diff --git "a/105289/metadata.json" "b/105289/metadata.json" new file mode 100644--- /dev/null +++ "b/105289/metadata.json" @@ -0,0 +1,67737 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "105289", + "quality_score": 0.8716, + "per_segment_quality_scores": [ + { + "start": 106.16, + "end": 107.46, + "probability": 0.0407 + }, + { + "start": 119.98, + "end": 121.06, + "probability": 0.3441 + }, + { + "start": 121.82, + "end": 127.76, + "probability": 0.9724 + }, + { + "start": 127.76, + "end": 133.0, + "probability": 0.9714 + }, + { + "start": 134.0, + "end": 135.42, + "probability": 0.9157 + }, + { + "start": 136.02, + "end": 139.72, + "probability": 0.9337 + }, + { + "start": 140.68, + "end": 143.8, + "probability": 0.7178 + }, + { + "start": 144.82, + "end": 148.8, + "probability": 0.9292 + }, + { + "start": 151.26, + "end": 152.04, + "probability": 0.7221 + }, + { + "start": 153.16, + "end": 153.26, + "probability": 0.1668 + }, + { + "start": 153.48, + "end": 154.38, + "probability": 0.5402 + }, + { + "start": 154.56, + "end": 159.98, + "probability": 0.9684 + }, + { + "start": 160.26, + "end": 161.38, + "probability": 0.8107 + }, + { + "start": 161.96, + "end": 162.68, + "probability": 0.875 + }, + { + "start": 163.38, + "end": 164.92, + "probability": 0.9521 + }, + { + "start": 165.5, + "end": 167.38, + "probability": 0.9845 + }, + { + "start": 168.14, + "end": 168.66, + "probability": 0.2646 + }, + { + "start": 169.3, + "end": 171.38, + "probability": 0.8082 + }, + { + "start": 173.08, + "end": 175.3, + "probability": 0.9788 + }, + { + "start": 176.18, + "end": 179.2, + "probability": 0.9962 + }, + { + "start": 180.64, + "end": 181.71, + "probability": 0.9614 + }, + { + "start": 182.62, + "end": 184.12, + "probability": 0.9163 + }, + { + "start": 185.14, + "end": 186.38, + "probability": 0.7478 + }, + { + "start": 187.61, + "end": 193.38, + "probability": 0.913 + }, + { + "start": 193.86, + "end": 197.64, + "probability": 0.9664 + }, + { + "start": 199.16, + "end": 203.48, + "probability": 0.9729 + }, + { + "start": 204.16, + "end": 206.04, + "probability": 0.9952 + }, + { + "start": 206.06, + "end": 207.14, + "probability": 0.7027 + }, + { + "start": 207.72, + "end": 209.44, + "probability": 0.9935 + }, + { + "start": 210.14, + "end": 214.22, + "probability": 0.7629 + }, + { + "start": 215.68, + "end": 222.7, + "probability": 0.9884 + }, + { + "start": 223.22, + "end": 225.44, + "probability": 0.7181 + }, + { + "start": 225.44, + "end": 231.7, + "probability": 0.9812 + }, + { + "start": 231.8, + "end": 232.08, + "probability": 0.4354 + }, + { + "start": 232.12, + "end": 234.32, + "probability": 0.9912 + }, + { + "start": 234.88, + "end": 236.26, + "probability": 0.7564 + }, + { + "start": 236.76, + "end": 242.78, + "probability": 0.9531 + }, + { + "start": 242.92, + "end": 245.48, + "probability": 0.7207 + }, + { + "start": 246.68, + "end": 248.12, + "probability": 0.1073 + }, + { + "start": 248.66, + "end": 249.78, + "probability": 0.8136 + }, + { + "start": 249.84, + "end": 251.0, + "probability": 0.9712 + }, + { + "start": 251.16, + "end": 257.18, + "probability": 0.9838 + }, + { + "start": 257.26, + "end": 258.8, + "probability": 0.7726 + }, + { + "start": 259.26, + "end": 261.38, + "probability": 0.9963 + }, + { + "start": 261.74, + "end": 262.64, + "probability": 0.929 + }, + { + "start": 263.04, + "end": 266.4, + "probability": 0.8829 + }, + { + "start": 266.72, + "end": 267.58, + "probability": 0.9775 + }, + { + "start": 268.32, + "end": 269.46, + "probability": 0.9559 + }, + { + "start": 270.04, + "end": 274.06, + "probability": 0.9777 + }, + { + "start": 274.92, + "end": 278.38, + "probability": 0.9444 + }, + { + "start": 279.74, + "end": 282.44, + "probability": 0.9955 + }, + { + "start": 283.02, + "end": 285.92, + "probability": 0.9596 + }, + { + "start": 286.48, + "end": 288.34, + "probability": 0.9644 + }, + { + "start": 289.28, + "end": 291.44, + "probability": 0.9395 + }, + { + "start": 292.71, + "end": 297.22, + "probability": 0.9932 + }, + { + "start": 298.16, + "end": 298.76, + "probability": 0.6945 + }, + { + "start": 298.9, + "end": 304.22, + "probability": 0.9907 + }, + { + "start": 304.94, + "end": 306.44, + "probability": 0.7704 + }, + { + "start": 306.56, + "end": 307.72, + "probability": 0.7641 + }, + { + "start": 307.98, + "end": 309.18, + "probability": 0.8543 + }, + { + "start": 309.26, + "end": 309.98, + "probability": 0.8916 + }, + { + "start": 310.44, + "end": 310.82, + "probability": 0.8798 + }, + { + "start": 313.68, + "end": 316.4, + "probability": 0.8483 + }, + { + "start": 328.66, + "end": 329.54, + "probability": 0.7783 + }, + { + "start": 329.58, + "end": 336.42, + "probability": 0.9494 + }, + { + "start": 337.36, + "end": 341.48, + "probability": 0.8398 + }, + { + "start": 341.6, + "end": 342.24, + "probability": 0.9289 + }, + { + "start": 342.74, + "end": 346.06, + "probability": 0.7865 + }, + { + "start": 346.22, + "end": 349.74, + "probability": 0.9346 + }, + { + "start": 349.74, + "end": 353.88, + "probability": 0.9406 + }, + { + "start": 354.52, + "end": 357.96, + "probability": 0.931 + }, + { + "start": 358.5, + "end": 361.38, + "probability": 0.8349 + }, + { + "start": 361.44, + "end": 364.38, + "probability": 0.7417 + }, + { + "start": 365.08, + "end": 368.22, + "probability": 0.9412 + }, + { + "start": 368.6, + "end": 373.74, + "probability": 0.8792 + }, + { + "start": 374.5, + "end": 376.78, + "probability": 0.4815 + }, + { + "start": 376.86, + "end": 377.44, + "probability": 0.132 + }, + { + "start": 377.94, + "end": 381.88, + "probability": 0.9842 + }, + { + "start": 383.68, + "end": 383.9, + "probability": 0.8074 + }, + { + "start": 384.16, + "end": 385.02, + "probability": 0.8528 + }, + { + "start": 385.12, + "end": 387.5, + "probability": 0.936 + }, + { + "start": 387.62, + "end": 390.36, + "probability": 0.9907 + }, + { + "start": 391.52, + "end": 391.74, + "probability": 0.7608 + }, + { + "start": 392.1, + "end": 395.86, + "probability": 0.9482 + }, + { + "start": 396.14, + "end": 399.28, + "probability": 0.9753 + }, + { + "start": 399.88, + "end": 402.84, + "probability": 0.9468 + }, + { + "start": 403.06, + "end": 403.58, + "probability": 0.8357 + }, + { + "start": 403.64, + "end": 404.26, + "probability": 0.9507 + }, + { + "start": 406.06, + "end": 408.8, + "probability": 0.4915 + }, + { + "start": 409.66, + "end": 412.28, + "probability": 0.8988 + }, + { + "start": 412.84, + "end": 415.56, + "probability": 0.9849 + }, + { + "start": 415.84, + "end": 419.56, + "probability": 0.9274 + }, + { + "start": 419.92, + "end": 422.2, + "probability": 0.993 + }, + { + "start": 422.88, + "end": 423.4, + "probability": 0.8651 + }, + { + "start": 423.54, + "end": 424.22, + "probability": 0.9843 + }, + { + "start": 424.3, + "end": 425.32, + "probability": 0.8091 + }, + { + "start": 425.68, + "end": 431.8, + "probability": 0.9929 + }, + { + "start": 432.24, + "end": 437.26, + "probability": 0.8115 + }, + { + "start": 437.84, + "end": 442.06, + "probability": 0.7592 + }, + { + "start": 442.6, + "end": 444.22, + "probability": 0.2728 + }, + { + "start": 444.36, + "end": 445.34, + "probability": 0.7072 + }, + { + "start": 445.86, + "end": 448.86, + "probability": 0.8511 + }, + { + "start": 448.92, + "end": 450.36, + "probability": 0.95 + }, + { + "start": 450.58, + "end": 450.84, + "probability": 0.8629 + }, + { + "start": 450.94, + "end": 454.94, + "probability": 0.9093 + }, + { + "start": 455.32, + "end": 459.28, + "probability": 0.7182 + }, + { + "start": 459.78, + "end": 459.84, + "probability": 0.2303 + }, + { + "start": 459.94, + "end": 463.42, + "probability": 0.9799 + }, + { + "start": 464.0, + "end": 465.5, + "probability": 0.9727 + }, + { + "start": 465.8, + "end": 466.64, + "probability": 0.7838 + }, + { + "start": 466.94, + "end": 467.86, + "probability": 0.7305 + }, + { + "start": 468.66, + "end": 471.34, + "probability": 0.9747 + }, + { + "start": 471.74, + "end": 472.92, + "probability": 0.6772 + }, + { + "start": 473.1, + "end": 478.22, + "probability": 0.9962 + }, + { + "start": 478.56, + "end": 482.86, + "probability": 0.9971 + }, + { + "start": 483.1, + "end": 485.14, + "probability": 0.9983 + }, + { + "start": 485.78, + "end": 487.16, + "probability": 0.8322 + }, + { + "start": 487.6, + "end": 489.94, + "probability": 0.9128 + }, + { + "start": 490.22, + "end": 491.02, + "probability": 0.9701 + }, + { + "start": 491.12, + "end": 492.2, + "probability": 0.58 + }, + { + "start": 492.52, + "end": 495.66, + "probability": 0.9741 + }, + { + "start": 496.08, + "end": 496.84, + "probability": 0.8861 + }, + { + "start": 497.26, + "end": 498.86, + "probability": 0.8014 + }, + { + "start": 498.98, + "end": 500.76, + "probability": 0.673 + }, + { + "start": 500.8, + "end": 501.4, + "probability": 0.5028 + }, + { + "start": 501.8, + "end": 503.94, + "probability": 0.8406 + }, + { + "start": 504.12, + "end": 507.82, + "probability": 0.9019 + }, + { + "start": 507.96, + "end": 509.26, + "probability": 0.9304 + }, + { + "start": 509.34, + "end": 511.49, + "probability": 0.8916 + }, + { + "start": 512.74, + "end": 515.58, + "probability": 0.8154 + }, + { + "start": 515.76, + "end": 517.72, + "probability": 0.9688 + }, + { + "start": 517.8, + "end": 518.98, + "probability": 0.9139 + }, + { + "start": 519.38, + "end": 523.7, + "probability": 0.9684 + }, + { + "start": 524.18, + "end": 526.3, + "probability": 0.9944 + }, + { + "start": 526.72, + "end": 527.46, + "probability": 0.8308 + }, + { + "start": 527.84, + "end": 529.96, + "probability": 0.8832 + }, + { + "start": 530.3, + "end": 531.82, + "probability": 0.9595 + }, + { + "start": 532.34, + "end": 535.36, + "probability": 0.9738 + }, + { + "start": 535.5, + "end": 536.46, + "probability": 0.8135 + }, + { + "start": 536.82, + "end": 540.24, + "probability": 0.9941 + }, + { + "start": 540.5, + "end": 541.38, + "probability": 0.9401 + }, + { + "start": 541.8, + "end": 542.66, + "probability": 0.9526 + }, + { + "start": 543.74, + "end": 544.48, + "probability": 0.6205 + }, + { + "start": 544.9, + "end": 545.52, + "probability": 0.0571 + }, + { + "start": 545.68, + "end": 546.24, + "probability": 0.3738 + }, + { + "start": 547.28, + "end": 552.04, + "probability": 0.9442 + }, + { + "start": 552.86, + "end": 554.5, + "probability": 0.7475 + }, + { + "start": 554.98, + "end": 558.78, + "probability": 0.9954 + }, + { + "start": 558.8, + "end": 559.32, + "probability": 0.5823 + }, + { + "start": 559.66, + "end": 560.9, + "probability": 0.853 + }, + { + "start": 561.16, + "end": 562.72, + "probability": 0.8283 + }, + { + "start": 563.0, + "end": 563.46, + "probability": 0.547 + }, + { + "start": 563.46, + "end": 564.08, + "probability": 0.6711 + }, + { + "start": 565.9, + "end": 569.98, + "probability": 0.8405 + }, + { + "start": 576.7, + "end": 577.88, + "probability": 0.3841 + }, + { + "start": 577.88, + "end": 578.72, + "probability": 0.6345 + }, + { + "start": 579.2, + "end": 582.18, + "probability": 0.98 + }, + { + "start": 582.28, + "end": 587.06, + "probability": 0.959 + }, + { + "start": 587.46, + "end": 592.16, + "probability": 0.963 + }, + { + "start": 592.16, + "end": 596.1, + "probability": 0.9619 + }, + { + "start": 596.18, + "end": 597.82, + "probability": 0.8596 + }, + { + "start": 598.56, + "end": 600.12, + "probability": 0.5658 + }, + { + "start": 600.22, + "end": 605.08, + "probability": 0.9639 + }, + { + "start": 605.18, + "end": 608.2, + "probability": 0.9495 + }, + { + "start": 608.88, + "end": 612.26, + "probability": 0.9957 + }, + { + "start": 612.6, + "end": 613.3, + "probability": 0.495 + }, + { + "start": 613.46, + "end": 614.44, + "probability": 0.954 + }, + { + "start": 614.84, + "end": 618.76, + "probability": 0.9976 + }, + { + "start": 618.76, + "end": 623.62, + "probability": 0.9015 + }, + { + "start": 624.3, + "end": 630.14, + "probability": 0.9712 + }, + { + "start": 630.5, + "end": 634.82, + "probability": 0.9935 + }, + { + "start": 635.88, + "end": 639.84, + "probability": 0.9458 + }, + { + "start": 640.58, + "end": 640.7, + "probability": 0.5796 + }, + { + "start": 640.96, + "end": 643.4, + "probability": 0.8857 + }, + { + "start": 643.5, + "end": 647.6, + "probability": 0.9801 + }, + { + "start": 647.92, + "end": 650.34, + "probability": 0.9808 + }, + { + "start": 650.44, + "end": 651.48, + "probability": 0.9451 + }, + { + "start": 651.82, + "end": 655.94, + "probability": 0.9465 + }, + { + "start": 655.94, + "end": 659.74, + "probability": 0.9961 + }, + { + "start": 660.5, + "end": 660.6, + "probability": 0.1798 + }, + { + "start": 660.86, + "end": 663.66, + "probability": 0.8503 + }, + { + "start": 664.48, + "end": 664.8, + "probability": 0.8713 + }, + { + "start": 664.94, + "end": 668.58, + "probability": 0.9111 + }, + { + "start": 669.08, + "end": 670.3, + "probability": 0.8942 + }, + { + "start": 670.46, + "end": 670.56, + "probability": 0.4101 + }, + { + "start": 670.66, + "end": 674.14, + "probability": 0.9958 + }, + { + "start": 674.56, + "end": 675.24, + "probability": 0.8826 + }, + { + "start": 675.34, + "end": 675.88, + "probability": 0.8146 + }, + { + "start": 675.96, + "end": 676.74, + "probability": 0.7263 + }, + { + "start": 677.14, + "end": 678.52, + "probability": 0.9728 + }, + { + "start": 678.64, + "end": 680.4, + "probability": 0.9396 + }, + { + "start": 680.88, + "end": 682.82, + "probability": 0.9499 + }, + { + "start": 683.24, + "end": 683.36, + "probability": 0.2988 + }, + { + "start": 683.46, + "end": 684.08, + "probability": 0.5689 + }, + { + "start": 684.8, + "end": 689.18, + "probability": 0.9403 + }, + { + "start": 689.7, + "end": 693.3, + "probability": 0.9836 + }, + { + "start": 693.9, + "end": 696.14, + "probability": 0.9885 + }, + { + "start": 696.54, + "end": 700.84, + "probability": 0.3251 + }, + { + "start": 701.38, + "end": 705.44, + "probability": 0.777 + }, + { + "start": 705.7, + "end": 708.72, + "probability": 0.9 + }, + { + "start": 709.54, + "end": 712.06, + "probability": 0.6097 + }, + { + "start": 712.78, + "end": 714.02, + "probability": 0.0671 + }, + { + "start": 714.02, + "end": 714.92, + "probability": 0.787 + }, + { + "start": 714.94, + "end": 715.4, + "probability": 0.3853 + }, + { + "start": 715.54, + "end": 716.14, + "probability": 0.773 + }, + { + "start": 716.24, + "end": 718.82, + "probability": 0.9405 + }, + { + "start": 725.78, + "end": 727.19, + "probability": 0.6218 + }, + { + "start": 727.5, + "end": 728.32, + "probability": 0.6509 + }, + { + "start": 729.12, + "end": 731.72, + "probability": 0.9576 + }, + { + "start": 733.24, + "end": 738.68, + "probability": 0.8852 + }, + { + "start": 738.76, + "end": 740.24, + "probability": 0.9966 + }, + { + "start": 740.32, + "end": 742.36, + "probability": 0.7901 + }, + { + "start": 742.9, + "end": 745.01, + "probability": 0.1544 + }, + { + "start": 746.0, + "end": 747.34, + "probability": 0.9593 + }, + { + "start": 748.22, + "end": 751.12, + "probability": 0.8597 + }, + { + "start": 751.86, + "end": 757.14, + "probability": 0.9562 + }, + { + "start": 757.24, + "end": 758.44, + "probability": 0.5776 + }, + { + "start": 758.56, + "end": 759.84, + "probability": 0.9711 + }, + { + "start": 760.46, + "end": 763.1, + "probability": 0.9838 + }, + { + "start": 763.16, + "end": 764.22, + "probability": 0.8319 + }, + { + "start": 764.3, + "end": 765.96, + "probability": 0.9624 + }, + { + "start": 766.28, + "end": 767.02, + "probability": 0.7981 + }, + { + "start": 767.16, + "end": 769.62, + "probability": 0.9498 + }, + { + "start": 769.62, + "end": 773.28, + "probability": 0.5941 + }, + { + "start": 773.5, + "end": 774.38, + "probability": 0.5335 + }, + { + "start": 774.72, + "end": 776.7, + "probability": 0.9086 + }, + { + "start": 776.88, + "end": 777.9, + "probability": 0.3959 + }, + { + "start": 777.94, + "end": 783.04, + "probability": 0.9742 + }, + { + "start": 783.28, + "end": 784.1, + "probability": 0.9114 + }, + { + "start": 784.16, + "end": 785.58, + "probability": 0.9294 + }, + { + "start": 785.6, + "end": 787.8, + "probability": 0.8923 + }, + { + "start": 788.38, + "end": 789.68, + "probability": 0.9937 + }, + { + "start": 789.8, + "end": 796.9, + "probability": 0.9543 + }, + { + "start": 797.48, + "end": 802.22, + "probability": 0.7249 + }, + { + "start": 802.28, + "end": 805.86, + "probability": 0.9925 + }, + { + "start": 806.1, + "end": 809.74, + "probability": 0.9967 + }, + { + "start": 810.24, + "end": 810.44, + "probability": 0.7712 + }, + { + "start": 811.32, + "end": 812.44, + "probability": 0.711 + }, + { + "start": 812.52, + "end": 812.86, + "probability": 0.7363 + }, + { + "start": 813.02, + "end": 816.34, + "probability": 0.9919 + }, + { + "start": 817.19, + "end": 820.8, + "probability": 0.9094 + }, + { + "start": 821.34, + "end": 822.56, + "probability": 0.7281 + }, + { + "start": 822.62, + "end": 824.7, + "probability": 0.8762 + }, + { + "start": 825.18, + "end": 825.3, + "probability": 0.621 + }, + { + "start": 825.44, + "end": 828.88, + "probability": 0.9958 + }, + { + "start": 829.54, + "end": 833.86, + "probability": 0.994 + }, + { + "start": 834.6, + "end": 835.4, + "probability": 0.0081 + }, + { + "start": 835.4, + "end": 835.5, + "probability": 0.1822 + }, + { + "start": 835.84, + "end": 837.66, + "probability": 0.6776 + }, + { + "start": 838.26, + "end": 839.72, + "probability": 0.3058 + }, + { + "start": 839.72, + "end": 839.96, + "probability": 0.582 + }, + { + "start": 840.16, + "end": 841.22, + "probability": 0.9453 + }, + { + "start": 841.34, + "end": 841.68, + "probability": 0.6281 + }, + { + "start": 841.78, + "end": 842.92, + "probability": 0.9746 + }, + { + "start": 843.22, + "end": 844.58, + "probability": 0.0297 + }, + { + "start": 844.86, + "end": 846.26, + "probability": 0.7271 + }, + { + "start": 847.78, + "end": 849.2, + "probability": 0.6985 + }, + { + "start": 849.6, + "end": 850.28, + "probability": 0.8346 + }, + { + "start": 850.52, + "end": 856.96, + "probability": 0.9942 + }, + { + "start": 857.04, + "end": 858.82, + "probability": 0.9941 + }, + { + "start": 859.24, + "end": 860.68, + "probability": 0.8005 + }, + { + "start": 861.2, + "end": 864.94, + "probability": 0.9965 + }, + { + "start": 864.94, + "end": 870.98, + "probability": 0.8581 + }, + { + "start": 871.52, + "end": 873.66, + "probability": 0.9688 + }, + { + "start": 874.18, + "end": 874.76, + "probability": 0.9277 + }, + { + "start": 875.22, + "end": 876.1, + "probability": 0.7146 + }, + { + "start": 876.4, + "end": 877.34, + "probability": 0.6234 + }, + { + "start": 877.66, + "end": 878.78, + "probability": 0.9111 + }, + { + "start": 879.3, + "end": 880.98, + "probability": 0.968 + }, + { + "start": 881.08, + "end": 881.65, + "probability": 0.6618 + }, + { + "start": 882.26, + "end": 885.12, + "probability": 0.8654 + }, + { + "start": 885.7, + "end": 885.94, + "probability": 0.8865 + }, + { + "start": 886.64, + "end": 886.64, + "probability": 0.1854 + }, + { + "start": 886.7, + "end": 888.92, + "probability": 0.8136 + }, + { + "start": 888.98, + "end": 889.8, + "probability": 0.7923 + }, + { + "start": 890.14, + "end": 891.46, + "probability": 0.8906 + }, + { + "start": 892.04, + "end": 892.44, + "probability": 0.9619 + }, + { + "start": 892.54, + "end": 897.08, + "probability": 0.9797 + }, + { + "start": 897.12, + "end": 897.8, + "probability": 0.9641 + }, + { + "start": 897.84, + "end": 898.14, + "probability": 0.5995 + }, + { + "start": 898.46, + "end": 900.94, + "probability": 0.9864 + }, + { + "start": 901.82, + "end": 901.86, + "probability": 0.028 + }, + { + "start": 902.58, + "end": 904.84, + "probability": 0.0094 + }, + { + "start": 905.34, + "end": 905.44, + "probability": 0.1323 + }, + { + "start": 905.44, + "end": 906.0, + "probability": 0.6197 + }, + { + "start": 906.22, + "end": 910.2, + "probability": 0.9694 + }, + { + "start": 910.36, + "end": 911.64, + "probability": 0.7911 + }, + { + "start": 912.08, + "end": 912.76, + "probability": 0.1459 + }, + { + "start": 915.2, + "end": 916.06, + "probability": 0.3806 + }, + { + "start": 916.3, + "end": 916.96, + "probability": 0.7446 + }, + { + "start": 917.1, + "end": 922.16, + "probability": 0.9528 + }, + { + "start": 922.42, + "end": 923.04, + "probability": 0.7332 + }, + { + "start": 923.1, + "end": 923.48, + "probability": 0.848 + }, + { + "start": 923.5, + "end": 924.6, + "probability": 0.9626 + }, + { + "start": 924.82, + "end": 925.88, + "probability": 0.9005 + }, + { + "start": 926.44, + "end": 927.14, + "probability": 0.7009 + }, + { + "start": 927.48, + "end": 928.98, + "probability": 0.9312 + }, + { + "start": 929.06, + "end": 932.04, + "probability": 0.8575 + }, + { + "start": 932.58, + "end": 934.72, + "probability": 0.9805 + }, + { + "start": 935.1, + "end": 939.28, + "probability": 0.9948 + }, + { + "start": 939.28, + "end": 942.26, + "probability": 0.9983 + }, + { + "start": 942.74, + "end": 943.61, + "probability": 0.9524 + }, + { + "start": 944.28, + "end": 945.32, + "probability": 0.9545 + }, + { + "start": 945.38, + "end": 946.54, + "probability": 0.9382 + }, + { + "start": 947.1, + "end": 950.48, + "probability": 0.9434 + }, + { + "start": 951.0, + "end": 951.76, + "probability": 0.7276 + }, + { + "start": 952.34, + "end": 954.06, + "probability": 0.9235 + }, + { + "start": 954.7, + "end": 955.82, + "probability": 0.8447 + }, + { + "start": 955.9, + "end": 956.55, + "probability": 0.8986 + }, + { + "start": 956.86, + "end": 957.22, + "probability": 0.8546 + }, + { + "start": 957.26, + "end": 957.96, + "probability": 0.0391 + }, + { + "start": 958.64, + "end": 961.22, + "probability": 0.2053 + }, + { + "start": 961.42, + "end": 963.94, + "probability": 0.6807 + }, + { + "start": 963.98, + "end": 966.86, + "probability": 0.951 + }, + { + "start": 967.04, + "end": 970.32, + "probability": 0.96 + }, + { + "start": 970.32, + "end": 973.58, + "probability": 0.9832 + }, + { + "start": 973.9, + "end": 975.9, + "probability": 0.9385 + }, + { + "start": 976.24, + "end": 979.54, + "probability": 0.9966 + }, + { + "start": 979.58, + "end": 985.16, + "probability": 0.9966 + }, + { + "start": 985.56, + "end": 987.14, + "probability": 0.9792 + }, + { + "start": 987.26, + "end": 987.84, + "probability": 0.6629 + }, + { + "start": 987.96, + "end": 991.66, + "probability": 0.9705 + }, + { + "start": 991.84, + "end": 993.44, + "probability": 0.0485 + }, + { + "start": 993.82, + "end": 995.28, + "probability": 0.6452 + }, + { + "start": 995.42, + "end": 997.32, + "probability": 0.9889 + }, + { + "start": 997.74, + "end": 1000.1, + "probability": 0.9937 + }, + { + "start": 1000.42, + "end": 1001.86, + "probability": 0.9682 + }, + { + "start": 1002.16, + "end": 1004.72, + "probability": 0.9905 + }, + { + "start": 1005.06, + "end": 1009.34, + "probability": 0.9822 + }, + { + "start": 1010.12, + "end": 1012.56, + "probability": 0.9948 + }, + { + "start": 1012.74, + "end": 1014.46, + "probability": 0.982 + }, + { + "start": 1014.96, + "end": 1016.72, + "probability": 0.9338 + }, + { + "start": 1017.64, + "end": 1019.4, + "probability": 0.9697 + }, + { + "start": 1019.82, + "end": 1022.0, + "probability": 0.9796 + }, + { + "start": 1022.42, + "end": 1023.89, + "probability": 0.5248 + }, + { + "start": 1024.18, + "end": 1027.74, + "probability": 0.9029 + }, + { + "start": 1028.0, + "end": 1028.68, + "probability": 0.7538 + }, + { + "start": 1028.7, + "end": 1030.2, + "probability": 0.1781 + }, + { + "start": 1030.8, + "end": 1031.68, + "probability": 0.5766 + }, + { + "start": 1031.7, + "end": 1033.44, + "probability": 0.6404 + }, + { + "start": 1033.54, + "end": 1034.74, + "probability": 0.6565 + }, + { + "start": 1034.74, + "end": 1034.74, + "probability": 0.433 + }, + { + "start": 1034.74, + "end": 1036.86, + "probability": 0.5274 + }, + { + "start": 1037.42, + "end": 1038.68, + "probability": 0.7775 + }, + { + "start": 1038.68, + "end": 1039.31, + "probability": 0.6292 + }, + { + "start": 1039.46, + "end": 1041.58, + "probability": 0.8211 + }, + { + "start": 1041.64, + "end": 1043.46, + "probability": 0.8272 + }, + { + "start": 1068.78, + "end": 1071.46, + "probability": 0.4163 + }, + { + "start": 1072.24, + "end": 1078.64, + "probability": 0.7941 + }, + { + "start": 1079.42, + "end": 1083.2, + "probability": 0.8927 + }, + { + "start": 1083.86, + "end": 1087.3, + "probability": 0.8699 + }, + { + "start": 1087.74, + "end": 1090.68, + "probability": 0.9967 + }, + { + "start": 1091.34, + "end": 1096.54, + "probability": 0.8925 + }, + { + "start": 1096.8, + "end": 1097.58, + "probability": 0.6485 + }, + { + "start": 1098.68, + "end": 1102.02, + "probability": 0.9888 + }, + { + "start": 1102.42, + "end": 1103.44, + "probability": 0.4634 + }, + { + "start": 1104.98, + "end": 1110.86, + "probability": 0.9656 + }, + { + "start": 1111.1, + "end": 1113.08, + "probability": 0.3956 + }, + { + "start": 1114.7, + "end": 1116.64, + "probability": 0.6281 + }, + { + "start": 1117.4, + "end": 1123.14, + "probability": 0.9206 + }, + { + "start": 1123.16, + "end": 1123.64, + "probability": 0.5303 + }, + { + "start": 1123.88, + "end": 1125.74, + "probability": 0.9351 + }, + { + "start": 1127.1, + "end": 1129.1, + "probability": 0.9431 + }, + { + "start": 1129.36, + "end": 1134.2, + "probability": 0.9837 + }, + { + "start": 1135.06, + "end": 1137.04, + "probability": 0.7121 + }, + { + "start": 1137.18, + "end": 1141.42, + "probability": 0.8881 + }, + { + "start": 1141.42, + "end": 1145.0, + "probability": 0.9987 + }, + { + "start": 1145.22, + "end": 1148.06, + "probability": 0.7236 + }, + { + "start": 1148.74, + "end": 1154.06, + "probability": 0.9963 + }, + { + "start": 1154.18, + "end": 1155.3, + "probability": 0.8789 + }, + { + "start": 1155.34, + "end": 1157.22, + "probability": 0.9886 + }, + { + "start": 1157.4, + "end": 1160.2, + "probability": 0.9978 + }, + { + "start": 1162.26, + "end": 1164.82, + "probability": 0.6339 + }, + { + "start": 1165.72, + "end": 1168.08, + "probability": 0.9162 + }, + { + "start": 1168.82, + "end": 1171.26, + "probability": 0.8837 + }, + { + "start": 1172.14, + "end": 1176.2, + "probability": 0.9939 + }, + { + "start": 1177.38, + "end": 1179.8, + "probability": 0.9321 + }, + { + "start": 1180.06, + "end": 1181.26, + "probability": 0.8405 + }, + { + "start": 1181.3, + "end": 1182.98, + "probability": 0.9138 + }, + { + "start": 1183.66, + "end": 1186.02, + "probability": 0.971 + }, + { + "start": 1186.68, + "end": 1189.84, + "probability": 0.9366 + }, + { + "start": 1190.64, + "end": 1191.22, + "probability": 0.9613 + }, + { + "start": 1191.32, + "end": 1192.12, + "probability": 0.9956 + }, + { + "start": 1192.2, + "end": 1192.68, + "probability": 0.9663 + }, + { + "start": 1192.78, + "end": 1193.96, + "probability": 0.9877 + }, + { + "start": 1194.12, + "end": 1195.84, + "probability": 0.9719 + }, + { + "start": 1196.84, + "end": 1203.3, + "probability": 0.987 + }, + { + "start": 1204.18, + "end": 1205.76, + "probability": 0.6996 + }, + { + "start": 1205.84, + "end": 1207.88, + "probability": 0.8301 + }, + { + "start": 1207.98, + "end": 1208.64, + "probability": 0.9286 + }, + { + "start": 1208.7, + "end": 1210.64, + "probability": 0.9669 + }, + { + "start": 1211.24, + "end": 1213.04, + "probability": 0.9884 + }, + { + "start": 1213.6, + "end": 1215.88, + "probability": 0.7914 + }, + { + "start": 1216.78, + "end": 1218.96, + "probability": 0.6984 + }, + { + "start": 1220.41, + "end": 1222.22, + "probability": 0.8939 + }, + { + "start": 1222.34, + "end": 1228.04, + "probability": 0.9926 + }, + { + "start": 1229.1, + "end": 1230.74, + "probability": 0.9701 + }, + { + "start": 1231.18, + "end": 1232.54, + "probability": 0.8967 + }, + { + "start": 1232.66, + "end": 1233.58, + "probability": 0.6686 + }, + { + "start": 1233.98, + "end": 1235.67, + "probability": 0.9407 + }, + { + "start": 1236.14, + "end": 1236.66, + "probability": 0.9579 + }, + { + "start": 1236.82, + "end": 1238.62, + "probability": 0.9483 + }, + { + "start": 1239.62, + "end": 1241.64, + "probability": 0.703 + }, + { + "start": 1242.64, + "end": 1243.22, + "probability": 0.7638 + }, + { + "start": 1243.78, + "end": 1248.18, + "probability": 0.9922 + }, + { + "start": 1248.42, + "end": 1249.9, + "probability": 0.8672 + }, + { + "start": 1250.58, + "end": 1253.96, + "probability": 0.9976 + }, + { + "start": 1256.26, + "end": 1259.38, + "probability": 0.7504 + }, + { + "start": 1261.0, + "end": 1262.82, + "probability": 0.9902 + }, + { + "start": 1262.84, + "end": 1265.72, + "probability": 0.9773 + }, + { + "start": 1266.18, + "end": 1266.62, + "probability": 0.6632 + }, + { + "start": 1266.88, + "end": 1274.26, + "probability": 0.9859 + }, + { + "start": 1274.62, + "end": 1275.84, + "probability": 0.5057 + }, + { + "start": 1275.94, + "end": 1277.12, + "probability": 0.8857 + }, + { + "start": 1278.75, + "end": 1286.0, + "probability": 0.9823 + }, + { + "start": 1286.16, + "end": 1287.84, + "probability": 0.8919 + }, + { + "start": 1288.82, + "end": 1289.33, + "probability": 0.7061 + }, + { + "start": 1289.62, + "end": 1289.92, + "probability": 0.8521 + }, + { + "start": 1290.06, + "end": 1291.5, + "probability": 0.9682 + }, + { + "start": 1291.64, + "end": 1293.24, + "probability": 0.9829 + }, + { + "start": 1294.4, + "end": 1296.64, + "probability": 0.9965 + }, + { + "start": 1297.36, + "end": 1301.12, + "probability": 0.9967 + }, + { + "start": 1301.88, + "end": 1304.5, + "probability": 0.9958 + }, + { + "start": 1304.5, + "end": 1308.84, + "probability": 0.9847 + }, + { + "start": 1310.45, + "end": 1312.14, + "probability": 0.9514 + }, + { + "start": 1312.72, + "end": 1314.5, + "probability": 0.7256 + }, + { + "start": 1314.6, + "end": 1318.18, + "probability": 0.9717 + }, + { + "start": 1319.34, + "end": 1326.2, + "probability": 0.9575 + }, + { + "start": 1326.74, + "end": 1329.4, + "probability": 0.8347 + }, + { + "start": 1329.6, + "end": 1332.74, + "probability": 0.9868 + }, + { + "start": 1333.44, + "end": 1336.36, + "probability": 0.9625 + }, + { + "start": 1337.18, + "end": 1341.8, + "probability": 0.9321 + }, + { + "start": 1343.1, + "end": 1346.6, + "probability": 0.9943 + }, + { + "start": 1347.38, + "end": 1351.08, + "probability": 0.9945 + }, + { + "start": 1351.62, + "end": 1355.18, + "probability": 0.9974 + }, + { + "start": 1355.72, + "end": 1358.54, + "probability": 0.9944 + }, + { + "start": 1358.96, + "end": 1361.76, + "probability": 0.9982 + }, + { + "start": 1361.76, + "end": 1364.06, + "probability": 0.9991 + }, + { + "start": 1364.42, + "end": 1365.02, + "probability": 0.7064 + }, + { + "start": 1365.52, + "end": 1370.22, + "probability": 0.9917 + }, + { + "start": 1371.0, + "end": 1376.42, + "probability": 0.9505 + }, + { + "start": 1377.24, + "end": 1382.46, + "probability": 0.9987 + }, + { + "start": 1383.12, + "end": 1389.16, + "probability": 0.9971 + }, + { + "start": 1389.72, + "end": 1390.76, + "probability": 0.5917 + }, + { + "start": 1391.3, + "end": 1393.62, + "probability": 0.9486 + }, + { + "start": 1394.48, + "end": 1400.08, + "probability": 0.9943 + }, + { + "start": 1400.08, + "end": 1405.02, + "probability": 0.9757 + }, + { + "start": 1405.74, + "end": 1410.8, + "probability": 0.9551 + }, + { + "start": 1411.38, + "end": 1413.18, + "probability": 0.9803 + }, + { + "start": 1413.2, + "end": 1416.58, + "probability": 0.9874 + }, + { + "start": 1417.96, + "end": 1420.92, + "probability": 0.9985 + }, + { + "start": 1420.92, + "end": 1424.96, + "probability": 0.9971 + }, + { + "start": 1425.5, + "end": 1427.82, + "probability": 0.9408 + }, + { + "start": 1428.36, + "end": 1429.42, + "probability": 0.8926 + }, + { + "start": 1429.66, + "end": 1430.19, + "probability": 0.9749 + }, + { + "start": 1430.84, + "end": 1432.44, + "probability": 0.9648 + }, + { + "start": 1433.08, + "end": 1435.08, + "probability": 0.9828 + }, + { + "start": 1435.16, + "end": 1440.18, + "probability": 0.9979 + }, + { + "start": 1441.12, + "end": 1444.42, + "probability": 0.9924 + }, + { + "start": 1444.96, + "end": 1447.22, + "probability": 0.9966 + }, + { + "start": 1447.3, + "end": 1451.1, + "probability": 0.9923 + }, + { + "start": 1451.84, + "end": 1453.96, + "probability": 0.0472 + }, + { + "start": 1453.96, + "end": 1455.22, + "probability": 0.4062 + }, + { + "start": 1455.9, + "end": 1456.06, + "probability": 0.2929 + }, + { + "start": 1456.06, + "end": 1457.8, + "probability": 0.9136 + }, + { + "start": 1458.96, + "end": 1462.88, + "probability": 0.9072 + }, + { + "start": 1463.42, + "end": 1465.42, + "probability": 0.9597 + }, + { + "start": 1467.56, + "end": 1472.56, + "probability": 0.9937 + }, + { + "start": 1472.78, + "end": 1473.72, + "probability": 0.1452 + }, + { + "start": 1473.78, + "end": 1474.7, + "probability": 0.7829 + }, + { + "start": 1475.9, + "end": 1481.46, + "probability": 0.9963 + }, + { + "start": 1481.46, + "end": 1487.08, + "probability": 0.9604 + }, + { + "start": 1488.12, + "end": 1492.2, + "probability": 0.9968 + }, + { + "start": 1492.36, + "end": 1492.46, + "probability": 0.3032 + }, + { + "start": 1493.76, + "end": 1495.41, + "probability": 0.742 + }, + { + "start": 1496.1, + "end": 1498.18, + "probability": 0.9708 + }, + { + "start": 1498.36, + "end": 1504.0, + "probability": 0.9313 + }, + { + "start": 1504.08, + "end": 1509.84, + "probability": 0.9966 + }, + { + "start": 1510.64, + "end": 1514.42, + "probability": 0.861 + }, + { + "start": 1515.08, + "end": 1516.84, + "probability": 0.9502 + }, + { + "start": 1517.12, + "end": 1518.04, + "probability": 0.9174 + }, + { + "start": 1518.22, + "end": 1519.08, + "probability": 0.6828 + }, + { + "start": 1519.74, + "end": 1521.58, + "probability": 0.5753 + }, + { + "start": 1523.74, + "end": 1527.81, + "probability": 0.2056 + }, + { + "start": 1528.96, + "end": 1529.88, + "probability": 0.6445 + }, + { + "start": 1535.58, + "end": 1537.36, + "probability": 0.4906 + }, + { + "start": 1538.28, + "end": 1541.5, + "probability": 0.9678 + }, + { + "start": 1542.02, + "end": 1542.88, + "probability": 0.8419 + }, + { + "start": 1543.54, + "end": 1545.38, + "probability": 0.9642 + }, + { + "start": 1545.68, + "end": 1545.7, + "probability": 0.662 + }, + { + "start": 1545.7, + "end": 1546.16, + "probability": 0.7112 + }, + { + "start": 1548.3, + "end": 1553.1, + "probability": 0.962 + }, + { + "start": 1553.8, + "end": 1553.88, + "probability": 0.1629 + }, + { + "start": 1553.94, + "end": 1555.4, + "probability": 0.9742 + }, + { + "start": 1556.22, + "end": 1556.44, + "probability": 0.4778 + }, + { + "start": 1556.56, + "end": 1559.7, + "probability": 0.9919 + }, + { + "start": 1559.7, + "end": 1563.96, + "probability": 0.9792 + }, + { + "start": 1564.48, + "end": 1567.14, + "probability": 0.9809 + }, + { + "start": 1567.14, + "end": 1570.84, + "probability": 0.9653 + }, + { + "start": 1571.4, + "end": 1578.58, + "probability": 0.9976 + }, + { + "start": 1579.22, + "end": 1582.22, + "probability": 0.8184 + }, + { + "start": 1582.9, + "end": 1586.5, + "probability": 0.9971 + }, + { + "start": 1586.5, + "end": 1590.28, + "probability": 0.658 + }, + { + "start": 1591.04, + "end": 1592.02, + "probability": 0.6945 + }, + { + "start": 1592.56, + "end": 1594.12, + "probability": 0.6761 + }, + { + "start": 1594.78, + "end": 1601.74, + "probability": 0.9871 + }, + { + "start": 1601.94, + "end": 1602.4, + "probability": 0.8986 + }, + { + "start": 1602.46, + "end": 1603.67, + "probability": 0.7603 + }, + { + "start": 1604.02, + "end": 1605.14, + "probability": 0.8608 + }, + { + "start": 1605.4, + "end": 1607.88, + "probability": 0.648 + }, + { + "start": 1608.44, + "end": 1609.74, + "probability": 0.5712 + }, + { + "start": 1609.84, + "end": 1612.98, + "probability": 0.9946 + }, + { + "start": 1612.98, + "end": 1617.98, + "probability": 0.9875 + }, + { + "start": 1623.32, + "end": 1623.42, + "probability": 0.4556 + }, + { + "start": 1624.76, + "end": 1626.84, + "probability": 0.4724 + }, + { + "start": 1628.0, + "end": 1628.68, + "probability": 0.0345 + }, + { + "start": 1628.68, + "end": 1630.08, + "probability": 0.7433 + }, + { + "start": 1633.54, + "end": 1633.54, + "probability": 0.0251 + }, + { + "start": 1633.54, + "end": 1633.54, + "probability": 0.0558 + }, + { + "start": 1633.54, + "end": 1633.54, + "probability": 0.1331 + }, + { + "start": 1633.54, + "end": 1633.54, + "probability": 0.1959 + }, + { + "start": 1633.54, + "end": 1633.54, + "probability": 0.0548 + }, + { + "start": 1633.54, + "end": 1635.92, + "probability": 0.9353 + }, + { + "start": 1636.12, + "end": 1638.76, + "probability": 0.9332 + }, + { + "start": 1638.92, + "end": 1641.62, + "probability": 0.9939 + }, + { + "start": 1641.62, + "end": 1645.76, + "probability": 0.9955 + }, + { + "start": 1646.18, + "end": 1647.22, + "probability": 0.9956 + }, + { + "start": 1647.86, + "end": 1653.1, + "probability": 0.994 + }, + { + "start": 1653.56, + "end": 1654.18, + "probability": 0.6162 + }, + { + "start": 1654.55, + "end": 1656.08, + "probability": 0.916 + }, + { + "start": 1656.82, + "end": 1659.58, + "probability": 0.9033 + }, + { + "start": 1660.16, + "end": 1663.8, + "probability": 0.973 + }, + { + "start": 1665.32, + "end": 1668.78, + "probability": 0.9689 + }, + { + "start": 1668.78, + "end": 1672.3, + "probability": 0.99 + }, + { + "start": 1672.46, + "end": 1674.38, + "probability": 0.9994 + }, + { + "start": 1675.31, + "end": 1677.78, + "probability": 0.6284 + }, + { + "start": 1679.14, + "end": 1683.62, + "probability": 0.9814 + }, + { + "start": 1684.34, + "end": 1684.62, + "probability": 0.7294 + }, + { + "start": 1688.5, + "end": 1690.12, + "probability": 0.9194 + }, + { + "start": 1691.08, + "end": 1691.08, + "probability": 0.1084 + }, + { + "start": 1691.08, + "end": 1697.88, + "probability": 0.7494 + }, + { + "start": 1698.08, + "end": 1701.32, + "probability": 0.8248 + }, + { + "start": 1702.38, + "end": 1704.94, + "probability": 0.3688 + }, + { + "start": 1705.9, + "end": 1707.3, + "probability": 0.8976 + }, + { + "start": 1708.6, + "end": 1710.4, + "probability": 0.8715 + }, + { + "start": 1713.48, + "end": 1715.86, + "probability": 0.1814 + }, + { + "start": 1717.1, + "end": 1719.04, + "probability": 0.1781 + }, + { + "start": 1729.64, + "end": 1730.68, + "probability": 0.1339 + }, + { + "start": 1731.84, + "end": 1732.66, + "probability": 0.0302 + }, + { + "start": 1735.11, + "end": 1735.32, + "probability": 0.0371 + }, + { + "start": 1736.1, + "end": 1736.52, + "probability": 0.0846 + }, + { + "start": 1753.02, + "end": 1753.5, + "probability": 0.2536 + }, + { + "start": 1757.18, + "end": 1759.44, + "probability": 0.7007 + }, + { + "start": 1760.52, + "end": 1761.04, + "probability": 0.7646 + }, + { + "start": 1761.7, + "end": 1765.94, + "probability": 0.9871 + }, + { + "start": 1767.72, + "end": 1768.64, + "probability": 0.9768 + }, + { + "start": 1769.3, + "end": 1771.86, + "probability": 0.9469 + }, + { + "start": 1772.8, + "end": 1775.64, + "probability": 0.967 + }, + { + "start": 1776.8, + "end": 1779.4, + "probability": 0.9832 + }, + { + "start": 1780.16, + "end": 1781.74, + "probability": 0.8698 + }, + { + "start": 1782.56, + "end": 1787.06, + "probability": 0.8746 + }, + { + "start": 1788.54, + "end": 1790.18, + "probability": 0.9855 + }, + { + "start": 1790.98, + "end": 1791.77, + "probability": 0.9548 + }, + { + "start": 1792.54, + "end": 1792.98, + "probability": 0.9897 + }, + { + "start": 1794.16, + "end": 1797.06, + "probability": 0.6927 + }, + { + "start": 1797.64, + "end": 1801.78, + "probability": 0.9919 + }, + { + "start": 1802.52, + "end": 1804.58, + "probability": 0.9165 + }, + { + "start": 1805.54, + "end": 1810.84, + "probability": 0.9952 + }, + { + "start": 1811.86, + "end": 1815.82, + "probability": 0.9986 + }, + { + "start": 1819.12, + "end": 1821.76, + "probability": 0.9873 + }, + { + "start": 1821.76, + "end": 1825.01, + "probability": 0.9209 + }, + { + "start": 1825.28, + "end": 1826.12, + "probability": 0.4521 + }, + { + "start": 1826.2, + "end": 1826.92, + "probability": 0.8541 + }, + { + "start": 1827.76, + "end": 1830.78, + "probability": 0.9875 + }, + { + "start": 1831.3, + "end": 1832.18, + "probability": 0.9362 + }, + { + "start": 1833.32, + "end": 1834.04, + "probability": 0.6903 + }, + { + "start": 1834.84, + "end": 1837.06, + "probability": 0.9702 + }, + { + "start": 1837.06, + "end": 1840.28, + "probability": 0.9888 + }, + { + "start": 1841.66, + "end": 1843.56, + "probability": 0.9459 + }, + { + "start": 1844.56, + "end": 1846.26, + "probability": 0.9956 + }, + { + "start": 1847.44, + "end": 1849.96, + "probability": 0.8942 + }, + { + "start": 1850.76, + "end": 1853.04, + "probability": 0.918 + }, + { + "start": 1853.86, + "end": 1858.18, + "probability": 0.9108 + }, + { + "start": 1858.36, + "end": 1859.99, + "probability": 0.9543 + }, + { + "start": 1860.32, + "end": 1860.96, + "probability": 0.9462 + }, + { + "start": 1861.86, + "end": 1865.18, + "probability": 0.9957 + }, + { + "start": 1866.02, + "end": 1866.6, + "probability": 0.7893 + }, + { + "start": 1867.18, + "end": 1870.98, + "probability": 0.9862 + }, + { + "start": 1873.06, + "end": 1877.32, + "probability": 0.9886 + }, + { + "start": 1878.4, + "end": 1882.2, + "probability": 0.9926 + }, + { + "start": 1882.8, + "end": 1884.24, + "probability": 0.987 + }, + { + "start": 1884.98, + "end": 1886.64, + "probability": 0.9009 + }, + { + "start": 1887.32, + "end": 1888.64, + "probability": 0.9595 + }, + { + "start": 1889.76, + "end": 1891.26, + "probability": 0.99 + }, + { + "start": 1891.82, + "end": 1893.24, + "probability": 0.9469 + }, + { + "start": 1894.38, + "end": 1895.36, + "probability": 0.5235 + }, + { + "start": 1896.36, + "end": 1897.72, + "probability": 0.4897 + }, + { + "start": 1898.08, + "end": 1902.24, + "probability": 0.9802 + }, + { + "start": 1903.24, + "end": 1907.28, + "probability": 0.9511 + }, + { + "start": 1907.92, + "end": 1908.58, + "probability": 0.8413 + }, + { + "start": 1909.12, + "end": 1910.24, + "probability": 0.5952 + }, + { + "start": 1910.94, + "end": 1914.36, + "probability": 0.9215 + }, + { + "start": 1915.04, + "end": 1918.34, + "probability": 0.8649 + }, + { + "start": 1918.98, + "end": 1920.78, + "probability": 0.7461 + }, + { + "start": 1922.78, + "end": 1926.9, + "probability": 0.9341 + }, + { + "start": 1927.66, + "end": 1932.08, + "probability": 0.872 + }, + { + "start": 1932.16, + "end": 1932.7, + "probability": 0.6586 + }, + { + "start": 1933.46, + "end": 1936.46, + "probability": 0.9956 + }, + { + "start": 1937.44, + "end": 1941.02, + "probability": 0.9944 + }, + { + "start": 1941.64, + "end": 1942.84, + "probability": 0.7344 + }, + { + "start": 1944.36, + "end": 1945.18, + "probability": 0.7701 + }, + { + "start": 1945.82, + "end": 1946.02, + "probability": 0.4415 + }, + { + "start": 1946.16, + "end": 1948.0, + "probability": 0.846 + }, + { + "start": 1948.46, + "end": 1949.68, + "probability": 0.9717 + }, + { + "start": 1949.82, + "end": 1951.08, + "probability": 0.9966 + }, + { + "start": 1951.84, + "end": 1956.34, + "probability": 0.9902 + }, + { + "start": 1956.96, + "end": 1959.7, + "probability": 0.949 + }, + { + "start": 1959.7, + "end": 1962.84, + "probability": 0.9928 + }, + { + "start": 1963.66, + "end": 1966.76, + "probability": 0.9189 + }, + { + "start": 1967.68, + "end": 1968.6, + "probability": 0.834 + }, + { + "start": 1969.34, + "end": 1973.62, + "probability": 0.9863 + }, + { + "start": 1974.36, + "end": 1975.28, + "probability": 0.5444 + }, + { + "start": 1975.72, + "end": 1979.34, + "probability": 0.8827 + }, + { + "start": 1979.86, + "end": 1981.1, + "probability": 0.9773 + }, + { + "start": 1982.08, + "end": 1986.48, + "probability": 0.955 + }, + { + "start": 1986.96, + "end": 1990.88, + "probability": 0.9679 + }, + { + "start": 1992.24, + "end": 1995.26, + "probability": 0.9847 + }, + { + "start": 1995.86, + "end": 1999.58, + "probability": 0.9966 + }, + { + "start": 2001.24, + "end": 2002.8, + "probability": 0.9528 + }, + { + "start": 2003.26, + "end": 2003.7, + "probability": 0.962 + }, + { + "start": 2003.8, + "end": 2005.14, + "probability": 0.9976 + }, + { + "start": 2005.94, + "end": 2008.06, + "probability": 0.8554 + }, + { + "start": 2008.68, + "end": 2010.66, + "probability": 0.6057 + }, + { + "start": 2011.24, + "end": 2011.88, + "probability": 0.8838 + }, + { + "start": 2012.8, + "end": 2016.02, + "probability": 0.9678 + }, + { + "start": 2016.54, + "end": 2018.1, + "probability": 0.7642 + }, + { + "start": 2019.1, + "end": 2021.26, + "probability": 0.9523 + }, + { + "start": 2022.38, + "end": 2026.02, + "probability": 0.998 + }, + { + "start": 2027.06, + "end": 2028.56, + "probability": 0.8147 + }, + { + "start": 2029.18, + "end": 2033.02, + "probability": 0.9949 + }, + { + "start": 2034.4, + "end": 2038.21, + "probability": 0.9977 + }, + { + "start": 2038.92, + "end": 2042.68, + "probability": 0.7982 + }, + { + "start": 2042.7, + "end": 2046.58, + "probability": 0.9678 + }, + { + "start": 2047.22, + "end": 2049.98, + "probability": 0.9328 + }, + { + "start": 2051.18, + "end": 2051.5, + "probability": 0.7262 + }, + { + "start": 2052.06, + "end": 2054.94, + "probability": 0.7115 + }, + { + "start": 2055.54, + "end": 2060.88, + "probability": 0.9958 + }, + { + "start": 2061.78, + "end": 2063.58, + "probability": 0.8101 + }, + { + "start": 2063.64, + "end": 2063.98, + "probability": 0.9869 + }, + { + "start": 2064.02, + "end": 2066.14, + "probability": 0.9784 + }, + { + "start": 2066.22, + "end": 2067.12, + "probability": 0.7117 + }, + { + "start": 2067.88, + "end": 2069.07, + "probability": 0.9995 + }, + { + "start": 2069.72, + "end": 2072.36, + "probability": 0.9747 + }, + { + "start": 2073.12, + "end": 2074.64, + "probability": 0.9629 + }, + { + "start": 2074.94, + "end": 2076.24, + "probability": 0.9854 + }, + { + "start": 2076.74, + "end": 2078.94, + "probability": 0.9909 + }, + { + "start": 2079.56, + "end": 2084.02, + "probability": 0.9908 + }, + { + "start": 2084.98, + "end": 2086.42, + "probability": 0.9535 + }, + { + "start": 2087.32, + "end": 2088.02, + "probability": 0.7505 + }, + { + "start": 2088.58, + "end": 2091.08, + "probability": 0.9585 + }, + { + "start": 2091.74, + "end": 2092.63, + "probability": 0.9438 + }, + { + "start": 2093.28, + "end": 2097.84, + "probability": 0.9954 + }, + { + "start": 2098.54, + "end": 2101.22, + "probability": 0.9966 + }, + { + "start": 2101.92, + "end": 2106.12, + "probability": 0.9622 + }, + { + "start": 2106.2, + "end": 2107.22, + "probability": 0.8765 + }, + { + "start": 2107.82, + "end": 2109.04, + "probability": 0.7439 + }, + { + "start": 2109.8, + "end": 2111.46, + "probability": 0.9827 + }, + { + "start": 2112.94, + "end": 2115.46, + "probability": 0.876 + }, + { + "start": 2116.22, + "end": 2117.59, + "probability": 0.9764 + }, + { + "start": 2118.22, + "end": 2119.92, + "probability": 0.9703 + }, + { + "start": 2120.44, + "end": 2122.14, + "probability": 0.9589 + }, + { + "start": 2123.46, + "end": 2125.58, + "probability": 0.9928 + }, + { + "start": 2125.76, + "end": 2127.26, + "probability": 0.7787 + }, + { + "start": 2127.34, + "end": 2128.18, + "probability": 0.8712 + }, + { + "start": 2128.64, + "end": 2130.2, + "probability": 0.9939 + }, + { + "start": 2131.54, + "end": 2134.48, + "probability": 0.8394 + }, + { + "start": 2135.02, + "end": 2137.94, + "probability": 0.7485 + }, + { + "start": 2138.92, + "end": 2139.66, + "probability": 0.9958 + }, + { + "start": 2140.18, + "end": 2141.54, + "probability": 0.986 + }, + { + "start": 2141.68, + "end": 2142.38, + "probability": 0.7551 + }, + { + "start": 2142.48, + "end": 2143.94, + "probability": 0.8633 + }, + { + "start": 2144.78, + "end": 2145.9, + "probability": 0.9507 + }, + { + "start": 2146.34, + "end": 2150.34, + "probability": 0.9941 + }, + { + "start": 2151.08, + "end": 2153.82, + "probability": 0.9967 + }, + { + "start": 2154.48, + "end": 2157.2, + "probability": 0.9878 + }, + { + "start": 2157.98, + "end": 2158.34, + "probability": 0.5336 + }, + { + "start": 2158.48, + "end": 2159.0, + "probability": 0.9202 + }, + { + "start": 2159.0, + "end": 2161.6, + "probability": 0.9714 + }, + { + "start": 2162.0, + "end": 2162.92, + "probability": 0.9824 + }, + { + "start": 2163.28, + "end": 2166.46, + "probability": 0.6586 + }, + { + "start": 2167.16, + "end": 2167.72, + "probability": 0.6488 + }, + { + "start": 2167.72, + "end": 2171.3, + "probability": 0.7457 + }, + { + "start": 2172.3, + "end": 2173.99, + "probability": 0.8906 + }, + { + "start": 2174.34, + "end": 2177.9, + "probability": 0.7404 + }, + { + "start": 2178.14, + "end": 2182.14, + "probability": 0.7209 + }, + { + "start": 2183.46, + "end": 2184.42, + "probability": 0.2387 + }, + { + "start": 2185.5, + "end": 2186.86, + "probability": 0.4892 + }, + { + "start": 2188.58, + "end": 2189.92, + "probability": 0.3962 + }, + { + "start": 2190.14, + "end": 2192.28, + "probability": 0.3987 + }, + { + "start": 2197.54, + "end": 2199.4, + "probability": 0.9739 + }, + { + "start": 2203.86, + "end": 2207.08, + "probability": 0.0826 + }, + { + "start": 2224.88, + "end": 2229.14, + "probability": 0.8733 + }, + { + "start": 2229.54, + "end": 2231.26, + "probability": 0.6696 + }, + { + "start": 2232.1, + "end": 2235.56, + "probability": 0.9972 + }, + { + "start": 2235.8, + "end": 2240.06, + "probability": 0.995 + }, + { + "start": 2240.5, + "end": 2246.38, + "probability": 0.9916 + }, + { + "start": 2246.96, + "end": 2248.78, + "probability": 0.9089 + }, + { + "start": 2248.92, + "end": 2250.54, + "probability": 0.9448 + }, + { + "start": 2251.9, + "end": 2255.58, + "probability": 0.9697 + }, + { + "start": 2256.3, + "end": 2259.26, + "probability": 0.9865 + }, + { + "start": 2259.3, + "end": 2261.88, + "probability": 0.9841 + }, + { + "start": 2262.78, + "end": 2265.07, + "probability": 0.9883 + }, + { + "start": 2265.2, + "end": 2265.64, + "probability": 0.8514 + }, + { + "start": 2265.8, + "end": 2266.78, + "probability": 0.7917 + }, + { + "start": 2266.92, + "end": 2269.36, + "probability": 0.9377 + }, + { + "start": 2270.18, + "end": 2273.4, + "probability": 0.9895 + }, + { + "start": 2273.52, + "end": 2276.98, + "probability": 0.9383 + }, + { + "start": 2277.96, + "end": 2280.48, + "probability": 0.9621 + }, + { + "start": 2280.78, + "end": 2283.16, + "probability": 0.9987 + }, + { + "start": 2283.86, + "end": 2284.48, + "probability": 0.5505 + }, + { + "start": 2284.66, + "end": 2289.34, + "probability": 0.9922 + }, + { + "start": 2289.86, + "end": 2293.14, + "probability": 0.9741 + }, + { + "start": 2293.66, + "end": 2295.54, + "probability": 0.9377 + }, + { + "start": 2296.22, + "end": 2296.64, + "probability": 0.75 + }, + { + "start": 2296.86, + "end": 2299.56, + "probability": 0.9961 + }, + { + "start": 2300.02, + "end": 2300.88, + "probability": 0.7416 + }, + { + "start": 2300.94, + "end": 2303.46, + "probability": 0.9181 + }, + { + "start": 2303.88, + "end": 2305.72, + "probability": 0.929 + }, + { + "start": 2306.78, + "end": 2309.0, + "probability": 0.9954 + }, + { + "start": 2309.16, + "end": 2313.8, + "probability": 0.9016 + }, + { + "start": 2314.92, + "end": 2316.62, + "probability": 0.9843 + }, + { + "start": 2317.08, + "end": 2317.46, + "probability": 0.5478 + }, + { + "start": 2317.52, + "end": 2321.62, + "probability": 0.978 + }, + { + "start": 2321.78, + "end": 2322.5, + "probability": 0.8507 + }, + { + "start": 2323.06, + "end": 2324.48, + "probability": 0.8374 + }, + { + "start": 2324.94, + "end": 2327.16, + "probability": 0.9944 + }, + { + "start": 2327.38, + "end": 2327.58, + "probability": 0.8309 + }, + { + "start": 2329.5, + "end": 2330.46, + "probability": 0.75 + }, + { + "start": 2330.48, + "end": 2332.38, + "probability": 0.9344 + }, + { + "start": 2365.4, + "end": 2368.26, + "probability": 0.7138 + }, + { + "start": 2370.58, + "end": 2377.46, + "probability": 0.9852 + }, + { + "start": 2378.12, + "end": 2382.86, + "probability": 0.9951 + }, + { + "start": 2383.96, + "end": 2384.52, + "probability": 0.5812 + }, + { + "start": 2385.06, + "end": 2386.9, + "probability": 0.9243 + }, + { + "start": 2387.0, + "end": 2389.6, + "probability": 0.9894 + }, + { + "start": 2390.38, + "end": 2392.42, + "probability": 0.7264 + }, + { + "start": 2392.52, + "end": 2397.22, + "probability": 0.9222 + }, + { + "start": 2398.14, + "end": 2398.74, + "probability": 0.3403 + }, + { + "start": 2399.5, + "end": 2403.74, + "probability": 0.9865 + }, + { + "start": 2404.46, + "end": 2408.1, + "probability": 0.7704 + }, + { + "start": 2409.18, + "end": 2409.38, + "probability": 0.3355 + }, + { + "start": 2409.38, + "end": 2414.48, + "probability": 0.8798 + }, + { + "start": 2415.66, + "end": 2421.46, + "probability": 0.1145 + }, + { + "start": 2423.18, + "end": 2424.3, + "probability": 0.0692 + }, + { + "start": 2424.76, + "end": 2426.52, + "probability": 0.1289 + }, + { + "start": 2426.52, + "end": 2427.78, + "probability": 0.4919 + }, + { + "start": 2427.82, + "end": 2428.48, + "probability": 0.0217 + }, + { + "start": 2431.48, + "end": 2432.84, + "probability": 0.2282 + }, + { + "start": 2434.4, + "end": 2434.76, + "probability": 0.0681 + }, + { + "start": 2434.76, + "end": 2434.76, + "probability": 0.0643 + }, + { + "start": 2434.76, + "end": 2434.76, + "probability": 0.1915 + }, + { + "start": 2434.76, + "end": 2435.26, + "probability": 0.0498 + }, + { + "start": 2435.38, + "end": 2435.38, + "probability": 0.1005 + }, + { + "start": 2435.62, + "end": 2440.8, + "probability": 0.0658 + }, + { + "start": 2440.86, + "end": 2442.0, + "probability": 0.0475 + }, + { + "start": 2442.0, + "end": 2443.23, + "probability": 0.0291 + }, + { + "start": 2444.1, + "end": 2444.42, + "probability": 0.0014 + }, + { + "start": 2445.57, + "end": 2446.08, + "probability": 0.0186 + }, + { + "start": 2446.08, + "end": 2446.18, + "probability": 0.1698 + }, + { + "start": 2449.08, + "end": 2453.12, + "probability": 0.1536 + }, + { + "start": 2453.68, + "end": 2453.68, + "probability": 0.2222 + }, + { + "start": 2454.02, + "end": 2459.9, + "probability": 0.0554 + }, + { + "start": 2459.92, + "end": 2459.92, + "probability": 0.0163 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.0, + "end": 2515.0, + "probability": 0.0 + }, + { + "start": 2515.4, + "end": 2515.54, + "probability": 0.1326 + }, + { + "start": 2515.54, + "end": 2515.54, + "probability": 0.0727 + }, + { + "start": 2515.54, + "end": 2515.68, + "probability": 0.1101 + }, + { + "start": 2515.68, + "end": 2515.68, + "probability": 0.1028 + }, + { + "start": 2515.68, + "end": 2515.68, + "probability": 0.1327 + }, + { + "start": 2515.68, + "end": 2515.68, + "probability": 0.2091 + }, + { + "start": 2515.68, + "end": 2515.68, + "probability": 0.0997 + }, + { + "start": 2515.68, + "end": 2516.15, + "probability": 0.3047 + }, + { + "start": 2516.44, + "end": 2517.48, + "probability": 0.071 + }, + { + "start": 2517.82, + "end": 2520.56, + "probability": 0.7299 + }, + { + "start": 2521.14, + "end": 2521.14, + "probability": 0.5586 + }, + { + "start": 2521.92, + "end": 2522.08, + "probability": 0.161 + }, + { + "start": 2522.08, + "end": 2522.08, + "probability": 0.246 + }, + { + "start": 2522.08, + "end": 2522.32, + "probability": 0.1666 + }, + { + "start": 2522.32, + "end": 2523.06, + "probability": 0.2143 + }, + { + "start": 2523.06, + "end": 2523.48, + "probability": 0.182 + }, + { + "start": 2524.06, + "end": 2527.08, + "probability": 0.6995 + }, + { + "start": 2527.16, + "end": 2529.14, + "probability": 0.9681 + }, + { + "start": 2534.62, + "end": 2537.4, + "probability": 0.0137 + }, + { + "start": 2537.56, + "end": 2538.44, + "probability": 0.2664 + }, + { + "start": 2538.73, + "end": 2538.94, + "probability": 0.3336 + }, + { + "start": 2538.94, + "end": 2539.34, + "probability": 0.3395 + }, + { + "start": 2539.34, + "end": 2541.1, + "probability": 0.1126 + }, + { + "start": 2543.52, + "end": 2548.46, + "probability": 0.0528 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.0, + "end": 2635.0, + "probability": 0.0 + }, + { + "start": 2635.14, + "end": 2636.9, + "probability": 0.0104 + }, + { + "start": 2637.54, + "end": 2637.88, + "probability": 0.0593 + }, + { + "start": 2637.88, + "end": 2638.56, + "probability": 0.3996 + }, + { + "start": 2639.14, + "end": 2640.16, + "probability": 0.1017 + }, + { + "start": 2640.16, + "end": 2640.16, + "probability": 0.0754 + }, + { + "start": 2642.14, + "end": 2643.12, + "probability": 0.6855 + }, + { + "start": 2663.95, + "end": 2664.91, + "probability": 0.0202 + }, + { + "start": 2664.91, + "end": 2665.97, + "probability": 0.1305 + }, + { + "start": 2665.97, + "end": 2666.65, + "probability": 0.1063 + }, + { + "start": 2666.93, + "end": 2666.93, + "probability": 0.1924 + }, + { + "start": 2666.93, + "end": 2668.05, + "probability": 0.6233 + }, + { + "start": 2668.05, + "end": 2669.79, + "probability": 0.6993 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2783.0, + "end": 2783.0, + "probability": 0.0 + }, + { + "start": 2800.1, + "end": 2801.5, + "probability": 0.0018 + }, + { + "start": 2813.8, + "end": 2816.22, + "probability": 0.1035 + }, + { + "start": 2832.68, + "end": 2833.54, + "probability": 0.0347 + }, + { + "start": 2834.64, + "end": 2835.98, + "probability": 0.22 + }, + { + "start": 2874.98, + "end": 2875.8, + "probability": 0.0356 + }, + { + "start": 2876.05, + "end": 2876.98, + "probability": 0.0465 + }, + { + "start": 2876.98, + "end": 2877.05, + "probability": 0.0506 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2917.0, + "end": 2917.0, + "probability": 0.0 + }, + { + "start": 2921.2, + "end": 2924.9, + "probability": 0.0457 + }, + { + "start": 2924.9, + "end": 2926.48, + "probability": 0.0892 + }, + { + "start": 2926.48, + "end": 2926.48, + "probability": 0.0448 + }, + { + "start": 2926.9, + "end": 2933.62, + "probability": 0.0454 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.0, + "end": 3043.0, + "probability": 0.0 + }, + { + "start": 3043.28, + "end": 3043.28, + "probability": 0.0294 + }, + { + "start": 3043.28, + "end": 3043.9, + "probability": 0.0609 + }, + { + "start": 3043.9, + "end": 3046.82, + "probability": 0.6461 + }, + { + "start": 3047.32, + "end": 3048.32, + "probability": 0.9077 + }, + { + "start": 3049.08, + "end": 3054.08, + "probability": 0.986 + }, + { + "start": 3054.62, + "end": 3055.98, + "probability": 0.9785 + }, + { + "start": 3056.44, + "end": 3062.74, + "probability": 0.9976 + }, + { + "start": 3063.3, + "end": 3067.9, + "probability": 0.9232 + }, + { + "start": 3068.34, + "end": 3070.62, + "probability": 0.8221 + }, + { + "start": 3072.02, + "end": 3077.36, + "probability": 0.8758 + }, + { + "start": 3077.98, + "end": 3081.26, + "probability": 0.9834 + }, + { + "start": 3081.76, + "end": 3085.78, + "probability": 0.7967 + }, + { + "start": 3086.28, + "end": 3088.82, + "probability": 0.7378 + }, + { + "start": 3088.9, + "end": 3090.46, + "probability": 0.9344 + }, + { + "start": 3090.9, + "end": 3092.48, + "probability": 0.9134 + }, + { + "start": 3092.56, + "end": 3095.2, + "probability": 0.7266 + }, + { + "start": 3095.7, + "end": 3098.74, + "probability": 0.9841 + }, + { + "start": 3099.84, + "end": 3103.32, + "probability": 0.9163 + }, + { + "start": 3104.04, + "end": 3110.29, + "probability": 0.915 + }, + { + "start": 3110.64, + "end": 3111.84, + "probability": 0.8393 + }, + { + "start": 3112.42, + "end": 3113.7, + "probability": 0.8453 + }, + { + "start": 3113.82, + "end": 3115.48, + "probability": 0.9331 + }, + { + "start": 3115.58, + "end": 3118.96, + "probability": 0.9899 + }, + { + "start": 3119.66, + "end": 3121.86, + "probability": 0.9146 + }, + { + "start": 3122.52, + "end": 3123.64, + "probability": 0.939 + }, + { + "start": 3124.14, + "end": 3125.8, + "probability": 0.9922 + }, + { + "start": 3125.88, + "end": 3131.08, + "probability": 0.9728 + }, + { + "start": 3132.04, + "end": 3133.24, + "probability": 0.8229 + }, + { + "start": 3133.76, + "end": 3139.12, + "probability": 0.9913 + }, + { + "start": 3139.12, + "end": 3145.48, + "probability": 0.9972 + }, + { + "start": 3146.12, + "end": 3148.92, + "probability": 0.7032 + }, + { + "start": 3149.54, + "end": 3151.82, + "probability": 0.9235 + }, + { + "start": 3152.52, + "end": 3153.18, + "probability": 0.9367 + }, + { + "start": 3153.36, + "end": 3158.1, + "probability": 0.9902 + }, + { + "start": 3158.1, + "end": 3162.54, + "probability": 0.9886 + }, + { + "start": 3163.12, + "end": 3166.86, + "probability": 0.9904 + }, + { + "start": 3168.4, + "end": 3171.94, + "probability": 0.791 + }, + { + "start": 3171.94, + "end": 3175.34, + "probability": 0.9972 + }, + { + "start": 3175.74, + "end": 3178.36, + "probability": 0.9917 + }, + { + "start": 3178.98, + "end": 3185.04, + "probability": 0.9843 + }, + { + "start": 3185.68, + "end": 3188.92, + "probability": 0.9863 + }, + { + "start": 3189.72, + "end": 3194.3, + "probability": 0.9791 + }, + { + "start": 3194.82, + "end": 3199.38, + "probability": 0.9727 + }, + { + "start": 3199.38, + "end": 3204.66, + "probability": 0.9969 + }, + { + "start": 3205.24, + "end": 3205.68, + "probability": 0.5877 + }, + { + "start": 3205.74, + "end": 3209.17, + "probability": 0.9921 + }, + { + "start": 3209.74, + "end": 3213.16, + "probability": 0.9925 + }, + { + "start": 3213.5, + "end": 3217.1, + "probability": 0.9971 + }, + { + "start": 3217.82, + "end": 3223.76, + "probability": 0.9919 + }, + { + "start": 3223.76, + "end": 3229.48, + "probability": 0.9401 + }, + { + "start": 3230.54, + "end": 3231.7, + "probability": 0.7154 + }, + { + "start": 3231.94, + "end": 3237.64, + "probability": 0.9884 + }, + { + "start": 3237.74, + "end": 3238.74, + "probability": 0.6625 + }, + { + "start": 3239.36, + "end": 3242.92, + "probability": 0.854 + }, + { + "start": 3243.5, + "end": 3250.18, + "probability": 0.9935 + }, + { + "start": 3250.18, + "end": 3258.06, + "probability": 0.907 + }, + { + "start": 3258.46, + "end": 3259.36, + "probability": 0.8747 + }, + { + "start": 3259.46, + "end": 3260.46, + "probability": 0.4292 + }, + { + "start": 3260.5, + "end": 3261.82, + "probability": 0.7082 + }, + { + "start": 3262.32, + "end": 3267.5, + "probability": 0.9946 + }, + { + "start": 3268.26, + "end": 3273.94, + "probability": 0.997 + }, + { + "start": 3274.56, + "end": 3276.04, + "probability": 0.9878 + }, + { + "start": 3276.58, + "end": 3280.9, + "probability": 0.9978 + }, + { + "start": 3281.28, + "end": 3283.78, + "probability": 0.9982 + }, + { + "start": 3283.78, + "end": 3287.3, + "probability": 0.9889 + }, + { + "start": 3287.38, + "end": 3288.36, + "probability": 0.8442 + }, + { + "start": 3288.82, + "end": 3289.34, + "probability": 0.0025 + }, + { + "start": 3289.34, + "end": 3291.52, + "probability": 0.9839 + }, + { + "start": 3292.38, + "end": 3293.72, + "probability": 0.9028 + }, + { + "start": 3293.88, + "end": 3298.24, + "probability": 0.9962 + }, + { + "start": 3298.68, + "end": 3300.44, + "probability": 0.9011 + }, + { + "start": 3301.52, + "end": 3304.42, + "probability": 0.9896 + }, + { + "start": 3305.06, + "end": 3307.4, + "probability": 0.9906 + }, + { + "start": 3308.4, + "end": 3310.66, + "probability": 0.9204 + }, + { + "start": 3310.92, + "end": 3314.02, + "probability": 0.9976 + }, + { + "start": 3314.54, + "end": 3319.12, + "probability": 0.9957 + }, + { + "start": 3319.74, + "end": 3320.69, + "probability": 0.9893 + }, + { + "start": 3321.06, + "end": 3325.12, + "probability": 0.9884 + }, + { + "start": 3325.66, + "end": 3332.04, + "probability": 0.9902 + }, + { + "start": 3332.48, + "end": 3333.28, + "probability": 0.8478 + }, + { + "start": 3333.8, + "end": 3339.04, + "probability": 0.9867 + }, + { + "start": 3339.5, + "end": 3343.12, + "probability": 0.9747 + }, + { + "start": 3344.28, + "end": 3347.44, + "probability": 0.9927 + }, + { + "start": 3348.0, + "end": 3352.74, + "probability": 0.9387 + }, + { + "start": 3353.24, + "end": 3356.36, + "probability": 0.9986 + }, + { + "start": 3356.98, + "end": 3358.4, + "probability": 0.9084 + }, + { + "start": 3362.56, + "end": 3363.46, + "probability": 0.4814 + }, + { + "start": 3363.52, + "end": 3365.66, + "probability": 0.9241 + }, + { + "start": 3389.1, + "end": 3390.54, + "probability": 0.523 + }, + { + "start": 3390.66, + "end": 3391.94, + "probability": 0.8001 + }, + { + "start": 3392.16, + "end": 3396.71, + "probability": 0.7584 + }, + { + "start": 3397.26, + "end": 3398.68, + "probability": 0.6332 + }, + { + "start": 3399.52, + "end": 3402.22, + "probability": 0.97 + }, + { + "start": 3402.32, + "end": 3402.98, + "probability": 0.0262 + }, + { + "start": 3403.76, + "end": 3404.34, + "probability": 0.0353 + }, + { + "start": 3404.34, + "end": 3407.36, + "probability": 0.9859 + }, + { + "start": 3408.62, + "end": 3411.56, + "probability": 0.9771 + }, + { + "start": 3411.64, + "end": 3414.2, + "probability": 0.9984 + }, + { + "start": 3414.84, + "end": 3415.38, + "probability": 0.7853 + }, + { + "start": 3415.42, + "end": 3417.9, + "probability": 0.8026 + }, + { + "start": 3417.96, + "end": 3420.0, + "probability": 0.9909 + }, + { + "start": 3420.28, + "end": 3421.72, + "probability": 0.8296 + }, + { + "start": 3422.16, + "end": 3427.18, + "probability": 0.9936 + }, + { + "start": 3427.88, + "end": 3431.4, + "probability": 0.9976 + }, + { + "start": 3431.4, + "end": 3435.8, + "probability": 0.992 + }, + { + "start": 3435.8, + "end": 3440.1, + "probability": 0.9994 + }, + { + "start": 3440.9, + "end": 3441.42, + "probability": 0.7626 + }, + { + "start": 3441.92, + "end": 3445.94, + "probability": 0.9786 + }, + { + "start": 3446.38, + "end": 3449.7, + "probability": 0.9031 + }, + { + "start": 3450.14, + "end": 3450.86, + "probability": 0.5594 + }, + { + "start": 3450.88, + "end": 3451.66, + "probability": 0.8564 + }, + { + "start": 3452.88, + "end": 3453.24, + "probability": 0.7595 + }, + { + "start": 3453.3, + "end": 3456.22, + "probability": 0.9868 + }, + { + "start": 3456.22, + "end": 3459.28, + "probability": 0.9977 + }, + { + "start": 3459.74, + "end": 3462.9, + "probability": 0.9836 + }, + { + "start": 3463.46, + "end": 3467.24, + "probability": 0.9891 + }, + { + "start": 3467.64, + "end": 3471.12, + "probability": 0.9652 + }, + { + "start": 3471.8, + "end": 3474.16, + "probability": 0.9722 + }, + { + "start": 3474.18, + "end": 3476.02, + "probability": 0.9304 + }, + { + "start": 3476.56, + "end": 3480.06, + "probability": 0.9964 + }, + { + "start": 3480.82, + "end": 3483.52, + "probability": 0.9844 + }, + { + "start": 3483.52, + "end": 3490.12, + "probability": 0.9378 + }, + { + "start": 3491.16, + "end": 3491.52, + "probability": 0.3004 + }, + { + "start": 3491.54, + "end": 3495.74, + "probability": 0.9679 + }, + { + "start": 3496.0, + "end": 3499.56, + "probability": 0.9751 + }, + { + "start": 3500.04, + "end": 3503.82, + "probability": 0.9034 + }, + { + "start": 3504.5, + "end": 3508.48, + "probability": 0.8489 + }, + { + "start": 3508.66, + "end": 3508.78, + "probability": 0.3342 + }, + { + "start": 3508.78, + "end": 3509.96, + "probability": 0.2978 + }, + { + "start": 3510.3, + "end": 3510.98, + "probability": 0.7612 + }, + { + "start": 3511.28, + "end": 3512.5, + "probability": 0.5977 + }, + { + "start": 3512.7, + "end": 3515.7, + "probability": 0.2599 + }, + { + "start": 3515.86, + "end": 3518.42, + "probability": 0.8528 + }, + { + "start": 3518.56, + "end": 3520.48, + "probability": 0.6434 + }, + { + "start": 3520.76, + "end": 3522.26, + "probability": 0.7534 + }, + { + "start": 3522.38, + "end": 3523.19, + "probability": 0.6257 + }, + { + "start": 3524.02, + "end": 3526.3, + "probability": 0.776 + }, + { + "start": 3526.44, + "end": 3527.74, + "probability": 0.8373 + }, + { + "start": 3528.12, + "end": 3529.7, + "probability": 0.9785 + }, + { + "start": 3530.36, + "end": 3530.98, + "probability": 0.8555 + }, + { + "start": 3531.2, + "end": 3531.88, + "probability": 0.5273 + }, + { + "start": 3531.98, + "end": 3532.58, + "probability": 0.2707 + }, + { + "start": 3533.04, + "end": 3534.3, + "probability": 0.404 + }, + { + "start": 3534.36, + "end": 3535.02, + "probability": 0.3075 + }, + { + "start": 3535.16, + "end": 3537.07, + "probability": 0.7194 + }, + { + "start": 3538.04, + "end": 3538.5, + "probability": 0.4692 + }, + { + "start": 3540.32, + "end": 3542.12, + "probability": 0.7309 + }, + { + "start": 3542.2, + "end": 3544.34, + "probability": 0.9845 + }, + { + "start": 3544.8, + "end": 3547.22, + "probability": 0.9719 + }, + { + "start": 3547.3, + "end": 3547.88, + "probability": 0.3676 + }, + { + "start": 3548.16, + "end": 3549.46, + "probability": 0.9136 + }, + { + "start": 3549.68, + "end": 3550.6, + "probability": 0.7495 + }, + { + "start": 3550.68, + "end": 3551.72, + "probability": 0.7404 + }, + { + "start": 3552.22, + "end": 3554.4, + "probability": 0.9567 + }, + { + "start": 3554.4, + "end": 3554.47, + "probability": 0.0471 + }, + { + "start": 3554.94, + "end": 3558.42, + "probability": 0.9016 + }, + { + "start": 3558.54, + "end": 3560.66, + "probability": 0.9966 + }, + { + "start": 3560.8, + "end": 3561.82, + "probability": 0.9184 + }, + { + "start": 3562.5, + "end": 3564.7, + "probability": 0.988 + }, + { + "start": 3565.58, + "end": 3566.62, + "probability": 0.4919 + }, + { + "start": 3566.8, + "end": 3572.76, + "probability": 0.6753 + }, + { + "start": 3572.76, + "end": 3576.02, + "probability": 0.9895 + }, + { + "start": 3576.08, + "end": 3582.2, + "probability": 0.9432 + }, + { + "start": 3582.34, + "end": 3583.56, + "probability": 0.9929 + }, + { + "start": 3583.64, + "end": 3586.44, + "probability": 0.9888 + }, + { + "start": 3587.24, + "end": 3589.38, + "probability": 0.8716 + }, + { + "start": 3590.02, + "end": 3593.24, + "probability": 0.9961 + }, + { + "start": 3593.52, + "end": 3594.12, + "probability": 0.8009 + }, + { + "start": 3594.66, + "end": 3600.58, + "probability": 0.9946 + }, + { + "start": 3601.0, + "end": 3606.1, + "probability": 0.9975 + }, + { + "start": 3606.2, + "end": 3607.67, + "probability": 0.8825 + }, + { + "start": 3607.78, + "end": 3608.88, + "probability": 0.9492 + }, + { + "start": 3608.94, + "end": 3613.88, + "probability": 0.9995 + }, + { + "start": 3613.88, + "end": 3618.76, + "probability": 0.9997 + }, + { + "start": 3619.06, + "end": 3621.7, + "probability": 0.9918 + }, + { + "start": 3622.2, + "end": 3624.72, + "probability": 0.9984 + }, + { + "start": 3625.08, + "end": 3626.08, + "probability": 0.7471 + }, + { + "start": 3626.18, + "end": 3626.74, + "probability": 0.8577 + }, + { + "start": 3626.78, + "end": 3628.78, + "probability": 0.9717 + }, + { + "start": 3628.88, + "end": 3629.39, + "probability": 0.519 + }, + { + "start": 3629.58, + "end": 3632.36, + "probability": 0.9881 + }, + { + "start": 3632.46, + "end": 3635.12, + "probability": 0.9935 + }, + { + "start": 3635.26, + "end": 3636.38, + "probability": 0.9205 + }, + { + "start": 3636.44, + "end": 3637.74, + "probability": 0.8791 + }, + { + "start": 3638.08, + "end": 3640.28, + "probability": 0.9692 + }, + { + "start": 3640.96, + "end": 3644.34, + "probability": 0.9817 + }, + { + "start": 3644.34, + "end": 3645.8, + "probability": 0.3169 + }, + { + "start": 3645.94, + "end": 3647.34, + "probability": 0.5991 + }, + { + "start": 3647.44, + "end": 3647.76, + "probability": 0.081 + }, + { + "start": 3647.78, + "end": 3649.06, + "probability": 0.7385 + }, + { + "start": 3649.06, + "end": 3649.9, + "probability": 0.6309 + }, + { + "start": 3649.96, + "end": 3651.9, + "probability": 0.7198 + }, + { + "start": 3652.8, + "end": 3653.36, + "probability": 0.7761 + }, + { + "start": 3653.78, + "end": 3656.32, + "probability": 0.9916 + }, + { + "start": 3657.16, + "end": 3662.46, + "probability": 0.8906 + }, + { + "start": 3663.28, + "end": 3665.7, + "probability": 0.9811 + }, + { + "start": 3666.66, + "end": 3669.62, + "probability": 0.7276 + }, + { + "start": 3669.9, + "end": 3674.0, + "probability": 0.5148 + }, + { + "start": 3674.02, + "end": 3675.12, + "probability": 0.6956 + }, + { + "start": 3675.3, + "end": 3678.6, + "probability": 0.8324 + }, + { + "start": 3679.98, + "end": 3683.02, + "probability": 0.3309 + }, + { + "start": 3684.1, + "end": 3688.52, + "probability": 0.9389 + }, + { + "start": 3689.3, + "end": 3690.76, + "probability": 0.728 + }, + { + "start": 3691.32, + "end": 3694.16, + "probability": 0.9976 + }, + { + "start": 3694.36, + "end": 3699.26, + "probability": 0.9899 + }, + { + "start": 3699.94, + "end": 3703.56, + "probability": 0.9575 + }, + { + "start": 3704.26, + "end": 3709.38, + "probability": 0.9976 + }, + { + "start": 3709.74, + "end": 3713.1, + "probability": 0.998 + }, + { + "start": 3713.7, + "end": 3717.3, + "probability": 0.999 + }, + { + "start": 3717.35, + "end": 3723.26, + "probability": 0.9973 + }, + { + "start": 3723.34, + "end": 3727.2, + "probability": 0.9938 + }, + { + "start": 3728.02, + "end": 3729.74, + "probability": 0.6149 + }, + { + "start": 3730.52, + "end": 3730.9, + "probability": 0.6676 + }, + { + "start": 3731.26, + "end": 3732.3, + "probability": 0.6696 + }, + { + "start": 3733.44, + "end": 3735.7, + "probability": 0.9359 + }, + { + "start": 3757.3, + "end": 3759.46, + "probability": 0.7321 + }, + { + "start": 3760.8, + "end": 3763.74, + "probability": 0.8738 + }, + { + "start": 3763.9, + "end": 3766.64, + "probability": 0.8417 + }, + { + "start": 3766.9, + "end": 3770.22, + "probability": 0.744 + }, + { + "start": 3771.08, + "end": 3773.34, + "probability": 0.8894 + }, + { + "start": 3773.96, + "end": 3780.14, + "probability": 0.9854 + }, + { + "start": 3780.7, + "end": 3783.98, + "probability": 0.9819 + }, + { + "start": 3784.52, + "end": 3791.44, + "probability": 0.9797 + }, + { + "start": 3792.08, + "end": 3793.04, + "probability": 0.7416 + }, + { + "start": 3793.46, + "end": 3797.92, + "probability": 0.8667 + }, + { + "start": 3798.48, + "end": 3802.62, + "probability": 0.9908 + }, + { + "start": 3803.52, + "end": 3806.58, + "probability": 0.9456 + }, + { + "start": 3806.6, + "end": 3810.3, + "probability": 0.9792 + }, + { + "start": 3810.3, + "end": 3812.82, + "probability": 0.9985 + }, + { + "start": 3813.66, + "end": 3819.58, + "probability": 0.9312 + }, + { + "start": 3819.74, + "end": 3822.5, + "probability": 0.9984 + }, + { + "start": 3823.5, + "end": 3824.54, + "probability": 0.7744 + }, + { + "start": 3825.16, + "end": 3827.54, + "probability": 0.6747 + }, + { + "start": 3829.12, + "end": 3829.34, + "probability": 0.5792 + }, + { + "start": 3830.22, + "end": 3833.57, + "probability": 0.9714 + }, + { + "start": 3834.16, + "end": 3838.26, + "probability": 0.996 + }, + { + "start": 3838.76, + "end": 3840.04, + "probability": 0.9624 + }, + { + "start": 3840.22, + "end": 3841.16, + "probability": 0.6978 + }, + { + "start": 3841.98, + "end": 3845.64, + "probability": 0.9963 + }, + { + "start": 3846.26, + "end": 3846.7, + "probability": 0.4691 + }, + { + "start": 3846.78, + "end": 3849.04, + "probability": 0.9646 + }, + { + "start": 3849.04, + "end": 3851.9, + "probability": 0.9902 + }, + { + "start": 3852.56, + "end": 3853.24, + "probability": 0.918 + }, + { + "start": 3854.74, + "end": 3859.62, + "probability": 0.9788 + }, + { + "start": 3859.62, + "end": 3865.12, + "probability": 0.9211 + }, + { + "start": 3865.2, + "end": 3865.68, + "probability": 0.4994 + }, + { + "start": 3866.46, + "end": 3871.12, + "probability": 0.9504 + }, + { + "start": 3871.12, + "end": 3876.34, + "probability": 0.9974 + }, + { + "start": 3876.34, + "end": 3881.36, + "probability": 0.9437 + }, + { + "start": 3881.44, + "end": 3881.9, + "probability": 0.2356 + }, + { + "start": 3882.52, + "end": 3886.94, + "probability": 0.9961 + }, + { + "start": 3887.56, + "end": 3890.18, + "probability": 0.9954 + }, + { + "start": 3890.2, + "end": 3895.66, + "probability": 0.9805 + }, + { + "start": 3895.74, + "end": 3896.2, + "probability": 0.4334 + }, + { + "start": 3896.74, + "end": 3900.2, + "probability": 0.9744 + }, + { + "start": 3900.2, + "end": 3902.86, + "probability": 0.8555 + }, + { + "start": 3904.4, + "end": 3905.76, + "probability": 0.7088 + }, + { + "start": 3905.78, + "end": 3906.24, + "probability": 0.4928 + }, + { + "start": 3906.32, + "end": 3907.9, + "probability": 0.8535 + }, + { + "start": 3907.98, + "end": 3909.76, + "probability": 0.8506 + }, + { + "start": 3910.4, + "end": 3911.96, + "probability": 0.9958 + }, + { + "start": 3912.36, + "end": 3916.09, + "probability": 0.9758 + }, + { + "start": 3916.8, + "end": 3918.0, + "probability": 0.7148 + }, + { + "start": 3918.64, + "end": 3921.1, + "probability": 0.8037 + }, + { + "start": 3921.54, + "end": 3923.94, + "probability": 0.9094 + }, + { + "start": 3924.5, + "end": 3929.94, + "probability": 0.9767 + }, + { + "start": 3930.6, + "end": 3932.04, + "probability": 0.9647 + }, + { + "start": 3932.64, + "end": 3937.7, + "probability": 0.981 + }, + { + "start": 3938.38, + "end": 3940.18, + "probability": 0.9132 + }, + { + "start": 3940.72, + "end": 3943.26, + "probability": 0.9404 + }, + { + "start": 3943.64, + "end": 3948.5, + "probability": 0.9691 + }, + { + "start": 3948.62, + "end": 3949.04, + "probability": 0.3008 + }, + { + "start": 3949.16, + "end": 3949.5, + "probability": 0.6435 + }, + { + "start": 3951.98, + "end": 3952.9, + "probability": 0.8489 + }, + { + "start": 3953.16, + "end": 3956.8, + "probability": 0.8787 + }, + { + "start": 3965.4, + "end": 3970.22, + "probability": 0.0596 + }, + { + "start": 3970.38, + "end": 3970.96, + "probability": 0.0309 + }, + { + "start": 3979.42, + "end": 3981.3, + "probability": 0.1259 + }, + { + "start": 3983.06, + "end": 3984.62, + "probability": 0.0519 + }, + { + "start": 3986.9, + "end": 3990.76, + "probability": 0.4888 + }, + { + "start": 3991.58, + "end": 3993.9, + "probability": 0.75 + }, + { + "start": 3994.0, + "end": 3998.3, + "probability": 0.9777 + }, + { + "start": 3999.04, + "end": 4001.28, + "probability": 0.9856 + }, + { + "start": 4001.94, + "end": 4003.68, + "probability": 0.4994 + }, + { + "start": 4003.68, + "end": 4006.6, + "probability": 0.6454 + }, + { + "start": 4007.98, + "end": 4010.72, + "probability": 0.5214 + }, + { + "start": 4011.54, + "end": 4012.42, + "probability": 0.8503 + }, + { + "start": 4013.06, + "end": 4015.0, + "probability": 0.6704 + }, + { + "start": 4018.4, + "end": 4022.66, + "probability": 0.6672 + }, + { + "start": 4023.4, + "end": 4025.62, + "probability": 0.8153 + }, + { + "start": 4026.62, + "end": 4027.04, + "probability": 0.9125 + }, + { + "start": 4027.64, + "end": 4028.48, + "probability": 0.9917 + }, + { + "start": 4028.48, + "end": 4031.06, + "probability": 0.9018 + }, + { + "start": 4049.78, + "end": 4049.82, + "probability": 0.7206 + }, + { + "start": 4049.82, + "end": 4050.84, + "probability": 0.1694 + }, + { + "start": 4052.5, + "end": 4054.82, + "probability": 0.1715 + }, + { + "start": 4082.06, + "end": 4083.16, + "probability": 0.1619 + }, + { + "start": 4083.8, + "end": 4085.18, + "probability": 0.8886 + }, + { + "start": 4086.3, + "end": 4089.8, + "probability": 0.6979 + }, + { + "start": 4089.8, + "end": 4094.22, + "probability": 0.9772 + }, + { + "start": 4094.76, + "end": 4100.16, + "probability": 0.9909 + }, + { + "start": 4100.16, + "end": 4105.36, + "probability": 0.9813 + }, + { + "start": 4105.96, + "end": 4107.66, + "probability": 0.9862 + }, + { + "start": 4108.1, + "end": 4112.64, + "probability": 0.9868 + }, + { + "start": 4113.6, + "end": 4116.46, + "probability": 0.9868 + }, + { + "start": 4116.66, + "end": 4123.78, + "probability": 0.9326 + }, + { + "start": 4124.36, + "end": 4125.78, + "probability": 0.5283 + }, + { + "start": 4125.96, + "end": 4127.52, + "probability": 0.846 + }, + { + "start": 4127.76, + "end": 4129.84, + "probability": 0.9955 + }, + { + "start": 4130.48, + "end": 4132.98, + "probability": 0.9654 + }, + { + "start": 4133.64, + "end": 4136.09, + "probability": 0.9758 + }, + { + "start": 4137.24, + "end": 4139.06, + "probability": 0.4958 + }, + { + "start": 4139.56, + "end": 4141.34, + "probability": 0.8888 + }, + { + "start": 4141.5, + "end": 4142.22, + "probability": 0.9095 + }, + { + "start": 4142.24, + "end": 4142.42, + "probability": 0.0025 + }, + { + "start": 4144.32, + "end": 4148.26, + "probability": 0.9865 + }, + { + "start": 4148.68, + "end": 4154.84, + "probability": 0.9518 + }, + { + "start": 4155.44, + "end": 4160.1, + "probability": 0.8371 + }, + { + "start": 4160.86, + "end": 4167.32, + "probability": 0.9927 + }, + { + "start": 4167.98, + "end": 4171.3, + "probability": 0.923 + }, + { + "start": 4171.3, + "end": 4175.08, + "probability": 0.9646 + }, + { + "start": 4175.68, + "end": 4177.7, + "probability": 0.9746 + }, + { + "start": 4178.42, + "end": 4182.4, + "probability": 0.9264 + }, + { + "start": 4182.66, + "end": 4184.38, + "probability": 0.8228 + }, + { + "start": 4185.38, + "end": 4189.2, + "probability": 0.9292 + }, + { + "start": 4189.8, + "end": 4193.28, + "probability": 0.4166 + }, + { + "start": 4193.78, + "end": 4197.96, + "probability": 0.9827 + }, + { + "start": 4198.68, + "end": 4202.15, + "probability": 0.9664 + }, + { + "start": 4202.18, + "end": 4205.44, + "probability": 0.9926 + }, + { + "start": 4206.28, + "end": 4209.42, + "probability": 0.8916 + }, + { + "start": 4209.56, + "end": 4213.5, + "probability": 0.9841 + }, + { + "start": 4213.5, + "end": 4218.12, + "probability": 0.9793 + }, + { + "start": 4218.78, + "end": 4219.6, + "probability": 0.6294 + }, + { + "start": 4219.78, + "end": 4222.18, + "probability": 0.9873 + }, + { + "start": 4222.8, + "end": 4226.4, + "probability": 0.9438 + }, + { + "start": 4227.22, + "end": 4228.4, + "probability": 0.8698 + }, + { + "start": 4228.98, + "end": 4232.14, + "probability": 0.9778 + }, + { + "start": 4232.66, + "end": 4233.64, + "probability": 0.9557 + }, + { + "start": 4233.76, + "end": 4237.62, + "probability": 0.9921 + }, + { + "start": 4237.62, + "end": 4240.4, + "probability": 0.9996 + }, + { + "start": 4241.02, + "end": 4243.8, + "probability": 0.8697 + }, + { + "start": 4244.32, + "end": 4247.12, + "probability": 0.9901 + }, + { + "start": 4247.92, + "end": 4248.86, + "probability": 0.5714 + }, + { + "start": 4248.96, + "end": 4253.5, + "probability": 0.9802 + }, + { + "start": 4254.2, + "end": 4258.02, + "probability": 0.9196 + }, + { + "start": 4258.02, + "end": 4262.4, + "probability": 0.9956 + }, + { + "start": 4263.12, + "end": 4269.42, + "probability": 0.9598 + }, + { + "start": 4269.72, + "end": 4270.74, + "probability": 0.8404 + }, + { + "start": 4271.58, + "end": 4274.8, + "probability": 0.9956 + }, + { + "start": 4274.8, + "end": 4278.04, + "probability": 0.9989 + }, + { + "start": 4278.16, + "end": 4279.26, + "probability": 0.38 + }, + { + "start": 4280.02, + "end": 4283.46, + "probability": 0.991 + }, + { + "start": 4283.46, + "end": 4286.66, + "probability": 0.999 + }, + { + "start": 4287.48, + "end": 4287.94, + "probability": 0.835 + }, + { + "start": 4288.08, + "end": 4291.72, + "probability": 0.9959 + }, + { + "start": 4291.72, + "end": 4295.14, + "probability": 0.9649 + }, + { + "start": 4295.72, + "end": 4302.52, + "probability": 0.9841 + }, + { + "start": 4304.22, + "end": 4308.6, + "probability": 0.9919 + }, + { + "start": 4309.1, + "end": 4311.84, + "probability": 0.9492 + }, + { + "start": 4311.84, + "end": 4315.78, + "probability": 0.9188 + }, + { + "start": 4316.5, + "end": 4319.6, + "probability": 0.6797 + }, + { + "start": 4320.44, + "end": 4326.6, + "probability": 0.9766 + }, + { + "start": 4326.62, + "end": 4331.18, + "probability": 0.9759 + }, + { + "start": 4331.18, + "end": 4335.72, + "probability": 0.9863 + }, + { + "start": 4336.72, + "end": 4340.1, + "probability": 0.996 + }, + { + "start": 4340.16, + "end": 4342.44, + "probability": 0.8589 + }, + { + "start": 4343.12, + "end": 4346.12, + "probability": 0.7305 + }, + { + "start": 4346.16, + "end": 4350.56, + "probability": 0.9801 + }, + { + "start": 4351.26, + "end": 4354.1, + "probability": 0.9626 + }, + { + "start": 4355.0, + "end": 4356.52, + "probability": 0.8886 + }, + { + "start": 4357.24, + "end": 4360.08, + "probability": 0.9965 + }, + { + "start": 4360.76, + "end": 4364.08, + "probability": 0.9268 + }, + { + "start": 4364.6, + "end": 4366.78, + "probability": 0.9972 + }, + { + "start": 4367.26, + "end": 4370.62, + "probability": 0.9642 + }, + { + "start": 4371.26, + "end": 4374.12, + "probability": 0.9937 + }, + { + "start": 4374.94, + "end": 4378.16, + "probability": 0.9567 + }, + { + "start": 4378.72, + "end": 4383.06, + "probability": 0.9991 + }, + { + "start": 4383.06, + "end": 4387.56, + "probability": 0.9982 + }, + { + "start": 4388.08, + "end": 4388.7, + "probability": 0.6355 + }, + { + "start": 4397.44, + "end": 4402.36, + "probability": 0.6957 + }, + { + "start": 4403.22, + "end": 4405.6, + "probability": 0.5646 + }, + { + "start": 4406.8, + "end": 4409.92, + "probability": 0.6851 + }, + { + "start": 4416.94, + "end": 4420.12, + "probability": 0.0581 + }, + { + "start": 4420.44, + "end": 4420.44, + "probability": 0.0098 + }, + { + "start": 4427.98, + "end": 4429.06, + "probability": 0.3037 + }, + { + "start": 4429.56, + "end": 4431.34, + "probability": 0.5541 + }, + { + "start": 4431.64, + "end": 4433.28, + "probability": 0.7925 + }, + { + "start": 4433.68, + "end": 4436.84, + "probability": 0.9966 + }, + { + "start": 4436.84, + "end": 4442.09, + "probability": 0.9878 + }, + { + "start": 4442.1, + "end": 4446.74, + "probability": 0.9634 + }, + { + "start": 4446.74, + "end": 4451.6, + "probability": 0.9958 + }, + { + "start": 4452.24, + "end": 4455.96, + "probability": 0.9909 + }, + { + "start": 4456.38, + "end": 4458.58, + "probability": 0.9952 + }, + { + "start": 4459.14, + "end": 4461.94, + "probability": 0.8497 + }, + { + "start": 4461.94, + "end": 4464.86, + "probability": 0.9968 + }, + { + "start": 4465.46, + "end": 4468.24, + "probability": 0.9355 + }, + { + "start": 4468.24, + "end": 4471.18, + "probability": 0.9991 + }, + { + "start": 4471.72, + "end": 4474.38, + "probability": 0.9961 + }, + { + "start": 4474.82, + "end": 4479.48, + "probability": 0.9857 + }, + { + "start": 4479.48, + "end": 4483.58, + "probability": 0.9941 + }, + { + "start": 4484.48, + "end": 4484.94, + "probability": 0.4173 + }, + { + "start": 4485.1, + "end": 4489.2, + "probability": 0.9899 + }, + { + "start": 4489.38, + "end": 4492.4, + "probability": 0.976 + }, + { + "start": 4492.4, + "end": 4495.04, + "probability": 0.9722 + }, + { + "start": 4496.42, + "end": 4496.78, + "probability": 0.9073 + }, + { + "start": 4496.88, + "end": 4499.18, + "probability": 0.9572 + }, + { + "start": 4499.18, + "end": 4501.8, + "probability": 0.9824 + }, + { + "start": 4502.34, + "end": 4506.56, + "probability": 0.9701 + }, + { + "start": 4506.96, + "end": 4508.52, + "probability": 0.9891 + }, + { + "start": 4508.64, + "end": 4511.34, + "probability": 0.9655 + }, + { + "start": 4511.4, + "end": 4512.66, + "probability": 0.6558 + }, + { + "start": 4513.38, + "end": 4516.8, + "probability": 0.8439 + }, + { + "start": 4516.8, + "end": 4520.72, + "probability": 0.9966 + }, + { + "start": 4521.36, + "end": 4525.04, + "probability": 0.8559 + }, + { + "start": 4525.68, + "end": 4526.52, + "probability": 0.9065 + }, + { + "start": 4526.66, + "end": 4530.38, + "probability": 0.999 + }, + { + "start": 4530.38, + "end": 4535.2, + "probability": 0.9608 + }, + { + "start": 4535.6, + "end": 4537.44, + "probability": 0.9003 + }, + { + "start": 4537.94, + "end": 4540.88, + "probability": 0.7163 + }, + { + "start": 4541.5, + "end": 4541.88, + "probability": 0.7509 + }, + { + "start": 4542.08, + "end": 4544.86, + "probability": 0.995 + }, + { + "start": 4544.86, + "end": 4548.9, + "probability": 0.998 + }, + { + "start": 4549.3, + "end": 4552.12, + "probability": 0.9758 + }, + { + "start": 4552.56, + "end": 4553.02, + "probability": 0.8777 + }, + { + "start": 4553.1, + "end": 4554.2, + "probability": 0.8803 + }, + { + "start": 4554.56, + "end": 4558.66, + "probability": 0.9973 + }, + { + "start": 4558.66, + "end": 4563.04, + "probability": 0.9947 + }, + { + "start": 4563.68, + "end": 4567.46, + "probability": 0.8583 + }, + { + "start": 4567.62, + "end": 4569.62, + "probability": 0.6993 + }, + { + "start": 4570.24, + "end": 4570.68, + "probability": 0.8002 + }, + { + "start": 4575.06, + "end": 4576.22, + "probability": 0.8702 + }, + { + "start": 4578.79, + "end": 4582.16, + "probability": 0.7884 + }, + { + "start": 4584.24, + "end": 4584.38, + "probability": 0.2993 + }, + { + "start": 4584.54, + "end": 4585.56, + "probability": 0.5005 + }, + { + "start": 4588.7, + "end": 4590.14, + "probability": 0.6883 + }, + { + "start": 4603.14, + "end": 4605.1, + "probability": 0.5671 + }, + { + "start": 4605.2, + "end": 4605.94, + "probability": 0.6802 + }, + { + "start": 4606.42, + "end": 4607.18, + "probability": 0.6337 + }, + { + "start": 4607.34, + "end": 4607.78, + "probability": 0.5772 + }, + { + "start": 4612.04, + "end": 4618.18, + "probability": 0.0643 + }, + { + "start": 4618.18, + "end": 4618.28, + "probability": 0.0113 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.0, + "end": 4713.0, + "probability": 0.0 + }, + { + "start": 4713.28, + "end": 4714.42, + "probability": 0.6343 + }, + { + "start": 4717.84, + "end": 4723.9, + "probability": 0.9919 + }, + { + "start": 4724.98, + "end": 4729.2, + "probability": 0.9988 + }, + { + "start": 4729.2, + "end": 4732.38, + "probability": 0.9927 + }, + { + "start": 4733.74, + "end": 4735.92, + "probability": 0.9868 + }, + { + "start": 4736.66, + "end": 4738.44, + "probability": 0.9909 + }, + { + "start": 4739.72, + "end": 4742.92, + "probability": 0.9894 + }, + { + "start": 4743.72, + "end": 4746.36, + "probability": 0.9594 + }, + { + "start": 4747.16, + "end": 4751.92, + "probability": 0.9883 + }, + { + "start": 4754.02, + "end": 4758.03, + "probability": 0.9969 + }, + { + "start": 4759.02, + "end": 4760.66, + "probability": 0.8882 + }, + { + "start": 4761.28, + "end": 4762.46, + "probability": 0.966 + }, + { + "start": 4763.34, + "end": 4764.16, + "probability": 0.762 + }, + { + "start": 4764.7, + "end": 4766.38, + "probability": 0.9938 + }, + { + "start": 4766.94, + "end": 4770.2, + "probability": 0.9523 + }, + { + "start": 4771.12, + "end": 4774.74, + "probability": 0.991 + }, + { + "start": 4776.24, + "end": 4777.34, + "probability": 0.4637 + }, + { + "start": 4777.38, + "end": 4778.34, + "probability": 0.8159 + }, + { + "start": 4778.62, + "end": 4779.28, + "probability": 0.8118 + }, + { + "start": 4779.38, + "end": 4782.92, + "probability": 0.7531 + }, + { + "start": 4783.52, + "end": 4784.08, + "probability": 0.9135 + }, + { + "start": 4784.76, + "end": 4792.38, + "probability": 0.962 + }, + { + "start": 4792.5, + "end": 4793.06, + "probability": 0.8765 + }, + { + "start": 4793.26, + "end": 4795.72, + "probability": 0.9918 + }, + { + "start": 4796.38, + "end": 4800.32, + "probability": 0.98 + }, + { + "start": 4801.5, + "end": 4807.08, + "probability": 0.9071 + }, + { + "start": 4807.82, + "end": 4809.34, + "probability": 0.8408 + }, + { + "start": 4809.54, + "end": 4810.14, + "probability": 0.5313 + }, + { + "start": 4810.46, + "end": 4815.74, + "probability": 0.9455 + }, + { + "start": 4816.54, + "end": 4817.32, + "probability": 0.8297 + }, + { + "start": 4817.58, + "end": 4818.02, + "probability": 0.5692 + }, + { + "start": 4818.06, + "end": 4818.86, + "probability": 0.7561 + }, + { + "start": 4819.04, + "end": 4820.26, + "probability": 0.9893 + }, + { + "start": 4820.7, + "end": 4821.08, + "probability": 0.6541 + }, + { + "start": 4832.14, + "end": 4833.44, + "probability": 0.7396 + }, + { + "start": 4833.8, + "end": 4834.56, + "probability": 0.4047 + }, + { + "start": 4834.6, + "end": 4835.46, + "probability": 0.6959 + }, + { + "start": 4836.44, + "end": 4840.0, + "probability": 0.9976 + }, + { + "start": 4840.62, + "end": 4841.86, + "probability": 0.9803 + }, + { + "start": 4842.36, + "end": 4844.22, + "probability": 0.9857 + }, + { + "start": 4845.44, + "end": 4846.42, + "probability": 0.9686 + }, + { + "start": 4847.28, + "end": 4848.88, + "probability": 0.9965 + }, + { + "start": 4849.12, + "end": 4851.86, + "probability": 0.9973 + }, + { + "start": 4852.58, + "end": 4856.46, + "probability": 0.9907 + }, + { + "start": 4857.3, + "end": 4860.42, + "probability": 0.9985 + }, + { + "start": 4861.0, + "end": 4863.92, + "probability": 0.9965 + }, + { + "start": 4864.58, + "end": 4869.48, + "probability": 0.9246 + }, + { + "start": 4870.7, + "end": 4871.72, + "probability": 0.9548 + }, + { + "start": 4872.24, + "end": 4874.34, + "probability": 0.9844 + }, + { + "start": 4875.14, + "end": 4875.64, + "probability": 0.7581 + }, + { + "start": 4876.56, + "end": 4878.78, + "probability": 0.997 + }, + { + "start": 4878.98, + "end": 4879.52, + "probability": 0.5153 + }, + { + "start": 4879.64, + "end": 4880.38, + "probability": 0.49 + }, + { + "start": 4881.0, + "end": 4881.58, + "probability": 0.8901 + }, + { + "start": 4882.18, + "end": 4885.26, + "probability": 0.9463 + }, + { + "start": 4886.1, + "end": 4890.08, + "probability": 0.9255 + }, + { + "start": 4890.56, + "end": 4894.42, + "probability": 0.9944 + }, + { + "start": 4895.62, + "end": 4897.36, + "probability": 0.9976 + }, + { + "start": 4897.96, + "end": 4898.74, + "probability": 0.7847 + }, + { + "start": 4899.26, + "end": 4903.62, + "probability": 0.9966 + }, + { + "start": 4904.44, + "end": 4908.74, + "probability": 0.997 + }, + { + "start": 4908.84, + "end": 4909.42, + "probability": 0.9187 + }, + { + "start": 4910.06, + "end": 4913.5, + "probability": 0.9981 + }, + { + "start": 4913.64, + "end": 4914.58, + "probability": 0.8484 + }, + { + "start": 4914.58, + "end": 4915.76, + "probability": 0.6986 + }, + { + "start": 4916.4, + "end": 4918.8, + "probability": 0.9954 + }, + { + "start": 4919.42, + "end": 4922.72, + "probability": 0.7919 + }, + { + "start": 4923.36, + "end": 4924.1, + "probability": 0.9598 + }, + { + "start": 4924.16, + "end": 4924.57, + "probability": 0.9344 + }, + { + "start": 4925.4, + "end": 4926.06, + "probability": 0.6571 + }, + { + "start": 4926.1, + "end": 4927.34, + "probability": 0.516 + }, + { + "start": 4927.44, + "end": 4929.62, + "probability": 0.959 + }, + { + "start": 4930.56, + "end": 4933.3, + "probability": 0.9806 + }, + { + "start": 4933.76, + "end": 4935.94, + "probability": 0.9775 + }, + { + "start": 4938.02, + "end": 4938.86, + "probability": 0.9669 + }, + { + "start": 4939.92, + "end": 4941.57, + "probability": 0.6906 + }, + { + "start": 4941.64, + "end": 4945.26, + "probability": 0.9909 + }, + { + "start": 4945.74, + "end": 4948.5, + "probability": 0.9834 + }, + { + "start": 4948.94, + "end": 4952.24, + "probability": 0.9879 + }, + { + "start": 4952.82, + "end": 4953.14, + "probability": 0.8593 + }, + { + "start": 4953.22, + "end": 4954.9, + "probability": 0.8642 + }, + { + "start": 4954.92, + "end": 4956.08, + "probability": 0.9052 + }, + { + "start": 4956.78, + "end": 4958.74, + "probability": 0.9922 + }, + { + "start": 4958.74, + "end": 4961.84, + "probability": 0.9814 + }, + { + "start": 4962.96, + "end": 4963.7, + "probability": 0.7449 + }, + { + "start": 4967.37, + "end": 4969.58, + "probability": 0.9029 + }, + { + "start": 4970.36, + "end": 4970.82, + "probability": 0.839 + }, + { + "start": 4971.38, + "end": 4972.4, + "probability": 0.8782 + }, + { + "start": 4973.16, + "end": 4975.46, + "probability": 0.3061 + }, + { + "start": 4975.9, + "end": 4976.0, + "probability": 0.5481 + }, + { + "start": 4976.0, + "end": 4977.67, + "probability": 0.7506 + }, + { + "start": 4979.44, + "end": 4981.5, + "probability": 0.9108 + }, + { + "start": 4982.04, + "end": 4983.06, + "probability": 0.5767 + }, + { + "start": 4983.84, + "end": 4985.56, + "probability": 0.9396 + }, + { + "start": 4986.22, + "end": 4987.32, + "probability": 0.5089 + }, + { + "start": 4987.56, + "end": 4990.1, + "probability": 0.8801 + }, + { + "start": 4990.14, + "end": 4990.56, + "probability": 0.6205 + }, + { + "start": 4990.76, + "end": 4995.14, + "probability": 0.8009 + }, + { + "start": 4995.66, + "end": 4996.12, + "probability": 0.6628 + }, + { + "start": 4997.11, + "end": 4999.16, + "probability": 0.7268 + }, + { + "start": 4999.42, + "end": 4999.92, + "probability": 0.4972 + }, + { + "start": 5001.4, + "end": 5005.08, + "probability": 0.6188 + }, + { + "start": 5005.4, + "end": 5007.08, + "probability": 0.1979 + }, + { + "start": 5007.64, + "end": 5008.16, + "probability": 0.0558 + }, + { + "start": 5009.0, + "end": 5009.56, + "probability": 0.5026 + }, + { + "start": 5010.26, + "end": 5011.28, + "probability": 0.2131 + }, + { + "start": 5012.94, + "end": 5014.62, + "probability": 0.404 + }, + { + "start": 5016.0, + "end": 5017.82, + "probability": 0.0364 + }, + { + "start": 5017.82, + "end": 5018.68, + "probability": 0.1243 + }, + { + "start": 5018.68, + "end": 5019.72, + "probability": 0.1889 + }, + { + "start": 5019.72, + "end": 5020.36, + "probability": 0.452 + }, + { + "start": 5020.58, + "end": 5021.12, + "probability": 0.6827 + }, + { + "start": 5021.58, + "end": 5024.02, + "probability": 0.2167 + }, + { + "start": 5024.6, + "end": 5026.24, + "probability": 0.9011 + }, + { + "start": 5026.66, + "end": 5027.94, + "probability": 0.5041 + }, + { + "start": 5028.2, + "end": 5028.46, + "probability": 0.7216 + }, + { + "start": 5030.02, + "end": 5030.94, + "probability": 0.8826 + }, + { + "start": 5031.74, + "end": 5032.92, + "probability": 0.9625 + }, + { + "start": 5033.04, + "end": 5036.02, + "probability": 0.9976 + }, + { + "start": 5036.46, + "end": 5040.04, + "probability": 0.9546 + }, + { + "start": 5040.6, + "end": 5042.7, + "probability": 0.9974 + }, + { + "start": 5043.26, + "end": 5048.16, + "probability": 0.9982 + }, + { + "start": 5050.4, + "end": 5053.54, + "probability": 0.9904 + }, + { + "start": 5053.58, + "end": 5056.88, + "probability": 0.9988 + }, + { + "start": 5057.46, + "end": 5058.54, + "probability": 0.9302 + }, + { + "start": 5058.7, + "end": 5059.72, + "probability": 0.802 + }, + { + "start": 5059.82, + "end": 5060.62, + "probability": 0.7964 + }, + { + "start": 5060.9, + "end": 5063.86, + "probability": 0.8351 + }, + { + "start": 5064.34, + "end": 5068.22, + "probability": 0.9839 + }, + { + "start": 5068.68, + "end": 5070.7, + "probability": 0.9985 + }, + { + "start": 5071.06, + "end": 5073.22, + "probability": 0.9564 + }, + { + "start": 5073.72, + "end": 5074.12, + "probability": 0.7677 + }, + { + "start": 5074.66, + "end": 5074.9, + "probability": 0.6892 + }, + { + "start": 5075.74, + "end": 5081.52, + "probability": 0.9976 + }, + { + "start": 5081.9, + "end": 5085.1, + "probability": 0.8833 + }, + { + "start": 5085.56, + "end": 5086.36, + "probability": 0.979 + }, + { + "start": 5086.92, + "end": 5089.42, + "probability": 0.7114 + }, + { + "start": 5089.96, + "end": 5094.34, + "probability": 0.9819 + }, + { + "start": 5094.42, + "end": 5099.84, + "probability": 0.9962 + }, + { + "start": 5100.2, + "end": 5103.66, + "probability": 0.9932 + }, + { + "start": 5103.74, + "end": 5104.2, + "probability": 0.7237 + }, + { + "start": 5104.98, + "end": 5106.68, + "probability": 0.9709 + }, + { + "start": 5108.74, + "end": 5111.58, + "probability": 0.939 + }, + { + "start": 5112.06, + "end": 5114.3, + "probability": 0.9967 + }, + { + "start": 5115.24, + "end": 5118.04, + "probability": 0.9851 + }, + { + "start": 5118.36, + "end": 5120.3, + "probability": 0.9802 + }, + { + "start": 5120.46, + "end": 5122.78, + "probability": 0.9808 + }, + { + "start": 5123.62, + "end": 5125.34, + "probability": 0.9481 + }, + { + "start": 5125.98, + "end": 5127.16, + "probability": 0.96 + }, + { + "start": 5127.68, + "end": 5129.34, + "probability": 0.9902 + }, + { + "start": 5129.98, + "end": 5131.96, + "probability": 0.9836 + }, + { + "start": 5132.94, + "end": 5134.86, + "probability": 0.9942 + }, + { + "start": 5135.78, + "end": 5136.5, + "probability": 0.9609 + }, + { + "start": 5136.98, + "end": 5141.06, + "probability": 0.9814 + }, + { + "start": 5142.62, + "end": 5147.12, + "probability": 0.9131 + }, + { + "start": 5147.64, + "end": 5148.36, + "probability": 0.801 + }, + { + "start": 5148.7, + "end": 5150.48, + "probability": 0.8913 + }, + { + "start": 5150.94, + "end": 5153.04, + "probability": 0.701 + }, + { + "start": 5153.26, + "end": 5155.14, + "probability": 0.881 + }, + { + "start": 5156.38, + "end": 5159.22, + "probability": 0.997 + }, + { + "start": 5159.22, + "end": 5163.5, + "probability": 0.9989 + }, + { + "start": 5163.5, + "end": 5167.84, + "probability": 0.9908 + }, + { + "start": 5168.7, + "end": 5168.84, + "probability": 0.3501 + }, + { + "start": 5168.98, + "end": 5172.68, + "probability": 0.9948 + }, + { + "start": 5172.68, + "end": 5176.22, + "probability": 0.9706 + }, + { + "start": 5176.96, + "end": 5178.92, + "probability": 0.9937 + }, + { + "start": 5179.04, + "end": 5179.81, + "probability": 0.6543 + }, + { + "start": 5180.6, + "end": 5182.88, + "probability": 0.9988 + }, + { + "start": 5182.88, + "end": 5186.54, + "probability": 0.9019 + }, + { + "start": 5187.68, + "end": 5190.54, + "probability": 0.9951 + }, + { + "start": 5190.54, + "end": 5194.14, + "probability": 0.9966 + }, + { + "start": 5194.74, + "end": 5197.18, + "probability": 0.9958 + }, + { + "start": 5200.1, + "end": 5202.74, + "probability": 0.9932 + }, + { + "start": 5202.74, + "end": 5206.24, + "probability": 0.998 + }, + { + "start": 5206.82, + "end": 5212.66, + "probability": 0.9974 + }, + { + "start": 5213.78, + "end": 5218.28, + "probability": 0.9985 + }, + { + "start": 5218.8, + "end": 5221.0, + "probability": 0.9868 + }, + { + "start": 5221.72, + "end": 5223.68, + "probability": 0.9939 + }, + { + "start": 5223.88, + "end": 5225.4, + "probability": 0.8168 + }, + { + "start": 5225.82, + "end": 5229.68, + "probability": 0.991 + }, + { + "start": 5230.38, + "end": 5231.0, + "probability": 0.5772 + }, + { + "start": 5231.84, + "end": 5236.22, + "probability": 0.9907 + }, + { + "start": 5236.22, + "end": 5241.24, + "probability": 0.9983 + }, + { + "start": 5241.86, + "end": 5244.86, + "probability": 0.9684 + }, + { + "start": 5244.86, + "end": 5248.84, + "probability": 0.9633 + }, + { + "start": 5249.18, + "end": 5250.3, + "probability": 0.8818 + }, + { + "start": 5250.84, + "end": 5252.66, + "probability": 0.9788 + }, + { + "start": 5253.7, + "end": 5255.82, + "probability": 0.7438 + }, + { + "start": 5256.44, + "end": 5257.54, + "probability": 0.5777 + }, + { + "start": 5258.42, + "end": 5261.38, + "probability": 0.9954 + }, + { + "start": 5261.86, + "end": 5264.84, + "probability": 0.9962 + }, + { + "start": 5265.66, + "end": 5268.92, + "probability": 0.9873 + }, + { + "start": 5269.58, + "end": 5272.4, + "probability": 0.7275 + }, + { + "start": 5272.4, + "end": 5275.5, + "probability": 0.9848 + }, + { + "start": 5275.76, + "end": 5276.78, + "probability": 0.7794 + }, + { + "start": 5277.14, + "end": 5280.2, + "probability": 0.9946 + }, + { + "start": 5281.32, + "end": 5283.38, + "probability": 0.9264 + }, + { + "start": 5283.5, + "end": 5287.96, + "probability": 0.9851 + }, + { + "start": 5288.58, + "end": 5291.08, + "probability": 0.864 + }, + { + "start": 5294.66, + "end": 5296.31, + "probability": 0.9707 + }, + { + "start": 5296.9, + "end": 5299.52, + "probability": 0.9697 + }, + { + "start": 5300.14, + "end": 5303.98, + "probability": 0.9335 + }, + { + "start": 5304.7, + "end": 5308.48, + "probability": 0.9956 + }, + { + "start": 5309.04, + "end": 5310.86, + "probability": 0.8688 + }, + { + "start": 5311.34, + "end": 5311.72, + "probability": 0.7314 + }, + { + "start": 5314.2, + "end": 5315.04, + "probability": 0.747 + }, + { + "start": 5317.46, + "end": 5322.28, + "probability": 0.8041 + }, + { + "start": 5341.6, + "end": 5342.48, + "probability": 0.685 + }, + { + "start": 5342.6, + "end": 5343.68, + "probability": 0.8405 + }, + { + "start": 5344.1, + "end": 5346.62, + "probability": 0.9974 + }, + { + "start": 5346.62, + "end": 5349.44, + "probability": 0.8415 + }, + { + "start": 5350.1, + "end": 5351.48, + "probability": 0.4251 + }, + { + "start": 5351.72, + "end": 5354.16, + "probability": 0.9834 + }, + { + "start": 5354.56, + "end": 5357.88, + "probability": 0.998 + }, + { + "start": 5357.88, + "end": 5362.26, + "probability": 0.9576 + }, + { + "start": 5362.84, + "end": 5366.22, + "probability": 0.9816 + }, + { + "start": 5367.04, + "end": 5369.1, + "probability": 0.7955 + }, + { + "start": 5369.76, + "end": 5372.42, + "probability": 0.9871 + }, + { + "start": 5372.42, + "end": 5375.08, + "probability": 0.9937 + }, + { + "start": 5375.54, + "end": 5380.9, + "probability": 0.9895 + }, + { + "start": 5381.78, + "end": 5383.24, + "probability": 0.6905 + }, + { + "start": 5383.38, + "end": 5386.32, + "probability": 0.9863 + }, + { + "start": 5386.82, + "end": 5388.24, + "probability": 0.9534 + }, + { + "start": 5389.08, + "end": 5392.1, + "probability": 0.9807 + }, + { + "start": 5392.1, + "end": 5397.87, + "probability": 0.8766 + }, + { + "start": 5398.74, + "end": 5402.42, + "probability": 0.9967 + }, + { + "start": 5402.78, + "end": 5404.6, + "probability": 0.8323 + }, + { + "start": 5405.14, + "end": 5407.1, + "probability": 0.9893 + }, + { + "start": 5407.2, + "end": 5411.46, + "probability": 0.9704 + }, + { + "start": 5411.54, + "end": 5413.12, + "probability": 0.8914 + }, + { + "start": 5413.5, + "end": 5416.06, + "probability": 0.9511 + }, + { + "start": 5416.86, + "end": 5419.5, + "probability": 0.9712 + }, + { + "start": 5419.5, + "end": 5422.84, + "probability": 0.9945 + }, + { + "start": 5423.34, + "end": 5427.34, + "probability": 0.9951 + }, + { + "start": 5428.64, + "end": 5432.72, + "probability": 0.9962 + }, + { + "start": 5432.86, + "end": 5437.8, + "probability": 0.9927 + }, + { + "start": 5438.4, + "end": 5440.38, + "probability": 0.7734 + }, + { + "start": 5440.42, + "end": 5441.4, + "probability": 0.9746 + }, + { + "start": 5441.8, + "end": 5443.98, + "probability": 0.9792 + }, + { + "start": 5444.44, + "end": 5445.46, + "probability": 0.8615 + }, + { + "start": 5445.82, + "end": 5449.86, + "probability": 0.986 + }, + { + "start": 5450.26, + "end": 5451.74, + "probability": 0.8031 + }, + { + "start": 5453.16, + "end": 5454.88, + "probability": 0.9961 + }, + { + "start": 5455.02, + "end": 5458.88, + "probability": 0.9335 + }, + { + "start": 5458.88, + "end": 5463.74, + "probability": 0.974 + }, + { + "start": 5464.2, + "end": 5465.06, + "probability": 0.878 + }, + { + "start": 5465.16, + "end": 5470.66, + "probability": 0.9879 + }, + { + "start": 5471.16, + "end": 5475.0, + "probability": 0.9976 + }, + { + "start": 5475.0, + "end": 5478.6, + "probability": 0.9952 + }, + { + "start": 5479.22, + "end": 5483.7, + "probability": 0.9875 + }, + { + "start": 5485.6, + "end": 5485.96, + "probability": 0.7297 + }, + { + "start": 5486.4, + "end": 5489.38, + "probability": 0.9924 + }, + { + "start": 5489.46, + "end": 5492.3, + "probability": 0.9628 + }, + { + "start": 5492.3, + "end": 5495.22, + "probability": 0.9993 + }, + { + "start": 5495.64, + "end": 5497.84, + "probability": 0.9824 + }, + { + "start": 5498.48, + "end": 5501.44, + "probability": 0.9932 + }, + { + "start": 5501.56, + "end": 5501.98, + "probability": 0.7765 + }, + { + "start": 5503.5, + "end": 5504.36, + "probability": 0.835 + }, + { + "start": 5506.4, + "end": 5507.26, + "probability": 0.5017 + }, + { + "start": 5507.82, + "end": 5508.68, + "probability": 0.3264 + }, + { + "start": 5511.61, + "end": 5515.36, + "probability": 0.9264 + }, + { + "start": 5515.78, + "end": 5517.76, + "probability": 0.9919 + }, + { + "start": 5519.34, + "end": 5519.76, + "probability": 0.8178 + }, + { + "start": 5543.06, + "end": 5544.74, + "probability": 0.5505 + }, + { + "start": 5545.32, + "end": 5547.32, + "probability": 0.765 + }, + { + "start": 5549.24, + "end": 5552.78, + "probability": 0.9302 + }, + { + "start": 5556.26, + "end": 5560.2, + "probability": 0.6793 + }, + { + "start": 5561.14, + "end": 5563.86, + "probability": 0.9927 + }, + { + "start": 5565.08, + "end": 5570.5, + "probability": 0.9875 + }, + { + "start": 5571.54, + "end": 5572.7, + "probability": 0.9263 + }, + { + "start": 5574.42, + "end": 5575.6, + "probability": 0.9065 + }, + { + "start": 5577.2, + "end": 5580.06, + "probability": 0.8523 + }, + { + "start": 5580.8, + "end": 5583.2, + "probability": 0.7018 + }, + { + "start": 5584.84, + "end": 5589.22, + "probability": 0.8916 + }, + { + "start": 5589.22, + "end": 5592.48, + "probability": 0.584 + }, + { + "start": 5592.92, + "end": 5593.26, + "probability": 0.0369 + }, + { + "start": 5596.62, + "end": 5598.36, + "probability": 0.0628 + }, + { + "start": 5600.15, + "end": 5605.0, + "probability": 0.9836 + }, + { + "start": 5606.14, + "end": 5606.24, + "probability": 0.2071 + }, + { + "start": 5609.12, + "end": 5609.82, + "probability": 0.6454 + }, + { + "start": 5610.62, + "end": 5616.25, + "probability": 0.8942 + }, + { + "start": 5617.88, + "end": 5618.84, + "probability": 0.8995 + }, + { + "start": 5620.98, + "end": 5623.4, + "probability": 0.9759 + }, + { + "start": 5624.9, + "end": 5627.66, + "probability": 0.913 + }, + { + "start": 5629.56, + "end": 5637.32, + "probability": 0.1725 + }, + { + "start": 5638.0, + "end": 5638.32, + "probability": 0.4712 + }, + { + "start": 5638.76, + "end": 5639.44, + "probability": 0.435 + }, + { + "start": 5639.5, + "end": 5641.28, + "probability": 0.9927 + }, + { + "start": 5641.46, + "end": 5641.72, + "probability": 0.7864 + }, + { + "start": 5641.98, + "end": 5642.3, + "probability": 0.8484 + }, + { + "start": 5642.7, + "end": 5644.96, + "probability": 0.855 + }, + { + "start": 5648.58, + "end": 5650.4, + "probability": 0.1793 + }, + { + "start": 5651.84, + "end": 5655.24, + "probability": 0.5815 + }, + { + "start": 5655.3, + "end": 5658.84, + "probability": 0.8499 + }, + { + "start": 5659.9, + "end": 5669.82, + "probability": 0.981 + }, + { + "start": 5671.08, + "end": 5673.44, + "probability": 0.7403 + }, + { + "start": 5674.06, + "end": 5674.3, + "probability": 0.9593 + }, + { + "start": 5674.96, + "end": 5675.92, + "probability": 0.8982 + }, + { + "start": 5676.4, + "end": 5679.02, + "probability": 0.9566 + }, + { + "start": 5679.08, + "end": 5681.66, + "probability": 0.5843 + }, + { + "start": 5683.42, + "end": 5688.96, + "probability": 0.8947 + }, + { + "start": 5689.62, + "end": 5691.94, + "probability": 0.9312 + }, + { + "start": 5692.68, + "end": 5694.4, + "probability": 0.8398 + }, + { + "start": 5695.38, + "end": 5698.38, + "probability": 0.7861 + }, + { + "start": 5699.12, + "end": 5701.56, + "probability": 0.9604 + }, + { + "start": 5701.62, + "end": 5702.7, + "probability": 0.9979 + }, + { + "start": 5704.24, + "end": 5705.2, + "probability": 0.7758 + }, + { + "start": 5705.52, + "end": 5708.1, + "probability": 0.9602 + }, + { + "start": 5709.3, + "end": 5711.8, + "probability": 0.9263 + }, + { + "start": 5712.82, + "end": 5712.92, + "probability": 0.383 + }, + { + "start": 5715.38, + "end": 5716.76, + "probability": 0.0462 + }, + { + "start": 5717.12, + "end": 5721.76, + "probability": 0.57 + }, + { + "start": 5721.86, + "end": 5723.8, + "probability": 0.8718 + }, + { + "start": 5724.0, + "end": 5724.84, + "probability": 0.8734 + }, + { + "start": 5724.84, + "end": 5725.76, + "probability": 0.9315 + }, + { + "start": 5725.86, + "end": 5727.0, + "probability": 0.9517 + }, + { + "start": 5727.04, + "end": 5727.3, + "probability": 0.8129 + }, + { + "start": 5727.8, + "end": 5728.54, + "probability": 0.5441 + }, + { + "start": 5729.12, + "end": 5730.5, + "probability": 0.7449 + }, + { + "start": 5730.76, + "end": 5731.72, + "probability": 0.7603 + }, + { + "start": 5732.14, + "end": 5732.7, + "probability": 0.3457 + }, + { + "start": 5732.7, + "end": 5733.68, + "probability": 0.3179 + }, + { + "start": 5734.08, + "end": 5734.64, + "probability": 0.789 + }, + { + "start": 5734.64, + "end": 5736.68, + "probability": 0.9458 + }, + { + "start": 5737.04, + "end": 5739.4, + "probability": 0.9332 + }, + { + "start": 5740.65, + "end": 5744.08, + "probability": 0.9971 + }, + { + "start": 5744.14, + "end": 5744.46, + "probability": 0.7761 + }, + { + "start": 5745.12, + "end": 5746.82, + "probability": 0.9574 + }, + { + "start": 5746.92, + "end": 5749.1, + "probability": 0.9471 + }, + { + "start": 5749.24, + "end": 5749.74, + "probability": 0.7817 + }, + { + "start": 5750.0, + "end": 5750.76, + "probability": 0.7577 + }, + { + "start": 5751.38, + "end": 5755.86, + "probability": 0.9727 + }, + { + "start": 5757.44, + "end": 5759.18, + "probability": 0.8965 + }, + { + "start": 5760.0, + "end": 5765.48, + "probability": 0.8329 + }, + { + "start": 5767.1, + "end": 5767.6, + "probability": 0.013 + }, + { + "start": 5770.58, + "end": 5779.08, + "probability": 0.9921 + }, + { + "start": 5779.2, + "end": 5782.08, + "probability": 0.9931 + }, + { + "start": 5782.6, + "end": 5787.86, + "probability": 0.8919 + }, + { + "start": 5788.74, + "end": 5792.68, + "probability": 0.5586 + }, + { + "start": 5792.9, + "end": 5794.12, + "probability": 0.8644 + }, + { + "start": 5794.36, + "end": 5795.06, + "probability": 0.5563 + }, + { + "start": 5795.36, + "end": 5796.26, + "probability": 0.7251 + }, + { + "start": 5796.44, + "end": 5797.62, + "probability": 0.4002 + }, + { + "start": 5800.54, + "end": 5803.14, + "probability": 0.0371 + }, + { + "start": 5824.62, + "end": 5828.56, + "probability": 0.0647 + }, + { + "start": 5828.56, + "end": 5830.0, + "probability": 0.1954 + }, + { + "start": 5830.0, + "end": 5830.12, + "probability": 0.0534 + }, + { + "start": 5830.12, + "end": 5832.9, + "probability": 0.5539 + }, + { + "start": 5833.6, + "end": 5833.8, + "probability": 0.6145 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.0, + "end": 5920.0, + "probability": 0.0 + }, + { + "start": 5920.22, + "end": 5920.22, + "probability": 0.1215 + }, + { + "start": 5920.22, + "end": 5922.58, + "probability": 0.7077 + }, + { + "start": 5923.58, + "end": 5923.82, + "probability": 0.2884 + }, + { + "start": 5924.52, + "end": 5925.6, + "probability": 0.9536 + }, + { + "start": 5926.08, + "end": 5931.96, + "probability": 0.9967 + }, + { + "start": 5931.96, + "end": 5939.82, + "probability": 0.8621 + }, + { + "start": 5940.0, + "end": 5944.1, + "probability": 0.9529 + }, + { + "start": 5945.02, + "end": 5951.58, + "probability": 0.9879 + }, + { + "start": 5951.58, + "end": 5958.48, + "probability": 0.9916 + }, + { + "start": 5958.62, + "end": 5960.44, + "probability": 0.8834 + }, + { + "start": 5960.98, + "end": 5968.06, + "probability": 0.9913 + }, + { + "start": 5968.74, + "end": 5976.38, + "probability": 0.9866 + }, + { + "start": 5977.56, + "end": 5981.96, + "probability": 0.9187 + }, + { + "start": 5982.4, + "end": 5982.68, + "probability": 0.7477 + }, + { + "start": 5982.78, + "end": 5983.9, + "probability": 0.9893 + }, + { + "start": 5983.92, + "end": 5984.48, + "probability": 0.9257 + }, + { + "start": 5984.9, + "end": 5985.84, + "probability": 0.93 + }, + { + "start": 5985.96, + "end": 5986.16, + "probability": 0.868 + }, + { + "start": 5986.26, + "end": 5987.02, + "probability": 0.9805 + }, + { + "start": 5987.04, + "end": 5987.66, + "probability": 0.9472 + }, + { + "start": 5987.72, + "end": 5988.98, + "probability": 0.9564 + }, + { + "start": 5989.48, + "end": 5989.84, + "probability": 0.9364 + }, + { + "start": 5989.84, + "end": 5990.7, + "probability": 0.9604 + }, + { + "start": 5990.82, + "end": 5993.4, + "probability": 0.9403 + }, + { + "start": 5993.8, + "end": 5995.85, + "probability": 0.8153 + }, + { + "start": 5996.52, + "end": 6001.06, + "probability": 0.9968 + }, + { + "start": 6001.06, + "end": 6006.94, + "probability": 0.9973 + }, + { + "start": 6008.22, + "end": 6013.54, + "probability": 0.9614 + }, + { + "start": 6014.26, + "end": 6019.74, + "probability": 0.9922 + }, + { + "start": 6020.38, + "end": 6023.46, + "probability": 0.9943 + }, + { + "start": 6024.0, + "end": 6028.36, + "probability": 0.9954 + }, + { + "start": 6029.28, + "end": 6030.58, + "probability": 0.9677 + }, + { + "start": 6030.92, + "end": 6034.38, + "probability": 0.9929 + }, + { + "start": 6034.38, + "end": 6038.5, + "probability": 0.9965 + }, + { + "start": 6039.76, + "end": 6044.56, + "probability": 0.5529 + }, + { + "start": 6045.26, + "end": 6045.9, + "probability": 0.6612 + }, + { + "start": 6046.5, + "end": 6049.54, + "probability": 0.8864 + }, + { + "start": 6050.44, + "end": 6054.38, + "probability": 0.9914 + }, + { + "start": 6054.5, + "end": 6058.62, + "probability": 0.9933 + }, + { + "start": 6059.16, + "end": 6063.28, + "probability": 0.9979 + }, + { + "start": 6063.36, + "end": 6063.74, + "probability": 0.8583 + }, + { + "start": 6063.88, + "end": 6066.78, + "probability": 0.965 + }, + { + "start": 6067.5, + "end": 6068.5, + "probability": 0.6432 + }, + { + "start": 6068.76, + "end": 6073.96, + "probability": 0.9827 + }, + { + "start": 6074.4, + "end": 6076.74, + "probability": 0.9569 + }, + { + "start": 6077.98, + "end": 6081.52, + "probability": 0.9969 + }, + { + "start": 6081.56, + "end": 6082.62, + "probability": 0.9079 + }, + { + "start": 6083.02, + "end": 6085.86, + "probability": 0.9944 + }, + { + "start": 6086.64, + "end": 6088.38, + "probability": 0.5827 + }, + { + "start": 6088.92, + "end": 6091.92, + "probability": 0.9026 + }, + { + "start": 6092.6, + "end": 6100.24, + "probability": 0.964 + }, + { + "start": 6101.02, + "end": 6106.06, + "probability": 0.999 + }, + { + "start": 6106.06, + "end": 6111.54, + "probability": 0.9967 + }, + { + "start": 6112.52, + "end": 6113.98, + "probability": 0.7834 + }, + { + "start": 6114.76, + "end": 6121.46, + "probability": 0.9872 + }, + { + "start": 6122.54, + "end": 6126.8, + "probability": 0.8534 + }, + { + "start": 6127.64, + "end": 6130.26, + "probability": 0.9906 + }, + { + "start": 6131.6, + "end": 6135.68, + "probability": 0.949 + }, + { + "start": 6135.68, + "end": 6139.86, + "probability": 0.9966 + }, + { + "start": 6141.1, + "end": 6148.44, + "probability": 0.9977 + }, + { + "start": 6149.48, + "end": 6155.74, + "probability": 0.9983 + }, + { + "start": 6156.54, + "end": 6160.54, + "probability": 0.9948 + }, + { + "start": 6161.64, + "end": 6167.94, + "probability": 0.9995 + }, + { + "start": 6168.4, + "end": 6172.42, + "probability": 0.9876 + }, + { + "start": 6173.3, + "end": 6176.94, + "probability": 0.9067 + }, + { + "start": 6177.24, + "end": 6180.3, + "probability": 0.9963 + }, + { + "start": 6181.2, + "end": 6184.76, + "probability": 0.9948 + }, + { + "start": 6184.8, + "end": 6185.42, + "probability": 0.7577 + }, + { + "start": 6185.92, + "end": 6189.28, + "probability": 0.9965 + }, + { + "start": 6189.28, + "end": 6194.6, + "probability": 0.9798 + }, + { + "start": 6195.54, + "end": 6200.4, + "probability": 0.9944 + }, + { + "start": 6200.4, + "end": 6204.5, + "probability": 0.9801 + }, + { + "start": 6204.74, + "end": 6206.02, + "probability": 0.9925 + }, + { + "start": 6206.46, + "end": 6210.72, + "probability": 0.9692 + }, + { + "start": 6210.72, + "end": 6215.58, + "probability": 0.9629 + }, + { + "start": 6216.58, + "end": 6219.66, + "probability": 0.9001 + }, + { + "start": 6220.28, + "end": 6225.04, + "probability": 0.998 + }, + { + "start": 6225.04, + "end": 6231.6, + "probability": 0.9915 + }, + { + "start": 6232.3, + "end": 6236.36, + "probability": 0.9963 + }, + { + "start": 6236.36, + "end": 6240.44, + "probability": 0.9991 + }, + { + "start": 6241.12, + "end": 6242.66, + "probability": 0.8323 + }, + { + "start": 6242.74, + "end": 6245.8, + "probability": 0.9962 + }, + { + "start": 6246.24, + "end": 6250.26, + "probability": 0.9965 + }, + { + "start": 6250.76, + "end": 6255.36, + "probability": 0.9817 + }, + { + "start": 6255.36, + "end": 6259.2, + "probability": 0.9996 + }, + { + "start": 6260.0, + "end": 6262.16, + "probability": 0.7147 + }, + { + "start": 6262.74, + "end": 6266.34, + "probability": 0.9976 + }, + { + "start": 6266.84, + "end": 6269.44, + "probability": 0.986 + }, + { + "start": 6270.08, + "end": 6273.78, + "probability": 0.9721 + }, + { + "start": 6274.78, + "end": 6276.3, + "probability": 0.7509 + }, + { + "start": 6276.54, + "end": 6279.9, + "probability": 0.9444 + }, + { + "start": 6279.9, + "end": 6283.34, + "probability": 0.9926 + }, + { + "start": 6283.6, + "end": 6289.3, + "probability": 0.9576 + }, + { + "start": 6290.16, + "end": 6292.04, + "probability": 0.9922 + }, + { + "start": 6292.16, + "end": 6295.34, + "probability": 0.9918 + }, + { + "start": 6296.24, + "end": 6299.38, + "probability": 0.973 + }, + { + "start": 6300.36, + "end": 6305.54, + "probability": 0.9619 + }, + { + "start": 6306.06, + "end": 6309.18, + "probability": 0.8143 + }, + { + "start": 6309.6, + "end": 6312.48, + "probability": 0.998 + }, + { + "start": 6313.28, + "end": 6315.1, + "probability": 0.9575 + }, + { + "start": 6315.66, + "end": 6319.16, + "probability": 0.9901 + }, + { + "start": 6320.1, + "end": 6326.56, + "probability": 0.9956 + }, + { + "start": 6327.22, + "end": 6330.92, + "probability": 0.8496 + }, + { + "start": 6331.58, + "end": 6337.66, + "probability": 0.9973 + }, + { + "start": 6338.46, + "end": 6340.22, + "probability": 0.8706 + }, + { + "start": 6340.28, + "end": 6341.62, + "probability": 0.9493 + }, + { + "start": 6341.98, + "end": 6347.08, + "probability": 0.9977 + }, + { + "start": 6347.08, + "end": 6352.28, + "probability": 0.9985 + }, + { + "start": 6352.58, + "end": 6353.12, + "probability": 0.7451 + }, + { + "start": 6356.86, + "end": 6357.76, + "probability": 0.5162 + }, + { + "start": 6361.06, + "end": 6364.94, + "probability": 0.9167 + }, + { + "start": 6365.66, + "end": 6367.13, + "probability": 0.4154 + }, + { + "start": 6372.4, + "end": 6374.1, + "probability": 0.6885 + }, + { + "start": 6374.56, + "end": 6378.29, + "probability": 0.1781 + }, + { + "start": 6378.46, + "end": 6380.72, + "probability": 0.0956 + }, + { + "start": 6381.64, + "end": 6385.98, + "probability": 0.2678 + }, + { + "start": 6387.78, + "end": 6389.18, + "probability": 0.4484 + }, + { + "start": 6390.02, + "end": 6391.14, + "probability": 0.3558 + }, + { + "start": 6392.32, + "end": 6392.64, + "probability": 0.2456 + }, + { + "start": 6394.18, + "end": 6394.94, + "probability": 0.2607 + }, + { + "start": 6394.98, + "end": 6398.0, + "probability": 0.7091 + }, + { + "start": 6398.92, + "end": 6400.62, + "probability": 0.8569 + }, + { + "start": 6400.8, + "end": 6403.36, + "probability": 0.9773 + }, + { + "start": 6403.9, + "end": 6405.66, + "probability": 0.9932 + }, + { + "start": 6405.7, + "end": 6408.76, + "probability": 0.9727 + }, + { + "start": 6409.58, + "end": 6412.18, + "probability": 0.9216 + }, + { + "start": 6413.0, + "end": 6415.2, + "probability": 0.9966 + }, + { + "start": 6415.38, + "end": 6417.92, + "probability": 0.9989 + }, + { + "start": 6419.1, + "end": 6420.28, + "probability": 0.3685 + }, + { + "start": 6420.8, + "end": 6424.68, + "probability": 0.9972 + }, + { + "start": 6424.68, + "end": 6429.72, + "probability": 0.9946 + }, + { + "start": 6430.36, + "end": 6431.62, + "probability": 0.9614 + }, + { + "start": 6431.76, + "end": 6433.86, + "probability": 0.9982 + }, + { + "start": 6433.86, + "end": 6436.08, + "probability": 0.9843 + }, + { + "start": 6436.62, + "end": 6439.66, + "probability": 0.9867 + }, + { + "start": 6440.44, + "end": 6444.22, + "probability": 0.9954 + }, + { + "start": 6444.98, + "end": 6447.34, + "probability": 0.9984 + }, + { + "start": 6447.34, + "end": 6449.96, + "probability": 0.8656 + }, + { + "start": 6450.36, + "end": 6454.26, + "probability": 0.9982 + }, + { + "start": 6454.98, + "end": 6460.32, + "probability": 0.9766 + }, + { + "start": 6460.96, + "end": 6462.06, + "probability": 0.6669 + }, + { + "start": 6462.68, + "end": 6466.94, + "probability": 0.936 + }, + { + "start": 6467.02, + "end": 6469.72, + "probability": 0.9893 + }, + { + "start": 6469.82, + "end": 6473.88, + "probability": 0.9844 + }, + { + "start": 6474.46, + "end": 6477.32, + "probability": 0.9619 + }, + { + "start": 6477.78, + "end": 6480.52, + "probability": 0.9067 + }, + { + "start": 6480.56, + "end": 6482.56, + "probability": 0.981 + }, + { + "start": 6483.16, + "end": 6483.6, + "probability": 0.9011 + }, + { + "start": 6486.66, + "end": 6487.56, + "probability": 0.6755 + }, + { + "start": 6487.88, + "end": 6490.24, + "probability": 0.9488 + }, + { + "start": 6491.22, + "end": 6491.54, + "probability": 0.7753 + }, + { + "start": 6523.98, + "end": 6524.7, + "probability": 0.6313 + }, + { + "start": 6524.8, + "end": 6527.18, + "probability": 0.8133 + }, + { + "start": 6528.92, + "end": 6529.78, + "probability": 0.9449 + }, + { + "start": 6533.1, + "end": 6536.64, + "probability": 0.9916 + }, + { + "start": 6538.96, + "end": 6546.58, + "probability": 0.9749 + }, + { + "start": 6547.12, + "end": 6549.84, + "probability": 0.7534 + }, + { + "start": 6552.7, + "end": 6558.26, + "probability": 0.9649 + }, + { + "start": 6559.48, + "end": 6560.66, + "probability": 0.8142 + }, + { + "start": 6561.58, + "end": 6571.68, + "probability": 0.9791 + }, + { + "start": 6572.08, + "end": 6572.76, + "probability": 0.8726 + }, + { + "start": 6572.9, + "end": 6574.4, + "probability": 0.7945 + }, + { + "start": 6576.68, + "end": 6585.78, + "probability": 0.9414 + }, + { + "start": 6586.4, + "end": 6588.28, + "probability": 0.7388 + }, + { + "start": 6591.12, + "end": 6593.72, + "probability": 0.7525 + }, + { + "start": 6594.36, + "end": 6595.41, + "probability": 0.7358 + }, + { + "start": 6596.26, + "end": 6597.78, + "probability": 0.9729 + }, + { + "start": 6598.4, + "end": 6602.64, + "probability": 0.9857 + }, + { + "start": 6603.16, + "end": 6607.92, + "probability": 0.901 + }, + { + "start": 6608.76, + "end": 6612.72, + "probability": 0.996 + }, + { + "start": 6613.94, + "end": 6617.38, + "probability": 0.9888 + }, + { + "start": 6619.16, + "end": 6621.72, + "probability": 0.9961 + }, + { + "start": 6622.58, + "end": 6624.34, + "probability": 0.9281 + }, + { + "start": 6624.86, + "end": 6628.66, + "probability": 0.9554 + }, + { + "start": 6629.3, + "end": 6630.64, + "probability": 0.7913 + }, + { + "start": 6633.22, + "end": 6636.22, + "probability": 0.952 + }, + { + "start": 6637.48, + "end": 6640.92, + "probability": 0.9937 + }, + { + "start": 6641.42, + "end": 6648.58, + "probability": 0.9667 + }, + { + "start": 6649.02, + "end": 6651.14, + "probability": 0.9725 + }, + { + "start": 6652.8, + "end": 6653.3, + "probability": 0.2879 + }, + { + "start": 6653.42, + "end": 6657.58, + "probability": 0.972 + }, + { + "start": 6659.26, + "end": 6660.86, + "probability": 0.7393 + }, + { + "start": 6662.12, + "end": 6664.52, + "probability": 0.9972 + }, + { + "start": 6664.66, + "end": 6664.96, + "probability": 0.1392 + }, + { + "start": 6664.96, + "end": 6668.44, + "probability": 0.9893 + }, + { + "start": 6669.68, + "end": 6672.08, + "probability": 0.998 + }, + { + "start": 6672.96, + "end": 6677.06, + "probability": 0.8705 + }, + { + "start": 6677.58, + "end": 6679.72, + "probability": 0.9573 + }, + { + "start": 6680.28, + "end": 6682.46, + "probability": 0.9827 + }, + { + "start": 6683.34, + "end": 6685.58, + "probability": 0.9506 + }, + { + "start": 6686.12, + "end": 6687.74, + "probability": 0.9846 + }, + { + "start": 6689.78, + "end": 6690.58, + "probability": 0.7964 + }, + { + "start": 6691.42, + "end": 6696.08, + "probability": 0.9912 + }, + { + "start": 6696.26, + "end": 6696.98, + "probability": 0.9746 + }, + { + "start": 6698.88, + "end": 6705.48, + "probability": 0.9982 + }, + { + "start": 6706.08, + "end": 6708.64, + "probability": 0.9758 + }, + { + "start": 6709.16, + "end": 6711.56, + "probability": 0.5819 + }, + { + "start": 6712.08, + "end": 6714.18, + "probability": 0.6376 + }, + { + "start": 6714.18, + "end": 6718.14, + "probability": 0.9552 + }, + { + "start": 6718.7, + "end": 6723.02, + "probability": 0.9927 + }, + { + "start": 6723.68, + "end": 6725.3, + "probability": 0.9209 + }, + { + "start": 6725.34, + "end": 6726.06, + "probability": 0.7664 + }, + { + "start": 6727.6, + "end": 6732.66, + "probability": 0.7645 + }, + { + "start": 6733.08, + "end": 6734.1, + "probability": 0.8573 + }, + { + "start": 6735.26, + "end": 6736.3, + "probability": 0.9393 + }, + { + "start": 6736.44, + "end": 6739.4, + "probability": 0.9414 + }, + { + "start": 6739.54, + "end": 6740.3, + "probability": 0.9021 + }, + { + "start": 6740.9, + "end": 6744.72, + "probability": 0.7388 + }, + { + "start": 6745.26, + "end": 6749.3, + "probability": 0.9754 + }, + { + "start": 6749.56, + "end": 6752.5, + "probability": 0.9607 + }, + { + "start": 6753.02, + "end": 6754.13, + "probability": 0.7357 + }, + { + "start": 6754.92, + "end": 6755.06, + "probability": 0.0166 + }, + { + "start": 6755.06, + "end": 6757.12, + "probability": 0.2639 + }, + { + "start": 6757.92, + "end": 6758.74, + "probability": 0.0189 + }, + { + "start": 6758.88, + "end": 6762.84, + "probability": 0.882 + }, + { + "start": 6765.1, + "end": 6765.12, + "probability": 0.5798 + }, + { + "start": 6765.12, + "end": 6767.32, + "probability": 0.6321 + }, + { + "start": 6768.48, + "end": 6772.24, + "probability": 0.9311 + }, + { + "start": 6772.88, + "end": 6775.9, + "probability": 0.9985 + }, + { + "start": 6776.62, + "end": 6780.28, + "probability": 0.9993 + }, + { + "start": 6780.7, + "end": 6780.9, + "probability": 0.8782 + }, + { + "start": 6781.5, + "end": 6786.32, + "probability": 0.9764 + }, + { + "start": 6786.5, + "end": 6787.46, + "probability": 0.7545 + }, + { + "start": 6788.14, + "end": 6791.94, + "probability": 0.9977 + }, + { + "start": 6791.94, + "end": 6796.86, + "probability": 0.9827 + }, + { + "start": 6796.98, + "end": 6798.52, + "probability": 0.8142 + }, + { + "start": 6799.46, + "end": 6800.24, + "probability": 0.9813 + }, + { + "start": 6800.88, + "end": 6810.32, + "probability": 0.9807 + }, + { + "start": 6810.92, + "end": 6814.52, + "probability": 0.9796 + }, + { + "start": 6814.86, + "end": 6820.76, + "probability": 0.9984 + }, + { + "start": 6821.48, + "end": 6825.22, + "probability": 0.6165 + }, + { + "start": 6825.4, + "end": 6826.24, + "probability": 0.4516 + }, + { + "start": 6826.4, + "end": 6826.6, + "probability": 0.4904 + }, + { + "start": 6826.6, + "end": 6826.88, + "probability": 0.1127 + }, + { + "start": 6827.26, + "end": 6828.36, + "probability": 0.6014 + }, + { + "start": 6828.36, + "end": 6831.45, + "probability": 0.0152 + }, + { + "start": 6832.76, + "end": 6834.38, + "probability": 0.2186 + }, + { + "start": 6835.84, + "end": 6838.82, + "probability": 0.5259 + }, + { + "start": 6839.42, + "end": 6839.42, + "probability": 0.4157 + }, + { + "start": 6839.44, + "end": 6839.44, + "probability": 0.0061 + }, + { + "start": 6839.44, + "end": 6843.92, + "probability": 0.4799 + }, + { + "start": 6844.24, + "end": 6844.82, + "probability": 0.0843 + }, + { + "start": 6844.82, + "end": 6849.13, + "probability": 0.2197 + }, + { + "start": 6849.66, + "end": 6856.1, + "probability": 0.6215 + }, + { + "start": 6857.48, + "end": 6858.58, + "probability": 0.793 + }, + { + "start": 6859.28, + "end": 6860.36, + "probability": 0.4668 + }, + { + "start": 6860.36, + "end": 6860.7, + "probability": 0.8083 + }, + { + "start": 6860.8, + "end": 6861.7, + "probability": 0.7272 + }, + { + "start": 6862.1, + "end": 6863.4, + "probability": 0.4529 + }, + { + "start": 6863.44, + "end": 6864.01, + "probability": 0.8174 + }, + { + "start": 6865.1, + "end": 6867.4, + "probability": 0.6782 + }, + { + "start": 6867.5, + "end": 6874.6, + "probability": 0.9757 + }, + { + "start": 6875.28, + "end": 6882.58, + "probability": 0.8197 + }, + { + "start": 6883.42, + "end": 6886.44, + "probability": 0.8225 + }, + { + "start": 6886.64, + "end": 6888.08, + "probability": 0.6894 + }, + { + "start": 6888.1, + "end": 6888.86, + "probability": 0.7542 + }, + { + "start": 6889.14, + "end": 6895.96, + "probability": 0.9719 + }, + { + "start": 6896.14, + "end": 6898.66, + "probability": 0.8425 + }, + { + "start": 6899.04, + "end": 6901.9, + "probability": 0.9961 + }, + { + "start": 6902.3, + "end": 6904.24, + "probability": 0.8789 + }, + { + "start": 6904.68, + "end": 6908.76, + "probability": 0.9423 + }, + { + "start": 6909.34, + "end": 6912.32, + "probability": 0.9967 + }, + { + "start": 6912.9, + "end": 6913.92, + "probability": 0.8656 + }, + { + "start": 6914.24, + "end": 6917.78, + "probability": 0.9891 + }, + { + "start": 6918.22, + "end": 6926.06, + "probability": 0.9881 + }, + { + "start": 6926.12, + "end": 6927.4, + "probability": 0.7651 + }, + { + "start": 6927.54, + "end": 6928.2, + "probability": 0.8626 + }, + { + "start": 6928.96, + "end": 6930.84, + "probability": 0.9802 + }, + { + "start": 6931.6, + "end": 6936.66, + "probability": 0.9704 + }, + { + "start": 6937.14, + "end": 6943.48, + "probability": 0.9754 + }, + { + "start": 6943.48, + "end": 6950.3, + "probability": 0.999 + }, + { + "start": 6950.3, + "end": 6955.44, + "probability": 0.2922 + }, + { + "start": 6955.44, + "end": 6959.74, + "probability": 0.7749 + }, + { + "start": 6959.84, + "end": 6960.04, + "probability": 0.5545 + }, + { + "start": 6960.04, + "end": 6964.82, + "probability": 0.0992 + }, + { + "start": 6965.22, + "end": 6965.34, + "probability": 0.436 + }, + { + "start": 6965.34, + "end": 6968.64, + "probability": 0.1136 + }, + { + "start": 6971.12, + "end": 6972.16, + "probability": 0.8314 + }, + { + "start": 6972.16, + "end": 6976.06, + "probability": 0.8682 + }, + { + "start": 6976.88, + "end": 6980.9, + "probability": 0.8846 + }, + { + "start": 6981.04, + "end": 6982.66, + "probability": 0.9814 + }, + { + "start": 6984.3, + "end": 6989.68, + "probability": 0.9419 + }, + { + "start": 6989.9, + "end": 6990.44, + "probability": 0.8191 + }, + { + "start": 6992.19, + "end": 6993.56, + "probability": 0.2217 + }, + { + "start": 6996.14, + "end": 6997.86, + "probability": 0.0382 + }, + { + "start": 6999.74, + "end": 7002.1, + "probability": 0.1208 + }, + { + "start": 7006.28, + "end": 7008.72, + "probability": 0.332 + }, + { + "start": 7009.04, + "end": 7011.56, + "probability": 0.1628 + }, + { + "start": 7012.96, + "end": 7016.24, + "probability": 0.3556 + }, + { + "start": 7016.76, + "end": 7019.42, + "probability": 0.7205 + }, + { + "start": 7019.56, + "end": 7020.74, + "probability": 0.0731 + }, + { + "start": 7020.74, + "end": 7022.16, + "probability": 0.7838 + }, + { + "start": 7022.36, + "end": 7026.62, + "probability": 0.3734 + }, + { + "start": 7026.78, + "end": 7028.32, + "probability": 0.2755 + }, + { + "start": 7029.32, + "end": 7031.26, + "probability": 0.7012 + }, + { + "start": 7031.38, + "end": 7032.78, + "probability": 0.3287 + }, + { + "start": 7034.9, + "end": 7036.36, + "probability": 0.6566 + }, + { + "start": 7036.5, + "end": 7040.01, + "probability": 0.6177 + }, + { + "start": 7040.14, + "end": 7040.74, + "probability": 0.6301 + }, + { + "start": 7041.28, + "end": 7044.36, + "probability": 0.5935 + }, + { + "start": 7044.48, + "end": 7048.26, + "probability": 0.753 + }, + { + "start": 7048.32, + "end": 7048.94, + "probability": 0.8541 + }, + { + "start": 7049.86, + "end": 7051.98, + "probability": 0.9448 + }, + { + "start": 7052.2, + "end": 7053.46, + "probability": 0.9778 + }, + { + "start": 7053.98, + "end": 7054.62, + "probability": 0.4339 + }, + { + "start": 7056.38, + "end": 7057.82, + "probability": 0.9599 + }, + { + "start": 7059.96, + "end": 7061.18, + "probability": 0.4834 + }, + { + "start": 7062.22, + "end": 7062.68, + "probability": 0.763 + }, + { + "start": 7063.84, + "end": 7064.6, + "probability": 0.7021 + }, + { + "start": 7066.44, + "end": 7068.12, + "probability": 0.9312 + }, + { + "start": 7069.0, + "end": 7069.66, + "probability": 0.8838 + }, + { + "start": 7070.62, + "end": 7070.92, + "probability": 0.7693 + }, + { + "start": 7072.28, + "end": 7073.44, + "probability": 0.4606 + }, + { + "start": 7075.32, + "end": 7075.88, + "probability": 0.7406 + }, + { + "start": 7087.94, + "end": 7093.48, + "probability": 0.5741 + }, + { + "start": 7095.92, + "end": 7097.52, + "probability": 0.9951 + }, + { + "start": 7098.26, + "end": 7099.34, + "probability": 0.9638 + }, + { + "start": 7100.96, + "end": 7101.44, + "probability": 0.9888 + }, + { + "start": 7102.26, + "end": 7103.2, + "probability": 0.9754 + }, + { + "start": 7104.26, + "end": 7104.58, + "probability": 0.9793 + }, + { + "start": 7105.28, + "end": 7106.14, + "probability": 0.6877 + }, + { + "start": 7107.54, + "end": 7108.02, + "probability": 0.7165 + }, + { + "start": 7108.58, + "end": 7109.7, + "probability": 0.7718 + }, + { + "start": 7111.16, + "end": 7111.64, + "probability": 0.8987 + }, + { + "start": 7112.4, + "end": 7113.48, + "probability": 0.9562 + }, + { + "start": 7114.34, + "end": 7116.16, + "probability": 0.9644 + }, + { + "start": 7117.9, + "end": 7118.32, + "probability": 0.9841 + }, + { + "start": 7119.8, + "end": 7120.6, + "probability": 0.9804 + }, + { + "start": 7121.46, + "end": 7121.9, + "probability": 0.9709 + }, + { + "start": 7123.32, + "end": 7124.94, + "probability": 0.9034 + }, + { + "start": 7125.7, + "end": 7126.74, + "probability": 0.9261 + }, + { + "start": 7127.44, + "end": 7128.16, + "probability": 0.9441 + }, + { + "start": 7128.98, + "end": 7129.36, + "probability": 0.087 + }, + { + "start": 7129.36, + "end": 7129.36, + "probability": 0.0249 + }, + { + "start": 7129.36, + "end": 7131.58, + "probability": 0.1906 + }, + { + "start": 7132.32, + "end": 7134.2, + "probability": 0.2508 + }, + { + "start": 7135.64, + "end": 7142.7, + "probability": 0.3665 + }, + { + "start": 7143.54, + "end": 7149.24, + "probability": 0.8281 + }, + { + "start": 7151.92, + "end": 7155.98, + "probability": 0.6886 + }, + { + "start": 7157.3, + "end": 7159.4, + "probability": 0.6983 + }, + { + "start": 7161.72, + "end": 7163.8, + "probability": 0.092 + }, + { + "start": 7164.52, + "end": 7172.66, + "probability": 0.42 + }, + { + "start": 7173.58, + "end": 7176.32, + "probability": 0.8394 + }, + { + "start": 7179.0, + "end": 7182.0, + "probability": 0.5604 + }, + { + "start": 7183.06, + "end": 7183.46, + "probability": 0.6943 + }, + { + "start": 7184.58, + "end": 7185.84, + "probability": 0.7005 + }, + { + "start": 7187.14, + "end": 7188.02, + "probability": 0.9209 + }, + { + "start": 7189.42, + "end": 7192.1, + "probability": 0.6338 + }, + { + "start": 7193.08, + "end": 7193.34, + "probability": 0.546 + }, + { + "start": 7194.16, + "end": 7195.06, + "probability": 0.7208 + }, + { + "start": 7199.2, + "end": 7201.68, + "probability": 0.915 + }, + { + "start": 7202.96, + "end": 7206.78, + "probability": 0.8039 + }, + { + "start": 7207.42, + "end": 7209.88, + "probability": 0.9825 + }, + { + "start": 7211.24, + "end": 7213.86, + "probability": 0.9566 + }, + { + "start": 7215.28, + "end": 7215.76, + "probability": 0.9834 + }, + { + "start": 7217.5, + "end": 7218.34, + "probability": 0.6487 + }, + { + "start": 7219.1, + "end": 7221.96, + "probability": 0.6895 + }, + { + "start": 7222.84, + "end": 7225.58, + "probability": 0.7782 + }, + { + "start": 7226.28, + "end": 7226.84, + "probability": 0.9839 + }, + { + "start": 7227.64, + "end": 7229.7, + "probability": 0.9587 + }, + { + "start": 7230.72, + "end": 7231.74, + "probability": 0.7886 + }, + { + "start": 7232.9, + "end": 7233.38, + "probability": 0.9648 + }, + { + "start": 7234.16, + "end": 7235.12, + "probability": 0.5976 + }, + { + "start": 7236.28, + "end": 7239.2, + "probability": 0.946 + }, + { + "start": 7240.0, + "end": 7242.72, + "probability": 0.9388 + }, + { + "start": 7244.02, + "end": 7247.18, + "probability": 0.8114 + }, + { + "start": 7247.98, + "end": 7248.28, + "probability": 0.8315 + }, + { + "start": 7249.06, + "end": 7250.52, + "probability": 0.7562 + }, + { + "start": 7252.6, + "end": 7254.8, + "probability": 0.5242 + }, + { + "start": 7255.46, + "end": 7257.4, + "probability": 0.5689 + }, + { + "start": 7258.04, + "end": 7264.68, + "probability": 0.8232 + }, + { + "start": 7265.36, + "end": 7267.54, + "probability": 0.9526 + }, + { + "start": 7269.9, + "end": 7272.22, + "probability": 0.5761 + }, + { + "start": 7273.06, + "end": 7274.08, + "probability": 0.5222 + }, + { + "start": 7275.2, + "end": 7275.54, + "probability": 0.8293 + }, + { + "start": 7276.84, + "end": 7277.74, + "probability": 0.831 + }, + { + "start": 7278.98, + "end": 7279.44, + "probability": 0.9358 + }, + { + "start": 7280.34, + "end": 7281.82, + "probability": 0.7189 + }, + { + "start": 7285.9, + "end": 7286.76, + "probability": 0.7897 + }, + { + "start": 7288.78, + "end": 7290.34, + "probability": 0.9722 + }, + { + "start": 7291.89, + "end": 7294.46, + "probability": 0.9607 + }, + { + "start": 7297.72, + "end": 7298.2, + "probability": 0.8735 + }, + { + "start": 7299.76, + "end": 7300.74, + "probability": 0.7405 + }, + { + "start": 7301.58, + "end": 7301.9, + "probability": 0.0272 + }, + { + "start": 7310.88, + "end": 7311.78, + "probability": 0.5022 + }, + { + "start": 7313.66, + "end": 7315.6, + "probability": 0.6469 + }, + { + "start": 7316.52, + "end": 7317.4, + "probability": 0.7979 + }, + { + "start": 7318.56, + "end": 7318.9, + "probability": 0.8685 + }, + { + "start": 7320.2, + "end": 7321.04, + "probability": 0.9745 + }, + { + "start": 7322.39, + "end": 7324.54, + "probability": 0.9855 + }, + { + "start": 7326.0, + "end": 7326.5, + "probability": 0.932 + }, + { + "start": 7327.3, + "end": 7328.24, + "probability": 0.9871 + }, + { + "start": 7328.84, + "end": 7329.62, + "probability": 0.9638 + }, + { + "start": 7330.66, + "end": 7332.0, + "probability": 0.6948 + }, + { + "start": 7333.24, + "end": 7335.16, + "probability": 0.8176 + }, + { + "start": 7336.4, + "end": 7336.89, + "probability": 0.2248 + }, + { + "start": 7338.54, + "end": 7338.92, + "probability": 0.1045 + }, + { + "start": 7343.1, + "end": 7343.44, + "probability": 0.6943 + }, + { + "start": 7347.12, + "end": 7348.2, + "probability": 0.5319 + }, + { + "start": 7349.02, + "end": 7349.32, + "probability": 0.877 + }, + { + "start": 7350.08, + "end": 7351.18, + "probability": 0.9484 + }, + { + "start": 7352.16, + "end": 7354.66, + "probability": 0.8755 + }, + { + "start": 7355.64, + "end": 7357.52, + "probability": 0.9854 + }, + { + "start": 7358.32, + "end": 7360.94, + "probability": 0.983 + }, + { + "start": 7361.7, + "end": 7363.94, + "probability": 0.9026 + }, + { + "start": 7367.98, + "end": 7368.38, + "probability": 0.8542 + }, + { + "start": 7370.28, + "end": 7371.3, + "probability": 0.818 + }, + { + "start": 7372.18, + "end": 7372.6, + "probability": 0.986 + }, + { + "start": 7373.74, + "end": 7374.9, + "probability": 0.8489 + }, + { + "start": 7375.58, + "end": 7378.1, + "probability": 0.5987 + }, + { + "start": 7379.24, + "end": 7382.62, + "probability": 0.8688 + }, + { + "start": 7383.44, + "end": 7386.42, + "probability": 0.9559 + }, + { + "start": 7387.04, + "end": 7387.48, + "probability": 0.9814 + }, + { + "start": 7388.22, + "end": 7389.16, + "probability": 0.9712 + }, + { + "start": 7389.94, + "end": 7390.46, + "probability": 0.9891 + }, + { + "start": 7391.16, + "end": 7391.92, + "probability": 0.9189 + }, + { + "start": 7393.4, + "end": 7393.96, + "probability": 0.9959 + }, + { + "start": 7394.78, + "end": 7395.98, + "probability": 0.4559 + }, + { + "start": 7396.78, + "end": 7399.16, + "probability": 0.9788 + }, + { + "start": 7399.88, + "end": 7400.46, + "probability": 0.7585 + }, + { + "start": 7402.2, + "end": 7403.22, + "probability": 0.7406 + }, + { + "start": 7405.16, + "end": 7405.56, + "probability": 0.8884 + }, + { + "start": 7407.02, + "end": 7408.36, + "probability": 0.8396 + }, + { + "start": 7414.86, + "end": 7415.32, + "probability": 0.7179 + }, + { + "start": 7418.62, + "end": 7420.22, + "probability": 0.5737 + }, + { + "start": 7422.68, + "end": 7423.08, + "probability": 0.8728 + }, + { + "start": 7424.02, + "end": 7425.02, + "probability": 0.7136 + }, + { + "start": 7426.26, + "end": 7429.48, + "probability": 0.9661 + }, + { + "start": 7430.76, + "end": 7431.86, + "probability": 0.8011 + }, + { + "start": 7433.12, + "end": 7433.62, + "probability": 0.9142 + }, + { + "start": 7434.38, + "end": 7435.22, + "probability": 0.7145 + }, + { + "start": 7437.9, + "end": 7438.86, + "probability": 0.9597 + }, + { + "start": 7440.24, + "end": 7441.18, + "probability": 0.8827 + }, + { + "start": 7446.3, + "end": 7446.74, + "probability": 0.9517 + }, + { + "start": 7448.42, + "end": 7449.52, + "probability": 0.4969 + }, + { + "start": 7450.18, + "end": 7450.66, + "probability": 0.8247 + }, + { + "start": 7451.5, + "end": 7452.6, + "probability": 0.7901 + }, + { + "start": 7453.8, + "end": 7456.16, + "probability": 0.7373 + }, + { + "start": 7459.32, + "end": 7461.98, + "probability": 0.7087 + }, + { + "start": 7463.62, + "end": 7466.8, + "probability": 0.873 + }, + { + "start": 7468.44, + "end": 7469.28, + "probability": 0.9922 + }, + { + "start": 7470.38, + "end": 7470.97, + "probability": 0.5027 + }, + { + "start": 7473.5, + "end": 7474.04, + "probability": 0.9956 + }, + { + "start": 7476.66, + "end": 7477.6, + "probability": 0.9525 + }, + { + "start": 7478.68, + "end": 7479.16, + "probability": 0.9914 + }, + { + "start": 7479.86, + "end": 7481.26, + "probability": 0.8792 + }, + { + "start": 7483.74, + "end": 7485.94, + "probability": 0.8795 + }, + { + "start": 7486.76, + "end": 7487.74, + "probability": 0.2714 + }, + { + "start": 7496.26, + "end": 7497.36, + "probability": 0.5016 + }, + { + "start": 7498.08, + "end": 7499.06, + "probability": 0.5206 + }, + { + "start": 7500.92, + "end": 7506.0, + "probability": 0.6518 + }, + { + "start": 7506.66, + "end": 7508.88, + "probability": 0.7251 + }, + { + "start": 7509.58, + "end": 7510.24, + "probability": 0.7353 + }, + { + "start": 7511.08, + "end": 7512.02, + "probability": 0.8315 + }, + { + "start": 7514.16, + "end": 7514.6, + "probability": 0.957 + }, + { + "start": 7516.56, + "end": 7517.66, + "probability": 0.8232 + }, + { + "start": 7518.78, + "end": 7519.16, + "probability": 0.9797 + }, + { + "start": 7520.18, + "end": 7521.2, + "probability": 0.6965 + }, + { + "start": 7522.92, + "end": 7523.8, + "probability": 0.961 + }, + { + "start": 7526.46, + "end": 7527.64, + "probability": 0.63 + }, + { + "start": 7529.74, + "end": 7532.9, + "probability": 0.8688 + }, + { + "start": 7534.14, + "end": 7534.7, + "probability": 0.9487 + }, + { + "start": 7535.54, + "end": 7537.0, + "probability": 0.9872 + }, + { + "start": 7538.07, + "end": 7541.2, + "probability": 0.9733 + }, + { + "start": 7541.96, + "end": 7544.38, + "probability": 0.9631 + }, + { + "start": 7544.98, + "end": 7547.58, + "probability": 0.9604 + }, + { + "start": 7548.66, + "end": 7549.12, + "probability": 0.9922 + }, + { + "start": 7550.38, + "end": 7551.78, + "probability": 0.7989 + }, + { + "start": 7552.38, + "end": 7552.8, + "probability": 0.9961 + }, + { + "start": 7553.82, + "end": 7554.58, + "probability": 0.7708 + }, + { + "start": 7557.74, + "end": 7558.96, + "probability": 0.2626 + }, + { + "start": 7560.02, + "end": 7563.02, + "probability": 0.7202 + }, + { + "start": 7564.28, + "end": 7566.8, + "probability": 0.8548 + }, + { + "start": 7567.82, + "end": 7569.94, + "probability": 0.7931 + }, + { + "start": 7570.78, + "end": 7573.12, + "probability": 0.8752 + }, + { + "start": 7573.82, + "end": 7576.16, + "probability": 0.8833 + }, + { + "start": 7578.52, + "end": 7584.1, + "probability": 0.8214 + }, + { + "start": 7585.56, + "end": 7587.54, + "probability": 0.8148 + }, + { + "start": 7588.52, + "end": 7590.08, + "probability": 0.8171 + }, + { + "start": 7591.6, + "end": 7594.24, + "probability": 0.8672 + }, + { + "start": 7595.86, + "end": 7597.8, + "probability": 0.9727 + }, + { + "start": 7598.76, + "end": 7599.2, + "probability": 0.9551 + }, + { + "start": 7600.16, + "end": 7601.5, + "probability": 0.6831 + }, + { + "start": 7602.96, + "end": 7603.88, + "probability": 0.8676 + }, + { + "start": 7606.82, + "end": 7608.58, + "probability": 0.6464 + }, + { + "start": 7608.66, + "end": 7616.04, + "probability": 0.8204 + }, + { + "start": 7616.54, + "end": 7617.78, + "probability": 0.0256 + }, + { + "start": 7617.78, + "end": 7617.78, + "probability": 0.0161 + }, + { + "start": 7617.78, + "end": 7617.78, + "probability": 0.1344 + }, + { + "start": 7617.78, + "end": 7619.44, + "probability": 0.4246 + }, + { + "start": 7620.36, + "end": 7620.78, + "probability": 0.4694 + }, + { + "start": 7623.66, + "end": 7623.94, + "probability": 0.7508 + }, + { + "start": 7625.44, + "end": 7626.44, + "probability": 0.3075 + }, + { + "start": 7627.92, + "end": 7628.58, + "probability": 0.656 + }, + { + "start": 7629.56, + "end": 7632.18, + "probability": 0.6352 + }, + { + "start": 7632.7, + "end": 7634.46, + "probability": 0.8541 + }, + { + "start": 7635.48, + "end": 7638.32, + "probability": 0.9781 + }, + { + "start": 7638.5, + "end": 7641.82, + "probability": 0.9161 + }, + { + "start": 7642.2, + "end": 7643.14, + "probability": 0.9415 + }, + { + "start": 7644.7, + "end": 7645.74, + "probability": 0.9089 + }, + { + "start": 7647.34, + "end": 7647.76, + "probability": 0.863 + }, + { + "start": 7649.94, + "end": 7650.96, + "probability": 0.9366 + }, + { + "start": 7651.82, + "end": 7652.6, + "probability": 0.9886 + }, + { + "start": 7654.68, + "end": 7656.02, + "probability": 0.6563 + }, + { + "start": 7656.82, + "end": 7659.0, + "probability": 0.8357 + }, + { + "start": 7659.84, + "end": 7662.76, + "probability": 0.8949 + }, + { + "start": 7664.28, + "end": 7665.24, + "probability": 0.9711 + }, + { + "start": 7666.1, + "end": 7668.06, + "probability": 0.9095 + }, + { + "start": 7668.6, + "end": 7669.48, + "probability": 0.9207 + }, + { + "start": 7670.7, + "end": 7671.88, + "probability": 0.5815 + }, + { + "start": 7673.1, + "end": 7673.98, + "probability": 0.978 + }, + { + "start": 7674.62, + "end": 7678.04, + "probability": 0.9489 + }, + { + "start": 7678.24, + "end": 7680.56, + "probability": 0.9707 + }, + { + "start": 7682.0, + "end": 7682.88, + "probability": 0.822 + }, + { + "start": 7684.64, + "end": 7685.62, + "probability": 0.6982 + }, + { + "start": 7686.5, + "end": 7690.1, + "probability": 0.8471 + }, + { + "start": 7691.46, + "end": 7692.84, + "probability": 0.9436 + }, + { + "start": 7693.66, + "end": 7698.3, + "probability": 0.8246 + }, + { + "start": 7699.28, + "end": 7702.66, + "probability": 0.8706 + }, + { + "start": 7703.68, + "end": 7706.16, + "probability": 0.9845 + }, + { + "start": 7706.98, + "end": 7708.14, + "probability": 0.5293 + }, + { + "start": 7709.72, + "end": 7710.84, + "probability": 0.8613 + }, + { + "start": 7713.44, + "end": 7716.1, + "probability": 0.6858 + }, + { + "start": 7716.84, + "end": 7717.7, + "probability": 0.9924 + }, + { + "start": 7722.02, + "end": 7725.54, + "probability": 0.2685 + }, + { + "start": 7725.94, + "end": 7728.22, + "probability": 0.5564 + }, + { + "start": 7730.72, + "end": 7731.02, + "probability": 0.5286 + }, + { + "start": 7733.04, + "end": 7738.08, + "probability": 0.9815 + }, + { + "start": 7738.22, + "end": 7741.32, + "probability": 0.9941 + }, + { + "start": 7743.74, + "end": 7747.56, + "probability": 0.6532 + }, + { + "start": 7747.96, + "end": 7749.86, + "probability": 0.9138 + }, + { + "start": 7749.94, + "end": 7751.22, + "probability": 0.6918 + }, + { + "start": 7751.74, + "end": 7752.58, + "probability": 0.6677 + }, + { + "start": 7754.92, + "end": 7756.0, + "probability": 0.1029 + }, + { + "start": 7759.04, + "end": 7763.42, + "probability": 0.1021 + }, + { + "start": 7780.48, + "end": 7783.8, + "probability": 0.0442 + }, + { + "start": 7784.18, + "end": 7786.0, + "probability": 0.0883 + }, + { + "start": 7786.3, + "end": 7786.3, + "probability": 0.0102 + }, + { + "start": 7786.3, + "end": 7786.56, + "probability": 0.1402 + }, + { + "start": 7787.56, + "end": 7788.16, + "probability": 0.0245 + }, + { + "start": 7788.48, + "end": 7789.22, + "probability": 0.0115 + }, + { + "start": 7870.0, + "end": 7870.0, + "probability": 0.0 + }, + { + "start": 7870.0, + "end": 7870.0, + "probability": 0.0 + }, + { + "start": 7870.0, + "end": 7870.0, + "probability": 0.0 + }, + { + "start": 7870.0, + "end": 7870.0, + "probability": 0.0 + }, + { + "start": 7871.16, + "end": 7871.44, + "probability": 0.5275 + }, + { + "start": 7872.08, + "end": 7876.32, + "probability": 0.9867 + }, + { + "start": 7876.38, + "end": 7882.32, + "probability": 0.9936 + }, + { + "start": 7884.0, + "end": 7887.38, + "probability": 0.6873 + }, + { + "start": 7887.9, + "end": 7888.76, + "probability": 0.7752 + }, + { + "start": 7889.48, + "end": 7890.34, + "probability": 0.7179 + }, + { + "start": 7891.76, + "end": 7894.34, + "probability": 0.8079 + }, + { + "start": 7895.36, + "end": 7898.3, + "probability": 0.7771 + }, + { + "start": 7898.42, + "end": 7900.42, + "probability": 0.9173 + }, + { + "start": 7900.64, + "end": 7902.3, + "probability": 0.4686 + }, + { + "start": 7903.18, + "end": 7905.8, + "probability": 0.9658 + }, + { + "start": 7919.3, + "end": 7921.14, + "probability": 0.8231 + }, + { + "start": 7921.64, + "end": 7921.68, + "probability": 0.3206 + }, + { + "start": 7921.68, + "end": 7922.26, + "probability": 0.3455 + }, + { + "start": 7922.3, + "end": 7925.46, + "probability": 0.9956 + }, + { + "start": 7925.64, + "end": 7926.34, + "probability": 0.5702 + }, + { + "start": 7927.04, + "end": 7928.62, + "probability": 0.9808 + }, + { + "start": 7929.58, + "end": 7931.04, + "probability": 0.9438 + }, + { + "start": 7931.7, + "end": 7932.34, + "probability": 0.4184 + }, + { + "start": 7933.32, + "end": 7936.5, + "probability": 0.9897 + }, + { + "start": 7937.54, + "end": 7939.24, + "probability": 0.8966 + }, + { + "start": 7940.24, + "end": 7944.32, + "probability": 0.7363 + }, + { + "start": 7944.98, + "end": 7946.02, + "probability": 0.987 + }, + { + "start": 7947.12, + "end": 7954.06, + "probability": 0.9915 + }, + { + "start": 7954.16, + "end": 7954.98, + "probability": 0.7659 + }, + { + "start": 7955.54, + "end": 7958.88, + "probability": 0.8953 + }, + { + "start": 7959.0, + "end": 7960.3, + "probability": 0.9891 + }, + { + "start": 7961.14, + "end": 7964.1, + "probability": 0.9387 + }, + { + "start": 7964.9, + "end": 7969.6, + "probability": 0.8477 + }, + { + "start": 7970.28, + "end": 7971.08, + "probability": 0.7632 + }, + { + "start": 7971.26, + "end": 7976.4, + "probability": 0.7371 + }, + { + "start": 7978.26, + "end": 7981.46, + "probability": 0.9049 + }, + { + "start": 7981.58, + "end": 7982.14, + "probability": 0.6411 + }, + { + "start": 7984.04, + "end": 7986.72, + "probability": 0.6464 + }, + { + "start": 7987.6, + "end": 7989.48, + "probability": 0.7084 + }, + { + "start": 7990.24, + "end": 7991.66, + "probability": 0.9963 + }, + { + "start": 7992.06, + "end": 7994.76, + "probability": 0.905 + }, + { + "start": 7994.84, + "end": 7997.6, + "probability": 0.9057 + }, + { + "start": 7997.7, + "end": 7999.26, + "probability": 0.7671 + }, + { + "start": 7999.4, + "end": 8003.14, + "probability": 0.9585 + }, + { + "start": 8003.3, + "end": 8006.54, + "probability": 0.9071 + }, + { + "start": 8006.9, + "end": 8007.83, + "probability": 0.9248 + }, + { + "start": 8008.82, + "end": 8010.9, + "probability": 0.9166 + }, + { + "start": 8010.92, + "end": 8014.42, + "probability": 0.9916 + }, + { + "start": 8015.37, + "end": 8017.1, + "probability": 0.2183 + }, + { + "start": 8017.22, + "end": 8017.48, + "probability": 0.1074 + }, + { + "start": 8017.52, + "end": 8022.74, + "probability": 0.8804 + }, + { + "start": 8023.26, + "end": 8024.56, + "probability": 0.5856 + }, + { + "start": 8024.56, + "end": 8024.94, + "probability": 0.5785 + }, + { + "start": 8024.98, + "end": 8025.54, + "probability": 0.9004 + }, + { + "start": 8025.64, + "end": 8026.14, + "probability": 0.7481 + }, + { + "start": 8026.2, + "end": 8026.72, + "probability": 0.7214 + }, + { + "start": 8026.78, + "end": 8027.7, + "probability": 0.9801 + }, + { + "start": 8028.88, + "end": 8030.44, + "probability": 0.0478 + }, + { + "start": 8030.44, + "end": 8032.36, + "probability": 0.1298 + }, + { + "start": 8032.9, + "end": 8033.14, + "probability": 0.4759 + }, + { + "start": 8033.22, + "end": 8033.56, + "probability": 0.9358 + }, + { + "start": 8033.62, + "end": 8038.45, + "probability": 0.9665 + }, + { + "start": 8040.14, + "end": 8042.98, + "probability": 0.9285 + }, + { + "start": 8043.58, + "end": 8045.46, + "probability": 0.026 + }, + { + "start": 8046.04, + "end": 8046.44, + "probability": 0.0204 + }, + { + "start": 8046.44, + "end": 8046.44, + "probability": 0.2721 + }, + { + "start": 8046.44, + "end": 8046.44, + "probability": 0.1376 + }, + { + "start": 8046.44, + "end": 8047.94, + "probability": 0.5286 + }, + { + "start": 8047.98, + "end": 8048.78, + "probability": 0.8328 + }, + { + "start": 8049.16, + "end": 8051.86, + "probability": 0.9708 + }, + { + "start": 8051.92, + "end": 8053.06, + "probability": 0.1909 + }, + { + "start": 8053.48, + "end": 8054.46, + "probability": 0.1383 + }, + { + "start": 8056.34, + "end": 8058.72, + "probability": 0.6916 + }, + { + "start": 8059.78, + "end": 8061.88, + "probability": 0.9635 + }, + { + "start": 8062.4, + "end": 8064.06, + "probability": 0.9447 + }, + { + "start": 8064.32, + "end": 8064.99, + "probability": 0.9185 + }, + { + "start": 8065.26, + "end": 8067.04, + "probability": 0.9788 + }, + { + "start": 8067.72, + "end": 8072.82, + "probability": 0.9871 + }, + { + "start": 8073.46, + "end": 8073.98, + "probability": 0.9792 + }, + { + "start": 8074.16, + "end": 8074.96, + "probability": 0.6308 + }, + { + "start": 8075.04, + "end": 8076.1, + "probability": 0.9449 + }, + { + "start": 8076.52, + "end": 8077.74, + "probability": 0.9557 + }, + { + "start": 8078.04, + "end": 8078.56, + "probability": 0.9609 + }, + { + "start": 8078.64, + "end": 8079.16, + "probability": 0.9728 + }, + { + "start": 8079.2, + "end": 8079.98, + "probability": 0.9673 + }, + { + "start": 8080.02, + "end": 8080.82, + "probability": 0.951 + }, + { + "start": 8081.52, + "end": 8083.68, + "probability": 0.6028 + }, + { + "start": 8083.9, + "end": 8085.56, + "probability": 0.9746 + }, + { + "start": 8086.0, + "end": 8089.7, + "probability": 0.9898 + }, + { + "start": 8090.58, + "end": 8093.06, + "probability": 0.9862 + }, + { + "start": 8093.76, + "end": 8096.44, + "probability": 0.9137 + }, + { + "start": 8096.96, + "end": 8100.9, + "probability": 0.9688 + }, + { + "start": 8101.5, + "end": 8105.66, + "probability": 0.9894 + }, + { + "start": 8106.14, + "end": 8108.1, + "probability": 0.9819 + }, + { + "start": 8108.72, + "end": 8110.12, + "probability": 0.3998 + }, + { + "start": 8110.28, + "end": 8110.48, + "probability": 0.8512 + }, + { + "start": 8110.54, + "end": 8115.38, + "probability": 0.9908 + }, + { + "start": 8115.8, + "end": 8116.56, + "probability": 0.7758 + }, + { + "start": 8116.86, + "end": 8118.98, + "probability": 0.9823 + }, + { + "start": 8119.02, + "end": 8120.26, + "probability": 0.8466 + }, + { + "start": 8120.32, + "end": 8121.42, + "probability": 0.6833 + }, + { + "start": 8121.8, + "end": 8125.02, + "probability": 0.9433 + }, + { + "start": 8125.54, + "end": 8128.64, + "probability": 0.9756 + }, + { + "start": 8129.16, + "end": 8130.46, + "probability": 0.677 + }, + { + "start": 8130.54, + "end": 8132.84, + "probability": 0.9434 + }, + { + "start": 8132.88, + "end": 8137.24, + "probability": 0.877 + }, + { + "start": 8137.46, + "end": 8137.88, + "probability": 0.8114 + }, + { + "start": 8139.04, + "end": 8144.16, + "probability": 0.979 + }, + { + "start": 8144.88, + "end": 8144.88, + "probability": 0.1341 + }, + { + "start": 8144.88, + "end": 8144.88, + "probability": 0.0696 + }, + { + "start": 8144.88, + "end": 8147.86, + "probability": 0.9585 + }, + { + "start": 8148.3, + "end": 8151.22, + "probability": 0.9684 + }, + { + "start": 8152.5, + "end": 8154.36, + "probability": 0.7394 + }, + { + "start": 8156.42, + "end": 8156.86, + "probability": 0.011 + }, + { + "start": 8157.26, + "end": 8157.28, + "probability": 0.0156 + }, + { + "start": 8157.28, + "end": 8157.6, + "probability": 0.0153 + }, + { + "start": 8157.6, + "end": 8157.68, + "probability": 0.0698 + }, + { + "start": 8157.68, + "end": 8158.06, + "probability": 0.2368 + }, + { + "start": 8158.12, + "end": 8158.3, + "probability": 0.0857 + }, + { + "start": 8158.3, + "end": 8160.46, + "probability": 0.5374 + }, + { + "start": 8160.5, + "end": 8161.34, + "probability": 0.6415 + }, + { + "start": 8161.34, + "end": 8162.42, + "probability": 0.1669 + }, + { + "start": 8162.42, + "end": 8164.9, + "probability": 0.9487 + }, + { + "start": 8165.26, + "end": 8166.79, + "probability": 0.802 + }, + { + "start": 8167.56, + "end": 8168.68, + "probability": 0.4824 + }, + { + "start": 8169.55, + "end": 8170.98, + "probability": 0.0991 + }, + { + "start": 8170.98, + "end": 8171.05, + "probability": 0.1121 + }, + { + "start": 8171.28, + "end": 8173.5, + "probability": 0.2598 + }, + { + "start": 8173.52, + "end": 8173.7, + "probability": 0.3311 + }, + { + "start": 8174.04, + "end": 8174.8, + "probability": 0.0471 + }, + { + "start": 8175.04, + "end": 8175.62, + "probability": 0.6313 + }, + { + "start": 8175.78, + "end": 8176.33, + "probability": 0.8862 + }, + { + "start": 8176.56, + "end": 8179.54, + "probability": 0.9777 + }, + { + "start": 8179.76, + "end": 8179.86, + "probability": 0.0168 + }, + { + "start": 8180.02, + "end": 8180.33, + "probability": 0.1992 + }, + { + "start": 8180.62, + "end": 8181.02, + "probability": 0.4305 + }, + { + "start": 8181.02, + "end": 8181.12, + "probability": 0.1063 + }, + { + "start": 8181.16, + "end": 8182.22, + "probability": 0.0573 + }, + { + "start": 8182.32, + "end": 8185.28, + "probability": 0.8306 + }, + { + "start": 8185.44, + "end": 8188.36, + "probability": 0.9972 + }, + { + "start": 8188.74, + "end": 8192.3, + "probability": 0.9863 + }, + { + "start": 8192.94, + "end": 8192.94, + "probability": 0.0492 + }, + { + "start": 8192.94, + "end": 8195.66, + "probability": 0.8826 + }, + { + "start": 8196.1, + "end": 8197.02, + "probability": 0.993 + }, + { + "start": 8197.62, + "end": 8198.56, + "probability": 0.9438 + }, + { + "start": 8198.64, + "end": 8202.18, + "probability": 0.8911 + }, + { + "start": 8202.3, + "end": 8205.8, + "probability": 0.9897 + }, + { + "start": 8206.32, + "end": 8207.46, + "probability": 0.6611 + }, + { + "start": 8208.34, + "end": 8209.02, + "probability": 0.9185 + }, + { + "start": 8209.34, + "end": 8209.78, + "probability": 0.5454 + }, + { + "start": 8209.84, + "end": 8210.46, + "probability": 0.6808 + }, + { + "start": 8210.62, + "end": 8211.26, + "probability": 0.6742 + }, + { + "start": 8211.34, + "end": 8211.86, + "probability": 0.8872 + }, + { + "start": 8212.62, + "end": 8215.12, + "probability": 0.8738 + }, + { + "start": 8216.02, + "end": 8217.74, + "probability": 0.7428 + }, + { + "start": 8217.84, + "end": 8221.6, + "probability": 0.8526 + }, + { + "start": 8223.58, + "end": 8226.74, + "probability": 0.6059 + }, + { + "start": 8226.76, + "end": 8226.76, + "probability": 0.8266 + }, + { + "start": 8226.86, + "end": 8229.02, + "probability": 0.7159 + }, + { + "start": 8229.12, + "end": 8229.92, + "probability": 0.8428 + }, + { + "start": 8230.28, + "end": 8233.08, + "probability": 0.9552 + }, + { + "start": 8233.08, + "end": 8235.7, + "probability": 0.9788 + }, + { + "start": 8236.44, + "end": 8237.16, + "probability": 0.7019 + }, + { + "start": 8237.3, + "end": 8237.74, + "probability": 0.7078 + }, + { + "start": 8237.84, + "end": 8239.22, + "probability": 0.7736 + }, + { + "start": 8239.62, + "end": 8242.22, + "probability": 0.9971 + }, + { + "start": 8242.98, + "end": 8244.1, + "probability": 0.9866 + }, + { + "start": 8244.46, + "end": 8248.56, + "probability": 0.9826 + }, + { + "start": 8248.66, + "end": 8252.74, + "probability": 0.9956 + }, + { + "start": 8252.88, + "end": 8256.0, + "probability": 0.998 + }, + { + "start": 8256.5, + "end": 8259.08, + "probability": 0.9529 + }, + { + "start": 8259.18, + "end": 8260.58, + "probability": 0.9897 + }, + { + "start": 8260.76, + "end": 8262.06, + "probability": 0.995 + }, + { + "start": 8262.5, + "end": 8263.98, + "probability": 0.9983 + }, + { + "start": 8264.4, + "end": 8270.78, + "probability": 0.9979 + }, + { + "start": 8270.96, + "end": 8273.4, + "probability": 0.9973 + }, + { + "start": 8273.98, + "end": 8274.18, + "probability": 0.6875 + }, + { + "start": 8276.88, + "end": 8277.86, + "probability": 0.7399 + }, + { + "start": 8279.64, + "end": 8282.1, + "probability": 0.9709 + }, + { + "start": 8285.16, + "end": 8286.12, + "probability": 0.3973 + }, + { + "start": 8286.68, + "end": 8287.02, + "probability": 0.7688 + }, + { + "start": 8287.82, + "end": 8288.8, + "probability": 0.065 + }, + { + "start": 8290.18, + "end": 8291.64, + "probability": 0.6612 + }, + { + "start": 8292.24, + "end": 8295.78, + "probability": 0.3954 + }, + { + "start": 8295.94, + "end": 8296.59, + "probability": 0.3381 + }, + { + "start": 8297.1, + "end": 8297.4, + "probability": 0.026 + }, + { + "start": 8301.4, + "end": 8302.38, + "probability": 0.3392 + }, + { + "start": 8302.38, + "end": 8308.22, + "probability": 0.5639 + }, + { + "start": 8310.72, + "end": 8315.56, + "probability": 0.9937 + }, + { + "start": 8315.56, + "end": 8321.96, + "probability": 0.99 + }, + { + "start": 8322.36, + "end": 8324.16, + "probability": 0.89 + }, + { + "start": 8324.3, + "end": 8325.38, + "probability": 0.6816 + }, + { + "start": 8325.88, + "end": 8328.18, + "probability": 0.9575 + }, + { + "start": 8329.06, + "end": 8331.78, + "probability": 0.9948 + }, + { + "start": 8332.46, + "end": 8334.74, + "probability": 0.9943 + }, + { + "start": 8334.9, + "end": 8338.16, + "probability": 0.9071 + }, + { + "start": 8338.16, + "end": 8341.76, + "probability": 0.9985 + }, + { + "start": 8341.76, + "end": 8344.84, + "probability": 0.9982 + }, + { + "start": 8345.84, + "end": 8349.86, + "probability": 0.993 + }, + { + "start": 8349.96, + "end": 8354.0, + "probability": 0.877 + }, + { + "start": 8354.96, + "end": 8356.7, + "probability": 0.79 + }, + { + "start": 8356.82, + "end": 8359.6, + "probability": 0.9436 + }, + { + "start": 8360.5, + "end": 8364.4, + "probability": 0.9956 + }, + { + "start": 8364.4, + "end": 8368.42, + "probability": 0.9785 + }, + { + "start": 8369.24, + "end": 8370.38, + "probability": 0.7167 + }, + { + "start": 8370.58, + "end": 8370.78, + "probability": 0.1249 + }, + { + "start": 8370.9, + "end": 8372.06, + "probability": 0.9533 + }, + { + "start": 8372.54, + "end": 8374.68, + "probability": 0.9407 + }, + { + "start": 8374.68, + "end": 8377.6, + "probability": 0.9887 + }, + { + "start": 8378.66, + "end": 8379.34, + "probability": 0.8516 + }, + { + "start": 8379.5, + "end": 8383.6, + "probability": 0.9774 + }, + { + "start": 8384.04, + "end": 8387.02, + "probability": 0.966 + }, + { + "start": 8387.78, + "end": 8394.2, + "probability": 0.9955 + }, + { + "start": 8417.0, + "end": 8419.72, + "probability": 0.1759 + }, + { + "start": 8420.36, + "end": 8423.76, + "probability": 0.1316 + }, + { + "start": 8423.82, + "end": 8423.98, + "probability": 0.1175 + }, + { + "start": 8424.06, + "end": 8425.74, + "probability": 0.0393 + }, + { + "start": 8426.26, + "end": 8427.48, + "probability": 0.2166 + }, + { + "start": 8430.94, + "end": 8435.96, + "probability": 0.0226 + }, + { + "start": 8436.1, + "end": 8439.62, + "probability": 0.2446 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8518.0, + "end": 8518.0, + "probability": 0.0 + }, + { + "start": 8521.24, + "end": 8521.88, + "probability": 0.2764 + }, + { + "start": 8521.88, + "end": 8522.4, + "probability": 0.0232 + }, + { + "start": 8522.4, + "end": 8523.12, + "probability": 0.3101 + }, + { + "start": 8523.22, + "end": 8523.22, + "probability": 0.2831 + }, + { + "start": 8523.22, + "end": 8524.72, + "probability": 0.7471 + }, + { + "start": 8525.1, + "end": 8526.4, + "probability": 0.9613 + }, + { + "start": 8528.22, + "end": 8531.78, + "probability": 0.875 + }, + { + "start": 8531.94, + "end": 8535.9, + "probability": 0.9932 + }, + { + "start": 8536.17, + "end": 8536.72, + "probability": 0.1251 + }, + { + "start": 8537.21, + "end": 8537.7, + "probability": 0.3311 + }, + { + "start": 8537.7, + "end": 8537.94, + "probability": 0.3167 + }, + { + "start": 8537.94, + "end": 8538.94, + "probability": 0.0168 + }, + { + "start": 8539.0, + "end": 8540.42, + "probability": 0.5719 + }, + { + "start": 8540.42, + "end": 8541.56, + "probability": 0.1027 + }, + { + "start": 8541.56, + "end": 8541.56, + "probability": 0.0646 + }, + { + "start": 8541.56, + "end": 8541.84, + "probability": 0.1668 + }, + { + "start": 8542.38, + "end": 8544.04, + "probability": 0.5128 + }, + { + "start": 8544.36, + "end": 8544.36, + "probability": 0.1919 + }, + { + "start": 8544.36, + "end": 8544.36, + "probability": 0.2388 + }, + { + "start": 8544.36, + "end": 8545.66, + "probability": 0.4823 + }, + { + "start": 8545.98, + "end": 8547.64, + "probability": 0.3232 + }, + { + "start": 8548.72, + "end": 8549.51, + "probability": 0.0434 + }, + { + "start": 8570.36, + "end": 8571.28, + "probability": 0.9945 + }, + { + "start": 8572.28, + "end": 8572.36, + "probability": 0.0448 + }, + { + "start": 8572.36, + "end": 8573.31, + "probability": 0.0442 + }, + { + "start": 8574.16, + "end": 8578.3, + "probability": 0.1625 + }, + { + "start": 8578.92, + "end": 8580.06, + "probability": 0.0488 + }, + { + "start": 8580.3, + "end": 8580.44, + "probability": 0.1731 + }, + { + "start": 8580.72, + "end": 8581.3, + "probability": 0.0349 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8641.0, + "end": 8641.0, + "probability": 0.0 + }, + { + "start": 8642.82, + "end": 8642.9, + "probability": 0.5588 + }, + { + "start": 8642.9, + "end": 8642.98, + "probability": 0.0398 + }, + { + "start": 8642.98, + "end": 8642.98, + "probability": 0.0479 + }, + { + "start": 8642.98, + "end": 8644.62, + "probability": 0.3693 + }, + { + "start": 8644.64, + "end": 8645.8, + "probability": 0.4976 + }, + { + "start": 8645.8, + "end": 8646.26, + "probability": 0.519 + }, + { + "start": 8647.38, + "end": 8650.86, + "probability": 0.9893 + }, + { + "start": 8651.46, + "end": 8652.22, + "probability": 0.3735 + }, + { + "start": 8652.72, + "end": 8653.74, + "probability": 0.5374 + }, + { + "start": 8655.09, + "end": 8657.55, + "probability": 0.4481 + }, + { + "start": 8658.32, + "end": 8659.42, + "probability": 0.3877 + }, + { + "start": 8659.58, + "end": 8660.1, + "probability": 0.7128 + }, + { + "start": 8660.16, + "end": 8661.2, + "probability": 0.6887 + }, + { + "start": 8661.42, + "end": 8665.48, + "probability": 0.9143 + }, + { + "start": 8666.62, + "end": 8669.94, + "probability": 0.9956 + }, + { + "start": 8669.94, + "end": 8673.98, + "probability": 0.9668 + }, + { + "start": 8674.56, + "end": 8677.0, + "probability": 0.9954 + }, + { + "start": 8678.08, + "end": 8681.86, + "probability": 0.8777 + }, + { + "start": 8682.68, + "end": 8684.64, + "probability": 0.9597 + }, + { + "start": 8685.84, + "end": 8687.58, + "probability": 0.8907 + }, + { + "start": 8687.78, + "end": 8695.44, + "probability": 0.9905 + }, + { + "start": 8695.44, + "end": 8700.68, + "probability": 0.9886 + }, + { + "start": 8700.96, + "end": 8704.2, + "probability": 0.9453 + }, + { + "start": 8704.28, + "end": 8706.56, + "probability": 0.939 + }, + { + "start": 8707.34, + "end": 8710.06, + "probability": 0.9817 + }, + { + "start": 8710.22, + "end": 8711.2, + "probability": 0.9875 + }, + { + "start": 8712.28, + "end": 8716.18, + "probability": 0.8681 + }, + { + "start": 8716.78, + "end": 8718.78, + "probability": 0.9827 + }, + { + "start": 8719.26, + "end": 8723.22, + "probability": 0.8635 + }, + { + "start": 8723.78, + "end": 8726.95, + "probability": 0.9928 + }, + { + "start": 8727.64, + "end": 8733.04, + "probability": 0.9875 + }, + { + "start": 8733.56, + "end": 8734.72, + "probability": 0.9482 + }, + { + "start": 8735.1, + "end": 8738.24, + "probability": 0.9766 + }, + { + "start": 8738.58, + "end": 8739.8, + "probability": 0.8778 + }, + { + "start": 8740.56, + "end": 8746.22, + "probability": 0.9906 + }, + { + "start": 8746.88, + "end": 8749.9, + "probability": 0.9911 + }, + { + "start": 8750.3, + "end": 8753.7, + "probability": 0.9364 + }, + { + "start": 8753.76, + "end": 8754.08, + "probability": 0.5296 + }, + { + "start": 8754.68, + "end": 8759.84, + "probability": 0.9907 + }, + { + "start": 8760.26, + "end": 8761.17, + "probability": 0.8674 + }, + { + "start": 8762.24, + "end": 8765.76, + "probability": 0.9931 + }, + { + "start": 8766.1, + "end": 8767.42, + "probability": 0.8355 + }, + { + "start": 8767.86, + "end": 8769.54, + "probability": 0.9337 + }, + { + "start": 8769.8, + "end": 8771.74, + "probability": 0.9954 + }, + { + "start": 8772.08, + "end": 8774.14, + "probability": 0.9685 + }, + { + "start": 8774.46, + "end": 8774.82, + "probability": 0.5148 + }, + { + "start": 8774.9, + "end": 8776.49, + "probability": 0.9555 + }, + { + "start": 8777.02, + "end": 8779.16, + "probability": 0.9852 + }, + { + "start": 8779.66, + "end": 8780.12, + "probability": 0.6896 + }, + { + "start": 8780.6, + "end": 8781.04, + "probability": 0.7937 + }, + { + "start": 8781.12, + "end": 8781.96, + "probability": 0.9319 + }, + { + "start": 8782.06, + "end": 8785.38, + "probability": 0.9959 + }, + { + "start": 8786.6, + "end": 8788.92, + "probability": 0.7793 + }, + { + "start": 8788.92, + "end": 8793.28, + "probability": 0.9865 + }, + { + "start": 8794.5, + "end": 8795.94, + "probability": 0.9546 + }, + { + "start": 8796.36, + "end": 8797.1, + "probability": 0.625 + }, + { + "start": 8797.7, + "end": 8798.46, + "probability": 0.745 + }, + { + "start": 8798.8, + "end": 8799.92, + "probability": 0.5915 + }, + { + "start": 8802.97, + "end": 8804.74, + "probability": 0.1177 + }, + { + "start": 8804.74, + "end": 8805.8, + "probability": 0.0232 + }, + { + "start": 8805.8, + "end": 8807.82, + "probability": 0.027 + }, + { + "start": 8812.16, + "end": 8813.68, + "probability": 0.153 + }, + { + "start": 8818.64, + "end": 8819.28, + "probability": 0.1512 + }, + { + "start": 8819.7, + "end": 8824.7, + "probability": 0.7751 + }, + { + "start": 8824.82, + "end": 8828.34, + "probability": 0.7918 + }, + { + "start": 8828.34, + "end": 8830.72, + "probability": 0.8955 + }, + { + "start": 8830.84, + "end": 8835.82, + "probability": 0.8934 + }, + { + "start": 8836.28, + "end": 8837.3, + "probability": 0.7855 + }, + { + "start": 8838.46, + "end": 8843.06, + "probability": 0.9229 + }, + { + "start": 8848.14, + "end": 8852.42, + "probability": 0.9285 + }, + { + "start": 8853.36, + "end": 8854.92, + "probability": 0.6351 + }, + { + "start": 8855.32, + "end": 8858.56, + "probability": 0.7618 + }, + { + "start": 8858.76, + "end": 8860.0, + "probability": 0.6604 + }, + { + "start": 8861.18, + "end": 8865.5, + "probability": 0.8052 + }, + { + "start": 8886.19, + "end": 8886.68, + "probability": 0.6811 + }, + { + "start": 8887.3, + "end": 8887.6, + "probability": 0.8246 + }, + { + "start": 8889.4, + "end": 8891.02, + "probability": 0.6943 + }, + { + "start": 8891.26, + "end": 8894.2, + "probability": 0.9219 + }, + { + "start": 8896.24, + "end": 8901.74, + "probability": 0.895 + }, + { + "start": 8902.94, + "end": 8905.66, + "probability": 0.9588 + }, + { + "start": 8908.06, + "end": 8911.26, + "probability": 0.9658 + }, + { + "start": 8913.06, + "end": 8914.28, + "probability": 0.8755 + }, + { + "start": 8916.44, + "end": 8917.5, + "probability": 0.988 + }, + { + "start": 8922.4, + "end": 8924.24, + "probability": 0.9279 + }, + { + "start": 8929.26, + "end": 8932.32, + "probability": 0.7986 + }, + { + "start": 8932.58, + "end": 8935.46, + "probability": 0.9827 + }, + { + "start": 8936.18, + "end": 8936.66, + "probability": 0.9551 + }, + { + "start": 8939.54, + "end": 8940.6, + "probability": 0.6779 + }, + { + "start": 8941.96, + "end": 8945.88, + "probability": 0.9835 + }, + { + "start": 8947.32, + "end": 8949.58, + "probability": 0.7698 + }, + { + "start": 8953.34, + "end": 8954.82, + "probability": 0.7384 + }, + { + "start": 8956.28, + "end": 8960.3, + "probability": 0.7802 + }, + { + "start": 8961.7, + "end": 8965.58, + "probability": 0.9382 + }, + { + "start": 8966.6, + "end": 8967.9, + "probability": 0.7805 + }, + { + "start": 8970.88, + "end": 8979.62, + "probability": 0.9322 + }, + { + "start": 8981.2, + "end": 8991.5, + "probability": 0.9911 + }, + { + "start": 8993.38, + "end": 9003.14, + "probability": 0.9265 + }, + { + "start": 9007.62, + "end": 9008.78, + "probability": 0.7882 + }, + { + "start": 9010.92, + "end": 9013.36, + "probability": 0.7358 + }, + { + "start": 9014.78, + "end": 9017.44, + "probability": 0.6646 + }, + { + "start": 9018.06, + "end": 9022.92, + "probability": 0.8795 + }, + { + "start": 9023.78, + "end": 9024.48, + "probability": 0.8167 + }, + { + "start": 9025.4, + "end": 9028.98, + "probability": 0.9692 + }, + { + "start": 9030.1, + "end": 9034.94, + "probability": 0.9059 + }, + { + "start": 9036.08, + "end": 9036.96, + "probability": 0.3334 + }, + { + "start": 9038.18, + "end": 9038.92, + "probability": 0.5163 + }, + { + "start": 9040.38, + "end": 9041.36, + "probability": 0.3554 + }, + { + "start": 9042.52, + "end": 9047.28, + "probability": 0.7459 + }, + { + "start": 9049.06, + "end": 9049.84, + "probability": 0.3062 + }, + { + "start": 9050.6, + "end": 9056.54, + "probability": 0.8837 + }, + { + "start": 9057.54, + "end": 9059.04, + "probability": 0.6691 + }, + { + "start": 9059.82, + "end": 9060.88, + "probability": 0.9852 + }, + { + "start": 9061.74, + "end": 9066.76, + "probability": 0.9957 + }, + { + "start": 9068.72, + "end": 9071.8, + "probability": 0.9949 + }, + { + "start": 9072.58, + "end": 9073.9, + "probability": 0.7868 + }, + { + "start": 9075.44, + "end": 9077.62, + "probability": 0.8856 + }, + { + "start": 9078.42, + "end": 9079.34, + "probability": 0.9226 + }, + { + "start": 9081.24, + "end": 9085.12, + "probability": 0.9683 + }, + { + "start": 9085.4, + "end": 9088.9, + "probability": 0.9617 + }, + { + "start": 9088.94, + "end": 9090.38, + "probability": 0.9599 + }, + { + "start": 9090.46, + "end": 9092.28, + "probability": 0.6894 + }, + { + "start": 9093.64, + "end": 9096.26, + "probability": 0.9983 + }, + { + "start": 9096.42, + "end": 9099.88, + "probability": 0.8906 + }, + { + "start": 9101.12, + "end": 9103.62, + "probability": 0.9964 + }, + { + "start": 9104.18, + "end": 9106.8, + "probability": 0.9841 + }, + { + "start": 9108.6, + "end": 9114.62, + "probability": 0.9656 + }, + { + "start": 9115.56, + "end": 9116.88, + "probability": 0.9619 + }, + { + "start": 9117.64, + "end": 9121.3, + "probability": 0.7507 + }, + { + "start": 9121.94, + "end": 9123.41, + "probability": 0.6088 + }, + { + "start": 9124.14, + "end": 9125.22, + "probability": 0.7009 + }, + { + "start": 9126.5, + "end": 9130.48, + "probability": 0.8178 + }, + { + "start": 9133.18, + "end": 9137.7, + "probability": 0.9905 + }, + { + "start": 9137.76, + "end": 9138.45, + "probability": 0.5605 + }, + { + "start": 9138.9, + "end": 9140.56, + "probability": 0.6413 + }, + { + "start": 9140.84, + "end": 9142.38, + "probability": 0.623 + }, + { + "start": 9143.48, + "end": 9144.8, + "probability": 0.055 + }, + { + "start": 9144.8, + "end": 9144.8, + "probability": 0.1325 + }, + { + "start": 9144.8, + "end": 9147.29, + "probability": 0.3469 + }, + { + "start": 9147.66, + "end": 9148.44, + "probability": 0.6793 + }, + { + "start": 9149.04, + "end": 9149.84, + "probability": 0.5948 + }, + { + "start": 9149.96, + "end": 9150.66, + "probability": 0.9044 + }, + { + "start": 9152.16, + "end": 9152.6, + "probability": 0.0354 + }, + { + "start": 9152.6, + "end": 9153.62, + "probability": 0.601 + }, + { + "start": 9153.64, + "end": 9155.84, + "probability": 0.9865 + }, + { + "start": 9156.18, + "end": 9158.4, + "probability": 0.941 + }, + { + "start": 9158.54, + "end": 9159.8, + "probability": 0.9602 + }, + { + "start": 9159.82, + "end": 9160.54, + "probability": 0.8988 + }, + { + "start": 9160.58, + "end": 9161.44, + "probability": 0.9248 + }, + { + "start": 9161.76, + "end": 9164.04, + "probability": 0.8687 + }, + { + "start": 9164.08, + "end": 9166.22, + "probability": 0.7642 + }, + { + "start": 9166.24, + "end": 9167.92, + "probability": 0.5354 + }, + { + "start": 9168.22, + "end": 9169.24, + "probability": 0.3863 + }, + { + "start": 9169.34, + "end": 9170.18, + "probability": 0.8981 + }, + { + "start": 9170.84, + "end": 9172.5, + "probability": 0.2609 + }, + { + "start": 9172.6, + "end": 9173.14, + "probability": 0.9032 + }, + { + "start": 9173.24, + "end": 9176.47, + "probability": 0.832 + }, + { + "start": 9177.14, + "end": 9178.72, + "probability": 0.7956 + }, + { + "start": 9178.82, + "end": 9179.76, + "probability": 0.3669 + }, + { + "start": 9179.8, + "end": 9180.66, + "probability": 0.8736 + }, + { + "start": 9181.26, + "end": 9186.18, + "probability": 0.95 + }, + { + "start": 9186.6, + "end": 9187.42, + "probability": 0.1915 + }, + { + "start": 9187.44, + "end": 9188.42, + "probability": 0.1018 + }, + { + "start": 9188.72, + "end": 9192.24, + "probability": 0.356 + }, + { + "start": 9192.3, + "end": 9199.27, + "probability": 0.5499 + }, + { + "start": 9199.66, + "end": 9199.66, + "probability": 0.0947 + }, + { + "start": 9199.66, + "end": 9200.76, + "probability": 0.2831 + }, + { + "start": 9201.6, + "end": 9203.78, + "probability": 0.4103 + }, + { + "start": 9203.78, + "end": 9204.78, + "probability": 0.8403 + }, + { + "start": 9205.06, + "end": 9205.82, + "probability": 0.6031 + }, + { + "start": 9206.68, + "end": 9210.72, + "probability": 0.19 + }, + { + "start": 9211.48, + "end": 9214.96, + "probability": 0.0847 + }, + { + "start": 9214.96, + "end": 9217.56, + "probability": 0.4019 + }, + { + "start": 9218.48, + "end": 9219.8, + "probability": 0.9548 + }, + { + "start": 9221.38, + "end": 9223.02, + "probability": 0.6689 + }, + { + "start": 9224.38, + "end": 9227.32, + "probability": 0.8525 + }, + { + "start": 9228.72, + "end": 9230.88, + "probability": 0.9059 + }, + { + "start": 9231.6, + "end": 9233.64, + "probability": 0.9479 + }, + { + "start": 9235.06, + "end": 9236.84, + "probability": 0.7385 + }, + { + "start": 9238.0, + "end": 9241.62, + "probability": 0.6687 + }, + { + "start": 9242.46, + "end": 9247.02, + "probability": 0.9946 + }, + { + "start": 9247.9, + "end": 9253.0, + "probability": 0.7371 + }, + { + "start": 9255.2, + "end": 9256.16, + "probability": 0.8381 + }, + { + "start": 9257.04, + "end": 9259.82, + "probability": 0.995 + }, + { + "start": 9261.28, + "end": 9263.34, + "probability": 0.985 + }, + { + "start": 9264.02, + "end": 9270.02, + "probability": 0.898 + }, + { + "start": 9271.1, + "end": 9274.46, + "probability": 0.9878 + }, + { + "start": 9275.3, + "end": 9276.38, + "probability": 0.6646 + }, + { + "start": 9276.8, + "end": 9283.42, + "probability": 0.9858 + }, + { + "start": 9284.12, + "end": 9286.0, + "probability": 0.6754 + }, + { + "start": 9286.62, + "end": 9288.58, + "probability": 0.9976 + }, + { + "start": 9289.26, + "end": 9292.6, + "probability": 0.9254 + }, + { + "start": 9292.9, + "end": 9297.9, + "probability": 0.9648 + }, + { + "start": 9298.56, + "end": 9301.3, + "probability": 0.9424 + }, + { + "start": 9301.78, + "end": 9302.98, + "probability": 0.6977 + }, + { + "start": 9303.1, + "end": 9306.26, + "probability": 0.9588 + }, + { + "start": 9306.26, + "end": 9313.54, + "probability": 0.9397 + }, + { + "start": 9314.08, + "end": 9316.3, + "probability": 0.9429 + }, + { + "start": 9317.1, + "end": 9320.02, + "probability": 0.8923 + }, + { + "start": 9320.24, + "end": 9321.66, + "probability": 0.7132 + }, + { + "start": 9322.12, + "end": 9324.88, + "probability": 0.6666 + }, + { + "start": 9324.98, + "end": 9327.3, + "probability": 0.7797 + }, + { + "start": 9327.68, + "end": 9329.46, + "probability": 0.6448 + }, + { + "start": 9329.66, + "end": 9333.6, + "probability": 0.5091 + }, + { + "start": 9333.6, + "end": 9336.56, + "probability": 0.8072 + }, + { + "start": 9337.18, + "end": 9343.96, + "probability": 0.8551 + }, + { + "start": 9344.4, + "end": 9350.14, + "probability": 0.9646 + }, + { + "start": 9350.14, + "end": 9353.28, + "probability": 0.9991 + }, + { + "start": 9353.84, + "end": 9354.56, + "probability": 0.5312 + }, + { + "start": 9354.76, + "end": 9358.3, + "probability": 0.6574 + }, + { + "start": 9358.3, + "end": 9361.62, + "probability": 0.9947 + }, + { + "start": 9361.78, + "end": 9364.44, + "probability": 0.697 + }, + { + "start": 9364.78, + "end": 9368.32, + "probability": 0.8705 + }, + { + "start": 9382.28, + "end": 9383.64, + "probability": 0.7591 + }, + { + "start": 9384.18, + "end": 9385.68, + "probability": 0.8914 + }, + { + "start": 9387.14, + "end": 9392.16, + "probability": 0.8275 + }, + { + "start": 9392.76, + "end": 9394.78, + "probability": 0.3651 + }, + { + "start": 9395.4, + "end": 9396.12, + "probability": 0.1864 + }, + { + "start": 9396.48, + "end": 9397.52, + "probability": 0.9104 + }, + { + "start": 9398.3, + "end": 9398.3, + "probability": 0.1022 + }, + { + "start": 9398.3, + "end": 9403.11, + "probability": 0.9656 + }, + { + "start": 9404.0, + "end": 9406.5, + "probability": 0.9863 + }, + { + "start": 9407.18, + "end": 9408.52, + "probability": 0.9668 + }, + { + "start": 9409.1, + "end": 9411.86, + "probability": 0.9296 + }, + { + "start": 9412.46, + "end": 9415.68, + "probability": 0.8584 + }, + { + "start": 9416.38, + "end": 9418.7, + "probability": 0.9871 + }, + { + "start": 9419.46, + "end": 9421.28, + "probability": 0.8552 + }, + { + "start": 9422.16, + "end": 9429.04, + "probability": 0.8092 + }, + { + "start": 9429.9, + "end": 9433.96, + "probability": 0.9667 + }, + { + "start": 9434.58, + "end": 9435.94, + "probability": 0.9272 + }, + { + "start": 9436.64, + "end": 9439.24, + "probability": 0.9873 + }, + { + "start": 9440.28, + "end": 9441.66, + "probability": 0.9487 + }, + { + "start": 9441.76, + "end": 9442.86, + "probability": 0.8766 + }, + { + "start": 9443.04, + "end": 9444.59, + "probability": 0.9016 + }, + { + "start": 9445.46, + "end": 9452.12, + "probability": 0.6619 + }, + { + "start": 9452.22, + "end": 9454.04, + "probability": 0.5986 + }, + { + "start": 9454.6, + "end": 9456.36, + "probability": 0.7236 + }, + { + "start": 9456.78, + "end": 9459.36, + "probability": 0.9602 + }, + { + "start": 9459.94, + "end": 9461.62, + "probability": 0.9985 + }, + { + "start": 9461.94, + "end": 9467.64, + "probability": 0.956 + }, + { + "start": 9468.72, + "end": 9469.62, + "probability": 0.8949 + }, + { + "start": 9471.19, + "end": 9475.72, + "probability": 0.9371 + }, + { + "start": 9475.86, + "end": 9480.52, + "probability": 0.9795 + }, + { + "start": 9481.66, + "end": 9481.9, + "probability": 0.2532 + }, + { + "start": 9482.02, + "end": 9482.66, + "probability": 0.5737 + }, + { + "start": 9482.78, + "end": 9484.16, + "probability": 0.9333 + }, + { + "start": 9484.64, + "end": 9486.68, + "probability": 0.8099 + }, + { + "start": 9487.08, + "end": 9489.16, + "probability": 0.9074 + }, + { + "start": 9489.28, + "end": 9491.02, + "probability": 0.6788 + }, + { + "start": 9491.32, + "end": 9493.82, + "probability": 0.8948 + }, + { + "start": 9494.22, + "end": 9495.9, + "probability": 0.8634 + }, + { + "start": 9495.9, + "end": 9496.22, + "probability": 0.6985 + }, + { + "start": 9496.42, + "end": 9498.16, + "probability": 0.8735 + }, + { + "start": 9498.44, + "end": 9499.58, + "probability": 0.7306 + }, + { + "start": 9499.7, + "end": 9501.92, + "probability": 0.9941 + }, + { + "start": 9502.34, + "end": 9504.66, + "probability": 0.8093 + }, + { + "start": 9505.08, + "end": 9507.06, + "probability": 0.56 + }, + { + "start": 9507.18, + "end": 9512.68, + "probability": 0.9438 + }, + { + "start": 9513.04, + "end": 9517.06, + "probability": 0.9839 + }, + { + "start": 9517.46, + "end": 9520.16, + "probability": 0.9941 + }, + { + "start": 9520.5, + "end": 9525.2, + "probability": 0.6558 + }, + { + "start": 9525.36, + "end": 9527.5, + "probability": 0.7392 + }, + { + "start": 9528.06, + "end": 9528.68, + "probability": 0.6092 + }, + { + "start": 9528.96, + "end": 9532.99, + "probability": 0.9279 + }, + { + "start": 9533.62, + "end": 9535.92, + "probability": 0.9955 + }, + { + "start": 9536.32, + "end": 9537.46, + "probability": 0.5842 + }, + { + "start": 9538.2, + "end": 9542.56, + "probability": 0.7255 + }, + { + "start": 9542.9, + "end": 9544.76, + "probability": 0.9263 + }, + { + "start": 9545.26, + "end": 9548.12, + "probability": 0.962 + }, + { + "start": 9548.16, + "end": 9549.7, + "probability": 0.6288 + }, + { + "start": 9549.98, + "end": 9549.98, + "probability": 0.0023 + }, + { + "start": 9549.98, + "end": 9551.96, + "probability": 0.3392 + }, + { + "start": 9552.2, + "end": 9553.2, + "probability": 0.9178 + }, + { + "start": 9556.26, + "end": 9558.48, + "probability": 0.5042 + }, + { + "start": 9559.02, + "end": 9560.8, + "probability": 0.7921 + }, + { + "start": 9581.72, + "end": 9581.72, + "probability": 0.1612 + }, + { + "start": 9581.72, + "end": 9581.72, + "probability": 0.1909 + }, + { + "start": 9581.72, + "end": 9581.72, + "probability": 0.081 + }, + { + "start": 9594.32, + "end": 9596.66, + "probability": 0.7783 + }, + { + "start": 9597.82, + "end": 9601.76, + "probability": 0.9341 + }, + { + "start": 9601.76, + "end": 9606.08, + "probability": 0.9983 + }, + { + "start": 9607.4, + "end": 9607.88, + "probability": 0.8089 + }, + { + "start": 9607.94, + "end": 9609.6, + "probability": 0.9932 + }, + { + "start": 9610.06, + "end": 9614.16, + "probability": 0.9927 + }, + { + "start": 9614.16, + "end": 9620.04, + "probability": 0.9977 + }, + { + "start": 9620.78, + "end": 9622.38, + "probability": 0.5795 + }, + { + "start": 9622.96, + "end": 9623.0, + "probability": 0.0143 + }, + { + "start": 9623.0, + "end": 9623.46, + "probability": 0.7377 + }, + { + "start": 9623.5, + "end": 9626.04, + "probability": 0.8794 + }, + { + "start": 9626.54, + "end": 9627.56, + "probability": 0.9943 + }, + { + "start": 9627.92, + "end": 9629.78, + "probability": 0.8352 + }, + { + "start": 9629.88, + "end": 9631.04, + "probability": 0.1478 + }, + { + "start": 9631.04, + "end": 9631.04, + "probability": 0.0191 + }, + { + "start": 9631.04, + "end": 9632.2, + "probability": 0.4402 + }, + { + "start": 9632.22, + "end": 9634.92, + "probability": 0.9382 + }, + { + "start": 9635.42, + "end": 9637.98, + "probability": 0.9208 + }, + { + "start": 9638.06, + "end": 9638.6, + "probability": 0.9229 + }, + { + "start": 9640.26, + "end": 9640.58, + "probability": 0.3512 + }, + { + "start": 9640.58, + "end": 9641.32, + "probability": 0.0363 + }, + { + "start": 9641.44, + "end": 9642.14, + "probability": 0.5684 + }, + { + "start": 9642.16, + "end": 9643.26, + "probability": 0.7517 + }, + { + "start": 9643.42, + "end": 9643.9, + "probability": 0.4785 + }, + { + "start": 9644.1, + "end": 9644.54, + "probability": 0.7925 + }, + { + "start": 9644.62, + "end": 9646.18, + "probability": 0.9673 + }, + { + "start": 9646.18, + "end": 9646.68, + "probability": 0.6503 + }, + { + "start": 9647.96, + "end": 9653.34, + "probability": 0.8215 + }, + { + "start": 9653.92, + "end": 9656.88, + "probability": 0.9945 + }, + { + "start": 9657.48, + "end": 9662.26, + "probability": 0.9957 + }, + { + "start": 9662.26, + "end": 9665.16, + "probability": 0.9985 + }, + { + "start": 9665.24, + "end": 9665.6, + "probability": 0.9174 + }, + { + "start": 9667.16, + "end": 9670.58, + "probability": 0.9772 + }, + { + "start": 9671.34, + "end": 9674.32, + "probability": 0.7634 + }, + { + "start": 9675.02, + "end": 9677.88, + "probability": 0.958 + }, + { + "start": 9678.26, + "end": 9679.99, + "probability": 0.9731 + }, + { + "start": 9680.56, + "end": 9682.84, + "probability": 0.9048 + }, + { + "start": 9682.96, + "end": 9685.88, + "probability": 0.9971 + }, + { + "start": 9687.36, + "end": 9691.68, + "probability": 0.995 + }, + { + "start": 9692.18, + "end": 9694.12, + "probability": 0.9975 + }, + { + "start": 9694.54, + "end": 9696.42, + "probability": 0.9071 + }, + { + "start": 9696.8, + "end": 9697.8, + "probability": 0.9546 + }, + { + "start": 9699.1, + "end": 9701.42, + "probability": 0.9447 + }, + { + "start": 9701.48, + "end": 9703.54, + "probability": 0.9939 + }, + { + "start": 9703.92, + "end": 9707.06, + "probability": 0.9797 + }, + { + "start": 9707.6, + "end": 9711.22, + "probability": 0.8372 + }, + { + "start": 9712.06, + "end": 9715.3, + "probability": 0.9967 + }, + { + "start": 9715.92, + "end": 9719.24, + "probability": 0.9966 + }, + { + "start": 9719.76, + "end": 9723.4, + "probability": 0.9769 + }, + { + "start": 9724.08, + "end": 9725.46, + "probability": 0.8852 + }, + { + "start": 9726.0, + "end": 9728.66, + "probability": 0.7974 + }, + { + "start": 9729.38, + "end": 9733.2, + "probability": 0.9621 + }, + { + "start": 9733.66, + "end": 9740.22, + "probability": 0.9844 + }, + { + "start": 9740.78, + "end": 9743.3, + "probability": 0.9797 + }, + { + "start": 9747.04, + "end": 9747.06, + "probability": 0.0087 + }, + { + "start": 9747.06, + "end": 9747.56, + "probability": 0.9046 + }, + { + "start": 9748.22, + "end": 9750.98, + "probability": 0.7873 + }, + { + "start": 9751.8, + "end": 9753.8, + "probability": 0.897 + }, + { + "start": 9754.1, + "end": 9755.81, + "probability": 0.6878 + }, + { + "start": 9756.02, + "end": 9757.68, + "probability": 0.874 + }, + { + "start": 9757.68, + "end": 9758.58, + "probability": 0.7246 + }, + { + "start": 9758.78, + "end": 9761.0, + "probability": 0.9698 + }, + { + "start": 9761.02, + "end": 9761.2, + "probability": 0.6881 + }, + { + "start": 9762.16, + "end": 9765.48, + "probability": 0.99 + }, + { + "start": 9765.48, + "end": 9767.62, + "probability": 0.9318 + }, + { + "start": 9767.84, + "end": 9769.96, + "probability": 0.9863 + }, + { + "start": 9770.18, + "end": 9771.34, + "probability": 0.9268 + }, + { + "start": 9772.3, + "end": 9773.92, + "probability": 0.9917 + }, + { + "start": 9774.5, + "end": 9777.28, + "probability": 0.9906 + }, + { + "start": 9777.68, + "end": 9781.48, + "probability": 0.9463 + }, + { + "start": 9781.54, + "end": 9784.22, + "probability": 0.9408 + }, + { + "start": 9785.0, + "end": 9789.96, + "probability": 0.9683 + }, + { + "start": 9791.02, + "end": 9792.36, + "probability": 0.4803 + }, + { + "start": 9792.94, + "end": 9793.4, + "probability": 0.9132 + }, + { + "start": 9793.52, + "end": 9798.56, + "probability": 0.9941 + }, + { + "start": 9798.56, + "end": 9803.34, + "probability": 0.9986 + }, + { + "start": 9803.34, + "end": 9807.16, + "probability": 0.9975 + }, + { + "start": 9807.62, + "end": 9808.18, + "probability": 0.8218 + }, + { + "start": 9808.82, + "end": 9809.2, + "probability": 0.3399 + }, + { + "start": 9810.56, + "end": 9810.82, + "probability": 0.3317 + }, + { + "start": 9810.9, + "end": 9813.94, + "probability": 0.9594 + }, + { + "start": 9814.06, + "end": 9815.22, + "probability": 0.8298 + }, + { + "start": 9815.38, + "end": 9815.72, + "probability": 0.6401 + }, + { + "start": 9815.84, + "end": 9816.82, + "probability": 0.9217 + }, + { + "start": 9817.14, + "end": 9817.78, + "probability": 0.2699 + }, + { + "start": 9817.98, + "end": 9824.26, + "probability": 0.9723 + }, + { + "start": 9824.56, + "end": 9825.68, + "probability": 0.9597 + }, + { + "start": 9825.8, + "end": 9830.36, + "probability": 0.9366 + }, + { + "start": 9830.9, + "end": 9831.76, + "probability": 0.8435 + }, + { + "start": 9832.5, + "end": 9833.22, + "probability": 0.826 + }, + { + "start": 9835.12, + "end": 9839.4, + "probability": 0.9858 + }, + { + "start": 9839.84, + "end": 9840.18, + "probability": 0.295 + }, + { + "start": 9840.3, + "end": 9841.92, + "probability": 0.9871 + }, + { + "start": 9843.9, + "end": 9845.94, + "probability": 0.9939 + }, + { + "start": 9846.66, + "end": 9847.98, + "probability": 0.8243 + }, + { + "start": 9848.08, + "end": 9849.46, + "probability": 0.8192 + }, + { + "start": 9851.9, + "end": 9853.26, + "probability": 0.6238 + }, + { + "start": 9853.8, + "end": 9854.5, + "probability": 0.7202 + }, + { + "start": 9854.74, + "end": 9855.64, + "probability": 0.6915 + }, + { + "start": 9856.3, + "end": 9856.84, + "probability": 0.6722 + }, + { + "start": 9877.1, + "end": 9877.34, + "probability": 0.0219 + }, + { + "start": 9877.34, + "end": 9877.34, + "probability": 0.0091 + }, + { + "start": 9877.34, + "end": 9877.34, + "probability": 0.0343 + }, + { + "start": 9877.34, + "end": 9877.34, + "probability": 0.1182 + }, + { + "start": 9877.34, + "end": 9879.36, + "probability": 0.2798 + }, + { + "start": 9880.74, + "end": 9881.48, + "probability": 0.2712 + }, + { + "start": 9882.98, + "end": 9883.9, + "probability": 0.104 + }, + { + "start": 9883.9, + "end": 9889.28, + "probability": 0.694 + }, + { + "start": 9889.38, + "end": 9889.94, + "probability": 0.7537 + }, + { + "start": 9890.52, + "end": 9891.96, + "probability": 0.8577 + }, + { + "start": 9892.08, + "end": 9892.32, + "probability": 0.0078 + }, + { + "start": 9892.32, + "end": 9896.02, + "probability": 0.489 + }, + { + "start": 9896.28, + "end": 9897.9, + "probability": 0.6464 + }, + { + "start": 9898.34, + "end": 9900.5, + "probability": 0.6146 + }, + { + "start": 9901.34, + "end": 9902.46, + "probability": 0.3549 + }, + { + "start": 9902.5, + "end": 9903.69, + "probability": 0.7521 + }, + { + "start": 9903.88, + "end": 9904.06, + "probability": 0.0352 + }, + { + "start": 9904.06, + "end": 9905.02, + "probability": 0.52 + }, + { + "start": 9905.4, + "end": 9906.68, + "probability": 0.8125 + }, + { + "start": 9907.66, + "end": 9908.58, + "probability": 0.6379 + }, + { + "start": 9908.86, + "end": 9909.94, + "probability": 0.6308 + }, + { + "start": 9909.98, + "end": 9911.08, + "probability": 0.994 + }, + { + "start": 9911.68, + "end": 9911.78, + "probability": 0.4667 + }, + { + "start": 9912.5, + "end": 9913.88, + "probability": 0.4914 + }, + { + "start": 9915.68, + "end": 9921.08, + "probability": 0.1905 + }, + { + "start": 9921.96, + "end": 9923.83, + "probability": 0.1691 + }, + { + "start": 9924.72, + "end": 9927.1, + "probability": 0.135 + }, + { + "start": 9927.96, + "end": 9936.64, + "probability": 0.5422 + }, + { + "start": 9937.32, + "end": 9937.93, + "probability": 0.0059 + }, + { + "start": 9938.92, + "end": 9940.32, + "probability": 0.9069 + }, + { + "start": 9940.42, + "end": 9942.3, + "probability": 0.9943 + }, + { + "start": 9942.5, + "end": 9943.44, + "probability": 0.0745 + }, + { + "start": 9943.44, + "end": 9943.44, + "probability": 0.2336 + }, + { + "start": 9943.44, + "end": 9946.24, + "probability": 0.4385 + }, + { + "start": 9946.74, + "end": 9952.44, + "probability": 0.8789 + }, + { + "start": 9952.44, + "end": 9953.08, + "probability": 0.0906 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.0, + "end": 9973.0, + "probability": 0.0 + }, + { + "start": 9973.28, + "end": 9973.46, + "probability": 0.1153 + }, + { + "start": 9973.46, + "end": 9974.37, + "probability": 0.3212 + }, + { + "start": 9975.6, + "end": 9976.58, + "probability": 0.661 + }, + { + "start": 9977.5, + "end": 9978.7, + "probability": 0.5529 + }, + { + "start": 9978.7, + "end": 9979.0, + "probability": 0.3543 + }, + { + "start": 9979.0, + "end": 9979.0, + "probability": 0.0409 + }, + { + "start": 9979.0, + "end": 9979.0, + "probability": 0.0873 + }, + { + "start": 9979.0, + "end": 9982.14, + "probability": 0.588 + }, + { + "start": 9982.14, + "end": 9985.88, + "probability": 0.6602 + }, + { + "start": 9986.06, + "end": 9986.62, + "probability": 0.4153 + }, + { + "start": 9986.86, + "end": 9991.9, + "probability": 0.9539 + }, + { + "start": 9992.06, + "end": 9994.0, + "probability": 0.79 + }, + { + "start": 9994.66, + "end": 9997.22, + "probability": 0.0455 + }, + { + "start": 9998.06, + "end": 10000.66, + "probability": 0.8261 + }, + { + "start": 10001.0, + "end": 10003.72, + "probability": 0.0068 + }, + { + "start": 10003.72, + "end": 10003.72, + "probability": 0.11 + }, + { + "start": 10003.72, + "end": 10005.63, + "probability": 0.5773 + }, + { + "start": 10006.24, + "end": 10006.24, + "probability": 0.1169 + }, + { + "start": 10006.24, + "end": 10007.29, + "probability": 0.6911 + }, + { + "start": 10007.58, + "end": 10009.98, + "probability": 0.7994 + }, + { + "start": 10010.16, + "end": 10013.48, + "probability": 0.7426 + }, + { + "start": 10014.02, + "end": 10019.0, + "probability": 0.9452 + }, + { + "start": 10019.38, + "end": 10023.7, + "probability": 0.9449 + }, + { + "start": 10024.18, + "end": 10025.44, + "probability": 0.5059 + }, + { + "start": 10025.48, + "end": 10026.7, + "probability": 0.7752 + }, + { + "start": 10028.52, + "end": 10030.02, + "probability": 0.9287 + }, + { + "start": 10031.46, + "end": 10034.36, + "probability": 0.5581 + }, + { + "start": 10039.54, + "end": 10040.86, + "probability": 0.2819 + }, + { + "start": 10042.46, + "end": 10042.46, + "probability": 0.0742 + }, + { + "start": 10042.46, + "end": 10043.72, + "probability": 0.0096 + }, + { + "start": 10047.48, + "end": 10048.98, + "probability": 0.08 + }, + { + "start": 10048.98, + "end": 10049.2, + "probability": 0.0596 + }, + { + "start": 10051.1, + "end": 10057.92, + "probability": 0.073 + }, + { + "start": 10059.44, + "end": 10064.15, + "probability": 0.0436 + }, + { + "start": 10065.04, + "end": 10069.82, + "probability": 0.1189 + }, + { + "start": 10072.68, + "end": 10074.14, + "probability": 0.0315 + }, + { + "start": 10075.8, + "end": 10076.08, + "probability": 0.0919 + }, + { + "start": 10077.96, + "end": 10078.48, + "probability": 0.0419 + }, + { + "start": 10078.48, + "end": 10078.48, + "probability": 0.1403 + }, + { + "start": 10078.48, + "end": 10078.48, + "probability": 0.0352 + }, + { + "start": 10078.48, + "end": 10078.48, + "probability": 0.186 + }, + { + "start": 10078.48, + "end": 10079.22, + "probability": 0.0053 + }, + { + "start": 10091.96, + "end": 10093.82, + "probability": 0.0092 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10094.0, + "end": 10094.0, + "probability": 0.0 + }, + { + "start": 10097.4, + "end": 10100.46, + "probability": 0.9778 + }, + { + "start": 10100.54, + "end": 10105.82, + "probability": 0.9647 + }, + { + "start": 10106.6, + "end": 10107.52, + "probability": 0.7408 + }, + { + "start": 10107.7, + "end": 10112.92, + "probability": 0.8312 + }, + { + "start": 10113.22, + "end": 10116.58, + "probability": 0.2153 + }, + { + "start": 10117.06, + "end": 10117.7, + "probability": 0.3852 + }, + { + "start": 10117.76, + "end": 10120.16, + "probability": 0.6842 + }, + { + "start": 10120.18, + "end": 10120.84, + "probability": 0.7585 + }, + { + "start": 10120.86, + "end": 10121.91, + "probability": 0.7109 + }, + { + "start": 10122.38, + "end": 10122.74, + "probability": 0.6588 + }, + { + "start": 10122.84, + "end": 10126.28, + "probability": 0.9282 + }, + { + "start": 10126.8, + "end": 10127.92, + "probability": 0.8828 + }, + { + "start": 10128.93, + "end": 10132.0, + "probability": 0.9863 + }, + { + "start": 10132.44, + "end": 10132.92, + "probability": 0.1266 + }, + { + "start": 10132.92, + "end": 10134.31, + "probability": 0.5248 + }, + { + "start": 10134.62, + "end": 10135.84, + "probability": 0.5381 + }, + { + "start": 10135.92, + "end": 10139.6, + "probability": 0.759 + }, + { + "start": 10140.36, + "end": 10141.26, + "probability": 0.3579 + }, + { + "start": 10141.6, + "end": 10143.52, + "probability": 0.5077 + }, + { + "start": 10143.96, + "end": 10144.41, + "probability": 0.2415 + }, + { + "start": 10145.04, + "end": 10145.58, + "probability": 0.198 + }, + { + "start": 10146.14, + "end": 10148.1, + "probability": 0.4984 + }, + { + "start": 10148.22, + "end": 10149.36, + "probability": 0.3763 + }, + { + "start": 10151.26, + "end": 10152.5, + "probability": 0.1274 + }, + { + "start": 10152.5, + "end": 10154.28, + "probability": 0.2185 + }, + { + "start": 10154.32, + "end": 10155.12, + "probability": 0.6292 + }, + { + "start": 10155.24, + "end": 10159.3, + "probability": 0.9044 + }, + { + "start": 10159.54, + "end": 10161.4, + "probability": 0.5537 + }, + { + "start": 10161.54, + "end": 10162.9, + "probability": 0.4069 + }, + { + "start": 10163.74, + "end": 10164.32, + "probability": 0.4303 + }, + { + "start": 10166.18, + "end": 10166.36, + "probability": 0.1321 + }, + { + "start": 10168.96, + "end": 10169.92, + "probability": 0.998 + }, + { + "start": 10170.94, + "end": 10172.44, + "probability": 0.8929 + }, + { + "start": 10173.08, + "end": 10175.92, + "probability": 0.7786 + }, + { + "start": 10176.44, + "end": 10178.84, + "probability": 0.9613 + }, + { + "start": 10180.24, + "end": 10181.58, + "probability": 0.6405 + }, + { + "start": 10182.3, + "end": 10182.3, + "probability": 0.2324 + }, + { + "start": 10182.3, + "end": 10184.52, + "probability": 0.6347 + }, + { + "start": 10184.84, + "end": 10186.22, + "probability": 0.7457 + }, + { + "start": 10188.06, + "end": 10191.86, + "probability": 0.9912 + }, + { + "start": 10191.92, + "end": 10192.68, + "probability": 0.2423 + }, + { + "start": 10192.72, + "end": 10193.16, + "probability": 0.2759 + }, + { + "start": 10193.54, + "end": 10194.27, + "probability": 0.3171 + }, + { + "start": 10195.08, + "end": 10196.7, + "probability": 0.46 + }, + { + "start": 10196.76, + "end": 10196.9, + "probability": 0.1334 + }, + { + "start": 10196.9, + "end": 10196.9, + "probability": 0.4314 + }, + { + "start": 10196.9, + "end": 10198.22, + "probability": 0.5935 + }, + { + "start": 10198.56, + "end": 10201.06, + "probability": 0.9724 + }, + { + "start": 10201.14, + "end": 10202.88, + "probability": 0.8071 + }, + { + "start": 10203.04, + "end": 10203.6, + "probability": 0.2581 + }, + { + "start": 10203.6, + "end": 10204.2, + "probability": 0.4265 + }, + { + "start": 10205.4, + "end": 10205.96, + "probability": 0.7476 + }, + { + "start": 10206.22, + "end": 10206.42, + "probability": 0.7142 + }, + { + "start": 10207.04, + "end": 10207.48, + "probability": 0.3868 + }, + { + "start": 10208.0, + "end": 10210.36, + "probability": 0.634 + }, + { + "start": 10210.62, + "end": 10212.2, + "probability": 0.9631 + }, + { + "start": 10212.2, + "end": 10213.28, + "probability": 0.7068 + }, + { + "start": 10213.6, + "end": 10215.62, + "probability": 0.9956 + }, + { + "start": 10216.94, + "end": 10219.64, + "probability": 0.8061 + }, + { + "start": 10219.64, + "end": 10219.74, + "probability": 0.1024 + }, + { + "start": 10219.92, + "end": 10220.54, + "probability": 0.5137 + }, + { + "start": 10220.64, + "end": 10221.04, + "probability": 0.8749 + }, + { + "start": 10221.32, + "end": 10221.34, + "probability": 0.2662 + }, + { + "start": 10225.4, + "end": 10225.73, + "probability": 0.0443 + }, + { + "start": 10225.76, + "end": 10232.32, + "probability": 0.1629 + }, + { + "start": 10232.48, + "end": 10232.64, + "probability": 0.1375 + }, + { + "start": 10232.64, + "end": 10232.64, + "probability": 0.2397 + }, + { + "start": 10232.64, + "end": 10232.64, + "probability": 0.2563 + }, + { + "start": 10232.7, + "end": 10232.78, + "probability": 0.0934 + }, + { + "start": 10236.16, + "end": 10236.88, + "probability": 0.0249 + }, + { + "start": 10237.16, + "end": 10237.16, + "probability": 0.0346 + }, + { + "start": 10237.16, + "end": 10239.72, + "probability": 0.5693 + }, + { + "start": 10239.72, + "end": 10240.02, + "probability": 0.0408 + }, + { + "start": 10240.02, + "end": 10241.5, + "probability": 0.6981 + }, + { + "start": 10241.5, + "end": 10242.13, + "probability": 0.1071 + }, + { + "start": 10242.34, + "end": 10244.76, + "probability": 0.2923 + }, + { + "start": 10244.76, + "end": 10246.87, + "probability": 0.2542 + }, + { + "start": 10247.36, + "end": 10251.92, + "probability": 0.0481 + }, + { + "start": 10251.92, + "end": 10253.81, + "probability": 0.3855 + }, + { + "start": 10253.82, + "end": 10254.14, + "probability": 0.0271 + }, + { + "start": 10254.66, + "end": 10255.52, + "probability": 0.3687 + }, + { + "start": 10255.74, + "end": 10256.84, + "probability": 0.0371 + }, + { + "start": 10256.84, + "end": 10257.1, + "probability": 0.1054 + }, + { + "start": 10257.28, + "end": 10257.38, + "probability": 0.1459 + }, + { + "start": 10257.38, + "end": 10259.51, + "probability": 0.016 + }, + { + "start": 10261.38, + "end": 10262.66, + "probability": 0.0033 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.0, + "end": 10291.0, + "probability": 0.0 + }, + { + "start": 10291.26, + "end": 10294.9, + "probability": 0.7076 + }, + { + "start": 10295.36, + "end": 10298.28, + "probability": 0.8058 + }, + { + "start": 10298.86, + "end": 10304.5, + "probability": 0.8474 + }, + { + "start": 10305.7, + "end": 10306.48, + "probability": 0.9362 + }, + { + "start": 10307.38, + "end": 10312.3, + "probability": 0.8954 + }, + { + "start": 10312.76, + "end": 10314.2, + "probability": 0.7677 + }, + { + "start": 10314.94, + "end": 10317.68, + "probability": 0.8478 + }, + { + "start": 10317.78, + "end": 10323.22, + "probability": 0.9646 + }, + { + "start": 10324.08, + "end": 10328.24, + "probability": 0.9763 + }, + { + "start": 10329.04, + "end": 10336.12, + "probability": 0.9673 + }, + { + "start": 10338.04, + "end": 10338.92, + "probability": 0.0301 + }, + { + "start": 10339.12, + "end": 10345.56, + "probability": 0.0491 + }, + { + "start": 10354.24, + "end": 10357.7, + "probability": 0.0722 + }, + { + "start": 10359.4, + "end": 10364.08, + "probability": 0.1009 + }, + { + "start": 10364.24, + "end": 10365.26, + "probability": 0.0738 + }, + { + "start": 10365.98, + "end": 10366.64, + "probability": 0.0167 + }, + { + "start": 10369.0, + "end": 10371.42, + "probability": 0.4314 + }, + { + "start": 10373.26, + "end": 10374.56, + "probability": 0.0122 + }, + { + "start": 10377.7, + "end": 10378.84, + "probability": 0.1552 + }, + { + "start": 10379.04, + "end": 10382.78, + "probability": 0.0242 + }, + { + "start": 10382.78, + "end": 10385.34, + "probability": 0.1015 + }, + { + "start": 10386.92, + "end": 10388.2, + "probability": 0.0791 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.0, + "end": 10440.0, + "probability": 0.0 + }, + { + "start": 10440.16, + "end": 10440.84, + "probability": 0.0312 + }, + { + "start": 10440.84, + "end": 10442.9, + "probability": 0.1079 + }, + { + "start": 10443.96, + "end": 10444.18, + "probability": 0.1343 + }, + { + "start": 10444.18, + "end": 10448.7, + "probability": 0.5913 + }, + { + "start": 10449.24, + "end": 10452.26, + "probability": 0.6053 + }, + { + "start": 10452.98, + "end": 10454.66, + "probability": 0.1835 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.16, + "end": 10572.98, + "probability": 0.9604 + }, + { + "start": 10572.98, + "end": 10580.62, + "probability": 0.9195 + }, + { + "start": 10581.84, + "end": 10582.66, + "probability": 0.9798 + }, + { + "start": 10583.44, + "end": 10584.12, + "probability": 0.7448 + }, + { + "start": 10584.72, + "end": 10586.12, + "probability": 0.9647 + }, + { + "start": 10586.32, + "end": 10587.16, + "probability": 0.5902 + }, + { + "start": 10587.78, + "end": 10591.5, + "probability": 0.9913 + }, + { + "start": 10591.5, + "end": 10596.02, + "probability": 0.9922 + }, + { + "start": 10596.94, + "end": 10597.72, + "probability": 0.8607 + }, + { + "start": 10598.98, + "end": 10599.87, + "probability": 0.7058 + }, + { + "start": 10599.96, + "end": 10600.66, + "probability": 0.8879 + }, + { + "start": 10601.04, + "end": 10606.64, + "probability": 0.9802 + }, + { + "start": 10607.16, + "end": 10610.88, + "probability": 0.9523 + }, + { + "start": 10611.6, + "end": 10612.82, + "probability": 0.8524 + }, + { + "start": 10613.46, + "end": 10616.94, + "probability": 0.9808 + }, + { + "start": 10618.46, + "end": 10621.88, + "probability": 0.9972 + }, + { + "start": 10622.62, + "end": 10625.92, + "probability": 0.9564 + }, + { + "start": 10626.66, + "end": 10629.04, + "probability": 0.7596 + }, + { + "start": 10629.96, + "end": 10631.18, + "probability": 0.9175 + }, + { + "start": 10631.2, + "end": 10633.02, + "probability": 0.7311 + }, + { + "start": 10634.22, + "end": 10635.76, + "probability": 0.8297 + }, + { + "start": 10635.92, + "end": 10636.32, + "probability": 0.839 + }, + { + "start": 10636.38, + "end": 10641.54, + "probability": 0.9246 + }, + { + "start": 10641.66, + "end": 10642.1, + "probability": 0.8771 + }, + { + "start": 10643.96, + "end": 10645.06, + "probability": 0.8231 + }, + { + "start": 10645.72, + "end": 10646.5, + "probability": 0.1368 + }, + { + "start": 10646.96, + "end": 10647.96, + "probability": 0.2565 + }, + { + "start": 10648.12, + "end": 10651.92, + "probability": 0.1786 + }, + { + "start": 10652.3, + "end": 10653.02, + "probability": 0.2972 + }, + { + "start": 10655.46, + "end": 10657.36, + "probability": 0.0432 + }, + { + "start": 10657.36, + "end": 10657.36, + "probability": 0.0917 + }, + { + "start": 10657.36, + "end": 10659.92, + "probability": 0.0478 + }, + { + "start": 10659.92, + "end": 10660.02, + "probability": 0.0112 + }, + { + "start": 10660.62, + "end": 10660.86, + "probability": 0.1315 + }, + { + "start": 10660.86, + "end": 10661.18, + "probability": 0.0768 + }, + { + "start": 10661.38, + "end": 10661.38, + "probability": 0.1708 + }, + { + "start": 10661.7, + "end": 10661.72, + "probability": 0.4509 + }, + { + "start": 10662.12, + "end": 10663.89, + "probability": 0.2524 + }, + { + "start": 10664.22, + "end": 10664.29, + "probability": 0.248 + }, + { + "start": 10666.2, + "end": 10668.68, + "probability": 0.5502 + }, + { + "start": 10669.72, + "end": 10670.28, + "probability": 0.112 + }, + { + "start": 10670.76, + "end": 10672.09, + "probability": 0.5034 + }, + { + "start": 10673.04, + "end": 10673.92, + "probability": 0.279 + }, + { + "start": 10674.12, + "end": 10674.68, + "probability": 0.3597 + }, + { + "start": 10674.88, + "end": 10677.16, + "probability": 0.1725 + }, + { + "start": 10677.3, + "end": 10677.38, + "probability": 0.1843 + }, + { + "start": 10677.38, + "end": 10679.8, + "probability": 0.3612 + }, + { + "start": 10681.28, + "end": 10684.02, + "probability": 0.3497 + }, + { + "start": 10685.98, + "end": 10689.38, + "probability": 0.1261 + }, + { + "start": 10689.66, + "end": 10689.7, + "probability": 0.0114 + }, + { + "start": 10689.7, + "end": 10694.2, + "probability": 0.9817 + }, + { + "start": 10694.2, + "end": 10699.7, + "probability": 0.9936 + }, + { + "start": 10700.58, + "end": 10702.08, + "probability": 0.9435 + }, + { + "start": 10702.6, + "end": 10704.66, + "probability": 0.9683 + }, + { + "start": 10705.08, + "end": 10709.92, + "probability": 0.8596 + }, + { + "start": 10710.1, + "end": 10712.8, + "probability": 0.6934 + }, + { + "start": 10713.58, + "end": 10717.54, + "probability": 0.9958 + }, + { + "start": 10718.16, + "end": 10720.6, + "probability": 0.7842 + }, + { + "start": 10720.6, + "end": 10723.32, + "probability": 0.9958 + }, + { + "start": 10723.66, + "end": 10728.14, + "probability": 0.7662 + }, + { + "start": 10728.14, + "end": 10732.7, + "probability": 0.9948 + }, + { + "start": 10734.04, + "end": 10736.68, + "probability": 0.9486 + }, + { + "start": 10737.32, + "end": 10740.02, + "probability": 0.812 + }, + { + "start": 10740.6, + "end": 10745.3, + "probability": 0.9945 + }, + { + "start": 10746.26, + "end": 10750.04, + "probability": 0.9688 + }, + { + "start": 10750.86, + "end": 10753.2, + "probability": 0.9926 + }, + { + "start": 10753.36, + "end": 10755.48, + "probability": 0.9024 + }, + { + "start": 10755.94, + "end": 10758.56, + "probability": 0.9935 + }, + { + "start": 10759.16, + "end": 10762.7, + "probability": 0.9912 + }, + { + "start": 10763.34, + "end": 10766.8, + "probability": 0.9886 + }, + { + "start": 10766.8, + "end": 10770.86, + "probability": 0.933 + }, + { + "start": 10771.8, + "end": 10773.02, + "probability": 0.7534 + }, + { + "start": 10773.94, + "end": 10777.58, + "probability": 0.9262 + }, + { + "start": 10777.98, + "end": 10780.7, + "probability": 0.6362 + }, + { + "start": 10781.26, + "end": 10784.72, + "probability": 0.7227 + }, + { + "start": 10785.66, + "end": 10788.06, + "probability": 0.9907 + }, + { + "start": 10788.36, + "end": 10793.96, + "probability": 0.9852 + }, + { + "start": 10794.62, + "end": 10800.54, + "probability": 0.9925 + }, + { + "start": 10801.06, + "end": 10805.56, + "probability": 0.9727 + }, + { + "start": 10805.56, + "end": 10813.76, + "probability": 0.9847 + }, + { + "start": 10814.28, + "end": 10816.48, + "probability": 0.9667 + }, + { + "start": 10817.16, + "end": 10819.56, + "probability": 0.9884 + }, + { + "start": 10820.18, + "end": 10820.24, + "probability": 0.6533 + }, + { + "start": 10823.08, + "end": 10828.18, + "probability": 0.972 + }, + { + "start": 10828.46, + "end": 10833.66, + "probability": 0.9987 + }, + { + "start": 10834.3, + "end": 10835.14, + "probability": 0.6486 + }, + { + "start": 10836.16, + "end": 10838.22, + "probability": 0.8785 + }, + { + "start": 10838.32, + "end": 10839.66, + "probability": 0.9812 + }, + { + "start": 10839.74, + "end": 10840.88, + "probability": 0.9932 + }, + { + "start": 10841.38, + "end": 10847.16, + "probability": 0.9475 + }, + { + "start": 10847.16, + "end": 10852.94, + "probability": 0.7858 + }, + { + "start": 10853.46, + "end": 10857.68, + "probability": 0.8872 + }, + { + "start": 10858.26, + "end": 10861.8, + "probability": 0.8486 + }, + { + "start": 10861.8, + "end": 10865.42, + "probability": 0.7463 + }, + { + "start": 10865.76, + "end": 10867.92, + "probability": 0.8 + }, + { + "start": 10868.12, + "end": 10869.08, + "probability": 0.8342 + }, + { + "start": 10869.36, + "end": 10871.3, + "probability": 0.9953 + }, + { + "start": 10871.3, + "end": 10874.0, + "probability": 0.838 + }, + { + "start": 10874.66, + "end": 10875.78, + "probability": 0.4162 + }, + { + "start": 10875.96, + "end": 10877.22, + "probability": 0.8286 + }, + { + "start": 10877.28, + "end": 10878.08, + "probability": 0.8265 + }, + { + "start": 10878.4, + "end": 10883.16, + "probability": 0.9792 + }, + { + "start": 10883.48, + "end": 10883.64, + "probability": 0.3929 + }, + { + "start": 10884.3, + "end": 10889.78, + "probability": 0.9683 + }, + { + "start": 10889.82, + "end": 10897.28, + "probability": 0.9922 + }, + { + "start": 10897.44, + "end": 10898.64, + "probability": 0.8304 + }, + { + "start": 10899.0, + "end": 10901.04, + "probability": 0.8337 + }, + { + "start": 10901.08, + "end": 10902.34, + "probability": 0.6339 + }, + { + "start": 10906.68, + "end": 10907.88, + "probability": 0.5813 + }, + { + "start": 10908.1, + "end": 10910.14, + "probability": 0.804 + }, + { + "start": 10910.7, + "end": 10912.06, + "probability": 0.9805 + }, + { + "start": 10912.38, + "end": 10913.48, + "probability": 0.8647 + }, + { + "start": 10914.52, + "end": 10915.46, + "probability": 0.8557 + }, + { + "start": 10915.62, + "end": 10916.96, + "probability": 0.7524 + }, + { + "start": 10917.06, + "end": 10918.6, + "probability": 0.826 + }, + { + "start": 10919.04, + "end": 10920.74, + "probability": 0.7256 + }, + { + "start": 10920.96, + "end": 10921.68, + "probability": 0.6244 + }, + { + "start": 10921.72, + "end": 10922.44, + "probability": 0.8095 + }, + { + "start": 10922.54, + "end": 10924.02, + "probability": 0.8917 + }, + { + "start": 10924.02, + "end": 10925.34, + "probability": 0.8224 + }, + { + "start": 10926.1, + "end": 10927.46, + "probability": 0.8891 + }, + { + "start": 10927.96, + "end": 10934.08, + "probability": 0.9771 + }, + { + "start": 10935.0, + "end": 10938.74, + "probability": 0.9184 + }, + { + "start": 10939.12, + "end": 10942.64, + "probability": 0.8896 + }, + { + "start": 10943.26, + "end": 10945.06, + "probability": 0.9893 + }, + { + "start": 10945.38, + "end": 10945.56, + "probability": 0.3715 + }, + { + "start": 10945.7, + "end": 10947.35, + "probability": 0.424 + }, + { + "start": 10947.74, + "end": 10950.32, + "probability": 0.5344 + }, + { + "start": 10950.64, + "end": 10951.88, + "probability": 0.8513 + }, + { + "start": 10952.14, + "end": 10953.34, + "probability": 0.1749 + }, + { + "start": 10953.88, + "end": 10953.98, + "probability": 0.0808 + }, + { + "start": 10954.88, + "end": 10955.06, + "probability": 0.4038 + }, + { + "start": 10955.06, + "end": 10955.88, + "probability": 0.7034 + }, + { + "start": 10956.11, + "end": 10958.06, + "probability": 0.8578 + }, + { + "start": 10958.08, + "end": 10959.92, + "probability": 0.6885 + }, + { + "start": 10960.04, + "end": 10960.24, + "probability": 0.3644 + }, + { + "start": 10960.28, + "end": 10960.84, + "probability": 0.0687 + }, + { + "start": 10961.3, + "end": 10962.18, + "probability": 0.5821 + }, + { + "start": 10962.18, + "end": 10962.38, + "probability": 0.6432 + }, + { + "start": 10962.6, + "end": 10964.9, + "probability": 0.8722 + }, + { + "start": 10965.36, + "end": 10966.92, + "probability": 0.9972 + }, + { + "start": 10970.46, + "end": 10971.62, + "probability": 0.6754 + }, + { + "start": 10971.96, + "end": 10973.18, + "probability": 0.7207 + }, + { + "start": 10973.28, + "end": 10980.9, + "probability": 0.7793 + }, + { + "start": 10981.48, + "end": 10985.3, + "probability": 0.9223 + }, + { + "start": 10985.62, + "end": 10988.34, + "probability": 0.953 + }, + { + "start": 10988.76, + "end": 10991.18, + "probability": 0.5376 + }, + { + "start": 10991.64, + "end": 10993.16, + "probability": 0.7841 + }, + { + "start": 10993.36, + "end": 10997.44, + "probability": 0.9826 + }, + { + "start": 10997.44, + "end": 11000.1, + "probability": 0.7401 + }, + { + "start": 11001.14, + "end": 11002.07, + "probability": 0.0594 + }, + { + "start": 11004.26, + "end": 11004.46, + "probability": 0.3649 + }, + { + "start": 11006.24, + "end": 11006.72, + "probability": 0.0419 + }, + { + "start": 11007.2, + "end": 11007.9, + "probability": 0.0815 + }, + { + "start": 11008.1, + "end": 11010.82, + "probability": 0.352 + }, + { + "start": 11010.92, + "end": 11014.34, + "probability": 0.6534 + }, + { + "start": 11017.23, + "end": 11017.82, + "probability": 0.1442 + }, + { + "start": 11017.82, + "end": 11021.56, + "probability": 0.8263 + }, + { + "start": 11021.6, + "end": 11022.52, + "probability": 0.5987 + }, + { + "start": 11022.74, + "end": 11024.16, + "probability": 0.8397 + }, + { + "start": 11025.35, + "end": 11025.42, + "probability": 0.0277 + }, + { + "start": 11025.42, + "end": 11025.84, + "probability": 0.1948 + }, + { + "start": 11025.86, + "end": 11026.2, + "probability": 0.2382 + }, + { + "start": 11026.2, + "end": 11026.2, + "probability": 0.361 + }, + { + "start": 11026.2, + "end": 11030.72, + "probability": 0.9341 + }, + { + "start": 11030.94, + "end": 11032.3, + "probability": 0.7646 + }, + { + "start": 11032.68, + "end": 11033.44, + "probability": 0.6269 + }, + { + "start": 11033.82, + "end": 11033.88, + "probability": 0.2946 + }, + { + "start": 11033.88, + "end": 11036.14, + "probability": 0.809 + }, + { + "start": 11036.24, + "end": 11038.0, + "probability": 0.8578 + }, + { + "start": 11038.3, + "end": 11038.32, + "probability": 0.0011 + }, + { + "start": 11039.62, + "end": 11039.98, + "probability": 0.0798 + }, + { + "start": 11039.98, + "end": 11042.68, + "probability": 0.0693 + }, + { + "start": 11042.68, + "end": 11042.68, + "probability": 0.0615 + }, + { + "start": 11042.68, + "end": 11043.64, + "probability": 0.4941 + }, + { + "start": 11043.64, + "end": 11047.34, + "probability": 0.9872 + }, + { + "start": 11047.54, + "end": 11049.34, + "probability": 0.9848 + }, + { + "start": 11049.44, + "end": 11050.28, + "probability": 0.7961 + }, + { + "start": 11050.7, + "end": 11051.52, + "probability": 0.8398 + }, + { + "start": 11051.58, + "end": 11054.52, + "probability": 0.9557 + }, + { + "start": 11054.76, + "end": 11054.82, + "probability": 0.0186 + }, + { + "start": 11054.82, + "end": 11055.76, + "probability": 0.3651 + }, + { + "start": 11056.0, + "end": 11059.78, + "probability": 0.9788 + }, + { + "start": 11059.82, + "end": 11060.9, + "probability": 0.8989 + }, + { + "start": 11061.3, + "end": 11062.26, + "probability": 0.0608 + }, + { + "start": 11062.34, + "end": 11069.22, + "probability": 0.7546 + }, + { + "start": 11069.86, + "end": 11069.9, + "probability": 0.1076 + }, + { + "start": 11069.9, + "end": 11069.9, + "probability": 0.5942 + }, + { + "start": 11069.9, + "end": 11069.9, + "probability": 0.7936 + }, + { + "start": 11069.9, + "end": 11072.6, + "probability": 0.9858 + }, + { + "start": 11073.98, + "end": 11076.46, + "probability": 0.114 + }, + { + "start": 11077.02, + "end": 11081.52, + "probability": 0.4781 + }, + { + "start": 11083.58, + "end": 11084.54, + "probability": 0.5352 + }, + { + "start": 11087.78, + "end": 11089.2, + "probability": 0.8136 + }, + { + "start": 11090.08, + "end": 11090.73, + "probability": 0.7663 + }, + { + "start": 11094.84, + "end": 11098.66, + "probability": 0.1299 + }, + { + "start": 11098.8, + "end": 11101.42, + "probability": 0.3446 + }, + { + "start": 11103.11, + "end": 11105.38, + "probability": 0.3351 + }, + { + "start": 11105.66, + "end": 11108.3, + "probability": 0.7189 + }, + { + "start": 11109.12, + "end": 11110.14, + "probability": 0.84 + }, + { + "start": 11110.14, + "end": 11110.98, + "probability": 0.4741 + }, + { + "start": 11111.72, + "end": 11112.91, + "probability": 0.876 + }, + { + "start": 11113.36, + "end": 11114.1, + "probability": 0.2783 + }, + { + "start": 11114.22, + "end": 11117.16, + "probability": 0.0328 + }, + { + "start": 11117.16, + "end": 11117.5, + "probability": 0.0482 + }, + { + "start": 11117.52, + "end": 11121.04, + "probability": 0.3577 + }, + { + "start": 11121.04, + "end": 11121.14, + "probability": 0.0508 + }, + { + "start": 11124.64, + "end": 11125.16, + "probability": 0.0336 + }, + { + "start": 11125.16, + "end": 11125.16, + "probability": 0.0868 + }, + { + "start": 11125.16, + "end": 11125.58, + "probability": 0.756 + }, + { + "start": 11125.58, + "end": 11126.81, + "probability": 0.8745 + }, + { + "start": 11127.56, + "end": 11128.44, + "probability": 0.7775 + }, + { + "start": 11128.56, + "end": 11130.56, + "probability": 0.8582 + }, + { + "start": 11130.68, + "end": 11133.78, + "probability": 0.9954 + }, + { + "start": 11134.16, + "end": 11138.0, + "probability": 0.8878 + }, + { + "start": 11138.04, + "end": 11138.66, + "probability": 0.8636 + }, + { + "start": 11139.2, + "end": 11141.45, + "probability": 0.8577 + }, + { + "start": 11142.68, + "end": 11144.08, + "probability": 0.7516 + }, + { + "start": 11144.44, + "end": 11147.38, + "probability": 0.8699 + }, + { + "start": 11147.5, + "end": 11149.96, + "probability": 0.9679 + }, + { + "start": 11150.12, + "end": 11152.73, + "probability": 0.8966 + }, + { + "start": 11154.58, + "end": 11155.9, + "probability": 0.9452 + }, + { + "start": 11156.02, + "end": 11157.44, + "probability": 0.579 + }, + { + "start": 11157.84, + "end": 11157.9, + "probability": 0.1512 + }, + { + "start": 11157.9, + "end": 11157.9, + "probability": 0.0342 + }, + { + "start": 11157.9, + "end": 11159.74, + "probability": 0.4336 + }, + { + "start": 11160.08, + "end": 11162.58, + "probability": 0.6846 + }, + { + "start": 11162.8, + "end": 11164.72, + "probability": 0.9966 + }, + { + "start": 11164.96, + "end": 11166.36, + "probability": 0.3371 + }, + { + "start": 11166.44, + "end": 11167.32, + "probability": 0.8519 + }, + { + "start": 11167.48, + "end": 11169.48, + "probability": 0.8756 + }, + { + "start": 11169.64, + "end": 11172.9, + "probability": 0.8386 + }, + { + "start": 11173.66, + "end": 11174.38, + "probability": 0.0001 + }, + { + "start": 11174.38, + "end": 11175.24, + "probability": 0.0546 + }, + { + "start": 11175.24, + "end": 11178.64, + "probability": 0.7372 + }, + { + "start": 11179.06, + "end": 11185.88, + "probability": 0.9537 + }, + { + "start": 11186.26, + "end": 11187.9, + "probability": 0.766 + }, + { + "start": 11188.0, + "end": 11188.68, + "probability": 0.341 + }, + { + "start": 11188.74, + "end": 11190.64, + "probability": 0.9709 + }, + { + "start": 11192.56, + "end": 11198.34, + "probability": 0.7937 + }, + { + "start": 11198.6, + "end": 11202.46, + "probability": 0.8044 + }, + { + "start": 11203.0, + "end": 11206.44, + "probability": 0.9899 + }, + { + "start": 11206.78, + "end": 11207.9, + "probability": 0.5386 + }, + { + "start": 11208.58, + "end": 11208.58, + "probability": 0.0158 + }, + { + "start": 11208.58, + "end": 11211.62, + "probability": 0.9608 + }, + { + "start": 11211.76, + "end": 11212.68, + "probability": 0.9144 + }, + { + "start": 11212.76, + "end": 11214.6, + "probability": 0.9832 + }, + { + "start": 11215.18, + "end": 11218.12, + "probability": 0.9393 + }, + { + "start": 11218.34, + "end": 11221.84, + "probability": 0.9738 + }, + { + "start": 11222.12, + "end": 11228.58, + "probability": 0.9723 + }, + { + "start": 11228.66, + "end": 11229.16, + "probability": 0.4276 + }, + { + "start": 11229.58, + "end": 11232.78, + "probability": 0.9985 + }, + { + "start": 11233.04, + "end": 11236.06, + "probability": 0.7279 + }, + { + "start": 11236.8, + "end": 11236.8, + "probability": 0.0319 + }, + { + "start": 11236.8, + "end": 11241.28, + "probability": 0.5357 + }, + { + "start": 11241.76, + "end": 11244.04, + "probability": 0.7238 + }, + { + "start": 11244.14, + "end": 11245.16, + "probability": 0.7488 + }, + { + "start": 11245.2, + "end": 11246.54, + "probability": 0.8326 + }, + { + "start": 11246.78, + "end": 11249.42, + "probability": 0.5951 + }, + { + "start": 11249.98, + "end": 11251.18, + "probability": 0.2503 + }, + { + "start": 11251.92, + "end": 11252.72, + "probability": 0.0413 + }, + { + "start": 11252.74, + "end": 11253.98, + "probability": 0.7856 + }, + { + "start": 11254.4, + "end": 11255.62, + "probability": 0.846 + }, + { + "start": 11255.88, + "end": 11258.18, + "probability": 0.9243 + }, + { + "start": 11258.44, + "end": 11258.62, + "probability": 0.0617 + }, + { + "start": 11258.62, + "end": 11260.84, + "probability": 0.7085 + }, + { + "start": 11261.04, + "end": 11263.02, + "probability": 0.9069 + }, + { + "start": 11263.18, + "end": 11265.0, + "probability": 0.4469 + }, + { + "start": 11265.64, + "end": 11265.94, + "probability": 0.0015 + }, + { + "start": 11265.94, + "end": 11265.94, + "probability": 0.0457 + }, + { + "start": 11265.94, + "end": 11269.12, + "probability": 0.4987 + }, + { + "start": 11269.76, + "end": 11269.76, + "probability": 0.0016 + }, + { + "start": 11269.76, + "end": 11269.76, + "probability": 0.0767 + }, + { + "start": 11269.76, + "end": 11269.76, + "probability": 0.1514 + }, + { + "start": 11269.76, + "end": 11271.78, + "probability": 0.8197 + }, + { + "start": 11272.06, + "end": 11273.78, + "probability": 0.9761 + }, + { + "start": 11273.84, + "end": 11275.0, + "probability": 0.4985 + }, + { + "start": 11275.3, + "end": 11278.44, + "probability": 0.9871 + }, + { + "start": 11278.9, + "end": 11283.15, + "probability": 0.9915 + }, + { + "start": 11283.8, + "end": 11284.3, + "probability": 0.169 + }, + { + "start": 11286.24, + "end": 11288.02, + "probability": 0.9306 + }, + { + "start": 11288.04, + "end": 11289.12, + "probability": 0.9158 + }, + { + "start": 11289.16, + "end": 11289.84, + "probability": 0.6486 + }, + { + "start": 11289.9, + "end": 11290.72, + "probability": 0.7933 + }, + { + "start": 11291.0, + "end": 11291.56, + "probability": 0.2907 + }, + { + "start": 11292.06, + "end": 11292.68, + "probability": 0.7022 + }, + { + "start": 11293.2, + "end": 11294.84, + "probability": 0.0384 + }, + { + "start": 11295.38, + "end": 11296.02, + "probability": 0.0295 + }, + { + "start": 11296.08, + "end": 11297.84, + "probability": 0.9681 + }, + { + "start": 11297.92, + "end": 11298.96, + "probability": 0.563 + }, + { + "start": 11299.34, + "end": 11301.91, + "probability": 0.8232 + }, + { + "start": 11302.38, + "end": 11303.52, + "probability": 0.4611 + }, + { + "start": 11305.1, + "end": 11310.38, + "probability": 0.9722 + }, + { + "start": 11310.54, + "end": 11314.46, + "probability": 0.9976 + }, + { + "start": 11314.6, + "end": 11317.82, + "probability": 0.9961 + }, + { + "start": 11318.02, + "end": 11318.18, + "probability": 0.1623 + }, + { + "start": 11318.18, + "end": 11319.3, + "probability": 0.581 + }, + { + "start": 11319.56, + "end": 11322.0, + "probability": 0.8913 + }, + { + "start": 11324.18, + "end": 11327.68, + "probability": 0.947 + }, + { + "start": 11328.02, + "end": 11330.32, + "probability": 0.8882 + }, + { + "start": 11330.32, + "end": 11330.74, + "probability": 0.6997 + }, + { + "start": 11330.92, + "end": 11333.28, + "probability": 0.9829 + }, + { + "start": 11333.28, + "end": 11333.64, + "probability": 0.8444 + }, + { + "start": 11335.22, + "end": 11338.0, + "probability": 0.8728 + }, + { + "start": 11339.48, + "end": 11340.74, + "probability": 0.5316 + }, + { + "start": 11341.3, + "end": 11342.92, + "probability": 0.2686 + }, + { + "start": 11343.98, + "end": 11346.46, + "probability": 0.9282 + }, + { + "start": 11347.36, + "end": 11351.17, + "probability": 0.7875 + }, + { + "start": 11356.8, + "end": 11358.88, + "probability": 0.27 + }, + { + "start": 11359.04, + "end": 11361.36, + "probability": 0.0399 + }, + { + "start": 11369.62, + "end": 11371.84, + "probability": 0.0371 + }, + { + "start": 11374.86, + "end": 11375.56, + "probability": 0.3603 + }, + { + "start": 11375.68, + "end": 11376.22, + "probability": 0.5423 + }, + { + "start": 11376.22, + "end": 11377.48, + "probability": 0.4904 + }, + { + "start": 11377.7, + "end": 11379.2, + "probability": 0.9029 + }, + { + "start": 11379.71, + "end": 11381.36, + "probability": 0.7328 + }, + { + "start": 11381.62, + "end": 11382.84, + "probability": 0.7231 + }, + { + "start": 11383.54, + "end": 11384.24, + "probability": 0.8215 + }, + { + "start": 11384.3, + "end": 11385.72, + "probability": 0.9942 + }, + { + "start": 11386.2, + "end": 11390.4, + "probability": 0.9242 + }, + { + "start": 11390.5, + "end": 11392.04, + "probability": 0.9826 + }, + { + "start": 11392.54, + "end": 11393.96, + "probability": 0.9933 + }, + { + "start": 11394.04, + "end": 11395.44, + "probability": 0.7652 + }, + { + "start": 11395.78, + "end": 11398.07, + "probability": 0.9789 + }, + { + "start": 11398.32, + "end": 11399.86, + "probability": 0.6938 + }, + { + "start": 11400.02, + "end": 11400.94, + "probability": 0.3148 + }, + { + "start": 11400.94, + "end": 11402.5, + "probability": 0.9935 + }, + { + "start": 11402.5, + "end": 11405.6, + "probability": 0.748 + }, + { + "start": 11406.16, + "end": 11407.8, + "probability": 0.3445 + }, + { + "start": 11408.26, + "end": 11410.92, + "probability": 0.8419 + }, + { + "start": 11411.56, + "end": 11412.58, + "probability": 0.9759 + }, + { + "start": 11412.84, + "end": 11415.04, + "probability": 0.9744 + }, + { + "start": 11415.8, + "end": 11416.72, + "probability": 0.8132 + }, + { + "start": 11416.84, + "end": 11420.36, + "probability": 0.6932 + }, + { + "start": 11420.96, + "end": 11422.94, + "probability": 0.7863 + }, + { + "start": 11423.54, + "end": 11426.4, + "probability": 0.9963 + }, + { + "start": 11426.88, + "end": 11429.56, + "probability": 0.994 + }, + { + "start": 11429.72, + "end": 11430.9, + "probability": 0.9312 + }, + { + "start": 11432.02, + "end": 11432.82, + "probability": 0.9117 + }, + { + "start": 11434.3, + "end": 11436.68, + "probability": 0.7941 + }, + { + "start": 11438.34, + "end": 11442.48, + "probability": 0.9961 + }, + { + "start": 11443.06, + "end": 11445.06, + "probability": 0.9656 + }, + { + "start": 11445.68, + "end": 11446.72, + "probability": 0.811 + }, + { + "start": 11447.58, + "end": 11452.2, + "probability": 0.9314 + }, + { + "start": 11452.54, + "end": 11455.76, + "probability": 0.2031 + }, + { + "start": 11455.76, + "end": 11456.88, + "probability": 0.38 + }, + { + "start": 11456.98, + "end": 11459.66, + "probability": 0.7421 + }, + { + "start": 11459.74, + "end": 11460.6, + "probability": 0.9302 + }, + { + "start": 11461.38, + "end": 11464.6, + "probability": 0.9576 + }, + { + "start": 11464.6, + "end": 11468.04, + "probability": 0.9878 + }, + { + "start": 11468.18, + "end": 11468.98, + "probability": 0.6223 + }, + { + "start": 11471.36, + "end": 11473.2, + "probability": 0.9988 + }, + { + "start": 11473.36, + "end": 11476.21, + "probability": 0.9941 + }, + { + "start": 11477.36, + "end": 11478.8, + "probability": 0.9138 + }, + { + "start": 11479.46, + "end": 11480.96, + "probability": 0.813 + }, + { + "start": 11481.82, + "end": 11483.8, + "probability": 0.996 + }, + { + "start": 11484.8, + "end": 11490.04, + "probability": 0.9773 + }, + { + "start": 11490.2, + "end": 11491.6, + "probability": 0.8158 + }, + { + "start": 11493.42, + "end": 11495.88, + "probability": 0.9937 + }, + { + "start": 11496.82, + "end": 11498.36, + "probability": 0.8696 + }, + { + "start": 11499.02, + "end": 11502.74, + "probability": 0.9721 + }, + { + "start": 11502.84, + "end": 11505.59, + "probability": 0.9888 + }, + { + "start": 11505.86, + "end": 11507.0, + "probability": 0.0342 + }, + { + "start": 11508.56, + "end": 11508.74, + "probability": 0.0134 + }, + { + "start": 11508.74, + "end": 11508.74, + "probability": 0.1503 + }, + { + "start": 11508.74, + "end": 11511.94, + "probability": 0.8366 + }, + { + "start": 11512.54, + "end": 11514.88, + "probability": 0.8095 + }, + { + "start": 11515.63, + "end": 11517.12, + "probability": 0.7929 + }, + { + "start": 11517.12, + "end": 11518.17, + "probability": 0.6397 + }, + { + "start": 11518.4, + "end": 11519.3, + "probability": 0.7562 + }, + { + "start": 11519.44, + "end": 11521.95, + "probability": 0.5365 + }, + { + "start": 11522.62, + "end": 11523.06, + "probability": 0.3917 + }, + { + "start": 11523.48, + "end": 11523.86, + "probability": 0.3991 + }, + { + "start": 11523.86, + "end": 11524.48, + "probability": 0.4664 + }, + { + "start": 11524.54, + "end": 11526.42, + "probability": 0.8681 + }, + { + "start": 11527.17, + "end": 11530.32, + "probability": 0.5884 + }, + { + "start": 11531.26, + "end": 11536.06, + "probability": 0.9932 + }, + { + "start": 11537.06, + "end": 11539.81, + "probability": 0.8363 + }, + { + "start": 11541.04, + "end": 11544.04, + "probability": 0.9502 + }, + { + "start": 11544.62, + "end": 11545.58, + "probability": 0.4486 + }, + { + "start": 11546.22, + "end": 11550.24, + "probability": 0.9746 + }, + { + "start": 11551.04, + "end": 11553.11, + "probability": 0.9966 + }, + { + "start": 11555.26, + "end": 11557.68, + "probability": 0.9862 + }, + { + "start": 11558.26, + "end": 11560.1, + "probability": 0.9944 + }, + { + "start": 11561.3, + "end": 11564.44, + "probability": 0.8009 + }, + { + "start": 11565.28, + "end": 11569.44, + "probability": 0.8859 + }, + { + "start": 11569.66, + "end": 11572.22, + "probability": 0.9539 + }, + { + "start": 11573.1, + "end": 11576.12, + "probability": 0.9478 + }, + { + "start": 11577.08, + "end": 11580.2, + "probability": 0.995 + }, + { + "start": 11580.28, + "end": 11581.54, + "probability": 0.8932 + }, + { + "start": 11581.62, + "end": 11582.5, + "probability": 0.9375 + }, + { + "start": 11582.6, + "end": 11583.58, + "probability": 0.7144 + }, + { + "start": 11583.58, + "end": 11585.1, + "probability": 0.7064 + }, + { + "start": 11585.26, + "end": 11585.26, + "probability": 0.7766 + }, + { + "start": 11585.52, + "end": 11588.22, + "probability": 0.9285 + }, + { + "start": 11589.3, + "end": 11594.66, + "probability": 0.9662 + }, + { + "start": 11595.66, + "end": 11599.94, + "probability": 0.9612 + }, + { + "start": 11600.02, + "end": 11600.08, + "probability": 0.61 + }, + { + "start": 11600.14, + "end": 11601.04, + "probability": 0.9071 + }, + { + "start": 11601.06, + "end": 11603.76, + "probability": 0.8247 + }, + { + "start": 11603.82, + "end": 11603.86, + "probability": 0.7468 + }, + { + "start": 11603.86, + "end": 11611.02, + "probability": 0.8141 + }, + { + "start": 11611.24, + "end": 11613.08, + "probability": 0.9961 + }, + { + "start": 11613.16, + "end": 11614.6, + "probability": 0.9971 + }, + { + "start": 11614.6, + "end": 11617.88, + "probability": 0.881 + }, + { + "start": 11618.06, + "end": 11618.34, + "probability": 0.6795 + }, + { + "start": 11618.42, + "end": 11618.42, + "probability": 0.3645 + }, + { + "start": 11618.42, + "end": 11623.56, + "probability": 0.9466 + }, + { + "start": 11623.64, + "end": 11626.16, + "probability": 0.9208 + }, + { + "start": 11626.2, + "end": 11627.08, + "probability": 0.6233 + }, + { + "start": 11628.77, + "end": 11632.12, + "probability": 0.5654 + }, + { + "start": 11632.16, + "end": 11633.48, + "probability": 0.9833 + }, + { + "start": 11633.72, + "end": 11636.22, + "probability": 0.9682 + }, + { + "start": 11637.43, + "end": 11639.8, + "probability": 0.8655 + }, + { + "start": 11639.82, + "end": 11640.58, + "probability": 0.4554 + }, + { + "start": 11641.06, + "end": 11641.2, + "probability": 0.5315 + }, + { + "start": 11642.04, + "end": 11646.0, + "probability": 0.8838 + }, + { + "start": 11646.54, + "end": 11650.84, + "probability": 0.8717 + }, + { + "start": 11651.0, + "end": 11651.94, + "probability": 0.6701 + }, + { + "start": 11652.04, + "end": 11652.56, + "probability": 0.6009 + }, + { + "start": 11652.62, + "end": 11652.7, + "probability": 0.0727 + }, + { + "start": 11652.8, + "end": 11653.96, + "probability": 0.9768 + }, + { + "start": 11654.0, + "end": 11655.26, + "probability": 0.7478 + }, + { + "start": 11655.38, + "end": 11656.26, + "probability": 0.8677 + }, + { + "start": 11657.21, + "end": 11658.66, + "probability": 0.0038 + }, + { + "start": 11663.16, + "end": 11664.02, + "probability": 0.1281 + }, + { + "start": 11669.35, + "end": 11671.85, + "probability": 0.1798 + }, + { + "start": 11676.84, + "end": 11677.36, + "probability": 0.0753 + }, + { + "start": 11678.18, + "end": 11678.78, + "probability": 0.0054 + }, + { + "start": 11679.82, + "end": 11681.2, + "probability": 0.2199 + }, + { + "start": 11682.96, + "end": 11683.3, + "probability": 0.1417 + }, + { + "start": 11683.76, + "end": 11684.9, + "probability": 0.3571 + }, + { + "start": 11685.12, + "end": 11686.54, + "probability": 0.2205 + }, + { + "start": 11689.74, + "end": 11691.18, + "probability": 0.0281 + }, + { + "start": 11691.32, + "end": 11694.08, + "probability": 0.0905 + }, + { + "start": 11694.14, + "end": 11696.6, + "probability": 0.0212 + }, + { + "start": 11696.6, + "end": 11697.28, + "probability": 0.1843 + }, + { + "start": 11697.7, + "end": 11700.4, + "probability": 0.0422 + }, + { + "start": 11701.98, + "end": 11702.36, + "probability": 0.279 + }, + { + "start": 11703.56, + "end": 11706.48, + "probability": 0.1028 + }, + { + "start": 11706.6, + "end": 11708.46, + "probability": 0.0224 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11755.0, + "end": 11755.0, + "probability": 0.0 + }, + { + "start": 11765.52, + "end": 11768.32, + "probability": 0.1013 + }, + { + "start": 11769.28, + "end": 11770.42, + "probability": 0.0781 + }, + { + "start": 11770.44, + "end": 11775.24, + "probability": 0.0746 + }, + { + "start": 11775.24, + "end": 11776.2, + "probability": 0.0482 + }, + { + "start": 11780.8, + "end": 11782.4, + "probability": 0.0572 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11882.19, + "end": 11885.84, + "probability": 0.1686 + }, + { + "start": 11886.48, + "end": 11886.9, + "probability": 0.1114 + }, + { + "start": 11887.16, + "end": 11889.82, + "probability": 0.6876 + }, + { + "start": 11890.18, + "end": 11892.98, + "probability": 0.238 + }, + { + "start": 11893.04, + "end": 11895.32, + "probability": 0.1443 + }, + { + "start": 11901.02, + "end": 11901.3, + "probability": 0.0079 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.0, + "probability": 0.0 + }, + { + "start": 12001.0, + "end": 12001.18, + "probability": 0.1579 + }, + { + "start": 12001.18, + "end": 12003.08, + "probability": 0.371 + }, + { + "start": 12003.96, + "end": 12003.96, + "probability": 0.1047 + }, + { + "start": 12003.96, + "end": 12003.96, + "probability": 0.4658 + }, + { + "start": 12004.0, + "end": 12005.22, + "probability": 0.9508 + }, + { + "start": 12005.66, + "end": 12007.64, + "probability": 0.8435 + }, + { + "start": 12007.9, + "end": 12007.9, + "probability": 0.4137 + }, + { + "start": 12007.9, + "end": 12008.84, + "probability": 0.973 + }, + { + "start": 12009.14, + "end": 12011.98, + "probability": 0.8575 + }, + { + "start": 12014.3, + "end": 12015.14, + "probability": 0.1347 + }, + { + "start": 12015.24, + "end": 12018.66, + "probability": 0.9277 + }, + { + "start": 12019.32, + "end": 12021.58, + "probability": 0.8863 + }, + { + "start": 12024.6, + "end": 12029.56, + "probability": 0.7286 + }, + { + "start": 12029.9, + "end": 12031.42, + "probability": 0.7783 + }, + { + "start": 12031.74, + "end": 12033.94, + "probability": 0.9047 + }, + { + "start": 12034.2, + "end": 12035.38, + "probability": 0.6856 + }, + { + "start": 12035.58, + "end": 12040.44, + "probability": 0.8046 + }, + { + "start": 12040.92, + "end": 12042.14, + "probability": 0.4922 + }, + { + "start": 12042.52, + "end": 12044.73, + "probability": 0.8206 + }, + { + "start": 12045.26, + "end": 12049.8, + "probability": 0.9688 + }, + { + "start": 12050.48, + "end": 12053.02, + "probability": 0.2346 + }, + { + "start": 12053.36, + "end": 12055.12, + "probability": 0.9287 + }, + { + "start": 12055.46, + "end": 12058.52, + "probability": 0.9464 + }, + { + "start": 12059.02, + "end": 12060.3, + "probability": 0.4311 + }, + { + "start": 12063.04, + "end": 12064.78, + "probability": 0.7892 + }, + { + "start": 12065.52, + "end": 12070.04, + "probability": 0.9375 + }, + { + "start": 12070.56, + "end": 12072.06, + "probability": 0.8849 + }, + { + "start": 12073.24, + "end": 12074.72, + "probability": 0.7953 + }, + { + "start": 12076.4, + "end": 12080.28, + "probability": 0.9435 + }, + { + "start": 12081.92, + "end": 12082.96, + "probability": 0.3547 + }, + { + "start": 12083.22, + "end": 12083.82, + "probability": 0.4287 + }, + { + "start": 12084.08, + "end": 12084.84, + "probability": 0.6001 + }, + { + "start": 12086.42, + "end": 12090.7, + "probability": 0.9349 + }, + { + "start": 12090.7, + "end": 12094.78, + "probability": 0.8548 + }, + { + "start": 12095.24, + "end": 12101.46, + "probability": 0.9892 + }, + { + "start": 12101.96, + "end": 12107.36, + "probability": 0.995 + }, + { + "start": 12107.9, + "end": 12109.78, + "probability": 0.9872 + }, + { + "start": 12109.88, + "end": 12110.48, + "probability": 0.6202 + }, + { + "start": 12110.92, + "end": 12112.88, + "probability": 0.6814 + }, + { + "start": 12113.12, + "end": 12114.5, + "probability": 0.9933 + }, + { + "start": 12114.68, + "end": 12119.82, + "probability": 0.9937 + }, + { + "start": 12120.44, + "end": 12121.2, + "probability": 0.9067 + }, + { + "start": 12121.24, + "end": 12127.38, + "probability": 0.7661 + }, + { + "start": 12127.38, + "end": 12132.98, + "probability": 0.8138 + }, + { + "start": 12133.7, + "end": 12135.11, + "probability": 0.7588 + }, + { + "start": 12135.54, + "end": 12139.48, + "probability": 0.9751 + }, + { + "start": 12139.92, + "end": 12140.52, + "probability": 0.5387 + }, + { + "start": 12140.6, + "end": 12143.6, + "probability": 0.998 + }, + { + "start": 12143.98, + "end": 12148.32, + "probability": 0.9751 + }, + { + "start": 12148.68, + "end": 12150.9, + "probability": 0.9871 + }, + { + "start": 12151.28, + "end": 12155.52, + "probability": 0.9921 + }, + { + "start": 12156.12, + "end": 12159.62, + "probability": 0.9858 + }, + { + "start": 12159.62, + "end": 12163.58, + "probability": 0.9907 + }, + { + "start": 12164.24, + "end": 12168.34, + "probability": 0.9814 + }, + { + "start": 12168.34, + "end": 12172.99, + "probability": 0.9877 + }, + { + "start": 12173.22, + "end": 12177.52, + "probability": 0.7938 + }, + { + "start": 12178.18, + "end": 12183.42, + "probability": 0.9898 + }, + { + "start": 12183.42, + "end": 12191.3, + "probability": 0.8948 + }, + { + "start": 12191.3, + "end": 12197.92, + "probability": 0.9869 + }, + { + "start": 12198.44, + "end": 12200.76, + "probability": 0.9956 + }, + { + "start": 12201.32, + "end": 12203.98, + "probability": 0.9525 + }, + { + "start": 12204.42, + "end": 12205.38, + "probability": 0.8825 + }, + { + "start": 12205.5, + "end": 12208.08, + "probability": 0.9848 + }, + { + "start": 12208.54, + "end": 12212.66, + "probability": 0.9792 + }, + { + "start": 12212.66, + "end": 12215.7, + "probability": 0.9971 + }, + { + "start": 12216.48, + "end": 12223.43, + "probability": 0.9956 + }, + { + "start": 12224.34, + "end": 12228.8, + "probability": 0.8431 + }, + { + "start": 12229.28, + "end": 12230.82, + "probability": 0.9086 + }, + { + "start": 12231.42, + "end": 12234.24, + "probability": 0.9635 + }, + { + "start": 12235.2, + "end": 12237.76, + "probability": 0.4948 + }, + { + "start": 12238.36, + "end": 12244.8, + "probability": 0.9733 + }, + { + "start": 12245.62, + "end": 12246.82, + "probability": 0.9401 + }, + { + "start": 12247.08, + "end": 12247.96, + "probability": 0.9177 + }, + { + "start": 12248.38, + "end": 12248.98, + "probability": 0.525 + }, + { + "start": 12249.1, + "end": 12252.4, + "probability": 0.8129 + }, + { + "start": 12252.88, + "end": 12255.32, + "probability": 0.9919 + }, + { + "start": 12255.32, + "end": 12258.4, + "probability": 0.9992 + }, + { + "start": 12258.96, + "end": 12262.44, + "probability": 0.9948 + }, + { + "start": 12263.34, + "end": 12266.26, + "probability": 0.9975 + }, + { + "start": 12266.26, + "end": 12269.26, + "probability": 0.9846 + }, + { + "start": 12269.72, + "end": 12275.3, + "probability": 0.9859 + }, + { + "start": 12275.68, + "end": 12280.66, + "probability": 0.9748 + }, + { + "start": 12281.28, + "end": 12285.54, + "probability": 0.9832 + }, + { + "start": 12285.9, + "end": 12288.28, + "probability": 0.987 + }, + { + "start": 12289.46, + "end": 12293.06, + "probability": 0.9117 + }, + { + "start": 12293.06, + "end": 12296.36, + "probability": 0.9974 + }, + { + "start": 12297.16, + "end": 12300.04, + "probability": 0.8402 + }, + { + "start": 12300.58, + "end": 12303.94, + "probability": 0.9977 + }, + { + "start": 12304.5, + "end": 12306.48, + "probability": 0.5434 + }, + { + "start": 12307.42, + "end": 12309.27, + "probability": 0.3485 + }, + { + "start": 12309.46, + "end": 12312.34, + "probability": 0.9748 + }, + { + "start": 12312.78, + "end": 12315.2, + "probability": 0.7358 + }, + { + "start": 12315.82, + "end": 12317.76, + "probability": 0.968 + }, + { + "start": 12318.18, + "end": 12320.14, + "probability": 0.9879 + }, + { + "start": 12320.58, + "end": 12324.78, + "probability": 0.9734 + }, + { + "start": 12324.78, + "end": 12326.98, + "probability": 0.7675 + }, + { + "start": 12327.62, + "end": 12330.28, + "probability": 0.9207 + }, + { + "start": 12330.72, + "end": 12334.32, + "probability": 0.9907 + }, + { + "start": 12334.32, + "end": 12338.5, + "probability": 0.996 + }, + { + "start": 12338.98, + "end": 12343.4, + "probability": 0.7842 + }, + { + "start": 12343.6, + "end": 12346.72, + "probability": 0.9148 + }, + { + "start": 12347.52, + "end": 12349.64, + "probability": 0.9639 + }, + { + "start": 12349.78, + "end": 12350.22, + "probability": 0.8276 + }, + { + "start": 12350.58, + "end": 12351.8, + "probability": 0.9027 + }, + { + "start": 12352.12, + "end": 12356.96, + "probability": 0.9886 + }, + { + "start": 12357.56, + "end": 12358.42, + "probability": 0.641 + }, + { + "start": 12358.84, + "end": 12364.66, + "probability": 0.996 + }, + { + "start": 12364.8, + "end": 12367.92, + "probability": 0.9082 + }, + { + "start": 12367.92, + "end": 12371.18, + "probability": 0.985 + }, + { + "start": 12371.56, + "end": 12374.8, + "probability": 0.9904 + }, + { + "start": 12375.28, + "end": 12376.06, + "probability": 0.6736 + }, + { + "start": 12376.3, + "end": 12379.94, + "probability": 0.9191 + }, + { + "start": 12380.46, + "end": 12381.58, + "probability": 0.8953 + }, + { + "start": 12381.96, + "end": 12383.28, + "probability": 0.7507 + }, + { + "start": 12383.58, + "end": 12387.8, + "probability": 0.9772 + }, + { + "start": 12388.44, + "end": 12392.22, + "probability": 0.9845 + }, + { + "start": 12392.52, + "end": 12393.06, + "probability": 0.9506 + }, + { + "start": 12393.88, + "end": 12394.68, + "probability": 0.7077 + }, + { + "start": 12394.86, + "end": 12396.6, + "probability": 0.5037 + }, + { + "start": 12397.18, + "end": 12399.96, + "probability": 0.9064 + }, + { + "start": 12399.96, + "end": 12403.16, + "probability": 0.9939 + }, + { + "start": 12403.42, + "end": 12404.36, + "probability": 0.6941 + }, + { + "start": 12405.02, + "end": 12408.0, + "probability": 0.9222 + }, + { + "start": 12408.54, + "end": 12411.1, + "probability": 0.7843 + }, + { + "start": 12411.74, + "end": 12414.2, + "probability": 0.929 + }, + { + "start": 12415.46, + "end": 12419.46, + "probability": 0.8524 + }, + { + "start": 12419.9, + "end": 12420.32, + "probability": 0.9766 + }, + { + "start": 12420.7, + "end": 12421.34, + "probability": 0.8073 + }, + { + "start": 12421.74, + "end": 12423.62, + "probability": 0.977 + }, + { + "start": 12424.0, + "end": 12425.46, + "probability": 0.9971 + }, + { + "start": 12425.96, + "end": 12428.44, + "probability": 0.9911 + }, + { + "start": 12428.44, + "end": 12428.92, + "probability": 0.4876 + }, + { + "start": 12429.0, + "end": 12435.34, + "probability": 0.9893 + }, + { + "start": 12435.74, + "end": 12439.2, + "probability": 0.8188 + }, + { + "start": 12439.34, + "end": 12443.19, + "probability": 0.9752 + }, + { + "start": 12444.28, + "end": 12447.4, + "probability": 0.7527 + }, + { + "start": 12448.1, + "end": 12451.26, + "probability": 0.9972 + }, + { + "start": 12451.28, + "end": 12454.74, + "probability": 0.9956 + }, + { + "start": 12455.98, + "end": 12459.16, + "probability": 0.9814 + }, + { + "start": 12459.8, + "end": 12461.6, + "probability": 0.4989 + }, + { + "start": 12462.44, + "end": 12465.24, + "probability": 0.9944 + }, + { + "start": 12465.24, + "end": 12469.38, + "probability": 0.9933 + }, + { + "start": 12469.46, + "end": 12470.08, + "probability": 0.943 + }, + { + "start": 12470.96, + "end": 12472.9, + "probability": 0.9888 + }, + { + "start": 12473.4, + "end": 12475.58, + "probability": 0.9958 + }, + { + "start": 12475.94, + "end": 12477.94, + "probability": 0.9969 + }, + { + "start": 12477.94, + "end": 12481.18, + "probability": 0.9984 + }, + { + "start": 12481.9, + "end": 12487.4, + "probability": 0.9299 + }, + { + "start": 12487.4, + "end": 12493.48, + "probability": 0.999 + }, + { + "start": 12493.88, + "end": 12494.92, + "probability": 0.7878 + }, + { + "start": 12495.66, + "end": 12498.28, + "probability": 0.879 + }, + { + "start": 12499.22, + "end": 12500.58, + "probability": 0.9734 + }, + { + "start": 12500.86, + "end": 12503.02, + "probability": 0.9576 + }, + { + "start": 12503.08, + "end": 12508.92, + "probability": 0.9924 + }, + { + "start": 12508.92, + "end": 12515.62, + "probability": 0.9937 + }, + { + "start": 12515.78, + "end": 12519.74, + "probability": 0.9875 + }, + { + "start": 12520.12, + "end": 12523.9, + "probability": 0.9979 + }, + { + "start": 12523.9, + "end": 12531.16, + "probability": 0.6667 + }, + { + "start": 12533.26, + "end": 12533.36, + "probability": 0.1402 + }, + { + "start": 12533.36, + "end": 12537.22, + "probability": 0.9915 + }, + { + "start": 12537.94, + "end": 12538.44, + "probability": 0.9082 + }, + { + "start": 12539.2, + "end": 12542.06, + "probability": 0.9067 + }, + { + "start": 12542.58, + "end": 12543.56, + "probability": 0.6611 + }, + { + "start": 12543.62, + "end": 12548.16, + "probability": 0.991 + }, + { + "start": 12548.6, + "end": 12549.52, + "probability": 0.9355 + }, + { + "start": 12549.66, + "end": 12549.76, + "probability": 0.0221 + }, + { + "start": 12552.12, + "end": 12552.98, + "probability": 0.0802 + }, + { + "start": 12552.98, + "end": 12554.06, + "probability": 0.0666 + }, + { + "start": 12554.26, + "end": 12556.4, + "probability": 0.916 + }, + { + "start": 12556.66, + "end": 12557.8, + "probability": 0.9389 + }, + { + "start": 12558.16, + "end": 12561.48, + "probability": 0.9974 + }, + { + "start": 12561.88, + "end": 12563.62, + "probability": 0.999 + }, + { + "start": 12564.2, + "end": 12566.08, + "probability": 0.5677 + }, + { + "start": 12566.44, + "end": 12567.68, + "probability": 0.666 + }, + { + "start": 12568.1, + "end": 12568.4, + "probability": 0.3346 + }, + { + "start": 12568.5, + "end": 12572.4, + "probability": 0.9806 + }, + { + "start": 12572.86, + "end": 12574.5, + "probability": 0.8007 + }, + { + "start": 12575.26, + "end": 12578.1, + "probability": 0.5531 + }, + { + "start": 12601.91, + "end": 12604.8, + "probability": 0.7787 + }, + { + "start": 12610.86, + "end": 12611.94, + "probability": 0.8556 + }, + { + "start": 12612.46, + "end": 12613.58, + "probability": 0.832 + }, + { + "start": 12615.68, + "end": 12620.16, + "probability": 0.8401 + }, + { + "start": 12620.3, + "end": 12624.04, + "probability": 0.9774 + }, + { + "start": 12624.06, + "end": 12624.52, + "probability": 0.5989 + }, + { + "start": 12625.22, + "end": 12627.54, + "probability": 0.9915 + }, + { + "start": 12627.54, + "end": 12630.34, + "probability": 0.9465 + }, + { + "start": 12630.78, + "end": 12635.2, + "probability": 0.9139 + }, + { + "start": 12635.2, + "end": 12639.98, + "probability": 0.9146 + }, + { + "start": 12640.58, + "end": 12643.56, + "probability": 0.9734 + }, + { + "start": 12645.44, + "end": 12650.1, + "probability": 0.9104 + }, + { + "start": 12650.16, + "end": 12653.32, + "probability": 0.7816 + }, + { + "start": 12653.32, + "end": 12656.52, + "probability": 0.9989 + }, + { + "start": 12657.32, + "end": 12659.46, + "probability": 0.7754 + }, + { + "start": 12659.96, + "end": 12665.08, + "probability": 0.9543 + }, + { + "start": 12665.42, + "end": 12667.04, + "probability": 0.7612 + }, + { + "start": 12671.6, + "end": 12672.1, + "probability": 0.848 + }, + { + "start": 12673.58, + "end": 12678.74, + "probability": 0.9721 + }, + { + "start": 12679.3, + "end": 12683.02, + "probability": 0.9894 + }, + { + "start": 12683.2, + "end": 12687.94, + "probability": 0.9274 + }, + { + "start": 12687.94, + "end": 12691.52, + "probability": 0.9872 + }, + { + "start": 12692.32, + "end": 12695.74, + "probability": 0.974 + }, + { + "start": 12695.74, + "end": 12698.86, + "probability": 0.9938 + }, + { + "start": 12699.46, + "end": 12701.58, + "probability": 0.9824 + }, + { + "start": 12701.66, + "end": 12702.25, + "probability": 0.6938 + }, + { + "start": 12703.16, + "end": 12705.72, + "probability": 0.7911 + }, + { + "start": 12706.4, + "end": 12710.46, + "probability": 0.9823 + }, + { + "start": 12711.96, + "end": 12715.62, + "probability": 0.9891 + }, + { + "start": 12715.62, + "end": 12719.76, + "probability": 0.8169 + }, + { + "start": 12719.76, + "end": 12724.18, + "probability": 0.9886 + }, + { + "start": 12725.86, + "end": 12729.95, + "probability": 0.9975 + }, + { + "start": 12735.18, + "end": 12737.78, + "probability": 0.5398 + }, + { + "start": 12738.84, + "end": 12740.74, + "probability": 0.0243 + }, + { + "start": 12741.66, + "end": 12742.72, + "probability": 0.5162 + }, + { + "start": 12743.61, + "end": 12746.52, + "probability": 0.6326 + }, + { + "start": 12746.86, + "end": 12750.38, + "probability": 0.9487 + }, + { + "start": 12750.38, + "end": 12754.2, + "probability": 0.1012 + }, + { + "start": 12754.46, + "end": 12754.98, + "probability": 0.7163 + }, + { + "start": 12756.44, + "end": 12760.02, + "probability": 0.7886 + }, + { + "start": 12760.68, + "end": 12761.76, + "probability": 0.2121 + }, + { + "start": 12762.66, + "end": 12764.82, + "probability": 0.6603 + }, + { + "start": 12765.24, + "end": 12766.65, + "probability": 0.3581 + }, + { + "start": 12767.1, + "end": 12769.76, + "probability": 0.1235 + }, + { + "start": 12770.3, + "end": 12777.04, + "probability": 0.3881 + }, + { + "start": 12777.36, + "end": 12777.46, + "probability": 0.0122 + }, + { + "start": 12778.34, + "end": 12780.34, + "probability": 0.2537 + }, + { + "start": 12780.64, + "end": 12780.68, + "probability": 0.0473 + }, + { + "start": 12782.02, + "end": 12782.67, + "probability": 0.1524 + }, + { + "start": 12783.72, + "end": 12786.74, + "probability": 0.5011 + }, + { + "start": 12786.74, + "end": 12787.76, + "probability": 0.2844 + }, + { + "start": 12787.96, + "end": 12789.22, + "probability": 0.9048 + }, + { + "start": 12789.32, + "end": 12790.66, + "probability": 0.4403 + }, + { + "start": 12791.0, + "end": 12792.38, + "probability": 0.179 + }, + { + "start": 12802.24, + "end": 12803.34, + "probability": 0.7531 + }, + { + "start": 12803.88, + "end": 12805.32, + "probability": 0.9604 + }, + { + "start": 12806.44, + "end": 12808.16, + "probability": 0.947 + }, + { + "start": 12809.14, + "end": 12811.2, + "probability": 0.6202 + }, + { + "start": 12812.18, + "end": 12812.24, + "probability": 0.0505 + }, + { + "start": 12812.24, + "end": 12812.24, + "probability": 0.0187 + }, + { + "start": 12812.24, + "end": 12813.5, + "probability": 0.514 + }, + { + "start": 12815.82, + "end": 12817.52, + "probability": 0.89 + }, + { + "start": 12818.08, + "end": 12824.36, + "probability": 0.7821 + }, + { + "start": 12824.88, + "end": 12826.72, + "probability": 0.8779 + }, + { + "start": 12827.36, + "end": 12830.34, + "probability": 0.9983 + }, + { + "start": 12833.54, + "end": 12834.32, + "probability": 0.382 + }, + { + "start": 12836.09, + "end": 12838.82, + "probability": 0.6928 + }, + { + "start": 12839.82, + "end": 12842.58, + "probability": 0.9919 + }, + { + "start": 12843.5, + "end": 12847.84, + "probability": 0.6534 + }, + { + "start": 12847.84, + "end": 12852.4, + "probability": 0.9793 + }, + { + "start": 12852.42, + "end": 12855.26, + "probability": 0.9662 + }, + { + "start": 12855.42, + "end": 12857.2, + "probability": 0.5099 + }, + { + "start": 12857.2, + "end": 12858.82, + "probability": 0.0322 + }, + { + "start": 12858.94, + "end": 12860.72, + "probability": 0.0497 + }, + { + "start": 12860.72, + "end": 12861.08, + "probability": 0.3463 + }, + { + "start": 12861.08, + "end": 12861.2, + "probability": 0.2579 + }, + { + "start": 12861.78, + "end": 12865.08, + "probability": 0.5446 + }, + { + "start": 12865.08, + "end": 12867.48, + "probability": 0.2544 + }, + { + "start": 12867.62, + "end": 12867.66, + "probability": 0.2212 + }, + { + "start": 12867.66, + "end": 12867.66, + "probability": 0.4185 + }, + { + "start": 12867.66, + "end": 12867.66, + "probability": 0.2151 + }, + { + "start": 12867.66, + "end": 12869.96, + "probability": 0.3987 + }, + { + "start": 12871.06, + "end": 12874.94, + "probability": 0.0528 + }, + { + "start": 12880.82, + "end": 12882.64, + "probability": 0.0631 + }, + { + "start": 12883.08, + "end": 12884.9, + "probability": 0.442 + }, + { + "start": 12887.54, + "end": 12887.72, + "probability": 0.1256 + }, + { + "start": 12887.72, + "end": 12887.72, + "probability": 0.1809 + }, + { + "start": 12887.72, + "end": 12887.72, + "probability": 0.1533 + }, + { + "start": 12887.72, + "end": 12887.72, + "probability": 0.0436 + }, + { + "start": 12887.72, + "end": 12888.92, + "probability": 0.647 + }, + { + "start": 12889.06, + "end": 12890.24, + "probability": 0.8543 + }, + { + "start": 12900.62, + "end": 12902.46, + "probability": 0.1884 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.0, + "end": 12930.0, + "probability": 0.0 + }, + { + "start": 12930.4, + "end": 12933.27, + "probability": 0.1467 + }, + { + "start": 12933.52, + "end": 12934.37, + "probability": 0.0934 + }, + { + "start": 12934.6, + "end": 12936.53, + "probability": 0.6372 + }, + { + "start": 12938.42, + "end": 12940.24, + "probability": 0.5541 + }, + { + "start": 12941.68, + "end": 12945.42, + "probability": 0.2687 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13052.0, + "end": 13052.0, + "probability": 0.0 + }, + { + "start": 13059.16, + "end": 13060.28, + "probability": 0.0186 + }, + { + "start": 13076.76, + "end": 13078.42, + "probability": 0.386 + }, + { + "start": 13078.66, + "end": 13078.74, + "probability": 0.1247 + }, + { + "start": 13078.74, + "end": 13078.74, + "probability": 0.0325 + }, + { + "start": 13078.74, + "end": 13080.04, + "probability": 0.4009 + }, + { + "start": 13080.92, + "end": 13081.14, + "probability": 0.0103 + }, + { + "start": 13081.14, + "end": 13081.14, + "probability": 0.0599 + }, + { + "start": 13081.14, + "end": 13081.26, + "probability": 0.0368 + }, + { + "start": 13081.26, + "end": 13082.22, + "probability": 0.034 + }, + { + "start": 13083.84, + "end": 13084.36, + "probability": 0.0539 + }, + { + "start": 13084.36, + "end": 13089.16, + "probability": 0.1296 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.0, + "end": 13173.0, + "probability": 0.0 + }, + { + "start": 13173.3, + "end": 13174.34, + "probability": 0.2703 + }, + { + "start": 13174.34, + "end": 13176.5, + "probability": 0.2718 + }, + { + "start": 13179.94, + "end": 13181.99, + "probability": 0.7747 + }, + { + "start": 13182.76, + "end": 13185.8, + "probability": 0.9749 + }, + { + "start": 13185.88, + "end": 13190.4, + "probability": 0.9518 + }, + { + "start": 13191.16, + "end": 13192.13, + "probability": 0.8398 + }, + { + "start": 13193.18, + "end": 13195.17, + "probability": 0.9985 + }, + { + "start": 13195.82, + "end": 13196.52, + "probability": 0.8379 + }, + { + "start": 13197.18, + "end": 13198.83, + "probability": 0.7032 + }, + { + "start": 13199.38, + "end": 13201.96, + "probability": 0.8252 + }, + { + "start": 13202.32, + "end": 13205.68, + "probability": 0.974 + }, + { + "start": 13205.88, + "end": 13209.32, + "probability": 0.9601 + }, + { + "start": 13209.68, + "end": 13211.53, + "probability": 0.9407 + }, + { + "start": 13211.96, + "end": 13212.76, + "probability": 0.6004 + }, + { + "start": 13212.82, + "end": 13213.4, + "probability": 0.8468 + }, + { + "start": 13216.04, + "end": 13217.64, + "probability": 0.6414 + }, + { + "start": 13218.62, + "end": 13219.1, + "probability": 0.3616 + }, + { + "start": 13219.22, + "end": 13220.42, + "probability": 0.8489 + }, + { + "start": 13220.88, + "end": 13225.16, + "probability": 0.6885 + }, + { + "start": 13225.66, + "end": 13225.78, + "probability": 0.3365 + }, + { + "start": 13226.04, + "end": 13226.28, + "probability": 0.3751 + }, + { + "start": 13226.28, + "end": 13229.9, + "probability": 0.9779 + }, + { + "start": 13230.26, + "end": 13234.12, + "probability": 0.9886 + }, + { + "start": 13234.44, + "end": 13235.82, + "probability": 0.9971 + }, + { + "start": 13236.2, + "end": 13236.44, + "probability": 0.2743 + }, + { + "start": 13236.44, + "end": 13239.0, + "probability": 0.6871 + }, + { + "start": 13239.36, + "end": 13239.57, + "probability": 0.0548 + }, + { + "start": 13241.18, + "end": 13241.48, + "probability": 0.7249 + }, + { + "start": 13242.26, + "end": 13243.94, + "probability": 0.9676 + }, + { + "start": 13244.62, + "end": 13249.3, + "probability": 0.8222 + }, + { + "start": 13249.9, + "end": 13249.9, + "probability": 0.2295 + }, + { + "start": 13249.9, + "end": 13254.7, + "probability": 0.885 + }, + { + "start": 13256.05, + "end": 13258.56, + "probability": 0.5387 + }, + { + "start": 13258.66, + "end": 13259.94, + "probability": 0.95 + }, + { + "start": 13261.66, + "end": 13262.45, + "probability": 0.8582 + }, + { + "start": 13263.58, + "end": 13265.42, + "probability": 0.9289 + }, + { + "start": 13290.92, + "end": 13291.88, + "probability": 0.5996 + }, + { + "start": 13293.14, + "end": 13294.4, + "probability": 0.9869 + }, + { + "start": 13296.16, + "end": 13297.23, + "probability": 0.7335 + }, + { + "start": 13297.74, + "end": 13299.86, + "probability": 0.9343 + }, + { + "start": 13300.61, + "end": 13303.53, + "probability": 0.7819 + }, + { + "start": 13304.12, + "end": 13305.36, + "probability": 0.5726 + }, + { + "start": 13306.2, + "end": 13306.94, + "probability": 0.4913 + }, + { + "start": 13307.62, + "end": 13312.48, + "probability": 0.6578 + }, + { + "start": 13312.48, + "end": 13316.33, + "probability": 0.9498 + }, + { + "start": 13317.46, + "end": 13321.04, + "probability": 0.8491 + }, + { + "start": 13321.42, + "end": 13323.38, + "probability": 0.9545 + }, + { + "start": 13323.96, + "end": 13325.94, + "probability": 0.9693 + }, + { + "start": 13325.98, + "end": 13327.76, + "probability": 0.8171 + }, + { + "start": 13328.1, + "end": 13330.68, + "probability": 0.9734 + }, + { + "start": 13331.3, + "end": 13336.38, + "probability": 0.9939 + }, + { + "start": 13337.28, + "end": 13341.06, + "probability": 0.9968 + }, + { + "start": 13341.64, + "end": 13347.46, + "probability": 0.9912 + }, + { + "start": 13347.98, + "end": 13351.82, + "probability": 0.7665 + }, + { + "start": 13352.28, + "end": 13353.76, + "probability": 0.9453 + }, + { + "start": 13354.16, + "end": 13359.86, + "probability": 0.974 + }, + { + "start": 13360.4, + "end": 13361.36, + "probability": 0.7397 + }, + { + "start": 13361.98, + "end": 13367.36, + "probability": 0.8219 + }, + { + "start": 13367.36, + "end": 13373.9, + "probability": 0.9955 + }, + { + "start": 13374.58, + "end": 13380.74, + "probability": 0.9947 + }, + { + "start": 13381.3, + "end": 13385.64, + "probability": 0.9978 + }, + { + "start": 13385.98, + "end": 13388.44, + "probability": 0.9946 + }, + { + "start": 13388.84, + "end": 13391.76, + "probability": 0.9349 + }, + { + "start": 13392.3, + "end": 13393.54, + "probability": 0.7524 + }, + { + "start": 13394.12, + "end": 13395.5, + "probability": 0.8657 + }, + { + "start": 13396.02, + "end": 13400.2, + "probability": 0.9953 + }, + { + "start": 13401.08, + "end": 13402.76, + "probability": 0.8685 + }, + { + "start": 13403.32, + "end": 13404.72, + "probability": 0.7576 + }, + { + "start": 13404.86, + "end": 13405.78, + "probability": 0.5979 + }, + { + "start": 13406.36, + "end": 13408.8, + "probability": 0.9253 + }, + { + "start": 13409.38, + "end": 13412.04, + "probability": 0.9854 + }, + { + "start": 13412.52, + "end": 13413.69, + "probability": 0.6699 + }, + { + "start": 13414.44, + "end": 13417.16, + "probability": 0.9913 + }, + { + "start": 13418.62, + "end": 13420.88, + "probability": 0.3659 + }, + { + "start": 13420.94, + "end": 13422.16, + "probability": 0.1943 + }, + { + "start": 13422.46, + "end": 13422.74, + "probability": 0.1438 + }, + { + "start": 13422.78, + "end": 13424.09, + "probability": 0.4779 + }, + { + "start": 13424.36, + "end": 13426.94, + "probability": 0.9529 + }, + { + "start": 13427.22, + "end": 13428.74, + "probability": 0.1636 + }, + { + "start": 13428.74, + "end": 13431.26, + "probability": 0.5938 + }, + { + "start": 13431.7, + "end": 13436.34, + "probability": 0.7041 + }, + { + "start": 13437.52, + "end": 13438.84, + "probability": 0.307 + }, + { + "start": 13439.36, + "end": 13443.9, + "probability": 0.9268 + }, + { + "start": 13444.12, + "end": 13448.06, + "probability": 0.5797 + }, + { + "start": 13449.06, + "end": 13451.62, + "probability": 0.6465 + }, + { + "start": 13451.94, + "end": 13455.88, + "probability": 0.5837 + }, + { + "start": 13456.44, + "end": 13459.18, + "probability": 0.4644 + }, + { + "start": 13459.26, + "end": 13461.86, + "probability": 0.5239 + }, + { + "start": 13461.9, + "end": 13462.32, + "probability": 0.9235 + }, + { + "start": 13465.26, + "end": 13465.58, + "probability": 0.3425 + }, + { + "start": 13467.92, + "end": 13469.86, + "probability": 0.3802 + }, + { + "start": 13470.68, + "end": 13471.06, + "probability": 0.6078 + }, + { + "start": 13472.3, + "end": 13473.3, + "probability": 0.8854 + }, + { + "start": 13474.14, + "end": 13476.6, + "probability": 0.769 + }, + { + "start": 13477.24, + "end": 13477.74, + "probability": 0.9265 + }, + { + "start": 13478.96, + "end": 13479.96, + "probability": 0.9677 + }, + { + "start": 13480.64, + "end": 13482.7, + "probability": 0.9802 + }, + { + "start": 13483.42, + "end": 13483.88, + "probability": 0.9933 + }, + { + "start": 13484.9, + "end": 13485.96, + "probability": 0.6681 + }, + { + "start": 13486.8, + "end": 13487.22, + "probability": 0.9949 + }, + { + "start": 13488.56, + "end": 13489.56, + "probability": 0.9359 + }, + { + "start": 13490.76, + "end": 13491.54, + "probability": 0.9732 + }, + { + "start": 13492.46, + "end": 13493.62, + "probability": 0.801 + }, + { + "start": 13495.96, + "end": 13496.32, + "probability": 0.0863 + }, + { + "start": 13496.32, + "end": 13496.32, + "probability": 0.0924 + }, + { + "start": 13496.32, + "end": 13496.32, + "probability": 0.023 + }, + { + "start": 13496.32, + "end": 13497.3, + "probability": 0.5123 + }, + { + "start": 13500.66, + "end": 13501.54, + "probability": 0.5942 + }, + { + "start": 13502.3, + "end": 13504.3, + "probability": 0.8378 + }, + { + "start": 13506.22, + "end": 13507.02, + "probability": 0.0255 + }, + { + "start": 13507.02, + "end": 13508.63, + "probability": 0.5612 + }, + { + "start": 13509.78, + "end": 13510.66, + "probability": 0.598 + }, + { + "start": 13510.66, + "end": 13512.14, + "probability": 0.6832 + }, + { + "start": 13512.98, + "end": 13514.52, + "probability": 0.5657 + }, + { + "start": 13514.52, + "end": 13514.52, + "probability": 0.6207 + }, + { + "start": 13514.52, + "end": 13515.44, + "probability": 0.8154 + }, + { + "start": 13517.28, + "end": 13518.14, + "probability": 0.5952 + }, + { + "start": 13518.14, + "end": 13518.26, + "probability": 0.2764 + }, + { + "start": 13518.32, + "end": 13518.88, + "probability": 0.7533 + }, + { + "start": 13518.96, + "end": 13519.32, + "probability": 0.3725 + }, + { + "start": 13519.64, + "end": 13520.25, + "probability": 0.4366 + }, + { + "start": 13521.0, + "end": 13523.22, + "probability": 0.6317 + }, + { + "start": 13523.26, + "end": 13524.38, + "probability": 0.6326 + }, + { + "start": 13527.03, + "end": 13529.36, + "probability": 0.6352 + }, + { + "start": 13529.46, + "end": 13530.02, + "probability": 0.4589 + }, + { + "start": 13530.88, + "end": 13531.42, + "probability": 0.5796 + }, + { + "start": 13532.36, + "end": 13535.34, + "probability": 0.0919 + }, + { + "start": 13536.4, + "end": 13538.24, + "probability": 0.2027 + }, + { + "start": 13539.36, + "end": 13545.24, + "probability": 0.6356 + }, + { + "start": 13545.24, + "end": 13546.08, + "probability": 0.582 + }, + { + "start": 13546.8, + "end": 13547.82, + "probability": 0.7388 + }, + { + "start": 13548.26, + "end": 13551.56, + "probability": 0.8699 + }, + { + "start": 13551.86, + "end": 13553.67, + "probability": 0.9696 + }, + { + "start": 13554.26, + "end": 13556.38, + "probability": 0.0658 + }, + { + "start": 13556.82, + "end": 13558.8, + "probability": 0.0495 + }, + { + "start": 13558.8, + "end": 13558.8, + "probability": 0.0126 + }, + { + "start": 13558.8, + "end": 13558.8, + "probability": 0.044 + }, + { + "start": 13558.8, + "end": 13558.8, + "probability": 0.0663 + }, + { + "start": 13558.8, + "end": 13559.8, + "probability": 0.6095 + }, + { + "start": 13560.08, + "end": 13561.44, + "probability": 0.6373 + }, + { + "start": 13561.74, + "end": 13564.96, + "probability": 0.6942 + }, + { + "start": 13565.56, + "end": 13566.25, + "probability": 0.3516 + }, + { + "start": 13568.18, + "end": 13570.18, + "probability": 0.6074 + }, + { + "start": 13570.54, + "end": 13573.3, + "probability": 0.8698 + }, + { + "start": 13573.42, + "end": 13575.16, + "probability": 0.9263 + }, + { + "start": 13575.58, + "end": 13578.74, + "probability": 0.9181 + }, + { + "start": 13578.88, + "end": 13579.18, + "probability": 0.4495 + }, + { + "start": 13579.68, + "end": 13580.94, + "probability": 0.6538 + }, + { + "start": 13581.64, + "end": 13584.26, + "probability": 0.7029 + }, + { + "start": 13584.86, + "end": 13586.86, + "probability": 0.0912 + }, + { + "start": 13587.32, + "end": 13588.88, + "probability": 0.4048 + }, + { + "start": 13589.36, + "end": 13589.36, + "probability": 0.7213 + }, + { + "start": 13589.44, + "end": 13589.44, + "probability": 0.7286 + }, + { + "start": 13589.44, + "end": 13590.44, + "probability": 0.584 + }, + { + "start": 13590.84, + "end": 13594.93, + "probability": 0.4024 + }, + { + "start": 13595.0, + "end": 13595.06, + "probability": 0.0899 + }, + { + "start": 13595.06, + "end": 13596.56, + "probability": 0.6498 + }, + { + "start": 13596.76, + "end": 13599.84, + "probability": 0.3474 + }, + { + "start": 13599.96, + "end": 13601.18, + "probability": 0.4739 + }, + { + "start": 13601.44, + "end": 13602.46, + "probability": 0.5732 + }, + { + "start": 13602.66, + "end": 13603.42, + "probability": 0.7445 + }, + { + "start": 13605.06, + "end": 13606.4, + "probability": 0.4014 + }, + { + "start": 13611.04, + "end": 13611.78, + "probability": 0.5439 + }, + { + "start": 13612.66, + "end": 13613.04, + "probability": 0.5953 + }, + { + "start": 13613.98, + "end": 13621.08, + "probability": 0.7309 + }, + { + "start": 13622.0, + "end": 13622.34, + "probability": 0.9072 + }, + { + "start": 13623.32, + "end": 13624.22, + "probability": 0.843 + }, + { + "start": 13625.2, + "end": 13627.02, + "probability": 0.9832 + }, + { + "start": 13628.88, + "end": 13629.36, + "probability": 0.994 + }, + { + "start": 13630.42, + "end": 13631.08, + "probability": 0.9002 + }, + { + "start": 13634.24, + "end": 13634.9, + "probability": 0.8127 + }, + { + "start": 13636.14, + "end": 13637.08, + "probability": 0.8292 + }, + { + "start": 13637.82, + "end": 13638.16, + "probability": 0.9891 + }, + { + "start": 13639.2, + "end": 13640.14, + "probability": 0.8124 + }, + { + "start": 13640.66, + "end": 13641.34, + "probability": 0.7783 + }, + { + "start": 13641.98, + "end": 13642.84, + "probability": 0.8637 + }, + { + "start": 13643.96, + "end": 13644.36, + "probability": 0.9385 + }, + { + "start": 13646.56, + "end": 13647.36, + "probability": 0.9424 + }, + { + "start": 13649.24, + "end": 13649.92, + "probability": 0.9818 + }, + { + "start": 13650.98, + "end": 13651.84, + "probability": 0.9854 + }, + { + "start": 13652.5, + "end": 13657.76, + "probability": 0.9594 + }, + { + "start": 13661.86, + "end": 13664.56, + "probability": 0.8494 + }, + { + "start": 13665.4, + "end": 13668.0, + "probability": 0.8067 + }, + { + "start": 13668.78, + "end": 13669.2, + "probability": 0.9362 + }, + { + "start": 13670.84, + "end": 13671.66, + "probability": 0.9583 + }, + { + "start": 13672.28, + "end": 13673.08, + "probability": 0.9016 + }, + { + "start": 13673.66, + "end": 13674.88, + "probability": 0.9255 + }, + { + "start": 13677.48, + "end": 13678.3, + "probability": 0.5102 + }, + { + "start": 13679.3, + "end": 13680.34, + "probability": 0.5842 + }, + { + "start": 13682.08, + "end": 13682.52, + "probability": 0.835 + }, + { + "start": 13683.36, + "end": 13685.26, + "probability": 0.8593 + }, + { + "start": 13686.16, + "end": 13687.22, + "probability": 0.7804 + }, + { + "start": 13688.52, + "end": 13688.98, + "probability": 0.9701 + }, + { + "start": 13689.76, + "end": 13690.54, + "probability": 0.9503 + }, + { + "start": 13691.64, + "end": 13692.08, + "probability": 0.9817 + }, + { + "start": 13692.88, + "end": 13693.72, + "probability": 0.9246 + }, + { + "start": 13694.58, + "end": 13694.96, + "probability": 0.9868 + }, + { + "start": 13695.84, + "end": 13696.82, + "probability": 0.8169 + }, + { + "start": 13697.52, + "end": 13698.0, + "probability": 0.9235 + }, + { + "start": 13698.88, + "end": 13699.88, + "probability": 0.9458 + }, + { + "start": 13701.1, + "end": 13703.06, + "probability": 0.9225 + }, + { + "start": 13706.14, + "end": 13709.02, + "probability": 0.7331 + }, + { + "start": 13709.9, + "end": 13710.72, + "probability": 0.9458 + }, + { + "start": 13711.64, + "end": 13714.3, + "probability": 0.8239 + }, + { + "start": 13715.0, + "end": 13717.1, + "probability": 0.9753 + }, + { + "start": 13717.9, + "end": 13720.14, + "probability": 0.9692 + }, + { + "start": 13721.12, + "end": 13723.58, + "probability": 0.6985 + }, + { + "start": 13724.98, + "end": 13728.94, + "probability": 0.8646 + }, + { + "start": 13730.8, + "end": 13731.8, + "probability": 0.7374 + }, + { + "start": 13733.66, + "end": 13734.5, + "probability": 0.9594 + }, + { + "start": 13735.2, + "end": 13738.8, + "probability": 0.0809 + }, + { + "start": 13739.34, + "end": 13743.68, + "probability": 0.1259 + }, + { + "start": 13743.74, + "end": 13746.9, + "probability": 0.0711 + }, + { + "start": 13746.94, + "end": 13750.54, + "probability": 0.0666 + }, + { + "start": 13751.26, + "end": 13752.86, + "probability": 0.5047 + }, + { + "start": 13752.86, + "end": 13752.88, + "probability": 0.0218 + }, + { + "start": 13756.32, + "end": 13759.56, + "probability": 0.4086 + }, + { + "start": 13761.19, + "end": 13761.31, + "probability": 0.6498 + }, + { + "start": 13764.84, + "end": 13765.2, + "probability": 0.4598 + }, + { + "start": 13766.28, + "end": 13766.92, + "probability": 0.0145 + }, + { + "start": 13770.92, + "end": 13771.68, + "probability": 0.7528 + }, + { + "start": 13793.62, + "end": 13795.02, + "probability": 0.3377 + }, + { + "start": 13795.84, + "end": 13798.28, + "probability": 0.696 + }, + { + "start": 13798.84, + "end": 13802.92, + "probability": 0.7063 + }, + { + "start": 13813.48, + "end": 13814.26, + "probability": 0.4345 + }, + { + "start": 13814.88, + "end": 13816.02, + "probability": 0.6175 + }, + { + "start": 13817.56, + "end": 13818.32, + "probability": 0.6305 + }, + { + "start": 13819.22, + "end": 13820.04, + "probability": 0.7701 + }, + { + "start": 13821.58, + "end": 13821.96, + "probability": 0.8431 + }, + { + "start": 13823.62, + "end": 13824.3, + "probability": 0.8894 + }, + { + "start": 13825.58, + "end": 13827.68, + "probability": 0.9507 + }, + { + "start": 13828.5, + "end": 13830.46, + "probability": 0.9773 + }, + { + "start": 13831.22, + "end": 13833.32, + "probability": 0.9535 + }, + { + "start": 13833.92, + "end": 13834.62, + "probability": 0.9124 + }, + { + "start": 13835.36, + "end": 13836.7, + "probability": 0.6509 + }, + { + "start": 13837.38, + "end": 13837.84, + "probability": 0.8087 + }, + { + "start": 13838.76, + "end": 13839.56, + "probability": 0.7107 + }, + { + "start": 13844.24, + "end": 13847.74, + "probability": 0.737 + }, + { + "start": 13848.82, + "end": 13849.24, + "probability": 0.6987 + }, + { + "start": 13850.2, + "end": 13851.1, + "probability": 0.8974 + }, + { + "start": 13852.7, + "end": 13855.02, + "probability": 0.8455 + }, + { + "start": 13861.14, + "end": 13864.18, + "probability": 0.7804 + }, + { + "start": 13864.9, + "end": 13865.32, + "probability": 0.8374 + }, + { + "start": 13866.24, + "end": 13867.18, + "probability": 0.8478 + }, + { + "start": 13870.34, + "end": 13873.8, + "probability": 0.9331 + }, + { + "start": 13875.22, + "end": 13877.76, + "probability": 0.9525 + }, + { + "start": 13878.66, + "end": 13879.12, + "probability": 0.9899 + }, + { + "start": 13880.4, + "end": 13881.4, + "probability": 0.83 + }, + { + "start": 13882.86, + "end": 13885.2, + "probability": 0.7194 + }, + { + "start": 13886.38, + "end": 13886.78, + "probability": 0.6389 + }, + { + "start": 13887.9, + "end": 13889.16, + "probability": 0.7878 + }, + { + "start": 13890.02, + "end": 13890.48, + "probability": 0.8892 + }, + { + "start": 13891.44, + "end": 13892.44, + "probability": 0.6923 + }, + { + "start": 13893.74, + "end": 13894.62, + "probability": 0.8737 + }, + { + "start": 13895.3, + "end": 13896.32, + "probability": 0.876 + }, + { + "start": 13897.06, + "end": 13899.76, + "probability": 0.8985 + }, + { + "start": 13900.28, + "end": 13905.8, + "probability": 0.9712 + }, + { + "start": 13906.56, + "end": 13907.84, + "probability": 0.9375 + }, + { + "start": 13908.52, + "end": 13909.72, + "probability": 0.9353 + }, + { + "start": 13910.88, + "end": 13918.18, + "probability": 0.7647 + }, + { + "start": 13919.84, + "end": 13920.28, + "probability": 0.8625 + }, + { + "start": 13921.5, + "end": 13922.5, + "probability": 0.8943 + }, + { + "start": 13923.36, + "end": 13923.88, + "probability": 0.9694 + }, + { + "start": 13924.64, + "end": 13925.76, + "probability": 0.9707 + }, + { + "start": 13926.82, + "end": 13929.68, + "probability": 0.9512 + }, + { + "start": 13930.62, + "end": 13933.86, + "probability": 0.959 + }, + { + "start": 13934.48, + "end": 13934.94, + "probability": 0.995 + }, + { + "start": 13935.64, + "end": 13936.76, + "probability": 0.95 + }, + { + "start": 13939.3, + "end": 13942.0, + "probability": 0.9638 + }, + { + "start": 13944.24, + "end": 13947.38, + "probability": 0.6317 + }, + { + "start": 13951.56, + "end": 13953.46, + "probability": 0.6722 + }, + { + "start": 13954.48, + "end": 13955.58, + "probability": 0.3208 + }, + { + "start": 13965.84, + "end": 13966.74, + "probability": 0.6004 + }, + { + "start": 13968.58, + "end": 13969.58, + "probability": 0.7165 + }, + { + "start": 13971.36, + "end": 13971.74, + "probability": 0.8035 + }, + { + "start": 13972.98, + "end": 13974.06, + "probability": 0.492 + }, + { + "start": 13975.44, + "end": 13976.16, + "probability": 0.975 + }, + { + "start": 13977.14, + "end": 13978.1, + "probability": 0.8022 + }, + { + "start": 13981.4, + "end": 13983.86, + "probability": 0.6782 + }, + { + "start": 13985.44, + "end": 13986.24, + "probability": 0.9252 + }, + { + "start": 13987.06, + "end": 13987.8, + "probability": 0.9649 + }, + { + "start": 13988.6, + "end": 13989.3, + "probability": 0.4452 + }, + { + "start": 13991.5, + "end": 13994.76, + "probability": 0.9861 + }, + { + "start": 13995.54, + "end": 14001.5, + "probability": 0.6748 + }, + { + "start": 14002.5, + "end": 14005.22, + "probability": 0.9298 + }, + { + "start": 14006.9, + "end": 14007.36, + "probability": 0.9847 + }, + { + "start": 14008.64, + "end": 14009.56, + "probability": 0.8868 + }, + { + "start": 14012.22, + "end": 14012.72, + "probability": 0.9956 + }, + { + "start": 14013.56, + "end": 14014.5, + "probability": 0.8902 + }, + { + "start": 14015.5, + "end": 14015.88, + "probability": 0.9888 + }, + { + "start": 14016.66, + "end": 14019.62, + "probability": 0.927 + }, + { + "start": 14020.36, + "end": 14020.78, + "probability": 0.9963 + }, + { + "start": 14021.7, + "end": 14022.58, + "probability": 0.8892 + }, + { + "start": 14025.2, + "end": 14028.4, + "probability": 0.5883 + }, + { + "start": 14029.2, + "end": 14031.22, + "probability": 0.8036 + }, + { + "start": 14033.76, + "end": 14034.66, + "probability": 0.9254 + }, + { + "start": 14035.76, + "end": 14036.74, + "probability": 0.9393 + }, + { + "start": 14039.06, + "end": 14039.46, + "probability": 0.9092 + }, + { + "start": 14041.56, + "end": 14042.84, + "probability": 0.9435 + }, + { + "start": 14043.66, + "end": 14044.14, + "probability": 0.9751 + }, + { + "start": 14045.02, + "end": 14046.18, + "probability": 0.9237 + }, + { + "start": 14048.08, + "end": 14050.08, + "probability": 0.9692 + }, + { + "start": 14051.02, + "end": 14051.44, + "probability": 0.9953 + }, + { + "start": 14052.14, + "end": 14052.24, + "probability": 0.0001 + }, + { + "start": 14052.9, + "end": 14054.26, + "probability": 0.4702 + }, + { + "start": 14055.0, + "end": 14058.82, + "probability": 0.7842 + }, + { + "start": 14058.96, + "end": 14061.32, + "probability": 0.9093 + }, + { + "start": 14061.96, + "end": 14065.02, + "probability": 0.1958 + }, + { + "start": 14066.0, + "end": 14067.42, + "probability": 0.8231 + }, + { + "start": 14069.22, + "end": 14070.2, + "probability": 0.8917 + }, + { + "start": 14070.8, + "end": 14071.66, + "probability": 0.5452 + }, + { + "start": 14072.58, + "end": 14073.02, + "probability": 0.7501 + }, + { + "start": 14073.64, + "end": 14074.52, + "probability": 0.7408 + }, + { + "start": 14078.46, + "end": 14079.9, + "probability": 0.6699 + }, + { + "start": 14080.94, + "end": 14081.76, + "probability": 0.6126 + }, + { + "start": 14082.92, + "end": 14085.4, + "probability": 0.8687 + }, + { + "start": 14086.66, + "end": 14089.3, + "probability": 0.8532 + }, + { + "start": 14090.86, + "end": 14091.4, + "probability": 0.9933 + }, + { + "start": 14092.36, + "end": 14097.04, + "probability": 0.9233 + }, + { + "start": 14097.8, + "end": 14098.4, + "probability": 0.4972 + }, + { + "start": 14102.92, + "end": 14106.1, + "probability": 0.4861 + }, + { + "start": 14107.36, + "end": 14109.8, + "probability": 0.6622 + }, + { + "start": 14112.17, + "end": 14115.52, + "probability": 0.9112 + }, + { + "start": 14117.96, + "end": 14118.98, + "probability": 0.5777 + }, + { + "start": 14120.2, + "end": 14123.4, + "probability": 0.9009 + }, + { + "start": 14125.08, + "end": 14126.02, + "probability": 0.9634 + }, + { + "start": 14130.0, + "end": 14130.9, + "probability": 0.6188 + }, + { + "start": 14131.48, + "end": 14132.36, + "probability": 0.5674 + }, + { + "start": 14134.04, + "end": 14135.24, + "probability": 0.6782 + }, + { + "start": 14135.84, + "end": 14138.16, + "probability": 0.9506 + }, + { + "start": 14140.62, + "end": 14143.14, + "probability": 0.9257 + }, + { + "start": 14143.74, + "end": 14145.92, + "probability": 0.9737 + }, + { + "start": 14146.16, + "end": 14148.44, + "probability": 0.9181 + }, + { + "start": 14148.84, + "end": 14153.54, + "probability": 0.9764 + }, + { + "start": 14154.32, + "end": 14155.46, + "probability": 0.9873 + }, + { + "start": 14156.34, + "end": 14157.4, + "probability": 0.5831 + }, + { + "start": 14158.1, + "end": 14160.58, + "probability": 0.6814 + }, + { + "start": 14162.02, + "end": 14167.74, + "probability": 0.9144 + }, + { + "start": 14168.78, + "end": 14169.78, + "probability": 0.9891 + }, + { + "start": 14171.12, + "end": 14173.06, + "probability": 0.9156 + }, + { + "start": 14176.0, + "end": 14176.92, + "probability": 0.603 + }, + { + "start": 14177.8, + "end": 14180.02, + "probability": 0.8928 + }, + { + "start": 14180.88, + "end": 14185.1, + "probability": 0.9247 + }, + { + "start": 14187.8, + "end": 14191.48, + "probability": 0.6105 + }, + { + "start": 14192.76, + "end": 14196.64, + "probability": 0.946 + }, + { + "start": 14197.62, + "end": 14201.92, + "probability": 0.6959 + }, + { + "start": 14202.1, + "end": 14204.1, + "probability": 0.9299 + }, + { + "start": 14204.34, + "end": 14206.42, + "probability": 0.6856 + }, + { + "start": 14206.88, + "end": 14209.36, + "probability": 0.9244 + }, + { + "start": 14211.26, + "end": 14211.66, + "probability": 0.8553 + }, + { + "start": 14213.46, + "end": 14214.8, + "probability": 0.825 + }, + { + "start": 14216.24, + "end": 14220.54, + "probability": 0.9219 + }, + { + "start": 14223.56, + "end": 14225.78, + "probability": 0.851 + }, + { + "start": 14225.94, + "end": 14228.04, + "probability": 0.3265 + }, + { + "start": 14228.4, + "end": 14229.86, + "probability": 0.7053 + }, + { + "start": 14230.1, + "end": 14231.08, + "probability": 0.7146 + }, + { + "start": 14236.74, + "end": 14237.3, + "probability": 0.0971 + }, + { + "start": 14243.64, + "end": 14243.86, + "probability": 0.0046 + }, + { + "start": 14251.98, + "end": 14255.66, + "probability": 0.1042 + }, + { + "start": 14266.5, + "end": 14266.58, + "probability": 0.0342 + }, + { + "start": 14279.06, + "end": 14281.94, + "probability": 0.0889 + }, + { + "start": 14283.0, + "end": 14283.04, + "probability": 0.125 + }, + { + "start": 14284.42, + "end": 14286.34, + "probability": 0.3167 + }, + { + "start": 14317.0, + "end": 14317.0, + "probability": 0.0 + }, + { + "start": 14318.02, + "end": 14318.62, + "probability": 0.4124 + }, + { + "start": 14318.82, + "end": 14321.29, + "probability": 0.9399 + }, + { + "start": 14321.87, + "end": 14326.47, + "probability": 0.7732 + }, + { + "start": 14341.71, + "end": 14342.65, + "probability": 0.3293 + }, + { + "start": 14343.27, + "end": 14343.27, + "probability": 0.4984 + }, + { + "start": 14343.27, + "end": 14343.99, + "probability": 0.5736 + }, + { + "start": 14344.15, + "end": 14344.81, + "probability": 0.6648 + }, + { + "start": 14345.23, + "end": 14346.05, + "probability": 0.7428 + }, + { + "start": 14346.13, + "end": 14347.11, + "probability": 0.841 + }, + { + "start": 14347.15, + "end": 14348.45, + "probability": 0.5266 + }, + { + "start": 14353.97, + "end": 14354.69, + "probability": 0.0403 + }, + { + "start": 14354.97, + "end": 14355.95, + "probability": 0.4083 + }, + { + "start": 14356.47, + "end": 14357.21, + "probability": 0.1478 + }, + { + "start": 14358.23, + "end": 14358.71, + "probability": 0.0968 + }, + { + "start": 14358.71, + "end": 14360.79, + "probability": 0.7714 + }, + { + "start": 14361.09, + "end": 14363.17, + "probability": 0.9725 + }, + { + "start": 14363.45, + "end": 14363.45, + "probability": 0.0652 + }, + { + "start": 14363.45, + "end": 14363.45, + "probability": 0.2884 + }, + { + "start": 14363.45, + "end": 14365.61, + "probability": 0.3706 + }, + { + "start": 14366.33, + "end": 14367.91, + "probability": 0.899 + }, + { + "start": 14368.39, + "end": 14369.72, + "probability": 0.6465 + }, + { + "start": 14371.75, + "end": 14372.07, + "probability": 0.0186 + }, + { + "start": 14372.07, + "end": 14372.07, + "probability": 0.1479 + }, + { + "start": 14372.07, + "end": 14372.33, + "probability": 0.457 + }, + { + "start": 14372.43, + "end": 14373.37, + "probability": 0.29 + }, + { + "start": 14373.39, + "end": 14373.39, + "probability": 0.1149 + }, + { + "start": 14373.45, + "end": 14374.43, + "probability": 0.1253 + }, + { + "start": 14374.55, + "end": 14375.84, + "probability": 0.0163 + }, + { + "start": 14382.97, + "end": 14385.61, + "probability": 0.4598 + }, + { + "start": 14385.63, + "end": 14386.03, + "probability": 0.3935 + }, + { + "start": 14386.25, + "end": 14387.73, + "probability": 0.0767 + }, + { + "start": 14387.87, + "end": 14389.15, + "probability": 0.0957 + }, + { + "start": 14389.15, + "end": 14391.15, + "probability": 0.0795 + }, + { + "start": 14391.89, + "end": 14393.53, + "probability": 0.2684 + }, + { + "start": 14394.07, + "end": 14395.51, + "probability": 0.0383 + }, + { + "start": 14396.25, + "end": 14396.25, + "probability": 0.0878 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14478.0, + "end": 14478.0, + "probability": 0.0 + }, + { + "start": 14479.2, + "end": 14481.1, + "probability": 0.9868 + }, + { + "start": 14482.16, + "end": 14483.02, + "probability": 0.9563 + }, + { + "start": 14484.38, + "end": 14487.18, + "probability": 0.9917 + }, + { + "start": 14487.18, + "end": 14490.46, + "probability": 0.9946 + }, + { + "start": 14490.56, + "end": 14491.12, + "probability": 0.8953 + }, + { + "start": 14491.28, + "end": 14492.28, + "probability": 0.8851 + }, + { + "start": 14493.32, + "end": 14496.46, + "probability": 0.999 + }, + { + "start": 14498.04, + "end": 14502.28, + "probability": 0.9979 + }, + { + "start": 14503.16, + "end": 14509.02, + "probability": 0.9972 + }, + { + "start": 14510.18, + "end": 14510.44, + "probability": 0.7432 + }, + { + "start": 14513.2, + "end": 14515.8, + "probability": 0.9917 + }, + { + "start": 14516.76, + "end": 14518.18, + "probability": 0.9937 + }, + { + "start": 14518.26, + "end": 14519.75, + "probability": 0.9658 + }, + { + "start": 14520.44, + "end": 14522.08, + "probability": 0.9722 + }, + { + "start": 14523.46, + "end": 14524.92, + "probability": 0.9968 + }, + { + "start": 14525.82, + "end": 14528.38, + "probability": 0.7192 + }, + { + "start": 14528.56, + "end": 14531.02, + "probability": 0.9904 + }, + { + "start": 14531.64, + "end": 14532.74, + "probability": 0.7526 + }, + { + "start": 14533.76, + "end": 14535.62, + "probability": 0.8937 + }, + { + "start": 14536.66, + "end": 14540.18, + "probability": 0.7728 + }, + { + "start": 14540.46, + "end": 14541.26, + "probability": 0.7975 + }, + { + "start": 14541.56, + "end": 14542.38, + "probability": 0.3743 + }, + { + "start": 14542.64, + "end": 14543.04, + "probability": 0.9659 + }, + { + "start": 14544.52, + "end": 14547.64, + "probability": 0.8809 + }, + { + "start": 14549.28, + "end": 14552.24, + "probability": 0.6634 + }, + { + "start": 14552.24, + "end": 14553.92, + "probability": 0.8757 + }, + { + "start": 14555.24, + "end": 14557.37, + "probability": 0.9085 + }, + { + "start": 14558.22, + "end": 14562.18, + "probability": 0.9543 + }, + { + "start": 14562.72, + "end": 14564.37, + "probability": 0.8088 + }, + { + "start": 14565.84, + "end": 14566.72, + "probability": 0.7653 + }, + { + "start": 14568.12, + "end": 14571.24, + "probability": 0.9066 + }, + { + "start": 14572.18, + "end": 14574.98, + "probability": 0.9976 + }, + { + "start": 14575.78, + "end": 14578.6, + "probability": 0.9379 + }, + { + "start": 14579.54, + "end": 14582.08, + "probability": 0.9365 + }, + { + "start": 14583.06, + "end": 14585.4, + "probability": 0.9893 + }, + { + "start": 14586.58, + "end": 14592.06, + "probability": 0.9845 + }, + { + "start": 14592.24, + "end": 14593.6, + "probability": 0.9991 + }, + { + "start": 14595.98, + "end": 14597.78, + "probability": 0.9698 + }, + { + "start": 14599.88, + "end": 14601.44, + "probability": 0.8025 + }, + { + "start": 14601.76, + "end": 14603.0, + "probability": 0.7803 + }, + { + "start": 14603.42, + "end": 14603.44, + "probability": 0.3106 + }, + { + "start": 14603.44, + "end": 14604.5, + "probability": 0.9034 + }, + { + "start": 14604.6, + "end": 14610.78, + "probability": 0.995 + }, + { + "start": 14610.78, + "end": 14614.74, + "probability": 0.9338 + }, + { + "start": 14615.74, + "end": 14616.68, + "probability": 0.6929 + }, + { + "start": 14617.88, + "end": 14622.46, + "probability": 0.9867 + }, + { + "start": 14622.63, + "end": 14625.7, + "probability": 0.9882 + }, + { + "start": 14626.92, + "end": 14627.6, + "probability": 0.962 + }, + { + "start": 14629.52, + "end": 14633.7, + "probability": 0.8962 + }, + { + "start": 14634.76, + "end": 14636.16, + "probability": 0.991 + }, + { + "start": 14636.98, + "end": 14637.56, + "probability": 0.977 + }, + { + "start": 14639.92, + "end": 14645.2, + "probability": 0.9597 + }, + { + "start": 14646.0, + "end": 14648.94, + "probability": 0.7013 + }, + { + "start": 14649.8, + "end": 14650.82, + "probability": 0.9421 + }, + { + "start": 14650.94, + "end": 14651.29, + "probability": 0.0432 + }, + { + "start": 14651.6, + "end": 14656.24, + "probability": 0.9749 + }, + { + "start": 14656.3, + "end": 14659.22, + "probability": 0.9221 + }, + { + "start": 14660.1, + "end": 14662.58, + "probability": 0.9489 + }, + { + "start": 14662.82, + "end": 14664.72, + "probability": 0.7929 + }, + { + "start": 14664.8, + "end": 14671.38, + "probability": 0.9682 + }, + { + "start": 14673.96, + "end": 14676.88, + "probability": 0.9921 + }, + { + "start": 14676.94, + "end": 14680.1, + "probability": 0.5786 + }, + { + "start": 14680.1, + "end": 14684.24, + "probability": 0.9907 + }, + { + "start": 14684.6, + "end": 14686.24, + "probability": 0.787 + }, + { + "start": 14687.44, + "end": 14689.2, + "probability": 0.3822 + }, + { + "start": 14690.6, + "end": 14699.6, + "probability": 0.8503 + }, + { + "start": 14700.8, + "end": 14702.36, + "probability": 0.7422 + }, + { + "start": 14702.4, + "end": 14703.94, + "probability": 0.9844 + }, + { + "start": 14704.0, + "end": 14707.84, + "probability": 0.7344 + }, + { + "start": 14707.88, + "end": 14712.98, + "probability": 0.9672 + }, + { + "start": 14712.98, + "end": 14716.54, + "probability": 0.9951 + }, + { + "start": 14717.24, + "end": 14719.72, + "probability": 0.9859 + }, + { + "start": 14720.18, + "end": 14722.96, + "probability": 0.9771 + }, + { + "start": 14723.74, + "end": 14725.58, + "probability": 0.7815 + }, + { + "start": 14725.66, + "end": 14728.84, + "probability": 0.9877 + }, + { + "start": 14729.42, + "end": 14732.0, + "probability": 0.9979 + }, + { + "start": 14732.28, + "end": 14732.78, + "probability": 0.8925 + }, + { + "start": 14735.26, + "end": 14736.4, + "probability": 0.9313 + }, + { + "start": 14736.58, + "end": 14737.04, + "probability": 0.7739 + }, + { + "start": 14737.16, + "end": 14737.4, + "probability": 0.2226 + }, + { + "start": 14737.4, + "end": 14737.4, + "probability": 0.5564 + }, + { + "start": 14737.46, + "end": 14738.32, + "probability": 0.8685 + }, + { + "start": 14739.34, + "end": 14741.16, + "probability": 0.9983 + }, + { + "start": 14741.26, + "end": 14743.36, + "probability": 0.9883 + }, + { + "start": 14744.0, + "end": 14747.52, + "probability": 0.9943 + }, + { + "start": 14748.24, + "end": 14750.38, + "probability": 0.8123 + }, + { + "start": 14750.92, + "end": 14751.54, + "probability": 0.9139 + }, + { + "start": 14752.38, + "end": 14753.3, + "probability": 0.2658 + }, + { + "start": 14753.48, + "end": 14755.44, + "probability": 0.7549 + }, + { + "start": 14756.56, + "end": 14759.92, + "probability": 0.9395 + }, + { + "start": 14762.02, + "end": 14767.6, + "probability": 0.7964 + }, + { + "start": 14767.68, + "end": 14768.54, + "probability": 0.7114 + }, + { + "start": 14769.74, + "end": 14772.12, + "probability": 0.9634 + }, + { + "start": 14772.18, + "end": 14776.0, + "probability": 0.9921 + }, + { + "start": 14776.06, + "end": 14776.9, + "probability": 0.2306 + }, + { + "start": 14778.22, + "end": 14779.56, + "probability": 0.6948 + }, + { + "start": 14780.78, + "end": 14784.84, + "probability": 0.6414 + }, + { + "start": 14786.52, + "end": 14792.46, + "probability": 0.7306 + }, + { + "start": 14792.96, + "end": 14793.69, + "probability": 0.9905 + }, + { + "start": 14793.72, + "end": 14794.2, + "probability": 0.985 + }, + { + "start": 14795.6, + "end": 14797.7, + "probability": 0.9482 + }, + { + "start": 14798.28, + "end": 14799.4, + "probability": 0.9766 + }, + { + "start": 14801.0, + "end": 14802.76, + "probability": 0.928 + }, + { + "start": 14804.44, + "end": 14806.82, + "probability": 0.971 + }, + { + "start": 14806.86, + "end": 14808.24, + "probability": 0.9417 + }, + { + "start": 14808.4, + "end": 14812.02, + "probability": 0.864 + }, + { + "start": 14813.16, + "end": 14813.62, + "probability": 0.8992 + }, + { + "start": 14814.31, + "end": 14818.62, + "probability": 0.9984 + }, + { + "start": 14818.76, + "end": 14821.78, + "probability": 0.9943 + }, + { + "start": 14821.94, + "end": 14823.06, + "probability": 0.9387 + }, + { + "start": 14823.52, + "end": 14825.86, + "probability": 0.9089 + }, + { + "start": 14827.18, + "end": 14830.52, + "probability": 0.994 + }, + { + "start": 14831.1, + "end": 14832.82, + "probability": 0.9798 + }, + { + "start": 14833.38, + "end": 14834.86, + "probability": 0.9857 + }, + { + "start": 14835.8, + "end": 14836.92, + "probability": 0.8235 + }, + { + "start": 14850.08, + "end": 14850.66, + "probability": 0.499 + }, + { + "start": 14850.66, + "end": 14850.66, + "probability": 0.0376 + }, + { + "start": 14850.66, + "end": 14850.66, + "probability": 0.1093 + }, + { + "start": 14850.66, + "end": 14851.06, + "probability": 0.2156 + }, + { + "start": 14851.1, + "end": 14852.24, + "probability": 0.6994 + }, + { + "start": 14853.14, + "end": 14856.13, + "probability": 0.799 + }, + { + "start": 14858.1, + "end": 14858.1, + "probability": 0.1107 + }, + { + "start": 14858.1, + "end": 14862.32, + "probability": 0.7781 + }, + { + "start": 14862.74, + "end": 14864.54, + "probability": 0.9814 + }, + { + "start": 14865.1, + "end": 14867.16, + "probability": 0.8269 + }, + { + "start": 14868.3, + "end": 14868.76, + "probability": 0.582 + }, + { + "start": 14869.52, + "end": 14871.0, + "probability": 0.9985 + }, + { + "start": 14872.04, + "end": 14876.18, + "probability": 0.9581 + }, + { + "start": 14876.78, + "end": 14878.8, + "probability": 0.9626 + }, + { + "start": 14879.9, + "end": 14883.3, + "probability": 0.9726 + }, + { + "start": 14883.86, + "end": 14884.9, + "probability": 0.9579 + }, + { + "start": 14885.56, + "end": 14888.62, + "probability": 0.9696 + }, + { + "start": 14889.32, + "end": 14891.3, + "probability": 0.6567 + }, + { + "start": 14894.04, + "end": 14894.78, + "probability": 0.1482 + }, + { + "start": 14896.14, + "end": 14898.2, + "probability": 0.994 + }, + { + "start": 14898.98, + "end": 14900.98, + "probability": 0.7899 + }, + { + "start": 14901.78, + "end": 14902.68, + "probability": 0.9093 + }, + { + "start": 14903.5, + "end": 14904.66, + "probability": 0.8979 + }, + { + "start": 14906.68, + "end": 14912.08, + "probability": 0.8405 + }, + { + "start": 14914.06, + "end": 14915.74, + "probability": 0.8152 + }, + { + "start": 14915.96, + "end": 14916.54, + "probability": 0.5219 + }, + { + "start": 14918.56, + "end": 14921.84, + "probability": 0.969 + }, + { + "start": 14922.5, + "end": 14925.28, + "probability": 0.9878 + }, + { + "start": 14925.42, + "end": 14925.84, + "probability": 0.8881 + }, + { + "start": 14926.7, + "end": 14929.12, + "probability": 0.9865 + }, + { + "start": 14930.08, + "end": 14932.88, + "probability": 0.7787 + }, + { + "start": 14933.04, + "end": 14933.66, + "probability": 0.5893 + }, + { + "start": 14934.9, + "end": 14937.7, + "probability": 0.8123 + }, + { + "start": 14938.36, + "end": 14941.92, + "probability": 0.5269 + }, + { + "start": 14941.96, + "end": 14942.94, + "probability": 0.8545 + }, + { + "start": 14943.44, + "end": 14944.75, + "probability": 0.9734 + }, + { + "start": 14945.44, + "end": 14947.22, + "probability": 0.9733 + }, + { + "start": 14947.26, + "end": 14950.34, + "probability": 0.8884 + }, + { + "start": 14951.26, + "end": 14953.22, + "probability": 0.7889 + }, + { + "start": 14953.6, + "end": 14958.4, + "probability": 0.9688 + }, + { + "start": 14958.84, + "end": 14959.61, + "probability": 0.962 + }, + { + "start": 14961.08, + "end": 14962.26, + "probability": 0.9733 + }, + { + "start": 14962.32, + "end": 14964.39, + "probability": 0.9043 + }, + { + "start": 14965.56, + "end": 14966.28, + "probability": 0.5251 + }, + { + "start": 14966.44, + "end": 14969.22, + "probability": 0.9284 + }, + { + "start": 14969.34, + "end": 14971.68, + "probability": 0.8825 + }, + { + "start": 14972.6, + "end": 14974.98, + "probability": 0.9836 + }, + { + "start": 14975.84, + "end": 14978.82, + "probability": 0.9818 + }, + { + "start": 14979.8, + "end": 14982.29, + "probability": 0.9958 + }, + { + "start": 14983.08, + "end": 14986.4, + "probability": 0.5905 + }, + { + "start": 14987.18, + "end": 14988.18, + "probability": 0.8628 + }, + { + "start": 14988.86, + "end": 14991.34, + "probability": 0.9171 + }, + { + "start": 14992.16, + "end": 14992.8, + "probability": 0.6177 + }, + { + "start": 14993.76, + "end": 14995.1, + "probability": 0.7446 + }, + { + "start": 14995.14, + "end": 14997.45, + "probability": 0.981 + }, + { + "start": 14998.06, + "end": 14999.82, + "probability": 0.7925 + }, + { + "start": 15000.76, + "end": 15002.74, + "probability": 0.989 + }, + { + "start": 15003.44, + "end": 15004.08, + "probability": 0.9154 + }, + { + "start": 15005.62, + "end": 15007.42, + "probability": 0.9512 + }, + { + "start": 15008.0, + "end": 15009.74, + "probability": 0.8435 + }, + { + "start": 15010.64, + "end": 15010.9, + "probability": 0.957 + }, + { + "start": 15017.94, + "end": 15017.94, + "probability": 0.1725 + }, + { + "start": 15017.94, + "end": 15018.02, + "probability": 0.1732 + }, + { + "start": 15018.02, + "end": 15018.16, + "probability": 0.3102 + }, + { + "start": 15018.72, + "end": 15019.3, + "probability": 0.1435 + }, + { + "start": 15019.3, + "end": 15019.3, + "probability": 0.379 + }, + { + "start": 15019.3, + "end": 15019.3, + "probability": 0.0629 + }, + { + "start": 15019.3, + "end": 15019.3, + "probability": 0.0128 + }, + { + "start": 15031.48, + "end": 15033.38, + "probability": 0.6926 + }, + { + "start": 15034.34, + "end": 15035.6, + "probability": 0.65 + }, + { + "start": 15036.78, + "end": 15039.32, + "probability": 0.5333 + }, + { + "start": 15041.44, + "end": 15042.86, + "probability": 0.2511 + }, + { + "start": 15042.94, + "end": 15044.3, + "probability": 0.0429 + }, + { + "start": 15044.3, + "end": 15044.32, + "probability": 0.0677 + }, + { + "start": 15044.34, + "end": 15044.46, + "probability": 0.0637 + }, + { + "start": 15057.4, + "end": 15061.4, + "probability": 0.9883 + }, + { + "start": 15061.52, + "end": 15061.92, + "probability": 0.5384 + }, + { + "start": 15062.26, + "end": 15063.08, + "probability": 0.9883 + }, + { + "start": 15063.82, + "end": 15065.66, + "probability": 0.7908 + }, + { + "start": 15066.22, + "end": 15067.48, + "probability": 0.4052 + }, + { + "start": 15073.64, + "end": 15074.76, + "probability": 0.6018 + }, + { + "start": 15075.0, + "end": 15077.18, + "probability": 0.8269 + }, + { + "start": 15077.26, + "end": 15078.42, + "probability": 0.2379 + }, + { + "start": 15078.98, + "end": 15079.56, + "probability": 0.6692 + }, + { + "start": 15080.08, + "end": 15082.72, + "probability": 0.8556 + }, + { + "start": 15084.04, + "end": 15087.94, + "probability": 0.2344 + }, + { + "start": 15088.02, + "end": 15089.85, + "probability": 0.9669 + }, + { + "start": 15090.06, + "end": 15091.08, + "probability": 0.4763 + }, + { + "start": 15091.38, + "end": 15092.08, + "probability": 0.4008 + }, + { + "start": 15092.22, + "end": 15092.98, + "probability": 0.9547 + }, + { + "start": 15093.24, + "end": 15093.95, + "probability": 0.809 + }, + { + "start": 15095.1, + "end": 15096.04, + "probability": 0.9263 + }, + { + "start": 15096.1, + "end": 15096.86, + "probability": 0.2457 + }, + { + "start": 15096.96, + "end": 15097.64, + "probability": 0.9177 + }, + { + "start": 15098.21, + "end": 15100.08, + "probability": 0.4814 + }, + { + "start": 15100.2, + "end": 15100.66, + "probability": 0.7041 + }, + { + "start": 15100.96, + "end": 15102.02, + "probability": 0.9684 + }, + { + "start": 15102.38, + "end": 15106.92, + "probability": 0.7621 + }, + { + "start": 15106.92, + "end": 15111.2, + "probability": 0.9751 + }, + { + "start": 15111.32, + "end": 15111.96, + "probability": 0.5551 + }, + { + "start": 15112.54, + "end": 15115.77, + "probability": 0.3625 + }, + { + "start": 15119.16, + "end": 15120.08, + "probability": 0.247 + }, + { + "start": 15120.42, + "end": 15121.58, + "probability": 0.4512 + }, + { + "start": 15121.66, + "end": 15121.76, + "probability": 0.0288 + }, + { + "start": 15121.8, + "end": 15122.48, + "probability": 0.8098 + }, + { + "start": 15122.56, + "end": 15124.22, + "probability": 0.3677 + }, + { + "start": 15124.54, + "end": 15127.26, + "probability": 0.8423 + }, + { + "start": 15127.66, + "end": 15129.72, + "probability": 0.6581 + }, + { + "start": 15129.74, + "end": 15130.94, + "probability": 0.785 + }, + { + "start": 15131.0, + "end": 15131.16, + "probability": 0.7401 + }, + { + "start": 15131.16, + "end": 15131.86, + "probability": 0.8836 + }, + { + "start": 15131.96, + "end": 15135.32, + "probability": 0.7308 + }, + { + "start": 15138.98, + "end": 15140.9, + "probability": 0.9269 + }, + { + "start": 15141.0, + "end": 15141.86, + "probability": 0.6571 + }, + { + "start": 15142.16, + "end": 15144.42, + "probability": 0.9528 + }, + { + "start": 15144.42, + "end": 15144.68, + "probability": 0.6334 + }, + { + "start": 15144.92, + "end": 15146.22, + "probability": 0.5651 + }, + { + "start": 15146.28, + "end": 15147.96, + "probability": 0.6749 + }, + { + "start": 15148.28, + "end": 15149.06, + "probability": 0.83 + }, + { + "start": 15149.14, + "end": 15149.74, + "probability": 0.45 + }, + { + "start": 15149.76, + "end": 15151.52, + "probability": 0.9658 + }, + { + "start": 15152.52, + "end": 15155.18, + "probability": 0.7057 + }, + { + "start": 15155.3, + "end": 15158.64, + "probability": 0.5337 + }, + { + "start": 15158.66, + "end": 15159.26, + "probability": 0.4863 + }, + { + "start": 15159.34, + "end": 15161.18, + "probability": 0.9229 + }, + { + "start": 15162.54, + "end": 15163.76, + "probability": 0.9261 + }, + { + "start": 15171.38, + "end": 15171.86, + "probability": 0.5183 + }, + { + "start": 15171.86, + "end": 15172.32, + "probability": 0.5455 + }, + { + "start": 15174.74, + "end": 15176.06, + "probability": 0.2806 + }, + { + "start": 15176.34, + "end": 15176.34, + "probability": 0.5014 + }, + { + "start": 15176.34, + "end": 15176.82, + "probability": 0.3022 + }, + { + "start": 15181.4, + "end": 15182.24, + "probability": 0.7241 + }, + { + "start": 15183.44, + "end": 15183.54, + "probability": 0.3512 + }, + { + "start": 15183.54, + "end": 15184.06, + "probability": 0.7497 + }, + { + "start": 15187.4, + "end": 15188.64, + "probability": 0.5546 + }, + { + "start": 15191.9, + "end": 15192.56, + "probability": 0.7196 + }, + { + "start": 15192.68, + "end": 15192.74, + "probability": 0.0264 + }, + { + "start": 15192.84, + "end": 15193.48, + "probability": 0.7036 + }, + { + "start": 15193.62, + "end": 15195.76, + "probability": 0.4473 + }, + { + "start": 15195.76, + "end": 15197.52, + "probability": 0.2479 + }, + { + "start": 15198.89, + "end": 15199.58, + "probability": 0.546 + }, + { + "start": 15199.58, + "end": 15200.66, + "probability": 0.391 + }, + { + "start": 15201.57, + "end": 15202.08, + "probability": 0.0943 + }, + { + "start": 15202.08, + "end": 15202.08, + "probability": 0.2079 + }, + { + "start": 15202.08, + "end": 15202.08, + "probability": 0.3253 + }, + { + "start": 15202.08, + "end": 15202.5, + "probability": 0.1358 + }, + { + "start": 15203.22, + "end": 15206.3, + "probability": 0.4182 + }, + { + "start": 15207.18, + "end": 15208.64, + "probability": 0.1492 + }, + { + "start": 15208.64, + "end": 15209.16, + "probability": 0.0204 + }, + { + "start": 15209.2, + "end": 15209.74, + "probability": 0.27 + }, + { + "start": 15209.92, + "end": 15209.92, + "probability": 0.1512 + }, + { + "start": 15209.92, + "end": 15210.88, + "probability": 0.3037 + }, + { + "start": 15210.88, + "end": 15211.78, + "probability": 0.3359 + }, + { + "start": 15211.78, + "end": 15213.3, + "probability": 0.4754 + }, + { + "start": 15214.1, + "end": 15215.42, + "probability": 0.4951 + }, + { + "start": 15215.48, + "end": 15216.51, + "probability": 0.9426 + }, + { + "start": 15216.72, + "end": 15217.4, + "probability": 0.7911 + }, + { + "start": 15218.0, + "end": 15218.64, + "probability": 0.7312 + }, + { + "start": 15218.86, + "end": 15220.84, + "probability": 0.6581 + }, + { + "start": 15221.5, + "end": 15223.12, + "probability": 0.9967 + }, + { + "start": 15224.32, + "end": 15225.48, + "probability": 0.9988 + }, + { + "start": 15226.7, + "end": 15227.4, + "probability": 0.9871 + }, + { + "start": 15228.66, + "end": 15234.48, + "probability": 0.9812 + }, + { + "start": 15235.4, + "end": 15236.96, + "probability": 0.9672 + }, + { + "start": 15238.54, + "end": 15241.76, + "probability": 0.9907 + }, + { + "start": 15242.8, + "end": 15244.8, + "probability": 0.9995 + }, + { + "start": 15245.66, + "end": 15247.44, + "probability": 0.9985 + }, + { + "start": 15247.8, + "end": 15247.98, + "probability": 0.3118 + }, + { + "start": 15248.0, + "end": 15248.0, + "probability": 0.0 + }, + { + "start": 15248.0, + "end": 15248.0, + "probability": 0.0 + }, + { + "start": 15248.38, + "end": 15250.54, + "probability": 0.0405 + }, + { + "start": 15251.86, + "end": 15254.3, + "probability": 0.3325 + }, + { + "start": 15254.4, + "end": 15255.1, + "probability": 0.3569 + }, + { + "start": 15255.24, + "end": 15260.6, + "probability": 0.8846 + }, + { + "start": 15261.32, + "end": 15265.14, + "probability": 0.9971 + }, + { + "start": 15265.32, + "end": 15274.06, + "probability": 0.9378 + }, + { + "start": 15275.06, + "end": 15276.9, + "probability": 0.8809 + }, + { + "start": 15278.28, + "end": 15282.5, + "probability": 0.9686 + }, + { + "start": 15283.1, + "end": 15285.2, + "probability": 0.9961 + }, + { + "start": 15285.74, + "end": 15286.7, + "probability": 0.9598 + }, + { + "start": 15287.38, + "end": 15291.18, + "probability": 0.9852 + }, + { + "start": 15292.12, + "end": 15294.66, + "probability": 0.8494 + }, + { + "start": 15295.44, + "end": 15298.22, + "probability": 0.9605 + }, + { + "start": 15298.82, + "end": 15299.46, + "probability": 0.7653 + }, + { + "start": 15300.24, + "end": 15305.26, + "probability": 0.9945 + }, + { + "start": 15305.98, + "end": 15308.0, + "probability": 0.9292 + }, + { + "start": 15309.0, + "end": 15310.82, + "probability": 0.9573 + }, + { + "start": 15311.2, + "end": 15314.76, + "probability": 0.9517 + }, + { + "start": 15314.94, + "end": 15315.2, + "probability": 0.4134 + }, + { + "start": 15315.34, + "end": 15318.28, + "probability": 0.6035 + }, + { + "start": 15318.28, + "end": 15318.74, + "probability": 0.575 + }, + { + "start": 15318.9, + "end": 15319.06, + "probability": 0.5424 + }, + { + "start": 15319.06, + "end": 15319.52, + "probability": 0.7889 + }, + { + "start": 15319.6, + "end": 15319.76, + "probability": 0.7712 + }, + { + "start": 15319.92, + "end": 15320.06, + "probability": 0.9012 + }, + { + "start": 15320.42, + "end": 15320.56, + "probability": 0.0 + }, + { + "start": 15321.64, + "end": 15322.48, + "probability": 0.1558 + }, + { + "start": 15322.48, + "end": 15324.59, + "probability": 0.778 + }, + { + "start": 15326.06, + "end": 15327.34, + "probability": 0.8892 + }, + { + "start": 15327.9, + "end": 15329.02, + "probability": 0.8799 + }, + { + "start": 15329.14, + "end": 15330.06, + "probability": 0.8311 + }, + { + "start": 15330.76, + "end": 15333.8, + "probability": 0.8276 + }, + { + "start": 15334.62, + "end": 15340.2, + "probability": 0.7795 + }, + { + "start": 15340.2, + "end": 15340.93, + "probability": 0.8149 + }, + { + "start": 15342.12, + "end": 15343.31, + "probability": 0.7706 + }, + { + "start": 15344.16, + "end": 15344.4, + "probability": 0.489 + }, + { + "start": 15344.54, + "end": 15345.04, + "probability": 0.9966 + }, + { + "start": 15345.14, + "end": 15349.26, + "probability": 0.9127 + }, + { + "start": 15349.72, + "end": 15352.44, + "probability": 0.9916 + }, + { + "start": 15352.96, + "end": 15358.08, + "probability": 0.9977 + }, + { + "start": 15358.56, + "end": 15361.56, + "probability": 0.9972 + }, + { + "start": 15361.96, + "end": 15365.3, + "probability": 0.9929 + }, + { + "start": 15365.68, + "end": 15366.12, + "probability": 0.5735 + }, + { + "start": 15366.16, + "end": 15366.6, + "probability": 0.9021 + }, + { + "start": 15366.68, + "end": 15368.0, + "probability": 0.8617 + }, + { + "start": 15368.46, + "end": 15372.54, + "probability": 0.9703 + }, + { + "start": 15372.62, + "end": 15372.8, + "probability": 0.8455 + }, + { + "start": 15372.86, + "end": 15373.9, + "probability": 0.9673 + }, + { + "start": 15374.36, + "end": 15377.78, + "probability": 0.9913 + }, + { + "start": 15377.88, + "end": 15379.68, + "probability": 0.983 + }, + { + "start": 15380.18, + "end": 15382.14, + "probability": 0.9814 + }, + { + "start": 15382.42, + "end": 15383.76, + "probability": 0.9958 + }, + { + "start": 15384.56, + "end": 15386.19, + "probability": 0.9763 + }, + { + "start": 15387.02, + "end": 15389.58, + "probability": 0.998 + }, + { + "start": 15389.92, + "end": 15393.72, + "probability": 0.9893 + }, + { + "start": 15394.42, + "end": 15395.33, + "probability": 0.7651 + }, + { + "start": 15397.04, + "end": 15399.48, + "probability": 0.2118 + }, + { + "start": 15399.48, + "end": 15400.58, + "probability": 0.4339 + }, + { + "start": 15400.84, + "end": 15401.72, + "probability": 0.3186 + }, + { + "start": 15402.32, + "end": 15403.86, + "probability": 0.9807 + }, + { + "start": 15404.2, + "end": 15407.44, + "probability": 0.8133 + }, + { + "start": 15407.48, + "end": 15409.52, + "probability": 0.9894 + }, + { + "start": 15409.52, + "end": 15410.5, + "probability": 0.9808 + }, + { + "start": 15410.98, + "end": 15414.6, + "probability": 0.9803 + }, + { + "start": 15414.86, + "end": 15418.06, + "probability": 0.9278 + }, + { + "start": 15418.06, + "end": 15420.22, + "probability": 0.8349 + }, + { + "start": 15420.28, + "end": 15421.4, + "probability": 0.9697 + }, + { + "start": 15421.5, + "end": 15421.5, + "probability": 0.4642 + }, + { + "start": 15421.5, + "end": 15422.55, + "probability": 0.5964 + }, + { + "start": 15423.16, + "end": 15423.88, + "probability": 0.3756 + }, + { + "start": 15423.98, + "end": 15424.14, + "probability": 0.487 + }, + { + "start": 15424.14, + "end": 15425.16, + "probability": 0.894 + }, + { + "start": 15425.56, + "end": 15427.1, + "probability": 0.9927 + }, + { + "start": 15427.22, + "end": 15430.44, + "probability": 0.9676 + }, + { + "start": 15430.6, + "end": 15431.6, + "probability": 0.8301 + }, + { + "start": 15432.18, + "end": 15433.64, + "probability": 0.7828 + }, + { + "start": 15433.84, + "end": 15437.72, + "probability": 0.996 + }, + { + "start": 15437.72, + "end": 15443.26, + "probability": 0.998 + }, + { + "start": 15443.9, + "end": 15447.76, + "probability": 0.8554 + }, + { + "start": 15448.04, + "end": 15449.3, + "probability": 0.7724 + }, + { + "start": 15450.0, + "end": 15452.86, + "probability": 0.8061 + }, + { + "start": 15452.9, + "end": 15455.52, + "probability": 0.8665 + }, + { + "start": 15456.46, + "end": 15458.48, + "probability": 0.9128 + }, + { + "start": 15459.16, + "end": 15460.26, + "probability": 0.9907 + }, + { + "start": 15461.26, + "end": 15461.82, + "probability": 0.4171 + }, + { + "start": 15461.82, + "end": 15461.98, + "probability": 0.2078 + }, + { + "start": 15462.28, + "end": 15463.08, + "probability": 0.5658 + }, + { + "start": 15463.3, + "end": 15463.86, + "probability": 0.5519 + }, + { + "start": 15464.0, + "end": 15464.18, + "probability": 0.8072 + }, + { + "start": 15464.2, + "end": 15464.92, + "probability": 0.3839 + }, + { + "start": 15465.56, + "end": 15467.6, + "probability": 0.9927 + }, + { + "start": 15468.0, + "end": 15469.24, + "probability": 0.8805 + }, + { + "start": 15469.94, + "end": 15470.68, + "probability": 0.9782 + }, + { + "start": 15470.74, + "end": 15473.86, + "probability": 0.9875 + }, + { + "start": 15474.74, + "end": 15475.44, + "probability": 0.8848 + }, + { + "start": 15476.0, + "end": 15478.56, + "probability": 0.9224 + }, + { + "start": 15479.14, + "end": 15480.5, + "probability": 0.9114 + }, + { + "start": 15481.3, + "end": 15482.9, + "probability": 0.9631 + }, + { + "start": 15483.42, + "end": 15485.28, + "probability": 0.7212 + }, + { + "start": 15486.14, + "end": 15487.94, + "probability": 0.9694 + }, + { + "start": 15488.5, + "end": 15491.62, + "probability": 0.943 + }, + { + "start": 15492.24, + "end": 15492.52, + "probability": 0.7642 + }, + { + "start": 15494.28, + "end": 15494.28, + "probability": 0.257 + }, + { + "start": 15494.28, + "end": 15494.48, + "probability": 0.0352 + }, + { + "start": 15494.64, + "end": 15495.74, + "probability": 0.6121 + }, + { + "start": 15496.28, + "end": 15497.18, + "probability": 0.8435 + }, + { + "start": 15497.76, + "end": 15498.84, + "probability": 0.9015 + }, + { + "start": 15499.22, + "end": 15502.48, + "probability": 0.9665 + }, + { + "start": 15503.22, + "end": 15503.36, + "probability": 0.4959 + }, + { + "start": 15503.36, + "end": 15503.9, + "probability": 0.4037 + }, + { + "start": 15503.92, + "end": 15504.0, + "probability": 0.1806 + }, + { + "start": 15504.06, + "end": 15505.05, + "probability": 0.8791 + }, + { + "start": 15505.62, + "end": 15506.66, + "probability": 0.8081 + }, + { + "start": 15506.92, + "end": 15507.88, + "probability": 0.8126 + }, + { + "start": 15508.42, + "end": 15509.78, + "probability": 0.9888 + }, + { + "start": 15509.9, + "end": 15510.62, + "probability": 0.9123 + }, + { + "start": 15510.64, + "end": 15512.3, + "probability": 0.9785 + }, + { + "start": 15512.78, + "end": 15513.58, + "probability": 0.8176 + }, + { + "start": 15514.02, + "end": 15515.06, + "probability": 0.9604 + }, + { + "start": 15515.44, + "end": 15516.96, + "probability": 0.9642 + }, + { + "start": 15517.28, + "end": 15518.26, + "probability": 0.9753 + }, + { + "start": 15518.3, + "end": 15520.22, + "probability": 0.8849 + }, + { + "start": 15520.66, + "end": 15523.24, + "probability": 0.9952 + }, + { + "start": 15523.3, + "end": 15526.98, + "probability": 0.8735 + }, + { + "start": 15527.34, + "end": 15534.92, + "probability": 0.888 + }, + { + "start": 15535.42, + "end": 15540.32, + "probability": 0.9979 + }, + { + "start": 15540.46, + "end": 15542.66, + "probability": 0.9833 + }, + { + "start": 15543.0, + "end": 15544.2, + "probability": 0.7903 + }, + { + "start": 15544.32, + "end": 15546.28, + "probability": 0.9873 + }, + { + "start": 15546.34, + "end": 15547.88, + "probability": 0.9843 + }, + { + "start": 15548.44, + "end": 15550.98, + "probability": 0.787 + }, + { + "start": 15551.42, + "end": 15553.48, + "probability": 0.998 + }, + { + "start": 15553.9, + "end": 15555.3, + "probability": 0.8658 + }, + { + "start": 15556.02, + "end": 15557.54, + "probability": 0.9912 + }, + { + "start": 15557.74, + "end": 15559.34, + "probability": 0.8507 + }, + { + "start": 15559.44, + "end": 15559.74, + "probability": 0.8371 + }, + { + "start": 15559.84, + "end": 15561.02, + "probability": 0.8006 + }, + { + "start": 15561.52, + "end": 15562.78, + "probability": 0.821 + }, + { + "start": 15563.14, + "end": 15563.3, + "probability": 0.3181 + }, + { + "start": 15563.3, + "end": 15565.1, + "probability": 0.8558 + }, + { + "start": 15565.18, + "end": 15565.5, + "probability": 0.9568 + }, + { + "start": 15565.68, + "end": 15566.14, + "probability": 0.8655 + }, + { + "start": 15566.72, + "end": 15568.16, + "probability": 0.4996 + }, + { + "start": 15568.64, + "end": 15571.18, + "probability": 0.9373 + }, + { + "start": 15571.64, + "end": 15574.4, + "probability": 0.9875 + }, + { + "start": 15575.44, + "end": 15578.22, + "probability": 0.9404 + }, + { + "start": 15578.68, + "end": 15581.8, + "probability": 0.9948 + }, + { + "start": 15582.58, + "end": 15583.58, + "probability": 0.9869 + }, + { + "start": 15584.82, + "end": 15587.22, + "probability": 0.9551 + }, + { + "start": 15588.64, + "end": 15591.16, + "probability": 0.9312 + }, + { + "start": 15592.7, + "end": 15592.8, + "probability": 0.6121 + }, + { + "start": 15592.8, + "end": 15593.66, + "probability": 0.6829 + }, + { + "start": 15594.74, + "end": 15595.34, + "probability": 0.8459 + }, + { + "start": 15595.34, + "end": 15595.88, + "probability": 0.5128 + }, + { + "start": 15596.02, + "end": 15597.62, + "probability": 0.6749 + }, + { + "start": 15597.94, + "end": 15598.82, + "probability": 0.7901 + }, + { + "start": 15599.04, + "end": 15599.66, + "probability": 0.5422 + }, + { + "start": 15599.82, + "end": 15602.3, + "probability": 0.792 + }, + { + "start": 15602.48, + "end": 15603.52, + "probability": 0.5858 + }, + { + "start": 15603.66, + "end": 15604.6, + "probability": 0.4868 + }, + { + "start": 15605.16, + "end": 15607.46, + "probability": 0.9404 + }, + { + "start": 15608.24, + "end": 15611.14, + "probability": 0.9306 + }, + { + "start": 15611.92, + "end": 15616.8, + "probability": 0.9891 + }, + { + "start": 15617.82, + "end": 15622.44, + "probability": 0.9895 + }, + { + "start": 15623.02, + "end": 15625.21, + "probability": 0.106 + }, + { + "start": 15626.28, + "end": 15626.64, + "probability": 0.0681 + }, + { + "start": 15626.64, + "end": 15627.06, + "probability": 0.5491 + }, + { + "start": 15627.08, + "end": 15629.5, + "probability": 0.6402 + }, + { + "start": 15629.94, + "end": 15631.54, + "probability": 0.9767 + }, + { + "start": 15632.06, + "end": 15634.98, + "probability": 0.9774 + }, + { + "start": 15635.62, + "end": 15637.5, + "probability": 0.8421 + }, + { + "start": 15637.62, + "end": 15638.66, + "probability": 0.9873 + }, + { + "start": 15638.7, + "end": 15638.86, + "probability": 0.6612 + }, + { + "start": 15638.9, + "end": 15639.38, + "probability": 0.7766 + }, + { + "start": 15639.54, + "end": 15640.84, + "probability": 0.9276 + }, + { + "start": 15641.1, + "end": 15641.92, + "probability": 0.9041 + }, + { + "start": 15642.28, + "end": 15644.38, + "probability": 0.9846 + }, + { + "start": 15644.5, + "end": 15645.44, + "probability": 0.746 + }, + { + "start": 15645.58, + "end": 15646.48, + "probability": 0.939 + }, + { + "start": 15647.02, + "end": 15648.76, + "probability": 0.9237 + }, + { + "start": 15649.5, + "end": 15651.58, + "probability": 0.9861 + }, + { + "start": 15651.66, + "end": 15653.24, + "probability": 0.7589 + }, + { + "start": 15653.52, + "end": 15655.18, + "probability": 0.7443 + }, + { + "start": 15655.58, + "end": 15657.42, + "probability": 0.8389 + }, + { + "start": 15658.36, + "end": 15659.84, + "probability": 0.8017 + }, + { + "start": 15660.14, + "end": 15662.22, + "probability": 0.8577 + }, + { + "start": 15663.38, + "end": 15663.38, + "probability": 0.1799 + }, + { + "start": 15663.38, + "end": 15665.8, + "probability": 0.8555 + }, + { + "start": 15666.32, + "end": 15668.62, + "probability": 0.8294 + }, + { + "start": 15670.0, + "end": 15670.6, + "probability": 0.9258 + }, + { + "start": 15671.24, + "end": 15673.16, + "probability": 0.9795 + }, + { + "start": 15674.08, + "end": 15676.96, + "probability": 0.9946 + }, + { + "start": 15677.04, + "end": 15681.16, + "probability": 0.9331 + }, + { + "start": 15682.84, + "end": 15685.72, + "probability": 0.9966 + }, + { + "start": 15686.72, + "end": 15688.8, + "probability": 0.9967 + }, + { + "start": 15689.38, + "end": 15691.24, + "probability": 0.9946 + }, + { + "start": 15691.82, + "end": 15694.74, + "probability": 0.9966 + }, + { + "start": 15695.38, + "end": 15698.28, + "probability": 0.9991 + }, + { + "start": 15698.78, + "end": 15703.9, + "probability": 0.9972 + }, + { + "start": 15705.46, + "end": 15706.32, + "probability": 0.936 + }, + { + "start": 15707.06, + "end": 15708.3, + "probability": 0.9764 + }, + { + "start": 15708.96, + "end": 15713.44, + "probability": 0.9802 + }, + { + "start": 15714.28, + "end": 15715.16, + "probability": 0.4906 + }, + { + "start": 15715.84, + "end": 15721.08, + "probability": 0.9743 + }, + { + "start": 15721.26, + "end": 15722.2, + "probability": 0.8471 + }, + { + "start": 15722.56, + "end": 15723.26, + "probability": 0.7508 + }, + { + "start": 15723.78, + "end": 15724.66, + "probability": 0.8999 + }, + { + "start": 15725.22, + "end": 15729.18, + "probability": 0.981 + }, + { + "start": 15730.46, + "end": 15732.82, + "probability": 0.9975 + }, + { + "start": 15732.82, + "end": 15735.64, + "probability": 0.9996 + }, + { + "start": 15736.08, + "end": 15736.52, + "probability": 0.7443 + }, + { + "start": 15737.24, + "end": 15739.54, + "probability": 0.9686 + }, + { + "start": 15740.06, + "end": 15743.44, + "probability": 0.9924 + }, + { + "start": 15743.92, + "end": 15744.36, + "probability": 0.7819 + }, + { + "start": 15762.58, + "end": 15762.58, + "probability": 0.3396 + }, + { + "start": 15762.58, + "end": 15762.58, + "probability": 0.1843 + }, + { + "start": 15762.58, + "end": 15763.14, + "probability": 0.4086 + }, + { + "start": 15764.12, + "end": 15764.82, + "probability": 0.6071 + }, + { + "start": 15765.24, + "end": 15768.5, + "probability": 0.5189 + }, + { + "start": 15771.22, + "end": 15774.4, + "probability": 0.5254 + }, + { + "start": 15774.46, + "end": 15776.7, + "probability": 0.3016 + }, + { + "start": 15777.68, + "end": 15778.1, + "probability": 0.3886 + }, + { + "start": 15779.76, + "end": 15779.76, + "probability": 0.0295 + }, + { + "start": 15779.76, + "end": 15779.76, + "probability": 0.0319 + }, + { + "start": 15779.76, + "end": 15779.76, + "probability": 0.2638 + }, + { + "start": 15779.76, + "end": 15779.76, + "probability": 0.1423 + }, + { + "start": 15779.76, + "end": 15779.76, + "probability": 0.221 + }, + { + "start": 15779.76, + "end": 15781.95, + "probability": 0.5287 + }, + { + "start": 15782.22, + "end": 15783.22, + "probability": 0.3472 + }, + { + "start": 15785.1, + "end": 15789.0, + "probability": 0.7889 + }, + { + "start": 15789.74, + "end": 15791.5, + "probability": 0.9657 + }, + { + "start": 15792.14, + "end": 15793.84, + "probability": 0.4016 + }, + { + "start": 15793.96, + "end": 15795.38, + "probability": 0.7335 + }, + { + "start": 15795.5, + "end": 15795.62, + "probability": 0.2207 + }, + { + "start": 15795.8, + "end": 15796.92, + "probability": 0.7945 + }, + { + "start": 15797.26, + "end": 15797.58, + "probability": 0.6323 + }, + { + "start": 15797.84, + "end": 15799.14, + "probability": 0.9148 + }, + { + "start": 15799.52, + "end": 15799.78, + "probability": 0.6885 + }, + { + "start": 15800.04, + "end": 15800.88, + "probability": 0.4448 + }, + { + "start": 15801.5, + "end": 15802.52, + "probability": 0.9575 + }, + { + "start": 15802.74, + "end": 15804.76, + "probability": 0.6465 + }, + { + "start": 15805.72, + "end": 15808.52, + "probability": 0.9338 + }, + { + "start": 15809.04, + "end": 15809.44, + "probability": 0.8986 + }, + { + "start": 15810.36, + "end": 15811.58, + "probability": 0.7613 + }, + { + "start": 15811.86, + "end": 15812.86, + "probability": 0.8276 + }, + { + "start": 15812.96, + "end": 15813.38, + "probability": 0.6968 + }, + { + "start": 15813.66, + "end": 15816.18, + "probability": 0.9718 + }, + { + "start": 15817.22, + "end": 15820.7, + "probability": 0.9058 + }, + { + "start": 15821.26, + "end": 15824.26, + "probability": 0.9582 + }, + { + "start": 15824.72, + "end": 15827.18, + "probability": 0.9874 + }, + { + "start": 15828.0, + "end": 15828.62, + "probability": 0.0654 + }, + { + "start": 15831.24, + "end": 15835.38, + "probability": 0.6527 + }, + { + "start": 15837.76, + "end": 15840.36, + "probability": 0.927 + }, + { + "start": 15841.86, + "end": 15841.86, + "probability": 0.0976 + }, + { + "start": 15841.86, + "end": 15845.38, + "probability": 0.9614 + }, + { + "start": 15845.48, + "end": 15847.62, + "probability": 0.3895 + }, + { + "start": 15847.74, + "end": 15850.04, + "probability": 0.0068 + }, + { + "start": 15850.04, + "end": 15853.05, + "probability": 0.6893 + }, + { + "start": 15853.58, + "end": 15853.6, + "probability": 0.0952 + }, + { + "start": 15853.6, + "end": 15854.16, + "probability": 0.6247 + }, + { + "start": 15854.48, + "end": 15858.05, + "probability": 0.7725 + }, + { + "start": 15858.66, + "end": 15862.98, + "probability": 0.9805 + }, + { + "start": 15863.04, + "end": 15864.94, + "probability": 0.9943 + }, + { + "start": 15865.24, + "end": 15868.56, + "probability": 0.6734 + }, + { + "start": 15869.18, + "end": 15871.32, + "probability": 0.5433 + }, + { + "start": 15871.94, + "end": 15872.32, + "probability": 0.0746 + }, + { + "start": 15872.94, + "end": 15873.4, + "probability": 0.4583 + }, + { + "start": 15874.71, + "end": 15875.74, + "probability": 0.6108 + }, + { + "start": 15876.46, + "end": 15877.46, + "probability": 0.8365 + }, + { + "start": 15877.48, + "end": 15878.44, + "probability": 0.7553 + }, + { + "start": 15878.54, + "end": 15879.54, + "probability": 0.4832 + }, + { + "start": 15880.56, + "end": 15882.88, + "probability": 0.3262 + }, + { + "start": 15883.74, + "end": 15886.18, + "probability": 0.2401 + }, + { + "start": 15886.36, + "end": 15888.3, + "probability": 0.2186 + }, + { + "start": 15888.38, + "end": 15891.82, + "probability": 0.8074 + }, + { + "start": 15892.68, + "end": 15895.54, + "probability": 0.5596 + }, + { + "start": 15896.04, + "end": 15897.78, + "probability": 0.9819 + }, + { + "start": 15897.96, + "end": 15900.78, + "probability": 0.9345 + }, + { + "start": 15901.3, + "end": 15902.64, + "probability": 0.7596 + }, + { + "start": 15903.36, + "end": 15905.68, + "probability": 0.3041 + }, + { + "start": 15906.06, + "end": 15909.84, + "probability": 0.9696 + }, + { + "start": 15910.24, + "end": 15910.24, + "probability": 0.1867 + }, + { + "start": 15910.24, + "end": 15914.08, + "probability": 0.8154 + }, + { + "start": 15914.18, + "end": 15917.86, + "probability": 0.9944 + }, + { + "start": 15918.4, + "end": 15918.72, + "probability": 0.6975 + }, + { + "start": 15918.8, + "end": 15919.38, + "probability": 0.7972 + }, + { + "start": 15919.52, + "end": 15920.96, + "probability": 0.9207 + }, + { + "start": 15921.2, + "end": 15923.65, + "probability": 0.9915 + }, + { + "start": 15924.14, + "end": 15925.04, + "probability": 0.9977 + }, + { + "start": 15925.66, + "end": 15928.07, + "probability": 0.9904 + }, + { + "start": 15928.86, + "end": 15931.3, + "probability": 0.9985 + }, + { + "start": 15931.8, + "end": 15933.2, + "probability": 0.8972 + }, + { + "start": 15933.76, + "end": 15934.1, + "probability": 0.0245 + }, + { + "start": 15934.1, + "end": 15934.1, + "probability": 0.0452 + }, + { + "start": 15934.1, + "end": 15937.5, + "probability": 0.7668 + }, + { + "start": 15937.5, + "end": 15940.94, + "probability": 0.9861 + }, + { + "start": 15941.2, + "end": 15944.3, + "probability": 0.95 + }, + { + "start": 15944.72, + "end": 15946.92, + "probability": 0.9897 + }, + { + "start": 15947.24, + "end": 15949.39, + "probability": 0.9888 + }, + { + "start": 15949.68, + "end": 15951.66, + "probability": 0.9915 + }, + { + "start": 15952.0, + "end": 15954.24, + "probability": 0.9634 + }, + { + "start": 15954.38, + "end": 15954.84, + "probability": 0.981 + }, + { + "start": 15955.54, + "end": 15959.84, + "probability": 0.9931 + }, + { + "start": 15960.24, + "end": 15963.78, + "probability": 0.9954 + }, + { + "start": 15964.14, + "end": 15970.66, + "probability": 0.9843 + }, + { + "start": 15970.66, + "end": 15975.0, + "probability": 0.993 + }, + { + "start": 15975.4, + "end": 15976.12, + "probability": 0.9594 + }, + { + "start": 15976.22, + "end": 15977.52, + "probability": 0.9851 + }, + { + "start": 15977.94, + "end": 15978.88, + "probability": 0.9451 + }, + { + "start": 15982.58, + "end": 15990.3, + "probability": 0.9868 + }, + { + "start": 15992.72, + "end": 15995.28, + "probability": 0.6895 + }, + { + "start": 15996.02, + "end": 15998.6, + "probability": 0.9355 + }, + { + "start": 15999.66, + "end": 16000.42, + "probability": 0.516 + }, + { + "start": 16000.98, + "end": 16003.28, + "probability": 0.7324 + }, + { + "start": 16003.88, + "end": 16004.52, + "probability": 0.3699 + }, + { + "start": 16004.64, + "end": 16005.08, + "probability": 0.2921 + }, + { + "start": 16005.08, + "end": 16005.44, + "probability": 0.298 + }, + { + "start": 16006.0, + "end": 16008.64, + "probability": 0.1585 + }, + { + "start": 16011.94, + "end": 16013.2, + "probability": 0.0156 + }, + { + "start": 16014.04, + "end": 16015.58, + "probability": 0.1103 + }, + { + "start": 16017.46, + "end": 16018.68, + "probability": 0.0201 + }, + { + "start": 16025.08, + "end": 16025.66, + "probability": 0.2368 + }, + { + "start": 16025.66, + "end": 16028.52, + "probability": 0.6736 + }, + { + "start": 16028.92, + "end": 16030.24, + "probability": 0.9661 + }, + { + "start": 16030.82, + "end": 16031.56, + "probability": 0.7909 + }, + { + "start": 16032.36, + "end": 16033.92, + "probability": 0.7267 + }, + { + "start": 16034.5, + "end": 16039.12, + "probability": 0.9374 + }, + { + "start": 16039.26, + "end": 16040.92, + "probability": 0.7321 + }, + { + "start": 16041.38, + "end": 16041.48, + "probability": 0.0254 + }, + { + "start": 16041.48, + "end": 16044.48, + "probability": 0.9517 + }, + { + "start": 16044.86, + "end": 16048.04, + "probability": 0.9914 + }, + { + "start": 16049.36, + "end": 16049.92, + "probability": 0.1418 + }, + { + "start": 16057.88, + "end": 16060.38, + "probability": 0.1909 + }, + { + "start": 16060.38, + "end": 16065.12, + "probability": 0.0583 + }, + { + "start": 16065.6, + "end": 16065.72, + "probability": 0.1164 + }, + { + "start": 16067.72, + "end": 16070.24, + "probability": 0.0447 + }, + { + "start": 16096.92, + "end": 16097.92, + "probability": 0.3001 + }, + { + "start": 16100.38, + "end": 16101.82, + "probability": 0.4207 + }, + { + "start": 16102.68, + "end": 16103.82, + "probability": 0.9266 + }, + { + "start": 16104.68, + "end": 16113.82, + "probability": 0.9595 + }, + { + "start": 16114.5, + "end": 16115.44, + "probability": 0.7209 + }, + { + "start": 16116.76, + "end": 16117.18, + "probability": 0.6005 + }, + { + "start": 16118.1, + "end": 16121.8, + "probability": 0.9933 + }, + { + "start": 16122.38, + "end": 16123.58, + "probability": 0.6717 + }, + { + "start": 16125.02, + "end": 16125.12, + "probability": 0.2399 + }, + { + "start": 16125.72, + "end": 16126.8, + "probability": 0.9889 + }, + { + "start": 16127.62, + "end": 16128.16, + "probability": 0.7008 + }, + { + "start": 16129.76, + "end": 16131.44, + "probability": 0.8456 + }, + { + "start": 16132.22, + "end": 16135.8, + "probability": 0.8939 + }, + { + "start": 16136.02, + "end": 16141.06, + "probability": 0.9957 + }, + { + "start": 16142.28, + "end": 16145.12, + "probability": 0.9797 + }, + { + "start": 16145.52, + "end": 16146.3, + "probability": 0.9144 + }, + { + "start": 16148.46, + "end": 16150.74, + "probability": 0.9788 + }, + { + "start": 16150.94, + "end": 16151.04, + "probability": 0.3939 + }, + { + "start": 16151.76, + "end": 16152.72, + "probability": 0.9166 + }, + { + "start": 16153.2, + "end": 16157.88, + "probability": 0.9851 + }, + { + "start": 16160.22, + "end": 16164.36, + "probability": 0.9877 + }, + { + "start": 16166.62, + "end": 16170.23, + "probability": 0.9692 + }, + { + "start": 16171.5, + "end": 16173.22, + "probability": 0.8133 + }, + { + "start": 16174.1, + "end": 16174.72, + "probability": 0.8781 + }, + { + "start": 16175.78, + "end": 16178.14, + "probability": 0.8635 + }, + { + "start": 16179.16, + "end": 16181.66, + "probability": 0.9146 + }, + { + "start": 16181.9, + "end": 16183.5, + "probability": 0.6986 + }, + { + "start": 16185.72, + "end": 16190.04, + "probability": 0.6749 + }, + { + "start": 16190.56, + "end": 16196.38, + "probability": 0.7583 + }, + { + "start": 16197.66, + "end": 16199.28, + "probability": 0.7817 + }, + { + "start": 16199.7, + "end": 16201.06, + "probability": 0.7083 + }, + { + "start": 16201.24, + "end": 16203.6, + "probability": 0.7631 + }, + { + "start": 16203.84, + "end": 16205.9, + "probability": 0.9481 + }, + { + "start": 16206.42, + "end": 16210.08, + "probability": 0.9569 + }, + { + "start": 16210.72, + "end": 16211.02, + "probability": 0.7712 + }, + { + "start": 16211.64, + "end": 16213.0, + "probability": 0.6798 + }, + { + "start": 16213.6, + "end": 16220.22, + "probability": 0.9927 + }, + { + "start": 16220.76, + "end": 16224.86, + "probability": 0.9972 + }, + { + "start": 16224.86, + "end": 16229.7, + "probability": 0.9808 + }, + { + "start": 16230.22, + "end": 16231.06, + "probability": 0.8977 + }, + { + "start": 16232.38, + "end": 16238.94, + "probability": 0.8135 + }, + { + "start": 16239.68, + "end": 16241.72, + "probability": 0.8134 + }, + { + "start": 16241.92, + "end": 16244.52, + "probability": 0.9722 + }, + { + "start": 16245.68, + "end": 16249.06, + "probability": 0.9531 + }, + { + "start": 16254.28, + "end": 16257.16, + "probability": 0.5874 + }, + { + "start": 16258.36, + "end": 16260.72, + "probability": 0.9352 + }, + { + "start": 16261.5, + "end": 16264.98, + "probability": 0.7729 + }, + { + "start": 16265.18, + "end": 16266.16, + "probability": 0.8525 + }, + { + "start": 16266.26, + "end": 16266.6, + "probability": 0.4955 + }, + { + "start": 16267.12, + "end": 16269.7, + "probability": 0.996 + }, + { + "start": 16270.44, + "end": 16273.3, + "probability": 0.9536 + }, + { + "start": 16273.64, + "end": 16277.38, + "probability": 0.9079 + }, + { + "start": 16277.42, + "end": 16277.94, + "probability": 0.6275 + }, + { + "start": 16278.28, + "end": 16278.38, + "probability": 0.0055 + }, + { + "start": 16278.42, + "end": 16278.6, + "probability": 0.5137 + }, + { + "start": 16280.02, + "end": 16282.24, + "probability": 0.6208 + }, + { + "start": 16282.54, + "end": 16285.44, + "probability": 0.8605 + }, + { + "start": 16285.54, + "end": 16286.26, + "probability": 0.9163 + }, + { + "start": 16286.32, + "end": 16287.44, + "probability": 0.9297 + }, + { + "start": 16288.56, + "end": 16293.22, + "probability": 0.9005 + }, + { + "start": 16294.18, + "end": 16298.24, + "probability": 0.9122 + }, + { + "start": 16299.32, + "end": 16299.62, + "probability": 0.2913 + }, + { + "start": 16299.84, + "end": 16304.2, + "probability": 0.8367 + }, + { + "start": 16304.8, + "end": 16306.34, + "probability": 0.9644 + }, + { + "start": 16306.86, + "end": 16308.64, + "probability": 0.9655 + }, + { + "start": 16309.28, + "end": 16312.64, + "probability": 0.9586 + }, + { + "start": 16313.18, + "end": 16316.9, + "probability": 0.978 + }, + { + "start": 16317.9, + "end": 16319.94, + "probability": 0.9812 + }, + { + "start": 16321.8, + "end": 16322.4, + "probability": 0.958 + }, + { + "start": 16325.76, + "end": 16326.08, + "probability": 0.3648 + }, + { + "start": 16326.78, + "end": 16327.98, + "probability": 0.8018 + }, + { + "start": 16329.0, + "end": 16333.22, + "probability": 0.8795 + }, + { + "start": 16334.38, + "end": 16337.74, + "probability": 0.91 + }, + { + "start": 16339.4, + "end": 16340.24, + "probability": 0.6635 + }, + { + "start": 16340.42, + "end": 16340.96, + "probability": 0.7513 + }, + { + "start": 16341.04, + "end": 16343.08, + "probability": 0.9731 + }, + { + "start": 16343.22, + "end": 16343.62, + "probability": 0.7862 + }, + { + "start": 16344.08, + "end": 16345.22, + "probability": 0.889 + }, + { + "start": 16345.58, + "end": 16350.66, + "probability": 0.9387 + }, + { + "start": 16352.18, + "end": 16355.26, + "probability": 0.9004 + }, + { + "start": 16359.14, + "end": 16359.96, + "probability": 0.5763 + }, + { + "start": 16360.58, + "end": 16362.44, + "probability": 0.9945 + }, + { + "start": 16363.56, + "end": 16365.22, + "probability": 0.8145 + }, + { + "start": 16365.36, + "end": 16365.76, + "probability": 0.8972 + }, + { + "start": 16365.8, + "end": 16371.11, + "probability": 0.9954 + }, + { + "start": 16371.62, + "end": 16372.66, + "probability": 0.5932 + }, + { + "start": 16372.9, + "end": 16377.98, + "probability": 0.8739 + }, + { + "start": 16378.56, + "end": 16379.44, + "probability": 0.1631 + }, + { + "start": 16379.62, + "end": 16382.99, + "probability": 0.163 + }, + { + "start": 16383.88, + "end": 16384.38, + "probability": 0.6761 + }, + { + "start": 16384.74, + "end": 16385.04, + "probability": 0.6549 + }, + { + "start": 16387.37, + "end": 16389.48, + "probability": 0.9548 + }, + { + "start": 16389.66, + "end": 16394.18, + "probability": 0.9101 + }, + { + "start": 16394.74, + "end": 16396.5, + "probability": 0.7042 + }, + { + "start": 16397.14, + "end": 16398.16, + "probability": 0.6136 + }, + { + "start": 16398.24, + "end": 16400.44, + "probability": 0.8908 + }, + { + "start": 16400.84, + "end": 16401.8, + "probability": 0.2336 + }, + { + "start": 16401.94, + "end": 16402.44, + "probability": 0.9406 + }, + { + "start": 16402.74, + "end": 16405.24, + "probability": 0.9746 + }, + { + "start": 16405.86, + "end": 16408.7, + "probability": 0.9229 + }, + { + "start": 16409.58, + "end": 16412.82, + "probability": 0.7217 + }, + { + "start": 16412.82, + "end": 16415.36, + "probability": 0.7029 + }, + { + "start": 16416.14, + "end": 16416.68, + "probability": 0.0922 + }, + { + "start": 16416.68, + "end": 16419.56, + "probability": 0.9148 + }, + { + "start": 16419.6, + "end": 16419.78, + "probability": 0.8692 + }, + { + "start": 16436.98, + "end": 16436.98, + "probability": 0.1504 + }, + { + "start": 16436.98, + "end": 16436.98, + "probability": 0.082 + }, + { + "start": 16436.98, + "end": 16436.98, + "probability": 0.1476 + }, + { + "start": 16436.98, + "end": 16436.98, + "probability": 0.1076 + }, + { + "start": 16436.98, + "end": 16436.98, + "probability": 0.06 + }, + { + "start": 16461.34, + "end": 16464.1, + "probability": 0.3132 + }, + { + "start": 16464.74, + "end": 16466.57, + "probability": 0.9782 + }, + { + "start": 16466.94, + "end": 16467.38, + "probability": 0.7313 + }, + { + "start": 16467.44, + "end": 16469.16, + "probability": 0.9968 + }, + { + "start": 16469.68, + "end": 16472.16, + "probability": 0.7304 + }, + { + "start": 16472.24, + "end": 16473.14, + "probability": 0.8568 + }, + { + "start": 16473.74, + "end": 16474.64, + "probability": 0.7351 + }, + { + "start": 16474.94, + "end": 16476.75, + "probability": 0.9432 + }, + { + "start": 16477.46, + "end": 16478.7, + "probability": 0.862 + }, + { + "start": 16478.92, + "end": 16480.7, + "probability": 0.8696 + }, + { + "start": 16481.24, + "end": 16484.9, + "probability": 0.9893 + }, + { + "start": 16485.34, + "end": 16486.5, + "probability": 0.8463 + }, + { + "start": 16487.0, + "end": 16489.28, + "probability": 0.7404 + }, + { + "start": 16489.4, + "end": 16490.68, + "probability": 0.8944 + }, + { + "start": 16491.3, + "end": 16492.08, + "probability": 0.7316 + }, + { + "start": 16492.54, + "end": 16495.0, + "probability": 0.4212 + }, + { + "start": 16495.0, + "end": 16496.94, + "probability": 0.9851 + }, + { + "start": 16497.08, + "end": 16499.2, + "probability": 0.963 + }, + { + "start": 16499.4, + "end": 16501.14, + "probability": 0.9496 + }, + { + "start": 16502.16, + "end": 16502.82, + "probability": 0.4086 + }, + { + "start": 16503.82, + "end": 16505.1, + "probability": 0.3617 + }, + { + "start": 16505.54, + "end": 16506.0, + "probability": 0.9194 + }, + { + "start": 16506.04, + "end": 16509.1, + "probability": 0.8222 + }, + { + "start": 16509.22, + "end": 16510.56, + "probability": 0.9894 + }, + { + "start": 16511.12, + "end": 16513.52, + "probability": 0.9963 + }, + { + "start": 16513.58, + "end": 16514.92, + "probability": 0.9961 + }, + { + "start": 16516.0, + "end": 16518.36, + "probability": 0.6432 + }, + { + "start": 16518.44, + "end": 16523.29, + "probability": 0.6719 + }, + { + "start": 16524.66, + "end": 16526.38, + "probability": 0.1126 + }, + { + "start": 16526.88, + "end": 16531.12, + "probability": 0.5889 + }, + { + "start": 16531.64, + "end": 16532.6, + "probability": 0.4943 + }, + { + "start": 16532.7, + "end": 16534.26, + "probability": 0.1871 + }, + { + "start": 16534.28, + "end": 16535.56, + "probability": 0.3371 + }, + { + "start": 16535.58, + "end": 16537.48, + "probability": 0.2609 + }, + { + "start": 16537.5, + "end": 16539.86, + "probability": 0.3099 + }, + { + "start": 16540.44, + "end": 16541.54, + "probability": 0.1994 + }, + { + "start": 16542.24, + "end": 16542.74, + "probability": 0.0141 + }, + { + "start": 16544.5, + "end": 16545.12, + "probability": 0.5263 + }, + { + "start": 16546.64, + "end": 16546.74, + "probability": 0.0877 + }, + { + "start": 16547.16, + "end": 16547.78, + "probability": 0.2061 + }, + { + "start": 16548.1, + "end": 16548.3, + "probability": 0.1287 + }, + { + "start": 16548.3, + "end": 16549.53, + "probability": 0.0627 + }, + { + "start": 16549.64, + "end": 16552.4, + "probability": 0.0263 + }, + { + "start": 16552.78, + "end": 16554.96, + "probability": 0.4587 + }, + { + "start": 16560.46, + "end": 16562.64, + "probability": 0.2728 + }, + { + "start": 16562.64, + "end": 16562.7, + "probability": 0.022 + }, + { + "start": 16563.32, + "end": 16568.54, + "probability": 0.0432 + }, + { + "start": 16568.62, + "end": 16571.54, + "probability": 0.0133 + }, + { + "start": 16578.5, + "end": 16582.02, + "probability": 0.0315 + }, + { + "start": 16582.02, + "end": 16582.4, + "probability": 0.2958 + }, + { + "start": 16583.86, + "end": 16583.86, + "probability": 0.0211 + }, + { + "start": 16584.66, + "end": 16585.34, + "probability": 0.0322 + }, + { + "start": 16585.34, + "end": 16587.06, + "probability": 0.1464 + }, + { + "start": 16587.24, + "end": 16587.88, + "probability": 0.0389 + }, + { + "start": 16587.88, + "end": 16590.4, + "probability": 0.0718 + }, + { + "start": 16590.42, + "end": 16593.08, + "probability": 0.1176 + }, + { + "start": 16593.08, + "end": 16593.4, + "probability": 0.4419 + }, + { + "start": 16593.8, + "end": 16595.88, + "probability": 0.0927 + }, + { + "start": 16595.88, + "end": 16596.51, + "probability": 0.1642 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.0, + "end": 16597.0, + "probability": 0.0 + }, + { + "start": 16597.52, + "end": 16597.52, + "probability": 0.0316 + }, + { + "start": 16597.52, + "end": 16597.52, + "probability": 0.0275 + }, + { + "start": 16597.52, + "end": 16597.52, + "probability": 0.0327 + }, + { + "start": 16597.52, + "end": 16597.52, + "probability": 0.0661 + }, + { + "start": 16597.52, + "end": 16597.52, + "probability": 0.1619 + }, + { + "start": 16597.52, + "end": 16597.52, + "probability": 0.0132 + }, + { + "start": 16597.52, + "end": 16599.82, + "probability": 0.7884 + }, + { + "start": 16599.92, + "end": 16601.1, + "probability": 0.9379 + }, + { + "start": 16603.74, + "end": 16603.74, + "probability": 0.0402 + }, + { + "start": 16603.74, + "end": 16603.74, + "probability": 0.2664 + }, + { + "start": 16603.74, + "end": 16604.28, + "probability": 0.3545 + }, + { + "start": 16604.52, + "end": 16606.76, + "probability": 0.6033 + }, + { + "start": 16607.36, + "end": 16608.26, + "probability": 0.6489 + }, + { + "start": 16608.88, + "end": 16610.48, + "probability": 0.3753 + }, + { + "start": 16611.32, + "end": 16615.1, + "probability": 0.4923 + }, + { + "start": 16615.16, + "end": 16616.5, + "probability": 0.6021 + }, + { + "start": 16617.18, + "end": 16619.02, + "probability": 0.9287 + }, + { + "start": 16619.24, + "end": 16619.66, + "probability": 0.2212 + }, + { + "start": 16619.68, + "end": 16619.72, + "probability": 0.6916 + }, + { + "start": 16619.72, + "end": 16620.82, + "probability": 0.4177 + }, + { + "start": 16621.96, + "end": 16623.0, + "probability": 0.6809 + }, + { + "start": 16623.52, + "end": 16625.06, + "probability": 0.3465 + }, + { + "start": 16626.08, + "end": 16626.08, + "probability": 0.0681 + }, + { + "start": 16626.08, + "end": 16626.42, + "probability": 0.3246 + }, + { + "start": 16626.42, + "end": 16626.62, + "probability": 0.4388 + }, + { + "start": 16626.62, + "end": 16626.62, + "probability": 0.0139 + }, + { + "start": 16626.62, + "end": 16627.04, + "probability": 0.1822 + }, + { + "start": 16627.04, + "end": 16629.08, + "probability": 0.517 + }, + { + "start": 16629.22, + "end": 16630.66, + "probability": 0.7056 + }, + { + "start": 16630.66, + "end": 16631.98, + "probability": 0.4646 + }, + { + "start": 16632.08, + "end": 16632.72, + "probability": 0.8649 + }, + { + "start": 16633.08, + "end": 16636.5, + "probability": 0.7867 + }, + { + "start": 16636.86, + "end": 16641.48, + "probability": 0.9027 + }, + { + "start": 16642.22, + "end": 16643.92, + "probability": 0.8032 + }, + { + "start": 16644.1, + "end": 16645.76, + "probability": 0.998 + }, + { + "start": 16646.76, + "end": 16649.38, + "probability": 0.6018 + }, + { + "start": 16650.34, + "end": 16650.72, + "probability": 0.0393 + }, + { + "start": 16650.72, + "end": 16650.72, + "probability": 0.2505 + }, + { + "start": 16650.72, + "end": 16650.72, + "probability": 0.5634 + }, + { + "start": 16650.72, + "end": 16652.46, + "probability": 0.503 + }, + { + "start": 16652.76, + "end": 16653.26, + "probability": 0.6053 + }, + { + "start": 16653.6, + "end": 16656.43, + "probability": 0.3165 + }, + { + "start": 16656.5, + "end": 16656.84, + "probability": 0.5802 + }, + { + "start": 16656.88, + "end": 16657.44, + "probability": 0.5155 + }, + { + "start": 16657.5, + "end": 16658.38, + "probability": 0.9307 + }, + { + "start": 16658.98, + "end": 16660.23, + "probability": 0.7979 + }, + { + "start": 16660.58, + "end": 16662.34, + "probability": 0.7683 + }, + { + "start": 16662.44, + "end": 16662.88, + "probability": 0.3235 + }, + { + "start": 16663.08, + "end": 16663.34, + "probability": 0.0575 + }, + { + "start": 16663.44, + "end": 16665.1, + "probability": 0.3286 + }, + { + "start": 16665.29, + "end": 16669.06, + "probability": 0.8404 + }, + { + "start": 16669.14, + "end": 16669.38, + "probability": 0.559 + }, + { + "start": 16671.74, + "end": 16674.84, + "probability": 0.9263 + }, + { + "start": 16675.4, + "end": 16677.72, + "probability": 0.9944 + }, + { + "start": 16678.06, + "end": 16679.92, + "probability": 0.6089 + }, + { + "start": 16680.44, + "end": 16682.84, + "probability": 0.8706 + }, + { + "start": 16683.16, + "end": 16686.04, + "probability": 0.9239 + }, + { + "start": 16686.86, + "end": 16688.06, + "probability": 0.7826 + }, + { + "start": 16688.76, + "end": 16692.5, + "probability": 0.9302 + }, + { + "start": 16692.6, + "end": 16693.5, + "probability": 0.8876 + }, + { + "start": 16694.34, + "end": 16697.96, + "probability": 0.9321 + }, + { + "start": 16698.16, + "end": 16699.1, + "probability": 0.7827 + }, + { + "start": 16699.88, + "end": 16700.86, + "probability": 0.7984 + }, + { + "start": 16701.08, + "end": 16703.8, + "probability": 0.974 + }, + { + "start": 16703.94, + "end": 16704.76, + "probability": 0.7759 + }, + { + "start": 16704.9, + "end": 16705.4, + "probability": 0.9768 + }, + { + "start": 16705.9, + "end": 16710.28, + "probability": 0.9832 + }, + { + "start": 16710.98, + "end": 16714.7, + "probability": 0.9756 + }, + { + "start": 16714.78, + "end": 16718.08, + "probability": 0.9028 + }, + { + "start": 16718.7, + "end": 16719.24, + "probability": 0.4443 + }, + { + "start": 16719.94, + "end": 16721.3, + "probability": 0.8349 + }, + { + "start": 16721.46, + "end": 16722.4, + "probability": 0.8889 + }, + { + "start": 16722.5, + "end": 16724.92, + "probability": 0.8787 + }, + { + "start": 16725.14, + "end": 16728.1, + "probability": 0.9473 + }, + { + "start": 16728.8, + "end": 16729.6, + "probability": 0.8997 + }, + { + "start": 16729.72, + "end": 16732.3, + "probability": 0.8804 + }, + { + "start": 16733.72, + "end": 16737.52, + "probability": 0.915 + }, + { + "start": 16737.7, + "end": 16739.9, + "probability": 0.9971 + }, + { + "start": 16740.86, + "end": 16741.76, + "probability": 0.876 + }, + { + "start": 16743.24, + "end": 16745.3, + "probability": 0.9946 + }, + { + "start": 16745.7, + "end": 16746.7, + "probability": 0.5253 + }, + { + "start": 16746.74, + "end": 16748.34, + "probability": 0.9614 + }, + { + "start": 16748.56, + "end": 16750.58, + "probability": 0.7402 + }, + { + "start": 16751.36, + "end": 16753.22, + "probability": 0.9817 + }, + { + "start": 16753.46, + "end": 16754.44, + "probability": 0.7931 + }, + { + "start": 16755.04, + "end": 16755.72, + "probability": 0.5125 + }, + { + "start": 16756.22, + "end": 16757.8, + "probability": 0.9432 + }, + { + "start": 16758.42, + "end": 16760.54, + "probability": 0.7903 + }, + { + "start": 16760.54, + "end": 16760.9, + "probability": 0.4892 + }, + { + "start": 16760.98, + "end": 16761.52, + "probability": 0.7538 + }, + { + "start": 16761.64, + "end": 16762.76, + "probability": 0.6668 + }, + { + "start": 16763.06, + "end": 16763.4, + "probability": 0.0419 + }, + { + "start": 16766.61, + "end": 16769.0, + "probability": 0.7573 + }, + { + "start": 16769.18, + "end": 16770.58, + "probability": 0.9448 + }, + { + "start": 16771.48, + "end": 16772.78, + "probability": 0.9385 + }, + { + "start": 16773.0, + "end": 16773.48, + "probability": 0.9703 + }, + { + "start": 16773.92, + "end": 16776.58, + "probability": 0.9816 + }, + { + "start": 16777.1, + "end": 16778.72, + "probability": 0.942 + }, + { + "start": 16779.08, + "end": 16780.59, + "probability": 0.7642 + }, + { + "start": 16781.42, + "end": 16782.44, + "probability": 0.7347 + }, + { + "start": 16782.9, + "end": 16783.4, + "probability": 0.8359 + }, + { + "start": 16783.82, + "end": 16786.86, + "probability": 0.9971 + }, + { + "start": 16787.14, + "end": 16789.7, + "probability": 0.957 + }, + { + "start": 16790.38, + "end": 16793.48, + "probability": 0.9948 + }, + { + "start": 16793.76, + "end": 16794.48, + "probability": 0.7082 + }, + { + "start": 16795.8, + "end": 16797.24, + "probability": 0.7404 + }, + { + "start": 16798.12, + "end": 16798.96, + "probability": 0.9626 + }, + { + "start": 16799.06, + "end": 16799.45, + "probability": 0.9172 + }, + { + "start": 16800.44, + "end": 16803.48, + "probability": 0.809 + }, + { + "start": 16804.76, + "end": 16805.34, + "probability": 0.5898 + }, + { + "start": 16806.38, + "end": 16807.79, + "probability": 0.7842 + }, + { + "start": 16808.8, + "end": 16810.52, + "probability": 0.9374 + }, + { + "start": 16813.72, + "end": 16815.04, + "probability": 0.7009 + }, + { + "start": 16815.94, + "end": 16817.5, + "probability": 0.8022 + }, + { + "start": 16818.48, + "end": 16822.42, + "probability": 0.7876 + }, + { + "start": 16822.7, + "end": 16823.26, + "probability": 0.7356 + }, + { + "start": 16823.32, + "end": 16825.32, + "probability": 0.6462 + }, + { + "start": 16826.46, + "end": 16827.36, + "probability": 0.885 + }, + { + "start": 16827.88, + "end": 16828.54, + "probability": 0.7821 + }, + { + "start": 16829.06, + "end": 16830.77, + "probability": 0.8833 + }, + { + "start": 16831.34, + "end": 16831.88, + "probability": 0.7782 + }, + { + "start": 16832.52, + "end": 16834.16, + "probability": 0.9215 + }, + { + "start": 16835.32, + "end": 16835.86, + "probability": 0.706 + }, + { + "start": 16835.96, + "end": 16837.22, + "probability": 0.9805 + }, + { + "start": 16837.98, + "end": 16840.3, + "probability": 0.9759 + }, + { + "start": 16840.8, + "end": 16841.36, + "probability": 0.5117 + }, + { + "start": 16841.52, + "end": 16845.56, + "probability": 0.9514 + }, + { + "start": 16846.1, + "end": 16846.62, + "probability": 0.898 + }, + { + "start": 16847.26, + "end": 16848.88, + "probability": 0.8795 + }, + { + "start": 16849.1, + "end": 16849.86, + "probability": 0.7666 + }, + { + "start": 16850.52, + "end": 16852.54, + "probability": 0.6513 + }, + { + "start": 16853.43, + "end": 16856.82, + "probability": 0.9749 + }, + { + "start": 16857.32, + "end": 16861.3, + "probability": 0.9101 + }, + { + "start": 16861.66, + "end": 16861.66, + "probability": 0.4016 + }, + { + "start": 16861.66, + "end": 16862.78, + "probability": 0.8689 + }, + { + "start": 16863.1, + "end": 16864.15, + "probability": 0.9917 + }, + { + "start": 16864.58, + "end": 16866.96, + "probability": 0.8188 + }, + { + "start": 16867.4, + "end": 16868.72, + "probability": 0.9846 + }, + { + "start": 16868.92, + "end": 16870.39, + "probability": 0.991 + }, + { + "start": 16870.4, + "end": 16873.16, + "probability": 0.9479 + }, + { + "start": 16873.16, + "end": 16874.42, + "probability": 0.7888 + }, + { + "start": 16874.92, + "end": 16876.22, + "probability": 0.9806 + }, + { + "start": 16876.3, + "end": 16876.88, + "probability": 0.4209 + }, + { + "start": 16877.6, + "end": 16878.64, + "probability": 0.9766 + }, + { + "start": 16879.46, + "end": 16881.78, + "probability": 0.8613 + }, + { + "start": 16882.44, + "end": 16883.52, + "probability": 0.9985 + }, + { + "start": 16883.54, + "end": 16884.86, + "probability": 0.8562 + }, + { + "start": 16885.02, + "end": 16885.96, + "probability": 0.3943 + }, + { + "start": 16886.66, + "end": 16887.32, + "probability": 0.8689 + }, + { + "start": 16887.38, + "end": 16888.2, + "probability": 0.9622 + }, + { + "start": 16888.22, + "end": 16890.92, + "probability": 0.897 + }, + { + "start": 16891.58, + "end": 16893.4, + "probability": 0.9476 + }, + { + "start": 16893.54, + "end": 16896.56, + "probability": 0.7959 + }, + { + "start": 16896.62, + "end": 16897.26, + "probability": 0.7983 + }, + { + "start": 16898.06, + "end": 16900.92, + "probability": 0.977 + }, + { + "start": 16900.98, + "end": 16902.0, + "probability": 0.842 + }, + { + "start": 16902.06, + "end": 16903.72, + "probability": 0.7934 + }, + { + "start": 16904.22, + "end": 16905.14, + "probability": 0.8552 + }, + { + "start": 16905.86, + "end": 16907.22, + "probability": 0.778 + }, + { + "start": 16907.7, + "end": 16909.4, + "probability": 0.9946 + }, + { + "start": 16909.48, + "end": 16911.14, + "probability": 0.2822 + }, + { + "start": 16911.88, + "end": 16916.78, + "probability": 0.7065 + }, + { + "start": 16917.58, + "end": 16920.22, + "probability": 0.9512 + }, + { + "start": 16920.82, + "end": 16922.88, + "probability": 0.9888 + }, + { + "start": 16924.26, + "end": 16926.76, + "probability": 0.8292 + }, + { + "start": 16927.3, + "end": 16930.77, + "probability": 0.9849 + }, + { + "start": 16931.32, + "end": 16932.14, + "probability": 0.7133 + }, + { + "start": 16932.54, + "end": 16933.26, + "probability": 0.6601 + }, + { + "start": 16933.76, + "end": 16935.08, + "probability": 0.4836 + }, + { + "start": 16935.24, + "end": 16936.74, + "probability": 0.979 + }, + { + "start": 16937.42, + "end": 16937.86, + "probability": 0.7908 + }, + { + "start": 16938.0, + "end": 16942.5, + "probability": 0.9086 + }, + { + "start": 16942.52, + "end": 16943.74, + "probability": 0.6956 + }, + { + "start": 16944.58, + "end": 16946.62, + "probability": 0.9137 + }, + { + "start": 16947.14, + "end": 16948.78, + "probability": 0.7384 + }, + { + "start": 16948.84, + "end": 16951.21, + "probability": 0.9155 + }, + { + "start": 16952.32, + "end": 16955.42, + "probability": 0.9967 + }, + { + "start": 16956.72, + "end": 16959.2, + "probability": 0.7465 + }, + { + "start": 16959.98, + "end": 16962.04, + "probability": 0.7319 + }, + { + "start": 16962.68, + "end": 16964.24, + "probability": 0.9686 + }, + { + "start": 16964.34, + "end": 16965.28, + "probability": 0.8499 + }, + { + "start": 16966.28, + "end": 16966.82, + "probability": 0.4583 + }, + { + "start": 16967.18, + "end": 16969.14, + "probability": 0.8315 + }, + { + "start": 16969.62, + "end": 16972.12, + "probability": 0.8796 + }, + { + "start": 16972.62, + "end": 16976.5, + "probability": 0.896 + }, + { + "start": 16977.6, + "end": 16978.24, + "probability": 0.8242 + }, + { + "start": 16979.54, + "end": 16980.42, + "probability": 0.8723 + }, + { + "start": 16981.06, + "end": 16983.48, + "probability": 0.9713 + }, + { + "start": 16983.78, + "end": 16990.92, + "probability": 0.9863 + }, + { + "start": 16991.54, + "end": 16993.08, + "probability": 0.8464 + }, + { + "start": 16993.56, + "end": 16998.04, + "probability": 0.6088 + }, + { + "start": 16999.06, + "end": 17002.06, + "probability": 0.3149 + }, + { + "start": 17002.14, + "end": 17002.64, + "probability": 0.7221 + }, + { + "start": 17002.74, + "end": 17003.48, + "probability": 0.9249 + }, + { + "start": 17003.56, + "end": 17004.3, + "probability": 0.5014 + }, + { + "start": 17004.4, + "end": 17005.5, + "probability": 0.9215 + }, + { + "start": 17006.06, + "end": 17006.92, + "probability": 0.8619 + }, + { + "start": 17006.98, + "end": 17008.24, + "probability": 0.9156 + }, + { + "start": 17008.4, + "end": 17009.8, + "probability": 0.6869 + }, + { + "start": 17010.22, + "end": 17011.24, + "probability": 0.7437 + }, + { + "start": 17012.52, + "end": 17014.86, + "probability": 0.3803 + }, + { + "start": 17015.1, + "end": 17016.62, + "probability": 0.821 + }, + { + "start": 17016.92, + "end": 17020.8, + "probability": 0.9486 + }, + { + "start": 17022.88, + "end": 17025.2, + "probability": 0.9558 + }, + { + "start": 17025.32, + "end": 17026.76, + "probability": 0.9176 + }, + { + "start": 17027.72, + "end": 17028.92, + "probability": 0.9976 + }, + { + "start": 17029.02, + "end": 17032.18, + "probability": 0.8363 + }, + { + "start": 17032.3, + "end": 17033.1, + "probability": 0.7605 + }, + { + "start": 17033.92, + "end": 17034.9, + "probability": 0.9465 + }, + { + "start": 17035.92, + "end": 17036.2, + "probability": 0.5547 + }, + { + "start": 17037.96, + "end": 17039.6, + "probability": 0.9963 + }, + { + "start": 17039.76, + "end": 17040.96, + "probability": 0.9912 + }, + { + "start": 17041.24, + "end": 17043.16, + "probability": 0.9987 + }, + { + "start": 17043.72, + "end": 17045.31, + "probability": 0.9294 + }, + { + "start": 17046.7, + "end": 17048.64, + "probability": 0.916 + }, + { + "start": 17049.58, + "end": 17051.87, + "probability": 0.9551 + }, + { + "start": 17052.88, + "end": 17055.2, + "probability": 0.9954 + }, + { + "start": 17055.88, + "end": 17057.72, + "probability": 0.9812 + }, + { + "start": 17058.02, + "end": 17060.3, + "probability": 0.9733 + }, + { + "start": 17060.64, + "end": 17061.52, + "probability": 0.9413 + }, + { + "start": 17061.98, + "end": 17063.0, + "probability": 0.79 + }, + { + "start": 17063.14, + "end": 17065.22, + "probability": 0.7734 + }, + { + "start": 17065.32, + "end": 17067.26, + "probability": 0.9956 + }, + { + "start": 17067.98, + "end": 17070.42, + "probability": 0.9984 + }, + { + "start": 17070.5, + "end": 17072.08, + "probability": 0.9463 + }, + { + "start": 17073.04, + "end": 17073.66, + "probability": 0.8425 + }, + { + "start": 17073.92, + "end": 17074.77, + "probability": 0.658 + }, + { + "start": 17076.08, + "end": 17078.26, + "probability": 0.9379 + }, + { + "start": 17078.46, + "end": 17083.78, + "probability": 0.9447 + }, + { + "start": 17085.22, + "end": 17087.16, + "probability": 0.9224 + }, + { + "start": 17087.26, + "end": 17088.9, + "probability": 0.825 + }, + { + "start": 17089.1, + "end": 17089.74, + "probability": 0.7522 + }, + { + "start": 17089.94, + "end": 17090.06, + "probability": 0.2461 + }, + { + "start": 17090.12, + "end": 17090.22, + "probability": 0.3035 + }, + { + "start": 17091.28, + "end": 17092.14, + "probability": 0.9245 + }, + { + "start": 17092.64, + "end": 17093.96, + "probability": 0.8934 + }, + { + "start": 17094.5, + "end": 17095.8, + "probability": 0.8906 + }, + { + "start": 17096.34, + "end": 17097.96, + "probability": 0.9668 + }, + { + "start": 17098.72, + "end": 17100.68, + "probability": 0.7915 + }, + { + "start": 17100.76, + "end": 17100.86, + "probability": 0.5216 + }, + { + "start": 17100.86, + "end": 17100.86, + "probability": 0.1575 + }, + { + "start": 17100.86, + "end": 17101.26, + "probability": 0.2706 + }, + { + "start": 17101.4, + "end": 17102.02, + "probability": 0.4958 + }, + { + "start": 17102.14, + "end": 17102.8, + "probability": 0.486 + }, + { + "start": 17102.98, + "end": 17105.74, + "probability": 0.2698 + }, + { + "start": 17106.06, + "end": 17107.58, + "probability": 0.8138 + }, + { + "start": 17107.8, + "end": 17109.52, + "probability": 0.7532 + }, + { + "start": 17109.94, + "end": 17113.53, + "probability": 0.973 + }, + { + "start": 17113.74, + "end": 17116.2, + "probability": 0.8026 + }, + { + "start": 17116.24, + "end": 17116.24, + "probability": 0.3826 + }, + { + "start": 17116.24, + "end": 17116.26, + "probability": 0.3716 + }, + { + "start": 17116.46, + "end": 17120.12, + "probability": 0.981 + }, + { + "start": 17120.14, + "end": 17120.86, + "probability": 0.686 + }, + { + "start": 17120.96, + "end": 17125.02, + "probability": 0.9719 + }, + { + "start": 17125.12, + "end": 17125.12, + "probability": 0.3662 + }, + { + "start": 17125.14, + "end": 17127.98, + "probability": 0.5883 + }, + { + "start": 17128.9, + "end": 17131.66, + "probability": 0.8992 + }, + { + "start": 17153.6, + "end": 17153.7, + "probability": 0.677 + }, + { + "start": 17157.88, + "end": 17158.88, + "probability": 0.5238 + }, + { + "start": 17159.52, + "end": 17160.46, + "probability": 0.8857 + }, + { + "start": 17161.16, + "end": 17161.6, + "probability": 0.3953 + }, + { + "start": 17161.66, + "end": 17167.38, + "probability": 0.9951 + }, + { + "start": 17167.38, + "end": 17174.98, + "probability": 0.9907 + }, + { + "start": 17175.62, + "end": 17176.96, + "probability": 0.7324 + }, + { + "start": 17177.92, + "end": 17181.46, + "probability": 0.9718 + }, + { + "start": 17181.86, + "end": 17184.26, + "probability": 0.9763 + }, + { + "start": 17185.46, + "end": 17187.6, + "probability": 0.9944 + }, + { + "start": 17188.1, + "end": 17189.6, + "probability": 0.9847 + }, + { + "start": 17190.62, + "end": 17191.14, + "probability": 0.9424 + }, + { + "start": 17191.54, + "end": 17196.96, + "probability": 0.9839 + }, + { + "start": 17197.64, + "end": 17199.7, + "probability": 0.9985 + }, + { + "start": 17200.36, + "end": 17202.22, + "probability": 0.6978 + }, + { + "start": 17202.84, + "end": 17205.48, + "probability": 0.504 + }, + { + "start": 17206.5, + "end": 17206.5, + "probability": 0.0027 + }, + { + "start": 17209.12, + "end": 17209.6, + "probability": 0.0277 + }, + { + "start": 17209.6, + "end": 17210.2, + "probability": 0.017 + }, + { + "start": 17210.2, + "end": 17213.8, + "probability": 0.2456 + }, + { + "start": 17213.8, + "end": 17214.01, + "probability": 0.449 + }, + { + "start": 17214.24, + "end": 17220.86, + "probability": 0.257 + }, + { + "start": 17221.38, + "end": 17222.72, + "probability": 0.0816 + }, + { + "start": 17222.72, + "end": 17223.06, + "probability": 0.1535 + }, + { + "start": 17223.06, + "end": 17224.12, + "probability": 0.0207 + }, + { + "start": 17224.28, + "end": 17224.7, + "probability": 0.4406 + }, + { + "start": 17224.96, + "end": 17226.56, + "probability": 0.036 + }, + { + "start": 17226.78, + "end": 17228.32, + "probability": 0.0326 + }, + { + "start": 17228.5, + "end": 17228.52, + "probability": 0.0076 + }, + { + "start": 17231.12, + "end": 17232.8, + "probability": 0.0087 + }, + { + "start": 17233.33, + "end": 17235.28, + "probability": 0.0509 + }, + { + "start": 17235.28, + "end": 17238.64, + "probability": 0.1267 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.0, + "end": 17295.0, + "probability": 0.0 + }, + { + "start": 17295.4, + "end": 17297.24, + "probability": 0.5866 + }, + { + "start": 17297.36, + "end": 17298.06, + "probability": 0.772 + }, + { + "start": 17298.62, + "end": 17303.58, + "probability": 0.9443 + }, + { + "start": 17303.62, + "end": 17304.78, + "probability": 0.6402 + }, + { + "start": 17304.84, + "end": 17305.72, + "probability": 0.6647 + }, + { + "start": 17307.8, + "end": 17310.4, + "probability": 0.562 + }, + { + "start": 17310.94, + "end": 17310.94, + "probability": 0.0272 + }, + { + "start": 17310.94, + "end": 17313.98, + "probability": 0.2537 + }, + { + "start": 17314.08, + "end": 17314.86, + "probability": 0.8238 + }, + { + "start": 17314.86, + "end": 17319.98, + "probability": 0.6846 + }, + { + "start": 17320.56, + "end": 17321.66, + "probability": 0.304 + }, + { + "start": 17321.76, + "end": 17323.84, + "probability": 0.5958 + }, + { + "start": 17323.94, + "end": 17324.0, + "probability": 0.0601 + }, + { + "start": 17324.0, + "end": 17324.08, + "probability": 0.0244 + }, + { + "start": 17324.72, + "end": 17326.44, + "probability": 0.079 + }, + { + "start": 17327.08, + "end": 17329.98, + "probability": 0.2255 + }, + { + "start": 17330.12, + "end": 17330.64, + "probability": 0.3073 + }, + { + "start": 17331.08, + "end": 17331.96, + "probability": 0.5291 + }, + { + "start": 17331.96, + "end": 17332.41, + "probability": 0.1821 + }, + { + "start": 17332.5, + "end": 17335.18, + "probability": 0.0198 + }, + { + "start": 17336.06, + "end": 17336.82, + "probability": 0.0659 + }, + { + "start": 17336.82, + "end": 17336.82, + "probability": 0.1288 + }, + { + "start": 17336.82, + "end": 17339.38, + "probability": 0.7649 + }, + { + "start": 17339.82, + "end": 17342.44, + "probability": 0.879 + }, + { + "start": 17343.76, + "end": 17344.86, + "probability": 0.0262 + }, + { + "start": 17346.44, + "end": 17352.74, + "probability": 0.172 + }, + { + "start": 17354.32, + "end": 17356.58, + "probability": 0.0802 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17419.0, + "end": 17419.0, + "probability": 0.0 + }, + { + "start": 17429.78, + "end": 17431.36, + "probability": 0.0384 + }, + { + "start": 17431.36, + "end": 17433.26, + "probability": 0.1341 + }, + { + "start": 17434.12, + "end": 17436.19, + "probability": 0.0346 + }, + { + "start": 17436.48, + "end": 17441.18, + "probability": 0.1495 + }, + { + "start": 17441.82, + "end": 17443.6, + "probability": 0.0442 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17546.0, + "end": 17546.0, + "probability": 0.0 + }, + { + "start": 17584.97, + "end": 17586.82, + "probability": 0.0914 + }, + { + "start": 17587.64, + "end": 17591.4, + "probability": 0.0563 + }, + { + "start": 17591.71, + "end": 17594.4, + "probability": 0.177 + }, + { + "start": 17596.0, + "end": 17596.26, + "probability": 0.2923 + }, + { + "start": 17596.88, + "end": 17597.08, + "probability": 0.1062 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.0, + "end": 17667.0, + "probability": 0.0 + }, + { + "start": 17667.52, + "end": 17669.77, + "probability": 0.6596 + }, + { + "start": 17670.28, + "end": 17671.79, + "probability": 0.3973 + }, + { + "start": 17672.4, + "end": 17673.79, + "probability": 0.9944 + }, + { + "start": 17674.0, + "end": 17674.62, + "probability": 0.8481 + }, + { + "start": 17674.72, + "end": 17675.38, + "probability": 0.9971 + }, + { + "start": 17678.86, + "end": 17678.94, + "probability": 0.0542 + }, + { + "start": 17678.94, + "end": 17678.98, + "probability": 0.1412 + }, + { + "start": 17678.98, + "end": 17679.7, + "probability": 0.3245 + }, + { + "start": 17679.88, + "end": 17681.74, + "probability": 0.7713 + }, + { + "start": 17681.92, + "end": 17686.34, + "probability": 0.8179 + }, + { + "start": 17686.8, + "end": 17688.12, + "probability": 0.7882 + }, + { + "start": 17688.5, + "end": 17691.24, + "probability": 0.9913 + }, + { + "start": 17691.82, + "end": 17693.04, + "probability": 0.8457 + }, + { + "start": 17693.42, + "end": 17693.44, + "probability": 0.0265 + }, + { + "start": 17693.44, + "end": 17696.52, + "probability": 0.9858 + }, + { + "start": 17697.04, + "end": 17699.77, + "probability": 0.9451 + }, + { + "start": 17700.24, + "end": 17700.28, + "probability": 0.0406 + }, + { + "start": 17700.28, + "end": 17700.28, + "probability": 0.3719 + }, + { + "start": 17700.28, + "end": 17700.28, + "probability": 0.0868 + }, + { + "start": 17700.28, + "end": 17702.02, + "probability": 0.8742 + }, + { + "start": 17702.56, + "end": 17702.7, + "probability": 0.1548 + }, + { + "start": 17702.74, + "end": 17703.88, + "probability": 0.6869 + }, + { + "start": 17703.98, + "end": 17707.1, + "probability": 0.7587 + }, + { + "start": 17707.34, + "end": 17708.22, + "probability": 0.7804 + }, + { + "start": 17708.54, + "end": 17710.22, + "probability": 0.7876 + }, + { + "start": 17710.64, + "end": 17714.26, + "probability": 0.9941 + }, + { + "start": 17714.26, + "end": 17719.96, + "probability": 0.9788 + }, + { + "start": 17720.4, + "end": 17721.24, + "probability": 0.0266 + }, + { + "start": 17721.24, + "end": 17721.24, + "probability": 0.0318 + }, + { + "start": 17721.24, + "end": 17727.92, + "probability": 0.9912 + }, + { + "start": 17728.48, + "end": 17730.6, + "probability": 0.4184 + }, + { + "start": 17731.1, + "end": 17733.52, + "probability": 0.9476 + }, + { + "start": 17733.92, + "end": 17736.35, + "probability": 0.9951 + }, + { + "start": 17736.86, + "end": 17737.62, + "probability": 0.5399 + }, + { + "start": 17738.2, + "end": 17740.1, + "probability": 0.9838 + }, + { + "start": 17740.82, + "end": 17743.98, + "probability": 0.8544 + }, + { + "start": 17744.24, + "end": 17749.8, + "probability": 0.9932 + }, + { + "start": 17750.14, + "end": 17751.54, + "probability": 0.8245 + }, + { + "start": 17752.0, + "end": 17752.28, + "probability": 0.9172 + }, + { + "start": 17752.44, + "end": 17754.84, + "probability": 0.9824 + }, + { + "start": 17754.84, + "end": 17757.68, + "probability": 0.9963 + }, + { + "start": 17758.22, + "end": 17758.97, + "probability": 0.7232 + }, + { + "start": 17759.7, + "end": 17759.96, + "probability": 0.0868 + }, + { + "start": 17759.96, + "end": 17759.98, + "probability": 0.3169 + }, + { + "start": 17759.98, + "end": 17765.75, + "probability": 0.9543 + }, + { + "start": 17766.14, + "end": 17768.06, + "probability": 0.7505 + }, + { + "start": 17768.28, + "end": 17769.5, + "probability": 0.7121 + }, + { + "start": 17769.54, + "end": 17771.55, + "probability": 0.7099 + }, + { + "start": 17773.57, + "end": 17775.48, + "probability": 0.9818 + }, + { + "start": 17776.02, + "end": 17778.84, + "probability": 0.5673 + }, + { + "start": 17779.5, + "end": 17781.16, + "probability": 0.6311 + }, + { + "start": 17781.16, + "end": 17782.26, + "probability": 0.196 + }, + { + "start": 17782.9, + "end": 17785.2, + "probability": 0.9702 + }, + { + "start": 17785.32, + "end": 17785.8, + "probability": 0.8541 + }, + { + "start": 17798.7, + "end": 17798.94, + "probability": 0.109 + }, + { + "start": 17799.9, + "end": 17800.88, + "probability": 0.1715 + }, + { + "start": 17801.4, + "end": 17801.98, + "probability": 0.0311 + }, + { + "start": 17802.32, + "end": 17803.3, + "probability": 0.8664 + }, + { + "start": 17804.1, + "end": 17805.1, + "probability": 0.8487 + }, + { + "start": 17805.62, + "end": 17806.94, + "probability": 0.9808 + }, + { + "start": 17807.62, + "end": 17810.02, + "probability": 0.981 + }, + { + "start": 17810.94, + "end": 17811.66, + "probability": 0.3353 + }, + { + "start": 17811.7, + "end": 17812.02, + "probability": 0.4848 + }, + { + "start": 17812.1, + "end": 17816.52, + "probability": 0.9202 + }, + { + "start": 17816.72, + "end": 17817.74, + "probability": 0.9819 + }, + { + "start": 17817.92, + "end": 17823.56, + "probability": 0.961 + }, + { + "start": 17824.44, + "end": 17824.92, + "probability": 0.0729 + }, + { + "start": 17824.92, + "end": 17826.08, + "probability": 0.5178 + }, + { + "start": 17826.46, + "end": 17827.98, + "probability": 0.9321 + }, + { + "start": 17827.98, + "end": 17829.04, + "probability": 0.5108 + }, + { + "start": 17829.04, + "end": 17829.66, + "probability": 0.7491 + }, + { + "start": 17831.13, + "end": 17831.78, + "probability": 0.1474 + }, + { + "start": 17831.78, + "end": 17834.42, + "probability": 0.9597 + }, + { + "start": 17834.52, + "end": 17834.58, + "probability": 0.6473 + }, + { + "start": 17834.86, + "end": 17838.68, + "probability": 0.9863 + }, + { + "start": 17838.74, + "end": 17839.24, + "probability": 0.5679 + }, + { + "start": 17839.36, + "end": 17842.44, + "probability": 0.8499 + }, + { + "start": 17842.44, + "end": 17842.44, + "probability": 0.3124 + }, + { + "start": 17842.44, + "end": 17843.02, + "probability": 0.2149 + }, + { + "start": 17843.02, + "end": 17844.36, + "probability": 0.9102 + }, + { + "start": 17844.48, + "end": 17845.16, + "probability": 0.975 + }, + { + "start": 17845.26, + "end": 17847.04, + "probability": 0.945 + }, + { + "start": 17847.64, + "end": 17849.16, + "probability": 0.9187 + }, + { + "start": 17849.3, + "end": 17850.28, + "probability": 0.0242 + }, + { + "start": 17850.54, + "end": 17852.44, + "probability": 0.2364 + }, + { + "start": 17852.44, + "end": 17852.88, + "probability": 0.1736 + }, + { + "start": 17852.88, + "end": 17852.88, + "probability": 0.0016 + }, + { + "start": 17852.88, + "end": 17852.88, + "probability": 0.0494 + }, + { + "start": 17852.88, + "end": 17853.12, + "probability": 0.0599 + }, + { + "start": 17853.66, + "end": 17854.88, + "probability": 0.6278 + }, + { + "start": 17855.58, + "end": 17857.64, + "probability": 0.9426 + }, + { + "start": 17858.26, + "end": 17861.36, + "probability": 0.7056 + }, + { + "start": 17863.16, + "end": 17863.34, + "probability": 0.1191 + }, + { + "start": 17863.34, + "end": 17863.36, + "probability": 0.0317 + }, + { + "start": 17863.36, + "end": 17863.72, + "probability": 0.4836 + }, + { + "start": 17863.78, + "end": 17865.55, + "probability": 0.6061 + }, + { + "start": 17866.5, + "end": 17871.04, + "probability": 0.9971 + }, + { + "start": 17871.42, + "end": 17873.04, + "probability": 0.9176 + }, + { + "start": 17873.06, + "end": 17874.08, + "probability": 0.926 + }, + { + "start": 17874.7, + "end": 17875.12, + "probability": 0.4511 + }, + { + "start": 17876.12, + "end": 17876.8, + "probability": 0.9186 + }, + { + "start": 17876.94, + "end": 17879.46, + "probability": 0.664 + }, + { + "start": 17880.54, + "end": 17881.96, + "probability": 0.4731 + }, + { + "start": 17882.94, + "end": 17886.14, + "probability": 0.9591 + }, + { + "start": 17886.14, + "end": 17887.99, + "probability": 0.98 + }, + { + "start": 17889.34, + "end": 17894.2, + "probability": 0.9175 + }, + { + "start": 17894.28, + "end": 17895.7, + "probability": 0.9553 + }, + { + "start": 17896.48, + "end": 17899.68, + "probability": 0.9724 + }, + { + "start": 17899.68, + "end": 17902.34, + "probability": 0.9758 + }, + { + "start": 17903.16, + "end": 17904.14, + "probability": 0.9622 + }, + { + "start": 17904.16, + "end": 17905.3, + "probability": 0.9058 + }, + { + "start": 17905.96, + "end": 17908.88, + "probability": 0.2607 + }, + { + "start": 17908.88, + "end": 17909.36, + "probability": 0.2507 + }, + { + "start": 17909.8, + "end": 17911.76, + "probability": 0.7922 + }, + { + "start": 17913.56, + "end": 17914.36, + "probability": 0.8865 + }, + { + "start": 17916.22, + "end": 17916.8, + "probability": 0.5975 + }, + { + "start": 17916.9, + "end": 17918.52, + "probability": 0.5827 + }, + { + "start": 17918.64, + "end": 17919.66, + "probability": 0.7082 + }, + { + "start": 17920.14, + "end": 17922.57, + "probability": 0.9539 + }, + { + "start": 17923.48, + "end": 17924.28, + "probability": 0.4042 + }, + { + "start": 17925.06, + "end": 17928.48, + "probability": 0.6902 + }, + { + "start": 17929.76, + "end": 17932.82, + "probability": 0.7681 + }, + { + "start": 17933.3, + "end": 17934.2, + "probability": 0.7652 + }, + { + "start": 17934.26, + "end": 17935.76, + "probability": 0.8931 + }, + { + "start": 17936.38, + "end": 17940.4, + "probability": 0.9409 + }, + { + "start": 17940.9, + "end": 17945.38, + "probability": 0.9363 + }, + { + "start": 17945.96, + "end": 17947.72, + "probability": 0.9937 + }, + { + "start": 17948.24, + "end": 17950.94, + "probability": 0.9925 + }, + { + "start": 17951.5, + "end": 17955.18, + "probability": 0.5054 + }, + { + "start": 17955.64, + "end": 17958.68, + "probability": 0.6719 + }, + { + "start": 17959.36, + "end": 17960.79, + "probability": 0.9668 + }, + { + "start": 17961.52, + "end": 17962.8, + "probability": 0.5601 + }, + { + "start": 17962.94, + "end": 17963.92, + "probability": 0.9186 + }, + { + "start": 17964.7, + "end": 17966.92, + "probability": 0.9309 + }, + { + "start": 17967.64, + "end": 17968.14, + "probability": 0.7961 + }, + { + "start": 17968.18, + "end": 17971.5, + "probability": 0.9956 + }, + { + "start": 17971.92, + "end": 17973.22, + "probability": 0.9906 + }, + { + "start": 17973.52, + "end": 17975.54, + "probability": 0.9921 + }, + { + "start": 17976.18, + "end": 17976.98, + "probability": 0.9494 + }, + { + "start": 17977.7, + "end": 17979.33, + "probability": 0.9749 + }, + { + "start": 17979.6, + "end": 17981.54, + "probability": 0.9496 + }, + { + "start": 17982.3, + "end": 17984.46, + "probability": 0.2444 + }, + { + "start": 17984.46, + "end": 17984.46, + "probability": 0.4421 + }, + { + "start": 17984.46, + "end": 17984.76, + "probability": 0.4006 + }, + { + "start": 17984.78, + "end": 17986.44, + "probability": 0.6305 + }, + { + "start": 17986.48, + "end": 17987.64, + "probability": 0.3573 + }, + { + "start": 17988.0, + "end": 17988.02, + "probability": 0.5639 + }, + { + "start": 17988.02, + "end": 17989.16, + "probability": 0.8014 + }, + { + "start": 17989.3, + "end": 17990.8, + "probability": 0.8099 + }, + { + "start": 17991.08, + "end": 17995.26, + "probability": 0.5396 + }, + { + "start": 17995.3, + "end": 17995.78, + "probability": 0.0515 + }, + { + "start": 17995.78, + "end": 17996.87, + "probability": 0.6404 + }, + { + "start": 17997.8, + "end": 17997.8, + "probability": 0.9438 + }, + { + "start": 17997.8, + "end": 17999.26, + "probability": 0.4008 + }, + { + "start": 17999.26, + "end": 18002.28, + "probability": 0.9023 + }, + { + "start": 18002.68, + "end": 18004.06, + "probability": 0.2421 + }, + { + "start": 18004.32, + "end": 18004.32, + "probability": 0.0531 + }, + { + "start": 18004.32, + "end": 18007.78, + "probability": 0.9393 + }, + { + "start": 18007.96, + "end": 18011.72, + "probability": 0.8231 + }, + { + "start": 18011.72, + "end": 18015.99, + "probability": 0.9016 + }, + { + "start": 18019.8, + "end": 18022.64, + "probability": 0.4953 + }, + { + "start": 18025.22, + "end": 18025.42, + "probability": 0.3403 + }, + { + "start": 18026.28, + "end": 18026.98, + "probability": 0.4102 + }, + { + "start": 18027.36, + "end": 18028.58, + "probability": 0.8546 + }, + { + "start": 18029.7, + "end": 18030.6, + "probability": 0.7169 + }, + { + "start": 18031.16, + "end": 18031.48, + "probability": 0.2262 + }, + { + "start": 18032.3, + "end": 18035.82, + "probability": 0.0317 + }, + { + "start": 18035.93, + "end": 18036.05, + "probability": 0.1227 + }, + { + "start": 18036.82, + "end": 18037.52, + "probability": 0.0326 + }, + { + "start": 18039.1, + "end": 18040.6, + "probability": 0.007 + }, + { + "start": 18051.92, + "end": 18052.22, + "probability": 0.1118 + }, + { + "start": 18052.22, + "end": 18054.72, + "probability": 0.8204 + }, + { + "start": 18054.82, + "end": 18056.12, + "probability": 0.8887 + }, + { + "start": 18057.38, + "end": 18060.88, + "probability": 0.9935 + }, + { + "start": 18061.0, + "end": 18062.32, + "probability": 0.7124 + }, + { + "start": 18063.66, + "end": 18066.98, + "probability": 0.9784 + }, + { + "start": 18067.52, + "end": 18068.72, + "probability": 0.8508 + }, + { + "start": 18069.46, + "end": 18070.94, + "probability": 0.0513 + }, + { + "start": 18071.0, + "end": 18071.0, + "probability": 0.0 + }, + { + "start": 18071.0, + "end": 18071.0, + "probability": 0.0 + }, + { + "start": 18072.52, + "end": 18075.3, + "probability": 0.2115 + }, + { + "start": 18075.36, + "end": 18076.56, + "probability": 0.2932 + }, + { + "start": 18076.84, + "end": 18077.94, + "probability": 0.3646 + }, + { + "start": 18082.82, + "end": 18084.94, + "probability": 0.707 + }, + { + "start": 18085.94, + "end": 18087.41, + "probability": 0.9596 + }, + { + "start": 18088.58, + "end": 18089.36, + "probability": 0.5908 + }, + { + "start": 18090.26, + "end": 18092.78, + "probability": 0.7534 + }, + { + "start": 18094.3, + "end": 18096.56, + "probability": 0.0987 + }, + { + "start": 18098.28, + "end": 18100.12, + "probability": 0.4638 + }, + { + "start": 18100.12, + "end": 18101.14, + "probability": 0.5834 + }, + { + "start": 18102.06, + "end": 18102.74, + "probability": 0.0155 + }, + { + "start": 18104.94, + "end": 18111.7, + "probability": 0.9991 + }, + { + "start": 18113.2, + "end": 18114.71, + "probability": 0.9478 + }, + { + "start": 18116.22, + "end": 18120.38, + "probability": 0.973 + }, + { + "start": 18121.64, + "end": 18127.46, + "probability": 0.7217 + }, + { + "start": 18128.2, + "end": 18129.2, + "probability": 0.8735 + }, + { + "start": 18131.66, + "end": 18134.0, + "probability": 0.8184 + }, + { + "start": 18134.56, + "end": 18138.08, + "probability": 0.1318 + }, + { + "start": 18139.64, + "end": 18140.76, + "probability": 0.0497 + }, + { + "start": 18141.58, + "end": 18144.4, + "probability": 0.4529 + }, + { + "start": 18144.54, + "end": 18147.33, + "probability": 0.6527 + }, + { + "start": 18147.66, + "end": 18147.66, + "probability": 0.3647 + }, + { + "start": 18147.66, + "end": 18149.46, + "probability": 0.7391 + }, + { + "start": 18149.96, + "end": 18152.02, + "probability": 0.9902 + }, + { + "start": 18152.04, + "end": 18152.9, + "probability": 0.2106 + }, + { + "start": 18152.9, + "end": 18154.44, + "probability": 0.2418 + }, + { + "start": 18155.18, + "end": 18156.26, + "probability": 0.4046 + }, + { + "start": 18156.28, + "end": 18157.05, + "probability": 0.4879 + }, + { + "start": 18157.36, + "end": 18158.26, + "probability": 0.1002 + }, + { + "start": 18158.4, + "end": 18159.6, + "probability": 0.6557 + }, + { + "start": 18159.74, + "end": 18167.56, + "probability": 0.9082 + }, + { + "start": 18168.5, + "end": 18171.18, + "probability": 0.9724 + }, + { + "start": 18171.72, + "end": 18174.46, + "probability": 0.9966 + }, + { + "start": 18175.38, + "end": 18176.66, + "probability": 0.998 + }, + { + "start": 18176.92, + "end": 18180.22, + "probability": 0.9639 + }, + { + "start": 18180.76, + "end": 18182.28, + "probability": 0.7505 + }, + { + "start": 18183.06, + "end": 18186.04, + "probability": 0.8997 + }, + { + "start": 18186.92, + "end": 18187.88, + "probability": 0.969 + }, + { + "start": 18189.16, + "end": 18191.62, + "probability": 0.9481 + }, + { + "start": 18192.66, + "end": 18194.08, + "probability": 0.8831 + }, + { + "start": 18194.2, + "end": 18195.65, + "probability": 0.9651 + }, + { + "start": 18196.2, + "end": 18197.1, + "probability": 0.8364 + }, + { + "start": 18197.32, + "end": 18198.74, + "probability": 0.868 + }, + { + "start": 18199.32, + "end": 18201.2, + "probability": 0.983 + }, + { + "start": 18202.46, + "end": 18204.02, + "probability": 0.9995 + }, + { + "start": 18204.32, + "end": 18204.92, + "probability": 0.4496 + }, + { + "start": 18204.96, + "end": 18205.42, + "probability": 0.1173 + }, + { + "start": 18206.08, + "end": 18207.6, + "probability": 0.802 + }, + { + "start": 18208.0, + "end": 18211.0, + "probability": 0.9937 + }, + { + "start": 18211.4, + "end": 18214.84, + "probability": 0.8585 + }, + { + "start": 18215.88, + "end": 18219.98, + "probability": 0.9924 + }, + { + "start": 18220.58, + "end": 18224.42, + "probability": 0.7603 + }, + { + "start": 18224.96, + "end": 18229.3, + "probability": 0.7426 + }, + { + "start": 18229.96, + "end": 18235.34, + "probability": 0.8901 + }, + { + "start": 18236.5, + "end": 18238.95, + "probability": 0.757 + }, + { + "start": 18239.1, + "end": 18241.74, + "probability": 0.6646 + }, + { + "start": 18242.62, + "end": 18245.22, + "probability": 0.9465 + }, + { + "start": 18245.88, + "end": 18248.62, + "probability": 0.8692 + }, + { + "start": 18248.64, + "end": 18252.26, + "probability": 0.9841 + }, + { + "start": 18252.52, + "end": 18256.56, + "probability": 0.7402 + }, + { + "start": 18257.52, + "end": 18259.9, + "probability": 0.8682 + }, + { + "start": 18261.4, + "end": 18262.34, + "probability": 0.8598 + }, + { + "start": 18263.14, + "end": 18264.72, + "probability": 0.9675 + }, + { + "start": 18265.4, + "end": 18268.68, + "probability": 0.9599 + }, + { + "start": 18269.34, + "end": 18270.38, + "probability": 0.5485 + }, + { + "start": 18271.2, + "end": 18274.12, + "probability": 0.9978 + }, + { + "start": 18275.5, + "end": 18279.88, + "probability": 0.9935 + }, + { + "start": 18281.14, + "end": 18286.74, + "probability": 0.9732 + }, + { + "start": 18286.86, + "end": 18287.84, + "probability": 0.7725 + }, + { + "start": 18288.72, + "end": 18291.4, + "probability": 0.7433 + }, + { + "start": 18292.24, + "end": 18294.66, + "probability": 0.957 + }, + { + "start": 18295.3, + "end": 18297.64, + "probability": 0.8768 + }, + { + "start": 18298.52, + "end": 18299.3, + "probability": 0.8483 + }, + { + "start": 18300.3, + "end": 18301.94, + "probability": 0.7227 + }, + { + "start": 18303.58, + "end": 18307.4, + "probability": 0.9536 + }, + { + "start": 18308.18, + "end": 18310.2, + "probability": 0.9715 + }, + { + "start": 18311.18, + "end": 18313.9, + "probability": 0.9302 + }, + { + "start": 18314.54, + "end": 18317.42, + "probability": 0.6358 + }, + { + "start": 18318.46, + "end": 18319.28, + "probability": 0.7224 + }, + { + "start": 18321.18, + "end": 18324.1, + "probability": 0.8342 + }, + { + "start": 18325.64, + "end": 18328.56, + "probability": 0.9552 + }, + { + "start": 18328.64, + "end": 18330.92, + "probability": 0.8553 + }, + { + "start": 18331.72, + "end": 18333.26, + "probability": 0.9319 + }, + { + "start": 18333.78, + "end": 18335.3, + "probability": 0.9521 + }, + { + "start": 18336.22, + "end": 18339.24, + "probability": 0.9301 + }, + { + "start": 18339.78, + "end": 18340.98, + "probability": 0.8932 + }, + { + "start": 18341.74, + "end": 18342.34, + "probability": 0.9243 + }, + { + "start": 18343.86, + "end": 18344.16, + "probability": 0.6071 + }, + { + "start": 18345.46, + "end": 18348.48, + "probability": 0.8106 + }, + { + "start": 18349.14, + "end": 18351.81, + "probability": 0.7432 + }, + { + "start": 18352.78, + "end": 18355.4, + "probability": 0.9571 + }, + { + "start": 18355.92, + "end": 18357.58, + "probability": 0.9156 + }, + { + "start": 18358.86, + "end": 18360.48, + "probability": 0.9194 + }, + { + "start": 18361.02, + "end": 18363.8, + "probability": 0.932 + }, + { + "start": 18364.6, + "end": 18366.32, + "probability": 0.9307 + }, + { + "start": 18367.32, + "end": 18367.94, + "probability": 0.3285 + }, + { + "start": 18369.24, + "end": 18370.7, + "probability": 0.9361 + }, + { + "start": 18372.26, + "end": 18376.14, + "probability": 0.8059 + }, + { + "start": 18376.2, + "end": 18378.5, + "probability": 0.7528 + }, + { + "start": 18381.02, + "end": 18382.76, + "probability": 0.8076 + }, + { + "start": 18382.84, + "end": 18388.72, + "probability": 0.9779 + }, + { + "start": 18391.2, + "end": 18394.86, + "probability": 0.9447 + }, + { + "start": 18395.48, + "end": 18396.34, + "probability": 0.9484 + }, + { + "start": 18397.14, + "end": 18402.5, + "probability": 0.9611 + }, + { + "start": 18402.6, + "end": 18404.72, + "probability": 0.9813 + }, + { + "start": 18405.64, + "end": 18407.2, + "probability": 0.8074 + }, + { + "start": 18407.36, + "end": 18408.54, + "probability": 0.7033 + }, + { + "start": 18409.64, + "end": 18412.18, + "probability": 0.7819 + }, + { + "start": 18412.26, + "end": 18413.64, + "probability": 0.9495 + }, + { + "start": 18414.44, + "end": 18415.6, + "probability": 0.8778 + }, + { + "start": 18416.44, + "end": 18418.32, + "probability": 0.9814 + }, + { + "start": 18418.78, + "end": 18421.76, + "probability": 0.9909 + }, + { + "start": 18422.44, + "end": 18422.78, + "probability": 0.7375 + }, + { + "start": 18423.84, + "end": 18425.16, + "probability": 0.9177 + }, + { + "start": 18426.44, + "end": 18427.67, + "probability": 0.814 + }, + { + "start": 18428.6, + "end": 18429.88, + "probability": 0.887 + }, + { + "start": 18430.94, + "end": 18435.54, + "probability": 0.9062 + }, + { + "start": 18436.22, + "end": 18437.14, + "probability": 0.7555 + }, + { + "start": 18437.92, + "end": 18439.6, + "probability": 0.9871 + }, + { + "start": 18440.44, + "end": 18440.94, + "probability": 0.9655 + }, + { + "start": 18442.12, + "end": 18445.4, + "probability": 0.6064 + }, + { + "start": 18445.46, + "end": 18446.52, + "probability": 0.4957 + }, + { + "start": 18447.04, + "end": 18449.96, + "probability": 0.9448 + }, + { + "start": 18450.94, + "end": 18453.6, + "probability": 0.8898 + }, + { + "start": 18453.74, + "end": 18455.94, + "probability": 0.9229 + }, + { + "start": 18456.92, + "end": 18459.52, + "probability": 0.9927 + }, + { + "start": 18460.42, + "end": 18461.88, + "probability": 0.9972 + }, + { + "start": 18462.42, + "end": 18463.2, + "probability": 0.5951 + }, + { + "start": 18464.04, + "end": 18467.1, + "probability": 0.991 + }, + { + "start": 18467.68, + "end": 18468.68, + "probability": 0.8245 + }, + { + "start": 18469.28, + "end": 18470.94, + "probability": 0.9241 + }, + { + "start": 18472.98, + "end": 18472.98, + "probability": 0.9438 + }, + { + "start": 18474.54, + "end": 18476.92, + "probability": 0.9661 + }, + { + "start": 18478.04, + "end": 18481.02, + "probability": 0.9399 + }, + { + "start": 18481.72, + "end": 18483.38, + "probability": 0.5553 + }, + { + "start": 18484.2, + "end": 18486.32, + "probability": 0.8176 + }, + { + "start": 18486.54, + "end": 18489.48, + "probability": 0.9381 + }, + { + "start": 18489.98, + "end": 18491.56, + "probability": 0.9811 + }, + { + "start": 18492.78, + "end": 18499.06, + "probability": 0.9792 + }, + { + "start": 18500.26, + "end": 18501.82, + "probability": 0.8276 + }, + { + "start": 18501.84, + "end": 18503.78, + "probability": 0.6783 + }, + { + "start": 18503.92, + "end": 18504.82, + "probability": 0.5955 + }, + { + "start": 18505.64, + "end": 18506.94, + "probability": 0.9106 + }, + { + "start": 18508.22, + "end": 18511.06, + "probability": 0.9622 + }, + { + "start": 18511.54, + "end": 18513.36, + "probability": 0.8861 + }, + { + "start": 18513.98, + "end": 18515.26, + "probability": 0.6394 + }, + { + "start": 18516.3, + "end": 18521.48, + "probability": 0.9756 + }, + { + "start": 18521.66, + "end": 18522.44, + "probability": 0.8573 + }, + { + "start": 18523.36, + "end": 18524.56, + "probability": 0.9794 + }, + { + "start": 18525.66, + "end": 18528.26, + "probability": 0.8566 + }, + { + "start": 18528.94, + "end": 18530.06, + "probability": 0.7837 + }, + { + "start": 18530.68, + "end": 18533.76, + "probability": 0.9744 + }, + { + "start": 18533.84, + "end": 18534.9, + "probability": 0.7371 + }, + { + "start": 18535.66, + "end": 18539.78, + "probability": 0.6115 + }, + { + "start": 18540.96, + "end": 18545.66, + "probability": 0.9757 + }, + { + "start": 18546.4, + "end": 18548.73, + "probability": 0.699 + }, + { + "start": 18548.98, + "end": 18552.04, + "probability": 0.9863 + }, + { + "start": 18552.16, + "end": 18552.93, + "probability": 0.8282 + }, + { + "start": 18553.9, + "end": 18554.66, + "probability": 0.9819 + }, + { + "start": 18556.06, + "end": 18560.22, + "probability": 0.9811 + }, + { + "start": 18561.3, + "end": 18562.84, + "probability": 0.9951 + }, + { + "start": 18563.98, + "end": 18566.4, + "probability": 0.9948 + }, + { + "start": 18567.2, + "end": 18568.04, + "probability": 0.9657 + }, + { + "start": 18569.3, + "end": 18571.58, + "probability": 0.9733 + }, + { + "start": 18572.24, + "end": 18573.56, + "probability": 0.9634 + }, + { + "start": 18574.48, + "end": 18577.0, + "probability": 0.9776 + }, + { + "start": 18578.54, + "end": 18578.9, + "probability": 0.9722 + }, + { + "start": 18579.66, + "end": 18580.66, + "probability": 0.9354 + }, + { + "start": 18581.84, + "end": 18585.4, + "probability": 0.8606 + }, + { + "start": 18585.82, + "end": 18587.26, + "probability": 0.9495 + }, + { + "start": 18588.18, + "end": 18592.8, + "probability": 0.9895 + }, + { + "start": 18593.92, + "end": 18595.34, + "probability": 0.9771 + }, + { + "start": 18596.08, + "end": 18598.1, + "probability": 0.943 + }, + { + "start": 18598.2, + "end": 18600.76, + "probability": 0.7357 + }, + { + "start": 18601.32, + "end": 18604.3, + "probability": 0.8953 + }, + { + "start": 18607.02, + "end": 18609.68, + "probability": 0.8221 + }, + { + "start": 18610.5, + "end": 18614.38, + "probability": 0.9772 + }, + { + "start": 18615.12, + "end": 18616.1, + "probability": 0.867 + }, + { + "start": 18616.18, + "end": 18617.64, + "probability": 0.7885 + }, + { + "start": 18617.8, + "end": 18622.42, + "probability": 0.8949 + }, + { + "start": 18623.92, + "end": 18627.82, + "probability": 0.9347 + }, + { + "start": 18628.44, + "end": 18631.04, + "probability": 0.8419 + }, + { + "start": 18632.3, + "end": 18634.54, + "probability": 0.9969 + }, + { + "start": 18634.66, + "end": 18637.0, + "probability": 0.9128 + }, + { + "start": 18637.52, + "end": 18639.32, + "probability": 0.7389 + }, + { + "start": 18641.34, + "end": 18642.0, + "probability": 0.7182 + }, + { + "start": 18642.84, + "end": 18644.06, + "probability": 0.2206 + }, + { + "start": 18644.46, + "end": 18645.04, + "probability": 0.6423 + }, + { + "start": 18652.68, + "end": 18653.06, + "probability": 0.1255 + }, + { + "start": 18653.06, + "end": 18653.06, + "probability": 0.0953 + }, + { + "start": 18653.06, + "end": 18653.48, + "probability": 0.61 + }, + { + "start": 18653.88, + "end": 18654.66, + "probability": 0.6472 + }, + { + "start": 18654.76, + "end": 18656.46, + "probability": 0.8375 + }, + { + "start": 18656.6, + "end": 18657.88, + "probability": 0.9542 + }, + { + "start": 18658.02, + "end": 18659.04, + "probability": 0.955 + }, + { + "start": 18659.9, + "end": 18661.94, + "probability": 0.8863 + }, + { + "start": 18663.02, + "end": 18663.8, + "probability": 0.1956 + }, + { + "start": 18664.1, + "end": 18664.22, + "probability": 0.4589 + }, + { + "start": 18664.22, + "end": 18665.2, + "probability": 0.178 + }, + { + "start": 18665.8, + "end": 18666.34, + "probability": 0.3847 + }, + { + "start": 18666.68, + "end": 18667.52, + "probability": 0.0711 + }, + { + "start": 18667.9, + "end": 18673.34, + "probability": 0.6345 + }, + { + "start": 18674.82, + "end": 18677.58, + "probability": 0.4182 + }, + { + "start": 18681.2, + "end": 18682.64, + "probability": 0.9894 + }, + { + "start": 18682.72, + "end": 18683.3, + "probability": 0.9862 + }, + { + "start": 18683.62, + "end": 18684.42, + "probability": 0.9973 + }, + { + "start": 18685.2, + "end": 18687.32, + "probability": 0.6779 + }, + { + "start": 18688.12, + "end": 18689.5, + "probability": 0.9858 + }, + { + "start": 18689.72, + "end": 18690.1, + "probability": 0.748 + }, + { + "start": 18690.7, + "end": 18691.28, + "probability": 0.9686 + }, + { + "start": 18691.78, + "end": 18692.46, + "probability": 0.9487 + }, + { + "start": 18693.24, + "end": 18696.52, + "probability": 0.9896 + }, + { + "start": 18696.62, + "end": 18697.5, + "probability": 0.5977 + }, + { + "start": 18697.86, + "end": 18700.56, + "probability": 0.9451 + }, + { + "start": 18701.42, + "end": 18701.92, + "probability": 0.306 + }, + { + "start": 18701.92, + "end": 18702.46, + "probability": 0.5003 + }, + { + "start": 18703.1, + "end": 18706.81, + "probability": 0.1158 + }, + { + "start": 18707.92, + "end": 18708.24, + "probability": 0.0172 + }, + { + "start": 18708.24, + "end": 18708.24, + "probability": 0.0356 + }, + { + "start": 18708.24, + "end": 18708.24, + "probability": 0.1189 + }, + { + "start": 18708.24, + "end": 18708.24, + "probability": 0.0924 + }, + { + "start": 18708.24, + "end": 18709.14, + "probability": 0.2546 + }, + { + "start": 18709.26, + "end": 18711.19, + "probability": 0.4108 + }, + { + "start": 18711.44, + "end": 18712.46, + "probability": 0.5487 + }, + { + "start": 18712.78, + "end": 18713.5, + "probability": 0.2155 + }, + { + "start": 18714.2, + "end": 18716.3, + "probability": 0.7878 + }, + { + "start": 18716.42, + "end": 18716.54, + "probability": 0.4992 + }, + { + "start": 18716.54, + "end": 18717.96, + "probability": 0.6666 + }, + { + "start": 18718.04, + "end": 18719.06, + "probability": 0.704 + }, + { + "start": 18719.58, + "end": 18722.86, + "probability": 0.9989 + }, + { + "start": 18723.58, + "end": 18724.84, + "probability": 0.999 + }, + { + "start": 18724.9, + "end": 18728.14, + "probability": 0.4253 + }, + { + "start": 18728.14, + "end": 18728.14, + "probability": 0.0629 + }, + { + "start": 18728.14, + "end": 18728.96, + "probability": 0.6247 + }, + { + "start": 18731.06, + "end": 18732.22, + "probability": 0.9805 + }, + { + "start": 18732.46, + "end": 18733.08, + "probability": 0.6049 + }, + { + "start": 18733.4, + "end": 18735.26, + "probability": 0.9736 + }, + { + "start": 18735.32, + "end": 18736.72, + "probability": 0.9621 + }, + { + "start": 18736.8, + "end": 18738.38, + "probability": 0.9863 + }, + { + "start": 18739.12, + "end": 18741.32, + "probability": 0.7216 + }, + { + "start": 18742.7, + "end": 18744.54, + "probability": 0.9975 + }, + { + "start": 18744.84, + "end": 18746.64, + "probability": 0.6758 + }, + { + "start": 18746.88, + "end": 18747.18, + "probability": 0.5391 + }, + { + "start": 18747.98, + "end": 18749.96, + "probability": 0.693 + }, + { + "start": 18750.54, + "end": 18754.62, + "probability": 0.4999 + }, + { + "start": 18754.64, + "end": 18756.9, + "probability": 0.2935 + }, + { + "start": 18757.74, + "end": 18758.82, + "probability": 0.205 + }, + { + "start": 18760.38, + "end": 18762.72, + "probability": 0.5287 + }, + { + "start": 18763.34, + "end": 18764.24, + "probability": 0.1449 + }, + { + "start": 18764.62, + "end": 18767.52, + "probability": 0.2882 + }, + { + "start": 18778.22, + "end": 18778.22, + "probability": 0.1623 + }, + { + "start": 18778.28, + "end": 18780.18, + "probability": 0.6147 + }, + { + "start": 18780.76, + "end": 18781.5, + "probability": 0.8547 + }, + { + "start": 18783.58, + "end": 18785.1, + "probability": 0.9749 + }, + { + "start": 18786.34, + "end": 18787.02, + "probability": 0.8787 + }, + { + "start": 18788.2, + "end": 18796.98, + "probability": 0.789 + }, + { + "start": 18799.84, + "end": 18799.84, + "probability": 0.5672 + }, + { + "start": 18799.84, + "end": 18799.84, + "probability": 0.0041 + }, + { + "start": 18799.84, + "end": 18802.02, + "probability": 0.6246 + }, + { + "start": 18802.84, + "end": 18805.32, + "probability": 0.9888 + }, + { + "start": 18805.64, + "end": 18806.4, + "probability": 0.1421 + }, + { + "start": 18806.66, + "end": 18807.07, + "probability": 0.5553 + }, + { + "start": 18808.42, + "end": 18810.46, + "probability": 0.7216 + }, + { + "start": 18813.24, + "end": 18814.8, + "probability": 0.0907 + }, + { + "start": 18814.8, + "end": 18814.8, + "probability": 0.0401 + }, + { + "start": 18814.8, + "end": 18814.8, + "probability": 0.0115 + }, + { + "start": 18814.8, + "end": 18815.26, + "probability": 0.2085 + }, + { + "start": 18815.72, + "end": 18818.62, + "probability": 0.817 + }, + { + "start": 18819.1, + "end": 18820.76, + "probability": 0.5719 + }, + { + "start": 18821.06, + "end": 18822.36, + "probability": 0.5911 + }, + { + "start": 18823.62, + "end": 18824.34, + "probability": 0.5674 + }, + { + "start": 18825.06, + "end": 18825.2, + "probability": 0.0196 + }, + { + "start": 18825.42, + "end": 18826.12, + "probability": 0.6365 + }, + { + "start": 18826.24, + "end": 18828.38, + "probability": 0.7888 + }, + { + "start": 18828.5, + "end": 18828.76, + "probability": 0.025 + }, + { + "start": 18828.76, + "end": 18828.9, + "probability": 0.1024 + }, + { + "start": 18829.1, + "end": 18835.64, + "probability": 0.8659 + }, + { + "start": 18835.7, + "end": 18836.54, + "probability": 0.9826 + }, + { + "start": 18838.3, + "end": 18839.12, + "probability": 0.6066 + }, + { + "start": 18839.9, + "end": 18842.24, + "probability": 0.9745 + }, + { + "start": 18842.36, + "end": 18843.98, + "probability": 0.8588 + }, + { + "start": 18844.98, + "end": 18848.16, + "probability": 0.8379 + }, + { + "start": 18849.4, + "end": 18854.24, + "probability": 0.9863 + }, + { + "start": 18855.08, + "end": 18857.56, + "probability": 0.9974 + }, + { + "start": 18857.56, + "end": 18861.44, + "probability": 0.9593 + }, + { + "start": 18861.52, + "end": 18865.26, + "probability": 0.9901 + }, + { + "start": 18865.26, + "end": 18869.06, + "probability": 0.824 + }, + { + "start": 18869.72, + "end": 18872.9, + "probability": 0.9567 + }, + { + "start": 18873.44, + "end": 18877.18, + "probability": 0.969 + }, + { + "start": 18877.74, + "end": 18878.56, + "probability": 0.73 + }, + { + "start": 18879.08, + "end": 18880.68, + "probability": 0.6787 + }, + { + "start": 18881.12, + "end": 18884.54, + "probability": 0.8003 + }, + { + "start": 18886.02, + "end": 18886.02, + "probability": 0.1075 + }, + { + "start": 18886.02, + "end": 18886.36, + "probability": 0.2973 + }, + { + "start": 18886.38, + "end": 18886.76, + "probability": 0.3433 + }, + { + "start": 18886.91, + "end": 18888.2, + "probability": 0.9619 + }, + { + "start": 18888.9, + "end": 18891.32, + "probability": 0.817 + }, + { + "start": 18891.64, + "end": 18893.42, + "probability": 0.9132 + }, + { + "start": 18894.2, + "end": 18895.14, + "probability": 0.1599 + }, + { + "start": 18895.14, + "end": 18895.35, + "probability": 0.1077 + }, + { + "start": 18896.1, + "end": 18898.32, + "probability": 0.0618 + }, + { + "start": 18898.54, + "end": 18898.54, + "probability": 0.0735 + }, + { + "start": 18898.54, + "end": 18898.9, + "probability": 0.1577 + }, + { + "start": 18898.98, + "end": 18899.66, + "probability": 0.9239 + }, + { + "start": 18899.9, + "end": 18902.0, + "probability": 0.7381 + }, + { + "start": 18902.14, + "end": 18903.34, + "probability": 0.9281 + }, + { + "start": 18903.82, + "end": 18905.48, + "probability": 0.9728 + }, + { + "start": 18905.74, + "end": 18908.63, + "probability": 0.6764 + }, + { + "start": 18909.6, + "end": 18914.16, + "probability": 0.9614 + }, + { + "start": 18914.3, + "end": 18915.34, + "probability": 0.6314 + }, + { + "start": 18915.52, + "end": 18919.36, + "probability": 0.9281 + }, + { + "start": 18919.5, + "end": 18919.94, + "probability": 0.499 + }, + { + "start": 18920.36, + "end": 18921.16, + "probability": 0.6027 + }, + { + "start": 18921.28, + "end": 18922.3, + "probability": 0.872 + }, + { + "start": 18922.68, + "end": 18923.96, + "probability": 0.8671 + }, + { + "start": 18924.26, + "end": 18926.78, + "probability": 0.9903 + }, + { + "start": 18927.32, + "end": 18927.76, + "probability": 0.4994 + }, + { + "start": 18928.42, + "end": 18928.72, + "probability": 0.4673 + }, + { + "start": 18929.3, + "end": 18935.6, + "probability": 0.9966 + }, + { + "start": 18936.22, + "end": 18941.9, + "probability": 0.9354 + }, + { + "start": 18941.9, + "end": 18945.94, + "probability": 0.9985 + }, + { + "start": 18947.14, + "end": 18947.44, + "probability": 0.0418 + }, + { + "start": 18948.6, + "end": 18948.99, + "probability": 0.2417 + }, + { + "start": 18950.36, + "end": 18950.8, + "probability": 0.1322 + }, + { + "start": 18951.36, + "end": 18951.7, + "probability": 0.1434 + }, + { + "start": 18951.7, + "end": 18952.18, + "probability": 0.1312 + }, + { + "start": 18952.18, + "end": 18952.18, + "probability": 0.3242 + }, + { + "start": 18952.18, + "end": 18953.52, + "probability": 0.3181 + }, + { + "start": 18953.52, + "end": 18955.61, + "probability": 0.2538 + }, + { + "start": 18956.5, + "end": 18959.76, + "probability": 0.9735 + }, + { + "start": 18959.82, + "end": 18960.4, + "probability": 0.0339 + }, + { + "start": 18960.56, + "end": 18962.64, + "probability": 0.9565 + }, + { + "start": 18962.74, + "end": 18963.64, + "probability": 0.9545 + }, + { + "start": 18963.86, + "end": 18964.88, + "probability": 0.3015 + }, + { + "start": 18965.48, + "end": 18965.9, + "probability": 0.9313 + }, + { + "start": 18966.72, + "end": 18967.72, + "probability": 0.9858 + }, + { + "start": 18968.34, + "end": 18968.84, + "probability": 0.8757 + }, + { + "start": 18969.34, + "end": 18971.28, + "probability": 0.4757 + }, + { + "start": 18971.64, + "end": 18975.84, + "probability": 0.9485 + }, + { + "start": 18976.48, + "end": 18978.04, + "probability": 0.9344 + }, + { + "start": 18978.22, + "end": 18979.9, + "probability": 0.9757 + }, + { + "start": 18979.94, + "end": 18983.55, + "probability": 0.9918 + }, + { + "start": 18984.12, + "end": 18984.76, + "probability": 0.8189 + }, + { + "start": 18985.04, + "end": 18987.08, + "probability": 0.1586 + }, + { + "start": 18987.08, + "end": 18987.08, + "probability": 0.1144 + }, + { + "start": 18987.08, + "end": 18987.42, + "probability": 0.2239 + }, + { + "start": 18987.42, + "end": 18990.66, + "probability": 0.5754 + }, + { + "start": 18990.74, + "end": 18991.33, + "probability": 0.0884 + }, + { + "start": 18991.78, + "end": 18995.05, + "probability": 0.42 + }, + { + "start": 18995.84, + "end": 18998.48, + "probability": 0.3337 + }, + { + "start": 18999.38, + "end": 19001.37, + "probability": 0.0501 + }, + { + "start": 19003.9, + "end": 19005.9, + "probability": 0.4811 + }, + { + "start": 19009.56, + "end": 19009.56, + "probability": 0.0694 + }, + { + "start": 19009.56, + "end": 19010.89, + "probability": 0.0741 + }, + { + "start": 19011.66, + "end": 19011.8, + "probability": 0.0656 + }, + { + "start": 19011.8, + "end": 19013.06, + "probability": 0.3632 + }, + { + "start": 19013.78, + "end": 19016.72, + "probability": 0.7196 + }, + { + "start": 19018.94, + "end": 19021.38, + "probability": 0.8704 + }, + { + "start": 19022.44, + "end": 19025.82, + "probability": 0.995 + }, + { + "start": 19025.82, + "end": 19026.02, + "probability": 0.0789 + }, + { + "start": 19027.54, + "end": 19030.14, + "probability": 0.0901 + }, + { + "start": 19030.42, + "end": 19030.78, + "probability": 0.6201 + }, + { + "start": 19034.7, + "end": 19036.1, + "probability": 0.9822 + }, + { + "start": 19039.82, + "end": 19042.06, + "probability": 0.65 + }, + { + "start": 19043.74, + "end": 19047.88, + "probability": 0.8595 + }, + { + "start": 19048.82, + "end": 19051.2, + "probability": 0.943 + }, + { + "start": 19051.34, + "end": 19053.46, + "probability": 0.969 + }, + { + "start": 19053.52, + "end": 19054.7, + "probability": 0.975 + }, + { + "start": 19055.18, + "end": 19055.86, + "probability": 0.9551 + }, + { + "start": 19055.92, + "end": 19057.18, + "probability": 0.6216 + }, + { + "start": 19057.8, + "end": 19059.1, + "probability": 0.9336 + }, + { + "start": 19059.56, + "end": 19060.8, + "probability": 0.1027 + }, + { + "start": 19061.08, + "end": 19063.5, + "probability": 0.8207 + }, + { + "start": 19063.68, + "end": 19066.38, + "probability": 0.9425 + }, + { + "start": 19067.62, + "end": 19069.24, + "probability": 0.5523 + }, + { + "start": 19069.48, + "end": 19069.92, + "probability": 0.8137 + }, + { + "start": 19070.38, + "end": 19071.92, + "probability": 0.9388 + }, + { + "start": 19072.58, + "end": 19073.78, + "probability": 0.7507 + }, + { + "start": 19074.34, + "end": 19075.8, + "probability": 0.6498 + }, + { + "start": 19076.44, + "end": 19080.14, + "probability": 0.7685 + }, + { + "start": 19080.64, + "end": 19082.44, + "probability": 0.5421 + }, + { + "start": 19082.88, + "end": 19084.4, + "probability": 0.9656 + }, + { + "start": 19085.02, + "end": 19087.23, + "probability": 0.9684 + }, + { + "start": 19087.5, + "end": 19090.74, + "probability": 0.9977 + }, + { + "start": 19091.16, + "end": 19092.12, + "probability": 0.9383 + }, + { + "start": 19092.22, + "end": 19093.42, + "probability": 0.9678 + }, + { + "start": 19093.46, + "end": 19093.97, + "probability": 0.9922 + }, + { + "start": 19094.72, + "end": 19095.12, + "probability": 0.9434 + }, + { + "start": 19096.02, + "end": 19096.54, + "probability": 0.8888 + }, + { + "start": 19096.6, + "end": 19097.6, + "probability": 0.8479 + }, + { + "start": 19098.08, + "end": 19099.22, + "probability": 0.9377 + }, + { + "start": 19099.34, + "end": 19100.32, + "probability": 0.7074 + }, + { + "start": 19100.82, + "end": 19101.38, + "probability": 0.6969 + }, + { + "start": 19101.42, + "end": 19102.0, + "probability": 0.484 + }, + { + "start": 19102.46, + "end": 19105.12, + "probability": 0.9854 + }, + { + "start": 19105.62, + "end": 19108.42, + "probability": 0.9928 + }, + { + "start": 19108.5, + "end": 19112.8, + "probability": 0.8228 + }, + { + "start": 19113.26, + "end": 19116.36, + "probability": 0.79 + }, + { + "start": 19116.86, + "end": 19118.58, + "probability": 0.9442 + }, + { + "start": 19119.18, + "end": 19119.82, + "probability": 0.0745 + }, + { + "start": 19119.96, + "end": 19120.52, + "probability": 0.9302 + }, + { + "start": 19120.6, + "end": 19121.36, + "probability": 0.986 + }, + { + "start": 19121.42, + "end": 19121.84, + "probability": 0.8175 + }, + { + "start": 19122.68, + "end": 19123.58, + "probability": 0.6544 + }, + { + "start": 19124.28, + "end": 19129.0, + "probability": 0.9575 + }, + { + "start": 19129.18, + "end": 19129.9, + "probability": 0.8718 + }, + { + "start": 19130.28, + "end": 19131.36, + "probability": 0.9726 + }, + { + "start": 19131.96, + "end": 19132.16, + "probability": 0.742 + }, + { + "start": 19133.26, + "end": 19135.04, + "probability": 0.901 + }, + { + "start": 19135.42, + "end": 19137.24, + "probability": 0.8743 + }, + { + "start": 19138.44, + "end": 19140.8, + "probability": 0.7959 + }, + { + "start": 19140.94, + "end": 19142.51, + "probability": 0.6333 + }, + { + "start": 19143.14, + "end": 19144.72, + "probability": 0.8038 + }, + { + "start": 19145.76, + "end": 19149.96, + "probability": 0.7086 + }, + { + "start": 19152.92, + "end": 19155.78, + "probability": 0.737 + }, + { + "start": 19156.5, + "end": 19157.74, + "probability": 0.5144 + }, + { + "start": 19158.52, + "end": 19159.7, + "probability": 0.1507 + }, + { + "start": 19160.2, + "end": 19162.56, + "probability": 0.0029 + }, + { + "start": 19163.08, + "end": 19163.18, + "probability": 0.0297 + }, + { + "start": 19163.2, + "end": 19163.67, + "probability": 0.044 + }, + { + "start": 19166.14, + "end": 19171.96, + "probability": 0.2437 + }, + { + "start": 19172.56, + "end": 19173.15, + "probability": 0.6898 + }, + { + "start": 19174.24, + "end": 19177.86, + "probability": 0.7753 + }, + { + "start": 19178.98, + "end": 19179.7, + "probability": 0.0258 + }, + { + "start": 19179.7, + "end": 19180.98, + "probability": 0.0215 + }, + { + "start": 19180.98, + "end": 19181.38, + "probability": 0.2762 + }, + { + "start": 19181.48, + "end": 19184.92, + "probability": 0.8341 + }, + { + "start": 19187.88, + "end": 19189.56, + "probability": 0.4887 + }, + { + "start": 19190.92, + "end": 19192.3, + "probability": 0.4972 + }, + { + "start": 19193.3, + "end": 19194.53, + "probability": 0.4743 + }, + { + "start": 19196.3, + "end": 19199.22, + "probability": 0.7509 + }, + { + "start": 19204.88, + "end": 19205.2, + "probability": 0.3683 + }, + { + "start": 19205.78, + "end": 19206.22, + "probability": 0.7415 + }, + { + "start": 19207.42, + "end": 19209.22, + "probability": 0.7089 + }, + { + "start": 19210.28, + "end": 19211.72, + "probability": 0.8771 + }, + { + "start": 19213.92, + "end": 19214.38, + "probability": 0.9421 + }, + { + "start": 19214.48, + "end": 19220.82, + "probability": 0.9799 + }, + { + "start": 19222.4, + "end": 19224.94, + "probability": 0.9606 + }, + { + "start": 19225.54, + "end": 19228.34, + "probability": 0.8974 + }, + { + "start": 19229.5, + "end": 19231.97, + "probability": 0.8853 + }, + { + "start": 19232.8, + "end": 19237.48, + "probability": 0.9827 + }, + { + "start": 19238.78, + "end": 19240.56, + "probability": 0.8552 + }, + { + "start": 19241.36, + "end": 19244.8, + "probability": 0.9844 + }, + { + "start": 19246.3, + "end": 19246.72, + "probability": 0.8379 + }, + { + "start": 19247.0, + "end": 19252.28, + "probability": 0.9862 + }, + { + "start": 19252.82, + "end": 19255.08, + "probability": 0.9878 + }, + { + "start": 19255.12, + "end": 19258.66, + "probability": 0.9977 + }, + { + "start": 19258.66, + "end": 19263.36, + "probability": 0.9901 + }, + { + "start": 19263.82, + "end": 19266.1, + "probability": 0.9956 + }, + { + "start": 19266.5, + "end": 19271.26, + "probability": 0.9963 + }, + { + "start": 19271.98, + "end": 19274.66, + "probability": 0.9754 + }, + { + "start": 19274.8, + "end": 19285.22, + "probability": 0.9455 + }, + { + "start": 19285.44, + "end": 19286.96, + "probability": 0.1588 + }, + { + "start": 19287.66, + "end": 19289.9, + "probability": 0.9947 + }, + { + "start": 19291.26, + "end": 19294.5, + "probability": 0.995 + }, + { + "start": 19294.66, + "end": 19296.92, + "probability": 0.986 + }, + { + "start": 19297.7, + "end": 19299.7, + "probability": 0.8767 + }, + { + "start": 19299.76, + "end": 19302.16, + "probability": 0.9885 + }, + { + "start": 19302.22, + "end": 19302.38, + "probability": 0.6865 + }, + { + "start": 19303.08, + "end": 19303.67, + "probability": 0.585 + }, + { + "start": 19304.5, + "end": 19307.32, + "probability": 0.0299 + }, + { + "start": 19307.32, + "end": 19309.0, + "probability": 0.1492 + }, + { + "start": 19309.26, + "end": 19310.56, + "probability": 0.5956 + }, + { + "start": 19311.36, + "end": 19312.24, + "probability": 0.5702 + }, + { + "start": 19314.74, + "end": 19315.72, + "probability": 0.583 + }, + { + "start": 19315.98, + "end": 19316.91, + "probability": 0.4497 + }, + { + "start": 19317.38, + "end": 19318.66, + "probability": 0.6518 + }, + { + "start": 19318.9, + "end": 19319.02, + "probability": 0.157 + }, + { + "start": 19319.02, + "end": 19320.84, + "probability": 0.4045 + }, + { + "start": 19321.63, + "end": 19324.14, + "probability": 0.845 + }, + { + "start": 19324.26, + "end": 19326.18, + "probability": 0.1982 + }, + { + "start": 19326.62, + "end": 19327.65, + "probability": 0.4659 + }, + { + "start": 19328.6, + "end": 19329.0, + "probability": 0.2564 + }, + { + "start": 19329.56, + "end": 19331.9, + "probability": 0.9967 + }, + { + "start": 19332.54, + "end": 19333.78, + "probability": 0.4938 + }, + { + "start": 19334.08, + "end": 19334.52, + "probability": 0.3332 + }, + { + "start": 19334.54, + "end": 19335.38, + "probability": 0.8499 + }, + { + "start": 19335.44, + "end": 19337.56, + "probability": 0.9357 + }, + { + "start": 19338.42, + "end": 19340.54, + "probability": 0.9556 + }, + { + "start": 19340.64, + "end": 19343.22, + "probability": 0.8023 + }, + { + "start": 19343.68, + "end": 19345.9, + "probability": 0.984 + }, + { + "start": 19346.16, + "end": 19348.24, + "probability": 0.9663 + }, + { + "start": 19349.22, + "end": 19349.48, + "probability": 0.0323 + }, + { + "start": 19349.48, + "end": 19351.2, + "probability": 0.8282 + }, + { + "start": 19352.08, + "end": 19352.08, + "probability": 0.0775 + }, + { + "start": 19352.08, + "end": 19355.96, + "probability": 0.9663 + }, + { + "start": 19355.96, + "end": 19359.5, + "probability": 0.9232 + }, + { + "start": 19359.82, + "end": 19362.22, + "probability": 0.9887 + }, + { + "start": 19362.3, + "end": 19363.52, + "probability": 0.825 + }, + { + "start": 19363.94, + "end": 19367.68, + "probability": 0.9593 + }, + { + "start": 19367.72, + "end": 19369.38, + "probability": 0.9974 + }, + { + "start": 19369.46, + "end": 19370.58, + "probability": 0.8962 + }, + { + "start": 19370.98, + "end": 19375.3, + "probability": 0.9962 + }, + { + "start": 19375.34, + "end": 19378.14, + "probability": 0.7371 + }, + { + "start": 19378.62, + "end": 19380.6, + "probability": 0.9633 + }, + { + "start": 19380.6, + "end": 19386.24, + "probability": 0.9464 + }, + { + "start": 19387.06, + "end": 19387.26, + "probability": 0.6985 + }, + { + "start": 19391.34, + "end": 19394.14, + "probability": 0.7679 + }, + { + "start": 19394.8, + "end": 19396.78, + "probability": 0.8612 + }, + { + "start": 19397.98, + "end": 19400.82, + "probability": 0.954 + }, + { + "start": 19401.38, + "end": 19403.72, + "probability": 0.996 + }, + { + "start": 19403.72, + "end": 19406.2, + "probability": 0.9895 + }, + { + "start": 19406.72, + "end": 19412.48, + "probability": 0.9185 + }, + { + "start": 19413.1, + "end": 19415.34, + "probability": 0.9935 + }, + { + "start": 19415.34, + "end": 19418.42, + "probability": 0.985 + }, + { + "start": 19419.14, + "end": 19420.2, + "probability": 0.9955 + }, + { + "start": 19420.82, + "end": 19423.36, + "probability": 0.8388 + }, + { + "start": 19424.4, + "end": 19426.7, + "probability": 0.9823 + }, + { + "start": 19427.24, + "end": 19430.18, + "probability": 0.9971 + }, + { + "start": 19430.72, + "end": 19431.56, + "probability": 0.8001 + }, + { + "start": 19432.16, + "end": 19434.14, + "probability": 0.8029 + }, + { + "start": 19434.64, + "end": 19435.88, + "probability": 0.9572 + }, + { + "start": 19436.96, + "end": 19438.88, + "probability": 0.8955 + }, + { + "start": 19439.76, + "end": 19441.42, + "probability": 0.9875 + }, + { + "start": 19442.26, + "end": 19445.04, + "probability": 0.7429 + }, + { + "start": 19445.84, + "end": 19451.22, + "probability": 0.9829 + }, + { + "start": 19452.34, + "end": 19454.33, + "probability": 0.9507 + }, + { + "start": 19454.56, + "end": 19462.72, + "probability": 0.9641 + }, + { + "start": 19462.92, + "end": 19465.34, + "probability": 0.9763 + }, + { + "start": 19466.6, + "end": 19467.56, + "probability": 0.5923 + }, + { + "start": 19468.22, + "end": 19469.54, + "probability": 0.7651 + }, + { + "start": 19469.66, + "end": 19471.03, + "probability": 0.9771 + }, + { + "start": 19471.68, + "end": 19474.26, + "probability": 0.79 + }, + { + "start": 19475.1, + "end": 19478.28, + "probability": 0.9918 + }, + { + "start": 19478.88, + "end": 19480.1, + "probability": 0.9273 + }, + { + "start": 19481.0, + "end": 19482.54, + "probability": 0.9169 + }, + { + "start": 19483.6, + "end": 19484.88, + "probability": 0.946 + }, + { + "start": 19484.96, + "end": 19485.04, + "probability": 0.5529 + }, + { + "start": 19485.16, + "end": 19486.72, + "probability": 0.9038 + }, + { + "start": 19487.82, + "end": 19490.18, + "probability": 0.8967 + }, + { + "start": 19490.78, + "end": 19493.2, + "probability": 0.8017 + }, + { + "start": 19493.36, + "end": 19494.74, + "probability": 0.7509 + }, + { + "start": 19495.22, + "end": 19497.56, + "probability": 0.9781 + }, + { + "start": 19498.08, + "end": 19499.86, + "probability": 0.9054 + }, + { + "start": 19499.9, + "end": 19502.06, + "probability": 0.9346 + }, + { + "start": 19502.12, + "end": 19504.14, + "probability": 0.8905 + }, + { + "start": 19504.26, + "end": 19506.1, + "probability": 0.8629 + }, + { + "start": 19506.74, + "end": 19507.34, + "probability": 0.6759 + }, + { + "start": 19507.4, + "end": 19508.96, + "probability": 0.9909 + }, + { + "start": 19509.54, + "end": 19514.51, + "probability": 0.9951 + }, + { + "start": 19514.56, + "end": 19519.46, + "probability": 0.9929 + }, + { + "start": 19520.16, + "end": 19522.24, + "probability": 0.9962 + }, + { + "start": 19522.4, + "end": 19523.62, + "probability": 0.717 + }, + { + "start": 19523.68, + "end": 19524.06, + "probability": 0.6412 + }, + { + "start": 19524.94, + "end": 19527.46, + "probability": 0.5525 + }, + { + "start": 19528.62, + "end": 19530.5, + "probability": 0.9893 + }, + { + "start": 19530.58, + "end": 19531.79, + "probability": 0.9628 + }, + { + "start": 19532.88, + "end": 19533.42, + "probability": 0.6841 + }, + { + "start": 19533.56, + "end": 19533.92, + "probability": 0.5253 + }, + { + "start": 19533.94, + "end": 19534.71, + "probability": 0.7795 + }, + { + "start": 19534.92, + "end": 19535.08, + "probability": 0.8106 + }, + { + "start": 19535.18, + "end": 19536.8, + "probability": 0.9799 + }, + { + "start": 19537.0, + "end": 19539.36, + "probability": 0.5851 + }, + { + "start": 19539.92, + "end": 19542.2, + "probability": 0.7737 + }, + { + "start": 19542.32, + "end": 19544.7, + "probability": 0.9849 + }, + { + "start": 19544.74, + "end": 19546.22, + "probability": 0.9916 + }, + { + "start": 19546.82, + "end": 19550.08, + "probability": 0.9969 + }, + { + "start": 19550.2, + "end": 19551.22, + "probability": 0.9279 + }, + { + "start": 19551.3, + "end": 19552.01, + "probability": 0.8813 + }, + { + "start": 19552.98, + "end": 19554.56, + "probability": 0.9847 + }, + { + "start": 19554.76, + "end": 19555.54, + "probability": 0.8619 + }, + { + "start": 19556.4, + "end": 19556.92, + "probability": 0.6112 + }, + { + "start": 19557.08, + "end": 19558.62, + "probability": 0.9302 + }, + { + "start": 19558.76, + "end": 19562.6, + "probability": 0.9957 + }, + { + "start": 19563.26, + "end": 19564.82, + "probability": 0.5957 + }, + { + "start": 19564.92, + "end": 19567.08, + "probability": 0.9613 + }, + { + "start": 19567.16, + "end": 19568.76, + "probability": 0.9819 + }, + { + "start": 19569.5, + "end": 19572.82, + "probability": 0.9766 + }, + { + "start": 19572.88, + "end": 19576.42, + "probability": 0.9373 + }, + { + "start": 19577.12, + "end": 19579.8, + "probability": 0.9414 + }, + { + "start": 19580.64, + "end": 19582.94, + "probability": 0.9742 + }, + { + "start": 19584.44, + "end": 19585.08, + "probability": 0.6123 + }, + { + "start": 19585.2, + "end": 19586.42, + "probability": 0.96 + }, + { + "start": 19586.46, + "end": 19588.52, + "probability": 0.9603 + }, + { + "start": 19589.26, + "end": 19591.58, + "probability": 0.9775 + }, + { + "start": 19591.68, + "end": 19592.32, + "probability": 0.2345 + }, + { + "start": 19592.54, + "end": 19593.4, + "probability": 0.6565 + }, + { + "start": 19593.94, + "end": 19599.7, + "probability": 0.9856 + }, + { + "start": 19599.7, + "end": 19601.2, + "probability": 0.9692 + }, + { + "start": 19604.02, + "end": 19607.28, + "probability": 0.9929 + }, + { + "start": 19607.5, + "end": 19609.7, + "probability": 0.9933 + }, + { + "start": 19609.82, + "end": 19610.58, + "probability": 0.8629 + }, + { + "start": 19611.24, + "end": 19614.18, + "probability": 0.9688 + }, + { + "start": 19614.78, + "end": 19615.76, + "probability": 0.9044 + }, + { + "start": 19616.42, + "end": 19618.78, + "probability": 0.8576 + }, + { + "start": 19619.74, + "end": 19622.6, + "probability": 0.9647 + }, + { + "start": 19623.3, + "end": 19624.0, + "probability": 0.9076 + }, + { + "start": 19624.36, + "end": 19625.6, + "probability": 0.7439 + }, + { + "start": 19625.68, + "end": 19628.88, + "probability": 0.9438 + }, + { + "start": 19631.32, + "end": 19632.42, + "probability": 0.9879 + }, + { + "start": 19632.6, + "end": 19633.46, + "probability": 0.9138 + }, + { + "start": 19633.46, + "end": 19635.28, + "probability": 0.9968 + }, + { + "start": 19635.28, + "end": 19639.52, + "probability": 0.9958 + }, + { + "start": 19639.88, + "end": 19640.42, + "probability": 0.7851 + }, + { + "start": 19641.12, + "end": 19642.98, + "probability": 0.7391 + }, + { + "start": 19643.76, + "end": 19644.52, + "probability": 0.7176 + }, + { + "start": 19644.82, + "end": 19647.68, + "probability": 0.7877 + }, + { + "start": 19647.76, + "end": 19649.12, + "probability": 0.9744 + }, + { + "start": 19650.16, + "end": 19651.12, + "probability": 0.6768 + }, + { + "start": 19651.74, + "end": 19654.16, + "probability": 0.808 + }, + { + "start": 19655.32, + "end": 19658.92, + "probability": 0.9012 + }, + { + "start": 19660.02, + "end": 19662.78, + "probability": 0.5917 + }, + { + "start": 19663.78, + "end": 19666.96, + "probability": 0.9861 + }, + { + "start": 19667.94, + "end": 19669.93, + "probability": 0.9966 + }, + { + "start": 19670.58, + "end": 19671.8, + "probability": 0.992 + }, + { + "start": 19671.92, + "end": 19675.72, + "probability": 0.994 + }, + { + "start": 19676.38, + "end": 19677.98, + "probability": 0.8966 + }, + { + "start": 19678.5, + "end": 19679.16, + "probability": 0.5217 + }, + { + "start": 19679.98, + "end": 19682.92, + "probability": 0.9702 + }, + { + "start": 19683.02, + "end": 19685.92, + "probability": 0.8595 + }, + { + "start": 19686.66, + "end": 19689.94, + "probability": 0.9806 + }, + { + "start": 19690.74, + "end": 19691.6, + "probability": 0.9946 + }, + { + "start": 19692.3, + "end": 19696.7, + "probability": 0.9858 + }, + { + "start": 19697.34, + "end": 19700.74, + "probability": 0.948 + }, + { + "start": 19701.28, + "end": 19703.34, + "probability": 0.9956 + }, + { + "start": 19703.44, + "end": 19708.16, + "probability": 0.9194 + }, + { + "start": 19708.76, + "end": 19709.12, + "probability": 0.7954 + }, + { + "start": 19709.88, + "end": 19711.6, + "probability": 0.9639 + }, + { + "start": 19711.6, + "end": 19713.76, + "probability": 0.9736 + }, + { + "start": 19714.86, + "end": 19716.72, + "probability": 0.6134 + }, + { + "start": 19716.74, + "end": 19720.34, + "probability": 0.9558 + }, + { + "start": 19720.92, + "end": 19723.0, + "probability": 0.9813 + }, + { + "start": 19723.64, + "end": 19724.08, + "probability": 0.6936 + }, + { + "start": 19725.08, + "end": 19725.9, + "probability": 0.9858 + }, + { + "start": 19725.92, + "end": 19728.04, + "probability": 0.9989 + }, + { + "start": 19728.92, + "end": 19731.14, + "probability": 0.9727 + }, + { + "start": 19731.52, + "end": 19732.68, + "probability": 0.6424 + }, + { + "start": 19733.26, + "end": 19736.0, + "probability": 0.9 + }, + { + "start": 19738.4, + "end": 19738.4, + "probability": 0.2019 + }, + { + "start": 19738.4, + "end": 19740.9, + "probability": 0.9291 + }, + { + "start": 19741.9, + "end": 19745.28, + "probability": 0.943 + }, + { + "start": 19746.26, + "end": 19747.32, + "probability": 0.7151 + }, + { + "start": 19747.36, + "end": 19750.32, + "probability": 0.9976 + }, + { + "start": 19750.32, + "end": 19756.44, + "probability": 0.9829 + }, + { + "start": 19756.6, + "end": 19758.38, + "probability": 0.9338 + }, + { + "start": 19758.76, + "end": 19760.74, + "probability": 0.9971 + }, + { + "start": 19761.3, + "end": 19766.76, + "probability": 0.9961 + }, + { + "start": 19766.92, + "end": 19769.03, + "probability": 0.974 + }, + { + "start": 19769.86, + "end": 19770.61, + "probability": 0.8823 + }, + { + "start": 19771.24, + "end": 19772.74, + "probability": 0.9767 + }, + { + "start": 19773.08, + "end": 19773.38, + "probability": 0.7426 + }, + { + "start": 19773.48, + "end": 19775.7, + "probability": 0.9875 + }, + { + "start": 19776.04, + "end": 19777.24, + "probability": 0.9247 + }, + { + "start": 19777.34, + "end": 19779.28, + "probability": 0.9762 + }, + { + "start": 19780.78, + "end": 19783.82, + "probability": 0.8716 + }, + { + "start": 19783.82, + "end": 19788.74, + "probability": 0.8309 + }, + { + "start": 19789.46, + "end": 19791.65, + "probability": 0.9937 + }, + { + "start": 19792.16, + "end": 19794.22, + "probability": 0.9988 + }, + { + "start": 19794.22, + "end": 19797.72, + "probability": 0.9641 + }, + { + "start": 19798.16, + "end": 19799.74, + "probability": 0.8745 + }, + { + "start": 19800.14, + "end": 19800.78, + "probability": 0.3602 + }, + { + "start": 19801.38, + "end": 19801.84, + "probability": 0.6495 + }, + { + "start": 19801.84, + "end": 19803.4, + "probability": 0.6703 + }, + { + "start": 19804.6, + "end": 19806.06, + "probability": 0.9264 + }, + { + "start": 19807.64, + "end": 19809.56, + "probability": 0.065 + }, + { + "start": 19811.3, + "end": 19815.62, + "probability": 0.4747 + }, + { + "start": 19817.26, + "end": 19818.23, + "probability": 0.5771 + }, + { + "start": 19818.34, + "end": 19819.9, + "probability": 0.7215 + }, + { + "start": 19820.82, + "end": 19824.28, + "probability": 0.8149 + }, + { + "start": 19825.14, + "end": 19826.74, + "probability": 0.7418 + }, + { + "start": 19826.88, + "end": 19827.4, + "probability": 0.5958 + }, + { + "start": 19827.42, + "end": 19828.32, + "probability": 0.7924 + }, + { + "start": 19828.46, + "end": 19829.8, + "probability": 0.3429 + }, + { + "start": 19829.92, + "end": 19832.52, + "probability": 0.8455 + }, + { + "start": 19832.56, + "end": 19833.42, + "probability": 0.5721 + }, + { + "start": 19833.56, + "end": 19836.04, + "probability": 0.7019 + }, + { + "start": 19836.1, + "end": 19837.12, + "probability": 0.8875 + }, + { + "start": 19838.67, + "end": 19840.96, + "probability": 0.8116 + }, + { + "start": 19841.58, + "end": 19844.74, + "probability": 0.6025 + }, + { + "start": 19845.3, + "end": 19845.74, + "probability": 0.1131 + }, + { + "start": 19845.96, + "end": 19852.06, + "probability": 0.7748 + }, + { + "start": 19852.74, + "end": 19855.02, + "probability": 0.6889 + }, + { + "start": 19855.58, + "end": 19857.95, + "probability": 0.7452 + }, + { + "start": 19858.6, + "end": 19859.86, + "probability": 0.8782 + }, + { + "start": 19861.2, + "end": 19862.36, + "probability": 0.0288 + }, + { + "start": 19865.4, + "end": 19867.28, + "probability": 0.4239 + }, + { + "start": 19883.08, + "end": 19883.56, + "probability": 0.7081 + }, + { + "start": 19887.54, + "end": 19889.28, + "probability": 0.7033 + }, + { + "start": 19890.4, + "end": 19891.88, + "probability": 0.842 + }, + { + "start": 19893.1, + "end": 19894.9, + "probability": 0.9915 + }, + { + "start": 19895.46, + "end": 19900.26, + "probability": 0.9985 + }, + { + "start": 19901.06, + "end": 19902.7, + "probability": 0.9344 + }, + { + "start": 19903.64, + "end": 19905.3, + "probability": 0.5907 + }, + { + "start": 19907.04, + "end": 19908.44, + "probability": 0.9302 + }, + { + "start": 19909.05, + "end": 19911.47, + "probability": 0.972 + }, + { + "start": 19912.02, + "end": 19913.05, + "probability": 0.9897 + }, + { + "start": 19913.26, + "end": 19916.28, + "probability": 0.9273 + }, + { + "start": 19917.04, + "end": 19919.46, + "probability": 0.7109 + }, + { + "start": 19919.93, + "end": 19925.24, + "probability": 0.9006 + }, + { + "start": 19925.26, + "end": 19925.94, + "probability": 0.9577 + }, + { + "start": 19927.0, + "end": 19929.32, + "probability": 0.3549 + }, + { + "start": 19929.5, + "end": 19930.34, + "probability": 0.7024 + }, + { + "start": 19930.44, + "end": 19930.88, + "probability": 0.8841 + }, + { + "start": 19931.76, + "end": 19934.94, + "probability": 0.8156 + }, + { + "start": 19935.86, + "end": 19936.96, + "probability": 0.4362 + }, + { + "start": 19937.02, + "end": 19940.4, + "probability": 0.9303 + }, + { + "start": 19940.82, + "end": 19942.34, + "probability": 0.8684 + }, + { + "start": 19943.04, + "end": 19945.16, + "probability": 0.786 + }, + { + "start": 19946.58, + "end": 19947.2, + "probability": 0.424 + }, + { + "start": 19947.2, + "end": 19947.4, + "probability": 0.3426 + }, + { + "start": 19947.4, + "end": 19947.72, + "probability": 0.5179 + }, + { + "start": 19947.86, + "end": 19948.16, + "probability": 0.553 + }, + { + "start": 19949.34, + "end": 19951.38, + "probability": 0.8759 + }, + { + "start": 19952.58, + "end": 19954.52, + "probability": 0.7302 + }, + { + "start": 19955.66, + "end": 19959.02, + "probability": 0.8823 + }, + { + "start": 19959.66, + "end": 19961.14, + "probability": 0.9708 + }, + { + "start": 19961.92, + "end": 19964.38, + "probability": 0.6968 + }, + { + "start": 19965.1, + "end": 19966.48, + "probability": 0.7787 + }, + { + "start": 19966.66, + "end": 19967.32, + "probability": 0.9767 + }, + { + "start": 19968.26, + "end": 19969.28, + "probability": 0.8629 + }, + { + "start": 19969.9, + "end": 19972.02, + "probability": 0.8586 + }, + { + "start": 19972.54, + "end": 19974.37, + "probability": 0.8326 + }, + { + "start": 19975.06, + "end": 19976.76, + "probability": 0.8192 + }, + { + "start": 19977.72, + "end": 19978.38, + "probability": 0.9772 + }, + { + "start": 19978.98, + "end": 19980.02, + "probability": 0.8488 + }, + { + "start": 19980.58, + "end": 19981.0, + "probability": 0.9 + }, + { + "start": 19981.54, + "end": 19982.32, + "probability": 0.8514 + }, + { + "start": 19982.42, + "end": 19986.12, + "probability": 0.7969 + }, + { + "start": 19986.54, + "end": 19987.36, + "probability": 0.697 + }, + { + "start": 19988.0, + "end": 19989.78, + "probability": 0.936 + }, + { + "start": 19990.56, + "end": 19991.52, + "probability": 0.4818 + }, + { + "start": 19992.1, + "end": 19993.06, + "probability": 0.844 + }, + { + "start": 19993.34, + "end": 19994.3, + "probability": 0.9741 + }, + { + "start": 19994.92, + "end": 19998.44, + "probability": 0.9002 + }, + { + "start": 19999.16, + "end": 20000.74, + "probability": 0.5024 + }, + { + "start": 20001.78, + "end": 20002.1, + "probability": 0.7704 + }, + { + "start": 20002.64, + "end": 20003.98, + "probability": 0.759 + }, + { + "start": 20004.38, + "end": 20007.3, + "probability": 0.7459 + }, + { + "start": 20008.06, + "end": 20008.66, + "probability": 0.4316 + }, + { + "start": 20009.44, + "end": 20009.7, + "probability": 0.7766 + }, + { + "start": 20009.7, + "end": 20010.72, + "probability": 0.8145 + }, + { + "start": 20011.12, + "end": 20013.28, + "probability": 0.9867 + }, + { + "start": 20013.28, + "end": 20016.04, + "probability": 0.9928 + }, + { + "start": 20016.66, + "end": 20017.44, + "probability": 0.9644 + }, + { + "start": 20017.96, + "end": 20022.0, + "probability": 0.7556 + }, + { + "start": 20022.14, + "end": 20024.02, + "probability": 0.76 + }, + { + "start": 20024.32, + "end": 20027.12, + "probability": 0.9668 + }, + { + "start": 20027.58, + "end": 20028.26, + "probability": 0.7565 + }, + { + "start": 20028.38, + "end": 20029.5, + "probability": 0.891 + }, + { + "start": 20029.84, + "end": 20031.01, + "probability": 0.7926 + }, + { + "start": 20031.38, + "end": 20033.5, + "probability": 0.7354 + }, + { + "start": 20033.9, + "end": 20036.68, + "probability": 0.7202 + }, + { + "start": 20037.5, + "end": 20038.53, + "probability": 0.2255 + }, + { + "start": 20039.12, + "end": 20040.33, + "probability": 0.0389 + }, + { + "start": 20041.18, + "end": 20041.36, + "probability": 0.026 + }, + { + "start": 20041.36, + "end": 20042.38, + "probability": 0.5423 + }, + { + "start": 20042.52, + "end": 20042.88, + "probability": 0.1384 + }, + { + "start": 20042.88, + "end": 20043.78, + "probability": 0.834 + }, + { + "start": 20044.2, + "end": 20044.86, + "probability": 0.915 + }, + { + "start": 20044.92, + "end": 20046.86, + "probability": 0.8591 + }, + { + "start": 20047.34, + "end": 20049.2, + "probability": 0.9172 + }, + { + "start": 20049.42, + "end": 20050.03, + "probability": 0.7865 + }, + { + "start": 20051.06, + "end": 20054.6, + "probability": 0.9807 + }, + { + "start": 20055.22, + "end": 20057.74, + "probability": 0.6663 + }, + { + "start": 20057.84, + "end": 20058.92, + "probability": 0.9937 + }, + { + "start": 20059.78, + "end": 20060.86, + "probability": 0.6714 + }, + { + "start": 20061.82, + "end": 20064.1, + "probability": 0.1014 + }, + { + "start": 20064.24, + "end": 20065.64, + "probability": 0.9491 + }, + { + "start": 20065.78, + "end": 20067.72, + "probability": 0.057 + }, + { + "start": 20067.72, + "end": 20069.42, + "probability": 0.2146 + }, + { + "start": 20069.74, + "end": 20070.5, + "probability": 0.6599 + }, + { + "start": 20070.54, + "end": 20071.02, + "probability": 0.29 + }, + { + "start": 20071.04, + "end": 20071.37, + "probability": 0.2666 + }, + { + "start": 20071.8, + "end": 20073.68, + "probability": 0.9742 + }, + { + "start": 20073.7, + "end": 20074.29, + "probability": 0.9159 + }, + { + "start": 20074.92, + "end": 20075.24, + "probability": 0.8809 + }, + { + "start": 20075.78, + "end": 20077.02, + "probability": 0.8533 + }, + { + "start": 20077.36, + "end": 20078.26, + "probability": 0.9165 + }, + { + "start": 20078.66, + "end": 20082.64, + "probability": 0.9757 + }, + { + "start": 20083.12, + "end": 20085.48, + "probability": 0.9951 + }, + { + "start": 20085.86, + "end": 20086.78, + "probability": 0.9681 + }, + { + "start": 20086.86, + "end": 20087.94, + "probability": 0.9319 + }, + { + "start": 20088.4, + "end": 20091.94, + "probability": 0.9207 + }, + { + "start": 20092.06, + "end": 20092.8, + "probability": 0.6742 + }, + { + "start": 20093.3, + "end": 20095.01, + "probability": 0.9067 + }, + { + "start": 20095.78, + "end": 20097.3, + "probability": 0.9286 + }, + { + "start": 20097.44, + "end": 20101.4, + "probability": 0.7271 + }, + { + "start": 20101.56, + "end": 20102.4, + "probability": 0.9218 + }, + { + "start": 20102.86, + "end": 20109.96, + "probability": 0.9748 + }, + { + "start": 20110.02, + "end": 20110.66, + "probability": 0.6466 + }, + { + "start": 20111.06, + "end": 20111.64, + "probability": 0.7939 + }, + { + "start": 20111.74, + "end": 20116.38, + "probability": 0.9886 + }, + { + "start": 20116.42, + "end": 20117.08, + "probability": 0.7933 + }, + { + "start": 20117.16, + "end": 20117.64, + "probability": 0.8359 + }, + { + "start": 20118.0, + "end": 20120.22, + "probability": 0.9814 + }, + { + "start": 20120.56, + "end": 20121.46, + "probability": 0.9567 + }, + { + "start": 20121.54, + "end": 20123.66, + "probability": 0.848 + }, + { + "start": 20123.9, + "end": 20124.7, + "probability": 0.4515 + }, + { + "start": 20125.58, + "end": 20129.62, + "probability": 0.9204 + }, + { + "start": 20129.7, + "end": 20130.26, + "probability": 0.9017 + }, + { + "start": 20132.48, + "end": 20134.42, + "probability": 0.7699 + }, + { + "start": 20134.5, + "end": 20135.52, + "probability": 0.8733 + }, + { + "start": 20136.04, + "end": 20136.62, + "probability": 0.7515 + }, + { + "start": 20137.61, + "end": 20142.86, + "probability": 0.9373 + }, + { + "start": 20143.68, + "end": 20144.54, + "probability": 0.8031 + }, + { + "start": 20145.26, + "end": 20148.18, + "probability": 0.9668 + }, + { + "start": 20148.66, + "end": 20149.96, + "probability": 0.9355 + }, + { + "start": 20150.52, + "end": 20152.47, + "probability": 0.9597 + }, + { + "start": 20153.04, + "end": 20154.04, + "probability": 0.8718 + }, + { + "start": 20154.42, + "end": 20154.98, + "probability": 0.8598 + }, + { + "start": 20155.3, + "end": 20157.16, + "probability": 0.9808 + }, + { + "start": 20157.58, + "end": 20158.74, + "probability": 0.9553 + }, + { + "start": 20159.7, + "end": 20162.02, + "probability": 0.9553 + }, + { + "start": 20162.78, + "end": 20165.14, + "probability": 0.9465 + }, + { + "start": 20165.72, + "end": 20167.56, + "probability": 0.8632 + }, + { + "start": 20167.58, + "end": 20168.2, + "probability": 0.9816 + }, + { + "start": 20168.84, + "end": 20170.48, + "probability": 0.9629 + }, + { + "start": 20171.06, + "end": 20172.86, + "probability": 0.9742 + }, + { + "start": 20172.94, + "end": 20175.0, + "probability": 0.8312 + }, + { + "start": 20175.54, + "end": 20179.4, + "probability": 0.671 + }, + { + "start": 20179.86, + "end": 20181.0, + "probability": 0.828 + }, + { + "start": 20181.6, + "end": 20184.24, + "probability": 0.667 + }, + { + "start": 20184.82, + "end": 20189.44, + "probability": 0.9685 + }, + { + "start": 20189.52, + "end": 20190.78, + "probability": 0.8768 + }, + { + "start": 20191.28, + "end": 20197.36, + "probability": 0.9982 + }, + { + "start": 20197.86, + "end": 20200.0, + "probability": 0.9582 + }, + { + "start": 20200.44, + "end": 20201.24, + "probability": 0.8967 + }, + { + "start": 20201.32, + "end": 20201.9, + "probability": 0.7529 + }, + { + "start": 20202.18, + "end": 20206.62, + "probability": 0.981 + }, + { + "start": 20207.28, + "end": 20207.96, + "probability": 0.5737 + }, + { + "start": 20208.48, + "end": 20212.62, + "probability": 0.5807 + }, + { + "start": 20212.62, + "end": 20214.48, + "probability": 0.9536 + }, + { + "start": 20214.82, + "end": 20216.5, + "probability": 0.6297 + }, + { + "start": 20217.08, + "end": 20217.86, + "probability": 0.7851 + }, + { + "start": 20217.92, + "end": 20218.7, + "probability": 0.8982 + }, + { + "start": 20218.8, + "end": 20220.94, + "probability": 0.6035 + }, + { + "start": 20221.16, + "end": 20222.11, + "probability": 0.7913 + }, + { + "start": 20222.32, + "end": 20225.7, + "probability": 0.9264 + }, + { + "start": 20225.98, + "end": 20229.06, + "probability": 0.9195 + }, + { + "start": 20229.62, + "end": 20233.04, + "probability": 0.833 + }, + { + "start": 20233.08, + "end": 20236.36, + "probability": 0.7672 + }, + { + "start": 20236.36, + "end": 20237.49, + "probability": 0.5314 + }, + { + "start": 20238.2, + "end": 20238.92, + "probability": 0.7808 + }, + { + "start": 20239.36, + "end": 20240.52, + "probability": 0.8091 + }, + { + "start": 20241.1, + "end": 20243.52, + "probability": 0.8981 + }, + { + "start": 20244.0, + "end": 20244.96, + "probability": 0.9846 + }, + { + "start": 20245.04, + "end": 20245.32, + "probability": 0.7083 + }, + { + "start": 20245.34, + "end": 20246.06, + "probability": 0.5861 + }, + { + "start": 20246.54, + "end": 20247.38, + "probability": 0.6854 + }, + { + "start": 20247.46, + "end": 20248.4, + "probability": 0.8688 + }, + { + "start": 20248.77, + "end": 20250.32, + "probability": 0.9243 + }, + { + "start": 20250.92, + "end": 20252.78, + "probability": 0.9667 + }, + { + "start": 20253.16, + "end": 20255.32, + "probability": 0.9931 + }, + { + "start": 20256.9, + "end": 20259.36, + "probability": 0.6821 + }, + { + "start": 20260.02, + "end": 20261.08, + "probability": 0.6793 + }, + { + "start": 20261.64, + "end": 20263.96, + "probability": 0.9507 + }, + { + "start": 20264.02, + "end": 20264.68, + "probability": 0.8003 + }, + { + "start": 20264.78, + "end": 20265.38, + "probability": 0.7269 + }, + { + "start": 20265.78, + "end": 20267.02, + "probability": 0.7606 + }, + { + "start": 20267.78, + "end": 20270.04, + "probability": 0.9746 + }, + { + "start": 20270.98, + "end": 20271.08, + "probability": 0.6532 + }, + { + "start": 20271.96, + "end": 20274.86, + "probability": 0.8539 + }, + { + "start": 20274.92, + "end": 20277.06, + "probability": 0.9257 + }, + { + "start": 20278.32, + "end": 20281.92, + "probability": 0.6891 + }, + { + "start": 20282.68, + "end": 20283.7, + "probability": 0.0933 + }, + { + "start": 20284.06, + "end": 20285.02, + "probability": 0.7568 + }, + { + "start": 20286.52, + "end": 20287.28, + "probability": 0.4119 + }, + { + "start": 20287.38, + "end": 20288.23, + "probability": 0.0126 + }, + { + "start": 20288.44, + "end": 20290.04, + "probability": 0.2995 + }, + { + "start": 20290.58, + "end": 20292.34, + "probability": 0.7593 + }, + { + "start": 20292.92, + "end": 20295.6, + "probability": 0.7373 + }, + { + "start": 20295.78, + "end": 20295.96, + "probability": 0.2517 + }, + { + "start": 20296.08, + "end": 20296.08, + "probability": 0.2641 + }, + { + "start": 20296.08, + "end": 20297.3, + "probability": 0.0799 + }, + { + "start": 20297.66, + "end": 20297.92, + "probability": 0.2453 + }, + { + "start": 20300.64, + "end": 20300.7, + "probability": 0.0785 + }, + { + "start": 20300.7, + "end": 20301.84, + "probability": 0.5597 + }, + { + "start": 20302.58, + "end": 20303.3, + "probability": 0.5487 + }, + { + "start": 20303.4, + "end": 20304.44, + "probability": 0.7078 + }, + { + "start": 20305.16, + "end": 20307.76, + "probability": 0.9736 + }, + { + "start": 20307.82, + "end": 20308.22, + "probability": 0.8055 + }, + { + "start": 20308.26, + "end": 20308.82, + "probability": 0.8555 + }, + { + "start": 20309.42, + "end": 20312.88, + "probability": 0.9775 + }, + { + "start": 20313.58, + "end": 20315.2, + "probability": 0.8528 + }, + { + "start": 20315.3, + "end": 20315.98, + "probability": 0.9485 + }, + { + "start": 20316.32, + "end": 20317.84, + "probability": 0.8759 + }, + { + "start": 20318.14, + "end": 20319.22, + "probability": 0.596 + }, + { + "start": 20319.46, + "end": 20319.58, + "probability": 0.16 + }, + { + "start": 20320.32, + "end": 20320.92, + "probability": 0.0713 + }, + { + "start": 20321.02, + "end": 20325.04, + "probability": 0.98 + }, + { + "start": 20325.74, + "end": 20328.42, + "probability": 0.8564 + }, + { + "start": 20329.74, + "end": 20330.12, + "probability": 0.4999 + }, + { + "start": 20330.24, + "end": 20331.24, + "probability": 0.9493 + }, + { + "start": 20331.36, + "end": 20333.1, + "probability": 0.5713 + }, + { + "start": 20333.28, + "end": 20334.32, + "probability": 0.6707 + }, + { + "start": 20334.58, + "end": 20337.22, + "probability": 0.1275 + }, + { + "start": 20337.62, + "end": 20339.96, + "probability": 0.1771 + }, + { + "start": 20340.18, + "end": 20344.24, + "probability": 0.9001 + }, + { + "start": 20344.68, + "end": 20346.24, + "probability": 0.9722 + }, + { + "start": 20347.3, + "end": 20352.3, + "probability": 0.98 + }, + { + "start": 20352.92, + "end": 20353.68, + "probability": 0.6643 + }, + { + "start": 20353.84, + "end": 20354.14, + "probability": 0.9317 + }, + { + "start": 20354.48, + "end": 20354.76, + "probability": 0.769 + }, + { + "start": 20354.88, + "end": 20355.24, + "probability": 0.6156 + }, + { + "start": 20356.06, + "end": 20356.72, + "probability": 0.7041 + }, + { + "start": 20357.16, + "end": 20357.92, + "probability": 0.5242 + }, + { + "start": 20360.56, + "end": 20363.02, + "probability": 0.2729 + }, + { + "start": 20363.02, + "end": 20363.02, + "probability": 0.0445 + }, + { + "start": 20363.02, + "end": 20364.5, + "probability": 0.0789 + }, + { + "start": 20365.44, + "end": 20365.93, + "probability": 0.0865 + }, + { + "start": 20365.94, + "end": 20366.08, + "probability": 0.2959 + }, + { + "start": 20366.74, + "end": 20369.56, + "probability": 0.8326 + }, + { + "start": 20369.62, + "end": 20373.06, + "probability": 0.4477 + }, + { + "start": 20373.2, + "end": 20375.1, + "probability": 0.294 + }, + { + "start": 20375.22, + "end": 20376.26, + "probability": 0.2748 + }, + { + "start": 20376.5, + "end": 20377.0, + "probability": 0.0324 + }, + { + "start": 20377.0, + "end": 20378.12, + "probability": 0.5091 + }, + { + "start": 20378.18, + "end": 20379.56, + "probability": 0.8875 + }, + { + "start": 20380.28, + "end": 20382.06, + "probability": 0.6511 + }, + { + "start": 20382.38, + "end": 20384.6, + "probability": 0.7536 + }, + { + "start": 20384.88, + "end": 20386.58, + "probability": 0.121 + }, + { + "start": 20386.66, + "end": 20386.98, + "probability": 0.4335 + }, + { + "start": 20386.98, + "end": 20386.98, + "probability": 0.645 + }, + { + "start": 20386.98, + "end": 20386.98, + "probability": 0.0621 + }, + { + "start": 20386.98, + "end": 20387.48, + "probability": 0.2165 + }, + { + "start": 20387.9, + "end": 20391.48, + "probability": 0.9212 + }, + { + "start": 20391.48, + "end": 20392.64, + "probability": 0.6631 + }, + { + "start": 20393.02, + "end": 20395.24, + "probability": 0.6416 + }, + { + "start": 20395.94, + "end": 20400.36, + "probability": 0.5447 + }, + { + "start": 20401.8, + "end": 20403.06, + "probability": 0.3343 + }, + { + "start": 20403.22, + "end": 20404.3, + "probability": 0.386 + }, + { + "start": 20404.3, + "end": 20405.88, + "probability": 0.5116 + }, + { + "start": 20405.94, + "end": 20408.72, + "probability": 0.8611 + }, + { + "start": 20409.64, + "end": 20411.03, + "probability": 0.098 + }, + { + "start": 20411.58, + "end": 20413.11, + "probability": 0.1095 + }, + { + "start": 20413.9, + "end": 20415.08, + "probability": 0.7984 + }, + { + "start": 20415.28, + "end": 20418.12, + "probability": 0.902 + }, + { + "start": 20418.82, + "end": 20420.34, + "probability": 0.7971 + }, + { + "start": 20421.1, + "end": 20423.48, + "probability": 0.9615 + }, + { + "start": 20423.7, + "end": 20424.22, + "probability": 0.0779 + }, + { + "start": 20424.56, + "end": 20428.88, + "probability": 0.6779 + }, + { + "start": 20428.92, + "end": 20430.32, + "probability": 0.3511 + }, + { + "start": 20430.68, + "end": 20431.88, + "probability": 0.5701 + }, + { + "start": 20432.8, + "end": 20433.9, + "probability": 0.7432 + }, + { + "start": 20433.9, + "end": 20434.9, + "probability": 0.7374 + }, + { + "start": 20435.26, + "end": 20436.68, + "probability": 0.5403 + }, + { + "start": 20438.28, + "end": 20438.8, + "probability": 0.3036 + }, + { + "start": 20439.32, + "end": 20439.32, + "probability": 0.1153 + }, + { + "start": 20439.32, + "end": 20441.84, + "probability": 0.0361 + }, + { + "start": 20441.84, + "end": 20445.88, + "probability": 0.3517 + }, + { + "start": 20445.88, + "end": 20446.42, + "probability": 0.4999 + }, + { + "start": 20446.48, + "end": 20447.12, + "probability": 0.6554 + }, + { + "start": 20447.18, + "end": 20448.18, + "probability": 0.4946 + }, + { + "start": 20448.44, + "end": 20451.68, + "probability": 0.3726 + }, + { + "start": 20451.68, + "end": 20453.84, + "probability": 0.2609 + }, + { + "start": 20455.3, + "end": 20456.52, + "probability": 0.3579 + }, + { + "start": 20456.54, + "end": 20458.1, + "probability": 0.7791 + }, + { + "start": 20458.1, + "end": 20458.12, + "probability": 0.1077 + }, + { + "start": 20458.14, + "end": 20459.52, + "probability": 0.4385 + }, + { + "start": 20459.6, + "end": 20460.8, + "probability": 0.0771 + }, + { + "start": 20460.98, + "end": 20461.88, + "probability": 0.8667 + }, + { + "start": 20462.42, + "end": 20462.68, + "probability": 0.2044 + }, + { + "start": 20462.76, + "end": 20465.66, + "probability": 0.9774 + }, + { + "start": 20465.9, + "end": 20466.46, + "probability": 0.0777 + }, + { + "start": 20467.14, + "end": 20468.84, + "probability": 0.4116 + }, + { + "start": 20469.18, + "end": 20471.29, + "probability": 0.4972 + }, + { + "start": 20471.42, + "end": 20472.22, + "probability": 0.787 + }, + { + "start": 20472.3, + "end": 20475.9, + "probability": 0.9701 + }, + { + "start": 20476.52, + "end": 20478.38, + "probability": 0.884 + }, + { + "start": 20478.78, + "end": 20484.04, + "probability": 0.5821 + }, + { + "start": 20484.04, + "end": 20489.18, + "probability": 0.9895 + }, + { + "start": 20489.6, + "end": 20491.7, + "probability": 0.8994 + }, + { + "start": 20491.82, + "end": 20496.58, + "probability": 0.9944 + }, + { + "start": 20496.66, + "end": 20496.8, + "probability": 0.4536 + }, + { + "start": 20496.82, + "end": 20498.62, + "probability": 0.8938 + }, + { + "start": 20498.94, + "end": 20500.34, + "probability": 0.998 + }, + { + "start": 20500.7, + "end": 20503.4, + "probability": 0.9956 + }, + { + "start": 20503.66, + "end": 20505.28, + "probability": 0.9764 + }, + { + "start": 20505.3, + "end": 20505.82, + "probability": 0.7805 + }, + { + "start": 20506.22, + "end": 20509.33, + "probability": 0.842 + }, + { + "start": 20511.18, + "end": 20517.8, + "probability": 0.8415 + }, + { + "start": 20521.78, + "end": 20522.04, + "probability": 0.3407 + }, + { + "start": 20522.24, + "end": 20528.0, + "probability": 0.9418 + }, + { + "start": 20529.84, + "end": 20533.02, + "probability": 0.7228 + }, + { + "start": 20546.28, + "end": 20549.04, + "probability": 0.7161 + }, + { + "start": 20550.08, + "end": 20554.92, + "probability": 0.8257 + }, + { + "start": 20557.28, + "end": 20560.86, + "probability": 0.9917 + }, + { + "start": 20561.64, + "end": 20564.82, + "probability": 0.9956 + }, + { + "start": 20564.82, + "end": 20569.3, + "probability": 0.9814 + }, + { + "start": 20570.72, + "end": 20574.77, + "probability": 0.7964 + }, + { + "start": 20575.96, + "end": 20578.86, + "probability": 0.9657 + }, + { + "start": 20578.86, + "end": 20582.76, + "probability": 0.9597 + }, + { + "start": 20583.28, + "end": 20583.82, + "probability": 0.7905 + }, + { + "start": 20584.6, + "end": 20592.24, + "probability": 0.9872 + }, + { + "start": 20593.26, + "end": 20594.12, + "probability": 0.3579 + }, + { + "start": 20595.98, + "end": 20601.52, + "probability": 0.9919 + }, + { + "start": 20601.68, + "end": 20602.46, + "probability": 0.8279 + }, + { + "start": 20603.1, + "end": 20606.24, + "probability": 0.6839 + }, + { + "start": 20607.16, + "end": 20610.38, + "probability": 0.9951 + }, + { + "start": 20610.38, + "end": 20614.88, + "probability": 0.8374 + }, + { + "start": 20615.5, + "end": 20618.82, + "probability": 0.9973 + }, + { + "start": 20619.36, + "end": 20620.32, + "probability": 0.8885 + }, + { + "start": 20620.88, + "end": 20622.0, + "probability": 0.7969 + }, + { + "start": 20622.92, + "end": 20623.36, + "probability": 0.8769 + }, + { + "start": 20623.56, + "end": 20625.88, + "probability": 0.9689 + }, + { + "start": 20625.88, + "end": 20630.72, + "probability": 0.996 + }, + { + "start": 20631.32, + "end": 20634.94, + "probability": 0.976 + }, + { + "start": 20635.5, + "end": 20636.26, + "probability": 0.8717 + }, + { + "start": 20639.34, + "end": 20641.38, + "probability": 0.6459 + }, + { + "start": 20642.0, + "end": 20644.92, + "probability": 0.7123 + }, + { + "start": 20645.32, + "end": 20645.5, + "probability": 0.2498 + }, + { + "start": 20645.56, + "end": 20648.68, + "probability": 0.9492 + }, + { + "start": 20649.06, + "end": 20653.44, + "probability": 0.9076 + }, + { + "start": 20653.78, + "end": 20655.94, + "probability": 0.483 + }, + { + "start": 20656.02, + "end": 20658.34, + "probability": 0.7048 + }, + { + "start": 20659.18, + "end": 20664.72, + "probability": 0.9488 + }, + { + "start": 20665.46, + "end": 20667.3, + "probability": 0.8191 + }, + { + "start": 20667.5, + "end": 20670.04, + "probability": 0.8999 + }, + { + "start": 20670.6, + "end": 20674.2, + "probability": 0.9166 + }, + { + "start": 20674.86, + "end": 20675.46, + "probability": 0.5608 + }, + { + "start": 20675.72, + "end": 20679.62, + "probability": 0.9636 + }, + { + "start": 20679.78, + "end": 20684.0, + "probability": 0.8849 + }, + { + "start": 20685.06, + "end": 20688.1, + "probability": 0.9859 + }, + { + "start": 20688.74, + "end": 20692.6, + "probability": 0.7191 + }, + { + "start": 20693.12, + "end": 20697.16, + "probability": 0.9808 + }, + { + "start": 20697.8, + "end": 20701.72, + "probability": 0.9919 + }, + { + "start": 20702.04, + "end": 20705.82, + "probability": 0.8761 + }, + { + "start": 20708.24, + "end": 20708.9, + "probability": 0.7598 + }, + { + "start": 20709.42, + "end": 20714.0, + "probability": 0.9927 + }, + { + "start": 20714.02, + "end": 20719.54, + "probability": 0.8246 + }, + { + "start": 20719.72, + "end": 20723.8, + "probability": 0.8497 + }, + { + "start": 20723.98, + "end": 20725.12, + "probability": 0.8788 + }, + { + "start": 20725.64, + "end": 20726.98, + "probability": 0.9567 + }, + { + "start": 20727.64, + "end": 20728.18, + "probability": 0.5857 + }, + { + "start": 20728.7, + "end": 20728.8, + "probability": 0.999 + }, + { + "start": 20731.82, + "end": 20732.48, + "probability": 0.5711 + }, + { + "start": 20733.2, + "end": 20738.4, + "probability": 0.9885 + }, + { + "start": 20738.54, + "end": 20739.8, + "probability": 0.5755 + }, + { + "start": 20740.02, + "end": 20741.18, + "probability": 0.9237 + }, + { + "start": 20741.26, + "end": 20744.92, + "probability": 0.7585 + }, + { + "start": 20745.5, + "end": 20747.22, + "probability": 0.9989 + }, + { + "start": 20747.76, + "end": 20749.68, + "probability": 0.7652 + }, + { + "start": 20749.88, + "end": 20752.57, + "probability": 0.9961 + }, + { + "start": 20754.08, + "end": 20756.27, + "probability": 0.9978 + }, + { + "start": 20757.3, + "end": 20761.74, + "probability": 0.9537 + }, + { + "start": 20762.3, + "end": 20766.42, + "probability": 0.9944 + }, + { + "start": 20766.82, + "end": 20767.4, + "probability": 0.9561 + }, + { + "start": 20768.18, + "end": 20775.94, + "probability": 0.9865 + }, + { + "start": 20776.32, + "end": 20777.22, + "probability": 0.7438 + }, + { + "start": 20777.6, + "end": 20780.58, + "probability": 0.9853 + }, + { + "start": 20781.54, + "end": 20783.38, + "probability": 0.9679 + }, + { + "start": 20783.84, + "end": 20787.8, + "probability": 0.9969 + }, + { + "start": 20788.54, + "end": 20790.52, + "probability": 0.6525 + }, + { + "start": 20791.0, + "end": 20794.2, + "probability": 0.9802 + }, + { + "start": 20794.56, + "end": 20795.02, + "probability": 0.0541 + }, + { + "start": 20795.02, + "end": 20797.68, + "probability": 0.154 + }, + { + "start": 20797.98, + "end": 20797.98, + "probability": 0.1464 + }, + { + "start": 20797.98, + "end": 20799.78, + "probability": 0.7026 + }, + { + "start": 20802.12, + "end": 20803.44, + "probability": 0.0295 + }, + { + "start": 20803.44, + "end": 20804.61, + "probability": 0.9404 + }, + { + "start": 20805.08, + "end": 20806.36, + "probability": 0.0935 + }, + { + "start": 20806.78, + "end": 20808.0, + "probability": 0.4172 + }, + { + "start": 20808.0, + "end": 20808.36, + "probability": 0.1054 + }, + { + "start": 20808.98, + "end": 20811.26, + "probability": 0.1905 + }, + { + "start": 20812.26, + "end": 20813.66, + "probability": 0.1349 + }, + { + "start": 20813.66, + "end": 20818.77, + "probability": 0.1788 + }, + { + "start": 20818.94, + "end": 20820.66, + "probability": 0.0634 + }, + { + "start": 20820.66, + "end": 20821.56, + "probability": 0.0344 + }, + { + "start": 20822.4, + "end": 20822.82, + "probability": 0.0598 + }, + { + "start": 20822.82, + "end": 20822.82, + "probability": 0.0446 + }, + { + "start": 20822.82, + "end": 20822.82, + "probability": 0.1873 + }, + { + "start": 20822.82, + "end": 20824.05, + "probability": 0.6286 + }, + { + "start": 20824.7, + "end": 20828.58, + "probability": 0.5764 + }, + { + "start": 20828.98, + "end": 20831.86, + "probability": 0.9871 + }, + { + "start": 20832.14, + "end": 20834.02, + "probability": 0.9902 + }, + { + "start": 20834.26, + "end": 20835.82, + "probability": 0.8551 + }, + { + "start": 20836.22, + "end": 20838.51, + "probability": 0.9778 + }, + { + "start": 20839.56, + "end": 20843.28, + "probability": 0.3997 + }, + { + "start": 20843.98, + "end": 20844.42, + "probability": 0.2633 + }, + { + "start": 20851.3, + "end": 20852.84, + "probability": 0.0261 + }, + { + "start": 20852.84, + "end": 20853.33, + "probability": 0.6293 + }, + { + "start": 20854.24, + "end": 20856.52, + "probability": 0.9569 + }, + { + "start": 20856.76, + "end": 20862.38, + "probability": 0.9874 + }, + { + "start": 20862.88, + "end": 20867.72, + "probability": 0.9321 + }, + { + "start": 20868.46, + "end": 20870.49, + "probability": 0.9974 + }, + { + "start": 20870.78, + "end": 20874.7, + "probability": 0.9977 + }, + { + "start": 20874.92, + "end": 20876.46, + "probability": 0.9292 + }, + { + "start": 20878.02, + "end": 20880.72, + "probability": 0.9985 + }, + { + "start": 20881.22, + "end": 20882.08, + "probability": 0.9756 + }, + { + "start": 20882.9, + "end": 20887.7, + "probability": 0.9292 + }, + { + "start": 20888.12, + "end": 20889.88, + "probability": 0.7073 + }, + { + "start": 20890.48, + "end": 20893.28, + "probability": 0.9051 + }, + { + "start": 20893.98, + "end": 20895.9, + "probability": 0.9861 + }, + { + "start": 20895.94, + "end": 20896.92, + "probability": 0.9385 + }, + { + "start": 20897.26, + "end": 20899.12, + "probability": 0.9861 + }, + { + "start": 20899.62, + "end": 20900.38, + "probability": 0.4688 + }, + { + "start": 20901.06, + "end": 20905.64, + "probability": 0.7983 + }, + { + "start": 20907.68, + "end": 20914.78, + "probability": 0.7889 + }, + { + "start": 20915.72, + "end": 20918.96, + "probability": 0.9977 + }, + { + "start": 20919.82, + "end": 20926.26, + "probability": 0.9956 + }, + { + "start": 20926.92, + "end": 20930.1, + "probability": 0.9842 + }, + { + "start": 20930.48, + "end": 20933.62, + "probability": 0.9862 + }, + { + "start": 20933.62, + "end": 20937.4, + "probability": 0.9562 + }, + { + "start": 20937.98, + "end": 20938.74, + "probability": 0.674 + }, + { + "start": 20938.78, + "end": 20940.18, + "probability": 0.6786 + }, + { + "start": 20940.54, + "end": 20941.76, + "probability": 0.967 + }, + { + "start": 20942.22, + "end": 20943.12, + "probability": 0.9342 + }, + { + "start": 20943.26, + "end": 20946.14, + "probability": 0.9671 + }, + { + "start": 20946.14, + "end": 20951.74, + "probability": 0.9829 + }, + { + "start": 20952.32, + "end": 20954.86, + "probability": 0.8881 + }, + { + "start": 20956.62, + "end": 20964.72, + "probability": 0.7633 + }, + { + "start": 20964.94, + "end": 20966.14, + "probability": 0.6583 + }, + { + "start": 20966.42, + "end": 20968.98, + "probability": 0.9893 + }, + { + "start": 20969.46, + "end": 20973.28, + "probability": 0.957 + }, + { + "start": 20973.54, + "end": 20976.26, + "probability": 0.2488 + }, + { + "start": 20977.48, + "end": 20978.24, + "probability": 0.0984 + }, + { + "start": 20978.24, + "end": 20983.06, + "probability": 0.5144 + }, + { + "start": 20984.4, + "end": 20988.84, + "probability": 0.3843 + }, + { + "start": 20989.18, + "end": 20989.7, + "probability": 0.105 + }, + { + "start": 20989.82, + "end": 20994.54, + "probability": 0.8057 + }, + { + "start": 20994.8, + "end": 20996.3, + "probability": 0.5473 + }, + { + "start": 20996.64, + "end": 21000.12, + "probability": 0.9155 + }, + { + "start": 21000.2, + "end": 21001.44, + "probability": 0.7108 + }, + { + "start": 21001.64, + "end": 21002.68, + "probability": 0.83 + }, + { + "start": 21002.92, + "end": 21009.78, + "probability": 0.6098 + }, + { + "start": 21011.18, + "end": 21013.8, + "probability": 0.7751 + }, + { + "start": 21014.72, + "end": 21015.64, + "probability": 0.7978 + }, + { + "start": 21016.0, + "end": 21017.46, + "probability": 0.7942 + }, + { + "start": 21017.82, + "end": 21019.57, + "probability": 0.7359 + }, + { + "start": 21019.78, + "end": 21020.14, + "probability": 0.1295 + }, + { + "start": 21020.52, + "end": 21023.4, + "probability": 0.9118 + }, + { + "start": 21024.56, + "end": 21026.2, + "probability": 0.8587 + }, + { + "start": 21026.42, + "end": 21028.44, + "probability": 0.0231 + }, + { + "start": 21030.2, + "end": 21030.98, + "probability": 0.0662 + }, + { + "start": 21030.98, + "end": 21034.22, + "probability": 0.0292 + }, + { + "start": 21034.44, + "end": 21036.1, + "probability": 0.8832 + }, + { + "start": 21036.38, + "end": 21038.4, + "probability": 0.9944 + }, + { + "start": 21038.5, + "end": 21039.56, + "probability": 0.8328 + }, + { + "start": 21040.18, + "end": 21041.24, + "probability": 0.8816 + }, + { + "start": 21041.42, + "end": 21042.6, + "probability": 0.8167 + }, + { + "start": 21043.06, + "end": 21043.64, + "probability": 0.664 + }, + { + "start": 21044.48, + "end": 21044.96, + "probability": 0.0037 + }, + { + "start": 21044.96, + "end": 21049.32, + "probability": 0.5281 + }, + { + "start": 21049.72, + "end": 21050.58, + "probability": 0.0736 + }, + { + "start": 21050.62, + "end": 21053.03, + "probability": 0.8172 + }, + { + "start": 21054.06, + "end": 21054.16, + "probability": 0.3406 + }, + { + "start": 21054.16, + "end": 21056.88, + "probability": 0.7545 + }, + { + "start": 21056.96, + "end": 21060.3, + "probability": 0.7141 + }, + { + "start": 21060.72, + "end": 21062.1, + "probability": 0.7094 + }, + { + "start": 21063.62, + "end": 21064.22, + "probability": 0.0656 + }, + { + "start": 21064.62, + "end": 21067.52, + "probability": 0.717 + }, + { + "start": 21067.92, + "end": 21069.72, + "probability": 0.7926 + }, + { + "start": 21069.84, + "end": 21073.38, + "probability": 0.9798 + }, + { + "start": 21073.92, + "end": 21076.32, + "probability": 0.9762 + }, + { + "start": 21076.82, + "end": 21079.26, + "probability": 0.9878 + }, + { + "start": 21081.41, + "end": 21091.96, + "probability": 0.4271 + }, + { + "start": 21091.96, + "end": 21094.78, + "probability": 0.8182 + }, + { + "start": 21095.12, + "end": 21100.04, + "probability": 0.8127 + }, + { + "start": 21100.4, + "end": 21101.02, + "probability": 0.0739 + }, + { + "start": 21101.46, + "end": 21103.42, + "probability": 0.0103 + }, + { + "start": 21103.42, + "end": 21103.42, + "probability": 0.1769 + }, + { + "start": 21103.42, + "end": 21103.42, + "probability": 0.2247 + }, + { + "start": 21103.42, + "end": 21103.42, + "probability": 0.0691 + }, + { + "start": 21103.42, + "end": 21104.8, + "probability": 0.5529 + }, + { + "start": 21104.96, + "end": 21109.12, + "probability": 0.903 + }, + { + "start": 21109.38, + "end": 21111.3, + "probability": 0.9658 + }, + { + "start": 21111.36, + "end": 21114.78, + "probability": 0.0234 + }, + { + "start": 21114.78, + "end": 21115.4, + "probability": 0.0671 + }, + { + "start": 21115.4, + "end": 21117.86, + "probability": 0.7551 + }, + { + "start": 21120.72, + "end": 21120.82, + "probability": 0.0224 + }, + { + "start": 21122.48, + "end": 21123.26, + "probability": 0.0256 + }, + { + "start": 21126.72, + "end": 21129.52, + "probability": 0.0178 + }, + { + "start": 21129.92, + "end": 21130.45, + "probability": 0.5986 + }, + { + "start": 21130.96, + "end": 21132.68, + "probability": 0.0215 + }, + { + "start": 21138.1, + "end": 21139.2, + "probability": 0.2002 + }, + { + "start": 21139.83, + "end": 21146.18, + "probability": 0.6679 + }, + { + "start": 21146.42, + "end": 21147.84, + "probability": 0.8137 + }, + { + "start": 21148.44, + "end": 21154.06, + "probability": 0.9539 + }, + { + "start": 21154.72, + "end": 21158.68, + "probability": 0.9917 + }, + { + "start": 21158.72, + "end": 21161.36, + "probability": 0.9893 + }, + { + "start": 21162.06, + "end": 21164.68, + "probability": 0.9443 + }, + { + "start": 21165.1, + "end": 21165.54, + "probability": 0.3886 + }, + { + "start": 21165.54, + "end": 21165.76, + "probability": 0.2399 + }, + { + "start": 21166.48, + "end": 21168.5, + "probability": 0.6732 + }, + { + "start": 21168.82, + "end": 21170.78, + "probability": 0.3133 + }, + { + "start": 21173.8, + "end": 21174.6, + "probability": 0.6729 + }, + { + "start": 21177.8, + "end": 21179.2, + "probability": 0.4603 + }, + { + "start": 21179.64, + "end": 21184.06, + "probability": 0.7988 + }, + { + "start": 21184.12, + "end": 21184.44, + "probability": 0.4692 + }, + { + "start": 21185.0, + "end": 21187.84, + "probability": 0.779 + }, + { + "start": 21188.24, + "end": 21190.24, + "probability": 0.9182 + }, + { + "start": 21190.72, + "end": 21193.48, + "probability": 0.6383 + }, + { + "start": 21193.88, + "end": 21195.62, + "probability": 0.9577 + }, + { + "start": 21195.78, + "end": 21197.12, + "probability": 0.8486 + }, + { + "start": 21197.38, + "end": 21200.38, + "probability": 0.9241 + }, + { + "start": 21200.38, + "end": 21201.98, + "probability": 0.6889 + }, + { + "start": 21202.08, + "end": 21204.12, + "probability": 0.8877 + }, + { + "start": 21204.3, + "end": 21205.4, + "probability": 0.7849 + }, + { + "start": 21205.7, + "end": 21207.64, + "probability": 0.7595 + }, + { + "start": 21207.7, + "end": 21209.14, + "probability": 0.2927 + }, + { + "start": 21209.64, + "end": 21214.06, + "probability": 0.5249 + }, + { + "start": 21214.38, + "end": 21216.24, + "probability": 0.3022 + }, + { + "start": 21216.64, + "end": 21218.36, + "probability": 0.2829 + }, + { + "start": 21218.36, + "end": 21218.84, + "probability": 0.4255 + }, + { + "start": 21218.88, + "end": 21220.0, + "probability": 0.4647 + }, + { + "start": 21220.45, + "end": 21226.68, + "probability": 0.7912 + }, + { + "start": 21227.06, + "end": 21228.18, + "probability": 0.9225 + }, + { + "start": 21228.7, + "end": 21229.62, + "probability": 0.9651 + }, + { + "start": 21230.4, + "end": 21232.7, + "probability": 0.8374 + }, + { + "start": 21233.32, + "end": 21234.44, + "probability": 0.2515 + }, + { + "start": 21234.44, + "end": 21234.44, + "probability": 0.2504 + }, + { + "start": 21234.44, + "end": 21236.28, + "probability": 0.6542 + }, + { + "start": 21236.94, + "end": 21238.48, + "probability": 0.849 + }, + { + "start": 21239.16, + "end": 21241.58, + "probability": 0.9318 + }, + { + "start": 21242.24, + "end": 21243.14, + "probability": 0.3086 + }, + { + "start": 21249.04, + "end": 21253.48, + "probability": 0.0999 + }, + { + "start": 21253.7, + "end": 21255.09, + "probability": 0.0271 + }, + { + "start": 21256.06, + "end": 21257.52, + "probability": 0.3318 + }, + { + "start": 21257.7, + "end": 21258.98, + "probability": 0.4172 + }, + { + "start": 21259.94, + "end": 21260.62, + "probability": 0.5331 + }, + { + "start": 21260.7, + "end": 21262.32, + "probability": 0.3826 + }, + { + "start": 21262.44, + "end": 21263.38, + "probability": 0.5277 + }, + { + "start": 21263.46, + "end": 21264.98, + "probability": 0.8654 + }, + { + "start": 21265.1, + "end": 21265.86, + "probability": 0.3241 + }, + { + "start": 21267.24, + "end": 21269.02, + "probability": 0.4166 + }, + { + "start": 21269.84, + "end": 21273.8, + "probability": 0.6656 + }, + { + "start": 21276.5, + "end": 21281.92, + "probability": 0.9648 + }, + { + "start": 21282.32, + "end": 21283.52, + "probability": 0.8059 + }, + { + "start": 21283.72, + "end": 21284.28, + "probability": 0.838 + }, + { + "start": 21284.92, + "end": 21285.56, + "probability": 0.925 + }, + { + "start": 21285.6, + "end": 21286.16, + "probability": 0.6073 + }, + { + "start": 21286.24, + "end": 21287.18, + "probability": 0.9878 + }, + { + "start": 21287.78, + "end": 21289.54, + "probability": 0.8721 + }, + { + "start": 21289.96, + "end": 21293.72, + "probability": 0.9281 + }, + { + "start": 21294.26, + "end": 21295.02, + "probability": 0.8766 + }, + { + "start": 21295.06, + "end": 21296.16, + "probability": 0.8945 + }, + { + "start": 21296.66, + "end": 21299.3, + "probability": 0.9875 + }, + { + "start": 21299.76, + "end": 21301.19, + "probability": 0.9235 + }, + { + "start": 21301.86, + "end": 21305.08, + "probability": 0.925 + }, + { + "start": 21305.08, + "end": 21308.44, + "probability": 0.5602 + }, + { + "start": 21308.88, + "end": 21310.74, + "probability": 0.9623 + }, + { + "start": 21311.08, + "end": 21312.36, + "probability": 0.8802 + }, + { + "start": 21312.68, + "end": 21313.9, + "probability": 0.9439 + }, + { + "start": 21314.0, + "end": 21314.3, + "probability": 0.6039 + }, + { + "start": 21314.42, + "end": 21316.18, + "probability": 0.9248 + }, + { + "start": 21316.5, + "end": 21319.84, + "probability": 0.9873 + }, + { + "start": 21320.12, + "end": 21323.62, + "probability": 0.9883 + }, + { + "start": 21324.06, + "end": 21324.98, + "probability": 0.7083 + }, + { + "start": 21325.0, + "end": 21325.8, + "probability": 0.877 + }, + { + "start": 21325.9, + "end": 21329.36, + "probability": 0.9881 + }, + { + "start": 21329.76, + "end": 21332.72, + "probability": 0.9714 + }, + { + "start": 21333.16, + "end": 21334.72, + "probability": 0.5289 + }, + { + "start": 21335.22, + "end": 21335.87, + "probability": 0.1975 + }, + { + "start": 21336.22, + "end": 21337.12, + "probability": 0.6586 + }, + { + "start": 21337.42, + "end": 21339.82, + "probability": 0.7407 + }, + { + "start": 21339.96, + "end": 21340.68, + "probability": 0.6851 + }, + { + "start": 21341.16, + "end": 21342.56, + "probability": 0.8999 + }, + { + "start": 21342.62, + "end": 21343.7, + "probability": 0.9837 + }, + { + "start": 21343.88, + "end": 21344.9, + "probability": 0.8314 + }, + { + "start": 21345.3, + "end": 21347.48, + "probability": 0.9922 + }, + { + "start": 21347.72, + "end": 21348.92, + "probability": 0.6573 + }, + { + "start": 21349.5, + "end": 21350.08, + "probability": 0.5077 + }, + { + "start": 21350.16, + "end": 21351.56, + "probability": 0.9481 + }, + { + "start": 21352.0, + "end": 21352.64, + "probability": 0.7434 + }, + { + "start": 21352.72, + "end": 21353.1, + "probability": 0.724 + }, + { + "start": 21353.1, + "end": 21354.94, + "probability": 0.4748 + }, + { + "start": 21355.4, + "end": 21359.58, + "probability": 0.9855 + }, + { + "start": 21359.72, + "end": 21360.14, + "probability": 0.6386 + }, + { + "start": 21360.22, + "end": 21360.64, + "probability": 0.594 + }, + { + "start": 21360.8, + "end": 21365.58, + "probability": 0.9281 + }, + { + "start": 21366.2, + "end": 21368.32, + "probability": 0.8304 + }, + { + "start": 21368.32, + "end": 21372.26, + "probability": 0.5819 + }, + { + "start": 21372.96, + "end": 21375.34, + "probability": 0.6099 + }, + { + "start": 21381.2, + "end": 21383.8, + "probability": 0.5332 + }, + { + "start": 21384.84, + "end": 21385.1, + "probability": 0.2312 + }, + { + "start": 21388.96, + "end": 21395.9, + "probability": 0.0364 + }, + { + "start": 21401.8, + "end": 21403.4, + "probability": 0.1954 + }, + { + "start": 21404.0, + "end": 21404.0, + "probability": 0.0228 + }, + { + "start": 21404.0, + "end": 21408.78, + "probability": 0.8944 + }, + { + "start": 21410.0, + "end": 21412.04, + "probability": 0.7595 + }, + { + "start": 21412.2, + "end": 21414.82, + "probability": 0.7266 + }, + { + "start": 21415.76, + "end": 21418.04, + "probability": 0.8854 + }, + { + "start": 21420.58, + "end": 21426.44, + "probability": 0.8941 + }, + { + "start": 21450.26, + "end": 21452.36, + "probability": 0.2439 + }, + { + "start": 21455.92, + "end": 21458.38, + "probability": 0.6714 + }, + { + "start": 21460.16, + "end": 21464.96, + "probability": 0.9661 + }, + { + "start": 21466.26, + "end": 21469.38, + "probability": 0.4035 + }, + { + "start": 21469.74, + "end": 21475.08, + "probability": 0.7593 + }, + { + "start": 21475.12, + "end": 21478.92, + "probability": 0.2642 + }, + { + "start": 21478.92, + "end": 21479.85, + "probability": 0.9051 + }, + { + "start": 21480.48, + "end": 21481.9, + "probability": 0.9802 + }, + { + "start": 21483.94, + "end": 21486.68, + "probability": 0.8495 + }, + { + "start": 21487.74, + "end": 21490.92, + "probability": 0.8293 + }, + { + "start": 21492.0, + "end": 21496.0, + "probability": 0.9945 + }, + { + "start": 21496.86, + "end": 21501.54, + "probability": 0.9862 + }, + { + "start": 21502.3, + "end": 21503.72, + "probability": 0.9983 + }, + { + "start": 21505.26, + "end": 21507.24, + "probability": 0.7193 + }, + { + "start": 21507.82, + "end": 21509.78, + "probability": 0.9949 + }, + { + "start": 21509.88, + "end": 21512.2, + "probability": 0.7396 + }, + { + "start": 21513.46, + "end": 21516.32, + "probability": 0.9868 + }, + { + "start": 21516.32, + "end": 21520.84, + "probability": 0.8986 + }, + { + "start": 21521.14, + "end": 21523.58, + "probability": 0.826 + }, + { + "start": 21524.52, + "end": 21526.12, + "probability": 0.9876 + }, + { + "start": 21526.84, + "end": 21530.32, + "probability": 0.9869 + }, + { + "start": 21531.46, + "end": 21534.78, + "probability": 0.8939 + }, + { + "start": 21535.2, + "end": 21538.84, + "probability": 0.8967 + }, + { + "start": 21539.82, + "end": 21543.16, + "probability": 0.9756 + }, + { + "start": 21543.16, + "end": 21548.8, + "probability": 0.9873 + }, + { + "start": 21550.66, + "end": 21552.5, + "probability": 0.9878 + }, + { + "start": 21553.46, + "end": 21554.52, + "probability": 0.7186 + }, + { + "start": 21556.18, + "end": 21559.3, + "probability": 0.8359 + }, + { + "start": 21560.6, + "end": 21563.58, + "probability": 0.8875 + }, + { + "start": 21565.28, + "end": 21569.66, + "probability": 0.8738 + }, + { + "start": 21570.3, + "end": 21573.68, + "probability": 0.9221 + }, + { + "start": 21574.76, + "end": 21575.66, + "probability": 0.005 + }, + { + "start": 21575.66, + "end": 21580.16, + "probability": 0.9904 + }, + { + "start": 21582.32, + "end": 21584.14, + "probability": 0.6045 + }, + { + "start": 21584.3, + "end": 21585.56, + "probability": 0.9535 + }, + { + "start": 21586.88, + "end": 21590.44, + "probability": 0.9785 + }, + { + "start": 21591.62, + "end": 21593.86, + "probability": 0.9789 + }, + { + "start": 21596.46, + "end": 21599.76, + "probability": 0.9968 + }, + { + "start": 21599.76, + "end": 21603.18, + "probability": 0.9792 + }, + { + "start": 21604.48, + "end": 21608.7, + "probability": 0.9824 + }, + { + "start": 21610.36, + "end": 21610.76, + "probability": 0.3315 + }, + { + "start": 21610.9, + "end": 21615.28, + "probability": 0.9318 + }, + { + "start": 21616.32, + "end": 21618.28, + "probability": 0.8262 + }, + { + "start": 21620.2, + "end": 21624.4, + "probability": 0.9966 + }, + { + "start": 21624.52, + "end": 21624.98, + "probability": 0.7741 + }, + { + "start": 21626.38, + "end": 21630.22, + "probability": 0.916 + }, + { + "start": 21631.28, + "end": 21634.78, + "probability": 0.8699 + }, + { + "start": 21635.8, + "end": 21638.49, + "probability": 0.7579 + }, + { + "start": 21639.28, + "end": 21642.06, + "probability": 0.9426 + }, + { + "start": 21643.8, + "end": 21649.38, + "probability": 0.4439 + }, + { + "start": 21651.0, + "end": 21654.68, + "probability": 0.9349 + }, + { + "start": 21655.36, + "end": 21658.6, + "probability": 0.5895 + }, + { + "start": 21659.54, + "end": 21662.48, + "probability": 0.84 + }, + { + "start": 21663.48, + "end": 21669.38, + "probability": 0.9014 + }, + { + "start": 21669.98, + "end": 21670.82, + "probability": 0.4805 + }, + { + "start": 21671.82, + "end": 21674.02, + "probability": 0.9868 + }, + { + "start": 21678.34, + "end": 21679.0, + "probability": 0.7981 + }, + { + "start": 21679.58, + "end": 21684.42, + "probability": 0.987 + }, + { + "start": 21685.64, + "end": 21690.34, + "probability": 0.9766 + }, + { + "start": 21690.94, + "end": 21693.56, + "probability": 0.9147 + }, + { + "start": 21694.62, + "end": 21699.78, + "probability": 0.9148 + }, + { + "start": 21700.84, + "end": 21702.9, + "probability": 0.9314 + }, + { + "start": 21703.76, + "end": 21705.04, + "probability": 0.9073 + }, + { + "start": 21706.34, + "end": 21710.98, + "probability": 0.9912 + }, + { + "start": 21713.06, + "end": 21714.85, + "probability": 0.9972 + }, + { + "start": 21715.64, + "end": 21717.66, + "probability": 0.8903 + }, + { + "start": 21718.84, + "end": 21724.08, + "probability": 0.9973 + }, + { + "start": 21725.56, + "end": 21730.58, + "probability": 0.646 + }, + { + "start": 21731.52, + "end": 21734.16, + "probability": 0.6694 + }, + { + "start": 21735.02, + "end": 21737.48, + "probability": 0.8241 + }, + { + "start": 21738.0, + "end": 21738.54, + "probability": 0.7421 + }, + { + "start": 21739.34, + "end": 21740.59, + "probability": 0.9944 + }, + { + "start": 21741.68, + "end": 21744.64, + "probability": 0.8916 + }, + { + "start": 21745.56, + "end": 21754.08, + "probability": 0.9022 + }, + { + "start": 21754.82, + "end": 21760.78, + "probability": 0.9624 + }, + { + "start": 21761.2, + "end": 21761.94, + "probability": 0.7872 + }, + { + "start": 21763.62, + "end": 21764.72, + "probability": 0.0027 + }, + { + "start": 21765.46, + "end": 21771.38, + "probability": 0.9858 + }, + { + "start": 21772.82, + "end": 21774.53, + "probability": 0.9912 + }, + { + "start": 21775.84, + "end": 21778.34, + "probability": 0.7529 + }, + { + "start": 21778.34, + "end": 21783.8, + "probability": 0.9609 + }, + { + "start": 21784.96, + "end": 21786.16, + "probability": 0.959 + }, + { + "start": 21787.14, + "end": 21790.48, + "probability": 0.9702 + }, + { + "start": 21790.48, + "end": 21794.34, + "probability": 0.9478 + }, + { + "start": 21795.08, + "end": 21798.12, + "probability": 0.9798 + }, + { + "start": 21798.28, + "end": 21798.74, + "probability": 0.4135 + }, + { + "start": 21799.48, + "end": 21803.16, + "probability": 0.988 + }, + { + "start": 21803.28, + "end": 21805.22, + "probability": 0.9904 + }, + { + "start": 21807.2, + "end": 21807.64, + "probability": 0.8145 + }, + { + "start": 21807.78, + "end": 21812.86, + "probability": 0.8646 + }, + { + "start": 21814.12, + "end": 21817.9, + "probability": 0.782 + }, + { + "start": 21819.0, + "end": 21824.78, + "probability": 0.9951 + }, + { + "start": 21824.78, + "end": 21830.1, + "probability": 0.9987 + }, + { + "start": 21831.18, + "end": 21834.3, + "probability": 0.9265 + }, + { + "start": 21834.94, + "end": 21836.8, + "probability": 0.9727 + }, + { + "start": 21838.32, + "end": 21840.86, + "probability": 0.9413 + }, + { + "start": 21842.3, + "end": 21844.6, + "probability": 0.8532 + }, + { + "start": 21845.42, + "end": 21846.2, + "probability": 0.9812 + }, + { + "start": 21846.9, + "end": 21847.7, + "probability": 0.7704 + }, + { + "start": 21849.42, + "end": 21852.74, + "probability": 0.9766 + }, + { + "start": 21854.0, + "end": 21856.72, + "probability": 0.9944 + }, + { + "start": 21857.14, + "end": 21862.54, + "probability": 0.8411 + }, + { + "start": 21864.26, + "end": 21868.56, + "probability": 0.9957 + }, + { + "start": 21869.84, + "end": 21870.9, + "probability": 0.8164 + }, + { + "start": 21871.46, + "end": 21874.29, + "probability": 0.9953 + }, + { + "start": 21874.86, + "end": 21878.62, + "probability": 0.9973 + }, + { + "start": 21880.14, + "end": 21880.88, + "probability": 0.8828 + }, + { + "start": 21881.08, + "end": 21882.92, + "probability": 0.8783 + }, + { + "start": 21883.1, + "end": 21886.5, + "probability": 0.903 + }, + { + "start": 21886.7, + "end": 21887.24, + "probability": 0.7534 + }, + { + "start": 21888.3, + "end": 21889.46, + "probability": 0.9976 + }, + { + "start": 21890.98, + "end": 21892.38, + "probability": 0.7557 + }, + { + "start": 21894.0, + "end": 21898.46, + "probability": 0.9401 + }, + { + "start": 21898.46, + "end": 21903.02, + "probability": 0.6876 + }, + { + "start": 21903.66, + "end": 21904.96, + "probability": 0.5597 + }, + { + "start": 21905.52, + "end": 21906.64, + "probability": 0.8161 + }, + { + "start": 21907.72, + "end": 21911.68, + "probability": 0.8114 + }, + { + "start": 21912.46, + "end": 21913.56, + "probability": 0.6351 + }, + { + "start": 21915.04, + "end": 21920.98, + "probability": 0.8239 + }, + { + "start": 21921.56, + "end": 21923.8, + "probability": 0.9968 + }, + { + "start": 21924.48, + "end": 21926.44, + "probability": 0.7898 + }, + { + "start": 21927.48, + "end": 21929.56, + "probability": 0.9265 + }, + { + "start": 21929.98, + "end": 21934.26, + "probability": 0.833 + }, + { + "start": 21934.9, + "end": 21937.04, + "probability": 0.9833 + }, + { + "start": 21937.7, + "end": 21938.68, + "probability": 0.8414 + }, + { + "start": 21939.4, + "end": 21943.78, + "probability": 0.9951 + }, + { + "start": 21944.8, + "end": 21946.13, + "probability": 0.6502 + }, + { + "start": 21948.36, + "end": 21953.76, + "probability": 0.9849 + }, + { + "start": 21953.92, + "end": 21956.82, + "probability": 0.9702 + }, + { + "start": 21956.9, + "end": 21959.94, + "probability": 0.9644 + }, + { + "start": 21960.22, + "end": 21962.94, + "probability": 0.7252 + }, + { + "start": 21964.14, + "end": 21969.22, + "probability": 0.9922 + }, + { + "start": 21970.78, + "end": 21973.36, + "probability": 0.7506 + }, + { + "start": 21973.42, + "end": 21974.1, + "probability": 0.6873 + }, + { + "start": 21974.8, + "end": 21976.2, + "probability": 0.9723 + }, + { + "start": 21976.98, + "end": 21978.26, + "probability": 0.9524 + }, + { + "start": 21979.5, + "end": 21982.04, + "probability": 0.999 + }, + { + "start": 21982.71, + "end": 21987.58, + "probability": 0.8496 + }, + { + "start": 21988.34, + "end": 21988.88, + "probability": 0.5516 + }, + { + "start": 21990.52, + "end": 21995.68, + "probability": 0.9868 + }, + { + "start": 21996.76, + "end": 21997.46, + "probability": 0.6369 + }, + { + "start": 21997.6, + "end": 21998.5, + "probability": 0.4885 + }, + { + "start": 21999.7, + "end": 22000.08, + "probability": 0.6318 + }, + { + "start": 22000.9, + "end": 22003.88, + "probability": 0.8523 + }, + { + "start": 22027.9, + "end": 22030.08, + "probability": 0.6733 + }, + { + "start": 22030.98, + "end": 22031.7, + "probability": 0.7817 + }, + { + "start": 22035.88, + "end": 22038.64, + "probability": 0.9882 + }, + { + "start": 22041.06, + "end": 22046.42, + "probability": 0.8556 + }, + { + "start": 22046.98, + "end": 22053.6, + "probability": 0.996 + }, + { + "start": 22055.02, + "end": 22057.94, + "probability": 0.9256 + }, + { + "start": 22059.94, + "end": 22060.64, + "probability": 0.7658 + }, + { + "start": 22061.6, + "end": 22062.22, + "probability": 0.7502 + }, + { + "start": 22063.04, + "end": 22066.96, + "probability": 0.9927 + }, + { + "start": 22068.46, + "end": 22072.12, + "probability": 0.9958 + }, + { + "start": 22072.54, + "end": 22074.32, + "probability": 0.9862 + }, + { + "start": 22075.66, + "end": 22081.34, + "probability": 0.7391 + }, + { + "start": 22081.58, + "end": 22083.06, + "probability": 0.9946 + }, + { + "start": 22083.18, + "end": 22084.06, + "probability": 0.9226 + }, + { + "start": 22084.18, + "end": 22085.96, + "probability": 0.9429 + }, + { + "start": 22085.96, + "end": 22088.32, + "probability": 0.9548 + }, + { + "start": 22088.78, + "end": 22092.4, + "probability": 0.9402 + }, + { + "start": 22093.48, + "end": 22098.18, + "probability": 0.9932 + }, + { + "start": 22099.72, + "end": 22101.56, + "probability": 0.7427 + }, + { + "start": 22101.62, + "end": 22105.0, + "probability": 0.9995 + }, + { + "start": 22105.0, + "end": 22108.86, + "probability": 0.9994 + }, + { + "start": 22109.38, + "end": 22111.98, + "probability": 0.998 + }, + { + "start": 22112.92, + "end": 22113.83, + "probability": 0.9927 + }, + { + "start": 22114.26, + "end": 22117.1, + "probability": 0.9768 + }, + { + "start": 22117.1, + "end": 22120.52, + "probability": 0.9933 + }, + { + "start": 22121.04, + "end": 22121.8, + "probability": 0.6752 + }, + { + "start": 22122.8, + "end": 22123.34, + "probability": 0.882 + }, + { + "start": 22124.76, + "end": 22125.66, + "probability": 0.9344 + }, + { + "start": 22127.7, + "end": 22128.58, + "probability": 0.7829 + }, + { + "start": 22128.9, + "end": 22130.82, + "probability": 0.758 + }, + { + "start": 22131.0, + "end": 22134.84, + "probability": 0.9904 + }, + { + "start": 22135.18, + "end": 22135.94, + "probability": 0.9556 + }, + { + "start": 22136.32, + "end": 22137.86, + "probability": 0.7968 + }, + { + "start": 22139.18, + "end": 22140.4, + "probability": 0.7904 + }, + { + "start": 22141.9, + "end": 22145.62, + "probability": 0.9543 + }, + { + "start": 22145.98, + "end": 22150.94, + "probability": 0.9909 + }, + { + "start": 22151.02, + "end": 22151.9, + "probability": 0.9728 + }, + { + "start": 22151.96, + "end": 22153.26, + "probability": 0.977 + }, + { + "start": 22153.76, + "end": 22156.78, + "probability": 0.9961 + }, + { + "start": 22156.78, + "end": 22161.98, + "probability": 0.985 + }, + { + "start": 22162.92, + "end": 22164.42, + "probability": 0.9326 + }, + { + "start": 22164.72, + "end": 22168.87, + "probability": 0.9968 + }, + { + "start": 22169.18, + "end": 22170.92, + "probability": 0.9976 + }, + { + "start": 22172.26, + "end": 22175.54, + "probability": 0.9985 + }, + { + "start": 22175.54, + "end": 22179.78, + "probability": 0.9941 + }, + { + "start": 22180.44, + "end": 22185.78, + "probability": 0.9941 + }, + { + "start": 22186.6, + "end": 22188.36, + "probability": 0.989 + }, + { + "start": 22188.86, + "end": 22191.72, + "probability": 0.9934 + }, + { + "start": 22192.28, + "end": 22195.62, + "probability": 0.8967 + }, + { + "start": 22196.62, + "end": 22198.56, + "probability": 0.9691 + }, + { + "start": 22199.16, + "end": 22204.86, + "probability": 0.9688 + }, + { + "start": 22205.4, + "end": 22209.02, + "probability": 0.9974 + }, + { + "start": 22209.56, + "end": 22210.26, + "probability": 0.9202 + }, + { + "start": 22211.74, + "end": 22213.34, + "probability": 0.7751 + }, + { + "start": 22213.7, + "end": 22214.78, + "probability": 0.6 + }, + { + "start": 22215.88, + "end": 22216.74, + "probability": 0.0779 + }, + { + "start": 22216.74, + "end": 22219.24, + "probability": 0.1276 + }, + { + "start": 22219.24, + "end": 22220.52, + "probability": 0.0753 + }, + { + "start": 22221.92, + "end": 22223.24, + "probability": 0.0641 + }, + { + "start": 22231.48, + "end": 22231.86, + "probability": 0.0379 + }, + { + "start": 22233.24, + "end": 22233.4, + "probability": 0.0007 + }, + { + "start": 22257.82, + "end": 22258.56, + "probability": 0.3117 + }, + { + "start": 22259.14, + "end": 22260.11, + "probability": 0.7968 + }, + { + "start": 22260.88, + "end": 22262.3, + "probability": 0.967 + }, + { + "start": 22262.4, + "end": 22263.58, + "probability": 0.6638 + }, + { + "start": 22265.22, + "end": 22266.88, + "probability": 0.7801 + }, + { + "start": 22268.96, + "end": 22273.0, + "probability": 0.9741 + }, + { + "start": 22273.62, + "end": 22276.8, + "probability": 0.9014 + }, + { + "start": 22276.88, + "end": 22278.82, + "probability": 0.9936 + }, + { + "start": 22280.1, + "end": 22283.6, + "probability": 0.8683 + }, + { + "start": 22284.26, + "end": 22292.1, + "probability": 0.9717 + }, + { + "start": 22293.52, + "end": 22297.34, + "probability": 0.9915 + }, + { + "start": 22298.28, + "end": 22301.28, + "probability": 0.9774 + }, + { + "start": 22301.86, + "end": 22304.82, + "probability": 0.962 + }, + { + "start": 22304.96, + "end": 22307.02, + "probability": 0.5388 + }, + { + "start": 22313.38, + "end": 22315.02, + "probability": 0.6828 + }, + { + "start": 22315.06, + "end": 22316.64, + "probability": 0.9334 + }, + { + "start": 22317.26, + "end": 22318.1, + "probability": 0.96 + }, + { + "start": 22318.3, + "end": 22319.18, + "probability": 0.7634 + }, + { + "start": 22319.86, + "end": 22323.2, + "probability": 0.9766 + }, + { + "start": 22323.9, + "end": 22324.6, + "probability": 0.9897 + }, + { + "start": 22326.06, + "end": 22328.12, + "probability": 0.9292 + }, + { + "start": 22329.48, + "end": 22330.5, + "probability": 0.1989 + }, + { + "start": 22332.2, + "end": 22333.0, + "probability": 0.0083 + }, + { + "start": 22334.24, + "end": 22338.74, + "probability": 0.7573 + }, + { + "start": 22339.94, + "end": 22341.92, + "probability": 0.6636 + }, + { + "start": 22342.06, + "end": 22347.64, + "probability": 0.9087 + }, + { + "start": 22348.38, + "end": 22351.02, + "probability": 0.9951 + }, + { + "start": 22351.86, + "end": 22353.7, + "probability": 0.7819 + }, + { + "start": 22353.74, + "end": 22357.68, + "probability": 0.9612 + }, + { + "start": 22358.48, + "end": 22360.56, + "probability": 0.8164 + }, + { + "start": 22361.44, + "end": 22362.34, + "probability": 0.6323 + }, + { + "start": 22362.86, + "end": 22366.3, + "probability": 0.9783 + }, + { + "start": 22367.1, + "end": 22368.7, + "probability": 0.9395 + }, + { + "start": 22370.02, + "end": 22372.98, + "probability": 0.9805 + }, + { + "start": 22373.62, + "end": 22381.4, + "probability": 0.9607 + }, + { + "start": 22381.84, + "end": 22384.64, + "probability": 0.9891 + }, + { + "start": 22385.24, + "end": 22387.96, + "probability": 0.9944 + }, + { + "start": 22388.56, + "end": 22390.58, + "probability": 0.9907 + }, + { + "start": 22391.1, + "end": 22392.18, + "probability": 0.9089 + }, + { + "start": 22392.72, + "end": 22395.24, + "probability": 0.9751 + }, + { + "start": 22395.56, + "end": 22397.55, + "probability": 0.9484 + }, + { + "start": 22398.58, + "end": 22401.42, + "probability": 0.9829 + }, + { + "start": 22401.82, + "end": 22404.68, + "probability": 0.9572 + }, + { + "start": 22405.18, + "end": 22410.58, + "probability": 0.9864 + }, + { + "start": 22412.38, + "end": 22413.9, + "probability": 0.9922 + }, + { + "start": 22414.56, + "end": 22419.18, + "probability": 0.8528 + }, + { + "start": 22419.6, + "end": 22420.53, + "probability": 0.9658 + }, + { + "start": 22421.08, + "end": 22424.36, + "probability": 0.9736 + }, + { + "start": 22424.44, + "end": 22424.94, + "probability": 0.7086 + }, + { + "start": 22425.26, + "end": 22427.04, + "probability": 0.7036 + }, + { + "start": 22427.88, + "end": 22431.46, + "probability": 0.9294 + }, + { + "start": 22436.3, + "end": 22439.34, + "probability": 0.766 + }, + { + "start": 22440.4, + "end": 22441.78, + "probability": 0.9937 + }, + { + "start": 22447.54, + "end": 22449.56, + "probability": 0.6471 + }, + { + "start": 22449.68, + "end": 22452.6, + "probability": 0.6912 + }, + { + "start": 22453.08, + "end": 22454.64, + "probability": 0.5458 + }, + { + "start": 22455.08, + "end": 22457.02, + "probability": 0.2083 + }, + { + "start": 22457.7, + "end": 22461.18, + "probability": 0.8247 + }, + { + "start": 22461.92, + "end": 22467.5, + "probability": 0.7074 + }, + { + "start": 22468.22, + "end": 22469.92, + "probability": 0.9578 + }, + { + "start": 22470.58, + "end": 22472.92, + "probability": 0.8883 + }, + { + "start": 22473.98, + "end": 22477.9, + "probability": 0.967 + }, + { + "start": 22478.48, + "end": 22480.48, + "probability": 0.969 + }, + { + "start": 22481.08, + "end": 22482.82, + "probability": 0.9798 + }, + { + "start": 22486.4, + "end": 22487.4, + "probability": 0.4164 + }, + { + "start": 22487.92, + "end": 22490.96, + "probability": 0.5956 + }, + { + "start": 22491.84, + "end": 22494.72, + "probability": 0.9378 + }, + { + "start": 22496.51, + "end": 22499.16, + "probability": 0.9735 + }, + { + "start": 22500.12, + "end": 22502.88, + "probability": 0.9727 + }, + { + "start": 22503.8, + "end": 22506.52, + "probability": 0.982 + }, + { + "start": 22507.14, + "end": 22509.76, + "probability": 0.9858 + }, + { + "start": 22510.82, + "end": 22513.98, + "probability": 0.7202 + }, + { + "start": 22517.9, + "end": 22518.22, + "probability": 0.7466 + }, + { + "start": 22519.28, + "end": 22523.36, + "probability": 0.8106 + }, + { + "start": 22523.94, + "end": 22526.12, + "probability": 0.9021 + }, + { + "start": 22529.4, + "end": 22531.46, + "probability": 0.9852 + }, + { + "start": 22531.98, + "end": 22534.94, + "probability": 0.9583 + }, + { + "start": 22537.5, + "end": 22540.16, + "probability": 0.9778 + }, + { + "start": 22540.72, + "end": 22543.2, + "probability": 0.9482 + }, + { + "start": 22544.44, + "end": 22547.14, + "probability": 0.5064 + }, + { + "start": 22548.68, + "end": 22555.32, + "probability": 0.8123 + }, + { + "start": 22556.46, + "end": 22560.28, + "probability": 0.7369 + }, + { + "start": 22561.84, + "end": 22567.48, + "probability": 0.9401 + }, + { + "start": 22568.06, + "end": 22570.52, + "probability": 0.9481 + }, + { + "start": 22572.18, + "end": 22572.66, + "probability": 0.9639 + }, + { + "start": 22573.42, + "end": 22574.36, + "probability": 0.6247 + }, + { + "start": 22575.16, + "end": 22577.36, + "probability": 0.7166 + }, + { + "start": 22577.86, + "end": 22580.12, + "probability": 0.8849 + }, + { + "start": 22580.5, + "end": 22582.68, + "probability": 0.879 + }, + { + "start": 22583.5, + "end": 22589.62, + "probability": 0.9769 + }, + { + "start": 22590.22, + "end": 22595.92, + "probability": 0.9889 + }, + { + "start": 22596.58, + "end": 22598.88, + "probability": 0.6927 + }, + { + "start": 22599.62, + "end": 22600.2, + "probability": 0.9089 + }, + { + "start": 22600.98, + "end": 22602.0, + "probability": 0.2557 + }, + { + "start": 22603.7, + "end": 22604.2, + "probability": 0.9438 + }, + { + "start": 22611.68, + "end": 22612.92, + "probability": 0.6025 + }, + { + "start": 22614.56, + "end": 22617.46, + "probability": 0.7225 + }, + { + "start": 22619.92, + "end": 22622.64, + "probability": 0.8702 + }, + { + "start": 22626.04, + "end": 22626.6, + "probability": 0.9817 + }, + { + "start": 22628.36, + "end": 22629.54, + "probability": 0.7133 + }, + { + "start": 22632.36, + "end": 22635.44, + "probability": 0.4241 + }, + { + "start": 22637.36, + "end": 22637.86, + "probability": 0.0308 + }, + { + "start": 22639.68, + "end": 22640.78, + "probability": 0.4071 + }, + { + "start": 22641.42, + "end": 22641.84, + "probability": 0.8361 + }, + { + "start": 22642.98, + "end": 22644.12, + "probability": 0.6463 + }, + { + "start": 22645.44, + "end": 22647.64, + "probability": 0.9832 + }, + { + "start": 22650.02, + "end": 22652.04, + "probability": 0.7506 + }, + { + "start": 22652.62, + "end": 22654.66, + "probability": 0.7944 + }, + { + "start": 22655.62, + "end": 22656.3, + "probability": 0.9889 + }, + { + "start": 22657.96, + "end": 22658.76, + "probability": 0.6221 + }, + { + "start": 22659.9, + "end": 22662.74, + "probability": 0.9629 + }, + { + "start": 22663.46, + "end": 22664.02, + "probability": 0.9124 + }, + { + "start": 22664.7, + "end": 22665.62, + "probability": 0.9858 + }, + { + "start": 22666.6, + "end": 22667.06, + "probability": 0.9941 + }, + { + "start": 22668.1, + "end": 22669.14, + "probability": 0.7667 + }, + { + "start": 22670.66, + "end": 22673.98, + "probability": 0.9379 + }, + { + "start": 22674.84, + "end": 22677.76, + "probability": 0.9111 + }, + { + "start": 22680.14, + "end": 22681.78, + "probability": 0.9792 + }, + { + "start": 22682.98, + "end": 22686.48, + "probability": 0.9185 + }, + { + "start": 22688.84, + "end": 22692.08, + "probability": 0.8501 + }, + { + "start": 22692.6, + "end": 22692.92, + "probability": 0.7585 + }, + { + "start": 22693.62, + "end": 22698.38, + "probability": 0.9595 + }, + { + "start": 22699.46, + "end": 22703.16, + "probability": 0.824 + }, + { + "start": 22706.82, + "end": 22710.6, + "probability": 0.9815 + }, + { + "start": 22711.68, + "end": 22712.04, + "probability": 0.6729 + }, + { + "start": 22713.48, + "end": 22714.3, + "probability": 0.9231 + }, + { + "start": 22715.38, + "end": 22719.8, + "probability": 0.981 + }, + { + "start": 22720.52, + "end": 22722.94, + "probability": 0.9688 + }, + { + "start": 22723.62, + "end": 22726.14, + "probability": 0.9272 + }, + { + "start": 22726.88, + "end": 22727.2, + "probability": 0.3573 + }, + { + "start": 22729.4, + "end": 22730.98, + "probability": 0.2586 + }, + { + "start": 22731.82, + "end": 22734.72, + "probability": 0.8997 + }, + { + "start": 22735.62, + "end": 22739.36, + "probability": 0.8136 + }, + { + "start": 22741.02, + "end": 22743.74, + "probability": 0.8713 + }, + { + "start": 22748.92, + "end": 22752.5, + "probability": 0.8241 + }, + { + "start": 22754.9, + "end": 22757.26, + "probability": 0.8017 + }, + { + "start": 22757.58, + "end": 22759.98, + "probability": 0.6637 + }, + { + "start": 22762.42, + "end": 22769.06, + "probability": 0.7716 + }, + { + "start": 22770.04, + "end": 22771.96, + "probability": 0.981 + }, + { + "start": 22773.18, + "end": 22776.04, + "probability": 0.7876 + }, + { + "start": 22776.6, + "end": 22778.92, + "probability": 0.9873 + }, + { + "start": 22779.96, + "end": 22782.5, + "probability": 0.9929 + }, + { + "start": 22783.06, + "end": 22786.26, + "probability": 0.9751 + }, + { + "start": 22788.42, + "end": 22794.16, + "probability": 0.7386 + }, + { + "start": 22794.5, + "end": 22796.26, + "probability": 0.9263 + }, + { + "start": 22800.24, + "end": 22805.02, + "probability": 0.4872 + }, + { + "start": 22816.07, + "end": 22819.04, + "probability": 0.7076 + }, + { + "start": 22820.12, + "end": 22820.56, + "probability": 0.0253 + }, + { + "start": 22822.9, + "end": 22826.08, + "probability": 0.3149 + }, + { + "start": 22826.86, + "end": 22833.48, + "probability": 0.7206 + }, + { + "start": 22834.16, + "end": 22836.2, + "probability": 0.8212 + }, + { + "start": 22836.84, + "end": 22841.98, + "probability": 0.8096 + }, + { + "start": 22842.92, + "end": 22846.46, + "probability": 0.9805 + }, + { + "start": 22848.4, + "end": 22848.9, + "probability": 0.9912 + }, + { + "start": 22850.52, + "end": 22851.74, + "probability": 0.6548 + }, + { + "start": 22853.06, + "end": 22855.92, + "probability": 0.6547 + }, + { + "start": 22856.62, + "end": 22857.14, + "probability": 0.9709 + }, + { + "start": 22857.8, + "end": 22859.0, + "probability": 0.9067 + }, + { + "start": 22860.94, + "end": 22866.84, + "probability": 0.9726 + }, + { + "start": 22867.7, + "end": 22870.02, + "probability": 0.9857 + }, + { + "start": 22870.62, + "end": 22874.76, + "probability": 0.9805 + }, + { + "start": 22876.28, + "end": 22877.34, + "probability": 0.9158 + }, + { + "start": 22878.24, + "end": 22880.26, + "probability": 0.603 + }, + { + "start": 22881.88, + "end": 22883.68, + "probability": 0.7043 + }, + { + "start": 22888.6, + "end": 22892.62, + "probability": 0.7729 + }, + { + "start": 22897.36, + "end": 22901.2, + "probability": 0.8134 + }, + { + "start": 22901.74, + "end": 22907.04, + "probability": 0.922 + }, + { + "start": 22909.56, + "end": 22911.34, + "probability": 0.342 + }, + { + "start": 22913.34, + "end": 22916.26, + "probability": 0.7933 + }, + { + "start": 22917.06, + "end": 22919.94, + "probability": 0.9065 + }, + { + "start": 22921.8, + "end": 22924.26, + "probability": 0.9372 + }, + { + "start": 22925.2, + "end": 22929.24, + "probability": 0.9593 + }, + { + "start": 22930.74, + "end": 22933.6, + "probability": 0.7458 + }, + { + "start": 22936.12, + "end": 22937.16, + "probability": 0.9021 + }, + { + "start": 22938.9, + "end": 22939.74, + "probability": 0.6316 + }, + { + "start": 22942.2, + "end": 22944.9, + "probability": 0.7629 + }, + { + "start": 22945.48, + "end": 22946.1, + "probability": 0.9865 + }, + { + "start": 22947.58, + "end": 22948.74, + "probability": 0.9207 + }, + { + "start": 22950.4, + "end": 22952.63, + "probability": 0.8848 + }, + { + "start": 22953.74, + "end": 22959.58, + "probability": 0.9072 + }, + { + "start": 22960.58, + "end": 22961.16, + "probability": 0.9749 + }, + { + "start": 22961.88, + "end": 22963.2, + "probability": 0.7834 + }, + { + "start": 22964.8, + "end": 22965.48, + "probability": 0.9169 + }, + { + "start": 22967.36, + "end": 22970.02, + "probability": 0.7346 + }, + { + "start": 22970.06, + "end": 22970.32, + "probability": 0.7867 + }, + { + "start": 22971.26, + "end": 22972.38, + "probability": 0.5242 + }, + { + "start": 22972.64, + "end": 22974.38, + "probability": 0.6844 + }, + { + "start": 22974.76, + "end": 22978.94, + "probability": 0.7793 + }, + { + "start": 22979.2, + "end": 22980.94, + "probability": 0.6561 + }, + { + "start": 22982.76, + "end": 22984.82, + "probability": 0.9163 + }, + { + "start": 22986.76, + "end": 22988.64, + "probability": 0.9051 + }, + { + "start": 22988.72, + "end": 22990.56, + "probability": 0.9764 + }, + { + "start": 22990.6, + "end": 22992.0, + "probability": 0.9581 + }, + { + "start": 22992.08, + "end": 22992.86, + "probability": 0.8353 + }, + { + "start": 22994.32, + "end": 22998.18, + "probability": 0.7466 + }, + { + "start": 22999.38, + "end": 23001.26, + "probability": 0.3689 + }, + { + "start": 23002.92, + "end": 23004.78, + "probability": 0.8132 + }, + { + "start": 23005.62, + "end": 23007.32, + "probability": 0.9536 + }, + { + "start": 23008.7, + "end": 23010.52, + "probability": 0.9412 + }, + { + "start": 23011.4, + "end": 23015.58, + "probability": 0.9443 + }, + { + "start": 23016.62, + "end": 23019.86, + "probability": 0.8647 + }, + { + "start": 23021.72, + "end": 23024.38, + "probability": 0.6997 + }, + { + "start": 23024.98, + "end": 23026.2, + "probability": 0.911 + }, + { + "start": 23027.78, + "end": 23030.04, + "probability": 0.8837 + }, + { + "start": 23032.86, + "end": 23033.8, + "probability": 0.6889 + }, + { + "start": 23034.8, + "end": 23038.14, + "probability": 0.563 + }, + { + "start": 23040.18, + "end": 23041.46, + "probability": 0.8898 + }, + { + "start": 23043.16, + "end": 23046.9, + "probability": 0.8065 + }, + { + "start": 23048.0, + "end": 23050.04, + "probability": 0.8855 + }, + { + "start": 23052.42, + "end": 23055.54, + "probability": 0.7592 + }, + { + "start": 23055.94, + "end": 23058.26, + "probability": 0.7447 + }, + { + "start": 23059.46, + "end": 23062.12, + "probability": 0.8782 + }, + { + "start": 23063.06, + "end": 23065.0, + "probability": 0.6578 + }, + { + "start": 23065.12, + "end": 23067.9, + "probability": 0.6533 + }, + { + "start": 23068.28, + "end": 23069.06, + "probability": 0.7226 + }, + { + "start": 23072.06, + "end": 23074.82, + "probability": 0.958 + }, + { + "start": 23075.0, + "end": 23075.86, + "probability": 0.6128 + }, + { + "start": 23076.06, + "end": 23077.98, + "probability": 0.8584 + }, + { + "start": 23079.94, + "end": 23080.18, + "probability": 0.421 + }, + { + "start": 23080.72, + "end": 23081.58, + "probability": 0.544 + }, + { + "start": 23081.58, + "end": 23082.32, + "probability": 0.8208 + }, + { + "start": 23100.78, + "end": 23101.64, + "probability": 0.0316 + }, + { + "start": 23102.42, + "end": 23103.46, + "probability": 0.8434 + }, + { + "start": 23103.64, + "end": 23104.66, + "probability": 0.3481 + }, + { + "start": 23107.2, + "end": 23110.72, + "probability": 0.4463 + }, + { + "start": 23112.88, + "end": 23117.74, + "probability": 0.0636 + }, + { + "start": 23118.46, + "end": 23119.9, + "probability": 0.4567 + }, + { + "start": 23163.12, + "end": 23166.58, + "probability": 0.9355 + }, + { + "start": 23167.44, + "end": 23169.9, + "probability": 0.9924 + }, + { + "start": 23170.0, + "end": 23171.14, + "probability": 0.9805 + }, + { + "start": 23172.2, + "end": 23175.48, + "probability": 0.9525 + }, + { + "start": 23175.48, + "end": 23180.52, + "probability": 0.9481 + }, + { + "start": 23181.4, + "end": 23184.7, + "probability": 0.792 + }, + { + "start": 23185.22, + "end": 23188.02, + "probability": 0.9492 + }, + { + "start": 23188.32, + "end": 23188.62, + "probability": 0.8446 + }, + { + "start": 23191.76, + "end": 23192.81, + "probability": 0.0102 + }, + { + "start": 23205.98, + "end": 23206.98, + "probability": 0.6143 + }, + { + "start": 23209.42, + "end": 23211.5, + "probability": 0.7839 + }, + { + "start": 23212.62, + "end": 23213.9, + "probability": 0.8164 + }, + { + "start": 23215.06, + "end": 23220.62, + "probability": 0.9818 + }, + { + "start": 23221.08, + "end": 23224.1, + "probability": 0.837 + }, + { + "start": 23224.7, + "end": 23225.84, + "probability": 0.9834 + }, + { + "start": 23226.8, + "end": 23229.09, + "probability": 0.9382 + }, + { + "start": 23230.16, + "end": 23231.1, + "probability": 0.7963 + }, + { + "start": 23232.04, + "end": 23232.96, + "probability": 0.6724 + }, + { + "start": 23234.68, + "end": 23237.48, + "probability": 0.8826 + }, + { + "start": 23239.1, + "end": 23242.94, + "probability": 0.904 + }, + { + "start": 23244.1, + "end": 23244.54, + "probability": 0.792 + }, + { + "start": 23245.16, + "end": 23248.24, + "probability": 0.988 + }, + { + "start": 23249.0, + "end": 23251.82, + "probability": 0.8707 + }, + { + "start": 23252.82, + "end": 23253.3, + "probability": 0.3965 + }, + { + "start": 23254.28, + "end": 23259.56, + "probability": 0.9834 + }, + { + "start": 23260.66, + "end": 23264.42, + "probability": 0.9645 + }, + { + "start": 23265.32, + "end": 23269.18, + "probability": 0.9611 + }, + { + "start": 23269.82, + "end": 23270.52, + "probability": 0.6889 + }, + { + "start": 23271.18, + "end": 23272.16, + "probability": 0.3998 + }, + { + "start": 23273.28, + "end": 23275.58, + "probability": 0.9737 + }, + { + "start": 23275.82, + "end": 23276.45, + "probability": 0.7998 + }, + { + "start": 23277.96, + "end": 23279.3, + "probability": 0.9226 + }, + { + "start": 23279.72, + "end": 23283.42, + "probability": 0.8327 + }, + { + "start": 23284.1, + "end": 23284.56, + "probability": 0.4427 + }, + { + "start": 23285.06, + "end": 23288.92, + "probability": 0.9873 + }, + { + "start": 23296.98, + "end": 23300.3, + "probability": 0.8349 + }, + { + "start": 23300.64, + "end": 23301.72, + "probability": 0.6646 + }, + { + "start": 23302.02, + "end": 23304.1, + "probability": 0.7706 + }, + { + "start": 23305.24, + "end": 23308.02, + "probability": 0.9563 + }, + { + "start": 23308.74, + "end": 23309.24, + "probability": 0.6931 + }, + { + "start": 23309.8, + "end": 23314.98, + "probability": 0.9971 + }, + { + "start": 23316.08, + "end": 23317.74, + "probability": 0.6129 + }, + { + "start": 23318.1, + "end": 23322.4, + "probability": 0.7844 + }, + { + "start": 23322.98, + "end": 23323.62, + "probability": 0.7916 + }, + { + "start": 23324.34, + "end": 23327.68, + "probability": 0.8221 + }, + { + "start": 23328.62, + "end": 23329.9, + "probability": 0.9675 + }, + { + "start": 23332.84, + "end": 23335.18, + "probability": 0.9973 + }, + { + "start": 23336.08, + "end": 23337.84, + "probability": 0.9465 + }, + { + "start": 23338.52, + "end": 23338.98, + "probability": 0.7278 + }, + { + "start": 23342.6, + "end": 23343.76, + "probability": 0.665 + }, + { + "start": 23343.82, + "end": 23343.86, + "probability": 0.0216 + }, + { + "start": 23344.26, + "end": 23348.56, + "probability": 0.8841 + }, + { + "start": 23348.96, + "end": 23349.54, + "probability": 0.83 + }, + { + "start": 23349.64, + "end": 23352.24, + "probability": 0.8811 + }, + { + "start": 23352.36, + "end": 23354.22, + "probability": 0.8916 + }, + { + "start": 23357.54, + "end": 23359.52, + "probability": 0.7025 + }, + { + "start": 23360.6, + "end": 23367.24, + "probability": 0.9754 + }, + { + "start": 23368.3, + "end": 23371.36, + "probability": 0.9915 + }, + { + "start": 23371.36, + "end": 23373.82, + "probability": 0.9912 + }, + { + "start": 23374.76, + "end": 23376.38, + "probability": 0.9592 + }, + { + "start": 23376.74, + "end": 23378.7, + "probability": 0.9621 + }, + { + "start": 23379.12, + "end": 23380.68, + "probability": 0.9941 + }, + { + "start": 23381.48, + "end": 23382.18, + "probability": 0.7254 + }, + { + "start": 23383.92, + "end": 23389.86, + "probability": 0.9883 + }, + { + "start": 23390.6, + "end": 23394.04, + "probability": 0.9797 + }, + { + "start": 23394.04, + "end": 23397.36, + "probability": 0.9892 + }, + { + "start": 23397.92, + "end": 23400.3, + "probability": 0.7263 + }, + { + "start": 23400.36, + "end": 23400.72, + "probability": 0.8631 + }, + { + "start": 23400.94, + "end": 23404.3, + "probability": 0.9893 + }, + { + "start": 23405.34, + "end": 23406.34, + "probability": 0.9521 + }, + { + "start": 23406.54, + "end": 23409.44, + "probability": 0.9723 + }, + { + "start": 23409.76, + "end": 23413.72, + "probability": 0.9004 + }, + { + "start": 23414.14, + "end": 23417.16, + "probability": 0.8954 + }, + { + "start": 23417.32, + "end": 23419.36, + "probability": 0.9087 + }, + { + "start": 23420.06, + "end": 23424.84, + "probability": 0.9987 + }, + { + "start": 23425.68, + "end": 23427.0, + "probability": 0.6428 + }, + { + "start": 23427.44, + "end": 23430.86, + "probability": 0.9954 + }, + { + "start": 23430.86, + "end": 23435.48, + "probability": 0.999 + }, + { + "start": 23437.44, + "end": 23437.44, + "probability": 0.1385 + }, + { + "start": 23437.44, + "end": 23441.64, + "probability": 0.8935 + }, + { + "start": 23442.28, + "end": 23443.05, + "probability": 0.9451 + }, + { + "start": 23443.26, + "end": 23447.04, + "probability": 0.9116 + }, + { + "start": 23448.82, + "end": 23450.06, + "probability": 0.8206 + }, + { + "start": 23453.58, + "end": 23455.56, + "probability": 0.9932 + }, + { + "start": 23455.6, + "end": 23456.13, + "probability": 0.8479 + }, + { + "start": 23456.62, + "end": 23457.66, + "probability": 0.9961 + }, + { + "start": 23458.3, + "end": 23459.82, + "probability": 0.9846 + }, + { + "start": 23460.26, + "end": 23462.14, + "probability": 0.9596 + }, + { + "start": 23462.8, + "end": 23463.23, + "probability": 0.8225 + }, + { + "start": 23463.54, + "end": 23463.88, + "probability": 0.8346 + }, + { + "start": 23464.0, + "end": 23466.44, + "probability": 0.8037 + }, + { + "start": 23468.16, + "end": 23468.64, + "probability": 0.4375 + }, + { + "start": 23469.32, + "end": 23472.69, + "probability": 0.9064 + }, + { + "start": 23473.42, + "end": 23474.21, + "probability": 0.9823 + }, + { + "start": 23474.78, + "end": 23475.98, + "probability": 0.9944 + }, + { + "start": 23476.54, + "end": 23477.7, + "probability": 0.8618 + }, + { + "start": 23478.04, + "end": 23478.56, + "probability": 0.8819 + }, + { + "start": 23478.6, + "end": 23479.34, + "probability": 0.8092 + }, + { + "start": 23479.56, + "end": 23480.64, + "probability": 0.8823 + }, + { + "start": 23480.96, + "end": 23481.74, + "probability": 0.9736 + }, + { + "start": 23482.78, + "end": 23485.0, + "probability": 0.7207 + }, + { + "start": 23485.62, + "end": 23486.9, + "probability": 0.9033 + }, + { + "start": 23487.52, + "end": 23488.54, + "probability": 0.8884 + }, + { + "start": 23488.98, + "end": 23489.92, + "probability": 0.9036 + }, + { + "start": 23490.0, + "end": 23491.34, + "probability": 0.7321 + }, + { + "start": 23492.08, + "end": 23495.42, + "probability": 0.9073 + }, + { + "start": 23496.42, + "end": 23496.8, + "probability": 0.4382 + }, + { + "start": 23496.86, + "end": 23497.34, + "probability": 0.8767 + }, + { + "start": 23498.54, + "end": 23500.86, + "probability": 0.9893 + }, + { + "start": 23501.46, + "end": 23502.74, + "probability": 0.9849 + }, + { + "start": 23503.16, + "end": 23504.36, + "probability": 0.9175 + }, + { + "start": 23505.5, + "end": 23508.42, + "probability": 0.9932 + }, + { + "start": 23509.08, + "end": 23511.8, + "probability": 0.9678 + }, + { + "start": 23513.04, + "end": 23514.18, + "probability": 0.7984 + }, + { + "start": 23514.9, + "end": 23517.22, + "probability": 0.9722 + }, + { + "start": 23517.66, + "end": 23521.78, + "probability": 0.9595 + }, + { + "start": 23522.3, + "end": 23523.93, + "probability": 0.9858 + }, + { + "start": 23524.98, + "end": 23526.38, + "probability": 0.6392 + }, + { + "start": 23526.5, + "end": 23527.12, + "probability": 0.9075 + }, + { + "start": 23527.52, + "end": 23531.86, + "probability": 0.9092 + }, + { + "start": 23532.24, + "end": 23536.84, + "probability": 0.9449 + }, + { + "start": 23537.44, + "end": 23539.24, + "probability": 0.9983 + }, + { + "start": 23540.78, + "end": 23545.02, + "probability": 0.9863 + }, + { + "start": 23545.78, + "end": 23548.58, + "probability": 0.7917 + }, + { + "start": 23548.94, + "end": 23549.95, + "probability": 0.0837 + }, + { + "start": 23550.5, + "end": 23551.6, + "probability": 0.4041 + }, + { + "start": 23552.1, + "end": 23554.04, + "probability": 0.8442 + }, + { + "start": 23555.52, + "end": 23561.31, + "probability": 0.908 + }, + { + "start": 23568.36, + "end": 23569.58, + "probability": 0.0326 + }, + { + "start": 23582.36, + "end": 23582.42, + "probability": 0.2854 + }, + { + "start": 23582.42, + "end": 23583.58, + "probability": 0.7193 + }, + { + "start": 23584.56, + "end": 23586.88, + "probability": 0.9611 + }, + { + "start": 23587.44, + "end": 23590.24, + "probability": 0.8917 + }, + { + "start": 23592.94, + "end": 23601.44, + "probability": 0.9095 + }, + { + "start": 23601.9, + "end": 23607.58, + "probability": 0.9836 + }, + { + "start": 23607.8, + "end": 23609.38, + "probability": 0.8772 + }, + { + "start": 23610.7, + "end": 23615.96, + "probability": 0.8979 + }, + { + "start": 23616.78, + "end": 23624.72, + "probability": 0.9392 + }, + { + "start": 23624.86, + "end": 23626.52, + "probability": 0.8413 + }, + { + "start": 23626.72, + "end": 23630.74, + "probability": 0.9977 + }, + { + "start": 23630.84, + "end": 23634.96, + "probability": 0.9953 + }, + { + "start": 23635.88, + "end": 23637.4, + "probability": 0.8044 + }, + { + "start": 23637.9, + "end": 23640.92, + "probability": 0.999 + }, + { + "start": 23641.02, + "end": 23644.02, + "probability": 0.9673 + }, + { + "start": 23644.64, + "end": 23648.38, + "probability": 0.9406 + }, + { + "start": 23649.1, + "end": 23652.1, + "probability": 0.8487 + }, + { + "start": 23652.26, + "end": 23654.16, + "probability": 0.8899 + }, + { + "start": 23654.3, + "end": 23656.78, + "probability": 0.9944 + }, + { + "start": 23657.72, + "end": 23662.48, + "probability": 0.771 + }, + { + "start": 23663.26, + "end": 23667.14, + "probability": 0.8931 + }, + { + "start": 23667.88, + "end": 23669.56, + "probability": 0.9858 + }, + { + "start": 23669.66, + "end": 23672.46, + "probability": 0.9844 + }, + { + "start": 23676.04, + "end": 23676.04, + "probability": 0.0447 + }, + { + "start": 23676.04, + "end": 23676.04, + "probability": 0.3439 + }, + { + "start": 23676.04, + "end": 23677.29, + "probability": 0.464 + }, + { + "start": 23678.28, + "end": 23680.98, + "probability": 0.9546 + }, + { + "start": 23680.98, + "end": 23684.48, + "probability": 0.7384 + }, + { + "start": 23684.6, + "end": 23684.9, + "probability": 0.685 + }, + { + "start": 23685.38, + "end": 23685.52, + "probability": 0.156 + }, + { + "start": 23685.56, + "end": 23688.82, + "probability": 0.792 + }, + { + "start": 23689.92, + "end": 23691.86, + "probability": 0.8058 + }, + { + "start": 23692.38, + "end": 23694.2, + "probability": 0.793 + }, + { + "start": 23694.24, + "end": 23694.96, + "probability": 0.8077 + }, + { + "start": 23695.18, + "end": 23696.0, + "probability": 0.7548 + }, + { + "start": 23696.18, + "end": 23699.06, + "probability": 0.8853 + }, + { + "start": 23699.3, + "end": 23701.7, + "probability": 0.9343 + }, + { + "start": 23702.78, + "end": 23703.02, + "probability": 0.0149 + }, + { + "start": 23703.02, + "end": 23706.72, + "probability": 0.764 + }, + { + "start": 23708.16, + "end": 23708.64, + "probability": 0.1699 + }, + { + "start": 23710.24, + "end": 23710.94, + "probability": 0.3099 + }, + { + "start": 23711.02, + "end": 23715.72, + "probability": 0.9912 + }, + { + "start": 23715.72, + "end": 23718.5, + "probability": 0.9147 + }, + { + "start": 23719.18, + "end": 23722.3, + "probability": 0.9609 + }, + { + "start": 23723.7, + "end": 23725.64, + "probability": 0.8186 + }, + { + "start": 23727.56, + "end": 23729.08, + "probability": 0.8459 + }, + { + "start": 23730.44, + "end": 23733.46, + "probability": 0.8788 + }, + { + "start": 23738.24, + "end": 23740.32, + "probability": 0.9453 + }, + { + "start": 23758.56, + "end": 23758.92, + "probability": 0.1593 + }, + { + "start": 23758.92, + "end": 23758.92, + "probability": 0.4253 + }, + { + "start": 23759.84, + "end": 23760.68, + "probability": 0.6825 + }, + { + "start": 23760.68, + "end": 23764.52, + "probability": 0.1253 + }, + { + "start": 23765.32, + "end": 23766.24, + "probability": 0.3952 + }, + { + "start": 23766.24, + "end": 23767.04, + "probability": 0.9611 + }, + { + "start": 23767.88, + "end": 23769.46, + "probability": 0.4841 + }, + { + "start": 23770.0, + "end": 23770.46, + "probability": 0.5682 + }, + { + "start": 23770.66, + "end": 23771.82, + "probability": 0.8018 + }, + { + "start": 23774.16, + "end": 23774.16, + "probability": 0.5801 + }, + { + "start": 23775.8, + "end": 23776.46, + "probability": 0.0923 + }, + { + "start": 23776.74, + "end": 23779.56, + "probability": 0.6921 + }, + { + "start": 23779.9, + "end": 23781.74, + "probability": 0.6426 + }, + { + "start": 23782.1, + "end": 23782.78, + "probability": 0.5451 + }, + { + "start": 23782.94, + "end": 23784.28, + "probability": 0.5735 + }, + { + "start": 23786.0, + "end": 23787.3, + "probability": 0.8868 + }, + { + "start": 23788.96, + "end": 23792.94, + "probability": 0.987 + }, + { + "start": 23793.3, + "end": 23796.34, + "probability": 0.9912 + }, + { + "start": 23797.06, + "end": 23800.26, + "probability": 0.9221 + }, + { + "start": 23801.34, + "end": 23803.74, + "probability": 0.8708 + }, + { + "start": 23804.12, + "end": 23808.64, + "probability": 0.9683 + }, + { + "start": 23808.76, + "end": 23810.48, + "probability": 0.929 + }, + { + "start": 23830.7, + "end": 23833.42, + "probability": 0.7647 + }, + { + "start": 23835.12, + "end": 23836.18, + "probability": 0.6777 + }, + { + "start": 23836.3, + "end": 23837.4, + "probability": 0.9332 + }, + { + "start": 23837.56, + "end": 23839.88, + "probability": 0.9539 + }, + { + "start": 23842.0, + "end": 23849.34, + "probability": 0.9916 + }, + { + "start": 23850.06, + "end": 23850.98, + "probability": 0.9939 + }, + { + "start": 23852.02, + "end": 23853.36, + "probability": 0.6824 + }, + { + "start": 23854.26, + "end": 23855.12, + "probability": 0.9163 + }, + { + "start": 23855.76, + "end": 23858.0, + "probability": 0.9857 + }, + { + "start": 23858.0, + "end": 23861.6, + "probability": 0.9982 + }, + { + "start": 23862.14, + "end": 23863.6, + "probability": 0.9537 + }, + { + "start": 23864.2, + "end": 23867.58, + "probability": 0.9893 + }, + { + "start": 23869.12, + "end": 23870.25, + "probability": 0.9929 + }, + { + "start": 23871.2, + "end": 23875.24, + "probability": 0.9841 + }, + { + "start": 23875.9, + "end": 23878.32, + "probability": 0.9783 + }, + { + "start": 23879.4, + "end": 23880.82, + "probability": 0.5219 + }, + { + "start": 23881.96, + "end": 23885.02, + "probability": 0.952 + }, + { + "start": 23885.74, + "end": 23888.16, + "probability": 0.9424 + }, + { + "start": 23888.86, + "end": 23890.48, + "probability": 0.8394 + }, + { + "start": 23891.06, + "end": 23892.82, + "probability": 0.9802 + }, + { + "start": 23893.28, + "end": 23894.06, + "probability": 0.7012 + }, + { + "start": 23894.1, + "end": 23895.96, + "probability": 0.873 + }, + { + "start": 23896.64, + "end": 23899.12, + "probability": 0.9699 + }, + { + "start": 23899.96, + "end": 23902.78, + "probability": 0.9909 + }, + { + "start": 23902.84, + "end": 23904.68, + "probability": 0.9837 + }, + { + "start": 23905.28, + "end": 23908.16, + "probability": 0.9824 + }, + { + "start": 23908.64, + "end": 23909.26, + "probability": 0.8865 + }, + { + "start": 23910.24, + "end": 23911.46, + "probability": 0.487 + }, + { + "start": 23911.74, + "end": 23913.78, + "probability": 0.9751 + }, + { + "start": 23914.62, + "end": 23918.26, + "probability": 0.9951 + }, + { + "start": 23919.84, + "end": 23921.24, + "probability": 0.9767 + }, + { + "start": 23921.8, + "end": 23923.06, + "probability": 0.9985 + }, + { + "start": 23923.56, + "end": 23928.68, + "probability": 0.9954 + }, + { + "start": 23929.86, + "end": 23931.18, + "probability": 0.7732 + }, + { + "start": 23931.88, + "end": 23933.42, + "probability": 0.9716 + }, + { + "start": 23933.98, + "end": 23936.54, + "probability": 0.99 + }, + { + "start": 23937.34, + "end": 23938.44, + "probability": 0.8362 + }, + { + "start": 23938.8, + "end": 23941.4, + "probability": 0.9919 + }, + { + "start": 23942.02, + "end": 23946.48, + "probability": 0.9466 + }, + { + "start": 23947.32, + "end": 23949.64, + "probability": 0.9788 + }, + { + "start": 23949.64, + "end": 23953.42, + "probability": 0.9427 + }, + { + "start": 23953.96, + "end": 23955.58, + "probability": 0.9993 + }, + { + "start": 23956.24, + "end": 23957.04, + "probability": 0.8099 + }, + { + "start": 23957.86, + "end": 23960.78, + "probability": 0.9948 + }, + { + "start": 23960.78, + "end": 23963.55, + "probability": 0.995 + }, + { + "start": 23963.8, + "end": 23965.16, + "probability": 0.9816 + }, + { + "start": 23965.94, + "end": 23970.02, + "probability": 0.9468 + }, + { + "start": 23970.74, + "end": 23973.86, + "probability": 0.9443 + }, + { + "start": 23974.48, + "end": 23975.76, + "probability": 0.6612 + }, + { + "start": 23976.92, + "end": 23978.04, + "probability": 0.8162 + }, + { + "start": 23978.56, + "end": 23981.4, + "probability": 0.9602 + }, + { + "start": 23982.32, + "end": 23983.3, + "probability": 0.9509 + }, + { + "start": 23983.44, + "end": 23990.36, + "probability": 0.9951 + }, + { + "start": 23990.44, + "end": 23991.74, + "probability": 0.0046 + }, + { + "start": 23991.74, + "end": 23995.15, + "probability": 0.8956 + }, + { + "start": 23995.86, + "end": 23999.56, + "probability": 0.9849 + }, + { + "start": 23999.7, + "end": 24000.82, + "probability": 0.9016 + }, + { + "start": 24001.12, + "end": 24003.58, + "probability": 0.9946 + }, + { + "start": 24004.12, + "end": 24005.28, + "probability": 0.9773 + }, + { + "start": 24006.5, + "end": 24008.92, + "probability": 0.6801 + }, + { + "start": 24009.84, + "end": 24010.52, + "probability": 0.7528 + }, + { + "start": 24011.28, + "end": 24015.56, + "probability": 0.9856 + }, + { + "start": 24016.06, + "end": 24018.7, + "probability": 0.9708 + }, + { + "start": 24019.08, + "end": 24020.8, + "probability": 0.9805 + }, + { + "start": 24021.36, + "end": 24024.24, + "probability": 0.9966 + }, + { + "start": 24024.66, + "end": 24029.32, + "probability": 0.9571 + }, + { + "start": 24029.6, + "end": 24033.48, + "probability": 0.9691 + }, + { + "start": 24034.04, + "end": 24034.38, + "probability": 0.5946 + }, + { + "start": 24034.44, + "end": 24035.68, + "probability": 0.7099 + }, + { + "start": 24035.96, + "end": 24040.4, + "probability": 0.9958 + }, + { + "start": 24041.08, + "end": 24041.74, + "probability": 0.6254 + }, + { + "start": 24042.14, + "end": 24043.9, + "probability": 0.9514 + }, + { + "start": 24043.98, + "end": 24047.74, + "probability": 0.9694 + }, + { + "start": 24047.74, + "end": 24051.26, + "probability": 0.9973 + }, + { + "start": 24051.98, + "end": 24054.38, + "probability": 0.9972 + }, + { + "start": 24056.36, + "end": 24058.62, + "probability": 0.5638 + }, + { + "start": 24058.62, + "end": 24063.4, + "probability": 0.991 + }, + { + "start": 24063.92, + "end": 24065.08, + "probability": 0.5829 + }, + { + "start": 24065.76, + "end": 24069.5, + "probability": 0.9977 + }, + { + "start": 24070.16, + "end": 24070.88, + "probability": 0.457 + }, + { + "start": 24071.58, + "end": 24073.06, + "probability": 0.7301 + }, + { + "start": 24073.56, + "end": 24074.96, + "probability": 0.957 + }, + { + "start": 24075.38, + "end": 24079.2, + "probability": 0.9957 + }, + { + "start": 24079.2, + "end": 24084.14, + "probability": 0.9965 + }, + { + "start": 24084.68, + "end": 24087.56, + "probability": 0.9904 + }, + { + "start": 24087.56, + "end": 24091.34, + "probability": 0.9975 + }, + { + "start": 24092.12, + "end": 24092.48, + "probability": 0.8206 + }, + { + "start": 24092.6, + "end": 24097.3, + "probability": 0.9416 + }, + { + "start": 24097.58, + "end": 24098.92, + "probability": 0.9839 + }, + { + "start": 24099.34, + "end": 24100.34, + "probability": 0.7547 + }, + { + "start": 24100.52, + "end": 24100.98, + "probability": 0.7445 + }, + { + "start": 24101.44, + "end": 24102.86, + "probability": 0.9274 + }, + { + "start": 24103.28, + "end": 24104.3, + "probability": 0.9902 + }, + { + "start": 24104.82, + "end": 24106.7, + "probability": 0.9976 + }, + { + "start": 24107.24, + "end": 24107.38, + "probability": 0.4586 + }, + { + "start": 24107.46, + "end": 24110.52, + "probability": 0.9754 + }, + { + "start": 24111.12, + "end": 24112.84, + "probability": 0.6306 + }, + { + "start": 24113.6, + "end": 24116.56, + "probability": 0.9917 + }, + { + "start": 24116.88, + "end": 24120.98, + "probability": 0.9919 + }, + { + "start": 24121.98, + "end": 24126.64, + "probability": 0.8358 + }, + { + "start": 24127.22, + "end": 24128.82, + "probability": 0.8208 + }, + { + "start": 24129.6, + "end": 24131.2, + "probability": 0.173 + }, + { + "start": 24137.98, + "end": 24140.78, + "probability": 0.9331 + }, + { + "start": 24140.78, + "end": 24140.78, + "probability": 0.0828 + }, + { + "start": 24140.78, + "end": 24140.78, + "probability": 0.1723 + }, + { + "start": 24140.78, + "end": 24140.78, + "probability": 0.0886 + }, + { + "start": 24140.78, + "end": 24141.46, + "probability": 0.1685 + }, + { + "start": 24142.04, + "end": 24143.88, + "probability": 0.8218 + }, + { + "start": 24144.46, + "end": 24147.8, + "probability": 0.9272 + }, + { + "start": 24148.26, + "end": 24149.44, + "probability": 0.8682 + }, + { + "start": 24149.94, + "end": 24151.74, + "probability": 0.9448 + }, + { + "start": 24152.92, + "end": 24158.34, + "probability": 0.9775 + }, + { + "start": 24158.34, + "end": 24163.32, + "probability": 0.9868 + }, + { + "start": 24163.94, + "end": 24166.25, + "probability": 0.9781 + }, + { + "start": 24166.84, + "end": 24171.16, + "probability": 0.9762 + }, + { + "start": 24171.84, + "end": 24174.24, + "probability": 0.8847 + }, + { + "start": 24174.3, + "end": 24174.84, + "probability": 0.9194 + }, + { + "start": 24174.9, + "end": 24177.4, + "probability": 0.9906 + }, + { + "start": 24177.9, + "end": 24179.44, + "probability": 0.2733 + }, + { + "start": 24179.94, + "end": 24181.74, + "probability": 0.5191 + }, + { + "start": 24182.18, + "end": 24186.44, + "probability": 0.9827 + }, + { + "start": 24186.44, + "end": 24190.42, + "probability": 0.9734 + }, + { + "start": 24190.94, + "end": 24194.68, + "probability": 0.9596 + }, + { + "start": 24194.68, + "end": 24199.54, + "probability": 0.9895 + }, + { + "start": 24199.96, + "end": 24203.26, + "probability": 0.9963 + }, + { + "start": 24203.68, + "end": 24207.2, + "probability": 0.9844 + }, + { + "start": 24207.34, + "end": 24208.68, + "probability": 0.6466 + }, + { + "start": 24209.08, + "end": 24210.18, + "probability": 0.8317 + }, + { + "start": 24210.24, + "end": 24210.68, + "probability": 0.2048 + }, + { + "start": 24211.06, + "end": 24213.22, + "probability": 0.9627 + }, + { + "start": 24213.82, + "end": 24215.86, + "probability": 0.9804 + }, + { + "start": 24216.46, + "end": 24219.66, + "probability": 0.6999 + }, + { + "start": 24220.2, + "end": 24221.84, + "probability": 0.999 + }, + { + "start": 24221.84, + "end": 24224.68, + "probability": 0.998 + }, + { + "start": 24225.32, + "end": 24229.26, + "probability": 0.9669 + }, + { + "start": 24229.76, + "end": 24234.34, + "probability": 0.9471 + }, + { + "start": 24234.98, + "end": 24239.6, + "probability": 0.9771 + }, + { + "start": 24240.26, + "end": 24242.3, + "probability": 0.9764 + }, + { + "start": 24243.16, + "end": 24245.88, + "probability": 0.9829 + }, + { + "start": 24246.18, + "end": 24247.98, + "probability": 0.8629 + }, + { + "start": 24248.44, + "end": 24254.92, + "probability": 0.9812 + }, + { + "start": 24256.2, + "end": 24259.46, + "probability": 0.9608 + }, + { + "start": 24260.12, + "end": 24260.34, + "probability": 0.4038 + }, + { + "start": 24260.48, + "end": 24261.2, + "probability": 0.2031 + }, + { + "start": 24261.26, + "end": 24262.46, + "probability": 0.6819 + }, + { + "start": 24262.58, + "end": 24263.34, + "probability": 0.9521 + }, + { + "start": 24263.38, + "end": 24267.74, + "probability": 0.9731 + }, + { + "start": 24268.48, + "end": 24270.84, + "probability": 0.9944 + }, + { + "start": 24271.44, + "end": 24275.04, + "probability": 0.9867 + }, + { + "start": 24275.6, + "end": 24279.22, + "probability": 0.9929 + }, + { + "start": 24279.88, + "end": 24283.88, + "probability": 0.99 + }, + { + "start": 24284.42, + "end": 24286.18, + "probability": 0.998 + }, + { + "start": 24286.6, + "end": 24288.05, + "probability": 0.8693 + }, + { + "start": 24288.96, + "end": 24290.1, + "probability": 0.8185 + }, + { + "start": 24290.56, + "end": 24291.76, + "probability": 0.9661 + }, + { + "start": 24292.2, + "end": 24293.36, + "probability": 0.9629 + }, + { + "start": 24293.54, + "end": 24294.9, + "probability": 0.9571 + }, + { + "start": 24295.42, + "end": 24297.82, + "probability": 0.4662 + }, + { + "start": 24298.52, + "end": 24300.88, + "probability": 0.9149 + }, + { + "start": 24301.3, + "end": 24303.58, + "probability": 0.9924 + }, + { + "start": 24304.16, + "end": 24305.26, + "probability": 0.886 + }, + { + "start": 24305.64, + "end": 24306.54, + "probability": 0.9537 + }, + { + "start": 24307.44, + "end": 24310.88, + "probability": 0.8539 + }, + { + "start": 24311.52, + "end": 24313.56, + "probability": 0.9863 + }, + { + "start": 24314.22, + "end": 24317.86, + "probability": 0.9684 + }, + { + "start": 24318.28, + "end": 24320.33, + "probability": 0.667 + }, + { + "start": 24321.02, + "end": 24322.4, + "probability": 0.7397 + }, + { + "start": 24323.06, + "end": 24325.32, + "probability": 0.9489 + }, + { + "start": 24325.88, + "end": 24329.06, + "probability": 0.8924 + }, + { + "start": 24329.54, + "end": 24331.36, + "probability": 0.9956 + }, + { + "start": 24331.44, + "end": 24335.2, + "probability": 0.9989 + }, + { + "start": 24336.84, + "end": 24339.28, + "probability": 0.9786 + }, + { + "start": 24339.86, + "end": 24342.76, + "probability": 0.9458 + }, + { + "start": 24343.6, + "end": 24344.1, + "probability": 0.6775 + }, + { + "start": 24344.16, + "end": 24348.56, + "probability": 0.9639 + }, + { + "start": 24348.9, + "end": 24350.24, + "probability": 0.9117 + }, + { + "start": 24350.6, + "end": 24351.9, + "probability": 0.992 + }, + { + "start": 24352.28, + "end": 24354.14, + "probability": 0.9961 + }, + { + "start": 24354.7, + "end": 24356.78, + "probability": 0.9667 + }, + { + "start": 24357.38, + "end": 24358.68, + "probability": 0.7434 + }, + { + "start": 24359.66, + "end": 24361.78, + "probability": 0.3247 + }, + { + "start": 24362.46, + "end": 24363.36, + "probability": 0.4063 + }, + { + "start": 24363.38, + "end": 24363.92, + "probability": 0.8377 + }, + { + "start": 24364.04, + "end": 24369.59, + "probability": 0.9639 + }, + { + "start": 24369.68, + "end": 24370.1, + "probability": 0.3565 + }, + { + "start": 24377.48, + "end": 24377.64, + "probability": 0.1139 + }, + { + "start": 24377.64, + "end": 24377.64, + "probability": 0.2599 + }, + { + "start": 24377.64, + "end": 24377.64, + "probability": 0.1639 + }, + { + "start": 24377.64, + "end": 24380.21, + "probability": 0.3727 + }, + { + "start": 24380.78, + "end": 24381.36, + "probability": 0.3331 + }, + { + "start": 24381.48, + "end": 24382.0, + "probability": 0.33 + }, + { + "start": 24382.46, + "end": 24385.2, + "probability": 0.7981 + }, + { + "start": 24385.36, + "end": 24389.47, + "probability": 0.5376 + }, + { + "start": 24389.86, + "end": 24390.6, + "probability": 0.0928 + }, + { + "start": 24391.05, + "end": 24392.22, + "probability": 0.2949 + }, + { + "start": 24392.22, + "end": 24394.68, + "probability": 0.9109 + }, + { + "start": 24394.68, + "end": 24398.0, + "probability": 0.8014 + }, + { + "start": 24398.97, + "end": 24401.08, + "probability": 0.9402 + }, + { + "start": 24401.3, + "end": 24402.14, + "probability": 0.9077 + }, + { + "start": 24402.14, + "end": 24404.24, + "probability": 0.8248 + }, + { + "start": 24404.72, + "end": 24411.96, + "probability": 0.8901 + }, + { + "start": 24412.04, + "end": 24412.98, + "probability": 0.3943 + }, + { + "start": 24413.88, + "end": 24418.26, + "probability": 0.9904 + }, + { + "start": 24418.94, + "end": 24421.8, + "probability": 0.9994 + }, + { + "start": 24422.52, + "end": 24429.4, + "probability": 0.997 + }, + { + "start": 24430.58, + "end": 24433.08, + "probability": 0.5435 + }, + { + "start": 24433.92, + "end": 24434.68, + "probability": 0.0 + }, + { + "start": 24437.74, + "end": 24440.16, + "probability": 0.152 + }, + { + "start": 24440.32, + "end": 24440.95, + "probability": 0.8829 + }, + { + "start": 24441.6, + "end": 24443.18, + "probability": 0.4453 + }, + { + "start": 24445.98, + "end": 24447.42, + "probability": 0.3038 + }, + { + "start": 24447.5, + "end": 24448.94, + "probability": 0.5587 + }, + { + "start": 24449.24, + "end": 24450.76, + "probability": 0.8889 + }, + { + "start": 24451.6, + "end": 24452.22, + "probability": 0.1475 + }, + { + "start": 24455.28, + "end": 24456.28, + "probability": 0.1327 + }, + { + "start": 24456.86, + "end": 24458.6, + "probability": 0.7788 + }, + { + "start": 24458.84, + "end": 24460.84, + "probability": 0.8045 + }, + { + "start": 24460.96, + "end": 24461.52, + "probability": 0.757 + }, + { + "start": 24461.68, + "end": 24466.7, + "probability": 0.9795 + }, + { + "start": 24470.32, + "end": 24470.42, + "probability": 0.0625 + }, + { + "start": 24470.42, + "end": 24470.42, + "probability": 0.411 + }, + { + "start": 24470.42, + "end": 24470.42, + "probability": 0.0363 + }, + { + "start": 24470.46, + "end": 24471.66, + "probability": 0.8012 + }, + { + "start": 24471.78, + "end": 24473.16, + "probability": 0.902 + }, + { + "start": 24473.5, + "end": 24474.82, + "probability": 0.8715 + }, + { + "start": 24474.92, + "end": 24475.12, + "probability": 0.3819 + }, + { + "start": 24475.16, + "end": 24477.76, + "probability": 0.9805 + }, + { + "start": 24478.12, + "end": 24480.66, + "probability": 0.9631 + }, + { + "start": 24481.16, + "end": 24482.64, + "probability": 0.858 + }, + { + "start": 24483.06, + "end": 24483.9, + "probability": 0.4828 + }, + { + "start": 24484.3, + "end": 24489.4, + "probability": 0.9238 + }, + { + "start": 24489.52, + "end": 24492.12, + "probability": 0.8069 + }, + { + "start": 24492.14, + "end": 24492.82, + "probability": 0.8614 + }, + { + "start": 24493.12, + "end": 24493.22, + "probability": 0.3448 + }, + { + "start": 24493.22, + "end": 24493.22, + "probability": 0.2778 + }, + { + "start": 24493.22, + "end": 24494.42, + "probability": 0.7036 + }, + { + "start": 24494.44, + "end": 24495.88, + "probability": 0.9803 + }, + { + "start": 24496.0, + "end": 24497.33, + "probability": 0.1645 + }, + { + "start": 24497.96, + "end": 24500.82, + "probability": 0.8933 + }, + { + "start": 24501.82, + "end": 24506.45, + "probability": 0.7266 + }, + { + "start": 24507.0, + "end": 24511.44, + "probability": 0.9613 + }, + { + "start": 24511.54, + "end": 24511.96, + "probability": 0.8268 + }, + { + "start": 24513.8, + "end": 24514.86, + "probability": 0.0259 + }, + { + "start": 24515.36, + "end": 24516.98, + "probability": 0.3225 + }, + { + "start": 24518.54, + "end": 24520.52, + "probability": 0.5313 + }, + { + "start": 24527.54, + "end": 24530.05, + "probability": 0.7306 + }, + { + "start": 24531.14, + "end": 24533.98, + "probability": 0.8742 + }, + { + "start": 24534.8, + "end": 24535.88, + "probability": 0.6753 + }, + { + "start": 24536.82, + "end": 24538.86, + "probability": 0.9984 + }, + { + "start": 24538.94, + "end": 24546.76, + "probability": 0.9805 + }, + { + "start": 24547.3, + "end": 24550.94, + "probability": 0.8634 + }, + { + "start": 24551.2, + "end": 24555.12, + "probability": 0.995 + }, + { + "start": 24555.28, + "end": 24560.32, + "probability": 0.9797 + }, + { + "start": 24560.46, + "end": 24561.72, + "probability": 0.9526 + }, + { + "start": 24562.36, + "end": 24565.24, + "probability": 0.9242 + }, + { + "start": 24565.26, + "end": 24570.02, + "probability": 0.9873 + }, + { + "start": 24570.66, + "end": 24571.1, + "probability": 0.5652 + }, + { + "start": 24571.2, + "end": 24575.8, + "probability": 0.9882 + }, + { + "start": 24576.62, + "end": 24581.24, + "probability": 0.9873 + }, + { + "start": 24581.88, + "end": 24583.88, + "probability": 0.9915 + }, + { + "start": 24584.46, + "end": 24588.82, + "probability": 0.9883 + }, + { + "start": 24589.62, + "end": 24592.38, + "probability": 0.9962 + }, + { + "start": 24593.12, + "end": 24596.78, + "probability": 0.9834 + }, + { + "start": 24597.5, + "end": 24599.58, + "probability": 0.8218 + }, + { + "start": 24600.24, + "end": 24604.32, + "probability": 0.9858 + }, + { + "start": 24605.04, + "end": 24608.42, + "probability": 0.9976 + }, + { + "start": 24608.42, + "end": 24612.58, + "probability": 0.9992 + }, + { + "start": 24613.44, + "end": 24615.22, + "probability": 0.998 + }, + { + "start": 24615.72, + "end": 24617.9, + "probability": 0.988 + }, + { + "start": 24618.5, + "end": 24619.28, + "probability": 0.5586 + }, + { + "start": 24620.2, + "end": 24624.06, + "probability": 0.9574 + }, + { + "start": 24624.74, + "end": 24628.31, + "probability": 0.9954 + }, + { + "start": 24629.0, + "end": 24630.44, + "probability": 0.9933 + }, + { + "start": 24630.84, + "end": 24631.1, + "probability": 0.3698 + }, + { + "start": 24631.16, + "end": 24633.58, + "probability": 0.7342 + }, + { + "start": 24634.2, + "end": 24637.19, + "probability": 0.988 + }, + { + "start": 24637.82, + "end": 24640.34, + "probability": 0.999 + }, + { + "start": 24641.44, + "end": 24643.72, + "probability": 0.9663 + }, + { + "start": 24643.84, + "end": 24647.14, + "probability": 0.9499 + }, + { + "start": 24647.62, + "end": 24650.02, + "probability": 0.9941 + }, + { + "start": 24650.66, + "end": 24651.7, + "probability": 0.8117 + }, + { + "start": 24651.74, + "end": 24655.48, + "probability": 0.9842 + }, + { + "start": 24655.48, + "end": 24659.8, + "probability": 0.9985 + }, + { + "start": 24660.12, + "end": 24664.6, + "probability": 0.8722 + }, + { + "start": 24665.04, + "end": 24667.28, + "probability": 0.9427 + }, + { + "start": 24668.12, + "end": 24670.35, + "probability": 0.9078 + }, + { + "start": 24672.49, + "end": 24674.84, + "probability": 0.5453 + }, + { + "start": 24674.92, + "end": 24677.17, + "probability": 0.8823 + }, + { + "start": 24677.98, + "end": 24681.66, + "probability": 0.9989 + }, + { + "start": 24682.22, + "end": 24685.46, + "probability": 0.8998 + }, + { + "start": 24685.52, + "end": 24686.24, + "probability": 0.6956 + }, + { + "start": 24686.3, + "end": 24689.42, + "probability": 0.941 + }, + { + "start": 24689.5, + "end": 24690.68, + "probability": 0.8594 + }, + { + "start": 24691.22, + "end": 24693.12, + "probability": 0.9668 + }, + { + "start": 24693.32, + "end": 24695.98, + "probability": 0.9728 + }, + { + "start": 24695.98, + "end": 24699.82, + "probability": 0.9942 + }, + { + "start": 24700.34, + "end": 24705.7, + "probability": 0.9985 + }, + { + "start": 24705.7, + "end": 24710.1, + "probability": 0.9938 + }, + { + "start": 24710.86, + "end": 24713.5, + "probability": 0.8905 + }, + { + "start": 24714.24, + "end": 24720.18, + "probability": 0.9979 + }, + { + "start": 24720.26, + "end": 24720.84, + "probability": 0.8381 + }, + { + "start": 24721.58, + "end": 24724.7, + "probability": 0.9102 + }, + { + "start": 24725.2, + "end": 24728.82, + "probability": 0.6112 + }, + { + "start": 24728.82, + "end": 24728.82, + "probability": 0.0863 + }, + { + "start": 24728.82, + "end": 24730.02, + "probability": 0.4504 + }, + { + "start": 24730.02, + "end": 24733.8, + "probability": 0.8666 + }, + { + "start": 24734.24, + "end": 24736.5, + "probability": 0.9727 + }, + { + "start": 24736.86, + "end": 24739.46, + "probability": 0.8961 + }, + { + "start": 24739.92, + "end": 24742.28, + "probability": 0.9586 + }, + { + "start": 24742.82, + "end": 24743.56, + "probability": 0.9414 + }, + { + "start": 24744.42, + "end": 24748.22, + "probability": 0.9829 + }, + { + "start": 24748.26, + "end": 24751.82, + "probability": 0.9927 + }, + { + "start": 24752.02, + "end": 24753.1, + "probability": 0.8415 + }, + { + "start": 24753.24, + "end": 24755.2, + "probability": 0.981 + }, + { + "start": 24755.68, + "end": 24760.14, + "probability": 0.9196 + }, + { + "start": 24760.24, + "end": 24761.46, + "probability": 0.8627 + }, + { + "start": 24762.18, + "end": 24763.18, + "probability": 0.9596 + }, + { + "start": 24763.28, + "end": 24764.3, + "probability": 0.9362 + }, + { + "start": 24764.36, + "end": 24767.12, + "probability": 0.9805 + }, + { + "start": 24767.3, + "end": 24767.68, + "probability": 0.6996 + }, + { + "start": 24770.58, + "end": 24771.98, + "probability": 0.8885 + }, + { + "start": 24773.76, + "end": 24779.16, + "probability": 0.8937 + }, + { + "start": 24779.84, + "end": 24780.64, + "probability": 0.823 + }, + { + "start": 24807.26, + "end": 24808.56, + "probability": 0.5274 + }, + { + "start": 24809.1, + "end": 24809.8, + "probability": 0.613 + }, + { + "start": 24813.43, + "end": 24815.98, + "probability": 0.9624 + }, + { + "start": 24816.04, + "end": 24820.92, + "probability": 0.9717 + }, + { + "start": 24821.84, + "end": 24826.34, + "probability": 0.9949 + }, + { + "start": 24826.34, + "end": 24831.3, + "probability": 0.9972 + }, + { + "start": 24832.06, + "end": 24834.46, + "probability": 0.9871 + }, + { + "start": 24835.22, + "end": 24840.12, + "probability": 0.9661 + }, + { + "start": 24840.12, + "end": 24844.22, + "probability": 0.9954 + }, + { + "start": 24844.7, + "end": 24848.36, + "probability": 0.9856 + }, + { + "start": 24848.96, + "end": 24849.4, + "probability": 0.8522 + }, + { + "start": 24850.02, + "end": 24853.16, + "probability": 0.9146 + }, + { + "start": 24854.2, + "end": 24856.34, + "probability": 0.9963 + }, + { + "start": 24857.36, + "end": 24863.72, + "probability": 0.9929 + }, + { + "start": 24864.34, + "end": 24865.32, + "probability": 0.4186 + }, + { + "start": 24866.52, + "end": 24870.76, + "probability": 0.9954 + }, + { + "start": 24871.4, + "end": 24873.5, + "probability": 0.9509 + }, + { + "start": 24873.72, + "end": 24878.7, + "probability": 0.9984 + }, + { + "start": 24878.72, + "end": 24884.16, + "probability": 0.9514 + }, + { + "start": 24884.84, + "end": 24888.84, + "probability": 0.9866 + }, + { + "start": 24890.52, + "end": 24893.76, + "probability": 0.9901 + }, + { + "start": 24895.0, + "end": 24897.72, + "probability": 0.792 + }, + { + "start": 24898.38, + "end": 24901.1, + "probability": 0.9934 + }, + { + "start": 24901.4, + "end": 24903.3, + "probability": 0.939 + }, + { + "start": 24903.38, + "end": 24905.94, + "probability": 0.978 + }, + { + "start": 24907.0, + "end": 24908.52, + "probability": 0.9237 + }, + { + "start": 24908.64, + "end": 24912.34, + "probability": 0.9952 + }, + { + "start": 24913.3, + "end": 24917.52, + "probability": 0.9196 + }, + { + "start": 24918.2, + "end": 24919.68, + "probability": 0.726 + }, + { + "start": 24920.46, + "end": 24922.86, + "probability": 0.9878 + }, + { + "start": 24924.18, + "end": 24930.42, + "probability": 0.9954 + }, + { + "start": 24932.76, + "end": 24933.24, + "probability": 0.3953 + }, + { + "start": 24934.42, + "end": 24935.76, + "probability": 0.931 + }, + { + "start": 24936.58, + "end": 24941.42, + "probability": 0.9991 + }, + { + "start": 24942.32, + "end": 24946.46, + "probability": 0.9985 + }, + { + "start": 24946.46, + "end": 24950.34, + "probability": 0.9899 + }, + { + "start": 24950.98, + "end": 24953.04, + "probability": 0.7572 + }, + { + "start": 24953.74, + "end": 24956.66, + "probability": 0.9927 + }, + { + "start": 24956.94, + "end": 24961.16, + "probability": 0.968 + }, + { + "start": 24962.2, + "end": 24969.04, + "probability": 0.9915 + }, + { + "start": 24969.24, + "end": 24970.2, + "probability": 0.9842 + }, + { + "start": 24970.46, + "end": 24975.52, + "probability": 0.9794 + }, + { + "start": 24976.8, + "end": 24977.22, + "probability": 0.6995 + }, + { + "start": 24977.3, + "end": 24978.38, + "probability": 0.9883 + }, + { + "start": 24979.18, + "end": 24979.85, + "probability": 0.8372 + }, + { + "start": 24980.1, + "end": 24981.84, + "probability": 0.9169 + }, + { + "start": 24983.56, + "end": 24986.74, + "probability": 0.9875 + }, + { + "start": 24987.72, + "end": 24990.96, + "probability": 0.9821 + }, + { + "start": 24990.96, + "end": 24995.16, + "probability": 0.9991 + }, + { + "start": 24996.38, + "end": 24998.0, + "probability": 0.4995 + }, + { + "start": 24998.16, + "end": 24999.54, + "probability": 0.5525 + }, + { + "start": 24999.68, + "end": 25001.12, + "probability": 0.8721 + }, + { + "start": 25001.62, + "end": 25002.24, + "probability": 0.272 + }, + { + "start": 25002.28, + "end": 25004.64, + "probability": 0.978 + }, + { + "start": 25004.94, + "end": 25005.8, + "probability": 0.5612 + }, + { + "start": 25007.06, + "end": 25010.66, + "probability": 0.9584 + }, + { + "start": 25010.66, + "end": 25015.52, + "probability": 0.9983 + }, + { + "start": 25016.12, + "end": 25019.36, + "probability": 0.7885 + }, + { + "start": 25020.1, + "end": 25022.22, + "probability": 0.9792 + }, + { + "start": 25027.68, + "end": 25030.4, + "probability": 0.9941 + }, + { + "start": 25031.02, + "end": 25034.02, + "probability": 0.9982 + }, + { + "start": 25034.62, + "end": 25037.94, + "probability": 0.9962 + }, + { + "start": 25038.44, + "end": 25044.74, + "probability": 0.9901 + }, + { + "start": 25045.84, + "end": 25046.34, + "probability": 0.8105 + }, + { + "start": 25047.08, + "end": 25051.14, + "probability": 0.9173 + }, + { + "start": 25051.74, + "end": 25052.3, + "probability": 0.8981 + }, + { + "start": 25052.98, + "end": 25054.64, + "probability": 0.9806 + }, + { + "start": 25055.36, + "end": 25060.44, + "probability": 0.9141 + }, + { + "start": 25061.02, + "end": 25063.9, + "probability": 0.9726 + }, + { + "start": 25064.72, + "end": 25070.06, + "probability": 0.9948 + }, + { + "start": 25070.06, + "end": 25076.86, + "probability": 0.9989 + }, + { + "start": 25076.86, + "end": 25081.06, + "probability": 0.9937 + }, + { + "start": 25081.85, + "end": 25085.52, + "probability": 0.9817 + }, + { + "start": 25086.88, + "end": 25088.42, + "probability": 0.0166 + }, + { + "start": 25088.46, + "end": 25089.3, + "probability": 0.8441 + }, + { + "start": 25089.36, + "end": 25093.4, + "probability": 0.8821 + }, + { + "start": 25094.02, + "end": 25098.18, + "probability": 0.9574 + }, + { + "start": 25098.34, + "end": 25099.62, + "probability": 0.7262 + }, + { + "start": 25100.12, + "end": 25100.96, + "probability": 0.8834 + }, + { + "start": 25101.08, + "end": 25101.64, + "probability": 0.9377 + }, + { + "start": 25101.76, + "end": 25102.36, + "probability": 0.925 + }, + { + "start": 25102.48, + "end": 25103.1, + "probability": 0.8761 + }, + { + "start": 25103.46, + "end": 25104.24, + "probability": 0.5491 + }, + { + "start": 25104.38, + "end": 25107.45, + "probability": 0.991 + }, + { + "start": 25107.84, + "end": 25110.82, + "probability": 0.9302 + }, + { + "start": 25110.86, + "end": 25111.74, + "probability": 0.9456 + }, + { + "start": 25111.8, + "end": 25114.96, + "probability": 0.9906 + }, + { + "start": 25116.58, + "end": 25119.74, + "probability": 0.9917 + }, + { + "start": 25119.74, + "end": 25123.26, + "probability": 0.9751 + }, + { + "start": 25123.88, + "end": 25129.3, + "probability": 0.9965 + }, + { + "start": 25130.12, + "end": 25133.74, + "probability": 0.861 + }, + { + "start": 25134.36, + "end": 25135.16, + "probability": 0.9667 + }, + { + "start": 25135.64, + "end": 25138.42, + "probability": 0.9926 + }, + { + "start": 25139.06, + "end": 25142.56, + "probability": 0.9983 + }, + { + "start": 25143.2, + "end": 25147.02, + "probability": 0.9979 + }, + { + "start": 25147.02, + "end": 25151.34, + "probability": 0.9171 + }, + { + "start": 25151.46, + "end": 25152.38, + "probability": 0.9217 + }, + { + "start": 25152.54, + "end": 25155.24, + "probability": 0.9417 + }, + { + "start": 25156.02, + "end": 25156.8, + "probability": 0.412 + }, + { + "start": 25156.94, + "end": 25157.58, + "probability": 0.8397 + }, + { + "start": 25157.94, + "end": 25161.48, + "probability": 0.9854 + }, + { + "start": 25162.0, + "end": 25166.78, + "probability": 0.9897 + }, + { + "start": 25167.52, + "end": 25172.82, + "probability": 0.9867 + }, + { + "start": 25172.9, + "end": 25173.3, + "probability": 0.7913 + }, + { + "start": 25173.66, + "end": 25174.16, + "probability": 0.8184 + }, + { + "start": 25174.24, + "end": 25177.1, + "probability": 0.8093 + }, + { + "start": 25177.1, + "end": 25178.02, + "probability": 0.8114 + }, + { + "start": 25178.66, + "end": 25179.82, + "probability": 0.8626 + }, + { + "start": 25180.26, + "end": 25180.7, + "probability": 0.184 + }, + { + "start": 25180.76, + "end": 25182.28, + "probability": 0.9614 + }, + { + "start": 25182.38, + "end": 25186.1, + "probability": 0.9355 + }, + { + "start": 25186.1, + "end": 25186.72, + "probability": 0.7994 + }, + { + "start": 25187.32, + "end": 25188.68, + "probability": 0.9425 + }, + { + "start": 25188.8, + "end": 25189.38, + "probability": 0.9524 + }, + { + "start": 25190.14, + "end": 25192.52, + "probability": 0.803 + }, + { + "start": 25193.16, + "end": 25193.66, + "probability": 0.9197 + }, + { + "start": 25193.72, + "end": 25195.06, + "probability": 0.9836 + }, + { + "start": 25200.46, + "end": 25200.76, + "probability": 0.0736 + }, + { + "start": 25200.76, + "end": 25200.76, + "probability": 0.0257 + }, + { + "start": 25200.76, + "end": 25201.1, + "probability": 0.4496 + }, + { + "start": 25201.44, + "end": 25203.92, + "probability": 0.6534 + }, + { + "start": 25203.92, + "end": 25205.14, + "probability": 0.8313 + }, + { + "start": 25205.7, + "end": 25207.14, + "probability": 0.5977 + }, + { + "start": 25207.28, + "end": 25212.18, + "probability": 0.8618 + }, + { + "start": 25212.78, + "end": 25213.98, + "probability": 0.9719 + }, + { + "start": 25214.06, + "end": 25214.62, + "probability": 0.5483 + }, + { + "start": 25214.8, + "end": 25216.46, + "probability": 0.9072 + }, + { + "start": 25216.9, + "end": 25218.44, + "probability": 0.7043 + }, + { + "start": 25218.98, + "end": 25222.02, + "probability": 0.972 + }, + { + "start": 25222.36, + "end": 25226.14, + "probability": 0.9807 + }, + { + "start": 25227.26, + "end": 25230.06, + "probability": 0.9604 + }, + { + "start": 25230.14, + "end": 25230.48, + "probability": 0.8279 + }, + { + "start": 25230.54, + "end": 25231.9, + "probability": 0.784 + }, + { + "start": 25232.04, + "end": 25234.14, + "probability": 0.6747 + }, + { + "start": 25234.28, + "end": 25239.8, + "probability": 0.991 + }, + { + "start": 25240.18, + "end": 25242.2, + "probability": 0.9978 + }, + { + "start": 25243.02, + "end": 25245.36, + "probability": 0.8877 + }, + { + "start": 25245.52, + "end": 25245.56, + "probability": 0.0054 + }, + { + "start": 25245.56, + "end": 25246.12, + "probability": 0.1309 + }, + { + "start": 25246.63, + "end": 25249.02, + "probability": 0.304 + }, + { + "start": 25249.1, + "end": 25249.96, + "probability": 0.0666 + }, + { + "start": 25250.1, + "end": 25251.36, + "probability": 0.501 + }, + { + "start": 25251.58, + "end": 25253.32, + "probability": 0.7827 + }, + { + "start": 25253.46, + "end": 25256.0, + "probability": 0.6764 + }, + { + "start": 25256.78, + "end": 25259.16, + "probability": 0.0278 + }, + { + "start": 25259.2, + "end": 25260.04, + "probability": 0.1553 + }, + { + "start": 25260.04, + "end": 25264.46, + "probability": 0.9313 + }, + { + "start": 25264.46, + "end": 25265.48, + "probability": 0.297 + }, + { + "start": 25265.62, + "end": 25265.68, + "probability": 0.0982 + }, + { + "start": 25265.82, + "end": 25266.5, + "probability": 0.0822 + }, + { + "start": 25266.5, + "end": 25268.96, + "probability": 0.7481 + }, + { + "start": 25269.16, + "end": 25270.7, + "probability": 0.9632 + }, + { + "start": 25272.1, + "end": 25272.44, + "probability": 0.9354 + }, + { + "start": 25274.86, + "end": 25276.18, + "probability": 0.4486 + }, + { + "start": 25276.82, + "end": 25278.16, + "probability": 0.5306 + }, + { + "start": 25278.16, + "end": 25278.97, + "probability": 0.688 + }, + { + "start": 25279.46, + "end": 25280.78, + "probability": 0.8677 + }, + { + "start": 25283.12, + "end": 25290.26, + "probability": 0.987 + }, + { + "start": 25290.26, + "end": 25294.4, + "probability": 0.9829 + }, + { + "start": 25294.84, + "end": 25299.48, + "probability": 0.7796 + }, + { + "start": 25299.48, + "end": 25301.99, + "probability": 0.4429 + }, + { + "start": 25302.0, + "end": 25307.56, + "probability": 0.6668 + }, + { + "start": 25308.7, + "end": 25310.82, + "probability": 0.6561 + }, + { + "start": 25311.74, + "end": 25313.34, + "probability": 0.6568 + }, + { + "start": 25313.5, + "end": 25322.44, + "probability": 0.9846 + }, + { + "start": 25322.74, + "end": 25323.56, + "probability": 0.8364 + }, + { + "start": 25323.64, + "end": 25325.46, + "probability": 0.9939 + }, + { + "start": 25325.74, + "end": 25327.12, + "probability": 0.5294 + }, + { + "start": 25327.68, + "end": 25332.62, + "probability": 0.9941 + }, + { + "start": 25332.82, + "end": 25334.64, + "probability": 0.8445 + }, + { + "start": 25336.46, + "end": 25343.06, + "probability": 0.9816 + }, + { + "start": 25343.26, + "end": 25348.7, + "probability": 0.9715 + }, + { + "start": 25349.14, + "end": 25351.16, + "probability": 0.9824 + }, + { + "start": 25351.58, + "end": 25357.68, + "probability": 0.9973 + }, + { + "start": 25358.14, + "end": 25361.31, + "probability": 0.933 + }, + { + "start": 25361.6, + "end": 25361.78, + "probability": 0.572 + }, + { + "start": 25361.92, + "end": 25362.1, + "probability": 0.4115 + }, + { + "start": 25362.16, + "end": 25362.48, + "probability": 0.7893 + }, + { + "start": 25362.48, + "end": 25365.26, + "probability": 0.991 + }, + { + "start": 25365.38, + "end": 25365.64, + "probability": 0.4035 + }, + { + "start": 25365.8, + "end": 25366.98, + "probability": 0.5841 + }, + { + "start": 25367.08, + "end": 25369.42, + "probability": 0.9937 + }, + { + "start": 25369.98, + "end": 25371.54, + "probability": 0.9833 + }, + { + "start": 25372.16, + "end": 25375.44, + "probability": 0.9024 + }, + { + "start": 25375.94, + "end": 25376.92, + "probability": 0.9482 + }, + { + "start": 25377.06, + "end": 25377.86, + "probability": 0.9709 + }, + { + "start": 25378.06, + "end": 25378.76, + "probability": 0.9438 + }, + { + "start": 25381.05, + "end": 25381.72, + "probability": 0.2131 + }, + { + "start": 25381.72, + "end": 25384.28, + "probability": 0.5494 + }, + { + "start": 25384.78, + "end": 25389.08, + "probability": 0.9931 + }, + { + "start": 25389.98, + "end": 25392.28, + "probability": 0.9985 + }, + { + "start": 25393.08, + "end": 25393.28, + "probability": 0.2504 + }, + { + "start": 25393.42, + "end": 25393.9, + "probability": 0.7308 + }, + { + "start": 25393.96, + "end": 25395.26, + "probability": 0.936 + }, + { + "start": 25395.42, + "end": 25402.06, + "probability": 0.9986 + }, + { + "start": 25402.46, + "end": 25403.68, + "probability": 0.7338 + }, + { + "start": 25403.92, + "end": 25405.62, + "probability": 0.7729 + }, + { + "start": 25406.12, + "end": 25408.74, + "probability": 0.9965 + }, + { + "start": 25409.36, + "end": 25411.64, + "probability": 0.994 + }, + { + "start": 25411.8, + "end": 25413.1, + "probability": 0.9777 + }, + { + "start": 25413.32, + "end": 25414.84, + "probability": 0.994 + }, + { + "start": 25415.0, + "end": 25418.44, + "probability": 0.9794 + }, + { + "start": 25418.8, + "end": 25422.1, + "probability": 0.9021 + }, + { + "start": 25422.64, + "end": 25423.62, + "probability": 0.3559 + }, + { + "start": 25424.22, + "end": 25425.9, + "probability": 0.8291 + }, + { + "start": 25425.92, + "end": 25428.44, + "probability": 0.981 + }, + { + "start": 25429.08, + "end": 25430.9, + "probability": 0.8765 + }, + { + "start": 25430.94, + "end": 25433.51, + "probability": 0.98 + }, + { + "start": 25434.04, + "end": 25439.52, + "probability": 0.9994 + }, + { + "start": 25440.08, + "end": 25441.98, + "probability": 0.9691 + }, + { + "start": 25442.5, + "end": 25443.46, + "probability": 0.9934 + }, + { + "start": 25444.24, + "end": 25448.4, + "probability": 0.9609 + }, + { + "start": 25449.82, + "end": 25452.5, + "probability": 0.891 + }, + { + "start": 25453.14, + "end": 25456.82, + "probability": 0.5969 + }, + { + "start": 25456.82, + "end": 25459.08, + "probability": 0.6658 + }, + { + "start": 25459.66, + "end": 25461.76, + "probability": 0.9897 + }, + { + "start": 25462.38, + "end": 25463.63, + "probability": 0.9912 + }, + { + "start": 25464.54, + "end": 25465.28, + "probability": 0.9713 + }, + { + "start": 25465.28, + "end": 25466.0, + "probability": 0.8571 + }, + { + "start": 25466.02, + "end": 25467.3, + "probability": 0.7478 + }, + { + "start": 25467.44, + "end": 25471.58, + "probability": 0.9712 + }, + { + "start": 25471.92, + "end": 25471.92, + "probability": 0.0577 + }, + { + "start": 25471.92, + "end": 25474.87, + "probability": 0.9955 + }, + { + "start": 25475.44, + "end": 25480.14, + "probability": 0.9651 + }, + { + "start": 25481.74, + "end": 25482.02, + "probability": 0.1788 + }, + { + "start": 25482.02, + "end": 25482.02, + "probability": 0.0381 + }, + { + "start": 25482.02, + "end": 25482.82, + "probability": 0.0621 + }, + { + "start": 25483.02, + "end": 25484.38, + "probability": 0.8098 + }, + { + "start": 25484.98, + "end": 25490.94, + "probability": 0.9906 + }, + { + "start": 25491.22, + "end": 25492.0, + "probability": 0.6518 + }, + { + "start": 25492.28, + "end": 25494.08, + "probability": 0.7927 + }, + { + "start": 25494.34, + "end": 25495.54, + "probability": 0.3711 + }, + { + "start": 25501.42, + "end": 25502.94, + "probability": 0.7364 + }, + { + "start": 25503.12, + "end": 25503.46, + "probability": 0.7609 + }, + { + "start": 25504.26, + "end": 25505.22, + "probability": 0.4302 + }, + { + "start": 25505.22, + "end": 25505.22, + "probability": 0.0136 + }, + { + "start": 25505.22, + "end": 25506.46, + "probability": 0.1729 + }, + { + "start": 25506.96, + "end": 25509.12, + "probability": 0.3214 + }, + { + "start": 25509.6, + "end": 25510.22, + "probability": 0.4906 + }, + { + "start": 25519.02, + "end": 25520.18, + "probability": 0.2167 + }, + { + "start": 25520.81, + "end": 25524.2, + "probability": 0.7443 + }, + { + "start": 25525.08, + "end": 25527.54, + "probability": 0.7704 + }, + { + "start": 25529.88, + "end": 25534.76, + "probability": 0.9331 + }, + { + "start": 25534.84, + "end": 25536.58, + "probability": 0.8633 + }, + { + "start": 25537.16, + "end": 25540.92, + "probability": 0.9985 + }, + { + "start": 25541.78, + "end": 25543.9, + "probability": 0.7777 + }, + { + "start": 25544.56, + "end": 25544.9, + "probability": 0.8583 + }, + { + "start": 25544.96, + "end": 25546.08, + "probability": 0.7406 + }, + { + "start": 25546.58, + "end": 25546.92, + "probability": 0.8811 + }, + { + "start": 25547.0, + "end": 25547.52, + "probability": 0.411 + }, + { + "start": 25547.64, + "end": 25547.94, + "probability": 0.9422 + }, + { + "start": 25548.02, + "end": 25549.38, + "probability": 0.7783 + }, + { + "start": 25550.34, + "end": 25551.32, + "probability": 0.8857 + }, + { + "start": 25552.14, + "end": 25553.82, + "probability": 0.5108 + }, + { + "start": 25554.68, + "end": 25556.14, + "probability": 0.8024 + }, + { + "start": 25557.1, + "end": 25559.38, + "probability": 0.8108 + }, + { + "start": 25560.06, + "end": 25564.14, + "probability": 0.9918 + }, + { + "start": 25565.24, + "end": 25567.84, + "probability": 0.994 + }, + { + "start": 25568.74, + "end": 25570.86, + "probability": 0.996 + }, + { + "start": 25571.48, + "end": 25573.84, + "probability": 0.9376 + }, + { + "start": 25574.56, + "end": 25578.16, + "probability": 0.9982 + }, + { + "start": 25578.16, + "end": 25582.86, + "probability": 0.9736 + }, + { + "start": 25583.46, + "end": 25585.28, + "probability": 0.6774 + }, + { + "start": 25586.3, + "end": 25587.65, + "probability": 0.5467 + }, + { + "start": 25588.46, + "end": 25589.88, + "probability": 0.7306 + }, + { + "start": 25590.36, + "end": 25591.72, + "probability": 0.8704 + }, + { + "start": 25592.1, + "end": 25595.58, + "probability": 0.9763 + }, + { + "start": 25595.76, + "end": 25599.3, + "probability": 0.8774 + }, + { + "start": 25599.86, + "end": 25601.48, + "probability": 0.9485 + }, + { + "start": 25602.04, + "end": 25606.06, + "probability": 0.9807 + }, + { + "start": 25606.66, + "end": 25608.62, + "probability": 0.9286 + }, + { + "start": 25608.78, + "end": 25609.84, + "probability": 0.791 + }, + { + "start": 25610.34, + "end": 25613.12, + "probability": 0.9642 + }, + { + "start": 25613.82, + "end": 25617.1, + "probability": 0.8608 + }, + { + "start": 25618.38, + "end": 25622.36, + "probability": 0.6257 + }, + { + "start": 25623.06, + "end": 25627.06, + "probability": 0.9948 + }, + { + "start": 25627.18, + "end": 25628.12, + "probability": 0.7797 + }, + { + "start": 25631.34, + "end": 25633.56, + "probability": 0.8286 + }, + { + "start": 25634.36, + "end": 25635.72, + "probability": 0.0621 + }, + { + "start": 25654.48, + "end": 25655.42, + "probability": 0.1084 + }, + { + "start": 25656.1, + "end": 25660.9, + "probability": 0.7557 + }, + { + "start": 25661.98, + "end": 25662.8, + "probability": 0.7432 + }, + { + "start": 25663.12, + "end": 25665.68, + "probability": 0.8562 + }, + { + "start": 25666.52, + "end": 25667.9, + "probability": 0.9708 + }, + { + "start": 25669.04, + "end": 25670.24, + "probability": 0.9186 + }, + { + "start": 25671.14, + "end": 25675.26, + "probability": 0.968 + }, + { + "start": 25675.56, + "end": 25678.86, + "probability": 0.9841 + }, + { + "start": 25678.86, + "end": 25681.58, + "probability": 0.9976 + }, + { + "start": 25682.04, + "end": 25683.0, + "probability": 0.8856 + }, + { + "start": 25683.48, + "end": 25686.98, + "probability": 0.814 + }, + { + "start": 25687.68, + "end": 25693.02, + "probability": 0.9838 + }, + { + "start": 25693.58, + "end": 25697.61, + "probability": 0.9971 + }, + { + "start": 25698.4, + "end": 25700.08, + "probability": 0.8312 + }, + { + "start": 25700.6, + "end": 25701.36, + "probability": 0.7627 + }, + { + "start": 25702.14, + "end": 25710.44, + "probability": 0.9827 + }, + { + "start": 25710.64, + "end": 25713.8, + "probability": 0.9985 + }, + { + "start": 25714.5, + "end": 25715.06, + "probability": 0.9161 + }, + { + "start": 25716.02, + "end": 25719.44, + "probability": 0.9931 + }, + { + "start": 25720.16, + "end": 25722.28, + "probability": 0.7375 + }, + { + "start": 25722.88, + "end": 25726.0, + "probability": 0.9904 + }, + { + "start": 25726.9, + "end": 25729.76, + "probability": 0.997 + }, + { + "start": 25729.86, + "end": 25730.92, + "probability": 0.7746 + }, + { + "start": 25732.04, + "end": 25734.34, + "probability": 0.9573 + }, + { + "start": 25734.84, + "end": 25735.72, + "probability": 0.6906 + }, + { + "start": 25736.14, + "end": 25741.44, + "probability": 0.9989 + }, + { + "start": 25742.18, + "end": 25745.58, + "probability": 0.974 + }, + { + "start": 25746.04, + "end": 25750.78, + "probability": 0.8379 + }, + { + "start": 25751.18, + "end": 25756.22, + "probability": 0.9924 + }, + { + "start": 25756.36, + "end": 25756.98, + "probability": 0.8378 + }, + { + "start": 25757.36, + "end": 25758.06, + "probability": 0.8889 + }, + { + "start": 25758.8, + "end": 25761.18, + "probability": 0.9823 + }, + { + "start": 25761.96, + "end": 25765.24, + "probability": 0.9694 + }, + { + "start": 25765.44, + "end": 25766.3, + "probability": 0.5467 + }, + { + "start": 25767.14, + "end": 25770.08, + "probability": 0.9744 + }, + { + "start": 25770.72, + "end": 25774.56, + "probability": 0.7968 + }, + { + "start": 25775.22, + "end": 25779.48, + "probability": 0.9906 + }, + { + "start": 25780.14, + "end": 25782.89, + "probability": 0.957 + }, + { + "start": 25784.24, + "end": 25787.74, + "probability": 0.826 + }, + { + "start": 25788.46, + "end": 25793.36, + "probability": 0.9022 + }, + { + "start": 25793.92, + "end": 25795.68, + "probability": 0.7322 + }, + { + "start": 25796.08, + "end": 25798.4, + "probability": 0.9714 + }, + { + "start": 25798.94, + "end": 25801.06, + "probability": 0.938 + }, + { + "start": 25801.68, + "end": 25805.32, + "probability": 0.994 + }, + { + "start": 25805.96, + "end": 25806.98, + "probability": 0.74 + }, + { + "start": 25807.08, + "end": 25807.74, + "probability": 0.5683 + }, + { + "start": 25808.64, + "end": 25812.78, + "probability": 0.8184 + }, + { + "start": 25812.86, + "end": 25813.08, + "probability": 0.4021 + }, + { + "start": 25813.1, + "end": 25814.08, + "probability": 0.658 + }, + { + "start": 25814.84, + "end": 25816.2, + "probability": 0.9512 + }, + { + "start": 25817.18, + "end": 25818.36, + "probability": 0.998 + }, + { + "start": 25818.94, + "end": 25821.98, + "probability": 0.9962 + }, + { + "start": 25822.42, + "end": 25824.62, + "probability": 0.9923 + }, + { + "start": 25824.98, + "end": 25827.1, + "probability": 0.7535 + }, + { + "start": 25828.2, + "end": 25829.98, + "probability": 0.7146 + }, + { + "start": 25830.46, + "end": 25836.16, + "probability": 0.9764 + }, + { + "start": 25836.82, + "end": 25837.62, + "probability": 0.4205 + }, + { + "start": 25838.26, + "end": 25841.43, + "probability": 0.9887 + }, + { + "start": 25842.06, + "end": 25843.32, + "probability": 0.6855 + }, + { + "start": 25845.14, + "end": 25846.8, + "probability": 0.4324 + }, + { + "start": 25846.8, + "end": 25849.48, + "probability": 0.9264 + }, + { + "start": 25850.26, + "end": 25857.6, + "probability": 0.9858 + }, + { + "start": 25857.94, + "end": 25859.34, + "probability": 0.674 + }, + { + "start": 25859.46, + "end": 25860.7, + "probability": 0.2884 + }, + { + "start": 25860.7, + "end": 25861.3, + "probability": 0.5246 + }, + { + "start": 25861.34, + "end": 25861.58, + "probability": 0.1046 + }, + { + "start": 25861.58, + "end": 25863.7, + "probability": 0.4679 + }, + { + "start": 25863.86, + "end": 25865.62, + "probability": 0.3572 + }, + { + "start": 25865.82, + "end": 25865.96, + "probability": 0.5057 + }, + { + "start": 25865.98, + "end": 25868.58, + "probability": 0.9822 + }, + { + "start": 25868.58, + "end": 25869.64, + "probability": 0.7948 + }, + { + "start": 25869.76, + "end": 25870.98, + "probability": 0.9916 + }, + { + "start": 25871.14, + "end": 25872.89, + "probability": 0.7114 + }, + { + "start": 25873.1, + "end": 25874.42, + "probability": 0.7585 + }, + { + "start": 25874.64, + "end": 25876.1, + "probability": 0.7308 + }, + { + "start": 25876.22, + "end": 25876.26, + "probability": 0.4707 + }, + { + "start": 25876.26, + "end": 25878.06, + "probability": 0.6349 + }, + { + "start": 25878.24, + "end": 25878.8, + "probability": 0.3396 + }, + { + "start": 25878.8, + "end": 25880.35, + "probability": 0.8494 + }, + { + "start": 25880.6, + "end": 25882.14, + "probability": 0.6155 + }, + { + "start": 25882.76, + "end": 25883.82, + "probability": 0.2876 + }, + { + "start": 25883.82, + "end": 25884.42, + "probability": 0.5799 + }, + { + "start": 25884.52, + "end": 25886.34, + "probability": 0.977 + }, + { + "start": 25886.4, + "end": 25888.52, + "probability": 0.8265 + }, + { + "start": 25889.2, + "end": 25892.82, + "probability": 0.8923 + }, + { + "start": 25893.54, + "end": 25896.0, + "probability": 0.8417 + }, + { + "start": 25896.02, + "end": 25900.02, + "probability": 0.6779 + }, + { + "start": 25901.44, + "end": 25903.26, + "probability": 0.6273 + }, + { + "start": 25905.04, + "end": 25905.84, + "probability": 0.8118 + }, + { + "start": 25908.06, + "end": 25910.1, + "probability": 0.6376 + }, + { + "start": 25916.38, + "end": 25917.86, + "probability": 0.0512 + }, + { + "start": 25917.86, + "end": 25917.86, + "probability": 0.0069 + }, + { + "start": 25918.96, + "end": 25920.94, + "probability": 0.0529 + }, + { + "start": 25922.7, + "end": 25922.8, + "probability": 0.0278 + }, + { + "start": 25932.0, + "end": 25932.62, + "probability": 0.0357 + }, + { + "start": 25932.62, + "end": 25938.02, + "probability": 0.8274 + }, + { + "start": 25938.56, + "end": 25939.72, + "probability": 0.9521 + }, + { + "start": 25940.12, + "end": 25941.26, + "probability": 0.0958 + }, + { + "start": 25942.62, + "end": 25945.24, + "probability": 0.8309 + }, + { + "start": 25945.34, + "end": 25946.41, + "probability": 0.8875 + }, + { + "start": 25946.76, + "end": 25949.82, + "probability": 0.785 + }, + { + "start": 25949.86, + "end": 25954.4, + "probability": 0.9626 + }, + { + "start": 25954.66, + "end": 25957.38, + "probability": 0.9611 + }, + { + "start": 25958.12, + "end": 25958.46, + "probability": 0.7622 + }, + { + "start": 25958.52, + "end": 25959.4, + "probability": 0.949 + }, + { + "start": 25960.22, + "end": 25962.04, + "probability": 0.9449 + }, + { + "start": 25962.78, + "end": 25964.86, + "probability": 0.8983 + }, + { + "start": 25965.22, + "end": 25968.98, + "probability": 0.9094 + }, + { + "start": 25969.22, + "end": 25970.36, + "probability": 0.3387 + }, + { + "start": 25975.0, + "end": 25975.76, + "probability": 0.0219 + }, + { + "start": 25975.76, + "end": 25975.76, + "probability": 0.0062 + }, + { + "start": 25976.66, + "end": 25980.4, + "probability": 0.053 + }, + { + "start": 25983.02, + "end": 25984.06, + "probability": 0.0176 + }, + { + "start": 25987.08, + "end": 25989.26, + "probability": 0.1829 + }, + { + "start": 25990.02, + "end": 25995.96, + "probability": 0.8965 + }, + { + "start": 25996.14, + "end": 25997.98, + "probability": 0.9795 + }, + { + "start": 25998.26, + "end": 26008.46, + "probability": 0.7192 + }, + { + "start": 26008.72, + "end": 26011.32, + "probability": 0.9842 + }, + { + "start": 26011.96, + "end": 26015.06, + "probability": 0.7957 + }, + { + "start": 26016.32, + "end": 26018.68, + "probability": 0.6474 + }, + { + "start": 26018.84, + "end": 26019.12, + "probability": 0.7099 + }, + { + "start": 26027.62, + "end": 26030.3, + "probability": 0.5174 + }, + { + "start": 26031.84, + "end": 26034.04, + "probability": 0.6332 + }, + { + "start": 26035.38, + "end": 26037.88, + "probability": 0.9642 + }, + { + "start": 26038.62, + "end": 26047.38, + "probability": 0.9958 + }, + { + "start": 26048.02, + "end": 26049.22, + "probability": 0.9238 + }, + { + "start": 26049.8, + "end": 26052.24, + "probability": 0.968 + }, + { + "start": 26052.96, + "end": 26056.9, + "probability": 0.9966 + }, + { + "start": 26057.64, + "end": 26066.66, + "probability": 0.9917 + }, + { + "start": 26068.0, + "end": 26068.1, + "probability": 0.4766 + }, + { + "start": 26068.26, + "end": 26068.58, + "probability": 0.7705 + }, + { + "start": 26068.86, + "end": 26072.28, + "probability": 0.9565 + }, + { + "start": 26072.46, + "end": 26075.58, + "probability": 0.9881 + }, + { + "start": 26076.58, + "end": 26080.54, + "probability": 0.6667 + }, + { + "start": 26081.34, + "end": 26082.82, + "probability": 0.7842 + }, + { + "start": 26084.56, + "end": 26089.36, + "probability": 0.9856 + }, + { + "start": 26090.04, + "end": 26096.06, + "probability": 0.9912 + }, + { + "start": 26096.58, + "end": 26100.44, + "probability": 0.9383 + }, + { + "start": 26100.98, + "end": 26104.98, + "probability": 0.9857 + }, + { + "start": 26105.74, + "end": 26106.06, + "probability": 0.9867 + }, + { + "start": 26108.74, + "end": 26113.18, + "probability": 0.6731 + }, + { + "start": 26113.82, + "end": 26118.96, + "probability": 0.9265 + }, + { + "start": 26120.2, + "end": 26120.78, + "probability": 0.627 + }, + { + "start": 26121.72, + "end": 26124.58, + "probability": 0.9926 + }, + { + "start": 26124.58, + "end": 26129.26, + "probability": 0.9651 + }, + { + "start": 26129.96, + "end": 26132.78, + "probability": 0.8687 + }, + { + "start": 26133.34, + "end": 26137.36, + "probability": 0.9357 + }, + { + "start": 26138.26, + "end": 26140.86, + "probability": 0.9912 + }, + { + "start": 26141.22, + "end": 26144.86, + "probability": 0.9702 + }, + { + "start": 26145.58, + "end": 26154.1, + "probability": 0.9554 + }, + { + "start": 26154.64, + "end": 26156.34, + "probability": 0.8562 + }, + { + "start": 26156.82, + "end": 26159.3, + "probability": 0.9028 + }, + { + "start": 26159.78, + "end": 26164.44, + "probability": 0.9927 + }, + { + "start": 26164.44, + "end": 26169.02, + "probability": 0.9991 + }, + { + "start": 26169.68, + "end": 26173.86, + "probability": 0.9837 + }, + { + "start": 26174.32, + "end": 26180.34, + "probability": 0.9886 + }, + { + "start": 26181.1, + "end": 26181.1, + "probability": 0.3241 + }, + { + "start": 26181.1, + "end": 26187.16, + "probability": 0.9946 + }, + { + "start": 26188.08, + "end": 26195.72, + "probability": 0.995 + }, + { + "start": 26196.26, + "end": 26199.46, + "probability": 0.7853 + }, + { + "start": 26200.1, + "end": 26202.96, + "probability": 0.8249 + }, + { + "start": 26204.0, + "end": 26204.24, + "probability": 0.1709 + }, + { + "start": 26204.34, + "end": 26206.22, + "probability": 0.9811 + }, + { + "start": 26206.7, + "end": 26209.92, + "probability": 0.8906 + }, + { + "start": 26210.28, + "end": 26214.24, + "probability": 0.9712 + }, + { + "start": 26215.44, + "end": 26220.74, + "probability": 0.9813 + }, + { + "start": 26221.16, + "end": 26223.14, + "probability": 0.9715 + }, + { + "start": 26223.68, + "end": 26226.7, + "probability": 0.9897 + }, + { + "start": 26227.2, + "end": 26231.36, + "probability": 0.6957 + }, + { + "start": 26231.84, + "end": 26234.84, + "probability": 0.9301 + }, + { + "start": 26235.2, + "end": 26235.9, + "probability": 0.9617 + }, + { + "start": 26236.16, + "end": 26236.94, + "probability": 0.9841 + }, + { + "start": 26237.28, + "end": 26238.7, + "probability": 0.966 + }, + { + "start": 26239.32, + "end": 26244.92, + "probability": 0.9564 + }, + { + "start": 26245.48, + "end": 26246.74, + "probability": 0.835 + }, + { + "start": 26246.82, + "end": 26247.96, + "probability": 0.9053 + }, + { + "start": 26248.1, + "end": 26250.16, + "probability": 0.8489 + }, + { + "start": 26250.7, + "end": 26255.76, + "probability": 0.9845 + }, + { + "start": 26256.5, + "end": 26258.29, + "probability": 0.988 + }, + { + "start": 26259.02, + "end": 26262.86, + "probability": 0.9885 + }, + { + "start": 26263.88, + "end": 26267.16, + "probability": 0.9995 + }, + { + "start": 26267.16, + "end": 26271.34, + "probability": 0.9998 + }, + { + "start": 26271.8, + "end": 26276.2, + "probability": 0.9989 + }, + { + "start": 26276.2, + "end": 26280.82, + "probability": 0.98 + }, + { + "start": 26282.24, + "end": 26286.5, + "probability": 0.9976 + }, + { + "start": 26286.5, + "end": 26289.82, + "probability": 0.9991 + }, + { + "start": 26290.5, + "end": 26292.4, + "probability": 0.9072 + }, + { + "start": 26293.02, + "end": 26294.94, + "probability": 0.6494 + }, + { + "start": 26295.5, + "end": 26299.42, + "probability": 0.9961 + }, + { + "start": 26300.0, + "end": 26305.14, + "probability": 0.9748 + }, + { + "start": 26305.14, + "end": 26307.4, + "probability": 0.9984 + }, + { + "start": 26307.9, + "end": 26311.32, + "probability": 0.9494 + }, + { + "start": 26311.84, + "end": 26313.64, + "probability": 0.8318 + }, + { + "start": 26314.06, + "end": 26319.94, + "probability": 0.9281 + }, + { + "start": 26319.94, + "end": 26325.42, + "probability": 0.9927 + }, + { + "start": 26325.42, + "end": 26329.36, + "probability": 0.973 + }, + { + "start": 26329.56, + "end": 26330.56, + "probability": 0.977 + }, + { + "start": 26331.56, + "end": 26336.28, + "probability": 0.9854 + }, + { + "start": 26336.76, + "end": 26339.56, + "probability": 0.9971 + }, + { + "start": 26340.04, + "end": 26341.98, + "probability": 0.998 + }, + { + "start": 26342.38, + "end": 26345.14, + "probability": 0.993 + }, + { + "start": 26345.56, + "end": 26348.86, + "probability": 0.999 + }, + { + "start": 26349.44, + "end": 26350.74, + "probability": 0.9761 + }, + { + "start": 26351.2, + "end": 26354.8, + "probability": 0.994 + }, + { + "start": 26355.4, + "end": 26358.3, + "probability": 0.8796 + }, + { + "start": 26359.02, + "end": 26359.4, + "probability": 0.3816 + }, + { + "start": 26359.5, + "end": 26361.38, + "probability": 0.9946 + }, + { + "start": 26361.84, + "end": 26368.2, + "probability": 0.9644 + }, + { + "start": 26368.64, + "end": 26373.84, + "probability": 0.9897 + }, + { + "start": 26374.36, + "end": 26376.84, + "probability": 0.9132 + }, + { + "start": 26377.3, + "end": 26378.76, + "probability": 0.9787 + }, + { + "start": 26379.2, + "end": 26380.66, + "probability": 0.7537 + }, + { + "start": 26381.12, + "end": 26383.52, + "probability": 0.9917 + }, + { + "start": 26384.06, + "end": 26390.18, + "probability": 0.9924 + }, + { + "start": 26390.7, + "end": 26394.9, + "probability": 0.9419 + }, + { + "start": 26395.22, + "end": 26398.86, + "probability": 0.9867 + }, + { + "start": 26398.86, + "end": 26402.52, + "probability": 0.9972 + }, + { + "start": 26403.02, + "end": 26408.2, + "probability": 0.9988 + }, + { + "start": 26408.82, + "end": 26410.3, + "probability": 0.9663 + }, + { + "start": 26411.44, + "end": 26412.94, + "probability": 0.9492 + }, + { + "start": 26413.34, + "end": 26417.86, + "probability": 0.9932 + }, + { + "start": 26417.96, + "end": 26422.14, + "probability": 0.9989 + }, + { + "start": 26422.86, + "end": 26425.74, + "probability": 0.7884 + }, + { + "start": 26425.74, + "end": 26429.14, + "probability": 0.999 + }, + { + "start": 26429.9, + "end": 26431.32, + "probability": 0.8245 + }, + { + "start": 26431.7, + "end": 26432.86, + "probability": 0.9153 + }, + { + "start": 26433.48, + "end": 26435.58, + "probability": 0.7174 + }, + { + "start": 26435.78, + "end": 26436.86, + "probability": 0.8357 + }, + { + "start": 26436.96, + "end": 26440.96, + "probability": 0.9876 + }, + { + "start": 26440.98, + "end": 26444.94, + "probability": 0.996 + }, + { + "start": 26444.94, + "end": 26449.64, + "probability": 0.987 + }, + { + "start": 26450.58, + "end": 26455.36, + "probability": 0.9848 + }, + { + "start": 26455.7, + "end": 26457.18, + "probability": 0.9077 + }, + { + "start": 26457.52, + "end": 26458.52, + "probability": 0.5779 + }, + { + "start": 26458.86, + "end": 26460.14, + "probability": 0.9436 + }, + { + "start": 26460.62, + "end": 26465.46, + "probability": 0.994 + }, + { + "start": 26466.1, + "end": 26470.68, + "probability": 0.9702 + }, + { + "start": 26471.14, + "end": 26472.7, + "probability": 0.8586 + }, + { + "start": 26473.32, + "end": 26477.16, + "probability": 0.9966 + }, + { + "start": 26477.22, + "end": 26477.8, + "probability": 0.8358 + }, + { + "start": 26478.82, + "end": 26481.05, + "probability": 0.8551 + }, + { + "start": 26481.54, + "end": 26486.84, + "probability": 0.9377 + }, + { + "start": 26487.42, + "end": 26488.42, + "probability": 0.4806 + }, + { + "start": 26488.44, + "end": 26488.68, + "probability": 0.7848 + }, + { + "start": 26509.0, + "end": 26509.8, + "probability": 0.8409 + }, + { + "start": 26510.18, + "end": 26510.94, + "probability": 0.8751 + }, + { + "start": 26519.68, + "end": 26522.48, + "probability": 0.8873 + }, + { + "start": 26523.1, + "end": 26523.2, + "probability": 0.9865 + }, + { + "start": 26525.18, + "end": 26526.22, + "probability": 0.7722 + }, + { + "start": 26527.3, + "end": 26528.22, + "probability": 0.8273 + }, + { + "start": 26528.22, + "end": 26529.08, + "probability": 0.951 + }, + { + "start": 26529.14, + "end": 26533.88, + "probability": 0.9957 + }, + { + "start": 26534.96, + "end": 26538.1, + "probability": 0.9656 + }, + { + "start": 26538.38, + "end": 26540.45, + "probability": 0.9943 + }, + { + "start": 26541.28, + "end": 26543.64, + "probability": 0.9983 + }, + { + "start": 26544.44, + "end": 26545.26, + "probability": 0.4568 + }, + { + "start": 26546.0, + "end": 26547.75, + "probability": 0.9915 + }, + { + "start": 26548.16, + "end": 26553.76, + "probability": 0.8853 + }, + { + "start": 26555.46, + "end": 26561.04, + "probability": 0.999 + }, + { + "start": 26561.7, + "end": 26566.62, + "probability": 0.9895 + }, + { + "start": 26566.62, + "end": 26572.36, + "probability": 0.9474 + }, + { + "start": 26572.82, + "end": 26578.94, + "probability": 0.9805 + }, + { + "start": 26579.54, + "end": 26581.22, + "probability": 0.7537 + }, + { + "start": 26581.41, + "end": 26586.62, + "probability": 0.9576 + }, + { + "start": 26587.1, + "end": 26589.96, + "probability": 0.8744 + }, + { + "start": 26590.62, + "end": 26592.9, + "probability": 0.9744 + }, + { + "start": 26594.06, + "end": 26594.7, + "probability": 0.3105 + }, + { + "start": 26594.7, + "end": 26595.2, + "probability": 0.6171 + }, + { + "start": 26595.28, + "end": 26600.48, + "probability": 0.5017 + }, + { + "start": 26601.16, + "end": 26603.76, + "probability": 0.9172 + }, + { + "start": 26604.56, + "end": 26608.5, + "probability": 0.9733 + }, + { + "start": 26609.72, + "end": 26610.86, + "probability": 0.7732 + }, + { + "start": 26610.9, + "end": 26610.9, + "probability": 0.8214 + }, + { + "start": 26610.98, + "end": 26611.98, + "probability": 0.9515 + }, + { + "start": 26612.6, + "end": 26613.28, + "probability": 0.2147 + }, + { + "start": 26613.6, + "end": 26619.09, + "probability": 0.628 + }, + { + "start": 26619.5, + "end": 26621.64, + "probability": 0.9362 + }, + { + "start": 26623.4, + "end": 26624.08, + "probability": 0.9541 + }, + { + "start": 26624.96, + "end": 26628.92, + "probability": 0.9985 + }, + { + "start": 26629.0, + "end": 26631.18, + "probability": 0.999 + }, + { + "start": 26631.98, + "end": 26633.76, + "probability": 0.9612 + }, + { + "start": 26634.32, + "end": 26637.08, + "probability": 0.9943 + }, + { + "start": 26637.93, + "end": 26639.42, + "probability": 0.9839 + }, + { + "start": 26639.82, + "end": 26641.44, + "probability": 0.987 + }, + { + "start": 26643.36, + "end": 26645.08, + "probability": 0.9077 + }, + { + "start": 26645.3, + "end": 26646.74, + "probability": 0.8967 + }, + { + "start": 26647.58, + "end": 26649.6, + "probability": 0.8813 + }, + { + "start": 26649.62, + "end": 26653.64, + "probability": 0.9946 + }, + { + "start": 26654.56, + "end": 26655.84, + "probability": 0.9467 + }, + { + "start": 26655.96, + "end": 26660.96, + "probability": 0.981 + }, + { + "start": 26661.58, + "end": 26663.58, + "probability": 0.9995 + }, + { + "start": 26664.46, + "end": 26666.88, + "probability": 0.9819 + }, + { + "start": 26667.04, + "end": 26667.63, + "probability": 0.9292 + }, + { + "start": 26668.54, + "end": 26671.76, + "probability": 0.9938 + }, + { + "start": 26671.76, + "end": 26674.98, + "probability": 0.9966 + }, + { + "start": 26675.52, + "end": 26676.5, + "probability": 0.9873 + }, + { + "start": 26676.6, + "end": 26679.34, + "probability": 0.9416 + }, + { + "start": 26679.46, + "end": 26680.2, + "probability": 0.6898 + }, + { + "start": 26680.24, + "end": 26681.56, + "probability": 0.9863 + }, + { + "start": 26682.04, + "end": 26683.2, + "probability": 0.9934 + }, + { + "start": 26683.72, + "end": 26684.68, + "probability": 0.9616 + }, + { + "start": 26684.8, + "end": 26688.68, + "probability": 0.988 + }, + { + "start": 26689.44, + "end": 26694.76, + "probability": 0.9969 + }, + { + "start": 26694.76, + "end": 26696.64, + "probability": 0.7698 + }, + { + "start": 26697.28, + "end": 26699.32, + "probability": 0.9873 + }, + { + "start": 26699.94, + "end": 26703.42, + "probability": 0.9819 + }, + { + "start": 26703.86, + "end": 26706.32, + "probability": 0.9894 + }, + { + "start": 26706.86, + "end": 26710.2, + "probability": 0.9912 + }, + { + "start": 26711.16, + "end": 26717.3, + "probability": 0.9961 + }, + { + "start": 26718.22, + "end": 26719.88, + "probability": 0.8232 + }, + { + "start": 26720.1, + "end": 26721.66, + "probability": 0.9956 + }, + { + "start": 26722.28, + "end": 26723.32, + "probability": 0.9723 + }, + { + "start": 26723.48, + "end": 26724.6, + "probability": 0.7965 + }, + { + "start": 26725.04, + "end": 26726.82, + "probability": 0.8986 + }, + { + "start": 26727.56, + "end": 26730.94, + "probability": 0.9753 + }, + { + "start": 26731.32, + "end": 26735.74, + "probability": 0.9331 + }, + { + "start": 26735.84, + "end": 26738.58, + "probability": 0.9804 + }, + { + "start": 26738.76, + "end": 26739.66, + "probability": 0.9401 + }, + { + "start": 26740.2, + "end": 26741.8, + "probability": 0.757 + }, + { + "start": 26742.32, + "end": 26746.48, + "probability": 0.9981 + }, + { + "start": 26747.24, + "end": 26751.58, + "probability": 0.9504 + }, + { + "start": 26751.6, + "end": 26753.32, + "probability": 0.9971 + }, + { + "start": 26754.08, + "end": 26756.68, + "probability": 0.9844 + }, + { + "start": 26757.32, + "end": 26757.96, + "probability": 0.4683 + }, + { + "start": 26758.08, + "end": 26759.6, + "probability": 0.9806 + }, + { + "start": 26759.72, + "end": 26760.7, + "probability": 0.7733 + }, + { + "start": 26761.78, + "end": 26762.52, + "probability": 0.1587 + }, + { + "start": 26762.8, + "end": 26762.8, + "probability": 0.3437 + }, + { + "start": 26762.8, + "end": 26763.38, + "probability": 0.5144 + }, + { + "start": 26764.06, + "end": 26765.3, + "probability": 0.7932 + }, + { + "start": 26765.44, + "end": 26766.21, + "probability": 0.8765 + }, + { + "start": 26766.56, + "end": 26766.72, + "probability": 0.0379 + }, + { + "start": 26768.8, + "end": 26768.82, + "probability": 0.0263 + }, + { + "start": 26768.82, + "end": 26768.82, + "probability": 0.1714 + }, + { + "start": 26768.82, + "end": 26768.82, + "probability": 0.0093 + }, + { + "start": 26768.82, + "end": 26768.82, + "probability": 0.1216 + }, + { + "start": 26768.82, + "end": 26771.6, + "probability": 0.2952 + }, + { + "start": 26773.58, + "end": 26777.2, + "probability": 0.7057 + }, + { + "start": 26777.66, + "end": 26777.82, + "probability": 0.0521 + }, + { + "start": 26777.82, + "end": 26782.1, + "probability": 0.9305 + }, + { + "start": 26782.16, + "end": 26783.16, + "probability": 0.9084 + }, + { + "start": 26783.4, + "end": 26784.81, + "probability": 0.8667 + }, + { + "start": 26785.48, + "end": 26787.58, + "probability": 0.842 + }, + { + "start": 26787.64, + "end": 26788.48, + "probability": 0.4739 + }, + { + "start": 26788.78, + "end": 26791.26, + "probability": 0.9126 + }, + { + "start": 26791.88, + "end": 26792.78, + "probability": 0.8487 + }, + { + "start": 26793.24, + "end": 26796.04, + "probability": 0.9856 + }, + { + "start": 26796.14, + "end": 26797.44, + "probability": 0.9771 + }, + { + "start": 26797.98, + "end": 26800.76, + "probability": 0.9868 + }, + { + "start": 26801.12, + "end": 26804.76, + "probability": 0.9939 + }, + { + "start": 26805.18, + "end": 26806.56, + "probability": 0.944 + }, + { + "start": 26806.64, + "end": 26809.3, + "probability": 0.9854 + }, + { + "start": 26809.7, + "end": 26811.48, + "probability": 0.1873 + }, + { + "start": 26811.62, + "end": 26815.08, + "probability": 0.9542 + }, + { + "start": 26815.24, + "end": 26817.98, + "probability": 0.9893 + }, + { + "start": 26818.18, + "end": 26818.44, + "probability": 0.3846 + }, + { + "start": 26818.5, + "end": 26819.14, + "probability": 0.4094 + }, + { + "start": 26819.2, + "end": 26820.18, + "probability": 0.9237 + }, + { + "start": 26820.4, + "end": 26821.1, + "probability": 0.4103 + }, + { + "start": 26821.5, + "end": 26822.22, + "probability": 0.6848 + }, + { + "start": 26822.36, + "end": 26825.92, + "probability": 0.8106 + }, + { + "start": 26827.24, + "end": 26827.34, + "probability": 0.0131 + }, + { + "start": 26827.34, + "end": 26827.34, + "probability": 0.0189 + }, + { + "start": 26827.34, + "end": 26827.34, + "probability": 0.1809 + }, + { + "start": 26827.34, + "end": 26828.02, + "probability": 0.3401 + }, + { + "start": 26828.76, + "end": 26830.48, + "probability": 0.9895 + }, + { + "start": 26831.04, + "end": 26834.0, + "probability": 0.9939 + }, + { + "start": 26834.24, + "end": 26834.72, + "probability": 0.8016 + }, + { + "start": 26836.54, + "end": 26837.42, + "probability": 0.0463 + }, + { + "start": 26837.76, + "end": 26838.52, + "probability": 0.2563 + }, + { + "start": 26838.52, + "end": 26839.68, + "probability": 0.0617 + }, + { + "start": 26839.68, + "end": 26839.68, + "probability": 0.384 + }, + { + "start": 26839.68, + "end": 26840.76, + "probability": 0.6039 + }, + { + "start": 26840.76, + "end": 26842.3, + "probability": 0.8555 + }, + { + "start": 26842.3, + "end": 26842.37, + "probability": 0.7879 + }, + { + "start": 26843.66, + "end": 26844.64, + "probability": 0.7382 + }, + { + "start": 26844.72, + "end": 26846.28, + "probability": 0.5393 + }, + { + "start": 26847.22, + "end": 26847.74, + "probability": 0.0542 + }, + { + "start": 26847.98, + "end": 26848.18, + "probability": 0.0019 + }, + { + "start": 26848.74, + "end": 26849.1, + "probability": 0.1321 + }, + { + "start": 26849.1, + "end": 26849.68, + "probability": 0.0794 + }, + { + "start": 26850.02, + "end": 26850.02, + "probability": 0.1285 + }, + { + "start": 26850.04, + "end": 26850.04, + "probability": 0.2468 + }, + { + "start": 26850.04, + "end": 26853.94, + "probability": 0.9119 + }, + { + "start": 26854.1, + "end": 26856.46, + "probability": 0.7845 + }, + { + "start": 26856.92, + "end": 26857.98, + "probability": 0.362 + }, + { + "start": 26857.98, + "end": 26858.54, + "probability": 0.1581 + }, + { + "start": 26858.54, + "end": 26859.22, + "probability": 0.3625 + }, + { + "start": 26859.22, + "end": 26860.53, + "probability": 0.6683 + }, + { + "start": 26860.72, + "end": 26862.78, + "probability": 0.9866 + }, + { + "start": 26862.86, + "end": 26866.32, + "probability": 0.9932 + }, + { + "start": 26866.5, + "end": 26867.76, + "probability": 0.8023 + }, + { + "start": 26867.88, + "end": 26874.54, + "probability": 0.9141 + }, + { + "start": 26875.05, + "end": 26875.92, + "probability": 0.1698 + }, + { + "start": 26876.24, + "end": 26876.24, + "probability": 0.5307 + }, + { + "start": 26876.26, + "end": 26877.94, + "probability": 0.4007 + }, + { + "start": 26878.32, + "end": 26878.78, + "probability": 0.499 + }, + { + "start": 26878.78, + "end": 26882.96, + "probability": 0.1272 + }, + { + "start": 26883.62, + "end": 26884.74, + "probability": 0.4305 + }, + { + "start": 26890.96, + "end": 26891.84, + "probability": 0.2222 + }, + { + "start": 26895.74, + "end": 26896.86, + "probability": 0.0009 + }, + { + "start": 26897.92, + "end": 26898.64, + "probability": 0.0551 + }, + { + "start": 26898.64, + "end": 26899.9, + "probability": 0.0969 + }, + { + "start": 26900.08, + "end": 26900.52, + "probability": 0.1114 + }, + { + "start": 26901.26, + "end": 26901.26, + "probability": 0.0434 + }, + { + "start": 26904.34, + "end": 26906.16, + "probability": 0.4542 + }, + { + "start": 26906.74, + "end": 26912.42, + "probability": 0.0105 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.28, + "end": 26937.33, + "probability": 0.5115 + }, + { + "start": 26937.74, + "end": 26939.64, + "probability": 0.9433 + }, + { + "start": 26940.1, + "end": 26942.58, + "probability": 0.8345 + }, + { + "start": 26943.04, + "end": 26945.84, + "probability": 0.8076 + }, + { + "start": 26945.84, + "end": 26946.37, + "probability": 0.9635 + }, + { + "start": 26947.13, + "end": 26947.13, + "probability": 0.009 + }, + { + "start": 26947.13, + "end": 26947.13, + "probability": 0.0256 + }, + { + "start": 26947.13, + "end": 26947.13, + "probability": 0.1289 + }, + { + "start": 26947.13, + "end": 26947.13, + "probability": 0.0223 + }, + { + "start": 26947.13, + "end": 26947.13, + "probability": 0.3734 + }, + { + "start": 26947.13, + "end": 26947.13, + "probability": 0.4548 + }, + { + "start": 26947.13, + "end": 26950.73, + "probability": 0.859 + }, + { + "start": 26950.83, + "end": 26955.31, + "probability": 0.9611 + }, + { + "start": 26955.83, + "end": 26955.83, + "probability": 0.045 + }, + { + "start": 26955.83, + "end": 26957.95, + "probability": 0.9984 + }, + { + "start": 26958.49, + "end": 26958.51, + "probability": 0.4159 + }, + { + "start": 26958.51, + "end": 26959.93, + "probability": 0.9814 + }, + { + "start": 26960.31, + "end": 26962.73, + "probability": 0.9733 + }, + { + "start": 26962.89, + "end": 26962.89, + "probability": 0.0785 + }, + { + "start": 26962.89, + "end": 26967.07, + "probability": 0.988 + }, + { + "start": 26967.59, + "end": 26967.59, + "probability": 0.3957 + }, + { + "start": 26967.59, + "end": 26972.83, + "probability": 0.9719 + }, + { + "start": 26972.83, + "end": 26975.87, + "probability": 0.721 + }, + { + "start": 26975.99, + "end": 26977.03, + "probability": 0.4919 + }, + { + "start": 26977.13, + "end": 26977.45, + "probability": 0.1012 + }, + { + "start": 26977.55, + "end": 26977.63, + "probability": 0.0464 + }, + { + "start": 26977.63, + "end": 26982.35, + "probability": 0.9954 + }, + { + "start": 26982.59, + "end": 26984.89, + "probability": 0.9821 + }, + { + "start": 26985.01, + "end": 26985.83, + "probability": 0.6322 + }, + { + "start": 26986.21, + "end": 26988.09, + "probability": 0.8942 + }, + { + "start": 26988.09, + "end": 26991.15, + "probability": 0.899 + }, + { + "start": 26991.59, + "end": 26991.67, + "probability": 0.0306 + }, + { + "start": 26991.67, + "end": 26991.67, + "probability": 0.2975 + }, + { + "start": 26991.67, + "end": 26993.61, + "probability": 0.8584 + }, + { + "start": 26993.77, + "end": 26996.89, + "probability": 0.0536 + }, + { + "start": 26997.31, + "end": 26997.73, + "probability": 0.0005 + }, + { + "start": 26997.73, + "end": 26998.13, + "probability": 0.0879 + }, + { + "start": 26998.97, + "end": 27000.51, + "probability": 0.0602 + }, + { + "start": 27001.05, + "end": 27001.19, + "probability": 0.0289 + }, + { + "start": 27001.19, + "end": 27001.19, + "probability": 0.0457 + }, + { + "start": 27001.19, + "end": 27001.19, + "probability": 0.0782 + }, + { + "start": 27001.19, + "end": 27001.19, + "probability": 0.0219 + }, + { + "start": 27001.19, + "end": 27001.61, + "probability": 0.0974 + }, + { + "start": 27001.79, + "end": 27002.85, + "probability": 0.5677 + }, + { + "start": 27003.51, + "end": 27003.99, + "probability": 0.654 + }, + { + "start": 27004.05, + "end": 27008.49, + "probability": 0.8356 + }, + { + "start": 27008.85, + "end": 27009.71, + "probability": 0.969 + }, + { + "start": 27009.81, + "end": 27010.45, + "probability": 0.393 + }, + { + "start": 27010.45, + "end": 27013.33, + "probability": 0.0391 + }, + { + "start": 27018.45, + "end": 27019.71, + "probability": 0.0311 + }, + { + "start": 27019.73, + "end": 27020.97, + "probability": 0.0577 + }, + { + "start": 27020.97, + "end": 27023.05, + "probability": 0.1669 + }, + { + "start": 27028.39, + "end": 27031.37, + "probability": 0.0631 + }, + { + "start": 27032.59, + "end": 27034.43, + "probability": 0.1458 + }, + { + "start": 27034.47, + "end": 27034.61, + "probability": 0.0007 + }, + { + "start": 27037.45, + "end": 27038.53, + "probability": 0.0082 + }, + { + "start": 27040.52, + "end": 27043.79, + "probability": 0.1721 + }, + { + "start": 27043.79, + "end": 27045.85, + "probability": 0.095 + }, + { + "start": 27046.29, + "end": 27048.45, + "probability": 0.0156 + }, + { + "start": 27048.47, + "end": 27048.55, + "probability": 0.0219 + }, + { + "start": 27048.57, + "end": 27052.33, + "probability": 0.0187 + }, + { + "start": 27055.97, + "end": 27056.49, + "probability": 0.1048 + }, + { + "start": 27057.41, + "end": 27062.11, + "probability": 0.045 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.0, + "end": 27080.0, + "probability": 0.0 + }, + { + "start": 27080.12, + "end": 27081.18, + "probability": 0.0293 + }, + { + "start": 27081.18, + "end": 27081.32, + "probability": 0.2677 + }, + { + "start": 27081.32, + "end": 27086.06, + "probability": 0.0654 + }, + { + "start": 27089.04, + "end": 27089.88, + "probability": 0.0231 + }, + { + "start": 27089.88, + "end": 27091.22, + "probability": 0.0428 + }, + { + "start": 27091.56, + "end": 27092.32, + "probability": 0.1496 + }, + { + "start": 27092.32, + "end": 27092.78, + "probability": 0.1322 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.0, + "end": 27232.0, + "probability": 0.0 + }, + { + "start": 27232.32, + "end": 27233.08, + "probability": 0.2286 + }, + { + "start": 27233.08, + "end": 27234.6, + "probability": 0.7028 + }, + { + "start": 27255.58, + "end": 27257.06, + "probability": 0.6587 + }, + { + "start": 27258.5, + "end": 27261.86, + "probability": 0.9028 + }, + { + "start": 27262.82, + "end": 27263.6, + "probability": 0.8938 + }, + { + "start": 27263.8, + "end": 27264.14, + "probability": 0.5217 + }, + { + "start": 27264.16, + "end": 27265.0, + "probability": 0.8584 + }, + { + "start": 27265.02, + "end": 27266.62, + "probability": 0.995 + }, + { + "start": 27267.2, + "end": 27270.68, + "probability": 0.8 + }, + { + "start": 27270.78, + "end": 27277.26, + "probability": 0.9958 + }, + { + "start": 27277.26, + "end": 27281.1, + "probability": 0.9907 + }, + { + "start": 27281.52, + "end": 27286.68, + "probability": 0.9985 + }, + { + "start": 27287.38, + "end": 27294.1, + "probability": 0.989 + }, + { + "start": 27294.64, + "end": 27295.26, + "probability": 0.88 + }, + { + "start": 27295.62, + "end": 27299.64, + "probability": 0.8965 + }, + { + "start": 27300.14, + "end": 27304.18, + "probability": 0.9728 + }, + { + "start": 27305.1, + "end": 27308.74, + "probability": 0.9947 + }, + { + "start": 27308.74, + "end": 27313.58, + "probability": 0.9948 + }, + { + "start": 27313.58, + "end": 27317.16, + "probability": 0.9998 + }, + { + "start": 27317.84, + "end": 27322.14, + "probability": 0.9977 + }, + { + "start": 27322.14, + "end": 27325.42, + "probability": 0.993 + }, + { + "start": 27326.76, + "end": 27329.66, + "probability": 0.9819 + }, + { + "start": 27329.74, + "end": 27330.18, + "probability": 0.9074 + }, + { + "start": 27330.52, + "end": 27331.08, + "probability": 0.9618 + }, + { + "start": 27331.18, + "end": 27335.54, + "probability": 0.9957 + }, + { + "start": 27335.92, + "end": 27338.4, + "probability": 0.9888 + }, + { + "start": 27339.26, + "end": 27342.26, + "probability": 0.8303 + }, + { + "start": 27342.48, + "end": 27343.76, + "probability": 0.9214 + }, + { + "start": 27344.22, + "end": 27346.52, + "probability": 0.3581 + }, + { + "start": 27347.08, + "end": 27350.28, + "probability": 0.7133 + }, + { + "start": 27350.28, + "end": 27353.64, + "probability": 0.9902 + }, + { + "start": 27354.16, + "end": 27357.82, + "probability": 0.9968 + }, + { + "start": 27358.86, + "end": 27359.22, + "probability": 0.7519 + }, + { + "start": 27359.28, + "end": 27364.74, + "probability": 0.9876 + }, + { + "start": 27365.12, + "end": 27366.68, + "probability": 0.9551 + }, + { + "start": 27367.3, + "end": 27370.5, + "probability": 0.9948 + }, + { + "start": 27371.0, + "end": 27373.4, + "probability": 0.9935 + }, + { + "start": 27373.8, + "end": 27375.22, + "probability": 0.9552 + }, + { + "start": 27375.68, + "end": 27376.04, + "probability": 0.9242 + }, + { + "start": 27377.22, + "end": 27381.34, + "probability": 0.9885 + }, + { + "start": 27381.88, + "end": 27383.12, + "probability": 0.9775 + }, + { + "start": 27383.6, + "end": 27385.12, + "probability": 0.8929 + }, + { + "start": 27385.6, + "end": 27386.34, + "probability": 0.5412 + }, + { + "start": 27386.52, + "end": 27387.2, + "probability": 0.9926 + }, + { + "start": 27387.58, + "end": 27390.26, + "probability": 0.908 + }, + { + "start": 27391.92, + "end": 27393.72, + "probability": 0.9767 + }, + { + "start": 27394.34, + "end": 27400.98, + "probability": 0.9954 + }, + { + "start": 27401.54, + "end": 27402.56, + "probability": 0.6506 + }, + { + "start": 27403.12, + "end": 27407.26, + "probability": 0.9975 + }, + { + "start": 27407.88, + "end": 27408.2, + "probability": 0.0989 + }, + { + "start": 27408.72, + "end": 27409.94, + "probability": 0.7251 + }, + { + "start": 27410.74, + "end": 27411.46, + "probability": 0.8124 + }, + { + "start": 27412.2, + "end": 27414.94, + "probability": 0.9924 + }, + { + "start": 27415.8, + "end": 27418.7, + "probability": 0.8259 + }, + { + "start": 27419.12, + "end": 27422.46, + "probability": 0.9949 + }, + { + "start": 27423.1, + "end": 27425.2, + "probability": 0.9966 + }, + { + "start": 27426.4, + "end": 27433.4, + "probability": 0.9917 + }, + { + "start": 27434.18, + "end": 27439.18, + "probability": 0.9946 + }, + { + "start": 27439.64, + "end": 27440.9, + "probability": 0.7663 + }, + { + "start": 27441.4, + "end": 27441.7, + "probability": 0.1785 + }, + { + "start": 27441.72, + "end": 27442.26, + "probability": 0.0293 + }, + { + "start": 27442.76, + "end": 27444.06, + "probability": 0.9797 + }, + { + "start": 27445.1, + "end": 27445.78, + "probability": 0.9238 + }, + { + "start": 27446.3, + "end": 27451.14, + "probability": 0.979 + }, + { + "start": 27451.14, + "end": 27455.82, + "probability": 0.9937 + }, + { + "start": 27456.8, + "end": 27457.86, + "probability": 0.9984 + }, + { + "start": 27469.96, + "end": 27470.32, + "probability": 0.311 + }, + { + "start": 27471.5, + "end": 27476.18, + "probability": 0.9704 + }, + { + "start": 27476.8, + "end": 27478.04, + "probability": 0.8482 + }, + { + "start": 27478.06, + "end": 27479.6, + "probability": 0.7324 + }, + { + "start": 27480.04, + "end": 27482.58, + "probability": 0.9913 + }, + { + "start": 27483.62, + "end": 27485.34, + "probability": 0.8881 + }, + { + "start": 27486.26, + "end": 27490.02, + "probability": 0.9802 + }, + { + "start": 27492.1, + "end": 27492.1, + "probability": 0.1123 + }, + { + "start": 27492.1, + "end": 27493.4, + "probability": 0.905 + }, + { + "start": 27494.02, + "end": 27496.0, + "probability": 0.9717 + }, + { + "start": 27497.28, + "end": 27501.6, + "probability": 0.9783 + }, + { + "start": 27502.14, + "end": 27506.28, + "probability": 0.9985 + }, + { + "start": 27507.0, + "end": 27507.16, + "probability": 0.4259 + }, + { + "start": 27507.48, + "end": 27507.98, + "probability": 0.4945 + }, + { + "start": 27508.14, + "end": 27511.66, + "probability": 0.9657 + }, + { + "start": 27512.22, + "end": 27512.9, + "probability": 0.8959 + }, + { + "start": 27513.58, + "end": 27514.5, + "probability": 0.966 + }, + { + "start": 27514.72, + "end": 27517.04, + "probability": 0.9948 + }, + { + "start": 27517.04, + "end": 27520.5, + "probability": 0.9699 + }, + { + "start": 27521.2, + "end": 27524.1, + "probability": 0.9703 + }, + { + "start": 27525.12, + "end": 27528.94, + "probability": 0.9144 + }, + { + "start": 27529.52, + "end": 27530.62, + "probability": 0.8682 + }, + { + "start": 27530.94, + "end": 27531.54, + "probability": 0.8068 + }, + { + "start": 27531.94, + "end": 27533.57, + "probability": 0.9951 + }, + { + "start": 27534.04, + "end": 27537.08, + "probability": 0.9572 + }, + { + "start": 27537.8, + "end": 27538.92, + "probability": 0.8938 + }, + { + "start": 27540.56, + "end": 27542.48, + "probability": 0.9632 + }, + { + "start": 27542.98, + "end": 27545.5, + "probability": 0.9906 + }, + { + "start": 27546.24, + "end": 27546.94, + "probability": 0.9911 + }, + { + "start": 27547.46, + "end": 27549.08, + "probability": 0.9971 + }, + { + "start": 27549.54, + "end": 27552.22, + "probability": 0.9571 + }, + { + "start": 27552.22, + "end": 27554.36, + "probability": 0.999 + }, + { + "start": 27555.02, + "end": 27556.82, + "probability": 0.9976 + }, + { + "start": 27557.26, + "end": 27560.2, + "probability": 0.9958 + }, + { + "start": 27561.02, + "end": 27565.14, + "probability": 0.9644 + }, + { + "start": 27566.06, + "end": 27567.68, + "probability": 0.9994 + }, + { + "start": 27568.58, + "end": 27574.24, + "probability": 0.8693 + }, + { + "start": 27575.2, + "end": 27577.2, + "probability": 0.9395 + }, + { + "start": 27577.96, + "end": 27581.22, + "probability": 0.9754 + }, + { + "start": 27581.74, + "end": 27582.52, + "probability": 0.3145 + }, + { + "start": 27584.1, + "end": 27587.63, + "probability": 0.4712 + }, + { + "start": 27588.22, + "end": 27590.88, + "probability": 0.9451 + }, + { + "start": 27591.56, + "end": 27592.38, + "probability": 0.9626 + }, + { + "start": 27592.86, + "end": 27596.42, + "probability": 0.9057 + }, + { + "start": 27597.32, + "end": 27599.6, + "probability": 0.9481 + }, + { + "start": 27600.26, + "end": 27603.18, + "probability": 0.9907 + }, + { + "start": 27603.62, + "end": 27604.44, + "probability": 0.8449 + }, + { + "start": 27604.84, + "end": 27608.42, + "probability": 0.8752 + }, + { + "start": 27609.88, + "end": 27612.18, + "probability": 0.9246 + }, + { + "start": 27612.18, + "end": 27615.52, + "probability": 0.9908 + }, + { + "start": 27616.26, + "end": 27618.94, + "probability": 0.9971 + }, + { + "start": 27619.42, + "end": 27622.22, + "probability": 0.9911 + }, + { + "start": 27622.7, + "end": 27623.18, + "probability": 0.7557 + }, + { + "start": 27623.54, + "end": 27624.5, + "probability": 0.9479 + }, + { + "start": 27624.94, + "end": 27627.24, + "probability": 0.9743 + }, + { + "start": 27627.82, + "end": 27630.88, + "probability": 0.998 + }, + { + "start": 27632.24, + "end": 27636.24, + "probability": 0.9989 + }, + { + "start": 27636.72, + "end": 27639.14, + "probability": 0.7762 + }, + { + "start": 27639.64, + "end": 27642.92, + "probability": 0.9806 + }, + { + "start": 27643.36, + "end": 27644.98, + "probability": 0.9215 + }, + { + "start": 27645.52, + "end": 27648.72, + "probability": 0.9642 + }, + { + "start": 27649.14, + "end": 27650.46, + "probability": 0.9176 + }, + { + "start": 27651.14, + "end": 27652.26, + "probability": 0.9607 + }, + { + "start": 27652.72, + "end": 27653.64, + "probability": 0.9812 + }, + { + "start": 27654.1, + "end": 27657.4, + "probability": 0.988 + }, + { + "start": 27657.62, + "end": 27660.26, + "probability": 0.9819 + }, + { + "start": 27660.86, + "end": 27662.66, + "probability": 0.5387 + }, + { + "start": 27663.86, + "end": 27665.2, + "probability": 0.9683 + }, + { + "start": 27665.7, + "end": 27668.12, + "probability": 0.9881 + }, + { + "start": 27668.16, + "end": 27668.84, + "probability": 0.7953 + }, + { + "start": 27669.2, + "end": 27672.78, + "probability": 0.9727 + }, + { + "start": 27673.14, + "end": 27673.9, + "probability": 0.521 + }, + { + "start": 27674.32, + "end": 27677.96, + "probability": 0.9128 + }, + { + "start": 27678.32, + "end": 27681.18, + "probability": 0.9313 + }, + { + "start": 27681.68, + "end": 27683.54, + "probability": 0.7423 + }, + { + "start": 27683.9, + "end": 27684.54, + "probability": 0.992 + }, + { + "start": 27685.8, + "end": 27688.76, + "probability": 0.8331 + }, + { + "start": 27689.52, + "end": 27689.88, + "probability": 0.9341 + }, + { + "start": 27692.18, + "end": 27694.66, + "probability": 0.9012 + }, + { + "start": 27695.48, + "end": 27696.99, + "probability": 0.6331 + }, + { + "start": 27698.42, + "end": 27701.08, + "probability": 0.6846 + }, + { + "start": 27701.74, + "end": 27703.72, + "probability": 0.9163 + }, + { + "start": 27703.74, + "end": 27706.62, + "probability": 0.8339 + }, + { + "start": 27706.74, + "end": 27708.38, + "probability": 0.7855 + }, + { + "start": 27709.06, + "end": 27711.24, + "probability": 0.9589 + }, + { + "start": 27711.97, + "end": 27714.4, + "probability": 0.4615 + }, + { + "start": 27715.46, + "end": 27718.6, + "probability": 0.9043 + }, + { + "start": 27718.9, + "end": 27719.68, + "probability": 0.8636 + }, + { + "start": 27721.58, + "end": 27726.76, + "probability": 0.1126 + }, + { + "start": 27737.68, + "end": 27738.84, + "probability": 0.1269 + }, + { + "start": 27740.18, + "end": 27740.94, + "probability": 0.6201 + }, + { + "start": 27742.64, + "end": 27748.94, + "probability": 0.9823 + }, + { + "start": 27751.56, + "end": 27759.34, + "probability": 0.9948 + }, + { + "start": 27759.42, + "end": 27760.96, + "probability": 0.9781 + }, + { + "start": 27761.36, + "end": 27762.46, + "probability": 0.6348 + }, + { + "start": 27763.4, + "end": 27765.96, + "probability": 0.9995 + }, + { + "start": 27767.06, + "end": 27771.24, + "probability": 0.9953 + }, + { + "start": 27771.86, + "end": 27774.02, + "probability": 0.9481 + }, + { + "start": 27774.56, + "end": 27775.38, + "probability": 0.9413 + }, + { + "start": 27775.56, + "end": 27776.12, + "probability": 0.9093 + }, + { + "start": 27776.46, + "end": 27777.44, + "probability": 0.7753 + }, + { + "start": 27777.58, + "end": 27778.64, + "probability": 0.8025 + }, + { + "start": 27778.76, + "end": 27779.8, + "probability": 0.835 + }, + { + "start": 27780.86, + "end": 27785.6, + "probability": 0.9839 + }, + { + "start": 27785.6, + "end": 27786.78, + "probability": 0.8767 + }, + { + "start": 27787.26, + "end": 27788.24, + "probability": 0.7965 + }, + { + "start": 27788.32, + "end": 27793.94, + "probability": 0.9596 + }, + { + "start": 27794.58, + "end": 27795.62, + "probability": 0.9652 + }, + { + "start": 27796.76, + "end": 27797.4, + "probability": 0.9773 + }, + { + "start": 27798.1, + "end": 27800.68, + "probability": 0.7339 + }, + { + "start": 27801.68, + "end": 27803.16, + "probability": 0.7052 + }, + { + "start": 27803.76, + "end": 27807.24, + "probability": 0.9824 + }, + { + "start": 27807.36, + "end": 27809.12, + "probability": 0.5511 + }, + { + "start": 27810.06, + "end": 27811.76, + "probability": 0.9818 + }, + { + "start": 27811.88, + "end": 27814.98, + "probability": 0.9757 + }, + { + "start": 27815.04, + "end": 27817.28, + "probability": 0.9902 + }, + { + "start": 27817.38, + "end": 27818.6, + "probability": 0.8251 + }, + { + "start": 27819.66, + "end": 27822.4, + "probability": 0.933 + }, + { + "start": 27822.92, + "end": 27827.36, + "probability": 0.9504 + }, + { + "start": 27827.48, + "end": 27828.44, + "probability": 0.9949 + }, + { + "start": 27828.62, + "end": 27829.28, + "probability": 0.595 + }, + { + "start": 27829.7, + "end": 27835.1, + "probability": 0.947 + }, + { + "start": 27836.18, + "end": 27837.5, + "probability": 0.9299 + }, + { + "start": 27838.5, + "end": 27842.1, + "probability": 0.8989 + }, + { + "start": 27843.1, + "end": 27850.36, + "probability": 0.9946 + }, + { + "start": 27853.6, + "end": 27854.64, + "probability": 0.5361 + }, + { + "start": 27854.74, + "end": 27856.16, + "probability": 0.895 + }, + { + "start": 27856.52, + "end": 27858.14, + "probability": 0.8573 + }, + { + "start": 27858.72, + "end": 27860.4, + "probability": 0.9114 + }, + { + "start": 27861.62, + "end": 27863.56, + "probability": 0.9593 + }, + { + "start": 27864.54, + "end": 27866.1, + "probability": 0.9688 + }, + { + "start": 27866.22, + "end": 27867.64, + "probability": 0.9526 + }, + { + "start": 27868.32, + "end": 27870.92, + "probability": 0.6541 + }, + { + "start": 27871.08, + "end": 27873.96, + "probability": 0.9424 + }, + { + "start": 27874.7, + "end": 27875.4, + "probability": 0.9669 + }, + { + "start": 27876.48, + "end": 27877.62, + "probability": 0.9698 + }, + { + "start": 27878.68, + "end": 27879.91, + "probability": 0.9883 + }, + { + "start": 27880.46, + "end": 27881.22, + "probability": 0.9899 + }, + { + "start": 27881.32, + "end": 27882.34, + "probability": 0.9558 + }, + { + "start": 27883.48, + "end": 27888.02, + "probability": 0.9992 + }, + { + "start": 27888.14, + "end": 27888.94, + "probability": 0.7604 + }, + { + "start": 27888.98, + "end": 27889.34, + "probability": 0.4521 + }, + { + "start": 27890.84, + "end": 27894.48, + "probability": 0.9926 + }, + { + "start": 27895.36, + "end": 27896.88, + "probability": 0.9976 + }, + { + "start": 27897.04, + "end": 27899.84, + "probability": 0.9848 + }, + { + "start": 27900.9, + "end": 27903.64, + "probability": 0.8779 + }, + { + "start": 27905.02, + "end": 27907.06, + "probability": 0.8066 + }, + { + "start": 27908.2, + "end": 27909.46, + "probability": 0.7983 + }, + { + "start": 27910.68, + "end": 27914.66, + "probability": 0.9256 + }, + { + "start": 27915.46, + "end": 27921.0, + "probability": 0.9969 + }, + { + "start": 27922.44, + "end": 27925.26, + "probability": 0.9968 + }, + { + "start": 27925.42, + "end": 27927.82, + "probability": 0.8901 + }, + { + "start": 27928.54, + "end": 27931.28, + "probability": 0.9558 + }, + { + "start": 27933.48, + "end": 27935.5, + "probability": 0.8791 + }, + { + "start": 27936.02, + "end": 27937.35, + "probability": 0.9733 + }, + { + "start": 27938.58, + "end": 27941.08, + "probability": 0.7383 + }, + { + "start": 27942.14, + "end": 27944.06, + "probability": 0.9287 + }, + { + "start": 27944.14, + "end": 27947.78, + "probability": 0.9951 + }, + { + "start": 27948.84, + "end": 27952.4, + "probability": 0.998 + }, + { + "start": 27952.56, + "end": 27953.68, + "probability": 0.7947 + }, + { + "start": 27954.88, + "end": 27956.34, + "probability": 0.9581 + }, + { + "start": 27957.84, + "end": 27959.9, + "probability": 0.9613 + }, + { + "start": 27960.54, + "end": 27963.16, + "probability": 0.9489 + }, + { + "start": 27963.34, + "end": 27965.42, + "probability": 0.8452 + }, + { + "start": 27967.16, + "end": 27970.06, + "probability": 0.9853 + }, + { + "start": 27971.96, + "end": 27974.47, + "probability": 0.9929 + }, + { + "start": 27976.44, + "end": 27980.22, + "probability": 0.9849 + }, + { + "start": 27981.18, + "end": 27982.04, + "probability": 0.5976 + }, + { + "start": 27982.96, + "end": 27985.24, + "probability": 0.9813 + }, + { + "start": 27985.94, + "end": 27987.32, + "probability": 0.957 + }, + { + "start": 27988.26, + "end": 27989.3, + "probability": 0.2016 + }, + { + "start": 27989.3, + "end": 27990.84, + "probability": 0.6963 + }, + { + "start": 27991.46, + "end": 27993.44, + "probability": 0.9874 + }, + { + "start": 27995.06, + "end": 27996.52, + "probability": 0.7787 + }, + { + "start": 27997.16, + "end": 27998.74, + "probability": 0.9806 + }, + { + "start": 27999.3, + "end": 28000.18, + "probability": 0.8066 + }, + { + "start": 28000.7, + "end": 28002.72, + "probability": 0.9989 + }, + { + "start": 28003.4, + "end": 28006.0, + "probability": 0.7844 + }, + { + "start": 28006.24, + "end": 28007.36, + "probability": 0.2044 + }, + { + "start": 28007.56, + "end": 28012.48, + "probability": 0.8 + }, + { + "start": 28012.92, + "end": 28013.92, + "probability": 0.2235 + }, + { + "start": 28014.94, + "end": 28015.56, + "probability": 0.2951 + }, + { + "start": 28015.84, + "end": 28016.72, + "probability": 0.1777 + }, + { + "start": 28016.72, + "end": 28018.99, + "probability": 0.1232 + }, + { + "start": 28023.82, + "end": 28027.06, + "probability": 0.8506 + }, + { + "start": 28031.68, + "end": 28032.62, + "probability": 0.3171 + }, + { + "start": 28034.12, + "end": 28035.74, + "probability": 0.0754 + }, + { + "start": 28035.74, + "end": 28036.82, + "probability": 0.8592 + }, + { + "start": 28038.08, + "end": 28042.1, + "probability": 0.9922 + }, + { + "start": 28043.1, + "end": 28046.98, + "probability": 0.9689 + }, + { + "start": 28048.8, + "end": 28048.8, + "probability": 0.0695 + }, + { + "start": 28048.8, + "end": 28048.8, + "probability": 0.2288 + }, + { + "start": 28048.8, + "end": 28049.38, + "probability": 0.0473 + }, + { + "start": 28051.36, + "end": 28052.44, + "probability": 0.2755 + }, + { + "start": 28053.14, + "end": 28053.92, + "probability": 0.1881 + }, + { + "start": 28054.32, + "end": 28055.2, + "probability": 0.544 + }, + { + "start": 28056.52, + "end": 28060.16, + "probability": 0.9752 + }, + { + "start": 28061.3, + "end": 28063.48, + "probability": 0.9946 + }, + { + "start": 28064.02, + "end": 28066.26, + "probability": 0.9227 + }, + { + "start": 28066.34, + "end": 28070.56, + "probability": 0.999 + }, + { + "start": 28071.76, + "end": 28076.24, + "probability": 0.995 + }, + { + "start": 28076.7, + "end": 28077.88, + "probability": 0.5807 + }, + { + "start": 28077.88, + "end": 28083.3, + "probability": 0.9496 + }, + { + "start": 28083.36, + "end": 28084.32, + "probability": 0.9795 + }, + { + "start": 28084.58, + "end": 28086.32, + "probability": 0.9907 + }, + { + "start": 28086.4, + "end": 28088.22, + "probability": 0.743 + }, + { + "start": 28089.32, + "end": 28095.68, + "probability": 0.8943 + }, + { + "start": 28096.3, + "end": 28097.98, + "probability": 0.982 + }, + { + "start": 28099.22, + "end": 28100.38, + "probability": 0.9974 + }, + { + "start": 28101.22, + "end": 28102.02, + "probability": 0.7308 + }, + { + "start": 28102.72, + "end": 28106.81, + "probability": 0.9204 + }, + { + "start": 28107.22, + "end": 28108.44, + "probability": 0.7417 + }, + { + "start": 28109.36, + "end": 28110.64, + "probability": 0.8937 + }, + { + "start": 28111.2, + "end": 28112.76, + "probability": 0.917 + }, + { + "start": 28112.9, + "end": 28114.46, + "probability": 0.9972 + }, + { + "start": 28115.46, + "end": 28116.38, + "probability": 0.9653 + }, + { + "start": 28117.02, + "end": 28118.1, + "probability": 0.8787 + }, + { + "start": 28119.3, + "end": 28120.5, + "probability": 0.9684 + }, + { + "start": 28121.38, + "end": 28123.51, + "probability": 0.9872 + }, + { + "start": 28124.28, + "end": 28125.8, + "probability": 0.9653 + }, + { + "start": 28126.02, + "end": 28127.44, + "probability": 0.952 + }, + { + "start": 28128.02, + "end": 28129.78, + "probability": 0.7786 + }, + { + "start": 28130.46, + "end": 28132.2, + "probability": 0.9924 + }, + { + "start": 28132.98, + "end": 28138.12, + "probability": 0.9961 + }, + { + "start": 28139.1, + "end": 28141.76, + "probability": 0.9938 + }, + { + "start": 28142.6, + "end": 28144.16, + "probability": 0.8642 + }, + { + "start": 28145.32, + "end": 28147.82, + "probability": 0.9983 + }, + { + "start": 28147.96, + "end": 28152.18, + "probability": 0.9105 + }, + { + "start": 28152.48, + "end": 28153.58, + "probability": 0.9664 + }, + { + "start": 28154.12, + "end": 28155.34, + "probability": 0.981 + }, + { + "start": 28155.48, + "end": 28159.86, + "probability": 0.9905 + }, + { + "start": 28160.82, + "end": 28163.56, + "probability": 0.7649 + }, + { + "start": 28164.74, + "end": 28165.66, + "probability": 0.9268 + }, + { + "start": 28166.82, + "end": 28168.94, + "probability": 0.9907 + }, + { + "start": 28169.96, + "end": 28172.48, + "probability": 0.829 + }, + { + "start": 28173.04, + "end": 28174.84, + "probability": 0.9974 + }, + { + "start": 28175.58, + "end": 28179.1, + "probability": 0.9902 + }, + { + "start": 28180.04, + "end": 28182.9, + "probability": 0.9926 + }, + { + "start": 28184.04, + "end": 28187.22, + "probability": 0.9873 + }, + { + "start": 28187.22, + "end": 28191.44, + "probability": 0.988 + }, + { + "start": 28192.26, + "end": 28193.4, + "probability": 0.5606 + }, + { + "start": 28194.24, + "end": 28196.84, + "probability": 0.9949 + }, + { + "start": 28196.84, + "end": 28201.08, + "probability": 0.9344 + }, + { + "start": 28201.96, + "end": 28204.82, + "probability": 0.8103 + }, + { + "start": 28204.96, + "end": 28205.68, + "probability": 0.6064 + }, + { + "start": 28206.04, + "end": 28207.18, + "probability": 0.9684 + }, + { + "start": 28208.52, + "end": 28212.06, + "probability": 0.9743 + }, + { + "start": 28212.06, + "end": 28217.56, + "probability": 0.9809 + }, + { + "start": 28217.98, + "end": 28218.76, + "probability": 0.9434 + }, + { + "start": 28219.62, + "end": 28224.2, + "probability": 0.9977 + }, + { + "start": 28224.68, + "end": 28225.98, + "probability": 0.9895 + }, + { + "start": 28226.12, + "end": 28226.96, + "probability": 0.9983 + }, + { + "start": 28228.06, + "end": 28229.36, + "probability": 0.8629 + }, + { + "start": 28230.1, + "end": 28231.78, + "probability": 0.9749 + }, + { + "start": 28232.52, + "end": 28234.74, + "probability": 0.9614 + }, + { + "start": 28235.42, + "end": 28238.82, + "probability": 0.9849 + }, + { + "start": 28238.82, + "end": 28242.04, + "probability": 0.998 + }, + { + "start": 28242.14, + "end": 28242.74, + "probability": 0.9277 + }, + { + "start": 28243.6, + "end": 28245.88, + "probability": 0.9048 + }, + { + "start": 28246.48, + "end": 28249.5, + "probability": 0.9028 + }, + { + "start": 28249.78, + "end": 28250.18, + "probability": 0.7462 + }, + { + "start": 28264.86, + "end": 28265.06, + "probability": 0.367 + }, + { + "start": 28267.76, + "end": 28269.46, + "probability": 0.6696 + }, + { + "start": 28271.12, + "end": 28275.92, + "probability": 0.9503 + }, + { + "start": 28276.84, + "end": 28279.68, + "probability": 0.8611 + }, + { + "start": 28280.52, + "end": 28283.28, + "probability": 0.9892 + }, + { + "start": 28283.92, + "end": 28289.14, + "probability": 0.9873 + }, + { + "start": 28290.48, + "end": 28295.1, + "probability": 0.9988 + }, + { + "start": 28295.1, + "end": 28301.1, + "probability": 0.8732 + }, + { + "start": 28301.16, + "end": 28304.06, + "probability": 0.9824 + }, + { + "start": 28304.96, + "end": 28308.8, + "probability": 0.9879 + }, + { + "start": 28308.8, + "end": 28311.96, + "probability": 0.9986 + }, + { + "start": 28313.3, + "end": 28314.06, + "probability": 0.8337 + }, + { + "start": 28314.58, + "end": 28316.8, + "probability": 0.9988 + }, + { + "start": 28317.78, + "end": 28323.18, + "probability": 0.9972 + }, + { + "start": 28323.18, + "end": 28328.16, + "probability": 0.9912 + }, + { + "start": 28329.06, + "end": 28333.22, + "probability": 0.9451 + }, + { + "start": 28333.42, + "end": 28334.56, + "probability": 0.6641 + }, + { + "start": 28335.4, + "end": 28343.6, + "probability": 0.9954 + }, + { + "start": 28344.22, + "end": 28347.36, + "probability": 0.8844 + }, + { + "start": 28348.88, + "end": 28351.94, + "probability": 0.9893 + }, + { + "start": 28352.52, + "end": 28359.46, + "probability": 0.9791 + }, + { + "start": 28360.84, + "end": 28364.42, + "probability": 0.9718 + }, + { + "start": 28364.84, + "end": 28367.56, + "probability": 0.9491 + }, + { + "start": 28367.9, + "end": 28369.22, + "probability": 0.4973 + }, + { + "start": 28369.84, + "end": 28375.44, + "probability": 0.8985 + }, + { + "start": 28376.46, + "end": 28380.42, + "probability": 0.9802 + }, + { + "start": 28381.2, + "end": 28388.26, + "probability": 0.9495 + }, + { + "start": 28389.12, + "end": 28392.58, + "probability": 0.9977 + }, + { + "start": 28393.14, + "end": 28397.26, + "probability": 0.9983 + }, + { + "start": 28398.14, + "end": 28403.88, + "probability": 0.9263 + }, + { + "start": 28404.36, + "end": 28405.54, + "probability": 0.7292 + }, + { + "start": 28405.9, + "end": 28408.72, + "probability": 0.986 + }, + { + "start": 28409.08, + "end": 28413.42, + "probability": 0.9852 + }, + { + "start": 28414.28, + "end": 28416.04, + "probability": 0.9669 + }, + { + "start": 28416.4, + "end": 28417.92, + "probability": 0.9885 + }, + { + "start": 28417.96, + "end": 28421.32, + "probability": 0.7508 + }, + { + "start": 28421.9, + "end": 28427.98, + "probability": 0.9902 + }, + { + "start": 28429.5, + "end": 28432.22, + "probability": 0.9394 + }, + { + "start": 28432.86, + "end": 28435.5, + "probability": 0.9199 + }, + { + "start": 28436.3, + "end": 28440.44, + "probability": 0.8725 + }, + { + "start": 28440.5, + "end": 28441.6, + "probability": 0.9901 + }, + { + "start": 28443.47, + "end": 28444.63, + "probability": 0.981 + }, + { + "start": 28446.14, + "end": 28449.86, + "probability": 0.9347 + }, + { + "start": 28450.58, + "end": 28452.88, + "probability": 0.9521 + }, + { + "start": 28453.84, + "end": 28458.64, + "probability": 0.9873 + }, + { + "start": 28459.26, + "end": 28461.06, + "probability": 0.8551 + }, + { + "start": 28461.48, + "end": 28462.92, + "probability": 0.9678 + }, + { + "start": 28463.12, + "end": 28466.48, + "probability": 0.9973 + }, + { + "start": 28467.02, + "end": 28472.3, + "probability": 0.7605 + }, + { + "start": 28473.02, + "end": 28474.44, + "probability": 0.9742 + }, + { + "start": 28474.7, + "end": 28481.24, + "probability": 0.9893 + }, + { + "start": 28482.08, + "end": 28487.04, + "probability": 0.6778 + }, + { + "start": 28487.84, + "end": 28491.9, + "probability": 0.9927 + }, + { + "start": 28492.66, + "end": 28495.98, + "probability": 0.9731 + }, + { + "start": 28495.98, + "end": 28499.0, + "probability": 0.9977 + }, + { + "start": 28499.6, + "end": 28503.44, + "probability": 0.8626 + }, + { + "start": 28504.26, + "end": 28510.54, + "probability": 0.991 + }, + { + "start": 28511.34, + "end": 28513.14, + "probability": 0.9986 + }, + { + "start": 28514.78, + "end": 28522.54, + "probability": 0.9943 + }, + { + "start": 28523.8, + "end": 28528.58, + "probability": 0.9968 + }, + { + "start": 28529.12, + "end": 28530.8, + "probability": 0.9534 + }, + { + "start": 28535.88, + "end": 28541.7, + "probability": 0.9943 + }, + { + "start": 28542.64, + "end": 28546.0, + "probability": 0.992 + }, + { + "start": 28546.52, + "end": 28552.1, + "probability": 0.9986 + }, + { + "start": 28552.74, + "end": 28553.84, + "probability": 0.7339 + }, + { + "start": 28555.12, + "end": 28558.16, + "probability": 0.9451 + }, + { + "start": 28558.6, + "end": 28560.24, + "probability": 0.3531 + }, + { + "start": 28560.34, + "end": 28560.68, + "probability": 0.6886 + }, + { + "start": 28560.82, + "end": 28563.24, + "probability": 0.9297 + }, + { + "start": 28563.72, + "end": 28564.74, + "probability": 0.8812 + }, + { + "start": 28565.44, + "end": 28566.7, + "probability": 0.9346 + }, + { + "start": 28566.78, + "end": 28567.94, + "probability": 0.8306 + }, + { + "start": 28568.12, + "end": 28569.04, + "probability": 0.8403 + }, + { + "start": 28569.4, + "end": 28570.14, + "probability": 0.9346 + }, + { + "start": 28570.3, + "end": 28570.94, + "probability": 0.5422 + }, + { + "start": 28571.48, + "end": 28574.36, + "probability": 0.896 + }, + { + "start": 28576.06, + "end": 28576.5, + "probability": 0.4059 + }, + { + "start": 28576.62, + "end": 28582.5, + "probability": 0.9947 + }, + { + "start": 28583.24, + "end": 28584.12, + "probability": 0.6534 + }, + { + "start": 28584.28, + "end": 28584.6, + "probability": 0.3458 + }, + { + "start": 28584.64, + "end": 28586.7, + "probability": 0.9218 + }, + { + "start": 28586.7, + "end": 28590.3, + "probability": 0.9834 + }, + { + "start": 28591.24, + "end": 28593.12, + "probability": 0.696 + }, + { + "start": 28594.08, + "end": 28596.04, + "probability": 0.9403 + }, + { + "start": 28596.7, + "end": 28598.68, + "probability": 0.9407 + }, + { + "start": 28599.5, + "end": 28602.72, + "probability": 0.992 + }, + { + "start": 28602.72, + "end": 28606.12, + "probability": 0.9992 + }, + { + "start": 28607.1, + "end": 28614.08, + "probability": 0.9868 + }, + { + "start": 28614.16, + "end": 28615.54, + "probability": 0.6835 + }, + { + "start": 28616.02, + "end": 28618.02, + "probability": 0.9092 + }, + { + "start": 28618.84, + "end": 28623.02, + "probability": 0.9639 + }, + { + "start": 28623.96, + "end": 28627.52, + "probability": 0.9482 + }, + { + "start": 28628.0, + "end": 28631.04, + "probability": 0.9982 + }, + { + "start": 28631.44, + "end": 28634.22, + "probability": 0.9976 + }, + { + "start": 28634.86, + "end": 28638.06, + "probability": 0.9974 + }, + { + "start": 28639.12, + "end": 28642.74, + "probability": 0.9956 + }, + { + "start": 28643.22, + "end": 28644.66, + "probability": 0.889 + }, + { + "start": 28645.06, + "end": 28650.5, + "probability": 0.974 + }, + { + "start": 28651.58, + "end": 28655.46, + "probability": 0.9738 + }, + { + "start": 28656.26, + "end": 28660.74, + "probability": 0.9972 + }, + { + "start": 28660.74, + "end": 28665.4, + "probability": 0.9798 + }, + { + "start": 28665.92, + "end": 28667.94, + "probability": 0.9932 + }, + { + "start": 28668.04, + "end": 28670.38, + "probability": 0.9883 + }, + { + "start": 28671.48, + "end": 28673.24, + "probability": 0.9194 + }, + { + "start": 28673.54, + "end": 28678.54, + "probability": 0.9948 + }, + { + "start": 28679.42, + "end": 28680.84, + "probability": 0.9509 + }, + { + "start": 28681.38, + "end": 28682.54, + "probability": 0.9609 + }, + { + "start": 28683.08, + "end": 28685.34, + "probability": 0.8868 + }, + { + "start": 28685.78, + "end": 28687.32, + "probability": 0.8212 + }, + { + "start": 28687.82, + "end": 28688.8, + "probability": 0.7067 + }, + { + "start": 28690.77, + "end": 28693.34, + "probability": 0.8858 + }, + { + "start": 28694.04, + "end": 28698.12, + "probability": 0.9874 + }, + { + "start": 28699.24, + "end": 28700.78, + "probability": 0.9286 + }, + { + "start": 28704.54, + "end": 28705.12, + "probability": 0.7197 + }, + { + "start": 28705.26, + "end": 28706.4, + "probability": 0.8939 + }, + { + "start": 28706.48, + "end": 28707.2, + "probability": 0.4716 + }, + { + "start": 28707.28, + "end": 28708.6, + "probability": 0.6331 + }, + { + "start": 28709.3, + "end": 28709.42, + "probability": 0.0566 + }, + { + "start": 28709.42, + "end": 28709.92, + "probability": 0.4752 + }, + { + "start": 28710.0, + "end": 28713.74, + "probability": 0.9725 + }, + { + "start": 28714.62, + "end": 28715.82, + "probability": 0.9431 + }, + { + "start": 28716.94, + "end": 28719.22, + "probability": 0.8586 + }, + { + "start": 28720.0, + "end": 28721.5, + "probability": 0.998 + }, + { + "start": 28721.84, + "end": 28722.4, + "probability": 0.6962 + }, + { + "start": 28722.66, + "end": 28727.58, + "probability": 0.9929 + }, + { + "start": 28728.34, + "end": 28731.6, + "probability": 0.9553 + }, + { + "start": 28732.74, + "end": 28737.16, + "probability": 0.9795 + }, + { + "start": 28737.52, + "end": 28740.2, + "probability": 0.8533 + }, + { + "start": 28740.66, + "end": 28741.72, + "probability": 0.972 + }, + { + "start": 28742.32, + "end": 28745.82, + "probability": 0.5624 + }, + { + "start": 28746.46, + "end": 28747.48, + "probability": 0.6513 + }, + { + "start": 28747.8, + "end": 28748.16, + "probability": 0.5134 + }, + { + "start": 28748.24, + "end": 28751.68, + "probability": 0.9386 + }, + { + "start": 28752.62, + "end": 28755.18, + "probability": 0.7731 + }, + { + "start": 28755.76, + "end": 28758.26, + "probability": 0.9692 + }, + { + "start": 28758.8, + "end": 28761.3, + "probability": 0.7495 + }, + { + "start": 28761.64, + "end": 28765.74, + "probability": 0.994 + }, + { + "start": 28766.78, + "end": 28768.84, + "probability": 0.9264 + }, + { + "start": 28769.02, + "end": 28769.44, + "probability": 0.8103 + }, + { + "start": 28770.2, + "end": 28772.18, + "probability": 0.9929 + }, + { + "start": 28772.78, + "end": 28773.66, + "probability": 0.6291 + }, + { + "start": 28773.66, + "end": 28776.64, + "probability": 0.8352 + }, + { + "start": 28785.94, + "end": 28786.56, + "probability": 0.2299 + }, + { + "start": 28786.7, + "end": 28788.16, + "probability": 0.1524 + }, + { + "start": 28789.06, + "end": 28789.4, + "probability": 0.9399 + }, + { + "start": 28790.3, + "end": 28795.34, + "probability": 0.9926 + }, + { + "start": 28797.22, + "end": 28801.54, + "probability": 0.9138 + }, + { + "start": 28802.74, + "end": 28804.16, + "probability": 0.8174 + }, + { + "start": 28804.26, + "end": 28805.16, + "probability": 0.7733 + }, + { + "start": 28805.18, + "end": 28806.27, + "probability": 0.6082 + }, + { + "start": 28806.68, + "end": 28808.7, + "probability": 0.335 + }, + { + "start": 28809.44, + "end": 28809.98, + "probability": 0.366 + }, + { + "start": 28810.1, + "end": 28814.82, + "probability": 0.788 + }, + { + "start": 28814.88, + "end": 28815.5, + "probability": 0.8022 + }, + { + "start": 28815.56, + "end": 28816.92, + "probability": 0.9863 + }, + { + "start": 28818.02, + "end": 28821.12, + "probability": 0.8557 + }, + { + "start": 28823.3, + "end": 28826.6, + "probability": 0.6284 + }, + { + "start": 28827.9, + "end": 28830.94, + "probability": 0.7815 + }, + { + "start": 28831.62, + "end": 28834.68, + "probability": 0.8962 + }, + { + "start": 28834.84, + "end": 28836.04, + "probability": 0.8557 + }, + { + "start": 28836.14, + "end": 28836.7, + "probability": 0.9292 + }, + { + "start": 28838.04, + "end": 28841.86, + "probability": 0.9819 + }, + { + "start": 28842.56, + "end": 28844.48, + "probability": 0.5445 + }, + { + "start": 28845.2, + "end": 28848.82, + "probability": 0.968 + }, + { + "start": 28848.92, + "end": 28850.16, + "probability": 0.9456 + }, + { + "start": 28851.9, + "end": 28854.87, + "probability": 0.6333 + }, + { + "start": 28856.0, + "end": 28857.44, + "probability": 0.9879 + }, + { + "start": 28857.56, + "end": 28858.05, + "probability": 0.5116 + }, + { + "start": 28858.36, + "end": 28859.18, + "probability": 0.7274 + }, + { + "start": 28859.46, + "end": 28861.8, + "probability": 0.9538 + }, + { + "start": 28861.9, + "end": 28862.76, + "probability": 0.9056 + }, + { + "start": 28863.94, + "end": 28864.3, + "probability": 0.013 + }, + { + "start": 28864.6, + "end": 28866.16, + "probability": 0.496 + }, + { + "start": 28866.46, + "end": 28867.14, + "probability": 0.7231 + }, + { + "start": 28867.64, + "end": 28874.72, + "probability": 0.994 + }, + { + "start": 28875.74, + "end": 28877.46, + "probability": 0.939 + }, + { + "start": 28877.78, + "end": 28879.34, + "probability": 0.9911 + }, + { + "start": 28879.4, + "end": 28880.76, + "probability": 0.9963 + }, + { + "start": 28880.96, + "end": 28881.44, + "probability": 0.4273 + }, + { + "start": 28882.54, + "end": 28885.34, + "probability": 0.9946 + }, + { + "start": 28887.68, + "end": 28888.76, + "probability": 0.763 + }, + { + "start": 28889.7, + "end": 28891.64, + "probability": 0.9644 + }, + { + "start": 28892.5, + "end": 28892.7, + "probability": 0.5464 + }, + { + "start": 28892.86, + "end": 28895.1, + "probability": 0.8774 + }, + { + "start": 28895.82, + "end": 28898.04, + "probability": 0.9133 + }, + { + "start": 28898.56, + "end": 28901.94, + "probability": 0.9806 + }, + { + "start": 28902.04, + "end": 28903.07, + "probability": 0.2849 + }, + { + "start": 28904.06, + "end": 28905.56, + "probability": 0.8373 + }, + { + "start": 28906.88, + "end": 28908.82, + "probability": 0.9259 + }, + { + "start": 28909.8, + "end": 28910.32, + "probability": 0.9478 + }, + { + "start": 28911.7, + "end": 28913.92, + "probability": 0.3113 + }, + { + "start": 28914.9, + "end": 28916.3, + "probability": 0.9878 + }, + { + "start": 28916.6, + "end": 28917.04, + "probability": 0.1255 + }, + { + "start": 28917.64, + "end": 28922.1, + "probability": 0.2953 + }, + { + "start": 28922.36, + "end": 28924.82, + "probability": 0.5036 + }, + { + "start": 28925.08, + "end": 28925.88, + "probability": 0.3486 + }, + { + "start": 28926.02, + "end": 28926.98, + "probability": 0.581 + }, + { + "start": 28927.3, + "end": 28930.22, + "probability": 0.5222 + }, + { + "start": 28930.54, + "end": 28930.92, + "probability": 0.9619 + }, + { + "start": 28931.38, + "end": 28931.38, + "probability": 0.0543 + }, + { + "start": 28931.5, + "end": 28932.36, + "probability": 0.8687 + }, + { + "start": 28932.44, + "end": 28934.84, + "probability": 0.9875 + }, + { + "start": 28934.96, + "end": 28935.81, + "probability": 0.9973 + }, + { + "start": 28936.66, + "end": 28938.58, + "probability": 0.8599 + }, + { + "start": 28939.32, + "end": 28943.3, + "probability": 0.9183 + }, + { + "start": 28944.32, + "end": 28948.72, + "probability": 0.2409 + }, + { + "start": 28949.34, + "end": 28949.34, + "probability": 0.0153 + }, + { + "start": 28949.34, + "end": 28949.34, + "probability": 0.0073 + }, + { + "start": 28949.34, + "end": 28949.56, + "probability": 0.6697 + }, + { + "start": 28949.72, + "end": 28956.1, + "probability": 0.8125 + }, + { + "start": 28956.2, + "end": 28960.44, + "probability": 0.9801 + }, + { + "start": 28961.14, + "end": 28962.78, + "probability": 0.3548 + }, + { + "start": 28962.8, + "end": 28963.14, + "probability": 0.3843 + }, + { + "start": 28963.36, + "end": 28966.16, + "probability": 0.7398 + }, + { + "start": 28966.58, + "end": 28972.3, + "probability": 0.7424 + }, + { + "start": 28983.46, + "end": 28985.58, + "probability": 0.5182 + }, + { + "start": 28986.04, + "end": 28986.98, + "probability": 0.67 + }, + { + "start": 28987.12, + "end": 28990.23, + "probability": 0.4839 + }, + { + "start": 28991.24, + "end": 28992.8, + "probability": 0.9321 + }, + { + "start": 28994.52, + "end": 28997.08, + "probability": 0.9477 + }, + { + "start": 28998.16, + "end": 28999.24, + "probability": 0.2285 + }, + { + "start": 29001.4, + "end": 29001.86, + "probability": 0.0798 + }, + { + "start": 29002.08, + "end": 29004.6, + "probability": 0.7802 + }, + { + "start": 29005.21, + "end": 29007.32, + "probability": 0.8159 + }, + { + "start": 29008.68, + "end": 29009.34, + "probability": 0.6298 + }, + { + "start": 29009.44, + "end": 29010.5, + "probability": 0.9287 + }, + { + "start": 29010.82, + "end": 29012.82, + "probability": 0.9657 + }, + { + "start": 29013.22, + "end": 29016.24, + "probability": 0.9658 + }, + { + "start": 29017.2, + "end": 29018.66, + "probability": 0.8951 + }, + { + "start": 29020.49, + "end": 29022.58, + "probability": 0.7822 + }, + { + "start": 29023.4, + "end": 29024.62, + "probability": 0.7765 + }, + { + "start": 29025.44, + "end": 29028.62, + "probability": 0.9666 + }, + { + "start": 29029.78, + "end": 29032.06, + "probability": 0.932 + }, + { + "start": 29033.0, + "end": 29036.92, + "probability": 0.9954 + }, + { + "start": 29037.0, + "end": 29037.8, + "probability": 0.443 + }, + { + "start": 29038.7, + "end": 29039.84, + "probability": 0.8891 + }, + { + "start": 29039.96, + "end": 29040.7, + "probability": 0.7237 + }, + { + "start": 29040.78, + "end": 29041.64, + "probability": 0.8208 + }, + { + "start": 29041.82, + "end": 29043.1, + "probability": 0.8589 + }, + { + "start": 29043.94, + "end": 29044.8, + "probability": 0.9843 + }, + { + "start": 29044.94, + "end": 29047.38, + "probability": 0.822 + }, + { + "start": 29048.06, + "end": 29053.74, + "probability": 0.9886 + }, + { + "start": 29053.74, + "end": 29053.74, + "probability": 0.7214 + }, + { + "start": 29053.74, + "end": 29054.9, + "probability": 0.6731 + }, + { + "start": 29055.02, + "end": 29055.7, + "probability": 0.8463 + }, + { + "start": 29056.36, + "end": 29061.7, + "probability": 0.8923 + }, + { + "start": 29062.58, + "end": 29063.58, + "probability": 0.7074 + }, + { + "start": 29063.9, + "end": 29069.8, + "probability": 0.7006 + }, + { + "start": 29070.22, + "end": 29071.64, + "probability": 0.5406 + }, + { + "start": 29071.66, + "end": 29074.28, + "probability": 0.5097 + }, + { + "start": 29075.3, + "end": 29075.92, + "probability": 0.832 + }, + { + "start": 29076.48, + "end": 29077.2, + "probability": 0.9409 + }, + { + "start": 29078.08, + "end": 29078.76, + "probability": 0.937 + }, + { + "start": 29079.78, + "end": 29081.92, + "probability": 0.9638 + }, + { + "start": 29082.66, + "end": 29084.26, + "probability": 0.9192 + }, + { + "start": 29084.96, + "end": 29088.16, + "probability": 0.9695 + }, + { + "start": 29088.22, + "end": 29089.36, + "probability": 0.9221 + }, + { + "start": 29090.58, + "end": 29091.37, + "probability": 0.8728 + }, + { + "start": 29091.44, + "end": 29093.0, + "probability": 0.9937 + }, + { + "start": 29094.42, + "end": 29097.48, + "probability": 0.8083 + }, + { + "start": 29099.1, + "end": 29099.74, + "probability": 0.3579 + }, + { + "start": 29100.88, + "end": 29102.08, + "probability": 0.6076 + }, + { + "start": 29103.24, + "end": 29105.76, + "probability": 0.8135 + }, + { + "start": 29106.92, + "end": 29107.42, + "probability": 0.8778 + }, + { + "start": 29108.0, + "end": 29110.71, + "probability": 0.9417 + }, + { + "start": 29111.2, + "end": 29111.62, + "probability": 0.7431 + }, + { + "start": 29111.9, + "end": 29112.5, + "probability": 0.2142 + }, + { + "start": 29113.7, + "end": 29114.14, + "probability": 0.6584 + }, + { + "start": 29114.18, + "end": 29114.59, + "probability": 0.7073 + }, + { + "start": 29114.78, + "end": 29115.92, + "probability": 0.8134 + }, + { + "start": 29116.0, + "end": 29117.94, + "probability": 0.088 + }, + { + "start": 29118.06, + "end": 29118.24, + "probability": 0.4276 + }, + { + "start": 29118.26, + "end": 29118.8, + "probability": 0.8487 + }, + { + "start": 29118.9, + "end": 29119.56, + "probability": 0.8841 + }, + { + "start": 29120.34, + "end": 29122.0, + "probability": 0.9941 + }, + { + "start": 29122.94, + "end": 29125.16, + "probability": 0.7814 + }, + { + "start": 29125.8, + "end": 29127.62, + "probability": 0.9922 + }, + { + "start": 29127.62, + "end": 29132.06, + "probability": 0.895 + }, + { + "start": 29132.14, + "end": 29133.04, + "probability": 0.7601 + }, + { + "start": 29134.04, + "end": 29136.96, + "probability": 0.8914 + }, + { + "start": 29137.9, + "end": 29139.6, + "probability": 0.9603 + }, + { + "start": 29140.28, + "end": 29141.08, + "probability": 0.7664 + }, + { + "start": 29141.6, + "end": 29144.2, + "probability": 0.8677 + }, + { + "start": 29145.02, + "end": 29148.12, + "probability": 0.8535 + }, + { + "start": 29148.7, + "end": 29150.14, + "probability": 0.9964 + }, + { + "start": 29150.22, + "end": 29152.42, + "probability": 0.9489 + }, + { + "start": 29152.84, + "end": 29157.46, + "probability": 0.838 + }, + { + "start": 29157.88, + "end": 29158.68, + "probability": 0.437 + }, + { + "start": 29158.86, + "end": 29159.86, + "probability": 0.3167 + }, + { + "start": 29160.86, + "end": 29162.72, + "probability": 0.4998 + }, + { + "start": 29163.36, + "end": 29164.2, + "probability": 0.99 + }, + { + "start": 29164.94, + "end": 29169.3, + "probability": 0.9959 + }, + { + "start": 29169.34, + "end": 29169.5, + "probability": 0.0486 + }, + { + "start": 29169.5, + "end": 29169.58, + "probability": 0.374 + }, + { + "start": 29169.58, + "end": 29170.15, + "probability": 0.894 + }, + { + "start": 29170.88, + "end": 29172.08, + "probability": 0.77 + }, + { + "start": 29172.76, + "end": 29173.92, + "probability": 0.7026 + }, + { + "start": 29174.68, + "end": 29175.4, + "probability": 0.908 + }, + { + "start": 29175.64, + "end": 29175.8, + "probability": 0.6665 + }, + { + "start": 29175.84, + "end": 29178.26, + "probability": 0.9906 + }, + { + "start": 29178.62, + "end": 29181.04, + "probability": 0.9921 + }, + { + "start": 29181.18, + "end": 29183.3, + "probability": 0.993 + }, + { + "start": 29183.4, + "end": 29187.34, + "probability": 0.7404 + }, + { + "start": 29187.42, + "end": 29187.52, + "probability": 0.6197 + }, + { + "start": 29187.64, + "end": 29188.44, + "probability": 0.7358 + }, + { + "start": 29188.52, + "end": 29190.04, + "probability": 0.7589 + }, + { + "start": 29190.12, + "end": 29192.05, + "probability": 0.733 + }, + { + "start": 29192.54, + "end": 29201.36, + "probability": 0.6535 + }, + { + "start": 29201.36, + "end": 29206.94, + "probability": 0.9723 + }, + { + "start": 29207.6, + "end": 29207.9, + "probability": 0.1291 + }, + { + "start": 29207.9, + "end": 29208.26, + "probability": 0.507 + }, + { + "start": 29208.32, + "end": 29208.76, + "probability": 0.3351 + }, + { + "start": 29209.56, + "end": 29210.6, + "probability": 0.7893 + }, + { + "start": 29210.7, + "end": 29211.6, + "probability": 0.8972 + }, + { + "start": 29212.04, + "end": 29214.24, + "probability": 0.612 + }, + { + "start": 29214.88, + "end": 29217.86, + "probability": 0.9167 + }, + { + "start": 29218.26, + "end": 29218.82, + "probability": 0.6884 + }, + { + "start": 29218.88, + "end": 29219.38, + "probability": 0.6359 + }, + { + "start": 29219.54, + "end": 29220.08, + "probability": 0.8859 + }, + { + "start": 29239.88, + "end": 29242.2, + "probability": 0.4877 + }, + { + "start": 29243.52, + "end": 29249.6, + "probability": 0.0905 + }, + { + "start": 29271.12, + "end": 29272.38, + "probability": 0.1404 + }, + { + "start": 29273.74, + "end": 29278.0, + "probability": 0.6183 + }, + { + "start": 29278.42, + "end": 29281.1, + "probability": 0.3838 + }, + { + "start": 29283.54, + "end": 29284.44, + "probability": 0.7011 + }, + { + "start": 29285.1, + "end": 29285.58, + "probability": 0.8934 + }, + { + "start": 29287.92, + "end": 29289.16, + "probability": 0.0363 + }, + { + "start": 29293.92, + "end": 29299.36, + "probability": 0.0567 + }, + { + "start": 29301.52, + "end": 29303.2, + "probability": 0.0243 + }, + { + "start": 29303.76, + "end": 29305.66, + "probability": 0.5004 + }, + { + "start": 29305.66, + "end": 29306.46, + "probability": 0.1831 + }, + { + "start": 29306.74, + "end": 29307.04, + "probability": 0.0448 + }, + { + "start": 29308.36, + "end": 29308.82, + "probability": 0.0012 + }, + { + "start": 29308.84, + "end": 29308.84, + "probability": 0.113 + }, + { + "start": 29308.84, + "end": 29309.44, + "probability": 0.1882 + }, + { + "start": 29309.57, + "end": 29311.62, + "probability": 0.0506 + }, + { + "start": 29319.8, + "end": 29321.88, + "probability": 0.0938 + }, + { + "start": 29321.88, + "end": 29321.88, + "probability": 0.0995 + }, + { + "start": 29324.2, + "end": 29327.68, + "probability": 0.1381 + }, + { + "start": 29328.5, + "end": 29328.92, + "probability": 0.1033 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.0, + "end": 29329.0, + "probability": 0.0 + }, + { + "start": 29329.94, + "end": 29334.16, + "probability": 0.4843 + }, + { + "start": 29337.22, + "end": 29339.42, + "probability": 0.1728 + }, + { + "start": 29340.2, + "end": 29340.4, + "probability": 0.7456 + }, + { + "start": 29341.18, + "end": 29342.52, + "probability": 0.3336 + }, + { + "start": 29342.56, + "end": 29343.04, + "probability": 0.7576 + }, + { + "start": 29343.8, + "end": 29345.24, + "probability": 0.6707 + }, + { + "start": 29345.74, + "end": 29347.6, + "probability": 0.8142 + }, + { + "start": 29348.12, + "end": 29348.12, + "probability": 0.3835 + }, + { + "start": 29348.12, + "end": 29350.02, + "probability": 0.9882 + }, + { + "start": 29350.48, + "end": 29351.2, + "probability": 0.6121 + }, + { + "start": 29351.4, + "end": 29353.4, + "probability": 0.9375 + }, + { + "start": 29353.72, + "end": 29354.02, + "probability": 0.533 + }, + { + "start": 29354.06, + "end": 29355.26, + "probability": 0.9852 + }, + { + "start": 29356.34, + "end": 29358.16, + "probability": 0.9785 + }, + { + "start": 29358.22, + "end": 29359.38, + "probability": 0.8984 + }, + { + "start": 29359.56, + "end": 29361.48, + "probability": 0.6708 + }, + { + "start": 29361.48, + "end": 29367.44, + "probability": 0.9677 + }, + { + "start": 29367.64, + "end": 29368.76, + "probability": 0.635 + }, + { + "start": 29368.88, + "end": 29369.22, + "probability": 0.9153 + }, + { + "start": 29369.68, + "end": 29371.7, + "probability": 0.9942 + }, + { + "start": 29371.9, + "end": 29372.38, + "probability": 0.7697 + }, + { + "start": 29372.78, + "end": 29373.08, + "probability": 0.6581 + }, + { + "start": 29373.24, + "end": 29374.32, + "probability": 0.9314 + }, + { + "start": 29374.86, + "end": 29377.7, + "probability": 0.8801 + }, + { + "start": 29378.54, + "end": 29381.94, + "probability": 0.4116 + }, + { + "start": 29381.94, + "end": 29384.6, + "probability": 0.9561 + }, + { + "start": 29385.84, + "end": 29386.82, + "probability": 0.6925 + }, + { + "start": 29388.8, + "end": 29389.72, + "probability": 0.7871 + }, + { + "start": 29391.62, + "end": 29391.96, + "probability": 0.4921 + }, + { + "start": 29392.16, + "end": 29394.3, + "probability": 0.9866 + }, + { + "start": 29394.44, + "end": 29399.44, + "probability": 0.9813 + }, + { + "start": 29399.92, + "end": 29401.1, + "probability": 0.7455 + }, + { + "start": 29402.02, + "end": 29404.42, + "probability": 0.9855 + }, + { + "start": 29405.64, + "end": 29406.62, + "probability": 0.75 + }, + { + "start": 29406.66, + "end": 29407.26, + "probability": 0.4023 + }, + { + "start": 29407.3, + "end": 29409.94, + "probability": 0.9268 + }, + { + "start": 29410.58, + "end": 29412.2, + "probability": 0.9614 + }, + { + "start": 29413.18, + "end": 29414.15, + "probability": 0.7031 + }, + { + "start": 29414.48, + "end": 29421.12, + "probability": 0.9941 + }, + { + "start": 29424.36, + "end": 29426.54, + "probability": 0.0951 + }, + { + "start": 29426.74, + "end": 29428.78, + "probability": 0.9693 + }, + { + "start": 29429.76, + "end": 29431.98, + "probability": 0.9974 + }, + { + "start": 29433.0, + "end": 29436.82, + "probability": 0.9778 + }, + { + "start": 29437.8, + "end": 29439.74, + "probability": 0.9941 + }, + { + "start": 29440.32, + "end": 29440.97, + "probability": 0.1508 + }, + { + "start": 29441.92, + "end": 29444.96, + "probability": 0.8843 + }, + { + "start": 29446.58, + "end": 29447.7, + "probability": 0.9297 + }, + { + "start": 29448.5, + "end": 29451.5, + "probability": 0.8992 + }, + { + "start": 29453.24, + "end": 29454.42, + "probability": 0.9405 + }, + { + "start": 29455.52, + "end": 29460.46, + "probability": 0.9959 + }, + { + "start": 29462.42, + "end": 29465.7, + "probability": 0.9018 + }, + { + "start": 29465.7, + "end": 29470.76, + "probability": 0.981 + }, + { + "start": 29470.86, + "end": 29472.12, + "probability": 0.9447 + }, + { + "start": 29473.42, + "end": 29474.88, + "probability": 0.7409 + }, + { + "start": 29475.78, + "end": 29478.26, + "probability": 0.9467 + }, + { + "start": 29479.2, + "end": 29484.38, + "probability": 0.9956 + }, + { + "start": 29485.5, + "end": 29486.8, + "probability": 0.7884 + }, + { + "start": 29487.88, + "end": 29489.16, + "probability": 0.8992 + }, + { + "start": 29489.76, + "end": 29494.32, + "probability": 0.8962 + }, + { + "start": 29494.42, + "end": 29498.14, + "probability": 0.9934 + }, + { + "start": 29499.74, + "end": 29502.04, + "probability": 0.998 + }, + { + "start": 29502.8, + "end": 29504.82, + "probability": 0.4534 + }, + { + "start": 29506.6, + "end": 29509.36, + "probability": 0.9848 + }, + { + "start": 29510.42, + "end": 29511.22, + "probability": 0.9288 + }, + { + "start": 29512.3, + "end": 29513.66, + "probability": 0.96 + }, + { + "start": 29514.58, + "end": 29518.72, + "probability": 0.9411 + }, + { + "start": 29519.82, + "end": 29524.62, + "probability": 0.988 + }, + { + "start": 29525.48, + "end": 29527.72, + "probability": 0.9404 + }, + { + "start": 29528.26, + "end": 29530.06, + "probability": 0.9746 + }, + { + "start": 29531.74, + "end": 29532.94, + "probability": 0.9569 + }, + { + "start": 29534.78, + "end": 29538.26, + "probability": 0.9945 + }, + { + "start": 29539.72, + "end": 29541.44, + "probability": 0.989 + }, + { + "start": 29543.02, + "end": 29546.48, + "probability": 0.9685 + }, + { + "start": 29548.04, + "end": 29549.28, + "probability": 0.832 + }, + { + "start": 29550.24, + "end": 29551.4, + "probability": 0.8334 + }, + { + "start": 29552.52, + "end": 29554.36, + "probability": 0.9858 + }, + { + "start": 29557.72, + "end": 29559.64, + "probability": 0.8483 + }, + { + "start": 29560.3, + "end": 29561.45, + "probability": 0.9229 + }, + { + "start": 29562.16, + "end": 29562.64, + "probability": 0.7162 + }, + { + "start": 29563.3, + "end": 29566.38, + "probability": 0.9795 + }, + { + "start": 29567.5, + "end": 29567.96, + "probability": 0.7725 + }, + { + "start": 29569.72, + "end": 29571.2, + "probability": 0.969 + }, + { + "start": 29572.46, + "end": 29576.62, + "probability": 0.9816 + }, + { + "start": 29577.1, + "end": 29579.21, + "probability": 0.979 + }, + { + "start": 29580.76, + "end": 29586.58, + "probability": 0.9668 + }, + { + "start": 29587.06, + "end": 29587.54, + "probability": 0.8807 + }, + { + "start": 29588.8, + "end": 29589.8, + "probability": 0.9939 + }, + { + "start": 29591.98, + "end": 29592.6, + "probability": 0.9004 + }, + { + "start": 29592.9, + "end": 29595.46, + "probability": 0.7354 + }, + { + "start": 29595.46, + "end": 29598.5, + "probability": 0.6561 + }, + { + "start": 29601.4, + "end": 29603.42, + "probability": 0.9717 + }, + { + "start": 29603.46, + "end": 29607.48, + "probability": 0.9727 + }, + { + "start": 29607.94, + "end": 29609.56, + "probability": 0.9927 + }, + { + "start": 29610.1, + "end": 29614.76, + "probability": 0.9867 + }, + { + "start": 29615.4, + "end": 29621.46, + "probability": 0.9915 + }, + { + "start": 29622.64, + "end": 29624.5, + "probability": 0.989 + }, + { + "start": 29625.92, + "end": 29626.8, + "probability": 0.8958 + }, + { + "start": 29627.14, + "end": 29627.94, + "probability": 0.9933 + }, + { + "start": 29630.44, + "end": 29631.24, + "probability": 0.5821 + }, + { + "start": 29632.42, + "end": 29634.36, + "probability": 0.5686 + }, + { + "start": 29635.3, + "end": 29636.5, + "probability": 0.9495 + }, + { + "start": 29638.6, + "end": 29640.04, + "probability": 0.6969 + }, + { + "start": 29640.72, + "end": 29643.4, + "probability": 0.9103 + }, + { + "start": 29643.78, + "end": 29646.98, + "probability": 0.928 + }, + { + "start": 29647.8, + "end": 29650.7, + "probability": 0.9839 + }, + { + "start": 29654.64, + "end": 29657.32, + "probability": 0.9426 + }, + { + "start": 29657.36, + "end": 29658.75, + "probability": 0.9221 + }, + { + "start": 29659.4, + "end": 29659.82, + "probability": 0.7236 + }, + { + "start": 29661.16, + "end": 29663.44, + "probability": 0.7752 + }, + { + "start": 29664.08, + "end": 29666.4, + "probability": 0.9784 + }, + { + "start": 29666.8, + "end": 29668.28, + "probability": 0.9674 + }, + { + "start": 29669.18, + "end": 29672.82, + "probability": 0.9745 + }, + { + "start": 29674.64, + "end": 29675.88, + "probability": 0.9902 + }, + { + "start": 29676.16, + "end": 29676.82, + "probability": 0.6839 + }, + { + "start": 29677.44, + "end": 29679.48, + "probability": 0.9717 + }, + { + "start": 29679.86, + "end": 29683.56, + "probability": 0.9921 + }, + { + "start": 29684.66, + "end": 29687.34, + "probability": 0.9497 + }, + { + "start": 29687.54, + "end": 29689.76, + "probability": 0.9889 + }, + { + "start": 29691.32, + "end": 29693.18, + "probability": 0.9916 + }, + { + "start": 29694.98, + "end": 29700.62, + "probability": 0.9959 + }, + { + "start": 29701.76, + "end": 29703.87, + "probability": 0.9763 + }, + { + "start": 29706.2, + "end": 29708.24, + "probability": 0.9866 + }, + { + "start": 29709.04, + "end": 29716.86, + "probability": 0.7894 + }, + { + "start": 29717.36, + "end": 29718.38, + "probability": 0.7842 + }, + { + "start": 29718.9, + "end": 29719.7, + "probability": 0.7077 + }, + { + "start": 29720.92, + "end": 29722.12, + "probability": 0.7585 + }, + { + "start": 29722.84, + "end": 29724.54, + "probability": 0.9555 + }, + { + "start": 29725.46, + "end": 29726.88, + "probability": 0.9695 + }, + { + "start": 29727.54, + "end": 29728.76, + "probability": 0.9866 + }, + { + "start": 29729.58, + "end": 29731.02, + "probability": 0.5458 + }, + { + "start": 29731.8, + "end": 29732.3, + "probability": 0.774 + }, + { + "start": 29732.98, + "end": 29733.6, + "probability": 0.9379 + }, + { + "start": 29735.82, + "end": 29737.3, + "probability": 0.9847 + }, + { + "start": 29738.06, + "end": 29740.38, + "probability": 0.8937 + }, + { + "start": 29741.3, + "end": 29744.66, + "probability": 0.94 + }, + { + "start": 29745.44, + "end": 29746.96, + "probability": 0.9818 + }, + { + "start": 29747.8, + "end": 29750.04, + "probability": 0.8823 + }, + { + "start": 29751.12, + "end": 29754.32, + "probability": 0.9791 + }, + { + "start": 29754.54, + "end": 29756.22, + "probability": 0.9377 + }, + { + "start": 29756.96, + "end": 29758.61, + "probability": 0.8365 + }, + { + "start": 29759.52, + "end": 29761.24, + "probability": 0.9856 + }, + { + "start": 29761.98, + "end": 29764.28, + "probability": 0.9896 + }, + { + "start": 29764.76, + "end": 29767.36, + "probability": 0.9753 + }, + { + "start": 29767.88, + "end": 29768.44, + "probability": 0.8235 + }, + { + "start": 29770.48, + "end": 29772.0, + "probability": 0.9978 + }, + { + "start": 29772.28, + "end": 29773.49, + "probability": 0.8502 + }, + { + "start": 29774.62, + "end": 29778.74, + "probability": 0.9218 + }, + { + "start": 29779.14, + "end": 29780.48, + "probability": 0.8997 + }, + { + "start": 29781.14, + "end": 29783.36, + "probability": 0.9762 + }, + { + "start": 29785.36, + "end": 29787.44, + "probability": 0.8876 + }, + { + "start": 29788.46, + "end": 29794.08, + "probability": 0.9939 + }, + { + "start": 29795.28, + "end": 29797.74, + "probability": 0.9954 + }, + { + "start": 29798.18, + "end": 29799.48, + "probability": 0.749 + }, + { + "start": 29800.08, + "end": 29801.94, + "probability": 0.9671 + }, + { + "start": 29803.1, + "end": 29805.32, + "probability": 0.9946 + }, + { + "start": 29806.48, + "end": 29807.18, + "probability": 0.7432 + }, + { + "start": 29807.78, + "end": 29809.92, + "probability": 0.9636 + }, + { + "start": 29810.48, + "end": 29814.24, + "probability": 0.9961 + }, + { + "start": 29815.42, + "end": 29816.1, + "probability": 0.9194 + }, + { + "start": 29817.22, + "end": 29818.76, + "probability": 0.9126 + }, + { + "start": 29819.9, + "end": 29822.8, + "probability": 0.969 + }, + { + "start": 29822.88, + "end": 29824.26, + "probability": 0.5026 + }, + { + "start": 29824.26, + "end": 29824.68, + "probability": 0.6325 + }, + { + "start": 29824.9, + "end": 29829.44, + "probability": 0.9884 + }, + { + "start": 29831.02, + "end": 29833.42, + "probability": 0.8511 + }, + { + "start": 29834.76, + "end": 29835.44, + "probability": 0.858 + }, + { + "start": 29836.3, + "end": 29837.7, + "probability": 0.7498 + }, + { + "start": 29838.4, + "end": 29840.18, + "probability": 0.5053 + }, + { + "start": 29840.78, + "end": 29841.69, + "probability": 0.4412 + }, + { + "start": 29842.2, + "end": 29842.38, + "probability": 0.0359 + }, + { + "start": 29843.01, + "end": 29845.47, + "probability": 0.6704 + }, + { + "start": 29845.94, + "end": 29846.2, + "probability": 0.5427 + }, + { + "start": 29846.34, + "end": 29848.52, + "probability": 0.9121 + }, + { + "start": 29849.68, + "end": 29851.64, + "probability": 0.9976 + }, + { + "start": 29852.9, + "end": 29855.3, + "probability": 0.9865 + }, + { + "start": 29856.32, + "end": 29857.9, + "probability": 0.9939 + }, + { + "start": 29859.12, + "end": 29860.26, + "probability": 0.8322 + }, + { + "start": 29860.86, + "end": 29866.3, + "probability": 0.9945 + }, + { + "start": 29867.22, + "end": 29869.16, + "probability": 0.9504 + }, + { + "start": 29872.26, + "end": 29874.48, + "probability": 0.9945 + }, + { + "start": 29876.52, + "end": 29879.42, + "probability": 0.9112 + }, + { + "start": 29880.28, + "end": 29882.86, + "probability": 0.8914 + }, + { + "start": 29882.92, + "end": 29884.4, + "probability": 0.846 + }, + { + "start": 29885.6, + "end": 29890.16, + "probability": 0.9778 + }, + { + "start": 29890.86, + "end": 29893.56, + "probability": 0.7639 + }, + { + "start": 29893.64, + "end": 29895.06, + "probability": 0.4907 + }, + { + "start": 29896.1, + "end": 29899.24, + "probability": 0.9924 + }, + { + "start": 29900.02, + "end": 29900.3, + "probability": 0.6931 + }, + { + "start": 29901.24, + "end": 29903.22, + "probability": 0.9922 + }, + { + "start": 29903.84, + "end": 29907.32, + "probability": 0.9943 + }, + { + "start": 29907.32, + "end": 29910.5, + "probability": 0.9992 + }, + { + "start": 29910.56, + "end": 29913.12, + "probability": 0.7187 + }, + { + "start": 29913.74, + "end": 29914.88, + "probability": 0.9692 + }, + { + "start": 29915.54, + "end": 29917.96, + "probability": 0.9976 + }, + { + "start": 29918.5, + "end": 29920.64, + "probability": 0.9958 + }, + { + "start": 29920.74, + "end": 29922.12, + "probability": 0.7672 + }, + { + "start": 29922.76, + "end": 29923.26, + "probability": 0.5021 + }, + { + "start": 29923.36, + "end": 29924.0, + "probability": 0.7592 + }, + { + "start": 29924.2, + "end": 29929.58, + "probability": 0.9523 + }, + { + "start": 29929.72, + "end": 29930.16, + "probability": 0.7837 + }, + { + "start": 29930.68, + "end": 29932.66, + "probability": 0.9354 + }, + { + "start": 29933.2, + "end": 29935.28, + "probability": 0.9949 + }, + { + "start": 29935.82, + "end": 29936.34, + "probability": 0.9491 + }, + { + "start": 29937.02, + "end": 29942.66, + "probability": 0.9897 + }, + { + "start": 29942.66, + "end": 29946.1, + "probability": 0.9976 + }, + { + "start": 29946.88, + "end": 29949.96, + "probability": 0.8895 + }, + { + "start": 29950.64, + "end": 29964.92, + "probability": 0.575 + }, + { + "start": 29967.86, + "end": 29968.64, + "probability": 0.5852 + }, + { + "start": 29968.68, + "end": 29969.46, + "probability": 0.8179 + }, + { + "start": 29969.6, + "end": 29970.54, + "probability": 0.6185 + }, + { + "start": 29971.89, + "end": 29973.78, + "probability": 0.8031 + }, + { + "start": 29974.62, + "end": 29978.1, + "probability": 0.9204 + }, + { + "start": 29978.7, + "end": 29980.74, + "probability": 0.9725 + }, + { + "start": 29981.5, + "end": 29983.32, + "probability": 0.944 + }, + { + "start": 29983.84, + "end": 29985.28, + "probability": 0.9987 + }, + { + "start": 29986.06, + "end": 29987.1, + "probability": 0.7598 + }, + { + "start": 29987.54, + "end": 29988.62, + "probability": 0.9696 + }, + { + "start": 29988.7, + "end": 29990.44, + "probability": 0.9764 + }, + { + "start": 29990.88, + "end": 29991.78, + "probability": 0.8744 + }, + { + "start": 29991.9, + "end": 29995.46, + "probability": 0.994 + }, + { + "start": 29995.46, + "end": 29999.68, + "probability": 0.9971 + }, + { + "start": 30000.4, + "end": 30003.64, + "probability": 0.9946 + }, + { + "start": 30004.38, + "end": 30007.62, + "probability": 0.9957 + }, + { + "start": 30008.04, + "end": 30009.64, + "probability": 0.727 + }, + { + "start": 30011.8, + "end": 30015.32, + "probability": 0.7737 + }, + { + "start": 30016.58, + "end": 30020.64, + "probability": 0.9906 + }, + { + "start": 30020.78, + "end": 30022.0, + "probability": 0.9994 + }, + { + "start": 30022.52, + "end": 30024.96, + "probability": 0.6973 + }, + { + "start": 30028.03, + "end": 30030.68, + "probability": 0.6718 + }, + { + "start": 30030.82, + "end": 30031.6, + "probability": 0.565 + }, + { + "start": 30031.7, + "end": 30033.44, + "probability": 0.8953 + }, + { + "start": 30034.0, + "end": 30036.6, + "probability": 0.9327 + }, + { + "start": 30037.12, + "end": 30040.03, + "probability": 0.8911 + }, + { + "start": 30040.36, + "end": 30040.46, + "probability": 0.3788 + }, + { + "start": 30040.64, + "end": 30041.62, + "probability": 0.9799 + }, + { + "start": 30042.7, + "end": 30044.56, + "probability": 0.8315 + }, + { + "start": 30044.56, + "end": 30047.82, + "probability": 0.9063 + }, + { + "start": 30047.98, + "end": 30048.98, + "probability": 0.9721 + }, + { + "start": 30049.84, + "end": 30054.96, + "probability": 0.9976 + }, + { + "start": 30055.84, + "end": 30059.86, + "probability": 0.9814 + }, + { + "start": 30060.46, + "end": 30062.16, + "probability": 0.9937 + }, + { + "start": 30062.6, + "end": 30065.08, + "probability": 0.993 + }, + { + "start": 30065.08, + "end": 30069.92, + "probability": 0.9946 + }, + { + "start": 30070.48, + "end": 30072.44, + "probability": 0.9724 + }, + { + "start": 30073.04, + "end": 30077.48, + "probability": 0.9929 + }, + { + "start": 30078.12, + "end": 30079.9, + "probability": 0.9473 + }, + { + "start": 30080.4, + "end": 30082.1, + "probability": 0.9795 + }, + { + "start": 30082.68, + "end": 30083.72, + "probability": 0.9867 + }, + { + "start": 30084.1, + "end": 30085.64, + "probability": 0.9558 + }, + { + "start": 30085.98, + "end": 30087.38, + "probability": 0.9597 + }, + { + "start": 30087.98, + "end": 30088.43, + "probability": 0.9592 + }, + { + "start": 30089.26, + "end": 30092.92, + "probability": 0.9943 + }, + { + "start": 30092.92, + "end": 30096.68, + "probability": 0.9534 + }, + { + "start": 30097.5, + "end": 30103.78, + "probability": 0.9806 + }, + { + "start": 30104.3, + "end": 30105.3, + "probability": 0.5999 + }, + { + "start": 30105.94, + "end": 30107.68, + "probability": 0.901 + }, + { + "start": 30108.14, + "end": 30110.14, + "probability": 0.9716 + }, + { + "start": 30110.78, + "end": 30112.94, + "probability": 0.9829 + }, + { + "start": 30112.94, + "end": 30115.66, + "probability": 0.9908 + }, + { + "start": 30116.12, + "end": 30118.32, + "probability": 0.9965 + }, + { + "start": 30118.64, + "end": 30119.82, + "probability": 0.9792 + }, + { + "start": 30120.24, + "end": 30121.26, + "probability": 0.9455 + }, + { + "start": 30121.52, + "end": 30124.46, + "probability": 0.9983 + }, + { + "start": 30125.06, + "end": 30126.82, + "probability": 0.9417 + }, + { + "start": 30127.2, + "end": 30130.16, + "probability": 0.9675 + }, + { + "start": 30130.16, + "end": 30132.1, + "probability": 0.9682 + }, + { + "start": 30132.76, + "end": 30133.42, + "probability": 0.6362 + }, + { + "start": 30133.5, + "end": 30135.62, + "probability": 0.9649 + }, + { + "start": 30136.06, + "end": 30137.06, + "probability": 0.896 + }, + { + "start": 30137.14, + "end": 30140.12, + "probability": 0.944 + }, + { + "start": 30140.7, + "end": 30143.37, + "probability": 0.966 + }, + { + "start": 30143.88, + "end": 30146.6, + "probability": 0.9854 + }, + { + "start": 30147.12, + "end": 30149.96, + "probability": 0.972 + }, + { + "start": 30150.42, + "end": 30152.66, + "probability": 0.8689 + }, + { + "start": 30153.6, + "end": 30157.24, + "probability": 0.9978 + }, + { + "start": 30157.8, + "end": 30160.02, + "probability": 0.9656 + }, + { + "start": 30160.1, + "end": 30164.28, + "probability": 0.9768 + }, + { + "start": 30164.34, + "end": 30169.5, + "probability": 0.9829 + }, + { + "start": 30169.76, + "end": 30171.28, + "probability": 0.9453 + }, + { + "start": 30171.94, + "end": 30174.86, + "probability": 0.9923 + }, + { + "start": 30175.64, + "end": 30177.18, + "probability": 0.8748 + }, + { + "start": 30177.86, + "end": 30181.28, + "probability": 0.9956 + }, + { + "start": 30181.94, + "end": 30185.32, + "probability": 0.998 + }, + { + "start": 30185.86, + "end": 30188.02, + "probability": 0.8207 + }, + { + "start": 30188.8, + "end": 30191.72, + "probability": 0.9969 + }, + { + "start": 30191.72, + "end": 30196.14, + "probability": 0.999 + }, + { + "start": 30196.8, + "end": 30200.02, + "probability": 0.9976 + }, + { + "start": 30200.02, + "end": 30204.48, + "probability": 0.9995 + }, + { + "start": 30205.08, + "end": 30209.5, + "probability": 0.9918 + }, + { + "start": 30210.1, + "end": 30213.54, + "probability": 0.9839 + }, + { + "start": 30213.68, + "end": 30214.82, + "probability": 0.9884 + }, + { + "start": 30214.92, + "end": 30216.24, + "probability": 0.8747 + }, + { + "start": 30216.78, + "end": 30222.08, + "probability": 0.992 + }, + { + "start": 30222.78, + "end": 30226.8, + "probability": 0.9932 + }, + { + "start": 30227.74, + "end": 30231.26, + "probability": 0.9976 + }, + { + "start": 30231.26, + "end": 30235.1, + "probability": 0.9057 + }, + { + "start": 30235.48, + "end": 30238.82, + "probability": 0.9846 + }, + { + "start": 30239.36, + "end": 30244.04, + "probability": 0.8408 + }, + { + "start": 30244.5, + "end": 30247.09, + "probability": 0.9863 + }, + { + "start": 30247.84, + "end": 30250.42, + "probability": 0.8371 + }, + { + "start": 30250.98, + "end": 30254.0, + "probability": 0.9984 + }, + { + "start": 30254.0, + "end": 30257.76, + "probability": 0.9922 + }, + { + "start": 30258.36, + "end": 30259.44, + "probability": 0.9166 + }, + { + "start": 30260.28, + "end": 30261.52, + "probability": 0.8903 + }, + { + "start": 30262.52, + "end": 30264.14, + "probability": 0.9561 + }, + { + "start": 30264.18, + "end": 30265.26, + "probability": 0.5021 + }, + { + "start": 30265.82, + "end": 30269.58, + "probability": 0.9973 + }, + { + "start": 30270.1, + "end": 30271.8, + "probability": 0.9683 + }, + { + "start": 30272.96, + "end": 30278.28, + "probability": 0.985 + }, + { + "start": 30278.7, + "end": 30279.74, + "probability": 0.8839 + }, + { + "start": 30280.18, + "end": 30281.1, + "probability": 0.7089 + }, + { + "start": 30281.3, + "end": 30282.06, + "probability": 0.9115 + }, + { + "start": 30282.42, + "end": 30283.46, + "probability": 0.7712 + }, + { + "start": 30284.1, + "end": 30286.42, + "probability": 0.7993 + }, + { + "start": 30286.52, + "end": 30286.88, + "probability": 0.3412 + }, + { + "start": 30287.28, + "end": 30287.48, + "probability": 0.6536 + }, + { + "start": 30287.86, + "end": 30292.46, + "probability": 0.9725 + }, + { + "start": 30293.76, + "end": 30295.16, + "probability": 0.6891 + }, + { + "start": 30295.74, + "end": 30296.74, + "probability": 0.8096 + }, + { + "start": 30297.42, + "end": 30302.24, + "probability": 0.9973 + }, + { + "start": 30302.7, + "end": 30304.5, + "probability": 0.9792 + }, + { + "start": 30304.5, + "end": 30309.92, + "probability": 0.9888 + }, + { + "start": 30310.9, + "end": 30312.36, + "probability": 0.9604 + }, + { + "start": 30313.26, + "end": 30315.56, + "probability": 0.9546 + }, + { + "start": 30316.04, + "end": 30321.84, + "probability": 0.8726 + }, + { + "start": 30323.08, + "end": 30325.12, + "probability": 0.8529 + }, + { + "start": 30325.78, + "end": 30326.7, + "probability": 0.9966 + }, + { + "start": 30328.16, + "end": 30330.2, + "probability": 0.8805 + }, + { + "start": 30330.92, + "end": 30335.1, + "probability": 0.9658 + }, + { + "start": 30335.94, + "end": 30338.18, + "probability": 0.9979 + }, + { + "start": 30338.34, + "end": 30340.52, + "probability": 0.978 + }, + { + "start": 30341.06, + "end": 30341.7, + "probability": 0.9808 + }, + { + "start": 30342.26, + "end": 30343.6, + "probability": 0.9775 + }, + { + "start": 30344.12, + "end": 30345.42, + "probability": 0.897 + }, + { + "start": 30345.88, + "end": 30349.74, + "probability": 0.7331 + }, + { + "start": 30349.74, + "end": 30353.82, + "probability": 0.9772 + }, + { + "start": 30355.02, + "end": 30358.24, + "probability": 0.9719 + }, + { + "start": 30358.94, + "end": 30360.48, + "probability": 0.9907 + }, + { + "start": 30361.48, + "end": 30364.58, + "probability": 0.9984 + }, + { + "start": 30364.58, + "end": 30368.58, + "probability": 0.929 + }, + { + "start": 30368.92, + "end": 30369.2, + "probability": 0.7706 + }, + { + "start": 30369.32, + "end": 30370.54, + "probability": 0.9666 + }, + { + "start": 30371.64, + "end": 30373.96, + "probability": 0.9948 + }, + { + "start": 30374.42, + "end": 30376.7, + "probability": 0.9945 + }, + { + "start": 30378.06, + "end": 30379.82, + "probability": 0.8764 + }, + { + "start": 30380.5, + "end": 30382.11, + "probability": 0.9779 + }, + { + "start": 30383.44, + "end": 30387.3, + "probability": 0.9952 + }, + { + "start": 30387.4, + "end": 30388.04, + "probability": 0.9077 + }, + { + "start": 30389.34, + "end": 30391.7, + "probability": 0.9872 + }, + { + "start": 30392.4, + "end": 30395.12, + "probability": 0.7559 + }, + { + "start": 30396.84, + "end": 30397.6, + "probability": 0.8737 + }, + { + "start": 30398.12, + "end": 30400.02, + "probability": 0.9725 + }, + { + "start": 30400.86, + "end": 30401.24, + "probability": 0.9702 + }, + { + "start": 30402.36, + "end": 30408.52, + "probability": 0.9976 + }, + { + "start": 30409.54, + "end": 30412.98, + "probability": 0.9941 + }, + { + "start": 30413.72, + "end": 30416.72, + "probability": 0.9706 + }, + { + "start": 30417.42, + "end": 30419.78, + "probability": 0.7854 + }, + { + "start": 30427.2, + "end": 30427.98, + "probability": 0.3619 + }, + { + "start": 30429.36, + "end": 30430.98, + "probability": 0.8618 + }, + { + "start": 30431.5, + "end": 30434.72, + "probability": 0.9897 + }, + { + "start": 30435.54, + "end": 30437.3, + "probability": 0.9368 + }, + { + "start": 30437.92, + "end": 30441.02, + "probability": 0.9972 + }, + { + "start": 30441.02, + "end": 30444.06, + "probability": 0.9969 + }, + { + "start": 30444.6, + "end": 30449.68, + "probability": 0.9832 + }, + { + "start": 30449.68, + "end": 30451.92, + "probability": 0.9967 + }, + { + "start": 30452.96, + "end": 30454.54, + "probability": 0.9885 + }, + { + "start": 30454.64, + "end": 30455.66, + "probability": 0.9563 + }, + { + "start": 30455.78, + "end": 30456.89, + "probability": 0.7012 + }, + { + "start": 30457.04, + "end": 30458.72, + "probability": 0.8787 + }, + { + "start": 30458.74, + "end": 30460.14, + "probability": 0.9753 + }, + { + "start": 30460.5, + "end": 30463.19, + "probability": 0.974 + }, + { + "start": 30463.86, + "end": 30469.2, + "probability": 0.9974 + }, + { + "start": 30469.88, + "end": 30471.34, + "probability": 0.5429 + }, + { + "start": 30471.44, + "end": 30471.9, + "probability": 0.9251 + }, + { + "start": 30471.96, + "end": 30474.72, + "probability": 0.9961 + }, + { + "start": 30475.34, + "end": 30477.32, + "probability": 0.9924 + }, + { + "start": 30477.94, + "end": 30479.44, + "probability": 0.8712 + }, + { + "start": 30480.04, + "end": 30484.17, + "probability": 0.9884 + }, + { + "start": 30484.64, + "end": 30485.78, + "probability": 0.5118 + }, + { + "start": 30486.5, + "end": 30488.42, + "probability": 0.6336 + }, + { + "start": 30488.52, + "end": 30490.06, + "probability": 0.601 + }, + { + "start": 30490.06, + "end": 30490.28, + "probability": 0.2573 + }, + { + "start": 30491.02, + "end": 30492.04, + "probability": 0.1398 + }, + { + "start": 30492.06, + "end": 30493.44, + "probability": 0.4907 + }, + { + "start": 30493.46, + "end": 30493.81, + "probability": 0.4494 + }, + { + "start": 30495.12, + "end": 30496.06, + "probability": 0.2759 + }, + { + "start": 30496.82, + "end": 30498.52, + "probability": 0.5306 + }, + { + "start": 30498.64, + "end": 30502.3, + "probability": 0.9889 + }, + { + "start": 30503.0, + "end": 30505.7, + "probability": 0.9949 + }, + { + "start": 30505.7, + "end": 30509.0, + "probability": 0.8665 + }, + { + "start": 30509.2, + "end": 30512.68, + "probability": 0.9756 + }, + { + "start": 30513.2, + "end": 30516.32, + "probability": 0.9839 + }, + { + "start": 30516.88, + "end": 30519.96, + "probability": 0.9849 + }, + { + "start": 30520.28, + "end": 30524.16, + "probability": 0.9947 + }, + { + "start": 30524.82, + "end": 30527.24, + "probability": 0.9047 + }, + { + "start": 30527.8, + "end": 30528.92, + "probability": 0.9664 + }, + { + "start": 30529.42, + "end": 30532.88, + "probability": 0.9751 + }, + { + "start": 30533.48, + "end": 30534.1, + "probability": 0.8887 + }, + { + "start": 30534.18, + "end": 30535.22, + "probability": 0.827 + }, + { + "start": 30535.3, + "end": 30536.82, + "probability": 0.9941 + }, + { + "start": 30537.34, + "end": 30538.7, + "probability": 0.9571 + }, + { + "start": 30539.26, + "end": 30539.98, + "probability": 0.7634 + }, + { + "start": 30540.38, + "end": 30541.12, + "probability": 0.9295 + }, + { + "start": 30541.5, + "end": 30544.12, + "probability": 0.973 + }, + { + "start": 30544.64, + "end": 30545.14, + "probability": 0.8929 + }, + { + "start": 30546.16, + "end": 30548.34, + "probability": 0.8827 + }, + { + "start": 30551.33, + "end": 30553.16, + "probability": 0.7807 + }, + { + "start": 30554.84, + "end": 30557.82, + "probability": 0.9896 + }, + { + "start": 30557.92, + "end": 30560.0, + "probability": 0.7764 + }, + { + "start": 30560.0, + "end": 30562.52, + "probability": 0.8711 + }, + { + "start": 30562.76, + "end": 30563.82, + "probability": 0.0298 + }, + { + "start": 30563.88, + "end": 30563.98, + "probability": 0.7683 + }, + { + "start": 30567.62, + "end": 30570.41, + "probability": 0.9551 + }, + { + "start": 30571.44, + "end": 30576.78, + "probability": 0.9271 + }, + { + "start": 30577.66, + "end": 30578.06, + "probability": 0.5708 + }, + { + "start": 30578.3, + "end": 30579.88, + "probability": 0.534 + }, + { + "start": 30579.92, + "end": 30581.64, + "probability": 0.7487 + }, + { + "start": 30582.4, + "end": 30586.32, + "probability": 0.6089 + }, + { + "start": 30586.32, + "end": 30586.32, + "probability": 0.0237 + }, + { + "start": 30586.32, + "end": 30587.37, + "probability": 0.3224 + }, + { + "start": 30587.52, + "end": 30589.0, + "probability": 0.5651 + }, + { + "start": 30589.0, + "end": 30591.84, + "probability": 0.5849 + }, + { + "start": 30592.2, + "end": 30595.36, + "probability": 0.7705 + }, + { + "start": 30597.18, + "end": 30597.86, + "probability": 0.3783 + }, + { + "start": 30598.06, + "end": 30598.18, + "probability": 0.3449 + }, + { + "start": 30598.4, + "end": 30598.4, + "probability": 0.4033 + }, + { + "start": 30598.48, + "end": 30599.84, + "probability": 0.9399 + }, + { + "start": 30600.3, + "end": 30601.56, + "probability": 0.8287 + }, + { + "start": 30602.58, + "end": 30604.14, + "probability": 0.7427 + }, + { + "start": 30604.34, + "end": 30604.72, + "probability": 0.4249 + }, + { + "start": 30607.27, + "end": 30609.4, + "probability": 0.7059 + }, + { + "start": 30609.52, + "end": 30611.01, + "probability": 0.2084 + }, + { + "start": 30612.68, + "end": 30615.87, + "probability": 0.8685 + }, + { + "start": 30616.62, + "end": 30617.62, + "probability": 0.9557 + }, + { + "start": 30617.74, + "end": 30618.25, + "probability": 0.4077 + }, + { + "start": 30619.38, + "end": 30620.0, + "probability": 0.5743 + }, + { + "start": 30620.02, + "end": 30621.48, + "probability": 0.9097 + }, + { + "start": 30623.15, + "end": 30625.38, + "probability": 0.6216 + }, + { + "start": 30625.62, + "end": 30627.14, + "probability": 0.8645 + }, + { + "start": 30627.34, + "end": 30628.42, + "probability": 0.5483 + }, + { + "start": 30629.55, + "end": 30630.6, + "probability": 0.1584 + }, + { + "start": 30631.9, + "end": 30634.38, + "probability": 0.6772 + }, + { + "start": 30635.02, + "end": 30637.26, + "probability": 0.0308 + }, + { + "start": 30637.4, + "end": 30638.02, + "probability": 0.8073 + }, + { + "start": 30638.04, + "end": 30641.8, + "probability": 0.7649 + }, + { + "start": 30641.88, + "end": 30642.72, + "probability": 0.6089 + }, + { + "start": 30642.92, + "end": 30643.8, + "probability": 0.7137 + }, + { + "start": 30644.08, + "end": 30645.24, + "probability": 0.8714 + }, + { + "start": 30645.24, + "end": 30647.04, + "probability": 0.984 + }, + { + "start": 30648.12, + "end": 30650.04, + "probability": 0.6562 + }, + { + "start": 30651.03, + "end": 30653.38, + "probability": 0.745 + }, + { + "start": 30654.1, + "end": 30658.96, + "probability": 0.9518 + }, + { + "start": 30660.18, + "end": 30662.35, + "probability": 0.9962 + }, + { + "start": 30663.28, + "end": 30666.94, + "probability": 0.9962 + }, + { + "start": 30666.94, + "end": 30671.26, + "probability": 0.7842 + }, + { + "start": 30672.12, + "end": 30672.96, + "probability": 0.9971 + }, + { + "start": 30673.86, + "end": 30676.32, + "probability": 0.9755 + }, + { + "start": 30677.96, + "end": 30680.64, + "probability": 0.9941 + }, + { + "start": 30680.76, + "end": 30682.16, + "probability": 0.9967 + }, + { + "start": 30682.9, + "end": 30683.88, + "probability": 0.8213 + }, + { + "start": 30684.46, + "end": 30685.12, + "probability": 0.9543 + }, + { + "start": 30685.28, + "end": 30685.48, + "probability": 0.6432 + }, + { + "start": 30685.92, + "end": 30686.92, + "probability": 0.7063 + }, + { + "start": 30687.02, + "end": 30690.71, + "probability": 0.9582 + }, + { + "start": 30691.14, + "end": 30693.88, + "probability": 0.8186 + }, + { + "start": 30693.94, + "end": 30695.68, + "probability": 0.9907 + }, + { + "start": 30696.78, + "end": 30698.82, + "probability": 0.9288 + }, + { + "start": 30699.78, + "end": 30702.68, + "probability": 0.887 + }, + { + "start": 30703.52, + "end": 30706.42, + "probability": 0.9478 + }, + { + "start": 30707.72, + "end": 30712.5, + "probability": 0.9956 + }, + { + "start": 30713.44, + "end": 30717.42, + "probability": 0.9974 + }, + { + "start": 30717.42, + "end": 30722.04, + "probability": 0.9969 + }, + { + "start": 30723.62, + "end": 30725.98, + "probability": 0.9725 + }, + { + "start": 30726.8, + "end": 30729.84, + "probability": 0.9974 + }, + { + "start": 30730.68, + "end": 30731.96, + "probability": 0.9689 + }, + { + "start": 30733.06, + "end": 30736.28, + "probability": 0.9985 + }, + { + "start": 30737.66, + "end": 30740.58, + "probability": 0.9967 + }, + { + "start": 30741.6, + "end": 30744.6, + "probability": 0.9976 + }, + { + "start": 30745.4, + "end": 30747.26, + "probability": 0.9986 + }, + { + "start": 30748.38, + "end": 30751.92, + "probability": 0.9991 + }, + { + "start": 30753.14, + "end": 30754.36, + "probability": 0.991 + }, + { + "start": 30755.1, + "end": 30755.9, + "probability": 0.9952 + }, + { + "start": 30756.62, + "end": 30758.5, + "probability": 0.9937 + }, + { + "start": 30759.48, + "end": 30760.42, + "probability": 0.7174 + }, + { + "start": 30761.38, + "end": 30762.88, + "probability": 0.9981 + }, + { + "start": 30763.64, + "end": 30766.0, + "probability": 0.9987 + }, + { + "start": 30767.32, + "end": 30773.72, + "probability": 0.7268 + }, + { + "start": 30774.54, + "end": 30776.7, + "probability": 0.9932 + }, + { + "start": 30777.12, + "end": 30779.22, + "probability": 0.9967 + }, + { + "start": 30780.56, + "end": 30783.12, + "probability": 0.8479 + }, + { + "start": 30783.84, + "end": 30785.26, + "probability": 0.7789 + }, + { + "start": 30785.98, + "end": 30787.18, + "probability": 0.9842 + }, + { + "start": 30788.52, + "end": 30794.36, + "probability": 0.9982 + }, + { + "start": 30794.36, + "end": 30799.88, + "probability": 0.9984 + }, + { + "start": 30800.72, + "end": 30801.6, + "probability": 0.7896 + }, + { + "start": 30802.24, + "end": 30803.0, + "probability": 0.9406 + }, + { + "start": 30804.04, + "end": 30809.28, + "probability": 0.9923 + }, + { + "start": 30810.66, + "end": 30811.98, + "probability": 0.9989 + }, + { + "start": 30812.04, + "end": 30814.4, + "probability": 0.9948 + }, + { + "start": 30815.44, + "end": 30818.16, + "probability": 0.9974 + }, + { + "start": 30818.88, + "end": 30822.64, + "probability": 0.9772 + }, + { + "start": 30823.6, + "end": 30827.52, + "probability": 0.864 + }, + { + "start": 30828.28, + "end": 30830.18, + "probability": 0.993 + }, + { + "start": 30830.74, + "end": 30831.46, + "probability": 0.86 + }, + { + "start": 30832.34, + "end": 30833.84, + "probability": 0.9988 + }, + { + "start": 30835.42, + "end": 30838.46, + "probability": 0.9727 + }, + { + "start": 30839.24, + "end": 30839.56, + "probability": 0.7132 + }, + { + "start": 30840.22, + "end": 30841.32, + "probability": 0.9871 + }, + { + "start": 30842.06, + "end": 30844.06, + "probability": 0.9052 + }, + { + "start": 30844.54, + "end": 30848.52, + "probability": 0.9854 + }, + { + "start": 30849.72, + "end": 30850.1, + "probability": 0.8495 + }, + { + "start": 30850.46, + "end": 30854.26, + "probability": 0.9858 + }, + { + "start": 30854.76, + "end": 30855.5, + "probability": 0.8076 + }, + { + "start": 30855.54, + "end": 30857.9, + "probability": 0.9404 + }, + { + "start": 30858.12, + "end": 30860.62, + "probability": 0.9622 + }, + { + "start": 30861.78, + "end": 30863.84, + "probability": 0.9927 + }, + { + "start": 30864.48, + "end": 30865.1, + "probability": 0.9481 + }, + { + "start": 30865.42, + "end": 30867.02, + "probability": 0.9956 + }, + { + "start": 30867.4, + "end": 30870.68, + "probability": 0.978 + }, + { + "start": 30871.28, + "end": 30872.72, + "probability": 0.9922 + }, + { + "start": 30873.86, + "end": 30876.28, + "probability": 0.9799 + }, + { + "start": 30877.14, + "end": 30878.4, + "probability": 0.8662 + }, + { + "start": 30879.38, + "end": 30880.9, + "probability": 0.9971 + }, + { + "start": 30881.58, + "end": 30883.32, + "probability": 0.9823 + }, + { + "start": 30884.14, + "end": 30886.6, + "probability": 0.99 + }, + { + "start": 30887.36, + "end": 30892.92, + "probability": 0.9792 + }, + { + "start": 30893.44, + "end": 30894.16, + "probability": 0.6359 + }, + { + "start": 30895.38, + "end": 30898.36, + "probability": 0.9923 + }, + { + "start": 30898.38, + "end": 30900.38, + "probability": 0.9385 + }, + { + "start": 30901.54, + "end": 30902.74, + "probability": 0.8779 + }, + { + "start": 30904.36, + "end": 30905.64, + "probability": 0.6668 + }, + { + "start": 30906.24, + "end": 30908.7, + "probability": 0.9836 + }, + { + "start": 30909.74, + "end": 30911.58, + "probability": 0.872 + }, + { + "start": 30912.42, + "end": 30915.66, + "probability": 0.9802 + }, + { + "start": 30916.5, + "end": 30917.99, + "probability": 0.988 + }, + { + "start": 30920.36, + "end": 30921.32, + "probability": 0.9962 + }, + { + "start": 30922.06, + "end": 30922.54, + "probability": 0.7704 + }, + { + "start": 30923.5, + "end": 30926.56, + "probability": 0.9757 + }, + { + "start": 30927.36, + "end": 30929.38, + "probability": 0.7358 + }, + { + "start": 30930.2, + "end": 30931.66, + "probability": 0.9836 + }, + { + "start": 30932.46, + "end": 30933.72, + "probability": 0.9936 + }, + { + "start": 30934.7, + "end": 30936.1, + "probability": 0.9415 + }, + { + "start": 30936.64, + "end": 30939.88, + "probability": 0.9948 + }, + { + "start": 30940.48, + "end": 30945.14, + "probability": 0.9834 + }, + { + "start": 30945.74, + "end": 30946.74, + "probability": 0.9637 + }, + { + "start": 30948.14, + "end": 30950.8, + "probability": 0.8613 + }, + { + "start": 30950.85, + "end": 30953.68, + "probability": 0.9827 + }, + { + "start": 30954.48, + "end": 30956.68, + "probability": 0.9927 + }, + { + "start": 30957.36, + "end": 30959.42, + "probability": 0.9983 + }, + { + "start": 30960.94, + "end": 30962.46, + "probability": 0.7155 + }, + { + "start": 30963.58, + "end": 30965.42, + "probability": 0.5986 + }, + { + "start": 30966.24, + "end": 30972.04, + "probability": 0.9548 + }, + { + "start": 30972.88, + "end": 30973.12, + "probability": 0.255 + }, + { + "start": 30973.12, + "end": 30975.12, + "probability": 0.9137 + }, + { + "start": 30975.94, + "end": 30979.37, + "probability": 0.958 + }, + { + "start": 30979.5, + "end": 30979.54, + "probability": 0.0307 + }, + { + "start": 30979.54, + "end": 30981.96, + "probability": 0.9474 + }, + { + "start": 30982.54, + "end": 30984.64, + "probability": 0.9774 + }, + { + "start": 30985.06, + "end": 30985.26, + "probability": 0.2889 + }, + { + "start": 31012.0, + "end": 31012.3, + "probability": 0.3079 + }, + { + "start": 31013.6, + "end": 31015.82, + "probability": 0.7249 + }, + { + "start": 31016.98, + "end": 31019.9, + "probability": 0.9047 + }, + { + "start": 31020.92, + "end": 31023.46, + "probability": 0.9708 + }, + { + "start": 31024.18, + "end": 31028.62, + "probability": 0.9852 + }, + { + "start": 31029.52, + "end": 31032.92, + "probability": 0.9124 + }, + { + "start": 31033.98, + "end": 31038.04, + "probability": 0.6103 + }, + { + "start": 31038.4, + "end": 31038.94, + "probability": 0.7276 + }, + { + "start": 31039.58, + "end": 31050.7, + "probability": 0.8021 + }, + { + "start": 31051.18, + "end": 31051.24, + "probability": 0.0014 + }, + { + "start": 31051.24, + "end": 31054.02, + "probability": 0.0151 + }, + { + "start": 31054.02, + "end": 31055.38, + "probability": 0.1567 + }, + { + "start": 31059.98, + "end": 31061.54, + "probability": 0.0128 + }, + { + "start": 31062.54, + "end": 31063.46, + "probability": 0.0019 + }, + { + "start": 31063.46, + "end": 31063.46, + "probability": 0.0509 + }, + { + "start": 31063.46, + "end": 31063.46, + "probability": 0.0348 + }, + { + "start": 31063.46, + "end": 31064.42, + "probability": 0.0668 + }, + { + "start": 31064.42, + "end": 31065.24, + "probability": 0.2789 + }, + { + "start": 31065.3, + "end": 31066.44, + "probability": 0.3537 + }, + { + "start": 31066.94, + "end": 31072.22, + "probability": 0.9175 + }, + { + "start": 31072.34, + "end": 31074.0, + "probability": 0.7484 + }, + { + "start": 31074.58, + "end": 31077.84, + "probability": 0.9924 + }, + { + "start": 31079.0, + "end": 31080.1, + "probability": 0.9627 + }, + { + "start": 31080.2, + "end": 31081.56, + "probability": 0.9506 + }, + { + "start": 31082.18, + "end": 31084.12, + "probability": 0.9753 + }, + { + "start": 31085.08, + "end": 31094.14, + "probability": 0.9725 + }, + { + "start": 31094.26, + "end": 31095.3, + "probability": 0.9684 + }, + { + "start": 31095.42, + "end": 31096.84, + "probability": 0.9958 + }, + { + "start": 31097.42, + "end": 31099.44, + "probability": 0.8986 + }, + { + "start": 31099.6, + "end": 31100.78, + "probability": 0.9692 + }, + { + "start": 31101.48, + "end": 31101.98, + "probability": 0.7561 + }, + { + "start": 31102.58, + "end": 31103.14, + "probability": 0.0026 + }, + { + "start": 31104.64, + "end": 31111.72, + "probability": 0.9836 + }, + { + "start": 31111.72, + "end": 31118.44, + "probability": 0.9348 + }, + { + "start": 31118.5, + "end": 31122.14, + "probability": 0.9823 + }, + { + "start": 31122.14, + "end": 31127.08, + "probability": 0.9995 + }, + { + "start": 31128.62, + "end": 31130.72, + "probability": 0.9663 + }, + { + "start": 31130.88, + "end": 31137.92, + "probability": 0.9939 + }, + { + "start": 31138.76, + "end": 31142.3, + "probability": 0.7504 + }, + { + "start": 31142.46, + "end": 31143.66, + "probability": 0.8762 + }, + { + "start": 31144.16, + "end": 31148.72, + "probability": 0.9504 + }, + { + "start": 31149.18, + "end": 31150.6, + "probability": 0.8857 + }, + { + "start": 31151.14, + "end": 31152.58, + "probability": 0.9668 + }, + { + "start": 31153.2, + "end": 31155.54, + "probability": 0.9602 + }, + { + "start": 31156.6, + "end": 31157.39, + "probability": 0.7007 + }, + { + "start": 31158.04, + "end": 31162.1, + "probability": 0.7129 + }, + { + "start": 31162.76, + "end": 31165.24, + "probability": 0.9301 + }, + { + "start": 31165.68, + "end": 31168.92, + "probability": 0.9976 + }, + { + "start": 31169.26, + "end": 31172.48, + "probability": 0.9953 + }, + { + "start": 31173.32, + "end": 31176.58, + "probability": 0.9932 + }, + { + "start": 31176.58, + "end": 31182.1, + "probability": 0.9993 + }, + { + "start": 31182.64, + "end": 31184.44, + "probability": 0.9971 + }, + { + "start": 31185.16, + "end": 31185.74, + "probability": 0.9321 + }, + { + "start": 31186.26, + "end": 31190.62, + "probability": 0.9463 + }, + { + "start": 31191.08, + "end": 31194.4, + "probability": 0.8538 + }, + { + "start": 31194.88, + "end": 31198.12, + "probability": 0.8878 + }, + { + "start": 31198.6, + "end": 31199.2, + "probability": 0.577 + }, + { + "start": 31199.8, + "end": 31204.92, + "probability": 0.932 + }, + { + "start": 31205.94, + "end": 31209.08, + "probability": 0.9959 + }, + { + "start": 31209.08, + "end": 31214.04, + "probability": 0.9837 + }, + { + "start": 31214.6, + "end": 31218.74, + "probability": 0.9771 + }, + { + "start": 31219.42, + "end": 31222.06, + "probability": 0.886 + }, + { + "start": 31222.06, + "end": 31226.96, + "probability": 0.9612 + }, + { + "start": 31227.34, + "end": 31228.1, + "probability": 0.9659 + }, + { + "start": 31229.06, + "end": 31230.98, + "probability": 0.9901 + }, + { + "start": 31232.22, + "end": 31233.46, + "probability": 0.9046 + }, + { + "start": 31234.22, + "end": 31235.44, + "probability": 0.818 + }, + { + "start": 31235.62, + "end": 31236.08, + "probability": 0.6767 + }, + { + "start": 31236.16, + "end": 31238.24, + "probability": 0.8856 + }, + { + "start": 31238.74, + "end": 31243.76, + "probability": 0.9779 + }, + { + "start": 31244.06, + "end": 31245.34, + "probability": 0.9922 + }, + { + "start": 31245.7, + "end": 31247.38, + "probability": 0.9866 + }, + { + "start": 31247.74, + "end": 31249.1, + "probability": 0.8628 + }, + { + "start": 31249.68, + "end": 31255.46, + "probability": 0.991 + }, + { + "start": 31256.36, + "end": 31260.52, + "probability": 0.9944 + }, + { + "start": 31261.02, + "end": 31263.4, + "probability": 0.9956 + }, + { + "start": 31263.8, + "end": 31264.98, + "probability": 0.9142 + }, + { + "start": 31265.9, + "end": 31269.66, + "probability": 0.9828 + }, + { + "start": 31272.02, + "end": 31273.44, + "probability": 0.155 + }, + { + "start": 31274.98, + "end": 31275.14, + "probability": 0.0603 + }, + { + "start": 31275.14, + "end": 31276.98, + "probability": 0.0875 + }, + { + "start": 31278.14, + "end": 31280.58, + "probability": 0.9132 + }, + { + "start": 31281.8, + "end": 31285.84, + "probability": 0.9897 + }, + { + "start": 31286.66, + "end": 31291.24, + "probability": 0.6749 + }, + { + "start": 31291.86, + "end": 31296.76, + "probability": 0.9346 + }, + { + "start": 31297.74, + "end": 31304.28, + "probability": 0.932 + }, + { + "start": 31304.9, + "end": 31309.19, + "probability": 0.9723 + }, + { + "start": 31310.06, + "end": 31312.98, + "probability": 0.9777 + }, + { + "start": 31314.56, + "end": 31315.42, + "probability": 0.5562 + }, + { + "start": 31316.62, + "end": 31321.58, + "probability": 0.9009 + }, + { + "start": 31321.74, + "end": 31326.52, + "probability": 0.9802 + }, + { + "start": 31327.46, + "end": 31328.16, + "probability": 0.7388 + }, + { + "start": 31328.48, + "end": 31333.04, + "probability": 0.9409 + }, + { + "start": 31333.8, + "end": 31338.76, + "probability": 0.9966 + }, + { + "start": 31339.18, + "end": 31340.78, + "probability": 0.8142 + }, + { + "start": 31341.4, + "end": 31342.52, + "probability": 0.8683 + }, + { + "start": 31344.32, + "end": 31344.66, + "probability": 0.1291 + }, + { + "start": 31346.0, + "end": 31346.82, + "probability": 0.7241 + }, + { + "start": 31348.2, + "end": 31348.92, + "probability": 0.8305 + }, + { + "start": 31349.16, + "end": 31353.94, + "probability": 0.9945 + }, + { + "start": 31354.48, + "end": 31360.8, + "probability": 0.9985 + }, + { + "start": 31361.72, + "end": 31364.28, + "probability": 0.9899 + }, + { + "start": 31364.28, + "end": 31368.66, + "probability": 0.983 + }, + { + "start": 31369.48, + "end": 31372.96, + "probability": 0.995 + }, + { + "start": 31373.6, + "end": 31374.26, + "probability": 0.9314 + }, + { + "start": 31374.86, + "end": 31377.8, + "probability": 0.9873 + }, + { + "start": 31378.34, + "end": 31382.24, + "probability": 0.991 + }, + { + "start": 31382.7, + "end": 31388.84, + "probability": 0.9921 + }, + { + "start": 31389.7, + "end": 31390.48, + "probability": 0.7271 + }, + { + "start": 31391.02, + "end": 31396.3, + "probability": 0.9946 + }, + { + "start": 31397.02, + "end": 31397.92, + "probability": 0.9973 + }, + { + "start": 31398.84, + "end": 31402.16, + "probability": 0.9085 + }, + { + "start": 31402.96, + "end": 31404.12, + "probability": 0.9461 + }, + { + "start": 31404.68, + "end": 31406.42, + "probability": 0.9043 + }, + { + "start": 31406.86, + "end": 31411.04, + "probability": 0.9857 + }, + { + "start": 31412.12, + "end": 31418.04, + "probability": 0.9951 + }, + { + "start": 31418.04, + "end": 31423.76, + "probability": 0.9932 + }, + { + "start": 31424.64, + "end": 31430.94, + "probability": 0.9862 + }, + { + "start": 31431.82, + "end": 31435.82, + "probability": 0.9987 + }, + { + "start": 31436.34, + "end": 31438.6, + "probability": 0.5813 + }, + { + "start": 31439.38, + "end": 31441.44, + "probability": 0.9287 + }, + { + "start": 31441.9, + "end": 31446.68, + "probability": 0.9832 + }, + { + "start": 31447.1, + "end": 31448.38, + "probability": 0.6763 + }, + { + "start": 31449.22, + "end": 31453.46, + "probability": 0.976 + }, + { + "start": 31454.38, + "end": 31456.68, + "probability": 0.986 + }, + { + "start": 31457.2, + "end": 31459.72, + "probability": 0.8876 + }, + { + "start": 31460.54, + "end": 31461.98, + "probability": 0.4247 + }, + { + "start": 31462.36, + "end": 31468.1, + "probability": 0.9834 + }, + { + "start": 31468.82, + "end": 31473.54, + "probability": 0.8154 + }, + { + "start": 31474.44, + "end": 31476.86, + "probability": 0.9941 + }, + { + "start": 31477.82, + "end": 31478.72, + "probability": 0.6774 + }, + { + "start": 31478.76, + "end": 31481.0, + "probability": 0.9912 + }, + { + "start": 31481.38, + "end": 31486.16, + "probability": 0.979 + }, + { + "start": 31487.12, + "end": 31494.2, + "probability": 0.8867 + }, + { + "start": 31494.2, + "end": 31499.26, + "probability": 0.8758 + }, + { + "start": 31500.04, + "end": 31506.22, + "probability": 0.9971 + }, + { + "start": 31507.06, + "end": 31508.72, + "probability": 0.9694 + }, + { + "start": 31509.38, + "end": 31513.66, + "probability": 0.9134 + }, + { + "start": 31514.22, + "end": 31520.1, + "probability": 0.9801 + }, + { + "start": 31520.48, + "end": 31521.48, + "probability": 0.9469 + }, + { + "start": 31521.92, + "end": 31527.98, + "probability": 0.9518 + }, + { + "start": 31528.5, + "end": 31528.94, + "probability": 0.9409 + }, + { + "start": 31529.5, + "end": 31530.2, + "probability": 0.9742 + }, + { + "start": 31530.74, + "end": 31533.92, + "probability": 0.9305 + }, + { + "start": 31534.44, + "end": 31541.7, + "probability": 0.9891 + }, + { + "start": 31542.3, + "end": 31543.4, + "probability": 0.451 + }, + { + "start": 31543.94, + "end": 31545.36, + "probability": 0.9812 + }, + { + "start": 31546.94, + "end": 31549.58, + "probability": 0.7328 + }, + { + "start": 31550.8, + "end": 31554.58, + "probability": 0.96 + }, + { + "start": 31554.6, + "end": 31557.72, + "probability": 0.7847 + }, + { + "start": 31559.17, + "end": 31560.48, + "probability": 0.5035 + }, + { + "start": 31560.78, + "end": 31561.24, + "probability": 0.6439 + }, + { + "start": 31583.2, + "end": 31583.72, + "probability": 0.3771 + }, + { + "start": 31584.38, + "end": 31584.48, + "probability": 0.7179 + }, + { + "start": 31584.48, + "end": 31584.9, + "probability": 0.5084 + }, + { + "start": 31585.9, + "end": 31588.36, + "probability": 0.5665 + }, + { + "start": 31588.36, + "end": 31590.88, + "probability": 0.7347 + }, + { + "start": 31590.98, + "end": 31597.26, + "probability": 0.991 + }, + { + "start": 31597.34, + "end": 31602.44, + "probability": 0.8906 + }, + { + "start": 31602.46, + "end": 31603.94, + "probability": 0.9484 + }, + { + "start": 31605.08, + "end": 31608.18, + "probability": 0.9093 + }, + { + "start": 31609.7, + "end": 31612.02, + "probability": 0.7275 + }, + { + "start": 31613.88, + "end": 31616.1, + "probability": 0.9954 + }, + { + "start": 31617.28, + "end": 31618.7, + "probability": 0.9993 + }, + { + "start": 31619.62, + "end": 31620.98, + "probability": 0.7675 + }, + { + "start": 31622.16, + "end": 31624.58, + "probability": 0.9119 + }, + { + "start": 31625.44, + "end": 31627.58, + "probability": 0.7532 + }, + { + "start": 31628.72, + "end": 31629.12, + "probability": 0.9568 + }, + { + "start": 31630.48, + "end": 31631.78, + "probability": 0.9952 + }, + { + "start": 31632.7, + "end": 31635.14, + "probability": 0.9462 + }, + { + "start": 31636.6, + "end": 31637.24, + "probability": 0.8155 + }, + { + "start": 31638.06, + "end": 31639.05, + "probability": 0.9893 + }, + { + "start": 31639.1, + "end": 31640.18, + "probability": 0.6248 + }, + { + "start": 31640.44, + "end": 31641.36, + "probability": 0.5282 + }, + { + "start": 31641.48, + "end": 31642.46, + "probability": 0.8598 + }, + { + "start": 31643.42, + "end": 31647.56, + "probability": 0.9082 + }, + { + "start": 31648.16, + "end": 31651.14, + "probability": 0.8228 + }, + { + "start": 31652.12, + "end": 31653.12, + "probability": 0.983 + }, + { + "start": 31653.64, + "end": 31654.22, + "probability": 0.3464 + }, + { + "start": 31654.76, + "end": 31656.56, + "probability": 0.9961 + }, + { + "start": 31659.16, + "end": 31661.02, + "probability": 0.9932 + }, + { + "start": 31662.86, + "end": 31663.18, + "probability": 0.3964 + }, + { + "start": 31663.18, + "end": 31665.54, + "probability": 0.9836 + }, + { + "start": 31665.62, + "end": 31667.92, + "probability": 0.3447 + }, + { + "start": 31668.22, + "end": 31669.12, + "probability": 0.8508 + }, + { + "start": 31669.36, + "end": 31670.32, + "probability": 0.0932 + }, + { + "start": 31671.32, + "end": 31672.84, + "probability": 0.2568 + }, + { + "start": 31672.98, + "end": 31673.54, + "probability": 0.5016 + }, + { + "start": 31673.74, + "end": 31674.52, + "probability": 0.669 + }, + { + "start": 31674.52, + "end": 31675.42, + "probability": 0.7791 + }, + { + "start": 31675.5, + "end": 31676.78, + "probability": 0.8921 + }, + { + "start": 31677.22, + "end": 31678.74, + "probability": 0.7036 + }, + { + "start": 31680.26, + "end": 31680.92, + "probability": 0.3962 + }, + { + "start": 31681.0, + "end": 31682.46, + "probability": 0.4498 + }, + { + "start": 31682.46, + "end": 31682.8, + "probability": 0.1094 + }, + { + "start": 31682.82, + "end": 31682.82, + "probability": 0.3262 + }, + { + "start": 31682.82, + "end": 31685.86, + "probability": 0.6382 + }, + { + "start": 31686.4, + "end": 31691.38, + "probability": 0.4777 + }, + { + "start": 31692.0, + "end": 31693.2, + "probability": 0.7711 + }, + { + "start": 31693.78, + "end": 31694.0, + "probability": 0.4974 + }, + { + "start": 31694.1, + "end": 31697.21, + "probability": 0.9665 + }, + { + "start": 31697.59, + "end": 31698.56, + "probability": 0.1359 + }, + { + "start": 31700.09, + "end": 31702.37, + "probability": 0.9866 + }, + { + "start": 31702.43, + "end": 31704.59, + "probability": 0.2419 + }, + { + "start": 31705.93, + "end": 31706.53, + "probability": 0.3461 + }, + { + "start": 31706.53, + "end": 31706.59, + "probability": 0.5597 + }, + { + "start": 31706.59, + "end": 31707.09, + "probability": 0.3506 + }, + { + "start": 31707.13, + "end": 31708.75, + "probability": 0.8097 + }, + { + "start": 31708.81, + "end": 31709.39, + "probability": 0.3689 + }, + { + "start": 31709.63, + "end": 31710.69, + "probability": 0.8196 + }, + { + "start": 31711.07, + "end": 31714.57, + "probability": 0.9336 + }, + { + "start": 31714.57, + "end": 31718.67, + "probability": 0.9548 + }, + { + "start": 31718.73, + "end": 31719.21, + "probability": 0.8688 + }, + { + "start": 31720.11, + "end": 31721.15, + "probability": 0.6669 + }, + { + "start": 31721.91, + "end": 31723.81, + "probability": 0.5018 + }, + { + "start": 31725.03, + "end": 31725.05, + "probability": 0.2211 + }, + { + "start": 31725.05, + "end": 31728.81, + "probability": 0.9824 + }, + { + "start": 31728.87, + "end": 31730.17, + "probability": 0.9657 + }, + { + "start": 31730.21, + "end": 31731.25, + "probability": 0.6426 + }, + { + "start": 31732.25, + "end": 31733.03, + "probability": 0.0064 + }, + { + "start": 31733.03, + "end": 31733.03, + "probability": 0.0381 + }, + { + "start": 31733.03, + "end": 31733.43, + "probability": 0.3046 + }, + { + "start": 31733.45, + "end": 31734.21, + "probability": 0.7142 + }, + { + "start": 31734.21, + "end": 31734.47, + "probability": 0.2439 + }, + { + "start": 31734.47, + "end": 31735.09, + "probability": 0.4896 + }, + { + "start": 31735.97, + "end": 31736.65, + "probability": 0.6132 + }, + { + "start": 31736.77, + "end": 31736.87, + "probability": 0.4021 + }, + { + "start": 31737.19, + "end": 31737.89, + "probability": 0.5078 + }, + { + "start": 31737.91, + "end": 31738.47, + "probability": 0.6865 + }, + { + "start": 31738.89, + "end": 31739.35, + "probability": 0.7759 + }, + { + "start": 31739.45, + "end": 31740.15, + "probability": 0.7824 + }, + { + "start": 31740.27, + "end": 31740.67, + "probability": 0.3175 + }, + { + "start": 31740.67, + "end": 31741.55, + "probability": 0.5931 + }, + { + "start": 31742.39, + "end": 31744.69, + "probability": 0.5862 + }, + { + "start": 31745.33, + "end": 31748.15, + "probability": 0.3005 + }, + { + "start": 31748.45, + "end": 31748.51, + "probability": 0.3388 + }, + { + "start": 31748.51, + "end": 31748.51, + "probability": 0.0841 + }, + { + "start": 31748.51, + "end": 31748.51, + "probability": 0.3298 + }, + { + "start": 31748.51, + "end": 31749.15, + "probability": 0.2477 + }, + { + "start": 31749.15, + "end": 31749.78, + "probability": 0.5257 + }, + { + "start": 31751.03, + "end": 31752.99, + "probability": 0.5288 + }, + { + "start": 31753.55, + "end": 31753.87, + "probability": 0.0682 + }, + { + "start": 31753.87, + "end": 31753.87, + "probability": 0.0922 + }, + { + "start": 31753.87, + "end": 31753.87, + "probability": 0.3212 + }, + { + "start": 31753.87, + "end": 31753.87, + "probability": 0.2833 + }, + { + "start": 31753.87, + "end": 31754.15, + "probability": 0.9382 + }, + { + "start": 31754.79, + "end": 31756.55, + "probability": 0.4634 + }, + { + "start": 31757.09, + "end": 31759.22, + "probability": 0.0943 + }, + { + "start": 31759.31, + "end": 31762.71, + "probability": 0.6188 + }, + { + "start": 31762.71, + "end": 31762.91, + "probability": 0.1537 + }, + { + "start": 31763.17, + "end": 31764.55, + "probability": 0.2737 + }, + { + "start": 31764.55, + "end": 31766.09, + "probability": 0.1459 + }, + { + "start": 31766.09, + "end": 31767.11, + "probability": 0.7678 + }, + { + "start": 31767.11, + "end": 31772.95, + "probability": 0.8623 + }, + { + "start": 31773.01, + "end": 31774.47, + "probability": 0.6862 + }, + { + "start": 31774.95, + "end": 31775.37, + "probability": 0.0083 + }, + { + "start": 31775.37, + "end": 31775.37, + "probability": 0.5227 + }, + { + "start": 31775.37, + "end": 31776.31, + "probability": 0.7446 + }, + { + "start": 31776.41, + "end": 31777.07, + "probability": 0.2857 + }, + { + "start": 31777.11, + "end": 31781.11, + "probability": 0.9941 + }, + { + "start": 31782.27, + "end": 31782.81, + "probability": 0.4264 + }, + { + "start": 31782.93, + "end": 31785.03, + "probability": 0.6304 + }, + { + "start": 31785.35, + "end": 31788.91, + "probability": 0.7124 + }, + { + "start": 31789.19, + "end": 31790.49, + "probability": 0.7919 + }, + { + "start": 31790.87, + "end": 31791.63, + "probability": 0.651 + }, + { + "start": 31791.69, + "end": 31791.69, + "probability": 0.069 + }, + { + "start": 31791.69, + "end": 31791.69, + "probability": 0.1523 + }, + { + "start": 31791.69, + "end": 31792.55, + "probability": 0.6817 + }, + { + "start": 31793.17, + "end": 31793.79, + "probability": 0.1944 + }, + { + "start": 31794.07, + "end": 31795.15, + "probability": 0.5842 + }, + { + "start": 31795.73, + "end": 31800.49, + "probability": 0.7814 + }, + { + "start": 31801.31, + "end": 31801.67, + "probability": 0.136 + }, + { + "start": 31801.93, + "end": 31804.61, + "probability": 0.9529 + }, + { + "start": 31804.73, + "end": 31804.73, + "probability": 0.0459 + }, + { + "start": 31804.73, + "end": 31805.59, + "probability": 0.2512 + }, + { + "start": 31806.69, + "end": 31808.41, + "probability": 0.8643 + }, + { + "start": 31808.49, + "end": 31810.06, + "probability": 0.7251 + }, + { + "start": 31811.49, + "end": 31813.27, + "probability": 0.9401 + }, + { + "start": 31814.39, + "end": 31816.31, + "probability": 0.786 + }, + { + "start": 31817.13, + "end": 31820.93, + "probability": 0.9702 + }, + { + "start": 31821.37, + "end": 31821.81, + "probability": 0.6543 + }, + { + "start": 31822.39, + "end": 31823.65, + "probability": 0.6087 + }, + { + "start": 31824.25, + "end": 31824.53, + "probability": 0.3332 + }, + { + "start": 31824.53, + "end": 31825.3, + "probability": 0.3241 + }, + { + "start": 31826.01, + "end": 31827.43, + "probability": 0.3313 + }, + { + "start": 31827.43, + "end": 31827.43, + "probability": 0.3126 + }, + { + "start": 31827.43, + "end": 31828.47, + "probability": 0.5276 + }, + { + "start": 31828.61, + "end": 31830.39, + "probability": 0.7691 + }, + { + "start": 31830.43, + "end": 31831.13, + "probability": 0.7221 + }, + { + "start": 31831.49, + "end": 31831.81, + "probability": 0.0055 + }, + { + "start": 31831.81, + "end": 31832.09, + "probability": 0.2988 + }, + { + "start": 31832.37, + "end": 31833.51, + "probability": 0.3251 + }, + { + "start": 31833.89, + "end": 31834.49, + "probability": 0.8933 + }, + { + "start": 31835.79, + "end": 31836.49, + "probability": 0.2548 + }, + { + "start": 31837.01, + "end": 31839.87, + "probability": 0.5069 + }, + { + "start": 31839.87, + "end": 31839.94, + "probability": 0.0238 + }, + { + "start": 31840.75, + "end": 31843.31, + "probability": 0.9807 + }, + { + "start": 31843.83, + "end": 31846.87, + "probability": 0.9908 + }, + { + "start": 31847.55, + "end": 31849.73, + "probability": 0.729 + }, + { + "start": 31849.97, + "end": 31852.01, + "probability": 0.6886 + }, + { + "start": 31853.45, + "end": 31854.51, + "probability": 0.6589 + }, + { + "start": 31854.55, + "end": 31855.35, + "probability": 0.6712 + }, + { + "start": 31857.17, + "end": 31858.13, + "probability": 0.9644 + }, + { + "start": 31859.65, + "end": 31860.89, + "probability": 0.8153 + }, + { + "start": 31862.63, + "end": 31864.83, + "probability": 0.9792 + }, + { + "start": 31865.29, + "end": 31867.75, + "probability": 0.9956 + }, + { + "start": 31868.61, + "end": 31870.57, + "probability": 0.8288 + }, + { + "start": 31871.39, + "end": 31874.07, + "probability": 0.9934 + }, + { + "start": 31878.41, + "end": 31879.35, + "probability": 0.8256 + }, + { + "start": 31880.71, + "end": 31883.29, + "probability": 0.9493 + }, + { + "start": 31885.19, + "end": 31889.13, + "probability": 0.234 + }, + { + "start": 31889.71, + "end": 31891.33, + "probability": 0.9391 + }, + { + "start": 31892.97, + "end": 31896.69, + "probability": 0.7524 + }, + { + "start": 31896.73, + "end": 31898.11, + "probability": 0.9797 + }, + { + "start": 31899.11, + "end": 31900.55, + "probability": 0.9849 + }, + { + "start": 31901.77, + "end": 31903.23, + "probability": 0.8249 + }, + { + "start": 31905.11, + "end": 31905.89, + "probability": 0.9711 + }, + { + "start": 31906.83, + "end": 31908.49, + "probability": 0.9403 + }, + { + "start": 31909.85, + "end": 31910.39, + "probability": 0.75 + }, + { + "start": 31911.67, + "end": 31913.37, + "probability": 0.8311 + }, + { + "start": 31915.55, + "end": 31917.17, + "probability": 0.9224 + }, + { + "start": 31918.03, + "end": 31918.87, + "probability": 0.6879 + }, + { + "start": 31919.87, + "end": 31920.59, + "probability": 0.976 + }, + { + "start": 31922.39, + "end": 31923.75, + "probability": 0.8553 + }, + { + "start": 31924.69, + "end": 31925.42, + "probability": 0.4836 + }, + { + "start": 31926.31, + "end": 31927.75, + "probability": 0.9534 + }, + { + "start": 31927.81, + "end": 31930.15, + "probability": 0.9538 + }, + { + "start": 31931.47, + "end": 31935.17, + "probability": 0.9953 + }, + { + "start": 31936.21, + "end": 31940.19, + "probability": 0.8396 + }, + { + "start": 31940.75, + "end": 31941.85, + "probability": 0.9746 + }, + { + "start": 31944.57, + "end": 31947.57, + "probability": 0.9948 + }, + { + "start": 31947.97, + "end": 31950.09, + "probability": 0.9214 + }, + { + "start": 31950.77, + "end": 31952.41, + "probability": 0.9956 + }, + { + "start": 31953.25, + "end": 31954.57, + "probability": 0.9847 + }, + { + "start": 31956.09, + "end": 31957.07, + "probability": 0.7386 + }, + { + "start": 31957.35, + "end": 31957.95, + "probability": 0.9409 + }, + { + "start": 31958.03, + "end": 31958.75, + "probability": 0.9878 + }, + { + "start": 31958.91, + "end": 31959.68, + "probability": 0.7708 + }, + { + "start": 31960.11, + "end": 31962.33, + "probability": 0.8939 + }, + { + "start": 31963.31, + "end": 31963.83, + "probability": 0.9839 + }, + { + "start": 31964.61, + "end": 31965.19, + "probability": 0.7653 + }, + { + "start": 31966.35, + "end": 31966.57, + "probability": 0.6755 + }, + { + "start": 31968.13, + "end": 31970.87, + "probability": 0.9128 + }, + { + "start": 31972.03, + "end": 31972.57, + "probability": 0.9485 + }, + { + "start": 31973.37, + "end": 31973.75, + "probability": 0.9188 + }, + { + "start": 31974.93, + "end": 31975.61, + "probability": 0.8867 + }, + { + "start": 31976.47, + "end": 31977.29, + "probability": 0.9169 + }, + { + "start": 31978.11, + "end": 31980.19, + "probability": 0.9201 + }, + { + "start": 31981.45, + "end": 31983.45, + "probability": 0.8545 + }, + { + "start": 31983.49, + "end": 31984.71, + "probability": 0.9779 + }, + { + "start": 31986.35, + "end": 31988.63, + "probability": 0.989 + }, + { + "start": 31988.63, + "end": 31991.56, + "probability": 0.9739 + }, + { + "start": 31992.17, + "end": 31993.11, + "probability": 0.9422 + }, + { + "start": 31995.67, + "end": 31998.07, + "probability": 0.9309 + }, + { + "start": 31999.55, + "end": 32000.91, + "probability": 0.9553 + }, + { + "start": 32001.55, + "end": 32002.55, + "probability": 0.7931 + }, + { + "start": 32002.59, + "end": 32004.47, + "probability": 0.742 + }, + { + "start": 32005.35, + "end": 32006.01, + "probability": 0.6934 + }, + { + "start": 32006.49, + "end": 32008.29, + "probability": 0.8594 + }, + { + "start": 32008.39, + "end": 32009.67, + "probability": 0.9904 + }, + { + "start": 32009.73, + "end": 32010.31, + "probability": 0.95 + }, + { + "start": 32011.03, + "end": 32011.87, + "probability": 0.9563 + }, + { + "start": 32013.11, + "end": 32013.75, + "probability": 0.9878 + }, + { + "start": 32015.11, + "end": 32016.87, + "probability": 0.9968 + }, + { + "start": 32017.73, + "end": 32018.63, + "probability": 0.9092 + }, + { + "start": 32020.23, + "end": 32022.19, + "probability": 0.8862 + }, + { + "start": 32025.11, + "end": 32027.43, + "probability": 0.9948 + }, + { + "start": 32029.61, + "end": 32032.63, + "probability": 0.9897 + }, + { + "start": 32034.19, + "end": 32035.57, + "probability": 0.9829 + }, + { + "start": 32036.71, + "end": 32037.65, + "probability": 0.6951 + }, + { + "start": 32039.01, + "end": 32040.13, + "probability": 0.9362 + }, + { + "start": 32041.43, + "end": 32042.41, + "probability": 0.9945 + }, + { + "start": 32042.61, + "end": 32043.43, + "probability": 0.7173 + }, + { + "start": 32043.61, + "end": 32044.31, + "probability": 0.6322 + }, + { + "start": 32044.45, + "end": 32045.01, + "probability": 0.8979 + }, + { + "start": 32045.53, + "end": 32047.19, + "probability": 0.9368 + }, + { + "start": 32049.41, + "end": 32049.81, + "probability": 0.3084 + }, + { + "start": 32049.81, + "end": 32050.45, + "probability": 0.8504 + }, + { + "start": 32051.77, + "end": 32052.95, + "probability": 0.9683 + }, + { + "start": 32053.67, + "end": 32054.81, + "probability": 0.843 + }, + { + "start": 32054.91, + "end": 32057.25, + "probability": 0.7121 + }, + { + "start": 32058.29, + "end": 32060.37, + "probability": 0.9866 + }, + { + "start": 32060.37, + "end": 32063.81, + "probability": 0.9982 + }, + { + "start": 32064.77, + "end": 32067.31, + "probability": 0.9941 + }, + { + "start": 32067.39, + "end": 32068.01, + "probability": 0.8007 + }, + { + "start": 32068.17, + "end": 32071.15, + "probability": 0.9653 + }, + { + "start": 32071.35, + "end": 32074.55, + "probability": 0.9422 + }, + { + "start": 32074.63, + "end": 32075.29, + "probability": 0.7712 + }, + { + "start": 32076.01, + "end": 32077.95, + "probability": 0.7395 + }, + { + "start": 32079.19, + "end": 32080.15, + "probability": 0.988 + }, + { + "start": 32080.67, + "end": 32084.39, + "probability": 0.985 + }, + { + "start": 32084.89, + "end": 32087.29, + "probability": 0.9336 + }, + { + "start": 32088.13, + "end": 32090.73, + "probability": 0.8656 + }, + { + "start": 32090.99, + "end": 32092.21, + "probability": 0.9775 + }, + { + "start": 32092.99, + "end": 32096.61, + "probability": 0.9387 + }, + { + "start": 32097.25, + "end": 32100.49, + "probability": 0.8126 + }, + { + "start": 32101.13, + "end": 32102.27, + "probability": 0.8469 + }, + { + "start": 32102.99, + "end": 32104.71, + "probability": 0.9899 + }, + { + "start": 32104.81, + "end": 32107.27, + "probability": 0.9977 + }, + { + "start": 32107.83, + "end": 32109.29, + "probability": 0.9801 + }, + { + "start": 32109.47, + "end": 32109.79, + "probability": 0.9279 + }, + { + "start": 32110.39, + "end": 32110.97, + "probability": 0.8481 + }, + { + "start": 32112.41, + "end": 32114.99, + "probability": 0.9927 + }, + { + "start": 32115.05, + "end": 32115.87, + "probability": 0.999 + }, + { + "start": 32115.95, + "end": 32116.43, + "probability": 0.6502 + }, + { + "start": 32117.05, + "end": 32118.93, + "probability": 0.7814 + }, + { + "start": 32120.81, + "end": 32122.47, + "probability": 0.5599 + }, + { + "start": 32122.51, + "end": 32125.01, + "probability": 0.8725 + }, + { + "start": 32126.43, + "end": 32126.53, + "probability": 0.4086 + }, + { + "start": 32126.59, + "end": 32128.63, + "probability": 0.9837 + }, + { + "start": 32129.07, + "end": 32132.73, + "probability": 0.9966 + }, + { + "start": 32132.83, + "end": 32133.69, + "probability": 0.9305 + }, + { + "start": 32133.77, + "end": 32134.63, + "probability": 0.9299 + }, + { + "start": 32135.03, + "end": 32136.51, + "probability": 0.8788 + }, + { + "start": 32137.13, + "end": 32137.75, + "probability": 0.5616 + }, + { + "start": 32137.85, + "end": 32138.23, + "probability": 0.8824 + }, + { + "start": 32139.05, + "end": 32141.71, + "probability": 0.9895 + }, + { + "start": 32142.45, + "end": 32143.57, + "probability": 0.9908 + }, + { + "start": 32144.51, + "end": 32145.85, + "probability": 0.9885 + }, + { + "start": 32146.95, + "end": 32148.57, + "probability": 0.9883 + }, + { + "start": 32149.61, + "end": 32150.47, + "probability": 0.8073 + }, + { + "start": 32151.09, + "end": 32151.77, + "probability": 0.9338 + }, + { + "start": 32152.85, + "end": 32154.91, + "probability": 0.9993 + }, + { + "start": 32156.37, + "end": 32157.99, + "probability": 0.9886 + }, + { + "start": 32158.35, + "end": 32159.65, + "probability": 0.9978 + }, + { + "start": 32159.75, + "end": 32160.75, + "probability": 0.9663 + }, + { + "start": 32162.37, + "end": 32164.13, + "probability": 0.8265 + }, + { + "start": 32164.23, + "end": 32164.63, + "probability": 0.5139 + }, + { + "start": 32164.73, + "end": 32168.29, + "probability": 0.8979 + }, + { + "start": 32168.41, + "end": 32170.65, + "probability": 0.9228 + }, + { + "start": 32171.55, + "end": 32172.79, + "probability": 0.899 + }, + { + "start": 32172.87, + "end": 32174.01, + "probability": 0.832 + }, + { + "start": 32175.11, + "end": 32176.01, + "probability": 0.9768 + }, + { + "start": 32176.49, + "end": 32178.39, + "probability": 0.9573 + }, + { + "start": 32180.87, + "end": 32181.81, + "probability": 0.8661 + }, + { + "start": 32182.77, + "end": 32187.31, + "probability": 0.9648 + }, + { + "start": 32189.89, + "end": 32191.39, + "probability": 0.966 + }, + { + "start": 32191.63, + "end": 32192.13, + "probability": 0.2759 + }, + { + "start": 32192.45, + "end": 32193.51, + "probability": 0.9143 + }, + { + "start": 32194.55, + "end": 32195.5, + "probability": 0.5486 + }, + { + "start": 32195.85, + "end": 32197.08, + "probability": 0.7339 + }, + { + "start": 32197.41, + "end": 32198.28, + "probability": 0.9863 + }, + { + "start": 32199.69, + "end": 32200.71, + "probability": 0.8286 + }, + { + "start": 32200.91, + "end": 32201.37, + "probability": 0.8065 + }, + { + "start": 32201.87, + "end": 32203.35, + "probability": 0.8635 + }, + { + "start": 32203.79, + "end": 32204.33, + "probability": 0.7197 + }, + { + "start": 32204.45, + "end": 32205.43, + "probability": 0.8403 + }, + { + "start": 32205.49, + "end": 32206.11, + "probability": 0.7572 + }, + { + "start": 32208.76, + "end": 32211.13, + "probability": 0.9222 + }, + { + "start": 32211.41, + "end": 32211.77, + "probability": 0.8516 + }, + { + "start": 32213.99, + "end": 32214.63, + "probability": 0.9675 + }, + { + "start": 32217.35, + "end": 32217.65, + "probability": 0.098 + }, + { + "start": 32218.41, + "end": 32218.97, + "probability": 0.929 + }, + { + "start": 32219.03, + "end": 32221.53, + "probability": 0.7511 + }, + { + "start": 32221.53, + "end": 32221.81, + "probability": 0.4062 + }, + { + "start": 32221.99, + "end": 32226.19, + "probability": 0.8999 + }, + { + "start": 32226.25, + "end": 32227.17, + "probability": 0.9878 + }, + { + "start": 32227.27, + "end": 32228.41, + "probability": 0.0493 + }, + { + "start": 32228.45, + "end": 32229.51, + "probability": 0.9741 + }, + { + "start": 32230.13, + "end": 32231.32, + "probability": 0.7231 + }, + { + "start": 32232.7, + "end": 32233.85, + "probability": 0.35 + }, + { + "start": 32233.97, + "end": 32235.09, + "probability": 0.349 + }, + { + "start": 32235.25, + "end": 32235.97, + "probability": 0.3702 + }, + { + "start": 32235.99, + "end": 32236.95, + "probability": 0.7067 + }, + { + "start": 32237.09, + "end": 32239.6, + "probability": 0.667 + }, + { + "start": 32240.21, + "end": 32240.23, + "probability": 0.0116 + }, + { + "start": 32240.23, + "end": 32241.63, + "probability": 0.2819 + }, + { + "start": 32241.77, + "end": 32245.17, + "probability": 0.9414 + }, + { + "start": 32245.25, + "end": 32249.09, + "probability": 0.9497 + }, + { + "start": 32249.09, + "end": 32250.04, + "probability": 0.812 + }, + { + "start": 32250.83, + "end": 32252.06, + "probability": 0.5339 + }, + { + "start": 32252.19, + "end": 32253.65, + "probability": 0.1841 + }, + { + "start": 32253.79, + "end": 32253.83, + "probability": 0.393 + }, + { + "start": 32253.83, + "end": 32254.46, + "probability": 0.6421 + }, + { + "start": 32254.77, + "end": 32255.51, + "probability": 0.7957 + }, + { + "start": 32255.75, + "end": 32256.27, + "probability": 0.5331 + }, + { + "start": 32256.59, + "end": 32257.15, + "probability": 0.4877 + }, + { + "start": 32258.97, + "end": 32260.57, + "probability": 0.4414 + }, + { + "start": 32260.87, + "end": 32264.53, + "probability": 0.8299 + }, + { + "start": 32264.59, + "end": 32269.07, + "probability": 0.9227 + }, + { + "start": 32269.33, + "end": 32271.03, + "probability": 0.9954 + }, + { + "start": 32271.67, + "end": 32271.81, + "probability": 0.1087 + }, + { + "start": 32271.95, + "end": 32273.17, + "probability": 0.7879 + }, + { + "start": 32273.63, + "end": 32275.19, + "probability": 0.9922 + }, + { + "start": 32275.45, + "end": 32277.73, + "probability": 0.9624 + }, + { + "start": 32277.99, + "end": 32278.27, + "probability": 0.8773 + }, + { + "start": 32278.95, + "end": 32279.93, + "probability": 0.3773 + }, + { + "start": 32280.05, + "end": 32282.17, + "probability": 0.8714 + }, + { + "start": 32283.23, + "end": 32284.87, + "probability": 0.9417 + }, + { + "start": 32285.83, + "end": 32287.11, + "probability": 0.9453 + }, + { + "start": 32287.47, + "end": 32289.83, + "probability": 0.9728 + }, + { + "start": 32290.09, + "end": 32292.71, + "probability": 0.9412 + }, + { + "start": 32292.81, + "end": 32293.71, + "probability": 0.9932 + }, + { + "start": 32294.59, + "end": 32295.97, + "probability": 0.9919 + }, + { + "start": 32297.35, + "end": 32299.21, + "probability": 0.959 + }, + { + "start": 32299.69, + "end": 32303.23, + "probability": 0.985 + }, + { + "start": 32303.29, + "end": 32304.09, + "probability": 0.6865 + }, + { + "start": 32304.59, + "end": 32305.81, + "probability": 0.9864 + }, + { + "start": 32306.81, + "end": 32309.23, + "probability": 0.9038 + }, + { + "start": 32309.77, + "end": 32312.89, + "probability": 0.9774 + }, + { + "start": 32313.65, + "end": 32314.77, + "probability": 0.9968 + }, + { + "start": 32315.65, + "end": 32316.61, + "probability": 0.6016 + }, + { + "start": 32317.19, + "end": 32320.79, + "probability": 0.9952 + }, + { + "start": 32321.19, + "end": 32324.31, + "probability": 0.9784 + }, + { + "start": 32324.73, + "end": 32326.65, + "probability": 0.9938 + }, + { + "start": 32326.75, + "end": 32327.39, + "probability": 0.9779 + }, + { + "start": 32327.51, + "end": 32330.69, + "probability": 0.8081 + }, + { + "start": 32331.25, + "end": 32331.89, + "probability": 0.8311 + }, + { + "start": 32331.89, + "end": 32332.53, + "probability": 0.8778 + }, + { + "start": 32333.21, + "end": 32335.85, + "probability": 0.9937 + }, + { + "start": 32336.13, + "end": 32337.09, + "probability": 0.9958 + }, + { + "start": 32337.17, + "end": 32338.03, + "probability": 0.9186 + }, + { + "start": 32338.25, + "end": 32340.99, + "probability": 0.9979 + }, + { + "start": 32341.41, + "end": 32343.47, + "probability": 0.8476 + }, + { + "start": 32344.61, + "end": 32346.51, + "probability": 0.0238 + }, + { + "start": 32346.51, + "end": 32346.51, + "probability": 0.3697 + }, + { + "start": 32346.51, + "end": 32347.0, + "probability": 0.4952 + }, + { + "start": 32347.51, + "end": 32347.73, + "probability": 0.3448 + }, + { + "start": 32347.75, + "end": 32349.97, + "probability": 0.854 + }, + { + "start": 32350.57, + "end": 32350.89, + "probability": 0.9242 + }, + { + "start": 32351.73, + "end": 32355.79, + "probability": 0.9432 + }, + { + "start": 32355.83, + "end": 32359.15, + "probability": 0.671 + }, + { + "start": 32359.15, + "end": 32359.21, + "probability": 0.068 + }, + { + "start": 32359.41, + "end": 32360.07, + "probability": 0.8212 + }, + { + "start": 32360.07, + "end": 32363.07, + "probability": 0.9482 + }, + { + "start": 32363.67, + "end": 32367.09, + "probability": 0.7992 + }, + { + "start": 32367.09, + "end": 32369.89, + "probability": 0.7564 + }, + { + "start": 32370.27, + "end": 32372.03, + "probability": 0.6858 + }, + { + "start": 32372.89, + "end": 32374.57, + "probability": 0.2168 + }, + { + "start": 32374.57, + "end": 32376.89, + "probability": 0.2463 + }, + { + "start": 32377.31, + "end": 32377.71, + "probability": 0.0913 + }, + { + "start": 32377.73, + "end": 32381.39, + "probability": 0.1621 + }, + { + "start": 32381.57, + "end": 32384.29, + "probability": 0.0074 + }, + { + "start": 32384.33, + "end": 32386.97, + "probability": 0.8779 + }, + { + "start": 32388.51, + "end": 32388.67, + "probability": 0.1034 + }, + { + "start": 32388.67, + "end": 32388.67, + "probability": 0.1451 + }, + { + "start": 32388.67, + "end": 32389.33, + "probability": 0.5159 + }, + { + "start": 32389.39, + "end": 32390.17, + "probability": 0.668 + }, + { + "start": 32390.29, + "end": 32393.28, + "probability": 0.5756 + }, + { + "start": 32394.01, + "end": 32394.35, + "probability": 0.9118 + }, + { + "start": 32395.47, + "end": 32396.37, + "probability": 0.9858 + }, + { + "start": 32396.79, + "end": 32398.19, + "probability": 0.8613 + }, + { + "start": 32399.12, + "end": 32400.07, + "probability": 0.373 + }, + { + "start": 32400.07, + "end": 32401.07, + "probability": 0.622 + }, + { + "start": 32401.21, + "end": 32402.07, + "probability": 0.3606 + }, + { + "start": 32402.57, + "end": 32403.45, + "probability": 0.8237 + }, + { + "start": 32403.75, + "end": 32404.45, + "probability": 0.8411 + }, + { + "start": 32404.55, + "end": 32405.49, + "probability": 0.8799 + }, + { + "start": 32405.55, + "end": 32410.55, + "probability": 0.6595 + }, + { + "start": 32411.85, + "end": 32414.23, + "probability": 0.7875 + }, + { + "start": 32414.35, + "end": 32416.59, + "probability": 0.8878 + }, + { + "start": 32416.79, + "end": 32418.71, + "probability": 0.4722 + }, + { + "start": 32418.87, + "end": 32420.03, + "probability": 0.2644 + }, + { + "start": 32420.59, + "end": 32421.43, + "probability": 0.7241 + }, + { + "start": 32422.25, + "end": 32423.43, + "probability": 0.0794 + }, + { + "start": 32423.43, + "end": 32424.51, + "probability": 0.1365 + }, + { + "start": 32425.07, + "end": 32426.69, + "probability": 0.1895 + }, + { + "start": 32426.69, + "end": 32428.29, + "probability": 0.1588 + }, + { + "start": 32428.41, + "end": 32430.02, + "probability": 0.1474 + }, + { + "start": 32430.21, + "end": 32431.89, + "probability": 0.7566 + }, + { + "start": 32432.33, + "end": 32436.8, + "probability": 0.5064 + }, + { + "start": 32437.11, + "end": 32438.77, + "probability": 0.8275 + }, + { + "start": 32438.91, + "end": 32439.41, + "probability": 0.5804 + }, + { + "start": 32439.41, + "end": 32440.32, + "probability": 0.5274 + }, + { + "start": 32440.97, + "end": 32440.97, + "probability": 0.3779 + }, + { + "start": 32440.97, + "end": 32441.78, + "probability": 0.6661 + }, + { + "start": 32442.69, + "end": 32443.61, + "probability": 0.3921 + }, + { + "start": 32443.93, + "end": 32445.18, + "probability": 0.9868 + }, + { + "start": 32445.53, + "end": 32445.79, + "probability": 0.325 + }, + { + "start": 32445.87, + "end": 32446.07, + "probability": 0.6443 + }, + { + "start": 32446.21, + "end": 32446.87, + "probability": 0.7173 + }, + { + "start": 32446.97, + "end": 32447.59, + "probability": 0.6889 + }, + { + "start": 32448.01, + "end": 32449.21, + "probability": 0.9227 + }, + { + "start": 32449.29, + "end": 32450.01, + "probability": 0.1596 + }, + { + "start": 32450.93, + "end": 32452.55, + "probability": 0.592 + }, + { + "start": 32452.63, + "end": 32453.97, + "probability": 0.9591 + }, + { + "start": 32454.15, + "end": 32455.49, + "probability": 0.8207 + }, + { + "start": 32455.51, + "end": 32457.73, + "probability": 0.8118 + }, + { + "start": 32457.73, + "end": 32458.31, + "probability": 0.2894 + }, + { + "start": 32458.45, + "end": 32459.97, + "probability": 0.7554 + }, + { + "start": 32460.05, + "end": 32460.59, + "probability": 0.1227 + }, + { + "start": 32460.71, + "end": 32462.35, + "probability": 0.9691 + }, + { + "start": 32462.43, + "end": 32463.4, + "probability": 0.989 + }, + { + "start": 32464.11, + "end": 32466.05, + "probability": 0.1409 + }, + { + "start": 32466.05, + "end": 32466.05, + "probability": 0.0422 + }, + { + "start": 32466.05, + "end": 32467.15, + "probability": 0.1903 + }, + { + "start": 32467.29, + "end": 32468.53, + "probability": 0.7604 + }, + { + "start": 32468.99, + "end": 32470.07, + "probability": 0.2095 + }, + { + "start": 32472.53, + "end": 32474.13, + "probability": 0.4794 + }, + { + "start": 32477.01, + "end": 32477.13, + "probability": 0.2384 + }, + { + "start": 32477.13, + "end": 32477.79, + "probability": 0.248 + }, + { + "start": 32477.79, + "end": 32477.79, + "probability": 0.1304 + }, + { + "start": 32477.79, + "end": 32478.23, + "probability": 0.0907 + }, + { + "start": 32478.43, + "end": 32478.51, + "probability": 0.2277 + }, + { + "start": 32478.51, + "end": 32478.97, + "probability": 0.2574 + }, + { + "start": 32479.11, + "end": 32479.65, + "probability": 0.2275 + }, + { + "start": 32479.65, + "end": 32481.75, + "probability": 0.1245 + }, + { + "start": 32481.95, + "end": 32482.53, + "probability": 0.4879 + }, + { + "start": 32483.81, + "end": 32484.77, + "probability": 0.0427 + }, + { + "start": 32485.21, + "end": 32485.21, + "probability": 0.296 + }, + { + "start": 32485.45, + "end": 32485.59, + "probability": 0.3542 + }, + { + "start": 32485.75, + "end": 32489.09, + "probability": 0.9731 + }, + { + "start": 32489.59, + "end": 32491.49, + "probability": 0.9932 + }, + { + "start": 32491.49, + "end": 32493.63, + "probability": 0.9902 + }, + { + "start": 32494.43, + "end": 32497.11, + "probability": 0.9961 + }, + { + "start": 32498.13, + "end": 32498.73, + "probability": 0.4639 + }, + { + "start": 32499.49, + "end": 32501.11, + "probability": 0.9175 + }, + { + "start": 32501.19, + "end": 32503.01, + "probability": 0.885 + }, + { + "start": 32503.59, + "end": 32504.91, + "probability": 0.9968 + }, + { + "start": 32505.63, + "end": 32506.59, + "probability": 0.9568 + }, + { + "start": 32506.67, + "end": 32507.59, + "probability": 0.5993 + }, + { + "start": 32508.01, + "end": 32509.31, + "probability": 0.9886 + }, + { + "start": 32509.31, + "end": 32510.03, + "probability": 0.223 + }, + { + "start": 32510.83, + "end": 32511.39, + "probability": 0.2074 + }, + { + "start": 32511.47, + "end": 32512.65, + "probability": 0.9051 + }, + { + "start": 32512.91, + "end": 32516.03, + "probability": 0.9368 + }, + { + "start": 32516.49, + "end": 32517.33, + "probability": 0.4572 + }, + { + "start": 32517.93, + "end": 32521.91, + "probability": 0.6383 + }, + { + "start": 32521.91, + "end": 32525.57, + "probability": 0.8987 + }, + { + "start": 32525.99, + "end": 32528.0, + "probability": 0.7667 + }, + { + "start": 32528.99, + "end": 32529.81, + "probability": 0.9314 + }, + { + "start": 32530.63, + "end": 32533.13, + "probability": 0.8949 + }, + { + "start": 32533.21, + "end": 32534.09, + "probability": 0.1263 + }, + { + "start": 32534.53, + "end": 32535.37, + "probability": 0.2281 + }, + { + "start": 32535.49, + "end": 32535.53, + "probability": 0.168 + }, + { + "start": 32535.53, + "end": 32536.35, + "probability": 0.6274 + }, + { + "start": 32536.35, + "end": 32536.59, + "probability": 0.1649 + }, + { + "start": 32536.77, + "end": 32537.79, + "probability": 0.7613 + }, + { + "start": 32538.49, + "end": 32540.35, + "probability": 0.6276 + }, + { + "start": 32540.49, + "end": 32541.69, + "probability": 0.9946 + }, + { + "start": 32541.71, + "end": 32543.23, + "probability": 0.1859 + }, + { + "start": 32543.27, + "end": 32543.61, + "probability": 0.5969 + }, + { + "start": 32544.65, + "end": 32545.97, + "probability": 0.7665 + }, + { + "start": 32546.49, + "end": 32546.91, + "probability": 0.4254 + }, + { + "start": 32547.49, + "end": 32550.13, + "probability": 0.4936 + }, + { + "start": 32550.41, + "end": 32551.21, + "probability": 0.6435 + }, + { + "start": 32551.75, + "end": 32552.75, + "probability": 0.8368 + }, + { + "start": 32553.15, + "end": 32553.51, + "probability": 0.7199 + }, + { + "start": 32554.25, + "end": 32555.33, + "probability": 0.4226 + }, + { + "start": 32556.47, + "end": 32556.75, + "probability": 0.2231 + }, + { + "start": 32557.73, + "end": 32559.83, + "probability": 0.2268 + }, + { + "start": 32559.89, + "end": 32560.83, + "probability": 0.4458 + }, + { + "start": 32561.03, + "end": 32561.35, + "probability": 0.5577 + }, + { + "start": 32561.43, + "end": 32561.43, + "probability": 0.4657 + }, + { + "start": 32561.47, + "end": 32561.65, + "probability": 0.1395 + }, + { + "start": 32561.91, + "end": 32563.67, + "probability": 0.0891 + }, + { + "start": 32563.67, + "end": 32563.91, + "probability": 0.0359 + }, + { + "start": 32564.27, + "end": 32568.31, + "probability": 0.4587 + }, + { + "start": 32568.43, + "end": 32569.61, + "probability": 0.5836 + }, + { + "start": 32569.61, + "end": 32571.61, + "probability": 0.085 + }, + { + "start": 32575.01, + "end": 32577.0, + "probability": 0.1515 + }, + { + "start": 32577.51, + "end": 32577.93, + "probability": 0.1379 + }, + { + "start": 32578.41, + "end": 32578.41, + "probability": 0.081 + }, + { + "start": 32578.41, + "end": 32578.69, + "probability": 0.5188 + }, + { + "start": 32579.03, + "end": 32579.07, + "probability": 0.44 + }, + { + "start": 32579.07, + "end": 32583.83, + "probability": 0.6355 + }, + { + "start": 32584.27, + "end": 32585.63, + "probability": 0.1794 + }, + { + "start": 32585.83, + "end": 32587.93, + "probability": 0.2385 + }, + { + "start": 32589.35, + "end": 32589.67, + "probability": 0.1271 + }, + { + "start": 32590.48, + "end": 32595.37, + "probability": 0.1641 + }, + { + "start": 32595.59, + "end": 32596.83, + "probability": 0.5387 + }, + { + "start": 32596.89, + "end": 32599.15, + "probability": 0.9712 + }, + { + "start": 32600.15, + "end": 32603.03, + "probability": 0.5618 + }, + { + "start": 32605.31, + "end": 32606.87, + "probability": 0.7827 + }, + { + "start": 32606.95, + "end": 32608.63, + "probability": 0.4522 + }, + { + "start": 32608.99, + "end": 32609.67, + "probability": 0.4836 + }, + { + "start": 32609.81, + "end": 32611.07, + "probability": 0.9539 + }, + { + "start": 32611.35, + "end": 32612.19, + "probability": 0.9753 + }, + { + "start": 32613.13, + "end": 32615.37, + "probability": 0.807 + }, + { + "start": 32616.29, + "end": 32618.31, + "probability": 0.2534 + }, + { + "start": 32618.43, + "end": 32620.13, + "probability": 0.093 + }, + { + "start": 32620.71, + "end": 32625.05, + "probability": 0.5079 + }, + { + "start": 32625.07, + "end": 32627.89, + "probability": 0.8047 + }, + { + "start": 32628.39, + "end": 32629.91, + "probability": 0.4504 + }, + { + "start": 32630.29, + "end": 32630.35, + "probability": 0.0984 + }, + { + "start": 32630.37, + "end": 32630.75, + "probability": 0.478 + }, + { + "start": 32631.45, + "end": 32633.13, + "probability": 0.3547 + }, + { + "start": 32633.25, + "end": 32634.69, + "probability": 0.5967 + }, + { + "start": 32635.99, + "end": 32638.15, + "probability": 0.8916 + }, + { + "start": 32638.67, + "end": 32639.71, + "probability": 0.9157 + }, + { + "start": 32639.97, + "end": 32641.51, + "probability": 0.6106 + }, + { + "start": 32641.65, + "end": 32642.24, + "probability": 0.5611 + }, + { + "start": 32642.34, + "end": 32643.47, + "probability": 0.1 + }, + { + "start": 32644.97, + "end": 32646.95, + "probability": 0.9705 + }, + { + "start": 32646.95, + "end": 32648.45, + "probability": 0.0624 + }, + { + "start": 32650.51, + "end": 32651.93, + "probability": 0.0319 + }, + { + "start": 32652.05, + "end": 32653.75, + "probability": 0.4888 + }, + { + "start": 32653.75, + "end": 32654.27, + "probability": 0.2202 + }, + { + "start": 32654.55, + "end": 32658.71, + "probability": 0.4173 + }, + { + "start": 32659.75, + "end": 32662.19, + "probability": 0.0531 + }, + { + "start": 32662.65, + "end": 32664.97, + "probability": 0.2961 + }, + { + "start": 32665.65, + "end": 32666.19, + "probability": 0.4294 + }, + { + "start": 32666.19, + "end": 32666.23, + "probability": 0.2341 + }, + { + "start": 32666.23, + "end": 32666.55, + "probability": 0.4422 + }, + { + "start": 32667.31, + "end": 32667.91, + "probability": 0.4986 + }, + { + "start": 32668.73, + "end": 32669.11, + "probability": 0.4685 + }, + { + "start": 32669.41, + "end": 32674.81, + "probability": 0.5084 + }, + { + "start": 32674.99, + "end": 32676.31, + "probability": 0.5253 + }, + { + "start": 32676.39, + "end": 32676.81, + "probability": 0.5466 + }, + { + "start": 32677.07, + "end": 32680.19, + "probability": 0.8993 + }, + { + "start": 32680.45, + "end": 32681.41, + "probability": 0.0776 + }, + { + "start": 32681.41, + "end": 32682.71, + "probability": 0.3507 + }, + { + "start": 32682.75, + "end": 32685.73, + "probability": 0.5103 + }, + { + "start": 32686.45, + "end": 32686.91, + "probability": 0.4703 + }, + { + "start": 32688.27, + "end": 32689.19, + "probability": 0.7068 + }, + { + "start": 32689.61, + "end": 32692.61, + "probability": 0.3376 + }, + { + "start": 32693.69, + "end": 32694.97, + "probability": 0.0735 + }, + { + "start": 32696.67, + "end": 32698.25, + "probability": 0.2719 + }, + { + "start": 32699.83, + "end": 32701.07, + "probability": 0.0809 + }, + { + "start": 32701.43, + "end": 32704.29, + "probability": 0.363 + }, + { + "start": 32704.31, + "end": 32706.71, + "probability": 0.5893 + }, + { + "start": 32708.69, + "end": 32710.41, + "probability": 0.9332 + }, + { + "start": 32710.47, + "end": 32711.93, + "probability": 0.1727 + }, + { + "start": 32712.07, + "end": 32714.66, + "probability": 0.584 + }, + { + "start": 32715.15, + "end": 32718.63, + "probability": 0.6018 + }, + { + "start": 32718.75, + "end": 32719.87, + "probability": 0.493 + }, + { + "start": 32719.91, + "end": 32722.65, + "probability": 0.5808 + }, + { + "start": 32723.41, + "end": 32724.67, + "probability": 0.751 + }, + { + "start": 32726.75, + "end": 32729.47, + "probability": 0.9985 + }, + { + "start": 32729.53, + "end": 32730.03, + "probability": 0.9479 + }, + { + "start": 32730.53, + "end": 32730.87, + "probability": 0.8318 + }, + { + "start": 32731.83, + "end": 32732.81, + "probability": 0.9112 + }, + { + "start": 32733.89, + "end": 32736.29, + "probability": 0.9955 + }, + { + "start": 32737.97, + "end": 32738.71, + "probability": 0.9924 + }, + { + "start": 32739.33, + "end": 32744.21, + "probability": 0.9212 + }, + { + "start": 32744.31, + "end": 32745.13, + "probability": 0.7403 + }, + { + "start": 32745.67, + "end": 32746.99, + "probability": 0.9658 + }, + { + "start": 32747.17, + "end": 32749.73, + "probability": 0.9502 + }, + { + "start": 32750.51, + "end": 32754.79, + "probability": 0.9888 + }, + { + "start": 32755.93, + "end": 32758.85, + "probability": 0.9886 + }, + { + "start": 32760.83, + "end": 32763.63, + "probability": 0.6648 + }, + { + "start": 32763.95, + "end": 32770.31, + "probability": 0.7082 + }, + { + "start": 32771.15, + "end": 32773.39, + "probability": 0.3221 + }, + { + "start": 32773.57, + "end": 32774.25, + "probability": 0.6517 + }, + { + "start": 32774.25, + "end": 32776.11, + "probability": 0.5776 + }, + { + "start": 32776.23, + "end": 32781.77, + "probability": 0.6726 + }, + { + "start": 32782.13, + "end": 32784.05, + "probability": 0.6322 + }, + { + "start": 32784.13, + "end": 32784.67, + "probability": 0.6551 + }, + { + "start": 32784.91, + "end": 32786.23, + "probability": 0.5721 + }, + { + "start": 32787.25, + "end": 32792.95, + "probability": 0.2286 + }, + { + "start": 32797.85, + "end": 32802.21, + "probability": 0.2632 + }, + { + "start": 32803.05, + "end": 32805.85, + "probability": 0.4796 + }, + { + "start": 32806.49, + "end": 32809.35, + "probability": 0.8727 + }, + { + "start": 32809.99, + "end": 32812.35, + "probability": 0.6909 + }, + { + "start": 32812.77, + "end": 32814.81, + "probability": 0.1775 + }, + { + "start": 32815.01, + "end": 32816.51, + "probability": 0.0086 + }, + { + "start": 32817.03, + "end": 32817.57, + "probability": 0.4608 + }, + { + "start": 32818.15, + "end": 32819.29, + "probability": 0.2792 + }, + { + "start": 32819.47, + "end": 32820.01, + "probability": 0.6277 + }, + { + "start": 32821.13, + "end": 32823.85, + "probability": 0.5923 + }, + { + "start": 32826.26, + "end": 32827.92, + "probability": 0.6147 + }, + { + "start": 32828.05, + "end": 32829.67, + "probability": 0.5296 + }, + { + "start": 32829.79, + "end": 32830.09, + "probability": 0.3071 + }, + { + "start": 32830.17, + "end": 32830.63, + "probability": 0.4782 + }, + { + "start": 32831.11, + "end": 32832.45, + "probability": 0.2048 + }, + { + "start": 32847.11, + "end": 32848.31, + "probability": 0.2481 + }, + { + "start": 32848.55, + "end": 32851.03, + "probability": 0.6309 + }, + { + "start": 32851.21, + "end": 32854.87, + "probability": 0.9841 + }, + { + "start": 32855.85, + "end": 32860.61, + "probability": 0.9517 + }, + { + "start": 32860.71, + "end": 32862.55, + "probability": 0.6911 + }, + { + "start": 32862.59, + "end": 32863.01, + "probability": 0.7103 + }, + { + "start": 32881.95, + "end": 32881.95, + "probability": 0.1791 + }, + { + "start": 32881.95, + "end": 32881.95, + "probability": 0.0762 + }, + { + "start": 32881.95, + "end": 32884.39, + "probability": 0.4522 + }, + { + "start": 32885.03, + "end": 32888.81, + "probability": 0.9115 + }, + { + "start": 32889.45, + "end": 32894.61, + "probability": 0.8628 + }, + { + "start": 32895.11, + "end": 32896.63, + "probability": 0.7207 + }, + { + "start": 32914.11, + "end": 32914.11, + "probability": 0.1965 + }, + { + "start": 32914.11, + "end": 32916.25, + "probability": 0.348 + }, + { + "start": 32916.41, + "end": 32919.14, + "probability": 0.6584 + }, + { + "start": 32920.47, + "end": 32921.99, + "probability": 0.5559 + }, + { + "start": 32922.03, + "end": 32922.81, + "probability": 0.6629 + }, + { + "start": 32923.01, + "end": 32926.09, + "probability": 0.7286 + }, + { + "start": 32926.09, + "end": 32928.31, + "probability": 0.9643 + }, + { + "start": 32928.31, + "end": 32928.31, + "probability": 0.0 + }, + { + "start": 32928.99, + "end": 32929.15, + "probability": 0.2967 + }, + { + "start": 32929.95, + "end": 32933.63, + "probability": 0.7788 + }, + { + "start": 32933.77, + "end": 32935.99, + "probability": 0.6437 + }, + { + "start": 32973.25, + "end": 32973.91, + "probability": 0.9054 + }, + { + "start": 32974.71, + "end": 32974.87, + "probability": 0.3265 + }, + { + "start": 32975.01, + "end": 32975.49, + "probability": 0.8132 + }, + { + "start": 32979.11, + "end": 32979.57, + "probability": 0.4768 + }, + { + "start": 32981.41, + "end": 32984.69, + "probability": 0.2314 + }, + { + "start": 32984.71, + "end": 32985.51, + "probability": 0.4258 + }, + { + "start": 32985.57, + "end": 32985.71, + "probability": 0.8093 + }, + { + "start": 32985.79, + "end": 32985.93, + "probability": 0.9148 + }, + { + "start": 32986.21, + "end": 32986.97, + "probability": 0.8594 + }, + { + "start": 32987.09, + "end": 32987.23, + "probability": 0.8865 + }, + { + "start": 32987.73, + "end": 32989.13, + "probability": 0.9164 + }, + { + "start": 32989.13, + "end": 32989.87, + "probability": 0.9039 + }, + { + "start": 32990.15, + "end": 32990.79, + "probability": 0.7269 + }, + { + "start": 32991.89, + "end": 32993.29, + "probability": 0.9748 + }, + { + "start": 32994.91, + "end": 32995.33, + "probability": 0.9361 + }, + { + "start": 32996.33, + "end": 32996.49, + "probability": 0.326 + }, + { + "start": 32996.81, + "end": 32999.1, + "probability": 0.937 + }, + { + "start": 33000.77, + "end": 33002.99, + "probability": 0.6984 + }, + { + "start": 33006.31, + "end": 33009.13, + "probability": 0.3416 + }, + { + "start": 33010.43, + "end": 33018.23, + "probability": 0.9818 + }, + { + "start": 33019.39, + "end": 33021.95, + "probability": 0.943 + }, + { + "start": 33023.33, + "end": 33027.21, + "probability": 0.6737 + }, + { + "start": 33028.35, + "end": 33032.63, + "probability": 0.9951 + }, + { + "start": 33034.59, + "end": 33036.25, + "probability": 0.9694 + }, + { + "start": 33036.33, + "end": 33039.73, + "probability": 0.9769 + }, + { + "start": 33040.59, + "end": 33045.47, + "probability": 0.9305 + }, + { + "start": 33045.73, + "end": 33045.91, + "probability": 0.4429 + }, + { + "start": 33045.91, + "end": 33047.95, + "probability": 0.9731 + }, + { + "start": 33048.87, + "end": 33053.87, + "probability": 0.9959 + }, + { + "start": 33057.05, + "end": 33061.25, + "probability": 0.6757 + }, + { + "start": 33061.97, + "end": 33063.85, + "probability": 0.6702 + }, + { + "start": 33065.69, + "end": 33071.03, + "probability": 0.8971 + }, + { + "start": 33072.09, + "end": 33076.63, + "probability": 0.9937 + }, + { + "start": 33077.99, + "end": 33084.65, + "probability": 0.8033 + }, + { + "start": 33086.01, + "end": 33086.69, + "probability": 0.7502 + }, + { + "start": 33088.09, + "end": 33094.83, + "probability": 0.7361 + }, + { + "start": 33097.16, + "end": 33103.49, + "probability": 0.9788 + }, + { + "start": 33104.11, + "end": 33107.15, + "probability": 0.9961 + }, + { + "start": 33107.63, + "end": 33110.13, + "probability": 0.669 + }, + { + "start": 33110.19, + "end": 33116.17, + "probability": 0.9929 + }, + { + "start": 33117.45, + "end": 33118.36, + "probability": 0.8766 + }, + { + "start": 33121.37, + "end": 33122.87, + "probability": 0.5128 + }, + { + "start": 33123.53, + "end": 33124.65, + "probability": 0.9045 + }, + { + "start": 33125.29, + "end": 33125.79, + "probability": 0.9976 + }, + { + "start": 33127.53, + "end": 33129.83, + "probability": 0.9967 + }, + { + "start": 33131.99, + "end": 33133.65, + "probability": 0.9752 + }, + { + "start": 33133.71, + "end": 33140.51, + "probability": 0.9932 + }, + { + "start": 33140.65, + "end": 33142.89, + "probability": 0.5669 + }, + { + "start": 33142.95, + "end": 33143.89, + "probability": 0.9961 + }, + { + "start": 33145.77, + "end": 33148.25, + "probability": 0.9036 + }, + { + "start": 33149.11, + "end": 33150.53, + "probability": 0.9781 + }, + { + "start": 33150.61, + "end": 33155.19, + "probability": 0.9956 + }, + { + "start": 33155.19, + "end": 33159.57, + "probability": 0.9854 + }, + { + "start": 33160.97, + "end": 33163.67, + "probability": 0.9114 + }, + { + "start": 33165.33, + "end": 33170.73, + "probability": 0.8828 + }, + { + "start": 33172.79, + "end": 33174.75, + "probability": 0.9153 + }, + { + "start": 33175.73, + "end": 33177.61, + "probability": 0.9814 + }, + { + "start": 33177.87, + "end": 33179.28, + "probability": 0.7391 + }, + { + "start": 33179.67, + "end": 33184.27, + "probability": 0.9101 + }, + { + "start": 33186.77, + "end": 33189.87, + "probability": 0.9543 + }, + { + "start": 33190.43, + "end": 33193.23, + "probability": 0.9938 + }, + { + "start": 33193.29, + "end": 33198.13, + "probability": 0.979 + }, + { + "start": 33198.37, + "end": 33203.27, + "probability": 0.9944 + }, + { + "start": 33203.95, + "end": 33207.73, + "probability": 0.9324 + }, + { + "start": 33208.99, + "end": 33211.43, + "probability": 0.8547 + }, + { + "start": 33213.47, + "end": 33215.47, + "probability": 0.9652 + }, + { + "start": 33216.77, + "end": 33217.33, + "probability": 0.3925 + }, + { + "start": 33218.21, + "end": 33218.95, + "probability": 0.939 + }, + { + "start": 33220.27, + "end": 33221.83, + "probability": 0.9785 + }, + { + "start": 33222.79, + "end": 33224.44, + "probability": 0.9645 + }, + { + "start": 33226.47, + "end": 33228.63, + "probability": 0.9912 + }, + { + "start": 33229.67, + "end": 33234.75, + "probability": 0.9985 + }, + { + "start": 33237.67, + "end": 33240.33, + "probability": 0.7696 + }, + { + "start": 33240.47, + "end": 33241.17, + "probability": 0.8037 + }, + { + "start": 33241.59, + "end": 33242.33, + "probability": 0.6688 + }, + { + "start": 33243.43, + "end": 33246.39, + "probability": 0.8569 + }, + { + "start": 33247.65, + "end": 33249.81, + "probability": 0.9683 + }, + { + "start": 33249.91, + "end": 33250.43, + "probability": 0.4872 + }, + { + "start": 33250.57, + "end": 33251.21, + "probability": 0.5006 + }, + { + "start": 33251.33, + "end": 33252.65, + "probability": 0.5241 + }, + { + "start": 33252.67, + "end": 33254.29, + "probability": 0.9697 + }, + { + "start": 33255.49, + "end": 33258.37, + "probability": 0.9387 + }, + { + "start": 33258.49, + "end": 33261.51, + "probability": 0.9268 + }, + { + "start": 33262.41, + "end": 33266.45, + "probability": 0.9937 + }, + { + "start": 33267.07, + "end": 33267.68, + "probability": 0.5145 + }, + { + "start": 33269.33, + "end": 33275.73, + "probability": 0.75 + }, + { + "start": 33275.83, + "end": 33277.87, + "probability": 0.9805 + }, + { + "start": 33278.31, + "end": 33281.51, + "probability": 0.9866 + }, + { + "start": 33281.69, + "end": 33285.07, + "probability": 0.9605 + }, + { + "start": 33286.37, + "end": 33288.02, + "probability": 0.4304 + }, + { + "start": 33289.25, + "end": 33291.23, + "probability": 0.4828 + }, + { + "start": 33291.75, + "end": 33293.8, + "probability": 0.9879 + }, + { + "start": 33294.53, + "end": 33296.53, + "probability": 0.9088 + }, + { + "start": 33296.77, + "end": 33299.73, + "probability": 0.9901 + }, + { + "start": 33300.09, + "end": 33300.59, + "probability": 0.9868 + }, + { + "start": 33302.06, + "end": 33303.19, + "probability": 0.2273 + }, + { + "start": 33303.19, + "end": 33304.03, + "probability": 0.5479 + }, + { + "start": 33305.37, + "end": 33306.99, + "probability": 0.9672 + }, + { + "start": 33307.51, + "end": 33308.98, + "probability": 0.9938 + }, + { + "start": 33309.61, + "end": 33313.87, + "probability": 0.8426 + }, + { + "start": 33314.05, + "end": 33314.25, + "probability": 0.7977 + }, + { + "start": 33315.79, + "end": 33320.41, + "probability": 0.6367 + }, + { + "start": 33320.43, + "end": 33321.15, + "probability": 0.7653 + }, + { + "start": 33338.77, + "end": 33340.11, + "probability": 0.618 + }, + { + "start": 33340.15, + "end": 33343.19, + "probability": 0.8605 + }, + { + "start": 33343.81, + "end": 33347.45, + "probability": 0.8381 + }, + { + "start": 33347.71, + "end": 33347.8, + "probability": 0.0128 + }, + { + "start": 33349.35, + "end": 33350.73, + "probability": 0.6416 + }, + { + "start": 33350.73, + "end": 33352.1, + "probability": 0.9961 + }, + { + "start": 33352.57, + "end": 33352.69, + "probability": 0.4903 + }, + { + "start": 33352.69, + "end": 33352.69, + "probability": 0.1745 + }, + { + "start": 33352.69, + "end": 33352.69, + "probability": 0.2525 + }, + { + "start": 33352.69, + "end": 33352.69, + "probability": 0.0048 + }, + { + "start": 33352.69, + "end": 33353.09, + "probability": 0.326 + }, + { + "start": 33353.63, + "end": 33355.77, + "probability": 0.7834 + }, + { + "start": 33355.85, + "end": 33357.55, + "probability": 0.9424 + }, + { + "start": 33358.31, + "end": 33358.73, + "probability": 0.761 + }, + { + "start": 33359.39, + "end": 33360.41, + "probability": 0.9854 + }, + { + "start": 33361.13, + "end": 33361.41, + "probability": 0.9358 + }, + { + "start": 33362.95, + "end": 33367.29, + "probability": 0.8352 + }, + { + "start": 33369.31, + "end": 33370.95, + "probability": 0.7571 + }, + { + "start": 33373.27, + "end": 33377.71, + "probability": 0.9836 + }, + { + "start": 33378.41, + "end": 33380.51, + "probability": 0.9035 + }, + { + "start": 33381.79, + "end": 33384.21, + "probability": 0.9693 + }, + { + "start": 33385.35, + "end": 33387.17, + "probability": 0.8864 + }, + { + "start": 33387.73, + "end": 33388.51, + "probability": 0.9861 + }, + { + "start": 33388.95, + "end": 33389.81, + "probability": 0.8808 + }, + { + "start": 33390.47, + "end": 33398.33, + "probability": 0.9702 + }, + { + "start": 33398.41, + "end": 33404.93, + "probability": 0.9215 + }, + { + "start": 33405.07, + "end": 33406.49, + "probability": 0.998 + }, + { + "start": 33407.07, + "end": 33409.21, + "probability": 0.9255 + }, + { + "start": 33410.03, + "end": 33411.39, + "probability": 0.3193 + }, + { + "start": 33411.83, + "end": 33414.77, + "probability": 0.3883 + }, + { + "start": 33416.05, + "end": 33417.11, + "probability": 0.3838 + }, + { + "start": 33417.59, + "end": 33420.81, + "probability": 0.8646 + }, + { + "start": 33421.71, + "end": 33427.71, + "probability": 0.9875 + }, + { + "start": 33429.21, + "end": 33432.15, + "probability": 0.7919 + }, + { + "start": 33432.85, + "end": 33437.59, + "probability": 0.9478 + }, + { + "start": 33437.59, + "end": 33445.87, + "probability": 0.7673 + }, + { + "start": 33446.47, + "end": 33447.89, + "probability": 0.9163 + }, + { + "start": 33448.39, + "end": 33451.43, + "probability": 0.9847 + }, + { + "start": 33452.31, + "end": 33455.83, + "probability": 0.7186 + }, + { + "start": 33455.83, + "end": 33461.09, + "probability": 0.981 + }, + { + "start": 33461.85, + "end": 33462.55, + "probability": 0.7645 + }, + { + "start": 33463.09, + "end": 33465.81, + "probability": 0.6075 + }, + { + "start": 33466.49, + "end": 33470.83, + "probability": 0.9647 + }, + { + "start": 33470.83, + "end": 33475.25, + "probability": 0.9478 + }, + { + "start": 33475.77, + "end": 33479.91, + "probability": 0.722 + }, + { + "start": 33480.49, + "end": 33482.55, + "probability": 0.9798 + }, + { + "start": 33483.87, + "end": 33486.59, + "probability": 0.9389 + }, + { + "start": 33488.09, + "end": 33493.81, + "probability": 0.9631 + }, + { + "start": 33495.57, + "end": 33497.13, + "probability": 0.9958 + }, + { + "start": 33498.03, + "end": 33501.87, + "probability": 0.6347 + }, + { + "start": 33502.39, + "end": 33503.89, + "probability": 0.836 + }, + { + "start": 33504.03, + "end": 33506.03, + "probability": 0.6 + }, + { + "start": 33506.55, + "end": 33509.73, + "probability": 0.9782 + }, + { + "start": 33510.15, + "end": 33513.49, + "probability": 0.9946 + }, + { + "start": 33514.51, + "end": 33516.71, + "probability": 0.9972 + }, + { + "start": 33517.23, + "end": 33517.43, + "probability": 0.0126 + }, + { + "start": 33517.43, + "end": 33518.61, + "probability": 0.8658 + }, + { + "start": 33518.95, + "end": 33520.47, + "probability": 0.9141 + }, + { + "start": 33520.51, + "end": 33522.71, + "probability": 0.1438 + }, + { + "start": 33523.11, + "end": 33524.69, + "probability": 0.688 + }, + { + "start": 33525.11, + "end": 33526.37, + "probability": 0.9669 + }, + { + "start": 33526.49, + "end": 33527.87, + "probability": 0.8365 + }, + { + "start": 33528.43, + "end": 33530.15, + "probability": 0.6603 + }, + { + "start": 33530.47, + "end": 33533.03, + "probability": 0.8826 + }, + { + "start": 33533.17, + "end": 33534.41, + "probability": 0.6492 + }, + { + "start": 33534.65, + "end": 33535.56, + "probability": 0.7927 + }, + { + "start": 33535.71, + "end": 33542.71, + "probability": 0.986 + }, + { + "start": 33543.43, + "end": 33545.19, + "probability": 0.6865 + }, + { + "start": 33545.63, + "end": 33554.17, + "probability": 0.8516 + }, + { + "start": 33554.51, + "end": 33558.35, + "probability": 0.8999 + }, + { + "start": 33558.89, + "end": 33560.83, + "probability": 0.7206 + }, + { + "start": 33561.85, + "end": 33564.67, + "probability": 0.8658 + }, + { + "start": 33567.83, + "end": 33568.41, + "probability": 0.008 + }, + { + "start": 33570.94, + "end": 33573.89, + "probability": 0.4814 + }, + { + "start": 33575.43, + "end": 33576.27, + "probability": 0.4003 + }, + { + "start": 33576.63, + "end": 33577.53, + "probability": 0.8429 + }, + { + "start": 33577.75, + "end": 33578.1, + "probability": 0.0791 + }, + { + "start": 33580.95, + "end": 33588.23, + "probability": 0.9952 + }, + { + "start": 33588.91, + "end": 33589.39, + "probability": 0.7098 + }, + { + "start": 33598.01, + "end": 33598.71, + "probability": 0.4768 + }, + { + "start": 33600.27, + "end": 33601.49, + "probability": 0.1186 + }, + { + "start": 33602.17, + "end": 33603.75, + "probability": 0.2054 + }, + { + "start": 33615.13, + "end": 33617.79, + "probability": 0.4595 + }, + { + "start": 33618.35, + "end": 33621.55, + "probability": 0.9291 + }, + { + "start": 33621.65, + "end": 33621.79, + "probability": 0.2464 + }, + { + "start": 33623.67, + "end": 33625.23, + "probability": 0.6537 + }, + { + "start": 33625.31, + "end": 33628.19, + "probability": 0.7956 + }, + { + "start": 33628.27, + "end": 33629.45, + "probability": 0.7551 + }, + { + "start": 33629.71, + "end": 33633.15, + "probability": 0.9908 + }, + { + "start": 33633.15, + "end": 33638.21, + "probability": 0.9952 + }, + { + "start": 33638.85, + "end": 33639.33, + "probability": 0.6648 + }, + { + "start": 33640.77, + "end": 33641.33, + "probability": 0.8021 + }, + { + "start": 33641.69, + "end": 33646.17, + "probability": 0.8412 + }, + { + "start": 33646.23, + "end": 33649.77, + "probability": 0.9627 + }, + { + "start": 33650.13, + "end": 33654.51, + "probability": 0.6708 + }, + { + "start": 33654.61, + "end": 33654.71, + "probability": 0.877 + }, + { + "start": 33667.23, + "end": 33669.93, + "probability": 0.7268 + }, + { + "start": 33670.19, + "end": 33670.53, + "probability": 0.8113 + }, + { + "start": 33670.59, + "end": 33673.87, + "probability": 0.8777 + }, + { + "start": 33674.57, + "end": 33676.87, + "probability": 0.9971 + }, + { + "start": 33676.89, + "end": 33680.65, + "probability": 0.9944 + }, + { + "start": 33681.23, + "end": 33686.19, + "probability": 0.9938 + }, + { + "start": 33686.19, + "end": 33693.63, + "probability": 0.9603 + }, + { + "start": 33694.29, + "end": 33698.55, + "probability": 0.9849 + }, + { + "start": 33699.29, + "end": 33704.55, + "probability": 0.798 + }, + { + "start": 33705.63, + "end": 33706.57, + "probability": 0.4786 + }, + { + "start": 33706.87, + "end": 33707.43, + "probability": 0.3202 + }, + { + "start": 33707.51, + "end": 33711.71, + "probability": 0.9845 + }, + { + "start": 33711.71, + "end": 33715.55, + "probability": 0.9694 + }, + { + "start": 33716.47, + "end": 33718.03, + "probability": 0.8713 + }, + { + "start": 33718.55, + "end": 33721.69, + "probability": 0.8679 + }, + { + "start": 33722.37, + "end": 33723.63, + "probability": 0.8934 + }, + { + "start": 33724.29, + "end": 33726.89, + "probability": 0.9893 + }, + { + "start": 33727.45, + "end": 33731.25, + "probability": 0.9882 + }, + { + "start": 33731.25, + "end": 33735.91, + "probability": 0.9575 + }, + { + "start": 33736.43, + "end": 33737.71, + "probability": 0.7828 + }, + { + "start": 33738.37, + "end": 33740.07, + "probability": 0.7847 + }, + { + "start": 33740.47, + "end": 33745.09, + "probability": 0.9779 + }, + { + "start": 33745.63, + "end": 33750.39, + "probability": 0.9939 + }, + { + "start": 33750.85, + "end": 33751.75, + "probability": 0.8699 + }, + { + "start": 33752.73, + "end": 33755.61, + "probability": 0.9853 + }, + { + "start": 33756.83, + "end": 33762.23, + "probability": 0.911 + }, + { + "start": 33762.93, + "end": 33766.03, + "probability": 0.9854 + }, + { + "start": 33766.61, + "end": 33769.89, + "probability": 0.4666 + }, + { + "start": 33770.55, + "end": 33773.17, + "probability": 0.9752 + }, + { + "start": 33773.95, + "end": 33776.99, + "probability": 0.8395 + }, + { + "start": 33776.99, + "end": 33782.01, + "probability": 0.9983 + }, + { + "start": 33782.53, + "end": 33784.15, + "probability": 0.9665 + }, + { + "start": 33784.31, + "end": 33784.67, + "probability": 0.8311 + }, + { + "start": 33784.89, + "end": 33785.45, + "probability": 0.8802 + }, + { + "start": 33785.57, + "end": 33786.07, + "probability": 0.8514 + }, + { + "start": 33786.53, + "end": 33787.31, + "probability": 0.9441 + }, + { + "start": 33787.77, + "end": 33789.57, + "probability": 0.8662 + }, + { + "start": 33789.63, + "end": 33792.33, + "probability": 0.9417 + }, + { + "start": 33792.85, + "end": 33796.87, + "probability": 0.9388 + }, + { + "start": 33797.27, + "end": 33801.91, + "probability": 0.9816 + }, + { + "start": 33802.73, + "end": 33803.21, + "probability": 0.614 + }, + { + "start": 33803.33, + "end": 33806.75, + "probability": 0.9893 + }, + { + "start": 33806.75, + "end": 33810.33, + "probability": 0.8082 + }, + { + "start": 33810.59, + "end": 33815.35, + "probability": 0.9283 + }, + { + "start": 33816.23, + "end": 33823.19, + "probability": 0.9875 + }, + { + "start": 33823.19, + "end": 33829.35, + "probability": 0.9583 + }, + { + "start": 33830.03, + "end": 33830.51, + "probability": 0.4471 + }, + { + "start": 33830.61, + "end": 33835.73, + "probability": 0.9854 + }, + { + "start": 33835.73, + "end": 33841.23, + "probability": 0.9954 + }, + { + "start": 33841.37, + "end": 33841.91, + "probability": 0.4128 + }, + { + "start": 33842.55, + "end": 33845.11, + "probability": 0.7113 + }, + { + "start": 33845.71, + "end": 33848.39, + "probability": 0.9973 + }, + { + "start": 33849.01, + "end": 33851.01, + "probability": 0.9939 + }, + { + "start": 33851.17, + "end": 33851.73, + "probability": 0.783 + }, + { + "start": 33852.37, + "end": 33853.37, + "probability": 0.6197 + }, + { + "start": 33854.75, + "end": 33858.73, + "probability": 0.7285 + }, + { + "start": 33877.51, + "end": 33878.43, + "probability": 0.5292 + }, + { + "start": 33878.49, + "end": 33880.97, + "probability": 0.9894 + }, + { + "start": 33881.43, + "end": 33881.83, + "probability": 0.8754 + }, + { + "start": 33883.75, + "end": 33885.19, + "probability": 0.9594 + }, + { + "start": 33886.63, + "end": 33888.55, + "probability": 0.8077 + }, + { + "start": 33889.25, + "end": 33891.33, + "probability": 0.8813 + }, + { + "start": 33892.74, + "end": 33897.07, + "probability": 0.998 + }, + { + "start": 33897.21, + "end": 33898.87, + "probability": 0.963 + }, + { + "start": 33900.01, + "end": 33905.21, + "probability": 0.9716 + }, + { + "start": 33905.29, + "end": 33905.45, + "probability": 0.8921 + }, + { + "start": 33906.53, + "end": 33909.55, + "probability": 0.9644 + }, + { + "start": 33910.29, + "end": 33912.77, + "probability": 0.9919 + }, + { + "start": 33913.39, + "end": 33915.93, + "probability": 0.6794 + }, + { + "start": 33916.41, + "end": 33917.07, + "probability": 0.5974 + }, + { + "start": 33918.62, + "end": 33920.29, + "probability": 0.6488 + }, + { + "start": 33920.39, + "end": 33921.78, + "probability": 0.545 + }, + { + "start": 33921.97, + "end": 33923.41, + "probability": 0.6531 + }, + { + "start": 33924.07, + "end": 33927.91, + "probability": 0.9855 + }, + { + "start": 33927.97, + "end": 33930.99, + "probability": 0.9971 + }, + { + "start": 33930.99, + "end": 33933.71, + "probability": 0.9927 + }, + { + "start": 33935.21, + "end": 33937.65, + "probability": 0.9508 + }, + { + "start": 33938.73, + "end": 33941.55, + "probability": 0.9925 + }, + { + "start": 33941.69, + "end": 33942.41, + "probability": 0.4415 + }, + { + "start": 33942.93, + "end": 33945.25, + "probability": 0.9922 + }, + { + "start": 33945.55, + "end": 33947.99, + "probability": 0.9578 + }, + { + "start": 33948.43, + "end": 33952.73, + "probability": 0.9956 + }, + { + "start": 33952.73, + "end": 33956.65, + "probability": 0.9926 + }, + { + "start": 33957.55, + "end": 33962.35, + "probability": 0.8925 + }, + { + "start": 33962.99, + "end": 33966.71, + "probability": 0.988 + }, + { + "start": 33967.65, + "end": 33971.33, + "probability": 0.9963 + }, + { + "start": 33972.07, + "end": 33975.55, + "probability": 0.9068 + }, + { + "start": 33976.59, + "end": 33976.87, + "probability": 0.4276 + }, + { + "start": 33976.87, + "end": 33979.67, + "probability": 0.9932 + }, + { + "start": 33979.79, + "end": 33980.23, + "probability": 0.5861 + }, + { + "start": 33980.33, + "end": 33981.67, + "probability": 0.9655 + }, + { + "start": 33982.87, + "end": 33983.29, + "probability": 0.7404 + }, + { + "start": 33983.35, + "end": 33987.61, + "probability": 0.7385 + }, + { + "start": 33987.73, + "end": 33990.25, + "probability": 0.5189 + }, + { + "start": 33990.25, + "end": 33992.61, + "probability": 0.9489 + }, + { + "start": 33994.05, + "end": 33997.33, + "probability": 0.9536 + }, + { + "start": 33998.03, + "end": 34000.15, + "probability": 0.989 + }, + { + "start": 34000.97, + "end": 34002.01, + "probability": 0.9976 + }, + { + "start": 34002.87, + "end": 34005.19, + "probability": 0.6357 + }, + { + "start": 34005.31, + "end": 34010.05, + "probability": 0.9789 + }, + { + "start": 34010.73, + "end": 34015.39, + "probability": 0.8112 + }, + { + "start": 34015.39, + "end": 34016.09, + "probability": 0.8182 + }, + { + "start": 34017.05, + "end": 34020.57, + "probability": 0.9708 + }, + { + "start": 34020.65, + "end": 34021.41, + "probability": 0.8875 + }, + { + "start": 34022.51, + "end": 34024.29, + "probability": 0.9028 + }, + { + "start": 34024.45, + "end": 34025.83, + "probability": 0.962 + }, + { + "start": 34025.97, + "end": 34027.79, + "probability": 0.9368 + }, + { + "start": 34027.87, + "end": 34031.93, + "probability": 0.9968 + }, + { + "start": 34032.45, + "end": 34035.21, + "probability": 0.9916 + }, + { + "start": 34036.11, + "end": 34041.31, + "probability": 0.9814 + }, + { + "start": 34042.47, + "end": 34045.89, + "probability": 0.9876 + }, + { + "start": 34046.03, + "end": 34049.43, + "probability": 0.9916 + }, + { + "start": 34050.45, + "end": 34052.59, + "probability": 0.9016 + }, + { + "start": 34053.29, + "end": 34055.67, + "probability": 0.9412 + }, + { + "start": 34056.05, + "end": 34060.29, + "probability": 0.9794 + }, + { + "start": 34060.79, + "end": 34061.11, + "probability": 0.4679 + }, + { + "start": 34061.89, + "end": 34064.69, + "probability": 0.9236 + }, + { + "start": 34064.87, + "end": 34066.93, + "probability": 0.8422 + }, + { + "start": 34067.25, + "end": 34070.69, + "probability": 0.9911 + }, + { + "start": 34071.31, + "end": 34071.71, + "probability": 0.639 + }, + { + "start": 34071.79, + "end": 34074.71, + "probability": 0.9946 + }, + { + "start": 34074.71, + "end": 34078.73, + "probability": 0.9692 + }, + { + "start": 34079.33, + "end": 34081.07, + "probability": 0.9657 + }, + { + "start": 34081.99, + "end": 34084.99, + "probability": 0.8084 + }, + { + "start": 34085.51, + "end": 34090.35, + "probability": 0.9974 + }, + { + "start": 34090.35, + "end": 34095.53, + "probability": 0.9414 + }, + { + "start": 34097.43, + "end": 34099.45, + "probability": 0.8274 + }, + { + "start": 34100.05, + "end": 34100.37, + "probability": 0.0001 + }, + { + "start": 34101.75, + "end": 34102.57, + "probability": 0.0291 + }, + { + "start": 34104.35, + "end": 34104.51, + "probability": 0.1242 + }, + { + "start": 34104.51, + "end": 34104.51, + "probability": 0.2102 + }, + { + "start": 34104.51, + "end": 34104.51, + "probability": 0.0634 + }, + { + "start": 34104.51, + "end": 34105.11, + "probability": 0.1932 + }, + { + "start": 34105.49, + "end": 34108.27, + "probability": 0.9345 + }, + { + "start": 34108.85, + "end": 34109.89, + "probability": 0.5224 + }, + { + "start": 34109.91, + "end": 34111.15, + "probability": 0.6284 + }, + { + "start": 34111.65, + "end": 34116.71, + "probability": 0.98 + }, + { + "start": 34116.71, + "end": 34119.69, + "probability": 0.9067 + }, + { + "start": 34119.93, + "end": 34121.93, + "probability": 0.9606 + }, + { + "start": 34122.67, + "end": 34126.73, + "probability": 0.9829 + }, + { + "start": 34127.53, + "end": 34130.23, + "probability": 0.9941 + }, + { + "start": 34130.37, + "end": 34131.87, + "probability": 0.9064 + }, + { + "start": 34132.27, + "end": 34133.39, + "probability": 0.93 + }, + { + "start": 34133.91, + "end": 34135.61, + "probability": 0.9109 + }, + { + "start": 34135.69, + "end": 34137.21, + "probability": 0.9101 + }, + { + "start": 34137.59, + "end": 34138.97, + "probability": 0.8837 + }, + { + "start": 34139.07, + "end": 34141.11, + "probability": 0.9065 + }, + { + "start": 34143.91, + "end": 34144.61, + "probability": 0.3303 + }, + { + "start": 34144.61, + "end": 34144.61, + "probability": 0.05 + }, + { + "start": 34144.61, + "end": 34145.35, + "probability": 0.3523 + }, + { + "start": 34145.47, + "end": 34149.11, + "probability": 0.998 + }, + { + "start": 34149.19, + "end": 34151.65, + "probability": 0.9712 + }, + { + "start": 34151.81, + "end": 34152.15, + "probability": 0.816 + }, + { + "start": 34152.75, + "end": 34155.35, + "probability": 0.811 + }, + { + "start": 34155.65, + "end": 34156.35, + "probability": 0.6254 + }, + { + "start": 34159.55, + "end": 34160.33, + "probability": 0.6591 + }, + { + "start": 34160.51, + "end": 34160.51, + "probability": 0.7508 + }, + { + "start": 34160.59, + "end": 34161.65, + "probability": 0.2492 + }, + { + "start": 34162.17, + "end": 34165.75, + "probability": 0.7551 + }, + { + "start": 34165.93, + "end": 34166.99, + "probability": 0.7933 + }, + { + "start": 34167.13, + "end": 34168.45, + "probability": 0.6288 + }, + { + "start": 34169.01, + "end": 34169.81, + "probability": 0.909 + }, + { + "start": 34169.97, + "end": 34170.85, + "probability": 0.4313 + }, + { + "start": 34171.85, + "end": 34172.57, + "probability": 0.2449 + }, + { + "start": 34174.09, + "end": 34177.79, + "probability": 0.7456 + }, + { + "start": 34179.15, + "end": 34179.71, + "probability": 0.6603 + }, + { + "start": 34182.36, + "end": 34185.19, + "probability": 0.5411 + }, + { + "start": 34187.67, + "end": 34188.41, + "probability": 0.2266 + }, + { + "start": 34196.77, + "end": 34197.71, + "probability": 0.3163 + }, + { + "start": 34198.31, + "end": 34198.65, + "probability": 0.4906 + }, + { + "start": 34198.83, + "end": 34200.43, + "probability": 0.5034 + }, + { + "start": 34201.45, + "end": 34206.53, + "probability": 0.4398 + }, + { + "start": 34206.71, + "end": 34209.55, + "probability": 0.7454 + }, + { + "start": 34210.23, + "end": 34212.71, + "probability": 0.9626 + }, + { + "start": 34215.81, + "end": 34219.45, + "probability": 0.8097 + }, + { + "start": 34220.49, + "end": 34222.11, + "probability": 0.7607 + }, + { + "start": 34222.37, + "end": 34226.29, + "probability": 0.8304 + }, + { + "start": 34227.17, + "end": 34228.27, + "probability": 0.0883 + }, + { + "start": 34228.27, + "end": 34236.11, + "probability": 0.6945 + }, + { + "start": 34243.91, + "end": 34246.75, + "probability": 0.7164 + }, + { + "start": 34247.59, + "end": 34249.73, + "probability": 0.879 + }, + { + "start": 34249.87, + "end": 34250.21, + "probability": 0.3973 + }, + { + "start": 34250.39, + "end": 34251.17, + "probability": 0.5764 + }, + { + "start": 34251.23, + "end": 34253.51, + "probability": 0.4375 + }, + { + "start": 34257.57, + "end": 34257.57, + "probability": 0.4741 + }, + { + "start": 34257.57, + "end": 34258.33, + "probability": 0.7435 + }, + { + "start": 34261.19, + "end": 34262.67, + "probability": 0.3024 + }, + { + "start": 34263.45, + "end": 34264.97, + "probability": 0.3523 + }, + { + "start": 34266.09, + "end": 34266.65, + "probability": 0.5038 + }, + { + "start": 34266.74, + "end": 34270.34, + "probability": 0.6762 + }, + { + "start": 34272.37, + "end": 34274.45, + "probability": 0.9899 + }, + { + "start": 34275.19, + "end": 34278.65, + "probability": 0.9854 + }, + { + "start": 34279.17, + "end": 34281.93, + "probability": 0.9316 + }, + { + "start": 34282.75, + "end": 34283.41, + "probability": 0.7405 + }, + { + "start": 34283.83, + "end": 34289.19, + "probability": 0.9929 + }, + { + "start": 34291.37, + "end": 34295.33, + "probability": 0.9637 + }, + { + "start": 34295.33, + "end": 34298.59, + "probability": 0.9925 + }, + { + "start": 34299.67, + "end": 34301.63, + "probability": 0.9257 + }, + { + "start": 34302.49, + "end": 34305.55, + "probability": 0.9936 + }, + { + "start": 34305.55, + "end": 34309.15, + "probability": 0.9984 + }, + { + "start": 34310.57, + "end": 34315.15, + "probability": 0.9058 + }, + { + "start": 34315.81, + "end": 34319.23, + "probability": 0.9877 + }, + { + "start": 34319.91, + "end": 34325.09, + "probability": 0.9472 + }, + { + "start": 34326.17, + "end": 34328.63, + "probability": 0.9971 + }, + { + "start": 34328.75, + "end": 34329.95, + "probability": 0.991 + }, + { + "start": 34330.49, + "end": 34331.07, + "probability": 0.7392 + }, + { + "start": 34331.95, + "end": 34333.15, + "probability": 0.9275 + }, + { + "start": 34333.57, + "end": 34335.59, + "probability": 0.9918 + }, + { + "start": 34335.85, + "end": 34337.27, + "probability": 0.9429 + }, + { + "start": 34337.99, + "end": 34338.41, + "probability": 0.9009 + }, + { + "start": 34339.23, + "end": 34341.09, + "probability": 0.9849 + }, + { + "start": 34342.35, + "end": 34343.61, + "probability": 0.9826 + }, + { + "start": 34344.41, + "end": 34347.23, + "probability": 0.9815 + }, + { + "start": 34347.81, + "end": 34348.76, + "probability": 0.8384 + }, + { + "start": 34349.67, + "end": 34353.23, + "probability": 0.9492 + }, + { + "start": 34353.79, + "end": 34356.55, + "probability": 0.9587 + }, + { + "start": 34357.19, + "end": 34361.77, + "probability": 0.9592 + }, + { + "start": 34361.83, + "end": 34364.79, + "probability": 0.9953 + }, + { + "start": 34365.35, + "end": 34369.07, + "probability": 0.9878 + }, + { + "start": 34369.31, + "end": 34369.97, + "probability": 0.8778 + }, + { + "start": 34370.35, + "end": 34371.09, + "probability": 0.8922 + }, + { + "start": 34372.13, + "end": 34373.27, + "probability": 0.9048 + }, + { + "start": 34373.61, + "end": 34376.21, + "probability": 0.9933 + }, + { + "start": 34376.87, + "end": 34378.01, + "probability": 0.8506 + }, + { + "start": 34378.13, + "end": 34379.11, + "probability": 0.7671 + }, + { + "start": 34379.53, + "end": 34381.61, + "probability": 0.8708 + }, + { + "start": 34381.79, + "end": 34383.85, + "probability": 0.913 + }, + { + "start": 34384.15, + "end": 34385.51, + "probability": 0.9499 + }, + { + "start": 34386.27, + "end": 34388.87, + "probability": 0.9163 + }, + { + "start": 34388.99, + "end": 34390.29, + "probability": 0.9654 + }, + { + "start": 34391.65, + "end": 34396.95, + "probability": 0.9739 + }, + { + "start": 34397.35, + "end": 34400.25, + "probability": 0.995 + }, + { + "start": 34401.15, + "end": 34403.11, + "probability": 0.906 + }, + { + "start": 34403.25, + "end": 34404.87, + "probability": 0.9181 + }, + { + "start": 34405.31, + "end": 34406.87, + "probability": 0.8056 + }, + { + "start": 34407.31, + "end": 34410.83, + "probability": 0.9626 + }, + { + "start": 34411.83, + "end": 34412.07, + "probability": 0.5424 + }, + { + "start": 34412.69, + "end": 34413.63, + "probability": 0.9504 + }, + { + "start": 34414.19, + "end": 34417.17, + "probability": 0.9808 + }, + { + "start": 34417.49, + "end": 34420.75, + "probability": 0.9834 + }, + { + "start": 34420.75, + "end": 34424.53, + "probability": 0.9583 + }, + { + "start": 34424.99, + "end": 34427.03, + "probability": 0.9609 + }, + { + "start": 34427.59, + "end": 34431.99, + "probability": 0.9736 + }, + { + "start": 34432.47, + "end": 34436.39, + "probability": 0.9969 + }, + { + "start": 34437.17, + "end": 34438.97, + "probability": 0.8442 + }, + { + "start": 34439.39, + "end": 34440.27, + "probability": 0.946 + }, + { + "start": 34440.49, + "end": 34441.15, + "probability": 0.9698 + }, + { + "start": 34441.63, + "end": 34441.97, + "probability": 0.417 + }, + { + "start": 34443.45, + "end": 34445.15, + "probability": 0.9866 + }, + { + "start": 34445.37, + "end": 34448.93, + "probability": 0.9955 + }, + { + "start": 34449.33, + "end": 34450.55, + "probability": 0.9941 + }, + { + "start": 34450.95, + "end": 34452.43, + "probability": 0.9862 + }, + { + "start": 34452.83, + "end": 34455.59, + "probability": 0.9878 + }, + { + "start": 34456.29, + "end": 34458.33, + "probability": 0.8213 + }, + { + "start": 34458.45, + "end": 34460.13, + "probability": 0.9377 + }, + { + "start": 34460.21, + "end": 34461.39, + "probability": 0.9288 + }, + { + "start": 34461.45, + "end": 34462.27, + "probability": 0.9941 + }, + { + "start": 34462.83, + "end": 34465.95, + "probability": 0.9614 + }, + { + "start": 34466.55, + "end": 34469.97, + "probability": 0.9914 + }, + { + "start": 34470.19, + "end": 34472.11, + "probability": 0.9766 + }, + { + "start": 34472.61, + "end": 34475.07, + "probability": 0.991 + }, + { + "start": 34475.07, + "end": 34477.77, + "probability": 0.7573 + }, + { + "start": 34478.33, + "end": 34480.47, + "probability": 0.9915 + }, + { + "start": 34480.63, + "end": 34481.17, + "probability": 0.8445 + }, + { + "start": 34481.33, + "end": 34482.75, + "probability": 0.749 + }, + { + "start": 34483.09, + "end": 34484.83, + "probability": 0.9167 + }, + { + "start": 34485.51, + "end": 34487.15, + "probability": 0.9774 + }, + { + "start": 34488.09, + "end": 34488.21, + "probability": 0.3053 + }, + { + "start": 34488.31, + "end": 34499.95, + "probability": 0.943 + }, + { + "start": 34500.37, + "end": 34504.87, + "probability": 0.9975 + }, + { + "start": 34505.57, + "end": 34511.03, + "probability": 0.965 + }, + { + "start": 34511.47, + "end": 34514.72, + "probability": 0.8729 + }, + { + "start": 34515.07, + "end": 34518.83, + "probability": 0.9504 + }, + { + "start": 34519.03, + "end": 34519.45, + "probability": 0.6035 + }, + { + "start": 34519.77, + "end": 34523.09, + "probability": 0.9929 + }, + { + "start": 34524.09, + "end": 34526.35, + "probability": 0.8122 + }, + { + "start": 34526.91, + "end": 34530.31, + "probability": 0.9802 + }, + { + "start": 34531.11, + "end": 34531.43, + "probability": 0.3017 + }, + { + "start": 34531.43, + "end": 34533.52, + "probability": 0.7074 + }, + { + "start": 34533.91, + "end": 34537.25, + "probability": 0.7653 + }, + { + "start": 34541.61, + "end": 34544.49, + "probability": 0.542 + }, + { + "start": 34544.65, + "end": 34545.19, + "probability": 0.3224 + }, + { + "start": 34547.23, + "end": 34550.09, + "probability": 0.025 + }, + { + "start": 34554.37, + "end": 34555.03, + "probability": 0.1892 + }, + { + "start": 34557.91, + "end": 34560.03, + "probability": 0.2409 + }, + { + "start": 34587.23, + "end": 34589.23, + "probability": 0.5987 + }, + { + "start": 34589.75, + "end": 34594.27, + "probability": 0.7964 + }, + { + "start": 34595.21, + "end": 34595.21, + "probability": 0.4071 + }, + { + "start": 34595.21, + "end": 34596.33, + "probability": 0.8233 + }, + { + "start": 34597.07, + "end": 34601.81, + "probability": 0.7614 + }, + { + "start": 34602.87, + "end": 34609.25, + "probability": 0.9939 + }, + { + "start": 34610.27, + "end": 34611.55, + "probability": 0.6093 + }, + { + "start": 34612.05, + "end": 34615.59, + "probability": 0.9169 + }, + { + "start": 34616.19, + "end": 34621.41, + "probability": 0.9805 + }, + { + "start": 34621.99, + "end": 34625.37, + "probability": 0.9897 + }, + { + "start": 34626.21, + "end": 34627.03, + "probability": 0.6267 + }, + { + "start": 34627.63, + "end": 34632.47, + "probability": 0.998 + }, + { + "start": 34633.05, + "end": 34636.19, + "probability": 0.9526 + }, + { + "start": 34636.95, + "end": 34643.71, + "probability": 0.988 + }, + { + "start": 34643.77, + "end": 34644.41, + "probability": 0.9736 + }, + { + "start": 34644.91, + "end": 34645.65, + "probability": 0.5816 + }, + { + "start": 34646.07, + "end": 34647.97, + "probability": 0.6969 + }, + { + "start": 34648.51, + "end": 34650.77, + "probability": 0.922 + }, + { + "start": 34651.13, + "end": 34653.67, + "probability": 0.9659 + }, + { + "start": 34653.87, + "end": 34655.17, + "probability": 0.9946 + }, + { + "start": 34656.21, + "end": 34659.81, + "probability": 0.9977 + }, + { + "start": 34660.51, + "end": 34664.95, + "probability": 0.9723 + }, + { + "start": 34665.29, + "end": 34668.53, + "probability": 0.9321 + }, + { + "start": 34669.07, + "end": 34673.31, + "probability": 0.9953 + }, + { + "start": 34673.99, + "end": 34677.39, + "probability": 0.8362 + }, + { + "start": 34677.45, + "end": 34679.13, + "probability": 0.7784 + }, + { + "start": 34679.23, + "end": 34680.57, + "probability": 0.9713 + }, + { + "start": 34680.77, + "end": 34681.62, + "probability": 0.9678 + }, + { + "start": 34682.61, + "end": 34689.55, + "probability": 0.9785 + }, + { + "start": 34690.71, + "end": 34690.81, + "probability": 0.4578 + }, + { + "start": 34690.85, + "end": 34695.47, + "probability": 0.991 + }, + { + "start": 34697.49, + "end": 34702.19, + "probability": 0.9174 + }, + { + "start": 34702.55, + "end": 34703.87, + "probability": 0.8922 + }, + { + "start": 34704.93, + "end": 34709.31, + "probability": 0.8794 + }, + { + "start": 34709.59, + "end": 34714.19, + "probability": 0.3212 + }, + { + "start": 34714.47, + "end": 34714.69, + "probability": 0.0369 + }, + { + "start": 34714.87, + "end": 34715.81, + "probability": 0.5562 + }, + { + "start": 34715.85, + "end": 34718.29, + "probability": 0.9702 + }, + { + "start": 34718.37, + "end": 34725.21, + "probability": 0.9077 + }, + { + "start": 34725.75, + "end": 34727.23, + "probability": 0.9396 + }, + { + "start": 34727.53, + "end": 34728.01, + "probability": 0.4995 + }, + { + "start": 34728.15, + "end": 34732.73, + "probability": 0.9928 + }, + { + "start": 34733.21, + "end": 34736.55, + "probability": 0.6842 + }, + { + "start": 34736.91, + "end": 34740.29, + "probability": 0.9817 + }, + { + "start": 34740.35, + "end": 34747.59, + "probability": 0.929 + }, + { + "start": 34747.85, + "end": 34750.81, + "probability": 0.6404 + }, + { + "start": 34750.81, + "end": 34753.05, + "probability": 0.946 + }, + { + "start": 34754.25, + "end": 34754.79, + "probability": 0.4814 + }, + { + "start": 34755.17, + "end": 34758.25, + "probability": 0.87 + }, + { + "start": 34758.55, + "end": 34762.05, + "probability": 0.8815 + }, + { + "start": 34762.61, + "end": 34764.89, + "probability": 0.8641 + }, + { + "start": 34765.61, + "end": 34770.37, + "probability": 0.9326 + }, + { + "start": 34771.0, + "end": 34773.79, + "probability": 0.9819 + }, + { + "start": 34775.39, + "end": 34781.35, + "probability": 0.9891 + }, + { + "start": 34781.53, + "end": 34783.15, + "probability": 0.5473 + }, + { + "start": 34783.25, + "end": 34783.65, + "probability": 0.849 + }, + { + "start": 34783.87, + "end": 34785.47, + "probability": 0.8188 + }, + { + "start": 34785.81, + "end": 34786.75, + "probability": 0.7312 + }, + { + "start": 34786.95, + "end": 34791.11, + "probability": 0.8445 + }, + { + "start": 34792.09, + "end": 34794.29, + "probability": 0.8103 + }, + { + "start": 34794.39, + "end": 34797.87, + "probability": 0.9774 + }, + { + "start": 34798.43, + "end": 34799.23, + "probability": 0.7786 + }, + { + "start": 34799.93, + "end": 34803.21, + "probability": 0.958 + }, + { + "start": 34803.21, + "end": 34806.33, + "probability": 0.9946 + }, + { + "start": 34806.95, + "end": 34810.61, + "probability": 0.926 + }, + { + "start": 34810.87, + "end": 34811.78, + "probability": 0.6263 + }, + { + "start": 34812.13, + "end": 34816.47, + "probability": 0.8932 + }, + { + "start": 34816.53, + "end": 34817.63, + "probability": 0.9746 + }, + { + "start": 34818.03, + "end": 34819.1, + "probability": 0.8711 + }, + { + "start": 34819.41, + "end": 34820.43, + "probability": 0.8979 + }, + { + "start": 34821.63, + "end": 34823.11, + "probability": 0.5612 + }, + { + "start": 34823.33, + "end": 34823.47, + "probability": 0.2518 + }, + { + "start": 34823.55, + "end": 34828.99, + "probability": 0.9907 + }, + { + "start": 34829.01, + "end": 34829.45, + "probability": 0.7597 + }, + { + "start": 34829.77, + "end": 34832.02, + "probability": 0.7332 + }, + { + "start": 34832.93, + "end": 34835.19, + "probability": 0.8643 + }, + { + "start": 34836.57, + "end": 34836.89, + "probability": 0.7118 + }, + { + "start": 34837.89, + "end": 34840.75, + "probability": 0.9666 + }, + { + "start": 34842.39, + "end": 34843.71, + "probability": 0.6533 + }, + { + "start": 34843.77, + "end": 34845.31, + "probability": 0.9045 + }, + { + "start": 34845.93, + "end": 34846.91, + "probability": 0.5773 + }, + { + "start": 34847.25, + "end": 34847.81, + "probability": 0.8162 + }, + { + "start": 34861.87, + "end": 34863.43, + "probability": 0.4023 + }, + { + "start": 34864.47, + "end": 34866.25, + "probability": 0.5952 + }, + { + "start": 34867.39, + "end": 34869.83, + "probability": 0.9644 + }, + { + "start": 34869.97, + "end": 34871.85, + "probability": 0.6814 + }, + { + "start": 34872.43, + "end": 34874.85, + "probability": 0.4868 + }, + { + "start": 34875.07, + "end": 34877.25, + "probability": 0.0589 + }, + { + "start": 34878.29, + "end": 34878.63, + "probability": 0.3445 + }, + { + "start": 34879.47, + "end": 34879.77, + "probability": 0.0012 + }, + { + "start": 34879.77, + "end": 34879.77, + "probability": 0.0494 + }, + { + "start": 34879.77, + "end": 34882.19, + "probability": 0.878 + }, + { + "start": 34882.81, + "end": 34884.07, + "probability": 0.918 + }, + { + "start": 34884.27, + "end": 34884.59, + "probability": 0.6659 + }, + { + "start": 34885.89, + "end": 34886.41, + "probability": 0.8534 + }, + { + "start": 34887.31, + "end": 34888.87, + "probability": 0.8491 + }, + { + "start": 34891.29, + "end": 34893.59, + "probability": 0.6046 + }, + { + "start": 34894.01, + "end": 34894.85, + "probability": 0.9602 + }, + { + "start": 34894.99, + "end": 34895.87, + "probability": 0.2704 + }, + { + "start": 34896.41, + "end": 34901.09, + "probability": 0.9937 + }, + { + "start": 34901.09, + "end": 34906.25, + "probability": 0.974 + }, + { + "start": 34906.61, + "end": 34909.27, + "probability": 0.3341 + }, + { + "start": 34910.53, + "end": 34916.17, + "probability": 0.9978 + }, + { + "start": 34916.17, + "end": 34921.53, + "probability": 0.9995 + }, + { + "start": 34922.29, + "end": 34923.45, + "probability": 0.8383 + }, + { + "start": 34923.97, + "end": 34929.47, + "probability": 0.9893 + }, + { + "start": 34929.47, + "end": 34935.29, + "probability": 0.9932 + }, + { + "start": 34935.29, + "end": 34941.75, + "probability": 0.9915 + }, + { + "start": 34943.01, + "end": 34943.57, + "probability": 0.6875 + }, + { + "start": 34943.67, + "end": 34945.91, + "probability": 0.9426 + }, + { + "start": 34946.61, + "end": 34947.29, + "probability": 0.9868 + }, + { + "start": 34947.93, + "end": 34951.43, + "probability": 0.9965 + }, + { + "start": 34951.89, + "end": 34956.21, + "probability": 0.9943 + }, + { + "start": 34957.47, + "end": 34959.73, + "probability": 0.9492 + }, + { + "start": 34959.83, + "end": 34961.95, + "probability": 0.9941 + }, + { + "start": 34962.47, + "end": 34963.87, + "probability": 0.9469 + }, + { + "start": 34965.17, + "end": 34967.19, + "probability": 0.9963 + }, + { + "start": 34967.19, + "end": 34970.77, + "probability": 0.8757 + }, + { + "start": 34971.23, + "end": 34974.05, + "probability": 0.9837 + }, + { + "start": 34975.01, + "end": 34978.41, + "probability": 0.9868 + }, + { + "start": 34978.41, + "end": 34982.27, + "probability": 0.996 + }, + { + "start": 34983.39, + "end": 34988.33, + "probability": 0.9973 + }, + { + "start": 34988.33, + "end": 34991.99, + "probability": 0.9991 + }, + { + "start": 34992.59, + "end": 34994.51, + "probability": 0.9408 + }, + { + "start": 34994.97, + "end": 35002.09, + "probability": 0.9982 + }, + { + "start": 35002.83, + "end": 35003.45, + "probability": 0.8396 + }, + { + "start": 35004.63, + "end": 35005.79, + "probability": 0.8774 + }, + { + "start": 35006.43, + "end": 35008.13, + "probability": 0.6697 + }, + { + "start": 35008.47, + "end": 35010.75, + "probability": 0.9578 + }, + { + "start": 35011.47, + "end": 35012.81, + "probability": 0.9437 + }, + { + "start": 35012.95, + "end": 35014.5, + "probability": 0.5988 + }, + { + "start": 35014.73, + "end": 35020.51, + "probability": 0.9762 + }, + { + "start": 35021.7, + "end": 35027.23, + "probability": 0.7513 + }, + { + "start": 35028.13, + "end": 35029.65, + "probability": 0.8973 + }, + { + "start": 35029.79, + "end": 35032.27, + "probability": 0.9054 + }, + { + "start": 35032.37, + "end": 35034.63, + "probability": 0.6639 + }, + { + "start": 35034.75, + "end": 35037.31, + "probability": 0.7218 + }, + { + "start": 35037.55, + "end": 35037.95, + "probability": 0.7839 + }, + { + "start": 35038.29, + "end": 35040.21, + "probability": 0.5582 + }, + { + "start": 35040.21, + "end": 35041.03, + "probability": 0.8466 + }, + { + "start": 35041.05, + "end": 35042.07, + "probability": 0.1145 + }, + { + "start": 35044.71, + "end": 35045.31, + "probability": 0.0807 + }, + { + "start": 35045.31, + "end": 35045.97, + "probability": 0.0717 + }, + { + "start": 35046.89, + "end": 35047.41, + "probability": 0.6706 + }, + { + "start": 35047.91, + "end": 35050.27, + "probability": 0.8469 + }, + { + "start": 35050.77, + "end": 35053.45, + "probability": 0.99 + }, + { + "start": 35053.45, + "end": 35055.38, + "probability": 0.998 + }, + { + "start": 35056.33, + "end": 35061.69, + "probability": 0.9484 + }, + { + "start": 35062.01, + "end": 35062.39, + "probability": 0.4533 + }, + { + "start": 35062.81, + "end": 35065.39, + "probability": 0.979 + }, + { + "start": 35065.79, + "end": 35067.37, + "probability": 0.9478 + }, + { + "start": 35068.09, + "end": 35070.75, + "probability": 0.1329 + }, + { + "start": 35071.21, + "end": 35072.79, + "probability": 0.8666 + }, + { + "start": 35073.33, + "end": 35075.63, + "probability": 0.5468 + }, + { + "start": 35076.77, + "end": 35077.57, + "probability": 0.5968 + }, + { + "start": 35077.57, + "end": 35080.13, + "probability": 0.9965 + }, + { + "start": 35081.05, + "end": 35082.77, + "probability": 0.7575 + }, + { + "start": 35082.87, + "end": 35082.93, + "probability": 0.1894 + }, + { + "start": 35082.99, + "end": 35084.34, + "probability": 0.5233 + }, + { + "start": 35085.07, + "end": 35086.43, + "probability": 0.858 + }, + { + "start": 35086.49, + "end": 35087.85, + "probability": 0.6662 + }, + { + "start": 35087.85, + "end": 35090.41, + "probability": 0.0777 + }, + { + "start": 35090.71, + "end": 35092.09, + "probability": 0.9423 + }, + { + "start": 35092.17, + "end": 35094.29, + "probability": 0.9969 + }, + { + "start": 35095.07, + "end": 35097.59, + "probability": 0.9901 + }, + { + "start": 35098.01, + "end": 35103.13, + "probability": 0.9832 + }, + { + "start": 35103.43, + "end": 35104.79, + "probability": 0.3127 + }, + { + "start": 35105.27, + "end": 35108.35, + "probability": 0.9801 + }, + { + "start": 35108.79, + "end": 35110.15, + "probability": 0.9749 + }, + { + "start": 35110.59, + "end": 35112.65, + "probability": 0.9956 + }, + { + "start": 35113.09, + "end": 35117.33, + "probability": 0.988 + }, + { + "start": 35117.73, + "end": 35121.41, + "probability": 0.962 + }, + { + "start": 35122.37, + "end": 35124.03, + "probability": 0.952 + }, + { + "start": 35124.13, + "end": 35128.97, + "probability": 0.9977 + }, + { + "start": 35129.73, + "end": 35131.95, + "probability": 0.9845 + }, + { + "start": 35131.99, + "end": 35134.15, + "probability": 0.9554 + }, + { + "start": 35134.25, + "end": 35135.45, + "probability": 0.7954 + }, + { + "start": 35135.63, + "end": 35136.23, + "probability": 0.503 + }, + { + "start": 35136.29, + "end": 35136.75, + "probability": 0.9704 + }, + { + "start": 35137.25, + "end": 35138.55, + "probability": 0.6031 + }, + { + "start": 35138.75, + "end": 35139.71, + "probability": 0.2487 + }, + { + "start": 35139.77, + "end": 35140.03, + "probability": 0.3363 + }, + { + "start": 35140.05, + "end": 35140.95, + "probability": 0.8442 + }, + { + "start": 35141.31, + "end": 35145.51, + "probability": 0.9646 + }, + { + "start": 35145.57, + "end": 35146.37, + "probability": 0.9883 + }, + { + "start": 35146.45, + "end": 35147.31, + "probability": 0.9497 + }, + { + "start": 35147.37, + "end": 35148.21, + "probability": 0.9965 + }, + { + "start": 35148.95, + "end": 35149.33, + "probability": 0.4356 + }, + { + "start": 35149.45, + "end": 35150.83, + "probability": 0.7988 + }, + { + "start": 35151.53, + "end": 35153.51, + "probability": 0.6656 + }, + { + "start": 35154.55, + "end": 35157.27, + "probability": 0.6065 + }, + { + "start": 35158.65, + "end": 35164.01, + "probability": 0.9127 + }, + { + "start": 35164.41, + "end": 35165.35, + "probability": 0.6444 + }, + { + "start": 35165.89, + "end": 35166.13, + "probability": 0.5728 + }, + { + "start": 35166.23, + "end": 35167.79, + "probability": 0.9893 + }, + { + "start": 35169.17, + "end": 35169.89, + "probability": 0.2928 + }, + { + "start": 35169.89, + "end": 35170.49, + "probability": 0.5013 + }, + { + "start": 35171.27, + "end": 35172.63, + "probability": 0.7365 + }, + { + "start": 35173.21, + "end": 35174.55, + "probability": 0.7579 + }, + { + "start": 35176.03, + "end": 35180.33, + "probability": 0.9286 + }, + { + "start": 35180.63, + "end": 35185.09, + "probability": 0.9862 + }, + { + "start": 35185.75, + "end": 35187.83, + "probability": 0.7719 + }, + { + "start": 35187.93, + "end": 35188.97, + "probability": 0.5418 + }, + { + "start": 35189.71, + "end": 35189.85, + "probability": 0.0632 + }, + { + "start": 35190.79, + "end": 35193.87, + "probability": 0.9697 + }, + { + "start": 35193.89, + "end": 35196.11, + "probability": 0.9069 + }, + { + "start": 35196.67, + "end": 35197.49, + "probability": 0.8931 + }, + { + "start": 35197.77, + "end": 35198.27, + "probability": 0.8151 + }, + { + "start": 35198.31, + "end": 35201.11, + "probability": 0.9278 + }, + { + "start": 35201.17, + "end": 35201.73, + "probability": 0.7817 + }, + { + "start": 35201.99, + "end": 35204.61, + "probability": 0.9497 + }, + { + "start": 35205.37, + "end": 35208.25, + "probability": 0.9963 + }, + { + "start": 35208.25, + "end": 35210.75, + "probability": 0.9726 + }, + { + "start": 35211.29, + "end": 35216.55, + "probability": 0.9927 + }, + { + "start": 35217.19, + "end": 35219.57, + "probability": 0.5008 + }, + { + "start": 35220.75, + "end": 35223.11, + "probability": 0.6358 + }, + { + "start": 35223.95, + "end": 35230.87, + "probability": 0.9836 + }, + { + "start": 35231.15, + "end": 35235.49, + "probability": 0.9447 + }, + { + "start": 35236.27, + "end": 35237.61, + "probability": 0.9614 + }, + { + "start": 35237.99, + "end": 35240.41, + "probability": 0.7101 + }, + { + "start": 35240.45, + "end": 35242.37, + "probability": 0.8367 + }, + { + "start": 35243.15, + "end": 35243.77, + "probability": 0.8361 + }, + { + "start": 35244.09, + "end": 35246.39, + "probability": 0.9473 + }, + { + "start": 35253.59, + "end": 35255.97, + "probability": 0.6757 + }, + { + "start": 35256.97, + "end": 35257.85, + "probability": 0.586 + }, + { + "start": 35261.95, + "end": 35261.95, + "probability": 0.4457 + }, + { + "start": 35262.55, + "end": 35262.75, + "probability": 0.1319 + }, + { + "start": 35264.65, + "end": 35264.79, + "probability": 0.7905 + }, + { + "start": 35265.89, + "end": 35267.97, + "probability": 0.706 + }, + { + "start": 35268.77, + "end": 35270.83, + "probability": 0.7599 + }, + { + "start": 35270.89, + "end": 35272.39, + "probability": 0.7791 + }, + { + "start": 35272.53, + "end": 35272.87, + "probability": 0.6466 + }, + { + "start": 35273.03, + "end": 35274.21, + "probability": 0.9189 + }, + { + "start": 35278.03, + "end": 35281.93, + "probability": 0.7312 + }, + { + "start": 35282.11, + "end": 35282.57, + "probability": 0.4633 + }, + { + "start": 35282.61, + "end": 35283.51, + "probability": 0.7364 + }, + { + "start": 35289.07, + "end": 35289.59, + "probability": 0.5259 + }, + { + "start": 35289.65, + "end": 35290.29, + "probability": 0.6243 + }, + { + "start": 35290.55, + "end": 35291.19, + "probability": 0.7662 + }, + { + "start": 35302.75, + "end": 35302.75, + "probability": 0.1495 + }, + { + "start": 35302.75, + "end": 35302.91, + "probability": 0.1664 + }, + { + "start": 35303.61, + "end": 35304.19, + "probability": 0.4481 + }, + { + "start": 35305.07, + "end": 35305.93, + "probability": 0.461 + }, + { + "start": 35307.11, + "end": 35308.45, + "probability": 0.0781 + }, + { + "start": 35308.75, + "end": 35316.63, + "probability": 0.6835 + }, + { + "start": 35316.79, + "end": 35322.47, + "probability": 0.6254 + }, + { + "start": 35323.03, + "end": 35326.09, + "probability": 0.7307 + }, + { + "start": 35326.09, + "end": 35329.43, + "probability": 0.9282 + }, + { + "start": 35330.73, + "end": 35332.11, + "probability": 0.0546 + }, + { + "start": 35348.89, + "end": 35348.89, + "probability": 0.2799 + }, + { + "start": 35348.89, + "end": 35348.89, + "probability": 0.2505 + }, + { + "start": 35348.89, + "end": 35351.99, + "probability": 0.285 + }, + { + "start": 35352.49, + "end": 35352.95, + "probability": 0.1563 + }, + { + "start": 35353.51, + "end": 35355.55, + "probability": 0.921 + }, + { + "start": 35356.43, + "end": 35359.88, + "probability": 0.7698 + }, + { + "start": 35359.97, + "end": 35360.37, + "probability": 0.2555 + }, + { + "start": 35360.37, + "end": 35362.3, + "probability": 0.8934 + }, + { + "start": 35364.07, + "end": 35366.29, + "probability": 0.868 + }, + { + "start": 35367.17, + "end": 35367.39, + "probability": 0.6893 + }, + { + "start": 35367.49, + "end": 35371.67, + "probability": 0.9869 + }, + { + "start": 35372.33, + "end": 35373.49, + "probability": 0.619 + }, + { + "start": 35374.79, + "end": 35376.33, + "probability": 0.9453 + }, + { + "start": 35376.65, + "end": 35377.91, + "probability": 0.96 + }, + { + "start": 35378.13, + "end": 35378.95, + "probability": 0.9572 + }, + { + "start": 35379.91, + "end": 35382.99, + "probability": 0.7061 + }, + { + "start": 35383.99, + "end": 35385.12, + "probability": 0.9696 + }, + { + "start": 35386.51, + "end": 35387.71, + "probability": 0.614 + }, + { + "start": 35387.83, + "end": 35389.03, + "probability": 0.9351 + }, + { + "start": 35390.29, + "end": 35393.43, + "probability": 0.8569 + }, + { + "start": 35393.43, + "end": 35395.73, + "probability": 0.761 + }, + { + "start": 35395.77, + "end": 35397.09, + "probability": 0.908 + }, + { + "start": 35398.01, + "end": 35401.33, + "probability": 0.9673 + }, + { + "start": 35402.01, + "end": 35403.26, + "probability": 0.9227 + }, + { + "start": 35403.97, + "end": 35407.99, + "probability": 0.6447 + }, + { + "start": 35408.05, + "end": 35410.09, + "probability": 0.7697 + }, + { + "start": 35410.13, + "end": 35410.48, + "probability": 0.7633 + }, + { + "start": 35410.93, + "end": 35411.69, + "probability": 0.7675 + }, + { + "start": 35412.15, + "end": 35413.79, + "probability": 0.9729 + }, + { + "start": 35414.59, + "end": 35415.64, + "probability": 0.999 + }, + { + "start": 35416.53, + "end": 35417.27, + "probability": 0.9976 + }, + { + "start": 35417.79, + "end": 35419.49, + "probability": 0.9985 + }, + { + "start": 35420.17, + "end": 35421.17, + "probability": 0.6079 + }, + { + "start": 35422.03, + "end": 35424.65, + "probability": 0.9816 + }, + { + "start": 35424.79, + "end": 35425.17, + "probability": 0.9532 + }, + { + "start": 35425.39, + "end": 35426.37, + "probability": 0.7134 + }, + { + "start": 35426.47, + "end": 35427.47, + "probability": 0.5618 + }, + { + "start": 35427.57, + "end": 35429.97, + "probability": 0.9182 + }, + { + "start": 35430.49, + "end": 35432.09, + "probability": 0.8286 + }, + { + "start": 35432.15, + "end": 35432.67, + "probability": 0.8867 + }, + { + "start": 35433.85, + "end": 35435.21, + "probability": 0.8379 + }, + { + "start": 35436.51, + "end": 35437.33, + "probability": 0.9373 + }, + { + "start": 35437.33, + "end": 35439.47, + "probability": 0.96 + }, + { + "start": 35440.31, + "end": 35441.09, + "probability": 0.927 + }, + { + "start": 35441.87, + "end": 35443.15, + "probability": 0.9302 + }, + { + "start": 35443.31, + "end": 35446.45, + "probability": 0.9489 + }, + { + "start": 35447.01, + "end": 35448.97, + "probability": 0.873 + }, + { + "start": 35449.03, + "end": 35449.87, + "probability": 0.8445 + }, + { + "start": 35449.93, + "end": 35450.93, + "probability": 0.9828 + }, + { + "start": 35451.03, + "end": 35451.91, + "probability": 0.6534 + }, + { + "start": 35451.99, + "end": 35454.73, + "probability": 0.9753 + }, + { + "start": 35454.83, + "end": 35455.51, + "probability": 0.9466 + }, + { + "start": 35455.57, + "end": 35455.75, + "probability": 0.6811 + }, + { + "start": 35455.83, + "end": 35456.15, + "probability": 0.5352 + }, + { + "start": 35456.21, + "end": 35456.56, + "probability": 0.9292 + }, + { + "start": 35457.67, + "end": 35458.23, + "probability": 0.9396 + }, + { + "start": 35459.05, + "end": 35461.31, + "probability": 0.9878 + }, + { + "start": 35462.03, + "end": 35462.17, + "probability": 0.8601 + }, + { + "start": 35464.11, + "end": 35465.33, + "probability": 0.2371 + }, + { + "start": 35466.53, + "end": 35466.57, + "probability": 0.057 + }, + { + "start": 35466.57, + "end": 35466.57, + "probability": 0.0438 + }, + { + "start": 35466.57, + "end": 35467.49, + "probability": 0.6474 + }, + { + "start": 35468.17, + "end": 35468.77, + "probability": 0.6683 + }, + { + "start": 35468.91, + "end": 35469.61, + "probability": 0.9587 + }, + { + "start": 35469.67, + "end": 35471.03, + "probability": 0.7178 + }, + { + "start": 35471.63, + "end": 35472.53, + "probability": 0.7186 + }, + { + "start": 35472.79, + "end": 35474.13, + "probability": 0.8712 + }, + { + "start": 35474.31, + "end": 35475.03, + "probability": 0.5472 + }, + { + "start": 35475.77, + "end": 35477.33, + "probability": 0.5512 + }, + { + "start": 35478.03, + "end": 35478.29, + "probability": 0.6296 + }, + { + "start": 35478.81, + "end": 35478.81, + "probability": 0.0566 + }, + { + "start": 35480.07, + "end": 35482.95, + "probability": 0.1178 + }, + { + "start": 35483.31, + "end": 35484.37, + "probability": 0.0424 + }, + { + "start": 35484.37, + "end": 35484.37, + "probability": 0.0824 + }, + { + "start": 35484.37, + "end": 35484.37, + "probability": 0.1497 + }, + { + "start": 35484.37, + "end": 35484.69, + "probability": 0.1675 + }, + { + "start": 35484.75, + "end": 35487.07, + "probability": 0.8321 + }, + { + "start": 35487.07, + "end": 35488.83, + "probability": 0.9537 + }, + { + "start": 35489.23, + "end": 35491.23, + "probability": 0.7408 + }, + { + "start": 35491.29, + "end": 35491.29, + "probability": 0.0025 + }, + { + "start": 35491.29, + "end": 35491.29, + "probability": 0.1531 + }, + { + "start": 35491.29, + "end": 35491.88, + "probability": 0.4907 + }, + { + "start": 35492.29, + "end": 35493.11, + "probability": 0.6346 + }, + { + "start": 35493.51, + "end": 35496.27, + "probability": 0.0806 + }, + { + "start": 35499.52, + "end": 35504.93, + "probability": 0.7355 + }, + { + "start": 35505.07, + "end": 35506.83, + "probability": 0.7898 + }, + { + "start": 35506.87, + "end": 35508.46, + "probability": 0.7045 + }, + { + "start": 35508.95, + "end": 35510.09, + "probability": 0.8679 + }, + { + "start": 35510.45, + "end": 35511.19, + "probability": 0.5653 + }, + { + "start": 35511.25, + "end": 35511.95, + "probability": 0.93 + }, + { + "start": 35511.99, + "end": 35512.67, + "probability": 0.8718 + }, + { + "start": 35513.19, + "end": 35515.17, + "probability": 0.8031 + }, + { + "start": 35516.43, + "end": 35521.65, + "probability": 0.5458 + }, + { + "start": 35521.67, + "end": 35522.01, + "probability": 0.5842 + }, + { + "start": 35522.01, + "end": 35523.03, + "probability": 0.8857 + }, + { + "start": 35523.39, + "end": 35523.85, + "probability": 0.4676 + }, + { + "start": 35523.95, + "end": 35524.63, + "probability": 0.5771 + }, + { + "start": 35525.71, + "end": 35528.25, + "probability": 0.8984 + }, + { + "start": 35529.25, + "end": 35531.67, + "probability": 0.9824 + }, + { + "start": 35532.59, + "end": 35533.96, + "probability": 0.8999 + }, + { + "start": 35534.49, + "end": 35537.95, + "probability": 0.9415 + }, + { + "start": 35538.53, + "end": 35539.39, + "probability": 0.9329 + }, + { + "start": 35540.01, + "end": 35540.43, + "probability": 0.7555 + }, + { + "start": 35540.83, + "end": 35542.51, + "probability": 0.973 + }, + { + "start": 35544.03, + "end": 35547.34, + "probability": 0.9704 + }, + { + "start": 35547.99, + "end": 35549.47, + "probability": 0.9927 + }, + { + "start": 35549.67, + "end": 35551.36, + "probability": 0.6098 + }, + { + "start": 35552.33, + "end": 35562.09, + "probability": 0.8909 + }, + { + "start": 35562.31, + "end": 35564.29, + "probability": 0.8986 + }, + { + "start": 35565.43, + "end": 35570.33, + "probability": 0.9504 + }, + { + "start": 35570.95, + "end": 35571.59, + "probability": 0.8614 + }, + { + "start": 35571.65, + "end": 35573.69, + "probability": 0.7889 + }, + { + "start": 35573.71, + "end": 35575.67, + "probability": 0.8082 + }, + { + "start": 35575.77, + "end": 35577.41, + "probability": 0.9797 + }, + { + "start": 35577.55, + "end": 35578.13, + "probability": 0.9758 + }, + { + "start": 35578.59, + "end": 35579.71, + "probability": 0.9329 + }, + { + "start": 35580.53, + "end": 35582.73, + "probability": 0.8226 + }, + { + "start": 35582.89, + "end": 35584.45, + "probability": 0.986 + }, + { + "start": 35584.77, + "end": 35586.27, + "probability": 0.8967 + }, + { + "start": 35586.59, + "end": 35587.51, + "probability": 0.9236 + }, + { + "start": 35587.71, + "end": 35588.43, + "probability": 0.9236 + }, + { + "start": 35588.85, + "end": 35590.49, + "probability": 0.9686 + }, + { + "start": 35590.95, + "end": 35592.51, + "probability": 0.9836 + }, + { + "start": 35592.83, + "end": 35594.99, + "probability": 0.8188 + }, + { + "start": 35595.51, + "end": 35597.19, + "probability": 0.7575 + }, + { + "start": 35597.53, + "end": 35598.33, + "probability": 0.7974 + }, + { + "start": 35598.43, + "end": 35601.11, + "probability": 0.8392 + }, + { + "start": 35601.61, + "end": 35603.41, + "probability": 0.0037 + }, + { + "start": 35604.51, + "end": 35606.57, + "probability": 0.015 + }, + { + "start": 35606.57, + "end": 35607.06, + "probability": 0.0086 + }, + { + "start": 35607.19, + "end": 35607.19, + "probability": 0.4227 + }, + { + "start": 35607.19, + "end": 35607.19, + "probability": 0.278 + }, + { + "start": 35607.19, + "end": 35607.37, + "probability": 0.4789 + }, + { + "start": 35608.33, + "end": 35609.71, + "probability": 0.8887 + }, + { + "start": 35610.89, + "end": 35611.67, + "probability": 0.8391 + }, + { + "start": 35612.51, + "end": 35614.75, + "probability": 0.641 + }, + { + "start": 35615.33, + "end": 35615.93, + "probability": 0.6766 + }, + { + "start": 35616.95, + "end": 35618.21, + "probability": 0.8839 + }, + { + "start": 35618.83, + "end": 35619.49, + "probability": 0.8076 + }, + { + "start": 35642.95, + "end": 35643.33, + "probability": 0.2598 + }, + { + "start": 35643.63, + "end": 35644.33, + "probability": 0.5232 + }, + { + "start": 35644.47, + "end": 35646.57, + "probability": 0.7734 + }, + { + "start": 35646.77, + "end": 35647.31, + "probability": 0.4624 + }, + { + "start": 35648.13, + "end": 35648.87, + "probability": 0.8177 + }, + { + "start": 35648.97, + "end": 35650.75, + "probability": 0.707 + }, + { + "start": 35650.91, + "end": 35653.81, + "probability": 0.8652 + }, + { + "start": 35656.03, + "end": 35658.49, + "probability": 0.998 + }, + { + "start": 35659.19, + "end": 35661.21, + "probability": 0.9956 + }, + { + "start": 35661.21, + "end": 35661.89, + "probability": 0.7667 + }, + { + "start": 35661.95, + "end": 35664.37, + "probability": 0.9758 + }, + { + "start": 35664.57, + "end": 35665.77, + "probability": 0.8455 + }, + { + "start": 35666.09, + "end": 35667.21, + "probability": 0.9688 + }, + { + "start": 35667.79, + "end": 35669.09, + "probability": 0.8941 + }, + { + "start": 35669.19, + "end": 35670.47, + "probability": 0.9643 + }, + { + "start": 35670.71, + "end": 35672.11, + "probability": 0.7721 + }, + { + "start": 35672.61, + "end": 35675.23, + "probability": 0.7841 + }, + { + "start": 35675.53, + "end": 35679.21, + "probability": 0.75 + }, + { + "start": 35679.41, + "end": 35685.91, + "probability": 0.8898 + }, + { + "start": 35686.05, + "end": 35686.71, + "probability": 0.773 + }, + { + "start": 35687.15, + "end": 35688.05, + "probability": 0.836 + }, + { + "start": 35688.21, + "end": 35690.58, + "probability": 0.9369 + }, + { + "start": 35691.77, + "end": 35694.11, + "probability": 0.9556 + }, + { + "start": 35694.14, + "end": 35696.07, + "probability": 0.9835 + }, + { + "start": 35696.55, + "end": 35699.79, + "probability": 0.8799 + }, + { + "start": 35700.21, + "end": 35701.1, + "probability": 0.9932 + }, + { + "start": 35701.93, + "end": 35703.13, + "probability": 0.373 + }, + { + "start": 35703.41, + "end": 35703.89, + "probability": 0.9175 + }, + { + "start": 35704.05, + "end": 35707.35, + "probability": 0.9237 + }, + { + "start": 35707.35, + "end": 35710.75, + "probability": 0.9808 + }, + { + "start": 35711.73, + "end": 35715.47, + "probability": 0.771 + }, + { + "start": 35715.99, + "end": 35720.89, + "probability": 0.8706 + }, + { + "start": 35721.71, + "end": 35724.63, + "probability": 0.958 + }, + { + "start": 35725.29, + "end": 35726.97, + "probability": 0.9697 + }, + { + "start": 35727.11, + "end": 35729.95, + "probability": 0.8298 + }, + { + "start": 35730.13, + "end": 35734.87, + "probability": 0.6899 + }, + { + "start": 35734.97, + "end": 35735.53, + "probability": 0.5711 + }, + { + "start": 35735.79, + "end": 35736.65, + "probability": 0.7749 + }, + { + "start": 35737.05, + "end": 35737.61, + "probability": 0.916 + }, + { + "start": 35737.71, + "end": 35738.15, + "probability": 0.8816 + }, + { + "start": 35738.45, + "end": 35739.31, + "probability": 0.765 + }, + { + "start": 35739.43, + "end": 35743.31, + "probability": 0.9726 + }, + { + "start": 35743.79, + "end": 35745.33, + "probability": 0.9482 + }, + { + "start": 35745.51, + "end": 35746.01, + "probability": 0.3655 + }, + { + "start": 35746.15, + "end": 35746.47, + "probability": 0.4951 + }, + { + "start": 35746.55, + "end": 35747.35, + "probability": 0.8485 + }, + { + "start": 35747.55, + "end": 35748.45, + "probability": 0.8677 + }, + { + "start": 35749.09, + "end": 35751.17, + "probability": 0.9104 + }, + { + "start": 35751.75, + "end": 35753.33, + "probability": 0.7515 + }, + { + "start": 35753.43, + "end": 35755.97, + "probability": 0.7568 + }, + { + "start": 35756.07, + "end": 35758.25, + "probability": 0.7644 + }, + { + "start": 35758.31, + "end": 35759.37, + "probability": 0.6799 + }, + { + "start": 35759.43, + "end": 35759.53, + "probability": 0.9421 + }, + { + "start": 35760.45, + "end": 35761.09, + "probability": 0.8125 + }, + { + "start": 35761.23, + "end": 35762.15, + "probability": 0.9337 + }, + { + "start": 35762.23, + "end": 35762.85, + "probability": 0.7983 + }, + { + "start": 35762.91, + "end": 35764.01, + "probability": 0.8062 + }, + { + "start": 35764.25, + "end": 35765.71, + "probability": 0.9608 + }, + { + "start": 35766.09, + "end": 35767.17, + "probability": 0.99 + }, + { + "start": 35767.91, + "end": 35769.27, + "probability": 0.9912 + }, + { + "start": 35769.35, + "end": 35771.83, + "probability": 0.9971 + }, + { + "start": 35771.83, + "end": 35774.97, + "probability": 0.9194 + }, + { + "start": 35775.21, + "end": 35776.47, + "probability": 0.9907 + }, + { + "start": 35776.67, + "end": 35777.41, + "probability": 0.6366 + }, + { + "start": 35777.55, + "end": 35778.1, + "probability": 0.7322 + }, + { + "start": 35778.33, + "end": 35778.87, + "probability": 0.5263 + }, + { + "start": 35778.91, + "end": 35779.55, + "probability": 0.5237 + }, + { + "start": 35779.59, + "end": 35782.95, + "probability": 0.9851 + }, + { + "start": 35783.27, + "end": 35787.03, + "probability": 0.2612 + }, + { + "start": 35787.03, + "end": 35789.57, + "probability": 0.812 + }, + { + "start": 35789.67, + "end": 35792.29, + "probability": 0.9563 + }, + { + "start": 35792.49, + "end": 35795.77, + "probability": 0.96 + }, + { + "start": 35795.97, + "end": 35797.77, + "probability": 0.5826 + }, + { + "start": 35797.83, + "end": 35800.41, + "probability": 0.8477 + }, + { + "start": 35800.98, + "end": 35803.08, + "probability": 0.6637 + }, + { + "start": 35803.27, + "end": 35806.05, + "probability": 0.6647 + }, + { + "start": 35806.13, + "end": 35809.25, + "probability": 0.8856 + }, + { + "start": 35809.43, + "end": 35810.52, + "probability": 0.9091 + }, + { + "start": 35811.17, + "end": 35812.91, + "probability": 0.9969 + }, + { + "start": 35813.03, + "end": 35815.27, + "probability": 0.9178 + }, + { + "start": 35815.47, + "end": 35818.19, + "probability": 0.9962 + }, + { + "start": 35818.23, + "end": 35818.99, + "probability": 0.9592 + }, + { + "start": 35819.49, + "end": 35820.59, + "probability": 0.8304 + }, + { + "start": 35820.65, + "end": 35822.53, + "probability": 0.9688 + }, + { + "start": 35822.61, + "end": 35823.49, + "probability": 0.9907 + }, + { + "start": 35824.15, + "end": 35826.36, + "probability": 0.6765 + }, + { + "start": 35826.55, + "end": 35829.13, + "probability": 0.9526 + }, + { + "start": 35829.25, + "end": 35830.03, + "probability": 0.8597 + }, + { + "start": 35830.35, + "end": 35830.95, + "probability": 0.9956 + }, + { + "start": 35831.49, + "end": 35832.81, + "probability": 0.7979 + }, + { + "start": 35832.91, + "end": 35834.47, + "probability": 0.8008 + }, + { + "start": 35834.79, + "end": 35836.27, + "probability": 0.9541 + }, + { + "start": 35836.53, + "end": 35839.35, + "probability": 0.6249 + }, + { + "start": 35839.51, + "end": 35840.69, + "probability": 0.5868 + }, + { + "start": 35840.97, + "end": 35841.31, + "probability": 0.6582 + }, + { + "start": 35841.75, + "end": 35842.26, + "probability": 0.5317 + }, + { + "start": 35842.87, + "end": 35844.97, + "probability": 0.7722 + }, + { + "start": 35846.29, + "end": 35851.21, + "probability": 0.9945 + }, + { + "start": 35851.29, + "end": 35854.65, + "probability": 0.9846 + }, + { + "start": 35854.75, + "end": 35855.67, + "probability": 0.5472 + }, + { + "start": 35855.67, + "end": 35858.21, + "probability": 0.8196 + }, + { + "start": 35858.81, + "end": 35860.63, + "probability": 0.9897 + }, + { + "start": 35860.71, + "end": 35861.43, + "probability": 0.7516 + }, + { + "start": 35861.53, + "end": 35862.65, + "probability": 0.5137 + }, + { + "start": 35863.57, + "end": 35865.99, + "probability": 0.4377 + }, + { + "start": 35866.87, + "end": 35867.53, + "probability": 0.6323 + }, + { + "start": 35868.31, + "end": 35871.95, + "probability": 0.9686 + }, + { + "start": 35872.01, + "end": 35875.07, + "probability": 0.9841 + }, + { + "start": 35876.45, + "end": 35877.53, + "probability": 0.9863 + }, + { + "start": 35877.63, + "end": 35878.27, + "probability": 0.7818 + }, + { + "start": 35878.47, + "end": 35878.99, + "probability": 0.9744 + }, + { + "start": 35879.29, + "end": 35880.29, + "probability": 0.6931 + }, + { + "start": 35880.85, + "end": 35883.87, + "probability": 0.6634 + }, + { + "start": 35884.45, + "end": 35885.85, + "probability": 0.8271 + }, + { + "start": 35886.01, + "end": 35886.67, + "probability": 0.9224 + }, + { + "start": 35886.75, + "end": 35887.53, + "probability": 0.7213 + }, + { + "start": 35888.22, + "end": 35889.19, + "probability": 0.7739 + }, + { + "start": 35889.75, + "end": 35891.55, + "probability": 0.6922 + }, + { + "start": 35891.55, + "end": 35892.43, + "probability": 0.4652 + }, + { + "start": 35893.03, + "end": 35895.47, + "probability": 0.8876 + }, + { + "start": 35895.59, + "end": 35898.55, + "probability": 0.803 + }, + { + "start": 35898.73, + "end": 35899.47, + "probability": 0.562 + }, + { + "start": 35899.81, + "end": 35902.47, + "probability": 0.989 + }, + { + "start": 35903.25, + "end": 35904.57, + "probability": 0.5599 + }, + { + "start": 35905.09, + "end": 35906.23, + "probability": 0.6307 + }, + { + "start": 35906.27, + "end": 35908.35, + "probability": 0.8533 + }, + { + "start": 35908.35, + "end": 35912.07, + "probability": 0.9564 + }, + { + "start": 35912.79, + "end": 35913.17, + "probability": 0.4819 + }, + { + "start": 35913.81, + "end": 35916.55, + "probability": 0.6183 + }, + { + "start": 35916.69, + "end": 35917.35, + "probability": 0.7201 + }, + { + "start": 35918.07, + "end": 35923.13, + "probability": 0.516 + }, + { + "start": 35923.33, + "end": 35925.07, + "probability": 0.8481 + }, + { + "start": 35925.23, + "end": 35925.81, + "probability": 0.3082 + }, + { + "start": 35926.19, + "end": 35928.09, + "probability": 0.7432 + }, + { + "start": 35928.23, + "end": 35928.73, + "probability": 0.5375 + }, + { + "start": 35928.85, + "end": 35929.25, + "probability": 0.7136 + }, + { + "start": 35929.29, + "end": 35929.95, + "probability": 0.7641 + }, + { + "start": 35929.97, + "end": 35930.49, + "probability": 0.6864 + }, + { + "start": 35930.59, + "end": 35931.37, + "probability": 0.7502 + }, + { + "start": 35931.97, + "end": 35933.4, + "probability": 0.0199 + }, + { + "start": 35934.93, + "end": 35937.49, + "probability": 0.6378 + }, + { + "start": 35938.13, + "end": 35940.15, + "probability": 0.7197 + }, + { + "start": 35940.21, + "end": 35940.67, + "probability": 0.5865 + }, + { + "start": 35941.47, + "end": 35942.81, + "probability": 0.9051 + }, + { + "start": 35942.97, + "end": 35944.09, + "probability": 0.2249 + }, + { + "start": 35944.15, + "end": 35944.51, + "probability": 0.3757 + }, + { + "start": 35944.62, + "end": 35947.09, + "probability": 0.8518 + }, + { + "start": 35947.13, + "end": 35947.55, + "probability": 0.6963 + }, + { + "start": 35947.55, + "end": 35951.47, + "probability": 0.7238 + }, + { + "start": 35951.63, + "end": 35952.26, + "probability": 0.4895 + }, + { + "start": 35952.59, + "end": 35954.49, + "probability": 0.7007 + }, + { + "start": 35954.59, + "end": 35956.89, + "probability": 0.7537 + }, + { + "start": 35957.35, + "end": 35957.85, + "probability": 0.7019 + }, + { + "start": 35958.21, + "end": 35958.7, + "probability": 0.9365 + }, + { + "start": 35959.25, + "end": 35959.97, + "probability": 0.7303 + }, + { + "start": 35960.17, + "end": 35960.73, + "probability": 0.2549 + }, + { + "start": 35960.79, + "end": 35964.33, + "probability": 0.7387 + }, + { + "start": 35964.33, + "end": 35965.07, + "probability": 0.4523 + }, + { + "start": 35965.63, + "end": 35966.65, + "probability": 0.532 + }, + { + "start": 35966.89, + "end": 35968.49, + "probability": 0.8438 + }, + { + "start": 35968.55, + "end": 35970.99, + "probability": 0.9137 + }, + { + "start": 35971.05, + "end": 35972.03, + "probability": 0.9282 + }, + { + "start": 35972.35, + "end": 35973.98, + "probability": 0.9775 + }, + { + "start": 35974.51, + "end": 35975.39, + "probability": 0.6789 + }, + { + "start": 35975.43, + "end": 35976.85, + "probability": 0.6169 + }, + { + "start": 35977.15, + "end": 35980.17, + "probability": 0.95 + }, + { + "start": 35980.21, + "end": 35982.63, + "probability": 0.9748 + }, + { + "start": 35983.25, + "end": 35984.77, + "probability": 0.3921 + }, + { + "start": 35984.81, + "end": 35985.21, + "probability": 0.3305 + }, + { + "start": 35985.71, + "end": 35988.03, + "probability": 0.8684 + }, + { + "start": 35988.81, + "end": 35991.13, + "probability": 0.9604 + }, + { + "start": 35991.97, + "end": 35992.81, + "probability": 0.6701 + }, + { + "start": 35993.57, + "end": 35996.4, + "probability": 0.9331 + }, + { + "start": 35997.41, + "end": 35998.45, + "probability": 0.9759 + }, + { + "start": 35999.09, + "end": 36002.67, + "probability": 0.5488 + }, + { + "start": 36002.83, + "end": 36006.47, + "probability": 0.657 + }, + { + "start": 36007.01, + "end": 36007.19, + "probability": 0.8604 + }, + { + "start": 36022.61, + "end": 36025.31, + "probability": 0.7777 + }, + { + "start": 36025.67, + "end": 36025.99, + "probability": 0.7512 + }, + { + "start": 36026.43, + "end": 36027.33, + "probability": 0.753 + }, + { + "start": 36029.94, + "end": 36032.5, + "probability": 0.7553 + }, + { + "start": 36033.31, + "end": 36033.87, + "probability": 0.9592 + }, + { + "start": 36035.19, + "end": 36040.95, + "probability": 0.9388 + }, + { + "start": 36044.75, + "end": 36048.99, + "probability": 0.7544 + }, + { + "start": 36050.51, + "end": 36053.77, + "probability": 0.9762 + }, + { + "start": 36053.77, + "end": 36056.63, + "probability": 0.9947 + }, + { + "start": 36057.37, + "end": 36058.39, + "probability": 0.8652 + }, + { + "start": 36058.49, + "end": 36061.79, + "probability": 0.9265 + }, + { + "start": 36063.59, + "end": 36068.39, + "probability": 0.957 + }, + { + "start": 36068.91, + "end": 36070.47, + "probability": 0.9868 + }, + { + "start": 36071.15, + "end": 36073.96, + "probability": 0.8136 + }, + { + "start": 36075.51, + "end": 36082.63, + "probability": 0.9815 + }, + { + "start": 36083.39, + "end": 36085.77, + "probability": 0.9857 + }, + { + "start": 36085.77, + "end": 36088.01, + "probability": 0.9954 + }, + { + "start": 36088.75, + "end": 36090.69, + "probability": 0.967 + }, + { + "start": 36090.69, + "end": 36094.23, + "probability": 0.9695 + }, + { + "start": 36094.79, + "end": 36097.33, + "probability": 0.7451 + }, + { + "start": 36097.91, + "end": 36098.67, + "probability": 0.7426 + }, + { + "start": 36099.53, + "end": 36103.29, + "probability": 0.8885 + }, + { + "start": 36103.97, + "end": 36106.01, + "probability": 0.9875 + }, + { + "start": 36106.11, + "end": 36109.51, + "probability": 0.9955 + }, + { + "start": 36110.37, + "end": 36114.02, + "probability": 0.9504 + }, + { + "start": 36114.87, + "end": 36117.03, + "probability": 0.9932 + }, + { + "start": 36117.59, + "end": 36121.53, + "probability": 0.9963 + }, + { + "start": 36123.15, + "end": 36123.45, + "probability": 0.3876 + }, + { + "start": 36123.67, + "end": 36127.45, + "probability": 0.9695 + }, + { + "start": 36128.67, + "end": 36130.11, + "probability": 0.9238 + }, + { + "start": 36131.71, + "end": 36135.47, + "probability": 0.9785 + }, + { + "start": 36135.47, + "end": 36139.31, + "probability": 0.9296 + }, + { + "start": 36140.49, + "end": 36144.19, + "probability": 0.9943 + }, + { + "start": 36144.47, + "end": 36147.15, + "probability": 0.9385 + }, + { + "start": 36147.91, + "end": 36148.95, + "probability": 0.8171 + }, + { + "start": 36149.57, + "end": 36149.77, + "probability": 0.5515 + }, + { + "start": 36149.85, + "end": 36152.93, + "probability": 0.9823 + }, + { + "start": 36154.69, + "end": 36155.81, + "probability": 0.8125 + }, + { + "start": 36156.09, + "end": 36157.07, + "probability": 0.8921 + }, + { + "start": 36157.33, + "end": 36158.73, + "probability": 0.9736 + }, + { + "start": 36158.91, + "end": 36160.96, + "probability": 0.8095 + }, + { + "start": 36161.79, + "end": 36162.37, + "probability": 0.9188 + }, + { + "start": 36163.19, + "end": 36165.13, + "probability": 0.7744 + }, + { + "start": 36165.17, + "end": 36165.71, + "probability": 0.9676 + }, + { + "start": 36166.07, + "end": 36168.17, + "probability": 0.9749 + }, + { + "start": 36168.65, + "end": 36170.89, + "probability": 0.987 + }, + { + "start": 36171.43, + "end": 36174.09, + "probability": 0.9336 + }, + { + "start": 36175.07, + "end": 36176.67, + "probability": 0.6686 + }, + { + "start": 36177.35, + "end": 36178.87, + "probability": 0.9206 + }, + { + "start": 36179.01, + "end": 36181.51, + "probability": 0.9531 + }, + { + "start": 36182.65, + "end": 36185.35, + "probability": 0.9647 + }, + { + "start": 36186.7, + "end": 36188.87, + "probability": 0.9912 + }, + { + "start": 36190.05, + "end": 36190.43, + "probability": 0.934 + }, + { + "start": 36190.89, + "end": 36193.25, + "probability": 0.9431 + }, + { + "start": 36193.43, + "end": 36195.65, + "probability": 0.7278 + }, + { + "start": 36195.77, + "end": 36196.77, + "probability": 0.5392 + }, + { + "start": 36197.01, + "end": 36201.17, + "probability": 0.8509 + }, + { + "start": 36201.21, + "end": 36201.49, + "probability": 0.7311 + }, + { + "start": 36202.01, + "end": 36204.55, + "probability": 0.951 + }, + { + "start": 36205.47, + "end": 36207.67, + "probability": 0.9381 + }, + { + "start": 36207.81, + "end": 36208.18, + "probability": 0.8846 + }, + { + "start": 36208.49, + "end": 36210.25, + "probability": 0.9146 + }, + { + "start": 36210.93, + "end": 36213.49, + "probability": 0.957 + }, + { + "start": 36213.59, + "end": 36213.75, + "probability": 0.7277 + }, + { + "start": 36213.93, + "end": 36217.67, + "probability": 0.9939 + }, + { + "start": 36219.43, + "end": 36219.65, + "probability": 0.8282 + }, + { + "start": 36219.95, + "end": 36220.61, + "probability": 0.7831 + }, + { + "start": 36220.67, + "end": 36222.75, + "probability": 0.9644 + }, + { + "start": 36223.07, + "end": 36223.77, + "probability": 0.4887 + }, + { + "start": 36224.23, + "end": 36225.39, + "probability": 0.3603 + }, + { + "start": 36225.43, + "end": 36225.69, + "probability": 0.8845 + }, + { + "start": 36225.83, + "end": 36230.09, + "probability": 0.9535 + }, + { + "start": 36230.31, + "end": 36237.79, + "probability": 0.9959 + }, + { + "start": 36239.55, + "end": 36243.26, + "probability": 0.9927 + }, + { + "start": 36243.91, + "end": 36247.89, + "probability": 0.9915 + }, + { + "start": 36248.81, + "end": 36251.27, + "probability": 0.9651 + }, + { + "start": 36251.33, + "end": 36251.67, + "probability": 0.9802 + }, + { + "start": 36251.83, + "end": 36254.77, + "probability": 0.956 + }, + { + "start": 36254.77, + "end": 36258.81, + "probability": 0.9917 + }, + { + "start": 36258.97, + "end": 36259.39, + "probability": 0.8316 + }, + { + "start": 36259.93, + "end": 36260.69, + "probability": 0.8846 + }, + { + "start": 36260.93, + "end": 36262.49, + "probability": 0.9517 + }, + { + "start": 36262.75, + "end": 36266.07, + "probability": 0.9846 + }, + { + "start": 36266.83, + "end": 36269.49, + "probability": 0.7788 + }, + { + "start": 36270.87, + "end": 36273.61, + "probability": 0.9836 + }, + { + "start": 36274.67, + "end": 36276.11, + "probability": 0.9973 + }, + { + "start": 36276.67, + "end": 36278.07, + "probability": 0.9715 + }, + { + "start": 36278.53, + "end": 36279.73, + "probability": 0.7969 + }, + { + "start": 36279.87, + "end": 36283.33, + "probability": 0.9973 + }, + { + "start": 36283.33, + "end": 36286.33, + "probability": 0.9827 + }, + { + "start": 36287.11, + "end": 36289.71, + "probability": 0.9581 + }, + { + "start": 36290.59, + "end": 36292.99, + "probability": 0.9915 + }, + { + "start": 36292.99, + "end": 36296.15, + "probability": 0.9902 + }, + { + "start": 36296.63, + "end": 36299.01, + "probability": 0.9718 + }, + { + "start": 36299.01, + "end": 36301.85, + "probability": 0.9978 + }, + { + "start": 36302.75, + "end": 36309.51, + "probability": 0.8905 + }, + { + "start": 36310.07, + "end": 36310.07, + "probability": 0.0437 + }, + { + "start": 36310.07, + "end": 36313.47, + "probability": 0.8334 + }, + { + "start": 36313.91, + "end": 36319.06, + "probability": 0.999 + }, + { + "start": 36319.67, + "end": 36320.01, + "probability": 0.6399 + }, + { + "start": 36320.05, + "end": 36322.09, + "probability": 0.9736 + }, + { + "start": 36322.09, + "end": 36324.75, + "probability": 0.9957 + }, + { + "start": 36325.59, + "end": 36327.33, + "probability": 0.7892 + }, + { + "start": 36327.81, + "end": 36329.99, + "probability": 0.8777 + }, + { + "start": 36330.49, + "end": 36331.61, + "probability": 0.6949 + }, + { + "start": 36332.35, + "end": 36335.89, + "probability": 0.9628 + }, + { + "start": 36336.45, + "end": 36340.65, + "probability": 0.9706 + }, + { + "start": 36340.73, + "end": 36343.05, + "probability": 0.9612 + }, + { + "start": 36343.95, + "end": 36346.79, + "probability": 0.9901 + }, + { + "start": 36347.45, + "end": 36348.75, + "probability": 0.9215 + }, + { + "start": 36349.27, + "end": 36352.19, + "probability": 0.9963 + }, + { + "start": 36353.67, + "end": 36355.39, + "probability": 0.8364 + }, + { + "start": 36356.03, + "end": 36360.21, + "probability": 0.6576 + }, + { + "start": 36360.89, + "end": 36363.97, + "probability": 0.8903 + }, + { + "start": 36365.07, + "end": 36366.65, + "probability": 0.9878 + }, + { + "start": 36366.75, + "end": 36368.29, + "probability": 0.979 + }, + { + "start": 36368.45, + "end": 36368.73, + "probability": 0.7828 + }, + { + "start": 36368.83, + "end": 36369.25, + "probability": 0.7286 + }, + { + "start": 36369.35, + "end": 36370.29, + "probability": 0.9074 + }, + { + "start": 36370.41, + "end": 36370.73, + "probability": 0.5868 + }, + { + "start": 36372.48, + "end": 36376.01, + "probability": 0.9638 + }, + { + "start": 36376.27, + "end": 36379.19, + "probability": 0.99 + }, + { + "start": 36380.01, + "end": 36380.17, + "probability": 0.9887 + }, + { + "start": 36380.93, + "end": 36383.81, + "probability": 0.7926 + }, + { + "start": 36384.55, + "end": 36388.79, + "probability": 0.9683 + }, + { + "start": 36388.87, + "end": 36389.69, + "probability": 0.8471 + }, + { + "start": 36390.25, + "end": 36390.81, + "probability": 0.7319 + }, + { + "start": 36391.25, + "end": 36395.75, + "probability": 0.975 + }, + { + "start": 36396.53, + "end": 36398.13, + "probability": 0.8806 + }, + { + "start": 36398.75, + "end": 36399.56, + "probability": 0.9556 + }, + { + "start": 36400.51, + "end": 36403.95, + "probability": 0.9453 + }, + { + "start": 36404.88, + "end": 36407.91, + "probability": 0.8112 + }, + { + "start": 36408.53, + "end": 36411.55, + "probability": 0.9802 + }, + { + "start": 36412.95, + "end": 36415.13, + "probability": 0.9816 + }, + { + "start": 36415.95, + "end": 36418.51, + "probability": 0.9906 + }, + { + "start": 36419.03, + "end": 36420.51, + "probability": 0.8525 + }, + { + "start": 36421.01, + "end": 36424.01, + "probability": 0.9673 + }, + { + "start": 36424.01, + "end": 36428.27, + "probability": 0.9878 + }, + { + "start": 36428.31, + "end": 36428.63, + "probability": 0.8992 + }, + { + "start": 36428.73, + "end": 36434.85, + "probability": 0.9767 + }, + { + "start": 36437.71, + "end": 36439.93, + "probability": 0.9974 + }, + { + "start": 36440.51, + "end": 36447.03, + "probability": 0.9163 + }, + { + "start": 36448.01, + "end": 36450.21, + "probability": 0.9431 + }, + { + "start": 36450.31, + "end": 36455.74, + "probability": 0.9797 + }, + { + "start": 36456.85, + "end": 36458.99, + "probability": 0.8386 + }, + { + "start": 36459.05, + "end": 36459.73, + "probability": 0.7409 + }, + { + "start": 36460.23, + "end": 36462.49, + "probability": 0.9891 + }, + { + "start": 36462.61, + "end": 36464.75, + "probability": 0.9963 + }, + { + "start": 36464.75, + "end": 36467.51, + "probability": 0.9242 + }, + { + "start": 36467.93, + "end": 36471.75, + "probability": 0.9734 + }, + { + "start": 36471.89, + "end": 36473.43, + "probability": 0.8677 + }, + { + "start": 36473.89, + "end": 36480.66, + "probability": 0.9822 + }, + { + "start": 36482.17, + "end": 36483.31, + "probability": 0.8763 + }, + { + "start": 36483.41, + "end": 36484.49, + "probability": 0.9352 + }, + { + "start": 36485.43, + "end": 36487.27, + "probability": 0.9966 + }, + { + "start": 36487.79, + "end": 36489.43, + "probability": 0.908 + }, + { + "start": 36489.51, + "end": 36495.33, + "probability": 0.984 + }, + { + "start": 36495.53, + "end": 36499.13, + "probability": 0.9965 + }, + { + "start": 36499.25, + "end": 36500.63, + "probability": 0.9762 + }, + { + "start": 36500.81, + "end": 36505.93, + "probability": 0.9696 + }, + { + "start": 36506.19, + "end": 36506.43, + "probability": 0.7598 + }, + { + "start": 36507.01, + "end": 36507.65, + "probability": 0.7244 + }, + { + "start": 36509.89, + "end": 36511.53, + "probability": 0.7833 + }, + { + "start": 36512.17, + "end": 36513.19, + "probability": 0.6587 + }, + { + "start": 36514.03, + "end": 36515.21, + "probability": 0.7929 + }, + { + "start": 36515.59, + "end": 36515.59, + "probability": 0.8097 + }, + { + "start": 36515.59, + "end": 36516.85, + "probability": 0.3506 + }, + { + "start": 36518.07, + "end": 36518.83, + "probability": 0.6151 + }, + { + "start": 36519.71, + "end": 36522.27, + "probability": 0.4263 + }, + { + "start": 36522.39, + "end": 36523.51, + "probability": 0.4598 + }, + { + "start": 36523.61, + "end": 36525.99, + "probability": 0.957 + }, + { + "start": 36528.61, + "end": 36531.81, + "probability": 0.586 + }, + { + "start": 36531.91, + "end": 36532.47, + "probability": 0.7971 + }, + { + "start": 36533.91, + "end": 36536.77, + "probability": 0.6421 + }, + { + "start": 36539.45, + "end": 36543.25, + "probability": 0.2743 + }, + { + "start": 36544.49, + "end": 36548.55, + "probability": 0.4964 + }, + { + "start": 36548.83, + "end": 36549.19, + "probability": 0.3612 + }, + { + "start": 36549.51, + "end": 36553.83, + "probability": 0.7788 + }, + { + "start": 36555.71, + "end": 36561.27, + "probability": 0.4522 + }, + { + "start": 36561.43, + "end": 36566.01, + "probability": 0.903 + }, + { + "start": 36566.93, + "end": 36567.99, + "probability": 0.0918 + }, + { + "start": 36569.41, + "end": 36569.51, + "probability": 0.0509 + }, + { + "start": 36569.51, + "end": 36570.27, + "probability": 0.2102 + }, + { + "start": 36571.87, + "end": 36574.15, + "probability": 0.8244 + }, + { + "start": 36601.35, + "end": 36603.49, + "probability": 0.6979 + }, + { + "start": 36603.57, + "end": 36604.21, + "probability": 0.8123 + }, + { + "start": 36604.69, + "end": 36605.67, + "probability": 0.9365 + }, + { + "start": 36606.35, + "end": 36607.71, + "probability": 0.9632 + }, + { + "start": 36608.65, + "end": 36612.71, + "probability": 0.9959 + }, + { + "start": 36613.75, + "end": 36615.75, + "probability": 0.9951 + }, + { + "start": 36617.25, + "end": 36619.13, + "probability": 0.8113 + }, + { + "start": 36620.09, + "end": 36623.13, + "probability": 0.991 + }, + { + "start": 36623.93, + "end": 36625.53, + "probability": 0.9187 + }, + { + "start": 36626.11, + "end": 36626.91, + "probability": 0.7489 + }, + { + "start": 36627.43, + "end": 36628.39, + "probability": 0.9953 + }, + { + "start": 36629.29, + "end": 36631.91, + "probability": 0.9684 + }, + { + "start": 36633.23, + "end": 36637.35, + "probability": 0.9921 + }, + { + "start": 36637.99, + "end": 36638.89, + "probability": 0.6868 + }, + { + "start": 36639.91, + "end": 36642.65, + "probability": 0.8231 + }, + { + "start": 36643.29, + "end": 36647.17, + "probability": 0.9875 + }, + { + "start": 36648.49, + "end": 36652.61, + "probability": 0.9763 + }, + { + "start": 36653.55, + "end": 36656.75, + "probability": 0.769 + }, + { + "start": 36659.01, + "end": 36662.79, + "probability": 0.7085 + }, + { + "start": 36663.81, + "end": 36667.55, + "probability": 0.9915 + }, + { + "start": 36668.47, + "end": 36670.09, + "probability": 0.5388 + }, + { + "start": 36670.71, + "end": 36672.89, + "probability": 0.9779 + }, + { + "start": 36673.35, + "end": 36675.81, + "probability": 0.9977 + }, + { + "start": 36675.81, + "end": 36680.05, + "probability": 0.9942 + }, + { + "start": 36681.47, + "end": 36683.33, + "probability": 0.7669 + }, + { + "start": 36683.79, + "end": 36690.31, + "probability": 0.9187 + }, + { + "start": 36691.11, + "end": 36694.07, + "probability": 0.9528 + }, + { + "start": 36694.95, + "end": 36698.93, + "probability": 0.9294 + }, + { + "start": 36699.47, + "end": 36702.09, + "probability": 0.7387 + }, + { + "start": 36703.01, + "end": 36703.11, + "probability": 0.6567 + }, + { + "start": 36703.25, + "end": 36704.47, + "probability": 0.7521 + }, + { + "start": 36704.93, + "end": 36707.45, + "probability": 0.9541 + }, + { + "start": 36708.11, + "end": 36709.19, + "probability": 0.9659 + }, + { + "start": 36709.69, + "end": 36710.83, + "probability": 0.948 + }, + { + "start": 36711.21, + "end": 36716.57, + "probability": 0.9907 + }, + { + "start": 36716.57, + "end": 36724.39, + "probability": 0.8753 + }, + { + "start": 36725.23, + "end": 36727.99, + "probability": 0.9939 + }, + { + "start": 36728.61, + "end": 36729.85, + "probability": 0.957 + }, + { + "start": 36730.21, + "end": 36731.78, + "probability": 0.9854 + }, + { + "start": 36732.15, + "end": 36733.59, + "probability": 0.9731 + }, + { + "start": 36734.05, + "end": 36737.01, + "probability": 0.9813 + }, + { + "start": 36737.41, + "end": 36740.65, + "probability": 0.9545 + }, + { + "start": 36740.79, + "end": 36742.43, + "probability": 0.4083 + }, + { + "start": 36743.39, + "end": 36747.06, + "probability": 0.9582 + }, + { + "start": 36747.95, + "end": 36748.91, + "probability": 0.6583 + }, + { + "start": 36749.39, + "end": 36752.59, + "probability": 0.9854 + }, + { + "start": 36752.93, + "end": 36754.43, + "probability": 0.9934 + }, + { + "start": 36755.21, + "end": 36755.65, + "probability": 0.7786 + }, + { + "start": 36755.77, + "end": 36756.27, + "probability": 0.9009 + }, + { + "start": 36756.49, + "end": 36759.75, + "probability": 0.9336 + }, + { + "start": 36760.21, + "end": 36763.71, + "probability": 0.9378 + }, + { + "start": 36764.05, + "end": 36765.93, + "probability": 0.9764 + }, + { + "start": 36766.83, + "end": 36770.51, + "probability": 0.9784 + }, + { + "start": 36771.21, + "end": 36773.07, + "probability": 0.937 + }, + { + "start": 36773.07, + "end": 36776.61, + "probability": 0.994 + }, + { + "start": 36777.05, + "end": 36777.59, + "probability": 0.637 + }, + { + "start": 36777.71, + "end": 36778.59, + "probability": 0.7603 + }, + { + "start": 36778.69, + "end": 36779.89, + "probability": 0.9316 + }, + { + "start": 36780.45, + "end": 36781.73, + "probability": 0.9233 + }, + { + "start": 36782.59, + "end": 36788.25, + "probability": 0.9487 + }, + { + "start": 36788.75, + "end": 36792.41, + "probability": 0.9771 + }, + { + "start": 36793.11, + "end": 36795.71, + "probability": 0.9715 + }, + { + "start": 36796.15, + "end": 36798.97, + "probability": 0.8336 + }, + { + "start": 36799.59, + "end": 36799.95, + "probability": 0.5468 + }, + { + "start": 36799.97, + "end": 36800.69, + "probability": 0.9268 + }, + { + "start": 36801.15, + "end": 36803.95, + "probability": 0.7583 + }, + { + "start": 36803.95, + "end": 36806.39, + "probability": 0.9761 + }, + { + "start": 36806.99, + "end": 36807.79, + "probability": 0.4044 + }, + { + "start": 36808.19, + "end": 36809.25, + "probability": 0.6558 + }, + { + "start": 36809.51, + "end": 36809.61, + "probability": 0.1526 + }, + { + "start": 36809.75, + "end": 36811.43, + "probability": 0.7211 + }, + { + "start": 36811.43, + "end": 36814.53, + "probability": 0.9913 + }, + { + "start": 36815.17, + "end": 36817.21, + "probability": 0.992 + }, + { + "start": 36818.03, + "end": 36818.87, + "probability": 0.6036 + }, + { + "start": 36819.33, + "end": 36822.51, + "probability": 0.889 + }, + { + "start": 36822.51, + "end": 36826.33, + "probability": 0.9029 + }, + { + "start": 36826.69, + "end": 36828.87, + "probability": 0.9964 + }, + { + "start": 36829.05, + "end": 36831.05, + "probability": 0.991 + }, + { + "start": 36831.31, + "end": 36831.85, + "probability": 0.9006 + }, + { + "start": 36831.99, + "end": 36832.41, + "probability": 0.6843 + }, + { + "start": 36834.13, + "end": 36834.85, + "probability": 0.6934 + }, + { + "start": 36835.01, + "end": 36836.51, + "probability": 0.3208 + }, + { + "start": 36836.85, + "end": 36838.65, + "probability": 0.8574 + }, + { + "start": 36839.65, + "end": 36841.01, + "probability": 0.9707 + }, + { + "start": 36841.51, + "end": 36843.99, + "probability": 0.9941 + }, + { + "start": 36844.37, + "end": 36845.83, + "probability": 0.8544 + }, + { + "start": 36845.93, + "end": 36847.67, + "probability": 0.6676 + }, + { + "start": 36848.13, + "end": 36850.47, + "probability": 0.9907 + }, + { + "start": 36850.81, + "end": 36852.21, + "probability": 0.86 + }, + { + "start": 36852.55, + "end": 36854.27, + "probability": 0.6626 + }, + { + "start": 36854.37, + "end": 36855.09, + "probability": 0.5751 + }, + { + "start": 36855.31, + "end": 36856.17, + "probability": 0.6958 + }, + { + "start": 36856.91, + "end": 36858.15, + "probability": 0.6689 + }, + { + "start": 36858.77, + "end": 36860.91, + "probability": 0.6631 + }, + { + "start": 36861.15, + "end": 36864.21, + "probability": 0.8717 + }, + { + "start": 36864.75, + "end": 36866.77, + "probability": 0.8722 + }, + { + "start": 36867.73, + "end": 36870.65, + "probability": 0.9599 + }, + { + "start": 36871.47, + "end": 36872.51, + "probability": 0.9761 + }, + { + "start": 36872.75, + "end": 36875.21, + "probability": 0.9937 + }, + { + "start": 36875.59, + "end": 36875.93, + "probability": 0.4406 + }, + { + "start": 36875.95, + "end": 36878.33, + "probability": 0.751 + }, + { + "start": 36878.57, + "end": 36878.57, + "probability": 0.3964 + }, + { + "start": 36878.57, + "end": 36878.71, + "probability": 0.4772 + }, + { + "start": 36878.77, + "end": 36880.89, + "probability": 0.9693 + }, + { + "start": 36881.11, + "end": 36881.55, + "probability": 0.4885 + }, + { + "start": 36882.21, + "end": 36883.93, + "probability": 0.8504 + }, + { + "start": 36884.99, + "end": 36887.29, + "probability": 0.9282 + }, + { + "start": 36889.83, + "end": 36891.79, + "probability": 0.5798 + }, + { + "start": 36892.07, + "end": 36895.32, + "probability": 0.9145 + }, + { + "start": 36901.57, + "end": 36906.59, + "probability": 0.1505 + }, + { + "start": 36912.47, + "end": 36912.69, + "probability": 0.5914 + }, + { + "start": 36915.99, + "end": 36918.31, + "probability": 0.845 + }, + { + "start": 36918.81, + "end": 36919.47, + "probability": 0.7044 + }, + { + "start": 36920.29, + "end": 36921.27, + "probability": 0.921 + }, + { + "start": 36921.51, + "end": 36925.41, + "probability": 0.1218 + }, + { + "start": 36928.95, + "end": 36930.13, + "probability": 0.986 + }, + { + "start": 36931.93, + "end": 36934.33, + "probability": 0.7879 + }, + { + "start": 36935.37, + "end": 36937.57, + "probability": 0.8147 + }, + { + "start": 36939.75, + "end": 36941.49, + "probability": 0.9954 + }, + { + "start": 36945.85, + "end": 36947.63, + "probability": 0.6471 + }, + { + "start": 36947.79, + "end": 36949.69, + "probability": 0.8621 + }, + { + "start": 36950.91, + "end": 36954.85, + "probability": 0.9924 + }, + { + "start": 36955.69, + "end": 36959.67, + "probability": 0.8532 + }, + { + "start": 36960.45, + "end": 36964.65, + "probability": 0.9592 + }, + { + "start": 36965.57, + "end": 36965.69, + "probability": 0.3232 + }, + { + "start": 36965.73, + "end": 36965.91, + "probability": 0.9333 + }, + { + "start": 36965.99, + "end": 36967.21, + "probability": 0.6366 + }, + { + "start": 36967.43, + "end": 36970.87, + "probability": 0.9074 + }, + { + "start": 36971.19, + "end": 36973.21, + "probability": 0.6465 + }, + { + "start": 36975.03, + "end": 36976.71, + "probability": 0.7683 + }, + { + "start": 36976.93, + "end": 36980.27, + "probability": 0.9622 + }, + { + "start": 36980.85, + "end": 36982.81, + "probability": 0.9098 + }, + { + "start": 36983.99, + "end": 36993.89, + "probability": 0.9492 + }, + { + "start": 36994.05, + "end": 36998.23, + "probability": 0.9927 + }, + { + "start": 36998.89, + "end": 36999.05, + "probability": 0.7771 + }, + { + "start": 36999.57, + "end": 37002.99, + "probability": 0.8883 + }, + { + "start": 37003.21, + "end": 37004.69, + "probability": 0.9253 + }, + { + "start": 37005.17, + "end": 37009.67, + "probability": 0.9781 + }, + { + "start": 37011.77, + "end": 37014.83, + "probability": 0.8754 + }, + { + "start": 37015.43, + "end": 37017.13, + "probability": 0.9937 + }, + { + "start": 37018.15, + "end": 37024.63, + "probability": 0.9752 + }, + { + "start": 37025.01, + "end": 37028.65, + "probability": 0.9629 + }, + { + "start": 37029.57, + "end": 37030.19, + "probability": 0.6445 + }, + { + "start": 37030.31, + "end": 37035.37, + "probability": 0.8926 + }, + { + "start": 37035.95, + "end": 37037.79, + "probability": 0.9786 + }, + { + "start": 37038.45, + "end": 37042.93, + "probability": 0.975 + }, + { + "start": 37043.59, + "end": 37044.41, + "probability": 0.9604 + }, + { + "start": 37044.57, + "end": 37046.43, + "probability": 0.728 + }, + { + "start": 37046.51, + "end": 37049.21, + "probability": 0.9785 + }, + { + "start": 37049.83, + "end": 37050.47, + "probability": 0.8575 + }, + { + "start": 37051.07, + "end": 37053.89, + "probability": 0.9792 + }, + { + "start": 37053.89, + "end": 37058.35, + "probability": 0.994 + }, + { + "start": 37058.77, + "end": 37062.17, + "probability": 0.7308 + }, + { + "start": 37063.83, + "end": 37066.71, + "probability": 0.9935 + }, + { + "start": 37067.83, + "end": 37068.83, + "probability": 0.9241 + }, + { + "start": 37068.93, + "end": 37076.15, + "probability": 0.9196 + }, + { + "start": 37076.15, + "end": 37081.55, + "probability": 0.9863 + }, + { + "start": 37082.11, + "end": 37083.19, + "probability": 0.8893 + }, + { + "start": 37084.05, + "end": 37086.21, + "probability": 0.9948 + }, + { + "start": 37086.91, + "end": 37088.83, + "probability": 0.6995 + }, + { + "start": 37089.71, + "end": 37090.34, + "probability": 0.8872 + }, + { + "start": 37091.65, + "end": 37093.79, + "probability": 0.8955 + }, + { + "start": 37094.85, + "end": 37100.03, + "probability": 0.9818 + }, + { + "start": 37100.69, + "end": 37104.43, + "probability": 0.8992 + }, + { + "start": 37105.73, + "end": 37108.53, + "probability": 0.695 + }, + { + "start": 37108.89, + "end": 37108.89, + "probability": 0.4444 + }, + { + "start": 37108.89, + "end": 37112.47, + "probability": 0.905 + }, + { + "start": 37113.33, + "end": 37117.05, + "probability": 0.9521 + }, + { + "start": 37117.51, + "end": 37121.95, + "probability": 0.968 + }, + { + "start": 37122.15, + "end": 37123.23, + "probability": 0.9318 + }, + { + "start": 37123.99, + "end": 37124.79, + "probability": 0.7903 + }, + { + "start": 37125.07, + "end": 37125.35, + "probability": 0.7517 + }, + { + "start": 37126.19, + "end": 37126.67, + "probability": 0.4982 + }, + { + "start": 37126.77, + "end": 37131.38, + "probability": 0.9927 + }, + { + "start": 37131.47, + "end": 37136.07, + "probability": 0.9971 + }, + { + "start": 37136.77, + "end": 37140.47, + "probability": 0.9908 + }, + { + "start": 37140.99, + "end": 37141.29, + "probability": 0.9087 + }, + { + "start": 37141.45, + "end": 37145.07, + "probability": 0.8304 + }, + { + "start": 37145.75, + "end": 37147.99, + "probability": 0.9369 + }, + { + "start": 37148.35, + "end": 37148.35, + "probability": 0.0 + }, + { + "start": 37150.71, + "end": 37150.77, + "probability": 0.0 + }, + { + "start": 37155.55, + "end": 37156.39, + "probability": 0.1544 + }, + { + "start": 37157.59, + "end": 37157.94, + "probability": 0.0286 + }, + { + "start": 37161.77, + "end": 37165.27, + "probability": 0.1836 + }, + { + "start": 37165.51, + "end": 37167.81, + "probability": 0.1996 + }, + { + "start": 37168.75, + "end": 37174.11, + "probability": 0.0313 + }, + { + "start": 37180.27, + "end": 37181.29, + "probability": 0.6514 + }, + { + "start": 37182.87, + "end": 37186.53, + "probability": 0.8544 + }, + { + "start": 37186.53, + "end": 37190.05, + "probability": 0.9897 + }, + { + "start": 37191.11, + "end": 37195.35, + "probability": 0.9536 + }, + { + "start": 37197.49, + "end": 37199.11, + "probability": 0.404 + }, + { + "start": 37199.11, + "end": 37204.17, + "probability": 0.415 + }, + { + "start": 37204.51, + "end": 37211.29, + "probability": 0.7171 + }, + { + "start": 37213.41, + "end": 37217.73, + "probability": 0.9671 + }, + { + "start": 37217.75, + "end": 37221.47, + "probability": 0.9966 + }, + { + "start": 37222.33, + "end": 37226.39, + "probability": 0.6779 + }, + { + "start": 37227.23, + "end": 37227.85, + "probability": 0.8431 + }, + { + "start": 37228.47, + "end": 37233.41, + "probability": 0.9619 + }, + { + "start": 37233.89, + "end": 37235.71, + "probability": 0.9966 + }, + { + "start": 37236.81, + "end": 37237.45, + "probability": 0.9095 + }, + { + "start": 37238.19, + "end": 37240.21, + "probability": 0.8616 + }, + { + "start": 37241.03, + "end": 37246.67, + "probability": 0.9487 + }, + { + "start": 37247.05, + "end": 37252.77, + "probability": 0.9943 + }, + { + "start": 37253.33, + "end": 37254.83, + "probability": 0.9827 + }, + { + "start": 37255.37, + "end": 37259.31, + "probability": 0.9868 + }, + { + "start": 37259.31, + "end": 37262.63, + "probability": 0.9714 + }, + { + "start": 37264.51, + "end": 37267.15, + "probability": 0.8968 + }, + { + "start": 37267.31, + "end": 37267.77, + "probability": 0.8793 + }, + { + "start": 37268.55, + "end": 37270.95, + "probability": 0.9438 + }, + { + "start": 37271.53, + "end": 37273.85, + "probability": 0.9778 + }, + { + "start": 37274.59, + "end": 37278.11, + "probability": 0.9893 + }, + { + "start": 37279.29, + "end": 37280.25, + "probability": 0.9468 + }, + { + "start": 37280.35, + "end": 37283.59, + "probability": 0.9788 + }, + { + "start": 37284.67, + "end": 37288.08, + "probability": 0.6217 + }, + { + "start": 37288.65, + "end": 37289.11, + "probability": 0.5644 + }, + { + "start": 37289.19, + "end": 37289.55, + "probability": 0.8807 + }, + { + "start": 37289.61, + "end": 37293.27, + "probability": 0.8756 + }, + { + "start": 37293.27, + "end": 37297.85, + "probability": 0.9868 + }, + { + "start": 37298.21, + "end": 37299.31, + "probability": 0.9111 + }, + { + "start": 37299.37, + "end": 37304.29, + "probability": 0.9846 + }, + { + "start": 37304.81, + "end": 37306.95, + "probability": 0.9958 + }, + { + "start": 37307.45, + "end": 37311.17, + "probability": 0.9937 + }, + { + "start": 37311.17, + "end": 37316.17, + "probability": 0.9912 + }, + { + "start": 37316.17, + "end": 37320.59, + "probability": 0.9917 + }, + { + "start": 37320.99, + "end": 37321.47, + "probability": 0.4812 + }, + { + "start": 37321.47, + "end": 37328.73, + "probability": 0.8359 + }, + { + "start": 37328.73, + "end": 37331.77, + "probability": 0.9987 + }, + { + "start": 37332.37, + "end": 37334.79, + "probability": 0.9979 + }, + { + "start": 37334.79, + "end": 37337.93, + "probability": 0.9786 + }, + { + "start": 37338.33, + "end": 37340.43, + "probability": 0.6862 + }, + { + "start": 37341.07, + "end": 37344.19, + "probability": 0.9895 + }, + { + "start": 37345.53, + "end": 37347.71, + "probability": 0.7928 + }, + { + "start": 37348.19, + "end": 37355.33, + "probability": 0.9877 + }, + { + "start": 37355.39, + "end": 37358.23, + "probability": 0.9048 + }, + { + "start": 37358.31, + "end": 37359.11, + "probability": 0.8969 + }, + { + "start": 37359.19, + "end": 37362.29, + "probability": 0.9952 + }, + { + "start": 37362.87, + "end": 37367.39, + "probability": 0.9134 + }, + { + "start": 37368.37, + "end": 37372.67, + "probability": 0.9408 + }, + { + "start": 37372.97, + "end": 37375.63, + "probability": 0.9689 + }, + { + "start": 37375.89, + "end": 37378.95, + "probability": 0.9769 + }, + { + "start": 37379.49, + "end": 37380.49, + "probability": 0.7908 + }, + { + "start": 37381.13, + "end": 37382.19, + "probability": 0.9367 + }, + { + "start": 37383.19, + "end": 37387.31, + "probability": 0.9884 + }, + { + "start": 37387.93, + "end": 37390.89, + "probability": 0.9932 + }, + { + "start": 37390.89, + "end": 37394.49, + "probability": 0.9562 + }, + { + "start": 37394.51, + "end": 37397.31, + "probability": 0.9442 + }, + { + "start": 37397.83, + "end": 37400.23, + "probability": 0.9859 + }, + { + "start": 37402.49, + "end": 37405.55, + "probability": 0.776 + }, + { + "start": 37406.43, + "end": 37406.83, + "probability": 0.9371 + }, + { + "start": 37406.93, + "end": 37410.29, + "probability": 0.9784 + }, + { + "start": 37410.81, + "end": 37414.91, + "probability": 0.9937 + }, + { + "start": 37415.37, + "end": 37419.93, + "probability": 0.9878 + }, + { + "start": 37419.93, + "end": 37424.53, + "probability": 0.995 + }, + { + "start": 37425.67, + "end": 37426.02, + "probability": 0.3192 + }, + { + "start": 37427.19, + "end": 37430.59, + "probability": 0.9981 + }, + { + "start": 37431.01, + "end": 37433.25, + "probability": 0.9524 + }, + { + "start": 37433.35, + "end": 37436.95, + "probability": 0.6665 + }, + { + "start": 37437.27, + "end": 37439.73, + "probability": 0.8232 + }, + { + "start": 37440.27, + "end": 37440.95, + "probability": 0.4932 + }, + { + "start": 37441.51, + "end": 37442.87, + "probability": 0.969 + }, + { + "start": 37443.77, + "end": 37447.73, + "probability": 0.9321 + }, + { + "start": 37448.71, + "end": 37449.29, + "probability": 0.8026 + }, + { + "start": 37449.39, + "end": 37452.19, + "probability": 0.9907 + }, + { + "start": 37452.19, + "end": 37455.27, + "probability": 0.9246 + }, + { + "start": 37455.91, + "end": 37459.09, + "probability": 0.981 + }, + { + "start": 37459.09, + "end": 37462.61, + "probability": 0.8617 + }, + { + "start": 37463.01, + "end": 37464.85, + "probability": 0.981 + }, + { + "start": 37466.09, + "end": 37469.67, + "probability": 0.9843 + }, + { + "start": 37469.67, + "end": 37474.51, + "probability": 0.9975 + }, + { + "start": 37474.73, + "end": 37477.21, + "probability": 0.9956 + }, + { + "start": 37478.23, + "end": 37478.77, + "probability": 0.4319 + }, + { + "start": 37478.77, + "end": 37483.03, + "probability": 0.9554 + }, + { + "start": 37483.03, + "end": 37486.99, + "probability": 0.9746 + }, + { + "start": 37487.61, + "end": 37489.37, + "probability": 0.9553 + }, + { + "start": 37489.71, + "end": 37492.53, + "probability": 0.9894 + }, + { + "start": 37492.53, + "end": 37496.17, + "probability": 0.9985 + }, + { + "start": 37496.53, + "end": 37498.83, + "probability": 0.9087 + }, + { + "start": 37499.57, + "end": 37503.21, + "probability": 0.9091 + }, + { + "start": 37503.33, + "end": 37504.03, + "probability": 0.9899 + }, + { + "start": 37504.11, + "end": 37504.67, + "probability": 0.9923 + }, + { + "start": 37504.75, + "end": 37505.09, + "probability": 0.7193 + }, + { + "start": 37505.75, + "end": 37507.7, + "probability": 0.9839 + }, + { + "start": 37507.89, + "end": 37509.89, + "probability": 0.9427 + }, + { + "start": 37510.69, + "end": 37511.53, + "probability": 0.9657 + }, + { + "start": 37511.65, + "end": 37515.01, + "probability": 0.7194 + }, + { + "start": 37515.31, + "end": 37519.97, + "probability": 0.9625 + }, + { + "start": 37520.01, + "end": 37524.55, + "probability": 0.9965 + }, + { + "start": 37525.09, + "end": 37526.01, + "probability": 0.9939 + }, + { + "start": 37526.79, + "end": 37529.77, + "probability": 0.842 + }, + { + "start": 37529.77, + "end": 37533.25, + "probability": 0.9982 + }, + { + "start": 37533.75, + "end": 37538.41, + "probability": 0.991 + }, + { + "start": 37539.43, + "end": 37541.79, + "probability": 0.8303 + }, + { + "start": 37541.79, + "end": 37545.57, + "probability": 0.9905 + }, + { + "start": 37546.57, + "end": 37549.71, + "probability": 0.9312 + }, + { + "start": 37550.27, + "end": 37554.35, + "probability": 0.9648 + }, + { + "start": 37554.81, + "end": 37557.15, + "probability": 0.8792 + }, + { + "start": 37557.33, + "end": 37559.17, + "probability": 0.9396 + }, + { + "start": 37559.45, + "end": 37560.35, + "probability": 0.7631 + }, + { + "start": 37562.41, + "end": 37565.17, + "probability": 0.6384 + }, + { + "start": 37565.47, + "end": 37565.97, + "probability": 0.6723 + }, + { + "start": 37566.57, + "end": 37566.69, + "probability": 0.7692 + }, + { + "start": 37567.41, + "end": 37570.79, + "probability": 0.9933 + }, + { + "start": 37570.93, + "end": 37574.05, + "probability": 0.9954 + }, + { + "start": 37574.55, + "end": 37575.23, + "probability": 0.9714 + }, + { + "start": 37575.85, + "end": 37576.66, + "probability": 0.8107 + }, + { + "start": 37577.13, + "end": 37580.09, + "probability": 0.8043 + }, + { + "start": 37580.27, + "end": 37582.01, + "probability": 0.8119 + }, + { + "start": 37582.71, + "end": 37585.95, + "probability": 0.6141 + }, + { + "start": 37586.57, + "end": 37588.25, + "probability": 0.6565 + }, + { + "start": 37593.77, + "end": 37595.77, + "probability": 0.6446 + }, + { + "start": 37607.61, + "end": 37607.61, + "probability": 0.2696 + }, + { + "start": 37607.61, + "end": 37607.71, + "probability": 0.0958 + }, + { + "start": 37607.99, + "end": 37609.75, + "probability": 0.4754 + }, + { + "start": 37609.75, + "end": 37609.93, + "probability": 0.1178 + }, + { + "start": 37610.17, + "end": 37610.41, + "probability": 0.7801 + }, + { + "start": 37610.77, + "end": 37611.03, + "probability": 0.3705 + }, + { + "start": 37611.17, + "end": 37611.93, + "probability": 0.5841 + }, + { + "start": 37612.09, + "end": 37615.95, + "probability": 0.7603 + }, + { + "start": 37618.79, + "end": 37620.53, + "probability": 0.5279 + }, + { + "start": 37621.91, + "end": 37627.35, + "probability": 0.8299 + }, + { + "start": 37627.75, + "end": 37634.93, + "probability": 0.9527 + }, + { + "start": 37635.51, + "end": 37637.09, + "probability": 0.6993 + }, + { + "start": 37637.41, + "end": 37637.67, + "probability": 0.073 + }, + { + "start": 37637.67, + "end": 37637.67, + "probability": 0.2893 + }, + { + "start": 37637.67, + "end": 37637.67, + "probability": 0.3866 + }, + { + "start": 37637.67, + "end": 37639.31, + "probability": 0.8358 + }, + { + "start": 37640.23, + "end": 37640.95, + "probability": 0.8324 + }, + { + "start": 37661.13, + "end": 37661.83, + "probability": 0.5433 + }, + { + "start": 37661.95, + "end": 37665.27, + "probability": 0.7338 + }, + { + "start": 37667.63, + "end": 37673.05, + "probability": 0.9923 + }, + { + "start": 37673.05, + "end": 37678.65, + "probability": 0.991 + }, + { + "start": 37678.69, + "end": 37679.41, + "probability": 0.8259 + }, + { + "start": 37680.99, + "end": 37684.17, + "probability": 0.9447 + }, + { + "start": 37684.81, + "end": 37686.55, + "probability": 0.9735 + }, + { + "start": 37687.19, + "end": 37688.29, + "probability": 0.7211 + }, + { + "start": 37688.91, + "end": 37691.05, + "probability": 0.9149 + }, + { + "start": 37691.75, + "end": 37692.37, + "probability": 0.9299 + }, + { + "start": 37692.95, + "end": 37693.75, + "probability": 0.7564 + }, + { + "start": 37694.27, + "end": 37697.63, + "probability": 0.9742 + }, + { + "start": 37698.21, + "end": 37699.03, + "probability": 0.9797 + }, + { + "start": 37699.11, + "end": 37699.89, + "probability": 0.9917 + }, + { + "start": 37699.93, + "end": 37701.15, + "probability": 0.9836 + }, + { + "start": 37701.61, + "end": 37704.55, + "probability": 0.9968 + }, + { + "start": 37705.05, + "end": 37707.99, + "probability": 0.9719 + }, + { + "start": 37708.75, + "end": 37713.15, + "probability": 0.9928 + }, + { + "start": 37714.57, + "end": 37716.03, + "probability": 0.8496 + }, + { + "start": 37716.95, + "end": 37717.65, + "probability": 0.76 + }, + { + "start": 37718.57, + "end": 37721.43, + "probability": 0.9611 + }, + { + "start": 37722.33, + "end": 37723.75, + "probability": 0.603 + }, + { + "start": 37723.79, + "end": 37724.53, + "probability": 0.7497 + }, + { + "start": 37724.99, + "end": 37725.57, + "probability": 0.5877 + }, + { + "start": 37725.69, + "end": 37726.27, + "probability": 0.8837 + }, + { + "start": 37726.37, + "end": 37726.87, + "probability": 0.5006 + }, + { + "start": 37726.93, + "end": 37728.97, + "probability": 0.9629 + }, + { + "start": 37729.45, + "end": 37731.91, + "probability": 0.9055 + }, + { + "start": 37732.13, + "end": 37733.19, + "probability": 0.7967 + }, + { + "start": 37733.33, + "end": 37733.59, + "probability": 0.5886 + }, + { + "start": 37733.67, + "end": 37736.37, + "probability": 0.922 + }, + { + "start": 37736.45, + "end": 37736.91, + "probability": 0.5569 + }, + { + "start": 37737.47, + "end": 37740.5, + "probability": 0.8516 + }, + { + "start": 37741.53, + "end": 37745.43, + "probability": 0.8292 + }, + { + "start": 37746.39, + "end": 37750.39, + "probability": 0.8005 + }, + { + "start": 37751.17, + "end": 37753.73, + "probability": 0.9274 + }, + { + "start": 37755.25, + "end": 37764.05, + "probability": 0.9215 + }, + { + "start": 37764.81, + "end": 37768.85, + "probability": 0.995 + }, + { + "start": 37768.85, + "end": 37772.01, + "probability": 0.9897 + }, + { + "start": 37772.81, + "end": 37775.35, + "probability": 0.9977 + }, + { + "start": 37775.63, + "end": 37777.09, + "probability": 0.8784 + }, + { + "start": 37778.87, + "end": 37779.03, + "probability": 0.5521 + }, + { + "start": 37779.03, + "end": 37782.39, + "probability": 0.9577 + }, + { + "start": 37782.45, + "end": 37783.61, + "probability": 0.8706 + }, + { + "start": 37785.13, + "end": 37786.09, + "probability": 0.9295 + }, + { + "start": 37786.99, + "end": 37791.91, + "probability": 0.9959 + }, + { + "start": 37793.49, + "end": 37793.69, + "probability": 0.7009 + }, + { + "start": 37794.27, + "end": 37795.75, + "probability": 0.8965 + }, + { + "start": 37796.59, + "end": 37797.81, + "probability": 0.8158 + }, + { + "start": 37798.53, + "end": 37802.75, + "probability": 0.7314 + }, + { + "start": 37803.43, + "end": 37807.07, + "probability": 0.9897 + }, + { + "start": 37807.73, + "end": 37808.31, + "probability": 0.4875 + }, + { + "start": 37808.93, + "end": 37810.99, + "probability": 0.9889 + }, + { + "start": 37811.55, + "end": 37814.41, + "probability": 0.95 + }, + { + "start": 37814.91, + "end": 37818.65, + "probability": 0.976 + }, + { + "start": 37818.75, + "end": 37819.53, + "probability": 0.8461 + }, + { + "start": 37819.65, + "end": 37821.25, + "probability": 0.7332 + }, + { + "start": 37821.37, + "end": 37824.29, + "probability": 0.8694 + }, + { + "start": 37824.29, + "end": 37826.13, + "probability": 0.9651 + }, + { + "start": 37826.93, + "end": 37827.47, + "probability": 0.5716 + }, + { + "start": 37828.53, + "end": 37829.35, + "probability": 0.7249 + }, + { + "start": 37830.21, + "end": 37831.85, + "probability": 0.7642 + }, + { + "start": 37832.01, + "end": 37835.31, + "probability": 0.8398 + }, + { + "start": 37836.03, + "end": 37838.71, + "probability": 0.9967 + }, + { + "start": 37838.89, + "end": 37842.43, + "probability": 0.9941 + }, + { + "start": 37842.59, + "end": 37844.17, + "probability": 0.9922 + }, + { + "start": 37844.85, + "end": 37848.03, + "probability": 0.7724 + }, + { + "start": 37848.63, + "end": 37850.29, + "probability": 0.8021 + }, + { + "start": 37850.97, + "end": 37853.99, + "probability": 0.9956 + }, + { + "start": 37854.67, + "end": 37858.47, + "probability": 0.9983 + }, + { + "start": 37858.61, + "end": 37859.51, + "probability": 0.9493 + }, + { + "start": 37859.75, + "end": 37861.65, + "probability": 0.9709 + }, + { + "start": 37862.33, + "end": 37864.23, + "probability": 0.9951 + }, + { + "start": 37864.75, + "end": 37865.89, + "probability": 0.4068 + }, + { + "start": 37866.05, + "end": 37866.89, + "probability": 0.8142 + }, + { + "start": 37867.25, + "end": 37870.29, + "probability": 0.8926 + }, + { + "start": 37870.29, + "end": 37873.77, + "probability": 0.9475 + }, + { + "start": 37874.51, + "end": 37879.47, + "probability": 0.9509 + }, + { + "start": 37880.11, + "end": 37883.19, + "probability": 0.9731 + }, + { + "start": 37883.25, + "end": 37884.14, + "probability": 0.8398 + }, + { + "start": 37884.37, + "end": 37885.79, + "probability": 0.9283 + }, + { + "start": 37886.33, + "end": 37889.29, + "probability": 0.7513 + }, + { + "start": 37889.71, + "end": 37892.18, + "probability": 0.8932 + }, + { + "start": 37895.45, + "end": 37914.11, + "probability": 0.646 + }, + { + "start": 37914.73, + "end": 37916.93, + "probability": 0.6569 + }, + { + "start": 37917.65, + "end": 37923.15, + "probability": 0.7594 + }, + { + "start": 37923.73, + "end": 37926.35, + "probability": 0.8246 + }, + { + "start": 37927.23, + "end": 37927.51, + "probability": 0.9675 + }, + { + "start": 37928.21, + "end": 37929.21, + "probability": 0.7718 + }, + { + "start": 37930.03, + "end": 37930.89, + "probability": 0.3214 + }, + { + "start": 37932.35, + "end": 37933.99, + "probability": 0.8436 + }, + { + "start": 37934.91, + "end": 37935.85, + "probability": 0.9447 + }, + { + "start": 37936.61, + "end": 37938.17, + "probability": 0.9741 + }, + { + "start": 37938.71, + "end": 37940.07, + "probability": 0.8126 + }, + { + "start": 37940.81, + "end": 37944.47, + "probability": 0.9945 + }, + { + "start": 37945.53, + "end": 37948.41, + "probability": 0.9977 + }, + { + "start": 37949.01, + "end": 37950.91, + "probability": 0.9973 + }, + { + "start": 37951.27, + "end": 37954.63, + "probability": 0.9201 + }, + { + "start": 37955.43, + "end": 37955.93, + "probability": 0.5525 + }, + { + "start": 37956.01, + "end": 37960.21, + "probability": 0.9961 + }, + { + "start": 37960.85, + "end": 37963.05, + "probability": 0.9102 + }, + { + "start": 37963.83, + "end": 37966.15, + "probability": 0.8469 + }, + { + "start": 37966.53, + "end": 37968.47, + "probability": 0.8351 + }, + { + "start": 37968.93, + "end": 37969.73, + "probability": 0.9643 + }, + { + "start": 37971.05, + "end": 37974.97, + "probability": 0.9782 + }, + { + "start": 37978.99, + "end": 37980.01, + "probability": 0.8778 + }, + { + "start": 37980.17, + "end": 37983.73, + "probability": 0.9602 + }, + { + "start": 37984.81, + "end": 37986.42, + "probability": 0.8789 + }, + { + "start": 37987.11, + "end": 37990.29, + "probability": 0.9935 + }, + { + "start": 37990.91, + "end": 37993.07, + "probability": 0.8288 + }, + { + "start": 37993.61, + "end": 37994.84, + "probability": 0.7904 + }, + { + "start": 37995.27, + "end": 37997.55, + "probability": 0.9324 + }, + { + "start": 37998.51, + "end": 38000.53, + "probability": 0.9934 + }, + { + "start": 38000.97, + "end": 38002.65, + "probability": 0.9985 + }, + { + "start": 38002.65, + "end": 38005.93, + "probability": 0.9961 + }, + { + "start": 38006.73, + "end": 38009.19, + "probability": 0.9829 + }, + { + "start": 38009.81, + "end": 38010.49, + "probability": 0.8358 + }, + { + "start": 38010.61, + "end": 38014.15, + "probability": 0.8693 + }, + { + "start": 38014.87, + "end": 38017.67, + "probability": 0.9005 + }, + { + "start": 38017.71, + "end": 38018.87, + "probability": 0.9684 + }, + { + "start": 38020.01, + "end": 38021.71, + "probability": 0.9675 + }, + { + "start": 38022.47, + "end": 38025.67, + "probability": 0.9936 + }, + { + "start": 38026.25, + "end": 38030.39, + "probability": 0.9737 + }, + { + "start": 38030.83, + "end": 38031.87, + "probability": 0.975 + }, + { + "start": 38032.21, + "end": 38036.11, + "probability": 0.9981 + }, + { + "start": 38036.67, + "end": 38038.11, + "probability": 0.9803 + }, + { + "start": 38038.19, + "end": 38039.43, + "probability": 0.9421 + }, + { + "start": 38039.47, + "end": 38040.21, + "probability": 0.8135 + }, + { + "start": 38040.69, + "end": 38043.15, + "probability": 0.9958 + }, + { + "start": 38043.81, + "end": 38046.49, + "probability": 0.844 + }, + { + "start": 38047.03, + "end": 38049.27, + "probability": 0.9434 + }, + { + "start": 38049.75, + "end": 38051.09, + "probability": 0.9884 + }, + { + "start": 38051.47, + "end": 38052.82, + "probability": 0.9864 + }, + { + "start": 38054.23, + "end": 38056.85, + "probability": 0.9606 + }, + { + "start": 38057.69, + "end": 38063.01, + "probability": 0.8908 + }, + { + "start": 38063.63, + "end": 38065.03, + "probability": 0.9599 + }, + { + "start": 38065.89, + "end": 38067.29, + "probability": 0.6172 + }, + { + "start": 38067.77, + "end": 38069.67, + "probability": 0.9817 + }, + { + "start": 38069.77, + "end": 38070.79, + "probability": 0.8631 + }, + { + "start": 38071.49, + "end": 38071.87, + "probability": 0.9925 + }, + { + "start": 38072.55, + "end": 38073.29, + "probability": 0.8276 + }, + { + "start": 38074.09, + "end": 38076.75, + "probability": 0.9408 + }, + { + "start": 38077.25, + "end": 38080.37, + "probability": 0.9808 + }, + { + "start": 38080.91, + "end": 38085.39, + "probability": 0.9536 + }, + { + "start": 38086.67, + "end": 38090.45, + "probability": 0.8894 + }, + { + "start": 38090.57, + "end": 38091.53, + "probability": 0.6736 + }, + { + "start": 38092.27, + "end": 38092.91, + "probability": 0.732 + }, + { + "start": 38093.61, + "end": 38095.03, + "probability": 0.9937 + }, + { + "start": 38095.71, + "end": 38100.85, + "probability": 0.9773 + }, + { + "start": 38100.93, + "end": 38101.87, + "probability": 0.9467 + }, + { + "start": 38102.27, + "end": 38105.11, + "probability": 0.9839 + }, + { + "start": 38105.19, + "end": 38105.75, + "probability": 0.7273 + }, + { + "start": 38105.87, + "end": 38106.57, + "probability": 0.7084 + }, + { + "start": 38107.29, + "end": 38108.27, + "probability": 0.6484 + }, + { + "start": 38108.79, + "end": 38109.94, + "probability": 0.7571 + }, + { + "start": 38110.11, + "end": 38112.83, + "probability": 0.4141 + }, + { + "start": 38112.97, + "end": 38113.49, + "probability": 0.8483 + }, + { + "start": 38114.85, + "end": 38115.84, + "probability": 0.9665 + }, + { + "start": 38116.47, + "end": 38118.95, + "probability": 0.9608 + }, + { + "start": 38119.31, + "end": 38121.59, + "probability": 0.9995 + }, + { + "start": 38121.59, + "end": 38124.71, + "probability": 0.9513 + }, + { + "start": 38125.27, + "end": 38126.97, + "probability": 0.9927 + }, + { + "start": 38127.55, + "end": 38129.41, + "probability": 0.9937 + }, + { + "start": 38129.99, + "end": 38133.51, + "probability": 0.9888 + }, + { + "start": 38133.51, + "end": 38137.49, + "probability": 0.9974 + }, + { + "start": 38137.53, + "end": 38138.05, + "probability": 0.7084 + }, + { + "start": 38138.09, + "end": 38140.07, + "probability": 0.9788 + }, + { + "start": 38142.01, + "end": 38142.51, + "probability": 0.1324 + }, + { + "start": 38142.51, + "end": 38142.65, + "probability": 0.4856 + }, + { + "start": 38142.77, + "end": 38142.77, + "probability": 0.5177 + }, + { + "start": 38142.77, + "end": 38145.59, + "probability": 0.9828 + }, + { + "start": 38145.65, + "end": 38145.93, + "probability": 0.7318 + }, + { + "start": 38146.57, + "end": 38149.05, + "probability": 0.9302 + }, + { + "start": 38149.65, + "end": 38150.91, + "probability": 0.7224 + }, + { + "start": 38152.61, + "end": 38153.17, + "probability": 0.7502 + }, + { + "start": 38153.31, + "end": 38155.99, + "probability": 0.9741 + }, + { + "start": 38159.05, + "end": 38159.19, + "probability": 0.0098 + }, + { + "start": 38176.41, + "end": 38177.43, + "probability": 0.3957 + }, + { + "start": 38178.37, + "end": 38181.97, + "probability": 0.9243 + }, + { + "start": 38182.81, + "end": 38183.27, + "probability": 0.5529 + }, + { + "start": 38185.03, + "end": 38186.05, + "probability": 0.5986 + }, + { + "start": 38186.17, + "end": 38186.97, + "probability": 0.905 + }, + { + "start": 38186.97, + "end": 38187.85, + "probability": 0.9894 + }, + { + "start": 38187.97, + "end": 38188.89, + "probability": 0.8399 + }, + { + "start": 38189.83, + "end": 38191.73, + "probability": 0.6742 + }, + { + "start": 38192.83, + "end": 38193.57, + "probability": 0.7577 + }, + { + "start": 38194.45, + "end": 38197.49, + "probability": 0.9951 + }, + { + "start": 38198.51, + "end": 38200.47, + "probability": 0.9849 + }, + { + "start": 38201.39, + "end": 38202.25, + "probability": 0.6144 + }, + { + "start": 38203.13, + "end": 38204.26, + "probability": 0.9176 + }, + { + "start": 38204.83, + "end": 38205.67, + "probability": 0.7575 + }, + { + "start": 38206.19, + "end": 38206.71, + "probability": 0.8383 + }, + { + "start": 38208.23, + "end": 38210.89, + "probability": 0.954 + }, + { + "start": 38212.05, + "end": 38212.43, + "probability": 0.9709 + }, + { + "start": 38213.27, + "end": 38214.23, + "probability": 0.9943 + }, + { + "start": 38214.83, + "end": 38216.83, + "probability": 0.9952 + }, + { + "start": 38217.59, + "end": 38220.41, + "probability": 0.9505 + }, + { + "start": 38222.05, + "end": 38224.99, + "probability": 0.9501 + }, + { + "start": 38226.03, + "end": 38227.41, + "probability": 0.9875 + }, + { + "start": 38227.87, + "end": 38230.01, + "probability": 0.9986 + }, + { + "start": 38230.53, + "end": 38232.83, + "probability": 0.9973 + }, + { + "start": 38233.99, + "end": 38237.09, + "probability": 0.9967 + }, + { + "start": 38238.51, + "end": 38238.89, + "probability": 0.8022 + }, + { + "start": 38239.51, + "end": 38243.33, + "probability": 0.9731 + }, + { + "start": 38244.09, + "end": 38245.89, + "probability": 0.9964 + }, + { + "start": 38247.03, + "end": 38247.63, + "probability": 0.9815 + }, + { + "start": 38249.51, + "end": 38253.13, + "probability": 0.9705 + }, + { + "start": 38253.25, + "end": 38254.13, + "probability": 0.9753 + }, + { + "start": 38256.35, + "end": 38258.29, + "probability": 0.9818 + }, + { + "start": 38259.67, + "end": 38262.53, + "probability": 0.7809 + }, + { + "start": 38263.09, + "end": 38264.43, + "probability": 0.9967 + }, + { + "start": 38265.25, + "end": 38266.43, + "probability": 0.8257 + }, + { + "start": 38266.49, + "end": 38267.43, + "probability": 0.9785 + }, + { + "start": 38269.05, + "end": 38270.81, + "probability": 0.9985 + }, + { + "start": 38271.67, + "end": 38273.33, + "probability": 0.9464 + }, + { + "start": 38274.13, + "end": 38276.25, + "probability": 0.9976 + }, + { + "start": 38276.61, + "end": 38277.47, + "probability": 0.9578 + }, + { + "start": 38278.19, + "end": 38279.73, + "probability": 0.7002 + }, + { + "start": 38283.15, + "end": 38284.4, + "probability": 0.9854 + }, + { + "start": 38284.55, + "end": 38285.03, + "probability": 0.9676 + }, + { + "start": 38285.09, + "end": 38287.23, + "probability": 0.2002 + }, + { + "start": 38287.35, + "end": 38288.03, + "probability": 0.7911 + }, + { + "start": 38288.43, + "end": 38289.97, + "probability": 0.9011 + }, + { + "start": 38290.59, + "end": 38290.85, + "probability": 0.6211 + }, + { + "start": 38290.93, + "end": 38293.89, + "probability": 0.9944 + }, + { + "start": 38294.61, + "end": 38295.61, + "probability": 0.9956 + }, + { + "start": 38296.47, + "end": 38300.97, + "probability": 0.9626 + }, + { + "start": 38302.45, + "end": 38303.97, + "probability": 0.8462 + }, + { + "start": 38304.49, + "end": 38307.27, + "probability": 0.9863 + }, + { + "start": 38307.67, + "end": 38310.01, + "probability": 0.9972 + }, + { + "start": 38311.87, + "end": 38314.31, + "probability": 0.998 + }, + { + "start": 38315.99, + "end": 38317.87, + "probability": 0.9266 + }, + { + "start": 38317.91, + "end": 38320.99, + "probability": 0.9484 + }, + { + "start": 38321.47, + "end": 38323.21, + "probability": 0.8929 + }, + { + "start": 38323.81, + "end": 38325.59, + "probability": 0.9966 + }, + { + "start": 38326.59, + "end": 38328.61, + "probability": 0.7047 + }, + { + "start": 38329.67, + "end": 38332.03, + "probability": 0.8305 + }, + { + "start": 38332.29, + "end": 38332.53, + "probability": 0.6619 + }, + { + "start": 38332.97, + "end": 38335.13, + "probability": 0.8252 + }, + { + "start": 38335.75, + "end": 38338.43, + "probability": 0.9459 + }, + { + "start": 38349.03, + "end": 38349.69, + "probability": 0.0235 + }, + { + "start": 38359.83, + "end": 38360.73, + "probability": 0.7155 + }, + { + "start": 38362.17, + "end": 38362.47, + "probability": 0.9688 + }, + { + "start": 38364.05, + "end": 38365.11, + "probability": 0.402 + }, + { + "start": 38366.27, + "end": 38366.97, + "probability": 0.6497 + }, + { + "start": 38368.29, + "end": 38370.39, + "probability": 0.8812 + }, + { + "start": 38371.53, + "end": 38373.45, + "probability": 0.825 + }, + { + "start": 38374.13, + "end": 38379.05, + "probability": 0.9854 + }, + { + "start": 38379.15, + "end": 38379.77, + "probability": 0.5851 + }, + { + "start": 38379.79, + "end": 38384.45, + "probability": 0.9702 + }, + { + "start": 38386.35, + "end": 38386.57, + "probability": 0.3843 + }, + { + "start": 38386.69, + "end": 38389.11, + "probability": 0.9764 + }, + { + "start": 38389.55, + "end": 38394.02, + "probability": 0.9694 + }, + { + "start": 38394.21, + "end": 38394.85, + "probability": 0.887 + }, + { + "start": 38395.91, + "end": 38397.37, + "probability": 0.5093 + }, + { + "start": 38398.03, + "end": 38400.17, + "probability": 0.7957 + }, + { + "start": 38400.37, + "end": 38403.63, + "probability": 0.9964 + }, + { + "start": 38405.29, + "end": 38410.81, + "probability": 0.9275 + }, + { + "start": 38410.81, + "end": 38415.61, + "probability": 0.9933 + }, + { + "start": 38416.19, + "end": 38417.53, + "probability": 0.9225 + }, + { + "start": 38418.03, + "end": 38420.57, + "probability": 0.9824 + }, + { + "start": 38421.37, + "end": 38422.41, + "probability": 0.9256 + }, + { + "start": 38424.25, + "end": 38426.45, + "probability": 0.9897 + }, + { + "start": 38426.45, + "end": 38429.39, + "probability": 0.9941 + }, + { + "start": 38430.09, + "end": 38431.09, + "probability": 0.9562 + }, + { + "start": 38432.37, + "end": 38435.21, + "probability": 0.8614 + }, + { + "start": 38435.51, + "end": 38436.69, + "probability": 0.8244 + }, + { + "start": 38437.93, + "end": 38440.11, + "probability": 0.8058 + }, + { + "start": 38440.29, + "end": 38441.85, + "probability": 0.9294 + }, + { + "start": 38441.97, + "end": 38443.51, + "probability": 0.9052 + }, + { + "start": 38443.63, + "end": 38446.33, + "probability": 0.9387 + }, + { + "start": 38447.05, + "end": 38449.89, + "probability": 0.9961 + }, + { + "start": 38449.89, + "end": 38454.33, + "probability": 0.9346 + }, + { + "start": 38455.77, + "end": 38457.85, + "probability": 0.7798 + }, + { + "start": 38458.47, + "end": 38459.35, + "probability": 0.9009 + }, + { + "start": 38460.73, + "end": 38462.23, + "probability": 0.7937 + }, + { + "start": 38462.37, + "end": 38464.55, + "probability": 0.9833 + }, + { + "start": 38465.21, + "end": 38467.59, + "probability": 0.9946 + }, + { + "start": 38467.61, + "end": 38468.09, + "probability": 0.7012 + }, + { + "start": 38468.25, + "end": 38470.67, + "probability": 0.9067 + }, + { + "start": 38470.81, + "end": 38471.39, + "probability": 0.9603 + }, + { + "start": 38471.93, + "end": 38473.07, + "probability": 0.9885 + }, + { + "start": 38474.09, + "end": 38476.51, + "probability": 0.945 + }, + { + "start": 38476.73, + "end": 38478.21, + "probability": 0.9081 + }, + { + "start": 38478.95, + "end": 38480.13, + "probability": 0.6677 + }, + { + "start": 38480.99, + "end": 38481.23, + "probability": 0.6683 + }, + { + "start": 38481.85, + "end": 38484.35, + "probability": 0.9885 + }, + { + "start": 38485.35, + "end": 38486.65, + "probability": 0.6524 + }, + { + "start": 38486.77, + "end": 38488.49, + "probability": 0.9067 + }, + { + "start": 38488.65, + "end": 38491.57, + "probability": 0.9603 + }, + { + "start": 38492.79, + "end": 38495.69, + "probability": 0.9708 + }, + { + "start": 38495.77, + "end": 38497.27, + "probability": 0.9932 + }, + { + "start": 38497.87, + "end": 38500.27, + "probability": 0.9282 + }, + { + "start": 38500.45, + "end": 38505.95, + "probability": 0.9874 + }, + { + "start": 38506.53, + "end": 38509.25, + "probability": 0.9699 + }, + { + "start": 38510.39, + "end": 38512.77, + "probability": 0.9824 + }, + { + "start": 38512.77, + "end": 38516.21, + "probability": 0.9844 + }, + { + "start": 38517.07, + "end": 38521.89, + "probability": 0.98 + }, + { + "start": 38522.61, + "end": 38528.23, + "probability": 0.9909 + }, + { + "start": 38530.01, + "end": 38531.77, + "probability": 0.9161 + }, + { + "start": 38532.31, + "end": 38532.63, + "probability": 0.7522 + }, + { + "start": 38533.51, + "end": 38536.99, + "probability": 0.9767 + }, + { + "start": 38536.99, + "end": 38542.79, + "probability": 0.9953 + }, + { + "start": 38543.33, + "end": 38546.65, + "probability": 0.9981 + }, + { + "start": 38547.33, + "end": 38547.63, + "probability": 0.5135 + }, + { + "start": 38547.71, + "end": 38551.31, + "probability": 0.7904 + }, + { + "start": 38551.31, + "end": 38555.97, + "probability": 0.9911 + }, + { + "start": 38556.99, + "end": 38557.19, + "probability": 0.2607 + }, + { + "start": 38557.27, + "end": 38561.15, + "probability": 0.9494 + }, + { + "start": 38561.83, + "end": 38563.23, + "probability": 0.7407 + }, + { + "start": 38563.87, + "end": 38565.15, + "probability": 0.6911 + }, + { + "start": 38565.67, + "end": 38569.51, + "probability": 0.9881 + }, + { + "start": 38570.23, + "end": 38572.05, + "probability": 0.9902 + }, + { + "start": 38573.15, + "end": 38575.75, + "probability": 0.5548 + }, + { + "start": 38576.53, + "end": 38577.89, + "probability": 0.1709 + }, + { + "start": 38577.89, + "end": 38578.57, + "probability": 0.3024 + }, + { + "start": 38578.65, + "end": 38579.04, + "probability": 0.1506 + }, + { + "start": 38581.93, + "end": 38583.37, + "probability": 0.6073 + }, + { + "start": 38583.47, + "end": 38586.25, + "probability": 0.9884 + }, + { + "start": 38586.43, + "end": 38587.53, + "probability": 0.89 + }, + { + "start": 38588.09, + "end": 38588.73, + "probability": 0.7814 + }, + { + "start": 38588.81, + "end": 38590.31, + "probability": 0.9946 + }, + { + "start": 38590.61, + "end": 38591.83, + "probability": 0.9648 + }, + { + "start": 38592.03, + "end": 38592.05, + "probability": 0.8789 + }, + { + "start": 38592.61, + "end": 38594.71, + "probability": 0.9634 + }, + { + "start": 38595.27, + "end": 38595.98, + "probability": 0.9423 + }, + { + "start": 38597.59, + "end": 38597.89, + "probability": 0.4276 + }, + { + "start": 38598.51, + "end": 38600.41, + "probability": 0.5494 + }, + { + "start": 38600.53, + "end": 38602.65, + "probability": 0.6055 + }, + { + "start": 38602.77, + "end": 38603.96, + "probability": 0.9938 + }, + { + "start": 38604.29, + "end": 38605.65, + "probability": 0.4309 + }, + { + "start": 38605.65, + "end": 38606.41, + "probability": 0.4772 + }, + { + "start": 38609.41, + "end": 38609.41, + "probability": 0.0465 + }, + { + "start": 38609.41, + "end": 38610.97, + "probability": 0.5398 + }, + { + "start": 38611.17, + "end": 38612.03, + "probability": 0.6031 + }, + { + "start": 38612.99, + "end": 38613.52, + "probability": 0.7261 + }, + { + "start": 38614.01, + "end": 38615.63, + "probability": 0.8135 + }, + { + "start": 38616.15, + "end": 38617.31, + "probability": 0.7843 + }, + { + "start": 38618.01, + "end": 38618.39, + "probability": 0.4054 + }, + { + "start": 38618.45, + "end": 38619.13, + "probability": 0.6921 + }, + { + "start": 38619.23, + "end": 38623.99, + "probability": 0.9886 + }, + { + "start": 38624.11, + "end": 38625.53, + "probability": 0.9948 + }, + { + "start": 38626.09, + "end": 38628.25, + "probability": 0.3749 + }, + { + "start": 38628.63, + "end": 38630.63, + "probability": 0.9651 + }, + { + "start": 38630.69, + "end": 38634.67, + "probability": 0.9907 + }, + { + "start": 38635.17, + "end": 38637.75, + "probability": 0.4241 + }, + { + "start": 38637.75, + "end": 38638.21, + "probability": 0.1963 + }, + { + "start": 38638.21, + "end": 38638.81, + "probability": 0.2647 + }, + { + "start": 38638.97, + "end": 38640.83, + "probability": 0.7078 + }, + { + "start": 38640.91, + "end": 38642.63, + "probability": 0.6613 + }, + { + "start": 38643.23, + "end": 38646.63, + "probability": 0.9172 + }, + { + "start": 38646.83, + "end": 38649.55, + "probability": 0.9373 + }, + { + "start": 38650.75, + "end": 38653.93, + "probability": 0.9884 + }, + { + "start": 38654.17, + "end": 38654.79, + "probability": 0.4311 + }, + { + "start": 38655.58, + "end": 38656.27, + "probability": 0.8728 + }, + { + "start": 38656.73, + "end": 38660.89, + "probability": 0.9471 + }, + { + "start": 38661.31, + "end": 38663.05, + "probability": 0.9156 + }, + { + "start": 38664.17, + "end": 38665.57, + "probability": 0.9329 + }, + { + "start": 38666.63, + "end": 38669.99, + "probability": 0.9565 + }, + { + "start": 38669.99, + "end": 38675.25, + "probability": 0.9943 + }, + { + "start": 38676.07, + "end": 38678.51, + "probability": 0.889 + }, + { + "start": 38679.35, + "end": 38682.59, + "probability": 0.7629 + }, + { + "start": 38682.97, + "end": 38683.37, + "probability": 0.7239 + }, + { + "start": 38684.25, + "end": 38685.69, + "probability": 0.998 + }, + { + "start": 38686.29, + "end": 38687.89, + "probability": 0.1838 + }, + { + "start": 38688.05, + "end": 38688.39, + "probability": 0.2002 + }, + { + "start": 38688.71, + "end": 38689.31, + "probability": 0.4999 + }, + { + "start": 38689.31, + "end": 38690.03, + "probability": 0.6632 + }, + { + "start": 38690.11, + "end": 38691.13, + "probability": 0.6936 + }, + { + "start": 38691.27, + "end": 38693.95, + "probability": 0.8746 + }, + { + "start": 38694.61, + "end": 38696.15, + "probability": 0.9306 + }, + { + "start": 38697.68, + "end": 38702.85, + "probability": 0.9543 + }, + { + "start": 38703.29, + "end": 38703.91, + "probability": 0.7023 + }, + { + "start": 38704.05, + "end": 38706.45, + "probability": 0.78 + }, + { + "start": 38706.45, + "end": 38708.93, + "probability": 0.9934 + }, + { + "start": 38709.45, + "end": 38710.71, + "probability": 0.5963 + }, + { + "start": 38711.43, + "end": 38714.33, + "probability": 0.941 + }, + { + "start": 38714.85, + "end": 38717.47, + "probability": 0.9338 + }, + { + "start": 38718.33, + "end": 38720.77, + "probability": 0.9429 + }, + { + "start": 38721.37, + "end": 38724.23, + "probability": 0.827 + }, + { + "start": 38724.23, + "end": 38726.79, + "probability": 0.975 + }, + { + "start": 38727.61, + "end": 38728.13, + "probability": 0.8191 + }, + { + "start": 38728.99, + "end": 38730.87, + "probability": 0.973 + }, + { + "start": 38731.31, + "end": 38734.57, + "probability": 0.984 + }, + { + "start": 38735.49, + "end": 38741.01, + "probability": 0.9977 + }, + { + "start": 38741.53, + "end": 38746.0, + "probability": 0.9856 + }, + { + "start": 38746.65, + "end": 38748.59, + "probability": 0.9976 + }, + { + "start": 38748.77, + "end": 38751.89, + "probability": 0.8726 + }, + { + "start": 38752.89, + "end": 38756.45, + "probability": 0.9954 + }, + { + "start": 38757.03, + "end": 38760.39, + "probability": 0.9949 + }, + { + "start": 38760.65, + "end": 38761.57, + "probability": 0.8612 + }, + { + "start": 38762.33, + "end": 38763.21, + "probability": 0.4124 + }, + { + "start": 38763.55, + "end": 38767.01, + "probability": 0.995 + }, + { + "start": 38767.57, + "end": 38769.13, + "probability": 0.52 + }, + { + "start": 38769.73, + "end": 38772.79, + "probability": 0.9831 + }, + { + "start": 38772.79, + "end": 38775.29, + "probability": 0.9873 + }, + { + "start": 38775.79, + "end": 38778.85, + "probability": 0.9126 + }, + { + "start": 38779.81, + "end": 38782.71, + "probability": 0.9958 + }, + { + "start": 38782.71, + "end": 38786.27, + "probability": 0.9932 + }, + { + "start": 38786.37, + "end": 38791.97, + "probability": 0.9902 + }, + { + "start": 38792.49, + "end": 38795.97, + "probability": 0.7838 + }, + { + "start": 38796.59, + "end": 38799.13, + "probability": 0.9808 + }, + { + "start": 38799.99, + "end": 38802.15, + "probability": 0.9407 + }, + { + "start": 38802.93, + "end": 38803.71, + "probability": 0.9445 + }, + { + "start": 38803.79, + "end": 38806.03, + "probability": 0.9957 + }, + { + "start": 38806.49, + "end": 38811.31, + "probability": 0.9942 + }, + { + "start": 38811.71, + "end": 38814.37, + "probability": 0.4834 + }, + { + "start": 38814.97, + "end": 38817.13, + "probability": 0.9663 + }, + { + "start": 38817.89, + "end": 38821.75, + "probability": 0.9979 + }, + { + "start": 38822.29, + "end": 38824.89, + "probability": 0.9398 + }, + { + "start": 38825.01, + "end": 38826.55, + "probability": 0.6662 + }, + { + "start": 38827.09, + "end": 38828.55, + "probability": 0.8992 + }, + { + "start": 38829.25, + "end": 38829.65, + "probability": 0.8453 + }, + { + "start": 38829.71, + "end": 38832.53, + "probability": 0.9633 + }, + { + "start": 38832.59, + "end": 38836.59, + "probability": 0.9782 + }, + { + "start": 38837.39, + "end": 38837.63, + "probability": 0.0218 + }, + { + "start": 38839.68, + "end": 38841.03, + "probability": 0.0271 + }, + { + "start": 38841.37, + "end": 38844.49, + "probability": 0.5736 + }, + { + "start": 38845.25, + "end": 38848.75, + "probability": 0.903 + }, + { + "start": 38848.75, + "end": 38849.65, + "probability": 0.6183 + }, + { + "start": 38849.75, + "end": 38849.93, + "probability": 0.6547 + }, + { + "start": 38850.21, + "end": 38851.47, + "probability": 0.7033 + }, + { + "start": 38851.51, + "end": 38852.43, + "probability": 0.5309 + }, + { + "start": 38852.43, + "end": 38854.83, + "probability": 0.8642 + }, + { + "start": 38854.83, + "end": 38856.79, + "probability": 0.6783 + }, + { + "start": 38857.93, + "end": 38859.59, + "probability": 0.076 + }, + { + "start": 38859.75, + "end": 38859.97, + "probability": 0.1775 + }, + { + "start": 38859.97, + "end": 38860.11, + "probability": 0.0994 + }, + { + "start": 38860.11, + "end": 38867.37, + "probability": 0.9618 + }, + { + "start": 38867.39, + "end": 38868.19, + "probability": 0.5408 + }, + { + "start": 38868.23, + "end": 38868.23, + "probability": 0.6403 + }, + { + "start": 38868.31, + "end": 38868.93, + "probability": 0.7125 + }, + { + "start": 38869.11, + "end": 38871.77, + "probability": 0.626 + }, + { + "start": 38871.77, + "end": 38874.23, + "probability": 0.6213 + }, + { + "start": 38874.35, + "end": 38875.75, + "probability": 0.6954 + }, + { + "start": 38875.87, + "end": 38876.45, + "probability": 0.7756 + }, + { + "start": 38876.69, + "end": 38877.79, + "probability": 0.7746 + }, + { + "start": 38878.49, + "end": 38879.91, + "probability": 0.0001 + }, + { + "start": 38880.49, + "end": 38881.39, + "probability": 0.1413 + }, + { + "start": 38881.57, + "end": 38881.75, + "probability": 0.1728 + }, + { + "start": 38881.75, + "end": 38881.75, + "probability": 0.0859 + }, + { + "start": 38881.75, + "end": 38882.29, + "probability": 0.1399 + }, + { + "start": 38882.75, + "end": 38883.05, + "probability": 0.8326 + }, + { + "start": 38883.13, + "end": 38886.81, + "probability": 0.9689 + }, + { + "start": 38886.93, + "end": 38888.17, + "probability": 0.9987 + }, + { + "start": 38888.59, + "end": 38888.93, + "probability": 0.5023 + }, + { + "start": 38888.97, + "end": 38891.59, + "probability": 0.9805 + }, + { + "start": 38892.07, + "end": 38895.29, + "probability": 0.9971 + }, + { + "start": 38895.61, + "end": 38895.99, + "probability": 0.9385 + }, + { + "start": 38896.17, + "end": 38898.57, + "probability": 0.9924 + }, + { + "start": 38899.89, + "end": 38903.31, + "probability": 0.9631 + }, + { + "start": 38903.83, + "end": 38906.41, + "probability": 0.9981 + }, + { + "start": 38906.41, + "end": 38909.57, + "probability": 0.9995 + }, + { + "start": 38910.27, + "end": 38913.53, + "probability": 0.9809 + }, + { + "start": 38913.53, + "end": 38917.39, + "probability": 0.9894 + }, + { + "start": 38917.41, + "end": 38921.93, + "probability": 0.9783 + }, + { + "start": 38922.55, + "end": 38922.83, + "probability": 0.4493 + }, + { + "start": 38922.93, + "end": 38927.17, + "probability": 0.9954 + }, + { + "start": 38927.17, + "end": 38932.09, + "probability": 0.995 + }, + { + "start": 38932.97, + "end": 38937.11, + "probability": 0.9636 + }, + { + "start": 38937.83, + "end": 38941.23, + "probability": 0.9824 + }, + { + "start": 38941.51, + "end": 38945.39, + "probability": 0.9164 + }, + { + "start": 38946.33, + "end": 38946.89, + "probability": 0.6826 + }, + { + "start": 38947.19, + "end": 38950.29, + "probability": 0.9607 + }, + { + "start": 38950.29, + "end": 38954.35, + "probability": 0.9757 + }, + { + "start": 38954.45, + "end": 38958.81, + "probability": 0.9771 + }, + { + "start": 38959.25, + "end": 38959.61, + "probability": 0.6863 + }, + { + "start": 38959.65, + "end": 38964.19, + "probability": 0.9156 + }, + { + "start": 38964.69, + "end": 38967.35, + "probability": 0.9979 + }, + { + "start": 38968.05, + "end": 38968.27, + "probability": 0.559 + }, + { + "start": 38968.33, + "end": 38972.81, + "probability": 0.8935 + }, + { + "start": 38973.41, + "end": 38974.71, + "probability": 0.8408 + }, + { + "start": 38975.01, + "end": 38976.45, + "probability": 0.0974 + }, + { + "start": 38978.43, + "end": 38980.73, + "probability": 0.9647 + }, + { + "start": 38980.83, + "end": 38981.67, + "probability": 0.7268 + }, + { + "start": 38981.77, + "end": 38983.97, + "probability": 0.9187 + }, + { + "start": 38984.01, + "end": 38984.75, + "probability": 0.8271 + }, + { + "start": 38985.19, + "end": 38987.19, + "probability": 0.8867 + }, + { + "start": 38987.19, + "end": 38988.08, + "probability": 0.1771 + }, + { + "start": 38988.99, + "end": 38990.37, + "probability": 0.9943 + }, + { + "start": 38990.85, + "end": 38992.63, + "probability": 0.9659 + }, + { + "start": 38992.95, + "end": 38993.51, + "probability": 0.222 + }, + { + "start": 38993.55, + "end": 38994.79, + "probability": 0.8967 + }, + { + "start": 38995.14, + "end": 38997.01, + "probability": 0.3064 + }, + { + "start": 38998.87, + "end": 39001.53, + "probability": 0.7474 + }, + { + "start": 39002.08, + "end": 39002.65, + "probability": 0.2064 + }, + { + "start": 39002.65, + "end": 39005.15, + "probability": 0.9832 + }, + { + "start": 39005.15, + "end": 39007.29, + "probability": 0.2473 + }, + { + "start": 39008.67, + "end": 39009.79, + "probability": 0.4887 + }, + { + "start": 39010.95, + "end": 39013.39, + "probability": 0.0358 + }, + { + "start": 39013.45, + "end": 39014.61, + "probability": 0.0841 + }, + { + "start": 39014.61, + "end": 39015.55, + "probability": 0.5313 + }, + { + "start": 39016.87, + "end": 39017.81, + "probability": 0.1784 + }, + { + "start": 39018.25, + "end": 39021.35, + "probability": 0.3205 + }, + { + "start": 39022.95, + "end": 39023.21, + "probability": 0.1673 + }, + { + "start": 39023.47, + "end": 39023.47, + "probability": 0.2632 + }, + { + "start": 39023.47, + "end": 39023.47, + "probability": 0.0288 + }, + { + "start": 39023.47, + "end": 39023.97, + "probability": 0.0891 + }, + { + "start": 39024.99, + "end": 39025.81, + "probability": 0.3338 + }, + { + "start": 39026.55, + "end": 39028.86, + "probability": 0.6858 + }, + { + "start": 39030.21, + "end": 39030.45, + "probability": 0.1838 + }, + { + "start": 39030.45, + "end": 39031.83, + "probability": 0.5532 + }, + { + "start": 39031.93, + "end": 39034.61, + "probability": 0.9574 + }, + { + "start": 39035.59, + "end": 39037.81, + "probability": 0.8068 + }, + { + "start": 39037.99, + "end": 39038.33, + "probability": 0.8129 + }, + { + "start": 39038.45, + "end": 39040.85, + "probability": 0.6243 + }, + { + "start": 39041.17, + "end": 39045.39, + "probability": 0.4756 + }, + { + "start": 39045.63, + "end": 39046.39, + "probability": 0.509 + }, + { + "start": 39046.77, + "end": 39048.71, + "probability": 0.7738 + }, + { + "start": 39051.91, + "end": 39053.83, + "probability": 0.5333 + }, + { + "start": 39054.57, + "end": 39057.89, + "probability": 0.652 + }, + { + "start": 39059.91, + "end": 39060.33, + "probability": 0.5527 + }, + { + "start": 39060.41, + "end": 39060.89, + "probability": 0.6354 + }, + { + "start": 39061.05, + "end": 39061.63, + "probability": 0.7721 + }, + { + "start": 39068.47, + "end": 39068.47, + "probability": 0.3568 + }, + { + "start": 39068.47, + "end": 39070.85, + "probability": 0.3827 + }, + { + "start": 39070.85, + "end": 39071.23, + "probability": 0.0763 + }, + { + "start": 39071.23, + "end": 39071.95, + "probability": 0.6918 + }, + { + "start": 39072.03, + "end": 39072.17, + "probability": 0.3974 + }, + { + "start": 39072.47, + "end": 39073.13, + "probability": 0.6553 + }, + { + "start": 39073.39, + "end": 39073.83, + "probability": 0.4995 + }, + { + "start": 39074.98, + "end": 39082.49, + "probability": 0.5499 + }, + { + "start": 39083.37, + "end": 39084.15, + "probability": 0.0033 + } + ], + "segments_count": 13544, + "words_count": 66382, + "avg_words_per_segment": 4.9012, + "avg_segment_duration": 1.9795, + "avg_words_per_minute": 101.7339, + "plenum_id": "105289", + "duration": 39150.38, + "title": null, + "plenum_date": "2022-02-02" +} \ No newline at end of file