diff --git "a/32711/metadata.json" "b/32711/metadata.json" new file mode 100644--- /dev/null +++ "b/32711/metadata.json" @@ -0,0 +1,19052 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32711", + "quality_score": 0.8809, + "per_segment_quality_scores": [ + { + "start": 66.56, + "end": 66.7, + "probability": 0.0113 + }, + { + "start": 66.7, + "end": 66.7, + "probability": 0.1975 + }, + { + "start": 66.7, + "end": 67.82, + "probability": 0.6878 + }, + { + "start": 67.94, + "end": 69.32, + "probability": 0.7733 + }, + { + "start": 69.4, + "end": 70.92, + "probability": 0.9094 + }, + { + "start": 70.98, + "end": 73.28, + "probability": 0.9629 + }, + { + "start": 76.06, + "end": 78.08, + "probability": 0.6493 + }, + { + "start": 78.08, + "end": 81.16, + "probability": 0.7653 + }, + { + "start": 81.16, + "end": 83.9, + "probability": 0.8196 + }, + { + "start": 84.22, + "end": 85.44, + "probability": 0.6896 + }, + { + "start": 85.98, + "end": 89.26, + "probability": 0.7634 + }, + { + "start": 89.88, + "end": 91.2, + "probability": 0.6167 + }, + { + "start": 92.32, + "end": 95.26, + "probability": 0.6605 + }, + { + "start": 97.69, + "end": 98.46, + "probability": 0.0285 + }, + { + "start": 108.86, + "end": 110.54, + "probability": 0.1082 + }, + { + "start": 111.06, + "end": 112.62, + "probability": 0.3618 + }, + { + "start": 113.34, + "end": 117.16, + "probability": 0.0575 + }, + { + "start": 118.28, + "end": 118.92, + "probability": 0.1914 + }, + { + "start": 118.92, + "end": 120.88, + "probability": 0.0236 + }, + { + "start": 120.98, + "end": 125.98, + "probability": 0.1286 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.0, + "end": 133.0, + "probability": 0.0 + }, + { + "start": 133.28, + "end": 134.12, + "probability": 0.1619 + }, + { + "start": 134.12, + "end": 134.12, + "probability": 0.0544 + }, + { + "start": 134.12, + "end": 137.86, + "probability": 0.8704 + }, + { + "start": 137.86, + "end": 141.12, + "probability": 0.9967 + }, + { + "start": 141.96, + "end": 147.66, + "probability": 0.9582 + }, + { + "start": 147.82, + "end": 150.62, + "probability": 0.7321 + }, + { + "start": 150.72, + "end": 153.5, + "probability": 0.9273 + }, + { + "start": 153.94, + "end": 154.0, + "probability": 0.0443 + }, + { + "start": 154.0, + "end": 156.46, + "probability": 0.5886 + }, + { + "start": 156.96, + "end": 159.72, + "probability": 0.7853 + }, + { + "start": 159.74, + "end": 160.2, + "probability": 0.7526 + }, + { + "start": 169.5, + "end": 169.84, + "probability": 0.3739 + }, + { + "start": 169.84, + "end": 172.74, + "probability": 0.8044 + }, + { + "start": 173.88, + "end": 177.06, + "probability": 0.9645 + }, + { + "start": 178.34, + "end": 180.48, + "probability": 0.9836 + }, + { + "start": 183.62, + "end": 187.86, + "probability": 0.8698 + }, + { + "start": 187.86, + "end": 189.48, + "probability": 0.7098 + }, + { + "start": 189.56, + "end": 190.66, + "probability": 0.9971 + }, + { + "start": 191.46, + "end": 192.9, + "probability": 0.7748 + }, + { + "start": 192.9, + "end": 193.94, + "probability": 0.7763 + }, + { + "start": 194.04, + "end": 194.68, + "probability": 0.7633 + }, + { + "start": 195.16, + "end": 196.02, + "probability": 0.7799 + }, + { + "start": 196.5, + "end": 205.64, + "probability": 0.9622 + }, + { + "start": 206.7, + "end": 207.98, + "probability": 0.8739 + }, + { + "start": 208.14, + "end": 208.92, + "probability": 0.7212 + }, + { + "start": 209.36, + "end": 210.82, + "probability": 0.9326 + }, + { + "start": 211.9, + "end": 213.6, + "probability": 0.8201 + }, + { + "start": 214.78, + "end": 218.76, + "probability": 0.9912 + }, + { + "start": 218.92, + "end": 222.12, + "probability": 0.994 + }, + { + "start": 223.14, + "end": 226.14, + "probability": 0.7814 + }, + { + "start": 226.66, + "end": 228.76, + "probability": 0.9587 + }, + { + "start": 229.12, + "end": 231.62, + "probability": 0.875 + }, + { + "start": 231.66, + "end": 232.52, + "probability": 0.7684 + }, + { + "start": 234.72, + "end": 243.26, + "probability": 0.9168 + }, + { + "start": 243.52, + "end": 245.5, + "probability": 0.9965 + }, + { + "start": 246.92, + "end": 250.22, + "probability": 0.6826 + }, + { + "start": 251.34, + "end": 256.78, + "probability": 0.991 + }, + { + "start": 257.38, + "end": 262.18, + "probability": 0.9543 + }, + { + "start": 263.06, + "end": 264.06, + "probability": 0.6215 + }, + { + "start": 264.38, + "end": 266.03, + "probability": 0.9967 + }, + { + "start": 266.5, + "end": 270.06, + "probability": 0.9978 + }, + { + "start": 270.52, + "end": 271.48, + "probability": 0.9842 + }, + { + "start": 271.88, + "end": 275.58, + "probability": 0.9976 + }, + { + "start": 275.58, + "end": 278.86, + "probability": 0.8743 + }, + { + "start": 279.72, + "end": 281.62, + "probability": 0.9839 + }, + { + "start": 283.68, + "end": 287.22, + "probability": 0.9409 + }, + { + "start": 287.9, + "end": 291.26, + "probability": 0.9893 + }, + { + "start": 291.26, + "end": 294.22, + "probability": 0.9275 + }, + { + "start": 294.56, + "end": 295.6, + "probability": 0.7261 + }, + { + "start": 295.78, + "end": 296.82, + "probability": 0.5047 + }, + { + "start": 296.84, + "end": 298.0, + "probability": 0.8846 + }, + { + "start": 298.24, + "end": 300.52, + "probability": 0.9132 + }, + { + "start": 302.79, + "end": 308.67, + "probability": 0.8663 + }, + { + "start": 309.74, + "end": 310.84, + "probability": 0.8279 + }, + { + "start": 311.4, + "end": 312.32, + "probability": 0.9197 + }, + { + "start": 312.4, + "end": 313.34, + "probability": 0.5933 + }, + { + "start": 313.42, + "end": 315.42, + "probability": 0.5468 + }, + { + "start": 316.06, + "end": 316.72, + "probability": 0.7477 + }, + { + "start": 316.92, + "end": 321.56, + "probability": 0.998 + }, + { + "start": 321.56, + "end": 327.3, + "probability": 0.9968 + }, + { + "start": 327.52, + "end": 327.52, + "probability": 0.3325 + }, + { + "start": 327.52, + "end": 327.8, + "probability": 0.5644 + }, + { + "start": 327.88, + "end": 328.39, + "probability": 0.9123 + }, + { + "start": 328.76, + "end": 329.64, + "probability": 0.8613 + }, + { + "start": 329.8, + "end": 331.86, + "probability": 0.8621 + }, + { + "start": 332.06, + "end": 332.92, + "probability": 0.8901 + }, + { + "start": 333.0, + "end": 333.62, + "probability": 0.5726 + }, + { + "start": 334.24, + "end": 337.56, + "probability": 0.917 + }, + { + "start": 337.66, + "end": 339.28, + "probability": 0.9365 + }, + { + "start": 339.9, + "end": 342.1, + "probability": 0.8873 + }, + { + "start": 342.48, + "end": 343.5, + "probability": 0.7921 + }, + { + "start": 343.56, + "end": 344.34, + "probability": 0.9265 + }, + { + "start": 346.2, + "end": 349.54, + "probability": 0.795 + }, + { + "start": 349.76, + "end": 350.46, + "probability": 0.9141 + }, + { + "start": 350.68, + "end": 352.8, + "probability": 0.935 + }, + { + "start": 354.4, + "end": 356.38, + "probability": 0.8914 + }, + { + "start": 357.76, + "end": 358.84, + "probability": 0.6533 + }, + { + "start": 359.02, + "end": 363.98, + "probability": 0.6764 + }, + { + "start": 364.64, + "end": 365.4, + "probability": 0.9004 + }, + { + "start": 365.94, + "end": 369.02, + "probability": 0.9556 + }, + { + "start": 369.08, + "end": 371.68, + "probability": 0.9959 + }, + { + "start": 372.8, + "end": 374.88, + "probability": 0.7584 + }, + { + "start": 375.5, + "end": 377.08, + "probability": 0.9912 + }, + { + "start": 378.58, + "end": 381.16, + "probability": 0.9873 + }, + { + "start": 381.88, + "end": 384.54, + "probability": 0.864 + }, + { + "start": 385.1, + "end": 387.48, + "probability": 0.8483 + }, + { + "start": 387.86, + "end": 394.08, + "probability": 0.9412 + }, + { + "start": 395.42, + "end": 398.58, + "probability": 0.9593 + }, + { + "start": 399.22, + "end": 405.04, + "probability": 0.7789 + }, + { + "start": 405.04, + "end": 412.52, + "probability": 0.9336 + }, + { + "start": 412.66, + "end": 413.5, + "probability": 0.7136 + }, + { + "start": 414.2, + "end": 416.14, + "probability": 0.912 + }, + { + "start": 417.36, + "end": 419.74, + "probability": 0.9301 + }, + { + "start": 420.6, + "end": 426.1, + "probability": 0.9814 + }, + { + "start": 426.1, + "end": 431.38, + "probability": 0.9974 + }, + { + "start": 435.02, + "end": 438.06, + "probability": 0.9512 + }, + { + "start": 438.52, + "end": 441.8, + "probability": 0.9927 + }, + { + "start": 441.8, + "end": 445.06, + "probability": 0.9883 + }, + { + "start": 445.56, + "end": 446.86, + "probability": 0.8926 + }, + { + "start": 449.26, + "end": 455.32, + "probability": 0.9445 + }, + { + "start": 457.5, + "end": 458.08, + "probability": 0.8036 + }, + { + "start": 458.16, + "end": 458.82, + "probability": 0.782 + }, + { + "start": 458.94, + "end": 459.68, + "probability": 0.9424 + }, + { + "start": 459.8, + "end": 460.46, + "probability": 0.7567 + }, + { + "start": 460.52, + "end": 467.26, + "probability": 0.9922 + }, + { + "start": 467.68, + "end": 473.42, + "probability": 0.9648 + }, + { + "start": 473.88, + "end": 478.42, + "probability": 0.6656 + }, + { + "start": 478.68, + "end": 481.28, + "probability": 0.9824 + }, + { + "start": 482.44, + "end": 483.95, + "probability": 0.7947 + }, + { + "start": 486.04, + "end": 489.16, + "probability": 0.6935 + }, + { + "start": 491.26, + "end": 491.98, + "probability": 0.8475 + }, + { + "start": 492.32, + "end": 495.46, + "probability": 0.6656 + }, + { + "start": 497.84, + "end": 502.06, + "probability": 0.9525 + }, + { + "start": 502.86, + "end": 507.4, + "probability": 0.951 + }, + { + "start": 509.3, + "end": 510.88, + "probability": 0.6895 + }, + { + "start": 511.66, + "end": 512.58, + "probability": 0.7642 + }, + { + "start": 513.76, + "end": 516.24, + "probability": 0.6652 + }, + { + "start": 518.0, + "end": 519.42, + "probability": 0.7175 + }, + { + "start": 519.7, + "end": 520.6, + "probability": 0.8525 + }, + { + "start": 520.7, + "end": 522.28, + "probability": 0.9829 + }, + { + "start": 524.62, + "end": 525.48, + "probability": 0.6613 + }, + { + "start": 527.36, + "end": 530.26, + "probability": 0.9604 + }, + { + "start": 532.5, + "end": 535.18, + "probability": 0.9946 + }, + { + "start": 536.4, + "end": 537.68, + "probability": 0.947 + }, + { + "start": 539.86, + "end": 540.78, + "probability": 0.9976 + }, + { + "start": 541.9, + "end": 544.76, + "probability": 0.9761 + }, + { + "start": 545.86, + "end": 549.0, + "probability": 0.9719 + }, + { + "start": 551.58, + "end": 552.5, + "probability": 0.873 + }, + { + "start": 554.32, + "end": 554.98, + "probability": 0.5973 + }, + { + "start": 555.26, + "end": 555.74, + "probability": 0.9735 + }, + { + "start": 555.8, + "end": 557.26, + "probability": 0.9871 + }, + { + "start": 557.38, + "end": 558.16, + "probability": 0.6974 + }, + { + "start": 559.74, + "end": 561.54, + "probability": 0.984 + }, + { + "start": 562.82, + "end": 565.32, + "probability": 0.8576 + }, + { + "start": 566.1, + "end": 567.14, + "probability": 0.7901 + }, + { + "start": 569.16, + "end": 569.16, + "probability": 0.0689 + }, + { + "start": 569.16, + "end": 569.86, + "probability": 0.8614 + }, + { + "start": 570.84, + "end": 573.06, + "probability": 0.3136 + }, + { + "start": 573.66, + "end": 574.38, + "probability": 0.4246 + }, + { + "start": 575.3, + "end": 578.66, + "probability": 0.9855 + }, + { + "start": 580.2, + "end": 582.24, + "probability": 0.9259 + }, + { + "start": 582.3, + "end": 583.14, + "probability": 0.7004 + }, + { + "start": 583.38, + "end": 585.32, + "probability": 0.9585 + }, + { + "start": 587.86, + "end": 594.22, + "probability": 0.7798 + }, + { + "start": 595.02, + "end": 598.28, + "probability": 0.7886 + }, + { + "start": 598.66, + "end": 599.88, + "probability": 0.5309 + }, + { + "start": 600.18, + "end": 601.46, + "probability": 0.8188 + }, + { + "start": 601.78, + "end": 603.44, + "probability": 0.8722 + }, + { + "start": 603.58, + "end": 604.38, + "probability": 0.9274 + }, + { + "start": 607.24, + "end": 608.32, + "probability": 0.9461 + }, + { + "start": 609.18, + "end": 609.76, + "probability": 0.91 + }, + { + "start": 610.64, + "end": 616.96, + "probability": 0.9369 + }, + { + "start": 618.84, + "end": 620.64, + "probability": 0.1689 + }, + { + "start": 620.74, + "end": 624.9, + "probability": 0.8835 + }, + { + "start": 625.92, + "end": 628.38, + "probability": 0.8275 + }, + { + "start": 629.65, + "end": 630.6, + "probability": 0.2211 + }, + { + "start": 630.7, + "end": 633.96, + "probability": 0.9816 + }, + { + "start": 634.54, + "end": 636.2, + "probability": 0.8322 + }, + { + "start": 636.9, + "end": 639.94, + "probability": 0.8552 + }, + { + "start": 642.26, + "end": 644.76, + "probability": 0.5758 + }, + { + "start": 645.34, + "end": 647.3, + "probability": 0.8442 + }, + { + "start": 650.16, + "end": 652.3, + "probability": 0.7859 + }, + { + "start": 653.0, + "end": 653.1, + "probability": 0.4121 + }, + { + "start": 654.04, + "end": 659.36, + "probability": 0.9834 + }, + { + "start": 665.24, + "end": 665.56, + "probability": 0.4057 + }, + { + "start": 665.76, + "end": 666.56, + "probability": 0.502 + }, + { + "start": 666.72, + "end": 670.32, + "probability": 0.957 + }, + { + "start": 671.08, + "end": 672.28, + "probability": 0.7954 + }, + { + "start": 672.66, + "end": 673.16, + "probability": 0.7679 + }, + { + "start": 673.24, + "end": 673.94, + "probability": 0.864 + }, + { + "start": 674.16, + "end": 678.18, + "probability": 0.9926 + }, + { + "start": 679.68, + "end": 680.88, + "probability": 0.9462 + }, + { + "start": 683.24, + "end": 684.8, + "probability": 0.7364 + }, + { + "start": 685.94, + "end": 685.98, + "probability": 0.3307 + }, + { + "start": 685.98, + "end": 686.56, + "probability": 0.5447 + }, + { + "start": 687.62, + "end": 689.42, + "probability": 0.8146 + }, + { + "start": 690.28, + "end": 690.7, + "probability": 0.8838 + }, + { + "start": 694.02, + "end": 696.3, + "probability": 0.9829 + }, + { + "start": 697.38, + "end": 697.62, + "probability": 0.9746 + }, + { + "start": 698.36, + "end": 699.23, + "probability": 0.8845 + }, + { + "start": 701.06, + "end": 702.04, + "probability": 0.9573 + }, + { + "start": 702.08, + "end": 704.34, + "probability": 0.914 + }, + { + "start": 705.74, + "end": 708.6, + "probability": 0.8081 + }, + { + "start": 709.3, + "end": 710.56, + "probability": 0.9293 + }, + { + "start": 712.36, + "end": 713.66, + "probability": 0.8726 + }, + { + "start": 715.54, + "end": 716.08, + "probability": 0.9562 + }, + { + "start": 716.14, + "end": 716.74, + "probability": 0.7351 + }, + { + "start": 716.96, + "end": 718.18, + "probability": 0.9979 + }, + { + "start": 718.24, + "end": 722.14, + "probability": 0.9288 + }, + { + "start": 722.46, + "end": 723.21, + "probability": 0.9114 + }, + { + "start": 724.5, + "end": 725.32, + "probability": 0.6962 + }, + { + "start": 727.7, + "end": 728.67, + "probability": 0.335 + }, + { + "start": 729.24, + "end": 729.52, + "probability": 0.0517 + }, + { + "start": 729.52, + "end": 729.76, + "probability": 0.4374 + }, + { + "start": 729.8, + "end": 730.78, + "probability": 0.7677 + }, + { + "start": 731.2, + "end": 733.58, + "probability": 0.7041 + }, + { + "start": 733.78, + "end": 735.3, + "probability": 0.4509 + }, + { + "start": 736.62, + "end": 739.18, + "probability": 0.716 + }, + { + "start": 739.32, + "end": 740.3, + "probability": 0.7444 + }, + { + "start": 742.22, + "end": 743.26, + "probability": 0.7323 + }, + { + "start": 744.9, + "end": 745.62, + "probability": 0.9062 + }, + { + "start": 746.26, + "end": 746.76, + "probability": 0.9477 + }, + { + "start": 747.48, + "end": 752.1, + "probability": 0.8801 + }, + { + "start": 753.36, + "end": 755.28, + "probability": 0.7957 + }, + { + "start": 757.08, + "end": 759.02, + "probability": 0.7848 + }, + { + "start": 760.4, + "end": 760.94, + "probability": 0.8976 + }, + { + "start": 761.62, + "end": 762.52, + "probability": 0.9987 + }, + { + "start": 763.18, + "end": 766.34, + "probability": 0.5816 + }, + { + "start": 766.46, + "end": 767.58, + "probability": 0.5428 + }, + { + "start": 768.92, + "end": 771.68, + "probability": 0.8509 + }, + { + "start": 772.27, + "end": 775.12, + "probability": 0.9813 + }, + { + "start": 775.94, + "end": 776.56, + "probability": 0.7771 + }, + { + "start": 777.66, + "end": 781.42, + "probability": 0.9714 + }, + { + "start": 782.34, + "end": 785.36, + "probability": 0.8441 + }, + { + "start": 786.5, + "end": 788.68, + "probability": 0.7258 + }, + { + "start": 789.44, + "end": 791.88, + "probability": 0.9089 + }, + { + "start": 791.88, + "end": 794.22, + "probability": 0.8006 + }, + { + "start": 794.24, + "end": 795.58, + "probability": 0.5837 + }, + { + "start": 795.72, + "end": 796.58, + "probability": 0.772 + }, + { + "start": 798.12, + "end": 799.22, + "probability": 0.9626 + }, + { + "start": 800.42, + "end": 803.06, + "probability": 0.7788 + }, + { + "start": 804.56, + "end": 807.94, + "probability": 0.9648 + }, + { + "start": 808.38, + "end": 810.86, + "probability": 0.8859 + }, + { + "start": 811.24, + "end": 811.44, + "probability": 0.8506 + }, + { + "start": 811.58, + "end": 811.76, + "probability": 0.6415 + }, + { + "start": 811.84, + "end": 812.78, + "probability": 0.9648 + }, + { + "start": 813.26, + "end": 815.02, + "probability": 0.9856 + }, + { + "start": 815.12, + "end": 815.26, + "probability": 0.2035 + }, + { + "start": 816.84, + "end": 818.44, + "probability": 0.2467 + }, + { + "start": 818.86, + "end": 823.22, + "probability": 0.5647 + }, + { + "start": 823.56, + "end": 828.14, + "probability": 0.7507 + }, + { + "start": 829.02, + "end": 830.14, + "probability": 0.883 + }, + { + "start": 830.66, + "end": 835.22, + "probability": 0.7554 + }, + { + "start": 837.5, + "end": 840.04, + "probability": 0.6445 + }, + { + "start": 840.2, + "end": 842.78, + "probability": 0.9376 + }, + { + "start": 843.04, + "end": 845.14, + "probability": 0.9384 + }, + { + "start": 845.66, + "end": 850.4, + "probability": 0.9744 + }, + { + "start": 850.46, + "end": 850.89, + "probability": 0.7618 + }, + { + "start": 851.68, + "end": 853.94, + "probability": 0.9615 + }, + { + "start": 854.16, + "end": 855.62, + "probability": 0.8075 + }, + { + "start": 855.98, + "end": 857.1, + "probability": 0.926 + }, + { + "start": 857.56, + "end": 860.06, + "probability": 0.9094 + }, + { + "start": 861.06, + "end": 862.42, + "probability": 0.8185 + }, + { + "start": 862.52, + "end": 867.84, + "probability": 0.725 + }, + { + "start": 869.42, + "end": 871.02, + "probability": 0.2109 + }, + { + "start": 871.24, + "end": 872.84, + "probability": 0.5483 + }, + { + "start": 872.96, + "end": 874.04, + "probability": 0.4281 + }, + { + "start": 877.04, + "end": 877.56, + "probability": 0.0727 + }, + { + "start": 883.0, + "end": 883.12, + "probability": 0.096 + }, + { + "start": 883.12, + "end": 883.54, + "probability": 0.3725 + }, + { + "start": 885.11, + "end": 887.48, + "probability": 0.613 + }, + { + "start": 888.14, + "end": 889.5, + "probability": 0.9692 + }, + { + "start": 890.34, + "end": 893.96, + "probability": 0.8759 + }, + { + "start": 893.96, + "end": 895.0, + "probability": 0.7467 + }, + { + "start": 895.46, + "end": 895.46, + "probability": 0.4128 + }, + { + "start": 895.46, + "end": 895.72, + "probability": 0.4032 + }, + { + "start": 895.96, + "end": 897.74, + "probability": 0.9335 + }, + { + "start": 897.78, + "end": 899.92, + "probability": 0.7768 + }, + { + "start": 900.02, + "end": 901.78, + "probability": 0.9356 + }, + { + "start": 902.12, + "end": 903.88, + "probability": 0.9946 + }, + { + "start": 903.94, + "end": 908.28, + "probability": 0.9414 + }, + { + "start": 908.46, + "end": 910.32, + "probability": 0.9316 + }, + { + "start": 911.4, + "end": 912.78, + "probability": 0.8258 + }, + { + "start": 912.94, + "end": 914.16, + "probability": 0.9854 + }, + { + "start": 914.16, + "end": 916.16, + "probability": 0.9685 + }, + { + "start": 916.64, + "end": 917.08, + "probability": 0.4761 + }, + { + "start": 918.02, + "end": 920.72, + "probability": 0.9544 + }, + { + "start": 921.5, + "end": 923.54, + "probability": 0.9512 + }, + { + "start": 923.64, + "end": 925.86, + "probability": 0.6595 + }, + { + "start": 927.06, + "end": 929.52, + "probability": 0.9233 + }, + { + "start": 929.62, + "end": 934.46, + "probability": 0.9312 + }, + { + "start": 934.58, + "end": 935.36, + "probability": 0.7797 + }, + { + "start": 935.78, + "end": 936.92, + "probability": 0.4747 + }, + { + "start": 937.04, + "end": 939.62, + "probability": 0.8161 + }, + { + "start": 940.24, + "end": 944.68, + "probability": 0.95 + }, + { + "start": 944.68, + "end": 949.4, + "probability": 0.9049 + }, + { + "start": 950.2, + "end": 951.18, + "probability": 0.9586 + }, + { + "start": 951.22, + "end": 952.14, + "probability": 0.5325 + }, + { + "start": 952.18, + "end": 958.84, + "probability": 0.7971 + }, + { + "start": 958.84, + "end": 962.54, + "probability": 0.9961 + }, + { + "start": 962.88, + "end": 966.72, + "probability": 0.977 + }, + { + "start": 967.46, + "end": 967.96, + "probability": 0.7219 + }, + { + "start": 968.02, + "end": 969.78, + "probability": 0.8778 + }, + { + "start": 969.92, + "end": 972.18, + "probability": 0.6725 + }, + { + "start": 972.26, + "end": 973.5, + "probability": 0.3835 + }, + { + "start": 975.52, + "end": 976.7, + "probability": 0.9517 + }, + { + "start": 976.76, + "end": 980.78, + "probability": 0.8745 + }, + { + "start": 981.88, + "end": 987.62, + "probability": 0.9763 + }, + { + "start": 987.62, + "end": 991.48, + "probability": 0.9966 + }, + { + "start": 992.68, + "end": 994.36, + "probability": 0.6873 + }, + { + "start": 995.3, + "end": 996.42, + "probability": 0.8542 + }, + { + "start": 996.6, + "end": 998.6, + "probability": 0.9191 + }, + { + "start": 999.02, + "end": 1003.9, + "probability": 0.9276 + }, + { + "start": 1004.5, + "end": 1004.68, + "probability": 0.361 + }, + { + "start": 1004.72, + "end": 1009.74, + "probability": 0.9111 + }, + { + "start": 1009.9, + "end": 1013.62, + "probability": 0.9642 + }, + { + "start": 1013.62, + "end": 1018.54, + "probability": 0.8273 + }, + { + "start": 1018.74, + "end": 1019.85, + "probability": 0.7239 + }, + { + "start": 1020.4, + "end": 1025.08, + "probability": 0.9941 + }, + { + "start": 1025.46, + "end": 1028.8, + "probability": 0.9858 + }, + { + "start": 1029.8, + "end": 1032.66, + "probability": 0.9944 + }, + { + "start": 1032.72, + "end": 1035.26, + "probability": 0.9914 + }, + { + "start": 1035.62, + "end": 1036.98, + "probability": 0.8694 + }, + { + "start": 1037.92, + "end": 1040.86, + "probability": 0.9927 + }, + { + "start": 1041.46, + "end": 1044.12, + "probability": 0.9551 + }, + { + "start": 1044.56, + "end": 1051.42, + "probability": 0.972 + }, + { + "start": 1052.26, + "end": 1053.1, + "probability": 0.3095 + }, + { + "start": 1053.1, + "end": 1055.8, + "probability": 0.6677 + }, + { + "start": 1057.16, + "end": 1058.99, + "probability": 0.9429 + }, + { + "start": 1059.62, + "end": 1061.9, + "probability": 0.9727 + }, + { + "start": 1062.56, + "end": 1063.92, + "probability": 0.689 + }, + { + "start": 1064.32, + "end": 1066.04, + "probability": 0.9673 + }, + { + "start": 1066.68, + "end": 1067.84, + "probability": 0.4596 + }, + { + "start": 1067.9, + "end": 1068.42, + "probability": 0.5684 + }, + { + "start": 1068.58, + "end": 1070.54, + "probability": 0.9953 + }, + { + "start": 1071.24, + "end": 1071.48, + "probability": 0.5872 + }, + { + "start": 1071.54, + "end": 1071.88, + "probability": 0.9533 + }, + { + "start": 1071.94, + "end": 1074.46, + "probability": 0.9955 + }, + { + "start": 1075.02, + "end": 1078.78, + "probability": 0.9373 + }, + { + "start": 1079.96, + "end": 1080.32, + "probability": 0.3633 + }, + { + "start": 1080.32, + "end": 1084.68, + "probability": 0.9935 + }, + { + "start": 1084.78, + "end": 1085.0, + "probability": 0.9401 + }, + { + "start": 1085.12, + "end": 1087.26, + "probability": 0.9905 + }, + { + "start": 1087.54, + "end": 1088.2, + "probability": 0.8851 + }, + { + "start": 1088.3, + "end": 1089.1, + "probability": 0.9797 + }, + { + "start": 1089.1, + "end": 1091.12, + "probability": 0.8307 + }, + { + "start": 1092.18, + "end": 1092.46, + "probability": 0.5794 + }, + { + "start": 1092.94, + "end": 1097.3, + "probability": 0.9923 + }, + { + "start": 1097.3, + "end": 1101.28, + "probability": 0.9938 + }, + { + "start": 1101.32, + "end": 1101.8, + "probability": 0.7391 + }, + { + "start": 1102.24, + "end": 1106.02, + "probability": 0.9275 + }, + { + "start": 1107.24, + "end": 1108.62, + "probability": 0.9755 + }, + { + "start": 1109.48, + "end": 1113.96, + "probability": 0.9923 + }, + { + "start": 1113.96, + "end": 1121.88, + "probability": 0.9938 + }, + { + "start": 1121.96, + "end": 1123.2, + "probability": 0.977 + }, + { + "start": 1123.7, + "end": 1127.72, + "probability": 0.9973 + }, + { + "start": 1127.72, + "end": 1131.1, + "probability": 0.9978 + }, + { + "start": 1131.54, + "end": 1133.52, + "probability": 0.9887 + }, + { + "start": 1134.64, + "end": 1139.62, + "probability": 0.9963 + }, + { + "start": 1139.62, + "end": 1144.7, + "probability": 0.9922 + }, + { + "start": 1145.16, + "end": 1149.6, + "probability": 0.8862 + }, + { + "start": 1150.36, + "end": 1153.58, + "probability": 0.9733 + }, + { + "start": 1153.96, + "end": 1156.32, + "probability": 0.9586 + }, + { + "start": 1157.8, + "end": 1160.76, + "probability": 0.8808 + }, + { + "start": 1161.18, + "end": 1163.46, + "probability": 0.8668 + }, + { + "start": 1164.84, + "end": 1169.16, + "probability": 0.9951 + }, + { + "start": 1169.42, + "end": 1169.72, + "probability": 0.8449 + }, + { + "start": 1169.76, + "end": 1170.15, + "probability": 0.856 + }, + { + "start": 1170.92, + "end": 1173.28, + "probability": 0.9475 + }, + { + "start": 1173.7, + "end": 1176.12, + "probability": 0.9842 + }, + { + "start": 1176.36, + "end": 1177.86, + "probability": 0.662 + }, + { + "start": 1178.42, + "end": 1183.06, + "probability": 0.7805 + }, + { + "start": 1183.64, + "end": 1183.68, + "probability": 0.7959 + }, + { + "start": 1184.22, + "end": 1185.86, + "probability": 0.8954 + }, + { + "start": 1186.02, + "end": 1187.6, + "probability": 0.9872 + }, + { + "start": 1188.02, + "end": 1190.28, + "probability": 0.9417 + }, + { + "start": 1190.32, + "end": 1192.7, + "probability": 0.9883 + }, + { + "start": 1193.42, + "end": 1197.26, + "probability": 0.998 + }, + { + "start": 1197.6, + "end": 1199.08, + "probability": 0.8956 + }, + { + "start": 1199.44, + "end": 1203.7, + "probability": 0.9982 + }, + { + "start": 1204.46, + "end": 1205.64, + "probability": 0.764 + }, + { + "start": 1206.42, + "end": 1207.7, + "probability": 0.6519 + }, + { + "start": 1207.76, + "end": 1208.32, + "probability": 0.7156 + }, + { + "start": 1208.48, + "end": 1210.3, + "probability": 0.9907 + }, + { + "start": 1210.68, + "end": 1214.7, + "probability": 0.9741 + }, + { + "start": 1215.1, + "end": 1218.22, + "probability": 0.9412 + }, + { + "start": 1218.78, + "end": 1220.6, + "probability": 0.7004 + }, + { + "start": 1220.98, + "end": 1222.6, + "probability": 0.9961 + }, + { + "start": 1222.68, + "end": 1226.92, + "probability": 0.9723 + }, + { + "start": 1227.64, + "end": 1228.71, + "probability": 0.8552 + }, + { + "start": 1229.5, + "end": 1231.92, + "probability": 0.9656 + }, + { + "start": 1231.98, + "end": 1234.54, + "probability": 0.7633 + }, + { + "start": 1235.1, + "end": 1237.1, + "probability": 0.9976 + }, + { + "start": 1237.64, + "end": 1238.1, + "probability": 0.611 + }, + { + "start": 1238.52, + "end": 1240.16, + "probability": 0.9335 + }, + { + "start": 1240.2, + "end": 1242.3, + "probability": 0.9138 + }, + { + "start": 1243.24, + "end": 1249.52, + "probability": 0.9671 + }, + { + "start": 1249.6, + "end": 1250.3, + "probability": 0.8373 + }, + { + "start": 1250.68, + "end": 1251.53, + "probability": 0.9337 + }, + { + "start": 1252.12, + "end": 1254.06, + "probability": 0.998 + }, + { + "start": 1254.66, + "end": 1255.54, + "probability": 0.9139 + }, + { + "start": 1256.96, + "end": 1258.02, + "probability": 0.801 + }, + { + "start": 1258.78, + "end": 1261.48, + "probability": 0.9903 + }, + { + "start": 1261.48, + "end": 1264.24, + "probability": 0.8887 + }, + { + "start": 1264.62, + "end": 1267.2, + "probability": 0.9644 + }, + { + "start": 1268.1, + "end": 1268.12, + "probability": 0.7744 + }, + { + "start": 1268.86, + "end": 1269.54, + "probability": 0.8936 + }, + { + "start": 1270.86, + "end": 1271.42, + "probability": 0.7845 + }, + { + "start": 1271.96, + "end": 1273.82, + "probability": 0.7701 + }, + { + "start": 1273.86, + "end": 1274.44, + "probability": 0.8378 + }, + { + "start": 1275.38, + "end": 1276.46, + "probability": 0.7325 + }, + { + "start": 1276.58, + "end": 1277.4, + "probability": 0.5037 + }, + { + "start": 1277.44, + "end": 1282.32, + "probability": 0.9558 + }, + { + "start": 1285.7, + "end": 1286.86, + "probability": 0.9538 + }, + { + "start": 1287.6, + "end": 1289.48, + "probability": 0.9983 + }, + { + "start": 1290.12, + "end": 1292.1, + "probability": 0.9771 + }, + { + "start": 1292.38, + "end": 1293.04, + "probability": 0.9625 + }, + { + "start": 1294.1, + "end": 1296.56, + "probability": 0.9897 + }, + { + "start": 1297.48, + "end": 1298.86, + "probability": 0.9661 + }, + { + "start": 1299.32, + "end": 1302.6, + "probability": 0.8659 + }, + { + "start": 1303.08, + "end": 1306.6, + "probability": 0.9981 + }, + { + "start": 1307.26, + "end": 1309.72, + "probability": 0.9987 + }, + { + "start": 1311.64, + "end": 1314.4, + "probability": 0.9935 + }, + { + "start": 1316.16, + "end": 1317.04, + "probability": 0.8737 + }, + { + "start": 1317.62, + "end": 1319.44, + "probability": 0.9924 + }, + { + "start": 1319.9, + "end": 1321.32, + "probability": 0.9273 + }, + { + "start": 1321.82, + "end": 1322.76, + "probability": 0.9048 + }, + { + "start": 1323.3, + "end": 1327.2, + "probability": 0.9684 + }, + { + "start": 1327.74, + "end": 1330.5, + "probability": 0.9935 + }, + { + "start": 1330.5, + "end": 1334.6, + "probability": 0.9362 + }, + { + "start": 1335.58, + "end": 1337.72, + "probability": 0.987 + }, + { + "start": 1338.42, + "end": 1343.28, + "probability": 0.996 + }, + { + "start": 1344.3, + "end": 1344.74, + "probability": 0.9289 + }, + { + "start": 1345.26, + "end": 1347.56, + "probability": 0.8279 + }, + { + "start": 1348.04, + "end": 1351.0, + "probability": 0.8636 + }, + { + "start": 1351.14, + "end": 1352.46, + "probability": 0.967 + }, + { + "start": 1352.88, + "end": 1354.84, + "probability": 0.9914 + }, + { + "start": 1355.08, + "end": 1355.58, + "probability": 0.6073 + }, + { + "start": 1355.7, + "end": 1356.42, + "probability": 0.7914 + }, + { + "start": 1356.48, + "end": 1357.44, + "probability": 0.9799 + }, + { + "start": 1357.66, + "end": 1358.5, + "probability": 0.991 + }, + { + "start": 1358.68, + "end": 1359.24, + "probability": 0.9044 + }, + { + "start": 1359.32, + "end": 1359.84, + "probability": 0.538 + }, + { + "start": 1360.52, + "end": 1363.46, + "probability": 0.8547 + }, + { + "start": 1363.6, + "end": 1364.72, + "probability": 0.9395 + }, + { + "start": 1365.56, + "end": 1371.42, + "probability": 0.9951 + }, + { + "start": 1371.62, + "end": 1374.14, + "probability": 0.9834 + }, + { + "start": 1374.54, + "end": 1380.8, + "probability": 0.978 + }, + { + "start": 1380.98, + "end": 1381.78, + "probability": 0.7291 + }, + { + "start": 1382.16, + "end": 1382.98, + "probability": 0.9111 + }, + { + "start": 1384.54, + "end": 1385.18, + "probability": 0.7379 + }, + { + "start": 1385.24, + "end": 1387.12, + "probability": 0.874 + }, + { + "start": 1388.26, + "end": 1391.2, + "probability": 0.9927 + }, + { + "start": 1392.02, + "end": 1394.76, + "probability": 0.875 + }, + { + "start": 1395.36, + "end": 1399.06, + "probability": 0.9722 + }, + { + "start": 1400.96, + "end": 1404.1, + "probability": 0.9844 + }, + { + "start": 1404.16, + "end": 1404.8, + "probability": 0.5506 + }, + { + "start": 1404.86, + "end": 1407.22, + "probability": 0.8401 + }, + { + "start": 1408.48, + "end": 1409.34, + "probability": 0.939 + }, + { + "start": 1409.54, + "end": 1409.8, + "probability": 0.6487 + }, + { + "start": 1409.82, + "end": 1411.1, + "probability": 0.9599 + }, + { + "start": 1411.24, + "end": 1414.04, + "probability": 0.9814 + }, + { + "start": 1414.2, + "end": 1415.32, + "probability": 0.4205 + }, + { + "start": 1415.94, + "end": 1419.12, + "probability": 0.9866 + }, + { + "start": 1419.83, + "end": 1422.36, + "probability": 0.9961 + }, + { + "start": 1422.52, + "end": 1423.86, + "probability": 0.9971 + }, + { + "start": 1424.68, + "end": 1425.88, + "probability": 0.998 + }, + { + "start": 1425.94, + "end": 1427.87, + "probability": 0.9907 + }, + { + "start": 1428.86, + "end": 1431.98, + "probability": 0.9966 + }, + { + "start": 1432.0, + "end": 1434.98, + "probability": 0.9971 + }, + { + "start": 1435.54, + "end": 1436.96, + "probability": 0.8083 + }, + { + "start": 1437.86, + "end": 1438.85, + "probability": 0.9314 + }, + { + "start": 1439.24, + "end": 1441.72, + "probability": 0.9963 + }, + { + "start": 1441.72, + "end": 1444.23, + "probability": 0.9549 + }, + { + "start": 1444.72, + "end": 1446.38, + "probability": 0.9273 + }, + { + "start": 1447.42, + "end": 1451.96, + "probability": 0.9979 + }, + { + "start": 1452.54, + "end": 1452.88, + "probability": 0.7949 + }, + { + "start": 1453.1, + "end": 1453.6, + "probability": 0.8535 + }, + { + "start": 1453.7, + "end": 1456.04, + "probability": 0.9717 + }, + { + "start": 1456.04, + "end": 1459.46, + "probability": 0.9308 + }, + { + "start": 1459.72, + "end": 1460.23, + "probability": 0.9315 + }, + { + "start": 1461.68, + "end": 1462.52, + "probability": 0.969 + }, + { + "start": 1462.66, + "end": 1464.68, + "probability": 0.7377 + }, + { + "start": 1465.59, + "end": 1468.32, + "probability": 0.9961 + }, + { + "start": 1468.8, + "end": 1472.42, + "probability": 0.9978 + }, + { + "start": 1473.14, + "end": 1477.86, + "probability": 0.9911 + }, + { + "start": 1477.86, + "end": 1481.88, + "probability": 0.9755 + }, + { + "start": 1481.88, + "end": 1485.14, + "probability": 0.9993 + }, + { + "start": 1486.1, + "end": 1488.52, + "probability": 0.9973 + }, + { + "start": 1488.6, + "end": 1489.88, + "probability": 0.9575 + }, + { + "start": 1490.4, + "end": 1491.08, + "probability": 0.8295 + }, + { + "start": 1491.16, + "end": 1492.06, + "probability": 0.9388 + }, + { + "start": 1492.18, + "end": 1493.62, + "probability": 0.8974 + }, + { + "start": 1494.7, + "end": 1499.02, + "probability": 0.9959 + }, + { + "start": 1499.02, + "end": 1502.16, + "probability": 0.9949 + }, + { + "start": 1502.48, + "end": 1503.8, + "probability": 0.9893 + }, + { + "start": 1504.54, + "end": 1507.16, + "probability": 0.9979 + }, + { + "start": 1507.42, + "end": 1508.3, + "probability": 0.8853 + }, + { + "start": 1508.8, + "end": 1509.16, + "probability": 0.2721 + }, + { + "start": 1509.32, + "end": 1510.64, + "probability": 0.3275 + }, + { + "start": 1510.64, + "end": 1512.22, + "probability": 0.7674 + }, + { + "start": 1512.82, + "end": 1513.82, + "probability": 0.8783 + }, + { + "start": 1514.42, + "end": 1515.44, + "probability": 0.503 + }, + { + "start": 1516.04, + "end": 1516.68, + "probability": 0.571 + }, + { + "start": 1517.18, + "end": 1519.68, + "probability": 0.9277 + }, + { + "start": 1520.0, + "end": 1520.26, + "probability": 0.8989 + }, + { + "start": 1520.7, + "end": 1522.76, + "probability": 0.9165 + }, + { + "start": 1523.74, + "end": 1525.76, + "probability": 0.7071 + }, + { + "start": 1526.54, + "end": 1530.3, + "probability": 0.9418 + }, + { + "start": 1530.68, + "end": 1533.64, + "probability": 0.9367 + }, + { + "start": 1533.84, + "end": 1534.44, + "probability": 0.7281 + }, + { + "start": 1542.56, + "end": 1544.06, + "probability": 0.7494 + }, + { + "start": 1545.56, + "end": 1550.58, + "probability": 0.826 + }, + { + "start": 1551.2, + "end": 1552.52, + "probability": 0.9971 + }, + { + "start": 1553.34, + "end": 1556.82, + "probability": 0.9644 + }, + { + "start": 1557.84, + "end": 1562.16, + "probability": 0.9929 + }, + { + "start": 1562.78, + "end": 1563.72, + "probability": 0.7785 + }, + { + "start": 1564.46, + "end": 1565.22, + "probability": 0.7474 + }, + { + "start": 1565.96, + "end": 1566.26, + "probability": 0.6689 + }, + { + "start": 1568.02, + "end": 1571.26, + "probability": 0.923 + }, + { + "start": 1571.88, + "end": 1573.98, + "probability": 0.9325 + }, + { + "start": 1574.62, + "end": 1576.72, + "probability": 0.9864 + }, + { + "start": 1577.48, + "end": 1581.28, + "probability": 0.973 + }, + { + "start": 1582.34, + "end": 1586.64, + "probability": 0.9847 + }, + { + "start": 1587.68, + "end": 1591.28, + "probability": 0.9956 + }, + { + "start": 1592.16, + "end": 1595.36, + "probability": 0.9924 + }, + { + "start": 1597.2, + "end": 1598.52, + "probability": 0.7169 + }, + { + "start": 1599.26, + "end": 1608.08, + "probability": 0.9709 + }, + { + "start": 1609.38, + "end": 1610.34, + "probability": 0.7222 + }, + { + "start": 1610.5, + "end": 1616.54, + "probability": 0.974 + }, + { + "start": 1617.1, + "end": 1620.32, + "probability": 0.9798 + }, + { + "start": 1620.52, + "end": 1624.88, + "probability": 0.9883 + }, + { + "start": 1624.88, + "end": 1629.34, + "probability": 0.9984 + }, + { + "start": 1630.36, + "end": 1630.84, + "probability": 0.4528 + }, + { + "start": 1631.66, + "end": 1633.82, + "probability": 0.9324 + }, + { + "start": 1634.86, + "end": 1642.26, + "probability": 0.9534 + }, + { + "start": 1642.26, + "end": 1646.8, + "probability": 0.995 + }, + { + "start": 1647.06, + "end": 1649.36, + "probability": 0.9753 + }, + { + "start": 1649.98, + "end": 1652.22, + "probability": 0.8625 + }, + { + "start": 1652.74, + "end": 1657.14, + "probability": 0.839 + }, + { + "start": 1657.74, + "end": 1659.8, + "probability": 0.9873 + }, + { + "start": 1661.04, + "end": 1664.64, + "probability": 0.9814 + }, + { + "start": 1665.44, + "end": 1666.59, + "probability": 0.7965 + }, + { + "start": 1666.86, + "end": 1667.64, + "probability": 0.9543 + }, + { + "start": 1668.3, + "end": 1669.76, + "probability": 0.7824 + }, + { + "start": 1669.82, + "end": 1670.1, + "probability": 0.8516 + }, + { + "start": 1670.6, + "end": 1672.42, + "probability": 0.7431 + }, + { + "start": 1672.54, + "end": 1675.08, + "probability": 0.9545 + }, + { + "start": 1675.58, + "end": 1675.96, + "probability": 0.6878 + }, + { + "start": 1678.46, + "end": 1679.02, + "probability": 0.6636 + }, + { + "start": 1679.16, + "end": 1679.84, + "probability": 0.8356 + }, + { + "start": 1679.98, + "end": 1680.2, + "probability": 0.6098 + }, + { + "start": 1680.3, + "end": 1684.46, + "probability": 0.9108 + }, + { + "start": 1685.08, + "end": 1685.88, + "probability": 0.8159 + }, + { + "start": 1687.3, + "end": 1689.24, + "probability": 0.66 + }, + { + "start": 1690.06, + "end": 1694.1, + "probability": 0.918 + }, + { + "start": 1695.06, + "end": 1696.06, + "probability": 0.8816 + }, + { + "start": 1696.32, + "end": 1697.1, + "probability": 0.9738 + }, + { + "start": 1697.16, + "end": 1698.24, + "probability": 0.9816 + }, + { + "start": 1699.08, + "end": 1701.94, + "probability": 0.2766 + }, + { + "start": 1701.94, + "end": 1701.94, + "probability": 0.0724 + }, + { + "start": 1701.94, + "end": 1704.3, + "probability": 0.3841 + }, + { + "start": 1704.78, + "end": 1708.48, + "probability": 0.4806 + }, + { + "start": 1708.54, + "end": 1710.78, + "probability": 0.9723 + }, + { + "start": 1711.48, + "end": 1714.62, + "probability": 0.7685 + }, + { + "start": 1715.24, + "end": 1716.18, + "probability": 0.8378 + }, + { + "start": 1716.32, + "end": 1717.94, + "probability": 0.832 + }, + { + "start": 1718.04, + "end": 1722.36, + "probability": 0.9155 + }, + { + "start": 1722.56, + "end": 1724.86, + "probability": 0.519 + }, + { + "start": 1725.18, + "end": 1726.42, + "probability": 0.856 + }, + { + "start": 1726.74, + "end": 1727.74, + "probability": 0.989 + }, + { + "start": 1728.32, + "end": 1732.51, + "probability": 0.9265 + }, + { + "start": 1733.02, + "end": 1737.76, + "probability": 0.9885 + }, + { + "start": 1738.44, + "end": 1740.22, + "probability": 0.7256 + }, + { + "start": 1740.3, + "end": 1741.38, + "probability": 0.5982 + }, + { + "start": 1741.64, + "end": 1742.08, + "probability": 0.6044 + }, + { + "start": 1742.24, + "end": 1742.62, + "probability": 0.3872 + }, + { + "start": 1742.66, + "end": 1743.08, + "probability": 0.7458 + }, + { + "start": 1743.58, + "end": 1746.4, + "probability": 0.9329 + }, + { + "start": 1746.92, + "end": 1749.52, + "probability": 0.7537 + }, + { + "start": 1749.52, + "end": 1751.6, + "probability": 0.5139 + }, + { + "start": 1752.3, + "end": 1754.12, + "probability": 0.988 + }, + { + "start": 1754.8, + "end": 1755.02, + "probability": 0.6258 + }, + { + "start": 1755.46, + "end": 1759.68, + "probability": 0.8063 + }, + { + "start": 1760.36, + "end": 1765.74, + "probability": 0.9504 + }, + { + "start": 1766.68, + "end": 1767.78, + "probability": 0.9492 + }, + { + "start": 1768.06, + "end": 1769.94, + "probability": 0.9944 + }, + { + "start": 1770.06, + "end": 1772.16, + "probability": 0.9043 + }, + { + "start": 1772.52, + "end": 1775.06, + "probability": 0.7604 + }, + { + "start": 1775.62, + "end": 1777.56, + "probability": 0.9876 + }, + { + "start": 1778.34, + "end": 1781.76, + "probability": 0.7012 + }, + { + "start": 1781.76, + "end": 1783.2, + "probability": 0.84 + }, + { + "start": 1783.38, + "end": 1786.74, + "probability": 0.9861 + }, + { + "start": 1788.42, + "end": 1790.38, + "probability": 0.9611 + }, + { + "start": 1790.42, + "end": 1791.68, + "probability": 0.9083 + }, + { + "start": 1792.1, + "end": 1796.74, + "probability": 0.9805 + }, + { + "start": 1796.74, + "end": 1801.38, + "probability": 0.9988 + }, + { + "start": 1801.38, + "end": 1805.76, + "probability": 0.9986 + }, + { + "start": 1806.16, + "end": 1808.24, + "probability": 0.9975 + }, + { + "start": 1808.92, + "end": 1812.32, + "probability": 0.8425 + }, + { + "start": 1812.46, + "end": 1813.84, + "probability": 0.7374 + }, + { + "start": 1813.86, + "end": 1814.94, + "probability": 0.6511 + }, + { + "start": 1815.56, + "end": 1816.64, + "probability": 0.754 + }, + { + "start": 1817.4, + "end": 1819.5, + "probability": 0.9295 + }, + { + "start": 1819.66, + "end": 1821.22, + "probability": 0.9136 + }, + { + "start": 1821.86, + "end": 1825.2, + "probability": 0.9837 + }, + { + "start": 1825.44, + "end": 1827.26, + "probability": 0.8612 + }, + { + "start": 1827.8, + "end": 1829.34, + "probability": 0.9861 + }, + { + "start": 1829.86, + "end": 1835.32, + "probability": 0.9933 + }, + { + "start": 1835.92, + "end": 1837.06, + "probability": 0.9409 + }, + { + "start": 1837.06, + "end": 1838.32, + "probability": 0.9561 + }, + { + "start": 1838.82, + "end": 1840.4, + "probability": 0.8604 + }, + { + "start": 1840.54, + "end": 1844.96, + "probability": 0.9756 + }, + { + "start": 1845.0, + "end": 1846.98, + "probability": 0.907 + }, + { + "start": 1847.34, + "end": 1850.22, + "probability": 0.9531 + }, + { + "start": 1850.92, + "end": 1852.59, + "probability": 0.7949 + }, + { + "start": 1852.68, + "end": 1854.0, + "probability": 0.8064 + }, + { + "start": 1854.34, + "end": 1857.28, + "probability": 0.8209 + }, + { + "start": 1857.56, + "end": 1862.44, + "probability": 0.9755 + }, + { + "start": 1862.48, + "end": 1863.56, + "probability": 0.8503 + }, + { + "start": 1863.7, + "end": 1865.02, + "probability": 0.9714 + }, + { + "start": 1865.16, + "end": 1867.9, + "probability": 0.9966 + }, + { + "start": 1868.06, + "end": 1870.92, + "probability": 0.9978 + }, + { + "start": 1870.92, + "end": 1874.1, + "probability": 0.9672 + }, + { + "start": 1874.74, + "end": 1876.1, + "probability": 0.9464 + }, + { + "start": 1876.28, + "end": 1882.82, + "probability": 0.9792 + }, + { + "start": 1883.0, + "end": 1883.74, + "probability": 0.6269 + }, + { + "start": 1883.96, + "end": 1884.8, + "probability": 0.6979 + }, + { + "start": 1884.92, + "end": 1887.4, + "probability": 0.941 + }, + { + "start": 1887.48, + "end": 1888.78, + "probability": 0.9727 + }, + { + "start": 1889.2, + "end": 1890.5, + "probability": 0.5433 + }, + { + "start": 1890.68, + "end": 1891.96, + "probability": 0.8962 + }, + { + "start": 1892.64, + "end": 1894.74, + "probability": 0.9563 + }, + { + "start": 1894.98, + "end": 1901.28, + "probability": 0.9359 + }, + { + "start": 1901.96, + "end": 1904.56, + "probability": 0.8307 + }, + { + "start": 1907.66, + "end": 1909.04, + "probability": 0.6672 + }, + { + "start": 1915.9, + "end": 1919.82, + "probability": 0.8283 + }, + { + "start": 1919.82, + "end": 1920.64, + "probability": 0.2161 + }, + { + "start": 1921.26, + "end": 1921.56, + "probability": 0.2399 + }, + { + "start": 1922.44, + "end": 1925.12, + "probability": 0.9331 + }, + { + "start": 1925.14, + "end": 1926.74, + "probability": 0.9282 + }, + { + "start": 1927.44, + "end": 1930.7, + "probability": 0.6179 + }, + { + "start": 1931.08, + "end": 1933.7, + "probability": 0.9368 + }, + { + "start": 1934.32, + "end": 1936.58, + "probability": 0.9233 + }, + { + "start": 1937.5, + "end": 1937.68, + "probability": 0.0271 + }, + { + "start": 1940.24, + "end": 1941.28, + "probability": 0.0225 + }, + { + "start": 1942.37, + "end": 1946.64, + "probability": 0.7251 + }, + { + "start": 1946.92, + "end": 1947.3, + "probability": 0.6316 + }, + { + "start": 1947.52, + "end": 1949.52, + "probability": 0.9932 + }, + { + "start": 1949.6, + "end": 1950.53, + "probability": 0.6092 + }, + { + "start": 1950.62, + "end": 1953.32, + "probability": 0.8027 + }, + { + "start": 1953.64, + "end": 1956.08, + "probability": 0.6214 + }, + { + "start": 1965.52, + "end": 1968.84, + "probability": 0.9493 + }, + { + "start": 1968.9, + "end": 1971.18, + "probability": 0.8617 + }, + { + "start": 1972.22, + "end": 1972.92, + "probability": 0.5642 + }, + { + "start": 1973.04, + "end": 1973.58, + "probability": 0.7095 + }, + { + "start": 1973.66, + "end": 1973.78, + "probability": 0.5535 + }, + { + "start": 1977.7, + "end": 1978.2, + "probability": 0.6209 + }, + { + "start": 1981.88, + "end": 1985.68, + "probability": 0.677 + }, + { + "start": 1992.04, + "end": 1992.04, + "probability": 0.1329 + }, + { + "start": 1992.04, + "end": 1994.22, + "probability": 0.1469 + }, + { + "start": 1994.48, + "end": 1995.82, + "probability": 0.7843 + }, + { + "start": 1996.6, + "end": 2000.78, + "probability": 0.9902 + }, + { + "start": 2002.38, + "end": 2003.88, + "probability": 0.9803 + }, + { + "start": 2005.8, + "end": 2006.9, + "probability": 0.7659 + }, + { + "start": 2007.1, + "end": 2008.14, + "probability": 0.6317 + }, + { + "start": 2008.22, + "end": 2009.76, + "probability": 0.9254 + }, + { + "start": 2009.94, + "end": 2010.5, + "probability": 0.6727 + }, + { + "start": 2010.5, + "end": 2014.22, + "probability": 0.637 + }, + { + "start": 2014.36, + "end": 2017.08, + "probability": 0.3714 + }, + { + "start": 2017.12, + "end": 2019.54, + "probability": 0.7495 + }, + { + "start": 2019.54, + "end": 2023.14, + "probability": 0.6051 + }, + { + "start": 2024.34, + "end": 2025.88, + "probability": 0.8596 + }, + { + "start": 2026.36, + "end": 2028.22, + "probability": 0.669 + }, + { + "start": 2028.38, + "end": 2030.76, + "probability": 0.9116 + }, + { + "start": 2030.76, + "end": 2030.86, + "probability": 0.7323 + }, + { + "start": 2032.7, + "end": 2034.5, + "probability": 0.9555 + }, + { + "start": 2034.58, + "end": 2035.1, + "probability": 0.8378 + }, + { + "start": 2035.16, + "end": 2038.72, + "probability": 0.8838 + }, + { + "start": 2038.8, + "end": 2039.6, + "probability": 0.7732 + }, + { + "start": 2039.88, + "end": 2042.48, + "probability": 0.9862 + }, + { + "start": 2042.48, + "end": 2045.22, + "probability": 0.9987 + }, + { + "start": 2046.02, + "end": 2047.2, + "probability": 0.6071 + }, + { + "start": 2048.56, + "end": 2050.66, + "probability": 0.6607 + }, + { + "start": 2050.78, + "end": 2053.5, + "probability": 0.569 + }, + { + "start": 2053.68, + "end": 2055.52, + "probability": 0.8768 + }, + { + "start": 2055.6, + "end": 2056.56, + "probability": 0.7399 + }, + { + "start": 2080.48, + "end": 2081.88, + "probability": 0.7226 + }, + { + "start": 2084.64, + "end": 2087.16, + "probability": 0.8855 + }, + { + "start": 2088.58, + "end": 2090.22, + "probability": 0.9064 + }, + { + "start": 2090.52, + "end": 2091.1, + "probability": 0.7666 + }, + { + "start": 2091.12, + "end": 2092.1, + "probability": 0.719 + }, + { + "start": 2092.12, + "end": 2094.64, + "probability": 0.8229 + }, + { + "start": 2094.86, + "end": 2097.26, + "probability": 0.9722 + }, + { + "start": 2097.88, + "end": 2098.84, + "probability": 0.5253 + }, + { + "start": 2099.0, + "end": 2101.48, + "probability": 0.9204 + }, + { + "start": 2103.32, + "end": 2103.4, + "probability": 0.2768 + }, + { + "start": 2103.4, + "end": 2104.52, + "probability": 0.8974 + }, + { + "start": 2104.54, + "end": 2105.4, + "probability": 0.701 + }, + { + "start": 2105.48, + "end": 2105.94, + "probability": 0.832 + }, + { + "start": 2106.02, + "end": 2106.86, + "probability": 0.7573 + }, + { + "start": 2109.06, + "end": 2109.06, + "probability": 0.1355 + }, + { + "start": 2109.06, + "end": 2110.46, + "probability": 0.6108 + }, + { + "start": 2111.9, + "end": 2116.32, + "probability": 0.8562 + }, + { + "start": 2117.1, + "end": 2118.78, + "probability": 0.98 + }, + { + "start": 2121.32, + "end": 2122.82, + "probability": 0.8168 + }, + { + "start": 2123.74, + "end": 2125.16, + "probability": 0.995 + }, + { + "start": 2126.28, + "end": 2127.66, + "probability": 0.8472 + }, + { + "start": 2128.58, + "end": 2131.68, + "probability": 0.8642 + }, + { + "start": 2132.62, + "end": 2134.14, + "probability": 0.8926 + }, + { + "start": 2137.85, + "end": 2138.63, + "probability": 0.7106 + }, + { + "start": 2142.44, + "end": 2143.58, + "probability": 0.3634 + }, + { + "start": 2144.92, + "end": 2146.28, + "probability": 0.7459 + }, + { + "start": 2147.56, + "end": 2150.22, + "probability": 0.9863 + }, + { + "start": 2151.4, + "end": 2153.88, + "probability": 0.5205 + }, + { + "start": 2156.56, + "end": 2160.08, + "probability": 0.8902 + }, + { + "start": 2162.3, + "end": 2163.14, + "probability": 0.5754 + }, + { + "start": 2165.26, + "end": 2169.6, + "probability": 0.9796 + }, + { + "start": 2171.14, + "end": 2175.54, + "probability": 0.9802 + }, + { + "start": 2175.94, + "end": 2180.04, + "probability": 0.9504 + }, + { + "start": 2182.06, + "end": 2184.54, + "probability": 0.9706 + }, + { + "start": 2186.04, + "end": 2188.2, + "probability": 0.9469 + }, + { + "start": 2189.38, + "end": 2192.21, + "probability": 0.9956 + }, + { + "start": 2192.62, + "end": 2196.6, + "probability": 0.9906 + }, + { + "start": 2199.66, + "end": 2201.83, + "probability": 0.98 + }, + { + "start": 2202.46, + "end": 2203.22, + "probability": 0.7298 + }, + { + "start": 2206.64, + "end": 2211.5, + "probability": 0.8661 + }, + { + "start": 2212.14, + "end": 2214.18, + "probability": 0.3963 + }, + { + "start": 2216.84, + "end": 2218.35, + "probability": 0.5934 + }, + { + "start": 2219.82, + "end": 2222.88, + "probability": 0.9219 + }, + { + "start": 2223.6, + "end": 2228.58, + "probability": 0.9835 + }, + { + "start": 2229.3, + "end": 2234.84, + "probability": 0.9993 + }, + { + "start": 2236.28, + "end": 2236.74, + "probability": 0.8312 + }, + { + "start": 2236.84, + "end": 2237.36, + "probability": 0.6347 + }, + { + "start": 2237.58, + "end": 2241.06, + "probability": 0.9648 + }, + { + "start": 2242.58, + "end": 2248.88, + "probability": 0.9698 + }, + { + "start": 2249.0, + "end": 2250.28, + "probability": 0.9941 + }, + { + "start": 2250.4, + "end": 2251.9, + "probability": 0.8437 + }, + { + "start": 2252.54, + "end": 2255.12, + "probability": 0.984 + }, + { + "start": 2255.7, + "end": 2259.74, + "probability": 0.915 + }, + { + "start": 2260.44, + "end": 2262.58, + "probability": 0.7885 + }, + { + "start": 2262.7, + "end": 2264.08, + "probability": 0.6122 + }, + { + "start": 2264.52, + "end": 2266.2, + "probability": 0.759 + }, + { + "start": 2266.54, + "end": 2270.82, + "probability": 0.9616 + }, + { + "start": 2271.52, + "end": 2277.16, + "probability": 0.7371 + }, + { + "start": 2277.16, + "end": 2281.72, + "probability": 0.9592 + }, + { + "start": 2281.88, + "end": 2287.0, + "probability": 0.8491 + }, + { + "start": 2287.5, + "end": 2288.72, + "probability": 0.9951 + }, + { + "start": 2289.04, + "end": 2289.48, + "probability": 0.6194 + }, + { + "start": 2289.64, + "end": 2291.34, + "probability": 0.9907 + }, + { + "start": 2292.28, + "end": 2294.18, + "probability": 0.7383 + }, + { + "start": 2294.6, + "end": 2296.98, + "probability": 0.7374 + }, + { + "start": 2297.46, + "end": 2300.2, + "probability": 0.9966 + }, + { + "start": 2300.2, + "end": 2304.02, + "probability": 0.9917 + }, + { + "start": 2304.12, + "end": 2304.74, + "probability": 0.5217 + }, + { + "start": 2305.82, + "end": 2306.46, + "probability": 0.816 + }, + { + "start": 2306.52, + "end": 2309.3, + "probability": 0.8026 + }, + { + "start": 2309.68, + "end": 2311.56, + "probability": 0.8184 + }, + { + "start": 2313.0, + "end": 2315.56, + "probability": 0.8888 + }, + { + "start": 2316.14, + "end": 2323.36, + "probability": 0.8688 + }, + { + "start": 2324.86, + "end": 2328.38, + "probability": 0.8223 + }, + { + "start": 2329.32, + "end": 2330.1, + "probability": 0.9469 + }, + { + "start": 2330.64, + "end": 2334.72, + "probability": 0.9863 + }, + { + "start": 2335.06, + "end": 2337.92, + "probability": 0.9976 + }, + { + "start": 2339.44, + "end": 2340.98, + "probability": 0.9597 + }, + { + "start": 2341.84, + "end": 2346.48, + "probability": 0.9956 + }, + { + "start": 2349.78, + "end": 2352.68, + "probability": 0.8771 + }, + { + "start": 2352.68, + "end": 2354.52, + "probability": 0.3136 + }, + { + "start": 2354.88, + "end": 2356.12, + "probability": 0.8757 + }, + { + "start": 2356.12, + "end": 2357.12, + "probability": 0.6807 + }, + { + "start": 2357.12, + "end": 2358.02, + "probability": 0.8828 + }, + { + "start": 2358.76, + "end": 2359.16, + "probability": 0.3265 + }, + { + "start": 2359.4, + "end": 2363.3, + "probability": 0.9449 + }, + { + "start": 2364.13, + "end": 2366.96, + "probability": 0.9825 + }, + { + "start": 2367.96, + "end": 2369.18, + "probability": 0.8991 + }, + { + "start": 2370.14, + "end": 2371.9, + "probability": 0.7574 + }, + { + "start": 2372.52, + "end": 2375.62, + "probability": 0.825 + }, + { + "start": 2375.8, + "end": 2378.46, + "probability": 0.8449 + }, + { + "start": 2379.08, + "end": 2382.44, + "probability": 0.897 + }, + { + "start": 2383.02, + "end": 2385.34, + "probability": 0.6765 + }, + { + "start": 2385.36, + "end": 2386.24, + "probability": 0.0371 + }, + { + "start": 2386.56, + "end": 2387.12, + "probability": 0.8403 + }, + { + "start": 2387.86, + "end": 2389.98, + "probability": 0.9419 + }, + { + "start": 2390.24, + "end": 2393.38, + "probability": 0.8739 + }, + { + "start": 2393.44, + "end": 2395.54, + "probability": 0.5043 + }, + { + "start": 2395.8, + "end": 2399.14, + "probability": 0.9653 + }, + { + "start": 2399.26, + "end": 2399.78, + "probability": 0.7487 + }, + { + "start": 2400.02, + "end": 2405.5, + "probability": 0.9927 + }, + { + "start": 2405.88, + "end": 2407.5, + "probability": 0.746 + }, + { + "start": 2407.58, + "end": 2408.54, + "probability": 0.8958 + }, + { + "start": 2409.1, + "end": 2414.14, + "probability": 0.5587 + }, + { + "start": 2414.18, + "end": 2417.3, + "probability": 0.9395 + }, + { + "start": 2417.64, + "end": 2418.54, + "probability": 0.9915 + }, + { + "start": 2418.66, + "end": 2423.76, + "probability": 0.9851 + }, + { + "start": 2423.76, + "end": 2428.6, + "probability": 0.9186 + }, + { + "start": 2429.42, + "end": 2430.52, + "probability": 0.9373 + }, + { + "start": 2430.68, + "end": 2431.68, + "probability": 0.6266 + }, + { + "start": 2431.78, + "end": 2437.78, + "probability": 0.9646 + }, + { + "start": 2438.4, + "end": 2440.76, + "probability": 0.8906 + }, + { + "start": 2441.56, + "end": 2442.46, + "probability": 0.763 + }, + { + "start": 2444.5, + "end": 2446.9, + "probability": 0.9612 + }, + { + "start": 2447.68, + "end": 2451.88, + "probability": 0.9703 + }, + { + "start": 2452.86, + "end": 2454.48, + "probability": 0.7606 + }, + { + "start": 2454.62, + "end": 2458.9, + "probability": 0.9489 + }, + { + "start": 2459.46, + "end": 2462.5, + "probability": 0.9468 + }, + { + "start": 2463.28, + "end": 2463.44, + "probability": 0.6089 + }, + { + "start": 2464.54, + "end": 2467.64, + "probability": 0.9902 + }, + { + "start": 2468.06, + "end": 2469.5, + "probability": 0.9504 + }, + { + "start": 2469.9, + "end": 2471.4, + "probability": 0.9745 + }, + { + "start": 2472.12, + "end": 2472.8, + "probability": 0.5402 + }, + { + "start": 2473.84, + "end": 2476.66, + "probability": 0.7678 + }, + { + "start": 2477.58, + "end": 2478.63, + "probability": 0.8442 + }, + { + "start": 2479.44, + "end": 2480.34, + "probability": 0.9935 + }, + { + "start": 2481.02, + "end": 2483.16, + "probability": 0.9746 + }, + { + "start": 2483.3, + "end": 2484.38, + "probability": 0.942 + }, + { + "start": 2484.74, + "end": 2485.04, + "probability": 0.4881 + }, + { + "start": 2485.79, + "end": 2490.64, + "probability": 0.9946 + }, + { + "start": 2491.26, + "end": 2497.9, + "probability": 0.9466 + }, + { + "start": 2498.36, + "end": 2499.92, + "probability": 0.3982 + }, + { + "start": 2500.14, + "end": 2500.38, + "probability": 0.4127 + }, + { + "start": 2500.42, + "end": 2502.52, + "probability": 0.7886 + }, + { + "start": 2502.9, + "end": 2503.48, + "probability": 0.6657 + }, + { + "start": 2503.58, + "end": 2505.8, + "probability": 0.9728 + }, + { + "start": 2506.42, + "end": 2513.34, + "probability": 0.9609 + }, + { + "start": 2514.16, + "end": 2516.62, + "probability": 0.4803 + }, + { + "start": 2516.8, + "end": 2518.04, + "probability": 0.8218 + }, + { + "start": 2518.04, + "end": 2521.36, + "probability": 0.9302 + }, + { + "start": 2521.44, + "end": 2522.88, + "probability": 0.8443 + }, + { + "start": 2523.08, + "end": 2524.04, + "probability": 0.9346 + }, + { + "start": 2524.08, + "end": 2524.96, + "probability": 0.7972 + }, + { + "start": 2525.18, + "end": 2527.84, + "probability": 0.7949 + }, + { + "start": 2528.18, + "end": 2529.14, + "probability": 0.8155 + }, + { + "start": 2529.82, + "end": 2531.24, + "probability": 0.964 + }, + { + "start": 2531.78, + "end": 2534.96, + "probability": 0.9237 + }, + { + "start": 2535.04, + "end": 2538.7, + "probability": 0.9736 + }, + { + "start": 2539.02, + "end": 2543.02, + "probability": 0.9746 + }, + { + "start": 2543.16, + "end": 2547.76, + "probability": 0.7371 + }, + { + "start": 2548.32, + "end": 2550.44, + "probability": 0.9873 + }, + { + "start": 2550.44, + "end": 2553.36, + "probability": 0.7708 + }, + { + "start": 2555.64, + "end": 2556.26, + "probability": 0.4986 + }, + { + "start": 2556.34, + "end": 2557.76, + "probability": 0.9296 + }, + { + "start": 2557.8, + "end": 2560.2, + "probability": 0.8339 + }, + { + "start": 2560.64, + "end": 2561.94, + "probability": 0.7543 + }, + { + "start": 2562.02, + "end": 2562.5, + "probability": 0.4416 + }, + { + "start": 2562.58, + "end": 2563.52, + "probability": 0.5221 + }, + { + "start": 2564.06, + "end": 2565.78, + "probability": 0.8923 + }, + { + "start": 2566.38, + "end": 2568.98, + "probability": 0.6697 + }, + { + "start": 2569.86, + "end": 2572.68, + "probability": 0.8971 + }, + { + "start": 2572.84, + "end": 2573.36, + "probability": 0.5339 + }, + { + "start": 2573.44, + "end": 2574.14, + "probability": 0.7114 + }, + { + "start": 2574.88, + "end": 2578.96, + "probability": 0.9932 + }, + { + "start": 2579.27, + "end": 2581.96, + "probability": 0.97 + }, + { + "start": 2582.56, + "end": 2586.02, + "probability": 0.8678 + }, + { + "start": 2586.54, + "end": 2587.48, + "probability": 0.5055 + }, + { + "start": 2588.18, + "end": 2588.88, + "probability": 0.9208 + }, + { + "start": 2589.46, + "end": 2591.16, + "probability": 0.9825 + }, + { + "start": 2591.58, + "end": 2596.68, + "probability": 0.9736 + }, + { + "start": 2597.16, + "end": 2597.68, + "probability": 0.5934 + }, + { + "start": 2597.7, + "end": 2601.72, + "probability": 0.993 + }, + { + "start": 2602.08, + "end": 2610.8, + "probability": 0.981 + }, + { + "start": 2611.42, + "end": 2611.74, + "probability": 0.1815 + }, + { + "start": 2611.74, + "end": 2612.3, + "probability": 0.6845 + }, + { + "start": 2612.42, + "end": 2614.2, + "probability": 0.9978 + }, + { + "start": 2614.2, + "end": 2617.88, + "probability": 0.9976 + }, + { + "start": 2618.56, + "end": 2621.22, + "probability": 0.7782 + }, + { + "start": 2621.36, + "end": 2621.7, + "probability": 0.9346 + }, + { + "start": 2621.72, + "end": 2622.12, + "probability": 0.7615 + }, + { + "start": 2622.64, + "end": 2628.94, + "probability": 0.9955 + }, + { + "start": 2629.44, + "end": 2633.26, + "probability": 0.9929 + }, + { + "start": 2633.82, + "end": 2636.94, + "probability": 0.9661 + }, + { + "start": 2637.58, + "end": 2639.16, + "probability": 0.9973 + }, + { + "start": 2639.88, + "end": 2643.7, + "probability": 0.9603 + }, + { + "start": 2644.2, + "end": 2644.96, + "probability": 0.7334 + }, + { + "start": 2645.0, + "end": 2647.44, + "probability": 0.6696 + }, + { + "start": 2647.44, + "end": 2651.72, + "probability": 0.911 + }, + { + "start": 2653.79, + "end": 2658.36, + "probability": 0.9507 + }, + { + "start": 2658.84, + "end": 2662.34, + "probability": 0.8857 + }, + { + "start": 2662.52, + "end": 2666.02, + "probability": 0.9748 + }, + { + "start": 2666.52, + "end": 2668.04, + "probability": 0.9309 + }, + { + "start": 2668.7, + "end": 2669.7, + "probability": 0.6061 + }, + { + "start": 2669.8, + "end": 2670.86, + "probability": 0.5827 + }, + { + "start": 2671.24, + "end": 2674.32, + "probability": 0.986 + }, + { + "start": 2674.5, + "end": 2676.36, + "probability": 0.8091 + }, + { + "start": 2677.0, + "end": 2682.4, + "probability": 0.957 + }, + { + "start": 2682.68, + "end": 2684.98, + "probability": 0.9976 + }, + { + "start": 2685.88, + "end": 2686.06, + "probability": 0.7301 + }, + { + "start": 2686.46, + "end": 2688.96, + "probability": 0.9214 + }, + { + "start": 2690.86, + "end": 2695.62, + "probability": 0.9869 + }, + { + "start": 2695.7, + "end": 2696.18, + "probability": 0.7031 + }, + { + "start": 2724.56, + "end": 2726.72, + "probability": 0.6616 + }, + { + "start": 2728.02, + "end": 2729.28, + "probability": 0.7904 + }, + { + "start": 2729.38, + "end": 2733.18, + "probability": 0.9679 + }, + { + "start": 2734.02, + "end": 2735.64, + "probability": 0.815 + }, + { + "start": 2736.26, + "end": 2739.28, + "probability": 0.9964 + }, + { + "start": 2739.98, + "end": 2740.94, + "probability": 0.98 + }, + { + "start": 2741.46, + "end": 2744.18, + "probability": 0.9838 + }, + { + "start": 2745.2, + "end": 2750.1, + "probability": 0.7837 + }, + { + "start": 2750.1, + "end": 2754.1, + "probability": 0.9979 + }, + { + "start": 2754.58, + "end": 2756.5, + "probability": 0.8937 + }, + { + "start": 2757.02, + "end": 2764.8, + "probability": 0.9923 + }, + { + "start": 2765.8, + "end": 2767.48, + "probability": 0.8703 + }, + { + "start": 2768.24, + "end": 2772.56, + "probability": 0.9972 + }, + { + "start": 2772.57, + "end": 2778.34, + "probability": 0.9973 + }, + { + "start": 2779.34, + "end": 2780.84, + "probability": 0.9956 + }, + { + "start": 2781.66, + "end": 2785.5, + "probability": 0.9584 + }, + { + "start": 2786.34, + "end": 2790.3, + "probability": 0.9809 + }, + { + "start": 2791.44, + "end": 2792.56, + "probability": 0.6172 + }, + { + "start": 2792.92, + "end": 2797.54, + "probability": 0.9921 + }, + { + "start": 2798.82, + "end": 2804.04, + "probability": 0.98 + }, + { + "start": 2805.1, + "end": 2811.38, + "probability": 0.9967 + }, + { + "start": 2813.8, + "end": 2818.7, + "probability": 0.9976 + }, + { + "start": 2820.08, + "end": 2824.18, + "probability": 0.9937 + }, + { + "start": 2824.18, + "end": 2830.48, + "probability": 0.3583 + }, + { + "start": 2831.24, + "end": 2834.12, + "probability": 0.6482 + }, + { + "start": 2834.88, + "end": 2843.3, + "probability": 0.9933 + }, + { + "start": 2843.96, + "end": 2852.67, + "probability": 0.9833 + }, + { + "start": 2853.68, + "end": 2856.64, + "probability": 0.9438 + }, + { + "start": 2857.76, + "end": 2859.98, + "probability": 0.2461 + }, + { + "start": 2859.98, + "end": 2864.36, + "probability": 0.9506 + }, + { + "start": 2864.98, + "end": 2865.66, + "probability": 0.6004 + }, + { + "start": 2865.68, + "end": 2866.78, + "probability": 0.7213 + }, + { + "start": 2867.1, + "end": 2870.44, + "probability": 0.9736 + }, + { + "start": 2871.08, + "end": 2876.66, + "probability": 0.9863 + }, + { + "start": 2877.82, + "end": 2881.08, + "probability": 0.9846 + }, + { + "start": 2882.1, + "end": 2882.68, + "probability": 0.588 + }, + { + "start": 2882.92, + "end": 2889.36, + "probability": 0.9911 + }, + { + "start": 2890.28, + "end": 2893.74, + "probability": 0.9552 + }, + { + "start": 2896.23, + "end": 2904.82, + "probability": 0.8131 + }, + { + "start": 2905.76, + "end": 2909.08, + "probability": 0.8661 + }, + { + "start": 2910.16, + "end": 2914.18, + "probability": 0.9765 + }, + { + "start": 2915.2, + "end": 2920.38, + "probability": 0.9922 + }, + { + "start": 2921.42, + "end": 2924.42, + "probability": 0.685 + }, + { + "start": 2925.12, + "end": 2926.94, + "probability": 0.913 + }, + { + "start": 2927.58, + "end": 2930.28, + "probability": 0.9861 + }, + { + "start": 2931.36, + "end": 2936.78, + "probability": 0.9891 + }, + { + "start": 2937.92, + "end": 2941.26, + "probability": 0.6464 + }, + { + "start": 2941.5, + "end": 2943.14, + "probability": 0.9011 + }, + { + "start": 2944.16, + "end": 2945.34, + "probability": 0.8074 + }, + { + "start": 2946.04, + "end": 2947.68, + "probability": 0.9869 + }, + { + "start": 2948.32, + "end": 2950.04, + "probability": 0.7742 + }, + { + "start": 2950.82, + "end": 2951.98, + "probability": 0.6464 + }, + { + "start": 2952.26, + "end": 2953.16, + "probability": 0.9905 + }, + { + "start": 2953.44, + "end": 2954.64, + "probability": 0.8982 + }, + { + "start": 2954.98, + "end": 2956.32, + "probability": 0.7531 + }, + { + "start": 2956.64, + "end": 2959.96, + "probability": 0.9771 + }, + { + "start": 2959.98, + "end": 2965.56, + "probability": 0.9797 + }, + { + "start": 2965.78, + "end": 2967.26, + "probability": 0.9064 + }, + { + "start": 2968.06, + "end": 2973.7, + "probability": 0.9929 + }, + { + "start": 2974.26, + "end": 2979.52, + "probability": 0.9885 + }, + { + "start": 2981.24, + "end": 2983.48, + "probability": 0.9677 + }, + { + "start": 2984.46, + "end": 2985.18, + "probability": 0.7673 + }, + { + "start": 2985.72, + "end": 2986.96, + "probability": 0.7564 + }, + { + "start": 2987.22, + "end": 2991.68, + "probability": 0.9646 + }, + { + "start": 2993.1, + "end": 2995.14, + "probability": 0.8876 + }, + { + "start": 2996.1, + "end": 2996.44, + "probability": 0.8431 + }, + { + "start": 2996.54, + "end": 2997.74, + "probability": 0.998 + }, + { + "start": 2997.9, + "end": 2999.14, + "probability": 0.9774 + }, + { + "start": 2999.22, + "end": 2999.96, + "probability": 0.6046 + }, + { + "start": 3000.08, + "end": 3000.18, + "probability": 0.3932 + }, + { + "start": 3000.18, + "end": 3000.73, + "probability": 0.4344 + }, + { + "start": 3001.7, + "end": 3002.64, + "probability": 0.5819 + }, + { + "start": 3002.68, + "end": 3003.76, + "probability": 0.7974 + }, + { + "start": 3004.42, + "end": 3006.26, + "probability": 0.981 + }, + { + "start": 3007.08, + "end": 3008.06, + "probability": 0.935 + }, + { + "start": 3008.26, + "end": 3008.48, + "probability": 0.6485 + }, + { + "start": 3008.56, + "end": 3008.56, + "probability": 0.689 + }, + { + "start": 3008.64, + "end": 3011.74, + "probability": 0.8403 + }, + { + "start": 3011.92, + "end": 3013.12, + "probability": 0.7896 + }, + { + "start": 3013.26, + "end": 3014.04, + "probability": 0.2207 + }, + { + "start": 3014.06, + "end": 3015.68, + "probability": 0.8247 + }, + { + "start": 3015.94, + "end": 3017.2, + "probability": 0.7246 + }, + { + "start": 3017.2, + "end": 3019.82, + "probability": 0.7113 + }, + { + "start": 3019.82, + "end": 3020.26, + "probability": 0.0996 + }, + { + "start": 3020.44, + "end": 3021.12, + "probability": 0.3072 + }, + { + "start": 3021.32, + "end": 3025.14, + "probability": 0.6624 + }, + { + "start": 3025.32, + "end": 3028.98, + "probability": 0.5913 + }, + { + "start": 3029.12, + "end": 3029.88, + "probability": 0.1326 + }, + { + "start": 3030.7, + "end": 3034.7, + "probability": 0.6187 + }, + { + "start": 3035.36, + "end": 3039.28, + "probability": 0.9457 + }, + { + "start": 3039.66, + "end": 3043.26, + "probability": 0.9789 + }, + { + "start": 3043.88, + "end": 3045.06, + "probability": 0.972 + }, + { + "start": 3046.06, + "end": 3051.54, + "probability": 0.9951 + }, + { + "start": 3052.04, + "end": 3053.94, + "probability": 0.9801 + }, + { + "start": 3054.72, + "end": 3056.18, + "probability": 0.9844 + }, + { + "start": 3057.7, + "end": 3059.8, + "probability": 0.3975 + }, + { + "start": 3059.98, + "end": 3060.42, + "probability": 0.6623 + }, + { + "start": 3061.1, + "end": 3062.54, + "probability": 0.5454 + }, + { + "start": 3062.66, + "end": 3068.76, + "probability": 0.9399 + }, + { + "start": 3068.76, + "end": 3074.08, + "probability": 0.9673 + }, + { + "start": 3074.14, + "end": 3075.06, + "probability": 0.9214 + }, + { + "start": 3076.28, + "end": 3076.98, + "probability": 0.2566 + }, + { + "start": 3077.5, + "end": 3078.15, + "probability": 0.0935 + }, + { + "start": 3079.98, + "end": 3082.86, + "probability": 0.4786 + }, + { + "start": 3084.16, + "end": 3085.66, + "probability": 0.1243 + }, + { + "start": 3085.66, + "end": 3085.66, + "probability": 0.0423 + }, + { + "start": 3085.66, + "end": 3087.9, + "probability": 0.784 + }, + { + "start": 3088.34, + "end": 3089.72, + "probability": 0.6259 + }, + { + "start": 3089.84, + "end": 3092.08, + "probability": 0.864 + }, + { + "start": 3092.2, + "end": 3096.42, + "probability": 0.7795 + }, + { + "start": 3097.14, + "end": 3097.14, + "probability": 0.1977 + }, + { + "start": 3097.14, + "end": 3099.86, + "probability": 0.7896 + }, + { + "start": 3100.7, + "end": 3106.64, + "probability": 0.8228 + }, + { + "start": 3107.04, + "end": 3111.79, + "probability": 0.8951 + }, + { + "start": 3112.02, + "end": 3113.36, + "probability": 0.3093 + }, + { + "start": 3113.81, + "end": 3114.36, + "probability": 0.4067 + }, + { + "start": 3114.36, + "end": 3115.4, + "probability": 0.2312 + }, + { + "start": 3115.91, + "end": 3119.0, + "probability": 0.4896 + }, + { + "start": 3119.0, + "end": 3122.32, + "probability": 0.8516 + }, + { + "start": 3122.52, + "end": 3123.18, + "probability": 0.9143 + }, + { + "start": 3123.82, + "end": 3123.9, + "probability": 0.0247 + }, + { + "start": 3123.9, + "end": 3126.1, + "probability": 0.9385 + }, + { + "start": 3126.54, + "end": 3128.56, + "probability": 0.95 + }, + { + "start": 3130.12, + "end": 3130.42, + "probability": 0.1726 + }, + { + "start": 3130.42, + "end": 3130.7, + "probability": 0.1605 + }, + { + "start": 3131.2, + "end": 3132.54, + "probability": 0.4537 + }, + { + "start": 3132.8, + "end": 3133.36, + "probability": 0.5725 + }, + { + "start": 3134.8, + "end": 3134.87, + "probability": 0.0246 + }, + { + "start": 3135.06, + "end": 3135.96, + "probability": 0.9341 + }, + { + "start": 3136.18, + "end": 3136.9, + "probability": 0.5128 + }, + { + "start": 3138.26, + "end": 3138.58, + "probability": 0.0236 + }, + { + "start": 3139.16, + "end": 3141.12, + "probability": 0.0794 + }, + { + "start": 3141.12, + "end": 3147.1, + "probability": 0.4241 + }, + { + "start": 3147.6, + "end": 3150.31, + "probability": 0.4628 + }, + { + "start": 3150.76, + "end": 3151.4, + "probability": 0.4893 + }, + { + "start": 3151.9, + "end": 3152.96, + "probability": 0.7526 + }, + { + "start": 3153.12, + "end": 3158.8, + "probability": 0.8909 + }, + { + "start": 3159.62, + "end": 3164.56, + "probability": 0.8105 + }, + { + "start": 3165.14, + "end": 3165.56, + "probability": 0.038 + }, + { + "start": 3165.56, + "end": 3166.14, + "probability": 0.709 + }, + { + "start": 3166.6, + "end": 3169.04, + "probability": 0.9451 + }, + { + "start": 3169.5, + "end": 3170.0, + "probability": 0.4934 + }, + { + "start": 3170.1, + "end": 3174.14, + "probability": 0.826 + }, + { + "start": 3174.7, + "end": 3177.34, + "probability": 0.9185 + }, + { + "start": 3177.56, + "end": 3177.96, + "probability": 0.8322 + }, + { + "start": 3178.06, + "end": 3178.66, + "probability": 0.9002 + }, + { + "start": 3178.72, + "end": 3179.26, + "probability": 0.7035 + }, + { + "start": 3179.64, + "end": 3182.12, + "probability": 0.8197 + }, + { + "start": 3182.18, + "end": 3183.16, + "probability": 0.9198 + }, + { + "start": 3183.58, + "end": 3185.6, + "probability": 0.8246 + }, + { + "start": 3185.76, + "end": 3186.88, + "probability": 0.5214 + }, + { + "start": 3189.72, + "end": 3192.78, + "probability": 0.9507 + }, + { + "start": 3195.26, + "end": 3196.08, + "probability": 0.9504 + }, + { + "start": 3196.18, + "end": 3196.78, + "probability": 0.6041 + }, + { + "start": 3196.86, + "end": 3200.36, + "probability": 0.945 + }, + { + "start": 3200.52, + "end": 3201.7, + "probability": 0.6987 + }, + { + "start": 3202.1, + "end": 3203.0, + "probability": 0.7961 + }, + { + "start": 3203.66, + "end": 3205.74, + "probability": 0.9052 + }, + { + "start": 3206.28, + "end": 3208.86, + "probability": 0.9934 + }, + { + "start": 3209.46, + "end": 3210.38, + "probability": 0.9554 + }, + { + "start": 3210.86, + "end": 3216.2, + "probability": 0.9907 + }, + { + "start": 3216.76, + "end": 3220.86, + "probability": 0.9422 + }, + { + "start": 3221.04, + "end": 3221.42, + "probability": 0.8222 + }, + { + "start": 3222.24, + "end": 3223.84, + "probability": 0.8192 + }, + { + "start": 3223.9, + "end": 3225.19, + "probability": 0.5562 + }, + { + "start": 3226.82, + "end": 3226.88, + "probability": 0.2611 + }, + { + "start": 3226.88, + "end": 3227.48, + "probability": 0.5253 + }, + { + "start": 3227.48, + "end": 3228.34, + "probability": 0.7034 + }, + { + "start": 3228.34, + "end": 3229.2, + "probability": 0.3055 + }, + { + "start": 3229.2, + "end": 3229.62, + "probability": 0.4116 + }, + { + "start": 3229.62, + "end": 3231.98, + "probability": 0.3938 + }, + { + "start": 3234.54, + "end": 3235.58, + "probability": 0.7679 + }, + { + "start": 3236.6, + "end": 3237.14, + "probability": 0.4171 + }, + { + "start": 3237.44, + "end": 3237.54, + "probability": 0.6219 + }, + { + "start": 3238.1, + "end": 3238.1, + "probability": 0.417 + }, + { + "start": 3238.1, + "end": 3238.1, + "probability": 0.3616 + }, + { + "start": 3238.1, + "end": 3238.42, + "probability": 0.4265 + }, + { + "start": 3238.72, + "end": 3242.96, + "probability": 0.9254 + }, + { + "start": 3246.5, + "end": 3247.84, + "probability": 0.9141 + }, + { + "start": 3247.98, + "end": 3250.9, + "probability": 0.9757 + }, + { + "start": 3251.54, + "end": 3255.58, + "probability": 0.9823 + }, + { + "start": 3255.7, + "end": 3258.8, + "probability": 0.999 + }, + { + "start": 3258.8, + "end": 3262.1, + "probability": 0.8906 + }, + { + "start": 3262.7, + "end": 3266.08, + "probability": 0.9853 + }, + { + "start": 3266.68, + "end": 3267.28, + "probability": 0.002 + }, + { + "start": 3267.66, + "end": 3268.75, + "probability": 0.7586 + }, + { + "start": 3268.84, + "end": 3270.56, + "probability": 0.8323 + }, + { + "start": 3270.78, + "end": 3271.4, + "probability": 0.7992 + }, + { + "start": 3271.84, + "end": 3272.6, + "probability": 0.9377 + }, + { + "start": 3272.78, + "end": 3273.26, + "probability": 0.9664 + }, + { + "start": 3273.4, + "end": 3276.16, + "probability": 0.832 + }, + { + "start": 3277.1, + "end": 3278.98, + "probability": 0.7227 + }, + { + "start": 3279.1, + "end": 3281.66, + "probability": 0.5032 + }, + { + "start": 3282.72, + "end": 3284.32, + "probability": 0.7776 + }, + { + "start": 3284.9, + "end": 3285.3, + "probability": 0.5949 + }, + { + "start": 3286.12, + "end": 3287.76, + "probability": 0.8705 + }, + { + "start": 3288.18, + "end": 3289.86, + "probability": 0.6678 + }, + { + "start": 3302.52, + "end": 3302.52, + "probability": 0.2779 + }, + { + "start": 3302.52, + "end": 3302.52, + "probability": 0.2207 + }, + { + "start": 3302.52, + "end": 3305.88, + "probability": 0.6138 + }, + { + "start": 3305.98, + "end": 3311.1, + "probability": 0.907 + }, + { + "start": 3316.6, + "end": 3320.48, + "probability": 0.979 + }, + { + "start": 3321.64, + "end": 3322.8, + "probability": 0.5594 + }, + { + "start": 3323.54, + "end": 3328.18, + "probability": 0.9825 + }, + { + "start": 3328.3, + "end": 3328.78, + "probability": 0.0159 + }, + { + "start": 3328.82, + "end": 3329.08, + "probability": 0.3043 + }, + { + "start": 3329.18, + "end": 3331.0, + "probability": 0.819 + }, + { + "start": 3342.16, + "end": 3343.44, + "probability": 0.9492 + }, + { + "start": 3344.6, + "end": 3346.9, + "probability": 0.6689 + }, + { + "start": 3349.58, + "end": 3350.34, + "probability": 0.9728 + }, + { + "start": 3352.08, + "end": 3353.38, + "probability": 0.4532 + }, + { + "start": 3357.68, + "end": 3359.68, + "probability": 0.8213 + }, + { + "start": 3360.8, + "end": 3364.14, + "probability": 0.6924 + }, + { + "start": 3367.6, + "end": 3371.34, + "probability": 0.9177 + }, + { + "start": 3373.64, + "end": 3374.54, + "probability": 0.953 + }, + { + "start": 3375.54, + "end": 3376.66, + "probability": 0.7727 + }, + { + "start": 3379.34, + "end": 3381.9, + "probability": 0.967 + }, + { + "start": 3381.9, + "end": 3386.04, + "probability": 0.9862 + }, + { + "start": 3389.34, + "end": 3389.78, + "probability": 0.6696 + }, + { + "start": 3390.38, + "end": 3396.12, + "probability": 0.9979 + }, + { + "start": 3400.18, + "end": 3401.24, + "probability": 0.6717 + }, + { + "start": 3403.66, + "end": 3407.28, + "probability": 0.8499 + }, + { + "start": 3409.86, + "end": 3411.84, + "probability": 0.973 + }, + { + "start": 3414.22, + "end": 3418.32, + "probability": 0.9715 + }, + { + "start": 3419.58, + "end": 3425.64, + "probability": 0.5857 + }, + { + "start": 3428.94, + "end": 3431.56, + "probability": 0.8887 + }, + { + "start": 3432.4, + "end": 3433.04, + "probability": 0.7276 + }, + { + "start": 3434.18, + "end": 3437.12, + "probability": 0.9448 + }, + { + "start": 3438.94, + "end": 3440.06, + "probability": 0.7561 + }, + { + "start": 3441.7, + "end": 3442.4, + "probability": 0.6522 + }, + { + "start": 3443.4, + "end": 3445.0, + "probability": 0.9587 + }, + { + "start": 3446.78, + "end": 3451.28, + "probability": 0.9933 + }, + { + "start": 3452.8, + "end": 3454.02, + "probability": 0.8405 + }, + { + "start": 3455.56, + "end": 3457.68, + "probability": 0.7877 + }, + { + "start": 3459.7, + "end": 3463.92, + "probability": 0.8748 + }, + { + "start": 3465.14, + "end": 3469.04, + "probability": 0.5396 + }, + { + "start": 3469.3, + "end": 3470.16, + "probability": 0.8618 + }, + { + "start": 3470.48, + "end": 3472.68, + "probability": 0.7744 + }, + { + "start": 3474.98, + "end": 3475.82, + "probability": 0.6953 + }, + { + "start": 3478.5, + "end": 3479.74, + "probability": 0.8784 + }, + { + "start": 3481.12, + "end": 3484.34, + "probability": 0.7831 + }, + { + "start": 3485.94, + "end": 3488.26, + "probability": 0.7338 + }, + { + "start": 3490.06, + "end": 3495.52, + "probability": 0.8583 + }, + { + "start": 3497.02, + "end": 3499.12, + "probability": 0.8481 + }, + { + "start": 3501.58, + "end": 3505.92, + "probability": 0.7628 + }, + { + "start": 3506.14, + "end": 3511.12, + "probability": 0.7794 + }, + { + "start": 3513.82, + "end": 3517.04, + "probability": 0.7728 + }, + { + "start": 3520.0, + "end": 3525.22, + "probability": 0.6548 + }, + { + "start": 3527.2, + "end": 3528.46, + "probability": 0.7746 + }, + { + "start": 3529.16, + "end": 3532.3, + "probability": 0.7505 + }, + { + "start": 3533.74, + "end": 3537.84, + "probability": 0.9839 + }, + { + "start": 3539.84, + "end": 3540.56, + "probability": 0.5812 + }, + { + "start": 3541.34, + "end": 3544.66, + "probability": 0.8821 + }, + { + "start": 3548.34, + "end": 3551.0, + "probability": 0.8127 + }, + { + "start": 3553.42, + "end": 3554.06, + "probability": 0.8161 + }, + { + "start": 3556.24, + "end": 3558.14, + "probability": 0.8115 + }, + { + "start": 3558.82, + "end": 3559.68, + "probability": 0.8884 + }, + { + "start": 3560.84, + "end": 3562.26, + "probability": 0.7943 + }, + { + "start": 3564.82, + "end": 3568.98, + "probability": 0.9864 + }, + { + "start": 3570.48, + "end": 3572.32, + "probability": 0.8128 + }, + { + "start": 3573.6, + "end": 3576.42, + "probability": 0.8695 + }, + { + "start": 3577.78, + "end": 3584.52, + "probability": 0.9811 + }, + { + "start": 3585.32, + "end": 3586.44, + "probability": 0.9131 + }, + { + "start": 3587.28, + "end": 3588.8, + "probability": 0.7301 + }, + { + "start": 3590.68, + "end": 3594.0, + "probability": 0.816 + }, + { + "start": 3595.12, + "end": 3595.7, + "probability": 0.9847 + }, + { + "start": 3597.5, + "end": 3599.48, + "probability": 0.9961 + }, + { + "start": 3600.26, + "end": 3605.7, + "probability": 0.6983 + }, + { + "start": 3609.46, + "end": 3609.78, + "probability": 0.9224 + }, + { + "start": 3609.92, + "end": 3610.8, + "probability": 0.7277 + }, + { + "start": 3613.06, + "end": 3613.7, + "probability": 0.4128 + }, + { + "start": 3614.86, + "end": 3616.62, + "probability": 0.8413 + }, + { + "start": 3618.92, + "end": 3620.76, + "probability": 0.7683 + }, + { + "start": 3621.84, + "end": 3623.5, + "probability": 0.9692 + }, + { + "start": 3624.22, + "end": 3625.03, + "probability": 0.9639 + }, + { + "start": 3625.78, + "end": 3628.88, + "probability": 0.974 + }, + { + "start": 3631.08, + "end": 3635.32, + "probability": 0.2831 + }, + { + "start": 3636.22, + "end": 3638.68, + "probability": 0.939 + }, + { + "start": 3640.82, + "end": 3641.92, + "probability": 0.4385 + }, + { + "start": 3643.92, + "end": 3650.12, + "probability": 0.981 + }, + { + "start": 3651.06, + "end": 3652.92, + "probability": 0.9495 + }, + { + "start": 3655.18, + "end": 3658.62, + "probability": 0.717 + }, + { + "start": 3662.5, + "end": 3664.94, + "probability": 0.8511 + }, + { + "start": 3665.8, + "end": 3669.6, + "probability": 0.6138 + }, + { + "start": 3670.8, + "end": 3670.9, + "probability": 0.3428 + }, + { + "start": 3672.68, + "end": 3673.84, + "probability": 0.2744 + }, + { + "start": 3675.52, + "end": 3679.56, + "probability": 0.8285 + }, + { + "start": 3682.4, + "end": 3687.04, + "probability": 0.9039 + }, + { + "start": 3689.08, + "end": 3693.3, + "probability": 0.8038 + }, + { + "start": 3699.48, + "end": 3703.5, + "probability": 0.7938 + }, + { + "start": 3705.24, + "end": 3707.94, + "probability": 0.964 + }, + { + "start": 3709.94, + "end": 3711.76, + "probability": 0.494 + }, + { + "start": 3714.92, + "end": 3719.5, + "probability": 0.9768 + }, + { + "start": 3721.02, + "end": 3721.3, + "probability": 0.6953 + }, + { + "start": 3721.48, + "end": 3725.3, + "probability": 0.8464 + }, + { + "start": 3725.3, + "end": 3731.7, + "probability": 0.8883 + }, + { + "start": 3734.16, + "end": 3737.46, + "probability": 0.9819 + }, + { + "start": 3738.16, + "end": 3738.94, + "probability": 0.6134 + }, + { + "start": 3739.66, + "end": 3741.12, + "probability": 0.7896 + }, + { + "start": 3742.64, + "end": 3748.94, + "probability": 0.7342 + }, + { + "start": 3750.16, + "end": 3751.34, + "probability": 0.7772 + }, + { + "start": 3754.2, + "end": 3756.0, + "probability": 0.7065 + }, + { + "start": 3756.36, + "end": 3757.43, + "probability": 0.492 + }, + { + "start": 3757.82, + "end": 3759.22, + "probability": 0.8847 + }, + { + "start": 3759.48, + "end": 3760.32, + "probability": 0.7536 + }, + { + "start": 3761.44, + "end": 3763.96, + "probability": 0.8267 + }, + { + "start": 3764.6, + "end": 3765.18, + "probability": 0.4614 + }, + { + "start": 3767.22, + "end": 3768.88, + "probability": 0.8208 + }, + { + "start": 3771.34, + "end": 3778.78, + "probability": 0.8234 + }, + { + "start": 3780.54, + "end": 3781.58, + "probability": 0.3548 + }, + { + "start": 3781.66, + "end": 3786.3, + "probability": 0.9634 + }, + { + "start": 3788.32, + "end": 3789.38, + "probability": 0.6478 + }, + { + "start": 3791.61, + "end": 3793.94, + "probability": 0.8842 + }, + { + "start": 3796.3, + "end": 3801.72, + "probability": 0.6728 + }, + { + "start": 3804.88, + "end": 3807.58, + "probability": 0.666 + }, + { + "start": 3809.0, + "end": 3812.92, + "probability": 0.9354 + }, + { + "start": 3813.52, + "end": 3815.18, + "probability": 0.7088 + }, + { + "start": 3816.3, + "end": 3818.22, + "probability": 0.2006 + }, + { + "start": 3818.88, + "end": 3821.92, + "probability": 0.8007 + }, + { + "start": 3824.6, + "end": 3826.18, + "probability": 0.8981 + }, + { + "start": 3827.66, + "end": 3831.52, + "probability": 0.8739 + }, + { + "start": 3833.4, + "end": 3834.96, + "probability": 0.8169 + }, + { + "start": 3836.32, + "end": 3838.42, + "probability": 0.8871 + }, + { + "start": 3839.46, + "end": 3840.7, + "probability": 0.8999 + }, + { + "start": 3841.46, + "end": 3842.76, + "probability": 0.9505 + }, + { + "start": 3843.74, + "end": 3844.7, + "probability": 0.7764 + }, + { + "start": 3848.96, + "end": 3854.92, + "probability": 0.7648 + }, + { + "start": 3855.42, + "end": 3857.12, + "probability": 0.4796 + }, + { + "start": 3857.98, + "end": 3859.86, + "probability": 0.6592 + }, + { + "start": 3861.06, + "end": 3864.93, + "probability": 0.7338 + }, + { + "start": 3866.26, + "end": 3867.94, + "probability": 0.8861 + }, + { + "start": 3868.5, + "end": 3870.14, + "probability": 0.6123 + }, + { + "start": 3870.82, + "end": 3872.52, + "probability": 0.943 + }, + { + "start": 3873.6, + "end": 3874.72, + "probability": 0.8663 + }, + { + "start": 3875.94, + "end": 3876.62, + "probability": 0.7046 + }, + { + "start": 3877.06, + "end": 3878.16, + "probability": 0.4844 + }, + { + "start": 3879.12, + "end": 3879.94, + "probability": 0.6122 + }, + { + "start": 3881.26, + "end": 3882.58, + "probability": 0.8859 + }, + { + "start": 3883.14, + "end": 3884.4, + "probability": 0.6732 + }, + { + "start": 3885.9, + "end": 3887.38, + "probability": 0.6641 + }, + { + "start": 3887.5, + "end": 3888.35, + "probability": 0.7876 + }, + { + "start": 3888.9, + "end": 3889.98, + "probability": 0.866 + }, + { + "start": 3890.38, + "end": 3891.32, + "probability": 0.7788 + }, + { + "start": 3893.06, + "end": 3894.38, + "probability": 0.9119 + }, + { + "start": 3896.4, + "end": 3900.48, + "probability": 0.9676 + }, + { + "start": 3901.84, + "end": 3903.34, + "probability": 0.7581 + }, + { + "start": 3904.12, + "end": 3905.98, + "probability": 0.9303 + }, + { + "start": 3907.94, + "end": 3909.84, + "probability": 0.495 + }, + { + "start": 3911.92, + "end": 3913.54, + "probability": 0.9806 + }, + { + "start": 3913.66, + "end": 3914.66, + "probability": 0.9208 + }, + { + "start": 3915.02, + "end": 3920.28, + "probability": 0.6192 + }, + { + "start": 3922.08, + "end": 3924.82, + "probability": 0.8272 + }, + { + "start": 3927.08, + "end": 3931.09, + "probability": 0.5935 + }, + { + "start": 3932.36, + "end": 3936.88, + "probability": 0.681 + }, + { + "start": 3936.98, + "end": 3938.42, + "probability": 0.9578 + }, + { + "start": 3941.08, + "end": 3943.36, + "probability": 0.9562 + }, + { + "start": 3945.12, + "end": 3947.84, + "probability": 0.7388 + }, + { + "start": 3950.6, + "end": 3951.28, + "probability": 0.4526 + }, + { + "start": 3952.12, + "end": 3952.44, + "probability": 0.5061 + }, + { + "start": 3953.46, + "end": 3954.2, + "probability": 0.7097 + }, + { + "start": 3956.02, + "end": 3958.34, + "probability": 0.8451 + }, + { + "start": 3959.54, + "end": 3961.7, + "probability": 0.9424 + }, + { + "start": 3963.86, + "end": 3966.28, + "probability": 0.683 + }, + { + "start": 3967.14, + "end": 3967.28, + "probability": 0.6179 + }, + { + "start": 3967.3, + "end": 3967.94, + "probability": 0.8484 + }, + { + "start": 3968.04, + "end": 3968.7, + "probability": 0.2591 + }, + { + "start": 3968.76, + "end": 3972.64, + "probability": 0.8861 + }, + { + "start": 3973.54, + "end": 3974.14, + "probability": 0.6071 + }, + { + "start": 3975.28, + "end": 3977.32, + "probability": 0.6788 + }, + { + "start": 3978.44, + "end": 3980.8, + "probability": 0.8096 + }, + { + "start": 3981.18, + "end": 3982.9, + "probability": 0.5337 + }, + { + "start": 3983.14, + "end": 3984.54, + "probability": 0.9888 + }, + { + "start": 3985.56, + "end": 3986.9, + "probability": 0.7842 + }, + { + "start": 3987.04, + "end": 3988.24, + "probability": 0.8027 + }, + { + "start": 3989.62, + "end": 3994.62, + "probability": 0.8176 + }, + { + "start": 3994.8, + "end": 3995.56, + "probability": 0.8105 + }, + { + "start": 3996.78, + "end": 3997.52, + "probability": 0.5356 + }, + { + "start": 3998.2, + "end": 4000.08, + "probability": 0.9281 + }, + { + "start": 4000.48, + "end": 4003.92, + "probability": 0.9539 + }, + { + "start": 4004.54, + "end": 4006.6, + "probability": 0.8942 + }, + { + "start": 4007.18, + "end": 4009.18, + "probability": 0.7274 + }, + { + "start": 4009.32, + "end": 4012.66, + "probability": 0.779 + }, + { + "start": 4013.18, + "end": 4016.22, + "probability": 0.5893 + }, + { + "start": 4016.22, + "end": 4017.98, + "probability": 0.4459 + }, + { + "start": 4018.7, + "end": 4020.24, + "probability": 0.6208 + }, + { + "start": 4020.36, + "end": 4020.92, + "probability": 0.9119 + }, + { + "start": 4021.76, + "end": 4022.92, + "probability": 0.4595 + }, + { + "start": 4024.44, + "end": 4026.72, + "probability": 0.5757 + }, + { + "start": 4027.32, + "end": 4028.76, + "probability": 0.682 + }, + { + "start": 4030.2, + "end": 4030.68, + "probability": 0.9666 + }, + { + "start": 4031.68, + "end": 4032.1, + "probability": 0.9735 + }, + { + "start": 4033.7, + "end": 4035.24, + "probability": 0.4584 + }, + { + "start": 4035.46, + "end": 4035.94, + "probability": 0.3366 + }, + { + "start": 4035.94, + "end": 4036.61, + "probability": 0.6794 + }, + { + "start": 4038.1, + "end": 4041.4, + "probability": 0.9916 + }, + { + "start": 4042.8, + "end": 4045.08, + "probability": 0.6052 + }, + { + "start": 4046.14, + "end": 4047.06, + "probability": 0.877 + }, + { + "start": 4050.12, + "end": 4052.42, + "probability": 0.8662 + }, + { + "start": 4053.6, + "end": 4054.92, + "probability": 0.9458 + }, + { + "start": 4055.76, + "end": 4057.32, + "probability": 0.4292 + }, + { + "start": 4058.16, + "end": 4059.06, + "probability": 0.9165 + }, + { + "start": 4059.82, + "end": 4061.58, + "probability": 0.9661 + }, + { + "start": 4061.74, + "end": 4062.72, + "probability": 0.9941 + }, + { + "start": 4063.6, + "end": 4067.3, + "probability": 0.7142 + }, + { + "start": 4068.3, + "end": 4070.8, + "probability": 0.7779 + }, + { + "start": 4070.86, + "end": 4071.68, + "probability": 0.6385 + }, + { + "start": 4072.01, + "end": 4074.42, + "probability": 0.8737 + }, + { + "start": 4074.78, + "end": 4079.42, + "probability": 0.8646 + }, + { + "start": 4079.94, + "end": 4081.22, + "probability": 0.595 + }, + { + "start": 4081.9, + "end": 4084.08, + "probability": 0.6319 + }, + { + "start": 4084.44, + "end": 4085.88, + "probability": 0.7808 + }, + { + "start": 4086.18, + "end": 4087.48, + "probability": 0.8631 + }, + { + "start": 4088.14, + "end": 4088.28, + "probability": 0.1303 + }, + { + "start": 4088.28, + "end": 4092.82, + "probability": 0.5719 + }, + { + "start": 4093.24, + "end": 4093.7, + "probability": 0.6602 + }, + { + "start": 4093.82, + "end": 4094.54, + "probability": 0.8048 + }, + { + "start": 4094.96, + "end": 4096.02, + "probability": 0.8125 + }, + { + "start": 4096.2, + "end": 4096.48, + "probability": 0.6857 + }, + { + "start": 4096.92, + "end": 4097.48, + "probability": 0.4329 + }, + { + "start": 4098.44, + "end": 4099.68, + "probability": 0.8989 + }, + { + "start": 4100.06, + "end": 4100.24, + "probability": 0.7522 + }, + { + "start": 4100.82, + "end": 4103.62, + "probability": 0.8468 + }, + { + "start": 4103.96, + "end": 4104.54, + "probability": 0.6401 + }, + { + "start": 4105.32, + "end": 4106.74, + "probability": 0.8281 + }, + { + "start": 4117.9, + "end": 4118.14, + "probability": 0.2319 + }, + { + "start": 4118.16, + "end": 4118.98, + "probability": 0.6114 + }, + { + "start": 4119.34, + "end": 4121.22, + "probability": 0.8285 + }, + { + "start": 4121.7, + "end": 4126.1, + "probability": 0.9961 + }, + { + "start": 4126.1, + "end": 4132.74, + "probability": 0.9968 + }, + { + "start": 4135.24, + "end": 4138.9, + "probability": 0.9637 + }, + { + "start": 4140.24, + "end": 4143.24, + "probability": 0.8289 + }, + { + "start": 4144.6, + "end": 4145.67, + "probability": 0.8197 + }, + { + "start": 4147.1, + "end": 4148.76, + "probability": 0.9897 + }, + { + "start": 4149.74, + "end": 4153.66, + "probability": 0.9865 + }, + { + "start": 4155.24, + "end": 4160.74, + "probability": 0.9675 + }, + { + "start": 4161.74, + "end": 4164.5, + "probability": 0.98 + }, + { + "start": 4165.28, + "end": 4167.32, + "probability": 0.5296 + }, + { + "start": 4167.52, + "end": 4172.8, + "probability": 0.9889 + }, + { + "start": 4172.8, + "end": 4178.42, + "probability": 0.998 + }, + { + "start": 4178.74, + "end": 4179.4, + "probability": 0.067 + }, + { + "start": 4180.28, + "end": 4181.16, + "probability": 0.8728 + }, + { + "start": 4181.26, + "end": 4182.28, + "probability": 0.7367 + }, + { + "start": 4182.4, + "end": 4183.18, + "probability": 0.079 + }, + { + "start": 4183.18, + "end": 4183.18, + "probability": 0.029 + }, + { + "start": 4183.46, + "end": 4184.94, + "probability": 0.9481 + }, + { + "start": 4185.02, + "end": 4185.94, + "probability": 0.885 + }, + { + "start": 4186.02, + "end": 4189.68, + "probability": 0.9831 + }, + { + "start": 4190.8, + "end": 4193.34, + "probability": 0.9751 + }, + { + "start": 4193.84, + "end": 4195.85, + "probability": 0.433 + }, + { + "start": 4196.65, + "end": 4201.46, + "probability": 0.6607 + }, + { + "start": 4201.46, + "end": 4202.85, + "probability": 0.543 + }, + { + "start": 4203.04, + "end": 4204.36, + "probability": 0.9814 + }, + { + "start": 4205.14, + "end": 4209.18, + "probability": 0.8876 + }, + { + "start": 4209.82, + "end": 4214.02, + "probability": 0.9819 + }, + { + "start": 4215.56, + "end": 4216.86, + "probability": 0.8847 + }, + { + "start": 4217.98, + "end": 4219.54, + "probability": 0.9426 + }, + { + "start": 4219.72, + "end": 4226.0, + "probability": 0.8919 + }, + { + "start": 4226.72, + "end": 4229.56, + "probability": 0.7778 + }, + { + "start": 4229.68, + "end": 4232.7, + "probability": 0.9429 + }, + { + "start": 4233.44, + "end": 4235.78, + "probability": 0.9667 + }, + { + "start": 4236.98, + "end": 4237.66, + "probability": 0.8021 + }, + { + "start": 4237.82, + "end": 4241.6, + "probability": 0.9571 + }, + { + "start": 4242.6, + "end": 4244.18, + "probability": 0.7059 + }, + { + "start": 4247.84, + "end": 4248.34, + "probability": 0.0103 + }, + { + "start": 4248.34, + "end": 4248.34, + "probability": 0.2237 + }, + { + "start": 4248.6, + "end": 4251.23, + "probability": 0.793 + }, + { + "start": 4253.26, + "end": 4254.64, + "probability": 0.9873 + }, + { + "start": 4255.64, + "end": 4260.1, + "probability": 0.9321 + }, + { + "start": 4260.1, + "end": 4269.74, + "probability": 0.8486 + }, + { + "start": 4269.74, + "end": 4269.74, + "probability": 0.1745 + }, + { + "start": 4269.74, + "end": 4269.74, + "probability": 0.0788 + }, + { + "start": 4269.74, + "end": 4269.74, + "probability": 0.0442 + }, + { + "start": 4269.74, + "end": 4270.85, + "probability": 0.5494 + }, + { + "start": 4272.2, + "end": 4273.86, + "probability": 0.048 + }, + { + "start": 4273.86, + "end": 4274.52, + "probability": 0.5511 + }, + { + "start": 4275.42, + "end": 4276.62, + "probability": 0.8693 + }, + { + "start": 4276.62, + "end": 4277.72, + "probability": 0.891 + }, + { + "start": 4277.82, + "end": 4278.54, + "probability": 0.6947 + }, + { + "start": 4278.54, + "end": 4283.78, + "probability": 0.9858 + }, + { + "start": 4283.94, + "end": 4288.46, + "probability": 0.9992 + }, + { + "start": 4288.62, + "end": 4294.64, + "probability": 0.6656 + }, + { + "start": 4294.7, + "end": 4295.36, + "probability": 0.7948 + }, + { + "start": 4295.5, + "end": 4295.99, + "probability": 0.9341 + }, + { + "start": 4296.1, + "end": 4296.5, + "probability": 0.9727 + }, + { + "start": 4296.64, + "end": 4297.27, + "probability": 0.7012 + }, + { + "start": 4297.54, + "end": 4299.74, + "probability": 0.7438 + }, + { + "start": 4299.74, + "end": 4303.48, + "probability": 0.9976 + }, + { + "start": 4304.0, + "end": 4307.0, + "probability": 0.9988 + }, + { + "start": 4307.36, + "end": 4313.02, + "probability": 0.8156 + }, + { + "start": 4313.16, + "end": 4314.82, + "probability": 0.9206 + }, + { + "start": 4314.86, + "end": 4317.86, + "probability": 0.784 + }, + { + "start": 4317.86, + "end": 4319.54, + "probability": 0.3626 + }, + { + "start": 4319.56, + "end": 4319.56, + "probability": 0.4386 + }, + { + "start": 4319.56, + "end": 4320.48, + "probability": 0.759 + }, + { + "start": 4320.52, + "end": 4322.88, + "probability": 0.6036 + }, + { + "start": 4323.04, + "end": 4324.08, + "probability": 0.789 + }, + { + "start": 4324.3, + "end": 4327.04, + "probability": 0.981 + }, + { + "start": 4327.04, + "end": 4330.54, + "probability": 0.9718 + }, + { + "start": 4330.66, + "end": 4331.08, + "probability": 0.5486 + }, + { + "start": 4331.66, + "end": 4332.94, + "probability": 0.8969 + }, + { + "start": 4333.02, + "end": 4334.14, + "probability": 0.9035 + }, + { + "start": 4334.42, + "end": 4335.8, + "probability": 0.8333 + }, + { + "start": 4335.88, + "end": 4337.14, + "probability": 0.65 + }, + { + "start": 4338.3, + "end": 4340.04, + "probability": 0.9118 + }, + { + "start": 4340.28, + "end": 4341.02, + "probability": 0.5723 + }, + { + "start": 4342.8, + "end": 4343.2, + "probability": 0.8971 + }, + { + "start": 4343.44, + "end": 4345.6, + "probability": 0.8385 + }, + { + "start": 4346.04, + "end": 4347.16, + "probability": 0.9211 + }, + { + "start": 4347.3, + "end": 4348.58, + "probability": 0.9699 + }, + { + "start": 4349.06, + "end": 4350.44, + "probability": 0.9781 + }, + { + "start": 4350.8, + "end": 4354.44, + "probability": 0.9922 + }, + { + "start": 4354.82, + "end": 4356.8, + "probability": 0.9401 + }, + { + "start": 4357.06, + "end": 4357.69, + "probability": 0.3621 + }, + { + "start": 4358.16, + "end": 4359.24, + "probability": 0.8062 + }, + { + "start": 4359.26, + "end": 4359.74, + "probability": 0.8045 + }, + { + "start": 4359.86, + "end": 4361.96, + "probability": 0.7071 + }, + { + "start": 4361.96, + "end": 4362.54, + "probability": 0.8545 + }, + { + "start": 4362.7, + "end": 4363.08, + "probability": 0.1056 + }, + { + "start": 4363.12, + "end": 4364.74, + "probability": 0.6691 + }, + { + "start": 4364.82, + "end": 4365.48, + "probability": 0.883 + }, + { + "start": 4365.56, + "end": 4367.0, + "probability": 0.9515 + }, + { + "start": 4367.16, + "end": 4369.64, + "probability": 0.8523 + }, + { + "start": 4370.02, + "end": 4375.32, + "probability": 0.8308 + }, + { + "start": 4375.36, + "end": 4378.75, + "probability": 0.1156 + }, + { + "start": 4379.1, + "end": 4381.74, + "probability": 0.9636 + }, + { + "start": 4382.0, + "end": 4383.5, + "probability": 0.9647 + }, + { + "start": 4383.88, + "end": 4385.8, + "probability": 0.0441 + }, + { + "start": 4386.58, + "end": 4387.4, + "probability": 0.1293 + }, + { + "start": 4387.54, + "end": 4387.78, + "probability": 0.0237 + }, + { + "start": 4387.78, + "end": 4390.4, + "probability": 0.6084 + }, + { + "start": 4391.81, + "end": 4397.64, + "probability": 0.9917 + }, + { + "start": 4398.08, + "end": 4399.59, + "probability": 0.9604 + }, + { + "start": 4399.8, + "end": 4401.06, + "probability": 0.7984 + }, + { + "start": 4401.14, + "end": 4402.56, + "probability": 0.9653 + }, + { + "start": 4402.68, + "end": 4403.14, + "probability": 0.7512 + }, + { + "start": 4403.6, + "end": 4403.96, + "probability": 0.9458 + }, + { + "start": 4404.18, + "end": 4405.38, + "probability": 0.7259 + }, + { + "start": 4405.46, + "end": 4405.68, + "probability": 0.7638 + }, + { + "start": 4405.82, + "end": 4407.9, + "probability": 0.89 + }, + { + "start": 4408.1, + "end": 4410.08, + "probability": 0.6455 + }, + { + "start": 4410.08, + "end": 4417.46, + "probability": 0.8491 + }, + { + "start": 4417.48, + "end": 4418.64, + "probability": 0.7577 + }, + { + "start": 4418.66, + "end": 4421.66, + "probability": 0.985 + }, + { + "start": 4421.74, + "end": 4423.3, + "probability": 0.954 + }, + { + "start": 4423.48, + "end": 4425.94, + "probability": 0.9934 + }, + { + "start": 4426.3, + "end": 4426.82, + "probability": 0.9078 + }, + { + "start": 4426.9, + "end": 4427.5, + "probability": 0.6991 + }, + { + "start": 4427.66, + "end": 4428.38, + "probability": 0.7193 + }, + { + "start": 4428.58, + "end": 4429.52, + "probability": 0.8977 + }, + { + "start": 4429.82, + "end": 4430.31, + "probability": 0.8702 + }, + { + "start": 4430.6, + "end": 4431.94, + "probability": 0.9323 + }, + { + "start": 4432.06, + "end": 4432.34, + "probability": 0.1734 + }, + { + "start": 4432.44, + "end": 4434.06, + "probability": 0.7448 + }, + { + "start": 4434.38, + "end": 4436.86, + "probability": 0.5515 + }, + { + "start": 4437.64, + "end": 4439.36, + "probability": 0.8984 + }, + { + "start": 4439.46, + "end": 4440.92, + "probability": 0.9879 + }, + { + "start": 4441.22, + "end": 4443.64, + "probability": 0.9661 + }, + { + "start": 4443.9, + "end": 4445.42, + "probability": 0.9347 + }, + { + "start": 4445.68, + "end": 4450.1, + "probability": 0.969 + }, + { + "start": 4450.22, + "end": 4451.86, + "probability": 0.9511 + }, + { + "start": 4452.34, + "end": 4452.62, + "probability": 0.1257 + }, + { + "start": 4454.88, + "end": 4455.04, + "probability": 0.0432 + }, + { + "start": 4455.04, + "end": 4456.36, + "probability": 0.7454 + }, + { + "start": 4456.98, + "end": 4457.88, + "probability": 0.4249 + }, + { + "start": 4457.9, + "end": 4460.18, + "probability": 0.3494 + }, + { + "start": 4460.36, + "end": 4463.08, + "probability": 0.1235 + }, + { + "start": 4465.38, + "end": 4465.8, + "probability": 0.6837 + }, + { + "start": 4466.32, + "end": 4466.86, + "probability": 0.4065 + }, + { + "start": 4466.86, + "end": 4469.7, + "probability": 0.6694 + }, + { + "start": 4469.7, + "end": 4472.26, + "probability": 0.6884 + }, + { + "start": 4472.34, + "end": 4472.82, + "probability": 0.4338 + }, + { + "start": 4472.92, + "end": 4474.9, + "probability": 0.902 + }, + { + "start": 4475.42, + "end": 4478.3, + "probability": 0.9816 + }, + { + "start": 4478.64, + "end": 4484.64, + "probability": 0.9033 + }, + { + "start": 4484.82, + "end": 4489.14, + "probability": 0.9653 + }, + { + "start": 4489.46, + "end": 4490.3, + "probability": 0.8079 + }, + { + "start": 4490.64, + "end": 4491.8, + "probability": 0.7232 + }, + { + "start": 4492.18, + "end": 4493.56, + "probability": 0.6496 + }, + { + "start": 4494.2, + "end": 4494.4, + "probability": 0.9647 + }, + { + "start": 4494.5, + "end": 4496.74, + "probability": 0.868 + }, + { + "start": 4496.9, + "end": 4497.64, + "probability": 0.7724 + }, + { + "start": 4498.0, + "end": 4498.35, + "probability": 0.6514 + }, + { + "start": 4498.86, + "end": 4499.64, + "probability": 0.96 + }, + { + "start": 4499.66, + "end": 4501.86, + "probability": 0.8859 + }, + { + "start": 4502.18, + "end": 4507.86, + "probability": 0.9411 + }, + { + "start": 4508.14, + "end": 4509.36, + "probability": 0.9154 + }, + { + "start": 4509.38, + "end": 4511.42, + "probability": 0.9554 + }, + { + "start": 4511.8, + "end": 4516.4, + "probability": 0.9701 + }, + { + "start": 4516.48, + "end": 4517.38, + "probability": 0.7569 + }, + { + "start": 4517.42, + "end": 4522.18, + "probability": 0.6931 + }, + { + "start": 4522.64, + "end": 4527.0, + "probability": 0.995 + }, + { + "start": 4527.74, + "end": 4533.88, + "probability": 0.945 + }, + { + "start": 4534.08, + "end": 4535.28, + "probability": 0.053 + }, + { + "start": 4535.28, + "end": 4537.08, + "probability": 0.6567 + }, + { + "start": 4537.16, + "end": 4537.9, + "probability": 0.0589 + }, + { + "start": 4537.9, + "end": 4538.88, + "probability": 0.5713 + }, + { + "start": 4539.44, + "end": 4540.28, + "probability": 0.9178 + }, + { + "start": 4540.66, + "end": 4543.94, + "probability": 0.9761 + }, + { + "start": 4544.56, + "end": 4546.14, + "probability": 0.4165 + }, + { + "start": 4546.7, + "end": 4547.16, + "probability": 0.6694 + }, + { + "start": 4548.54, + "end": 4548.64, + "probability": 0.8523 + }, + { + "start": 4548.76, + "end": 4552.4, + "probability": 0.9972 + }, + { + "start": 4552.4, + "end": 4558.28, + "probability": 0.9785 + }, + { + "start": 4558.72, + "end": 4558.94, + "probability": 0.0003 + }, + { + "start": 4558.94, + "end": 4560.76, + "probability": 0.0633 + }, + { + "start": 4560.76, + "end": 4560.76, + "probability": 0.0632 + }, + { + "start": 4560.76, + "end": 4561.36, + "probability": 0.0527 + }, + { + "start": 4562.5, + "end": 4564.96, + "probability": 0.861 + }, + { + "start": 4565.22, + "end": 4565.32, + "probability": 0.1078 + }, + { + "start": 4565.32, + "end": 4568.82, + "probability": 0.8623 + }, + { + "start": 4568.86, + "end": 4569.68, + "probability": 0.8511 + }, + { + "start": 4569.68, + "end": 4569.78, + "probability": 0.6431 + }, + { + "start": 4570.26, + "end": 4571.98, + "probability": 0.9741 + }, + { + "start": 4572.24, + "end": 4573.58, + "probability": 0.8239 + }, + { + "start": 4573.76, + "end": 4580.1, + "probability": 0.9844 + }, + { + "start": 4580.12, + "end": 4580.8, + "probability": 0.3451 + }, + { + "start": 4581.44, + "end": 4584.2, + "probability": 0.7116 + }, + { + "start": 4584.2, + "end": 4584.86, + "probability": 0.3076 + }, + { + "start": 4584.92, + "end": 4585.42, + "probability": 0.8177 + }, + { + "start": 4585.58, + "end": 4586.0, + "probability": 0.3333 + }, + { + "start": 4586.26, + "end": 4589.03, + "probability": 0.9747 + }, + { + "start": 4589.38, + "end": 4591.02, + "probability": 0.9045 + }, + { + "start": 4591.6, + "end": 4592.56, + "probability": 0.6234 + }, + { + "start": 4592.56, + "end": 4594.66, + "probability": 0.8657 + }, + { + "start": 4594.86, + "end": 4595.98, + "probability": 0.9782 + }, + { + "start": 4596.08, + "end": 4596.72, + "probability": 0.8914 + }, + { + "start": 4597.0, + "end": 4597.56, + "probability": 0.9921 + }, + { + "start": 4597.66, + "end": 4598.12, + "probability": 0.9697 + }, + { + "start": 4598.22, + "end": 4599.18, + "probability": 0.9658 + }, + { + "start": 4599.18, + "end": 4599.98, + "probability": 0.1496 + }, + { + "start": 4600.28, + "end": 4601.69, + "probability": 0.8589 + }, + { + "start": 4602.82, + "end": 4603.82, + "probability": 0.4928 + }, + { + "start": 4603.92, + "end": 4605.1, + "probability": 0.8233 + }, + { + "start": 4605.42, + "end": 4607.08, + "probability": 0.9834 + }, + { + "start": 4607.08, + "end": 4607.12, + "probability": 0.6489 + }, + { + "start": 4607.12, + "end": 4608.23, + "probability": 0.8431 + }, + { + "start": 4608.92, + "end": 4610.16, + "probability": 0.8668 + }, + { + "start": 4610.94, + "end": 4612.89, + "probability": 0.9677 + }, + { + "start": 4613.86, + "end": 4614.64, + "probability": 0.5121 + }, + { + "start": 4614.88, + "end": 4615.72, + "probability": 0.9355 + }, + { + "start": 4615.78, + "end": 4616.84, + "probability": 0.9546 + }, + { + "start": 4616.94, + "end": 4617.26, + "probability": 0.0499 + }, + { + "start": 4617.44, + "end": 4618.82, + "probability": 0.936 + }, + { + "start": 4618.94, + "end": 4619.66, + "probability": 0.2871 + }, + { + "start": 4619.82, + "end": 4620.44, + "probability": 0.2613 + }, + { + "start": 4620.44, + "end": 4624.64, + "probability": 0.7845 + }, + { + "start": 4624.68, + "end": 4627.84, + "probability": 0.9971 + }, + { + "start": 4628.12, + "end": 4630.54, + "probability": 0.9814 + }, + { + "start": 4630.7, + "end": 4633.54, + "probability": 0.9796 + }, + { + "start": 4633.54, + "end": 4637.1, + "probability": 0.9801 + }, + { + "start": 4637.26, + "end": 4639.78, + "probability": 0.9684 + }, + { + "start": 4639.9, + "end": 4640.82, + "probability": 0.8871 + }, + { + "start": 4640.94, + "end": 4642.78, + "probability": 0.9642 + }, + { + "start": 4642.9, + "end": 4643.4, + "probability": 0.9636 + }, + { + "start": 4643.6, + "end": 4646.18, + "probability": 0.9435 + }, + { + "start": 4646.54, + "end": 4646.94, + "probability": 0.8698 + }, + { + "start": 4647.02, + "end": 4650.32, + "probability": 0.9475 + }, + { + "start": 4650.92, + "end": 4651.48, + "probability": 0.8149 + }, + { + "start": 4651.56, + "end": 4651.86, + "probability": 0.9751 + }, + { + "start": 4652.1, + "end": 4654.68, + "probability": 0.8078 + }, + { + "start": 4655.02, + "end": 4658.68, + "probability": 0.9975 + }, + { + "start": 4659.26, + "end": 4660.8, + "probability": 0.5854 + }, + { + "start": 4660.8, + "end": 4661.42, + "probability": 0.103 + }, + { + "start": 4661.7, + "end": 4663.9, + "probability": 0.517 + }, + { + "start": 4664.14, + "end": 4664.16, + "probability": 0.0007 + }, + { + "start": 4664.16, + "end": 4664.16, + "probability": 0.2093 + }, + { + "start": 4664.16, + "end": 4664.48, + "probability": 0.2425 + }, + { + "start": 4664.48, + "end": 4665.46, + "probability": 0.6807 + }, + { + "start": 4666.14, + "end": 4667.5, + "probability": 0.8337 + }, + { + "start": 4668.6, + "end": 4672.58, + "probability": 0.9858 + }, + { + "start": 4674.06, + "end": 4677.94, + "probability": 0.875 + }, + { + "start": 4678.02, + "end": 4679.91, + "probability": 0.9839 + }, + { + "start": 4679.96, + "end": 4684.3, + "probability": 0.9757 + }, + { + "start": 4684.3, + "end": 4687.98, + "probability": 0.9824 + }, + { + "start": 4688.26, + "end": 4688.98, + "probability": 0.9679 + }, + { + "start": 4690.52, + "end": 4693.44, + "probability": 0.9468 + }, + { + "start": 4693.68, + "end": 4694.02, + "probability": 0.92 + }, + { + "start": 4694.52, + "end": 4695.58, + "probability": 0.9778 + }, + { + "start": 4695.94, + "end": 4699.08, + "probability": 0.9494 + }, + { + "start": 4699.46, + "end": 4700.7, + "probability": 0.9133 + }, + { + "start": 4700.76, + "end": 4703.4, + "probability": 0.9867 + }, + { + "start": 4703.52, + "end": 4707.36, + "probability": 0.819 + }, + { + "start": 4707.58, + "end": 4710.78, + "probability": 0.9857 + }, + { + "start": 4711.3, + "end": 4711.56, + "probability": 0.0317 + }, + { + "start": 4711.56, + "end": 4713.76, + "probability": 0.8096 + }, + { + "start": 4714.38, + "end": 4714.54, + "probability": 0.4616 + }, + { + "start": 4714.62, + "end": 4715.94, + "probability": 0.9379 + }, + { + "start": 4716.28, + "end": 4717.68, + "probability": 0.8185 + }, + { + "start": 4717.78, + "end": 4719.26, + "probability": 0.9331 + }, + { + "start": 4719.32, + "end": 4721.78, + "probability": 0.7725 + }, + { + "start": 4721.96, + "end": 4723.62, + "probability": 0.6304 + }, + { + "start": 4724.16, + "end": 4725.96, + "probability": 0.9755 + }, + { + "start": 4725.96, + "end": 4729.92, + "probability": 0.9564 + }, + { + "start": 4730.38, + "end": 4732.42, + "probability": 0.9128 + }, + { + "start": 4732.56, + "end": 4735.22, + "probability": 0.201 + }, + { + "start": 4735.38, + "end": 4735.38, + "probability": 0.1776 + }, + { + "start": 4735.4, + "end": 4737.9, + "probability": 0.988 + }, + { + "start": 4737.9, + "end": 4740.4, + "probability": 0.9966 + }, + { + "start": 4740.5, + "end": 4740.96, + "probability": 0.5563 + }, + { + "start": 4741.42, + "end": 4741.72, + "probability": 0.8185 + }, + { + "start": 4741.8, + "end": 4745.36, + "probability": 0.9839 + }, + { + "start": 4745.78, + "end": 4746.06, + "probability": 0.0094 + }, + { + "start": 4746.06, + "end": 4746.88, + "probability": 0.0397 + }, + { + "start": 4747.32, + "end": 4748.1, + "probability": 0.6738 + }, + { + "start": 4748.24, + "end": 4749.82, + "probability": 0.9917 + }, + { + "start": 4750.1, + "end": 4751.62, + "probability": 0.8717 + }, + { + "start": 4751.9, + "end": 4754.2, + "probability": 0.9554 + }, + { + "start": 4754.24, + "end": 4756.28, + "probability": 0.9922 + }, + { + "start": 4756.92, + "end": 4758.92, + "probability": 0.9692 + }, + { + "start": 4759.24, + "end": 4760.9, + "probability": 0.9539 + }, + { + "start": 4761.3, + "end": 4762.3, + "probability": 0.7969 + }, + { + "start": 4762.3, + "end": 4765.26, + "probability": 0.9792 + }, + { + "start": 4765.32, + "end": 4766.32, + "probability": 0.9456 + }, + { + "start": 4766.76, + "end": 4770.3, + "probability": 0.8263 + }, + { + "start": 4770.48, + "end": 4772.88, + "probability": 0.0824 + }, + { + "start": 4774.3, + "end": 4775.96, + "probability": 0.0573 + }, + { + "start": 4776.22, + "end": 4782.86, + "probability": 0.7033 + }, + { + "start": 4783.14, + "end": 4786.44, + "probability": 0.2988 + }, + { + "start": 4786.52, + "end": 4786.92, + "probability": 0.0634 + }, + { + "start": 4786.92, + "end": 4790.02, + "probability": 0.2366 + }, + { + "start": 4790.06, + "end": 4795.12, + "probability": 0.0583 + }, + { + "start": 4795.72, + "end": 4796.42, + "probability": 0.2454 + }, + { + "start": 4798.78, + "end": 4800.24, + "probability": 0.0158 + }, + { + "start": 4809.88, + "end": 4810.98, + "probability": 0.0581 + }, + { + "start": 4812.94, + "end": 4815.04, + "probability": 0.0207 + }, + { + "start": 4815.31, + "end": 4817.5, + "probability": 0.0307 + }, + { + "start": 4817.5, + "end": 4817.82, + "probability": 0.0623 + }, + { + "start": 4818.06, + "end": 4820.37, + "probability": 0.1152 + }, + { + "start": 4820.9, + "end": 4821.98, + "probability": 0.0108 + }, + { + "start": 4826.06, + "end": 4826.06, + "probability": 0.0097 + }, + { + "start": 4831.38, + "end": 4834.4, + "probability": 0.1474 + }, + { + "start": 4835.37, + "end": 4836.14, + "probability": 0.0817 + }, + { + "start": 4836.14, + "end": 4838.7, + "probability": 0.0451 + }, + { + "start": 4839.52, + "end": 4840.36, + "probability": 0.1028 + }, + { + "start": 4841.29, + "end": 4841.92, + "probability": 0.0778 + }, + { + "start": 4841.92, + "end": 4842.4, + "probability": 0.1809 + }, + { + "start": 4842.58, + "end": 4842.98, + "probability": 0.1633 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.0 + }, + { + "start": 4843.7, + "end": 4846.84, + "probability": 0.0279 + }, + { + "start": 4847.62, + "end": 4848.08, + "probability": 0.2414 + }, + { + "start": 4848.08, + "end": 4849.52, + "probability": 0.0775 + }, + { + "start": 4849.76, + "end": 4849.76, + "probability": 0.0154 + }, + { + "start": 4849.76, + "end": 4849.78, + "probability": 0.049 + }, + { + "start": 4849.78, + "end": 4851.0, + "probability": 0.064 + }, + { + "start": 4851.04, + "end": 4856.78, + "probability": 0.0662 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.0, + "end": 4965.0, + "probability": 0.0 + }, + { + "start": 4965.56, + "end": 4966.89, + "probability": 0.1224 + }, + { + "start": 4967.1, + "end": 4967.88, + "probability": 0.0592 + }, + { + "start": 4968.14, + "end": 4969.22, + "probability": 0.078 + }, + { + "start": 4970.9, + "end": 4973.1, + "probability": 0.0006 + }, + { + "start": 4976.32, + "end": 4977.72, + "probability": 0.0517 + }, + { + "start": 4991.72, + "end": 4993.36, + "probability": 0.3166 + }, + { + "start": 4993.52, + "end": 4994.46, + "probability": 0.1671 + }, + { + "start": 4996.79, + "end": 4998.98, + "probability": 0.0463 + }, + { + "start": 4999.78, + "end": 5006.3, + "probability": 0.2862 + }, + { + "start": 5006.86, + "end": 5009.74, + "probability": 0.0224 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.08, + "end": 5093.44, + "probability": 0.0655 + }, + { + "start": 5093.44, + "end": 5093.92, + "probability": 0.3421 + }, + { + "start": 5094.74, + "end": 5095.97, + "probability": 0.8374 + }, + { + "start": 5096.94, + "end": 5100.28, + "probability": 0.9176 + }, + { + "start": 5100.9, + "end": 5103.94, + "probability": 0.8706 + }, + { + "start": 5104.02, + "end": 5105.53, + "probability": 0.8906 + }, + { + "start": 5106.02, + "end": 5108.48, + "probability": 0.9913 + }, + { + "start": 5109.08, + "end": 5109.2, + "probability": 0.5261 + }, + { + "start": 5109.28, + "end": 5112.62, + "probability": 0.9636 + }, + { + "start": 5112.92, + "end": 5114.46, + "probability": 0.9756 + }, + { + "start": 5114.6, + "end": 5115.57, + "probability": 0.9727 + }, + { + "start": 5116.08, + "end": 5116.98, + "probability": 0.7947 + }, + { + "start": 5117.94, + "end": 5118.64, + "probability": 0.6729 + }, + { + "start": 5118.82, + "end": 5121.58, + "probability": 0.9176 + }, + { + "start": 5121.68, + "end": 5122.4, + "probability": 0.6923 + }, + { + "start": 5123.0, + "end": 5124.3, + "probability": 0.9702 + }, + { + "start": 5124.48, + "end": 5124.98, + "probability": 0.7813 + }, + { + "start": 5125.06, + "end": 5125.68, + "probability": 0.6052 + }, + { + "start": 5125.94, + "end": 5126.56, + "probability": 0.9092 + }, + { + "start": 5127.2, + "end": 5129.34, + "probability": 0.9902 + }, + { + "start": 5130.1, + "end": 5133.48, + "probability": 0.9894 + }, + { + "start": 5133.48, + "end": 5135.18, + "probability": 0.7015 + }, + { + "start": 5136.3, + "end": 5138.04, + "probability": 0.9396 + }, + { + "start": 5139.18, + "end": 5140.36, + "probability": 0.9518 + }, + { + "start": 5140.54, + "end": 5141.86, + "probability": 0.9751 + }, + { + "start": 5142.26, + "end": 5144.44, + "probability": 0.6377 + }, + { + "start": 5145.04, + "end": 5147.25, + "probability": 0.9946 + }, + { + "start": 5147.48, + "end": 5148.89, + "probability": 0.7461 + }, + { + "start": 5149.96, + "end": 5151.83, + "probability": 0.7505 + }, + { + "start": 5152.94, + "end": 5156.02, + "probability": 0.8382 + }, + { + "start": 5156.02, + "end": 5158.5, + "probability": 0.8712 + }, + { + "start": 5158.88, + "end": 5159.92, + "probability": 0.7822 + }, + { + "start": 5160.44, + "end": 5164.3, + "probability": 0.9345 + }, + { + "start": 5164.78, + "end": 5165.98, + "probability": 0.9028 + }, + { + "start": 5166.36, + "end": 5168.18, + "probability": 0.9154 + }, + { + "start": 5168.82, + "end": 5168.82, + "probability": 0.0011 + }, + { + "start": 5168.82, + "end": 5169.66, + "probability": 0.6017 + }, + { + "start": 5169.66, + "end": 5170.54, + "probability": 0.3963 + }, + { + "start": 5170.98, + "end": 5172.45, + "probability": 0.1603 + }, + { + "start": 5172.7, + "end": 5173.06, + "probability": 0.5386 + }, + { + "start": 5173.18, + "end": 5173.68, + "probability": 0.5342 + }, + { + "start": 5174.3, + "end": 5175.96, + "probability": 0.8215 + }, + { + "start": 5176.94, + "end": 5179.92, + "probability": 0.9912 + }, + { + "start": 5179.92, + "end": 5183.44, + "probability": 0.7165 + }, + { + "start": 5183.96, + "end": 5186.48, + "probability": 0.9399 + }, + { + "start": 5186.82, + "end": 5186.9, + "probability": 0.2709 + }, + { + "start": 5186.9, + "end": 5187.81, + "probability": 0.5099 + }, + { + "start": 5188.16, + "end": 5189.12, + "probability": 0.9302 + }, + { + "start": 5189.28, + "end": 5191.9, + "probability": 0.9857 + }, + { + "start": 5192.26, + "end": 5193.06, + "probability": 0.9595 + }, + { + "start": 5193.2, + "end": 5194.28, + "probability": 0.9521 + }, + { + "start": 5194.4, + "end": 5194.99, + "probability": 0.9326 + }, + { + "start": 5195.09, + "end": 5196.6, + "probability": 0.9009 + }, + { + "start": 5196.68, + "end": 5199.64, + "probability": 0.7365 + }, + { + "start": 5199.76, + "end": 5201.08, + "probability": 0.8655 + }, + { + "start": 5201.54, + "end": 5203.0, + "probability": 0.7325 + }, + { + "start": 5203.2, + "end": 5203.78, + "probability": 0.8233 + }, + { + "start": 5203.9, + "end": 5203.96, + "probability": 0.3217 + }, + { + "start": 5203.96, + "end": 5204.86, + "probability": 0.7134 + }, + { + "start": 5205.36, + "end": 5207.04, + "probability": 0.5966 + }, + { + "start": 5207.32, + "end": 5208.3, + "probability": 0.8896 + }, + { + "start": 5209.38, + "end": 5209.38, + "probability": 0.2615 + }, + { + "start": 5209.38, + "end": 5213.32, + "probability": 0.7659 + }, + { + "start": 5214.58, + "end": 5215.8, + "probability": 0.545 + }, + { + "start": 5215.8, + "end": 5216.12, + "probability": 0.5882 + }, + { + "start": 5216.32, + "end": 5216.9, + "probability": 0.698 + }, + { + "start": 5216.96, + "end": 5218.6, + "probability": 0.7214 + }, + { + "start": 5220.54, + "end": 5222.46, + "probability": 0.7889 + }, + { + "start": 5228.86, + "end": 5229.1, + "probability": 0.1596 + }, + { + "start": 5229.22, + "end": 5229.82, + "probability": 0.2354 + }, + { + "start": 5238.44, + "end": 5239.5, + "probability": 0.0444 + }, + { + "start": 5239.5, + "end": 5240.64, + "probability": 0.2418 + }, + { + "start": 5242.38, + "end": 5242.68, + "probability": 0.5334 + }, + { + "start": 5242.7, + "end": 5243.06, + "probability": 0.609 + }, + { + "start": 5243.18, + "end": 5246.54, + "probability": 0.9708 + }, + { + "start": 5246.6, + "end": 5247.0, + "probability": 0.8431 + }, + { + "start": 5247.88, + "end": 5251.48, + "probability": 0.8219 + }, + { + "start": 5251.84, + "end": 5253.81, + "probability": 0.7588 + }, + { + "start": 5254.62, + "end": 5255.34, + "probability": 0.8133 + }, + { + "start": 5268.3, + "end": 5269.88, + "probability": 0.5941 + }, + { + "start": 5273.34, + "end": 5279.08, + "probability": 0.9463 + }, + { + "start": 5279.18, + "end": 5281.74, + "probability": 0.9383 + }, + { + "start": 5281.82, + "end": 5284.44, + "probability": 0.9834 + }, + { + "start": 5285.12, + "end": 5285.22, + "probability": 0.0413 + }, + { + "start": 5285.22, + "end": 5287.78, + "probability": 0.948 + }, + { + "start": 5287.94, + "end": 5292.12, + "probability": 0.8693 + }, + { + "start": 5294.3, + "end": 5295.0, + "probability": 0.0337 + }, + { + "start": 5295.22, + "end": 5296.77, + "probability": 0.4492 + }, + { + "start": 5298.5, + "end": 5299.3, + "probability": 0.0195 + }, + { + "start": 5299.92, + "end": 5302.98, + "probability": 0.83 + }, + { + "start": 5302.98, + "end": 5307.78, + "probability": 0.7661 + }, + { + "start": 5308.32, + "end": 5309.96, + "probability": 0.7727 + }, + { + "start": 5310.06, + "end": 5312.74, + "probability": 0.5402 + }, + { + "start": 5313.62, + "end": 5314.98, + "probability": 0.7382 + }, + { + "start": 5316.04, + "end": 5320.4, + "probability": 0.8317 + }, + { + "start": 5321.14, + "end": 5323.16, + "probability": 0.2757 + }, + { + "start": 5325.18, + "end": 5325.46, + "probability": 0.0859 + }, + { + "start": 5325.48, + "end": 5326.24, + "probability": 0.0291 + }, + { + "start": 5326.56, + "end": 5326.9, + "probability": 0.0189 + }, + { + "start": 5328.3, + "end": 5328.36, + "probability": 0.3568 + }, + { + "start": 5328.36, + "end": 5330.62, + "probability": 0.4715 + }, + { + "start": 5330.7, + "end": 5332.48, + "probability": 0.9775 + }, + { + "start": 5333.06, + "end": 5333.46, + "probability": 0.8716 + }, + { + "start": 5333.98, + "end": 5335.14, + "probability": 0.7681 + }, + { + "start": 5335.16, + "end": 5336.56, + "probability": 0.8197 + }, + { + "start": 5336.62, + "end": 5338.0, + "probability": 0.9512 + }, + { + "start": 5338.26, + "end": 5339.86, + "probability": 0.9146 + }, + { + "start": 5340.4, + "end": 5344.34, + "probability": 0.8291 + }, + { + "start": 5344.5, + "end": 5346.04, + "probability": 0.6806 + }, + { + "start": 5346.56, + "end": 5349.1, + "probability": 0.9899 + }, + { + "start": 5349.26, + "end": 5349.46, + "probability": 0.9183 + }, + { + "start": 5349.82, + "end": 5351.42, + "probability": 0.7231 + }, + { + "start": 5351.58, + "end": 5353.32, + "probability": 0.6968 + }, + { + "start": 5354.26, + "end": 5356.14, + "probability": 0.9879 + }, + { + "start": 5356.74, + "end": 5359.06, + "probability": 0.6719 + }, + { + "start": 5359.12, + "end": 5360.48, + "probability": 0.4374 + }, + { + "start": 5360.56, + "end": 5361.4, + "probability": 0.7141 + }, + { + "start": 5361.76, + "end": 5364.36, + "probability": 0.9814 + }, + { + "start": 5372.36, + "end": 5372.98, + "probability": 0.6683 + }, + { + "start": 5373.14, + "end": 5376.18, + "probability": 0.9966 + }, + { + "start": 5376.18, + "end": 5378.9, + "probability": 0.7145 + }, + { + "start": 5381.04, + "end": 5382.92, + "probability": 0.7964 + }, + { + "start": 5382.98, + "end": 5383.46, + "probability": 0.9303 + }, + { + "start": 5383.58, + "end": 5388.06, + "probability": 0.9945 + }, + { + "start": 5388.94, + "end": 5391.24, + "probability": 0.7207 + }, + { + "start": 5391.74, + "end": 5397.16, + "probability": 0.8984 + }, + { + "start": 5397.86, + "end": 5402.62, + "probability": 0.9966 + }, + { + "start": 5403.3, + "end": 5409.77, + "probability": 0.9971 + }, + { + "start": 5411.5, + "end": 5413.6, + "probability": 0.686 + }, + { + "start": 5413.64, + "end": 5417.14, + "probability": 0.981 + }, + { + "start": 5417.22, + "end": 5421.48, + "probability": 0.9701 + }, + { + "start": 5421.48, + "end": 5426.74, + "probability": 0.995 + }, + { + "start": 5427.42, + "end": 5428.62, + "probability": 0.6961 + }, + { + "start": 5428.8, + "end": 5433.36, + "probability": 0.9492 + }, + { + "start": 5434.26, + "end": 5443.6, + "probability": 0.9528 + }, + { + "start": 5444.24, + "end": 5444.76, + "probability": 0.8583 + }, + { + "start": 5445.68, + "end": 5448.2, + "probability": 0.9803 + }, + { + "start": 5449.28, + "end": 5454.58, + "probability": 0.984 + }, + { + "start": 5454.58, + "end": 5459.8, + "probability": 0.9409 + }, + { + "start": 5461.36, + "end": 5465.42, + "probability": 0.9979 + }, + { + "start": 5466.14, + "end": 5469.56, + "probability": 0.9803 + }, + { + "start": 5469.64, + "end": 5474.9, + "probability": 0.7614 + }, + { + "start": 5475.42, + "end": 5478.02, + "probability": 0.9701 + }, + { + "start": 5478.54, + "end": 5480.64, + "probability": 0.9574 + }, + { + "start": 5481.68, + "end": 5490.4, + "probability": 0.9977 + }, + { + "start": 5490.4, + "end": 5500.4, + "probability": 0.9988 + }, + { + "start": 5501.6, + "end": 5503.24, + "probability": 0.998 + }, + { + "start": 5503.24, + "end": 5507.52, + "probability": 0.9836 + }, + { + "start": 5507.86, + "end": 5511.08, + "probability": 0.9946 + }, + { + "start": 5511.68, + "end": 5516.22, + "probability": 0.9871 + }, + { + "start": 5516.22, + "end": 5520.9, + "probability": 0.992 + }, + { + "start": 5520.9, + "end": 5525.96, + "probability": 0.9956 + }, + { + "start": 5527.32, + "end": 5529.86, + "probability": 0.9523 + }, + { + "start": 5530.52, + "end": 5534.1, + "probability": 0.9921 + }, + { + "start": 5534.1, + "end": 5539.06, + "probability": 0.9904 + }, + { + "start": 5540.06, + "end": 5543.44, + "probability": 0.8184 + }, + { + "start": 5544.68, + "end": 5547.78, + "probability": 0.9126 + }, + { + "start": 5547.94, + "end": 5550.18, + "probability": 0.9918 + }, + { + "start": 5550.56, + "end": 5550.7, + "probability": 0.5524 + }, + { + "start": 5550.78, + "end": 5551.44, + "probability": 0.7213 + }, + { + "start": 5552.04, + "end": 5554.3, + "probability": 0.8128 + }, + { + "start": 5554.3, + "end": 5557.56, + "probability": 0.9909 + }, + { + "start": 5558.42, + "end": 5558.72, + "probability": 0.6417 + }, + { + "start": 5558.76, + "end": 5561.84, + "probability": 0.9473 + }, + { + "start": 5562.52, + "end": 5566.46, + "probability": 0.9435 + }, + { + "start": 5566.56, + "end": 5568.15, + "probability": 0.9844 + }, + { + "start": 5568.92, + "end": 5571.32, + "probability": 0.9454 + }, + { + "start": 5571.44, + "end": 5577.06, + "probability": 0.9875 + }, + { + "start": 5577.96, + "end": 5579.84, + "probability": 0.9922 + }, + { + "start": 5579.84, + "end": 5582.44, + "probability": 0.9993 + }, + { + "start": 5582.52, + "end": 5586.36, + "probability": 0.9895 + }, + { + "start": 5587.12, + "end": 5590.18, + "probability": 0.7131 + }, + { + "start": 5590.34, + "end": 5595.72, + "probability": 0.9546 + }, + { + "start": 5596.3, + "end": 5596.8, + "probability": 0.7055 + }, + { + "start": 5596.86, + "end": 5597.28, + "probability": 0.9551 + }, + { + "start": 5597.68, + "end": 5601.38, + "probability": 0.9934 + }, + { + "start": 5601.48, + "end": 5606.88, + "probability": 0.9676 + }, + { + "start": 5607.02, + "end": 5612.44, + "probability": 0.835 + }, + { + "start": 5612.44, + "end": 5614.42, + "probability": 0.8904 + }, + { + "start": 5615.22, + "end": 5617.8, + "probability": 0.8301 + }, + { + "start": 5618.94, + "end": 5620.09, + "probability": 0.9307 + }, + { + "start": 5621.0, + "end": 5624.8, + "probability": 0.8905 + }, + { + "start": 5626.44, + "end": 5628.38, + "probability": 0.9904 + }, + { + "start": 5628.42, + "end": 5632.22, + "probability": 0.9893 + }, + { + "start": 5632.8, + "end": 5634.98, + "probability": 0.9517 + }, + { + "start": 5635.3, + "end": 5638.34, + "probability": 0.9815 + }, + { + "start": 5639.62, + "end": 5642.84, + "probability": 0.9482 + }, + { + "start": 5643.46, + "end": 5645.93, + "probability": 0.988 + }, + { + "start": 5646.42, + "end": 5648.5, + "probability": 0.92 + }, + { + "start": 5648.62, + "end": 5655.84, + "probability": 0.9766 + }, + { + "start": 5656.06, + "end": 5661.14, + "probability": 0.9699 + }, + { + "start": 5661.48, + "end": 5661.88, + "probability": 0.4349 + }, + { + "start": 5663.7, + "end": 5664.72, + "probability": 0.4094 + }, + { + "start": 5665.58, + "end": 5668.22, + "probability": 0.9927 + }, + { + "start": 5668.82, + "end": 5669.9, + "probability": 0.8523 + }, + { + "start": 5671.02, + "end": 5673.14, + "probability": 0.8675 + }, + { + "start": 5673.3, + "end": 5675.28, + "probability": 0.999 + }, + { + "start": 5675.34, + "end": 5676.84, + "probability": 0.9801 + }, + { + "start": 5677.68, + "end": 5680.8, + "probability": 0.9742 + }, + { + "start": 5683.43, + "end": 5690.02, + "probability": 0.9902 + }, + { + "start": 5690.6, + "end": 5692.54, + "probability": 0.9702 + }, + { + "start": 5692.7, + "end": 5694.9, + "probability": 0.9984 + }, + { + "start": 5694.94, + "end": 5698.7, + "probability": 0.6732 + }, + { + "start": 5698.7, + "end": 5700.86, + "probability": 0.993 + }, + { + "start": 5701.9, + "end": 5705.6, + "probability": 0.8566 + }, + { + "start": 5705.66, + "end": 5707.04, + "probability": 0.887 + }, + { + "start": 5708.87, + "end": 5712.4, + "probability": 0.8368 + }, + { + "start": 5713.6, + "end": 5715.82, + "probability": 0.9165 + }, + { + "start": 5716.24, + "end": 5721.56, + "probability": 0.9143 + }, + { + "start": 5722.48, + "end": 5730.36, + "probability": 0.9893 + }, + { + "start": 5731.46, + "end": 5734.18, + "probability": 0.9863 + }, + { + "start": 5736.0, + "end": 5736.52, + "probability": 0.8413 + }, + { + "start": 5737.56, + "end": 5741.98, + "probability": 0.9984 + }, + { + "start": 5742.7, + "end": 5743.58, + "probability": 0.7538 + }, + { + "start": 5744.34, + "end": 5746.3, + "probability": 0.7998 + }, + { + "start": 5747.38, + "end": 5750.72, + "probability": 0.9876 + }, + { + "start": 5751.52, + "end": 5756.9, + "probability": 0.9837 + }, + { + "start": 5757.08, + "end": 5762.34, + "probability": 0.9927 + }, + { + "start": 5762.34, + "end": 5765.1, + "probability": 0.9951 + }, + { + "start": 5765.68, + "end": 5769.78, + "probability": 0.996 + }, + { + "start": 5770.78, + "end": 5773.26, + "probability": 0.8362 + }, + { + "start": 5773.5, + "end": 5777.84, + "probability": 0.8125 + }, + { + "start": 5778.58, + "end": 5781.86, + "probability": 0.9474 + }, + { + "start": 5782.34, + "end": 5784.68, + "probability": 0.9097 + }, + { + "start": 5785.26, + "end": 5785.48, + "probability": 0.4945 + }, + { + "start": 5785.56, + "end": 5785.92, + "probability": 0.7749 + }, + { + "start": 5786.02, + "end": 5790.72, + "probability": 0.9689 + }, + { + "start": 5791.02, + "end": 5792.37, + "probability": 0.9907 + }, + { + "start": 5793.06, + "end": 5795.74, + "probability": 0.7051 + }, + { + "start": 5796.54, + "end": 5798.44, + "probability": 0.7143 + }, + { + "start": 5799.38, + "end": 5801.32, + "probability": 0.8348 + }, + { + "start": 5801.82, + "end": 5803.72, + "probability": 0.7679 + }, + { + "start": 5804.2, + "end": 5806.3, + "probability": 0.8597 + }, + { + "start": 5807.08, + "end": 5809.56, + "probability": 0.8813 + }, + { + "start": 5809.7, + "end": 5813.68, + "probability": 0.9797 + }, + { + "start": 5814.16, + "end": 5816.88, + "probability": 0.8699 + }, + { + "start": 5817.18, + "end": 5819.4, + "probability": 0.8634 + }, + { + "start": 5820.0, + "end": 5822.5, + "probability": 0.5691 + }, + { + "start": 5826.36, + "end": 5828.28, + "probability": 0.1474 + }, + { + "start": 5828.28, + "end": 5828.28, + "probability": 0.0332 + }, + { + "start": 5828.28, + "end": 5829.34, + "probability": 0.0263 + }, + { + "start": 5829.68, + "end": 5829.68, + "probability": 0.0731 + }, + { + "start": 5830.3, + "end": 5830.3, + "probability": 0.1451 + }, + { + "start": 5830.32, + "end": 5832.0, + "probability": 0.6538 + }, + { + "start": 5833.78, + "end": 5834.0, + "probability": 0.3186 + }, + { + "start": 5834.0, + "end": 5834.24, + "probability": 0.3811 + }, + { + "start": 5835.76, + "end": 5838.1, + "probability": 0.9758 + }, + { + "start": 5838.3, + "end": 5840.5, + "probability": 0.4099 + }, + { + "start": 5840.5, + "end": 5842.66, + "probability": 0.6339 + }, + { + "start": 5842.96, + "end": 5844.58, + "probability": 0.9639 + }, + { + "start": 5853.68, + "end": 5856.32, + "probability": 0.6187 + }, + { + "start": 5857.6, + "end": 5859.18, + "probability": 0.9727 + }, + { + "start": 5859.44, + "end": 5860.7, + "probability": 0.6168 + }, + { + "start": 5860.86, + "end": 5860.86, + "probability": 0.7866 + }, + { + "start": 5860.86, + "end": 5861.88, + "probability": 0.6036 + }, + { + "start": 5862.38, + "end": 5863.5, + "probability": 0.8882 + }, + { + "start": 5864.12, + "end": 5864.74, + "probability": 0.7916 + }, + { + "start": 5866.08, + "end": 5867.02, + "probability": 0.7822 + }, + { + "start": 5867.2, + "end": 5868.7, + "probability": 0.0965 + }, + { + "start": 5868.7, + "end": 5868.98, + "probability": 0.4288 + }, + { + "start": 5868.98, + "end": 5870.33, + "probability": 0.6646 + }, + { + "start": 5871.64, + "end": 5873.06, + "probability": 0.5894 + }, + { + "start": 5873.18, + "end": 5878.38, + "probability": 0.8838 + }, + { + "start": 5878.96, + "end": 5885.6, + "probability": 0.9854 + }, + { + "start": 5885.6, + "end": 5895.86, + "probability": 0.9982 + }, + { + "start": 5895.86, + "end": 5903.82, + "probability": 0.9871 + }, + { + "start": 5905.28, + "end": 5909.54, + "probability": 0.6703 + }, + { + "start": 5910.08, + "end": 5911.6, + "probability": 0.8579 + }, + { + "start": 5912.52, + "end": 5913.62, + "probability": 0.8924 + }, + { + "start": 5914.4, + "end": 5919.06, + "probability": 0.9799 + }, + { + "start": 5919.06, + "end": 5925.4, + "probability": 0.9107 + }, + { + "start": 5926.14, + "end": 5930.72, + "probability": 0.9921 + }, + { + "start": 5931.56, + "end": 5932.26, + "probability": 0.9991 + }, + { + "start": 5932.96, + "end": 5934.98, + "probability": 0.9785 + }, + { + "start": 5935.72, + "end": 5938.02, + "probability": 0.9921 + }, + { + "start": 5938.62, + "end": 5939.84, + "probability": 0.9326 + }, + { + "start": 5939.96, + "end": 5942.88, + "probability": 0.9989 + }, + { + "start": 5943.54, + "end": 5944.3, + "probability": 0.9998 + }, + { + "start": 5945.9, + "end": 5950.86, + "probability": 0.9892 + }, + { + "start": 5951.26, + "end": 5952.2, + "probability": 0.2967 + }, + { + "start": 5953.06, + "end": 5957.52, + "probability": 0.8999 + }, + { + "start": 5957.88, + "end": 5961.78, + "probability": 0.8161 + }, + { + "start": 5962.5, + "end": 5969.12, + "probability": 0.9546 + }, + { + "start": 5969.64, + "end": 5978.46, + "probability": 0.9984 + }, + { + "start": 5979.6, + "end": 5983.34, + "probability": 0.9945 + }, + { + "start": 5983.84, + "end": 5984.98, + "probability": 0.7205 + }, + { + "start": 5985.06, + "end": 5987.54, + "probability": 0.9554 + }, + { + "start": 5987.54, + "end": 5993.0, + "probability": 0.9961 + }, + { + "start": 5993.12, + "end": 5997.92, + "probability": 0.9989 + }, + { + "start": 5997.92, + "end": 6001.36, + "probability": 0.9907 + }, + { + "start": 6002.72, + "end": 6005.98, + "probability": 0.9934 + }, + { + "start": 6006.44, + "end": 6013.26, + "probability": 0.9976 + }, + { + "start": 6013.78, + "end": 6019.32, + "probability": 0.9796 + }, + { + "start": 6019.32, + "end": 6024.5, + "probability": 0.9973 + }, + { + "start": 6025.08, + "end": 6029.0, + "probability": 0.9891 + }, + { + "start": 6029.02, + "end": 6032.7, + "probability": 0.9198 + }, + { + "start": 6034.36, + "end": 6037.75, + "probability": 0.9883 + }, + { + "start": 6039.06, + "end": 6043.96, + "probability": 0.9432 + }, + { + "start": 6045.94, + "end": 6050.7, + "probability": 0.7848 + }, + { + "start": 6051.32, + "end": 6053.64, + "probability": 0.9544 + }, + { + "start": 6054.28, + "end": 6056.16, + "probability": 0.9668 + }, + { + "start": 6057.16, + "end": 6061.1, + "probability": 0.9716 + }, + { + "start": 6061.6, + "end": 6064.33, + "probability": 0.9836 + }, + { + "start": 6065.32, + "end": 6068.46, + "probability": 0.9738 + }, + { + "start": 6069.1, + "end": 6070.04, + "probability": 0.7201 + }, + { + "start": 6070.08, + "end": 6071.88, + "probability": 0.9734 + }, + { + "start": 6072.04, + "end": 6072.28, + "probability": 0.7839 + }, + { + "start": 6073.98, + "end": 6076.28, + "probability": 0.9705 + }, + { + "start": 6076.52, + "end": 6078.08, + "probability": 0.8948 + }, + { + "start": 6079.3, + "end": 6082.08, + "probability": 0.8114 + }, + { + "start": 6097.2, + "end": 6098.44, + "probability": 0.5828 + }, + { + "start": 6100.68, + "end": 6102.06, + "probability": 0.8833 + }, + { + "start": 6103.16, + "end": 6106.9, + "probability": 0.9671 + }, + { + "start": 6107.88, + "end": 6111.78, + "probability": 0.7969 + }, + { + "start": 6112.74, + "end": 6115.28, + "probability": 0.9975 + }, + { + "start": 6115.92, + "end": 6124.1, + "probability": 0.9933 + }, + { + "start": 6125.46, + "end": 6132.26, + "probability": 0.9434 + }, + { + "start": 6132.88, + "end": 6135.75, + "probability": 0.4965 + }, + { + "start": 6136.36, + "end": 6139.86, + "probability": 0.9926 + }, + { + "start": 6140.5, + "end": 6143.42, + "probability": 0.9895 + }, + { + "start": 6144.08, + "end": 6151.0, + "probability": 0.9883 + }, + { + "start": 6151.5, + "end": 6153.92, + "probability": 0.7061 + }, + { + "start": 6154.48, + "end": 6160.26, + "probability": 0.9955 + }, + { + "start": 6160.86, + "end": 6164.62, + "probability": 0.9938 + }, + { + "start": 6165.26, + "end": 6165.66, + "probability": 0.9305 + }, + { + "start": 6167.1, + "end": 6169.52, + "probability": 0.9565 + }, + { + "start": 6170.68, + "end": 6173.02, + "probability": 0.9864 + }, + { + "start": 6173.98, + "end": 6174.36, + "probability": 0.9729 + }, + { + "start": 6175.62, + "end": 6181.82, + "probability": 0.9658 + }, + { + "start": 6183.26, + "end": 6185.82, + "probability": 0.8541 + }, + { + "start": 6186.78, + "end": 6191.5, + "probability": 0.9612 + }, + { + "start": 6192.22, + "end": 6194.44, + "probability": 0.9853 + }, + { + "start": 6195.18, + "end": 6198.54, + "probability": 0.9136 + }, + { + "start": 6200.34, + "end": 6201.7, + "probability": 0.8581 + }, + { + "start": 6202.32, + "end": 6204.84, + "probability": 0.9153 + }, + { + "start": 6205.6, + "end": 6207.96, + "probability": 0.972 + }, + { + "start": 6208.6, + "end": 6212.22, + "probability": 0.9837 + }, + { + "start": 6212.82, + "end": 6217.0, + "probability": 0.9728 + }, + { + "start": 6217.32, + "end": 6218.58, + "probability": 0.9805 + }, + { + "start": 6219.12, + "end": 6222.52, + "probability": 0.9873 + }, + { + "start": 6222.52, + "end": 6226.56, + "probability": 0.9784 + }, + { + "start": 6227.34, + "end": 6227.77, + "probability": 0.7703 + }, + { + "start": 6228.82, + "end": 6229.72, + "probability": 0.8716 + }, + { + "start": 6230.06, + "end": 6240.54, + "probability": 0.9009 + }, + { + "start": 6241.02, + "end": 6242.14, + "probability": 0.1194 + }, + { + "start": 6242.3, + "end": 6242.8, + "probability": 0.7761 + }, + { + "start": 6243.04, + "end": 6249.82, + "probability": 0.5855 + }, + { + "start": 6250.33, + "end": 6252.18, + "probability": 0.5214 + }, + { + "start": 6252.64, + "end": 6254.82, + "probability": 0.6687 + }, + { + "start": 6255.1, + "end": 6259.28, + "probability": 0.1757 + }, + { + "start": 6259.52, + "end": 6264.82, + "probability": 0.8939 + }, + { + "start": 6265.26, + "end": 6271.04, + "probability": 0.8152 + }, + { + "start": 6272.02, + "end": 6274.18, + "probability": 0.7953 + }, + { + "start": 6274.48, + "end": 6275.44, + "probability": 0.9159 + }, + { + "start": 6275.54, + "end": 6280.74, + "probability": 0.9396 + }, + { + "start": 6281.06, + "end": 6282.14, + "probability": 0.7503 + }, + { + "start": 6282.9, + "end": 6288.42, + "probability": 0.944 + }, + { + "start": 6288.76, + "end": 6292.2, + "probability": 0.9438 + }, + { + "start": 6292.2, + "end": 6296.64, + "probability": 0.8654 + }, + { + "start": 6297.06, + "end": 6298.18, + "probability": 0.5266 + }, + { + "start": 6299.3, + "end": 6302.4, + "probability": 0.7404 + }, + { + "start": 6303.38, + "end": 6305.9, + "probability": 0.9869 + }, + { + "start": 6306.74, + "end": 6309.36, + "probability": 0.6707 + }, + { + "start": 6310.44, + "end": 6313.3, + "probability": 0.968 + }, + { + "start": 6314.92, + "end": 6316.87, + "probability": 0.9917 + }, + { + "start": 6317.34, + "end": 6318.82, + "probability": 0.8887 + }, + { + "start": 6319.38, + "end": 6320.8, + "probability": 0.8184 + }, + { + "start": 6321.34, + "end": 6323.18, + "probability": 0.7847 + }, + { + "start": 6323.18, + "end": 6324.26, + "probability": 0.9802 + }, + { + "start": 6324.58, + "end": 6330.5, + "probability": 0.9409 + }, + { + "start": 6330.86, + "end": 6333.96, + "probability": 0.4385 + }, + { + "start": 6333.98, + "end": 6334.48, + "probability": 0.4009 + }, + { + "start": 6334.9, + "end": 6337.38, + "probability": 0.9913 + }, + { + "start": 6337.8, + "end": 6340.06, + "probability": 0.931 + }, + { + "start": 6340.24, + "end": 6341.17, + "probability": 0.9389 + }, + { + "start": 6341.6, + "end": 6343.04, + "probability": 0.9928 + }, + { + "start": 6343.94, + "end": 6345.68, + "probability": 0.8522 + }, + { + "start": 6345.9, + "end": 6348.68, + "probability": 0.998 + }, + { + "start": 6348.68, + "end": 6350.92, + "probability": 0.9395 + }, + { + "start": 6351.28, + "end": 6351.88, + "probability": 0.605 + }, + { + "start": 6352.2, + "end": 6354.24, + "probability": 0.844 + }, + { + "start": 6354.3, + "end": 6356.68, + "probability": 0.8433 + }, + { + "start": 6357.52, + "end": 6360.14, + "probability": 0.7446 + }, + { + "start": 6369.64, + "end": 6371.86, + "probability": 0.8708 + }, + { + "start": 6375.88, + "end": 6377.2, + "probability": 0.534 + }, + { + "start": 6378.22, + "end": 6380.46, + "probability": 0.9978 + }, + { + "start": 6380.46, + "end": 6383.28, + "probability": 0.9776 + }, + { + "start": 6385.04, + "end": 6388.32, + "probability": 0.9928 + }, + { + "start": 6389.6, + "end": 6391.46, + "probability": 0.9946 + }, + { + "start": 6391.92, + "end": 6392.72, + "probability": 0.8295 + }, + { + "start": 6393.74, + "end": 6396.0, + "probability": 0.9464 + }, + { + "start": 6396.12, + "end": 6397.58, + "probability": 0.9432 + }, + { + "start": 6398.66, + "end": 6400.62, + "probability": 0.9614 + }, + { + "start": 6400.74, + "end": 6405.78, + "probability": 0.847 + }, + { + "start": 6405.9, + "end": 6406.88, + "probability": 0.8374 + }, + { + "start": 6407.48, + "end": 6409.28, + "probability": 0.804 + }, + { + "start": 6410.88, + "end": 6414.06, + "probability": 0.9336 + }, + { + "start": 6414.78, + "end": 6416.92, + "probability": 0.6301 + }, + { + "start": 6418.34, + "end": 6420.0, + "probability": 0.597 + }, + { + "start": 6420.36, + "end": 6422.96, + "probability": 0.9793 + }, + { + "start": 6422.96, + "end": 6426.02, + "probability": 0.8342 + }, + { + "start": 6427.08, + "end": 6427.76, + "probability": 0.9237 + }, + { + "start": 6428.64, + "end": 6429.78, + "probability": 0.8406 + }, + { + "start": 6431.3, + "end": 6432.34, + "probability": 0.9876 + }, + { + "start": 6433.02, + "end": 6433.52, + "probability": 0.6049 + }, + { + "start": 6433.56, + "end": 6434.18, + "probability": 0.7772 + }, + { + "start": 6434.22, + "end": 6434.92, + "probability": 0.8148 + }, + { + "start": 6435.0, + "end": 6437.04, + "probability": 0.7736 + }, + { + "start": 6437.94, + "end": 6440.06, + "probability": 0.7761 + }, + { + "start": 6441.74, + "end": 6441.98, + "probability": 0.1166 + }, + { + "start": 6442.14, + "end": 6445.8, + "probability": 0.907 + }, + { + "start": 6446.54, + "end": 6448.3, + "probability": 0.9332 + }, + { + "start": 6449.18, + "end": 6452.74, + "probability": 0.3409 + }, + { + "start": 6453.42, + "end": 6455.93, + "probability": 0.8516 + }, + { + "start": 6456.2, + "end": 6459.18, + "probability": 0.9578 + }, + { + "start": 6460.78, + "end": 6463.83, + "probability": 0.9922 + }, + { + "start": 6464.36, + "end": 6465.28, + "probability": 0.8975 + }, + { + "start": 6465.94, + "end": 6467.6, + "probability": 0.9331 + }, + { + "start": 6468.66, + "end": 6471.14, + "probability": 0.89 + }, + { + "start": 6472.1, + "end": 6473.16, + "probability": 0.9683 + }, + { + "start": 6474.24, + "end": 6475.06, + "probability": 0.8321 + }, + { + "start": 6475.7, + "end": 6480.34, + "probability": 0.9892 + }, + { + "start": 6481.22, + "end": 6483.46, + "probability": 0.7932 + }, + { + "start": 6484.2, + "end": 6487.32, + "probability": 0.9807 + }, + { + "start": 6487.94, + "end": 6490.4, + "probability": 0.8706 + }, + { + "start": 6490.86, + "end": 6492.62, + "probability": 0.9746 + }, + { + "start": 6493.26, + "end": 6493.68, + "probability": 0.6243 + }, + { + "start": 6493.74, + "end": 6496.94, + "probability": 0.9318 + }, + { + "start": 6496.94, + "end": 6498.68, + "probability": 0.7234 + }, + { + "start": 6499.38, + "end": 6500.04, + "probability": 0.93 + }, + { + "start": 6501.22, + "end": 6503.54, + "probability": 0.834 + }, + { + "start": 6503.54, + "end": 6506.38, + "probability": 0.9266 + }, + { + "start": 6507.1, + "end": 6508.2, + "probability": 0.5373 + }, + { + "start": 6508.72, + "end": 6510.53, + "probability": 0.6329 + }, + { + "start": 6511.82, + "end": 6516.86, + "probability": 0.9211 + }, + { + "start": 6517.66, + "end": 6519.4, + "probability": 0.9666 + }, + { + "start": 6520.06, + "end": 6523.18, + "probability": 0.82 + }, + { + "start": 6523.26, + "end": 6523.36, + "probability": 0.7967 + }, + { + "start": 6524.72, + "end": 6525.52, + "probability": 0.7041 + }, + { + "start": 6525.98, + "end": 6526.78, + "probability": 0.9923 + }, + { + "start": 6526.88, + "end": 6529.5, + "probability": 0.9941 + }, + { + "start": 6531.08, + "end": 6533.42, + "probability": 0.0115 + }, + { + "start": 6533.9, + "end": 6533.9, + "probability": 0.1123 + }, + { + "start": 6533.9, + "end": 6535.08, + "probability": 0.5924 + }, + { + "start": 6535.1, + "end": 6537.1, + "probability": 0.8951 + }, + { + "start": 6537.78, + "end": 6540.7, + "probability": 0.0914 + }, + { + "start": 6540.78, + "end": 6541.66, + "probability": 0.9591 + }, + { + "start": 6542.3, + "end": 6543.42, + "probability": 0.9568 + }, + { + "start": 6543.78, + "end": 6544.02, + "probability": 0.4696 + }, + { + "start": 6544.14, + "end": 6544.24, + "probability": 0.2313 + }, + { + "start": 6544.66, + "end": 6547.26, + "probability": 0.5675 + }, + { + "start": 6547.6, + "end": 6548.36, + "probability": 0.9342 + }, + { + "start": 6548.4, + "end": 6549.06, + "probability": 0.9172 + }, + { + "start": 6549.1, + "end": 6550.24, + "probability": 0.8631 + }, + { + "start": 6550.58, + "end": 6551.66, + "probability": 0.7573 + }, + { + "start": 6551.94, + "end": 6553.43, + "probability": 0.707 + }, + { + "start": 6553.84, + "end": 6555.12, + "probability": 0.5779 + }, + { + "start": 6555.9, + "end": 6557.8, + "probability": 0.6586 + }, + { + "start": 6557.9, + "end": 6558.78, + "probability": 0.8965 + }, + { + "start": 6559.38, + "end": 6560.1, + "probability": 0.941 + }, + { + "start": 6560.56, + "end": 6562.8, + "probability": 0.9585 + }, + { + "start": 6563.68, + "end": 6564.54, + "probability": 0.2476 + }, + { + "start": 6564.9, + "end": 6566.09, + "probability": 0.957 + }, + { + "start": 6566.3, + "end": 6568.66, + "probability": 0.7635 + }, + { + "start": 6569.2, + "end": 6569.92, + "probability": 0.9054 + }, + { + "start": 6570.28, + "end": 6571.76, + "probability": 0.8322 + }, + { + "start": 6572.08, + "end": 6574.32, + "probability": 0.604 + }, + { + "start": 6575.78, + "end": 6577.32, + "probability": 0.7205 + }, + { + "start": 6578.6, + "end": 6579.18, + "probability": 0.2151 + }, + { + "start": 6579.28, + "end": 6581.2, + "probability": 0.4246 + }, + { + "start": 6582.62, + "end": 6584.36, + "probability": 0.7633 + }, + { + "start": 6585.02, + "end": 6586.76, + "probability": 0.7651 + }, + { + "start": 6587.34, + "end": 6589.52, + "probability": 0.8144 + }, + { + "start": 6594.02, + "end": 6594.74, + "probability": 0.7707 + }, + { + "start": 6599.14, + "end": 6600.92, + "probability": 0.6564 + }, + { + "start": 6601.98, + "end": 6605.92, + "probability": 0.8276 + }, + { + "start": 6606.62, + "end": 6608.0, + "probability": 0.9745 + }, + { + "start": 6608.52, + "end": 6611.16, + "probability": 0.6756 + }, + { + "start": 6611.88, + "end": 6614.92, + "probability": 0.999 + }, + { + "start": 6615.76, + "end": 6616.38, + "probability": 0.8017 + }, + { + "start": 6617.24, + "end": 6617.66, + "probability": 0.4417 + }, + { + "start": 6617.76, + "end": 6619.98, + "probability": 0.8768 + }, + { + "start": 6620.38, + "end": 6623.32, + "probability": 0.9657 + }, + { + "start": 6623.92, + "end": 6625.76, + "probability": 0.9846 + }, + { + "start": 6627.02, + "end": 6629.88, + "probability": 0.9603 + }, + { + "start": 6631.08, + "end": 6631.58, + "probability": 0.4516 + }, + { + "start": 6631.66, + "end": 6638.05, + "probability": 0.9818 + }, + { + "start": 6638.72, + "end": 6639.6, + "probability": 0.8834 + }, + { + "start": 6640.54, + "end": 6647.0, + "probability": 0.9965 + }, + { + "start": 6647.72, + "end": 6650.28, + "probability": 0.986 + }, + { + "start": 6651.04, + "end": 6653.6, + "probability": 0.5211 + }, + { + "start": 6654.42, + "end": 6656.3, + "probability": 0.6101 + }, + { + "start": 6657.18, + "end": 6657.75, + "probability": 0.8113 + }, + { + "start": 6658.36, + "end": 6659.54, + "probability": 0.621 + }, + { + "start": 6661.08, + "end": 6662.39, + "probability": 0.9531 + }, + { + "start": 6663.4, + "end": 6664.78, + "probability": 0.7851 + }, + { + "start": 6666.2, + "end": 6669.82, + "probability": 0.9722 + }, + { + "start": 6670.34, + "end": 6673.58, + "probability": 0.7957 + }, + { + "start": 6674.28, + "end": 6676.02, + "probability": 0.651 + }, + { + "start": 6676.82, + "end": 6679.16, + "probability": 0.9895 + }, + { + "start": 6681.26, + "end": 6682.82, + "probability": 0.9104 + }, + { + "start": 6682.96, + "end": 6685.74, + "probability": 0.9874 + }, + { + "start": 6686.72, + "end": 6688.08, + "probability": 0.9271 + }, + { + "start": 6689.18, + "end": 6693.24, + "probability": 0.9413 + }, + { + "start": 6693.24, + "end": 6695.82, + "probability": 0.995 + }, + { + "start": 6696.32, + "end": 6696.44, + "probability": 0.3836 + }, + { + "start": 6696.78, + "end": 6697.24, + "probability": 0.8055 + }, + { + "start": 6697.74, + "end": 6702.3, + "probability": 0.9917 + }, + { + "start": 6703.6, + "end": 6707.62, + "probability": 0.8622 + }, + { + "start": 6708.96, + "end": 6713.42, + "probability": 0.9358 + }, + { + "start": 6713.7, + "end": 6714.06, + "probability": 0.7761 + }, + { + "start": 6714.82, + "end": 6716.98, + "probability": 0.6528 + }, + { + "start": 6717.02, + "end": 6718.08, + "probability": 0.8172 + }, + { + "start": 6718.08, + "end": 6718.82, + "probability": 0.8602 + }, + { + "start": 6718.9, + "end": 6718.9, + "probability": 0.6471 + }, + { + "start": 6718.9, + "end": 6719.72, + "probability": 0.9712 + }, + { + "start": 6720.5, + "end": 6722.39, + "probability": 0.9654 + }, + { + "start": 6723.44, + "end": 6725.74, + "probability": 0.8236 + }, + { + "start": 6726.38, + "end": 6726.74, + "probability": 0.5356 + }, + { + "start": 6726.96, + "end": 6730.1, + "probability": 0.9872 + }, + { + "start": 6730.48, + "end": 6732.78, + "probability": 0.9975 + }, + { + "start": 6732.78, + "end": 6736.54, + "probability": 0.9596 + }, + { + "start": 6736.86, + "end": 6737.51, + "probability": 0.9547 + }, + { + "start": 6738.8, + "end": 6740.38, + "probability": 0.8583 + }, + { + "start": 6741.08, + "end": 6745.28, + "probability": 0.9949 + }, + { + "start": 6746.4, + "end": 6749.38, + "probability": 0.9858 + }, + { + "start": 6749.46, + "end": 6751.96, + "probability": 0.9723 + }, + { + "start": 6752.2, + "end": 6754.46, + "probability": 0.8895 + }, + { + "start": 6755.3, + "end": 6760.64, + "probability": 0.9972 + }, + { + "start": 6761.96, + "end": 6763.34, + "probability": 0.968 + }, + { + "start": 6765.44, + "end": 6765.92, + "probability": 0.922 + }, + { + "start": 6765.98, + "end": 6766.84, + "probability": 0.6908 + }, + { + "start": 6766.92, + "end": 6769.46, + "probability": 0.9681 + }, + { + "start": 6770.38, + "end": 6772.2, + "probability": 0.8721 + }, + { + "start": 6772.86, + "end": 6774.24, + "probability": 0.9233 + }, + { + "start": 6775.36, + "end": 6777.15, + "probability": 0.9958 + }, + { + "start": 6777.68, + "end": 6780.34, + "probability": 0.9809 + }, + { + "start": 6781.42, + "end": 6785.4, + "probability": 0.9501 + }, + { + "start": 6785.88, + "end": 6788.2, + "probability": 0.9954 + }, + { + "start": 6788.78, + "end": 6793.08, + "probability": 0.8706 + }, + { + "start": 6793.56, + "end": 6794.0, + "probability": 0.6489 + }, + { + "start": 6794.12, + "end": 6795.58, + "probability": 0.7304 + }, + { + "start": 6795.64, + "end": 6800.24, + "probability": 0.9897 + }, + { + "start": 6800.64, + "end": 6801.54, + "probability": 0.8387 + }, + { + "start": 6801.6, + "end": 6802.2, + "probability": 0.8776 + }, + { + "start": 6802.28, + "end": 6803.58, + "probability": 0.625 + }, + { + "start": 6804.04, + "end": 6805.07, + "probability": 0.8933 + }, + { + "start": 6805.24, + "end": 6806.45, + "probability": 0.7294 + }, + { + "start": 6807.2, + "end": 6808.34, + "probability": 0.8601 + }, + { + "start": 6808.34, + "end": 6809.69, + "probability": 0.8555 + }, + { + "start": 6810.98, + "end": 6814.4, + "probability": 0.933 + }, + { + "start": 6815.56, + "end": 6819.2, + "probability": 0.6658 + }, + { + "start": 6819.74, + "end": 6824.68, + "probability": 0.9943 + }, + { + "start": 6824.68, + "end": 6828.62, + "probability": 0.9974 + }, + { + "start": 6829.26, + "end": 6831.08, + "probability": 0.7368 + }, + { + "start": 6831.08, + "end": 6834.7, + "probability": 0.842 + }, + { + "start": 6847.44, + "end": 6848.84, + "probability": 0.7351 + }, + { + "start": 6856.86, + "end": 6859.48, + "probability": 0.7257 + }, + { + "start": 6860.66, + "end": 6864.2, + "probability": 0.901 + }, + { + "start": 6865.2, + "end": 6866.56, + "probability": 0.9355 + }, + { + "start": 6866.88, + "end": 6869.86, + "probability": 0.9978 + }, + { + "start": 6870.5, + "end": 6872.91, + "probability": 0.9949 + }, + { + "start": 6872.96, + "end": 6875.0, + "probability": 0.622 + }, + { + "start": 6876.64, + "end": 6883.44, + "probability": 0.9932 + }, + { + "start": 6884.22, + "end": 6887.44, + "probability": 0.9963 + }, + { + "start": 6887.66, + "end": 6893.78, + "probability": 0.9957 + }, + { + "start": 6894.4, + "end": 6896.42, + "probability": 0.9294 + }, + { + "start": 6896.54, + "end": 6899.36, + "probability": 0.9927 + }, + { + "start": 6899.46, + "end": 6900.96, + "probability": 0.9082 + }, + { + "start": 6901.38, + "end": 6903.62, + "probability": 0.9523 + }, + { + "start": 6904.38, + "end": 6909.96, + "probability": 0.991 + }, + { + "start": 6910.68, + "end": 6915.94, + "probability": 0.9689 + }, + { + "start": 6916.27, + "end": 6920.94, + "probability": 0.9911 + }, + { + "start": 6923.3, + "end": 6923.4, + "probability": 0.047 + }, + { + "start": 6925.52, + "end": 6925.76, + "probability": 0.0294 + }, + { + "start": 6925.76, + "end": 6925.76, + "probability": 0.0474 + }, + { + "start": 6925.76, + "end": 6930.22, + "probability": 0.9562 + }, + { + "start": 6930.3, + "end": 6935.26, + "probability": 0.5069 + }, + { + "start": 6941.96, + "end": 6941.96, + "probability": 0.0066 + }, + { + "start": 6941.96, + "end": 6941.96, + "probability": 0.0668 + }, + { + "start": 6941.96, + "end": 6941.96, + "probability": 0.0722 + }, + { + "start": 6941.96, + "end": 6941.96, + "probability": 0.1136 + }, + { + "start": 6941.96, + "end": 6942.64, + "probability": 0.1282 + }, + { + "start": 6942.9, + "end": 6946.54, + "probability": 0.9772 + }, + { + "start": 6946.68, + "end": 6947.44, + "probability": 0.8823 + }, + { + "start": 6947.58, + "end": 6948.58, + "probability": 0.7961 + }, + { + "start": 6949.12, + "end": 6950.1, + "probability": 0.6938 + }, + { + "start": 6950.22, + "end": 6953.7, + "probability": 0.9492 + }, + { + "start": 6954.5, + "end": 6956.64, + "probability": 0.797 + }, + { + "start": 6957.14, + "end": 6960.42, + "probability": 0.9096 + }, + { + "start": 6961.48, + "end": 6963.44, + "probability": 0.7939 + }, + { + "start": 6963.66, + "end": 6965.92, + "probability": 0.9767 + }, + { + "start": 6966.36, + "end": 6966.84, + "probability": 0.364 + }, + { + "start": 6967.04, + "end": 6968.19, + "probability": 0.8491 + }, + { + "start": 6969.14, + "end": 6970.48, + "probability": 0.9074 + }, + { + "start": 6971.06, + "end": 6971.2, + "probability": 0.5021 + }, + { + "start": 6971.24, + "end": 6974.42, + "probability": 0.9634 + }, + { + "start": 6974.48, + "end": 6975.48, + "probability": 0.5824 + }, + { + "start": 6976.1, + "end": 6976.72, + "probability": 0.8345 + }, + { + "start": 6977.98, + "end": 6978.72, + "probability": 0.7404 + }, + { + "start": 6979.8, + "end": 6982.24, + "probability": 0.9398 + }, + { + "start": 6983.5, + "end": 6988.36, + "probability": 0.9103 + }, + { + "start": 6988.54, + "end": 6991.46, + "probability": 0.9268 + }, + { + "start": 6992.22, + "end": 6995.76, + "probability": 0.9863 + }, + { + "start": 6995.76, + "end": 7000.34, + "probability": 0.993 + }, + { + "start": 7000.68, + "end": 7001.76, + "probability": 0.748 + }, + { + "start": 7002.26, + "end": 7005.68, + "probability": 0.9953 + }, + { + "start": 7005.68, + "end": 7009.36, + "probability": 0.8525 + }, + { + "start": 7009.92, + "end": 7010.36, + "probability": 0.7107 + }, + { + "start": 7010.64, + "end": 7011.44, + "probability": 0.7629 + }, + { + "start": 7011.54, + "end": 7012.04, + "probability": 0.6398 + }, + { + "start": 7012.12, + "end": 7013.18, + "probability": 0.6743 + }, + { + "start": 7013.58, + "end": 7017.58, + "probability": 0.9201 + }, + { + "start": 7017.72, + "end": 7018.88, + "probability": 0.9567 + }, + { + "start": 7019.42, + "end": 7022.54, + "probability": 0.9975 + }, + { + "start": 7022.54, + "end": 7026.6, + "probability": 0.9902 + }, + { + "start": 7027.1, + "end": 7030.24, + "probability": 0.8291 + }, + { + "start": 7030.42, + "end": 7034.57, + "probability": 0.9892 + }, + { + "start": 7035.38, + "end": 7035.9, + "probability": 0.4889 + }, + { + "start": 7035.94, + "end": 7041.56, + "probability": 0.978 + }, + { + "start": 7042.06, + "end": 7042.8, + "probability": 0.5522 + }, + { + "start": 7042.88, + "end": 7045.36, + "probability": 0.9483 + }, + { + "start": 7045.68, + "end": 7047.49, + "probability": 0.942 + }, + { + "start": 7048.3, + "end": 7048.3, + "probability": 0.1192 + }, + { + "start": 7048.3, + "end": 7051.62, + "probability": 0.8999 + }, + { + "start": 7051.74, + "end": 7055.05, + "probability": 0.9642 + }, + { + "start": 7055.52, + "end": 7058.44, + "probability": 0.9336 + }, + { + "start": 7058.84, + "end": 7061.38, + "probability": 0.9916 + }, + { + "start": 7061.9, + "end": 7067.08, + "probability": 0.9648 + }, + { + "start": 7067.42, + "end": 7069.26, + "probability": 0.5776 + }, + { + "start": 7069.3, + "end": 7071.16, + "probability": 0.9832 + }, + { + "start": 7071.42, + "end": 7075.43, + "probability": 0.9967 + }, + { + "start": 7076.02, + "end": 7080.9, + "probability": 0.9814 + }, + { + "start": 7080.96, + "end": 7081.82, + "probability": 0.8489 + }, + { + "start": 7081.88, + "end": 7082.7, + "probability": 0.8044 + }, + { + "start": 7082.76, + "end": 7083.52, + "probability": 0.736 + }, + { + "start": 7083.84, + "end": 7084.68, + "probability": 0.9585 + }, + { + "start": 7084.88, + "end": 7084.88, + "probability": 0.0306 + }, + { + "start": 7084.88, + "end": 7086.38, + "probability": 0.7937 + }, + { + "start": 7086.72, + "end": 7089.38, + "probability": 0.8548 + }, + { + "start": 7089.38, + "end": 7092.84, + "probability": 0.8791 + }, + { + "start": 7092.9, + "end": 7097.24, + "probability": 0.8651 + }, + { + "start": 7097.58, + "end": 7100.18, + "probability": 0.8887 + }, + { + "start": 7100.18, + "end": 7102.2, + "probability": 0.75 + }, + { + "start": 7102.94, + "end": 7105.46, + "probability": 0.9863 + }, + { + "start": 7106.06, + "end": 7108.68, + "probability": 0.5516 + }, + { + "start": 7108.86, + "end": 7110.4, + "probability": 0.4247 + }, + { + "start": 7110.9, + "end": 7111.8, + "probability": 0.7456 + }, + { + "start": 7111.9, + "end": 7112.88, + "probability": 0.5766 + }, + { + "start": 7113.06, + "end": 7113.5, + "probability": 0.7282 + }, + { + "start": 7133.21, + "end": 7137.08, + "probability": 0.1862 + }, + { + "start": 7137.08, + "end": 7137.62, + "probability": 0.0887 + }, + { + "start": 7137.62, + "end": 7138.52, + "probability": 0.3217 + }, + { + "start": 7138.52, + "end": 7141.67, + "probability": 0.8535 + }, + { + "start": 7142.32, + "end": 7143.14, + "probability": 0.1701 + }, + { + "start": 7144.56, + "end": 7145.46, + "probability": 0.5745 + }, + { + "start": 7145.58, + "end": 7147.88, + "probability": 0.2682 + }, + { + "start": 7147.88, + "end": 7147.88, + "probability": 0.1849 + }, + { + "start": 7147.88, + "end": 7149.0, + "probability": 0.0499 + }, + { + "start": 7149.78, + "end": 7154.4, + "probability": 0.6685 + }, + { + "start": 7154.98, + "end": 7156.16, + "probability": 0.9787 + }, + { + "start": 7157.52, + "end": 7159.4, + "probability": 0.9028 + }, + { + "start": 7159.58, + "end": 7162.78, + "probability": 0.8622 + }, + { + "start": 7164.84, + "end": 7165.34, + "probability": 0.6373 + }, + { + "start": 7165.38, + "end": 7170.68, + "probability": 0.9744 + }, + { + "start": 7170.86, + "end": 7173.44, + "probability": 0.9541 + }, + { + "start": 7175.04, + "end": 7175.8, + "probability": 0.9351 + }, + { + "start": 7176.82, + "end": 7178.74, + "probability": 0.6267 + }, + { + "start": 7179.78, + "end": 7184.32, + "probability": 0.9968 + }, + { + "start": 7184.42, + "end": 7188.98, + "probability": 0.7132 + }, + { + "start": 7189.06, + "end": 7190.44, + "probability": 0.5468 + }, + { + "start": 7190.82, + "end": 7191.92, + "probability": 0.6756 + }, + { + "start": 7192.0, + "end": 7193.22, + "probability": 0.9471 + }, + { + "start": 7194.08, + "end": 7195.76, + "probability": 0.7941 + }, + { + "start": 7196.62, + "end": 7199.08, + "probability": 0.2198 + }, + { + "start": 7199.25, + "end": 7205.62, + "probability": 0.9077 + }, + { + "start": 7205.62, + "end": 7210.12, + "probability": 0.9964 + }, + { + "start": 7210.76, + "end": 7214.12, + "probability": 0.939 + }, + { + "start": 7214.12, + "end": 7217.58, + "probability": 0.993 + }, + { + "start": 7218.18, + "end": 7222.96, + "probability": 0.9878 + }, + { + "start": 7223.4, + "end": 7226.18, + "probability": 0.7634 + }, + { + "start": 7226.86, + "end": 7229.14, + "probability": 0.9113 + }, + { + "start": 7229.38, + "end": 7232.04, + "probability": 0.8004 + }, + { + "start": 7232.78, + "end": 7236.34, + "probability": 0.8517 + }, + { + "start": 7236.92, + "end": 7240.78, + "probability": 0.9873 + }, + { + "start": 7241.08, + "end": 7245.34, + "probability": 0.9956 + }, + { + "start": 7245.34, + "end": 7250.38, + "probability": 0.9969 + }, + { + "start": 7250.94, + "end": 7253.7, + "probability": 0.9582 + }, + { + "start": 7255.86, + "end": 7261.34, + "probability": 0.8837 + }, + { + "start": 7262.06, + "end": 7266.62, + "probability": 0.9912 + }, + { + "start": 7266.62, + "end": 7270.38, + "probability": 0.9862 + }, + { + "start": 7270.76, + "end": 7272.36, + "probability": 0.8485 + }, + { + "start": 7272.8, + "end": 7276.72, + "probability": 0.974 + }, + { + "start": 7276.72, + "end": 7280.14, + "probability": 0.9969 + }, + { + "start": 7280.7, + "end": 7285.18, + "probability": 0.9875 + }, + { + "start": 7285.18, + "end": 7290.24, + "probability": 0.9782 + }, + { + "start": 7290.24, + "end": 7296.18, + "probability": 0.9604 + }, + { + "start": 7296.7, + "end": 7299.46, + "probability": 0.9634 + }, + { + "start": 7299.46, + "end": 7304.24, + "probability": 0.7225 + }, + { + "start": 7305.02, + "end": 7308.42, + "probability": 0.9024 + }, + { + "start": 7308.8, + "end": 7311.5, + "probability": 0.8833 + }, + { + "start": 7312.1, + "end": 7314.22, + "probability": 0.6311 + }, + { + "start": 7314.88, + "end": 7319.0, + "probability": 0.991 + }, + { + "start": 7319.0, + "end": 7321.98, + "probability": 0.9959 + }, + { + "start": 7322.66, + "end": 7325.92, + "probability": 0.7691 + }, + { + "start": 7326.84, + "end": 7327.38, + "probability": 0.7878 + }, + { + "start": 7328.04, + "end": 7330.94, + "probability": 0.8378 + }, + { + "start": 7331.7, + "end": 7332.68, + "probability": 0.4548 + }, + { + "start": 7333.26, + "end": 7336.38, + "probability": 0.7856 + }, + { + "start": 7336.82, + "end": 7341.0, + "probability": 0.8676 + }, + { + "start": 7341.38, + "end": 7341.76, + "probability": 0.9117 + }, + { + "start": 7342.7, + "end": 7345.56, + "probability": 0.7093 + }, + { + "start": 7345.68, + "end": 7346.78, + "probability": 0.7647 + }, + { + "start": 7346.92, + "end": 7348.18, + "probability": 0.7979 + }, + { + "start": 7348.26, + "end": 7351.02, + "probability": 0.8203 + }, + { + "start": 7351.9, + "end": 7355.36, + "probability": 0.4515 + }, + { + "start": 7355.96, + "end": 7360.62, + "probability": 0.6066 + }, + { + "start": 7361.18, + "end": 7361.66, + "probability": 0.732 + }, + { + "start": 7365.48, + "end": 7365.96, + "probability": 0.0043 + }, + { + "start": 7372.08, + "end": 7372.12, + "probability": 0.0437 + }, + { + "start": 7372.14, + "end": 7372.14, + "probability": 0.0813 + }, + { + "start": 7372.14, + "end": 7372.14, + "probability": 0.0754 + }, + { + "start": 7372.14, + "end": 7372.14, + "probability": 0.2553 + }, + { + "start": 7389.82, + "end": 7390.74, + "probability": 0.6286 + }, + { + "start": 7390.94, + "end": 7391.42, + "probability": 0.5316 + }, + { + "start": 7391.64, + "end": 7392.82, + "probability": 0.5735 + }, + { + "start": 7394.76, + "end": 7396.07, + "probability": 0.022 + }, + { + "start": 7409.34, + "end": 7409.84, + "probability": 0.0941 + }, + { + "start": 7409.84, + "end": 7411.54, + "probability": 0.2692 + }, + { + "start": 7411.7, + "end": 7415.5, + "probability": 0.9154 + }, + { + "start": 7416.26, + "end": 7420.06, + "probability": 0.9933 + }, + { + "start": 7420.78, + "end": 7424.72, + "probability": 0.162 + }, + { + "start": 7425.3, + "end": 7428.96, + "probability": 0.7212 + }, + { + "start": 7429.58, + "end": 7433.26, + "probability": 0.9446 + }, + { + "start": 7433.32, + "end": 7434.8, + "probability": 0.9054 + }, + { + "start": 7435.02, + "end": 7435.84, + "probability": 0.718 + }, + { + "start": 7435.94, + "end": 7437.1, + "probability": 0.6956 + }, + { + "start": 7437.22, + "end": 7445.8, + "probability": 0.7661 + }, + { + "start": 7446.32, + "end": 7448.72, + "probability": 0.6566 + }, + { + "start": 7453.3, + "end": 7454.1, + "probability": 0.2185 + }, + { + "start": 7454.28, + "end": 7458.44, + "probability": 0.5598 + }, + { + "start": 7458.86, + "end": 7459.8, + "probability": 0.7827 + }, + { + "start": 7460.1, + "end": 7461.04, + "probability": 0.8194 + }, + { + "start": 7461.08, + "end": 7462.68, + "probability": 0.8841 + }, + { + "start": 7463.06, + "end": 7468.84, + "probability": 0.2373 + }, + { + "start": 7469.44, + "end": 7469.98, + "probability": 0.2659 + }, + { + "start": 7469.98, + "end": 7471.46, + "probability": 0.4983 + }, + { + "start": 7471.7, + "end": 7476.22, + "probability": 0.8568 + }, + { + "start": 7476.22, + "end": 7480.3, + "probability": 0.6816 + }, + { + "start": 7481.32, + "end": 7481.32, + "probability": 0.0001 + }, + { + "start": 7481.32, + "end": 7482.98, + "probability": 0.538 + }, + { + "start": 7483.3, + "end": 7484.34, + "probability": 0.8665 + }, + { + "start": 7484.44, + "end": 7485.42, + "probability": 0.9286 + }, + { + "start": 7486.52, + "end": 7489.02, + "probability": 0.7496 + }, + { + "start": 7489.52, + "end": 7491.26, + "probability": 0.3485 + }, + { + "start": 7491.44, + "end": 7497.78, + "probability": 0.9387 + }, + { + "start": 7498.24, + "end": 7501.14, + "probability": 0.8853 + }, + { + "start": 7501.14, + "end": 7504.4, + "probability": 0.9984 + }, + { + "start": 7504.74, + "end": 7505.66, + "probability": 0.9065 + }, + { + "start": 7506.3, + "end": 7510.82, + "probability": 0.852 + }, + { + "start": 7510.82, + "end": 7514.78, + "probability": 0.9463 + }, + { + "start": 7516.24, + "end": 7518.12, + "probability": 0.9922 + }, + { + "start": 7518.64, + "end": 7523.28, + "probability": 0.8516 + }, + { + "start": 7523.28, + "end": 7527.96, + "probability": 0.9858 + }, + { + "start": 7528.1, + "end": 7529.66, + "probability": 0.9688 + }, + { + "start": 7530.34, + "end": 7531.62, + "probability": 0.3233 + }, + { + "start": 7532.64, + "end": 7537.78, + "probability": 0.9938 + }, + { + "start": 7538.36, + "end": 7542.2, + "probability": 0.9258 + }, + { + "start": 7542.72, + "end": 7546.86, + "probability": 0.9907 + }, + { + "start": 7546.86, + "end": 7551.08, + "probability": 0.9964 + }, + { + "start": 7551.58, + "end": 7553.94, + "probability": 0.996 + }, + { + "start": 7554.52, + "end": 7558.68, + "probability": 0.9727 + }, + { + "start": 7559.72, + "end": 7561.6, + "probability": 0.4111 + }, + { + "start": 7562.0, + "end": 7562.74, + "probability": 0.7722 + }, + { + "start": 7562.98, + "end": 7566.14, + "probability": 0.9297 + }, + { + "start": 7566.48, + "end": 7567.6, + "probability": 0.9183 + }, + { + "start": 7568.14, + "end": 7572.86, + "probability": 0.7225 + }, + { + "start": 7572.86, + "end": 7576.11, + "probability": 0.8318 + }, + { + "start": 7577.08, + "end": 7581.1, + "probability": 0.9917 + }, + { + "start": 7581.1, + "end": 7585.28, + "probability": 0.9939 + }, + { + "start": 7585.84, + "end": 7590.92, + "probability": 0.9924 + }, + { + "start": 7590.92, + "end": 7596.82, + "probability": 0.9993 + }, + { + "start": 7596.82, + "end": 7602.14, + "probability": 0.9968 + }, + { + "start": 7602.68, + "end": 7605.06, + "probability": 0.7136 + }, + { + "start": 7605.56, + "end": 7610.58, + "probability": 0.9928 + }, + { + "start": 7611.98, + "end": 7614.88, + "probability": 0.5584 + }, + { + "start": 7615.32, + "end": 7618.18, + "probability": 0.9884 + }, + { + "start": 7618.54, + "end": 7622.56, + "probability": 0.9806 + }, + { + "start": 7623.02, + "end": 7623.28, + "probability": 0.3942 + }, + { + "start": 7623.44, + "end": 7624.34, + "probability": 0.9388 + }, + { + "start": 7624.76, + "end": 7631.87, + "probability": 0.7819 + }, + { + "start": 7632.92, + "end": 7634.46, + "probability": 0.6358 + }, + { + "start": 7634.76, + "end": 7637.74, + "probability": 0.9899 + }, + { + "start": 7638.08, + "end": 7638.98, + "probability": 0.7808 + }, + { + "start": 7639.3, + "end": 7640.14, + "probability": 0.9467 + }, + { + "start": 7640.52, + "end": 7646.34, + "probability": 0.8606 + }, + { + "start": 7647.06, + "end": 7649.8, + "probability": 0.9963 + }, + { + "start": 7649.8, + "end": 7652.64, + "probability": 0.984 + }, + { + "start": 7654.1, + "end": 7656.8, + "probability": 0.7903 + }, + { + "start": 7656.86, + "end": 7658.32, + "probability": 0.7119 + }, + { + "start": 7658.4, + "end": 7659.18, + "probability": 0.7234 + }, + { + "start": 7659.32, + "end": 7660.1, + "probability": 0.4801 + }, + { + "start": 7661.02, + "end": 7663.2, + "probability": 0.7543 + }, + { + "start": 7663.52, + "end": 7667.84, + "probability": 0.5669 + }, + { + "start": 7668.42, + "end": 7670.94, + "probability": 0.6516 + }, + { + "start": 7671.68, + "end": 7673.22, + "probability": 0.455 + }, + { + "start": 7673.32, + "end": 7674.56, + "probability": 0.6603 + }, + { + "start": 7675.92, + "end": 7681.42, + "probability": 0.0021 + }, + { + "start": 7690.24, + "end": 7694.04, + "probability": 0.806 + }, + { + "start": 7694.22, + "end": 7696.76, + "probability": 0.8857 + }, + { + "start": 7698.64, + "end": 7699.54, + "probability": 0.8191 + }, + { + "start": 7699.6, + "end": 7703.82, + "probability": 0.6611 + }, + { + "start": 7704.76, + "end": 7708.02, + "probability": 0.4508 + }, + { + "start": 7708.1, + "end": 7709.32, + "probability": 0.0269 + }, + { + "start": 7709.32, + "end": 7710.74, + "probability": 0.1739 + }, + { + "start": 7711.02, + "end": 7712.06, + "probability": 0.4514 + }, + { + "start": 7712.3, + "end": 7717.98, + "probability": 0.8781 + }, + { + "start": 7720.66, + "end": 7723.68, + "probability": 0.7572 + }, + { + "start": 7724.02, + "end": 7724.62, + "probability": 0.6251 + }, + { + "start": 7724.78, + "end": 7725.34, + "probability": 0.4733 + }, + { + "start": 7726.52, + "end": 7729.16, + "probability": 0.0149 + }, + { + "start": 7730.42, + "end": 7736.72, + "probability": 0.0436 + }, + { + "start": 7737.92, + "end": 7738.68, + "probability": 0.0862 + }, + { + "start": 7741.24, + "end": 7744.08, + "probability": 0.6903 + }, + { + "start": 7744.1, + "end": 7746.94, + "probability": 0.803 + }, + { + "start": 7747.52, + "end": 7750.44, + "probability": 0.9987 + }, + { + "start": 7751.16, + "end": 7752.26, + "probability": 0.8462 + }, + { + "start": 7752.42, + "end": 7754.9, + "probability": 0.8483 + }, + { + "start": 7754.9, + "end": 7759.08, + "probability": 0.7819 + }, + { + "start": 7759.08, + "end": 7761.3, + "probability": 0.6316 + }, + { + "start": 7761.76, + "end": 7764.7, + "probability": 0.9451 + }, + { + "start": 7764.94, + "end": 7765.3, + "probability": 0.913 + }, + { + "start": 7765.64, + "end": 7767.86, + "probability": 0.9911 + }, + { + "start": 7767.92, + "end": 7770.24, + "probability": 0.9072 + }, + { + "start": 7771.2, + "end": 7773.18, + "probability": 0.6989 + }, + { + "start": 7773.9, + "end": 7777.64, + "probability": 0.9908 + }, + { + "start": 7777.64, + "end": 7783.24, + "probability": 0.8644 + }, + { + "start": 7783.26, + "end": 7784.64, + "probability": 0.5063 + }, + { + "start": 7785.04, + "end": 7791.2, + "probability": 0.9485 + }, + { + "start": 7792.28, + "end": 7797.66, + "probability": 0.9953 + }, + { + "start": 7797.77, + "end": 7801.82, + "probability": 0.9866 + }, + { + "start": 7802.44, + "end": 7808.02, + "probability": 0.9969 + }, + { + "start": 7808.02, + "end": 7814.26, + "probability": 0.9881 + }, + { + "start": 7815.98, + "end": 7819.3, + "probability": 0.9889 + }, + { + "start": 7819.3, + "end": 7823.24, + "probability": 0.9927 + }, + { + "start": 7823.64, + "end": 7826.54, + "probability": 0.916 + }, + { + "start": 7826.54, + "end": 7829.9, + "probability": 0.9875 + }, + { + "start": 7830.44, + "end": 7836.08, + "probability": 0.9779 + }, + { + "start": 7836.08, + "end": 7841.64, + "probability": 0.9438 + }, + { + "start": 7842.04, + "end": 7845.42, + "probability": 0.995 + }, + { + "start": 7845.42, + "end": 7848.9, + "probability": 0.9895 + }, + { + "start": 7849.66, + "end": 7854.32, + "probability": 0.9728 + }, + { + "start": 7854.68, + "end": 7858.46, + "probability": 0.8729 + }, + { + "start": 7858.86, + "end": 7864.52, + "probability": 0.9526 + }, + { + "start": 7865.12, + "end": 7871.3, + "probability": 0.9704 + }, + { + "start": 7872.08, + "end": 7874.66, + "probability": 0.9329 + }, + { + "start": 7875.4, + "end": 7878.16, + "probability": 0.9945 + }, + { + "start": 7878.16, + "end": 7880.24, + "probability": 0.8457 + }, + { + "start": 7881.1, + "end": 7885.06, + "probability": 0.7443 + }, + { + "start": 7885.68, + "end": 7888.78, + "probability": 0.7553 + }, + { + "start": 7889.24, + "end": 7891.16, + "probability": 0.998 + }, + { + "start": 7892.42, + "end": 7893.78, + "probability": 0.584 + }, + { + "start": 7893.84, + "end": 7894.4, + "probability": 0.7712 + }, + { + "start": 7894.46, + "end": 7897.24, + "probability": 0.7632 + }, + { + "start": 7897.4, + "end": 7900.0, + "probability": 0.8167 + }, + { + "start": 7900.3, + "end": 7902.22, + "probability": 0.7995 + }, + { + "start": 7903.44, + "end": 7906.36, + "probability": 0.9829 + }, + { + "start": 7906.92, + "end": 7907.32, + "probability": 0.6139 + }, + { + "start": 7907.9, + "end": 7911.92, + "probability": 0.8293 + }, + { + "start": 7912.06, + "end": 7915.52, + "probability": 0.363 + }, + { + "start": 7916.52, + "end": 7918.14, + "probability": 0.8828 + }, + { + "start": 7918.2, + "end": 7918.62, + "probability": 0.7035 + }, + { + "start": 7918.86, + "end": 7920.56, + "probability": 0.7647 + }, + { + "start": 7920.64, + "end": 7921.2, + "probability": 0.5885 + }, + { + "start": 7921.36, + "end": 7922.8, + "probability": 0.856 + }, + { + "start": 7923.46, + "end": 7924.8, + "probability": 0.5695 + }, + { + "start": 7925.46, + "end": 7927.18, + "probability": 0.5443 + }, + { + "start": 7927.38, + "end": 7928.54, + "probability": 0.9635 + }, + { + "start": 7949.58, + "end": 7950.56, + "probability": 0.9502 + }, + { + "start": 7951.36, + "end": 7953.5, + "probability": 0.6152 + }, + { + "start": 7954.52, + "end": 7955.02, + "probability": 0.3991 + }, + { + "start": 7955.16, + "end": 7955.74, + "probability": 0.7997 + }, + { + "start": 7955.78, + "end": 7956.84, + "probability": 0.7796 + }, + { + "start": 7957.04, + "end": 7958.28, + "probability": 0.8342 + }, + { + "start": 7959.36, + "end": 7961.1, + "probability": 0.9906 + }, + { + "start": 7961.64, + "end": 7967.54, + "probability": 0.9959 + }, + { + "start": 7969.24, + "end": 7972.44, + "probability": 0.9568 + }, + { + "start": 7973.36, + "end": 7984.08, + "probability": 0.9715 + }, + { + "start": 7984.08, + "end": 7987.8, + "probability": 0.9986 + }, + { + "start": 7988.54, + "end": 7990.0, + "probability": 0.998 + }, + { + "start": 7990.82, + "end": 7993.88, + "probability": 0.9531 + }, + { + "start": 7994.7, + "end": 7995.98, + "probability": 0.9854 + }, + { + "start": 7996.94, + "end": 8002.0, + "probability": 0.9735 + }, + { + "start": 8002.76, + "end": 8013.28, + "probability": 0.9907 + }, + { + "start": 8013.76, + "end": 8015.14, + "probability": 0.9926 + }, + { + "start": 8015.26, + "end": 8017.2, + "probability": 0.8675 + }, + { + "start": 8017.8, + "end": 8020.12, + "probability": 0.931 + }, + { + "start": 8021.48, + "end": 8029.9, + "probability": 0.9453 + }, + { + "start": 8029.9, + "end": 8036.32, + "probability": 0.9343 + }, + { + "start": 8037.18, + "end": 8040.9, + "probability": 0.9481 + }, + { + "start": 8042.02, + "end": 8045.1, + "probability": 0.9758 + }, + { + "start": 8045.34, + "end": 8050.32, + "probability": 0.988 + }, + { + "start": 8050.32, + "end": 8053.82, + "probability": 0.9854 + }, + { + "start": 8054.46, + "end": 8059.92, + "probability": 0.7725 + }, + { + "start": 8060.6, + "end": 8063.02, + "probability": 0.9941 + }, + { + "start": 8063.68, + "end": 8069.52, + "probability": 0.9887 + }, + { + "start": 8070.24, + "end": 8074.12, + "probability": 0.9659 + }, + { + "start": 8075.52, + "end": 8082.0, + "probability": 0.9937 + }, + { + "start": 8083.73, + "end": 8088.38, + "probability": 0.9943 + }, + { + "start": 8088.96, + "end": 8090.08, + "probability": 0.8795 + }, + { + "start": 8090.32, + "end": 8090.72, + "probability": 0.5894 + }, + { + "start": 8090.78, + "end": 8092.9, + "probability": 0.8153 + }, + { + "start": 8093.94, + "end": 8098.76, + "probability": 0.9756 + }, + { + "start": 8099.56, + "end": 8103.0, + "probability": 0.9645 + }, + { + "start": 8103.0, + "end": 8108.66, + "probability": 0.9982 + }, + { + "start": 8108.72, + "end": 8111.9, + "probability": 0.991 + }, + { + "start": 8112.0, + "end": 8112.34, + "probability": 0.8469 + }, + { + "start": 8112.44, + "end": 8114.64, + "probability": 0.6664 + }, + { + "start": 8115.98, + "end": 8118.78, + "probability": 0.4822 + }, + { + "start": 8118.82, + "end": 8123.19, + "probability": 0.929 + }, + { + "start": 8125.64, + "end": 8128.42, + "probability": 0.9163 + }, + { + "start": 8128.42, + "end": 8131.42, + "probability": 0.5748 + }, + { + "start": 8131.62, + "end": 8132.82, + "probability": 0.3712 + }, + { + "start": 8132.94, + "end": 8133.56, + "probability": 0.855 + }, + { + "start": 8133.58, + "end": 8134.22, + "probability": 0.3217 + }, + { + "start": 8134.62, + "end": 8135.18, + "probability": 0.7322 + }, + { + "start": 8135.18, + "end": 8135.98, + "probability": 0.618 + }, + { + "start": 8136.32, + "end": 8137.56, + "probability": 0.0144 + }, + { + "start": 8152.42, + "end": 8152.96, + "probability": 0.043 + }, + { + "start": 8152.96, + "end": 8156.2, + "probability": 0.4477 + }, + { + "start": 8156.2, + "end": 8158.14, + "probability": 0.7605 + }, + { + "start": 8158.64, + "end": 8161.08, + "probability": 0.7506 + }, + { + "start": 8162.36, + "end": 8163.16, + "probability": 0.578 + }, + { + "start": 8163.7, + "end": 8164.56, + "probability": 0.581 + }, + { + "start": 8164.9, + "end": 8166.32, + "probability": 0.9055 + }, + { + "start": 8168.62, + "end": 8171.22, + "probability": 0.0077 + }, + { + "start": 8172.29, + "end": 8174.08, + "probability": 0.0397 + }, + { + "start": 8185.32, + "end": 8185.5, + "probability": 0.0142 + }, + { + "start": 8185.5, + "end": 8186.3, + "probability": 0.6146 + }, + { + "start": 8186.72, + "end": 8187.44, + "probability": 0.523 + }, + { + "start": 8187.58, + "end": 8190.06, + "probability": 0.8071 + }, + { + "start": 8190.22, + "end": 8191.3, + "probability": 0.4038 + }, + { + "start": 8191.44, + "end": 8192.8, + "probability": 0.6738 + }, + { + "start": 8193.2, + "end": 8194.25, + "probability": 0.4413 + }, + { + "start": 8194.58, + "end": 8195.84, + "probability": 0.7111 + }, + { + "start": 8196.92, + "end": 8198.82, + "probability": 0.5869 + }, + { + "start": 8199.12, + "end": 8201.08, + "probability": 0.4406 + }, + { + "start": 8201.74, + "end": 8203.28, + "probability": 0.9435 + }, + { + "start": 8203.48, + "end": 8207.3, + "probability": 0.9549 + }, + { + "start": 8207.66, + "end": 8211.96, + "probability": 0.9358 + }, + { + "start": 8212.6, + "end": 8216.12, + "probability": 0.7961 + }, + { + "start": 8216.72, + "end": 8217.44, + "probability": 0.1808 + }, + { + "start": 8218.0, + "end": 8218.08, + "probability": 0.3632 + }, + { + "start": 8218.08, + "end": 8218.66, + "probability": 0.3817 + }, + { + "start": 8219.02, + "end": 8220.24, + "probability": 0.3744 + }, + { + "start": 8220.36, + "end": 8222.3, + "probability": 0.9236 + }, + { + "start": 8224.5, + "end": 8225.54, + "probability": 0.7397 + }, + { + "start": 8226.3, + "end": 8227.04, + "probability": 0.9028 + }, + { + "start": 8227.16, + "end": 8227.7, + "probability": 0.7863 + }, + { + "start": 8227.82, + "end": 8228.44, + "probability": 0.6887 + }, + { + "start": 8228.5, + "end": 8229.14, + "probability": 0.9561 + }, + { + "start": 8229.16, + "end": 8229.74, + "probability": 0.4113 + }, + { + "start": 8229.82, + "end": 8231.86, + "probability": 0.9498 + }, + { + "start": 8232.1, + "end": 8235.24, + "probability": 0.9991 + }, + { + "start": 8235.92, + "end": 8236.74, + "probability": 0.6702 + }, + { + "start": 8236.9, + "end": 8238.14, + "probability": 0.8361 + }, + { + "start": 8238.2, + "end": 8239.96, + "probability": 0.9023 + }, + { + "start": 8240.14, + "end": 8241.16, + "probability": 0.8806 + }, + { + "start": 8241.48, + "end": 8242.76, + "probability": 0.9869 + }, + { + "start": 8242.92, + "end": 8243.44, + "probability": 0.6607 + }, + { + "start": 8244.26, + "end": 8246.86, + "probability": 0.9463 + }, + { + "start": 8247.38, + "end": 8249.22, + "probability": 0.9868 + }, + { + "start": 8249.76, + "end": 8255.54, + "probability": 0.9679 + }, + { + "start": 8256.08, + "end": 8259.38, + "probability": 0.9054 + }, + { + "start": 8259.9, + "end": 8260.14, + "probability": 0.3518 + }, + { + "start": 8260.18, + "end": 8261.9, + "probability": 0.9289 + }, + { + "start": 8262.3, + "end": 8263.02, + "probability": 0.7876 + }, + { + "start": 8263.1, + "end": 8264.7, + "probability": 0.6589 + }, + { + "start": 8264.88, + "end": 8265.9, + "probability": 0.965 + }, + { + "start": 8266.44, + "end": 8268.62, + "probability": 0.9379 + }, + { + "start": 8268.84, + "end": 8270.0, + "probability": 0.9615 + }, + { + "start": 8270.04, + "end": 8274.94, + "probability": 0.9867 + }, + { + "start": 8275.44, + "end": 8279.66, + "probability": 0.9937 + }, + { + "start": 8280.26, + "end": 8281.08, + "probability": 0.947 + }, + { + "start": 8281.38, + "end": 8281.74, + "probability": 0.5643 + }, + { + "start": 8281.86, + "end": 8282.58, + "probability": 0.5166 + }, + { + "start": 8282.7, + "end": 8285.98, + "probability": 0.9724 + }, + { + "start": 8286.08, + "end": 8288.52, + "probability": 0.9157 + }, + { + "start": 8289.04, + "end": 8292.38, + "probability": 0.9895 + }, + { + "start": 8292.74, + "end": 8295.8, + "probability": 0.7533 + }, + { + "start": 8296.38, + "end": 8300.84, + "probability": 0.974 + }, + { + "start": 8301.24, + "end": 8303.44, + "probability": 0.9929 + }, + { + "start": 8303.52, + "end": 8305.74, + "probability": 0.9078 + }, + { + "start": 8306.62, + "end": 8311.28, + "probability": 0.9594 + }, + { + "start": 8311.68, + "end": 8314.28, + "probability": 0.9888 + }, + { + "start": 8314.82, + "end": 8318.78, + "probability": 0.693 + }, + { + "start": 8318.78, + "end": 8324.2, + "probability": 0.9909 + }, + { + "start": 8324.6, + "end": 8327.44, + "probability": 0.7819 + }, + { + "start": 8327.52, + "end": 8328.1, + "probability": 0.8348 + }, + { + "start": 8328.24, + "end": 8329.96, + "probability": 0.6974 + }, + { + "start": 8330.36, + "end": 8332.84, + "probability": 0.9413 + }, + { + "start": 8332.9, + "end": 8334.73, + "probability": 0.8452 + }, + { + "start": 8334.84, + "end": 8336.44, + "probability": 0.9833 + }, + { + "start": 8336.76, + "end": 8338.48, + "probability": 0.76 + }, + { + "start": 8338.52, + "end": 8339.72, + "probability": 0.9404 + }, + { + "start": 8340.08, + "end": 8341.56, + "probability": 0.917 + }, + { + "start": 8341.88, + "end": 8343.76, + "probability": 0.9634 + }, + { + "start": 8343.82, + "end": 8347.12, + "probability": 0.8641 + }, + { + "start": 8347.6, + "end": 8348.7, + "probability": 0.7603 + }, + { + "start": 8348.72, + "end": 8349.68, + "probability": 0.9199 + }, + { + "start": 8349.8, + "end": 8350.54, + "probability": 0.9423 + }, + { + "start": 8350.94, + "end": 8355.38, + "probability": 0.784 + }, + { + "start": 8355.94, + "end": 8356.96, + "probability": 0.998 + }, + { + "start": 8357.74, + "end": 8359.7, + "probability": 0.8474 + }, + { + "start": 8360.06, + "end": 8360.7, + "probability": 0.6689 + }, + { + "start": 8361.68, + "end": 8364.2, + "probability": 0.9561 + }, + { + "start": 8364.22, + "end": 8367.08, + "probability": 0.7732 + }, + { + "start": 8367.44, + "end": 8370.42, + "probability": 0.9465 + }, + { + "start": 8370.94, + "end": 8375.86, + "probability": 0.7457 + }, + { + "start": 8376.32, + "end": 8379.82, + "probability": 0.9071 + }, + { + "start": 8379.98, + "end": 8383.76, + "probability": 0.9026 + }, + { + "start": 8383.9, + "end": 8386.66, + "probability": 0.6859 + }, + { + "start": 8387.2, + "end": 8393.0, + "probability": 0.8294 + }, + { + "start": 8393.62, + "end": 8397.36, + "probability": 0.793 + }, + { + "start": 8398.22, + "end": 8402.98, + "probability": 0.9772 + }, + { + "start": 8403.38, + "end": 8404.62, + "probability": 0.8804 + }, + { + "start": 8405.14, + "end": 8406.84, + "probability": 0.8674 + }, + { + "start": 8407.18, + "end": 8408.24, + "probability": 0.7559 + }, + { + "start": 8408.91, + "end": 8411.98, + "probability": 0.8039 + }, + { + "start": 8412.54, + "end": 8417.2, + "probability": 0.9271 + }, + { + "start": 8418.08, + "end": 8419.1, + "probability": 0.9979 + }, + { + "start": 8420.02, + "end": 8421.2, + "probability": 0.8958 + }, + { + "start": 8421.24, + "end": 8421.58, + "probability": 0.899 + }, + { + "start": 8421.68, + "end": 8424.28, + "probability": 0.6 + }, + { + "start": 8424.28, + "end": 8425.98, + "probability": 0.6641 + }, + { + "start": 8426.76, + "end": 8428.66, + "probability": 0.8794 + }, + { + "start": 8429.6, + "end": 8430.5, + "probability": 0.9391 + }, + { + "start": 8431.1, + "end": 8432.9, + "probability": 0.9563 + }, + { + "start": 8433.83, + "end": 8435.35, + "probability": 0.6921 + }, + { + "start": 8436.92, + "end": 8438.32, + "probability": 0.7765 + }, + { + "start": 8438.62, + "end": 8440.44, + "probability": 0.6015 + }, + { + "start": 8441.36, + "end": 8443.04, + "probability": 0.8808 + }, + { + "start": 8443.46, + "end": 8444.52, + "probability": 0.9211 + }, + { + "start": 8444.62, + "end": 8447.74, + "probability": 0.9362 + }, + { + "start": 8447.98, + "end": 8449.3, + "probability": 0.9169 + }, + { + "start": 8449.7, + "end": 8450.46, + "probability": 0.8762 + }, + { + "start": 8451.75, + "end": 8454.46, + "probability": 0.1303 + }, + { + "start": 8455.28, + "end": 8460.72, + "probability": 0.993 + }, + { + "start": 8461.26, + "end": 8464.7, + "probability": 0.981 + }, + { + "start": 8464.7, + "end": 8468.34, + "probability": 0.9848 + }, + { + "start": 8468.76, + "end": 8474.38, + "probability": 0.9922 + }, + { + "start": 8474.9, + "end": 8475.64, + "probability": 0.9762 + }, + { + "start": 8476.1, + "end": 8479.12, + "probability": 0.9947 + }, + { + "start": 8480.32, + "end": 8481.52, + "probability": 0.8054 + }, + { + "start": 8481.78, + "end": 8488.2, + "probability": 0.9968 + }, + { + "start": 8488.2, + "end": 8493.68, + "probability": 0.998 + }, + { + "start": 8494.44, + "end": 8494.94, + "probability": 0.7191 + }, + { + "start": 8495.32, + "end": 8495.96, + "probability": 0.499 + }, + { + "start": 8496.04, + "end": 8501.64, + "probability": 0.8509 + }, + { + "start": 8502.2, + "end": 8504.82, + "probability": 0.9974 + }, + { + "start": 8504.9, + "end": 8507.96, + "probability": 0.9977 + }, + { + "start": 8508.1, + "end": 8513.46, + "probability": 0.894 + }, + { + "start": 8513.8, + "end": 8519.24, + "probability": 0.9756 + }, + { + "start": 8519.24, + "end": 8524.5, + "probability": 0.9894 + }, + { + "start": 8525.22, + "end": 8528.76, + "probability": 0.995 + }, + { + "start": 8528.76, + "end": 8533.56, + "probability": 0.9926 + }, + { + "start": 8533.56, + "end": 8538.16, + "probability": 0.98 + }, + { + "start": 8539.24, + "end": 8541.76, + "probability": 0.9904 + }, + { + "start": 8541.76, + "end": 8545.76, + "probability": 0.9945 + }, + { + "start": 8546.26, + "end": 8547.67, + "probability": 0.9881 + }, + { + "start": 8548.12, + "end": 8552.98, + "probability": 0.9634 + }, + { + "start": 8553.18, + "end": 8557.62, + "probability": 0.9158 + }, + { + "start": 8558.12, + "end": 8561.46, + "probability": 0.9819 + }, + { + "start": 8561.62, + "end": 8565.18, + "probability": 0.9973 + }, + { + "start": 8565.76, + "end": 8567.72, + "probability": 0.9712 + }, + { + "start": 8568.48, + "end": 8570.16, + "probability": 0.9598 + }, + { + "start": 8570.88, + "end": 8572.2, + "probability": 0.9919 + }, + { + "start": 8572.3, + "end": 8576.5, + "probability": 0.997 + }, + { + "start": 8576.94, + "end": 8579.58, + "probability": 0.9186 + }, + { + "start": 8579.94, + "end": 8581.44, + "probability": 0.8316 + }, + { + "start": 8581.72, + "end": 8581.9, + "probability": 0.3077 + }, + { + "start": 8581.96, + "end": 8582.2, + "probability": 0.8389 + }, + { + "start": 8582.32, + "end": 8582.98, + "probability": 0.6575 + }, + { + "start": 8583.42, + "end": 8586.92, + "probability": 0.9465 + }, + { + "start": 8587.34, + "end": 8589.94, + "probability": 0.7357 + }, + { + "start": 8590.7, + "end": 8594.94, + "probability": 0.9294 + }, + { + "start": 8595.34, + "end": 8596.14, + "probability": 0.8768 + }, + { + "start": 8596.7, + "end": 8600.18, + "probability": 0.5709 + }, + { + "start": 8601.18, + "end": 8602.34, + "probability": 0.177 + }, + { + "start": 8603.82, + "end": 8606.42, + "probability": 0.6557 + }, + { + "start": 8606.5, + "end": 8607.5, + "probability": 0.85 + }, + { + "start": 8607.64, + "end": 8608.94, + "probability": 0.8547 + }, + { + "start": 8609.78, + "end": 8610.0, + "probability": 0.6238 + }, + { + "start": 8610.16, + "end": 8611.1, + "probability": 0.8506 + }, + { + "start": 8611.26, + "end": 8616.3, + "probability": 0.9215 + }, + { + "start": 8617.18, + "end": 8620.62, + "probability": 0.9437 + }, + { + "start": 8622.62, + "end": 8626.12, + "probability": 0.6664 + }, + { + "start": 8626.28, + "end": 8627.8, + "probability": 0.47 + }, + { + "start": 8628.24, + "end": 8628.98, + "probability": 0.8545 + }, + { + "start": 8629.02, + "end": 8629.46, + "probability": 0.2534 + }, + { + "start": 8629.46, + "end": 8630.02, + "probability": 0.3352 + }, + { + "start": 8630.48, + "end": 8631.22, + "probability": 0.5108 + }, + { + "start": 8632.76, + "end": 8634.97, + "probability": 0.0021 + }, + { + "start": 8636.86, + "end": 8637.26, + "probability": 0.8877 + }, + { + "start": 8646.8, + "end": 8647.62, + "probability": 0.536 + }, + { + "start": 8648.21, + "end": 8651.24, + "probability": 0.9302 + }, + { + "start": 8651.86, + "end": 8656.74, + "probability": 0.7752 + }, + { + "start": 8656.94, + "end": 8657.36, + "probability": 0.0228 + }, + { + "start": 8659.02, + "end": 8662.58, + "probability": 0.634 + }, + { + "start": 8662.88, + "end": 8664.76, + "probability": 0.9798 + }, + { + "start": 8665.62, + "end": 8666.28, + "probability": 0.6078 + }, + { + "start": 8666.64, + "end": 8667.14, + "probability": 0.322 + }, + { + "start": 8669.98, + "end": 8670.1, + "probability": 0.0547 + }, + { + "start": 8670.78, + "end": 8673.92, + "probability": 0.0031 + }, + { + "start": 8678.62, + "end": 8680.98, + "probability": 0.0213 + }, + { + "start": 8683.42, + "end": 8683.78, + "probability": 0.0566 + }, + { + "start": 8683.78, + "end": 8684.88, + "probability": 0.4317 + }, + { + "start": 8685.62, + "end": 8687.78, + "probability": 0.7725 + }, + { + "start": 8687.82, + "end": 8688.04, + "probability": 0.7035 + }, + { + "start": 8688.1, + "end": 8688.3, + "probability": 0.322 + }, + { + "start": 8688.48, + "end": 8693.56, + "probability": 0.8762 + }, + { + "start": 8694.14, + "end": 8695.98, + "probability": 0.9629 + }, + { + "start": 8696.8, + "end": 8700.92, + "probability": 0.9536 + }, + { + "start": 8701.24, + "end": 8702.64, + "probability": 0.9736 + }, + { + "start": 8723.6, + "end": 8724.46, + "probability": 0.6643 + }, + { + "start": 8726.2, + "end": 8727.48, + "probability": 0.7135 + }, + { + "start": 8728.8, + "end": 8734.34, + "probability": 0.9989 + }, + { + "start": 8736.14, + "end": 8739.94, + "probability": 0.9971 + }, + { + "start": 8741.22, + "end": 8744.88, + "probability": 0.9012 + }, + { + "start": 8745.62, + "end": 8751.3, + "probability": 0.8673 + }, + { + "start": 8752.46, + "end": 8757.02, + "probability": 0.9775 + }, + { + "start": 8757.78, + "end": 8759.26, + "probability": 0.9789 + }, + { + "start": 8761.36, + "end": 8762.78, + "probability": 0.9829 + }, + { + "start": 8762.9, + "end": 8765.24, + "probability": 0.9514 + }, + { + "start": 8766.08, + "end": 8767.96, + "probability": 0.8251 + }, + { + "start": 8768.58, + "end": 8770.68, + "probability": 0.9939 + }, + { + "start": 8770.76, + "end": 8774.58, + "probability": 0.8892 + }, + { + "start": 8775.5, + "end": 8779.54, + "probability": 0.79 + }, + { + "start": 8779.9, + "end": 8780.26, + "probability": 0.4546 + }, + { + "start": 8780.26, + "end": 8781.38, + "probability": 0.7843 + }, + { + "start": 8783.76, + "end": 8787.78, + "probability": 0.78 + }, + { + "start": 8788.5, + "end": 8796.38, + "probability": 0.9462 + }, + { + "start": 8796.9, + "end": 8797.64, + "probability": 0.7662 + }, + { + "start": 8797.7, + "end": 8798.9, + "probability": 0.8917 + }, + { + "start": 8799.4, + "end": 8802.88, + "probability": 0.9218 + }, + { + "start": 8803.38, + "end": 8803.96, + "probability": 0.4132 + }, + { + "start": 8805.8, + "end": 8807.96, + "probability": 0.8848 + }, + { + "start": 8808.12, + "end": 8809.0, + "probability": 0.771 + }, + { + "start": 8809.1, + "end": 8812.36, + "probability": 0.9583 + }, + { + "start": 8813.14, + "end": 8814.88, + "probability": 0.9191 + }, + { + "start": 8815.42, + "end": 8818.1, + "probability": 0.977 + }, + { + "start": 8818.98, + "end": 8821.88, + "probability": 0.8206 + }, + { + "start": 8822.78, + "end": 8824.9, + "probability": 0.8607 + }, + { + "start": 8825.64, + "end": 8830.16, + "probability": 0.8922 + }, + { + "start": 8830.54, + "end": 8831.64, + "probability": 0.9639 + }, + { + "start": 8831.72, + "end": 8832.52, + "probability": 0.4705 + }, + { + "start": 8833.18, + "end": 8835.8, + "probability": 0.8879 + }, + { + "start": 8836.28, + "end": 8837.58, + "probability": 0.5738 + }, + { + "start": 8838.04, + "end": 8842.24, + "probability": 0.665 + }, + { + "start": 8842.38, + "end": 8844.2, + "probability": 0.6624 + }, + { + "start": 8844.48, + "end": 8845.88, + "probability": 0.9591 + }, + { + "start": 8845.88, + "end": 8847.08, + "probability": 0.9927 + }, + { + "start": 8847.6, + "end": 8848.88, + "probability": 0.6335 + }, + { + "start": 8848.92, + "end": 8851.7, + "probability": 0.7855 + }, + { + "start": 8862.46, + "end": 8864.3, + "probability": 0.7014 + }, + { + "start": 8865.26, + "end": 8867.5, + "probability": 0.9857 + }, + { + "start": 8867.5, + "end": 8871.8, + "probability": 0.5484 + }, + { + "start": 8872.0, + "end": 8873.84, + "probability": 0.7108 + }, + { + "start": 8874.16, + "end": 8879.92, + "probability": 0.9862 + }, + { + "start": 8881.34, + "end": 8883.44, + "probability": 0.9855 + }, + { + "start": 8883.58, + "end": 8889.52, + "probability": 0.9909 + }, + { + "start": 8889.52, + "end": 8895.44, + "probability": 0.9967 + }, + { + "start": 8896.38, + "end": 8899.04, + "probability": 0.9924 + }, + { + "start": 8899.6, + "end": 8903.72, + "probability": 0.9977 + }, + { + "start": 8904.26, + "end": 8909.18, + "probability": 0.7816 + }, + { + "start": 8909.82, + "end": 8912.74, + "probability": 0.9132 + }, + { + "start": 8913.38, + "end": 8918.08, + "probability": 0.8315 + }, + { + "start": 8918.42, + "end": 8920.66, + "probability": 0.886 + }, + { + "start": 8921.2, + "end": 8922.9, + "probability": 0.8991 + }, + { + "start": 8923.32, + "end": 8928.78, + "probability": 0.8936 + }, + { + "start": 8929.52, + "end": 8933.02, + "probability": 0.9946 + }, + { + "start": 8933.64, + "end": 8934.69, + "probability": 0.5491 + }, + { + "start": 8935.38, + "end": 8940.94, + "probability": 0.9858 + }, + { + "start": 8941.84, + "end": 8945.32, + "probability": 0.9802 + }, + { + "start": 8945.6, + "end": 8951.28, + "probability": 0.9858 + }, + { + "start": 8951.82, + "end": 8955.36, + "probability": 0.8516 + }, + { + "start": 8955.92, + "end": 8959.5, + "probability": 0.9824 + }, + { + "start": 8959.58, + "end": 8964.44, + "probability": 0.9954 + }, + { + "start": 8965.87, + "end": 8968.58, + "probability": 0.6 + }, + { + "start": 8971.14, + "end": 8971.54, + "probability": 0.398 + }, + { + "start": 8971.64, + "end": 8972.78, + "probability": 0.872 + }, + { + "start": 8972.84, + "end": 8977.22, + "probability": 0.9475 + }, + { + "start": 8977.62, + "end": 8980.4, + "probability": 0.9192 + }, + { + "start": 8981.4, + "end": 8984.36, + "probability": 0.8148 + }, + { + "start": 8984.78, + "end": 8988.56, + "probability": 0.9214 + }, + { + "start": 8988.74, + "end": 8992.82, + "probability": 0.9973 + }, + { + "start": 8992.82, + "end": 8996.1, + "probability": 0.9736 + }, + { + "start": 8996.48, + "end": 8997.6, + "probability": 0.7153 + }, + { + "start": 8997.68, + "end": 8998.4, + "probability": 0.8722 + }, + { + "start": 8998.78, + "end": 9004.52, + "probability": 0.8452 + }, + { + "start": 9005.02, + "end": 9006.2, + "probability": 0.9648 + }, + { + "start": 9006.46, + "end": 9007.0, + "probability": 0.9119 + }, + { + "start": 9007.54, + "end": 9008.94, + "probability": 0.9664 + }, + { + "start": 9009.28, + "end": 9011.62, + "probability": 0.9517 + }, + { + "start": 9012.06, + "end": 9016.42, + "probability": 0.9701 + }, + { + "start": 9016.78, + "end": 9018.72, + "probability": 0.7861 + }, + { + "start": 9019.34, + "end": 9021.62, + "probability": 0.8892 + }, + { + "start": 9022.84, + "end": 9025.09, + "probability": 0.9551 + }, + { + "start": 9025.24, + "end": 9029.88, + "probability": 0.9233 + }, + { + "start": 9030.42, + "end": 9031.8, + "probability": 0.9197 + }, + { + "start": 9032.1, + "end": 9034.76, + "probability": 0.9781 + }, + { + "start": 9035.16, + "end": 9038.18, + "probability": 0.9868 + }, + { + "start": 9038.76, + "end": 9044.12, + "probability": 0.9241 + }, + { + "start": 9044.12, + "end": 9048.06, + "probability": 0.9957 + }, + { + "start": 9048.44, + "end": 9051.06, + "probability": 0.8646 + }, + { + "start": 9051.06, + "end": 9056.16, + "probability": 0.9937 + }, + { + "start": 9056.64, + "end": 9058.92, + "probability": 0.9926 + }, + { + "start": 9059.84, + "end": 9063.7, + "probability": 0.9546 + }, + { + "start": 9064.28, + "end": 9068.81, + "probability": 0.9841 + }, + { + "start": 9069.02, + "end": 9072.3, + "probability": 0.9559 + }, + { + "start": 9072.92, + "end": 9073.5, + "probability": 0.8398 + }, + { + "start": 9073.8, + "end": 9077.18, + "probability": 0.9746 + }, + { + "start": 9077.72, + "end": 9081.78, + "probability": 0.9476 + }, + { + "start": 9081.78, + "end": 9085.92, + "probability": 0.708 + }, + { + "start": 9086.44, + "end": 9091.28, + "probability": 0.9863 + }, + { + "start": 9091.72, + "end": 9093.04, + "probability": 0.8818 + }, + { + "start": 9093.6, + "end": 9097.46, + "probability": 0.989 + }, + { + "start": 9097.46, + "end": 9102.76, + "probability": 0.867 + }, + { + "start": 9103.5, + "end": 9105.86, + "probability": 0.819 + }, + { + "start": 9106.28, + "end": 9113.04, + "probability": 0.9673 + }, + { + "start": 9113.92, + "end": 9116.22, + "probability": 0.4659 + }, + { + "start": 9116.44, + "end": 9117.24, + "probability": 0.6922 + }, + { + "start": 9117.3, + "end": 9118.18, + "probability": 0.883 + }, + { + "start": 9118.52, + "end": 9121.76, + "probability": 0.9882 + }, + { + "start": 9122.8, + "end": 9123.22, + "probability": 0.6428 + }, + { + "start": 9123.42, + "end": 9127.24, + "probability": 0.9741 + }, + { + "start": 9127.7, + "end": 9129.8, + "probability": 0.9585 + }, + { + "start": 9129.8, + "end": 9133.38, + "probability": 0.9788 + }, + { + "start": 9133.88, + "end": 9134.4, + "probability": 0.0095 + }, + { + "start": 9135.46, + "end": 9136.58, + "probability": 0.1595 + }, + { + "start": 9136.9, + "end": 9139.32, + "probability": 0.7923 + }, + { + "start": 9139.4, + "end": 9140.32, + "probability": 0.741 + }, + { + "start": 9140.56, + "end": 9141.43, + "probability": 0.9951 + }, + { + "start": 9141.72, + "end": 9143.06, + "probability": 0.5018 + }, + { + "start": 9143.12, + "end": 9143.6, + "probability": 0.662 + }, + { + "start": 9145.04, + "end": 9146.66, + "probability": 0.3659 + }, + { + "start": 9146.78, + "end": 9147.82, + "probability": 0.4772 + }, + { + "start": 9147.88, + "end": 9148.1, + "probability": 0.4534 + }, + { + "start": 9148.14, + "end": 9149.24, + "probability": 0.4534 + }, + { + "start": 9149.26, + "end": 9152.66, + "probability": 0.9404 + }, + { + "start": 9153.08, + "end": 9153.76, + "probability": 0.7716 + }, + { + "start": 9153.82, + "end": 9155.28, + "probability": 0.5899 + }, + { + "start": 9155.8, + "end": 9156.24, + "probability": 0.8142 + }, + { + "start": 9156.4, + "end": 9158.18, + "probability": 0.9515 + }, + { + "start": 9158.58, + "end": 9159.84, + "probability": 0.8981 + }, + { + "start": 9160.14, + "end": 9164.07, + "probability": 0.7808 + }, + { + "start": 9164.48, + "end": 9164.9, + "probability": 0.7396 + }, + { + "start": 9164.98, + "end": 9168.78, + "probability": 0.9901 + }, + { + "start": 9169.02, + "end": 9169.42, + "probability": 0.6112 + }, + { + "start": 9169.52, + "end": 9171.1, + "probability": 0.5732 + }, + { + "start": 9171.4, + "end": 9173.78, + "probability": 0.8275 + }, + { + "start": 9174.42, + "end": 9177.78, + "probability": 0.9306 + }, + { + "start": 9177.88, + "end": 9182.7, + "probability": 0.7529 + }, + { + "start": 9182.82, + "end": 9184.48, + "probability": 0.6409 + }, + { + "start": 9184.96, + "end": 9186.18, + "probability": 0.8536 + }, + { + "start": 9186.24, + "end": 9186.66, + "probability": 0.5728 + }, + { + "start": 9186.74, + "end": 9187.42, + "probability": 0.8317 + }, + { + "start": 9188.14, + "end": 9188.76, + "probability": 0.7438 + }, + { + "start": 9203.32, + "end": 9203.84, + "probability": 0.0069 + }, + { + "start": 9203.84, + "end": 9204.62, + "probability": 0.2211 + }, + { + "start": 9205.18, + "end": 9206.7, + "probability": 0.6754 + }, + { + "start": 9206.82, + "end": 9209.46, + "probability": 0.8283 + }, + { + "start": 9209.64, + "end": 9211.88, + "probability": 0.8906 + }, + { + "start": 9212.2, + "end": 9212.84, + "probability": 0.8644 + }, + { + "start": 9213.54, + "end": 9214.18, + "probability": 0.63 + }, + { + "start": 9215.94, + "end": 9218.8, + "probability": 0.007 + }, + { + "start": 9231.28, + "end": 9231.76, + "probability": 0.0115 + }, + { + "start": 9231.76, + "end": 9232.06, + "probability": 0.0447 + }, + { + "start": 9232.06, + "end": 9232.06, + "probability": 0.0473 + }, + { + "start": 9232.06, + "end": 9234.38, + "probability": 0.2815 + }, + { + "start": 9234.48, + "end": 9235.02, + "probability": 0.5011 + }, + { + "start": 9235.84, + "end": 9237.48, + "probability": 0.7003 + }, + { + "start": 9237.56, + "end": 9239.66, + "probability": 0.9792 + }, + { + "start": 9240.72, + "end": 9241.24, + "probability": 0.8035 + }, + { + "start": 9243.16, + "end": 9243.86, + "probability": 0.4341 + }, + { + "start": 9243.98, + "end": 9245.38, + "probability": 0.8705 + }, + { + "start": 9245.46, + "end": 9246.86, + "probability": 0.7286 + }, + { + "start": 9247.36, + "end": 9251.52, + "probability": 0.9288 + }, + { + "start": 9253.8, + "end": 9255.5, + "probability": 0.8066 + }, + { + "start": 9256.62, + "end": 9258.18, + "probability": 0.8781 + }, + { + "start": 9258.32, + "end": 9258.78, + "probability": 0.7356 + }, + { + "start": 9259.4, + "end": 9261.62, + "probability": 0.7186 + }, + { + "start": 9262.4, + "end": 9263.86, + "probability": 0.6785 + }, + { + "start": 9264.28, + "end": 9265.65, + "probability": 0.6178 + }, + { + "start": 9265.76, + "end": 9266.18, + "probability": 0.8306 + }, + { + "start": 9266.74, + "end": 9269.04, + "probability": 0.9912 + }, + { + "start": 9269.8, + "end": 9271.14, + "probability": 0.949 + }, + { + "start": 9271.24, + "end": 9274.14, + "probability": 0.9692 + }, + { + "start": 9274.14, + "end": 9277.54, + "probability": 0.9937 + }, + { + "start": 9278.28, + "end": 9281.84, + "probability": 0.9963 + }, + { + "start": 9282.06, + "end": 9286.36, + "probability": 0.9836 + }, + { + "start": 9286.36, + "end": 9291.34, + "probability": 0.9411 + }, + { + "start": 9291.98, + "end": 9294.72, + "probability": 0.9324 + }, + { + "start": 9294.82, + "end": 9298.3, + "probability": 0.9888 + }, + { + "start": 9299.12, + "end": 9299.42, + "probability": 0.2619 + }, + { + "start": 9299.44, + "end": 9301.76, + "probability": 0.8403 + }, + { + "start": 9302.06, + "end": 9303.06, + "probability": 0.6401 + }, + { + "start": 9303.16, + "end": 9304.36, + "probability": 0.3451 + }, + { + "start": 9305.08, + "end": 9308.24, + "probability": 0.8146 + }, + { + "start": 9309.0, + "end": 9311.48, + "probability": 0.9505 + }, + { + "start": 9311.68, + "end": 9312.58, + "probability": 0.7158 + }, + { + "start": 9312.96, + "end": 9314.96, + "probability": 0.7033 + }, + { + "start": 9315.36, + "end": 9317.84, + "probability": 0.631 + }, + { + "start": 9318.5, + "end": 9321.22, + "probability": 0.491 + }, + { + "start": 9321.74, + "end": 9323.3, + "probability": 0.8985 + }, + { + "start": 9323.34, + "end": 9325.88, + "probability": 0.8385 + }, + { + "start": 9325.98, + "end": 9327.16, + "probability": 0.5261 + }, + { + "start": 9327.88, + "end": 9329.2, + "probability": 0.5521 + }, + { + "start": 9329.32, + "end": 9331.22, + "probability": 0.6956 + }, + { + "start": 9331.3, + "end": 9331.92, + "probability": 0.6819 + }, + { + "start": 9332.4, + "end": 9334.88, + "probability": 0.9119 + }, + { + "start": 9335.48, + "end": 9337.76, + "probability": 0.9866 + }, + { + "start": 9337.9, + "end": 9341.22, + "probability": 0.6171 + }, + { + "start": 9341.22, + "end": 9347.12, + "probability": 0.7883 + }, + { + "start": 9347.26, + "end": 9348.22, + "probability": 0.8643 + }, + { + "start": 9348.44, + "end": 9349.14, + "probability": 0.4 + }, + { + "start": 9349.28, + "end": 9349.94, + "probability": 0.7444 + }, + { + "start": 9350.42, + "end": 9351.12, + "probability": 0.8047 + }, + { + "start": 9351.16, + "end": 9351.9, + "probability": 0.9741 + }, + { + "start": 9352.0, + "end": 9352.7, + "probability": 0.9299 + }, + { + "start": 9352.94, + "end": 9353.54, + "probability": 0.8988 + }, + { + "start": 9353.78, + "end": 9354.56, + "probability": 0.5057 + }, + { + "start": 9355.36, + "end": 9356.12, + "probability": 0.9376 + }, + { + "start": 9356.46, + "end": 9357.1, + "probability": 0.8676 + }, + { + "start": 9357.32, + "end": 9358.22, + "probability": 0.7768 + }, + { + "start": 9358.34, + "end": 9358.96, + "probability": 0.8106 + }, + { + "start": 9359.02, + "end": 9360.37, + "probability": 0.2427 + }, + { + "start": 9361.16, + "end": 9361.7, + "probability": 0.4889 + }, + { + "start": 9361.8, + "end": 9362.56, + "probability": 0.6318 + }, + { + "start": 9362.92, + "end": 9365.06, + "probability": 0.9507 + }, + { + "start": 9365.12, + "end": 9366.96, + "probability": 0.7883 + }, + { + "start": 9367.24, + "end": 9369.92, + "probability": 0.4111 + }, + { + "start": 9370.48, + "end": 9371.14, + "probability": 0.8873 + }, + { + "start": 9371.26, + "end": 9371.84, + "probability": 0.9721 + }, + { + "start": 9372.18, + "end": 9374.54, + "probability": 0.86 + }, + { + "start": 9374.74, + "end": 9375.92, + "probability": 0.9423 + }, + { + "start": 9376.44, + "end": 9377.94, + "probability": 0.9445 + }, + { + "start": 9378.04, + "end": 9378.8, + "probability": 0.5443 + }, + { + "start": 9378.88, + "end": 9380.22, + "probability": 0.6539 + }, + { + "start": 9381.91, + "end": 9384.48, + "probability": 0.8348 + }, + { + "start": 9385.0, + "end": 9389.44, + "probability": 0.7488 + }, + { + "start": 9389.44, + "end": 9395.3, + "probability": 0.9416 + }, + { + "start": 9395.96, + "end": 9397.91, + "probability": 0.7039 + }, + { + "start": 9400.19, + "end": 9401.38, + "probability": 0.9047 + }, + { + "start": 9401.38, + "end": 9402.38, + "probability": 0.686 + }, + { + "start": 9402.48, + "end": 9402.96, + "probability": 0.1468 + }, + { + "start": 9403.04, + "end": 9404.76, + "probability": 0.9002 + }, + { + "start": 9405.3, + "end": 9407.48, + "probability": 0.3312 + }, + { + "start": 9408.22, + "end": 9411.2, + "probability": 0.6683 + }, + { + "start": 9411.24, + "end": 9411.82, + "probability": 0.8485 + }, + { + "start": 9412.44, + "end": 9414.52, + "probability": 0.5415 + }, + { + "start": 9414.64, + "end": 9417.3, + "probability": 0.8118 + }, + { + "start": 9418.12, + "end": 9419.38, + "probability": 0.7879 + }, + { + "start": 9419.38, + "end": 9420.64, + "probability": 0.4604 + }, + { + "start": 9420.74, + "end": 9422.22, + "probability": 0.8246 + }, + { + "start": 9423.02, + "end": 9423.26, + "probability": 0.7938 + }, + { + "start": 9424.28, + "end": 9427.76, + "probability": 0.998 + }, + { + "start": 9427.76, + "end": 9432.42, + "probability": 0.9536 + }, + { + "start": 9432.46, + "end": 9433.72, + "probability": 0.3028 + }, + { + "start": 9433.82, + "end": 9434.9, + "probability": 0.4237 + }, + { + "start": 9434.94, + "end": 9438.92, + "probability": 0.8931 + }, + { + "start": 9439.48, + "end": 9444.76, + "probability": 0.9929 + }, + { + "start": 9444.76, + "end": 9450.58, + "probability": 0.941 + }, + { + "start": 9450.7, + "end": 9451.06, + "probability": 0.5927 + }, + { + "start": 9452.64, + "end": 9454.48, + "probability": 0.902 + }, + { + "start": 9455.64, + "end": 9457.02, + "probability": 0.8479 + }, + { + "start": 9457.5, + "end": 9460.62, + "probability": 0.7704 + }, + { + "start": 9460.7, + "end": 9462.32, + "probability": 0.5581 + }, + { + "start": 9462.84, + "end": 9463.84, + "probability": 0.7656 + }, + { + "start": 9464.12, + "end": 9468.36, + "probability": 0.9373 + }, + { + "start": 9475.82, + "end": 9477.98, + "probability": 0.7645 + }, + { + "start": 9479.2, + "end": 9481.56, + "probability": 0.9883 + }, + { + "start": 9481.96, + "end": 9483.68, + "probability": 0.9275 + }, + { + "start": 9484.42, + "end": 9486.0, + "probability": 0.9239 + }, + { + "start": 9486.06, + "end": 9489.44, + "probability": 0.9453 + }, + { + "start": 9490.36, + "end": 9495.14, + "probability": 0.9686 + }, + { + "start": 9495.32, + "end": 9496.68, + "probability": 0.8969 + }, + { + "start": 9497.4, + "end": 9498.3, + "probability": 0.963 + }, + { + "start": 9499.1, + "end": 9503.52, + "probability": 0.9902 + }, + { + "start": 9503.8, + "end": 9506.92, + "probability": 0.9644 + }, + { + "start": 9506.92, + "end": 9509.84, + "probability": 0.6723 + }, + { + "start": 9510.64, + "end": 9513.22, + "probability": 0.98 + }, + { + "start": 9514.58, + "end": 9518.52, + "probability": 0.9579 + }, + { + "start": 9519.24, + "end": 9521.76, + "probability": 0.9419 + }, + { + "start": 9522.58, + "end": 9525.94, + "probability": 0.7367 + }, + { + "start": 9526.28, + "end": 9530.04, + "probability": 0.9712 + }, + { + "start": 9530.96, + "end": 9531.36, + "probability": 0.7408 + }, + { + "start": 9531.72, + "end": 9534.48, + "probability": 0.991 + }, + { + "start": 9535.56, + "end": 9538.38, + "probability": 0.9916 + }, + { + "start": 9539.06, + "end": 9543.48, + "probability": 0.9775 + }, + { + "start": 9543.48, + "end": 9548.5, + "probability": 0.9889 + }, + { + "start": 9549.14, + "end": 9552.4, + "probability": 0.9962 + }, + { + "start": 9552.92, + "end": 9557.54, + "probability": 0.9924 + }, + { + "start": 9558.22, + "end": 9560.64, + "probability": 0.9957 + }, + { + "start": 9560.64, + "end": 9564.22, + "probability": 0.9951 + }, + { + "start": 9564.84, + "end": 9566.63, + "probability": 0.9995 + }, + { + "start": 9567.08, + "end": 9569.68, + "probability": 0.9969 + }, + { + "start": 9570.22, + "end": 9572.98, + "probability": 0.7835 + }, + { + "start": 9573.78, + "end": 9575.34, + "probability": 0.8868 + }, + { + "start": 9575.54, + "end": 9577.82, + "probability": 0.9972 + }, + { + "start": 9578.4, + "end": 9580.64, + "probability": 0.9881 + }, + { + "start": 9582.28, + "end": 9584.34, + "probability": 0.8504 + }, + { + "start": 9584.92, + "end": 9587.0, + "probability": 0.9935 + }, + { + "start": 9587.0, + "end": 9589.84, + "probability": 0.9979 + }, + { + "start": 9590.5, + "end": 9594.58, + "probability": 0.985 + }, + { + "start": 9594.58, + "end": 9599.26, + "probability": 0.999 + }, + { + "start": 9599.76, + "end": 9602.54, + "probability": 0.8956 + }, + { + "start": 9603.1, + "end": 9607.14, + "probability": 0.9832 + }, + { + "start": 9607.18, + "end": 9612.64, + "probability": 0.9836 + }, + { + "start": 9612.72, + "end": 9613.72, + "probability": 0.8142 + }, + { + "start": 9614.3, + "end": 9615.6, + "probability": 0.7749 + }, + { + "start": 9616.7, + "end": 9619.08, + "probability": 0.95 + }, + { + "start": 9619.16, + "end": 9622.66, + "probability": 0.9415 + }, + { + "start": 9623.3, + "end": 9625.62, + "probability": 0.8674 + }, + { + "start": 9626.04, + "end": 9628.52, + "probability": 0.9975 + }, + { + "start": 9629.34, + "end": 9633.78, + "probability": 0.9971 + }, + { + "start": 9634.2, + "end": 9638.26, + "probability": 0.9941 + }, + { + "start": 9639.14, + "end": 9639.5, + "probability": 0.74 + }, + { + "start": 9639.52, + "end": 9641.87, + "probability": 0.9922 + }, + { + "start": 9642.38, + "end": 9645.84, + "probability": 0.991 + }, + { + "start": 9646.24, + "end": 9649.74, + "probability": 0.9976 + }, + { + "start": 9650.42, + "end": 9650.92, + "probability": 0.7686 + }, + { + "start": 9651.58, + "end": 9656.6, + "probability": 0.9943 + }, + { + "start": 9656.6, + "end": 9660.7, + "probability": 0.9992 + }, + { + "start": 9661.56, + "end": 9662.46, + "probability": 0.7058 + }, + { + "start": 9663.06, + "end": 9664.0, + "probability": 0.5752 + }, + { + "start": 9665.16, + "end": 9665.94, + "probability": 0.5848 + }, + { + "start": 9666.46, + "end": 9669.68, + "probability": 0.9916 + }, + { + "start": 9669.86, + "end": 9672.68, + "probability": 0.8461 + }, + { + "start": 9672.68, + "end": 9674.58, + "probability": 0.7283 + }, + { + "start": 9675.24, + "end": 9677.64, + "probability": 0.9908 + }, + { + "start": 9677.64, + "end": 9680.88, + "probability": 0.738 + }, + { + "start": 9681.5, + "end": 9683.58, + "probability": 0.9892 + }, + { + "start": 9683.58, + "end": 9686.6, + "probability": 0.9421 + }, + { + "start": 9687.26, + "end": 9689.7, + "probability": 0.8826 + }, + { + "start": 9690.36, + "end": 9694.36, + "probability": 0.99 + }, + { + "start": 9694.78, + "end": 9694.94, + "probability": 0.6661 + }, + { + "start": 9696.0, + "end": 9698.76, + "probability": 0.9407 + }, + { + "start": 9698.94, + "end": 9701.36, + "probability": 0.6398 + }, + { + "start": 9701.94, + "end": 9703.04, + "probability": 0.6594 + }, + { + "start": 9703.1, + "end": 9705.12, + "probability": 0.8791 + }, + { + "start": 9705.58, + "end": 9706.46, + "probability": 0.6866 + }, + { + "start": 9706.92, + "end": 9708.28, + "probability": 0.9655 + }, + { + "start": 9708.42, + "end": 9708.82, + "probability": 0.8349 + }, + { + "start": 9708.9, + "end": 9710.16, + "probability": 0.8221 + }, + { + "start": 9710.24, + "end": 9710.68, + "probability": 0.8818 + }, + { + "start": 9711.08, + "end": 9712.48, + "probability": 0.9257 + }, + { + "start": 9712.52, + "end": 9715.24, + "probability": 0.5094 + }, + { + "start": 9716.12, + "end": 9717.02, + "probability": 0.2092 + }, + { + "start": 9717.02, + "end": 9717.02, + "probability": 0.48 + }, + { + "start": 9717.02, + "end": 9717.78, + "probability": 0.8802 + }, + { + "start": 9718.38, + "end": 9719.26, + "probability": 0.7721 + }, + { + "start": 9719.84, + "end": 9720.1, + "probability": 0.5535 + }, + { + "start": 9721.22, + "end": 9722.66, + "probability": 0.8806 + }, + { + "start": 9722.82, + "end": 9724.92, + "probability": 0.9145 + }, + { + "start": 9725.38, + "end": 9727.24, + "probability": 0.9564 + }, + { + "start": 9727.42, + "end": 9727.78, + "probability": 0.3734 + }, + { + "start": 9727.94, + "end": 9729.96, + "probability": 0.7004 + }, + { + "start": 9730.16, + "end": 9730.82, + "probability": 0.797 + }, + { + "start": 9731.38, + "end": 9732.84, + "probability": 0.9075 + }, + { + "start": 9733.36, + "end": 9735.24, + "probability": 0.7677 + }, + { + "start": 9735.9, + "end": 9739.18, + "probability": 0.9503 + }, + { + "start": 9739.8, + "end": 9740.68, + "probability": 0.9848 + }, + { + "start": 9741.76, + "end": 9745.32, + "probability": 0.748 + }, + { + "start": 9745.94, + "end": 9749.64, + "probability": 0.7253 + }, + { + "start": 9750.54, + "end": 9751.54, + "probability": 0.8804 + }, + { + "start": 9752.3, + "end": 9755.3, + "probability": 0.9919 + }, + { + "start": 9756.04, + "end": 9758.42, + "probability": 0.6707 + }, + { + "start": 9760.06, + "end": 9763.38, + "probability": 0.953 + }, + { + "start": 9782.16, + "end": 9782.56, + "probability": 0.9802 + }, + { + "start": 9784.08, + "end": 9785.5, + "probability": 0.7473 + }, + { + "start": 9786.3, + "end": 9787.6, + "probability": 0.869 + }, + { + "start": 9787.66, + "end": 9792.0, + "probability": 0.9676 + }, + { + "start": 9792.0, + "end": 9796.06, + "probability": 0.8807 + }, + { + "start": 9796.2, + "end": 9798.16, + "probability": 0.6739 + }, + { + "start": 9798.88, + "end": 9800.56, + "probability": 0.2688 + }, + { + "start": 9801.18, + "end": 9803.06, + "probability": 0.838 + }, + { + "start": 9803.06, + "end": 9805.58, + "probability": 0.7923 + }, + { + "start": 9807.32, + "end": 9807.62, + "probability": 0.5562 + }, + { + "start": 9807.78, + "end": 9808.02, + "probability": 0.5861 + }, + { + "start": 9808.08, + "end": 9812.38, + "probability": 0.9928 + }, + { + "start": 9812.38, + "end": 9814.88, + "probability": 0.8536 + }, + { + "start": 9815.4, + "end": 9816.48, + "probability": 0.9036 + }, + { + "start": 9817.28, + "end": 9818.97, + "probability": 0.8067 + }, + { + "start": 9819.4, + "end": 9823.0, + "probability": 0.9635 + }, + { + "start": 9823.0, + "end": 9826.46, + "probability": 0.8903 + }, + { + "start": 9826.66, + "end": 9827.89, + "probability": 0.687 + }, + { + "start": 9828.96, + "end": 9832.14, + "probability": 0.6713 + }, + { + "start": 9832.6, + "end": 9835.62, + "probability": 0.9917 + }, + { + "start": 9835.76, + "end": 9838.58, + "probability": 0.9929 + }, + { + "start": 9838.7, + "end": 9839.36, + "probability": 0.9943 + }, + { + "start": 9840.2, + "end": 9841.36, + "probability": 0.5594 + }, + { + "start": 9841.4, + "end": 9844.88, + "probability": 0.7576 + }, + { + "start": 9844.88, + "end": 9849.02, + "probability": 0.9725 + }, + { + "start": 9849.7, + "end": 9853.51, + "probability": 0.9893 + }, + { + "start": 9854.1, + "end": 9858.68, + "probability": 0.9836 + }, + { + "start": 9859.52, + "end": 9861.46, + "probability": 0.9783 + }, + { + "start": 9862.3, + "end": 9863.82, + "probability": 0.9905 + }, + { + "start": 9864.54, + "end": 9865.26, + "probability": 0.4379 + }, + { + "start": 9866.34, + "end": 9868.98, + "probability": 0.9045 + }, + { + "start": 9869.16, + "end": 9871.36, + "probability": 0.9846 + }, + { + "start": 9871.46, + "end": 9873.54, + "probability": 0.86 + }, + { + "start": 9873.96, + "end": 9874.56, + "probability": 0.711 + }, + { + "start": 9874.6, + "end": 9875.94, + "probability": 0.9595 + }, + { + "start": 9876.58, + "end": 9878.62, + "probability": 0.8835 + }, + { + "start": 9879.4, + "end": 9883.38, + "probability": 0.9053 + }, + { + "start": 9883.6, + "end": 9884.55, + "probability": 0.5026 + }, + { + "start": 9885.26, + "end": 9887.22, + "probability": 0.8356 + }, + { + "start": 9887.66, + "end": 9888.08, + "probability": 0.277 + }, + { + "start": 9888.14, + "end": 9888.3, + "probability": 0.6423 + }, + { + "start": 9888.36, + "end": 9890.51, + "probability": 0.9725 + }, + { + "start": 9890.82, + "end": 9891.58, + "probability": 0.792 + }, + { + "start": 9891.72, + "end": 9891.88, + "probability": 0.7161 + }, + { + "start": 9892.02, + "end": 9895.56, + "probability": 0.9506 + }, + { + "start": 9896.08, + "end": 9897.12, + "probability": 0.9634 + }, + { + "start": 9897.5, + "end": 9901.86, + "probability": 0.9832 + }, + { + "start": 9902.42, + "end": 9903.06, + "probability": 0.5927 + }, + { + "start": 9903.54, + "end": 9904.12, + "probability": 0.5391 + }, + { + "start": 9904.2, + "end": 9906.12, + "probability": 0.7328 + }, + { + "start": 9907.04, + "end": 9908.2, + "probability": 0.9611 + }, + { + "start": 9909.34, + "end": 9911.54, + "probability": 0.8621 + }, + { + "start": 9912.26, + "end": 9916.46, + "probability": 0.9736 + }, + { + "start": 9916.46, + "end": 9919.56, + "probability": 0.9852 + }, + { + "start": 9920.58, + "end": 9921.36, + "probability": 0.8735 + }, + { + "start": 9922.02, + "end": 9925.46, + "probability": 0.9475 + }, + { + "start": 9926.0, + "end": 9928.56, + "probability": 0.9853 + }, + { + "start": 9928.56, + "end": 9930.98, + "probability": 0.9936 + }, + { + "start": 9931.38, + "end": 9933.08, + "probability": 0.2895 + }, + { + "start": 9933.62, + "end": 9936.6, + "probability": 0.9041 + }, + { + "start": 9937.0, + "end": 9939.02, + "probability": 0.9128 + }, + { + "start": 9939.44, + "end": 9941.4, + "probability": 0.9819 + }, + { + "start": 9941.46, + "end": 9943.94, + "probability": 0.8002 + }, + { + "start": 9944.4, + "end": 9944.9, + "probability": 0.8646 + }, + { + "start": 9945.08, + "end": 9947.22, + "probability": 0.8935 + }, + { + "start": 9947.72, + "end": 9949.9, + "probability": 0.9688 + }, + { + "start": 9949.96, + "end": 9950.45, + "probability": 0.9137 + }, + { + "start": 9950.62, + "end": 9951.2, + "probability": 0.8594 + }, + { + "start": 9951.86, + "end": 9955.58, + "probability": 0.9858 + }, + { + "start": 9956.4, + "end": 9958.75, + "probability": 0.915 + }, + { + "start": 9958.98, + "end": 9962.12, + "probability": 0.7211 + }, + { + "start": 9962.92, + "end": 9965.88, + "probability": 0.7685 + }, + { + "start": 9966.3, + "end": 9969.36, + "probability": 0.9455 + }, + { + "start": 9969.98, + "end": 9971.98, + "probability": 0.8865 + }, + { + "start": 9972.2, + "end": 9976.68, + "probability": 0.9522 + }, + { + "start": 9977.4, + "end": 9978.92, + "probability": 0.6246 + }, + { + "start": 9979.48, + "end": 9980.78, + "probability": 0.3578 + }, + { + "start": 9980.94, + "end": 9982.3, + "probability": 0.7552 + }, + { + "start": 9982.4, + "end": 9983.42, + "probability": 0.7513 + }, + { + "start": 9983.84, + "end": 9987.1, + "probability": 0.8863 + }, + { + "start": 9987.86, + "end": 9990.24, + "probability": 0.9637 + }, + { + "start": 9990.72, + "end": 9992.42, + "probability": 0.9194 + }, + { + "start": 9992.42, + "end": 9995.96, + "probability": 0.9914 + }, + { + "start": 9996.44, + "end": 10000.72, + "probability": 0.9327 + }, + { + "start": 10000.72, + "end": 10004.2, + "probability": 0.9971 + }, + { + "start": 10004.84, + "end": 10005.24, + "probability": 0.2825 + }, + { + "start": 10005.88, + "end": 10007.82, + "probability": 0.8098 + }, + { + "start": 10007.98, + "end": 10008.88, + "probability": 0.5026 + }, + { + "start": 10009.53, + "end": 10014.24, + "probability": 0.6969 + }, + { + "start": 10014.32, + "end": 10015.8, + "probability": 0.5414 + }, + { + "start": 10016.02, + "end": 10017.3, + "probability": 0.7986 + }, + { + "start": 10017.68, + "end": 10018.36, + "probability": 0.3622 + }, + { + "start": 10018.36, + "end": 10019.02, + "probability": 0.5949 + }, + { + "start": 10034.6, + "end": 10035.1, + "probability": 0.0756 + }, + { + "start": 10035.1, + "end": 10035.14, + "probability": 0.0357 + }, + { + "start": 10035.14, + "end": 10035.14, + "probability": 0.5507 + }, + { + "start": 10035.14, + "end": 10035.9, + "probability": 0.3358 + }, + { + "start": 10036.6, + "end": 10038.3, + "probability": 0.6715 + }, + { + "start": 10038.9, + "end": 10041.36, + "probability": 0.9793 + }, + { + "start": 10046.24, + "end": 10048.56, + "probability": 0.9577 + }, + { + "start": 10049.78, + "end": 10051.12, + "probability": 0.8027 + }, + { + "start": 10051.9, + "end": 10053.42, + "probability": 0.9648 + }, + { + "start": 10055.32, + "end": 10055.34, + "probability": 0.0085 + }, + { + "start": 10055.34, + "end": 10055.6, + "probability": 0.1649 + }, + { + "start": 10055.6, + "end": 10055.92, + "probability": 0.6677 + }, + { + "start": 10056.06, + "end": 10058.28, + "probability": 0.9239 + }, + { + "start": 10058.28, + "end": 10063.46, + "probability": 0.9626 + }, + { + "start": 10064.44, + "end": 10070.22, + "probability": 0.6108 + }, + { + "start": 10070.36, + "end": 10071.44, + "probability": 0.3043 + }, + { + "start": 10071.54, + "end": 10072.24, + "probability": 0.4979 + }, + { + "start": 10072.62, + "end": 10073.76, + "probability": 0.9803 + }, + { + "start": 10074.78, + "end": 10079.82, + "probability": 0.9273 + }, + { + "start": 10102.6, + "end": 10104.66, + "probability": 0.6894 + }, + { + "start": 10107.64, + "end": 10108.5, + "probability": 0.8931 + }, + { + "start": 10108.78, + "end": 10112.22, + "probability": 0.9809 + }, + { + "start": 10112.22, + "end": 10117.7, + "probability": 0.9954 + }, + { + "start": 10118.28, + "end": 10120.08, + "probability": 0.7052 + }, + { + "start": 10121.24, + "end": 10123.1, + "probability": 0.9462 + }, + { + "start": 10123.1, + "end": 10125.62, + "probability": 0.9927 + }, + { + "start": 10126.6, + "end": 10130.66, + "probability": 0.9517 + }, + { + "start": 10131.7, + "end": 10133.8, + "probability": 0.9708 + }, + { + "start": 10134.94, + "end": 10137.64, + "probability": 0.9956 + }, + { + "start": 10138.42, + "end": 10140.88, + "probability": 0.8935 + }, + { + "start": 10141.58, + "end": 10146.66, + "probability": 0.9976 + }, + { + "start": 10148.0, + "end": 10150.76, + "probability": 0.9285 + }, + { + "start": 10151.34, + "end": 10154.12, + "probability": 0.9951 + }, + { + "start": 10154.7, + "end": 10155.76, + "probability": 0.7671 + }, + { + "start": 10156.56, + "end": 10159.18, + "probability": 0.9278 + }, + { + "start": 10159.9, + "end": 10162.26, + "probability": 0.9969 + }, + { + "start": 10163.12, + "end": 10165.56, + "probability": 0.7259 + }, + { + "start": 10166.3, + "end": 10169.16, + "probability": 0.8108 + }, + { + "start": 10169.96, + "end": 10176.16, + "probability": 0.867 + }, + { + "start": 10176.3, + "end": 10177.86, + "probability": 0.9882 + }, + { + "start": 10178.74, + "end": 10182.38, + "probability": 0.8472 + }, + { + "start": 10182.92, + "end": 10184.86, + "probability": 0.8115 + }, + { + "start": 10185.68, + "end": 10188.8, + "probability": 0.8882 + }, + { + "start": 10189.04, + "end": 10190.52, + "probability": 0.9614 + }, + { + "start": 10191.4, + "end": 10193.78, + "probability": 0.8751 + }, + { + "start": 10194.78, + "end": 10196.86, + "probability": 0.7753 + }, + { + "start": 10196.92, + "end": 10197.28, + "probability": 0.3175 + }, + { + "start": 10197.48, + "end": 10198.28, + "probability": 0.7483 + }, + { + "start": 10198.4, + "end": 10198.66, + "probability": 0.612 + }, + { + "start": 10198.84, + "end": 10200.02, + "probability": 0.6204 + }, + { + "start": 10200.16, + "end": 10200.44, + "probability": 0.7306 + }, + { + "start": 10200.54, + "end": 10201.32, + "probability": 0.4609 + }, + { + "start": 10202.24, + "end": 10203.9, + "probability": 0.8713 + }, + { + "start": 10203.94, + "end": 10204.26, + "probability": 0.6922 + }, + { + "start": 10204.34, + "end": 10206.46, + "probability": 0.9174 + }, + { + "start": 10206.5, + "end": 10209.0, + "probability": 0.8931 + }, + { + "start": 10209.46, + "end": 10210.86, + "probability": 0.7811 + }, + { + "start": 10211.44, + "end": 10213.4, + "probability": 0.9709 + }, + { + "start": 10214.24, + "end": 10220.62, + "probability": 0.7141 + }, + { + "start": 10220.62, + "end": 10221.1, + "probability": 0.5247 + }, + { + "start": 10221.16, + "end": 10222.44, + "probability": 0.9642 + }, + { + "start": 10222.5, + "end": 10223.29, + "probability": 0.9043 + }, + { + "start": 10223.82, + "end": 10225.0, + "probability": 0.8003 + }, + { + "start": 10225.08, + "end": 10225.78, + "probability": 0.2289 + }, + { + "start": 10225.88, + "end": 10226.24, + "probability": 0.3684 + }, + { + "start": 10226.58, + "end": 10227.14, + "probability": 0.5801 + }, + { + "start": 10227.24, + "end": 10227.72, + "probability": 0.8244 + }, + { + "start": 10228.1, + "end": 10229.5, + "probability": 0.866 + }, + { + "start": 10229.66, + "end": 10231.21, + "probability": 0.7681 + }, + { + "start": 10231.24, + "end": 10232.08, + "probability": 0.344 + }, + { + "start": 10233.18, + "end": 10235.08, + "probability": 0.9458 + }, + { + "start": 10237.48, + "end": 10239.28, + "probability": 0.7968 + }, + { + "start": 10240.44, + "end": 10241.26, + "probability": 0.7904 + }, + { + "start": 10241.48, + "end": 10242.82, + "probability": 0.4104 + }, + { + "start": 10242.96, + "end": 10246.18, + "probability": 0.9536 + }, + { + "start": 10253.64, + "end": 10256.24, + "probability": 0.8402 + }, + { + "start": 10262.52, + "end": 10263.04, + "probability": 0.6295 + }, + { + "start": 10263.22, + "end": 10265.2, + "probability": 0.9924 + }, + { + "start": 10265.86, + "end": 10269.38, + "probability": 0.6681 + }, + { + "start": 10270.16, + "end": 10271.52, + "probability": 0.8128 + }, + { + "start": 10272.14, + "end": 10273.96, + "probability": 0.8385 + }, + { + "start": 10274.14, + "end": 10277.58, + "probability": 0.9951 + }, + { + "start": 10277.76, + "end": 10278.44, + "probability": 0.8536 + }, + { + "start": 10279.1, + "end": 10281.91, + "probability": 0.9921 + }, + { + "start": 10282.56, + "end": 10283.4, + "probability": 0.9695 + }, + { + "start": 10283.96, + "end": 10287.38, + "probability": 0.9808 + }, + { + "start": 10288.0, + "end": 10290.66, + "probability": 0.7888 + }, + { + "start": 10290.66, + "end": 10293.74, + "probability": 0.9689 + }, + { + "start": 10294.34, + "end": 10297.88, + "probability": 0.9023 + }, + { + "start": 10298.58, + "end": 10299.14, + "probability": 0.714 + }, + { + "start": 10299.3, + "end": 10302.24, + "probability": 0.9194 + }, + { + "start": 10302.76, + "end": 10303.98, + "probability": 0.9176 + }, + { + "start": 10304.26, + "end": 10308.22, + "probability": 0.9911 + }, + { + "start": 10308.92, + "end": 10310.04, + "probability": 0.7206 + }, + { + "start": 10310.16, + "end": 10311.78, + "probability": 0.8396 + }, + { + "start": 10312.24, + "end": 10314.34, + "probability": 0.8955 + }, + { + "start": 10314.42, + "end": 10318.06, + "probability": 0.9576 + }, + { + "start": 10318.16, + "end": 10319.36, + "probability": 0.8706 + }, + { + "start": 10320.3, + "end": 10321.8, + "probability": 0.9409 + }, + { + "start": 10321.84, + "end": 10323.98, + "probability": 0.8926 + }, + { + "start": 10324.12, + "end": 10324.52, + "probability": 0.7903 + }, + { + "start": 10325.32, + "end": 10325.48, + "probability": 0.5684 + }, + { + "start": 10325.56, + "end": 10325.72, + "probability": 0.8233 + }, + { + "start": 10325.78, + "end": 10326.68, + "probability": 0.9835 + }, + { + "start": 10326.76, + "end": 10329.0, + "probability": 0.9724 + }, + { + "start": 10329.58, + "end": 10333.36, + "probability": 0.9044 + }, + { + "start": 10334.08, + "end": 10337.88, + "probability": 0.9822 + }, + { + "start": 10338.44, + "end": 10342.06, + "probability": 0.998 + }, + { + "start": 10342.44, + "end": 10344.14, + "probability": 0.9065 + }, + { + "start": 10344.8, + "end": 10344.86, + "probability": 0.221 + }, + { + "start": 10344.96, + "end": 10345.28, + "probability": 0.6756 + }, + { + "start": 10345.3, + "end": 10349.4, + "probability": 0.9851 + }, + { + "start": 10349.96, + "end": 10351.31, + "probability": 0.8634 + }, + { + "start": 10352.36, + "end": 10354.76, + "probability": 0.9553 + }, + { + "start": 10355.3, + "end": 10356.41, + "probability": 0.4658 + }, + { + "start": 10357.3, + "end": 10359.34, + "probability": 0.9768 + }, + { + "start": 10359.9, + "end": 10360.98, + "probability": 0.9901 + }, + { + "start": 10361.1, + "end": 10364.62, + "probability": 0.9425 + }, + { + "start": 10365.18, + "end": 10366.33, + "probability": 0.8818 + }, + { + "start": 10366.98, + "end": 10369.38, + "probability": 0.9918 + }, + { + "start": 10370.12, + "end": 10371.5, + "probability": 0.9756 + }, + { + "start": 10371.82, + "end": 10373.36, + "probability": 0.5849 + }, + { + "start": 10373.94, + "end": 10375.45, + "probability": 0.9878 + }, + { + "start": 10375.58, + "end": 10376.78, + "probability": 0.9888 + }, + { + "start": 10377.6, + "end": 10380.08, + "probability": 0.9747 + }, + { + "start": 10380.2, + "end": 10380.55, + "probability": 0.868 + }, + { + "start": 10381.42, + "end": 10382.26, + "probability": 0.441 + }, + { + "start": 10382.4, + "end": 10383.46, + "probability": 0.9165 + }, + { + "start": 10383.94, + "end": 10386.96, + "probability": 0.9855 + }, + { + "start": 10387.06, + "end": 10388.7, + "probability": 0.6047 + }, + { + "start": 10389.16, + "end": 10390.4, + "probability": 0.9705 + }, + { + "start": 10390.52, + "end": 10395.84, + "probability": 0.9531 + }, + { + "start": 10396.3, + "end": 10397.2, + "probability": 0.9763 + }, + { + "start": 10397.82, + "end": 10400.44, + "probability": 0.9014 + }, + { + "start": 10401.14, + "end": 10403.54, + "probability": 0.9621 + }, + { + "start": 10403.58, + "end": 10404.18, + "probability": 0.8379 + }, + { + "start": 10404.28, + "end": 10404.56, + "probability": 0.3507 + }, + { + "start": 10404.64, + "end": 10405.22, + "probability": 0.6863 + }, + { + "start": 10405.88, + "end": 10407.67, + "probability": 0.7637 + }, + { + "start": 10407.88, + "end": 10408.6, + "probability": 0.8669 + }, + { + "start": 10408.94, + "end": 10412.54, + "probability": 0.9485 + }, + { + "start": 10413.12, + "end": 10416.5, + "probability": 0.8458 + }, + { + "start": 10417.58, + "end": 10419.2, + "probability": 0.782 + }, + { + "start": 10419.38, + "end": 10420.32, + "probability": 0.6271 + }, + { + "start": 10420.78, + "end": 10422.78, + "probability": 0.885 + }, + { + "start": 10422.92, + "end": 10423.32, + "probability": 0.5928 + }, + { + "start": 10423.42, + "end": 10425.06, + "probability": 0.7495 + }, + { + "start": 10425.14, + "end": 10426.87, + "probability": 0.7841 + }, + { + "start": 10427.82, + "end": 10431.54, + "probability": 0.6869 + }, + { + "start": 10431.64, + "end": 10434.06, + "probability": 0.7714 + }, + { + "start": 10434.12, + "end": 10434.44, + "probability": 0.3487 + }, + { + "start": 10434.56, + "end": 10435.64, + "probability": 0.517 + }, + { + "start": 10452.41, + "end": 10454.52, + "probability": 0.2841 + }, + { + "start": 10454.52, + "end": 10454.54, + "probability": 0.0204 + }, + { + "start": 10454.54, + "end": 10454.74, + "probability": 0.5141 + }, + { + "start": 10454.86, + "end": 10455.92, + "probability": 0.7817 + }, + { + "start": 10456.06, + "end": 10458.4, + "probability": 0.7134 + }, + { + "start": 10460.18, + "end": 10460.6, + "probability": 0.0027 + }, + { + "start": 10461.34, + "end": 10462.46, + "probability": 0.0938 + }, + { + "start": 10462.46, + "end": 10464.62, + "probability": 0.0914 + }, + { + "start": 10464.62, + "end": 10464.62, + "probability": 0.1066 + }, + { + "start": 10464.62, + "end": 10467.52, + "probability": 0.0668 + }, + { + "start": 10468.38, + "end": 10468.86, + "probability": 0.0995 + }, + { + "start": 10470.1, + "end": 10471.5, + "probability": 0.0804 + }, + { + "start": 10478.3, + "end": 10479.42, + "probability": 0.0259 + }, + { + "start": 10483.12, + "end": 10485.68, + "probability": 0.8256 + }, + { + "start": 10487.2, + "end": 10487.48, + "probability": 0.1157 + }, + { + "start": 10488.34, + "end": 10490.66, + "probability": 0.0618 + }, + { + "start": 10492.26, + "end": 10494.88, + "probability": 0.0558 + }, + { + "start": 10494.88, + "end": 10496.48, + "probability": 0.0364 + }, + { + "start": 10498.6, + "end": 10499.0, + "probability": 0.1795 + }, + { + "start": 10499.08, + "end": 10499.43, + "probability": 0.2436 + }, + { + "start": 10503.04, + "end": 10503.52, + "probability": 0.1291 + }, + { + "start": 10503.52, + "end": 10506.12, + "probability": 0.0705 + }, + { + "start": 10506.12, + "end": 10507.11, + "probability": 0.0476 + }, + { + "start": 10508.36, + "end": 10509.56, + "probability": 0.0671 + }, + { + "start": 10509.56, + "end": 10511.5, + "probability": 0.1663 + }, + { + "start": 10511.5, + "end": 10511.88, + "probability": 0.0343 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.0, + "end": 10512.0, + "probability": 0.0 + }, + { + "start": 10512.18, + "end": 10512.18, + "probability": 0.0224 + }, + { + "start": 10512.18, + "end": 10515.42, + "probability": 0.5067 + }, + { + "start": 10517.0, + "end": 10519.04, + "probability": 0.8152 + }, + { + "start": 10519.64, + "end": 10520.3, + "probability": 0.7302 + }, + { + "start": 10521.26, + "end": 10524.2, + "probability": 0.8772 + }, + { + "start": 10527.04, + "end": 10528.42, + "probability": 0.6012 + }, + { + "start": 10529.24, + "end": 10529.44, + "probability": 0.3645 + }, + { + "start": 10530.08, + "end": 10533.02, + "probability": 0.8807 + }, + { + "start": 10533.58, + "end": 10537.18, + "probability": 0.9976 + }, + { + "start": 10537.18, + "end": 10542.82, + "probability": 0.932 + }, + { + "start": 10544.18, + "end": 10548.38, + "probability": 0.7814 + }, + { + "start": 10548.48, + "end": 10554.6, + "probability": 0.918 + }, + { + "start": 10555.2, + "end": 10560.54, + "probability": 0.7277 + }, + { + "start": 10561.26, + "end": 10562.14, + "probability": 0.0198 + }, + { + "start": 10562.68, + "end": 10564.78, + "probability": 0.9111 + }, + { + "start": 10565.48, + "end": 10566.56, + "probability": 0.8523 + }, + { + "start": 10567.24, + "end": 10569.0, + "probability": 0.9565 + }, + { + "start": 10569.82, + "end": 10573.22, + "probability": 0.9163 + }, + { + "start": 10573.82, + "end": 10575.02, + "probability": 0.6711 + }, + { + "start": 10575.86, + "end": 10579.8, + "probability": 0.9739 + }, + { + "start": 10580.56, + "end": 10586.86, + "probability": 0.9728 + }, + { + "start": 10587.32, + "end": 10590.86, + "probability": 0.9562 + }, + { + "start": 10591.32, + "end": 10592.74, + "probability": 0.9642 + }, + { + "start": 10595.5, + "end": 10598.5, + "probability": 0.8709 + }, + { + "start": 10598.64, + "end": 10600.42, + "probability": 0.8029 + }, + { + "start": 10601.48, + "end": 10602.86, + "probability": 0.9497 + }, + { + "start": 10603.0, + "end": 10604.32, + "probability": 0.97 + }, + { + "start": 10604.82, + "end": 10605.36, + "probability": 0.5874 + }, + { + "start": 10606.36, + "end": 10607.07, + "probability": 0.2321 + }, + { + "start": 10608.08, + "end": 10609.18, + "probability": 0.503 + }, + { + "start": 10612.86, + "end": 10614.78, + "probability": 0.122 + }, + { + "start": 10616.43, + "end": 10619.52, + "probability": 0.1395 + }, + { + "start": 10630.12, + "end": 10630.8, + "probability": 0.1625 + }, + { + "start": 10633.44, + "end": 10635.62, + "probability": 0.8937 + }, + { + "start": 10636.18, + "end": 10638.82, + "probability": 0.7198 + }, + { + "start": 10639.1, + "end": 10640.74, + "probability": 0.9382 + }, + { + "start": 10641.64, + "end": 10645.12, + "probability": 0.8635 + }, + { + "start": 10646.16, + "end": 10648.36, + "probability": 0.7749 + }, + { + "start": 10648.36, + "end": 10649.92, + "probability": 0.8787 + }, + { + "start": 10650.92, + "end": 10651.78, + "probability": 0.778 + }, + { + "start": 10651.88, + "end": 10653.34, + "probability": 0.9404 + }, + { + "start": 10653.96, + "end": 10655.12, + "probability": 0.9775 + }, + { + "start": 10655.72, + "end": 10659.44, + "probability": 0.9845 + }, + { + "start": 10659.46, + "end": 10662.78, + "probability": 0.9662 + }, + { + "start": 10663.1, + "end": 10664.28, + "probability": 0.7715 + }, + { + "start": 10664.96, + "end": 10665.31, + "probability": 0.3139 + }, + { + "start": 10665.68, + "end": 10667.4, + "probability": 0.9104 + }, + { + "start": 10668.1, + "end": 10670.44, + "probability": 0.9655 + }, + { + "start": 10671.02, + "end": 10674.24, + "probability": 0.9858 + }, + { + "start": 10675.12, + "end": 10677.68, + "probability": 0.7543 + }, + { + "start": 10678.6, + "end": 10679.76, + "probability": 0.7015 + }, + { + "start": 10680.1, + "end": 10681.02, + "probability": 0.7329 + }, + { + "start": 10681.16, + "end": 10684.13, + "probability": 0.6732 + }, + { + "start": 10684.6, + "end": 10686.62, + "probability": 0.9114 + }, + { + "start": 10687.02, + "end": 10687.96, + "probability": 0.8353 + }, + { + "start": 10688.0, + "end": 10688.84, + "probability": 0.6692 + }, + { + "start": 10689.2, + "end": 10690.08, + "probability": 0.9772 + }, + { + "start": 10690.46, + "end": 10695.0, + "probability": 0.8851 + }, + { + "start": 10695.32, + "end": 10696.32, + "probability": 0.9083 + }, + { + "start": 10696.92, + "end": 10698.78, + "probability": 0.8758 + }, + { + "start": 10699.42, + "end": 10703.2, + "probability": 0.8812 + }, + { + "start": 10703.28, + "end": 10703.98, + "probability": 0.6902 + }, + { + "start": 10704.24, + "end": 10706.2, + "probability": 0.9838 + }, + { + "start": 10706.74, + "end": 10710.0, + "probability": 0.9321 + }, + { + "start": 10710.02, + "end": 10710.94, + "probability": 0.7031 + }, + { + "start": 10711.34, + "end": 10713.08, + "probability": 0.979 + }, + { + "start": 10713.26, + "end": 10715.02, + "probability": 0.8508 + }, + { + "start": 10715.66, + "end": 10716.93, + "probability": 0.9692 + }, + { + "start": 10718.42, + "end": 10719.18, + "probability": 0.8734 + }, + { + "start": 10719.26, + "end": 10721.58, + "probability": 0.5398 + }, + { + "start": 10722.12, + "end": 10724.92, + "probability": 0.2811 + }, + { + "start": 10724.94, + "end": 10727.26, + "probability": 0.6453 + }, + { + "start": 10736.72, + "end": 10738.12, + "probability": 0.2558 + }, + { + "start": 10741.11, + "end": 10741.72, + "probability": 0.0171 + }, + { + "start": 10742.44, + "end": 10742.86, + "probability": 0.007 + }, + { + "start": 10746.82, + "end": 10746.84, + "probability": 0.4345 + }, + { + "start": 10746.84, + "end": 10748.18, + "probability": 0.3243 + }, + { + "start": 10748.6, + "end": 10748.72, + "probability": 0.0694 + }, + { + "start": 10748.76, + "end": 10749.02, + "probability": 0.4204 + }, + { + "start": 10749.02, + "end": 10752.28, + "probability": 0.8053 + }, + { + "start": 10752.54, + "end": 10755.56, + "probability": 0.9236 + }, + { + "start": 10756.4, + "end": 10759.22, + "probability": 0.7369 + }, + { + "start": 10759.96, + "end": 10761.78, + "probability": 0.7914 + }, + { + "start": 10762.4, + "end": 10765.3, + "probability": 0.6945 + }, + { + "start": 10765.3, + "end": 10765.8, + "probability": 0.4285 + }, + { + "start": 10766.96, + "end": 10767.5, + "probability": 0.6131 + }, + { + "start": 10767.62, + "end": 10771.07, + "probability": 0.8802 + }, + { + "start": 10772.66, + "end": 10773.84, + "probability": 0.9566 + }, + { + "start": 10774.4, + "end": 10776.04, + "probability": 0.7415 + }, + { + "start": 10776.82, + "end": 10779.44, + "probability": 0.9619 + }, + { + "start": 10781.2, + "end": 10782.5, + "probability": 0.7705 + }, + { + "start": 10782.54, + "end": 10786.33, + "probability": 0.9785 + }, + { + "start": 10787.42, + "end": 10789.11, + "probability": 0.975 + }, + { + "start": 10789.96, + "end": 10797.6, + "probability": 0.9901 + }, + { + "start": 10798.38, + "end": 10802.82, + "probability": 0.9932 + }, + { + "start": 10802.92, + "end": 10804.03, + "probability": 0.5501 + }, + { + "start": 10804.16, + "end": 10810.68, + "probability": 0.9896 + }, + { + "start": 10811.52, + "end": 10813.38, + "probability": 0.9427 + }, + { + "start": 10813.86, + "end": 10815.58, + "probability": 0.9731 + }, + { + "start": 10815.74, + "end": 10819.28, + "probability": 0.9352 + }, + { + "start": 10819.74, + "end": 10821.38, + "probability": 0.9697 + }, + { + "start": 10821.8, + "end": 10823.96, + "probability": 0.7896 + }, + { + "start": 10824.54, + "end": 10825.22, + "probability": 0.9673 + }, + { + "start": 10825.34, + "end": 10825.54, + "probability": 0.8496 + }, + { + "start": 10825.74, + "end": 10831.34, + "probability": 0.8469 + }, + { + "start": 10831.4, + "end": 10832.06, + "probability": 0.9642 + }, + { + "start": 10833.58, + "end": 10834.16, + "probability": 0.314 + }, + { + "start": 10834.22, + "end": 10834.8, + "probability": 0.388 + }, + { + "start": 10834.88, + "end": 10836.9, + "probability": 0.4923 + }, + { + "start": 10837.38, + "end": 10837.6, + "probability": 0.0988 + }, + { + "start": 10837.78, + "end": 10838.97, + "probability": 0.3331 + }, + { + "start": 10847.44, + "end": 10847.88, + "probability": 0.588 + }, + { + "start": 10848.0, + "end": 10854.76, + "probability": 0.6693 + }, + { + "start": 10855.34, + "end": 10860.32, + "probability": 0.2491 + }, + { + "start": 10860.44, + "end": 10863.6, + "probability": 0.9409 + }, + { + "start": 10863.64, + "end": 10864.72, + "probability": 0.5838 + }, + { + "start": 10865.0, + "end": 10865.76, + "probability": 0.5745 + }, + { + "start": 10865.84, + "end": 10867.26, + "probability": 0.6969 + }, + { + "start": 10867.34, + "end": 10868.66, + "probability": 0.8176 + }, + { + "start": 10869.52, + "end": 10869.9, + "probability": 0.8179 + }, + { + "start": 10869.98, + "end": 10870.16, + "probability": 0.5923 + }, + { + "start": 10870.18, + "end": 10871.9, + "probability": 0.8528 + }, + { + "start": 10872.42, + "end": 10875.62, + "probability": 0.856 + }, + { + "start": 10876.34, + "end": 10877.8, + "probability": 0.9639 + }, + { + "start": 10878.56, + "end": 10879.38, + "probability": 0.905 + }, + { + "start": 10879.56, + "end": 10883.84, + "probability": 0.9652 + }, + { + "start": 10883.86, + "end": 10885.76, + "probability": 0.8073 + }, + { + "start": 10886.44, + "end": 10887.86, + "probability": 0.8741 + }, + { + "start": 10888.36, + "end": 10889.8, + "probability": 0.8685 + }, + { + "start": 10890.48, + "end": 10891.3, + "probability": 0.5169 + }, + { + "start": 10892.25, + "end": 10894.45, + "probability": 0.5911 + }, + { + "start": 10894.96, + "end": 10896.52, + "probability": 0.9349 + }, + { + "start": 10896.94, + "end": 10897.7, + "probability": 0.881 + }, + { + "start": 10898.84, + "end": 10900.0, + "probability": 0.9583 + }, + { + "start": 10900.78, + "end": 10901.55, + "probability": 0.6831 + }, + { + "start": 10903.23, + "end": 10906.76, + "probability": 0.9575 + }, + { + "start": 10906.9, + "end": 10907.94, + "probability": 0.8047 + }, + { + "start": 10908.0, + "end": 10909.02, + "probability": 0.8931 + }, + { + "start": 10909.5, + "end": 10910.66, + "probability": 0.9178 + }, + { + "start": 10910.82, + "end": 10913.13, + "probability": 0.714 + }, + { + "start": 10914.88, + "end": 10914.88, + "probability": 0.2584 + }, + { + "start": 10914.88, + "end": 10915.75, + "probability": 0.666 + }, + { + "start": 10916.06, + "end": 10916.78, + "probability": 0.5104 + }, + { + "start": 10917.57, + "end": 10920.08, + "probability": 0.9358 + }, + { + "start": 10920.1, + "end": 10920.5, + "probability": 0.5869 + }, + { + "start": 10920.56, + "end": 10920.9, + "probability": 0.5547 + }, + { + "start": 10920.98, + "end": 10924.54, + "probability": 0.7341 + }, + { + "start": 10924.58, + "end": 10925.28, + "probability": 0.7371 + }, + { + "start": 10925.42, + "end": 10925.79, + "probability": 0.1321 + }, + { + "start": 10926.48, + "end": 10930.52, + "probability": 0.8802 + }, + { + "start": 10930.58, + "end": 10931.23, + "probability": 0.9547 + }, + { + "start": 10931.96, + "end": 10934.88, + "probability": 0.8931 + }, + { + "start": 10935.0, + "end": 10936.68, + "probability": 0.7802 + }, + { + "start": 10937.16, + "end": 10939.44, + "probability": 0.8368 + }, + { + "start": 10940.6, + "end": 10942.34, + "probability": 0.644 + }, + { + "start": 10942.34, + "end": 10942.58, + "probability": 0.3069 + }, + { + "start": 10942.58, + "end": 10942.92, + "probability": 0.6367 + }, + { + "start": 10942.98, + "end": 10945.62, + "probability": 0.9004 + }, + { + "start": 10945.62, + "end": 10949.54, + "probability": 0.6737 + }, + { + "start": 10949.66, + "end": 10951.16, + "probability": 0.5821 + }, + { + "start": 10951.54, + "end": 10952.16, + "probability": 0.6107 + }, + { + "start": 10952.18, + "end": 10953.72, + "probability": 0.6592 + }, + { + "start": 10953.74, + "end": 10954.22, + "probability": 0.747 + }, + { + "start": 10973.09, + "end": 10974.98, + "probability": 0.0783 + }, + { + "start": 10976.3, + "end": 10976.3, + "probability": 0.0519 + }, + { + "start": 10976.3, + "end": 10976.3, + "probability": 0.0501 + }, + { + "start": 10976.3, + "end": 10977.62, + "probability": 0.7208 + }, + { + "start": 10977.72, + "end": 10979.61, + "probability": 0.5895 + }, + { + "start": 10981.6, + "end": 10982.92, + "probability": 0.0205 + }, + { + "start": 10983.64, + "end": 10987.22, + "probability": 0.1466 + }, + { + "start": 10987.22, + "end": 10989.3, + "probability": 0.0254 + }, + { + "start": 10989.84, + "end": 10990.77, + "probability": 0.0716 + }, + { + "start": 10992.08, + "end": 10993.26, + "probability": 0.1681 + }, + { + "start": 10993.58, + "end": 10993.98, + "probability": 0.3764 + }, + { + "start": 10997.64, + "end": 10998.04, + "probability": 0.0179 + }, + { + "start": 10998.04, + "end": 10998.98, + "probability": 0.0115 + }, + { + "start": 11000.39, + "end": 11002.54, + "probability": 0.1297 + }, + { + "start": 11006.7, + "end": 11010.34, + "probability": 0.08 + }, + { + "start": 11011.0, + "end": 11012.42, + "probability": 0.7461 + }, + { + "start": 11013.16, + "end": 11015.48, + "probability": 0.022 + }, + { + "start": 11015.48, + "end": 11019.086, + "probability": 0.0009 + }, + { + "start": 11019.086, + "end": 11019.086, + "probability": 0.0 + }, + { + "start": 11019.086, + "end": 11019.086, + "probability": 0.0 + } + ], + "segments_count": 3807, + "words_count": 19305, + "avg_words_per_segment": 5.0709, + "avg_segment_duration": 2.1121, + "avg_words_per_minute": 105.1178, + "plenum_id": "32711", + "duration": 11019.07, + "title": null, + "plenum_date": "2013-12-02" +} \ No newline at end of file