diff --git "a/100068/metadata.json" "b/100068/metadata.json" new file mode 100644--- /dev/null +++ "b/100068/metadata.json" @@ -0,0 +1,49322 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "100068", + "quality_score": 0.9009, + "per_segment_quality_scores": [ + { + "start": 68.22, + "end": 68.34, + "probability": 0.1766 + }, + { + "start": 70.3, + "end": 71.76, + "probability": 0.6063 + }, + { + "start": 74.86, + "end": 78.34, + "probability": 0.0144 + }, + { + "start": 79.56, + "end": 80.82, + "probability": 0.046 + }, + { + "start": 86.2, + "end": 86.36, + "probability": 0.1743 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 138.6, + "end": 138.7, + "probability": 0.0427 + }, + { + "start": 138.7, + "end": 139.54, + "probability": 0.3535 + }, + { + "start": 163.16, + "end": 168.24, + "probability": 0.7632 + }, + { + "start": 168.92, + "end": 172.36, + "probability": 0.9717 + }, + { + "start": 172.6, + "end": 176.52, + "probability": 0.9971 + }, + { + "start": 177.54, + "end": 180.88, + "probability": 0.995 + }, + { + "start": 181.62, + "end": 183.84, + "probability": 0.979 + }, + { + "start": 184.98, + "end": 188.02, + "probability": 0.9714 + }, + { + "start": 188.7, + "end": 191.14, + "probability": 0.9894 + }, + { + "start": 191.84, + "end": 195.16, + "probability": 0.9897 + }, + { + "start": 195.68, + "end": 196.2, + "probability": 0.7523 + }, + { + "start": 197.92, + "end": 200.02, + "probability": 0.8626 + }, + { + "start": 200.48, + "end": 206.12, + "probability": 0.9951 + }, + { + "start": 206.96, + "end": 208.44, + "probability": 0.6722 + }, + { + "start": 209.94, + "end": 217.34, + "probability": 0.9655 + }, + { + "start": 217.74, + "end": 225.04, + "probability": 0.9986 + }, + { + "start": 225.74, + "end": 229.28, + "probability": 0.9534 + }, + { + "start": 230.66, + "end": 235.92, + "probability": 0.9989 + }, + { + "start": 236.78, + "end": 239.18, + "probability": 0.9971 + }, + { + "start": 240.24, + "end": 248.44, + "probability": 0.9977 + }, + { + "start": 249.62, + "end": 257.6, + "probability": 0.9834 + }, + { + "start": 258.64, + "end": 262.08, + "probability": 0.991 + }, + { + "start": 263.9, + "end": 267.72, + "probability": 0.9371 + }, + { + "start": 268.58, + "end": 273.5, + "probability": 0.9955 + }, + { + "start": 274.2, + "end": 277.78, + "probability": 0.9941 + }, + { + "start": 278.3, + "end": 280.92, + "probability": 0.9974 + }, + { + "start": 281.96, + "end": 282.9, + "probability": 0.8928 + }, + { + "start": 283.18, + "end": 287.64, + "probability": 0.9844 + }, + { + "start": 287.86, + "end": 290.94, + "probability": 0.9232 + }, + { + "start": 291.48, + "end": 294.22, + "probability": 0.7771 + }, + { + "start": 294.98, + "end": 300.3, + "probability": 0.9048 + }, + { + "start": 301.2, + "end": 302.46, + "probability": 0.7377 + }, + { + "start": 303.54, + "end": 308.3, + "probability": 0.9842 + }, + { + "start": 308.3, + "end": 313.78, + "probability": 0.9941 + }, + { + "start": 314.76, + "end": 320.22, + "probability": 0.9995 + }, + { + "start": 320.22, + "end": 326.88, + "probability": 0.9906 + }, + { + "start": 327.92, + "end": 332.18, + "probability": 0.9975 + }, + { + "start": 332.18, + "end": 338.08, + "probability": 0.9994 + }, + { + "start": 338.54, + "end": 341.84, + "probability": 0.9853 + }, + { + "start": 342.52, + "end": 344.1, + "probability": 0.8669 + }, + { + "start": 345.32, + "end": 348.86, + "probability": 0.9707 + }, + { + "start": 349.88, + "end": 353.2, + "probability": 0.9822 + }, + { + "start": 354.26, + "end": 355.22, + "probability": 0.8885 + }, + { + "start": 356.0, + "end": 359.84, + "probability": 0.993 + }, + { + "start": 359.84, + "end": 364.68, + "probability": 0.9938 + }, + { + "start": 365.54, + "end": 366.26, + "probability": 0.9966 + }, + { + "start": 366.86, + "end": 369.78, + "probability": 0.8648 + }, + { + "start": 370.76, + "end": 376.88, + "probability": 0.9977 + }, + { + "start": 377.4, + "end": 380.94, + "probability": 0.9989 + }, + { + "start": 381.96, + "end": 383.86, + "probability": 0.8787 + }, + { + "start": 384.24, + "end": 387.78, + "probability": 0.8147 + }, + { + "start": 388.62, + "end": 392.06, + "probability": 0.9954 + }, + { + "start": 392.06, + "end": 397.0, + "probability": 0.9966 + }, + { + "start": 397.8, + "end": 399.36, + "probability": 0.8844 + }, + { + "start": 400.04, + "end": 406.12, + "probability": 0.9995 + }, + { + "start": 406.68, + "end": 408.38, + "probability": 0.8405 + }, + { + "start": 409.34, + "end": 410.52, + "probability": 0.7464 + }, + { + "start": 411.02, + "end": 416.22, + "probability": 0.9785 + }, + { + "start": 417.0, + "end": 422.16, + "probability": 0.994 + }, + { + "start": 423.22, + "end": 425.3, + "probability": 0.9469 + }, + { + "start": 426.26, + "end": 428.42, + "probability": 0.9562 + }, + { + "start": 429.28, + "end": 429.38, + "probability": 0.7314 + }, + { + "start": 429.94, + "end": 432.16, + "probability": 0.9098 + }, + { + "start": 433.14, + "end": 439.7, + "probability": 0.9757 + }, + { + "start": 440.42, + "end": 443.12, + "probability": 0.8939 + }, + { + "start": 443.78, + "end": 448.42, + "probability": 0.9926 + }, + { + "start": 448.94, + "end": 452.08, + "probability": 0.9992 + }, + { + "start": 453.14, + "end": 455.56, + "probability": 0.9948 + }, + { + "start": 456.08, + "end": 461.08, + "probability": 0.9977 + }, + { + "start": 461.08, + "end": 467.28, + "probability": 0.9959 + }, + { + "start": 468.16, + "end": 472.48, + "probability": 0.9919 + }, + { + "start": 473.32, + "end": 476.98, + "probability": 0.9639 + }, + { + "start": 478.14, + "end": 478.64, + "probability": 0.7218 + }, + { + "start": 479.86, + "end": 485.8, + "probability": 0.9961 + }, + { + "start": 487.04, + "end": 490.04, + "probability": 0.7708 + }, + { + "start": 491.92, + "end": 494.24, + "probability": 0.9476 + }, + { + "start": 495.02, + "end": 496.04, + "probability": 0.9879 + }, + { + "start": 496.86, + "end": 497.6, + "probability": 0.9089 + }, + { + "start": 498.12, + "end": 504.08, + "probability": 0.9963 + }, + { + "start": 505.1, + "end": 507.3, + "probability": 0.9888 + }, + { + "start": 514.2, + "end": 518.1, + "probability": 0.998 + }, + { + "start": 518.2, + "end": 518.72, + "probability": 0.8603 + }, + { + "start": 554.06, + "end": 557.24, + "probability": 0.9186 + }, + { + "start": 558.7, + "end": 560.94, + "probability": 0.9807 + }, + { + "start": 562.0, + "end": 563.48, + "probability": 0.9988 + }, + { + "start": 564.14, + "end": 565.46, + "probability": 0.9924 + }, + { + "start": 566.74, + "end": 569.64, + "probability": 0.9923 + }, + { + "start": 571.7, + "end": 573.78, + "probability": 0.7577 + }, + { + "start": 575.18, + "end": 581.7, + "probability": 0.9934 + }, + { + "start": 582.5, + "end": 588.08, + "probability": 0.9022 + }, + { + "start": 590.64, + "end": 591.0, + "probability": 0.8053 + }, + { + "start": 592.76, + "end": 599.28, + "probability": 0.9868 + }, + { + "start": 600.94, + "end": 601.54, + "probability": 0.725 + }, + { + "start": 602.16, + "end": 606.08, + "probability": 0.9721 + }, + { + "start": 607.18, + "end": 609.7, + "probability": 0.9398 + }, + { + "start": 610.3, + "end": 611.68, + "probability": 0.9576 + }, + { + "start": 612.94, + "end": 615.14, + "probability": 0.9769 + }, + { + "start": 616.4, + "end": 616.86, + "probability": 0.8917 + }, + { + "start": 617.66, + "end": 618.4, + "probability": 0.965 + }, + { + "start": 618.76, + "end": 623.84, + "probability": 0.9892 + }, + { + "start": 624.98, + "end": 625.8, + "probability": 0.8478 + }, + { + "start": 626.74, + "end": 628.32, + "probability": 0.9678 + }, + { + "start": 629.34, + "end": 632.28, + "probability": 0.9785 + }, + { + "start": 633.2, + "end": 634.32, + "probability": 0.9643 + }, + { + "start": 635.58, + "end": 636.16, + "probability": 0.9832 + }, + { + "start": 638.68, + "end": 641.54, + "probability": 0.9274 + }, + { + "start": 642.86, + "end": 643.6, + "probability": 0.933 + }, + { + "start": 644.42, + "end": 648.12, + "probability": 0.9833 + }, + { + "start": 649.16, + "end": 651.74, + "probability": 0.9964 + }, + { + "start": 653.64, + "end": 655.74, + "probability": 0.9764 + }, + { + "start": 656.38, + "end": 658.02, + "probability": 0.9629 + }, + { + "start": 661.34, + "end": 667.86, + "probability": 0.9732 + }, + { + "start": 667.86, + "end": 672.6, + "probability": 0.9769 + }, + { + "start": 674.06, + "end": 676.7, + "probability": 0.7174 + }, + { + "start": 678.76, + "end": 679.3, + "probability": 0.7966 + }, + { + "start": 680.24, + "end": 680.8, + "probability": 0.4688 + }, + { + "start": 682.46, + "end": 684.14, + "probability": 0.8969 + }, + { + "start": 685.28, + "end": 687.5, + "probability": 0.8719 + }, + { + "start": 688.54, + "end": 691.8, + "probability": 0.9881 + }, + { + "start": 693.0, + "end": 694.2, + "probability": 0.9771 + }, + { + "start": 695.56, + "end": 697.7, + "probability": 0.9954 + }, + { + "start": 699.38, + "end": 701.74, + "probability": 0.8554 + }, + { + "start": 702.66, + "end": 703.52, + "probability": 0.9659 + }, + { + "start": 704.3, + "end": 709.12, + "probability": 0.9916 + }, + { + "start": 710.12, + "end": 712.02, + "probability": 0.9725 + }, + { + "start": 714.16, + "end": 715.44, + "probability": 0.9915 + }, + { + "start": 717.4, + "end": 718.52, + "probability": 0.9906 + }, + { + "start": 719.38, + "end": 724.06, + "probability": 0.9964 + }, + { + "start": 724.64, + "end": 725.26, + "probability": 0.7729 + }, + { + "start": 726.38, + "end": 729.2, + "probability": 0.9985 + }, + { + "start": 729.82, + "end": 731.96, + "probability": 0.9931 + }, + { + "start": 732.62, + "end": 735.04, + "probability": 0.9971 + }, + { + "start": 738.12, + "end": 738.48, + "probability": 0.8848 + }, + { + "start": 739.26, + "end": 743.47, + "probability": 0.9966 + }, + { + "start": 745.04, + "end": 746.48, + "probability": 0.8147 + }, + { + "start": 747.86, + "end": 750.52, + "probability": 0.953 + }, + { + "start": 753.06, + "end": 753.56, + "probability": 0.7265 + }, + { + "start": 754.28, + "end": 759.1, + "probability": 0.9581 + }, + { + "start": 760.04, + "end": 763.3, + "probability": 0.9869 + }, + { + "start": 763.86, + "end": 764.24, + "probability": 0.9179 + }, + { + "start": 766.8, + "end": 768.06, + "probability": 0.9901 + }, + { + "start": 768.92, + "end": 771.9, + "probability": 0.9972 + }, + { + "start": 773.18, + "end": 775.78, + "probability": 0.9966 + }, + { + "start": 777.26, + "end": 781.88, + "probability": 0.959 + }, + { + "start": 783.44, + "end": 785.94, + "probability": 0.9884 + }, + { + "start": 786.48, + "end": 788.82, + "probability": 0.9916 + }, + { + "start": 790.0, + "end": 790.54, + "probability": 0.841 + }, + { + "start": 791.36, + "end": 792.08, + "probability": 0.988 + }, + { + "start": 794.68, + "end": 796.54, + "probability": 0.9975 + }, + { + "start": 799.42, + "end": 803.56, + "probability": 0.9886 + }, + { + "start": 804.44, + "end": 807.94, + "probability": 0.9848 + }, + { + "start": 808.94, + "end": 811.54, + "probability": 0.999 + }, + { + "start": 812.32, + "end": 812.84, + "probability": 0.9037 + }, + { + "start": 813.52, + "end": 817.1, + "probability": 0.96 + }, + { + "start": 818.4, + "end": 821.08, + "probability": 0.9736 + }, + { + "start": 822.22, + "end": 823.46, + "probability": 0.6884 + }, + { + "start": 824.62, + "end": 826.72, + "probability": 0.9954 + }, + { + "start": 826.8, + "end": 830.0, + "probability": 0.9961 + }, + { + "start": 830.18, + "end": 833.3, + "probability": 0.9883 + }, + { + "start": 835.04, + "end": 835.72, + "probability": 0.9896 + }, + { + "start": 837.4, + "end": 837.96, + "probability": 0.7501 + }, + { + "start": 839.0, + "end": 839.46, + "probability": 0.7446 + }, + { + "start": 840.08, + "end": 843.1, + "probability": 0.999 + }, + { + "start": 843.96, + "end": 848.87, + "probability": 0.9962 + }, + { + "start": 855.08, + "end": 856.18, + "probability": 0.9507 + }, + { + "start": 859.84, + "end": 862.8, + "probability": 0.8641 + }, + { + "start": 864.0, + "end": 865.1, + "probability": 0.9442 + }, + { + "start": 867.2, + "end": 867.68, + "probability": 0.7441 + }, + { + "start": 868.56, + "end": 873.22, + "probability": 0.9967 + }, + { + "start": 874.44, + "end": 877.98, + "probability": 0.9992 + }, + { + "start": 877.98, + "end": 882.3, + "probability": 0.9832 + }, + { + "start": 883.06, + "end": 888.76, + "probability": 0.9916 + }, + { + "start": 889.5, + "end": 891.32, + "probability": 0.9692 + }, + { + "start": 893.28, + "end": 897.38, + "probability": 0.9948 + }, + { + "start": 897.46, + "end": 898.86, + "probability": 0.572 + }, + { + "start": 899.46, + "end": 902.34, + "probability": 0.868 + }, + { + "start": 904.3, + "end": 909.86, + "probability": 0.9967 + }, + { + "start": 910.48, + "end": 911.1, + "probability": 0.9626 + }, + { + "start": 911.52, + "end": 912.36, + "probability": 0.9523 + }, + { + "start": 912.38, + "end": 913.44, + "probability": 0.9709 + }, + { + "start": 913.52, + "end": 915.68, + "probability": 0.9806 + }, + { + "start": 916.12, + "end": 925.64, + "probability": 0.9951 + }, + { + "start": 926.44, + "end": 927.08, + "probability": 0.9396 + }, + { + "start": 927.88, + "end": 931.02, + "probability": 0.9951 + }, + { + "start": 931.68, + "end": 932.06, + "probability": 0.867 + }, + { + "start": 932.84, + "end": 933.34, + "probability": 0.4665 + }, + { + "start": 934.46, + "end": 936.4, + "probability": 0.9953 + }, + { + "start": 937.26, + "end": 939.78, + "probability": 0.966 + }, + { + "start": 940.38, + "end": 942.99, + "probability": 0.9209 + }, + { + "start": 943.66, + "end": 947.9, + "probability": 0.998 + }, + { + "start": 948.84, + "end": 949.5, + "probability": 0.9446 + }, + { + "start": 951.58, + "end": 951.98, + "probability": 0.8429 + }, + { + "start": 952.84, + "end": 953.68, + "probability": 0.942 + }, + { + "start": 954.82, + "end": 955.4, + "probability": 0.8654 + }, + { + "start": 956.64, + "end": 958.14, + "probability": 0.6897 + }, + { + "start": 958.7, + "end": 959.06, + "probability": 0.8354 + }, + { + "start": 960.9, + "end": 961.64, + "probability": 0.9956 + }, + { + "start": 962.98, + "end": 967.24, + "probability": 0.9442 + }, + { + "start": 968.98, + "end": 969.75, + "probability": 0.9619 + }, + { + "start": 970.82, + "end": 975.88, + "probability": 0.9888 + }, + { + "start": 976.48, + "end": 978.94, + "probability": 0.8652 + }, + { + "start": 979.56, + "end": 980.4, + "probability": 0.9875 + }, + { + "start": 981.72, + "end": 986.04, + "probability": 0.9895 + }, + { + "start": 986.7, + "end": 990.0, + "probability": 0.8823 + }, + { + "start": 992.06, + "end": 995.56, + "probability": 0.9994 + }, + { + "start": 995.56, + "end": 998.98, + "probability": 0.9969 + }, + { + "start": 999.54, + "end": 1000.2, + "probability": 0.9905 + }, + { + "start": 1003.4, + "end": 1004.16, + "probability": 0.9052 + }, + { + "start": 1004.84, + "end": 1005.54, + "probability": 0.9425 + }, + { + "start": 1006.2, + "end": 1007.64, + "probability": 0.9941 + }, + { + "start": 1008.2, + "end": 1009.22, + "probability": 0.9539 + }, + { + "start": 1010.6, + "end": 1012.72, + "probability": 0.9791 + }, + { + "start": 1013.34, + "end": 1014.08, + "probability": 0.9896 + }, + { + "start": 1015.68, + "end": 1019.62, + "probability": 0.9463 + }, + { + "start": 1020.3, + "end": 1021.72, + "probability": 0.8561 + }, + { + "start": 1022.8, + "end": 1024.26, + "probability": 0.9906 + }, + { + "start": 1025.22, + "end": 1027.56, + "probability": 0.9951 + }, + { + "start": 1028.24, + "end": 1032.6, + "probability": 0.9895 + }, + { + "start": 1032.9, + "end": 1033.24, + "probability": 0.8451 + }, + { + "start": 1034.12, + "end": 1037.14, + "probability": 0.9995 + }, + { + "start": 1038.36, + "end": 1042.48, + "probability": 0.9513 + }, + { + "start": 1043.44, + "end": 1043.98, + "probability": 0.778 + }, + { + "start": 1044.06, + "end": 1045.14, + "probability": 0.4615 + }, + { + "start": 1045.14, + "end": 1049.3, + "probability": 0.9828 + }, + { + "start": 1050.76, + "end": 1053.22, + "probability": 0.8811 + }, + { + "start": 1054.58, + "end": 1055.5, + "probability": 0.998 + }, + { + "start": 1056.7, + "end": 1060.38, + "probability": 0.9994 + }, + { + "start": 1061.6, + "end": 1062.34, + "probability": 0.8287 + }, + { + "start": 1063.86, + "end": 1065.78, + "probability": 0.9636 + }, + { + "start": 1066.28, + "end": 1067.56, + "probability": 0.9399 + }, + { + "start": 1067.94, + "end": 1069.32, + "probability": 0.9962 + }, + { + "start": 1069.8, + "end": 1073.4, + "probability": 0.9469 + }, + { + "start": 1074.0, + "end": 1075.68, + "probability": 0.9196 + }, + { + "start": 1079.02, + "end": 1081.46, + "probability": 0.9016 + }, + { + "start": 1082.46, + "end": 1084.4, + "probability": 0.9879 + }, + { + "start": 1084.5, + "end": 1086.94, + "probability": 0.9899 + }, + { + "start": 1087.86, + "end": 1091.3, + "probability": 0.8368 + }, + { + "start": 1092.18, + "end": 1094.86, + "probability": 0.994 + }, + { + "start": 1094.86, + "end": 1099.0, + "probability": 0.9631 + }, + { + "start": 1099.76, + "end": 1103.56, + "probability": 0.998 + }, + { + "start": 1104.42, + "end": 1108.46, + "probability": 0.965 + }, + { + "start": 1109.18, + "end": 1111.38, + "probability": 0.9977 + }, + { + "start": 1111.9, + "end": 1113.0, + "probability": 0.973 + }, + { + "start": 1113.68, + "end": 1116.68, + "probability": 0.9753 + }, + { + "start": 1117.48, + "end": 1118.32, + "probability": 0.9031 + }, + { + "start": 1118.42, + "end": 1119.12, + "probability": 0.9832 + }, + { + "start": 1119.46, + "end": 1119.84, + "probability": 0.738 + }, + { + "start": 1119.92, + "end": 1122.56, + "probability": 0.9035 + }, + { + "start": 1123.0, + "end": 1125.38, + "probability": 0.9268 + }, + { + "start": 1126.16, + "end": 1128.2, + "probability": 0.9935 + }, + { + "start": 1128.96, + "end": 1130.0, + "probability": 0.7931 + }, + { + "start": 1130.58, + "end": 1132.0, + "probability": 0.8192 + }, + { + "start": 1132.7, + "end": 1134.56, + "probability": 0.888 + }, + { + "start": 1135.1, + "end": 1136.38, + "probability": 0.9852 + }, + { + "start": 1136.8, + "end": 1139.16, + "probability": 0.9967 + }, + { + "start": 1139.84, + "end": 1142.0, + "probability": 0.9917 + }, + { + "start": 1142.52, + "end": 1144.12, + "probability": 0.9949 + }, + { + "start": 1145.54, + "end": 1147.04, + "probability": 0.7867 + }, + { + "start": 1148.5, + "end": 1150.94, + "probability": 0.9934 + }, + { + "start": 1151.68, + "end": 1152.7, + "probability": 0.9226 + }, + { + "start": 1153.28, + "end": 1154.1, + "probability": 0.9896 + }, + { + "start": 1154.7, + "end": 1155.42, + "probability": 0.943 + }, + { + "start": 1156.36, + "end": 1156.72, + "probability": 0.6125 + }, + { + "start": 1157.46, + "end": 1158.63, + "probability": 0.9956 + }, + { + "start": 1160.34, + "end": 1161.58, + "probability": 0.993 + }, + { + "start": 1163.34, + "end": 1164.14, + "probability": 0.9285 + }, + { + "start": 1165.7, + "end": 1165.8, + "probability": 0.7393 + }, + { + "start": 1166.24, + "end": 1166.92, + "probability": 0.9491 + }, + { + "start": 1167.02, + "end": 1171.52, + "probability": 0.9939 + }, + { + "start": 1172.52, + "end": 1176.82, + "probability": 0.7324 + }, + { + "start": 1177.5, + "end": 1180.12, + "probability": 0.9626 + }, + { + "start": 1180.92, + "end": 1183.94, + "probability": 0.9819 + }, + { + "start": 1185.86, + "end": 1188.53, + "probability": 0.9914 + }, + { + "start": 1201.3, + "end": 1205.52, + "probability": 0.938 + }, + { + "start": 1206.2, + "end": 1212.14, + "probability": 0.8161 + }, + { + "start": 1225.64, + "end": 1228.96, + "probability": 0.8161 + }, + { + "start": 1230.46, + "end": 1232.48, + "probability": 0.9622 + }, + { + "start": 1233.96, + "end": 1234.68, + "probability": 0.5497 + }, + { + "start": 1237.54, + "end": 1238.38, + "probability": 0.9993 + }, + { + "start": 1240.08, + "end": 1241.78, + "probability": 0.994 + }, + { + "start": 1243.02, + "end": 1246.3, + "probability": 0.981 + }, + { + "start": 1247.16, + "end": 1248.14, + "probability": 0.9937 + }, + { + "start": 1249.58, + "end": 1252.2, + "probability": 0.999 + }, + { + "start": 1252.38, + "end": 1254.66, + "probability": 0.992 + }, + { + "start": 1256.2, + "end": 1258.02, + "probability": 0.9604 + }, + { + "start": 1259.16, + "end": 1260.34, + "probability": 0.6784 + }, + { + "start": 1261.48, + "end": 1265.34, + "probability": 0.9961 + }, + { + "start": 1266.0, + "end": 1268.34, + "probability": 0.9593 + }, + { + "start": 1269.42, + "end": 1271.02, + "probability": 0.9956 + }, + { + "start": 1271.16, + "end": 1272.78, + "probability": 0.9905 + }, + { + "start": 1273.48, + "end": 1276.78, + "probability": 0.9847 + }, + { + "start": 1277.14, + "end": 1278.9, + "probability": 0.9836 + }, + { + "start": 1280.04, + "end": 1283.54, + "probability": 0.9409 + }, + { + "start": 1283.74, + "end": 1288.34, + "probability": 0.9943 + }, + { + "start": 1288.84, + "end": 1290.6, + "probability": 0.9883 + }, + { + "start": 1291.88, + "end": 1294.28, + "probability": 0.9924 + }, + { + "start": 1294.42, + "end": 1295.52, + "probability": 0.9506 + }, + { + "start": 1298.34, + "end": 1301.14, + "probability": 0.9694 + }, + { + "start": 1302.8, + "end": 1306.06, + "probability": 0.9471 + }, + { + "start": 1306.62, + "end": 1309.54, + "probability": 0.998 + }, + { + "start": 1309.96, + "end": 1311.4, + "probability": 0.9995 + }, + { + "start": 1311.6, + "end": 1313.9, + "probability": 0.1212 + }, + { + "start": 1314.54, + "end": 1314.72, + "probability": 0.2196 + }, + { + "start": 1314.72, + "end": 1314.72, + "probability": 0.0649 + }, + { + "start": 1314.72, + "end": 1318.9, + "probability": 0.7917 + }, + { + "start": 1318.94, + "end": 1318.94, + "probability": 0.0026 + }, + { + "start": 1318.94, + "end": 1320.46, + "probability": 0.2321 + }, + { + "start": 1320.72, + "end": 1320.98, + "probability": 0.4677 + }, + { + "start": 1320.98, + "end": 1320.98, + "probability": 0.0566 + }, + { + "start": 1320.98, + "end": 1324.58, + "probability": 0.3617 + }, + { + "start": 1325.32, + "end": 1325.54, + "probability": 0.2813 + }, + { + "start": 1326.98, + "end": 1327.6, + "probability": 0.0576 + }, + { + "start": 1327.74, + "end": 1327.9, + "probability": 0.0868 + }, + { + "start": 1327.98, + "end": 1327.98, + "probability": 0.0504 + }, + { + "start": 1327.98, + "end": 1330.82, + "probability": 0.5756 + }, + { + "start": 1330.82, + "end": 1331.7, + "probability": 0.0326 + }, + { + "start": 1331.9, + "end": 1331.9, + "probability": 0.3113 + }, + { + "start": 1331.9, + "end": 1331.9, + "probability": 0.1623 + }, + { + "start": 1331.9, + "end": 1335.18, + "probability": 0.8791 + }, + { + "start": 1335.28, + "end": 1336.38, + "probability": 0.9616 + }, + { + "start": 1336.6, + "end": 1338.42, + "probability": 0.8967 + }, + { + "start": 1339.0, + "end": 1339.58, + "probability": 0.177 + }, + { + "start": 1339.84, + "end": 1340.68, + "probability": 0.964 + }, + { + "start": 1342.0, + "end": 1343.44, + "probability": 0.0612 + }, + { + "start": 1344.22, + "end": 1345.46, + "probability": 0.7249 + }, + { + "start": 1345.62, + "end": 1346.78, + "probability": 0.9969 + }, + { + "start": 1347.54, + "end": 1348.7, + "probability": 0.7503 + }, + { + "start": 1348.92, + "end": 1350.64, + "probability": 0.915 + }, + { + "start": 1351.0, + "end": 1351.7, + "probability": 0.3395 + }, + { + "start": 1351.8, + "end": 1355.96, + "probability": 0.9757 + }, + { + "start": 1357.02, + "end": 1359.76, + "probability": 0.9989 + }, + { + "start": 1361.26, + "end": 1363.98, + "probability": 0.9956 + }, + { + "start": 1364.22, + "end": 1368.26, + "probability": 0.9835 + }, + { + "start": 1368.46, + "end": 1371.62, + "probability": 0.8525 + }, + { + "start": 1371.92, + "end": 1372.4, + "probability": 0.9912 + }, + { + "start": 1372.52, + "end": 1372.7, + "probability": 0.8634 + }, + { + "start": 1372.9, + "end": 1373.08, + "probability": 0.4432 + }, + { + "start": 1373.4, + "end": 1373.4, + "probability": 0.7746 + }, + { + "start": 1373.66, + "end": 1374.44, + "probability": 0.7991 + }, + { + "start": 1376.38, + "end": 1378.36, + "probability": 0.9973 + }, + { + "start": 1379.12, + "end": 1379.64, + "probability": 0.9326 + }, + { + "start": 1381.32, + "end": 1383.52, + "probability": 0.9938 + }, + { + "start": 1383.96, + "end": 1387.7, + "probability": 0.9982 + }, + { + "start": 1389.2, + "end": 1390.52, + "probability": 0.9741 + }, + { + "start": 1391.94, + "end": 1393.76, + "probability": 0.9668 + }, + { + "start": 1395.12, + "end": 1396.98, + "probability": 0.9863 + }, + { + "start": 1397.06, + "end": 1399.74, + "probability": 0.9598 + }, + { + "start": 1399.74, + "end": 1403.22, + "probability": 0.9912 + }, + { + "start": 1403.72, + "end": 1405.32, + "probability": 0.9437 + }, + { + "start": 1406.6, + "end": 1408.62, + "probability": 0.9929 + }, + { + "start": 1410.14, + "end": 1411.32, + "probability": 0.7717 + }, + { + "start": 1412.82, + "end": 1413.12, + "probability": 0.8558 + }, + { + "start": 1414.38, + "end": 1417.04, + "probability": 0.9308 + }, + { + "start": 1418.52, + "end": 1420.78, + "probability": 0.9801 + }, + { + "start": 1420.88, + "end": 1422.48, + "probability": 0.957 + }, + { + "start": 1423.68, + "end": 1425.0, + "probability": 0.9319 + }, + { + "start": 1426.96, + "end": 1429.5, + "probability": 0.9981 + }, + { + "start": 1429.92, + "end": 1431.32, + "probability": 0.9773 + }, + { + "start": 1432.86, + "end": 1433.84, + "probability": 0.9961 + }, + { + "start": 1433.92, + "end": 1434.74, + "probability": 0.9517 + }, + { + "start": 1434.86, + "end": 1435.93, + "probability": 0.9659 + }, + { + "start": 1436.32, + "end": 1439.24, + "probability": 0.9963 + }, + { + "start": 1440.0, + "end": 1441.34, + "probability": 0.9469 + }, + { + "start": 1442.9, + "end": 1443.94, + "probability": 0.8783 + }, + { + "start": 1444.04, + "end": 1445.16, + "probability": 0.9964 + }, + { + "start": 1445.22, + "end": 1446.38, + "probability": 0.9403 + }, + { + "start": 1447.66, + "end": 1451.5, + "probability": 0.9958 + }, + { + "start": 1453.0, + "end": 1456.82, + "probability": 0.9966 + }, + { + "start": 1456.9, + "end": 1459.32, + "probability": 0.9264 + }, + { + "start": 1459.98, + "end": 1463.7, + "probability": 0.9963 + }, + { + "start": 1464.94, + "end": 1465.6, + "probability": 0.9525 + }, + { + "start": 1466.9, + "end": 1467.98, + "probability": 0.9908 + }, + { + "start": 1469.32, + "end": 1470.72, + "probability": 0.9929 + }, + { + "start": 1472.18, + "end": 1475.54, + "probability": 0.9282 + }, + { + "start": 1475.68, + "end": 1478.86, + "probability": 0.942 + }, + { + "start": 1480.4, + "end": 1480.54, + "probability": 0.0358 + }, + { + "start": 1480.54, + "end": 1483.6, + "probability": 0.9895 + }, + { + "start": 1483.74, + "end": 1485.08, + "probability": 0.9797 + }, + { + "start": 1486.72, + "end": 1487.44, + "probability": 0.98 + }, + { + "start": 1489.2, + "end": 1490.7, + "probability": 0.8794 + }, + { + "start": 1492.12, + "end": 1493.12, + "probability": 0.9685 + }, + { + "start": 1494.74, + "end": 1497.54, + "probability": 0.9856 + }, + { + "start": 1497.74, + "end": 1498.98, + "probability": 0.9608 + }, + { + "start": 1499.26, + "end": 1502.48, + "probability": 0.9948 + }, + { + "start": 1503.32, + "end": 1503.88, + "probability": 0.6659 + }, + { + "start": 1504.94, + "end": 1505.86, + "probability": 0.9758 + }, + { + "start": 1507.5, + "end": 1509.12, + "probability": 0.9928 + }, + { + "start": 1509.8, + "end": 1513.02, + "probability": 0.9992 + }, + { + "start": 1514.02, + "end": 1514.66, + "probability": 0.9562 + }, + { + "start": 1516.02, + "end": 1520.36, + "probability": 0.9972 + }, + { + "start": 1521.18, + "end": 1522.74, + "probability": 0.9881 + }, + { + "start": 1523.38, + "end": 1524.64, + "probability": 0.9982 + }, + { + "start": 1525.88, + "end": 1526.62, + "probability": 0.7481 + }, + { + "start": 1527.66, + "end": 1530.02, + "probability": 0.9669 + }, + { + "start": 1530.9, + "end": 1533.06, + "probability": 0.9795 + }, + { + "start": 1533.66, + "end": 1534.2, + "probability": 0.8322 + }, + { + "start": 1535.06, + "end": 1535.38, + "probability": 0.9586 + }, + { + "start": 1537.4, + "end": 1538.24, + "probability": 0.8885 + }, + { + "start": 1539.54, + "end": 1541.88, + "probability": 0.9738 + }, + { + "start": 1542.82, + "end": 1549.0, + "probability": 0.9979 + }, + { + "start": 1549.0, + "end": 1554.26, + "probability": 0.9906 + }, + { + "start": 1557.22, + "end": 1560.06, + "probability": 0.9853 + }, + { + "start": 1560.26, + "end": 1563.32, + "probability": 0.9989 + }, + { + "start": 1564.7, + "end": 1566.38, + "probability": 0.9863 + }, + { + "start": 1567.44, + "end": 1568.26, + "probability": 0.7808 + }, + { + "start": 1569.28, + "end": 1572.54, + "probability": 0.9891 + }, + { + "start": 1573.68, + "end": 1574.26, + "probability": 0.8778 + }, + { + "start": 1575.48, + "end": 1578.5, + "probability": 0.9054 + }, + { + "start": 1580.08, + "end": 1581.6, + "probability": 0.9518 + }, + { + "start": 1582.96, + "end": 1583.9, + "probability": 0.9941 + }, + { + "start": 1584.98, + "end": 1587.36, + "probability": 0.9885 + }, + { + "start": 1588.34, + "end": 1591.76, + "probability": 0.9631 + }, + { + "start": 1592.66, + "end": 1594.98, + "probability": 0.967 + }, + { + "start": 1595.24, + "end": 1596.18, + "probability": 0.9119 + }, + { + "start": 1596.62, + "end": 1597.66, + "probability": 0.8162 + }, + { + "start": 1598.1, + "end": 1598.92, + "probability": 0.9261 + }, + { + "start": 1599.32, + "end": 1599.58, + "probability": 0.895 + }, + { + "start": 1607.0, + "end": 1607.62, + "probability": 0.6705 + }, + { + "start": 1608.34, + "end": 1611.72, + "probability": 0.902 + }, + { + "start": 1612.12, + "end": 1612.12, + "probability": 0.0555 + }, + { + "start": 1638.96, + "end": 1639.18, + "probability": 0.1033 + }, + { + "start": 1639.2, + "end": 1639.3, + "probability": 0.2657 + }, + { + "start": 1639.62, + "end": 1641.1, + "probability": 0.7237 + }, + { + "start": 1641.76, + "end": 1642.8, + "probability": 0.7996 + }, + { + "start": 1644.38, + "end": 1647.08, + "probability": 0.9906 + }, + { + "start": 1647.2, + "end": 1648.36, + "probability": 0.9174 + }, + { + "start": 1648.5, + "end": 1651.56, + "probability": 0.9198 + }, + { + "start": 1652.32, + "end": 1657.88, + "probability": 0.2546 + }, + { + "start": 1657.9, + "end": 1658.0, + "probability": 0.1458 + }, + { + "start": 1658.0, + "end": 1658.0, + "probability": 0.129 + }, + { + "start": 1658.0, + "end": 1658.08, + "probability": 0.0416 + }, + { + "start": 1658.08, + "end": 1659.34, + "probability": 0.3813 + }, + { + "start": 1659.96, + "end": 1660.52, + "probability": 0.1238 + }, + { + "start": 1660.66, + "end": 1660.74, + "probability": 0.0618 + }, + { + "start": 1660.74, + "end": 1663.53, + "probability": 0.5668 + }, + { + "start": 1665.04, + "end": 1666.68, + "probability": 0.0104 + }, + { + "start": 1666.76, + "end": 1667.5, + "probability": 0.08 + }, + { + "start": 1667.86, + "end": 1669.24, + "probability": 0.3887 + }, + { + "start": 1669.24, + "end": 1671.92, + "probability": 0.7847 + }, + { + "start": 1671.94, + "end": 1672.84, + "probability": 0.7286 + }, + { + "start": 1673.32, + "end": 1673.88, + "probability": 0.7847 + }, + { + "start": 1676.98, + "end": 1678.54, + "probability": 0.6219 + }, + { + "start": 1679.3, + "end": 1680.44, + "probability": 0.1147 + }, + { + "start": 1681.68, + "end": 1683.56, + "probability": 0.2298 + }, + { + "start": 1684.16, + "end": 1684.82, + "probability": 0.0343 + }, + { + "start": 1684.82, + "end": 1685.61, + "probability": 0.1757 + }, + { + "start": 1688.56, + "end": 1689.49, + "probability": 0.958 + }, + { + "start": 1689.92, + "end": 1691.14, + "probability": 0.3888 + }, + { + "start": 1691.78, + "end": 1693.18, + "probability": 0.157 + }, + { + "start": 1693.38, + "end": 1693.66, + "probability": 0.0492 + }, + { + "start": 1693.66, + "end": 1693.66, + "probability": 0.1186 + }, + { + "start": 1693.66, + "end": 1693.66, + "probability": 0.1778 + }, + { + "start": 1693.66, + "end": 1693.66, + "probability": 0.1633 + }, + { + "start": 1693.66, + "end": 1693.94, + "probability": 0.5043 + }, + { + "start": 1695.1, + "end": 1697.14, + "probability": 0.4299 + }, + { + "start": 1699.72, + "end": 1700.78, + "probability": 0.8428 + }, + { + "start": 1701.8, + "end": 1703.26, + "probability": 0.8801 + }, + { + "start": 1704.14, + "end": 1707.28, + "probability": 0.8793 + }, + { + "start": 1708.5, + "end": 1710.26, + "probability": 0.9854 + }, + { + "start": 1711.4, + "end": 1711.86, + "probability": 0.452 + }, + { + "start": 1713.38, + "end": 1716.74, + "probability": 0.9945 + }, + { + "start": 1718.1, + "end": 1722.7, + "probability": 0.9254 + }, + { + "start": 1724.08, + "end": 1726.42, + "probability": 0.9979 + }, + { + "start": 1728.0, + "end": 1730.34, + "probability": 0.9629 + }, + { + "start": 1731.62, + "end": 1735.41, + "probability": 0.9889 + }, + { + "start": 1737.2, + "end": 1739.56, + "probability": 0.9983 + }, + { + "start": 1739.6, + "end": 1740.84, + "probability": 0.5412 + }, + { + "start": 1741.56, + "end": 1742.56, + "probability": 0.5304 + }, + { + "start": 1743.46, + "end": 1744.72, + "probability": 0.8466 + }, + { + "start": 1745.74, + "end": 1747.68, + "probability": 0.9868 + }, + { + "start": 1748.82, + "end": 1753.62, + "probability": 0.9984 + }, + { + "start": 1755.82, + "end": 1758.0, + "probability": 0.9104 + }, + { + "start": 1759.56, + "end": 1760.74, + "probability": 0.9117 + }, + { + "start": 1761.8, + "end": 1762.88, + "probability": 0.964 + }, + { + "start": 1763.74, + "end": 1765.16, + "probability": 0.8972 + }, + { + "start": 1767.86, + "end": 1771.28, + "probability": 0.9982 + }, + { + "start": 1771.96, + "end": 1773.02, + "probability": 0.967 + }, + { + "start": 1774.42, + "end": 1777.44, + "probability": 0.9941 + }, + { + "start": 1779.26, + "end": 1780.14, + "probability": 0.9979 + }, + { + "start": 1781.08, + "end": 1783.22, + "probability": 0.9883 + }, + { + "start": 1784.44, + "end": 1787.7, + "probability": 0.9938 + }, + { + "start": 1788.56, + "end": 1790.24, + "probability": 0.9988 + }, + { + "start": 1792.74, + "end": 1796.96, + "probability": 0.8865 + }, + { + "start": 1798.28, + "end": 1799.66, + "probability": 0.9767 + }, + { + "start": 1800.9, + "end": 1801.74, + "probability": 0.8778 + }, + { + "start": 1802.94, + "end": 1804.9, + "probability": 0.9948 + }, + { + "start": 1805.62, + "end": 1808.58, + "probability": 0.9993 + }, + { + "start": 1809.86, + "end": 1814.14, + "probability": 0.9889 + }, + { + "start": 1814.72, + "end": 1815.7, + "probability": 0.9577 + }, + { + "start": 1816.72, + "end": 1819.64, + "probability": 0.9899 + }, + { + "start": 1820.68, + "end": 1822.66, + "probability": 0.9504 + }, + { + "start": 1823.64, + "end": 1825.78, + "probability": 0.956 + }, + { + "start": 1826.84, + "end": 1828.35, + "probability": 0.8901 + }, + { + "start": 1829.18, + "end": 1833.3, + "probability": 0.9998 + }, + { + "start": 1833.3, + "end": 1836.92, + "probability": 0.9972 + }, + { + "start": 1838.8, + "end": 1839.56, + "probability": 0.6384 + }, + { + "start": 1840.78, + "end": 1842.62, + "probability": 0.9637 + }, + { + "start": 1843.22, + "end": 1845.62, + "probability": 0.9902 + }, + { + "start": 1847.48, + "end": 1849.63, + "probability": 0.8071 + }, + { + "start": 1850.7, + "end": 1851.8, + "probability": 0.8613 + }, + { + "start": 1852.8, + "end": 1855.68, + "probability": 0.9816 + }, + { + "start": 1856.7, + "end": 1859.32, + "probability": 0.9695 + }, + { + "start": 1861.62, + "end": 1866.8, + "probability": 0.9466 + }, + { + "start": 1867.8, + "end": 1868.76, + "probability": 0.959 + }, + { + "start": 1869.4, + "end": 1870.34, + "probability": 0.9169 + }, + { + "start": 1870.94, + "end": 1876.7, + "probability": 0.9962 + }, + { + "start": 1877.8, + "end": 1879.06, + "probability": 0.929 + }, + { + "start": 1879.8, + "end": 1885.02, + "probability": 0.9985 + }, + { + "start": 1885.02, + "end": 1890.48, + "probability": 0.9976 + }, + { + "start": 1890.8, + "end": 1892.64, + "probability": 0.9688 + }, + { + "start": 1894.52, + "end": 1895.28, + "probability": 0.66 + }, + { + "start": 1896.44, + "end": 1897.36, + "probability": 0.9782 + }, + { + "start": 1898.24, + "end": 1901.12, + "probability": 0.9782 + }, + { + "start": 1901.14, + "end": 1904.92, + "probability": 0.9765 + }, + { + "start": 1906.08, + "end": 1908.98, + "probability": 0.7015 + }, + { + "start": 1909.94, + "end": 1910.66, + "probability": 0.5574 + }, + { + "start": 1911.82, + "end": 1912.02, + "probability": 0.7817 + }, + { + "start": 1912.28, + "end": 1916.98, + "probability": 0.995 + }, + { + "start": 1919.0, + "end": 1921.63, + "probability": 0.998 + }, + { + "start": 1921.92, + "end": 1924.9, + "probability": 0.9883 + }, + { + "start": 1925.82, + "end": 1927.54, + "probability": 0.9988 + }, + { + "start": 1928.14, + "end": 1931.02, + "probability": 0.9972 + }, + { + "start": 1932.16, + "end": 1936.04, + "probability": 0.9983 + }, + { + "start": 1936.98, + "end": 1940.32, + "probability": 0.9785 + }, + { + "start": 1940.94, + "end": 1944.96, + "probability": 0.9841 + }, + { + "start": 1947.58, + "end": 1948.2, + "probability": 0.6783 + }, + { + "start": 1949.38, + "end": 1950.2, + "probability": 0.9657 + }, + { + "start": 1950.98, + "end": 1953.54, + "probability": 0.9897 + }, + { + "start": 1953.54, + "end": 1957.86, + "probability": 0.995 + }, + { + "start": 1958.98, + "end": 1961.22, + "probability": 0.9464 + }, + { + "start": 1962.88, + "end": 1965.84, + "probability": 0.9671 + }, + { + "start": 1966.88, + "end": 1968.32, + "probability": 0.9989 + }, + { + "start": 1968.92, + "end": 1972.16, + "probability": 0.9814 + }, + { + "start": 1974.52, + "end": 1975.72, + "probability": 0.7987 + }, + { + "start": 1975.8, + "end": 1978.52, + "probability": 0.9446 + }, + { + "start": 1978.76, + "end": 1979.4, + "probability": 0.8455 + }, + { + "start": 1979.46, + "end": 1979.88, + "probability": 0.8563 + }, + { + "start": 1980.82, + "end": 1981.56, + "probability": 0.9881 + }, + { + "start": 1982.58, + "end": 1986.18, + "probability": 0.9982 + }, + { + "start": 1986.3, + "end": 1986.92, + "probability": 0.9347 + }, + { + "start": 1987.78, + "end": 1989.96, + "probability": 0.8589 + }, + { + "start": 1991.42, + "end": 1996.92, + "probability": 0.9882 + }, + { + "start": 1997.98, + "end": 2002.72, + "probability": 0.9983 + }, + { + "start": 2003.52, + "end": 2004.36, + "probability": 0.9175 + }, + { + "start": 2004.92, + "end": 2005.32, + "probability": 0.7044 + }, + { + "start": 2005.9, + "end": 2006.42, + "probability": 0.8383 + }, + { + "start": 2009.8, + "end": 2011.8, + "probability": 0.7582 + }, + { + "start": 2012.98, + "end": 2019.1, + "probability": 0.9811 + }, + { + "start": 2020.36, + "end": 2022.62, + "probability": 0.9989 + }, + { + "start": 2023.36, + "end": 2026.08, + "probability": 0.9674 + }, + { + "start": 2026.86, + "end": 2029.44, + "probability": 0.9998 + }, + { + "start": 2030.32, + "end": 2033.14, + "probability": 0.9995 + }, + { + "start": 2033.24, + "end": 2033.58, + "probability": 0.9141 + }, + { + "start": 2033.78, + "end": 2034.48, + "probability": 0.4666 + }, + { + "start": 2035.54, + "end": 2035.86, + "probability": 0.7051 + }, + { + "start": 2037.04, + "end": 2037.36, + "probability": 0.9929 + }, + { + "start": 2038.9, + "end": 2043.72, + "probability": 0.9985 + }, + { + "start": 2044.5, + "end": 2049.56, + "probability": 0.9995 + }, + { + "start": 2050.78, + "end": 2053.58, + "probability": 0.9995 + }, + { + "start": 2054.44, + "end": 2056.36, + "probability": 0.9824 + }, + { + "start": 2057.02, + "end": 2058.68, + "probability": 0.9765 + }, + { + "start": 2060.24, + "end": 2061.42, + "probability": 0.9218 + }, + { + "start": 2062.44, + "end": 2066.94, + "probability": 0.9913 + }, + { + "start": 2066.94, + "end": 2070.9, + "probability": 0.9985 + }, + { + "start": 2073.02, + "end": 2075.48, + "probability": 0.9944 + }, + { + "start": 2076.16, + "end": 2077.94, + "probability": 0.9938 + }, + { + "start": 2078.86, + "end": 2080.04, + "probability": 0.9883 + }, + { + "start": 2080.98, + "end": 2082.61, + "probability": 0.9951 + }, + { + "start": 2083.34, + "end": 2084.53, + "probability": 0.9717 + }, + { + "start": 2085.34, + "end": 2086.31, + "probability": 0.9657 + }, + { + "start": 2088.08, + "end": 2088.76, + "probability": 0.5225 + }, + { + "start": 2089.7, + "end": 2090.66, + "probability": 0.9681 + }, + { + "start": 2091.24, + "end": 2093.64, + "probability": 0.9985 + }, + { + "start": 2095.54, + "end": 2097.44, + "probability": 0.9251 + }, + { + "start": 2098.26, + "end": 2098.42, + "probability": 0.013 + }, + { + "start": 2098.6, + "end": 2104.68, + "probability": 0.9951 + }, + { + "start": 2105.5, + "end": 2106.3, + "probability": 0.5561 + }, + { + "start": 2107.14, + "end": 2108.64, + "probability": 0.9483 + }, + { + "start": 2109.68, + "end": 2112.58, + "probability": 0.9753 + }, + { + "start": 2113.32, + "end": 2114.54, + "probability": 0.974 + }, + { + "start": 2115.42, + "end": 2116.34, + "probability": 0.975 + }, + { + "start": 2117.14, + "end": 2120.0, + "probability": 0.9967 + }, + { + "start": 2120.0, + "end": 2123.64, + "probability": 0.9961 + }, + { + "start": 2123.92, + "end": 2124.72, + "probability": 0.1555 + }, + { + "start": 2125.44, + "end": 2129.1, + "probability": 0.9895 + }, + { + "start": 2129.1, + "end": 2131.8, + "probability": 0.9952 + }, + { + "start": 2132.84, + "end": 2134.8, + "probability": 0.9683 + }, + { + "start": 2136.12, + "end": 2138.62, + "probability": 0.9948 + }, + { + "start": 2139.2, + "end": 2142.22, + "probability": 0.9883 + }, + { + "start": 2143.64, + "end": 2145.96, + "probability": 0.0336 + }, + { + "start": 2146.0, + "end": 2150.12, + "probability": 0.9897 + }, + { + "start": 2150.52, + "end": 2153.26, + "probability": 0.6989 + }, + { + "start": 2153.74, + "end": 2156.6, + "probability": 0.1226 + }, + { + "start": 2156.88, + "end": 2157.79, + "probability": 0.0934 + }, + { + "start": 2159.24, + "end": 2160.04, + "probability": 0.0189 + }, + { + "start": 2160.04, + "end": 2160.14, + "probability": 0.3913 + }, + { + "start": 2160.14, + "end": 2160.59, + "probability": 0.179 + }, + { + "start": 2161.54, + "end": 2161.54, + "probability": 0.1835 + }, + { + "start": 2161.54, + "end": 2162.76, + "probability": 0.7682 + }, + { + "start": 2165.26, + "end": 2169.16, + "probability": 0.9917 + }, + { + "start": 2169.16, + "end": 2172.96, + "probability": 0.9972 + }, + { + "start": 2174.16, + "end": 2175.76, + "probability": 0.9196 + }, + { + "start": 2175.86, + "end": 2177.72, + "probability": 0.9993 + }, + { + "start": 2178.44, + "end": 2180.26, + "probability": 0.9971 + }, + { + "start": 2180.88, + "end": 2181.96, + "probability": 0.9165 + }, + { + "start": 2182.48, + "end": 2185.12, + "probability": 0.8771 + }, + { + "start": 2186.76, + "end": 2191.14, + "probability": 0.9841 + }, + { + "start": 2191.9, + "end": 2193.34, + "probability": 0.9263 + }, + { + "start": 2194.22, + "end": 2197.58, + "probability": 0.9946 + }, + { + "start": 2198.8, + "end": 2200.06, + "probability": 0.9711 + }, + { + "start": 2201.16, + "end": 2202.4, + "probability": 0.949 + }, + { + "start": 2203.04, + "end": 2203.9, + "probability": 0.7367 + }, + { + "start": 2205.32, + "end": 2206.52, + "probability": 0.9033 + }, + { + "start": 2208.08, + "end": 2211.24, + "probability": 0.8908 + }, + { + "start": 2211.78, + "end": 2212.47, + "probability": 0.5137 + }, + { + "start": 2213.24, + "end": 2214.9, + "probability": 0.9812 + }, + { + "start": 2215.88, + "end": 2216.42, + "probability": 0.853 + }, + { + "start": 2217.32, + "end": 2218.74, + "probability": 0.6866 + }, + { + "start": 2219.62, + "end": 2220.1, + "probability": 0.9064 + }, + { + "start": 2220.92, + "end": 2222.14, + "probability": 0.9879 + }, + { + "start": 2223.34, + "end": 2225.54, + "probability": 0.9707 + }, + { + "start": 2226.64, + "end": 2228.3, + "probability": 0.8545 + }, + { + "start": 2229.2, + "end": 2229.32, + "probability": 0.1126 + }, + { + "start": 2229.32, + "end": 2230.42, + "probability": 0.4299 + }, + { + "start": 2230.62, + "end": 2230.74, + "probability": 0.0496 + }, + { + "start": 2230.74, + "end": 2233.7, + "probability": 0.5719 + }, + { + "start": 2235.69, + "end": 2236.29, + "probability": 0.2241 + }, + { + "start": 2236.72, + "end": 2237.58, + "probability": 0.8081 + }, + { + "start": 2237.62, + "end": 2238.38, + "probability": 0.9689 + }, + { + "start": 2238.48, + "end": 2239.18, + "probability": 0.7347 + }, + { + "start": 2240.26, + "end": 2242.24, + "probability": 0.9957 + }, + { + "start": 2243.06, + "end": 2244.76, + "probability": 0.9852 + }, + { + "start": 2245.82, + "end": 2246.64, + "probability": 0.4749 + }, + { + "start": 2246.72, + "end": 2248.02, + "probability": 0.3492 + }, + { + "start": 2248.02, + "end": 2248.46, + "probability": 0.7548 + }, + { + "start": 2248.92, + "end": 2249.66, + "probability": 0.6222 + }, + { + "start": 2249.76, + "end": 2250.78, + "probability": 0.835 + }, + { + "start": 2250.94, + "end": 2251.76, + "probability": 0.2756 + }, + { + "start": 2253.64, + "end": 2256.12, + "probability": 0.1764 + }, + { + "start": 2256.22, + "end": 2256.72, + "probability": 0.1152 + }, + { + "start": 2257.7, + "end": 2259.74, + "probability": 0.5884 + }, + { + "start": 2260.34, + "end": 2261.72, + "probability": 0.758 + }, + { + "start": 2261.74, + "end": 2263.1, + "probability": 0.09 + }, + { + "start": 2263.22, + "end": 2265.1, + "probability": 0.0374 + }, + { + "start": 2265.78, + "end": 2266.98, + "probability": 0.1161 + }, + { + "start": 2267.7, + "end": 2270.8, + "probability": 0.1276 + }, + { + "start": 2271.44, + "end": 2274.84, + "probability": 0.304 + }, + { + "start": 2274.84, + "end": 2275.38, + "probability": 0.4072 + }, + { + "start": 2276.66, + "end": 2277.66, + "probability": 0.8484 + }, + { + "start": 2278.38, + "end": 2279.04, + "probability": 0.099 + }, + { + "start": 2279.88, + "end": 2281.28, + "probability": 0.32 + }, + { + "start": 2281.48, + "end": 2282.08, + "probability": 0.5656 + }, + { + "start": 2282.3, + "end": 2283.04, + "probability": 0.4309 + }, + { + "start": 2283.2, + "end": 2285.45, + "probability": 0.1474 + }, + { + "start": 2286.02, + "end": 2287.38, + "probability": 0.0542 + }, + { + "start": 2287.62, + "end": 2289.4, + "probability": 0.3408 + }, + { + "start": 2289.4, + "end": 2291.26, + "probability": 0.7264 + }, + { + "start": 2291.26, + "end": 2296.92, + "probability": 0.5357 + }, + { + "start": 2297.36, + "end": 2298.76, + "probability": 0.543 + }, + { + "start": 2300.66, + "end": 2300.8, + "probability": 0.2365 + }, + { + "start": 2300.84, + "end": 2303.44, + "probability": 0.9551 + }, + { + "start": 2303.6, + "end": 2304.12, + "probability": 0.669 + }, + { + "start": 2304.12, + "end": 2306.85, + "probability": 0.7949 + }, + { + "start": 2307.02, + "end": 2308.9, + "probability": 0.9444 + }, + { + "start": 2308.96, + "end": 2309.74, + "probability": 0.7431 + }, + { + "start": 2309.86, + "end": 2309.96, + "probability": 0.1144 + }, + { + "start": 2309.96, + "end": 2310.62, + "probability": 0.7285 + }, + { + "start": 2311.06, + "end": 2311.18, + "probability": 0.2737 + }, + { + "start": 2312.68, + "end": 2315.22, + "probability": 0.1888 + }, + { + "start": 2315.76, + "end": 2316.84, + "probability": 0.5858 + }, + { + "start": 2316.84, + "end": 2317.2, + "probability": 0.1982 + }, + { + "start": 2317.68, + "end": 2320.02, + "probability": 0.7628 + }, + { + "start": 2320.26, + "end": 2321.24, + "probability": 0.4803 + }, + { + "start": 2321.32, + "end": 2321.76, + "probability": 0.8953 + }, + { + "start": 2321.98, + "end": 2325.34, + "probability": 0.4539 + }, + { + "start": 2325.82, + "end": 2329.94, + "probability": 0.7099 + }, + { + "start": 2330.44, + "end": 2331.14, + "probability": 0.722 + }, + { + "start": 2331.66, + "end": 2332.48, + "probability": 0.7236 + }, + { + "start": 2333.06, + "end": 2334.96, + "probability": 0.9683 + }, + { + "start": 2335.58, + "end": 2338.74, + "probability": 0.9958 + }, + { + "start": 2338.74, + "end": 2341.52, + "probability": 0.9995 + }, + { + "start": 2342.44, + "end": 2344.92, + "probability": 0.9984 + }, + { + "start": 2345.86, + "end": 2346.56, + "probability": 0.7278 + }, + { + "start": 2347.24, + "end": 2349.54, + "probability": 0.9946 + }, + { + "start": 2350.26, + "end": 2351.64, + "probability": 0.9951 + }, + { + "start": 2353.24, + "end": 2353.84, + "probability": 0.9169 + }, + { + "start": 2354.08, + "end": 2359.86, + "probability": 0.9987 + }, + { + "start": 2360.68, + "end": 2362.22, + "probability": 0.8801 + }, + { + "start": 2363.44, + "end": 2364.36, + "probability": 0.9945 + }, + { + "start": 2365.62, + "end": 2366.3, + "probability": 0.9651 + }, + { + "start": 2367.18, + "end": 2369.44, + "probability": 0.9978 + }, + { + "start": 2370.38, + "end": 2371.72, + "probability": 0.989 + }, + { + "start": 2372.64, + "end": 2374.9, + "probability": 0.9803 + }, + { + "start": 2377.42, + "end": 2379.68, + "probability": 0.9751 + }, + { + "start": 2380.7, + "end": 2382.0, + "probability": 0.8998 + }, + { + "start": 2383.32, + "end": 2384.12, + "probability": 0.7051 + }, + { + "start": 2385.34, + "end": 2386.0, + "probability": 0.9021 + }, + { + "start": 2387.06, + "end": 2387.86, + "probability": 0.9226 + }, + { + "start": 2388.86, + "end": 2389.74, + "probability": 0.8353 + }, + { + "start": 2390.78, + "end": 2395.22, + "probability": 0.9965 + }, + { + "start": 2396.24, + "end": 2397.42, + "probability": 0.8677 + }, + { + "start": 2398.84, + "end": 2399.58, + "probability": 0.948 + }, + { + "start": 2400.4, + "end": 2402.04, + "probability": 0.8599 + }, + { + "start": 2403.26, + "end": 2404.57, + "probability": 0.9932 + }, + { + "start": 2405.26, + "end": 2406.38, + "probability": 0.9722 + }, + { + "start": 2408.32, + "end": 2410.06, + "probability": 0.9945 + }, + { + "start": 2411.78, + "end": 2413.0, + "probability": 0.9688 + }, + { + "start": 2414.28, + "end": 2415.16, + "probability": 0.9937 + }, + { + "start": 2416.36, + "end": 2420.3, + "probability": 0.9937 + }, + { + "start": 2421.58, + "end": 2425.56, + "probability": 0.9761 + }, + { + "start": 2426.76, + "end": 2432.86, + "probability": 0.9902 + }, + { + "start": 2434.18, + "end": 2436.92, + "probability": 0.7856 + }, + { + "start": 2438.3, + "end": 2439.26, + "probability": 0.9347 + }, + { + "start": 2440.02, + "end": 2440.58, + "probability": 0.7438 + }, + { + "start": 2441.52, + "end": 2446.12, + "probability": 0.9927 + }, + { + "start": 2448.06, + "end": 2449.48, + "probability": 0.8776 + }, + { + "start": 2450.7, + "end": 2450.98, + "probability": 0.8709 + }, + { + "start": 2451.06, + "end": 2452.42, + "probability": 0.781 + }, + { + "start": 2452.6, + "end": 2453.12, + "probability": 0.5126 + }, + { + "start": 2453.26, + "end": 2455.85, + "probability": 0.9929 + }, + { + "start": 2456.62, + "end": 2457.72, + "probability": 0.9316 + }, + { + "start": 2459.58, + "end": 2461.38, + "probability": 0.7356 + }, + { + "start": 2462.58, + "end": 2465.68, + "probability": 0.0653 + }, + { + "start": 2465.68, + "end": 2465.68, + "probability": 0.2224 + }, + { + "start": 2465.68, + "end": 2465.68, + "probability": 0.2535 + }, + { + "start": 2465.68, + "end": 2468.04, + "probability": 0.7119 + }, + { + "start": 2468.2, + "end": 2470.68, + "probability": 0.9951 + }, + { + "start": 2471.5, + "end": 2474.52, + "probability": 0.964 + }, + { + "start": 2475.02, + "end": 2478.36, + "probability": 0.9844 + }, + { + "start": 2479.12, + "end": 2480.7, + "probability": 0.7278 + }, + { + "start": 2480.82, + "end": 2482.48, + "probability": 0.7168 + }, + { + "start": 2483.66, + "end": 2486.8, + "probability": 0.9868 + }, + { + "start": 2486.8, + "end": 2490.52, + "probability": 0.9974 + }, + { + "start": 2491.84, + "end": 2497.44, + "probability": 0.9966 + }, + { + "start": 2498.48, + "end": 2499.92, + "probability": 0.9805 + }, + { + "start": 2500.64, + "end": 2504.1, + "probability": 0.9919 + }, + { + "start": 2505.12, + "end": 2506.88, + "probability": 0.9713 + }, + { + "start": 2508.24, + "end": 2510.4, + "probability": 0.9818 + }, + { + "start": 2510.64, + "end": 2513.38, + "probability": 0.9982 + }, + { + "start": 2513.48, + "end": 2516.0, + "probability": 0.9992 + }, + { + "start": 2516.64, + "end": 2517.99, + "probability": 0.994 + }, + { + "start": 2518.54, + "end": 2522.66, + "probability": 0.9985 + }, + { + "start": 2522.66, + "end": 2524.31, + "probability": 0.7834 + }, + { + "start": 2525.24, + "end": 2527.44, + "probability": 0.0002 + }, + { + "start": 2529.34, + "end": 2530.8, + "probability": 0.1271 + }, + { + "start": 2531.32, + "end": 2532.6, + "probability": 0.2651 + }, + { + "start": 2532.7, + "end": 2533.54, + "probability": 0.2861 + }, + { + "start": 2533.54, + "end": 2533.84, + "probability": 0.8773 + }, + { + "start": 2533.84, + "end": 2533.84, + "probability": 0.2471 + }, + { + "start": 2533.84, + "end": 2535.12, + "probability": 0.653 + }, + { + "start": 2535.4, + "end": 2536.12, + "probability": 0.5297 + }, + { + "start": 2536.14, + "end": 2536.86, + "probability": 0.6255 + }, + { + "start": 2538.35, + "end": 2541.28, + "probability": 0.03 + }, + { + "start": 2542.34, + "end": 2543.64, + "probability": 0.0595 + }, + { + "start": 2543.64, + "end": 2544.82, + "probability": 0.5685 + }, + { + "start": 2545.02, + "end": 2546.74, + "probability": 0.7115 + }, + { + "start": 2546.8, + "end": 2547.54, + "probability": 0.8068 + }, + { + "start": 2548.18, + "end": 2551.52, + "probability": 0.9941 + }, + { + "start": 2551.72, + "end": 2551.86, + "probability": 0.2395 + }, + { + "start": 2552.44, + "end": 2557.88, + "probability": 0.9854 + }, + { + "start": 2558.96, + "end": 2563.88, + "probability": 0.9656 + }, + { + "start": 2565.34, + "end": 2567.76, + "probability": 0.9928 + }, + { + "start": 2568.12, + "end": 2568.96, + "probability": 0.8062 + }, + { + "start": 2569.62, + "end": 2570.62, + "probability": 0.9842 + }, + { + "start": 2571.34, + "end": 2573.18, + "probability": 0.9939 + }, + { + "start": 2573.88, + "end": 2574.44, + "probability": 0.7836 + }, + { + "start": 2574.48, + "end": 2579.02, + "probability": 0.967 + }, + { + "start": 2579.54, + "end": 2580.94, + "probability": 0.7866 + }, + { + "start": 2581.56, + "end": 2585.14, + "probability": 0.8714 + }, + { + "start": 2585.88, + "end": 2587.76, + "probability": 0.9931 + }, + { + "start": 2589.04, + "end": 2590.22, + "probability": 0.8143 + }, + { + "start": 2596.22, + "end": 2597.66, + "probability": 0.9723 + }, + { + "start": 2628.56, + "end": 2630.7, + "probability": 0.7269 + }, + { + "start": 2640.6, + "end": 2645.4, + "probability": 0.976 + }, + { + "start": 2646.6, + "end": 2649.94, + "probability": 0.9675 + }, + { + "start": 2651.88, + "end": 2653.98, + "probability": 0.9983 + }, + { + "start": 2655.28, + "end": 2655.68, + "probability": 0.9976 + }, + { + "start": 2656.36, + "end": 2657.44, + "probability": 0.857 + }, + { + "start": 2658.66, + "end": 2660.94, + "probability": 0.9914 + }, + { + "start": 2662.32, + "end": 2664.84, + "probability": 0.991 + }, + { + "start": 2666.48, + "end": 2668.42, + "probability": 0.9831 + }, + { + "start": 2669.5, + "end": 2670.92, + "probability": 0.9893 + }, + { + "start": 2671.84, + "end": 2673.95, + "probability": 0.9841 + }, + { + "start": 2675.92, + "end": 2676.94, + "probability": 0.9819 + }, + { + "start": 2677.9, + "end": 2680.64, + "probability": 0.998 + }, + { + "start": 2682.76, + "end": 2685.14, + "probability": 0.8776 + }, + { + "start": 2686.4, + "end": 2687.1, + "probability": 0.8195 + }, + { + "start": 2688.34, + "end": 2690.38, + "probability": 0.897 + }, + { + "start": 2692.04, + "end": 2695.4, + "probability": 0.9199 + }, + { + "start": 2696.2, + "end": 2698.15, + "probability": 0.9814 + }, + { + "start": 2700.5, + "end": 2702.24, + "probability": 0.9225 + }, + { + "start": 2703.7, + "end": 2707.48, + "probability": 0.9871 + }, + { + "start": 2708.72, + "end": 2709.76, + "probability": 0.9855 + }, + { + "start": 2711.08, + "end": 2711.99, + "probability": 0.9728 + }, + { + "start": 2713.5, + "end": 2713.96, + "probability": 0.9603 + }, + { + "start": 2716.28, + "end": 2720.96, + "probability": 0.807 + }, + { + "start": 2721.94, + "end": 2725.88, + "probability": 0.9909 + }, + { + "start": 2727.18, + "end": 2730.14, + "probability": 0.9894 + }, + { + "start": 2731.8, + "end": 2732.6, + "probability": 0.8831 + }, + { + "start": 2733.74, + "end": 2736.92, + "probability": 0.9347 + }, + { + "start": 2738.48, + "end": 2739.32, + "probability": 0.9801 + }, + { + "start": 2740.42, + "end": 2741.42, + "probability": 0.9483 + }, + { + "start": 2743.6, + "end": 2746.34, + "probability": 0.9725 + }, + { + "start": 2748.2, + "end": 2752.9, + "probability": 0.9948 + }, + { + "start": 2754.4, + "end": 2757.06, + "probability": 0.9978 + }, + { + "start": 2758.36, + "end": 2759.84, + "probability": 0.9116 + }, + { + "start": 2760.66, + "end": 2763.28, + "probability": 0.9531 + }, + { + "start": 2765.52, + "end": 2770.3, + "probability": 0.9956 + }, + { + "start": 2771.4, + "end": 2776.16, + "probability": 0.9904 + }, + { + "start": 2778.16, + "end": 2781.8, + "probability": 0.8823 + }, + { + "start": 2782.94, + "end": 2786.14, + "probability": 0.9922 + }, + { + "start": 2787.4, + "end": 2787.96, + "probability": 0.8215 + }, + { + "start": 2788.14, + "end": 2790.24, + "probability": 0.9769 + }, + { + "start": 2792.98, + "end": 2796.38, + "probability": 0.7577 + }, + { + "start": 2798.12, + "end": 2801.02, + "probability": 0.9687 + }, + { + "start": 2802.7, + "end": 2807.06, + "probability": 0.9965 + }, + { + "start": 2809.94, + "end": 2811.6, + "probability": 0.7055 + }, + { + "start": 2812.7, + "end": 2814.78, + "probability": 0.99 + }, + { + "start": 2815.94, + "end": 2817.16, + "probability": 0.9766 + }, + { + "start": 2819.9, + "end": 2824.62, + "probability": 0.9963 + }, + { + "start": 2824.62, + "end": 2829.38, + "probability": 0.9995 + }, + { + "start": 2831.2, + "end": 2831.68, + "probability": 0.6717 + }, + { + "start": 2832.96, + "end": 2837.32, + "probability": 0.9969 + }, + { + "start": 2837.96, + "end": 2840.12, + "probability": 0.9526 + }, + { + "start": 2840.92, + "end": 2842.72, + "probability": 0.8947 + }, + { + "start": 2843.42, + "end": 2845.64, + "probability": 0.9444 + }, + { + "start": 2846.98, + "end": 2849.72, + "probability": 0.9979 + }, + { + "start": 2854.16, + "end": 2856.04, + "probability": 0.9996 + }, + { + "start": 2857.44, + "end": 2859.34, + "probability": 0.9337 + }, + { + "start": 2861.5, + "end": 2862.92, + "probability": 0.9629 + }, + { + "start": 2863.98, + "end": 2865.04, + "probability": 0.9734 + }, + { + "start": 2866.38, + "end": 2869.9, + "probability": 0.9829 + }, + { + "start": 2869.9, + "end": 2876.14, + "probability": 0.9893 + }, + { + "start": 2876.86, + "end": 2878.6, + "probability": 0.9053 + }, + { + "start": 2880.42, + "end": 2882.6, + "probability": 0.9946 + }, + { + "start": 2883.54, + "end": 2888.22, + "probability": 0.9987 + }, + { + "start": 2888.22, + "end": 2893.6, + "probability": 0.9995 + }, + { + "start": 2894.64, + "end": 2895.82, + "probability": 0.9727 + }, + { + "start": 2897.56, + "end": 2898.52, + "probability": 0.9902 + }, + { + "start": 2899.98, + "end": 2901.0, + "probability": 0.9778 + }, + { + "start": 2902.82, + "end": 2904.36, + "probability": 0.9935 + }, + { + "start": 2905.56, + "end": 2907.3, + "probability": 0.7095 + }, + { + "start": 2908.52, + "end": 2909.86, + "probability": 0.9915 + }, + { + "start": 2910.92, + "end": 2912.28, + "probability": 0.9984 + }, + { + "start": 2913.44, + "end": 2915.63, + "probability": 0.9852 + }, + { + "start": 2917.5, + "end": 2919.24, + "probability": 0.9991 + }, + { + "start": 2920.34, + "end": 2921.78, + "probability": 0.9999 + }, + { + "start": 2922.64, + "end": 2926.24, + "probability": 0.9968 + }, + { + "start": 2927.22, + "end": 2928.18, + "probability": 0.7603 + }, + { + "start": 2929.1, + "end": 2929.94, + "probability": 0.9485 + }, + { + "start": 2930.72, + "end": 2931.84, + "probability": 0.9701 + }, + { + "start": 2933.76, + "end": 2934.88, + "probability": 0.8867 + }, + { + "start": 2936.4, + "end": 2939.74, + "probability": 0.9852 + }, + { + "start": 2939.78, + "end": 2940.24, + "probability": 0.9323 + }, + { + "start": 2940.34, + "end": 2941.24, + "probability": 0.9747 + }, + { + "start": 2943.14, + "end": 2944.16, + "probability": 0.756 + }, + { + "start": 2945.36, + "end": 2948.26, + "probability": 0.875 + }, + { + "start": 2950.38, + "end": 2955.8, + "probability": 0.9985 + }, + { + "start": 2956.98, + "end": 2959.24, + "probability": 0.9901 + }, + { + "start": 2961.26, + "end": 2965.56, + "probability": 0.9214 + }, + { + "start": 2966.46, + "end": 2969.58, + "probability": 0.998 + }, + { + "start": 2971.08, + "end": 2971.64, + "probability": 0.8779 + }, + { + "start": 2972.9, + "end": 2973.54, + "probability": 0.7046 + }, + { + "start": 2974.6, + "end": 2976.62, + "probability": 0.9234 + }, + { + "start": 2977.64, + "end": 2979.96, + "probability": 0.9525 + }, + { + "start": 2981.78, + "end": 2985.04, + "probability": 0.9609 + }, + { + "start": 2985.92, + "end": 2990.64, + "probability": 0.9905 + }, + { + "start": 2992.28, + "end": 2994.0, + "probability": 0.9897 + }, + { + "start": 2994.78, + "end": 2996.74, + "probability": 0.9958 + }, + { + "start": 2998.28, + "end": 3002.78, + "probability": 0.9958 + }, + { + "start": 3004.08, + "end": 3008.08, + "probability": 0.998 + }, + { + "start": 3009.92, + "end": 3014.42, + "probability": 0.995 + }, + { + "start": 3015.24, + "end": 3016.48, + "probability": 0.9958 + }, + { + "start": 3017.06, + "end": 3018.22, + "probability": 0.9507 + }, + { + "start": 3020.14, + "end": 3024.86, + "probability": 0.9976 + }, + { + "start": 3026.42, + "end": 3031.72, + "probability": 0.9975 + }, + { + "start": 3033.28, + "end": 3034.62, + "probability": 0.9955 + }, + { + "start": 3035.44, + "end": 3037.48, + "probability": 0.9932 + }, + { + "start": 3038.24, + "end": 3040.3, + "probability": 0.973 + }, + { + "start": 3041.72, + "end": 3044.56, + "probability": 0.9486 + }, + { + "start": 3045.32, + "end": 3046.32, + "probability": 0.7496 + }, + { + "start": 3047.04, + "end": 3050.68, + "probability": 0.987 + }, + { + "start": 3052.16, + "end": 3053.02, + "probability": 0.7385 + }, + { + "start": 3054.52, + "end": 3055.4, + "probability": 0.6923 + }, + { + "start": 3055.96, + "end": 3057.64, + "probability": 0.8716 + }, + { + "start": 3058.78, + "end": 3061.76, + "probability": 0.9772 + }, + { + "start": 3063.52, + "end": 3067.92, + "probability": 0.9917 + }, + { + "start": 3068.76, + "end": 3070.44, + "probability": 0.9691 + }, + { + "start": 3071.24, + "end": 3072.26, + "probability": 0.8544 + }, + { + "start": 3073.06, + "end": 3074.24, + "probability": 0.7292 + }, + { + "start": 3074.94, + "end": 3076.4, + "probability": 0.8977 + }, + { + "start": 3077.42, + "end": 3078.56, + "probability": 0.7189 + }, + { + "start": 3079.94, + "end": 3081.36, + "probability": 0.979 + }, + { + "start": 3082.3, + "end": 3083.14, + "probability": 0.8148 + }, + { + "start": 3084.22, + "end": 3087.88, + "probability": 0.9855 + }, + { + "start": 3090.4, + "end": 3091.76, + "probability": 0.9881 + }, + { + "start": 3093.0, + "end": 3094.38, + "probability": 0.9682 + }, + { + "start": 3095.62, + "end": 3096.9, + "probability": 0.8604 + }, + { + "start": 3098.16, + "end": 3099.06, + "probability": 0.9814 + }, + { + "start": 3100.46, + "end": 3101.7, + "probability": 0.9934 + }, + { + "start": 3103.48, + "end": 3105.14, + "probability": 0.9794 + }, + { + "start": 3106.56, + "end": 3108.36, + "probability": 0.9371 + }, + { + "start": 3110.06, + "end": 3113.36, + "probability": 0.984 + }, + { + "start": 3114.6, + "end": 3119.1, + "probability": 0.9954 + }, + { + "start": 3120.66, + "end": 3124.54, + "probability": 0.9673 + }, + { + "start": 3133.54, + "end": 3134.26, + "probability": 0.538 + }, + { + "start": 3134.36, + "end": 3135.64, + "probability": 0.7785 + }, + { + "start": 3159.36, + "end": 3160.34, + "probability": 0.9969 + }, + { + "start": 3161.48, + "end": 3163.14, + "probability": 0.8317 + }, + { + "start": 3164.32, + "end": 3165.46, + "probability": 0.8749 + }, + { + "start": 3166.26, + "end": 3166.74, + "probability": 0.7988 + }, + { + "start": 3167.78, + "end": 3169.26, + "probability": 0.9837 + }, + { + "start": 3170.58, + "end": 3173.42, + "probability": 0.9755 + }, + { + "start": 3174.44, + "end": 3176.66, + "probability": 0.9728 + }, + { + "start": 3177.8, + "end": 3179.02, + "probability": 0.9808 + }, + { + "start": 3179.66, + "end": 3180.78, + "probability": 0.9392 + }, + { + "start": 3181.44, + "end": 3182.12, + "probability": 0.6774 + }, + { + "start": 3184.18, + "end": 3188.9, + "probability": 0.9966 + }, + { + "start": 3190.48, + "end": 3193.04, + "probability": 0.9729 + }, + { + "start": 3193.9, + "end": 3198.0, + "probability": 0.9984 + }, + { + "start": 3198.0, + "end": 3200.96, + "probability": 0.9851 + }, + { + "start": 3202.66, + "end": 3203.68, + "probability": 0.9002 + }, + { + "start": 3204.92, + "end": 3206.46, + "probability": 0.9923 + }, + { + "start": 3208.96, + "end": 3212.28, + "probability": 0.9953 + }, + { + "start": 3213.42, + "end": 3215.04, + "probability": 0.958 + }, + { + "start": 3215.98, + "end": 3219.18, + "probability": 0.9912 + }, + { + "start": 3219.18, + "end": 3223.02, + "probability": 0.993 + }, + { + "start": 3225.54, + "end": 3227.02, + "probability": 0.9683 + }, + { + "start": 3228.44, + "end": 3229.22, + "probability": 0.7851 + }, + { + "start": 3229.9, + "end": 3231.3, + "probability": 0.9805 + }, + { + "start": 3233.36, + "end": 3236.4, + "probability": 0.8221 + }, + { + "start": 3237.56, + "end": 3241.88, + "probability": 0.989 + }, + { + "start": 3243.06, + "end": 3243.98, + "probability": 0.9935 + }, + { + "start": 3244.76, + "end": 3245.84, + "probability": 0.8066 + }, + { + "start": 3246.68, + "end": 3248.2, + "probability": 0.8521 + }, + { + "start": 3248.72, + "end": 3250.34, + "probability": 0.923 + }, + { + "start": 3251.28, + "end": 3253.3, + "probability": 0.9976 + }, + { + "start": 3254.12, + "end": 3254.62, + "probability": 0.9189 + }, + { + "start": 3257.62, + "end": 3258.4, + "probability": 0.8665 + }, + { + "start": 3259.18, + "end": 3260.8, + "probability": 0.9915 + }, + { + "start": 3262.7, + "end": 3267.08, + "probability": 0.998 + }, + { + "start": 3268.38, + "end": 3273.9, + "probability": 0.9942 + }, + { + "start": 3275.68, + "end": 3280.34, + "probability": 0.9869 + }, + { + "start": 3281.14, + "end": 3282.28, + "probability": 0.9458 + }, + { + "start": 3283.44, + "end": 3286.52, + "probability": 0.9878 + }, + { + "start": 3287.26, + "end": 3287.98, + "probability": 0.9812 + }, + { + "start": 3289.96, + "end": 3290.98, + "probability": 0.779 + }, + { + "start": 3291.46, + "end": 3295.84, + "probability": 0.9919 + }, + { + "start": 3296.66, + "end": 3298.74, + "probability": 0.9716 + }, + { + "start": 3299.54, + "end": 3304.36, + "probability": 0.9879 + }, + { + "start": 3305.92, + "end": 3312.78, + "probability": 0.9893 + }, + { + "start": 3313.46, + "end": 3317.6, + "probability": 0.9934 + }, + { + "start": 3320.1, + "end": 3321.16, + "probability": 0.9971 + }, + { + "start": 3322.32, + "end": 3325.78, + "probability": 0.9894 + }, + { + "start": 3326.96, + "end": 3327.4, + "probability": 0.8255 + }, + { + "start": 3328.84, + "end": 3331.18, + "probability": 0.8104 + }, + { + "start": 3332.0, + "end": 3332.8, + "probability": 0.8126 + }, + { + "start": 3334.04, + "end": 3336.08, + "probability": 0.8151 + }, + { + "start": 3337.84, + "end": 3339.88, + "probability": 0.9406 + }, + { + "start": 3340.5, + "end": 3341.6, + "probability": 0.8491 + }, + { + "start": 3342.5, + "end": 3343.9, + "probability": 0.8106 + }, + { + "start": 3344.88, + "end": 3345.34, + "probability": 0.9318 + }, + { + "start": 3346.04, + "end": 3346.88, + "probability": 0.8282 + }, + { + "start": 3349.2, + "end": 3352.56, + "probability": 0.9922 + }, + { + "start": 3353.6, + "end": 3355.84, + "probability": 0.9873 + }, + { + "start": 3355.96, + "end": 3356.52, + "probability": 0.7781 + }, + { + "start": 3357.0, + "end": 3357.52, + "probability": 0.6832 + }, + { + "start": 3358.22, + "end": 3358.44, + "probability": 0.5457 + }, + { + "start": 3359.76, + "end": 3360.32, + "probability": 0.6572 + }, + { + "start": 3361.78, + "end": 3362.18, + "probability": 0.8711 + }, + { + "start": 3363.5, + "end": 3364.5, + "probability": 0.9229 + }, + { + "start": 3365.54, + "end": 3369.1, + "probability": 0.963 + }, + { + "start": 3369.82, + "end": 3372.26, + "probability": 0.9705 + }, + { + "start": 3373.98, + "end": 3374.52, + "probability": 0.9572 + }, + { + "start": 3375.86, + "end": 3380.54, + "probability": 0.9776 + }, + { + "start": 3381.84, + "end": 3384.76, + "probability": 0.9949 + }, + { + "start": 3385.5, + "end": 3386.76, + "probability": 0.9476 + }, + { + "start": 3388.08, + "end": 3388.3, + "probability": 0.6676 + }, + { + "start": 3389.2, + "end": 3390.7, + "probability": 0.9935 + }, + { + "start": 3392.38, + "end": 3398.72, + "probability": 0.9839 + }, + { + "start": 3399.62, + "end": 3401.46, + "probability": 0.9963 + }, + { + "start": 3402.02, + "end": 3403.48, + "probability": 0.9995 + }, + { + "start": 3404.38, + "end": 3404.86, + "probability": 0.8275 + }, + { + "start": 3405.6, + "end": 3406.48, + "probability": 0.7702 + }, + { + "start": 3407.2, + "end": 3407.84, + "probability": 0.4689 + }, + { + "start": 3408.4, + "end": 3408.84, + "probability": 0.6409 + }, + { + "start": 3409.56, + "end": 3410.02, + "probability": 0.9868 + }, + { + "start": 3412.44, + "end": 3416.5, + "probability": 0.9983 + }, + { + "start": 3417.22, + "end": 3420.66, + "probability": 0.9991 + }, + { + "start": 3422.3, + "end": 3428.76, + "probability": 0.9989 + }, + { + "start": 3429.64, + "end": 3430.9, + "probability": 0.9675 + }, + { + "start": 3431.3, + "end": 3432.81, + "probability": 0.016 + }, + { + "start": 3433.32, + "end": 3433.32, + "probability": 0.0499 + }, + { + "start": 3433.36, + "end": 3434.96, + "probability": 0.8812 + }, + { + "start": 3435.76, + "end": 3435.78, + "probability": 0.3128 + }, + { + "start": 3435.78, + "end": 3440.16, + "probability": 0.9512 + }, + { + "start": 3441.16, + "end": 3441.58, + "probability": 0.8059 + }, + { + "start": 3442.58, + "end": 3442.72, + "probability": 0.1697 + }, + { + "start": 3443.68, + "end": 3445.2, + "probability": 0.7732 + }, + { + "start": 3445.82, + "end": 3448.34, + "probability": 0.9963 + }, + { + "start": 3448.92, + "end": 3452.84, + "probability": 0.9954 + }, + { + "start": 3454.4, + "end": 3454.87, + "probability": 0.9648 + }, + { + "start": 3455.96, + "end": 3457.8, + "probability": 0.9948 + }, + { + "start": 3458.96, + "end": 3460.34, + "probability": 0.7597 + }, + { + "start": 3461.66, + "end": 3462.38, + "probability": 0.988 + }, + { + "start": 3463.38, + "end": 3464.46, + "probability": 0.9915 + }, + { + "start": 3465.98, + "end": 3468.04, + "probability": 0.0517 + }, + { + "start": 3468.92, + "end": 3468.98, + "probability": 0.0477 + }, + { + "start": 3468.98, + "end": 3470.76, + "probability": 0.171 + }, + { + "start": 3470.82, + "end": 3471.58, + "probability": 0.1289 + }, + { + "start": 3471.76, + "end": 3472.81, + "probability": 0.9639 + }, + { + "start": 3473.66, + "end": 3475.42, + "probability": 0.9847 + }, + { + "start": 3477.36, + "end": 3478.28, + "probability": 0.8435 + }, + { + "start": 3479.16, + "end": 3480.62, + "probability": 0.9939 + }, + { + "start": 3481.3, + "end": 3484.52, + "probability": 0.9989 + }, + { + "start": 3486.18, + "end": 3488.66, + "probability": 0.9967 + }, + { + "start": 3488.66, + "end": 3492.24, + "probability": 0.992 + }, + { + "start": 3493.48, + "end": 3494.24, + "probability": 0.9757 + }, + { + "start": 3495.34, + "end": 3500.32, + "probability": 0.9675 + }, + { + "start": 3501.1, + "end": 3504.42, + "probability": 0.9792 + }, + { + "start": 3505.3, + "end": 3506.18, + "probability": 0.9453 + }, + { + "start": 3507.9, + "end": 3508.96, + "probability": 0.9386 + }, + { + "start": 3509.96, + "end": 3511.24, + "probability": 0.9989 + }, + { + "start": 3512.08, + "end": 3515.76, + "probability": 0.9981 + }, + { + "start": 3517.38, + "end": 3519.3, + "probability": 0.695 + }, + { + "start": 3520.78, + "end": 3525.18, + "probability": 0.9991 + }, + { + "start": 3525.86, + "end": 3528.46, + "probability": 0.9965 + }, + { + "start": 3530.28, + "end": 3530.7, + "probability": 0.859 + }, + { + "start": 3532.46, + "end": 3533.48, + "probability": 0.0035 + }, + { + "start": 3534.78, + "end": 3535.62, + "probability": 0.9827 + }, + { + "start": 3536.96, + "end": 3539.1, + "probability": 0.5354 + }, + { + "start": 3539.2, + "end": 3542.3, + "probability": 0.9854 + }, + { + "start": 3543.12, + "end": 3545.52, + "probability": 0.9942 + }, + { + "start": 3548.58, + "end": 3552.38, + "probability": 0.9985 + }, + { + "start": 3552.5, + "end": 3553.94, + "probability": 0.7266 + }, + { + "start": 3554.5, + "end": 3555.34, + "probability": 0.9518 + }, + { + "start": 3556.28, + "end": 3558.68, + "probability": 0.9986 + }, + { + "start": 3559.1, + "end": 3561.98, + "probability": 0.9004 + }, + { + "start": 3562.92, + "end": 3564.76, + "probability": 0.9961 + }, + { + "start": 3566.3, + "end": 3568.62, + "probability": 0.9993 + }, + { + "start": 3569.48, + "end": 3574.36, + "probability": 0.9862 + }, + { + "start": 3574.36, + "end": 3575.24, + "probability": 0.9253 + }, + { + "start": 3576.96, + "end": 3577.51, + "probability": 0.8394 + }, + { + "start": 3578.3, + "end": 3580.78, + "probability": 0.9849 + }, + { + "start": 3582.52, + "end": 3584.2, + "probability": 0.9966 + }, + { + "start": 3584.3, + "end": 3587.14, + "probability": 0.9956 + }, + { + "start": 3587.68, + "end": 3590.9, + "probability": 0.9906 + }, + { + "start": 3591.84, + "end": 3593.16, + "probability": 0.9995 + }, + { + "start": 3594.92, + "end": 3596.34, + "probability": 0.7996 + }, + { + "start": 3597.86, + "end": 3599.28, + "probability": 0.9845 + }, + { + "start": 3599.36, + "end": 3601.98, + "probability": 0.9391 + }, + { + "start": 3601.98, + "end": 3604.68, + "probability": 0.9924 + }, + { + "start": 3606.6, + "end": 3607.68, + "probability": 0.958 + }, + { + "start": 3608.26, + "end": 3609.66, + "probability": 0.9284 + }, + { + "start": 3610.06, + "end": 3610.84, + "probability": 0.8777 + }, + { + "start": 3610.9, + "end": 3611.66, + "probability": 0.839 + }, + { + "start": 3612.64, + "end": 3614.82, + "probability": 0.9874 + }, + { + "start": 3616.1, + "end": 3617.94, + "probability": 0.986 + }, + { + "start": 3618.34, + "end": 3618.82, + "probability": 0.8973 + }, + { + "start": 3619.84, + "end": 3622.02, + "probability": 0.9689 + }, + { + "start": 3622.48, + "end": 3624.76, + "probability": 0.9738 + }, + { + "start": 3625.36, + "end": 3627.46, + "probability": 0.7971 + }, + { + "start": 3628.3, + "end": 3629.04, + "probability": 0.9014 + }, + { + "start": 3629.64, + "end": 3633.32, + "probability": 0.9679 + }, + { + "start": 3634.04, + "end": 3637.48, + "probability": 0.9956 + }, + { + "start": 3638.82, + "end": 3640.82, + "probability": 0.9678 + }, + { + "start": 3641.02, + "end": 3643.98, + "probability": 0.9922 + }, + { + "start": 3644.56, + "end": 3645.3, + "probability": 0.9079 + }, + { + "start": 3645.88, + "end": 3648.4, + "probability": 0.9887 + }, + { + "start": 3649.06, + "end": 3649.92, + "probability": 0.768 + }, + { + "start": 3651.4, + "end": 3654.54, + "probability": 0.9971 + }, + { + "start": 3654.54, + "end": 3658.56, + "probability": 0.9954 + }, + { + "start": 3659.82, + "end": 3660.24, + "probability": 0.4926 + }, + { + "start": 3661.38, + "end": 3665.66, + "probability": 0.9966 + }, + { + "start": 3666.04, + "end": 3666.68, + "probability": 0.883 + }, + { + "start": 3667.84, + "end": 3667.94, + "probability": 0.8313 + }, + { + "start": 3669.2, + "end": 3669.64, + "probability": 0.8927 + }, + { + "start": 3670.8, + "end": 3671.58, + "probability": 0.9969 + }, + { + "start": 3673.2, + "end": 3676.6, + "probability": 0.9849 + }, + { + "start": 3677.36, + "end": 3678.54, + "probability": 0.8656 + }, + { + "start": 3679.2, + "end": 3680.58, + "probability": 0.9902 + }, + { + "start": 3681.74, + "end": 3682.52, + "probability": 0.9833 + }, + { + "start": 3683.06, + "end": 3684.18, + "probability": 0.8023 + }, + { + "start": 3684.8, + "end": 3688.4, + "probability": 0.998 + }, + { + "start": 3689.36, + "end": 3691.54, + "probability": 0.976 + }, + { + "start": 3692.6, + "end": 3696.14, + "probability": 0.9961 + }, + { + "start": 3696.92, + "end": 3700.4, + "probability": 0.9936 + }, + { + "start": 3701.28, + "end": 3701.81, + "probability": 0.8761 + }, + { + "start": 3703.36, + "end": 3704.79, + "probability": 0.9663 + }, + { + "start": 3705.38, + "end": 3706.0, + "probability": 0.8084 + }, + { + "start": 3706.14, + "end": 3712.94, + "probability": 0.9821 + }, + { + "start": 3714.58, + "end": 3715.84, + "probability": 0.9816 + }, + { + "start": 3716.44, + "end": 3718.56, + "probability": 0.9902 + }, + { + "start": 3719.28, + "end": 3721.8, + "probability": 0.9659 + }, + { + "start": 3722.76, + "end": 3724.68, + "probability": 0.9957 + }, + { + "start": 3725.36, + "end": 3726.22, + "probability": 0.958 + }, + { + "start": 3727.34, + "end": 3728.9, + "probability": 0.9407 + }, + { + "start": 3728.98, + "end": 3733.72, + "probability": 0.9798 + }, + { + "start": 3734.52, + "end": 3737.56, + "probability": 0.9919 + }, + { + "start": 3738.2, + "end": 3741.2, + "probability": 0.9988 + }, + { + "start": 3742.24, + "end": 3742.7, + "probability": 0.8898 + }, + { + "start": 3743.34, + "end": 3746.62, + "probability": 0.9971 + }, + { + "start": 3748.0, + "end": 3750.02, + "probability": 0.9922 + }, + { + "start": 3759.26, + "end": 3760.56, + "probability": 0.8797 + }, + { + "start": 3770.96, + "end": 3772.22, + "probability": 0.1535 + }, + { + "start": 3773.94, + "end": 3774.08, + "probability": 0.1302 + }, + { + "start": 3774.08, + "end": 3774.08, + "probability": 0.1392 + }, + { + "start": 3774.08, + "end": 3774.22, + "probability": 0.09 + }, + { + "start": 3774.22, + "end": 3774.22, + "probability": 0.1173 + }, + { + "start": 3774.22, + "end": 3774.28, + "probability": 0.4998 + }, + { + "start": 3798.34, + "end": 3800.66, + "probability": 0.1541 + }, + { + "start": 3801.52, + "end": 3805.18, + "probability": 0.9951 + }, + { + "start": 3805.18, + "end": 3810.44, + "probability": 0.9993 + }, + { + "start": 3811.88, + "end": 3814.48, + "probability": 0.7271 + }, + { + "start": 3815.82, + "end": 3816.84, + "probability": 0.8382 + }, + { + "start": 3819.16, + "end": 3821.9, + "probability": 0.988 + }, + { + "start": 3823.08, + "end": 3826.2, + "probability": 0.9927 + }, + { + "start": 3826.66, + "end": 3829.62, + "probability": 0.9987 + }, + { + "start": 3831.0, + "end": 3831.66, + "probability": 0.9612 + }, + { + "start": 3834.28, + "end": 3836.36, + "probability": 0.995 + }, + { + "start": 3836.54, + "end": 3839.88, + "probability": 0.5823 + }, + { + "start": 3840.86, + "end": 3841.54, + "probability": 0.88 + }, + { + "start": 3842.42, + "end": 3849.3, + "probability": 0.9926 + }, + { + "start": 3849.34, + "end": 3855.16, + "probability": 0.9975 + }, + { + "start": 3857.14, + "end": 3858.64, + "probability": 0.8309 + }, + { + "start": 3859.24, + "end": 3861.76, + "probability": 0.8511 + }, + { + "start": 3862.42, + "end": 3866.66, + "probability": 0.9923 + }, + { + "start": 3866.66, + "end": 3871.66, + "probability": 0.9919 + }, + { + "start": 3874.02, + "end": 3877.48, + "probability": 0.9966 + }, + { + "start": 3878.6, + "end": 3882.58, + "probability": 0.8468 + }, + { + "start": 3883.4, + "end": 3889.0, + "probability": 0.9922 + }, + { + "start": 3889.12, + "end": 3889.94, + "probability": 0.903 + }, + { + "start": 3890.38, + "end": 3892.09, + "probability": 0.9769 + }, + { + "start": 3894.02, + "end": 3895.88, + "probability": 0.9986 + }, + { + "start": 3896.62, + "end": 3897.62, + "probability": 0.9608 + }, + { + "start": 3898.32, + "end": 3901.18, + "probability": 0.9867 + }, + { + "start": 3902.9, + "end": 3907.52, + "probability": 0.9938 + }, + { + "start": 3907.88, + "end": 3909.66, + "probability": 0.9304 + }, + { + "start": 3910.64, + "end": 3912.78, + "probability": 0.9834 + }, + { + "start": 3913.34, + "end": 3917.06, + "probability": 0.3798 + }, + { + "start": 3919.22, + "end": 3922.16, + "probability": 0.9987 + }, + { + "start": 3922.26, + "end": 3924.74, + "probability": 0.8678 + }, + { + "start": 3924.78, + "end": 3929.38, + "probability": 0.9683 + }, + { + "start": 3929.48, + "end": 3930.82, + "probability": 0.931 + }, + { + "start": 3931.24, + "end": 3933.64, + "probability": 0.9956 + }, + { + "start": 3934.04, + "end": 3936.16, + "probability": 0.9961 + }, + { + "start": 3937.16, + "end": 3939.19, + "probability": 0.7378 + }, + { + "start": 3939.86, + "end": 3940.7, + "probability": 0.8494 + }, + { + "start": 3941.76, + "end": 3945.74, + "probability": 0.9968 + }, + { + "start": 3949.18, + "end": 3954.32, + "probability": 0.9955 + }, + { + "start": 3954.72, + "end": 3955.56, + "probability": 0.8266 + }, + { + "start": 3956.08, + "end": 3956.46, + "probability": 0.8876 + }, + { + "start": 3956.54, + "end": 3958.66, + "probability": 0.9725 + }, + { + "start": 3958.78, + "end": 3959.38, + "probability": 0.9827 + }, + { + "start": 3961.18, + "end": 3964.22, + "probability": 0.9927 + }, + { + "start": 3964.3, + "end": 3964.98, + "probability": 0.9819 + }, + { + "start": 3965.36, + "end": 3968.78, + "probability": 0.9915 + }, + { + "start": 3969.86, + "end": 3973.88, + "probability": 0.7865 + }, + { + "start": 3974.54, + "end": 3977.16, + "probability": 0.9816 + }, + { + "start": 3978.04, + "end": 3982.72, + "probability": 0.9918 + }, + { + "start": 3983.38, + "end": 3984.66, + "probability": 0.9094 + }, + { + "start": 3985.22, + "end": 3987.84, + "probability": 0.9472 + }, + { + "start": 3988.96, + "end": 3991.76, + "probability": 0.981 + }, + { + "start": 3992.84, + "end": 3996.58, + "probability": 0.9901 + }, + { + "start": 3997.14, + "end": 3999.44, + "probability": 0.9838 + }, + { + "start": 4000.24, + "end": 4001.18, + "probability": 0.9722 + }, + { + "start": 4002.58, + "end": 4004.04, + "probability": 0.9289 + }, + { + "start": 4006.48, + "end": 4010.48, + "probability": 0.9856 + }, + { + "start": 4010.48, + "end": 4014.68, + "probability": 0.9971 + }, + { + "start": 4015.86, + "end": 4018.18, + "probability": 0.9927 + }, + { + "start": 4018.66, + "end": 4019.76, + "probability": 0.5476 + }, + { + "start": 4020.04, + "end": 4023.5, + "probability": 0.9724 + }, + { + "start": 4024.46, + "end": 4025.28, + "probability": 0.686 + }, + { + "start": 4025.98, + "end": 4029.78, + "probability": 0.9963 + }, + { + "start": 4030.26, + "end": 4033.64, + "probability": 0.9044 + }, + { + "start": 4034.74, + "end": 4040.0, + "probability": 0.9977 + }, + { + "start": 4040.72, + "end": 4045.84, + "probability": 0.9977 + }, + { + "start": 4045.84, + "end": 4051.54, + "probability": 0.9967 + }, + { + "start": 4053.04, + "end": 4057.0, + "probability": 0.9352 + }, + { + "start": 4058.12, + "end": 4061.48, + "probability": 0.9954 + }, + { + "start": 4062.62, + "end": 4065.72, + "probability": 0.9652 + }, + { + "start": 4066.36, + "end": 4068.3, + "probability": 0.9759 + }, + { + "start": 4068.96, + "end": 4075.74, + "probability": 0.9952 + }, + { + "start": 4077.46, + "end": 4077.5, + "probability": 0.1393 + }, + { + "start": 4077.5, + "end": 4084.26, + "probability": 0.9937 + }, + { + "start": 4085.14, + "end": 4088.06, + "probability": 0.964 + }, + { + "start": 4088.96, + "end": 4092.42, + "probability": 0.9916 + }, + { + "start": 4092.42, + "end": 4095.94, + "probability": 0.9985 + }, + { + "start": 4098.52, + "end": 4099.28, + "probability": 0.9441 + }, + { + "start": 4100.72, + "end": 4103.58, + "probability": 0.8911 + }, + { + "start": 4104.32, + "end": 4105.32, + "probability": 0.9899 + }, + { + "start": 4106.24, + "end": 4107.34, + "probability": 0.7845 + }, + { + "start": 4108.92, + "end": 4113.52, + "probability": 0.9974 + }, + { + "start": 4114.2, + "end": 4116.84, + "probability": 0.9953 + }, + { + "start": 4116.9, + "end": 4117.54, + "probability": 0.9124 + }, + { + "start": 4117.9, + "end": 4118.6, + "probability": 0.9869 + }, + { + "start": 4118.92, + "end": 4119.84, + "probability": 0.9793 + }, + { + "start": 4119.88, + "end": 4120.96, + "probability": 0.9204 + }, + { + "start": 4123.58, + "end": 4123.78, + "probability": 0.8894 + }, + { + "start": 4124.12, + "end": 4124.96, + "probability": 0.9683 + }, + { + "start": 4125.06, + "end": 4127.36, + "probability": 0.9906 + }, + { + "start": 4127.98, + "end": 4131.02, + "probability": 0.9976 + }, + { + "start": 4131.02, + "end": 4134.3, + "probability": 0.9754 + }, + { + "start": 4135.42, + "end": 4136.46, + "probability": 0.9293 + }, + { + "start": 4136.6, + "end": 4137.64, + "probability": 0.989 + }, + { + "start": 4137.7, + "end": 4138.68, + "probability": 0.9861 + }, + { + "start": 4138.76, + "end": 4139.7, + "probability": 0.8928 + }, + { + "start": 4153.18, + "end": 4154.82, + "probability": 0.0762 + }, + { + "start": 4154.82, + "end": 4154.82, + "probability": 0.0685 + }, + { + "start": 4154.82, + "end": 4154.82, + "probability": 0.0463 + }, + { + "start": 4154.82, + "end": 4155.68, + "probability": 0.072 + }, + { + "start": 4155.78, + "end": 4158.78, + "probability": 0.6577 + }, + { + "start": 4160.26, + "end": 4160.33, + "probability": 0.0165 + }, + { + "start": 4161.66, + "end": 4166.04, + "probability": 0.9954 + }, + { + "start": 4166.56, + "end": 4167.12, + "probability": 0.9128 + }, + { + "start": 4167.18, + "end": 4167.78, + "probability": 0.7788 + }, + { + "start": 4167.86, + "end": 4168.5, + "probability": 0.9559 + }, + { + "start": 4168.54, + "end": 4169.04, + "probability": 0.9802 + }, + { + "start": 4169.08, + "end": 4169.86, + "probability": 0.921 + }, + { + "start": 4170.34, + "end": 4170.9, + "probability": 0.7594 + }, + { + "start": 4171.26, + "end": 4172.9, + "probability": 0.993 + }, + { + "start": 4173.62, + "end": 4176.48, + "probability": 0.9829 + }, + { + "start": 4176.98, + "end": 4178.04, + "probability": 0.942 + }, + { + "start": 4178.58, + "end": 4180.6, + "probability": 0.9882 + }, + { + "start": 4181.84, + "end": 4183.56, + "probability": 0.9321 + }, + { + "start": 4183.82, + "end": 4185.0, + "probability": 0.8237 + }, + { + "start": 4185.08, + "end": 4185.66, + "probability": 0.8654 + }, + { + "start": 4186.42, + "end": 4188.94, + "probability": 0.9969 + }, + { + "start": 4188.94, + "end": 4192.48, + "probability": 0.9963 + }, + { + "start": 4193.22, + "end": 4197.54, + "probability": 0.9985 + }, + { + "start": 4198.06, + "end": 4199.6, + "probability": 0.9724 + }, + { + "start": 4201.62, + "end": 4201.92, + "probability": 0.6353 + }, + { + "start": 4203.24, + "end": 4204.64, + "probability": 0.9574 + }, + { + "start": 4205.2, + "end": 4209.44, + "probability": 0.9683 + }, + { + "start": 4210.28, + "end": 4213.72, + "probability": 0.999 + }, + { + "start": 4213.72, + "end": 4219.84, + "probability": 0.9587 + }, + { + "start": 4220.48, + "end": 4222.32, + "probability": 0.9927 + }, + { + "start": 4222.92, + "end": 4223.98, + "probability": 0.9839 + }, + { + "start": 4224.52, + "end": 4225.62, + "probability": 0.9723 + }, + { + "start": 4226.54, + "end": 4230.04, + "probability": 0.9932 + }, + { + "start": 4230.04, + "end": 4233.18, + "probability": 0.9992 + }, + { + "start": 4234.04, + "end": 4238.6, + "probability": 0.9934 + }, + { + "start": 4239.82, + "end": 4240.56, + "probability": 0.715 + }, + { + "start": 4245.34, + "end": 4246.44, + "probability": 0.6099 + }, + { + "start": 4266.2, + "end": 4266.2, + "probability": 0.3017 + }, + { + "start": 4266.2, + "end": 4267.04, + "probability": 0.7408 + }, + { + "start": 4268.62, + "end": 4270.0, + "probability": 0.9955 + }, + { + "start": 4271.12, + "end": 4273.3, + "probability": 0.9644 + }, + { + "start": 4274.36, + "end": 4275.86, + "probability": 0.7486 + }, + { + "start": 4277.92, + "end": 4281.88, + "probability": 0.9963 + }, + { + "start": 4282.88, + "end": 4283.82, + "probability": 0.9903 + }, + { + "start": 4284.7, + "end": 4285.36, + "probability": 0.7074 + }, + { + "start": 4286.02, + "end": 4289.1, + "probability": 0.9697 + }, + { + "start": 4290.0, + "end": 4295.86, + "probability": 0.9963 + }, + { + "start": 4297.7, + "end": 4299.68, + "probability": 0.9549 + }, + { + "start": 4300.62, + "end": 4302.14, + "probability": 0.992 + }, + { + "start": 4303.12, + "end": 4304.2, + "probability": 0.9786 + }, + { + "start": 4305.26, + "end": 4307.14, + "probability": 0.7798 + }, + { + "start": 4307.86, + "end": 4308.78, + "probability": 0.7367 + }, + { + "start": 4309.52, + "end": 4310.18, + "probability": 0.4188 + }, + { + "start": 4311.12, + "end": 4312.3, + "probability": 0.9718 + }, + { + "start": 4313.54, + "end": 4317.16, + "probability": 0.9848 + }, + { + "start": 4317.88, + "end": 4320.18, + "probability": 0.9245 + }, + { + "start": 4321.62, + "end": 4322.62, + "probability": 0.9961 + }, + { + "start": 4323.34, + "end": 4329.02, + "probability": 0.9949 + }, + { + "start": 4330.08, + "end": 4331.18, + "probability": 0.999 + }, + { + "start": 4332.32, + "end": 4338.3, + "probability": 0.9859 + }, + { + "start": 4338.48, + "end": 4341.02, + "probability": 0.0015 + }, + { + "start": 4341.02, + "end": 4341.02, + "probability": 0.086 + }, + { + "start": 4341.02, + "end": 4344.96, + "probability": 0.9954 + }, + { + "start": 4345.48, + "end": 4347.4, + "probability": 0.9733 + }, + { + "start": 4349.06, + "end": 4352.42, + "probability": 0.9883 + }, + { + "start": 4352.42, + "end": 4356.62, + "probability": 0.9835 + }, + { + "start": 4357.92, + "end": 4362.98, + "probability": 0.9971 + }, + { + "start": 4363.88, + "end": 4366.34, + "probability": 0.9956 + }, + { + "start": 4367.32, + "end": 4372.66, + "probability": 0.9951 + }, + { + "start": 4373.38, + "end": 4374.56, + "probability": 0.8414 + }, + { + "start": 4375.54, + "end": 4378.58, + "probability": 0.9827 + }, + { + "start": 4380.02, + "end": 4380.02, + "probability": 0.0446 + }, + { + "start": 4380.02, + "end": 4381.48, + "probability": 0.8058 + }, + { + "start": 4382.26, + "end": 4385.68, + "probability": 0.8847 + }, + { + "start": 4386.8, + "end": 4388.24, + "probability": 0.9673 + }, + { + "start": 4388.76, + "end": 4389.7, + "probability": 0.9961 + }, + { + "start": 4390.44, + "end": 4397.12, + "probability": 0.9703 + }, + { + "start": 4398.76, + "end": 4401.92, + "probability": 0.8572 + }, + { + "start": 4402.66, + "end": 4405.8, + "probability": 0.999 + }, + { + "start": 4406.96, + "end": 4408.38, + "probability": 0.8553 + }, + { + "start": 4408.5, + "end": 4410.6, + "probability": 0.9756 + }, + { + "start": 4411.8, + "end": 4415.22, + "probability": 0.9971 + }, + { + "start": 4415.66, + "end": 4417.1, + "probability": 0.9193 + }, + { + "start": 4417.78, + "end": 4419.86, + "probability": 0.9919 + }, + { + "start": 4421.12, + "end": 4422.8, + "probability": 0.8621 + }, + { + "start": 4423.44, + "end": 4426.18, + "probability": 0.9619 + }, + { + "start": 4426.92, + "end": 4429.38, + "probability": 0.9583 + }, + { + "start": 4430.3, + "end": 4431.12, + "probability": 0.8206 + }, + { + "start": 4431.98, + "end": 4437.12, + "probability": 0.9927 + }, + { + "start": 4438.26, + "end": 4441.4, + "probability": 0.9956 + }, + { + "start": 4442.18, + "end": 4444.08, + "probability": 0.9863 + }, + { + "start": 4445.48, + "end": 4449.14, + "probability": 0.9978 + }, + { + "start": 4449.68, + "end": 4451.88, + "probability": 0.9984 + }, + { + "start": 4452.4, + "end": 4456.54, + "probability": 0.9997 + }, + { + "start": 4457.2, + "end": 4459.38, + "probability": 0.9969 + }, + { + "start": 4460.88, + "end": 4465.18, + "probability": 0.9962 + }, + { + "start": 4465.42, + "end": 4466.66, + "probability": 0.983 + }, + { + "start": 4467.12, + "end": 4468.58, + "probability": 0.9588 + }, + { + "start": 4469.24, + "end": 4469.98, + "probability": 0.9595 + }, + { + "start": 4470.52, + "end": 4471.9, + "probability": 0.9289 + }, + { + "start": 4473.44, + "end": 4476.46, + "probability": 0.9813 + }, + { + "start": 4477.5, + "end": 4480.06, + "probability": 0.9899 + }, + { + "start": 4480.56, + "end": 4481.08, + "probability": 0.9373 + }, + { + "start": 4481.14, + "end": 4482.42, + "probability": 0.7651 + }, + { + "start": 4483.82, + "end": 4484.2, + "probability": 0.9394 + }, + { + "start": 4485.24, + "end": 4486.72, + "probability": 0.6887 + }, + { + "start": 4486.76, + "end": 4488.64, + "probability": 0.9743 + }, + { + "start": 4488.84, + "end": 4491.08, + "probability": 0.9496 + }, + { + "start": 4491.64, + "end": 4493.18, + "probability": 0.9971 + }, + { + "start": 4495.62, + "end": 4498.08, + "probability": 0.9984 + }, + { + "start": 4498.74, + "end": 4504.4, + "probability": 0.9951 + }, + { + "start": 4507.78, + "end": 4509.7, + "probability": 0.7979 + }, + { + "start": 4510.54, + "end": 4511.4, + "probability": 0.7454 + }, + { + "start": 4512.42, + "end": 4514.24, + "probability": 0.9568 + }, + { + "start": 4515.92, + "end": 4520.7, + "probability": 0.9848 + }, + { + "start": 4521.82, + "end": 4526.48, + "probability": 0.9832 + }, + { + "start": 4527.96, + "end": 4531.0, + "probability": 0.9951 + }, + { + "start": 4531.92, + "end": 4532.54, + "probability": 0.8967 + }, + { + "start": 4534.14, + "end": 4536.98, + "probability": 0.978 + }, + { + "start": 4539.76, + "end": 4541.32, + "probability": 0.8302 + }, + { + "start": 4542.02, + "end": 4542.06, + "probability": 0.1024 + }, + { + "start": 4542.06, + "end": 4545.64, + "probability": 0.9833 + }, + { + "start": 4546.2, + "end": 4550.78, + "probability": 0.9851 + }, + { + "start": 4551.28, + "end": 4552.34, + "probability": 0.6566 + }, + { + "start": 4554.02, + "end": 4555.62, + "probability": 0.6938 + }, + { + "start": 4557.06, + "end": 4560.16, + "probability": 0.1331 + }, + { + "start": 4560.16, + "end": 4560.32, + "probability": 0.0381 + }, + { + "start": 4560.36, + "end": 4560.76, + "probability": 0.132 + }, + { + "start": 4560.82, + "end": 4563.96, + "probability": 0.9173 + }, + { + "start": 4563.96, + "end": 4564.76, + "probability": 0.8564 + }, + { + "start": 4565.14, + "end": 4572.22, + "probability": 0.9819 + }, + { + "start": 4572.3, + "end": 4572.68, + "probability": 0.0048 + }, + { + "start": 4572.74, + "end": 4573.0, + "probability": 0.0279 + }, + { + "start": 4573.0, + "end": 4573.0, + "probability": 0.2754 + }, + { + "start": 4573.0, + "end": 4573.56, + "probability": 0.0808 + }, + { + "start": 4575.5, + "end": 4576.18, + "probability": 0.8198 + }, + { + "start": 4577.88, + "end": 4578.5, + "probability": 0.5872 + }, + { + "start": 4578.98, + "end": 4580.66, + "probability": 0.9895 + }, + { + "start": 4581.64, + "end": 4584.44, + "probability": 0.9775 + }, + { + "start": 4586.68, + "end": 4588.18, + "probability": 0.4267 + }, + { + "start": 4588.52, + "end": 4591.2, + "probability": 0.3465 + }, + { + "start": 4591.46, + "end": 4592.06, + "probability": 0.4997 + }, + { + "start": 4592.06, + "end": 4594.48, + "probability": 0.3438 + }, + { + "start": 4594.48, + "end": 4594.5, + "probability": 0.4097 + }, + { + "start": 4594.58, + "end": 4599.56, + "probability": 0.8958 + }, + { + "start": 4600.22, + "end": 4603.92, + "probability": 0.8229 + }, + { + "start": 4604.94, + "end": 4605.74, + "probability": 0.0823 + }, + { + "start": 4606.32, + "end": 4608.53, + "probability": 0.4312 + }, + { + "start": 4609.02, + "end": 4609.02, + "probability": 0.1816 + }, + { + "start": 4609.02, + "end": 4610.54, + "probability": 0.5452 + }, + { + "start": 4610.56, + "end": 4611.94, + "probability": 0.5607 + }, + { + "start": 4612.68, + "end": 4615.23, + "probability": 0.5525 + }, + { + "start": 4615.4, + "end": 4615.54, + "probability": 0.0342 + }, + { + "start": 4615.74, + "end": 4616.48, + "probability": 0.0869 + }, + { + "start": 4617.84, + "end": 4618.18, + "probability": 0.1637 + }, + { + "start": 4618.3, + "end": 4619.98, + "probability": 0.3959 + }, + { + "start": 4620.02, + "end": 4622.02, + "probability": 0.0234 + }, + { + "start": 4622.68, + "end": 4626.3, + "probability": 0.2573 + }, + { + "start": 4626.32, + "end": 4628.02, + "probability": 0.0232 + }, + { + "start": 4629.32, + "end": 4630.12, + "probability": 0.166 + }, + { + "start": 4630.12, + "end": 4631.54, + "probability": 0.0329 + }, + { + "start": 4631.88, + "end": 4632.24, + "probability": 0.1747 + }, + { + "start": 4632.24, + "end": 4635.22, + "probability": 0.2554 + }, + { + "start": 4635.32, + "end": 4636.22, + "probability": 0.5008 + }, + { + "start": 4636.32, + "end": 4637.3, + "probability": 0.1515 + }, + { + "start": 4637.3, + "end": 4638.02, + "probability": 0.4256 + }, + { + "start": 4638.26, + "end": 4641.52, + "probability": 0.2102 + }, + { + "start": 4641.84, + "end": 4643.76, + "probability": 0.3167 + }, + { + "start": 4643.76, + "end": 4644.32, + "probability": 0.4643 + }, + { + "start": 4644.66, + "end": 4646.36, + "probability": 0.5379 + }, + { + "start": 4646.98, + "end": 4649.43, + "probability": 0.7574 + }, + { + "start": 4650.62, + "end": 4651.62, + "probability": 0.3482 + }, + { + "start": 4652.12, + "end": 4652.12, + "probability": 0.0443 + }, + { + "start": 4652.12, + "end": 4652.68, + "probability": 0.1057 + }, + { + "start": 4652.74, + "end": 4655.48, + "probability": 0.6041 + }, + { + "start": 4655.52, + "end": 4655.52, + "probability": 0.8395 + }, + { + "start": 4655.52, + "end": 4656.48, + "probability": 0.7217 + }, + { + "start": 4656.92, + "end": 4657.14, + "probability": 0.859 + }, + { + "start": 4657.86, + "end": 4658.08, + "probability": 0.7386 + }, + { + "start": 4658.12, + "end": 4658.64, + "probability": 0.8932 + }, + { + "start": 4658.9, + "end": 4662.42, + "probability": 0.9773 + }, + { + "start": 4662.42, + "end": 4663.62, + "probability": 0.4653 + }, + { + "start": 4664.16, + "end": 4665.18, + "probability": 0.6875 + }, + { + "start": 4665.18, + "end": 4665.92, + "probability": 0.7097 + }, + { + "start": 4666.25, + "end": 4667.24, + "probability": 0.486 + }, + { + "start": 4667.3, + "end": 4670.34, + "probability": 0.6803 + }, + { + "start": 4670.34, + "end": 4671.74, + "probability": 0.5192 + }, + { + "start": 4673.22, + "end": 4675.74, + "probability": 0.8264 + }, + { + "start": 4677.66, + "end": 4678.62, + "probability": 0.5008 + }, + { + "start": 4678.74, + "end": 4680.7, + "probability": 0.8636 + }, + { + "start": 4680.78, + "end": 4682.46, + "probability": 0.9379 + }, + { + "start": 4683.4, + "end": 4683.5, + "probability": 0.4712 + }, + { + "start": 4683.5, + "end": 4686.52, + "probability": 0.6083 + }, + { + "start": 4687.52, + "end": 4689.98, + "probability": 0.9656 + }, + { + "start": 4691.44, + "end": 4694.46, + "probability": 0.8696 + }, + { + "start": 4695.6, + "end": 4699.06, + "probability": 0.9369 + }, + { + "start": 4699.08, + "end": 4700.4, + "probability": 0.8589 + }, + { + "start": 4701.62, + "end": 4702.36, + "probability": 0.9394 + }, + { + "start": 4703.68, + "end": 4704.38, + "probability": 0.8357 + }, + { + "start": 4705.92, + "end": 4706.82, + "probability": 0.9406 + }, + { + "start": 4708.58, + "end": 4713.02, + "probability": 0.9612 + }, + { + "start": 4713.06, + "end": 4716.44, + "probability": 0.9901 + }, + { + "start": 4717.72, + "end": 4720.02, + "probability": 0.9808 + }, + { + "start": 4721.52, + "end": 4725.54, + "probability": 0.9964 + }, + { + "start": 4726.16, + "end": 4728.58, + "probability": 0.9557 + }, + { + "start": 4728.68, + "end": 4729.72, + "probability": 0.7493 + }, + { + "start": 4729.82, + "end": 4734.2, + "probability": 0.9961 + }, + { + "start": 4735.2, + "end": 4735.98, + "probability": 0.6422 + }, + { + "start": 4736.9, + "end": 4737.88, + "probability": 0.9038 + }, + { + "start": 4738.82, + "end": 4739.6, + "probability": 0.7712 + }, + { + "start": 4740.24, + "end": 4741.44, + "probability": 0.9701 + }, + { + "start": 4742.14, + "end": 4743.74, + "probability": 0.9892 + }, + { + "start": 4744.84, + "end": 4746.16, + "probability": 0.8278 + }, + { + "start": 4748.12, + "end": 4748.12, + "probability": 0.0462 + }, + { + "start": 4748.12, + "end": 4752.7, + "probability": 0.9927 + }, + { + "start": 4753.6, + "end": 4760.7, + "probability": 0.2917 + }, + { + "start": 4769.92, + "end": 4770.28, + "probability": 0.0438 + }, + { + "start": 4771.54, + "end": 4773.58, + "probability": 0.4024 + }, + { + "start": 4773.94, + "end": 4776.32, + "probability": 0.5485 + }, + { + "start": 4776.84, + "end": 4779.68, + "probability": 0.9091 + }, + { + "start": 4779.8, + "end": 4780.52, + "probability": 0.9478 + }, + { + "start": 4781.58, + "end": 4783.54, + "probability": 0.0839 + }, + { + "start": 4787.88, + "end": 4788.18, + "probability": 0.2129 + }, + { + "start": 4788.18, + "end": 4790.18, + "probability": 0.1432 + }, + { + "start": 4792.66, + "end": 4796.02, + "probability": 0.0648 + }, + { + "start": 4796.68, + "end": 4801.28, + "probability": 0.2194 + }, + { + "start": 4801.9, + "end": 4802.6, + "probability": 0.2329 + }, + { + "start": 4819.18, + "end": 4821.82, + "probability": 0.4912 + }, + { + "start": 4821.84, + "end": 4822.12, + "probability": 0.0768 + }, + { + "start": 5201.14, + "end": 5203.06, + "probability": 0.8659 + }, + { + "start": 5205.02, + "end": 5208.42, + "probability": 0.7455 + }, + { + "start": 5208.94, + "end": 5210.64, + "probability": 0.9346 + }, + { + "start": 5211.34, + "end": 5212.22, + "probability": 0.7467 + }, + { + "start": 5212.26, + "end": 5217.56, + "probability": 0.9565 + }, + { + "start": 5217.76, + "end": 5219.74, + "probability": 0.4208 + }, + { + "start": 5220.46, + "end": 5225.82, + "probability": 0.989 + }, + { + "start": 5226.42, + "end": 5228.86, + "probability": 0.925 + }, + { + "start": 5229.12, + "end": 5233.44, + "probability": 0.9124 + }, + { + "start": 5233.94, + "end": 5234.86, + "probability": 0.988 + }, + { + "start": 5239.55, + "end": 5242.7, + "probability": 0.4813 + }, + { + "start": 5243.8, + "end": 5245.1, + "probability": 0.6448 + }, + { + "start": 5245.58, + "end": 5247.6, + "probability": 0.3353 + }, + { + "start": 5247.7, + "end": 5249.56, + "probability": 0.6702 + }, + { + "start": 5250.24, + "end": 5250.48, + "probability": 0.0066 + }, + { + "start": 5258.4, + "end": 5259.22, + "probability": 0.0453 + }, + { + "start": 5259.22, + "end": 5259.56, + "probability": 0.0127 + }, + { + "start": 5259.56, + "end": 5259.56, + "probability": 0.02 + }, + { + "start": 5260.0, + "end": 5262.58, + "probability": 0.0562 + }, + { + "start": 5263.0, + "end": 5265.92, + "probability": 0.094 + }, + { + "start": 5266.16, + "end": 5268.2, + "probability": 0.1434 + }, + { + "start": 5268.7, + "end": 5269.5, + "probability": 0.0845 + }, + { + "start": 5281.36, + "end": 5283.14, + "probability": 0.0263 + }, + { + "start": 5283.14, + "end": 5283.82, + "probability": 0.1146 + }, + { + "start": 5283.88, + "end": 5286.3, + "probability": 0.0205 + }, + { + "start": 5286.3, + "end": 5288.3, + "probability": 0.0341 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.0, + "end": 5336.0, + "probability": 0.0 + }, + { + "start": 5336.24, + "end": 5338.68, + "probability": 0.8819 + }, + { + "start": 5354.68, + "end": 5354.68, + "probability": 0.1196 + }, + { + "start": 5354.68, + "end": 5354.68, + "probability": 0.0574 + }, + { + "start": 5354.68, + "end": 5354.68, + "probability": 0.0303 + }, + { + "start": 5354.68, + "end": 5354.7, + "probability": 0.0893 + }, + { + "start": 5377.34, + "end": 5383.32, + "probability": 0.9484 + }, + { + "start": 5383.76, + "end": 5385.03, + "probability": 0.7287 + }, + { + "start": 5385.96, + "end": 5387.3, + "probability": 0.9288 + }, + { + "start": 5387.74, + "end": 5388.68, + "probability": 0.7636 + }, + { + "start": 5388.7, + "end": 5391.28, + "probability": 0.803 + }, + { + "start": 5391.36, + "end": 5392.12, + "probability": 0.4706 + }, + { + "start": 5393.16, + "end": 5394.42, + "probability": 0.9733 + }, + { + "start": 5394.8, + "end": 5399.86, + "probability": 0.9949 + }, + { + "start": 5400.38, + "end": 5402.0, + "probability": 0.9978 + }, + { + "start": 5402.08, + "end": 5403.24, + "probability": 0.7928 + }, + { + "start": 5403.36, + "end": 5403.82, + "probability": 0.7752 + }, + { + "start": 5404.01, + "end": 5404.9, + "probability": 0.9653 + }, + { + "start": 5405.1, + "end": 5406.44, + "probability": 0.6781 + }, + { + "start": 5406.6, + "end": 5409.74, + "probability": 0.9862 + }, + { + "start": 5410.44, + "end": 5411.92, + "probability": 0.999 + }, + { + "start": 5412.32, + "end": 5413.65, + "probability": 0.7961 + }, + { + "start": 5414.2, + "end": 5420.34, + "probability": 0.9801 + }, + { + "start": 5420.58, + "end": 5421.28, + "probability": 0.8334 + }, + { + "start": 5421.42, + "end": 5423.98, + "probability": 0.9878 + }, + { + "start": 5424.36, + "end": 5428.38, + "probability": 0.9833 + }, + { + "start": 5428.86, + "end": 5429.66, + "probability": 0.7474 + }, + { + "start": 5430.0, + "end": 5431.26, + "probability": 0.7779 + }, + { + "start": 5431.92, + "end": 5437.26, + "probability": 0.9615 + }, + { + "start": 5437.52, + "end": 5438.82, + "probability": 0.9792 + }, + { + "start": 5439.1, + "end": 5441.68, + "probability": 0.993 + }, + { + "start": 5442.24, + "end": 5442.78, + "probability": 0.9519 + }, + { + "start": 5443.04, + "end": 5444.46, + "probability": 0.5395 + }, + { + "start": 5444.8, + "end": 5446.64, + "probability": 0.9235 + }, + { + "start": 5446.92, + "end": 5448.34, + "probability": 0.7916 + }, + { + "start": 5448.44, + "end": 5448.79, + "probability": 0.8835 + }, + { + "start": 5448.92, + "end": 5450.39, + "probability": 0.9797 + }, + { + "start": 5450.5, + "end": 5451.1, + "probability": 0.9526 + }, + { + "start": 5451.18, + "end": 5452.04, + "probability": 0.9243 + }, + { + "start": 5452.1, + "end": 5452.72, + "probability": 0.8853 + }, + { + "start": 5452.98, + "end": 5455.64, + "probability": 0.9778 + }, + { + "start": 5455.64, + "end": 5458.0, + "probability": 0.9984 + }, + { + "start": 5458.86, + "end": 5459.32, + "probability": 0.7789 + }, + { + "start": 5459.48, + "end": 5460.3, + "probability": 0.8588 + }, + { + "start": 5460.6, + "end": 5461.3, + "probability": 0.4244 + }, + { + "start": 5461.44, + "end": 5463.38, + "probability": 0.9607 + }, + { + "start": 5463.74, + "end": 5467.04, + "probability": 0.9925 + }, + { + "start": 5467.36, + "end": 5468.23, + "probability": 0.8131 + }, + { + "start": 5468.76, + "end": 5470.1, + "probability": 0.4956 + }, + { + "start": 5470.38, + "end": 5473.04, + "probability": 0.7838 + }, + { + "start": 5473.42, + "end": 5477.72, + "probability": 0.8302 + }, + { + "start": 5478.74, + "end": 5481.92, + "probability": 0.7184 + }, + { + "start": 5482.0, + "end": 5483.02, + "probability": 0.7818 + }, + { + "start": 5483.22, + "end": 5486.14, + "probability": 0.9963 + }, + { + "start": 5486.14, + "end": 5490.68, + "probability": 0.9318 + }, + { + "start": 5491.74, + "end": 5496.74, + "probability": 0.988 + }, + { + "start": 5496.82, + "end": 5499.08, + "probability": 0.9171 + }, + { + "start": 5499.22, + "end": 5502.36, + "probability": 0.9878 + }, + { + "start": 5503.36, + "end": 5504.18, + "probability": 0.8589 + }, + { + "start": 5504.34, + "end": 5507.74, + "probability": 0.9839 + }, + { + "start": 5508.28, + "end": 5509.89, + "probability": 0.9944 + }, + { + "start": 5510.54, + "end": 5513.2, + "probability": 0.9867 + }, + { + "start": 5514.14, + "end": 5518.8, + "probability": 0.9786 + }, + { + "start": 5519.62, + "end": 5522.48, + "probability": 0.998 + }, + { + "start": 5523.3, + "end": 5525.08, + "probability": 0.974 + }, + { + "start": 5525.48, + "end": 5526.84, + "probability": 0.5455 + }, + { + "start": 5527.0, + "end": 5528.36, + "probability": 0.9653 + }, + { + "start": 5528.48, + "end": 5532.28, + "probability": 0.9877 + }, + { + "start": 5532.92, + "end": 5534.96, + "probability": 0.9331 + }, + { + "start": 5535.84, + "end": 5538.5, + "probability": 0.9118 + }, + { + "start": 5538.5, + "end": 5542.48, + "probability": 0.9131 + }, + { + "start": 5543.1, + "end": 5548.12, + "probability": 0.9109 + }, + { + "start": 5549.98, + "end": 5550.7, + "probability": 0.805 + }, + { + "start": 5550.76, + "end": 5554.58, + "probability": 0.9793 + }, + { + "start": 5555.24, + "end": 5560.26, + "probability": 0.8975 + }, + { + "start": 5560.26, + "end": 5564.76, + "probability": 0.9954 + }, + { + "start": 5565.22, + "end": 5566.36, + "probability": 0.7685 + }, + { + "start": 5567.39, + "end": 5569.66, + "probability": 0.9043 + }, + { + "start": 5569.82, + "end": 5571.1, + "probability": 0.9218 + }, + { + "start": 5571.26, + "end": 5572.42, + "probability": 0.9951 + }, + { + "start": 5572.5, + "end": 5573.48, + "probability": 0.8911 + }, + { + "start": 5574.46, + "end": 5576.78, + "probability": 0.95 + }, + { + "start": 5577.26, + "end": 5580.92, + "probability": 0.9941 + }, + { + "start": 5581.08, + "end": 5586.34, + "probability": 0.9984 + }, + { + "start": 5586.96, + "end": 5591.08, + "probability": 0.9468 + }, + { + "start": 5592.38, + "end": 5594.4, + "probability": 0.743 + }, + { + "start": 5594.88, + "end": 5597.92, + "probability": 0.9794 + }, + { + "start": 5598.42, + "end": 5600.9, + "probability": 0.9983 + }, + { + "start": 5600.9, + "end": 5604.14, + "probability": 0.7929 + }, + { + "start": 5604.76, + "end": 5607.92, + "probability": 0.9838 + }, + { + "start": 5609.08, + "end": 5614.14, + "probability": 0.9851 + }, + { + "start": 5614.76, + "end": 5617.26, + "probability": 0.9198 + }, + { + "start": 5617.7, + "end": 5619.64, + "probability": 0.8758 + }, + { + "start": 5619.84, + "end": 5620.72, + "probability": 0.7533 + }, + { + "start": 5621.44, + "end": 5622.54, + "probability": 0.9834 + }, + { + "start": 5622.68, + "end": 5624.66, + "probability": 0.9954 + }, + { + "start": 5625.06, + "end": 5626.56, + "probability": 0.769 + }, + { + "start": 5626.6, + "end": 5628.1, + "probability": 0.9339 + }, + { + "start": 5628.64, + "end": 5631.04, + "probability": 0.9884 + }, + { + "start": 5632.46, + "end": 5632.72, + "probability": 0.9285 + }, + { + "start": 5633.12, + "end": 5635.12, + "probability": 0.9685 + }, + { + "start": 5635.18, + "end": 5637.84, + "probability": 0.7524 + }, + { + "start": 5637.84, + "end": 5640.1, + "probability": 0.7552 + }, + { + "start": 5640.9, + "end": 5645.9, + "probability": 0.972 + }, + { + "start": 5646.18, + "end": 5648.64, + "probability": 0.9937 + }, + { + "start": 5649.18, + "end": 5653.28, + "probability": 0.9919 + }, + { + "start": 5653.56, + "end": 5653.98, + "probability": 0.8765 + }, + { + "start": 5654.64, + "end": 5655.84, + "probability": 0.9531 + }, + { + "start": 5655.92, + "end": 5659.46, + "probability": 0.9768 + }, + { + "start": 5660.18, + "end": 5662.9, + "probability": 0.8016 + }, + { + "start": 5662.9, + "end": 5665.72, + "probability": 0.9742 + }, + { + "start": 5666.16, + "end": 5673.42, + "probability": 0.9827 + }, + { + "start": 5673.96, + "end": 5680.9, + "probability": 0.9914 + }, + { + "start": 5681.34, + "end": 5682.84, + "probability": 0.963 + }, + { + "start": 5683.56, + "end": 5688.44, + "probability": 0.9253 + }, + { + "start": 5688.9, + "end": 5693.1, + "probability": 0.92 + }, + { + "start": 5693.54, + "end": 5699.1, + "probability": 0.9056 + }, + { + "start": 5699.62, + "end": 5701.68, + "probability": 0.8699 + }, + { + "start": 5701.98, + "end": 5703.1, + "probability": 0.9758 + }, + { + "start": 5703.54, + "end": 5705.54, + "probability": 0.9922 + }, + { + "start": 5705.66, + "end": 5706.9, + "probability": 0.9821 + }, + { + "start": 5707.22, + "end": 5709.36, + "probability": 0.9596 + }, + { + "start": 5709.7, + "end": 5712.44, + "probability": 0.9392 + }, + { + "start": 5713.04, + "end": 5715.28, + "probability": 0.8517 + }, + { + "start": 5716.36, + "end": 5723.78, + "probability": 0.9948 + }, + { + "start": 5723.78, + "end": 5727.74, + "probability": 0.8608 + }, + { + "start": 5728.18, + "end": 5731.62, + "probability": 0.9744 + }, + { + "start": 5731.76, + "end": 5735.66, + "probability": 0.9093 + }, + { + "start": 5735.66, + "end": 5738.48, + "probability": 0.7496 + }, + { + "start": 5739.08, + "end": 5743.72, + "probability": 0.9962 + }, + { + "start": 5744.06, + "end": 5745.32, + "probability": 0.8524 + }, + { + "start": 5745.38, + "end": 5749.36, + "probability": 0.9946 + }, + { + "start": 5749.36, + "end": 5752.82, + "probability": 0.9903 + }, + { + "start": 5754.28, + "end": 5758.88, + "probability": 0.9261 + }, + { + "start": 5759.0, + "end": 5759.66, + "probability": 0.7355 + }, + { + "start": 5759.72, + "end": 5760.5, + "probability": 0.5837 + }, + { + "start": 5761.02, + "end": 5765.11, + "probability": 0.5252 + }, + { + "start": 5765.88, + "end": 5768.48, + "probability": 0.9017 + }, + { + "start": 5768.56, + "end": 5772.68, + "probability": 0.889 + }, + { + "start": 5774.16, + "end": 5775.4, + "probability": 0.2909 + }, + { + "start": 5775.5, + "end": 5777.8, + "probability": 0.8913 + }, + { + "start": 5777.82, + "end": 5779.86, + "probability": 0.9264 + }, + { + "start": 5780.58, + "end": 5782.12, + "probability": 0.746 + }, + { + "start": 5782.52, + "end": 5785.96, + "probability": 0.9831 + }, + { + "start": 5785.96, + "end": 5789.92, + "probability": 0.9996 + }, + { + "start": 5790.9, + "end": 5793.3, + "probability": 0.9973 + }, + { + "start": 5793.3, + "end": 5796.28, + "probability": 0.9838 + }, + { + "start": 5796.76, + "end": 5797.84, + "probability": 0.7334 + }, + { + "start": 5798.58, + "end": 5802.56, + "probability": 0.8826 + }, + { + "start": 5803.0, + "end": 5803.16, + "probability": 0.104 + }, + { + "start": 5803.2, + "end": 5807.44, + "probability": 0.9069 + }, + { + "start": 5807.86, + "end": 5808.28, + "probability": 0.6696 + }, + { + "start": 5808.74, + "end": 5811.28, + "probability": 0.9967 + }, + { + "start": 5812.06, + "end": 5814.48, + "probability": 0.8092 + }, + { + "start": 5815.04, + "end": 5818.32, + "probability": 0.9776 + }, + { + "start": 5819.08, + "end": 5820.96, + "probability": 0.9272 + }, + { + "start": 5821.06, + "end": 5824.3, + "probability": 0.8222 + }, + { + "start": 5824.74, + "end": 5826.3, + "probability": 0.8506 + }, + { + "start": 5826.4, + "end": 5827.76, + "probability": 0.8495 + }, + { + "start": 5828.4, + "end": 5829.94, + "probability": 0.9272 + }, + { + "start": 5830.02, + "end": 5831.54, + "probability": 0.9828 + }, + { + "start": 5831.78, + "end": 5833.4, + "probability": 0.9952 + }, + { + "start": 5833.4, + "end": 5836.14, + "probability": 0.9968 + }, + { + "start": 5836.38, + "end": 5837.5, + "probability": 0.9954 + }, + { + "start": 5837.76, + "end": 5841.52, + "probability": 0.98 + }, + { + "start": 5841.94, + "end": 5843.4, + "probability": 0.7738 + }, + { + "start": 5843.4, + "end": 5844.5, + "probability": 0.9972 + }, + { + "start": 5844.94, + "end": 5845.1, + "probability": 0.5782 + }, + { + "start": 5845.56, + "end": 5851.36, + "probability": 0.9451 + }, + { + "start": 5851.94, + "end": 5852.96, + "probability": 0.9087 + }, + { + "start": 5853.24, + "end": 5856.92, + "probability": 0.8854 + }, + { + "start": 5857.28, + "end": 5860.06, + "probability": 0.9489 + }, + { + "start": 5860.1, + "end": 5860.64, + "probability": 0.7441 + }, + { + "start": 5860.9, + "end": 5862.7, + "probability": 0.8714 + }, + { + "start": 5862.88, + "end": 5863.72, + "probability": 0.7075 + }, + { + "start": 5863.88, + "end": 5865.46, + "probability": 0.9443 + }, + { + "start": 5865.74, + "end": 5866.76, + "probability": 0.7715 + }, + { + "start": 5866.98, + "end": 5869.08, + "probability": 0.9455 + }, + { + "start": 5869.18, + "end": 5869.5, + "probability": 0.9315 + }, + { + "start": 5869.76, + "end": 5870.52, + "probability": 0.9341 + }, + { + "start": 5870.8, + "end": 5871.98, + "probability": 0.9459 + }, + { + "start": 5872.68, + "end": 5874.18, + "probability": 0.8937 + }, + { + "start": 5874.18, + "end": 5875.44, + "probability": 0.9434 + }, + { + "start": 5875.8, + "end": 5876.72, + "probability": 0.9821 + }, + { + "start": 5876.96, + "end": 5878.66, + "probability": 0.9941 + }, + { + "start": 5880.1, + "end": 5882.8, + "probability": 0.8703 + }, + { + "start": 5884.48, + "end": 5887.9, + "probability": 0.933 + }, + { + "start": 5888.24, + "end": 5893.36, + "probability": 0.9829 + }, + { + "start": 5893.72, + "end": 5898.66, + "probability": 0.9875 + }, + { + "start": 5899.06, + "end": 5899.86, + "probability": 0.6062 + }, + { + "start": 5900.26, + "end": 5901.22, + "probability": 0.8909 + }, + { + "start": 5902.49, + "end": 5904.5, + "probability": 0.5166 + }, + { + "start": 5904.88, + "end": 5906.66, + "probability": 0.9575 + }, + { + "start": 5907.04, + "end": 5908.08, + "probability": 0.4464 + }, + { + "start": 5908.1, + "end": 5908.94, + "probability": 0.9683 + }, + { + "start": 5910.1, + "end": 5911.3, + "probability": 0.96 + }, + { + "start": 5911.98, + "end": 5913.4, + "probability": 0.8363 + }, + { + "start": 5914.4, + "end": 5917.72, + "probability": 0.9428 + }, + { + "start": 5918.08, + "end": 5920.74, + "probability": 0.9308 + }, + { + "start": 5921.16, + "end": 5922.54, + "probability": 0.9858 + }, + { + "start": 5922.8, + "end": 5923.7, + "probability": 0.9678 + }, + { + "start": 5923.82, + "end": 5926.5, + "probability": 0.978 + }, + { + "start": 5926.74, + "end": 5927.74, + "probability": 0.9848 + }, + { + "start": 5927.82, + "end": 5928.78, + "probability": 0.9795 + }, + { + "start": 5929.22, + "end": 5933.5, + "probability": 0.8529 + }, + { + "start": 5933.62, + "end": 5935.64, + "probability": 0.8433 + }, + { + "start": 5935.72, + "end": 5937.78, + "probability": 0.7942 + }, + { + "start": 5937.94, + "end": 5939.4, + "probability": 0.9168 + }, + { + "start": 5939.8, + "end": 5941.34, + "probability": 0.7477 + }, + { + "start": 5941.4, + "end": 5944.42, + "probability": 0.9348 + }, + { + "start": 5944.84, + "end": 5945.78, + "probability": 0.8416 + }, + { + "start": 5946.96, + "end": 5950.06, + "probability": 0.7715 + }, + { + "start": 5950.5, + "end": 5951.64, + "probability": 0.4865 + }, + { + "start": 5951.68, + "end": 5953.14, + "probability": 0.9897 + }, + { + "start": 5953.4, + "end": 5956.62, + "probability": 0.9878 + }, + { + "start": 5957.38, + "end": 5961.98, + "probability": 0.9972 + }, + { + "start": 5962.36, + "end": 5964.98, + "probability": 0.9946 + }, + { + "start": 5965.58, + "end": 5967.98, + "probability": 0.9966 + }, + { + "start": 5967.98, + "end": 5971.3, + "probability": 0.9987 + }, + { + "start": 5971.74, + "end": 5974.98, + "probability": 0.9987 + }, + { + "start": 5975.64, + "end": 5977.42, + "probability": 0.7098 + }, + { + "start": 5977.42, + "end": 5979.92, + "probability": 0.9946 + }, + { + "start": 5980.34, + "end": 5981.1, + "probability": 0.8889 + }, + { + "start": 5981.46, + "end": 5986.36, + "probability": 0.8936 + }, + { + "start": 5987.0, + "end": 5987.58, + "probability": 0.8575 + }, + { + "start": 5988.22, + "end": 5992.42, + "probability": 0.999 + }, + { + "start": 5992.92, + "end": 5996.66, + "probability": 0.9123 + }, + { + "start": 5997.18, + "end": 5997.94, + "probability": 0.7586 + }, + { + "start": 5997.96, + "end": 5998.38, + "probability": 0.736 + }, + { + "start": 5998.58, + "end": 6002.96, + "probability": 0.9814 + }, + { + "start": 6002.96, + "end": 6006.44, + "probability": 0.9976 + }, + { + "start": 6006.82, + "end": 6007.52, + "probability": 0.8853 + }, + { + "start": 6008.02, + "end": 6008.52, + "probability": 0.6508 + }, + { + "start": 6008.92, + "end": 6013.3, + "probability": 0.9862 + }, + { + "start": 6013.68, + "end": 6015.04, + "probability": 0.9712 + }, + { + "start": 6016.06, + "end": 6019.84, + "probability": 0.9893 + }, + { + "start": 6019.84, + "end": 6023.12, + "probability": 0.6958 + }, + { + "start": 6024.2, + "end": 6025.5, + "probability": 0.9616 + }, + { + "start": 6025.9, + "end": 6030.72, + "probability": 0.9688 + }, + { + "start": 6030.72, + "end": 6034.78, + "probability": 0.9923 + }, + { + "start": 6035.18, + "end": 6038.2, + "probability": 0.8752 + }, + { + "start": 6038.84, + "end": 6041.02, + "probability": 0.9753 + }, + { + "start": 6041.46, + "end": 6046.24, + "probability": 0.96 + }, + { + "start": 6046.24, + "end": 6050.2, + "probability": 0.988 + }, + { + "start": 6050.86, + "end": 6054.46, + "probability": 0.9757 + }, + { + "start": 6054.52, + "end": 6055.46, + "probability": 0.7623 + }, + { + "start": 6055.56, + "end": 6058.52, + "probability": 0.9922 + }, + { + "start": 6058.96, + "end": 6060.94, + "probability": 0.9915 + }, + { + "start": 6061.16, + "end": 6065.04, + "probability": 0.9663 + }, + { + "start": 6065.46, + "end": 6069.84, + "probability": 0.995 + }, + { + "start": 6070.12, + "end": 6070.44, + "probability": 0.6796 + }, + { + "start": 6070.96, + "end": 6073.22, + "probability": 0.9902 + }, + { + "start": 6073.4, + "end": 6074.58, + "probability": 0.6632 + }, + { + "start": 6075.56, + "end": 6078.54, + "probability": 0.9705 + }, + { + "start": 6079.12, + "end": 6079.74, + "probability": 0.6482 + }, + { + "start": 6079.8, + "end": 6081.2, + "probability": 0.7545 + }, + { + "start": 6081.88, + "end": 6083.34, + "probability": 0.8196 + }, + { + "start": 6083.42, + "end": 6083.74, + "probability": 0.7386 + }, + { + "start": 6084.94, + "end": 6086.4, + "probability": 0.7785 + }, + { + "start": 6086.42, + "end": 6086.52, + "probability": 0.9048 + }, + { + "start": 6100.46, + "end": 6101.4, + "probability": 0.5983 + }, + { + "start": 6103.06, + "end": 6104.46, + "probability": 0.8115 + }, + { + "start": 6105.96, + "end": 6106.5, + "probability": 0.6627 + }, + { + "start": 6109.64, + "end": 6111.14, + "probability": 0.7992 + }, + { + "start": 6113.38, + "end": 6117.42, + "probability": 0.9883 + }, + { + "start": 6117.88, + "end": 6119.38, + "probability": 0.299 + }, + { + "start": 6120.48, + "end": 6123.68, + "probability": 0.1888 + }, + { + "start": 6125.09, + "end": 6125.38, + "probability": 0.1022 + }, + { + "start": 6125.38, + "end": 6126.02, + "probability": 0.5322 + }, + { + "start": 6126.2, + "end": 6127.08, + "probability": 0.6388 + }, + { + "start": 6127.28, + "end": 6129.68, + "probability": 0.6815 + }, + { + "start": 6130.18, + "end": 6132.8, + "probability": 0.5665 + }, + { + "start": 6132.8, + "end": 6134.54, + "probability": 0.1727 + }, + { + "start": 6134.54, + "end": 6135.16, + "probability": 0.4099 + }, + { + "start": 6135.68, + "end": 6138.18, + "probability": 0.4359 + }, + { + "start": 6138.18, + "end": 6138.18, + "probability": 0.293 + }, + { + "start": 6138.18, + "end": 6140.58, + "probability": 0.7372 + }, + { + "start": 6140.58, + "end": 6141.1, + "probability": 0.2397 + }, + { + "start": 6141.18, + "end": 6142.82, + "probability": 0.9261 + }, + { + "start": 6143.12, + "end": 6145.34, + "probability": 0.1042 + }, + { + "start": 6145.84, + "end": 6146.44, + "probability": 0.1468 + }, + { + "start": 6146.44, + "end": 6148.66, + "probability": 0.6738 + }, + { + "start": 6149.24, + "end": 6150.82, + "probability": 0.9721 + }, + { + "start": 6151.88, + "end": 6152.6, + "probability": 0.6587 + }, + { + "start": 6153.12, + "end": 6155.44, + "probability": 0.7883 + }, + { + "start": 6155.46, + "end": 6156.18, + "probability": 0.3427 + }, + { + "start": 6156.92, + "end": 6157.12, + "probability": 0.4769 + }, + { + "start": 6157.12, + "end": 6158.2, + "probability": 0.5356 + }, + { + "start": 6158.3, + "end": 6158.44, + "probability": 0.361 + }, + { + "start": 6158.62, + "end": 6160.88, + "probability": 0.7932 + }, + { + "start": 6161.24, + "end": 6161.44, + "probability": 0.0197 + }, + { + "start": 6161.44, + "end": 6162.5, + "probability": 0.3291 + }, + { + "start": 6162.58, + "end": 6164.78, + "probability": 0.944 + }, + { + "start": 6166.2, + "end": 6169.36, + "probability": 0.9754 + }, + { + "start": 6170.66, + "end": 6172.54, + "probability": 0.8115 + }, + { + "start": 6172.54, + "end": 6173.66, + "probability": 0.1711 + }, + { + "start": 6175.14, + "end": 6176.76, + "probability": 0.0292 + }, + { + "start": 6176.76, + "end": 6177.74, + "probability": 0.1487 + }, + { + "start": 6177.76, + "end": 6177.86, + "probability": 0.0666 + }, + { + "start": 6177.86, + "end": 6180.56, + "probability": 0.7595 + }, + { + "start": 6181.22, + "end": 6184.14, + "probability": 0.9059 + }, + { + "start": 6185.1, + "end": 6187.98, + "probability": 0.8628 + }, + { + "start": 6188.78, + "end": 6192.78, + "probability": 0.1572 + }, + { + "start": 6192.92, + "end": 6193.36, + "probability": 0.0313 + }, + { + "start": 6193.5, + "end": 6196.56, + "probability": 0.7645 + }, + { + "start": 6196.66, + "end": 6202.26, + "probability": 0.7446 + }, + { + "start": 6202.76, + "end": 6204.6, + "probability": 0.896 + }, + { + "start": 6204.62, + "end": 6205.37, + "probability": 0.198 + }, + { + "start": 6206.26, + "end": 6208.42, + "probability": 0.047 + }, + { + "start": 6208.42, + "end": 6209.1, + "probability": 0.3375 + }, + { + "start": 6209.52, + "end": 6210.81, + "probability": 0.4834 + }, + { + "start": 6211.28, + "end": 6211.72, + "probability": 0.6724 + }, + { + "start": 6211.8, + "end": 6212.07, + "probability": 0.9403 + }, + { + "start": 6212.72, + "end": 6213.04, + "probability": 0.8384 + }, + { + "start": 6213.72, + "end": 6215.98, + "probability": 0.9644 + }, + { + "start": 6216.28, + "end": 6220.04, + "probability": 0.9904 + }, + { + "start": 6222.02, + "end": 6224.24, + "probability": 0.666 + }, + { + "start": 6224.84, + "end": 6225.88, + "probability": 0.7575 + }, + { + "start": 6226.74, + "end": 6228.16, + "probability": 0.8557 + }, + { + "start": 6228.82, + "end": 6229.78, + "probability": 0.9867 + }, + { + "start": 6230.12, + "end": 6231.02, + "probability": 0.9865 + }, + { + "start": 6231.54, + "end": 6232.54, + "probability": 0.7814 + }, + { + "start": 6233.82, + "end": 6235.14, + "probability": 0.9944 + }, + { + "start": 6236.82, + "end": 6237.74, + "probability": 0.7327 + }, + { + "start": 6238.74, + "end": 6239.82, + "probability": 0.8303 + }, + { + "start": 6240.82, + "end": 6243.74, + "probability": 0.978 + }, + { + "start": 6244.64, + "end": 6245.2, + "probability": 0.6923 + }, + { + "start": 6248.64, + "end": 6249.6, + "probability": 0.215 + }, + { + "start": 6250.76, + "end": 6251.2, + "probability": 0.7865 + }, + { + "start": 6251.92, + "end": 6252.72, + "probability": 0.6667 + }, + { + "start": 6254.24, + "end": 6257.6, + "probability": 0.7843 + }, + { + "start": 6258.5, + "end": 6260.08, + "probability": 0.9803 + }, + { + "start": 6261.1, + "end": 6263.8, + "probability": 0.6709 + }, + { + "start": 6264.7, + "end": 6267.36, + "probability": 0.8663 + }, + { + "start": 6268.46, + "end": 6269.52, + "probability": 0.9495 + }, + { + "start": 6269.64, + "end": 6270.48, + "probability": 0.8587 + }, + { + "start": 6270.86, + "end": 6272.02, + "probability": 0.8467 + }, + { + "start": 6272.46, + "end": 6273.34, + "probability": 0.6451 + }, + { + "start": 6274.32, + "end": 6279.78, + "probability": 0.9961 + }, + { + "start": 6280.22, + "end": 6280.86, + "probability": 0.2424 + }, + { + "start": 6282.5, + "end": 6284.0, + "probability": 0.9671 + }, + { + "start": 6288.68, + "end": 6290.22, + "probability": 0.7535 + }, + { + "start": 6291.04, + "end": 6292.92, + "probability": 0.8634 + }, + { + "start": 6294.78, + "end": 6299.54, + "probability": 0.9876 + }, + { + "start": 6300.22, + "end": 6303.92, + "probability": 0.9688 + }, + { + "start": 6305.0, + "end": 6308.8, + "probability": 0.9733 + }, + { + "start": 6309.94, + "end": 6313.12, + "probability": 0.9937 + }, + { + "start": 6315.56, + "end": 6319.91, + "probability": 0.844 + }, + { + "start": 6323.1, + "end": 6323.84, + "probability": 0.8288 + }, + { + "start": 6324.42, + "end": 6325.96, + "probability": 0.9084 + }, + { + "start": 6326.78, + "end": 6327.5, + "probability": 0.9824 + }, + { + "start": 6327.94, + "end": 6328.66, + "probability": 0.7556 + }, + { + "start": 6329.06, + "end": 6330.44, + "probability": 0.9746 + }, + { + "start": 6331.52, + "end": 6334.88, + "probability": 0.9962 + }, + { + "start": 6335.8, + "end": 6338.52, + "probability": 0.7983 + }, + { + "start": 6339.76, + "end": 6340.2, + "probability": 0.3369 + }, + { + "start": 6340.92, + "end": 6342.68, + "probability": 0.9869 + }, + { + "start": 6344.74, + "end": 6347.5, + "probability": 0.8699 + }, + { + "start": 6348.74, + "end": 6351.92, + "probability": 0.8452 + }, + { + "start": 6352.64, + "end": 6353.57, + "probability": 0.818 + }, + { + "start": 6354.32, + "end": 6358.26, + "probability": 0.9618 + }, + { + "start": 6360.42, + "end": 6362.52, + "probability": 0.9645 + }, + { + "start": 6362.88, + "end": 6365.12, + "probability": 0.9912 + }, + { + "start": 6365.3, + "end": 6366.1, + "probability": 0.7975 + }, + { + "start": 6366.36, + "end": 6367.26, + "probability": 0.9873 + }, + { + "start": 6367.64, + "end": 6368.16, + "probability": 0.9846 + }, + { + "start": 6368.48, + "end": 6372.94, + "probability": 0.9609 + }, + { + "start": 6373.82, + "end": 6377.58, + "probability": 0.9952 + }, + { + "start": 6379.74, + "end": 6381.14, + "probability": 0.6324 + }, + { + "start": 6382.04, + "end": 6384.02, + "probability": 0.8794 + }, + { + "start": 6385.16, + "end": 6386.26, + "probability": 0.9163 + }, + { + "start": 6393.48, + "end": 6396.16, + "probability": 0.8904 + }, + { + "start": 6397.1, + "end": 6401.84, + "probability": 0.9646 + }, + { + "start": 6403.12, + "end": 6405.0, + "probability": 0.9993 + }, + { + "start": 6405.6, + "end": 6407.36, + "probability": 0.7348 + }, + { + "start": 6407.92, + "end": 6410.56, + "probability": 0.9784 + }, + { + "start": 6411.0, + "end": 6411.62, + "probability": 0.7457 + }, + { + "start": 6413.55, + "end": 6414.22, + "probability": 0.3481 + }, + { + "start": 6414.22, + "end": 6415.0, + "probability": 0.6595 + }, + { + "start": 6416.14, + "end": 6417.26, + "probability": 0.7581 + }, + { + "start": 6418.1, + "end": 6421.28, + "probability": 0.9653 + }, + { + "start": 6429.32, + "end": 6430.48, + "probability": 0.7875 + }, + { + "start": 6431.48, + "end": 6434.44, + "probability": 0.9604 + }, + { + "start": 6434.76, + "end": 6436.94, + "probability": 0.7484 + }, + { + "start": 6437.62, + "end": 6438.7, + "probability": 0.9832 + }, + { + "start": 6439.1, + "end": 6441.48, + "probability": 0.9124 + }, + { + "start": 6442.34, + "end": 6443.44, + "probability": 0.9652 + }, + { + "start": 6443.84, + "end": 6444.92, + "probability": 0.9323 + }, + { + "start": 6445.42, + "end": 6448.48, + "probability": 0.8611 + }, + { + "start": 6449.54, + "end": 6450.7, + "probability": 0.9968 + }, + { + "start": 6451.26, + "end": 6453.76, + "probability": 0.9141 + }, + { + "start": 6454.3, + "end": 6454.84, + "probability": 0.9641 + }, + { + "start": 6455.74, + "end": 6456.8, + "probability": 0.7734 + }, + { + "start": 6459.7, + "end": 6460.92, + "probability": 0.9736 + }, + { + "start": 6461.66, + "end": 6463.36, + "probability": 0.9612 + }, + { + "start": 6463.82, + "end": 6467.0, + "probability": 0.839 + }, + { + "start": 6467.52, + "end": 6471.56, + "probability": 0.9658 + }, + { + "start": 6471.7, + "end": 6473.82, + "probability": 0.9159 + }, + { + "start": 6474.62, + "end": 6479.16, + "probability": 0.9943 + }, + { + "start": 6479.26, + "end": 6485.02, + "probability": 0.9865 + }, + { + "start": 6485.2, + "end": 6486.4, + "probability": 0.2864 + }, + { + "start": 6486.66, + "end": 6489.4, + "probability": 0.9929 + }, + { + "start": 6489.42, + "end": 6493.22, + "probability": 0.9564 + }, + { + "start": 6495.34, + "end": 6497.26, + "probability": 0.9203 + }, + { + "start": 6497.78, + "end": 6498.9, + "probability": 0.9147 + }, + { + "start": 6499.72, + "end": 6501.4, + "probability": 0.8721 + }, + { + "start": 6502.04, + "end": 6505.06, + "probability": 0.9319 + }, + { + "start": 6506.08, + "end": 6510.7, + "probability": 0.9385 + }, + { + "start": 6511.34, + "end": 6513.74, + "probability": 0.8302 + }, + { + "start": 6513.8, + "end": 6515.86, + "probability": 0.8851 + }, + { + "start": 6515.92, + "end": 6518.52, + "probability": 0.9702 + }, + { + "start": 6519.28, + "end": 6521.28, + "probability": 0.9868 + }, + { + "start": 6521.72, + "end": 6522.64, + "probability": 0.8343 + }, + { + "start": 6523.42, + "end": 6524.77, + "probability": 0.9946 + }, + { + "start": 6525.38, + "end": 6528.74, + "probability": 0.9593 + }, + { + "start": 6529.38, + "end": 6531.58, + "probability": 0.9835 + }, + { + "start": 6532.14, + "end": 6533.18, + "probability": 0.9412 + }, + { + "start": 6534.0, + "end": 6534.86, + "probability": 0.9375 + }, + { + "start": 6537.08, + "end": 6537.08, + "probability": 0.0761 + }, + { + "start": 6537.08, + "end": 6538.14, + "probability": 0.4267 + }, + { + "start": 6538.14, + "end": 6540.44, + "probability": 0.9091 + }, + { + "start": 6540.8, + "end": 6542.02, + "probability": 0.0709 + }, + { + "start": 6542.02, + "end": 6542.02, + "probability": 0.1855 + }, + { + "start": 6542.16, + "end": 6542.94, + "probability": 0.2809 + }, + { + "start": 6543.04, + "end": 6544.84, + "probability": 0.5844 + }, + { + "start": 6545.14, + "end": 6546.17, + "probability": 0.1691 + }, + { + "start": 6546.34, + "end": 6547.48, + "probability": 0.4269 + }, + { + "start": 6547.54, + "end": 6547.92, + "probability": 0.3272 + }, + { + "start": 6547.92, + "end": 6553.62, + "probability": 0.8909 + }, + { + "start": 6553.72, + "end": 6554.18, + "probability": 0.2785 + }, + { + "start": 6554.28, + "end": 6558.46, + "probability": 0.7566 + }, + { + "start": 6558.74, + "end": 6561.2, + "probability": 0.7292 + }, + { + "start": 6561.2, + "end": 6561.34, + "probability": 0.0214 + }, + { + "start": 6561.44, + "end": 6561.6, + "probability": 0.0787 + }, + { + "start": 6561.6, + "end": 6563.92, + "probability": 0.8597 + }, + { + "start": 6563.98, + "end": 6565.0, + "probability": 0.8812 + }, + { + "start": 6565.18, + "end": 6567.44, + "probability": 0.8394 + }, + { + "start": 6567.62, + "end": 6568.66, + "probability": 0.167 + }, + { + "start": 6568.74, + "end": 6569.9, + "probability": 0.3349 + }, + { + "start": 6569.9, + "end": 6570.64, + "probability": 0.5668 + }, + { + "start": 6572.04, + "end": 6574.64, + "probability": 0.0684 + }, + { + "start": 6575.34, + "end": 6576.02, + "probability": 0.0708 + }, + { + "start": 6576.02, + "end": 6576.08, + "probability": 0.084 + }, + { + "start": 6576.08, + "end": 6576.08, + "probability": 0.1004 + }, + { + "start": 6576.08, + "end": 6580.44, + "probability": 0.2675 + }, + { + "start": 6582.68, + "end": 6583.32, + "probability": 0.2457 + }, + { + "start": 6585.34, + "end": 6588.36, + "probability": 0.1174 + }, + { + "start": 6588.36, + "end": 6589.0, + "probability": 0.7113 + }, + { + "start": 6590.94, + "end": 6591.2, + "probability": 0.0935 + }, + { + "start": 6591.48, + "end": 6595.42, + "probability": 0.9693 + }, + { + "start": 6595.72, + "end": 6596.48, + "probability": 0.4309 + }, + { + "start": 6596.94, + "end": 6598.3, + "probability": 0.0506 + }, + { + "start": 6598.84, + "end": 6599.94, + "probability": 0.5359 + }, + { + "start": 6600.08, + "end": 6602.6, + "probability": 0.6937 + }, + { + "start": 6603.32, + "end": 6605.6, + "probability": 0.9727 + }, + { + "start": 6606.54, + "end": 6609.3, + "probability": 0.7364 + }, + { + "start": 6610.08, + "end": 6611.92, + "probability": 0.8857 + }, + { + "start": 6613.34, + "end": 6620.46, + "probability": 0.8867 + }, + { + "start": 6620.92, + "end": 6621.98, + "probability": 0.8031 + }, + { + "start": 6623.24, + "end": 6624.99, + "probability": 0.7267 + }, + { + "start": 6625.84, + "end": 6627.16, + "probability": 0.7527 + }, + { + "start": 6627.9, + "end": 6628.92, + "probability": 0.9192 + }, + { + "start": 6629.46, + "end": 6630.82, + "probability": 0.8979 + }, + { + "start": 6631.66, + "end": 6634.42, + "probability": 0.955 + }, + { + "start": 6635.18, + "end": 6636.34, + "probability": 0.987 + }, + { + "start": 6637.06, + "end": 6638.84, + "probability": 0.9835 + }, + { + "start": 6639.56, + "end": 6641.28, + "probability": 0.9207 + }, + { + "start": 6641.92, + "end": 6644.16, + "probability": 0.9518 + }, + { + "start": 6644.82, + "end": 6648.12, + "probability": 0.9882 + }, + { + "start": 6648.66, + "end": 6649.4, + "probability": 0.958 + }, + { + "start": 6649.92, + "end": 6656.18, + "probability": 0.9078 + }, + { + "start": 6657.12, + "end": 6659.14, + "probability": 0.9722 + }, + { + "start": 6659.28, + "end": 6661.7, + "probability": 0.8835 + }, + { + "start": 6664.72, + "end": 6664.82, + "probability": 0.0014 + }, + { + "start": 6667.16, + "end": 6672.02, + "probability": 0.7977 + }, + { + "start": 6672.74, + "end": 6675.06, + "probability": 0.6583 + }, + { + "start": 6676.02, + "end": 6678.72, + "probability": 0.7711 + }, + { + "start": 6679.28, + "end": 6679.86, + "probability": 0.9334 + }, + { + "start": 6679.94, + "end": 6680.76, + "probability": 0.9007 + }, + { + "start": 6680.84, + "end": 6685.58, + "probability": 0.996 + }, + { + "start": 6686.78, + "end": 6690.08, + "probability": 0.9682 + }, + { + "start": 6690.6, + "end": 6695.56, + "probability": 0.9974 + }, + { + "start": 6696.18, + "end": 6698.76, + "probability": 0.7328 + }, + { + "start": 6699.48, + "end": 6700.98, + "probability": 0.6265 + }, + { + "start": 6701.1, + "end": 6701.84, + "probability": 0.8461 + }, + { + "start": 6702.2, + "end": 6705.4, + "probability": 0.9918 + }, + { + "start": 6705.54, + "end": 6707.72, + "probability": 0.6947 + }, + { + "start": 6708.66, + "end": 6709.82, + "probability": 0.8882 + }, + { + "start": 6710.66, + "end": 6712.54, + "probability": 0.9297 + }, + { + "start": 6713.04, + "end": 6716.06, + "probability": 0.9269 + }, + { + "start": 6716.5, + "end": 6717.9, + "probability": 0.9216 + }, + { + "start": 6718.06, + "end": 6718.46, + "probability": 0.5234 + }, + { + "start": 6718.92, + "end": 6722.18, + "probability": 0.9963 + }, + { + "start": 6722.35, + "end": 6725.02, + "probability": 0.9995 + }, + { + "start": 6725.86, + "end": 6729.22, + "probability": 0.9583 + }, + { + "start": 6729.74, + "end": 6732.54, + "probability": 0.9517 + }, + { + "start": 6733.34, + "end": 6734.42, + "probability": 0.9709 + }, + { + "start": 6735.08, + "end": 6737.02, + "probability": 0.8964 + }, + { + "start": 6737.52, + "end": 6740.94, + "probability": 0.6732 + }, + { + "start": 6741.5, + "end": 6744.12, + "probability": 0.7594 + }, + { + "start": 6744.88, + "end": 6745.5, + "probability": 0.7958 + }, + { + "start": 6745.74, + "end": 6747.02, + "probability": 0.9924 + }, + { + "start": 6747.5, + "end": 6748.0, + "probability": 0.9409 + }, + { + "start": 6748.62, + "end": 6750.02, + "probability": 0.9376 + }, + { + "start": 6750.62, + "end": 6753.52, + "probability": 0.9935 + }, + { + "start": 6753.96, + "end": 6755.92, + "probability": 0.9726 + }, + { + "start": 6756.36, + "end": 6757.32, + "probability": 0.9087 + }, + { + "start": 6757.68, + "end": 6758.6, + "probability": 0.9798 + }, + { + "start": 6758.7, + "end": 6759.48, + "probability": 0.5176 + }, + { + "start": 6760.04, + "end": 6761.58, + "probability": 0.7859 + }, + { + "start": 6761.98, + "end": 6763.34, + "probability": 0.9688 + }, + { + "start": 6763.78, + "end": 6765.42, + "probability": 0.8402 + }, + { + "start": 6766.22, + "end": 6767.7, + "probability": 0.96 + }, + { + "start": 6768.26, + "end": 6769.56, + "probability": 0.9648 + }, + { + "start": 6770.18, + "end": 6773.62, + "probability": 0.9712 + }, + { + "start": 6774.1, + "end": 6776.08, + "probability": 0.9694 + }, + { + "start": 6776.74, + "end": 6777.86, + "probability": 0.676 + }, + { + "start": 6778.06, + "end": 6778.7, + "probability": 0.9017 + }, + { + "start": 6779.06, + "end": 6779.74, + "probability": 0.6721 + }, + { + "start": 6780.14, + "end": 6782.82, + "probability": 0.8717 + }, + { + "start": 6783.8, + "end": 6784.24, + "probability": 0.9404 + }, + { + "start": 6784.76, + "end": 6786.06, + "probability": 0.9917 + }, + { + "start": 6786.48, + "end": 6787.8, + "probability": 0.9829 + }, + { + "start": 6788.18, + "end": 6788.78, + "probability": 0.9755 + }, + { + "start": 6789.08, + "end": 6789.64, + "probability": 0.9706 + }, + { + "start": 6789.94, + "end": 6790.52, + "probability": 0.9937 + }, + { + "start": 6790.62, + "end": 6793.52, + "probability": 0.9526 + }, + { + "start": 6794.04, + "end": 6798.74, + "probability": 0.9412 + }, + { + "start": 6799.51, + "end": 6802.19, + "probability": 0.5812 + }, + { + "start": 6802.74, + "end": 6803.96, + "probability": 0.9614 + }, + { + "start": 6804.52, + "end": 6806.14, + "probability": 0.99 + }, + { + "start": 6806.92, + "end": 6809.46, + "probability": 0.9078 + }, + { + "start": 6809.9, + "end": 6811.24, + "probability": 0.9547 + }, + { + "start": 6811.56, + "end": 6812.5, + "probability": 0.5155 + }, + { + "start": 6812.96, + "end": 6814.22, + "probability": 0.9038 + }, + { + "start": 6814.58, + "end": 6815.54, + "probability": 0.8123 + }, + { + "start": 6816.2, + "end": 6821.32, + "probability": 0.9461 + }, + { + "start": 6821.74, + "end": 6823.02, + "probability": 0.8527 + }, + { + "start": 6823.32, + "end": 6823.96, + "probability": 0.9012 + }, + { + "start": 6824.78, + "end": 6827.0, + "probability": 0.9853 + }, + { + "start": 6827.96, + "end": 6829.96, + "probability": 0.9228 + }, + { + "start": 6830.54, + "end": 6832.01, + "probability": 0.9871 + }, + { + "start": 6832.6, + "end": 6833.46, + "probability": 0.9944 + }, + { + "start": 6833.74, + "end": 6834.66, + "probability": 0.9866 + }, + { + "start": 6835.04, + "end": 6838.04, + "probability": 0.9865 + }, + { + "start": 6838.48, + "end": 6841.12, + "probability": 0.9855 + }, + { + "start": 6841.56, + "end": 6844.64, + "probability": 0.9365 + }, + { + "start": 6845.46, + "end": 6849.3, + "probability": 0.9852 + }, + { + "start": 6849.68, + "end": 6852.12, + "probability": 0.9829 + }, + { + "start": 6852.66, + "end": 6853.34, + "probability": 0.9481 + }, + { + "start": 6853.9, + "end": 6859.76, + "probability": 0.9667 + }, + { + "start": 6860.48, + "end": 6865.14, + "probability": 0.9873 + }, + { + "start": 6865.4, + "end": 6866.52, + "probability": 0.816 + }, + { + "start": 6866.9, + "end": 6868.36, + "probability": 0.7734 + }, + { + "start": 6868.72, + "end": 6870.84, + "probability": 0.8922 + }, + { + "start": 6871.42, + "end": 6874.72, + "probability": 0.9725 + }, + { + "start": 6875.3, + "end": 6877.98, + "probability": 0.9369 + }, + { + "start": 6877.98, + "end": 6880.66, + "probability": 0.816 + }, + { + "start": 6880.98, + "end": 6882.34, + "probability": 0.72 + }, + { + "start": 6883.06, + "end": 6886.32, + "probability": 0.9905 + }, + { + "start": 6886.32, + "end": 6890.32, + "probability": 0.9863 + }, + { + "start": 6890.74, + "end": 6893.22, + "probability": 0.9314 + }, + { + "start": 6893.6, + "end": 6894.88, + "probability": 0.7741 + }, + { + "start": 6895.64, + "end": 6896.5, + "probability": 0.7196 + }, + { + "start": 6896.62, + "end": 6901.42, + "probability": 0.9814 + }, + { + "start": 6901.8, + "end": 6903.12, + "probability": 0.8117 + }, + { + "start": 6903.12, + "end": 6903.38, + "probability": 0.7655 + }, + { + "start": 6903.9, + "end": 6907.04, + "probability": 0.8996 + }, + { + "start": 6907.5, + "end": 6909.94, + "probability": 0.9915 + }, + { + "start": 6909.94, + "end": 6913.5, + "probability": 0.9844 + }, + { + "start": 6914.08, + "end": 6917.58, + "probability": 0.9492 + }, + { + "start": 6918.14, + "end": 6919.58, + "probability": 0.8302 + }, + { + "start": 6920.36, + "end": 6925.82, + "probability": 0.9472 + }, + { + "start": 6926.3, + "end": 6927.24, + "probability": 0.6074 + }, + { + "start": 6927.58, + "end": 6928.85, + "probability": 0.7521 + }, + { + "start": 6929.32, + "end": 6932.38, + "probability": 0.9846 + }, + { + "start": 6932.8, + "end": 6933.98, + "probability": 0.8383 + }, + { + "start": 6934.28, + "end": 6935.26, + "probability": 0.8563 + }, + { + "start": 6935.62, + "end": 6941.14, + "probability": 0.9641 + }, + { + "start": 6941.4, + "end": 6944.88, + "probability": 0.7716 + }, + { + "start": 6944.96, + "end": 6945.64, + "probability": 0.8622 + }, + { + "start": 6946.12, + "end": 6947.62, + "probability": 0.9955 + }, + { + "start": 6948.32, + "end": 6949.18, + "probability": 0.672 + }, + { + "start": 6949.5, + "end": 6952.32, + "probability": 0.756 + }, + { + "start": 6952.52, + "end": 6954.04, + "probability": 0.9707 + }, + { + "start": 6954.82, + "end": 6959.16, + "probability": 0.9236 + }, + { + "start": 6959.78, + "end": 6963.8, + "probability": 0.9848 + }, + { + "start": 6963.8, + "end": 6967.82, + "probability": 0.9978 + }, + { + "start": 6968.12, + "end": 6970.3, + "probability": 0.9935 + }, + { + "start": 6970.48, + "end": 6970.8, + "probability": 0.8234 + }, + { + "start": 6971.28, + "end": 6974.66, + "probability": 0.9967 + }, + { + "start": 6975.0, + "end": 6977.28, + "probability": 0.9978 + }, + { + "start": 6977.72, + "end": 6978.52, + "probability": 0.859 + }, + { + "start": 6979.44, + "end": 6982.14, + "probability": 0.61 + }, + { + "start": 6982.28, + "end": 6984.12, + "probability": 0.9166 + }, + { + "start": 6984.54, + "end": 6986.64, + "probability": 0.9679 + }, + { + "start": 6986.98, + "end": 6987.76, + "probability": 0.5911 + }, + { + "start": 6988.2, + "end": 6990.56, + "probability": 0.8285 + }, + { + "start": 6991.04, + "end": 6992.0, + "probability": 0.9083 + }, + { + "start": 6992.42, + "end": 6995.5, + "probability": 0.9329 + }, + { + "start": 6995.96, + "end": 6997.58, + "probability": 0.8138 + }, + { + "start": 6998.0, + "end": 6999.14, + "probability": 0.9731 + }, + { + "start": 7000.04, + "end": 7002.16, + "probability": 0.8795 + }, + { + "start": 7003.22, + "end": 7005.62, + "probability": 0.9992 + }, + { + "start": 7006.36, + "end": 7010.42, + "probability": 0.9728 + }, + { + "start": 7010.84, + "end": 7012.14, + "probability": 0.7074 + }, + { + "start": 7012.64, + "end": 7014.32, + "probability": 0.8664 + }, + { + "start": 7014.7, + "end": 7016.0, + "probability": 0.9056 + }, + { + "start": 7016.44, + "end": 7018.6, + "probability": 0.8584 + }, + { + "start": 7018.84, + "end": 7019.34, + "probability": 0.9601 + }, + { + "start": 7019.54, + "end": 7021.68, + "probability": 0.9702 + }, + { + "start": 7021.72, + "end": 7022.54, + "probability": 0.9775 + }, + { + "start": 7023.5, + "end": 7024.98, + "probability": 0.7954 + }, + { + "start": 7025.54, + "end": 7026.04, + "probability": 0.859 + }, + { + "start": 7026.84, + "end": 7029.48, + "probability": 0.9773 + }, + { + "start": 7030.1, + "end": 7031.61, + "probability": 0.6889 + }, + { + "start": 7032.5, + "end": 7033.22, + "probability": 0.8797 + }, + { + "start": 7033.86, + "end": 7037.82, + "probability": 0.9803 + }, + { + "start": 7038.46, + "end": 7041.78, + "probability": 0.9594 + }, + { + "start": 7042.72, + "end": 7043.84, + "probability": 0.9063 + }, + { + "start": 7044.46, + "end": 7045.82, + "probability": 0.9116 + }, + { + "start": 7046.0, + "end": 7047.06, + "probability": 0.948 + }, + { + "start": 7047.4, + "end": 7049.16, + "probability": 0.981 + }, + { + "start": 7050.0, + "end": 7054.26, + "probability": 0.9902 + }, + { + "start": 7054.68, + "end": 7055.28, + "probability": 0.6506 + }, + { + "start": 7055.88, + "end": 7056.98, + "probability": 0.8781 + }, + { + "start": 7057.72, + "end": 7059.18, + "probability": 0.991 + }, + { + "start": 7060.02, + "end": 7061.78, + "probability": 0.7448 + }, + { + "start": 7062.54, + "end": 7064.1, + "probability": 0.9017 + }, + { + "start": 7065.08, + "end": 7067.76, + "probability": 0.9219 + }, + { + "start": 7068.1, + "end": 7068.96, + "probability": 0.7474 + }, + { + "start": 7070.02, + "end": 7071.12, + "probability": 0.8568 + }, + { + "start": 7071.88, + "end": 7073.24, + "probability": 0.7696 + }, + { + "start": 7074.26, + "end": 7076.72, + "probability": 0.9628 + }, + { + "start": 7077.52, + "end": 7079.42, + "probability": 0.824 + }, + { + "start": 7080.08, + "end": 7082.5, + "probability": 0.9844 + }, + { + "start": 7083.28, + "end": 7084.74, + "probability": 0.6362 + }, + { + "start": 7085.26, + "end": 7086.68, + "probability": 0.9751 + }, + { + "start": 7088.02, + "end": 7091.06, + "probability": 0.9264 + }, + { + "start": 7091.76, + "end": 7096.34, + "probability": 0.9694 + }, + { + "start": 7097.12, + "end": 7099.74, + "probability": 0.925 + }, + { + "start": 7100.1, + "end": 7101.24, + "probability": 0.8613 + }, + { + "start": 7101.7, + "end": 7107.02, + "probability": 0.979 + }, + { + "start": 7108.04, + "end": 7110.18, + "probability": 0.9944 + }, + { + "start": 7110.24, + "end": 7112.66, + "probability": 0.9886 + }, + { + "start": 7113.08, + "end": 7115.78, + "probability": 0.9562 + }, + { + "start": 7116.0, + "end": 7116.98, + "probability": 0.8298 + }, + { + "start": 7117.52, + "end": 7120.08, + "probability": 0.8987 + }, + { + "start": 7121.18, + "end": 7123.92, + "probability": 0.9858 + }, + { + "start": 7123.92, + "end": 7126.34, + "probability": 0.9966 + }, + { + "start": 7126.84, + "end": 7128.3, + "probability": 0.8329 + }, + { + "start": 7128.9, + "end": 7132.04, + "probability": 0.9177 + }, + { + "start": 7132.76, + "end": 7134.34, + "probability": 0.7617 + }, + { + "start": 7134.86, + "end": 7136.3, + "probability": 0.9961 + }, + { + "start": 7137.08, + "end": 7137.38, + "probability": 0.8067 + }, + { + "start": 7137.9, + "end": 7138.92, + "probability": 0.9976 + }, + { + "start": 7139.38, + "end": 7141.82, + "probability": 0.9756 + }, + { + "start": 7142.2, + "end": 7144.39, + "probability": 0.9946 + }, + { + "start": 7145.1, + "end": 7146.7, + "probability": 0.9004 + }, + { + "start": 7146.86, + "end": 7147.54, + "probability": 0.9866 + }, + { + "start": 7148.02, + "end": 7148.8, + "probability": 0.9073 + }, + { + "start": 7149.58, + "end": 7153.38, + "probability": 0.9899 + }, + { + "start": 7153.86, + "end": 7154.47, + "probability": 0.9221 + }, + { + "start": 7155.04, + "end": 7156.21, + "probability": 0.9307 + }, + { + "start": 7156.62, + "end": 7158.8, + "probability": 0.7866 + }, + { + "start": 7158.82, + "end": 7160.06, + "probability": 0.9609 + }, + { + "start": 7160.34, + "end": 7161.24, + "probability": 0.3189 + }, + { + "start": 7161.84, + "end": 7162.36, + "probability": 0.638 + }, + { + "start": 7163.2, + "end": 7164.78, + "probability": 0.8442 + }, + { + "start": 7165.76, + "end": 7168.16, + "probability": 0.9478 + }, + { + "start": 7168.66, + "end": 7172.54, + "probability": 0.9175 + }, + { + "start": 7172.96, + "end": 7175.62, + "probability": 0.6856 + }, + { + "start": 7175.72, + "end": 7179.36, + "probability": 0.9875 + }, + { + "start": 7179.94, + "end": 7185.08, + "probability": 0.9973 + }, + { + "start": 7185.64, + "end": 7186.54, + "probability": 0.9985 + }, + { + "start": 7187.04, + "end": 7187.86, + "probability": 0.7364 + }, + { + "start": 7188.08, + "end": 7193.24, + "probability": 0.6496 + }, + { + "start": 7193.72, + "end": 7195.16, + "probability": 0.8682 + }, + { + "start": 7195.62, + "end": 7199.08, + "probability": 0.9806 + }, + { + "start": 7199.94, + "end": 7201.8, + "probability": 0.56 + }, + { + "start": 7202.08, + "end": 7203.46, + "probability": 0.7178 + }, + { + "start": 7203.56, + "end": 7206.74, + "probability": 0.9528 + }, + { + "start": 7207.14, + "end": 7209.08, + "probability": 0.9546 + }, + { + "start": 7209.68, + "end": 7211.56, + "probability": 0.6724 + }, + { + "start": 7211.98, + "end": 7215.86, + "probability": 0.8328 + }, + { + "start": 7216.32, + "end": 7219.22, + "probability": 0.8732 + }, + { + "start": 7219.8, + "end": 7221.42, + "probability": 0.4479 + }, + { + "start": 7221.64, + "end": 7224.08, + "probability": 0.6572 + }, + { + "start": 7224.18, + "end": 7225.16, + "probability": 0.9561 + }, + { + "start": 7225.7, + "end": 7227.72, + "probability": 0.8694 + }, + { + "start": 7228.14, + "end": 7229.32, + "probability": 0.9665 + }, + { + "start": 7229.74, + "end": 7231.54, + "probability": 0.97 + }, + { + "start": 7232.04, + "end": 7233.54, + "probability": 0.344 + }, + { + "start": 7233.56, + "end": 7235.06, + "probability": 0.9316 + }, + { + "start": 7235.22, + "end": 7235.58, + "probability": 0.6382 + }, + { + "start": 7235.62, + "end": 7238.22, + "probability": 0.8476 + }, + { + "start": 7238.94, + "end": 7242.1, + "probability": 0.9874 + }, + { + "start": 7242.12, + "end": 7242.12, + "probability": 0.643 + }, + { + "start": 7242.12, + "end": 7243.98, + "probability": 0.8031 + }, + { + "start": 7244.6, + "end": 7248.58, + "probability": 0.9562 + }, + { + "start": 7248.66, + "end": 7249.5, + "probability": 0.5323 + }, + { + "start": 7249.66, + "end": 7251.04, + "probability": 0.6804 + }, + { + "start": 7251.48, + "end": 7252.1, + "probability": 0.0965 + }, + { + "start": 7252.62, + "end": 7253.14, + "probability": 0.8579 + }, + { + "start": 7254.54, + "end": 7257.52, + "probability": 0.8817 + }, + { + "start": 7259.22, + "end": 7260.62, + "probability": 0.9834 + }, + { + "start": 7261.28, + "end": 7264.61, + "probability": 0.8776 + }, + { + "start": 7266.24, + "end": 7268.38, + "probability": 0.8838 + }, + { + "start": 7268.74, + "end": 7269.38, + "probability": 0.8246 + }, + { + "start": 7269.6, + "end": 7272.26, + "probability": 0.343 + }, + { + "start": 7272.94, + "end": 7275.72, + "probability": 0.8746 + }, + { + "start": 7277.26, + "end": 7279.98, + "probability": 0.9394 + }, + { + "start": 7280.08, + "end": 7281.42, + "probability": 0.6636 + }, + { + "start": 7282.42, + "end": 7282.44, + "probability": 0.0188 + }, + { + "start": 7282.44, + "end": 7284.26, + "probability": 0.8391 + }, + { + "start": 7285.18, + "end": 7286.46, + "probability": 0.7992 + }, + { + "start": 7286.66, + "end": 7290.72, + "probability": 0.9579 + }, + { + "start": 7290.8, + "end": 7293.04, + "probability": 0.2558 + }, + { + "start": 7295.11, + "end": 7297.84, + "probability": 0.8048 + }, + { + "start": 7297.9, + "end": 7299.06, + "probability": 0.7057 + }, + { + "start": 7300.16, + "end": 7301.36, + "probability": 0.7969 + }, + { + "start": 7302.62, + "end": 7304.6, + "probability": 0.9822 + }, + { + "start": 7304.74, + "end": 7304.84, + "probability": 0.1827 + }, + { + "start": 7305.34, + "end": 7305.96, + "probability": 0.7987 + }, + { + "start": 7306.0, + "end": 7307.64, + "probability": 0.6868 + }, + { + "start": 7307.78, + "end": 7313.18, + "probability": 0.5116 + }, + { + "start": 7314.04, + "end": 7317.14, + "probability": 0.3233 + }, + { + "start": 7317.58, + "end": 7317.58, + "probability": 0.0081 + }, + { + "start": 7317.58, + "end": 7318.32, + "probability": 0.547 + }, + { + "start": 7318.62, + "end": 7318.8, + "probability": 0.2694 + }, + { + "start": 7318.8, + "end": 7320.46, + "probability": 0.7215 + }, + { + "start": 7320.76, + "end": 7321.32, + "probability": 0.2736 + }, + { + "start": 7321.74, + "end": 7323.36, + "probability": 0.8777 + }, + { + "start": 7324.12, + "end": 7324.2, + "probability": 0.5628 + }, + { + "start": 7324.2, + "end": 7325.58, + "probability": 0.741 + }, + { + "start": 7326.78, + "end": 7330.16, + "probability": 0.0197 + }, + { + "start": 7330.16, + "end": 7334.5, + "probability": 0.0435 + }, + { + "start": 7334.84, + "end": 7335.31, + "probability": 0.0857 + }, + { + "start": 7335.9, + "end": 7339.08, + "probability": 0.1912 + }, + { + "start": 7340.32, + "end": 7340.34, + "probability": 0.1721 + }, + { + "start": 7340.34, + "end": 7340.83, + "probability": 0.2934 + }, + { + "start": 7341.2, + "end": 7341.2, + "probability": 0.1791 + }, + { + "start": 7341.2, + "end": 7341.74, + "probability": 0.6596 + }, + { + "start": 7341.9, + "end": 7343.65, + "probability": 0.0547 + }, + { + "start": 7346.48, + "end": 7349.12, + "probability": 0.4192 + }, + { + "start": 7350.38, + "end": 7350.72, + "probability": 0.1067 + }, + { + "start": 7350.72, + "end": 7351.11, + "probability": 0.0186 + }, + { + "start": 7351.28, + "end": 7351.3, + "probability": 0.3138 + }, + { + "start": 7351.3, + "end": 7351.3, + "probability": 0.2706 + }, + { + "start": 7351.3, + "end": 7352.82, + "probability": 0.5387 + }, + { + "start": 7353.16, + "end": 7354.8, + "probability": 0.4501 + }, + { + "start": 7358.18, + "end": 7358.8, + "probability": 0.4482 + }, + { + "start": 7359.56, + "end": 7361.58, + "probability": 0.2581 + }, + { + "start": 7365.68, + "end": 7367.22, + "probability": 0.1823 + }, + { + "start": 7367.54, + "end": 7368.12, + "probability": 0.2364 + }, + { + "start": 7368.18, + "end": 7368.22, + "probability": 0.3547 + }, + { + "start": 7368.22, + "end": 7372.15, + "probability": 0.1235 + }, + { + "start": 7374.88, + "end": 7377.4, + "probability": 0.7238 + }, + { + "start": 7377.53, + "end": 7377.93, + "probability": 0.3311 + }, + { + "start": 7381.04, + "end": 7383.52, + "probability": 0.0934 + }, + { + "start": 7383.56, + "end": 7383.88, + "probability": 0.0643 + }, + { + "start": 7383.88, + "end": 7383.94, + "probability": 0.0222 + }, + { + "start": 7383.94, + "end": 7384.46, + "probability": 0.0052 + }, + { + "start": 7384.46, + "end": 7384.46, + "probability": 0.1826 + }, + { + "start": 7384.46, + "end": 7385.36, + "probability": 0.0285 + }, + { + "start": 7385.36, + "end": 7385.98, + "probability": 0.0768 + }, + { + "start": 7386.0, + "end": 7386.0, + "probability": 0.0 + }, + { + "start": 7386.0, + "end": 7386.0, + "probability": 0.0 + }, + { + "start": 7386.72, + "end": 7390.26, + "probability": 0.4856 + }, + { + "start": 7390.28, + "end": 7390.64, + "probability": 0.4647 + }, + { + "start": 7390.78, + "end": 7393.24, + "probability": 0.743 + }, + { + "start": 7393.24, + "end": 7393.9, + "probability": 0.4983 + }, + { + "start": 7394.12, + "end": 7394.2, + "probability": 0.4589 + }, + { + "start": 7394.2, + "end": 7394.84, + "probability": 0.7379 + }, + { + "start": 7394.84, + "end": 7397.94, + "probability": 0.5732 + }, + { + "start": 7397.96, + "end": 7397.96, + "probability": 0.0079 + }, + { + "start": 7397.96, + "end": 7399.64, + "probability": 0.4065 + }, + { + "start": 7400.76, + "end": 7402.66, + "probability": 0.8897 + }, + { + "start": 7402.78, + "end": 7406.78, + "probability": 0.4286 + }, + { + "start": 7407.7, + "end": 7407.82, + "probability": 0.0532 + }, + { + "start": 7408.04, + "end": 7408.3, + "probability": 0.0252 + }, + { + "start": 7408.3, + "end": 7408.3, + "probability": 0.1352 + }, + { + "start": 7408.3, + "end": 7409.68, + "probability": 0.3893 + }, + { + "start": 7410.52, + "end": 7410.52, + "probability": 0.085 + }, + { + "start": 7410.52, + "end": 7411.15, + "probability": 0.3408 + }, + { + "start": 7411.64, + "end": 7412.72, + "probability": 0.8551 + }, + { + "start": 7412.94, + "end": 7415.2, + "probability": 0.8203 + }, + { + "start": 7415.28, + "end": 7416.22, + "probability": 0.8133 + }, + { + "start": 7416.76, + "end": 7416.76, + "probability": 0.0282 + }, + { + "start": 7416.76, + "end": 7416.76, + "probability": 0.2902 + }, + { + "start": 7416.76, + "end": 7416.76, + "probability": 0.0332 + }, + { + "start": 7416.76, + "end": 7416.76, + "probability": 0.1672 + }, + { + "start": 7416.76, + "end": 7418.75, + "probability": 0.8733 + }, + { + "start": 7418.98, + "end": 7420.52, + "probability": 0.6673 + }, + { + "start": 7420.68, + "end": 7421.24, + "probability": 0.184 + }, + { + "start": 7421.62, + "end": 7422.78, + "probability": 0.7839 + }, + { + "start": 7423.46, + "end": 7424.88, + "probability": 0.7405 + }, + { + "start": 7425.28, + "end": 7425.44, + "probability": 0.2444 + }, + { + "start": 7425.44, + "end": 7425.44, + "probability": 0.1363 + }, + { + "start": 7425.44, + "end": 7425.92, + "probability": 0.8169 + }, + { + "start": 7426.08, + "end": 7427.82, + "probability": 0.5615 + }, + { + "start": 7427.88, + "end": 7428.6, + "probability": 0.3205 + }, + { + "start": 7428.8, + "end": 7430.0, + "probability": 0.8804 + }, + { + "start": 7430.68, + "end": 7431.54, + "probability": 0.9507 + }, + { + "start": 7431.6, + "end": 7433.12, + "probability": 0.8633 + }, + { + "start": 7433.16, + "end": 7434.14, + "probability": 0.3697 + }, + { + "start": 7434.14, + "end": 7435.18, + "probability": 0.5748 + }, + { + "start": 7436.15, + "end": 7441.28, + "probability": 0.8847 + }, + { + "start": 7441.36, + "end": 7442.28, + "probability": 0.0579 + }, + { + "start": 7446.22, + "end": 7447.14, + "probability": 0.1983 + }, + { + "start": 7447.22, + "end": 7448.62, + "probability": 0.0543 + }, + { + "start": 7448.74, + "end": 7448.97, + "probability": 0.0468 + }, + { + "start": 7449.76, + "end": 7452.42, + "probability": 0.6645 + }, + { + "start": 7452.5, + "end": 7453.42, + "probability": 0.6769 + }, + { + "start": 7453.6, + "end": 7453.76, + "probability": 0.3138 + }, + { + "start": 7453.76, + "end": 7457.08, + "probability": 0.279 + }, + { + "start": 7460.27, + "end": 7462.66, + "probability": 0.1313 + }, + { + "start": 7462.66, + "end": 7463.5, + "probability": 0.3013 + }, + { + "start": 7463.62, + "end": 7468.64, + "probability": 0.0354 + }, + { + "start": 7470.96, + "end": 7472.16, + "probability": 0.2716 + }, + { + "start": 7473.04, + "end": 7473.04, + "probability": 0.0314 + }, + { + "start": 7474.2, + "end": 7475.22, + "probability": 0.1257 + }, + { + "start": 7475.46, + "end": 7475.56, + "probability": 0.0638 + }, + { + "start": 7475.56, + "end": 7475.68, + "probability": 0.0384 + }, + { + "start": 7475.68, + "end": 7477.88, + "probability": 0.1772 + }, + { + "start": 7478.78, + "end": 7479.34, + "probability": 0.0974 + }, + { + "start": 7480.5, + "end": 7481.42, + "probability": 0.0841 + }, + { + "start": 7482.34, + "end": 7483.36, + "probability": 0.1093 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.0, + "end": 7513.0, + "probability": 0.0 + }, + { + "start": 7513.98, + "end": 7518.82, + "probability": 0.7416 + }, + { + "start": 7518.82, + "end": 7521.66, + "probability": 0.574 + }, + { + "start": 7521.84, + "end": 7523.66, + "probability": 0.9312 + }, + { + "start": 7524.8, + "end": 7526.44, + "probability": 0.5288 + }, + { + "start": 7526.46, + "end": 7527.84, + "probability": 0.5097 + }, + { + "start": 7527.98, + "end": 7530.08, + "probability": 0.9095 + }, + { + "start": 7530.64, + "end": 7531.92, + "probability": 0.8016 + }, + { + "start": 7531.98, + "end": 7533.34, + "probability": 0.5659 + }, + { + "start": 7533.8, + "end": 7534.78, + "probability": 0.8448 + }, + { + "start": 7534.94, + "end": 7536.3, + "probability": 0.7799 + }, + { + "start": 7536.64, + "end": 7541.0, + "probability": 0.9946 + }, + { + "start": 7541.0, + "end": 7544.4, + "probability": 0.9799 + }, + { + "start": 7544.6, + "end": 7545.56, + "probability": 0.6724 + }, + { + "start": 7545.9, + "end": 7546.33, + "probability": 0.6193 + }, + { + "start": 7547.32, + "end": 7548.56, + "probability": 0.8257 + }, + { + "start": 7548.72, + "end": 7550.44, + "probability": 0.1485 + }, + { + "start": 7550.44, + "end": 7550.86, + "probability": 0.5321 + }, + { + "start": 7551.54, + "end": 7552.72, + "probability": 0.9581 + }, + { + "start": 7553.4, + "end": 7555.9, + "probability": 0.5214 + }, + { + "start": 7555.9, + "end": 7556.26, + "probability": 0.4203 + }, + { + "start": 7556.52, + "end": 7559.03, + "probability": 0.8801 + }, + { + "start": 7559.86, + "end": 7559.86, + "probability": 0.0572 + }, + { + "start": 7559.86, + "end": 7562.32, + "probability": 0.6438 + }, + { + "start": 7562.62, + "end": 7565.66, + "probability": 0.5182 + }, + { + "start": 7566.02, + "end": 7566.9, + "probability": 0.2225 + }, + { + "start": 7566.92, + "end": 7571.66, + "probability": 0.4663 + }, + { + "start": 7571.76, + "end": 7572.68, + "probability": 0.5518 + }, + { + "start": 7575.48, + "end": 7575.55, + "probability": 0.0968 + }, + { + "start": 7576.3, + "end": 7576.68, + "probability": 0.5621 + }, + { + "start": 7576.68, + "end": 7578.96, + "probability": 0.4247 + }, + { + "start": 7579.3, + "end": 7581.94, + "probability": 0.3108 + }, + { + "start": 7582.36, + "end": 7583.34, + "probability": 0.5938 + }, + { + "start": 7584.24, + "end": 7584.56, + "probability": 0.0231 + }, + { + "start": 7585.4, + "end": 7586.44, + "probability": 0.1603 + }, + { + "start": 7586.78, + "end": 7587.92, + "probability": 0.0789 + }, + { + "start": 7588.8, + "end": 7590.1, + "probability": 0.3965 + }, + { + "start": 7590.12, + "end": 7590.18, + "probability": 0.2377 + }, + { + "start": 7590.18, + "end": 7590.62, + "probability": 0.1693 + }, + { + "start": 7590.62, + "end": 7590.98, + "probability": 0.1127 + }, + { + "start": 7591.18, + "end": 7593.42, + "probability": 0.6548 + }, + { + "start": 7593.6, + "end": 7593.6, + "probability": 0.2942 + }, + { + "start": 7594.2, + "end": 7595.7, + "probability": 0.0525 + }, + { + "start": 7595.7, + "end": 7596.1, + "probability": 0.0836 + }, + { + "start": 7596.26, + "end": 7599.44, + "probability": 0.0272 + }, + { + "start": 7602.16, + "end": 7605.06, + "probability": 0.0803 + }, + { + "start": 7608.56, + "end": 7610.7, + "probability": 0.5309 + }, + { + "start": 7611.26, + "end": 7613.3, + "probability": 0.6831 + }, + { + "start": 7614.62, + "end": 7615.98, + "probability": 0.0249 + }, + { + "start": 7616.04, + "end": 7616.78, + "probability": 0.0995 + }, + { + "start": 7616.78, + "end": 7620.06, + "probability": 0.11 + }, + { + "start": 7620.22, + "end": 7622.48, + "probability": 0.2675 + }, + { + "start": 7622.94, + "end": 7627.38, + "probability": 0.019 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7667.0, + "end": 7667.0, + "probability": 0.0 + }, + { + "start": 7671.39, + "end": 7675.6, + "probability": 0.2765 + }, + { + "start": 7675.64, + "end": 7677.06, + "probability": 0.1269 + }, + { + "start": 7677.24, + "end": 7680.04, + "probability": 0.1546 + }, + { + "start": 7680.28, + "end": 7681.22, + "probability": 0.1464 + }, + { + "start": 7681.96, + "end": 7682.84, + "probability": 0.0199 + }, + { + "start": 7682.84, + "end": 7684.82, + "probability": 0.0853 + }, + { + "start": 7684.82, + "end": 7686.14, + "probability": 0.3499 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7790.0, + "end": 7790.0, + "probability": 0.0 + }, + { + "start": 7797.18, + "end": 7799.68, + "probability": 0.0158 + }, + { + "start": 7800.08, + "end": 7800.84, + "probability": 0.0762 + }, + { + "start": 7800.84, + "end": 7803.36, + "probability": 0.033 + }, + { + "start": 7803.46, + "end": 7805.34, + "probability": 0.0959 + }, + { + "start": 7805.52, + "end": 7805.52, + "probability": 0.0624 + }, + { + "start": 7805.52, + "end": 7806.28, + "probability": 0.0675 + }, + { + "start": 7807.0, + "end": 7808.86, + "probability": 0.3298 + }, + { + "start": 7809.0, + "end": 7810.74, + "probability": 0.1409 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7914.0, + "end": 7914.0, + "probability": 0.0 + }, + { + "start": 7923.02, + "end": 7923.78, + "probability": 0.2232 + }, + { + "start": 7924.58, + "end": 7925.44, + "probability": 0.1649 + }, + { + "start": 7925.48, + "end": 7925.92, + "probability": 0.1451 + }, + { + "start": 7926.18, + "end": 7930.28, + "probability": 0.0444 + }, + { + "start": 7930.28, + "end": 7932.79, + "probability": 0.0538 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.0, + "end": 8046.0, + "probability": 0.0 + }, + { + "start": 8046.24, + "end": 8046.24, + "probability": 0.0152 + }, + { + "start": 8046.24, + "end": 8046.64, + "probability": 0.1611 + }, + { + "start": 8047.16, + "end": 8047.16, + "probability": 0.0598 + }, + { + "start": 8047.16, + "end": 8047.88, + "probability": 0.3356 + }, + { + "start": 8048.28, + "end": 8048.74, + "probability": 0.792 + }, + { + "start": 8049.06, + "end": 8053.14, + "probability": 0.9453 + }, + { + "start": 8055.12, + "end": 8055.88, + "probability": 0.4425 + }, + { + "start": 8055.88, + "end": 8057.69, + "probability": 0.8578 + }, + { + "start": 8057.86, + "end": 8061.74, + "probability": 0.946 + }, + { + "start": 8062.06, + "end": 8062.8, + "probability": 0.686 + }, + { + "start": 8062.82, + "end": 8064.3, + "probability": 0.3455 + }, + { + "start": 8064.94, + "end": 8066.96, + "probability": 0.9476 + }, + { + "start": 8067.58, + "end": 8068.48, + "probability": 0.9152 + }, + { + "start": 8068.56, + "end": 8069.18, + "probability": 0.6529 + }, + { + "start": 8069.2, + "end": 8071.34, + "probability": 0.9478 + }, + { + "start": 8071.34, + "end": 8071.9, + "probability": 0.3612 + }, + { + "start": 8072.46, + "end": 8073.26, + "probability": 0.2244 + }, + { + "start": 8073.82, + "end": 8075.04, + "probability": 0.8228 + }, + { + "start": 8075.96, + "end": 8078.46, + "probability": 0.7169 + }, + { + "start": 8079.04, + "end": 8082.52, + "probability": 0.9487 + }, + { + "start": 8083.02, + "end": 8083.86, + "probability": 0.9629 + }, + { + "start": 8084.78, + "end": 8085.54, + "probability": 0.9133 + }, + { + "start": 8087.16, + "end": 8090.5, + "probability": 0.6277 + }, + { + "start": 8091.36, + "end": 8094.02, + "probability": 0.9233 + }, + { + "start": 8094.64, + "end": 8096.36, + "probability": 0.2936 + }, + { + "start": 8096.36, + "end": 8099.92, + "probability": 0.7067 + }, + { + "start": 8100.44, + "end": 8100.44, + "probability": 0.5699 + }, + { + "start": 8103.06, + "end": 8103.06, + "probability": 0.1445 + }, + { + "start": 8104.56, + "end": 8106.38, + "probability": 0.605 + }, + { + "start": 8106.38, + "end": 8106.66, + "probability": 0.4838 + }, + { + "start": 8107.5, + "end": 8108.16, + "probability": 0.7694 + }, + { + "start": 8108.9, + "end": 8109.04, + "probability": 0.6124 + }, + { + "start": 8109.12, + "end": 8109.61, + "probability": 0.8438 + }, + { + "start": 8109.84, + "end": 8110.54, + "probability": 0.9268 + }, + { + "start": 8110.64, + "end": 8111.12, + "probability": 0.9365 + }, + { + "start": 8113.46, + "end": 8118.0, + "probability": 0.8071 + }, + { + "start": 8118.12, + "end": 8119.14, + "probability": 0.3171 + }, + { + "start": 8119.14, + "end": 8119.76, + "probability": 0.6859 + }, + { + "start": 8120.36, + "end": 8120.92, + "probability": 0.4371 + }, + { + "start": 8122.74, + "end": 8123.34, + "probability": 0.915 + }, + { + "start": 8125.86, + "end": 8128.5, + "probability": 0.9893 + }, + { + "start": 8128.6, + "end": 8129.22, + "probability": 0.7417 + }, + { + "start": 8132.36, + "end": 8133.76, + "probability": 0.4415 + }, + { + "start": 8134.78, + "end": 8136.04, + "probability": 0.2999 + }, + { + "start": 8136.04, + "end": 8136.42, + "probability": 0.2925 + }, + { + "start": 8137.24, + "end": 8138.64, + "probability": 0.4565 + }, + { + "start": 8138.7, + "end": 8139.82, + "probability": 0.2647 + }, + { + "start": 8140.34, + "end": 8141.73, + "probability": 0.7955 + }, + { + "start": 8142.92, + "end": 8143.24, + "probability": 0.0095 + }, + { + "start": 8143.26, + "end": 8143.76, + "probability": 0.4379 + }, + { + "start": 8143.84, + "end": 8146.94, + "probability": 0.71 + }, + { + "start": 8148.12, + "end": 8150.38, + "probability": 0.9845 + }, + { + "start": 8151.3, + "end": 8151.88, + "probability": 0.9132 + }, + { + "start": 8152.92, + "end": 8155.38, + "probability": 0.8688 + }, + { + "start": 8156.68, + "end": 8160.18, + "probability": 0.9514 + }, + { + "start": 8161.16, + "end": 8163.18, + "probability": 0.9756 + }, + { + "start": 8164.56, + "end": 8169.06, + "probability": 0.9878 + }, + { + "start": 8170.42, + "end": 8173.94, + "probability": 0.9938 + }, + { + "start": 8175.28, + "end": 8178.34, + "probability": 0.9799 + }, + { + "start": 8179.56, + "end": 8180.26, + "probability": 0.9644 + }, + { + "start": 8180.96, + "end": 8184.86, + "probability": 0.9625 + }, + { + "start": 8185.62, + "end": 8189.64, + "probability": 0.9874 + }, + { + "start": 8190.2, + "end": 8192.6, + "probability": 0.9499 + }, + { + "start": 8193.97, + "end": 8196.74, + "probability": 0.9777 + }, + { + "start": 8196.74, + "end": 8199.38, + "probability": 0.9955 + }, + { + "start": 8200.32, + "end": 8200.68, + "probability": 0.6453 + }, + { + "start": 8200.84, + "end": 8204.68, + "probability": 0.929 + }, + { + "start": 8204.72, + "end": 8207.56, + "probability": 0.9728 + }, + { + "start": 8208.84, + "end": 8214.9, + "probability": 0.9946 + }, + { + "start": 8215.86, + "end": 8220.04, + "probability": 0.7189 + }, + { + "start": 8225.7, + "end": 8226.68, + "probability": 0.7227 + }, + { + "start": 8226.82, + "end": 8228.94, + "probability": 0.5946 + }, + { + "start": 8229.0, + "end": 8232.86, + "probability": 0.9838 + }, + { + "start": 8233.19, + "end": 8236.18, + "probability": 0.9863 + }, + { + "start": 8237.04, + "end": 8239.12, + "probability": 0.98 + }, + { + "start": 8239.12, + "end": 8241.36, + "probability": 0.9996 + }, + { + "start": 8242.74, + "end": 8242.74, + "probability": 0.2372 + }, + { + "start": 8244.12, + "end": 8247.52, + "probability": 0.9535 + }, + { + "start": 8248.44, + "end": 8251.96, + "probability": 0.9962 + }, + { + "start": 8252.58, + "end": 8255.18, + "probability": 0.8297 + }, + { + "start": 8256.4, + "end": 8260.4, + "probability": 0.956 + }, + { + "start": 8260.48, + "end": 8261.14, + "probability": 0.5969 + }, + { + "start": 8261.92, + "end": 8264.9, + "probability": 0.7597 + }, + { + "start": 8265.64, + "end": 8267.54, + "probability": 0.8426 + }, + { + "start": 8268.16, + "end": 8272.48, + "probability": 0.9841 + }, + { + "start": 8273.02, + "end": 8278.54, + "probability": 0.9828 + }, + { + "start": 8279.92, + "end": 8282.58, + "probability": 0.9553 + }, + { + "start": 8282.58, + "end": 8285.3, + "probability": 0.9917 + }, + { + "start": 8286.04, + "end": 8289.02, + "probability": 0.9956 + }, + { + "start": 8289.02, + "end": 8292.56, + "probability": 0.9973 + }, + { + "start": 8293.6, + "end": 8296.18, + "probability": 0.9511 + }, + { + "start": 8297.2, + "end": 8298.96, + "probability": 0.4508 + }, + { + "start": 8299.96, + "end": 8301.24, + "probability": 0.9854 + }, + { + "start": 8302.42, + "end": 8306.74, + "probability": 0.983 + }, + { + "start": 8307.26, + "end": 8309.44, + "probability": 0.9952 + }, + { + "start": 8310.32, + "end": 8312.72, + "probability": 0.9583 + }, + { + "start": 8312.74, + "end": 8316.1, + "probability": 0.9897 + }, + { + "start": 8316.78, + "end": 8319.96, + "probability": 0.9821 + }, + { + "start": 8320.84, + "end": 8321.06, + "probability": 0.7581 + }, + { + "start": 8321.48, + "end": 8324.12, + "probability": 0.7133 + }, + { + "start": 8324.84, + "end": 8329.54, + "probability": 0.9771 + }, + { + "start": 8329.78, + "end": 8331.94, + "probability": 0.9228 + }, + { + "start": 8331.98, + "end": 8333.32, + "probability": 0.8179 + }, + { + "start": 8334.26, + "end": 8337.74, + "probability": 0.9717 + }, + { + "start": 8338.5, + "end": 8338.6, + "probability": 0.3842 + }, + { + "start": 8338.96, + "end": 8343.9, + "probability": 0.8774 + }, + { + "start": 8344.76, + "end": 8345.46, + "probability": 0.5976 + }, + { + "start": 8353.2, + "end": 8356.4, + "probability": 0.949 + }, + { + "start": 8356.9, + "end": 8357.38, + "probability": 0.7312 + }, + { + "start": 8358.58, + "end": 8359.38, + "probability": 0.8322 + }, + { + "start": 8359.68, + "end": 8362.7, + "probability": 0.9805 + }, + { + "start": 8362.76, + "end": 8363.5, + "probability": 0.738 + }, + { + "start": 8364.38, + "end": 8367.46, + "probability": 0.9647 + }, + { + "start": 8367.56, + "end": 8367.84, + "probability": 0.7228 + }, + { + "start": 8367.98, + "end": 8372.1, + "probability": 0.9138 + }, + { + "start": 8372.7, + "end": 8375.76, + "probability": 0.9863 + }, + { + "start": 8375.76, + "end": 8378.92, + "probability": 0.9873 + }, + { + "start": 8379.64, + "end": 8381.48, + "probability": 0.9497 + }, + { + "start": 8382.16, + "end": 8383.16, + "probability": 0.6374 + }, + { + "start": 8383.32, + "end": 8385.66, + "probability": 0.9771 + }, + { + "start": 8385.66, + "end": 8390.2, + "probability": 0.983 + }, + { + "start": 8390.7, + "end": 8394.14, + "probability": 0.9954 + }, + { + "start": 8394.88, + "end": 8396.54, + "probability": 0.8142 + }, + { + "start": 8396.64, + "end": 8398.08, + "probability": 0.6655 + }, + { + "start": 8398.54, + "end": 8401.22, + "probability": 0.9014 + }, + { + "start": 8401.3, + "end": 8401.7, + "probability": 0.9216 + }, + { + "start": 8402.24, + "end": 8403.9, + "probability": 0.9064 + }, + { + "start": 8405.0, + "end": 8409.02, + "probability": 0.9414 + }, + { + "start": 8409.68, + "end": 8412.12, + "probability": 0.9445 + }, + { + "start": 8412.82, + "end": 8417.6, + "probability": 0.9147 + }, + { + "start": 8418.32, + "end": 8420.96, + "probability": 0.9836 + }, + { + "start": 8421.42, + "end": 8423.0, + "probability": 0.8377 + }, + { + "start": 8423.6, + "end": 8426.26, + "probability": 0.9736 + }, + { + "start": 8426.8, + "end": 8429.22, + "probability": 0.9941 + }, + { + "start": 8430.62, + "end": 8432.48, + "probability": 0.8654 + }, + { + "start": 8433.7, + "end": 8435.94, + "probability": 0.8875 + }, + { + "start": 8436.08, + "end": 8440.54, + "probability": 0.9275 + }, + { + "start": 8440.66, + "end": 8441.94, + "probability": 0.7666 + }, + { + "start": 8442.64, + "end": 8443.52, + "probability": 0.8767 + }, + { + "start": 8443.58, + "end": 8448.32, + "probability": 0.7699 + }, + { + "start": 8448.92, + "end": 8449.3, + "probability": 0.8303 + }, + { + "start": 8449.86, + "end": 8453.12, + "probability": 0.686 + }, + { + "start": 8453.78, + "end": 8455.4, + "probability": 0.9868 + }, + { + "start": 8456.44, + "end": 8460.56, + "probability": 0.9468 + }, + { + "start": 8461.62, + "end": 8464.68, + "probability": 0.9816 + }, + { + "start": 8465.86, + "end": 8466.96, + "probability": 0.5721 + }, + { + "start": 8467.74, + "end": 8468.76, + "probability": 0.9131 + }, + { + "start": 8468.98, + "end": 8471.12, + "probability": 0.9873 + }, + { + "start": 8472.09, + "end": 8472.64, + "probability": 0.9827 + }, + { + "start": 8473.54, + "end": 8475.34, + "probability": 0.9042 + }, + { + "start": 8476.14, + "end": 8478.1, + "probability": 0.9952 + }, + { + "start": 8478.42, + "end": 8479.2, + "probability": 0.4416 + }, + { + "start": 8479.26, + "end": 8481.28, + "probability": 0.7843 + }, + { + "start": 8482.08, + "end": 8484.98, + "probability": 0.9933 + }, + { + "start": 8486.38, + "end": 8490.64, + "probability": 0.9348 + }, + { + "start": 8491.62, + "end": 8496.12, + "probability": 0.9892 + }, + { + "start": 8497.0, + "end": 8499.84, + "probability": 0.9839 + }, + { + "start": 8500.62, + "end": 8504.96, + "probability": 0.9738 + }, + { + "start": 8506.18, + "end": 8510.38, + "probability": 0.9805 + }, + { + "start": 8511.42, + "end": 8514.66, + "probability": 0.97 + }, + { + "start": 8514.74, + "end": 8517.7, + "probability": 0.9606 + }, + { + "start": 8518.28, + "end": 8521.18, + "probability": 0.8579 + }, + { + "start": 8521.32, + "end": 8525.02, + "probability": 0.904 + }, + { + "start": 8525.36, + "end": 8527.56, + "probability": 0.6778 + }, + { + "start": 8528.18, + "end": 8531.4, + "probability": 0.9486 + }, + { + "start": 8531.9, + "end": 8533.6, + "probability": 0.7428 + }, + { + "start": 8534.46, + "end": 8534.92, + "probability": 0.9379 + }, + { + "start": 8535.68, + "end": 8538.66, + "probability": 0.9032 + }, + { + "start": 8539.36, + "end": 8543.76, + "probability": 0.9469 + }, + { + "start": 8544.48, + "end": 8548.26, + "probability": 0.9715 + }, + { + "start": 8548.6, + "end": 8549.56, + "probability": 0.8147 + }, + { + "start": 8550.16, + "end": 8554.24, + "probability": 0.8415 + }, + { + "start": 8555.02, + "end": 8559.24, + "probability": 0.9719 + }, + { + "start": 8559.86, + "end": 8560.66, + "probability": 0.9968 + }, + { + "start": 8561.28, + "end": 8564.46, + "probability": 0.9062 + }, + { + "start": 8565.0, + "end": 8566.92, + "probability": 0.9183 + }, + { + "start": 8568.14, + "end": 8570.4, + "probability": 0.761 + }, + { + "start": 8570.86, + "end": 8573.74, + "probability": 0.9929 + }, + { + "start": 8574.4, + "end": 8576.7, + "probability": 0.9241 + }, + { + "start": 8577.42, + "end": 8579.52, + "probability": 0.9257 + }, + { + "start": 8579.52, + "end": 8581.64, + "probability": 0.8658 + }, + { + "start": 8582.06, + "end": 8583.66, + "probability": 0.9506 + }, + { + "start": 8584.08, + "end": 8587.84, + "probability": 0.9752 + }, + { + "start": 8589.06, + "end": 8591.32, + "probability": 0.8426 + }, + { + "start": 8592.06, + "end": 8594.2, + "probability": 0.9312 + }, + { + "start": 8594.98, + "end": 8597.88, + "probability": 0.9666 + }, + { + "start": 8598.38, + "end": 8601.18, + "probability": 0.8975 + }, + { + "start": 8602.18, + "end": 8604.86, + "probability": 0.9775 + }, + { + "start": 8605.72, + "end": 8609.98, + "probability": 0.9738 + }, + { + "start": 8610.58, + "end": 8611.92, + "probability": 0.8857 + }, + { + "start": 8612.14, + "end": 8615.56, + "probability": 0.9797 + }, + { + "start": 8616.22, + "end": 8619.74, + "probability": 0.9447 + }, + { + "start": 8620.08, + "end": 8622.62, + "probability": 0.9861 + }, + { + "start": 8623.0, + "end": 8626.18, + "probability": 0.989 + }, + { + "start": 8626.76, + "end": 8627.82, + "probability": 0.9128 + }, + { + "start": 8628.22, + "end": 8628.54, + "probability": 0.4234 + }, + { + "start": 8628.62, + "end": 8629.44, + "probability": 0.9099 + }, + { + "start": 8629.92, + "end": 8632.26, + "probability": 0.9722 + }, + { + "start": 8633.24, + "end": 8636.44, + "probability": 0.9812 + }, + { + "start": 8636.44, + "end": 8639.48, + "probability": 0.9486 + }, + { + "start": 8640.36, + "end": 8645.3, + "probability": 0.8679 + }, + { + "start": 8645.88, + "end": 8647.88, + "probability": 0.9734 + }, + { + "start": 8648.18, + "end": 8648.59, + "probability": 0.3594 + }, + { + "start": 8648.88, + "end": 8650.86, + "probability": 0.972 + }, + { + "start": 8651.74, + "end": 8654.44, + "probability": 0.9861 + }, + { + "start": 8654.72, + "end": 8655.92, + "probability": 0.9487 + }, + { + "start": 8656.54, + "end": 8658.1, + "probability": 0.6956 + }, + { + "start": 8658.92, + "end": 8661.92, + "probability": 0.9823 + }, + { + "start": 8661.98, + "end": 8665.88, + "probability": 0.8364 + }, + { + "start": 8667.02, + "end": 8667.52, + "probability": 0.9373 + }, + { + "start": 8668.3, + "end": 8669.84, + "probability": 0.9631 + }, + { + "start": 8670.24, + "end": 8671.28, + "probability": 0.7344 + }, + { + "start": 8671.98, + "end": 8672.26, + "probability": 0.7115 + }, + { + "start": 8672.62, + "end": 8675.02, + "probability": 0.9829 + }, + { + "start": 8675.46, + "end": 8678.8, + "probability": 0.9768 + }, + { + "start": 8679.82, + "end": 8680.88, + "probability": 0.826 + }, + { + "start": 8681.54, + "end": 8684.22, + "probability": 0.9567 + }, + { + "start": 8684.9, + "end": 8687.6, + "probability": 0.9759 + }, + { + "start": 8687.6, + "end": 8691.18, + "probability": 0.9867 + }, + { + "start": 8691.66, + "end": 8694.18, + "probability": 0.9143 + }, + { + "start": 8694.88, + "end": 8695.86, + "probability": 0.8853 + }, + { + "start": 8696.46, + "end": 8699.56, + "probability": 0.9951 + }, + { + "start": 8700.2, + "end": 8700.56, + "probability": 0.7404 + }, + { + "start": 8701.38, + "end": 8703.28, + "probability": 0.9133 + }, + { + "start": 8704.28, + "end": 8705.78, + "probability": 0.9046 + }, + { + "start": 8706.48, + "end": 8708.78, + "probability": 0.766 + }, + { + "start": 8709.32, + "end": 8711.0, + "probability": 0.769 + }, + { + "start": 8711.72, + "end": 8714.36, + "probability": 0.8225 + }, + { + "start": 8715.08, + "end": 8716.06, + "probability": 0.6266 + }, + { + "start": 8716.78, + "end": 8718.16, + "probability": 0.8613 + }, + { + "start": 8718.86, + "end": 8722.22, + "probability": 0.9695 + }, + { + "start": 8722.22, + "end": 8725.4, + "probability": 0.9956 + }, + { + "start": 8725.52, + "end": 8726.31, + "probability": 0.9916 + }, + { + "start": 8726.7, + "end": 8727.62, + "probability": 0.9463 + }, + { + "start": 8727.68, + "end": 8727.9, + "probability": 0.5679 + }, + { + "start": 8728.7, + "end": 8729.32, + "probability": 0.7746 + }, + { + "start": 8730.78, + "end": 8733.3, + "probability": 0.932 + }, + { + "start": 8734.32, + "end": 8735.96, + "probability": 0.8062 + }, + { + "start": 8737.16, + "end": 8738.3, + "probability": 0.9597 + }, + { + "start": 8739.06, + "end": 8744.16, + "probability": 0.9426 + }, + { + "start": 8744.74, + "end": 8746.9, + "probability": 0.8138 + }, + { + "start": 8747.44, + "end": 8747.66, + "probability": 0.3765 + }, + { + "start": 8749.3, + "end": 8752.32, + "probability": 0.9982 + }, + { + "start": 8753.26, + "end": 8756.66, + "probability": 0.9302 + }, + { + "start": 8757.4, + "end": 8759.18, + "probability": 0.976 + }, + { + "start": 8759.28, + "end": 8761.08, + "probability": 0.9972 + }, + { + "start": 8762.98, + "end": 8763.54, + "probability": 0.8204 + }, + { + "start": 8764.88, + "end": 8765.84, + "probability": 0.7962 + }, + { + "start": 8766.52, + "end": 8767.26, + "probability": 0.8037 + }, + { + "start": 8773.82, + "end": 8774.96, + "probability": 0.0344 + }, + { + "start": 8775.64, + "end": 8778.32, + "probability": 0.3804 + }, + { + "start": 8778.4, + "end": 8779.8, + "probability": 0.6591 + }, + { + "start": 8779.94, + "end": 8784.14, + "probability": 0.7958 + }, + { + "start": 8784.3, + "end": 8786.64, + "probability": 0.7993 + }, + { + "start": 8787.46, + "end": 8789.6, + "probability": 0.6416 + }, + { + "start": 8789.6, + "end": 8790.18, + "probability": 0.7104 + }, + { + "start": 8790.18, + "end": 8790.18, + "probability": 0.0967 + }, + { + "start": 8790.18, + "end": 8790.94, + "probability": 0.8505 + }, + { + "start": 8791.24, + "end": 8797.12, + "probability": 0.9009 + }, + { + "start": 8798.32, + "end": 8799.84, + "probability": 0.797 + }, + { + "start": 8800.06, + "end": 8805.58, + "probability": 0.9951 + }, + { + "start": 8805.58, + "end": 8812.58, + "probability": 0.6839 + }, + { + "start": 8813.36, + "end": 8816.86, + "probability": 0.998 + }, + { + "start": 8816.86, + "end": 8819.72, + "probability": 0.9992 + }, + { + "start": 8820.92, + "end": 8823.38, + "probability": 0.999 + }, + { + "start": 8823.38, + "end": 8827.8, + "probability": 0.9763 + }, + { + "start": 8827.86, + "end": 8828.56, + "probability": 0.7973 + }, + { + "start": 8829.12, + "end": 8832.1, + "probability": 0.9958 + }, + { + "start": 8832.1, + "end": 8835.48, + "probability": 0.9991 + }, + { + "start": 8836.2, + "end": 8840.04, + "probability": 0.9975 + }, + { + "start": 8840.16, + "end": 8843.76, + "probability": 0.8071 + }, + { + "start": 8844.46, + "end": 8847.24, + "probability": 0.9972 + }, + { + "start": 8847.24, + "end": 8849.9, + "probability": 0.9966 + }, + { + "start": 8850.74, + "end": 8853.38, + "probability": 0.9962 + }, + { + "start": 8854.14, + "end": 8857.72, + "probability": 0.9989 + }, + { + "start": 8857.86, + "end": 8858.98, + "probability": 0.9094 + }, + { + "start": 8859.5, + "end": 8861.66, + "probability": 0.9936 + }, + { + "start": 8862.14, + "end": 8864.58, + "probability": 0.9945 + }, + { + "start": 8865.16, + "end": 8865.88, + "probability": 0.9754 + }, + { + "start": 8866.44, + "end": 8870.4, + "probability": 0.9976 + }, + { + "start": 8871.4, + "end": 8874.12, + "probability": 0.9991 + }, + { + "start": 8875.18, + "end": 8875.52, + "probability": 0.6831 + }, + { + "start": 8876.08, + "end": 8878.53, + "probability": 0.9697 + }, + { + "start": 8880.1, + "end": 8880.34, + "probability": 0.9486 + }, + { + "start": 8880.44, + "end": 8881.62, + "probability": 0.9589 + }, + { + "start": 8881.68, + "end": 8882.34, + "probability": 0.9604 + }, + { + "start": 8882.48, + "end": 8882.9, + "probability": 0.9525 + }, + { + "start": 8882.96, + "end": 8883.18, + "probability": 0.9542 + }, + { + "start": 8883.28, + "end": 8884.54, + "probability": 0.9058 + }, + { + "start": 8885.38, + "end": 8887.34, + "probability": 0.8364 + }, + { + "start": 8888.04, + "end": 8888.86, + "probability": 0.5432 + }, + { + "start": 8889.54, + "end": 8891.2, + "probability": 0.3301 + }, + { + "start": 8893.06, + "end": 8897.32, + "probability": 0.7585 + }, + { + "start": 8898.1, + "end": 8900.42, + "probability": 0.925 + }, + { + "start": 8900.82, + "end": 8902.48, + "probability": 0.9878 + }, + { + "start": 8902.86, + "end": 8903.72, + "probability": 0.9606 + }, + { + "start": 8903.86, + "end": 8905.54, + "probability": 0.2582 + }, + { + "start": 8905.76, + "end": 8909.74, + "probability": 0.3361 + }, + { + "start": 8909.94, + "end": 8922.28, + "probability": 0.1048 + }, + { + "start": 8922.84, + "end": 8926.9, + "probability": 0.0118 + }, + { + "start": 8928.18, + "end": 8929.22, + "probability": 0.3321 + }, + { + "start": 8930.28, + "end": 8933.34, + "probability": 0.3502 + }, + { + "start": 8933.64, + "end": 8935.77, + "probability": 0.1935 + }, + { + "start": 8936.0, + "end": 8938.9, + "probability": 0.5276 + }, + { + "start": 8939.1, + "end": 8939.74, + "probability": 0.2669 + }, + { + "start": 8939.78, + "end": 8944.29, + "probability": 0.9636 + }, + { + "start": 8945.5, + "end": 8947.3, + "probability": 0.9525 + }, + { + "start": 8947.44, + "end": 8948.0, + "probability": 0.5701 + }, + { + "start": 8948.2, + "end": 8950.52, + "probability": 0.9839 + }, + { + "start": 8952.36, + "end": 8956.94, + "probability": 0.9492 + }, + { + "start": 8957.1, + "end": 8958.06, + "probability": 0.8274 + }, + { + "start": 8958.64, + "end": 8958.96, + "probability": 0.5605 + }, + { + "start": 8959.6, + "end": 8963.56, + "probability": 0.9932 + }, + { + "start": 8964.74, + "end": 8969.14, + "probability": 0.9967 + }, + { + "start": 8970.44, + "end": 8974.12, + "probability": 0.9607 + }, + { + "start": 8974.12, + "end": 8976.62, + "probability": 0.9983 + }, + { + "start": 8977.32, + "end": 8978.38, + "probability": 0.9961 + }, + { + "start": 8979.06, + "end": 8979.84, + "probability": 0.8513 + }, + { + "start": 8979.92, + "end": 8983.66, + "probability": 0.9697 + }, + { + "start": 8985.66, + "end": 8986.84, + "probability": 0.8384 + }, + { + "start": 8987.76, + "end": 8993.24, + "probability": 0.9236 + }, + { + "start": 8994.14, + "end": 8994.74, + "probability": 0.9199 + }, + { + "start": 8996.14, + "end": 8998.16, + "probability": 0.955 + }, + { + "start": 8998.84, + "end": 8999.96, + "probability": 0.9525 + }, + { + "start": 9000.14, + "end": 9003.98, + "probability": 0.9954 + }, + { + "start": 9005.18, + "end": 9006.13, + "probability": 0.8604 + }, + { + "start": 9006.78, + "end": 9009.36, + "probability": 0.9945 + }, + { + "start": 9009.64, + "end": 9011.24, + "probability": 0.9792 + }, + { + "start": 9011.7, + "end": 9011.94, + "probability": 0.8607 + }, + { + "start": 9012.58, + "end": 9015.4, + "probability": 0.9301 + }, + { + "start": 9016.04, + "end": 9018.02, + "probability": 0.9931 + }, + { + "start": 9018.6, + "end": 9023.32, + "probability": 0.9979 + }, + { + "start": 9024.24, + "end": 9025.78, + "probability": 0.2744 + }, + { + "start": 9026.06, + "end": 9026.34, + "probability": 0.401 + }, + { + "start": 9026.4, + "end": 9028.08, + "probability": 0.2998 + }, + { + "start": 9028.64, + "end": 9032.8, + "probability": 0.3833 + }, + { + "start": 9034.35, + "end": 9035.38, + "probability": 0.6011 + }, + { + "start": 9035.42, + "end": 9035.5, + "probability": 0.0099 + }, + { + "start": 9035.5, + "end": 9036.3, + "probability": 0.0617 + }, + { + "start": 9036.3, + "end": 9037.34, + "probability": 0.3706 + }, + { + "start": 9037.46, + "end": 9038.44, + "probability": 0.3627 + }, + { + "start": 9038.56, + "end": 9041.5, + "probability": 0.1096 + }, + { + "start": 9041.5, + "end": 9041.5, + "probability": 0.0694 + }, + { + "start": 9041.5, + "end": 9041.5, + "probability": 0.169 + }, + { + "start": 9041.5, + "end": 9041.85, + "probability": 0.0199 + }, + { + "start": 9042.24, + "end": 9042.5, + "probability": 0.5047 + }, + { + "start": 9042.6, + "end": 9045.14, + "probability": 0.9305 + }, + { + "start": 9045.26, + "end": 9047.72, + "probability": 0.8351 + }, + { + "start": 9048.52, + "end": 9053.72, + "probability": 0.9617 + }, + { + "start": 9054.26, + "end": 9057.06, + "probability": 0.9347 + }, + { + "start": 9057.4, + "end": 9059.02, + "probability": 0.9921 + }, + { + "start": 9059.48, + "end": 9060.5, + "probability": 0.984 + }, + { + "start": 9060.6, + "end": 9062.38, + "probability": 0.9846 + }, + { + "start": 9062.88, + "end": 9064.04, + "probability": 0.9961 + }, + { + "start": 9064.3, + "end": 9066.72, + "probability": 0.9971 + }, + { + "start": 9067.56, + "end": 9067.96, + "probability": 0.8809 + }, + { + "start": 9068.1, + "end": 9069.04, + "probability": 0.655 + }, + { + "start": 9069.16, + "end": 9073.34, + "probability": 0.9767 + }, + { + "start": 9073.74, + "end": 9075.02, + "probability": 0.9918 + }, + { + "start": 9076.18, + "end": 9077.54, + "probability": 0.9725 + }, + { + "start": 9077.72, + "end": 9079.32, + "probability": 0.9937 + }, + { + "start": 9080.1, + "end": 9080.87, + "probability": 0.9244 + }, + { + "start": 9081.28, + "end": 9082.94, + "probability": 0.8891 + }, + { + "start": 9083.52, + "end": 9087.6, + "probability": 0.9656 + }, + { + "start": 9088.24, + "end": 9091.66, + "probability": 0.9475 + }, + { + "start": 9092.18, + "end": 9093.4, + "probability": 0.9926 + }, + { + "start": 9094.32, + "end": 9097.06, + "probability": 0.9985 + }, + { + "start": 9097.06, + "end": 9099.36, + "probability": 0.9792 + }, + { + "start": 9101.12, + "end": 9101.62, + "probability": 0.6985 + }, + { + "start": 9101.7, + "end": 9102.08, + "probability": 0.8505 + }, + { + "start": 9102.16, + "end": 9106.14, + "probability": 0.9772 + }, + { + "start": 9106.66, + "end": 9108.2, + "probability": 0.9841 + }, + { + "start": 9109.32, + "end": 9109.78, + "probability": 0.8121 + }, + { + "start": 9110.3, + "end": 9111.86, + "probability": 0.998 + }, + { + "start": 9112.72, + "end": 9116.22, + "probability": 0.9371 + }, + { + "start": 9116.78, + "end": 9120.82, + "probability": 0.9927 + }, + { + "start": 9120.82, + "end": 9125.28, + "probability": 0.999 + }, + { + "start": 9125.5, + "end": 9127.5, + "probability": 0.8444 + }, + { + "start": 9128.44, + "end": 9131.46, + "probability": 0.9946 + }, + { + "start": 9132.68, + "end": 9133.14, + "probability": 0.8 + }, + { + "start": 9133.3, + "end": 9136.3, + "probability": 0.9332 + }, + { + "start": 9136.66, + "end": 9142.24, + "probability": 0.9666 + }, + { + "start": 9143.12, + "end": 9146.22, + "probability": 0.9966 + }, + { + "start": 9147.48, + "end": 9148.4, + "probability": 0.9365 + }, + { + "start": 9149.26, + "end": 9150.8, + "probability": 0.999 + }, + { + "start": 9151.44, + "end": 9154.56, + "probability": 0.9943 + }, + { + "start": 9155.58, + "end": 9156.62, + "probability": 0.8395 + }, + { + "start": 9157.8, + "end": 9160.36, + "probability": 0.9966 + }, + { + "start": 9160.36, + "end": 9164.2, + "probability": 0.9873 + }, + { + "start": 9165.06, + "end": 9170.36, + "probability": 0.9954 + }, + { + "start": 9171.1, + "end": 9174.18, + "probability": 0.9916 + }, + { + "start": 9175.28, + "end": 9176.16, + "probability": 0.9535 + }, + { + "start": 9177.54, + "end": 9180.56, + "probability": 0.9959 + }, + { + "start": 9181.4, + "end": 9181.7, + "probability": 0.9514 + }, + { + "start": 9183.4, + "end": 9184.74, + "probability": 0.9902 + }, + { + "start": 9185.32, + "end": 9188.54, + "probability": 0.9957 + }, + { + "start": 9188.7, + "end": 9192.04, + "probability": 0.9997 + }, + { + "start": 9193.18, + "end": 9197.06, + "probability": 0.9981 + }, + { + "start": 9197.06, + "end": 9201.36, + "probability": 0.9984 + }, + { + "start": 9201.66, + "end": 9202.74, + "probability": 0.9954 + }, + { + "start": 9203.0, + "end": 9203.44, + "probability": 0.9148 + }, + { + "start": 9204.08, + "end": 9206.2, + "probability": 0.7946 + }, + { + "start": 9212.0, + "end": 9213.78, + "probability": 0.8978 + }, + { + "start": 9226.3, + "end": 9229.3, + "probability": 0.8499 + }, + { + "start": 9230.78, + "end": 9232.46, + "probability": 0.8698 + }, + { + "start": 9235.42, + "end": 9236.84, + "probability": 0.574 + }, + { + "start": 9236.88, + "end": 9238.32, + "probability": 0.9466 + }, + { + "start": 9238.4, + "end": 9238.9, + "probability": 0.8931 + }, + { + "start": 9239.6, + "end": 9240.32, + "probability": 0.5674 + }, + { + "start": 9241.56, + "end": 9242.04, + "probability": 0.9523 + }, + { + "start": 9243.24, + "end": 9244.42, + "probability": 0.9732 + }, + { + "start": 9245.1, + "end": 9246.48, + "probability": 0.3066 + }, + { + "start": 9246.9, + "end": 9247.86, + "probability": 0.9854 + }, + { + "start": 9250.06, + "end": 9250.7, + "probability": 0.9591 + }, + { + "start": 9251.38, + "end": 9253.03, + "probability": 0.6775 + }, + { + "start": 9253.44, + "end": 9257.16, + "probability": 0.6285 + }, + { + "start": 9258.34, + "end": 9260.56, + "probability": 0.859 + }, + { + "start": 9261.52, + "end": 9261.54, + "probability": 0.3316 + }, + { + "start": 9261.54, + "end": 9261.92, + "probability": 0.6118 + }, + { + "start": 9262.04, + "end": 9263.38, + "probability": 0.5555 + }, + { + "start": 9263.6, + "end": 9265.68, + "probability": 0.9109 + }, + { + "start": 9265.68, + "end": 9267.02, + "probability": 0.8398 + }, + { + "start": 9267.04, + "end": 9267.24, + "probability": 0.0954 + }, + { + "start": 9267.24, + "end": 9267.74, + "probability": 0.7773 + }, + { + "start": 9268.04, + "end": 9270.8, + "probability": 0.8955 + }, + { + "start": 9270.9, + "end": 9272.38, + "probability": 0.9113 + }, + { + "start": 9273.0, + "end": 9274.92, + "probability": 0.9973 + }, + { + "start": 9275.02, + "end": 9277.89, + "probability": 0.9919 + }, + { + "start": 9279.0, + "end": 9282.37, + "probability": 0.9858 + }, + { + "start": 9283.08, + "end": 9285.2, + "probability": 0.9128 + }, + { + "start": 9285.32, + "end": 9286.3, + "probability": 0.81 + }, + { + "start": 9286.38, + "end": 9287.06, + "probability": 0.9808 + }, + { + "start": 9287.08, + "end": 9288.5, + "probability": 0.9377 + }, + { + "start": 9288.72, + "end": 9290.39, + "probability": 0.78 + }, + { + "start": 9291.74, + "end": 9294.04, + "probability": 0.9941 + }, + { + "start": 9294.62, + "end": 9295.9, + "probability": 0.9827 + }, + { + "start": 9296.36, + "end": 9300.56, + "probability": 0.96 + }, + { + "start": 9301.22, + "end": 9304.42, + "probability": 0.998 + }, + { + "start": 9304.42, + "end": 9307.62, + "probability": 0.9993 + }, + { + "start": 9308.32, + "end": 9310.1, + "probability": 0.9933 + }, + { + "start": 9310.78, + "end": 9311.9, + "probability": 0.9973 + }, + { + "start": 9312.44, + "end": 9314.44, + "probability": 0.9985 + }, + { + "start": 9314.5, + "end": 9317.52, + "probability": 0.9921 + }, + { + "start": 9317.96, + "end": 9319.48, + "probability": 0.7797 + }, + { + "start": 9320.14, + "end": 9322.38, + "probability": 0.9521 + }, + { + "start": 9323.62, + "end": 9326.82, + "probability": 0.9341 + }, + { + "start": 9327.34, + "end": 9329.28, + "probability": 0.9161 + }, + { + "start": 9329.44, + "end": 9330.12, + "probability": 0.8303 + }, + { + "start": 9330.76, + "end": 9331.7, + "probability": 0.8353 + }, + { + "start": 9332.4, + "end": 9337.58, + "probability": 0.9952 + }, + { + "start": 9337.84, + "end": 9338.72, + "probability": 0.9592 + }, + { + "start": 9339.18, + "end": 9339.9, + "probability": 0.9067 + }, + { + "start": 9340.18, + "end": 9341.36, + "probability": 0.9658 + }, + { + "start": 9341.84, + "end": 9346.16, + "probability": 0.8408 + }, + { + "start": 9346.68, + "end": 9349.02, + "probability": 0.9833 + }, + { + "start": 9349.14, + "end": 9349.64, + "probability": 0.5891 + }, + { + "start": 9349.72, + "end": 9350.36, + "probability": 0.9309 + }, + { + "start": 9350.46, + "end": 9356.04, + "probability": 0.9347 + }, + { + "start": 9357.02, + "end": 9359.18, + "probability": 0.8976 + }, + { + "start": 9359.8, + "end": 9362.26, + "probability": 0.993 + }, + { + "start": 9362.5, + "end": 9363.22, + "probability": 0.8 + }, + { + "start": 9363.26, + "end": 9364.32, + "probability": 0.7158 + }, + { + "start": 9364.8, + "end": 9366.23, + "probability": 0.7246 + }, + { + "start": 9366.64, + "end": 9368.04, + "probability": 0.9227 + }, + { + "start": 9369.12, + "end": 9373.8, + "probability": 0.9748 + }, + { + "start": 9375.02, + "end": 9375.36, + "probability": 0.9238 + }, + { + "start": 9375.84, + "end": 9378.8, + "probability": 0.9833 + }, + { + "start": 9379.24, + "end": 9384.7, + "probability": 0.9956 + }, + { + "start": 9385.84, + "end": 9387.98, + "probability": 0.9873 + }, + { + "start": 9388.44, + "end": 9389.82, + "probability": 0.9703 + }, + { + "start": 9390.46, + "end": 9391.44, + "probability": 0.914 + }, + { + "start": 9392.38, + "end": 9396.02, + "probability": 0.9728 + }, + { + "start": 9396.68, + "end": 9397.74, + "probability": 0.5912 + }, + { + "start": 9397.8, + "end": 9399.02, + "probability": 0.9875 + }, + { + "start": 9399.7, + "end": 9401.46, + "probability": 0.9964 + }, + { + "start": 9401.98, + "end": 9403.54, + "probability": 0.9365 + }, + { + "start": 9403.74, + "end": 9405.49, + "probability": 0.7084 + }, + { + "start": 9406.34, + "end": 9406.92, + "probability": 0.7986 + }, + { + "start": 9407.04, + "end": 9408.42, + "probability": 0.9525 + }, + { + "start": 9409.14, + "end": 9411.36, + "probability": 0.9552 + }, + { + "start": 9412.1, + "end": 9417.06, + "probability": 0.8643 + }, + { + "start": 9417.56, + "end": 9420.04, + "probability": 0.8782 + }, + { + "start": 9420.36, + "end": 9422.23, + "probability": 0.9937 + }, + { + "start": 9422.64, + "end": 9423.46, + "probability": 0.938 + }, + { + "start": 9423.6, + "end": 9424.32, + "probability": 0.9044 + }, + { + "start": 9424.44, + "end": 9425.16, + "probability": 0.8412 + }, + { + "start": 9425.28, + "end": 9426.86, + "probability": 0.9943 + }, + { + "start": 9427.46, + "end": 9429.48, + "probability": 0.9726 + }, + { + "start": 9429.7, + "end": 9433.2, + "probability": 0.9652 + }, + { + "start": 9433.38, + "end": 9435.47, + "probability": 0.9941 + }, + { + "start": 9436.22, + "end": 9438.64, + "probability": 0.9849 + }, + { + "start": 9439.34, + "end": 9439.62, + "probability": 0.79 + }, + { + "start": 9439.64, + "end": 9440.48, + "probability": 0.9763 + }, + { + "start": 9440.6, + "end": 9441.34, + "probability": 0.6904 + }, + { + "start": 9441.7, + "end": 9442.74, + "probability": 0.8086 + }, + { + "start": 9443.1, + "end": 9444.18, + "probability": 0.9423 + }, + { + "start": 9444.26, + "end": 9446.76, + "probability": 0.946 + }, + { + "start": 9446.84, + "end": 9447.44, + "probability": 0.9744 + }, + { + "start": 9447.46, + "end": 9448.9, + "probability": 0.951 + }, + { + "start": 9449.84, + "end": 9450.98, + "probability": 0.9362 + }, + { + "start": 9451.08, + "end": 9451.84, + "probability": 0.7982 + }, + { + "start": 9451.94, + "end": 9453.24, + "probability": 0.9903 + }, + { + "start": 9453.34, + "end": 9454.18, + "probability": 0.88 + }, + { + "start": 9454.78, + "end": 9455.52, + "probability": 0.9753 + }, + { + "start": 9456.2, + "end": 9456.98, + "probability": 0.7479 + }, + { + "start": 9457.34, + "end": 9459.0, + "probability": 0.9982 + }, + { + "start": 9460.18, + "end": 9461.82, + "probability": 0.9617 + }, + { + "start": 9462.24, + "end": 9464.17, + "probability": 0.9982 + }, + { + "start": 9464.7, + "end": 9468.22, + "probability": 0.8128 + }, + { + "start": 9468.8, + "end": 9471.7, + "probability": 0.9649 + }, + { + "start": 9472.76, + "end": 9475.64, + "probability": 0.9824 + }, + { + "start": 9475.86, + "end": 9476.56, + "probability": 0.6797 + }, + { + "start": 9477.56, + "end": 9477.86, + "probability": 0.6505 + }, + { + "start": 9477.94, + "end": 9478.22, + "probability": 0.9535 + }, + { + "start": 9478.42, + "end": 9479.16, + "probability": 0.9517 + }, + { + "start": 9479.22, + "end": 9479.98, + "probability": 0.6642 + }, + { + "start": 9480.08, + "end": 9481.52, + "probability": 0.9055 + }, + { + "start": 9481.94, + "end": 9482.72, + "probability": 0.6981 + }, + { + "start": 9483.22, + "end": 9485.24, + "probability": 0.7922 + }, + { + "start": 9485.24, + "end": 9485.74, + "probability": 0.6259 + }, + { + "start": 9485.88, + "end": 9486.7, + "probability": 0.3942 + }, + { + "start": 9486.8, + "end": 9487.5, + "probability": 0.6865 + }, + { + "start": 9487.58, + "end": 9489.58, + "probability": 0.9973 + }, + { + "start": 9490.14, + "end": 9492.82, + "probability": 0.9866 + }, + { + "start": 9492.86, + "end": 9494.16, + "probability": 0.9888 + }, + { + "start": 9494.56, + "end": 9497.52, + "probability": 0.988 + }, + { + "start": 9497.96, + "end": 9498.84, + "probability": 0.8696 + }, + { + "start": 9499.32, + "end": 9501.59, + "probability": 0.65 + }, + { + "start": 9502.22, + "end": 9502.82, + "probability": 0.8431 + }, + { + "start": 9503.08, + "end": 9503.78, + "probability": 0.8633 + }, + { + "start": 9503.92, + "end": 9504.38, + "probability": 0.9673 + }, + { + "start": 9504.82, + "end": 9505.78, + "probability": 0.6368 + }, + { + "start": 9505.8, + "end": 9506.38, + "probability": 0.775 + }, + { + "start": 9506.78, + "end": 9507.0, + "probability": 0.6804 + }, + { + "start": 9507.22, + "end": 9508.64, + "probability": 0.9358 + }, + { + "start": 9515.54, + "end": 9516.68, + "probability": 0.1596 + }, + { + "start": 9516.98, + "end": 9516.98, + "probability": 0.0554 + }, + { + "start": 9516.98, + "end": 9517.54, + "probability": 0.1359 + }, + { + "start": 9517.54, + "end": 9517.72, + "probability": 0.0425 + }, + { + "start": 9542.68, + "end": 9543.34, + "probability": 0.6231 + }, + { + "start": 9544.1, + "end": 9545.14, + "probability": 0.7946 + }, + { + "start": 9545.98, + "end": 9547.92, + "probability": 0.9971 + }, + { + "start": 9549.06, + "end": 9550.2, + "probability": 0.4503 + }, + { + "start": 9551.26, + "end": 9551.94, + "probability": 0.8943 + }, + { + "start": 9552.68, + "end": 9555.12, + "probability": 0.9768 + }, + { + "start": 9556.36, + "end": 9558.06, + "probability": 0.9985 + }, + { + "start": 9558.74, + "end": 9561.06, + "probability": 0.9927 + }, + { + "start": 9561.72, + "end": 9563.56, + "probability": 0.9849 + }, + { + "start": 9564.42, + "end": 9569.88, + "probability": 0.9871 + }, + { + "start": 9570.88, + "end": 9571.4, + "probability": 0.9007 + }, + { + "start": 9571.92, + "end": 9574.1, + "probability": 0.9961 + }, + { + "start": 9574.78, + "end": 9576.0, + "probability": 0.8729 + }, + { + "start": 9576.36, + "end": 9577.2, + "probability": 0.9898 + }, + { + "start": 9577.68, + "end": 9579.04, + "probability": 0.99 + }, + { + "start": 9579.46, + "end": 9580.2, + "probability": 0.8883 + }, + { + "start": 9584.88, + "end": 9587.6, + "probability": 0.9966 + }, + { + "start": 9588.46, + "end": 9591.92, + "probability": 0.9369 + }, + { + "start": 9593.06, + "end": 9595.24, + "probability": 0.9967 + }, + { + "start": 9595.96, + "end": 9596.58, + "probability": 0.8547 + }, + { + "start": 9597.52, + "end": 9599.06, + "probability": 0.9996 + }, + { + "start": 9599.66, + "end": 9603.32, + "probability": 0.6865 + }, + { + "start": 9604.1, + "end": 9606.18, + "probability": 0.8637 + }, + { + "start": 9606.8, + "end": 9608.58, + "probability": 0.8484 + }, + { + "start": 9609.2, + "end": 9611.02, + "probability": 0.9788 + }, + { + "start": 9611.48, + "end": 9613.58, + "probability": 0.9677 + }, + { + "start": 9614.7, + "end": 9618.34, + "probability": 0.9771 + }, + { + "start": 9619.48, + "end": 9620.9, + "probability": 0.9995 + }, + { + "start": 9621.82, + "end": 9622.96, + "probability": 0.9767 + }, + { + "start": 9623.74, + "end": 9625.58, + "probability": 0.9893 + }, + { + "start": 9626.28, + "end": 9628.22, + "probability": 0.9705 + }, + { + "start": 9628.78, + "end": 9632.18, + "probability": 0.9991 + }, + { + "start": 9632.18, + "end": 9636.44, + "probability": 0.7934 + }, + { + "start": 9637.1, + "end": 9638.35, + "probability": 0.9906 + }, + { + "start": 9639.18, + "end": 9640.2, + "probability": 0.7202 + }, + { + "start": 9640.38, + "end": 9642.6, + "probability": 0.9556 + }, + { + "start": 9643.24, + "end": 9645.74, + "probability": 0.997 + }, + { + "start": 9646.26, + "end": 9650.02, + "probability": 0.9824 + }, + { + "start": 9650.68, + "end": 9651.9, + "probability": 0.9108 + }, + { + "start": 9652.54, + "end": 9653.34, + "probability": 0.9247 + }, + { + "start": 9653.92, + "end": 9657.6, + "probability": 0.9877 + }, + { + "start": 9658.38, + "end": 9659.5, + "probability": 0.9406 + }, + { + "start": 9660.38, + "end": 9662.54, + "probability": 0.9772 + }, + { + "start": 9663.2, + "end": 9664.12, + "probability": 0.7687 + }, + { + "start": 9664.7, + "end": 9666.38, + "probability": 0.9425 + }, + { + "start": 9666.82, + "end": 9672.88, + "probability": 0.9886 + }, + { + "start": 9673.34, + "end": 9674.62, + "probability": 0.9624 + }, + { + "start": 9675.4, + "end": 9679.54, + "probability": 0.9903 + }, + { + "start": 9679.54, + "end": 9681.94, + "probability": 0.9869 + }, + { + "start": 9682.84, + "end": 9685.38, + "probability": 0.9994 + }, + { + "start": 9685.67, + "end": 9688.22, + "probability": 0.9976 + }, + { + "start": 9688.7, + "end": 9690.26, + "probability": 0.9465 + }, + { + "start": 9691.36, + "end": 9693.64, + "probability": 0.9709 + }, + { + "start": 9694.44, + "end": 9695.8, + "probability": 0.9438 + }, + { + "start": 9695.98, + "end": 9698.08, + "probability": 0.9012 + }, + { + "start": 9699.1, + "end": 9699.74, + "probability": 0.9516 + }, + { + "start": 9700.36, + "end": 9703.82, + "probability": 0.9924 + }, + { + "start": 9704.34, + "end": 9704.88, + "probability": 0.9845 + }, + { + "start": 9705.76, + "end": 9710.16, + "probability": 0.9541 + }, + { + "start": 9710.72, + "end": 9712.46, + "probability": 0.9474 + }, + { + "start": 9713.02, + "end": 9716.06, + "probability": 0.9189 + }, + { + "start": 9716.7, + "end": 9720.34, + "probability": 0.9755 + }, + { + "start": 9721.14, + "end": 9723.92, + "probability": 0.9601 + }, + { + "start": 9724.52, + "end": 9728.16, + "probability": 0.9713 + }, + { + "start": 9728.76, + "end": 9731.1, + "probability": 0.9935 + }, + { + "start": 9731.68, + "end": 9734.1, + "probability": 0.8318 + }, + { + "start": 9734.64, + "end": 9736.8, + "probability": 0.8877 + }, + { + "start": 9737.32, + "end": 9739.5, + "probability": 0.9798 + }, + { + "start": 9740.22, + "end": 9744.28, + "probability": 0.9989 + }, + { + "start": 9744.42, + "end": 9745.76, + "probability": 0.9985 + }, + { + "start": 9746.34, + "end": 9747.54, + "probability": 0.9229 + }, + { + "start": 9748.14, + "end": 9751.44, + "probability": 0.9913 + }, + { + "start": 9751.58, + "end": 9754.52, + "probability": 0.9801 + }, + { + "start": 9755.18, + "end": 9757.42, + "probability": 0.7475 + }, + { + "start": 9758.06, + "end": 9761.42, + "probability": 0.973 + }, + { + "start": 9761.84, + "end": 9763.2, + "probability": 0.9977 + }, + { + "start": 9763.82, + "end": 9764.86, + "probability": 0.9927 + }, + { + "start": 9765.7, + "end": 9768.44, + "probability": 0.9972 + }, + { + "start": 9768.44, + "end": 9771.48, + "probability": 0.9963 + }, + { + "start": 9771.76, + "end": 9772.5, + "probability": 0.7698 + }, + { + "start": 9773.06, + "end": 9777.36, + "probability": 0.8563 + }, + { + "start": 9777.74, + "end": 9777.98, + "probability": 0.925 + }, + { + "start": 9778.56, + "end": 9779.14, + "probability": 0.7878 + }, + { + "start": 9780.54, + "end": 9782.28, + "probability": 0.9379 + }, + { + "start": 9783.24, + "end": 9783.7, + "probability": 0.5255 + }, + { + "start": 9785.04, + "end": 9785.18, + "probability": 0.6103 + }, + { + "start": 9786.34, + "end": 9787.74, + "probability": 0.8499 + }, + { + "start": 9790.56, + "end": 9791.72, + "probability": 0.7617 + }, + { + "start": 9792.82, + "end": 9793.48, + "probability": 0.8936 + }, + { + "start": 9794.14, + "end": 9794.22, + "probability": 0.408 + }, + { + "start": 9794.38, + "end": 9795.24, + "probability": 0.7742 + }, + { + "start": 9820.66, + "end": 9821.9, + "probability": 0.2162 + }, + { + "start": 9823.16, + "end": 9825.0, + "probability": 0.2181 + }, + { + "start": 9832.4, + "end": 9834.12, + "probability": 0.067 + }, + { + "start": 9836.16, + "end": 9837.06, + "probability": 0.1619 + }, + { + "start": 9839.72, + "end": 9842.36, + "probability": 0.7975 + }, + { + "start": 9842.96, + "end": 9844.26, + "probability": 0.5714 + }, + { + "start": 9845.08, + "end": 9851.3, + "probability": 0.5238 + }, + { + "start": 9852.18, + "end": 9852.86, + "probability": 0.6738 + }, + { + "start": 9853.86, + "end": 9854.72, + "probability": 0.6434 + }, + { + "start": 9856.0, + "end": 9858.86, + "probability": 0.9213 + }, + { + "start": 9859.62, + "end": 9860.94, + "probability": 0.9012 + }, + { + "start": 9861.82, + "end": 9862.34, + "probability": 0.9456 + }, + { + "start": 9864.18, + "end": 9865.94, + "probability": 0.5872 + }, + { + "start": 9866.48, + "end": 9867.04, + "probability": 0.5644 + }, + { + "start": 9868.31, + "end": 9870.8, + "probability": 0.5828 + }, + { + "start": 9871.52, + "end": 9874.0, + "probability": 0.6976 + }, + { + "start": 9874.04, + "end": 9875.64, + "probability": 0.9494 + }, + { + "start": 9875.66, + "end": 9877.12, + "probability": 0.7011 + }, + { + "start": 9877.18, + "end": 9878.28, + "probability": 0.7696 + }, + { + "start": 9879.06, + "end": 9881.66, + "probability": 0.4982 + }, + { + "start": 9882.36, + "end": 9886.34, + "probability": 0.9495 + }, + { + "start": 9886.96, + "end": 9889.8, + "probability": 0.9575 + }, + { + "start": 9890.4, + "end": 9891.38, + "probability": 0.9974 + }, + { + "start": 9892.18, + "end": 9895.08, + "probability": 0.9113 + }, + { + "start": 9897.44, + "end": 9898.5, + "probability": 0.667 + }, + { + "start": 9899.8, + "end": 9905.4, + "probability": 0.9829 + }, + { + "start": 9906.06, + "end": 9907.76, + "probability": 0.9985 + }, + { + "start": 9908.02, + "end": 9911.56, + "probability": 0.8892 + }, + { + "start": 9912.04, + "end": 9914.16, + "probability": 0.9688 + }, + { + "start": 9915.98, + "end": 9917.04, + "probability": 0.8064 + }, + { + "start": 9917.52, + "end": 9921.28, + "probability": 0.9746 + }, + { + "start": 9921.94, + "end": 9924.7, + "probability": 0.9617 + }, + { + "start": 9924.88, + "end": 9925.9, + "probability": 0.9086 + }, + { + "start": 9926.66, + "end": 9931.08, + "probability": 0.9908 + }, + { + "start": 9931.7, + "end": 9935.16, + "probability": 0.9921 + }, + { + "start": 9935.6, + "end": 9935.82, + "probability": 0.7205 + }, + { + "start": 9937.36, + "end": 9938.24, + "probability": 0.6123 + }, + { + "start": 9938.69, + "end": 9940.74, + "probability": 0.7573 + }, + { + "start": 9941.52, + "end": 9944.32, + "probability": 0.833 + }, + { + "start": 9944.94, + "end": 9946.18, + "probability": 0.4719 + }, + { + "start": 9946.3, + "end": 9947.4, + "probability": 0.8166 + }, + { + "start": 9947.4, + "end": 9948.8, + "probability": 0.6916 + }, + { + "start": 9949.56, + "end": 9955.52, + "probability": 0.9832 + }, + { + "start": 9955.82, + "end": 9958.84, + "probability": 0.8543 + }, + { + "start": 9959.88, + "end": 9961.88, + "probability": 0.9644 + }, + { + "start": 9962.42, + "end": 9966.64, + "probability": 0.7544 + }, + { + "start": 9966.72, + "end": 9968.13, + "probability": 0.9716 + }, + { + "start": 9969.22, + "end": 9971.76, + "probability": 0.8427 + }, + { + "start": 9971.94, + "end": 9973.58, + "probability": 0.978 + }, + { + "start": 9974.34, + "end": 9977.32, + "probability": 0.9168 + }, + { + "start": 9978.54, + "end": 9979.72, + "probability": 0.6749 + }, + { + "start": 9979.86, + "end": 9984.14, + "probability": 0.9915 + }, + { + "start": 9984.18, + "end": 9984.62, + "probability": 0.9815 + }, + { + "start": 9984.68, + "end": 9985.06, + "probability": 0.9785 + }, + { + "start": 9985.14, + "end": 9985.62, + "probability": 0.8079 + }, + { + "start": 9986.46, + "end": 9987.32, + "probability": 0.8749 + }, + { + "start": 9988.1, + "end": 9989.56, + "probability": 0.9766 + }, + { + "start": 9990.42, + "end": 9994.74, + "probability": 0.9553 + }, + { + "start": 9995.4, + "end": 9997.54, + "probability": 0.8757 + }, + { + "start": 9998.52, + "end": 10002.2, + "probability": 0.7833 + }, + { + "start": 10002.42, + "end": 10007.18, + "probability": 0.8045 + }, + { + "start": 10007.26, + "end": 10007.5, + "probability": 0.5288 + }, + { + "start": 10008.22, + "end": 10009.2, + "probability": 0.9401 + }, + { + "start": 10010.36, + "end": 10011.85, + "probability": 0.6977 + }, + { + "start": 10011.96, + "end": 10012.5, + "probability": 0.4194 + }, + { + "start": 10013.58, + "end": 10020.4, + "probability": 0.6618 + }, + { + "start": 10020.46, + "end": 10022.16, + "probability": 0.9089 + }, + { + "start": 10022.26, + "end": 10023.86, + "probability": 0.8389 + }, + { + "start": 10024.42, + "end": 10026.2, + "probability": 0.9897 + }, + { + "start": 10027.46, + "end": 10028.97, + "probability": 0.9307 + }, + { + "start": 10030.24, + "end": 10030.66, + "probability": 0.1066 + }, + { + "start": 10030.66, + "end": 10031.53, + "probability": 0.9482 + }, + { + "start": 10032.78, + "end": 10033.7, + "probability": 0.933 + }, + { + "start": 10034.66, + "end": 10036.56, + "probability": 0.8687 + }, + { + "start": 10037.74, + "end": 10038.02, + "probability": 0.0453 + }, + { + "start": 10038.02, + "end": 10039.04, + "probability": 0.8037 + }, + { + "start": 10039.57, + "end": 10042.44, + "probability": 0.8929 + }, + { + "start": 10042.52, + "end": 10043.05, + "probability": 0.7185 + }, + { + "start": 10043.72, + "end": 10045.3, + "probability": 0.9816 + }, + { + "start": 10045.38, + "end": 10045.96, + "probability": 0.6545 + }, + { + "start": 10046.32, + "end": 10047.93, + "probability": 0.9949 + }, + { + "start": 10048.06, + "end": 10050.66, + "probability": 0.8711 + }, + { + "start": 10051.14, + "end": 10051.14, + "probability": 0.2176 + }, + { + "start": 10051.14, + "end": 10051.14, + "probability": 0.496 + }, + { + "start": 10051.16, + "end": 10051.94, + "probability": 0.7101 + }, + { + "start": 10052.52, + "end": 10053.54, + "probability": 0.5582 + }, + { + "start": 10054.76, + "end": 10055.1, + "probability": 0.5969 + }, + { + "start": 10055.6, + "end": 10056.62, + "probability": 0.9243 + }, + { + "start": 10068.56, + "end": 10068.86, + "probability": 0.7227 + }, + { + "start": 10070.08, + "end": 10071.4, + "probability": 0.6205 + }, + { + "start": 10071.78, + "end": 10073.5, + "probability": 0.679 + }, + { + "start": 10075.28, + "end": 10076.08, + "probability": 0.8772 + }, + { + "start": 10077.78, + "end": 10080.16, + "probability": 0.9869 + }, + { + "start": 10080.96, + "end": 10085.04, + "probability": 0.9893 + }, + { + "start": 10086.08, + "end": 10089.4, + "probability": 0.9868 + }, + { + "start": 10090.25, + "end": 10095.88, + "probability": 0.9906 + }, + { + "start": 10095.88, + "end": 10100.44, + "probability": 0.9674 + }, + { + "start": 10102.62, + "end": 10107.5, + "probability": 0.9623 + }, + { + "start": 10107.56, + "end": 10108.28, + "probability": 0.98 + }, + { + "start": 10110.68, + "end": 10112.34, + "probability": 0.9375 + }, + { + "start": 10113.06, + "end": 10115.52, + "probability": 0.7871 + }, + { + "start": 10117.16, + "end": 10118.7, + "probability": 0.999 + }, + { + "start": 10119.88, + "end": 10122.46, + "probability": 0.9592 + }, + { + "start": 10123.86, + "end": 10128.2, + "probability": 0.9893 + }, + { + "start": 10129.96, + "end": 10132.5, + "probability": 0.9808 + }, + { + "start": 10133.8, + "end": 10135.0, + "probability": 0.9457 + }, + { + "start": 10135.52, + "end": 10136.58, + "probability": 0.9403 + }, + { + "start": 10137.64, + "end": 10139.82, + "probability": 0.8594 + }, + { + "start": 10142.64, + "end": 10143.48, + "probability": 0.9073 + }, + { + "start": 10144.0, + "end": 10148.26, + "probability": 0.8739 + }, + { + "start": 10151.08, + "end": 10151.58, + "probability": 0.7498 + }, + { + "start": 10154.84, + "end": 10158.12, + "probability": 0.9974 + }, + { + "start": 10159.0, + "end": 10159.62, + "probability": 0.9378 + }, + { + "start": 10161.6, + "end": 10166.56, + "probability": 0.9907 + }, + { + "start": 10168.74, + "end": 10171.38, + "probability": 0.9854 + }, + { + "start": 10171.38, + "end": 10174.76, + "probability": 0.9978 + }, + { + "start": 10179.24, + "end": 10181.46, + "probability": 0.6353 + }, + { + "start": 10182.46, + "end": 10182.96, + "probability": 0.7269 + }, + { + "start": 10183.86, + "end": 10185.66, + "probability": 0.8026 + }, + { + "start": 10187.96, + "end": 10190.54, + "probability": 0.9956 + }, + { + "start": 10192.58, + "end": 10194.44, + "probability": 0.9147 + }, + { + "start": 10194.94, + "end": 10195.92, + "probability": 0.7267 + }, + { + "start": 10195.96, + "end": 10197.28, + "probability": 0.9897 + }, + { + "start": 10197.42, + "end": 10198.64, + "probability": 0.9205 + }, + { + "start": 10199.84, + "end": 10200.84, + "probability": 0.7729 + }, + { + "start": 10202.28, + "end": 10205.18, + "probability": 0.8464 + }, + { + "start": 10207.46, + "end": 10212.74, + "probability": 0.9771 + }, + { + "start": 10213.64, + "end": 10216.86, + "probability": 0.9259 + }, + { + "start": 10217.94, + "end": 10218.72, + "probability": 0.9434 + }, + { + "start": 10219.3, + "end": 10221.4, + "probability": 0.9717 + }, + { + "start": 10221.48, + "end": 10222.36, + "probability": 0.979 + }, + { + "start": 10222.56, + "end": 10224.0, + "probability": 0.8652 + }, + { + "start": 10225.3, + "end": 10227.54, + "probability": 0.9944 + }, + { + "start": 10227.84, + "end": 10228.22, + "probability": 0.3079 + }, + { + "start": 10228.22, + "end": 10231.08, + "probability": 0.9216 + }, + { + "start": 10234.28, + "end": 10234.76, + "probability": 0.9401 + }, + { + "start": 10235.4, + "end": 10236.28, + "probability": 0.9735 + }, + { + "start": 10237.04, + "end": 10237.82, + "probability": 0.71 + }, + { + "start": 10238.42, + "end": 10241.2, + "probability": 0.9593 + }, + { + "start": 10241.4, + "end": 10242.68, + "probability": 0.9305 + }, + { + "start": 10244.08, + "end": 10245.54, + "probability": 0.9955 + }, + { + "start": 10245.64, + "end": 10246.36, + "probability": 0.8914 + }, + { + "start": 10247.04, + "end": 10250.6, + "probability": 0.9954 + }, + { + "start": 10254.56, + "end": 10255.57, + "probability": 0.5503 + }, + { + "start": 10255.9, + "end": 10256.62, + "probability": 0.3952 + }, + { + "start": 10257.4, + "end": 10259.1, + "probability": 0.998 + }, + { + "start": 10259.22, + "end": 10264.78, + "probability": 0.9917 + }, + { + "start": 10265.64, + "end": 10266.36, + "probability": 0.5067 + }, + { + "start": 10266.54, + "end": 10266.54, + "probability": 0.3927 + }, + { + "start": 10266.64, + "end": 10268.94, + "probability": 0.9065 + }, + { + "start": 10271.04, + "end": 10273.04, + "probability": 0.8989 + }, + { + "start": 10273.04, + "end": 10274.16, + "probability": 0.8036 + }, + { + "start": 10274.22, + "end": 10275.8, + "probability": 0.9983 + }, + { + "start": 10275.94, + "end": 10278.16, + "probability": 0.8262 + }, + { + "start": 10279.06, + "end": 10283.28, + "probability": 0.9905 + }, + { + "start": 10283.82, + "end": 10283.82, + "probability": 0.4045 + }, + { + "start": 10283.82, + "end": 10285.32, + "probability": 0.8182 + }, + { + "start": 10285.68, + "end": 10289.76, + "probability": 0.9788 + }, + { + "start": 10290.9, + "end": 10291.98, + "probability": 0.9893 + }, + { + "start": 10292.04, + "end": 10295.48, + "probability": 0.9487 + }, + { + "start": 10295.48, + "end": 10295.94, + "probability": 0.5803 + }, + { + "start": 10296.02, + "end": 10296.96, + "probability": 0.6608 + }, + { + "start": 10296.96, + "end": 10299.32, + "probability": 0.8699 + }, + { + "start": 10299.88, + "end": 10299.88, + "probability": 0.6727 + }, + { + "start": 10300.24, + "end": 10302.0, + "probability": 0.8319 + }, + { + "start": 10313.5, + "end": 10316.14, + "probability": 0.0622 + }, + { + "start": 10316.14, + "end": 10317.74, + "probability": 0.1067 + }, + { + "start": 10323.9, + "end": 10325.53, + "probability": 0.8455 + }, + { + "start": 10326.78, + "end": 10329.22, + "probability": 0.7671 + }, + { + "start": 10330.32, + "end": 10335.49, + "probability": 0.8843 + }, + { + "start": 10336.78, + "end": 10337.42, + "probability": 0.8594 + }, + { + "start": 10338.94, + "end": 10344.54, + "probability": 0.9211 + }, + { + "start": 10346.26, + "end": 10353.68, + "probability": 0.9952 + }, + { + "start": 10354.4, + "end": 10360.5, + "probability": 0.9956 + }, + { + "start": 10361.96, + "end": 10362.48, + "probability": 0.7213 + }, + { + "start": 10363.36, + "end": 10365.5, + "probability": 0.8229 + }, + { + "start": 10366.62, + "end": 10372.88, + "probability": 0.9707 + }, + { + "start": 10372.88, + "end": 10380.32, + "probability": 0.9656 + }, + { + "start": 10381.98, + "end": 10386.46, + "probability": 0.9312 + }, + { + "start": 10386.46, + "end": 10391.14, + "probability": 0.9962 + }, + { + "start": 10391.76, + "end": 10398.1, + "probability": 0.8674 + }, + { + "start": 10398.58, + "end": 10400.8, + "probability": 0.9594 + }, + { + "start": 10401.4, + "end": 10403.98, + "probability": 0.83 + }, + { + "start": 10404.42, + "end": 10407.82, + "probability": 0.9933 + }, + { + "start": 10408.98, + "end": 10411.06, + "probability": 0.9307 + }, + { + "start": 10411.92, + "end": 10412.86, + "probability": 0.8516 + }, + { + "start": 10413.54, + "end": 10417.44, + "probability": 0.9854 + }, + { + "start": 10417.44, + "end": 10422.98, + "probability": 0.9756 + }, + { + "start": 10424.12, + "end": 10426.6, + "probability": 0.9932 + }, + { + "start": 10427.16, + "end": 10431.18, + "probability": 0.9403 + }, + { + "start": 10431.6, + "end": 10439.86, + "probability": 0.9354 + }, + { + "start": 10440.82, + "end": 10445.44, + "probability": 0.996 + }, + { + "start": 10445.84, + "end": 10446.12, + "probability": 0.6447 + }, + { + "start": 10447.7, + "end": 10447.7, + "probability": 0.0257 + }, + { + "start": 10458.68, + "end": 10460.18, + "probability": 0.1257 + }, + { + "start": 10460.3, + "end": 10460.83, + "probability": 0.0438 + }, + { + "start": 10461.22, + "end": 10461.7, + "probability": 0.2222 + }, + { + "start": 10461.7, + "end": 10461.98, + "probability": 0.0533 + }, + { + "start": 10503.24, + "end": 10505.24, + "probability": 0.6085 + }, + { + "start": 10505.94, + "end": 10507.88, + "probability": 0.9202 + }, + { + "start": 10508.54, + "end": 10512.74, + "probability": 0.9475 + }, + { + "start": 10513.09, + "end": 10517.36, + "probability": 0.9965 + }, + { + "start": 10517.46, + "end": 10518.32, + "probability": 0.8441 + }, + { + "start": 10520.1, + "end": 10521.46, + "probability": 0.1493 + }, + { + "start": 10532.5, + "end": 10532.98, + "probability": 0.2317 + }, + { + "start": 10533.3, + "end": 10533.98, + "probability": 0.8244 + }, + { + "start": 10538.78, + "end": 10539.8, + "probability": 0.7018 + }, + { + "start": 10540.92, + "end": 10549.26, + "probability": 0.9269 + }, + { + "start": 10549.92, + "end": 10552.54, + "probability": 0.988 + }, + { + "start": 10553.5, + "end": 10554.94, + "probability": 0.9961 + }, + { + "start": 10555.52, + "end": 10560.3, + "probability": 0.8864 + }, + { + "start": 10561.42, + "end": 10565.22, + "probability": 0.9913 + }, + { + "start": 10565.82, + "end": 10571.79, + "probability": 0.9825 + }, + { + "start": 10573.18, + "end": 10578.38, + "probability": 0.8668 + }, + { + "start": 10578.96, + "end": 10585.94, + "probability": 0.99 + }, + { + "start": 10587.6, + "end": 10590.36, + "probability": 0.5754 + }, + { + "start": 10591.0, + "end": 10596.46, + "probability": 0.9897 + }, + { + "start": 10598.0, + "end": 10603.76, + "probability": 0.9781 + }, + { + "start": 10604.4, + "end": 10606.2, + "probability": 0.7898 + }, + { + "start": 10607.36, + "end": 10609.12, + "probability": 0.9723 + }, + { + "start": 10611.2, + "end": 10615.6, + "probability": 0.6364 + }, + { + "start": 10616.36, + "end": 10617.56, + "probability": 0.8415 + }, + { + "start": 10617.9, + "end": 10618.86, + "probability": 0.9184 + }, + { + "start": 10619.02, + "end": 10623.36, + "probability": 0.9823 + }, + { + "start": 10623.88, + "end": 10625.12, + "probability": 0.7705 + }, + { + "start": 10627.36, + "end": 10631.38, + "probability": 0.8101 + }, + { + "start": 10632.96, + "end": 10638.62, + "probability": 0.9864 + }, + { + "start": 10639.48, + "end": 10642.65, + "probability": 0.89 + }, + { + "start": 10643.28, + "end": 10648.02, + "probability": 0.9876 + }, + { + "start": 10648.74, + "end": 10652.14, + "probability": 0.9894 + }, + { + "start": 10653.26, + "end": 10659.26, + "probability": 0.9751 + }, + { + "start": 10659.82, + "end": 10662.02, + "probability": 0.9679 + }, + { + "start": 10663.12, + "end": 10669.26, + "probability": 0.9926 + }, + { + "start": 10670.04, + "end": 10676.32, + "probability": 0.9877 + }, + { + "start": 10676.98, + "end": 10680.24, + "probability": 0.9987 + }, + { + "start": 10681.62, + "end": 10688.72, + "probability": 0.9906 + }, + { + "start": 10689.2, + "end": 10694.94, + "probability": 0.9744 + }, + { + "start": 10695.8, + "end": 10699.18, + "probability": 0.9896 + }, + { + "start": 10699.34, + "end": 10707.78, + "probability": 0.9386 + }, + { + "start": 10724.6, + "end": 10725.3, + "probability": 0.7393 + }, + { + "start": 10725.9, + "end": 10727.66, + "probability": 0.699 + }, + { + "start": 10764.1, + "end": 10765.38, + "probability": 0.6716 + }, + { + "start": 10767.16, + "end": 10769.24, + "probability": 0.8482 + }, + { + "start": 10771.84, + "end": 10773.84, + "probability": 0.9019 + }, + { + "start": 10774.54, + "end": 10777.04, + "probability": 0.9792 + }, + { + "start": 10777.04, + "end": 10777.6, + "probability": 0.738 + }, + { + "start": 10778.58, + "end": 10778.94, + "probability": 0.9049 + }, + { + "start": 10780.94, + "end": 10782.44, + "probability": 0.9958 + }, + { + "start": 10784.38, + "end": 10785.14, + "probability": 0.6659 + }, + { + "start": 10786.2, + "end": 10789.48, + "probability": 0.9281 + }, + { + "start": 10790.88, + "end": 10793.2, + "probability": 0.8847 + }, + { + "start": 10794.63, + "end": 10797.82, + "probability": 0.7814 + }, + { + "start": 10800.98, + "end": 10803.08, + "probability": 0.9749 + }, + { + "start": 10803.42, + "end": 10808.38, + "probability": 0.9868 + }, + { + "start": 10809.22, + "end": 10810.18, + "probability": 0.9061 + }, + { + "start": 10812.22, + "end": 10815.56, + "probability": 0.9948 + }, + { + "start": 10816.36, + "end": 10817.36, + "probability": 0.7691 + }, + { + "start": 10818.44, + "end": 10823.48, + "probability": 0.999 + }, + { + "start": 10824.78, + "end": 10825.84, + "probability": 0.7122 + }, + { + "start": 10825.92, + "end": 10829.44, + "probability": 0.9669 + }, + { + "start": 10829.76, + "end": 10830.92, + "probability": 0.7701 + }, + { + "start": 10831.02, + "end": 10835.28, + "probability": 0.982 + }, + { + "start": 10836.82, + "end": 10838.66, + "probability": 0.9003 + }, + { + "start": 10839.22, + "end": 10844.18, + "probability": 0.9901 + }, + { + "start": 10845.32, + "end": 10847.92, + "probability": 0.9973 + }, + { + "start": 10848.84, + "end": 10849.7, + "probability": 0.7231 + }, + { + "start": 10849.82, + "end": 10852.18, + "probability": 0.8886 + }, + { + "start": 10852.54, + "end": 10856.0, + "probability": 0.9933 + }, + { + "start": 10857.78, + "end": 10861.98, + "probability": 0.9944 + }, + { + "start": 10861.98, + "end": 10866.86, + "probability": 0.9995 + }, + { + "start": 10867.82, + "end": 10868.54, + "probability": 0.6552 + }, + { + "start": 10869.26, + "end": 10872.68, + "probability": 0.9919 + }, + { + "start": 10873.16, + "end": 10877.92, + "probability": 0.9911 + }, + { + "start": 10879.08, + "end": 10881.9, + "probability": 0.9948 + }, + { + "start": 10882.56, + "end": 10887.3, + "probability": 0.9957 + }, + { + "start": 10888.56, + "end": 10891.8, + "probability": 0.9708 + }, + { + "start": 10891.8, + "end": 10895.96, + "probability": 0.9979 + }, + { + "start": 10898.1, + "end": 10899.66, + "probability": 0.9575 + }, + { + "start": 10900.18, + "end": 10901.8, + "probability": 0.9834 + }, + { + "start": 10903.02, + "end": 10905.4, + "probability": 0.9021 + }, + { + "start": 10907.26, + "end": 10909.86, + "probability": 0.9839 + }, + { + "start": 10909.86, + "end": 10912.76, + "probability": 0.9925 + }, + { + "start": 10913.42, + "end": 10915.46, + "probability": 0.987 + }, + { + "start": 10916.6, + "end": 10919.22, + "probability": 0.974 + }, + { + "start": 10919.22, + "end": 10921.92, + "probability": 0.9928 + }, + { + "start": 10922.58, + "end": 10925.78, + "probability": 0.9867 + }, + { + "start": 10925.86, + "end": 10926.76, + "probability": 0.9289 + }, + { + "start": 10927.06, + "end": 10929.9, + "probability": 0.7325 + }, + { + "start": 10930.88, + "end": 10933.24, + "probability": 0.9359 + }, + { + "start": 10933.88, + "end": 10937.36, + "probability": 0.9962 + }, + { + "start": 10937.36, + "end": 10942.06, + "probability": 0.9979 + }, + { + "start": 10942.76, + "end": 10945.46, + "probability": 0.998 + }, + { + "start": 10947.3, + "end": 10950.52, + "probability": 0.9922 + }, + { + "start": 10950.56, + "end": 10952.16, + "probability": 0.7745 + }, + { + "start": 10952.48, + "end": 10957.44, + "probability": 0.9839 + }, + { + "start": 10958.12, + "end": 10960.94, + "probability": 0.8726 + }, + { + "start": 10961.92, + "end": 10964.44, + "probability": 0.9572 + }, + { + "start": 10964.6, + "end": 10965.76, + "probability": 0.9872 + }, + { + "start": 10965.92, + "end": 10968.3, + "probability": 0.9017 + }, + { + "start": 10968.98, + "end": 10973.84, + "probability": 0.9849 + }, + { + "start": 10974.28, + "end": 10976.86, + "probability": 0.9907 + }, + { + "start": 10978.46, + "end": 10983.74, + "probability": 0.994 + }, + { + "start": 10984.52, + "end": 10986.58, + "probability": 0.96 + }, + { + "start": 10987.2, + "end": 10990.64, + "probability": 0.9666 + }, + { + "start": 10991.4, + "end": 10995.56, + "probability": 0.9433 + }, + { + "start": 10996.38, + "end": 10996.7, + "probability": 0.7162 + }, + { + "start": 10996.7, + "end": 10996.9, + "probability": 0.6007 + }, + { + "start": 10998.16, + "end": 10998.16, + "probability": 0.5101 + }, + { + "start": 10998.16, + "end": 11001.62, + "probability": 0.7173 + }, + { + "start": 11002.24, + "end": 11005.8, + "probability": 0.9658 + }, + { + "start": 11006.2, + "end": 11007.74, + "probability": 0.9713 + }, + { + "start": 11009.32, + "end": 11009.66, + "probability": 0.6663 + }, + { + "start": 11009.94, + "end": 11010.32, + "probability": 0.9681 + }, + { + "start": 11010.68, + "end": 11012.6, + "probability": 0.9436 + }, + { + "start": 11013.42, + "end": 11017.26, + "probability": 0.9951 + }, + { + "start": 11017.98, + "end": 11020.64, + "probability": 0.9514 + }, + { + "start": 11021.2, + "end": 11023.44, + "probability": 0.9901 + }, + { + "start": 11024.52, + "end": 11025.18, + "probability": 0.9722 + }, + { + "start": 11027.04, + "end": 11029.58, + "probability": 0.8473 + }, + { + "start": 11030.72, + "end": 11032.14, + "probability": 0.4426 + }, + { + "start": 11033.0, + "end": 11036.15, + "probability": 0.7618 + }, + { + "start": 11036.28, + "end": 11037.14, + "probability": 0.9693 + }, + { + "start": 11038.56, + "end": 11046.38, + "probability": 0.8812 + }, + { + "start": 11046.72, + "end": 11047.36, + "probability": 0.8129 + }, + { + "start": 11048.84, + "end": 11050.66, + "probability": 0.6778 + }, + { + "start": 11051.92, + "end": 11055.24, + "probability": 0.8481 + }, + { + "start": 11059.34, + "end": 11060.08, + "probability": 0.5659 + }, + { + "start": 11060.38, + "end": 11061.14, + "probability": 0.5591 + }, + { + "start": 11061.62, + "end": 11062.0, + "probability": 0.5063 + }, + { + "start": 11063.66, + "end": 11064.44, + "probability": 0.5081 + }, + { + "start": 11064.94, + "end": 11066.22, + "probability": 0.069 + }, + { + "start": 11068.05, + "end": 11069.34, + "probability": 0.0231 + }, + { + "start": 11069.42, + "end": 11070.36, + "probability": 0.2392 + }, + { + "start": 11070.4, + "end": 11072.1, + "probability": 0.8659 + }, + { + "start": 11083.26, + "end": 11086.64, + "probability": 0.9263 + }, + { + "start": 11087.43, + "end": 11090.13, + "probability": 0.4202 + }, + { + "start": 11090.94, + "end": 11091.16, + "probability": 0.2047 + }, + { + "start": 11091.7, + "end": 11093.72, + "probability": 0.9102 + }, + { + "start": 11095.94, + "end": 11097.76, + "probability": 0.5296 + }, + { + "start": 11097.88, + "end": 11099.22, + "probability": 0.9602 + }, + { + "start": 11099.32, + "end": 11100.98, + "probability": 0.9602 + }, + { + "start": 11101.14, + "end": 11103.38, + "probability": 0.9146 + }, + { + "start": 11103.4, + "end": 11103.88, + "probability": 0.2476 + }, + { + "start": 11103.98, + "end": 11106.24, + "probability": 0.9829 + }, + { + "start": 11106.24, + "end": 11106.54, + "probability": 0.1693 + }, + { + "start": 11106.62, + "end": 11108.06, + "probability": 0.9733 + }, + { + "start": 11108.14, + "end": 11110.16, + "probability": 0.6855 + }, + { + "start": 11110.74, + "end": 11114.12, + "probability": 0.9453 + }, + { + "start": 11114.48, + "end": 11114.62, + "probability": 0.8826 + }, + { + "start": 11114.74, + "end": 11115.65, + "probability": 0.8923 + }, + { + "start": 11116.36, + "end": 11118.5, + "probability": 0.195 + }, + { + "start": 11118.82, + "end": 11120.98, + "probability": 0.4234 + }, + { + "start": 11121.3, + "end": 11122.3, + "probability": 0.1009 + }, + { + "start": 11122.68, + "end": 11123.22, + "probability": 0.2077 + }, + { + "start": 11123.22, + "end": 11123.72, + "probability": 0.307 + }, + { + "start": 11123.88, + "end": 11126.5, + "probability": 0.3675 + }, + { + "start": 11126.86, + "end": 11127.22, + "probability": 0.656 + }, + { + "start": 11127.34, + "end": 11127.9, + "probability": 0.0432 + }, + { + "start": 11127.9, + "end": 11128.6, + "probability": 0.4275 + }, + { + "start": 11128.74, + "end": 11129.74, + "probability": 0.472 + }, + { + "start": 11129.88, + "end": 11131.72, + "probability": 0.9858 + }, + { + "start": 11131.82, + "end": 11135.0, + "probability": 0.5051 + }, + { + "start": 11135.02, + "end": 11136.16, + "probability": 0.0289 + }, + { + "start": 11136.62, + "end": 11138.8, + "probability": 0.1916 + }, + { + "start": 11139.12, + "end": 11142.3, + "probability": 0.1749 + }, + { + "start": 11143.7, + "end": 11144.3, + "probability": 0.7079 + }, + { + "start": 11145.28, + "end": 11147.36, + "probability": 0.9438 + }, + { + "start": 11147.58, + "end": 11150.78, + "probability": 0.9597 + }, + { + "start": 11151.28, + "end": 11153.5, + "probability": 0.8938 + }, + { + "start": 11154.78, + "end": 11156.02, + "probability": 0.9613 + }, + { + "start": 11157.42, + "end": 11158.98, + "probability": 0.6982 + }, + { + "start": 11159.26, + "end": 11159.92, + "probability": 0.3642 + }, + { + "start": 11160.72, + "end": 11162.16, + "probability": 0.5484 + }, + { + "start": 11163.08, + "end": 11165.68, + "probability": 0.9824 + }, + { + "start": 11165.76, + "end": 11167.14, + "probability": 0.9927 + }, + { + "start": 11167.58, + "end": 11169.12, + "probability": 0.9983 + }, + { + "start": 11169.5, + "end": 11170.82, + "probability": 0.5783 + }, + { + "start": 11171.94, + "end": 11174.32, + "probability": 0.8905 + }, + { + "start": 11174.92, + "end": 11175.5, + "probability": 0.8494 + }, + { + "start": 11179.92, + "end": 11183.96, + "probability": 0.7367 + }, + { + "start": 11184.6, + "end": 11186.2, + "probability": 0.9607 + }, + { + "start": 11186.4, + "end": 11189.5, + "probability": 0.7216 + }, + { + "start": 11191.0, + "end": 11191.36, + "probability": 0.3761 + }, + { + "start": 11197.36, + "end": 11201.0, + "probability": 0.7875 + }, + { + "start": 11201.42, + "end": 11202.56, + "probability": 0.3148 + }, + { + "start": 11202.62, + "end": 11202.62, + "probability": 0.4374 + }, + { + "start": 11202.76, + "end": 11204.34, + "probability": 0.9424 + }, + { + "start": 11205.98, + "end": 11209.84, + "probability": 0.8151 + }, + { + "start": 11210.24, + "end": 11210.86, + "probability": 0.443 + }, + { + "start": 11210.9, + "end": 11212.16, + "probability": 0.975 + }, + { + "start": 11212.2, + "end": 11213.08, + "probability": 0.979 + }, + { + "start": 11213.88, + "end": 11214.58, + "probability": 0.8495 + }, + { + "start": 11217.28, + "end": 11222.56, + "probability": 0.9366 + }, + { + "start": 11223.14, + "end": 11226.86, + "probability": 0.7552 + }, + { + "start": 11227.52, + "end": 11230.1, + "probability": 0.8325 + }, + { + "start": 11230.78, + "end": 11233.88, + "probability": 0.5473 + }, + { + "start": 11234.52, + "end": 11235.54, + "probability": 0.6468 + }, + { + "start": 11235.58, + "end": 11237.12, + "probability": 0.9615 + }, + { + "start": 11238.67, + "end": 11239.02, + "probability": 0.0111 + }, + { + "start": 11239.86, + "end": 11240.0, + "probability": 0.5399 + }, + { + "start": 11243.58, + "end": 11244.52, + "probability": 0.497 + }, + { + "start": 11245.82, + "end": 11247.14, + "probability": 0.7476 + }, + { + "start": 11248.06, + "end": 11248.94, + "probability": 0.8047 + }, + { + "start": 11250.9, + "end": 11253.54, + "probability": 0.8303 + }, + { + "start": 11254.48, + "end": 11254.78, + "probability": 0.9895 + }, + { + "start": 11255.88, + "end": 11256.74, + "probability": 0.9315 + }, + { + "start": 11257.6, + "end": 11257.96, + "probability": 0.9927 + }, + { + "start": 11258.74, + "end": 11259.72, + "probability": 0.9137 + }, + { + "start": 11261.42, + "end": 11261.94, + "probability": 0.9844 + }, + { + "start": 11262.92, + "end": 11263.86, + "probability": 0.7059 + }, + { + "start": 11265.06, + "end": 11267.52, + "probability": 0.9857 + }, + { + "start": 11268.26, + "end": 11270.58, + "probability": 0.9519 + }, + { + "start": 11271.36, + "end": 11271.6, + "probability": 0.5124 + }, + { + "start": 11272.64, + "end": 11273.68, + "probability": 0.7179 + }, + { + "start": 11275.4, + "end": 11277.84, + "probability": 0.8976 + }, + { + "start": 11278.46, + "end": 11279.44, + "probability": 0.9343 + }, + { + "start": 11280.88, + "end": 11283.44, + "probability": 0.979 + }, + { + "start": 11284.5, + "end": 11287.36, + "probability": 0.9765 + }, + { + "start": 11289.02, + "end": 11289.54, + "probability": 0.9893 + }, + { + "start": 11290.82, + "end": 11292.12, + "probability": 0.989 + }, + { + "start": 11293.04, + "end": 11295.46, + "probability": 0.9821 + }, + { + "start": 11296.38, + "end": 11296.8, + "probability": 0.9958 + }, + { + "start": 11299.34, + "end": 11300.16, + "probability": 0.8966 + }, + { + "start": 11301.16, + "end": 11301.58, + "probability": 0.5529 + }, + { + "start": 11303.04, + "end": 11306.96, + "probability": 0.672 + }, + { + "start": 11307.72, + "end": 11308.46, + "probability": 0.7906 + }, + { + "start": 11309.94, + "end": 11310.86, + "probability": 0.8929 + }, + { + "start": 11312.08, + "end": 11312.56, + "probability": 0.9475 + }, + { + "start": 11314.42, + "end": 11315.82, + "probability": 0.9133 + }, + { + "start": 11316.58, + "end": 11316.92, + "probability": 0.7131 + }, + { + "start": 11318.2, + "end": 11319.16, + "probability": 0.9881 + }, + { + "start": 11322.17, + "end": 11325.28, + "probability": 0.9883 + }, + { + "start": 11326.18, + "end": 11326.6, + "probability": 0.8467 + }, + { + "start": 11327.6, + "end": 11328.9, + "probability": 0.9757 + }, + { + "start": 11329.94, + "end": 11330.22, + "probability": 0.5331 + }, + { + "start": 11331.5, + "end": 11332.54, + "probability": 0.6875 + }, + { + "start": 11333.5, + "end": 11333.84, + "probability": 0.9106 + }, + { + "start": 11334.92, + "end": 11335.98, + "probability": 0.916 + }, + { + "start": 11337.3, + "end": 11337.6, + "probability": 0.9284 + }, + { + "start": 11338.64, + "end": 11339.98, + "probability": 0.7201 + }, + { + "start": 11341.32, + "end": 11341.82, + "probability": 0.9788 + }, + { + "start": 11343.96, + "end": 11344.78, + "probability": 0.9707 + }, + { + "start": 11345.76, + "end": 11347.98, + "probability": 0.9814 + }, + { + "start": 11348.73, + "end": 11351.0, + "probability": 0.9878 + }, + { + "start": 11352.12, + "end": 11352.54, + "probability": 0.9666 + }, + { + "start": 11353.4, + "end": 11354.38, + "probability": 0.9078 + }, + { + "start": 11355.42, + "end": 11355.68, + "probability": 0.9961 + }, + { + "start": 11357.48, + "end": 11358.5, + "probability": 0.9449 + }, + { + "start": 11359.92, + "end": 11360.28, + "probability": 0.6849 + }, + { + "start": 11361.04, + "end": 11361.92, + "probability": 0.6051 + }, + { + "start": 11364.12, + "end": 11365.0, + "probability": 0.6525 + }, + { + "start": 11366.68, + "end": 11367.54, + "probability": 0.7783 + }, + { + "start": 11368.68, + "end": 11369.1, + "probability": 0.8704 + }, + { + "start": 11370.02, + "end": 11371.22, + "probability": 0.7714 + }, + { + "start": 11372.12, + "end": 11372.58, + "probability": 0.9451 + }, + { + "start": 11373.42, + "end": 11374.5, + "probability": 0.9073 + }, + { + "start": 11377.36, + "end": 11378.24, + "probability": 0.869 + }, + { + "start": 11379.0, + "end": 11380.4, + "probability": 0.9236 + }, + { + "start": 11383.2, + "end": 11384.04, + "probability": 0.8346 + }, + { + "start": 11384.68, + "end": 11385.84, + "probability": 0.875 + }, + { + "start": 11386.72, + "end": 11387.08, + "probability": 0.7647 + }, + { + "start": 11388.06, + "end": 11388.92, + "probability": 0.8651 + }, + { + "start": 11389.88, + "end": 11390.1, + "probability": 0.4891 + }, + { + "start": 11390.88, + "end": 11392.28, + "probability": 0.6705 + }, + { + "start": 11393.84, + "end": 11394.8, + "probability": 0.9714 + }, + { + "start": 11396.02, + "end": 11397.14, + "probability": 0.8175 + }, + { + "start": 11397.82, + "end": 11399.88, + "probability": 0.9377 + }, + { + "start": 11400.64, + "end": 11401.06, + "probability": 0.9792 + }, + { + "start": 11401.78, + "end": 11402.7, + "probability": 0.9056 + }, + { + "start": 11404.64, + "end": 11407.44, + "probability": 0.8073 + }, + { + "start": 11408.38, + "end": 11409.98, + "probability": 0.3498 + }, + { + "start": 11413.48, + "end": 11415.84, + "probability": 0.8337 + }, + { + "start": 11420.48, + "end": 11423.0, + "probability": 0.5399 + }, + { + "start": 11424.04, + "end": 11425.5, + "probability": 0.8707 + }, + { + "start": 11426.82, + "end": 11427.22, + "probability": 0.8859 + }, + { + "start": 11428.62, + "end": 11429.86, + "probability": 0.9781 + }, + { + "start": 11431.38, + "end": 11434.14, + "probability": 0.7974 + }, + { + "start": 11436.82, + "end": 11437.34, + "probability": 0.9854 + }, + { + "start": 11438.84, + "end": 11440.12, + "probability": 0.4496 + }, + { + "start": 11444.16, + "end": 11445.16, + "probability": 0.5287 + }, + { + "start": 11445.92, + "end": 11447.64, + "probability": 0.4738 + }, + { + "start": 11449.8, + "end": 11450.32, + "probability": 0.8602 + }, + { + "start": 11451.98, + "end": 11452.7, + "probability": 0.7262 + }, + { + "start": 11453.82, + "end": 11456.1, + "probability": 0.9857 + }, + { + "start": 11457.0, + "end": 11457.44, + "probability": 0.6088 + }, + { + "start": 11458.34, + "end": 11458.8, + "probability": 0.9167 + }, + { + "start": 11460.64, + "end": 11464.98, + "probability": 0.8346 + }, + { + "start": 11466.16, + "end": 11467.4, + "probability": 0.9699 + }, + { + "start": 11468.4, + "end": 11468.86, + "probability": 0.9087 + }, + { + "start": 11469.62, + "end": 11470.38, + "probability": 0.9763 + }, + { + "start": 11471.58, + "end": 11472.04, + "probability": 0.9858 + }, + { + "start": 11472.82, + "end": 11473.64, + "probability": 0.9921 + }, + { + "start": 11474.98, + "end": 11475.6, + "probability": 0.0026 + }, + { + "start": 11476.3, + "end": 11477.48, + "probability": 0.0 + }, + { + "start": 11479.48, + "end": 11480.86, + "probability": 0.6583 + }, + { + "start": 11482.24, + "end": 11482.82, + "probability": 0.8056 + }, + { + "start": 11484.68, + "end": 11485.56, + "probability": 0.7898 + }, + { + "start": 11486.96, + "end": 11487.24, + "probability": 0.6577 + }, + { + "start": 11488.14, + "end": 11488.92, + "probability": 0.8742 + }, + { + "start": 11490.38, + "end": 11492.12, + "probability": 0.9355 + }, + { + "start": 11493.43, + "end": 11495.4, + "probability": 0.9539 + }, + { + "start": 11502.2, + "end": 11502.6, + "probability": 0.5489 + }, + { + "start": 11504.68, + "end": 11505.28, + "probability": 0.7424 + }, + { + "start": 11506.56, + "end": 11506.96, + "probability": 0.8623 + }, + { + "start": 11508.56, + "end": 11509.94, + "probability": 0.5832 + }, + { + "start": 11511.14, + "end": 11512.82, + "probability": 0.7542 + }, + { + "start": 11513.86, + "end": 11514.26, + "probability": 0.9629 + }, + { + "start": 11515.0, + "end": 11516.2, + "probability": 0.98 + }, + { + "start": 11517.38, + "end": 11517.8, + "probability": 0.9705 + }, + { + "start": 11518.62, + "end": 11519.36, + "probability": 0.9764 + }, + { + "start": 11522.28, + "end": 11522.6, + "probability": 0.9385 + }, + { + "start": 11523.58, + "end": 11524.66, + "probability": 0.9177 + }, + { + "start": 11527.56, + "end": 11528.54, + "probability": 0.6628 + }, + { + "start": 11530.5, + "end": 11533.46, + "probability": 0.9128 + }, + { + "start": 11534.86, + "end": 11535.8, + "probability": 0.8724 + }, + { + "start": 11537.08, + "end": 11537.58, + "probability": 0.9946 + }, + { + "start": 11538.3, + "end": 11539.46, + "probability": 0.981 + }, + { + "start": 11542.44, + "end": 11544.92, + "probability": 0.9681 + }, + { + "start": 11545.92, + "end": 11546.42, + "probability": 0.9956 + }, + { + "start": 11547.46, + "end": 11548.72, + "probability": 0.7966 + }, + { + "start": 11550.18, + "end": 11550.68, + "probability": 0.9894 + }, + { + "start": 11551.64, + "end": 11552.98, + "probability": 0.7849 + }, + { + "start": 11555.36, + "end": 11555.46, + "probability": 0.504 + }, + { + "start": 11559.22, + "end": 11560.52, + "probability": 0.7203 + }, + { + "start": 11561.44, + "end": 11561.78, + "probability": 0.7274 + }, + { + "start": 11563.12, + "end": 11563.54, + "probability": 0.1491 + }, + { + "start": 11565.98, + "end": 11567.14, + "probability": 0.4412 + }, + { + "start": 11568.08, + "end": 11568.6, + "probability": 0.7461 + }, + { + "start": 11574.04, + "end": 11575.18, + "probability": 0.554 + }, + { + "start": 11577.16, + "end": 11577.62, + "probability": 0.9564 + }, + { + "start": 11579.2, + "end": 11580.34, + "probability": 0.8767 + }, + { + "start": 11580.86, + "end": 11581.24, + "probability": 0.7117 + }, + { + "start": 11582.22, + "end": 11582.88, + "probability": 0.9348 + }, + { + "start": 11584.2, + "end": 11586.2, + "probability": 0.9902 + }, + { + "start": 11587.54, + "end": 11588.0, + "probability": 0.9814 + }, + { + "start": 11589.22, + "end": 11590.1, + "probability": 0.5589 + }, + { + "start": 11591.82, + "end": 11592.38, + "probability": 0.9967 + }, + { + "start": 11593.32, + "end": 11594.3, + "probability": 0.9869 + }, + { + "start": 11595.94, + "end": 11596.32, + "probability": 0.9756 + }, + { + "start": 11597.38, + "end": 11598.78, + "probability": 0.9551 + }, + { + "start": 11599.78, + "end": 11603.78, + "probability": 0.4476 + }, + { + "start": 11604.48, + "end": 11604.92, + "probability": 0.5695 + }, + { + "start": 11607.02, + "end": 11608.16, + "probability": 0.6319 + }, + { + "start": 11609.04, + "end": 11609.48, + "probability": 0.9243 + }, + { + "start": 11610.32, + "end": 11611.38, + "probability": 0.7896 + }, + { + "start": 11612.16, + "end": 11614.98, + "probability": 0.9629 + }, + { + "start": 11617.2, + "end": 11617.64, + "probability": 0.981 + }, + { + "start": 11619.04, + "end": 11620.08, + "probability": 0.8174 + }, + { + "start": 11621.52, + "end": 11621.98, + "probability": 0.9919 + }, + { + "start": 11622.84, + "end": 11623.3, + "probability": 0.8938 + }, + { + "start": 11625.2, + "end": 11625.7, + "probability": 0.9679 + }, + { + "start": 11626.88, + "end": 11628.3, + "probability": 0.7817 + }, + { + "start": 11630.52, + "end": 11630.88, + "probability": 0.9922 + }, + { + "start": 11632.22, + "end": 11633.18, + "probability": 0.7329 + }, + { + "start": 11633.96, + "end": 11634.34, + "probability": 0.5428 + }, + { + "start": 11635.24, + "end": 11636.36, + "probability": 0.5225 + }, + { + "start": 11637.44, + "end": 11637.88, + "probability": 0.9719 + }, + { + "start": 11639.52, + "end": 11640.56, + "probability": 0.8889 + }, + { + "start": 11642.18, + "end": 11642.56, + "probability": 0.9435 + }, + { + "start": 11643.38, + "end": 11644.26, + "probability": 0.9118 + }, + { + "start": 11645.46, + "end": 11646.2, + "probability": 0.9924 + }, + { + "start": 11647.0, + "end": 11647.84, + "probability": 0.4964 + }, + { + "start": 11648.58, + "end": 11648.98, + "probability": 0.9927 + }, + { + "start": 11650.82, + "end": 11652.32, + "probability": 0.8799 + }, + { + "start": 11654.18, + "end": 11656.9, + "probability": 0.9097 + }, + { + "start": 11657.56, + "end": 11658.88, + "probability": 0.9723 + }, + { + "start": 11660.28, + "end": 11660.72, + "probability": 0.9889 + }, + { + "start": 11662.88, + "end": 11663.58, + "probability": 0.4818 + }, + { + "start": 11664.52, + "end": 11664.8, + "probability": 0.7837 + }, + { + "start": 11665.76, + "end": 11666.82, + "probability": 0.8577 + }, + { + "start": 11667.96, + "end": 11668.46, + "probability": 0.9961 + }, + { + "start": 11669.4, + "end": 11669.92, + "probability": 0.9081 + }, + { + "start": 11671.14, + "end": 11671.72, + "probability": 0.9961 + }, + { + "start": 11672.44, + "end": 11673.48, + "probability": 0.926 + }, + { + "start": 11677.18, + "end": 11677.64, + "probability": 0.959 + }, + { + "start": 11678.86, + "end": 11679.8, + "probability": 0.8731 + }, + { + "start": 11701.98, + "end": 11703.72, + "probability": 0.4901 + }, + { + "start": 11706.16, + "end": 11707.16, + "probability": 0.7475 + }, + { + "start": 11708.74, + "end": 11709.08, + "probability": 0.6898 + }, + { + "start": 11710.4, + "end": 11711.26, + "probability": 0.6905 + }, + { + "start": 11712.16, + "end": 11712.54, + "probability": 0.5262 + }, + { + "start": 11713.52, + "end": 11714.4, + "probability": 0.8394 + }, + { + "start": 11715.34, + "end": 11715.76, + "probability": 0.9761 + }, + { + "start": 11716.8, + "end": 11716.98, + "probability": 0.3385 + }, + { + "start": 11720.78, + "end": 11725.2, + "probability": 0.6128 + }, + { + "start": 11729.24, + "end": 11730.86, + "probability": 0.7608 + }, + { + "start": 11734.82, + "end": 11735.44, + "probability": 0.7578 + }, + { + "start": 11736.48, + "end": 11738.1, + "probability": 0.8104 + }, + { + "start": 11739.06, + "end": 11739.5, + "probability": 0.8063 + }, + { + "start": 11741.1, + "end": 11742.56, + "probability": 0.9572 + }, + { + "start": 11745.08, + "end": 11745.96, + "probability": 0.9535 + }, + { + "start": 11746.76, + "end": 11747.54, + "probability": 0.917 + }, + { + "start": 11749.94, + "end": 11753.0, + "probability": 0.9543 + }, + { + "start": 11754.94, + "end": 11756.04, + "probability": 0.9309 + }, + { + "start": 11757.22, + "end": 11757.7, + "probability": 0.8039 + }, + { + "start": 11759.32, + "end": 11760.64, + "probability": 0.684 + }, + { + "start": 11761.44, + "end": 11761.8, + "probability": 0.7358 + }, + { + "start": 11762.62, + "end": 11764.16, + "probability": 0.9002 + }, + { + "start": 11764.9, + "end": 11765.34, + "probability": 0.9417 + }, + { + "start": 11766.16, + "end": 11767.4, + "probability": 0.9551 + }, + { + "start": 11768.48, + "end": 11768.98, + "probability": 0.9875 + }, + { + "start": 11769.66, + "end": 11770.58, + "probability": 0.8955 + }, + { + "start": 11772.78, + "end": 11774.02, + "probability": 0.5922 + }, + { + "start": 11775.02, + "end": 11775.86, + "probability": 0.7413 + }, + { + "start": 11777.12, + "end": 11777.54, + "probability": 0.9524 + }, + { + "start": 11778.7, + "end": 11779.9, + "probability": 0.8964 + }, + { + "start": 11781.74, + "end": 11784.66, + "probability": 0.9727 + }, + { + "start": 11785.56, + "end": 11786.46, + "probability": 0.7342 + }, + { + "start": 11792.46, + "end": 11793.34, + "probability": 0.6617 + }, + { + "start": 11795.46, + "end": 11796.5, + "probability": 0.6243 + }, + { + "start": 11797.4, + "end": 11797.86, + "probability": 0.9075 + }, + { + "start": 11799.6, + "end": 11800.88, + "probability": 0.833 + }, + { + "start": 11801.94, + "end": 11802.32, + "probability": 0.81 + }, + { + "start": 11803.2, + "end": 11804.4, + "probability": 0.7939 + }, + { + "start": 11808.88, + "end": 11812.4, + "probability": 0.9177 + }, + { + "start": 11814.04, + "end": 11814.5, + "probability": 0.8504 + }, + { + "start": 11817.62, + "end": 11818.76, + "probability": 0.5471 + }, + { + "start": 11819.94, + "end": 11820.36, + "probability": 0.8105 + }, + { + "start": 11825.6, + "end": 11831.1, + "probability": 0.9624 + }, + { + "start": 11832.28, + "end": 11834.16, + "probability": 0.5322 + }, + { + "start": 11835.5, + "end": 11839.1, + "probability": 0.6733 + }, + { + "start": 11841.04, + "end": 11841.4, + "probability": 0.8397 + }, + { + "start": 11842.76, + "end": 11843.7, + "probability": 0.9717 + }, + { + "start": 11847.94, + "end": 11848.94, + "probability": 0.8987 + }, + { + "start": 11851.22, + "end": 11851.5, + "probability": 0.6454 + }, + { + "start": 11854.66, + "end": 11855.5, + "probability": 0.7786 + }, + { + "start": 11856.38, + "end": 11857.28, + "probability": 0.8966 + }, + { + "start": 11858.62, + "end": 11859.7, + "probability": 0.9719 + }, + { + "start": 11860.74, + "end": 11861.76, + "probability": 0.8995 + }, + { + "start": 11863.66, + "end": 11864.12, + "probability": 0.5464 + }, + { + "start": 11865.6, + "end": 11866.62, + "probability": 0.8027 + }, + { + "start": 11869.04, + "end": 11869.9, + "probability": 0.9839 + }, + { + "start": 11871.42, + "end": 11873.9, + "probability": 0.4536 + }, + { + "start": 11875.52, + "end": 11876.34, + "probability": 0.8097 + }, + { + "start": 11877.46, + "end": 11878.34, + "probability": 0.6627 + }, + { + "start": 11879.64, + "end": 11880.62, + "probability": 0.975 + }, + { + "start": 11882.86, + "end": 11884.0, + "probability": 0.8915 + }, + { + "start": 11885.52, + "end": 11886.02, + "probability": 0.7056 + }, + { + "start": 11887.52, + "end": 11888.42, + "probability": 0.9542 + }, + { + "start": 11889.94, + "end": 11890.82, + "probability": 0.9611 + }, + { + "start": 11891.56, + "end": 11892.64, + "probability": 0.8327 + }, + { + "start": 11895.76, + "end": 11896.5, + "probability": 0.9458 + }, + { + "start": 11900.14, + "end": 11900.62, + "probability": 0.637 + }, + { + "start": 11903.44, + "end": 11904.56, + "probability": 0.4985 + }, + { + "start": 11905.72, + "end": 11906.92, + "probability": 0.6049 + }, + { + "start": 11908.18, + "end": 11910.84, + "probability": 0.7496 + }, + { + "start": 11911.44, + "end": 11912.16, + "probability": 0.7559 + }, + { + "start": 11914.88, + "end": 11915.26, + "probability": 0.8287 + }, + { + "start": 11917.0, + "end": 11917.94, + "probability": 0.8167 + }, + { + "start": 11919.3, + "end": 11921.46, + "probability": 0.7286 + }, + { + "start": 11926.36, + "end": 11927.3, + "probability": 0.3486 + }, + { + "start": 11929.24, + "end": 11930.42, + "probability": 0.5119 + }, + { + "start": 11937.24, + "end": 11938.06, + "probability": 0.5152 + }, + { + "start": 11943.0, + "end": 11951.04, + "probability": 0.9245 + }, + { + "start": 11953.94, + "end": 11955.16, + "probability": 0.3628 + }, + { + "start": 11956.88, + "end": 11957.64, + "probability": 0.1364 + }, + { + "start": 11960.56, + "end": 11961.78, + "probability": 0.6955 + }, + { + "start": 11964.8, + "end": 11970.54, + "probability": 0.9871 + }, + { + "start": 11971.32, + "end": 11972.16, + "probability": 0.497 + }, + { + "start": 11972.26, + "end": 11973.12, + "probability": 0.6959 + }, + { + "start": 11973.18, + "end": 11974.5, + "probability": 0.3189 + }, + { + "start": 12095.66, + "end": 12096.06, + "probability": 0.2335 + }, + { + "start": 12096.06, + "end": 12096.06, + "probability": 0.1807 + }, + { + "start": 12096.06, + "end": 12096.06, + "probability": 0.1122 + }, + { + "start": 12096.06, + "end": 12096.06, + "probability": 0.0481 + }, + { + "start": 12096.06, + "end": 12096.06, + "probability": 0.1649 + }, + { + "start": 12096.06, + "end": 12096.6, + "probability": 0.3047 + }, + { + "start": 12097.2, + "end": 12097.82, + "probability": 0.9426 + }, + { + "start": 12102.12, + "end": 12107.2, + "probability": 0.6725 + }, + { + "start": 12107.62, + "end": 12110.3, + "probability": 0.8574 + }, + { + "start": 12111.88, + "end": 12116.52, + "probability": 0.9764 + }, + { + "start": 12117.34, + "end": 12122.08, + "probability": 0.7896 + }, + { + "start": 12123.86, + "end": 12126.82, + "probability": 0.6386 + }, + { + "start": 12129.23, + "end": 12132.26, + "probability": 0.864 + }, + { + "start": 12133.0, + "end": 12134.2, + "probability": 0.0083 + }, + { + "start": 12137.06, + "end": 12138.06, + "probability": 0.5085 + }, + { + "start": 12140.06, + "end": 12140.5, + "probability": 0.8975 + }, + { + "start": 12141.58, + "end": 12142.6, + "probability": 0.6651 + }, + { + "start": 12149.38, + "end": 12150.46, + "probability": 0.4588 + }, + { + "start": 12151.48, + "end": 12152.56, + "probability": 0.448 + }, + { + "start": 12153.48, + "end": 12153.94, + "probability": 0.9138 + }, + { + "start": 12155.34, + "end": 12156.44, + "probability": 0.8285 + }, + { + "start": 12157.7, + "end": 12160.36, + "probability": 0.9678 + }, + { + "start": 12161.78, + "end": 12162.46, + "probability": 0.9535 + }, + { + "start": 12163.58, + "end": 12166.88, + "probability": 0.3318 + }, + { + "start": 12167.78, + "end": 12168.18, + "probability": 0.7878 + }, + { + "start": 12168.92, + "end": 12174.4, + "probability": 0.8607 + }, + { + "start": 12175.44, + "end": 12178.08, + "probability": 0.9702 + }, + { + "start": 12181.12, + "end": 12184.12, + "probability": 0.865 + }, + { + "start": 12187.42, + "end": 12188.64, + "probability": 0.8967 + }, + { + "start": 12191.0, + "end": 12191.6, + "probability": 0.4964 + }, + { + "start": 12192.42, + "end": 12195.02, + "probability": 0.464 + }, + { + "start": 12196.04, + "end": 12196.4, + "probability": 0.7782 + }, + { + "start": 12198.12, + "end": 12199.62, + "probability": 0.9135 + }, + { + "start": 12200.72, + "end": 12203.22, + "probability": 0.5086 + }, + { + "start": 12204.04, + "end": 12204.52, + "probability": 0.8924 + }, + { + "start": 12205.6, + "end": 12206.58, + "probability": 0.9673 + }, + { + "start": 12207.34, + "end": 12211.44, + "probability": 0.9123 + }, + { + "start": 12212.2, + "end": 12213.42, + "probability": 0.9417 + }, + { + "start": 12215.36, + "end": 12216.88, + "probability": 0.4773 + }, + { + "start": 12219.44, + "end": 12222.16, + "probability": 0.5305 + }, + { + "start": 12223.44, + "end": 12224.52, + "probability": 0.7165 + }, + { + "start": 12226.1, + "end": 12227.24, + "probability": 0.8544 + }, + { + "start": 12229.16, + "end": 12230.18, + "probability": 0.9783 + }, + { + "start": 12231.56, + "end": 12235.8, + "probability": 0.9796 + }, + { + "start": 12236.42, + "end": 12239.18, + "probability": 0.9503 + }, + { + "start": 12240.1, + "end": 12243.0, + "probability": 0.9542 + }, + { + "start": 12244.46, + "end": 12244.86, + "probability": 0.9922 + }, + { + "start": 12246.08, + "end": 12248.76, + "probability": 0.6041 + }, + { + "start": 12249.94, + "end": 12250.84, + "probability": 0.7537 + }, + { + "start": 12251.4, + "end": 12252.24, + "probability": 0.7927 + }, + { + "start": 12253.3, + "end": 12254.44, + "probability": 0.8452 + }, + { + "start": 12255.48, + "end": 12257.58, + "probability": 0.9597 + }, + { + "start": 12258.68, + "end": 12263.32, + "probability": 0.9618 + }, + { + "start": 12264.42, + "end": 12265.48, + "probability": 0.9299 + }, + { + "start": 12266.66, + "end": 12267.24, + "probability": 0.973 + }, + { + "start": 12268.12, + "end": 12269.3, + "probability": 0.9199 + }, + { + "start": 12272.38, + "end": 12273.12, + "probability": 0.9412 + }, + { + "start": 12274.46, + "end": 12275.26, + "probability": 0.869 + }, + { + "start": 12280.34, + "end": 12281.34, + "probability": 0.4994 + }, + { + "start": 12282.88, + "end": 12283.9, + "probability": 0.4703 + }, + { + "start": 12284.74, + "end": 12285.24, + "probability": 0.8372 + }, + { + "start": 12286.18, + "end": 12286.92, + "probability": 0.902 + }, + { + "start": 12288.48, + "end": 12289.22, + "probability": 0.9074 + }, + { + "start": 12290.06, + "end": 12290.94, + "probability": 0.8561 + }, + { + "start": 12293.3, + "end": 12293.72, + "probability": 0.6414 + }, + { + "start": 12294.8, + "end": 12295.8, + "probability": 0.8809 + }, + { + "start": 12296.84, + "end": 12297.34, + "probability": 0.9419 + }, + { + "start": 12298.0, + "end": 12298.9, + "probability": 0.9794 + }, + { + "start": 12299.9, + "end": 12300.7, + "probability": 0.9746 + }, + { + "start": 12301.38, + "end": 12302.72, + "probability": 0.7923 + }, + { + "start": 12304.14, + "end": 12304.62, + "probability": 0.9868 + }, + { + "start": 12306.2, + "end": 12307.58, + "probability": 0.937 + }, + { + "start": 12308.94, + "end": 12309.32, + "probability": 0.9922 + }, + { + "start": 12310.38, + "end": 12311.34, + "probability": 0.8663 + }, + { + "start": 12312.32, + "end": 12312.86, + "probability": 0.7456 + }, + { + "start": 12314.02, + "end": 12314.96, + "probability": 0.614 + }, + { + "start": 12316.44, + "end": 12317.22, + "probability": 0.8191 + }, + { + "start": 12318.3, + "end": 12319.14, + "probability": 0.523 + }, + { + "start": 12320.44, + "end": 12321.08, + "probability": 0.9914 + }, + { + "start": 12322.16, + "end": 12323.44, + "probability": 0.9155 + }, + { + "start": 12324.12, + "end": 12324.52, + "probability": 0.2168 + }, + { + "start": 12325.64, + "end": 12327.04, + "probability": 0.9277 + }, + { + "start": 12328.24, + "end": 12331.22, + "probability": 0.962 + }, + { + "start": 12335.42, + "end": 12336.28, + "probability": 0.9863 + }, + { + "start": 12337.94, + "end": 12339.34, + "probability": 0.7351 + }, + { + "start": 12340.62, + "end": 12341.12, + "probability": 0.7592 + }, + { + "start": 12345.66, + "end": 12346.54, + "probability": 0.3314 + }, + { + "start": 12347.64, + "end": 12348.02, + "probability": 0.8226 + }, + { + "start": 12350.34, + "end": 12351.42, + "probability": 0.7562 + }, + { + "start": 12352.63, + "end": 12354.82, + "probability": 0.8832 + }, + { + "start": 12356.5, + "end": 12357.16, + "probability": 0.9961 + }, + { + "start": 12358.24, + "end": 12359.02, + "probability": 0.8442 + }, + { + "start": 12362.14, + "end": 12363.22, + "probability": 0.8878 + }, + { + "start": 12364.68, + "end": 12365.16, + "probability": 0.846 + }, + { + "start": 12367.12, + "end": 12370.22, + "probability": 0.6594 + }, + { + "start": 12372.04, + "end": 12372.24, + "probability": 0.0682 + }, + { + "start": 12377.06, + "end": 12377.38, + "probability": 0.7279 + }, + { + "start": 12378.64, + "end": 12379.24, + "probability": 0.5023 + }, + { + "start": 12380.8, + "end": 12381.24, + "probability": 0.8162 + }, + { + "start": 12382.42, + "end": 12382.88, + "probability": 0.8105 + }, + { + "start": 12385.14, + "end": 12390.1, + "probability": 0.952 + }, + { + "start": 12391.7, + "end": 12392.1, + "probability": 0.9648 + }, + { + "start": 12393.3, + "end": 12394.2, + "probability": 0.9084 + }, + { + "start": 12395.78, + "end": 12396.1, + "probability": 0.9829 + }, + { + "start": 12397.16, + "end": 12397.8, + "probability": 0.9789 + }, + { + "start": 12399.68, + "end": 12400.0, + "probability": 0.8845 + }, + { + "start": 12401.22, + "end": 12402.04, + "probability": 0.9921 + }, + { + "start": 12403.36, + "end": 12405.76, + "probability": 0.9677 + }, + { + "start": 12407.54, + "end": 12408.7, + "probability": 0.7353 + }, + { + "start": 12409.42, + "end": 12409.82, + "probability": 0.8711 + }, + { + "start": 12411.48, + "end": 12413.26, + "probability": 0.4865 + }, + { + "start": 12415.44, + "end": 12416.24, + "probability": 0.9858 + }, + { + "start": 12416.84, + "end": 12418.3, + "probability": 0.9265 + }, + { + "start": 12419.2, + "end": 12423.86, + "probability": 0.9623 + }, + { + "start": 12425.28, + "end": 12428.04, + "probability": 0.9463 + }, + { + "start": 12432.6, + "end": 12434.3, + "probability": 0.4624 + }, + { + "start": 12434.88, + "end": 12435.72, + "probability": 0.4159 + }, + { + "start": 12436.78, + "end": 12440.44, + "probability": 0.0386 + }, + { + "start": 12459.56, + "end": 12459.98, + "probability": 0.0286 + }, + { + "start": 12461.36, + "end": 12461.76, + "probability": 0.6627 + }, + { + "start": 12462.78, + "end": 12467.14, + "probability": 0.6481 + }, + { + "start": 12467.88, + "end": 12469.08, + "probability": 0.2387 + }, + { + "start": 12470.22, + "end": 12470.76, + "probability": 0.8511 + }, + { + "start": 12471.92, + "end": 12472.5, + "probability": 0.0322 + }, + { + "start": 12475.84, + "end": 12476.52, + "probability": 0.5418 + }, + { + "start": 12477.6, + "end": 12480.38, + "probability": 0.5928 + }, + { + "start": 12499.12, + "end": 12500.54, + "probability": 0.3337 + }, + { + "start": 12502.34, + "end": 12502.7, + "probability": 0.5088 + }, + { + "start": 12503.62, + "end": 12504.4, + "probability": 0.7151 + }, + { + "start": 12505.38, + "end": 12507.58, + "probability": 0.9177 + }, + { + "start": 12509.26, + "end": 12510.04, + "probability": 0.9514 + }, + { + "start": 12510.76, + "end": 12511.46, + "probability": 0.1794 + }, + { + "start": 12512.86, + "end": 12513.42, + "probability": 0.7484 + }, + { + "start": 12514.14, + "end": 12515.26, + "probability": 0.8647 + }, + { + "start": 12516.36, + "end": 12516.86, + "probability": 0.7493 + }, + { + "start": 12518.44, + "end": 12519.58, + "probability": 0.8889 + }, + { + "start": 12520.5, + "end": 12523.26, + "probability": 0.9913 + }, + { + "start": 12524.46, + "end": 12524.92, + "probability": 0.5397 + }, + { + "start": 12526.04, + "end": 12527.28, + "probability": 0.7978 + }, + { + "start": 12528.0, + "end": 12533.28, + "probability": 0.9243 + }, + { + "start": 12533.92, + "end": 12536.2, + "probability": 0.9322 + }, + { + "start": 12537.62, + "end": 12539.4, + "probability": 0.9771 + }, + { + "start": 12539.94, + "end": 12543.02, + "probability": 0.5654 + }, + { + "start": 12543.8, + "end": 12546.28, + "probability": 0.2805 + }, + { + "start": 12548.46, + "end": 12549.28, + "probability": 0.4952 + }, + { + "start": 12550.28, + "end": 12551.08, + "probability": 0.5048 + }, + { + "start": 12552.2, + "end": 12552.66, + "probability": 0.8075 + }, + { + "start": 12554.48, + "end": 12555.44, + "probability": 0.458 + }, + { + "start": 12557.18, + "end": 12557.7, + "probability": 0.9901 + }, + { + "start": 12558.72, + "end": 12559.88, + "probability": 0.8286 + }, + { + "start": 12560.68, + "end": 12561.1, + "probability": 0.9202 + }, + { + "start": 12561.94, + "end": 12563.0, + "probability": 0.6655 + }, + { + "start": 12568.64, + "end": 12572.42, + "probability": 0.7138 + }, + { + "start": 12574.24, + "end": 12574.78, + "probability": 0.9897 + }, + { + "start": 12576.98, + "end": 12577.92, + "probability": 0.8988 + }, + { + "start": 12579.24, + "end": 12579.92, + "probability": 0.9849 + }, + { + "start": 12581.42, + "end": 12582.26, + "probability": 0.4996 + }, + { + "start": 12583.28, + "end": 12583.78, + "probability": 0.9612 + }, + { + "start": 12587.08, + "end": 12587.54, + "probability": 0.7549 + }, + { + "start": 12590.32, + "end": 12591.42, + "probability": 0.3424 + }, + { + "start": 12593.74, + "end": 12594.8, + "probability": 0.563 + }, + { + "start": 12595.88, + "end": 12597.12, + "probability": 0.936 + }, + { + "start": 12598.32, + "end": 12598.78, + "probability": 0.9154 + }, + { + "start": 12599.7, + "end": 12600.72, + "probability": 0.6775 + }, + { + "start": 12601.54, + "end": 12603.64, + "probability": 0.875 + }, + { + "start": 12604.78, + "end": 12605.28, + "probability": 0.8486 + }, + { + "start": 12606.24, + "end": 12607.16, + "probability": 0.9186 + }, + { + "start": 12608.5, + "end": 12609.06, + "probability": 0.9974 + }, + { + "start": 12609.82, + "end": 12610.86, + "probability": 0.8738 + }, + { + "start": 12613.92, + "end": 12614.46, + "probability": 0.9948 + }, + { + "start": 12615.64, + "end": 12618.32, + "probability": 0.4838 + }, + { + "start": 12627.88, + "end": 12628.7, + "probability": 0.1285 + }, + { + "start": 12633.04, + "end": 12633.42, + "probability": 0.5416 + }, + { + "start": 12635.8, + "end": 12637.98, + "probability": 0.7599 + }, + { + "start": 12639.56, + "end": 12640.52, + "probability": 0.8173 + }, + { + "start": 12643.92, + "end": 12644.46, + "probability": 0.984 + }, + { + "start": 12646.52, + "end": 12647.8, + "probability": 0.8051 + }, + { + "start": 12651.72, + "end": 12652.46, + "probability": 0.8455 + }, + { + "start": 12653.46, + "end": 12655.18, + "probability": 0.8959 + }, + { + "start": 12659.52, + "end": 12659.86, + "probability": 0.7149 + }, + { + "start": 12661.72, + "end": 12664.6, + "probability": 0.8478 + }, + { + "start": 12665.32, + "end": 12666.24, + "probability": 0.8929 + }, + { + "start": 12667.7, + "end": 12668.26, + "probability": 0.9974 + }, + { + "start": 12669.06, + "end": 12670.5, + "probability": 0.8966 + }, + { + "start": 12672.96, + "end": 12673.56, + "probability": 0.9977 + }, + { + "start": 12674.62, + "end": 12676.02, + "probability": 0.8576 + }, + { + "start": 12677.14, + "end": 12677.58, + "probability": 0.9984 + }, + { + "start": 12678.62, + "end": 12680.0, + "probability": 0.9147 + }, + { + "start": 12681.1, + "end": 12681.54, + "probability": 0.9945 + }, + { + "start": 12682.28, + "end": 12683.36, + "probability": 0.9218 + }, + { + "start": 12684.64, + "end": 12685.04, + "probability": 0.9886 + }, + { + "start": 12685.94, + "end": 12687.42, + "probability": 0.9131 + }, + { + "start": 12692.62, + "end": 12698.46, + "probability": 0.6279 + }, + { + "start": 12700.96, + "end": 12701.8, + "probability": 0.9138 + }, + { + "start": 12702.62, + "end": 12703.96, + "probability": 0.5931 + }, + { + "start": 12705.38, + "end": 12708.98, + "probability": 0.9586 + }, + { + "start": 12711.11, + "end": 12713.6, + "probability": 0.2068 + }, + { + "start": 12715.48, + "end": 12716.86, + "probability": 0.0666 + }, + { + "start": 12727.78, + "end": 12728.3, + "probability": 0.7025 + }, + { + "start": 12729.24, + "end": 12729.96, + "probability": 0.5816 + }, + { + "start": 12733.3, + "end": 12734.34, + "probability": 0.1406 + }, + { + "start": 12735.76, + "end": 12738.68, + "probability": 0.0469 + }, + { + "start": 12739.67, + "end": 12741.98, + "probability": 0.3465 + }, + { + "start": 12753.6, + "end": 12756.48, + "probability": 0.5893 + }, + { + "start": 12758.1, + "end": 12758.9, + "probability": 0.9497 + }, + { + "start": 12759.54, + "end": 12760.34, + "probability": 0.7563 + }, + { + "start": 12760.96, + "end": 12762.86, + "probability": 0.7659 + }, + { + "start": 12763.46, + "end": 12765.66, + "probability": 0.6065 + }, + { + "start": 12767.78, + "end": 12768.54, + "probability": 0.9359 + }, + { + "start": 12769.2, + "end": 12770.06, + "probability": 0.7944 + }, + { + "start": 12771.3, + "end": 12773.82, + "probability": 0.9152 + }, + { + "start": 12774.72, + "end": 12775.48, + "probability": 0.9818 + }, + { + "start": 12776.18, + "end": 12777.06, + "probability": 0.7384 + }, + { + "start": 12778.24, + "end": 12779.2, + "probability": 0.9894 + }, + { + "start": 12780.5, + "end": 12781.36, + "probability": 0.9483 + }, + { + "start": 12782.3, + "end": 12784.46, + "probability": 0.9375 + }, + { + "start": 12787.08, + "end": 12788.32, + "probability": 0.9683 + }, + { + "start": 12791.48, + "end": 12792.46, + "probability": 0.5844 + }, + { + "start": 12793.3, + "end": 12794.26, + "probability": 0.8431 + }, + { + "start": 12794.98, + "end": 12796.0, + "probability": 0.8458 + }, + { + "start": 12797.68, + "end": 12798.54, + "probability": 0.9873 + }, + { + "start": 12799.08, + "end": 12799.88, + "probability": 0.7096 + }, + { + "start": 12801.08, + "end": 12801.94, + "probability": 0.9892 + }, + { + "start": 12802.52, + "end": 12803.78, + "probability": 0.9747 + }, + { + "start": 12804.84, + "end": 12806.36, + "probability": 0.9923 + }, + { + "start": 12806.88, + "end": 12808.24, + "probability": 0.7109 + }, + { + "start": 12810.44, + "end": 12817.0, + "probability": 0.8539 + }, + { + "start": 12817.16, + "end": 12819.52, + "probability": 0.9338 + }, + { + "start": 12821.68, + "end": 12822.41, + "probability": 0.8857 + }, + { + "start": 12822.96, + "end": 12823.94, + "probability": 0.5335 + }, + { + "start": 12823.98, + "end": 12825.2, + "probability": 0.8549 + }, + { + "start": 12827.82, + "end": 12828.78, + "probability": 0.2974 + }, + { + "start": 12830.0, + "end": 12831.14, + "probability": 0.136 + }, + { + "start": 12834.56, + "end": 12835.84, + "probability": 0.0849 + }, + { + "start": 12836.6, + "end": 12836.82, + "probability": 0.0001 + }, + { + "start": 12837.48, + "end": 12838.34, + "probability": 0.0411 + }, + { + "start": 12838.34, + "end": 12841.68, + "probability": 0.028 + }, + { + "start": 12842.76, + "end": 12844.34, + "probability": 0.091 + }, + { + "start": 12844.62, + "end": 12845.56, + "probability": 0.0999 + }, + { + "start": 12959.64, + "end": 12962.1, + "probability": 0.6264 + }, + { + "start": 12962.82, + "end": 12965.94, + "probability": 0.8543 + }, + { + "start": 12966.6, + "end": 12969.66, + "probability": 0.3828 + }, + { + "start": 12970.18, + "end": 12972.16, + "probability": 0.8685 + }, + { + "start": 12972.62, + "end": 12978.4, + "probability": 0.9849 + }, + { + "start": 12978.46, + "end": 12979.08, + "probability": 0.852 + }, + { + "start": 13020.96, + "end": 13020.96, + "probability": 0.0407 + }, + { + "start": 13020.96, + "end": 13022.84, + "probability": 0.6966 + }, + { + "start": 13024.08, + "end": 13026.24, + "probability": 0.8253 + }, + { + "start": 13026.92, + "end": 13028.1, + "probability": 0.7528 + }, + { + "start": 13028.96, + "end": 13029.88, + "probability": 0.8223 + }, + { + "start": 13029.94, + "end": 13032.52, + "probability": 0.9878 + }, + { + "start": 13033.3, + "end": 13037.43, + "probability": 0.9819 + }, + { + "start": 13039.48, + "end": 13039.66, + "probability": 0.0145 + }, + { + "start": 13039.66, + "end": 13039.66, + "probability": 0.1251 + }, + { + "start": 13039.66, + "end": 13039.76, + "probability": 0.2156 + }, + { + "start": 13039.78, + "end": 13041.66, + "probability": 0.712 + }, + { + "start": 13041.7, + "end": 13043.36, + "probability": 0.7291 + }, + { + "start": 13044.47, + "end": 13046.37, + "probability": 0.1712 + }, + { + "start": 13046.56, + "end": 13046.84, + "probability": 0.3644 + }, + { + "start": 13047.78, + "end": 13050.06, + "probability": 0.3491 + }, + { + "start": 13050.16, + "end": 13051.11, + "probability": 0.6085 + }, + { + "start": 13051.32, + "end": 13052.7, + "probability": 0.8319 + }, + { + "start": 13052.84, + "end": 13054.54, + "probability": 0.1184 + }, + { + "start": 13056.54, + "end": 13056.94, + "probability": 0.4512 + }, + { + "start": 13056.94, + "end": 13060.44, + "probability": 0.8867 + }, + { + "start": 13061.42, + "end": 13062.94, + "probability": 0.774 + }, + { + "start": 13063.88, + "end": 13064.2, + "probability": 0.3978 + }, + { + "start": 13064.2, + "end": 13067.94, + "probability": 0.9882 + }, + { + "start": 13068.5, + "end": 13069.92, + "probability": 0.082 + }, + { + "start": 13069.92, + "end": 13070.5, + "probability": 0.4741 + }, + { + "start": 13070.8, + "end": 13072.46, + "probability": 0.3286 + }, + { + "start": 13072.5, + "end": 13074.64, + "probability": 0.5347 + }, + { + "start": 13074.92, + "end": 13078.92, + "probability": 0.4532 + }, + { + "start": 13079.18, + "end": 13081.16, + "probability": 0.2779 + }, + { + "start": 13081.74, + "end": 13085.82, + "probability": 0.2415 + }, + { + "start": 13085.82, + "end": 13085.92, + "probability": 0.4349 + }, + { + "start": 13087.76, + "end": 13090.38, + "probability": 0.4871 + }, + { + "start": 13091.02, + "end": 13097.32, + "probability": 0.9497 + }, + { + "start": 13097.92, + "end": 13100.48, + "probability": 0.9315 + }, + { + "start": 13102.24, + "end": 13107.2, + "probability": 0.9819 + }, + { + "start": 13107.3, + "end": 13107.64, + "probability": 0.4041 + }, + { + "start": 13107.82, + "end": 13110.88, + "probability": 0.67 + }, + { + "start": 13111.76, + "end": 13114.76, + "probability": 0.8042 + }, + { + "start": 13115.44, + "end": 13116.26, + "probability": 0.8582 + }, + { + "start": 13116.3, + "end": 13117.56, + "probability": 0.6896 + }, + { + "start": 13117.68, + "end": 13118.34, + "probability": 0.4314 + }, + { + "start": 13118.42, + "end": 13122.04, + "probability": 0.9302 + }, + { + "start": 13123.08, + "end": 13124.14, + "probability": 0.9807 + }, + { + "start": 13125.08, + "end": 13132.02, + "probability": 0.9922 + }, + { + "start": 13133.14, + "end": 13136.14, + "probability": 0.9945 + }, + { + "start": 13137.02, + "end": 13139.66, + "probability": 0.9971 + }, + { + "start": 13140.22, + "end": 13142.58, + "probability": 0.9994 + }, + { + "start": 13143.98, + "end": 13145.42, + "probability": 0.9227 + }, + { + "start": 13146.14, + "end": 13147.48, + "probability": 0.9917 + }, + { + "start": 13147.7, + "end": 13148.28, + "probability": 0.9336 + }, + { + "start": 13148.36, + "end": 13149.36, + "probability": 0.9009 + }, + { + "start": 13149.36, + "end": 13150.76, + "probability": 0.9525 + }, + { + "start": 13150.82, + "end": 13151.7, + "probability": 0.7326 + }, + { + "start": 13151.8, + "end": 13153.48, + "probability": 0.7216 + }, + { + "start": 13155.24, + "end": 13156.22, + "probability": 0.9758 + }, + { + "start": 13156.28, + "end": 13164.88, + "probability": 0.9579 + }, + { + "start": 13164.94, + "end": 13165.88, + "probability": 0.9457 + }, + { + "start": 13165.96, + "end": 13168.84, + "probability": 0.991 + }, + { + "start": 13169.52, + "end": 13170.24, + "probability": 0.8281 + }, + { + "start": 13170.36, + "end": 13173.22, + "probability": 0.7996 + }, + { + "start": 13173.78, + "end": 13176.84, + "probability": 0.967 + }, + { + "start": 13178.08, + "end": 13181.32, + "probability": 0.9916 + }, + { + "start": 13182.62, + "end": 13188.44, + "probability": 0.9952 + }, + { + "start": 13189.04, + "end": 13189.79, + "probability": 0.9763 + }, + { + "start": 13189.98, + "end": 13190.46, + "probability": 0.9726 + }, + { + "start": 13190.52, + "end": 13191.52, + "probability": 0.9587 + }, + { + "start": 13192.02, + "end": 13193.5, + "probability": 0.984 + }, + { + "start": 13193.58, + "end": 13194.34, + "probability": 0.7461 + }, + { + "start": 13195.2, + "end": 13196.46, + "probability": 0.4893 + }, + { + "start": 13197.26, + "end": 13200.44, + "probability": 0.9526 + }, + { + "start": 13200.96, + "end": 13203.04, + "probability": 0.9756 + }, + { + "start": 13203.16, + "end": 13203.72, + "probability": 0.8281 + }, + { + "start": 13203.84, + "end": 13204.54, + "probability": 0.9722 + }, + { + "start": 13204.94, + "end": 13206.1, + "probability": 0.9065 + }, + { + "start": 13206.56, + "end": 13210.4, + "probability": 0.9975 + }, + { + "start": 13210.52, + "end": 13212.04, + "probability": 0.6313 + }, + { + "start": 13212.44, + "end": 13213.82, + "probability": 0.989 + }, + { + "start": 13214.5, + "end": 13218.76, + "probability": 0.9338 + }, + { + "start": 13219.84, + "end": 13221.14, + "probability": 0.8442 + }, + { + "start": 13221.26, + "end": 13225.4, + "probability": 0.9947 + }, + { + "start": 13225.4, + "end": 13225.76, + "probability": 0.5123 + }, + { + "start": 13226.44, + "end": 13228.4, + "probability": 0.9823 + }, + { + "start": 13229.06, + "end": 13232.48, + "probability": 0.9047 + }, + { + "start": 13232.48, + "end": 13237.94, + "probability": 0.9929 + }, + { + "start": 13238.4, + "end": 13239.6, + "probability": 0.6706 + }, + { + "start": 13240.26, + "end": 13241.52, + "probability": 0.7908 + }, + { + "start": 13242.26, + "end": 13245.04, + "probability": 0.9677 + }, + { + "start": 13245.04, + "end": 13249.02, + "probability": 0.9591 + }, + { + "start": 13249.08, + "end": 13251.76, + "probability": 0.9021 + }, + { + "start": 13251.88, + "end": 13252.82, + "probability": 0.9421 + }, + { + "start": 13253.28, + "end": 13253.92, + "probability": 0.7058 + }, + { + "start": 13254.28, + "end": 13258.26, + "probability": 0.9866 + }, + { + "start": 13258.26, + "end": 13262.36, + "probability": 0.9964 + }, + { + "start": 13262.36, + "end": 13265.96, + "probability": 0.8406 + }, + { + "start": 13266.38, + "end": 13270.92, + "probability": 0.9546 + }, + { + "start": 13271.3, + "end": 13273.7, + "probability": 0.9661 + }, + { + "start": 13274.5, + "end": 13275.88, + "probability": 0.9854 + }, + { + "start": 13276.3, + "end": 13279.2, + "probability": 0.9495 + }, + { + "start": 13282.62, + "end": 13286.32, + "probability": 0.9963 + }, + { + "start": 13286.46, + "end": 13287.04, + "probability": 0.3361 + }, + { + "start": 13287.62, + "end": 13287.68, + "probability": 0.0211 + }, + { + "start": 13287.68, + "end": 13288.2, + "probability": 0.4627 + }, + { + "start": 13288.28, + "end": 13289.16, + "probability": 0.7675 + }, + { + "start": 13289.46, + "end": 13291.74, + "probability": 0.9893 + }, + { + "start": 13291.84, + "end": 13294.0, + "probability": 0.7325 + }, + { + "start": 13295.51, + "end": 13298.82, + "probability": 0.9619 + }, + { + "start": 13299.2, + "end": 13300.18, + "probability": 0.2268 + }, + { + "start": 13300.18, + "end": 13300.36, + "probability": 0.049 + }, + { + "start": 13300.36, + "end": 13300.38, + "probability": 0.6276 + }, + { + "start": 13300.52, + "end": 13301.52, + "probability": 0.7084 + }, + { + "start": 13301.6, + "end": 13305.23, + "probability": 0.8618 + }, + { + "start": 13306.02, + "end": 13306.76, + "probability": 0.9793 + }, + { + "start": 13306.9, + "end": 13307.96, + "probability": 0.9958 + }, + { + "start": 13308.04, + "end": 13308.98, + "probability": 0.9958 + }, + { + "start": 13309.56, + "end": 13311.02, + "probability": 0.7799 + }, + { + "start": 13311.54, + "end": 13315.98, + "probability": 0.8348 + }, + { + "start": 13317.8, + "end": 13319.5, + "probability": 0.6122 + }, + { + "start": 13321.2, + "end": 13322.58, + "probability": 0.9685 + }, + { + "start": 13322.64, + "end": 13325.24, + "probability": 0.9739 + }, + { + "start": 13325.24, + "end": 13328.84, + "probability": 0.9945 + }, + { + "start": 13329.74, + "end": 13331.74, + "probability": 0.8722 + }, + { + "start": 13332.18, + "end": 13333.28, + "probability": 0.7426 + }, + { + "start": 13333.34, + "end": 13336.44, + "probability": 0.9765 + }, + { + "start": 13336.44, + "end": 13340.6, + "probability": 0.995 + }, + { + "start": 13341.04, + "end": 13345.1, + "probability": 0.9875 + }, + { + "start": 13345.52, + "end": 13347.06, + "probability": 0.7314 + }, + { + "start": 13347.2, + "end": 13351.46, + "probability": 0.9874 + }, + { + "start": 13352.08, + "end": 13352.46, + "probability": 0.4447 + }, + { + "start": 13352.5, + "end": 13357.16, + "probability": 0.9861 + }, + { + "start": 13357.64, + "end": 13361.92, + "probability": 0.9329 + }, + { + "start": 13361.92, + "end": 13365.58, + "probability": 0.9282 + }, + { + "start": 13368.02, + "end": 13370.48, + "probability": 0.8625 + }, + { + "start": 13370.54, + "end": 13373.94, + "probability": 0.9739 + }, + { + "start": 13374.62, + "end": 13377.5, + "probability": 0.9435 + }, + { + "start": 13377.5, + "end": 13382.32, + "probability": 0.9852 + }, + { + "start": 13382.7, + "end": 13385.62, + "probability": 0.9888 + }, + { + "start": 13386.04, + "end": 13386.78, + "probability": 0.6149 + }, + { + "start": 13386.86, + "end": 13391.78, + "probability": 0.9902 + }, + { + "start": 13391.94, + "end": 13395.32, + "probability": 0.9958 + }, + { + "start": 13395.32, + "end": 13398.6, + "probability": 0.9873 + }, + { + "start": 13398.72, + "end": 13402.4, + "probability": 0.9921 + }, + { + "start": 13402.7, + "end": 13406.42, + "probability": 0.999 + }, + { + "start": 13406.42, + "end": 13410.62, + "probability": 0.9942 + }, + { + "start": 13410.68, + "end": 13413.74, + "probability": 0.9851 + }, + { + "start": 13413.74, + "end": 13416.54, + "probability": 0.9333 + }, + { + "start": 13416.94, + "end": 13417.64, + "probability": 0.5232 + }, + { + "start": 13417.72, + "end": 13422.16, + "probability": 0.988 + }, + { + "start": 13424.0, + "end": 13428.5, + "probability": 0.9482 + }, + { + "start": 13429.32, + "end": 13431.88, + "probability": 0.8368 + }, + { + "start": 13432.04, + "end": 13435.08, + "probability": 0.9688 + }, + { + "start": 13435.12, + "end": 13438.04, + "probability": 0.9955 + }, + { + "start": 13438.46, + "end": 13441.28, + "probability": 0.9967 + }, + { + "start": 13441.56, + "end": 13445.14, + "probability": 0.9437 + }, + { + "start": 13445.28, + "end": 13446.24, + "probability": 0.5233 + }, + { + "start": 13446.28, + "end": 13448.64, + "probability": 0.9973 + }, + { + "start": 13448.64, + "end": 13451.5, + "probability": 0.9976 + }, + { + "start": 13451.66, + "end": 13453.3, + "probability": 0.9914 + }, + { + "start": 13453.88, + "end": 13458.38, + "probability": 0.9489 + }, + { + "start": 13458.38, + "end": 13462.68, + "probability": 0.9501 + }, + { + "start": 13463.18, + "end": 13467.12, + "probability": 0.9846 + }, + { + "start": 13467.68, + "end": 13470.78, + "probability": 0.9897 + }, + { + "start": 13470.98, + "end": 13475.54, + "probability": 0.9922 + }, + { + "start": 13475.54, + "end": 13479.9, + "probability": 0.9762 + }, + { + "start": 13480.58, + "end": 13484.54, + "probability": 0.6837 + }, + { + "start": 13485.22, + "end": 13485.77, + "probability": 0.6851 + }, + { + "start": 13486.2, + "end": 13486.68, + "probability": 0.3967 + }, + { + "start": 13486.72, + "end": 13486.86, + "probability": 0.3047 + }, + { + "start": 13486.86, + "end": 13487.0, + "probability": 0.0872 + }, + { + "start": 13487.0, + "end": 13494.7, + "probability": 0.9757 + }, + { + "start": 13494.7, + "end": 13502.2, + "probability": 0.96 + }, + { + "start": 13503.09, + "end": 13507.74, + "probability": 0.8802 + }, + { + "start": 13508.08, + "end": 13511.84, + "probability": 0.996 + }, + { + "start": 13512.26, + "end": 13516.9, + "probability": 0.987 + }, + { + "start": 13517.0, + "end": 13517.88, + "probability": 0.7329 + }, + { + "start": 13517.96, + "end": 13521.42, + "probability": 0.9912 + }, + { + "start": 13521.9, + "end": 13522.26, + "probability": 0.3045 + }, + { + "start": 13522.28, + "end": 13527.84, + "probability": 0.9491 + }, + { + "start": 13529.38, + "end": 13530.16, + "probability": 0.6629 + }, + { + "start": 13530.22, + "end": 13532.02, + "probability": 0.9752 + }, + { + "start": 13532.06, + "end": 13536.54, + "probability": 0.9385 + }, + { + "start": 13545.78, + "end": 13546.78, + "probability": 0.7818 + }, + { + "start": 13547.76, + "end": 13556.2, + "probability": 0.9773 + }, + { + "start": 13557.32, + "end": 13562.54, + "probability": 0.9225 + }, + { + "start": 13563.12, + "end": 13564.32, + "probability": 0.6619 + }, + { + "start": 13564.46, + "end": 13565.78, + "probability": 0.7404 + }, + { + "start": 13565.9, + "end": 13566.38, + "probability": 0.0018 + }, + { + "start": 13568.72, + "end": 13568.94, + "probability": 0.0001 + }, + { + "start": 13577.34, + "end": 13579.12, + "probability": 0.0893 + }, + { + "start": 13584.02, + "end": 13588.26, + "probability": 0.6751 + }, + { + "start": 13589.0, + "end": 13590.34, + "probability": 0.4044 + }, + { + "start": 13590.68, + "end": 13591.38, + "probability": 0.8016 + }, + { + "start": 13592.36, + "end": 13595.66, + "probability": 0.9631 + }, + { + "start": 13596.74, + "end": 13603.08, + "probability": 0.743 + }, + { + "start": 13605.0, + "end": 13605.5, + "probability": 0.4262 + }, + { + "start": 13616.5, + "end": 13616.94, + "probability": 0.0122 + }, + { + "start": 13618.2, + "end": 13621.58, + "probability": 0.7328 + }, + { + "start": 13622.74, + "end": 13622.9, + "probability": 0.0615 + }, + { + "start": 13624.2, + "end": 13624.38, + "probability": 0.0832 + }, + { + "start": 13625.0, + "end": 13629.3, + "probability": 0.8077 + }, + { + "start": 13629.48, + "end": 13631.48, + "probability": 0.9419 + }, + { + "start": 13632.2, + "end": 13634.04, + "probability": 0.9241 + }, + { + "start": 13634.62, + "end": 13637.1, + "probability": 0.462 + }, + { + "start": 13638.02, + "end": 13643.4, + "probability": 0.9829 + }, + { + "start": 13644.42, + "end": 13645.32, + "probability": 0.2864 + }, + { + "start": 13646.06, + "end": 13646.88, + "probability": 0.8306 + }, + { + "start": 13647.08, + "end": 13648.44, + "probability": 0.8449 + }, + { + "start": 13649.1, + "end": 13649.46, + "probability": 0.7197 + }, + { + "start": 13649.62, + "end": 13651.54, + "probability": 0.8947 + }, + { + "start": 13652.22, + "end": 13652.4, + "probability": 0.1038 + }, + { + "start": 13652.4, + "end": 13653.68, + "probability": 0.7923 + }, + { + "start": 13653.98, + "end": 13654.72, + "probability": 0.6444 + }, + { + "start": 13654.74, + "end": 13655.64, + "probability": 0.81 + }, + { + "start": 13656.22, + "end": 13659.14, + "probability": 0.9536 + }, + { + "start": 13659.74, + "end": 13664.02, + "probability": 0.9031 + }, + { + "start": 13665.56, + "end": 13668.7, + "probability": 0.9479 + }, + { + "start": 13668.94, + "end": 13669.2, + "probability": 0.7559 + }, + { + "start": 13670.3, + "end": 13671.98, + "probability": 0.7443 + }, + { + "start": 13672.14, + "end": 13672.26, + "probability": 0.6381 + }, + { + "start": 13672.52, + "end": 13676.18, + "probability": 0.8285 + }, + { + "start": 13676.34, + "end": 13678.92, + "probability": 0.7401 + }, + { + "start": 13679.54, + "end": 13682.24, + "probability": 0.7462 + }, + { + "start": 13682.4, + "end": 13685.74, + "probability": 0.3484 + }, + { + "start": 13686.12, + "end": 13687.12, + "probability": 0.6688 + }, + { + "start": 13687.5, + "end": 13691.28, + "probability": 0.9431 + }, + { + "start": 13693.12, + "end": 13695.56, + "probability": 0.769 + }, + { + "start": 13697.58, + "end": 13701.9, + "probability": 0.9832 + }, + { + "start": 13703.02, + "end": 13705.78, + "probability": 0.9973 + }, + { + "start": 13707.28, + "end": 13710.16, + "probability": 0.9749 + }, + { + "start": 13710.16, + "end": 13713.72, + "probability": 0.994 + }, + { + "start": 13714.48, + "end": 13717.68, + "probability": 0.9982 + }, + { + "start": 13718.32, + "end": 13722.08, + "probability": 0.9567 + }, + { + "start": 13722.08, + "end": 13725.32, + "probability": 0.9161 + }, + { + "start": 13726.52, + "end": 13730.24, + "probability": 0.9927 + }, + { + "start": 13730.34, + "end": 13734.92, + "probability": 0.9979 + }, + { + "start": 13735.26, + "end": 13739.28, + "probability": 0.8857 + }, + { + "start": 13740.06, + "end": 13743.6, + "probability": 0.9788 + }, + { + "start": 13744.12, + "end": 13747.54, + "probability": 0.9818 + }, + { + "start": 13747.54, + "end": 13750.46, + "probability": 0.9972 + }, + { + "start": 13751.28, + "end": 13755.72, + "probability": 0.9753 + }, + { + "start": 13755.72, + "end": 13759.26, + "probability": 0.9972 + }, + { + "start": 13759.34, + "end": 13760.24, + "probability": 0.9963 + }, + { + "start": 13760.88, + "end": 13762.06, + "probability": 0.9765 + }, + { + "start": 13762.68, + "end": 13765.46, + "probability": 0.9792 + }, + { + "start": 13766.36, + "end": 13770.42, + "probability": 0.9935 + }, + { + "start": 13770.94, + "end": 13775.84, + "probability": 0.9217 + }, + { + "start": 13776.32, + "end": 13780.46, + "probability": 0.9893 + }, + { + "start": 13780.98, + "end": 13782.64, + "probability": 0.8769 + }, + { + "start": 13783.66, + "end": 13786.8, + "probability": 0.9764 + }, + { + "start": 13786.8, + "end": 13791.02, + "probability": 0.9996 + }, + { + "start": 13791.98, + "end": 13792.18, + "probability": 0.2757 + }, + { + "start": 13792.4, + "end": 13795.8, + "probability": 0.945 + }, + { + "start": 13795.8, + "end": 13799.84, + "probability": 0.9746 + }, + { + "start": 13800.32, + "end": 13802.44, + "probability": 0.7558 + }, + { + "start": 13802.5, + "end": 13804.14, + "probability": 0.9961 + }, + { + "start": 13804.96, + "end": 13809.4, + "probability": 0.9852 + }, + { + "start": 13811.76, + "end": 13814.62, + "probability": 0.7652 + }, + { + "start": 13814.62, + "end": 13818.04, + "probability": 0.9535 + }, + { + "start": 13819.06, + "end": 13820.98, + "probability": 0.7689 + }, + { + "start": 13821.1, + "end": 13824.14, + "probability": 0.9264 + }, + { + "start": 13824.14, + "end": 13826.62, + "probability": 0.9047 + }, + { + "start": 13827.28, + "end": 13830.78, + "probability": 0.9828 + }, + { + "start": 13831.22, + "end": 13835.28, + "probability": 0.9705 + }, + { + "start": 13835.28, + "end": 13839.25, + "probability": 0.9288 + }, + { + "start": 13840.1, + "end": 13844.04, + "probability": 0.9795 + }, + { + "start": 13844.04, + "end": 13847.72, + "probability": 0.9913 + }, + { + "start": 13848.34, + "end": 13850.56, + "probability": 0.8257 + }, + { + "start": 13851.16, + "end": 13855.66, + "probability": 0.9731 + }, + { + "start": 13855.9, + "end": 13856.9, + "probability": 0.7977 + }, + { + "start": 13857.5, + "end": 13860.68, + "probability": 0.8577 + }, + { + "start": 13861.26, + "end": 13863.46, + "probability": 0.9981 + }, + { + "start": 13863.46, + "end": 13867.68, + "probability": 0.979 + }, + { + "start": 13872.32, + "end": 13872.7, + "probability": 0.1503 + }, + { + "start": 13874.38, + "end": 13874.86, + "probability": 0.0397 + }, + { + "start": 13875.28, + "end": 13877.62, + "probability": 0.7621 + }, + { + "start": 13877.7, + "end": 13879.64, + "probability": 0.5958 + }, + { + "start": 13880.94, + "end": 13886.88, + "probability": 0.8485 + }, + { + "start": 13887.14, + "end": 13892.24, + "probability": 0.9982 + }, + { + "start": 13892.6, + "end": 13893.68, + "probability": 0.8972 + }, + { + "start": 13894.32, + "end": 13896.48, + "probability": 0.8938 + }, + { + "start": 13896.66, + "end": 13897.0, + "probability": 0.8862 + }, + { + "start": 13897.1, + "end": 13900.84, + "probability": 0.931 + }, + { + "start": 13900.86, + "end": 13901.64, + "probability": 0.8882 + }, + { + "start": 13902.18, + "end": 13902.56, + "probability": 0.7445 + }, + { + "start": 13902.72, + "end": 13904.56, + "probability": 0.9948 + }, + { + "start": 13904.94, + "end": 13907.68, + "probability": 0.9995 + }, + { + "start": 13907.88, + "end": 13910.22, + "probability": 0.9432 + }, + { + "start": 13911.54, + "end": 13912.48, + "probability": 0.2298 + }, + { + "start": 13913.12, + "end": 13915.84, + "probability": 0.7549 + }, + { + "start": 13916.1, + "end": 13918.02, + "probability": 0.9945 + }, + { + "start": 13919.22, + "end": 13920.5, + "probability": 0.9852 + }, + { + "start": 13920.56, + "end": 13922.58, + "probability": 0.9696 + }, + { + "start": 13924.08, + "end": 13930.14, + "probability": 0.9848 + }, + { + "start": 13931.24, + "end": 13934.6, + "probability": 0.9916 + }, + { + "start": 13934.6, + "end": 13938.2, + "probability": 0.9972 + }, + { + "start": 13938.2, + "end": 13944.6, + "probability": 0.9906 + }, + { + "start": 13945.16, + "end": 13948.14, + "probability": 0.9722 + }, + { + "start": 13948.14, + "end": 13950.4, + "probability": 0.9924 + }, + { + "start": 13950.48, + "end": 13952.2, + "probability": 0.9978 + }, + { + "start": 13953.06, + "end": 13954.94, + "probability": 0.8692 + }, + { + "start": 13955.06, + "end": 13957.78, + "probability": 0.9965 + }, + { + "start": 13957.88, + "end": 13960.88, + "probability": 0.9946 + }, + { + "start": 13961.58, + "end": 13962.36, + "probability": 0.873 + }, + { + "start": 13963.02, + "end": 13965.68, + "probability": 0.9647 + }, + { + "start": 13966.66, + "end": 13966.96, + "probability": 0.2787 + }, + { + "start": 13966.96, + "end": 13970.0, + "probability": 0.9786 + }, + { + "start": 13970.0, + "end": 13974.22, + "probability": 0.9901 + }, + { + "start": 13975.74, + "end": 13976.02, + "probability": 0.082 + }, + { + "start": 13976.02, + "end": 13979.26, + "probability": 0.9335 + }, + { + "start": 13980.72, + "end": 13981.1, + "probability": 0.3002 + }, + { + "start": 13981.16, + "end": 13984.64, + "probability": 0.9849 + }, + { + "start": 13984.64, + "end": 13990.8, + "probability": 0.9691 + }, + { + "start": 13991.36, + "end": 13992.66, + "probability": 0.8367 + }, + { + "start": 13992.72, + "end": 13993.59, + "probability": 0.9917 + }, + { + "start": 13993.8, + "end": 13994.86, + "probability": 0.9026 + }, + { + "start": 13995.42, + "end": 13995.7, + "probability": 0.4935 + }, + { + "start": 13996.26, + "end": 13999.28, + "probability": 0.957 + }, + { + "start": 13999.96, + "end": 14003.28, + "probability": 0.9724 + }, + { + "start": 14003.34, + "end": 14004.42, + "probability": 0.8811 + }, + { + "start": 14005.48, + "end": 14009.42, + "probability": 0.9523 + }, + { + "start": 14009.48, + "end": 14011.1, + "probability": 0.994 + }, + { + "start": 14011.12, + "end": 14013.42, + "probability": 0.996 + }, + { + "start": 14013.96, + "end": 14018.94, + "probability": 0.999 + }, + { + "start": 14019.66, + "end": 14021.92, + "probability": 0.9131 + }, + { + "start": 14021.92, + "end": 14026.34, + "probability": 0.9601 + }, + { + "start": 14026.9, + "end": 14029.06, + "probability": 0.9979 + }, + { + "start": 14029.64, + "end": 14030.8, + "probability": 0.6781 + }, + { + "start": 14032.06, + "end": 14038.2, + "probability": 0.9969 + }, + { + "start": 14040.65, + "end": 14046.9, + "probability": 0.9761 + }, + { + "start": 14047.38, + "end": 14051.16, + "probability": 0.9937 + }, + { + "start": 14051.16, + "end": 14054.9, + "probability": 0.9954 + }, + { + "start": 14055.92, + "end": 14058.64, + "probability": 0.9977 + }, + { + "start": 14059.4, + "end": 14063.68, + "probability": 0.9977 + }, + { + "start": 14064.28, + "end": 14064.88, + "probability": 0.9148 + }, + { + "start": 14064.98, + "end": 14068.02, + "probability": 0.9878 + }, + { + "start": 14068.14, + "end": 14071.18, + "probability": 0.9944 + }, + { + "start": 14071.2, + "end": 14073.84, + "probability": 0.969 + }, + { + "start": 14074.5, + "end": 14075.22, + "probability": 0.9525 + }, + { + "start": 14075.8, + "end": 14077.66, + "probability": 0.9476 + }, + { + "start": 14077.84, + "end": 14077.84, + "probability": 0.3389 + }, + { + "start": 14078.44, + "end": 14079.44, + "probability": 0.8665 + }, + { + "start": 14080.86, + "end": 14082.18, + "probability": 0.6574 + }, + { + "start": 14086.32, + "end": 14086.6, + "probability": 0.115 + }, + { + "start": 14086.6, + "end": 14087.12, + "probability": 0.4061 + }, + { + "start": 14089.88, + "end": 14092.1, + "probability": 0.8904 + }, + { + "start": 14092.16, + "end": 14093.48, + "probability": 0.9449 + }, + { + "start": 14093.54, + "end": 14094.26, + "probability": 0.7383 + }, + { + "start": 14095.36, + "end": 14095.64, + "probability": 0.6483 + }, + { + "start": 14101.7, + "end": 14101.7, + "probability": 0.8086 + }, + { + "start": 14113.72, + "end": 14113.72, + "probability": 0.7094 + }, + { + "start": 14113.72, + "end": 14114.86, + "probability": 0.7527 + }, + { + "start": 14114.98, + "end": 14117.05, + "probability": 0.7993 + }, + { + "start": 14118.56, + "end": 14119.18, + "probability": 0.7666 + }, + { + "start": 14119.3, + "end": 14120.38, + "probability": 0.971 + }, + { + "start": 14120.6, + "end": 14122.48, + "probability": 0.988 + }, + { + "start": 14123.28, + "end": 14124.56, + "probability": 0.9686 + }, + { + "start": 14127.34, + "end": 14128.42, + "probability": 0.9985 + }, + { + "start": 14130.46, + "end": 14133.76, + "probability": 0.9497 + }, + { + "start": 14133.8, + "end": 14134.62, + "probability": 0.6446 + }, + { + "start": 14136.94, + "end": 14137.62, + "probability": 0.4313 + }, + { + "start": 14137.62, + "end": 14138.58, + "probability": 0.6104 + }, + { + "start": 14138.84, + "end": 14141.54, + "probability": 0.9281 + }, + { + "start": 14142.78, + "end": 14143.51, + "probability": 0.9847 + }, + { + "start": 14146.14, + "end": 14147.02, + "probability": 0.9922 + }, + { + "start": 14149.4, + "end": 14151.72, + "probability": 0.9896 + }, + { + "start": 14152.38, + "end": 14154.94, + "probability": 0.9556 + }, + { + "start": 14157.54, + "end": 14159.02, + "probability": 0.9802 + }, + { + "start": 14159.82, + "end": 14160.46, + "probability": 0.6358 + }, + { + "start": 14161.92, + "end": 14163.3, + "probability": 0.9985 + }, + { + "start": 14163.46, + "end": 14164.96, + "probability": 0.9695 + }, + { + "start": 14165.0, + "end": 14165.82, + "probability": 0.8579 + }, + { + "start": 14166.02, + "end": 14167.87, + "probability": 0.9958 + }, + { + "start": 14169.34, + "end": 14171.7, + "probability": 0.9958 + }, + { + "start": 14173.36, + "end": 14174.94, + "probability": 0.9727 + }, + { + "start": 14175.5, + "end": 14176.94, + "probability": 0.9592 + }, + { + "start": 14179.06, + "end": 14181.3, + "probability": 0.8748 + }, + { + "start": 14182.4, + "end": 14183.42, + "probability": 0.8399 + }, + { + "start": 14185.67, + "end": 14189.32, + "probability": 0.9945 + }, + { + "start": 14190.58, + "end": 14191.58, + "probability": 0.7577 + }, + { + "start": 14192.6, + "end": 14193.86, + "probability": 0.7545 + }, + { + "start": 14195.72, + "end": 14197.12, + "probability": 0.6585 + }, + { + "start": 14197.98, + "end": 14199.4, + "probability": 0.8925 + }, + { + "start": 14205.62, + "end": 14207.12, + "probability": 0.9954 + }, + { + "start": 14207.16, + "end": 14210.33, + "probability": 0.9958 + }, + { + "start": 14212.14, + "end": 14218.24, + "probability": 0.9977 + }, + { + "start": 14219.16, + "end": 14220.9, + "probability": 0.9768 + }, + { + "start": 14222.52, + "end": 14225.96, + "probability": 0.9944 + }, + { + "start": 14227.1, + "end": 14227.97, + "probability": 0.7568 + }, + { + "start": 14229.0, + "end": 14229.84, + "probability": 0.9819 + }, + { + "start": 14230.82, + "end": 14233.4, + "probability": 0.9943 + }, + { + "start": 14233.78, + "end": 14234.82, + "probability": 0.9872 + }, + { + "start": 14235.9, + "end": 14240.14, + "probability": 0.9329 + }, + { + "start": 14240.5, + "end": 14242.32, + "probability": 0.9971 + }, + { + "start": 14243.58, + "end": 14243.94, + "probability": 0.7084 + }, + { + "start": 14244.82, + "end": 14245.78, + "probability": 0.8819 + }, + { + "start": 14246.32, + "end": 14247.12, + "probability": 0.9966 + }, + { + "start": 14248.24, + "end": 14251.2, + "probability": 0.8824 + }, + { + "start": 14251.72, + "end": 14254.76, + "probability": 0.9561 + }, + { + "start": 14255.1, + "end": 14256.2, + "probability": 0.969 + }, + { + "start": 14257.24, + "end": 14258.7, + "probability": 0.9858 + }, + { + "start": 14259.06, + "end": 14261.08, + "probability": 0.9922 + }, + { + "start": 14262.6, + "end": 14264.2, + "probability": 0.875 + }, + { + "start": 14264.86, + "end": 14266.28, + "probability": 0.8224 + }, + { + "start": 14266.64, + "end": 14266.66, + "probability": 0.0912 + }, + { + "start": 14266.66, + "end": 14267.64, + "probability": 0.5119 + }, + { + "start": 14268.04, + "end": 14268.66, + "probability": 0.0762 + }, + { + "start": 14269.2, + "end": 14270.88, + "probability": 0.6858 + }, + { + "start": 14270.88, + "end": 14272.46, + "probability": 0.9342 + }, + { + "start": 14272.46, + "end": 14273.22, + "probability": 0.5116 + }, + { + "start": 14274.16, + "end": 14275.76, + "probability": 0.4777 + }, + { + "start": 14275.76, + "end": 14277.14, + "probability": 0.2645 + }, + { + "start": 14277.14, + "end": 14277.14, + "probability": 0.2108 + }, + { + "start": 14277.14, + "end": 14278.68, + "probability": 0.4125 + }, + { + "start": 14278.78, + "end": 14280.1, + "probability": 0.6265 + }, + { + "start": 14280.24, + "end": 14281.06, + "probability": 0.69 + }, + { + "start": 14281.18, + "end": 14282.16, + "probability": 0.0758 + }, + { + "start": 14283.04, + "end": 14283.6, + "probability": 0.8115 + }, + { + "start": 14283.7, + "end": 14284.56, + "probability": 0.9487 + }, + { + "start": 14285.22, + "end": 14287.28, + "probability": 0.9931 + }, + { + "start": 14287.32, + "end": 14288.16, + "probability": 0.8757 + }, + { + "start": 14288.2, + "end": 14289.16, + "probability": 0.5034 + }, + { + "start": 14290.6, + "end": 14294.62, + "probability": 0.9985 + }, + { + "start": 14295.74, + "end": 14298.08, + "probability": 0.9548 + }, + { + "start": 14299.0, + "end": 14299.49, + "probability": 0.9336 + }, + { + "start": 14299.62, + "end": 14302.2, + "probability": 0.5803 + }, + { + "start": 14302.28, + "end": 14303.0, + "probability": 0.5066 + }, + { + "start": 14303.22, + "end": 14304.64, + "probability": 0.9674 + }, + { + "start": 14305.22, + "end": 14308.0, + "probability": 0.9639 + }, + { + "start": 14308.0, + "end": 14311.42, + "probability": 0.9943 + }, + { + "start": 14311.42, + "end": 14312.68, + "probability": 0.918 + }, + { + "start": 14315.48, + "end": 14320.44, + "probability": 0.333 + }, + { + "start": 14320.92, + "end": 14322.92, + "probability": 0.1685 + }, + { + "start": 14323.0, + "end": 14323.22, + "probability": 0.2094 + }, + { + "start": 14323.24, + "end": 14324.18, + "probability": 0.5185 + }, + { + "start": 14327.04, + "end": 14328.56, + "probability": 0.135 + }, + { + "start": 14330.82, + "end": 14332.08, + "probability": 0.7277 + }, + { + "start": 14333.28, + "end": 14334.32, + "probability": 0.0445 + }, + { + "start": 14334.32, + "end": 14334.32, + "probability": 0.1253 + }, + { + "start": 14334.32, + "end": 14334.32, + "probability": 0.4359 + }, + { + "start": 14334.32, + "end": 14334.32, + "probability": 0.0456 + }, + { + "start": 14334.32, + "end": 14334.32, + "probability": 0.0359 + }, + { + "start": 14334.32, + "end": 14334.32, + "probability": 0.0637 + }, + { + "start": 14334.32, + "end": 14334.48, + "probability": 0.1336 + }, + { + "start": 14335.08, + "end": 14335.89, + "probability": 0.8483 + }, + { + "start": 14336.32, + "end": 14336.6, + "probability": 0.6583 + }, + { + "start": 14337.58, + "end": 14337.92, + "probability": 0.7649 + }, + { + "start": 14354.7, + "end": 14355.82, + "probability": 0.7512 + }, + { + "start": 14355.96, + "end": 14357.04, + "probability": 0.8034 + }, + { + "start": 14357.36, + "end": 14357.7, + "probability": 0.6483 + }, + { + "start": 14358.02, + "end": 14358.9, + "probability": 0.9677 + }, + { + "start": 14360.08, + "end": 14363.02, + "probability": 0.9895 + }, + { + "start": 14363.6, + "end": 14364.26, + "probability": 0.974 + }, + { + "start": 14365.2, + "end": 14368.3, + "probability": 0.9546 + }, + { + "start": 14369.01, + "end": 14373.54, + "probability": 0.9956 + }, + { + "start": 14373.54, + "end": 14378.1, + "probability": 0.999 + }, + { + "start": 14378.38, + "end": 14381.58, + "probability": 0.9198 + }, + { + "start": 14382.76, + "end": 14388.2, + "probability": 0.983 + }, + { + "start": 14389.38, + "end": 14395.18, + "probability": 0.9181 + }, + { + "start": 14396.08, + "end": 14400.6, + "probability": 0.996 + }, + { + "start": 14401.72, + "end": 14405.38, + "probability": 0.8569 + }, + { + "start": 14406.62, + "end": 14407.93, + "probability": 0.9624 + }, + { + "start": 14408.56, + "end": 14408.86, + "probability": 0.4563 + }, + { + "start": 14409.52, + "end": 14410.88, + "probability": 0.9243 + }, + { + "start": 14411.84, + "end": 14413.64, + "probability": 0.7563 + }, + { + "start": 14414.54, + "end": 14415.87, + "probability": 0.876 + }, + { + "start": 14417.06, + "end": 14417.96, + "probability": 0.6414 + }, + { + "start": 14418.38, + "end": 14419.17, + "probability": 0.9146 + }, + { + "start": 14420.26, + "end": 14422.78, + "probability": 0.527 + }, + { + "start": 14423.8, + "end": 14428.24, + "probability": 0.9951 + }, + { + "start": 14429.73, + "end": 14432.96, + "probability": 0.9641 + }, + { + "start": 14433.98, + "end": 14436.44, + "probability": 0.9277 + }, + { + "start": 14437.18, + "end": 14439.06, + "probability": 0.9946 + }, + { + "start": 14440.16, + "end": 14444.38, + "probability": 0.7139 + }, + { + "start": 14445.0, + "end": 14447.76, + "probability": 0.9001 + }, + { + "start": 14448.3, + "end": 14449.9, + "probability": 0.7998 + }, + { + "start": 14450.4, + "end": 14452.56, + "probability": 0.7086 + }, + { + "start": 14454.12, + "end": 14457.2, + "probability": 0.9868 + }, + { + "start": 14458.12, + "end": 14460.34, + "probability": 0.7873 + }, + { + "start": 14460.4, + "end": 14462.42, + "probability": 0.9899 + }, + { + "start": 14463.4, + "end": 14464.3, + "probability": 0.8813 + }, + { + "start": 14465.42, + "end": 14467.74, + "probability": 0.9674 + }, + { + "start": 14468.56, + "end": 14471.06, + "probability": 0.9761 + }, + { + "start": 14472.04, + "end": 14472.7, + "probability": 0.503 + }, + { + "start": 14473.28, + "end": 14478.18, + "probability": 0.9856 + }, + { + "start": 14478.28, + "end": 14478.5, + "probability": 0.004 + }, + { + "start": 14478.5, + "end": 14479.22, + "probability": 0.6073 + }, + { + "start": 14479.22, + "end": 14482.38, + "probability": 0.8828 + }, + { + "start": 14483.18, + "end": 14486.38, + "probability": 0.9914 + }, + { + "start": 14487.0, + "end": 14487.96, + "probability": 0.9974 + }, + { + "start": 14488.08, + "end": 14492.46, + "probability": 0.8894 + }, + { + "start": 14492.88, + "end": 14496.0, + "probability": 0.5341 + }, + { + "start": 14496.1, + "end": 14497.44, + "probability": 0.9919 + }, + { + "start": 14498.1, + "end": 14499.38, + "probability": 0.7699 + }, + { + "start": 14500.24, + "end": 14503.02, + "probability": 0.9663 + }, + { + "start": 14503.68, + "end": 14505.47, + "probability": 0.9939 + }, + { + "start": 14506.54, + "end": 14509.12, + "probability": 0.9991 + }, + { + "start": 14510.18, + "end": 14512.56, + "probability": 0.8224 + }, + { + "start": 14512.98, + "end": 14515.24, + "probability": 0.9824 + }, + { + "start": 14516.0, + "end": 14518.5, + "probability": 0.9838 + }, + { + "start": 14518.96, + "end": 14523.84, + "probability": 0.9939 + }, + { + "start": 14523.86, + "end": 14524.06, + "probability": 0.6865 + }, + { + "start": 14525.24, + "end": 14526.24, + "probability": 0.9013 + }, + { + "start": 14526.92, + "end": 14527.62, + "probability": 0.5421 + }, + { + "start": 14528.82, + "end": 14529.06, + "probability": 0.5435 + }, + { + "start": 14539.38, + "end": 14540.62, + "probability": 0.17 + }, + { + "start": 14540.62, + "end": 14540.62, + "probability": 0.0507 + }, + { + "start": 14540.62, + "end": 14540.74, + "probability": 0.1711 + }, + { + "start": 14540.74, + "end": 14541.08, + "probability": 0.1442 + }, + { + "start": 14541.08, + "end": 14541.6, + "probability": 0.0692 + }, + { + "start": 14559.48, + "end": 14560.74, + "probability": 0.4818 + }, + { + "start": 14561.6, + "end": 14566.2, + "probability": 0.9973 + }, + { + "start": 14566.82, + "end": 14572.98, + "probability": 0.9979 + }, + { + "start": 14573.9, + "end": 14580.18, + "probability": 0.9711 + }, + { + "start": 14580.82, + "end": 14582.1, + "probability": 0.8504 + }, + { + "start": 14582.72, + "end": 14584.92, + "probability": 0.9917 + }, + { + "start": 14585.34, + "end": 14587.04, + "probability": 0.6759 + }, + { + "start": 14588.18, + "end": 14590.38, + "probability": 0.9973 + }, + { + "start": 14591.16, + "end": 14596.08, + "probability": 0.9741 + }, + { + "start": 14597.06, + "end": 14599.12, + "probability": 0.7804 + }, + { + "start": 14600.38, + "end": 14601.66, + "probability": 0.9415 + }, + { + "start": 14602.4, + "end": 14608.12, + "probability": 0.9712 + }, + { + "start": 14609.3, + "end": 14611.12, + "probability": 0.9775 + }, + { + "start": 14612.16, + "end": 14615.16, + "probability": 0.9227 + }, + { + "start": 14615.72, + "end": 14617.08, + "probability": 0.7681 + }, + { + "start": 14617.96, + "end": 14619.44, + "probability": 0.8701 + }, + { + "start": 14619.94, + "end": 14622.66, + "probability": 0.9762 + }, + { + "start": 14622.86, + "end": 14624.32, + "probability": 0.9485 + }, + { + "start": 14624.8, + "end": 14629.57, + "probability": 0.9434 + }, + { + "start": 14630.22, + "end": 14631.04, + "probability": 0.7722 + }, + { + "start": 14631.8, + "end": 14638.84, + "probability": 0.9839 + }, + { + "start": 14639.62, + "end": 14641.36, + "probability": 0.9839 + }, + { + "start": 14641.78, + "end": 14642.42, + "probability": 0.9208 + }, + { + "start": 14643.22, + "end": 14643.64, + "probability": 0.9681 + }, + { + "start": 14644.22, + "end": 14648.0, + "probability": 0.9989 + }, + { + "start": 14648.64, + "end": 14650.8, + "probability": 0.8538 + }, + { + "start": 14651.4, + "end": 14656.26, + "probability": 0.9872 + }, + { + "start": 14657.42, + "end": 14660.7, + "probability": 0.9956 + }, + { + "start": 14661.36, + "end": 14663.27, + "probability": 0.9785 + }, + { + "start": 14664.12, + "end": 14666.62, + "probability": 0.955 + }, + { + "start": 14667.2, + "end": 14667.78, + "probability": 0.4329 + }, + { + "start": 14668.3, + "end": 14670.28, + "probability": 0.9958 + }, + { + "start": 14670.66, + "end": 14671.56, + "probability": 0.9528 + }, + { + "start": 14671.98, + "end": 14675.3, + "probability": 0.9836 + }, + { + "start": 14675.94, + "end": 14677.02, + "probability": 0.8965 + }, + { + "start": 14678.1, + "end": 14679.72, + "probability": 0.9692 + }, + { + "start": 14680.54, + "end": 14684.74, + "probability": 0.9985 + }, + { + "start": 14685.38, + "end": 14687.84, + "probability": 0.9775 + }, + { + "start": 14688.58, + "end": 14690.9, + "probability": 0.9889 + }, + { + "start": 14691.66, + "end": 14693.9, + "probability": 0.9883 + }, + { + "start": 14694.46, + "end": 14696.32, + "probability": 0.9847 + }, + { + "start": 14696.9, + "end": 14699.08, + "probability": 0.9301 + }, + { + "start": 14699.68, + "end": 14704.18, + "probability": 0.9968 + }, + { + "start": 14704.82, + "end": 14708.9, + "probability": 0.9861 + }, + { + "start": 14709.6, + "end": 14711.56, + "probability": 0.9987 + }, + { + "start": 14712.18, + "end": 14714.0, + "probability": 0.8555 + }, + { + "start": 14714.26, + "end": 14714.66, + "probability": 0.7154 + }, + { + "start": 14714.74, + "end": 14716.82, + "probability": 0.8351 + }, + { + "start": 14717.32, + "end": 14717.76, + "probability": 0.8123 + }, + { + "start": 14717.84, + "end": 14721.58, + "probability": 0.9906 + }, + { + "start": 14721.58, + "end": 14724.88, + "probability": 0.9945 + }, + { + "start": 14725.46, + "end": 14726.18, + "probability": 0.7847 + }, + { + "start": 14726.68, + "end": 14727.2, + "probability": 0.8163 + }, + { + "start": 14727.24, + "end": 14727.84, + "probability": 0.8047 + }, + { + "start": 14728.16, + "end": 14729.4, + "probability": 0.8776 + }, + { + "start": 14742.52, + "end": 14744.52, + "probability": 0.1722 + }, + { + "start": 14744.8, + "end": 14745.18, + "probability": 0.0932 + }, + { + "start": 14745.18, + "end": 14745.18, + "probability": 0.067 + }, + { + "start": 14745.18, + "end": 14745.2, + "probability": 0.1201 + }, + { + "start": 14773.86, + "end": 14776.38, + "probability": 0.9944 + }, + { + "start": 14780.8, + "end": 14781.88, + "probability": 0.0001 + }, + { + "start": 14785.44, + "end": 14787.26, + "probability": 0.1227 + }, + { + "start": 14788.86, + "end": 14789.34, + "probability": 0.4973 + }, + { + "start": 14790.16, + "end": 14791.78, + "probability": 0.9917 + }, + { + "start": 14793.5, + "end": 14795.12, + "probability": 0.9859 + }, + { + "start": 14795.92, + "end": 14798.56, + "probability": 0.751 + }, + { + "start": 14798.92, + "end": 14801.44, + "probability": 0.9576 + }, + { + "start": 14802.78, + "end": 14805.58, + "probability": 0.9972 + }, + { + "start": 14806.92, + "end": 14808.48, + "probability": 0.945 + }, + { + "start": 14809.52, + "end": 14810.2, + "probability": 0.5432 + }, + { + "start": 14810.8, + "end": 14813.76, + "probability": 0.8657 + }, + { + "start": 14814.48, + "end": 14819.96, + "probability": 0.9811 + }, + { + "start": 14820.5, + "end": 14821.76, + "probability": 0.9669 + }, + { + "start": 14821.84, + "end": 14823.2, + "probability": 0.9943 + }, + { + "start": 14823.28, + "end": 14824.28, + "probability": 0.9805 + }, + { + "start": 14825.54, + "end": 14830.08, + "probability": 0.9149 + }, + { + "start": 14830.88, + "end": 14834.62, + "probability": 0.9871 + }, + { + "start": 14834.62, + "end": 14839.58, + "probability": 0.9888 + }, + { + "start": 14840.7, + "end": 14844.74, + "probability": 0.7941 + }, + { + "start": 14845.24, + "end": 14846.6, + "probability": 0.9507 + }, + { + "start": 14848.3, + "end": 14850.52, + "probability": 0.8578 + }, + { + "start": 14851.18, + "end": 14853.72, + "probability": 0.8391 + }, + { + "start": 14856.02, + "end": 14858.54, + "probability": 0.6945 + }, + { + "start": 14859.64, + "end": 14863.22, + "probability": 0.8829 + }, + { + "start": 14864.42, + "end": 14868.18, + "probability": 0.9362 + }, + { + "start": 14868.3, + "end": 14870.2, + "probability": 0.9873 + }, + { + "start": 14870.8, + "end": 14874.4, + "probability": 0.9445 + }, + { + "start": 14874.98, + "end": 14876.2, + "probability": 0.9786 + }, + { + "start": 14877.32, + "end": 14880.98, + "probability": 0.9849 + }, + { + "start": 14880.98, + "end": 14883.56, + "probability": 0.9926 + }, + { + "start": 14883.98, + "end": 14885.44, + "probability": 0.7602 + }, + { + "start": 14886.66, + "end": 14891.24, + "probability": 0.9806 + }, + { + "start": 14892.04, + "end": 14897.14, + "probability": 0.9409 + }, + { + "start": 14898.96, + "end": 14900.7, + "probability": 0.9952 + }, + { + "start": 14901.62, + "end": 14903.46, + "probability": 0.9108 + }, + { + "start": 14904.36, + "end": 14906.78, + "probability": 0.9207 + }, + { + "start": 14908.02, + "end": 14909.12, + "probability": 0.9945 + }, + { + "start": 14910.3, + "end": 14913.08, + "probability": 0.7723 + }, + { + "start": 14914.3, + "end": 14915.84, + "probability": 0.9481 + }, + { + "start": 14916.66, + "end": 14919.3, + "probability": 0.927 + }, + { + "start": 14919.96, + "end": 14924.2, + "probability": 0.9313 + }, + { + "start": 14924.36, + "end": 14924.98, + "probability": 0.613 + }, + { + "start": 14925.56, + "end": 14928.1, + "probability": 0.9221 + }, + { + "start": 14929.76, + "end": 14930.3, + "probability": 0.9824 + }, + { + "start": 14930.36, + "end": 14931.56, + "probability": 0.8154 + }, + { + "start": 14931.98, + "end": 14936.44, + "probability": 0.8835 + }, + { + "start": 14936.62, + "end": 14945.06, + "probability": 0.9823 + }, + { + "start": 14945.56, + "end": 14947.5, + "probability": 0.7711 + }, + { + "start": 14948.22, + "end": 14949.36, + "probability": 0.8516 + }, + { + "start": 14949.98, + "end": 14953.74, + "probability": 0.8097 + }, + { + "start": 14953.84, + "end": 14955.2, + "probability": 0.9915 + }, + { + "start": 14956.04, + "end": 14962.86, + "probability": 0.9468 + }, + { + "start": 14963.84, + "end": 14965.07, + "probability": 0.9257 + }, + { + "start": 14965.74, + "end": 14970.34, + "probability": 0.813 + }, + { + "start": 14970.82, + "end": 14971.78, + "probability": 0.8449 + }, + { + "start": 14972.0, + "end": 14973.08, + "probability": 0.8957 + }, + { + "start": 14973.22, + "end": 14974.14, + "probability": 0.9321 + }, + { + "start": 14974.66, + "end": 14976.62, + "probability": 0.855 + }, + { + "start": 14977.68, + "end": 14979.58, + "probability": 0.8864 + }, + { + "start": 14979.82, + "end": 14981.66, + "probability": 0.925 + }, + { + "start": 14982.4, + "end": 14983.8, + "probability": 0.9961 + }, + { + "start": 14984.94, + "end": 14986.78, + "probability": 0.8047 + }, + { + "start": 14987.02, + "end": 14989.96, + "probability": 0.8881 + }, + { + "start": 14991.04, + "end": 14992.34, + "probability": 0.6226 + }, + { + "start": 14992.88, + "end": 14995.54, + "probability": 0.98 + }, + { + "start": 14995.68, + "end": 14996.94, + "probability": 0.5985 + }, + { + "start": 14997.36, + "end": 14998.72, + "probability": 0.9734 + }, + { + "start": 14998.84, + "end": 15000.58, + "probability": 0.9912 + }, + { + "start": 15001.32, + "end": 15004.46, + "probability": 0.7679 + }, + { + "start": 15005.76, + "end": 15006.02, + "probability": 0.4303 + }, + { + "start": 15007.88, + "end": 15010.34, + "probability": 0.8253 + }, + { + "start": 15010.8, + "end": 15014.14, + "probability": 0.944 + }, + { + "start": 15014.46, + "end": 15014.62, + "probability": 0.0893 + }, + { + "start": 15015.4, + "end": 15017.86, + "probability": 0.2668 + }, + { + "start": 15017.9, + "end": 15020.66, + "probability": 0.5618 + }, + { + "start": 15020.68, + "end": 15020.94, + "probability": 0.3502 + }, + { + "start": 15021.04, + "end": 15022.94, + "probability": 0.762 + }, + { + "start": 15023.12, + "end": 15024.74, + "probability": 0.6775 + }, + { + "start": 15024.76, + "end": 15025.98, + "probability": 0.668 + }, + { + "start": 15026.1, + "end": 15026.26, + "probability": 0.3401 + }, + { + "start": 15026.26, + "end": 15027.66, + "probability": 0.9175 + }, + { + "start": 15027.78, + "end": 15029.22, + "probability": 0.5007 + }, + { + "start": 15030.2, + "end": 15030.7, + "probability": 0.1221 + }, + { + "start": 15030.7, + "end": 15031.82, + "probability": 0.4672 + }, + { + "start": 15032.04, + "end": 15032.92, + "probability": 0.8991 + }, + { + "start": 15033.98, + "end": 15035.22, + "probability": 0.6424 + }, + { + "start": 15035.38, + "end": 15037.64, + "probability": 0.9629 + }, + { + "start": 15037.74, + "end": 15041.34, + "probability": 0.8809 + }, + { + "start": 15041.48, + "end": 15041.96, + "probability": 0.086 + }, + { + "start": 15042.74, + "end": 15043.8, + "probability": 0.9093 + }, + { + "start": 15045.98, + "end": 15046.98, + "probability": 0.8445 + }, + { + "start": 15047.34, + "end": 15047.78, + "probability": 0.5997 + }, + { + "start": 15047.9, + "end": 15050.82, + "probability": 0.8664 + }, + { + "start": 15050.84, + "end": 15054.22, + "probability": 0.9966 + }, + { + "start": 15055.52, + "end": 15055.68, + "probability": 0.6692 + }, + { + "start": 15055.74, + "end": 15057.3, + "probability": 0.8649 + }, + { + "start": 15057.7, + "end": 15060.42, + "probability": 0.9807 + }, + { + "start": 15060.54, + "end": 15062.28, + "probability": 0.6965 + }, + { + "start": 15062.74, + "end": 15063.66, + "probability": 0.6826 + }, + { + "start": 15064.2, + "end": 15068.36, + "probability": 0.6749 + }, + { + "start": 15068.4, + "end": 15074.22, + "probability": 0.9678 + }, + { + "start": 15074.94, + "end": 15075.74, + "probability": 0.0539 + }, + { + "start": 15075.76, + "end": 15075.76, + "probability": 0.1117 + }, + { + "start": 15075.76, + "end": 15077.1, + "probability": 0.7676 + }, + { + "start": 15077.46, + "end": 15078.28, + "probability": 0.7815 + }, + { + "start": 15078.72, + "end": 15081.62, + "probability": 0.8925 + }, + { + "start": 15081.86, + "end": 15086.36, + "probability": 0.9961 + }, + { + "start": 15086.36, + "end": 15090.66, + "probability": 0.955 + }, + { + "start": 15090.66, + "end": 15093.34, + "probability": 0.8007 + }, + { + "start": 15094.8, + "end": 15098.3, + "probability": 0.6226 + }, + { + "start": 15098.68, + "end": 15102.4, + "probability": 0.9935 + }, + { + "start": 15102.72, + "end": 15104.86, + "probability": 0.8762 + }, + { + "start": 15105.28, + "end": 15108.68, + "probability": 0.9239 + }, + { + "start": 15109.08, + "end": 15111.18, + "probability": 0.9566 + }, + { + "start": 15111.28, + "end": 15114.08, + "probability": 0.9694 + }, + { + "start": 15114.08, + "end": 15116.78, + "probability": 0.9782 + }, + { + "start": 15117.52, + "end": 15119.07, + "probability": 0.8772 + }, + { + "start": 15119.68, + "end": 15122.04, + "probability": 0.9976 + }, + { + "start": 15122.88, + "end": 15124.74, + "probability": 0.9515 + }, + { + "start": 15125.26, + "end": 15126.4, + "probability": 0.7311 + }, + { + "start": 15127.18, + "end": 15128.94, + "probability": 0.8879 + }, + { + "start": 15129.38, + "end": 15134.1, + "probability": 0.9612 + }, + { + "start": 15134.1, + "end": 15136.96, + "probability": 0.999 + }, + { + "start": 15136.96, + "end": 15137.66, + "probability": 0.8868 + }, + { + "start": 15137.76, + "end": 15140.78, + "probability": 0.917 + }, + { + "start": 15140.82, + "end": 15141.52, + "probability": 0.5727 + }, + { + "start": 15141.74, + "end": 15146.5, + "probability": 0.9582 + }, + { + "start": 15147.24, + "end": 15148.38, + "probability": 0.9011 + }, + { + "start": 15148.62, + "end": 15149.22, + "probability": 0.7397 + }, + { + "start": 15149.42, + "end": 15150.2, + "probability": 0.7541 + }, + { + "start": 15151.84, + "end": 15153.16, + "probability": 0.8953 + }, + { + "start": 15155.22, + "end": 15156.22, + "probability": 0.683 + }, + { + "start": 15185.08, + "end": 15187.36, + "probability": 0.443 + }, + { + "start": 15187.98, + "end": 15190.96, + "probability": 0.5506 + }, + { + "start": 15191.58, + "end": 15192.28, + "probability": 0.51 + }, + { + "start": 15192.28, + "end": 15192.74, + "probability": 0.4336 + }, + { + "start": 15193.38, + "end": 15193.74, + "probability": 0.4108 + }, + { + "start": 15194.68, + "end": 15195.1, + "probability": 0.3354 + }, + { + "start": 15195.56, + "end": 15198.42, + "probability": 0.4024 + }, + { + "start": 15199.36, + "end": 15200.56, + "probability": 0.7448 + }, + { + "start": 15200.64, + "end": 15203.58, + "probability": 0.3704 + }, + { + "start": 15203.58, + "end": 15204.95, + "probability": 0.5816 + }, + { + "start": 15206.76, + "end": 15208.85, + "probability": 0.7273 + }, + { + "start": 15209.32, + "end": 15210.56, + "probability": 0.2837 + }, + { + "start": 15210.72, + "end": 15212.0, + "probability": 0.5564 + }, + { + "start": 15212.18, + "end": 15214.74, + "probability": 0.7036 + }, + { + "start": 15214.96, + "end": 15216.0, + "probability": 0.9961 + }, + { + "start": 15217.18, + "end": 15217.5, + "probability": 0.863 + }, + { + "start": 15217.5, + "end": 15219.46, + "probability": 0.9219 + }, + { + "start": 15219.78, + "end": 15224.68, + "probability": 0.9279 + }, + { + "start": 15224.96, + "end": 15225.8, + "probability": 0.6007 + }, + { + "start": 15226.84, + "end": 15227.64, + "probability": 0.9846 + }, + { + "start": 15228.78, + "end": 15231.94, + "probability": 0.8524 + }, + { + "start": 15232.44, + "end": 15232.68, + "probability": 0.7542 + }, + { + "start": 15233.32, + "end": 15235.44, + "probability": 0.6512 + }, + { + "start": 15235.7, + "end": 15237.48, + "probability": 0.8954 + }, + { + "start": 15237.82, + "end": 15238.06, + "probability": 0.412 + }, + { + "start": 15238.08, + "end": 15239.08, + "probability": 0.8229 + }, + { + "start": 15241.52, + "end": 15243.84, + "probability": 0.957 + }, + { + "start": 15246.34, + "end": 15247.21, + "probability": 0.4095 + }, + { + "start": 15247.9, + "end": 15250.2, + "probability": 0.7864 + }, + { + "start": 15251.28, + "end": 15251.5, + "probability": 0.7402 + }, + { + "start": 15252.64, + "end": 15253.74, + "probability": 0.7068 + }, + { + "start": 15255.36, + "end": 15256.9, + "probability": 0.9937 + }, + { + "start": 15257.7, + "end": 15258.64, + "probability": 0.4567 + }, + { + "start": 15258.96, + "end": 15259.4, + "probability": 0.5927 + }, + { + "start": 15259.5, + "end": 15260.04, + "probability": 0.8518 + }, + { + "start": 15260.26, + "end": 15260.82, + "probability": 0.8065 + }, + { + "start": 15261.88, + "end": 15264.1, + "probability": 0.9252 + }, + { + "start": 15265.58, + "end": 15266.36, + "probability": 0.5737 + }, + { + "start": 15267.92, + "end": 15269.44, + "probability": 0.9727 + }, + { + "start": 15269.9, + "end": 15271.88, + "probability": 0.9421 + }, + { + "start": 15272.94, + "end": 15276.96, + "probability": 0.861 + }, + { + "start": 15279.06, + "end": 15279.16, + "probability": 0.192 + }, + { + "start": 15279.16, + "end": 15279.75, + "probability": 0.6313 + }, + { + "start": 15281.82, + "end": 15284.36, + "probability": 0.761 + }, + { + "start": 15285.64, + "end": 15288.78, + "probability": 0.6574 + }, + { + "start": 15291.38, + "end": 15294.2, + "probability": 0.9603 + }, + { + "start": 15294.46, + "end": 15295.24, + "probability": 0.8948 + }, + { + "start": 15296.92, + "end": 15300.42, + "probability": 0.9325 + }, + { + "start": 15303.14, + "end": 15306.08, + "probability": 0.7474 + }, + { + "start": 15306.7, + "end": 15307.62, + "probability": 0.8564 + }, + { + "start": 15309.46, + "end": 15310.82, + "probability": 0.9079 + }, + { + "start": 15312.74, + "end": 15319.64, + "probability": 0.8342 + }, + { + "start": 15320.56, + "end": 15321.16, + "probability": 0.6876 + }, + { + "start": 15322.36, + "end": 15323.14, + "probability": 0.6597 + }, + { + "start": 15324.32, + "end": 15325.14, + "probability": 0.8582 + }, + { + "start": 15327.68, + "end": 15329.48, + "probability": 0.9833 + }, + { + "start": 15331.86, + "end": 15332.48, + "probability": 0.0016 + }, + { + "start": 15334.78, + "end": 15337.5, + "probability": 0.8786 + }, + { + "start": 15339.44, + "end": 15341.72, + "probability": 0.9229 + }, + { + "start": 15342.54, + "end": 15344.98, + "probability": 0.9951 + }, + { + "start": 15345.06, + "end": 15346.58, + "probability": 0.8914 + }, + { + "start": 15347.16, + "end": 15347.58, + "probability": 0.9161 + }, + { + "start": 15348.8, + "end": 15352.74, + "probability": 0.9828 + }, + { + "start": 15353.1, + "end": 15354.24, + "probability": 0.5909 + }, + { + "start": 15354.88, + "end": 15357.3, + "probability": 0.8719 + }, + { + "start": 15357.52, + "end": 15362.28, + "probability": 0.7027 + }, + { + "start": 15362.82, + "end": 15364.0, + "probability": 0.9634 + }, + { + "start": 15364.32, + "end": 15366.42, + "probability": 0.9819 + }, + { + "start": 15366.84, + "end": 15370.09, + "probability": 0.891 + }, + { + "start": 15372.16, + "end": 15374.32, + "probability": 0.7738 + }, + { + "start": 15374.54, + "end": 15375.82, + "probability": 0.9246 + }, + { + "start": 15375.94, + "end": 15376.8, + "probability": 0.7964 + }, + { + "start": 15377.06, + "end": 15377.44, + "probability": 0.429 + }, + { + "start": 15378.02, + "end": 15381.22, + "probability": 0.9269 + }, + { + "start": 15382.0, + "end": 15386.1, + "probability": 0.7711 + }, + { + "start": 15387.68, + "end": 15391.86, + "probability": 0.7592 + }, + { + "start": 15393.25, + "end": 15396.22, + "probability": 0.9111 + }, + { + "start": 15397.44, + "end": 15398.91, + "probability": 0.9747 + }, + { + "start": 15401.58, + "end": 15402.26, + "probability": 0.5679 + }, + { + "start": 15402.86, + "end": 15410.76, + "probability": 0.9906 + }, + { + "start": 15411.78, + "end": 15416.2, + "probability": 0.3927 + }, + { + "start": 15418.46, + "end": 15422.04, + "probability": 0.7375 + }, + { + "start": 15422.12, + "end": 15424.16, + "probability": 0.6076 + }, + { + "start": 15424.18, + "end": 15424.7, + "probability": 0.8861 + }, + { + "start": 15426.69, + "end": 15430.2, + "probability": 0.8762 + }, + { + "start": 15430.7, + "end": 15433.42, + "probability": 0.6469 + }, + { + "start": 15434.88, + "end": 15437.44, + "probability": 0.9954 + }, + { + "start": 15437.8, + "end": 15440.26, + "probability": 0.9226 + }, + { + "start": 15441.52, + "end": 15442.14, + "probability": 0.8245 + }, + { + "start": 15442.84, + "end": 15443.54, + "probability": 0.9338 + }, + { + "start": 15445.48, + "end": 15447.68, + "probability": 0.9758 + }, + { + "start": 15449.42, + "end": 15452.2, + "probability": 0.7633 + }, + { + "start": 15453.54, + "end": 15454.38, + "probability": 0.5196 + }, + { + "start": 15455.8, + "end": 15457.26, + "probability": 0.5666 + }, + { + "start": 15459.22, + "end": 15461.18, + "probability": 0.7633 + }, + { + "start": 15462.04, + "end": 15464.78, + "probability": 0.7167 + }, + { + "start": 15465.38, + "end": 15466.6, + "probability": 0.6733 + }, + { + "start": 15467.24, + "end": 15472.4, + "probability": 0.9894 + }, + { + "start": 15472.64, + "end": 15472.7, + "probability": 0.6088 + }, + { + "start": 15473.1, + "end": 15474.98, + "probability": 0.6745 + }, + { + "start": 15475.38, + "end": 15476.08, + "probability": 0.6227 + }, + { + "start": 15477.48, + "end": 15484.92, + "probability": 0.9236 + }, + { + "start": 15484.94, + "end": 15485.2, + "probability": 0.9158 + }, + { + "start": 15485.24, + "end": 15485.44, + "probability": 0.8891 + }, + { + "start": 15489.0, + "end": 15489.8, + "probability": 0.6859 + }, + { + "start": 15492.14, + "end": 15492.98, + "probability": 0.6346 + }, + { + "start": 15496.18, + "end": 15496.84, + "probability": 0.7427 + }, + { + "start": 15515.18, + "end": 15516.08, + "probability": 0.6733 + }, + { + "start": 15517.82, + "end": 15518.8, + "probability": 0.7535 + }, + { + "start": 15520.24, + "end": 15521.82, + "probability": 0.8101 + }, + { + "start": 15525.16, + "end": 15530.26, + "probability": 0.9712 + }, + { + "start": 15530.96, + "end": 15532.38, + "probability": 0.975 + }, + { + "start": 15534.14, + "end": 15536.84, + "probability": 0.9973 + }, + { + "start": 15536.84, + "end": 15538.98, + "probability": 0.9995 + }, + { + "start": 15540.68, + "end": 15545.32, + "probability": 0.9324 + }, + { + "start": 15545.82, + "end": 15546.29, + "probability": 0.587 + }, + { + "start": 15546.92, + "end": 15548.76, + "probability": 0.9956 + }, + { + "start": 15550.26, + "end": 15551.26, + "probability": 0.9964 + }, + { + "start": 15553.36, + "end": 15555.48, + "probability": 0.7016 + }, + { + "start": 15556.4, + "end": 15558.18, + "probability": 0.9943 + }, + { + "start": 15558.98, + "end": 15559.58, + "probability": 0.8531 + }, + { + "start": 15560.12, + "end": 15560.86, + "probability": 0.8143 + }, + { + "start": 15563.42, + "end": 15565.36, + "probability": 0.89 + }, + { + "start": 15567.88, + "end": 15570.44, + "probability": 0.9912 + }, + { + "start": 15571.14, + "end": 15574.76, + "probability": 0.9908 + }, + { + "start": 15575.74, + "end": 15576.42, + "probability": 0.8673 + }, + { + "start": 15576.96, + "end": 15578.32, + "probability": 0.8867 + }, + { + "start": 15579.92, + "end": 15581.27, + "probability": 0.9517 + }, + { + "start": 15582.96, + "end": 15585.32, + "probability": 0.9023 + }, + { + "start": 15585.92, + "end": 15590.08, + "probability": 0.9198 + }, + { + "start": 15591.66, + "end": 15592.9, + "probability": 0.9373 + }, + { + "start": 15594.42, + "end": 15597.9, + "probability": 0.9901 + }, + { + "start": 15597.94, + "end": 15599.66, + "probability": 0.9971 + }, + { + "start": 15599.74, + "end": 15600.58, + "probability": 0.8509 + }, + { + "start": 15600.82, + "end": 15602.74, + "probability": 0.9188 + }, + { + "start": 15603.0, + "end": 15605.34, + "probability": 0.9788 + }, + { + "start": 15605.42, + "end": 15605.63, + "probability": 0.7225 + }, + { + "start": 15605.7, + "end": 15606.88, + "probability": 0.9302 + }, + { + "start": 15607.58, + "end": 15608.9, + "probability": 0.9089 + }, + { + "start": 15608.96, + "end": 15609.62, + "probability": 0.8245 + }, + { + "start": 15612.08, + "end": 15613.03, + "probability": 0.9701 + }, + { + "start": 15614.46, + "end": 15615.98, + "probability": 0.9839 + }, + { + "start": 15617.62, + "end": 15620.56, + "probability": 0.8865 + }, + { + "start": 15622.82, + "end": 15624.22, + "probability": 0.7959 + }, + { + "start": 15625.4, + "end": 15626.68, + "probability": 0.9798 + }, + { + "start": 15626.72, + "end": 15628.16, + "probability": 0.8029 + }, + { + "start": 15628.34, + "end": 15630.42, + "probability": 0.8097 + }, + { + "start": 15631.18, + "end": 15637.04, + "probability": 0.9381 + }, + { + "start": 15637.2, + "end": 15641.04, + "probability": 0.9797 + }, + { + "start": 15641.04, + "end": 15644.34, + "probability": 0.9956 + }, + { + "start": 15645.74, + "end": 15648.14, + "probability": 0.7936 + }, + { + "start": 15648.66, + "end": 15649.48, + "probability": 0.9047 + }, + { + "start": 15649.56, + "end": 15651.42, + "probability": 0.5777 + }, + { + "start": 15651.52, + "end": 15652.56, + "probability": 0.9196 + }, + { + "start": 15652.66, + "end": 15654.16, + "probability": 0.9299 + }, + { + "start": 15654.66, + "end": 15655.9, + "probability": 0.8781 + }, + { + "start": 15656.44, + "end": 15658.1, + "probability": 0.6485 + }, + { + "start": 15658.18, + "end": 15660.38, + "probability": 0.9414 + }, + { + "start": 15660.56, + "end": 15661.62, + "probability": 0.9113 + }, + { + "start": 15662.3, + "end": 15662.78, + "probability": 0.4966 + }, + { + "start": 15663.64, + "end": 15664.42, + "probability": 0.6328 + }, + { + "start": 15664.6, + "end": 15669.2, + "probability": 0.8418 + }, + { + "start": 15670.26, + "end": 15672.05, + "probability": 0.7137 + }, + { + "start": 15672.84, + "end": 15673.56, + "probability": 0.8685 + }, + { + "start": 15674.72, + "end": 15680.32, + "probability": 0.9843 + }, + { + "start": 15680.4, + "end": 15681.6, + "probability": 0.6892 + }, + { + "start": 15682.6, + "end": 15686.5, + "probability": 0.992 + }, + { + "start": 15687.28, + "end": 15690.08, + "probability": 0.7591 + }, + { + "start": 15691.72, + "end": 15694.96, + "probability": 0.8193 + }, + { + "start": 15696.48, + "end": 15701.34, + "probability": 0.9956 + }, + { + "start": 15701.64, + "end": 15705.36, + "probability": 0.9955 + }, + { + "start": 15705.78, + "end": 15706.82, + "probability": 0.8392 + }, + { + "start": 15707.52, + "end": 15708.6, + "probability": 0.7494 + }, + { + "start": 15708.98, + "end": 15710.64, + "probability": 0.9658 + }, + { + "start": 15711.4, + "end": 15712.9, + "probability": 0.9411 + }, + { + "start": 15713.34, + "end": 15717.02, + "probability": 0.9456 + }, + { + "start": 15725.3, + "end": 15725.9, + "probability": 0.3474 + }, + { + "start": 15726.98, + "end": 15727.18, + "probability": 0.7768 + }, + { + "start": 15755.08, + "end": 15756.68, + "probability": 0.815 + }, + { + "start": 15757.7, + "end": 15759.38, + "probability": 0.9958 + }, + { + "start": 15760.34, + "end": 15762.96, + "probability": 0.8072 + }, + { + "start": 15764.58, + "end": 15773.96, + "probability": 0.9957 + }, + { + "start": 15775.28, + "end": 15781.08, + "probability": 0.9763 + }, + { + "start": 15782.86, + "end": 15789.04, + "probability": 0.9506 + }, + { + "start": 15789.62, + "end": 15790.84, + "probability": 0.875 + }, + { + "start": 15791.58, + "end": 15794.86, + "probability": 0.9858 + }, + { + "start": 15796.22, + "end": 15799.96, + "probability": 0.9775 + }, + { + "start": 15801.2, + "end": 15803.64, + "probability": 0.9805 + }, + { + "start": 15805.32, + "end": 15811.32, + "probability": 0.9984 + }, + { + "start": 15812.12, + "end": 15813.4, + "probability": 0.8396 + }, + { + "start": 15814.4, + "end": 15818.08, + "probability": 0.9805 + }, + { + "start": 15819.22, + "end": 15825.26, + "probability": 0.9868 + }, + { + "start": 15826.52, + "end": 15830.94, + "probability": 0.9789 + }, + { + "start": 15831.46, + "end": 15836.16, + "probability": 0.9847 + }, + { + "start": 15838.13, + "end": 15842.34, + "probability": 0.9831 + }, + { + "start": 15843.08, + "end": 15844.88, + "probability": 0.9971 + }, + { + "start": 15845.6, + "end": 15847.87, + "probability": 0.998 + }, + { + "start": 15848.58, + "end": 15851.16, + "probability": 0.9801 + }, + { + "start": 15851.9, + "end": 15859.0, + "probability": 0.9196 + }, + { + "start": 15859.24, + "end": 15860.62, + "probability": 0.83 + }, + { + "start": 15860.94, + "end": 15862.38, + "probability": 0.952 + }, + { + "start": 15862.44, + "end": 15864.14, + "probability": 0.9636 + }, + { + "start": 15865.26, + "end": 15872.16, + "probability": 0.9812 + }, + { + "start": 15873.82, + "end": 15877.68, + "probability": 0.841 + }, + { + "start": 15878.82, + "end": 15880.76, + "probability": 0.9715 + }, + { + "start": 15881.86, + "end": 15886.44, + "probability": 0.977 + }, + { + "start": 15886.44, + "end": 15891.1, + "probability": 0.988 + }, + { + "start": 15891.58, + "end": 15893.82, + "probability": 0.7823 + }, + { + "start": 15894.14, + "end": 15895.24, + "probability": 0.8795 + }, + { + "start": 15895.36, + "end": 15897.42, + "probability": 0.9624 + }, + { + "start": 15898.48, + "end": 15902.86, + "probability": 0.9976 + }, + { + "start": 15903.84, + "end": 15906.78, + "probability": 0.9947 + }, + { + "start": 15907.46, + "end": 15910.38, + "probability": 0.9977 + }, + { + "start": 15910.62, + "end": 15910.76, + "probability": 0.8149 + }, + { + "start": 15911.62, + "end": 15912.86, + "probability": 0.9982 + }, + { + "start": 15912.98, + "end": 15914.78, + "probability": 0.9858 + }, + { + "start": 15915.34, + "end": 15917.84, + "probability": 0.9565 + }, + { + "start": 15918.88, + "end": 15919.08, + "probability": 0.6686 + }, + { + "start": 15920.44, + "end": 15921.82, + "probability": 0.8983 + }, + { + "start": 15922.08, + "end": 15923.26, + "probability": 0.9277 + }, + { + "start": 15923.36, + "end": 15926.54, + "probability": 0.9373 + }, + { + "start": 15926.86, + "end": 15928.7, + "probability": 0.6024 + }, + { + "start": 15929.24, + "end": 15930.8, + "probability": 0.9673 + }, + { + "start": 15931.26, + "end": 15937.24, + "probability": 0.9806 + }, + { + "start": 15937.32, + "end": 15942.02, + "probability": 0.9991 + }, + { + "start": 15942.28, + "end": 15944.8, + "probability": 0.822 + }, + { + "start": 15946.02, + "end": 15948.45, + "probability": 0.7818 + }, + { + "start": 15949.62, + "end": 15954.74, + "probability": 0.9864 + }, + { + "start": 15955.26, + "end": 15957.78, + "probability": 0.9995 + }, + { + "start": 15959.18, + "end": 15959.88, + "probability": 0.5571 + }, + { + "start": 15960.42, + "end": 15961.9, + "probability": 0.8797 + }, + { + "start": 15962.56, + "end": 15964.52, + "probability": 0.9988 + }, + { + "start": 15964.68, + "end": 15965.06, + "probability": 0.9065 + }, + { + "start": 15965.66, + "end": 15970.68, + "probability": 0.9949 + }, + { + "start": 15971.3, + "end": 15972.38, + "probability": 0.7889 + }, + { + "start": 15972.82, + "end": 15974.7, + "probability": 0.9493 + }, + { + "start": 15975.24, + "end": 15975.54, + "probability": 0.8269 + }, + { + "start": 15976.2, + "end": 15977.87, + "probability": 0.5859 + }, + { + "start": 15978.7, + "end": 15980.08, + "probability": 0.9355 + }, + { + "start": 15980.64, + "end": 15981.74, + "probability": 0.9544 + }, + { + "start": 15982.4, + "end": 15983.8, + "probability": 0.9687 + }, + { + "start": 15984.62, + "end": 15985.85, + "probability": 0.988 + }, + { + "start": 15987.0, + "end": 15988.29, + "probability": 0.8842 + }, + { + "start": 15989.54, + "end": 15990.79, + "probability": 0.9934 + }, + { + "start": 15991.78, + "end": 15996.26, + "probability": 0.9797 + }, + { + "start": 15996.58, + "end": 16001.28, + "probability": 0.9932 + }, + { + "start": 16001.42, + "end": 16004.46, + "probability": 0.5227 + }, + { + "start": 16004.94, + "end": 16004.94, + "probability": 0.6378 + }, + { + "start": 16004.94, + "end": 16005.96, + "probability": 0.9465 + }, + { + "start": 16006.22, + "end": 16006.52, + "probability": 0.9331 + }, + { + "start": 16011.78, + "end": 16012.54, + "probability": 0.6498 + }, + { + "start": 16014.96, + "end": 16015.32, + "probability": 0.7522 + }, + { + "start": 16017.34, + "end": 16018.12, + "probability": 0.9758 + }, + { + "start": 16019.6, + "end": 16021.68, + "probability": 0.8654 + }, + { + "start": 16023.88, + "end": 16024.84, + "probability": 0.9387 + }, + { + "start": 16035.76, + "end": 16036.5, + "probability": 0.6357 + }, + { + "start": 16042.72, + "end": 16044.7, + "probability": 0.6854 + }, + { + "start": 16046.02, + "end": 16049.26, + "probability": 0.9784 + }, + { + "start": 16050.28, + "end": 16051.7, + "probability": 0.9059 + }, + { + "start": 16053.82, + "end": 16055.56, + "probability": 0.9238 + }, + { + "start": 16055.78, + "end": 16057.78, + "probability": 0.9793 + }, + { + "start": 16058.96, + "end": 16061.54, + "probability": 0.9958 + }, + { + "start": 16062.3, + "end": 16066.34, + "probability": 0.991 + }, + { + "start": 16067.6, + "end": 16073.16, + "probability": 0.9916 + }, + { + "start": 16073.78, + "end": 16075.84, + "probability": 0.9427 + }, + { + "start": 16076.6, + "end": 16078.44, + "probability": 0.9743 + }, + { + "start": 16078.5, + "end": 16080.04, + "probability": 0.6943 + }, + { + "start": 16080.9, + "end": 16084.44, + "probability": 0.836 + }, + { + "start": 16085.16, + "end": 16091.24, + "probability": 0.9963 + }, + { + "start": 16091.74, + "end": 16093.38, + "probability": 0.8411 + }, + { + "start": 16093.58, + "end": 16095.9, + "probability": 0.9877 + }, + { + "start": 16096.66, + "end": 16098.2, + "probability": 0.7568 + }, + { + "start": 16099.3, + "end": 16104.66, + "probability": 0.9928 + }, + { + "start": 16105.34, + "end": 16109.6, + "probability": 0.9963 + }, + { + "start": 16110.88, + "end": 16111.2, + "probability": 0.9104 + }, + { + "start": 16112.26, + "end": 16116.14, + "probability": 0.9949 + }, + { + "start": 16116.14, + "end": 16120.76, + "probability": 0.9993 + }, + { + "start": 16121.42, + "end": 16127.38, + "probability": 0.9903 + }, + { + "start": 16128.46, + "end": 16131.28, + "probability": 0.9914 + }, + { + "start": 16132.08, + "end": 16135.38, + "probability": 0.9796 + }, + { + "start": 16135.9, + "end": 16138.96, + "probability": 0.9745 + }, + { + "start": 16139.86, + "end": 16141.56, + "probability": 0.8279 + }, + { + "start": 16142.18, + "end": 16145.98, + "probability": 0.9838 + }, + { + "start": 16146.9, + "end": 16149.44, + "probability": 0.978 + }, + { + "start": 16150.1, + "end": 16152.4, + "probability": 0.9478 + }, + { + "start": 16152.42, + "end": 16153.2, + "probability": 0.4199 + }, + { + "start": 16153.2, + "end": 16153.2, + "probability": 0.3853 + }, + { + "start": 16153.2, + "end": 16153.76, + "probability": 0.8986 + }, + { + "start": 16154.14, + "end": 16155.42, + "probability": 0.5236 + }, + { + "start": 16155.46, + "end": 16155.88, + "probability": 0.9104 + }, + { + "start": 16156.96, + "end": 16159.34, + "probability": 0.9911 + }, + { + "start": 16159.7, + "end": 16161.04, + "probability": 0.8746 + }, + { + "start": 16161.46, + "end": 16163.34, + "probability": 0.6092 + }, + { + "start": 16163.46, + "end": 16164.72, + "probability": 0.9106 + }, + { + "start": 16165.56, + "end": 16171.08, + "probability": 0.9963 + }, + { + "start": 16172.35, + "end": 16173.9, + "probability": 0.0978 + }, + { + "start": 16173.9, + "end": 16173.9, + "probability": 0.574 + }, + { + "start": 16173.9, + "end": 16173.94, + "probability": 0.0557 + }, + { + "start": 16174.02, + "end": 16175.78, + "probability": 0.7309 + }, + { + "start": 16178.22, + "end": 16179.82, + "probability": 0.157 + }, + { + "start": 16179.82, + "end": 16180.02, + "probability": 0.3898 + }, + { + "start": 16180.02, + "end": 16180.18, + "probability": 0.6539 + }, + { + "start": 16180.28, + "end": 16181.66, + "probability": 0.7942 + }, + { + "start": 16182.53, + "end": 16184.68, + "probability": 0.6536 + }, + { + "start": 16184.86, + "end": 16185.73, + "probability": 0.978 + }, + { + "start": 16185.92, + "end": 16186.99, + "probability": 0.4478 + }, + { + "start": 16187.28, + "end": 16188.62, + "probability": 0.9941 + }, + { + "start": 16189.0, + "end": 16189.62, + "probability": 0.7325 + }, + { + "start": 16190.36, + "end": 16190.86, + "probability": 0.4002 + }, + { + "start": 16190.88, + "end": 16191.7, + "probability": 0.7276 + }, + { + "start": 16191.72, + "end": 16195.58, + "probability": 0.888 + }, + { + "start": 16195.58, + "end": 16198.48, + "probability": 0.883 + }, + { + "start": 16198.88, + "end": 16200.3, + "probability": 0.88 + }, + { + "start": 16202.74, + "end": 16204.58, + "probability": 0.6227 + }, + { + "start": 16205.8, + "end": 16206.73, + "probability": 0.9863 + }, + { + "start": 16208.14, + "end": 16208.93, + "probability": 0.7005 + }, + { + "start": 16209.32, + "end": 16209.5, + "probability": 0.7159 + }, + { + "start": 16209.5, + "end": 16209.85, + "probability": 0.9903 + }, + { + "start": 16210.0, + "end": 16211.24, + "probability": 0.9666 + }, + { + "start": 16211.36, + "end": 16211.64, + "probability": 0.0704 + }, + { + "start": 16211.66, + "end": 16212.76, + "probability": 0.336 + }, + { + "start": 16212.82, + "end": 16214.6, + "probability": 0.7721 + }, + { + "start": 16215.42, + "end": 16216.15, + "probability": 0.9692 + }, + { + "start": 16216.46, + "end": 16218.34, + "probability": 0.8691 + }, + { + "start": 16218.72, + "end": 16219.14, + "probability": 0.9442 + }, + { + "start": 16219.84, + "end": 16224.16, + "probability": 0.9825 + }, + { + "start": 16224.92, + "end": 16226.48, + "probability": 0.9858 + }, + { + "start": 16229.24, + "end": 16233.54, + "probability": 0.9993 + }, + { + "start": 16236.14, + "end": 16238.66, + "probability": 0.9927 + }, + { + "start": 16238.9, + "end": 16241.06, + "probability": 0.9934 + }, + { + "start": 16241.94, + "end": 16247.3, + "probability": 0.9715 + }, + { + "start": 16247.3, + "end": 16252.02, + "probability": 0.9977 + }, + { + "start": 16252.02, + "end": 16256.5, + "probability": 0.9556 + }, + { + "start": 16257.14, + "end": 16260.68, + "probability": 0.9817 + }, + { + "start": 16260.86, + "end": 16265.36, + "probability": 0.9923 + }, + { + "start": 16266.16, + "end": 16271.16, + "probability": 0.9753 + }, + { + "start": 16271.74, + "end": 16275.42, + "probability": 0.9066 + }, + { + "start": 16275.42, + "end": 16278.12, + "probability": 0.9998 + }, + { + "start": 16278.88, + "end": 16282.12, + "probability": 0.9541 + }, + { + "start": 16282.62, + "end": 16288.1, + "probability": 0.9854 + }, + { + "start": 16288.54, + "end": 16288.84, + "probability": 0.6339 + }, + { + "start": 16291.64, + "end": 16292.16, + "probability": 0.8367 + }, + { + "start": 16293.94, + "end": 16294.9, + "probability": 0.6111 + }, + { + "start": 16295.14, + "end": 16297.16, + "probability": 0.8061 + }, + { + "start": 16297.24, + "end": 16297.6, + "probability": 0.6327 + }, + { + "start": 16299.48, + "end": 16302.6, + "probability": 0.8431 + }, + { + "start": 16309.56, + "end": 16312.14, + "probability": 0.0592 + }, + { + "start": 16334.04, + "end": 16334.04, + "probability": 0.2921 + }, + { + "start": 16334.06, + "end": 16335.18, + "probability": 0.4587 + }, + { + "start": 16339.06, + "end": 16340.16, + "probability": 0.7438 + }, + { + "start": 16341.9, + "end": 16347.42, + "probability": 0.9666 + }, + { + "start": 16348.5, + "end": 16349.38, + "probability": 0.7505 + }, + { + "start": 16352.96, + "end": 16355.92, + "probability": 0.8949 + }, + { + "start": 16359.14, + "end": 16362.6, + "probability": 0.9236 + }, + { + "start": 16363.74, + "end": 16364.84, + "probability": 0.7061 + }, + { + "start": 16365.84, + "end": 16366.88, + "probability": 0.9357 + }, + { + "start": 16369.7, + "end": 16371.08, + "probability": 0.8611 + }, + { + "start": 16372.06, + "end": 16375.38, + "probability": 0.5528 + }, + { + "start": 16376.66, + "end": 16380.0, + "probability": 0.9468 + }, + { + "start": 16381.26, + "end": 16384.14, + "probability": 0.9287 + }, + { + "start": 16385.52, + "end": 16387.7, + "probability": 0.9875 + }, + { + "start": 16389.14, + "end": 16392.6, + "probability": 0.8955 + }, + { + "start": 16393.12, + "end": 16394.02, + "probability": 0.9414 + }, + { + "start": 16395.46, + "end": 16395.91, + "probability": 0.9917 + }, + { + "start": 16397.32, + "end": 16398.58, + "probability": 0.9441 + }, + { + "start": 16399.52, + "end": 16401.0, + "probability": 0.9738 + }, + { + "start": 16401.94, + "end": 16403.66, + "probability": 0.9813 + }, + { + "start": 16403.74, + "end": 16404.53, + "probability": 0.9705 + }, + { + "start": 16406.02, + "end": 16408.5, + "probability": 0.7255 + }, + { + "start": 16408.62, + "end": 16409.6, + "probability": 0.7078 + }, + { + "start": 16409.68, + "end": 16411.16, + "probability": 0.75 + }, + { + "start": 16412.14, + "end": 16413.76, + "probability": 0.7963 + }, + { + "start": 16416.68, + "end": 16420.58, + "probability": 0.9832 + }, + { + "start": 16423.42, + "end": 16428.08, + "probability": 0.9781 + }, + { + "start": 16429.46, + "end": 16432.68, + "probability": 0.8692 + }, + { + "start": 16433.72, + "end": 16435.14, + "probability": 0.9456 + }, + { + "start": 16435.68, + "end": 16436.26, + "probability": 0.8882 + }, + { + "start": 16437.04, + "end": 16439.7, + "probability": 0.9653 + }, + { + "start": 16440.66, + "end": 16442.78, + "probability": 0.9991 + }, + { + "start": 16443.88, + "end": 16451.02, + "probability": 0.9954 + }, + { + "start": 16451.74, + "end": 16453.33, + "probability": 0.9194 + }, + { + "start": 16454.26, + "end": 16455.02, + "probability": 0.505 + }, + { + "start": 16456.18, + "end": 16458.62, + "probability": 0.9585 + }, + { + "start": 16461.18, + "end": 16466.12, + "probability": 0.9719 + }, + { + "start": 16466.2, + "end": 16467.02, + "probability": 0.8271 + }, + { + "start": 16467.14, + "end": 16467.9, + "probability": 0.7346 + }, + { + "start": 16469.16, + "end": 16472.8, + "probability": 0.9932 + }, + { + "start": 16475.04, + "end": 16479.86, + "probability": 0.9373 + }, + { + "start": 16480.8, + "end": 16482.54, + "probability": 0.8217 + }, + { + "start": 16483.62, + "end": 16485.98, + "probability": 0.9637 + }, + { + "start": 16487.28, + "end": 16488.58, + "probability": 0.9431 + }, + { + "start": 16489.72, + "end": 16493.54, + "probability": 0.9695 + }, + { + "start": 16494.48, + "end": 16498.6, + "probability": 0.8654 + }, + { + "start": 16499.5, + "end": 16501.1, + "probability": 0.9775 + }, + { + "start": 16502.58, + "end": 16503.54, + "probability": 0.794 + }, + { + "start": 16508.16, + "end": 16509.28, + "probability": 0.6638 + }, + { + "start": 16520.5, + "end": 16522.78, + "probability": 0.7856 + }, + { + "start": 16525.04, + "end": 16528.08, + "probability": 0.981 + }, + { + "start": 16529.2, + "end": 16530.96, + "probability": 0.8837 + }, + { + "start": 16531.02, + "end": 16536.48, + "probability": 0.9183 + }, + { + "start": 16537.88, + "end": 16540.12, + "probability": 0.9972 + }, + { + "start": 16542.48, + "end": 16543.46, + "probability": 0.517 + }, + { + "start": 16544.12, + "end": 16546.34, + "probability": 0.9958 + }, + { + "start": 16546.8, + "end": 16549.14, + "probability": 0.9944 + }, + { + "start": 16550.16, + "end": 16556.64, + "probability": 0.8546 + }, + { + "start": 16557.36, + "end": 16560.9, + "probability": 0.9224 + }, + { + "start": 16561.36, + "end": 16562.06, + "probability": 0.7452 + }, + { + "start": 16562.32, + "end": 16566.38, + "probability": 0.8978 + }, + { + "start": 16567.32, + "end": 16569.3, + "probability": 0.9875 + }, + { + "start": 16569.76, + "end": 16571.18, + "probability": 0.9556 + }, + { + "start": 16571.7, + "end": 16573.64, + "probability": 0.7512 + }, + { + "start": 16574.12, + "end": 16578.4, + "probability": 0.9767 + }, + { + "start": 16578.46, + "end": 16581.04, + "probability": 0.7592 + }, + { + "start": 16581.04, + "end": 16581.36, + "probability": 0.1426 + }, + { + "start": 16581.36, + "end": 16582.61, + "probability": 0.979 + }, + { + "start": 16583.14, + "end": 16583.54, + "probability": 0.4344 + }, + { + "start": 16583.84, + "end": 16584.2, + "probability": 0.5492 + }, + { + "start": 16584.32, + "end": 16584.62, + "probability": 0.9308 + }, + { + "start": 16585.54, + "end": 16587.5, + "probability": 0.6913 + }, + { + "start": 16587.66, + "end": 16590.7, + "probability": 0.9618 + }, + { + "start": 16590.86, + "end": 16593.76, + "probability": 0.9417 + }, + { + "start": 16594.8, + "end": 16597.9, + "probability": 0.9476 + }, + { + "start": 16600.08, + "end": 16603.0, + "probability": 0.656 + }, + { + "start": 16603.0, + "end": 16606.1, + "probability": 0.69 + }, + { + "start": 16606.98, + "end": 16612.3, + "probability": 0.9769 + }, + { + "start": 16613.28, + "end": 16619.56, + "probability": 0.9896 + }, + { + "start": 16622.16, + "end": 16623.76, + "probability": 0.9826 + }, + { + "start": 16623.96, + "end": 16630.1, + "probability": 0.9613 + }, + { + "start": 16630.82, + "end": 16633.52, + "probability": 0.9781 + }, + { + "start": 16634.1, + "end": 16636.9, + "probability": 0.9971 + }, + { + "start": 16637.22, + "end": 16637.4, + "probability": 0.3497 + }, + { + "start": 16637.4, + "end": 16637.66, + "probability": 0.5674 + }, + { + "start": 16638.14, + "end": 16639.54, + "probability": 0.9612 + }, + { + "start": 16640.08, + "end": 16642.7, + "probability": 0.9434 + }, + { + "start": 16643.28, + "end": 16644.42, + "probability": 0.856 + }, + { + "start": 16644.82, + "end": 16648.28, + "probability": 0.907 + }, + { + "start": 16648.62, + "end": 16657.38, + "probability": 0.9776 + }, + { + "start": 16657.38, + "end": 16658.02, + "probability": 0.9287 + }, + { + "start": 16658.02, + "end": 16658.18, + "probability": 0.4168 + }, + { + "start": 16658.94, + "end": 16662.84, + "probability": 0.6747 + }, + { + "start": 16680.64, + "end": 16681.54, + "probability": 0.6903 + }, + { + "start": 16686.98, + "end": 16687.46, + "probability": 0.8415 + }, + { + "start": 16688.12, + "end": 16691.18, + "probability": 0.6166 + }, + { + "start": 16692.56, + "end": 16698.72, + "probability": 0.9715 + }, + { + "start": 16699.02, + "end": 16701.34, + "probability": 0.9852 + }, + { + "start": 16701.9, + "end": 16707.52, + "probability": 0.9963 + }, + { + "start": 16707.92, + "end": 16712.48, + "probability": 0.9858 + }, + { + "start": 16713.42, + "end": 16715.44, + "probability": 0.8274 + }, + { + "start": 16716.2, + "end": 16718.68, + "probability": 0.9132 + }, + { + "start": 16719.54, + "end": 16723.26, + "probability": 0.9235 + }, + { + "start": 16723.74, + "end": 16724.88, + "probability": 0.9939 + }, + { + "start": 16724.94, + "end": 16727.88, + "probability": 0.9945 + }, + { + "start": 16728.48, + "end": 16731.3, + "probability": 0.6374 + }, + { + "start": 16731.32, + "end": 16732.7, + "probability": 0.5548 + }, + { + "start": 16732.74, + "end": 16735.26, + "probability": 0.9336 + }, + { + "start": 16735.88, + "end": 16737.16, + "probability": 0.9716 + }, + { + "start": 16738.74, + "end": 16743.36, + "probability": 0.9893 + }, + { + "start": 16744.24, + "end": 16748.88, + "probability": 0.987 + }, + { + "start": 16748.88, + "end": 16754.54, + "probability": 0.9915 + }, + { + "start": 16755.26, + "end": 16761.76, + "probability": 0.9904 + }, + { + "start": 16762.24, + "end": 16769.8, + "probability": 0.9877 + }, + { + "start": 16769.8, + "end": 16777.26, + "probability": 0.9956 + }, + { + "start": 16777.94, + "end": 16783.08, + "probability": 0.9504 + }, + { + "start": 16783.42, + "end": 16785.48, + "probability": 0.7743 + }, + { + "start": 16786.16, + "end": 16786.68, + "probability": 0.5897 + }, + { + "start": 16787.56, + "end": 16791.24, + "probability": 0.8783 + }, + { + "start": 16791.66, + "end": 16793.18, + "probability": 0.8321 + }, + { + "start": 16793.82, + "end": 16796.48, + "probability": 0.9759 + }, + { + "start": 16797.06, + "end": 16799.08, + "probability": 0.9302 + }, + { + "start": 16799.92, + "end": 16803.64, + "probability": 0.9958 + }, + { + "start": 16804.8, + "end": 16806.12, + "probability": 0.3979 + }, + { + "start": 16806.12, + "end": 16806.7, + "probability": 0.5774 + }, + { + "start": 16807.18, + "end": 16807.74, + "probability": 0.8882 + }, + { + "start": 16808.52, + "end": 16811.34, + "probability": 0.9995 + }, + { + "start": 16812.2, + "end": 16815.36, + "probability": 0.984 + }, + { + "start": 16815.9, + "end": 16817.4, + "probability": 0.9558 + }, + { + "start": 16818.12, + "end": 16819.54, + "probability": 0.9126 + }, + { + "start": 16819.64, + "end": 16820.91, + "probability": 0.9918 + }, + { + "start": 16821.46, + "end": 16825.18, + "probability": 0.9622 + }, + { + "start": 16825.84, + "end": 16830.62, + "probability": 0.8307 + }, + { + "start": 16830.88, + "end": 16832.4, + "probability": 0.9606 + }, + { + "start": 16835.3, + "end": 16842.98, + "probability": 0.9974 + }, + { + "start": 16843.26, + "end": 16846.0, + "probability": 0.8684 + }, + { + "start": 16846.88, + "end": 16852.78, + "probability": 0.9931 + }, + { + "start": 16853.16, + "end": 16853.98, + "probability": 0.6582 + }, + { + "start": 16854.54, + "end": 16854.9, + "probability": 0.635 + }, + { + "start": 16856.2, + "end": 16858.76, + "probability": 0.5873 + }, + { + "start": 16858.94, + "end": 16859.9, + "probability": 0.8552 + }, + { + "start": 16860.54, + "end": 16862.98, + "probability": 0.7416 + }, + { + "start": 16863.66, + "end": 16864.78, + "probability": 0.8781 + }, + { + "start": 16864.86, + "end": 16871.44, + "probability": 0.9715 + }, + { + "start": 16871.88, + "end": 16873.24, + "probability": 0.6811 + }, + { + "start": 16873.8, + "end": 16874.8, + "probability": 0.7995 + }, + { + "start": 16875.42, + "end": 16878.8, + "probability": 0.8716 + }, + { + "start": 16879.3, + "end": 16882.2, + "probability": 0.9338 + }, + { + "start": 16883.0, + "end": 16885.58, + "probability": 0.9937 + }, + { + "start": 16885.96, + "end": 16886.74, + "probability": 0.91 + }, + { + "start": 16887.14, + "end": 16887.82, + "probability": 0.5231 + }, + { + "start": 16888.58, + "end": 16894.14, + "probability": 0.981 + }, + { + "start": 16894.14, + "end": 16899.72, + "probability": 0.9904 + }, + { + "start": 16900.14, + "end": 16902.64, + "probability": 0.9799 + }, + { + "start": 16903.06, + "end": 16907.12, + "probability": 0.9424 + }, + { + "start": 16907.34, + "end": 16908.48, + "probability": 0.8052 + }, + { + "start": 16908.96, + "end": 16911.86, + "probability": 0.9872 + }, + { + "start": 16912.46, + "end": 16917.9, + "probability": 0.9847 + }, + { + "start": 16918.48, + "end": 16921.44, + "probability": 0.9828 + }, + { + "start": 16922.04, + "end": 16926.02, + "probability": 0.9978 + }, + { + "start": 16926.1, + "end": 16927.78, + "probability": 0.8592 + }, + { + "start": 16928.3, + "end": 16933.82, + "probability": 0.9854 + }, + { + "start": 16935.72, + "end": 16935.72, + "probability": 0.3711 + }, + { + "start": 16935.72, + "end": 16935.72, + "probability": 0.2259 + }, + { + "start": 16935.72, + "end": 16937.04, + "probability": 0.7655 + }, + { + "start": 16938.38, + "end": 16940.2, + "probability": 0.9827 + }, + { + "start": 16940.84, + "end": 16942.66, + "probability": 0.9714 + }, + { + "start": 16943.22, + "end": 16948.28, + "probability": 0.9932 + }, + { + "start": 16948.5, + "end": 16949.46, + "probability": 0.815 + }, + { + "start": 16949.92, + "end": 16951.12, + "probability": 0.8137 + }, + { + "start": 16951.2, + "end": 16952.36, + "probability": 0.9598 + }, + { + "start": 16952.84, + "end": 16957.42, + "probability": 0.738 + }, + { + "start": 16957.8, + "end": 16960.52, + "probability": 0.8817 + }, + { + "start": 16960.72, + "end": 16960.72, + "probability": 0.3002 + }, + { + "start": 16960.88, + "end": 16961.7, + "probability": 0.9364 + }, + { + "start": 16962.26, + "end": 16963.22, + "probability": 0.9937 + }, + { + "start": 16963.28, + "end": 16965.1, + "probability": 0.4953 + }, + { + "start": 16966.02, + "end": 16969.32, + "probability": 0.8224 + }, + { + "start": 16971.34, + "end": 16972.58, + "probability": 0.9294 + }, + { + "start": 16977.3, + "end": 16978.14, + "probability": 0.6679 + }, + { + "start": 16978.4, + "end": 16979.86, + "probability": 0.8525 + }, + { + "start": 16980.7, + "end": 16981.66, + "probability": 0.7555 + }, + { + "start": 16981.8, + "end": 16982.36, + "probability": 0.9259 + }, + { + "start": 16984.35, + "end": 16985.96, + "probability": 0.7375 + }, + { + "start": 16991.76, + "end": 16993.1, + "probability": 0.7729 + }, + { + "start": 16993.22, + "end": 16994.6, + "probability": 0.9016 + }, + { + "start": 16994.92, + "end": 16997.58, + "probability": 0.6407 + }, + { + "start": 16998.52, + "end": 16999.1, + "probability": 0.8032 + }, + { + "start": 16999.1, + "end": 16999.54, + "probability": 0.9555 + }, + { + "start": 16999.64, + "end": 17006.1, + "probability": 0.9609 + }, + { + "start": 17006.32, + "end": 17008.08, + "probability": 0.9229 + }, + { + "start": 17008.76, + "end": 17011.36, + "probability": 0.8694 + }, + { + "start": 17011.72, + "end": 17013.66, + "probability": 0.908 + }, + { + "start": 17014.44, + "end": 17015.04, + "probability": 0.7014 + }, + { + "start": 17015.2, + "end": 17015.85, + "probability": 0.3825 + }, + { + "start": 17016.62, + "end": 17017.34, + "probability": 0.6889 + }, + { + "start": 17017.4, + "end": 17020.48, + "probability": 0.6971 + }, + { + "start": 17020.64, + "end": 17020.84, + "probability": 0.776 + }, + { + "start": 17020.84, + "end": 17021.96, + "probability": 0.8512 + }, + { + "start": 17022.04, + "end": 17022.34, + "probability": 0.7766 + }, + { + "start": 17022.38, + "end": 17023.8, + "probability": 0.8643 + }, + { + "start": 17024.92, + "end": 17027.04, + "probability": 0.9662 + }, + { + "start": 17027.1, + "end": 17032.58, + "probability": 0.978 + }, + { + "start": 17033.42, + "end": 17039.4, + "probability": 0.9651 + }, + { + "start": 17040.58, + "end": 17042.05, + "probability": 0.9034 + }, + { + "start": 17043.4, + "end": 17044.48, + "probability": 0.8907 + }, + { + "start": 17045.08, + "end": 17047.66, + "probability": 0.9427 + }, + { + "start": 17048.78, + "end": 17049.6, + "probability": 0.6691 + }, + { + "start": 17049.76, + "end": 17052.52, + "probability": 0.6865 + }, + { + "start": 17052.58, + "end": 17053.48, + "probability": 0.7919 + }, + { + "start": 17053.74, + "end": 17054.26, + "probability": 0.8164 + }, + { + "start": 17054.36, + "end": 17055.28, + "probability": 0.9918 + }, + { + "start": 17056.48, + "end": 17058.76, + "probability": 0.252 + }, + { + "start": 17058.84, + "end": 17059.8, + "probability": 0.8807 + }, + { + "start": 17059.92, + "end": 17062.0, + "probability": 0.2881 + }, + { + "start": 17062.12, + "end": 17062.94, + "probability": 0.5614 + }, + { + "start": 17063.52, + "end": 17064.5, + "probability": 0.302 + }, + { + "start": 17064.54, + "end": 17066.94, + "probability": 0.9348 + }, + { + "start": 17067.34, + "end": 17067.46, + "probability": 0.4118 + }, + { + "start": 17067.92, + "end": 17068.68, + "probability": 0.9405 + }, + { + "start": 17068.94, + "end": 17072.78, + "probability": 0.9761 + }, + { + "start": 17073.08, + "end": 17081.06, + "probability": 0.9962 + }, + { + "start": 17081.9, + "end": 17084.78, + "probability": 0.9807 + }, + { + "start": 17085.5, + "end": 17088.04, + "probability": 0.8849 + }, + { + "start": 17088.8, + "end": 17091.74, + "probability": 0.5468 + }, + { + "start": 17092.66, + "end": 17092.82, + "probability": 0.7166 + }, + { + "start": 17092.98, + "end": 17094.03, + "probability": 0.9844 + }, + { + "start": 17094.48, + "end": 17098.5, + "probability": 0.9923 + }, + { + "start": 17098.88, + "end": 17100.32, + "probability": 0.6768 + }, + { + "start": 17100.84, + "end": 17101.36, + "probability": 0.188 + }, + { + "start": 17102.72, + "end": 17107.76, + "probability": 0.9757 + }, + { + "start": 17109.06, + "end": 17112.0, + "probability": 0.8617 + }, + { + "start": 17112.92, + "end": 17116.58, + "probability": 0.9954 + }, + { + "start": 17117.74, + "end": 17120.78, + "probability": 0.7581 + }, + { + "start": 17121.64, + "end": 17126.59, + "probability": 0.9967 + }, + { + "start": 17127.16, + "end": 17127.66, + "probability": 0.9341 + }, + { + "start": 17127.78, + "end": 17128.98, + "probability": 0.7815 + }, + { + "start": 17129.32, + "end": 17135.62, + "probability": 0.95 + }, + { + "start": 17136.54, + "end": 17138.64, + "probability": 0.7812 + }, + { + "start": 17138.64, + "end": 17138.71, + "probability": 0.7903 + }, + { + "start": 17139.3, + "end": 17140.02, + "probability": 0.6461 + }, + { + "start": 17140.08, + "end": 17140.58, + "probability": 0.7613 + }, + { + "start": 17140.58, + "end": 17142.36, + "probability": 0.8018 + }, + { + "start": 17142.52, + "end": 17142.52, + "probability": 0.2085 + }, + { + "start": 17142.52, + "end": 17143.88, + "probability": 0.9777 + }, + { + "start": 17144.52, + "end": 17147.66, + "probability": 0.8073 + }, + { + "start": 17147.8, + "end": 17150.78, + "probability": 0.993 + }, + { + "start": 17150.86, + "end": 17153.57, + "probability": 0.9475 + }, + { + "start": 17154.32, + "end": 17158.82, + "probability": 0.9336 + }, + { + "start": 17159.24, + "end": 17160.25, + "probability": 0.8965 + }, + { + "start": 17160.92, + "end": 17166.4, + "probability": 0.988 + }, + { + "start": 17166.82, + "end": 17168.5, + "probability": 0.7942 + }, + { + "start": 17169.14, + "end": 17169.66, + "probability": 0.8054 + }, + { + "start": 17170.36, + "end": 17173.38, + "probability": 0.9326 + }, + { + "start": 17173.74, + "end": 17175.62, + "probability": 0.8851 + }, + { + "start": 17176.02, + "end": 17176.94, + "probability": 0.9541 + }, + { + "start": 17176.98, + "end": 17178.38, + "probability": 0.9364 + }, + { + "start": 17178.44, + "end": 17178.86, + "probability": 0.6822 + }, + { + "start": 17178.94, + "end": 17181.64, + "probability": 0.8026 + }, + { + "start": 17182.08, + "end": 17183.84, + "probability": 0.9565 + }, + { + "start": 17184.12, + "end": 17186.66, + "probability": 0.782 + }, + { + "start": 17186.94, + "end": 17187.96, + "probability": 0.9761 + }, + { + "start": 17188.88, + "end": 17189.6, + "probability": 0.6282 + }, + { + "start": 17189.86, + "end": 17190.38, + "probability": 0.7853 + }, + { + "start": 17190.5, + "end": 17193.86, + "probability": 0.966 + }, + { + "start": 17194.16, + "end": 17194.66, + "probability": 0.7668 + }, + { + "start": 17195.4, + "end": 17199.14, + "probability": 0.9873 + }, + { + "start": 17199.28, + "end": 17200.78, + "probability": 0.8007 + }, + { + "start": 17200.8, + "end": 17200.8, + "probability": 0.6935 + }, + { + "start": 17200.84, + "end": 17202.45, + "probability": 0.7632 + }, + { + "start": 17202.88, + "end": 17204.26, + "probability": 0.8536 + }, + { + "start": 17204.5, + "end": 17207.62, + "probability": 0.9767 + }, + { + "start": 17207.82, + "end": 17208.0, + "probability": 0.3683 + }, + { + "start": 17208.02, + "end": 17208.36, + "probability": 0.281 + }, + { + "start": 17208.36, + "end": 17210.6, + "probability": 0.8075 + }, + { + "start": 17210.98, + "end": 17212.7, + "probability": 0.9796 + }, + { + "start": 17213.28, + "end": 17213.28, + "probability": 0.7974 + }, + { + "start": 17213.3, + "end": 17213.86, + "probability": 0.733 + }, + { + "start": 17213.98, + "end": 17216.86, + "probability": 0.9629 + }, + { + "start": 17216.86, + "end": 17219.66, + "probability": 0.998 + }, + { + "start": 17219.94, + "end": 17220.14, + "probability": 0.6716 + }, + { + "start": 17220.22, + "end": 17223.2, + "probability": 0.9258 + }, + { + "start": 17236.54, + "end": 17237.28, + "probability": 0.7169 + }, + { + "start": 17237.72, + "end": 17239.42, + "probability": 0.7603 + }, + { + "start": 17240.12, + "end": 17241.99, + "probability": 0.9207 + }, + { + "start": 17242.36, + "end": 17245.04, + "probability": 0.8826 + }, + { + "start": 17245.14, + "end": 17245.24, + "probability": 0.2867 + }, + { + "start": 17245.96, + "end": 17247.74, + "probability": 0.7087 + }, + { + "start": 17248.44, + "end": 17249.88, + "probability": 0.822 + }, + { + "start": 17249.96, + "end": 17253.6, + "probability": 0.9344 + }, + { + "start": 17253.94, + "end": 17255.64, + "probability": 0.8564 + }, + { + "start": 17256.08, + "end": 17260.3, + "probability": 0.9792 + }, + { + "start": 17260.76, + "end": 17263.74, + "probability": 0.9829 + }, + { + "start": 17263.74, + "end": 17267.62, + "probability": 0.8499 + }, + { + "start": 17268.56, + "end": 17271.72, + "probability": 0.9766 + }, + { + "start": 17271.8, + "end": 17272.76, + "probability": 0.7156 + }, + { + "start": 17272.88, + "end": 17273.34, + "probability": 0.6994 + }, + { + "start": 17273.42, + "end": 17274.02, + "probability": 0.8464 + }, + { + "start": 17274.52, + "end": 17276.06, + "probability": 0.9958 + }, + { + "start": 17276.68, + "end": 17279.42, + "probability": 0.941 + }, + { + "start": 17279.94, + "end": 17282.36, + "probability": 0.7136 + }, + { + "start": 17282.62, + "end": 17285.62, + "probability": 0.8489 + }, + { + "start": 17286.2, + "end": 17290.74, + "probability": 0.8418 + }, + { + "start": 17291.18, + "end": 17292.72, + "probability": 0.7506 + }, + { + "start": 17293.14, + "end": 17294.94, + "probability": 0.9189 + }, + { + "start": 17295.48, + "end": 17297.74, + "probability": 0.979 + }, + { + "start": 17298.48, + "end": 17300.94, + "probability": 0.9951 + }, + { + "start": 17301.06, + "end": 17302.25, + "probability": 0.8639 + }, + { + "start": 17302.6, + "end": 17303.63, + "probability": 0.9819 + }, + { + "start": 17304.24, + "end": 17308.24, + "probability": 0.9871 + }, + { + "start": 17308.8, + "end": 17310.52, + "probability": 0.998 + }, + { + "start": 17310.9, + "end": 17313.22, + "probability": 0.9902 + }, + { + "start": 17313.4, + "end": 17317.26, + "probability": 0.9829 + }, + { + "start": 17317.4, + "end": 17318.58, + "probability": 0.9519 + }, + { + "start": 17319.44, + "end": 17321.06, + "probability": 0.685 + }, + { + "start": 17321.96, + "end": 17324.88, + "probability": 0.9888 + }, + { + "start": 17325.6, + "end": 17327.06, + "probability": 0.9956 + }, + { + "start": 17327.6, + "end": 17329.22, + "probability": 0.762 + }, + { + "start": 17329.84, + "end": 17332.44, + "probability": 0.95 + }, + { + "start": 17332.9, + "end": 17335.28, + "probability": 0.9807 + }, + { + "start": 17336.52, + "end": 17339.78, + "probability": 0.9274 + }, + { + "start": 17340.28, + "end": 17344.5, + "probability": 0.9748 + }, + { + "start": 17344.88, + "end": 17345.82, + "probability": 0.7948 + }, + { + "start": 17346.32, + "end": 17346.38, + "probability": 0.5125 + }, + { + "start": 17346.48, + "end": 17347.16, + "probability": 0.8543 + }, + { + "start": 17347.54, + "end": 17350.32, + "probability": 0.9932 + }, + { + "start": 17350.72, + "end": 17351.62, + "probability": 0.8954 + }, + { + "start": 17352.08, + "end": 17354.18, + "probability": 0.9795 + }, + { + "start": 17354.62, + "end": 17355.6, + "probability": 0.7651 + }, + { + "start": 17356.08, + "end": 17357.08, + "probability": 0.8969 + }, + { + "start": 17357.44, + "end": 17358.58, + "probability": 0.784 + }, + { + "start": 17358.98, + "end": 17360.4, + "probability": 0.9417 + }, + { + "start": 17360.86, + "end": 17366.38, + "probability": 0.9705 + }, + { + "start": 17366.68, + "end": 17369.08, + "probability": 0.9614 + }, + { + "start": 17369.52, + "end": 17374.56, + "probability": 0.9942 + }, + { + "start": 17375.04, + "end": 17376.01, + "probability": 0.9924 + }, + { + "start": 17376.82, + "end": 17379.66, + "probability": 0.958 + }, + { + "start": 17380.06, + "end": 17380.7, + "probability": 0.811 + }, + { + "start": 17381.12, + "end": 17381.84, + "probability": 0.9501 + }, + { + "start": 17382.12, + "end": 17382.92, + "probability": 0.6429 + }, + { + "start": 17382.96, + "end": 17385.18, + "probability": 0.9934 + }, + { + "start": 17385.76, + "end": 17388.26, + "probability": 0.7234 + }, + { + "start": 17388.68, + "end": 17391.92, + "probability": 0.8809 + }, + { + "start": 17392.06, + "end": 17392.5, + "probability": 0.2356 + }, + { + "start": 17392.94, + "end": 17394.06, + "probability": 0.9782 + }, + { + "start": 17394.46, + "end": 17395.73, + "probability": 0.9771 + }, + { + "start": 17396.2, + "end": 17397.1, + "probability": 0.8623 + }, + { + "start": 17397.62, + "end": 17402.28, + "probability": 0.9778 + }, + { + "start": 17402.72, + "end": 17405.36, + "probability": 0.9312 + }, + { + "start": 17406.0, + "end": 17407.2, + "probability": 0.929 + }, + { + "start": 17407.26, + "end": 17410.9, + "probability": 0.9971 + }, + { + "start": 17411.68, + "end": 17417.5, + "probability": 0.9709 + }, + { + "start": 17417.98, + "end": 17420.7, + "probability": 0.9919 + }, + { + "start": 17421.16, + "end": 17424.74, + "probability": 0.9967 + }, + { + "start": 17425.34, + "end": 17430.8, + "probability": 0.8603 + }, + { + "start": 17431.26, + "end": 17433.3, + "probability": 0.8589 + }, + { + "start": 17433.3, + "end": 17433.3, + "probability": 0.6589 + }, + { + "start": 17433.32, + "end": 17434.32, + "probability": 0.8221 + }, + { + "start": 17434.82, + "end": 17437.44, + "probability": 0.9973 + }, + { + "start": 17437.8, + "end": 17440.64, + "probability": 0.9953 + }, + { + "start": 17440.7, + "end": 17441.06, + "probability": 0.0544 + }, + { + "start": 17441.28, + "end": 17445.7, + "probability": 0.9946 + }, + { + "start": 17446.4, + "end": 17451.34, + "probability": 0.9448 + }, + { + "start": 17451.36, + "end": 17451.38, + "probability": 0.375 + }, + { + "start": 17451.44, + "end": 17452.1, + "probability": 0.562 + }, + { + "start": 17452.5, + "end": 17457.26, + "probability": 0.9329 + }, + { + "start": 17457.82, + "end": 17460.8, + "probability": 0.8291 + }, + { + "start": 17460.8, + "end": 17461.5, + "probability": 0.5913 + }, + { + "start": 17461.76, + "end": 17461.88, + "probability": 0.645 + }, + { + "start": 17461.88, + "end": 17464.26, + "probability": 0.69 + }, + { + "start": 17464.58, + "end": 17466.44, + "probability": 0.9816 + }, + { + "start": 17466.5, + "end": 17467.0, + "probability": 0.6408 + }, + { + "start": 17467.0, + "end": 17468.18, + "probability": 0.6814 + }, + { + "start": 17468.48, + "end": 17470.22, + "probability": 0.8575 + }, + { + "start": 17470.58, + "end": 17474.18, + "probability": 0.7964 + }, + { + "start": 17474.2, + "end": 17474.74, + "probability": 0.2184 + }, + { + "start": 17475.0, + "end": 17475.18, + "probability": 0.6704 + }, + { + "start": 17475.18, + "end": 17476.9, + "probability": 0.8749 + }, + { + "start": 17476.96, + "end": 17477.2, + "probability": 0.7405 + }, + { + "start": 17477.38, + "end": 17477.74, + "probability": 0.9136 + }, + { + "start": 17477.78, + "end": 17482.18, + "probability": 0.6489 + }, + { + "start": 17482.76, + "end": 17482.86, + "probability": 0.0447 + }, + { + "start": 17482.86, + "end": 17482.86, + "probability": 0.493 + }, + { + "start": 17482.86, + "end": 17483.34, + "probability": 0.4745 + }, + { + "start": 17483.42, + "end": 17485.32, + "probability": 0.6365 + }, + { + "start": 17485.68, + "end": 17487.61, + "probability": 0.5648 + }, + { + "start": 17488.78, + "end": 17488.78, + "probability": 0.2855 + }, + { + "start": 17488.78, + "end": 17488.88, + "probability": 0.1223 + }, + { + "start": 17489.3, + "end": 17491.76, + "probability": 0.9629 + }, + { + "start": 17491.86, + "end": 17492.04, + "probability": 0.6369 + }, + { + "start": 17492.26, + "end": 17494.38, + "probability": 0.5684 + }, + { + "start": 17511.24, + "end": 17512.76, + "probability": 0.7107 + }, + { + "start": 17514.24, + "end": 17515.61, + "probability": 0.7402 + }, + { + "start": 17517.36, + "end": 17518.88, + "probability": 0.5704 + }, + { + "start": 17519.88, + "end": 17521.5, + "probability": 0.8452 + }, + { + "start": 17523.46, + "end": 17527.9, + "probability": 0.8932 + }, + { + "start": 17528.58, + "end": 17530.56, + "probability": 0.9781 + }, + { + "start": 17531.2, + "end": 17532.76, + "probability": 0.9454 + }, + { + "start": 17533.42, + "end": 17535.66, + "probability": 0.9865 + }, + { + "start": 17535.9, + "end": 17537.08, + "probability": 0.6239 + }, + { + "start": 17537.86, + "end": 17538.8, + "probability": 0.9907 + }, + { + "start": 17539.8, + "end": 17542.4, + "probability": 0.9933 + }, + { + "start": 17543.46, + "end": 17545.84, + "probability": 0.9741 + }, + { + "start": 17547.0, + "end": 17549.36, + "probability": 0.9653 + }, + { + "start": 17550.04, + "end": 17551.67, + "probability": 0.9717 + }, + { + "start": 17552.72, + "end": 17556.08, + "probability": 0.978 + }, + { + "start": 17556.28, + "end": 17558.94, + "probability": 0.9196 + }, + { + "start": 17559.82, + "end": 17563.32, + "probability": 0.9469 + }, + { + "start": 17564.96, + "end": 17567.11, + "probability": 0.9946 + }, + { + "start": 17567.96, + "end": 17569.15, + "probability": 0.9419 + }, + { + "start": 17570.06, + "end": 17573.46, + "probability": 0.9448 + }, + { + "start": 17573.56, + "end": 17574.18, + "probability": 0.8787 + }, + { + "start": 17574.26, + "end": 17575.42, + "probability": 0.9013 + }, + { + "start": 17576.06, + "end": 17577.52, + "probability": 0.8819 + }, + { + "start": 17578.08, + "end": 17579.16, + "probability": 0.8338 + }, + { + "start": 17579.5, + "end": 17580.72, + "probability": 0.9401 + }, + { + "start": 17580.76, + "end": 17581.54, + "probability": 0.6137 + }, + { + "start": 17581.6, + "end": 17582.86, + "probability": 0.8589 + }, + { + "start": 17583.34, + "end": 17585.0, + "probability": 0.9636 + }, + { + "start": 17585.7, + "end": 17589.83, + "probability": 0.9971 + }, + { + "start": 17590.92, + "end": 17591.06, + "probability": 0.6653 + }, + { + "start": 17591.14, + "end": 17594.76, + "probability": 0.8989 + }, + { + "start": 17594.8, + "end": 17597.06, + "probability": 0.9641 + }, + { + "start": 17597.48, + "end": 17598.66, + "probability": 0.9574 + }, + { + "start": 17601.32, + "end": 17605.08, + "probability": 0.9911 + }, + { + "start": 17605.92, + "end": 17607.16, + "probability": 0.7265 + }, + { + "start": 17608.26, + "end": 17609.62, + "probability": 0.9994 + }, + { + "start": 17610.94, + "end": 17613.68, + "probability": 0.8434 + }, + { + "start": 17614.26, + "end": 17617.5, + "probability": 0.9787 + }, + { + "start": 17617.92, + "end": 17618.94, + "probability": 0.7135 + }, + { + "start": 17618.94, + "end": 17622.68, + "probability": 0.9905 + }, + { + "start": 17624.22, + "end": 17627.78, + "probability": 0.9436 + }, + { + "start": 17628.2, + "end": 17634.42, + "probability": 0.9861 + }, + { + "start": 17634.54, + "end": 17636.0, + "probability": 0.9485 + }, + { + "start": 17637.1, + "end": 17637.92, + "probability": 0.97 + }, + { + "start": 17638.04, + "end": 17639.84, + "probability": 0.927 + }, + { + "start": 17640.46, + "end": 17641.46, + "probability": 0.9828 + }, + { + "start": 17642.48, + "end": 17643.22, + "probability": 0.7672 + }, + { + "start": 17644.24, + "end": 17645.36, + "probability": 0.8762 + }, + { + "start": 17645.6, + "end": 17646.62, + "probability": 0.6333 + }, + { + "start": 17646.7, + "end": 17647.66, + "probability": 0.5417 + }, + { + "start": 17648.18, + "end": 17651.3, + "probability": 0.9966 + }, + { + "start": 17651.9, + "end": 17654.48, + "probability": 0.7257 + }, + { + "start": 17654.48, + "end": 17654.6, + "probability": 0.0361 + }, + { + "start": 17655.3, + "end": 17659.48, + "probability": 0.2646 + }, + { + "start": 17660.06, + "end": 17660.8, + "probability": 0.2055 + }, + { + "start": 17660.8, + "end": 17660.8, + "probability": 0.1225 + }, + { + "start": 17660.8, + "end": 17666.34, + "probability": 0.607 + }, + { + "start": 17667.12, + "end": 17669.06, + "probability": 0.715 + }, + { + "start": 17670.94, + "end": 17671.8, + "probability": 0.6844 + }, + { + "start": 17672.18, + "end": 17673.0, + "probability": 0.3445 + }, + { + "start": 17674.24, + "end": 17676.02, + "probability": 0.995 + }, + { + "start": 17677.58, + "end": 17679.76, + "probability": 0.7301 + }, + { + "start": 17679.84, + "end": 17681.16, + "probability": 0.8961 + }, + { + "start": 17681.32, + "end": 17684.54, + "probability": 0.9587 + }, + { + "start": 17684.54, + "end": 17687.6, + "probability": 0.996 + }, + { + "start": 17688.2, + "end": 17691.18, + "probability": 0.9764 + }, + { + "start": 17691.46, + "end": 17692.72, + "probability": 0.7607 + }, + { + "start": 17693.36, + "end": 17697.72, + "probability": 0.9611 + }, + { + "start": 17697.84, + "end": 17698.81, + "probability": 0.5856 + }, + { + "start": 17700.2, + "end": 17704.12, + "probability": 0.9971 + }, + { + "start": 17704.8, + "end": 17706.8, + "probability": 0.9697 + }, + { + "start": 17706.92, + "end": 17711.52, + "probability": 0.9907 + }, + { + "start": 17711.56, + "end": 17714.26, + "probability": 0.9519 + }, + { + "start": 17714.26, + "end": 17715.66, + "probability": 0.7838 + }, + { + "start": 17716.08, + "end": 17717.42, + "probability": 0.9489 + }, + { + "start": 17718.44, + "end": 17720.82, + "probability": 0.999 + }, + { + "start": 17721.62, + "end": 17724.48, + "probability": 0.9668 + }, + { + "start": 17725.82, + "end": 17728.1, + "probability": 0.9337 + }, + { + "start": 17729.34, + "end": 17730.0, + "probability": 0.4537 + }, + { + "start": 17730.88, + "end": 17734.81, + "probability": 0.8329 + }, + { + "start": 17735.5, + "end": 17736.1, + "probability": 0.752 + }, + { + "start": 17737.3, + "end": 17738.24, + "probability": 0.246 + }, + { + "start": 17739.9, + "end": 17740.76, + "probability": 0.6982 + }, + { + "start": 17740.76, + "end": 17741.38, + "probability": 0.5931 + }, + { + "start": 17742.2, + "end": 17745.26, + "probability": 0.8956 + }, + { + "start": 17745.3, + "end": 17745.32, + "probability": 0.2992 + }, + { + "start": 17745.36, + "end": 17747.11, + "probability": 0.7826 + }, + { + "start": 17747.34, + "end": 17747.5, + "probability": 0.9039 + }, + { + "start": 17747.98, + "end": 17750.12, + "probability": 0.5644 + }, + { + "start": 17750.46, + "end": 17751.22, + "probability": 0.7367 + }, + { + "start": 17751.4, + "end": 17756.82, + "probability": 0.8596 + }, + { + "start": 17757.18, + "end": 17757.22, + "probability": 0.5944 + }, + { + "start": 17757.22, + "end": 17758.46, + "probability": 0.6001 + }, + { + "start": 17759.26, + "end": 17760.68, + "probability": 0.7061 + }, + { + "start": 17761.9, + "end": 17762.96, + "probability": 0.9025 + }, + { + "start": 17763.06, + "end": 17764.96, + "probability": 0.8881 + }, + { + "start": 17764.96, + "end": 17767.6, + "probability": 0.9539 + }, + { + "start": 17768.32, + "end": 17771.08, + "probability": 0.9912 + }, + { + "start": 17771.96, + "end": 17773.04, + "probability": 0.9495 + }, + { + "start": 17773.28, + "end": 17776.2, + "probability": 0.9824 + }, + { + "start": 17777.1, + "end": 17777.94, + "probability": 0.9042 + }, + { + "start": 17778.12, + "end": 17778.86, + "probability": 0.9505 + }, + { + "start": 17778.94, + "end": 17780.0, + "probability": 0.9258 + }, + { + "start": 17780.6, + "end": 17782.18, + "probability": 0.9683 + }, + { + "start": 17782.42, + "end": 17783.32, + "probability": 0.877 + }, + { + "start": 17784.02, + "end": 17786.06, + "probability": 0.943 + }, + { + "start": 17786.62, + "end": 17787.82, + "probability": 0.9053 + }, + { + "start": 17787.88, + "end": 17788.92, + "probability": 0.6672 + }, + { + "start": 17789.0, + "end": 17792.1, + "probability": 0.6008 + }, + { + "start": 17792.2, + "end": 17792.2, + "probability": 0.3631 + }, + { + "start": 17792.2, + "end": 17792.48, + "probability": 0.2356 + }, + { + "start": 17792.48, + "end": 17792.48, + "probability": 0.3066 + }, + { + "start": 17792.62, + "end": 17795.04, + "probability": 0.9053 + }, + { + "start": 17795.08, + "end": 17795.3, + "probability": 0.8167 + }, + { + "start": 17795.48, + "end": 17797.08, + "probability": 0.891 + }, + { + "start": 17797.86, + "end": 17797.86, + "probability": 0.1827 + }, + { + "start": 17797.86, + "end": 17799.58, + "probability": 0.6881 + }, + { + "start": 17799.58, + "end": 17801.2, + "probability": 0.975 + }, + { + "start": 17801.66, + "end": 17803.22, + "probability": 0.93 + }, + { + "start": 17803.28, + "end": 17803.46, + "probability": 0.5399 + }, + { + "start": 17803.56, + "end": 17806.12, + "probability": 0.8948 + }, + { + "start": 17806.64, + "end": 17809.18, + "probability": 0.9825 + }, + { + "start": 17809.9, + "end": 17813.04, + "probability": 0.8378 + }, + { + "start": 17813.14, + "end": 17813.4, + "probability": 0.7626 + }, + { + "start": 17813.6, + "end": 17813.6, + "probability": 0.5997 + }, + { + "start": 17813.74, + "end": 17815.04, + "probability": 0.9157 + }, + { + "start": 17815.58, + "end": 17816.4, + "probability": 0.6931 + }, + { + "start": 17817.38, + "end": 17818.38, + "probability": 0.9375 + }, + { + "start": 17818.92, + "end": 17820.3, + "probability": 0.4893 + }, + { + "start": 17822.5, + "end": 17825.92, + "probability": 0.8598 + }, + { + "start": 17834.42, + "end": 17837.26, + "probability": 0.8675 + }, + { + "start": 17838.6, + "end": 17838.9, + "probability": 0.5282 + }, + { + "start": 17842.68, + "end": 17843.86, + "probability": 0.5826 + }, + { + "start": 17844.5, + "end": 17845.96, + "probability": 0.8033 + }, + { + "start": 17846.48, + "end": 17848.0, + "probability": 0.8265 + }, + { + "start": 17851.94, + "end": 17853.42, + "probability": 0.7251 + }, + { + "start": 17853.42, + "end": 17854.72, + "probability": 0.7453 + }, + { + "start": 17856.62, + "end": 17858.88, + "probability": 0.9697 + }, + { + "start": 17860.84, + "end": 17863.56, + "probability": 0.9985 + }, + { + "start": 17864.46, + "end": 17865.26, + "probability": 0.9971 + }, + { + "start": 17866.56, + "end": 17871.46, + "probability": 0.994 + }, + { + "start": 17871.98, + "end": 17873.14, + "probability": 0.9998 + }, + { + "start": 17874.36, + "end": 17875.36, + "probability": 0.8986 + }, + { + "start": 17876.0, + "end": 17877.26, + "probability": 0.604 + }, + { + "start": 17877.86, + "end": 17879.05, + "probability": 0.7118 + }, + { + "start": 17879.52, + "end": 17880.52, + "probability": 0.6897 + }, + { + "start": 17881.44, + "end": 17883.56, + "probability": 0.7641 + }, + { + "start": 17884.34, + "end": 17885.68, + "probability": 0.8265 + }, + { + "start": 17887.0, + "end": 17887.94, + "probability": 0.9293 + }, + { + "start": 17888.98, + "end": 17892.04, + "probability": 0.9271 + }, + { + "start": 17894.68, + "end": 17895.74, + "probability": 0.9209 + }, + { + "start": 17896.32, + "end": 17899.68, + "probability": 0.9504 + }, + { + "start": 17901.38, + "end": 17902.5, + "probability": 0.904 + }, + { + "start": 17903.04, + "end": 17904.36, + "probability": 0.9492 + }, + { + "start": 17907.02, + "end": 17909.78, + "probability": 0.9133 + }, + { + "start": 17910.6, + "end": 17911.82, + "probability": 0.9757 + }, + { + "start": 17912.82, + "end": 17914.04, + "probability": 0.7947 + }, + { + "start": 17914.84, + "end": 17915.64, + "probability": 0.7116 + }, + { + "start": 17917.22, + "end": 17920.51, + "probability": 0.8932 + }, + { + "start": 17920.66, + "end": 17921.32, + "probability": 0.778 + }, + { + "start": 17921.94, + "end": 17923.86, + "probability": 0.7243 + }, + { + "start": 17924.78, + "end": 17928.96, + "probability": 0.9845 + }, + { + "start": 17929.72, + "end": 17930.72, + "probability": 0.9799 + }, + { + "start": 17931.74, + "end": 17933.96, + "probability": 0.9213 + }, + { + "start": 17934.78, + "end": 17939.08, + "probability": 0.9707 + }, + { + "start": 17939.6, + "end": 17941.88, + "probability": 0.9905 + }, + { + "start": 17942.66, + "end": 17945.52, + "probability": 0.8754 + }, + { + "start": 17946.12, + "end": 17947.56, + "probability": 0.5384 + }, + { + "start": 17948.88, + "end": 17950.12, + "probability": 0.9661 + }, + { + "start": 17950.2, + "end": 17951.5, + "probability": 0.77 + }, + { + "start": 17951.54, + "end": 17952.87, + "probability": 0.9858 + }, + { + "start": 17953.04, + "end": 17956.4, + "probability": 0.9856 + }, + { + "start": 17956.54, + "end": 17961.32, + "probability": 0.9439 + }, + { + "start": 17961.52, + "end": 17963.18, + "probability": 0.7659 + }, + { + "start": 17963.58, + "end": 17965.8, + "probability": 0.938 + }, + { + "start": 17966.94, + "end": 17969.02, + "probability": 0.6875 + }, + { + "start": 17969.16, + "end": 17969.96, + "probability": 0.7252 + }, + { + "start": 17971.64, + "end": 17972.18, + "probability": 0.9163 + }, + { + "start": 17972.54, + "end": 17973.7, + "probability": 0.5812 + }, + { + "start": 17973.74, + "end": 17977.22, + "probability": 0.9218 + }, + { + "start": 17977.56, + "end": 17977.98, + "probability": 0.7096 + }, + { + "start": 17978.04, + "end": 17979.42, + "probability": 0.7931 + }, + { + "start": 17980.08, + "end": 17982.32, + "probability": 0.8658 + }, + { + "start": 17983.38, + "end": 17984.14, + "probability": 0.7974 + }, + { + "start": 17984.34, + "end": 17985.78, + "probability": 0.6806 + }, + { + "start": 17985.84, + "end": 17988.26, + "probability": 0.3926 + }, + { + "start": 17988.28, + "end": 17988.86, + "probability": 0.8818 + }, + { + "start": 17989.16, + "end": 17991.66, + "probability": 0.9838 + }, + { + "start": 17992.28, + "end": 17995.16, + "probability": 0.5034 + }, + { + "start": 17995.46, + "end": 17996.84, + "probability": 0.8681 + }, + { + "start": 17998.06, + "end": 17999.08, + "probability": 0.8586 + }, + { + "start": 17999.24, + "end": 18002.82, + "probability": 0.9634 + }, + { + "start": 18002.96, + "end": 18003.78, + "probability": 0.7191 + }, + { + "start": 18003.8, + "end": 18004.14, + "probability": 0.3356 + }, + { + "start": 18004.16, + "end": 18005.12, + "probability": 0.2641 + }, + { + "start": 18005.24, + "end": 18005.46, + "probability": 0.4172 + }, + { + "start": 18006.6, + "end": 18008.88, + "probability": 0.9573 + }, + { + "start": 18010.32, + "end": 18011.68, + "probability": 0.7944 + }, + { + "start": 18012.34, + "end": 18013.86, + "probability": 0.9961 + }, + { + "start": 18014.22, + "end": 18015.68, + "probability": 0.8436 + }, + { + "start": 18016.5, + "end": 18018.64, + "probability": 0.9177 + }, + { + "start": 18018.88, + "end": 18022.34, + "probability": 0.9111 + }, + { + "start": 18022.92, + "end": 18023.04, + "probability": 0.3659 + }, + { + "start": 18023.04, + "end": 18024.31, + "probability": 0.7809 + }, + { + "start": 18025.0, + "end": 18026.32, + "probability": 0.9668 + }, + { + "start": 18026.98, + "end": 18027.84, + "probability": 0.8425 + }, + { + "start": 18028.22, + "end": 18033.03, + "probability": 0.9835 + }, + { + "start": 18034.58, + "end": 18034.8, + "probability": 0.4431 + }, + { + "start": 18035.5, + "end": 18037.94, + "probability": 0.9459 + }, + { + "start": 18037.94, + "end": 18042.7, + "probability": 0.9897 + }, + { + "start": 18042.76, + "end": 18044.4, + "probability": 0.7531 + }, + { + "start": 18044.82, + "end": 18045.86, + "probability": 0.8312 + }, + { + "start": 18046.16, + "end": 18050.54, + "probability": 0.9856 + }, + { + "start": 18050.96, + "end": 18052.02, + "probability": 0.8772 + }, + { + "start": 18052.6, + "end": 18053.74, + "probability": 0.9321 + }, + { + "start": 18054.22, + "end": 18054.22, + "probability": 0.3398 + }, + { + "start": 18054.22, + "end": 18055.18, + "probability": 0.5922 + }, + { + "start": 18055.49, + "end": 18058.08, + "probability": 0.9919 + }, + { + "start": 18058.1, + "end": 18059.74, + "probability": 0.9284 + }, + { + "start": 18059.98, + "end": 18060.54, + "probability": 0.4202 + }, + { + "start": 18060.98, + "end": 18061.36, + "probability": 0.9005 + }, + { + "start": 18061.82, + "end": 18065.1, + "probability": 0.9486 + }, + { + "start": 18065.3, + "end": 18067.96, + "probability": 0.9829 + }, + { + "start": 18068.08, + "end": 18068.5, + "probability": 0.7231 + }, + { + "start": 18068.82, + "end": 18068.82, + "probability": 0.6056 + }, + { + "start": 18069.06, + "end": 18070.68, + "probability": 0.9558 + }, + { + "start": 18070.8, + "end": 18071.58, + "probability": 0.4731 + }, + { + "start": 18071.88, + "end": 18073.76, + "probability": 0.8739 + }, + { + "start": 18080.24, + "end": 18080.88, + "probability": 0.6029 + }, + { + "start": 18081.92, + "end": 18083.32, + "probability": 0.8096 + }, + { + "start": 18094.0, + "end": 18095.04, + "probability": 0.5977 + }, + { + "start": 18095.72, + "end": 18096.54, + "probability": 0.8791 + }, + { + "start": 18097.12, + "end": 18097.68, + "probability": 0.5282 + }, + { + "start": 18098.96, + "end": 18102.36, + "probability": 0.9934 + }, + { + "start": 18103.32, + "end": 18105.7, + "probability": 0.9937 + }, + { + "start": 18106.58, + "end": 18111.32, + "probability": 0.9911 + }, + { + "start": 18112.5, + "end": 18114.6, + "probability": 0.8966 + }, + { + "start": 18115.78, + "end": 18117.66, + "probability": 0.9366 + }, + { + "start": 18118.46, + "end": 18122.78, + "probability": 0.9931 + }, + { + "start": 18122.78, + "end": 18127.56, + "probability": 0.9983 + }, + { + "start": 18128.22, + "end": 18131.16, + "probability": 0.9995 + }, + { + "start": 18131.68, + "end": 18132.38, + "probability": 0.9736 + }, + { + "start": 18133.02, + "end": 18139.8, + "probability": 0.9975 + }, + { + "start": 18141.16, + "end": 18145.7, + "probability": 0.9922 + }, + { + "start": 18146.8, + "end": 18148.14, + "probability": 0.8883 + }, + { + "start": 18148.78, + "end": 18150.34, + "probability": 0.9884 + }, + { + "start": 18150.94, + "end": 18153.62, + "probability": 0.956 + }, + { + "start": 18154.24, + "end": 18157.58, + "probability": 0.9895 + }, + { + "start": 18158.14, + "end": 18163.04, + "probability": 0.9932 + }, + { + "start": 18163.78, + "end": 18166.44, + "probability": 0.9982 + }, + { + "start": 18166.44, + "end": 18169.28, + "probability": 0.9976 + }, + { + "start": 18170.08, + "end": 18172.76, + "probability": 0.9119 + }, + { + "start": 18173.28, + "end": 18176.94, + "probability": 0.9687 + }, + { + "start": 18177.52, + "end": 18181.08, + "probability": 0.9888 + }, + { + "start": 18181.08, + "end": 18184.42, + "probability": 0.8058 + }, + { + "start": 18185.0, + "end": 18188.12, + "probability": 0.9856 + }, + { + "start": 18189.0, + "end": 18192.03, + "probability": 0.8989 + }, + { + "start": 18192.2, + "end": 18192.8, + "probability": 0.7829 + }, + { + "start": 18193.12, + "end": 18193.62, + "probability": 0.7883 + }, + { + "start": 18194.56, + "end": 18199.1, + "probability": 0.9973 + }, + { + "start": 18199.6, + "end": 18204.4, + "probability": 0.968 + }, + { + "start": 18205.52, + "end": 18206.16, + "probability": 0.5855 + }, + { + "start": 18206.62, + "end": 18207.52, + "probability": 0.8778 + }, + { + "start": 18208.06, + "end": 18211.22, + "probability": 0.9873 + }, + { + "start": 18211.76, + "end": 18217.12, + "probability": 0.993 + }, + { + "start": 18217.74, + "end": 18220.04, + "probability": 0.972 + }, + { + "start": 18221.12, + "end": 18221.62, + "probability": 0.9296 + }, + { + "start": 18222.32, + "end": 18225.28, + "probability": 0.9852 + }, + { + "start": 18225.28, + "end": 18229.98, + "probability": 0.996 + }, + { + "start": 18230.88, + "end": 18233.82, + "probability": 0.9144 + }, + { + "start": 18234.54, + "end": 18240.84, + "probability": 0.9888 + }, + { + "start": 18241.44, + "end": 18242.96, + "probability": 0.9073 + }, + { + "start": 18243.46, + "end": 18246.22, + "probability": 0.9942 + }, + { + "start": 18246.6, + "end": 18249.82, + "probability": 0.7546 + }, + { + "start": 18250.38, + "end": 18256.0, + "probability": 0.996 + }, + { + "start": 18256.88, + "end": 18259.14, + "probability": 0.9666 + }, + { + "start": 18259.66, + "end": 18265.26, + "probability": 0.9972 + }, + { + "start": 18265.74, + "end": 18266.3, + "probability": 0.5034 + }, + { + "start": 18266.34, + "end": 18268.68, + "probability": 0.9022 + }, + { + "start": 18268.72, + "end": 18269.9, + "probability": 0.937 + }, + { + "start": 18270.58, + "end": 18270.66, + "probability": 0.4566 + }, + { + "start": 18270.66, + "end": 18270.66, + "probability": 0.2216 + }, + { + "start": 18270.66, + "end": 18272.72, + "probability": 0.9139 + }, + { + "start": 18273.16, + "end": 18276.38, + "probability": 0.9809 + }, + { + "start": 18276.84, + "end": 18279.0, + "probability": 0.6241 + }, + { + "start": 18279.22, + "end": 18279.48, + "probability": 0.6633 + }, + { + "start": 18279.86, + "end": 18281.58, + "probability": 0.8 + }, + { + "start": 18282.4, + "end": 18284.48, + "probability": 0.7271 + }, + { + "start": 18285.68, + "end": 18286.42, + "probability": 0.5277 + }, + { + "start": 18287.02, + "end": 18288.28, + "probability": 0.9844 + }, + { + "start": 18289.32, + "end": 18290.36, + "probability": 0.461 + }, + { + "start": 18291.44, + "end": 18291.86, + "probability": 0.0164 + }, + { + "start": 18308.34, + "end": 18310.16, + "probability": 0.5295 + }, + { + "start": 18310.16, + "end": 18312.48, + "probability": 0.8022 + }, + { + "start": 18313.64, + "end": 18316.84, + "probability": 0.9536 + }, + { + "start": 18316.84, + "end": 18322.34, + "probability": 0.9952 + }, + { + "start": 18322.5, + "end": 18323.22, + "probability": 0.8234 + }, + { + "start": 18324.32, + "end": 18325.04, + "probability": 0.7263 + }, + { + "start": 18325.14, + "end": 18326.42, + "probability": 0.8039 + }, + { + "start": 18326.72, + "end": 18328.64, + "probability": 0.9109 + }, + { + "start": 18329.56, + "end": 18330.84, + "probability": 0.9917 + }, + { + "start": 18331.7, + "end": 18337.08, + "probability": 0.973 + }, + { + "start": 18338.02, + "end": 18340.54, + "probability": 0.967 + }, + { + "start": 18340.7, + "end": 18342.14, + "probability": 0.9991 + }, + { + "start": 18342.96, + "end": 18345.56, + "probability": 0.9955 + }, + { + "start": 18346.64, + "end": 18347.86, + "probability": 0.999 + }, + { + "start": 18348.44, + "end": 18353.14, + "probability": 0.9563 + }, + { + "start": 18353.96, + "end": 18356.06, + "probability": 0.9884 + }, + { + "start": 18357.4, + "end": 18359.22, + "probability": 0.9951 + }, + { + "start": 18359.3, + "end": 18360.2, + "probability": 0.8572 + }, + { + "start": 18360.26, + "end": 18361.84, + "probability": 0.6918 + }, + { + "start": 18362.38, + "end": 18363.28, + "probability": 0.9275 + }, + { + "start": 18364.3, + "end": 18365.51, + "probability": 0.944 + }, + { + "start": 18366.7, + "end": 18367.92, + "probability": 0.9534 + }, + { + "start": 18368.62, + "end": 18371.62, + "probability": 0.929 + }, + { + "start": 18372.34, + "end": 18375.08, + "probability": 0.991 + }, + { + "start": 18375.24, + "end": 18376.9, + "probability": 0.7405 + }, + { + "start": 18376.9, + "end": 18377.92, + "probability": 0.9399 + }, + { + "start": 18378.02, + "end": 18379.46, + "probability": 0.9778 + }, + { + "start": 18380.14, + "end": 18385.0, + "probability": 0.9438 + }, + { + "start": 18385.84, + "end": 18387.8, + "probability": 0.9789 + }, + { + "start": 18388.58, + "end": 18393.4, + "probability": 0.946 + }, + { + "start": 18394.51, + "end": 18395.96, + "probability": 0.5303 + }, + { + "start": 18396.04, + "end": 18396.62, + "probability": 0.9457 + }, + { + "start": 18397.06, + "end": 18399.96, + "probability": 0.8959 + }, + { + "start": 18400.76, + "end": 18402.12, + "probability": 0.9948 + }, + { + "start": 18402.72, + "end": 18404.86, + "probability": 0.9978 + }, + { + "start": 18404.98, + "end": 18405.8, + "probability": 0.8689 + }, + { + "start": 18405.96, + "end": 18406.48, + "probability": 0.841 + }, + { + "start": 18407.66, + "end": 18407.86, + "probability": 0.7212 + }, + { + "start": 18408.54, + "end": 18409.98, + "probability": 0.969 + }, + { + "start": 18411.1, + "end": 18415.38, + "probability": 0.9951 + }, + { + "start": 18415.72, + "end": 18417.44, + "probability": 0.9591 + }, + { + "start": 18418.8, + "end": 18419.22, + "probability": 0.7457 + }, + { + "start": 18421.42, + "end": 18421.48, + "probability": 0.8084 + }, + { + "start": 18421.48, + "end": 18423.26, + "probability": 0.6839 + }, + { + "start": 18423.4, + "end": 18423.78, + "probability": 0.729 + }, + { + "start": 18424.12, + "end": 18424.5, + "probability": 0.8343 + }, + { + "start": 18425.32, + "end": 18427.18, + "probability": 0.9567 + }, + { + "start": 18427.28, + "end": 18428.74, + "probability": 0.7174 + }, + { + "start": 18429.6, + "end": 18433.44, + "probability": 0.9979 + }, + { + "start": 18434.78, + "end": 18437.58, + "probability": 0.9375 + }, + { + "start": 18438.62, + "end": 18439.64, + "probability": 0.861 + }, + { + "start": 18440.26, + "end": 18442.78, + "probability": 0.9219 + }, + { + "start": 18443.92, + "end": 18444.5, + "probability": 0.5001 + }, + { + "start": 18445.24, + "end": 18449.14, + "probability": 0.8495 + }, + { + "start": 18450.06, + "end": 18450.76, + "probability": 0.6996 + }, + { + "start": 18451.28, + "end": 18451.86, + "probability": 0.57 + }, + { + "start": 18452.32, + "end": 18453.56, + "probability": 0.999 + }, + { + "start": 18453.66, + "end": 18456.34, + "probability": 0.9977 + }, + { + "start": 18456.84, + "end": 18461.84, + "probability": 0.9945 + }, + { + "start": 18462.52, + "end": 18463.58, + "probability": 0.9644 + }, + { + "start": 18463.7, + "end": 18464.56, + "probability": 0.7646 + }, + { + "start": 18464.7, + "end": 18468.18, + "probability": 0.9832 + }, + { + "start": 18468.36, + "end": 18471.58, + "probability": 0.8076 + }, + { + "start": 18472.84, + "end": 18473.0, + "probability": 0.126 + }, + { + "start": 18474.36, + "end": 18479.16, + "probability": 0.9704 + }, + { + "start": 18479.34, + "end": 18480.34, + "probability": 0.6496 + }, + { + "start": 18480.88, + "end": 18481.42, + "probability": 0.7745 + }, + { + "start": 18482.14, + "end": 18488.36, + "probability": 0.9983 + }, + { + "start": 18488.52, + "end": 18490.1, + "probability": 0.814 + }, + { + "start": 18490.44, + "end": 18490.66, + "probability": 0.7112 + }, + { + "start": 18490.84, + "end": 18492.42, + "probability": 0.7862 + }, + { + "start": 18492.74, + "end": 18496.52, + "probability": 0.9824 + }, + { + "start": 18497.36, + "end": 18498.4, + "probability": 0.6791 + }, + { + "start": 18498.52, + "end": 18499.8, + "probability": 0.9771 + }, + { + "start": 18499.98, + "end": 18500.56, + "probability": 0.7469 + }, + { + "start": 18500.62, + "end": 18501.1, + "probability": 0.9206 + }, + { + "start": 18501.18, + "end": 18503.46, + "probability": 0.9958 + }, + { + "start": 18505.18, + "end": 18509.44, + "probability": 0.9982 + }, + { + "start": 18511.14, + "end": 18513.54, + "probability": 0.9901 + }, + { + "start": 18514.48, + "end": 18517.1, + "probability": 0.9927 + }, + { + "start": 18517.62, + "end": 18519.7, + "probability": 0.9717 + }, + { + "start": 18519.8, + "end": 18520.68, + "probability": 0.8534 + }, + { + "start": 18521.08, + "end": 18521.94, + "probability": 0.7211 + }, + { + "start": 18522.3, + "end": 18526.12, + "probability": 0.9953 + }, + { + "start": 18526.22, + "end": 18527.7, + "probability": 0.7799 + }, + { + "start": 18527.96, + "end": 18528.98, + "probability": 0.965 + }, + { + "start": 18529.04, + "end": 18529.36, + "probability": 0.6866 + }, + { + "start": 18529.36, + "end": 18529.48, + "probability": 0.634 + }, + { + "start": 18529.96, + "end": 18533.04, + "probability": 0.7728 + }, + { + "start": 18534.22, + "end": 18535.26, + "probability": 0.8838 + }, + { + "start": 18535.58, + "end": 18536.72, + "probability": 0.5989 + }, + { + "start": 18536.88, + "end": 18537.64, + "probability": 0.7158 + }, + { + "start": 18538.48, + "end": 18541.74, + "probability": 0.7946 + }, + { + "start": 18542.26, + "end": 18545.48, + "probability": 0.9813 + }, + { + "start": 18547.86, + "end": 18548.72, + "probability": 0.9561 + }, + { + "start": 18549.68, + "end": 18552.72, + "probability": 0.7017 + }, + { + "start": 18554.14, + "end": 18554.38, + "probability": 0.4718 + }, + { + "start": 18554.62, + "end": 18559.16, + "probability": 0.9794 + }, + { + "start": 18559.52, + "end": 18560.04, + "probability": 0.7214 + }, + { + "start": 18560.7, + "end": 18562.23, + "probability": 0.8203 + }, + { + "start": 18562.4, + "end": 18563.64, + "probability": 0.9905 + }, + { + "start": 18564.82, + "end": 18565.52, + "probability": 0.9518 + }, + { + "start": 18567.32, + "end": 18570.14, + "probability": 0.9622 + }, + { + "start": 18570.56, + "end": 18571.76, + "probability": 0.628 + }, + { + "start": 18573.06, + "end": 18573.34, + "probability": 0.049 + }, + { + "start": 18573.42, + "end": 18573.88, + "probability": 0.7196 + }, + { + "start": 18573.96, + "end": 18575.12, + "probability": 0.9754 + }, + { + "start": 18576.2, + "end": 18578.48, + "probability": 0.9602 + }, + { + "start": 18578.88, + "end": 18580.36, + "probability": 0.9907 + }, + { + "start": 18582.12, + "end": 18584.08, + "probability": 0.9201 + }, + { + "start": 18584.76, + "end": 18585.54, + "probability": 0.7155 + }, + { + "start": 18586.08, + "end": 18586.58, + "probability": 0.6022 + }, + { + "start": 18586.82, + "end": 18588.34, + "probability": 0.9661 + }, + { + "start": 18588.88, + "end": 18589.36, + "probability": 0.6093 + }, + { + "start": 18591.98, + "end": 18592.7, + "probability": 0.8545 + }, + { + "start": 18594.3, + "end": 18596.14, + "probability": 0.6559 + }, + { + "start": 18597.14, + "end": 18597.36, + "probability": 0.5674 + }, + { + "start": 18597.5, + "end": 18602.94, + "probability": 0.9939 + }, + { + "start": 18603.6, + "end": 18607.04, + "probability": 0.9771 + }, + { + "start": 18607.68, + "end": 18609.22, + "probability": 0.8753 + }, + { + "start": 18609.92, + "end": 18611.62, + "probability": 0.9944 + }, + { + "start": 18611.7, + "end": 18617.34, + "probability": 0.9961 + }, + { + "start": 18617.72, + "end": 18618.84, + "probability": 0.6874 + }, + { + "start": 18619.36, + "end": 18620.92, + "probability": 0.4912 + }, + { + "start": 18621.02, + "end": 18627.2, + "probability": 0.9595 + }, + { + "start": 18628.42, + "end": 18635.14, + "probability": 0.8228 + }, + { + "start": 18635.16, + "end": 18636.64, + "probability": 0.7685 + }, + { + "start": 18637.42, + "end": 18640.98, + "probability": 0.9937 + }, + { + "start": 18641.38, + "end": 18646.88, + "probability": 0.9949 + }, + { + "start": 18647.2, + "end": 18647.4, + "probability": 0.1342 + }, + { + "start": 18647.72, + "end": 18649.06, + "probability": 0.8004 + }, + { + "start": 18649.64, + "end": 18654.92, + "probability": 0.9811 + }, + { + "start": 18655.86, + "end": 18659.24, + "probability": 0.8643 + }, + { + "start": 18660.0, + "end": 18664.75, + "probability": 0.9706 + }, + { + "start": 18665.38, + "end": 18667.96, + "probability": 0.6062 + }, + { + "start": 18668.14, + "end": 18670.54, + "probability": 0.8075 + }, + { + "start": 18671.28, + "end": 18672.62, + "probability": 0.6612 + }, + { + "start": 18673.7, + "end": 18677.48, + "probability": 0.8936 + }, + { + "start": 18678.2, + "end": 18680.08, + "probability": 0.9628 + }, + { + "start": 18680.14, + "end": 18681.64, + "probability": 0.9971 + }, + { + "start": 18682.22, + "end": 18683.38, + "probability": 0.8429 + }, + { + "start": 18683.82, + "end": 18686.08, + "probability": 0.8843 + }, + { + "start": 18686.24, + "end": 18687.21, + "probability": 0.8942 + }, + { + "start": 18687.5, + "end": 18690.17, + "probability": 0.9864 + }, + { + "start": 18690.92, + "end": 18692.11, + "probability": 0.9528 + }, + { + "start": 18693.2, + "end": 18694.62, + "probability": 0.6911 + }, + { + "start": 18695.56, + "end": 18696.52, + "probability": 0.9664 + }, + { + "start": 18696.82, + "end": 18702.58, + "probability": 0.9927 + }, + { + "start": 18702.76, + "end": 18703.42, + "probability": 0.6848 + }, + { + "start": 18704.14, + "end": 18706.28, + "probability": 0.993 + }, + { + "start": 18706.52, + "end": 18707.7, + "probability": 0.981 + }, + { + "start": 18708.36, + "end": 18708.78, + "probability": 0.6876 + }, + { + "start": 18708.86, + "end": 18713.58, + "probability": 0.9971 + }, + { + "start": 18713.72, + "end": 18714.3, + "probability": 0.8995 + }, + { + "start": 18714.36, + "end": 18715.54, + "probability": 0.7998 + }, + { + "start": 18715.96, + "end": 18716.88, + "probability": 0.8281 + }, + { + "start": 18717.24, + "end": 18721.42, + "probability": 0.8523 + }, + { + "start": 18721.92, + "end": 18727.5, + "probability": 0.8954 + }, + { + "start": 18728.1, + "end": 18729.32, + "probability": 0.9545 + }, + { + "start": 18729.74, + "end": 18731.28, + "probability": 0.9889 + }, + { + "start": 18731.34, + "end": 18732.24, + "probability": 0.7768 + }, + { + "start": 18733.14, + "end": 18735.18, + "probability": 0.963 + }, + { + "start": 18735.32, + "end": 18740.72, + "probability": 0.9868 + }, + { + "start": 18741.16, + "end": 18742.36, + "probability": 0.913 + }, + { + "start": 18742.46, + "end": 18743.68, + "probability": 0.9017 + }, + { + "start": 18744.14, + "end": 18745.88, + "probability": 0.883 + }, + { + "start": 18745.98, + "end": 18746.58, + "probability": 0.8134 + }, + { + "start": 18746.7, + "end": 18749.96, + "probability": 0.9324 + }, + { + "start": 18750.02, + "end": 18755.98, + "probability": 0.9724 + }, + { + "start": 18756.86, + "end": 18757.84, + "probability": 0.7173 + }, + { + "start": 18758.36, + "end": 18759.4, + "probability": 0.6445 + }, + { + "start": 18759.86, + "end": 18760.68, + "probability": 0.5001 + }, + { + "start": 18760.76, + "end": 18762.54, + "probability": 0.9564 + }, + { + "start": 18762.9, + "end": 18765.94, + "probability": 0.9896 + }, + { + "start": 18765.94, + "end": 18769.02, + "probability": 0.7756 + }, + { + "start": 18769.7, + "end": 18775.5, + "probability": 0.8041 + }, + { + "start": 18776.06, + "end": 18780.18, + "probability": 0.9527 + }, + { + "start": 18780.18, + "end": 18784.02, + "probability": 0.9976 + }, + { + "start": 18784.44, + "end": 18785.2, + "probability": 0.5974 + }, + { + "start": 18785.74, + "end": 18786.3, + "probability": 0.8345 + }, + { + "start": 18786.72, + "end": 18788.24, + "probability": 0.9917 + }, + { + "start": 18788.46, + "end": 18789.14, + "probability": 0.9365 + }, + { + "start": 18790.02, + "end": 18793.04, + "probability": 0.9854 + }, + { + "start": 18793.04, + "end": 18793.06, + "probability": 0.4365 + }, + { + "start": 18793.06, + "end": 18793.98, + "probability": 0.1554 + }, + { + "start": 18793.98, + "end": 18794.24, + "probability": 0.6715 + }, + { + "start": 18794.82, + "end": 18799.18, + "probability": 0.9962 + }, + { + "start": 18799.6, + "end": 18800.84, + "probability": 0.9692 + }, + { + "start": 18800.92, + "end": 18801.74, + "probability": 0.5875 + }, + { + "start": 18802.08, + "end": 18804.5, + "probability": 0.9978 + }, + { + "start": 18804.66, + "end": 18804.88, + "probability": 0.6598 + }, + { + "start": 18805.06, + "end": 18808.32, + "probability": 0.9946 + }, + { + "start": 18808.4, + "end": 18808.84, + "probability": 0.7218 + }, + { + "start": 18808.88, + "end": 18813.22, + "probability": 0.9986 + }, + { + "start": 18813.36, + "end": 18816.32, + "probability": 0.928 + }, + { + "start": 18816.48, + "end": 18817.28, + "probability": 0.8533 + }, + { + "start": 18817.66, + "end": 18817.66, + "probability": 0.5122 + }, + { + "start": 18817.78, + "end": 18822.9, + "probability": 0.9914 + }, + { + "start": 18823.0, + "end": 18825.26, + "probability": 0.8028 + }, + { + "start": 18825.54, + "end": 18825.54, + "probability": 0.3772 + }, + { + "start": 18825.8, + "end": 18825.8, + "probability": 0.2359 + }, + { + "start": 18825.8, + "end": 18825.8, + "probability": 0.4292 + }, + { + "start": 18825.8, + "end": 18827.02, + "probability": 0.9875 + }, + { + "start": 18827.7, + "end": 18829.1, + "probability": 0.8872 + }, + { + "start": 18829.14, + "end": 18829.46, + "probability": 0.8778 + }, + { + "start": 18829.5, + "end": 18829.8, + "probability": 0.4708 + }, + { + "start": 18830.3, + "end": 18830.86, + "probability": 0.6531 + }, + { + "start": 18830.9, + "end": 18832.0, + "probability": 0.9252 + }, + { + "start": 18852.67, + "end": 18854.92, + "probability": 0.8577 + }, + { + "start": 18861.72, + "end": 18862.16, + "probability": 0.3897 + }, + { + "start": 18862.16, + "end": 18863.42, + "probability": 0.6432 + }, + { + "start": 18863.54, + "end": 18867.16, + "probability": 0.8929 + }, + { + "start": 18867.32, + "end": 18867.52, + "probability": 0.8413 + }, + { + "start": 18870.38, + "end": 18871.5, + "probability": 0.6427 + }, + { + "start": 18872.08, + "end": 18874.68, + "probability": 0.8329 + }, + { + "start": 18875.0, + "end": 18875.5, + "probability": 0.7505 + }, + { + "start": 18876.76, + "end": 18879.14, + "probability": 0.8882 + }, + { + "start": 18879.96, + "end": 18880.95, + "probability": 0.4786 + }, + { + "start": 18882.3, + "end": 18884.38, + "probability": 0.6393 + }, + { + "start": 18886.02, + "end": 18888.53, + "probability": 0.9346 + }, + { + "start": 18890.5, + "end": 18892.96, + "probability": 0.9087 + }, + { + "start": 18895.64, + "end": 18897.4, + "probability": 0.7067 + }, + { + "start": 18898.04, + "end": 18898.48, + "probability": 0.5165 + }, + { + "start": 18898.48, + "end": 18899.23, + "probability": 0.6502 + }, + { + "start": 18900.06, + "end": 18900.86, + "probability": 0.8937 + }, + { + "start": 18900.96, + "end": 18901.42, + "probability": 0.89 + }, + { + "start": 18901.76, + "end": 18903.36, + "probability": 0.9508 + }, + { + "start": 18903.42, + "end": 18903.92, + "probability": 0.7437 + }, + { + "start": 18904.46, + "end": 18905.34, + "probability": 0.8064 + }, + { + "start": 18906.0, + "end": 18906.78, + "probability": 0.8508 + }, + { + "start": 18908.92, + "end": 18909.02, + "probability": 0.0333 + }, + { + "start": 18909.02, + "end": 18909.51, + "probability": 0.2505 + }, + { + "start": 18909.68, + "end": 18914.52, + "probability": 0.7046 + }, + { + "start": 18915.16, + "end": 18915.96, + "probability": 0.7204 + }, + { + "start": 18916.5, + "end": 18917.28, + "probability": 0.7788 + }, + { + "start": 18917.36, + "end": 18917.5, + "probability": 0.5383 + }, + { + "start": 18918.41, + "end": 18920.62, + "probability": 0.9526 + }, + { + "start": 18922.0, + "end": 18922.72, + "probability": 0.4665 + }, + { + "start": 18923.94, + "end": 18926.84, + "probability": 0.6537 + }, + { + "start": 18928.46, + "end": 18928.9, + "probability": 0.7489 + }, + { + "start": 18930.52, + "end": 18931.22, + "probability": 0.9431 + }, + { + "start": 18933.14, + "end": 18937.42, + "probability": 0.9977 + }, + { + "start": 18938.94, + "end": 18939.58, + "probability": 0.7832 + }, + { + "start": 18942.34, + "end": 18946.24, + "probability": 0.7775 + }, + { + "start": 18948.08, + "end": 18953.05, + "probability": 0.9895 + }, + { + "start": 18954.42, + "end": 18955.12, + "probability": 0.9794 + }, + { + "start": 18956.14, + "end": 18957.28, + "probability": 0.5822 + }, + { + "start": 18958.52, + "end": 18959.24, + "probability": 0.5308 + }, + { + "start": 18959.94, + "end": 18961.66, + "probability": 0.782 + }, + { + "start": 18961.72, + "end": 18963.36, + "probability": 0.7081 + }, + { + "start": 18963.48, + "end": 18963.92, + "probability": 0.6881 + }, + { + "start": 18964.44, + "end": 18965.32, + "probability": 0.5813 + }, + { + "start": 18967.64, + "end": 18967.94, + "probability": 0.8952 + }, + { + "start": 18968.4, + "end": 18971.36, + "probability": 0.9431 + }, + { + "start": 18972.5, + "end": 18973.84, + "probability": 0.9659 + }, + { + "start": 18974.7, + "end": 18977.54, + "probability": 0.7177 + }, + { + "start": 18978.72, + "end": 18981.16, + "probability": 0.8819 + }, + { + "start": 18982.14, + "end": 18983.06, + "probability": 0.903 + }, + { + "start": 18984.66, + "end": 18986.48, + "probability": 0.9137 + }, + { + "start": 18988.72, + "end": 18992.04, + "probability": 0.9447 + }, + { + "start": 18993.14, + "end": 18994.1, + "probability": 0.9423 + }, + { + "start": 18994.68, + "end": 18997.26, + "probability": 0.7596 + }, + { + "start": 18998.66, + "end": 19000.62, + "probability": 0.4247 + }, + { + "start": 19001.66, + "end": 19007.08, + "probability": 0.9852 + }, + { + "start": 19007.1, + "end": 19008.48, + "probability": 0.8308 + }, + { + "start": 19009.6, + "end": 19009.9, + "probability": 0.4878 + }, + { + "start": 19010.06, + "end": 19010.68, + "probability": 0.7388 + }, + { + "start": 19010.74, + "end": 19020.22, + "probability": 0.9844 + }, + { + "start": 19022.14, + "end": 19022.86, + "probability": 0.5768 + }, + { + "start": 19024.06, + "end": 19025.22, + "probability": 0.574 + }, + { + "start": 19026.3, + "end": 19036.94, + "probability": 0.9282 + }, + { + "start": 19037.0, + "end": 19039.28, + "probability": 0.9312 + }, + { + "start": 19039.82, + "end": 19044.0, + "probability": 0.9886 + }, + { + "start": 19045.18, + "end": 19051.4, + "probability": 0.7766 + }, + { + "start": 19052.48, + "end": 19056.06, + "probability": 0.9976 + }, + { + "start": 19057.34, + "end": 19064.58, + "probability": 0.9723 + }, + { + "start": 19065.54, + "end": 19069.68, + "probability": 0.988 + }, + { + "start": 19069.8, + "end": 19072.68, + "probability": 0.9962 + }, + { + "start": 19073.46, + "end": 19076.7, + "probability": 0.9951 + }, + { + "start": 19077.38, + "end": 19081.48, + "probability": 0.9895 + }, + { + "start": 19081.98, + "end": 19083.52, + "probability": 0.7609 + }, + { + "start": 19084.04, + "end": 19086.16, + "probability": 0.6344 + }, + { + "start": 19086.74, + "end": 19087.68, + "probability": 0.6318 + }, + { + "start": 19087.82, + "end": 19091.0, + "probability": 0.703 + }, + { + "start": 19091.62, + "end": 19095.58, + "probability": 0.9239 + }, + { + "start": 19095.68, + "end": 19097.41, + "probability": 0.965 + }, + { + "start": 19097.54, + "end": 19097.84, + "probability": 0.0959 + }, + { + "start": 19098.24, + "end": 19099.5, + "probability": 0.8296 + }, + { + "start": 19099.62, + "end": 19100.44, + "probability": 0.7097 + }, + { + "start": 19100.86, + "end": 19101.58, + "probability": 0.5922 + }, + { + "start": 19101.8, + "end": 19105.66, + "probability": 0.9905 + }, + { + "start": 19106.32, + "end": 19106.98, + "probability": 0.8702 + }, + { + "start": 19107.08, + "end": 19107.88, + "probability": 0.89 + }, + { + "start": 19107.94, + "end": 19109.3, + "probability": 0.999 + }, + { + "start": 19109.72, + "end": 19113.28, + "probability": 0.9766 + }, + { + "start": 19113.82, + "end": 19117.8, + "probability": 0.9365 + }, + { + "start": 19118.04, + "end": 19118.04, + "probability": 0.5205 + }, + { + "start": 19118.08, + "end": 19118.28, + "probability": 0.6772 + }, + { + "start": 19118.42, + "end": 19123.46, + "probability": 0.9667 + }, + { + "start": 19123.48, + "end": 19123.6, + "probability": 0.7067 + }, + { + "start": 19123.98, + "end": 19124.22, + "probability": 0.735 + }, + { + "start": 19124.64, + "end": 19125.82, + "probability": 0.9288 + }, + { + "start": 19126.48, + "end": 19127.3, + "probability": 0.5292 + }, + { + "start": 19128.08, + "end": 19130.02, + "probability": 0.9167 + }, + { + "start": 19130.12, + "end": 19131.18, + "probability": 0.7012 + }, + { + "start": 19136.78, + "end": 19137.38, + "probability": 0.8901 + }, + { + "start": 19142.7, + "end": 19147.64, + "probability": 0.8716 + }, + { + "start": 19149.46, + "end": 19150.7, + "probability": 0.537 + }, + { + "start": 19151.16, + "end": 19152.34, + "probability": 0.6677 + }, + { + "start": 19153.44, + "end": 19155.32, + "probability": 0.8079 + }, + { + "start": 19156.74, + "end": 19158.56, + "probability": 0.9921 + }, + { + "start": 19159.84, + "end": 19160.54, + "probability": 0.9434 + }, + { + "start": 19162.14, + "end": 19162.86, + "probability": 0.6641 + }, + { + "start": 19163.3, + "end": 19164.63, + "probability": 0.2596 + }, + { + "start": 19165.74, + "end": 19167.16, + "probability": 0.9035 + }, + { + "start": 19169.67, + "end": 19171.08, + "probability": 0.4768 + }, + { + "start": 19171.16, + "end": 19172.88, + "probability": 0.5738 + }, + { + "start": 19173.5, + "end": 19174.98, + "probability": 0.017 + }, + { + "start": 19176.9, + "end": 19178.32, + "probability": 0.9961 + }, + { + "start": 19183.26, + "end": 19185.44, + "probability": 0.936 + }, + { + "start": 19185.84, + "end": 19186.7, + "probability": 0.6655 + }, + { + "start": 19186.74, + "end": 19188.5, + "probability": 0.4521 + }, + { + "start": 19188.5, + "end": 19190.3, + "probability": 0.6616 + }, + { + "start": 19190.42, + "end": 19191.88, + "probability": 0.5318 + }, + { + "start": 19192.98, + "end": 19194.3, + "probability": 0.993 + }, + { + "start": 19195.44, + "end": 19197.44, + "probability": 0.5624 + }, + { + "start": 19197.82, + "end": 19200.96, + "probability": 0.9797 + }, + { + "start": 19201.4, + "end": 19202.14, + "probability": 0.9477 + }, + { + "start": 19202.9, + "end": 19205.52, + "probability": 0.5038 + }, + { + "start": 19206.36, + "end": 19208.84, + "probability": 0.982 + }, + { + "start": 19209.56, + "end": 19211.27, + "probability": 0.8889 + }, + { + "start": 19212.22, + "end": 19215.46, + "probability": 0.5986 + }, + { + "start": 19216.14, + "end": 19219.24, + "probability": 0.9548 + }, + { + "start": 19219.96, + "end": 19222.26, + "probability": 0.7225 + }, + { + "start": 19223.2, + "end": 19226.58, + "probability": 0.9746 + }, + { + "start": 19227.5, + "end": 19229.28, + "probability": 0.7287 + }, + { + "start": 19229.44, + "end": 19231.46, + "probability": 0.7204 + }, + { + "start": 19232.04, + "end": 19233.54, + "probability": 0.7856 + }, + { + "start": 19233.7, + "end": 19235.9, + "probability": 0.8176 + }, + { + "start": 19236.02, + "end": 19236.6, + "probability": 0.5282 + }, + { + "start": 19236.66, + "end": 19237.86, + "probability": 0.7998 + }, + { + "start": 19238.3, + "end": 19240.42, + "probability": 0.863 + }, + { + "start": 19241.36, + "end": 19241.92, + "probability": 0.6864 + }, + { + "start": 19243.24, + "end": 19245.16, + "probability": 0.9699 + }, + { + "start": 19246.04, + "end": 19248.06, + "probability": 0.9436 + }, + { + "start": 19249.0, + "end": 19252.98, + "probability": 0.9384 + }, + { + "start": 19253.44, + "end": 19257.44, + "probability": 0.6535 + }, + { + "start": 19257.58, + "end": 19258.08, + "probability": 0.3765 + }, + { + "start": 19258.22, + "end": 19259.08, + "probability": 0.5412 + }, + { + "start": 19259.7, + "end": 19262.28, + "probability": 0.7791 + }, + { + "start": 19262.86, + "end": 19266.02, + "probability": 0.993 + }, + { + "start": 19266.6, + "end": 19267.76, + "probability": 0.9888 + }, + { + "start": 19267.96, + "end": 19270.08, + "probability": 0.7855 + }, + { + "start": 19270.82, + "end": 19276.54, + "probability": 0.9736 + }, + { + "start": 19277.1, + "end": 19278.94, + "probability": 0.7411 + }, + { + "start": 19279.46, + "end": 19279.86, + "probability": 0.25 + }, + { + "start": 19280.2, + "end": 19282.5, + "probability": 0.5086 + }, + { + "start": 19284.34, + "end": 19286.24, + "probability": 0.9363 + }, + { + "start": 19286.96, + "end": 19288.36, + "probability": 0.6381 + }, + { + "start": 19288.44, + "end": 19289.88, + "probability": 0.6756 + }, + { + "start": 19290.04, + "end": 19290.98, + "probability": 0.799 + }, + { + "start": 19291.32, + "end": 19296.86, + "probability": 0.9539 + }, + { + "start": 19296.96, + "end": 19297.8, + "probability": 0.8077 + }, + { + "start": 19298.68, + "end": 19299.54, + "probability": 0.7316 + }, + { + "start": 19300.04, + "end": 19301.92, + "probability": 0.8413 + }, + { + "start": 19302.02, + "end": 19304.74, + "probability": 0.8928 + }, + { + "start": 19304.88, + "end": 19305.26, + "probability": 0.4258 + }, + { + "start": 19305.4, + "end": 19306.84, + "probability": 0.8795 + }, + { + "start": 19306.88, + "end": 19307.94, + "probability": 0.9461 + }, + { + "start": 19308.12, + "end": 19308.96, + "probability": 0.6739 + }, + { + "start": 19309.06, + "end": 19309.76, + "probability": 0.7471 + }, + { + "start": 19310.72, + "end": 19314.42, + "probability": 0.9185 + }, + { + "start": 19315.24, + "end": 19320.06, + "probability": 0.9606 + }, + { + "start": 19320.12, + "end": 19321.48, + "probability": 0.8428 + }, + { + "start": 19322.02, + "end": 19324.58, + "probability": 0.9683 + }, + { + "start": 19324.74, + "end": 19325.78, + "probability": 0.8809 + }, + { + "start": 19325.92, + "end": 19326.54, + "probability": 0.7389 + }, + { + "start": 19327.34, + "end": 19329.48, + "probability": 0.9873 + }, + { + "start": 19329.5, + "end": 19332.9, + "probability": 0.9414 + }, + { + "start": 19333.12, + "end": 19334.68, + "probability": 0.8381 + }, + { + "start": 19334.8, + "end": 19337.54, + "probability": 0.8423 + }, + { + "start": 19339.42, + "end": 19340.48, + "probability": 0.5262 + }, + { + "start": 19341.1, + "end": 19343.28, + "probability": 0.4612 + }, + { + "start": 19343.42, + "end": 19348.1, + "probability": 0.9265 + }, + { + "start": 19348.16, + "end": 19349.94, + "probability": 0.938 + }, + { + "start": 19350.86, + "end": 19353.64, + "probability": 0.854 + }, + { + "start": 19353.84, + "end": 19354.3, + "probability": 0.311 + }, + { + "start": 19354.3, + "end": 19357.04, + "probability": 0.8894 + }, + { + "start": 19358.26, + "end": 19358.6, + "probability": 0.8781 + }, + { + "start": 19359.46, + "end": 19362.36, + "probability": 0.8944 + }, + { + "start": 19362.62, + "end": 19364.76, + "probability": 0.913 + }, + { + "start": 19365.86, + "end": 19369.84, + "probability": 0.7857 + }, + { + "start": 19370.96, + "end": 19371.34, + "probability": 0.0089 + }, + { + "start": 19374.38, + "end": 19375.18, + "probability": 0.4646 + }, + { + "start": 19376.7, + "end": 19379.9, + "probability": 0.7452 + }, + { + "start": 19382.34, + "end": 19385.68, + "probability": 0.8132 + }, + { + "start": 19386.88, + "end": 19387.24, + "probability": 0.9925 + }, + { + "start": 19388.4, + "end": 19389.24, + "probability": 0.8541 + }, + { + "start": 19390.08, + "end": 19390.6, + "probability": 0.994 + }, + { + "start": 19391.52, + "end": 19392.18, + "probability": 0.9104 + }, + { + "start": 19394.38, + "end": 19394.74, + "probability": 0.9561 + }, + { + "start": 19396.1, + "end": 19397.04, + "probability": 0.6239 + }, + { + "start": 19400.06, + "end": 19400.71, + "probability": 0.5176 + }, + { + "start": 19403.16, + "end": 19406.0, + "probability": 0.5627 + }, + { + "start": 19408.16, + "end": 19410.1, + "probability": 0.9865 + }, + { + "start": 19410.82, + "end": 19411.64, + "probability": 0.7824 + }, + { + "start": 19413.08, + "end": 19413.92, + "probability": 0.9645 + }, + { + "start": 19414.66, + "end": 19415.5, + "probability": 0.9225 + }, + { + "start": 19417.86, + "end": 19418.9, + "probability": 0.7894 + }, + { + "start": 19420.0, + "end": 19420.98, + "probability": 0.9099 + }, + { + "start": 19422.26, + "end": 19422.8, + "probability": 0.9943 + }, + { + "start": 19424.15, + "end": 19426.42, + "probability": 0.749 + }, + { + "start": 19429.02, + "end": 19430.96, + "probability": 0.8457 + }, + { + "start": 19432.1, + "end": 19432.6, + "probability": 0.9434 + }, + { + "start": 19433.92, + "end": 19434.74, + "probability": 0.8361 + }, + { + "start": 19435.54, + "end": 19436.04, + "probability": 0.7842 + }, + { + "start": 19436.56, + "end": 19437.36, + "probability": 0.7697 + }, + { + "start": 19447.5, + "end": 19449.94, + "probability": 0.4627 + }, + { + "start": 19450.98, + "end": 19453.44, + "probability": 0.6482 + }, + { + "start": 19454.6, + "end": 19455.06, + "probability": 0.9798 + }, + { + "start": 19455.92, + "end": 19457.48, + "probability": 0.7298 + }, + { + "start": 19458.92, + "end": 19459.38, + "probability": 0.6004 + }, + { + "start": 19460.2, + "end": 19461.06, + "probability": 0.7515 + }, + { + "start": 19463.5, + "end": 19465.64, + "probability": 0.803 + }, + { + "start": 19466.92, + "end": 19469.54, + "probability": 0.9205 + }, + { + "start": 19470.74, + "end": 19471.22, + "probability": 0.9442 + }, + { + "start": 19472.2, + "end": 19473.14, + "probability": 0.9653 + }, + { + "start": 19474.1, + "end": 19476.14, + "probability": 0.9679 + }, + { + "start": 19477.6, + "end": 19480.5, + "probability": 0.5416 + }, + { + "start": 19482.64, + "end": 19483.08, + "probability": 0.9387 + }, + { + "start": 19484.64, + "end": 19485.38, + "probability": 0.7767 + }, + { + "start": 19487.58, + "end": 19488.94, + "probability": 0.9085 + }, + { + "start": 19489.7, + "end": 19491.48, + "probability": 0.9564 + }, + { + "start": 19492.52, + "end": 19493.02, + "probability": 0.9734 + }, + { + "start": 19493.7, + "end": 19494.5, + "probability": 0.7775 + }, + { + "start": 19501.48, + "end": 19502.26, + "probability": 0.5704 + }, + { + "start": 19503.58, + "end": 19504.5, + "probability": 0.611 + }, + { + "start": 19505.3, + "end": 19505.76, + "probability": 0.6403 + }, + { + "start": 19506.82, + "end": 19507.72, + "probability": 0.8854 + }, + { + "start": 19508.96, + "end": 19509.76, + "probability": 0.7682 + }, + { + "start": 19510.32, + "end": 19511.22, + "probability": 0.88 + }, + { + "start": 19513.0, + "end": 19513.48, + "probability": 0.9904 + }, + { + "start": 19514.38, + "end": 19516.04, + "probability": 0.8117 + }, + { + "start": 19517.0, + "end": 19517.5, + "probability": 0.9817 + }, + { + "start": 19518.14, + "end": 19518.92, + "probability": 0.9769 + }, + { + "start": 19520.58, + "end": 19521.36, + "probability": 0.8546 + }, + { + "start": 19521.92, + "end": 19522.86, + "probability": 0.9402 + }, + { + "start": 19524.8, + "end": 19526.42, + "probability": 0.8841 + }, + { + "start": 19527.72, + "end": 19528.82, + "probability": 0.5017 + }, + { + "start": 19529.96, + "end": 19530.76, + "probability": 0.6069 + }, + { + "start": 19532.12, + "end": 19534.42, + "probability": 0.6718 + }, + { + "start": 19537.06, + "end": 19538.02, + "probability": 0.7777 + }, + { + "start": 19538.54, + "end": 19539.7, + "probability": 0.8805 + }, + { + "start": 19541.22, + "end": 19543.46, + "probability": 0.9158 + }, + { + "start": 19544.46, + "end": 19546.9, + "probability": 0.9343 + }, + { + "start": 19549.08, + "end": 19550.44, + "probability": 0.7115 + }, + { + "start": 19551.06, + "end": 19551.96, + "probability": 0.5818 + }, + { + "start": 19553.28, + "end": 19555.18, + "probability": 0.7772 + }, + { + "start": 19556.38, + "end": 19556.78, + "probability": 0.6806 + }, + { + "start": 19557.52, + "end": 19558.74, + "probability": 0.4715 + }, + { + "start": 19560.08, + "end": 19560.52, + "probability": 0.8865 + }, + { + "start": 19561.22, + "end": 19562.52, + "probability": 0.8678 + }, + { + "start": 19565.78, + "end": 19570.14, + "probability": 0.6526 + }, + { + "start": 19571.5, + "end": 19571.96, + "probability": 0.6748 + }, + { + "start": 19573.1, + "end": 19573.94, + "probability": 0.3643 + }, + { + "start": 19578.18, + "end": 19581.48, + "probability": 0.6019 + }, + { + "start": 19583.3, + "end": 19583.66, + "probability": 0.9622 + }, + { + "start": 19584.78, + "end": 19585.6, + "probability": 0.6976 + }, + { + "start": 19586.6, + "end": 19588.02, + "probability": 0.9819 + }, + { + "start": 19589.68, + "end": 19590.12, + "probability": 0.9729 + }, + { + "start": 19591.02, + "end": 19591.8, + "probability": 0.9225 + }, + { + "start": 19594.2, + "end": 19597.34, + "probability": 0.8029 + }, + { + "start": 19598.1, + "end": 19598.66, + "probability": 0.9819 + }, + { + "start": 19599.22, + "end": 19600.34, + "probability": 0.9293 + }, + { + "start": 19601.06, + "end": 19602.88, + "probability": 0.98 + }, + { + "start": 19603.84, + "end": 19604.3, + "probability": 0.9868 + }, + { + "start": 19605.86, + "end": 19606.66, + "probability": 0.5673 + }, + { + "start": 19607.46, + "end": 19608.24, + "probability": 0.88 + }, + { + "start": 19608.96, + "end": 19610.16, + "probability": 0.6645 + }, + { + "start": 19611.88, + "end": 19612.3, + "probability": 0.958 + }, + { + "start": 19614.14, + "end": 19614.94, + "probability": 0.8499 + }, + { + "start": 19616.18, + "end": 19618.0, + "probability": 0.9578 + }, + { + "start": 19619.3, + "end": 19619.82, + "probability": 0.9977 + }, + { + "start": 19621.58, + "end": 19622.14, + "probability": 0.8254 + }, + { + "start": 19624.8, + "end": 19625.24, + "probability": 0.3646 + }, + { + "start": 19634.8, + "end": 19637.62, + "probability": 0.4498 + }, + { + "start": 19640.58, + "end": 19641.12, + "probability": 0.4768 + }, + { + "start": 19642.78, + "end": 19643.5, + "probability": 0.6458 + }, + { + "start": 19644.64, + "end": 19645.86, + "probability": 0.7429 + }, + { + "start": 19647.14, + "end": 19647.54, + "probability": 0.8743 + }, + { + "start": 19648.72, + "end": 19649.5, + "probability": 0.9213 + }, + { + "start": 19650.58, + "end": 19652.84, + "probability": 0.9634 + }, + { + "start": 19653.82, + "end": 19654.22, + "probability": 0.979 + }, + { + "start": 19655.1, + "end": 19655.96, + "probability": 0.9523 + }, + { + "start": 19656.88, + "end": 19657.4, + "probability": 0.9816 + }, + { + "start": 19658.4, + "end": 19659.46, + "probability": 0.9351 + }, + { + "start": 19660.34, + "end": 19660.78, + "probability": 0.9709 + }, + { + "start": 19661.66, + "end": 19662.6, + "probability": 0.9894 + }, + { + "start": 19663.6, + "end": 19663.98, + "probability": 0.9671 + }, + { + "start": 19665.12, + "end": 19666.04, + "probability": 0.9719 + }, + { + "start": 19667.32, + "end": 19667.74, + "probability": 0.5605 + }, + { + "start": 19668.94, + "end": 19669.74, + "probability": 0.6921 + }, + { + "start": 19670.96, + "end": 19673.28, + "probability": 0.9311 + }, + { + "start": 19674.2, + "end": 19674.76, + "probability": 0.9614 + }, + { + "start": 19675.78, + "end": 19677.04, + "probability": 0.8983 + }, + { + "start": 19678.86, + "end": 19679.3, + "probability": 0.9683 + }, + { + "start": 19680.34, + "end": 19681.16, + "probability": 0.7481 + }, + { + "start": 19683.24, + "end": 19685.56, + "probability": 0.8524 + }, + { + "start": 19687.42, + "end": 19690.08, + "probability": 0.9656 + }, + { + "start": 19691.16, + "end": 19693.66, + "probability": 0.9871 + }, + { + "start": 19694.42, + "end": 19695.52, + "probability": 0.7636 + }, + { + "start": 19697.38, + "end": 19699.7, + "probability": 0.706 + }, + { + "start": 19700.26, + "end": 19700.7, + "probability": 0.9787 + }, + { + "start": 19701.48, + "end": 19702.26, + "probability": 0.9093 + }, + { + "start": 19703.12, + "end": 19703.94, + "probability": 0.992 + }, + { + "start": 19704.72, + "end": 19705.6, + "probability": 0.9241 + }, + { + "start": 19706.9, + "end": 19709.46, + "probability": 0.5807 + }, + { + "start": 19712.68, + "end": 19714.04, + "probability": 0.5515 + }, + { + "start": 19718.94, + "end": 19721.74, + "probability": 0.6735 + }, + { + "start": 19722.98, + "end": 19723.2, + "probability": 0.7625 + }, + { + "start": 19727.1, + "end": 19728.08, + "probability": 0.6434 + }, + { + "start": 19730.02, + "end": 19730.46, + "probability": 0.9178 + }, + { + "start": 19732.08, + "end": 19733.02, + "probability": 0.65 + }, + { + "start": 19733.72, + "end": 19734.14, + "probability": 0.9819 + }, + { + "start": 19735.14, + "end": 19736.02, + "probability": 0.8044 + }, + { + "start": 19736.76, + "end": 19739.06, + "probability": 0.9567 + }, + { + "start": 19740.92, + "end": 19741.42, + "probability": 0.9927 + }, + { + "start": 19742.94, + "end": 19743.58, + "probability": 0.7394 + }, + { + "start": 19744.76, + "end": 19745.22, + "probability": 0.985 + }, + { + "start": 19745.96, + "end": 19746.84, + "probability": 0.9388 + }, + { + "start": 19747.94, + "end": 19748.4, + "probability": 0.9961 + }, + { + "start": 19749.4, + "end": 19750.38, + "probability": 0.5424 + }, + { + "start": 19751.56, + "end": 19752.84, + "probability": 0.9893 + }, + { + "start": 19753.7, + "end": 19754.84, + "probability": 0.8051 + }, + { + "start": 19755.68, + "end": 19755.94, + "probability": 0.7228 + }, + { + "start": 19756.96, + "end": 19757.96, + "probability": 0.5464 + }, + { + "start": 19759.06, + "end": 19759.5, + "probability": 0.9297 + }, + { + "start": 19760.3, + "end": 19760.62, + "probability": 0.7751 + }, + { + "start": 19763.74, + "end": 19764.52, + "probability": 0.2953 + }, + { + "start": 19765.4, + "end": 19766.94, + "probability": 0.7308 + }, + { + "start": 19768.36, + "end": 19771.22, + "probability": 0.9438 + }, + { + "start": 19771.88, + "end": 19774.46, + "probability": 0.8599 + }, + { + "start": 19776.86, + "end": 19777.72, + "probability": 0.0217 + }, + { + "start": 19780.06, + "end": 19780.56, + "probability": 0.972 + }, + { + "start": 19781.1, + "end": 19783.28, + "probability": 0.8133 + }, + { + "start": 19785.26, + "end": 19786.08, + "probability": 0.9709 + }, + { + "start": 19786.68, + "end": 19787.72, + "probability": 0.9937 + }, + { + "start": 19791.78, + "end": 19792.2, + "probability": 0.5311 + }, + { + "start": 19793.08, + "end": 19795.5, + "probability": 0.5581 + }, + { + "start": 19798.12, + "end": 19799.0, + "probability": 0.7918 + }, + { + "start": 19800.12, + "end": 19801.12, + "probability": 0.8356 + }, + { + "start": 19802.16, + "end": 19803.56, + "probability": 0.9575 + }, + { + "start": 19804.84, + "end": 19805.7, + "probability": 0.9022 + }, + { + "start": 19808.17, + "end": 19809.46, + "probability": 0.8459 + }, + { + "start": 19812.58, + "end": 19815.34, + "probability": 0.8495 + }, + { + "start": 19816.04, + "end": 19817.68, + "probability": 0.8357 + }, + { + "start": 19821.32, + "end": 19821.52, + "probability": 0.5193 + }, + { + "start": 19822.6, + "end": 19823.46, + "probability": 0.4261 + }, + { + "start": 19825.0, + "end": 19827.64, + "probability": 0.7847 + }, + { + "start": 19830.84, + "end": 19831.24, + "probability": 0.8716 + }, + { + "start": 19832.12, + "end": 19833.08, + "probability": 0.8312 + }, + { + "start": 19835.4, + "end": 19836.08, + "probability": 0.4129 + }, + { + "start": 19836.28, + "end": 19837.2, + "probability": 0.0383 + }, + { + "start": 19837.2, + "end": 19837.2, + "probability": 0.1927 + }, + { + "start": 19837.2, + "end": 19837.2, + "probability": 0.4792 + }, + { + "start": 19838.62, + "end": 19840.44, + "probability": 0.0495 + }, + { + "start": 19845.18, + "end": 19845.5, + "probability": 0.8005 + }, + { + "start": 19865.16, + "end": 19866.36, + "probability": 0.4039 + }, + { + "start": 19867.32, + "end": 19867.54, + "probability": 0.5062 + }, + { + "start": 19868.9, + "end": 19870.14, + "probability": 0.8026 + }, + { + "start": 19872.03, + "end": 19874.88, + "probability": 0.6374 + }, + { + "start": 19875.48, + "end": 19876.56, + "probability": 0.5239 + }, + { + "start": 19877.58, + "end": 19878.56, + "probability": 0.3269 + }, + { + "start": 19878.62, + "end": 19879.52, + "probability": 0.9071 + }, + { + "start": 19881.8, + "end": 19882.72, + "probability": 0.5245 + }, + { + "start": 19885.22, + "end": 19887.82, + "probability": 0.6746 + }, + { + "start": 19889.54, + "end": 19890.4, + "probability": 0.7027 + }, + { + "start": 19892.3, + "end": 19894.82, + "probability": 0.6785 + }, + { + "start": 19895.96, + "end": 19897.36, + "probability": 0.8965 + }, + { + "start": 19898.56, + "end": 19900.22, + "probability": 0.8035 + }, + { + "start": 19902.56, + "end": 19903.98, + "probability": 0.9009 + }, + { + "start": 19905.18, + "end": 19906.26, + "probability": 0.932 + }, + { + "start": 19907.68, + "end": 19910.2, + "probability": 0.9111 + }, + { + "start": 19910.88, + "end": 19911.64, + "probability": 0.9829 + }, + { + "start": 19912.92, + "end": 19913.66, + "probability": 0.6841 + }, + { + "start": 19915.24, + "end": 19917.42, + "probability": 0.647 + }, + { + "start": 19918.14, + "end": 19920.16, + "probability": 0.6802 + }, + { + "start": 19921.1, + "end": 19921.94, + "probability": 0.7875 + }, + { + "start": 19923.74, + "end": 19928.0, + "probability": 0.8142 + }, + { + "start": 19928.92, + "end": 19929.86, + "probability": 0.3235 + }, + { + "start": 19931.4, + "end": 19933.16, + "probability": 0.699 + }, + { + "start": 19935.08, + "end": 19937.64, + "probability": 0.8987 + }, + { + "start": 19939.16, + "end": 19940.6, + "probability": 0.9641 + }, + { + "start": 19942.5, + "end": 19944.36, + "probability": 0.9138 + }, + { + "start": 19945.44, + "end": 19945.76, + "probability": 0.9751 + }, + { + "start": 19949.54, + "end": 19950.9, + "probability": 0.4482 + }, + { + "start": 19951.6, + "end": 19953.38, + "probability": 0.8354 + }, + { + "start": 19955.18, + "end": 19956.78, + "probability": 0.897 + }, + { + "start": 19958.74, + "end": 19960.24, + "probability": 0.7862 + }, + { + "start": 19966.2, + "end": 19966.83, + "probability": 0.5724 + }, + { + "start": 19967.48, + "end": 19970.9, + "probability": 0.8787 + }, + { + "start": 19971.6, + "end": 19972.56, + "probability": 0.8118 + }, + { + "start": 19973.74, + "end": 19978.02, + "probability": 0.8001 + }, + { + "start": 19980.18, + "end": 19981.02, + "probability": 0.9883 + }, + { + "start": 19983.96, + "end": 19985.0, + "probability": 0.5775 + }, + { + "start": 19986.4, + "end": 19987.08, + "probability": 0.7293 + }, + { + "start": 19988.02, + "end": 19988.94, + "probability": 0.8139 + }, + { + "start": 19989.84, + "end": 19990.74, + "probability": 0.9757 + }, + { + "start": 19992.16, + "end": 19993.7, + "probability": 0.9401 + }, + { + "start": 19994.26, + "end": 19995.96, + "probability": 0.9588 + }, + { + "start": 19996.58, + "end": 19997.5, + "probability": 0.958 + }, + { + "start": 19999.54, + "end": 20000.36, + "probability": 0.9884 + }, + { + "start": 20001.42, + "end": 20002.92, + "probability": 0.9652 + }, + { + "start": 20004.14, + "end": 20005.02, + "probability": 0.701 + }, + { + "start": 20007.1, + "end": 20011.7, + "probability": 0.7138 + }, + { + "start": 20012.42, + "end": 20013.36, + "probability": 0.8467 + }, + { + "start": 20015.38, + "end": 20017.9, + "probability": 0.88 + }, + { + "start": 20019.54, + "end": 20020.5, + "probability": 0.9911 + }, + { + "start": 20021.8, + "end": 20022.56, + "probability": 0.8663 + }, + { + "start": 20023.38, + "end": 20024.08, + "probability": 0.8779 + }, + { + "start": 20028.62, + "end": 20029.48, + "probability": 0.6677 + }, + { + "start": 20032.32, + "end": 20032.74, + "probability": 0.4346 + }, + { + "start": 20034.64, + "end": 20035.46, + "probability": 0.8958 + }, + { + "start": 20036.7, + "end": 20037.66, + "probability": 0.8119 + }, + { + "start": 20039.44, + "end": 20041.22, + "probability": 0.9403 + }, + { + "start": 20043.26, + "end": 20044.24, + "probability": 0.9796 + }, + { + "start": 20045.16, + "end": 20046.1, + "probability": 0.9238 + }, + { + "start": 20046.88, + "end": 20047.68, + "probability": 0.9905 + }, + { + "start": 20048.28, + "end": 20050.1, + "probability": 0.9391 + }, + { + "start": 20050.9, + "end": 20051.9, + "probability": 0.9707 + }, + { + "start": 20052.88, + "end": 20055.2, + "probability": 0.7656 + }, + { + "start": 20055.92, + "end": 20056.68, + "probability": 0.5831 + }, + { + "start": 20057.56, + "end": 20061.68, + "probability": 0.9642 + }, + { + "start": 20061.98, + "end": 20063.64, + "probability": 0.4407 + }, + { + "start": 20063.72, + "end": 20065.4, + "probability": 0.4654 + }, + { + "start": 20065.4, + "end": 20066.18, + "probability": 0.7266 + }, + { + "start": 20067.36, + "end": 20069.54, + "probability": 0.1228 + }, + { + "start": 20069.54, + "end": 20071.58, + "probability": 0.1726 + }, + { + "start": 20071.58, + "end": 20073.38, + "probability": 0.1131 + }, + { + "start": 20073.38, + "end": 20076.46, + "probability": 0.0684 + }, + { + "start": 20122.62, + "end": 20123.14, + "probability": 0.6738 + }, + { + "start": 20145.62, + "end": 20148.72, + "probability": 0.6128 + }, + { + "start": 20148.9, + "end": 20150.9, + "probability": 0.5765 + }, + { + "start": 20151.18, + "end": 20152.48, + "probability": 0.0729 + }, + { + "start": 20152.5, + "end": 20153.24, + "probability": 0.7116 + }, + { + "start": 20153.82, + "end": 20156.36, + "probability": 0.7994 + }, + { + "start": 20156.96, + "end": 20159.18, + "probability": 0.98 + }, + { + "start": 20159.26, + "end": 20162.74, + "probability": 0.9742 + }, + { + "start": 20162.92, + "end": 20166.04, + "probability": 0.9104 + }, + { + "start": 20166.38, + "end": 20167.78, + "probability": 0.7178 + }, + { + "start": 20168.2, + "end": 20168.92, + "probability": 0.8717 + }, + { + "start": 20169.5, + "end": 20172.04, + "probability": 0.095 + }, + { + "start": 20173.8, + "end": 20175.68, + "probability": 0.9189 + }, + { + "start": 20177.82, + "end": 20179.53, + "probability": 0.9969 + }, + { + "start": 20180.16, + "end": 20180.8, + "probability": 0.8341 + }, + { + "start": 20180.86, + "end": 20181.86, + "probability": 0.9095 + }, + { + "start": 20183.48, + "end": 20184.62, + "probability": 0.9283 + }, + { + "start": 20185.6, + "end": 20187.56, + "probability": 0.3447 + }, + { + "start": 20188.3, + "end": 20191.12, + "probability": 0.4803 + }, + { + "start": 20192.64, + "end": 20193.36, + "probability": 0.837 + }, + { + "start": 20195.82, + "end": 20196.69, + "probability": 0.6222 + }, + { + "start": 20197.42, + "end": 20199.2, + "probability": 0.4383 + }, + { + "start": 20200.22, + "end": 20202.5, + "probability": 0.7889 + }, + { + "start": 20237.72, + "end": 20237.72, + "probability": 0.4267 + }, + { + "start": 20237.72, + "end": 20238.92, + "probability": 0.6985 + }, + { + "start": 20239.04, + "end": 20239.44, + "probability": 0.3572 + }, + { + "start": 20239.44, + "end": 20244.14, + "probability": 0.7952 + }, + { + "start": 20244.62, + "end": 20246.1, + "probability": 0.8199 + }, + { + "start": 20246.4, + "end": 20246.92, + "probability": 0.5516 + }, + { + "start": 20247.34, + "end": 20248.86, + "probability": 0.6789 + }, + { + "start": 20248.92, + "end": 20250.4, + "probability": 0.9076 + }, + { + "start": 20250.46, + "end": 20254.32, + "probability": 0.9274 + }, + { + "start": 20254.86, + "end": 20256.24, + "probability": 0.6905 + }, + { + "start": 20257.54, + "end": 20261.88, + "probability": 0.9868 + }, + { + "start": 20262.4, + "end": 20262.82, + "probability": 0.0549 + }, + { + "start": 20263.38, + "end": 20267.14, + "probability": 0.9525 + }, + { + "start": 20267.72, + "end": 20271.96, + "probability": 0.9943 + }, + { + "start": 20272.42, + "end": 20275.72, + "probability": 0.937 + }, + { + "start": 20277.66, + "end": 20279.48, + "probability": 0.9922 + }, + { + "start": 20279.58, + "end": 20282.3, + "probability": 0.9542 + }, + { + "start": 20282.84, + "end": 20286.3, + "probability": 0.9979 + }, + { + "start": 20286.3, + "end": 20289.48, + "probability": 0.9997 + }, + { + "start": 20290.44, + "end": 20293.86, + "probability": 0.9224 + }, + { + "start": 20293.86, + "end": 20296.3, + "probability": 0.998 + }, + { + "start": 20296.86, + "end": 20299.36, + "probability": 0.7006 + }, + { + "start": 20300.56, + "end": 20302.38, + "probability": 0.953 + }, + { + "start": 20302.7, + "end": 20305.3, + "probability": 0.8824 + }, + { + "start": 20305.3, + "end": 20309.54, + "probability": 0.992 + }, + { + "start": 20310.16, + "end": 20310.32, + "probability": 0.4466 + }, + { + "start": 20310.38, + "end": 20310.96, + "probability": 0.9742 + }, + { + "start": 20311.16, + "end": 20313.26, + "probability": 0.9824 + }, + { + "start": 20313.26, + "end": 20315.56, + "probability": 0.9995 + }, + { + "start": 20315.94, + "end": 20321.28, + "probability": 0.9889 + }, + { + "start": 20322.95, + "end": 20326.0, + "probability": 0.8481 + }, + { + "start": 20326.3, + "end": 20327.89, + "probability": 0.969 + }, + { + "start": 20328.4, + "end": 20331.46, + "probability": 0.9836 + }, + { + "start": 20331.56, + "end": 20333.82, + "probability": 0.9657 + }, + { + "start": 20334.1, + "end": 20335.38, + "probability": 0.918 + }, + { + "start": 20335.52, + "end": 20337.32, + "probability": 0.9955 + }, + { + "start": 20337.9, + "end": 20340.84, + "probability": 0.9351 + }, + { + "start": 20341.02, + "end": 20345.98, + "probability": 0.8945 + }, + { + "start": 20346.0, + "end": 20348.52, + "probability": 0.9891 + }, + { + "start": 20348.84, + "end": 20349.04, + "probability": 0.7263 + }, + { + "start": 20349.76, + "end": 20353.34, + "probability": 0.9786 + }, + { + "start": 20353.94, + "end": 20355.02, + "probability": 0.8472 + }, + { + "start": 20355.64, + "end": 20360.08, + "probability": 0.8234 + }, + { + "start": 20361.46, + "end": 20363.84, + "probability": 0.8781 + }, + { + "start": 20366.4, + "end": 20367.34, + "probability": 0.9875 + }, + { + "start": 20368.04, + "end": 20369.24, + "probability": 0.623 + }, + { + "start": 20369.36, + "end": 20370.16, + "probability": 0.9801 + }, + { + "start": 20370.74, + "end": 20371.54, + "probability": 0.6098 + }, + { + "start": 20373.32, + "end": 20374.37, + "probability": 0.5919 + }, + { + "start": 20375.66, + "end": 20377.06, + "probability": 0.8844 + }, + { + "start": 20378.06, + "end": 20378.76, + "probability": 0.7355 + }, + { + "start": 20379.62, + "end": 20380.42, + "probability": 0.9607 + }, + { + "start": 20381.52, + "end": 20382.28, + "probability": 0.8519 + }, + { + "start": 20382.9, + "end": 20384.34, + "probability": 0.9939 + }, + { + "start": 20385.44, + "end": 20388.3, + "probability": 0.9888 + }, + { + "start": 20389.14, + "end": 20390.28, + "probability": 0.9794 + }, + { + "start": 20393.44, + "end": 20396.34, + "probability": 0.0789 + }, + { + "start": 20396.34, + "end": 20396.9, + "probability": 0.7942 + }, + { + "start": 20399.02, + "end": 20400.42, + "probability": 0.9753 + }, + { + "start": 20400.68, + "end": 20401.28, + "probability": 0.4452 + }, + { + "start": 20401.38, + "end": 20401.92, + "probability": 0.7749 + }, + { + "start": 20402.18, + "end": 20402.44, + "probability": 0.014 + }, + { + "start": 20404.68, + "end": 20407.92, + "probability": 0.9651 + }, + { + "start": 20408.02, + "end": 20411.84, + "probability": 0.9485 + }, + { + "start": 20412.7, + "end": 20413.16, + "probability": 0.7493 + }, + { + "start": 20414.0, + "end": 20415.28, + "probability": 0.9265 + }, + { + "start": 20418.28, + "end": 20420.54, + "probability": 0.7411 + }, + { + "start": 20421.4, + "end": 20423.52, + "probability": 0.3511 + }, + { + "start": 20424.32, + "end": 20425.2, + "probability": 0.327 + }, + { + "start": 20425.96, + "end": 20433.26, + "probability": 0.9841 + }, + { + "start": 20433.3, + "end": 20437.5, + "probability": 0.9983 + }, + { + "start": 20438.44, + "end": 20439.8, + "probability": 0.9421 + }, + { + "start": 20440.58, + "end": 20444.42, + "probability": 0.9407 + }, + { + "start": 20445.7, + "end": 20446.96, + "probability": 0.9361 + }, + { + "start": 20448.24, + "end": 20448.86, + "probability": 0.986 + }, + { + "start": 20449.92, + "end": 20455.52, + "probability": 0.9735 + }, + { + "start": 20456.38, + "end": 20458.34, + "probability": 0.6979 + }, + { + "start": 20459.36, + "end": 20466.62, + "probability": 0.9964 + }, + { + "start": 20467.34, + "end": 20469.66, + "probability": 0.9854 + }, + { + "start": 20470.94, + "end": 20474.68, + "probability": 0.9854 + }, + { + "start": 20475.72, + "end": 20477.42, + "probability": 0.9038 + }, + { + "start": 20477.96, + "end": 20479.3, + "probability": 0.7567 + }, + { + "start": 20480.48, + "end": 20481.62, + "probability": 0.9894 + }, + { + "start": 20482.68, + "end": 20483.4, + "probability": 0.9065 + }, + { + "start": 20485.16, + "end": 20487.16, + "probability": 0.9805 + }, + { + "start": 20487.6, + "end": 20488.12, + "probability": 0.4723 + }, + { + "start": 20488.22, + "end": 20489.72, + "probability": 0.887 + }, + { + "start": 20491.26, + "end": 20492.2, + "probability": 0.9774 + }, + { + "start": 20492.88, + "end": 20496.2, + "probability": 0.9517 + }, + { + "start": 20496.98, + "end": 20499.26, + "probability": 0.9658 + }, + { + "start": 20499.42, + "end": 20500.08, + "probability": 0.9307 + }, + { + "start": 20500.14, + "end": 20505.34, + "probability": 0.9932 + }, + { + "start": 20507.48, + "end": 20508.64, + "probability": 0.6245 + }, + { + "start": 20508.64, + "end": 20510.72, + "probability": 0.6068 + }, + { + "start": 20512.36, + "end": 20514.76, + "probability": 0.8561 + }, + { + "start": 20515.3, + "end": 20516.62, + "probability": 0.8098 + }, + { + "start": 20516.74, + "end": 20517.36, + "probability": 0.8849 + }, + { + "start": 20518.92, + "end": 20519.76, + "probability": 0.8637 + }, + { + "start": 20520.26, + "end": 20523.08, + "probability": 0.9428 + }, + { + "start": 20524.52, + "end": 20526.92, + "probability": 0.9071 + }, + { + "start": 20529.14, + "end": 20530.08, + "probability": 0.9848 + }, + { + "start": 20530.92, + "end": 20534.22, + "probability": 0.9217 + }, + { + "start": 20534.8, + "end": 20537.76, + "probability": 0.933 + }, + { + "start": 20539.36, + "end": 20542.52, + "probability": 0.7662 + }, + { + "start": 20543.04, + "end": 20544.66, + "probability": 0.9383 + }, + { + "start": 20545.86, + "end": 20547.14, + "probability": 0.9952 + }, + { + "start": 20548.32, + "end": 20548.72, + "probability": 0.7104 + }, + { + "start": 20548.82, + "end": 20551.56, + "probability": 0.8901 + }, + { + "start": 20551.76, + "end": 20555.14, + "probability": 0.9382 + }, + { + "start": 20556.04, + "end": 20559.82, + "probability": 0.9874 + }, + { + "start": 20562.02, + "end": 20562.58, + "probability": 0.959 + }, + { + "start": 20562.8, + "end": 20564.14, + "probability": 0.9927 + }, + { + "start": 20564.56, + "end": 20566.6, + "probability": 0.7569 + }, + { + "start": 20567.58, + "end": 20569.26, + "probability": 0.9703 + }, + { + "start": 20570.34, + "end": 20573.92, + "probability": 0.9666 + }, + { + "start": 20575.32, + "end": 20577.26, + "probability": 0.9971 + }, + { + "start": 20578.5, + "end": 20579.82, + "probability": 0.9347 + }, + { + "start": 20580.4, + "end": 20581.46, + "probability": 0.9551 + }, + { + "start": 20582.06, + "end": 20584.52, + "probability": 0.9949 + }, + { + "start": 20584.9, + "end": 20588.06, + "probability": 0.9847 + }, + { + "start": 20590.06, + "end": 20591.54, + "probability": 0.8369 + }, + { + "start": 20592.48, + "end": 20593.48, + "probability": 0.6107 + }, + { + "start": 20594.96, + "end": 20598.4, + "probability": 0.9202 + }, + { + "start": 20599.12, + "end": 20600.5, + "probability": 0.995 + }, + { + "start": 20601.24, + "end": 20602.26, + "probability": 0.8453 + }, + { + "start": 20603.6, + "end": 20608.04, + "probability": 0.9675 + }, + { + "start": 20608.66, + "end": 20610.08, + "probability": 0.9867 + }, + { + "start": 20610.74, + "end": 20613.36, + "probability": 0.9557 + }, + { + "start": 20613.5, + "end": 20613.96, + "probability": 0.8329 + }, + { + "start": 20615.24, + "end": 20616.22, + "probability": 0.764 + }, + { + "start": 20617.22, + "end": 20618.64, + "probability": 0.7702 + }, + { + "start": 20619.54, + "end": 20620.4, + "probability": 0.5559 + }, + { + "start": 20621.2, + "end": 20622.64, + "probability": 0.7949 + }, + { + "start": 20636.36, + "end": 20637.72, + "probability": 0.6796 + }, + { + "start": 20637.82, + "end": 20638.3, + "probability": 0.6879 + }, + { + "start": 20638.7, + "end": 20639.86, + "probability": 0.6752 + }, + { + "start": 20640.1, + "end": 20640.94, + "probability": 0.6853 + }, + { + "start": 20641.96, + "end": 20644.28, + "probability": 0.9897 + }, + { + "start": 20644.54, + "end": 20646.0, + "probability": 0.9696 + }, + { + "start": 20646.62, + "end": 20647.96, + "probability": 0.9437 + }, + { + "start": 20648.66, + "end": 20650.52, + "probability": 0.4983 + }, + { + "start": 20650.64, + "end": 20651.62, + "probability": 0.8906 + }, + { + "start": 20651.74, + "end": 20653.58, + "probability": 0.9958 + }, + { + "start": 20654.22, + "end": 20656.24, + "probability": 0.9941 + }, + { + "start": 20657.34, + "end": 20660.56, + "probability": 0.9712 + }, + { + "start": 20661.36, + "end": 20662.3, + "probability": 0.9914 + }, + { + "start": 20663.46, + "end": 20666.0, + "probability": 0.9422 + }, + { + "start": 20667.78, + "end": 20671.0, + "probability": 0.8119 + }, + { + "start": 20671.48, + "end": 20673.2, + "probability": 0.9868 + }, + { + "start": 20675.0, + "end": 20677.86, + "probability": 0.9855 + }, + { + "start": 20677.96, + "end": 20678.44, + "probability": 0.3957 + }, + { + "start": 20678.54, + "end": 20680.32, + "probability": 0.8971 + }, + { + "start": 20680.71, + "end": 20681.58, + "probability": 0.8171 + }, + { + "start": 20682.4, + "end": 20682.58, + "probability": 0.2606 + }, + { + "start": 20683.08, + "end": 20688.72, + "probability": 0.9957 + }, + { + "start": 20689.46, + "end": 20690.36, + "probability": 0.6776 + }, + { + "start": 20691.2, + "end": 20692.8, + "probability": 0.9917 + }, + { + "start": 20692.88, + "end": 20693.34, + "probability": 0.6469 + }, + { + "start": 20693.34, + "end": 20693.92, + "probability": 0.7273 + }, + { + "start": 20693.92, + "end": 20695.06, + "probability": 0.9867 + }, + { + "start": 20695.62, + "end": 20697.49, + "probability": 0.9878 + }, + { + "start": 20698.46, + "end": 20700.08, + "probability": 0.6992 + }, + { + "start": 20700.7, + "end": 20703.3, + "probability": 0.9421 + }, + { + "start": 20704.14, + "end": 20706.42, + "probability": 0.9725 + }, + { + "start": 20707.52, + "end": 20709.72, + "probability": 0.9619 + }, + { + "start": 20710.54, + "end": 20714.06, + "probability": 0.939 + }, + { + "start": 20714.74, + "end": 20716.6, + "probability": 0.8034 + }, + { + "start": 20717.12, + "end": 20719.28, + "probability": 0.8556 + }, + { + "start": 20719.86, + "end": 20720.9, + "probability": 0.8375 + }, + { + "start": 20721.0, + "end": 20723.6, + "probability": 0.9011 + }, + { + "start": 20723.62, + "end": 20725.5, + "probability": 0.9799 + }, + { + "start": 20725.7, + "end": 20727.6, + "probability": 0.9834 + }, + { + "start": 20727.94, + "end": 20728.7, + "probability": 0.9928 + }, + { + "start": 20728.8, + "end": 20729.7, + "probability": 0.8264 + }, + { + "start": 20730.66, + "end": 20732.77, + "probability": 0.9272 + }, + { + "start": 20733.9, + "end": 20734.78, + "probability": 0.9556 + }, + { + "start": 20735.36, + "end": 20737.32, + "probability": 0.7145 + }, + { + "start": 20738.22, + "end": 20740.72, + "probability": 0.9327 + }, + { + "start": 20742.02, + "end": 20743.22, + "probability": 0.2345 + }, + { + "start": 20743.76, + "end": 20744.92, + "probability": 0.7739 + }, + { + "start": 20745.02, + "end": 20745.22, + "probability": 0.9492 + }, + { + "start": 20745.28, + "end": 20747.26, + "probability": 0.9909 + }, + { + "start": 20747.3, + "end": 20748.08, + "probability": 0.9951 + }, + { + "start": 20748.22, + "end": 20748.57, + "probability": 0.871 + }, + { + "start": 20749.18, + "end": 20749.36, + "probability": 0.8442 + }, + { + "start": 20749.56, + "end": 20751.44, + "probability": 0.9125 + }, + { + "start": 20751.94, + "end": 20753.1, + "probability": 0.9985 + }, + { + "start": 20754.26, + "end": 20755.28, + "probability": 0.8908 + }, + { + "start": 20757.24, + "end": 20760.68, + "probability": 0.724 + }, + { + "start": 20761.32, + "end": 20765.08, + "probability": 0.7146 + }, + { + "start": 20765.66, + "end": 20767.18, + "probability": 0.9702 + }, + { + "start": 20767.7, + "end": 20771.24, + "probability": 0.942 + }, + { + "start": 20771.24, + "end": 20774.4, + "probability": 0.9954 + }, + { + "start": 20775.44, + "end": 20775.78, + "probability": 0.6329 + }, + { + "start": 20775.82, + "end": 20776.27, + "probability": 0.8835 + }, + { + "start": 20776.82, + "end": 20781.26, + "probability": 0.8847 + }, + { + "start": 20781.26, + "end": 20785.65, + "probability": 0.9881 + }, + { + "start": 20785.76, + "end": 20786.3, + "probability": 0.7491 + }, + { + "start": 20787.44, + "end": 20789.14, + "probability": 0.9672 + }, + { + "start": 20790.16, + "end": 20791.88, + "probability": 0.9446 + }, + { + "start": 20792.26, + "end": 20792.94, + "probability": 0.9902 + }, + { + "start": 20794.07, + "end": 20801.44, + "probability": 0.9958 + }, + { + "start": 20801.44, + "end": 20806.84, + "probability": 0.9961 + }, + { + "start": 20806.84, + "end": 20810.72, + "probability": 0.9987 + }, + { + "start": 20811.26, + "end": 20813.45, + "probability": 0.8783 + }, + { + "start": 20813.98, + "end": 20814.5, + "probability": 0.8269 + }, + { + "start": 20814.96, + "end": 20818.4, + "probability": 0.833 + }, + { + "start": 20818.46, + "end": 20818.46, + "probability": 0.6614 + }, + { + "start": 20818.46, + "end": 20820.22, + "probability": 0.8647 + }, + { + "start": 20820.44, + "end": 20820.94, + "probability": 0.657 + }, + { + "start": 20822.04, + "end": 20824.32, + "probability": 0.9931 + }, + { + "start": 20824.4, + "end": 20825.26, + "probability": 0.7644 + }, + { + "start": 20825.76, + "end": 20826.6, + "probability": 0.6638 + }, + { + "start": 20826.6, + "end": 20827.8, + "probability": 0.7937 + }, + { + "start": 20828.46, + "end": 20831.08, + "probability": 0.9972 + }, + { + "start": 20831.14, + "end": 20836.98, + "probability": 0.9989 + }, + { + "start": 20837.08, + "end": 20837.9, + "probability": 0.4236 + }, + { + "start": 20837.92, + "end": 20839.92, + "probability": 0.8101 + }, + { + "start": 20840.5, + "end": 20842.56, + "probability": 0.9573 + }, + { + "start": 20843.12, + "end": 20849.34, + "probability": 0.9653 + }, + { + "start": 20849.5, + "end": 20849.9, + "probability": 0.6553 + }, + { + "start": 20849.96, + "end": 20850.58, + "probability": 0.915 + }, + { + "start": 20851.4, + "end": 20851.86, + "probability": 0.9521 + }, + { + "start": 20853.5, + "end": 20854.6, + "probability": 0.9675 + }, + { + "start": 20855.02, + "end": 20857.64, + "probability": 0.1933 + }, + { + "start": 20857.74, + "end": 20858.46, + "probability": 0.8268 + }, + { + "start": 20858.56, + "end": 20863.46, + "probability": 0.8066 + }, + { + "start": 20863.56, + "end": 20865.24, + "probability": 0.9955 + }, + { + "start": 20865.7, + "end": 20868.22, + "probability": 0.773 + }, + { + "start": 20868.46, + "end": 20869.46, + "probability": 0.2911 + }, + { + "start": 20869.54, + "end": 20869.8, + "probability": 0.2487 + }, + { + "start": 20869.96, + "end": 20872.74, + "probability": 0.809 + }, + { + "start": 20873.54, + "end": 20877.72, + "probability": 0.9836 + }, + { + "start": 20877.72, + "end": 20882.78, + "probability": 0.8792 + }, + { + "start": 20883.0, + "end": 20883.0, + "probability": 0.1928 + }, + { + "start": 20883.0, + "end": 20884.61, + "probability": 0.9821 + }, + { + "start": 20884.84, + "end": 20886.2, + "probability": 0.9961 + }, + { + "start": 20886.82, + "end": 20890.42, + "probability": 0.6388 + }, + { + "start": 20890.42, + "end": 20891.96, + "probability": 0.1246 + }, + { + "start": 20892.6, + "end": 20893.04, + "probability": 0.223 + }, + { + "start": 20893.7, + "end": 20894.28, + "probability": 0.8438 + }, + { + "start": 20894.84, + "end": 20895.77, + "probability": 0.3461 + }, + { + "start": 20896.54, + "end": 20897.72, + "probability": 0.5434 + }, + { + "start": 20897.88, + "end": 20898.09, + "probability": 0.0293 + }, + { + "start": 20898.42, + "end": 20900.52, + "probability": 0.6511 + }, + { + "start": 20901.04, + "end": 20901.54, + "probability": 0.8751 + }, + { + "start": 20901.86, + "end": 20902.6, + "probability": 0.6127 + }, + { + "start": 20902.6, + "end": 20904.7, + "probability": 0.6155 + }, + { + "start": 20908.0, + "end": 20908.46, + "probability": 0.0026 + }, + { + "start": 20908.66, + "end": 20909.08, + "probability": 0.0098 + }, + { + "start": 20909.46, + "end": 20910.7, + "probability": 0.1255 + }, + { + "start": 20911.25, + "end": 20913.42, + "probability": 0.7399 + }, + { + "start": 20914.1, + "end": 20916.98, + "probability": 0.5595 + }, + { + "start": 20917.44, + "end": 20920.04, + "probability": 0.9022 + }, + { + "start": 20920.14, + "end": 20925.42, + "probability": 0.863 + }, + { + "start": 20925.84, + "end": 20926.98, + "probability": 0.8429 + }, + { + "start": 20927.26, + "end": 20931.46, + "probability": 0.9818 + }, + { + "start": 20932.02, + "end": 20934.32, + "probability": 0.9829 + }, + { + "start": 20934.32, + "end": 20937.38, + "probability": 0.6125 + }, + { + "start": 20938.22, + "end": 20941.6, + "probability": 0.8977 + }, + { + "start": 20942.12, + "end": 20942.62, + "probability": 0.589 + }, + { + "start": 20943.34, + "end": 20947.4, + "probability": 0.7361 + }, + { + "start": 20947.74, + "end": 20950.08, + "probability": 0.865 + }, + { + "start": 20950.58, + "end": 20951.78, + "probability": 0.9128 + }, + { + "start": 20951.82, + "end": 20952.64, + "probability": 0.9132 + }, + { + "start": 20953.02, + "end": 20954.22, + "probability": 0.9672 + }, + { + "start": 20954.86, + "end": 20958.82, + "probability": 0.9322 + }, + { + "start": 20959.56, + "end": 20960.54, + "probability": 0.9077 + }, + { + "start": 20960.7, + "end": 20961.66, + "probability": 0.9209 + }, + { + "start": 20961.8, + "end": 20962.24, + "probability": 0.958 + }, + { + "start": 20962.64, + "end": 20964.12, + "probability": 0.9546 + }, + { + "start": 20964.26, + "end": 20966.4, + "probability": 0.8341 + }, + { + "start": 20967.34, + "end": 20969.1, + "probability": 0.6081 + }, + { + "start": 20969.66, + "end": 20971.58, + "probability": 0.8208 + }, + { + "start": 20972.0, + "end": 20974.4, + "probability": 0.6565 + }, + { + "start": 20975.04, + "end": 20978.48, + "probability": 0.5678 + }, + { + "start": 20979.18, + "end": 20979.96, + "probability": 0.7334 + }, + { + "start": 20980.62, + "end": 20982.9, + "probability": 0.9161 + }, + { + "start": 20984.3, + "end": 20986.08, + "probability": 0.8481 + }, + { + "start": 20986.68, + "end": 20987.72, + "probability": 0.7561 + }, + { + "start": 20988.58, + "end": 20993.3, + "probability": 0.9709 + }, + { + "start": 20993.38, + "end": 20994.38, + "probability": 0.6391 + }, + { + "start": 20995.3, + "end": 20996.96, + "probability": 0.9453 + }, + { + "start": 20997.18, + "end": 21000.04, + "probability": 0.8417 + }, + { + "start": 21000.04, + "end": 21000.5, + "probability": 0.2307 + }, + { + "start": 21000.92, + "end": 21002.94, + "probability": 0.9823 + }, + { + "start": 21003.22, + "end": 21004.06, + "probability": 0.9399 + }, + { + "start": 21004.34, + "end": 21007.24, + "probability": 0.9797 + }, + { + "start": 21007.56, + "end": 21009.92, + "probability": 0.9912 + }, + { + "start": 21010.22, + "end": 21011.12, + "probability": 0.8658 + }, + { + "start": 21011.42, + "end": 21012.22, + "probability": 0.8378 + }, + { + "start": 21012.32, + "end": 21013.18, + "probability": 0.614 + }, + { + "start": 21013.74, + "end": 21014.16, + "probability": 0.9438 + }, + { + "start": 21014.34, + "end": 21014.84, + "probability": 0.7888 + }, + { + "start": 21014.94, + "end": 21017.18, + "probability": 0.9202 + }, + { + "start": 21017.48, + "end": 21018.72, + "probability": 0.8301 + }, + { + "start": 21019.04, + "end": 21020.62, + "probability": 0.9243 + }, + { + "start": 21020.66, + "end": 21022.28, + "probability": 0.7354 + }, + { + "start": 21022.72, + "end": 21025.06, + "probability": 0.7799 + }, + { + "start": 21025.3, + "end": 21026.02, + "probability": 0.6871 + }, + { + "start": 21026.38, + "end": 21029.62, + "probability": 0.9902 + }, + { + "start": 21029.9, + "end": 21033.6, + "probability": 0.9927 + }, + { + "start": 21033.94, + "end": 21034.78, + "probability": 0.9802 + }, + { + "start": 21035.34, + "end": 21035.52, + "probability": 0.7874 + }, + { + "start": 21035.62, + "end": 21037.8, + "probability": 0.9333 + }, + { + "start": 21038.64, + "end": 21039.6, + "probability": 0.7572 + }, + { + "start": 21041.04, + "end": 21042.74, + "probability": 0.744 + }, + { + "start": 21042.84, + "end": 21044.3, + "probability": 0.7046 + }, + { + "start": 21045.12, + "end": 21046.46, + "probability": 0.6838 + }, + { + "start": 21063.16, + "end": 21063.44, + "probability": 0.3715 + }, + { + "start": 21063.5, + "end": 21064.22, + "probability": 0.4315 + }, + { + "start": 21067.04, + "end": 21068.16, + "probability": 0.7504 + }, + { + "start": 21069.52, + "end": 21072.86, + "probability": 0.7207 + }, + { + "start": 21074.68, + "end": 21075.38, + "probability": 0.7152 + }, + { + "start": 21076.82, + "end": 21078.02, + "probability": 0.8214 + }, + { + "start": 21080.52, + "end": 21081.12, + "probability": 0.0655 + }, + { + "start": 21082.92, + "end": 21083.6, + "probability": 0.6328 + }, + { + "start": 21085.08, + "end": 21085.64, + "probability": 0.7991 + }, + { + "start": 21086.2, + "end": 21087.38, + "probability": 0.7482 + }, + { + "start": 21088.6, + "end": 21089.82, + "probability": 0.1177 + }, + { + "start": 21090.24, + "end": 21094.02, + "probability": 0.9945 + }, + { + "start": 21094.6, + "end": 21095.3, + "probability": 0.6831 + }, + { + "start": 21095.88, + "end": 21097.7, + "probability": 0.9711 + }, + { + "start": 21098.5, + "end": 21099.2, + "probability": 0.6293 + }, + { + "start": 21099.34, + "end": 21101.52, + "probability": 0.9939 + }, + { + "start": 21102.08, + "end": 21102.86, + "probability": 0.6471 + }, + { + "start": 21103.44, + "end": 21108.72, + "probability": 0.797 + }, + { + "start": 21109.2, + "end": 21110.02, + "probability": 0.8818 + }, + { + "start": 21110.14, + "end": 21110.76, + "probability": 0.6533 + }, + { + "start": 21110.86, + "end": 21111.5, + "probability": 0.7961 + }, + { + "start": 21111.62, + "end": 21115.06, + "probability": 0.7896 + }, + { + "start": 21115.72, + "end": 21117.0, + "probability": 0.5997 + }, + { + "start": 21117.58, + "end": 21120.56, + "probability": 0.9954 + }, + { + "start": 21120.84, + "end": 21123.2, + "probability": 0.59 + }, + { + "start": 21124.46, + "end": 21127.24, + "probability": 0.82 + }, + { + "start": 21127.94, + "end": 21133.34, + "probability": 0.765 + }, + { + "start": 21133.98, + "end": 21140.4, + "probability": 0.8248 + }, + { + "start": 21140.92, + "end": 21142.06, + "probability": 0.1966 + }, + { + "start": 21144.06, + "end": 21145.38, + "probability": 0.9843 + }, + { + "start": 21147.08, + "end": 21151.82, + "probability": 0.7073 + }, + { + "start": 21152.06, + "end": 21154.52, + "probability": 0.5694 + }, + { + "start": 21155.78, + "end": 21158.12, + "probability": 0.8271 + }, + { + "start": 21159.08, + "end": 21160.48, + "probability": 0.9868 + }, + { + "start": 21161.04, + "end": 21163.32, + "probability": 0.7534 + }, + { + "start": 21163.4, + "end": 21163.98, + "probability": 0.5964 + }, + { + "start": 21164.08, + "end": 21166.22, + "probability": 0.7015 + }, + { + "start": 21166.26, + "end": 21169.3, + "probability": 0.5266 + }, + { + "start": 21171.42, + "end": 21174.6, + "probability": 0.0981 + }, + { + "start": 21175.6, + "end": 21180.32, + "probability": 0.7814 + }, + { + "start": 21181.24, + "end": 21183.28, + "probability": 0.5221 + }, + { + "start": 21183.76, + "end": 21185.92, + "probability": 0.9329 + }, + { + "start": 21186.26, + "end": 21186.71, + "probability": 0.9143 + }, + { + "start": 21187.28, + "end": 21188.42, + "probability": 0.8882 + }, + { + "start": 21188.64, + "end": 21192.62, + "probability": 0.9802 + }, + { + "start": 21193.42, + "end": 21195.26, + "probability": 0.8995 + }, + { + "start": 21196.4, + "end": 21197.62, + "probability": 0.7424 + }, + { + "start": 21198.24, + "end": 21200.0, + "probability": 0.7441 + }, + { + "start": 21200.02, + "end": 21201.82, + "probability": 0.7885 + }, + { + "start": 21203.29, + "end": 21204.7, + "probability": 0.445 + }, + { + "start": 21204.7, + "end": 21207.71, + "probability": 0.894 + }, + { + "start": 21210.42, + "end": 21210.7, + "probability": 0.0169 + }, + { + "start": 21210.7, + "end": 21213.98, + "probability": 0.6516 + }, + { + "start": 21214.02, + "end": 21215.26, + "probability": 0.6164 + }, + { + "start": 21215.76, + "end": 21218.68, + "probability": 0.7646 + }, + { + "start": 21218.88, + "end": 21221.68, + "probability": 0.6251 + }, + { + "start": 21223.01, + "end": 21225.18, + "probability": 0.527 + }, + { + "start": 21225.32, + "end": 21226.8, + "probability": 0.8837 + }, + { + "start": 21227.62, + "end": 21230.3, + "probability": 0.9636 + }, + { + "start": 21230.34, + "end": 21233.38, + "probability": 0.7515 + }, + { + "start": 21233.46, + "end": 21234.04, + "probability": 0.6768 + }, + { + "start": 21234.12, + "end": 21234.94, + "probability": 0.932 + }, + { + "start": 21235.44, + "end": 21236.84, + "probability": 0.5688 + }, + { + "start": 21237.02, + "end": 21238.26, + "probability": 0.9116 + }, + { + "start": 21238.7, + "end": 21239.38, + "probability": 0.8289 + }, + { + "start": 21239.66, + "end": 21243.22, + "probability": 0.8962 + }, + { + "start": 21243.64, + "end": 21246.06, + "probability": 0.7969 + }, + { + "start": 21246.54, + "end": 21249.98, + "probability": 0.4443 + }, + { + "start": 21250.04, + "end": 21250.32, + "probability": 0.3637 + }, + { + "start": 21251.06, + "end": 21254.52, + "probability": 0.7191 + }, + { + "start": 21255.2, + "end": 21258.4, + "probability": 0.8792 + }, + { + "start": 21258.78, + "end": 21262.1, + "probability": 0.2038 + }, + { + "start": 21262.1, + "end": 21264.86, + "probability": 0.6637 + }, + { + "start": 21265.32, + "end": 21265.92, + "probability": 0.9426 + }, + { + "start": 21266.78, + "end": 21268.35, + "probability": 0.8267 + }, + { + "start": 21268.96, + "end": 21272.92, + "probability": 0.9912 + }, + { + "start": 21273.06, + "end": 21274.88, + "probability": 0.8743 + }, + { + "start": 21275.38, + "end": 21277.86, + "probability": 0.8741 + }, + { + "start": 21277.98, + "end": 21278.6, + "probability": 0.6987 + }, + { + "start": 21278.62, + "end": 21279.16, + "probability": 0.316 + }, + { + "start": 21279.26, + "end": 21279.42, + "probability": 0.4851 + }, + { + "start": 21279.5, + "end": 21279.6, + "probability": 0.0313 + }, + { + "start": 21279.6, + "end": 21280.7, + "probability": 0.8706 + }, + { + "start": 21280.78, + "end": 21282.58, + "probability": 0.6514 + }, + { + "start": 21282.62, + "end": 21284.56, + "probability": 0.5958 + }, + { + "start": 21284.66, + "end": 21285.7, + "probability": 0.745 + }, + { + "start": 21286.06, + "end": 21290.28, + "probability": 0.9547 + }, + { + "start": 21290.44, + "end": 21291.18, + "probability": 0.4132 + }, + { + "start": 21291.66, + "end": 21292.68, + "probability": 0.6105 + }, + { + "start": 21292.72, + "end": 21296.22, + "probability": 0.5208 + }, + { + "start": 21296.22, + "end": 21296.24, + "probability": 0.1359 + }, + { + "start": 21296.24, + "end": 21296.28, + "probability": 0.4889 + }, + { + "start": 21296.28, + "end": 21298.62, + "probability": 0.6534 + }, + { + "start": 21298.68, + "end": 21299.66, + "probability": 0.1857 + }, + { + "start": 21299.88, + "end": 21301.38, + "probability": 0.9927 + }, + { + "start": 21301.9, + "end": 21302.06, + "probability": 0.1135 + }, + { + "start": 21302.06, + "end": 21303.86, + "probability": 0.7639 + }, + { + "start": 21304.52, + "end": 21305.88, + "probability": 0.201 + }, + { + "start": 21306.18, + "end": 21310.18, + "probability": 0.9648 + }, + { + "start": 21310.32, + "end": 21310.32, + "probability": 0.3432 + }, + { + "start": 21310.44, + "end": 21312.88, + "probability": 0.9238 + }, + { + "start": 21313.0, + "end": 21314.78, + "probability": 0.9648 + }, + { + "start": 21317.3, + "end": 21319.66, + "probability": 0.975 + }, + { + "start": 21322.8, + "end": 21324.6, + "probability": 0.5159 + }, + { + "start": 21324.68, + "end": 21327.18, + "probability": 0.603 + }, + { + "start": 21327.24, + "end": 21329.56, + "probability": 0.8018 + }, + { + "start": 21330.28, + "end": 21331.04, + "probability": 0.4779 + }, + { + "start": 21331.9, + "end": 21333.64, + "probability": 0.33 + }, + { + "start": 21333.66, + "end": 21338.48, + "probability": 0.7972 + }, + { + "start": 21338.5, + "end": 21338.7, + "probability": 0.0727 + }, + { + "start": 21339.16, + "end": 21339.9, + "probability": 0.8018 + }, + { + "start": 21339.96, + "end": 21341.04, + "probability": 0.5947 + }, + { + "start": 21341.66, + "end": 21342.54, + "probability": 0.0895 + }, + { + "start": 21342.72, + "end": 21345.18, + "probability": 0.0139 + }, + { + "start": 21346.72, + "end": 21347.64, + "probability": 0.0808 + }, + { + "start": 21347.92, + "end": 21348.16, + "probability": 0.1409 + }, + { + "start": 21348.16, + "end": 21348.16, + "probability": 0.0825 + }, + { + "start": 21349.56, + "end": 21349.7, + "probability": 0.1512 + }, + { + "start": 21349.7, + "end": 21349.7, + "probability": 0.0113 + }, + { + "start": 21349.7, + "end": 21350.62, + "probability": 0.493 + }, + { + "start": 21350.76, + "end": 21352.82, + "probability": 0.9309 + }, + { + "start": 21353.86, + "end": 21357.34, + "probability": 0.7438 + }, + { + "start": 21357.36, + "end": 21358.3, + "probability": 0.6373 + }, + { + "start": 21358.66, + "end": 21359.22, + "probability": 0.8361 + }, + { + "start": 21359.88, + "end": 21360.78, + "probability": 0.491 + }, + { + "start": 21360.82, + "end": 21361.68, + "probability": 0.9572 + }, + { + "start": 21361.84, + "end": 21366.4, + "probability": 0.9465 + }, + { + "start": 21367.16, + "end": 21368.6, + "probability": 0.6862 + }, + { + "start": 21369.66, + "end": 21370.36, + "probability": 0.5375 + }, + { + "start": 21370.4, + "end": 21371.16, + "probability": 0.7736 + }, + { + "start": 21371.26, + "end": 21371.74, + "probability": 0.6509 + }, + { + "start": 21371.86, + "end": 21372.97, + "probability": 0.9136 + }, + { + "start": 21375.44, + "end": 21377.28, + "probability": 0.8741 + }, + { + "start": 21378.4, + "end": 21382.14, + "probability": 0.5775 + }, + { + "start": 21383.2, + "end": 21384.04, + "probability": 0.6723 + }, + { + "start": 21384.22, + "end": 21386.74, + "probability": 0.8834 + }, + { + "start": 21386.84, + "end": 21388.02, + "probability": 0.1781 + }, + { + "start": 21388.3, + "end": 21389.76, + "probability": 0.9449 + }, + { + "start": 21389.98, + "end": 21390.48, + "probability": 0.7193 + }, + { + "start": 21390.52, + "end": 21391.0, + "probability": 0.494 + }, + { + "start": 21391.14, + "end": 21394.88, + "probability": 0.9929 + }, + { + "start": 21395.44, + "end": 21397.28, + "probability": 0.671 + }, + { + "start": 21398.14, + "end": 21398.88, + "probability": 0.9408 + }, + { + "start": 21399.58, + "end": 21402.36, + "probability": 0.6569 + }, + { + "start": 21402.52, + "end": 21404.38, + "probability": 0.5919 + }, + { + "start": 21405.0, + "end": 21408.41, + "probability": 0.6729 + }, + { + "start": 21409.64, + "end": 21409.7, + "probability": 0.0322 + }, + { + "start": 21409.7, + "end": 21410.28, + "probability": 0.3514 + }, + { + "start": 21410.38, + "end": 21411.52, + "probability": 0.9144 + }, + { + "start": 21411.62, + "end": 21412.34, + "probability": 0.6049 + }, + { + "start": 21412.78, + "end": 21415.42, + "probability": 0.3603 + }, + { + "start": 21415.54, + "end": 21416.38, + "probability": 0.3233 + }, + { + "start": 21416.54, + "end": 21417.08, + "probability": 0.0164 + }, + { + "start": 21417.16, + "end": 21417.52, + "probability": 0.2689 + }, + { + "start": 21417.52, + "end": 21419.62, + "probability": 0.1136 + }, + { + "start": 21420.0, + "end": 21421.86, + "probability": 0.5369 + }, + { + "start": 21422.08, + "end": 21424.2, + "probability": 0.0048 + }, + { + "start": 21424.22, + "end": 21424.22, + "probability": 0.149 + }, + { + "start": 21424.22, + "end": 21424.22, + "probability": 0.0515 + }, + { + "start": 21424.22, + "end": 21424.22, + "probability": 0.5525 + }, + { + "start": 21424.22, + "end": 21424.64, + "probability": 0.2214 + }, + { + "start": 21424.64, + "end": 21424.64, + "probability": 0.1601 + }, + { + "start": 21424.64, + "end": 21424.64, + "probability": 0.1749 + }, + { + "start": 21424.64, + "end": 21426.33, + "probability": 0.7755 + }, + { + "start": 21430.68, + "end": 21433.06, + "probability": 0.1556 + }, + { + "start": 21440.97, + "end": 21441.24, + "probability": 0.2066 + }, + { + "start": 21441.24, + "end": 21442.86, + "probability": 0.2516 + }, + { + "start": 21442.96, + "end": 21443.62, + "probability": 0.3488 + }, + { + "start": 21447.96, + "end": 21450.24, + "probability": 0.2566 + }, + { + "start": 21450.4, + "end": 21451.08, + "probability": 0.0387 + }, + { + "start": 21451.08, + "end": 21451.96, + "probability": 0.0476 + }, + { + "start": 21452.23, + "end": 21453.04, + "probability": 0.0967 + }, + { + "start": 21453.42, + "end": 21454.28, + "probability": 0.0568 + }, + { + "start": 21455.02, + "end": 21455.6, + "probability": 0.1226 + }, + { + "start": 21455.6, + "end": 21455.82, + "probability": 0.0603 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.0, + "end": 21509.0, + "probability": 0.0 + }, + { + "start": 21509.54, + "end": 21510.28, + "probability": 0.6346 + }, + { + "start": 21510.86, + "end": 21511.5, + "probability": 0.839 + }, + { + "start": 21512.18, + "end": 21514.52, + "probability": 0.833 + }, + { + "start": 21514.98, + "end": 21516.3, + "probability": 0.9558 + }, + { + "start": 21516.76, + "end": 21517.72, + "probability": 0.8582 + }, + { + "start": 21517.84, + "end": 21519.26, + "probability": 0.8409 + }, + { + "start": 21519.68, + "end": 21521.52, + "probability": 0.8212 + }, + { + "start": 21521.9, + "end": 21522.82, + "probability": 0.9467 + }, + { + "start": 21522.92, + "end": 21524.2, + "probability": 0.6629 + }, + { + "start": 21524.54, + "end": 21526.36, + "probability": 0.3381 + }, + { + "start": 21527.04, + "end": 21530.28, + "probability": 0.8352 + }, + { + "start": 21530.78, + "end": 21532.7, + "probability": 0.737 + }, + { + "start": 21533.2, + "end": 21534.36, + "probability": 0.9199 + }, + { + "start": 21534.36, + "end": 21535.7, + "probability": 0.5575 + }, + { + "start": 21536.62, + "end": 21538.12, + "probability": 0.8743 + }, + { + "start": 21538.62, + "end": 21540.34, + "probability": 0.8982 + }, + { + "start": 21541.16, + "end": 21542.81, + "probability": 0.9548 + }, + { + "start": 21543.36, + "end": 21544.66, + "probability": 0.3182 + }, + { + "start": 21545.26, + "end": 21549.02, + "probability": 0.9596 + }, + { + "start": 21549.36, + "end": 21549.74, + "probability": 0.8636 + }, + { + "start": 21549.82, + "end": 21550.22, + "probability": 0.978 + }, + { + "start": 21550.56, + "end": 21551.66, + "probability": 0.9151 + }, + { + "start": 21552.08, + "end": 21554.54, + "probability": 0.9846 + }, + { + "start": 21555.12, + "end": 21557.04, + "probability": 0.9702 + }, + { + "start": 21557.38, + "end": 21558.48, + "probability": 0.9736 + }, + { + "start": 21558.96, + "end": 21559.5, + "probability": 0.2877 + }, + { + "start": 21559.54, + "end": 21560.56, + "probability": 0.6926 + }, + { + "start": 21560.86, + "end": 21561.58, + "probability": 0.7278 + }, + { + "start": 21561.76, + "end": 21562.46, + "probability": 0.9684 + }, + { + "start": 21563.06, + "end": 21566.24, + "probability": 0.8667 + }, + { + "start": 21567.7, + "end": 21570.16, + "probability": 0.9437 + }, + { + "start": 21570.48, + "end": 21570.8, + "probability": 0.4996 + }, + { + "start": 21570.94, + "end": 21572.08, + "probability": 0.9282 + }, + { + "start": 21572.5, + "end": 21572.76, + "probability": 0.7328 + }, + { + "start": 21572.86, + "end": 21574.34, + "probability": 0.708 + }, + { + "start": 21574.82, + "end": 21575.84, + "probability": 0.9883 + }, + { + "start": 21576.1, + "end": 21576.74, + "probability": 0.7894 + }, + { + "start": 21576.82, + "end": 21577.36, + "probability": 0.3971 + }, + { + "start": 21577.58, + "end": 21581.26, + "probability": 0.9937 + }, + { + "start": 21581.74, + "end": 21582.86, + "probability": 0.7578 + }, + { + "start": 21583.04, + "end": 21583.82, + "probability": 0.6419 + }, + { + "start": 21584.1, + "end": 21588.72, + "probability": 0.9813 + }, + { + "start": 21589.34, + "end": 21590.25, + "probability": 0.4892 + }, + { + "start": 21591.08, + "end": 21592.32, + "probability": 0.9861 + }, + { + "start": 21593.74, + "end": 21594.36, + "probability": 0.6748 + }, + { + "start": 21594.46, + "end": 21594.98, + "probability": 0.8837 + }, + { + "start": 21595.22, + "end": 21597.82, + "probability": 0.7338 + }, + { + "start": 21598.38, + "end": 21601.2, + "probability": 0.0196 + }, + { + "start": 21601.26, + "end": 21601.66, + "probability": 0.0503 + }, + { + "start": 21601.66, + "end": 21601.9, + "probability": 0.3114 + }, + { + "start": 21601.9, + "end": 21602.17, + "probability": 0.5503 + }, + { + "start": 21603.54, + "end": 21608.76, + "probability": 0.87 + }, + { + "start": 21609.4, + "end": 21610.92, + "probability": 0.7539 + }, + { + "start": 21611.0, + "end": 21612.4, + "probability": 0.4915 + }, + { + "start": 21612.6, + "end": 21613.46, + "probability": 0.3984 + }, + { + "start": 21613.54, + "end": 21614.88, + "probability": 0.2442 + }, + { + "start": 21614.88, + "end": 21616.0, + "probability": 0.2431 + }, + { + "start": 21616.0, + "end": 21616.42, + "probability": 0.9172 + }, + { + "start": 21617.18, + "end": 21618.04, + "probability": 0.2864 + }, + { + "start": 21618.38, + "end": 21622.08, + "probability": 0.8677 + }, + { + "start": 21622.39, + "end": 21626.38, + "probability": 0.3748 + }, + { + "start": 21626.74, + "end": 21627.24, + "probability": 0.7047 + }, + { + "start": 21628.16, + "end": 21629.8, + "probability": 0.419 + }, + { + "start": 21630.04, + "end": 21634.34, + "probability": 0.7736 + }, + { + "start": 21636.12, + "end": 21638.66, + "probability": 0.8001 + }, + { + "start": 21638.74, + "end": 21639.84, + "probability": 0.9259 + }, + { + "start": 21639.84, + "end": 21640.04, + "probability": 0.5543 + }, + { + "start": 21640.26, + "end": 21640.92, + "probability": 0.5835 + }, + { + "start": 21641.32, + "end": 21642.68, + "probability": 0.77 + }, + { + "start": 21643.32, + "end": 21644.44, + "probability": 0.8256 + }, + { + "start": 21644.9, + "end": 21645.72, + "probability": 0.6072 + }, + { + "start": 21646.0, + "end": 21646.72, + "probability": 0.5265 + }, + { + "start": 21647.58, + "end": 21649.49, + "probability": 0.9355 + }, + { + "start": 21650.16, + "end": 21651.3, + "probability": 0.7533 + }, + { + "start": 21651.48, + "end": 21653.26, + "probability": 0.9175 + }, + { + "start": 21653.76, + "end": 21658.42, + "probability": 0.986 + }, + { + "start": 21658.94, + "end": 21660.24, + "probability": 0.999 + }, + { + "start": 21661.5, + "end": 21662.54, + "probability": 0.7375 + }, + { + "start": 21663.08, + "end": 21665.26, + "probability": 0.4656 + }, + { + "start": 21665.26, + "end": 21665.44, + "probability": 0.5376 + }, + { + "start": 21665.94, + "end": 21666.12, + "probability": 0.1746 + }, + { + "start": 21666.12, + "end": 21666.88, + "probability": 0.6902 + }, + { + "start": 21666.98, + "end": 21667.54, + "probability": 0.4925 + }, + { + "start": 21667.7, + "end": 21667.86, + "probability": 0.4917 + }, + { + "start": 21667.92, + "end": 21670.04, + "probability": 0.4658 + }, + { + "start": 21670.27, + "end": 21670.72, + "probability": 0.1429 + }, + { + "start": 21670.72, + "end": 21671.41, + "probability": 0.8903 + }, + { + "start": 21671.64, + "end": 21672.84, + "probability": 0.9668 + }, + { + "start": 21672.98, + "end": 21675.03, + "probability": 0.948 + }, + { + "start": 21675.4, + "end": 21678.32, + "probability": 0.8936 + }, + { + "start": 21678.8, + "end": 21678.94, + "probability": 0.0056 + }, + { + "start": 21678.94, + "end": 21678.94, + "probability": 0.2534 + }, + { + "start": 21679.04, + "end": 21679.4, + "probability": 0.712 + }, + { + "start": 21679.46, + "end": 21679.8, + "probability": 0.8987 + }, + { + "start": 21679.88, + "end": 21682.18, + "probability": 0.985 + }, + { + "start": 21682.46, + "end": 21683.64, + "probability": 0.9899 + }, + { + "start": 21683.8, + "end": 21684.74, + "probability": 0.9761 + }, + { + "start": 21684.84, + "end": 21685.9, + "probability": 0.8327 + }, + { + "start": 21686.02, + "end": 21688.66, + "probability": 0.988 + }, + { + "start": 21688.98, + "end": 21689.72, + "probability": 0.864 + }, + { + "start": 21689.86, + "end": 21691.98, + "probability": 0.969 + }, + { + "start": 21692.3, + "end": 21694.4, + "probability": 0.9162 + }, + { + "start": 21695.14, + "end": 21702.9, + "probability": 0.9671 + }, + { + "start": 21702.9, + "end": 21707.12, + "probability": 0.9985 + }, + { + "start": 21707.84, + "end": 21709.84, + "probability": 0.9961 + }, + { + "start": 21710.62, + "end": 21714.64, + "probability": 0.9937 + }, + { + "start": 21715.36, + "end": 21717.9, + "probability": 0.9824 + }, + { + "start": 21718.02, + "end": 21719.68, + "probability": 0.999 + }, + { + "start": 21720.48, + "end": 21724.14, + "probability": 0.9974 + }, + { + "start": 21724.38, + "end": 21727.14, + "probability": 0.9297 + }, + { + "start": 21727.18, + "end": 21732.68, + "probability": 0.9954 + }, + { + "start": 21733.26, + "end": 21737.26, + "probability": 0.9859 + }, + { + "start": 21737.36, + "end": 21737.78, + "probability": 0.9624 + }, + { + "start": 21738.8, + "end": 21744.22, + "probability": 0.993 + }, + { + "start": 21745.34, + "end": 21748.8, + "probability": 0.9985 + }, + { + "start": 21749.4, + "end": 21754.96, + "probability": 0.9884 + }, + { + "start": 21755.02, + "end": 21756.64, + "probability": 0.9846 + }, + { + "start": 21757.76, + "end": 21760.64, + "probability": 0.9811 + }, + { + "start": 21760.64, + "end": 21764.62, + "probability": 0.9248 + }, + { + "start": 21764.66, + "end": 21765.9, + "probability": 0.8914 + }, + { + "start": 21766.7, + "end": 21771.74, + "probability": 0.7727 + }, + { + "start": 21772.18, + "end": 21773.94, + "probability": 0.9437 + }, + { + "start": 21774.04, + "end": 21774.76, + "probability": 0.8942 + }, + { + "start": 21775.1, + "end": 21776.91, + "probability": 0.9971 + }, + { + "start": 21777.6, + "end": 21779.5, + "probability": 0.9961 + }, + { + "start": 21780.32, + "end": 21781.1, + "probability": 0.5941 + }, + { + "start": 21781.1, + "end": 21781.1, + "probability": 0.4788 + }, + { + "start": 21781.1, + "end": 21782.28, + "probability": 0.7664 + }, + { + "start": 21782.32, + "end": 21783.5, + "probability": 0.893 + }, + { + "start": 21783.96, + "end": 21785.24, + "probability": 0.9481 + }, + { + "start": 21785.46, + "end": 21787.06, + "probability": 0.9854 + }, + { + "start": 21787.32, + "end": 21788.14, + "probability": 0.7778 + }, + { + "start": 21788.24, + "end": 21789.6, + "probability": 0.9076 + }, + { + "start": 21789.92, + "end": 21793.52, + "probability": 0.971 + }, + { + "start": 21794.12, + "end": 21794.7, + "probability": 0.9345 + }, + { + "start": 21795.04, + "end": 21796.5, + "probability": 0.9789 + }, + { + "start": 21796.86, + "end": 21799.44, + "probability": 0.7385 + }, + { + "start": 21799.92, + "end": 21801.1, + "probability": 0.8765 + }, + { + "start": 21801.4, + "end": 21803.26, + "probability": 0.8868 + }, + { + "start": 21803.82, + "end": 21805.36, + "probability": 0.9358 + }, + { + "start": 21805.54, + "end": 21807.0, + "probability": 0.9757 + }, + { + "start": 21807.62, + "end": 21808.74, + "probability": 0.9834 + }, + { + "start": 21810.46, + "end": 21812.4, + "probability": 0.797 + }, + { + "start": 21813.14, + "end": 21816.16, + "probability": 0.7431 + }, + { + "start": 21816.98, + "end": 21819.8, + "probability": 0.8697 + }, + { + "start": 21820.02, + "end": 21821.34, + "probability": 0.9595 + }, + { + "start": 21822.14, + "end": 21824.52, + "probability": 0.9955 + }, + { + "start": 21824.64, + "end": 21826.15, + "probability": 0.9924 + }, + { + "start": 21829.7, + "end": 21829.7, + "probability": 0.0936 + }, + { + "start": 21829.7, + "end": 21830.62, + "probability": 0.1758 + }, + { + "start": 21831.14, + "end": 21832.68, + "probability": 0.9178 + }, + { + "start": 21833.14, + "end": 21836.1, + "probability": 0.9937 + }, + { + "start": 21837.92, + "end": 21839.66, + "probability": 0.9867 + }, + { + "start": 21840.28, + "end": 21841.0, + "probability": 0.2932 + }, + { + "start": 21841.0, + "end": 21841.1, + "probability": 0.3424 + }, + { + "start": 21841.36, + "end": 21843.06, + "probability": 0.6838 + }, + { + "start": 21843.06, + "end": 21843.2, + "probability": 0.2713 + }, + { + "start": 21843.32, + "end": 21846.48, + "probability": 0.979 + }, + { + "start": 21847.0, + "end": 21849.4, + "probability": 0.9716 + }, + { + "start": 21850.32, + "end": 21853.94, + "probability": 0.9823 + }, + { + "start": 21853.98, + "end": 21856.3, + "probability": 0.9334 + }, + { + "start": 21856.52, + "end": 21856.92, + "probability": 0.8535 + }, + { + "start": 21857.1, + "end": 21857.64, + "probability": 0.6592 + }, + { + "start": 21857.82, + "end": 21858.1, + "probability": 0.6161 + }, + { + "start": 21858.22, + "end": 21858.6, + "probability": 0.9469 + }, + { + "start": 21859.08, + "end": 21859.32, + "probability": 0.3703 + }, + { + "start": 21859.46, + "end": 21860.32, + "probability": 0.8665 + }, + { + "start": 21861.3, + "end": 21865.4, + "probability": 0.9881 + }, + { + "start": 21865.4, + "end": 21868.88, + "probability": 0.9898 + }, + { + "start": 21868.96, + "end": 21872.58, + "probability": 0.8656 + }, + { + "start": 21873.06, + "end": 21875.14, + "probability": 0.8361 + }, + { + "start": 21875.3, + "end": 21875.92, + "probability": 0.9601 + }, + { + "start": 21876.26, + "end": 21876.4, + "probability": 0.7371 + }, + { + "start": 21876.8, + "end": 21881.78, + "probability": 0.995 + }, + { + "start": 21881.78, + "end": 21886.22, + "probability": 0.9902 + }, + { + "start": 21886.56, + "end": 21888.96, + "probability": 0.8977 + }, + { + "start": 21889.24, + "end": 21890.24, + "probability": 0.3864 + }, + { + "start": 21890.34, + "end": 21890.84, + "probability": 0.6656 + }, + { + "start": 21891.18, + "end": 21891.48, + "probability": 0.7914 + }, + { + "start": 21892.26, + "end": 21893.52, + "probability": 0.8617 + }, + { + "start": 21894.26, + "end": 21895.0, + "probability": 0.4803 + }, + { + "start": 21895.72, + "end": 21897.4, + "probability": 0.9697 + }, + { + "start": 21898.72, + "end": 21899.42, + "probability": 0.737 + }, + { + "start": 21900.38, + "end": 21901.5, + "probability": 0.9643 + }, + { + "start": 21901.68, + "end": 21901.98, + "probability": 0.6265 + }, + { + "start": 21914.06, + "end": 21914.06, + "probability": 0.3502 + }, + { + "start": 21914.06, + "end": 21915.38, + "probability": 0.6568 + }, + { + "start": 21921.36, + "end": 21923.22, + "probability": 0.7289 + }, + { + "start": 21925.02, + "end": 21927.12, + "probability": 0.9255 + }, + { + "start": 21928.0, + "end": 21931.12, + "probability": 0.9979 + }, + { + "start": 21931.12, + "end": 21935.56, + "probability": 0.9993 + }, + { + "start": 21936.2, + "end": 21936.98, + "probability": 0.841 + }, + { + "start": 21937.66, + "end": 21939.94, + "probability": 0.9805 + }, + { + "start": 21940.9, + "end": 21943.36, + "probability": 0.9911 + }, + { + "start": 21943.44, + "end": 21944.14, + "probability": 0.5881 + }, + { + "start": 21944.24, + "end": 21945.54, + "probability": 0.7542 + }, + { + "start": 21946.48, + "end": 21949.86, + "probability": 0.9948 + }, + { + "start": 21950.46, + "end": 21955.2, + "probability": 0.9987 + }, + { + "start": 21955.82, + "end": 21958.7, + "probability": 0.9944 + }, + { + "start": 21960.28, + "end": 21961.78, + "probability": 0.6343 + }, + { + "start": 21962.64, + "end": 21965.22, + "probability": 0.7735 + }, + { + "start": 21967.5, + "end": 21971.26, + "probability": 0.809 + }, + { + "start": 21971.26, + "end": 21974.16, + "probability": 0.9968 + }, + { + "start": 21974.78, + "end": 21979.52, + "probability": 0.9989 + }, + { + "start": 21980.16, + "end": 21983.12, + "probability": 0.5201 + }, + { + "start": 21983.98, + "end": 21987.16, + "probability": 0.8702 + }, + { + "start": 21988.62, + "end": 21992.9, + "probability": 0.9097 + }, + { + "start": 21993.78, + "end": 21997.84, + "probability": 0.998 + }, + { + "start": 21998.72, + "end": 22000.76, + "probability": 0.9377 + }, + { + "start": 22000.86, + "end": 22003.8, + "probability": 0.9432 + }, + { + "start": 22004.54, + "end": 22007.4, + "probability": 0.9956 + }, + { + "start": 22008.12, + "end": 22010.08, + "probability": 0.5034 + }, + { + "start": 22011.28, + "end": 22012.28, + "probability": 0.7639 + }, + { + "start": 22012.34, + "end": 22013.6, + "probability": 0.9031 + }, + { + "start": 22013.64, + "end": 22014.5, + "probability": 0.8412 + }, + { + "start": 22014.58, + "end": 22019.74, + "probability": 0.9932 + }, + { + "start": 22020.4, + "end": 22025.46, + "probability": 0.9766 + }, + { + "start": 22026.0, + "end": 22027.4, + "probability": 0.9924 + }, + { + "start": 22028.28, + "end": 22030.1, + "probability": 0.9443 + }, + { + "start": 22030.78, + "end": 22032.06, + "probability": 0.9966 + }, + { + "start": 22033.44, + "end": 22036.08, + "probability": 0.9794 + }, + { + "start": 22036.8, + "end": 22040.1, + "probability": 0.9951 + }, + { + "start": 22040.64, + "end": 22045.7, + "probability": 0.9604 + }, + { + "start": 22046.5, + "end": 22050.08, + "probability": 0.9915 + }, + { + "start": 22050.08, + "end": 22053.58, + "probability": 0.9964 + }, + { + "start": 22054.34, + "end": 22056.32, + "probability": 0.9705 + }, + { + "start": 22057.1, + "end": 22064.36, + "probability": 0.9956 + }, + { + "start": 22064.5, + "end": 22070.66, + "probability": 0.9965 + }, + { + "start": 22071.42, + "end": 22072.6, + "probability": 0.9643 + }, + { + "start": 22073.36, + "end": 22073.82, + "probability": 0.7056 + }, + { + "start": 22073.82, + "end": 22074.1, + "probability": 0.9553 + }, + { + "start": 22074.1, + "end": 22075.7, + "probability": 0.983 + }, + { + "start": 22077.38, + "end": 22081.34, + "probability": 0.9785 + }, + { + "start": 22082.82, + "end": 22083.97, + "probability": 0.976 + }, + { + "start": 22084.92, + "end": 22087.4, + "probability": 0.9512 + }, + { + "start": 22088.24, + "end": 22089.53, + "probability": 0.9717 + }, + { + "start": 22090.28, + "end": 22095.14, + "probability": 0.9945 + }, + { + "start": 22095.26, + "end": 22095.48, + "probability": 0.8861 + }, + { + "start": 22096.14, + "end": 22097.66, + "probability": 0.7373 + }, + { + "start": 22097.98, + "end": 22099.2, + "probability": 0.5338 + }, + { + "start": 22100.68, + "end": 22101.5, + "probability": 0.7687 + }, + { + "start": 22102.14, + "end": 22104.06, + "probability": 0.9282 + }, + { + "start": 22104.54, + "end": 22107.24, + "probability": 0.9692 + }, + { + "start": 22107.3, + "end": 22107.84, + "probability": 0.7333 + }, + { + "start": 22115.26, + "end": 22117.18, + "probability": 0.8771 + }, + { + "start": 22118.74, + "end": 22121.36, + "probability": 0.9089 + }, + { + "start": 22122.3, + "end": 22124.44, + "probability": 0.7524 + }, + { + "start": 22125.1, + "end": 22125.83, + "probability": 0.2081 + }, + { + "start": 22126.98, + "end": 22130.68, + "probability": 0.2006 + }, + { + "start": 22130.92, + "end": 22131.92, + "probability": 0.8093 + }, + { + "start": 22132.52, + "end": 22136.3, + "probability": 0.7966 + }, + { + "start": 22136.3, + "end": 22136.84, + "probability": 0.4824 + }, + { + "start": 22136.98, + "end": 22137.94, + "probability": 0.8599 + }, + { + "start": 22138.2, + "end": 22142.09, + "probability": 0.9505 + }, + { + "start": 22142.12, + "end": 22144.44, + "probability": 0.9336 + }, + { + "start": 22145.52, + "end": 22145.9, + "probability": 0.4815 + }, + { + "start": 22146.02, + "end": 22146.32, + "probability": 0.0192 + }, + { + "start": 22146.32, + "end": 22146.74, + "probability": 0.8122 + }, + { + "start": 22147.02, + "end": 22147.04, + "probability": 0.1504 + }, + { + "start": 22147.04, + "end": 22151.82, + "probability": 0.8399 + }, + { + "start": 22151.92, + "end": 22152.0, + "probability": 0.0113 + }, + { + "start": 22152.08, + "end": 22154.62, + "probability": 0.5991 + }, + { + "start": 22155.26, + "end": 22155.7, + "probability": 0.0156 + }, + { + "start": 22155.88, + "end": 22156.2, + "probability": 0.7219 + }, + { + "start": 22156.36, + "end": 22158.18, + "probability": 0.8171 + }, + { + "start": 22159.42, + "end": 22162.36, + "probability": 0.1301 + }, + { + "start": 22163.98, + "end": 22166.5, + "probability": 0.7898 + }, + { + "start": 22167.26, + "end": 22168.96, + "probability": 0.8193 + }, + { + "start": 22170.18, + "end": 22175.26, + "probability": 0.9912 + }, + { + "start": 22176.06, + "end": 22178.78, + "probability": 0.8516 + }, + { + "start": 22179.16, + "end": 22181.52, + "probability": 0.9531 + }, + { + "start": 22182.32, + "end": 22184.46, + "probability": 0.946 + }, + { + "start": 22185.56, + "end": 22186.62, + "probability": 0.3478 + }, + { + "start": 22187.2, + "end": 22187.62, + "probability": 0.7668 + }, + { + "start": 22187.78, + "end": 22190.54, + "probability": 0.9897 + }, + { + "start": 22191.38, + "end": 22192.46, + "probability": 0.9216 + }, + { + "start": 22192.84, + "end": 22196.82, + "probability": 0.9785 + }, + { + "start": 22197.5, + "end": 22198.66, + "probability": 0.9844 + }, + { + "start": 22199.3, + "end": 22202.8, + "probability": 0.6631 + }, + { + "start": 22203.76, + "end": 22207.8, + "probability": 0.9981 + }, + { + "start": 22207.8, + "end": 22210.92, + "probability": 0.9735 + }, + { + "start": 22211.96, + "end": 22214.78, + "probability": 0.9841 + }, + { + "start": 22214.78, + "end": 22219.58, + "probability": 0.9847 + }, + { + "start": 22219.7, + "end": 22220.5, + "probability": 0.868 + }, + { + "start": 22221.36, + "end": 22223.86, + "probability": 0.9965 + }, + { + "start": 22223.86, + "end": 22227.18, + "probability": 0.9585 + }, + { + "start": 22227.9, + "end": 22228.97, + "probability": 0.9985 + }, + { + "start": 22229.84, + "end": 22232.62, + "probability": 0.9971 + }, + { + "start": 22233.4, + "end": 22235.48, + "probability": 0.8955 + }, + { + "start": 22236.36, + "end": 22238.94, + "probability": 0.8567 + }, + { + "start": 22239.44, + "end": 22243.22, + "probability": 0.9972 + }, + { + "start": 22244.06, + "end": 22250.32, + "probability": 0.9832 + }, + { + "start": 22251.08, + "end": 22253.6, + "probability": 0.9487 + }, + { + "start": 22253.86, + "end": 22255.88, + "probability": 0.9673 + }, + { + "start": 22256.4, + "end": 22258.54, + "probability": 0.994 + }, + { + "start": 22258.98, + "end": 22261.02, + "probability": 0.9838 + }, + { + "start": 22261.84, + "end": 22266.9, + "probability": 0.9917 + }, + { + "start": 22267.58, + "end": 22269.56, + "probability": 0.9899 + }, + { + "start": 22270.18, + "end": 22270.38, + "probability": 0.4843 + }, + { + "start": 22270.52, + "end": 22274.65, + "probability": 0.6455 + }, + { + "start": 22275.12, + "end": 22276.48, + "probability": 0.6443 + }, + { + "start": 22276.88, + "end": 22278.68, + "probability": 0.9619 + }, + { + "start": 22279.12, + "end": 22283.64, + "probability": 0.9694 + }, + { + "start": 22284.34, + "end": 22285.32, + "probability": 0.9421 + }, + { + "start": 22285.7, + "end": 22290.58, + "probability": 0.9978 + }, + { + "start": 22291.24, + "end": 22297.26, + "probability": 0.9155 + }, + { + "start": 22297.74, + "end": 22299.66, + "probability": 0.9504 + }, + { + "start": 22300.12, + "end": 22302.46, + "probability": 0.9183 + }, + { + "start": 22302.98, + "end": 22304.68, + "probability": 0.9951 + }, + { + "start": 22304.86, + "end": 22308.5, + "probability": 0.8781 + }, + { + "start": 22309.64, + "end": 22310.48, + "probability": 0.7316 + }, + { + "start": 22310.86, + "end": 22313.34, + "probability": 0.7507 + }, + { + "start": 22313.84, + "end": 22318.5, + "probability": 0.9613 + }, + { + "start": 22318.8, + "end": 22321.98, + "probability": 0.9688 + }, + { + "start": 22322.49, + "end": 22323.895, + "probability": 0.584 + }, + { + "start": 22324.76, + "end": 22329.72, + "probability": 0.9445 + }, + { + "start": 22329.72, + "end": 22334.04, + "probability": 0.9949 + }, + { + "start": 22334.36, + "end": 22335.68, + "probability": 0.8528 + }, + { + "start": 22335.82, + "end": 22336.54, + "probability": 0.5532 + }, + { + "start": 22336.62, + "end": 22336.68, + "probability": 0.6818 + }, + { + "start": 22336.92, + "end": 22342.56, + "probability": 0.9897 + }, + { + "start": 22343.13, + "end": 22347.46, + "probability": 0.998 + }, + { + "start": 22348.1, + "end": 22349.66, + "probability": 0.5677 + }, + { + "start": 22349.94, + "end": 22354.6, + "probability": 0.881 + }, + { + "start": 22357.68, + "end": 22357.9, + "probability": 0.5542 + }, + { + "start": 22358.74, + "end": 22359.24, + "probability": 0.0071 + }, + { + "start": 22359.24, + "end": 22359.24, + "probability": 0.1752 + }, + { + "start": 22359.24, + "end": 22359.24, + "probability": 0.3588 + }, + { + "start": 22359.24, + "end": 22360.62, + "probability": 0.6353 + }, + { + "start": 22362.64, + "end": 22366.0, + "probability": 0.824 + }, + { + "start": 22366.68, + "end": 22368.06, + "probability": 0.7745 + }, + { + "start": 22369.32, + "end": 22370.24, + "probability": 0.0979 + }, + { + "start": 22370.24, + "end": 22370.24, + "probability": 0.5537 + }, + { + "start": 22370.46, + "end": 22371.7, + "probability": 0.9896 + }, + { + "start": 22372.28, + "end": 22374.02, + "probability": 0.5542 + }, + { + "start": 22374.02, + "end": 22376.14, + "probability": 0.1707 + }, + { + "start": 22379.82, + "end": 22379.96, + "probability": 0.0491 + }, + { + "start": 22379.96, + "end": 22385.39, + "probability": 0.1433 + }, + { + "start": 22387.08, + "end": 22387.96, + "probability": 0.1546 + }, + { + "start": 22389.52, + "end": 22391.64, + "probability": 0.2752 + }, + { + "start": 22393.72, + "end": 22396.5, + "probability": 0.0539 + }, + { + "start": 22400.88, + "end": 22401.66, + "probability": 0.3869 + }, + { + "start": 22402.32, + "end": 22402.52, + "probability": 0.1143 + }, + { + "start": 22406.64, + "end": 22408.16, + "probability": 0.0844 + }, + { + "start": 22408.76, + "end": 22409.94, + "probability": 0.3143 + }, + { + "start": 22410.26, + "end": 22416.2, + "probability": 0.0504 + }, + { + "start": 22416.2, + "end": 22421.66, + "probability": 0.0132 + }, + { + "start": 22422.12, + "end": 22426.4, + "probability": 0.0177 + }, + { + "start": 22427.28, + "end": 22428.62, + "probability": 0.0268 + }, + { + "start": 22430.84, + "end": 22431.1, + "probability": 0.0016 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22452.0, + "end": 22452.0, + "probability": 0.0 + }, + { + "start": 22454.09, + "end": 22454.14, + "probability": 0.1071 + }, + { + "start": 22454.14, + "end": 22454.14, + "probability": 0.0212 + }, + { + "start": 22454.14, + "end": 22454.14, + "probability": 0.0309 + }, + { + "start": 22454.14, + "end": 22454.14, + "probability": 0.1094 + }, + { + "start": 22454.14, + "end": 22455.54, + "probability": 0.7848 + }, + { + "start": 22455.8, + "end": 22458.06, + "probability": 0.9257 + }, + { + "start": 22459.14, + "end": 22459.76, + "probability": 0.481 + }, + { + "start": 22460.54, + "end": 22463.44, + "probability": 0.9569 + }, + { + "start": 22464.24, + "end": 22465.2, + "probability": 0.7697 + }, + { + "start": 22466.36, + "end": 22468.36, + "probability": 0.9151 + }, + { + "start": 22469.52, + "end": 22471.92, + "probability": 0.8564 + }, + { + "start": 22472.46, + "end": 22473.28, + "probability": 0.9556 + }, + { + "start": 22473.98, + "end": 22478.62, + "probability": 0.9818 + }, + { + "start": 22479.08, + "end": 22481.62, + "probability": 0.8203 + }, + { + "start": 22482.32, + "end": 22483.68, + "probability": 0.9434 + }, + { + "start": 22484.26, + "end": 22486.84, + "probability": 0.9896 + }, + { + "start": 22487.54, + "end": 22488.68, + "probability": 0.9683 + }, + { + "start": 22490.1, + "end": 22494.8, + "probability": 0.8337 + }, + { + "start": 22495.42, + "end": 22499.22, + "probability": 0.6459 + }, + { + "start": 22499.72, + "end": 22502.04, + "probability": 0.8247 + }, + { + "start": 22503.06, + "end": 22508.4, + "probability": 0.8872 + }, + { + "start": 22509.48, + "end": 22510.68, + "probability": 0.96 + }, + { + "start": 22510.86, + "end": 22514.3, + "probability": 0.9902 + }, + { + "start": 22514.82, + "end": 22515.79, + "probability": 0.8158 + }, + { + "start": 22516.32, + "end": 22516.94, + "probability": 0.0208 + }, + { + "start": 22519.19, + "end": 22519.84, + "probability": 0.0766 + }, + { + "start": 22519.84, + "end": 22520.6, + "probability": 0.5812 + }, + { + "start": 22520.84, + "end": 22523.56, + "probability": 0.4986 + }, + { + "start": 22523.56, + "end": 22527.82, + "probability": 0.9846 + }, + { + "start": 22528.58, + "end": 22530.46, + "probability": 0.9436 + }, + { + "start": 22531.32, + "end": 22533.88, + "probability": 0.8331 + }, + { + "start": 22534.32, + "end": 22538.16, + "probability": 0.9792 + }, + { + "start": 22538.54, + "end": 22541.32, + "probability": 0.979 + }, + { + "start": 22541.9, + "end": 22543.58, + "probability": 0.9805 + }, + { + "start": 22544.6, + "end": 22549.9, + "probability": 0.995 + }, + { + "start": 22550.48, + "end": 22550.84, + "probability": 0.5655 + }, + { + "start": 22551.08, + "end": 22552.86, + "probability": 0.9543 + }, + { + "start": 22553.36, + "end": 22555.36, + "probability": 0.9681 + }, + { + "start": 22555.44, + "end": 22556.65, + "probability": 0.9651 + }, + { + "start": 22557.47, + "end": 22559.1, + "probability": 0.8618 + }, + { + "start": 22559.36, + "end": 22560.4, + "probability": 0.7521 + }, + { + "start": 22560.76, + "end": 22565.16, + "probability": 0.9767 + }, + { + "start": 22565.62, + "end": 22566.82, + "probability": 0.7481 + }, + { + "start": 22566.88, + "end": 22567.13, + "probability": 0.8514 + }, + { + "start": 22567.76, + "end": 22569.06, + "probability": 0.8755 + }, + { + "start": 22569.2, + "end": 22570.16, + "probability": 0.0411 + }, + { + "start": 22570.54, + "end": 22571.04, + "probability": 0.8664 + }, + { + "start": 22571.14, + "end": 22571.38, + "probability": 0.6318 + }, + { + "start": 22571.4, + "end": 22572.24, + "probability": 0.9976 + }, + { + "start": 22572.74, + "end": 22575.06, + "probability": 0.9793 + }, + { + "start": 22575.28, + "end": 22578.02, + "probability": 0.9448 + }, + { + "start": 22578.06, + "end": 22579.52, + "probability": 0.9638 + }, + { + "start": 22579.9, + "end": 22581.74, + "probability": 0.9541 + }, + { + "start": 22581.86, + "end": 22586.0, + "probability": 0.9658 + }, + { + "start": 22586.0, + "end": 22590.7, + "probability": 0.8774 + }, + { + "start": 22591.16, + "end": 22593.1, + "probability": 0.6609 + }, + { + "start": 22593.12, + "end": 22593.4, + "probability": 0.6318 + }, + { + "start": 22593.52, + "end": 22596.18, + "probability": 0.9804 + }, + { + "start": 22596.24, + "end": 22599.52, + "probability": 0.9817 + }, + { + "start": 22600.1, + "end": 22603.24, + "probability": 0.9889 + }, + { + "start": 22603.74, + "end": 22604.38, + "probability": 0.8244 + }, + { + "start": 22604.68, + "end": 22604.94, + "probability": 0.4264 + }, + { + "start": 22604.94, + "end": 22605.64, + "probability": 0.6124 + }, + { + "start": 22606.24, + "end": 22607.33, + "probability": 0.9834 + }, + { + "start": 22607.5, + "end": 22611.66, + "probability": 0.9945 + }, + { + "start": 22611.72, + "end": 22613.66, + "probability": 0.9744 + }, + { + "start": 22614.11, + "end": 22616.32, + "probability": 0.5197 + }, + { + "start": 22616.72, + "end": 22619.52, + "probability": 0.9374 + }, + { + "start": 22619.98, + "end": 22619.98, + "probability": 0.607 + }, + { + "start": 22620.18, + "end": 22620.2, + "probability": 0.1765 + }, + { + "start": 22620.2, + "end": 22621.72, + "probability": 0.8329 + }, + { + "start": 22622.22, + "end": 22623.52, + "probability": 0.8645 + }, + { + "start": 22623.62, + "end": 22624.28, + "probability": 0.7228 + }, + { + "start": 22624.76, + "end": 22625.54, + "probability": 0.9544 + }, + { + "start": 22625.76, + "end": 22626.74, + "probability": 0.6577 + }, + { + "start": 22627.24, + "end": 22628.24, + "probability": 0.585 + }, + { + "start": 22628.66, + "end": 22629.44, + "probability": 0.7951 + }, + { + "start": 22630.04, + "end": 22632.56, + "probability": 0.9498 + }, + { + "start": 22633.2, + "end": 22634.24, + "probability": 0.9917 + }, + { + "start": 22634.36, + "end": 22635.28, + "probability": 0.9612 + }, + { + "start": 22635.44, + "end": 22637.7, + "probability": 0.8065 + }, + { + "start": 22639.52, + "end": 22641.16, + "probability": 0.713 + }, + { + "start": 22642.58, + "end": 22644.68, + "probability": 0.4291 + }, + { + "start": 22644.68, + "end": 22646.82, + "probability": 0.9132 + }, + { + "start": 22647.34, + "end": 22649.08, + "probability": 0.9351 + }, + { + "start": 22650.46, + "end": 22651.76, + "probability": 0.9094 + }, + { + "start": 22653.04, + "end": 22656.14, + "probability": 0.7206 + }, + { + "start": 22656.84, + "end": 22659.38, + "probability": 0.5569 + }, + { + "start": 22660.08, + "end": 22660.54, + "probability": 0.9392 + }, + { + "start": 22661.6, + "end": 22661.92, + "probability": 0.9284 + }, + { + "start": 22663.6, + "end": 22664.64, + "probability": 0.7899 + }, + { + "start": 22665.54, + "end": 22667.06, + "probability": 0.9558 + }, + { + "start": 22667.36, + "end": 22669.6, + "probability": 0.5865 + }, + { + "start": 22671.2, + "end": 22673.0, + "probability": 0.955 + }, + { + "start": 22674.7, + "end": 22674.8, + "probability": 0.6525 + }, + { + "start": 22674.8, + "end": 22676.38, + "probability": 0.4924 + }, + { + "start": 22676.46, + "end": 22678.02, + "probability": 0.4877 + }, + { + "start": 22678.46, + "end": 22679.6, + "probability": 0.8275 + }, + { + "start": 22679.9, + "end": 22680.9, + "probability": 0.9618 + }, + { + "start": 22681.22, + "end": 22681.7, + "probability": 0.7382 + }, + { + "start": 22681.8, + "end": 22684.36, + "probability": 0.4792 + }, + { + "start": 22685.3, + "end": 22685.3, + "probability": 0.6179 + }, + { + "start": 22685.3, + "end": 22685.3, + "probability": 0.0275 + }, + { + "start": 22685.3, + "end": 22686.24, + "probability": 0.0518 + }, + { + "start": 22686.24, + "end": 22688.02, + "probability": 0.7566 + }, + { + "start": 22688.24, + "end": 22688.24, + "probability": 0.1739 + }, + { + "start": 22688.24, + "end": 22689.1, + "probability": 0.3394 + }, + { + "start": 22689.1, + "end": 22690.84, + "probability": 0.6843 + }, + { + "start": 22691.54, + "end": 22697.42, + "probability": 0.9744 + }, + { + "start": 22697.64, + "end": 22700.24, + "probability": 0.8307 + }, + { + "start": 22702.26, + "end": 22703.04, + "probability": 0.7414 + }, + { + "start": 22703.96, + "end": 22707.72, + "probability": 0.9753 + }, + { + "start": 22708.28, + "end": 22709.4, + "probability": 0.5555 + }, + { + "start": 22709.4, + "end": 22715.7, + "probability": 0.8506 + }, + { + "start": 22716.52, + "end": 22717.98, + "probability": 0.9554 + }, + { + "start": 22718.66, + "end": 22720.5, + "probability": 0.998 + }, + { + "start": 22721.28, + "end": 22722.24, + "probability": 0.9331 + }, + { + "start": 22722.82, + "end": 22726.48, + "probability": 0.8694 + }, + { + "start": 22727.56, + "end": 22730.0, + "probability": 0.9193 + }, + { + "start": 22730.66, + "end": 22732.42, + "probability": 0.9658 + }, + { + "start": 22733.3, + "end": 22737.46, + "probability": 0.9603 + }, + { + "start": 22738.2, + "end": 22738.62, + "probability": 0.9418 + }, + { + "start": 22739.9, + "end": 22740.84, + "probability": 0.981 + }, + { + "start": 22742.0, + "end": 22745.72, + "probability": 0.9812 + }, + { + "start": 22746.54, + "end": 22747.46, + "probability": 0.2369 + }, + { + "start": 22747.96, + "end": 22748.92, + "probability": 0.1132 + }, + { + "start": 22749.72, + "end": 22750.74, + "probability": 0.7676 + }, + { + "start": 22750.82, + "end": 22751.74, + "probability": 0.9844 + }, + { + "start": 22752.26, + "end": 22752.96, + "probability": 0.7026 + }, + { + "start": 22753.56, + "end": 22756.34, + "probability": 0.8985 + }, + { + "start": 22756.92, + "end": 22759.48, + "probability": 0.9508 + }, + { + "start": 22760.84, + "end": 22761.76, + "probability": 0.9135 + }, + { + "start": 22762.3, + "end": 22762.74, + "probability": 0.9707 + }, + { + "start": 22763.42, + "end": 22764.46, + "probability": 0.7119 + }, + { + "start": 22765.32, + "end": 22766.58, + "probability": 0.5838 + }, + { + "start": 22767.34, + "end": 22771.16, + "probability": 0.8133 + }, + { + "start": 22771.72, + "end": 22772.6, + "probability": 0.8495 + }, + { + "start": 22773.2, + "end": 22775.74, + "probability": 0.7613 + }, + { + "start": 22776.24, + "end": 22778.58, + "probability": 0.9287 + }, + { + "start": 22779.42, + "end": 22781.64, + "probability": 0.9944 + }, + { + "start": 22782.48, + "end": 22789.14, + "probability": 0.9846 + }, + { + "start": 22789.82, + "end": 22793.3, + "probability": 0.9492 + }, + { + "start": 22793.86, + "end": 22795.44, + "probability": 0.7561 + }, + { + "start": 22796.14, + "end": 22797.1, + "probability": 0.9667 + }, + { + "start": 22797.64, + "end": 22799.42, + "probability": 0.9985 + }, + { + "start": 22800.12, + "end": 22802.5, + "probability": 0.9946 + }, + { + "start": 22803.32, + "end": 22805.74, + "probability": 0.9773 + }, + { + "start": 22806.3, + "end": 22806.94, + "probability": 0.9855 + }, + { + "start": 22808.02, + "end": 22811.22, + "probability": 0.8779 + }, + { + "start": 22811.88, + "end": 22817.22, + "probability": 0.9934 + }, + { + "start": 22817.9, + "end": 22821.9, + "probability": 0.9399 + }, + { + "start": 22822.62, + "end": 22823.44, + "probability": 0.974 + }, + { + "start": 22824.18, + "end": 22825.2, + "probability": 0.9856 + }, + { + "start": 22825.84, + "end": 22828.02, + "probability": 0.945 + }, + { + "start": 22828.12, + "end": 22829.1, + "probability": 0.9822 + }, + { + "start": 22829.2, + "end": 22830.6, + "probability": 0.9714 + }, + { + "start": 22830.98, + "end": 22832.44, + "probability": 0.9872 + }, + { + "start": 22833.0, + "end": 22834.34, + "probability": 0.9834 + }, + { + "start": 22834.78, + "end": 22837.42, + "probability": 0.9915 + }, + { + "start": 22837.92, + "end": 22838.54, + "probability": 0.8993 + }, + { + "start": 22839.6, + "end": 22841.16, + "probability": 0.798 + }, + { + "start": 22842.24, + "end": 22843.92, + "probability": 0.8521 + }, + { + "start": 22846.42, + "end": 22847.24, + "probability": 0.6567 + }, + { + "start": 22849.94, + "end": 22851.47, + "probability": 0.8127 + }, + { + "start": 22852.06, + "end": 22853.83, + "probability": 0.8749 + }, + { + "start": 22854.66, + "end": 22855.54, + "probability": 0.8639 + }, + { + "start": 22856.58, + "end": 22857.38, + "probability": 0.6382 + }, + { + "start": 22858.0, + "end": 22859.02, + "probability": 0.9432 + }, + { + "start": 22859.06, + "end": 22859.94, + "probability": 0.7101 + }, + { + "start": 22860.42, + "end": 22861.16, + "probability": 0.9661 + }, + { + "start": 22861.24, + "end": 22862.1, + "probability": 0.6476 + }, + { + "start": 22863.18, + "end": 22864.28, + "probability": 0.9849 + }, + { + "start": 22865.38, + "end": 22867.42, + "probability": 0.8646 + }, + { + "start": 22867.98, + "end": 22868.6, + "probability": 0.7358 + }, + { + "start": 22869.22, + "end": 22871.08, + "probability": 0.7106 + }, + { + "start": 22871.64, + "end": 22873.9, + "probability": 0.6601 + }, + { + "start": 22876.58, + "end": 22877.46, + "probability": 0.8809 + }, + { + "start": 22885.82, + "end": 22888.48, + "probability": 0.7428 + }, + { + "start": 22889.78, + "end": 22892.82, + "probability": 0.9265 + }, + { + "start": 22892.82, + "end": 22893.66, + "probability": 0.7343 + }, + { + "start": 22893.72, + "end": 22894.4, + "probability": 0.8906 + }, + { + "start": 22894.4, + "end": 22897.2, + "probability": 0.8572 + }, + { + "start": 22897.24, + "end": 22898.1, + "probability": 0.5333 + }, + { + "start": 22899.6, + "end": 22904.14, + "probability": 0.9957 + }, + { + "start": 22905.08, + "end": 22908.16, + "probability": 0.8761 + }, + { + "start": 22908.46, + "end": 22910.12, + "probability": 0.7712 + }, + { + "start": 22911.08, + "end": 22913.88, + "probability": 0.9673 + }, + { + "start": 22914.76, + "end": 22919.44, + "probability": 0.9987 + }, + { + "start": 22920.38, + "end": 22923.32, + "probability": 0.9587 + }, + { + "start": 22923.88, + "end": 22925.38, + "probability": 0.9346 + }, + { + "start": 22927.88, + "end": 22934.56, + "probability": 0.9954 + }, + { + "start": 22935.58, + "end": 22936.1, + "probability": 0.8856 + }, + { + "start": 22937.12, + "end": 22937.92, + "probability": 0.9839 + }, + { + "start": 22941.04, + "end": 22942.9, + "probability": 0.7187 + }, + { + "start": 22944.02, + "end": 22946.66, + "probability": 0.958 + }, + { + "start": 22947.6, + "end": 22952.34, + "probability": 0.9966 + }, + { + "start": 22954.0, + "end": 22958.2, + "probability": 0.8459 + }, + { + "start": 22959.44, + "end": 22961.4, + "probability": 0.9398 + }, + { + "start": 22961.54, + "end": 22967.6, + "probability": 0.9878 + }, + { + "start": 22968.74, + "end": 22972.56, + "probability": 0.6958 + }, + { + "start": 22975.12, + "end": 22978.2, + "probability": 0.9939 + }, + { + "start": 22979.62, + "end": 22982.62, + "probability": 0.8006 + }, + { + "start": 22983.14, + "end": 22985.26, + "probability": 0.7072 + }, + { + "start": 22986.84, + "end": 22992.08, + "probability": 0.9866 + }, + { + "start": 22992.34, + "end": 22993.38, + "probability": 0.5066 + }, + { + "start": 22994.08, + "end": 22999.72, + "probability": 0.947 + }, + { + "start": 23001.26, + "end": 23006.44, + "probability": 0.9483 + }, + { + "start": 23007.92, + "end": 23010.44, + "probability": 0.9785 + }, + { + "start": 23010.9, + "end": 23012.48, + "probability": 0.894 + }, + { + "start": 23014.72, + "end": 23019.54, + "probability": 0.9336 + }, + { + "start": 23020.3, + "end": 23022.5, + "probability": 0.9808 + }, + { + "start": 23023.66, + "end": 23028.4, + "probability": 0.9857 + }, + { + "start": 23028.48, + "end": 23032.08, + "probability": 0.9987 + }, + { + "start": 23032.32, + "end": 23033.22, + "probability": 0.9468 + }, + { + "start": 23034.56, + "end": 23036.38, + "probability": 0.6939 + }, + { + "start": 23037.96, + "end": 23038.8, + "probability": 0.9842 + }, + { + "start": 23041.86, + "end": 23046.96, + "probability": 0.9168 + }, + { + "start": 23047.72, + "end": 23051.32, + "probability": 0.7447 + }, + { + "start": 23051.42, + "end": 23053.08, + "probability": 0.7144 + }, + { + "start": 23055.4, + "end": 23062.2, + "probability": 0.9961 + }, + { + "start": 23063.62, + "end": 23064.18, + "probability": 0.2278 + }, + { + "start": 23064.18, + "end": 23067.0, + "probability": 0.6742 + }, + { + "start": 23067.78, + "end": 23068.72, + "probability": 0.8014 + }, + { + "start": 23068.88, + "end": 23074.24, + "probability": 0.9847 + }, + { + "start": 23075.24, + "end": 23079.2, + "probability": 0.9899 + }, + { + "start": 23079.32, + "end": 23079.84, + "probability": 0.1596 + }, + { + "start": 23079.84, + "end": 23079.84, + "probability": 0.2887 + }, + { + "start": 23079.84, + "end": 23081.74, + "probability": 0.9951 + }, + { + "start": 23081.96, + "end": 23082.36, + "probability": 0.7197 + }, + { + "start": 23083.4, + "end": 23085.82, + "probability": 0.7738 + }, + { + "start": 23086.82, + "end": 23087.5, + "probability": 0.5218 + }, + { + "start": 23089.24, + "end": 23089.94, + "probability": 0.9805 + }, + { + "start": 23090.6, + "end": 23093.32, + "probability": 0.9943 + }, + { + "start": 23094.22, + "end": 23096.36, + "probability": 0.9457 + }, + { + "start": 23096.82, + "end": 23097.16, + "probability": 0.6871 + }, + { + "start": 23097.24, + "end": 23100.0, + "probability": 0.8293 + }, + { + "start": 23100.76, + "end": 23103.94, + "probability": 0.9021 + }, + { + "start": 23105.12, + "end": 23106.3, + "probability": 0.5438 + }, + { + "start": 23106.38, + "end": 23107.32, + "probability": 0.644 + }, + { + "start": 23107.32, + "end": 23107.42, + "probability": 0.739 + }, + { + "start": 23108.28, + "end": 23108.38, + "probability": 0.4985 + }, + { + "start": 23108.44, + "end": 23109.28, + "probability": 0.8997 + }, + { + "start": 23109.98, + "end": 23110.38, + "probability": 0.59 + }, + { + "start": 23111.74, + "end": 23114.64, + "probability": 0.5333 + }, + { + "start": 23114.66, + "end": 23115.96, + "probability": 0.9031 + }, + { + "start": 23124.5, + "end": 23125.06, + "probability": 0.674 + }, + { + "start": 23126.0, + "end": 23126.42, + "probability": 0.8376 + }, + { + "start": 23128.51, + "end": 23131.32, + "probability": 0.6543 + }, + { + "start": 23132.46, + "end": 23133.38, + "probability": 0.7416 + }, + { + "start": 23135.86, + "end": 23139.8, + "probability": 0.9695 + }, + { + "start": 23140.64, + "end": 23142.4, + "probability": 0.9066 + }, + { + "start": 23143.22, + "end": 23146.86, + "probability": 0.9763 + }, + { + "start": 23147.82, + "end": 23151.22, + "probability": 0.7908 + }, + { + "start": 23151.5, + "end": 23153.36, + "probability": 0.9968 + }, + { + "start": 23153.7, + "end": 23154.42, + "probability": 0.9739 + }, + { + "start": 23155.04, + "end": 23160.76, + "probability": 0.9847 + }, + { + "start": 23161.94, + "end": 23163.16, + "probability": 0.951 + }, + { + "start": 23163.56, + "end": 23165.22, + "probability": 0.9962 + }, + { + "start": 23165.7, + "end": 23170.6, + "probability": 0.9904 + }, + { + "start": 23171.7, + "end": 23175.06, + "probability": 0.9602 + }, + { + "start": 23175.68, + "end": 23178.8, + "probability": 0.9842 + }, + { + "start": 23179.52, + "end": 23180.96, + "probability": 0.9746 + }, + { + "start": 23182.14, + "end": 23183.48, + "probability": 0.6232 + }, + { + "start": 23184.44, + "end": 23188.62, + "probability": 0.9922 + }, + { + "start": 23189.12, + "end": 23190.32, + "probability": 0.9228 + }, + { + "start": 23191.36, + "end": 23193.16, + "probability": 0.5787 + }, + { + "start": 23194.3, + "end": 23195.14, + "probability": 0.8804 + }, + { + "start": 23195.86, + "end": 23199.36, + "probability": 0.9175 + }, + { + "start": 23200.6, + "end": 23203.94, + "probability": 0.9973 + }, + { + "start": 23204.6, + "end": 23206.32, + "probability": 0.9651 + }, + { + "start": 23206.88, + "end": 23208.98, + "probability": 0.9989 + }, + { + "start": 23209.92, + "end": 23212.62, + "probability": 0.9813 + }, + { + "start": 23212.96, + "end": 23216.32, + "probability": 0.9828 + }, + { + "start": 23216.54, + "end": 23218.77, + "probability": 0.9757 + }, + { + "start": 23219.32, + "end": 23222.06, + "probability": 0.915 + }, + { + "start": 23222.64, + "end": 23225.9, + "probability": 0.9664 + }, + { + "start": 23226.68, + "end": 23230.16, + "probability": 0.9926 + }, + { + "start": 23230.2, + "end": 23232.96, + "probability": 0.9749 + }, + { + "start": 23233.66, + "end": 23234.6, + "probability": 0.666 + }, + { + "start": 23235.58, + "end": 23238.22, + "probability": 0.9088 + }, + { + "start": 23239.1, + "end": 23241.7, + "probability": 0.9383 + }, + { + "start": 23241.88, + "end": 23244.7, + "probability": 0.9091 + }, + { + "start": 23245.44, + "end": 23248.5, + "probability": 0.9957 + }, + { + "start": 23249.26, + "end": 23251.3, + "probability": 0.9395 + }, + { + "start": 23252.22, + "end": 23254.48, + "probability": 0.6012 + }, + { + "start": 23254.9, + "end": 23257.52, + "probability": 0.7364 + }, + { + "start": 23257.68, + "end": 23258.4, + "probability": 0.7403 + }, + { + "start": 23258.54, + "end": 23259.83, + "probability": 0.9907 + }, + { + "start": 23260.12, + "end": 23261.36, + "probability": 0.2957 + }, + { + "start": 23262.04, + "end": 23263.25, + "probability": 0.9932 + }, + { + "start": 23263.56, + "end": 23266.26, + "probability": 0.9289 + }, + { + "start": 23267.68, + "end": 23268.18, + "probability": 0.3313 + }, + { + "start": 23268.52, + "end": 23271.18, + "probability": 0.6017 + }, + { + "start": 23271.64, + "end": 23275.46, + "probability": 0.9915 + }, + { + "start": 23275.86, + "end": 23280.02, + "probability": 0.998 + }, + { + "start": 23281.12, + "end": 23281.9, + "probability": 0.5228 + }, + { + "start": 23282.7, + "end": 23283.94, + "probability": 0.994 + }, + { + "start": 23285.92, + "end": 23286.84, + "probability": 0.877 + }, + { + "start": 23287.56, + "end": 23289.48, + "probability": 0.9196 + }, + { + "start": 23290.16, + "end": 23293.44, + "probability": 0.9863 + }, + { + "start": 23294.14, + "end": 23297.9, + "probability": 0.9092 + }, + { + "start": 23298.52, + "end": 23299.24, + "probability": 0.2946 + }, + { + "start": 23299.88, + "end": 23300.64, + "probability": 0.5678 + }, + { + "start": 23301.26, + "end": 23303.28, + "probability": 0.498 + }, + { + "start": 23303.82, + "end": 23305.78, + "probability": 0.8901 + }, + { + "start": 23305.82, + "end": 23307.24, + "probability": 0.7376 + }, + { + "start": 23307.44, + "end": 23310.5, + "probability": 0.9165 + }, + { + "start": 23310.98, + "end": 23312.0, + "probability": 0.4771 + }, + { + "start": 23313.14, + "end": 23316.48, + "probability": 0.8921 + }, + { + "start": 23316.58, + "end": 23317.7, + "probability": 0.6619 + }, + { + "start": 23317.7, + "end": 23319.1, + "probability": 0.0757 + }, + { + "start": 23320.24, + "end": 23321.26, + "probability": 0.6528 + }, + { + "start": 23321.88, + "end": 23324.48, + "probability": 0.3855 + }, + { + "start": 23324.48, + "end": 23326.52, + "probability": 0.7652 + }, + { + "start": 23326.74, + "end": 23329.66, + "probability": 0.7904 + }, + { + "start": 23330.3, + "end": 23330.62, + "probability": 0.0636 + }, + { + "start": 23331.68, + "end": 23332.74, + "probability": 0.111 + }, + { + "start": 23333.28, + "end": 23333.7, + "probability": 0.0231 + }, + { + "start": 23334.32, + "end": 23335.14, + "probability": 0.8983 + }, + { + "start": 23335.42, + "end": 23337.94, + "probability": 0.5541 + }, + { + "start": 23338.52, + "end": 23340.48, + "probability": 0.7516 + }, + { + "start": 23341.24, + "end": 23342.08, + "probability": 0.7275 + }, + { + "start": 23342.2, + "end": 23343.24, + "probability": 0.6178 + }, + { + "start": 23344.02, + "end": 23346.51, + "probability": 0.8106 + }, + { + "start": 23347.48, + "end": 23347.84, + "probability": 0.9136 + }, + { + "start": 23347.92, + "end": 23348.72, + "probability": 0.9135 + }, + { + "start": 23349.22, + "end": 23351.32, + "probability": 0.7402 + }, + { + "start": 23351.4, + "end": 23351.4, + "probability": 0.4243 + }, + { + "start": 23351.8, + "end": 23352.82, + "probability": 0.797 + }, + { + "start": 23353.28, + "end": 23354.26, + "probability": 0.9658 + }, + { + "start": 23354.32, + "end": 23354.54, + "probability": 0.4896 + }, + { + "start": 23354.56, + "end": 23354.62, + "probability": 0.8041 + }, + { + "start": 23354.62, + "end": 23355.52, + "probability": 0.8305 + }, + { + "start": 23356.28, + "end": 23356.9, + "probability": 0.4507 + }, + { + "start": 23357.02, + "end": 23357.54, + "probability": 0.4165 + }, + { + "start": 23358.08, + "end": 23362.34, + "probability": 0.4516 + }, + { + "start": 23362.36, + "end": 23363.16, + "probability": 0.7851 + }, + { + "start": 23363.32, + "end": 23363.56, + "probability": 0.2837 + }, + { + "start": 23363.88, + "end": 23364.54, + "probability": 0.557 + }, + { + "start": 23364.54, + "end": 23366.48, + "probability": 0.6673 + }, + { + "start": 23367.26, + "end": 23369.2, + "probability": 0.8468 + }, + { + "start": 23370.66, + "end": 23376.28, + "probability": 0.783 + }, + { + "start": 23376.92, + "end": 23378.1, + "probability": 0.6304 + }, + { + "start": 23391.74, + "end": 23392.9, + "probability": 0.6967 + }, + { + "start": 23393.48, + "end": 23394.34, + "probability": 0.744 + }, + { + "start": 23395.06, + "end": 23399.74, + "probability": 0.7523 + }, + { + "start": 23401.1, + "end": 23404.6, + "probability": 0.9787 + }, + { + "start": 23405.52, + "end": 23407.36, + "probability": 0.9884 + }, + { + "start": 23409.06, + "end": 23410.7, + "probability": 0.9788 + }, + { + "start": 23410.78, + "end": 23415.48, + "probability": 0.9927 + }, + { + "start": 23416.14, + "end": 23418.18, + "probability": 0.8287 + }, + { + "start": 23418.78, + "end": 23419.92, + "probability": 0.9302 + }, + { + "start": 23421.36, + "end": 23427.18, + "probability": 0.9823 + }, + { + "start": 23427.6, + "end": 23430.98, + "probability": 0.98 + }, + { + "start": 23432.86, + "end": 23435.32, + "probability": 0.9446 + }, + { + "start": 23436.02, + "end": 23439.6, + "probability": 0.9717 + }, + { + "start": 23440.06, + "end": 23441.18, + "probability": 0.6058 + }, + { + "start": 23441.96, + "end": 23448.64, + "probability": 0.9685 + }, + { + "start": 23451.64, + "end": 23451.66, + "probability": 0.2363 + }, + { + "start": 23451.66, + "end": 23453.38, + "probability": 0.3243 + }, + { + "start": 23454.52, + "end": 23457.48, + "probability": 0.9513 + }, + { + "start": 23457.92, + "end": 23461.32, + "probability": 0.9854 + }, + { + "start": 23461.78, + "end": 23463.14, + "probability": 0.46 + }, + { + "start": 23463.6, + "end": 23465.06, + "probability": 0.7123 + }, + { + "start": 23465.62, + "end": 23466.94, + "probability": 0.1441 + }, + { + "start": 23467.36, + "end": 23467.38, + "probability": 0.3819 + }, + { + "start": 23467.38, + "end": 23476.5, + "probability": 0.7508 + }, + { + "start": 23476.88, + "end": 23481.04, + "probability": 0.9555 + }, + { + "start": 23481.44, + "end": 23484.78, + "probability": 0.669 + }, + { + "start": 23485.18, + "end": 23485.76, + "probability": 0.4075 + }, + { + "start": 23486.4, + "end": 23488.04, + "probability": 0.924 + }, + { + "start": 23488.56, + "end": 23490.04, + "probability": 0.7162 + }, + { + "start": 23490.66, + "end": 23494.3, + "probability": 0.991 + }, + { + "start": 23494.48, + "end": 23497.44, + "probability": 0.9937 + }, + { + "start": 23498.14, + "end": 23501.32, + "probability": 0.9956 + }, + { + "start": 23501.4, + "end": 23501.66, + "probability": 0.9808 + }, + { + "start": 23502.88, + "end": 23507.16, + "probability": 0.9827 + }, + { + "start": 23508.06, + "end": 23509.32, + "probability": 0.7537 + }, + { + "start": 23510.0, + "end": 23511.12, + "probability": 0.9548 + }, + { + "start": 23511.18, + "end": 23512.78, + "probability": 0.8159 + }, + { + "start": 23512.88, + "end": 23514.26, + "probability": 0.8784 + }, + { + "start": 23515.48, + "end": 23521.4, + "probability": 0.8901 + }, + { + "start": 23521.64, + "end": 23527.44, + "probability": 0.988 + }, + { + "start": 23527.92, + "end": 23530.88, + "probability": 0.9978 + }, + { + "start": 23532.24, + "end": 23535.98, + "probability": 0.9951 + }, + { + "start": 23535.98, + "end": 23541.28, + "probability": 0.9923 + }, + { + "start": 23542.36, + "end": 23544.46, + "probability": 0.9922 + }, + { + "start": 23545.12, + "end": 23547.48, + "probability": 0.9216 + }, + { + "start": 23548.1, + "end": 23550.54, + "probability": 0.9469 + }, + { + "start": 23550.96, + "end": 23552.12, + "probability": 0.9312 + }, + { + "start": 23552.44, + "end": 23555.44, + "probability": 0.9725 + }, + { + "start": 23555.72, + "end": 23558.0, + "probability": 0.9988 + }, + { + "start": 23558.18, + "end": 23562.16, + "probability": 0.991 + }, + { + "start": 23562.2, + "end": 23566.0, + "probability": 0.9926 + }, + { + "start": 23566.04, + "end": 23568.04, + "probability": 0.9513 + }, + { + "start": 23568.4, + "end": 23570.22, + "probability": 0.9791 + }, + { + "start": 23570.62, + "end": 23574.86, + "probability": 0.9908 + }, + { + "start": 23575.72, + "end": 23576.8, + "probability": 0.627 + }, + { + "start": 23577.12, + "end": 23580.42, + "probability": 0.981 + }, + { + "start": 23580.8, + "end": 23581.04, + "probability": 0.0435 + }, + { + "start": 23581.04, + "end": 23582.02, + "probability": 0.6869 + }, + { + "start": 23582.12, + "end": 23583.12, + "probability": 0.7932 + }, + { + "start": 23583.3, + "end": 23584.6, + "probability": 0.9616 + }, + { + "start": 23584.68, + "end": 23585.2, + "probability": 0.3668 + }, + { + "start": 23585.38, + "end": 23586.44, + "probability": 0.642 + }, + { + "start": 23587.28, + "end": 23589.64, + "probability": 0.633 + }, + { + "start": 23590.12, + "end": 23591.26, + "probability": 0.9238 + }, + { + "start": 23606.3, + "end": 23606.3, + "probability": 0.5351 + }, + { + "start": 23606.3, + "end": 23607.88, + "probability": 0.7049 + }, + { + "start": 23608.08, + "end": 23609.66, + "probability": 0.9463 + }, + { + "start": 23609.76, + "end": 23610.61, + "probability": 0.3187 + }, + { + "start": 23611.96, + "end": 23612.76, + "probability": 0.9211 + }, + { + "start": 23616.66, + "end": 23618.52, + "probability": 0.7113 + }, + { + "start": 23619.98, + "end": 23625.34, + "probability": 0.994 + }, + { + "start": 23626.2, + "end": 23626.5, + "probability": 0.7716 + }, + { + "start": 23627.28, + "end": 23629.82, + "probability": 0.807 + }, + { + "start": 23630.72, + "end": 23632.66, + "probability": 0.6879 + }, + { + "start": 23634.04, + "end": 23634.74, + "probability": 0.623 + }, + { + "start": 23635.28, + "end": 23636.0, + "probability": 0.4265 + }, + { + "start": 23637.5, + "end": 23637.74, + "probability": 0.3559 + }, + { + "start": 23637.74, + "end": 23637.82, + "probability": 0.202 + }, + { + "start": 23637.82, + "end": 23637.82, + "probability": 0.5231 + }, + { + "start": 23637.82, + "end": 23639.26, + "probability": 0.5515 + }, + { + "start": 23639.26, + "end": 23642.07, + "probability": 0.5673 + }, + { + "start": 23642.8, + "end": 23644.07, + "probability": 0.5813 + }, + { + "start": 23644.7, + "end": 23645.48, + "probability": 0.5148 + }, + { + "start": 23645.9, + "end": 23647.38, + "probability": 0.7692 + }, + { + "start": 23647.92, + "end": 23649.84, + "probability": 0.7995 + }, + { + "start": 23649.84, + "end": 23651.16, + "probability": 0.7281 + }, + { + "start": 23651.54, + "end": 23653.5, + "probability": 0.759 + }, + { + "start": 23654.14, + "end": 23655.66, + "probability": 0.9691 + }, + { + "start": 23655.86, + "end": 23659.42, + "probability": 0.9814 + }, + { + "start": 23660.44, + "end": 23661.6, + "probability": 0.9527 + }, + { + "start": 23662.32, + "end": 23665.8, + "probability": 0.9375 + }, + { + "start": 23665.9, + "end": 23666.28, + "probability": 0.4694 + }, + { + "start": 23666.38, + "end": 23667.66, + "probability": 0.6202 + }, + { + "start": 23667.74, + "end": 23669.52, + "probability": 0.7638 + }, + { + "start": 23670.76, + "end": 23673.28, + "probability": 0.9502 + }, + { + "start": 23673.34, + "end": 23673.66, + "probability": 0.7774 + }, + { + "start": 23673.72, + "end": 23674.0, + "probability": 0.8301 + }, + { + "start": 23674.06, + "end": 23674.46, + "probability": 0.8757 + }, + { + "start": 23675.14, + "end": 23678.94, + "probability": 0.9905 + }, + { + "start": 23679.52, + "end": 23680.72, + "probability": 0.6741 + }, + { + "start": 23681.3, + "end": 23682.34, + "probability": 0.9771 + }, + { + "start": 23682.54, + "end": 23684.43, + "probability": 0.8132 + }, + { + "start": 23684.94, + "end": 23685.7, + "probability": 0.7812 + }, + { + "start": 23685.8, + "end": 23687.12, + "probability": 0.7413 + }, + { + "start": 23687.72, + "end": 23689.54, + "probability": 0.8948 + }, + { + "start": 23690.8, + "end": 23691.58, + "probability": 0.4021 + }, + { + "start": 23691.7, + "end": 23691.72, + "probability": 0.3238 + }, + { + "start": 23691.72, + "end": 23693.2, + "probability": 0.7045 + }, + { + "start": 23693.28, + "end": 23693.79, + "probability": 0.77 + }, + { + "start": 23694.56, + "end": 23695.42, + "probability": 0.616 + }, + { + "start": 23695.58, + "end": 23700.44, + "probability": 0.8606 + }, + { + "start": 23700.58, + "end": 23701.03, + "probability": 0.5925 + }, + { + "start": 23701.26, + "end": 23701.76, + "probability": 0.2285 + }, + { + "start": 23701.78, + "end": 23702.24, + "probability": 0.0546 + }, + { + "start": 23702.34, + "end": 23705.24, + "probability": 0.9149 + }, + { + "start": 23705.88, + "end": 23706.86, + "probability": 0.75 + }, + { + "start": 23707.6, + "end": 23708.34, + "probability": 0.7574 + }, + { + "start": 23709.2, + "end": 23709.64, + "probability": 0.846 + }, + { + "start": 23709.82, + "end": 23711.96, + "probability": 0.3254 + }, + { + "start": 23712.54, + "end": 23712.54, + "probability": 0.2064 + }, + { + "start": 23713.24, + "end": 23714.28, + "probability": 0.773 + }, + { + "start": 23714.44, + "end": 23716.58, + "probability": 0.8594 + }, + { + "start": 23717.22, + "end": 23718.3, + "probability": 0.2495 + }, + { + "start": 23718.44, + "end": 23718.74, + "probability": 0.8802 + }, + { + "start": 23719.54, + "end": 23722.54, + "probability": 0.9715 + }, + { + "start": 23722.98, + "end": 23724.88, + "probability": 0.9819 + }, + { + "start": 23725.08, + "end": 23727.66, + "probability": 0.9974 + }, + { + "start": 23728.32, + "end": 23729.48, + "probability": 0.9911 + }, + { + "start": 23730.22, + "end": 23731.64, + "probability": 0.9464 + }, + { + "start": 23732.2, + "end": 23733.24, + "probability": 0.8709 + }, + { + "start": 23733.58, + "end": 23735.08, + "probability": 0.848 + }, + { + "start": 23735.14, + "end": 23736.78, + "probability": 0.6304 + }, + { + "start": 23736.84, + "end": 23737.4, + "probability": 0.7507 + }, + { + "start": 23737.48, + "end": 23738.98, + "probability": 0.979 + }, + { + "start": 23740.14, + "end": 23741.34, + "probability": 0.9771 + }, + { + "start": 23741.48, + "end": 23742.44, + "probability": 0.8488 + }, + { + "start": 23742.58, + "end": 23744.44, + "probability": 0.4686 + }, + { + "start": 23745.14, + "end": 23745.66, + "probability": 0.9214 + }, + { + "start": 23745.88, + "end": 23748.3, + "probability": 0.9879 + }, + { + "start": 23748.44, + "end": 23751.48, + "probability": 0.3268 + }, + { + "start": 23752.16, + "end": 23752.84, + "probability": 0.4022 + }, + { + "start": 23753.5, + "end": 23753.96, + "probability": 0.6714 + }, + { + "start": 23754.26, + "end": 23754.86, + "probability": 0.3789 + }, + { + "start": 23754.92, + "end": 23757.08, + "probability": 0.8254 + }, + { + "start": 23757.6, + "end": 23760.48, + "probability": 0.3952 + }, + { + "start": 23760.48, + "end": 23761.7, + "probability": 0.6569 + }, + { + "start": 23761.7, + "end": 23762.96, + "probability": 0.8484 + }, + { + "start": 23763.72, + "end": 23765.9, + "probability": 0.8982 + }, + { + "start": 23765.9, + "end": 23768.12, + "probability": 0.8722 + }, + { + "start": 23768.24, + "end": 23769.16, + "probability": 0.7998 + }, + { + "start": 23769.2, + "end": 23769.54, + "probability": 0.3662 + }, + { + "start": 23769.6, + "end": 23770.5, + "probability": 0.2505 + }, + { + "start": 23770.5, + "end": 23770.9, + "probability": 0.4602 + }, + { + "start": 23771.44, + "end": 23776.34, + "probability": 0.9058 + }, + { + "start": 23776.4, + "end": 23776.4, + "probability": 0.5307 + }, + { + "start": 23776.4, + "end": 23776.4, + "probability": 0.0421 + }, + { + "start": 23776.66, + "end": 23779.05, + "probability": 0.7651 + }, + { + "start": 23780.1, + "end": 23780.9, + "probability": 0.8327 + }, + { + "start": 23780.94, + "end": 23781.44, + "probability": 0.8257 + }, + { + "start": 23781.86, + "end": 23783.35, + "probability": 0.9233 + }, + { + "start": 23784.82, + "end": 23786.26, + "probability": 0.7224 + }, + { + "start": 23786.38, + "end": 23787.72, + "probability": 0.9795 + }, + { + "start": 23788.46, + "end": 23790.56, + "probability": 0.8245 + }, + { + "start": 23791.08, + "end": 23792.62, + "probability": 0.9963 + }, + { + "start": 23792.68, + "end": 23793.04, + "probability": 0.4965 + }, + { + "start": 23793.04, + "end": 23795.58, + "probability": 0.9785 + }, + { + "start": 23796.14, + "end": 23797.86, + "probability": 0.8968 + }, + { + "start": 23798.22, + "end": 23802.82, + "probability": 0.8841 + }, + { + "start": 23803.24, + "end": 23804.3, + "probability": 0.7436 + }, + { + "start": 23805.22, + "end": 23805.7, + "probability": 0.3398 + }, + { + "start": 23805.7, + "end": 23806.92, + "probability": 0.9212 + }, + { + "start": 23807.6, + "end": 23808.56, + "probability": 0.9182 + }, + { + "start": 23809.2, + "end": 23815.22, + "probability": 0.9048 + }, + { + "start": 23815.92, + "end": 23820.66, + "probability": 0.9964 + }, + { + "start": 23820.68, + "end": 23821.76, + "probability": 0.9121 + }, + { + "start": 23822.26, + "end": 23822.46, + "probability": 0.0719 + }, + { + "start": 23822.46, + "end": 23826.12, + "probability": 0.9609 + }, + { + "start": 23826.18, + "end": 23826.63, + "probability": 0.9023 + }, + { + "start": 23827.66, + "end": 23827.66, + "probability": 0.1004 + }, + { + "start": 23827.68, + "end": 23829.0, + "probability": 0.9899 + }, + { + "start": 23829.62, + "end": 23830.12, + "probability": 0.8661 + }, + { + "start": 23830.2, + "end": 23830.46, + "probability": 0.6926 + }, + { + "start": 23830.6, + "end": 23832.68, + "probability": 0.8761 + }, + { + "start": 23833.34, + "end": 23834.87, + "probability": 0.6692 + }, + { + "start": 23835.54, + "end": 23836.78, + "probability": 0.5474 + }, + { + "start": 23836.9, + "end": 23837.7, + "probability": 0.9697 + }, + { + "start": 23838.38, + "end": 23839.12, + "probability": 0.4043 + }, + { + "start": 23840.04, + "end": 23841.72, + "probability": 0.9103 + }, + { + "start": 23842.18, + "end": 23842.88, + "probability": 0.6263 + }, + { + "start": 23843.24, + "end": 23844.86, + "probability": 0.6836 + }, + { + "start": 23850.18, + "end": 23851.08, + "probability": 0.6619 + }, + { + "start": 23857.72, + "end": 23859.6, + "probability": 0.6533 + }, + { + "start": 23860.48, + "end": 23862.49, + "probability": 0.9612 + }, + { + "start": 23863.82, + "end": 23866.2, + "probability": 0.9512 + }, + { + "start": 23867.26, + "end": 23870.42, + "probability": 0.0637 + }, + { + "start": 23870.48, + "end": 23874.74, + "probability": 0.9824 + }, + { + "start": 23874.74, + "end": 23878.9, + "probability": 0.9995 + }, + { + "start": 23879.0, + "end": 23879.7, + "probability": 0.7498 + }, + { + "start": 23880.74, + "end": 23887.5, + "probability": 0.9914 + }, + { + "start": 23888.34, + "end": 23890.88, + "probability": 0.9873 + }, + { + "start": 23891.4, + "end": 23896.28, + "probability": 0.998 + }, + { + "start": 23897.12, + "end": 23899.49, + "probability": 0.9971 + }, + { + "start": 23900.5, + "end": 23902.04, + "probability": 0.7913 + }, + { + "start": 23904.1, + "end": 23907.6, + "probability": 0.9858 + }, + { + "start": 23908.76, + "end": 23910.98, + "probability": 0.9143 + }, + { + "start": 23912.26, + "end": 23913.22, + "probability": 0.4592 + }, + { + "start": 23913.46, + "end": 23916.32, + "probability": 0.9443 + }, + { + "start": 23917.22, + "end": 23921.78, + "probability": 0.9978 + }, + { + "start": 23922.8, + "end": 23928.6, + "probability": 0.9955 + }, + { + "start": 23929.94, + "end": 23932.2, + "probability": 0.6295 + }, + { + "start": 23932.24, + "end": 23932.68, + "probability": 0.824 + }, + { + "start": 23932.7, + "end": 23933.2, + "probability": 0.7532 + }, + { + "start": 23933.2, + "end": 23934.42, + "probability": 0.9515 + }, + { + "start": 23934.46, + "end": 23936.34, + "probability": 0.9628 + }, + { + "start": 23936.85, + "end": 23940.74, + "probability": 0.1631 + }, + { + "start": 23950.7, + "end": 23953.0, + "probability": 0.772 + }, + { + "start": 23953.0, + "end": 23953.0, + "probability": 0.0304 + }, + { + "start": 23953.0, + "end": 23953.21, + "probability": 0.1862 + }, + { + "start": 23953.32, + "end": 23954.28, + "probability": 0.15 + }, + { + "start": 23954.74, + "end": 23956.1, + "probability": 0.0543 + }, + { + "start": 23957.04, + "end": 23959.04, + "probability": 0.0175 + }, + { + "start": 23961.26, + "end": 23961.8, + "probability": 0.1017 + }, + { + "start": 23961.8, + "end": 23961.92, + "probability": 0.0247 + }, + { + "start": 23961.92, + "end": 23962.23, + "probability": 0.2163 + }, + { + "start": 23962.6, + "end": 23963.96, + "probability": 0.1245 + }, + { + "start": 23966.72, + "end": 23971.24, + "probability": 0.0354 + }, + { + "start": 23972.2, + "end": 23972.2, + "probability": 0.0713 + }, + { + "start": 23972.2, + "end": 23972.2, + "probability": 0.0689 + }, + { + "start": 23972.2, + "end": 23972.2, + "probability": 0.1317 + }, + { + "start": 23972.2, + "end": 23974.6, + "probability": 0.6282 + }, + { + "start": 23975.08, + "end": 23976.95, + "probability": 0.4497 + }, + { + "start": 23977.34, + "end": 23978.12, + "probability": 0.5496 + }, + { + "start": 23978.18, + "end": 23978.84, + "probability": 0.8671 + }, + { + "start": 23978.94, + "end": 23980.08, + "probability": 0.9423 + }, + { + "start": 23980.12, + "end": 23980.68, + "probability": 0.7242 + }, + { + "start": 23981.48, + "end": 23982.02, + "probability": 0.7877 + }, + { + "start": 23982.28, + "end": 23984.79, + "probability": 0.909 + }, + { + "start": 23985.84, + "end": 23988.43, + "probability": 0.9106 + }, + { + "start": 23990.04, + "end": 23990.92, + "probability": 0.8907 + }, + { + "start": 23991.9, + "end": 23993.78, + "probability": 0.9885 + }, + { + "start": 23995.04, + "end": 23996.32, + "probability": 0.9873 + }, + { + "start": 23997.54, + "end": 24001.6, + "probability": 0.9899 + }, + { + "start": 24002.88, + "end": 24003.42, + "probability": 0.8469 + }, + { + "start": 24004.9, + "end": 24008.52, + "probability": 0.9709 + }, + { + "start": 24009.68, + "end": 24010.54, + "probability": 0.9409 + }, + { + "start": 24010.7, + "end": 24013.54, + "probability": 0.9963 + }, + { + "start": 24015.14, + "end": 24020.82, + "probability": 0.8071 + }, + { + "start": 24020.82, + "end": 24022.26, + "probability": 0.818 + }, + { + "start": 24024.06, + "end": 24029.16, + "probability": 0.9642 + }, + { + "start": 24029.54, + "end": 24031.97, + "probability": 0.9917 + }, + { + "start": 24032.78, + "end": 24034.26, + "probability": 0.9789 + }, + { + "start": 24034.32, + "end": 24035.56, + "probability": 0.9971 + }, + { + "start": 24036.16, + "end": 24036.82, + "probability": 0.8877 + }, + { + "start": 24036.92, + "end": 24039.38, + "probability": 0.8089 + }, + { + "start": 24039.76, + "end": 24040.78, + "probability": 0.813 + }, + { + "start": 24042.0, + "end": 24043.64, + "probability": 0.9848 + }, + { + "start": 24043.68, + "end": 24044.46, + "probability": 0.6988 + }, + { + "start": 24046.06, + "end": 24048.94, + "probability": 0.9666 + }, + { + "start": 24049.94, + "end": 24056.36, + "probability": 0.9688 + }, + { + "start": 24056.36, + "end": 24061.74, + "probability": 0.917 + }, + { + "start": 24061.74, + "end": 24062.78, + "probability": 0.9506 + }, + { + "start": 24062.84, + "end": 24063.16, + "probability": 0.8335 + }, + { + "start": 24063.54, + "end": 24064.66, + "probability": 0.9908 + }, + { + "start": 24065.06, + "end": 24069.2, + "probability": 0.9977 + }, + { + "start": 24069.2, + "end": 24072.68, + "probability": 0.9873 + }, + { + "start": 24072.68, + "end": 24072.96, + "probability": 0.567 + }, + { + "start": 24073.24, + "end": 24075.28, + "probability": 0.891 + }, + { + "start": 24075.9, + "end": 24077.94, + "probability": 0.9163 + }, + { + "start": 24078.44, + "end": 24079.16, + "probability": 0.2352 + }, + { + "start": 24080.24, + "end": 24081.22, + "probability": 0.0041 + }, + { + "start": 24081.22, + "end": 24081.86, + "probability": 0.0242 + }, + { + "start": 24081.86, + "end": 24081.86, + "probability": 0.1194 + }, + { + "start": 24081.86, + "end": 24082.28, + "probability": 0.3237 + }, + { + "start": 24085.84, + "end": 24086.98, + "probability": 0.2716 + }, + { + "start": 24087.54, + "end": 24088.58, + "probability": 0.3334 + }, + { + "start": 24088.98, + "end": 24089.92, + "probability": 0.3977 + }, + { + "start": 24095.7, + "end": 24096.62, + "probability": 0.4718 + }, + { + "start": 24097.3, + "end": 24097.58, + "probability": 0.9126 + }, + { + "start": 24098.02, + "end": 24099.46, + "probability": 0.7425 + }, + { + "start": 24100.06, + "end": 24101.68, + "probability": 0.821 + }, + { + "start": 24103.6, + "end": 24105.33, + "probability": 0.982 + }, + { + "start": 24106.28, + "end": 24107.7, + "probability": 0.9901 + }, + { + "start": 24108.74, + "end": 24111.14, + "probability": 0.9977 + }, + { + "start": 24112.6, + "end": 24117.28, + "probability": 0.986 + }, + { + "start": 24117.42, + "end": 24118.44, + "probability": 0.8637 + }, + { + "start": 24119.88, + "end": 24121.04, + "probability": 0.9061 + }, + { + "start": 24123.36, + "end": 24124.97, + "probability": 0.8308 + }, + { + "start": 24125.56, + "end": 24127.4, + "probability": 0.9544 + }, + { + "start": 24127.6, + "end": 24128.24, + "probability": 0.7875 + }, + { + "start": 24128.38, + "end": 24129.0, + "probability": 0.6166 + }, + { + "start": 24129.62, + "end": 24132.84, + "probability": 0.9718 + }, + { + "start": 24132.9, + "end": 24133.14, + "probability": 0.7807 + }, + { + "start": 24133.22, + "end": 24136.23, + "probability": 0.9944 + }, + { + "start": 24138.58, + "end": 24140.32, + "probability": 0.9175 + }, + { + "start": 24140.74, + "end": 24140.74, + "probability": 0.0148 + }, + { + "start": 24140.96, + "end": 24141.94, + "probability": 0.8767 + }, + { + "start": 24142.96, + "end": 24143.42, + "probability": 0.9403 + }, + { + "start": 24144.24, + "end": 24146.62, + "probability": 0.2461 + }, + { + "start": 24147.06, + "end": 24148.07, + "probability": 0.8949 + }, + { + "start": 24148.7, + "end": 24149.24, + "probability": 0.9292 + }, + { + "start": 24149.36, + "end": 24152.72, + "probability": 0.9913 + }, + { + "start": 24153.0, + "end": 24156.6, + "probability": 0.9714 + }, + { + "start": 24157.16, + "end": 24160.76, + "probability": 0.99 + }, + { + "start": 24162.2, + "end": 24164.58, + "probability": 0.9799 + }, + { + "start": 24165.94, + "end": 24166.72, + "probability": 0.8044 + }, + { + "start": 24167.78, + "end": 24170.6, + "probability": 0.7471 + }, + { + "start": 24171.26, + "end": 24176.62, + "probability": 0.9233 + }, + { + "start": 24178.02, + "end": 24179.7, + "probability": 0.9628 + }, + { + "start": 24180.02, + "end": 24182.04, + "probability": 0.9663 + }, + { + "start": 24182.44, + "end": 24183.18, + "probability": 0.7819 + }, + { + "start": 24184.3, + "end": 24186.91, + "probability": 0.9934 + }, + { + "start": 24187.44, + "end": 24188.84, + "probability": 0.8804 + }, + { + "start": 24190.04, + "end": 24190.86, + "probability": 0.9888 + }, + { + "start": 24191.76, + "end": 24192.18, + "probability": 0.1789 + }, + { + "start": 24193.06, + "end": 24197.58, + "probability": 0.6413 + }, + { + "start": 24197.64, + "end": 24198.86, + "probability": 0.9949 + }, + { + "start": 24199.68, + "end": 24203.7, + "probability": 0.9849 + }, + { + "start": 24204.46, + "end": 24205.18, + "probability": 0.4197 + }, + { + "start": 24206.12, + "end": 24208.24, + "probability": 0.8983 + }, + { + "start": 24208.34, + "end": 24209.72, + "probability": 0.0742 + }, + { + "start": 24209.72, + "end": 24209.72, + "probability": 0.8438 + }, + { + "start": 24209.72, + "end": 24211.06, + "probability": 0.9564 + }, + { + "start": 24211.38, + "end": 24212.08, + "probability": 0.9813 + }, + { + "start": 24212.56, + "end": 24213.34, + "probability": 0.9804 + }, + { + "start": 24214.28, + "end": 24217.0, + "probability": 0.9518 + }, + { + "start": 24217.76, + "end": 24219.52, + "probability": 0.9121 + }, + { + "start": 24220.5, + "end": 24222.58, + "probability": 0.9956 + }, + { + "start": 24223.52, + "end": 24225.46, + "probability": 0.967 + }, + { + "start": 24226.4, + "end": 24229.64, + "probability": 0.9948 + }, + { + "start": 24229.64, + "end": 24233.74, + "probability": 0.8295 + }, + { + "start": 24234.26, + "end": 24236.14, + "probability": 0.9969 + }, + { + "start": 24236.2, + "end": 24237.88, + "probability": 0.8936 + }, + { + "start": 24239.14, + "end": 24240.5, + "probability": 0.7075 + }, + { + "start": 24241.36, + "end": 24242.5, + "probability": 0.8298 + }, + { + "start": 24243.24, + "end": 24244.04, + "probability": 0.8426 + }, + { + "start": 24244.66, + "end": 24247.92, + "probability": 0.917 + }, + { + "start": 24247.92, + "end": 24248.27, + "probability": 0.7906 + }, + { + "start": 24248.94, + "end": 24251.32, + "probability": 0.9395 + }, + { + "start": 24252.12, + "end": 24253.4, + "probability": 0.9912 + }, + { + "start": 24254.18, + "end": 24254.64, + "probability": 0.8715 + }, + { + "start": 24256.14, + "end": 24258.76, + "probability": 0.9826 + }, + { + "start": 24259.44, + "end": 24259.96, + "probability": 0.5634 + }, + { + "start": 24260.46, + "end": 24262.3, + "probability": 0.9172 + }, + { + "start": 24262.42, + "end": 24266.62, + "probability": 0.9126 + }, + { + "start": 24267.56, + "end": 24270.35, + "probability": 0.9022 + }, + { + "start": 24272.2, + "end": 24272.36, + "probability": 0.4885 + }, + { + "start": 24272.96, + "end": 24273.2, + "probability": 0.6991 + }, + { + "start": 24273.5, + "end": 24275.4, + "probability": 0.9932 + }, + { + "start": 24275.48, + "end": 24276.54, + "probability": 0.5597 + }, + { + "start": 24276.84, + "end": 24278.06, + "probability": 0.2123 + }, + { + "start": 24278.12, + "end": 24279.67, + "probability": 0.8951 + }, + { + "start": 24280.24, + "end": 24282.32, + "probability": 0.7371 + }, + { + "start": 24282.38, + "end": 24283.66, + "probability": 0.8447 + }, + { + "start": 24284.02, + "end": 24286.14, + "probability": 0.8208 + }, + { + "start": 24286.32, + "end": 24287.26, + "probability": 0.8212 + }, + { + "start": 24287.36, + "end": 24288.22, + "probability": 0.9902 + }, + { + "start": 24288.42, + "end": 24289.1, + "probability": 0.9062 + }, + { + "start": 24289.36, + "end": 24292.22, + "probability": 0.4441 + }, + { + "start": 24292.28, + "end": 24295.76, + "probability": 0.7783 + }, + { + "start": 24297.9, + "end": 24299.23, + "probability": 0.9905 + }, + { + "start": 24299.68, + "end": 24302.72, + "probability": 0.9272 + }, + { + "start": 24302.78, + "end": 24306.76, + "probability": 0.9801 + }, + { + "start": 24307.44, + "end": 24308.49, + "probability": 0.9878 + }, + { + "start": 24308.88, + "end": 24309.12, + "probability": 0.8316 + }, + { + "start": 24309.24, + "end": 24313.62, + "probability": 0.9732 + }, + { + "start": 24313.72, + "end": 24314.68, + "probability": 0.926 + }, + { + "start": 24316.0, + "end": 24317.96, + "probability": 0.7266 + }, + { + "start": 24318.68, + "end": 24320.34, + "probability": 0.9476 + }, + { + "start": 24320.58, + "end": 24321.24, + "probability": 0.833 + }, + { + "start": 24321.3, + "end": 24321.36, + "probability": 0.5407 + }, + { + "start": 24321.36, + "end": 24323.1, + "probability": 0.9949 + }, + { + "start": 24324.42, + "end": 24325.5, + "probability": 0.957 + }, + { + "start": 24325.6, + "end": 24325.86, + "probability": 0.6708 + }, + { + "start": 24326.38, + "end": 24328.55, + "probability": 0.9987 + }, + { + "start": 24328.7, + "end": 24329.16, + "probability": 0.8175 + }, + { + "start": 24329.2, + "end": 24330.0, + "probability": 0.7217 + }, + { + "start": 24331.1, + "end": 24332.1, + "probability": 0.9022 + }, + { + "start": 24332.82, + "end": 24334.82, + "probability": 0.9973 + }, + { + "start": 24334.92, + "end": 24335.87, + "probability": 0.9976 + }, + { + "start": 24336.84, + "end": 24337.35, + "probability": 0.9619 + }, + { + "start": 24337.74, + "end": 24338.44, + "probability": 0.7961 + }, + { + "start": 24338.7, + "end": 24339.02, + "probability": 0.5202 + }, + { + "start": 24339.06, + "end": 24339.56, + "probability": 0.6631 + }, + { + "start": 24339.66, + "end": 24340.17, + "probability": 0.6653 + }, + { + "start": 24341.02, + "end": 24342.2, + "probability": 0.8324 + }, + { + "start": 24342.44, + "end": 24343.78, + "probability": 0.5288 + }, + { + "start": 24344.24, + "end": 24346.94, + "probability": 0.8906 + }, + { + "start": 24347.46, + "end": 24348.88, + "probability": 0.719 + }, + { + "start": 24350.0, + "end": 24355.56, + "probability": 0.9699 + }, + { + "start": 24356.2, + "end": 24356.36, + "probability": 0.0171 + }, + { + "start": 24356.36, + "end": 24359.24, + "probability": 0.9657 + }, + { + "start": 24359.28, + "end": 24361.8, + "probability": 0.8499 + }, + { + "start": 24362.38, + "end": 24364.6, + "probability": 0.9938 + }, + { + "start": 24365.26, + "end": 24367.82, + "probability": 0.9863 + }, + { + "start": 24367.96, + "end": 24368.82, + "probability": 0.693 + }, + { + "start": 24369.02, + "end": 24369.02, + "probability": 0.4237 + }, + { + "start": 24369.56, + "end": 24372.32, + "probability": 0.7336 + }, + { + "start": 24372.38, + "end": 24374.26, + "probability": 0.9172 + }, + { + "start": 24374.36, + "end": 24374.7, + "probability": 0.6515 + }, + { + "start": 24374.7, + "end": 24375.48, + "probability": 0.8997 + }, + { + "start": 24376.62, + "end": 24378.16, + "probability": 0.8145 + }, + { + "start": 24379.96, + "end": 24383.72, + "probability": 0.638 + }, + { + "start": 24384.98, + "end": 24385.98, + "probability": 0.6048 + }, + { + "start": 24387.08, + "end": 24389.74, + "probability": 0.6337 + }, + { + "start": 24389.74, + "end": 24390.32, + "probability": 0.5223 + }, + { + "start": 24390.32, + "end": 24391.34, + "probability": 0.8396 + }, + { + "start": 24391.68, + "end": 24392.2, + "probability": 0.7126 + }, + { + "start": 24393.36, + "end": 24393.7, + "probability": 0.8945 + }, + { + "start": 24394.46, + "end": 24394.66, + "probability": 0.7168 + }, + { + "start": 24394.72, + "end": 24397.98, + "probability": 0.7607 + }, + { + "start": 24398.62, + "end": 24400.92, + "probability": 0.9028 + }, + { + "start": 24401.0, + "end": 24401.6, + "probability": 0.4107 + }, + { + "start": 24401.64, + "end": 24402.98, + "probability": 0.3285 + }, + { + "start": 24403.02, + "end": 24403.22, + "probability": 0.2987 + }, + { + "start": 24403.3, + "end": 24403.44, + "probability": 0.3079 + }, + { + "start": 24403.46, + "end": 24405.76, + "probability": 0.9705 + }, + { + "start": 24406.1, + "end": 24407.24, + "probability": 0.7024 + }, + { + "start": 24407.26, + "end": 24410.64, + "probability": 0.9262 + }, + { + "start": 24410.74, + "end": 24411.16, + "probability": 0.4702 + }, + { + "start": 24411.66, + "end": 24412.79, + "probability": 0.859 + }, + { + "start": 24413.28, + "end": 24416.84, + "probability": 0.8277 + }, + { + "start": 24416.88, + "end": 24417.04, + "probability": 0.3331 + }, + { + "start": 24417.18, + "end": 24419.14, + "probability": 0.9031 + }, + { + "start": 24420.04, + "end": 24420.4, + "probability": 0.4836 + }, + { + "start": 24420.4, + "end": 24421.34, + "probability": 0.8213 + }, + { + "start": 24421.4, + "end": 24424.54, + "probability": 0.465 + }, + { + "start": 24424.98, + "end": 24427.74, + "probability": 0.8735 + }, + { + "start": 24428.26, + "end": 24428.74, + "probability": 0.9595 + }, + { + "start": 24428.94, + "end": 24429.68, + "probability": 0.9525 + }, + { + "start": 24429.92, + "end": 24430.76, + "probability": 0.8108 + }, + { + "start": 24431.1, + "end": 24432.66, + "probability": 0.8041 + }, + { + "start": 24432.72, + "end": 24432.88, + "probability": 0.6672 + }, + { + "start": 24432.96, + "end": 24432.98, + "probability": 0.6257 + }, + { + "start": 24433.1, + "end": 24435.94, + "probability": 0.8313 + }, + { + "start": 24436.28, + "end": 24441.68, + "probability": 0.9965 + }, + { + "start": 24441.8, + "end": 24442.44, + "probability": 0.2774 + }, + { + "start": 24442.52, + "end": 24442.78, + "probability": 0.233 + }, + { + "start": 24442.8, + "end": 24443.12, + "probability": 0.6157 + }, + { + "start": 24443.12, + "end": 24443.42, + "probability": 0.3521 + }, + { + "start": 24443.86, + "end": 24445.92, + "probability": 0.9882 + }, + { + "start": 24446.0, + "end": 24448.34, + "probability": 0.8942 + }, + { + "start": 24448.78, + "end": 24451.7, + "probability": 0.8492 + }, + { + "start": 24452.52, + "end": 24453.94, + "probability": 0.8056 + }, + { + "start": 24462.68, + "end": 24463.96, + "probability": 0.7178 + }, + { + "start": 24466.6, + "end": 24467.34, + "probability": 0.6979 + }, + { + "start": 24468.06, + "end": 24471.86, + "probability": 0.868 + }, + { + "start": 24473.84, + "end": 24477.48, + "probability": 0.9824 + }, + { + "start": 24478.64, + "end": 24487.8, + "probability": 0.9714 + }, + { + "start": 24487.8, + "end": 24495.3, + "probability": 0.9075 + }, + { + "start": 24496.04, + "end": 24497.62, + "probability": 0.9359 + }, + { + "start": 24498.24, + "end": 24501.02, + "probability": 0.8354 + }, + { + "start": 24502.7, + "end": 24504.04, + "probability": 0.7327 + }, + { + "start": 24504.26, + "end": 24504.72, + "probability": 0.9338 + }, + { + "start": 24504.82, + "end": 24505.3, + "probability": 0.7781 + }, + { + "start": 24505.44, + "end": 24507.4, + "probability": 0.8916 + }, + { + "start": 24507.54, + "end": 24507.8, + "probability": 0.586 + }, + { + "start": 24507.86, + "end": 24508.52, + "probability": 0.8935 + }, + { + "start": 24508.74, + "end": 24509.32, + "probability": 0.8571 + }, + { + "start": 24509.36, + "end": 24510.18, + "probability": 0.8159 + }, + { + "start": 24510.32, + "end": 24511.4, + "probability": 0.9585 + }, + { + "start": 24512.7, + "end": 24513.44, + "probability": 0.7996 + }, + { + "start": 24514.1, + "end": 24514.1, + "probability": 0.7979 + }, + { + "start": 24514.68, + "end": 24516.5, + "probability": 0.8962 + }, + { + "start": 24516.92, + "end": 24518.24, + "probability": 0.8955 + }, + { + "start": 24520.3, + "end": 24527.18, + "probability": 0.9958 + }, + { + "start": 24528.28, + "end": 24528.86, + "probability": 0.2616 + }, + { + "start": 24528.9, + "end": 24531.9, + "probability": 0.9916 + }, + { + "start": 24533.48, + "end": 24534.56, + "probability": 0.7505 + }, + { + "start": 24534.74, + "end": 24536.02, + "probability": 0.7575 + }, + { + "start": 24536.02, + "end": 24536.9, + "probability": 0.7259 + }, + { + "start": 24537.3, + "end": 24540.16, + "probability": 0.9108 + }, + { + "start": 24542.3, + "end": 24545.4, + "probability": 0.9861 + }, + { + "start": 24547.28, + "end": 24548.76, + "probability": 0.9889 + }, + { + "start": 24550.08, + "end": 24551.18, + "probability": 0.8718 + }, + { + "start": 24552.34, + "end": 24553.48, + "probability": 0.96 + }, + { + "start": 24554.6, + "end": 24555.66, + "probability": 0.9853 + }, + { + "start": 24557.56, + "end": 24560.52, + "probability": 0.9672 + }, + { + "start": 24561.94, + "end": 24563.82, + "probability": 0.98 + }, + { + "start": 24563.9, + "end": 24565.24, + "probability": 0.9108 + }, + { + "start": 24565.4, + "end": 24569.22, + "probability": 0.9576 + }, + { + "start": 24569.8, + "end": 24570.96, + "probability": 0.9245 + }, + { + "start": 24572.42, + "end": 24575.8, + "probability": 0.8241 + }, + { + "start": 24577.36, + "end": 24579.4, + "probability": 0.98 + }, + { + "start": 24580.22, + "end": 24581.78, + "probability": 0.9612 + }, + { + "start": 24582.38, + "end": 24584.8, + "probability": 0.9608 + }, + { + "start": 24586.94, + "end": 24588.08, + "probability": 0.9181 + }, + { + "start": 24589.48, + "end": 24591.02, + "probability": 0.9639 + }, + { + "start": 24593.82, + "end": 24598.58, + "probability": 0.9919 + }, + { + "start": 24598.58, + "end": 24601.36, + "probability": 0.9976 + }, + { + "start": 24603.4, + "end": 24604.34, + "probability": 0.9484 + }, + { + "start": 24605.76, + "end": 24608.22, + "probability": 0.9954 + }, + { + "start": 24610.34, + "end": 24613.44, + "probability": 0.9954 + }, + { + "start": 24615.46, + "end": 24616.1, + "probability": 0.7559 + }, + { + "start": 24616.28, + "end": 24617.04, + "probability": 0.7233 + }, + { + "start": 24617.12, + "end": 24619.9, + "probability": 0.9883 + }, + { + "start": 24620.1, + "end": 24622.64, + "probability": 0.6684 + }, + { + "start": 24622.76, + "end": 24624.18, + "probability": 0.9306 + }, + { + "start": 24624.26, + "end": 24625.26, + "probability": 0.9735 + }, + { + "start": 24626.16, + "end": 24627.38, + "probability": 0.956 + }, + { + "start": 24629.64, + "end": 24630.41, + "probability": 0.9478 + }, + { + "start": 24631.6, + "end": 24632.54, + "probability": 0.989 + }, + { + "start": 24632.64, + "end": 24633.64, + "probability": 0.9898 + }, + { + "start": 24635.1, + "end": 24636.32, + "probability": 0.7516 + }, + { + "start": 24639.24, + "end": 24639.92, + "probability": 0.7627 + }, + { + "start": 24640.58, + "end": 24643.3, + "probability": 0.9355 + }, + { + "start": 24644.5, + "end": 24647.28, + "probability": 0.9917 + }, + { + "start": 24650.24, + "end": 24651.26, + "probability": 0.9658 + }, + { + "start": 24652.9, + "end": 24654.28, + "probability": 0.9277 + }, + { + "start": 24656.58, + "end": 24660.36, + "probability": 0.9788 + }, + { + "start": 24660.44, + "end": 24661.16, + "probability": 0.7348 + }, + { + "start": 24661.24, + "end": 24661.84, + "probability": 0.8183 + }, + { + "start": 24661.86, + "end": 24662.58, + "probability": 0.7039 + }, + { + "start": 24663.44, + "end": 24664.46, + "probability": 0.1397 + }, + { + "start": 24664.52, + "end": 24665.44, + "probability": 0.765 + }, + { + "start": 24667.12, + "end": 24669.94, + "probability": 0.7541 + }, + { + "start": 24670.06, + "end": 24670.66, + "probability": 0.6307 + }, + { + "start": 24670.78, + "end": 24671.44, + "probability": 0.66 + }, + { + "start": 24671.54, + "end": 24672.28, + "probability": 0.8799 + }, + { + "start": 24672.34, + "end": 24673.4, + "probability": 0.7855 + }, + { + "start": 24674.28, + "end": 24674.78, + "probability": 0.8821 + }, + { + "start": 24676.8, + "end": 24678.34, + "probability": 0.9502 + }, + { + "start": 24678.52, + "end": 24679.08, + "probability": 0.9801 + }, + { + "start": 24679.2, + "end": 24679.86, + "probability": 0.9852 + }, + { + "start": 24680.0, + "end": 24680.62, + "probability": 0.9875 + }, + { + "start": 24680.72, + "end": 24681.32, + "probability": 0.9481 + }, + { + "start": 24681.4, + "end": 24682.14, + "probability": 0.9844 + }, + { + "start": 24682.14, + "end": 24683.02, + "probability": 0.8994 + }, + { + "start": 24684.32, + "end": 24684.66, + "probability": 0.5347 + }, + { + "start": 24684.79, + "end": 24686.82, + "probability": 0.8267 + }, + { + "start": 24686.9, + "end": 24689.54, + "probability": 0.9086 + }, + { + "start": 24689.76, + "end": 24690.22, + "probability": 0.6803 + }, + { + "start": 24690.36, + "end": 24691.2, + "probability": 0.7049 + }, + { + "start": 24691.4, + "end": 24692.04, + "probability": 0.2039 + }, + { + "start": 24693.6, + "end": 24695.92, + "probability": 0.9417 + }, + { + "start": 24696.06, + "end": 24696.28, + "probability": 0.9344 + }, + { + "start": 24696.32, + "end": 24697.04, + "probability": 0.9236 + }, + { + "start": 24697.12, + "end": 24698.6, + "probability": 0.4161 + }, + { + "start": 24698.6, + "end": 24699.92, + "probability": 0.2948 + }, + { + "start": 24700.04, + "end": 24701.92, + "probability": 0.9922 + }, + { + "start": 24701.92, + "end": 24701.92, + "probability": 0.0805 + }, + { + "start": 24701.92, + "end": 24704.3, + "probability": 0.9338 + }, + { + "start": 24705.06, + "end": 24705.36, + "probability": 0.8195 + }, + { + "start": 24705.5, + "end": 24706.3, + "probability": 0.7274 + }, + { + "start": 24706.4, + "end": 24707.08, + "probability": 0.5841 + }, + { + "start": 24707.18, + "end": 24707.46, + "probability": 0.8428 + }, + { + "start": 24708.24, + "end": 24711.94, + "probability": 0.9495 + }, + { + "start": 24711.94, + "end": 24715.64, + "probability": 0.9881 + }, + { + "start": 24715.66, + "end": 24720.86, + "probability": 0.9751 + }, + { + "start": 24721.3, + "end": 24721.42, + "probability": 0.2854 + }, + { + "start": 24721.42, + "end": 24724.56, + "probability": 0.9841 + }, + { + "start": 24725.12, + "end": 24726.06, + "probability": 0.8918 + }, + { + "start": 24726.08, + "end": 24726.96, + "probability": 0.9402 + }, + { + "start": 24727.3, + "end": 24727.3, + "probability": 0.3179 + }, + { + "start": 24727.42, + "end": 24728.9, + "probability": 0.6981 + }, + { + "start": 24728.94, + "end": 24729.58, + "probability": 0.5832 + }, + { + "start": 24729.9, + "end": 24730.82, + "probability": 0.9807 + }, + { + "start": 24731.22, + "end": 24731.94, + "probability": 0.8444 + }, + { + "start": 24732.68, + "end": 24734.16, + "probability": 0.7517 + }, + { + "start": 24734.74, + "end": 24740.1, + "probability": 0.4497 + }, + { + "start": 24740.52, + "end": 24742.5, + "probability": 0.9202 + }, + { + "start": 24752.1, + "end": 24753.44, + "probability": 0.8209 + }, + { + "start": 24754.54, + "end": 24757.14, + "probability": 0.9862 + }, + { + "start": 24758.58, + "end": 24759.82, + "probability": 0.0061 + }, + { + "start": 24760.14, + "end": 24760.89, + "probability": 0.0674 + }, + { + "start": 24761.6, + "end": 24762.71, + "probability": 0.4941 + }, + { + "start": 24763.08, + "end": 24765.44, + "probability": 0.6026 + }, + { + "start": 24765.64, + "end": 24766.04, + "probability": 0.067 + }, + { + "start": 24766.04, + "end": 24767.45, + "probability": 0.3934 + }, + { + "start": 24768.1, + "end": 24774.98, + "probability": 0.6143 + }, + { + "start": 24775.24, + "end": 24776.64, + "probability": 0.8417 + }, + { + "start": 24776.64, + "end": 24781.22, + "probability": 0.426 + }, + { + "start": 24781.3, + "end": 24781.78, + "probability": 0.2568 + }, + { + "start": 24781.88, + "end": 24782.18, + "probability": 0.7094 + }, + { + "start": 24782.99, + "end": 24783.59, + "probability": 0.0767 + }, + { + "start": 24784.0, + "end": 24786.26, + "probability": 0.6782 + }, + { + "start": 24787.78, + "end": 24790.46, + "probability": 0.1779 + }, + { + "start": 24790.52, + "end": 24791.46, + "probability": 0.6929 + }, + { + "start": 24791.52, + "end": 24792.66, + "probability": 0.0267 + }, + { + "start": 24799.08, + "end": 24800.26, + "probability": 0.1738 + }, + { + "start": 24800.46, + "end": 24803.46, + "probability": 0.0265 + }, + { + "start": 24804.1, + "end": 24806.42, + "probability": 0.2591 + }, + { + "start": 24806.42, + "end": 24809.34, + "probability": 0.3318 + }, + { + "start": 24809.34, + "end": 24811.76, + "probability": 0.6665 + }, + { + "start": 24811.82, + "end": 24813.42, + "probability": 0.6749 + }, + { + "start": 24813.6, + "end": 24815.86, + "probability": 0.2013 + }, + { + "start": 24816.42, + "end": 24820.74, + "probability": 0.0771 + }, + { + "start": 24820.9, + "end": 24821.62, + "probability": 0.5954 + }, + { + "start": 24821.62, + "end": 24822.99, + "probability": 0.8943 + }, + { + "start": 24824.02, + "end": 24825.12, + "probability": 0.8676 + }, + { + "start": 24825.2, + "end": 24827.18, + "probability": 0.7608 + }, + { + "start": 24827.84, + "end": 24830.2, + "probability": 0.7796 + }, + { + "start": 24831.08, + "end": 24832.06, + "probability": 0.8026 + }, + { + "start": 24832.6, + "end": 24834.36, + "probability": 0.6955 + }, + { + "start": 24838.22, + "end": 24839.12, + "probability": 0.7243 + }, + { + "start": 24840.44, + "end": 24848.5, + "probability": 0.9711 + }, + { + "start": 24849.54, + "end": 24852.16, + "probability": 0.9896 + }, + { + "start": 24853.34, + "end": 24854.82, + "probability": 0.8839 + }, + { + "start": 24856.12, + "end": 24858.84, + "probability": 0.9517 + }, + { + "start": 24861.2, + "end": 24861.98, + "probability": 0.7543 + }, + { + "start": 24863.18, + "end": 24864.82, + "probability": 0.061 + }, + { + "start": 24866.12, + "end": 24866.78, + "probability": 0.4069 + }, + { + "start": 24866.94, + "end": 24867.62, + "probability": 0.7644 + }, + { + "start": 24867.9, + "end": 24869.46, + "probability": 0.8234 + }, + { + "start": 24869.88, + "end": 24870.68, + "probability": 0.9907 + }, + { + "start": 24870.74, + "end": 24871.79, + "probability": 0.9929 + }, + { + "start": 24872.18, + "end": 24873.42, + "probability": 0.9805 + }, + { + "start": 24873.44, + "end": 24873.78, + "probability": 0.4943 + }, + { + "start": 24881.82, + "end": 24885.88, + "probability": 0.6089 + }, + { + "start": 24886.36, + "end": 24888.56, + "probability": 0.7722 + }, + { + "start": 24888.62, + "end": 24890.32, + "probability": 0.9501 + }, + { + "start": 24890.72, + "end": 24891.52, + "probability": 0.6442 + }, + { + "start": 24891.62, + "end": 24892.73, + "probability": 0.3409 + }, + { + "start": 24893.06, + "end": 24893.72, + "probability": 0.8123 + }, + { + "start": 24894.12, + "end": 24895.12, + "probability": 0.6514 + }, + { + "start": 24896.0, + "end": 24896.14, + "probability": 0.0171 + }, + { + "start": 24896.82, + "end": 24896.88, + "probability": 0.2651 + }, + { + "start": 24896.88, + "end": 24898.34, + "probability": 0.4607 + }, + { + "start": 24898.46, + "end": 24900.02, + "probability": 0.938 + }, + { + "start": 24900.06, + "end": 24902.2, + "probability": 0.6225 + }, + { + "start": 24902.2, + "end": 24904.82, + "probability": 0.339 + }, + { + "start": 24905.16, + "end": 24905.2, + "probability": 0.0632 + }, + { + "start": 24905.2, + "end": 24905.2, + "probability": 0.1679 + }, + { + "start": 24905.2, + "end": 24905.8, + "probability": 0.3731 + }, + { + "start": 24907.24, + "end": 24910.84, + "probability": 0.6513 + }, + { + "start": 24911.22, + "end": 24911.7, + "probability": 0.72 + }, + { + "start": 24911.82, + "end": 24911.94, + "probability": 0.234 + }, + { + "start": 24911.94, + "end": 24913.12, + "probability": 0.8571 + }, + { + "start": 24913.18, + "end": 24915.4, + "probability": 0.9795 + }, + { + "start": 24915.46, + "end": 24916.9, + "probability": 0.3908 + }, + { + "start": 24916.9, + "end": 24918.38, + "probability": 0.8042 + }, + { + "start": 24918.5, + "end": 24919.91, + "probability": 0.7122 + }, + { + "start": 24920.22, + "end": 24921.12, + "probability": 0.626 + }, + { + "start": 24921.7, + "end": 24929.72, + "probability": 0.75 + }, + { + "start": 24930.24, + "end": 24931.8, + "probability": 0.9816 + }, + { + "start": 24932.0, + "end": 24933.54, + "probability": 0.9384 + }, + { + "start": 24933.92, + "end": 24934.48, + "probability": 0.8695 + }, + { + "start": 24936.22, + "end": 24938.2, + "probability": 0.4742 + }, + { + "start": 24938.26, + "end": 24938.94, + "probability": 0.9446 + }, + { + "start": 24939.06, + "end": 24939.92, + "probability": 0.922 + }, + { + "start": 24939.96, + "end": 24941.62, + "probability": 0.8684 + }, + { + "start": 24941.7, + "end": 24948.78, + "probability": 0.9192 + }, + { + "start": 24949.94, + "end": 24950.8, + "probability": 0.8342 + }, + { + "start": 24950.9, + "end": 24952.48, + "probability": 0.9965 + }, + { + "start": 24952.94, + "end": 24955.4, + "probability": 0.855 + }, + { + "start": 24956.0, + "end": 24957.76, + "probability": 0.9609 + }, + { + "start": 24958.58, + "end": 24966.12, + "probability": 0.9721 + }, + { + "start": 24968.35, + "end": 24971.5, + "probability": 0.5814 + }, + { + "start": 24972.36, + "end": 24975.4, + "probability": 0.7332 + }, + { + "start": 24975.56, + "end": 24976.98, + "probability": 0.9787 + }, + { + "start": 24977.14, + "end": 24977.96, + "probability": 0.9637 + }, + { + "start": 24979.3, + "end": 24980.56, + "probability": 0.8047 + }, + { + "start": 24982.04, + "end": 24989.1, + "probability": 0.9102 + }, + { + "start": 24989.66, + "end": 24990.16, + "probability": 0.6264 + }, + { + "start": 24990.96, + "end": 24992.88, + "probability": 0.9972 + }, + { + "start": 24992.88, + "end": 24995.6, + "probability": 0.9974 + }, + { + "start": 24996.48, + "end": 24999.06, + "probability": 0.9974 + }, + { + "start": 24999.06, + "end": 25002.16, + "probability": 0.9933 + }, + { + "start": 25002.96, + "end": 25004.4, + "probability": 0.9638 + }, + { + "start": 25004.9, + "end": 25006.56, + "probability": 0.968 + }, + { + "start": 25006.64, + "end": 25008.04, + "probability": 0.907 + }, + { + "start": 25008.9, + "end": 25012.4, + "probability": 0.9966 + }, + { + "start": 25013.8, + "end": 25018.38, + "probability": 0.884 + }, + { + "start": 25019.18, + "end": 25020.6, + "probability": 0.6982 + }, + { + "start": 25020.94, + "end": 25021.78, + "probability": 0.8596 + }, + { + "start": 25022.1, + "end": 25023.56, + "probability": 0.6622 + }, + { + "start": 25027.82, + "end": 25029.78, + "probability": 0.9865 + }, + { + "start": 25029.78, + "end": 25032.58, + "probability": 0.8324 + }, + { + "start": 25033.72, + "end": 25033.72, + "probability": 0.2872 + }, + { + "start": 25033.72, + "end": 25035.94, + "probability": 0.9833 + }, + { + "start": 25036.12, + "end": 25039.64, + "probability": 0.7328 + }, + { + "start": 25040.62, + "end": 25041.58, + "probability": 0.8024 + }, + { + "start": 25041.62, + "end": 25043.89, + "probability": 0.8148 + }, + { + "start": 25044.46, + "end": 25044.88, + "probability": 0.6852 + }, + { + "start": 25046.12, + "end": 25048.16, + "probability": 0.7791 + }, + { + "start": 25048.44, + "end": 25048.88, + "probability": 0.7589 + }, + { + "start": 25049.18, + "end": 25052.26, + "probability": 0.9812 + }, + { + "start": 25052.86, + "end": 25054.76, + "probability": 0.6304 + }, + { + "start": 25055.2, + "end": 25057.08, + "probability": 0.8121 + }, + { + "start": 25057.64, + "end": 25059.26, + "probability": 0.903 + }, + { + "start": 25060.54, + "end": 25061.04, + "probability": 0.8626 + }, + { + "start": 25063.26, + "end": 25064.82, + "probability": 0.9612 + }, + { + "start": 25064.9, + "end": 25065.91, + "probability": 0.9702 + }, + { + "start": 25066.48, + "end": 25067.66, + "probability": 0.9094 + }, + { + "start": 25068.54, + "end": 25070.3, + "probability": 0.9691 + }, + { + "start": 25071.86, + "end": 25073.76, + "probability": 0.9198 + }, + { + "start": 25074.98, + "end": 25077.42, + "probability": 0.9773 + }, + { + "start": 25077.58, + "end": 25080.0, + "probability": 0.9689 + }, + { + "start": 25080.52, + "end": 25084.48, + "probability": 0.8431 + }, + { + "start": 25085.48, + "end": 25087.36, + "probability": 0.9316 + }, + { + "start": 25087.86, + "end": 25091.88, + "probability": 0.9979 + }, + { + "start": 25092.84, + "end": 25097.7, + "probability": 0.9976 + }, + { + "start": 25098.06, + "end": 25099.5, + "probability": 0.7597 + }, + { + "start": 25099.58, + "end": 25100.14, + "probability": 0.5437 + }, + { + "start": 25100.48, + "end": 25104.54, + "probability": 0.9972 + }, + { + "start": 25105.34, + "end": 25106.44, + "probability": 0.658 + }, + { + "start": 25106.46, + "end": 25106.46, + "probability": 0.5885 + }, + { + "start": 25106.5, + "end": 25109.82, + "probability": 0.8333 + }, + { + "start": 25109.88, + "end": 25110.38, + "probability": 0.5436 + }, + { + "start": 25110.4, + "end": 25112.24, + "probability": 0.9519 + }, + { + "start": 25112.8, + "end": 25115.96, + "probability": 0.9899 + }, + { + "start": 25115.96, + "end": 25118.8, + "probability": 0.9121 + }, + { + "start": 25119.12, + "end": 25120.82, + "probability": 0.9854 + }, + { + "start": 25120.86, + "end": 25121.12, + "probability": 0.6568 + }, + { + "start": 25122.22, + "end": 25125.24, + "probability": 0.9829 + }, + { + "start": 25125.46, + "end": 25126.6, + "probability": 0.9807 + }, + { + "start": 25133.22, + "end": 25133.32, + "probability": 0.0287 + }, + { + "start": 25133.8, + "end": 25137.16, + "probability": 0.9062 + }, + { + "start": 25137.72, + "end": 25141.56, + "probability": 0.2288 + }, + { + "start": 25142.44, + "end": 25143.1, + "probability": 0.5647 + }, + { + "start": 25144.74, + "end": 25145.92, + "probability": 0.2409 + }, + { + "start": 25146.92, + "end": 25149.1, + "probability": 0.456 + }, + { + "start": 25164.34, + "end": 25164.34, + "probability": 0.2866 + }, + { + "start": 25164.34, + "end": 25164.34, + "probability": 0.1246 + }, + { + "start": 25164.34, + "end": 25164.34, + "probability": 0.0466 + }, + { + "start": 25164.34, + "end": 25169.6, + "probability": 0.4949 + }, + { + "start": 25169.6, + "end": 25169.88, + "probability": 0.1987 + }, + { + "start": 25169.98, + "end": 25175.46, + "probability": 0.544 + }, + { + "start": 25176.1, + "end": 25177.28, + "probability": 0.2042 + }, + { + "start": 25177.86, + "end": 25183.92, + "probability": 0.8672 + }, + { + "start": 25184.36, + "end": 25185.52, + "probability": 0.8948 + }, + { + "start": 25186.38, + "end": 25187.64, + "probability": 0.8428 + }, + { + "start": 25188.34, + "end": 25189.42, + "probability": 0.9093 + }, + { + "start": 25190.38, + "end": 25192.18, + "probability": 0.9791 + }, + { + "start": 25193.0, + "end": 25197.38, + "probability": 0.9451 + }, + { + "start": 25198.42, + "end": 25200.3, + "probability": 0.9556 + }, + { + "start": 25201.38, + "end": 25202.38, + "probability": 0.1897 + }, + { + "start": 25202.38, + "end": 25203.46, + "probability": 0.5252 + }, + { + "start": 25207.61, + "end": 25209.06, + "probability": 0.8865 + }, + { + "start": 25222.04, + "end": 25223.62, + "probability": 0.6635 + }, + { + "start": 25224.44, + "end": 25225.82, + "probability": 0.6035 + }, + { + "start": 25229.44, + "end": 25234.12, + "probability": 0.866 + }, + { + "start": 25234.14, + "end": 25235.12, + "probability": 0.7817 + }, + { + "start": 25235.96, + "end": 25244.54, + "probability": 0.9867 + }, + { + "start": 25244.54, + "end": 25247.64, + "probability": 0.9972 + }, + { + "start": 25247.72, + "end": 25248.66, + "probability": 0.8514 + }, + { + "start": 25248.98, + "end": 25253.02, + "probability": 0.915 + }, + { + "start": 25254.62, + "end": 25257.5, + "probability": 0.7516 + }, + { + "start": 25258.02, + "end": 25266.16, + "probability": 0.962 + }, + { + "start": 25266.7, + "end": 25269.36, + "probability": 0.7987 + }, + { + "start": 25269.9, + "end": 25270.66, + "probability": 0.8802 + }, + { + "start": 25271.44, + "end": 25276.48, + "probability": 0.7587 + }, + { + "start": 25277.04, + "end": 25278.28, + "probability": 0.9378 + }, + { + "start": 25279.44, + "end": 25280.52, + "probability": 0.7952 + }, + { + "start": 25282.26, + "end": 25283.56, + "probability": 0.0987 + }, + { + "start": 25283.92, + "end": 25284.7, + "probability": 0.9326 + }, + { + "start": 25284.88, + "end": 25285.04, + "probability": 0.2582 + }, + { + "start": 25285.04, + "end": 25285.66, + "probability": 0.4932 + }, + { + "start": 25286.0, + "end": 25287.72, + "probability": 0.9962 + }, + { + "start": 25288.38, + "end": 25289.28, + "probability": 0.8909 + }, + { + "start": 25290.52, + "end": 25295.29, + "probability": 0.8452 + }, + { + "start": 25295.78, + "end": 25296.08, + "probability": 0.0175 + }, + { + "start": 25296.08, + "end": 25300.04, + "probability": 0.8982 + }, + { + "start": 25301.08, + "end": 25307.18, + "probability": 0.9088 + }, + { + "start": 25308.35, + "end": 25310.8, + "probability": 0.9429 + }, + { + "start": 25310.86, + "end": 25311.0, + "probability": 0.9888 + }, + { + "start": 25312.24, + "end": 25319.51, + "probability": 0.942 + }, + { + "start": 25319.72, + "end": 25320.78, + "probability": 0.7826 + }, + { + "start": 25321.2, + "end": 25323.18, + "probability": 0.6524 + }, + { + "start": 25324.34, + "end": 25325.48, + "probability": 0.9504 + }, + { + "start": 25326.34, + "end": 25327.8, + "probability": 0.9034 + }, + { + "start": 25328.58, + "end": 25334.44, + "probability": 0.9676 + }, + { + "start": 25335.3, + "end": 25336.98, + "probability": 0.9919 + }, + { + "start": 25337.58, + "end": 25339.94, + "probability": 0.9791 + }, + { + "start": 25340.46, + "end": 25341.34, + "probability": 0.8851 + }, + { + "start": 25342.16, + "end": 25343.54, + "probability": 0.9617 + }, + { + "start": 25344.54, + "end": 25349.66, + "probability": 0.9988 + }, + { + "start": 25350.22, + "end": 25353.58, + "probability": 0.8893 + }, + { + "start": 25354.4, + "end": 25359.42, + "probability": 0.905 + }, + { + "start": 25359.48, + "end": 25362.98, + "probability": 0.9955 + }, + { + "start": 25363.22, + "end": 25368.0, + "probability": 0.9577 + }, + { + "start": 25368.6, + "end": 25368.84, + "probability": 0.7 + }, + { + "start": 25370.0, + "end": 25372.34, + "probability": 0.8896 + }, + { + "start": 25373.64, + "end": 25381.16, + "probability": 0.8865 + }, + { + "start": 25381.88, + "end": 25385.1, + "probability": 0.9811 + }, + { + "start": 25385.54, + "end": 25389.8, + "probability": 0.9979 + }, + { + "start": 25390.34, + "end": 25391.7, + "probability": 0.6338 + }, + { + "start": 25391.82, + "end": 25397.02, + "probability": 0.993 + }, + { + "start": 25397.28, + "end": 25397.28, + "probability": 0.3291 + }, + { + "start": 25397.5, + "end": 25400.4, + "probability": 0.9932 + }, + { + "start": 25401.14, + "end": 25409.32, + "probability": 0.9734 + }, + { + "start": 25409.94, + "end": 25411.72, + "probability": 0.7708 + }, + { + "start": 25412.42, + "end": 25414.36, + "probability": 0.8058 + }, + { + "start": 25415.2, + "end": 25418.74, + "probability": 0.9725 + }, + { + "start": 25419.5, + "end": 25420.22, + "probability": 0.6471 + }, + { + "start": 25420.54, + "end": 25426.1, + "probability": 0.9514 + }, + { + "start": 25426.92, + "end": 25434.32, + "probability": 0.9289 + }, + { + "start": 25434.98, + "end": 25442.32, + "probability": 0.9692 + }, + { + "start": 25443.14, + "end": 25447.77, + "probability": 0.9569 + }, + { + "start": 25449.0, + "end": 25450.02, + "probability": 0.8092 + }, + { + "start": 25450.9, + "end": 25453.0, + "probability": 0.8694 + }, + { + "start": 25453.94, + "end": 25455.78, + "probability": 0.9272 + }, + { + "start": 25456.3, + "end": 25458.66, + "probability": 0.5362 + }, + { + "start": 25459.22, + "end": 25464.02, + "probability": 0.9152 + }, + { + "start": 25464.66, + "end": 25467.36, + "probability": 0.7307 + }, + { + "start": 25469.78, + "end": 25470.44, + "probability": 0.8988 + }, + { + "start": 25470.98, + "end": 25471.7, + "probability": 0.5413 + }, + { + "start": 25471.8, + "end": 25473.38, + "probability": 0.6354 + }, + { + "start": 25473.5, + "end": 25475.74, + "probability": 0.8031 + }, + { + "start": 25475.84, + "end": 25477.06, + "probability": 0.6326 + }, + { + "start": 25477.56, + "end": 25480.74, + "probability": 0.5816 + }, + { + "start": 25480.76, + "end": 25483.68, + "probability": 0.9972 + }, + { + "start": 25484.68, + "end": 25484.72, + "probability": 0.0419 + }, + { + "start": 25484.72, + "end": 25484.72, + "probability": 0.0684 + }, + { + "start": 25484.72, + "end": 25484.76, + "probability": 0.1604 + }, + { + "start": 25484.76, + "end": 25485.8, + "probability": 0.1575 + }, + { + "start": 25486.36, + "end": 25486.58, + "probability": 0.2317 + }, + { + "start": 25486.58, + "end": 25489.26, + "probability": 0.5886 + }, + { + "start": 25489.3, + "end": 25490.28, + "probability": 0.5098 + }, + { + "start": 25490.44, + "end": 25490.92, + "probability": 0.3409 + }, + { + "start": 25493.64, + "end": 25494.12, + "probability": 0.0503 + }, + { + "start": 25494.12, + "end": 25494.14, + "probability": 0.0842 + }, + { + "start": 25494.14, + "end": 25495.66, + "probability": 0.1583 + }, + { + "start": 25495.74, + "end": 25496.36, + "probability": 0.2103 + }, + { + "start": 25496.36, + "end": 25497.18, + "probability": 0.7076 + }, + { + "start": 25497.76, + "end": 25497.76, + "probability": 0.0273 + }, + { + "start": 25497.76, + "end": 25498.78, + "probability": 0.7204 + }, + { + "start": 25499.04, + "end": 25501.9, + "probability": 0.8745 + }, + { + "start": 25502.34, + "end": 25504.24, + "probability": 0.6458 + }, + { + "start": 25504.78, + "end": 25509.67, + "probability": 0.907 + }, + { + "start": 25511.98, + "end": 25512.94, + "probability": 0.4568 + }, + { + "start": 25512.96, + "end": 25514.04, + "probability": 0.1072 + }, + { + "start": 25514.22, + "end": 25515.36, + "probability": 0.7631 + }, + { + "start": 25515.58, + "end": 25516.08, + "probability": 0.6471 + }, + { + "start": 25516.08, + "end": 25516.08, + "probability": 0.3072 + }, + { + "start": 25516.38, + "end": 25518.94, + "probability": 0.7705 + }, + { + "start": 25518.94, + "end": 25519.64, + "probability": 0.8197 + }, + { + "start": 25520.06, + "end": 25524.4, + "probability": 0.8957 + }, + { + "start": 25524.56, + "end": 25525.4, + "probability": 0.714 + }, + { + "start": 25525.48, + "end": 25526.78, + "probability": 0.9336 + }, + { + "start": 25526.82, + "end": 25528.32, + "probability": 0.5342 + }, + { + "start": 25528.48, + "end": 25529.14, + "probability": 0.1594 + }, + { + "start": 25529.14, + "end": 25531.5, + "probability": 0.2724 + }, + { + "start": 25531.5, + "end": 25531.5, + "probability": 0.3845 + }, + { + "start": 25531.5, + "end": 25531.8, + "probability": 0.1413 + }, + { + "start": 25531.8, + "end": 25531.8, + "probability": 0.2387 + }, + { + "start": 25531.8, + "end": 25532.1, + "probability": 0.2463 + }, + { + "start": 25532.12, + "end": 25532.47, + "probability": 0.5544 + }, + { + "start": 25532.66, + "end": 25533.62, + "probability": 0.5367 + }, + { + "start": 25533.82, + "end": 25535.04, + "probability": 0.2367 + }, + { + "start": 25535.28, + "end": 25535.58, + "probability": 0.23 + }, + { + "start": 25535.58, + "end": 25536.96, + "probability": 0.3722 + }, + { + "start": 25537.06, + "end": 25539.48, + "probability": 0.3903 + }, + { + "start": 25539.48, + "end": 25539.85, + "probability": 0.2391 + }, + { + "start": 25540.58, + "end": 25540.78, + "probability": 0.6383 + }, + { + "start": 25540.86, + "end": 25541.64, + "probability": 0.7265 + }, + { + "start": 25542.1, + "end": 25544.28, + "probability": 0.9001 + }, + { + "start": 25544.28, + "end": 25545.78, + "probability": 0.5892 + }, + { + "start": 25545.78, + "end": 25550.4, + "probability": 0.9378 + }, + { + "start": 25550.4, + "end": 25552.14, + "probability": 0.8179 + }, + { + "start": 25552.54, + "end": 25554.98, + "probability": 0.9513 + }, + { + "start": 25555.24, + "end": 25556.46, + "probability": 0.0866 + }, + { + "start": 25557.0, + "end": 25557.28, + "probability": 0.0493 + }, + { + "start": 25558.0, + "end": 25558.88, + "probability": 0.1969 + }, + { + "start": 25558.88, + "end": 25558.98, + "probability": 0.0561 + }, + { + "start": 25558.98, + "end": 25558.98, + "probability": 0.1994 + }, + { + "start": 25558.98, + "end": 25559.6, + "probability": 0.1252 + }, + { + "start": 25560.74, + "end": 25560.76, + "probability": 0.0119 + }, + { + "start": 25562.32, + "end": 25564.5, + "probability": 0.3194 + }, + { + "start": 25565.38, + "end": 25567.7, + "probability": 0.8949 + }, + { + "start": 25568.84, + "end": 25568.98, + "probability": 0.0391 + }, + { + "start": 25569.32, + "end": 25569.96, + "probability": 0.2017 + }, + { + "start": 25569.96, + "end": 25569.98, + "probability": 0.1454 + }, + { + "start": 25569.98, + "end": 25570.06, + "probability": 0.0248 + }, + { + "start": 25570.18, + "end": 25570.6, + "probability": 0.3387 + }, + { + "start": 25571.4, + "end": 25571.74, + "probability": 0.2567 + }, + { + "start": 25571.74, + "end": 25573.52, + "probability": 0.7078 + }, + { + "start": 25573.68, + "end": 25573.98, + "probability": 0.0662 + }, + { + "start": 25573.98, + "end": 25577.44, + "probability": 0.4247 + }, + { + "start": 25577.64, + "end": 25578.68, + "probability": 0.6211 + }, + { + "start": 25578.82, + "end": 25579.0, + "probability": 0.0999 + }, + { + "start": 25579.0, + "end": 25581.88, + "probability": 0.7753 + }, + { + "start": 25582.0, + "end": 25582.54, + "probability": 0.1016 + }, + { + "start": 25583.08, + "end": 25586.16, + "probability": 0.7494 + }, + { + "start": 25586.42, + "end": 25588.66, + "probability": 0.6937 + }, + { + "start": 25589.3, + "end": 25590.56, + "probability": 0.9723 + }, + { + "start": 25591.44, + "end": 25594.92, + "probability": 0.7657 + }, + { + "start": 25595.58, + "end": 25597.96, + "probability": 0.5658 + }, + { + "start": 25598.48, + "end": 25601.04, + "probability": 0.9584 + }, + { + "start": 25602.32, + "end": 25603.22, + "probability": 0.7564 + }, + { + "start": 25604.4, + "end": 25608.44, + "probability": 0.8586 + }, + { + "start": 25608.54, + "end": 25609.06, + "probability": 0.569 + }, + { + "start": 25611.02, + "end": 25613.05, + "probability": 0.9154 + }, + { + "start": 25614.02, + "end": 25614.24, + "probability": 0.9843 + }, + { + "start": 25615.36, + "end": 25616.71, + "probability": 0.7288 + }, + { + "start": 25618.51, + "end": 25623.3, + "probability": 0.9063 + }, + { + "start": 25623.52, + "end": 25626.62, + "probability": 0.9966 + }, + { + "start": 25626.64, + "end": 25631.29, + "probability": 0.9847 + }, + { + "start": 25632.1, + "end": 25635.2, + "probability": 0.9929 + }, + { + "start": 25635.2, + "end": 25639.4, + "probability": 0.9985 + }, + { + "start": 25639.4, + "end": 25643.3, + "probability": 0.9998 + }, + { + "start": 25644.06, + "end": 25646.56, + "probability": 0.998 + }, + { + "start": 25646.56, + "end": 25649.46, + "probability": 0.9922 + }, + { + "start": 25650.12, + "end": 25650.52, + "probability": 0.6603 + }, + { + "start": 25650.66, + "end": 25652.01, + "probability": 0.9893 + }, + { + "start": 25652.16, + "end": 25653.88, + "probability": 0.989 + }, + { + "start": 25654.32, + "end": 25657.56, + "probability": 0.9769 + }, + { + "start": 25657.56, + "end": 25662.42, + "probability": 0.98 + }, + { + "start": 25662.42, + "end": 25667.24, + "probability": 0.9852 + }, + { + "start": 25667.88, + "end": 25671.1, + "probability": 0.9974 + }, + { + "start": 25671.1, + "end": 25673.84, + "probability": 0.8667 + }, + { + "start": 25674.4, + "end": 25677.38, + "probability": 0.9634 + }, + { + "start": 25678.1, + "end": 25678.58, + "probability": 0.8047 + }, + { + "start": 25678.7, + "end": 25683.46, + "probability": 0.9892 + }, + { + "start": 25683.46, + "end": 25689.68, + "probability": 0.9795 + }, + { + "start": 25690.02, + "end": 25693.08, + "probability": 0.8124 + }, + { + "start": 25693.72, + "end": 25698.7, + "probability": 0.6375 + }, + { + "start": 25698.7, + "end": 25702.12, + "probability": 0.9942 + }, + { + "start": 25702.22, + "end": 25703.22, + "probability": 0.949 + }, + { + "start": 25703.38, + "end": 25705.66, + "probability": 0.978 + }, + { + "start": 25705.72, + "end": 25708.33, + "probability": 0.9902 + }, + { + "start": 25709.34, + "end": 25710.02, + "probability": 0.7209 + }, + { + "start": 25712.54, + "end": 25714.9, + "probability": 0.5597 + }, + { + "start": 25714.94, + "end": 25717.68, + "probability": 0.948 + }, + { + "start": 25718.98, + "end": 25721.08, + "probability": 0.8896 + }, + { + "start": 25721.2, + "end": 25721.72, + "probability": 0.7676 + }, + { + "start": 25722.62, + "end": 25724.52, + "probability": 0.4728 + }, + { + "start": 25725.42, + "end": 25726.56, + "probability": 0.8818 + }, + { + "start": 25729.76, + "end": 25732.36, + "probability": 0.6779 + }, + { + "start": 25732.46, + "end": 25732.5, + "probability": 0.4496 + }, + { + "start": 25732.52, + "end": 25733.84, + "probability": 0.7316 + }, + { + "start": 25733.92, + "end": 25734.46, + "probability": 0.7506 + }, + { + "start": 25734.94, + "end": 25738.58, + "probability": 0.6339 + }, + { + "start": 25739.12, + "end": 25742.68, + "probability": 0.819 + }, + { + "start": 25742.72, + "end": 25743.56, + "probability": 0.1508 + }, + { + "start": 25743.98, + "end": 25744.8, + "probability": 0.688 + }, + { + "start": 25744.88, + "end": 25745.6, + "probability": 0.7276 + }, + { + "start": 25745.64, + "end": 25746.56, + "probability": 0.7276 + }, + { + "start": 25746.66, + "end": 25747.82, + "probability": 0.9673 + }, + { + "start": 25749.1, + "end": 25750.46, + "probability": 0.9689 + }, + { + "start": 25751.7, + "end": 25752.36, + "probability": 0.5812 + }, + { + "start": 25753.62, + "end": 25754.62, + "probability": 0.907 + }, + { + "start": 25756.72, + "end": 25758.78, + "probability": 0.5325 + }, + { + "start": 25760.08, + "end": 25763.5, + "probability": 0.9827 + }, + { + "start": 25764.46, + "end": 25768.04, + "probability": 0.9935 + }, + { + "start": 25771.16, + "end": 25771.84, + "probability": 0.8977 + }, + { + "start": 25774.0, + "end": 25775.74, + "probability": 0.7919 + }, + { + "start": 25777.3, + "end": 25777.58, + "probability": 0.0152 + }, + { + "start": 25777.64, + "end": 25778.9, + "probability": 0.2904 + }, + { + "start": 25779.02, + "end": 25781.87, + "probability": 0.9265 + }, + { + "start": 25782.12, + "end": 25785.06, + "probability": 0.049 + }, + { + "start": 25786.16, + "end": 25788.44, + "probability": 0.877 + }, + { + "start": 25788.64, + "end": 25789.31, + "probability": 0.8006 + }, + { + "start": 25789.74, + "end": 25792.96, + "probability": 0.5089 + }, + { + "start": 25793.92, + "end": 25795.9, + "probability": 0.5991 + }, + { + "start": 25795.96, + "end": 25797.2, + "probability": 0.5563 + }, + { + "start": 25797.34, + "end": 25799.12, + "probability": 0.6771 + }, + { + "start": 25799.24, + "end": 25799.24, + "probability": 0.7292 + }, + { + "start": 25799.32, + "end": 25801.21, + "probability": 0.8594 + }, + { + "start": 25801.84, + "end": 25801.84, + "probability": 0.5624 + }, + { + "start": 25802.26, + "end": 25802.56, + "probability": 0.5462 + }, + { + "start": 25804.64, + "end": 25805.34, + "probability": 0.0444 + }, + { + "start": 25805.34, + "end": 25805.34, + "probability": 0.0422 + }, + { + "start": 25805.35, + "end": 25806.06, + "probability": 0.0909 + }, + { + "start": 25806.3, + "end": 25806.3, + "probability": 0.4223 + }, + { + "start": 25806.3, + "end": 25806.3, + "probability": 0.3792 + }, + { + "start": 25806.3, + "end": 25806.3, + "probability": 0.7014 + }, + { + "start": 25806.3, + "end": 25808.9, + "probability": 0.5491 + }, + { + "start": 25808.9, + "end": 25811.58, + "probability": 0.5528 + }, + { + "start": 25811.66, + "end": 25812.78, + "probability": 0.2613 + }, + { + "start": 25812.92, + "end": 25813.24, + "probability": 0.8062 + }, + { + "start": 25813.44, + "end": 25819.06, + "probability": 0.9669 + }, + { + "start": 25819.68, + "end": 25824.02, + "probability": 0.9958 + }, + { + "start": 25825.86, + "end": 25828.84, + "probability": 0.2615 + }, + { + "start": 25829.06, + "end": 25829.94, + "probability": 0.9753 + }, + { + "start": 25829.94, + "end": 25832.16, + "probability": 0.8343 + }, + { + "start": 25832.16, + "end": 25834.0, + "probability": 0.9092 + }, + { + "start": 25834.96, + "end": 25836.8, + "probability": 0.9277 + }, + { + "start": 25838.14, + "end": 25840.22, + "probability": 0.9911 + }, + { + "start": 25840.24, + "end": 25841.3, + "probability": 0.9883 + }, + { + "start": 25842.0, + "end": 25842.6, + "probability": 0.6014 + }, + { + "start": 25844.74, + "end": 25846.58, + "probability": 0.8265 + }, + { + "start": 25846.76, + "end": 25847.76, + "probability": 0.9821 + }, + { + "start": 25847.9, + "end": 25849.06, + "probability": 0.6651 + }, + { + "start": 25849.1, + "end": 25853.12, + "probability": 0.9816 + }, + { + "start": 25853.92, + "end": 25856.18, + "probability": 0.9827 + }, + { + "start": 25857.54, + "end": 25858.5, + "probability": 0.9856 + }, + { + "start": 25859.36, + "end": 25862.34, + "probability": 0.9955 + }, + { + "start": 25863.43, + "end": 25867.36, + "probability": 0.7883 + }, + { + "start": 25868.98, + "end": 25871.8, + "probability": 0.9956 + }, + { + "start": 25871.88, + "end": 25873.36, + "probability": 0.9491 + }, + { + "start": 25873.48, + "end": 25874.72, + "probability": 0.7694 + }, + { + "start": 25874.8, + "end": 25876.92, + "probability": 0.8272 + }, + { + "start": 25878.7, + "end": 25882.54, + "probability": 0.9636 + }, + { + "start": 25883.24, + "end": 25885.4, + "probability": 0.0055 + }, + { + "start": 25885.5, + "end": 25885.73, + "probability": 0.034 + }, + { + "start": 25886.18, + "end": 25887.54, + "probability": 0.4424 + }, + { + "start": 25887.94, + "end": 25894.3, + "probability": 0.9941 + }, + { + "start": 25895.7, + "end": 25895.84, + "probability": 0.1243 + }, + { + "start": 25895.84, + "end": 25897.86, + "probability": 0.7023 + }, + { + "start": 25898.3, + "end": 25899.72, + "probability": 0.6011 + }, + { + "start": 25899.8, + "end": 25900.7, + "probability": 0.7542 + }, + { + "start": 25900.78, + "end": 25902.84, + "probability": 0.9368 + }, + { + "start": 25903.22, + "end": 25906.44, + "probability": 0.9921 + }, + { + "start": 25906.52, + "end": 25907.2, + "probability": 0.9086 + }, + { + "start": 25907.28, + "end": 25911.22, + "probability": 0.863 + }, + { + "start": 25911.38, + "end": 25914.68, + "probability": 0.9719 + }, + { + "start": 25915.32, + "end": 25915.78, + "probability": 0.9066 + }, + { + "start": 25916.68, + "end": 25916.68, + "probability": 0.057 + }, + { + "start": 25916.68, + "end": 25917.45, + "probability": 0.9934 + }, + { + "start": 25918.62, + "end": 25923.72, + "probability": 0.9768 + }, + { + "start": 25923.76, + "end": 25925.32, + "probability": 0.9213 + }, + { + "start": 25925.56, + "end": 25925.82, + "probability": 0.3398 + }, + { + "start": 25925.82, + "end": 25928.18, + "probability": 0.6869 + }, + { + "start": 25928.18, + "end": 25931.86, + "probability": 0.6977 + }, + { + "start": 25932.52, + "end": 25932.58, + "probability": 0.1111 + }, + { + "start": 25932.58, + "end": 25933.1, + "probability": 0.4181 + }, + { + "start": 25933.12, + "end": 25936.34, + "probability": 0.9523 + }, + { + "start": 25936.9, + "end": 25939.94, + "probability": 0.8676 + }, + { + "start": 25939.94, + "end": 25939.94, + "probability": 0.7496 + }, + { + "start": 25940.12, + "end": 25940.68, + "probability": 0.5501 + }, + { + "start": 25941.3, + "end": 25943.42, + "probability": 0.897 + }, + { + "start": 25943.56, + "end": 25944.4, + "probability": 0.9768 + }, + { + "start": 25944.82, + "end": 25945.6, + "probability": 0.9623 + }, + { + "start": 25945.64, + "end": 25946.4, + "probability": 0.8374 + }, + { + "start": 25946.86, + "end": 25948.2, + "probability": 0.8788 + }, + { + "start": 25948.36, + "end": 25948.62, + "probability": 0.6399 + }, + { + "start": 25948.84, + "end": 25949.44, + "probability": 0.1002 + }, + { + "start": 25949.44, + "end": 25949.72, + "probability": 0.762 + }, + { + "start": 25949.98, + "end": 25950.74, + "probability": 0.402 + }, + { + "start": 25950.82, + "end": 25952.38, + "probability": 0.9098 + }, + { + "start": 25953.0, + "end": 25955.28, + "probability": 0.9475 + }, + { + "start": 25955.46, + "end": 25958.56, + "probability": 0.4958 + }, + { + "start": 25959.08, + "end": 25960.22, + "probability": 0.2604 + }, + { + "start": 25960.32, + "end": 25962.42, + "probability": 0.1737 + }, + { + "start": 25962.56, + "end": 25967.26, + "probability": 0.1118 + }, + { + "start": 25967.94, + "end": 25968.74, + "probability": 0.0628 + }, + { + "start": 25968.84, + "end": 25968.84, + "probability": 0.0407 + }, + { + "start": 25968.84, + "end": 25968.84, + "probability": 0.024 + }, + { + "start": 25968.84, + "end": 25968.84, + "probability": 0.0081 + }, + { + "start": 25968.84, + "end": 25970.3, + "probability": 0.5376 + }, + { + "start": 25970.42, + "end": 25971.5, + "probability": 0.5149 + }, + { + "start": 25971.88, + "end": 25974.52, + "probability": 0.8491 + }, + { + "start": 25974.66, + "end": 25975.01, + "probability": 0.4913 + }, + { + "start": 25975.36, + "end": 25975.64, + "probability": 0.4005 + }, + { + "start": 25975.74, + "end": 25977.92, + "probability": 0.5868 + }, + { + "start": 25977.98, + "end": 25980.86, + "probability": 0.9782 + }, + { + "start": 25981.02, + "end": 25982.58, + "probability": 0.7838 + }, + { + "start": 25982.84, + "end": 25985.48, + "probability": 0.0099 + }, + { + "start": 25985.66, + "end": 25985.74, + "probability": 0.0025 + }, + { + "start": 25987.96, + "end": 25988.04, + "probability": 0.0148 + }, + { + "start": 25988.04, + "end": 25988.39, + "probability": 0.0074 + }, + { + "start": 25989.08, + "end": 25989.74, + "probability": 0.0993 + }, + { + "start": 25990.54, + "end": 25990.76, + "probability": 0.0856 + }, + { + "start": 25991.14, + "end": 25991.16, + "probability": 0.0529 + }, + { + "start": 25991.16, + "end": 25993.43, + "probability": 0.7314 + }, + { + "start": 25993.82, + "end": 25994.62, + "probability": 0.6574 + }, + { + "start": 25995.66, + "end": 25995.78, + "probability": 0.12 + }, + { + "start": 25995.78, + "end": 25998.7, + "probability": 0.6469 + }, + { + "start": 25999.52, + "end": 25999.82, + "probability": 0.7591 + }, + { + "start": 25999.92, + "end": 26000.6, + "probability": 0.6943 + }, + { + "start": 26000.82, + "end": 26000.84, + "probability": 0.0101 + }, + { + "start": 26000.84, + "end": 26001.22, + "probability": 0.1483 + }, + { + "start": 26001.22, + "end": 26001.78, + "probability": 0.0983 + }, + { + "start": 26002.36, + "end": 26005.98, + "probability": 0.7583 + }, + { + "start": 26006.08, + "end": 26007.52, + "probability": 0.6182 + }, + { + "start": 26007.64, + "end": 26009.32, + "probability": 0.5201 + }, + { + "start": 26009.68, + "end": 26011.02, + "probability": 0.7153 + }, + { + "start": 26011.8, + "end": 26013.62, + "probability": 0.9134 + }, + { + "start": 26014.34, + "end": 26014.84, + "probability": 0.9235 + }, + { + "start": 26016.3, + "end": 26019.14, + "probability": 0.9331 + }, + { + "start": 26020.4, + "end": 26021.38, + "probability": 0.9734 + }, + { + "start": 26022.46, + "end": 26023.4, + "probability": 0.7141 + }, + { + "start": 26025.82, + "end": 26029.18, + "probability": 0.7673 + }, + { + "start": 26032.02, + "end": 26032.86, + "probability": 0.8395 + }, + { + "start": 26034.06, + "end": 26037.14, + "probability": 0.9974 + }, + { + "start": 26037.38, + "end": 26038.3, + "probability": 0.9211 + }, + { + "start": 26039.04, + "end": 26040.48, + "probability": 0.9941 + }, + { + "start": 26042.02, + "end": 26045.98, + "probability": 0.8986 + }, + { + "start": 26046.5, + "end": 26050.64, + "probability": 0.9709 + }, + { + "start": 26051.5, + "end": 26053.54, + "probability": 0.9673 + }, + { + "start": 26054.92, + "end": 26056.19, + "probability": 0.9652 + }, + { + "start": 26057.3, + "end": 26063.12, + "probability": 0.9647 + }, + { + "start": 26063.16, + "end": 26063.78, + "probability": 0.6405 + }, + { + "start": 26064.32, + "end": 26067.86, + "probability": 0.9934 + }, + { + "start": 26068.16, + "end": 26069.02, + "probability": 0.5461 + }, + { + "start": 26069.28, + "end": 26073.16, + "probability": 0.9861 + }, + { + "start": 26074.14, + "end": 26076.28, + "probability": 0.8539 + }, + { + "start": 26077.14, + "end": 26077.76, + "probability": 0.7964 + }, + { + "start": 26078.78, + "end": 26080.46, + "probability": 0.9121 + }, + { + "start": 26081.62, + "end": 26083.52, + "probability": 0.9728 + }, + { + "start": 26084.7, + "end": 26085.33, + "probability": 0.9554 + }, + { + "start": 26086.16, + "end": 26089.0, + "probability": 0.9832 + }, + { + "start": 26089.5, + "end": 26094.74, + "probability": 0.9987 + }, + { + "start": 26095.24, + "end": 26096.42, + "probability": 0.958 + }, + { + "start": 26096.74, + "end": 26097.69, + "probability": 0.9948 + }, + { + "start": 26098.2, + "end": 26099.28, + "probability": 0.9905 + }, + { + "start": 26099.98, + "end": 26103.06, + "probability": 0.9567 + }, + { + "start": 26103.56, + "end": 26106.2, + "probability": 0.9987 + }, + { + "start": 26106.6, + "end": 26110.18, + "probability": 0.9814 + }, + { + "start": 26111.22, + "end": 26111.68, + "probability": 0.7744 + }, + { + "start": 26113.06, + "end": 26113.94, + "probability": 0.6202 + }, + { + "start": 26114.26, + "end": 26115.72, + "probability": 0.8198 + }, + { + "start": 26116.02, + "end": 26117.69, + "probability": 0.9084 + }, + { + "start": 26118.2, + "end": 26119.36, + "probability": 0.7509 + }, + { + "start": 26119.62, + "end": 26121.9, + "probability": 0.7452 + }, + { + "start": 26123.56, + "end": 26127.56, + "probability": 0.8789 + }, + { + "start": 26128.26, + "end": 26130.7, + "probability": 0.822 + }, + { + "start": 26130.7, + "end": 26132.56, + "probability": 0.9071 + }, + { + "start": 26133.74, + "end": 26137.62, + "probability": 0.6916 + }, + { + "start": 26138.08, + "end": 26139.02, + "probability": 0.8896 + }, + { + "start": 26139.58, + "end": 26141.08, + "probability": 0.9709 + }, + { + "start": 26141.12, + "end": 26142.84, + "probability": 0.999 + }, + { + "start": 26143.26, + "end": 26146.28, + "probability": 0.9856 + }, + { + "start": 26147.88, + "end": 26148.46, + "probability": 0.8106 + }, + { + "start": 26149.08, + "end": 26150.92, + "probability": 0.9505 + }, + { + "start": 26152.06, + "end": 26154.06, + "probability": 0.9258 + }, + { + "start": 26154.12, + "end": 26154.75, + "probability": 0.9558 + }, + { + "start": 26156.24, + "end": 26157.04, + "probability": 0.884 + }, + { + "start": 26158.22, + "end": 26162.32, + "probability": 0.9745 + }, + { + "start": 26162.96, + "end": 26164.34, + "probability": 0.9575 + }, + { + "start": 26164.56, + "end": 26166.3, + "probability": 0.9933 + }, + { + "start": 26166.44, + "end": 26166.78, + "probability": 0.42 + }, + { + "start": 26168.02, + "end": 26169.18, + "probability": 0.8926 + }, + { + "start": 26170.56, + "end": 26171.9, + "probability": 0.9689 + }, + { + "start": 26172.5, + "end": 26173.56, + "probability": 0.8271 + }, + { + "start": 26174.66, + "end": 26177.7, + "probability": 0.8567 + }, + { + "start": 26178.48, + "end": 26182.52, + "probability": 0.9873 + }, + { + "start": 26182.92, + "end": 26185.68, + "probability": 0.8621 + }, + { + "start": 26185.8, + "end": 26186.0, + "probability": 0.2261 + }, + { + "start": 26186.02, + "end": 26186.18, + "probability": 0.2984 + }, + { + "start": 26186.18, + "end": 26187.92, + "probability": 0.9764 + }, + { + "start": 26188.0, + "end": 26188.42, + "probability": 0.9211 + }, + { + "start": 26189.06, + "end": 26189.34, + "probability": 0.2052 + }, + { + "start": 26189.72, + "end": 26191.76, + "probability": 0.7301 + }, + { + "start": 26205.21, + "end": 26208.46, + "probability": 0.7921 + }, + { + "start": 26209.04, + "end": 26209.8, + "probability": 0.9236 + }, + { + "start": 26209.88, + "end": 26210.9, + "probability": 0.8013 + }, + { + "start": 26213.9, + "end": 26214.36, + "probability": 0.6239 + }, + { + "start": 26216.84, + "end": 26219.48, + "probability": 0.9365 + }, + { + "start": 26220.64, + "end": 26221.84, + "probability": 0.9951 + }, + { + "start": 26222.52, + "end": 26223.44, + "probability": 0.9751 + }, + { + "start": 26223.5, + "end": 26228.92, + "probability": 0.9907 + }, + { + "start": 26229.52, + "end": 26235.18, + "probability": 0.9507 + }, + { + "start": 26236.46, + "end": 26238.1, + "probability": 0.8283 + }, + { + "start": 26238.2, + "end": 26240.35, + "probability": 0.9973 + }, + { + "start": 26242.54, + "end": 26247.52, + "probability": 0.9983 + }, + { + "start": 26249.36, + "end": 26253.1, + "probability": 0.9825 + }, + { + "start": 26253.38, + "end": 26255.84, + "probability": 0.9919 + }, + { + "start": 26256.56, + "end": 26257.58, + "probability": 0.8984 + }, + { + "start": 26258.08, + "end": 26259.48, + "probability": 0.9365 + }, + { + "start": 26260.72, + "end": 26261.92, + "probability": 0.5498 + }, + { + "start": 26262.1, + "end": 26263.4, + "probability": 0.9818 + }, + { + "start": 26264.68, + "end": 26266.12, + "probability": 0.9935 + }, + { + "start": 26268.2, + "end": 26271.64, + "probability": 0.9283 + }, + { + "start": 26272.8, + "end": 26273.52, + "probability": 0.8138 + }, + { + "start": 26274.52, + "end": 26275.68, + "probability": 0.985 + }, + { + "start": 26276.24, + "end": 26276.88, + "probability": 0.9903 + }, + { + "start": 26277.94, + "end": 26279.22, + "probability": 0.976 + }, + { + "start": 26280.08, + "end": 26281.96, + "probability": 0.946 + }, + { + "start": 26282.92, + "end": 26284.32, + "probability": 0.9946 + }, + { + "start": 26287.1, + "end": 26292.58, + "probability": 0.9836 + }, + { + "start": 26293.6, + "end": 26296.03, + "probability": 0.9548 + }, + { + "start": 26297.34, + "end": 26299.0, + "probability": 0.7064 + }, + { + "start": 26299.04, + "end": 26299.64, + "probability": 0.8218 + }, + { + "start": 26301.7, + "end": 26303.98, + "probability": 0.8657 + }, + { + "start": 26304.9, + "end": 26306.43, + "probability": 0.9856 + }, + { + "start": 26307.36, + "end": 26308.58, + "probability": 0.8858 + }, + { + "start": 26308.62, + "end": 26309.14, + "probability": 0.8077 + }, + { + "start": 26309.14, + "end": 26310.58, + "probability": 0.9982 + }, + { + "start": 26310.58, + "end": 26313.08, + "probability": 0.9983 + }, + { + "start": 26313.74, + "end": 26314.56, + "probability": 0.6602 + }, + { + "start": 26314.68, + "end": 26316.76, + "probability": 0.6921 + }, + { + "start": 26318.64, + "end": 26319.88, + "probability": 0.8507 + }, + { + "start": 26319.98, + "end": 26324.2, + "probability": 0.9303 + }, + { + "start": 26324.3, + "end": 26324.9, + "probability": 0.8725 + }, + { + "start": 26326.26, + "end": 26327.8, + "probability": 0.9966 + }, + { + "start": 26327.9, + "end": 26330.46, + "probability": 0.98 + }, + { + "start": 26331.5, + "end": 26331.78, + "probability": 0.9229 + }, + { + "start": 26332.36, + "end": 26333.02, + "probability": 0.6997 + }, + { + "start": 26333.86, + "end": 26335.18, + "probability": 0.998 + }, + { + "start": 26335.36, + "end": 26339.08, + "probability": 0.998 + }, + { + "start": 26339.74, + "end": 26340.88, + "probability": 0.9434 + }, + { + "start": 26341.5, + "end": 26345.2, + "probability": 0.9893 + }, + { + "start": 26345.86, + "end": 26348.22, + "probability": 0.9639 + }, + { + "start": 26348.58, + "end": 26349.66, + "probability": 0.9482 + }, + { + "start": 26349.76, + "end": 26351.4, + "probability": 0.688 + }, + { + "start": 26352.44, + "end": 26353.36, + "probability": 0.8959 + }, + { + "start": 26354.68, + "end": 26360.12, + "probability": 0.9739 + }, + { + "start": 26361.22, + "end": 26363.18, + "probability": 0.7021 + }, + { + "start": 26364.32, + "end": 26365.88, + "probability": 0.7201 + }, + { + "start": 26367.0, + "end": 26371.24, + "probability": 0.9813 + }, + { + "start": 26371.44, + "end": 26373.88, + "probability": 0.9162 + }, + { + "start": 26374.52, + "end": 26377.88, + "probability": 0.998 + }, + { + "start": 26378.84, + "end": 26382.54, + "probability": 0.9614 + }, + { + "start": 26382.68, + "end": 26387.14, + "probability": 0.7339 + }, + { + "start": 26387.44, + "end": 26388.84, + "probability": 0.7351 + }, + { + "start": 26389.46, + "end": 26390.98, + "probability": 0.9639 + }, + { + "start": 26392.12, + "end": 26394.86, + "probability": 0.9064 + }, + { + "start": 26395.78, + "end": 26395.8, + "probability": 0.1438 + }, + { + "start": 26395.8, + "end": 26397.36, + "probability": 0.5063 + }, + { + "start": 26397.9, + "end": 26399.1, + "probability": 0.7128 + }, + { + "start": 26399.46, + "end": 26402.08, + "probability": 0.9629 + }, + { + "start": 26403.08, + "end": 26404.94, + "probability": 0.9897 + }, + { + "start": 26405.38, + "end": 26407.22, + "probability": 0.0079 + }, + { + "start": 26407.22, + "end": 26408.52, + "probability": 0.6046 + }, + { + "start": 26408.64, + "end": 26409.74, + "probability": 0.8464 + }, + { + "start": 26410.06, + "end": 26411.02, + "probability": 0.4529 + }, + { + "start": 26411.08, + "end": 26412.14, + "probability": 0.895 + }, + { + "start": 26412.32, + "end": 26412.76, + "probability": 0.6584 + }, + { + "start": 26412.84, + "end": 26414.02, + "probability": 0.9424 + }, + { + "start": 26414.12, + "end": 26414.84, + "probability": 0.8477 + }, + { + "start": 26415.32, + "end": 26416.44, + "probability": 0.9835 + }, + { + "start": 26417.02, + "end": 26420.6, + "probability": 0.7676 + }, + { + "start": 26420.84, + "end": 26421.26, + "probability": 0.6367 + }, + { + "start": 26421.68, + "end": 26421.88, + "probability": 0.6932 + }, + { + "start": 26422.54, + "end": 26423.48, + "probability": 0.6126 + }, + { + "start": 26423.54, + "end": 26423.96, + "probability": 0.3582 + }, + { + "start": 26424.16, + "end": 26424.62, + "probability": 0.8631 + }, + { + "start": 26424.74, + "end": 26425.34, + "probability": 0.5176 + }, + { + "start": 26425.38, + "end": 26426.06, + "probability": 0.8456 + }, + { + "start": 26426.18, + "end": 26426.44, + "probability": 0.6714 + }, + { + "start": 26427.48, + "end": 26428.94, + "probability": 0.7886 + }, + { + "start": 26429.6, + "end": 26429.84, + "probability": 0.4492 + }, + { + "start": 26430.42, + "end": 26431.12, + "probability": 0.4262 + }, + { + "start": 26431.74, + "end": 26432.5, + "probability": 0.8869 + }, + { + "start": 26432.56, + "end": 26432.84, + "probability": 0.4904 + }, + { + "start": 26433.3, + "end": 26433.76, + "probability": 0.7959 + }, + { + "start": 26434.1, + "end": 26434.38, + "probability": 0.3489 + }, + { + "start": 26434.66, + "end": 26435.18, + "probability": 0.8203 + }, + { + "start": 26435.78, + "end": 26438.28, + "probability": 0.7119 + }, + { + "start": 26439.72, + "end": 26439.92, + "probability": 0.2055 + }, + { + "start": 26439.92, + "end": 26439.92, + "probability": 0.0348 + }, + { + "start": 26439.92, + "end": 26439.92, + "probability": 0.3791 + }, + { + "start": 26439.92, + "end": 26440.16, + "probability": 0.1909 + }, + { + "start": 26440.32, + "end": 26440.32, + "probability": 0.3525 + }, + { + "start": 26440.38, + "end": 26440.82, + "probability": 0.6058 + }, + { + "start": 26441.76, + "end": 26442.18, + "probability": 0.6672 + }, + { + "start": 26443.78, + "end": 26444.13, + "probability": 0.3174 + }, + { + "start": 26444.6, + "end": 26445.3, + "probability": 0.9585 + }, + { + "start": 26446.34, + "end": 26446.44, + "probability": 0.8243 + }, + { + "start": 26449.04, + "end": 26451.68, + "probability": 0.6851 + }, + { + "start": 26452.48, + "end": 26454.86, + "probability": 0.8114 + }, + { + "start": 26455.38, + "end": 26456.99, + "probability": 0.5325 + }, + { + "start": 26457.12, + "end": 26458.56, + "probability": 0.7224 + }, + { + "start": 26459.64, + "end": 26460.66, + "probability": 0.1865 + }, + { + "start": 26461.32, + "end": 26467.11, + "probability": 0.9855 + }, + { + "start": 26469.08, + "end": 26470.16, + "probability": 0.9491 + }, + { + "start": 26471.62, + "end": 26473.34, + "probability": 0.8228 + }, + { + "start": 26476.8, + "end": 26479.16, + "probability": 0.5588 + }, + { + "start": 26480.5, + "end": 26482.0, + "probability": 0.7847 + }, + { + "start": 26483.52, + "end": 26484.9, + "probability": 0.6302 + }, + { + "start": 26485.84, + "end": 26487.2, + "probability": 0.809 + }, + { + "start": 26487.86, + "end": 26488.2, + "probability": 0.306 + }, + { + "start": 26488.22, + "end": 26489.1, + "probability": 0.5521 + }, + { + "start": 26490.58, + "end": 26491.62, + "probability": 0.7261 + }, + { + "start": 26492.6, + "end": 26493.76, + "probability": 0.9978 + }, + { + "start": 26495.3, + "end": 26496.9, + "probability": 0.7459 + }, + { + "start": 26499.38, + "end": 26501.54, + "probability": 0.7936 + }, + { + "start": 26501.88, + "end": 26502.68, + "probability": 0.5507 + }, + { + "start": 26503.64, + "end": 26508.3, + "probability": 0.9871 + }, + { + "start": 26510.88, + "end": 26512.6, + "probability": 0.739 + }, + { + "start": 26514.76, + "end": 26517.36, + "probability": 0.9325 + }, + { + "start": 26518.26, + "end": 26519.9, + "probability": 0.8046 + }, + { + "start": 26521.48, + "end": 26522.2, + "probability": 0.6246 + }, + { + "start": 26523.52, + "end": 26526.86, + "probability": 0.9225 + }, + { + "start": 26527.54, + "end": 26530.1, + "probability": 0.9918 + }, + { + "start": 26530.72, + "end": 26532.88, + "probability": 0.9449 + }, + { + "start": 26533.48, + "end": 26535.82, + "probability": 0.9951 + }, + { + "start": 26536.46, + "end": 26539.16, + "probability": 0.9843 + }, + { + "start": 26539.98, + "end": 26542.32, + "probability": 0.9497 + }, + { + "start": 26543.9, + "end": 26546.3, + "probability": 0.9769 + }, + { + "start": 26547.46, + "end": 26551.66, + "probability": 0.9978 + }, + { + "start": 26552.24, + "end": 26554.14, + "probability": 0.9707 + }, + { + "start": 26554.82, + "end": 26556.58, + "probability": 0.7323 + }, + { + "start": 26557.64, + "end": 26560.94, + "probability": 0.9358 + }, + { + "start": 26561.74, + "end": 26562.16, + "probability": 0.4978 + }, + { + "start": 26563.04, + "end": 26565.86, + "probability": 0.981 + }, + { + "start": 26566.42, + "end": 26567.86, + "probability": 0.7785 + }, + { + "start": 26568.06, + "end": 26572.5, + "probability": 0.9928 + }, + { + "start": 26572.5, + "end": 26576.08, + "probability": 0.992 + }, + { + "start": 26577.14, + "end": 26580.58, + "probability": 0.9555 + }, + { + "start": 26582.48, + "end": 26584.86, + "probability": 0.9954 + }, + { + "start": 26585.02, + "end": 26588.44, + "probability": 0.9966 + }, + { + "start": 26589.54, + "end": 26591.52, + "probability": 0.9856 + }, + { + "start": 26591.62, + "end": 26591.96, + "probability": 0.7222 + }, + { + "start": 26592.14, + "end": 26592.77, + "probability": 0.9259 + }, + { + "start": 26593.9, + "end": 26596.98, + "probability": 0.8884 + }, + { + "start": 26598.54, + "end": 26601.36, + "probability": 0.9902 + }, + { + "start": 26602.54, + "end": 26605.02, + "probability": 0.9915 + }, + { + "start": 26605.16, + "end": 26608.16, + "probability": 0.9673 + }, + { + "start": 26608.8, + "end": 26610.68, + "probability": 0.2969 + }, + { + "start": 26611.4, + "end": 26613.06, + "probability": 0.9913 + }, + { + "start": 26614.02, + "end": 26616.94, + "probability": 0.9709 + }, + { + "start": 26617.54, + "end": 26620.8, + "probability": 0.9152 + }, + { + "start": 26621.8, + "end": 26625.94, + "probability": 0.9645 + }, + { + "start": 26626.04, + "end": 26626.78, + "probability": 0.4003 + }, + { + "start": 26626.86, + "end": 26627.88, + "probability": 0.9504 + }, + { + "start": 26628.02, + "end": 26628.86, + "probability": 0.7163 + }, + { + "start": 26629.8, + "end": 26632.0, + "probability": 0.9429 + }, + { + "start": 26632.62, + "end": 26636.04, + "probability": 0.974 + }, + { + "start": 26637.22, + "end": 26639.1, + "probability": 0.9834 + }, + { + "start": 26640.1, + "end": 26644.18, + "probability": 0.9663 + }, + { + "start": 26644.36, + "end": 26644.92, + "probability": 0.7756 + }, + { + "start": 26645.64, + "end": 26649.18, + "probability": 0.9941 + }, + { + "start": 26649.74, + "end": 26651.28, + "probability": 0.9134 + }, + { + "start": 26652.12, + "end": 26653.48, + "probability": 0.7662 + }, + { + "start": 26654.74, + "end": 26657.3, + "probability": 0.9975 + }, + { + "start": 26657.86, + "end": 26660.6, + "probability": 0.8792 + }, + { + "start": 26661.14, + "end": 26662.44, + "probability": 0.9564 + }, + { + "start": 26662.6, + "end": 26662.86, + "probability": 0.4192 + }, + { + "start": 26663.28, + "end": 26666.74, + "probability": 0.9826 + }, + { + "start": 26667.3, + "end": 26671.96, + "probability": 0.9706 + }, + { + "start": 26673.0, + "end": 26675.9, + "probability": 0.9773 + }, + { + "start": 26676.48, + "end": 26678.08, + "probability": 0.759 + }, + { + "start": 26678.68, + "end": 26681.96, + "probability": 0.8816 + }, + { + "start": 26682.62, + "end": 26684.34, + "probability": 0.9881 + }, + { + "start": 26685.08, + "end": 26688.02, + "probability": 0.997 + }, + { + "start": 26688.76, + "end": 26692.0, + "probability": 0.9862 + }, + { + "start": 26692.86, + "end": 26695.9, + "probability": 0.9726 + }, + { + "start": 26696.1, + "end": 26696.4, + "probability": 0.614 + }, + { + "start": 26696.74, + "end": 26698.42, + "probability": 0.5322 + }, + { + "start": 26698.9, + "end": 26699.82, + "probability": 0.9431 + }, + { + "start": 26700.54, + "end": 26700.9, + "probability": 0.1749 + }, + { + "start": 26701.14, + "end": 26703.78, + "probability": 0.6568 + }, + { + "start": 26704.62, + "end": 26706.88, + "probability": 0.7576 + }, + { + "start": 26712.54, + "end": 26713.04, + "probability": 0.6034 + }, + { + "start": 26713.08, + "end": 26713.99, + "probability": 0.9648 + }, + { + "start": 26714.04, + "end": 26715.04, + "probability": 0.804 + }, + { + "start": 26715.14, + "end": 26715.86, + "probability": 0.7998 + }, + { + "start": 26718.74, + "end": 26719.86, + "probability": 0.4434 + }, + { + "start": 26720.12, + "end": 26721.96, + "probability": 0.5215 + }, + { + "start": 26722.14, + "end": 26724.18, + "probability": 0.726 + }, + { + "start": 26724.28, + "end": 26726.0, + "probability": 0.8516 + }, + { + "start": 26726.64, + "end": 26728.6, + "probability": 0.8802 + }, + { + "start": 26729.36, + "end": 26732.1, + "probability": 0.626 + }, + { + "start": 26733.45, + "end": 26738.94, + "probability": 0.7229 + }, + { + "start": 26738.98, + "end": 26739.38, + "probability": 0.7925 + }, + { + "start": 26739.4, + "end": 26740.37, + "probability": 0.7381 + }, + { + "start": 26745.6, + "end": 26746.84, + "probability": 0.734 + }, + { + "start": 26747.44, + "end": 26748.56, + "probability": 0.6953 + }, + { + "start": 26754.12, + "end": 26760.02, + "probability": 0.6717 + }, + { + "start": 26760.82, + "end": 26763.62, + "probability": 0.8395 + }, + { + "start": 26765.26, + "end": 26765.46, + "probability": 0.5776 + }, + { + "start": 26765.68, + "end": 26766.12, + "probability": 0.8417 + }, + { + "start": 26768.1, + "end": 26770.28, + "probability": 0.9512 + }, + { + "start": 26771.66, + "end": 26774.06, + "probability": 0.9962 + }, + { + "start": 26775.1, + "end": 26776.32, + "probability": 0.9985 + }, + { + "start": 26778.76, + "end": 26780.52, + "probability": 0.8482 + }, + { + "start": 26780.58, + "end": 26780.88, + "probability": 0.7705 + }, + { + "start": 26780.94, + "end": 26782.56, + "probability": 0.9918 + }, + { + "start": 26782.74, + "end": 26786.38, + "probability": 0.9858 + }, + { + "start": 26788.2, + "end": 26788.88, + "probability": 0.4623 + }, + { + "start": 26789.32, + "end": 26791.94, + "probability": 0.9858 + }, + { + "start": 26791.94, + "end": 26794.26, + "probability": 0.9966 + }, + { + "start": 26796.1, + "end": 26797.7, + "probability": 0.9751 + }, + { + "start": 26799.4, + "end": 26800.0, + "probability": 0.8635 + }, + { + "start": 26801.06, + "end": 26802.76, + "probability": 0.6739 + }, + { + "start": 26802.86, + "end": 26804.02, + "probability": 0.8999 + }, + { + "start": 26805.42, + "end": 26808.95, + "probability": 0.8916 + }, + { + "start": 26809.56, + "end": 26810.58, + "probability": 0.8955 + }, + { + "start": 26811.46, + "end": 26812.28, + "probability": 0.5237 + }, + { + "start": 26812.7, + "end": 26813.76, + "probability": 0.2729 + }, + { + "start": 26815.26, + "end": 26816.32, + "probability": 0.3969 + }, + { + "start": 26816.9, + "end": 26821.46, + "probability": 0.9355 + }, + { + "start": 26821.92, + "end": 26823.14, + "probability": 0.4884 + }, + { + "start": 26824.9, + "end": 26826.6, + "probability": 0.7607 + }, + { + "start": 26828.7, + "end": 26829.94, + "probability": 0.9125 + }, + { + "start": 26833.86, + "end": 26835.7, + "probability": 0.7252 + }, + { + "start": 26838.9, + "end": 26841.9, + "probability": 0.7486 + }, + { + "start": 26843.18, + "end": 26844.22, + "probability": 0.7813 + }, + { + "start": 26845.14, + "end": 26845.54, + "probability": 0.9491 + }, + { + "start": 26846.3, + "end": 26848.82, + "probability": 0.7599 + }, + { + "start": 26849.94, + "end": 26851.44, + "probability": 0.8018 + }, + { + "start": 26851.58, + "end": 26853.4, + "probability": 0.7263 + }, + { + "start": 26854.64, + "end": 26858.02, + "probability": 0.9752 + }, + { + "start": 26860.56, + "end": 26861.4, + "probability": 0.9995 + }, + { + "start": 26862.46, + "end": 26863.76, + "probability": 0.9866 + }, + { + "start": 26864.74, + "end": 26866.04, + "probability": 0.9984 + }, + { + "start": 26866.7, + "end": 26869.38, + "probability": 0.9946 + }, + { + "start": 26869.38, + "end": 26872.96, + "probability": 0.9996 + }, + { + "start": 26873.7, + "end": 26875.32, + "probability": 0.8819 + }, + { + "start": 26876.16, + "end": 26877.34, + "probability": 0.6614 + }, + { + "start": 26878.02, + "end": 26880.26, + "probability": 0.6659 + }, + { + "start": 26882.58, + "end": 26882.58, + "probability": 0.5054 + }, + { + "start": 26882.58, + "end": 26886.37, + "probability": 0.7048 + }, + { + "start": 26887.5, + "end": 26890.92, + "probability": 0.9963 + }, + { + "start": 26891.52, + "end": 26894.2, + "probability": 0.5795 + }, + { + "start": 26895.36, + "end": 26896.78, + "probability": 0.6639 + }, + { + "start": 26898.16, + "end": 26899.21, + "probability": 0.9253 + }, + { + "start": 26900.32, + "end": 26903.12, + "probability": 0.9935 + }, + { + "start": 26903.72, + "end": 26905.36, + "probability": 0.8007 + }, + { + "start": 26905.42, + "end": 26906.28, + "probability": 0.927 + }, + { + "start": 26906.62, + "end": 26907.14, + "probability": 0.7647 + }, + { + "start": 26908.22, + "end": 26909.02, + "probability": 0.5262 + }, + { + "start": 26909.68, + "end": 26911.01, + "probability": 0.9934 + }, + { + "start": 26911.34, + "end": 26912.38, + "probability": 0.7344 + }, + { + "start": 26912.46, + "end": 26915.23, + "probability": 0.8713 + }, + { + "start": 26916.14, + "end": 26916.98, + "probability": 0.9279 + }, + { + "start": 26919.88, + "end": 26921.58, + "probability": 0.584 + }, + { + "start": 26923.12, + "end": 26930.12, + "probability": 0.7685 + }, + { + "start": 26930.76, + "end": 26931.2, + "probability": 0.627 + }, + { + "start": 26931.48, + "end": 26933.84, + "probability": 0.3664 + }, + { + "start": 26934.1, + "end": 26935.26, + "probability": 0.619 + }, + { + "start": 26935.94, + "end": 26936.54, + "probability": 0.6326 + }, + { + "start": 26936.72, + "end": 26937.54, + "probability": 0.8998 + }, + { + "start": 26937.62, + "end": 26939.72, + "probability": 0.9353 + }, + { + "start": 26939.76, + "end": 26939.94, + "probability": 0.9089 + }, + { + "start": 26942.44, + "end": 26943.18, + "probability": 0.5085 + }, + { + "start": 26943.54, + "end": 26943.76, + "probability": 0.2476 + }, + { + "start": 26944.24, + "end": 26945.18, + "probability": 0.2276 + }, + { + "start": 26945.28, + "end": 26945.82, + "probability": 0.7744 + }, + { + "start": 26946.12, + "end": 26946.64, + "probability": 0.9723 + }, + { + "start": 26946.96, + "end": 26949.94, + "probability": 0.7705 + }, + { + "start": 26950.56, + "end": 26951.66, + "probability": 0.7188 + }, + { + "start": 26961.26, + "end": 26961.26, + "probability": 0.187 + }, + { + "start": 26961.26, + "end": 26961.32, + "probability": 0.086 + }, + { + "start": 26961.32, + "end": 26961.42, + "probability": 0.6198 + }, + { + "start": 26971.78, + "end": 26973.48, + "probability": 0.6398 + }, + { + "start": 26974.42, + "end": 26976.96, + "probability": 0.9668 + }, + { + "start": 26977.1, + "end": 26979.72, + "probability": 0.9944 + }, + { + "start": 26980.42, + "end": 26980.72, + "probability": 0.804 + }, + { + "start": 26981.26, + "end": 26981.62, + "probability": 0.4931 + }, + { + "start": 26981.74, + "end": 26987.3, + "probability": 0.9695 + }, + { + "start": 26987.36, + "end": 26988.2, + "probability": 0.815 + }, + { + "start": 26988.74, + "end": 26989.52, + "probability": 0.9849 + }, + { + "start": 26989.8, + "end": 26991.76, + "probability": 0.9972 + }, + { + "start": 26992.74, + "end": 26993.06, + "probability": 0.7893 + }, + { + "start": 26993.1, + "end": 26994.8, + "probability": 0.9087 + }, + { + "start": 26995.08, + "end": 26996.42, + "probability": 0.974 + }, + { + "start": 26996.68, + "end": 26997.7, + "probability": 0.5463 + }, + { + "start": 26998.38, + "end": 27003.44, + "probability": 0.2897 + }, + { + "start": 27003.68, + "end": 27003.78, + "probability": 0.3306 + }, + { + "start": 27004.74, + "end": 27005.34, + "probability": 0.1865 + }, + { + "start": 27005.34, + "end": 27006.16, + "probability": 0.6158 + }, + { + "start": 27007.62, + "end": 27008.46, + "probability": 0.9658 + }, + { + "start": 27008.66, + "end": 27013.22, + "probability": 0.9814 + }, + { + "start": 27013.3, + "end": 27013.3, + "probability": 0.1217 + }, + { + "start": 27013.3, + "end": 27013.3, + "probability": 0.1613 + }, + { + "start": 27013.3, + "end": 27013.3, + "probability": 0.0405 + }, + { + "start": 27013.3, + "end": 27013.94, + "probability": 0.6226 + }, + { + "start": 27014.56, + "end": 27015.7, + "probability": 0.7578 + }, + { + "start": 27015.78, + "end": 27016.98, + "probability": 0.8901 + }, + { + "start": 27017.08, + "end": 27020.88, + "probability": 0.9014 + }, + { + "start": 27021.16, + "end": 27025.08, + "probability": 0.8916 + }, + { + "start": 27025.14, + "end": 27025.44, + "probability": 0.1441 + }, + { + "start": 27025.5, + "end": 27026.84, + "probability": 0.6058 + }, + { + "start": 27027.08, + "end": 27028.42, + "probability": 0.7839 + }, + { + "start": 27028.7, + "end": 27028.92, + "probability": 0.8104 + }, + { + "start": 27029.08, + "end": 27030.96, + "probability": 0.8968 + }, + { + "start": 27031.18, + "end": 27034.74, + "probability": 0.5838 + }, + { + "start": 27034.8, + "end": 27036.46, + "probability": 0.9242 + }, + { + "start": 27036.76, + "end": 27036.76, + "probability": 0.0223 + }, + { + "start": 27037.52, + "end": 27044.56, + "probability": 0.0924 + }, + { + "start": 27044.58, + "end": 27045.1, + "probability": 0.0055 + }, + { + "start": 27045.1, + "end": 27045.31, + "probability": 0.1421 + }, + { + "start": 27045.5, + "end": 27048.33, + "probability": 0.0232 + }, + { + "start": 27048.66, + "end": 27049.12, + "probability": 0.2659 + }, + { + "start": 27049.12, + "end": 27049.16, + "probability": 0.1415 + }, + { + "start": 27049.2, + "end": 27049.96, + "probability": 0.1906 + }, + { + "start": 27050.82, + "end": 27052.72, + "probability": 0.0399 + }, + { + "start": 27053.08, + "end": 27053.28, + "probability": 0.0141 + }, + { + "start": 27053.36, + "end": 27053.48, + "probability": 0.187 + }, + { + "start": 27054.18, + "end": 27055.26, + "probability": 0.1282 + }, + { + "start": 27055.68, + "end": 27056.9, + "probability": 0.0144 + }, + { + "start": 27059.42, + "end": 27062.71, + "probability": 0.1647 + }, + { + "start": 27063.46, + "end": 27066.6, + "probability": 0.052 + }, + { + "start": 27068.12, + "end": 27069.35, + "probability": 0.0703 + }, + { + "start": 27069.8, + "end": 27071.36, + "probability": 0.0058 + }, + { + "start": 27071.86, + "end": 27074.38, + "probability": 0.0695 + }, + { + "start": 27074.7, + "end": 27077.32, + "probability": 0.2933 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.0, + "end": 27100.0, + "probability": 0.0 + }, + { + "start": 27100.1, + "end": 27101.84, + "probability": 0.5213 + }, + { + "start": 27101.86, + "end": 27102.4, + "probability": 0.6179 + }, + { + "start": 27102.5, + "end": 27102.92, + "probability": 0.1402 + }, + { + "start": 27102.92, + "end": 27103.64, + "probability": 0.5874 + }, + { + "start": 27103.68, + "end": 27104.18, + "probability": 0.872 + }, + { + "start": 27104.84, + "end": 27106.9, + "probability": 0.8608 + }, + { + "start": 27107.96, + "end": 27110.6, + "probability": 0.9972 + }, + { + "start": 27110.86, + "end": 27112.18, + "probability": 0.9638 + }, + { + "start": 27113.08, + "end": 27113.72, + "probability": 0.7197 + }, + { + "start": 27113.76, + "end": 27115.1, + "probability": 0.9793 + }, + { + "start": 27115.56, + "end": 27119.38, + "probability": 0.8777 + }, + { + "start": 27119.9, + "end": 27122.44, + "probability": 0.934 + }, + { + "start": 27123.16, + "end": 27124.38, + "probability": 0.9746 + }, + { + "start": 27124.46, + "end": 27124.86, + "probability": 0.9408 + }, + { + "start": 27125.36, + "end": 27128.12, + "probability": 0.972 + }, + { + "start": 27128.68, + "end": 27129.0, + "probability": 0.7286 + }, + { + "start": 27129.42, + "end": 27132.92, + "probability": 0.7138 + }, + { + "start": 27133.28, + "end": 27136.3, + "probability": 0.907 + }, + { + "start": 27136.3, + "end": 27140.96, + "probability": 0.9887 + }, + { + "start": 27141.46, + "end": 27143.54, + "probability": 0.9374 + }, + { + "start": 27143.84, + "end": 27147.8, + "probability": 0.9932 + }, + { + "start": 27148.2, + "end": 27150.12, + "probability": 0.9296 + }, + { + "start": 27150.58, + "end": 27150.82, + "probability": 0.9103 + }, + { + "start": 27151.36, + "end": 27154.58, + "probability": 0.995 + }, + { + "start": 27154.9, + "end": 27161.58, + "probability": 0.9862 + }, + { + "start": 27161.8, + "end": 27163.22, + "probability": 0.7998 + }, + { + "start": 27163.3, + "end": 27164.72, + "probability": 0.8181 + }, + { + "start": 27165.04, + "end": 27165.74, + "probability": 0.8381 + }, + { + "start": 27165.88, + "end": 27171.34, + "probability": 0.9418 + }, + { + "start": 27171.56, + "end": 27172.1, + "probability": 0.8467 + }, + { + "start": 27172.24, + "end": 27174.58, + "probability": 0.9116 + }, + { + "start": 27174.58, + "end": 27177.8, + "probability": 0.916 + }, + { + "start": 27178.08, + "end": 27178.26, + "probability": 0.3051 + }, + { + "start": 27178.26, + "end": 27180.22, + "probability": 0.7401 + }, + { + "start": 27180.32, + "end": 27180.58, + "probability": 0.7072 + }, + { + "start": 27180.66, + "end": 27181.14, + "probability": 0.2877 + }, + { + "start": 27181.26, + "end": 27181.56, + "probability": 0.8042 + }, + { + "start": 27181.66, + "end": 27183.62, + "probability": 0.5132 + }, + { + "start": 27184.84, + "end": 27185.8, + "probability": 0.4569 + }, + { + "start": 27185.88, + "end": 27186.34, + "probability": 0.4789 + }, + { + "start": 27186.48, + "end": 27186.92, + "probability": 0.5352 + }, + { + "start": 27187.04, + "end": 27187.34, + "probability": 0.3186 + }, + { + "start": 27187.56, + "end": 27188.12, + "probability": 0.5573 + }, + { + "start": 27188.12, + "end": 27188.26, + "probability": 0.7513 + }, + { + "start": 27188.6, + "end": 27189.3, + "probability": 0.627 + }, + { + "start": 27190.0, + "end": 27190.8, + "probability": 0.9607 + }, + { + "start": 27190.92, + "end": 27192.06, + "probability": 0.8367 + }, + { + "start": 27192.2, + "end": 27192.9, + "probability": 0.7207 + }, + { + "start": 27193.02, + "end": 27193.52, + "probability": 0.4027 + }, + { + "start": 27193.88, + "end": 27194.58, + "probability": 0.5075 + }, + { + "start": 27194.76, + "end": 27195.9, + "probability": 0.883 + }, + { + "start": 27196.86, + "end": 27197.36, + "probability": 0.4173 + }, + { + "start": 27198.26, + "end": 27199.92, + "probability": 0.845 + }, + { + "start": 27199.96, + "end": 27200.62, + "probability": 0.3818 + }, + { + "start": 27200.86, + "end": 27201.26, + "probability": 0.5275 + }, + { + "start": 27201.34, + "end": 27201.8, + "probability": 0.9187 + }, + { + "start": 27201.88, + "end": 27202.54, + "probability": 0.6641 + }, + { + "start": 27202.92, + "end": 27203.44, + "probability": 0.7744 + }, + { + "start": 27203.74, + "end": 27204.58, + "probability": 0.7723 + }, + { + "start": 27204.64, + "end": 27205.1, + "probability": 0.6563 + }, + { + "start": 27205.22, + "end": 27205.72, + "probability": 0.8823 + }, + { + "start": 27206.46, + "end": 27207.08, + "probability": 0.9038 + }, + { + "start": 27208.04, + "end": 27209.7, + "probability": 0.2549 + }, + { + "start": 27210.1, + "end": 27210.1, + "probability": 0.0919 + }, + { + "start": 27210.1, + "end": 27211.14, + "probability": 0.3745 + }, + { + "start": 27211.54, + "end": 27216.64, + "probability": 0.4318 + }, + { + "start": 27217.1, + "end": 27217.28, + "probability": 0.2891 + }, + { + "start": 27217.28, + "end": 27217.28, + "probability": 0.3852 + }, + { + "start": 27217.28, + "end": 27218.26, + "probability": 0.6755 + }, + { + "start": 27218.66, + "end": 27219.6, + "probability": 0.4027 + }, + { + "start": 27219.8, + "end": 27221.34, + "probability": 0.1738 + }, + { + "start": 27221.38, + "end": 27221.96, + "probability": 0.4482 + }, + { + "start": 27222.22, + "end": 27223.12, + "probability": 0.8713 + }, + { + "start": 27223.6, + "end": 27224.48, + "probability": 0.7831 + }, + { + "start": 27224.54, + "end": 27225.14, + "probability": 0.8631 + }, + { + "start": 27225.28, + "end": 27226.16, + "probability": 0.4961 + }, + { + "start": 27226.64, + "end": 27227.44, + "probability": 0.8853 + }, + { + "start": 27227.5, + "end": 27228.1, + "probability": 0.8382 + }, + { + "start": 27228.16, + "end": 27230.72, + "probability": 0.8984 + }, + { + "start": 27230.8, + "end": 27232.2, + "probability": 0.4994 + }, + { + "start": 27234.94, + "end": 27236.52, + "probability": 0.5096 + }, + { + "start": 27237.26, + "end": 27238.38, + "probability": 0.479 + }, + { + "start": 27239.2, + "end": 27240.29, + "probability": 0.9976 + }, + { + "start": 27241.26, + "end": 27243.86, + "probability": 0.7924 + }, + { + "start": 27247.14, + "end": 27250.1, + "probability": 0.7849 + }, + { + "start": 27250.24, + "end": 27251.44, + "probability": 0.3249 + }, + { + "start": 27251.72, + "end": 27254.28, + "probability": 0.6502 + }, + { + "start": 27256.82, + "end": 27257.56, + "probability": 0.6799 + }, + { + "start": 27277.22, + "end": 27278.26, + "probability": 0.4299 + }, + { + "start": 27278.82, + "end": 27286.34, + "probability": 0.5453 + }, + { + "start": 27286.54, + "end": 27286.64, + "probability": 0.1977 + }, + { + "start": 27289.06, + "end": 27294.3, + "probability": 0.3991 + }, + { + "start": 27295.36, + "end": 27295.5, + "probability": 0.0243 + }, + { + "start": 27295.5, + "end": 27297.46, + "probability": 0.0363 + }, + { + "start": 27297.46, + "end": 27297.48, + "probability": 0.1031 + }, + { + "start": 27297.48, + "end": 27297.48, + "probability": 0.1694 + }, + { + "start": 27297.48, + "end": 27298.6, + "probability": 0.0214 + }, + { + "start": 27298.8, + "end": 27299.2, + "probability": 0.0298 + }, + { + "start": 27300.16, + "end": 27301.0, + "probability": 0.0772 + }, + { + "start": 27301.32, + "end": 27301.42, + "probability": 0.0945 + }, + { + "start": 27301.42, + "end": 27301.42, + "probability": 0.0672 + }, + { + "start": 27301.42, + "end": 27301.42, + "probability": 0.0995 + }, + { + "start": 27301.42, + "end": 27301.42, + "probability": 0.2215 + }, + { + "start": 27301.42, + "end": 27302.8, + "probability": 0.8793 + }, + { + "start": 27303.44, + "end": 27310.64, + "probability": 0.902 + }, + { + "start": 27312.34, + "end": 27312.82, + "probability": 0.1247 + }, + { + "start": 27312.84, + "end": 27313.36, + "probability": 0.6907 + }, + { + "start": 27313.5, + "end": 27313.99, + "probability": 0.5252 + }, + { + "start": 27314.16, + "end": 27315.68, + "probability": 0.4103 + }, + { + "start": 27318.76, + "end": 27318.96, + "probability": 0.593 + }, + { + "start": 27321.14, + "end": 27321.24, + "probability": 0.6541 + }, + { + "start": 27321.24, + "end": 27324.02, + "probability": 0.8659 + }, + { + "start": 27325.44, + "end": 27326.98, + "probability": 0.871 + }, + { + "start": 27328.46, + "end": 27330.0, + "probability": 0.7739 + }, + { + "start": 27331.12, + "end": 27332.92, + "probability": 0.9945 + }, + { + "start": 27333.98, + "end": 27336.26, + "probability": 0.9449 + }, + { + "start": 27336.82, + "end": 27337.86, + "probability": 0.9756 + }, + { + "start": 27338.66, + "end": 27342.22, + "probability": 0.9912 + }, + { + "start": 27342.34, + "end": 27343.06, + "probability": 0.6475 + }, + { + "start": 27343.72, + "end": 27345.54, + "probability": 0.979 + }, + { + "start": 27345.64, + "end": 27347.12, + "probability": 0.9948 + }, + { + "start": 27347.26, + "end": 27350.14, + "probability": 0.791 + }, + { + "start": 27350.68, + "end": 27352.38, + "probability": 0.9576 + }, + { + "start": 27352.52, + "end": 27355.26, + "probability": 0.9968 + }, + { + "start": 27355.44, + "end": 27356.24, + "probability": 0.9137 + }, + { + "start": 27356.26, + "end": 27359.64, + "probability": 0.9926 + }, + { + "start": 27360.46, + "end": 27362.0, + "probability": 0.9277 + }, + { + "start": 27362.98, + "end": 27363.44, + "probability": 0.777 + }, + { + "start": 27364.42, + "end": 27365.38, + "probability": 0.8665 + }, + { + "start": 27366.42, + "end": 27368.54, + "probability": 0.5654 + }, + { + "start": 27369.4, + "end": 27369.89, + "probability": 0.772 + }, + { + "start": 27370.78, + "end": 27371.22, + "probability": 0.5737 + }, + { + "start": 27371.26, + "end": 27372.52, + "probability": 0.962 + }, + { + "start": 27372.6, + "end": 27375.08, + "probability": 0.9658 + }, + { + "start": 27375.94, + "end": 27376.28, + "probability": 0.8877 + }, + { + "start": 27377.16, + "end": 27378.74, + "probability": 0.997 + }, + { + "start": 27379.88, + "end": 27380.58, + "probability": 0.9652 + }, + { + "start": 27380.88, + "end": 27384.96, + "probability": 0.9568 + }, + { + "start": 27385.96, + "end": 27386.76, + "probability": 0.7537 + }, + { + "start": 27387.88, + "end": 27391.28, + "probability": 0.9767 + }, + { + "start": 27392.24, + "end": 27393.76, + "probability": 0.7155 + }, + { + "start": 27394.44, + "end": 27395.8, + "probability": 0.9189 + }, + { + "start": 27396.0, + "end": 27399.68, + "probability": 0.9819 + }, + { + "start": 27401.36, + "end": 27401.64, + "probability": 0.3672 + }, + { + "start": 27401.74, + "end": 27405.68, + "probability": 0.7521 + }, + { + "start": 27405.94, + "end": 27407.52, + "probability": 0.9819 + }, + { + "start": 27407.66, + "end": 27411.16, + "probability": 0.6905 + }, + { + "start": 27411.74, + "end": 27413.58, + "probability": 0.8048 + }, + { + "start": 27413.72, + "end": 27415.44, + "probability": 0.9656 + }, + { + "start": 27416.0, + "end": 27416.62, + "probability": 0.725 + }, + { + "start": 27417.14, + "end": 27419.3, + "probability": 0.9436 + }, + { + "start": 27420.72, + "end": 27422.11, + "probability": 0.9968 + }, + { + "start": 27422.8, + "end": 27424.6, + "probability": 0.7097 + }, + { + "start": 27425.92, + "end": 27427.88, + "probability": 0.9524 + }, + { + "start": 27428.1, + "end": 27429.76, + "probability": 0.9774 + }, + { + "start": 27431.4, + "end": 27432.68, + "probability": 0.9967 + }, + { + "start": 27433.5, + "end": 27434.12, + "probability": 0.5341 + }, + { + "start": 27434.16, + "end": 27435.22, + "probability": 0.9843 + }, + { + "start": 27436.72, + "end": 27438.74, + "probability": 0.9883 + }, + { + "start": 27440.62, + "end": 27442.8, + "probability": 0.9631 + }, + { + "start": 27443.2, + "end": 27445.92, + "probability": 0.9175 + }, + { + "start": 27446.96, + "end": 27448.31, + "probability": 0.9893 + }, + { + "start": 27449.02, + "end": 27453.62, + "probability": 0.9631 + }, + { + "start": 27454.04, + "end": 27456.14, + "probability": 0.97 + }, + { + "start": 27456.98, + "end": 27459.8, + "probability": 0.9937 + }, + { + "start": 27459.8, + "end": 27462.16, + "probability": 0.988 + }, + { + "start": 27462.68, + "end": 27463.5, + "probability": 0.6582 + }, + { + "start": 27463.7, + "end": 27467.24, + "probability": 0.957 + }, + { + "start": 27467.84, + "end": 27469.02, + "probability": 0.9714 + }, + { + "start": 27469.64, + "end": 27473.1, + "probability": 0.8448 + }, + { + "start": 27473.62, + "end": 27474.52, + "probability": 0.6692 + }, + { + "start": 27475.18, + "end": 27477.42, + "probability": 0.9071 + }, + { + "start": 27478.56, + "end": 27481.5, + "probability": 0.6766 + }, + { + "start": 27482.12, + "end": 27485.16, + "probability": 0.8286 + }, + { + "start": 27486.1, + "end": 27489.14, + "probability": 0.0134 + }, + { + "start": 27489.14, + "end": 27489.9, + "probability": 0.1231 + }, + { + "start": 27490.36, + "end": 27492.28, + "probability": 0.5554 + }, + { + "start": 27492.76, + "end": 27493.58, + "probability": 0.6353 + }, + { + "start": 27493.88, + "end": 27494.82, + "probability": 0.9436 + }, + { + "start": 27494.98, + "end": 27499.08, + "probability": 0.9528 + }, + { + "start": 27499.08, + "end": 27502.98, + "probability": 0.9873 + }, + { + "start": 27503.6, + "end": 27503.78, + "probability": 0.2365 + }, + { + "start": 27503.78, + "end": 27504.29, + "probability": 0.5003 + }, + { + "start": 27504.4, + "end": 27506.08, + "probability": 0.8909 + }, + { + "start": 27506.58, + "end": 27511.94, + "probability": 0.5903 + }, + { + "start": 27512.5, + "end": 27516.32, + "probability": 0.7597 + }, + { + "start": 27516.8, + "end": 27518.92, + "probability": 0.9049 + }, + { + "start": 27519.44, + "end": 27521.12, + "probability": 0.9928 + }, + { + "start": 27521.14, + "end": 27524.84, + "probability": 0.9989 + }, + { + "start": 27525.4, + "end": 27529.1, + "probability": 0.5826 + }, + { + "start": 27530.0, + "end": 27533.34, + "probability": 0.9979 + }, + { + "start": 27534.48, + "end": 27536.08, + "probability": 0.8456 + }, + { + "start": 27537.0, + "end": 27538.94, + "probability": 0.8696 + }, + { + "start": 27539.08, + "end": 27540.48, + "probability": 0.9273 + }, + { + "start": 27540.54, + "end": 27541.1, + "probability": 0.5331 + }, + { + "start": 27541.42, + "end": 27544.32, + "probability": 0.9724 + }, + { + "start": 27545.06, + "end": 27548.26, + "probability": 0.8503 + }, + { + "start": 27548.34, + "end": 27549.43, + "probability": 0.9678 + }, + { + "start": 27549.76, + "end": 27553.48, + "probability": 0.991 + }, + { + "start": 27553.92, + "end": 27556.42, + "probability": 0.8863 + }, + { + "start": 27556.5, + "end": 27559.3, + "probability": 0.8206 + }, + { + "start": 27559.94, + "end": 27561.88, + "probability": 0.689 + }, + { + "start": 27562.38, + "end": 27565.5, + "probability": 0.9917 + }, + { + "start": 27566.08, + "end": 27567.42, + "probability": 0.8853 + }, + { + "start": 27568.04, + "end": 27569.04, + "probability": 0.8011 + }, + { + "start": 27569.08, + "end": 27572.1, + "probability": 0.9942 + }, + { + "start": 27572.68, + "end": 27573.84, + "probability": 0.8431 + }, + { + "start": 27574.4, + "end": 27575.18, + "probability": 0.5599 + }, + { + "start": 27575.72, + "end": 27576.63, + "probability": 0.8158 + }, + { + "start": 27577.0, + "end": 27578.7, + "probability": 0.8606 + }, + { + "start": 27578.78, + "end": 27582.16, + "probability": 0.9086 + }, + { + "start": 27582.26, + "end": 27582.94, + "probability": 0.8808 + }, + { + "start": 27582.96, + "end": 27583.2, + "probability": 0.6119 + }, + { + "start": 27583.34, + "end": 27586.84, + "probability": 0.8159 + }, + { + "start": 27587.26, + "end": 27587.6, + "probability": 0.6637 + }, + { + "start": 27587.98, + "end": 27588.28, + "probability": 0.6074 + }, + { + "start": 27589.0, + "end": 27590.96, + "probability": 0.7512 + }, + { + "start": 27595.14, + "end": 27597.5, + "probability": 0.5094 + }, + { + "start": 27597.78, + "end": 27599.46, + "probability": 0.7422 + }, + { + "start": 27600.24, + "end": 27600.82, + "probability": 0.582 + }, + { + "start": 27601.0, + "end": 27603.2, + "probability": 0.7685 + }, + { + "start": 27603.76, + "end": 27605.1, + "probability": 0.9466 + }, + { + "start": 27606.02, + "end": 27608.02, + "probability": 0.9707 + }, + { + "start": 27609.72, + "end": 27611.36, + "probability": 0.5094 + }, + { + "start": 27611.4, + "end": 27612.6, + "probability": 0.6118 + }, + { + "start": 27614.2, + "end": 27615.12, + "probability": 0.9746 + }, + { + "start": 27616.06, + "end": 27617.3, + "probability": 0.9371 + }, + { + "start": 27618.14, + "end": 27622.62, + "probability": 0.9824 + }, + { + "start": 27623.8, + "end": 27625.42, + "probability": 0.8621 + }, + { + "start": 27625.78, + "end": 27627.66, + "probability": 0.9445 + }, + { + "start": 27629.16, + "end": 27631.04, + "probability": 0.6196 + }, + { + "start": 27631.88, + "end": 27633.5, + "probability": 0.9916 + }, + { + "start": 27634.78, + "end": 27636.54, + "probability": 0.7451 + }, + { + "start": 27636.62, + "end": 27637.16, + "probability": 0.4517 + }, + { + "start": 27637.22, + "end": 27637.68, + "probability": 0.4819 + }, + { + "start": 27638.74, + "end": 27640.78, + "probability": 0.7921 + }, + { + "start": 27641.66, + "end": 27642.12, + "probability": 0.981 + }, + { + "start": 27642.82, + "end": 27645.88, + "probability": 0.4348 + }, + { + "start": 27645.88, + "end": 27646.02, + "probability": 0.0532 + }, + { + "start": 27646.82, + "end": 27648.52, + "probability": 0.6649 + }, + { + "start": 27649.14, + "end": 27649.7, + "probability": 0.5279 + }, + { + "start": 27652.38, + "end": 27654.0, + "probability": 0.9045 + }, + { + "start": 27654.08, + "end": 27654.34, + "probability": 0.5728 + }, + { + "start": 27654.4, + "end": 27655.44, + "probability": 0.8451 + }, + { + "start": 27655.48, + "end": 27656.82, + "probability": 0.6941 + }, + { + "start": 27656.92, + "end": 27658.3, + "probability": 0.5611 + }, + { + "start": 27660.52, + "end": 27661.81, + "probability": 0.8115 + }, + { + "start": 27663.44, + "end": 27665.24, + "probability": 0.9135 + }, + { + "start": 27665.56, + "end": 27666.36, + "probability": 0.9907 + }, + { + "start": 27666.66, + "end": 27667.16, + "probability": 0.6364 + }, + { + "start": 27668.74, + "end": 27673.3, + "probability": 0.9917 + }, + { + "start": 27674.48, + "end": 27675.02, + "probability": 0.73 + }, + { + "start": 27677.26, + "end": 27678.64, + "probability": 0.8407 + }, + { + "start": 27680.12, + "end": 27681.02, + "probability": 0.7403 + }, + { + "start": 27682.06, + "end": 27682.77, + "probability": 0.9307 + }, + { + "start": 27684.72, + "end": 27685.6, + "probability": 0.8118 + }, + { + "start": 27686.02, + "end": 27687.2, + "probability": 0.9022 + }, + { + "start": 27690.78, + "end": 27693.72, + "probability": 0.9897 + }, + { + "start": 27694.88, + "end": 27695.44, + "probability": 0.7487 + }, + { + "start": 27696.06, + "end": 27697.94, + "probability": 0.9897 + }, + { + "start": 27699.92, + "end": 27703.86, + "probability": 0.0783 + }, + { + "start": 27703.98, + "end": 27705.94, + "probability": 0.319 + }, + { + "start": 27706.38, + "end": 27706.82, + "probability": 0.6525 + }, + { + "start": 27707.72, + "end": 27709.36, + "probability": 0.8217 + }, + { + "start": 27709.54, + "end": 27711.57, + "probability": 0.7683 + }, + { + "start": 27714.22, + "end": 27716.1, + "probability": 0.9672 + }, + { + "start": 27716.16, + "end": 27717.22, + "probability": 0.8955 + }, + { + "start": 27717.3, + "end": 27717.98, + "probability": 0.7613 + }, + { + "start": 27718.08, + "end": 27723.54, + "probability": 0.9187 + }, + { + "start": 27723.8, + "end": 27728.66, + "probability": 0.8427 + }, + { + "start": 27728.7, + "end": 27728.94, + "probability": 0.9539 + }, + { + "start": 27729.08, + "end": 27729.42, + "probability": 0.5837 + }, + { + "start": 27729.48, + "end": 27730.98, + "probability": 0.653 + }, + { + "start": 27732.74, + "end": 27734.98, + "probability": 0.0609 + }, + { + "start": 27737.42, + "end": 27737.42, + "probability": 0.0118 + }, + { + "start": 27737.42, + "end": 27737.42, + "probability": 0.1915 + }, + { + "start": 27737.42, + "end": 27737.98, + "probability": 0.0605 + }, + { + "start": 27737.98, + "end": 27739.16, + "probability": 0.6976 + }, + { + "start": 27740.72, + "end": 27741.1, + "probability": 0.907 + }, + { + "start": 27741.64, + "end": 27743.58, + "probability": 0.708 + }, + { + "start": 27744.32, + "end": 27744.68, + "probability": 0.8044 + }, + { + "start": 27744.68, + "end": 27745.14, + "probability": 0.8587 + }, + { + "start": 27746.82, + "end": 27749.66, + "probability": 0.9823 + }, + { + "start": 27749.9, + "end": 27750.44, + "probability": 0.6778 + }, + { + "start": 27752.08, + "end": 27752.84, + "probability": 0.5146 + }, + { + "start": 27754.96, + "end": 27756.31, + "probability": 0.9917 + }, + { + "start": 27757.7, + "end": 27757.84, + "probability": 0.911 + }, + { + "start": 27757.94, + "end": 27758.85, + "probability": 0.9896 + }, + { + "start": 27760.38, + "end": 27760.81, + "probability": 0.9805 + }, + { + "start": 27761.76, + "end": 27762.74, + "probability": 0.6692 + }, + { + "start": 27764.7, + "end": 27766.26, + "probability": 0.9182 + }, + { + "start": 27766.54, + "end": 27768.46, + "probability": 0.9722 + }, + { + "start": 27768.8, + "end": 27769.9, + "probability": 0.4202 + }, + { + "start": 27770.18, + "end": 27772.02, + "probability": 0.925 + }, + { + "start": 27772.1, + "end": 27772.86, + "probability": 0.8568 + }, + { + "start": 27774.08, + "end": 27774.42, + "probability": 0.6512 + }, + { + "start": 27774.94, + "end": 27777.22, + "probability": 0.8053 + }, + { + "start": 27777.84, + "end": 27778.34, + "probability": 0.888 + }, + { + "start": 27778.68, + "end": 27781.88, + "probability": 0.7327 + }, + { + "start": 27783.7, + "end": 27786.3, + "probability": 0.9839 + }, + { + "start": 27789.5, + "end": 27790.68, + "probability": 0.9435 + }, + { + "start": 27790.92, + "end": 27791.46, + "probability": 0.8102 + }, + { + "start": 27791.64, + "end": 27791.98, + "probability": 0.9564 + }, + { + "start": 27792.16, + "end": 27793.02, + "probability": 0.9094 + }, + { + "start": 27793.02, + "end": 27793.6, + "probability": 0.8331 + }, + { + "start": 27793.76, + "end": 27794.42, + "probability": 0.6229 + }, + { + "start": 27795.86, + "end": 27797.27, + "probability": 0.9836 + }, + { + "start": 27797.36, + "end": 27798.33, + "probability": 0.9479 + }, + { + "start": 27799.1, + "end": 27800.7, + "probability": 0.3599 + }, + { + "start": 27801.38, + "end": 27802.74, + "probability": 0.8237 + }, + { + "start": 27802.74, + "end": 27804.87, + "probability": 0.7339 + }, + { + "start": 27806.76, + "end": 27809.31, + "probability": 0.9329 + }, + { + "start": 27811.86, + "end": 27812.66, + "probability": 0.8198 + }, + { + "start": 27813.04, + "end": 27814.36, + "probability": 0.6596 + }, + { + "start": 27814.88, + "end": 27816.0, + "probability": 0.9921 + }, + { + "start": 27816.18, + "end": 27817.94, + "probability": 0.8219 + }, + { + "start": 27818.0, + "end": 27819.26, + "probability": 0.784 + }, + { + "start": 27819.6, + "end": 27820.84, + "probability": 0.9673 + }, + { + "start": 27821.18, + "end": 27822.44, + "probability": 0.8765 + }, + { + "start": 27823.82, + "end": 27825.76, + "probability": 0.9752 + }, + { + "start": 27826.1, + "end": 27828.82, + "probability": 0.9441 + }, + { + "start": 27829.3, + "end": 27830.14, + "probability": 0.6555 + }, + { + "start": 27830.3, + "end": 27830.74, + "probability": 0.6234 + }, + { + "start": 27830.8, + "end": 27831.32, + "probability": 0.6333 + }, + { + "start": 27831.32, + "end": 27831.9, + "probability": 0.8341 + }, + { + "start": 27832.34, + "end": 27833.04, + "probability": 0.8153 + }, + { + "start": 27833.14, + "end": 27834.1, + "probability": 0.8564 + }, + { + "start": 27835.08, + "end": 27836.62, + "probability": 0.6991 + }, + { + "start": 27836.82, + "end": 27839.08, + "probability": 0.5043 + }, + { + "start": 27840.38, + "end": 27841.3, + "probability": 0.8933 + }, + { + "start": 27841.74, + "end": 27843.38, + "probability": 0.9285 + }, + { + "start": 27844.22, + "end": 27845.6, + "probability": 0.9887 + }, + { + "start": 27847.9, + "end": 27849.32, + "probability": 0.7829 + }, + { + "start": 27850.2, + "end": 27852.01, + "probability": 0.9602 + }, + { + "start": 27853.28, + "end": 27853.77, + "probability": 0.5743 + }, + { + "start": 27857.7, + "end": 27859.66, + "probability": 0.8493 + }, + { + "start": 27860.28, + "end": 27864.12, + "probability": 0.9326 + }, + { + "start": 27869.46, + "end": 27871.82, + "probability": 0.7371 + }, + { + "start": 27872.9, + "end": 27876.58, + "probability": 0.6988 + }, + { + "start": 27878.26, + "end": 27879.98, + "probability": 0.9603 + }, + { + "start": 27880.06, + "end": 27882.32, + "probability": 0.9438 + }, + { + "start": 27883.9, + "end": 27886.96, + "probability": 0.8582 + }, + { + "start": 27888.29, + "end": 27892.32, + "probability": 0.8186 + }, + { + "start": 27893.36, + "end": 27895.18, + "probability": 0.9795 + }, + { + "start": 27895.5, + "end": 27898.16, + "probability": 0.9486 + }, + { + "start": 27899.52, + "end": 27900.1, + "probability": 0.8162 + }, + { + "start": 27901.3, + "end": 27905.66, + "probability": 0.9558 + }, + { + "start": 27906.7, + "end": 27910.1, + "probability": 0.7558 + }, + { + "start": 27910.36, + "end": 27911.2, + "probability": 0.6826 + }, + { + "start": 27911.78, + "end": 27913.84, + "probability": 0.9321 + }, + { + "start": 27914.36, + "end": 27915.24, + "probability": 0.8403 + }, + { + "start": 27915.5, + "end": 27916.23, + "probability": 0.9607 + }, + { + "start": 27916.32, + "end": 27917.02, + "probability": 0.4073 + }, + { + "start": 27917.2, + "end": 27919.9, + "probability": 0.0509 + }, + { + "start": 27922.76, + "end": 27922.88, + "probability": 0.0029 + }, + { + "start": 27922.88, + "end": 27926.26, + "probability": 0.9893 + }, + { + "start": 27926.52, + "end": 27926.84, + "probability": 0.7398 + }, + { + "start": 27927.24, + "end": 27928.68, + "probability": 0.9907 + }, + { + "start": 27928.94, + "end": 27930.84, + "probability": 0.9743 + }, + { + "start": 27931.14, + "end": 27934.44, + "probability": 0.5732 + }, + { + "start": 27934.46, + "end": 27936.2, + "probability": 0.8801 + }, + { + "start": 27936.86, + "end": 27936.96, + "probability": 0.0162 + }, + { + "start": 27936.96, + "end": 27938.03, + "probability": 0.3585 + }, + { + "start": 27938.56, + "end": 27940.3, + "probability": 0.8657 + }, + { + "start": 27940.64, + "end": 27940.8, + "probability": 0.5784 + }, + { + "start": 27940.8, + "end": 27943.66, + "probability": 0.7165 + }, + { + "start": 27943.72, + "end": 27944.46, + "probability": 0.8153 + }, + { + "start": 27944.64, + "end": 27944.86, + "probability": 0.9574 + }, + { + "start": 27946.14, + "end": 27948.92, + "probability": 0.7947 + }, + { + "start": 27949.06, + "end": 27949.77, + "probability": 0.5998 + }, + { + "start": 27950.42, + "end": 27950.52, + "probability": 0.0008 + } + ], + "segments_count": 9861, + "words_count": 45658, + "avg_words_per_segment": 4.6302, + "avg_segment_duration": 1.8485, + "avg_words_per_minute": 97.8943, + "plenum_id": "100068", + "duration": 27984.07, + "title": null, + "plenum_date": "2021-10-18" +} \ No newline at end of file