diff --git "a/122037/metadata.json" "b/122037/metadata.json" new file mode 100644--- /dev/null +++ "b/122037/metadata.json" @@ -0,0 +1,28592 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "122037", + "quality_score": 0.8478, + "per_segment_quality_scores": [ + { + "start": 61.06, + "end": 62.21, + "probability": 0.5665 + }, + { + "start": 62.66, + "end": 65.64, + "probability": 0.5896 + }, + { + "start": 66.3, + "end": 70.88, + "probability": 0.8901 + }, + { + "start": 71.28, + "end": 72.5, + "probability": 0.7343 + }, + { + "start": 72.64, + "end": 73.8, + "probability": 0.9536 + }, + { + "start": 73.92, + "end": 75.26, + "probability": 0.9846 + }, + { + "start": 75.38, + "end": 76.06, + "probability": 0.8261 + }, + { + "start": 76.28, + "end": 77.26, + "probability": 0.8127 + }, + { + "start": 77.86, + "end": 82.1, + "probability": 0.9176 + }, + { + "start": 82.1, + "end": 84.58, + "probability": 0.5294 + }, + { + "start": 85.96, + "end": 86.5, + "probability": 0.6123 + }, + { + "start": 86.52, + "end": 87.12, + "probability": 0.7484 + }, + { + "start": 87.12, + "end": 92.38, + "probability": 0.8501 + }, + { + "start": 93.1, + "end": 95.12, + "probability": 0.5424 + }, + { + "start": 95.92, + "end": 96.68, + "probability": 0.7547 + }, + { + "start": 96.84, + "end": 101.82, + "probability": 0.9951 + }, + { + "start": 102.8, + "end": 103.28, + "probability": 0.8216 + }, + { + "start": 113.32, + "end": 114.44, + "probability": 0.3965 + }, + { + "start": 114.52, + "end": 115.3, + "probability": 0.5812 + }, + { + "start": 115.54, + "end": 116.94, + "probability": 0.8414 + }, + { + "start": 117.16, + "end": 118.9, + "probability": 0.6945 + }, + { + "start": 118.96, + "end": 119.0, + "probability": 0.003 + }, + { + "start": 124.14, + "end": 124.14, + "probability": 0.0375 + }, + { + "start": 124.14, + "end": 127.36, + "probability": 0.947 + }, + { + "start": 127.5, + "end": 132.24, + "probability": 0.9816 + }, + { + "start": 132.8, + "end": 135.08, + "probability": 0.9647 + }, + { + "start": 135.2, + "end": 135.48, + "probability": 0.553 + }, + { + "start": 135.58, + "end": 140.03, + "probability": 0.9534 + }, + { + "start": 140.9, + "end": 142.1, + "probability": 0.6472 + }, + { + "start": 142.12, + "end": 142.6, + "probability": 0.5751 + }, + { + "start": 142.76, + "end": 143.98, + "probability": 0.8016 + }, + { + "start": 144.0, + "end": 144.8, + "probability": 0.9064 + }, + { + "start": 145.18, + "end": 146.3, + "probability": 0.9966 + }, + { + "start": 148.32, + "end": 149.38, + "probability": 0.8355 + }, + { + "start": 149.98, + "end": 154.44, + "probability": 0.9366 + }, + { + "start": 155.32, + "end": 158.3, + "probability": 0.9353 + }, + { + "start": 159.06, + "end": 161.52, + "probability": 0.972 + }, + { + "start": 163.04, + "end": 164.4, + "probability": 0.4821 + }, + { + "start": 165.14, + "end": 167.38, + "probability": 0.9177 + }, + { + "start": 168.32, + "end": 170.6, + "probability": 0.9709 + }, + { + "start": 171.12, + "end": 171.86, + "probability": 0.8068 + }, + { + "start": 172.42, + "end": 176.66, + "probability": 0.9967 + }, + { + "start": 177.52, + "end": 179.76, + "probability": 0.8866 + }, + { + "start": 180.52, + "end": 180.52, + "probability": 0.1084 + }, + { + "start": 180.52, + "end": 180.52, + "probability": 0.2223 + }, + { + "start": 180.52, + "end": 180.52, + "probability": 0.0452 + }, + { + "start": 180.52, + "end": 180.52, + "probability": 0.0294 + }, + { + "start": 180.52, + "end": 180.52, + "probability": 0.2262 + }, + { + "start": 180.52, + "end": 181.94, + "probability": 0.6228 + }, + { + "start": 183.48, + "end": 188.11, + "probability": 0.7376 + }, + { + "start": 191.38, + "end": 191.48, + "probability": 0.2721 + }, + { + "start": 191.48, + "end": 193.72, + "probability": 0.8669 + }, + { + "start": 194.2, + "end": 195.1, + "probability": 0.9435 + }, + { + "start": 195.26, + "end": 198.48, + "probability": 0.947 + }, + { + "start": 199.02, + "end": 202.9, + "probability": 0.9147 + }, + { + "start": 203.48, + "end": 205.3, + "probability": 0.8981 + }, + { + "start": 206.12, + "end": 209.02, + "probability": 0.9964 + }, + { + "start": 209.2, + "end": 211.92, + "probability": 0.9961 + }, + { + "start": 212.64, + "end": 214.7, + "probability": 0.9989 + }, + { + "start": 214.8, + "end": 215.88, + "probability": 0.9973 + }, + { + "start": 217.64, + "end": 218.4, + "probability": 0.9042 + }, + { + "start": 218.86, + "end": 218.98, + "probability": 0.5844 + }, + { + "start": 219.2, + "end": 223.64, + "probability": 0.9949 + }, + { + "start": 224.34, + "end": 227.9, + "probability": 0.9909 + }, + { + "start": 229.74, + "end": 231.0, + "probability": 0.7526 + }, + { + "start": 231.06, + "end": 231.54, + "probability": 0.9243 + }, + { + "start": 231.66, + "end": 233.24, + "probability": 0.9421 + }, + { + "start": 233.36, + "end": 235.9, + "probability": 0.7734 + }, + { + "start": 236.08, + "end": 237.42, + "probability": 0.8949 + }, + { + "start": 237.44, + "end": 239.91, + "probability": 0.9376 + }, + { + "start": 240.72, + "end": 241.66, + "probability": 0.5114 + }, + { + "start": 242.24, + "end": 244.4, + "probability": 0.9881 + }, + { + "start": 244.48, + "end": 246.8, + "probability": 0.817 + }, + { + "start": 247.3, + "end": 247.32, + "probability": 0.012 + }, + { + "start": 247.32, + "end": 247.32, + "probability": 0.7044 + }, + { + "start": 247.38, + "end": 250.62, + "probability": 0.681 + }, + { + "start": 250.7, + "end": 251.08, + "probability": 0.9587 + }, + { + "start": 251.16, + "end": 251.46, + "probability": 0.6326 + }, + { + "start": 251.46, + "end": 252.08, + "probability": 0.7432 + }, + { + "start": 252.16, + "end": 255.1, + "probability": 0.8108 + }, + { + "start": 255.14, + "end": 256.15, + "probability": 0.9064 + }, + { + "start": 256.46, + "end": 259.4, + "probability": 0.991 + }, + { + "start": 259.84, + "end": 261.38, + "probability": 0.6754 + }, + { + "start": 262.38, + "end": 264.56, + "probability": 0.9961 + }, + { + "start": 265.24, + "end": 272.58, + "probability": 0.9906 + }, + { + "start": 273.44, + "end": 277.3, + "probability": 0.9971 + }, + { + "start": 277.56, + "end": 279.88, + "probability": 0.9922 + }, + { + "start": 280.24, + "end": 285.46, + "probability": 0.8903 + }, + { + "start": 287.08, + "end": 291.96, + "probability": 0.9919 + }, + { + "start": 292.06, + "end": 296.0, + "probability": 0.9811 + }, + { + "start": 296.36, + "end": 297.58, + "probability": 0.9966 + }, + { + "start": 297.62, + "end": 299.22, + "probability": 0.7866 + }, + { + "start": 299.34, + "end": 299.84, + "probability": 0.8563 + }, + { + "start": 300.3, + "end": 300.8, + "probability": 0.7236 + }, + { + "start": 301.22, + "end": 304.74, + "probability": 0.9139 + }, + { + "start": 305.26, + "end": 306.32, + "probability": 0.8774 + }, + { + "start": 307.08, + "end": 311.4, + "probability": 0.8782 + }, + { + "start": 311.58, + "end": 313.24, + "probability": 0.8335 + }, + { + "start": 313.36, + "end": 316.62, + "probability": 0.9932 + }, + { + "start": 316.68, + "end": 318.56, + "probability": 0.9719 + }, + { + "start": 319.3, + "end": 319.93, + "probability": 0.9375 + }, + { + "start": 320.16, + "end": 323.9, + "probability": 0.9914 + }, + { + "start": 324.0, + "end": 324.34, + "probability": 0.3603 + }, + { + "start": 324.46, + "end": 326.18, + "probability": 0.9795 + }, + { + "start": 326.2, + "end": 327.24, + "probability": 0.9636 + }, + { + "start": 327.44, + "end": 328.58, + "probability": 0.9697 + }, + { + "start": 328.74, + "end": 329.44, + "probability": 0.7348 + }, + { + "start": 330.0, + "end": 330.26, + "probability": 0.8951 + }, + { + "start": 330.48, + "end": 331.42, + "probability": 0.9758 + }, + { + "start": 332.2, + "end": 338.08, + "probability": 0.9961 + }, + { + "start": 338.66, + "end": 341.8, + "probability": 0.9919 + }, + { + "start": 342.22, + "end": 345.9, + "probability": 0.9816 + }, + { + "start": 346.52, + "end": 347.76, + "probability": 0.5667 + }, + { + "start": 348.38, + "end": 349.78, + "probability": 0.7119 + }, + { + "start": 349.84, + "end": 352.26, + "probability": 0.9687 + }, + { + "start": 352.34, + "end": 353.15, + "probability": 0.9526 + }, + { + "start": 353.28, + "end": 353.68, + "probability": 0.8208 + }, + { + "start": 353.82, + "end": 353.98, + "probability": 0.3318 + }, + { + "start": 354.4, + "end": 355.74, + "probability": 0.7009 + }, + { + "start": 355.78, + "end": 356.44, + "probability": 0.4918 + }, + { + "start": 356.6, + "end": 357.38, + "probability": 0.947 + }, + { + "start": 357.74, + "end": 359.36, + "probability": 0.9479 + }, + { + "start": 359.42, + "end": 361.04, + "probability": 0.8227 + }, + { + "start": 361.08, + "end": 361.08, + "probability": 0.1242 + }, + { + "start": 361.08, + "end": 362.14, + "probability": 0.7604 + }, + { + "start": 362.28, + "end": 364.04, + "probability": 0.8547 + }, + { + "start": 364.04, + "end": 365.2, + "probability": 0.8573 + }, + { + "start": 365.34, + "end": 366.08, + "probability": 0.7259 + }, + { + "start": 366.22, + "end": 367.36, + "probability": 0.9984 + }, + { + "start": 367.72, + "end": 367.92, + "probability": 0.7267 + }, + { + "start": 368.1, + "end": 368.72, + "probability": 0.3876 + }, + { + "start": 368.94, + "end": 369.94, + "probability": 0.7855 + }, + { + "start": 369.94, + "end": 370.38, + "probability": 0.0015 + }, + { + "start": 371.0, + "end": 374.44, + "probability": 0.9917 + }, + { + "start": 374.44, + "end": 376.32, + "probability": 0.975 + }, + { + "start": 376.78, + "end": 377.88, + "probability": 0.9929 + }, + { + "start": 377.94, + "end": 379.76, + "probability": 0.9807 + }, + { + "start": 380.42, + "end": 383.2, + "probability": 0.9753 + }, + { + "start": 383.38, + "end": 386.0, + "probability": 0.9927 + }, + { + "start": 386.52, + "end": 388.72, + "probability": 0.993 + }, + { + "start": 388.86, + "end": 392.38, + "probability": 0.9978 + }, + { + "start": 392.38, + "end": 395.4, + "probability": 0.9928 + }, + { + "start": 395.52, + "end": 397.06, + "probability": 0.4896 + }, + { + "start": 397.08, + "end": 398.92, + "probability": 0.9692 + }, + { + "start": 400.46, + "end": 402.63, + "probability": 0.973 + }, + { + "start": 403.64, + "end": 404.96, + "probability": 0.9927 + }, + { + "start": 406.24, + "end": 406.98, + "probability": 0.406 + }, + { + "start": 409.08, + "end": 409.2, + "probability": 0.1911 + }, + { + "start": 409.2, + "end": 409.2, + "probability": 0.1549 + }, + { + "start": 409.2, + "end": 409.84, + "probability": 0.2286 + }, + { + "start": 409.96, + "end": 411.04, + "probability": 0.9731 + }, + { + "start": 411.08, + "end": 411.58, + "probability": 0.9411 + }, + { + "start": 411.64, + "end": 413.38, + "probability": 0.9375 + }, + { + "start": 413.42, + "end": 414.94, + "probability": 0.9888 + }, + { + "start": 415.74, + "end": 417.48, + "probability": 0.6503 + }, + { + "start": 417.88, + "end": 422.14, + "probability": 0.9824 + }, + { + "start": 426.28, + "end": 428.9, + "probability": 0.2962 + }, + { + "start": 429.64, + "end": 433.68, + "probability": 0.9868 + }, + { + "start": 433.82, + "end": 434.88, + "probability": 0.8177 + }, + { + "start": 434.96, + "end": 437.18, + "probability": 0.9788 + }, + { + "start": 437.26, + "end": 437.78, + "probability": 0.9773 + }, + { + "start": 437.94, + "end": 438.69, + "probability": 0.998 + }, + { + "start": 439.86, + "end": 444.22, + "probability": 0.9979 + }, + { + "start": 444.4, + "end": 444.68, + "probability": 0.6614 + }, + { + "start": 444.7, + "end": 448.6, + "probability": 0.9243 + }, + { + "start": 448.68, + "end": 452.32, + "probability": 0.9915 + }, + { + "start": 455.0, + "end": 457.48, + "probability": 0.9982 + }, + { + "start": 457.76, + "end": 458.24, + "probability": 0.8185 + }, + { + "start": 458.24, + "end": 458.64, + "probability": 0.7541 + }, + { + "start": 458.64, + "end": 461.72, + "probability": 0.973 + }, + { + "start": 464.56, + "end": 468.32, + "probability": 0.9995 + }, + { + "start": 468.46, + "end": 470.76, + "probability": 0.999 + }, + { + "start": 471.02, + "end": 471.42, + "probability": 0.7054 + }, + { + "start": 471.5, + "end": 472.2, + "probability": 0.895 + }, + { + "start": 473.82, + "end": 476.26, + "probability": 0.9938 + }, + { + "start": 476.34, + "end": 479.45, + "probability": 0.9893 + }, + { + "start": 480.88, + "end": 482.79, + "probability": 0.9795 + }, + { + "start": 483.46, + "end": 486.12, + "probability": 0.9198 + }, + { + "start": 486.46, + "end": 487.28, + "probability": 0.951 + }, + { + "start": 487.56, + "end": 488.76, + "probability": 0.6823 + }, + { + "start": 488.78, + "end": 491.4, + "probability": 0.8501 + }, + { + "start": 493.98, + "end": 495.88, + "probability": 0.9938 + }, + { + "start": 496.74, + "end": 500.2, + "probability": 0.959 + }, + { + "start": 500.24, + "end": 501.19, + "probability": 0.6951 + }, + { + "start": 501.62, + "end": 502.6, + "probability": 0.8545 + }, + { + "start": 502.9, + "end": 503.6, + "probability": 0.6747 + }, + { + "start": 503.6, + "end": 507.28, + "probability": 0.9614 + }, + { + "start": 507.68, + "end": 507.68, + "probability": 0.0164 + }, + { + "start": 507.82, + "end": 507.96, + "probability": 0.0663 + }, + { + "start": 507.96, + "end": 507.96, + "probability": 0.0062 + }, + { + "start": 507.96, + "end": 508.44, + "probability": 0.6428 + }, + { + "start": 508.78, + "end": 509.56, + "probability": 0.6415 + }, + { + "start": 509.8, + "end": 511.08, + "probability": 0.8638 + }, + { + "start": 511.12, + "end": 514.9, + "probability": 0.9718 + }, + { + "start": 514.98, + "end": 518.28, + "probability": 0.9592 + }, + { + "start": 518.8, + "end": 518.96, + "probability": 0.0615 + }, + { + "start": 518.96, + "end": 518.96, + "probability": 0.0943 + }, + { + "start": 518.96, + "end": 519.26, + "probability": 0.4511 + }, + { + "start": 519.3, + "end": 521.06, + "probability": 0.9246 + }, + { + "start": 521.48, + "end": 523.3, + "probability": 0.7773 + }, + { + "start": 523.84, + "end": 523.84, + "probability": 0.1029 + }, + { + "start": 523.84, + "end": 523.84, + "probability": 0.1582 + }, + { + "start": 523.84, + "end": 523.84, + "probability": 0.1515 + }, + { + "start": 523.84, + "end": 524.22, + "probability": 0.1884 + }, + { + "start": 524.26, + "end": 525.54, + "probability": 0.5873 + }, + { + "start": 525.66, + "end": 526.38, + "probability": 0.6359 + }, + { + "start": 526.42, + "end": 527.44, + "probability": 0.7516 + }, + { + "start": 527.6, + "end": 529.68, + "probability": 0.8975 + }, + { + "start": 530.32, + "end": 533.32, + "probability": 0.9912 + }, + { + "start": 533.38, + "end": 534.5, + "probability": 0.8381 + }, + { + "start": 534.76, + "end": 535.42, + "probability": 0.9568 + }, + { + "start": 550.98, + "end": 552.1, + "probability": 0.5226 + }, + { + "start": 553.38, + "end": 553.48, + "probability": 0.1572 + }, + { + "start": 557.84, + "end": 558.78, + "probability": 0.0571 + }, + { + "start": 562.3, + "end": 564.2, + "probability": 0.0363 + }, + { + "start": 564.2, + "end": 564.42, + "probability": 0.032 + }, + { + "start": 564.5, + "end": 567.69, + "probability": 0.0438 + }, + { + "start": 570.14, + "end": 573.94, + "probability": 0.0461 + }, + { + "start": 573.94, + "end": 574.8, + "probability": 0.2283 + }, + { + "start": 576.0, + "end": 576.84, + "probability": 0.011 + }, + { + "start": 577.0, + "end": 579.34, + "probability": 0.6001 + }, + { + "start": 580.04, + "end": 582.1, + "probability": 0.0485 + }, + { + "start": 582.26, + "end": 583.74, + "probability": 0.0077 + }, + { + "start": 583.74, + "end": 586.02, + "probability": 0.124 + }, + { + "start": 586.14, + "end": 586.98, + "probability": 0.1584 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.0, + "end": 587.0, + "probability": 0.0 + }, + { + "start": 587.68, + "end": 588.16, + "probability": 0.0144 + }, + { + "start": 588.16, + "end": 590.88, + "probability": 0.0194 + }, + { + "start": 591.46, + "end": 593.9, + "probability": 0.1259 + }, + { + "start": 594.72, + "end": 596.2, + "probability": 0.33 + }, + { + "start": 596.2, + "end": 598.52, + "probability": 0.0231 + }, + { + "start": 598.52, + "end": 599.76, + "probability": 0.0489 + }, + { + "start": 599.91, + "end": 601.52, + "probability": 0.0941 + }, + { + "start": 602.38, + "end": 603.26, + "probability": 0.0924 + }, + { + "start": 603.32, + "end": 606.72, + "probability": 0.0392 + }, + { + "start": 608.46, + "end": 608.96, + "probability": 0.2406 + }, + { + "start": 609.38, + "end": 610.24, + "probability": 0.1175 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.0, + "end": 708.0, + "probability": 0.0 + }, + { + "start": 708.42, + "end": 709.94, + "probability": 0.1494 + }, + { + "start": 709.94, + "end": 712.04, + "probability": 0.3552 + }, + { + "start": 712.04, + "end": 713.18, + "probability": 0.1016 + }, + { + "start": 713.5, + "end": 714.52, + "probability": 0.6209 + }, + { + "start": 715.14, + "end": 718.36, + "probability": 0.1211 + }, + { + "start": 718.62, + "end": 722.18, + "probability": 0.1312 + }, + { + "start": 723.02, + "end": 723.84, + "probability": 0.4135 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.3, + "end": 834.36, + "probability": 0.436 + }, + { + "start": 834.58, + "end": 836.76, + "probability": 0.0641 + }, + { + "start": 836.76, + "end": 837.68, + "probability": 0.1494 + }, + { + "start": 837.68, + "end": 838.32, + "probability": 0.4832 + }, + { + "start": 838.72, + "end": 840.02, + "probability": 0.5322 + }, + { + "start": 840.42, + "end": 841.34, + "probability": 0.55 + }, + { + "start": 842.0, + "end": 843.11, + "probability": 0.138 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.0, + "end": 950.0, + "probability": 0.0 + }, + { + "start": 950.28, + "end": 951.04, + "probability": 0.3688 + }, + { + "start": 951.04, + "end": 951.04, + "probability": 0.2946 + }, + { + "start": 951.04, + "end": 951.04, + "probability": 0.4536 + }, + { + "start": 951.04, + "end": 951.04, + "probability": 0.0268 + }, + { + "start": 951.04, + "end": 951.04, + "probability": 0.5961 + }, + { + "start": 951.04, + "end": 952.51, + "probability": 0.5509 + }, + { + "start": 953.46, + "end": 954.58, + "probability": 0.7231 + }, + { + "start": 955.52, + "end": 957.02, + "probability": 0.8314 + }, + { + "start": 959.64, + "end": 960.4, + "probability": 0.4578 + }, + { + "start": 960.5, + "end": 960.68, + "probability": 0.3532 + }, + { + "start": 961.88, + "end": 964.16, + "probability": 0.1493 + }, + { + "start": 965.24, + "end": 965.68, + "probability": 0.0237 + }, + { + "start": 965.68, + "end": 968.58, + "probability": 0.6236 + }, + { + "start": 969.3, + "end": 974.42, + "probability": 0.9789 + }, + { + "start": 975.06, + "end": 976.76, + "probability": 0.7523 + }, + { + "start": 976.84, + "end": 977.72, + "probability": 0.7423 + }, + { + "start": 980.16, + "end": 980.84, + "probability": 0.0004 + }, + { + "start": 981.66, + "end": 982.24, + "probability": 0.0106 + }, + { + "start": 982.24, + "end": 983.22, + "probability": 0.8039 + }, + { + "start": 983.58, + "end": 983.62, + "probability": 0.3473 + }, + { + "start": 983.62, + "end": 983.62, + "probability": 0.8599 + }, + { + "start": 983.62, + "end": 986.48, + "probability": 0.4589 + }, + { + "start": 988.06, + "end": 990.7, + "probability": 0.8652 + }, + { + "start": 991.1, + "end": 992.37, + "probability": 0.0559 + }, + { + "start": 992.66, + "end": 992.66, + "probability": 0.161 + }, + { + "start": 992.66, + "end": 992.66, + "probability": 0.3503 + }, + { + "start": 992.66, + "end": 992.66, + "probability": 0.2791 + }, + { + "start": 992.66, + "end": 993.56, + "probability": 0.3475 + }, + { + "start": 993.66, + "end": 994.5, + "probability": 0.6075 + }, + { + "start": 995.9, + "end": 998.5, + "probability": 0.9423 + }, + { + "start": 998.5, + "end": 999.82, + "probability": 0.8188 + }, + { + "start": 1000.18, + "end": 1000.98, + "probability": 0.8973 + }, + { + "start": 1001.18, + "end": 1006.46, + "probability": 0.9984 + }, + { + "start": 1006.58, + "end": 1007.76, + "probability": 0.9988 + }, + { + "start": 1008.56, + "end": 1010.14, + "probability": 0.9971 + }, + { + "start": 1011.02, + "end": 1011.7, + "probability": 0.9415 + }, + { + "start": 1013.18, + "end": 1014.68, + "probability": 0.7944 + }, + { + "start": 1016.82, + "end": 1020.86, + "probability": 0.9915 + }, + { + "start": 1021.5, + "end": 1022.92, + "probability": 0.8326 + }, + { + "start": 1023.32, + "end": 1023.62, + "probability": 0.9438 + }, + { + "start": 1023.68, + "end": 1025.26, + "probability": 0.9792 + }, + { + "start": 1025.92, + "end": 1029.2, + "probability": 0.9761 + }, + { + "start": 1029.74, + "end": 1031.18, + "probability": 0.4999 + }, + { + "start": 1031.18, + "end": 1032.08, + "probability": 0.96 + }, + { + "start": 1032.28, + "end": 1032.96, + "probability": 0.3017 + }, + { + "start": 1033.4, + "end": 1035.46, + "probability": 0.7933 + }, + { + "start": 1035.54, + "end": 1036.64, + "probability": 0.8804 + }, + { + "start": 1041.26, + "end": 1046.7, + "probability": 0.9981 + }, + { + "start": 1047.76, + "end": 1051.14, + "probability": 0.9982 + }, + { + "start": 1051.78, + "end": 1054.46, + "probability": 0.9888 + }, + { + "start": 1054.6, + "end": 1054.72, + "probability": 0.6975 + }, + { + "start": 1055.84, + "end": 1056.8, + "probability": 0.9604 + }, + { + "start": 1057.38, + "end": 1058.58, + "probability": 0.9355 + }, + { + "start": 1059.54, + "end": 1060.62, + "probability": 0.7911 + }, + { + "start": 1061.72, + "end": 1065.92, + "probability": 0.9153 + }, + { + "start": 1066.04, + "end": 1067.1, + "probability": 0.9147 + }, + { + "start": 1067.68, + "end": 1068.42, + "probability": 0.8625 + }, + { + "start": 1069.5, + "end": 1069.58, + "probability": 0.0951 + }, + { + "start": 1069.58, + "end": 1072.6, + "probability": 0.9005 + }, + { + "start": 1073.38, + "end": 1073.92, + "probability": 0.1055 + }, + { + "start": 1073.92, + "end": 1073.92, + "probability": 0.4323 + }, + { + "start": 1073.92, + "end": 1074.86, + "probability": 0.6781 + }, + { + "start": 1074.9, + "end": 1075.56, + "probability": 0.8052 + }, + { + "start": 1076.4, + "end": 1077.1, + "probability": 0.0042 + }, + { + "start": 1077.1, + "end": 1077.48, + "probability": 0.1953 + }, + { + "start": 1077.48, + "end": 1078.08, + "probability": 0.5366 + }, + { + "start": 1078.2, + "end": 1080.02, + "probability": 0.1546 + }, + { + "start": 1080.04, + "end": 1082.34, + "probability": 0.9689 + }, + { + "start": 1083.48, + "end": 1084.1, + "probability": 0.5835 + }, + { + "start": 1084.2, + "end": 1085.92, + "probability": 0.1699 + }, + { + "start": 1085.96, + "end": 1086.26, + "probability": 0.128 + }, + { + "start": 1086.32, + "end": 1086.5, + "probability": 0.2959 + }, + { + "start": 1086.5, + "end": 1088.46, + "probability": 0.3158 + }, + { + "start": 1090.3, + "end": 1094.06, + "probability": 0.6398 + }, + { + "start": 1094.14, + "end": 1094.78, + "probability": 0.6681 + }, + { + "start": 1094.98, + "end": 1095.86, + "probability": 0.0878 + }, + { + "start": 1096.0, + "end": 1096.26, + "probability": 0.2739 + }, + { + "start": 1096.26, + "end": 1096.66, + "probability": 0.1536 + }, + { + "start": 1096.66, + "end": 1096.66, + "probability": 0.3779 + }, + { + "start": 1096.66, + "end": 1096.66, + "probability": 0.1104 + }, + { + "start": 1096.66, + "end": 1100.34, + "probability": 0.9058 + }, + { + "start": 1100.34, + "end": 1101.22, + "probability": 0.6026 + }, + { + "start": 1101.3, + "end": 1105.68, + "probability": 0.9591 + }, + { + "start": 1105.8, + "end": 1107.04, + "probability": 0.752 + }, + { + "start": 1107.16, + "end": 1107.89, + "probability": 0.0613 + }, + { + "start": 1108.22, + "end": 1108.3, + "probability": 0.0724 + }, + { + "start": 1108.3, + "end": 1110.74, + "probability": 0.9312 + }, + { + "start": 1111.22, + "end": 1111.4, + "probability": 0.0102 + }, + { + "start": 1111.4, + "end": 1113.9, + "probability": 0.9928 + }, + { + "start": 1114.14, + "end": 1115.08, + "probability": 0.676 + }, + { + "start": 1116.28, + "end": 1117.2, + "probability": 0.3028 + }, + { + "start": 1117.2, + "end": 1121.0, + "probability": 0.8031 + }, + { + "start": 1121.6, + "end": 1123.54, + "probability": 0.9823 + }, + { + "start": 1124.14, + "end": 1124.34, + "probability": 0.7364 + }, + { + "start": 1124.36, + "end": 1125.62, + "probability": 0.6672 + }, + { + "start": 1125.68, + "end": 1127.22, + "probability": 0.9199 + }, + { + "start": 1127.96, + "end": 1130.82, + "probability": 0.9841 + }, + { + "start": 1130.9, + "end": 1132.92, + "probability": 0.0175 + }, + { + "start": 1133.34, + "end": 1133.44, + "probability": 0.3035 + }, + { + "start": 1133.44, + "end": 1133.64, + "probability": 0.0966 + }, + { + "start": 1133.64, + "end": 1135.04, + "probability": 0.2441 + }, + { + "start": 1135.22, + "end": 1136.18, + "probability": 0.0241 + }, + { + "start": 1140.22, + "end": 1141.88, + "probability": 0.2333 + }, + { + "start": 1145.7, + "end": 1145.82, + "probability": 0.0388 + }, + { + "start": 1145.82, + "end": 1145.82, + "probability": 0.1446 + }, + { + "start": 1145.82, + "end": 1146.08, + "probability": 0.05 + }, + { + "start": 1146.08, + "end": 1146.08, + "probability": 0.0322 + }, + { + "start": 1146.08, + "end": 1146.08, + "probability": 0.0983 + }, + { + "start": 1146.08, + "end": 1149.98, + "probability": 0.1769 + }, + { + "start": 1152.3, + "end": 1154.46, + "probability": 0.8932 + }, + { + "start": 1155.2, + "end": 1155.3, + "probability": 0.3749 + }, + { + "start": 1156.04, + "end": 1157.52, + "probability": 0.9988 + }, + { + "start": 1157.58, + "end": 1158.8, + "probability": 0.9048 + }, + { + "start": 1160.18, + "end": 1161.64, + "probability": 0.6969 + }, + { + "start": 1162.86, + "end": 1164.24, + "probability": 0.9786 + }, + { + "start": 1165.74, + "end": 1168.02, + "probability": 0.7937 + }, + { + "start": 1169.74, + "end": 1170.22, + "probability": 0.6479 + }, + { + "start": 1170.28, + "end": 1171.72, + "probability": 0.8892 + }, + { + "start": 1188.3, + "end": 1191.76, + "probability": 0.729 + }, + { + "start": 1192.88, + "end": 1197.86, + "probability": 0.9941 + }, + { + "start": 1198.94, + "end": 1199.22, + "probability": 0.6699 + }, + { + "start": 1199.64, + "end": 1200.86, + "probability": 0.475 + }, + { + "start": 1201.08, + "end": 1205.56, + "probability": 0.9858 + }, + { + "start": 1206.4, + "end": 1211.02, + "probability": 0.9893 + }, + { + "start": 1211.54, + "end": 1214.1, + "probability": 0.9912 + }, + { + "start": 1215.18, + "end": 1220.38, + "probability": 0.9952 + }, + { + "start": 1220.86, + "end": 1223.08, + "probability": 0.9937 + }, + { + "start": 1223.18, + "end": 1224.04, + "probability": 0.8941 + }, + { + "start": 1224.44, + "end": 1224.7, + "probability": 0.5144 + }, + { + "start": 1225.28, + "end": 1225.92, + "probability": 0.9844 + }, + { + "start": 1226.9, + "end": 1229.46, + "probability": 0.985 + }, + { + "start": 1230.22, + "end": 1233.34, + "probability": 0.9878 + }, + { + "start": 1233.84, + "end": 1235.78, + "probability": 0.9972 + }, + { + "start": 1236.2, + "end": 1238.88, + "probability": 0.9592 + }, + { + "start": 1239.4, + "end": 1244.76, + "probability": 0.9006 + }, + { + "start": 1245.7, + "end": 1249.46, + "probability": 0.974 + }, + { + "start": 1249.98, + "end": 1251.84, + "probability": 0.9777 + }, + { + "start": 1252.24, + "end": 1254.2, + "probability": 0.8579 + }, + { + "start": 1254.38, + "end": 1258.18, + "probability": 0.9883 + }, + { + "start": 1258.9, + "end": 1265.32, + "probability": 0.9938 + }, + { + "start": 1265.46, + "end": 1267.48, + "probability": 0.9922 + }, + { + "start": 1268.12, + "end": 1272.58, + "probability": 0.9797 + }, + { + "start": 1273.68, + "end": 1276.2, + "probability": 0.9769 + }, + { + "start": 1276.52, + "end": 1278.42, + "probability": 0.9743 + }, + { + "start": 1278.84, + "end": 1279.46, + "probability": 0.6978 + }, + { + "start": 1280.0, + "end": 1282.56, + "probability": 0.9333 + }, + { + "start": 1283.06, + "end": 1286.22, + "probability": 0.8076 + }, + { + "start": 1286.32, + "end": 1287.56, + "probability": 0.9554 + }, + { + "start": 1288.3, + "end": 1289.28, + "probability": 0.6636 + }, + { + "start": 1290.18, + "end": 1292.66, + "probability": 0.752 + }, + { + "start": 1293.48, + "end": 1300.64, + "probability": 0.9653 + }, + { + "start": 1300.92, + "end": 1304.4, + "probability": 0.6705 + }, + { + "start": 1304.52, + "end": 1309.86, + "probability": 0.9874 + }, + { + "start": 1310.12, + "end": 1312.46, + "probability": 0.9924 + }, + { + "start": 1313.7, + "end": 1315.96, + "probability": 0.7449 + }, + { + "start": 1316.44, + "end": 1317.72, + "probability": 0.9165 + }, + { + "start": 1318.08, + "end": 1322.54, + "probability": 0.9778 + }, + { + "start": 1322.7, + "end": 1324.02, + "probability": 0.7522 + }, + { + "start": 1324.08, + "end": 1324.98, + "probability": 0.7074 + }, + { + "start": 1325.54, + "end": 1329.34, + "probability": 0.9193 + }, + { + "start": 1329.44, + "end": 1330.4, + "probability": 0.6792 + }, + { + "start": 1331.74, + "end": 1333.88, + "probability": 0.9753 + }, + { + "start": 1334.32, + "end": 1337.52, + "probability": 0.9863 + }, + { + "start": 1337.86, + "end": 1342.96, + "probability": 0.998 + }, + { + "start": 1343.58, + "end": 1344.06, + "probability": 0.4393 + }, + { + "start": 1344.18, + "end": 1345.38, + "probability": 0.9513 + }, + { + "start": 1345.66, + "end": 1349.52, + "probability": 0.9835 + }, + { + "start": 1349.52, + "end": 1353.38, + "probability": 0.9888 + }, + { + "start": 1353.52, + "end": 1354.14, + "probability": 0.7307 + }, + { + "start": 1354.5, + "end": 1355.0, + "probability": 0.6899 + }, + { + "start": 1355.1, + "end": 1357.38, + "probability": 0.7077 + }, + { + "start": 1373.84, + "end": 1373.84, + "probability": 0.4609 + }, + { + "start": 1373.84, + "end": 1375.52, + "probability": 0.6369 + }, + { + "start": 1376.04, + "end": 1376.9, + "probability": 0.6689 + }, + { + "start": 1378.14, + "end": 1379.78, + "probability": 0.8311 + }, + { + "start": 1382.48, + "end": 1383.5, + "probability": 0.9181 + }, + { + "start": 1383.54, + "end": 1384.4, + "probability": 0.7119 + }, + { + "start": 1384.58, + "end": 1385.78, + "probability": 0.9677 + }, + { + "start": 1386.94, + "end": 1390.2, + "probability": 0.9962 + }, + { + "start": 1391.12, + "end": 1392.96, + "probability": 0.9951 + }, + { + "start": 1393.48, + "end": 1394.3, + "probability": 0.9473 + }, + { + "start": 1395.88, + "end": 1399.42, + "probability": 0.9688 + }, + { + "start": 1400.08, + "end": 1406.2, + "probability": 0.9854 + }, + { + "start": 1406.5, + "end": 1409.74, + "probability": 0.9956 + }, + { + "start": 1410.96, + "end": 1412.22, + "probability": 0.8249 + }, + { + "start": 1412.8, + "end": 1413.72, + "probability": 0.7378 + }, + { + "start": 1414.18, + "end": 1418.7, + "probability": 0.9603 + }, + { + "start": 1420.55, + "end": 1424.96, + "probability": 0.8857 + }, + { + "start": 1425.04, + "end": 1427.08, + "probability": 0.9344 + }, + { + "start": 1427.26, + "end": 1428.82, + "probability": 0.5541 + }, + { + "start": 1429.82, + "end": 1433.4, + "probability": 0.9877 + }, + { + "start": 1433.7, + "end": 1435.58, + "probability": 0.8458 + }, + { + "start": 1435.64, + "end": 1436.64, + "probability": 0.9852 + }, + { + "start": 1437.08, + "end": 1438.14, + "probability": 0.9963 + }, + { + "start": 1438.78, + "end": 1444.02, + "probability": 0.918 + }, + { + "start": 1444.42, + "end": 1446.38, + "probability": 0.9622 + }, + { + "start": 1446.64, + "end": 1452.04, + "probability": 0.9253 + }, + { + "start": 1452.96, + "end": 1455.77, + "probability": 0.8281 + }, + { + "start": 1456.82, + "end": 1457.76, + "probability": 0.874 + }, + { + "start": 1458.44, + "end": 1460.38, + "probability": 0.6608 + }, + { + "start": 1460.92, + "end": 1461.02, + "probability": 0.003 + }, + { + "start": 1461.56, + "end": 1461.8, + "probability": 0.1074 + }, + { + "start": 1461.8, + "end": 1461.98, + "probability": 0.0679 + }, + { + "start": 1463.79, + "end": 1465.46, + "probability": 0.9197 + }, + { + "start": 1466.16, + "end": 1469.76, + "probability": 0.9891 + }, + { + "start": 1470.82, + "end": 1471.31, + "probability": 0.7495 + }, + { + "start": 1472.28, + "end": 1474.68, + "probability": 0.9122 + }, + { + "start": 1475.42, + "end": 1477.16, + "probability": 0.9242 + }, + { + "start": 1477.82, + "end": 1479.42, + "probability": 0.9418 + }, + { + "start": 1479.52, + "end": 1482.52, + "probability": 0.9931 + }, + { + "start": 1483.14, + "end": 1487.9, + "probability": 0.9887 + }, + { + "start": 1488.0, + "end": 1488.74, + "probability": 0.7334 + }, + { + "start": 1488.88, + "end": 1490.72, + "probability": 0.9553 + }, + { + "start": 1491.16, + "end": 1493.0, + "probability": 0.8496 + }, + { + "start": 1493.24, + "end": 1494.04, + "probability": 0.8215 + }, + { + "start": 1494.1, + "end": 1495.8, + "probability": 0.5409 + }, + { + "start": 1496.18, + "end": 1498.0, + "probability": 0.9705 + }, + { + "start": 1498.44, + "end": 1500.82, + "probability": 0.994 + }, + { + "start": 1501.08, + "end": 1505.18, + "probability": 0.9893 + }, + { + "start": 1505.8, + "end": 1506.54, + "probability": 0.9589 + }, + { + "start": 1506.96, + "end": 1510.6, + "probability": 0.767 + }, + { + "start": 1510.74, + "end": 1515.5, + "probability": 0.9902 + }, + { + "start": 1516.36, + "end": 1518.06, + "probability": 0.9989 + }, + { + "start": 1518.84, + "end": 1519.86, + "probability": 0.9282 + }, + { + "start": 1519.96, + "end": 1521.2, + "probability": 0.8298 + }, + { + "start": 1521.22, + "end": 1522.1, + "probability": 0.6415 + }, + { + "start": 1523.12, + "end": 1528.34, + "probability": 0.9969 + }, + { + "start": 1528.62, + "end": 1529.88, + "probability": 0.9697 + }, + { + "start": 1530.12, + "end": 1530.48, + "probability": 0.7565 + }, + { + "start": 1530.96, + "end": 1532.54, + "probability": 0.9053 + }, + { + "start": 1532.62, + "end": 1533.6, + "probability": 0.9033 + }, + { + "start": 1534.35, + "end": 1536.6, + "probability": 0.9673 + }, + { + "start": 1541.0, + "end": 1545.86, + "probability": 0.5667 + }, + { + "start": 1556.02, + "end": 1556.06, + "probability": 0.1057 + }, + { + "start": 1558.16, + "end": 1559.24, + "probability": 0.8021 + }, + { + "start": 1560.16, + "end": 1561.36, + "probability": 0.9445 + }, + { + "start": 1562.08, + "end": 1565.68, + "probability": 0.9962 + }, + { + "start": 1567.3, + "end": 1567.68, + "probability": 0.5664 + }, + { + "start": 1569.28, + "end": 1570.54, + "probability": 0.7508 + }, + { + "start": 1570.6, + "end": 1572.38, + "probability": 0.9793 + }, + { + "start": 1574.96, + "end": 1578.38, + "probability": 0.9785 + }, + { + "start": 1579.18, + "end": 1584.4, + "probability": 0.8352 + }, + { + "start": 1586.02, + "end": 1588.96, + "probability": 0.8862 + }, + { + "start": 1590.46, + "end": 1591.4, + "probability": 0.6263 + }, + { + "start": 1592.3, + "end": 1596.66, + "probability": 0.9948 + }, + { + "start": 1597.26, + "end": 1598.98, + "probability": 0.9673 + }, + { + "start": 1600.16, + "end": 1603.58, + "probability": 0.9487 + }, + { + "start": 1604.5, + "end": 1607.4, + "probability": 0.9874 + }, + { + "start": 1609.04, + "end": 1610.7, + "probability": 0.9415 + }, + { + "start": 1612.14, + "end": 1613.44, + "probability": 0.9173 + }, + { + "start": 1614.58, + "end": 1616.48, + "probability": 0.9622 + }, + { + "start": 1617.6, + "end": 1620.31, + "probability": 0.9827 + }, + { + "start": 1621.38, + "end": 1623.3, + "probability": 0.9841 + }, + { + "start": 1623.98, + "end": 1628.52, + "probability": 0.9983 + }, + { + "start": 1629.32, + "end": 1631.68, + "probability": 0.7959 + }, + { + "start": 1632.5, + "end": 1634.88, + "probability": 0.6223 + }, + { + "start": 1635.12, + "end": 1640.22, + "probability": 0.9969 + }, + { + "start": 1641.72, + "end": 1642.9, + "probability": 0.6782 + }, + { + "start": 1646.1, + "end": 1647.56, + "probability": 0.9305 + }, + { + "start": 1648.28, + "end": 1649.88, + "probability": 0.5744 + }, + { + "start": 1651.08, + "end": 1652.78, + "probability": 0.955 + }, + { + "start": 1653.58, + "end": 1655.12, + "probability": 0.9417 + }, + { + "start": 1656.59, + "end": 1660.24, + "probability": 0.6539 + }, + { + "start": 1661.16, + "end": 1663.6, + "probability": 0.9902 + }, + { + "start": 1664.26, + "end": 1666.14, + "probability": 0.9702 + }, + { + "start": 1666.76, + "end": 1668.26, + "probability": 0.9341 + }, + { + "start": 1669.14, + "end": 1671.5, + "probability": 0.9925 + }, + { + "start": 1672.1, + "end": 1676.44, + "probability": 0.9922 + }, + { + "start": 1678.4, + "end": 1678.98, + "probability": 0.7311 + }, + { + "start": 1679.58, + "end": 1681.06, + "probability": 0.8823 + }, + { + "start": 1682.02, + "end": 1684.32, + "probability": 0.8786 + }, + { + "start": 1685.58, + "end": 1690.36, + "probability": 0.9252 + }, + { + "start": 1691.68, + "end": 1698.84, + "probability": 0.9808 + }, + { + "start": 1699.88, + "end": 1704.1, + "probability": 0.8018 + }, + { + "start": 1704.78, + "end": 1706.3, + "probability": 0.6627 + }, + { + "start": 1706.92, + "end": 1708.16, + "probability": 0.8593 + }, + { + "start": 1708.74, + "end": 1709.96, + "probability": 0.8455 + }, + { + "start": 1710.54, + "end": 1719.72, + "probability": 0.8065 + }, + { + "start": 1720.16, + "end": 1723.4, + "probability": 0.9868 + }, + { + "start": 1723.86, + "end": 1725.74, + "probability": 0.9799 + }, + { + "start": 1726.18, + "end": 1727.36, + "probability": 0.9221 + }, + { + "start": 1727.92, + "end": 1729.04, + "probability": 0.6128 + }, + { + "start": 1730.22, + "end": 1731.48, + "probability": 0.5391 + }, + { + "start": 1733.38, + "end": 1736.96, + "probability": 0.9325 + }, + { + "start": 1737.84, + "end": 1739.1, + "probability": 0.7661 + }, + { + "start": 1739.62, + "end": 1742.78, + "probability": 0.9951 + }, + { + "start": 1743.24, + "end": 1745.28, + "probability": 0.9136 + }, + { + "start": 1746.18, + "end": 1750.12, + "probability": 0.9753 + }, + { + "start": 1750.14, + "end": 1750.72, + "probability": 0.9147 + }, + { + "start": 1752.94, + "end": 1753.52, + "probability": 0.6118 + }, + { + "start": 1753.6, + "end": 1755.36, + "probability": 0.8435 + }, + { + "start": 1770.46, + "end": 1771.92, + "probability": 0.9531 + }, + { + "start": 1772.16, + "end": 1773.78, + "probability": 0.552 + }, + { + "start": 1773.78, + "end": 1773.96, + "probability": 0.7257 + }, + { + "start": 1775.54, + "end": 1778.92, + "probability": 0.9305 + }, + { + "start": 1779.96, + "end": 1787.6, + "probability": 0.9832 + }, + { + "start": 1788.3, + "end": 1789.56, + "probability": 0.9644 + }, + { + "start": 1790.24, + "end": 1791.68, + "probability": 0.9912 + }, + { + "start": 1792.46, + "end": 1795.28, + "probability": 0.9879 + }, + { + "start": 1796.2, + "end": 1798.44, + "probability": 0.8805 + }, + { + "start": 1798.66, + "end": 1799.08, + "probability": 0.827 + }, + { + "start": 1800.3, + "end": 1803.2, + "probability": 0.959 + }, + { + "start": 1805.3, + "end": 1808.54, + "probability": 0.9887 + }, + { + "start": 1808.54, + "end": 1811.54, + "probability": 0.998 + }, + { + "start": 1813.12, + "end": 1815.48, + "probability": 0.9852 + }, + { + "start": 1816.6, + "end": 1818.6, + "probability": 0.995 + }, + { + "start": 1819.46, + "end": 1821.46, + "probability": 0.9891 + }, + { + "start": 1822.7, + "end": 1824.06, + "probability": 0.9728 + }, + { + "start": 1825.12, + "end": 1827.16, + "probability": 0.9995 + }, + { + "start": 1827.82, + "end": 1829.9, + "probability": 0.9964 + }, + { + "start": 1830.92, + "end": 1835.8, + "probability": 0.9925 + }, + { + "start": 1837.08, + "end": 1838.44, + "probability": 0.689 + }, + { + "start": 1839.22, + "end": 1840.96, + "probability": 0.9825 + }, + { + "start": 1841.1, + "end": 1842.35, + "probability": 0.9951 + }, + { + "start": 1843.22, + "end": 1845.0, + "probability": 0.911 + }, + { + "start": 1846.08, + "end": 1847.52, + "probability": 0.9954 + }, + { + "start": 1848.7, + "end": 1850.52, + "probability": 0.9954 + }, + { + "start": 1851.62, + "end": 1857.54, + "probability": 0.9033 + }, + { + "start": 1858.12, + "end": 1860.36, + "probability": 0.995 + }, + { + "start": 1860.9, + "end": 1862.82, + "probability": 0.9629 + }, + { + "start": 1863.5, + "end": 1868.38, + "probability": 0.9989 + }, + { + "start": 1869.6, + "end": 1873.64, + "probability": 0.9845 + }, + { + "start": 1874.2, + "end": 1876.68, + "probability": 0.9936 + }, + { + "start": 1877.06, + "end": 1879.76, + "probability": 0.9536 + }, + { + "start": 1881.66, + "end": 1882.86, + "probability": 0.9961 + }, + { + "start": 1883.78, + "end": 1885.2, + "probability": 0.9357 + }, + { + "start": 1885.82, + "end": 1888.9, + "probability": 0.6593 + }, + { + "start": 1888.9, + "end": 1893.32, + "probability": 0.9968 + }, + { + "start": 1893.36, + "end": 1894.42, + "probability": 0.9171 + }, + { + "start": 1895.42, + "end": 1897.74, + "probability": 0.8706 + }, + { + "start": 1898.24, + "end": 1901.48, + "probability": 0.8884 + }, + { + "start": 1901.94, + "end": 1903.24, + "probability": 0.9616 + }, + { + "start": 1903.82, + "end": 1906.92, + "probability": 0.8411 + }, + { + "start": 1907.46, + "end": 1908.82, + "probability": 0.5906 + }, + { + "start": 1909.68, + "end": 1910.68, + "probability": 0.933 + }, + { + "start": 1911.36, + "end": 1912.66, + "probability": 0.9707 + }, + { + "start": 1913.58, + "end": 1914.92, + "probability": 0.9901 + }, + { + "start": 1914.98, + "end": 1915.4, + "probability": 0.9157 + }, + { + "start": 1915.56, + "end": 1915.92, + "probability": 0.914 + }, + { + "start": 1915.96, + "end": 1917.2, + "probability": 0.9335 + }, + { + "start": 1917.76, + "end": 1920.08, + "probability": 0.7868 + }, + { + "start": 1920.5, + "end": 1922.18, + "probability": 0.8687 + }, + { + "start": 1922.96, + "end": 1924.4, + "probability": 0.7806 + }, + { + "start": 1925.28, + "end": 1928.78, + "probability": 0.9552 + }, + { + "start": 1929.44, + "end": 1930.58, + "probability": 0.9837 + }, + { + "start": 1931.16, + "end": 1932.52, + "probability": 0.955 + }, + { + "start": 1933.32, + "end": 1935.3, + "probability": 0.9633 + }, + { + "start": 1935.52, + "end": 1939.68, + "probability": 0.9836 + }, + { + "start": 1939.78, + "end": 1940.42, + "probability": 0.653 + }, + { + "start": 1941.06, + "end": 1942.26, + "probability": 0.9419 + }, + { + "start": 1943.1, + "end": 1943.9, + "probability": 0.9868 + }, + { + "start": 1944.54, + "end": 1948.2, + "probability": 0.9603 + }, + { + "start": 1949.16, + "end": 1950.73, + "probability": 0.9918 + }, + { + "start": 1951.36, + "end": 1952.09, + "probability": 0.8488 + }, + { + "start": 1952.88, + "end": 1955.78, + "probability": 0.9954 + }, + { + "start": 1956.24, + "end": 1957.92, + "probability": 0.7133 + }, + { + "start": 1958.44, + "end": 1959.42, + "probability": 0.854 + }, + { + "start": 1960.0, + "end": 1964.0, + "probability": 0.917 + }, + { + "start": 1964.56, + "end": 1965.24, + "probability": 0.8914 + }, + { + "start": 1975.5, + "end": 1977.64, + "probability": 0.7265 + }, + { + "start": 1978.74, + "end": 1981.64, + "probability": 0.9933 + }, + { + "start": 1982.7, + "end": 1986.78, + "probability": 0.978 + }, + { + "start": 1987.62, + "end": 1989.64, + "probability": 0.9836 + }, + { + "start": 1990.28, + "end": 1993.26, + "probability": 0.9843 + }, + { + "start": 1994.04, + "end": 1994.96, + "probability": 0.7818 + }, + { + "start": 1995.94, + "end": 1997.36, + "probability": 0.2869 + }, + { + "start": 1998.8, + "end": 2002.2, + "probability": 0.7055 + }, + { + "start": 2002.9, + "end": 2003.16, + "probability": 0.8345 + }, + { + "start": 2003.94, + "end": 2004.52, + "probability": 0.9749 + }, + { + "start": 2005.3, + "end": 2006.0, + "probability": 0.6608 + }, + { + "start": 2007.12, + "end": 2008.48, + "probability": 0.8516 + }, + { + "start": 2009.36, + "end": 2012.68, + "probability": 0.9797 + }, + { + "start": 2013.46, + "end": 2018.74, + "probability": 0.9857 + }, + { + "start": 2019.6, + "end": 2021.14, + "probability": 0.9371 + }, + { + "start": 2021.28, + "end": 2025.22, + "probability": 0.9545 + }, + { + "start": 2025.74, + "end": 2028.74, + "probability": 0.761 + }, + { + "start": 2029.4, + "end": 2031.96, + "probability": 0.8266 + }, + { + "start": 2032.72, + "end": 2033.82, + "probability": 0.6464 + }, + { + "start": 2034.4, + "end": 2035.56, + "probability": 0.9939 + }, + { + "start": 2036.48, + "end": 2039.72, + "probability": 0.9171 + }, + { + "start": 2040.68, + "end": 2042.5, + "probability": 0.9578 + }, + { + "start": 2043.04, + "end": 2045.34, + "probability": 0.9698 + }, + { + "start": 2046.0, + "end": 2047.94, + "probability": 0.9598 + }, + { + "start": 2048.58, + "end": 2049.3, + "probability": 0.6876 + }, + { + "start": 2050.08, + "end": 2052.84, + "probability": 0.8502 + }, + { + "start": 2053.36, + "end": 2056.68, + "probability": 0.8851 + }, + { + "start": 2057.24, + "end": 2064.14, + "probability": 0.9801 + }, + { + "start": 2064.96, + "end": 2070.08, + "probability": 0.9847 + }, + { + "start": 2070.7, + "end": 2072.26, + "probability": 0.8643 + }, + { + "start": 2072.98, + "end": 2076.74, + "probability": 0.9041 + }, + { + "start": 2077.56, + "end": 2078.68, + "probability": 0.8309 + }, + { + "start": 2079.02, + "end": 2080.58, + "probability": 0.9516 + }, + { + "start": 2080.68, + "end": 2083.02, + "probability": 0.993 + }, + { + "start": 2083.48, + "end": 2085.14, + "probability": 0.8875 + }, + { + "start": 2085.48, + "end": 2088.68, + "probability": 0.9908 + }, + { + "start": 2088.68, + "end": 2091.58, + "probability": 0.9823 + }, + { + "start": 2092.4, + "end": 2094.3, + "probability": 0.7725 + }, + { + "start": 2095.2, + "end": 2096.62, + "probability": 0.9657 + }, + { + "start": 2097.12, + "end": 2100.3, + "probability": 0.8663 + }, + { + "start": 2100.96, + "end": 2105.74, + "probability": 0.995 + }, + { + "start": 2106.44, + "end": 2107.18, + "probability": 0.4024 + }, + { + "start": 2107.88, + "end": 2111.58, + "probability": 0.9721 + }, + { + "start": 2112.32, + "end": 2113.5, + "probability": 0.9929 + }, + { + "start": 2113.58, + "end": 2114.32, + "probability": 0.9863 + }, + { + "start": 2114.74, + "end": 2115.74, + "probability": 0.9951 + }, + { + "start": 2116.14, + "end": 2116.66, + "probability": 0.4447 + }, + { + "start": 2117.62, + "end": 2121.06, + "probability": 0.9422 + }, + { + "start": 2121.78, + "end": 2123.26, + "probability": 0.9479 + }, + { + "start": 2123.8, + "end": 2127.54, + "probability": 0.9976 + }, + { + "start": 2127.54, + "end": 2131.74, + "probability": 0.9932 + }, + { + "start": 2132.68, + "end": 2137.12, + "probability": 0.7543 + }, + { + "start": 2137.78, + "end": 2140.56, + "probability": 0.9971 + }, + { + "start": 2141.7, + "end": 2145.9, + "probability": 0.9292 + }, + { + "start": 2146.54, + "end": 2149.52, + "probability": 0.9865 + }, + { + "start": 2150.14, + "end": 2151.68, + "probability": 0.9926 + }, + { + "start": 2152.12, + "end": 2153.56, + "probability": 0.7644 + }, + { + "start": 2154.04, + "end": 2155.74, + "probability": 0.826 + }, + { + "start": 2155.74, + "end": 2156.4, + "probability": 0.7073 + }, + { + "start": 2156.8, + "end": 2157.6, + "probability": 0.6064 + }, + { + "start": 2157.64, + "end": 2159.74, + "probability": 0.9633 + }, + { + "start": 2172.54, + "end": 2173.42, + "probability": 0.5497 + }, + { + "start": 2173.48, + "end": 2174.02, + "probability": 0.8633 + }, + { + "start": 2183.1, + "end": 2190.98, + "probability": 0.9588 + }, + { + "start": 2192.21, + "end": 2196.3, + "probability": 0.974 + }, + { + "start": 2198.1, + "end": 2201.44, + "probability": 0.9987 + }, + { + "start": 2203.02, + "end": 2207.76, + "probability": 0.9886 + }, + { + "start": 2208.3, + "end": 2210.64, + "probability": 0.9952 + }, + { + "start": 2211.26, + "end": 2212.08, + "probability": 0.9577 + }, + { + "start": 2213.98, + "end": 2218.22, + "probability": 0.949 + }, + { + "start": 2218.8, + "end": 2221.94, + "probability": 0.9729 + }, + { + "start": 2222.0, + "end": 2222.82, + "probability": 0.6694 + }, + { + "start": 2222.88, + "end": 2224.54, + "probability": 0.9663 + }, + { + "start": 2225.46, + "end": 2229.76, + "probability": 0.9299 + }, + { + "start": 2229.76, + "end": 2233.54, + "probability": 0.9367 + }, + { + "start": 2234.68, + "end": 2237.54, + "probability": 0.9518 + }, + { + "start": 2238.28, + "end": 2242.04, + "probability": 0.9966 + }, + { + "start": 2242.1, + "end": 2245.88, + "probability": 0.9776 + }, + { + "start": 2247.12, + "end": 2248.54, + "probability": 0.9849 + }, + { + "start": 2249.64, + "end": 2254.26, + "probability": 0.991 + }, + { + "start": 2254.48, + "end": 2255.68, + "probability": 0.9441 + }, + { + "start": 2256.36, + "end": 2258.9, + "probability": 0.9723 + }, + { + "start": 2260.02, + "end": 2261.06, + "probability": 0.9841 + }, + { + "start": 2261.58, + "end": 2263.88, + "probability": 0.9251 + }, + { + "start": 2264.62, + "end": 2265.42, + "probability": 0.9873 + }, + { + "start": 2267.4, + "end": 2270.56, + "probability": 0.9463 + }, + { + "start": 2270.66, + "end": 2271.26, + "probability": 0.857 + }, + { + "start": 2271.44, + "end": 2273.5, + "probability": 0.9968 + }, + { + "start": 2274.18, + "end": 2277.24, + "probability": 0.947 + }, + { + "start": 2278.12, + "end": 2280.1, + "probability": 0.9519 + }, + { + "start": 2280.1, + "end": 2283.3, + "probability": 0.9764 + }, + { + "start": 2283.32, + "end": 2286.46, + "probability": 0.9821 + }, + { + "start": 2287.52, + "end": 2293.18, + "probability": 0.9974 + }, + { + "start": 2294.12, + "end": 2296.48, + "probability": 0.8101 + }, + { + "start": 2297.26, + "end": 2300.96, + "probability": 0.9014 + }, + { + "start": 2301.56, + "end": 2302.5, + "probability": 0.9454 + }, + { + "start": 2303.24, + "end": 2307.1, + "probability": 0.9956 + }, + { + "start": 2307.66, + "end": 2308.58, + "probability": 0.9385 + }, + { + "start": 2309.22, + "end": 2310.18, + "probability": 0.8213 + }, + { + "start": 2311.26, + "end": 2315.62, + "probability": 0.9989 + }, + { + "start": 2315.62, + "end": 2320.18, + "probability": 0.9976 + }, + { + "start": 2321.28, + "end": 2323.14, + "probability": 0.9756 + }, + { + "start": 2324.94, + "end": 2325.86, + "probability": 0.7351 + }, + { + "start": 2326.66, + "end": 2329.04, + "probability": 0.9553 + }, + { + "start": 2330.06, + "end": 2335.22, + "probability": 0.994 + }, + { + "start": 2335.22, + "end": 2343.0, + "probability": 0.9941 + }, + { + "start": 2343.58, + "end": 2346.84, + "probability": 0.9994 + }, + { + "start": 2348.28, + "end": 2349.82, + "probability": 0.6757 + }, + { + "start": 2350.7, + "end": 2351.24, + "probability": 0.6263 + }, + { + "start": 2352.18, + "end": 2353.16, + "probability": 0.9619 + }, + { + "start": 2354.38, + "end": 2355.58, + "probability": 0.4214 + }, + { + "start": 2356.12, + "end": 2358.0, + "probability": 0.9214 + }, + { + "start": 2358.68, + "end": 2359.54, + "probability": 0.729 + }, + { + "start": 2360.18, + "end": 2362.4, + "probability": 0.8321 + }, + { + "start": 2362.4, + "end": 2364.59, + "probability": 0.1165 + }, + { + "start": 2365.56, + "end": 2369.46, + "probability": 0.3805 + }, + { + "start": 2369.52, + "end": 2371.98, + "probability": 0.281 + }, + { + "start": 2372.28, + "end": 2375.64, + "probability": 0.3782 + }, + { + "start": 2375.64, + "end": 2376.12, + "probability": 0.246 + }, + { + "start": 2376.3, + "end": 2381.14, + "probability": 0.5881 + }, + { + "start": 2381.82, + "end": 2383.0, + "probability": 0.5972 + }, + { + "start": 2383.02, + "end": 2385.8, + "probability": 0.7884 + }, + { + "start": 2386.04, + "end": 2386.18, + "probability": 0.0931 + }, + { + "start": 2386.18, + "end": 2386.7, + "probability": 0.3335 + }, + { + "start": 2386.74, + "end": 2386.96, + "probability": 0.4641 + }, + { + "start": 2386.96, + "end": 2386.96, + "probability": 0.1625 + }, + { + "start": 2386.96, + "end": 2389.3, + "probability": 0.7261 + }, + { + "start": 2389.3, + "end": 2394.16, + "probability": 0.6146 + }, + { + "start": 2395.34, + "end": 2401.06, + "probability": 0.9932 + }, + { + "start": 2401.6, + "end": 2405.32, + "probability": 0.963 + }, + { + "start": 2406.02, + "end": 2409.58, + "probability": 0.9518 + }, + { + "start": 2409.94, + "end": 2412.82, + "probability": 0.9831 + }, + { + "start": 2413.24, + "end": 2417.5, + "probability": 0.9883 + }, + { + "start": 2418.76, + "end": 2423.12, + "probability": 0.9978 + }, + { + "start": 2424.02, + "end": 2424.7, + "probability": 0.8412 + }, + { + "start": 2425.26, + "end": 2426.66, + "probability": 0.9777 + }, + { + "start": 2426.9, + "end": 2429.44, + "probability": 0.9965 + }, + { + "start": 2429.64, + "end": 2430.74, + "probability": 0.9972 + }, + { + "start": 2431.04, + "end": 2431.48, + "probability": 0.9548 + }, + { + "start": 2431.84, + "end": 2432.32, + "probability": 0.7388 + }, + { + "start": 2432.88, + "end": 2435.26, + "probability": 0.9927 + }, + { + "start": 2436.5, + "end": 2436.86, + "probability": 0.745 + }, + { + "start": 2438.16, + "end": 2439.62, + "probability": 0.6016 + }, + { + "start": 2440.68, + "end": 2442.2, + "probability": 0.96 + }, + { + "start": 2443.08, + "end": 2445.54, + "probability": 0.9972 + }, + { + "start": 2446.84, + "end": 2452.84, + "probability": 0.9966 + }, + { + "start": 2453.96, + "end": 2455.96, + "probability": 0.8862 + }, + { + "start": 2456.72, + "end": 2457.28, + "probability": 0.6113 + }, + { + "start": 2457.8, + "end": 2459.66, + "probability": 0.9953 + }, + { + "start": 2460.38, + "end": 2464.12, + "probability": 0.9893 + }, + { + "start": 2464.98, + "end": 2469.04, + "probability": 0.9836 + }, + { + "start": 2470.32, + "end": 2471.92, + "probability": 0.9681 + }, + { + "start": 2472.68, + "end": 2473.3, + "probability": 0.7864 + }, + { + "start": 2473.94, + "end": 2474.72, + "probability": 0.5395 + }, + { + "start": 2475.44, + "end": 2479.22, + "probability": 0.9975 + }, + { + "start": 2480.2, + "end": 2484.56, + "probability": 0.9937 + }, + { + "start": 2484.96, + "end": 2485.14, + "probability": 0.4438 + }, + { + "start": 2485.3, + "end": 2485.78, + "probability": 0.6694 + }, + { + "start": 2486.86, + "end": 2488.48, + "probability": 0.9673 + }, + { + "start": 2489.68, + "end": 2491.28, + "probability": 0.9319 + }, + { + "start": 2492.02, + "end": 2495.44, + "probability": 0.8802 + }, + { + "start": 2495.62, + "end": 2496.54, + "probability": 0.859 + }, + { + "start": 2496.74, + "end": 2497.82, + "probability": 0.8457 + }, + { + "start": 2498.66, + "end": 2501.6, + "probability": 0.946 + }, + { + "start": 2502.46, + "end": 2503.6, + "probability": 0.8798 + }, + { + "start": 2504.5, + "end": 2506.64, + "probability": 0.9908 + }, + { + "start": 2508.24, + "end": 2511.54, + "probability": 0.9981 + }, + { + "start": 2512.84, + "end": 2512.96, + "probability": 0.3882 + }, + { + "start": 2514.32, + "end": 2515.08, + "probability": 0.8292 + }, + { + "start": 2516.18, + "end": 2516.6, + "probability": 0.4694 + }, + { + "start": 2517.6, + "end": 2518.48, + "probability": 0.9534 + }, + { + "start": 2518.66, + "end": 2519.14, + "probability": 0.9505 + }, + { + "start": 2519.32, + "end": 2520.02, + "probability": 0.9693 + }, + { + "start": 2520.12, + "end": 2520.74, + "probability": 0.429 + }, + { + "start": 2521.04, + "end": 2525.5, + "probability": 0.9901 + }, + { + "start": 2526.02, + "end": 2527.38, + "probability": 0.9847 + }, + { + "start": 2527.8, + "end": 2532.7, + "probability": 0.9981 + }, + { + "start": 2533.06, + "end": 2536.4, + "probability": 0.9684 + }, + { + "start": 2536.52, + "end": 2537.66, + "probability": 0.8886 + }, + { + "start": 2538.34, + "end": 2539.64, + "probability": 0.9855 + }, + { + "start": 2540.28, + "end": 2542.78, + "probability": 0.9789 + }, + { + "start": 2543.24, + "end": 2546.08, + "probability": 0.8811 + }, + { + "start": 2546.48, + "end": 2548.12, + "probability": 0.6931 + }, + { + "start": 2548.92, + "end": 2551.38, + "probability": 0.9199 + }, + { + "start": 2552.21, + "end": 2553.98, + "probability": 0.9288 + }, + { + "start": 2554.08, + "end": 2555.66, + "probability": 0.9783 + }, + { + "start": 2556.0, + "end": 2557.88, + "probability": 0.9934 + }, + { + "start": 2558.66, + "end": 2560.36, + "probability": 0.897 + }, + { + "start": 2561.34, + "end": 2566.24, + "probability": 0.9832 + }, + { + "start": 2567.3, + "end": 2569.16, + "probability": 0.479 + }, + { + "start": 2569.94, + "end": 2571.3, + "probability": 0.95 + }, + { + "start": 2572.0, + "end": 2572.5, + "probability": 0.8443 + }, + { + "start": 2574.86, + "end": 2577.56, + "probability": 0.3332 + }, + { + "start": 2578.28, + "end": 2578.44, + "probability": 0.0426 + }, + { + "start": 2578.44, + "end": 2578.97, + "probability": 0.9257 + }, + { + "start": 2579.82, + "end": 2579.94, + "probability": 0.3109 + }, + { + "start": 2581.0, + "end": 2583.8, + "probability": 0.9849 + }, + { + "start": 2584.96, + "end": 2586.94, + "probability": 0.9772 + }, + { + "start": 2587.1, + "end": 2588.74, + "probability": 0.9256 + }, + { + "start": 2588.82, + "end": 2590.0, + "probability": 0.9078 + }, + { + "start": 2595.5, + "end": 2597.8, + "probability": 0.5225 + }, + { + "start": 2597.88, + "end": 2598.68, + "probability": 0.4903 + }, + { + "start": 2598.78, + "end": 2599.82, + "probability": 0.9908 + }, + { + "start": 2599.92, + "end": 2601.68, + "probability": 0.9356 + }, + { + "start": 2602.04, + "end": 2603.74, + "probability": 0.9951 + }, + { + "start": 2603.98, + "end": 2605.44, + "probability": 0.9705 + }, + { + "start": 2605.92, + "end": 2608.52, + "probability": 0.9909 + }, + { + "start": 2609.16, + "end": 2611.06, + "probability": 0.9995 + }, + { + "start": 2611.66, + "end": 2613.86, + "probability": 0.9811 + }, + { + "start": 2614.3, + "end": 2617.34, + "probability": 0.9868 + }, + { + "start": 2617.68, + "end": 2618.5, + "probability": 0.7795 + }, + { + "start": 2619.36, + "end": 2622.58, + "probability": 0.701 + }, + { + "start": 2633.88, + "end": 2635.76, + "probability": 0.6535 + }, + { + "start": 2636.54, + "end": 2636.84, + "probability": 0.4721 + }, + { + "start": 2637.75, + "end": 2641.92, + "probability": 0.8926 + }, + { + "start": 2643.5, + "end": 2645.74, + "probability": 0.9955 + }, + { + "start": 2647.4, + "end": 2649.52, + "probability": 0.7086 + }, + { + "start": 2649.72, + "end": 2650.22, + "probability": 0.9537 + }, + { + "start": 2650.28, + "end": 2653.07, + "probability": 0.9962 + }, + { + "start": 2653.56, + "end": 2655.02, + "probability": 0.5888 + }, + { + "start": 2655.36, + "end": 2656.08, + "probability": 0.0745 + }, + { + "start": 2656.34, + "end": 2656.58, + "probability": 0.1385 + }, + { + "start": 2656.58, + "end": 2656.58, + "probability": 0.141 + }, + { + "start": 2656.58, + "end": 2656.58, + "probability": 0.1193 + }, + { + "start": 2656.58, + "end": 2660.22, + "probability": 0.9033 + }, + { + "start": 2661.78, + "end": 2662.8, + "probability": 0.9124 + }, + { + "start": 2664.02, + "end": 2664.96, + "probability": 0.842 + }, + { + "start": 2665.32, + "end": 2666.92, + "probability": 0.8654 + }, + { + "start": 2667.62, + "end": 2668.94, + "probability": 0.915 + }, + { + "start": 2669.3, + "end": 2669.6, + "probability": 0.1306 + }, + { + "start": 2669.74, + "end": 2670.74, + "probability": 0.9712 + }, + { + "start": 2671.36, + "end": 2673.04, + "probability": 0.9941 + }, + { + "start": 2673.14, + "end": 2673.96, + "probability": 0.749 + }, + { + "start": 2674.04, + "end": 2674.84, + "probability": 0.9624 + }, + { + "start": 2677.62, + "end": 2678.6, + "probability": 0.0475 + }, + { + "start": 2678.6, + "end": 2678.62, + "probability": 0.1081 + }, + { + "start": 2678.62, + "end": 2678.62, + "probability": 0.0549 + }, + { + "start": 2678.62, + "end": 2678.62, + "probability": 0.036 + }, + { + "start": 2678.62, + "end": 2680.62, + "probability": 0.7793 + }, + { + "start": 2681.0, + "end": 2682.66, + "probability": 0.8945 + }, + { + "start": 2682.78, + "end": 2683.6, + "probability": 0.9732 + }, + { + "start": 2683.7, + "end": 2685.62, + "probability": 0.9218 + }, + { + "start": 2686.06, + "end": 2688.74, + "probability": 0.7568 + }, + { + "start": 2688.74, + "end": 2690.86, + "probability": 0.997 + }, + { + "start": 2691.32, + "end": 2691.32, + "probability": 0.0544 + }, + { + "start": 2691.32, + "end": 2693.12, + "probability": 0.6063 + }, + { + "start": 2693.2, + "end": 2695.44, + "probability": 0.8183 + }, + { + "start": 2695.58, + "end": 2696.28, + "probability": 0.6796 + }, + { + "start": 2696.34, + "end": 2697.58, + "probability": 0.7389 + }, + { + "start": 2697.6, + "end": 2698.58, + "probability": 0.7874 + }, + { + "start": 2698.98, + "end": 2701.06, + "probability": 0.6707 + }, + { + "start": 2701.16, + "end": 2701.48, + "probability": 0.8875 + }, + { + "start": 2701.54, + "end": 2703.46, + "probability": 0.8978 + }, + { + "start": 2703.56, + "end": 2704.26, + "probability": 0.6128 + }, + { + "start": 2704.3, + "end": 2704.54, + "probability": 0.5491 + }, + { + "start": 2704.62, + "end": 2705.28, + "probability": 0.869 + }, + { + "start": 2705.38, + "end": 2706.14, + "probability": 0.8879 + }, + { + "start": 2706.32, + "end": 2707.16, + "probability": 0.9651 + }, + { + "start": 2707.28, + "end": 2707.66, + "probability": 0.7753 + }, + { + "start": 2707.88, + "end": 2711.5, + "probability": 0.9624 + }, + { + "start": 2711.68, + "end": 2714.16, + "probability": 0.9285 + }, + { + "start": 2714.6, + "end": 2716.6, + "probability": 0.983 + }, + { + "start": 2716.64, + "end": 2718.3, + "probability": 0.7899 + }, + { + "start": 2718.9, + "end": 2724.84, + "probability": 0.5237 + }, + { + "start": 2725.58, + "end": 2727.82, + "probability": 0.9741 + }, + { + "start": 2728.44, + "end": 2729.28, + "probability": 0.9683 + }, + { + "start": 2729.4, + "end": 2732.0, + "probability": 0.8047 + }, + { + "start": 2733.18, + "end": 2735.86, + "probability": 0.981 + }, + { + "start": 2736.06, + "end": 2737.69, + "probability": 0.7458 + }, + { + "start": 2737.86, + "end": 2740.5, + "probability": 0.9799 + }, + { + "start": 2741.16, + "end": 2743.02, + "probability": 0.9016 + }, + { + "start": 2743.14, + "end": 2745.72, + "probability": 0.0351 + }, + { + "start": 2747.22, + "end": 2747.4, + "probability": 0.4776 + }, + { + "start": 2754.65, + "end": 2755.03, + "probability": 0.1559 + }, + { + "start": 2755.67, + "end": 2758.79, + "probability": 0.8132 + }, + { + "start": 2758.97, + "end": 2762.45, + "probability": 0.8823 + }, + { + "start": 2762.57, + "end": 2762.57, + "probability": 0.2293 + }, + { + "start": 2763.01, + "end": 2763.39, + "probability": 0.0845 + }, + { + "start": 2763.91, + "end": 2765.19, + "probability": 0.0254 + }, + { + "start": 2765.25, + "end": 2767.11, + "probability": 0.0463 + }, + { + "start": 2769.01, + "end": 2770.74, + "probability": 0.1979 + }, + { + "start": 2771.09, + "end": 2772.63, + "probability": 0.2359 + }, + { + "start": 2774.73, + "end": 2775.63, + "probability": 0.0866 + }, + { + "start": 2776.53, + "end": 2778.43, + "probability": 0.1907 + }, + { + "start": 2785.67, + "end": 2787.53, + "probability": 0.1055 + }, + { + "start": 2788.47, + "end": 2790.49, + "probability": 0.0605 + }, + { + "start": 2790.69, + "end": 2794.69, + "probability": 0.3074 + }, + { + "start": 2795.57, + "end": 2798.75, + "probability": 0.0799 + }, + { + "start": 2799.77, + "end": 2800.35, + "probability": 0.002 + }, + { + "start": 2800.73, + "end": 2801.85, + "probability": 0.0615 + }, + { + "start": 2802.73, + "end": 2805.29, + "probability": 0.2116 + }, + { + "start": 2807.89, + "end": 2807.99, + "probability": 0.0324 + }, + { + "start": 2808.61, + "end": 2811.13, + "probability": 0.0897 + }, + { + "start": 2811.13, + "end": 2812.47, + "probability": 0.2045 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.0, + "end": 2840.0, + "probability": 0.0 + }, + { + "start": 2840.18, + "end": 2840.18, + "probability": 0.0676 + }, + { + "start": 2840.18, + "end": 2840.18, + "probability": 0.0322 + }, + { + "start": 2840.18, + "end": 2842.02, + "probability": 0.3582 + }, + { + "start": 2843.26, + "end": 2843.88, + "probability": 0.7954 + }, + { + "start": 2846.18, + "end": 2847.48, + "probability": 0.8833 + }, + { + "start": 2847.56, + "end": 2848.46, + "probability": 0.9528 + }, + { + "start": 2848.6, + "end": 2849.68, + "probability": 0.9277 + }, + { + "start": 2851.75, + "end": 2855.0, + "probability": 0.4745 + }, + { + "start": 2855.6, + "end": 2857.32, + "probability": 0.3842 + }, + { + "start": 2858.2, + "end": 2858.94, + "probability": 0.4849 + }, + { + "start": 2860.0, + "end": 2861.9, + "probability": 0.772 + }, + { + "start": 2862.48, + "end": 2863.58, + "probability": 0.95 + }, + { + "start": 2863.7, + "end": 2864.64, + "probability": 0.8202 + }, + { + "start": 2864.8, + "end": 2865.86, + "probability": 0.8162 + }, + { + "start": 2866.42, + "end": 2867.68, + "probability": 0.9756 + }, + { + "start": 2869.14, + "end": 2870.06, + "probability": 0.9664 + }, + { + "start": 2870.22, + "end": 2871.38, + "probability": 0.7723 + }, + { + "start": 2871.44, + "end": 2872.36, + "probability": 0.4854 + }, + { + "start": 2874.02, + "end": 2876.53, + "probability": 0.9994 + }, + { + "start": 2877.32, + "end": 2878.26, + "probability": 0.8399 + }, + { + "start": 2879.76, + "end": 2882.5, + "probability": 0.9606 + }, + { + "start": 2883.28, + "end": 2885.18, + "probability": 0.9614 + }, + { + "start": 2886.16, + "end": 2891.2, + "probability": 0.9724 + }, + { + "start": 2892.8, + "end": 2894.18, + "probability": 0.98 + }, + { + "start": 2895.62, + "end": 2897.06, + "probability": 0.9842 + }, + { + "start": 2897.8, + "end": 2899.46, + "probability": 0.9724 + }, + { + "start": 2899.6, + "end": 2903.1, + "probability": 0.8471 + }, + { + "start": 2903.72, + "end": 2905.24, + "probability": 0.999 + }, + { + "start": 2906.88, + "end": 2909.18, + "probability": 0.9932 + }, + { + "start": 2909.8, + "end": 2910.48, + "probability": 0.6937 + }, + { + "start": 2911.58, + "end": 2914.42, + "probability": 0.8247 + }, + { + "start": 2915.7, + "end": 2916.6, + "probability": 0.9805 + }, + { + "start": 2918.1, + "end": 2918.98, + "probability": 0.9966 + }, + { + "start": 2920.4, + "end": 2922.22, + "probability": 0.9801 + }, + { + "start": 2922.3, + "end": 2923.94, + "probability": 0.9959 + }, + { + "start": 2924.8, + "end": 2926.92, + "probability": 0.9974 + }, + { + "start": 2928.4, + "end": 2930.64, + "probability": 0.9994 + }, + { + "start": 2931.86, + "end": 2932.92, + "probability": 0.8642 + }, + { + "start": 2933.34, + "end": 2934.3, + "probability": 0.7178 + }, + { + "start": 2934.4, + "end": 2936.0, + "probability": 0.859 + }, + { + "start": 2936.62, + "end": 2937.88, + "probability": 0.998 + }, + { + "start": 2938.16, + "end": 2939.51, + "probability": 0.7273 + }, + { + "start": 2940.18, + "end": 2941.74, + "probability": 0.9327 + }, + { + "start": 2942.56, + "end": 2944.26, + "probability": 0.1921 + }, + { + "start": 2944.44, + "end": 2944.92, + "probability": 0.4251 + }, + { + "start": 2944.92, + "end": 2946.82, + "probability": 0.4654 + }, + { + "start": 2947.2, + "end": 2950.36, + "probability": 0.874 + }, + { + "start": 2950.83, + "end": 2954.14, + "probability": 0.495 + }, + { + "start": 2954.3, + "end": 2955.6, + "probability": 0.3121 + }, + { + "start": 2955.68, + "end": 2956.32, + "probability": 0.0086 + }, + { + "start": 2958.0, + "end": 2958.98, + "probability": 0.4847 + }, + { + "start": 2958.98, + "end": 2960.98, + "probability": 0.3436 + }, + { + "start": 2962.04, + "end": 2964.17, + "probability": 0.8521 + }, + { + "start": 2964.56, + "end": 2967.16, + "probability": 0.8943 + }, + { + "start": 2967.78, + "end": 2968.8, + "probability": 0.8132 + }, + { + "start": 2969.18, + "end": 2970.3, + "probability": 0.9688 + }, + { + "start": 2971.38, + "end": 2973.54, + "probability": 0.1894 + }, + { + "start": 2974.14, + "end": 2975.84, + "probability": 0.7272 + }, + { + "start": 2976.16, + "end": 2980.04, + "probability": 0.7929 + }, + { + "start": 2980.48, + "end": 2982.66, + "probability": 0.6584 + }, + { + "start": 2982.8, + "end": 2985.04, + "probability": 0.4752 + }, + { + "start": 2985.28, + "end": 2986.26, + "probability": 0.9014 + }, + { + "start": 2986.3, + "end": 2991.44, + "probability": 0.0892 + }, + { + "start": 2991.44, + "end": 2993.26, + "probability": 0.0699 + }, + { + "start": 2993.38, + "end": 2994.64, + "probability": 0.2492 + }, + { + "start": 2994.64, + "end": 2995.5, + "probability": 0.0568 + }, + { + "start": 2995.5, + "end": 2995.96, + "probability": 0.0257 + }, + { + "start": 2996.82, + "end": 2996.92, + "probability": 0.0425 + }, + { + "start": 2997.9, + "end": 2997.9, + "probability": 0.088 + }, + { + "start": 2997.99, + "end": 3000.4, + "probability": 0.0839 + }, + { + "start": 3000.56, + "end": 3001.86, + "probability": 0.0629 + }, + { + "start": 3005.66, + "end": 3007.24, + "probability": 0.1364 + }, + { + "start": 3007.84, + "end": 3007.84, + "probability": 0.2593 + }, + { + "start": 3007.84, + "end": 3009.56, + "probability": 0.3843 + }, + { + "start": 3009.56, + "end": 3010.86, + "probability": 0.5111 + }, + { + "start": 3010.86, + "end": 3011.18, + "probability": 0.1194 + }, + { + "start": 3015.32, + "end": 3016.34, + "probability": 0.0033 + }, + { + "start": 3016.34, + "end": 3016.34, + "probability": 0.0248 + }, + { + "start": 3016.34, + "end": 3016.94, + "probability": 0.1245 + }, + { + "start": 3017.08, + "end": 3019.76, + "probability": 0.0874 + }, + { + "start": 3021.07, + "end": 3023.38, + "probability": 0.1816 + }, + { + "start": 3023.38, + "end": 3023.88, + "probability": 0.0876 + }, + { + "start": 3023.88, + "end": 3028.21, + "probability": 0.039 + }, + { + "start": 3031.58, + "end": 3035.5, + "probability": 0.086 + }, + { + "start": 3036.58, + "end": 3039.18, + "probability": 0.0486 + }, + { + "start": 3039.18, + "end": 3039.18, + "probability": 0.0474 + }, + { + "start": 3039.18, + "end": 3039.18, + "probability": 0.0771 + }, + { + "start": 3039.34, + "end": 3039.44, + "probability": 0.4395 + }, + { + "start": 3046.0, + "end": 3046.0, + "probability": 0.0 + }, + { + "start": 3046.0, + "end": 3046.0, + "probability": 0.0 + }, + { + "start": 3046.18, + "end": 3046.56, + "probability": 0.0767 + }, + { + "start": 3046.56, + "end": 3046.56, + "probability": 0.0458 + }, + { + "start": 3046.56, + "end": 3046.56, + "probability": 0.3245 + }, + { + "start": 3046.56, + "end": 3046.56, + "probability": 0.1548 + }, + { + "start": 3046.56, + "end": 3046.56, + "probability": 0.2608 + }, + { + "start": 3046.56, + "end": 3047.28, + "probability": 0.1322 + }, + { + "start": 3047.48, + "end": 3049.5, + "probability": 0.5803 + }, + { + "start": 3049.94, + "end": 3053.64, + "probability": 0.9399 + }, + { + "start": 3054.5, + "end": 3055.88, + "probability": 0.9844 + }, + { + "start": 3055.98, + "end": 3057.48, + "probability": 0.7725 + }, + { + "start": 3058.58, + "end": 3062.04, + "probability": 0.9529 + }, + { + "start": 3062.84, + "end": 3064.21, + "probability": 0.9819 + }, + { + "start": 3065.26, + "end": 3066.34, + "probability": 0.9293 + }, + { + "start": 3067.02, + "end": 3069.08, + "probability": 0.9883 + }, + { + "start": 3069.36, + "end": 3070.48, + "probability": 0.9477 + }, + { + "start": 3071.04, + "end": 3073.18, + "probability": 0.8055 + }, + { + "start": 3074.32, + "end": 3075.78, + "probability": 0.9946 + }, + { + "start": 3076.1, + "end": 3080.1, + "probability": 0.9766 + }, + { + "start": 3081.08, + "end": 3082.28, + "probability": 0.7721 + }, + { + "start": 3082.36, + "end": 3082.6, + "probability": 0.7159 + }, + { + "start": 3083.06, + "end": 3083.66, + "probability": 0.9065 + }, + { + "start": 3083.9, + "end": 3085.84, + "probability": 0.989 + }, + { + "start": 3086.78, + "end": 3091.3, + "probability": 0.8882 + }, + { + "start": 3092.0, + "end": 3097.58, + "probability": 0.9895 + }, + { + "start": 3098.74, + "end": 3099.26, + "probability": 0.9722 + }, + { + "start": 3102.2, + "end": 3106.0, + "probability": 0.6925 + }, + { + "start": 3106.54, + "end": 3108.26, + "probability": 0.5822 + }, + { + "start": 3108.78, + "end": 3110.2, + "probability": 0.5878 + }, + { + "start": 3110.2, + "end": 3111.52, + "probability": 0.418 + }, + { + "start": 3111.92, + "end": 3112.56, + "probability": 0.6612 + }, + { + "start": 3113.4, + "end": 3114.54, + "probability": 0.8447 + }, + { + "start": 3115.24, + "end": 3117.76, + "probability": 0.8896 + }, + { + "start": 3117.82, + "end": 3121.32, + "probability": 0.8626 + }, + { + "start": 3121.9, + "end": 3122.5, + "probability": 0.1943 + }, + { + "start": 3122.62, + "end": 3124.38, + "probability": 0.626 + }, + { + "start": 3124.6, + "end": 3126.41, + "probability": 0.9873 + }, + { + "start": 3127.42, + "end": 3128.54, + "probability": 0.6479 + }, + { + "start": 3128.66, + "end": 3131.92, + "probability": 0.8518 + }, + { + "start": 3132.72, + "end": 3135.29, + "probability": 0.9414 + }, + { + "start": 3136.16, + "end": 3140.14, + "probability": 0.8462 + }, + { + "start": 3140.66, + "end": 3142.7, + "probability": 0.9697 + }, + { + "start": 3143.14, + "end": 3145.34, + "probability": 0.9922 + }, + { + "start": 3146.06, + "end": 3148.7, + "probability": 0.9943 + }, + { + "start": 3150.04, + "end": 3154.94, + "probability": 0.9747 + }, + { + "start": 3156.32, + "end": 3156.46, + "probability": 0.8416 + }, + { + "start": 3157.4, + "end": 3161.18, + "probability": 0.9961 + }, + { + "start": 3161.98, + "end": 3164.62, + "probability": 0.5159 + }, + { + "start": 3165.3, + "end": 3169.69, + "probability": 0.622 + }, + { + "start": 3170.5, + "end": 3171.78, + "probability": 0.9532 + }, + { + "start": 3172.26, + "end": 3173.68, + "probability": 0.9873 + }, + { + "start": 3174.06, + "end": 3175.74, + "probability": 0.9795 + }, + { + "start": 3176.0, + "end": 3178.6, + "probability": 0.8613 + }, + { + "start": 3178.96, + "end": 3180.98, + "probability": 0.9836 + }, + { + "start": 3181.5, + "end": 3183.78, + "probability": 0.9719 + }, + { + "start": 3184.24, + "end": 3184.78, + "probability": 0.9527 + }, + { + "start": 3185.48, + "end": 3187.84, + "probability": 0.9601 + }, + { + "start": 3189.4, + "end": 3192.84, + "probability": 0.998 + }, + { + "start": 3193.02, + "end": 3193.96, + "probability": 0.9249 + }, + { + "start": 3194.38, + "end": 3197.5, + "probability": 0.1539 + }, + { + "start": 3197.64, + "end": 3199.9, + "probability": 0.3743 + }, + { + "start": 3200.38, + "end": 3202.82, + "probability": 0.9945 + }, + { + "start": 3203.66, + "end": 3204.66, + "probability": 0.8702 + }, + { + "start": 3205.22, + "end": 3209.68, + "probability": 0.9344 + }, + { + "start": 3211.26, + "end": 3211.44, + "probability": 0.9429 + }, + { + "start": 3212.48, + "end": 3213.72, + "probability": 0.7065 + }, + { + "start": 3214.14, + "end": 3216.12, + "probability": 0.8681 + }, + { + "start": 3216.6, + "end": 3217.8, + "probability": 0.8229 + }, + { + "start": 3218.28, + "end": 3223.6, + "probability": 0.9945 + }, + { + "start": 3223.94, + "end": 3224.94, + "probability": 0.5242 + }, + { + "start": 3224.94, + "end": 3226.32, + "probability": 0.5956 + }, + { + "start": 3239.42, + "end": 3239.74, + "probability": 0.835 + }, + { + "start": 3241.06, + "end": 3241.82, + "probability": 0.0875 + }, + { + "start": 3242.3, + "end": 3244.84, + "probability": 0.2674 + }, + { + "start": 3244.84, + "end": 3244.84, + "probability": 0.0137 + }, + { + "start": 3244.9, + "end": 3245.6, + "probability": 0.1351 + }, + { + "start": 3245.6, + "end": 3245.7, + "probability": 0.224 + }, + { + "start": 3246.22, + "end": 3247.56, + "probability": 0.0356 + }, + { + "start": 3249.14, + "end": 3249.44, + "probability": 0.0281 + }, + { + "start": 3250.38, + "end": 3250.92, + "probability": 0.0537 + }, + { + "start": 3251.42, + "end": 3251.42, + "probability": 0.0312 + }, + { + "start": 3251.42, + "end": 3251.42, + "probability": 0.0446 + }, + { + "start": 3251.42, + "end": 3251.42, + "probability": 0.0935 + }, + { + "start": 3251.42, + "end": 3251.42, + "probability": 0.2755 + }, + { + "start": 3251.42, + "end": 3251.42, + "probability": 0.5566 + }, + { + "start": 3251.42, + "end": 3252.2, + "probability": 0.0404 + }, + { + "start": 3255.1, + "end": 3255.76, + "probability": 0.8136 + }, + { + "start": 3259.44, + "end": 3260.78, + "probability": 0.6896 + }, + { + "start": 3260.86, + "end": 3261.72, + "probability": 0.6569 + }, + { + "start": 3262.02, + "end": 3266.56, + "probability": 0.9889 + }, + { + "start": 3266.56, + "end": 3269.4, + "probability": 0.985 + }, + { + "start": 3270.06, + "end": 3276.6, + "probability": 0.9886 + }, + { + "start": 3276.6, + "end": 3277.34, + "probability": 0.3557 + }, + { + "start": 3277.48, + "end": 3278.02, + "probability": 0.5837 + }, + { + "start": 3278.48, + "end": 3279.22, + "probability": 0.9678 + }, + { + "start": 3279.32, + "end": 3280.74, + "probability": 0.9726 + }, + { + "start": 3280.86, + "end": 3282.96, + "probability": 0.9306 + }, + { + "start": 3283.14, + "end": 3284.74, + "probability": 0.791 + }, + { + "start": 3285.06, + "end": 3289.86, + "probability": 0.9883 + }, + { + "start": 3291.14, + "end": 3293.98, + "probability": 0.9889 + }, + { + "start": 3294.72, + "end": 3300.34, + "probability": 0.9987 + }, + { + "start": 3301.4, + "end": 3304.38, + "probability": 0.9907 + }, + { + "start": 3304.62, + "end": 3306.28, + "probability": 0.925 + }, + { + "start": 3306.9, + "end": 3308.46, + "probability": 0.7378 + }, + { + "start": 3309.1, + "end": 3313.32, + "probability": 0.9655 + }, + { + "start": 3314.26, + "end": 3316.34, + "probability": 0.6842 + }, + { + "start": 3316.48, + "end": 3319.46, + "probability": 0.9915 + }, + { + "start": 3320.34, + "end": 3323.71, + "probability": 0.8177 + }, + { + "start": 3324.84, + "end": 3325.06, + "probability": 0.3058 + }, + { + "start": 3325.06, + "end": 3329.02, + "probability": 0.9014 + }, + { + "start": 3329.2, + "end": 3331.44, + "probability": 0.9721 + }, + { + "start": 3332.04, + "end": 3333.6, + "probability": 0.7876 + }, + { + "start": 3334.26, + "end": 3337.5, + "probability": 0.6054 + }, + { + "start": 3337.86, + "end": 3342.32, + "probability": 0.9882 + }, + { + "start": 3342.9, + "end": 3344.28, + "probability": 0.9338 + }, + { + "start": 3344.38, + "end": 3346.6, + "probability": 0.9771 + }, + { + "start": 3347.44, + "end": 3349.88, + "probability": 0.9924 + }, + { + "start": 3350.58, + "end": 3353.36, + "probability": 0.9971 + }, + { + "start": 3353.36, + "end": 3356.62, + "probability": 0.9775 + }, + { + "start": 3357.16, + "end": 3359.79, + "probability": 0.9905 + }, + { + "start": 3359.94, + "end": 3361.38, + "probability": 0.7517 + }, + { + "start": 3361.56, + "end": 3363.36, + "probability": 0.9426 + }, + { + "start": 3363.9, + "end": 3369.34, + "probability": 0.9829 + }, + { + "start": 3369.68, + "end": 3375.3, + "probability": 0.9854 + }, + { + "start": 3375.7, + "end": 3380.5, + "probability": 0.9896 + }, + { + "start": 3380.82, + "end": 3386.4, + "probability": 0.9968 + }, + { + "start": 3387.05, + "end": 3388.64, + "probability": 0.9663 + }, + { + "start": 3388.7, + "end": 3390.4, + "probability": 0.9949 + }, + { + "start": 3390.84, + "end": 3394.32, + "probability": 0.8659 + }, + { + "start": 3394.32, + "end": 3395.22, + "probability": 0.4196 + }, + { + "start": 3395.8, + "end": 3397.18, + "probability": 0.5144 + }, + { + "start": 3398.84, + "end": 3400.52, + "probability": 0.0867 + }, + { + "start": 3400.6, + "end": 3400.6, + "probability": 0.0065 + }, + { + "start": 3400.6, + "end": 3400.74, + "probability": 0.0863 + }, + { + "start": 3400.74, + "end": 3401.46, + "probability": 0.3329 + }, + { + "start": 3401.9, + "end": 3401.9, + "probability": 0.0354 + }, + { + "start": 3401.9, + "end": 3402.86, + "probability": 0.7408 + }, + { + "start": 3403.44, + "end": 3403.88, + "probability": 0.1841 + }, + { + "start": 3403.88, + "end": 3406.32, + "probability": 0.915 + }, + { + "start": 3406.32, + "end": 3410.72, + "probability": 0.7063 + }, + { + "start": 3411.1, + "end": 3411.32, + "probability": 0.7611 + }, + { + "start": 3412.26, + "end": 3412.64, + "probability": 0.1029 + }, + { + "start": 3412.64, + "end": 3417.48, + "probability": 0.9757 + }, + { + "start": 3417.78, + "end": 3417.78, + "probability": 0.0475 + }, + { + "start": 3417.78, + "end": 3418.46, + "probability": 0.9207 + }, + { + "start": 3418.86, + "end": 3419.8, + "probability": 0.9605 + }, + { + "start": 3419.94, + "end": 3422.96, + "probability": 0.923 + }, + { + "start": 3423.44, + "end": 3425.12, + "probability": 0.7868 + }, + { + "start": 3425.96, + "end": 3428.52, + "probability": 0.9917 + }, + { + "start": 3428.94, + "end": 3433.72, + "probability": 0.8784 + }, + { + "start": 3434.06, + "end": 3434.72, + "probability": 0.9766 + }, + { + "start": 3435.04, + "end": 3437.18, + "probability": 0.9027 + }, + { + "start": 3437.98, + "end": 3439.26, + "probability": 0.9333 + }, + { + "start": 3440.36, + "end": 3440.88, + "probability": 0.4836 + }, + { + "start": 3441.48, + "end": 3441.78, + "probability": 0.7977 + }, + { + "start": 3441.8, + "end": 3442.28, + "probability": 0.796 + }, + { + "start": 3442.4, + "end": 3442.64, + "probability": 0.9507 + }, + { + "start": 3442.72, + "end": 3443.78, + "probability": 0.7668 + }, + { + "start": 3443.84, + "end": 3444.2, + "probability": 0.9263 + }, + { + "start": 3444.4, + "end": 3446.35, + "probability": 0.9941 + }, + { + "start": 3446.54, + "end": 3448.8, + "probability": 0.827 + }, + { + "start": 3449.54, + "end": 3452.58, + "probability": 0.998 + }, + { + "start": 3452.58, + "end": 3455.96, + "probability": 0.953 + }, + { + "start": 3456.38, + "end": 3463.44, + "probability": 0.9732 + }, + { + "start": 3463.46, + "end": 3463.6, + "probability": 0.4834 + }, + { + "start": 3463.63, + "end": 3463.7, + "probability": 0.1889 + }, + { + "start": 3463.7, + "end": 3463.8, + "probability": 0.1749 + }, + { + "start": 3463.8, + "end": 3463.98, + "probability": 0.0851 + }, + { + "start": 3464.12, + "end": 3465.6, + "probability": 0.7235 + }, + { + "start": 3465.66, + "end": 3468.83, + "probability": 0.9871 + }, + { + "start": 3468.9, + "end": 3472.5, + "probability": 0.9858 + }, + { + "start": 3472.52, + "end": 3473.08, + "probability": 0.6078 + }, + { + "start": 3473.64, + "end": 3473.76, + "probability": 0.4114 + }, + { + "start": 3473.76, + "end": 3473.76, + "probability": 0.225 + }, + { + "start": 3473.76, + "end": 3473.76, + "probability": 0.5889 + }, + { + "start": 3473.76, + "end": 3475.24, + "probability": 0.7015 + }, + { + "start": 3475.82, + "end": 3476.54, + "probability": 0.6976 + }, + { + "start": 3476.76, + "end": 3477.56, + "probability": 0.9444 + }, + { + "start": 3477.68, + "end": 3481.14, + "probability": 0.7478 + }, + { + "start": 3481.18, + "end": 3481.91, + "probability": 0.5462 + }, + { + "start": 3482.62, + "end": 3482.92, + "probability": 0.6204 + }, + { + "start": 3482.94, + "end": 3483.4, + "probability": 0.6008 + }, + { + "start": 3483.42, + "end": 3484.18, + "probability": 0.8671 + }, + { + "start": 3484.62, + "end": 3488.66, + "probability": 0.9906 + }, + { + "start": 3488.94, + "end": 3490.64, + "probability": 0.8389 + }, + { + "start": 3490.91, + "end": 3491.88, + "probability": 0.0325 + }, + { + "start": 3491.88, + "end": 3493.5, + "probability": 0.9843 + }, + { + "start": 3494.04, + "end": 3495.12, + "probability": 0.6351 + }, + { + "start": 3495.5, + "end": 3498.24, + "probability": 0.7444 + }, + { + "start": 3498.4, + "end": 3499.32, + "probability": 0.4021 + }, + { + "start": 3499.88, + "end": 3502.94, + "probability": 0.8215 + }, + { + "start": 3503.06, + "end": 3503.76, + "probability": 0.8052 + }, + { + "start": 3503.96, + "end": 3506.68, + "probability": 0.9859 + }, + { + "start": 3507.02, + "end": 3509.52, + "probability": 0.2279 + }, + { + "start": 3510.72, + "end": 3510.82, + "probability": 0.1454 + }, + { + "start": 3510.82, + "end": 3513.82, + "probability": 0.8137 + }, + { + "start": 3514.4, + "end": 3516.28, + "probability": 0.5066 + }, + { + "start": 3516.28, + "end": 3516.88, + "probability": 0.8429 + }, + { + "start": 3520.3, + "end": 3521.86, + "probability": 0.6259 + }, + { + "start": 3521.96, + "end": 3525.52, + "probability": 0.8534 + }, + { + "start": 3526.08, + "end": 3526.82, + "probability": 0.9629 + }, + { + "start": 3526.86, + "end": 3527.14, + "probability": 0.7105 + }, + { + "start": 3527.14, + "end": 3527.3, + "probability": 0.5688 + }, + { + "start": 3527.46, + "end": 3527.8, + "probability": 0.9103 + }, + { + "start": 3527.86, + "end": 3528.48, + "probability": 0.7875 + }, + { + "start": 3529.13, + "end": 3534.82, + "probability": 0.4389 + }, + { + "start": 3534.82, + "end": 3534.82, + "probability": 0.0514 + }, + { + "start": 3534.82, + "end": 3535.22, + "probability": 0.4973 + }, + { + "start": 3535.24, + "end": 3536.34, + "probability": 0.9753 + }, + { + "start": 3536.5, + "end": 3542.02, + "probability": 0.9943 + }, + { + "start": 3542.44, + "end": 3545.28, + "probability": 0.9966 + }, + { + "start": 3545.58, + "end": 3546.5, + "probability": 0.8124 + }, + { + "start": 3546.84, + "end": 3548.15, + "probability": 0.979 + }, + { + "start": 3548.54, + "end": 3553.46, + "probability": 0.9636 + }, + { + "start": 3554.26, + "end": 3555.02, + "probability": 0.6714 + }, + { + "start": 3555.04, + "end": 3555.8, + "probability": 0.8414 + }, + { + "start": 3556.0, + "end": 3557.02, + "probability": 0.6483 + }, + { + "start": 3557.08, + "end": 3559.5, + "probability": 0.9619 + }, + { + "start": 3559.62, + "end": 3560.08, + "probability": 0.5097 + }, + { + "start": 3560.6, + "end": 3564.86, + "probability": 0.9738 + }, + { + "start": 3566.02, + "end": 3566.88, + "probability": 0.7547 + }, + { + "start": 3567.34, + "end": 3568.78, + "probability": 0.9878 + }, + { + "start": 3568.94, + "end": 3569.18, + "probability": 0.5779 + }, + { + "start": 3569.44, + "end": 3569.86, + "probability": 0.6401 + }, + { + "start": 3570.26, + "end": 3571.32, + "probability": 0.9701 + }, + { + "start": 3571.84, + "end": 3573.86, + "probability": 0.9102 + }, + { + "start": 3574.02, + "end": 3577.22, + "probability": 0.9929 + }, + { + "start": 3577.9, + "end": 3579.94, + "probability": 0.7964 + }, + { + "start": 3580.62, + "end": 3582.24, + "probability": 0.9795 + }, + { + "start": 3582.36, + "end": 3582.94, + "probability": 0.7383 + }, + { + "start": 3583.04, + "end": 3583.8, + "probability": 0.6996 + }, + { + "start": 3584.16, + "end": 3584.72, + "probability": 0.9662 + }, + { + "start": 3585.32, + "end": 3585.72, + "probability": 0.6384 + }, + { + "start": 3586.28, + "end": 3588.66, + "probability": 0.8248 + }, + { + "start": 3588.88, + "end": 3591.24, + "probability": 0.838 + }, + { + "start": 3592.02, + "end": 3596.36, + "probability": 0.9375 + }, + { + "start": 3596.42, + "end": 3597.68, + "probability": 0.9644 + }, + { + "start": 3598.18, + "end": 3601.96, + "probability": 0.9746 + }, + { + "start": 3602.56, + "end": 3604.78, + "probability": 0.9487 + }, + { + "start": 3605.3, + "end": 3605.86, + "probability": 0.5776 + }, + { + "start": 3606.26, + "end": 3606.86, + "probability": 0.9414 + }, + { + "start": 3607.06, + "end": 3608.4, + "probability": 0.8007 + }, + { + "start": 3608.5, + "end": 3609.52, + "probability": 0.9731 + }, + { + "start": 3609.86, + "end": 3610.94, + "probability": 0.8284 + }, + { + "start": 3611.26, + "end": 3612.0, + "probability": 0.7752 + }, + { + "start": 3612.06, + "end": 3614.42, + "probability": 0.9561 + }, + { + "start": 3614.48, + "end": 3615.46, + "probability": 0.7589 + }, + { + "start": 3615.52, + "end": 3617.08, + "probability": 0.9622 + }, + { + "start": 3617.14, + "end": 3618.34, + "probability": 0.9354 + }, + { + "start": 3618.68, + "end": 3619.72, + "probability": 0.7698 + }, + { + "start": 3619.86, + "end": 3622.84, + "probability": 0.7704 + }, + { + "start": 3623.98, + "end": 3624.7, + "probability": 0.4788 + }, + { + "start": 3625.26, + "end": 3628.34, + "probability": 0.9514 + }, + { + "start": 3628.86, + "end": 3631.64, + "probability": 0.9523 + }, + { + "start": 3632.2, + "end": 3636.3, + "probability": 0.9743 + }, + { + "start": 3636.36, + "end": 3638.04, + "probability": 0.9767 + }, + { + "start": 3638.26, + "end": 3639.82, + "probability": 0.9661 + }, + { + "start": 3640.82, + "end": 3641.96, + "probability": 0.7513 + }, + { + "start": 3642.2, + "end": 3643.9, + "probability": 0.9493 + }, + { + "start": 3644.06, + "end": 3644.6, + "probability": 0.6109 + }, + { + "start": 3644.72, + "end": 3647.04, + "probability": 0.973 + }, + { + "start": 3647.46, + "end": 3649.88, + "probability": 0.9885 + }, + { + "start": 3650.3, + "end": 3654.46, + "probability": 0.7758 + }, + { + "start": 3654.6, + "end": 3655.66, + "probability": 0.7512 + }, + { + "start": 3656.38, + "end": 3659.12, + "probability": 0.9819 + }, + { + "start": 3659.2, + "end": 3660.34, + "probability": 0.9286 + }, + { + "start": 3660.46, + "end": 3661.14, + "probability": 0.4975 + }, + { + "start": 3662.28, + "end": 3666.68, + "probability": 0.9855 + }, + { + "start": 3667.62, + "end": 3669.02, + "probability": 0.8564 + }, + { + "start": 3669.9, + "end": 3672.5, + "probability": 0.9966 + }, + { + "start": 3673.02, + "end": 3675.4, + "probability": 0.9432 + }, + { + "start": 3676.12, + "end": 3677.52, + "probability": 0.9465 + }, + { + "start": 3678.46, + "end": 3682.04, + "probability": 0.9677 + }, + { + "start": 3682.1, + "end": 3684.14, + "probability": 0.9768 + }, + { + "start": 3686.74, + "end": 3687.96, + "probability": 0.2305 + }, + { + "start": 3688.98, + "end": 3691.42, + "probability": 0.9972 + }, + { + "start": 3691.56, + "end": 3693.88, + "probability": 0.9917 + }, + { + "start": 3694.36, + "end": 3697.92, + "probability": 0.9889 + }, + { + "start": 3698.38, + "end": 3698.92, + "probability": 0.9808 + }, + { + "start": 3699.9, + "end": 3701.24, + "probability": 0.9166 + }, + { + "start": 3701.64, + "end": 3703.94, + "probability": 0.1149 + }, + { + "start": 3703.94, + "end": 3707.2, + "probability": 0.8038 + }, + { + "start": 3707.74, + "end": 3710.52, + "probability": 0.9856 + }, + { + "start": 3711.02, + "end": 3711.56, + "probability": 0.7745 + }, + { + "start": 3712.04, + "end": 3716.16, + "probability": 0.9822 + }, + { + "start": 3716.44, + "end": 3717.44, + "probability": 0.9365 + }, + { + "start": 3717.86, + "end": 3718.54, + "probability": 0.9679 + }, + { + "start": 3719.48, + "end": 3720.18, + "probability": 0.7433 + }, + { + "start": 3720.66, + "end": 3723.42, + "probability": 0.8933 + }, + { + "start": 3723.44, + "end": 3724.22, + "probability": 0.6841 + }, + { + "start": 3724.6, + "end": 3725.02, + "probability": 0.7433 + }, + { + "start": 3725.06, + "end": 3726.84, + "probability": 0.9366 + }, + { + "start": 3727.24, + "end": 3731.7, + "probability": 0.8179 + }, + { + "start": 3734.24, + "end": 3734.24, + "probability": 0.188 + }, + { + "start": 3734.24, + "end": 3734.24, + "probability": 0.0178 + }, + { + "start": 3734.24, + "end": 3734.24, + "probability": 0.1249 + }, + { + "start": 3734.24, + "end": 3735.96, + "probability": 0.8791 + }, + { + "start": 3736.42, + "end": 3738.82, + "probability": 0.8923 + }, + { + "start": 3739.12, + "end": 3741.08, + "probability": 0.8999 + }, + { + "start": 3741.12, + "end": 3743.46, + "probability": 0.8686 + }, + { + "start": 3743.68, + "end": 3749.38, + "probability": 0.9346 + }, + { + "start": 3749.38, + "end": 3752.48, + "probability": 0.9936 + }, + { + "start": 3752.56, + "end": 3753.02, + "probability": 0.7521 + }, + { + "start": 3753.26, + "end": 3754.0, + "probability": 0.624 + }, + { + "start": 3754.02, + "end": 3755.48, + "probability": 0.9285 + }, + { + "start": 3772.0, + "end": 3773.13, + "probability": 0.8472 + }, + { + "start": 3774.82, + "end": 3777.32, + "probability": 0.7459 + }, + { + "start": 3779.92, + "end": 3782.3, + "probability": 0.9962 + }, + { + "start": 3782.44, + "end": 3782.74, + "probability": 0.4176 + }, + { + "start": 3783.2, + "end": 3785.12, + "probability": 0.8879 + }, + { + "start": 3785.22, + "end": 3786.2, + "probability": 0.8847 + }, + { + "start": 3786.64, + "end": 3787.84, + "probability": 0.9956 + }, + { + "start": 3788.82, + "end": 3790.04, + "probability": 0.9392 + }, + { + "start": 3791.48, + "end": 3792.42, + "probability": 0.9366 + }, + { + "start": 3793.38, + "end": 3797.7, + "probability": 0.96 + }, + { + "start": 3798.6, + "end": 3801.54, + "probability": 0.9804 + }, + { + "start": 3801.54, + "end": 3804.38, + "probability": 0.9604 + }, + { + "start": 3804.98, + "end": 3809.46, + "probability": 0.9776 + }, + { + "start": 3810.3, + "end": 3813.3, + "probability": 0.9967 + }, + { + "start": 3813.94, + "end": 3815.02, + "probability": 0.9436 + }, + { + "start": 3815.14, + "end": 3817.42, + "probability": 0.9019 + }, + { + "start": 3817.46, + "end": 3818.84, + "probability": 0.8379 + }, + { + "start": 3819.34, + "end": 3824.44, + "probability": 0.3168 + }, + { + "start": 3824.44, + "end": 3826.36, + "probability": 0.9029 + }, + { + "start": 3826.5, + "end": 3828.7, + "probability": 0.938 + }, + { + "start": 3829.48, + "end": 3832.32, + "probability": 0.9812 + }, + { + "start": 3833.97, + "end": 3840.38, + "probability": 0.9391 + }, + { + "start": 3840.48, + "end": 3842.74, + "probability": 0.8438 + }, + { + "start": 3842.9, + "end": 3847.1, + "probability": 0.9749 + }, + { + "start": 3847.6, + "end": 3850.7, + "probability": 0.0416 + }, + { + "start": 3850.7, + "end": 3850.7, + "probability": 0.6702 + }, + { + "start": 3850.7, + "end": 3854.12, + "probability": 0.2783 + }, + { + "start": 3855.0, + "end": 3855.74, + "probability": 0.8388 + }, + { + "start": 3856.42, + "end": 3860.84, + "probability": 0.9536 + }, + { + "start": 3861.48, + "end": 3864.7, + "probability": 0.0996 + }, + { + "start": 3864.98, + "end": 3865.16, + "probability": 0.0 + }, + { + "start": 3865.16, + "end": 3867.06, + "probability": 0.2314 + }, + { + "start": 3867.42, + "end": 3867.78, + "probability": 0.6055 + }, + { + "start": 3867.8, + "end": 3868.64, + "probability": 0.8166 + }, + { + "start": 3868.7, + "end": 3872.94, + "probability": 0.8139 + }, + { + "start": 3873.0, + "end": 3873.26, + "probability": 0.2623 + }, + { + "start": 3873.28, + "end": 3874.54, + "probability": 0.6344 + }, + { + "start": 3874.85, + "end": 3875.26, + "probability": 0.3637 + }, + { + "start": 3875.36, + "end": 3875.38, + "probability": 0.2149 + }, + { + "start": 3875.38, + "end": 3876.26, + "probability": 0.4345 + }, + { + "start": 3876.42, + "end": 3878.4, + "probability": 0.5808 + }, + { + "start": 3878.4, + "end": 3882.2, + "probability": 0.7066 + }, + { + "start": 3882.28, + "end": 3882.72, + "probability": 0.168 + }, + { + "start": 3882.72, + "end": 3884.14, + "probability": 0.4953 + }, + { + "start": 3884.84, + "end": 3886.2, + "probability": 0.4297 + }, + { + "start": 3886.2, + "end": 3891.26, + "probability": 0.9794 + }, + { + "start": 3891.26, + "end": 3893.38, + "probability": 0.8748 + }, + { + "start": 3894.02, + "end": 3895.47, + "probability": 0.9927 + }, + { + "start": 3895.84, + "end": 3896.24, + "probability": 0.1451 + }, + { + "start": 3896.6, + "end": 3897.36, + "probability": 0.0105 + }, + { + "start": 3898.46, + "end": 3898.5, + "probability": 0.3374 + }, + { + "start": 3899.08, + "end": 3905.68, + "probability": 0.3613 + }, + { + "start": 3906.38, + "end": 3911.1, + "probability": 0.3798 + }, + { + "start": 3912.86, + "end": 3915.22, + "probability": 0.8055 + }, + { + "start": 3919.07, + "end": 3923.47, + "probability": 0.1447 + }, + { + "start": 3925.32, + "end": 3928.92, + "probability": 0.0209 + }, + { + "start": 3929.16, + "end": 3929.88, + "probability": 0.2232 + }, + { + "start": 3931.42, + "end": 3936.16, + "probability": 0.1681 + }, + { + "start": 3936.8, + "end": 3939.4, + "probability": 0.0566 + }, + { + "start": 3941.65, + "end": 3944.84, + "probability": 0.0425 + }, + { + "start": 3944.84, + "end": 3948.64, + "probability": 0.0429 + }, + { + "start": 3948.68, + "end": 3952.06, + "probability": 0.0366 + }, + { + "start": 3952.06, + "end": 3952.46, + "probability": 0.2158 + }, + { + "start": 3952.94, + "end": 3954.96, + "probability": 0.0247 + }, + { + "start": 3954.98, + "end": 3957.88, + "probability": 0.046 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.0, + "end": 3958.0, + "probability": 0.0 + }, + { + "start": 3958.32, + "end": 3958.32, + "probability": 0.2889 + }, + { + "start": 3958.48, + "end": 3958.72, + "probability": 0.3639 + }, + { + "start": 3958.72, + "end": 3959.88, + "probability": 0.4559 + }, + { + "start": 3959.88, + "end": 3960.18, + "probability": 0.72 + }, + { + "start": 3960.18, + "end": 3961.34, + "probability": 0.4233 + }, + { + "start": 3961.4, + "end": 3961.84, + "probability": 0.7907 + }, + { + "start": 3961.94, + "end": 3967.0, + "probability": 0.5433 + }, + { + "start": 3968.34, + "end": 3969.46, + "probability": 0.1002 + }, + { + "start": 3969.52, + "end": 3970.13, + "probability": 0.1871 + }, + { + "start": 3971.51, + "end": 3973.38, + "probability": 0.1042 + }, + { + "start": 3973.38, + "end": 3973.44, + "probability": 0.0779 + }, + { + "start": 3973.44, + "end": 3973.44, + "probability": 0.1356 + }, + { + "start": 3973.44, + "end": 3974.56, + "probability": 0.3102 + }, + { + "start": 3975.34, + "end": 3975.6, + "probability": 0.326 + }, + { + "start": 3975.82, + "end": 3979.7, + "probability": 0.2146 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.0, + "end": 4098.0, + "probability": 0.0 + }, + { + "start": 4098.24, + "end": 4098.59, + "probability": 0.0254 + }, + { + "start": 4099.46, + "end": 4103.6, + "probability": 0.9941 + }, + { + "start": 4104.96, + "end": 4109.94, + "probability": 0.9058 + }, + { + "start": 4109.94, + "end": 4113.68, + "probability": 0.9665 + }, + { + "start": 4114.02, + "end": 4116.88, + "probability": 0.9952 + }, + { + "start": 4117.98, + "end": 4120.4, + "probability": 0.9707 + }, + { + "start": 4120.6, + "end": 4121.2, + "probability": 0.5843 + }, + { + "start": 4121.54, + "end": 4124.26, + "probability": 0.9298 + }, + { + "start": 4124.42, + "end": 4127.26, + "probability": 0.9035 + }, + { + "start": 4127.54, + "end": 4131.58, + "probability": 0.9293 + }, + { + "start": 4132.14, + "end": 4134.98, + "probability": 0.9862 + }, + { + "start": 4135.16, + "end": 4140.62, + "probability": 0.8449 + }, + { + "start": 4141.48, + "end": 4145.0, + "probability": 0.8894 + }, + { + "start": 4146.12, + "end": 4146.12, + "probability": 0.1555 + }, + { + "start": 4146.12, + "end": 4150.8, + "probability": 0.9787 + }, + { + "start": 4152.22, + "end": 4158.86, + "probability": 0.9754 + }, + { + "start": 4159.12, + "end": 4161.42, + "probability": 0.8934 + }, + { + "start": 4161.88, + "end": 4162.68, + "probability": 0.6763 + }, + { + "start": 4163.12, + "end": 4166.22, + "probability": 0.918 + }, + { + "start": 4166.3, + "end": 4169.2, + "probability": 0.9937 + }, + { + "start": 4169.74, + "end": 4172.84, + "probability": 0.9751 + }, + { + "start": 4172.84, + "end": 4176.2, + "probability": 0.981 + }, + { + "start": 4177.1, + "end": 4177.76, + "probability": 0.6577 + }, + { + "start": 4177.84, + "end": 4182.12, + "probability": 0.5056 + }, + { + "start": 4182.28, + "end": 4182.28, + "probability": 0.5135 + }, + { + "start": 4182.28, + "end": 4182.28, + "probability": 0.3398 + }, + { + "start": 4182.28, + "end": 4185.34, + "probability": 0.5395 + }, + { + "start": 4185.34, + "end": 4186.0, + "probability": 0.2442 + }, + { + "start": 4186.56, + "end": 4187.0, + "probability": 0.6977 + }, + { + "start": 4188.04, + "end": 4189.14, + "probability": 0.569 + }, + { + "start": 4201.48, + "end": 4203.2, + "probability": 0.685 + }, + { + "start": 4205.24, + "end": 4206.88, + "probability": 0.679 + }, + { + "start": 4208.6, + "end": 4212.88, + "probability": 0.936 + }, + { + "start": 4214.0, + "end": 4216.9, + "probability": 0.9859 + }, + { + "start": 4217.66, + "end": 4219.09, + "probability": 0.9574 + }, + { + "start": 4220.5, + "end": 4223.22, + "probability": 0.6672 + }, + { + "start": 4224.57, + "end": 4227.22, + "probability": 0.9868 + }, + { + "start": 4228.1, + "end": 4228.74, + "probability": 0.6525 + }, + { + "start": 4229.18, + "end": 4231.08, + "probability": 0.9482 + }, + { + "start": 4231.18, + "end": 4234.3, + "probability": 0.8991 + }, + { + "start": 4234.44, + "end": 4235.64, + "probability": 0.8271 + }, + { + "start": 4236.34, + "end": 4238.94, + "probability": 0.958 + }, + { + "start": 4239.74, + "end": 4243.26, + "probability": 0.9959 + }, + { + "start": 4245.04, + "end": 4249.7, + "probability": 0.9775 + }, + { + "start": 4249.7, + "end": 4253.26, + "probability": 0.9588 + }, + { + "start": 4254.26, + "end": 4257.84, + "probability": 0.8567 + }, + { + "start": 4259.68, + "end": 4261.72, + "probability": 0.9512 + }, + { + "start": 4261.94, + "end": 4264.84, + "probability": 0.981 + }, + { + "start": 4265.96, + "end": 4268.78, + "probability": 0.9792 + }, + { + "start": 4268.88, + "end": 4272.82, + "probability": 0.7736 + }, + { + "start": 4273.92, + "end": 4277.32, + "probability": 0.9961 + }, + { + "start": 4278.62, + "end": 4288.68, + "probability": 0.9383 + }, + { + "start": 4288.78, + "end": 4290.42, + "probability": 0.9059 + }, + { + "start": 4291.02, + "end": 4292.3, + "probability": 0.8972 + }, + { + "start": 4293.02, + "end": 4294.1, + "probability": 0.7584 + }, + { + "start": 4294.44, + "end": 4294.92, + "probability": 0.7584 + }, + { + "start": 4295.62, + "end": 4299.02, + "probability": 0.8833 + }, + { + "start": 4299.16, + "end": 4301.16, + "probability": 0.5762 + }, + { + "start": 4301.58, + "end": 4302.16, + "probability": 0.5037 + }, + { + "start": 4302.92, + "end": 4309.46, + "probability": 0.9894 + }, + { + "start": 4310.56, + "end": 4313.02, + "probability": 0.9849 + }, + { + "start": 4313.14, + "end": 4314.2, + "probability": 0.9736 + }, + { + "start": 4314.4, + "end": 4316.06, + "probability": 0.8019 + }, + { + "start": 4316.82, + "end": 4319.56, + "probability": 0.8661 + }, + { + "start": 4320.38, + "end": 4322.84, + "probability": 0.7863 + }, + { + "start": 4323.54, + "end": 4326.82, + "probability": 0.6336 + }, + { + "start": 4327.4, + "end": 4328.98, + "probability": 0.9341 + }, + { + "start": 4329.8, + "end": 4332.09, + "probability": 0.75 + }, + { + "start": 4333.02, + "end": 4333.78, + "probability": 0.0651 + }, + { + "start": 4334.3, + "end": 4336.94, + "probability": 0.9911 + }, + { + "start": 4337.96, + "end": 4338.72, + "probability": 0.4177 + }, + { + "start": 4338.9, + "end": 4347.46, + "probability": 0.9904 + }, + { + "start": 4347.98, + "end": 4351.96, + "probability": 0.9847 + }, + { + "start": 4352.0, + "end": 4355.54, + "probability": 0.8469 + }, + { + "start": 4356.02, + "end": 4360.82, + "probability": 0.9897 + }, + { + "start": 4361.46, + "end": 4365.08, + "probability": 0.9824 + }, + { + "start": 4365.32, + "end": 4366.48, + "probability": 0.6697 + }, + { + "start": 4366.92, + "end": 4367.86, + "probability": 0.815 + }, + { + "start": 4368.56, + "end": 4370.3, + "probability": 0.9937 + }, + { + "start": 4370.38, + "end": 4370.68, + "probability": 0.8049 + }, + { + "start": 4371.16, + "end": 4371.24, + "probability": 0.0612 + }, + { + "start": 4371.24, + "end": 4371.96, + "probability": 0.596 + }, + { + "start": 4371.96, + "end": 4374.06, + "probability": 0.6765 + }, + { + "start": 4388.18, + "end": 4392.52, + "probability": 0.3907 + }, + { + "start": 4393.46, + "end": 4394.76, + "probability": 0.0355 + }, + { + "start": 4394.92, + "end": 4397.32, + "probability": 0.5802 + }, + { + "start": 4397.42, + "end": 4398.74, + "probability": 0.6342 + }, + { + "start": 4399.24, + "end": 4399.34, + "probability": 0.2777 + }, + { + "start": 4400.14, + "end": 4402.42, + "probability": 0.5894 + }, + { + "start": 4402.98, + "end": 4405.8, + "probability": 0.0624 + }, + { + "start": 4411.16, + "end": 4412.9, + "probability": 0.0033 + }, + { + "start": 4418.48, + "end": 4419.66, + "probability": 0.2829 + }, + { + "start": 4427.11, + "end": 4430.02, + "probability": 0.708 + }, + { + "start": 4430.18, + "end": 4433.12, + "probability": 0.7273 + }, + { + "start": 4433.22, + "end": 4438.12, + "probability": 0.9953 + }, + { + "start": 4439.1, + "end": 4441.0, + "probability": 0.9419 + }, + { + "start": 4441.56, + "end": 4442.44, + "probability": 0.907 + }, + { + "start": 4443.38, + "end": 4445.18, + "probability": 0.9243 + }, + { + "start": 4446.18, + "end": 4447.54, + "probability": 0.8034 + }, + { + "start": 4448.28, + "end": 4448.8, + "probability": 0.4473 + }, + { + "start": 4449.66, + "end": 4452.98, + "probability": 0.9527 + }, + { + "start": 4453.96, + "end": 4455.48, + "probability": 0.9778 + }, + { + "start": 4456.64, + "end": 4459.2, + "probability": 0.9741 + }, + { + "start": 4460.1, + "end": 4463.08, + "probability": 0.9735 + }, + { + "start": 4464.18, + "end": 4467.7, + "probability": 0.9932 + }, + { + "start": 4468.44, + "end": 4469.64, + "probability": 0.9995 + }, + { + "start": 4470.42, + "end": 4471.44, + "probability": 0.6798 + }, + { + "start": 4472.56, + "end": 4477.24, + "probability": 0.997 + }, + { + "start": 4478.34, + "end": 4478.7, + "probability": 0.4632 + }, + { + "start": 4480.02, + "end": 4481.22, + "probability": 0.9829 + }, + { + "start": 4482.74, + "end": 4483.88, + "probability": 0.9907 + }, + { + "start": 4485.04, + "end": 4489.44, + "probability": 0.9827 + }, + { + "start": 4490.3, + "end": 4491.64, + "probability": 0.9446 + }, + { + "start": 4492.64, + "end": 4494.71, + "probability": 0.998 + }, + { + "start": 4495.92, + "end": 4500.68, + "probability": 0.9198 + }, + { + "start": 4501.96, + "end": 4504.32, + "probability": 0.9954 + }, + { + "start": 4505.72, + "end": 4508.92, + "probability": 0.9945 + }, + { + "start": 4509.54, + "end": 4511.62, + "probability": 0.903 + }, + { + "start": 4513.42, + "end": 4519.2, + "probability": 0.9906 + }, + { + "start": 4520.02, + "end": 4522.52, + "probability": 0.9654 + }, + { + "start": 4523.3, + "end": 4524.18, + "probability": 0.9817 + }, + { + "start": 4525.04, + "end": 4528.0, + "probability": 0.9272 + }, + { + "start": 4530.66, + "end": 4532.52, + "probability": 0.9952 + }, + { + "start": 4533.26, + "end": 4535.7, + "probability": 0.8747 + }, + { + "start": 4537.0, + "end": 4538.92, + "probability": 0.876 + }, + { + "start": 4539.74, + "end": 4542.3, + "probability": 0.9332 + }, + { + "start": 4543.18, + "end": 4544.4, + "probability": 0.9451 + }, + { + "start": 4545.08, + "end": 4548.48, + "probability": 0.8212 + }, + { + "start": 4549.58, + "end": 4549.68, + "probability": 0.0276 + }, + { + "start": 4549.68, + "end": 4550.82, + "probability": 0.8239 + }, + { + "start": 4551.68, + "end": 4553.07, + "probability": 0.9692 + }, + { + "start": 4566.32, + "end": 4566.73, + "probability": 0.5931 + }, + { + "start": 4568.3, + "end": 4568.58, + "probability": 0.0874 + }, + { + "start": 4568.58, + "end": 4568.6, + "probability": 0.2454 + }, + { + "start": 4569.02, + "end": 4569.2, + "probability": 0.1349 + }, + { + "start": 4569.2, + "end": 4569.2, + "probability": 0.012 + }, + { + "start": 4569.2, + "end": 4569.2, + "probability": 0.2176 + }, + { + "start": 4569.2, + "end": 4571.8, + "probability": 0.8301 + }, + { + "start": 4573.06, + "end": 4577.04, + "probability": 0.9054 + }, + { + "start": 4577.92, + "end": 4580.18, + "probability": 0.9956 + }, + { + "start": 4580.94, + "end": 4582.76, + "probability": 0.9896 + }, + { + "start": 4583.7, + "end": 4587.6, + "probability": 0.9739 + }, + { + "start": 4588.78, + "end": 4589.96, + "probability": 0.9924 + }, + { + "start": 4591.1, + "end": 4594.28, + "probability": 0.9663 + }, + { + "start": 4595.18, + "end": 4596.18, + "probability": 0.8936 + }, + { + "start": 4597.24, + "end": 4598.9, + "probability": 0.8559 + }, + { + "start": 4599.88, + "end": 4600.24, + "probability": 0.807 + }, + { + "start": 4601.22, + "end": 4602.36, + "probability": 0.7052 + }, + { + "start": 4603.58, + "end": 4605.14, + "probability": 0.9774 + }, + { + "start": 4606.08, + "end": 4608.81, + "probability": 0.9831 + }, + { + "start": 4609.53, + "end": 4611.07, + "probability": 0.8944 + }, + { + "start": 4611.69, + "end": 4612.65, + "probability": 0.8399 + }, + { + "start": 4613.45, + "end": 4614.81, + "probability": 0.9708 + }, + { + "start": 4616.19, + "end": 4622.71, + "probability": 0.9768 + }, + { + "start": 4622.79, + "end": 4623.47, + "probability": 0.5738 + }, + { + "start": 4623.65, + "end": 4629.59, + "probability": 0.9971 + }, + { + "start": 4630.33, + "end": 4631.77, + "probability": 0.9847 + }, + { + "start": 4632.83, + "end": 4636.23, + "probability": 0.9973 + }, + { + "start": 4636.93, + "end": 4638.61, + "probability": 0.9891 + }, + { + "start": 4639.47, + "end": 4640.71, + "probability": 0.622 + }, + { + "start": 4641.61, + "end": 4643.35, + "probability": 0.9973 + }, + { + "start": 4644.09, + "end": 4645.91, + "probability": 0.9977 + }, + { + "start": 4646.79, + "end": 4647.87, + "probability": 0.9479 + }, + { + "start": 4648.73, + "end": 4649.77, + "probability": 0.9792 + }, + { + "start": 4650.03, + "end": 4650.57, + "probability": 0.8696 + }, + { + "start": 4651.01, + "end": 4652.47, + "probability": 0.9688 + }, + { + "start": 4653.57, + "end": 4654.27, + "probability": 0.5015 + }, + { + "start": 4654.51, + "end": 4657.09, + "probability": 0.8721 + }, + { + "start": 4677.02, + "end": 4680.53, + "probability": 0.5525 + }, + { + "start": 4680.65, + "end": 4681.77, + "probability": 0.7606 + }, + { + "start": 4682.63, + "end": 4689.13, + "probability": 0.9971 + }, + { + "start": 4690.03, + "end": 4691.65, + "probability": 0.9593 + }, + { + "start": 4691.71, + "end": 4693.91, + "probability": 0.9836 + }, + { + "start": 4694.47, + "end": 4695.21, + "probability": 0.9863 + }, + { + "start": 4696.17, + "end": 4697.13, + "probability": 0.9565 + }, + { + "start": 4698.57, + "end": 4701.87, + "probability": 0.9921 + }, + { + "start": 4703.31, + "end": 4703.35, + "probability": 0.1803 + }, + { + "start": 4703.35, + "end": 4704.93, + "probability": 0.9432 + }, + { + "start": 4706.75, + "end": 4706.75, + "probability": 0.6482 + }, + { + "start": 4707.03, + "end": 4707.75, + "probability": 0.9046 + }, + { + "start": 4707.81, + "end": 4709.93, + "probability": 0.9768 + }, + { + "start": 4711.23, + "end": 4714.37, + "probability": 0.9971 + }, + { + "start": 4714.79, + "end": 4718.73, + "probability": 0.9923 + }, + { + "start": 4719.57, + "end": 4723.03, + "probability": 0.8012 + }, + { + "start": 4723.53, + "end": 4725.35, + "probability": 0.9767 + }, + { + "start": 4725.49, + "end": 4725.97, + "probability": 0.1996 + }, + { + "start": 4726.05, + "end": 4728.09, + "probability": 0.0644 + }, + { + "start": 4728.09, + "end": 4729.51, + "probability": 0.1557 + }, + { + "start": 4730.75, + "end": 4731.75, + "probability": 0.2403 + }, + { + "start": 4731.75, + "end": 4732.39, + "probability": 0.4041 + }, + { + "start": 4732.39, + "end": 4733.42, + "probability": 0.6647 + }, + { + "start": 4733.99, + "end": 4734.81, + "probability": 0.8716 + }, + { + "start": 4735.87, + "end": 4737.37, + "probability": 0.8813 + }, + { + "start": 4737.85, + "end": 4739.53, + "probability": 0.9821 + }, + { + "start": 4739.93, + "end": 4743.03, + "probability": 0.9481 + }, + { + "start": 4743.45, + "end": 4744.04, + "probability": 0.9887 + }, + { + "start": 4744.55, + "end": 4744.75, + "probability": 0.1341 + }, + { + "start": 4745.7, + "end": 4746.71, + "probability": 0.0638 + }, + { + "start": 4746.71, + "end": 4746.71, + "probability": 0.0203 + }, + { + "start": 4746.83, + "end": 4746.83, + "probability": 0.0604 + }, + { + "start": 4746.89, + "end": 4746.89, + "probability": 0.2598 + }, + { + "start": 4746.93, + "end": 4746.93, + "probability": 0.2651 + }, + { + "start": 4746.99, + "end": 4747.53, + "probability": 0.5543 + }, + { + "start": 4748.31, + "end": 4749.85, + "probability": 0.8229 + }, + { + "start": 4750.73, + "end": 4751.37, + "probability": 0.5984 + }, + { + "start": 4751.37, + "end": 4752.75, + "probability": 0.9723 + }, + { + "start": 4752.77, + "end": 4753.45, + "probability": 0.8183 + }, + { + "start": 4753.51, + "end": 4754.81, + "probability": 0.8514 + }, + { + "start": 4755.33, + "end": 4755.83, + "probability": 0.5187 + }, + { + "start": 4756.33, + "end": 4757.21, + "probability": 0.6368 + }, + { + "start": 4757.61, + "end": 4758.27, + "probability": 0.6426 + }, + { + "start": 4758.83, + "end": 4760.89, + "probability": 0.1098 + }, + { + "start": 4760.89, + "end": 4760.89, + "probability": 0.0347 + }, + { + "start": 4760.89, + "end": 4760.89, + "probability": 0.0607 + }, + { + "start": 4760.89, + "end": 4763.07, + "probability": 0.72 + }, + { + "start": 4763.07, + "end": 4768.29, + "probability": 0.7843 + }, + { + "start": 4769.85, + "end": 4769.87, + "probability": 0.1494 + }, + { + "start": 4769.87, + "end": 4771.39, + "probability": 0.3878 + }, + { + "start": 4777.79, + "end": 4778.79, + "probability": 0.5062 + }, + { + "start": 4779.39, + "end": 4780.79, + "probability": 0.8941 + }, + { + "start": 4782.17, + "end": 4783.51, + "probability": 0.8869 + }, + { + "start": 4784.01, + "end": 4784.73, + "probability": 0.5894 + }, + { + "start": 4785.13, + "end": 4788.19, + "probability": 0.6527 + }, + { + "start": 4789.95, + "end": 4790.05, + "probability": 0.4118 + }, + { + "start": 4790.05, + "end": 4791.07, + "probability": 0.9976 + }, + { + "start": 4791.15, + "end": 4791.93, + "probability": 0.9692 + }, + { + "start": 4792.77, + "end": 4796.45, + "probability": 0.8701 + }, + { + "start": 4797.13, + "end": 4798.21, + "probability": 0.8819 + }, + { + "start": 4798.35, + "end": 4799.67, + "probability": 0.6686 + }, + { + "start": 4800.85, + "end": 4803.91, + "probability": 0.8987 + }, + { + "start": 4804.63, + "end": 4808.23, + "probability": 0.9626 + }, + { + "start": 4808.89, + "end": 4810.85, + "probability": 0.4994 + }, + { + "start": 4810.85, + "end": 4810.85, + "probability": 0.0741 + }, + { + "start": 4810.85, + "end": 4811.17, + "probability": 0.2195 + }, + { + "start": 4811.27, + "end": 4811.91, + "probability": 0.7956 + }, + { + "start": 4812.33, + "end": 4812.87, + "probability": 0.8743 + }, + { + "start": 4812.97, + "end": 4813.69, + "probability": 0.9769 + }, + { + "start": 4814.01, + "end": 4814.63, + "probability": 0.9683 + }, + { + "start": 4814.77, + "end": 4815.31, + "probability": 0.9884 + }, + { + "start": 4815.61, + "end": 4816.27, + "probability": 0.9219 + }, + { + "start": 4816.41, + "end": 4816.87, + "probability": 0.8108 + }, + { + "start": 4817.61, + "end": 4818.29, + "probability": 0.8684 + }, + { + "start": 4818.91, + "end": 4820.75, + "probability": 0.9901 + }, + { + "start": 4821.89, + "end": 4823.91, + "probability": 0.6299 + }, + { + "start": 4824.79, + "end": 4825.6, + "probability": 0.0876 + }, + { + "start": 4826.73, + "end": 4832.53, + "probability": 0.7816 + }, + { + "start": 4836.77, + "end": 4837.53, + "probability": 0.8526 + }, + { + "start": 4838.41, + "end": 4839.67, + "probability": 0.1556 + }, + { + "start": 4839.75, + "end": 4840.19, + "probability": 0.0223 + }, + { + "start": 4840.19, + "end": 4840.19, + "probability": 0.0732 + }, + { + "start": 4840.19, + "end": 4840.53, + "probability": 0.395 + }, + { + "start": 4840.69, + "end": 4840.69, + "probability": 0.0532 + }, + { + "start": 4840.69, + "end": 4844.93, + "probability": 0.9907 + }, + { + "start": 4845.41, + "end": 4846.51, + "probability": 0.924 + }, + { + "start": 4847.05, + "end": 4850.91, + "probability": 0.6115 + }, + { + "start": 4851.57, + "end": 4852.17, + "probability": 0.6227 + }, + { + "start": 4854.65, + "end": 4854.65, + "probability": 0.0065 + }, + { + "start": 4854.65, + "end": 4854.65, + "probability": 0.0448 + }, + { + "start": 4854.65, + "end": 4854.65, + "probability": 0.1419 + }, + { + "start": 4854.65, + "end": 4854.65, + "probability": 0.0709 + }, + { + "start": 4854.65, + "end": 4858.47, + "probability": 0.939 + }, + { + "start": 4859.07, + "end": 4860.17, + "probability": 0.8322 + }, + { + "start": 4860.87, + "end": 4865.65, + "probability": 0.9722 + }, + { + "start": 4866.31, + "end": 4872.17, + "probability": 0.9961 + }, + { + "start": 4872.67, + "end": 4874.43, + "probability": 0.6359 + }, + { + "start": 4874.75, + "end": 4874.75, + "probability": 0.4173 + }, + { + "start": 4874.91, + "end": 4875.73, + "probability": 0.0985 + }, + { + "start": 4876.01, + "end": 4880.07, + "probability": 0.4067 + }, + { + "start": 4882.01, + "end": 4882.33, + "probability": 0.0231 + }, + { + "start": 4882.33, + "end": 4882.99, + "probability": 0.3301 + }, + { + "start": 4883.07, + "end": 4883.95, + "probability": 0.7435 + }, + { + "start": 4884.85, + "end": 4885.47, + "probability": 0.7194 + }, + { + "start": 4886.23, + "end": 4887.31, + "probability": 0.9425 + }, + { + "start": 4888.21, + "end": 4889.55, + "probability": 0.8438 + }, + { + "start": 4889.85, + "end": 4890.61, + "probability": 0.6375 + }, + { + "start": 4890.73, + "end": 4892.65, + "probability": 0.7553 + }, + { + "start": 4893.17, + "end": 4893.99, + "probability": 0.9672 + }, + { + "start": 4894.77, + "end": 4898.17, + "probability": 0.9936 + }, + { + "start": 4898.75, + "end": 4903.27, + "probability": 0.9746 + }, + { + "start": 4903.59, + "end": 4904.34, + "probability": 0.964 + }, + { + "start": 4905.81, + "end": 4907.33, + "probability": 0.9624 + }, + { + "start": 4908.27, + "end": 4911.21, + "probability": 0.8432 + }, + { + "start": 4911.83, + "end": 4913.55, + "probability": 0.8543 + }, + { + "start": 4914.11, + "end": 4914.53, + "probability": 0.707 + }, + { + "start": 4915.63, + "end": 4921.09, + "probability": 0.9891 + }, + { + "start": 4921.55, + "end": 4922.89, + "probability": 0.9964 + }, + { + "start": 4923.43, + "end": 4925.09, + "probability": 0.9917 + }, + { + "start": 4925.77, + "end": 4928.27, + "probability": 0.7659 + }, + { + "start": 4928.99, + "end": 4930.87, + "probability": 0.7671 + }, + { + "start": 4931.29, + "end": 4932.15, + "probability": 0.8774 + }, + { + "start": 4932.61, + "end": 4935.05, + "probability": 0.8798 + }, + { + "start": 4935.37, + "end": 4937.59, + "probability": 0.9541 + }, + { + "start": 4938.35, + "end": 4943.49, + "probability": 0.9861 + }, + { + "start": 4944.09, + "end": 4945.11, + "probability": 0.6074 + }, + { + "start": 4945.17, + "end": 4946.95, + "probability": 0.7768 + }, + { + "start": 4947.03, + "end": 4947.47, + "probability": 0.4638 + }, + { + "start": 4947.57, + "end": 4948.37, + "probability": 0.6318 + }, + { + "start": 4948.81, + "end": 4949.77, + "probability": 0.9861 + }, + { + "start": 4950.35, + "end": 4953.53, + "probability": 0.9805 + }, + { + "start": 4953.91, + "end": 4955.27, + "probability": 0.9193 + }, + { + "start": 4955.65, + "end": 4956.65, + "probability": 0.5908 + }, + { + "start": 4957.07, + "end": 4959.07, + "probability": 0.8989 + }, + { + "start": 4959.45, + "end": 4960.3, + "probability": 0.9897 + }, + { + "start": 4960.97, + "end": 4963.89, + "probability": 0.995 + }, + { + "start": 4964.33, + "end": 4967.24, + "probability": 0.9882 + }, + { + "start": 4968.01, + "end": 4969.11, + "probability": 0.7345 + }, + { + "start": 4969.25, + "end": 4972.17, + "probability": 0.9402 + }, + { + "start": 4972.53, + "end": 4975.92, + "probability": 0.72 + }, + { + "start": 4976.63, + "end": 4977.43, + "probability": 0.7629 + }, + { + "start": 4978.13, + "end": 4980.05, + "probability": 0.3664 + }, + { + "start": 4981.31, + "end": 4985.97, + "probability": 0.6713 + }, + { + "start": 4986.73, + "end": 4988.24, + "probability": 0.458 + }, + { + "start": 4989.93, + "end": 4990.63, + "probability": 0.3966 + }, + { + "start": 4998.57, + "end": 4999.95, + "probability": 0.0636 + }, + { + "start": 5002.55, + "end": 5004.99, + "probability": 0.3041 + }, + { + "start": 5005.21, + "end": 5006.62, + "probability": 0.6077 + }, + { + "start": 5007.09, + "end": 5010.45, + "probability": 0.7787 + }, + { + "start": 5011.51, + "end": 5013.37, + "probability": 0.9937 + }, + { + "start": 5015.23, + "end": 5016.75, + "probability": 0.9822 + }, + { + "start": 5018.21, + "end": 5018.73, + "probability": 0.4283 + }, + { + "start": 5020.55, + "end": 5021.61, + "probability": 0.8767 + }, + { + "start": 5023.41, + "end": 5024.69, + "probability": 0.9293 + }, + { + "start": 5026.65, + "end": 5027.89, + "probability": 0.998 + }, + { + "start": 5029.87, + "end": 5030.59, + "probability": 0.853 + }, + { + "start": 5031.43, + "end": 5032.59, + "probability": 0.9758 + }, + { + "start": 5034.87, + "end": 5036.63, + "probability": 0.9503 + }, + { + "start": 5036.75, + "end": 5037.79, + "probability": 0.7538 + }, + { + "start": 5037.91, + "end": 5038.81, + "probability": 0.802 + }, + { + "start": 5040.71, + "end": 5042.01, + "probability": 0.9645 + }, + { + "start": 5043.47, + "end": 5044.69, + "probability": 0.9961 + }, + { + "start": 5045.81, + "end": 5047.55, + "probability": 0.9509 + }, + { + "start": 5047.69, + "end": 5048.26, + "probability": 0.668 + }, + { + "start": 5049.97, + "end": 5050.73, + "probability": 0.9512 + }, + { + "start": 5050.87, + "end": 5052.61, + "probability": 0.5905 + }, + { + "start": 5054.73, + "end": 5056.61, + "probability": 0.8243 + }, + { + "start": 5059.67, + "end": 5061.89, + "probability": 0.9673 + }, + { + "start": 5063.53, + "end": 5066.01, + "probability": 0.996 + }, + { + "start": 5069.31, + "end": 5071.58, + "probability": 0.7594 + }, + { + "start": 5072.95, + "end": 5074.19, + "probability": 0.9657 + }, + { + "start": 5075.03, + "end": 5076.29, + "probability": 0.7678 + }, + { + "start": 5076.37, + "end": 5077.51, + "probability": 0.7403 + }, + { + "start": 5077.57, + "end": 5081.31, + "probability": 0.8348 + }, + { + "start": 5084.65, + "end": 5085.69, + "probability": 0.714 + }, + { + "start": 5087.11, + "end": 5088.56, + "probability": 0.6215 + }, + { + "start": 5088.91, + "end": 5091.81, + "probability": 0.9511 + }, + { + "start": 5091.81, + "end": 5092.37, + "probability": 0.2356 + }, + { + "start": 5092.53, + "end": 5093.35, + "probability": 0.5663 + }, + { + "start": 5093.45, + "end": 5094.25, + "probability": 0.8574 + }, + { + "start": 5094.73, + "end": 5095.47, + "probability": 0.6638 + }, + { + "start": 5096.51, + "end": 5097.97, + "probability": 0.7757 + }, + { + "start": 5098.01, + "end": 5098.49, + "probability": 0.9963 + }, + { + "start": 5098.87, + "end": 5099.45, + "probability": 0.7191 + }, + { + "start": 5102.03, + "end": 5104.3, + "probability": 0.998 + }, + { + "start": 5105.45, + "end": 5108.25, + "probability": 0.5698 + }, + { + "start": 5109.19, + "end": 5110.05, + "probability": 0.9109 + }, + { + "start": 5111.85, + "end": 5114.69, + "probability": 0.9956 + }, + { + "start": 5115.17, + "end": 5115.95, + "probability": 0.9751 + }, + { + "start": 5117.93, + "end": 5120.23, + "probability": 0.6019 + }, + { + "start": 5121.13, + "end": 5122.01, + "probability": 0.7466 + }, + { + "start": 5122.53, + "end": 5124.75, + "probability": 0.9428 + }, + { + "start": 5125.11, + "end": 5126.23, + "probability": 0.9313 + }, + { + "start": 5127.71, + "end": 5128.41, + "probability": 0.9097 + }, + { + "start": 5129.13, + "end": 5131.11, + "probability": 0.7351 + }, + { + "start": 5131.79, + "end": 5132.77, + "probability": 0.9445 + }, + { + "start": 5133.45, + "end": 5137.03, + "probability": 0.7453 + }, + { + "start": 5137.83, + "end": 5139.38, + "probability": 0.9821 + }, + { + "start": 5139.57, + "end": 5140.31, + "probability": 0.9844 + }, + { + "start": 5140.45, + "end": 5142.07, + "probability": 0.9898 + }, + { + "start": 5142.51, + "end": 5143.93, + "probability": 0.9967 + }, + { + "start": 5144.39, + "end": 5145.07, + "probability": 0.959 + }, + { + "start": 5145.21, + "end": 5146.21, + "probability": 0.8674 + }, + { + "start": 5146.25, + "end": 5146.85, + "probability": 0.8336 + }, + { + "start": 5146.89, + "end": 5148.05, + "probability": 0.99 + }, + { + "start": 5149.37, + "end": 5151.23, + "probability": 0.9463 + }, + { + "start": 5152.55, + "end": 5155.27, + "probability": 0.9946 + }, + { + "start": 5155.59, + "end": 5156.75, + "probability": 0.7443 + }, + { + "start": 5157.83, + "end": 5162.19, + "probability": 0.9895 + }, + { + "start": 5163.45, + "end": 5165.5, + "probability": 0.957 + }, + { + "start": 5166.01, + "end": 5167.99, + "probability": 0.9829 + }, + { + "start": 5168.29, + "end": 5169.39, + "probability": 0.7337 + }, + { + "start": 5169.51, + "end": 5170.25, + "probability": 0.531 + }, + { + "start": 5170.71, + "end": 5172.27, + "probability": 0.8254 + }, + { + "start": 5172.57, + "end": 5174.03, + "probability": 0.9111 + }, + { + "start": 5175.17, + "end": 5177.75, + "probability": 0.8342 + }, + { + "start": 5178.29, + "end": 5179.95, + "probability": 0.8336 + }, + { + "start": 5181.15, + "end": 5183.62, + "probability": 0.8534 + }, + { + "start": 5187.69, + "end": 5188.47, + "probability": 0.688 + }, + { + "start": 5188.95, + "end": 5191.09, + "probability": 0.9528 + }, + { + "start": 5198.33, + "end": 5198.33, + "probability": 0.3912 + }, + { + "start": 5198.33, + "end": 5198.33, + "probability": 0.1003 + }, + { + "start": 5198.33, + "end": 5199.07, + "probability": 0.0531 + }, + { + "start": 5229.73, + "end": 5235.53, + "probability": 0.583 + }, + { + "start": 5236.83, + "end": 5238.67, + "probability": 0.8165 + }, + { + "start": 5240.61, + "end": 5241.53, + "probability": 0.8066 + }, + { + "start": 5242.57, + "end": 5243.87, + "probability": 0.9176 + }, + { + "start": 5244.43, + "end": 5245.63, + "probability": 0.922 + }, + { + "start": 5246.15, + "end": 5247.09, + "probability": 0.9607 + }, + { + "start": 5247.69, + "end": 5248.99, + "probability": 0.7964 + }, + { + "start": 5250.85, + "end": 5251.63, + "probability": 0.9816 + }, + { + "start": 5252.65, + "end": 5256.95, + "probability": 0.9977 + }, + { + "start": 5258.59, + "end": 5262.43, + "probability": 0.9849 + }, + { + "start": 5263.95, + "end": 5265.55, + "probability": 0.9915 + }, + { + "start": 5266.21, + "end": 5267.11, + "probability": 0.2342 + }, + { + "start": 5268.09, + "end": 5270.11, + "probability": 0.7271 + }, + { + "start": 5271.23, + "end": 5271.73, + "probability": 0.7576 + }, + { + "start": 5273.07, + "end": 5275.03, + "probability": 0.6724 + }, + { + "start": 5275.75, + "end": 5277.27, + "probability": 0.9696 + }, + { + "start": 5278.37, + "end": 5278.69, + "probability": 0.7445 + }, + { + "start": 5278.85, + "end": 5282.05, + "probability": 0.9622 + }, + { + "start": 5282.51, + "end": 5283.45, + "probability": 0.9694 + }, + { + "start": 5285.51, + "end": 5287.99, + "probability": 0.9494 + }, + { + "start": 5288.85, + "end": 5290.29, + "probability": 0.6255 + }, + { + "start": 5290.33, + "end": 5290.84, + "probability": 0.9075 + }, + { + "start": 5291.41, + "end": 5292.27, + "probability": 0.9793 + }, + { + "start": 5293.39, + "end": 5294.45, + "probability": 0.9888 + }, + { + "start": 5295.09, + "end": 5297.31, + "probability": 0.9541 + }, + { + "start": 5298.43, + "end": 5302.2, + "probability": 0.9915 + }, + { + "start": 5303.71, + "end": 5312.35, + "probability": 0.9074 + }, + { + "start": 5314.91, + "end": 5318.75, + "probability": 0.9764 + }, + { + "start": 5319.31, + "end": 5320.81, + "probability": 0.9983 + }, + { + "start": 5322.55, + "end": 5326.25, + "probability": 0.9961 + }, + { + "start": 5326.87, + "end": 5330.11, + "probability": 0.9597 + }, + { + "start": 5330.75, + "end": 5333.53, + "probability": 0.987 + }, + { + "start": 5334.05, + "end": 5336.69, + "probability": 0.1149 + }, + { + "start": 5336.69, + "end": 5337.3, + "probability": 0.6535 + }, + { + "start": 5338.35, + "end": 5342.83, + "probability": 0.8718 + }, + { + "start": 5343.23, + "end": 5344.07, + "probability": 0.8074 + }, + { + "start": 5344.53, + "end": 5345.41, + "probability": 0.9619 + }, + { + "start": 5345.87, + "end": 5349.09, + "probability": 0.9575 + }, + { + "start": 5349.63, + "end": 5350.59, + "probability": 0.3676 + }, + { + "start": 5351.03, + "end": 5352.47, + "probability": 0.86 + }, + { + "start": 5352.65, + "end": 5354.97, + "probability": 0.9585 + }, + { + "start": 5355.49, + "end": 5359.15, + "probability": 0.9995 + }, + { + "start": 5359.63, + "end": 5362.21, + "probability": 0.9346 + }, + { + "start": 5362.25, + "end": 5364.91, + "probability": 0.9954 + }, + { + "start": 5366.03, + "end": 5367.29, + "probability": 0.5193 + }, + { + "start": 5368.03, + "end": 5372.21, + "probability": 0.676 + }, + { + "start": 5372.43, + "end": 5374.03, + "probability": 0.9777 + }, + { + "start": 5374.07, + "end": 5374.94, + "probability": 0.99 + }, + { + "start": 5375.01, + "end": 5376.45, + "probability": 0.9696 + }, + { + "start": 5376.57, + "end": 5377.83, + "probability": 0.736 + }, + { + "start": 5379.09, + "end": 5379.95, + "probability": 0.9113 + }, + { + "start": 5380.55, + "end": 5382.21, + "probability": 0.9611 + }, + { + "start": 5382.25, + "end": 5383.67, + "probability": 0.7089 + }, + { + "start": 5385.09, + "end": 5387.01, + "probability": 0.9067 + }, + { + "start": 5387.19, + "end": 5390.11, + "probability": 0.9964 + }, + { + "start": 5390.65, + "end": 5391.33, + "probability": 0.9919 + }, + { + "start": 5392.05, + "end": 5394.17, + "probability": 0.9843 + }, + { + "start": 5396.61, + "end": 5397.19, + "probability": 0.923 + }, + { + "start": 5397.83, + "end": 5400.17, + "probability": 0.8776 + }, + { + "start": 5400.25, + "end": 5400.31, + "probability": 0.6959 + }, + { + "start": 5400.31, + "end": 5401.79, + "probability": 0.7439 + }, + { + "start": 5402.27, + "end": 5404.07, + "probability": 0.9445 + }, + { + "start": 5405.13, + "end": 5407.71, + "probability": 0.9984 + }, + { + "start": 5407.71, + "end": 5411.39, + "probability": 0.9968 + }, + { + "start": 5411.79, + "end": 5413.25, + "probability": 0.8062 + }, + { + "start": 5413.27, + "end": 5416.09, + "probability": 0.9976 + }, + { + "start": 5416.49, + "end": 5417.13, + "probability": 0.9426 + }, + { + "start": 5417.49, + "end": 5418.31, + "probability": 0.908 + }, + { + "start": 5418.79, + "end": 5421.01, + "probability": 0.9852 + }, + { + "start": 5421.33, + "end": 5422.05, + "probability": 0.733 + }, + { + "start": 5422.43, + "end": 5423.89, + "probability": 0.9401 + }, + { + "start": 5438.73, + "end": 5439.83, + "probability": 0.7445 + }, + { + "start": 5440.33, + "end": 5442.11, + "probability": 0.7261 + }, + { + "start": 5443.43, + "end": 5454.15, + "probability": 0.9579 + }, + { + "start": 5455.81, + "end": 5460.11, + "probability": 0.8301 + }, + { + "start": 5461.45, + "end": 5465.77, + "probability": 0.9969 + }, + { + "start": 5467.91, + "end": 5469.29, + "probability": 0.7473 + }, + { + "start": 5470.31, + "end": 5472.59, + "probability": 0.9491 + }, + { + "start": 5474.11, + "end": 5478.89, + "probability": 0.7927 + }, + { + "start": 5479.77, + "end": 5484.15, + "probability": 0.959 + }, + { + "start": 5485.69, + "end": 5486.45, + "probability": 0.9351 + }, + { + "start": 5488.75, + "end": 5493.09, + "probability": 0.988 + }, + { + "start": 5493.15, + "end": 5494.75, + "probability": 0.7985 + }, + { + "start": 5495.71, + "end": 5499.87, + "probability": 0.9161 + }, + { + "start": 5500.25, + "end": 5501.87, + "probability": 0.8887 + }, + { + "start": 5502.29, + "end": 5503.93, + "probability": 0.9569 + }, + { + "start": 5504.01, + "end": 5507.66, + "probability": 0.9863 + }, + { + "start": 5511.29, + "end": 5512.59, + "probability": 0.9702 + }, + { + "start": 5513.27, + "end": 5514.97, + "probability": 0.993 + }, + { + "start": 5515.19, + "end": 5521.49, + "probability": 0.909 + }, + { + "start": 5522.07, + "end": 5525.39, + "probability": 0.9373 + }, + { + "start": 5526.93, + "end": 5528.15, + "probability": 0.5946 + }, + { + "start": 5531.49, + "end": 5534.47, + "probability": 0.8802 + }, + { + "start": 5535.45, + "end": 5539.07, + "probability": 0.878 + }, + { + "start": 5540.91, + "end": 5541.37, + "probability": 0.7069 + }, + { + "start": 5543.34, + "end": 5546.43, + "probability": 0.8359 + }, + { + "start": 5547.23, + "end": 5548.15, + "probability": 0.9574 + }, + { + "start": 5549.49, + "end": 5550.09, + "probability": 0.9637 + }, + { + "start": 5554.21, + "end": 5555.13, + "probability": 0.8174 + }, + { + "start": 5556.63, + "end": 5560.63, + "probability": 0.7684 + }, + { + "start": 5560.65, + "end": 5561.81, + "probability": 0.9018 + }, + { + "start": 5561.87, + "end": 5563.75, + "probability": 0.9451 + }, + { + "start": 5563.93, + "end": 5564.87, + "probability": 0.9395 + }, + { + "start": 5566.87, + "end": 5569.21, + "probability": 0.9658 + }, + { + "start": 5569.35, + "end": 5570.87, + "probability": 0.8475 + }, + { + "start": 5571.21, + "end": 5572.67, + "probability": 0.8782 + }, + { + "start": 5576.39, + "end": 5578.47, + "probability": 0.9017 + }, + { + "start": 5580.27, + "end": 5581.07, + "probability": 0.6985 + }, + { + "start": 5581.81, + "end": 5590.11, + "probability": 0.767 + }, + { + "start": 5590.63, + "end": 5591.55, + "probability": 0.7666 + }, + { + "start": 5592.49, + "end": 5597.77, + "probability": 0.9219 + }, + { + "start": 5598.23, + "end": 5600.67, + "probability": 0.7992 + }, + { + "start": 5601.69, + "end": 5604.51, + "probability": 0.0815 + }, + { + "start": 5604.61, + "end": 5606.03, + "probability": 0.0234 + }, + { + "start": 5608.99, + "end": 5609.61, + "probability": 0.0267 + }, + { + "start": 5609.61, + "end": 5612.73, + "probability": 0.2784 + }, + { + "start": 5613.39, + "end": 5615.19, + "probability": 0.1422 + }, + { + "start": 5616.75, + "end": 5617.39, + "probability": 0.5892 + }, + { + "start": 5617.91, + "end": 5618.19, + "probability": 0.0665 + }, + { + "start": 5618.19, + "end": 5618.19, + "probability": 0.0749 + }, + { + "start": 5618.19, + "end": 5618.23, + "probability": 0.4735 + }, + { + "start": 5621.31, + "end": 5624.01, + "probability": 0.8503 + }, + { + "start": 5624.77, + "end": 5627.15, + "probability": 0.7304 + }, + { + "start": 5628.05, + "end": 5630.87, + "probability": 0.8944 + }, + { + "start": 5631.79, + "end": 5633.05, + "probability": 0.9947 + }, + { + "start": 5634.05, + "end": 5635.33, + "probability": 0.7653 + }, + { + "start": 5636.79, + "end": 5638.79, + "probability": 0.7443 + }, + { + "start": 5638.85, + "end": 5640.61, + "probability": 0.8922 + }, + { + "start": 5641.17, + "end": 5642.97, + "probability": 0.8873 + }, + { + "start": 5643.91, + "end": 5647.47, + "probability": 0.9697 + }, + { + "start": 5648.03, + "end": 5649.57, + "probability": 0.9733 + }, + { + "start": 5650.08, + "end": 5653.93, + "probability": 0.9841 + }, + { + "start": 5654.97, + "end": 5655.53, + "probability": 0.1604 + }, + { + "start": 5656.15, + "end": 5658.19, + "probability": 0.6626 + }, + { + "start": 5658.57, + "end": 5659.29, + "probability": 0.4957 + }, + { + "start": 5659.29, + "end": 5659.29, + "probability": 0.603 + }, + { + "start": 5659.29, + "end": 5661.03, + "probability": 0.5508 + }, + { + "start": 5661.95, + "end": 5663.77, + "probability": 0.7563 + }, + { + "start": 5664.59, + "end": 5666.49, + "probability": 0.701 + }, + { + "start": 5666.65, + "end": 5666.81, + "probability": 0.7021 + }, + { + "start": 5666.87, + "end": 5667.33, + "probability": 0.7756 + }, + { + "start": 5667.97, + "end": 5669.77, + "probability": 0.9551 + }, + { + "start": 5688.35, + "end": 5693.37, + "probability": 0.6128 + }, + { + "start": 5694.55, + "end": 5695.59, + "probability": 0.4435 + }, + { + "start": 5696.77, + "end": 5698.43, + "probability": 0.5739 + }, + { + "start": 5701.46, + "end": 5703.77, + "probability": 0.8793 + }, + { + "start": 5703.91, + "end": 5704.17, + "probability": 0.4492 + }, + { + "start": 5704.17, + "end": 5705.58, + "probability": 0.9861 + }, + { + "start": 5706.43, + "end": 5708.39, + "probability": 0.6519 + }, + { + "start": 5708.97, + "end": 5711.31, + "probability": 0.699 + }, + { + "start": 5712.72, + "end": 5719.57, + "probability": 0.9932 + }, + { + "start": 5720.75, + "end": 5722.33, + "probability": 0.9977 + }, + { + "start": 5724.01, + "end": 5724.93, + "probability": 0.9497 + }, + { + "start": 5726.61, + "end": 5729.65, + "probability": 0.9944 + }, + { + "start": 5730.71, + "end": 5733.21, + "probability": 0.9293 + }, + { + "start": 5733.81, + "end": 5742.67, + "probability": 0.9827 + }, + { + "start": 5743.09, + "end": 5743.67, + "probability": 0.8221 + }, + { + "start": 5744.33, + "end": 5745.71, + "probability": 0.8748 + }, + { + "start": 5745.99, + "end": 5746.99, + "probability": 0.8667 + }, + { + "start": 5747.31, + "end": 5752.27, + "probability": 0.9924 + }, + { + "start": 5753.49, + "end": 5756.87, + "probability": 0.9518 + }, + { + "start": 5757.41, + "end": 5758.87, + "probability": 0.9431 + }, + { + "start": 5758.93, + "end": 5760.29, + "probability": 0.9509 + }, + { + "start": 5760.37, + "end": 5761.65, + "probability": 0.9458 + }, + { + "start": 5761.73, + "end": 5763.47, + "probability": 0.4694 + }, + { + "start": 5763.47, + "end": 5764.1, + "probability": 0.4059 + }, + { + "start": 5764.51, + "end": 5766.15, + "probability": 0.8222 + }, + { + "start": 5766.35, + "end": 5768.27, + "probability": 0.8308 + }, + { + "start": 5768.51, + "end": 5772.69, + "probability": 0.9524 + }, + { + "start": 5773.11, + "end": 5774.15, + "probability": 0.9573 + }, + { + "start": 5775.87, + "end": 5780.67, + "probability": 0.9942 + }, + { + "start": 5781.73, + "end": 5782.65, + "probability": 0.9153 + }, + { + "start": 5784.43, + "end": 5787.47, + "probability": 0.9746 + }, + { + "start": 5787.97, + "end": 5788.71, + "probability": 0.7288 + }, + { + "start": 5791.03, + "end": 5798.11, + "probability": 0.9093 + }, + { + "start": 5798.91, + "end": 5804.61, + "probability": 0.9955 + }, + { + "start": 5804.63, + "end": 5810.05, + "probability": 0.997 + }, + { + "start": 5810.81, + "end": 5815.11, + "probability": 0.9921 + }, + { + "start": 5815.47, + "end": 5818.15, + "probability": 0.9841 + }, + { + "start": 5818.91, + "end": 5819.81, + "probability": 0.5277 + }, + { + "start": 5820.67, + "end": 5823.19, + "probability": 0.9855 + }, + { + "start": 5824.43, + "end": 5827.55, + "probability": 0.9844 + }, + { + "start": 5828.47, + "end": 5830.13, + "probability": 0.9984 + }, + { + "start": 5831.07, + "end": 5834.95, + "probability": 0.9033 + }, + { + "start": 5835.47, + "end": 5836.79, + "probability": 0.9949 + }, + { + "start": 5837.39, + "end": 5839.55, + "probability": 0.9989 + }, + { + "start": 5839.55, + "end": 5842.23, + "probability": 0.9294 + }, + { + "start": 5842.27, + "end": 5843.11, + "probability": 0.8452 + }, + { + "start": 5843.27, + "end": 5844.49, + "probability": 0.7377 + }, + { + "start": 5845.35, + "end": 5851.47, + "probability": 0.978 + }, + { + "start": 5851.89, + "end": 5853.43, + "probability": 0.6461 + }, + { + "start": 5853.57, + "end": 5854.71, + "probability": 0.3606 + }, + { + "start": 5854.93, + "end": 5857.89, + "probability": 0.4549 + }, + { + "start": 5858.79, + "end": 5858.81, + "probability": 0.0021 + }, + { + "start": 5858.81, + "end": 5858.81, + "probability": 0.0267 + }, + { + "start": 5858.81, + "end": 5862.55, + "probability": 0.7269 + }, + { + "start": 5863.05, + "end": 5864.15, + "probability": 0.9728 + }, + { + "start": 5864.55, + "end": 5866.93, + "probability": 0.9786 + }, + { + "start": 5867.29, + "end": 5867.57, + "probability": 0.1732 + }, + { + "start": 5867.87, + "end": 5869.35, + "probability": 0.9937 + }, + { + "start": 5870.19, + "end": 5873.31, + "probability": 0.9629 + }, + { + "start": 5873.89, + "end": 5877.29, + "probability": 0.8828 + }, + { + "start": 5877.83, + "end": 5880.29, + "probability": 0.8888 + }, + { + "start": 5880.93, + "end": 5884.31, + "probability": 0.6858 + }, + { + "start": 5885.21, + "end": 5885.97, + "probability": 0.6175 + }, + { + "start": 5886.43, + "end": 5887.67, + "probability": 0.989 + }, + { + "start": 5888.21, + "end": 5888.77, + "probability": 0.8802 + }, + { + "start": 5889.35, + "end": 5892.27, + "probability": 0.9392 + }, + { + "start": 5892.63, + "end": 5893.75, + "probability": 0.772 + }, + { + "start": 5893.81, + "end": 5894.87, + "probability": 0.6771 + }, + { + "start": 5895.39, + "end": 5899.55, + "probability": 0.9319 + }, + { + "start": 5900.49, + "end": 5903.71, + "probability": 0.991 + }, + { + "start": 5903.83, + "end": 5905.83, + "probability": 0.8811 + }, + { + "start": 5906.41, + "end": 5908.63, + "probability": 0.9834 + }, + { + "start": 5909.43, + "end": 5911.69, + "probability": 0.9915 + }, + { + "start": 5912.25, + "end": 5915.31, + "probability": 0.9971 + }, + { + "start": 5915.33, + "end": 5915.33, + "probability": 0.3349 + }, + { + "start": 5915.37, + "end": 5916.85, + "probability": 0.7471 + }, + { + "start": 5918.45, + "end": 5927.09, + "probability": 0.623 + }, + { + "start": 5928.49, + "end": 5930.72, + "probability": 0.5977 + }, + { + "start": 5931.61, + "end": 5933.27, + "probability": 0.708 + }, + { + "start": 5933.95, + "end": 5936.57, + "probability": 0.741 + }, + { + "start": 5937.09, + "end": 5938.85, + "probability": 0.8293 + }, + { + "start": 5939.71, + "end": 5944.85, + "probability": 0.8696 + }, + { + "start": 5945.31, + "end": 5948.43, + "probability": 0.5865 + }, + { + "start": 5949.11, + "end": 5950.77, + "probability": 0.5098 + }, + { + "start": 5951.83, + "end": 5954.91, + "probability": 0.8577 + }, + { + "start": 5955.95, + "end": 5958.93, + "probability": 0.5884 + }, + { + "start": 5959.63, + "end": 5960.81, + "probability": 0.6416 + }, + { + "start": 5961.23, + "end": 5968.23, + "probability": 0.9849 + }, + { + "start": 5968.23, + "end": 5973.35, + "probability": 0.9763 + }, + { + "start": 5973.91, + "end": 5975.69, + "probability": 0.9183 + }, + { + "start": 5975.77, + "end": 5977.09, + "probability": 0.8578 + }, + { + "start": 5977.37, + "end": 5978.33, + "probability": 0.576 + }, + { + "start": 5978.61, + "end": 5980.35, + "probability": 0.7741 + }, + { + "start": 5980.39, + "end": 5981.15, + "probability": 0.6246 + }, + { + "start": 5981.63, + "end": 5983.25, + "probability": 0.9284 + }, + { + "start": 6003.01, + "end": 6006.53, + "probability": 0.6228 + }, + { + "start": 6007.91, + "end": 6008.99, + "probability": 0.9438 + }, + { + "start": 6010.47, + "end": 6012.37, + "probability": 0.9151 + }, + { + "start": 6012.39, + "end": 6013.51, + "probability": 0.8741 + }, + { + "start": 6013.95, + "end": 6015.41, + "probability": 0.9946 + }, + { + "start": 6015.59, + "end": 6018.25, + "probability": 0.9783 + }, + { + "start": 6019.15, + "end": 6021.07, + "probability": 0.9923 + }, + { + "start": 6022.15, + "end": 6023.37, + "probability": 0.9988 + }, + { + "start": 6024.31, + "end": 6026.33, + "probability": 0.9977 + }, + { + "start": 6026.81, + "end": 6031.39, + "probability": 0.9994 + }, + { + "start": 6032.45, + "end": 6034.25, + "probability": 0.7468 + }, + { + "start": 6035.45, + "end": 6036.43, + "probability": 0.8202 + }, + { + "start": 6036.57, + "end": 6037.55, + "probability": 0.9337 + }, + { + "start": 6037.63, + "end": 6038.81, + "probability": 0.9973 + }, + { + "start": 6038.87, + "end": 6040.41, + "probability": 0.9083 + }, + { + "start": 6042.01, + "end": 6047.39, + "probability": 0.9341 + }, + { + "start": 6048.81, + "end": 6052.01, + "probability": 0.9696 + }, + { + "start": 6052.35, + "end": 6054.99, + "probability": 0.927 + }, + { + "start": 6055.55, + "end": 6056.03, + "probability": 0.9875 + }, + { + "start": 6057.31, + "end": 6059.57, + "probability": 0.9967 + }, + { + "start": 6060.47, + "end": 6061.83, + "probability": 0.9849 + }, + { + "start": 6063.19, + "end": 6064.21, + "probability": 0.9607 + }, + { + "start": 6065.29, + "end": 6070.23, + "probability": 0.778 + }, + { + "start": 6071.59, + "end": 6073.31, + "probability": 0.9307 + }, + { + "start": 6074.45, + "end": 6076.89, + "probability": 0.976 + }, + { + "start": 6076.93, + "end": 6078.75, + "probability": 0.9561 + }, + { + "start": 6079.25, + "end": 6080.53, + "probability": 0.999 + }, + { + "start": 6081.81, + "end": 6087.09, + "probability": 0.944 + }, + { + "start": 6088.47, + "end": 6089.29, + "probability": 0.9579 + }, + { + "start": 6090.37, + "end": 6091.79, + "probability": 0.9515 + }, + { + "start": 6092.29, + "end": 6095.05, + "probability": 0.9375 + }, + { + "start": 6095.11, + "end": 6097.51, + "probability": 0.765 + }, + { + "start": 6097.75, + "end": 6099.07, + "probability": 0.8164 + }, + { + "start": 6099.55, + "end": 6104.45, + "probability": 0.9982 + }, + { + "start": 6105.59, + "end": 6107.61, + "probability": 0.9618 + }, + { + "start": 6108.69, + "end": 6110.33, + "probability": 0.8457 + }, + { + "start": 6111.23, + "end": 6112.99, + "probability": 0.9722 + }, + { + "start": 6113.21, + "end": 6115.93, + "probability": 0.9967 + }, + { + "start": 6117.01, + "end": 6119.27, + "probability": 0.9388 + }, + { + "start": 6120.23, + "end": 6122.29, + "probability": 0.991 + }, + { + "start": 6123.11, + "end": 6125.53, + "probability": 0.9985 + }, + { + "start": 6126.25, + "end": 6128.99, + "probability": 0.9963 + }, + { + "start": 6130.25, + "end": 6131.29, + "probability": 0.983 + }, + { + "start": 6133.85, + "end": 6134.25, + "probability": 0.7365 + }, + { + "start": 6135.71, + "end": 6136.39, + "probability": 0.9891 + }, + { + "start": 6137.99, + "end": 6138.69, + "probability": 0.9391 + }, + { + "start": 6140.15, + "end": 6140.57, + "probability": 0.8736 + }, + { + "start": 6142.35, + "end": 6145.61, + "probability": 0.8017 + }, + { + "start": 6146.21, + "end": 6147.59, + "probability": 0.7133 + }, + { + "start": 6148.01, + "end": 6148.65, + "probability": 0.6021 + }, + { + "start": 6148.81, + "end": 6152.51, + "probability": 0.9938 + }, + { + "start": 6153.75, + "end": 6156.07, + "probability": 0.9709 + }, + { + "start": 6156.19, + "end": 6159.13, + "probability": 0.9837 + }, + { + "start": 6160.39, + "end": 6161.73, + "probability": 0.9995 + }, + { + "start": 6162.67, + "end": 6167.63, + "probability": 0.9989 + }, + { + "start": 6168.19, + "end": 6170.85, + "probability": 0.9964 + }, + { + "start": 6172.37, + "end": 6173.43, + "probability": 0.6639 + }, + { + "start": 6173.85, + "end": 6174.78, + "probability": 0.8119 + }, + { + "start": 6176.35, + "end": 6181.47, + "probability": 0.9941 + }, + { + "start": 6181.59, + "end": 6187.03, + "probability": 0.9892 + }, + { + "start": 6187.99, + "end": 6190.83, + "probability": 0.9971 + }, + { + "start": 6191.11, + "end": 6191.77, + "probability": 0.6361 + }, + { + "start": 6191.95, + "end": 6192.03, + "probability": 0.606 + }, + { + "start": 6192.33, + "end": 6194.09, + "probability": 0.7533 + }, + { + "start": 6220.37, + "end": 6221.41, + "probability": 0.6692 + }, + { + "start": 6222.15, + "end": 6223.03, + "probability": 0.7056 + }, + { + "start": 6224.41, + "end": 6228.43, + "probability": 0.8141 + }, + { + "start": 6229.49, + "end": 6234.33, + "probability": 0.9928 + }, + { + "start": 6234.97, + "end": 6235.57, + "probability": 0.9402 + }, + { + "start": 6235.65, + "end": 6240.37, + "probability": 0.9879 + }, + { + "start": 6240.37, + "end": 6246.23, + "probability": 0.9905 + }, + { + "start": 6246.55, + "end": 6246.65, + "probability": 0.3877 + }, + { + "start": 6246.65, + "end": 6249.27, + "probability": 0.9956 + }, + { + "start": 6250.67, + "end": 6252.03, + "probability": 0.9417 + }, + { + "start": 6252.93, + "end": 6257.31, + "probability": 0.9753 + }, + { + "start": 6258.03, + "end": 6261.65, + "probability": 0.9895 + }, + { + "start": 6262.31, + "end": 6266.75, + "probability": 0.7998 + }, + { + "start": 6268.09, + "end": 6272.03, + "probability": 0.9895 + }, + { + "start": 6273.29, + "end": 6273.59, + "probability": 0.8023 + }, + { + "start": 6274.21, + "end": 6275.63, + "probability": 0.9494 + }, + { + "start": 6276.39, + "end": 6278.19, + "probability": 0.992 + }, + { + "start": 6278.91, + "end": 6282.63, + "probability": 0.9711 + }, + { + "start": 6283.77, + "end": 6286.27, + "probability": 0.8022 + }, + { + "start": 6286.81, + "end": 6288.03, + "probability": 0.9918 + }, + { + "start": 6288.65, + "end": 6290.07, + "probability": 0.8367 + }, + { + "start": 6291.05, + "end": 6292.81, + "probability": 0.9304 + }, + { + "start": 6293.87, + "end": 6294.67, + "probability": 0.4949 + }, + { + "start": 6296.15, + "end": 6297.22, + "probability": 0.9458 + }, + { + "start": 6298.15, + "end": 6299.51, + "probability": 0.9545 + }, + { + "start": 6301.19, + "end": 6302.67, + "probability": 0.9403 + }, + { + "start": 6303.65, + "end": 6309.33, + "probability": 0.9253 + }, + { + "start": 6310.09, + "end": 6312.63, + "probability": 0.9499 + }, + { + "start": 6313.47, + "end": 6314.69, + "probability": 0.9915 + }, + { + "start": 6315.91, + "end": 6318.85, + "probability": 0.96 + }, + { + "start": 6320.11, + "end": 6320.77, + "probability": 0.7419 + }, + { + "start": 6321.53, + "end": 6324.01, + "probability": 0.9285 + }, + { + "start": 6324.65, + "end": 6327.69, + "probability": 0.8219 + }, + { + "start": 6328.87, + "end": 6329.69, + "probability": 0.8687 + }, + { + "start": 6330.37, + "end": 6332.55, + "probability": 0.9829 + }, + { + "start": 6334.75, + "end": 6339.03, + "probability": 0.9408 + }, + { + "start": 6340.23, + "end": 6342.59, + "probability": 0.9236 + }, + { + "start": 6343.91, + "end": 6347.69, + "probability": 0.96 + }, + { + "start": 6348.83, + "end": 6350.37, + "probability": 0.9261 + }, + { + "start": 6351.17, + "end": 6351.85, + "probability": 0.5656 + }, + { + "start": 6353.99, + "end": 6355.31, + "probability": 0.937 + }, + { + "start": 6356.37, + "end": 6358.01, + "probability": 0.4994 + }, + { + "start": 6359.27, + "end": 6362.59, + "probability": 0.7027 + }, + { + "start": 6363.23, + "end": 6366.53, + "probability": 0.9855 + }, + { + "start": 6367.29, + "end": 6368.09, + "probability": 0.9113 + }, + { + "start": 6368.85, + "end": 6371.05, + "probability": 0.8976 + }, + { + "start": 6371.97, + "end": 6373.59, + "probability": 0.9873 + }, + { + "start": 6374.53, + "end": 6378.31, + "probability": 0.957 + }, + { + "start": 6378.97, + "end": 6386.33, + "probability": 0.9951 + }, + { + "start": 6386.95, + "end": 6389.11, + "probability": 0.7419 + }, + { + "start": 6389.75, + "end": 6391.47, + "probability": 0.8628 + }, + { + "start": 6392.27, + "end": 6400.25, + "probability": 0.9088 + }, + { + "start": 6400.65, + "end": 6402.57, + "probability": 0.9666 + }, + { + "start": 6402.81, + "end": 6403.27, + "probability": 0.8695 + }, + { + "start": 6406.19, + "end": 6406.73, + "probability": 0.6724 + }, + { + "start": 6406.85, + "end": 6410.87, + "probability": 0.9977 + }, + { + "start": 6410.87, + "end": 6415.39, + "probability": 0.989 + }, + { + "start": 6415.75, + "end": 6417.67, + "probability": 0.2218 + }, + { + "start": 6418.11, + "end": 6418.61, + "probability": 0.2185 + }, + { + "start": 6418.67, + "end": 6419.54, + "probability": 0.252 + }, + { + "start": 6420.01, + "end": 6423.23, + "probability": 0.6329 + }, + { + "start": 6423.89, + "end": 6424.81, + "probability": 0.2662 + }, + { + "start": 6424.83, + "end": 6426.55, + "probability": 0.645 + }, + { + "start": 6426.63, + "end": 6427.37, + "probability": 0.6083 + }, + { + "start": 6427.43, + "end": 6428.33, + "probability": 0.7635 + }, + { + "start": 6428.43, + "end": 6431.21, + "probability": 0.9769 + }, + { + "start": 6431.39, + "end": 6432.37, + "probability": 0.9443 + }, + { + "start": 6432.41, + "end": 6433.25, + "probability": 0.8223 + }, + { + "start": 6433.35, + "end": 6434.33, + "probability": 0.8241 + }, + { + "start": 6434.63, + "end": 6435.75, + "probability": 0.9847 + }, + { + "start": 6435.92, + "end": 6443.09, + "probability": 0.8613 + }, + { + "start": 6443.21, + "end": 6443.51, + "probability": 0.6564 + }, + { + "start": 6443.65, + "end": 6447.57, + "probability": 0.8556 + }, + { + "start": 6448.07, + "end": 6452.07, + "probability": 0.9797 + }, + { + "start": 6453.17, + "end": 6455.75, + "probability": 0.9845 + }, + { + "start": 6456.37, + "end": 6458.03, + "probability": 0.9153 + }, + { + "start": 6458.31, + "end": 6460.73, + "probability": 0.996 + }, + { + "start": 6460.73, + "end": 6463.13, + "probability": 0.9973 + }, + { + "start": 6463.67, + "end": 6466.59, + "probability": 0.5884 + }, + { + "start": 6466.87, + "end": 6468.03, + "probability": 0.869 + }, + { + "start": 6468.84, + "end": 6471.69, + "probability": 0.6554 + }, + { + "start": 6471.77, + "end": 6472.79, + "probability": 0.3582 + }, + { + "start": 6472.85, + "end": 6475.04, + "probability": 0.9056 + }, + { + "start": 6475.35, + "end": 6478.51, + "probability": 0.9611 + }, + { + "start": 6478.67, + "end": 6480.79, + "probability": 0.9956 + }, + { + "start": 6481.77, + "end": 6483.51, + "probability": 0.9538 + }, + { + "start": 6483.55, + "end": 6484.65, + "probability": 0.9609 + }, + { + "start": 6485.03, + "end": 6486.75, + "probability": 0.9663 + }, + { + "start": 6486.85, + "end": 6488.95, + "probability": 0.9821 + }, + { + "start": 6489.67, + "end": 6492.63, + "probability": 0.9863 + }, + { + "start": 6493.29, + "end": 6495.21, + "probability": 0.9905 + }, + { + "start": 6496.15, + "end": 6498.19, + "probability": 0.9872 + }, + { + "start": 6498.33, + "end": 6500.03, + "probability": 0.8721 + }, + { + "start": 6501.45, + "end": 6502.45, + "probability": 0.621 + }, + { + "start": 6502.62, + "end": 6506.03, + "probability": 0.9834 + }, + { + "start": 6506.05, + "end": 6508.57, + "probability": 0.9991 + }, + { + "start": 6509.37, + "end": 6511.27, + "probability": 0.8699 + }, + { + "start": 6512.55, + "end": 6515.31, + "probability": 0.9631 + }, + { + "start": 6515.89, + "end": 6516.35, + "probability": 0.6621 + }, + { + "start": 6516.79, + "end": 6521.05, + "probability": 0.8552 + }, + { + "start": 6521.13, + "end": 6524.45, + "probability": 0.8422 + }, + { + "start": 6526.47, + "end": 6531.07, + "probability": 0.9806 + }, + { + "start": 6532.41, + "end": 6533.33, + "probability": 0.8115 + }, + { + "start": 6534.37, + "end": 6537.34, + "probability": 0.9648 + }, + { + "start": 6538.11, + "end": 6541.33, + "probability": 0.9994 + }, + { + "start": 6541.85, + "end": 6544.41, + "probability": 0.9953 + }, + { + "start": 6545.03, + "end": 6548.03, + "probability": 0.9892 + }, + { + "start": 6548.55, + "end": 6550.63, + "probability": 0.9504 + }, + { + "start": 6551.61, + "end": 6553.45, + "probability": 0.9106 + }, + { + "start": 6553.67, + "end": 6553.95, + "probability": 0.1892 + }, + { + "start": 6553.95, + "end": 6556.95, + "probability": 0.6118 + }, + { + "start": 6557.07, + "end": 6559.91, + "probability": 0.9557 + }, + { + "start": 6560.79, + "end": 6565.35, + "probability": 0.9945 + }, + { + "start": 6565.93, + "end": 6567.51, + "probability": 0.9966 + }, + { + "start": 6570.45, + "end": 6571.15, + "probability": 0.6464 + }, + { + "start": 6571.23, + "end": 6571.67, + "probability": 0.5022 + }, + { + "start": 6571.95, + "end": 6579.21, + "probability": 0.988 + }, + { + "start": 6579.67, + "end": 6580.65, + "probability": 0.5087 + }, + { + "start": 6580.75, + "end": 6582.09, + "probability": 0.8444 + }, + { + "start": 6583.31, + "end": 6586.43, + "probability": 0.9979 + }, + { + "start": 6586.59, + "end": 6588.77, + "probability": 0.9976 + }, + { + "start": 6588.77, + "end": 6593.49, + "probability": 0.9793 + }, + { + "start": 6594.89, + "end": 6602.13, + "probability": 0.9838 + }, + { + "start": 6603.69, + "end": 6604.21, + "probability": 0.4417 + }, + { + "start": 6604.21, + "end": 6604.79, + "probability": 0.8589 + }, + { + "start": 6604.81, + "end": 6605.15, + "probability": 0.7589 + }, + { + "start": 6605.63, + "end": 6608.55, + "probability": 0.4502 + }, + { + "start": 6609.03, + "end": 6613.61, + "probability": 0.7456 + }, + { + "start": 6614.46, + "end": 6617.73, + "probability": 0.8671 + }, + { + "start": 6618.19, + "end": 6619.85, + "probability": 0.1338 + }, + { + "start": 6621.17, + "end": 6621.49, + "probability": 0.1621 + }, + { + "start": 6621.49, + "end": 6622.37, + "probability": 0.0691 + }, + { + "start": 6623.07, + "end": 6625.25, + "probability": 0.5954 + }, + { + "start": 6625.37, + "end": 6626.65, + "probability": 0.2361 + }, + { + "start": 6628.29, + "end": 6628.77, + "probability": 0.2912 + }, + { + "start": 6632.37, + "end": 6632.55, + "probability": 0.0715 + }, + { + "start": 6632.57, + "end": 6633.23, + "probability": 0.0549 + }, + { + "start": 6633.23, + "end": 6633.69, + "probability": 0.3223 + }, + { + "start": 6634.07, + "end": 6635.39, + "probability": 0.3725 + }, + { + "start": 6635.39, + "end": 6635.39, + "probability": 0.0936 + }, + { + "start": 6635.39, + "end": 6635.39, + "probability": 0.1377 + }, + { + "start": 6635.39, + "end": 6635.93, + "probability": 0.2082 + }, + { + "start": 6636.63, + "end": 6641.71, + "probability": 0.8997 + }, + { + "start": 6642.85, + "end": 6645.57, + "probability": 0.8243 + }, + { + "start": 6645.63, + "end": 6647.21, + "probability": 0.9036 + }, + { + "start": 6647.73, + "end": 6651.41, + "probability": 0.9248 + }, + { + "start": 6651.43, + "end": 6652.43, + "probability": 0.6383 + }, + { + "start": 6652.81, + "end": 6654.41, + "probability": 0.9693 + }, + { + "start": 6655.13, + "end": 6657.17, + "probability": 0.9951 + }, + { + "start": 6657.25, + "end": 6658.1, + "probability": 0.9849 + }, + { + "start": 6658.31, + "end": 6660.73, + "probability": 0.9832 + }, + { + "start": 6660.73, + "end": 6664.43, + "probability": 0.9419 + }, + { + "start": 6664.73, + "end": 6665.05, + "probability": 0.4509 + }, + { + "start": 6665.49, + "end": 6671.05, + "probability": 0.9859 + }, + { + "start": 6671.69, + "end": 6672.47, + "probability": 0.8299 + }, + { + "start": 6672.71, + "end": 6673.39, + "probability": 0.7306 + }, + { + "start": 6673.39, + "end": 6673.39, + "probability": 0.6459 + }, + { + "start": 6673.55, + "end": 6675.41, + "probability": 0.9258 + }, + { + "start": 6675.85, + "end": 6676.99, + "probability": 0.8932 + }, + { + "start": 6678.83, + "end": 6681.77, + "probability": 0.6855 + }, + { + "start": 6682.81, + "end": 6685.97, + "probability": 0.7144 + }, + { + "start": 6687.91, + "end": 6689.31, + "probability": 0.7284 + }, + { + "start": 6689.75, + "end": 6693.87, + "probability": 0.5542 + }, + { + "start": 6701.81, + "end": 6703.23, + "probability": 0.7764 + }, + { + "start": 6703.51, + "end": 6706.67, + "probability": 0.8472 + }, + { + "start": 6707.39, + "end": 6708.95, + "probability": 0.6901 + }, + { + "start": 6709.35, + "end": 6710.84, + "probability": 0.787 + }, + { + "start": 6712.25, + "end": 6714.95, + "probability": 0.8047 + }, + { + "start": 6715.01, + "end": 6716.81, + "probability": 0.9687 + }, + { + "start": 6717.95, + "end": 6719.49, + "probability": 0.8435 + }, + { + "start": 6720.13, + "end": 6721.91, + "probability": 0.9086 + }, + { + "start": 6722.19, + "end": 6726.45, + "probability": 0.9888 + }, + { + "start": 6727.17, + "end": 6728.17, + "probability": 0.8267 + }, + { + "start": 6728.73, + "end": 6733.31, + "probability": 0.9683 + }, + { + "start": 6736.29, + "end": 6741.55, + "probability": 0.7321 + }, + { + "start": 6743.81, + "end": 6745.11, + "probability": 0.8622 + }, + { + "start": 6747.13, + "end": 6748.61, + "probability": 0.4333 + }, + { + "start": 6749.87, + "end": 6753.09, + "probability": 0.9471 + }, + { + "start": 6758.35, + "end": 6761.23, + "probability": 0.5551 + }, + { + "start": 6761.25, + "end": 6765.63, + "probability": 0.7426 + }, + { + "start": 6766.61, + "end": 6769.01, + "probability": 0.8063 + }, + { + "start": 6769.43, + "end": 6770.77, + "probability": 0.7886 + }, + { + "start": 6771.05, + "end": 6771.75, + "probability": 0.762 + }, + { + "start": 6771.83, + "end": 6772.88, + "probability": 0.7745 + }, + { + "start": 6773.07, + "end": 6774.27, + "probability": 0.7861 + }, + { + "start": 6775.31, + "end": 6776.53, + "probability": 0.9695 + }, + { + "start": 6776.79, + "end": 6778.11, + "probability": 0.7301 + }, + { + "start": 6778.43, + "end": 6779.23, + "probability": 0.9863 + }, + { + "start": 6780.15, + "end": 6781.89, + "probability": 0.8191 + }, + { + "start": 6783.47, + "end": 6784.25, + "probability": 0.691 + }, + { + "start": 6784.87, + "end": 6786.17, + "probability": 0.9514 + }, + { + "start": 6786.33, + "end": 6792.35, + "probability": 0.0365 + }, + { + "start": 6792.35, + "end": 6792.35, + "probability": 0.2829 + }, + { + "start": 6792.35, + "end": 6796.81, + "probability": 0.5435 + }, + { + "start": 6797.45, + "end": 6799.89, + "probability": 0.7273 + }, + { + "start": 6800.45, + "end": 6802.31, + "probability": 0.7331 + }, + { + "start": 6803.27, + "end": 6804.29, + "probability": 0.8635 + }, + { + "start": 6805.21, + "end": 6805.99, + "probability": 0.7773 + }, + { + "start": 6806.95, + "end": 6809.75, + "probability": 0.9152 + }, + { + "start": 6810.29, + "end": 6811.35, + "probability": 0.9789 + }, + { + "start": 6811.75, + "end": 6814.83, + "probability": 0.9939 + }, + { + "start": 6815.93, + "end": 6817.79, + "probability": 0.9774 + }, + { + "start": 6818.69, + "end": 6822.27, + "probability": 0.9766 + }, + { + "start": 6822.59, + "end": 6824.29, + "probability": 0.9937 + }, + { + "start": 6825.29, + "end": 6826.15, + "probability": 0.6459 + }, + { + "start": 6826.59, + "end": 6827.12, + "probability": 0.8933 + }, + { + "start": 6827.49, + "end": 6828.59, + "probability": 0.9973 + }, + { + "start": 6829.05, + "end": 6833.4, + "probability": 0.9912 + }, + { + "start": 6835.35, + "end": 6837.89, + "probability": 0.7836 + }, + { + "start": 6838.57, + "end": 6840.83, + "probability": 0.6697 + }, + { + "start": 6842.05, + "end": 6844.49, + "probability": 0.821 + }, + { + "start": 6845.21, + "end": 6848.71, + "probability": 0.9957 + }, + { + "start": 6849.39, + "end": 6851.43, + "probability": 0.9469 + }, + { + "start": 6852.03, + "end": 6852.99, + "probability": 0.9279 + }, + { + "start": 6853.57, + "end": 6855.95, + "probability": 0.9734 + }, + { + "start": 6856.79, + "end": 6858.09, + "probability": 0.4726 + }, + { + "start": 6859.51, + "end": 6861.27, + "probability": 0.5845 + }, + { + "start": 6861.41, + "end": 6863.85, + "probability": 0.9868 + }, + { + "start": 6864.63, + "end": 6866.05, + "probability": 0.8994 + }, + { + "start": 6866.59, + "end": 6868.23, + "probability": 0.9525 + }, + { + "start": 6868.75, + "end": 6869.61, + "probability": 0.9984 + }, + { + "start": 6870.23, + "end": 6873.15, + "probability": 0.9547 + }, + { + "start": 6873.41, + "end": 6874.53, + "probability": 0.5084 + }, + { + "start": 6875.13, + "end": 6881.63, + "probability": 0.8731 + }, + { + "start": 6882.19, + "end": 6882.57, + "probability": 0.7122 + }, + { + "start": 6882.57, + "end": 6884.23, + "probability": 0.9104 + }, + { + "start": 6884.63, + "end": 6886.55, + "probability": 0.9868 + }, + { + "start": 6887.17, + "end": 6888.69, + "probability": 0.9948 + }, + { + "start": 6888.87, + "end": 6893.11, + "probability": 0.8701 + }, + { + "start": 6893.29, + "end": 6894.36, + "probability": 0.5082 + }, + { + "start": 6894.53, + "end": 6895.16, + "probability": 0.6246 + }, + { + "start": 6895.83, + "end": 6899.03, + "probability": 0.9697 + }, + { + "start": 6899.67, + "end": 6900.17, + "probability": 0.9599 + }, + { + "start": 6915.93, + "end": 6916.97, + "probability": 0.6184 + }, + { + "start": 6917.51, + "end": 6918.29, + "probability": 0.8657 + }, + { + "start": 6919.21, + "end": 6920.13, + "probability": 0.7303 + }, + { + "start": 6920.97, + "end": 6926.93, + "probability": 0.9693 + }, + { + "start": 6927.77, + "end": 6930.23, + "probability": 0.9433 + }, + { + "start": 6931.07, + "end": 6933.73, + "probability": 0.9901 + }, + { + "start": 6935.09, + "end": 6935.43, + "probability": 0.504 + }, + { + "start": 6936.07, + "end": 6939.33, + "probability": 0.7115 + }, + { + "start": 6940.33, + "end": 6940.98, + "probability": 0.7708 + }, + { + "start": 6941.71, + "end": 6946.51, + "probability": 0.9968 + }, + { + "start": 6947.23, + "end": 6947.67, + "probability": 0.9091 + }, + { + "start": 6948.69, + "end": 6953.23, + "probability": 0.8791 + }, + { + "start": 6953.71, + "end": 6956.29, + "probability": 0.8239 + }, + { + "start": 6957.49, + "end": 6962.09, + "probability": 0.975 + }, + { + "start": 6962.11, + "end": 6967.23, + "probability": 0.999 + }, + { + "start": 6967.23, + "end": 6970.91, + "probability": 0.9975 + }, + { + "start": 6971.29, + "end": 6977.89, + "probability": 0.8675 + }, + { + "start": 6977.89, + "end": 6982.31, + "probability": 0.9882 + }, + { + "start": 6982.65, + "end": 6988.43, + "probability": 0.9893 + }, + { + "start": 6988.85, + "end": 6992.13, + "probability": 0.9972 + }, + { + "start": 6992.35, + "end": 6999.25, + "probability": 0.9387 + }, + { + "start": 7000.05, + "end": 7002.95, + "probability": 0.9133 + }, + { + "start": 7004.79, + "end": 7006.47, + "probability": 0.936 + }, + { + "start": 7007.71, + "end": 7008.67, + "probability": 0.9878 + }, + { + "start": 7009.67, + "end": 7011.19, + "probability": 0.9741 + }, + { + "start": 7011.85, + "end": 7013.37, + "probability": 0.8396 + }, + { + "start": 7014.17, + "end": 7016.25, + "probability": 0.9706 + }, + { + "start": 7016.85, + "end": 7017.57, + "probability": 0.9807 + }, + { + "start": 7018.11, + "end": 7019.25, + "probability": 0.9922 + }, + { + "start": 7019.93, + "end": 7021.71, + "probability": 0.9873 + }, + { + "start": 7022.49, + "end": 7028.31, + "probability": 0.9842 + }, + { + "start": 7029.17, + "end": 7029.57, + "probability": 0.6788 + }, + { + "start": 7030.23, + "end": 7031.97, + "probability": 0.8881 + }, + { + "start": 7032.89, + "end": 7035.45, + "probability": 0.9662 + }, + { + "start": 7036.13, + "end": 7038.77, + "probability": 0.9733 + }, + { + "start": 7039.21, + "end": 7039.59, + "probability": 0.8027 + }, + { + "start": 7039.79, + "end": 7040.03, + "probability": 0.7859 + }, + { + "start": 7040.63, + "end": 7041.89, + "probability": 0.9935 + }, + { + "start": 7042.89, + "end": 7049.19, + "probability": 0.9845 + }, + { + "start": 7049.87, + "end": 7055.59, + "probability": 0.9675 + }, + { + "start": 7055.59, + "end": 7063.03, + "probability": 0.9909 + }, + { + "start": 7063.65, + "end": 7063.75, + "probability": 0.4839 + }, + { + "start": 7064.39, + "end": 7067.21, + "probability": 0.9081 + }, + { + "start": 7067.93, + "end": 7068.57, + "probability": 0.9401 + }, + { + "start": 7069.15, + "end": 7072.05, + "probability": 0.9717 + }, + { + "start": 7072.65, + "end": 7074.39, + "probability": 0.9727 + }, + { + "start": 7075.09, + "end": 7077.61, + "probability": 0.9507 + }, + { + "start": 7078.21, + "end": 7080.49, + "probability": 0.9272 + }, + { + "start": 7080.95, + "end": 7083.03, + "probability": 0.6781 + }, + { + "start": 7083.15, + "end": 7086.13, + "probability": 0.9938 + }, + { + "start": 7086.59, + "end": 7088.91, + "probability": 0.9901 + }, + { + "start": 7089.65, + "end": 7090.93, + "probability": 0.8527 + }, + { + "start": 7091.49, + "end": 7093.87, + "probability": 0.9919 + }, + { + "start": 7094.41, + "end": 7097.25, + "probability": 0.9396 + }, + { + "start": 7097.79, + "end": 7099.93, + "probability": 0.9272 + }, + { + "start": 7100.83, + "end": 7105.03, + "probability": 0.9458 + }, + { + "start": 7105.59, + "end": 7106.27, + "probability": 0.6704 + }, + { + "start": 7106.73, + "end": 7107.37, + "probability": 0.8524 + }, + { + "start": 7108.07, + "end": 7109.65, + "probability": 0.8573 + }, + { + "start": 7110.23, + "end": 7110.77, + "probability": 0.816 + }, + { + "start": 7111.31, + "end": 7112.69, + "probability": 0.9597 + }, + { + "start": 7113.43, + "end": 7116.35, + "probability": 0.9795 + }, + { + "start": 7116.69, + "end": 7117.77, + "probability": 0.7879 + }, + { + "start": 7118.25, + "end": 7121.87, + "probability": 0.9836 + }, + { + "start": 7122.21, + "end": 7123.75, + "probability": 0.8652 + }, + { + "start": 7124.39, + "end": 7127.91, + "probability": 0.9678 + }, + { + "start": 7128.51, + "end": 7129.11, + "probability": 0.9912 + }, + { + "start": 7129.31, + "end": 7130.31, + "probability": 0.6745 + }, + { + "start": 7130.69, + "end": 7132.1, + "probability": 0.9884 + }, + { + "start": 7132.13, + "end": 7132.17, + "probability": 0.5001 + }, + { + "start": 7132.39, + "end": 7136.53, + "probability": 0.99 + }, + { + "start": 7136.55, + "end": 7138.13, + "probability": 0.9941 + }, + { + "start": 7139.61, + "end": 7143.43, + "probability": 0.8679 + }, + { + "start": 7144.07, + "end": 7144.17, + "probability": 0.4902 + }, + { + "start": 7144.41, + "end": 7147.67, + "probability": 0.9858 + }, + { + "start": 7148.05, + "end": 7151.59, + "probability": 0.9745 + }, + { + "start": 7152.37, + "end": 7154.38, + "probability": 0.975 + }, + { + "start": 7154.61, + "end": 7155.19, + "probability": 0.3968 + }, + { + "start": 7155.75, + "end": 7156.35, + "probability": 0.9515 + }, + { + "start": 7156.69, + "end": 7157.99, + "probability": 0.9946 + }, + { + "start": 7158.41, + "end": 7160.47, + "probability": 0.9971 + }, + { + "start": 7160.89, + "end": 7162.43, + "probability": 0.9424 + }, + { + "start": 7162.89, + "end": 7165.81, + "probability": 0.8879 + }, + { + "start": 7165.95, + "end": 7168.83, + "probability": 0.5583 + }, + { + "start": 7168.91, + "end": 7173.61, + "probability": 0.876 + }, + { + "start": 7173.89, + "end": 7174.03, + "probability": 0.6854 + }, + { + "start": 7174.03, + "end": 7174.51, + "probability": 0.601 + }, + { + "start": 7174.63, + "end": 7176.05, + "probability": 0.8595 + }, + { + "start": 7196.89, + "end": 7197.83, + "probability": 0.7566 + }, + { + "start": 7197.99, + "end": 7198.63, + "probability": 0.8685 + }, + { + "start": 7198.79, + "end": 7199.33, + "probability": 0.8525 + }, + { + "start": 7199.41, + "end": 7200.37, + "probability": 0.8617 + }, + { + "start": 7200.53, + "end": 7205.65, + "probability": 0.9758 + }, + { + "start": 7206.19, + "end": 7207.09, + "probability": 0.7023 + }, + { + "start": 7208.13, + "end": 7210.15, + "probability": 0.9925 + }, + { + "start": 7211.15, + "end": 7211.85, + "probability": 0.2221 + }, + { + "start": 7212.41, + "end": 7214.63, + "probability": 0.9969 + }, + { + "start": 7215.25, + "end": 7215.97, + "probability": 0.5659 + }, + { + "start": 7217.01, + "end": 7217.79, + "probability": 0.719 + }, + { + "start": 7218.05, + "end": 7218.35, + "probability": 0.8804 + }, + { + "start": 7219.31, + "end": 7223.35, + "probability": 0.991 + }, + { + "start": 7223.79, + "end": 7227.35, + "probability": 0.9567 + }, + { + "start": 7227.43, + "end": 7229.47, + "probability": 0.9985 + }, + { + "start": 7229.77, + "end": 7231.23, + "probability": 0.9977 + }, + { + "start": 7232.11, + "end": 7237.55, + "probability": 0.9972 + }, + { + "start": 7238.93, + "end": 7239.03, + "probability": 0.2488 + }, + { + "start": 7239.03, + "end": 7241.43, + "probability": 0.9871 + }, + { + "start": 7242.13, + "end": 7245.39, + "probability": 0.9289 + }, + { + "start": 7245.49, + "end": 7245.75, + "probability": 0.4549 + }, + { + "start": 7246.03, + "end": 7247.99, + "probability": 0.5771 + }, + { + "start": 7248.07, + "end": 7250.93, + "probability": 0.9854 + }, + { + "start": 7251.01, + "end": 7253.27, + "probability": 0.9146 + }, + { + "start": 7253.67, + "end": 7255.99, + "probability": 0.9373 + }, + { + "start": 7256.35, + "end": 7258.43, + "probability": 0.9366 + }, + { + "start": 7258.49, + "end": 7260.53, + "probability": 0.9745 + }, + { + "start": 7261.13, + "end": 7262.41, + "probability": 0.9886 + }, + { + "start": 7262.95, + "end": 7264.47, + "probability": 0.9971 + }, + { + "start": 7264.91, + "end": 7265.93, + "probability": 0.8337 + }, + { + "start": 7266.19, + "end": 7268.19, + "probability": 0.9247 + }, + { + "start": 7268.71, + "end": 7268.71, + "probability": 0.1978 + }, + { + "start": 7268.71, + "end": 7268.71, + "probability": 0.2177 + }, + { + "start": 7268.71, + "end": 7270.45, + "probability": 0.7694 + }, + { + "start": 7270.45, + "end": 7271.67, + "probability": 0.8181 + }, + { + "start": 7272.05, + "end": 7273.69, + "probability": 0.9363 + }, + { + "start": 7274.15, + "end": 7276.25, + "probability": 0.9761 + }, + { + "start": 7276.51, + "end": 7276.97, + "probability": 0.9066 + }, + { + "start": 7278.19, + "end": 7280.35, + "probability": 0.9294 + }, + { + "start": 7280.97, + "end": 7283.53, + "probability": 0.8605 + }, + { + "start": 7284.05, + "end": 7286.25, + "probability": 0.9897 + }, + { + "start": 7286.79, + "end": 7288.09, + "probability": 0.725 + }, + { + "start": 7288.21, + "end": 7289.53, + "probability": 0.7638 + }, + { + "start": 7289.89, + "end": 7290.47, + "probability": 0.61 + }, + { + "start": 7291.09, + "end": 7292.63, + "probability": 0.7107 + }, + { + "start": 7293.17, + "end": 7293.71, + "probability": 0.9372 + }, + { + "start": 7293.77, + "end": 7296.55, + "probability": 0.8076 + }, + { + "start": 7297.15, + "end": 7299.35, + "probability": 0.9744 + }, + { + "start": 7300.23, + "end": 7304.36, + "probability": 0.9979 + }, + { + "start": 7304.91, + "end": 7308.71, + "probability": 0.9928 + }, + { + "start": 7308.71, + "end": 7311.29, + "probability": 0.9968 + }, + { + "start": 7311.59, + "end": 7313.91, + "probability": 0.887 + }, + { + "start": 7315.07, + "end": 7322.07, + "probability": 0.9895 + }, + { + "start": 7322.71, + "end": 7326.27, + "probability": 0.9977 + }, + { + "start": 7326.87, + "end": 7330.33, + "probability": 0.9893 + }, + { + "start": 7330.69, + "end": 7332.67, + "probability": 0.9982 + }, + { + "start": 7333.03, + "end": 7334.43, + "probability": 0.928 + }, + { + "start": 7334.75, + "end": 7337.33, + "probability": 0.9861 + }, + { + "start": 7337.71, + "end": 7338.51, + "probability": 0.6784 + }, + { + "start": 7339.65, + "end": 7342.57, + "probability": 0.8991 + }, + { + "start": 7344.17, + "end": 7345.83, + "probability": 0.0685 + }, + { + "start": 7346.27, + "end": 7349.69, + "probability": 0.3485 + }, + { + "start": 7349.93, + "end": 7350.15, + "probability": 0.5284 + }, + { + "start": 7350.19, + "end": 7351.15, + "probability": 0.9092 + }, + { + "start": 7351.31, + "end": 7353.95, + "probability": 0.6518 + }, + { + "start": 7354.29, + "end": 7355.65, + "probability": 0.8557 + }, + { + "start": 7356.49, + "end": 7356.85, + "probability": 0.1805 + }, + { + "start": 7356.85, + "end": 7357.77, + "probability": 0.0345 + }, + { + "start": 7358.21, + "end": 7359.57, + "probability": 0.4242 + }, + { + "start": 7359.65, + "end": 7361.19, + "probability": 0.6487 + }, + { + "start": 7361.37, + "end": 7362.72, + "probability": 0.9648 + }, + { + "start": 7364.73, + "end": 7367.27, + "probability": 0.7272 + }, + { + "start": 7367.81, + "end": 7368.83, + "probability": 0.9936 + }, + { + "start": 7369.87, + "end": 7370.37, + "probability": 0.6774 + }, + { + "start": 7370.49, + "end": 7371.34, + "probability": 0.8049 + }, + { + "start": 7373.46, + "end": 7375.55, + "probability": 0.9653 + }, + { + "start": 7377.27, + "end": 7377.49, + "probability": 0.7214 + }, + { + "start": 7377.49, + "end": 7377.49, + "probability": 0.8017 + }, + { + "start": 7378.53, + "end": 7382.75, + "probability": 0.9377 + }, + { + "start": 7383.65, + "end": 7385.57, + "probability": 0.459 + }, + { + "start": 7387.73, + "end": 7391.29, + "probability": 0.8543 + }, + { + "start": 7392.21, + "end": 7397.67, + "probability": 0.9238 + }, + { + "start": 7398.33, + "end": 7400.19, + "probability": 0.9509 + }, + { + "start": 7400.35, + "end": 7402.23, + "probability": 0.9907 + }, + { + "start": 7402.35, + "end": 7406.83, + "probability": 0.9524 + }, + { + "start": 7407.95, + "end": 7409.71, + "probability": 0.9634 + }, + { + "start": 7410.99, + "end": 7412.35, + "probability": 0.2465 + }, + { + "start": 7412.57, + "end": 7416.15, + "probability": 0.7999 + }, + { + "start": 7416.61, + "end": 7418.96, + "probability": 0.6933 + }, + { + "start": 7420.07, + "end": 7421.91, + "probability": 0.7654 + }, + { + "start": 7422.27, + "end": 7423.09, + "probability": 0.9512 + }, + { + "start": 7424.05, + "end": 7425.87, + "probability": 0.8765 + }, + { + "start": 7427.03, + "end": 7428.93, + "probability": 0.4907 + }, + { + "start": 7429.17, + "end": 7433.39, + "probability": 0.9437 + }, + { + "start": 7434.45, + "end": 7436.75, + "probability": 0.9628 + }, + { + "start": 7437.07, + "end": 7437.81, + "probability": 0.9644 + }, + { + "start": 7437.97, + "end": 7438.75, + "probability": 0.9184 + }, + { + "start": 7439.09, + "end": 7440.03, + "probability": 0.6366 + }, + { + "start": 7440.31, + "end": 7448.41, + "probability": 0.9561 + }, + { + "start": 7449.27, + "end": 7449.97, + "probability": 0.8821 + }, + { + "start": 7451.33, + "end": 7455.29, + "probability": 0.9739 + }, + { + "start": 7455.39, + "end": 7456.67, + "probability": 0.6897 + }, + { + "start": 7457.85, + "end": 7459.59, + "probability": 0.9644 + }, + { + "start": 7459.83, + "end": 7463.18, + "probability": 0.912 + }, + { + "start": 7463.79, + "end": 7466.49, + "probability": 0.9965 + }, + { + "start": 7466.49, + "end": 7466.79, + "probability": 0.1728 + }, + { + "start": 7467.03, + "end": 7468.55, + "probability": 0.2403 + }, + { + "start": 7468.79, + "end": 7469.65, + "probability": 0.026 + }, + { + "start": 7469.85, + "end": 7470.71, + "probability": 0.4168 + }, + { + "start": 7471.0, + "end": 7471.21, + "probability": 0.6043 + }, + { + "start": 7471.21, + "end": 7472.79, + "probability": 0.7667 + }, + { + "start": 7475.47, + "end": 7479.17, + "probability": 0.1425 + }, + { + "start": 7479.29, + "end": 7479.85, + "probability": 0.5183 + }, + { + "start": 7479.99, + "end": 7481.33, + "probability": 0.2827 + }, + { + "start": 7481.49, + "end": 7482.35, + "probability": 0.4254 + }, + { + "start": 7482.39, + "end": 7482.92, + "probability": 0.2837 + }, + { + "start": 7483.65, + "end": 7483.65, + "probability": 0.1589 + }, + { + "start": 7483.65, + "end": 7485.07, + "probability": 0.6557 + }, + { + "start": 7485.27, + "end": 7486.57, + "probability": 0.256 + }, + { + "start": 7487.09, + "end": 7487.09, + "probability": 0.0114 + }, + { + "start": 7487.09, + "end": 7487.09, + "probability": 0.3423 + }, + { + "start": 7487.09, + "end": 7487.68, + "probability": 0.5262 + }, + { + "start": 7488.11, + "end": 7489.47, + "probability": 0.3076 + }, + { + "start": 7489.69, + "end": 7492.41, + "probability": 0.4881 + }, + { + "start": 7492.85, + "end": 7493.27, + "probability": 0.0967 + }, + { + "start": 7494.33, + "end": 7495.55, + "probability": 0.0506 + }, + { + "start": 7495.59, + "end": 7496.01, + "probability": 0.135 + }, + { + "start": 7496.01, + "end": 7496.01, + "probability": 0.0286 + }, + { + "start": 7496.01, + "end": 7496.25, + "probability": 0.3298 + }, + { + "start": 7496.61, + "end": 7497.13, + "probability": 0.6496 + }, + { + "start": 7497.96, + "end": 7500.93, + "probability": 0.9811 + }, + { + "start": 7501.07, + "end": 7503.49, + "probability": 0.9924 + }, + { + "start": 7504.61, + "end": 7507.57, + "probability": 0.9825 + }, + { + "start": 7507.95, + "end": 7509.11, + "probability": 0.8737 + }, + { + "start": 7509.67, + "end": 7511.99, + "probability": 0.7471 + }, + { + "start": 7512.19, + "end": 7514.73, + "probability": 0.9478 + }, + { + "start": 7515.09, + "end": 7515.63, + "probability": 0.5132 + }, + { + "start": 7515.75, + "end": 7516.29, + "probability": 0.6633 + }, + { + "start": 7516.77, + "end": 7517.67, + "probability": 0.6321 + }, + { + "start": 7518.11, + "end": 7522.01, + "probability": 0.8101 + }, + { + "start": 7522.45, + "end": 7525.75, + "probability": 0.9796 + }, + { + "start": 7526.35, + "end": 7527.49, + "probability": 0.998 + }, + { + "start": 7527.95, + "end": 7529.08, + "probability": 0.9866 + }, + { + "start": 7529.63, + "end": 7529.93, + "probability": 0.9186 + }, + { + "start": 7530.73, + "end": 7532.61, + "probability": 0.9988 + }, + { + "start": 7534.11, + "end": 7534.69, + "probability": 0.9351 + }, + { + "start": 7534.91, + "end": 7536.95, + "probability": 0.6286 + }, + { + "start": 7537.09, + "end": 7538.47, + "probability": 0.8369 + }, + { + "start": 7539.09, + "end": 7542.43, + "probability": 0.8936 + }, + { + "start": 7543.27, + "end": 7545.03, + "probability": 0.7093 + }, + { + "start": 7545.05, + "end": 7549.61, + "probability": 0.9148 + }, + { + "start": 7550.09, + "end": 7550.93, + "probability": 0.7616 + }, + { + "start": 7551.27, + "end": 7552.13, + "probability": 0.8733 + }, + { + "start": 7552.31, + "end": 7553.01, + "probability": 0.9032 + }, + { + "start": 7553.03, + "end": 7553.71, + "probability": 0.7314 + }, + { + "start": 7554.07, + "end": 7556.11, + "probability": 0.9883 + }, + { + "start": 7561.58, + "end": 7562.63, + "probability": 0.8774 + }, + { + "start": 7563.77, + "end": 7565.43, + "probability": 0.997 + }, + { + "start": 7565.73, + "end": 7567.19, + "probability": 0.9895 + }, + { + "start": 7569.01, + "end": 7569.25, + "probability": 0.8716 + }, + { + "start": 7569.83, + "end": 7573.19, + "probability": 0.9946 + }, + { + "start": 7573.89, + "end": 7575.45, + "probability": 0.9443 + }, + { + "start": 7576.51, + "end": 7577.57, + "probability": 0.9485 + }, + { + "start": 7577.75, + "end": 7584.05, + "probability": 0.8757 + }, + { + "start": 7584.99, + "end": 7586.93, + "probability": 0.9318 + }, + { + "start": 7587.03, + "end": 7587.95, + "probability": 0.7436 + }, + { + "start": 7588.35, + "end": 7589.41, + "probability": 0.9355 + }, + { + "start": 7589.49, + "end": 7591.37, + "probability": 0.7662 + }, + { + "start": 7591.83, + "end": 7593.67, + "probability": 0.9795 + }, + { + "start": 7594.13, + "end": 7596.83, + "probability": 0.8826 + }, + { + "start": 7597.17, + "end": 7597.77, + "probability": 0.8662 + }, + { + "start": 7597.83, + "end": 7598.55, + "probability": 0.5579 + }, + { + "start": 7598.65, + "end": 7602.31, + "probability": 0.8126 + }, + { + "start": 7602.31, + "end": 7605.73, + "probability": 0.9542 + }, + { + "start": 7606.11, + "end": 7607.88, + "probability": 0.5618 + }, + { + "start": 7608.25, + "end": 7608.83, + "probability": 0.9393 + }, + { + "start": 7609.25, + "end": 7609.91, + "probability": 0.589 + }, + { + "start": 7610.35, + "end": 7612.31, + "probability": 0.7722 + }, + { + "start": 7612.77, + "end": 7614.21, + "probability": 0.9956 + }, + { + "start": 7619.21, + "end": 7621.97, + "probability": 0.8786 + }, + { + "start": 7637.81, + "end": 7639.27, + "probability": 0.7843 + }, + { + "start": 7639.89, + "end": 7642.37, + "probability": 0.8709 + }, + { + "start": 7643.07, + "end": 7644.79, + "probability": 0.9009 + }, + { + "start": 7645.65, + "end": 7648.01, + "probability": 0.9863 + }, + { + "start": 7648.09, + "end": 7650.33, + "probability": 0.9192 + }, + { + "start": 7650.99, + "end": 7652.81, + "probability": 0.9855 + }, + { + "start": 7653.43, + "end": 7655.79, + "probability": 0.9906 + }, + { + "start": 7656.85, + "end": 7661.87, + "probability": 0.9812 + }, + { + "start": 7662.77, + "end": 7665.85, + "probability": 0.6908 + }, + { + "start": 7666.91, + "end": 7672.37, + "probability": 0.8218 + }, + { + "start": 7672.85, + "end": 7675.53, + "probability": 0.8167 + }, + { + "start": 7676.03, + "end": 7676.69, + "probability": 0.6864 + }, + { + "start": 7676.77, + "end": 7680.39, + "probability": 0.9867 + }, + { + "start": 7681.41, + "end": 7685.61, + "probability": 0.9962 + }, + { + "start": 7686.45, + "end": 7690.11, + "probability": 0.9932 + }, + { + "start": 7691.01, + "end": 7693.47, + "probability": 0.9822 + }, + { + "start": 7694.01, + "end": 7695.65, + "probability": 0.9639 + }, + { + "start": 7696.35, + "end": 7697.65, + "probability": 0.94 + }, + { + "start": 7698.67, + "end": 7701.11, + "probability": 0.957 + }, + { + "start": 7703.33, + "end": 7709.83, + "probability": 0.8616 + }, + { + "start": 7710.63, + "end": 7712.17, + "probability": 0.9872 + }, + { + "start": 7714.23, + "end": 7721.35, + "probability": 0.9954 + }, + { + "start": 7722.73, + "end": 7724.99, + "probability": 0.913 + }, + { + "start": 7726.07, + "end": 7726.07, + "probability": 0.603 + }, + { + "start": 7726.75, + "end": 7731.57, + "probability": 0.7042 + }, + { + "start": 7731.75, + "end": 7732.49, + "probability": 0.7761 + }, + { + "start": 7732.75, + "end": 7736.59, + "probability": 0.9533 + }, + { + "start": 7736.65, + "end": 7737.53, + "probability": 0.59 + }, + { + "start": 7739.07, + "end": 7740.73, + "probability": 0.9844 + }, + { + "start": 7741.39, + "end": 7743.03, + "probability": 0.9647 + }, + { + "start": 7743.69, + "end": 7745.07, + "probability": 0.6749 + }, + { + "start": 7746.17, + "end": 7748.67, + "probability": 0.9262 + }, + { + "start": 7749.03, + "end": 7750.67, + "probability": 0.9824 + }, + { + "start": 7751.55, + "end": 7754.59, + "probability": 0.9687 + }, + { + "start": 7755.03, + "end": 7756.99, + "probability": 0.7528 + }, + { + "start": 7757.57, + "end": 7759.25, + "probability": 0.6076 + }, + { + "start": 7760.33, + "end": 7761.47, + "probability": 0.8708 + }, + { + "start": 7762.37, + "end": 7767.65, + "probability": 0.9124 + }, + { + "start": 7768.63, + "end": 7770.17, + "probability": 0.9956 + }, + { + "start": 7770.75, + "end": 7773.53, + "probability": 0.6639 + }, + { + "start": 7774.67, + "end": 7776.43, + "probability": 0.8248 + }, + { + "start": 7776.99, + "end": 7778.49, + "probability": 0.8412 + }, + { + "start": 7779.19, + "end": 7781.77, + "probability": 0.8424 + }, + { + "start": 7782.69, + "end": 7786.17, + "probability": 0.6963 + }, + { + "start": 7786.57, + "end": 7792.13, + "probability": 0.9538 + }, + { + "start": 7793.07, + "end": 7793.83, + "probability": 0.7657 + }, + { + "start": 7793.91, + "end": 7795.45, + "probability": 0.7124 + }, + { + "start": 7795.87, + "end": 7797.09, + "probability": 0.8364 + }, + { + "start": 7798.13, + "end": 7801.47, + "probability": 0.8391 + }, + { + "start": 7802.07, + "end": 7804.01, + "probability": 0.8544 + }, + { + "start": 7805.25, + "end": 7808.89, + "probability": 0.8442 + }, + { + "start": 7808.89, + "end": 7811.05, + "probability": 0.7326 + }, + { + "start": 7812.39, + "end": 7813.15, + "probability": 0.8985 + }, + { + "start": 7814.23, + "end": 7817.89, + "probability": 0.799 + }, + { + "start": 7818.47, + "end": 7820.45, + "probability": 0.9708 + }, + { + "start": 7821.59, + "end": 7824.25, + "probability": 0.8524 + }, + { + "start": 7824.87, + "end": 7828.59, + "probability": 0.8622 + }, + { + "start": 7829.09, + "end": 7831.66, + "probability": 0.4882 + }, + { + "start": 7832.47, + "end": 7835.09, + "probability": 0.9163 + }, + { + "start": 7836.49, + "end": 7841.41, + "probability": 0.7126 + }, + { + "start": 7842.29, + "end": 7844.67, + "probability": 0.6674 + }, + { + "start": 7845.15, + "end": 7848.09, + "probability": 0.9419 + }, + { + "start": 7848.15, + "end": 7849.33, + "probability": 0.8477 + }, + { + "start": 7850.15, + "end": 7855.69, + "probability": 0.9871 + }, + { + "start": 7856.11, + "end": 7857.11, + "probability": 0.6986 + }, + { + "start": 7857.57, + "end": 7859.39, + "probability": 0.9696 + }, + { + "start": 7859.47, + "end": 7859.91, + "probability": 0.7603 + }, + { + "start": 7860.49, + "end": 7863.01, + "probability": 0.7554 + }, + { + "start": 7863.47, + "end": 7864.69, + "probability": 0.7192 + }, + { + "start": 7868.81, + "end": 7871.25, + "probability": 0.0709 + }, + { + "start": 7873.97, + "end": 7875.25, + "probability": 0.0822 + }, + { + "start": 7876.69, + "end": 7876.79, + "probability": 0.2064 + }, + { + "start": 7877.09, + "end": 7879.69, + "probability": 0.1172 + }, + { + "start": 7880.03, + "end": 7883.25, + "probability": 0.1257 + }, + { + "start": 7883.25, + "end": 7884.31, + "probability": 0.7952 + }, + { + "start": 7884.45, + "end": 7885.05, + "probability": 0.7665 + }, + { + "start": 7885.05, + "end": 7886.45, + "probability": 0.981 + }, + { + "start": 7886.65, + "end": 7888.09, + "probability": 0.3761 + }, + { + "start": 7888.96, + "end": 7891.11, + "probability": 0.0714 + }, + { + "start": 7891.11, + "end": 7891.53, + "probability": 0.018 + }, + { + "start": 7895.81, + "end": 7898.11, + "probability": 0.0424 + }, + { + "start": 7899.79, + "end": 7901.93, + "probability": 0.8641 + }, + { + "start": 7902.59, + "end": 7903.85, + "probability": 0.4936 + }, + { + "start": 7903.95, + "end": 7906.29, + "probability": 0.9596 + }, + { + "start": 7908.3, + "end": 7913.99, + "probability": 0.663 + }, + { + "start": 7915.03, + "end": 7918.11, + "probability": 0.9481 + }, + { + "start": 7919.55, + "end": 7919.97, + "probability": 0.1651 + }, + { + "start": 7921.13, + "end": 7922.17, + "probability": 0.4502 + }, + { + "start": 7922.27, + "end": 7926.39, + "probability": 0.798 + }, + { + "start": 7927.99, + "end": 7928.91, + "probability": 0.7892 + }, + { + "start": 7929.95, + "end": 7933.67, + "probability": 0.9863 + }, + { + "start": 7935.83, + "end": 7940.69, + "probability": 0.8723 + }, + { + "start": 7941.69, + "end": 7943.43, + "probability": 0.9556 + }, + { + "start": 7944.87, + "end": 7952.13, + "probability": 0.9214 + }, + { + "start": 7953.55, + "end": 7955.69, + "probability": 0.8428 + }, + { + "start": 7957.49, + "end": 7958.59, + "probability": 0.8365 + }, + { + "start": 7959.79, + "end": 7961.57, + "probability": 0.9772 + }, + { + "start": 7962.49, + "end": 7966.17, + "probability": 0.9274 + }, + { + "start": 7967.07, + "end": 7969.47, + "probability": 0.9462 + }, + { + "start": 7974.77, + "end": 7975.51, + "probability": 0.692 + }, + { + "start": 7976.93, + "end": 7977.8, + "probability": 0.4276 + }, + { + "start": 7978.77, + "end": 7984.49, + "probability": 0.991 + }, + { + "start": 7987.47, + "end": 7990.49, + "probability": 0.988 + }, + { + "start": 7991.35, + "end": 7998.21, + "probability": 0.9935 + }, + { + "start": 8000.63, + "end": 8003.39, + "probability": 0.9528 + }, + { + "start": 8004.61, + "end": 8005.83, + "probability": 0.7446 + }, + { + "start": 8006.43, + "end": 8011.85, + "probability": 0.9989 + }, + { + "start": 8012.61, + "end": 8013.93, + "probability": 0.9797 + }, + { + "start": 8014.61, + "end": 8015.93, + "probability": 0.9991 + }, + { + "start": 8016.95, + "end": 8020.13, + "probability": 0.9318 + }, + { + "start": 8020.69, + "end": 8021.57, + "probability": 0.9784 + }, + { + "start": 8022.09, + "end": 8023.97, + "probability": 0.9453 + }, + { + "start": 8025.93, + "end": 8031.39, + "probability": 0.9958 + }, + { + "start": 8034.31, + "end": 8036.97, + "probability": 0.9923 + }, + { + "start": 8038.27, + "end": 8039.69, + "probability": 0.7922 + }, + { + "start": 8041.39, + "end": 8044.61, + "probability": 0.785 + }, + { + "start": 8046.69, + "end": 8051.93, + "probability": 0.9966 + }, + { + "start": 8053.33, + "end": 8054.87, + "probability": 0.9053 + }, + { + "start": 8056.59, + "end": 8060.11, + "probability": 0.9976 + }, + { + "start": 8061.97, + "end": 8065.91, + "probability": 0.8875 + }, + { + "start": 8067.71, + "end": 8072.93, + "probability": 0.9092 + }, + { + "start": 8074.17, + "end": 8076.09, + "probability": 0.97 + }, + { + "start": 8077.97, + "end": 8078.85, + "probability": 0.6002 + }, + { + "start": 8080.45, + "end": 8081.25, + "probability": 0.7909 + }, + { + "start": 8081.85, + "end": 8083.49, + "probability": 0.9278 + }, + { + "start": 8098.39, + "end": 8098.49, + "probability": 0.1703 + }, + { + "start": 8098.49, + "end": 8098.49, + "probability": 0.1648 + }, + { + "start": 8098.49, + "end": 8100.15, + "probability": 0.0084 + }, + { + "start": 8100.15, + "end": 8100.35, + "probability": 0.0671 + }, + { + "start": 8100.35, + "end": 8100.59, + "probability": 0.0447 + }, + { + "start": 8117.37, + "end": 8117.37, + "probability": 0.008 + }, + { + "start": 8120.75, + "end": 8124.67, + "probability": 0.9108 + }, + { + "start": 8124.89, + "end": 8126.11, + "probability": 0.7943 + }, + { + "start": 8126.73, + "end": 8130.17, + "probability": 0.9889 + }, + { + "start": 8130.79, + "end": 8134.35, + "probability": 0.9806 + }, + { + "start": 8134.61, + "end": 8139.23, + "probability": 0.9945 + }, + { + "start": 8140.73, + "end": 8146.77, + "probability": 0.9852 + }, + { + "start": 8148.13, + "end": 8149.01, + "probability": 0.7295 + }, + { + "start": 8149.93, + "end": 8153.69, + "probability": 0.9049 + }, + { + "start": 8154.27, + "end": 8158.57, + "probability": 0.9762 + }, + { + "start": 8159.11, + "end": 8159.93, + "probability": 0.8968 + }, + { + "start": 8160.71, + "end": 8162.37, + "probability": 0.9531 + }, + { + "start": 8162.47, + "end": 8163.35, + "probability": 0.8864 + }, + { + "start": 8163.37, + "end": 8165.91, + "probability": 0.9864 + }, + { + "start": 8166.59, + "end": 8169.37, + "probability": 0.9924 + }, + { + "start": 8169.45, + "end": 8171.57, + "probability": 0.9971 + }, + { + "start": 8172.29, + "end": 8172.41, + "probability": 0.1024 + }, + { + "start": 8172.51, + "end": 8177.49, + "probability": 0.998 + }, + { + "start": 8178.01, + "end": 8179.99, + "probability": 0.9978 + }, + { + "start": 8180.47, + "end": 8183.05, + "probability": 0.9973 + }, + { + "start": 8183.67, + "end": 8184.59, + "probability": 0.879 + }, + { + "start": 8185.19, + "end": 8186.19, + "probability": 0.9865 + }, + { + "start": 8186.71, + "end": 8187.35, + "probability": 0.9943 + }, + { + "start": 8188.07, + "end": 8193.69, + "probability": 0.9989 + }, + { + "start": 8194.59, + "end": 8196.03, + "probability": 0.9928 + }, + { + "start": 8196.53, + "end": 8198.47, + "probability": 0.8184 + }, + { + "start": 8198.53, + "end": 8200.35, + "probability": 0.9206 + }, + { + "start": 8200.71, + "end": 8201.69, + "probability": 0.9593 + }, + { + "start": 8202.07, + "end": 8206.17, + "probability": 0.9803 + }, + { + "start": 8206.85, + "end": 8209.03, + "probability": 0.9979 + }, + { + "start": 8209.03, + "end": 8211.71, + "probability": 0.9956 + }, + { + "start": 8212.75, + "end": 8214.34, + "probability": 0.7521 + }, + { + "start": 8215.13, + "end": 8217.16, + "probability": 0.6855 + }, + { + "start": 8217.83, + "end": 8219.57, + "probability": 0.9178 + }, + { + "start": 8221.61, + "end": 8222.65, + "probability": 0.6211 + }, + { + "start": 8223.79, + "end": 8225.89, + "probability": 0.9717 + }, + { + "start": 8225.89, + "end": 8228.39, + "probability": 0.9936 + }, + { + "start": 8230.98, + "end": 8233.65, + "probability": 0.9971 + }, + { + "start": 8234.17, + "end": 8235.23, + "probability": 0.7409 + }, + { + "start": 8236.09, + "end": 8240.83, + "probability": 0.8918 + }, + { + "start": 8241.55, + "end": 8243.25, + "probability": 0.9819 + }, + { + "start": 8243.61, + "end": 8244.79, + "probability": 0.9966 + }, + { + "start": 8244.93, + "end": 8247.33, + "probability": 0.9985 + }, + { + "start": 8247.73, + "end": 8249.69, + "probability": 0.8891 + }, + { + "start": 8250.37, + "end": 8254.27, + "probability": 0.985 + }, + { + "start": 8255.03, + "end": 8258.23, + "probability": 0.9583 + }, + { + "start": 8258.81, + "end": 8260.03, + "probability": 0.978 + }, + { + "start": 8260.95, + "end": 8263.25, + "probability": 0.9362 + }, + { + "start": 8264.01, + "end": 8266.65, + "probability": 0.8425 + }, + { + "start": 8267.27, + "end": 8267.91, + "probability": 0.8385 + }, + { + "start": 8268.01, + "end": 8269.31, + "probability": 0.9348 + }, + { + "start": 8269.75, + "end": 8275.53, + "probability": 0.9199 + }, + { + "start": 8276.15, + "end": 8280.21, + "probability": 0.9903 + }, + { + "start": 8280.83, + "end": 8283.6, + "probability": 0.9792 + }, + { + "start": 8284.19, + "end": 8287.35, + "probability": 0.9839 + }, + { + "start": 8287.35, + "end": 8289.31, + "probability": 0.9974 + }, + { + "start": 8289.47, + "end": 8290.33, + "probability": 0.9248 + }, + { + "start": 8290.43, + "end": 8293.21, + "probability": 0.8823 + }, + { + "start": 8293.33, + "end": 8298.73, + "probability": 0.9666 + }, + { + "start": 8299.25, + "end": 8301.01, + "probability": 0.8152 + }, + { + "start": 8301.55, + "end": 8303.09, + "probability": 0.7283 + }, + { + "start": 8303.63, + "end": 8306.49, + "probability": 0.9492 + }, + { + "start": 8306.65, + "end": 8307.13, + "probability": 0.4658 + }, + { + "start": 8307.45, + "end": 8311.59, + "probability": 0.9616 + }, + { + "start": 8311.73, + "end": 8313.13, + "probability": 0.8561 + }, + { + "start": 8313.29, + "end": 8314.53, + "probability": 0.4545 + }, + { + "start": 8315.03, + "end": 8316.03, + "probability": 0.8679 + }, + { + "start": 8316.39, + "end": 8322.65, + "probability": 0.8135 + }, + { + "start": 8322.91, + "end": 8323.33, + "probability": 0.9831 + }, + { + "start": 8323.61, + "end": 8324.17, + "probability": 0.958 + }, + { + "start": 8324.65, + "end": 8326.41, + "probability": 0.9663 + }, + { + "start": 8326.57, + "end": 8330.53, + "probability": 0.9903 + }, + { + "start": 8330.53, + "end": 8330.89, + "probability": 0.5871 + }, + { + "start": 8330.99, + "end": 8331.49, + "probability": 0.5119 + }, + { + "start": 8331.53, + "end": 8332.61, + "probability": 0.9812 + }, + { + "start": 8336.11, + "end": 8336.51, + "probability": 0.283 + }, + { + "start": 8353.05, + "end": 8355.13, + "probability": 0.5436 + }, + { + "start": 8357.39, + "end": 8361.61, + "probability": 0.9932 + }, + { + "start": 8361.61, + "end": 8365.69, + "probability": 0.9321 + }, + { + "start": 8365.73, + "end": 8368.84, + "probability": 0.9971 + }, + { + "start": 8369.43, + "end": 8370.94, + "probability": 0.9966 + }, + { + "start": 8371.13, + "end": 8372.86, + "probability": 0.9964 + }, + { + "start": 8373.77, + "end": 8374.67, + "probability": 0.7252 + }, + { + "start": 8375.81, + "end": 8377.63, + "probability": 0.7726 + }, + { + "start": 8378.63, + "end": 8383.6, + "probability": 0.9424 + }, + { + "start": 8385.81, + "end": 8389.63, + "probability": 0.9314 + }, + { + "start": 8390.31, + "end": 8391.63, + "probability": 0.9976 + }, + { + "start": 8391.91, + "end": 8392.96, + "probability": 0.9819 + }, + { + "start": 8393.37, + "end": 8393.84, + "probability": 0.6646 + }, + { + "start": 8394.01, + "end": 8395.17, + "probability": 0.978 + }, + { + "start": 8395.25, + "end": 8396.47, + "probability": 0.984 + }, + { + "start": 8396.79, + "end": 8399.15, + "probability": 0.9878 + }, + { + "start": 8399.57, + "end": 8402.57, + "probability": 0.9546 + }, + { + "start": 8402.71, + "end": 8403.27, + "probability": 0.7386 + }, + { + "start": 8404.29, + "end": 8406.45, + "probability": 0.8944 + }, + { + "start": 8406.93, + "end": 8408.31, + "probability": 0.452 + }, + { + "start": 8409.35, + "end": 8411.87, + "probability": 0.8975 + }, + { + "start": 8412.49, + "end": 8413.91, + "probability": 0.903 + }, + { + "start": 8414.87, + "end": 8418.27, + "probability": 0.9904 + }, + { + "start": 8418.61, + "end": 8419.41, + "probability": 0.732 + }, + { + "start": 8419.77, + "end": 8421.95, + "probability": 0.9959 + }, + { + "start": 8421.95, + "end": 8424.65, + "probability": 0.943 + }, + { + "start": 8425.29, + "end": 8426.85, + "probability": 0.9575 + }, + { + "start": 8427.39, + "end": 8429.65, + "probability": 0.9912 + }, + { + "start": 8429.95, + "end": 8430.27, + "probability": 0.6847 + }, + { + "start": 8430.39, + "end": 8430.81, + "probability": 0.9609 + }, + { + "start": 8430.95, + "end": 8432.27, + "probability": 0.9922 + }, + { + "start": 8433.73, + "end": 8435.65, + "probability": 0.9897 + }, + { + "start": 8436.53, + "end": 8438.33, + "probability": 0.9029 + }, + { + "start": 8439.03, + "end": 8439.55, + "probability": 0.8198 + }, + { + "start": 8439.87, + "end": 8440.73, + "probability": 0.9804 + }, + { + "start": 8441.59, + "end": 8443.19, + "probability": 0.6748 + }, + { + "start": 8443.57, + "end": 8444.41, + "probability": 0.9712 + }, + { + "start": 8444.79, + "end": 8445.75, + "probability": 0.8027 + }, + { + "start": 8446.03, + "end": 8447.83, + "probability": 0.9897 + }, + { + "start": 8448.31, + "end": 8449.93, + "probability": 0.9346 + }, + { + "start": 8450.01, + "end": 8453.03, + "probability": 0.8735 + }, + { + "start": 8453.73, + "end": 8454.25, + "probability": 0.4311 + }, + { + "start": 8454.41, + "end": 8455.59, + "probability": 0.9223 + }, + { + "start": 8455.73, + "end": 8456.73, + "probability": 0.9394 + }, + { + "start": 8456.79, + "end": 8457.37, + "probability": 0.8867 + }, + { + "start": 8457.69, + "end": 8458.51, + "probability": 0.9769 + }, + { + "start": 8458.71, + "end": 8459.89, + "probability": 0.8003 + }, + { + "start": 8459.95, + "end": 8462.11, + "probability": 0.9709 + }, + { + "start": 8462.23, + "end": 8462.57, + "probability": 0.6663 + }, + { + "start": 8463.01, + "end": 8464.41, + "probability": 0.5518 + }, + { + "start": 8464.83, + "end": 8465.61, + "probability": 0.9169 + }, + { + "start": 8465.99, + "end": 8467.29, + "probability": 0.9374 + }, + { + "start": 8467.39, + "end": 8468.57, + "probability": 0.7774 + }, + { + "start": 8468.91, + "end": 8470.29, + "probability": 0.9099 + }, + { + "start": 8470.61, + "end": 8472.37, + "probability": 0.9927 + }, + { + "start": 8472.41, + "end": 8472.61, + "probability": 0.4823 + }, + { + "start": 8472.73, + "end": 8474.51, + "probability": 0.8648 + }, + { + "start": 8474.81, + "end": 8475.37, + "probability": 0.8845 + }, + { + "start": 8475.81, + "end": 8476.09, + "probability": 0.4301 + }, + { + "start": 8476.17, + "end": 8477.23, + "probability": 0.9118 + }, + { + "start": 8477.89, + "end": 8481.51, + "probability": 0.9817 + }, + { + "start": 8482.17, + "end": 8483.03, + "probability": 0.9323 + }, + { + "start": 8484.93, + "end": 8486.69, + "probability": 0.8903 + }, + { + "start": 8487.69, + "end": 8490.73, + "probability": 0.9274 + }, + { + "start": 8490.81, + "end": 8492.27, + "probability": 0.8962 + }, + { + "start": 8492.71, + "end": 8497.59, + "probability": 0.9934 + }, + { + "start": 8498.17, + "end": 8502.73, + "probability": 0.981 + }, + { + "start": 8502.81, + "end": 8503.25, + "probability": 0.8647 + }, + { + "start": 8503.37, + "end": 8503.83, + "probability": 0.6645 + }, + { + "start": 8503.89, + "end": 8504.67, + "probability": 0.7632 + }, + { + "start": 8504.77, + "end": 8504.81, + "probability": 0.462 + }, + { + "start": 8504.89, + "end": 8505.37, + "probability": 0.8235 + }, + { + "start": 8505.79, + "end": 8507.07, + "probability": 0.9678 + }, + { + "start": 8507.07, + "end": 8510.41, + "probability": 0.999 + }, + { + "start": 8510.87, + "end": 8512.47, + "probability": 0.9954 + }, + { + "start": 8513.23, + "end": 8514.33, + "probability": 0.9692 + }, + { + "start": 8515.35, + "end": 8518.61, + "probability": 0.9668 + }, + { + "start": 8519.19, + "end": 8520.09, + "probability": 0.9774 + }, + { + "start": 8520.21, + "end": 8521.53, + "probability": 0.9092 + }, + { + "start": 8522.47, + "end": 8526.61, + "probability": 0.9977 + }, + { + "start": 8526.61, + "end": 8528.48, + "probability": 0.989 + }, + { + "start": 8528.99, + "end": 8531.57, + "probability": 0.9541 + }, + { + "start": 8532.39, + "end": 8533.37, + "probability": 0.889 + }, + { + "start": 8533.45, + "end": 8534.41, + "probability": 0.832 + }, + { + "start": 8534.65, + "end": 8535.31, + "probability": 0.6016 + }, + { + "start": 8535.61, + "end": 8536.33, + "probability": 0.7562 + }, + { + "start": 8537.49, + "end": 8540.45, + "probability": 0.7852 + }, + { + "start": 8540.67, + "end": 8541.07, + "probability": 0.8476 + }, + { + "start": 8541.49, + "end": 8542.11, + "probability": 0.3594 + }, + { + "start": 8542.15, + "end": 8542.49, + "probability": 0.5703 + }, + { + "start": 8543.57, + "end": 8545.11, + "probability": 0.9552 + }, + { + "start": 8546.58, + "end": 8549.99, + "probability": 0.8225 + }, + { + "start": 8563.77, + "end": 8565.49, + "probability": 0.7862 + }, + { + "start": 8566.75, + "end": 8570.91, + "probability": 0.8506 + }, + { + "start": 8571.73, + "end": 8573.13, + "probability": 0.9021 + }, + { + "start": 8574.03, + "end": 8577.39, + "probability": 0.9448 + }, + { + "start": 8578.39, + "end": 8582.35, + "probability": 0.936 + }, + { + "start": 8582.99, + "end": 8584.45, + "probability": 0.9277 + }, + { + "start": 8585.33, + "end": 8587.11, + "probability": 0.944 + }, + { + "start": 8589.87, + "end": 8591.07, + "probability": 0.9868 + }, + { + "start": 8591.45, + "end": 8592.21, + "probability": 0.8571 + }, + { + "start": 8593.21, + "end": 8596.63, + "probability": 0.8367 + }, + { + "start": 8597.51, + "end": 8603.35, + "probability": 0.9887 + }, + { + "start": 8604.43, + "end": 8605.67, + "probability": 0.9849 + }, + { + "start": 8606.69, + "end": 8609.49, + "probability": 0.9873 + }, + { + "start": 8611.29, + "end": 8615.77, + "probability": 0.9985 + }, + { + "start": 8616.41, + "end": 8617.21, + "probability": 0.4009 + }, + { + "start": 8617.21, + "end": 8621.71, + "probability": 0.995 + }, + { + "start": 8622.29, + "end": 8623.43, + "probability": 0.9965 + }, + { + "start": 8624.25, + "end": 8625.81, + "probability": 0.7878 + }, + { + "start": 8626.99, + "end": 8633.41, + "probability": 0.9595 + }, + { + "start": 8634.29, + "end": 8636.21, + "probability": 0.7685 + }, + { + "start": 8637.45, + "end": 8641.39, + "probability": 0.9949 + }, + { + "start": 8641.39, + "end": 8646.31, + "probability": 0.942 + }, + { + "start": 8647.49, + "end": 8653.99, + "probability": 0.9703 + }, + { + "start": 8655.61, + "end": 8656.85, + "probability": 0.9573 + }, + { + "start": 8657.95, + "end": 8660.83, + "probability": 0.6692 + }, + { + "start": 8661.53, + "end": 8662.48, + "probability": 0.5399 + }, + { + "start": 8663.25, + "end": 8668.09, + "probability": 0.9795 + }, + { + "start": 8668.71, + "end": 8668.85, + "probability": 0.6711 + }, + { + "start": 8669.43, + "end": 8673.61, + "probability": 0.9858 + }, + { + "start": 8674.33, + "end": 8676.75, + "probability": 0.9612 + }, + { + "start": 8678.31, + "end": 8679.21, + "probability": 0.7148 + }, + { + "start": 8679.41, + "end": 8684.11, + "probability": 0.9583 + }, + { + "start": 8684.85, + "end": 8686.21, + "probability": 0.783 + }, + { + "start": 8687.07, + "end": 8689.53, + "probability": 0.8949 + }, + { + "start": 8690.51, + "end": 8691.93, + "probability": 0.9756 + }, + { + "start": 8693.11, + "end": 8698.71, + "probability": 0.9807 + }, + { + "start": 8699.11, + "end": 8700.67, + "probability": 0.8338 + }, + { + "start": 8701.45, + "end": 8703.03, + "probability": 0.9168 + }, + { + "start": 8703.63, + "end": 8707.03, + "probability": 0.9661 + }, + { + "start": 8708.07, + "end": 8712.29, + "probability": 0.9919 + }, + { + "start": 8712.29, + "end": 8717.53, + "probability": 0.9961 + }, + { + "start": 8719.01, + "end": 8722.89, + "probability": 0.8585 + }, + { + "start": 8722.95, + "end": 8728.73, + "probability": 0.9575 + }, + { + "start": 8728.91, + "end": 8733.97, + "probability": 0.7147 + }, + { + "start": 8734.43, + "end": 8736.19, + "probability": 0.6754 + }, + { + "start": 8736.79, + "end": 8737.77, + "probability": 0.9914 + }, + { + "start": 8738.55, + "end": 8740.27, + "probability": 0.7769 + }, + { + "start": 8740.31, + "end": 8745.47, + "probability": 0.9481 + }, + { + "start": 8745.81, + "end": 8749.56, + "probability": 0.5397 + }, + { + "start": 8750.05, + "end": 8755.33, + "probability": 0.9805 + }, + { + "start": 8755.49, + "end": 8755.77, + "probability": 0.2788 + }, + { + "start": 8755.77, + "end": 8756.69, + "probability": 0.5536 + }, + { + "start": 8756.69, + "end": 8758.23, + "probability": 0.8203 + }, + { + "start": 8760.83, + "end": 8762.75, + "probability": 0.7827 + }, + { + "start": 8780.02, + "end": 8783.39, + "probability": 0.6363 + }, + { + "start": 8783.59, + "end": 8785.05, + "probability": 0.7582 + }, + { + "start": 8786.27, + "end": 8788.33, + "probability": 0.8524 + }, + { + "start": 8788.71, + "end": 8791.55, + "probability": 0.9941 + }, + { + "start": 8792.83, + "end": 8793.45, + "probability": 0.8032 + }, + { + "start": 8794.53, + "end": 8795.29, + "probability": 0.9849 + }, + { + "start": 8796.01, + "end": 8799.77, + "probability": 0.9578 + }, + { + "start": 8800.81, + "end": 8801.59, + "probability": 0.3777 + }, + { + "start": 8802.31, + "end": 8807.09, + "probability": 0.9216 + }, + { + "start": 8807.37, + "end": 8808.05, + "probability": 0.7736 + }, + { + "start": 8808.81, + "end": 8811.67, + "probability": 0.9496 + }, + { + "start": 8812.61, + "end": 8814.23, + "probability": 0.9931 + }, + { + "start": 8814.37, + "end": 8817.01, + "probability": 0.9921 + }, + { + "start": 8817.81, + "end": 8821.31, + "probability": 0.8098 + }, + { + "start": 8822.17, + "end": 8823.81, + "probability": 0.9609 + }, + { + "start": 8824.73, + "end": 8825.89, + "probability": 0.7518 + }, + { + "start": 8826.71, + "end": 8828.44, + "probability": 0.999 + }, + { + "start": 8829.29, + "end": 8830.35, + "probability": 0.8942 + }, + { + "start": 8831.23, + "end": 8834.77, + "probability": 0.9917 + }, + { + "start": 8836.07, + "end": 8839.59, + "probability": 0.9989 + }, + { + "start": 8840.13, + "end": 8842.79, + "probability": 0.9915 + }, + { + "start": 8843.83, + "end": 8846.15, + "probability": 0.9976 + }, + { + "start": 8847.35, + "end": 8854.55, + "probability": 0.9916 + }, + { + "start": 8855.07, + "end": 8856.43, + "probability": 0.9961 + }, + { + "start": 8857.05, + "end": 8861.21, + "probability": 0.9973 + }, + { + "start": 8861.83, + "end": 8865.03, + "probability": 0.9954 + }, + { + "start": 8867.17, + "end": 8868.05, + "probability": 0.757 + }, + { + "start": 8869.01, + "end": 8874.05, + "probability": 0.9701 + }, + { + "start": 8874.21, + "end": 8876.63, + "probability": 0.7527 + }, + { + "start": 8877.51, + "end": 8878.95, + "probability": 0.894 + }, + { + "start": 8879.29, + "end": 8880.65, + "probability": 0.8592 + }, + { + "start": 8881.11, + "end": 8882.45, + "probability": 0.8694 + }, + { + "start": 8882.49, + "end": 8885.03, + "probability": 0.9194 + }, + { + "start": 8885.53, + "end": 8886.55, + "probability": 0.8085 + }, + { + "start": 8887.87, + "end": 8888.73, + "probability": 0.0024 + }, + { + "start": 8888.73, + "end": 8891.57, + "probability": 0.1394 + }, + { + "start": 8892.17, + "end": 8895.19, + "probability": 0.9806 + }, + { + "start": 8896.15, + "end": 8896.17, + "probability": 0.049 + }, + { + "start": 8896.49, + "end": 8897.43, + "probability": 0.8065 + }, + { + "start": 8898.17, + "end": 8899.15, + "probability": 0.6156 + }, + { + "start": 8899.17, + "end": 8903.91, + "probability": 0.7726 + }, + { + "start": 8904.29, + "end": 8906.89, + "probability": 0.8232 + }, + { + "start": 8907.43, + "end": 8910.99, + "probability": 0.9747 + }, + { + "start": 8911.39, + "end": 8914.85, + "probability": 0.5215 + }, + { + "start": 8914.85, + "end": 8918.11, + "probability": 0.9172 + }, + { + "start": 8918.19, + "end": 8918.57, + "probability": 0.2828 + }, + { + "start": 8919.09, + "end": 8921.16, + "probability": 0.9761 + }, + { + "start": 8921.69, + "end": 8923.27, + "probability": 0.8901 + }, + { + "start": 8923.43, + "end": 8924.47, + "probability": 0.8524 + }, + { + "start": 8924.99, + "end": 8926.15, + "probability": 0.9624 + }, + { + "start": 8926.19, + "end": 8927.07, + "probability": 0.7745 + }, + { + "start": 8927.07, + "end": 8932.33, + "probability": 0.9745 + }, + { + "start": 8932.85, + "end": 8937.03, + "probability": 0.9933 + }, + { + "start": 8937.45, + "end": 8942.99, + "probability": 0.9924 + }, + { + "start": 8943.05, + "end": 8948.65, + "probability": 0.6384 + }, + { + "start": 8949.87, + "end": 8950.69, + "probability": 0.8138 + }, + { + "start": 8951.23, + "end": 8952.47, + "probability": 0.8988 + }, + { + "start": 8952.57, + "end": 8956.19, + "probability": 0.968 + }, + { + "start": 8956.49, + "end": 8957.47, + "probability": 0.9495 + }, + { + "start": 8957.71, + "end": 8958.31, + "probability": 0.7689 + }, + { + "start": 8959.07, + "end": 8962.51, + "probability": 0.9888 + }, + { + "start": 8963.47, + "end": 8965.83, + "probability": 0.3733 + }, + { + "start": 8965.83, + "end": 8966.09, + "probability": 0.6674 + }, + { + "start": 8966.09, + "end": 8966.97, + "probability": 0.3391 + }, + { + "start": 8966.97, + "end": 8968.19, + "probability": 0.5618 + }, + { + "start": 8968.19, + "end": 8969.01, + "probability": 0.5518 + }, + { + "start": 8969.59, + "end": 8974.05, + "probability": 0.9727 + }, + { + "start": 8974.57, + "end": 8975.93, + "probability": 0.5599 + }, + { + "start": 8975.93, + "end": 8978.45, + "probability": 0.3795 + }, + { + "start": 8978.99, + "end": 8980.41, + "probability": 0.9714 + }, + { + "start": 8980.59, + "end": 8981.61, + "probability": 0.69 + }, + { + "start": 8981.61, + "end": 8988.57, + "probability": 0.9715 + }, + { + "start": 8988.63, + "end": 8990.19, + "probability": 0.8222 + }, + { + "start": 8990.19, + "end": 8992.45, + "probability": 0.7048 + }, + { + "start": 8992.75, + "end": 8994.81, + "probability": 0.7195 + }, + { + "start": 8994.81, + "end": 8994.95, + "probability": 0.7689 + }, + { + "start": 8995.03, + "end": 8996.31, + "probability": 0.9468 + }, + { + "start": 8996.57, + "end": 8997.79, + "probability": 0.8761 + }, + { + "start": 8998.49, + "end": 9000.63, + "probability": 0.9631 + }, + { + "start": 9000.73, + "end": 9003.95, + "probability": 0.9109 + }, + { + "start": 9003.95, + "end": 9004.82, + "probability": 0.8109 + }, + { + "start": 9005.15, + "end": 9005.95, + "probability": 0.6396 + }, + { + "start": 9006.07, + "end": 9008.75, + "probability": 0.5624 + }, + { + "start": 9008.77, + "end": 9008.77, + "probability": 0.6128 + }, + { + "start": 9008.77, + "end": 9009.73, + "probability": 0.4825 + }, + { + "start": 9009.79, + "end": 9013.51, + "probability": 0.5624 + }, + { + "start": 9013.89, + "end": 9015.47, + "probability": 0.6988 + }, + { + "start": 9015.49, + "end": 9015.55, + "probability": 0.8968 + }, + { + "start": 9015.55, + "end": 9017.11, + "probability": 0.9735 + }, + { + "start": 9017.25, + "end": 9018.19, + "probability": 0.8883 + }, + { + "start": 9018.35, + "end": 9020.29, + "probability": 0.7841 + }, + { + "start": 9020.57, + "end": 9022.21, + "probability": 0.1035 + }, + { + "start": 9022.21, + "end": 9022.21, + "probability": 0.2702 + }, + { + "start": 9022.21, + "end": 9022.21, + "probability": 0.4957 + }, + { + "start": 9022.29, + "end": 9023.31, + "probability": 0.419 + }, + { + "start": 9023.31, + "end": 9025.11, + "probability": 0.9944 + }, + { + "start": 9025.15, + "end": 9027.37, + "probability": 0.7692 + }, + { + "start": 9027.81, + "end": 9028.97, + "probability": 0.9836 + }, + { + "start": 9029.03, + "end": 9029.51, + "probability": 0.7513 + }, + { + "start": 9029.57, + "end": 9030.65, + "probability": 0.7378 + }, + { + "start": 9032.19, + "end": 9036.27, + "probability": 0.3314 + }, + { + "start": 9036.89, + "end": 9036.93, + "probability": 0.1738 + }, + { + "start": 9036.93, + "end": 9039.14, + "probability": 0.3732 + }, + { + "start": 9043.01, + "end": 9044.11, + "probability": 0.9971 + }, + { + "start": 9047.01, + "end": 9048.45, + "probability": 0.6648 + }, + { + "start": 9049.87, + "end": 9050.77, + "probability": 0.0954 + }, + { + "start": 9053.03, + "end": 9053.29, + "probability": 0.3848 + }, + { + "start": 9053.29, + "end": 9054.07, + "probability": 0.0254 + }, + { + "start": 9054.29, + "end": 9056.53, + "probability": 0.9239 + }, + { + "start": 9063.67, + "end": 9065.85, + "probability": 0.7076 + }, + { + "start": 9066.91, + "end": 9072.01, + "probability": 0.9902 + }, + { + "start": 9073.65, + "end": 9075.27, + "probability": 0.9827 + }, + { + "start": 9076.13, + "end": 9079.49, + "probability": 0.9897 + }, + { + "start": 9080.53, + "end": 9081.09, + "probability": 0.8308 + }, + { + "start": 9082.19, + "end": 9084.71, + "probability": 0.9194 + }, + { + "start": 9085.73, + "end": 9088.65, + "probability": 0.9919 + }, + { + "start": 9089.67, + "end": 9094.69, + "probability": 0.9954 + }, + { + "start": 9095.47, + "end": 9098.69, + "probability": 0.9983 + }, + { + "start": 9099.35, + "end": 9103.05, + "probability": 0.9996 + }, + { + "start": 9104.11, + "end": 9107.63, + "probability": 0.9966 + }, + { + "start": 9108.65, + "end": 9114.35, + "probability": 0.9834 + }, + { + "start": 9115.23, + "end": 9116.49, + "probability": 0.9813 + }, + { + "start": 9119.63, + "end": 9122.95, + "probability": 0.548 + }, + { + "start": 9124.09, + "end": 9126.61, + "probability": 0.8357 + }, + { + "start": 9127.49, + "end": 9130.47, + "probability": 0.9946 + }, + { + "start": 9130.77, + "end": 9134.31, + "probability": 0.9849 + }, + { + "start": 9134.31, + "end": 9137.61, + "probability": 0.9818 + }, + { + "start": 9138.83, + "end": 9139.73, + "probability": 0.7831 + }, + { + "start": 9141.09, + "end": 9144.69, + "probability": 0.9976 + }, + { + "start": 9145.27, + "end": 9149.35, + "probability": 0.929 + }, + { + "start": 9149.35, + "end": 9152.61, + "probability": 0.9903 + }, + { + "start": 9153.61, + "end": 9154.83, + "probability": 0.9319 + }, + { + "start": 9155.53, + "end": 9158.61, + "probability": 0.9764 + }, + { + "start": 9159.23, + "end": 9160.95, + "probability": 0.9818 + }, + { + "start": 9161.57, + "end": 9164.39, + "probability": 0.9616 + }, + { + "start": 9164.39, + "end": 9168.15, + "probability": 0.9855 + }, + { + "start": 9168.79, + "end": 9170.63, + "probability": 0.9806 + }, + { + "start": 9171.51, + "end": 9173.89, + "probability": 0.9174 + }, + { + "start": 9174.49, + "end": 9178.45, + "probability": 0.9853 + }, + { + "start": 9179.19, + "end": 9180.35, + "probability": 0.894 + }, + { + "start": 9180.41, + "end": 9183.79, + "probability": 0.9982 + }, + { + "start": 9184.55, + "end": 9188.57, + "probability": 0.9894 + }, + { + "start": 9188.57, + "end": 9194.07, + "probability": 0.9954 + }, + { + "start": 9195.17, + "end": 9198.13, + "probability": 0.0283 + }, + { + "start": 9198.31, + "end": 9198.31, + "probability": 0.1118 + }, + { + "start": 9198.31, + "end": 9199.15, + "probability": 0.0131 + }, + { + "start": 9199.15, + "end": 9201.37, + "probability": 0.2414 + }, + { + "start": 9207.05, + "end": 9207.05, + "probability": 0.1542 + }, + { + "start": 9207.05, + "end": 9207.05, + "probability": 0.0335 + }, + { + "start": 9207.05, + "end": 9207.05, + "probability": 0.0259 + }, + { + "start": 9207.05, + "end": 9210.33, + "probability": 0.6321 + }, + { + "start": 9210.33, + "end": 9215.29, + "probability": 0.9903 + }, + { + "start": 9216.09, + "end": 9218.63, + "probability": 0.9986 + }, + { + "start": 9219.09, + "end": 9222.59, + "probability": 0.9579 + }, + { + "start": 9223.09, + "end": 9226.21, + "probability": 0.9849 + }, + { + "start": 9226.21, + "end": 9229.87, + "probability": 0.8451 + }, + { + "start": 9230.53, + "end": 9234.41, + "probability": 0.9858 + }, + { + "start": 9234.43, + "end": 9237.63, + "probability": 0.9971 + }, + { + "start": 9238.05, + "end": 9238.73, + "probability": 0.9639 + }, + { + "start": 9238.77, + "end": 9240.27, + "probability": 0.9862 + }, + { + "start": 9240.31, + "end": 9242.57, + "probability": 0.9671 + }, + { + "start": 9242.73, + "end": 9243.83, + "probability": 0.9916 + }, + { + "start": 9243.91, + "end": 9245.23, + "probability": 0.9889 + }, + { + "start": 9245.55, + "end": 9252.09, + "probability": 0.9946 + }, + { + "start": 9252.19, + "end": 9252.69, + "probability": 0.7513 + }, + { + "start": 9253.65, + "end": 9256.19, + "probability": 0.8469 + }, + { + "start": 9256.71, + "end": 9258.25, + "probability": 0.9254 + }, + { + "start": 9258.35, + "end": 9258.93, + "probability": 0.2281 + }, + { + "start": 9260.98, + "end": 9266.49, + "probability": 0.4913 + }, + { + "start": 9267.39, + "end": 9270.73, + "probability": 0.2284 + }, + { + "start": 9271.43, + "end": 9274.75, + "probability": 0.6916 + }, + { + "start": 9275.06, + "end": 9282.13, + "probability": 0.539 + }, + { + "start": 9288.63, + "end": 9293.03, + "probability": 0.6567 + }, + { + "start": 9293.97, + "end": 9296.75, + "probability": 0.9989 + }, + { + "start": 9296.75, + "end": 9299.59, + "probability": 0.9862 + }, + { + "start": 9300.69, + "end": 9303.05, + "probability": 0.9838 + }, + { + "start": 9303.71, + "end": 9305.27, + "probability": 0.9668 + }, + { + "start": 9306.01, + "end": 9308.33, + "probability": 0.998 + }, + { + "start": 9309.31, + "end": 9313.43, + "probability": 0.8822 + }, + { + "start": 9313.43, + "end": 9315.49, + "probability": 0.9091 + }, + { + "start": 9316.13, + "end": 9319.51, + "probability": 0.9969 + }, + { + "start": 9319.51, + "end": 9323.61, + "probability": 0.9724 + }, + { + "start": 9324.93, + "end": 9328.25, + "probability": 0.975 + }, + { + "start": 9329.37, + "end": 9331.21, + "probability": 0.8364 + }, + { + "start": 9331.79, + "end": 9334.13, + "probability": 0.9973 + }, + { + "start": 9334.85, + "end": 9337.69, + "probability": 0.9951 + }, + { + "start": 9338.01, + "end": 9339.43, + "probability": 0.9746 + }, + { + "start": 9340.07, + "end": 9343.17, + "probability": 0.9952 + }, + { + "start": 9344.05, + "end": 9344.47, + "probability": 0.7725 + }, + { + "start": 9345.07, + "end": 9347.23, + "probability": 0.9873 + }, + { + "start": 9347.85, + "end": 9351.73, + "probability": 0.9937 + }, + { + "start": 9352.51, + "end": 9357.19, + "probability": 0.9933 + }, + { + "start": 9357.87, + "end": 9359.17, + "probability": 0.6558 + }, + { + "start": 9360.63, + "end": 9362.07, + "probability": 0.7673 + }, + { + "start": 9362.87, + "end": 9366.71, + "probability": 0.9782 + }, + { + "start": 9367.31, + "end": 9371.87, + "probability": 0.9963 + }, + { + "start": 9372.77, + "end": 9374.19, + "probability": 0.8051 + }, + { + "start": 9374.89, + "end": 9375.99, + "probability": 0.9756 + }, + { + "start": 9376.51, + "end": 9381.65, + "probability": 0.9987 + }, + { + "start": 9382.45, + "end": 9385.79, + "probability": 0.842 + }, + { + "start": 9386.31, + "end": 9391.11, + "probability": 0.9792 + }, + { + "start": 9392.01, + "end": 9393.31, + "probability": 0.9021 + }, + { + "start": 9393.67, + "end": 9394.89, + "probability": 0.8854 + }, + { + "start": 9395.69, + "end": 9397.47, + "probability": 0.9956 + }, + { + "start": 9398.15, + "end": 9398.9, + "probability": 0.9593 + }, + { + "start": 9400.37, + "end": 9402.45, + "probability": 0.9926 + }, + { + "start": 9402.99, + "end": 9406.41, + "probability": 0.9899 + }, + { + "start": 9406.89, + "end": 9408.21, + "probability": 0.9966 + }, + { + "start": 9408.61, + "end": 9409.75, + "probability": 0.9721 + }, + { + "start": 9410.31, + "end": 9411.67, + "probability": 0.9352 + }, + { + "start": 9412.23, + "end": 9416.97, + "probability": 0.9063 + }, + { + "start": 9417.51, + "end": 9421.89, + "probability": 0.9579 + }, + { + "start": 9422.53, + "end": 9426.59, + "probability": 0.9933 + }, + { + "start": 9427.45, + "end": 9431.23, + "probability": 0.9621 + }, + { + "start": 9433.03, + "end": 9433.03, + "probability": 0.007 + }, + { + "start": 9433.03, + "end": 9435.35, + "probability": 0.8614 + }, + { + "start": 9436.01, + "end": 9438.19, + "probability": 0.9131 + }, + { + "start": 9438.99, + "end": 9443.23, + "probability": 0.9584 + }, + { + "start": 9443.23, + "end": 9446.77, + "probability": 0.9938 + }, + { + "start": 9447.27, + "end": 9448.43, + "probability": 0.9572 + }, + { + "start": 9448.93, + "end": 9453.05, + "probability": 0.9275 + }, + { + "start": 9453.93, + "end": 9454.05, + "probability": 0.6654 + }, + { + "start": 9454.19, + "end": 9454.61, + "probability": 0.7522 + }, + { + "start": 9455.33, + "end": 9459.53, + "probability": 0.9692 + }, + { + "start": 9461.39, + "end": 9461.99, + "probability": 0.1569 + }, + { + "start": 9463.11, + "end": 9463.45, + "probability": 0.2919 + }, + { + "start": 9482.01, + "end": 9483.07, + "probability": 0.2619 + }, + { + "start": 9485.05, + "end": 9486.57, + "probability": 0.5327 + }, + { + "start": 9488.11, + "end": 9491.11, + "probability": 0.9921 + }, + { + "start": 9492.19, + "end": 9494.93, + "probability": 0.9369 + }, + { + "start": 9495.57, + "end": 9497.11, + "probability": 0.9479 + }, + { + "start": 9497.73, + "end": 9498.21, + "probability": 0.9735 + }, + { + "start": 9498.81, + "end": 9500.87, + "probability": 0.9968 + }, + { + "start": 9501.87, + "end": 9504.45, + "probability": 0.9736 + }, + { + "start": 9505.11, + "end": 9509.73, + "probability": 0.8755 + }, + { + "start": 9510.73, + "end": 9511.87, + "probability": 0.6687 + }, + { + "start": 9511.87, + "end": 9516.01, + "probability": 0.9401 + }, + { + "start": 9516.87, + "end": 9518.45, + "probability": 0.7275 + }, + { + "start": 9519.29, + "end": 9519.97, + "probability": 0.9133 + }, + { + "start": 9521.23, + "end": 9525.89, + "probability": 0.9822 + }, + { + "start": 9526.33, + "end": 9527.17, + "probability": 0.8761 + }, + { + "start": 9527.21, + "end": 9528.03, + "probability": 0.7757 + }, + { + "start": 9528.13, + "end": 9532.69, + "probability": 0.9827 + }, + { + "start": 9533.63, + "end": 9538.65, + "probability": 0.979 + }, + { + "start": 9539.13, + "end": 9541.45, + "probability": 0.9985 + }, + { + "start": 9542.01, + "end": 9545.65, + "probability": 0.9949 + }, + { + "start": 9547.25, + "end": 9549.75, + "probability": 0.8413 + }, + { + "start": 9550.01, + "end": 9556.33, + "probability": 0.9929 + }, + { + "start": 9557.07, + "end": 9561.09, + "probability": 0.9411 + }, + { + "start": 9561.29, + "end": 9566.41, + "probability": 0.9417 + }, + { + "start": 9567.15, + "end": 9569.63, + "probability": 0.9961 + }, + { + "start": 9569.75, + "end": 9571.97, + "probability": 0.8129 + }, + { + "start": 9572.39, + "end": 9575.43, + "probability": 0.9907 + }, + { + "start": 9575.43, + "end": 9579.05, + "probability": 0.997 + }, + { + "start": 9580.77, + "end": 9582.9, + "probability": 0.9954 + }, + { + "start": 9583.99, + "end": 9584.81, + "probability": 0.8309 + }, + { + "start": 9585.49, + "end": 9586.33, + "probability": 0.9047 + }, + { + "start": 9586.91, + "end": 9591.95, + "probability": 0.9938 + }, + { + "start": 9592.55, + "end": 9594.42, + "probability": 0.9976 + }, + { + "start": 9595.19, + "end": 9597.83, + "probability": 0.9956 + }, + { + "start": 9598.33, + "end": 9603.81, + "probability": 0.9932 + }, + { + "start": 9604.37, + "end": 9607.39, + "probability": 0.9922 + }, + { + "start": 9607.87, + "end": 9612.29, + "probability": 0.9746 + }, + { + "start": 9612.47, + "end": 9614.61, + "probability": 0.9702 + }, + { + "start": 9615.57, + "end": 9619.11, + "probability": 0.9978 + }, + { + "start": 9619.91, + "end": 9620.79, + "probability": 0.9463 + }, + { + "start": 9621.41, + "end": 9623.63, + "probability": 0.9919 + }, + { + "start": 9624.61, + "end": 9625.72, + "probability": 0.9847 + }, + { + "start": 9626.81, + "end": 9628.71, + "probability": 0.9495 + }, + { + "start": 9629.49, + "end": 9632.53, + "probability": 0.9944 + }, + { + "start": 9632.53, + "end": 9635.31, + "probability": 0.9997 + }, + { + "start": 9636.31, + "end": 9639.17, + "probability": 0.9883 + }, + { + "start": 9639.41, + "end": 9641.81, + "probability": 0.9696 + }, + { + "start": 9642.13, + "end": 9647.21, + "probability": 0.9963 + }, + { + "start": 9647.57, + "end": 9651.13, + "probability": 0.9984 + }, + { + "start": 9651.87, + "end": 9652.15, + "probability": 0.7468 + }, + { + "start": 9652.91, + "end": 9655.65, + "probability": 0.9894 + }, + { + "start": 9656.25, + "end": 9658.71, + "probability": 0.9258 + }, + { + "start": 9659.29, + "end": 9660.51, + "probability": 0.7104 + }, + { + "start": 9661.59, + "end": 9663.87, + "probability": 0.5415 + }, + { + "start": 9663.87, + "end": 9667.29, + "probability": 0.7127 + }, + { + "start": 9667.81, + "end": 9672.07, + "probability": 0.7017 + }, + { + "start": 9672.07, + "end": 9672.07, + "probability": 0.5562 + }, + { + "start": 9672.17, + "end": 9673.83, + "probability": 0.1711 + }, + { + "start": 9673.83, + "end": 9676.19, + "probability": 0.9505 + }, + { + "start": 9676.51, + "end": 9680.15, + "probability": 0.9235 + }, + { + "start": 9680.51, + "end": 9680.73, + "probability": 0.518 + }, + { + "start": 9680.75, + "end": 9680.93, + "probability": 0.4653 + }, + { + "start": 9680.95, + "end": 9683.51, + "probability": 0.9873 + }, + { + "start": 9683.65, + "end": 9685.35, + "probability": 0.772 + }, + { + "start": 9685.59, + "end": 9685.81, + "probability": 0.3093 + }, + { + "start": 9685.81, + "end": 9687.25, + "probability": 0.6402 + }, + { + "start": 9687.25, + "end": 9689.99, + "probability": 0.6216 + }, + { + "start": 9690.01, + "end": 9690.61, + "probability": 0.8022 + }, + { + "start": 9691.07, + "end": 9693.25, + "probability": 0.9197 + }, + { + "start": 9693.33, + "end": 9695.41, + "probability": 0.9702 + }, + { + "start": 9695.51, + "end": 9696.01, + "probability": 0.9857 + }, + { + "start": 9696.83, + "end": 9696.83, + "probability": 0.6816 + }, + { + "start": 9696.83, + "end": 9698.07, + "probability": 0.7056 + }, + { + "start": 9698.65, + "end": 9701.21, + "probability": 0.6878 + }, + { + "start": 9701.81, + "end": 9702.93, + "probability": 0.9259 + }, + { + "start": 9705.01, + "end": 9706.53, + "probability": 0.7735 + }, + { + "start": 9707.35, + "end": 9708.37, + "probability": 0.6917 + }, + { + "start": 9708.73, + "end": 9709.47, + "probability": 0.7817 + }, + { + "start": 9709.87, + "end": 9711.89, + "probability": 0.8627 + }, + { + "start": 9724.33, + "end": 9725.21, + "probability": 0.5402 + }, + { + "start": 9727.18, + "end": 9729.23, + "probability": 0.8271 + }, + { + "start": 9729.87, + "end": 9731.13, + "probability": 0.9986 + }, + { + "start": 9731.99, + "end": 9733.21, + "probability": 0.664 + }, + { + "start": 9734.67, + "end": 9738.67, + "probability": 0.9891 + }, + { + "start": 9738.67, + "end": 9741.27, + "probability": 0.992 + }, + { + "start": 9742.39, + "end": 9747.58, + "probability": 0.9961 + }, + { + "start": 9748.31, + "end": 9748.89, + "probability": 0.5102 + }, + { + "start": 9749.85, + "end": 9751.25, + "probability": 0.9781 + }, + { + "start": 9751.55, + "end": 9752.63, + "probability": 0.9506 + }, + { + "start": 9752.71, + "end": 9754.17, + "probability": 0.9393 + }, + { + "start": 9754.37, + "end": 9756.77, + "probability": 0.9866 + }, + { + "start": 9756.77, + "end": 9761.53, + "probability": 0.9977 + }, + { + "start": 9762.65, + "end": 9768.57, + "probability": 0.9912 + }, + { + "start": 9769.19, + "end": 9773.91, + "probability": 0.977 + }, + { + "start": 9774.47, + "end": 9777.47, + "probability": 0.9548 + }, + { + "start": 9777.51, + "end": 9782.29, + "probability": 0.998 + }, + { + "start": 9782.29, + "end": 9784.27, + "probability": 0.9907 + }, + { + "start": 9784.69, + "end": 9786.83, + "probability": 0.8409 + }, + { + "start": 9788.15, + "end": 9791.01, + "probability": 0.9971 + }, + { + "start": 9791.01, + "end": 9794.69, + "probability": 0.9849 + }, + { + "start": 9795.31, + "end": 9798.53, + "probability": 0.9663 + }, + { + "start": 9799.33, + "end": 9804.15, + "probability": 0.9968 + }, + { + "start": 9806.43, + "end": 9810.89, + "probability": 0.9116 + }, + { + "start": 9810.89, + "end": 9815.53, + "probability": 0.9952 + }, + { + "start": 9815.97, + "end": 9816.87, + "probability": 0.5124 + }, + { + "start": 9818.59, + "end": 9823.97, + "probability": 0.9856 + }, + { + "start": 9824.05, + "end": 9827.79, + "probability": 0.9951 + }, + { + "start": 9827.91, + "end": 9828.59, + "probability": 0.6296 + }, + { + "start": 9829.19, + "end": 9830.61, + "probability": 0.7926 + }, + { + "start": 9830.83, + "end": 9831.57, + "probability": 0.8359 + }, + { + "start": 9832.29, + "end": 9835.53, + "probability": 0.9873 + }, + { + "start": 9837.25, + "end": 9839.15, + "probability": 0.4973 + }, + { + "start": 9839.21, + "end": 9843.79, + "probability": 0.999 + }, + { + "start": 9844.53, + "end": 9850.15, + "probability": 0.998 + }, + { + "start": 9850.41, + "end": 9851.56, + "probability": 0.6427 + }, + { + "start": 9852.61, + "end": 9856.43, + "probability": 0.6455 + }, + { + "start": 9856.51, + "end": 9856.61, + "probability": 0.3158 + }, + { + "start": 9856.61, + "end": 9856.61, + "probability": 0.5067 + }, + { + "start": 9856.61, + "end": 9856.97, + "probability": 0.3884 + }, + { + "start": 9857.07, + "end": 9857.75, + "probability": 0.6798 + }, + { + "start": 9857.81, + "end": 9858.55, + "probability": 0.8779 + }, + { + "start": 9858.59, + "end": 9859.51, + "probability": 0.8757 + }, + { + "start": 9859.55, + "end": 9860.49, + "probability": 0.7745 + }, + { + "start": 9860.63, + "end": 9861.55, + "probability": 0.923 + }, + { + "start": 9861.63, + "end": 9862.87, + "probability": 0.9888 + }, + { + "start": 9864.05, + "end": 9866.85, + "probability": 0.992 + }, + { + "start": 9867.45, + "end": 9872.37, + "probability": 0.9854 + }, + { + "start": 9873.05, + "end": 9876.05, + "probability": 0.9976 + }, + { + "start": 9876.11, + "end": 9877.09, + "probability": 0.9599 + }, + { + "start": 9877.63, + "end": 9879.71, + "probability": 0.9711 + }, + { + "start": 9881.73, + "end": 9884.63, + "probability": 0.9846 + }, + { + "start": 9884.83, + "end": 9886.91, + "probability": 0.9272 + }, + { + "start": 9887.59, + "end": 9889.39, + "probability": 0.9724 + }, + { + "start": 9890.47, + "end": 9895.01, + "probability": 0.9967 + }, + { + "start": 9895.29, + "end": 9897.95, + "probability": 0.99 + }, + { + "start": 9899.07, + "end": 9899.93, + "probability": 0.7468 + }, + { + "start": 9900.45, + "end": 9904.73, + "probability": 0.9937 + }, + { + "start": 9904.79, + "end": 9905.25, + "probability": 0.8463 + }, + { + "start": 9905.35, + "end": 9906.07, + "probability": 0.8235 + }, + { + "start": 9906.13, + "end": 9906.97, + "probability": 0.9659 + }, + { + "start": 9907.21, + "end": 9908.95, + "probability": 0.8266 + }, + { + "start": 9909.15, + "end": 9909.59, + "probability": 0.7519 + }, + { + "start": 9909.65, + "end": 9910.27, + "probability": 0.9691 + }, + { + "start": 9910.35, + "end": 9910.87, + "probability": 0.7777 + }, + { + "start": 9911.69, + "end": 9913.01, + "probability": 0.8738 + }, + { + "start": 9913.41, + "end": 9915.15, + "probability": 0.9984 + }, + { + "start": 9915.27, + "end": 9916.29, + "probability": 0.9709 + }, + { + "start": 9916.99, + "end": 9919.19, + "probability": 0.9949 + }, + { + "start": 9919.75, + "end": 9921.75, + "probability": 0.8369 + }, + { + "start": 9921.81, + "end": 9923.09, + "probability": 0.9123 + }, + { + "start": 9923.39, + "end": 9926.29, + "probability": 0.9758 + }, + { + "start": 9927.01, + "end": 9927.91, + "probability": 0.9907 + }, + { + "start": 9928.65, + "end": 9930.65, + "probability": 0.852 + }, + { + "start": 9930.77, + "end": 9931.61, + "probability": 0.9753 + }, + { + "start": 9931.65, + "end": 9932.99, + "probability": 0.9849 + }, + { + "start": 9932.99, + "end": 9933.41, + "probability": 0.2561 + }, + { + "start": 9933.51, + "end": 9934.97, + "probability": 0.8624 + }, + { + "start": 9935.01, + "end": 9935.15, + "probability": 0.7617 + }, + { + "start": 9935.15, + "end": 9935.74, + "probability": 0.993 + }, + { + "start": 9937.75, + "end": 9943.91, + "probability": 0.9885 + }, + { + "start": 9944.47, + "end": 9948.79, + "probability": 0.9995 + }, + { + "start": 9948.99, + "end": 9949.81, + "probability": 0.5804 + }, + { + "start": 9950.38, + "end": 9952.97, + "probability": 0.9995 + }, + { + "start": 9953.63, + "end": 9956.13, + "probability": 0.9966 + }, + { + "start": 9956.37, + "end": 9957.07, + "probability": 0.9132 + }, + { + "start": 9957.51, + "end": 9957.51, + "probability": 0.3809 + }, + { + "start": 9957.51, + "end": 9960.48, + "probability": 0.8623 + }, + { + "start": 9961.73, + "end": 9962.47, + "probability": 0.6522 + }, + { + "start": 9975.63, + "end": 9975.63, + "probability": 0.1551 + }, + { + "start": 9975.63, + "end": 9975.63, + "probability": 0.0055 + }, + { + "start": 9984.97, + "end": 9986.87, + "probability": 0.908 + }, + { + "start": 9987.17, + "end": 9991.55, + "probability": 0.9969 + }, + { + "start": 9991.55, + "end": 9996.75, + "probability": 0.9877 + }, + { + "start": 9996.85, + "end": 9997.53, + "probability": 0.7426 + }, + { + "start": 9998.53, + "end": 10002.84, + "probability": 0.9963 + }, + { + "start": 10006.15, + "end": 10007.05, + "probability": 0.4962 + }, + { + "start": 10007.05, + "end": 10007.29, + "probability": 0.7859 + }, + { + "start": 10007.67, + "end": 10012.61, + "probability": 0.9717 + }, + { + "start": 10012.61, + "end": 10017.17, + "probability": 0.9984 + }, + { + "start": 10017.17, + "end": 10025.43, + "probability": 0.9605 + }, + { + "start": 10025.69, + "end": 10026.65, + "probability": 0.7339 + }, + { + "start": 10027.41, + "end": 10033.07, + "probability": 0.9863 + }, + { + "start": 10033.49, + "end": 10036.09, + "probability": 0.9939 + }, + { + "start": 10036.61, + "end": 10037.87, + "probability": 0.9341 + }, + { + "start": 10038.71, + "end": 10042.37, + "probability": 0.991 + }, + { + "start": 10042.93, + "end": 10044.57, + "probability": 0.8778 + }, + { + "start": 10044.79, + "end": 10045.33, + "probability": 0.8055 + }, + { + "start": 10045.81, + "end": 10046.79, + "probability": 0.8359 + }, + { + "start": 10046.99, + "end": 10049.99, + "probability": 0.8526 + }, + { + "start": 10049.99, + "end": 10055.45, + "probability": 0.982 + }, + { + "start": 10056.21, + "end": 10057.81, + "probability": 0.944 + }, + { + "start": 10058.41, + "end": 10061.81, + "probability": 0.9762 + }, + { + "start": 10062.75, + "end": 10064.11, + "probability": 0.9223 + }, + { + "start": 10064.39, + "end": 10070.21, + "probability": 0.9735 + }, + { + "start": 10070.41, + "end": 10073.62, + "probability": 0.0362 + }, + { + "start": 10074.93, + "end": 10076.61, + "probability": 0.7047 + }, + { + "start": 10076.75, + "end": 10079.01, + "probability": 0.4567 + }, + { + "start": 10079.09, + "end": 10083.91, + "probability": 0.7246 + }, + { + "start": 10083.91, + "end": 10091.69, + "probability": 0.9893 + }, + { + "start": 10091.75, + "end": 10092.59, + "probability": 0.0565 + }, + { + "start": 10093.17, + "end": 10093.43, + "probability": 0.1554 + }, + { + "start": 10093.43, + "end": 10095.71, + "probability": 0.6542 + }, + { + "start": 10096.17, + "end": 10098.61, + "probability": 0.7521 + }, + { + "start": 10099.15, + "end": 10102.27, + "probability": 0.7931 + }, + { + "start": 10102.27, + "end": 10102.87, + "probability": 0.0317 + }, + { + "start": 10102.87, + "end": 10104.89, + "probability": 0.7291 + }, + { + "start": 10104.95, + "end": 10109.71, + "probability": 0.7761 + }, + { + "start": 10109.93, + "end": 10111.93, + "probability": 0.943 + }, + { + "start": 10112.05, + "end": 10113.02, + "probability": 0.9505 + }, + { + "start": 10113.49, + "end": 10115.83, + "probability": 0.9683 + }, + { + "start": 10116.49, + "end": 10116.73, + "probability": 0.0509 + }, + { + "start": 10116.73, + "end": 10117.81, + "probability": 0.6224 + }, + { + "start": 10118.05, + "end": 10123.09, + "probability": 0.973 + }, + { + "start": 10123.67, + "end": 10127.53, + "probability": 0.9894 + }, + { + "start": 10128.11, + "end": 10134.07, + "probability": 0.932 + }, + { + "start": 10134.25, + "end": 10136.07, + "probability": 0.7872 + }, + { + "start": 10136.65, + "end": 10139.17, + "probability": 0.799 + }, + { + "start": 10139.89, + "end": 10142.59, + "probability": 0.9846 + }, + { + "start": 10142.69, + "end": 10144.77, + "probability": 0.9823 + }, + { + "start": 10145.29, + "end": 10149.35, + "probability": 0.6956 + }, + { + "start": 10149.49, + "end": 10151.47, + "probability": 0.6712 + }, + { + "start": 10151.87, + "end": 10153.97, + "probability": 0.979 + }, + { + "start": 10154.41, + "end": 10155.73, + "probability": 0.9019 + }, + { + "start": 10155.79, + "end": 10159.13, + "probability": 0.9626 + }, + { + "start": 10159.65, + "end": 10163.31, + "probability": 0.9906 + }, + { + "start": 10163.31, + "end": 10166.67, + "probability": 0.9458 + }, + { + "start": 10166.83, + "end": 10167.17, + "probability": 0.0633 + }, + { + "start": 10167.17, + "end": 10171.21, + "probability": 0.8138 + }, + { + "start": 10171.59, + "end": 10175.81, + "probability": 0.9 + }, + { + "start": 10176.09, + "end": 10177.67, + "probability": 0.936 + }, + { + "start": 10178.05, + "end": 10185.01, + "probability": 0.9875 + }, + { + "start": 10185.23, + "end": 10185.43, + "probability": 0.2101 + }, + { + "start": 10185.43, + "end": 10187.17, + "probability": 0.5212 + }, + { + "start": 10187.39, + "end": 10190.21, + "probability": 0.9873 + }, + { + "start": 10190.67, + "end": 10192.95, + "probability": 0.9716 + }, + { + "start": 10193.21, + "end": 10195.31, + "probability": 0.9951 + }, + { + "start": 10195.85, + "end": 10197.41, + "probability": 0.9229 + }, + { + "start": 10197.61, + "end": 10199.67, + "probability": 0.9861 + }, + { + "start": 10199.97, + "end": 10204.29, + "probability": 0.994 + }, + { + "start": 10204.93, + "end": 10207.23, + "probability": 0.9959 + }, + { + "start": 10207.67, + "end": 10214.39, + "probability": 0.843 + }, + { + "start": 10214.93, + "end": 10217.99, + "probability": 0.8146 + }, + { + "start": 10218.61, + "end": 10221.13, + "probability": 0.6795 + }, + { + "start": 10221.63, + "end": 10221.63, + "probability": 0.0129 + }, + { + "start": 10221.63, + "end": 10225.64, + "probability": 0.7605 + }, + { + "start": 10226.39, + "end": 10228.03, + "probability": 0.7457 + }, + { + "start": 10228.41, + "end": 10233.29, + "probability": 0.9825 + }, + { + "start": 10233.43, + "end": 10237.27, + "probability": 0.9985 + }, + { + "start": 10237.39, + "end": 10239.19, + "probability": 0.9722 + }, + { + "start": 10239.61, + "end": 10239.61, + "probability": 0.6338 + }, + { + "start": 10239.63, + "end": 10240.03, + "probability": 0.7085 + }, + { + "start": 10240.55, + "end": 10244.09, + "probability": 0.8865 + }, + { + "start": 10244.09, + "end": 10244.39, + "probability": 0.0014 + }, + { + "start": 10246.97, + "end": 10247.59, + "probability": 0.0643 + }, + { + "start": 10247.95, + "end": 10248.73, + "probability": 0.013 + }, + { + "start": 10248.75, + "end": 10250.6, + "probability": 0.3337 + }, + { + "start": 10251.06, + "end": 10251.47, + "probability": 0.5859 + }, + { + "start": 10251.63, + "end": 10252.63, + "probability": 0.019 + }, + { + "start": 10253.67, + "end": 10254.09, + "probability": 0.0682 + }, + { + "start": 10254.09, + "end": 10254.29, + "probability": 0.3606 + }, + { + "start": 10254.29, + "end": 10254.29, + "probability": 0.3944 + }, + { + "start": 10254.29, + "end": 10254.29, + "probability": 0.5076 + }, + { + "start": 10254.29, + "end": 10254.29, + "probability": 0.1106 + }, + { + "start": 10254.29, + "end": 10254.69, + "probability": 0.1844 + }, + { + "start": 10255.15, + "end": 10256.15, + "probability": 0.4806 + }, + { + "start": 10259.31, + "end": 10260.41, + "probability": 0.3335 + }, + { + "start": 10261.04, + "end": 10264.11, + "probability": 0.1688 + }, + { + "start": 10264.47, + "end": 10264.63, + "probability": 0.167 + }, + { + "start": 10264.77, + "end": 10267.71, + "probability": 0.1354 + }, + { + "start": 10269.15, + "end": 10269.85, + "probability": 0.245 + }, + { + "start": 10271.45, + "end": 10274.39, + "probability": 0.6684 + }, + { + "start": 10274.67, + "end": 10276.07, + "probability": 0.2065 + }, + { + "start": 10277.07, + "end": 10277.07, + "probability": 0.2414 + }, + { + "start": 10277.13, + "end": 10279.23, + "probability": 0.548 + }, + { + "start": 10280.1, + "end": 10281.5, + "probability": 0.0457 + }, + { + "start": 10281.87, + "end": 10283.15, + "probability": 0.0786 + }, + { + "start": 10283.57, + "end": 10284.31, + "probability": 0.0241 + }, + { + "start": 10284.31, + "end": 10287.19, + "probability": 0.0375 + }, + { + "start": 10288.19, + "end": 10290.67, + "probability": 0.0438 + }, + { + "start": 10291.37, + "end": 10294.21, + "probability": 0.0123 + }, + { + "start": 10297.7, + "end": 10299.05, + "probability": 0.0513 + }, + { + "start": 10299.15, + "end": 10300.43, + "probability": 0.3859 + }, + { + "start": 10300.79, + "end": 10301.97, + "probability": 0.0583 + }, + { + "start": 10302.69, + "end": 10304.33, + "probability": 0.114 + }, + { + "start": 10305.39, + "end": 10308.03, + "probability": 0.056 + }, + { + "start": 10308.03, + "end": 10308.11, + "probability": 0.069 + }, + { + "start": 10308.11, + "end": 10308.83, + "probability": 0.2355 + }, + { + "start": 10315.0, + "end": 10315.0, + "probability": 0.0 + }, + { + "start": 10315.0, + "end": 10315.0, + "probability": 0.0 + }, + { + "start": 10315.0, + "end": 10315.0, + "probability": 0.0 + }, + { + "start": 10315.0, + "end": 10315.0, + "probability": 0.0 + }, + { + "start": 10315.0, + "end": 10315.0, + "probability": 0.0 + }, + { + "start": 10315.0, + "end": 10315.0, + "probability": 0.0 + }, + { + "start": 10315.18, + "end": 10315.24, + "probability": 0.209 + }, + { + "start": 10315.24, + "end": 10315.24, + "probability": 0.2036 + }, + { + "start": 10315.24, + "end": 10315.4, + "probability": 0.2 + }, + { + "start": 10315.94, + "end": 10318.04, + "probability": 0.1397 + }, + { + "start": 10318.6, + "end": 10320.66, + "probability": 0.3945 + }, + { + "start": 10320.78, + "end": 10322.83, + "probability": 0.4516 + }, + { + "start": 10324.93, + "end": 10328.3, + "probability": 0.5596 + }, + { + "start": 10328.54, + "end": 10330.0, + "probability": 0.5205 + }, + { + "start": 10330.18, + "end": 10332.94, + "probability": 0.1648 + }, + { + "start": 10333.8, + "end": 10335.28, + "probability": 0.1715 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.0, + "end": 10452.0, + "probability": 0.0 + }, + { + "start": 10452.52, + "end": 10454.86, + "probability": 0.0354 + }, + { + "start": 10459.66, + "end": 10462.98, + "probability": 0.4172 + }, + { + "start": 10463.6, + "end": 10466.1, + "probability": 0.0993 + }, + { + "start": 10466.1, + "end": 10470.76, + "probability": 0.2234 + }, + { + "start": 10470.82, + "end": 10481.98, + "probability": 0.3406 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.0, + "end": 10596.0, + "probability": 0.0 + }, + { + "start": 10596.24, + "end": 10596.24, + "probability": 0.1691 + }, + { + "start": 10596.24, + "end": 10596.24, + "probability": 0.0875 + }, + { + "start": 10596.24, + "end": 10598.76, + "probability": 0.6884 + }, + { + "start": 10599.66, + "end": 10600.6, + "probability": 0.5072 + }, + { + "start": 10600.72, + "end": 10603.48, + "probability": 0.9023 + }, + { + "start": 10603.62, + "end": 10607.38, + "probability": 0.9539 + }, + { + "start": 10607.52, + "end": 10610.5, + "probability": 0.8708 + }, + { + "start": 10611.5, + "end": 10612.68, + "probability": 0.8161 + }, + { + "start": 10612.84, + "end": 10620.0, + "probability": 0.9735 + }, + { + "start": 10620.18, + "end": 10620.8, + "probability": 0.8597 + }, + { + "start": 10620.94, + "end": 10621.88, + "probability": 0.9137 + }, + { + "start": 10622.1, + "end": 10623.38, + "probability": 0.8181 + }, + { + "start": 10623.8, + "end": 10624.96, + "probability": 0.8635 + }, + { + "start": 10625.76, + "end": 10630.44, + "probability": 0.9922 + }, + { + "start": 10630.92, + "end": 10633.16, + "probability": 0.9785 + }, + { + "start": 10633.44, + "end": 10636.58, + "probability": 0.9533 + }, + { + "start": 10636.98, + "end": 10638.22, + "probability": 0.8879 + }, + { + "start": 10638.58, + "end": 10639.65, + "probability": 0.6556 + }, + { + "start": 10640.28, + "end": 10641.36, + "probability": 0.9365 + }, + { + "start": 10641.78, + "end": 10645.22, + "probability": 0.9718 + }, + { + "start": 10645.68, + "end": 10652.8, + "probability": 0.9838 + }, + { + "start": 10653.3, + "end": 10658.14, + "probability": 0.9324 + }, + { + "start": 10658.82, + "end": 10662.92, + "probability": 0.8621 + }, + { + "start": 10663.28, + "end": 10665.12, + "probability": 0.9723 + }, + { + "start": 10665.48, + "end": 10666.92, + "probability": 0.8683 + }, + { + "start": 10667.14, + "end": 10669.6, + "probability": 0.9691 + }, + { + "start": 10669.98, + "end": 10673.86, + "probability": 0.9985 + }, + { + "start": 10673.98, + "end": 10678.52, + "probability": 0.9991 + }, + { + "start": 10678.96, + "end": 10682.04, + "probability": 0.9968 + }, + { + "start": 10682.28, + "end": 10686.12, + "probability": 0.8177 + }, + { + "start": 10686.54, + "end": 10692.4, + "probability": 0.998 + }, + { + "start": 10692.6, + "end": 10696.02, + "probability": 0.9988 + }, + { + "start": 10696.02, + "end": 10699.92, + "probability": 0.9962 + }, + { + "start": 10700.64, + "end": 10702.66, + "probability": 0.996 + }, + { + "start": 10703.02, + "end": 10705.9, + "probability": 0.9964 + }, + { + "start": 10705.9, + "end": 10710.7, + "probability": 0.9893 + }, + { + "start": 10711.2, + "end": 10712.98, + "probability": 0.9614 + }, + { + "start": 10713.8, + "end": 10716.68, + "probability": 0.9976 + }, + { + "start": 10716.68, + "end": 10719.92, + "probability": 0.713 + }, + { + "start": 10720.3, + "end": 10721.4, + "probability": 0.7659 + }, + { + "start": 10721.78, + "end": 10725.06, + "probability": 0.9946 + }, + { + "start": 10725.64, + "end": 10726.82, + "probability": 0.6744 + }, + { + "start": 10727.66, + "end": 10731.02, + "probability": 0.9313 + }, + { + "start": 10731.56, + "end": 10734.7, + "probability": 0.9928 + }, + { + "start": 10735.32, + "end": 10741.32, + "probability": 0.985 + }, + { + "start": 10741.4, + "end": 10742.71, + "probability": 0.9048 + }, + { + "start": 10743.56, + "end": 10745.94, + "probability": 0.9709 + }, + { + "start": 10746.62, + "end": 10748.96, + "probability": 0.891 + }, + { + "start": 10749.44, + "end": 10754.6, + "probability": 0.9839 + }, + { + "start": 10754.6, + "end": 10758.34, + "probability": 0.9857 + }, + { + "start": 10759.42, + "end": 10762.26, + "probability": 0.947 + }, + { + "start": 10762.76, + "end": 10765.06, + "probability": 0.9977 + }, + { + "start": 10765.28, + "end": 10766.92, + "probability": 0.9629 + }, + { + "start": 10767.62, + "end": 10773.54, + "probability": 0.9844 + }, + { + "start": 10773.56, + "end": 10773.56, + "probability": 0.7329 + }, + { + "start": 10773.6, + "end": 10775.32, + "probability": 0.6711 + }, + { + "start": 10776.06, + "end": 10778.6, + "probability": 0.9954 + }, + { + "start": 10779.16, + "end": 10783.39, + "probability": 0.9885 + }, + { + "start": 10785.84, + "end": 10786.72, + "probability": 0.3987 + }, + { + "start": 10786.72, + "end": 10788.03, + "probability": 0.9578 + }, + { + "start": 10788.26, + "end": 10789.6, + "probability": 0.9698 + }, + { + "start": 10789.64, + "end": 10790.08, + "probability": 0.7776 + }, + { + "start": 10790.16, + "end": 10794.68, + "probability": 0.8455 + }, + { + "start": 10795.34, + "end": 10796.3, + "probability": 0.9677 + }, + { + "start": 10796.5, + "end": 10797.12, + "probability": 0.9055 + }, + { + "start": 10797.58, + "end": 10799.36, + "probability": 0.7634 + }, + { + "start": 10801.29, + "end": 10804.44, + "probability": 0.9652 + }, + { + "start": 10810.08, + "end": 10811.52, + "probability": 0.5004 + }, + { + "start": 10811.68, + "end": 10812.5, + "probability": 0.5558 + }, + { + "start": 10813.94, + "end": 10817.64, + "probability": 0.9662 + }, + { + "start": 10820.54, + "end": 10820.54, + "probability": 0.6778 + }, + { + "start": 10820.54, + "end": 10820.54, + "probability": 0.4092 + }, + { + "start": 10820.54, + "end": 10821.6, + "probability": 0.7546 + }, + { + "start": 10821.72, + "end": 10822.84, + "probability": 0.6183 + }, + { + "start": 10823.54, + "end": 10826.32, + "probability": 0.9294 + }, + { + "start": 10826.6, + "end": 10828.74, + "probability": 0.9875 + }, + { + "start": 10828.88, + "end": 10829.62, + "probability": 0.8206 + }, + { + "start": 10829.96, + "end": 10831.56, + "probability": 0.9879 + }, + { + "start": 10832.26, + "end": 10833.26, + "probability": 0.9058 + }, + { + "start": 10833.88, + "end": 10834.59, + "probability": 0.6608 + }, + { + "start": 10835.0, + "end": 10835.42, + "probability": 0.7765 + }, + { + "start": 10835.9, + "end": 10836.42, + "probability": 0.7885 + }, + { + "start": 10836.78, + "end": 10837.42, + "probability": 0.9314 + }, + { + "start": 10838.6, + "end": 10839.9, + "probability": 0.8898 + }, + { + "start": 10840.12, + "end": 10844.74, + "probability": 0.9987 + }, + { + "start": 10845.46, + "end": 10847.68, + "probability": 0.9932 + }, + { + "start": 10848.18, + "end": 10852.5, + "probability": 0.9945 + }, + { + "start": 10852.52, + "end": 10853.0, + "probability": 0.7913 + }, + { + "start": 10853.56, + "end": 10854.02, + "probability": 0.4416 + }, + { + "start": 10854.54, + "end": 10857.14, + "probability": 0.9847 + }, + { + "start": 10857.64, + "end": 10857.92, + "probability": 0.9843 + }, + { + "start": 10858.28, + "end": 10862.24, + "probability": 0.9604 + }, + { + "start": 10862.36, + "end": 10863.38, + "probability": 0.9604 + }, + { + "start": 10863.9, + "end": 10867.2, + "probability": 0.9972 + }, + { + "start": 10867.56, + "end": 10869.28, + "probability": 0.9944 + }, + { + "start": 10869.56, + "end": 10873.48, + "probability": 0.993 + }, + { + "start": 10873.88, + "end": 10874.67, + "probability": 0.8571 + }, + { + "start": 10875.06, + "end": 10875.32, + "probability": 0.8359 + }, + { + "start": 10875.44, + "end": 10878.02, + "probability": 0.6085 + }, + { + "start": 10878.08, + "end": 10878.76, + "probability": 0.9871 + }, + { + "start": 10878.88, + "end": 10880.7, + "probability": 0.8975 + }, + { + "start": 10880.7, + "end": 10880.8, + "probability": 0.1214 + }, + { + "start": 10880.8, + "end": 10882.42, + "probability": 0.7917 + }, + { + "start": 10882.44, + "end": 10886.22, + "probability": 0.959 + }, + { + "start": 10886.56, + "end": 10887.22, + "probability": 0.1492 + }, + { + "start": 10887.22, + "end": 10887.22, + "probability": 0.1988 + }, + { + "start": 10887.22, + "end": 10887.22, + "probability": 0.0274 + }, + { + "start": 10887.22, + "end": 10887.24, + "probability": 0.1155 + }, + { + "start": 10887.42, + "end": 10888.6, + "probability": 0.7571 + }, + { + "start": 10888.86, + "end": 10890.14, + "probability": 0.7544 + }, + { + "start": 10890.22, + "end": 10890.26, + "probability": 0.0155 + }, + { + "start": 10891.08, + "end": 10893.87, + "probability": 0.2967 + }, + { + "start": 10894.7, + "end": 10894.7, + "probability": 0.0738 + }, + { + "start": 10894.7, + "end": 10896.97, + "probability": 0.8014 + }, + { + "start": 10897.32, + "end": 10898.98, + "probability": 0.9788 + }, + { + "start": 10899.24, + "end": 10901.15, + "probability": 0.0181 + }, + { + "start": 10903.7, + "end": 10904.1, + "probability": 0.0214 + }, + { + "start": 10904.1, + "end": 10904.1, + "probability": 0.0788 + }, + { + "start": 10904.1, + "end": 10906.05, + "probability": 0.5031 + }, + { + "start": 10907.98, + "end": 10908.44, + "probability": 0.4722 + }, + { + "start": 10908.82, + "end": 10915.52, + "probability": 0.9949 + }, + { + "start": 10915.94, + "end": 10917.56, + "probability": 0.7734 + }, + { + "start": 10917.92, + "end": 10919.82, + "probability": 0.8794 + }, + { + "start": 10920.38, + "end": 10921.64, + "probability": 0.8841 + }, + { + "start": 10922.26, + "end": 10925.3, + "probability": 0.9808 + }, + { + "start": 10925.48, + "end": 10925.92, + "probability": 0.9889 + }, + { + "start": 10926.16, + "end": 10927.75, + "probability": 0.976 + }, + { + "start": 10928.3, + "end": 10932.9, + "probability": 0.994 + }, + { + "start": 10933.5, + "end": 10936.22, + "probability": 0.9985 + }, + { + "start": 10936.82, + "end": 10939.3, + "probability": 0.9949 + }, + { + "start": 10939.3, + "end": 10943.34, + "probability": 0.9953 + }, + { + "start": 10943.76, + "end": 10944.36, + "probability": 0.8763 + }, + { + "start": 10944.7, + "end": 10946.28, + "probability": 0.9792 + }, + { + "start": 10946.66, + "end": 10948.38, + "probability": 0.9971 + }, + { + "start": 10949.12, + "end": 10951.34, + "probability": 0.9849 + }, + { + "start": 10951.42, + "end": 10952.96, + "probability": 0.986 + }, + { + "start": 10953.08, + "end": 10953.86, + "probability": 0.8943 + }, + { + "start": 10954.32, + "end": 10957.2, + "probability": 0.9605 + }, + { + "start": 10958.4, + "end": 10960.0, + "probability": 0.5114 + }, + { + "start": 10960.62, + "end": 10961.46, + "probability": 0.8014 + }, + { + "start": 10961.6, + "end": 10962.3, + "probability": 0.8424 + }, + { + "start": 10962.64, + "end": 10963.7, + "probability": 0.9563 + }, + { + "start": 10964.05, + "end": 10966.36, + "probability": 0.954 + }, + { + "start": 10966.46, + "end": 10966.94, + "probability": 0.9504 + }, + { + "start": 10967.4, + "end": 10971.6, + "probability": 0.9708 + }, + { + "start": 10971.94, + "end": 10973.72, + "probability": 0.9524 + }, + { + "start": 10974.28, + "end": 10975.28, + "probability": 0.7175 + }, + { + "start": 10975.44, + "end": 10976.42, + "probability": 0.8939 + }, + { + "start": 10976.8, + "end": 10980.08, + "probability": 0.9719 + }, + { + "start": 10980.08, + "end": 10983.82, + "probability": 0.9967 + }, + { + "start": 10983.86, + "end": 10984.88, + "probability": 0.8441 + }, + { + "start": 10985.52, + "end": 10987.18, + "probability": 0.991 + }, + { + "start": 10987.74, + "end": 10991.82, + "probability": 0.9531 + }, + { + "start": 10992.28, + "end": 10994.94, + "probability": 0.9673 + }, + { + "start": 10995.64, + "end": 10995.64, + "probability": 0.0326 + }, + { + "start": 10995.64, + "end": 10995.64, + "probability": 0.0668 + }, + { + "start": 10995.66, + "end": 10998.13, + "probability": 0.7704 + }, + { + "start": 10998.94, + "end": 10999.32, + "probability": 0.7723 + }, + { + "start": 10999.44, + "end": 10999.96, + "probability": 0.7812 + }, + { + "start": 11000.98, + "end": 11005.96, + "probability": 0.8074 + }, + { + "start": 11006.3, + "end": 11007.42, + "probability": 0.574 + }, + { + "start": 11007.56, + "end": 11010.12, + "probability": 0.8111 + }, + { + "start": 11010.22, + "end": 11010.82, + "probability": 0.8111 + }, + { + "start": 11011.46, + "end": 11014.02, + "probability": 0.984 + }, + { + "start": 11014.38, + "end": 11019.01, + "probability": 0.98 + }, + { + "start": 11019.54, + "end": 11022.8, + "probability": 0.9603 + }, + { + "start": 11023.22, + "end": 11025.8, + "probability": 0.9972 + }, + { + "start": 11026.36, + "end": 11032.06, + "probability": 0.9932 + }, + { + "start": 11033.1, + "end": 11033.1, + "probability": 0.6251 + }, + { + "start": 11033.16, + "end": 11034.64, + "probability": 0.7485 + }, + { + "start": 11038.2, + "end": 11040.62, + "probability": 0.8264 + }, + { + "start": 11058.12, + "end": 11060.42, + "probability": 0.7745 + }, + { + "start": 11061.76, + "end": 11064.2, + "probability": 0.9824 + }, + { + "start": 11065.34, + "end": 11066.88, + "probability": 0.9841 + }, + { + "start": 11067.94, + "end": 11071.44, + "probability": 0.9985 + }, + { + "start": 11073.5, + "end": 11075.64, + "probability": 0.996 + }, + { + "start": 11076.66, + "end": 11078.76, + "probability": 0.9901 + }, + { + "start": 11079.84, + "end": 11083.18, + "probability": 0.9583 + }, + { + "start": 11084.18, + "end": 11086.0, + "probability": 0.8982 + }, + { + "start": 11086.88, + "end": 11090.28, + "probability": 0.9842 + }, + { + "start": 11091.52, + "end": 11093.48, + "probability": 0.9714 + }, + { + "start": 11095.26, + "end": 11098.0, + "probability": 0.9373 + }, + { + "start": 11098.6, + "end": 11100.14, + "probability": 0.9536 + }, + { + "start": 11100.28, + "end": 11102.2, + "probability": 0.9932 + }, + { + "start": 11102.2, + "end": 11106.44, + "probability": 0.9911 + }, + { + "start": 11107.36, + "end": 11110.34, + "probability": 0.905 + }, + { + "start": 11110.34, + "end": 11114.8, + "probability": 0.9449 + }, + { + "start": 11115.92, + "end": 11116.62, + "probability": 0.5 + }, + { + "start": 11117.92, + "end": 11121.04, + "probability": 0.9761 + }, + { + "start": 11122.94, + "end": 11127.28, + "probability": 0.979 + }, + { + "start": 11127.88, + "end": 11130.82, + "probability": 0.9127 + }, + { + "start": 11131.76, + "end": 11135.46, + "probability": 0.9536 + }, + { + "start": 11135.5, + "end": 11138.48, + "probability": 0.9339 + }, + { + "start": 11139.28, + "end": 11142.98, + "probability": 0.9142 + }, + { + "start": 11144.38, + "end": 11145.44, + "probability": 0.9974 + }, + { + "start": 11146.18, + "end": 11149.72, + "probability": 0.9927 + }, + { + "start": 11150.9, + "end": 11153.74, + "probability": 0.9983 + }, + { + "start": 11155.12, + "end": 11155.12, + "probability": 0.4511 + }, + { + "start": 11155.12, + "end": 11156.5, + "probability": 0.9361 + }, + { + "start": 11157.04, + "end": 11160.5, + "probability": 0.9862 + }, + { + "start": 11160.56, + "end": 11161.34, + "probability": 0.8373 + }, + { + "start": 11161.36, + "end": 11163.12, + "probability": 0.9706 + }, + { + "start": 11163.82, + "end": 11163.92, + "probability": 0.0131 + }, + { + "start": 11163.92, + "end": 11165.98, + "probability": 0.668 + }, + { + "start": 11166.56, + "end": 11167.5, + "probability": 0.9153 + }, + { + "start": 11167.54, + "end": 11168.82, + "probability": 0.9327 + }, + { + "start": 11168.92, + "end": 11170.18, + "probability": 0.676 + }, + { + "start": 11170.96, + "end": 11172.02, + "probability": 0.0941 + }, + { + "start": 11172.26, + "end": 11172.5, + "probability": 0.2446 + }, + { + "start": 11172.5, + "end": 11172.5, + "probability": 0.2959 + }, + { + "start": 11172.5, + "end": 11172.5, + "probability": 0.2853 + }, + { + "start": 11172.5, + "end": 11172.5, + "probability": 0.0549 + }, + { + "start": 11172.5, + "end": 11173.74, + "probability": 0.1525 + }, + { + "start": 11173.8, + "end": 11174.38, + "probability": 0.1974 + }, + { + "start": 11174.44, + "end": 11176.2, + "probability": 0.4903 + }, + { + "start": 11176.2, + "end": 11177.28, + "probability": 0.2911 + }, + { + "start": 11177.62, + "end": 11181.24, + "probability": 0.4673 + }, + { + "start": 11181.54, + "end": 11181.86, + "probability": 0.128 + }, + { + "start": 11181.86, + "end": 11182.46, + "probability": 0.1786 + }, + { + "start": 11182.64, + "end": 11182.64, + "probability": 0.1981 + }, + { + "start": 11182.64, + "end": 11182.64, + "probability": 0.1331 + }, + { + "start": 11182.64, + "end": 11182.64, + "probability": 0.1413 + }, + { + "start": 11182.64, + "end": 11187.68, + "probability": 0.0827 + }, + { + "start": 11187.98, + "end": 11192.32, + "probability": 0.726 + }, + { + "start": 11192.32, + "end": 11195.4, + "probability": 0.8927 + }, + { + "start": 11195.4, + "end": 11196.98, + "probability": 0.344 + }, + { + "start": 11197.06, + "end": 11201.32, + "probability": 0.8322 + }, + { + "start": 11203.2, + "end": 11205.4, + "probability": 0.9115 + }, + { + "start": 11206.46, + "end": 11208.94, + "probability": 0.8479 + }, + { + "start": 11209.46, + "end": 11210.58, + "probability": 0.4913 + }, + { + "start": 11211.56, + "end": 11212.62, + "probability": 0.8569 + }, + { + "start": 11213.56, + "end": 11218.02, + "probability": 0.5281 + }, + { + "start": 11219.12, + "end": 11226.42, + "probability": 0.9708 + }, + { + "start": 11227.14, + "end": 11229.88, + "probability": 0.7902 + }, + { + "start": 11229.88, + "end": 11233.66, + "probability": 0.9848 + }, + { + "start": 11234.14, + "end": 11234.92, + "probability": 0.7085 + }, + { + "start": 11235.12, + "end": 11236.4, + "probability": 0.8031 + }, + { + "start": 11236.44, + "end": 11237.28, + "probability": 0.5645 + }, + { + "start": 11237.56, + "end": 11238.4, + "probability": 0.6367 + }, + { + "start": 11238.84, + "end": 11238.98, + "probability": 0.1326 + }, + { + "start": 11239.92, + "end": 11240.14, + "probability": 0.6303 + }, + { + "start": 11240.18, + "end": 11240.18, + "probability": 0.6353 + }, + { + "start": 11240.18, + "end": 11240.86, + "probability": 0.4191 + }, + { + "start": 11241.48, + "end": 11242.24, + "probability": 0.54 + }, + { + "start": 11242.36, + "end": 11243.9, + "probability": 0.3734 + }, + { + "start": 11243.9, + "end": 11243.9, + "probability": 0.1484 + }, + { + "start": 11243.9, + "end": 11245.28, + "probability": 0.3606 + }, + { + "start": 11246.72, + "end": 11253.42, + "probability": 0.3189 + }, + { + "start": 11253.42, + "end": 11253.92, + "probability": 0.4035 + }, + { + "start": 11253.92, + "end": 11254.2, + "probability": 0.012 + }, + { + "start": 11254.86, + "end": 11255.54, + "probability": 0.1493 + }, + { + "start": 11255.54, + "end": 11255.66, + "probability": 0.1018 + }, + { + "start": 11255.66, + "end": 11255.66, + "probability": 0.0365 + }, + { + "start": 11255.66, + "end": 11255.66, + "probability": 0.4375 + }, + { + "start": 11255.66, + "end": 11256.2, + "probability": 0.0836 + }, + { + "start": 11256.2, + "end": 11256.46, + "probability": 0.5146 + }, + { + "start": 11256.64, + "end": 11259.9, + "probability": 0.64 + }, + { + "start": 11261.48, + "end": 11263.12, + "probability": 0.6764 + }, + { + "start": 11263.5, + "end": 11264.04, + "probability": 0.1421 + }, + { + "start": 11267.85, + "end": 11271.12, + "probability": 0.1808 + }, + { + "start": 11273.46, + "end": 11274.78, + "probability": 0.0658 + }, + { + "start": 11274.8, + "end": 11276.64, + "probability": 0.3077 + }, + { + "start": 11276.64, + "end": 11277.12, + "probability": 0.1155 + }, + { + "start": 11277.24, + "end": 11277.8, + "probability": 0.1789 + }, + { + "start": 11279.96, + "end": 11280.76, + "probability": 0.1645 + }, + { + "start": 11281.38, + "end": 11283.24, + "probability": 0.1005 + }, + { + "start": 11283.24, + "end": 11285.38, + "probability": 0.0539 + }, + { + "start": 11285.76, + "end": 11286.42, + "probability": 0.2691 + }, + { + "start": 11287.54, + "end": 11290.72, + "probability": 0.307 + }, + { + "start": 11291.22, + "end": 11291.3, + "probability": 0.0361 + }, + { + "start": 11293.44, + "end": 11295.68, + "probability": 0.1221 + }, + { + "start": 11295.98, + "end": 11298.22, + "probability": 0.1199 + }, + { + "start": 11298.58, + "end": 11298.7, + "probability": 0.0489 + }, + { + "start": 11298.84, + "end": 11300.08, + "probability": 0.0383 + }, + { + "start": 11300.28, + "end": 11300.34, + "probability": 0.0634 + }, + { + "start": 11302.14, + "end": 11303.44, + "probability": 0.1562 + }, + { + "start": 11303.58, + "end": 11305.36, + "probability": 0.0373 + }, + { + "start": 11305.96, + "end": 11306.44, + "probability": 0.1255 + }, + { + "start": 11306.76, + "end": 11306.76, + "probability": 0.048 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11330.0, + "end": 11330.0, + "probability": 0.0 + }, + { + "start": 11333.1, + "end": 11334.5, + "probability": 0.1371 + }, + { + "start": 11334.62, + "end": 11334.9, + "probability": 0.3715 + }, + { + "start": 11334.9, + "end": 11334.9, + "probability": 0.0053 + }, + { + "start": 11335.94, + "end": 11336.92, + "probability": 0.0918 + }, + { + "start": 11337.34, + "end": 11337.72, + "probability": 0.0202 + }, + { + "start": 11337.72, + "end": 11337.72, + "probability": 0.0825 + }, + { + "start": 11340.02, + "end": 11342.74, + "probability": 0.1314 + }, + { + "start": 11342.84, + "end": 11344.46, + "probability": 0.3604 + }, + { + "start": 11345.4, + "end": 11346.36, + "probability": 0.4225 + }, + { + "start": 11350.32, + "end": 11352.56, + "probability": 0.8459 + }, + { + "start": 11352.88, + "end": 11354.44, + "probability": 0.1019 + }, + { + "start": 11355.06, + "end": 11356.46, + "probability": 0.699 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.0, + "end": 11450.0, + "probability": 0.0 + }, + { + "start": 11450.28, + "end": 11452.36, + "probability": 0.6671 + }, + { + "start": 11452.44, + "end": 11454.01, + "probability": 0.7736 + }, + { + "start": 11454.46, + "end": 11454.46, + "probability": 0.2639 + }, + { + "start": 11454.46, + "end": 11454.46, + "probability": 0.3176 + }, + { + "start": 11454.52, + "end": 11456.68, + "probability": 0.4193 + }, + { + "start": 11457.44, + "end": 11460.4, + "probability": 0.5831 + }, + { + "start": 11460.48, + "end": 11461.44, + "probability": 0.9348 + }, + { + "start": 11461.92, + "end": 11463.76, + "probability": 0.4589 + }, + { + "start": 11466.01, + "end": 11467.76, + "probability": 0.8864 + }, + { + "start": 11467.86, + "end": 11467.94, + "probability": 0.0771 + }, + { + "start": 11467.94, + "end": 11469.62, + "probability": 0.5114 + }, + { + "start": 11470.48, + "end": 11471.12, + "probability": 0.391 + }, + { + "start": 11471.16, + "end": 11471.68, + "probability": 0.7641 + }, + { + "start": 11471.76, + "end": 11472.54, + "probability": 0.3145 + }, + { + "start": 11472.62, + "end": 11473.24, + "probability": 0.6583 + }, + { + "start": 11473.26, + "end": 11474.32, + "probability": 0.7193 + }, + { + "start": 11475.1, + "end": 11475.96, + "probability": 0.5686 + }, + { + "start": 11476.64, + "end": 11478.04, + "probability": 0.9908 + }, + { + "start": 11478.78, + "end": 11479.26, + "probability": 0.7903 + }, + { + "start": 11479.36, + "end": 11482.12, + "probability": 0.9929 + }, + { + "start": 11482.12, + "end": 11484.3, + "probability": 0.9202 + }, + { + "start": 11485.46, + "end": 11488.16, + "probability": 0.8145 + }, + { + "start": 11488.38, + "end": 11491.02, + "probability": 0.9923 + }, + { + "start": 11492.56, + "end": 11494.48, + "probability": 0.9927 + }, + { + "start": 11494.62, + "end": 11496.7, + "probability": 0.9347 + }, + { + "start": 11497.3, + "end": 11498.98, + "probability": 0.8435 + }, + { + "start": 11499.66, + "end": 11501.84, + "probability": 0.7759 + }, + { + "start": 11502.94, + "end": 11505.12, + "probability": 0.8939 + }, + { + "start": 11506.02, + "end": 11508.46, + "probability": 0.9595 + }, + { + "start": 11509.42, + "end": 11511.7, + "probability": 0.9948 + }, + { + "start": 11512.2, + "end": 11514.64, + "probability": 0.9708 + }, + { + "start": 11515.78, + "end": 11517.9, + "probability": 0.9722 + }, + { + "start": 11518.7, + "end": 11521.58, + "probability": 0.9839 + }, + { + "start": 11521.68, + "end": 11522.52, + "probability": 0.801 + }, + { + "start": 11523.58, + "end": 11527.98, + "probability": 0.9484 + }, + { + "start": 11527.98, + "end": 11531.3, + "probability": 0.9946 + }, + { + "start": 11532.02, + "end": 11537.28, + "probability": 0.7941 + }, + { + "start": 11538.94, + "end": 11539.52, + "probability": 0.5987 + }, + { + "start": 11539.64, + "end": 11541.88, + "probability": 0.5207 + }, + { + "start": 11542.02, + "end": 11543.42, + "probability": 0.8947 + }, + { + "start": 11544.22, + "end": 11546.04, + "probability": 0.6479 + }, + { + "start": 11546.3, + "end": 11546.98, + "probability": 0.7448 + }, + { + "start": 11547.58, + "end": 11549.42, + "probability": 0.8389 + }, + { + "start": 11550.1, + "end": 11557.04, + "probability": 0.9783 + }, + { + "start": 11558.3, + "end": 11561.48, + "probability": 0.7776 + }, + { + "start": 11563.12, + "end": 11567.8, + "probability": 0.7955 + }, + { + "start": 11567.92, + "end": 11575.52, + "probability": 0.9925 + }, + { + "start": 11575.82, + "end": 11580.72, + "probability": 0.953 + }, + { + "start": 11581.74, + "end": 11583.14, + "probability": 0.6951 + }, + { + "start": 11583.88, + "end": 11586.62, + "probability": 0.7486 + }, + { + "start": 11586.68, + "end": 11587.84, + "probability": 0.75 + }, + { + "start": 11587.92, + "end": 11588.68, + "probability": 0.8958 + }, + { + "start": 11588.86, + "end": 11591.24, + "probability": 0.99 + }, + { + "start": 11591.84, + "end": 11592.86, + "probability": 0.7822 + }, + { + "start": 11592.92, + "end": 11597.26, + "probability": 0.7231 + }, + { + "start": 11597.4, + "end": 11601.48, + "probability": 0.6044 + }, + { + "start": 11602.5, + "end": 11603.06, + "probability": 0.5026 + }, + { + "start": 11604.38, + "end": 11608.62, + "probability": 0.7924 + }, + { + "start": 11609.86, + "end": 11611.84, + "probability": 0.9891 + }, + { + "start": 11612.9, + "end": 11615.86, + "probability": 0.8259 + }, + { + "start": 11616.58, + "end": 11618.42, + "probability": 0.9872 + }, + { + "start": 11619.24, + "end": 11623.14, + "probability": 0.9839 + }, + { + "start": 11623.14, + "end": 11627.22, + "probability": 0.9974 + }, + { + "start": 11628.28, + "end": 11628.68, + "probability": 0.6789 + }, + { + "start": 11629.28, + "end": 11632.68, + "probability": 0.8933 + }, + { + "start": 11633.38, + "end": 11634.16, + "probability": 0.8654 + }, + { + "start": 11634.86, + "end": 11639.24, + "probability": 0.9755 + }, + { + "start": 11639.96, + "end": 11642.56, + "probability": 0.7508 + }, + { + "start": 11643.14, + "end": 11644.5, + "probability": 0.878 + }, + { + "start": 11645.5, + "end": 11646.76, + "probability": 0.5009 + }, + { + "start": 11646.76, + "end": 11648.28, + "probability": 0.7112 + }, + { + "start": 11652.24, + "end": 11654.5, + "probability": 0.5725 + }, + { + "start": 11679.04, + "end": 11681.64, + "probability": 0.7829 + }, + { + "start": 11683.42, + "end": 11684.36, + "probability": 0.7382 + }, + { + "start": 11685.28, + "end": 11689.14, + "probability": 0.8581 + }, + { + "start": 11690.44, + "end": 11690.54, + "probability": 0.418 + }, + { + "start": 11692.48, + "end": 11693.46, + "probability": 0.8084 + }, + { + "start": 11694.2, + "end": 11695.84, + "probability": 0.8982 + }, + { + "start": 11696.76, + "end": 11697.58, + "probability": 0.9282 + }, + { + "start": 11699.5, + "end": 11705.48, + "probability": 0.9843 + }, + { + "start": 11708.12, + "end": 11711.0, + "probability": 0.9392 + }, + { + "start": 11711.08, + "end": 11712.58, + "probability": 0.7202 + }, + { + "start": 11712.96, + "end": 11713.62, + "probability": 0.6352 + }, + { + "start": 11714.4, + "end": 11714.76, + "probability": 0.134 + }, + { + "start": 11714.76, + "end": 11714.76, + "probability": 0.206 + }, + { + "start": 11714.76, + "end": 11715.18, + "probability": 0.0507 + }, + { + "start": 11716.06, + "end": 11717.68, + "probability": 0.6468 + }, + { + "start": 11718.24, + "end": 11719.2, + "probability": 0.8318 + }, + { + "start": 11735.26, + "end": 11737.0, + "probability": 0.8875 + }, + { + "start": 11738.04, + "end": 11738.08, + "probability": 0.0577 + }, + { + "start": 11738.08, + "end": 11738.08, + "probability": 0.0519 + }, + { + "start": 11738.08, + "end": 11738.08, + "probability": 0.0267 + }, + { + "start": 11738.08, + "end": 11738.08, + "probability": 0.3476 + }, + { + "start": 11738.08, + "end": 11747.9, + "probability": 0.7212 + }, + { + "start": 11748.68, + "end": 11752.06, + "probability": 0.9977 + }, + { + "start": 11752.54, + "end": 11754.72, + "probability": 0.7298 + }, + { + "start": 11754.9, + "end": 11756.28, + "probability": 0.9581 + }, + { + "start": 11756.72, + "end": 11759.2, + "probability": 0.979 + }, + { + "start": 11760.7, + "end": 11764.96, + "probability": 0.9769 + }, + { + "start": 11766.96, + "end": 11772.42, + "probability": 0.9976 + }, + { + "start": 11772.42, + "end": 11777.16, + "probability": 0.9971 + }, + { + "start": 11777.68, + "end": 11778.0, + "probability": 0.6064 + }, + { + "start": 11778.74, + "end": 11779.52, + "probability": 0.7562 + }, + { + "start": 11780.24, + "end": 11781.56, + "probability": 0.8986 + }, + { + "start": 11783.18, + "end": 11787.78, + "probability": 0.7217 + }, + { + "start": 11787.9, + "end": 11788.38, + "probability": 0.9642 + }, + { + "start": 11788.56, + "end": 11790.52, + "probability": 0.8263 + }, + { + "start": 11791.26, + "end": 11793.26, + "probability": 0.2584 + }, + { + "start": 11793.44, + "end": 11794.04, + "probability": 0.2099 + }, + { + "start": 11794.14, + "end": 11794.14, + "probability": 0.3413 + }, + { + "start": 11794.32, + "end": 11794.32, + "probability": 0.1453 + }, + { + "start": 11794.32, + "end": 11796.34, + "probability": 0.6625 + }, + { + "start": 11797.08, + "end": 11798.38, + "probability": 0.9219 + }, + { + "start": 11798.88, + "end": 11799.68, + "probability": 0.3582 + }, + { + "start": 11800.64, + "end": 11805.12, + "probability": 0.9855 + }, + { + "start": 11805.26, + "end": 11810.53, + "probability": 0.9912 + }, + { + "start": 11811.22, + "end": 11811.58, + "probability": 0.5618 + }, + { + "start": 11811.64, + "end": 11812.78, + "probability": 0.9543 + }, + { + "start": 11814.52, + "end": 11817.06, + "probability": 0.8391 + }, + { + "start": 11817.4, + "end": 11820.96, + "probability": 0.974 + }, + { + "start": 11822.02, + "end": 11822.84, + "probability": 0.7752 + }, + { + "start": 11822.98, + "end": 11824.79, + "probability": 0.9897 + }, + { + "start": 11825.28, + "end": 11825.94, + "probability": 0.9746 + }, + { + "start": 11826.0, + "end": 11827.64, + "probability": 0.9927 + }, + { + "start": 11827.8, + "end": 11828.38, + "probability": 0.9786 + }, + { + "start": 11828.76, + "end": 11832.7, + "probability": 0.9953 + }, + { + "start": 11832.7, + "end": 11836.38, + "probability": 0.9581 + }, + { + "start": 11837.14, + "end": 11838.58, + "probability": 0.999 + }, + { + "start": 11839.2, + "end": 11843.18, + "probability": 0.9766 + }, + { + "start": 11844.58, + "end": 11847.32, + "probability": 0.9165 + }, + { + "start": 11847.7, + "end": 11848.32, + "probability": 0.0151 + }, + { + "start": 11848.46, + "end": 11851.0, + "probability": 0.1061 + }, + { + "start": 11851.0, + "end": 11851.12, + "probability": 0.0322 + }, + { + "start": 11851.12, + "end": 11851.12, + "probability": 0.1203 + }, + { + "start": 11851.12, + "end": 11851.12, + "probability": 0.0491 + }, + { + "start": 11851.12, + "end": 11851.12, + "probability": 0.1255 + }, + { + "start": 11851.12, + "end": 11852.13, + "probability": 0.0078 + }, + { + "start": 11853.08, + "end": 11853.66, + "probability": 0.2335 + }, + { + "start": 11853.98, + "end": 11854.94, + "probability": 0.3526 + }, + { + "start": 11855.14, + "end": 11856.08, + "probability": 0.5497 + }, + { + "start": 11856.14, + "end": 11856.52, + "probability": 0.5204 + }, + { + "start": 11856.94, + "end": 11858.58, + "probability": 0.5253 + }, + { + "start": 11860.3, + "end": 11862.33, + "probability": 0.0854 + }, + { + "start": 11877.24, + "end": 11879.52, + "probability": 0.0384 + }, + { + "start": 11879.52, + "end": 11880.58, + "probability": 0.0058 + }, + { + "start": 11880.62, + "end": 11881.64, + "probability": 0.1729 + }, + { + "start": 11881.7, + "end": 11883.14, + "probability": 0.0825 + }, + { + "start": 11883.54, + "end": 11883.54, + "probability": 0.2076 + }, + { + "start": 11885.98, + "end": 11886.12, + "probability": 0.1087 + }, + { + "start": 11886.12, + "end": 11888.0, + "probability": 0.0242 + }, + { + "start": 11888.88, + "end": 11890.07, + "probability": 0.0399 + }, + { + "start": 11893.8, + "end": 11895.64, + "probability": 0.1812 + }, + { + "start": 11896.2, + "end": 11896.2, + "probability": 0.0319 + }, + { + "start": 11896.5, + "end": 11897.1, + "probability": 0.1664 + }, + { + "start": 11897.28, + "end": 11898.38, + "probability": 0.1227 + }, + { + "start": 11899.88, + "end": 11901.98, + "probability": 0.1587 + }, + { + "start": 11902.84, + "end": 11903.94, + "probability": 0.0214 + }, + { + "start": 11905.34, + "end": 11907.52, + "probability": 0.0385 + }, + { + "start": 11907.52, + "end": 11911.92, + "probability": 0.0782 + }, + { + "start": 11911.92, + "end": 11913.84, + "probability": 0.067 + }, + { + "start": 11914.1, + "end": 11914.49, + "probability": 0.06 + }, + { + "start": 11917.14, + "end": 11917.64, + "probability": 0.2662 + }, + { + "start": 11918.92, + "end": 11921.8, + "probability": 0.0752 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11937.0, + "end": 11937.0, + "probability": 0.0 + }, + { + "start": 11944.58, + "end": 11948.2, + "probability": 0.0448 + }, + { + "start": 11950.43, + "end": 11952.41, + "probability": 0.0278 + }, + { + "start": 11953.3, + "end": 11954.92, + "probability": 0.0291 + }, + { + "start": 11959.96, + "end": 11960.99, + "probability": 0.0433 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.0, + "end": 12063.0, + "probability": 0.0 + }, + { + "start": 12063.2, + "end": 12063.7, + "probability": 0.0368 + }, + { + "start": 12063.7, + "end": 12064.2, + "probability": 0.0577 + }, + { + "start": 12064.22, + "end": 12067.67, + "probability": 0.1104 + }, + { + "start": 12068.96, + "end": 12069.54, + "probability": 0.144 + }, + { + "start": 12072.8, + "end": 12073.16, + "probability": 0.1613 + }, + { + "start": 12073.16, + "end": 12073.26, + "probability": 0.0606 + }, + { + "start": 12073.26, + "end": 12073.26, + "probability": 0.1153 + }, + { + "start": 12073.26, + "end": 12074.4, + "probability": 0.1169 + }, + { + "start": 12075.2, + "end": 12075.6, + "probability": 0.5216 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12190.0, + "end": 12190.0, + "probability": 0.0 + }, + { + "start": 12192.17, + "end": 12192.8, + "probability": 0.0519 + }, + { + "start": 12193.46, + "end": 12197.34, + "probability": 0.0289 + }, + { + "start": 12198.06, + "end": 12201.92, + "probability": 0.0452 + }, + { + "start": 12202.58, + "end": 12209.44, + "probability": 0.0591 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.0, + "end": 12314.0, + "probability": 0.0 + }, + { + "start": 12314.18, + "end": 12314.18, + "probability": 0.0181 + }, + { + "start": 12314.18, + "end": 12318.06, + "probability": 0.8974 + }, + { + "start": 12318.12, + "end": 12320.18, + "probability": 0.9653 + }, + { + "start": 12321.3, + "end": 12322.0, + "probability": 0.5777 + }, + { + "start": 12322.8, + "end": 12328.48, + "probability": 0.9918 + }, + { + "start": 12328.58, + "end": 12328.94, + "probability": 0.5441 + }, + { + "start": 12329.04, + "end": 12331.1, + "probability": 0.9888 + }, + { + "start": 12331.18, + "end": 12331.56, + "probability": 0.8521 + }, + { + "start": 12331.64, + "end": 12333.66, + "probability": 0.9171 + }, + { + "start": 12334.06, + "end": 12335.54, + "probability": 0.8843 + }, + { + "start": 12335.64, + "end": 12336.6, + "probability": 0.8516 + }, + { + "start": 12336.66, + "end": 12339.88, + "probability": 0.6396 + }, + { + "start": 12339.94, + "end": 12343.48, + "probability": 0.9387 + }, + { + "start": 12344.2, + "end": 12345.6, + "probability": 0.5151 + }, + { + "start": 12345.95, + "end": 12346.16, + "probability": 0.0491 + }, + { + "start": 12346.16, + "end": 12346.16, + "probability": 0.3757 + }, + { + "start": 12346.16, + "end": 12348.36, + "probability": 0.9903 + }, + { + "start": 12348.86, + "end": 12349.08, + "probability": 0.162 + }, + { + "start": 12350.1, + "end": 12351.6, + "probability": 0.5429 + }, + { + "start": 12352.34, + "end": 12354.3, + "probability": 0.4277 + }, + { + "start": 12354.5, + "end": 12357.92, + "probability": 0.7102 + }, + { + "start": 12358.1, + "end": 12359.85, + "probability": 0.6663 + }, + { + "start": 12360.54, + "end": 12362.56, + "probability": 0.8429 + }, + { + "start": 12362.94, + "end": 12365.48, + "probability": 0.5443 + }, + { + "start": 12365.56, + "end": 12367.72, + "probability": 0.8128 + }, + { + "start": 12367.72, + "end": 12367.72, + "probability": 0.5064 + }, + { + "start": 12367.72, + "end": 12368.86, + "probability": 0.7437 + }, + { + "start": 12368.86, + "end": 12370.18, + "probability": 0.7503 + }, + { + "start": 12370.56, + "end": 12373.4, + "probability": 0.8645 + }, + { + "start": 12374.38, + "end": 12374.92, + "probability": 0.3987 + }, + { + "start": 12375.5, + "end": 12375.82, + "probability": 0.3095 + }, + { + "start": 12396.3, + "end": 12397.38, + "probability": 0.3756 + }, + { + "start": 12398.52, + "end": 12405.7, + "probability": 0.9698 + }, + { + "start": 12406.18, + "end": 12407.42, + "probability": 0.8409 + }, + { + "start": 12407.52, + "end": 12408.43, + "probability": 0.9896 + }, + { + "start": 12409.44, + "end": 12413.17, + "probability": 0.9941 + }, + { + "start": 12413.52, + "end": 12415.05, + "probability": 0.9512 + }, + { + "start": 12415.62, + "end": 12417.08, + "probability": 0.9222 + }, + { + "start": 12417.5, + "end": 12418.48, + "probability": 0.903 + }, + { + "start": 12419.0, + "end": 12421.68, + "probability": 0.9917 + }, + { + "start": 12421.76, + "end": 12422.98, + "probability": 0.6003 + }, + { + "start": 12423.64, + "end": 12427.18, + "probability": 0.9888 + }, + { + "start": 12427.64, + "end": 12429.64, + "probability": 0.944 + }, + { + "start": 12429.76, + "end": 12430.34, + "probability": 0.5881 + }, + { + "start": 12430.86, + "end": 12435.54, + "probability": 0.9913 + }, + { + "start": 12436.1, + "end": 12437.24, + "probability": 0.9373 + }, + { + "start": 12438.06, + "end": 12438.88, + "probability": 0.975 + }, + { + "start": 12439.5, + "end": 12441.42, + "probability": 0.9976 + }, + { + "start": 12441.48, + "end": 12444.24, + "probability": 0.9969 + }, + { + "start": 12444.58, + "end": 12446.0, + "probability": 0.6664 + }, + { + "start": 12446.28, + "end": 12447.22, + "probability": 0.7776 + }, + { + "start": 12448.5, + "end": 12449.34, + "probability": 0.9678 + }, + { + "start": 12451.12, + "end": 12454.32, + "probability": 0.9823 + }, + { + "start": 12454.78, + "end": 12460.48, + "probability": 0.9924 + }, + { + "start": 12461.0, + "end": 12463.14, + "probability": 0.962 + }, + { + "start": 12464.0, + "end": 12465.48, + "probability": 0.9946 + }, + { + "start": 12465.64, + "end": 12468.18, + "probability": 0.9635 + }, + { + "start": 12468.48, + "end": 12469.92, + "probability": 0.9449 + }, + { + "start": 12470.04, + "end": 12472.5, + "probability": 0.9902 + }, + { + "start": 12473.2, + "end": 12474.42, + "probability": 0.9878 + }, + { + "start": 12475.36, + "end": 12478.26, + "probability": 0.965 + }, + { + "start": 12479.02, + "end": 12481.98, + "probability": 0.9983 + }, + { + "start": 12482.26, + "end": 12488.06, + "probability": 0.997 + }, + { + "start": 12488.74, + "end": 12491.04, + "probability": 0.5743 + }, + { + "start": 12491.66, + "end": 12493.88, + "probability": 0.9407 + }, + { + "start": 12493.88, + "end": 12497.63, + "probability": 0.9622 + }, + { + "start": 12498.48, + "end": 12502.44, + "probability": 0.7292 + }, + { + "start": 12502.7, + "end": 12504.26, + "probability": 0.961 + }, + { + "start": 12505.3, + "end": 12506.18, + "probability": 0.9496 + }, + { + "start": 12506.26, + "end": 12507.6, + "probability": 0.8958 + }, + { + "start": 12508.0, + "end": 12510.04, + "probability": 0.811 + }, + { + "start": 12511.18, + "end": 12512.92, + "probability": 0.5713 + }, + { + "start": 12513.48, + "end": 12517.96, + "probability": 0.7625 + }, + { + "start": 12518.68, + "end": 12520.68, + "probability": 0.9586 + }, + { + "start": 12520.68, + "end": 12521.92, + "probability": 0.6875 + }, + { + "start": 12523.18, + "end": 12528.16, + "probability": 0.7489 + }, + { + "start": 12528.8, + "end": 12529.82, + "probability": 0.7491 + }, + { + "start": 12529.96, + "end": 12531.02, + "probability": 0.5409 + }, + { + "start": 12532.26, + "end": 12536.08, + "probability": 0.9927 + }, + { + "start": 12536.08, + "end": 12539.36, + "probability": 0.9983 + }, + { + "start": 12539.74, + "end": 12543.26, + "probability": 0.7489 + }, + { + "start": 12543.98, + "end": 12545.1, + "probability": 0.9393 + }, + { + "start": 12545.38, + "end": 12546.58, + "probability": 0.7834 + }, + { + "start": 12547.2, + "end": 12550.94, + "probability": 0.9161 + }, + { + "start": 12552.14, + "end": 12554.62, + "probability": 0.7291 + }, + { + "start": 12554.64, + "end": 12556.34, + "probability": 0.9932 + }, + { + "start": 12556.42, + "end": 12558.08, + "probability": 0.8324 + }, + { + "start": 12558.6, + "end": 12560.5, + "probability": 0.9905 + }, + { + "start": 12562.04, + "end": 12562.85, + "probability": 0.9971 + }, + { + "start": 12563.6, + "end": 12566.62, + "probability": 0.9885 + }, + { + "start": 12566.76, + "end": 12572.46, + "probability": 0.998 + }, + { + "start": 12572.5, + "end": 12575.14, + "probability": 0.8691 + }, + { + "start": 12576.02, + "end": 12578.78, + "probability": 0.6611 + }, + { + "start": 12579.3, + "end": 12580.24, + "probability": 0.7565 + }, + { + "start": 12580.36, + "end": 12583.8, + "probability": 0.992 + }, + { + "start": 12584.84, + "end": 12589.36, + "probability": 0.9754 + }, + { + "start": 12589.96, + "end": 12590.58, + "probability": 0.7471 + }, + { + "start": 12591.0, + "end": 12592.46, + "probability": 0.6648 + }, + { + "start": 12593.64, + "end": 12594.36, + "probability": 0.7993 + }, + { + "start": 12595.08, + "end": 12597.4, + "probability": 0.592 + }, + { + "start": 12597.44, + "end": 12599.68, + "probability": 0.9606 + }, + { + "start": 12600.24, + "end": 12603.1, + "probability": 0.9409 + }, + { + "start": 12603.2, + "end": 12605.18, + "probability": 0.9963 + }, + { + "start": 12605.62, + "end": 12607.16, + "probability": 0.8946 + }, + { + "start": 12607.48, + "end": 12607.98, + "probability": 0.9658 + }, + { + "start": 12608.5, + "end": 12610.98, + "probability": 0.9854 + }, + { + "start": 12611.0, + "end": 12612.88, + "probability": 0.9978 + }, + { + "start": 12612.88, + "end": 12613.04, + "probability": 0.6459 + }, + { + "start": 12613.14, + "end": 12613.14, + "probability": 0.6587 + }, + { + "start": 12613.2, + "end": 12618.32, + "probability": 0.9712 + }, + { + "start": 12618.46, + "end": 12621.78, + "probability": 0.9828 + }, + { + "start": 12622.24, + "end": 12622.64, + "probability": 0.5291 + }, + { + "start": 12622.72, + "end": 12624.76, + "probability": 0.8044 + }, + { + "start": 12624.84, + "end": 12625.78, + "probability": 0.8813 + }, + { + "start": 12626.12, + "end": 12628.56, + "probability": 0.8964 + }, + { + "start": 12628.96, + "end": 12629.76, + "probability": 0.7695 + }, + { + "start": 12629.84, + "end": 12631.46, + "probability": 0.9461 + }, + { + "start": 12631.62, + "end": 12633.57, + "probability": 0.9902 + }, + { + "start": 12634.36, + "end": 12634.36, + "probability": 0.6213 + }, + { + "start": 12634.54, + "end": 12636.06, + "probability": 0.79 + }, + { + "start": 12636.98, + "end": 12640.36, + "probability": 0.7535 + }, + { + "start": 12640.82, + "end": 12642.28, + "probability": 0.9849 + }, + { + "start": 12644.57, + "end": 12646.94, + "probability": 0.9718 + }, + { + "start": 12648.62, + "end": 12649.6, + "probability": 0.1578 + }, + { + "start": 12650.52, + "end": 12650.66, + "probability": 0.0182 + }, + { + "start": 12652.08, + "end": 12653.9, + "probability": 0.0152 + }, + { + "start": 12654.1, + "end": 12654.54, + "probability": 0.0223 + }, + { + "start": 12663.64, + "end": 12668.66, + "probability": 0.1284 + }, + { + "start": 12673.24, + "end": 12677.6, + "probability": 0.6448 + }, + { + "start": 12677.6, + "end": 12678.96, + "probability": 0.9884 + }, + { + "start": 12680.74, + "end": 12680.9, + "probability": 0.9302 + }, + { + "start": 12680.98, + "end": 12682.34, + "probability": 0.7722 + }, + { + "start": 12682.38, + "end": 12684.74, + "probability": 0.8228 + }, + { + "start": 12686.03, + "end": 12691.52, + "probability": 0.9951 + }, + { + "start": 12692.86, + "end": 12695.94, + "probability": 0.804 + }, + { + "start": 12697.4, + "end": 12699.08, + "probability": 0.9979 + }, + { + "start": 12699.1, + "end": 12700.44, + "probability": 0.9946 + }, + { + "start": 12702.76, + "end": 12705.74, + "probability": 0.9995 + }, + { + "start": 12705.74, + "end": 12709.38, + "probability": 0.9798 + }, + { + "start": 12710.72, + "end": 12715.62, + "probability": 0.9971 + }, + { + "start": 12716.78, + "end": 12718.92, + "probability": 0.9368 + }, + { + "start": 12719.88, + "end": 12721.36, + "probability": 0.8787 + }, + { + "start": 12721.48, + "end": 12722.78, + "probability": 0.9752 + }, + { + "start": 12722.86, + "end": 12724.2, + "probability": 0.9502 + }, + { + "start": 12724.82, + "end": 12727.68, + "probability": 0.9976 + }, + { + "start": 12727.68, + "end": 12730.84, + "probability": 0.9967 + }, + { + "start": 12732.56, + "end": 12737.12, + "probability": 0.8316 + }, + { + "start": 12738.5, + "end": 12740.76, + "probability": 0.9919 + }, + { + "start": 12742.12, + "end": 12743.66, + "probability": 0.9924 + }, + { + "start": 12744.86, + "end": 12748.16, + "probability": 0.9941 + }, + { + "start": 12748.9, + "end": 12750.51, + "probability": 0.9997 + }, + { + "start": 12751.34, + "end": 12755.08, + "probability": 0.9751 + }, + { + "start": 12755.66, + "end": 12757.08, + "probability": 0.9996 + }, + { + "start": 12757.24, + "end": 12758.36, + "probability": 0.8823 + }, + { + "start": 12760.36, + "end": 12760.82, + "probability": 0.743 + }, + { + "start": 12760.96, + "end": 12765.42, + "probability": 0.9769 + }, + { + "start": 12766.02, + "end": 12767.45, + "probability": 0.9749 + }, + { + "start": 12769.08, + "end": 12772.7, + "probability": 0.9158 + }, + { + "start": 12773.74, + "end": 12774.76, + "probability": 0.9113 + }, + { + "start": 12776.22, + "end": 12777.38, + "probability": 0.8716 + }, + { + "start": 12777.52, + "end": 12780.06, + "probability": 0.9958 + }, + { + "start": 12780.2, + "end": 12781.34, + "probability": 0.9821 + }, + { + "start": 12782.46, + "end": 12785.12, + "probability": 0.9974 + }, + { + "start": 12785.36, + "end": 12786.4, + "probability": 0.9736 + }, + { + "start": 12788.24, + "end": 12791.8, + "probability": 0.9967 + }, + { + "start": 12793.16, + "end": 12794.9, + "probability": 0.998 + }, + { + "start": 12795.68, + "end": 12799.9, + "probability": 0.9995 + }, + { + "start": 12801.48, + "end": 12803.38, + "probability": 0.8949 + }, + { + "start": 12803.52, + "end": 12805.16, + "probability": 0.9424 + }, + { + "start": 12805.22, + "end": 12806.28, + "probability": 0.847 + }, + { + "start": 12809.86, + "end": 12811.31, + "probability": 0.3481 + }, + { + "start": 12812.18, + "end": 12812.3, + "probability": 0.0381 + }, + { + "start": 12812.48, + "end": 12813.11, + "probability": 0.9324 + }, + { + "start": 12813.26, + "end": 12815.66, + "probability": 0.9941 + }, + { + "start": 12816.16, + "end": 12817.36, + "probability": 0.965 + }, + { + "start": 12818.5, + "end": 12821.88, + "probability": 0.9937 + }, + { + "start": 12825.7, + "end": 12827.04, + "probability": 0.9808 + }, + { + "start": 12828.28, + "end": 12829.12, + "probability": 0.7207 + }, + { + "start": 12829.88, + "end": 12831.3, + "probability": 0.8452 + }, + { + "start": 12832.08, + "end": 12836.72, + "probability": 0.9907 + }, + { + "start": 12836.72, + "end": 12839.92, + "probability": 0.9883 + }, + { + "start": 12840.76, + "end": 12842.63, + "probability": 0.9685 + }, + { + "start": 12842.86, + "end": 12844.94, + "probability": 0.9117 + }, + { + "start": 12845.22, + "end": 12846.1, + "probability": 0.9526 + }, + { + "start": 12846.62, + "end": 12847.26, + "probability": 0.9082 + }, + { + "start": 12847.92, + "end": 12852.2, + "probability": 0.7841 + }, + { + "start": 12853.06, + "end": 12855.66, + "probability": 0.9132 + }, + { + "start": 12855.76, + "end": 12857.5, + "probability": 0.625 + }, + { + "start": 12857.88, + "end": 12859.46, + "probability": 0.9936 + }, + { + "start": 12859.74, + "end": 12860.7, + "probability": 0.4693 + }, + { + "start": 12860.9, + "end": 12862.18, + "probability": 0.7096 + }, + { + "start": 12862.44, + "end": 12863.72, + "probability": 0.77 + }, + { + "start": 12863.72, + "end": 12865.04, + "probability": 0.4651 + }, + { + "start": 12865.04, + "end": 12867.48, + "probability": 0.7445 + }, + { + "start": 12867.66, + "end": 12867.72, + "probability": 0.2646 + }, + { + "start": 12867.72, + "end": 12868.93, + "probability": 0.3304 + }, + { + "start": 12870.0, + "end": 12870.1, + "probability": 0.0231 + }, + { + "start": 12870.1, + "end": 12870.16, + "probability": 0.0645 + }, + { + "start": 12870.16, + "end": 12876.84, + "probability": 0.9518 + }, + { + "start": 12876.84, + "end": 12883.54, + "probability": 0.9944 + }, + { + "start": 12884.18, + "end": 12886.3, + "probability": 0.8008 + }, + { + "start": 12886.6, + "end": 12889.48, + "probability": 0.7643 + }, + { + "start": 12889.78, + "end": 12891.83, + "probability": 0.9883 + }, + { + "start": 12894.48, + "end": 12895.0, + "probability": 0.0816 + }, + { + "start": 12895.28, + "end": 12896.0, + "probability": 0.4797 + }, + { + "start": 12896.0, + "end": 12897.44, + "probability": 0.2549 + }, + { + "start": 12897.76, + "end": 12900.22, + "probability": 0.1912 + }, + { + "start": 12900.44, + "end": 12900.52, + "probability": 0.4154 + }, + { + "start": 12900.52, + "end": 12900.84, + "probability": 0.4196 + }, + { + "start": 12900.84, + "end": 12902.14, + "probability": 0.4965 + }, + { + "start": 12902.22, + "end": 12903.16, + "probability": 0.5611 + }, + { + "start": 12903.18, + "end": 12906.25, + "probability": 0.4234 + }, + { + "start": 12907.8, + "end": 12909.4, + "probability": 0.8221 + }, + { + "start": 12910.74, + "end": 12915.96, + "probability": 0.9943 + }, + { + "start": 12916.32, + "end": 12919.96, + "probability": 0.936 + }, + { + "start": 12919.96, + "end": 12920.98, + "probability": 0.9656 + }, + { + "start": 12921.44, + "end": 12925.22, + "probability": 0.9751 + }, + { + "start": 12925.22, + "end": 12928.06, + "probability": 0.9861 + }, + { + "start": 12928.76, + "end": 12932.78, + "probability": 0.7787 + }, + { + "start": 12932.84, + "end": 12933.78, + "probability": 0.7879 + }, + { + "start": 12934.02, + "end": 12934.68, + "probability": 0.4622 + }, + { + "start": 12934.68, + "end": 12937.5, + "probability": 0.0503 + }, + { + "start": 12937.5, + "end": 12944.52, + "probability": 0.1264 + }, + { + "start": 12945.34, + "end": 12945.72, + "probability": 0.3921 + }, + { + "start": 12947.16, + "end": 12949.22, + "probability": 0.0346 + }, + { + "start": 12949.22, + "end": 12949.54, + "probability": 0.1501 + }, + { + "start": 12949.54, + "end": 12949.54, + "probability": 0.0668 + }, + { + "start": 12949.54, + "end": 12952.13, + "probability": 0.1351 + }, + { + "start": 12953.88, + "end": 12957.14, + "probability": 0.5387 + }, + { + "start": 12958.06, + "end": 12959.12, + "probability": 0.0988 + }, + { + "start": 12959.62, + "end": 12961.84, + "probability": 0.42 + }, + { + "start": 12962.34, + "end": 12963.42, + "probability": 0.5189 + }, + { + "start": 12963.5, + "end": 12965.84, + "probability": 0.8145 + }, + { + "start": 12966.2, + "end": 12969.86, + "probability": 0.5477 + }, + { + "start": 12969.92, + "end": 12974.44, + "probability": 0.1881 + }, + { + "start": 12974.46, + "end": 12974.52, + "probability": 0.5407 + }, + { + "start": 12974.62, + "end": 12979.02, + "probability": 0.562 + }, + { + "start": 12980.6, + "end": 12982.46, + "probability": 0.8375 + }, + { + "start": 12982.48, + "end": 12986.24, + "probability": 0.8316 + }, + { + "start": 12986.66, + "end": 12988.22, + "probability": 0.806 + }, + { + "start": 12989.59, + "end": 12992.3, + "probability": 0.9901 + }, + { + "start": 12994.12, + "end": 12999.54, + "probability": 0.9397 + }, + { + "start": 12999.8, + "end": 13000.8, + "probability": 0.9709 + }, + { + "start": 13002.34, + "end": 13004.94, + "probability": 0.8915 + }, + { + "start": 13005.08, + "end": 13006.18, + "probability": 0.6778 + }, + { + "start": 13006.22, + "end": 13007.0, + "probability": 0.7987 + }, + { + "start": 13008.7, + "end": 13011.2, + "probability": 0.8136 + }, + { + "start": 13012.0, + "end": 13014.1, + "probability": 0.7838 + }, + { + "start": 13014.8, + "end": 13016.16, + "probability": 0.8222 + }, + { + "start": 13017.02, + "end": 13018.06, + "probability": 0.8327 + }, + { + "start": 13018.9, + "end": 13020.58, + "probability": 0.1241 + }, + { + "start": 13020.92, + "end": 13020.92, + "probability": 0.0894 + }, + { + "start": 13020.92, + "end": 13020.92, + "probability": 0.0328 + }, + { + "start": 13020.92, + "end": 13024.3, + "probability": 0.9547 + }, + { + "start": 13024.96, + "end": 13026.82, + "probability": 0.8145 + }, + { + "start": 13027.58, + "end": 13029.92, + "probability": 0.9594 + }, + { + "start": 13030.48, + "end": 13033.12, + "probability": 0.7021 + }, + { + "start": 13033.88, + "end": 13039.96, + "probability": 0.959 + }, + { + "start": 13040.34, + "end": 13042.62, + "probability": 0.6929 + }, + { + "start": 13042.98, + "end": 13049.28, + "probability": 0.5039 + }, + { + "start": 13049.5, + "end": 13052.16, + "probability": 0.0662 + }, + { + "start": 13053.84, + "end": 13056.18, + "probability": 0.1026 + }, + { + "start": 13056.8, + "end": 13057.66, + "probability": 0.0581 + }, + { + "start": 13057.66, + "end": 13058.4, + "probability": 0.1963 + }, + { + "start": 13059.46, + "end": 13061.36, + "probability": 0.0512 + }, + { + "start": 13061.36, + "end": 13061.36, + "probability": 0.0671 + }, + { + "start": 13061.36, + "end": 13061.36, + "probability": 0.0829 + }, + { + "start": 13061.36, + "end": 13061.36, + "probability": 0.1371 + }, + { + "start": 13061.36, + "end": 13062.57, + "probability": 0.3093 + }, + { + "start": 13063.08, + "end": 13066.14, + "probability": 0.8198 + }, + { + "start": 13067.46, + "end": 13070.56, + "probability": 0.5248 + }, + { + "start": 13070.74, + "end": 13073.13, + "probability": 0.7686 + }, + { + "start": 13073.74, + "end": 13074.86, + "probability": 0.43 + }, + { + "start": 13074.98, + "end": 13077.24, + "probability": 0.8831 + }, + { + "start": 13077.8, + "end": 13079.56, + "probability": 0.814 + }, + { + "start": 13079.96, + "end": 13081.04, + "probability": 0.9922 + }, + { + "start": 13081.72, + "end": 13086.82, + "probability": 0.9099 + }, + { + "start": 13087.0, + "end": 13089.88, + "probability": 0.8165 + }, + { + "start": 13090.22, + "end": 13091.72, + "probability": 0.8858 + }, + { + "start": 13092.18, + "end": 13093.98, + "probability": 0.9057 + }, + { + "start": 13093.98, + "end": 13096.12, + "probability": 0.9554 + }, + { + "start": 13096.32, + "end": 13096.74, + "probability": 0.1126 + }, + { + "start": 13096.82, + "end": 13096.86, + "probability": 0.4985 + }, + { + "start": 13096.86, + "end": 13098.82, + "probability": 0.3184 + }, + { + "start": 13099.6, + "end": 13104.32, + "probability": 0.5325 + }, + { + "start": 13104.64, + "end": 13105.62, + "probability": 0.5468 + }, + { + "start": 13105.94, + "end": 13108.02, + "probability": 0.742 + }, + { + "start": 13108.62, + "end": 13109.76, + "probability": 0.8895 + }, + { + "start": 13109.94, + "end": 13111.46, + "probability": 0.2353 + }, + { + "start": 13111.82, + "end": 13112.06, + "probability": 0.4946 + }, + { + "start": 13112.06, + "end": 13113.8, + "probability": 0.2597 + }, + { + "start": 13113.96, + "end": 13115.56, + "probability": 0.6116 + }, + { + "start": 13117.66, + "end": 13118.66, + "probability": 0.681 + }, + { + "start": 13118.86, + "end": 13121.06, + "probability": 0.6592 + }, + { + "start": 13122.08, + "end": 13124.62, + "probability": 0.7672 + }, + { + "start": 13125.28, + "end": 13126.98, + "probability": 0.8679 + }, + { + "start": 13127.6, + "end": 13128.82, + "probability": 0.5656 + }, + { + "start": 13130.02, + "end": 13132.54, + "probability": 0.8599 + }, + { + "start": 13132.94, + "end": 13134.7, + "probability": 0.7886 + }, + { + "start": 13135.2, + "end": 13138.84, + "probability": 0.8337 + }, + { + "start": 13138.92, + "end": 13140.06, + "probability": 0.9209 + }, + { + "start": 13140.62, + "end": 13141.74, + "probability": 0.8929 + }, + { + "start": 13143.26, + "end": 13144.62, + "probability": 0.9966 + }, + { + "start": 13145.34, + "end": 13147.86, + "probability": 0.9051 + }, + { + "start": 13148.62, + "end": 13149.92, + "probability": 0.8859 + }, + { + "start": 13150.12, + "end": 13151.22, + "probability": 0.9946 + }, + { + "start": 13151.54, + "end": 13153.42, + "probability": 0.9092 + }, + { + "start": 13154.26, + "end": 13155.5, + "probability": 0.5785 + }, + { + "start": 13156.32, + "end": 13157.74, + "probability": 0.7856 + }, + { + "start": 13158.24, + "end": 13162.48, + "probability": 0.7161 + }, + { + "start": 13163.2, + "end": 13164.98, + "probability": 0.929 + }, + { + "start": 13165.8, + "end": 13165.8, + "probability": 0.6543 + }, + { + "start": 13165.96, + "end": 13167.5, + "probability": 0.9401 + }, + { + "start": 13167.64, + "end": 13168.62, + "probability": 0.8053 + }, + { + "start": 13168.8, + "end": 13169.92, + "probability": 0.4778 + }, + { + "start": 13170.04, + "end": 13171.69, + "probability": 0.6288 + }, + { + "start": 13172.22, + "end": 13174.02, + "probability": 0.9961 + }, + { + "start": 13174.08, + "end": 13174.9, + "probability": 0.5906 + }, + { + "start": 13175.38, + "end": 13178.49, + "probability": 0.8266 + }, + { + "start": 13186.44, + "end": 13190.84, + "probability": 0.4932 + }, + { + "start": 13191.0, + "end": 13193.62, + "probability": 0.9491 + }, + { + "start": 13194.68, + "end": 13198.18, + "probability": 0.9803 + }, + { + "start": 13198.24, + "end": 13200.84, + "probability": 0.996 + }, + { + "start": 13201.38, + "end": 13202.64, + "probability": 0.9884 + }, + { + "start": 13203.44, + "end": 13204.58, + "probability": 0.9391 + }, + { + "start": 13204.62, + "end": 13209.46, + "probability": 0.9436 + }, + { + "start": 13209.52, + "end": 13210.32, + "probability": 0.9435 + }, + { + "start": 13210.5, + "end": 13210.96, + "probability": 0.9057 + }, + { + "start": 13212.2, + "end": 13212.98, + "probability": 0.8384 + }, + { + "start": 13213.06, + "end": 13214.5, + "probability": 0.9771 + }, + { + "start": 13214.52, + "end": 13215.02, + "probability": 0.375 + }, + { + "start": 13215.1, + "end": 13215.7, + "probability": 0.1856 + }, + { + "start": 13216.2, + "end": 13218.94, + "probability": 0.9799 + }, + { + "start": 13219.42, + "end": 13221.86, + "probability": 0.8389 + }, + { + "start": 13222.5, + "end": 13223.52, + "probability": 0.5832 + }, + { + "start": 13223.58, + "end": 13224.56, + "probability": 0.957 + }, + { + "start": 13224.7, + "end": 13228.06, + "probability": 0.9702 + }, + { + "start": 13230.36, + "end": 13235.28, + "probability": 0.9641 + }, + { + "start": 13235.76, + "end": 13237.46, + "probability": 0.9241 + }, + { + "start": 13237.6, + "end": 13238.82, + "probability": 0.8829 + }, + { + "start": 13239.22, + "end": 13241.6, + "probability": 0.9778 + }, + { + "start": 13241.78, + "end": 13243.62, + "probability": 0.5235 + }, + { + "start": 13243.66, + "end": 13247.06, + "probability": 0.9963 + }, + { + "start": 13247.46, + "end": 13247.64, + "probability": 0.8468 + }, + { + "start": 13247.78, + "end": 13248.38, + "probability": 0.8247 + }, + { + "start": 13248.52, + "end": 13249.76, + "probability": 0.9587 + }, + { + "start": 13249.96, + "end": 13250.26, + "probability": 0.8683 + }, + { + "start": 13250.34, + "end": 13250.58, + "probability": 0.8672 + }, + { + "start": 13250.64, + "end": 13255.82, + "probability": 0.9932 + }, + { + "start": 13256.16, + "end": 13257.98, + "probability": 0.8913 + }, + { + "start": 13258.18, + "end": 13258.78, + "probability": 0.6735 + }, + { + "start": 13258.78, + "end": 13259.5, + "probability": 0.1048 + }, + { + "start": 13259.64, + "end": 13260.28, + "probability": 0.8491 + }, + { + "start": 13260.34, + "end": 13260.83, + "probability": 0.8869 + }, + { + "start": 13261.5, + "end": 13265.97, + "probability": 0.8602 + }, + { + "start": 13266.46, + "end": 13267.4, + "probability": 0.248 + }, + { + "start": 13267.4, + "end": 13267.74, + "probability": 0.0052 + }, + { + "start": 13267.86, + "end": 13268.94, + "probability": 0.3673 + }, + { + "start": 13268.98, + "end": 13270.52, + "probability": 0.7523 + }, + { + "start": 13270.74, + "end": 13273.02, + "probability": 0.9786 + }, + { + "start": 13273.56, + "end": 13273.74, + "probability": 0.7384 + }, + { + "start": 13274.88, + "end": 13279.22, + "probability": 0.9849 + }, + { + "start": 13279.7, + "end": 13282.0, + "probability": 0.9722 + }, + { + "start": 13282.46, + "end": 13285.24, + "probability": 0.9384 + }, + { + "start": 13286.12, + "end": 13292.66, + "probability": 0.9743 + }, + { + "start": 13293.32, + "end": 13297.16, + "probability": 0.9934 + }, + { + "start": 13297.82, + "end": 13300.92, + "probability": 0.9625 + }, + { + "start": 13301.6, + "end": 13303.88, + "probability": 0.9846 + }, + { + "start": 13304.5, + "end": 13305.88, + "probability": 0.9135 + }, + { + "start": 13306.88, + "end": 13308.47, + "probability": 0.9491 + }, + { + "start": 13311.06, + "end": 13314.6, + "probability": 0.8743 + }, + { + "start": 13314.86, + "end": 13319.16, + "probability": 0.9421 + }, + { + "start": 13319.7, + "end": 13321.5, + "probability": 0.6813 + }, + { + "start": 13321.7, + "end": 13323.12, + "probability": 0.9917 + }, + { + "start": 13323.54, + "end": 13330.44, + "probability": 0.9912 + }, + { + "start": 13330.92, + "end": 13334.86, + "probability": 0.9081 + }, + { + "start": 13335.12, + "end": 13337.7, + "probability": 0.8742 + }, + { + "start": 13337.9, + "end": 13340.12, + "probability": 0.99 + }, + { + "start": 13340.16, + "end": 13341.18, + "probability": 0.7294 + }, + { + "start": 13341.24, + "end": 13341.52, + "probability": 0.7126 + }, + { + "start": 13341.62, + "end": 13342.82, + "probability": 0.8375 + }, + { + "start": 13343.04, + "end": 13345.19, + "probability": 0.9604 + }, + { + "start": 13345.98, + "end": 13351.14, + "probability": 0.9961 + }, + { + "start": 13351.26, + "end": 13352.86, + "probability": 0.7696 + }, + { + "start": 13353.02, + "end": 13355.34, + "probability": 0.9849 + }, + { + "start": 13355.92, + "end": 13360.94, + "probability": 0.9957 + }, + { + "start": 13361.32, + "end": 13365.16, + "probability": 0.9979 + }, + { + "start": 13365.58, + "end": 13366.86, + "probability": 0.9961 + }, + { + "start": 13366.92, + "end": 13368.16, + "probability": 0.7809 + }, + { + "start": 13368.62, + "end": 13370.52, + "probability": 0.7515 + }, + { + "start": 13370.78, + "end": 13372.52, + "probability": 0.993 + }, + { + "start": 13372.6, + "end": 13376.3, + "probability": 0.9903 + }, + { + "start": 13376.74, + "end": 13376.74, + "probability": 0.2546 + }, + { + "start": 13377.38, + "end": 13380.9, + "probability": 0.9678 + }, + { + "start": 13380.9, + "end": 13380.9, + "probability": 0.4398 + }, + { + "start": 13380.9, + "end": 13381.62, + "probability": 0.5223 + }, + { + "start": 13381.72, + "end": 13382.82, + "probability": 0.8763 + }, + { + "start": 13383.12, + "end": 13384.44, + "probability": 0.7841 + }, + { + "start": 13384.64, + "end": 13385.78, + "probability": 0.8847 + }, + { + "start": 13385.92, + "end": 13386.38, + "probability": 0.7306 + }, + { + "start": 13386.38, + "end": 13387.14, + "probability": 0.539 + }, + { + "start": 13387.74, + "end": 13390.68, + "probability": 0.9623 + }, + { + "start": 13390.96, + "end": 13391.54, + "probability": 0.9438 + }, + { + "start": 13391.8, + "end": 13396.64, + "probability": 0.9447 + }, + { + "start": 13397.22, + "end": 13398.96, + "probability": 0.9735 + }, + { + "start": 13399.08, + "end": 13401.78, + "probability": 0.8702 + }, + { + "start": 13401.78, + "end": 13408.14, + "probability": 0.9339 + }, + { + "start": 13408.26, + "end": 13408.3, + "probability": 0.6172 + }, + { + "start": 13408.46, + "end": 13410.24, + "probability": 0.2635 + }, + { + "start": 13410.24, + "end": 13411.34, + "probability": 0.6259 + }, + { + "start": 13414.4, + "end": 13415.35, + "probability": 0.0337 + }, + { + "start": 13415.58, + "end": 13416.02, + "probability": 0.0894 + }, + { + "start": 13416.32, + "end": 13419.02, + "probability": 0.0053 + }, + { + "start": 13419.86, + "end": 13420.7, + "probability": 0.7266 + }, + { + "start": 13421.4, + "end": 13422.54, + "probability": 0.8327 + }, + { + "start": 13433.13, + "end": 13435.56, + "probability": 0.6874 + }, + { + "start": 13436.97, + "end": 13440.6, + "probability": 0.9869 + }, + { + "start": 13441.14, + "end": 13442.1, + "probability": 0.7646 + }, + { + "start": 13442.74, + "end": 13446.5, + "probability": 0.9873 + }, + { + "start": 13447.56, + "end": 13450.8, + "probability": 0.9899 + }, + { + "start": 13451.88, + "end": 13454.46, + "probability": 0.984 + }, + { + "start": 13455.74, + "end": 13458.76, + "probability": 0.9907 + }, + { + "start": 13460.1, + "end": 13464.18, + "probability": 0.8757 + }, + { + "start": 13464.32, + "end": 13465.7, + "probability": 0.988 + }, + { + "start": 13467.24, + "end": 13469.12, + "probability": 0.9086 + }, + { + "start": 13470.22, + "end": 13471.84, + "probability": 0.9779 + }, + { + "start": 13472.62, + "end": 13474.28, + "probability": 0.6941 + }, + { + "start": 13474.38, + "end": 13476.9, + "probability": 0.9958 + }, + { + "start": 13477.28, + "end": 13479.42, + "probability": 0.857 + }, + { + "start": 13480.74, + "end": 13484.08, + "probability": 0.9741 + }, + { + "start": 13485.22, + "end": 13485.82, + "probability": 0.9753 + }, + { + "start": 13485.88, + "end": 13487.32, + "probability": 0.9459 + }, + { + "start": 13487.46, + "end": 13489.08, + "probability": 0.9683 + }, + { + "start": 13489.74, + "end": 13493.56, + "probability": 0.9958 + }, + { + "start": 13493.68, + "end": 13494.81, + "probability": 0.8914 + }, + { + "start": 13495.7, + "end": 13497.0, + "probability": 0.5041 + }, + { + "start": 13497.44, + "end": 13499.0, + "probability": 0.8528 + }, + { + "start": 13499.68, + "end": 13501.6, + "probability": 0.9372 + }, + { + "start": 13502.24, + "end": 13504.02, + "probability": 0.9729 + }, + { + "start": 13504.66, + "end": 13507.5, + "probability": 0.9644 + }, + { + "start": 13507.76, + "end": 13508.86, + "probability": 0.8584 + }, + { + "start": 13509.64, + "end": 13513.96, + "probability": 0.9981 + }, + { + "start": 13515.02, + "end": 13517.24, + "probability": 0.9962 + }, + { + "start": 13517.34, + "end": 13517.9, + "probability": 0.7801 + }, + { + "start": 13518.98, + "end": 13521.44, + "probability": 0.968 + }, + { + "start": 13521.52, + "end": 13523.94, + "probability": 0.9749 + }, + { + "start": 13524.06, + "end": 13526.6, + "probability": 0.9902 + }, + { + "start": 13526.88, + "end": 13531.5, + "probability": 0.9884 + }, + { + "start": 13531.58, + "end": 13535.3, + "probability": 0.9725 + }, + { + "start": 13536.6, + "end": 13538.48, + "probability": 0.9873 + }, + { + "start": 13539.28, + "end": 13542.02, + "probability": 0.9909 + }, + { + "start": 13542.54, + "end": 13543.56, + "probability": 0.8572 + }, + { + "start": 13543.8, + "end": 13544.72, + "probability": 0.9498 + }, + { + "start": 13544.86, + "end": 13547.18, + "probability": 0.9502 + }, + { + "start": 13548.14, + "end": 13549.13, + "probability": 0.8872 + }, + { + "start": 13550.36, + "end": 13552.46, + "probability": 0.992 + }, + { + "start": 13552.98, + "end": 13554.64, + "probability": 0.9893 + }, + { + "start": 13555.3, + "end": 13557.32, + "probability": 0.9998 + }, + { + "start": 13557.86, + "end": 13560.06, + "probability": 0.9971 + }, + { + "start": 13560.44, + "end": 13561.66, + "probability": 0.9675 + }, + { + "start": 13561.78, + "end": 13564.14, + "probability": 0.9058 + }, + { + "start": 13564.18, + "end": 13565.5, + "probability": 0.9675 + }, + { + "start": 13566.16, + "end": 13567.42, + "probability": 0.8068 + }, + { + "start": 13568.94, + "end": 13570.88, + "probability": 0.9956 + }, + { + "start": 13570.96, + "end": 13572.06, + "probability": 0.9283 + }, + { + "start": 13572.26, + "end": 13572.68, + "probability": 0.5391 + }, + { + "start": 13573.32, + "end": 13576.24, + "probability": 0.9951 + }, + { + "start": 13576.36, + "end": 13577.3, + "probability": 0.9977 + }, + { + "start": 13578.0, + "end": 13578.76, + "probability": 0.9856 + }, + { + "start": 13578.96, + "end": 13579.76, + "probability": 0.7457 + }, + { + "start": 13579.88, + "end": 13583.64, + "probability": 0.9695 + }, + { + "start": 13583.72, + "end": 13584.78, + "probability": 0.4932 + }, + { + "start": 13585.36, + "end": 13587.53, + "probability": 0.787 + }, + { + "start": 13588.68, + "end": 13589.76, + "probability": 0.4929 + }, + { + "start": 13590.24, + "end": 13591.32, + "probability": 0.9098 + }, + { + "start": 13592.0, + "end": 13594.96, + "probability": 0.9679 + }, + { + "start": 13595.1, + "end": 13597.62, + "probability": 0.9857 + }, + { + "start": 13597.76, + "end": 13598.78, + "probability": 0.8283 + }, + { + "start": 13599.24, + "end": 13600.25, + "probability": 0.9963 + }, + { + "start": 13600.54, + "end": 13601.32, + "probability": 0.9263 + }, + { + "start": 13601.8, + "end": 13603.98, + "probability": 0.9932 + }, + { + "start": 13604.04, + "end": 13604.91, + "probability": 0.2501 + }, + { + "start": 13605.26, + "end": 13607.88, + "probability": 0.9525 + }, + { + "start": 13607.98, + "end": 13609.66, + "probability": 0.7656 + }, + { + "start": 13609.84, + "end": 13611.08, + "probability": 0.937 + }, + { + "start": 13611.44, + "end": 13615.5, + "probability": 0.7741 + }, + { + "start": 13615.68, + "end": 13616.24, + "probability": 0.7555 + }, + { + "start": 13616.74, + "end": 13618.13, + "probability": 0.5457 + }, + { + "start": 13618.7, + "end": 13620.78, + "probability": 0.3395 + }, + { + "start": 13621.24, + "end": 13622.86, + "probability": 0.971 + }, + { + "start": 13622.96, + "end": 13625.16, + "probability": 0.9829 + }, + { + "start": 13625.16, + "end": 13630.61, + "probability": 0.9729 + }, + { + "start": 13631.24, + "end": 13634.68, + "probability": 0.9962 + }, + { + "start": 13635.28, + "end": 13638.38, + "probability": 0.9827 + }, + { + "start": 13638.94, + "end": 13642.26, + "probability": 0.9682 + }, + { + "start": 13642.48, + "end": 13642.98, + "probability": 0.4977 + }, + { + "start": 13642.98, + "end": 13644.3, + "probability": 0.8982 + }, + { + "start": 13644.3, + "end": 13645.94, + "probability": 0.4912 + }, + { + "start": 13645.98, + "end": 13653.74, + "probability": 0.8264 + }, + { + "start": 13653.84, + "end": 13655.04, + "probability": 0.5564 + }, + { + "start": 13655.18, + "end": 13658.54, + "probability": 0.9333 + }, + { + "start": 13658.64, + "end": 13659.92, + "probability": 0.8712 + }, + { + "start": 13659.92, + "end": 13660.3, + "probability": 0.7085 + }, + { + "start": 13660.84, + "end": 13661.98, + "probability": 0.7559 + }, + { + "start": 13661.98, + "end": 13663.48, + "probability": 0.9949 + }, + { + "start": 13663.58, + "end": 13664.4, + "probability": 0.2985 + }, + { + "start": 13664.4, + "end": 13664.56, + "probability": 0.6418 + }, + { + "start": 13665.24, + "end": 13667.42, + "probability": 0.8628 + }, + { + "start": 13668.2, + "end": 13668.84, + "probability": 0.805 + }, + { + "start": 13668.86, + "end": 13668.86, + "probability": 0.735 + }, + { + "start": 13668.88, + "end": 13670.62, + "probability": 0.9961 + }, + { + "start": 13671.02, + "end": 13678.58, + "probability": 0.9642 + }, + { + "start": 13678.96, + "end": 13679.78, + "probability": 0.9263 + }, + { + "start": 13679.8, + "end": 13680.46, + "probability": 0.9295 + }, + { + "start": 13680.62, + "end": 13681.62, + "probability": 0.9484 + }, + { + "start": 13681.92, + "end": 13681.92, + "probability": 0.3541 + }, + { + "start": 13681.92, + "end": 13685.92, + "probability": 0.9565 + }, + { + "start": 13685.94, + "end": 13686.4, + "probability": 0.9072 + }, + { + "start": 13686.68, + "end": 13688.74, + "probability": 0.171 + }, + { + "start": 13689.92, + "end": 13692.6, + "probability": 0.3095 + }, + { + "start": 13692.88, + "end": 13695.06, + "probability": 0.1237 + }, + { + "start": 13695.34, + "end": 13697.93, + "probability": 0.341 + }, + { + "start": 13698.32, + "end": 13700.76, + "probability": 0.0387 + }, + { + "start": 13714.82, + "end": 13716.22, + "probability": 0.0718 + }, + { + "start": 13717.53, + "end": 13719.18, + "probability": 0.9058 + }, + { + "start": 13722.72, + "end": 13725.82, + "probability": 0.798 + }, + { + "start": 13741.7, + "end": 13744.7, + "probability": 0.6946 + }, + { + "start": 13746.08, + "end": 13747.8, + "probability": 0.9032 + }, + { + "start": 13748.82, + "end": 13751.46, + "probability": 0.7984 + }, + { + "start": 13752.63, + "end": 13762.46, + "probability": 0.9947 + }, + { + "start": 13763.5, + "end": 13766.32, + "probability": 0.9987 + }, + { + "start": 13768.97, + "end": 13770.68, + "probability": 0.999 + }, + { + "start": 13771.42, + "end": 13773.7, + "probability": 0.9455 + }, + { + "start": 13774.38, + "end": 13781.0, + "probability": 0.9988 + }, + { + "start": 13782.26, + "end": 13789.64, + "probability": 0.8827 + }, + { + "start": 13789.64, + "end": 13795.72, + "probability": 0.946 + }, + { + "start": 13795.94, + "end": 13796.92, + "probability": 0.499 + }, + { + "start": 13798.38, + "end": 13805.26, + "probability": 0.99 + }, + { + "start": 13807.12, + "end": 13808.38, + "probability": 0.8918 + }, + { + "start": 13809.16, + "end": 13814.56, + "probability": 0.9371 + }, + { + "start": 13815.56, + "end": 13817.58, + "probability": 0.7271 + }, + { + "start": 13819.2, + "end": 13825.94, + "probability": 0.9108 + }, + { + "start": 13827.5, + "end": 13830.92, + "probability": 0.9893 + }, + { + "start": 13832.68, + "end": 13835.38, + "probability": 0.9886 + }, + { + "start": 13836.0, + "end": 13839.26, + "probability": 0.9923 + }, + { + "start": 13840.42, + "end": 13843.4, + "probability": 0.8523 + }, + { + "start": 13844.3, + "end": 13848.84, + "probability": 0.7929 + }, + { + "start": 13849.58, + "end": 13850.74, + "probability": 0.87 + }, + { + "start": 13852.76, + "end": 13858.96, + "probability": 0.9919 + }, + { + "start": 13859.68, + "end": 13860.76, + "probability": 0.9582 + }, + { + "start": 13861.34, + "end": 13863.16, + "probability": 0.999 + }, + { + "start": 13863.88, + "end": 13865.66, + "probability": 0.9949 + }, + { + "start": 13866.86, + "end": 13872.7, + "probability": 0.8205 + }, + { + "start": 13873.02, + "end": 13873.92, + "probability": 0.835 + }, + { + "start": 13877.86, + "end": 13880.06, + "probability": 0.9938 + }, + { + "start": 13880.88, + "end": 13882.0, + "probability": 0.6268 + }, + { + "start": 13883.54, + "end": 13884.8, + "probability": 0.939 + }, + { + "start": 13885.34, + "end": 13893.92, + "probability": 0.9746 + }, + { + "start": 13894.62, + "end": 13899.44, + "probability": 0.5918 + }, + { + "start": 13900.38, + "end": 13904.88, + "probability": 0.9269 + }, + { + "start": 13905.68, + "end": 13907.4, + "probability": 0.7634 + }, + { + "start": 13908.14, + "end": 13912.84, + "probability": 0.9043 + }, + { + "start": 13913.78, + "end": 13916.04, + "probability": 0.9656 + }, + { + "start": 13917.38, + "end": 13920.92, + "probability": 0.9282 + }, + { + "start": 13922.8, + "end": 13925.2, + "probability": 0.8581 + }, + { + "start": 13926.86, + "end": 13929.56, + "probability": 0.0595 + }, + { + "start": 13929.56, + "end": 13936.3, + "probability": 0.8084 + }, + { + "start": 13937.02, + "end": 13943.52, + "probability": 0.9711 + }, + { + "start": 13948.22, + "end": 13950.86, + "probability": 0.7377 + }, + { + "start": 13951.24, + "end": 13954.8, + "probability": 0.8723 + }, + { + "start": 13955.32, + "end": 13956.56, + "probability": 0.6913 + }, + { + "start": 13957.08, + "end": 13958.16, + "probability": 0.6672 + }, + { + "start": 13958.24, + "end": 13959.53, + "probability": 0.9977 + }, + { + "start": 13960.4, + "end": 13962.54, + "probability": 0.9924 + }, + { + "start": 13963.24, + "end": 13971.42, + "probability": 0.9931 + }, + { + "start": 13972.84, + "end": 13978.16, + "probability": 0.9602 + }, + { + "start": 13978.78, + "end": 13981.78, + "probability": 0.9336 + }, + { + "start": 13982.82, + "end": 13984.0, + "probability": 0.7685 + }, + { + "start": 13984.64, + "end": 13990.76, + "probability": 0.9883 + }, + { + "start": 13990.76, + "end": 13996.68, + "probability": 0.983 + }, + { + "start": 13996.68, + "end": 14001.3, + "probability": 0.9609 + }, + { + "start": 14001.36, + "end": 14002.06, + "probability": 0.5171 + }, + { + "start": 14002.7, + "end": 14004.34, + "probability": 0.9442 + }, + { + "start": 14005.32, + "end": 14006.98, + "probability": 0.9575 + }, + { + "start": 14007.94, + "end": 14018.94, + "probability": 0.9663 + }, + { + "start": 14019.4, + "end": 14022.12, + "probability": 0.6532 + }, + { + "start": 14022.2, + "end": 14023.36, + "probability": 0.586 + }, + { + "start": 14024.2, + "end": 14025.62, + "probability": 0.7464 + }, + { + "start": 14025.84, + "end": 14026.9, + "probability": 0.6162 + }, + { + "start": 14027.9, + "end": 14029.96, + "probability": 0.5735 + }, + { + "start": 14030.08, + "end": 14030.58, + "probability": 0.3001 + }, + { + "start": 14030.68, + "end": 14031.94, + "probability": 0.9489 + }, + { + "start": 14033.06, + "end": 14043.1, + "probability": 0.9894 + }, + { + "start": 14043.52, + "end": 14045.24, + "probability": 0.7101 + }, + { + "start": 14045.82, + "end": 14049.44, + "probability": 0.9956 + }, + { + "start": 14049.44, + "end": 14052.84, + "probability": 0.9918 + }, + { + "start": 14053.08, + "end": 14058.64, + "probability": 0.818 + }, + { + "start": 14059.76, + "end": 14062.2, + "probability": 0.9834 + }, + { + "start": 14062.3, + "end": 14067.52, + "probability": 0.8724 + }, + { + "start": 14067.52, + "end": 14072.3, + "probability": 0.9927 + }, + { + "start": 14073.18, + "end": 14075.96, + "probability": 0.9875 + }, + { + "start": 14076.3, + "end": 14077.95, + "probability": 0.9951 + }, + { + "start": 14078.76, + "end": 14080.0, + "probability": 0.7316 + }, + { + "start": 14080.08, + "end": 14082.1, + "probability": 0.9652 + }, + { + "start": 14082.56, + "end": 14087.94, + "probability": 0.9816 + }, + { + "start": 14088.04, + "end": 14088.82, + "probability": 0.8033 + }, + { + "start": 14089.74, + "end": 14094.88, + "probability": 0.9716 + }, + { + "start": 14094.88, + "end": 14099.92, + "probability": 0.9707 + }, + { + "start": 14100.32, + "end": 14101.9, + "probability": 0.9764 + }, + { + "start": 14102.78, + "end": 14104.92, + "probability": 0.8652 + }, + { + "start": 14105.22, + "end": 14109.1, + "probability": 0.9653 + }, + { + "start": 14110.76, + "end": 14118.3, + "probability": 0.7359 + }, + { + "start": 14118.74, + "end": 14126.38, + "probability": 0.9726 + }, + { + "start": 14126.76, + "end": 14129.34, + "probability": 0.662 + }, + { + "start": 14129.6, + "end": 14135.16, + "probability": 0.975 + }, + { + "start": 14135.74, + "end": 14137.66, + "probability": 0.981 + }, + { + "start": 14138.1, + "end": 14138.8, + "probability": 0.9218 + }, + { + "start": 14139.82, + "end": 14145.53, + "probability": 0.9267 + }, + { + "start": 14146.82, + "end": 14149.76, + "probability": 0.9471 + }, + { + "start": 14150.24, + "end": 14154.16, + "probability": 0.9941 + }, + { + "start": 14154.5, + "end": 14157.08, + "probability": 0.9563 + }, + { + "start": 14157.62, + "end": 14159.54, + "probability": 0.9614 + }, + { + "start": 14159.94, + "end": 14162.04, + "probability": 0.8743 + }, + { + "start": 14162.62, + "end": 14169.42, + "probability": 0.99 + }, + { + "start": 14170.04, + "end": 14178.36, + "probability": 0.9202 + }, + { + "start": 14178.88, + "end": 14185.94, + "probability": 0.9793 + }, + { + "start": 14186.26, + "end": 14189.14, + "probability": 0.8306 + }, + { + "start": 14189.22, + "end": 14194.2, + "probability": 0.8137 + }, + { + "start": 14194.72, + "end": 14197.1, + "probability": 0.5467 + }, + { + "start": 14197.42, + "end": 14199.0, + "probability": 0.1355 + }, + { + "start": 14199.7, + "end": 14201.46, + "probability": 0.0328 + }, + { + "start": 14202.5, + "end": 14203.78, + "probability": 0.016 + }, + { + "start": 14204.02, + "end": 14205.74, + "probability": 0.0775 + }, + { + "start": 14205.74, + "end": 14206.18, + "probability": 0.0744 + }, + { + "start": 14206.18, + "end": 14206.18, + "probability": 0.0281 + }, + { + "start": 14206.18, + "end": 14206.2, + "probability": 0.0635 + }, + { + "start": 14206.2, + "end": 14206.44, + "probability": 0.1252 + }, + { + "start": 14206.78, + "end": 14210.79, + "probability": 0.7976 + }, + { + "start": 14212.0, + "end": 14213.86, + "probability": 0.6826 + }, + { + "start": 14214.22, + "end": 14222.9, + "probability": 0.7713 + }, + { + "start": 14223.56, + "end": 14224.48, + "probability": 0.8878 + }, + { + "start": 14225.12, + "end": 14227.24, + "probability": 0.9922 + }, + { + "start": 14227.92, + "end": 14231.82, + "probability": 0.9455 + }, + { + "start": 14232.28, + "end": 14234.4, + "probability": 0.9889 + }, + { + "start": 14234.42, + "end": 14236.32, + "probability": 0.9971 + }, + { + "start": 14236.84, + "end": 14237.28, + "probability": 0.8518 + }, + { + "start": 14237.38, + "end": 14238.8, + "probability": 0.9831 + }, + { + "start": 14238.96, + "end": 14240.32, + "probability": 0.9836 + }, + { + "start": 14241.32, + "end": 14244.93, + "probability": 0.9727 + }, + { + "start": 14245.48, + "end": 14247.06, + "probability": 0.998 + }, + { + "start": 14248.06, + "end": 14248.18, + "probability": 0.5003 + }, + { + "start": 14248.28, + "end": 14252.98, + "probability": 0.9186 + }, + { + "start": 14253.54, + "end": 14254.44, + "probability": 0.9983 + }, + { + "start": 14255.54, + "end": 14261.84, + "probability": 0.9575 + }, + { + "start": 14262.94, + "end": 14268.56, + "probability": 0.9321 + }, + { + "start": 14269.28, + "end": 14271.18, + "probability": 0.9053 + }, + { + "start": 14271.5, + "end": 14278.06, + "probability": 0.9979 + }, + { + "start": 14278.62, + "end": 14286.04, + "probability": 0.6691 + }, + { + "start": 14287.19, + "end": 14290.78, + "probability": 0.7686 + }, + { + "start": 14291.18, + "end": 14295.08, + "probability": 0.9941 + }, + { + "start": 14296.08, + "end": 14301.68, + "probability": 0.9754 + }, + { + "start": 14302.18, + "end": 14303.18, + "probability": 0.7027 + }, + { + "start": 14303.3, + "end": 14304.02, + "probability": 0.7483 + }, + { + "start": 14305.4, + "end": 14311.9, + "probability": 0.9951 + }, + { + "start": 14312.38, + "end": 14314.58, + "probability": 0.8956 + }, + { + "start": 14315.16, + "end": 14318.56, + "probability": 0.9189 + }, + { + "start": 14318.56, + "end": 14321.22, + "probability": 0.9882 + }, + { + "start": 14321.6, + "end": 14324.42, + "probability": 0.9926 + }, + { + "start": 14325.14, + "end": 14329.92, + "probability": 0.9951 + }, + { + "start": 14329.92, + "end": 14336.98, + "probability": 0.9952 + }, + { + "start": 14337.72, + "end": 14341.04, + "probability": 0.8583 + }, + { + "start": 14341.54, + "end": 14342.72, + "probability": 0.7723 + }, + { + "start": 14342.76, + "end": 14347.54, + "probability": 0.9919 + }, + { + "start": 14347.74, + "end": 14348.66, + "probability": 0.6813 + }, + { + "start": 14349.46, + "end": 14352.46, + "probability": 0.7399 + }, + { + "start": 14352.72, + "end": 14353.56, + "probability": 0.6811 + }, + { + "start": 14353.66, + "end": 14354.24, + "probability": 0.6995 + }, + { + "start": 14354.64, + "end": 14355.34, + "probability": 0.0107 + }, + { + "start": 14355.44, + "end": 14356.8, + "probability": 0.0122 + }, + { + "start": 14356.8, + "end": 14357.36, + "probability": 0.2935 + }, + { + "start": 14359.79, + "end": 14363.88, + "probability": 0.7405 + }, + { + "start": 14364.42, + "end": 14368.58, + "probability": 0.9789 + }, + { + "start": 14368.58, + "end": 14375.28, + "probability": 0.9944 + }, + { + "start": 14375.82, + "end": 14380.66, + "probability": 0.9433 + }, + { + "start": 14380.66, + "end": 14385.44, + "probability": 0.9991 + }, + { + "start": 14385.98, + "end": 14389.1, + "probability": 0.9539 + }, + { + "start": 14389.9, + "end": 14391.84, + "probability": 0.9238 + }, + { + "start": 14392.46, + "end": 14395.62, + "probability": 0.9974 + }, + { + "start": 14395.62, + "end": 14400.62, + "probability": 0.9661 + }, + { + "start": 14401.16, + "end": 14403.72, + "probability": 0.9729 + }, + { + "start": 14403.82, + "end": 14405.58, + "probability": 0.7595 + }, + { + "start": 14405.72, + "end": 14409.96, + "probability": 0.6786 + }, + { + "start": 14410.6, + "end": 14415.24, + "probability": 0.9445 + }, + { + "start": 14416.42, + "end": 14420.7, + "probability": 0.9755 + }, + { + "start": 14422.0, + "end": 14424.14, + "probability": 0.2367 + }, + { + "start": 14424.16, + "end": 14425.08, + "probability": 0.5731 + }, + { + "start": 14425.16, + "end": 14427.0, + "probability": 0.7866 + }, + { + "start": 14427.48, + "end": 14430.21, + "probability": 0.8639 + }, + { + "start": 14430.54, + "end": 14432.9, + "probability": 0.9647 + }, + { + "start": 14437.98, + "end": 14441.16, + "probability": 0.7686 + }, + { + "start": 14441.54, + "end": 14444.5, + "probability": 0.98 + }, + { + "start": 14446.4, + "end": 14448.6, + "probability": 0.105 + }, + { + "start": 14452.72, + "end": 14455.04, + "probability": 0.08 + }, + { + "start": 14455.04, + "end": 14456.16, + "probability": 0.0714 + }, + { + "start": 14456.16, + "end": 14456.48, + "probability": 0.1316 + }, + { + "start": 14457.62, + "end": 14458.88, + "probability": 0.2834 + }, + { + "start": 14459.36, + "end": 14462.13, + "probability": 0.725 + }, + { + "start": 14462.2, + "end": 14462.2, + "probability": 0.15 + }, + { + "start": 14462.2, + "end": 14462.2, + "probability": 0.034 + }, + { + "start": 14462.2, + "end": 14462.2, + "probability": 0.0296 + }, + { + "start": 14462.2, + "end": 14462.2, + "probability": 0.0776 + }, + { + "start": 14462.2, + "end": 14464.62, + "probability": 0.2776 + }, + { + "start": 14464.84, + "end": 14466.48, + "probability": 0.4364 + }, + { + "start": 14466.64, + "end": 14467.78, + "probability": 0.6176 + }, + { + "start": 14467.96, + "end": 14469.04, + "probability": 0.4298 + }, + { + "start": 14469.44, + "end": 14473.26, + "probability": 0.8235 + }, + { + "start": 14475.02, + "end": 14479.52, + "probability": 0.7103 + }, + { + "start": 14480.34, + "end": 14487.68, + "probability": 0.8882 + }, + { + "start": 14488.14, + "end": 14490.4, + "probability": 0.965 + }, + { + "start": 14490.5, + "end": 14492.04, + "probability": 0.9153 + }, + { + "start": 14492.06, + "end": 14500.08, + "probability": 0.9565 + }, + { + "start": 14500.82, + "end": 14508.18, + "probability": 0.9959 + }, + { + "start": 14508.94, + "end": 14508.94, + "probability": 0.0077 + }, + { + "start": 14508.94, + "end": 14513.3, + "probability": 0.9891 + }, + { + "start": 14513.86, + "end": 14515.88, + "probability": 0.9827 + }, + { + "start": 14515.94, + "end": 14522.02, + "probability": 0.9661 + }, + { + "start": 14523.42, + "end": 14525.12, + "probability": 0.5587 + }, + { + "start": 14525.6, + "end": 14527.64, + "probability": 0.6868 + }, + { + "start": 14528.22, + "end": 14532.92, + "probability": 0.9193 + }, + { + "start": 14533.36, + "end": 14534.34, + "probability": 0.8975 + }, + { + "start": 14534.42, + "end": 14536.29, + "probability": 0.9927 + }, + { + "start": 14548.48, + "end": 14549.34, + "probability": 0.9888 + }, + { + "start": 14550.06, + "end": 14550.06, + "probability": 0.0254 + }, + { + "start": 14550.06, + "end": 14550.06, + "probability": 0.298 + }, + { + "start": 14550.06, + "end": 14550.06, + "probability": 0.2906 + }, + { + "start": 14550.06, + "end": 14550.06, + "probability": 0.1023 + }, + { + "start": 14550.06, + "end": 14550.06, + "probability": 0.0415 + }, + { + "start": 14550.06, + "end": 14550.06, + "probability": 0.1575 + }, + { + "start": 14550.06, + "end": 14552.82, + "probability": 0.2736 + }, + { + "start": 14552.86, + "end": 14554.84, + "probability": 0.7771 + }, + { + "start": 14555.04, + "end": 14561.28, + "probability": 0.9795 + }, + { + "start": 14562.16, + "end": 14563.66, + "probability": 0.9339 + }, + { + "start": 14564.32, + "end": 14567.02, + "probability": 0.9948 + }, + { + "start": 14567.06, + "end": 14569.18, + "probability": 0.9893 + }, + { + "start": 14569.6, + "end": 14577.8, + "probability": 0.9423 + }, + { + "start": 14578.64, + "end": 14587.44, + "probability": 0.9359 + }, + { + "start": 14588.1, + "end": 14591.36, + "probability": 0.7703 + }, + { + "start": 14593.34, + "end": 14594.92, + "probability": 0.3128 + }, + { + "start": 14595.02, + "end": 14599.14, + "probability": 0.9879 + }, + { + "start": 14599.6, + "end": 14602.3, + "probability": 0.9388 + }, + { + "start": 14602.5, + "end": 14610.56, + "probability": 0.9974 + }, + { + "start": 14612.18, + "end": 14612.3, + "probability": 0.3277 + }, + { + "start": 14612.3, + "end": 14614.26, + "probability": 0.5675 + }, + { + "start": 14617.54, + "end": 14622.62, + "probability": 0.9172 + }, + { + "start": 14624.6, + "end": 14628.06, + "probability": 0.6569 + }, + { + "start": 14629.66, + "end": 14629.96, + "probability": 0.1496 + }, + { + "start": 14629.96, + "end": 14629.96, + "probability": 0.2941 + }, + { + "start": 14629.96, + "end": 14631.78, + "probability": 0.0921 + }, + { + "start": 14634.14, + "end": 14637.76, + "probability": 0.9759 + }, + { + "start": 14637.84, + "end": 14639.96, + "probability": 0.9979 + }, + { + "start": 14640.12, + "end": 14641.98, + "probability": 0.8815 + }, + { + "start": 14642.14, + "end": 14643.22, + "probability": 0.9954 + }, + { + "start": 14643.34, + "end": 14644.34, + "probability": 0.9833 + }, + { + "start": 14644.5, + "end": 14646.12, + "probability": 0.7642 + }, + { + "start": 14646.22, + "end": 14647.58, + "probability": 0.8652 + }, + { + "start": 14648.7, + "end": 14653.72, + "probability": 0.9953 + }, + { + "start": 14654.56, + "end": 14657.16, + "probability": 0.7549 + }, + { + "start": 14658.02, + "end": 14664.0, + "probability": 0.9479 + }, + { + "start": 14664.54, + "end": 14670.33, + "probability": 0.9937 + }, + { + "start": 14673.1, + "end": 14676.22, + "probability": 0.838 + }, + { + "start": 14676.48, + "end": 14678.14, + "probability": 0.9858 + }, + { + "start": 14678.44, + "end": 14679.54, + "probability": 0.8671 + }, + { + "start": 14679.74, + "end": 14687.5, + "probability": 0.9946 + }, + { + "start": 14687.78, + "end": 14690.2, + "probability": 0.8524 + }, + { + "start": 14691.66, + "end": 14698.86, + "probability": 0.9845 + }, + { + "start": 14699.1, + "end": 14702.02, + "probability": 0.8821 + }, + { + "start": 14702.2, + "end": 14703.1, + "probability": 0.8252 + }, + { + "start": 14703.22, + "end": 14704.58, + "probability": 0.7612 + }, + { + "start": 14704.72, + "end": 14707.78, + "probability": 0.9976 + }, + { + "start": 14708.34, + "end": 14710.22, + "probability": 0.9971 + }, + { + "start": 14710.24, + "end": 14714.32, + "probability": 0.9708 + }, + { + "start": 14714.52, + "end": 14715.49, + "probability": 0.7729 + }, + { + "start": 14716.2, + "end": 14719.38, + "probability": 0.9937 + }, + { + "start": 14719.38, + "end": 14724.88, + "probability": 0.9988 + }, + { + "start": 14725.08, + "end": 14728.71, + "probability": 0.9109 + }, + { + "start": 14728.92, + "end": 14730.14, + "probability": 0.4571 + }, + { + "start": 14731.44, + "end": 14733.88, + "probability": 0.054 + }, + { + "start": 14733.88, + "end": 14733.9, + "probability": 0.0026 + }, + { + "start": 14733.9, + "end": 14734.12, + "probability": 0.5486 + }, + { + "start": 14734.3, + "end": 14739.04, + "probability": 0.7271 + }, + { + "start": 14739.34, + "end": 14743.06, + "probability": 0.5868 + }, + { + "start": 14743.06, + "end": 14743.56, + "probability": 0.1849 + }, + { + "start": 14743.56, + "end": 14743.94, + "probability": 0.3389 + }, + { + "start": 14745.4, + "end": 14750.56, + "probability": 0.062 + }, + { + "start": 14750.74, + "end": 14751.28, + "probability": 0.1833 + }, + { + "start": 14751.28, + "end": 14751.28, + "probability": 0.0428 + }, + { + "start": 14751.28, + "end": 14752.06, + "probability": 0.4102 + }, + { + "start": 14752.32, + "end": 14752.44, + "probability": 0.2582 + }, + { + "start": 14753.0, + "end": 14757.98, + "probability": 0.8887 + }, + { + "start": 14758.2, + "end": 14758.56, + "probability": 0.4435 + }, + { + "start": 14759.58, + "end": 14762.81, + "probability": 0.9359 + }, + { + "start": 14763.46, + "end": 14768.52, + "probability": 0.9976 + }, + { + "start": 14768.64, + "end": 14769.39, + "probability": 0.8895 + }, + { + "start": 14769.68, + "end": 14772.26, + "probability": 0.9256 + }, + { + "start": 14772.34, + "end": 14775.5, + "probability": 0.9028 + }, + { + "start": 14775.5, + "end": 14778.32, + "probability": 0.9946 + }, + { + "start": 14778.52, + "end": 14779.0, + "probability": 0.7437 + }, + { + "start": 14779.4, + "end": 14780.32, + "probability": 0.6463 + }, + { + "start": 14780.54, + "end": 14782.22, + "probability": 0.6051 + }, + { + "start": 14782.64, + "end": 14786.86, + "probability": 0.8719 + }, + { + "start": 14787.08, + "end": 14790.18, + "probability": 0.8725 + }, + { + "start": 14790.3, + "end": 14791.06, + "probability": 0.5634 + }, + { + "start": 14791.82, + "end": 14793.72, + "probability": 0.9692 + }, + { + "start": 14794.1, + "end": 14795.16, + "probability": 0.7831 + }, + { + "start": 14795.5, + "end": 14799.0, + "probability": 0.1171 + }, + { + "start": 14799.54, + "end": 14800.52, + "probability": 0.2538 + }, + { + "start": 14800.52, + "end": 14800.78, + "probability": 0.0183 + }, + { + "start": 14800.78, + "end": 14801.04, + "probability": 0.2419 + }, + { + "start": 14801.04, + "end": 14802.28, + "probability": 0.1471 + }, + { + "start": 14802.3, + "end": 14803.92, + "probability": 0.5085 + }, + { + "start": 14803.92, + "end": 14805.85, + "probability": 0.6259 + }, + { + "start": 14806.06, + "end": 14807.42, + "probability": 0.9094 + }, + { + "start": 14807.72, + "end": 14814.82, + "probability": 0.9977 + }, + { + "start": 14814.92, + "end": 14816.09, + "probability": 0.9893 + }, + { + "start": 14816.98, + "end": 14821.32, + "probability": 0.9324 + }, + { + "start": 14822.28, + "end": 14830.62, + "probability": 0.9956 + }, + { + "start": 14831.02, + "end": 14834.96, + "probability": 0.9816 + }, + { + "start": 14835.12, + "end": 14835.72, + "probability": 0.928 + }, + { + "start": 14835.86, + "end": 14836.44, + "probability": 0.9463 + }, + { + "start": 14836.88, + "end": 14839.68, + "probability": 0.959 + }, + { + "start": 14842.04, + "end": 14844.26, + "probability": 0.5294 + }, + { + "start": 14844.4, + "end": 14845.98, + "probability": 0.9961 + }, + { + "start": 14846.18, + "end": 14848.84, + "probability": 0.998 + }, + { + "start": 14848.92, + "end": 14850.38, + "probability": 0.8088 + }, + { + "start": 14855.28, + "end": 14855.9, + "probability": 0.5131 + }, + { + "start": 14856.04, + "end": 14861.22, + "probability": 0.9868 + }, + { + "start": 14861.4, + "end": 14862.4, + "probability": 0.66 + }, + { + "start": 14862.56, + "end": 14868.27, + "probability": 0.9775 + }, + { + "start": 14869.78, + "end": 14872.3, + "probability": 0.2762 + }, + { + "start": 14874.88, + "end": 14875.42, + "probability": 0.2817 + }, + { + "start": 14875.86, + "end": 14876.32, + "probability": 0.3559 + }, + { + "start": 14877.35, + "end": 14878.01, + "probability": 0.1502 + }, + { + "start": 14879.38, + "end": 14879.44, + "probability": 0.1177 + }, + { + "start": 14879.44, + "end": 14883.42, + "probability": 0.5822 + }, + { + "start": 14883.78, + "end": 14886.52, + "probability": 0.601 + }, + { + "start": 14886.9, + "end": 14887.24, + "probability": 0.0224 + }, + { + "start": 14887.24, + "end": 14887.24, + "probability": 0.1108 + }, + { + "start": 14887.24, + "end": 14888.48, + "probability": 0.2978 + }, + { + "start": 14889.18, + "end": 14897.08, + "probability": 0.9497 + }, + { + "start": 14897.46, + "end": 14898.86, + "probability": 0.7979 + }, + { + "start": 14899.52, + "end": 14901.5, + "probability": 0.7413 + }, + { + "start": 14901.76, + "end": 14904.04, + "probability": 0.9954 + }, + { + "start": 14904.28, + "end": 14906.86, + "probability": 0.9392 + }, + { + "start": 14907.98, + "end": 14909.34, + "probability": 0.8489 + }, + { + "start": 14909.34, + "end": 14913.0, + "probability": 0.9663 + }, + { + "start": 14913.24, + "end": 14916.14, + "probability": 0.9954 + }, + { + "start": 14916.86, + "end": 14918.1, + "probability": 0.0372 + }, + { + "start": 14918.76, + "end": 14918.8, + "probability": 0.0456 + }, + { + "start": 14918.8, + "end": 14918.8, + "probability": 0.0618 + }, + { + "start": 14918.8, + "end": 14918.8, + "probability": 0.102 + }, + { + "start": 14918.8, + "end": 14922.28, + "probability": 0.3855 + }, + { + "start": 14922.28, + "end": 14929.38, + "probability": 0.9749 + }, + { + "start": 14929.82, + "end": 14931.88, + "probability": 0.5023 + }, + { + "start": 14932.16, + "end": 14935.18, + "probability": 0.9894 + }, + { + "start": 14935.22, + "end": 14936.12, + "probability": 0.9736 + }, + { + "start": 14936.44, + "end": 14939.52, + "probability": 0.8523 + }, + { + "start": 14939.62, + "end": 14940.74, + "probability": 0.9376 + }, + { + "start": 14941.02, + "end": 14943.48, + "probability": 0.9827 + }, + { + "start": 14943.98, + "end": 14944.72, + "probability": 0.8275 + }, + { + "start": 14945.22, + "end": 14948.4, + "probability": 0.9717 + }, + { + "start": 14948.6, + "end": 14950.8, + "probability": 0.8096 + }, + { + "start": 14951.18, + "end": 14953.3, + "probability": 0.8742 + }, + { + "start": 14953.46, + "end": 14957.12, + "probability": 0.8961 + }, + { + "start": 14957.41, + "end": 14957.48, + "probability": 0.2953 + }, + { + "start": 14957.71, + "end": 14957.92, + "probability": 0.2299 + }, + { + "start": 14957.92, + "end": 14962.36, + "probability": 0.8337 + }, + { + "start": 14963.54, + "end": 14965.7, + "probability": 0.7612 + }, + { + "start": 14966.28, + "end": 14972.0, + "probability": 0.7504 + }, + { + "start": 14972.42, + "end": 14973.36, + "probability": 0.1108 + }, + { + "start": 14974.1, + "end": 14974.46, + "probability": 0.1775 + }, + { + "start": 14974.48, + "end": 14982.26, + "probability": 0.975 + }, + { + "start": 14982.52, + "end": 14989.38, + "probability": 0.9694 + }, + { + "start": 14989.38, + "end": 14995.82, + "probability": 0.8848 + }, + { + "start": 14995.9, + "end": 14996.06, + "probability": 0.3319 + }, + { + "start": 14996.06, + "end": 15002.44, + "probability": 0.9561 + }, + { + "start": 15003.48, + "end": 15005.16, + "probability": 0.7649 + }, + { + "start": 15005.34, + "end": 15011.3, + "probability": 0.9907 + }, + { + "start": 15011.62, + "end": 15011.82, + "probability": 0.1568 + }, + { + "start": 15011.82, + "end": 15014.24, + "probability": 0.3066 + }, + { + "start": 15014.4, + "end": 15014.52, + "probability": 0.5296 + }, + { + "start": 15014.66, + "end": 15014.84, + "probability": 0.6231 + }, + { + "start": 15014.84, + "end": 15016.06, + "probability": 0.3186 + }, + { + "start": 15016.06, + "end": 15024.6, + "probability": 0.9782 + }, + { + "start": 15025.74, + "end": 15027.94, + "probability": 0.9736 + }, + { + "start": 15028.08, + "end": 15033.18, + "probability": 0.9901 + }, + { + "start": 15033.32, + "end": 15035.08, + "probability": 0.8912 + }, + { + "start": 15035.4, + "end": 15036.48, + "probability": 0.9296 + }, + { + "start": 15037.22, + "end": 15040.42, + "probability": 0.9412 + }, + { + "start": 15041.78, + "end": 15043.9, + "probability": 0.9413 + }, + { + "start": 15044.6, + "end": 15049.16, + "probability": 0.932 + }, + { + "start": 15049.9, + "end": 15050.36, + "probability": 0.917 + }, + { + "start": 15051.94, + "end": 15056.64, + "probability": 0.9081 + }, + { + "start": 15057.34, + "end": 15064.94, + "probability": 0.9846 + }, + { + "start": 15066.0, + "end": 15069.34, + "probability": 0.9775 + }, + { + "start": 15070.34, + "end": 15072.42, + "probability": 0.991 + }, + { + "start": 15072.58, + "end": 15074.52, + "probability": 0.968 + }, + { + "start": 15074.88, + "end": 15076.54, + "probability": 0.7807 + }, + { + "start": 15076.6, + "end": 15080.8, + "probability": 0.8695 + }, + { + "start": 15081.1, + "end": 15081.99, + "probability": 0.0609 + }, + { + "start": 15082.2, + "end": 15082.2, + "probability": 0.147 + }, + { + "start": 15082.2, + "end": 15089.76, + "probability": 0.9819 + }, + { + "start": 15089.94, + "end": 15095.42, + "probability": 0.9857 + }, + { + "start": 15096.22, + "end": 15098.36, + "probability": 0.7526 + }, + { + "start": 15098.82, + "end": 15100.96, + "probability": 0.7683 + }, + { + "start": 15101.4, + "end": 15109.44, + "probability": 0.9849 + }, + { + "start": 15109.86, + "end": 15120.5, + "probability": 0.9968 + }, + { + "start": 15121.32, + "end": 15124.1, + "probability": 0.8765 + }, + { + "start": 15124.52, + "end": 15125.88, + "probability": 0.6313 + }, + { + "start": 15126.2, + "end": 15134.7, + "probability": 0.9941 + }, + { + "start": 15134.74, + "end": 15137.4, + "probability": 0.1583 + }, + { + "start": 15137.62, + "end": 15138.38, + "probability": 0.2345 + }, + { + "start": 15138.38, + "end": 15138.96, + "probability": 0.1559 + }, + { + "start": 15140.2, + "end": 15142.54, + "probability": 0.9771 + }, + { + "start": 15143.04, + "end": 15144.28, + "probability": 0.9675 + }, + { + "start": 15144.5, + "end": 15146.38, + "probability": 0.6478 + }, + { + "start": 15146.62, + "end": 15150.38, + "probability": 0.9639 + }, + { + "start": 15150.5, + "end": 15150.74, + "probability": 0.4537 + }, + { + "start": 15150.86, + "end": 15151.7, + "probability": 0.8542 + }, + { + "start": 15151.76, + "end": 15152.56, + "probability": 0.4691 + }, + { + "start": 15154.18, + "end": 15155.74, + "probability": 0.2843 + }, + { + "start": 15156.74, + "end": 15157.4, + "probability": 0.1253 + }, + { + "start": 15157.66, + "end": 15159.34, + "probability": 0.1202 + }, + { + "start": 15160.28, + "end": 15164.36, + "probability": 0.5342 + }, + { + "start": 15164.48, + "end": 15165.04, + "probability": 0.2106 + }, + { + "start": 15165.04, + "end": 15165.7, + "probability": 0.6602 + }, + { + "start": 15172.2, + "end": 15173.12, + "probability": 0.1748 + }, + { + "start": 15175.14, + "end": 15176.32, + "probability": 0.5262 + }, + { + "start": 15176.86, + "end": 15176.86, + "probability": 0.6554 + }, + { + "start": 15177.2, + "end": 15178.42, + "probability": 0.6817 + }, + { + "start": 15178.58, + "end": 15179.52, + "probability": 0.1888 + }, + { + "start": 15180.44, + "end": 15182.14, + "probability": 0.77 + }, + { + "start": 15182.42, + "end": 15183.28, + "probability": 0.2183 + }, + { + "start": 15184.62, + "end": 15185.08, + "probability": 0.3069 + }, + { + "start": 15185.14, + "end": 15185.46, + "probability": 0.4163 + }, + { + "start": 15186.02, + "end": 15187.08, + "probability": 0.4363 + }, + { + "start": 15187.5, + "end": 15191.04, + "probability": 0.2358 + }, + { + "start": 15191.44, + "end": 15194.1, + "probability": 0.6231 + }, + { + "start": 15194.6, + "end": 15195.58, + "probability": 0.7603 + }, + { + "start": 15195.94, + "end": 15197.58, + "probability": 0.4764 + }, + { + "start": 15209.04, + "end": 15212.33, + "probability": 0.8523 + }, + { + "start": 15213.32, + "end": 15215.71, + "probability": 0.5785 + }, + { + "start": 15218.83, + "end": 15223.08, + "probability": 0.9655 + }, + { + "start": 15223.44, + "end": 15224.06, + "probability": 0.4505 + }, + { + "start": 15224.06, + "end": 15224.14, + "probability": 0.3924 + }, + { + "start": 15224.14, + "end": 15225.56, + "probability": 0.9235 + }, + { + "start": 15225.94, + "end": 15226.8, + "probability": 0.17 + }, + { + "start": 15226.96, + "end": 15229.42, + "probability": 0.3483 + }, + { + "start": 15229.46, + "end": 15230.72, + "probability": 0.9835 + }, + { + "start": 15230.84, + "end": 15233.48, + "probability": 0.3587 + }, + { + "start": 15233.74, + "end": 15234.67, + "probability": 0.646 + }, + { + "start": 15234.82, + "end": 15235.35, + "probability": 0.6638 + }, + { + "start": 15235.56, + "end": 15236.4, + "probability": 0.5304 + }, + { + "start": 15238.8, + "end": 15241.38, + "probability": 0.0138 + }, + { + "start": 15241.38, + "end": 15241.38, + "probability": 0.1027 + }, + { + "start": 15241.64, + "end": 15243.94, + "probability": 0.21 + }, + { + "start": 15244.0, + "end": 15245.14, + "probability": 0.1984 + }, + { + "start": 15245.14, + "end": 15245.76, + "probability": 0.0214 + }, + { + "start": 15248.08, + "end": 15252.1, + "probability": 0.0417 + }, + { + "start": 15252.36, + "end": 15253.24, + "probability": 0.0601 + }, + { + "start": 15253.24, + "end": 15253.24, + "probability": 0.1548 + }, + { + "start": 15253.24, + "end": 15253.24, + "probability": 0.3097 + }, + { + "start": 15253.24, + "end": 15253.24, + "probability": 0.4635 + }, + { + "start": 15253.24, + "end": 15253.24, + "probability": 0.2 + }, + { + "start": 15253.24, + "end": 15254.52, + "probability": 0.3405 + }, + { + "start": 15255.22, + "end": 15258.72, + "probability": 0.8894 + }, + { + "start": 15260.4, + "end": 15267.52, + "probability": 0.6779 + }, + { + "start": 15275.0, + "end": 15277.08, + "probability": 0.6543 + }, + { + "start": 15284.18, + "end": 15286.4, + "probability": 0.6989 + }, + { + "start": 15286.58, + "end": 15287.76, + "probability": 0.5455 + }, + { + "start": 15287.94, + "end": 15288.92, + "probability": 0.5492 + }, + { + "start": 15289.08, + "end": 15291.56, + "probability": 0.868 + }, + { + "start": 15293.9, + "end": 15295.28, + "probability": 0.2757 + }, + { + "start": 15296.61, + "end": 15298.96, + "probability": 0.5118 + }, + { + "start": 15298.96, + "end": 15299.98, + "probability": 0.534 + }, + { + "start": 15299.98, + "end": 15300.52, + "probability": 0.7571 + }, + { + "start": 15300.56, + "end": 15301.36, + "probability": 0.5434 + }, + { + "start": 15301.5, + "end": 15302.26, + "probability": 0.7055 + }, + { + "start": 15302.54, + "end": 15304.5, + "probability": 0.5618 + }, + { + "start": 15304.5, + "end": 15305.3, + "probability": 0.5719 + }, + { + "start": 15306.5, + "end": 15309.56, + "probability": 0.749 + }, + { + "start": 15309.96, + "end": 15311.14, + "probability": 0.9092 + }, + { + "start": 15314.94, + "end": 15318.02, + "probability": 0.8867 + }, + { + "start": 15321.54, + "end": 15326.86, + "probability": 0.9941 + }, + { + "start": 15327.8, + "end": 15329.88, + "probability": 0.8519 + }, + { + "start": 15330.96, + "end": 15333.68, + "probability": 0.8606 + }, + { + "start": 15335.06, + "end": 15336.62, + "probability": 0.8684 + }, + { + "start": 15336.84, + "end": 15341.81, + "probability": 0.9216 + }, + { + "start": 15343.98, + "end": 15347.32, + "probability": 0.014 + }, + { + "start": 15349.58, + "end": 15350.61, + "probability": 0.69 + }, + { + "start": 15352.34, + "end": 15356.82, + "probability": 0.5858 + }, + { + "start": 15357.08, + "end": 15357.92, + "probability": 0.6695 + }, + { + "start": 15357.96, + "end": 15362.6, + "probability": 0.6647 + }, + { + "start": 15363.66, + "end": 15365.68, + "probability": 0.715 + }, + { + "start": 15366.08, + "end": 15372.28, + "probability": 0.865 + }, + { + "start": 15372.42, + "end": 15376.84, + "probability": 0.8032 + }, + { + "start": 15377.12, + "end": 15378.98, + "probability": 0.5142 + }, + { + "start": 15379.72, + "end": 15383.38, + "probability": 0.8295 + }, + { + "start": 15383.46, + "end": 15388.8, + "probability": 0.9274 + }, + { + "start": 15389.34, + "end": 15391.4, + "probability": 0.7113 + }, + { + "start": 15392.64, + "end": 15394.92, + "probability": 0.0809 + }, + { + "start": 15394.92, + "end": 15397.32, + "probability": 0.4827 + }, + { + "start": 15397.38, + "end": 15398.18, + "probability": 0.7156 + }, + { + "start": 15398.68, + "end": 15400.28, + "probability": 0.9397 + }, + { + "start": 15400.28, + "end": 15406.18, + "probability": 0.7658 + }, + { + "start": 15406.44, + "end": 15407.6, + "probability": 0.9025 + }, + { + "start": 15407.7, + "end": 15407.92, + "probability": 0.8566 + }, + { + "start": 15407.92, + "end": 15412.66, + "probability": 0.8482 + }, + { + "start": 15413.02, + "end": 15416.2, + "probability": 0.9865 + }, + { + "start": 15416.4, + "end": 15417.7, + "probability": 0.6846 + }, + { + "start": 15419.12, + "end": 15423.78, + "probability": 0.6996 + }, + { + "start": 15428.2, + "end": 15432.0, + "probability": 0.2748 + }, + { + "start": 15432.16, + "end": 15433.96, + "probability": 0.2312 + }, + { + "start": 15434.28, + "end": 15435.2, + "probability": 0.8814 + }, + { + "start": 15435.82, + "end": 15436.75, + "probability": 0.3746 + }, + { + "start": 15437.22, + "end": 15439.24, + "probability": 0.5747 + }, + { + "start": 15439.32, + "end": 15440.35, + "probability": 0.3539 + }, + { + "start": 15445.78, + "end": 15446.62, + "probability": 0.9451 + }, + { + "start": 15447.48, + "end": 15450.46, + "probability": 0.834 + }, + { + "start": 15450.64, + "end": 15452.38, + "probability": 0.6178 + }, + { + "start": 15452.48, + "end": 15457.88, + "probability": 0.9038 + }, + { + "start": 15458.86, + "end": 15462.66, + "probability": 0.6842 + }, + { + "start": 15463.08, + "end": 15467.24, + "probability": 0.8867 + }, + { + "start": 15468.91, + "end": 15473.18, + "probability": 0.753 + }, + { + "start": 15473.38, + "end": 15477.5, + "probability": 0.4862 + }, + { + "start": 15478.12, + "end": 15483.14, + "probability": 0.984 + }, + { + "start": 15483.36, + "end": 15489.88, + "probability": 0.991 + }, + { + "start": 15491.04, + "end": 15494.02, + "probability": 0.6443 + }, + { + "start": 15495.85, + "end": 15502.36, + "probability": 0.6541 + }, + { + "start": 15502.44, + "end": 15507.9, + "probability": 0.9909 + }, + { + "start": 15508.84, + "end": 15509.92, + "probability": 0.4439 + }, + { + "start": 15510.28, + "end": 15512.24, + "probability": 0.7782 + }, + { + "start": 15512.7, + "end": 15516.64, + "probability": 0.971 + }, + { + "start": 15517.22, + "end": 15520.26, + "probability": 0.9944 + }, + { + "start": 15520.76, + "end": 15523.52, + "probability": 0.6357 + }, + { + "start": 15524.12, + "end": 15526.92, + "probability": 0.9225 + }, + { + "start": 15526.96, + "end": 15527.68, + "probability": 0.9562 + }, + { + "start": 15527.72, + "end": 15531.42, + "probability": 0.9883 + }, + { + "start": 15531.52, + "end": 15535.32, + "probability": 0.9973 + }, + { + "start": 15536.24, + "end": 15540.46, + "probability": 0.5373 + }, + { + "start": 15541.46, + "end": 15547.32, + "probability": 0.9922 + }, + { + "start": 15547.44, + "end": 15548.5, + "probability": 0.763 + }, + { + "start": 15549.34, + "end": 15555.14, + "probability": 0.9966 + }, + { + "start": 15555.68, + "end": 15557.62, + "probability": 0.9956 + }, + { + "start": 15558.2, + "end": 15559.32, + "probability": 0.9272 + }, + { + "start": 15559.98, + "end": 15561.34, + "probability": 0.9583 + }, + { + "start": 15561.7, + "end": 15568.24, + "probability": 0.9841 + }, + { + "start": 15569.72, + "end": 15574.68, + "probability": 0.9431 + }, + { + "start": 15574.82, + "end": 15575.05, + "probability": 0.2155 + }, + { + "start": 15575.86, + "end": 15577.94, + "probability": 0.7804 + }, + { + "start": 15578.1, + "end": 15578.94, + "probability": 0.345 + }, + { + "start": 15579.12, + "end": 15579.88, + "probability": 0.4643 + }, + { + "start": 15580.02, + "end": 15580.96, + "probability": 0.9026 + }, + { + "start": 15581.14, + "end": 15586.32, + "probability": 0.9853 + }, + { + "start": 15586.6, + "end": 15591.98, + "probability": 0.9915 + }, + { + "start": 15593.24, + "end": 15593.5, + "probability": 0.4097 + }, + { + "start": 15593.82, + "end": 15595.84, + "probability": 0.7816 + }, + { + "start": 15597.16, + "end": 15598.66, + "probability": 0.9244 + }, + { + "start": 15598.78, + "end": 15600.1, + "probability": 0.9154 + }, + { + "start": 15603.96, + "end": 15604.98, + "probability": 0.5928 + }, + { + "start": 15605.08, + "end": 15606.15, + "probability": 0.8954 + }, + { + "start": 15608.45, + "end": 15612.0, + "probability": 0.9923 + }, + { + "start": 15612.0, + "end": 15615.16, + "probability": 0.789 + }, + { + "start": 15615.28, + "end": 15617.38, + "probability": 0.5292 + }, + { + "start": 15618.04, + "end": 15619.52, + "probability": 0.7634 + }, + { + "start": 15620.34, + "end": 15621.86, + "probability": 0.8502 + }, + { + "start": 15625.8, + "end": 15627.1, + "probability": 0.0134 + }, + { + "start": 15627.1, + "end": 15631.38, + "probability": 0.026 + }, + { + "start": 15631.62, + "end": 15631.62, + "probability": 0.0828 + }, + { + "start": 15631.62, + "end": 15631.62, + "probability": 0.1076 + }, + { + "start": 15631.64, + "end": 15633.84, + "probability": 0.8887 + }, + { + "start": 15644.92, + "end": 15648.84, + "probability": 0.952 + }, + { + "start": 15648.96, + "end": 15650.82, + "probability": 0.6294 + }, + { + "start": 15652.4, + "end": 15655.9, + "probability": 0.1109 + }, + { + "start": 15656.38, + "end": 15656.38, + "probability": 0.0344 + }, + { + "start": 15656.38, + "end": 15658.52, + "probability": 0.1668 + }, + { + "start": 15658.52, + "end": 15659.16, + "probability": 0.3614 + }, + { + "start": 15660.44, + "end": 15662.3, + "probability": 0.0064 + }, + { + "start": 15663.3, + "end": 15663.8, + "probability": 0.0038 + }, + { + "start": 15666.78, + "end": 15667.46, + "probability": 0.0427 + }, + { + "start": 15668.0, + "end": 15668.06, + "probability": 0.0004 + }, + { + "start": 15671.54, + "end": 15673.74, + "probability": 0.0127 + }, + { + "start": 15674.8, + "end": 15675.82, + "probability": 0.5171 + }, + { + "start": 15677.56, + "end": 15681.84, + "probability": 0.0332 + }, + { + "start": 15682.32, + "end": 15682.32, + "probability": 0.0013 + }, + { + "start": 15685.06, + "end": 15687.36, + "probability": 0.0321 + }, + { + "start": 15688.54, + "end": 15689.16, + "probability": 0.6615 + }, + { + "start": 15689.16, + "end": 15694.01, + "probability": 0.1052 + }, + { + "start": 15694.2, + "end": 15697.0, + "probability": 0.0237 + }, + { + "start": 15698.98, + "end": 15699.54, + "probability": 0.0742 + }, + { + "start": 15700.24, + "end": 15701.36, + "probability": 0.0472 + }, + { + "start": 15713.44, + "end": 15713.98, + "probability": 0.0108 + }, + { + "start": 15715.64, + "end": 15715.98, + "probability": 0.3008 + }, + { + "start": 15715.98, + "end": 15716.02, + "probability": 0.2213 + }, + { + "start": 15716.98, + "end": 15717.22, + "probability": 0.0074 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + }, + { + "start": 16228.87, + "end": 16228.87, + "probability": 0.0 + } + ], + "segments_count": 5715, + "words_count": 26690, + "avg_words_per_segment": 4.6702, + "avg_segment_duration": 1.8623, + "avg_words_per_minute": 98.676, + "plenum_id": "122037", + "duration": 16228.87, + "title": null, + "plenum_date": "2023-12-03" +} \ No newline at end of file