0.8754 + }, + { + "start": 11453.8, + "end": 11458.5, + "probability": 0.8219 + }, + { + "start": 11458.6, + "end": 11459.74, + "probability": 0.806 + }, + { + "start": 11460.16, + "end": 11460.98, + "probability": 0.4675 + }, + { + "start": 11461.08, + "end": 11468.29, + "probability": 0.7797 + }, + { + "start": 11469.18, + "end": 11473.74, + "probability": 0.9896 + }, + { + "start": 11474.58, + "end": 11476.21, + "probability": 0.9556 + }, + { + "start": 11476.86, + "end": 11477.84, + "probability": 0.8754 + }, + { + "start": 11478.04, + "end": 11484.5, + "probability": 0.9808 + }, + { + "start": 11485.7, + "end": 11490.22, + "probability": 0.9905 + }, + { + "start": 11491.08, + "end": 11493.64, + "probability": 0.9684 + }, + { + "start": 11495.56, + "end": 11503.62, + "probability": 0.9951 + }, + { + "start": 11504.78, + "end": 11512.44, + "probability": 0.9966 + }, + { + "start": 11513.02, + "end": 11514.72, + "probability": 0.9787 + }, + { + "start": 11515.42, + "end": 11516.94, + "probability": 0.9213 + }, + { + "start": 11517.5, + "end": 11520.22, + "probability": 0.9907 + }, + { + "start": 11520.28, + "end": 11522.12, + "probability": 0.8051 + }, + { + "start": 11522.56, + "end": 11524.3, + "probability": 0.8183 + }, + { + "start": 11525.04, + "end": 11530.84, + "probability": 0.9359 + }, + { + "start": 11531.62, + "end": 11534.2, + "probability": 0.8486 + }, + { + "start": 11534.34, + "end": 11536.86, + "probability": 0.9888 + }, + { + "start": 11537.12, + "end": 11538.38, + "probability": 0.6533 + }, + { + "start": 11538.68, + "end": 11539.78, + "probability": 0.9321 + }, + { + "start": 11540.4, + "end": 11541.14, + "probability": 0.9553 + }, + { + "start": 11542.48, + "end": 11545.16, + "probability": 0.6682 + }, + { + "start": 11545.74, + "end": 11551.24, + "probability": 0.7396 + }, + { + "start": 11552.26, + "end": 11552.48, + "probability": 0.5214 + }, + { + "start": 11552.78, + "end": 11553.84, + "probability": 0.771 + }, + { + "start": 11554.72, + "end": 11559.1, + "probability": 0.8502 + }, + { + "start": 11559.54, + "end": 11561.08, + "probability": 0.5899 + }, + { + "start": 11561.34, + "end": 11562.2, + "probability": 0.8412 + }, + { + "start": 11563.28, + "end": 11563.58, + "probability": 0.3036 + }, + { + "start": 11563.58, + "end": 11563.58, + "probability": 0.3388 + }, + { + "start": 11563.58, + "end": 11564.62, + "probability": 0.3477 + }, + { + "start": 11566.8, + "end": 11567.74, + "probability": 0.6958 + }, + { + "start": 11568.14, + "end": 11569.2, + "probability": 0.8723 + }, + { + "start": 11571.16, + "end": 11572.34, + "probability": 0.9431 + }, + { + "start": 11572.98, + "end": 11574.9, + "probability": 0.8391 + }, + { + "start": 11579.18, + "end": 11580.98, + "probability": 0.171 + }, + { + "start": 11581.36, + "end": 11582.0, + "probability": 0.0107 + }, + { + "start": 11596.08, + "end": 11596.18, + "probability": 0.1435 + }, + { + "start": 11603.32, + "end": 11604.3, + "probability": 0.7447 + }, + { + "start": 11604.3, + "end": 11604.74, + "probability": 0.8328 + }, + { + "start": 11607.16, + "end": 11608.28, + "probability": 0.6595 + }, + { + "start": 11610.08, + "end": 11613.42, + "probability": 0.6842 + }, + { + "start": 11615.7, + "end": 11617.44, + "probability": 0.9241 + }, + { + "start": 11618.78, + "end": 11621.76, + "probability": 0.9504 + }, + { + "start": 11622.68, + "end": 11623.52, + "probability": 0.9453 + }, + { + "start": 11625.56, + "end": 11628.32, + "probability": 0.9915 + }, + { + "start": 11629.46, + "end": 11634.42, + "probability": 0.9946 + }, + { + "start": 11636.76, + "end": 11637.16, + "probability": 0.3346 + }, + { + "start": 11638.56, + "end": 11639.2, + "probability": 0.5457 + }, + { + "start": 11640.16, + "end": 11640.7, + "probability": 0.6851 + }, + { + "start": 11643.62, + "end": 11647.98, + "probability": 0.9326 + }, + { + "start": 11647.98, + "end": 11653.28, + "probability": 0.9133 + }, + { + "start": 11653.82, + "end": 11655.52, + "probability": 0.9653 + }, + { + "start": 11658.62, + "end": 11667.14, + "probability": 0.9757 + }, + { + "start": 11667.98, + "end": 11669.48, + "probability": 0.9988 + }, + { + "start": 11671.6, + "end": 11672.46, + "probability": 0.5258 + }, + { + "start": 11673.54, + "end": 11676.82, + "probability": 0.877 + }, + { + "start": 11678.0, + "end": 11680.26, + "probability": 0.9769 + }, + { + "start": 11683.42, + "end": 11685.14, + "probability": 0.9808 + }, + { + "start": 11685.68, + "end": 11687.32, + "probability": 0.9896 + }, + { + "start": 11687.84, + "end": 11692.58, + "probability": 0.9944 + }, + { + "start": 11693.82, + "end": 11696.9, + "probability": 0.8997 + }, + { + "start": 11696.9, + "end": 11700.84, + "probability": 0.9906 + }, + { + "start": 11702.52, + "end": 11705.76, + "probability": 0.9854 + }, + { + "start": 11706.64, + "end": 11709.68, + "probability": 0.9857 + }, + { + "start": 11710.38, + "end": 11713.28, + "probability": 0.9867 + }, + { + "start": 11713.28, + "end": 11717.9, + "probability": 0.9821 + }, + { + "start": 11717.96, + "end": 11721.84, + "probability": 0.8711 + }, + { + "start": 11722.38, + "end": 11726.48, + "probability": 0.9893 + }, + { + "start": 11728.64, + "end": 11730.96, + "probability": 0.5414 + }, + { + "start": 11733.0, + "end": 11734.08, + "probability": 0.7554 + }, + { + "start": 11735.28, + "end": 11738.02, + "probability": 0.9243 + }, + { + "start": 11739.02, + "end": 11743.72, + "probability": 0.9502 + }, + { + "start": 11744.76, + "end": 11748.24, + "probability": 0.9929 + }, + { + "start": 11748.54, + "end": 11750.48, + "probability": 0.9842 + }, + { + "start": 11750.8, + "end": 11752.78, + "probability": 0.756 + }, + { + "start": 11752.86, + "end": 11758.64, + "probability": 0.9092 + }, + { + "start": 11759.28, + "end": 11762.6, + "probability": 0.9861 + }, + { + "start": 11763.26, + "end": 11765.2, + "probability": 0.9591 + }, + { + "start": 11765.84, + "end": 11769.72, + "probability": 0.8577 + }, + { + "start": 11769.78, + "end": 11774.6, + "probability": 0.9879 + }, + { + "start": 11776.34, + "end": 11783.54, + "probability": 0.9839 + }, + { + "start": 11783.64, + "end": 11784.68, + "probability": 0.4434 + }, + { + "start": 11785.26, + "end": 11788.16, + "probability": 0.9873 + }, + { + "start": 11788.16, + "end": 11791.5, + "probability": 0.912 + }, + { + "start": 11792.24, + "end": 11793.36, + "probability": 0.4994 + }, + { + "start": 11793.44, + "end": 11797.5, + "probability": 0.9095 + }, + { + "start": 11797.5, + "end": 11797.66, + "probability": 0.3548 + }, + { + "start": 11798.3, + "end": 11798.3, + "probability": 0.2244 + }, + { + "start": 11798.42, + "end": 11800.18, + "probability": 0.9893 + }, + { + "start": 11801.16, + "end": 11802.06, + "probability": 0.7187 + }, + { + "start": 11803.36, + "end": 11805.34, + "probability": 0.0405 + }, + { + "start": 11828.2, + "end": 11829.46, + "probability": 0.73 + }, + { + "start": 11829.96, + "end": 11836.12, + "probability": 0.9016 + }, + { + "start": 11837.98, + "end": 11839.72, + "probability": 0.9291 + }, + { + "start": 11841.66, + "end": 11845.89, + "probability": 0.9852 + }, + { + "start": 11846.6, + "end": 11848.28, + "probability": 0.9438 + }, + { + "start": 11848.7, + "end": 11852.08, + "probability": 0.9805 + }, + { + "start": 11852.28, + "end": 11853.58, + "probability": 0.9602 + }, + { + "start": 11853.72, + "end": 11855.32, + "probability": 0.8588 + }, + { + "start": 11857.06, + "end": 11860.38, + "probability": 0.9846 + }, + { + "start": 11862.3, + "end": 11869.76, + "probability": 0.9554 + }, + { + "start": 11871.24, + "end": 11874.46, + "probability": 0.9024 + }, + { + "start": 11875.14, + "end": 11878.6, + "probability": 0.9695 + }, + { + "start": 11880.14, + "end": 11886.42, + "probability": 0.921 + }, + { + "start": 11887.08, + "end": 11887.26, + "probability": 0.0501 + }, + { + "start": 11889.4, + "end": 11890.57, + "probability": 0.3414 + }, + { + "start": 11892.34, + "end": 11893.98, + "probability": 0.9503 + }, + { + "start": 11894.1, + "end": 11895.3, + "probability": 0.9191 + }, + { + "start": 11895.4, + "end": 11897.14, + "probability": 0.9804 + }, + { + "start": 11897.6, + "end": 11898.5, + "probability": 0.6787 + }, + { + "start": 11899.44, + "end": 11902.51, + "probability": 0.9463 + }, + { + "start": 11904.46, + "end": 11907.28, + "probability": 0.7628 + }, + { + "start": 11907.84, + "end": 11909.36, + "probability": 0.8279 + }, + { + "start": 11909.82, + "end": 11913.48, + "probability": 0.9619 + }, + { + "start": 11914.26, + "end": 11918.76, + "probability": 0.9731 + }, + { + "start": 11920.98, + "end": 11921.64, + "probability": 0.2919 + }, + { + "start": 11921.72, + "end": 11922.4, + "probability": 0.3825 + }, + { + "start": 11922.44, + "end": 11924.18, + "probability": 0.7207 + }, + { + "start": 11924.24, + "end": 11924.98, + "probability": 0.8708 + }, + { + "start": 11925.06, + "end": 11926.24, + "probability": 0.9833 + }, + { + "start": 11926.34, + "end": 11928.22, + "probability": 0.9825 + }, + { + "start": 11928.3, + "end": 11929.86, + "probability": 0.9007 + }, + { + "start": 11930.4, + "end": 11932.36, + "probability": 0.9667 + }, + { + "start": 11932.5, + "end": 11933.52, + "probability": 0.7179 + }, + { + "start": 11934.36, + "end": 11937.4, + "probability": 0.6383 + }, + { + "start": 11937.56, + "end": 11939.6, + "probability": 0.9386 + }, + { + "start": 11940.24, + "end": 11941.38, + "probability": 0.968 + }, + { + "start": 11941.66, + "end": 11943.72, + "probability": 0.8922 + }, + { + "start": 11944.4, + "end": 11946.16, + "probability": 0.9053 + }, + { + "start": 11947.2, + "end": 11953.88, + "probability": 0.9988 + }, + { + "start": 11954.54, + "end": 11956.21, + "probability": 0.8953 + }, + { + "start": 11956.48, + "end": 11960.44, + "probability": 0.9912 + }, + { + "start": 11960.58, + "end": 11963.22, + "probability": 0.8859 + }, + { + "start": 11963.88, + "end": 11968.36, + "probability": 0.9732 + }, + { + "start": 11970.98, + "end": 11973.48, + "probability": 0.9958 + }, + { + "start": 11974.26, + "end": 11975.38, + "probability": 0.7425 + }, + { + "start": 11976.1, + "end": 11981.6, + "probability": 0.9131 + }, + { + "start": 11982.26, + "end": 11982.94, + "probability": 0.8384 + }, + { + "start": 11983.04, + "end": 11986.92, + "probability": 0.988 + }, + { + "start": 11986.92, + "end": 11992.22, + "probability": 0.9056 + }, + { + "start": 11992.38, + "end": 11995.48, + "probability": 0.8587 + }, + { + "start": 11995.72, + "end": 11995.82, + "probability": 0.838 + }, + { + "start": 11998.02, + "end": 11999.36, + "probability": 0.9871 + }, + { + "start": 12001.04, + "end": 12003.22, + "probability": 0.7246 + }, + { + "start": 12003.94, + "end": 12006.6, + "probability": 0.8735 + }, + { + "start": 12007.48, + "end": 12009.6, + "probability": 0.9191 + }, + { + "start": 12013.66, + "end": 12014.95, + "probability": 0.8555 + }, + { + "start": 12016.5, + "end": 12018.42, + "probability": 0.4892 + }, + { + "start": 12019.26, + "end": 12022.98, + "probability": 0.9863 + }, + { + "start": 12023.9, + "end": 12028.46, + "probability": 0.9906 + }, + { + "start": 12029.4, + "end": 12032.74, + "probability": 0.7417 + }, + { + "start": 12033.7, + "end": 12035.06, + "probability": 0.9686 + }, + { + "start": 12035.94, + "end": 12038.66, + "probability": 0.9603 + }, + { + "start": 12049.94, + "end": 12052.4, + "probability": 0.9358 + }, + { + "start": 12053.08, + "end": 12059.91, + "probability": 0.9032 + }, + { + "start": 12060.42, + "end": 12061.55, + "probability": 0.936 + }, + { + "start": 12065.3, + "end": 12068.16, + "probability": 0.9705 + }, + { + "start": 12069.02, + "end": 12069.95, + "probability": 0.9756 + }, + { + "start": 12071.4, + "end": 12073.68, + "probability": 0.8919 + }, + { + "start": 12074.12, + "end": 12075.76, + "probability": 0.9968 + }, + { + "start": 12075.82, + "end": 12079.86, + "probability": 0.9619 + }, + { + "start": 12080.68, + "end": 12082.2, + "probability": 0.8967 + }, + { + "start": 12083.22, + "end": 12084.7, + "probability": 0.9886 + }, + { + "start": 12086.38, + "end": 12089.68, + "probability": 0.9832 + }, + { + "start": 12089.68, + "end": 12093.5, + "probability": 0.8789 + }, + { + "start": 12094.52, + "end": 12097.76, + "probability": 0.9946 + }, + { + "start": 12098.9, + "end": 12101.62, + "probability": 0.9814 + }, + { + "start": 12102.3, + "end": 12105.3, + "probability": 0.6564 + }, + { + "start": 12105.84, + "end": 12107.79, + "probability": 0.9839 + }, + { + "start": 12108.52, + "end": 12110.0, + "probability": 0.9631 + }, + { + "start": 12110.68, + "end": 12112.0, + "probability": 0.993 + }, + { + "start": 12112.56, + "end": 12114.5, + "probability": 0.9701 + }, + { + "start": 12115.4, + "end": 12119.34, + "probability": 0.8094 + }, + { + "start": 12119.88, + "end": 12123.0, + "probability": 0.9795 + }, + { + "start": 12123.62, + "end": 12126.3, + "probability": 0.731 + }, + { + "start": 12128.36, + "end": 12129.12, + "probability": 0.8162 + }, + { + "start": 12129.22, + "end": 12133.78, + "probability": 0.9912 + }, + { + "start": 12134.72, + "end": 12136.58, + "probability": 0.994 + }, + { + "start": 12136.64, + "end": 12139.12, + "probability": 0.9954 + }, + { + "start": 12140.32, + "end": 12144.18, + "probability": 0.8629 + }, + { + "start": 12144.72, + "end": 12147.94, + "probability": 0.9959 + }, + { + "start": 12147.94, + "end": 12150.5, + "probability": 0.7437 + }, + { + "start": 12150.86, + "end": 12153.5, + "probability": 0.9838 + }, + { + "start": 12155.42, + "end": 12159.58, + "probability": 0.9924 + }, + { + "start": 12160.2, + "end": 12161.63, + "probability": 0.8165 + }, + { + "start": 12161.7, + "end": 12166.14, + "probability": 0.7458 + }, + { + "start": 12167.04, + "end": 12172.42, + "probability": 0.8975 + }, + { + "start": 12173.02, + "end": 12175.32, + "probability": 0.7509 + }, + { + "start": 12175.32, + "end": 12175.48, + "probability": 0.1431 + }, + { + "start": 12176.04, + "end": 12176.41, + "probability": 0.0132 + }, + { + "start": 12177.68, + "end": 12178.46, + "probability": 0.534 + }, + { + "start": 12178.48, + "end": 12181.44, + "probability": 0.7677 + }, + { + "start": 12181.5, + "end": 12183.08, + "probability": 0.9061 + }, + { + "start": 12183.46, + "end": 12186.28, + "probability": 0.9436 + }, + { + "start": 12186.34, + "end": 12188.42, + "probability": 0.9688 + }, + { + "start": 12189.04, + "end": 12190.27, + "probability": 0.9181 + }, + { + "start": 12191.32, + "end": 12194.08, + "probability": 0.9257 + }, + { + "start": 12194.86, + "end": 12200.08, + "probability": 0.9801 + }, + { + "start": 12200.66, + "end": 12201.34, + "probability": 0.6971 + }, + { + "start": 12202.5, + "end": 12204.14, + "probability": 0.9971 + }, + { + "start": 12204.14, + "end": 12208.18, + "probability": 0.9658 + }, + { + "start": 12208.96, + "end": 12212.2, + "probability": 0.9701 + }, + { + "start": 12213.24, + "end": 12214.28, + "probability": 0.9175 + }, + { + "start": 12214.52, + "end": 12216.62, + "probability": 0.9924 + }, + { + "start": 12219.06, + "end": 12223.64, + "probability": 0.9561 + }, + { + "start": 12223.64, + "end": 12227.7, + "probability": 0.9766 + }, + { + "start": 12229.14, + "end": 12235.02, + "probability": 0.9718 + }, + { + "start": 12235.5, + "end": 12238.7, + "probability": 0.9753 + }, + { + "start": 12240.24, + "end": 12241.12, + "probability": 0.9114 + }, + { + "start": 12243.44, + "end": 12246.1, + "probability": 0.9802 + }, + { + "start": 12246.24, + "end": 12247.96, + "probability": 0.7725 + }, + { + "start": 12248.42, + "end": 12251.18, + "probability": 0.8761 + }, + { + "start": 12252.28, + "end": 12256.16, + "probability": 0.979 + }, + { + "start": 12256.16, + "end": 12259.44, + "probability": 0.908 + }, + { + "start": 12259.44, + "end": 12263.04, + "probability": 0.9973 + }, + { + "start": 12264.96, + "end": 12269.7, + "probability": 0.9915 + }, + { + "start": 12269.82, + "end": 12271.76, + "probability": 0.9688 + }, + { + "start": 12272.38, + "end": 12275.22, + "probability": 0.8338 + }, + { + "start": 12275.52, + "end": 12277.02, + "probability": 0.8607 + }, + { + "start": 12277.52, + "end": 12277.62, + "probability": 0.0716 + }, + { + "start": 12277.64, + "end": 12278.06, + "probability": 0.7475 + }, + { + "start": 12278.2, + "end": 12279.38, + "probability": 0.92 + }, + { + "start": 12280.36, + "end": 12281.8, + "probability": 0.9004 + }, + { + "start": 12282.34, + "end": 12285.76, + "probability": 0.9567 + }, + { + "start": 12285.76, + "end": 12289.64, + "probability": 0.9889 + }, + { + "start": 12291.68, + "end": 12294.14, + "probability": 0.9552 + }, + { + "start": 12295.0, + "end": 12297.52, + "probability": 0.8678 + }, + { + "start": 12298.92, + "end": 12300.16, + "probability": 0.7751 + }, + { + "start": 12301.18, + "end": 12305.2, + "probability": 0.7212 + }, + { + "start": 12305.76, + "end": 12309.08, + "probability": 0.7993 + }, + { + "start": 12309.5, + "end": 12311.14, + "probability": 0.8004 + }, + { + "start": 12314.62, + "end": 12317.98, + "probability": 0.7108 + }, + { + "start": 12318.66, + "end": 12321.82, + "probability": 0.9971 + }, + { + "start": 12321.82, + "end": 12324.26, + "probability": 0.9993 + }, + { + "start": 12325.24, + "end": 12327.52, + "probability": 0.9973 + }, + { + "start": 12328.26, + "end": 12330.74, + "probability": 0.8033 + }, + { + "start": 12331.32, + "end": 12334.1, + "probability": 0.9923 + }, + { + "start": 12334.54, + "end": 12337.18, + "probability": 0.9839 + }, + { + "start": 12337.18, + "end": 12340.78, + "probability": 0.9857 + }, + { + "start": 12342.7, + "end": 12343.66, + "probability": 0.8708 + }, + { + "start": 12344.2, + "end": 12349.92, + "probability": 0.8694 + }, + { + "start": 12350.74, + "end": 12352.14, + "probability": 0.8298 + }, + { + "start": 12352.18, + "end": 12354.52, + "probability": 0.9512 + }, + { + "start": 12355.54, + "end": 12362.42, + "probability": 0.9808 + }, + { + "start": 12363.22, + "end": 12365.38, + "probability": 0.9756 + }, + { + "start": 12365.38, + "end": 12367.74, + "probability": 0.7972 + }, + { + "start": 12368.2, + "end": 12371.6, + "probability": 0.9729 + }, + { + "start": 12372.16, + "end": 12373.18, + "probability": 0.7959 + }, + { + "start": 12373.56, + "end": 12375.78, + "probability": 0.8276 + }, + { + "start": 12375.82, + "end": 12377.04, + "probability": 0.8327 + }, + { + "start": 12377.7, + "end": 12382.9, + "probability": 0.7282 + }, + { + "start": 12385.38, + "end": 12386.9, + "probability": 0.8685 + }, + { + "start": 12387.7, + "end": 12390.1, + "probability": 0.9847 + }, + { + "start": 12390.1, + "end": 12393.04, + "probability": 0.839 + }, + { + "start": 12393.85, + "end": 12397.71, + "probability": 0.5 + }, + { + "start": 12397.96, + "end": 12400.15, + "probability": 0.9912 + }, + { + "start": 12400.18, + "end": 12405.56, + "probability": 0.6449 + }, + { + "start": 12407.52, + "end": 12410.88, + "probability": 0.9964 + }, + { + "start": 12410.88, + "end": 12414.06, + "probability": 0.9862 + }, + { + "start": 12415.7, + "end": 12420.04, + "probability": 0.9778 + }, + { + "start": 12420.04, + "end": 12426.36, + "probability": 0.9494 + }, + { + "start": 12426.5, + "end": 12427.4, + "probability": 0.8105 + }, + { + "start": 12427.78, + "end": 12428.24, + "probability": 0.8915 + }, + { + "start": 12429.24, + "end": 12431.5, + "probability": 0.7182 + }, + { + "start": 12432.46, + "end": 12435.56, + "probability": 0.8994 + }, + { + "start": 12435.7, + "end": 12440.7, + "probability": 0.998 + }, + { + "start": 12441.7, + "end": 12445.38, + "probability": 0.9948 + }, + { + "start": 12446.12, + "end": 12449.12, + "probability": 0.9193 + }, + { + "start": 12450.18, + "end": 12452.42, + "probability": 0.9904 + }, + { + "start": 12453.48, + "end": 12458.08, + "probability": 0.9964 + }, + { + "start": 12458.78, + "end": 12460.8, + "probability": 0.9801 + }, + { + "start": 12461.74, + "end": 12466.51, + "probability": 0.9722 + }, + { + "start": 12468.52, + "end": 12469.82, + "probability": 0.7769 + }, + { + "start": 12470.26, + "end": 12474.02, + "probability": 0.9922 + }, + { + "start": 12474.9, + "end": 12477.05, + "probability": 0.9388 + }, + { + "start": 12477.6, + "end": 12478.6, + "probability": 0.7099 + }, + { + "start": 12478.7, + "end": 12482.32, + "probability": 0.9968 + }, + { + "start": 12482.32, + "end": 12485.12, + "probability": 0.9586 + }, + { + "start": 12501.36, + "end": 12508.04, + "probability": 0.98 + }, + { + "start": 12511.08, + "end": 12513.66, + "probability": 0.853 + }, + { + "start": 12514.77, + "end": 12517.48, + "probability": 0.8143 + }, + { + "start": 12519.75, + "end": 12522.76, + "probability": 0.9612 + }, + { + "start": 12523.16, + "end": 12524.12, + "probability": 0.6968 + }, + { + "start": 12524.28, + "end": 12528.02, + "probability": 0.9865 + }, + { + "start": 12528.48, + "end": 12530.78, + "probability": 0.6433 + }, + { + "start": 12530.86, + "end": 12532.74, + "probability": 0.7917 + }, + { + "start": 12533.18, + "end": 12534.82, + "probability": 0.6919 + }, + { + "start": 12535.4, + "end": 12537.34, + "probability": 0.9817 + }, + { + "start": 12537.34, + "end": 12540.54, + "probability": 0.9963 + }, + { + "start": 12540.74, + "end": 12543.52, + "probability": 0.8584 + }, + { + "start": 12543.58, + "end": 12544.4, + "probability": 0.6997 + }, + { + "start": 12544.72, + "end": 12548.94, + "probability": 0.8109 + }, + { + "start": 12549.52, + "end": 12550.41, + "probability": 0.8298 + }, + { + "start": 12551.16, + "end": 12551.54, + "probability": 0.3664 + }, + { + "start": 12551.54, + "end": 12552.36, + "probability": 0.6845 + }, + { + "start": 12553.22, + "end": 12554.04, + "probability": 0.0946 + }, + { + "start": 12557.12, + "end": 12558.54, + "probability": 0.1634 + }, + { + "start": 12560.22, + "end": 12561.54, + "probability": 0.0226 + }, + { + "start": 12563.26, + "end": 12565.18, + "probability": 0.0278 + }, + { + "start": 12566.4, + "end": 12568.08, + "probability": 0.0379 + }, + { + "start": 12571.08, + "end": 12572.42, + "probability": 0.3306 + }, + { + "start": 12573.54, + "end": 12578.48, + "probability": 0.78 + }, + { + "start": 12580.65, + "end": 12584.06, + "probability": 0.9921 + }, + { + "start": 12584.06, + "end": 12587.34, + "probability": 0.8414 + }, + { + "start": 12587.5, + "end": 12588.06, + "probability": 0.4986 + }, + { + "start": 12588.84, + "end": 12594.6, + "probability": 0.909 + }, + { + "start": 12594.6, + "end": 12596.94, + "probability": 0.5705 + }, + { + "start": 12597.48, + "end": 12599.7, + "probability": 0.633 + }, + { + "start": 12599.84, + "end": 12601.62, + "probability": 0.6924 + }, + { + "start": 12602.42, + "end": 12604.34, + "probability": 0.7345 + }, + { + "start": 12604.42, + "end": 12605.82, + "probability": 0.9631 + }, + { + "start": 12605.98, + "end": 12609.49, + "probability": 0.9822 + }, + { + "start": 12609.59, + "end": 12611.45, + "probability": 0.8314 + }, + { + "start": 12611.89, + "end": 12614.07, + "probability": 0.981 + }, + { + "start": 12614.83, + "end": 12617.75, + "probability": 0.7534 + }, + { + "start": 12617.75, + "end": 12621.21, + "probability": 0.8302 + }, + { + "start": 12621.85, + "end": 12623.27, + "probability": 0.5067 + }, + { + "start": 12623.33, + "end": 12625.75, + "probability": 0.9469 + }, + { + "start": 12625.75, + "end": 12629.55, + "probability": 0.98 + }, + { + "start": 12629.63, + "end": 12630.69, + "probability": 0.4797 + }, + { + "start": 12631.43, + "end": 12635.21, + "probability": 0.5555 + }, + { + "start": 12635.21, + "end": 12639.23, + "probability": 0.9852 + }, + { + "start": 12639.67, + "end": 12643.03, + "probability": 0.9791 + }, + { + "start": 12643.03, + "end": 12643.69, + "probability": 0.6856 + }, + { + "start": 12644.41, + "end": 12647.61, + "probability": 0.9102 + }, + { + "start": 12647.91, + "end": 12652.35, + "probability": 0.894 + }, + { + "start": 12652.41, + "end": 12653.47, + "probability": 0.9688 + }, + { + "start": 12653.77, + "end": 12655.41, + "probability": 0.9884 + }, + { + "start": 12655.73, + "end": 12658.73, + "probability": 0.931 + }, + { + "start": 12658.91, + "end": 12659.37, + "probability": 0.2682 + }, + { + "start": 12659.37, + "end": 12659.74, + "probability": 0.5284 + }, + { + "start": 12659.93, + "end": 12660.41, + "probability": 0.5937 + }, + { + "start": 12660.59, + "end": 12664.33, + "probability": 0.8765 + }, + { + "start": 12664.33, + "end": 12668.07, + "probability": 0.9707 + }, + { + "start": 12668.23, + "end": 12669.19, + "probability": 0.8782 + }, + { + "start": 12670.73, + "end": 12677.75, + "probability": 0.1149 + }, + { + "start": 12677.75, + "end": 12678.03, + "probability": 0.0131 + }, + { + "start": 12684.85, + "end": 12685.97, + "probability": 0.6754 + }, + { + "start": 12691.43, + "end": 12693.25, + "probability": 0.2627 + }, + { + "start": 12697.69, + "end": 12698.89, + "probability": 0.0394 + }, + { + "start": 12699.03, + "end": 12702.37, + "probability": 0.6156 + }, + { + "start": 12702.37, + "end": 12706.65, + "probability": 0.3396 + }, + { + "start": 12707.53, + "end": 12708.65, + "probability": 0.3138 + }, + { + "start": 12708.65, + "end": 12711.85, + "probability": 0.0586 + }, + { + "start": 12712.45, + "end": 12712.93, + "probability": 0.0 + }, + { + "start": 12713.59, + "end": 12714.6, + "probability": 0.1712 + }, + { + "start": 12714.67, + "end": 12719.55, + "probability": 0.1466 + }, + { + "start": 12720.19, + "end": 12721.07, + "probability": 0.1315 + }, + { + "start": 12730.17, + "end": 12731.93, + "probability": 0.2757 + }, + { + "start": 12733.26, + "end": 12741.37, + "probability": 0.0231 + }, + { + "start": 12741.37, + "end": 12741.57, + "probability": 0.0146 + }, + { + "start": 12741.65, + "end": 12741.65, + "probability": 0.0418 + }, + { + "start": 12741.65, + "end": 12741.65, + "probability": 0.0469 + }, + { + "start": 12741.65, + "end": 12741.77, + "probability": 0.0175 + }, + { + "start": 12741.77, + "end": 12741.87, + "probability": 0.0536 + }, + { + "start": 12742.0, + "end": 12742.0, + "probability": 0.0 + }, + { + "start": 12742.0, + "end": 12742.0, + "probability": 0.0 + }, + { + "start": 12742.0, + "end": 12742.0, + "probability": 0.0 + }, + { + "start": 12742.0, + "end": 12742.0, + "probability": 0.0 + }, + { + "start": 12742.0, + "end": 12742.0, + "probability": 0.0 + }, + { + "start": 12742.76, + "end": 12743.58, + "probability": 0.0538 + }, + { + "start": 12744.63, + "end": 12746.19, + "probability": 0.1921 + }, + { + "start": 12750.42, + "end": 12754.38, + "probability": 0.7949 + }, + { + "start": 12754.9, + "end": 12756.12, + "probability": 0.7701 + }, + { + "start": 12757.4, + "end": 12758.28, + "probability": 0.8883 + }, + { + "start": 12758.9, + "end": 12759.64, + "probability": 0.8876 + }, + { + "start": 12759.8, + "end": 12760.24, + "probability": 0.3607 + }, + { + "start": 12761.08, + "end": 12763.66, + "probability": 0.9345 + }, + { + "start": 12764.4, + "end": 12765.26, + "probability": 0.6237 + }, + { + "start": 12766.6, + "end": 12767.76, + "probability": 0.9829 + }, + { + "start": 12769.5, + "end": 12772.9, + "probability": 0.8944 + }, + { + "start": 12773.6, + "end": 12774.18, + "probability": 0.4902 + }, + { + "start": 12776.34, + "end": 12781.06, + "probability": 0.9622 + }, + { + "start": 12781.46, + "end": 12782.02, + "probability": 0.9165 + }, + { + "start": 12783.28, + "end": 12784.9, + "probability": 0.7818 + }, + { + "start": 12786.02, + "end": 12790.6, + "probability": 0.8077 + }, + { + "start": 12791.36, + "end": 12792.0, + "probability": 0.7403 + }, + { + "start": 12793.14, + "end": 12800.02, + "probability": 0.7096 + }, + { + "start": 12800.8, + "end": 12804.54, + "probability": 0.8278 + }, + { + "start": 12805.32, + "end": 12806.62, + "probability": 0.8668 + }, + { + "start": 12808.62, + "end": 12810.04, + "probability": 0.8078 + }, + { + "start": 12811.14, + "end": 12812.28, + "probability": 0.5988 + }, + { + "start": 12812.46, + "end": 12815.02, + "probability": 0.573 + }, + { + "start": 12816.42, + "end": 12821.12, + "probability": 0.5034 + }, + { + "start": 12821.68, + "end": 12824.38, + "probability": 0.7694 + }, + { + "start": 12824.66, + "end": 12828.26, + "probability": 0.8856 + }, + { + "start": 12828.48, + "end": 12831.02, + "probability": 0.5848 + }, + { + "start": 12832.32, + "end": 12833.76, + "probability": 0.5844 + }, + { + "start": 12834.26, + "end": 12835.8, + "probability": 0.9961 + }, + { + "start": 12837.2, + "end": 12842.4, + "probability": 0.9081 + }, + { + "start": 12843.72, + "end": 12844.42, + "probability": 0.8479 + }, + { + "start": 12844.5, + "end": 12846.28, + "probability": 0.8242 + }, + { + "start": 12846.92, + "end": 12848.24, + "probability": 0.716 + }, + { + "start": 12849.74, + "end": 12853.2, + "probability": 0.991 + }, + { + "start": 12853.2, + "end": 12856.7, + "probability": 0.9172 + }, + { + "start": 12856.84, + "end": 12858.78, + "probability": 0.7168 + }, + { + "start": 12858.78, + "end": 12860.28, + "probability": 0.1596 + }, + { + "start": 12861.1, + "end": 12863.47, + "probability": 0.8095 + }, + { + "start": 12864.34, + "end": 12866.84, + "probability": 0.9862 + }, + { + "start": 12866.92, + "end": 12870.15, + "probability": 0.738 + }, + { + "start": 12883.6, + "end": 12885.46, + "probability": 0.6607 + }, + { + "start": 12886.12, + "end": 12889.06, + "probability": 0.7342 + }, + { + "start": 12890.66, + "end": 12891.78, + "probability": 0.7211 + }, + { + "start": 12892.62, + "end": 12894.5, + "probability": 0.9492 + }, + { + "start": 12895.76, + "end": 12896.82, + "probability": 0.999 + }, + { + "start": 12899.3, + "end": 12902.86, + "probability": 0.8127 + }, + { + "start": 12903.94, + "end": 12905.9, + "probability": 0.4579 + }, + { + "start": 12906.32, + "end": 12909.4, + "probability": 0.7482 + }, + { + "start": 12910.18, + "end": 12914.62, + "probability": 0.7835 + }, + { + "start": 12915.2, + "end": 12919.56, + "probability": 0.9543 + }, + { + "start": 12920.86, + "end": 12921.82, + "probability": 0.1829 + }, + { + "start": 12921.88, + "end": 12922.8, + "probability": 0.6892 + }, + { + "start": 12922.92, + "end": 12925.48, + "probability": 0.9854 + }, + { + "start": 12925.6, + "end": 12925.6, + "probability": 0.6777 + }, + { + "start": 12926.36, + "end": 12927.66, + "probability": 0.9352 + }, + { + "start": 12928.56, + "end": 12930.8, + "probability": 0.9259 + }, + { + "start": 12931.68, + "end": 12932.48, + "probability": 0.9529 + }, + { + "start": 12934.12, + "end": 12936.36, + "probability": 0.7269 + }, + { + "start": 12937.84, + "end": 12939.64, + "probability": 0.9988 + }, + { + "start": 12940.22, + "end": 12942.44, + "probability": 0.9962 + }, + { + "start": 12943.14, + "end": 12947.48, + "probability": 0.7788 + }, + { + "start": 12948.42, + "end": 12949.64, + "probability": 0.8192 + }, + { + "start": 12949.78, + "end": 12951.64, + "probability": 0.8336 + }, + { + "start": 12952.06, + "end": 12954.12, + "probability": 0.79 + }, + { + "start": 12954.76, + "end": 12958.8, + "probability": 0.9399 + }, + { + "start": 12959.26, + "end": 12960.14, + "probability": 0.6682 + }, + { + "start": 12960.88, + "end": 12963.98, + "probability": 0.8837 + }, + { + "start": 12968.6, + "end": 12969.6, + "probability": 0.0289 + }, + { + "start": 12972.04, + "end": 12973.0, + "probability": 0.4133 + }, + { + "start": 12973.58, + "end": 12975.44, + "probability": 0.7732 + }, + { + "start": 12976.84, + "end": 12978.84, + "probability": 0.8571 + }, + { + "start": 12979.73, + "end": 12980.38, + "probability": 0.2907 + }, + { + "start": 12980.38, + "end": 12983.9, + "probability": 0.8296 + }, + { + "start": 12985.02, + "end": 12989.18, + "probability": 0.9213 + }, + { + "start": 12989.7, + "end": 12995.32, + "probability": 0.7766 + }, + { + "start": 12996.04, + "end": 12997.08, + "probability": 0.7515 + }, + { + "start": 12997.78, + "end": 13002.06, + "probability": 0.9156 + }, + { + "start": 13002.12, + "end": 13002.96, + "probability": 0.4548 + }, + { + "start": 13003.46, + "end": 13003.95, + "probability": 0.0489 + }, + { + "start": 13005.06, + "end": 13007.78, + "probability": 0.9823 + }, + { + "start": 13008.6, + "end": 13012.02, + "probability": 0.9457 + }, + { + "start": 13012.72, + "end": 13017.48, + "probability": 0.9833 + }, + { + "start": 13018.04, + "end": 13019.11, + "probability": 0.9026 + }, + { + "start": 13019.64, + "end": 13019.88, + "probability": 0.1324 + }, + { + "start": 13020.94, + "end": 13025.42, + "probability": 0.9448 + }, + { + "start": 13025.56, + "end": 13027.16, + "probability": 0.9379 + }, + { + "start": 13027.72, + "end": 13032.88, + "probability": 0.797 + }, + { + "start": 13033.44, + "end": 13033.65, + "probability": 0.5273 + }, + { + "start": 13034.96, + "end": 13036.06, + "probability": 0.2521 + }, + { + "start": 13036.58, + "end": 13041.4, + "probability": 0.7102 + }, + { + "start": 13042.06, + "end": 13042.5, + "probability": 0.6329 + }, + { + "start": 13043.4, + "end": 13046.06, + "probability": 0.949 + }, + { + "start": 13046.1, + "end": 13046.82, + "probability": 0.8352 + }, + { + "start": 13047.36, + "end": 13048.69, + "probability": 0.9253 + }, + { + "start": 13048.92, + "end": 13053.64, + "probability": 0.9565 + }, + { + "start": 13053.96, + "end": 13055.06, + "probability": 0.9419 + }, + { + "start": 13056.2, + "end": 13059.86, + "probability": 0.9202 + }, + { + "start": 13061.0, + "end": 13061.74, + "probability": 0.9019 + }, + { + "start": 13062.44, + "end": 13063.32, + "probability": 0.8136 + }, + { + "start": 13063.98, + "end": 13064.6, + "probability": 0.8867 + }, + { + "start": 13065.14, + "end": 13071.12, + "probability": 0.901 + }, + { + "start": 13072.2, + "end": 13074.26, + "probability": 0.8518 + }, + { + "start": 13074.6, + "end": 13075.86, + "probability": 0.9527 + }, + { + "start": 13075.96, + "end": 13079.96, + "probability": 0.9714 + }, + { + "start": 13080.49, + "end": 13084.14, + "probability": 0.7773 + }, + { + "start": 13084.74, + "end": 13085.45, + "probability": 0.9562 + }, + { + "start": 13086.78, + "end": 13090.1, + "probability": 0.6877 + }, + { + "start": 13090.42, + "end": 13092.06, + "probability": 0.7674 + }, + { + "start": 13092.14, + "end": 13095.0, + "probability": 0.9898 + }, + { + "start": 13095.52, + "end": 13099.26, + "probability": 0.9695 + }, + { + "start": 13100.02, + "end": 13103.92, + "probability": 0.7654 + }, + { + "start": 13104.36, + "end": 13105.1, + "probability": 0.877 + }, + { + "start": 13105.22, + "end": 13106.5, + "probability": 0.9717 + }, + { + "start": 13107.72, + "end": 13108.66, + "probability": 0.8869 + }, + { + "start": 13109.08, + "end": 13109.67, + "probability": 0.9542 + }, + { + "start": 13110.14, + "end": 13111.26, + "probability": 0.9386 + }, + { + "start": 13111.34, + "end": 13111.88, + "probability": 0.8261 + }, + { + "start": 13112.56, + "end": 13116.52, + "probability": 0.8164 + }, + { + "start": 13117.04, + "end": 13117.76, + "probability": 0.6348 + }, + { + "start": 13118.32, + "end": 13120.3, + "probability": 0.6217 + }, + { + "start": 13120.8, + "end": 13121.48, + "probability": 0.5775 + }, + { + "start": 13122.54, + "end": 13125.68, + "probability": 0.6704 + }, + { + "start": 13125.7, + "end": 13130.0, + "probability": 0.9941 + }, + { + "start": 13130.32, + "end": 13131.02, + "probability": 0.8372 + }, + { + "start": 13134.28, + "end": 13137.98, + "probability": 0.842 + }, + { + "start": 13139.08, + "end": 13140.92, + "probability": 0.7371 + }, + { + "start": 13147.68, + "end": 13148.86, + "probability": 0.8241 + }, + { + "start": 13153.38, + "end": 13154.7, + "probability": 0.7472 + }, + { + "start": 13155.86, + "end": 13157.04, + "probability": 0.9269 + }, + { + "start": 13159.12, + "end": 13160.28, + "probability": 0.6881 + }, + { + "start": 13161.82, + "end": 13164.36, + "probability": 0.8654 + }, + { + "start": 13165.6, + "end": 13167.86, + "probability": 0.9084 + }, + { + "start": 13169.32, + "end": 13171.04, + "probability": 0.7019 + }, + { + "start": 13172.02, + "end": 13172.82, + "probability": 0.9894 + }, + { + "start": 13173.34, + "end": 13179.22, + "probability": 0.9434 + }, + { + "start": 13180.0, + "end": 13181.52, + "probability": 0.7873 + }, + { + "start": 13182.74, + "end": 13186.42, + "probability": 0.9199 + }, + { + "start": 13187.7, + "end": 13191.8, + "probability": 0.8473 + }, + { + "start": 13192.56, + "end": 13194.41, + "probability": 0.748 + }, + { + "start": 13195.66, + "end": 13199.92, + "probability": 0.9296 + }, + { + "start": 13200.74, + "end": 13202.62, + "probability": 0.5114 + }, + { + "start": 13203.94, + "end": 13207.32, + "probability": 0.9469 + }, + { + "start": 13208.24, + "end": 13210.32, + "probability": 0.8729 + }, + { + "start": 13211.16, + "end": 13211.8, + "probability": 0.9788 + }, + { + "start": 13212.84, + "end": 13219.04, + "probability": 0.8759 + }, + { + "start": 13219.94, + "end": 13224.74, + "probability": 0.9716 + }, + { + "start": 13225.6, + "end": 13227.44, + "probability": 0.9867 + }, + { + "start": 13228.32, + "end": 13232.78, + "probability": 0.9294 + }, + { + "start": 13233.44, + "end": 13235.28, + "probability": 0.9263 + }, + { + "start": 13236.02, + "end": 13236.52, + "probability": 0.7982 + }, + { + "start": 13237.14, + "end": 13237.96, + "probability": 0.7281 + }, + { + "start": 13238.06, + "end": 13240.7, + "probability": 0.9074 + }, + { + "start": 13240.8, + "end": 13244.46, + "probability": 0.984 + }, + { + "start": 13245.18, + "end": 13245.7, + "probability": 0.9612 + }, + { + "start": 13246.46, + "end": 13248.24, + "probability": 0.9927 + }, + { + "start": 13248.76, + "end": 13251.1, + "probability": 0.9207 + }, + { + "start": 13251.2, + "end": 13252.8, + "probability": 0.7953 + }, + { + "start": 13253.0, + "end": 13257.1, + "probability": 0.9941 + }, + { + "start": 13257.82, + "end": 13261.1, + "probability": 0.9167 + }, + { + "start": 13261.96, + "end": 13266.34, + "probability": 0.7385 + }, + { + "start": 13267.26, + "end": 13270.38, + "probability": 0.9761 + }, + { + "start": 13271.14, + "end": 13275.58, + "probability": 0.9582 + }, + { + "start": 13275.94, + "end": 13279.5, + "probability": 0.9293 + }, + { + "start": 13280.42, + "end": 13282.34, + "probability": 0.8829 + }, + { + "start": 13282.82, + "end": 13284.16, + "probability": 0.921 + }, + { + "start": 13284.56, + "end": 13287.28, + "probability": 0.9353 + }, + { + "start": 13287.9, + "end": 13289.24, + "probability": 0.9798 + }, + { + "start": 13289.88, + "end": 13293.04, + "probability": 0.5281 + }, + { + "start": 13293.9, + "end": 13296.8, + "probability": 0.8613 + }, + { + "start": 13297.84, + "end": 13299.68, + "probability": 0.8598 + }, + { + "start": 13299.82, + "end": 13304.02, + "probability": 0.8809 + }, + { + "start": 13304.37, + "end": 13305.16, + "probability": 0.9184 + }, + { + "start": 13305.22, + "end": 13307.22, + "probability": 0.5853 + }, + { + "start": 13307.98, + "end": 13313.42, + "probability": 0.9876 + }, + { + "start": 13314.06, + "end": 13317.54, + "probability": 0.8514 + }, + { + "start": 13318.0, + "end": 13320.0, + "probability": 0.9138 + }, + { + "start": 13320.56, + "end": 13321.58, + "probability": 0.9618 + }, + { + "start": 13321.7, + "end": 13322.52, + "probability": 0.9823 + }, + { + "start": 13322.6, + "end": 13323.06, + "probability": 0.9785 + }, + { + "start": 13323.16, + "end": 13323.66, + "probability": 0.9882 + }, + { + "start": 13323.74, + "end": 13324.12, + "probability": 0.6772 + }, + { + "start": 13324.7, + "end": 13326.36, + "probability": 0.9712 + }, + { + "start": 13326.5, + "end": 13327.72, + "probability": 0.9682 + }, + { + "start": 13328.06, + "end": 13331.98, + "probability": 0.9951 + }, + { + "start": 13332.44, + "end": 13336.14, + "probability": 0.9878 + }, + { + "start": 13336.62, + "end": 13339.06, + "probability": 0.9902 + }, + { + "start": 13339.14, + "end": 13340.52, + "probability": 0.6325 + }, + { + "start": 13340.92, + "end": 13342.82, + "probability": 0.2969 + }, + { + "start": 13343.16, + "end": 13343.86, + "probability": 0.4208 + }, + { + "start": 13343.88, + "end": 13344.46, + "probability": 0.5617 + }, + { + "start": 13345.32, + "end": 13346.1, + "probability": 0.792 + }, + { + "start": 13356.2, + "end": 13357.28, + "probability": 0.5931 + }, + { + "start": 13360.08, + "end": 13362.94, + "probability": 0.5691 + }, + { + "start": 13364.46, + "end": 13365.28, + "probability": 0.7151 + }, + { + "start": 13365.34, + "end": 13367.62, + "probability": 0.7737 + }, + { + "start": 13367.68, + "end": 13370.68, + "probability": 0.9517 + }, + { + "start": 13371.78, + "end": 13373.72, + "probability": 0.9753 + }, + { + "start": 13373.84, + "end": 13375.92, + "probability": 0.7954 + }, + { + "start": 13375.98, + "end": 13379.22, + "probability": 0.8695 + }, + { + "start": 13379.32, + "end": 13382.1, + "probability": 0.9888 + }, + { + "start": 13383.32, + "end": 13384.06, + "probability": 0.8286 + }, + { + "start": 13386.66, + "end": 13388.2, + "probability": 0.7281 + }, + { + "start": 13388.26, + "end": 13388.98, + "probability": 0.9378 + }, + { + "start": 13389.02, + "end": 13391.7, + "probability": 0.9886 + }, + { + "start": 13391.84, + "end": 13392.5, + "probability": 0.9176 + }, + { + "start": 13393.1, + "end": 13395.6, + "probability": 0.7638 + }, + { + "start": 13395.78, + "end": 13397.44, + "probability": 0.9148 + }, + { + "start": 13398.14, + "end": 13399.28, + "probability": 0.6911 + }, + { + "start": 13400.08, + "end": 13402.84, + "probability": 0.9584 + }, + { + "start": 13403.64, + "end": 13404.92, + "probability": 0.951 + }, + { + "start": 13405.12, + "end": 13407.04, + "probability": 0.7373 + }, + { + "start": 13407.34, + "end": 13408.31, + "probability": 0.5082 + }, + { + "start": 13409.94, + "end": 13411.28, + "probability": 0.9902 + }, + { + "start": 13411.92, + "end": 13413.1, + "probability": 0.5619 + }, + { + "start": 13413.1, + "end": 13414.5, + "probability": 0.8649 + }, + { + "start": 13415.56, + "end": 13416.54, + "probability": 0.9151 + }, + { + "start": 13417.0, + "end": 13417.64, + "probability": 0.698 + }, + { + "start": 13417.74, + "end": 13418.5, + "probability": 0.9793 + }, + { + "start": 13418.72, + "end": 13420.02, + "probability": 0.9574 + }, + { + "start": 13420.08, + "end": 13426.2, + "probability": 0.9489 + }, + { + "start": 13426.24, + "end": 13428.4, + "probability": 0.9367 + }, + { + "start": 13428.52, + "end": 13431.28, + "probability": 0.9242 + }, + { + "start": 13432.34, + "end": 13434.66, + "probability": 0.9692 + }, + { + "start": 13435.46, + "end": 13439.54, + "probability": 0.9814 + }, + { + "start": 13439.8, + "end": 13440.36, + "probability": 0.7146 + }, + { + "start": 13440.38, + "end": 13442.64, + "probability": 0.9784 + }, + { + "start": 13444.26, + "end": 13446.36, + "probability": 0.7719 + }, + { + "start": 13448.7, + "end": 13450.2, + "probability": 0.7667 + }, + { + "start": 13452.94, + "end": 13454.78, + "probability": 0.7607 + }, + { + "start": 13455.4, + "end": 13456.3, + "probability": 0.9883 + }, + { + "start": 13457.58, + "end": 13458.16, + "probability": 0.9747 + }, + { + "start": 13459.42, + "end": 13461.4, + "probability": 0.777 + }, + { + "start": 13467.08, + "end": 13467.08, + "probability": 0.2561 + }, + { + "start": 13467.08, + "end": 13467.48, + "probability": 0.6692 + }, + { + "start": 13467.54, + "end": 13471.64, + "probability": 0.8688 + }, + { + "start": 13471.64, + "end": 13474.78, + "probability": 0.9897 + }, + { + "start": 13476.02, + "end": 13479.4, + "probability": 0.7584 + }, + { + "start": 13479.84, + "end": 13484.42, + "probability": 0.9784 + }, + { + "start": 13485.22, + "end": 13489.32, + "probability": 0.978 + }, + { + "start": 13490.36, + "end": 13491.0, + "probability": 0.8289 + }, + { + "start": 13491.12, + "end": 13491.5, + "probability": 0.4138 + }, + { + "start": 13491.78, + "end": 13492.8, + "probability": 0.7783 + }, + { + "start": 13492.9, + "end": 13494.84, + "probability": 0.9736 + }, + { + "start": 13495.48, + "end": 13500.36, + "probability": 0.9945 + }, + { + "start": 13500.5, + "end": 13503.84, + "probability": 0.9985 + }, + { + "start": 13505.04, + "end": 13508.86, + "probability": 0.993 + }, + { + "start": 13509.34, + "end": 13515.98, + "probability": 0.8837 + }, + { + "start": 13516.08, + "end": 13518.1, + "probability": 0.9987 + }, + { + "start": 13518.84, + "end": 13523.48, + "probability": 0.9866 + }, + { + "start": 13523.92, + "end": 13524.74, + "probability": 0.6124 + }, + { + "start": 13524.78, + "end": 13526.2, + "probability": 0.8898 + }, + { + "start": 13526.72, + "end": 13528.8, + "probability": 0.9941 + }, + { + "start": 13529.82, + "end": 13531.02, + "probability": 0.9055 + }, + { + "start": 13531.62, + "end": 13537.64, + "probability": 0.9905 + }, + { + "start": 13537.66, + "end": 13540.94, + "probability": 0.9995 + }, + { + "start": 13541.4, + "end": 13544.68, + "probability": 0.9937 + }, + { + "start": 13544.74, + "end": 13546.24, + "probability": 0.9692 + }, + { + "start": 13546.98, + "end": 13550.6, + "probability": 0.9597 + }, + { + "start": 13551.44, + "end": 13557.68, + "probability": 0.9962 + }, + { + "start": 13557.68, + "end": 13562.36, + "probability": 0.9959 + }, + { + "start": 13562.76, + "end": 13567.0, + "probability": 0.9946 + }, + { + "start": 13567.12, + "end": 13567.72, + "probability": 0.7943 + }, + { + "start": 13569.56, + "end": 13569.56, + "probability": 0.1118 + }, + { + "start": 13569.56, + "end": 13570.72, + "probability": 0.6905 + }, + { + "start": 13575.78, + "end": 13578.54, + "probability": 0.9768 + }, + { + "start": 13578.7, + "end": 13581.3, + "probability": 0.9663 + }, + { + "start": 13590.58, + "end": 13591.16, + "probability": 0.5657 + }, + { + "start": 13591.22, + "end": 13591.58, + "probability": 0.8919 + }, + { + "start": 13592.62, + "end": 13593.4, + "probability": 0.7028 + }, + { + "start": 13594.36, + "end": 13596.08, + "probability": 0.8621 + }, + { + "start": 13597.14, + "end": 13602.12, + "probability": 0.9285 + }, + { + "start": 13602.28, + "end": 13607.0, + "probability": 0.9956 + }, + { + "start": 13607.32, + "end": 13609.6, + "probability": 0.7757 + }, + { + "start": 13609.7, + "end": 13610.16, + "probability": 0.7661 + }, + { + "start": 13610.18, + "end": 13610.62, + "probability": 0.8994 + }, + { + "start": 13613.04, + "end": 13613.84, + "probability": 0.8552 + }, + { + "start": 13615.2, + "end": 13616.52, + "probability": 0.9043 + }, + { + "start": 13616.62, + "end": 13617.56, + "probability": 0.8959 + }, + { + "start": 13617.72, + "end": 13619.72, + "probability": 0.9283 + }, + { + "start": 13619.88, + "end": 13621.54, + "probability": 0.8554 + }, + { + "start": 13622.06, + "end": 13626.4, + "probability": 0.9823 + }, + { + "start": 13626.72, + "end": 13627.76, + "probability": 0.853 + }, + { + "start": 13627.92, + "end": 13630.08, + "probability": 0.9649 + }, + { + "start": 13630.18, + "end": 13631.28, + "probability": 0.7085 + }, + { + "start": 13632.14, + "end": 13635.08, + "probability": 0.9847 + }, + { + "start": 13635.08, + "end": 13637.42, + "probability": 0.9919 + }, + { + "start": 13638.22, + "end": 13644.42, + "probability": 0.6753 + }, + { + "start": 13644.56, + "end": 13646.74, + "probability": 0.9424 + }, + { + "start": 13647.12, + "end": 13649.04, + "probability": 0.8591 + }, + { + "start": 13649.74, + "end": 13651.68, + "probability": 0.9821 + }, + { + "start": 13652.22, + "end": 13653.42, + "probability": 0.9456 + }, + { + "start": 13653.94, + "end": 13657.44, + "probability": 0.9976 + }, + { + "start": 13657.78, + "end": 13660.16, + "probability": 0.75 + }, + { + "start": 13660.26, + "end": 13660.8, + "probability": 0.5558 + }, + { + "start": 13661.32, + "end": 13664.76, + "probability": 0.9604 + }, + { + "start": 13665.88, + "end": 13668.06, + "probability": 0.9966 + }, + { + "start": 13668.94, + "end": 13673.8, + "probability": 0.9558 + }, + { + "start": 13674.64, + "end": 13674.68, + "probability": 0.8042 + }, + { + "start": 13674.8, + "end": 13678.6, + "probability": 0.7885 + }, + { + "start": 13678.98, + "end": 13682.4, + "probability": 0.9873 + }, + { + "start": 13682.78, + "end": 13687.84, + "probability": 0.971 + }, + { + "start": 13687.84, + "end": 13692.3, + "probability": 0.9883 + }, + { + "start": 13692.74, + "end": 13698.08, + "probability": 0.9777 + }, + { + "start": 13698.52, + "end": 13700.48, + "probability": 0.8041 + }, + { + "start": 13700.5, + "end": 13702.94, + "probability": 0.752 + }, + { + "start": 13703.38, + "end": 13706.42, + "probability": 0.7229 + }, + { + "start": 13707.0, + "end": 13709.38, + "probability": 0.8363 + }, + { + "start": 13709.92, + "end": 13710.96, + "probability": 0.9609 + }, + { + "start": 13711.64, + "end": 13715.14, + "probability": 0.9595 + }, + { + "start": 13715.56, + "end": 13718.44, + "probability": 0.8707 + }, + { + "start": 13719.1, + "end": 13719.78, + "probability": 0.8817 + }, + { + "start": 13720.5, + "end": 13721.36, + "probability": 0.9422 + }, + { + "start": 13721.66, + "end": 13726.42, + "probability": 0.993 + }, + { + "start": 13726.88, + "end": 13730.78, + "probability": 0.9129 + }, + { + "start": 13731.42, + "end": 13732.66, + "probability": 0.866 + }, + { + "start": 13733.16, + "end": 13734.78, + "probability": 0.9321 + }, + { + "start": 13735.02, + "end": 13736.18, + "probability": 0.9704 + }, + { + "start": 13736.58, + "end": 13741.06, + "probability": 0.9865 + }, + { + "start": 13741.26, + "end": 13741.86, + "probability": 0.7202 + }, + { + "start": 13741.94, + "end": 13742.68, + "probability": 0.6623 + }, + { + "start": 13743.76, + "end": 13745.24, + "probability": 0.8174 + }, + { + "start": 13746.66, + "end": 13748.78, + "probability": 0.9559 + }, + { + "start": 13750.26, + "end": 13751.8, + "probability": 0.8595 + }, + { + "start": 13755.12, + "end": 13756.66, + "probability": 0.8261 + }, + { + "start": 13757.68, + "end": 13758.16, + "probability": 0.5507 + }, + { + "start": 13758.84, + "end": 13760.1, + "probability": 0.9489 + }, + { + "start": 13761.46, + "end": 13763.02, + "probability": 0.831 + }, + { + "start": 13764.46, + "end": 13765.14, + "probability": 0.6996 + }, + { + "start": 13769.5, + "end": 13769.94, + "probability": 0.3345 + }, + { + "start": 13769.94, + "end": 13771.0, + "probability": 0.5468 + }, + { + "start": 13777.22, + "end": 13780.14, + "probability": 0.6272 + }, + { + "start": 13780.8, + "end": 13782.34, + "probability": 0.6469 + }, + { + "start": 13782.82, + "end": 13784.75, + "probability": 0.0277 + }, + { + "start": 13786.04, + "end": 13789.54, + "probability": 0.7664 + }, + { + "start": 13789.9, + "end": 13791.9, + "probability": 0.9508 + }, + { + "start": 13792.04, + "end": 13793.88, + "probability": 0.8175 + }, + { + "start": 13796.54, + "end": 13804.56, + "probability": 0.0719 + }, + { + "start": 13805.24, + "end": 13806.48, + "probability": 0.0427 + }, + { + "start": 13808.4, + "end": 13811.2, + "probability": 0.0302 + }, + { + "start": 13813.96, + "end": 13814.68, + "probability": 0.1283 + }, + { + "start": 13816.04, + "end": 13818.96, + "probability": 0.6634 + }, + { + "start": 13819.12, + "end": 13823.08, + "probability": 0.9284 + }, + { + "start": 13823.08, + "end": 13825.56, + "probability": 0.9182 + }, + { + "start": 13826.66, + "end": 13826.92, + "probability": 0.1773 + }, + { + "start": 13826.92, + "end": 13827.42, + "probability": 0.7631 + }, + { + "start": 13830.28, + "end": 13833.28, + "probability": 0.9858 + }, + { + "start": 13835.02, + "end": 13835.02, + "probability": 0.4722 + }, + { + "start": 13835.02, + "end": 13836.06, + "probability": 0.7037 + }, + { + "start": 13837.84, + "end": 13840.44, + "probability": 0.714 + }, + { + "start": 13841.8, + "end": 13843.28, + "probability": 0.311 + }, + { + "start": 13843.36, + "end": 13844.46, + "probability": 0.0223 + }, + { + "start": 13848.63, + "end": 13850.24, + "probability": 0.7056 + }, + { + "start": 13851.58, + "end": 13852.28, + "probability": 0.7437 + }, + { + "start": 13852.78, + "end": 13856.44, + "probability": 0.4053 + }, + { + "start": 13856.56, + "end": 13862.18, + "probability": 0.9771 + }, + { + "start": 13862.98, + "end": 13865.34, + "probability": 0.8774 + }, + { + "start": 13865.86, + "end": 13867.0, + "probability": 0.8332 + }, + { + "start": 13867.52, + "end": 13870.76, + "probability": 0.586 + }, + { + "start": 13871.62, + "end": 13873.26, + "probability": 0.7429 + }, + { + "start": 13873.82, + "end": 13876.02, + "probability": 0.8412 + }, + { + "start": 13876.58, + "end": 13878.7, + "probability": 0.8057 + }, + { + "start": 13878.88, + "end": 13880.22, + "probability": 0.9749 + }, + { + "start": 13880.72, + "end": 13882.74, + "probability": 0.9799 + }, + { + "start": 13883.18, + "end": 13887.06, + "probability": 0.9452 + }, + { + "start": 13887.12, + "end": 13888.08, + "probability": 0.7833 + }, + { + "start": 13888.3, + "end": 13889.76, + "probability": 0.3733 + }, + { + "start": 13890.86, + "end": 13895.12, + "probability": 0.9792 + }, + { + "start": 13895.8, + "end": 13897.14, + "probability": 0.9971 + }, + { + "start": 13897.28, + "end": 13903.58, + "probability": 0.9941 + }, + { + "start": 13903.86, + "end": 13907.28, + "probability": 0.9927 + }, + { + "start": 13907.54, + "end": 13908.22, + "probability": 0.5912 + }, + { + "start": 13908.42, + "end": 13909.62, + "probability": 0.8608 + }, + { + "start": 13909.66, + "end": 13915.5, + "probability": 0.8081 + }, + { + "start": 13915.66, + "end": 13919.14, + "probability": 0.9934 + }, + { + "start": 13919.18, + "end": 13922.12, + "probability": 0.968 + }, + { + "start": 13922.36, + "end": 13923.4, + "probability": 0.8689 + }, + { + "start": 13924.7, + "end": 13927.94, + "probability": 0.8753 + }, + { + "start": 13928.38, + "end": 13930.56, + "probability": 0.3149 + }, + { + "start": 13930.56, + "end": 13933.3, + "probability": 0.0691 + }, + { + "start": 13933.72, + "end": 13935.61, + "probability": 0.3659 + }, + { + "start": 13937.06, + "end": 13944.78, + "probability": 0.1827 + }, + { + "start": 13945.1, + "end": 13949.44, + "probability": 0.0529 + }, + { + "start": 13949.44, + "end": 13953.14, + "probability": 0.5032 + }, + { + "start": 13953.38, + "end": 13954.62, + "probability": 0.9612 + }, + { + "start": 13954.98, + "end": 13955.96, + "probability": 0.7537 + }, + { + "start": 13956.8, + "end": 13961.32, + "probability": 0.9576 + }, + { + "start": 13962.74, + "end": 13965.08, + "probability": 0.6295 + }, + { + "start": 13965.24, + "end": 13965.94, + "probability": 0.1681 + }, + { + "start": 13965.96, + "end": 13967.06, + "probability": 0.2903 + }, + { + "start": 13967.3, + "end": 13967.98, + "probability": 0.7618 + }, + { + "start": 13968.1, + "end": 13969.1, + "probability": 0.3262 + }, + { + "start": 13969.52, + "end": 13972.76, + "probability": 0.9194 + }, + { + "start": 13973.28, + "end": 13976.34, + "probability": 0.9109 + }, + { + "start": 13976.48, + "end": 13978.22, + "probability": 0.8573 + }, + { + "start": 13978.28, + "end": 13978.78, + "probability": 0.4291 + }, + { + "start": 13978.78, + "end": 13982.88, + "probability": 0.9891 + }, + { + "start": 13982.98, + "end": 13983.34, + "probability": 0.6373 + }, + { + "start": 13983.42, + "end": 13983.86, + "probability": 0.6696 + }, + { + "start": 13983.88, + "end": 13984.9, + "probability": 0.8345 + }, + { + "start": 13988.38, + "end": 13989.08, + "probability": 0.6726 + }, + { + "start": 14004.42, + "end": 14006.0, + "probability": 0.8354 + }, + { + "start": 14006.22, + "end": 14007.46, + "probability": 0.774 + }, + { + "start": 14008.02, + "end": 14009.84, + "probability": 0.7583 + }, + { + "start": 14010.06, + "end": 14011.72, + "probability": 0.934 + }, + { + "start": 14013.1, + "end": 14015.14, + "probability": 0.8273 + }, + { + "start": 14016.18, + "end": 14018.92, + "probability": 0.8686 + }, + { + "start": 14021.01, + "end": 14024.36, + "probability": 0.7819 + }, + { + "start": 14025.66, + "end": 14030.3, + "probability": 0.9989 + }, + { + "start": 14030.5, + "end": 14031.2, + "probability": 0.6438 + }, + { + "start": 14032.12, + "end": 14033.3, + "probability": 0.5948 + }, + { + "start": 14034.08, + "end": 14037.31, + "probability": 0.936 + }, + { + "start": 14038.1, + "end": 14039.9, + "probability": 0.7351 + }, + { + "start": 14041.82, + "end": 14043.86, + "probability": 0.719 + }, + { + "start": 14045.14, + "end": 14050.92, + "probability": 0.9908 + }, + { + "start": 14050.98, + "end": 14052.56, + "probability": 0.9699 + }, + { + "start": 14053.04, + "end": 14053.7, + "probability": 0.3102 + }, + { + "start": 14054.24, + "end": 14055.42, + "probability": 0.6593 + }, + { + "start": 14056.34, + "end": 14063.66, + "probability": 0.9069 + }, + { + "start": 14065.12, + "end": 14067.67, + "probability": 0.9271 + }, + { + "start": 14069.02, + "end": 14070.36, + "probability": 0.9341 + }, + { + "start": 14070.48, + "end": 14074.12, + "probability": 0.9531 + }, + { + "start": 14074.3, + "end": 14074.76, + "probability": 0.9274 + }, + { + "start": 14077.4, + "end": 14083.94, + "probability": 0.7274 + }, + { + "start": 14085.68, + "end": 14085.82, + "probability": 0.0377 + }, + { + "start": 14085.82, + "end": 14090.56, + "probability": 0.0277 + }, + { + "start": 14092.74, + "end": 14094.34, + "probability": 0.3031 + }, + { + "start": 14095.48, + "end": 14096.28, + "probability": 0.1678 + }, + { + "start": 14096.9, + "end": 14100.5, + "probability": 0.088 + }, + { + "start": 14101.92, + "end": 14104.66, + "probability": 0.1083 + }, + { + "start": 14109.0, + "end": 14110.74, + "probability": 0.5164 + }, + { + "start": 14111.52, + "end": 14115.71, + "probability": 0.2748 + }, + { + "start": 14116.02, + "end": 14118.66, + "probability": 0.1866 + }, + { + "start": 14120.16, + "end": 14126.0, + "probability": 0.1166 + }, + { + "start": 14126.64, + "end": 14127.64, + "probability": 0.2927 + }, + { + "start": 14129.68, + "end": 14130.84, + "probability": 0.0045 + }, + { + "start": 14132.42, + "end": 14137.24, + "probability": 0.385 + }, + { + "start": 14138.23, + "end": 14138.86, + "probability": 0.1979 + }, + { + "start": 14138.86, + "end": 14145.22, + "probability": 0.3199 + }, + { + "start": 14146.14, + "end": 14148.04, + "probability": 0.3496 + }, + { + "start": 14149.74, + "end": 14150.72, + "probability": 0.3448 + }, + { + "start": 14151.42, + "end": 14154.74, + "probability": 0.1706 + }, + { + "start": 14173.0, + "end": 14173.0, + "probability": 0.0 + }, + { + "start": 14173.0, + "end": 14173.0, + "probability": 0.0 + }, + { + "start": 14173.0, + "end": 14173.0, + "probability": 0.0 + }, + { + "start": 14173.0, + "end": 14173.0, + "probability": 0.0 + }, + { + "start": 14173.0, + "end": 14173.0, + "probability": 0.0 + }, + { + "start": 14181.52, + "end": 14186.08, + "probability": 0.4146 + }, + { + "start": 14188.38, + "end": 14189.74, + "probability": 0.0573 + }, + { + "start": 14191.47, + "end": 14191.7, + "probability": 0.1009 + }, + { + "start": 14191.7, + "end": 14192.28, + "probability": 0.0471 + }, + { + "start": 14194.44, + "end": 14194.54, + "probability": 0.3912 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.0, + "end": 14305.0, + "probability": 0.0 + }, + { + "start": 14305.48, + "end": 14305.5, + "probability": 0.0263 + }, + { + "start": 14305.5, + "end": 14305.5, + "probability": 0.0528 + }, + { + "start": 14305.5, + "end": 14305.5, + "probability": 0.1075 + }, + { + "start": 14305.5, + "end": 14306.48, + "probability": 0.2748 + }, + { + "start": 14307.12, + "end": 14310.94, + "probability": 0.5845 + }, + { + "start": 14311.04, + "end": 14315.04, + "probability": 0.1887 + }, + { + "start": 14315.6, + "end": 14316.64, + "probability": 0.7834 + }, + { + "start": 14317.14, + "end": 14318.22, + "probability": 0.7994 + }, + { + "start": 14318.34, + "end": 14318.94, + "probability": 0.9278 + }, + { + "start": 14319.0, + "end": 14320.14, + "probability": 0.9503 + }, + { + "start": 14320.86, + "end": 14322.5, + "probability": 0.8955 + }, + { + "start": 14323.78, + "end": 14325.52, + "probability": 0.9569 + }, + { + "start": 14326.38, + "end": 14326.48, + "probability": 0.0778 + }, + { + "start": 14328.56, + "end": 14330.82, + "probability": 0.9714 + }, + { + "start": 14332.24, + "end": 14333.68, + "probability": 0.9442 + }, + { + "start": 14334.42, + "end": 14336.2, + "probability": 0.9758 + }, + { + "start": 14336.84, + "end": 14339.82, + "probability": 0.9862 + }, + { + "start": 14340.32, + "end": 14343.54, + "probability": 0.9829 + }, + { + "start": 14344.84, + "end": 14348.96, + "probability": 0.9111 + }, + { + "start": 14349.34, + "end": 14349.9, + "probability": 0.942 + }, + { + "start": 14350.46, + "end": 14352.26, + "probability": 0.8687 + }, + { + "start": 14352.28, + "end": 14353.0, + "probability": 0.7977 + }, + { + "start": 14353.02, + "end": 14354.24, + "probability": 0.6736 + }, + { + "start": 14354.72, + "end": 14355.86, + "probability": 0.6093 + }, + { + "start": 14356.08, + "end": 14356.83, + "probability": 0.9971 + }, + { + "start": 14357.68, + "end": 14358.56, + "probability": 0.7065 + }, + { + "start": 14359.28, + "end": 14367.12, + "probability": 0.9181 + }, + { + "start": 14368.06, + "end": 14372.74, + "probability": 0.8906 + }, + { + "start": 14374.1, + "end": 14375.72, + "probability": 0.9451 + }, + { + "start": 14376.06, + "end": 14377.7, + "probability": 0.7468 + }, + { + "start": 14378.36, + "end": 14379.48, + "probability": 0.6145 + }, + { + "start": 14380.34, + "end": 14383.76, + "probability": 0.8184 + }, + { + "start": 14384.5, + "end": 14387.18, + "probability": 0.9444 + }, + { + "start": 14388.26, + "end": 14392.76, + "probability": 0.9954 + }, + { + "start": 14392.84, + "end": 14396.2, + "probability": 0.9216 + }, + { + "start": 14396.2, + "end": 14399.9, + "probability": 0.5217 + }, + { + "start": 14401.14, + "end": 14401.34, + "probability": 0.6023 + }, + { + "start": 14401.68, + "end": 14405.48, + "probability": 0.8184 + }, + { + "start": 14405.48, + "end": 14410.22, + "probability": 0.9938 + }, + { + "start": 14411.36, + "end": 14414.78, + "probability": 0.8498 + }, + { + "start": 14415.52, + "end": 14416.68, + "probability": 0.7931 + }, + { + "start": 14417.54, + "end": 14420.1, + "probability": 0.7564 + }, + { + "start": 14420.62, + "end": 14422.54, + "probability": 0.2397 + }, + { + "start": 14423.44, + "end": 14427.58, + "probability": 0.696 + }, + { + "start": 14428.58, + "end": 14431.3, + "probability": 0.85 + }, + { + "start": 14431.36, + "end": 14433.0, + "probability": 0.9647 + }, + { + "start": 14433.52, + "end": 14436.08, + "probability": 0.2366 + }, + { + "start": 14436.08, + "end": 14437.14, + "probability": 0.9839 + }, + { + "start": 14437.8, + "end": 14439.22, + "probability": 0.7666 + }, + { + "start": 14439.66, + "end": 14442.46, + "probability": 0.9525 + }, + { + "start": 14443.14, + "end": 14444.52, + "probability": 0.8571 + }, + { + "start": 14447.66, + "end": 14449.26, + "probability": 0.8017 + }, + { + "start": 14449.32, + "end": 14450.1, + "probability": 0.887 + }, + { + "start": 14450.22, + "end": 14452.1, + "probability": 0.6508 + }, + { + "start": 14452.1, + "end": 14453.28, + "probability": 0.8547 + }, + { + "start": 14453.58, + "end": 14454.54, + "probability": 0.5368 + }, + { + "start": 14454.64, + "end": 14454.76, + "probability": 0.1798 + }, + { + "start": 14454.76, + "end": 14455.6, + "probability": 0.6984 + }, + { + "start": 14455.6, + "end": 14456.58, + "probability": 0.6529 + }, + { + "start": 14456.62, + "end": 14457.2, + "probability": 0.7767 + }, + { + "start": 14458.34, + "end": 14459.46, + "probability": 0.9654 + }, + { + "start": 14459.76, + "end": 14463.44, + "probability": 0.7527 + }, + { + "start": 14463.98, + "end": 14464.5, + "probability": 0.4683 + }, + { + "start": 14465.78, + "end": 14467.24, + "probability": 0.9084 + }, + { + "start": 14467.68, + "end": 14468.16, + "probability": 0.9581 + }, + { + "start": 14468.58, + "end": 14469.0, + "probability": 0.8206 + }, + { + "start": 14469.08, + "end": 14471.62, + "probability": 0.5633 + }, + { + "start": 14472.1, + "end": 14473.52, + "probability": 0.607 + }, + { + "start": 14474.04, + "end": 14475.64, + "probability": 0.9501 + }, + { + "start": 14478.06, + "end": 14480.14, + "probability": 0.8203 + }, + { + "start": 14480.9, + "end": 14483.45, + "probability": 0.406 + }, + { + "start": 14483.58, + "end": 14486.28, + "probability": 0.7655 + }, + { + "start": 14486.3, + "end": 14487.18, + "probability": 0.879 + }, + { + "start": 14487.18, + "end": 14487.26, + "probability": 0.0127 + }, + { + "start": 14487.26, + "end": 14491.02, + "probability": 0.5912 + }, + { + "start": 14491.92, + "end": 14492.78, + "probability": 0.7283 + }, + { + "start": 14494.28, + "end": 14495.14, + "probability": 0.9352 + }, + { + "start": 14504.4, + "end": 14504.86, + "probability": 0.5557 + }, + { + "start": 14504.86, + "end": 14505.38, + "probability": 0.9227 + }, + { + "start": 14514.68, + "end": 14515.6, + "probability": 0.666 + }, + { + "start": 14515.8, + "end": 14515.8, + "probability": 0.5109 + }, + { + "start": 14515.82, + "end": 14516.3, + "probability": 0.8023 + }, + { + "start": 14516.42, + "end": 14517.56, + "probability": 0.6328 + }, + { + "start": 14519.38, + "end": 14521.2, + "probability": 0.987 + }, + { + "start": 14521.26, + "end": 14523.52, + "probability": 0.9849 + }, + { + "start": 14523.56, + "end": 14525.62, + "probability": 0.9972 + }, + { + "start": 14527.16, + "end": 14531.98, + "probability": 0.8165 + }, + { + "start": 14532.8, + "end": 14537.82, + "probability": 0.9746 + }, + { + "start": 14538.74, + "end": 14542.06, + "probability": 0.9956 + }, + { + "start": 14543.46, + "end": 14545.9, + "probability": 0.9491 + }, + { + "start": 14547.3, + "end": 14551.76, + "probability": 0.6769 + }, + { + "start": 14552.62, + "end": 14554.76, + "probability": 0.2073 + }, + { + "start": 14556.0, + "end": 14557.02, + "probability": 0.9904 + }, + { + "start": 14557.84, + "end": 14562.48, + "probability": 0.9814 + }, + { + "start": 14564.94, + "end": 14569.28, + "probability": 0.9919 + }, + { + "start": 14570.84, + "end": 14575.54, + "probability": 0.9953 + }, + { + "start": 14576.3, + "end": 14577.12, + "probability": 0.8815 + }, + { + "start": 14578.08, + "end": 14581.18, + "probability": 0.9966 + }, + { + "start": 14581.18, + "end": 14586.3, + "probability": 0.9839 + }, + { + "start": 14587.6, + "end": 14591.66, + "probability": 0.7558 + }, + { + "start": 14592.38, + "end": 14593.18, + "probability": 0.8857 + }, + { + "start": 14593.28, + "end": 14595.6, + "probability": 0.999 + }, + { + "start": 14596.4, + "end": 14598.66, + "probability": 0.9066 + }, + { + "start": 14599.6, + "end": 14602.66, + "probability": 0.9956 + }, + { + "start": 14603.84, + "end": 14605.96, + "probability": 0.9939 + }, + { + "start": 14607.42, + "end": 14611.66, + "probability": 0.9968 + }, + { + "start": 14612.36, + "end": 14615.6, + "probability": 0.9865 + }, + { + "start": 14616.4, + "end": 14617.68, + "probability": 0.6533 + }, + { + "start": 14617.78, + "end": 14621.1, + "probability": 0.9485 + }, + { + "start": 14621.62, + "end": 14622.66, + "probability": 0.9464 + }, + { + "start": 14623.4, + "end": 14624.16, + "probability": 0.9568 + }, + { + "start": 14624.9, + "end": 14625.64, + "probability": 0.8099 + }, + { + "start": 14626.94, + "end": 14628.1, + "probability": 0.999 + }, + { + "start": 14629.96, + "end": 14632.2, + "probability": 0.979 + }, + { + "start": 14632.82, + "end": 14634.46, + "probability": 0.9965 + }, + { + "start": 14636.04, + "end": 14641.78, + "probability": 0.8703 + }, + { + "start": 14642.38, + "end": 14644.7, + "probability": 0.8779 + }, + { + "start": 14645.52, + "end": 14646.74, + "probability": 0.9683 + }, + { + "start": 14647.62, + "end": 14650.4, + "probability": 0.9551 + }, + { + "start": 14651.16, + "end": 14651.54, + "probability": 0.3616 + }, + { + "start": 14652.98, + "end": 14653.8, + "probability": 0.9417 + }, + { + "start": 14654.52, + "end": 14657.6, + "probability": 0.972 + }, + { + "start": 14659.7, + "end": 14661.02, + "probability": 0.9939 + }, + { + "start": 14662.42, + "end": 14665.64, + "probability": 0.9615 + }, + { + "start": 14666.7, + "end": 14670.46, + "probability": 0.8712 + }, + { + "start": 14671.96, + "end": 14672.58, + "probability": 0.64 + }, + { + "start": 14673.74, + "end": 14676.18, + "probability": 0.9955 + }, + { + "start": 14677.4, + "end": 14678.38, + "probability": 0.5784 + }, + { + "start": 14679.54, + "end": 14681.0, + "probability": 0.9892 + }, + { + "start": 14681.74, + "end": 14683.08, + "probability": 0.9823 + }, + { + "start": 14683.8, + "end": 14685.42, + "probability": 0.6483 + }, + { + "start": 14686.78, + "end": 14688.42, + "probability": 0.9961 + }, + { + "start": 14689.0, + "end": 14693.04, + "probability": 0.9634 + }, + { + "start": 14693.9, + "end": 14699.02, + "probability": 0.9943 + }, + { + "start": 14699.14, + "end": 14703.56, + "probability": 0.9932 + }, + { + "start": 14703.62, + "end": 14704.04, + "probability": 0.801 + }, + { + "start": 14704.8, + "end": 14705.38, + "probability": 0.7323 + }, + { + "start": 14706.38, + "end": 14707.92, + "probability": 0.9303 + }, + { + "start": 14709.04, + "end": 14712.0, + "probability": 0.0519 + }, + { + "start": 14714.7, + "end": 14716.24, + "probability": 0.7688 + }, + { + "start": 14717.52, + "end": 14719.96, + "probability": 0.0178 + }, + { + "start": 14720.82, + "end": 14720.82, + "probability": 0.0196 + }, + { + "start": 14720.82, + "end": 14721.48, + "probability": 0.5346 + }, + { + "start": 14723.9, + "end": 14723.92, + "probability": 0.1745 + }, + { + "start": 14723.92, + "end": 14724.72, + "probability": 0.7006 + }, + { + "start": 14733.48, + "end": 14735.16, + "probability": 0.4754 + }, + { + "start": 14737.14, + "end": 14738.34, + "probability": 0.9228 + }, + { + "start": 14740.08, + "end": 14740.98, + "probability": 0.3744 + }, + { + "start": 14742.02, + "end": 14743.04, + "probability": 0.6508 + }, + { + "start": 14743.6, + "end": 14744.48, + "probability": 0.9043 + }, + { + "start": 14745.94, + "end": 14747.63, + "probability": 0.7299 + }, + { + "start": 14749.68, + "end": 14750.74, + "probability": 0.7204 + }, + { + "start": 14751.42, + "end": 14752.24, + "probability": 0.7397 + }, + { + "start": 14758.04, + "end": 14758.9, + "probability": 0.5309 + }, + { + "start": 14758.96, + "end": 14758.96, + "probability": 0.0052 + }, + { + "start": 14758.96, + "end": 14758.96, + "probability": 0.0705 + }, + { + "start": 14758.96, + "end": 14758.96, + "probability": 0.0392 + }, + { + "start": 14777.74, + "end": 14780.14, + "probability": 0.1703 + }, + { + "start": 14783.52, + "end": 14786.26, + "probability": 0.7402 + }, + { + "start": 14786.38, + "end": 14787.32, + "probability": 0.6242 + }, + { + "start": 14787.9, + "end": 14789.04, + "probability": 0.7882 + }, + { + "start": 14792.16, + "end": 14795.44, + "probability": 0.0354 + }, + { + "start": 14797.04, + "end": 14798.2, + "probability": 0.0361 + }, + { + "start": 14802.0, + "end": 14803.58, + "probability": 0.0654 + }, + { + "start": 14805.82, + "end": 14808.16, + "probability": 0.6367 + }, + { + "start": 14808.26, + "end": 14812.4, + "probability": 0.9779 + }, + { + "start": 14813.48, + "end": 14816.26, + "probability": 0.8758 + }, + { + "start": 14829.62, + "end": 14829.62, + "probability": 0.4613 + }, + { + "start": 14830.12, + "end": 14831.84, + "probability": 0.7774 + }, + { + "start": 14832.54, + "end": 14833.94, + "probability": 0.7945 + }, + { + "start": 14834.77, + "end": 14837.02, + "probability": 0.8252 + }, + { + "start": 14838.06, + "end": 14838.44, + "probability": 0.79 + }, + { + "start": 14838.5, + "end": 14839.7, + "probability": 0.9861 + }, + { + "start": 14839.82, + "end": 14840.14, + "probability": 0.6445 + }, + { + "start": 14840.24, + "end": 14840.78, + "probability": 0.7214 + }, + { + "start": 14841.32, + "end": 14844.58, + "probability": 0.8801 + }, + { + "start": 14844.62, + "end": 14845.46, + "probability": 0.9695 + }, + { + "start": 14845.6, + "end": 14847.72, + "probability": 0.982 + }, + { + "start": 14847.74, + "end": 14848.66, + "probability": 0.8886 + }, + { + "start": 14849.58, + "end": 14851.94, + "probability": 0.9763 + }, + { + "start": 14852.22, + "end": 14853.72, + "probability": 0.9731 + }, + { + "start": 14854.78, + "end": 14856.9, + "probability": 0.76 + }, + { + "start": 14857.28, + "end": 14858.2, + "probability": 0.7864 + }, + { + "start": 14858.26, + "end": 14861.92, + "probability": 0.9409 + }, + { + "start": 14861.92, + "end": 14869.74, + "probability": 0.9717 + }, + { + "start": 14869.82, + "end": 14870.64, + "probability": 0.6137 + }, + { + "start": 14870.68, + "end": 14871.04, + "probability": 0.7562 + }, + { + "start": 14871.1, + "end": 14872.68, + "probability": 0.8537 + }, + { + "start": 14872.76, + "end": 14873.02, + "probability": 0.729 + }, + { + "start": 14873.16, + "end": 14874.2, + "probability": 0.6429 + }, + { + "start": 14874.26, + "end": 14875.1, + "probability": 0.9536 + }, + { + "start": 14875.14, + "end": 14877.86, + "probability": 0.9661 + }, + { + "start": 14877.88, + "end": 14879.0, + "probability": 0.9971 + }, + { + "start": 14879.62, + "end": 14882.3, + "probability": 0.5474 + }, + { + "start": 14882.48, + "end": 14883.08, + "probability": 0.6071 + }, + { + "start": 14883.16, + "end": 14884.66, + "probability": 0.5614 + }, + { + "start": 14885.48, + "end": 14888.16, + "probability": 0.9837 + }, + { + "start": 14888.42, + "end": 14889.9, + "probability": 0.981 + }, + { + "start": 14890.04, + "end": 14893.56, + "probability": 0.9126 + }, + { + "start": 14894.04, + "end": 14895.9, + "probability": 0.681 + }, + { + "start": 14896.82, + "end": 14898.26, + "probability": 0.8467 + }, + { + "start": 14898.98, + "end": 14899.92, + "probability": 0.7842 + }, + { + "start": 14899.96, + "end": 14902.9, + "probability": 0.863 + }, + { + "start": 14903.5, + "end": 14905.64, + "probability": 0.801 + }, + { + "start": 14905.94, + "end": 14908.5, + "probability": 0.7759 + }, + { + "start": 14908.78, + "end": 14909.68, + "probability": 0.9861 + }, + { + "start": 14910.08, + "end": 14911.96, + "probability": 0.0069 + }, + { + "start": 14912.76, + "end": 14912.76, + "probability": 0.101 + }, + { + "start": 14912.76, + "end": 14914.08, + "probability": 0.9282 + }, + { + "start": 14915.34, + "end": 14920.7, + "probability": 0.8094 + }, + { + "start": 14920.96, + "end": 14922.66, + "probability": 0.1045 + }, + { + "start": 14923.06, + "end": 14924.34, + "probability": 0.6902 + }, + { + "start": 14924.8, + "end": 14927.56, + "probability": 0.9821 + }, + { + "start": 14929.7, + "end": 14931.28, + "probability": 0.9785 + }, + { + "start": 14931.94, + "end": 14932.44, + "probability": 0.9315 + }, + { + "start": 14933.16, + "end": 14933.28, + "probability": 0.0009 + }, + { + "start": 14949.44, + "end": 14949.84, + "probability": 0.1505 + }, + { + "start": 14975.16, + "end": 14976.8, + "probability": 0.3259 + }, + { + "start": 14977.7, + "end": 14978.48, + "probability": 0.2681 + }, + { + "start": 14990.83, + "end": 14992.68, + "probability": 0.5382 + }, + { + "start": 14994.26, + "end": 14995.03, + "probability": 0.4866 + }, + { + "start": 14998.1, + "end": 15000.66, + "probability": 0.5984 + }, + { + "start": 15002.46, + "end": 15006.1, + "probability": 0.783 + }, + { + "start": 15006.14, + "end": 15007.98, + "probability": 0.3843 + }, + { + "start": 15008.12, + "end": 15008.66, + "probability": 0.8447 + }, + { + "start": 15012.8, + "end": 15013.46, + "probability": 0.6848 + }, + { + "start": 15013.56, + "end": 15018.32, + "probability": 0.9308 + }, + { + "start": 15018.96, + "end": 15020.34, + "probability": 0.9279 + }, + { + "start": 15021.46, + "end": 15023.54, + "probability": 0.9569 + }, + { + "start": 15024.56, + "end": 15026.82, + "probability": 0.9695 + }, + { + "start": 15027.52, + "end": 15031.62, + "probability": 0.5625 + }, + { + "start": 15032.68, + "end": 15034.13, + "probability": 0.4665 + }, + { + "start": 15034.54, + "end": 15035.04, + "probability": 0.7703 + }, + { + "start": 15035.14, + "end": 15036.4, + "probability": 0.9489 + }, + { + "start": 15038.34, + "end": 15041.0, + "probability": 0.9367 + }, + { + "start": 15041.96, + "end": 15042.9, + "probability": 0.7699 + }, + { + "start": 15043.98, + "end": 15046.08, + "probability": 0.9814 + }, + { + "start": 15046.08, + "end": 15048.4, + "probability": 0.9148 + }, + { + "start": 15049.24, + "end": 15051.66, + "probability": 0.9631 + }, + { + "start": 15051.66, + "end": 15054.56, + "probability": 0.9669 + }, + { + "start": 15056.72, + "end": 15058.78, + "probability": 0.7583 + }, + { + "start": 15059.72, + "end": 15060.3, + "probability": 0.7953 + }, + { + "start": 15062.38, + "end": 15065.42, + "probability": 0.8686 + }, + { + "start": 15065.96, + "end": 15068.26, + "probability": 0.9438 + }, + { + "start": 15068.26, + "end": 15071.72, + "probability": 0.9141 + }, + { + "start": 15074.1, + "end": 15074.42, + "probability": 0.1657 + }, + { + "start": 15074.42, + "end": 15078.7, + "probability": 0.7585 + }, + { + "start": 15078.7, + "end": 15083.5, + "probability": 0.8946 + }, + { + "start": 15083.66, + "end": 15084.44, + "probability": 0.6525 + }, + { + "start": 15084.58, + "end": 15084.88, + "probability": 0.6603 + }, + { + "start": 15085.86, + "end": 15089.14, + "probability": 0.7969 + }, + { + "start": 15091.1, + "end": 15094.34, + "probability": 0.7282 + }, + { + "start": 15094.5, + "end": 15096.2, + "probability": 0.9719 + }, + { + "start": 15097.94, + "end": 15100.06, + "probability": 0.987 + }, + { + "start": 15100.12, + "end": 15103.36, + "probability": 0.7562 + }, + { + "start": 15103.36, + "end": 15106.56, + "probability": 0.9913 + }, + { + "start": 15107.82, + "end": 15110.4, + "probability": 0.6687 + }, + { + "start": 15110.46, + "end": 15113.44, + "probability": 0.748 + }, + { + "start": 15113.44, + "end": 15117.08, + "probability": 0.9267 + }, + { + "start": 15117.22, + "end": 15118.4, + "probability": 0.9719 + }, + { + "start": 15119.2, + "end": 15119.74, + "probability": 0.5468 + }, + { + "start": 15119.84, + "end": 15120.66, + "probability": 0.7591 + }, + { + "start": 15120.74, + "end": 15123.08, + "probability": 0.6885 + }, + { + "start": 15123.46, + "end": 15123.98, + "probability": 0.7309 + }, + { + "start": 15124.58, + "end": 15125.94, + "probability": 0.8264 + }, + { + "start": 15126.52, + "end": 15126.76, + "probability": 0.762 + }, + { + "start": 15127.7, + "end": 15128.12, + "probability": 0.565 + }, + { + "start": 15128.24, + "end": 15129.8, + "probability": 0.9433 + }, + { + "start": 15130.34, + "end": 15131.54, + "probability": 0.6174 + }, + { + "start": 15133.7, + "end": 15134.64, + "probability": 0.6863 + }, + { + "start": 15136.08, + "end": 15136.94, + "probability": 0.9378 + }, + { + "start": 15137.48, + "end": 15138.32, + "probability": 0.8128 + }, + { + "start": 15139.96, + "end": 15140.92, + "probability": 0.9456 + }, + { + "start": 15142.82, + "end": 15143.52, + "probability": 0.967 + }, + { + "start": 15145.04, + "end": 15145.88, + "probability": 0.9275 + }, + { + "start": 15147.26, + "end": 15148.32, + "probability": 0.7879 + }, + { + "start": 15149.62, + "end": 15150.44, + "probability": 0.4926 + }, + { + "start": 15151.18, + "end": 15151.84, + "probability": 0.9806 + }, + { + "start": 15154.14, + "end": 15155.44, + "probability": 0.7098 + }, + { + "start": 15156.42, + "end": 15157.34, + "probability": 0.796 + }, + { + "start": 15158.82, + "end": 15159.68, + "probability": 0.6953 + }, + { + "start": 15161.3, + "end": 15162.28, + "probability": 0.0379 + }, + { + "start": 15174.42, + "end": 15174.52, + "probability": 0.3087 + }, + { + "start": 15175.54, + "end": 15176.02, + "probability": 0.6815 + }, + { + "start": 15178.44, + "end": 15183.56, + "probability": 0.6804 + }, + { + "start": 15185.9, + "end": 15186.18, + "probability": 0.9497 + }, + { + "start": 15187.68, + "end": 15188.98, + "probability": 0.8218 + }, + { + "start": 15191.58, + "end": 15192.44, + "probability": 0.8289 + }, + { + "start": 15195.52, + "end": 15198.3, + "probability": 0.8121 + }, + { + "start": 15201.42, + "end": 15202.96, + "probability": 0.9983 + }, + { + "start": 15208.7, + "end": 15213.48, + "probability": 0.9948 + }, + { + "start": 15214.76, + "end": 15218.62, + "probability": 0.9541 + }, + { + "start": 15219.36, + "end": 15221.24, + "probability": 0.9972 + }, + { + "start": 15222.32, + "end": 15224.28, + "probability": 0.9995 + }, + { + "start": 15224.38, + "end": 15227.3, + "probability": 0.958 + }, + { + "start": 15230.3, + "end": 15232.3, + "probability": 0.3456 + }, + { + "start": 15232.44, + "end": 15234.22, + "probability": 0.9589 + }, + { + "start": 15234.26, + "end": 15236.97, + "probability": 0.6769 + }, + { + "start": 15237.7, + "end": 15244.88, + "probability": 0.9833 + }, + { + "start": 15245.52, + "end": 15246.16, + "probability": 0.7334 + }, + { + "start": 15246.28, + "end": 15251.98, + "probability": 0.9735 + }, + { + "start": 15252.12, + "end": 15256.85, + "probability": 0.9779 + }, + { + "start": 15257.82, + "end": 15261.62, + "probability": 0.863 + }, + { + "start": 15262.76, + "end": 15267.86, + "probability": 0.9551 + }, + { + "start": 15268.26, + "end": 15273.84, + "probability": 0.9821 + }, + { + "start": 15274.0, + "end": 15279.58, + "probability": 0.8879 + }, + { + "start": 15279.7, + "end": 15280.66, + "probability": 0.9973 + }, + { + "start": 15283.44, + "end": 15285.32, + "probability": 0.9741 + }, + { + "start": 15285.66, + "end": 15292.52, + "probability": 0.9323 + }, + { + "start": 15292.52, + "end": 15298.86, + "probability": 0.9347 + }, + { + "start": 15301.16, + "end": 15302.0, + "probability": 0.9967 + }, + { + "start": 15303.16, + "end": 15306.34, + "probability": 0.6894 + }, + { + "start": 15306.94, + "end": 15310.68, + "probability": 0.9923 + }, + { + "start": 15310.68, + "end": 15318.8, + "probability": 0.9742 + }, + { + "start": 15319.42, + "end": 15321.22, + "probability": 0.9893 + }, + { + "start": 15321.8, + "end": 15327.1, + "probability": 0.9401 + }, + { + "start": 15327.64, + "end": 15330.12, + "probability": 0.7405 + }, + { + "start": 15330.8, + "end": 15334.12, + "probability": 0.973 + }, + { + "start": 15334.16, + "end": 15337.34, + "probability": 0.9671 + }, + { + "start": 15338.12, + "end": 15342.62, + "probability": 0.873 + }, + { + "start": 15344.32, + "end": 15352.16, + "probability": 0.947 + }, + { + "start": 15352.64, + "end": 15355.2, + "probability": 0.6543 + }, + { + "start": 15355.2, + "end": 15356.88, + "probability": 0.7811 + }, + { + "start": 15356.92, + "end": 15357.66, + "probability": 0.8881 + }, + { + "start": 15359.28, + "end": 15359.54, + "probability": 0.2595 + }, + { + "start": 15359.54, + "end": 15360.46, + "probability": 0.3762 + }, + { + "start": 15360.84, + "end": 15362.26, + "probability": 0.0215 + }, + { + "start": 15362.92, + "end": 15364.08, + "probability": 0.8737 + }, + { + "start": 15381.18, + "end": 15382.04, + "probability": 0.8254 + }, + { + "start": 15389.08, + "end": 15390.78, + "probability": 0.6761 + }, + { + "start": 15391.56, + "end": 15394.02, + "probability": 0.771 + }, + { + "start": 15394.04, + "end": 15395.4, + "probability": 0.9658 + }, + { + "start": 15395.46, + "end": 15397.0, + "probability": 0.8132 + }, + { + "start": 15398.12, + "end": 15402.38, + "probability": 0.7743 + }, + { + "start": 15403.28, + "end": 15404.84, + "probability": 0.9829 + }, + { + "start": 15406.24, + "end": 15407.36, + "probability": 0.8297 + }, + { + "start": 15408.86, + "end": 15414.38, + "probability": 0.9719 + }, + { + "start": 15414.56, + "end": 15415.98, + "probability": 0.3901 + }, + { + "start": 15418.12, + "end": 15421.07, + "probability": 0.999 + }, + { + "start": 15421.56, + "end": 15424.76, + "probability": 0.9829 + }, + { + "start": 15426.36, + "end": 15429.78, + "probability": 0.8387 + }, + { + "start": 15429.84, + "end": 15431.34, + "probability": 0.8801 + }, + { + "start": 15431.86, + "end": 15437.1, + "probability": 0.9831 + }, + { + "start": 15437.64, + "end": 15443.3, + "probability": 0.9961 + }, + { + "start": 15444.04, + "end": 15446.46, + "probability": 0.937 + }, + { + "start": 15447.76, + "end": 15450.24, + "probability": 0.9835 + }, + { + "start": 15450.76, + "end": 15451.84, + "probability": 0.8943 + }, + { + "start": 15452.88, + "end": 15455.42, + "probability": 0.9874 + }, + { + "start": 15456.08, + "end": 15458.42, + "probability": 0.9129 + }, + { + "start": 15459.0, + "end": 15462.72, + "probability": 0.9932 + }, + { + "start": 15463.04, + "end": 15464.14, + "probability": 0.8533 + }, + { + "start": 15465.04, + "end": 15468.26, + "probability": 0.8323 + }, + { + "start": 15468.78, + "end": 15471.16, + "probability": 0.9907 + }, + { + "start": 15471.7, + "end": 15473.52, + "probability": 0.7603 + }, + { + "start": 15474.54, + "end": 15479.04, + "probability": 0.9895 + }, + { + "start": 15479.04, + "end": 15484.08, + "probability": 0.9695 + }, + { + "start": 15484.72, + "end": 15486.26, + "probability": 0.9702 + }, + { + "start": 15487.18, + "end": 15489.9, + "probability": 0.9598 + }, + { + "start": 15490.18, + "end": 15493.3, + "probability": 0.9889 + }, + { + "start": 15493.3, + "end": 15496.86, + "probability": 0.9408 + }, + { + "start": 15497.3, + "end": 15505.02, + "probability": 0.9922 + }, + { + "start": 15505.26, + "end": 15508.06, + "probability": 0.9972 + }, + { + "start": 15509.0, + "end": 15511.78, + "probability": 0.9932 + }, + { + "start": 15512.6, + "end": 15517.28, + "probability": 0.9314 + }, + { + "start": 15517.62, + "end": 15523.58, + "probability": 0.7921 + }, + { + "start": 15524.38, + "end": 15526.16, + "probability": 0.901 + }, + { + "start": 15526.88, + "end": 15528.5, + "probability": 0.9495 + }, + { + "start": 15529.34, + "end": 15532.64, + "probability": 0.8921 + }, + { + "start": 15533.26, + "end": 15536.28, + "probability": 0.9414 + }, + { + "start": 15536.62, + "end": 15540.44, + "probability": 0.7434 + }, + { + "start": 15540.98, + "end": 15543.2, + "probability": 0.7827 + }, + { + "start": 15543.68, + "end": 15544.9, + "probability": 0.9194 + }, + { + "start": 15545.12, + "end": 15549.46, + "probability": 0.9413 + }, + { + "start": 15549.7, + "end": 15550.62, + "probability": 0.9716 + }, + { + "start": 15551.1, + "end": 15555.04, + "probability": 0.9788 + }, + { + "start": 15555.58, + "end": 15557.1, + "probability": 0.8662 + }, + { + "start": 15557.5, + "end": 15558.66, + "probability": 0.9162 + }, + { + "start": 15558.82, + "end": 15559.98, + "probability": 0.8999 + }, + { + "start": 15560.06, + "end": 15560.72, + "probability": 0.8995 + }, + { + "start": 15560.78, + "end": 15561.82, + "probability": 0.8871 + }, + { + "start": 15562.14, + "end": 15562.76, + "probability": 0.7257 + }, + { + "start": 15562.94, + "end": 15563.88, + "probability": 0.6673 + }, + { + "start": 15564.1, + "end": 15565.56, + "probability": 0.8553 + }, + { + "start": 15565.84, + "end": 15567.34, + "probability": 0.598 + }, + { + "start": 15567.34, + "end": 15568.1, + "probability": 0.925 + }, + { + "start": 15568.6, + "end": 15569.84, + "probability": 0.3849 + }, + { + "start": 15570.08, + "end": 15572.18, + "probability": 0.8179 + }, + { + "start": 15572.52, + "end": 15575.12, + "probability": 0.9814 + }, + { + "start": 15575.12, + "end": 15578.18, + "probability": 0.8745 + }, + { + "start": 15578.86, + "end": 15579.58, + "probability": 0.5898 + }, + { + "start": 15579.58, + "end": 15580.62, + "probability": 0.4829 + }, + { + "start": 15581.12, + "end": 15581.92, + "probability": 0.7247 + }, + { + "start": 15583.1, + "end": 15584.48, + "probability": 0.856 + }, + { + "start": 15585.24, + "end": 15586.2, + "probability": 0.7811 + }, + { + "start": 15586.94, + "end": 15588.3, + "probability": 0.8912 + }, + { + "start": 15589.48, + "end": 15590.12, + "probability": 0.8094 + }, + { + "start": 15591.38, + "end": 15592.5, + "probability": 0.8229 + }, + { + "start": 15594.8, + "end": 15596.3, + "probability": 0.7497 + }, + { + "start": 15600.56, + "end": 15601.44, + "probability": 0.8132 + }, + { + "start": 15602.12, + "end": 15603.92, + "probability": 0.7831 + }, + { + "start": 15615.64, + "end": 15616.7, + "probability": 0.8653 + }, + { + "start": 15617.32, + "end": 15618.32, + "probability": 0.5889 + }, + { + "start": 15619.8, + "end": 15624.12, + "probability": 0.9958 + }, + { + "start": 15625.32, + "end": 15627.28, + "probability": 0.9554 + }, + { + "start": 15631.9, + "end": 15634.68, + "probability": 0.7256 + }, + { + "start": 15635.6, + "end": 15640.06, + "probability": 0.9727 + }, + { + "start": 15642.4, + "end": 15644.22, + "probability": 0.8378 + }, + { + "start": 15644.3, + "end": 15645.96, + "probability": 0.9196 + }, + { + "start": 15646.8, + "end": 15647.76, + "probability": 0.8958 + }, + { + "start": 15647.9, + "end": 15649.96, + "probability": 0.9949 + }, + { + "start": 15650.04, + "end": 15651.1, + "probability": 0.9174 + }, + { + "start": 15652.42, + "end": 15658.6, + "probability": 0.9624 + }, + { + "start": 15660.8, + "end": 15666.0, + "probability": 0.9963 + }, + { + "start": 15666.0, + "end": 15669.32, + "probability": 0.9589 + }, + { + "start": 15670.26, + "end": 15670.58, + "probability": 0.4557 + }, + { + "start": 15670.8, + "end": 15675.98, + "probability": 0.9961 + }, + { + "start": 15677.28, + "end": 15680.06, + "probability": 0.9227 + }, + { + "start": 15680.1, + "end": 15680.74, + "probability": 0.7675 + }, + { + "start": 15680.82, + "end": 15682.5, + "probability": 0.8177 + }, + { + "start": 15683.82, + "end": 15684.36, + "probability": 0.828 + }, + { + "start": 15685.72, + "end": 15688.86, + "probability": 0.5671 + }, + { + "start": 15691.14, + "end": 15693.48, + "probability": 0.7122 + }, + { + "start": 15693.7, + "end": 15694.82, + "probability": 0.8795 + }, + { + "start": 15694.94, + "end": 15696.22, + "probability": 0.9241 + }, + { + "start": 15697.2, + "end": 15702.34, + "probability": 0.8745 + }, + { + "start": 15703.1, + "end": 15706.38, + "probability": 0.8016 + }, + { + "start": 15706.88, + "end": 15711.7, + "probability": 0.9935 + }, + { + "start": 15714.02, + "end": 15717.46, + "probability": 0.9927 + }, + { + "start": 15718.48, + "end": 15723.74, + "probability": 0.9397 + }, + { + "start": 15724.9, + "end": 15732.0, + "probability": 0.9047 + }, + { + "start": 15733.22, + "end": 15735.86, + "probability": 0.827 + }, + { + "start": 15736.88, + "end": 15739.08, + "probability": 0.9191 + }, + { + "start": 15740.08, + "end": 15741.1, + "probability": 0.8282 + }, + { + "start": 15742.0, + "end": 15748.24, + "probability": 0.9781 + }, + { + "start": 15749.6, + "end": 15750.86, + "probability": 0.7848 + }, + { + "start": 15751.64, + "end": 15754.92, + "probability": 0.9427 + }, + { + "start": 15754.96, + "end": 15759.74, + "probability": 0.9105 + }, + { + "start": 15761.2, + "end": 15762.52, + "probability": 0.8588 + }, + { + "start": 15763.12, + "end": 15764.52, + "probability": 0.9404 + }, + { + "start": 15765.44, + "end": 15767.48, + "probability": 0.996 + }, + { + "start": 15768.7, + "end": 15769.4, + "probability": 0.7685 + }, + { + "start": 15769.84, + "end": 15771.94, + "probability": 0.9926 + }, + { + "start": 15772.1, + "end": 15773.0, + "probability": 0.9666 + }, + { + "start": 15773.1, + "end": 15774.56, + "probability": 0.6143 + }, + { + "start": 15775.74, + "end": 15777.01, + "probability": 0.8047 + }, + { + "start": 15779.8, + "end": 15780.82, + "probability": 0.9821 + }, + { + "start": 15781.58, + "end": 15787.14, + "probability": 0.9812 + }, + { + "start": 15787.92, + "end": 15792.42, + "probability": 0.9822 + }, + { + "start": 15792.88, + "end": 15795.95, + "probability": 0.9764 + }, + { + "start": 15796.84, + "end": 15798.48, + "probability": 0.6636 + }, + { + "start": 15799.84, + "end": 15803.46, + "probability": 0.9845 + }, + { + "start": 15804.22, + "end": 15805.02, + "probability": 0.942 + }, + { + "start": 15805.62, + "end": 15807.0, + "probability": 0.8552 + }, + { + "start": 15808.34, + "end": 15810.04, + "probability": 0.8921 + }, + { + "start": 15810.54, + "end": 15813.54, + "probability": 0.8232 + }, + { + "start": 15814.36, + "end": 15815.1, + "probability": 0.9561 + }, + { + "start": 15815.14, + "end": 15816.14, + "probability": 0.8046 + }, + { + "start": 15816.22, + "end": 15817.08, + "probability": 0.9142 + }, + { + "start": 15817.2, + "end": 15818.12, + "probability": 0.8614 + }, + { + "start": 15818.34, + "end": 15823.9, + "probability": 0.9639 + }, + { + "start": 15824.44, + "end": 15827.92, + "probability": 0.9961 + }, + { + "start": 15828.46, + "end": 15829.86, + "probability": 0.7982 + }, + { + "start": 15830.18, + "end": 15831.42, + "probability": 0.9272 + }, + { + "start": 15831.78, + "end": 15833.7, + "probability": 0.9851 + }, + { + "start": 15833.74, + "end": 15835.5, + "probability": 0.9276 + }, + { + "start": 15836.04, + "end": 15836.46, + "probability": 0.576 + }, + { + "start": 15836.48, + "end": 15838.1, + "probability": 0.7558 + }, + { + "start": 15838.1, + "end": 15841.9, + "probability": 0.9076 + }, + { + "start": 15841.92, + "end": 15842.26, + "probability": 0.7262 + }, + { + "start": 15843.04, + "end": 15843.72, + "probability": 0.2146 + }, + { + "start": 15843.72, + "end": 15844.28, + "probability": 0.5021 + }, + { + "start": 15847.22, + "end": 15848.9, + "probability": 0.6804 + }, + { + "start": 15850.86, + "end": 15851.9, + "probability": 0.8927 + }, + { + "start": 15853.88, + "end": 15855.82, + "probability": 0.9476 + }, + { + "start": 15857.1, + "end": 15858.7, + "probability": 0.6865 + }, + { + "start": 15859.94, + "end": 15860.76, + "probability": 0.7405 + }, + { + "start": 15860.96, + "end": 15861.3, + "probability": 0.8133 + }, + { + "start": 15862.14, + "end": 15864.34, + "probability": 0.2183 + }, + { + "start": 15865.6, + "end": 15867.46, + "probability": 0.2613 + }, + { + "start": 15869.08, + "end": 15870.0, + "probability": 0.0309 + }, + { + "start": 15879.46, + "end": 15880.36, + "probability": 0.2111 + }, + { + "start": 15880.98, + "end": 15883.02, + "probability": 0.3171 + }, + { + "start": 15883.98, + "end": 15884.7, + "probability": 0.843 + }, + { + "start": 15885.62, + "end": 15886.08, + "probability": 0.1327 + }, + { + "start": 15887.14, + "end": 15888.18, + "probability": 0.1547 + }, + { + "start": 15890.48, + "end": 15891.62, + "probability": 0.6325 + }, + { + "start": 15891.72, + "end": 15892.45, + "probability": 0.9161 + }, + { + "start": 15892.56, + "end": 15893.68, + "probability": 0.6426 + }, + { + "start": 15893.92, + "end": 15894.86, + "probability": 0.7515 + }, + { + "start": 15896.82, + "end": 15898.16, + "probability": 0.8648 + }, + { + "start": 15899.34, + "end": 15899.99, + "probability": 0.9147 + }, + { + "start": 15901.2, + "end": 15905.04, + "probability": 0.7925 + }, + { + "start": 15906.26, + "end": 15908.86, + "probability": 0.2268 + }, + { + "start": 15908.86, + "end": 15912.02, + "probability": 0.7712 + }, + { + "start": 15912.64, + "end": 15914.48, + "probability": 0.9551 + }, + { + "start": 15916.02, + "end": 15916.86, + "probability": 0.9459 + }, + { + "start": 15918.81, + "end": 15919.38, + "probability": 0.0334 + }, + { + "start": 15919.38, + "end": 15920.59, + "probability": 0.3598 + }, + { + "start": 15921.76, + "end": 15923.58, + "probability": 0.8214 + }, + { + "start": 15924.56, + "end": 15924.74, + "probability": 0.2351 + }, + { + "start": 15924.74, + "end": 15926.92, + "probability": 0.8752 + }, + { + "start": 15927.02, + "end": 15928.56, + "probability": 0.728 + }, + { + "start": 15929.26, + "end": 15930.24, + "probability": 0.1043 + }, + { + "start": 15931.82, + "end": 15933.2, + "probability": 0.6246 + }, + { + "start": 15933.5, + "end": 15933.84, + "probability": 0.7928 + }, + { + "start": 15933.96, + "end": 15937.0, + "probability": 0.5068 + }, + { + "start": 15937.66, + "end": 15937.76, + "probability": 0.2124 + }, + { + "start": 15940.62, + "end": 15942.72, + "probability": 0.1164 + }, + { + "start": 15944.98, + "end": 15946.4, + "probability": 0.6457 + }, + { + "start": 15946.4, + "end": 15946.4, + "probability": 0.5085 + }, + { + "start": 15946.4, + "end": 15948.06, + "probability": 0.4063 + }, + { + "start": 15948.86, + "end": 15949.08, + "probability": 0.1762 + }, + { + "start": 15949.08, + "end": 15949.62, + "probability": 0.2811 + }, + { + "start": 15949.94, + "end": 15950.91, + "probability": 0.958 + }, + { + "start": 15951.08, + "end": 15951.54, + "probability": 0.5014 + }, + { + "start": 15951.64, + "end": 15952.28, + "probability": 0.603 + }, + { + "start": 15953.36, + "end": 15953.92, + "probability": 0.8921 + }, + { + "start": 15954.04, + "end": 15955.79, + "probability": 0.3119 + }, + { + "start": 15956.0, + "end": 15956.36, + "probability": 0.0776 + }, + { + "start": 15959.12, + "end": 15959.26, + "probability": 0.0007 + }, + { + "start": 15959.36, + "end": 15962.46, + "probability": 0.6376 + }, + { + "start": 15971.71, + "end": 15974.29, + "probability": 0.9377 + }, + { + "start": 15976.36, + "end": 15977.44, + "probability": 0.3548 + }, + { + "start": 15977.94, + "end": 15980.14, + "probability": 0.3363 + }, + { + "start": 15980.82, + "end": 15983.34, + "probability": 0.2713 + }, + { + "start": 15983.76, + "end": 15984.24, + "probability": 0.5605 + }, + { + "start": 15984.28, + "end": 15984.77, + "probability": 0.3476 + }, + { + "start": 15985.7, + "end": 15987.04, + "probability": 0.1836 + }, + { + "start": 15988.0, + "end": 15989.72, + "probability": 0.5548 + }, + { + "start": 15990.18, + "end": 15991.06, + "probability": 0.6046 + }, + { + "start": 15991.18, + "end": 15992.31, + "probability": 0.7539 + }, + { + "start": 15992.9, + "end": 15993.18, + "probability": 0.263 + }, + { + "start": 15993.18, + "end": 15996.14, + "probability": 0.9539 + }, + { + "start": 15997.08, + "end": 15998.28, + "probability": 0.7512 + }, + { + "start": 15998.4, + "end": 16002.6, + "probability": 0.9829 + }, + { + "start": 16003.06, + "end": 16003.68, + "probability": 0.0001 + }, + { + "start": 16003.94, + "end": 16006.36, + "probability": 0.7053 + }, + { + "start": 16006.9, + "end": 16007.16, + "probability": 0.8307 + }, + { + "start": 16007.98, + "end": 16008.94, + "probability": 0.8979 + }, + { + "start": 16009.02, + "end": 16009.84, + "probability": 0.1442 + }, + { + "start": 16010.1, + "end": 16013.5, + "probability": 0.8405 + }, + { + "start": 16013.56, + "end": 16014.76, + "probability": 0.4159 + }, + { + "start": 16015.0, + "end": 16015.5, + "probability": 0.5183 + }, + { + "start": 16015.68, + "end": 16017.78, + "probability": 0.753 + }, + { + "start": 16018.06, + "end": 16020.94, + "probability": 0.8969 + }, + { + "start": 16021.06, + "end": 16021.36, + "probability": 0.87 + }, + { + "start": 16021.58, + "end": 16023.44, + "probability": 0.6003 + }, + { + "start": 16023.56, + "end": 16026.82, + "probability": 0.9894 + }, + { + "start": 16027.0, + "end": 16027.56, + "probability": 0.0372 + }, + { + "start": 16029.21, + "end": 16030.62, + "probability": 0.0274 + }, + { + "start": 16031.0, + "end": 16031.08, + "probability": 0.2546 + }, + { + "start": 16031.08, + "end": 16031.08, + "probability": 0.0645 + }, + { + "start": 16031.08, + "end": 16031.74, + "probability": 0.1544 + }, + { + "start": 16031.74, + "end": 16036.1, + "probability": 0.8486 + }, + { + "start": 16036.28, + "end": 16037.11, + "probability": 0.9045 + }, + { + "start": 16037.36, + "end": 16037.78, + "probability": 0.4412 + }, + { + "start": 16038.0, + "end": 16038.76, + "probability": 0.0907 + }, + { + "start": 16038.98, + "end": 16040.86, + "probability": 0.7011 + }, + { + "start": 16040.98, + "end": 16042.28, + "probability": 0.9139 + }, + { + "start": 16042.4, + "end": 16046.48, + "probability": 0.941 + }, + { + "start": 16047.12, + "end": 16050.04, + "probability": 0.9928 + }, + { + "start": 16050.28, + "end": 16050.76, + "probability": 0.6134 + }, + { + "start": 16052.62, + "end": 16053.94, + "probability": 0.7928 + }, + { + "start": 16054.86, + "end": 16059.18, + "probability": 0.9624 + }, + { + "start": 16059.34, + "end": 16062.7, + "probability": 0.7198 + }, + { + "start": 16073.5, + "end": 16074.64, + "probability": 0.7985 + }, + { + "start": 16074.68, + "end": 16076.56, + "probability": 0.6921 + }, + { + "start": 16076.6, + "end": 16079.06, + "probability": 0.8782 + }, + { + "start": 16079.38, + "end": 16083.54, + "probability": 0.9893 + }, + { + "start": 16084.0, + "end": 16089.6, + "probability": 0.9904 + }, + { + "start": 16089.62, + "end": 16092.4, + "probability": 0.7156 + }, + { + "start": 16093.54, + "end": 16095.34, + "probability": 0.6903 + }, + { + "start": 16096.0, + "end": 16097.14, + "probability": 0.654 + }, + { + "start": 16097.14, + "end": 16100.78, + "probability": 0.9652 + }, + { + "start": 16101.54, + "end": 16103.73, + "probability": 0.964 + }, + { + "start": 16104.58, + "end": 16105.52, + "probability": 0.749 + }, + { + "start": 16106.0, + "end": 16106.82, + "probability": 0.9599 + }, + { + "start": 16106.9, + "end": 16108.38, + "probability": 0.9392 + }, + { + "start": 16108.82, + "end": 16111.42, + "probability": 0.542 + }, + { + "start": 16111.44, + "end": 16112.18, + "probability": 0.7222 + }, + { + "start": 16112.28, + "end": 16116.7, + "probability": 0.9799 + }, + { + "start": 16116.84, + "end": 16118.64, + "probability": 0.816 + }, + { + "start": 16118.64, + "end": 16119.3, + "probability": 0.586 + }, + { + "start": 16119.48, + "end": 16119.88, + "probability": 0.7196 + }, + { + "start": 16120.2, + "end": 16121.9, + "probability": 0.849 + }, + { + "start": 16123.25, + "end": 16126.22, + "probability": 0.4675 + }, + { + "start": 16126.52, + "end": 16127.12, + "probability": 0.6902 + }, + { + "start": 16127.42, + "end": 16127.84, + "probability": 0.0238 + }, + { + "start": 16127.84, + "end": 16130.04, + "probability": 0.923 + }, + { + "start": 16130.12, + "end": 16131.68, + "probability": 0.628 + }, + { + "start": 16132.02, + "end": 16132.84, + "probability": 0.7025 + }, + { + "start": 16132.94, + "end": 16134.54, + "probability": 0.9108 + }, + { + "start": 16134.68, + "end": 16135.12, + "probability": 0.5922 + }, + { + "start": 16135.6, + "end": 16136.1, + "probability": 0.7976 + }, + { + "start": 16136.26, + "end": 16138.04, + "probability": 0.9941 + }, + { + "start": 16138.04, + "end": 16140.92, + "probability": 0.9964 + }, + { + "start": 16141.02, + "end": 16142.4, + "probability": 0.9801 + }, + { + "start": 16145.4, + "end": 16147.84, + "probability": 0.9757 + }, + { + "start": 16148.8, + "end": 16154.02, + "probability": 0.8867 + }, + { + "start": 16154.16, + "end": 16155.12, + "probability": 0.7395 + }, + { + "start": 16156.88, + "end": 16162.64, + "probability": 0.99 + }, + { + "start": 16163.0, + "end": 16165.6, + "probability": 0.8817 + }, + { + "start": 16166.74, + "end": 16170.94, + "probability": 0.8538 + }, + { + "start": 16171.54, + "end": 16174.7, + "probability": 0.9946 + }, + { + "start": 16175.38, + "end": 16177.57, + "probability": 0.7925 + }, + { + "start": 16178.76, + "end": 16181.3, + "probability": 0.8298 + }, + { + "start": 16182.1, + "end": 16182.96, + "probability": 0.7904 + }, + { + "start": 16183.6, + "end": 16184.34, + "probability": 0.9354 + }, + { + "start": 16184.52, + "end": 16185.7, + "probability": 0.9783 + }, + { + "start": 16186.16, + "end": 16187.5, + "probability": 0.8276 + }, + { + "start": 16187.66, + "end": 16189.28, + "probability": 0.9077 + }, + { + "start": 16189.66, + "end": 16192.62, + "probability": 0.9896 + }, + { + "start": 16193.16, + "end": 16194.08, + "probability": 0.7742 + }, + { + "start": 16195.34, + "end": 16195.6, + "probability": 0.6108 + }, + { + "start": 16195.66, + "end": 16202.72, + "probability": 0.9729 + }, + { + "start": 16203.5, + "end": 16205.63, + "probability": 0.9753 + }, + { + "start": 16206.58, + "end": 16209.38, + "probability": 0.9968 + }, + { + "start": 16209.86, + "end": 16211.36, + "probability": 0.7375 + }, + { + "start": 16212.28, + "end": 16213.72, + "probability": 0.9756 + }, + { + "start": 16214.04, + "end": 16214.42, + "probability": 0.8424 + }, + { + "start": 16214.48, + "end": 16220.22, + "probability": 0.9802 + }, + { + "start": 16220.42, + "end": 16223.32, + "probability": 0.9224 + }, + { + "start": 16223.86, + "end": 16225.66, + "probability": 0.7958 + }, + { + "start": 16225.74, + "end": 16229.26, + "probability": 0.9872 + }, + { + "start": 16229.34, + "end": 16229.84, + "probability": 0.7261 + }, + { + "start": 16229.86, + "end": 16230.4, + "probability": 0.6472 + }, + { + "start": 16230.6, + "end": 16233.33, + "probability": 0.7461 + }, + { + "start": 16236.26, + "end": 16237.34, + "probability": 0.1478 + }, + { + "start": 16237.98, + "end": 16238.42, + "probability": 0.0207 + }, + { + "start": 16256.92, + "end": 16257.02, + "probability": 0.1329 + }, + { + "start": 16258.6, + "end": 16261.8, + "probability": 0.2483 + }, + { + "start": 16263.0, + "end": 16264.52, + "probability": 0.7949 + }, + { + "start": 16265.22, + "end": 16266.5, + "probability": 0.8791 + }, + { + "start": 16269.2, + "end": 16270.48, + "probability": 0.8237 + }, + { + "start": 16271.26, + "end": 16272.08, + "probability": 0.8833 + }, + { + "start": 16273.02, + "end": 16278.16, + "probability": 0.8437 + }, + { + "start": 16278.9, + "end": 16282.56, + "probability": 0.987 + }, + { + "start": 16282.56, + "end": 16286.82, + "probability": 0.9327 + }, + { + "start": 16289.72, + "end": 16293.24, + "probability": 0.752 + }, + { + "start": 16294.08, + "end": 16297.34, + "probability": 0.7094 + }, + { + "start": 16297.34, + "end": 16301.02, + "probability": 0.8869 + }, + { + "start": 16310.2, + "end": 16311.36, + "probability": 0.384 + }, + { + "start": 16311.88, + "end": 16312.82, + "probability": 0.8518 + }, + { + "start": 16320.2, + "end": 16322.6, + "probability": 0.4553 + }, + { + "start": 16323.08, + "end": 16323.8, + "probability": 0.6885 + }, + { + "start": 16324.04, + "end": 16324.66, + "probability": 0.7185 + }, + { + "start": 16325.52, + "end": 16325.96, + "probability": 0.8894 + }, + { + "start": 16329.5, + "end": 16331.8, + "probability": 0.8792 + }, + { + "start": 16331.96, + "end": 16335.04, + "probability": 0.8953 + }, + { + "start": 16336.6, + "end": 16338.68, + "probability": 0.9526 + }, + { + "start": 16339.3, + "end": 16341.86, + "probability": 0.8797 + }, + { + "start": 16342.38, + "end": 16343.28, + "probability": 0.7656 + }, + { + "start": 16348.02, + "end": 16350.78, + "probability": 0.7103 + }, + { + "start": 16352.44, + "end": 16353.16, + "probability": 0.8386 + }, + { + "start": 16353.76, + "end": 16362.2, + "probability": 0.9551 + }, + { + "start": 16362.2, + "end": 16366.56, + "probability": 0.9893 + }, + { + "start": 16368.06, + "end": 16370.48, + "probability": 0.6216 + }, + { + "start": 16371.48, + "end": 16371.97, + "probability": 0.8358 + }, + { + "start": 16372.82, + "end": 16374.86, + "probability": 0.8937 + }, + { + "start": 16374.86, + "end": 16375.02, + "probability": 0.0948 + }, + { + "start": 16375.9, + "end": 16376.5, + "probability": 0.7416 + }, + { + "start": 16376.76, + "end": 16377.02, + "probability": 0.6588 + }, + { + "start": 16377.24, + "end": 16377.62, + "probability": 0.3309 + }, + { + "start": 16377.76, + "end": 16378.61, + "probability": 0.7637 + }, + { + "start": 16378.64, + "end": 16379.54, + "probability": 0.8346 + }, + { + "start": 16379.76, + "end": 16381.94, + "probability": 0.5205 + }, + { + "start": 16381.94, + "end": 16382.7, + "probability": 0.8506 + }, + { + "start": 16384.06, + "end": 16385.34, + "probability": 0.9604 + }, + { + "start": 16385.62, + "end": 16386.2, + "probability": 0.9152 + }, + { + "start": 16409.22, + "end": 16410.62, + "probability": 0.4995 + }, + { + "start": 16410.74, + "end": 16414.92, + "probability": 0.556 + }, + { + "start": 16415.0, + "end": 16416.66, + "probability": 0.1391 + }, + { + "start": 16417.52, + "end": 16419.72, + "probability": 0.662 + }, + { + "start": 16428.22, + "end": 16429.24, + "probability": 0.1302 + }, + { + "start": 16430.38, + "end": 16430.56, + "probability": 0.027 + }, + { + "start": 16430.56, + "end": 16432.92, + "probability": 0.0414 + }, + { + "start": 16434.02, + "end": 16434.02, + "probability": 0.0134 + }, + { + "start": 16436.14, + "end": 16438.1, + "probability": 0.1747 + }, + { + "start": 16439.2, + "end": 16439.4, + "probability": 0.0546 + }, + { + "start": 16439.4, + "end": 16440.1, + "probability": 0.1243 + }, + { + "start": 16456.22, + "end": 16456.92, + "probability": 0.0146 + }, + { + "start": 16462.66, + "end": 16463.52, + "probability": 0.0265 + }, + { + "start": 16463.52, + "end": 16463.54, + "probability": 0.1464 + }, + { + "start": 16463.54, + "end": 16464.83, + "probability": 0.3239 + }, + { + "start": 16466.76, + "end": 16468.1, + "probability": 0.34 + }, + { + "start": 16483.44, + "end": 16484.9, + "probability": 0.5664 + }, + { + "start": 16485.52, + "end": 16488.64, + "probability": 0.917 + }, + { + "start": 16488.88, + "end": 16492.18, + "probability": 0.9832 + }, + { + "start": 16492.18, + "end": 16494.72, + "probability": 0.7389 + }, + { + "start": 16495.74, + "end": 16499.7, + "probability": 0.8983 + }, + { + "start": 16499.7, + "end": 16503.16, + "probability": 0.9535 + }, + { + "start": 16504.56, + "end": 16506.22, + "probability": 0.4787 + }, + { + "start": 16506.92, + "end": 16512.16, + "probability": 0.7886 + }, + { + "start": 16512.16, + "end": 16514.6, + "probability": 0.9941 + }, + { + "start": 16515.36, + "end": 16519.88, + "probability": 0.9707 + }, + { + "start": 16520.5, + "end": 16524.06, + "probability": 0.9906 + }, + { + "start": 16525.14, + "end": 16527.58, + "probability": 0.96 + }, + { + "start": 16527.86, + "end": 16531.4, + "probability": 0.9979 + }, + { + "start": 16531.96, + "end": 16533.48, + "probability": 0.7683 + }, + { + "start": 16534.5, + "end": 16535.32, + "probability": 0.2233 + }, + { + "start": 16535.46, + "end": 16540.46, + "probability": 0.8771 + }, + { + "start": 16540.46, + "end": 16545.64, + "probability": 0.9594 + }, + { + "start": 16546.18, + "end": 16549.16, + "probability": 0.8749 + }, + { + "start": 16550.22, + "end": 16551.36, + "probability": 0.7183 + }, + { + "start": 16552.0, + "end": 16554.38, + "probability": 0.9939 + }, + { + "start": 16556.32, + "end": 16556.84, + "probability": 0.6559 + }, + { + "start": 16557.0, + "end": 16558.44, + "probability": 0.9746 + }, + { + "start": 16560.66, + "end": 16561.94, + "probability": 0.787 + }, + { + "start": 16568.16, + "end": 16569.2, + "probability": 0.7308 + }, + { + "start": 16571.94, + "end": 16572.78, + "probability": 0.867 + }, + { + "start": 16593.62, + "end": 16594.98, + "probability": 0.8532 + }, + { + "start": 16598.98, + "end": 16600.74, + "probability": 0.5092 + }, + { + "start": 16601.32, + "end": 16601.8, + "probability": 0.5306 + }, + { + "start": 16601.8, + "end": 16602.24, + "probability": 0.8629 + }, + { + "start": 16602.42, + "end": 16604.5, + "probability": 0.6391 + }, + { + "start": 16604.64, + "end": 16607.74, + "probability": 0.7904 + }, + { + "start": 16608.12, + "end": 16609.76, + "probability": 0.8982 + }, + { + "start": 16610.6, + "end": 16615.3, + "probability": 0.9756 + }, + { + "start": 16616.25, + "end": 16620.0, + "probability": 0.9915 + }, + { + "start": 16620.0, + "end": 16622.54, + "probability": 0.8977 + }, + { + "start": 16623.6, + "end": 16626.61, + "probability": 0.9952 + }, + { + "start": 16627.76, + "end": 16632.04, + "probability": 0.9956 + }, + { + "start": 16632.32, + "end": 16637.68, + "probability": 0.8545 + }, + { + "start": 16640.46, + "end": 16645.74, + "probability": 0.9209 + }, + { + "start": 16647.0, + "end": 16657.08, + "probability": 0.8385 + }, + { + "start": 16658.62, + "end": 16664.0, + "probability": 0.9202 + }, + { + "start": 16664.12, + "end": 16666.62, + "probability": 0.9871 + }, + { + "start": 16667.42, + "end": 16671.96, + "probability": 0.9937 + }, + { + "start": 16672.9, + "end": 16675.88, + "probability": 0.9525 + }, + { + "start": 16676.26, + "end": 16677.5, + "probability": 0.9448 + }, + { + "start": 16678.42, + "end": 16682.36, + "probability": 0.9812 + }, + { + "start": 16684.22, + "end": 16685.56, + "probability": 0.966 + }, + { + "start": 16686.18, + "end": 16687.2, + "probability": 0.9431 + }, + { + "start": 16687.88, + "end": 16688.93, + "probability": 0.9718 + }, + { + "start": 16689.58, + "end": 16695.1, + "probability": 0.9483 + }, + { + "start": 16696.3, + "end": 16698.52, + "probability": 0.8625 + }, + { + "start": 16699.91, + "end": 16704.3, + "probability": 0.9419 + }, + { + "start": 16704.62, + "end": 16711.28, + "probability": 0.9934 + }, + { + "start": 16712.54, + "end": 16718.64, + "probability": 0.9976 + }, + { + "start": 16720.16, + "end": 16723.8, + "probability": 0.9883 + }, + { + "start": 16724.48, + "end": 16726.42, + "probability": 0.9526 + }, + { + "start": 16727.02, + "end": 16728.4, + "probability": 0.5555 + }, + { + "start": 16729.6, + "end": 16731.74, + "probability": 0.9977 + }, + { + "start": 16732.36, + "end": 16733.56, + "probability": 0.9698 + }, + { + "start": 16733.66, + "end": 16734.6, + "probability": 0.8355 + }, + { + "start": 16734.82, + "end": 16736.48, + "probability": 0.9623 + }, + { + "start": 16737.4, + "end": 16738.16, + "probability": 0.9243 + }, + { + "start": 16738.64, + "end": 16739.62, + "probability": 0.9786 + }, + { + "start": 16740.4, + "end": 16746.18, + "probability": 0.9069 + }, + { + "start": 16746.86, + "end": 16747.6, + "probability": 0.6267 + }, + { + "start": 16748.02, + "end": 16749.68, + "probability": 0.7393 + }, + { + "start": 16750.34, + "end": 16751.12, + "probability": 0.6274 + }, + { + "start": 16751.2, + "end": 16752.63, + "probability": 0.3364 + }, + { + "start": 16753.0, + "end": 16754.54, + "probability": 0.9468 + }, + { + "start": 16754.68, + "end": 16755.38, + "probability": 0.8567 + }, + { + "start": 16756.04, + "end": 16757.16, + "probability": 0.8903 + }, + { + "start": 16757.94, + "end": 16760.2, + "probability": 0.96 + }, + { + "start": 16760.26, + "end": 16762.36, + "probability": 0.7734 + }, + { + "start": 16762.84, + "end": 16763.88, + "probability": 0.6528 + }, + { + "start": 16764.36, + "end": 16767.32, + "probability": 0.4385 + }, + { + "start": 16767.44, + "end": 16769.1, + "probability": 0.9042 + }, + { + "start": 16769.52, + "end": 16771.66, + "probability": 0.9249 + }, + { + "start": 16772.12, + "end": 16772.62, + "probability": 0.7299 + }, + { + "start": 16773.44, + "end": 16777.9, + "probability": 0.9874 + }, + { + "start": 16778.32, + "end": 16779.76, + "probability": 0.7749 + }, + { + "start": 16780.22, + "end": 16781.24, + "probability": 0.8612 + }, + { + "start": 16781.82, + "end": 16784.86, + "probability": 0.981 + }, + { + "start": 16784.96, + "end": 16785.82, + "probability": 0.9815 + }, + { + "start": 16785.9, + "end": 16788.46, + "probability": 0.9473 + }, + { + "start": 16788.6, + "end": 16788.82, + "probability": 0.8064 + }, + { + "start": 16789.2, + "end": 16789.68, + "probability": 0.3797 + }, + { + "start": 16789.68, + "end": 16791.16, + "probability": 0.8321 + }, + { + "start": 16793.92, + "end": 16795.2, + "probability": 0.6449 + }, + { + "start": 16796.96, + "end": 16798.06, + "probability": 0.8859 + }, + { + "start": 16800.42, + "end": 16801.16, + "probability": 0.8478 + }, + { + "start": 16802.94, + "end": 16803.7, + "probability": 0.98 + }, + { + "start": 16805.64, + "end": 16806.58, + "probability": 0.8328 + }, + { + "start": 16807.84, + "end": 16808.64, + "probability": 0.9591 + }, + { + "start": 16815.56, + "end": 16816.76, + "probability": 0.4799 + }, + { + "start": 16818.64, + "end": 16820.3, + "probability": 0.7484 + }, + { + "start": 16821.24, + "end": 16824.14, + "probability": 0.8511 + }, + { + "start": 16826.16, + "end": 16828.06, + "probability": 0.9588 + }, + { + "start": 16828.96, + "end": 16830.54, + "probability": 0.8577 + }, + { + "start": 16831.58, + "end": 16833.42, + "probability": 0.7825 + }, + { + "start": 16836.02, + "end": 16837.36, + "probability": 0.9914 + }, + { + "start": 16838.64, + "end": 16839.9, + "probability": 0.6631 + }, + { + "start": 16841.7, + "end": 16842.9, + "probability": 0.9391 + }, + { + "start": 16846.14, + "end": 16847.38, + "probability": 0.9643 + }, + { + "start": 16848.9, + "end": 16851.01, + "probability": 0.7849 + }, + { + "start": 16852.7, + "end": 16854.95, + "probability": 0.8717 + }, + { + "start": 16856.46, + "end": 16857.76, + "probability": 0.9789 + }, + { + "start": 16859.78, + "end": 16861.1, + "probability": 0.8078 + }, + { + "start": 16863.48, + "end": 16864.48, + "probability": 0.882 + }, + { + "start": 16866.14, + "end": 16867.3, + "probability": 0.9944 + }, + { + "start": 16869.16, + "end": 16870.36, + "probability": 0.9921 + }, + { + "start": 16873.28, + "end": 16874.74, + "probability": 0.7213 + }, + { + "start": 16876.22, + "end": 16877.58, + "probability": 0.8334 + }, + { + "start": 16879.84, + "end": 16881.0, + "probability": 0.9552 + }, + { + "start": 16883.8, + "end": 16885.02, + "probability": 0.9498 + }, + { + "start": 16887.56, + "end": 16888.62, + "probability": 0.9552 + }, + { + "start": 16892.2, + "end": 16893.82, + "probability": 0.8802 + }, + { + "start": 16896.08, + "end": 16897.8, + "probability": 0.9163 + }, + { + "start": 16899.32, + "end": 16900.72, + "probability": 0.9727 + }, + { + "start": 16902.52, + "end": 16903.76, + "probability": 0.8256 + }, + { + "start": 16905.68, + "end": 16909.18, + "probability": 0.316 + }, + { + "start": 16924.74, + "end": 16925.94, + "probability": 0.5794 + }, + { + "start": 16932.98, + "end": 16935.92, + "probability": 0.7625 + }, + { + "start": 16937.36, + "end": 16939.55, + "probability": 0.9966 + }, + { + "start": 16941.08, + "end": 16943.41, + "probability": 0.881 + }, + { + "start": 16944.68, + "end": 16945.82, + "probability": 0.9863 + }, + { + "start": 16946.76, + "end": 16947.76, + "probability": 0.4776 + }, + { + "start": 16948.1, + "end": 16948.32, + "probability": 0.4806 + }, + { + "start": 16948.8, + "end": 16950.2, + "probability": 0.9352 + }, + { + "start": 16950.22, + "end": 16956.98, + "probability": 0.9632 + }, + { + "start": 16958.12, + "end": 16960.34, + "probability": 0.9995 + }, + { + "start": 16962.6, + "end": 16967.7, + "probability": 0.9897 + }, + { + "start": 16968.6, + "end": 16971.84, + "probability": 0.9921 + }, + { + "start": 16973.36, + "end": 16974.28, + "probability": 0.9928 + }, + { + "start": 16975.18, + "end": 16976.28, + "probability": 0.8295 + }, + { + "start": 16976.94, + "end": 16979.96, + "probability": 0.9095 + }, + { + "start": 16981.24, + "end": 16986.26, + "probability": 0.9706 + }, + { + "start": 16986.34, + "end": 16991.16, + "probability": 0.9962 + }, + { + "start": 16991.22, + "end": 16991.64, + "probability": 0.6793 + }, + { + "start": 16992.3, + "end": 16995.54, + "probability": 0.9893 + }, + { + "start": 16996.36, + "end": 16997.38, + "probability": 0.791 + }, + { + "start": 16998.3, + "end": 17000.62, + "probability": 0.9988 + }, + { + "start": 17001.72, + "end": 17003.44, + "probability": 0.884 + }, + { + "start": 17004.26, + "end": 17005.04, + "probability": 0.8988 + }, + { + "start": 17005.82, + "end": 17008.42, + "probability": 0.9804 + }, + { + "start": 17009.32, + "end": 17010.86, + "probability": 0.7095 + }, + { + "start": 17012.02, + "end": 17013.16, + "probability": 0.9321 + }, + { + "start": 17013.68, + "end": 17015.7, + "probability": 0.9758 + }, + { + "start": 17016.6, + "end": 17018.14, + "probability": 0.9997 + }, + { + "start": 17019.04, + "end": 17020.88, + "probability": 0.9722 + }, + { + "start": 17021.8, + "end": 17022.54, + "probability": 0.4889 + }, + { + "start": 17023.52, + "end": 17023.62, + "probability": 0.0315 + }, + { + "start": 17024.82, + "end": 17024.82, + "probability": 0.2498 + }, + { + "start": 17024.82, + "end": 17025.38, + "probability": 0.493 + }, + { + "start": 17025.82, + "end": 17026.08, + "probability": 0.0207 + }, + { + "start": 17026.08, + "end": 17027.82, + "probability": 0.6422 + }, + { + "start": 17027.82, + "end": 17030.52, + "probability": 0.6929 + }, + { + "start": 17031.28, + "end": 17033.56, + "probability": 0.922 + }, + { + "start": 17034.64, + "end": 17041.52, + "probability": 0.8971 + }, + { + "start": 17042.16, + "end": 17044.58, + "probability": 0.9526 + }, + { + "start": 17044.72, + "end": 17047.06, + "probability": 0.1918 + }, + { + "start": 17047.65, + "end": 17050.42, + "probability": 0.7716 + }, + { + "start": 17050.66, + "end": 17051.32, + "probability": 0.691 + }, + { + "start": 17051.64, + "end": 17053.51, + "probability": 0.4759 + }, + { + "start": 17056.5, + "end": 17061.24, + "probability": 0.527 + }, + { + "start": 17062.24, + "end": 17062.98, + "probability": 0.0249 + }, + { + "start": 17063.04, + "end": 17063.32, + "probability": 0.0163 + }, + { + "start": 17063.54, + "end": 17064.76, + "probability": 0.7992 + }, + { + "start": 17064.78, + "end": 17067.56, + "probability": 0.7999 + }, + { + "start": 17067.7, + "end": 17069.3, + "probability": 0.9308 + }, + { + "start": 17069.7, + "end": 17071.72, + "probability": 0.1673 + }, + { + "start": 17072.82, + "end": 17075.26, + "probability": 0.4228 + }, + { + "start": 17075.46, + "end": 17075.88, + "probability": 0.8104 + }, + { + "start": 17076.12, + "end": 17079.78, + "probability": 0.7637 + }, + { + "start": 17080.54, + "end": 17082.66, + "probability": 0.9276 + }, + { + "start": 17082.96, + "end": 17084.42, + "probability": 0.7316 + }, + { + "start": 17085.04, + "end": 17088.28, + "probability": 0.0673 + }, + { + "start": 17088.74, + "end": 17088.74, + "probability": 0.0361 + }, + { + "start": 17088.74, + "end": 17088.74, + "probability": 0.1532 + }, + { + "start": 17088.74, + "end": 17089.06, + "probability": 0.312 + }, + { + "start": 17089.16, + "end": 17089.72, + "probability": 0.0112 + }, + { + "start": 17089.72, + "end": 17089.94, + "probability": 0.2893 + }, + { + "start": 17090.02, + "end": 17090.92, + "probability": 0.199 + }, + { + "start": 17091.08, + "end": 17097.26, + "probability": 0.8496 + }, + { + "start": 17097.6, + "end": 17098.64, + "probability": 0.8164 + }, + { + "start": 17098.72, + "end": 17099.1, + "probability": 0.8833 + }, + { + "start": 17099.14, + "end": 17100.02, + "probability": 0.8052 + }, + { + "start": 17100.82, + "end": 17101.68, + "probability": 0.0982 + }, + { + "start": 17101.68, + "end": 17103.1, + "probability": 0.4889 + }, + { + "start": 17103.12, + "end": 17103.76, + "probability": 0.1815 + }, + { + "start": 17103.92, + "end": 17104.74, + "probability": 0.4114 + }, + { + "start": 17105.44, + "end": 17108.76, + "probability": 0.9759 + }, + { + "start": 17109.52, + "end": 17110.85, + "probability": 0.9807 + }, + { + "start": 17111.94, + "end": 17114.74, + "probability": 0.9824 + }, + { + "start": 17115.28, + "end": 17118.43, + "probability": 0.6413 + }, + { + "start": 17118.58, + "end": 17118.72, + "probability": 0.4805 + }, + { + "start": 17119.04, + "end": 17121.96, + "probability": 0.8102 + }, + { + "start": 17122.52, + "end": 17124.1, + "probability": 0.5254 + }, + { + "start": 17124.4, + "end": 17126.0, + "probability": 0.8767 + }, + { + "start": 17126.02, + "end": 17127.06, + "probability": 0.9003 + }, + { + "start": 17127.8, + "end": 17128.44, + "probability": 0.8686 + }, + { + "start": 17128.98, + "end": 17132.02, + "probability": 0.9768 + }, + { + "start": 17132.7, + "end": 17133.7, + "probability": 0.7224 + }, + { + "start": 17133.78, + "end": 17134.84, + "probability": 0.8671 + }, + { + "start": 17134.92, + "end": 17136.74, + "probability": 0.8563 + }, + { + "start": 17136.84, + "end": 17138.7, + "probability": 0.8042 + }, + { + "start": 17139.08, + "end": 17139.82, + "probability": 0.1029 + }, + { + "start": 17140.18, + "end": 17143.08, + "probability": 0.7354 + }, + { + "start": 17143.22, + "end": 17149.78, + "probability": 0.9655 + }, + { + "start": 17149.92, + "end": 17154.02, + "probability": 0.9701 + }, + { + "start": 17154.48, + "end": 17154.68, + "probability": 0.506 + }, + { + "start": 17154.8, + "end": 17157.08, + "probability": 0.7079 + }, + { + "start": 17157.22, + "end": 17158.32, + "probability": 0.9495 + }, + { + "start": 17158.74, + "end": 17161.38, + "probability": 0.9502 + }, + { + "start": 17161.8, + "end": 17167.18, + "probability": 0.9751 + }, + { + "start": 17167.18, + "end": 17172.92, + "probability": 0.9954 + }, + { + "start": 17173.02, + "end": 17176.48, + "probability": 0.9766 + }, + { + "start": 17177.34, + "end": 17182.78, + "probability": 0.9644 + }, + { + "start": 17183.2, + "end": 17184.74, + "probability": 0.9564 + }, + { + "start": 17185.14, + "end": 17190.16, + "probability": 0.9866 + }, + { + "start": 17190.4, + "end": 17193.2, + "probability": 0.7529 + }, + { + "start": 17193.6, + "end": 17194.5, + "probability": 0.6998 + }, + { + "start": 17194.58, + "end": 17197.12, + "probability": 0.9577 + }, + { + "start": 17197.22, + "end": 17197.46, + "probability": 0.1953 + }, + { + "start": 17197.76, + "end": 17198.88, + "probability": 0.8001 + }, + { + "start": 17199.16, + "end": 17202.3, + "probability": 0.9727 + }, + { + "start": 17202.4, + "end": 17203.16, + "probability": 0.6733 + }, + { + "start": 17203.22, + "end": 17204.54, + "probability": 0.6445 + }, + { + "start": 17205.74, + "end": 17209.34, + "probability": 0.7413 + }, + { + "start": 17210.48, + "end": 17213.11, + "probability": 0.4614 + }, + { + "start": 17214.5, + "end": 17215.36, + "probability": 0.5304 + }, + { + "start": 17217.36, + "end": 17217.9, + "probability": 0.8197 + }, + { + "start": 17219.84, + "end": 17221.16, + "probability": 0.89 + }, + { + "start": 17222.44, + "end": 17223.16, + "probability": 0.9654 + }, + { + "start": 17231.76, + "end": 17234.82, + "probability": 0.6425 + }, + { + "start": 17235.44, + "end": 17239.8, + "probability": 0.9922 + }, + { + "start": 17241.54, + "end": 17243.62, + "probability": 0.9743 + }, + { + "start": 17243.84, + "end": 17244.72, + "probability": 0.2233 + }, + { + "start": 17244.82, + "end": 17246.5, + "probability": 0.642 + }, + { + "start": 17247.34, + "end": 17248.12, + "probability": 0.3784 + }, + { + "start": 17248.24, + "end": 17248.92, + "probability": 0.8643 + }, + { + "start": 17249.28, + "end": 17250.08, + "probability": 0.9519 + }, + { + "start": 17251.11, + "end": 17256.92, + "probability": 0.8625 + }, + { + "start": 17257.84, + "end": 17259.62, + "probability": 0.8608 + }, + { + "start": 17259.66, + "end": 17260.38, + "probability": 0.9295 + }, + { + "start": 17260.44, + "end": 17263.38, + "probability": 0.9959 + }, + { + "start": 17263.38, + "end": 17266.82, + "probability": 0.9787 + }, + { + "start": 17269.2, + "end": 17272.24, + "probability": 0.8484 + }, + { + "start": 17272.64, + "end": 17274.36, + "probability": 0.7184 + }, + { + "start": 17274.42, + "end": 17275.52, + "probability": 0.7549 + }, + { + "start": 17276.62, + "end": 17278.86, + "probability": 0.9437 + }, + { + "start": 17279.0, + "end": 17281.34, + "probability": 0.7816 + }, + { + "start": 17282.34, + "end": 17284.4, + "probability": 0.8757 + }, + { + "start": 17285.28, + "end": 17285.96, + "probability": 0.5033 + }, + { + "start": 17286.88, + "end": 17288.1, + "probability": 0.8587 + }, + { + "start": 17288.34, + "end": 17291.6, + "probability": 0.9797 + }, + { + "start": 17292.72, + "end": 17293.76, + "probability": 0.8405 + }, + { + "start": 17293.88, + "end": 17297.28, + "probability": 0.9456 + }, + { + "start": 17297.78, + "end": 17300.22, + "probability": 0.9883 + }, + { + "start": 17300.32, + "end": 17300.98, + "probability": 0.7278 + }, + { + "start": 17301.74, + "end": 17303.86, + "probability": 0.9932 + }, + { + "start": 17303.86, + "end": 17306.56, + "probability": 0.8714 + }, + { + "start": 17306.64, + "end": 17308.46, + "probability": 0.9666 + }, + { + "start": 17309.56, + "end": 17313.62, + "probability": 0.8777 + }, + { + "start": 17314.66, + "end": 17318.26, + "probability": 0.9478 + }, + { + "start": 17319.18, + "end": 17320.06, + "probability": 0.5425 + }, + { + "start": 17321.38, + "end": 17323.43, + "probability": 0.936 + }, + { + "start": 17323.64, + "end": 17324.76, + "probability": 0.9363 + }, + { + "start": 17327.24, + "end": 17328.38, + "probability": 0.9944 + }, + { + "start": 17329.29, + "end": 17330.93, + "probability": 0.9304 + }, + { + "start": 17331.64, + "end": 17334.98, + "probability": 0.938 + }, + { + "start": 17335.7, + "end": 17338.68, + "probability": 0.848 + }, + { + "start": 17339.22, + "end": 17340.94, + "probability": 0.9243 + }, + { + "start": 17341.96, + "end": 17342.78, + "probability": 0.5817 + }, + { + "start": 17344.04, + "end": 17348.76, + "probability": 0.854 + }, + { + "start": 17348.82, + "end": 17354.26, + "probability": 0.8624 + }, + { + "start": 17354.7, + "end": 17356.34, + "probability": 0.8287 + }, + { + "start": 17356.9, + "end": 17357.46, + "probability": 0.4845 + }, + { + "start": 17357.54, + "end": 17359.14, + "probability": 0.8557 + }, + { + "start": 17359.18, + "end": 17360.34, + "probability": 0.896 + }, + { + "start": 17361.68, + "end": 17365.52, + "probability": 0.7206 + }, + { + "start": 17365.52, + "end": 17366.29, + "probability": 0.4017 + }, + { + "start": 17367.58, + "end": 17370.2, + "probability": 0.9275 + }, + { + "start": 17370.3, + "end": 17371.12, + "probability": 0.2685 + }, + { + "start": 17371.94, + "end": 17372.3, + "probability": 0.3819 + }, + { + "start": 17372.36, + "end": 17376.36, + "probability": 0.9778 + }, + { + "start": 17376.36, + "end": 17380.72, + "probability": 0.8473 + }, + { + "start": 17381.4, + "end": 17385.12, + "probability": 0.9395 + }, + { + "start": 17385.62, + "end": 17388.02, + "probability": 0.8965 + }, + { + "start": 17388.3, + "end": 17388.94, + "probability": 0.614 + }, + { + "start": 17390.6, + "end": 17392.44, + "probability": 0.8877 + }, + { + "start": 17392.62, + "end": 17395.24, + "probability": 0.6663 + }, + { + "start": 17395.26, + "end": 17397.66, + "probability": 0.9911 + }, + { + "start": 17398.76, + "end": 17402.2, + "probability": 0.996 + }, + { + "start": 17402.8, + "end": 17407.52, + "probability": 0.9857 + }, + { + "start": 17408.14, + "end": 17408.78, + "probability": 0.8463 + }, + { + "start": 17409.48, + "end": 17411.98, + "probability": 0.7081 + }, + { + "start": 17412.24, + "end": 17415.1, + "probability": 0.9438 + }, + { + "start": 17415.62, + "end": 17417.54, + "probability": 0.7923 + }, + { + "start": 17417.56, + "end": 17418.72, + "probability": 0.5584 + }, + { + "start": 17418.84, + "end": 17419.06, + "probability": 0.5846 + }, + { + "start": 17419.14, + "end": 17420.08, + "probability": 0.3619 + }, + { + "start": 17420.18, + "end": 17421.0, + "probability": 0.6089 + }, + { + "start": 17421.02, + "end": 17421.6, + "probability": 0.5503 + }, + { + "start": 17421.6, + "end": 17424.22, + "probability": 0.4998 + }, + { + "start": 17424.22, + "end": 17428.46, + "probability": 0.728 + }, + { + "start": 17429.28, + "end": 17430.82, + "probability": 0.7439 + }, + { + "start": 17431.34, + "end": 17433.62, + "probability": 0.8543 + }, + { + "start": 17433.76, + "end": 17438.9, + "probability": 0.7654 + }, + { + "start": 17439.8, + "end": 17440.16, + "probability": 0.4285 + }, + { + "start": 17440.16, + "end": 17440.48, + "probability": 0.2985 + }, + { + "start": 17440.54, + "end": 17441.12, + "probability": 0.5496 + }, + { + "start": 17441.12, + "end": 17441.12, + "probability": 0.6588 + }, + { + "start": 17441.12, + "end": 17442.72, + "probability": 0.3875 + }, + { + "start": 17442.98, + "end": 17443.56, + "probability": 0.8911 + }, + { + "start": 17443.66, + "end": 17444.34, + "probability": 0.7342 + }, + { + "start": 17444.96, + "end": 17446.34, + "probability": 0.9731 + }, + { + "start": 17448.56, + "end": 17449.36, + "probability": 0.5659 + }, + { + "start": 17450.58, + "end": 17451.88, + "probability": 0.9011 + }, + { + "start": 17456.22, + "end": 17457.22, + "probability": 0.6365 + }, + { + "start": 17457.22, + "end": 17461.96, + "probability": 0.918 + }, + { + "start": 17462.84, + "end": 17463.82, + "probability": 0.8025 + }, + { + "start": 17465.7, + "end": 17466.88, + "probability": 0.887 + }, + { + "start": 17480.32, + "end": 17481.38, + "probability": 0.4085 + }, + { + "start": 17482.12, + "end": 17484.8, + "probability": 0.732 + }, + { + "start": 17486.09, + "end": 17488.34, + "probability": 0.9951 + }, + { + "start": 17488.44, + "end": 17491.58, + "probability": 0.994 + }, + { + "start": 17491.58, + "end": 17494.36, + "probability": 0.9828 + }, + { + "start": 17496.32, + "end": 17499.0, + "probability": 0.8152 + }, + { + "start": 17499.68, + "end": 17505.56, + "probability": 0.9812 + }, + { + "start": 17506.68, + "end": 17510.6, + "probability": 0.9601 + }, + { + "start": 17510.68, + "end": 17515.08, + "probability": 0.9914 + }, + { + "start": 17517.44, + "end": 17519.74, + "probability": 0.9817 + }, + { + "start": 17520.62, + "end": 17523.54, + "probability": 0.9976 + }, + { + "start": 17524.32, + "end": 17526.56, + "probability": 0.9373 + }, + { + "start": 17527.16, + "end": 17528.3, + "probability": 0.9644 + }, + { + "start": 17529.16, + "end": 17532.76, + "probability": 0.9781 + }, + { + "start": 17533.48, + "end": 17537.06, + "probability": 0.9252 + }, + { + "start": 17537.68, + "end": 17540.54, + "probability": 0.9893 + }, + { + "start": 17540.54, + "end": 17544.44, + "probability": 0.9407 + }, + { + "start": 17545.76, + "end": 17546.72, + "probability": 0.6954 + }, + { + "start": 17547.0, + "end": 17548.02, + "probability": 0.92 + }, + { + "start": 17548.24, + "end": 17552.36, + "probability": 0.8967 + }, + { + "start": 17552.36, + "end": 17555.06, + "probability": 0.9064 + }, + { + "start": 17555.28, + "end": 17559.68, + "probability": 0.9775 + }, + { + "start": 17560.26, + "end": 17560.78, + "probability": 0.5128 + }, + { + "start": 17561.14, + "end": 17563.08, + "probability": 0.9932 + }, + { + "start": 17563.28, + "end": 17564.82, + "probability": 0.9256 + }, + { + "start": 17565.26, + "end": 17567.56, + "probability": 0.7992 + }, + { + "start": 17568.36, + "end": 17571.24, + "probability": 0.9919 + }, + { + "start": 17571.68, + "end": 17572.22, + "probability": 0.6318 + }, + { + "start": 17572.78, + "end": 17575.78, + "probability": 0.991 + }, + { + "start": 17575.83, + "end": 17578.92, + "probability": 0.951 + }, + { + "start": 17579.38, + "end": 17581.0, + "probability": 0.9142 + }, + { + "start": 17582.04, + "end": 17582.98, + "probability": 0.5777 + }, + { + "start": 17583.02, + "end": 17586.22, + "probability": 0.9942 + }, + { + "start": 17586.22, + "end": 17589.7, + "probability": 0.975 + }, + { + "start": 17589.82, + "end": 17592.6, + "probability": 0.9499 + }, + { + "start": 17593.14, + "end": 17595.9, + "probability": 0.9976 + }, + { + "start": 17595.9, + "end": 17598.28, + "probability": 0.9909 + }, + { + "start": 17598.36, + "end": 17601.26, + "probability": 0.6748 + }, + { + "start": 17601.32, + "end": 17602.48, + "probability": 0.9442 + }, + { + "start": 17602.58, + "end": 17604.08, + "probability": 0.9939 + }, + { + "start": 17605.08, + "end": 17607.28, + "probability": 0.9907 + }, + { + "start": 17607.7, + "end": 17609.52, + "probability": 0.9985 + }, + { + "start": 17610.86, + "end": 17613.1, + "probability": 0.8887 + }, + { + "start": 17613.1, + "end": 17615.22, + "probability": 0.9974 + }, + { + "start": 17615.38, + "end": 17617.4, + "probability": 0.9943 + }, + { + "start": 17618.8, + "end": 17619.92, + "probability": 0.3538 + }, + { + "start": 17621.28, + "end": 17624.0, + "probability": 0.5682 + }, + { + "start": 17624.28, + "end": 17625.88, + "probability": 0.7293 + }, + { + "start": 17626.02, + "end": 17630.2, + "probability": 0.9753 + }, + { + "start": 17630.2, + "end": 17633.28, + "probability": 0.9932 + }, + { + "start": 17633.36, + "end": 17635.06, + "probability": 0.5768 + }, + { + "start": 17635.58, + "end": 17637.6, + "probability": 0.9896 + }, + { + "start": 17637.6, + "end": 17640.12, + "probability": 0.9861 + }, + { + "start": 17640.62, + "end": 17643.34, + "probability": 0.9979 + }, + { + "start": 17643.34, + "end": 17648.48, + "probability": 0.9026 + }, + { + "start": 17648.66, + "end": 17649.28, + "probability": 0.8068 + }, + { + "start": 17651.56, + "end": 17653.8, + "probability": 0.9963 + }, + { + "start": 17654.62, + "end": 17659.72, + "probability": 0.979 + }, + { + "start": 17659.78, + "end": 17660.5, + "probability": 0.6346 + }, + { + "start": 17660.88, + "end": 17664.1, + "probability": 0.713 + }, + { + "start": 17664.22, + "end": 17666.42, + "probability": 0.8618 + }, + { + "start": 17666.88, + "end": 17669.8, + "probability": 0.9844 + }, + { + "start": 17669.86, + "end": 17672.26, + "probability": 0.9848 + }, + { + "start": 17673.34, + "end": 17675.34, + "probability": 0.811 + }, + { + "start": 17675.44, + "end": 17678.28, + "probability": 0.9017 + }, + { + "start": 17678.4, + "end": 17683.7, + "probability": 0.9338 + }, + { + "start": 17683.84, + "end": 17686.47, + "probability": 0.9985 + }, + { + "start": 17687.09, + "end": 17689.31, + "probability": 0.9985 + }, + { + "start": 17689.31, + "end": 17691.95, + "probability": 0.9902 + }, + { + "start": 17692.01, + "end": 17693.57, + "probability": 0.9517 + }, + { + "start": 17693.99, + "end": 17696.01, + "probability": 0.7036 + }, + { + "start": 17696.01, + "end": 17696.25, + "probability": 0.4018 + }, + { + "start": 17696.77, + "end": 17700.73, + "probability": 0.9904 + }, + { + "start": 17700.73, + "end": 17700.75, + "probability": 0.4033 + }, + { + "start": 17700.75, + "end": 17701.51, + "probability": 0.6162 + }, + { + "start": 17701.51, + "end": 17704.71, + "probability": 0.9752 + }, + { + "start": 17704.89, + "end": 17706.81, + "probability": 0.889 + }, + { + "start": 17706.89, + "end": 17707.13, + "probability": 0.8748 + }, + { + "start": 17707.13, + "end": 17707.53, + "probability": 0.5225 + }, + { + "start": 17707.61, + "end": 17710.43, + "probability": 0.7086 + }, + { + "start": 17710.69, + "end": 17711.93, + "probability": 0.7719 + }, + { + "start": 17713.33, + "end": 17713.83, + "probability": 0.1919 + }, + { + "start": 17717.07, + "end": 17719.15, + "probability": 0.0153 + }, + { + "start": 17720.4, + "end": 17720.47, + "probability": 0.3174 + }, + { + "start": 17722.23, + "end": 17722.43, + "probability": 0.1054 + }, + { + "start": 17725.17, + "end": 17725.91, + "probability": 0.1224 + }, + { + "start": 17726.77, + "end": 17728.45, + "probability": 0.0973 + }, + { + "start": 17729.83, + "end": 17729.83, + "probability": 0.0338 + }, + { + "start": 17734.73, + "end": 17735.31, + "probability": 0.2424 + }, + { + "start": 17737.99, + "end": 17739.67, + "probability": 0.2494 + }, + { + "start": 17767.57, + "end": 17769.11, + "probability": 0.0172 + }, + { + "start": 17769.63, + "end": 17770.75, + "probability": 0.6443 + }, + { + "start": 17775.55, + "end": 17776.39, + "probability": 0.4793 + }, + { + "start": 17779.73, + "end": 17780.33, + "probability": 0.6977 + }, + { + "start": 17781.61, + "end": 17783.09, + "probability": 0.399 + }, + { + "start": 17785.99, + "end": 17789.53, + "probability": 0.8747 + }, + { + "start": 17790.39, + "end": 17791.6, + "probability": 0.9157 + }, + { + "start": 17793.27, + "end": 17794.31, + "probability": 0.4036 + }, + { + "start": 17798.83, + "end": 17803.03, + "probability": 0.1175 + }, + { + "start": 17804.59, + "end": 17804.69, + "probability": 0.0821 + }, + { + "start": 17804.71, + "end": 17804.77, + "probability": 0.0053 + }, + { + "start": 17815.16, + "end": 17815.32, + "probability": 0.0232 + }, + { + "start": 17815.32, + "end": 17815.4, + "probability": 0.0607 + }, + { + "start": 17815.4, + "end": 17816.42, + "probability": 0.6006 + }, + { + "start": 17816.8, + "end": 17816.84, + "probability": 0.2817 + }, + { + "start": 17817.8, + "end": 17818.56, + "probability": 0.2377 + }, + { + "start": 17819.38, + "end": 17819.8, + "probability": 0.5677 + }, + { + "start": 17821.68, + "end": 17825.26, + "probability": 0.4362 + }, + { + "start": 17826.92, + "end": 17830.82, + "probability": 0.5288 + }, + { + "start": 17833.88, + "end": 17836.4, + "probability": 0.8204 + }, + { + "start": 17837.42, + "end": 17838.42, + "probability": 0.5932 + }, + { + "start": 17840.04, + "end": 17842.32, + "probability": 0.3735 + }, + { + "start": 17844.78, + "end": 17847.34, + "probability": 0.89 + }, + { + "start": 17847.94, + "end": 17849.96, + "probability": 0.4017 + }, + { + "start": 17850.12, + "end": 17850.88, + "probability": 0.7545 + }, + { + "start": 17854.24, + "end": 17855.98, + "probability": 0.7339 + }, + { + "start": 17865.48, + "end": 17870.9, + "probability": 0.8407 + }, + { + "start": 17871.82, + "end": 17873.6, + "probability": 0.8088 + }, + { + "start": 17874.86, + "end": 17875.8, + "probability": 0.8959 + }, + { + "start": 17877.24, + "end": 17883.22, + "probability": 0.8363 + }, + { + "start": 17887.16, + "end": 17888.14, + "probability": 0.7433 + }, + { + "start": 17889.36, + "end": 17890.28, + "probability": 0.6511 + }, + { + "start": 17891.98, + "end": 17892.47, + "probability": 0.731 + }, + { + "start": 17893.38, + "end": 17894.92, + "probability": 0.9712 + }, + { + "start": 17896.36, + "end": 17898.14, + "probability": 0.8762 + }, + { + "start": 17899.6, + "end": 17900.58, + "probability": 0.8644 + }, + { + "start": 17914.5, + "end": 17914.9, + "probability": 0.0401 + }, + { + "start": 17914.9, + "end": 17915.16, + "probability": 0.2504 + }, + { + "start": 17915.54, + "end": 17915.88, + "probability": 0.3819 + }, + { + "start": 17916.06, + "end": 17916.5, + "probability": 0.2118 + }, + { + "start": 17916.5, + "end": 17916.98, + "probability": 0.5152 + }, + { + "start": 17917.58, + "end": 17918.66, + "probability": 0.9066 + }, + { + "start": 17918.68, + "end": 17920.44, + "probability": 0.7273 + }, + { + "start": 17920.48, + "end": 17923.88, + "probability": 0.545 + }, + { + "start": 17923.9, + "end": 17924.63, + "probability": 0.6605 + }, + { + "start": 17926.66, + "end": 17929.5, + "probability": 0.9695 + }, + { + "start": 17930.13, + "end": 17933.72, + "probability": 0.9857 + }, + { + "start": 17934.44, + "end": 17935.7, + "probability": 0.6266 + }, + { + "start": 17935.84, + "end": 17937.72, + "probability": 0.9175 + }, + { + "start": 17944.56, + "end": 17945.92, + "probability": 0.3997 + }, + { + "start": 17946.42, + "end": 17947.84, + "probability": 0.2128 + }, + { + "start": 17947.92, + "end": 17948.24, + "probability": 0.125 + }, + { + "start": 17948.36, + "end": 17955.64, + "probability": 0.4195 + }, + { + "start": 17956.42, + "end": 17956.48, + "probability": 0.0091 + }, + { + "start": 17956.48, + "end": 17956.48, + "probability": 0.275 + }, + { + "start": 17956.48, + "end": 17956.97, + "probability": 0.3558 + }, + { + "start": 17957.42, + "end": 17965.66, + "probability": 0.6905 + }, + { + "start": 17965.88, + "end": 17966.26, + "probability": 0.3288 + }, + { + "start": 17967.14, + "end": 17967.7, + "probability": 0.0619 + }, + { + "start": 17967.7, + "end": 17971.9, + "probability": 0.4898 + }, + { + "start": 17972.08, + "end": 17977.53, + "probability": 0.5207 + }, + { + "start": 17979.2, + "end": 17979.34, + "probability": 0.1447 + }, + { + "start": 17981.16, + "end": 17982.18, + "probability": 0.0569 + }, + { + "start": 17983.18, + "end": 17983.54, + "probability": 0.0052 + }, + { + "start": 17983.54, + "end": 17983.54, + "probability": 0.2055 + }, + { + "start": 17983.54, + "end": 17985.72, + "probability": 0.8017 + }, + { + "start": 17985.94, + "end": 17987.08, + "probability": 0.1167 + }, + { + "start": 17987.52, + "end": 17988.72, + "probability": 0.1497 + }, + { + "start": 17989.22, + "end": 17989.61, + "probability": 0.433 + }, + { + "start": 17989.94, + "end": 17992.26, + "probability": 0.9429 + }, + { + "start": 17992.68, + "end": 17997.18, + "probability": 0.6741 + }, + { + "start": 17997.22, + "end": 17999.34, + "probability": 0.4462 + }, + { + "start": 18000.39, + "end": 18001.94, + "probability": 0.3373 + }, + { + "start": 18001.94, + "end": 18001.96, + "probability": 0.0261 + }, + { + "start": 18001.96, + "end": 18003.12, + "probability": 0.3024 + }, + { + "start": 18003.18, + "end": 18004.44, + "probability": 0.1853 + }, + { + "start": 18005.76, + "end": 18009.92, + "probability": 0.1287 + }, + { + "start": 18011.16, + "end": 18011.42, + "probability": 0.026 + }, + { + "start": 18011.42, + "end": 18013.35, + "probability": 0.0861 + }, + { + "start": 18014.22, + "end": 18014.92, + "probability": 0.4741 + }, + { + "start": 18015.72, + "end": 18016.14, + "probability": 0.3896 + }, + { + "start": 18017.63, + "end": 18020.88, + "probability": 0.7246 + }, + { + "start": 18021.8, + "end": 18023.84, + "probability": 0.8176 + }, + { + "start": 18024.38, + "end": 18025.37, + "probability": 0.6376 + }, + { + "start": 18025.96, + "end": 18027.76, + "probability": 0.645 + }, + { + "start": 18028.12, + "end": 18028.36, + "probability": 0.4654 + }, + { + "start": 18029.4, + "end": 18030.36, + "probability": 0.6797 + }, + { + "start": 18030.9, + "end": 18031.9, + "probability": 0.175 + }, + { + "start": 18032.72, + "end": 18034.74, + "probability": 0.1207 + }, + { + "start": 18035.0, + "end": 18035.32, + "probability": 0.3339 + }, + { + "start": 18036.62, + "end": 18036.96, + "probability": 0.2861 + }, + { + "start": 18042.9, + "end": 18044.06, + "probability": 0.3532 + }, + { + "start": 18044.92, + "end": 18046.02, + "probability": 0.6732 + }, + { + "start": 18048.18, + "end": 18050.42, + "probability": 0.6921 + }, + { + "start": 18050.52, + "end": 18050.68, + "probability": 0.028 + }, + { + "start": 18050.68, + "end": 18052.1, + "probability": 0.4949 + }, + { + "start": 18052.22, + "end": 18055.42, + "probability": 0.8132 + }, + { + "start": 18055.88, + "end": 18056.62, + "probability": 0.3025 + }, + { + "start": 18056.82, + "end": 18059.1, + "probability": 0.5069 + }, + { + "start": 18059.34, + "end": 18059.71, + "probability": 0.3016 + }, + { + "start": 18060.04, + "end": 18061.02, + "probability": 0.5217 + }, + { + "start": 18061.26, + "end": 18061.68, + "probability": 0.7799 + }, + { + "start": 18061.7, + "end": 18062.14, + "probability": 0.4482 + }, + { + "start": 18062.46, + "end": 18063.5, + "probability": 0.8799 + }, + { + "start": 18063.92, + "end": 18066.24, + "probability": 0.9156 + }, + { + "start": 18066.84, + "end": 18067.65, + "probability": 0.0888 + }, + { + "start": 18067.9, + "end": 18072.14, + "probability": 0.0846 + }, + { + "start": 18073.3, + "end": 18079.46, + "probability": 0.0959 + }, + { + "start": 18079.58, + "end": 18083.52, + "probability": 0.5133 + }, + { + "start": 18085.51, + "end": 18086.48, + "probability": 0.2088 + }, + { + "start": 18086.7, + "end": 18087.28, + "probability": 0.4708 + }, + { + "start": 18087.38, + "end": 18087.52, + "probability": 0.3706 + }, + { + "start": 18087.56, + "end": 18087.62, + "probability": 0.3153 + }, + { + "start": 18087.68, + "end": 18088.16, + "probability": 0.8126 + }, + { + "start": 18088.8, + "end": 18090.5, + "probability": 0.5035 + }, + { + "start": 18090.5, + "end": 18090.97, + "probability": 0.038 + }, + { + "start": 18091.68, + "end": 18093.38, + "probability": 0.4859 + }, + { + "start": 18095.06, + "end": 18099.8, + "probability": 0.1457 + }, + { + "start": 18100.54, + "end": 18101.12, + "probability": 0.1644 + }, + { + "start": 18103.12, + "end": 18105.38, + "probability": 0.6263 + }, + { + "start": 18105.7, + "end": 18109.72, + "probability": 0.5417 + }, + { + "start": 18110.88, + "end": 18112.32, + "probability": 0.6053 + }, + { + "start": 18112.48, + "end": 18113.45, + "probability": 0.5053 + }, + { + "start": 18113.74, + "end": 18114.54, + "probability": 0.4976 + }, + { + "start": 18114.76, + "end": 18115.32, + "probability": 0.8295 + }, + { + "start": 18115.64, + "end": 18118.64, + "probability": 0.692 + }, + { + "start": 18118.64, + "end": 18119.8, + "probability": 0.6747 + }, + { + "start": 18121.3, + "end": 18121.38, + "probability": 0.8296 + }, + { + "start": 18121.42, + "end": 18122.48, + "probability": 0.9393 + }, + { + "start": 18122.76, + "end": 18126.8, + "probability": 0.7988 + }, + { + "start": 18126.96, + "end": 18127.34, + "probability": 0.1206 + }, + { + "start": 18127.61, + "end": 18130.68, + "probability": 0.6662 + }, + { + "start": 18130.86, + "end": 18131.44, + "probability": 0.6688 + }, + { + "start": 18132.9, + "end": 18135.22, + "probability": 0.8879 + }, + { + "start": 18135.24, + "end": 18137.71, + "probability": 0.921 + }, + { + "start": 18138.45, + "end": 18138.6, + "probability": 0.3002 + }, + { + "start": 18138.6, + "end": 18138.6, + "probability": 0.1599 + }, + { + "start": 18138.6, + "end": 18139.22, + "probability": 0.7148 + }, + { + "start": 18140.14, + "end": 18140.66, + "probability": 0.9423 + }, + { + "start": 18143.04, + "end": 18144.98, + "probability": 0.7666 + }, + { + "start": 18145.8, + "end": 18146.78, + "probability": 0.8058 + }, + { + "start": 18146.82, + "end": 18147.66, + "probability": 0.652 + }, + { + "start": 18150.18, + "end": 18150.38, + "probability": 0.6055 + }, + { + "start": 18150.5, + "end": 18150.84, + "probability": 0.5796 + }, + { + "start": 18151.08, + "end": 18152.84, + "probability": 0.9352 + }, + { + "start": 18152.86, + "end": 18153.06, + "probability": 0.2127 + }, + { + "start": 18153.06, + "end": 18154.06, + "probability": 0.6358 + }, + { + "start": 18155.46, + "end": 18156.76, + "probability": 0.7581 + }, + { + "start": 18156.86, + "end": 18158.74, + "probability": 0.3742 + }, + { + "start": 18158.9, + "end": 18161.48, + "probability": 0.4582 + }, + { + "start": 18163.54, + "end": 18163.64, + "probability": 0.2837 + }, + { + "start": 18168.06, + "end": 18169.28, + "probability": 0.8376 + }, + { + "start": 18170.26, + "end": 18171.96, + "probability": 0.9492 + }, + { + "start": 18174.16, + "end": 18175.42, + "probability": 0.3546 + }, + { + "start": 18176.32, + "end": 18177.55, + "probability": 0.0339 + }, + { + "start": 18179.9, + "end": 18181.04, + "probability": 0.1176 + }, + { + "start": 18181.9, + "end": 18183.24, + "probability": 0.634 + }, + { + "start": 18183.32, + "end": 18184.14, + "probability": 0.2555 + }, + { + "start": 18184.5, + "end": 18186.06, + "probability": 0.482 + }, + { + "start": 18188.18, + "end": 18189.52, + "probability": 0.7957 + }, + { + "start": 18191.28, + "end": 18192.06, + "probability": 0.5724 + }, + { + "start": 18192.76, + "end": 18194.8, + "probability": 0.7161 + }, + { + "start": 18195.32, + "end": 18196.5, + "probability": 0.5969 + }, + { + "start": 18202.04, + "end": 18205.88, + "probability": 0.6715 + }, + { + "start": 18207.06, + "end": 18208.4, + "probability": 0.5316 + }, + { + "start": 18209.24, + "end": 18210.52, + "probability": 0.6915 + }, + { + "start": 18210.6, + "end": 18211.86, + "probability": 0.6963 + }, + { + "start": 18212.38, + "end": 18213.56, + "probability": 0.6592 + }, + { + "start": 18215.14, + "end": 18217.88, + "probability": 0.3952 + }, + { + "start": 18218.62, + "end": 18219.86, + "probability": 0.9089 + }, + { + "start": 18221.68, + "end": 18223.34, + "probability": 0.7826 + }, + { + "start": 18223.9, + "end": 18224.6, + "probability": 0.6522 + }, + { + "start": 18225.44, + "end": 18229.22, + "probability": 0.9099 + }, + { + "start": 18229.9, + "end": 18231.72, + "probability": 0.6721 + }, + { + "start": 18233.12, + "end": 18235.92, + "probability": 0.8091 + }, + { + "start": 18236.06, + "end": 18237.02, + "probability": 0.3949 + }, + { + "start": 18237.8, + "end": 18239.62, + "probability": 0.4668 + }, + { + "start": 18239.64, + "end": 18241.9, + "probability": 0.4552 + }, + { + "start": 18241.96, + "end": 18244.58, + "probability": 0.8278 + }, + { + "start": 18245.86, + "end": 18247.02, + "probability": 0.6664 + }, + { + "start": 18247.22, + "end": 18249.0, + "probability": 0.6663 + }, + { + "start": 18249.04, + "end": 18249.64, + "probability": 0.0815 + }, + { + "start": 18249.8, + "end": 18250.58, + "probability": 0.8407 + }, + { + "start": 18251.04, + "end": 18251.18, + "probability": 0.655 + }, + { + "start": 18251.18, + "end": 18255.62, + "probability": 0.5439 + }, + { + "start": 18255.76, + "end": 18257.34, + "probability": 0.3042 + }, + { + "start": 18257.44, + "end": 18259.76, + "probability": 0.8858 + }, + { + "start": 18260.12, + "end": 18263.04, + "probability": 0.5687 + }, + { + "start": 18268.66, + "end": 18269.53, + "probability": 0.5811 + }, + { + "start": 18271.94, + "end": 18273.06, + "probability": 0.2352 + }, + { + "start": 18273.38, + "end": 18274.34, + "probability": 0.5102 + }, + { + "start": 18274.42, + "end": 18276.78, + "probability": 0.4442 + }, + { + "start": 18276.92, + "end": 18278.14, + "probability": 0.0305 + }, + { + "start": 18278.44, + "end": 18278.54, + "probability": 0.0324 + }, + { + "start": 18278.54, + "end": 18279.0, + "probability": 0.4701 + }, + { + "start": 18279.3, + "end": 18279.72, + "probability": 0.4487 + }, + { + "start": 18279.84, + "end": 18280.32, + "probability": 0.4366 + }, + { + "start": 18280.92, + "end": 18281.5, + "probability": 0.5074 + }, + { + "start": 18282.58, + "end": 18285.0, + "probability": 0.9479 + }, + { + "start": 18294.33, + "end": 18296.56, + "probability": 0.3474 + }, + { + "start": 18301.66, + "end": 18302.12, + "probability": 0.1368 + }, + { + "start": 18302.12, + "end": 18302.68, + "probability": 0.2789 + }, + { + "start": 18303.22, + "end": 18304.32, + "probability": 0.1592 + }, + { + "start": 18304.88, + "end": 18305.68, + "probability": 0.1458 + }, + { + "start": 18305.9, + "end": 18306.74, + "probability": 0.0742 + }, + { + "start": 18307.3, + "end": 18311.9, + "probability": 0.2021 + }, + { + "start": 18312.66, + "end": 18313.16, + "probability": 0.4181 + }, + { + "start": 18313.86, + "end": 18314.5, + "probability": 0.6174 + }, + { + "start": 18314.7, + "end": 18315.24, + "probability": 0.8405 + }, + { + "start": 18315.58, + "end": 18315.92, + "probability": 0.6632 + }, + { + "start": 18317.04, + "end": 18317.78, + "probability": 0.6928 + }, + { + "start": 18317.87, + "end": 18321.58, + "probability": 0.2968 + }, + { + "start": 18322.94, + "end": 18324.28, + "probability": 0.3914 + }, + { + "start": 18324.54, + "end": 18324.7, + "probability": 0.4667 + }, + { + "start": 18324.88, + "end": 18325.52, + "probability": 0.0534 + }, + { + "start": 18326.56, + "end": 18327.62, + "probability": 0.605 + }, + { + "start": 18329.62, + "end": 18331.04, + "probability": 0.5958 + }, + { + "start": 18331.54, + "end": 18333.56, + "probability": 0.3948 + }, + { + "start": 18333.7, + "end": 18335.48, + "probability": 0.7847 + }, + { + "start": 18335.48, + "end": 18338.12, + "probability": 0.6249 + }, + { + "start": 18339.24, + "end": 18341.48, + "probability": 0.368 + }, + { + "start": 18341.6, + "end": 18344.16, + "probability": 0.5391 + }, + { + "start": 18344.6, + "end": 18346.56, + "probability": 0.741 + }, + { + "start": 18346.94, + "end": 18348.88, + "probability": 0.943 + }, + { + "start": 18355.7, + "end": 18356.56, + "probability": 0.5834 + }, + { + "start": 18358.08, + "end": 18362.16, + "probability": 0.7502 + }, + { + "start": 18362.96, + "end": 18365.74, + "probability": 0.9771 + }, + { + "start": 18371.54, + "end": 18373.2, + "probability": 0.675 + }, + { + "start": 18373.3, + "end": 18374.32, + "probability": 0.713 + }, + { + "start": 18374.62, + "end": 18376.04, + "probability": 0.5236 + }, + { + "start": 18376.54, + "end": 18378.28, + "probability": 0.0082 + }, + { + "start": 18383.24, + "end": 18385.58, + "probability": 0.2961 + }, + { + "start": 18387.24, + "end": 18388.28, + "probability": 0.025 + }, + { + "start": 18389.2, + "end": 18389.2, + "probability": 0.193 + }, + { + "start": 18389.2, + "end": 18389.54, + "probability": 0.0277 + }, + { + "start": 18394.12, + "end": 18396.42, + "probability": 0.5429 + }, + { + "start": 18396.42, + "end": 18400.64, + "probability": 0.78 + }, + { + "start": 18400.76, + "end": 18400.76, + "probability": 0.2145 + }, + { + "start": 18400.76, + "end": 18400.76, + "probability": 0.3786 + }, + { + "start": 18400.76, + "end": 18401.34, + "probability": 0.4357 + }, + { + "start": 18402.02, + "end": 18403.2, + "probability": 0.1117 + }, + { + "start": 18404.3, + "end": 18407.34, + "probability": 0.7197 + }, + { + "start": 18407.38, + "end": 18410.42, + "probability": 0.6657 + }, + { + "start": 18414.26, + "end": 18417.32, + "probability": 0.64 + }, + { + "start": 18418.72, + "end": 18422.66, + "probability": 0.8785 + }, + { + "start": 18422.78, + "end": 18423.68, + "probability": 0.7429 + }, + { + "start": 18424.14, + "end": 18425.02, + "probability": 0.471 + }, + { + "start": 18425.14, + "end": 18425.64, + "probability": 0.7654 + }, + { + "start": 18427.34, + "end": 18427.86, + "probability": 0.6045 + }, + { + "start": 18427.92, + "end": 18430.22, + "probability": 0.3937 + }, + { + "start": 18430.94, + "end": 18432.44, + "probability": 0.3662 + }, + { + "start": 18432.56, + "end": 18433.4, + "probability": 0.6712 + }, + { + "start": 18433.4, + "end": 18433.9, + "probability": 0.7438 + }, + { + "start": 18434.08, + "end": 18435.7, + "probability": 0.8582 + }, + { + "start": 18436.14, + "end": 18439.38, + "probability": 0.8165 + }, + { + "start": 18440.0, + "end": 18441.1, + "probability": 0.356 + }, + { + "start": 18442.38, + "end": 18445.52, + "probability": 0.5867 + }, + { + "start": 18445.52, + "end": 18445.86, + "probability": 0.039 + }, + { + "start": 18448.38, + "end": 18448.6, + "probability": 0.2652 + }, + { + "start": 18451.66, + "end": 18456.56, + "probability": 0.9076 + }, + { + "start": 18457.12, + "end": 18458.78, + "probability": 0.8077 + }, + { + "start": 18459.32, + "end": 18460.32, + "probability": 0.5645 + }, + { + "start": 18460.4, + "end": 18462.46, + "probability": 0.8373 + }, + { + "start": 18462.48, + "end": 18463.8, + "probability": 0.8387 + }, + { + "start": 18463.92, + "end": 18464.1, + "probability": 0.442 + }, + { + "start": 18464.26, + "end": 18466.34, + "probability": 0.833 + }, + { + "start": 18466.42, + "end": 18467.62, + "probability": 0.514 + }, + { + "start": 18467.7, + "end": 18470.88, + "probability": 0.0533 + }, + { + "start": 18472.65, + "end": 18474.1, + "probability": 0.2344 + }, + { + "start": 18476.76, + "end": 18479.34, + "probability": 0.0076 + }, + { + "start": 19229.0, + "end": 19229.0, + "probability": 0.0 + }, + { + "start": 19229.0, + "end": 19229.0, + "probability": 0.0 + }, + { + "start": 19229.5, + "end": 19229.54, + "probability": 0.0317 + }, + { + "start": 19229.54, + "end": 19231.1, + "probability": 0.1299 + }, + { + "start": 19231.58, + "end": 19231.86, + "probability": 0.7528 + }, + { + "start": 19233.28, + "end": 19234.26, + "probability": 0.9046 + }, + { + "start": 19234.26, + "end": 19235.28, + "probability": 0.718 + }, + { + "start": 19235.8, + "end": 19238.06, + "probability": 0.9023 + }, + { + "start": 19241.18, + "end": 19241.74, + "probability": 0.7648 + }, + { + "start": 19242.42, + "end": 19242.92, + "probability": 0.7877 + }, + { + "start": 19243.06, + "end": 19244.22, + "probability": 0.8734 + }, + { + "start": 19244.42, + "end": 19244.46, + "probability": 0.0005 + }, + { + "start": 19254.79, + "end": 19256.2, + "probability": 0.4382 + }, + { + "start": 19257.86, + "end": 19260.64, + "probability": 0.6606 + }, + { + "start": 19261.96, + "end": 19262.52, + "probability": 0.8775 + }, + { + "start": 19263.54, + "end": 19264.38, + "probability": 0.4753 + }, + { + "start": 19264.72, + "end": 19265.59, + "probability": 0.4505 + }, + { + "start": 19266.08, + "end": 19266.52, + "probability": 0.4709 + }, + { + "start": 19267.22, + "end": 19267.62, + "probability": 0.8198 + }, + { + "start": 19283.54, + "end": 19284.04, + "probability": 0.5978 + }, + { + "start": 19284.28, + "end": 19284.58, + "probability": 0.437 + }, + { + "start": 19285.38, + "end": 19288.84, + "probability": 0.92 + }, + { + "start": 19289.78, + "end": 19291.9, + "probability": 0.7129 + }, + { + "start": 19293.0, + "end": 19294.54, + "probability": 0.739 + }, + { + "start": 19296.32, + "end": 19298.94, + "probability": 0.6811 + }, + { + "start": 19299.91, + "end": 19301.28, + "probability": 0.7686 + }, + { + "start": 19301.68, + "end": 19302.3, + "probability": 0.1186 + }, + { + "start": 19302.3, + "end": 19303.07, + "probability": 0.2339 + }, + { + "start": 19304.28, + "end": 19304.98, + "probability": 0.4033 + }, + { + "start": 19305.38, + "end": 19306.26, + "probability": 0.8061 + }, + { + "start": 19306.8, + "end": 19308.14, + "probability": 0.7864 + }, + { + "start": 19308.46, + "end": 19309.68, + "probability": 0.9519 + }, + { + "start": 19309.78, + "end": 19310.9, + "probability": 0.5413 + }, + { + "start": 19311.2, + "end": 19311.56, + "probability": 0.2764 + }, + { + "start": 19311.56, + "end": 19312.26, + "probability": 0.5239 + }, + { + "start": 19314.44, + "end": 19316.46, + "probability": 0.373 + }, + { + "start": 19316.52, + "end": 19317.61, + "probability": 0.4442 + }, + { + "start": 19318.32, + "end": 19318.88, + "probability": 0.5508 + }, + { + "start": 19322.86, + "end": 19323.46, + "probability": 0.0214 + }, + { + "start": 19323.78, + "end": 19327.44, + "probability": 0.5032 + }, + { + "start": 19327.46, + "end": 19328.44, + "probability": 0.4526 + }, + { + "start": 19329.06, + "end": 19329.8, + "probability": 0.8861 + }, + { + "start": 19331.06, + "end": 19331.1, + "probability": 0.0778 + }, + { + "start": 19332.24, + "end": 19333.22, + "probability": 0.3768 + }, + { + "start": 19333.88, + "end": 19334.18, + "probability": 0.3698 + }, + { + "start": 19335.26, + "end": 19335.62, + "probability": 0.6596 + }, + { + "start": 19341.38, + "end": 19343.52, + "probability": 0.9478 + }, + { + "start": 19343.58, + "end": 19345.76, + "probability": 0.4492 + }, + { + "start": 19347.53, + "end": 19349.74, + "probability": 0.8928 + }, + { + "start": 19349.88, + "end": 19353.68, + "probability": 0.8386 + }, + { + "start": 19353.76, + "end": 19354.64, + "probability": 0.9199 + }, + { + "start": 19354.84, + "end": 19355.64, + "probability": 0.881 + }, + { + "start": 19355.66, + "end": 19357.92, + "probability": 0.4295 + }, + { + "start": 19358.27, + "end": 19360.01, + "probability": 0.7261 + }, + { + "start": 19360.22, + "end": 19362.06, + "probability": 0.4867 + }, + { + "start": 19362.08, + "end": 19362.78, + "probability": 0.4764 + }, + { + "start": 19363.68, + "end": 19368.1, + "probability": 0.0305 + }, + { + "start": 19368.78, + "end": 19369.12, + "probability": 0.1028 + }, + { + "start": 19379.04, + "end": 19380.18, + "probability": 0.2159 + }, + { + "start": 19380.18, + "end": 19382.0, + "probability": 0.0173 + }, + { + "start": 19382.72, + "end": 19385.0, + "probability": 0.0364 + }, + { + "start": 19385.14, + "end": 19385.86, + "probability": 0.0396 + }, + { + "start": 19386.06, + "end": 19386.69, + "probability": 0.1438 + }, + { + "start": 19386.96, + "end": 19387.52, + "probability": 0.1056 + }, + { + "start": 19387.56, + "end": 19389.02, + "probability": 0.0994 + }, + { + "start": 19389.16, + "end": 19391.76, + "probability": 0.1167 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.64, + "end": 19392.82, + "probability": 0.1041 + }, + { + "start": 19392.82, + "end": 19392.82, + "probability": 0.134 + }, + { + "start": 19392.82, + "end": 19394.66, + "probability": 0.0901 + }, + { + "start": 19394.66, + "end": 19394.74, + "probability": 0.1198 + }, + { + "start": 19394.98, + "end": 19395.18, + "probability": 0.2785 + }, + { + "start": 19395.2, + "end": 19395.38, + "probability": 0.0097 + }, + { + "start": 19396.02, + "end": 19396.6, + "probability": 0.0195 + }, + { + "start": 19397.84, + "end": 19398.34, + "probability": 0.0396 + }, + { + "start": 19399.1, + "end": 19400.52, + "probability": 0.0233 + }, + { + "start": 19400.52, + "end": 19401.34, + "probability": 0.1847 + }, + { + "start": 19401.34, + "end": 19404.8, + "probability": 0.3185 + }, + { + "start": 19406.02, + "end": 19406.02, + "probability": 0.0356 + }, + { + "start": 19406.02, + "end": 19406.02, + "probability": 0.2409 + }, + { + "start": 19406.02, + "end": 19406.02, + "probability": 0.0118 + }, + { + "start": 19406.02, + "end": 19407.88, + "probability": 0.0755 + }, + { + "start": 19408.8, + "end": 19410.28, + "probability": 0.1938 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.0, + "end": 19520.0, + "probability": 0.0 + }, + { + "start": 19520.14, + "end": 19520.14, + "probability": 0.0002 + }, + { + "start": 19520.92, + "end": 19522.44, + "probability": 0.1602 + }, + { + "start": 19523.71, + "end": 19530.02, + "probability": 0.1443 + }, + { + "start": 19531.14, + "end": 19531.56, + "probability": 0.0225 + }, + { + "start": 19533.56, + "end": 19537.18, + "probability": 0.0482 + }, + { + "start": 19538.32, + "end": 19539.88, + "probability": 0.1128 + }, + { + "start": 19542.08, + "end": 19544.3, + "probability": 0.0555 + }, + { + "start": 19544.3, + "end": 19544.88, + "probability": 0.1462 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.0, + "end": 19644.0, + "probability": 0.0 + }, + { + "start": 19644.14, + "end": 19644.7, + "probability": 0.047 + }, + { + "start": 19644.7, + "end": 19644.7, + "probability": 0.0886 + }, + { + "start": 19644.7, + "end": 19644.8, + "probability": 0.3184 + }, + { + "start": 19644.86, + "end": 19646.28, + "probability": 0.0565 + }, + { + "start": 19646.58, + "end": 19648.74, + "probability": 0.5461 + }, + { + "start": 19648.76, + "end": 19653.1, + "probability": 0.5664 + }, + { + "start": 19654.62, + "end": 19655.26, + "probability": 0.05 + }, + { + "start": 19655.34, + "end": 19655.78, + "probability": 0.6978 + }, + { + "start": 19656.02, + "end": 19656.79, + "probability": 0.6207 + }, + { + "start": 19656.96, + "end": 19657.9, + "probability": 0.3868 + }, + { + "start": 19658.02, + "end": 19659.0, + "probability": 0.4425 + }, + { + "start": 19659.0, + "end": 19664.1, + "probability": 0.6551 + }, + { + "start": 19664.1, + "end": 19666.34, + "probability": 0.7988 + }, + { + "start": 19667.52, + "end": 19670.32, + "probability": 0.5826 + }, + { + "start": 19672.06, + "end": 19675.96, + "probability": 0.8024 + }, + { + "start": 19677.08, + "end": 19679.5, + "probability": 0.8939 + }, + { + "start": 19682.58, + "end": 19684.88, + "probability": 0.7775 + }, + { + "start": 19685.06, + "end": 19685.54, + "probability": 0.9845 + }, + { + "start": 19686.36, + "end": 19687.06, + "probability": 0.5102 + }, + { + "start": 19687.94, + "end": 19689.12, + "probability": 0.2871 + }, + { + "start": 19690.12, + "end": 19690.6, + "probability": 0.346 + }, + { + "start": 19692.09, + "end": 19695.34, + "probability": 0.7118 + }, + { + "start": 19696.36, + "end": 19701.78, + "probability": 0.7725 + }, + { + "start": 19703.86, + "end": 19704.56, + "probability": 0.6443 + }, + { + "start": 19705.36, + "end": 19708.34, + "probability": 0.8078 + }, + { + "start": 19709.08, + "end": 19712.54, + "probability": 0.8965 + }, + { + "start": 19713.08, + "end": 19713.66, + "probability": 0.9724 + }, + { + "start": 19716.42, + "end": 19717.24, + "probability": 0.7227 + }, + { + "start": 19718.04, + "end": 19719.38, + "probability": 0.7534 + }, + { + "start": 19720.48, + "end": 19722.98, + "probability": 0.9557 + }, + { + "start": 19724.4, + "end": 19727.08, + "probability": 0.9945 + }, + { + "start": 19728.2, + "end": 19731.34, + "probability": 0.76 + }, + { + "start": 19733.14, + "end": 19737.02, + "probability": 0.4857 + }, + { + "start": 19745.12, + "end": 19745.82, + "probability": 0.8291 + }, + { + "start": 19747.02, + "end": 19748.12, + "probability": 0.6773 + }, + { + "start": 19748.9, + "end": 19749.98, + "probability": 0.9029 + }, + { + "start": 19750.7, + "end": 19751.88, + "probability": 0.9529 + }, + { + "start": 19752.74, + "end": 19754.26, + "probability": 0.9624 + }, + { + "start": 19755.24, + "end": 19756.92, + "probability": 0.8993 + }, + { + "start": 19757.86, + "end": 19760.86, + "probability": 0.9828 + }, + { + "start": 19764.7, + "end": 19765.63, + "probability": 0.6884 + }, + { + "start": 19765.7, + "end": 19767.46, + "probability": 0.5014 + }, + { + "start": 19767.72, + "end": 19769.24, + "probability": 0.7584 + }, + { + "start": 19770.0, + "end": 19771.56, + "probability": 0.8105 + }, + { + "start": 19772.4, + "end": 19775.36, + "probability": 0.9751 + }, + { + "start": 19776.64, + "end": 19779.32, + "probability": 0.4137 + }, + { + "start": 19779.84, + "end": 19780.46, + "probability": 0.4614 + }, + { + "start": 19781.42, + "end": 19781.76, + "probability": 0.5072 + }, + { + "start": 19783.38, + "end": 19785.38, + "probability": 0.7769 + }, + { + "start": 19787.06, + "end": 19790.04, + "probability": 0.8675 + }, + { + "start": 19791.26, + "end": 19793.74, + "probability": 0.4037 + }, + { + "start": 19795.78, + "end": 19796.45, + "probability": 0.5688 + }, + { + "start": 19797.86, + "end": 19799.64, + "probability": 0.5668 + }, + { + "start": 19800.34, + "end": 19800.96, + "probability": 0.8334 + }, + { + "start": 19801.64, + "end": 19805.36, + "probability": 0.8993 + }, + { + "start": 19805.46, + "end": 19805.84, + "probability": 0.8047 + }, + { + "start": 19806.36, + "end": 19807.2, + "probability": 0.6227 + }, + { + "start": 19809.64, + "end": 19812.78, + "probability": 0.6733 + }, + { + "start": 19815.0, + "end": 19817.46, + "probability": 0.7327 + }, + { + "start": 19818.14, + "end": 19820.02, + "probability": 0.9764 + }, + { + "start": 19821.38, + "end": 19822.72, + "probability": 0.939 + }, + { + "start": 19822.8, + "end": 19824.96, + "probability": 0.9758 + }, + { + "start": 19825.0, + "end": 19826.6, + "probability": 0.9795 + }, + { + "start": 19827.26, + "end": 19829.04, + "probability": 0.7525 + }, + { + "start": 19829.72, + "end": 19831.0, + "probability": 0.9755 + }, + { + "start": 19831.98, + "end": 19833.38, + "probability": 0.8863 + }, + { + "start": 19833.56, + "end": 19835.24, + "probability": 0.9863 + }, + { + "start": 19835.94, + "end": 19837.58, + "probability": 0.8984 + }, + { + "start": 19838.32, + "end": 19839.96, + "probability": 0.9229 + }, + { + "start": 19849.68, + "end": 19850.06, + "probability": 0.0759 + }, + { + "start": 19850.12, + "end": 19851.96, + "probability": 0.972 + }, + { + "start": 19852.8, + "end": 19855.36, + "probability": 0.8691 + }, + { + "start": 19855.8, + "end": 19856.94, + "probability": 0.6593 + }, + { + "start": 19857.28, + "end": 19858.18, + "probability": 0.7197 + }, + { + "start": 19861.06, + "end": 19863.34, + "probability": 0.9589 + }, + { + "start": 19863.36, + "end": 19863.86, + "probability": 0.4402 + }, + { + "start": 19864.58, + "end": 19865.86, + "probability": 0.7125 + }, + { + "start": 19866.32, + "end": 19867.19, + "probability": 0.8151 + }, + { + "start": 19867.82, + "end": 19868.66, + "probability": 0.746 + }, + { + "start": 19869.14, + "end": 19870.12, + "probability": 0.8822 + }, + { + "start": 19870.82, + "end": 19871.72, + "probability": 0.9234 + }, + { + "start": 19872.44, + "end": 19873.36, + "probability": 0.3279 + }, + { + "start": 19874.74, + "end": 19877.28, + "probability": 0.7044 + }, + { + "start": 19878.26, + "end": 19879.91, + "probability": 0.441 + }, + { + "start": 19880.56, + "end": 19883.46, + "probability": 0.6971 + }, + { + "start": 19884.28, + "end": 19886.26, + "probability": 0.8848 + }, + { + "start": 19890.06, + "end": 19890.63, + "probability": 0.5752 + }, + { + "start": 19891.7, + "end": 19896.12, + "probability": 0.8779 + }, + { + "start": 19896.6, + "end": 19897.3, + "probability": 0.9625 + }, + { + "start": 19898.46, + "end": 19899.52, + "probability": 0.6445 + }, + { + "start": 19900.06, + "end": 19902.76, + "probability": 0.7988 + }, + { + "start": 19903.46, + "end": 19905.06, + "probability": 0.8075 + }, + { + "start": 19905.52, + "end": 19908.12, + "probability": 0.8838 + }, + { + "start": 19909.94, + "end": 19910.76, + "probability": 0.8916 + }, + { + "start": 19911.64, + "end": 19914.88, + "probability": 0.6977 + }, + { + "start": 19915.96, + "end": 19917.7, + "probability": 0.6041 + }, + { + "start": 19918.52, + "end": 19920.2, + "probability": 0.9546 + }, + { + "start": 19921.26, + "end": 19922.88, + "probability": 0.9834 + }, + { + "start": 19923.66, + "end": 19925.56, + "probability": 0.9499 + }, + { + "start": 19926.22, + "end": 19927.38, + "probability": 0.9658 + }, + { + "start": 19928.76, + "end": 19929.8, + "probability": 0.7351 + }, + { + "start": 19929.98, + "end": 19930.5, + "probability": 0.5911 + }, + { + "start": 19931.18, + "end": 19933.41, + "probability": 0.846 + }, + { + "start": 19933.5, + "end": 19935.18, + "probability": 0.7711 + }, + { + "start": 19938.54, + "end": 19939.32, + "probability": 0.8257 + }, + { + "start": 19939.9, + "end": 19942.84, + "probability": 0.6946 + }, + { + "start": 19943.96, + "end": 19945.34, + "probability": 0.6319 + }, + { + "start": 19945.92, + "end": 19947.1, + "probability": 0.856 + }, + { + "start": 19947.9, + "end": 19949.34, + "probability": 0.9702 + }, + { + "start": 19950.18, + "end": 19952.66, + "probability": 0.7382 + }, + { + "start": 19953.24, + "end": 19955.28, + "probability": 0.9036 + }, + { + "start": 19955.7, + "end": 19959.52, + "probability": 0.8423 + }, + { + "start": 19960.04, + "end": 19961.48, + "probability": 0.6805 + }, + { + "start": 19962.38, + "end": 19964.5, + "probability": 0.7029 + }, + { + "start": 19964.7, + "end": 19966.14, + "probability": 0.8696 + }, + { + "start": 19968.76, + "end": 19970.22, + "probability": 0.9349 + }, + { + "start": 19971.18, + "end": 19974.8, + "probability": 0.7023 + }, + { + "start": 19976.0, + "end": 19977.24, + "probability": 0.8476 + }, + { + "start": 19977.82, + "end": 19979.86, + "probability": 0.9617 + }, + { + "start": 19980.72, + "end": 19983.06, + "probability": 0.6868 + }, + { + "start": 19983.46, + "end": 19984.96, + "probability": 0.3812 + }, + { + "start": 19985.7, + "end": 19988.34, + "probability": 0.702 + }, + { + "start": 19989.0, + "end": 19990.28, + "probability": 0.6946 + }, + { + "start": 19990.98, + "end": 19992.64, + "probability": 0.8748 + }, + { + "start": 20000.42, + "end": 20001.32, + "probability": 0.7395 + }, + { + "start": 20002.18, + "end": 20005.18, + "probability": 0.8423 + }, + { + "start": 20005.74, + "end": 20007.1, + "probability": 0.9964 + }, + { + "start": 20011.1, + "end": 20011.96, + "probability": 0.9673 + }, + { + "start": 20012.74, + "end": 20014.92, + "probability": 0.7969 + }, + { + "start": 20015.88, + "end": 20018.28, + "probability": 0.7942 + }, + { + "start": 20018.84, + "end": 20019.72, + "probability": 0.7563 + }, + { + "start": 20020.3, + "end": 20021.0, + "probability": 0.849 + }, + { + "start": 20024.48, + "end": 20025.38, + "probability": 0.681 + }, + { + "start": 20025.84, + "end": 20027.3, + "probability": 0.4155 + }, + { + "start": 20027.4, + "end": 20028.16, + "probability": 0.6228 + }, + { + "start": 20028.26, + "end": 20030.16, + "probability": 0.4511 + }, + { + "start": 20030.76, + "end": 20033.52, + "probability": 0.7225 + }, + { + "start": 20034.38, + "end": 20037.14, + "probability": 0.5646 + }, + { + "start": 20037.94, + "end": 20038.96, + "probability": 0.9276 + }, + { + "start": 20047.02, + "end": 20047.92, + "probability": 0.8271 + }, + { + "start": 20048.74, + "end": 20051.74, + "probability": 0.6108 + }, + { + "start": 20052.4, + "end": 20053.36, + "probability": 0.6212 + }, + { + "start": 20054.02, + "end": 20056.24, + "probability": 0.6868 + }, + { + "start": 20060.74, + "end": 20061.68, + "probability": 0.9393 + }, + { + "start": 20062.58, + "end": 20063.34, + "probability": 0.6166 + }, + { + "start": 20064.12, + "end": 20064.94, + "probability": 0.9193 + }, + { + "start": 20065.82, + "end": 20066.8, + "probability": 0.8021 + }, + { + "start": 20067.46, + "end": 20068.32, + "probability": 0.9587 + }, + { + "start": 20068.92, + "end": 20069.62, + "probability": 0.9173 + }, + { + "start": 20075.42, + "end": 20076.0, + "probability": 0.9573 + }, + { + "start": 20077.34, + "end": 20078.58, + "probability": 0.8993 + }, + { + "start": 20079.74, + "end": 20081.38, + "probability": 0.7797 + }, + { + "start": 20082.36, + "end": 20084.78, + "probability": 0.9743 + }, + { + "start": 20086.06, + "end": 20088.64, + "probability": 0.8662 + }, + { + "start": 20089.76, + "end": 20092.52, + "probability": 0.7421 + }, + { + "start": 20103.76, + "end": 20104.22, + "probability": 0.6037 + }, + { + "start": 20105.78, + "end": 20106.26, + "probability": 0.7559 + }, + { + "start": 20107.28, + "end": 20107.64, + "probability": 0.6289 + }, + { + "start": 20107.64, + "end": 20108.26, + "probability": 0.6604 + }, + { + "start": 20111.42, + "end": 20113.16, + "probability": 0.5241 + }, + { + "start": 20113.62, + "end": 20114.7, + "probability": 0.636 + }, + { + "start": 20114.98, + "end": 20115.84, + "probability": 0.8005 + }, + { + "start": 20117.22, + "end": 20118.24, + "probability": 0.5189 + }, + { + "start": 20118.5, + "end": 20120.68, + "probability": 0.4126 + }, + { + "start": 20121.26, + "end": 20121.94, + "probability": 0.7533 + }, + { + "start": 20122.32, + "end": 20122.8, + "probability": 0.9943 + }, + { + "start": 20123.42, + "end": 20124.12, + "probability": 0.1785 + }, + { + "start": 20124.4, + "end": 20125.8, + "probability": 0.9552 + }, + { + "start": 20125.94, + "end": 20126.4, + "probability": 0.5845 + }, + { + "start": 20127.56, + "end": 20128.32, + "probability": 0.3023 + }, + { + "start": 20131.94, + "end": 20132.2, + "probability": 0.0242 + }, + { + "start": 20132.2, + "end": 20132.94, + "probability": 0.0349 + }, + { + "start": 20133.22, + "end": 20134.1, + "probability": 0.6092 + }, + { + "start": 20134.14, + "end": 20134.9, + "probability": 0.2874 + }, + { + "start": 20135.68, + "end": 20136.32, + "probability": 0.1905 + }, + { + "start": 20137.92, + "end": 20138.74, + "probability": 0.5962 + }, + { + "start": 20138.74, + "end": 20139.41, + "probability": 0.6103 + }, + { + "start": 20140.98, + "end": 20141.84, + "probability": 0.2755 + }, + { + "start": 20143.72, + "end": 20145.5, + "probability": 0.6597 + }, + { + "start": 20146.52, + "end": 20148.38, + "probability": 0.8741 + }, + { + "start": 20148.58, + "end": 20150.08, + "probability": 0.9189 + }, + { + "start": 20157.24, + "end": 20158.76, + "probability": 0.6032 + }, + { + "start": 20159.36, + "end": 20160.7, + "probability": 0.8564 + }, + { + "start": 20161.58, + "end": 20164.3, + "probability": 0.6211 + }, + { + "start": 20166.62, + "end": 20167.8, + "probability": 0.739 + }, + { + "start": 20168.88, + "end": 20170.78, + "probability": 0.835 + }, + { + "start": 20170.96, + "end": 20171.82, + "probability": 0.7954 + }, + { + "start": 20172.78, + "end": 20174.88, + "probability": 0.6432 + }, + { + "start": 20175.8, + "end": 20178.04, + "probability": 0.9156 + }, + { + "start": 20178.22, + "end": 20178.94, + "probability": 0.3728 + }, + { + "start": 20179.18, + "end": 20183.2, + "probability": 0.5344 + }, + { + "start": 20183.28, + "end": 20187.38, + "probability": 0.8097 + }, + { + "start": 20188.14, + "end": 20189.06, + "probability": 0.9694 + }, + { + "start": 20189.12, + "end": 20193.34, + "probability": 0.8575 + }, + { + "start": 20193.42, + "end": 20193.74, + "probability": 0.5919 + }, + { + "start": 20194.34, + "end": 20196.72, + "probability": 0.5428 + }, + { + "start": 20202.42, + "end": 20203.26, + "probability": 0.8218 + }, + { + "start": 20203.42, + "end": 20206.94, + "probability": 0.9749 + }, + { + "start": 20207.32, + "end": 20208.24, + "probability": 0.7697 + }, + { + "start": 20208.86, + "end": 20211.92, + "probability": 0.6202 + }, + { + "start": 20212.18, + "end": 20212.64, + "probability": 0.5736 + }, + { + "start": 20213.42, + "end": 20215.34, + "probability": 0.9563 + }, + { + "start": 20215.54, + "end": 20216.84, + "probability": 0.9464 + }, + { + "start": 20217.02, + "end": 20217.44, + "probability": 0.6872 + }, + { + "start": 20218.16, + "end": 20221.25, + "probability": 0.4616 + }, + { + "start": 20222.22, + "end": 20224.58, + "probability": 0.4474 + }, + { + "start": 20225.3, + "end": 20226.52, + "probability": 0.8436 + }, + { + "start": 20227.24, + "end": 20229.4, + "probability": 0.7123 + }, + { + "start": 20231.6, + "end": 20235.58, + "probability": 0.7632 + }, + { + "start": 20236.24, + "end": 20239.22, + "probability": 0.9739 + }, + { + "start": 20240.46, + "end": 20242.14, + "probability": 0.7428 + }, + { + "start": 20242.4, + "end": 20244.46, + "probability": 0.8279 + }, + { + "start": 20246.0, + "end": 20247.58, + "probability": 0.434 + }, + { + "start": 20249.54, + "end": 20250.1, + "probability": 0.9069 + }, + { + "start": 20251.5, + "end": 20252.82, + "probability": 0.347 + }, + { + "start": 20254.86, + "end": 20256.88, + "probability": 0.7955 + }, + { + "start": 20257.36, + "end": 20258.76, + "probability": 0.6273 + }, + { + "start": 20259.2, + "end": 20260.16, + "probability": 0.6764 + }, + { + "start": 20260.74, + "end": 20263.14, + "probability": 0.4359 + }, + { + "start": 20263.36, + "end": 20266.26, + "probability": 0.696 + }, + { + "start": 20268.4, + "end": 20269.4, + "probability": 0.3219 + }, + { + "start": 20271.94, + "end": 20272.86, + "probability": 0.9759 + }, + { + "start": 20275.94, + "end": 20277.52, + "probability": 0.5838 + }, + { + "start": 20278.66, + "end": 20279.72, + "probability": 0.3923 + }, + { + "start": 20280.34, + "end": 20281.36, + "probability": 0.4983 + }, + { + "start": 20282.58, + "end": 20282.82, + "probability": 0.5135 + }, + { + "start": 20282.82, + "end": 20284.72, + "probability": 0.4321 + }, + { + "start": 20285.16, + "end": 20285.56, + "probability": 0.1846 + }, + { + "start": 20288.96, + "end": 20291.14, + "probability": 0.5459 + }, + { + "start": 20291.3, + "end": 20292.6, + "probability": 0.6114 + }, + { + "start": 20292.72, + "end": 20293.52, + "probability": 0.4051 + }, + { + "start": 20293.58, + "end": 20296.02, + "probability": 0.2834 + }, + { + "start": 20296.14, + "end": 20297.05, + "probability": 0.5813 + }, + { + "start": 20298.3, + "end": 20300.44, + "probability": 0.1242 + }, + { + "start": 20300.44, + "end": 20301.18, + "probability": 0.0571 + }, + { + "start": 20302.28, + "end": 20305.04, + "probability": 0.4556 + }, + { + "start": 20305.12, + "end": 20306.8, + "probability": 0.6731 + }, + { + "start": 20307.48, + "end": 20310.24, + "probability": 0.4102 + }, + { + "start": 20310.34, + "end": 20311.54, + "probability": 0.6327 + }, + { + "start": 20312.4, + "end": 20315.38, + "probability": 0.8107 + }, + { + "start": 20317.54, + "end": 20319.44, + "probability": 0.5941 + }, + { + "start": 20319.94, + "end": 20320.54, + "probability": 0.4976 + }, + { + "start": 20321.04, + "end": 20322.08, + "probability": 0.9095 + }, + { + "start": 20322.54, + "end": 20322.84, + "probability": 0.8026 + }, + { + "start": 20323.4, + "end": 20324.08, + "probability": 0.2186 + }, + { + "start": 20326.28, + "end": 20329.76, + "probability": 0.6408 + }, + { + "start": 20335.84, + "end": 20337.72, + "probability": 0.9224 + }, + { + "start": 20338.32, + "end": 20340.48, + "probability": 0.6703 + }, + { + "start": 20340.72, + "end": 20341.44, + "probability": 0.924 + }, + { + "start": 20341.74, + "end": 20343.04, + "probability": 0.9365 + }, + { + "start": 20346.06, + "end": 20348.1, + "probability": 0.5857 + }, + { + "start": 20348.38, + "end": 20349.8, + "probability": 0.5145 + }, + { + "start": 20350.14, + "end": 20351.62, + "probability": 0.8146 + }, + { + "start": 20352.0, + "end": 20352.32, + "probability": 0.6858 + }, + { + "start": 20353.1, + "end": 20356.66, + "probability": 0.6694 + }, + { + "start": 20357.72, + "end": 20359.0, + "probability": 0.6455 + }, + { + "start": 20359.22, + "end": 20359.74, + "probability": 0.6564 + }, + { + "start": 20361.14, + "end": 20362.74, + "probability": 0.6551 + }, + { + "start": 20363.56, + "end": 20366.04, + "probability": 0.6066 + }, + { + "start": 20368.22, + "end": 20369.47, + "probability": 0.8429 + }, + { + "start": 20369.94, + "end": 20371.84, + "probability": 0.7489 + }, + { + "start": 20372.64, + "end": 20373.44, + "probability": 0.734 + }, + { + "start": 20374.62, + "end": 20376.08, + "probability": 0.9227 + }, + { + "start": 20377.2, + "end": 20378.5, + "probability": 0.9887 + }, + { + "start": 20388.02, + "end": 20390.66, + "probability": 0.6731 + }, + { + "start": 20391.8, + "end": 20392.2, + "probability": 0.2395 + }, + { + "start": 20392.42, + "end": 20394.36, + "probability": 0.3289 + }, + { + "start": 20394.5, + "end": 20396.62, + "probability": 0.7512 + }, + { + "start": 20397.36, + "end": 20397.82, + "probability": 0.5916 + }, + { + "start": 20397.96, + "end": 20399.4, + "probability": 0.9751 + }, + { + "start": 20399.5, + "end": 20400.45, + "probability": 0.8377 + }, + { + "start": 20402.58, + "end": 20408.82, + "probability": 0.2903 + }, + { + "start": 20408.88, + "end": 20408.92, + "probability": 0.0532 + }, + { + "start": 20408.92, + "end": 20408.92, + "probability": 0.2751 + }, + { + "start": 20408.92, + "end": 20408.92, + "probability": 0.0359 + }, + { + "start": 20408.92, + "end": 20408.92, + "probability": 0.2274 + }, + { + "start": 20408.92, + "end": 20408.92, + "probability": 0.0294 + }, + { + "start": 20408.92, + "end": 20410.78, + "probability": 0.5942 + }, + { + "start": 20411.02, + "end": 20412.2, + "probability": 0.471 + }, + { + "start": 20412.86, + "end": 20414.06, + "probability": 0.5364 + }, + { + "start": 20414.6, + "end": 20415.34, + "probability": 0.3882 + }, + { + "start": 20415.72, + "end": 20416.36, + "probability": 0.9019 + }, + { + "start": 20416.56, + "end": 20418.36, + "probability": 0.9716 + }, + { + "start": 20418.9, + "end": 20420.08, + "probability": 0.3195 + }, + { + "start": 20421.04, + "end": 20422.0, + "probability": 0.4122 + }, + { + "start": 20422.0, + "end": 20422.72, + "probability": 0.1634 + }, + { + "start": 20422.72, + "end": 20422.72, + "probability": 0.0159 + }, + { + "start": 20422.72, + "end": 20425.68, + "probability": 0.5913 + }, + { + "start": 20426.54, + "end": 20427.48, + "probability": 0.9582 + }, + { + "start": 20427.72, + "end": 20428.64, + "probability": 0.4484 + }, + { + "start": 20429.62, + "end": 20430.54, + "probability": 0.2039 + }, + { + "start": 20430.6, + "end": 20434.48, + "probability": 0.2769 + }, + { + "start": 20434.52, + "end": 20436.04, + "probability": 0.498 + }, + { + "start": 20436.16, + "end": 20437.0, + "probability": 0.4047 + }, + { + "start": 20437.16, + "end": 20439.34, + "probability": 0.5846 + }, + { + "start": 20442.06, + "end": 20443.72, + "probability": 0.5199 + }, + { + "start": 20445.2, + "end": 20447.42, + "probability": 0.9683 + }, + { + "start": 20447.44, + "end": 20448.42, + "probability": 0.888 + }, + { + "start": 20448.5, + "end": 20448.89, + "probability": 0.503 + }, + { + "start": 20449.02, + "end": 20449.52, + "probability": 0.832 + }, + { + "start": 20452.02, + "end": 20454.24, + "probability": 0.6592 + }, + { + "start": 20455.66, + "end": 20456.5, + "probability": 0.6207 + }, + { + "start": 20457.48, + "end": 20459.3, + "probability": 0.6928 + }, + { + "start": 20460.18, + "end": 20461.1, + "probability": 0.9607 + }, + { + "start": 20462.9, + "end": 20465.56, + "probability": 0.7734 + }, + { + "start": 20466.1, + "end": 20467.12, + "probability": 0.9019 + }, + { + "start": 20468.04, + "end": 20469.74, + "probability": 0.9911 + }, + { + "start": 20470.22, + "end": 20471.5, + "probability": 0.748 + }, + { + "start": 20475.68, + "end": 20476.86, + "probability": 0.7329 + }, + { + "start": 20477.62, + "end": 20478.34, + "probability": 0.2205 + }, + { + "start": 20479.34, + "end": 20480.14, + "probability": 0.9641 + }, + { + "start": 20480.7, + "end": 20482.2, + "probability": 0.8707 + }, + { + "start": 20483.3, + "end": 20484.9, + "probability": 0.9313 + }, + { + "start": 20485.26, + "end": 20486.96, + "probability": 0.9141 + }, + { + "start": 20487.68, + "end": 20489.38, + "probability": 0.7928 + }, + { + "start": 20489.96, + "end": 20491.28, + "probability": 0.9093 + }, + { + "start": 20496.76, + "end": 20497.24, + "probability": 0.6559 + }, + { + "start": 20498.06, + "end": 20499.82, + "probability": 0.9699 + }, + { + "start": 20500.18, + "end": 20501.76, + "probability": 0.7335 + }, + { + "start": 20504.18, + "end": 20505.84, + "probability": 0.3364 + }, + { + "start": 20506.02, + "end": 20506.14, + "probability": 0.5725 + }, + { + "start": 20506.32, + "end": 20508.24, + "probability": 0.958 + }, + { + "start": 20508.76, + "end": 20513.36, + "probability": 0.6362 + }, + { + "start": 20515.54, + "end": 20516.52, + "probability": 0.6785 + }, + { + "start": 20517.08, + "end": 20519.7, + "probability": 0.8331 + }, + { + "start": 20520.64, + "end": 20521.44, + "probability": 0.7657 + }, + { + "start": 20521.86, + "end": 20522.6, + "probability": 0.8417 + }, + { + "start": 20523.36, + "end": 20524.18, + "probability": 0.8877 + }, + { + "start": 20525.2, + "end": 20525.58, + "probability": 0.4833 + }, + { + "start": 20525.62, + "end": 20525.94, + "probability": 0.9465 + }, + { + "start": 20526.0, + "end": 20527.49, + "probability": 0.917 + }, + { + "start": 20528.1, + "end": 20529.42, + "probability": 0.9381 + }, + { + "start": 20529.44, + "end": 20531.5, + "probability": 0.8334 + }, + { + "start": 20531.78, + "end": 20533.54, + "probability": 0.7163 + }, + { + "start": 20534.04, + "end": 20536.06, + "probability": 0.5314 + }, + { + "start": 20536.06, + "end": 20536.92, + "probability": 0.5396 + }, + { + "start": 20536.94, + "end": 20537.64, + "probability": 0.8126 + }, + { + "start": 20538.0, + "end": 20538.83, + "probability": 0.9348 + }, + { + "start": 20539.26, + "end": 20540.96, + "probability": 0.7131 + }, + { + "start": 20541.12, + "end": 20542.08, + "probability": 0.647 + }, + { + "start": 20542.2, + "end": 20543.24, + "probability": 0.9465 + }, + { + "start": 20543.42, + "end": 20543.97, + "probability": 0.7593 + }, + { + "start": 20544.06, + "end": 20545.6, + "probability": 0.7753 + }, + { + "start": 20545.82, + "end": 20546.74, + "probability": 0.3244 + }, + { + "start": 20546.74, + "end": 20547.13, + "probability": 0.2635 + }, + { + "start": 20547.78, + "end": 20548.68, + "probability": 0.6902 + }, + { + "start": 20548.78, + "end": 20550.15, + "probability": 0.4586 + }, + { + "start": 20550.24, + "end": 20550.94, + "probability": 0.5688 + }, + { + "start": 20551.06, + "end": 20551.34, + "probability": 0.2019 + }, + { + "start": 20551.46, + "end": 20552.06, + "probability": 0.5253 + }, + { + "start": 20552.46, + "end": 20553.12, + "probability": 0.9252 + }, + { + "start": 20553.87, + "end": 20555.94, + "probability": 0.3296 + }, + { + "start": 20556.44, + "end": 20557.42, + "probability": 0.6361 + }, + { + "start": 20557.42, + "end": 20557.88, + "probability": 0.4176 + }, + { + "start": 20558.08, + "end": 20558.28, + "probability": 0.6468 + }, + { + "start": 20558.72, + "end": 20558.74, + "probability": 0.0919 + }, + { + "start": 20558.74, + "end": 20559.44, + "probability": 0.9059 + }, + { + "start": 20560.37, + "end": 20560.98, + "probability": 0.8555 + }, + { + "start": 20561.32, + "end": 20563.23, + "probability": 0.8143 + }, + { + "start": 20564.56, + "end": 20567.02, + "probability": 0.4858 + }, + { + "start": 20567.18, + "end": 20568.4, + "probability": 0.8547 + }, + { + "start": 20568.68, + "end": 20569.98, + "probability": 0.9624 + }, + { + "start": 20571.14, + "end": 20571.82, + "probability": 0.9293 + }, + { + "start": 20573.76, + "end": 20574.22, + "probability": 0.9423 + }, + { + "start": 20574.84, + "end": 20575.18, + "probability": 0.7356 + }, + { + "start": 20576.66, + "end": 20576.88, + "probability": 0.7028 + }, + { + "start": 20577.44, + "end": 20579.18, + "probability": 0.2403 + }, + { + "start": 20579.9, + "end": 20579.9, + "probability": 0.1249 + }, + { + "start": 20579.9, + "end": 20580.32, + "probability": 0.4443 + }, + { + "start": 20581.36, + "end": 20582.76, + "probability": 0.8093 + }, + { + "start": 20584.48, + "end": 20586.2, + "probability": 0.687 + }, + { + "start": 20586.32, + "end": 20588.52, + "probability": 0.7895 + }, + { + "start": 20589.66, + "end": 20591.62, + "probability": 0.6603 + }, + { + "start": 20593.24, + "end": 20595.42, + "probability": 0.7511 + }, + { + "start": 20595.58, + "end": 20598.08, + "probability": 0.6494 + }, + { + "start": 20598.4, + "end": 20600.04, + "probability": 0.7921 + }, + { + "start": 20601.38, + "end": 20604.58, + "probability": 0.9688 + }, + { + "start": 20604.7, + "end": 20605.08, + "probability": 0.7796 + }, + { + "start": 20606.06, + "end": 20607.42, + "probability": 0.9946 + }, + { + "start": 20607.96, + "end": 20609.26, + "probability": 0.6802 + }, + { + "start": 20614.04, + "end": 20614.78, + "probability": 0.4906 + }, + { + "start": 20616.14, + "end": 20616.92, + "probability": 0.9073 + }, + { + "start": 20618.5, + "end": 20619.58, + "probability": 0.8866 + }, + { + "start": 20620.16, + "end": 20621.82, + "probability": 0.9274 + }, + { + "start": 20625.84, + "end": 20626.7, + "probability": 0.4895 + }, + { + "start": 20626.8, + "end": 20627.34, + "probability": 0.6646 + }, + { + "start": 20627.38, + "end": 20629.64, + "probability": 0.8963 + }, + { + "start": 20629.66, + "end": 20632.64, + "probability": 0.7571 + }, + { + "start": 20632.94, + "end": 20633.08, + "probability": 0.1713 + }, + { + "start": 20633.08, + "end": 20635.04, + "probability": 0.7517 + }, + { + "start": 20636.72, + "end": 20638.38, + "probability": 0.623 + }, + { + "start": 20638.96, + "end": 20640.72, + "probability": 0.967 + }, + { + "start": 20641.54, + "end": 20643.64, + "probability": 0.8439 + }, + { + "start": 20644.22, + "end": 20645.06, + "probability": 0.9024 + }, + { + "start": 20645.62, + "end": 20646.86, + "probability": 0.4068 + }, + { + "start": 20647.26, + "end": 20648.12, + "probability": 0.6088 + }, + { + "start": 20648.94, + "end": 20649.68, + "probability": 0.7547 + }, + { + "start": 20650.78, + "end": 20652.58, + "probability": 0.8407 + }, + { + "start": 20653.16, + "end": 20655.62, + "probability": 0.6626 + }, + { + "start": 20656.73, + "end": 20658.29, + "probability": 0.9111 + }, + { + "start": 20658.8, + "end": 20659.58, + "probability": 0.7127 + }, + { + "start": 20660.02, + "end": 20661.0, + "probability": 0.6648 + }, + { + "start": 20668.86, + "end": 20670.0, + "probability": 0.6281 + }, + { + "start": 20670.64, + "end": 20671.27, + "probability": 0.9381 + }, + { + "start": 20672.28, + "end": 20672.8, + "probability": 0.7805 + }, + { + "start": 20674.12, + "end": 20674.96, + "probability": 0.9773 + }, + { + "start": 20675.74, + "end": 20676.2, + "probability": 0.9705 + }, + { + "start": 20677.38, + "end": 20677.91, + "probability": 0.9858 + }, + { + "start": 20679.04, + "end": 20679.44, + "probability": 0.8349 + }, + { + "start": 20680.48, + "end": 20682.05, + "probability": 0.9749 + }, + { + "start": 20683.24, + "end": 20684.98, + "probability": 0.8087 + }, + { + "start": 20685.84, + "end": 20687.3, + "probability": 0.7235 + }, + { + "start": 20688.34, + "end": 20689.19, + "probability": 0.95 + }, + { + "start": 20689.96, + "end": 20690.46, + "probability": 0.921 + }, + { + "start": 20691.4, + "end": 20692.07, + "probability": 0.9675 + }, + { + "start": 20692.82, + "end": 20693.3, + "probability": 0.7518 + }, + { + "start": 20696.84, + "end": 20697.5, + "probability": 0.5414 + }, + { + "start": 20698.84, + "end": 20700.96, + "probability": 0.5553 + }, + { + "start": 20701.0, + "end": 20701.22, + "probability": 0.9264 + }, + { + "start": 20702.48, + "end": 20702.9, + "probability": 0.6423 + }, + { + "start": 20704.34, + "end": 20705.54, + "probability": 0.9495 + }, + { + "start": 20706.12, + "end": 20706.98, + "probability": 0.8142 + }, + { + "start": 20707.34, + "end": 20708.14, + "probability": 0.0175 + }, + { + "start": 20708.32, + "end": 20708.42, + "probability": 0.1402 + }, + { + "start": 20708.66, + "end": 20709.48, + "probability": 0.6694 + }, + { + "start": 20709.88, + "end": 20710.08, + "probability": 0.7685 + }, + { + "start": 20710.5, + "end": 20711.13, + "probability": 0.6292 + }, + { + "start": 20711.24, + "end": 20711.42, + "probability": 0.5202 + }, + { + "start": 20711.56, + "end": 20712.32, + "probability": 0.874 + }, + { + "start": 20712.48, + "end": 20713.12, + "probability": 0.5761 + }, + { + "start": 20713.64, + "end": 20714.48, + "probability": 0.5576 + }, + { + "start": 20714.56, + "end": 20715.62, + "probability": 0.9893 + }, + { + "start": 20715.96, + "end": 20717.9, + "probability": 0.9469 + }, + { + "start": 20718.12, + "end": 20718.82, + "probability": 0.8663 + }, + { + "start": 20719.72, + "end": 20720.52, + "probability": 0.8339 + }, + { + "start": 20721.2, + "end": 20725.14, + "probability": 0.83 + }, + { + "start": 20725.54, + "end": 20725.72, + "probability": 0.9224 + }, + { + "start": 20725.8, + "end": 20726.3, + "probability": 0.8186 + }, + { + "start": 20726.4, + "end": 20727.7, + "probability": 0.4865 + }, + { + "start": 20727.7, + "end": 20728.6, + "probability": 0.2555 + }, + { + "start": 20728.64, + "end": 20728.94, + "probability": 0.0066 + }, + { + "start": 20729.36, + "end": 20729.46, + "probability": 0.393 + }, + { + "start": 20729.52, + "end": 20730.44, + "probability": 0.5102 + }, + { + "start": 20730.52, + "end": 20730.98, + "probability": 0.8464 + }, + { + "start": 20731.28, + "end": 20732.74, + "probability": 0.5894 + }, + { + "start": 20732.74, + "end": 20733.94, + "probability": 0.9778 + }, + { + "start": 20734.22, + "end": 20734.62, + "probability": 0.9796 + }, + { + "start": 20735.18, + "end": 20736.24, + "probability": 0.9316 + }, + { + "start": 20736.5, + "end": 20737.55, + "probability": 0.5244 + }, + { + "start": 20740.78, + "end": 20741.38, + "probability": 0.1277 + }, + { + "start": 20741.4, + "end": 20742.7, + "probability": 0.7839 + }, + { + "start": 20743.28, + "end": 20744.1, + "probability": 0.9869 + }, + { + "start": 20745.94, + "end": 20748.3, + "probability": 0.5997 + }, + { + "start": 20748.44, + "end": 20750.0, + "probability": 0.8438 + }, + { + "start": 20750.12, + "end": 20750.2, + "probability": 0.2882 + }, + { + "start": 20750.24, + "end": 20750.8, + "probability": 0.9678 + }, + { + "start": 20751.6, + "end": 20752.36, + "probability": 0.6978 + }, + { + "start": 20753.02, + "end": 20755.98, + "probability": 0.594 + }, + { + "start": 20756.78, + "end": 20758.7, + "probability": 0.4557 + }, + { + "start": 20758.84, + "end": 20760.46, + "probability": 0.5988 + }, + { + "start": 20760.46, + "end": 20762.64, + "probability": 0.0801 + }, + { + "start": 20763.46, + "end": 20765.56, + "probability": 0.1322 + }, + { + "start": 20766.98, + "end": 20767.54, + "probability": 0.8435 + }, + { + "start": 20767.78, + "end": 20768.82, + "probability": 0.7759 + }, + { + "start": 20768.9, + "end": 20772.02, + "probability": 0.7129 + }, + { + "start": 20773.34, + "end": 20775.02, + "probability": 0.7538 + }, + { + "start": 20776.58, + "end": 20777.24, + "probability": 0.9292 + }, + { + "start": 20777.26, + "end": 20778.89, + "probability": 0.5796 + }, + { + "start": 20779.82, + "end": 20781.32, + "probability": 0.7192 + }, + { + "start": 20782.22, + "end": 20786.0, + "probability": 0.7592 + }, + { + "start": 20786.68, + "end": 20789.2, + "probability": 0.6291 + }, + { + "start": 20790.36, + "end": 20793.44, + "probability": 0.828 + }, + { + "start": 20794.06, + "end": 20794.98, + "probability": 0.8126 + }, + { + "start": 20795.72, + "end": 20796.7, + "probability": 0.7373 + }, + { + "start": 20797.46, + "end": 20799.9, + "probability": 0.5495 + }, + { + "start": 20801.36, + "end": 20802.02, + "probability": 0.8126 + }, + { + "start": 20802.7, + "end": 20806.06, + "probability": 0.874 + }, + { + "start": 20806.9, + "end": 20810.1, + "probability": 0.9961 + }, + { + "start": 20810.86, + "end": 20812.78, + "probability": 0.6978 + }, + { + "start": 20813.36, + "end": 20817.2, + "probability": 0.5902 + }, + { + "start": 20817.2, + "end": 20822.46, + "probability": 0.7246 + }, + { + "start": 20824.74, + "end": 20825.94, + "probability": 0.5866 + }, + { + "start": 20826.76, + "end": 20828.26, + "probability": 0.679 + }, + { + "start": 20829.76, + "end": 20830.8, + "probability": 0.7017 + }, + { + "start": 20831.9, + "end": 20832.56, + "probability": 0.6547 + }, + { + "start": 20835.36, + "end": 20836.34, + "probability": 0.7492 + }, + { + "start": 20837.08, + "end": 20837.8, + "probability": 0.5919 + }, + { + "start": 20838.42, + "end": 20840.32, + "probability": 0.8737 + }, + { + "start": 20841.08, + "end": 20841.8, + "probability": 0.789 + }, + { + "start": 20842.8, + "end": 20846.44, + "probability": 0.4993 + }, + { + "start": 20847.08, + "end": 20848.9, + "probability": 0.5174 + }, + { + "start": 20849.82, + "end": 20853.64, + "probability": 0.6605 + }, + { + "start": 20854.44, + "end": 20855.18, + "probability": 0.779 + }, + { + "start": 20855.98, + "end": 20856.66, + "probability": 0.8751 + }, + { + "start": 20857.68, + "end": 20858.04, + "probability": 0.9352 + }, + { + "start": 20858.7, + "end": 20861.9, + "probability": 0.7736 + }, + { + "start": 20862.0, + "end": 20862.88, + "probability": 0.6585 + }, + { + "start": 20863.6, + "end": 20864.44, + "probability": 0.5517 + }, + { + "start": 20865.28, + "end": 20866.06, + "probability": 0.5061 + }, + { + "start": 20866.86, + "end": 20868.66, + "probability": 0.7427 + }, + { + "start": 20869.36, + "end": 20869.96, + "probability": 0.359 + }, + { + "start": 20875.9, + "end": 20876.68, + "probability": 0.6766 + }, + { + "start": 20877.62, + "end": 20879.16, + "probability": 0.7468 + }, + { + "start": 20879.84, + "end": 20880.96, + "probability": 0.6725 + }, + { + "start": 20881.92, + "end": 20885.02, + "probability": 0.8473 + }, + { + "start": 20886.06, + "end": 20886.92, + "probability": 0.5877 + }, + { + "start": 20889.58, + "end": 20890.32, + "probability": 0.896 + }, + { + "start": 20901.46, + "end": 20902.07, + "probability": 0.8735 + }, + { + "start": 20903.14, + "end": 20904.44, + "probability": 0.4977 + }, + { + "start": 20905.56, + "end": 20906.76, + "probability": 0.9395 + }, + { + "start": 20907.64, + "end": 20909.06, + "probability": 0.9965 + }, + { + "start": 20909.54, + "end": 20911.1, + "probability": 0.9978 + }, + { + "start": 20915.18, + "end": 20918.46, + "probability": 0.1814 + }, + { + "start": 20920.5, + "end": 20923.1, + "probability": 0.1854 + }, + { + "start": 20923.2, + "end": 20923.46, + "probability": 0.8303 + }, + { + "start": 20923.52, + "end": 20924.04, + "probability": 0.9696 + }, + { + "start": 20924.26, + "end": 20925.56, + "probability": 0.0748 + }, + { + "start": 20925.72, + "end": 20926.64, + "probability": 0.6888 + }, + { + "start": 20926.64, + "end": 20926.88, + "probability": 0.1166 + }, + { + "start": 20927.0, + "end": 20928.92, + "probability": 0.4897 + }, + { + "start": 20929.48, + "end": 20930.08, + "probability": 0.391 + }, + { + "start": 20930.1, + "end": 20930.96, + "probability": 0.5059 + }, + { + "start": 20931.24, + "end": 20931.6, + "probability": 0.4355 + }, + { + "start": 20932.18, + "end": 20932.92, + "probability": 0.3515 + }, + { + "start": 20934.31, + "end": 20937.74, + "probability": 0.3141 + }, + { + "start": 20937.88, + "end": 20938.28, + "probability": 0.5419 + }, + { + "start": 20938.38, + "end": 20940.52, + "probability": 0.4008 + }, + { + "start": 20941.74, + "end": 20942.94, + "probability": 0.4364 + }, + { + "start": 20943.44, + "end": 20944.78, + "probability": 0.596 + }, + { + "start": 20945.44, + "end": 20946.56, + "probability": 0.5155 + }, + { + "start": 20946.62, + "end": 20948.3, + "probability": 0.6533 + }, + { + "start": 20948.36, + "end": 20950.42, + "probability": 0.9133 + }, + { + "start": 20952.78, + "end": 20953.66, + "probability": 0.9634 + }, + { + "start": 20954.28, + "end": 20955.87, + "probability": 0.9043 + }, + { + "start": 20957.0, + "end": 20958.1, + "probability": 0.8302 + }, + { + "start": 20958.78, + "end": 20961.52, + "probability": 0.9319 + }, + { + "start": 20970.1, + "end": 20971.0, + "probability": 0.6532 + }, + { + "start": 20972.0, + "end": 20972.46, + "probability": 0.7262 + }, + { + "start": 20973.54, + "end": 20974.06, + "probability": 0.9168 + }, + { + "start": 20975.68, + "end": 20977.3, + "probability": 0.9365 + }, + { + "start": 20978.44, + "end": 20979.78, + "probability": 0.9749 + }, + { + "start": 20980.34, + "end": 20982.28, + "probability": 0.9062 + }, + { + "start": 20983.94, + "end": 20986.38, + "probability": 0.9204 + }, + { + "start": 20987.28, + "end": 20988.18, + "probability": 0.5392 + }, + { + "start": 20988.96, + "end": 20989.78, + "probability": 0.5616 + }, + { + "start": 20990.48, + "end": 20992.93, + "probability": 0.5649 + }, + { + "start": 20993.64, + "end": 20996.4, + "probability": 0.9133 + }, + { + "start": 21000.76, + "end": 21001.78, + "probability": 0.8112 + }, + { + "start": 21002.98, + "end": 21004.4, + "probability": 0.8928 + }, + { + "start": 21005.58, + "end": 21006.76, + "probability": 0.8415 + }, + { + "start": 21008.12, + "end": 21010.64, + "probability": 0.8639 + }, + { + "start": 21016.6, + "end": 21017.54, + "probability": 0.8291 + }, + { + "start": 21018.24, + "end": 21019.38, + "probability": 0.521 + }, + { + "start": 21019.96, + "end": 21020.74, + "probability": 0.7969 + }, + { + "start": 21021.3, + "end": 21022.44, + "probability": 0.6386 + }, + { + "start": 21023.24, + "end": 21025.68, + "probability": 0.7124 + }, + { + "start": 21038.26, + "end": 21038.4, + "probability": 0.0099 + }, + { + "start": 21038.4, + "end": 21038.61, + "probability": 0.8779 + }, + { + "start": 21040.76, + "end": 21041.92, + "probability": 0.7171 + }, + { + "start": 21044.56, + "end": 21045.8, + "probability": 0.9224 + }, + { + "start": 21046.98, + "end": 21048.36, + "probability": 0.5885 + }, + { + "start": 21048.9, + "end": 21049.88, + "probability": 0.8259 + }, + { + "start": 21056.66, + "end": 21057.42, + "probability": 0.918 + }, + { + "start": 21058.14, + "end": 21061.02, + "probability": 0.7854 + }, + { + "start": 21062.12, + "end": 21063.68, + "probability": 0.896 + }, + { + "start": 21064.22, + "end": 21064.98, + "probability": 0.9768 + }, + { + "start": 21071.68, + "end": 21072.36, + "probability": 0.8596 + }, + { + "start": 21073.0, + "end": 21074.26, + "probability": 0.589 + }, + { + "start": 21075.54, + "end": 21076.06, + "probability": 0.7559 + }, + { + "start": 21076.48, + "end": 21077.88, + "probability": 0.864 + }, + { + "start": 21078.92, + "end": 21081.44, + "probability": 0.7822 + }, + { + "start": 21081.82, + "end": 21082.8, + "probability": 0.9882 + }, + { + "start": 21083.44, + "end": 21084.38, + "probability": 0.8765 + }, + { + "start": 21104.08, + "end": 21104.36, + "probability": 0.015 + }, + { + "start": 21104.36, + "end": 21105.32, + "probability": 0.749 + }, + { + "start": 21106.0, + "end": 21108.2, + "probability": 0.8611 + }, + { + "start": 21109.36, + "end": 21111.54, + "probability": 0.9512 + }, + { + "start": 21112.38, + "end": 21114.8, + "probability": 0.9008 + }, + { + "start": 21118.04, + "end": 21118.14, + "probability": 0.0964 + }, + { + "start": 21119.04, + "end": 21120.72, + "probability": 0.5381 + }, + { + "start": 21121.74, + "end": 21123.84, + "probability": 0.781 + }, + { + "start": 21136.38, + "end": 21137.56, + "probability": 0.8853 + }, + { + "start": 21138.24, + "end": 21139.92, + "probability": 0.7521 + }, + { + "start": 21141.48, + "end": 21142.96, + "probability": 0.9273 + }, + { + "start": 21143.84, + "end": 21145.76, + "probability": 0.9713 + }, + { + "start": 21152.18, + "end": 21152.88, + "probability": 0.8936 + }, + { + "start": 21153.94, + "end": 21154.89, + "probability": 0.5873 + }, + { + "start": 21155.48, + "end": 21156.9, + "probability": 0.8555 + }, + { + "start": 21157.7, + "end": 21158.2, + "probability": 0.9404 + }, + { + "start": 21159.26, + "end": 21159.98, + "probability": 0.9028 + }, + { + "start": 21160.62, + "end": 21162.52, + "probability": 0.9119 + }, + { + "start": 21163.26, + "end": 21163.6, + "probability": 0.929 + }, + { + "start": 21164.88, + "end": 21167.12, + "probability": 0.971 + }, + { + "start": 21176.44, + "end": 21177.34, + "probability": 0.8486 + }, + { + "start": 21178.3, + "end": 21179.5, + "probability": 0.8 + }, + { + "start": 21180.62, + "end": 21182.06, + "probability": 0.9673 + }, + { + "start": 21182.72, + "end": 21183.6, + "probability": 0.7734 + }, + { + "start": 21184.44, + "end": 21186.78, + "probability": 0.6915 + }, + { + "start": 21188.84, + "end": 21189.64, + "probability": 0.8464 + }, + { + "start": 21190.5, + "end": 21193.04, + "probability": 0.8491 + }, + { + "start": 21193.96, + "end": 21195.34, + "probability": 0.7539 + }, + { + "start": 21196.46, + "end": 21199.74, + "probability": 0.8674 + }, + { + "start": 21200.64, + "end": 21203.56, + "probability": 0.6599 + }, + { + "start": 21212.6, + "end": 21213.42, + "probability": 0.8274 + }, + { + "start": 21214.12, + "end": 21216.6, + "probability": 0.9943 + }, + { + "start": 21217.92, + "end": 21220.26, + "probability": 0.7866 + }, + { + "start": 21221.64, + "end": 21222.19, + "probability": 0.9763 + }, + { + "start": 21223.68, + "end": 21228.04, + "probability": 0.9521 + }, + { + "start": 21229.36, + "end": 21231.52, + "probability": 0.7934 + }, + { + "start": 21233.74, + "end": 21237.14, + "probability": 0.6599 + }, + { + "start": 21241.1, + "end": 21242.34, + "probability": 0.8604 + }, + { + "start": 21243.06, + "end": 21244.98, + "probability": 0.686 + }, + { + "start": 21246.62, + "end": 21248.88, + "probability": 0.882 + }, + { + "start": 21250.16, + "end": 21251.76, + "probability": 0.9902 + }, + { + "start": 21252.54, + "end": 21254.54, + "probability": 0.9888 + }, + { + "start": 21257.98, + "end": 21258.86, + "probability": 0.7781 + }, + { + "start": 21259.78, + "end": 21261.6, + "probability": 0.5375 + }, + { + "start": 21262.48, + "end": 21263.74, + "probability": 0.7229 + }, + { + "start": 21264.56, + "end": 21267.48, + "probability": 0.6162 + }, + { + "start": 21270.46, + "end": 21271.74, + "probability": 0.8015 + }, + { + "start": 21274.68, + "end": 21275.94, + "probability": 0.6592 + }, + { + "start": 21276.62, + "end": 21278.46, + "probability": 0.5338 + }, + { + "start": 21279.56, + "end": 21280.96, + "probability": 0.6621 + }, + { + "start": 21282.5, + "end": 21283.76, + "probability": 0.7638 + }, + { + "start": 21284.36, + "end": 21285.62, + "probability": 0.96 + }, + { + "start": 21287.12, + "end": 21289.1, + "probability": 0.777 + }, + { + "start": 21289.48, + "end": 21290.58, + "probability": 0.9556 + }, + { + "start": 21290.88, + "end": 21291.44, + "probability": 0.6491 + }, + { + "start": 21293.22, + "end": 21295.94, + "probability": 0.6916 + }, + { + "start": 21296.74, + "end": 21298.64, + "probability": 0.7624 + }, + { + "start": 21299.5, + "end": 21301.36, + "probability": 0.9481 + }, + { + "start": 21303.32, + "end": 21306.88, + "probability": 0.9474 + }, + { + "start": 21307.6, + "end": 21309.16, + "probability": 0.8372 + }, + { + "start": 21309.8, + "end": 21311.6, + "probability": 0.8311 + }, + { + "start": 21316.28, + "end": 21317.7, + "probability": 0.5363 + }, + { + "start": 21317.94, + "end": 21320.42, + "probability": 0.6606 + }, + { + "start": 21320.9, + "end": 21321.36, + "probability": 0.3563 + }, + { + "start": 21321.48, + "end": 21322.1, + "probability": 0.7197 + }, + { + "start": 21322.5, + "end": 21324.8, + "probability": 0.5994 + }, + { + "start": 21325.74, + "end": 21329.1, + "probability": 0.9939 + }, + { + "start": 21339.14, + "end": 21339.8, + "probability": 0.9204 + }, + { + "start": 21341.26, + "end": 21342.14, + "probability": 0.8666 + }, + { + "start": 21343.16, + "end": 21344.06, + "probability": 0.7982 + }, + { + "start": 21344.84, + "end": 21345.64, + "probability": 0.6969 + }, + { + "start": 21346.72, + "end": 21347.16, + "probability": 0.6263 + }, + { + "start": 21347.22, + "end": 21348.64, + "probability": 0.7045 + }, + { + "start": 21348.78, + "end": 21349.26, + "probability": 0.731 + }, + { + "start": 21349.38, + "end": 21349.88, + "probability": 0.8942 + }, + { + "start": 21349.96, + "end": 21350.46, + "probability": 0.9312 + }, + { + "start": 21350.52, + "end": 21351.04, + "probability": 0.8822 + }, + { + "start": 21351.14, + "end": 21351.54, + "probability": 0.7742 + }, + { + "start": 21351.58, + "end": 21352.88, + "probability": 0.5799 + }, + { + "start": 21353.4, + "end": 21353.72, + "probability": 0.8259 + }, + { + "start": 21354.56, + "end": 21355.68, + "probability": 0.7686 + }, + { + "start": 21356.54, + "end": 21357.26, + "probability": 0.8348 + }, + { + "start": 21357.8, + "end": 21359.72, + "probability": 0.8173 + }, + { + "start": 21360.36, + "end": 21361.04, + "probability": 0.3174 + }, + { + "start": 21361.04, + "end": 21362.28, + "probability": 0.7832 + }, + { + "start": 21363.38, + "end": 21365.5, + "probability": 0.4491 + }, + { + "start": 21365.92, + "end": 21367.12, + "probability": 0.6365 + }, + { + "start": 21367.82, + "end": 21368.94, + "probability": 0.9566 + }, + { + "start": 21369.6, + "end": 21370.72, + "probability": 0.7453 + }, + { + "start": 21371.32, + "end": 21372.28, + "probability": 0.9707 + }, + { + "start": 21372.78, + "end": 21374.84, + "probability": 0.9788 + }, + { + "start": 21374.84, + "end": 21376.22, + "probability": 0.9628 + }, + { + "start": 21389.16, + "end": 21390.7, + "probability": 0.7571 + }, + { + "start": 21391.34, + "end": 21392.1, + "probability": 0.7184 + }, + { + "start": 21395.12, + "end": 21396.76, + "probability": 0.2238 + }, + { + "start": 21397.12, + "end": 21398.18, + "probability": 0.8468 + }, + { + "start": 21398.36, + "end": 21399.94, + "probability": 0.8758 + }, + { + "start": 21400.86, + "end": 21401.97, + "probability": 0.6077 + }, + { + "start": 21402.14, + "end": 21403.95, + "probability": 0.8153 + }, + { + "start": 21405.3, + "end": 21407.06, + "probability": 0.8994 + }, + { + "start": 21407.82, + "end": 21409.34, + "probability": 0.8145 + }, + { + "start": 21409.56, + "end": 21410.94, + "probability": 0.6586 + }, + { + "start": 21411.62, + "end": 21413.12, + "probability": 0.7611 + }, + { + "start": 21414.84, + "end": 21416.36, + "probability": 0.7831 + }, + { + "start": 21416.76, + "end": 21418.3, + "probability": 0.6956 + }, + { + "start": 21418.88, + "end": 21420.28, + "probability": 0.4377 + }, + { + "start": 21420.34, + "end": 21422.68, + "probability": 0.6654 + }, + { + "start": 21431.36, + "end": 21432.09, + "probability": 0.6511 + }, + { + "start": 21435.28, + "end": 21436.48, + "probability": 0.8457 + }, + { + "start": 21437.58, + "end": 21438.32, + "probability": 0.1025 + }, + { + "start": 21445.74, + "end": 21446.46, + "probability": 0.5573 + }, + { + "start": 21448.98, + "end": 21452.22, + "probability": 0.3557 + }, + { + "start": 21452.76, + "end": 21454.74, + "probability": 0.7971 + }, + { + "start": 21455.28, + "end": 21455.52, + "probability": 0.5433 + }, + { + "start": 21456.14, + "end": 21458.26, + "probability": 0.707 + }, + { + "start": 21459.64, + "end": 21462.14, + "probability": 0.797 + }, + { + "start": 21463.08, + "end": 21464.58, + "probability": 0.0833 + }, + { + "start": 21465.78, + "end": 21466.94, + "probability": 0.5975 + }, + { + "start": 21467.79, + "end": 21473.76, + "probability": 0.52 + }, + { + "start": 21473.8, + "end": 21478.1, + "probability": 0.2077 + }, + { + "start": 21478.1, + "end": 21480.84, + "probability": 0.8208 + }, + { + "start": 21481.0, + "end": 21482.54, + "probability": 0.3962 + }, + { + "start": 21485.72, + "end": 21488.54, + "probability": 0.2712 + }, + { + "start": 21488.54, + "end": 21491.29, + "probability": 0.7017 + }, + { + "start": 21492.06, + "end": 21494.46, + "probability": 0.5222 + }, + { + "start": 21495.88, + "end": 21498.7, + "probability": 0.9459 + }, + { + "start": 21498.7, + "end": 21501.08, + "probability": 0.6907 + }, + { + "start": 21501.18, + "end": 21501.44, + "probability": 0.6948 + }, + { + "start": 21502.42, + "end": 21505.2, + "probability": 0.9097 + }, + { + "start": 21507.3, + "end": 21508.46, + "probability": 0.9319 + }, + { + "start": 21509.92, + "end": 21510.74, + "probability": 0.817 + }, + { + "start": 21511.76, + "end": 21512.94, + "probability": 0.0567 + }, + { + "start": 21513.46, + "end": 21515.14, + "probability": 0.8774 + }, + { + "start": 21515.42, + "end": 21518.66, + "probability": 0.4921 + }, + { + "start": 21519.62, + "end": 21523.52, + "probability": 0.5229 + }, + { + "start": 21530.38, + "end": 21534.24, + "probability": 0.4291 + }, + { + "start": 21534.66, + "end": 21535.44, + "probability": 0.0601 + }, + { + "start": 21535.6, + "end": 21536.68, + "probability": 0.4804 + }, + { + "start": 21536.8, + "end": 21540.64, + "probability": 0.3881 + }, + { + "start": 21542.52, + "end": 21543.94, + "probability": 0.1496 + }, + { + "start": 21544.54, + "end": 21544.96, + "probability": 0.0086 + }, + { + "start": 21546.1, + "end": 21547.9, + "probability": 0.6111 + }, + { + "start": 21549.04, + "end": 21550.3, + "probability": 0.6014 + }, + { + "start": 21551.46, + "end": 21553.74, + "probability": 0.7015 + }, + { + "start": 21553.76, + "end": 21554.46, + "probability": 0.4026 + }, + { + "start": 21555.22, + "end": 21557.48, + "probability": 0.5925 + }, + { + "start": 21557.82, + "end": 21561.28, + "probability": 0.7947 + }, + { + "start": 21562.52, + "end": 21564.16, + "probability": 0.6196 + }, + { + "start": 21566.78, + "end": 21567.82, + "probability": 0.8237 + }, + { + "start": 21568.82, + "end": 21571.26, + "probability": 0.828 + }, + { + "start": 21571.3, + "end": 21575.42, + "probability": 0.9224 + }, + { + "start": 21575.52, + "end": 21577.8, + "probability": 0.9176 + }, + { + "start": 21578.64, + "end": 21579.94, + "probability": 0.9811 + }, + { + "start": 21580.04, + "end": 21582.09, + "probability": 0.3119 + }, + { + "start": 21582.86, + "end": 21585.26, + "probability": 0.5762 + }, + { + "start": 21586.78, + "end": 21588.66, + "probability": 0.886 + }, + { + "start": 21589.48, + "end": 21591.26, + "probability": 0.6747 + }, + { + "start": 21592.06, + "end": 21594.08, + "probability": 0.949 + }, + { + "start": 21594.64, + "end": 21596.37, + "probability": 0.8486 + }, + { + "start": 21597.34, + "end": 21599.72, + "probability": 0.6532 + }, + { + "start": 21600.4, + "end": 21602.16, + "probability": 0.9598 + }, + { + "start": 21602.2, + "end": 21604.94, + "probability": 0.9192 + }, + { + "start": 21605.66, + "end": 21608.52, + "probability": 0.6939 + }, + { + "start": 21609.38, + "end": 21611.74, + "probability": 0.9434 + }, + { + "start": 21612.3, + "end": 21613.58, + "probability": 0.9853 + }, + { + "start": 21614.26, + "end": 21616.64, + "probability": 0.7415 + }, + { + "start": 21626.14, + "end": 21629.88, + "probability": 0.9578 + }, + { + "start": 21630.4, + "end": 21630.72, + "probability": 0.3179 + }, + { + "start": 21631.74, + "end": 21632.22, + "probability": 0.9113 + }, + { + "start": 21632.94, + "end": 21633.52, + "probability": 0.8898 + }, + { + "start": 21634.14, + "end": 21634.88, + "probability": 0.9052 + }, + { + "start": 21635.12, + "end": 21636.0, + "probability": 0.7325 + }, + { + "start": 21636.5, + "end": 21637.16, + "probability": 0.5472 + }, + { + "start": 21637.18, + "end": 21637.68, + "probability": 0.745 + }, + { + "start": 21637.76, + "end": 21638.42, + "probability": 0.9835 + }, + { + "start": 21638.78, + "end": 21639.3, + "probability": 0.5925 + }, + { + "start": 21639.44, + "end": 21640.6, + "probability": 0.7785 + }, + { + "start": 21641.22, + "end": 21643.78, + "probability": 0.6838 + }, + { + "start": 21644.42, + "end": 21645.34, + "probability": 0.7708 + }, + { + "start": 21645.4, + "end": 21649.06, + "probability": 0.697 + }, + { + "start": 21664.64, + "end": 21664.64, + "probability": 0.0041 + }, + { + "start": 21665.68, + "end": 21668.62, + "probability": 0.9352 + }, + { + "start": 21669.56, + "end": 21672.4, + "probability": 0.7805 + }, + { + "start": 21673.56, + "end": 21675.14, + "probability": 0.8472 + }, + { + "start": 21675.78, + "end": 21678.22, + "probability": 0.8859 + }, + { + "start": 21679.52, + "end": 21681.4, + "probability": 0.7557 + }, + { + "start": 21681.86, + "end": 21683.3, + "probability": 0.8782 + }, + { + "start": 21684.0, + "end": 21685.08, + "probability": 0.6219 + }, + { + "start": 21685.6, + "end": 21686.98, + "probability": 0.7819 + }, + { + "start": 21694.14, + "end": 21696.88, + "probability": 0.9113 + }, + { + "start": 21698.18, + "end": 21699.64, + "probability": 0.478 + }, + { + "start": 21699.82, + "end": 21700.64, + "probability": 0.5067 + }, + { + "start": 21701.46, + "end": 21703.34, + "probability": 0.6184 + }, + { + "start": 21703.8, + "end": 21705.22, + "probability": 0.6189 + }, + { + "start": 21705.54, + "end": 21706.92, + "probability": 0.7267 + }, + { + "start": 21707.48, + "end": 21709.12, + "probability": 0.3594 + }, + { + "start": 21709.78, + "end": 21710.18, + "probability": 0.239 + }, + { + "start": 21710.82, + "end": 21714.9, + "probability": 0.7313 + }, + { + "start": 21714.96, + "end": 21715.72, + "probability": 0.6778 + }, + { + "start": 21716.28, + "end": 21718.0, + "probability": 0.8113 + }, + { + "start": 21718.92, + "end": 21719.66, + "probability": 0.9001 + }, + { + "start": 21720.3, + "end": 21721.66, + "probability": 0.8809 + }, + { + "start": 21731.16, + "end": 21734.2, + "probability": 0.8496 + }, + { + "start": 21735.0, + "end": 21737.0, + "probability": 0.7903 + }, + { + "start": 21737.62, + "end": 21739.64, + "probability": 0.955 + }, + { + "start": 21740.38, + "end": 21740.94, + "probability": 0.9532 + }, + { + "start": 21742.44, + "end": 21745.16, + "probability": 0.5921 + }, + { + "start": 21745.24, + "end": 21745.62, + "probability": 0.5182 + }, + { + "start": 21747.32, + "end": 21749.56, + "probability": 0.8179 + }, + { + "start": 21750.38, + "end": 21750.7, + "probability": 0.371 + }, + { + "start": 21750.74, + "end": 21751.91, + "probability": 0.3212 + }, + { + "start": 21752.28, + "end": 21752.6, + "probability": 0.6378 + }, + { + "start": 21752.78, + "end": 21754.16, + "probability": 0.5987 + }, + { + "start": 21754.7, + "end": 21755.24, + "probability": 0.7458 + }, + { + "start": 21755.88, + "end": 21756.46, + "probability": 0.7769 + }, + { + "start": 21757.4, + "end": 21760.98, + "probability": 0.8141 + }, + { + "start": 21767.68, + "end": 21768.7, + "probability": 0.6431 + }, + { + "start": 21769.44, + "end": 21769.84, + "probability": 0.3158 + }, + { + "start": 21770.56, + "end": 21772.51, + "probability": 0.4141 + }, + { + "start": 21773.22, + "end": 21774.0, + "probability": 0.708 + }, + { + "start": 21775.44, + "end": 21776.48, + "probability": 0.6968 + }, + { + "start": 21777.34, + "end": 21779.66, + "probability": 0.8877 + }, + { + "start": 21780.76, + "end": 21783.06, + "probability": 0.9409 + }, + { + "start": 21783.84, + "end": 21785.86, + "probability": 0.7007 + }, + { + "start": 21787.98, + "end": 21790.72, + "probability": 0.1597 + }, + { + "start": 21793.1, + "end": 21793.72, + "probability": 0.7912 + }, + { + "start": 21795.3, + "end": 21796.34, + "probability": 0.7464 + }, + { + "start": 21797.66, + "end": 21800.86, + "probability": 0.8631 + }, + { + "start": 21802.08, + "end": 21804.36, + "probability": 0.9534 + }, + { + "start": 21805.86, + "end": 21807.8, + "probability": 0.9919 + }, + { + "start": 21808.78, + "end": 21810.38, + "probability": 0.682 + }, + { + "start": 21810.92, + "end": 21811.14, + "probability": 0.8013 + }, + { + "start": 21818.22, + "end": 21819.0, + "probability": 0.6967 + }, + { + "start": 21820.3, + "end": 21821.2, + "probability": 0.3384 + }, + { + "start": 21822.0, + "end": 21822.94, + "probability": 0.5261 + }, + { + "start": 21824.42, + "end": 21828.68, + "probability": 0.6265 + }, + { + "start": 21829.66, + "end": 21832.16, + "probability": 0.7667 + }, + { + "start": 21833.3, + "end": 21834.08, + "probability": 0.9898 + }, + { + "start": 21834.88, + "end": 21836.6, + "probability": 0.7673 + }, + { + "start": 21837.62, + "end": 21839.44, + "probability": 0.8862 + }, + { + "start": 21840.46, + "end": 21842.8, + "probability": 0.9766 + }, + { + "start": 21848.4, + "end": 21851.04, + "probability": 0.6082 + }, + { + "start": 21851.92, + "end": 21853.21, + "probability": 0.8812 + }, + { + "start": 21853.48, + "end": 21854.7, + "probability": 0.5799 + }, + { + "start": 21855.48, + "end": 21856.9, + "probability": 0.9517 + }, + { + "start": 21857.02, + "end": 21857.88, + "probability": 0.8583 + }, + { + "start": 21858.92, + "end": 21860.3, + "probability": 0.8888 + }, + { + "start": 21861.36, + "end": 21863.66, + "probability": 0.969 + }, + { + "start": 21868.06, + "end": 21869.68, + "probability": 0.545 + }, + { + "start": 21870.62, + "end": 21871.56, + "probability": 0.6866 + }, + { + "start": 21872.56, + "end": 21873.26, + "probability": 0.8436 + }, + { + "start": 21874.4, + "end": 21876.48, + "probability": 0.9735 + }, + { + "start": 21877.7, + "end": 21878.9, + "probability": 0.7455 + }, + { + "start": 21879.44, + "end": 21880.92, + "probability": 0.963 + }, + { + "start": 21881.5, + "end": 21881.9, + "probability": 0.8317 + }, + { + "start": 21884.78, + "end": 21888.0, + "probability": 0.81 + }, + { + "start": 21888.08, + "end": 21888.56, + "probability": 0.7953 + }, + { + "start": 21888.7, + "end": 21889.24, + "probability": 0.5465 + }, + { + "start": 21889.28, + "end": 21889.6, + "probability": 0.3095 + }, + { + "start": 21890.3, + "end": 21890.64, + "probability": 0.6622 + }, + { + "start": 21891.76, + "end": 21892.7, + "probability": 0.7484 + }, + { + "start": 21893.2, + "end": 21893.9, + "probability": 0.7431 + }, + { + "start": 21893.98, + "end": 21895.24, + "probability": 0.7875 + }, + { + "start": 21895.36, + "end": 21896.6, + "probability": 0.9884 + }, + { + "start": 21897.06, + "end": 21898.81, + "probability": 0.9517 + }, + { + "start": 21899.82, + "end": 21902.2, + "probability": 0.9385 + }, + { + "start": 21906.92, + "end": 21909.68, + "probability": 0.7256 + }, + { + "start": 21910.6, + "end": 21912.18, + "probability": 0.6677 + }, + { + "start": 21913.0, + "end": 21915.7, + "probability": 0.899 + }, + { + "start": 21916.8, + "end": 21918.58, + "probability": 0.9844 + }, + { + "start": 21918.78, + "end": 21919.8, + "probability": 0.6615 + }, + { + "start": 21920.7, + "end": 21923.28, + "probability": 0.6914 + }, + { + "start": 21925.24, + "end": 21927.63, + "probability": 0.6436 + }, + { + "start": 21928.62, + "end": 21931.28, + "probability": 0.9122 + }, + { + "start": 21931.92, + "end": 21933.58, + "probability": 0.5242 + }, + { + "start": 21934.42, + "end": 21935.56, + "probability": 0.7461 + }, + { + "start": 21936.44, + "end": 21937.54, + "probability": 0.8214 + }, + { + "start": 21938.14, + "end": 21939.68, + "probability": 0.9124 + }, + { + "start": 21948.02, + "end": 21950.42, + "probability": 0.8499 + }, + { + "start": 21951.06, + "end": 21951.64, + "probability": 0.4277 + }, + { + "start": 21952.32, + "end": 21953.72, + "probability": 0.9134 + }, + { + "start": 21954.08, + "end": 21955.44, + "probability": 0.7464 + }, + { + "start": 21956.48, + "end": 21956.74, + "probability": 0.5166 + }, + { + "start": 21957.3, + "end": 21958.6, + "probability": 0.8785 + }, + { + "start": 21959.24, + "end": 21960.5, + "probability": 0.6637 + }, + { + "start": 21961.4, + "end": 21963.2, + "probability": 0.585 + }, + { + "start": 21963.96, + "end": 21964.92, + "probability": 0.5899 + }, + { + "start": 21965.46, + "end": 21966.48, + "probability": 0.7495 + }, + { + "start": 21967.24, + "end": 21968.6, + "probability": 0.8353 + }, + { + "start": 21969.22, + "end": 21971.58, + "probability": 0.7843 + }, + { + "start": 21983.62, + "end": 21985.2, + "probability": 0.8327 + }, + { + "start": 21986.02, + "end": 21987.7, + "probability": 0.7212 + }, + { + "start": 21988.88, + "end": 21991.18, + "probability": 0.7629 + }, + { + "start": 21992.42, + "end": 21993.18, + "probability": 0.7904 + }, + { + "start": 21994.56, + "end": 21997.54, + "probability": 0.9124 + }, + { + "start": 22010.96, + "end": 22011.12, + "probability": 0.9468 + }, + { + "start": 22012.31, + "end": 22013.14, + "probability": 0.1553 + }, + { + "start": 22014.58, + "end": 22015.78, + "probability": 0.2074 + }, + { + "start": 22015.8, + "end": 22017.16, + "probability": 0.0737 + }, + { + "start": 22019.78, + "end": 22021.4, + "probability": 0.051 + }, + { + "start": 22029.26, + "end": 22035.62, + "probability": 0.0785 + }, + { + "start": 22036.4, + "end": 22037.66, + "probability": 0.028 + }, + { + "start": 22041.28, + "end": 22042.48, + "probability": 0.07 + }, + { + "start": 22043.32, + "end": 22044.36, + "probability": 0.042 + }, + { + "start": 22044.6, + "end": 22046.92, + "probability": 0.148 + }, + { + "start": 22046.92, + "end": 22048.96, + "probability": 0.0331 + }, + { + "start": 22057.42, + "end": 22059.1, + "probability": 0.0711 + }, + { + "start": 22061.4, + "end": 22063.98, + "probability": 0.0538 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.0, + "end": 22064.0, + "probability": 0.0 + }, + { + "start": 22064.68, + "end": 22064.86, + "probability": 0.0301 + }, + { + "start": 22064.86, + "end": 22064.86, + "probability": 0.1527 + }, + { + "start": 22064.86, + "end": 22064.86, + "probability": 0.0858 + }, + { + "start": 22064.86, + "end": 22064.86, + "probability": 0.1291 + }, + { + "start": 22064.86, + "end": 22064.86, + "probability": 0.0548 + }, + { + "start": 22064.86, + "end": 22065.21, + "probability": 0.1437 + }, + { + "start": 22066.6, + "end": 22067.64, + "probability": 0.6003 + }, + { + "start": 22068.36, + "end": 22069.54, + "probability": 0.7565 + }, + { + "start": 22070.42, + "end": 22071.48, + "probability": 0.8691 + }, + { + "start": 22085.5, + "end": 22087.94, + "probability": 0.4304 + }, + { + "start": 22093.68, + "end": 22097.6, + "probability": 0.0377 + }, + { + "start": 22099.12, + "end": 22100.81, + "probability": 0.1303 + }, + { + "start": 22101.78, + "end": 22105.4, + "probability": 0.1532 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.0, + "end": 22197.0, + "probability": 0.0 + }, + { + "start": 22197.14, + "end": 22198.08, + "probability": 0.2864 + }, + { + "start": 22199.28, + "end": 22201.56, + "probability": 0.5519 + }, + { + "start": 22201.84, + "end": 22205.52, + "probability": 0.9032 + }, + { + "start": 22206.36, + "end": 22208.64, + "probability": 0.9763 + }, + { + "start": 22208.64, + "end": 22211.88, + "probability": 0.8088 + }, + { + "start": 22213.64, + "end": 22216.94, + "probability": 0.8834 + }, + { + "start": 22217.04, + "end": 22218.45, + "probability": 0.4365 + }, + { + "start": 22219.22, + "end": 22220.0, + "probability": 0.5656 + }, + { + "start": 22220.68, + "end": 22222.14, + "probability": 0.7493 + }, + { + "start": 22224.0, + "end": 22225.8, + "probability": 0.8387 + }, + { + "start": 22226.12, + "end": 22227.44, + "probability": 0.5786 + }, + { + "start": 22227.58, + "end": 22229.64, + "probability": 0.5144 + }, + { + "start": 22230.2, + "end": 22231.04, + "probability": 0.4602 + }, + { + "start": 22231.22, + "end": 22232.28, + "probability": 0.7067 + }, + { + "start": 22234.92, + "end": 22236.18, + "probability": 0.8335 + }, + { + "start": 22236.92, + "end": 22240.78, + "probability": 0.9399 + }, + { + "start": 22241.5, + "end": 22244.86, + "probability": 0.8066 + }, + { + "start": 22245.08, + "end": 22247.86, + "probability": 0.9829 + }, + { + "start": 22248.48, + "end": 22250.14, + "probability": 0.8224 + }, + { + "start": 22251.16, + "end": 22252.08, + "probability": 0.8057 + }, + { + "start": 22252.26, + "end": 22255.12, + "probability": 0.6701 + }, + { + "start": 22255.6, + "end": 22256.83, + "probability": 0.9557 + }, + { + "start": 22257.6, + "end": 22259.16, + "probability": 0.9932 + }, + { + "start": 22260.22, + "end": 22261.16, + "probability": 0.6859 + }, + { + "start": 22263.46, + "end": 22264.42, + "probability": 0.9365 + }, + { + "start": 22265.5, + "end": 22266.08, + "probability": 0.7312 + }, + { + "start": 22267.18, + "end": 22268.87, + "probability": 0.7272 + }, + { + "start": 22269.02, + "end": 22269.84, + "probability": 0.8017 + }, + { + "start": 22269.86, + "end": 22270.72, + "probability": 0.5951 + }, + { + "start": 22270.96, + "end": 22271.52, + "probability": 0.0271 + }, + { + "start": 22272.16, + "end": 22273.66, + "probability": 0.7299 + }, + { + "start": 22273.88, + "end": 22274.78, + "probability": 0.8352 + }, + { + "start": 22275.48, + "end": 22276.28, + "probability": 0.9453 + }, + { + "start": 22279.06, + "end": 22281.24, + "probability": 0.8431 + }, + { + "start": 22282.3, + "end": 22283.56, + "probability": 0.9312 + }, + { + "start": 22283.68, + "end": 22286.88, + "probability": 0.0476 + }, + { + "start": 22286.88, + "end": 22290.12, + "probability": 0.6431 + }, + { + "start": 22290.84, + "end": 22292.86, + "probability": 0.6701 + }, + { + "start": 22306.06, + "end": 22306.72, + "probability": 0.8438 + }, + { + "start": 22308.36, + "end": 22308.88, + "probability": 0.9769 + }, + { + "start": 22312.24, + "end": 22312.82, + "probability": 0.9388 + }, + { + "start": 22314.52, + "end": 22314.96, + "probability": 0.8547 + }, + { + "start": 22317.1, + "end": 22317.9, + "probability": 0.9884 + }, + { + "start": 22324.34, + "end": 22327.36, + "probability": 0.9477 + }, + { + "start": 22328.44, + "end": 22328.88, + "probability": 0.3581 + }, + { + "start": 22330.02, + "end": 22331.4, + "probability": 0.8353 + }, + { + "start": 22332.32, + "end": 22334.38, + "probability": 0.8602 + }, + { + "start": 22336.34, + "end": 22338.7, + "probability": 0.9802 + }, + { + "start": 22339.32, + "end": 22341.1, + "probability": 0.7993 + }, + { + "start": 22342.36, + "end": 22344.26, + "probability": 0.7018 + }, + { + "start": 22345.36, + "end": 22346.98, + "probability": 0.7082 + }, + { + "start": 22347.26, + "end": 22347.68, + "probability": 0.6207 + }, + { + "start": 22348.62, + "end": 22349.06, + "probability": 0.9766 + }, + { + "start": 22349.64, + "end": 22350.5, + "probability": 0.9754 + }, + { + "start": 22351.2, + "end": 22353.24, + "probability": 0.9741 + }, + { + "start": 22353.98, + "end": 22356.88, + "probability": 0.8271 + }, + { + "start": 22357.42, + "end": 22358.44, + "probability": 0.8878 + }, + { + "start": 22359.02, + "end": 22359.92, + "probability": 0.6059 + }, + { + "start": 22360.76, + "end": 22361.58, + "probability": 0.9272 + }, + { + "start": 22362.2, + "end": 22365.08, + "probability": 0.9845 + }, + { + "start": 22365.6, + "end": 22367.44, + "probability": 0.8098 + }, + { + "start": 22368.16, + "end": 22368.84, + "probability": 0.9049 + }, + { + "start": 22369.2, + "end": 22370.42, + "probability": 0.7158 + }, + { + "start": 22370.68, + "end": 22371.98, + "probability": 0.8132 + }, + { + "start": 22372.38, + "end": 22373.1, + "probability": 0.6194 + }, + { + "start": 22373.58, + "end": 22374.24, + "probability": 0.9844 + }, + { + "start": 22374.84, + "end": 22376.02, + "probability": 0.9449 + }, + { + "start": 22376.56, + "end": 22377.08, + "probability": 0.6695 + }, + { + "start": 22377.92, + "end": 22379.06, + "probability": 0.569 + }, + { + "start": 22379.7, + "end": 22380.62, + "probability": 0.8582 + }, + { + "start": 22381.22, + "end": 22382.08, + "probability": 0.5654 + }, + { + "start": 22383.82, + "end": 22384.84, + "probability": 0.556 + }, + { + "start": 22389.75, + "end": 22391.99, + "probability": 0.9246 + }, + { + "start": 22393.58, + "end": 22394.29, + "probability": 0.9816 + }, + { + "start": 22396.56, + "end": 22397.36, + "probability": 0.9865 + }, + { + "start": 22397.6, + "end": 22398.24, + "probability": 0.9831 + }, + { + "start": 22398.68, + "end": 22399.66, + "probability": 0.8205 + }, + { + "start": 22400.62, + "end": 22402.13, + "probability": 0.9459 + }, + { + "start": 22403.02, + "end": 22404.06, + "probability": 0.9042 + }, + { + "start": 22404.88, + "end": 22406.24, + "probability": 0.8667 + }, + { + "start": 22406.8, + "end": 22407.88, + "probability": 0.7471 + }, + { + "start": 22408.62, + "end": 22409.66, + "probability": 0.9636 + }, + { + "start": 22410.6, + "end": 22411.62, + "probability": 0.976 + }, + { + "start": 22412.68, + "end": 22414.16, + "probability": 0.8017 + }, + { + "start": 22415.48, + "end": 22417.42, + "probability": 0.7192 + }, + { + "start": 22417.44, + "end": 22420.2, + "probability": 0.9819 + }, + { + "start": 22420.86, + "end": 22422.82, + "probability": 0.8886 + }, + { + "start": 22423.72, + "end": 22424.92, + "probability": 0.7127 + }, + { + "start": 22425.3, + "end": 22427.8, + "probability": 0.8315 + }, + { + "start": 22428.42, + "end": 22429.52, + "probability": 0.6793 + }, + { + "start": 22429.58, + "end": 22432.46, + "probability": 0.6694 + }, + { + "start": 22441.58, + "end": 22442.8, + "probability": 0.7086 + }, + { + "start": 22444.66, + "end": 22445.66, + "probability": 0.7205 + }, + { + "start": 22448.62, + "end": 22451.86, + "probability": 0.9771 + }, + { + "start": 22452.26, + "end": 22454.94, + "probability": 0.6896 + }, + { + "start": 22456.02, + "end": 22456.32, + "probability": 0.6838 + }, + { + "start": 22457.22, + "end": 22457.48, + "probability": 0.4962 + }, + { + "start": 22458.62, + "end": 22459.72, + "probability": 0.6217 + }, + { + "start": 22460.26, + "end": 22460.74, + "probability": 0.5579 + }, + { + "start": 22462.2, + "end": 22465.58, + "probability": 0.7704 + }, + { + "start": 22466.42, + "end": 22469.4, + "probability": 0.7834 + }, + { + "start": 22470.44, + "end": 22471.96, + "probability": 0.8878 + }, + { + "start": 22472.66, + "end": 22473.64, + "probability": 0.4801 + }, + { + "start": 22474.24, + "end": 22478.08, + "probability": 0.6721 + }, + { + "start": 22479.18, + "end": 22483.02, + "probability": 0.5186 + }, + { + "start": 22483.92, + "end": 22486.76, + "probability": 0.8884 + }, + { + "start": 22486.96, + "end": 22490.92, + "probability": 0.7035 + }, + { + "start": 22493.28, + "end": 22494.66, + "probability": 0.4949 + }, + { + "start": 22495.78, + "end": 22497.5, + "probability": 0.9964 + }, + { + "start": 22498.32, + "end": 22498.52, + "probability": 0.1477 + }, + { + "start": 22500.44, + "end": 22500.75, + "probability": 0.445 + }, + { + "start": 22501.02, + "end": 22501.8, + "probability": 0.8052 + }, + { + "start": 22502.26, + "end": 22503.86, + "probability": 0.9567 + }, + { + "start": 22505.04, + "end": 22507.92, + "probability": 0.5563 + }, + { + "start": 22516.38, + "end": 22519.58, + "probability": 0.7614 + }, + { + "start": 22519.58, + "end": 22523.0, + "probability": 0.9748 + }, + { + "start": 22523.48, + "end": 22527.58, + "probability": 0.8 + }, + { + "start": 22527.62, + "end": 22531.36, + "probability": 0.8701 + }, + { + "start": 22532.54, + "end": 22535.36, + "probability": 0.7774 + }, + { + "start": 22536.34, + "end": 22537.28, + "probability": 0.514 + }, + { + "start": 22538.84, + "end": 22539.12, + "probability": 0.641 + }, + { + "start": 22540.18, + "end": 22544.56, + "probability": 0.6553 + }, + { + "start": 22545.3, + "end": 22546.42, + "probability": 0.7517 + }, + { + "start": 22546.68, + "end": 22547.86, + "probability": 0.6517 + }, + { + "start": 22548.64, + "end": 22551.36, + "probability": 0.9319 + }, + { + "start": 22551.44, + "end": 22553.5, + "probability": 0.8096 + }, + { + "start": 22562.12, + "end": 22562.58, + "probability": 0.8907 + }, + { + "start": 22564.14, + "end": 22565.74, + "probability": 0.9705 + }, + { + "start": 22565.88, + "end": 22568.08, + "probability": 0.9717 + }, + { + "start": 22568.16, + "end": 22569.9, + "probability": 0.3224 + }, + { + "start": 22570.08, + "end": 22571.42, + "probability": 0.9196 + }, + { + "start": 22572.72, + "end": 22574.26, + "probability": 0.9282 + }, + { + "start": 22576.86, + "end": 22577.86, + "probability": 0.6858 + }, + { + "start": 22594.84, + "end": 22595.74, + "probability": 0.8759 + }, + { + "start": 22596.28, + "end": 22597.12, + "probability": 0.7556 + }, + { + "start": 22598.38, + "end": 22598.5, + "probability": 0.3265 + }, + { + "start": 22599.35, + "end": 22600.78, + "probability": 0.4182 + }, + { + "start": 22600.96, + "end": 22601.44, + "probability": 0.4203 + }, + { + "start": 22602.84, + "end": 22605.66, + "probability": 0.4212 + }, + { + "start": 22605.74, + "end": 22606.04, + "probability": 0.5461 + }, + { + "start": 22606.36, + "end": 22610.54, + "probability": 0.8379 + }, + { + "start": 22612.24, + "end": 22616.46, + "probability": 0.4863 + }, + { + "start": 22616.9, + "end": 22618.1, + "probability": 0.5919 + }, + { + "start": 22619.18, + "end": 22621.9, + "probability": 0.9489 + }, + { + "start": 22622.5, + "end": 22626.68, + "probability": 0.2964 + }, + { + "start": 22627.04, + "end": 22627.38, + "probability": 0.9271 + }, + { + "start": 22627.52, + "end": 22630.18, + "probability": 0.4022 + }, + { + "start": 22632.64, + "end": 22633.26, + "probability": 0.335 + }, + { + "start": 22640.66, + "end": 22641.78, + "probability": 0.7869 + }, + { + "start": 22642.0, + "end": 22644.78, + "probability": 0.939 + }, + { + "start": 22645.72, + "end": 22645.9, + "probability": 0.4637 + }, + { + "start": 22645.94, + "end": 22646.08, + "probability": 0.7414 + }, + { + "start": 22646.14, + "end": 22648.76, + "probability": 0.8741 + }, + { + "start": 22648.76, + "end": 22651.22, + "probability": 0.98 + }, + { + "start": 22652.18, + "end": 22652.7, + "probability": 0.7415 + }, + { + "start": 22656.0, + "end": 22656.76, + "probability": 0.602 + }, + { + "start": 22658.34, + "end": 22662.8, + "probability": 0.9487 + }, + { + "start": 22663.54, + "end": 22664.98, + "probability": 0.7562 + }, + { + "start": 22666.0, + "end": 22668.1, + "probability": 0.6393 + }, + { + "start": 22668.76, + "end": 22671.38, + "probability": 0.7793 + }, + { + "start": 22672.36, + "end": 22672.76, + "probability": 0.3111 + }, + { + "start": 22672.86, + "end": 22675.52, + "probability": 0.5814 + }, + { + "start": 22675.52, + "end": 22679.66, + "probability": 0.9036 + }, + { + "start": 22680.48, + "end": 22682.32, + "probability": 0.8874 + }, + { + "start": 22683.12, + "end": 22688.32, + "probability": 0.583 + }, + { + "start": 22688.82, + "end": 22690.84, + "probability": 0.6418 + }, + { + "start": 22691.46, + "end": 22692.4, + "probability": 0.5944 + }, + { + "start": 22692.52, + "end": 22693.0, + "probability": 0.7821 + }, + { + "start": 22693.06, + "end": 22694.1, + "probability": 0.7565 + }, + { + "start": 22694.18, + "end": 22694.7, + "probability": 0.558 + }, + { + "start": 22695.34, + "end": 22698.4, + "probability": 0.5091 + }, + { + "start": 22700.96, + "end": 22702.84, + "probability": 0.5843 + }, + { + "start": 22702.9, + "end": 22704.2, + "probability": 0.5126 + }, + { + "start": 22704.5, + "end": 22705.1, + "probability": 0.8918 + }, + { + "start": 22705.62, + "end": 22706.62, + "probability": 0.4157 + }, + { + "start": 22707.54, + "end": 22707.96, + "probability": 0.736 + }, + { + "start": 22707.98, + "end": 22708.68, + "probability": 0.9058 + }, + { + "start": 22708.82, + "end": 22709.1, + "probability": 0.5443 + }, + { + "start": 22709.2, + "end": 22709.74, + "probability": 0.8402 + }, + { + "start": 22710.14, + "end": 22710.78, + "probability": 0.7152 + }, + { + "start": 22710.82, + "end": 22711.28, + "probability": 0.6299 + }, + { + "start": 22711.58, + "end": 22712.1, + "probability": 0.2744 + }, + { + "start": 22712.1, + "end": 22715.5, + "probability": 0.6175 + }, + { + "start": 22716.32, + "end": 22717.46, + "probability": 0.5881 + }, + { + "start": 22717.58, + "end": 22721.5, + "probability": 0.3588 + }, + { + "start": 22722.88, + "end": 22725.5, + "probability": 0.9415 + }, + { + "start": 22726.18, + "end": 22728.82, + "probability": 0.5439 + }, + { + "start": 22729.72, + "end": 22730.7, + "probability": 0.3586 + }, + { + "start": 22731.2, + "end": 22731.78, + "probability": 0.4689 + }, + { + "start": 22731.84, + "end": 22732.2, + "probability": 0.7383 + }, + { + "start": 22732.78, + "end": 22733.5, + "probability": 0.3043 + }, + { + "start": 22734.12, + "end": 22736.62, + "probability": 0.6544 + }, + { + "start": 22737.5, + "end": 22737.9, + "probability": 0.2877 + }, + { + "start": 22737.9, + "end": 22741.18, + "probability": 0.6806 + }, + { + "start": 22741.88, + "end": 22744.34, + "probability": 0.7034 + }, + { + "start": 22745.0, + "end": 22745.94, + "probability": 0.4073 + }, + { + "start": 22746.08, + "end": 22749.22, + "probability": 0.5059 + }, + { + "start": 22749.82, + "end": 22753.4, + "probability": 0.6987 + }, + { + "start": 22756.76, + "end": 22760.1, + "probability": 0.7897 + }, + { + "start": 22760.62, + "end": 22762.28, + "probability": 0.4604 + }, + { + "start": 22762.94, + "end": 22765.32, + "probability": 0.4193 + }, + { + "start": 22765.78, + "end": 22767.5, + "probability": 0.3756 + }, + { + "start": 22768.8, + "end": 22770.7, + "probability": 0.5955 + }, + { + "start": 22770.94, + "end": 22771.82, + "probability": 0.9 + }, + { + "start": 22772.94, + "end": 22774.58, + "probability": 0.4806 + }, + { + "start": 22776.12, + "end": 22777.14, + "probability": 0.3428 + }, + { + "start": 22777.14, + "end": 22777.68, + "probability": 0.0038 + }, + { + "start": 22830.28, + "end": 22831.96, + "probability": 0.7993 + }, + { + "start": 22831.96, + "end": 22831.96, + "probability": 0.0425 + }, + { + "start": 22831.96, + "end": 22831.96, + "probability": 0.073 + }, + { + "start": 22831.96, + "end": 22834.38, + "probability": 0.0641 + }, + { + "start": 22835.34, + "end": 22838.14, + "probability": 0.0657 + }, + { + "start": 22841.14, + "end": 22841.14, + "probability": 0.3154 + }, + { + "start": 22843.66, + "end": 22845.52, + "probability": 0.1303 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.0, + "end": 23656.0, + "probability": 0.0 + }, + { + "start": 23656.18, + "end": 23656.86, + "probability": 0.5653 + }, + { + "start": 23658.26, + "end": 23659.18, + "probability": 0.9762 + }, + { + "start": 23660.86, + "end": 23661.65, + "probability": 0.9278 + }, + { + "start": 23663.26, + "end": 23663.48, + "probability": 0.6404 + }, + { + "start": 23664.26, + "end": 23665.48, + "probability": 0.5869 + }, + { + "start": 23666.38, + "end": 23666.86, + "probability": 0.5744 + }, + { + "start": 23670.7, + "end": 23671.58, + "probability": 0.9954 + }, + { + "start": 23673.74, + "end": 23674.78, + "probability": 0.9979 + }, + { + "start": 23676.88, + "end": 23678.74, + "probability": 0.7512 + }, + { + "start": 23680.56, + "end": 23681.24, + "probability": 0.7506 + }, + { + "start": 23683.08, + "end": 23683.94, + "probability": 0.9449 + }, + { + "start": 23685.4, + "end": 23686.22, + "probability": 0.9771 + }, + { + "start": 23688.88, + "end": 23689.9, + "probability": 0.8682 + }, + { + "start": 23693.22, + "end": 23694.02, + "probability": 0.9199 + }, + { + "start": 23699.88, + "end": 23700.72, + "probability": 0.0418 + }, + { + "start": 23700.86, + "end": 23703.44, + "probability": 0.7696 + }, + { + "start": 23704.14, + "end": 23704.4, + "probability": 0.9421 + }, + { + "start": 23706.02, + "end": 23707.2, + "probability": 0.6704 + }, + { + "start": 23710.38, + "end": 23714.53, + "probability": 0.9873 + }, + { + "start": 23715.06, + "end": 23716.26, + "probability": 0.9867 + }, + { + "start": 23717.1, + "end": 23717.4, + "probability": 0.968 + }, + { + "start": 23717.74, + "end": 23717.96, + "probability": 0.5458 + }, + { + "start": 23719.42, + "end": 23720.26, + "probability": 0.9866 + }, + { + "start": 23721.3, + "end": 23722.38, + "probability": 0.5699 + }, + { + "start": 23724.04, + "end": 23724.48, + "probability": 0.8312 + }, + { + "start": 23724.88, + "end": 23728.54, + "probability": 0.7441 + }, + { + "start": 23728.66, + "end": 23728.9, + "probability": 0.0704 + }, + { + "start": 23728.92, + "end": 23731.3, + "probability": 0.9337 + }, + { + "start": 23731.44, + "end": 23731.78, + "probability": 0.2911 + }, + { + "start": 23731.82, + "end": 23733.06, + "probability": 0.7194 + }, + { + "start": 23733.18, + "end": 23734.32, + "probability": 0.678 + }, + { + "start": 23734.32, + "end": 23734.32, + "probability": 0.592 + }, + { + "start": 23735.94, + "end": 23736.02, + "probability": 0.0245 + }, + { + "start": 23736.02, + "end": 23736.5, + "probability": 0.0028 + }, + { + "start": 23736.5, + "end": 23737.02, + "probability": 0.7668 + }, + { + "start": 23739.02, + "end": 23740.06, + "probability": 0.6001 + }, + { + "start": 23741.02, + "end": 23742.72, + "probability": 0.9661 + }, + { + "start": 23744.24, + "end": 23744.82, + "probability": 0.8382 + }, + { + "start": 23746.4, + "end": 23749.26, + "probability": 0.8702 + }, + { + "start": 23749.26, + "end": 23752.14, + "probability": 0.8675 + }, + { + "start": 23752.72, + "end": 23753.9, + "probability": 0.8469 + }, + { + "start": 23754.44, + "end": 23755.06, + "probability": 0.9764 + }, + { + "start": 23755.06, + "end": 23756.12, + "probability": 0.943 + }, + { + "start": 23759.6, + "end": 23764.03, + "probability": 0.9558 + }, + { + "start": 23767.54, + "end": 23768.3, + "probability": 0.6948 + }, + { + "start": 23768.42, + "end": 23769.4, + "probability": 0.7943 + }, + { + "start": 23770.0, + "end": 23770.32, + "probability": 0.1141 + }, + { + "start": 23770.54, + "end": 23772.88, + "probability": 0.8573 + }, + { + "start": 23772.88, + "end": 23772.88, + "probability": 0.3699 + }, + { + "start": 23772.88, + "end": 23773.76, + "probability": 0.526 + }, + { + "start": 23774.72, + "end": 23775.1, + "probability": 0.4278 + }, + { + "start": 23775.72, + "end": 23776.36, + "probability": 0.5379 + }, + { + "start": 23777.96, + "end": 23780.06, + "probability": 0.6118 + }, + { + "start": 23780.52, + "end": 23782.42, + "probability": 0.7802 + }, + { + "start": 23783.5, + "end": 23786.98, + "probability": 0.6076 + }, + { + "start": 23788.32, + "end": 23789.96, + "probability": 0.9905 + }, + { + "start": 23791.06, + "end": 23791.82, + "probability": 0.6039 + }, + { + "start": 23792.42, + "end": 23793.84, + "probability": 0.6519 + }, + { + "start": 23796.03, + "end": 23800.92, + "probability": 0.6733 + }, + { + "start": 23801.28, + "end": 23804.0, + "probability": 0.9369 + }, + { + "start": 23805.08, + "end": 23805.9, + "probability": 0.7401 + }, + { + "start": 23807.06, + "end": 23808.79, + "probability": 0.6188 + }, + { + "start": 23811.92, + "end": 23812.6, + "probability": 0.4142 + }, + { + "start": 23813.46, + "end": 23815.62, + "probability": 0.4989 + }, + { + "start": 23816.0, + "end": 23817.94, + "probability": 0.9185 + }, + { + "start": 23818.2, + "end": 23819.62, + "probability": 0.7189 + }, + { + "start": 23820.12, + "end": 23820.58, + "probability": 0.8157 + }, + { + "start": 23820.6, + "end": 23821.0, + "probability": 0.4018 + }, + { + "start": 23821.02, + "end": 23821.18, + "probability": 0.5778 + }, + { + "start": 23821.42, + "end": 23821.52, + "probability": 0.7505 + }, + { + "start": 23825.52, + "end": 23825.6, + "probability": 0.0574 + }, + { + "start": 23825.6, + "end": 23828.12, + "probability": 0.5327 + }, + { + "start": 23828.12, + "end": 23830.52, + "probability": 0.6846 + }, + { + "start": 23831.32, + "end": 23833.48, + "probability": 0.882 + }, + { + "start": 23834.18, + "end": 23835.66, + "probability": 0.5997 + }, + { + "start": 23836.78, + "end": 23838.36, + "probability": 0.4517 + }, + { + "start": 23838.46, + "end": 23840.02, + "probability": 0.359 + }, + { + "start": 23840.14, + "end": 23841.32, + "probability": 0.9128 + }, + { + "start": 23843.68, + "end": 23844.76, + "probability": 0.4919 + }, + { + "start": 23844.8, + "end": 23845.14, + "probability": 0.542 + }, + { + "start": 23845.14, + "end": 23846.68, + "probability": 0.6519 + }, + { + "start": 23846.72, + "end": 23848.12, + "probability": 0.6115 + }, + { + "start": 23849.32, + "end": 23851.14, + "probability": 0.8591 + }, + { + "start": 23851.2, + "end": 23853.22, + "probability": 0.6436 + }, + { + "start": 23853.8, + "end": 23855.74, + "probability": 0.9751 + }, + { + "start": 23855.92, + "end": 23858.76, + "probability": 0.8982 + }, + { + "start": 23859.72, + "end": 23863.0, + "probability": 0.7708 + }, + { + "start": 23864.36, + "end": 23866.14, + "probability": 0.8182 + }, + { + "start": 23866.26, + "end": 23870.12, + "probability": 0.444 + }, + { + "start": 23870.12, + "end": 23871.0, + "probability": 0.692 + }, + { + "start": 23871.96, + "end": 23873.98, + "probability": 0.5948 + }, + { + "start": 23873.98, + "end": 23877.38, + "probability": 0.7616 + }, + { + "start": 23877.38, + "end": 23878.1, + "probability": 0.6871 + }, + { + "start": 23879.08, + "end": 23879.52, + "probability": 0.6386 + }, + { + "start": 23897.16, + "end": 23897.52, + "probability": 0.1531 + }, + { + "start": 23906.08, + "end": 23908.76, + "probability": 0.4589 + }, + { + "start": 23909.88, + "end": 23911.84, + "probability": 0.7549 + }, + { + "start": 23912.72, + "end": 23914.22, + "probability": 0.5223 + }, + { + "start": 23915.3, + "end": 23919.06, + "probability": 0.6929 + }, + { + "start": 23919.64, + "end": 23921.66, + "probability": 0.6355 + }, + { + "start": 23921.8, + "end": 23923.74, + "probability": 0.7605 + }, + { + "start": 23924.34, + "end": 23925.22, + "probability": 0.5095 + }, + { + "start": 23926.34, + "end": 23927.2, + "probability": 0.647 + }, + { + "start": 23927.62, + "end": 23929.14, + "probability": 0.9154 + }, + { + "start": 23929.26, + "end": 23931.36, + "probability": 0.8041 + }, + { + "start": 23932.1, + "end": 23933.12, + "probability": 0.6008 + }, + { + "start": 23934.8, + "end": 23936.22, + "probability": 0.7676 + }, + { + "start": 23937.5, + "end": 23940.2, + "probability": 0.8529 + }, + { + "start": 23941.0, + "end": 23942.3, + "probability": 0.7035 + }, + { + "start": 23942.7, + "end": 23943.67, + "probability": 0.2889 + }, + { + "start": 23945.72, + "end": 23948.1, + "probability": 0.1431 + }, + { + "start": 23949.58, + "end": 23949.68, + "probability": 0.0617 + }, + { + "start": 23949.68, + "end": 23949.68, + "probability": 0.0577 + }, + { + "start": 23949.68, + "end": 23949.68, + "probability": 0.2123 + }, + { + "start": 23949.68, + "end": 23951.96, + "probability": 0.6522 + }, + { + "start": 23952.54, + "end": 23954.1, + "probability": 0.8203 + }, + { + "start": 23954.56, + "end": 23955.58, + "probability": 0.1065 + }, + { + "start": 23955.58, + "end": 23956.24, + "probability": 0.3824 + }, + { + "start": 23960.3, + "end": 23960.94, + "probability": 0.4527 + }, + { + "start": 23961.08, + "end": 23963.32, + "probability": 0.6963 + }, + { + "start": 23966.94, + "end": 23969.72, + "probability": 0.0854 + }, + { + "start": 23973.86, + "end": 23974.48, + "probability": 0.4397 + }, + { + "start": 23974.58, + "end": 23977.82, + "probability": 0.6043 + }, + { + "start": 23978.26, + "end": 23980.76, + "probability": 0.6603 + }, + { + "start": 23982.6, + "end": 23983.98, + "probability": 0.714 + }, + { + "start": 23984.84, + "end": 23988.92, + "probability": 0.6537 + }, + { + "start": 23989.6, + "end": 23992.72, + "probability": 0.6272 + }, + { + "start": 23993.42, + "end": 23995.18, + "probability": 0.7785 + }, + { + "start": 23995.92, + "end": 23996.4, + "probability": 0.8391 + }, + { + "start": 23996.46, + "end": 23997.54, + "probability": 0.688 + }, + { + "start": 23997.98, + "end": 23999.4, + "probability": 0.6744 + }, + { + "start": 24000.1, + "end": 24001.14, + "probability": 0.8984 + }, + { + "start": 24001.86, + "end": 24003.18, + "probability": 0.816 + }, + { + "start": 24003.26, + "end": 24004.26, + "probability": 0.9163 + }, + { + "start": 24004.26, + "end": 24004.36, + "probability": 0.6789 + }, + { + "start": 24005.22, + "end": 24005.88, + "probability": 0.3619 + }, + { + "start": 24006.06, + "end": 24008.48, + "probability": 0.5487 + }, + { + "start": 24008.76, + "end": 24011.56, + "probability": 0.9653 + }, + { + "start": 24012.7, + "end": 24012.7, + "probability": 0.6872 + }, + { + "start": 24013.2, + "end": 24014.02, + "probability": 0.8889 + }, + { + "start": 24014.36, + "end": 24016.24, + "probability": 0.6243 + }, + { + "start": 24017.02, + "end": 24017.94, + "probability": 0.0276 + }, + { + "start": 24018.12, + "end": 24019.32, + "probability": 0.8288 + }, + { + "start": 24019.42, + "end": 24021.19, + "probability": 0.8601 + }, + { + "start": 24025.48, + "end": 24026.58, + "probability": 0.5576 + }, + { + "start": 24028.76, + "end": 24030.67, + "probability": 0.7545 + }, + { + "start": 24030.96, + "end": 24031.5, + "probability": 0.2247 + }, + { + "start": 24032.14, + "end": 24033.08, + "probability": 0.5949 + }, + { + "start": 24033.08, + "end": 24033.42, + "probability": 0.4775 + }, + { + "start": 24033.46, + "end": 24034.16, + "probability": 0.6912 + }, + { + "start": 24034.16, + "end": 24034.5, + "probability": 0.3913 + }, + { + "start": 24034.62, + "end": 24035.08, + "probability": 0.5745 + }, + { + "start": 24036.56, + "end": 24036.92, + "probability": 0.7299 + }, + { + "start": 24044.34, + "end": 24044.48, + "probability": 0.3071 + }, + { + "start": 24044.66, + "end": 24046.18, + "probability": 0.6672 + }, + { + "start": 24046.28, + "end": 24046.44, + "probability": 0.0915 + }, + { + "start": 24046.62, + "end": 24048.0, + "probability": 0.528 + }, + { + "start": 24048.1, + "end": 24048.1, + "probability": 0.5568 + }, + { + "start": 24048.1, + "end": 24048.12, + "probability": 0.0123 + }, + { + "start": 24049.6, + "end": 24050.3, + "probability": 0.7407 + }, + { + "start": 24051.6, + "end": 24054.06, + "probability": 0.671 + }, + { + "start": 24054.94, + "end": 24055.48, + "probability": 0.015 + }, + { + "start": 24055.58, + "end": 24055.66, + "probability": 0.4244 + }, + { + "start": 24055.7, + "end": 24058.81, + "probability": 0.883 + }, + { + "start": 24059.66, + "end": 24059.94, + "probability": 0.957 + }, + { + "start": 24059.94, + "end": 24060.68, + "probability": 0.6761 + }, + { + "start": 24061.26, + "end": 24061.82, + "probability": 0.9499 + }, + { + "start": 24061.98, + "end": 24062.66, + "probability": 0.7083 + }, + { + "start": 24063.0, + "end": 24064.2, + "probability": 0.6948 + }, + { + "start": 24064.52, + "end": 24065.78, + "probability": 0.8959 + }, + { + "start": 24065.78, + "end": 24067.0, + "probability": 0.8149 + }, + { + "start": 24067.16, + "end": 24069.88, + "probability": 0.7866 + }, + { + "start": 24070.32, + "end": 24071.32, + "probability": 0.7077 + }, + { + "start": 24071.42, + "end": 24072.38, + "probability": 0.9602 + }, + { + "start": 24073.02, + "end": 24075.48, + "probability": 0.7188 + }, + { + "start": 24076.12, + "end": 24077.7, + "probability": 0.7764 + }, + { + "start": 24078.3, + "end": 24080.8, + "probability": 0.8186 + }, + { + "start": 24081.9, + "end": 24083.4, + "probability": 0.9272 + }, + { + "start": 24084.68, + "end": 24086.08, + "probability": 0.6594 + }, + { + "start": 24088.66, + "end": 24090.32, + "probability": 0.7086 + }, + { + "start": 24090.38, + "end": 24090.78, + "probability": 0.6313 + }, + { + "start": 24090.86, + "end": 24091.39, + "probability": 0.8159 + }, + { + "start": 24091.64, + "end": 24092.52, + "probability": 0.9475 + }, + { + "start": 24093.34, + "end": 24095.94, + "probability": 0.7444 + }, + { + "start": 24097.28, + "end": 24097.82, + "probability": 0.3806 + }, + { + "start": 24097.94, + "end": 24099.22, + "probability": 0.6949 + }, + { + "start": 24099.34, + "end": 24101.28, + "probability": 0.7216 + }, + { + "start": 24102.04, + "end": 24104.34, + "probability": 0.7094 + }, + { + "start": 24104.44, + "end": 24105.52, + "probability": 0.8494 + }, + { + "start": 24106.94, + "end": 24108.92, + "probability": 0.6046 + }, + { + "start": 24108.96, + "end": 24110.9, + "probability": 0.9662 + }, + { + "start": 24110.94, + "end": 24113.84, + "probability": 0.891 + }, + { + "start": 24115.0, + "end": 24115.64, + "probability": 0.6283 + }, + { + "start": 24115.7, + "end": 24118.1, + "probability": 0.7271 + }, + { + "start": 24120.58, + "end": 24120.86, + "probability": 0.4025 + }, + { + "start": 24120.92, + "end": 24124.4, + "probability": 0.6683 + }, + { + "start": 24125.48, + "end": 24127.56, + "probability": 0.8641 + }, + { + "start": 24128.1, + "end": 24129.9, + "probability": 0.6151 + }, + { + "start": 24130.1, + "end": 24130.88, + "probability": 0.7194 + }, + { + "start": 24131.62, + "end": 24134.4, + "probability": 0.7153 + }, + { + "start": 24134.92, + "end": 24135.2, + "probability": 0.3671 + }, + { + "start": 24136.38, + "end": 24138.5, + "probability": 0.7306 + }, + { + "start": 24138.5, + "end": 24141.0, + "probability": 0.8519 + }, + { + "start": 24141.72, + "end": 24142.82, + "probability": 0.9666 + }, + { + "start": 24143.96, + "end": 24145.96, + "probability": 0.9055 + }, + { + "start": 24146.68, + "end": 24148.28, + "probability": 0.9762 + }, + { + "start": 24148.74, + "end": 24149.02, + "probability": 0.9512 + }, + { + "start": 24149.06, + "end": 24150.96, + "probability": 0.6415 + }, + { + "start": 24151.84, + "end": 24152.74, + "probability": 0.8165 + }, + { + "start": 24153.2, + "end": 24154.98, + "probability": 0.8696 + }, + { + "start": 24156.02, + "end": 24157.8, + "probability": 0.5099 + }, + { + "start": 24157.86, + "end": 24158.94, + "probability": 0.7768 + }, + { + "start": 24159.88, + "end": 24160.32, + "probability": 0.8982 + }, + { + "start": 24160.42, + "end": 24161.66, + "probability": 0.9801 + }, + { + "start": 24161.72, + "end": 24163.76, + "probability": 0.8765 + }, + { + "start": 24164.22, + "end": 24165.6, + "probability": 0.8572 + }, + { + "start": 24167.96, + "end": 24170.2, + "probability": 0.6551 + }, + { + "start": 24170.3, + "end": 24170.78, + "probability": 0.5171 + }, + { + "start": 24171.58, + "end": 24172.22, + "probability": 0.9299 + }, + { + "start": 24173.72, + "end": 24174.08, + "probability": 0.8761 + }, + { + "start": 24174.48, + "end": 24174.92, + "probability": 0.686 + }, + { + "start": 24175.06, + "end": 24175.48, + "probability": 0.4462 + }, + { + "start": 24175.9, + "end": 24177.45, + "probability": 0.5627 + }, + { + "start": 24177.98, + "end": 24178.65, + "probability": 0.1004 + }, + { + "start": 24180.04, + "end": 24180.62, + "probability": 0.334 + }, + { + "start": 24180.74, + "end": 24181.61, + "probability": 0.5093 + }, + { + "start": 24182.32, + "end": 24183.9, + "probability": 0.3589 + }, + { + "start": 24184.64, + "end": 24185.32, + "probability": 0.5349 + }, + { + "start": 24185.86, + "end": 24187.48, + "probability": 0.9813 + }, + { + "start": 24188.84, + "end": 24189.66, + "probability": 0.5283 + }, + { + "start": 24190.1, + "end": 24190.2, + "probability": 0.3715 + }, + { + "start": 24190.36, + "end": 24191.16, + "probability": 0.6053 + }, + { + "start": 24191.34, + "end": 24192.96, + "probability": 0.711 + }, + { + "start": 24193.72, + "end": 24194.3, + "probability": 0.2741 + }, + { + "start": 24195.9, + "end": 24199.6, + "probability": 0.9082 + }, + { + "start": 24200.42, + "end": 24202.18, + "probability": 0.7844 + }, + { + "start": 24203.44, + "end": 24204.62, + "probability": 0.6481 + }, + { + "start": 24204.7, + "end": 24206.52, + "probability": 0.9197 + }, + { + "start": 24206.74, + "end": 24208.0, + "probability": 0.8767 + }, + { + "start": 24208.48, + "end": 24208.58, + "probability": 0.0929 + }, + { + "start": 24209.04, + "end": 24209.6, + "probability": 0.865 + }, + { + "start": 24210.66, + "end": 24213.38, + "probability": 0.0752 + }, + { + "start": 24213.92, + "end": 24214.14, + "probability": 0.0198 + }, + { + "start": 24214.48, + "end": 24216.16, + "probability": 0.524 + }, + { + "start": 24217.18, + "end": 24217.48, + "probability": 0.4911 + }, + { + "start": 24217.54, + "end": 24219.9, + "probability": 0.7296 + }, + { + "start": 24219.98, + "end": 24220.42, + "probability": 0.8224 + }, + { + "start": 24221.18, + "end": 24222.94, + "probability": 0.5601 + }, + { + "start": 24223.4, + "end": 24224.0, + "probability": 0.8157 + }, + { + "start": 24225.42, + "end": 24228.12, + "probability": 0.8616 + }, + { + "start": 24228.28, + "end": 24232.04, + "probability": 0.6158 + }, + { + "start": 24232.52, + "end": 24232.88, + "probability": 0.6456 + }, + { + "start": 24233.5, + "end": 24236.4, + "probability": 0.6555 + }, + { + "start": 24238.08, + "end": 24241.26, + "probability": 0.8055 + }, + { + "start": 24242.34, + "end": 24245.5, + "probability": 0.7798 + }, + { + "start": 24246.08, + "end": 24246.8, + "probability": 0.667 + }, + { + "start": 24246.86, + "end": 24248.94, + "probability": 0.9217 + }, + { + "start": 24249.72, + "end": 24251.12, + "probability": 0.6578 + }, + { + "start": 24251.38, + "end": 24251.74, + "probability": 0.7319 + }, + { + "start": 24252.52, + "end": 24255.32, + "probability": 0.7212 + }, + { + "start": 24255.4, + "end": 24258.86, + "probability": 0.7449 + }, + { + "start": 24259.48, + "end": 24261.92, + "probability": 0.7991 + }, + { + "start": 24262.5, + "end": 24264.68, + "probability": 0.6279 + }, + { + "start": 24265.3, + "end": 24267.51, + "probability": 0.6486 + }, + { + "start": 24268.38, + "end": 24270.06, + "probability": 0.4858 + }, + { + "start": 24271.56, + "end": 24272.42, + "probability": 0.3577 + }, + { + "start": 24272.82, + "end": 24274.32, + "probability": 0.8687 + }, + { + "start": 24277.56, + "end": 24278.1, + "probability": 0.5038 + }, + { + "start": 24278.7, + "end": 24279.94, + "probability": 0.5792 + }, + { + "start": 24280.4, + "end": 24280.98, + "probability": 0.701 + }, + { + "start": 24281.26, + "end": 24284.32, + "probability": 0.9141 + }, + { + "start": 24285.4, + "end": 24286.1, + "probability": 0.8642 + }, + { + "start": 24289.1, + "end": 24292.24, + "probability": 0.645 + }, + { + "start": 24292.24, + "end": 24293.88, + "probability": 0.4896 + }, + { + "start": 24294.86, + "end": 24295.48, + "probability": 0.7985 + }, + { + "start": 24295.86, + "end": 24296.2, + "probability": 0.4883 + }, + { + "start": 24296.44, + "end": 24296.86, + "probability": 0.8602 + }, + { + "start": 24298.72, + "end": 24299.77, + "probability": 0.5514 + }, + { + "start": 24302.48, + "end": 24305.92, + "probability": 0.6422 + }, + { + "start": 24307.12, + "end": 24308.38, + "probability": 0.6755 + }, + { + "start": 24309.26, + "end": 24310.18, + "probability": 0.4463 + }, + { + "start": 24311.22, + "end": 24315.6, + "probability": 0.7817 + }, + { + "start": 24315.7, + "end": 24316.22, + "probability": 0.9976 + }, + { + "start": 24317.86, + "end": 24318.52, + "probability": 0.9636 + }, + { + "start": 24319.1, + "end": 24320.64, + "probability": 0.6534 + }, + { + "start": 24320.72, + "end": 24320.94, + "probability": 0.7525 + }, + { + "start": 24321.0, + "end": 24321.56, + "probability": 0.5735 + }, + { + "start": 24321.68, + "end": 24322.46, + "probability": 0.8259 + }, + { + "start": 24322.78, + "end": 24323.72, + "probability": 0.6941 + }, + { + "start": 24324.02, + "end": 24324.18, + "probability": 0.1548 + }, + { + "start": 24324.18, + "end": 24326.0, + "probability": 0.901 + }, + { + "start": 24326.08, + "end": 24327.16, + "probability": 0.942 + }, + { + "start": 24327.28, + "end": 24328.26, + "probability": 0.7229 + }, + { + "start": 24328.28, + "end": 24329.74, + "probability": 0.5669 + }, + { + "start": 24330.26, + "end": 24331.72, + "probability": 0.1347 + }, + { + "start": 24332.26, + "end": 24333.04, + "probability": 0.8486 + }, + { + "start": 24333.12, + "end": 24335.42, + "probability": 0.8586 + }, + { + "start": 24335.42, + "end": 24337.5, + "probability": 0.6055 + }, + { + "start": 24338.08, + "end": 24339.18, + "probability": 0.0202 + }, + { + "start": 24339.52, + "end": 24339.52, + "probability": 0.0345 + }, + { + "start": 24339.52, + "end": 24340.56, + "probability": 0.3279 + }, + { + "start": 24341.32, + "end": 24342.4, + "probability": 0.281 + }, + { + "start": 24343.68, + "end": 24343.96, + "probability": 0.4285 + }, + { + "start": 24345.1, + "end": 24345.86, + "probability": 0.9282 + }, + { + "start": 24346.5, + "end": 24349.18, + "probability": 0.83 + }, + { + "start": 24354.56, + "end": 24357.22, + "probability": 0.1622 + }, + { + "start": 24357.44, + "end": 24357.76, + "probability": 0.4902 + }, + { + "start": 24358.0, + "end": 24358.0, + "probability": 0.2838 + }, + { + "start": 24358.0, + "end": 24359.98, + "probability": 0.6852 + }, + { + "start": 24360.62, + "end": 24361.79, + "probability": 0.9434 + }, + { + "start": 24361.88, + "end": 24364.42, + "probability": 0.9033 + }, + { + "start": 24364.7, + "end": 24366.94, + "probability": 0.5666 + }, + { + "start": 24366.94, + "end": 24368.12, + "probability": 0.3272 + }, + { + "start": 24368.18, + "end": 24369.0, + "probability": 0.7094 + }, + { + "start": 24369.26, + "end": 24369.8, + "probability": 0.401 + }, + { + "start": 24370.12, + "end": 24371.94, + "probability": 0.7107 + }, + { + "start": 24372.44, + "end": 24373.03, + "probability": 0.5054 + }, + { + "start": 24373.2, + "end": 24373.86, + "probability": 0.7529 + }, + { + "start": 24373.98, + "end": 24374.2, + "probability": 0.7728 + }, + { + "start": 24374.94, + "end": 24375.16, + "probability": 0.9621 + }, + { + "start": 24376.12, + "end": 24376.64, + "probability": 0.937 + }, + { + "start": 24377.12, + "end": 24379.34, + "probability": 0.0608 + }, + { + "start": 24379.48, + "end": 24380.4, + "probability": 0.6573 + }, + { + "start": 24380.94, + "end": 24382.5, + "probability": 0.95 + }, + { + "start": 24382.52, + "end": 24383.96, + "probability": 0.1944 + }, + { + "start": 24384.12, + "end": 24386.06, + "probability": 0.6391 + }, + { + "start": 24386.96, + "end": 24387.87, + "probability": 0.8634 + }, + { + "start": 24388.82, + "end": 24388.86, + "probability": 0.0727 + }, + { + "start": 24388.86, + "end": 24389.04, + "probability": 0.4329 + }, + { + "start": 24389.12, + "end": 24389.44, + "probability": 0.7887 + }, + { + "start": 24390.04, + "end": 24390.86, + "probability": 0.1322 + }, + { + "start": 24390.9, + "end": 24392.98, + "probability": 0.1197 + }, + { + "start": 24393.28, + "end": 24394.08, + "probability": 0.268 + }, + { + "start": 24394.8, + "end": 24395.19, + "probability": 0.4089 + }, + { + "start": 24396.58, + "end": 24398.36, + "probability": 0.4913 + }, + { + "start": 24398.78, + "end": 24403.44, + "probability": 0.7216 + }, + { + "start": 24404.62, + "end": 24407.64, + "probability": 0.555 + }, + { + "start": 24407.74, + "end": 24408.68, + "probability": 0.844 + }, + { + "start": 24409.94, + "end": 24411.5, + "probability": 0.7816 + }, + { + "start": 24411.6, + "end": 24412.94, + "probability": 0.7068 + }, + { + "start": 24413.06, + "end": 24413.36, + "probability": 0.5306 + }, + { + "start": 24413.72, + "end": 24414.58, + "probability": 0.0959 + }, + { + "start": 24414.58, + "end": 24415.18, + "probability": 0.2307 + }, + { + "start": 24415.24, + "end": 24415.9, + "probability": 0.7011 + }, + { + "start": 24416.32, + "end": 24416.98, + "probability": 0.9772 + }, + { + "start": 24417.28, + "end": 24417.84, + "probability": 0.5672 + }, + { + "start": 24417.98, + "end": 24418.44, + "probability": 0.7104 + }, + { + "start": 24418.46, + "end": 24418.7, + "probability": 0.8399 + }, + { + "start": 24418.84, + "end": 24419.58, + "probability": 0.5096 + }, + { + "start": 24419.74, + "end": 24424.62, + "probability": 0.4313 + }, + { + "start": 24424.7, + "end": 24425.64, + "probability": 0.6205 + }, + { + "start": 24425.92, + "end": 24428.1, + "probability": 0.9958 + }, + { + "start": 24428.24, + "end": 24431.94, + "probability": 0.9819 + }, + { + "start": 24431.98, + "end": 24434.1, + "probability": 0.9951 + }, + { + "start": 24434.62, + "end": 24435.6, + "probability": 0.066 + }, + { + "start": 24435.72, + "end": 24436.1, + "probability": 0.456 + }, + { + "start": 24436.1, + "end": 24437.2, + "probability": 0.893 + }, + { + "start": 24437.3, + "end": 24440.94, + "probability": 0.062 + }, + { + "start": 24441.82, + "end": 24442.8, + "probability": 0.6692 + }, + { + "start": 24443.02, + "end": 24443.04, + "probability": 0.0848 + }, + { + "start": 24443.04, + "end": 24444.68, + "probability": 0.6697 + }, + { + "start": 24445.1, + "end": 24446.02, + "probability": 0.3964 + }, + { + "start": 24446.08, + "end": 24447.28, + "probability": 0.4956 + }, + { + "start": 24448.84, + "end": 24452.21, + "probability": 0.4862 + }, + { + "start": 24453.22, + "end": 24455.48, + "probability": 0.9238 + }, + { + "start": 24456.14, + "end": 24457.1, + "probability": 0.8707 + }, + { + "start": 24458.78, + "end": 24460.3, + "probability": 0.6097 + }, + { + "start": 24460.84, + "end": 24461.84, + "probability": 0.5478 + }, + { + "start": 24462.38, + "end": 24463.1, + "probability": 0.0072 + }, + { + "start": 24463.1, + "end": 24463.89, + "probability": 0.3922 + }, + { + "start": 24464.66, + "end": 24464.7, + "probability": 0.1368 + }, + { + "start": 24464.7, + "end": 24465.63, + "probability": 0.9473 + }, + { + "start": 24466.04, + "end": 24466.04, + "probability": 0.1214 + }, + { + "start": 24466.04, + "end": 24468.1, + "probability": 0.9115 + }, + { + "start": 24468.48, + "end": 24469.58, + "probability": 0.8988 + }, + { + "start": 24472.84, + "end": 24473.14, + "probability": 0.0128 + }, + { + "start": 24473.14, + "end": 24473.34, + "probability": 0.1393 + }, + { + "start": 24473.7, + "end": 24474.44, + "probability": 0.0076 + }, + { + "start": 24474.44, + "end": 24474.86, + "probability": 0.3055 + }, + { + "start": 24475.08, + "end": 24475.56, + "probability": 0.0945 + }, + { + "start": 24475.66, + "end": 24478.84, + "probability": 0.7751 + }, + { + "start": 24478.84, + "end": 24480.12, + "probability": 0.8994 + }, + { + "start": 24480.12, + "end": 24481.42, + "probability": 0.5649 + }, + { + "start": 24481.42, + "end": 24483.3, + "probability": 0.0525 + }, + { + "start": 24483.88, + "end": 24489.16, + "probability": 0.705 + }, + { + "start": 24489.42, + "end": 24494.44, + "probability": 0.5571 + }, + { + "start": 24494.44, + "end": 24500.46, + "probability": 0.0206 + }, + { + "start": 24500.76, + "end": 24501.04, + "probability": 0.2099 + }, + { + "start": 24501.04, + "end": 24503.8, + "probability": 0.9368 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.0, + "end": 24532.0, + "probability": 0.0 + }, + { + "start": 24532.12, + "end": 24536.74, + "probability": 0.3901 + }, + { + "start": 24550.64, + "end": 24551.97, + "probability": 0.0481 + }, + { + "start": 24553.1, + "end": 24559.92, + "probability": 0.0258 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.0, + "end": 24660.0, + "probability": 0.0 + }, + { + "start": 24660.86, + "end": 24663.36, + "probability": 0.0595 + }, + { + "start": 24663.36, + "end": 24664.02, + "probability": 0.0518 + }, + { + "start": 24664.02, + "end": 24664.58, + "probability": 0.2668 + }, + { + "start": 24665.26, + "end": 24667.36, + "probability": 0.0558 + }, + { + "start": 24679.32, + "end": 24679.42, + "probability": 0.0364 + }, + { + "start": 24680.16, + "end": 24680.9, + "probability": 0.0103 + }, + { + "start": 24681.2, + "end": 24684.7, + "probability": 0.0263 + }, + { + "start": 24684.7, + "end": 24684.7, + "probability": 0.0956 + }, + { + "start": 24684.7, + "end": 24685.5, + "probability": 0.1965 + }, + { + "start": 24685.76, + "end": 24685.94, + "probability": 0.0194 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.0, + "end": 24788.0, + "probability": 0.0 + }, + { + "start": 24788.14, + "end": 24788.36, + "probability": 0.1734 + }, + { + "start": 24790.08, + "end": 24791.06, + "probability": 0.0849 + }, + { + "start": 24792.2, + "end": 24792.64, + "probability": 0.0399 + }, + { + "start": 24792.64, + "end": 24794.42, + "probability": 0.1504 + }, + { + "start": 24794.86, + "end": 24794.86, + "probability": 0.0339 + }, + { + "start": 24795.84, + "end": 24796.02, + "probability": 0.0353 + }, + { + "start": 24796.02, + "end": 24796.02, + "probability": 0.0815 + }, + { + "start": 24796.02, + "end": 24796.02, + "probability": 0.0904 + }, + { + "start": 24796.02, + "end": 24796.9, + "probability": 0.1525 + }, + { + "start": 24797.8, + "end": 24798.84, + "probability": 0.4711 + }, + { + "start": 24798.92, + "end": 24802.26, + "probability": 0.6499 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.0, + "end": 24911.0, + "probability": 0.0 + }, + { + "start": 24911.08, + "end": 24918.08, + "probability": 0.0381 + }, + { + "start": 24918.08, + "end": 24918.08, + "probability": 0.063 + }, + { + "start": 24918.26, + "end": 24920.23, + "probability": 0.1182 + }, + { + "start": 24921.42, + "end": 24921.77, + "probability": 0.17 + }, + { + "start": 24926.0, + "end": 24928.16, + "probability": 0.3727 + }, + { + "start": 24929.42, + "end": 24929.78, + "probability": 0.1622 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.0, + "end": 25055.0, + "probability": 0.0 + }, + { + "start": 25055.18, + "end": 25056.92, + "probability": 0.0884 + }, + { + "start": 25068.26, + "end": 25071.42, + "probability": 0.1003 + }, + { + "start": 25072.18, + "end": 25072.62, + "probability": 0.0495 + }, + { + "start": 25073.88, + "end": 25078.98, + "probability": 0.0231 + }, + { + "start": 25079.42, + "end": 25079.7, + "probability": 0.0096 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.0, + "end": 25182.0, + "probability": 0.0 + }, + { + "start": 25182.18, + "end": 25182.88, + "probability": 0.4046 + }, + { + "start": 25183.02, + "end": 25183.56, + "probability": 0.6704 + }, + { + "start": 25184.0, + "end": 25185.12, + "probability": 0.0097 + }, + { + "start": 25185.96, + "end": 25186.3, + "probability": 0.3727 + }, + { + "start": 25189.58, + "end": 25193.16, + "probability": 0.5 + }, + { + "start": 25193.5, + "end": 25197.78, + "probability": 0.6901 + }, + { + "start": 25198.06, + "end": 25200.03, + "probability": 0.7349 + }, + { + "start": 25200.52, + "end": 25201.74, + "probability": 0.0474 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.0, + "end": 25304.0, + "probability": 0.0 + }, + { + "start": 25304.5, + "end": 25304.62, + "probability": 0.0098 + }, + { + "start": 25304.68, + "end": 25306.35, + "probability": 0.146 + }, + { + "start": 25307.36, + "end": 25307.94, + "probability": 0.0141 + }, + { + "start": 25309.48, + "end": 25310.98, + "probability": 0.0631 + }, + { + "start": 25310.98, + "end": 25313.18, + "probability": 0.0517 + }, + { + "start": 25315.86, + "end": 25316.5, + "probability": 0.1351 + }, + { + "start": 25316.96, + "end": 25318.56, + "probability": 0.11 + }, + { + "start": 25318.56, + "end": 25320.26, + "probability": 0.0357 + }, + { + "start": 25322.2, + "end": 25322.88, + "probability": 0.2155 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.0, + "end": 25428.0, + "probability": 0.0 + }, + { + "start": 25428.1, + "end": 25428.8, + "probability": 0.063 + }, + { + "start": 25429.13, + "end": 25429.67, + "probability": 0.0466 + }, + { + "start": 25430.8, + "end": 25431.22, + "probability": 0.0121 + }, + { + "start": 25431.22, + "end": 25431.6, + "probability": 0.0555 + }, + { + "start": 25431.72, + "end": 25433.0, + "probability": 0.2143 + }, + { + "start": 25436.18, + "end": 25438.46, + "probability": 0.4198 + }, + { + "start": 25438.48, + "end": 25439.54, + "probability": 0.0929 + }, + { + "start": 25442.32, + "end": 25442.32, + "probability": 0.4586 + }, + { + "start": 25442.86, + "end": 25443.78, + "probability": 0.0239 + }, + { + "start": 25444.28, + "end": 25446.66, + "probability": 0.2217 + }, + { + "start": 25446.72, + "end": 25448.08, + "probability": 0.0346 + }, + { + "start": 25448.08, + "end": 25448.16, + "probability": 0.1976 + }, + { + "start": 25449.22, + "end": 25449.22, + "probability": 0.0809 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.0, + "end": 25550.0, + "probability": 0.0 + }, + { + "start": 25550.14, + "end": 25550.44, + "probability": 0.0171 + }, + { + "start": 25550.44, + "end": 25550.98, + "probability": 0.0172 + }, + { + "start": 25551.06, + "end": 25551.54, + "probability": 0.0947 + }, + { + "start": 25551.7, + "end": 25552.72, + "probability": 0.1873 + }, + { + "start": 25552.82, + "end": 25555.06, + "probability": 0.659 + }, + { + "start": 25555.12, + "end": 25558.34, + "probability": 0.7655 + }, + { + "start": 25558.44, + "end": 25559.7, + "probability": 0.9261 + }, + { + "start": 25559.7, + "end": 25560.46, + "probability": 0.9587 + }, + { + "start": 25560.46, + "end": 25560.74, + "probability": 0.6249 + }, + { + "start": 25560.78, + "end": 25561.64, + "probability": 0.9453 + }, + { + "start": 25562.06, + "end": 25562.66, + "probability": 0.2393 + }, + { + "start": 25562.76, + "end": 25565.46, + "probability": 0.5761 + }, + { + "start": 25565.58, + "end": 25566.55, + "probability": 0.6254 + }, + { + "start": 25567.22, + "end": 25568.12, + "probability": 0.4798 + }, + { + "start": 25568.14, + "end": 25570.26, + "probability": 0.6238 + }, + { + "start": 25570.26, + "end": 25570.86, + "probability": 0.8073 + }, + { + "start": 25571.04, + "end": 25572.78, + "probability": 0.7512 + }, + { + "start": 25573.38, + "end": 25573.97, + "probability": 0.2702 + }, + { + "start": 25575.28, + "end": 25576.2, + "probability": 0.3301 + }, + { + "start": 25576.2, + "end": 25578.08, + "probability": 0.1126 + }, + { + "start": 25578.76, + "end": 25578.96, + "probability": 0.17 + }, + { + "start": 25579.04, + "end": 25579.86, + "probability": 0.7209 + }, + { + "start": 25579.88, + "end": 25584.8, + "probability": 0.9595 + }, + { + "start": 25585.7, + "end": 25586.18, + "probability": 0.6358 + }, + { + "start": 25586.7, + "end": 25587.06, + "probability": 0.0943 + }, + { + "start": 25587.06, + "end": 25587.74, + "probability": 0.1124 + }, + { + "start": 25587.86, + "end": 25588.46, + "probability": 0.0149 + }, + { + "start": 25590.16, + "end": 25592.6, + "probability": 0.0591 + }, + { + "start": 25592.74, + "end": 25592.78, + "probability": 0.1758 + }, + { + "start": 25593.12, + "end": 25596.54, + "probability": 0.1443 + }, + { + "start": 25597.32, + "end": 25598.72, + "probability": 0.0455 + }, + { + "start": 25598.76, + "end": 25599.0, + "probability": 0.0348 + }, + { + "start": 25599.96, + "end": 25599.96, + "probability": 0.0459 + }, + { + "start": 25599.96, + "end": 25599.96, + "probability": 0.0215 + }, + { + "start": 25599.96, + "end": 25600.0, + "probability": 0.0627 + }, + { + "start": 25600.24, + "end": 25600.89, + "probability": 0.0125 + }, + { + "start": 25601.18, + "end": 25601.38, + "probability": 0.0643 + }, + { + "start": 25601.88, + "end": 25605.28, + "probability": 0.0356 + }, + { + "start": 25608.36, + "end": 25609.94, + "probability": 0.1145 + }, + { + "start": 25614.04, + "end": 25614.74, + "probability": 0.186 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.66, + "end": 25686.1, + "probability": 0.0332 + }, + { + "start": 25686.76, + "end": 25691.56, + "probability": 0.0934 + }, + { + "start": 25697.34, + "end": 25699.36, + "probability": 0.2367 + }, + { + "start": 25701.26, + "end": 25705.54, + "probability": 0.1228 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.0, + "end": 25822.0, + "probability": 0.0 + }, + { + "start": 25822.1, + "end": 25826.4, + "probability": 0.3585 + }, + { + "start": 25826.46, + "end": 25828.16, + "probability": 0.3369 + }, + { + "start": 25828.3, + "end": 25829.28, + "probability": 0.3655 + }, + { + "start": 25829.48, + "end": 25831.74, + "probability": 0.6235 + }, + { + "start": 25831.8, + "end": 25832.76, + "probability": 0.6723 + }, + { + "start": 25833.96, + "end": 25836.82, + "probability": 0.923 + }, + { + "start": 25836.82, + "end": 25838.2, + "probability": 0.1319 + }, + { + "start": 25838.46, + "end": 25840.72, + "probability": 0.5034 + }, + { + "start": 25841.06, + "end": 25842.82, + "probability": 0.9353 + }, + { + "start": 25842.98, + "end": 25845.72, + "probability": 0.4476 + }, + { + "start": 25854.46, + "end": 25857.26, + "probability": 0.5128 + }, + { + "start": 25857.84, + "end": 25858.42, + "probability": 0.4278 + }, + { + "start": 25858.56, + "end": 25858.97, + "probability": 0.7002 + }, + { + "start": 25859.38, + "end": 25860.06, + "probability": 0.7805 + }, + { + "start": 25860.34, + "end": 25860.72, + "probability": 0.7526 + }, + { + "start": 25860.82, + "end": 25862.24, + "probability": 0.7717 + }, + { + "start": 25863.04, + "end": 25863.54, + "probability": 0.611 + }, + { + "start": 25864.18, + "end": 25865.42, + "probability": 0.873 + }, + { + "start": 25865.5, + "end": 25866.5, + "probability": 0.5416 + }, + { + "start": 25867.16, + "end": 25867.96, + "probability": 0.6601 + }, + { + "start": 25868.12, + "end": 25869.1, + "probability": 0.3518 + }, + { + "start": 25869.3, + "end": 25870.24, + "probability": 0.9799 + }, + { + "start": 25871.9, + "end": 25872.16, + "probability": 0.1703 + }, + { + "start": 25872.16, + "end": 25872.16, + "probability": 0.1252 + }, + { + "start": 25872.16, + "end": 25873.28, + "probability": 0.8855 + }, + { + "start": 25874.14, + "end": 25876.76, + "probability": 0.8887 + }, + { + "start": 25876.76, + "end": 25877.2, + "probability": 0.0098 + }, + { + "start": 25877.24, + "end": 25879.12, + "probability": 0.5161 + }, + { + "start": 25879.48, + "end": 25879.96, + "probability": 0.7297 + }, + { + "start": 25879.98, + "end": 25882.24, + "probability": 0.6855 + }, + { + "start": 25882.34, + "end": 25882.56, + "probability": 0.7639 + }, + { + "start": 25882.66, + "end": 25884.06, + "probability": 0.521 + }, + { + "start": 25884.08, + "end": 25884.38, + "probability": 0.3386 + }, + { + "start": 25884.48, + "end": 25886.28, + "probability": 0.8124 + }, + { + "start": 25886.56, + "end": 25887.84, + "probability": 0.9226 + }, + { + "start": 25887.84, + "end": 25890.0, + "probability": 0.9103 + }, + { + "start": 25890.12, + "end": 25892.28, + "probability": 0.7045 + }, + { + "start": 25892.42, + "end": 25893.06, + "probability": 0.7472 + }, + { + "start": 25893.12, + "end": 25894.4, + "probability": 0.8514 + }, + { + "start": 25894.48, + "end": 25895.46, + "probability": 0.6404 + }, + { + "start": 25895.54, + "end": 25895.94, + "probability": 0.7547 + }, + { + "start": 25896.02, + "end": 25897.6, + "probability": 0.2087 + }, + { + "start": 25897.86, + "end": 25898.62, + "probability": 0.5625 + }, + { + "start": 25898.62, + "end": 25899.26, + "probability": 0.0129 + }, + { + "start": 25899.68, + "end": 25902.7, + "probability": 0.8148 + }, + { + "start": 25903.86, + "end": 25905.66, + "probability": 0.544 + }, + { + "start": 25905.66, + "end": 25907.36, + "probability": 0.4671 + }, + { + "start": 25909.2, + "end": 25909.32, + "probability": 0.1557 + }, + { + "start": 25909.36, + "end": 25909.85, + "probability": 0.8494 + }, + { + "start": 25910.8, + "end": 25914.84, + "probability": 0.773 + }, + { + "start": 25915.02, + "end": 25917.72, + "probability": 0.7014 + }, + { + "start": 25918.34, + "end": 25921.18, + "probability": 0.574 + }, + { + "start": 25922.77, + "end": 25925.66, + "probability": 0.3023 + }, + { + "start": 25925.66, + "end": 25925.66, + "probability": 0.1944 + }, + { + "start": 25925.66, + "end": 25926.48, + "probability": 0.2184 + }, + { + "start": 25926.72, + "end": 25928.42, + "probability": 0.5327 + }, + { + "start": 25928.92, + "end": 25930.98, + "probability": 0.5938 + }, + { + "start": 25930.98, + "end": 25931.62, + "probability": 0.3885 + }, + { + "start": 25932.62, + "end": 25933.66, + "probability": 0.6026 + }, + { + "start": 25934.06, + "end": 25934.46, + "probability": 0.5316 + }, + { + "start": 25934.46, + "end": 25936.82, + "probability": 0.0521 + }, + { + "start": 25937.5, + "end": 25938.9, + "probability": 0.2228 + }, + { + "start": 25938.9, + "end": 25939.74, + "probability": 0.3153 + }, + { + "start": 25941.64, + "end": 25941.66, + "probability": 0.0283 + }, + { + "start": 25941.66, + "end": 25946.26, + "probability": 0.123 + }, + { + "start": 25947.87, + "end": 25951.62, + "probability": 0.6923 + }, + { + "start": 25952.36, + "end": 25952.9, + "probability": 0.3939 + }, + { + "start": 25953.32, + "end": 25954.98, + "probability": 0.4064 + }, + { + "start": 25956.7, + "end": 25958.0, + "probability": 0.3639 + }, + { + "start": 25958.28, + "end": 25959.46, + "probability": 0.1574 + }, + { + "start": 25961.15, + "end": 25963.34, + "probability": 0.4204 + }, + { + "start": 25964.32, + "end": 25966.54, + "probability": 0.2292 + }, + { + "start": 25966.72, + "end": 25968.62, + "probability": 0.5222 + }, + { + "start": 25968.62, + "end": 25972.24, + "probability": 0.7296 + }, + { + "start": 25972.32, + "end": 25973.84, + "probability": 0.6152 + }, + { + "start": 25974.96, + "end": 25975.96, + "probability": 0.9666 + }, + { + "start": 25978.16, + "end": 25978.18, + "probability": 0.2877 + }, + { + "start": 25978.18, + "end": 25978.92, + "probability": 0.0165 + }, + { + "start": 25979.8, + "end": 25981.3, + "probability": 0.6431 + }, + { + "start": 25981.4, + "end": 25982.68, + "probability": 0.6468 + }, + { + "start": 25982.76, + "end": 25983.94, + "probability": 0.5191 + }, + { + "start": 25984.08, + "end": 25985.94, + "probability": 0.1605 + }, + { + "start": 25986.0, + "end": 25986.52, + "probability": 0.7109 + }, + { + "start": 25986.9, + "end": 25987.74, + "probability": 0.8856 + }, + { + "start": 25987.86, + "end": 25988.54, + "probability": 0.1548 + }, + { + "start": 25988.88, + "end": 25989.42, + "probability": 0.2183 + }, + { + "start": 25989.56, + "end": 25990.54, + "probability": 0.674 + }, + { + "start": 25991.62, + "end": 25996.7, + "probability": 0.446 + }, + { + "start": 25998.04, + "end": 25999.96, + "probability": 0.5328 + }, + { + "start": 26000.2, + "end": 26001.56, + "probability": 0.8912 + }, + { + "start": 26002.74, + "end": 26003.24, + "probability": 0.7687 + }, + { + "start": 26003.54, + "end": 26003.72, + "probability": 0.7657 + }, + { + "start": 26003.9, + "end": 26004.77, + "probability": 0.3795 + }, + { + "start": 26005.04, + "end": 26005.04, + "probability": 0.0263 + }, + { + "start": 26006.86, + "end": 26008.62, + "probability": 0.1206 + }, + { + "start": 26008.68, + "end": 26008.8, + "probability": 0.1471 + }, + { + "start": 26008.8, + "end": 26010.16, + "probability": 0.6066 + }, + { + "start": 26010.26, + "end": 26012.72, + "probability": 0.8756 + }, + { + "start": 26013.56, + "end": 26015.42, + "probability": 0.2043 + }, + { + "start": 26016.12, + "end": 26017.26, + "probability": 0.0041 + }, + { + "start": 26019.12, + "end": 26020.42, + "probability": 0.6432 + }, + { + "start": 26020.7, + "end": 26022.02, + "probability": 0.657 + }, + { + "start": 26023.34, + "end": 26023.94, + "probability": 0.6376 + }, + { + "start": 26024.08, + "end": 26025.16, + "probability": 0.6973 + }, + { + "start": 26025.16, + "end": 26027.72, + "probability": 0.8682 + }, + { + "start": 26027.78, + "end": 26028.18, + "probability": 0.97 + }, + { + "start": 26028.28, + "end": 26030.5, + "probability": 0.5122 + }, + { + "start": 26031.22, + "end": 26033.66, + "probability": 0.7043 + }, + { + "start": 26034.26, + "end": 26036.08, + "probability": 0.6189 + }, + { + "start": 26036.16, + "end": 26037.34, + "probability": 0.6043 + }, + { + "start": 26037.96, + "end": 26040.42, + "probability": 0.8211 + }, + { + "start": 26040.42, + "end": 26040.58, + "probability": 0.1484 + }, + { + "start": 26040.88, + "end": 26042.12, + "probability": 0.3861 + }, + { + "start": 26044.28, + "end": 26044.3, + "probability": 0.046 + }, + { + "start": 26044.3, + "end": 26045.24, + "probability": 0.6054 + }, + { + "start": 26045.4, + "end": 26047.32, + "probability": 0.5961 + }, + { + "start": 26047.5, + "end": 26048.64, + "probability": 0.5832 + }, + { + "start": 26049.42, + "end": 26049.62, + "probability": 0.5292 + }, + { + "start": 26054.04, + "end": 26056.74, + "probability": 0.1656 + }, + { + "start": 26057.04, + "end": 26061.1, + "probability": 0.6557 + }, + { + "start": 26061.16, + "end": 26062.14, + "probability": 0.508 + }, + { + "start": 26062.16, + "end": 26063.12, + "probability": 0.5407 + }, + { + "start": 26063.15, + "end": 26065.0, + "probability": 0.7267 + }, + { + "start": 26065.06, + "end": 26065.62, + "probability": 0.623 + }, + { + "start": 26065.68, + "end": 26068.14, + "probability": 0.2321 + }, + { + "start": 26068.24, + "end": 26069.33, + "probability": 0.769 + }, + { + "start": 26069.96, + "end": 26074.18, + "probability": 0.7927 + }, + { + "start": 26074.2, + "end": 26075.08, + "probability": 0.6902 + }, + { + "start": 26075.48, + "end": 26076.26, + "probability": 0.7903 + }, + { + "start": 26076.32, + "end": 26077.48, + "probability": 0.4603 + }, + { + "start": 26077.56, + "end": 26078.13, + "probability": 0.554 + }, + { + "start": 26078.48, + "end": 26078.98, + "probability": 0.2409 + }, + { + "start": 26079.54, + "end": 26085.04, + "probability": 0.4696 + }, + { + "start": 26085.4, + "end": 26090.62, + "probability": 0.584 + }, + { + "start": 26091.1, + "end": 26093.32, + "probability": 0.4917 + }, + { + "start": 26093.84, + "end": 26094.16, + "probability": 0.2431 + }, + { + "start": 26095.64, + "end": 26099.1, + "probability": 0.9658 + }, + { + "start": 26099.3, + "end": 26099.68, + "probability": 0.8821 + }, + { + "start": 26099.96, + "end": 26100.59, + "probability": 0.6367 + }, + { + "start": 26100.66, + "end": 26106.16, + "probability": 0.4294 + }, + { + "start": 26107.54, + "end": 26108.98, + "probability": 0.7969 + }, + { + "start": 26109.04, + "end": 26109.64, + "probability": 0.6911 + }, + { + "start": 26109.82, + "end": 26110.64, + "probability": 0.3462 + }, + { + "start": 26110.98, + "end": 26111.48, + "probability": 0.2102 + }, + { + "start": 26111.92, + "end": 26114.36, + "probability": 0.6255 + }, + { + "start": 26114.6, + "end": 26115.12, + "probability": 0.4343 + }, + { + "start": 26115.22, + "end": 26116.3, + "probability": 0.646 + }, + { + "start": 26116.72, + "end": 26117.69, + "probability": 0.532 + }, + { + "start": 26118.0, + "end": 26119.36, + "probability": 0.6375 + }, + { + "start": 26119.92, + "end": 26120.88, + "probability": 0.7011 + }, + { + "start": 26121.18, + "end": 26124.18, + "probability": 0.6646 + }, + { + "start": 26125.26, + "end": 26127.08, + "probability": 0.3645 + }, + { + "start": 26127.2, + "end": 26129.42, + "probability": 0.2362 + }, + { + "start": 26129.86, + "end": 26132.18, + "probability": 0.297 + }, + { + "start": 26132.24, + "end": 26133.08, + "probability": 0.4647 + }, + { + "start": 26133.62, + "end": 26137.72, + "probability": 0.1814 + }, + { + "start": 26138.3, + "end": 26138.82, + "probability": 0.2495 + }, + { + "start": 26139.53, + "end": 26142.86, + "probability": 0.0407 + }, + { + "start": 26143.2, + "end": 26143.56, + "probability": 0.7307 + }, + { + "start": 26143.64, + "end": 26144.92, + "probability": 0.9141 + }, + { + "start": 26144.94, + "end": 26152.2, + "probability": 0.781 + }, + { + "start": 26153.51, + "end": 26156.62, + "probability": 0.4229 + }, + { + "start": 26157.18, + "end": 26159.63, + "probability": 0.2955 + }, + { + "start": 26160.34, + "end": 26165.21, + "probability": 0.5104 + }, + { + "start": 26165.5, + "end": 26167.92, + "probability": 0.1681 + }, + { + "start": 26169.72, + "end": 26170.84, + "probability": 0.2312 + }, + { + "start": 26173.22, + "end": 26177.5, + "probability": 0.63 + }, + { + "start": 26178.02, + "end": 26178.72, + "probability": 0.152 + }, + { + "start": 26180.03, + "end": 26182.56, + "probability": 0.3619 + }, + { + "start": 26183.08, + "end": 26183.34, + "probability": 0.5372 + }, + { + "start": 26190.55, + "end": 26193.62, + "probability": 0.5378 + }, + { + "start": 26193.76, + "end": 26197.18, + "probability": 0.0095 + }, + { + "start": 26197.78, + "end": 26198.36, + "probability": 0.2762 + }, + { + "start": 26198.7, + "end": 26199.55, + "probability": 0.4467 + }, + { + "start": 26200.6, + "end": 26201.87, + "probability": 0.5146 + }, + { + "start": 26202.92, + "end": 26207.64, + "probability": 0.5573 + }, + { + "start": 26207.96, + "end": 26210.76, + "probability": 0.1204 + }, + { + "start": 26211.78, + "end": 26211.78, + "probability": 0.4652 + }, + { + "start": 26211.8, + "end": 26216.44, + "probability": 0.9479 + }, + { + "start": 26217.68, + "end": 26220.08, + "probability": 0.833 + }, + { + "start": 26220.88, + "end": 26222.62, + "probability": 0.7594 + }, + { + "start": 26222.88, + "end": 26225.48, + "probability": 0.7002 + }, + { + "start": 26225.94, + "end": 26226.28, + "probability": 0.2304 + }, + { + "start": 26226.9, + "end": 26230.18, + "probability": 0.8313 + }, + { + "start": 26230.6, + "end": 26231.8, + "probability": 0.6686 + }, + { + "start": 26232.9, + "end": 26234.94, + "probability": 0.5633 + }, + { + "start": 26235.18, + "end": 26238.5, + "probability": 0.6401 + }, + { + "start": 26238.5, + "end": 26241.38, + "probability": 0.978 + }, + { + "start": 26242.08, + "end": 26245.24, + "probability": 0.7355 + }, + { + "start": 26245.78, + "end": 26247.46, + "probability": 0.1888 + }, + { + "start": 26247.46, + "end": 26249.36, + "probability": 0.6913 + }, + { + "start": 26249.42, + "end": 26251.64, + "probability": 0.3385 + }, + { + "start": 26252.5, + "end": 26254.24, + "probability": 0.6949 + }, + { + "start": 26254.28, + "end": 26256.84, + "probability": 0.5221 + }, + { + "start": 26257.62, + "end": 26260.0, + "probability": 0.6355 + }, + { + "start": 26260.08, + "end": 26264.36, + "probability": 0.8923 + }, + { + "start": 26264.88, + "end": 26266.24, + "probability": 0.5624 + }, + { + "start": 26268.08, + "end": 26270.86, + "probability": 0.3726 + }, + { + "start": 26270.9, + "end": 26273.0, + "probability": 0.4995 + }, + { + "start": 26274.36, + "end": 26278.07, + "probability": 0.3682 + }, + { + "start": 26279.84, + "end": 26280.18, + "probability": 0.3458 + }, + { + "start": 26281.64, + "end": 26283.62, + "probability": 0.7168 + }, + { + "start": 26284.74, + "end": 26285.96, + "probability": 0.5325 + }, + { + "start": 26288.02, + "end": 26289.04, + "probability": 0.5578 + }, + { + "start": 26289.26, + "end": 26289.8, + "probability": 0.4983 + }, + { + "start": 26291.04, + "end": 26292.05, + "probability": 0.5249 + }, + { + "start": 26295.08, + "end": 26295.38, + "probability": 0.449 + }, + { + "start": 26296.92, + "end": 26298.8, + "probability": 0.9744 + }, + { + "start": 26298.84, + "end": 26299.42, + "probability": 0.9634 + }, + { + "start": 26299.72, + "end": 26301.44, + "probability": 0.9559 + }, + { + "start": 26301.74, + "end": 26303.26, + "probability": 0.8112 + }, + { + "start": 26303.74, + "end": 26304.4, + "probability": 0.8014 + }, + { + "start": 26304.48, + "end": 26305.34, + "probability": 0.7895 + }, + { + "start": 26306.34, + "end": 26307.48, + "probability": 0.9961 + }, + { + "start": 26308.7, + "end": 26311.38, + "probability": 0.4531 + }, + { + "start": 26311.38, + "end": 26313.8, + "probability": 0.9415 + }, + { + "start": 26315.42, + "end": 26315.94, + "probability": 0.3514 + }, + { + "start": 26316.02, + "end": 26318.64, + "probability": 0.2864 + }, + { + "start": 26319.06, + "end": 26320.12, + "probability": 0.1039 + }, + { + "start": 26320.12, + "end": 26320.9, + "probability": 0.4968 + }, + { + "start": 26320.92, + "end": 26321.58, + "probability": 0.9138 + }, + { + "start": 26322.8, + "end": 26325.1, + "probability": 0.1903 + }, + { + "start": 26325.36, + "end": 26325.72, + "probability": 0.5261 + }, + { + "start": 26325.78, + "end": 26328.26, + "probability": 0.8397 + }, + { + "start": 26328.38, + "end": 26328.82, + "probability": 0.434 + }, + { + "start": 26329.08, + "end": 26330.74, + "probability": 0.9655 + }, + { + "start": 26331.66, + "end": 26334.55, + "probability": 0.8013 + }, + { + "start": 26336.12, + "end": 26337.24, + "probability": 0.5477 + }, + { + "start": 26337.24, + "end": 26338.64, + "probability": 0.5082 + }, + { + "start": 26338.74, + "end": 26340.02, + "probability": 0.8015 + }, + { + "start": 26340.56, + "end": 26341.6, + "probability": 0.9842 + }, + { + "start": 26341.66, + "end": 26342.62, + "probability": 0.2622 + }, + { + "start": 26343.72, + "end": 26347.84, + "probability": 0.6788 + }, + { + "start": 26348.76, + "end": 26349.32, + "probability": 0.6501 + }, + { + "start": 26350.24, + "end": 26352.7, + "probability": 0.8792 + }, + { + "start": 26352.96, + "end": 26357.68, + "probability": 0.9355 + }, + { + "start": 26358.32, + "end": 26359.38, + "probability": 0.9485 + }, + { + "start": 26359.54, + "end": 26361.68, + "probability": 0.9614 + }, + { + "start": 26362.7, + "end": 26364.45, + "probability": 0.8364 + }, + { + "start": 26365.18, + "end": 26367.32, + "probability": 0.6525 + }, + { + "start": 26367.84, + "end": 26368.76, + "probability": 0.5763 + }, + { + "start": 26370.21, + "end": 26371.66, + "probability": 0.6466 + }, + { + "start": 26372.2, + "end": 26373.18, + "probability": 0.3741 + }, + { + "start": 26373.56, + "end": 26375.76, + "probability": 0.5328 + }, + { + "start": 26376.2, + "end": 26377.18, + "probability": 0.572 + }, + { + "start": 26377.66, + "end": 26379.45, + "probability": 0.5899 + }, + { + "start": 26379.74, + "end": 26380.36, + "probability": 0.481 + }, + { + "start": 26381.56, + "end": 26385.54, + "probability": 0.7121 + }, + { + "start": 26386.08, + "end": 26388.72, + "probability": 0.7748 + }, + { + "start": 26389.62, + "end": 26391.92, + "probability": 0.9827 + }, + { + "start": 26392.78, + "end": 26395.58, + "probability": 0.5627 + }, + { + "start": 26395.58, + "end": 26396.12, + "probability": 0.4774 + }, + { + "start": 26397.73, + "end": 26398.26, + "probability": 0.8964 + }, + { + "start": 26398.38, + "end": 26401.24, + "probability": 0.5909 + }, + { + "start": 26401.48, + "end": 26402.3, + "probability": 0.9715 + }, + { + "start": 26403.5, + "end": 26404.22, + "probability": 0.3836 + }, + { + "start": 26404.26, + "end": 26405.81, + "probability": 0.9107 + }, + { + "start": 26408.06, + "end": 26410.6, + "probability": 0.8093 + }, + { + "start": 26410.6, + "end": 26411.16, + "probability": 0.1536 + }, + { + "start": 26411.16, + "end": 26411.32, + "probability": 0.7371 + }, + { + "start": 26411.82, + "end": 26415.72, + "probability": 0.7844 + }, + { + "start": 26417.32, + "end": 26420.7, + "probability": 0.9833 + }, + { + "start": 26420.9, + "end": 26422.2, + "probability": 0.9854 + }, + { + "start": 26423.18, + "end": 26424.07, + "probability": 0.8328 + }, + { + "start": 26424.76, + "end": 26426.82, + "probability": 0.8685 + }, + { + "start": 26427.46, + "end": 26429.5, + "probability": 0.7507 + }, + { + "start": 26429.62, + "end": 26430.24, + "probability": 0.5765 + }, + { + "start": 26431.06, + "end": 26433.68, + "probability": 0.682 + }, + { + "start": 26433.84, + "end": 26434.06, + "probability": 0.3822 + }, + { + "start": 26434.98, + "end": 26437.3, + "probability": 0.765 + }, + { + "start": 26437.88, + "end": 26438.78, + "probability": 0.5677 + }, + { + "start": 26439.38, + "end": 26441.1, + "probability": 0.7766 + }, + { + "start": 26442.28, + "end": 26443.9, + "probability": 0.9626 + }, + { + "start": 26443.96, + "end": 26446.34, + "probability": 0.8774 + }, + { + "start": 26446.96, + "end": 26449.18, + "probability": 0.6217 + }, + { + "start": 26450.16, + "end": 26455.38, + "probability": 0.5717 + }, + { + "start": 26456.02, + "end": 26458.28, + "probability": 0.8996 + }, + { + "start": 26458.5, + "end": 26459.5, + "probability": 0.8096 + }, + { + "start": 26459.94, + "end": 26460.28, + "probability": 0.4208 + }, + { + "start": 26460.82, + "end": 26461.68, + "probability": 0.8257 + }, + { + "start": 26462.2, + "end": 26462.96, + "probability": 0.6897 + }, + { + "start": 26464.2, + "end": 26466.64, + "probability": 0.9421 + }, + { + "start": 26467.34, + "end": 26469.22, + "probability": 0.9371 + }, + { + "start": 26469.48, + "end": 26472.16, + "probability": 0.9812 + }, + { + "start": 26472.92, + "end": 26475.02, + "probability": 0.9316 + }, + { + "start": 26476.12, + "end": 26478.18, + "probability": 0.8925 + }, + { + "start": 26478.24, + "end": 26481.68, + "probability": 0.8273 + }, + { + "start": 26482.96, + "end": 26483.66, + "probability": 0.3554 + }, + { + "start": 26484.22, + "end": 26485.12, + "probability": 0.5517 + }, + { + "start": 26485.38, + "end": 26486.52, + "probability": 0.7247 + }, + { + "start": 26486.64, + "end": 26487.58, + "probability": 0.8639 + }, + { + "start": 26488.02, + "end": 26488.28, + "probability": 0.5079 + }, + { + "start": 26488.76, + "end": 26488.96, + "probability": 0.7739 + }, + { + "start": 26489.82, + "end": 26491.04, + "probability": 0.2745 + }, + { + "start": 26491.36, + "end": 26492.6, + "probability": 0.8813 + }, + { + "start": 26492.68, + "end": 26494.86, + "probability": 0.9142 + }, + { + "start": 26495.66, + "end": 26496.6, + "probability": 0.9731 + }, + { + "start": 26497.32, + "end": 26497.52, + "probability": 0.9099 + }, + { + "start": 26498.58, + "end": 26500.56, + "probability": 0.5838 + }, + { + "start": 26501.6, + "end": 26503.4, + "probability": 0.9137 + }, + { + "start": 26503.52, + "end": 26505.06, + "probability": 0.877 + }, + { + "start": 26505.14, + "end": 26505.38, + "probability": 0.5948 + }, + { + "start": 26505.82, + "end": 26510.08, + "probability": 0.9119 + }, + { + "start": 26510.08, + "end": 26510.62, + "probability": 0.7709 + }, + { + "start": 26510.78, + "end": 26511.99, + "probability": 0.3816 + }, + { + "start": 26512.34, + "end": 26513.84, + "probability": 0.8032 + }, + { + "start": 26513.88, + "end": 26514.67, + "probability": 0.4576 + }, + { + "start": 26515.54, + "end": 26517.58, + "probability": 0.756 + }, + { + "start": 26517.66, + "end": 26518.82, + "probability": 0.6834 + }, + { + "start": 26518.86, + "end": 26519.44, + "probability": 0.3186 + }, + { + "start": 26519.5, + "end": 26520.22, + "probability": 0.6321 + }, + { + "start": 26520.42, + "end": 26521.5, + "probability": 0.7729 + }, + { + "start": 26522.28, + "end": 26523.9, + "probability": 0.7067 + }, + { + "start": 26523.98, + "end": 26527.02, + "probability": 0.9232 + }, + { + "start": 26528.8, + "end": 26531.92, + "probability": 0.91 + }, + { + "start": 26532.84, + "end": 26533.38, + "probability": 0.0908 + }, + { + "start": 26533.38, + "end": 26534.08, + "probability": 0.4829 + }, + { + "start": 26534.44, + "end": 26534.62, + "probability": 0.6214 + }, + { + "start": 26534.92, + "end": 26537.34, + "probability": 0.9209 + }, + { + "start": 26537.86, + "end": 26538.58, + "probability": 0.3611 + }, + { + "start": 26538.74, + "end": 26540.74, + "probability": 0.9293 + }, + { + "start": 26540.86, + "end": 26541.74, + "probability": 0.8275 + }, + { + "start": 26543.3, + "end": 26544.96, + "probability": 0.4206 + }, + { + "start": 26544.96, + "end": 26545.41, + "probability": 0.3868 + }, + { + "start": 26546.06, + "end": 26548.0, + "probability": 0.8612 + }, + { + "start": 26548.68, + "end": 26549.46, + "probability": 0.5685 + }, + { + "start": 26549.52, + "end": 26552.34, + "probability": 0.8314 + }, + { + "start": 26553.1, + "end": 26554.52, + "probability": 0.8391 + }, + { + "start": 26554.76, + "end": 26555.18, + "probability": 0.6758 + }, + { + "start": 26555.2, + "end": 26556.23, + "probability": 0.97 + }, + { + "start": 26556.9, + "end": 26558.98, + "probability": 0.6213 + }, + { + "start": 26559.1, + "end": 26559.4, + "probability": 0.7065 + }, + { + "start": 26559.48, + "end": 26561.26, + "probability": 0.8348 + }, + { + "start": 26561.54, + "end": 26564.69, + "probability": 0.8096 + }, + { + "start": 26566.86, + "end": 26569.0, + "probability": 0.9278 + }, + { + "start": 26569.06, + "end": 26570.52, + "probability": 0.724 + }, + { + "start": 26571.04, + "end": 26573.9, + "probability": 0.645 + }, + { + "start": 26574.6, + "end": 26576.76, + "probability": 0.9783 + }, + { + "start": 26577.26, + "end": 26579.08, + "probability": 0.798 + }, + { + "start": 26579.74, + "end": 26580.7, + "probability": 0.4732 + }, + { + "start": 26581.42, + "end": 26584.22, + "probability": 0.6727 + }, + { + "start": 26584.82, + "end": 26588.5, + "probability": 0.9067 + }, + { + "start": 26589.14, + "end": 26590.84, + "probability": 0.4432 + }, + { + "start": 26590.94, + "end": 26592.36, + "probability": 0.8413 + }, + { + "start": 26592.44, + "end": 26593.16, + "probability": 0.5669 + }, + { + "start": 26594.64, + "end": 26596.38, + "probability": 0.5151 + }, + { + "start": 26597.54, + "end": 26599.46, + "probability": 0.8434 + }, + { + "start": 26600.02, + "end": 26604.82, + "probability": 0.9037 + }, + { + "start": 26605.3, + "end": 26607.54, + "probability": 0.8735 + }, + { + "start": 26608.08, + "end": 26609.52, + "probability": 0.9963 + }, + { + "start": 26610.14, + "end": 26612.8, + "probability": 0.8169 + }, + { + "start": 26612.92, + "end": 26615.22, + "probability": 0.9585 + }, + { + "start": 26615.98, + "end": 26616.86, + "probability": 0.6829 + }, + { + "start": 26618.22, + "end": 26619.07, + "probability": 0.7951 + }, + { + "start": 26619.6, + "end": 26621.82, + "probability": 0.6731 + }, + { + "start": 26622.42, + "end": 26623.02, + "probability": 0.6104 + }, + { + "start": 26623.68, + "end": 26625.7, + "probability": 0.6656 + }, + { + "start": 26625.92, + "end": 26626.22, + "probability": 0.6921 + }, + { + "start": 26626.76, + "end": 26626.96, + "probability": 0.6346 + }, + { + "start": 26629.92, + "end": 26632.62, + "probability": 0.8843 + }, + { + "start": 26632.7, + "end": 26635.54, + "probability": 0.5882 + }, + { + "start": 26635.72, + "end": 26636.4, + "probability": 0.5363 + }, + { + "start": 26636.92, + "end": 26639.14, + "probability": 0.8951 + }, + { + "start": 26639.8, + "end": 26641.56, + "probability": 0.7367 + }, + { + "start": 26641.74, + "end": 26644.66, + "probability": 0.8566 + }, + { + "start": 26645.46, + "end": 26646.48, + "probability": 0.4349 + }, + { + "start": 26646.66, + "end": 26648.76, + "probability": 0.8291 + }, + { + "start": 26649.04, + "end": 26650.18, + "probability": 0.5691 + }, + { + "start": 26652.28, + "end": 26653.84, + "probability": 0.9126 + }, + { + "start": 26654.02, + "end": 26655.02, + "probability": 0.5407 + }, + { + "start": 26655.48, + "end": 26657.58, + "probability": 0.9355 + }, + { + "start": 26658.08, + "end": 26659.08, + "probability": 0.813 + }, + { + "start": 26660.32, + "end": 26662.24, + "probability": 0.8111 + }, + { + "start": 26662.94, + "end": 26664.62, + "probability": 0.9839 + }, + { + "start": 26665.46, + "end": 26666.92, + "probability": 0.7174 + }, + { + "start": 26666.96, + "end": 26667.62, + "probability": 0.5917 + }, + { + "start": 26667.8, + "end": 26668.26, + "probability": 0.5848 + }, + { + "start": 26668.44, + "end": 26669.22, + "probability": 0.64 + }, + { + "start": 26669.26, + "end": 26669.88, + "probability": 0.3599 + }, + { + "start": 26669.92, + "end": 26670.98, + "probability": 0.3966 + }, + { + "start": 26671.58, + "end": 26673.56, + "probability": 0.8578 + }, + { + "start": 26674.37, + "end": 26675.16, + "probability": 0.8201 + }, + { + "start": 26676.9, + "end": 26677.06, + "probability": 0.4891 + }, + { + "start": 26677.62, + "end": 26677.86, + "probability": 0.1846 + }, + { + "start": 26679.36, + "end": 26683.48, + "probability": 0.7285 + }, + { + "start": 26684.22, + "end": 26686.7, + "probability": 0.6523 + }, + { + "start": 26687.1, + "end": 26692.92, + "probability": 0.9688 + }, + { + "start": 26695.4, + "end": 26695.8, + "probability": 0.4885 + }, + { + "start": 26697.26, + "end": 26699.04, + "probability": 0.957 + }, + { + "start": 26702.06, + "end": 26703.98, + "probability": 0.6275 + }, + { + "start": 26704.78, + "end": 26705.24, + "probability": 0.3479 + }, + { + "start": 26709.02, + "end": 26711.12, + "probability": 0.5366 + }, + { + "start": 26711.12, + "end": 26711.68, + "probability": 0.2821 + }, + { + "start": 26712.1, + "end": 26713.6, + "probability": 0.6386 + }, + { + "start": 26714.14, + "end": 26716.34, + "probability": 0.861 + }, + { + "start": 26717.0, + "end": 26719.06, + "probability": 0.6965 + }, + { + "start": 26719.2, + "end": 26723.12, + "probability": 0.8557 + }, + { + "start": 26724.0, + "end": 26724.92, + "probability": 0.7043 + }, + { + "start": 26725.64, + "end": 26728.02, + "probability": 0.736 + }, + { + "start": 26728.8, + "end": 26730.22, + "probability": 0.7656 + }, + { + "start": 26730.32, + "end": 26732.84, + "probability": 0.6511 + }, + { + "start": 26732.9, + "end": 26735.1, + "probability": 0.6575 + }, + { + "start": 26735.3, + "end": 26737.58, + "probability": 0.5541 + }, + { + "start": 26737.62, + "end": 26738.82, + "probability": 0.5522 + }, + { + "start": 26738.84, + "end": 26740.0, + "probability": 0.6073 + }, + { + "start": 26740.18, + "end": 26740.48, + "probability": 0.8646 + }, + { + "start": 26740.54, + "end": 26741.0, + "probability": 0.925 + }, + { + "start": 26741.1, + "end": 26743.66, + "probability": 0.8747 + }, + { + "start": 26743.78, + "end": 26744.94, + "probability": 0.9035 + }, + { + "start": 26745.04, + "end": 26745.92, + "probability": 0.2157 + }, + { + "start": 26746.32, + "end": 26747.0, + "probability": 0.5346 + }, + { + "start": 26747.14, + "end": 26747.88, + "probability": 0.3851 + }, + { + "start": 26748.02, + "end": 26750.16, + "probability": 0.2452 + }, + { + "start": 26750.16, + "end": 26750.48, + "probability": 0.6438 + }, + { + "start": 26750.68, + "end": 26751.3, + "probability": 0.3973 + }, + { + "start": 26751.42, + "end": 26753.82, + "probability": 0.6452 + }, + { + "start": 26754.34, + "end": 26756.54, + "probability": 0.4262 + }, + { + "start": 26756.78, + "end": 26760.46, + "probability": 0.4353 + }, + { + "start": 26760.6, + "end": 26761.43, + "probability": 0.3913 + }, + { + "start": 26761.7, + "end": 26763.26, + "probability": 0.6704 + }, + { + "start": 26763.58, + "end": 26763.88, + "probability": 0.0752 + }, + { + "start": 26763.88, + "end": 26764.64, + "probability": 0.1362 + }, + { + "start": 26766.54, + "end": 26766.86, + "probability": 0.381 + }, + { + "start": 26767.9, + "end": 26771.34, + "probability": 0.3428 + }, + { + "start": 26771.6, + "end": 26775.54, + "probability": 0.4531 + }, + { + "start": 26775.92, + "end": 26776.7, + "probability": 0.4316 + }, + { + "start": 26777.16, + "end": 26780.26, + "probability": 0.2579 + }, + { + "start": 26780.56, + "end": 26781.36, + "probability": 0.652 + }, + { + "start": 26781.52, + "end": 26782.82, + "probability": 0.2794 + }, + { + "start": 26783.02, + "end": 26784.68, + "probability": 0.6512 + }, + { + "start": 26784.68, + "end": 26785.1, + "probability": 0.6107 + }, + { + "start": 26785.34, + "end": 26786.92, + "probability": 0.4768 + }, + { + "start": 26787.02, + "end": 26788.52, + "probability": 0.6582 + }, + { + "start": 26789.66, + "end": 26792.74, + "probability": 0.7939 + }, + { + "start": 26793.44, + "end": 26794.24, + "probability": 0.8133 + }, + { + "start": 26795.26, + "end": 26796.5, + "probability": 0.6311 + }, + { + "start": 26796.68, + "end": 26797.72, + "probability": 0.9182 + }, + { + "start": 26797.82, + "end": 26798.52, + "probability": 0.6368 + }, + { + "start": 26798.6, + "end": 26800.44, + "probability": 0.9592 + }, + { + "start": 26800.68, + "end": 26801.2, + "probability": 0.7043 + }, + { + "start": 26801.78, + "end": 26803.77, + "probability": 0.9455 + }, + { + "start": 26804.26, + "end": 26804.84, + "probability": 0.4573 + }, + { + "start": 26804.98, + "end": 26805.5, + "probability": 0.6653 + }, + { + "start": 26805.72, + "end": 26809.08, + "probability": 0.8192 + }, + { + "start": 26809.14, + "end": 26809.74, + "probability": 0.5229 + }, + { + "start": 26809.98, + "end": 26811.06, + "probability": 0.488 + }, + { + "start": 26811.06, + "end": 26811.68, + "probability": 0.3345 + }, + { + "start": 26812.14, + "end": 26812.54, + "probability": 0.4666 + }, + { + "start": 26813.24, + "end": 26814.46, + "probability": 0.438 + }, + { + "start": 26815.74, + "end": 26821.1, + "probability": 0.7996 + }, + { + "start": 26821.24, + "end": 26822.36, + "probability": 0.2208 + }, + { + "start": 26822.36, + "end": 26822.98, + "probability": 0.0352 + }, + { + "start": 26823.02, + "end": 26824.12, + "probability": 0.6028 + }, + { + "start": 26824.16, + "end": 26828.27, + "probability": 0.7909 + }, + { + "start": 26828.7, + "end": 26829.96, + "probability": 0.2513 + }, + { + "start": 26829.96, + "end": 26835.3, + "probability": 0.9663 + }, + { + "start": 26835.94, + "end": 26836.96, + "probability": 0.8596 + }, + { + "start": 26837.36, + "end": 26839.94, + "probability": 0.7661 + }, + { + "start": 26840.16, + "end": 26846.2, + "probability": 0.8369 + }, + { + "start": 26846.48, + "end": 26847.4, + "probability": 0.4388 + }, + { + "start": 26847.82, + "end": 26850.36, + "probability": 0.9385 + }, + { + "start": 26850.36, + "end": 26853.48, + "probability": 0.5878 + }, + { + "start": 26854.46, + "end": 26855.52, + "probability": 0.6057 + }, + { + "start": 26857.36, + "end": 26859.4, + "probability": 0.5012 + }, + { + "start": 26859.64, + "end": 26861.84, + "probability": 0.9028 + }, + { + "start": 26861.98, + "end": 26862.32, + "probability": 0.7358 + }, + { + "start": 26862.44, + "end": 26863.77, + "probability": 0.9089 + }, + { + "start": 26864.1, + "end": 26865.9, + "probability": 0.981 + }, + { + "start": 26866.04, + "end": 26866.92, + "probability": 0.9585 + }, + { + "start": 26867.44, + "end": 26868.62, + "probability": 0.442 + }, + { + "start": 26868.74, + "end": 26872.48, + "probability": 0.8445 + }, + { + "start": 26872.48, + "end": 26872.7, + "probability": 0.6395 + }, + { + "start": 26872.82, + "end": 26873.1, + "probability": 0.0432 + }, + { + "start": 26873.26, + "end": 26874.44, + "probability": 0.165 + }, + { + "start": 26874.78, + "end": 26876.24, + "probability": 0.1081 + }, + { + "start": 26876.3, + "end": 26877.8, + "probability": 0.5674 + }, + { + "start": 26877.88, + "end": 26879.48, + "probability": 0.7651 + }, + { + "start": 26879.66, + "end": 26881.92, + "probability": 0.536 + }, + { + "start": 26882.3, + "end": 26885.34, + "probability": 0.585 + }, + { + "start": 26885.34, + "end": 26886.26, + "probability": 0.5268 + }, + { + "start": 26886.54, + "end": 26887.0, + "probability": 0.5886 + }, + { + "start": 26888.74, + "end": 26890.88, + "probability": 0.8062 + }, + { + "start": 26891.14, + "end": 26891.8, + "probability": 0.6963 + }, + { + "start": 26891.94, + "end": 26893.3, + "probability": 0.8877 + }, + { + "start": 26894.18, + "end": 26894.46, + "probability": 0.4877 + }, + { + "start": 26894.54, + "end": 26895.68, + "probability": 0.9854 + }, + { + "start": 26896.14, + "end": 26900.06, + "probability": 0.6806 + }, + { + "start": 26900.06, + "end": 26904.28, + "probability": 0.3383 + }, + { + "start": 26904.96, + "end": 26908.86, + "probability": 0.7363 + }, + { + "start": 26910.3, + "end": 26914.8, + "probability": 0.5395 + }, + { + "start": 26915.2, + "end": 26917.2, + "probability": 0.9236 + }, + { + "start": 26918.12, + "end": 26921.24, + "probability": 0.8711 + }, + { + "start": 26921.9, + "end": 26928.56, + "probability": 0.7758 + }, + { + "start": 26928.7, + "end": 26931.88, + "probability": 0.8919 + }, + { + "start": 26932.36, + "end": 26933.88, + "probability": 0.6377 + }, + { + "start": 26934.02, + "end": 26935.04, + "probability": 0.8674 + }, + { + "start": 26936.02, + "end": 26937.24, + "probability": 0.8098 + }, + { + "start": 26937.26, + "end": 26938.82, + "probability": 0.7838 + }, + { + "start": 26938.86, + "end": 26940.94, + "probability": 0.9322 + }, + { + "start": 26941.6, + "end": 26944.6, + "probability": 0.841 + }, + { + "start": 26944.66, + "end": 26946.14, + "probability": 0.5374 + }, + { + "start": 26946.24, + "end": 26948.32, + "probability": 0.9176 + }, + { + "start": 26949.78, + "end": 26954.24, + "probability": 0.8249 + }, + { + "start": 26954.64, + "end": 26955.58, + "probability": 0.9352 + }, + { + "start": 26956.26, + "end": 26959.02, + "probability": 0.9771 + }, + { + "start": 26959.94, + "end": 26960.94, + "probability": 0.7685 + }, + { + "start": 26961.08, + "end": 26962.3, + "probability": 0.4847 + }, + { + "start": 26962.48, + "end": 26965.1, + "probability": 0.5916 + }, + { + "start": 26965.76, + "end": 26967.12, + "probability": 0.5963 + }, + { + "start": 26967.36, + "end": 26967.86, + "probability": 0.0784 + }, + { + "start": 26969.5, + "end": 26970.28, + "probability": 0.7958 + }, + { + "start": 26971.24, + "end": 26972.64, + "probability": 0.1005 + }, + { + "start": 26973.32, + "end": 26973.86, + "probability": 0.332 + }, + { + "start": 26973.9, + "end": 26974.24, + "probability": 0.251 + }, + { + "start": 26974.42, + "end": 26975.7, + "probability": 0.959 + }, + { + "start": 26975.94, + "end": 26976.78, + "probability": 0.4258 + }, + { + "start": 26977.32, + "end": 26978.36, + "probability": 0.5334 + }, + { + "start": 26978.4, + "end": 26979.62, + "probability": 0.7222 + }, + { + "start": 26979.64, + "end": 26981.22, + "probability": 0.7266 + }, + { + "start": 26981.28, + "end": 26981.56, + "probability": 0.6578 + }, + { + "start": 26981.66, + "end": 26982.26, + "probability": 0.8467 + }, + { + "start": 26982.36, + "end": 26983.36, + "probability": 0.6381 + }, + { + "start": 26983.4, + "end": 26988.5, + "probability": 0.7716 + }, + { + "start": 26988.68, + "end": 26991.52, + "probability": 0.6338 + }, + { + "start": 26992.06, + "end": 26992.56, + "probability": 0.3254 + }, + { + "start": 26992.64, + "end": 26994.02, + "probability": 0.6744 + }, + { + "start": 26994.56, + "end": 26996.44, + "probability": 0.7949 + }, + { + "start": 26996.44, + "end": 26998.7, + "probability": 0.4917 + }, + { + "start": 26998.72, + "end": 27000.32, + "probability": 0.379 + }, + { + "start": 27000.48, + "end": 27000.6, + "probability": 0.8 + }, + { + "start": 27000.68, + "end": 27002.01, + "probability": 0.5583 + }, + { + "start": 27002.34, + "end": 27003.81, + "probability": 0.2613 + }, + { + "start": 27004.14, + "end": 27006.68, + "probability": 0.4718 + }, + { + "start": 27007.18, + "end": 27009.5, + "probability": 0.8395 + }, + { + "start": 27009.66, + "end": 27010.5, + "probability": 0.748 + }, + { + "start": 27010.58, + "end": 27011.44, + "probability": 0.3959 + }, + { + "start": 27011.6, + "end": 27015.92, + "probability": 0.6795 + }, + { + "start": 27016.38, + "end": 27018.94, + "probability": 0.9263 + }, + { + "start": 27019.04, + "end": 27019.76, + "probability": 0.4794 + }, + { + "start": 27019.88, + "end": 27021.96, + "probability": 0.7172 + }, + { + "start": 27022.2, + "end": 27024.04, + "probability": 0.7964 + }, + { + "start": 27024.12, + "end": 27025.92, + "probability": 0.9828 + }, + { + "start": 27026.06, + "end": 27027.0, + "probability": 0.3799 + }, + { + "start": 27027.18, + "end": 27027.18, + "probability": 0.2566 + }, + { + "start": 27027.18, + "end": 27028.01, + "probability": 0.5862 + }, + { + "start": 27028.74, + "end": 27030.94, + "probability": 0.9888 + }, + { + "start": 27031.96, + "end": 27032.98, + "probability": 0.6718 + }, + { + "start": 27033.12, + "end": 27034.0, + "probability": 0.4668 + }, + { + "start": 27034.6, + "end": 27035.48, + "probability": 0.7593 + }, + { + "start": 27036.52, + "end": 27036.52, + "probability": 0.209 + }, + { + "start": 27036.62, + "end": 27037.13, + "probability": 0.981 + }, + { + "start": 27037.82, + "end": 27040.52, + "probability": 0.5842 + }, + { + "start": 27041.76, + "end": 27043.86, + "probability": 0.6264 + }, + { + "start": 27043.98, + "end": 27046.74, + "probability": 0.5917 + }, + { + "start": 27047.38, + "end": 27047.86, + "probability": 0.7308 + }, + { + "start": 27048.9, + "end": 27049.3, + "probability": 0.3087 + }, + { + "start": 27049.68, + "end": 27049.86, + "probability": 0.1029 + }, + { + "start": 27050.06, + "end": 27050.58, + "probability": 0.7392 + }, + { + "start": 27051.44, + "end": 27054.54, + "probability": 0.1041 + }, + { + "start": 27055.24, + "end": 27055.24, + "probability": 0.3222 + }, + { + "start": 27055.24, + "end": 27055.24, + "probability": 0.4543 + }, + { + "start": 27055.24, + "end": 27055.76, + "probability": 0.3988 + }, + { + "start": 27056.3, + "end": 27057.72, + "probability": 0.6773 + }, + { + "start": 27058.48, + "end": 27059.02, + "probability": 0.2742 + }, + { + "start": 27059.06, + "end": 27059.66, + "probability": 0.7192 + }, + { + "start": 27059.7, + "end": 27061.5, + "probability": 0.3859 + }, + { + "start": 27062.1, + "end": 27062.74, + "probability": 0.7882 + }, + { + "start": 27070.96, + "end": 27073.22, + "probability": 0.1821 + }, + { + "start": 27073.94, + "end": 27075.06, + "probability": 0.7128 + }, + { + "start": 27075.1, + "end": 27075.98, + "probability": 0.8157 + }, + { + "start": 27076.26, + "end": 27078.88, + "probability": 0.7508 + }, + { + "start": 27079.72, + "end": 27080.46, + "probability": 0.8452 + }, + { + "start": 27081.84, + "end": 27082.72, + "probability": 0.6931 + }, + { + "start": 27083.88, + "end": 27084.8, + "probability": 0.0951 + }, + { + "start": 27085.22, + "end": 27087.7, + "probability": 0.9646 + }, + { + "start": 27088.1, + "end": 27091.94, + "probability": 0.9478 + }, + { + "start": 27095.12, + "end": 27099.85, + "probability": 0.8825 + }, + { + "start": 27099.86, + "end": 27103.52, + "probability": 0.9011 + }, + { + "start": 27104.9, + "end": 27105.32, + "probability": 0.2925 + }, + { + "start": 27105.54, + "end": 27108.16, + "probability": 0.8279 + }, + { + "start": 27108.16, + "end": 27110.76, + "probability": 0.7521 + }, + { + "start": 27110.88, + "end": 27115.94, + "probability": 0.9681 + }, + { + "start": 27117.4, + "end": 27121.58, + "probability": 0.9297 + }, + { + "start": 27122.02, + "end": 27125.18, + "probability": 0.9849 + }, + { + "start": 27125.64, + "end": 27130.04, + "probability": 0.6858 + }, + { + "start": 27130.12, + "end": 27136.56, + "probability": 0.6584 + }, + { + "start": 27137.86, + "end": 27138.9, + "probability": 0.3525 + }, + { + "start": 27139.1, + "end": 27141.06, + "probability": 0.7977 + }, + { + "start": 27141.22, + "end": 27145.38, + "probability": 0.69 + }, + { + "start": 27146.72, + "end": 27150.06, + "probability": 0.4932 + }, + { + "start": 27150.06, + "end": 27150.78, + "probability": 0.6756 + }, + { + "start": 27150.84, + "end": 27153.66, + "probability": 0.856 + }, + { + "start": 27153.66, + "end": 27159.12, + "probability": 0.6687 + }, + { + "start": 27159.7, + "end": 27161.92, + "probability": 0.9917 + }, + { + "start": 27162.44, + "end": 27165.3, + "probability": 0.536 + }, + { + "start": 27165.9, + "end": 27168.74, + "probability": 0.9784 + }, + { + "start": 27169.36, + "end": 27171.48, + "probability": 0.8408 + }, + { + "start": 27172.26, + "end": 27173.31, + "probability": 0.0252 + }, + { + "start": 27173.75, + "end": 27178.3, + "probability": 0.4183 + }, + { + "start": 27178.38, + "end": 27183.05, + "probability": 0.3158 + }, + { + "start": 27184.38, + "end": 27187.12, + "probability": 0.4574 + }, + { + "start": 27190.3, + "end": 27191.12, + "probability": 0.306 + }, + { + "start": 27191.32, + "end": 27194.72, + "probability": 0.1934 + }, + { + "start": 27194.84, + "end": 27196.12, + "probability": 0.1683 + }, + { + "start": 27196.76, + "end": 27197.25, + "probability": 0.6691 + }, + { + "start": 27197.76, + "end": 27201.52, + "probability": 0.4317 + }, + { + "start": 27201.52, + "end": 27205.68, + "probability": 0.3681 + }, + { + "start": 27205.68, + "end": 27209.74, + "probability": 0.2649 + }, + { + "start": 27209.84, + "end": 27210.18, + "probability": 0.202 + }, + { + "start": 27210.2, + "end": 27211.4, + "probability": 0.9751 + }, + { + "start": 27211.48, + "end": 27211.94, + "probability": 0.1672 + }, + { + "start": 27212.08, + "end": 27212.54, + "probability": 0.3437 + }, + { + "start": 27213.06, + "end": 27215.96, + "probability": 0.0782 + }, + { + "start": 27215.96, + "end": 27216.62, + "probability": 0.1078 + }, + { + "start": 27217.06, + "end": 27218.38, + "probability": 0.8181 + }, + { + "start": 27220.25, + "end": 27224.43, + "probability": 0.7695 + }, + { + "start": 27227.4, + "end": 27229.56, + "probability": 0.3988 + }, + { + "start": 27230.56, + "end": 27232.6, + "probability": 0.7782 + }, + { + "start": 27232.6, + "end": 27234.56, + "probability": 0.6417 + }, + { + "start": 27234.74, + "end": 27238.14, + "probability": 0.8345 + }, + { + "start": 27238.74, + "end": 27240.5, + "probability": 0.988 + }, + { + "start": 27240.78, + "end": 27242.68, + "probability": 0.9076 + }, + { + "start": 27243.12, + "end": 27245.9, + "probability": 0.501 + }, + { + "start": 27246.42, + "end": 27249.66, + "probability": 0.709 + }, + { + "start": 27251.18, + "end": 27253.34, + "probability": 0.9358 + }, + { + "start": 27253.34, + "end": 27255.52, + "probability": 0.6447 + }, + { + "start": 27256.08, + "end": 27258.0, + "probability": 0.7651 + }, + { + "start": 27258.18, + "end": 27260.1, + "probability": 0.668 + }, + { + "start": 27260.64, + "end": 27263.52, + "probability": 0.8762 + }, + { + "start": 27263.52, + "end": 27265.9, + "probability": 0.863 + }, + { + "start": 27266.44, + "end": 27266.92, + "probability": 0.1405 + }, + { + "start": 27266.98, + "end": 27270.72, + "probability": 0.7388 + }, + { + "start": 27270.72, + "end": 27271.62, + "probability": 0.355 + }, + { + "start": 27272.38, + "end": 27275.14, + "probability": 0.7663 + }, + { + "start": 27277.19, + "end": 27281.24, + "probability": 0.6988 + }, + { + "start": 27281.98, + "end": 27285.78, + "probability": 0.8935 + }, + { + "start": 27286.52, + "end": 27290.26, + "probability": 0.4047 + }, + { + "start": 27291.6, + "end": 27293.42, + "probability": 0.7747 + }, + { + "start": 27293.46, + "end": 27297.44, + "probability": 0.6589 + }, + { + "start": 27298.18, + "end": 27299.84, + "probability": 0.7247 + }, + { + "start": 27299.92, + "end": 27301.94, + "probability": 0.6075 + }, + { + "start": 27302.04, + "end": 27306.68, + "probability": 0.5033 + }, + { + "start": 27306.74, + "end": 27307.5, + "probability": 0.6575 + }, + { + "start": 27310.3, + "end": 27314.06, + "probability": 0.6769 + }, + { + "start": 27314.06, + "end": 27315.82, + "probability": 0.327 + }, + { + "start": 27316.62, + "end": 27317.76, + "probability": 0.5469 + }, + { + "start": 27317.96, + "end": 27322.3, + "probability": 0.7871 + }, + { + "start": 27323.22, + "end": 27326.42, + "probability": 0.8268 + }, + { + "start": 27326.5, + "end": 27328.68, + "probability": 0.6141 + }, + { + "start": 27329.72, + "end": 27331.04, + "probability": 0.4661 + }, + { + "start": 27331.22, + "end": 27333.1, + "probability": 0.8384 + }, + { + "start": 27333.9, + "end": 27335.48, + "probability": 0.5563 + }, + { + "start": 27336.88, + "end": 27340.6, + "probability": 0.5348 + }, + { + "start": 27341.5, + "end": 27343.82, + "probability": 0.7022 + }, + { + "start": 27343.92, + "end": 27346.32, + "probability": 0.8148 + }, + { + "start": 27347.16, + "end": 27350.02, + "probability": 0.5369 + }, + { + "start": 27350.75, + "end": 27353.8, + "probability": 0.7256 + }, + { + "start": 27353.8, + "end": 27356.68, + "probability": 0.4784 + }, + { + "start": 27356.72, + "end": 27362.08, + "probability": 0.4962 + }, + { + "start": 27362.08, + "end": 27364.3, + "probability": 0.5025 + }, + { + "start": 27364.84, + "end": 27365.84, + "probability": 0.5664 + }, + { + "start": 27367.22, + "end": 27368.66, + "probability": 0.9089 + }, + { + "start": 27370.66, + "end": 27373.8, + "probability": 0.9338 + }, + { + "start": 27374.08, + "end": 27376.66, + "probability": 0.9016 + }, + { + "start": 27376.76, + "end": 27379.0, + "probability": 0.963 + }, + { + "start": 27379.8, + "end": 27381.48, + "probability": 0.8856 + }, + { + "start": 27382.28, + "end": 27384.86, + "probability": 0.8618 + }, + { + "start": 27384.86, + "end": 27388.2, + "probability": 0.3789 + }, + { + "start": 27388.86, + "end": 27390.66, + "probability": 0.6626 + }, + { + "start": 27391.28, + "end": 27393.49, + "probability": 0.7027 + }, + { + "start": 27394.19, + "end": 27396.98, + "probability": 0.603 + }, + { + "start": 27398.06, + "end": 27399.42, + "probability": 0.6199 + }, + { + "start": 27399.54, + "end": 27402.52, + "probability": 0.8433 + }, + { + "start": 27406.12, + "end": 27411.04, + "probability": 0.7527 + }, + { + "start": 27411.68, + "end": 27414.32, + "probability": 0.6781 + }, + { + "start": 27414.48, + "end": 27415.3, + "probability": 0.7297 + }, + { + "start": 27416.28, + "end": 27419.26, + "probability": 0.5327 + }, + { + "start": 27419.26, + "end": 27419.68, + "probability": 0.71 + }, + { + "start": 27420.2, + "end": 27423.36, + "probability": 0.7715 + }, + { + "start": 27425.42, + "end": 27428.3, + "probability": 0.5609 + }, + { + "start": 27428.72, + "end": 27429.08, + "probability": 0.5099 + }, + { + "start": 27429.14, + "end": 27430.56, + "probability": 0.2695 + }, + { + "start": 27430.64, + "end": 27432.1, + "probability": 0.8832 + }, + { + "start": 27432.54, + "end": 27436.16, + "probability": 0.5275 + }, + { + "start": 27437.18, + "end": 27439.94, + "probability": 0.5112 + }, + { + "start": 27439.94, + "end": 27440.76, + "probability": 0.0798 + }, + { + "start": 27440.78, + "end": 27443.8, + "probability": 0.2895 + }, + { + "start": 27443.98, + "end": 27444.68, + "probability": 0.0966 + }, + { + "start": 27444.68, + "end": 27446.54, + "probability": 0.4614 + }, + { + "start": 27446.62, + "end": 27448.24, + "probability": 0.3168 + }, + { + "start": 27454.46, + "end": 27456.07, + "probability": 0.2308 + }, + { + "start": 27456.16, + "end": 27457.55, + "probability": 0.3949 + }, + { + "start": 27457.58, + "end": 27458.16, + "probability": 0.7744 + }, + { + "start": 27458.82, + "end": 27461.83, + "probability": 0.6439 + }, + { + "start": 27462.66, + "end": 27464.5, + "probability": 0.7896 + }, + { + "start": 27464.66, + "end": 27465.46, + "probability": 0.0965 + }, + { + "start": 27466.26, + "end": 27472.64, + "probability": 0.3636 + }, + { + "start": 27476.14, + "end": 27481.02, + "probability": 0.5599 + }, + { + "start": 27481.02, + "end": 27481.02, + "probability": 0.033 + }, + { + "start": 27481.02, + "end": 27481.02, + "probability": 0.0338 + }, + { + "start": 27481.54, + "end": 27483.72, + "probability": 0.7064 + }, + { + "start": 27486.38, + "end": 27490.6, + "probability": 0.6479 + }, + { + "start": 27491.5, + "end": 27492.92, + "probability": 0.6767 + }, + { + "start": 27493.62, + "end": 27495.76, + "probability": 0.8296 + }, + { + "start": 27497.2, + "end": 27502.2, + "probability": 0.9744 + }, + { + "start": 27502.64, + "end": 27503.92, + "probability": 0.7648 + }, + { + "start": 27504.0, + "end": 27505.0, + "probability": 0.9039 + }, + { + "start": 27505.34, + "end": 27506.78, + "probability": 0.2103 + }, + { + "start": 27508.14, + "end": 27510.88, + "probability": 0.5396 + }, + { + "start": 27513.8, + "end": 27522.6, + "probability": 0.6666 + }, + { + "start": 27522.92, + "end": 27524.22, + "probability": 0.4136 + }, + { + "start": 27524.6, + "end": 27525.98, + "probability": 0.8994 + }, + { + "start": 27526.14, + "end": 27527.98, + "probability": 0.7221 + }, + { + "start": 27529.56, + "end": 27531.26, + "probability": 0.2755 + }, + { + "start": 27534.52, + "end": 27536.96, + "probability": 0.0212 + }, + { + "start": 27538.0, + "end": 27539.06, + "probability": 0.0081 + }, + { + "start": 27548.8, + "end": 27549.12, + "probability": 0.6966 + }, + { + "start": 27549.12, + "end": 27552.66, + "probability": 0.5878 + }, + { + "start": 27552.74, + "end": 27553.08, + "probability": 0.8634 + }, + { + "start": 27553.08, + "end": 27559.48, + "probability": 0.9838 + }, + { + "start": 27559.94, + "end": 27565.14, + "probability": 0.9303 + }, + { + "start": 27569.24, + "end": 27570.02, + "probability": 0.3716 + }, + { + "start": 27572.14, + "end": 27576.14, + "probability": 0.555 + }, + { + "start": 27576.22, + "end": 27577.46, + "probability": 0.3577 + }, + { + "start": 27577.56, + "end": 27578.42, + "probability": 0.707 + }, + { + "start": 27578.94, + "end": 27585.7, + "probability": 0.7657 + }, + { + "start": 27586.66, + "end": 27587.96, + "probability": 0.8521 + }, + { + "start": 27588.58, + "end": 27590.22, + "probability": 0.9646 + }, + { + "start": 27594.52, + "end": 27595.3, + "probability": 0.5099 + }, + { + "start": 27595.42, + "end": 27596.32, + "probability": 0.7767 + }, + { + "start": 27596.38, + "end": 27596.76, + "probability": 0.7371 + }, + { + "start": 27596.86, + "end": 27599.68, + "probability": 0.9869 + }, + { + "start": 27599.68, + "end": 27602.0, + "probability": 0.9949 + }, + { + "start": 27602.16, + "end": 27604.04, + "probability": 0.8672 + }, + { + "start": 27604.8, + "end": 27609.32, + "probability": 0.9325 + }, + { + "start": 27609.4, + "end": 27611.5, + "probability": 0.9884 + }, + { + "start": 27611.73, + "end": 27614.18, + "probability": 0.9964 + }, + { + "start": 27614.72, + "end": 27616.16, + "probability": 0.8491 + }, + { + "start": 27616.86, + "end": 27619.0, + "probability": 0.99 + }, + { + "start": 27619.18, + "end": 27620.2, + "probability": 0.9 + }, + { + "start": 27620.66, + "end": 27622.24, + "probability": 0.7518 + }, + { + "start": 27622.68, + "end": 27626.77, + "probability": 0.9349 + }, + { + "start": 27628.26, + "end": 27630.4, + "probability": 0.2174 + }, + { + "start": 27630.48, + "end": 27633.06, + "probability": 0.9698 + }, + { + "start": 27633.66, + "end": 27637.44, + "probability": 0.9528 + }, + { + "start": 27638.22, + "end": 27642.7, + "probability": 0.9935 + }, + { + "start": 27643.68, + "end": 27648.12, + "probability": 0.9727 + }, + { + "start": 27648.12, + "end": 27652.62, + "probability": 0.9805 + }, + { + "start": 27652.78, + "end": 27656.82, + "probability": 0.994 + }, + { + "start": 27656.82, + "end": 27660.88, + "probability": 0.9766 + }, + { + "start": 27661.02, + "end": 27664.0, + "probability": 0.9893 + }, + { + "start": 27664.0, + "end": 27666.0, + "probability": 0.9863 + }, + { + "start": 27666.9, + "end": 27668.58, + "probability": 0.9315 + }, + { + "start": 27668.58, + "end": 27671.5, + "probability": 0.9973 + }, + { + "start": 27671.68, + "end": 27674.26, + "probability": 0.8457 + }, + { + "start": 27674.26, + "end": 27676.24, + "probability": 0.7111 + }, + { + "start": 27676.34, + "end": 27678.46, + "probability": 0.6381 + }, + { + "start": 27678.62, + "end": 27681.48, + "probability": 0.9978 + }, + { + "start": 27682.1, + "end": 27685.71, + "probability": 0.9507 + }, + { + "start": 27686.3, + "end": 27690.74, + "probability": 0.995 + }, + { + "start": 27690.74, + "end": 27694.42, + "probability": 0.7897 + }, + { + "start": 27695.0, + "end": 27698.32, + "probability": 0.8833 + }, + { + "start": 27698.62, + "end": 27700.54, + "probability": 0.6511 + }, + { + "start": 27701.4, + "end": 27703.48, + "probability": 0.8745 + }, + { + "start": 27704.58, + "end": 27706.5, + "probability": 0.769 + }, + { + "start": 27707.74, + "end": 27709.92, + "probability": 0.6885 + }, + { + "start": 27710.24, + "end": 27711.5, + "probability": 0.62 + }, + { + "start": 27711.68, + "end": 27712.28, + "probability": 0.7869 + }, + { + "start": 27713.14, + "end": 27714.5, + "probability": 0.9394 + }, + { + "start": 27714.68, + "end": 27715.32, + "probability": 0.9528 + }, + { + "start": 27715.54, + "end": 27717.88, + "probability": 0.7437 + }, + { + "start": 27717.96, + "end": 27719.46, + "probability": 0.6659 + }, + { + "start": 27719.5, + "end": 27721.86, + "probability": 0.9133 + }, + { + "start": 27722.9, + "end": 27724.88, + "probability": 0.8017 + }, + { + "start": 27725.44, + "end": 27726.08, + "probability": 0.4978 + }, + { + "start": 27726.7, + "end": 27727.42, + "probability": 0.8909 + }, + { + "start": 27728.24, + "end": 27728.84, + "probability": 0.6482 + }, + { + "start": 27729.32, + "end": 27730.12, + "probability": 0.9414 + }, + { + "start": 27731.06, + "end": 27732.14, + "probability": 0.6788 + }, + { + "start": 27732.32, + "end": 27732.96, + "probability": 0.9791 + }, + { + "start": 27733.16, + "end": 27734.1, + "probability": 0.9152 + }, + { + "start": 27734.18, + "end": 27736.18, + "probability": 0.673 + }, + { + "start": 27737.36, + "end": 27738.58, + "probability": 0.6461 + }, + { + "start": 27738.86, + "end": 27739.66, + "probability": 0.3747 + }, + { + "start": 27740.3, + "end": 27741.38, + "probability": 0.655 + }, + { + "start": 27741.46, + "end": 27742.22, + "probability": 0.4849 + }, + { + "start": 27742.48, + "end": 27743.58, + "probability": 0.589 + }, + { + "start": 27743.62, + "end": 27745.06, + "probability": 0.8032 + }, + { + "start": 27745.08, + "end": 27745.86, + "probability": 0.479 + }, + { + "start": 27745.88, + "end": 27747.76, + "probability": 0.7526 + }, + { + "start": 27747.94, + "end": 27748.96, + "probability": 0.6508 + }, + { + "start": 27750.72, + "end": 27750.72, + "probability": 0.2245 + }, + { + "start": 27750.72, + "end": 27751.74, + "probability": 0.1139 + }, + { + "start": 27752.04, + "end": 27752.58, + "probability": 0.3475 + }, + { + "start": 27752.58, + "end": 27753.18, + "probability": 0.3759 + }, + { + "start": 27753.54, + "end": 27754.32, + "probability": 0.6853 + }, + { + "start": 27755.02, + "end": 27756.5, + "probability": 0.6383 + }, + { + "start": 27756.84, + "end": 27757.76, + "probability": 0.7921 + }, + { + "start": 27758.14, + "end": 27759.24, + "probability": 0.7551 + }, + { + "start": 27759.34, + "end": 27760.04, + "probability": 0.9703 + }, + { + "start": 27760.3, + "end": 27761.42, + "probability": 0.67 + }, + { + "start": 27762.78, + "end": 27763.64, + "probability": 0.8715 + }, + { + "start": 27764.26, + "end": 27765.2, + "probability": 0.6511 + }, + { + "start": 27765.68, + "end": 27766.32, + "probability": 0.8389 + }, + { + "start": 27766.52, + "end": 27767.1, + "probability": 0.2315 + }, + { + "start": 27767.2, + "end": 27767.62, + "probability": 0.3029 + }, + { + "start": 27767.62, + "end": 27768.38, + "probability": 0.6706 + }, + { + "start": 27769.38, + "end": 27769.78, + "probability": 0.9541 + }, + { + "start": 27769.88, + "end": 27770.84, + "probability": 0.8566 + }, + { + "start": 27771.48, + "end": 27775.52, + "probability": 0.9551 + }, + { + "start": 27775.76, + "end": 27780.8, + "probability": 0.3291 + }, + { + "start": 27782.18, + "end": 27782.46, + "probability": 0.0206 + }, + { + "start": 27782.46, + "end": 27782.46, + "probability": 0.1617 + }, + { + "start": 27782.46, + "end": 27782.96, + "probability": 0.1482 + }, + { + "start": 27783.58, + "end": 27783.94, + "probability": 0.4093 + }, + { + "start": 27784.08, + "end": 27785.32, + "probability": 0.8843 + }, + { + "start": 27785.36, + "end": 27785.64, + "probability": 0.9156 + }, + { + "start": 27786.02, + "end": 27786.81, + "probability": 0.8174 + }, + { + "start": 27787.84, + "end": 27790.32, + "probability": 0.0571 + }, + { + "start": 27791.56, + "end": 27792.56, + "probability": 0.385 + }, + { + "start": 27792.88, + "end": 27797.28, + "probability": 0.7655 + }, + { + "start": 27797.28, + "end": 27798.42, + "probability": 0.2011 + }, + { + "start": 27803.32, + "end": 27805.06, + "probability": 0.2809 + }, + { + "start": 27805.94, + "end": 27807.48, + "probability": 0.016 + }, + { + "start": 27811.4, + "end": 27811.78, + "probability": 0.1833 + }, + { + "start": 27812.38, + "end": 27814.74, + "probability": 0.5711 + }, + { + "start": 27815.96, + "end": 27816.59, + "probability": 0.8144 + }, + { + "start": 27816.88, + "end": 27818.92, + "probability": 0.4934 + }, + { + "start": 27819.0, + "end": 27821.6, + "probability": 0.8198 + }, + { + "start": 27822.35, + "end": 27824.04, + "probability": 0.6383 + }, + { + "start": 27824.4, + "end": 27828.46, + "probability": 0.6599 + }, + { + "start": 27828.54, + "end": 27829.84, + "probability": 0.0662 + }, + { + "start": 27830.14, + "end": 27830.58, + "probability": 0.5192 + }, + { + "start": 27830.58, + "end": 27831.48, + "probability": 0.7603 + }, + { + "start": 27831.64, + "end": 27832.26, + "probability": 0.2501 + }, + { + "start": 27832.26, + "end": 27834.86, + "probability": 0.4071 + }, + { + "start": 27835.32, + "end": 27838.18, + "probability": 0.8686 + }, + { + "start": 27838.46, + "end": 27840.5, + "probability": 0.1048 + }, + { + "start": 27841.16, + "end": 27842.64, + "probability": 0.0781 + }, + { + "start": 27843.82, + "end": 27844.58, + "probability": 0.7745 + }, + { + "start": 27845.9, + "end": 27847.18, + "probability": 0.214 + }, + { + "start": 27847.34, + "end": 27847.62, + "probability": 0.5592 + }, + { + "start": 27847.84, + "end": 27848.76, + "probability": 0.5758 + }, + { + "start": 27850.0, + "end": 27852.06, + "probability": 0.5008 + }, + { + "start": 27852.16, + "end": 27854.42, + "probability": 0.4023 + }, + { + "start": 27854.5, + "end": 27856.02, + "probability": 0.373 + }, + { + "start": 27856.24, + "end": 27857.12, + "probability": 0.6337 + }, + { + "start": 27857.28, + "end": 27859.04, + "probability": 0.8389 + }, + { + "start": 27859.42, + "end": 27860.42, + "probability": 0.6884 + }, + { + "start": 27865.47, + "end": 27867.8, + "probability": 0.0857 + }, + { + "start": 27867.8, + "end": 27867.8, + "probability": 0.2027 + }, + { + "start": 27868.02, + "end": 27869.7, + "probability": 0.0755 + }, + { + "start": 27873.74, + "end": 27875.08, + "probability": 0.5016 + }, + { + "start": 27880.18, + "end": 27880.5, + "probability": 0.0287 + }, + { + "start": 27880.5, + "end": 27882.7, + "probability": 0.5503 + }, + { + "start": 27882.98, + "end": 27886.38, + "probability": 0.6095 + }, + { + "start": 27886.46, + "end": 27890.58, + "probability": 0.9227 + }, + { + "start": 27890.62, + "end": 27892.06, + "probability": 0.8491 + }, + { + "start": 27892.1, + "end": 27893.78, + "probability": 0.8455 + }, + { + "start": 27905.36, + "end": 27908.34, + "probability": 0.9489 + }, + { + "start": 27908.34, + "end": 27912.16, + "probability": 0.594 + }, + { + "start": 27912.28, + "end": 27912.86, + "probability": 0.5929 + }, + { + "start": 27914.4, + "end": 27918.18, + "probability": 0.8031 + }, + { + "start": 27918.32, + "end": 27918.84, + "probability": 0.1555 + }, + { + "start": 27918.84, + "end": 27920.58, + "probability": 0.4109 + }, + { + "start": 27921.22, + "end": 27922.66, + "probability": 0.6219 + }, + { + "start": 27944.62, + "end": 27947.02, + "probability": 0.7137 + }, + { + "start": 27947.72, + "end": 27951.9, + "probability": 0.887 + }, + { + "start": 27951.9, + "end": 27954.42, + "probability": 0.9907 + }, + { + "start": 27955.92, + "end": 27959.56, + "probability": 0.9602 + }, + { + "start": 27959.56, + "end": 27964.4, + "probability": 0.9972 + }, + { + "start": 27965.16, + "end": 27968.86, + "probability": 0.9814 + }, + { + "start": 27969.86, + "end": 27973.56, + "probability": 0.9979 + }, + { + "start": 27973.56, + "end": 27977.66, + "probability": 0.9982 + }, + { + "start": 27978.44, + "end": 27982.3, + "probability": 0.6991 + }, + { + "start": 27983.72, + "end": 27986.12, + "probability": 0.9932 + }, + { + "start": 27986.12, + "end": 27989.4, + "probability": 0.9795 + }, + { + "start": 27990.04, + "end": 27992.84, + "probability": 0.9641 + }, + { + "start": 27992.84, + "end": 27996.3, + "probability": 0.9931 + }, + { + "start": 27996.92, + "end": 27999.18, + "probability": 0.7455 + }, + { + "start": 27999.7, + "end": 28003.88, + "probability": 0.9917 + }, + { + "start": 28005.8, + "end": 28006.78, + "probability": 0.8135 + }, + { + "start": 28006.92, + "end": 28009.44, + "probability": 0.9893 + }, + { + "start": 28009.78, + "end": 28012.6, + "probability": 0.9087 + }, + { + "start": 28013.2, + "end": 28017.52, + "probability": 0.9882 + }, + { + "start": 28017.52, + "end": 28021.8, + "probability": 0.9876 + }, + { + "start": 28026.02, + "end": 28027.35, + "probability": 0.4742 + }, + { + "start": 28027.66, + "end": 28031.74, + "probability": 0.8905 + }, + { + "start": 28031.74, + "end": 28035.78, + "probability": 0.7494 + }, + { + "start": 28037.4, + "end": 28041.0, + "probability": 0.9226 + }, + { + "start": 28041.0, + "end": 28045.78, + "probability": 0.9873 + }, + { + "start": 28046.68, + "end": 28050.14, + "probability": 0.8973 + }, + { + "start": 28050.46, + "end": 28052.5, + "probability": 0.9846 + }, + { + "start": 28053.44, + "end": 28053.76, + "probability": 0.7219 + }, + { + "start": 28053.96, + "end": 28058.02, + "probability": 0.9927 + }, + { + "start": 28058.02, + "end": 28063.22, + "probability": 0.9915 + }, + { + "start": 28064.08, + "end": 28068.72, + "probability": 0.9965 + }, + { + "start": 28068.72, + "end": 28074.42, + "probability": 0.9878 + }, + { + "start": 28074.52, + "end": 28075.0, + "probability": 0.7462 + }, + { + "start": 28076.82, + "end": 28079.16, + "probability": 0.7301 + }, + { + "start": 28079.3, + "end": 28080.26, + "probability": 0.9995 + }, + { + "start": 28081.34, + "end": 28082.62, + "probability": 0.8856 + }, + { + "start": 28083.04, + "end": 28083.72, + "probability": 0.4958 + }, + { + "start": 28084.96, + "end": 28085.46, + "probability": 0.5796 + }, + { + "start": 28085.58, + "end": 28086.2, + "probability": 0.8565 + }, + { + "start": 28087.3, + "end": 28087.84, + "probability": 0.5081 + }, + { + "start": 28087.92, + "end": 28088.56, + "probability": 0.9712 + }, + { + "start": 28089.34, + "end": 28089.84, + "probability": 0.7582 + }, + { + "start": 28089.86, + "end": 28090.58, + "probability": 0.6932 + }, + { + "start": 28090.88, + "end": 28091.54, + "probability": 0.9729 + }, + { + "start": 28091.72, + "end": 28092.7, + "probability": 0.697 + }, + { + "start": 28093.56, + "end": 28094.18, + "probability": 0.9758 + }, + { + "start": 28094.42, + "end": 28095.28, + "probability": 0.4096 + }, + { + "start": 28095.96, + "end": 28096.46, + "probability": 0.4043 + }, + { + "start": 28096.6, + "end": 28097.24, + "probability": 0.7376 + }, + { + "start": 28097.4, + "end": 28097.88, + "probability": 0.8015 + }, + { + "start": 28098.7, + "end": 28099.24, + "probability": 0.698 + }, + { + "start": 28101.59, + "end": 28102.5, + "probability": 0.8413 + }, + { + "start": 28106.06, + "end": 28107.36, + "probability": 0.8923 + }, + { + "start": 28111.08, + "end": 28111.72, + "probability": 0.7496 + }, + { + "start": 28111.92, + "end": 28113.44, + "probability": 0.6647 + }, + { + "start": 28113.48, + "end": 28115.64, + "probability": 0.6854 + }, + { + "start": 28115.94, + "end": 28116.56, + "probability": 0.896 + }, + { + "start": 28116.92, + "end": 28117.0, + "probability": 0.015 + }, + { + "start": 28117.02, + "end": 28117.02, + "probability": 0.4977 + }, + { + "start": 28117.22, + "end": 28118.98, + "probability": 0.5642 + }, + { + "start": 28119.58, + "end": 28122.08, + "probability": 0.9819 + }, + { + "start": 28122.08, + "end": 28125.14, + "probability": 0.9375 + }, + { + "start": 28125.74, + "end": 28126.4, + "probability": 0.5574 + }, + { + "start": 28127.34, + "end": 28128.52, + "probability": 0.6913 + }, + { + "start": 28128.92, + "end": 28135.78, + "probability": 0.9798 + }, + { + "start": 28135.88, + "end": 28140.54, + "probability": 0.9853 + }, + { + "start": 28140.96, + "end": 28143.1, + "probability": 0.5653 + }, + { + "start": 28143.72, + "end": 28144.8, + "probability": 0.5573 + }, + { + "start": 28144.96, + "end": 28146.08, + "probability": 0.7565 + }, + { + "start": 28146.14, + "end": 28148.18, + "probability": 0.9883 + }, + { + "start": 28148.74, + "end": 28151.2, + "probability": 0.9548 + }, + { + "start": 28151.34, + "end": 28152.1, + "probability": 0.5123 + }, + { + "start": 28152.18, + "end": 28152.9, + "probability": 0.6093 + }, + { + "start": 28153.0, + "end": 28154.88, + "probability": 0.6961 + }, + { + "start": 28156.14, + "end": 28159.08, + "probability": 0.9608 + }, + { + "start": 28160.22, + "end": 28164.94, + "probability": 0.9715 + }, + { + "start": 28165.64, + "end": 28166.86, + "probability": 0.9608 + }, + { + "start": 28166.96, + "end": 28167.34, + "probability": 0.6371 + }, + { + "start": 28167.52, + "end": 28168.54, + "probability": 0.8996 + }, + { + "start": 28168.68, + "end": 28176.08, + "probability": 0.8747 + }, + { + "start": 28177.1, + "end": 28180.35, + "probability": 0.9899 + }, + { + "start": 28182.14, + "end": 28184.3, + "probability": 0.8599 + }, + { + "start": 28184.84, + "end": 28189.16, + "probability": 0.9601 + }, + { + "start": 28190.18, + "end": 28193.5, + "probability": 0.9387 + }, + { + "start": 28193.68, + "end": 28194.76, + "probability": 0.6884 + }, + { + "start": 28195.12, + "end": 28196.58, + "probability": 0.8005 + }, + { + "start": 28197.1, + "end": 28198.0, + "probability": 0.9746 + }, + { + "start": 28199.4, + "end": 28199.88, + "probability": 0.511 + }, + { + "start": 28200.42, + "end": 28200.52, + "probability": 0.1686 + }, + { + "start": 28201.5, + "end": 28202.32, + "probability": 0.4712 + }, + { + "start": 28202.4, + "end": 28202.9, + "probability": 0.3295 + }, + { + "start": 28203.2, + "end": 28203.4, + "probability": 0.8211 + }, + { + "start": 28203.76, + "end": 28204.3, + "probability": 0.6678 + }, + { + "start": 28204.5, + "end": 28205.38, + "probability": 0.6428 + }, + { + "start": 28205.44, + "end": 28205.98, + "probability": 0.5517 + }, + { + "start": 28206.72, + "end": 28207.38, + "probability": 0.6248 + }, + { + "start": 28208.7, + "end": 28209.32, + "probability": 0.804 + }, + { + "start": 28209.38, + "end": 28210.12, + "probability": 0.3436 + }, + { + "start": 28210.48, + "end": 28211.12, + "probability": 0.7496 + }, + { + "start": 28211.3, + "end": 28212.0, + "probability": 0.9551 + }, + { + "start": 28213.36, + "end": 28213.52, + "probability": 0.343 + }, + { + "start": 28213.98, + "end": 28214.16, + "probability": 0.3632 + }, + { + "start": 28214.52, + "end": 28214.84, + "probability": 0.9463 + }, + { + "start": 28214.92, + "end": 28215.6, + "probability": 0.946 + }, + { + "start": 28216.76, + "end": 28217.1, + "probability": 0.7882 + }, + { + "start": 28217.16, + "end": 28217.88, + "probability": 0.8922 + }, + { + "start": 28218.62, + "end": 28219.38, + "probability": 0.9272 + }, + { + "start": 28220.62, + "end": 28221.62, + "probability": 0.6499 + }, + { + "start": 28221.9, + "end": 28222.76, + "probability": 0.9054 + }, + { + "start": 28223.18, + "end": 28223.72, + "probability": 0.4073 + }, + { + "start": 28223.76, + "end": 28224.5, + "probability": 0.8903 + }, + { + "start": 28238.64, + "end": 28239.68, + "probability": 0.5748 + }, + { + "start": 28241.26, + "end": 28241.72, + "probability": 0.0476 + }, + { + "start": 28242.44, + "end": 28244.62, + "probability": 0.0406 + }, + { + "start": 28244.96, + "end": 28244.96, + "probability": 0.0168 + }, + { + "start": 28245.14, + "end": 28245.48, + "probability": 0.0239 + }, + { + "start": 28245.48, + "end": 28245.82, + "probability": 0.0183 + }, + { + "start": 28246.28, + "end": 28247.12, + "probability": 0.0201 + }, + { + "start": 28247.12, + "end": 28247.44, + "probability": 0.0943 + }, + { + "start": 28247.46, + "end": 28248.76, + "probability": 0.0701 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.0, + "end": 28339.0, + "probability": 0.0 + }, + { + "start": 28339.16, + "end": 28340.44, + "probability": 0.0174 + }, + { + "start": 28341.1, + "end": 28342.36, + "probability": 0.7336 + }, + { + "start": 28342.54, + "end": 28345.42, + "probability": 0.5859 + }, + { + "start": 28345.56, + "end": 28347.34, + "probability": 0.9812 + }, + { + "start": 28348.24, + "end": 28348.8, + "probability": 0.7986 + }, + { + "start": 28349.36, + "end": 28349.92, + "probability": 0.438 + }, + { + "start": 28350.04, + "end": 28351.16, + "probability": 0.5452 + }, + { + "start": 28351.16, + "end": 28353.02, + "probability": 0.7705 + }, + { + "start": 28353.04, + "end": 28354.24, + "probability": 0.9011 + }, + { + "start": 28354.34, + "end": 28356.94, + "probability": 0.8922 + }, + { + "start": 28357.62, + "end": 28360.26, + "probability": 0.9712 + }, + { + "start": 28360.26, + "end": 28364.02, + "probability": 0.9896 + }, + { + "start": 28364.14, + "end": 28365.1, + "probability": 0.8386 + }, + { + "start": 28365.6, + "end": 28367.5, + "probability": 0.8716 + }, + { + "start": 28367.68, + "end": 28370.36, + "probability": 0.8547 + }, + { + "start": 28370.4, + "end": 28373.8, + "probability": 0.9858 + }, + { + "start": 28373.86, + "end": 28375.04, + "probability": 0.7521 + }, + { + "start": 28375.16, + "end": 28375.78, + "probability": 0.7054 + }, + { + "start": 28376.24, + "end": 28379.64, + "probability": 0.9651 + }, + { + "start": 28380.06, + "end": 28381.82, + "probability": 0.9879 + }, + { + "start": 28382.26, + "end": 28383.38, + "probability": 0.8051 + }, + { + "start": 28383.54, + "end": 28387.7, + "probability": 0.9937 + }, + { + "start": 28387.7, + "end": 28391.74, + "probability": 0.9951 + }, + { + "start": 28392.64, + "end": 28394.92, + "probability": 0.9985 + }, + { + "start": 28394.92, + "end": 28397.72, + "probability": 0.999 + }, + { + "start": 28398.32, + "end": 28402.65, + "probability": 0.9502 + }, + { + "start": 28404.44, + "end": 28408.16, + "probability": 0.9514 + }, + { + "start": 28408.16, + "end": 28411.76, + "probability": 0.9912 + }, + { + "start": 28412.46, + "end": 28416.52, + "probability": 0.8232 + }, + { + "start": 28417.34, + "end": 28420.98, + "probability": 0.7327 + }, + { + "start": 28421.68, + "end": 28427.5, + "probability": 0.8717 + }, + { + "start": 28428.1, + "end": 28430.06, + "probability": 0.7289 + }, + { + "start": 28430.82, + "end": 28431.54, + "probability": 0.7272 + }, + { + "start": 28431.68, + "end": 28435.5, + "probability": 0.7968 + }, + { + "start": 28436.16, + "end": 28440.22, + "probability": 0.9388 + }, + { + "start": 28440.8, + "end": 28442.48, + "probability": 0.8302 + }, + { + "start": 28442.96, + "end": 28444.34, + "probability": 0.7177 + }, + { + "start": 28445.02, + "end": 28447.24, + "probability": 0.6749 + }, + { + "start": 28448.1, + "end": 28452.28, + "probability": 0.8275 + }, + { + "start": 28452.84, + "end": 28454.12, + "probability": 0.9339 + }, + { + "start": 28454.66, + "end": 28455.91, + "probability": 0.8787 + }, + { + "start": 28456.48, + "end": 28459.82, + "probability": 0.7522 + }, + { + "start": 28460.38, + "end": 28464.34, + "probability": 0.8732 + }, + { + "start": 28464.42, + "end": 28465.18, + "probability": 0.7587 + }, + { + "start": 28466.24, + "end": 28466.88, + "probability": 0.9034 + }, + { + "start": 28466.96, + "end": 28470.7, + "probability": 0.9015 + }, + { + "start": 28471.46, + "end": 28475.46, + "probability": 0.9454 + }, + { + "start": 28475.46, + "end": 28479.28, + "probability": 0.9601 + }, + { + "start": 28479.74, + "end": 28482.34, + "probability": 0.7503 + }, + { + "start": 28482.46, + "end": 28483.46, + "probability": 0.9394 + }, + { + "start": 28484.46, + "end": 28489.56, + "probability": 0.9633 + }, + { + "start": 28490.5, + "end": 28492.78, + "probability": 0.9918 + }, + { + "start": 28492.78, + "end": 28495.1, + "probability": 0.9854 + }, + { + "start": 28495.26, + "end": 28496.74, + "probability": 0.9766 + }, + { + "start": 28497.32, + "end": 28501.46, + "probability": 0.9912 + }, + { + "start": 28501.6, + "end": 28502.14, + "probability": 0.6766 + }, + { + "start": 28502.32, + "end": 28504.3, + "probability": 0.9116 + }, + { + "start": 28504.96, + "end": 28507.64, + "probability": 0.8531 + }, + { + "start": 28508.1, + "end": 28509.9, + "probability": 0.9349 + }, + { + "start": 28510.46, + "end": 28513.3, + "probability": 0.7845 + }, + { + "start": 28513.8, + "end": 28515.34, + "probability": 0.977 + }, + { + "start": 28516.57, + "end": 28517.88, + "probability": 0.7719 + }, + { + "start": 28518.03, + "end": 28518.44, + "probability": 0.7538 + }, + { + "start": 28518.62, + "end": 28519.7, + "probability": 0.9598 + }, + { + "start": 28519.74, + "end": 28519.8, + "probability": 0.041 + }, + { + "start": 28519.9, + "end": 28521.34, + "probability": 0.6955 + }, + { + "start": 28521.88, + "end": 28522.5, + "probability": 0.4667 + }, + { + "start": 28522.74, + "end": 28523.42, + "probability": 0.5136 + }, + { + "start": 28523.56, + "end": 28523.98, + "probability": 0.2252 + }, + { + "start": 28524.08, + "end": 28527.02, + "probability": 0.9778 + }, + { + "start": 28527.02, + "end": 28527.02, + "probability": 0.7932 + }, + { + "start": 28527.02, + "end": 28527.06, + "probability": 0.5924 + }, + { + "start": 28527.06, + "end": 28527.12, + "probability": 0.5021 + }, + { + "start": 28527.12, + "end": 28530.22, + "probability": 0.9628 + }, + { + "start": 28530.34, + "end": 28530.74, + "probability": 0.1945 + }, + { + "start": 28530.74, + "end": 28530.74, + "probability": 0.0181 + }, + { + "start": 28530.74, + "end": 28531.32, + "probability": 0.478 + }, + { + "start": 28531.56, + "end": 28533.32, + "probability": 0.6016 + }, + { + "start": 28533.8, + "end": 28534.14, + "probability": 0.3488 + }, + { + "start": 28534.26, + "end": 28536.48, + "probability": 0.9384 + }, + { + "start": 28536.54, + "end": 28537.1, + "probability": 0.644 + }, + { + "start": 28537.24, + "end": 28539.58, + "probability": 0.965 + }, + { + "start": 28539.89, + "end": 28545.98, + "probability": 0.8887 + }, + { + "start": 28546.0, + "end": 28546.68, + "probability": 0.6593 + }, + { + "start": 28546.88, + "end": 28547.7, + "probability": 0.315 + }, + { + "start": 28547.72, + "end": 28551.7, + "probability": 0.5643 + }, + { + "start": 28551.84, + "end": 28554.01, + "probability": 0.7146 + }, + { + "start": 28554.72, + "end": 28555.42, + "probability": 0.685 + }, + { + "start": 28556.1, + "end": 28558.0, + "probability": 0.8061 + }, + { + "start": 28558.68, + "end": 28563.14, + "probability": 0.9804 + }, + { + "start": 28563.14, + "end": 28566.6, + "probability": 0.9774 + }, + { + "start": 28566.68, + "end": 28567.2, + "probability": 0.8916 + }, + { + "start": 28567.24, + "end": 28567.74, + "probability": 0.6618 + }, + { + "start": 28567.9, + "end": 28568.6, + "probability": 0.4389 + }, + { + "start": 28568.96, + "end": 28570.36, + "probability": 0.9468 + }, + { + "start": 28570.36, + "end": 28571.14, + "probability": 0.1274 + }, + { + "start": 28571.48, + "end": 28575.86, + "probability": 0.9896 + }, + { + "start": 28576.24, + "end": 28579.02, + "probability": 0.7368 + }, + { + "start": 28579.54, + "end": 28582.14, + "probability": 0.9487 + }, + { + "start": 28582.72, + "end": 28584.12, + "probability": 0.6645 + }, + { + "start": 28584.6, + "end": 28588.06, + "probability": 0.9972 + }, + { + "start": 28588.18, + "end": 28589.12, + "probability": 0.4589 + }, + { + "start": 28589.94, + "end": 28593.84, + "probability": 0.9351 + }, + { + "start": 28594.42, + "end": 28596.92, + "probability": 0.9791 + }, + { + "start": 28597.12, + "end": 28598.94, + "probability": 0.9482 + }, + { + "start": 28599.0, + "end": 28599.68, + "probability": 0.8985 + }, + { + "start": 28599.8, + "end": 28602.18, + "probability": 0.9193 + }, + { + "start": 28602.18, + "end": 28606.12, + "probability": 0.7504 + }, + { + "start": 28606.82, + "end": 28610.96, + "probability": 0.9754 + }, + { + "start": 28611.78, + "end": 28614.14, + "probability": 0.7397 + }, + { + "start": 28614.14, + "end": 28614.48, + "probability": 0.3425 + }, + { + "start": 28614.66, + "end": 28615.64, + "probability": 0.9605 + }, + { + "start": 28616.08, + "end": 28617.71, + "probability": 0.8191 + }, + { + "start": 28617.96, + "end": 28619.02, + "probability": 0.7423 + }, + { + "start": 28619.1, + "end": 28621.64, + "probability": 0.9565 + }, + { + "start": 28622.5, + "end": 28626.1, + "probability": 0.7084 + }, + { + "start": 28626.18, + "end": 28626.66, + "probability": 0.6738 + }, + { + "start": 28629.22, + "end": 28633.09, + "probability": 0.7622 + }, + { + "start": 28633.3, + "end": 28634.82, + "probability": 0.9791 + }, + { + "start": 28635.36, + "end": 28636.46, + "probability": 0.869 + }, + { + "start": 28637.14, + "end": 28638.12, + "probability": 0.7549 + }, + { + "start": 28638.48, + "end": 28639.16, + "probability": 0.5906 + }, + { + "start": 28639.32, + "end": 28639.98, + "probability": 0.9009 + }, + { + "start": 28640.18, + "end": 28640.88, + "probability": 0.7743 + }, + { + "start": 28650.66, + "end": 28651.42, + "probability": 0.5642 + }, + { + "start": 28660.96, + "end": 28666.02, + "probability": 0.1052 + }, + { + "start": 28666.02, + "end": 28669.58, + "probability": 0.2231 + }, + { + "start": 28669.82, + "end": 28670.86, + "probability": 0.435 + }, + { + "start": 28671.68, + "end": 28671.84, + "probability": 0.0442 + }, + { + "start": 28672.12, + "end": 28672.52, + "probability": 0.0917 + }, + { + "start": 28672.84, + "end": 28675.82, + "probability": 0.0548 + }, + { + "start": 28675.82, + "end": 28677.92, + "probability": 0.0063 + }, + { + "start": 28680.62, + "end": 28680.72, + "probability": 0.2748 + }, + { + "start": 28682.16, + "end": 28687.08, + "probability": 0.056 + }, + { + "start": 28688.86, + "end": 28689.44, + "probability": 0.1245 + }, + { + "start": 28689.44, + "end": 28689.44, + "probability": 0.0216 + }, + { + "start": 28689.44, + "end": 28690.2, + "probability": 0.0914 + }, + { + "start": 28690.46, + "end": 28694.4, + "probability": 0.2244 + }, + { + "start": 28694.4, + "end": 28699.04, + "probability": 0.6676 + }, + { + "start": 28699.26, + "end": 28699.46, + "probability": 0.0325 + }, + { + "start": 28699.54, + "end": 28699.7, + "probability": 0.0589 + }, + { + "start": 28700.52, + "end": 28700.78, + "probability": 0.0269 + }, + { + "start": 28700.78, + "end": 28702.12, + "probability": 0.0322 + }, + { + "start": 28702.12, + "end": 28702.56, + "probability": 0.031 + }, + { + "start": 28703.54, + "end": 28706.58, + "probability": 0.1301 + }, + { + "start": 28707.94, + "end": 28715.72, + "probability": 0.0328 + }, + { + "start": 28717.32, + "end": 28718.66, + "probability": 0.1555 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.0, + "end": 28719.0, + "probability": 0.0 + }, + { + "start": 28719.2, + "end": 28720.28, + "probability": 0.4402 + }, + { + "start": 28720.8, + "end": 28722.72, + "probability": 0.7966 + }, + { + "start": 28723.18, + "end": 28726.2, + "probability": 0.9355 + }, + { + "start": 28726.78, + "end": 28730.31, + "probability": 0.8247 + }, + { + "start": 28731.01, + "end": 28733.01, + "probability": 0.679 + }, + { + "start": 28733.41, + "end": 28734.79, + "probability": 0.9394 + }, + { + "start": 28734.95, + "end": 28738.81, + "probability": 0.7924 + }, + { + "start": 28739.27, + "end": 28742.74, + "probability": 0.9092 + }, + { + "start": 28743.51, + "end": 28746.91, + "probability": 0.7557 + }, + { + "start": 28747.59, + "end": 28753.03, + "probability": 0.8652 + }, + { + "start": 28753.77, + "end": 28755.31, + "probability": 0.7413 + }, + { + "start": 28755.43, + "end": 28759.41, + "probability": 0.8939 + }, + { + "start": 28760.67, + "end": 28761.85, + "probability": 0.4976 + }, + { + "start": 28762.39, + "end": 28765.55, + "probability": 0.7827 + }, + { + "start": 28765.99, + "end": 28770.25, + "probability": 0.1376 + }, + { + "start": 28771.94, + "end": 28777.91, + "probability": 0.091 + }, + { + "start": 28777.91, + "end": 28778.13, + "probability": 0.0259 + }, + { + "start": 28778.77, + "end": 28779.63, + "probability": 0.6311 + }, + { + "start": 28792.03, + "end": 28792.17, + "probability": 0.0646 + }, + { + "start": 28798.69, + "end": 28800.11, + "probability": 0.0864 + }, + { + "start": 28800.89, + "end": 28801.57, + "probability": 0.0145 + }, + { + "start": 28801.57, + "end": 28803.39, + "probability": 0.0434 + }, + { + "start": 28805.19, + "end": 28806.43, + "probability": 0.0825 + }, + { + "start": 28808.78, + "end": 28822.14, + "probability": 0.0135 + }, + { + "start": 28822.27, + "end": 28830.43, + "probability": 0.0563 + }, + { + "start": 28830.51, + "end": 28831.31, + "probability": 0.0182 + }, + { + "start": 28860.0, + "end": 28860.0, + "probability": 0.0 + }, + { + "start": 28860.0, + "end": 28860.0, + "probability": 0.0 + }, + { + "start": 28860.84, + "end": 28860.92, + "probability": 0.0521 + }, + { + "start": 28860.92, + "end": 28865.94, + "probability": 0.8798 + }, + { + "start": 28866.02, + "end": 28867.48, + "probability": 0.9244 + }, + { + "start": 28868.6, + "end": 28868.94, + "probability": 0.9024 + }, + { + "start": 28870.46, + "end": 28874.26, + "probability": 0.9961 + }, + { + "start": 28874.26, + "end": 28877.88, + "probability": 0.9937 + }, + { + "start": 28878.04, + "end": 28879.7, + "probability": 0.9075 + }, + { + "start": 28880.18, + "end": 28881.14, + "probability": 0.9297 + }, + { + "start": 28881.22, + "end": 28884.66, + "probability": 0.8784 + }, + { + "start": 28885.28, + "end": 28886.16, + "probability": 0.0422 + }, + { + "start": 28887.04, + "end": 28889.14, + "probability": 0.9849 + }, + { + "start": 28889.14, + "end": 28891.66, + "probability": 0.9729 + }, + { + "start": 28892.22, + "end": 28895.16, + "probability": 0.9256 + }, + { + "start": 28895.68, + "end": 28896.48, + "probability": 0.8593 + }, + { + "start": 28896.58, + "end": 28898.1, + "probability": 0.9049 + }, + { + "start": 28898.46, + "end": 28900.28, + "probability": 0.7825 + }, + { + "start": 28901.12, + "end": 28903.78, + "probability": 0.9109 + }, + { + "start": 28904.36, + "end": 28905.92, + "probability": 0.9242 + }, + { + "start": 28906.02, + "end": 28909.78, + "probability": 0.9895 + }, + { + "start": 28910.16, + "end": 28910.38, + "probability": 0.2159 + }, + { + "start": 28910.6, + "end": 28912.62, + "probability": 0.6514 + }, + { + "start": 28912.66, + "end": 28913.54, + "probability": 0.6824 + }, + { + "start": 28913.66, + "end": 28914.0, + "probability": 0.7331 + }, + { + "start": 28915.82, + "end": 28917.4, + "probability": 0.9211 + }, + { + "start": 28917.4, + "end": 28921.94, + "probability": 0.9604 + }, + { + "start": 28922.46, + "end": 28923.29, + "probability": 0.9993 + }, + { + "start": 28924.71, + "end": 28927.15, + "probability": 0.9958 + }, + { + "start": 28927.23, + "end": 28931.01, + "probability": 0.7085 + }, + { + "start": 28931.13, + "end": 28932.11, + "probability": 0.5046 + }, + { + "start": 28932.17, + "end": 28934.53, + "probability": 0.8507 + }, + { + "start": 28935.55, + "end": 28937.21, + "probability": 0.6845 + }, + { + "start": 28937.25, + "end": 28937.73, + "probability": 0.5186 + }, + { + "start": 28937.73, + "end": 28938.57, + "probability": 0.8115 + }, + { + "start": 28953.59, + "end": 28960.39, + "probability": 0.1474 + }, + { + "start": 28961.07, + "end": 28963.01, + "probability": 0.5351 + }, + { + "start": 28963.01, + "end": 28965.41, + "probability": 0.5942 + }, + { + "start": 28965.43, + "end": 28965.89, + "probability": 0.2593 + }, + { + "start": 28966.99, + "end": 28968.89, + "probability": 0.2642 + }, + { + "start": 28969.49, + "end": 28969.73, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + }, + { + "start": 29116.24, + "end": 29116.24, + "probability": 0.0 + } + ], + "segments_count": 10154, + "words_count": 47431, + "avg_words_per_segment": 4.6712, + "avg_segment_duration": 1.7974, + "avg_words_per_minute": 97.7413, + "plenum_id": "55824", + "duration": 29116.24, + "title": null, + "plenum_date": "2016-11-07" +} \ No newline at end of file