diff --git "a/10273/metadata.json" "b/10273/metadata.json" new file mode 100644--- /dev/null +++ "b/10273/metadata.json" @@ -0,0 +1,11792 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10273", + "quality_score": 0.9289, + "per_segment_quality_scores": [ + { + "start": 18.42, + "end": 20.0, + "probability": 0.1022 + }, + { + "start": 20.84, + "end": 22.38, + "probability": 0.1292 + }, + { + "start": 23.76, + "end": 24.42, + "probability": 0.1545 + }, + { + "start": 25.16, + "end": 26.14, + "probability": 0.0982 + }, + { + "start": 26.84, + "end": 33.03, + "probability": 0.055 + }, + { + "start": 33.86, + "end": 37.28, + "probability": 0.1642 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 171.0, + "end": 171.0, + "probability": 0.0 + }, + { + "start": 181.96, + "end": 183.36, + "probability": 0.2943 + }, + { + "start": 183.36, + "end": 183.44, + "probability": 0.0828 + }, + { + "start": 183.44, + "end": 183.82, + "probability": 0.0967 + }, + { + "start": 201.1, + "end": 203.84, + "probability": 0.0433 + }, + { + "start": 205.0, + "end": 209.52, + "probability": 0.1413 + }, + { + "start": 209.52, + "end": 210.08, + "probability": 0.2527 + }, + { + "start": 211.9, + "end": 212.56, + "probability": 0.2126 + }, + { + "start": 212.56, + "end": 213.29, + "probability": 0.0778 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 295.0, + "end": 295.0, + "probability": 0.0 + }, + { + "start": 297.03, + "end": 299.08, + "probability": 0.5405 + }, + { + "start": 299.99, + "end": 305.92, + "probability": 0.9928 + }, + { + "start": 305.92, + "end": 309.84, + "probability": 0.9912 + }, + { + "start": 315.22, + "end": 319.88, + "probability": 0.6374 + }, + { + "start": 320.32, + "end": 320.52, + "probability": 0.4215 + }, + { + "start": 320.6, + "end": 320.92, + "probability": 0.7565 + }, + { + "start": 321.0, + "end": 324.2, + "probability": 0.8011 + }, + { + "start": 324.86, + "end": 325.04, + "probability": 0.4639 + }, + { + "start": 325.42, + "end": 328.8, + "probability": 0.7831 + }, + { + "start": 328.8, + "end": 331.74, + "probability": 0.9556 + }, + { + "start": 332.08, + "end": 333.44, + "probability": 0.3461 + }, + { + "start": 334.12, + "end": 337.28, + "probability": 0.8798 + }, + { + "start": 337.36, + "end": 338.84, + "probability": 0.761 + }, + { + "start": 339.26, + "end": 341.32, + "probability": 0.977 + }, + { + "start": 342.16, + "end": 342.8, + "probability": 0.6571 + }, + { + "start": 342.92, + "end": 343.56, + "probability": 0.5624 + }, + { + "start": 343.7, + "end": 346.02, + "probability": 0.9432 + }, + { + "start": 346.08, + "end": 347.06, + "probability": 0.8763 + }, + { + "start": 347.54, + "end": 349.32, + "probability": 0.9863 + }, + { + "start": 349.64, + "end": 351.38, + "probability": 0.5202 + }, + { + "start": 353.0, + "end": 353.68, + "probability": 0.0178 + }, + { + "start": 353.68, + "end": 357.09, + "probability": 0.999 + }, + { + "start": 357.89, + "end": 360.94, + "probability": 0.9969 + }, + { + "start": 360.94, + "end": 363.34, + "probability": 0.9944 + }, + { + "start": 363.42, + "end": 365.82, + "probability": 0.7996 + }, + { + "start": 366.0, + "end": 366.78, + "probability": 0.4228 + }, + { + "start": 366.98, + "end": 367.46, + "probability": 0.6742 + }, + { + "start": 368.74, + "end": 371.28, + "probability": 0.9818 + }, + { + "start": 371.28, + "end": 373.48, + "probability": 0.9368 + }, + { + "start": 374.1, + "end": 374.82, + "probability": 0.2481 + }, + { + "start": 375.04, + "end": 377.4, + "probability": 0.4362 + }, + { + "start": 377.8, + "end": 379.08, + "probability": 0.7952 + }, + { + "start": 379.3, + "end": 380.68, + "probability": 0.8875 + }, + { + "start": 381.22, + "end": 383.54, + "probability": 0.9722 + }, + { + "start": 383.72, + "end": 384.84, + "probability": 0.7624 + }, + { + "start": 385.22, + "end": 386.46, + "probability": 0.5347 + }, + { + "start": 386.66, + "end": 388.56, + "probability": 0.9792 + }, + { + "start": 389.42, + "end": 389.88, + "probability": 0.4044 + }, + { + "start": 389.94, + "end": 393.32, + "probability": 0.7247 + }, + { + "start": 393.94, + "end": 395.56, + "probability": 0.6628 + }, + { + "start": 395.78, + "end": 396.88, + "probability": 0.9009 + }, + { + "start": 397.44, + "end": 398.56, + "probability": 0.7411 + }, + { + "start": 399.56, + "end": 405.46, + "probability": 0.6352 + }, + { + "start": 405.66, + "end": 408.14, + "probability": 0.8319 + }, + { + "start": 408.91, + "end": 411.89, + "probability": 0.9642 + }, + { + "start": 412.64, + "end": 414.48, + "probability": 0.6202 + }, + { + "start": 415.02, + "end": 417.66, + "probability": 0.728 + }, + { + "start": 418.22, + "end": 419.68, + "probability": 0.8213 + }, + { + "start": 419.82, + "end": 420.06, + "probability": 0.7746 + }, + { + "start": 420.28, + "end": 422.14, + "probability": 0.7139 + }, + { + "start": 422.9, + "end": 424.22, + "probability": 0.7953 + }, + { + "start": 424.8, + "end": 425.56, + "probability": 0.345 + }, + { + "start": 428.74, + "end": 430.58, + "probability": 0.5766 + }, + { + "start": 431.1, + "end": 435.02, + "probability": 0.6602 + }, + { + "start": 435.78, + "end": 436.3, + "probability": 0.8614 + }, + { + "start": 437.46, + "end": 438.22, + "probability": 0.5411 + }, + { + "start": 444.46, + "end": 446.04, + "probability": 0.2794 + }, + { + "start": 447.8, + "end": 449.16, + "probability": 0.7121 + }, + { + "start": 449.36, + "end": 450.64, + "probability": 0.949 + }, + { + "start": 453.45, + "end": 455.48, + "probability": 0.5797 + }, + { + "start": 456.12, + "end": 457.36, + "probability": 0.7318 + }, + { + "start": 457.46, + "end": 458.84, + "probability": 0.9419 + }, + { + "start": 458.88, + "end": 461.82, + "probability": 0.8184 + }, + { + "start": 464.6, + "end": 469.4, + "probability": 0.7437 + }, + { + "start": 470.52, + "end": 476.44, + "probability": 0.947 + }, + { + "start": 476.54, + "end": 477.82, + "probability": 0.4843 + }, + { + "start": 477.92, + "end": 478.38, + "probability": 0.7244 + }, + { + "start": 478.96, + "end": 482.54, + "probability": 0.9626 + }, + { + "start": 482.6, + "end": 483.86, + "probability": 0.947 + }, + { + "start": 484.24, + "end": 490.56, + "probability": 0.7909 + }, + { + "start": 490.68, + "end": 496.02, + "probability": 0.7779 + }, + { + "start": 496.02, + "end": 501.64, + "probability": 0.5837 + }, + { + "start": 502.0, + "end": 504.16, + "probability": 0.5955 + }, + { + "start": 504.28, + "end": 508.16, + "probability": 0.9579 + }, + { + "start": 508.98, + "end": 514.34, + "probability": 0.72 + }, + { + "start": 514.42, + "end": 517.61, + "probability": 0.8561 + }, + { + "start": 518.32, + "end": 520.1, + "probability": 0.7174 + }, + { + "start": 520.72, + "end": 523.6, + "probability": 0.879 + }, + { + "start": 524.5, + "end": 525.88, + "probability": 0.4898 + }, + { + "start": 526.66, + "end": 531.04, + "probability": 0.6096 + }, + { + "start": 531.04, + "end": 535.42, + "probability": 0.9756 + }, + { + "start": 537.06, + "end": 537.94, + "probability": 0.4995 + }, + { + "start": 538.6, + "end": 542.1, + "probability": 0.9355 + }, + { + "start": 543.54, + "end": 544.04, + "probability": 0.9462 + }, + { + "start": 545.4, + "end": 545.8, + "probability": 0.3069 + }, + { + "start": 546.06, + "end": 547.54, + "probability": 0.7666 + }, + { + "start": 547.7, + "end": 548.22, + "probability": 0.3573 + }, + { + "start": 548.22, + "end": 549.28, + "probability": 0.7339 + }, + { + "start": 549.78, + "end": 551.46, + "probability": 0.9946 + }, + { + "start": 552.1, + "end": 553.0, + "probability": 0.8794 + }, + { + "start": 553.6, + "end": 556.74, + "probability": 0.9713 + }, + { + "start": 557.38, + "end": 558.54, + "probability": 0.9026 + }, + { + "start": 558.84, + "end": 560.66, + "probability": 0.9619 + }, + { + "start": 561.86, + "end": 566.94, + "probability": 0.8614 + }, + { + "start": 567.38, + "end": 568.56, + "probability": 0.9104 + }, + { + "start": 569.26, + "end": 572.18, + "probability": 0.9268 + }, + { + "start": 572.84, + "end": 579.09, + "probability": 0.8518 + }, + { + "start": 580.67, + "end": 587.4, + "probability": 0.981 + }, + { + "start": 588.08, + "end": 589.94, + "probability": 0.8786 + }, + { + "start": 590.58, + "end": 590.94, + "probability": 0.8051 + }, + { + "start": 591.08, + "end": 592.76, + "probability": 0.9793 + }, + { + "start": 593.92, + "end": 597.96, + "probability": 0.9648 + }, + { + "start": 598.7, + "end": 602.46, + "probability": 0.8892 + }, + { + "start": 602.98, + "end": 604.52, + "probability": 0.507 + }, + { + "start": 604.62, + "end": 605.8, + "probability": 0.4922 + }, + { + "start": 605.9, + "end": 607.14, + "probability": 0.9843 + }, + { + "start": 607.4, + "end": 608.4, + "probability": 0.9909 + }, + { + "start": 610.7, + "end": 619.56, + "probability": 0.9261 + }, + { + "start": 620.24, + "end": 621.16, + "probability": 0.6362 + }, + { + "start": 621.28, + "end": 624.84, + "probability": 0.9706 + }, + { + "start": 625.66, + "end": 629.16, + "probability": 0.8325 + }, + { + "start": 629.68, + "end": 631.04, + "probability": 0.9816 + }, + { + "start": 631.84, + "end": 633.06, + "probability": 0.9761 + }, + { + "start": 633.44, + "end": 635.14, + "probability": 0.6231 + }, + { + "start": 635.8, + "end": 637.54, + "probability": 0.7004 + }, + { + "start": 637.74, + "end": 638.22, + "probability": 0.4172 + }, + { + "start": 638.54, + "end": 640.74, + "probability": 0.6938 + }, + { + "start": 640.82, + "end": 643.26, + "probability": 0.4964 + }, + { + "start": 643.82, + "end": 645.82, + "probability": 0.8225 + }, + { + "start": 647.94, + "end": 650.82, + "probability": 0.8121 + }, + { + "start": 651.76, + "end": 653.2, + "probability": 0.766 + }, + { + "start": 653.88, + "end": 654.6, + "probability": 0.9066 + }, + { + "start": 654.94, + "end": 658.46, + "probability": 0.9925 + }, + { + "start": 659.54, + "end": 663.5, + "probability": 0.903 + }, + { + "start": 664.22, + "end": 666.6, + "probability": 0.8671 + }, + { + "start": 667.26, + "end": 669.34, + "probability": 0.8612 + }, + { + "start": 670.74, + "end": 675.92, + "probability": 0.9019 + }, + { + "start": 676.58, + "end": 678.1, + "probability": 0.8425 + }, + { + "start": 678.5, + "end": 681.76, + "probability": 0.9244 + }, + { + "start": 682.84, + "end": 685.94, + "probability": 0.8268 + }, + { + "start": 686.86, + "end": 688.35, + "probability": 0.9917 + }, + { + "start": 689.48, + "end": 691.2, + "probability": 0.9899 + }, + { + "start": 692.02, + "end": 693.62, + "probability": 0.9427 + }, + { + "start": 693.94, + "end": 694.42, + "probability": 0.7325 + }, + { + "start": 694.74, + "end": 696.48, + "probability": 0.9772 + }, + { + "start": 696.96, + "end": 700.24, + "probability": 0.8545 + }, + { + "start": 702.04, + "end": 703.38, + "probability": 0.6216 + }, + { + "start": 703.5, + "end": 703.56, + "probability": 0.5874 + }, + { + "start": 703.56, + "end": 708.4, + "probability": 0.9739 + }, + { + "start": 708.98, + "end": 711.54, + "probability": 0.7811 + }, + { + "start": 713.11, + "end": 715.37, + "probability": 0.9414 + }, + { + "start": 716.24, + "end": 717.01, + "probability": 0.8862 + }, + { + "start": 718.1, + "end": 719.2, + "probability": 0.9805 + }, + { + "start": 720.74, + "end": 724.42, + "probability": 0.9664 + }, + { + "start": 725.34, + "end": 728.5, + "probability": 0.8027 + }, + { + "start": 729.06, + "end": 730.36, + "probability": 0.9349 + }, + { + "start": 731.1, + "end": 736.82, + "probability": 0.8892 + }, + { + "start": 738.04, + "end": 740.82, + "probability": 0.9845 + }, + { + "start": 741.38, + "end": 742.08, + "probability": 0.972 + }, + { + "start": 743.68, + "end": 748.12, + "probability": 0.9749 + }, + { + "start": 748.18, + "end": 751.4, + "probability": 0.9985 + }, + { + "start": 752.26, + "end": 754.1, + "probability": 0.8264 + }, + { + "start": 755.08, + "end": 756.1, + "probability": 0.9059 + }, + { + "start": 756.3, + "end": 757.66, + "probability": 0.9727 + }, + { + "start": 757.88, + "end": 762.34, + "probability": 0.9966 + }, + { + "start": 762.54, + "end": 766.34, + "probability": 0.9575 + }, + { + "start": 766.84, + "end": 769.92, + "probability": 0.8249 + }, + { + "start": 770.5, + "end": 771.0, + "probability": 0.7641 + }, + { + "start": 771.22, + "end": 771.72, + "probability": 0.5506 + }, + { + "start": 771.8, + "end": 774.08, + "probability": 0.7406 + }, + { + "start": 774.96, + "end": 775.56, + "probability": 0.5615 + }, + { + "start": 776.36, + "end": 777.74, + "probability": 0.8976 + }, + { + "start": 780.54, + "end": 782.44, + "probability": 0.4786 + }, + { + "start": 783.18, + "end": 787.26, + "probability": 0.9529 + }, + { + "start": 788.54, + "end": 789.88, + "probability": 0.9799 + }, + { + "start": 790.12, + "end": 790.64, + "probability": 0.9453 + }, + { + "start": 791.92, + "end": 792.64, + "probability": 0.789 + }, + { + "start": 794.4, + "end": 799.68, + "probability": 0.6266 + }, + { + "start": 801.28, + "end": 803.96, + "probability": 0.9406 + }, + { + "start": 805.02, + "end": 807.24, + "probability": 0.7423 + }, + { + "start": 807.46, + "end": 810.58, + "probability": 0.9436 + }, + { + "start": 811.62, + "end": 814.07, + "probability": 0.9209 + }, + { + "start": 815.96, + "end": 817.84, + "probability": 0.9582 + }, + { + "start": 818.4, + "end": 820.58, + "probability": 0.6669 + }, + { + "start": 821.14, + "end": 821.74, + "probability": 0.7385 + }, + { + "start": 822.52, + "end": 825.12, + "probability": 0.9338 + }, + { + "start": 827.0, + "end": 827.3, + "probability": 0.917 + }, + { + "start": 827.54, + "end": 830.5, + "probability": 0.903 + }, + { + "start": 830.62, + "end": 831.5, + "probability": 0.9041 + }, + { + "start": 831.6, + "end": 833.94, + "probability": 0.9561 + }, + { + "start": 836.48, + "end": 838.1, + "probability": 0.953 + }, + { + "start": 838.72, + "end": 839.8, + "probability": 0.7605 + }, + { + "start": 840.0, + "end": 840.42, + "probability": 0.7748 + }, + { + "start": 840.5, + "end": 842.62, + "probability": 0.9363 + }, + { + "start": 843.06, + "end": 843.68, + "probability": 0.5008 + }, + { + "start": 844.4, + "end": 846.46, + "probability": 0.9587 + }, + { + "start": 846.58, + "end": 848.04, + "probability": 0.992 + }, + { + "start": 849.08, + "end": 850.96, + "probability": 0.8206 + }, + { + "start": 851.18, + "end": 853.7, + "probability": 0.7222 + }, + { + "start": 854.2, + "end": 855.44, + "probability": 0.7582 + }, + { + "start": 855.88, + "end": 859.02, + "probability": 0.6768 + }, + { + "start": 860.12, + "end": 862.94, + "probability": 0.9517 + }, + { + "start": 863.68, + "end": 865.32, + "probability": 0.9132 + }, + { + "start": 866.06, + "end": 868.62, + "probability": 0.7185 + }, + { + "start": 869.24, + "end": 870.06, + "probability": 0.5657 + }, + { + "start": 870.94, + "end": 872.64, + "probability": 0.646 + }, + { + "start": 877.44, + "end": 877.92, + "probability": 0.4768 + }, + { + "start": 878.04, + "end": 878.9, + "probability": 0.8273 + }, + { + "start": 879.08, + "end": 884.16, + "probability": 0.9849 + }, + { + "start": 884.16, + "end": 887.72, + "probability": 0.9863 + }, + { + "start": 888.42, + "end": 889.68, + "probability": 0.84 + }, + { + "start": 890.98, + "end": 893.16, + "probability": 0.9176 + }, + { + "start": 893.72, + "end": 898.58, + "probability": 0.9897 + }, + { + "start": 898.7, + "end": 901.98, + "probability": 0.9927 + }, + { + "start": 902.76, + "end": 906.52, + "probability": 0.5771 + }, + { + "start": 906.7, + "end": 906.82, + "probability": 0.9124 + }, + { + "start": 907.56, + "end": 909.8, + "probability": 0.9285 + }, + { + "start": 910.84, + "end": 915.83, + "probability": 0.998 + }, + { + "start": 916.46, + "end": 919.6, + "probability": 0.9845 + }, + { + "start": 920.34, + "end": 923.24, + "probability": 0.9801 + }, + { + "start": 923.68, + "end": 924.2, + "probability": 0.7318 + }, + { + "start": 924.22, + "end": 926.24, + "probability": 0.8669 + }, + { + "start": 926.78, + "end": 931.12, + "probability": 0.9928 + }, + { + "start": 931.42, + "end": 931.58, + "probability": 0.2941 + }, + { + "start": 932.02, + "end": 934.5, + "probability": 0.997 + }, + { + "start": 934.56, + "end": 937.64, + "probability": 0.8464 + }, + { + "start": 938.12, + "end": 941.46, + "probability": 0.9846 + }, + { + "start": 941.62, + "end": 942.94, + "probability": 0.5321 + }, + { + "start": 943.22, + "end": 943.42, + "probability": 0.7886 + }, + { + "start": 944.0, + "end": 945.94, + "probability": 0.7015 + }, + { + "start": 946.2, + "end": 948.48, + "probability": 0.979 + }, + { + "start": 949.14, + "end": 953.46, + "probability": 0.9741 + }, + { + "start": 953.62, + "end": 954.66, + "probability": 0.555 + }, + { + "start": 954.96, + "end": 956.44, + "probability": 0.916 + }, + { + "start": 956.96, + "end": 958.58, + "probability": 0.9751 + }, + { + "start": 958.7, + "end": 959.45, + "probability": 0.9734 + }, + { + "start": 959.58, + "end": 963.98, + "probability": 0.9422 + }, + { + "start": 964.34, + "end": 965.7, + "probability": 0.9633 + }, + { + "start": 966.28, + "end": 967.45, + "probability": 0.5804 + }, + { + "start": 968.02, + "end": 972.42, + "probability": 0.9902 + }, + { + "start": 972.98, + "end": 973.66, + "probability": 0.7074 + }, + { + "start": 974.3, + "end": 976.02, + "probability": 0.9542 + }, + { + "start": 976.48, + "end": 979.36, + "probability": 0.3573 + }, + { + "start": 981.26, + "end": 981.44, + "probability": 0.0003 + }, + { + "start": 982.68, + "end": 982.88, + "probability": 0.0433 + }, + { + "start": 982.88, + "end": 984.58, + "probability": 0.295 + }, + { + "start": 984.66, + "end": 985.38, + "probability": 0.5772 + }, + { + "start": 985.74, + "end": 986.18, + "probability": 0.7825 + }, + { + "start": 986.32, + "end": 986.62, + "probability": 0.8151 + }, + { + "start": 987.56, + "end": 989.31, + "probability": 0.9233 + }, + { + "start": 989.42, + "end": 992.68, + "probability": 0.9224 + }, + { + "start": 993.2, + "end": 995.84, + "probability": 0.8358 + }, + { + "start": 996.38, + "end": 1001.3, + "probability": 0.9484 + }, + { + "start": 1001.98, + "end": 1004.4, + "probability": 0.4167 + }, + { + "start": 1004.66, + "end": 1009.4, + "probability": 0.9451 + }, + { + "start": 1010.38, + "end": 1012.33, + "probability": 0.4618 + }, + { + "start": 1014.66, + "end": 1015.38, + "probability": 0.5445 + }, + { + "start": 1015.54, + "end": 1016.74, + "probability": 0.8701 + }, + { + "start": 1017.02, + "end": 1021.62, + "probability": 0.7741 + }, + { + "start": 1021.9, + "end": 1024.78, + "probability": 0.9886 + }, + { + "start": 1025.76, + "end": 1027.74, + "probability": 0.9866 + }, + { + "start": 1028.3, + "end": 1029.46, + "probability": 0.5507 + }, + { + "start": 1030.7, + "end": 1034.14, + "probability": 0.9945 + }, + { + "start": 1034.14, + "end": 1040.76, + "probability": 0.7744 + }, + { + "start": 1040.96, + "end": 1041.36, + "probability": 0.8581 + }, + { + "start": 1042.38, + "end": 1044.9, + "probability": 0.9872 + }, + { + "start": 1046.38, + "end": 1048.04, + "probability": 0.9902 + }, + { + "start": 1053.94, + "end": 1054.9, + "probability": 0.3252 + }, + { + "start": 1055.7, + "end": 1060.82, + "probability": 0.8213 + }, + { + "start": 1061.34, + "end": 1063.82, + "probability": 0.7939 + }, + { + "start": 1064.24, + "end": 1066.82, + "probability": 0.9956 + }, + { + "start": 1067.36, + "end": 1070.58, + "probability": 0.8861 + }, + { + "start": 1071.86, + "end": 1075.96, + "probability": 0.8787 + }, + { + "start": 1076.7, + "end": 1078.52, + "probability": 0.7067 + }, + { + "start": 1079.24, + "end": 1082.7, + "probability": 0.9807 + }, + { + "start": 1083.74, + "end": 1087.9, + "probability": 0.9567 + }, + { + "start": 1088.72, + "end": 1090.58, + "probability": 0.9572 + }, + { + "start": 1091.52, + "end": 1092.2, + "probability": 0.8404 + }, + { + "start": 1092.84, + "end": 1095.84, + "probability": 0.9491 + }, + { + "start": 1096.32, + "end": 1098.28, + "probability": 0.9307 + }, + { + "start": 1098.68, + "end": 1099.2, + "probability": 0.7377 + }, + { + "start": 1100.06, + "end": 1101.52, + "probability": 0.9053 + }, + { + "start": 1101.54, + "end": 1107.28, + "probability": 0.6835 + }, + { + "start": 1114.58, + "end": 1114.58, + "probability": 0.0467 + }, + { + "start": 1114.58, + "end": 1115.24, + "probability": 0.4914 + }, + { + "start": 1115.78, + "end": 1117.9, + "probability": 0.8396 + }, + { + "start": 1118.72, + "end": 1120.1, + "probability": 0.9569 + }, + { + "start": 1121.44, + "end": 1125.3, + "probability": 0.7434 + }, + { + "start": 1125.98, + "end": 1127.16, + "probability": 0.9548 + }, + { + "start": 1127.86, + "end": 1131.98, + "probability": 0.9733 + }, + { + "start": 1132.7, + "end": 1134.74, + "probability": 0.9976 + }, + { + "start": 1135.16, + "end": 1139.18, + "probability": 0.9432 + }, + { + "start": 1139.82, + "end": 1142.5, + "probability": 0.9805 + }, + { + "start": 1142.5, + "end": 1146.34, + "probability": 0.9697 + }, + { + "start": 1146.74, + "end": 1151.38, + "probability": 0.9978 + }, + { + "start": 1152.6, + "end": 1155.0, + "probability": 0.999 + }, + { + "start": 1155.0, + "end": 1157.28, + "probability": 0.994 + }, + { + "start": 1158.92, + "end": 1161.9, + "probability": 0.8641 + }, + { + "start": 1161.94, + "end": 1166.22, + "probability": 0.9908 + }, + { + "start": 1166.22, + "end": 1170.68, + "probability": 0.9991 + }, + { + "start": 1170.78, + "end": 1172.0, + "probability": 0.9871 + }, + { + "start": 1173.28, + "end": 1173.56, + "probability": 0.7078 + }, + { + "start": 1173.66, + "end": 1173.86, + "probability": 0.7758 + }, + { + "start": 1173.98, + "end": 1177.3, + "probability": 0.9819 + }, + { + "start": 1177.3, + "end": 1179.98, + "probability": 0.9946 + }, + { + "start": 1180.38, + "end": 1183.92, + "probability": 0.9878 + }, + { + "start": 1184.0, + "end": 1186.66, + "probability": 0.9972 + }, + { + "start": 1187.04, + "end": 1188.56, + "probability": 0.7225 + }, + { + "start": 1188.64, + "end": 1190.86, + "probability": 0.9616 + }, + { + "start": 1190.9, + "end": 1192.69, + "probability": 0.9443 + }, + { + "start": 1193.6, + "end": 1198.64, + "probability": 0.9829 + }, + { + "start": 1199.2, + "end": 1204.68, + "probability": 0.9924 + }, + { + "start": 1204.68, + "end": 1209.34, + "probability": 0.9984 + }, + { + "start": 1209.48, + "end": 1210.96, + "probability": 0.8456 + }, + { + "start": 1212.08, + "end": 1214.22, + "probability": 0.9931 + }, + { + "start": 1214.48, + "end": 1215.0, + "probability": 0.5066 + }, + { + "start": 1215.12, + "end": 1216.56, + "probability": 0.7523 + }, + { + "start": 1216.9, + "end": 1217.4, + "probability": 0.4154 + }, + { + "start": 1217.64, + "end": 1218.16, + "probability": 0.4612 + }, + { + "start": 1218.2, + "end": 1219.04, + "probability": 0.384 + }, + { + "start": 1219.6, + "end": 1220.54, + "probability": 0.926 + }, + { + "start": 1224.08, + "end": 1224.56, + "probability": 0.2721 + }, + { + "start": 1224.94, + "end": 1225.74, + "probability": 0.7167 + }, + { + "start": 1226.58, + "end": 1229.46, + "probability": 0.7771 + }, + { + "start": 1230.42, + "end": 1235.68, + "probability": 0.8938 + }, + { + "start": 1236.52, + "end": 1239.28, + "probability": 0.9921 + }, + { + "start": 1240.18, + "end": 1246.18, + "probability": 0.9941 + }, + { + "start": 1246.52, + "end": 1249.54, + "probability": 0.997 + }, + { + "start": 1250.14, + "end": 1254.94, + "probability": 0.9958 + }, + { + "start": 1255.86, + "end": 1258.34, + "probability": 0.6869 + }, + { + "start": 1259.02, + "end": 1260.1, + "probability": 0.6602 + }, + { + "start": 1260.16, + "end": 1260.64, + "probability": 0.4289 + }, + { + "start": 1260.7, + "end": 1262.14, + "probability": 0.9433 + }, + { + "start": 1262.42, + "end": 1264.48, + "probability": 0.3935 + }, + { + "start": 1265.34, + "end": 1266.95, + "probability": 0.8239 + }, + { + "start": 1267.44, + "end": 1269.78, + "probability": 0.9316 + }, + { + "start": 1269.86, + "end": 1271.85, + "probability": 0.9895 + }, + { + "start": 1272.24, + "end": 1272.96, + "probability": 0.8733 + }, + { + "start": 1273.04, + "end": 1274.06, + "probability": 0.798 + }, + { + "start": 1274.2, + "end": 1275.94, + "probability": 0.9347 + }, + { + "start": 1276.02, + "end": 1277.62, + "probability": 0.5573 + }, + { + "start": 1277.82, + "end": 1279.2, + "probability": 0.6395 + }, + { + "start": 1279.88, + "end": 1282.7, + "probability": 0.9789 + }, + { + "start": 1282.82, + "end": 1283.76, + "probability": 0.9075 + }, + { + "start": 1284.18, + "end": 1285.02, + "probability": 0.9445 + }, + { + "start": 1285.48, + "end": 1286.68, + "probability": 0.9712 + }, + { + "start": 1287.02, + "end": 1287.68, + "probability": 0.9614 + }, + { + "start": 1288.14, + "end": 1288.86, + "probability": 0.9752 + }, + { + "start": 1289.22, + "end": 1290.94, + "probability": 0.9585 + }, + { + "start": 1291.32, + "end": 1293.62, + "probability": 0.7208 + }, + { + "start": 1294.18, + "end": 1294.77, + "probability": 0.9398 + }, + { + "start": 1295.38, + "end": 1296.08, + "probability": 0.7646 + }, + { + "start": 1296.5, + "end": 1298.98, + "probability": 0.9723 + }, + { + "start": 1299.38, + "end": 1301.66, + "probability": 0.9552 + }, + { + "start": 1302.52, + "end": 1303.42, + "probability": 0.6924 + }, + { + "start": 1303.68, + "end": 1306.46, + "probability": 0.4997 + }, + { + "start": 1307.22, + "end": 1309.38, + "probability": 0.7862 + }, + { + "start": 1312.76, + "end": 1313.56, + "probability": 0.5932 + }, + { + "start": 1314.86, + "end": 1317.88, + "probability": 0.9774 + }, + { + "start": 1318.42, + "end": 1321.94, + "probability": 0.838 + }, + { + "start": 1322.92, + "end": 1325.97, + "probability": 0.9916 + }, + { + "start": 1326.62, + "end": 1328.64, + "probability": 0.904 + }, + { + "start": 1329.84, + "end": 1330.36, + "probability": 0.6899 + }, + { + "start": 1330.46, + "end": 1331.26, + "probability": 0.7737 + }, + { + "start": 1331.7, + "end": 1335.72, + "probability": 0.8906 + }, + { + "start": 1336.54, + "end": 1337.8, + "probability": 0.6274 + }, + { + "start": 1339.68, + "end": 1342.12, + "probability": 0.9561 + }, + { + "start": 1342.36, + "end": 1346.14, + "probability": 0.9844 + }, + { + "start": 1346.7, + "end": 1347.7, + "probability": 0.9417 + }, + { + "start": 1348.8, + "end": 1353.88, + "probability": 0.8956 + }, + { + "start": 1354.9, + "end": 1359.54, + "probability": 0.8371 + }, + { + "start": 1360.2, + "end": 1360.92, + "probability": 0.7321 + }, + { + "start": 1361.1, + "end": 1365.36, + "probability": 0.586 + }, + { + "start": 1365.36, + "end": 1371.04, + "probability": 0.9448 + }, + { + "start": 1371.32, + "end": 1371.52, + "probability": 0.5327 + }, + { + "start": 1372.08, + "end": 1373.62, + "probability": 0.6155 + }, + { + "start": 1374.44, + "end": 1376.72, + "probability": 0.892 + }, + { + "start": 1377.12, + "end": 1377.6, + "probability": 0.0853 + }, + { + "start": 1377.6, + "end": 1379.22, + "probability": 0.0185 + }, + { + "start": 1380.58, + "end": 1380.97, + "probability": 0.0834 + }, + { + "start": 1389.21, + "end": 1389.92, + "probability": 0.2446 + }, + { + "start": 1389.92, + "end": 1390.1, + "probability": 0.0598 + }, + { + "start": 1390.1, + "end": 1390.1, + "probability": 0.3054 + }, + { + "start": 1390.1, + "end": 1390.66, + "probability": 0.2184 + }, + { + "start": 1390.7, + "end": 1392.08, + "probability": 0.7041 + }, + { + "start": 1392.28, + "end": 1393.46, + "probability": 0.8426 + }, + { + "start": 1393.7, + "end": 1395.84, + "probability": 0.9731 + }, + { + "start": 1397.12, + "end": 1398.98, + "probability": 0.9766 + }, + { + "start": 1399.16, + "end": 1402.1, + "probability": 0.8857 + }, + { + "start": 1402.62, + "end": 1404.52, + "probability": 0.8691 + }, + { + "start": 1405.18, + "end": 1406.6, + "probability": 0.9606 + }, + { + "start": 1407.2, + "end": 1409.76, + "probability": 0.8936 + }, + { + "start": 1410.54, + "end": 1412.88, + "probability": 0.9934 + }, + { + "start": 1413.56, + "end": 1416.1, + "probability": 0.9565 + }, + { + "start": 1416.18, + "end": 1421.28, + "probability": 0.7253 + }, + { + "start": 1421.42, + "end": 1422.76, + "probability": 0.9572 + }, + { + "start": 1422.86, + "end": 1423.98, + "probability": 0.9372 + }, + { + "start": 1424.94, + "end": 1426.7, + "probability": 0.9507 + }, + { + "start": 1427.36, + "end": 1429.8, + "probability": 0.9097 + }, + { + "start": 1430.34, + "end": 1434.12, + "probability": 0.7292 + }, + { + "start": 1434.88, + "end": 1437.76, + "probability": 0.9946 + }, + { + "start": 1438.34, + "end": 1440.08, + "probability": 0.9099 + }, + { + "start": 1440.2, + "end": 1442.1, + "probability": 0.6798 + }, + { + "start": 1442.36, + "end": 1443.7, + "probability": 0.9057 + }, + { + "start": 1444.3, + "end": 1445.06, + "probability": 0.6731 + }, + { + "start": 1445.24, + "end": 1445.72, + "probability": 0.7845 + }, + { + "start": 1446.4, + "end": 1448.86, + "probability": 0.9912 + }, + { + "start": 1449.7, + "end": 1454.86, + "probability": 0.9561 + }, + { + "start": 1454.92, + "end": 1456.62, + "probability": 0.8217 + }, + { + "start": 1456.74, + "end": 1458.34, + "probability": 0.9917 + }, + { + "start": 1458.8, + "end": 1459.14, + "probability": 0.2305 + }, + { + "start": 1459.76, + "end": 1461.8, + "probability": 0.9453 + }, + { + "start": 1462.88, + "end": 1464.94, + "probability": 0.9393 + }, + { + "start": 1465.48, + "end": 1467.7, + "probability": 0.8977 + }, + { + "start": 1468.5, + "end": 1471.94, + "probability": 0.8564 + }, + { + "start": 1472.08, + "end": 1473.76, + "probability": 0.642 + }, + { + "start": 1474.14, + "end": 1475.28, + "probability": 0.9487 + }, + { + "start": 1475.98, + "end": 1477.26, + "probability": 0.5818 + }, + { + "start": 1477.26, + "end": 1478.34, + "probability": 0.7308 + }, + { + "start": 1478.5, + "end": 1481.66, + "probability": 0.9819 + }, + { + "start": 1482.12, + "end": 1483.73, + "probability": 0.9863 + }, + { + "start": 1483.86, + "end": 1486.3, + "probability": 0.5018 + }, + { + "start": 1486.3, + "end": 1487.12, + "probability": 0.6982 + }, + { + "start": 1487.68, + "end": 1490.14, + "probability": 0.9446 + }, + { + "start": 1490.22, + "end": 1490.6, + "probability": 0.9197 + }, + { + "start": 1492.0, + "end": 1495.98, + "probability": 0.5288 + }, + { + "start": 1497.02, + "end": 1497.42, + "probability": 0.3299 + }, + { + "start": 1500.28, + "end": 1500.6, + "probability": 0.6537 + }, + { + "start": 1501.14, + "end": 1503.1, + "probability": 0.8088 + }, + { + "start": 1503.24, + "end": 1503.62, + "probability": 0.4615 + }, + { + "start": 1503.72, + "end": 1504.22, + "probability": 0.6351 + }, + { + "start": 1505.84, + "end": 1506.72, + "probability": 0.7437 + }, + { + "start": 1506.88, + "end": 1507.52, + "probability": 0.8943 + }, + { + "start": 1507.92, + "end": 1512.28, + "probability": 0.9649 + }, + { + "start": 1512.88, + "end": 1513.76, + "probability": 0.6822 + }, + { + "start": 1514.3, + "end": 1515.52, + "probability": 0.4572 + }, + { + "start": 1516.54, + "end": 1519.9, + "probability": 0.8972 + }, + { + "start": 1520.64, + "end": 1521.34, + "probability": 0.9332 + }, + { + "start": 1522.44, + "end": 1527.94, + "probability": 0.9786 + }, + { + "start": 1528.66, + "end": 1530.82, + "probability": 0.8186 + }, + { + "start": 1532.22, + "end": 1539.8, + "probability": 0.9483 + }, + { + "start": 1539.9, + "end": 1545.52, + "probability": 0.961 + }, + { + "start": 1546.32, + "end": 1552.1, + "probability": 0.9019 + }, + { + "start": 1552.74, + "end": 1554.8, + "probability": 0.8911 + }, + { + "start": 1555.88, + "end": 1556.86, + "probability": 0.0306 + }, + { + "start": 1557.44, + "end": 1559.68, + "probability": 0.765 + }, + { + "start": 1560.72, + "end": 1561.14, + "probability": 0.5749 + }, + { + "start": 1564.82, + "end": 1569.26, + "probability": 0.9468 + }, + { + "start": 1569.38, + "end": 1574.8, + "probability": 0.8179 + }, + { + "start": 1575.6, + "end": 1579.06, + "probability": 0.9819 + }, + { + "start": 1579.72, + "end": 1581.44, + "probability": 0.9622 + }, + { + "start": 1582.22, + "end": 1582.62, + "probability": 0.5611 + }, + { + "start": 1583.18, + "end": 1586.02, + "probability": 0.9921 + }, + { + "start": 1586.54, + "end": 1587.58, + "probability": 0.8675 + }, + { + "start": 1588.12, + "end": 1589.72, + "probability": 0.9118 + }, + { + "start": 1589.8, + "end": 1591.14, + "probability": 0.6307 + }, + { + "start": 1591.38, + "end": 1591.64, + "probability": 0.5162 + }, + { + "start": 1591.7, + "end": 1593.12, + "probability": 0.939 + }, + { + "start": 1593.5, + "end": 1594.34, + "probability": 0.5387 + }, + { + "start": 1594.38, + "end": 1597.16, + "probability": 0.8096 + }, + { + "start": 1597.92, + "end": 1597.92, + "probability": 0.0098 + }, + { + "start": 1597.92, + "end": 1597.92, + "probability": 0.0575 + }, + { + "start": 1597.92, + "end": 1599.24, + "probability": 0.6556 + }, + { + "start": 1599.62, + "end": 1600.5, + "probability": 0.7855 + }, + { + "start": 1600.58, + "end": 1604.24, + "probability": 0.6019 + }, + { + "start": 1605.08, + "end": 1606.6, + "probability": 0.7212 + }, + { + "start": 1607.28, + "end": 1607.78, + "probability": 0.6259 + }, + { + "start": 1607.86, + "end": 1608.88, + "probability": 0.6243 + }, + { + "start": 1609.84, + "end": 1612.9, + "probability": 0.8477 + }, + { + "start": 1612.9, + "end": 1617.14, + "probability": 0.9683 + }, + { + "start": 1617.94, + "end": 1620.14, + "probability": 0.9975 + }, + { + "start": 1620.88, + "end": 1622.42, + "probability": 0.8816 + }, + { + "start": 1622.68, + "end": 1626.42, + "probability": 0.9944 + }, + { + "start": 1627.66, + "end": 1631.16, + "probability": 0.7001 + }, + { + "start": 1631.94, + "end": 1632.96, + "probability": 0.6712 + }, + { + "start": 1633.94, + "end": 1636.74, + "probability": 0.948 + }, + { + "start": 1637.54, + "end": 1641.92, + "probability": 0.9727 + }, + { + "start": 1643.46, + "end": 1647.44, + "probability": 0.9622 + }, + { + "start": 1648.04, + "end": 1651.62, + "probability": 0.996 + }, + { + "start": 1654.74, + "end": 1655.28, + "probability": 0.3267 + }, + { + "start": 1657.65, + "end": 1661.32, + "probability": 0.9397 + }, + { + "start": 1661.86, + "end": 1665.06, + "probability": 0.9235 + }, + { + "start": 1665.24, + "end": 1669.0, + "probability": 0.9622 + }, + { + "start": 1669.56, + "end": 1671.78, + "probability": 0.8257 + }, + { + "start": 1671.94, + "end": 1673.2, + "probability": 0.7922 + }, + { + "start": 1673.64, + "end": 1675.24, + "probability": 0.9338 + }, + { + "start": 1676.12, + "end": 1677.9, + "probability": 0.9561 + }, + { + "start": 1678.46, + "end": 1683.24, + "probability": 0.987 + }, + { + "start": 1683.9, + "end": 1686.14, + "probability": 0.9981 + }, + { + "start": 1686.64, + "end": 1688.74, + "probability": 0.9532 + }, + { + "start": 1688.74, + "end": 1690.56, + "probability": 0.6271 + }, + { + "start": 1691.04, + "end": 1691.28, + "probability": 0.4644 + }, + { + "start": 1691.54, + "end": 1692.06, + "probability": 0.5627 + }, + { + "start": 1692.48, + "end": 1694.3, + "probability": 0.6702 + }, + { + "start": 1694.88, + "end": 1698.34, + "probability": 0.8782 + }, + { + "start": 1698.7, + "end": 1699.54, + "probability": 0.6981 + }, + { + "start": 1699.66, + "end": 1702.76, + "probability": 0.718 + }, + { + "start": 1702.88, + "end": 1705.7, + "probability": 0.9954 + }, + { + "start": 1705.88, + "end": 1709.06, + "probability": 0.8688 + }, + { + "start": 1710.12, + "end": 1711.22, + "probability": 0.6905 + }, + { + "start": 1712.78, + "end": 1713.8, + "probability": 0.7643 + }, + { + "start": 1714.12, + "end": 1714.12, + "probability": 0.0691 + }, + { + "start": 1714.12, + "end": 1715.08, + "probability": 0.5877 + }, + { + "start": 1716.53, + "end": 1719.74, + "probability": 0.6143 + }, + { + "start": 1720.64, + "end": 1722.14, + "probability": 0.7866 + }, + { + "start": 1723.48, + "end": 1724.68, + "probability": 0.4959 + }, + { + "start": 1725.02, + "end": 1726.1, + "probability": 0.8049 + }, + { + "start": 1726.56, + "end": 1730.58, + "probability": 0.9974 + }, + { + "start": 1732.02, + "end": 1738.18, + "probability": 0.984 + }, + { + "start": 1739.44, + "end": 1742.12, + "probability": 0.9109 + }, + { + "start": 1743.02, + "end": 1744.32, + "probability": 0.9458 + }, + { + "start": 1745.18, + "end": 1748.98, + "probability": 0.9785 + }, + { + "start": 1749.56, + "end": 1750.4, + "probability": 0.6355 + }, + { + "start": 1751.44, + "end": 1757.4, + "probability": 0.988 + }, + { + "start": 1758.2, + "end": 1759.82, + "probability": 0.7764 + }, + { + "start": 1761.04, + "end": 1763.74, + "probability": 0.9991 + }, + { + "start": 1764.64, + "end": 1768.34, + "probability": 0.9905 + }, + { + "start": 1769.54, + "end": 1770.48, + "probability": 0.6967 + }, + { + "start": 1771.38, + "end": 1772.2, + "probability": 0.8485 + }, + { + "start": 1773.68, + "end": 1774.72, + "probability": 0.7035 + }, + { + "start": 1775.26, + "end": 1775.9, + "probability": 0.9228 + }, + { + "start": 1776.8, + "end": 1780.12, + "probability": 0.993 + }, + { + "start": 1780.12, + "end": 1785.14, + "probability": 0.984 + }, + { + "start": 1785.76, + "end": 1786.66, + "probability": 0.8905 + }, + { + "start": 1786.74, + "end": 1790.6, + "probability": 0.963 + }, + { + "start": 1790.64, + "end": 1791.81, + "probability": 0.6887 + }, + { + "start": 1794.02, + "end": 1799.34, + "probability": 0.9901 + }, + { + "start": 1799.38, + "end": 1801.26, + "probability": 0.9171 + }, + { + "start": 1801.78, + "end": 1804.12, + "probability": 0.8376 + }, + { + "start": 1804.68, + "end": 1806.18, + "probability": 0.5312 + }, + { + "start": 1806.74, + "end": 1808.98, + "probability": 0.6896 + }, + { + "start": 1809.72, + "end": 1811.52, + "probability": 0.7499 + }, + { + "start": 1811.84, + "end": 1812.82, + "probability": 0.8396 + }, + { + "start": 1813.3, + "end": 1814.44, + "probability": 0.5923 + }, + { + "start": 1814.94, + "end": 1816.68, + "probability": 0.8166 + }, + { + "start": 1817.0, + "end": 1817.78, + "probability": 0.8498 + }, + { + "start": 1817.98, + "end": 1819.98, + "probability": 0.9934 + }, + { + "start": 1820.52, + "end": 1820.72, + "probability": 0.2155 + }, + { + "start": 1820.92, + "end": 1821.38, + "probability": 0.8325 + }, + { + "start": 1821.74, + "end": 1826.44, + "probability": 0.9102 + }, + { + "start": 1827.02, + "end": 1829.44, + "probability": 0.9915 + }, + { + "start": 1829.44, + "end": 1833.52, + "probability": 0.995 + }, + { + "start": 1834.52, + "end": 1836.18, + "probability": 0.8168 + }, + { + "start": 1839.86, + "end": 1841.56, + "probability": 0.6862 + }, + { + "start": 1841.64, + "end": 1846.9, + "probability": 0.9323 + }, + { + "start": 1848.28, + "end": 1853.06, + "probability": 0.8542 + }, + { + "start": 1853.06, + "end": 1853.41, + "probability": 0.2855 + }, + { + "start": 1854.22, + "end": 1854.86, + "probability": 0.3562 + }, + { + "start": 1854.92, + "end": 1857.97, + "probability": 0.8161 + }, + { + "start": 1858.22, + "end": 1859.52, + "probability": 0.9186 + }, + { + "start": 1859.62, + "end": 1860.48, + "probability": 0.905 + }, + { + "start": 1861.02, + "end": 1862.28, + "probability": 0.6602 + }, + { + "start": 1863.92, + "end": 1865.82, + "probability": 0.8309 + }, + { + "start": 1866.26, + "end": 1869.11, + "probability": 0.9019 + }, + { + "start": 1869.42, + "end": 1869.7, + "probability": 0.7457 + }, + { + "start": 1870.18, + "end": 1871.66, + "probability": 0.5848 + }, + { + "start": 1879.64, + "end": 1880.4, + "probability": 0.6427 + }, + { + "start": 1880.52, + "end": 1881.16, + "probability": 0.8283 + }, + { + "start": 1881.26, + "end": 1881.86, + "probability": 0.713 + }, + { + "start": 1881.92, + "end": 1882.46, + "probability": 0.8241 + }, + { + "start": 1882.68, + "end": 1886.16, + "probability": 0.9723 + }, + { + "start": 1887.34, + "end": 1888.42, + "probability": 0.9985 + }, + { + "start": 1888.94, + "end": 1889.42, + "probability": 0.987 + }, + { + "start": 1890.12, + "end": 1891.1, + "probability": 0.7666 + }, + { + "start": 1892.56, + "end": 1895.54, + "probability": 0.9926 + }, + { + "start": 1895.9, + "end": 1902.76, + "probability": 0.921 + }, + { + "start": 1903.04, + "end": 1903.72, + "probability": 0.8892 + }, + { + "start": 1903.8, + "end": 1905.02, + "probability": 0.9248 + }, + { + "start": 1905.8, + "end": 1908.84, + "probability": 0.9913 + }, + { + "start": 1910.22, + "end": 1911.16, + "probability": 0.6614 + }, + { + "start": 1911.92, + "end": 1912.96, + "probability": 0.6335 + }, + { + "start": 1914.36, + "end": 1915.84, + "probability": 0.8662 + }, + { + "start": 1916.32, + "end": 1917.22, + "probability": 0.9036 + }, + { + "start": 1917.56, + "end": 1918.45, + "probability": 0.5067 + }, + { + "start": 1919.54, + "end": 1920.38, + "probability": 0.9332 + }, + { + "start": 1921.14, + "end": 1921.4, + "probability": 0.4044 + }, + { + "start": 1922.86, + "end": 1923.65, + "probability": 0.8112 + }, + { + "start": 1925.04, + "end": 1926.84, + "probability": 0.7538 + }, + { + "start": 1927.19, + "end": 1929.42, + "probability": 0.9971 + }, + { + "start": 1929.88, + "end": 1933.26, + "probability": 0.9683 + }, + { + "start": 1934.02, + "end": 1934.84, + "probability": 0.544 + }, + { + "start": 1935.48, + "end": 1936.76, + "probability": 0.8949 + }, + { + "start": 1937.32, + "end": 1938.16, + "probability": 0.671 + }, + { + "start": 1939.08, + "end": 1939.62, + "probability": 0.7888 + }, + { + "start": 1939.74, + "end": 1943.92, + "probability": 0.9954 + }, + { + "start": 1945.48, + "end": 1947.28, + "probability": 0.9939 + }, + { + "start": 1947.94, + "end": 1948.64, + "probability": 0.8156 + }, + { + "start": 1949.22, + "end": 1949.92, + "probability": 0.9433 + }, + { + "start": 1950.68, + "end": 1951.22, + "probability": 0.4923 + }, + { + "start": 1951.74, + "end": 1952.7, + "probability": 0.9382 + }, + { + "start": 1953.9, + "end": 1955.76, + "probability": 0.9951 + }, + { + "start": 1957.1, + "end": 1959.76, + "probability": 0.7501 + }, + { + "start": 1960.42, + "end": 1964.24, + "probability": 0.9449 + }, + { + "start": 1964.82, + "end": 1968.44, + "probability": 0.9032 + }, + { + "start": 1969.26, + "end": 1970.4, + "probability": 0.7604 + }, + { + "start": 1970.8, + "end": 1973.44, + "probability": 0.9142 + }, + { + "start": 1973.94, + "end": 1975.46, + "probability": 0.9907 + }, + { + "start": 1976.12, + "end": 1981.12, + "probability": 0.9861 + }, + { + "start": 1982.04, + "end": 1982.76, + "probability": 0.7603 + }, + { + "start": 1983.54, + "end": 1985.38, + "probability": 0.9452 + }, + { + "start": 1985.7, + "end": 1988.44, + "probability": 0.9204 + }, + { + "start": 1989.36, + "end": 1989.98, + "probability": 0.7389 + }, + { + "start": 1990.64, + "end": 1992.78, + "probability": 0.8486 + }, + { + "start": 1993.28, + "end": 1996.9, + "probability": 0.9817 + }, + { + "start": 1997.54, + "end": 1999.6, + "probability": 0.9064 + }, + { + "start": 1999.74, + "end": 2002.66, + "probability": 0.9886 + }, + { + "start": 2003.32, + "end": 2006.22, + "probability": 0.9702 + }, + { + "start": 2006.76, + "end": 2010.42, + "probability": 0.9955 + }, + { + "start": 2011.08, + "end": 2013.7, + "probability": 0.9989 + }, + { + "start": 2014.38, + "end": 2015.84, + "probability": 0.9868 + }, + { + "start": 2016.14, + "end": 2017.78, + "probability": 0.9281 + }, + { + "start": 2018.54, + "end": 2018.9, + "probability": 0.6929 + }, + { + "start": 2019.6, + "end": 2020.16, + "probability": 0.9027 + }, + { + "start": 2020.98, + "end": 2021.76, + "probability": 0.9799 + }, + { + "start": 2021.86, + "end": 2022.34, + "probability": 0.9308 + }, + { + "start": 2022.42, + "end": 2023.24, + "probability": 0.8243 + }, + { + "start": 2023.28, + "end": 2026.34, + "probability": 0.9928 + }, + { + "start": 2027.16, + "end": 2027.7, + "probability": 0.9356 + }, + { + "start": 2028.98, + "end": 2031.94, + "probability": 0.8322 + }, + { + "start": 2032.0, + "end": 2035.52, + "probability": 0.9696 + }, + { + "start": 2036.72, + "end": 2040.2, + "probability": 0.9937 + }, + { + "start": 2040.62, + "end": 2042.6, + "probability": 0.8871 + }, + { + "start": 2043.16, + "end": 2046.82, + "probability": 0.9922 + }, + { + "start": 2047.72, + "end": 2050.2, + "probability": 0.9961 + }, + { + "start": 2050.6, + "end": 2052.42, + "probability": 0.9301 + }, + { + "start": 2052.66, + "end": 2053.12, + "probability": 0.8228 + }, + { + "start": 2053.4, + "end": 2053.94, + "probability": 0.8225 + }, + { + "start": 2054.76, + "end": 2054.98, + "probability": 0.4911 + }, + { + "start": 2056.62, + "end": 2057.64, + "probability": 0.6901 + }, + { + "start": 2058.28, + "end": 2064.32, + "probability": 0.9964 + }, + { + "start": 2064.4, + "end": 2066.7, + "probability": 0.9539 + }, + { + "start": 2067.18, + "end": 2068.22, + "probability": 0.8313 + }, + { + "start": 2069.0, + "end": 2071.34, + "probability": 0.9822 + }, + { + "start": 2071.42, + "end": 2073.68, + "probability": 0.9922 + }, + { + "start": 2074.86, + "end": 2076.56, + "probability": 0.7991 + }, + { + "start": 2077.16, + "end": 2079.66, + "probability": 0.993 + }, + { + "start": 2079.66, + "end": 2081.94, + "probability": 0.9958 + }, + { + "start": 2083.14, + "end": 2085.22, + "probability": 0.9896 + }, + { + "start": 2085.42, + "end": 2086.48, + "probability": 0.8632 + }, + { + "start": 2086.58, + "end": 2089.82, + "probability": 0.9859 + }, + { + "start": 2089.94, + "end": 2090.44, + "probability": 0.3882 + }, + { + "start": 2091.62, + "end": 2093.14, + "probability": 0.9875 + }, + { + "start": 2094.12, + "end": 2096.5, + "probability": 0.9857 + }, + { + "start": 2096.66, + "end": 2099.58, + "probability": 0.9678 + }, + { + "start": 2099.7, + "end": 2100.58, + "probability": 0.7552 + }, + { + "start": 2101.22, + "end": 2102.58, + "probability": 0.9643 + }, + { + "start": 2103.54, + "end": 2106.04, + "probability": 0.9912 + }, + { + "start": 2106.92, + "end": 2109.84, + "probability": 0.9919 + }, + { + "start": 2109.84, + "end": 2113.06, + "probability": 0.99 + }, + { + "start": 2113.64, + "end": 2116.02, + "probability": 0.9966 + }, + { + "start": 2116.6, + "end": 2117.22, + "probability": 0.9906 + }, + { + "start": 2118.06, + "end": 2118.46, + "probability": 0.6427 + }, + { + "start": 2118.98, + "end": 2121.4, + "probability": 0.9799 + }, + { + "start": 2122.54, + "end": 2123.64, + "probability": 0.8285 + }, + { + "start": 2124.16, + "end": 2125.74, + "probability": 0.6946 + }, + { + "start": 2126.56, + "end": 2130.71, + "probability": 0.672 + }, + { + "start": 2131.48, + "end": 2136.86, + "probability": 0.9804 + }, + { + "start": 2138.06, + "end": 2140.18, + "probability": 0.9041 + }, + { + "start": 2151.2, + "end": 2153.7, + "probability": 0.7278 + }, + { + "start": 2154.88, + "end": 2155.58, + "probability": 0.8112 + }, + { + "start": 2155.7, + "end": 2158.78, + "probability": 0.8785 + }, + { + "start": 2159.48, + "end": 2161.7, + "probability": 0.7844 + }, + { + "start": 2162.12, + "end": 2163.62, + "probability": 0.9698 + }, + { + "start": 2164.4, + "end": 2169.34, + "probability": 0.9709 + }, + { + "start": 2170.0, + "end": 2171.4, + "probability": 0.8487 + }, + { + "start": 2172.22, + "end": 2173.04, + "probability": 0.7609 + }, + { + "start": 2173.5, + "end": 2175.06, + "probability": 0.8096 + }, + { + "start": 2175.46, + "end": 2178.84, + "probability": 0.9852 + }, + { + "start": 2179.64, + "end": 2180.54, + "probability": 0.9756 + }, + { + "start": 2181.0, + "end": 2183.62, + "probability": 0.9797 + }, + { + "start": 2183.72, + "end": 2184.44, + "probability": 0.8298 + }, + { + "start": 2185.32, + "end": 2186.24, + "probability": 0.9867 + }, + { + "start": 2187.22, + "end": 2188.66, + "probability": 0.9884 + }, + { + "start": 2188.82, + "end": 2189.38, + "probability": 0.9632 + }, + { + "start": 2189.6, + "end": 2190.46, + "probability": 0.9279 + }, + { + "start": 2190.82, + "end": 2191.58, + "probability": 0.986 + }, + { + "start": 2191.78, + "end": 2192.68, + "probability": 0.9934 + }, + { + "start": 2192.78, + "end": 2194.06, + "probability": 0.8867 + }, + { + "start": 2194.66, + "end": 2196.68, + "probability": 0.9933 + }, + { + "start": 2197.34, + "end": 2198.66, + "probability": 0.8099 + }, + { + "start": 2198.72, + "end": 2202.88, + "probability": 0.8745 + }, + { + "start": 2203.34, + "end": 2204.48, + "probability": 0.7913 + }, + { + "start": 2205.06, + "end": 2209.1, + "probability": 0.9947 + }, + { + "start": 2209.98, + "end": 2210.76, + "probability": 0.6543 + }, + { + "start": 2210.92, + "end": 2212.02, + "probability": 0.9034 + }, + { + "start": 2212.38, + "end": 2218.66, + "probability": 0.9945 + }, + { + "start": 2219.22, + "end": 2222.3, + "probability": 0.9758 + }, + { + "start": 2223.06, + "end": 2225.46, + "probability": 0.9573 + }, + { + "start": 2225.94, + "end": 2227.52, + "probability": 0.8902 + }, + { + "start": 2227.92, + "end": 2228.6, + "probability": 0.8775 + }, + { + "start": 2228.98, + "end": 2231.56, + "probability": 0.9529 + }, + { + "start": 2231.76, + "end": 2233.64, + "probability": 0.865 + }, + { + "start": 2234.1, + "end": 2235.44, + "probability": 0.9762 + }, + { + "start": 2236.02, + "end": 2236.56, + "probability": 0.9255 + }, + { + "start": 2237.9, + "end": 2238.94, + "probability": 0.9399 + }, + { + "start": 2239.04, + "end": 2240.22, + "probability": 0.9605 + }, + { + "start": 2240.54, + "end": 2241.66, + "probability": 0.815 + }, + { + "start": 2241.92, + "end": 2244.44, + "probability": 0.9854 + }, + { + "start": 2244.98, + "end": 2247.82, + "probability": 0.9928 + }, + { + "start": 2247.82, + "end": 2252.2, + "probability": 0.9935 + }, + { + "start": 2252.48, + "end": 2254.24, + "probability": 0.8535 + }, + { + "start": 2255.12, + "end": 2259.68, + "probability": 0.9962 + }, + { + "start": 2259.96, + "end": 2263.64, + "probability": 0.9615 + }, + { + "start": 2263.76, + "end": 2267.12, + "probability": 0.9575 + }, + { + "start": 2267.12, + "end": 2271.48, + "probability": 0.8897 + }, + { + "start": 2272.02, + "end": 2276.12, + "probability": 0.904 + }, + { + "start": 2276.62, + "end": 2280.54, + "probability": 0.976 + }, + { + "start": 2280.54, + "end": 2284.12, + "probability": 0.9206 + }, + { + "start": 2284.6, + "end": 2289.1, + "probability": 0.8393 + }, + { + "start": 2289.7, + "end": 2292.42, + "probability": 0.8867 + }, + { + "start": 2292.96, + "end": 2293.82, + "probability": 0.8287 + }, + { + "start": 2293.92, + "end": 2295.36, + "probability": 0.9903 + }, + { + "start": 2295.96, + "end": 2299.48, + "probability": 0.7448 + }, + { + "start": 2299.48, + "end": 2301.46, + "probability": 0.8285 + }, + { + "start": 2301.5, + "end": 2304.34, + "probability": 0.9298 + }, + { + "start": 2304.92, + "end": 2306.66, + "probability": 0.991 + }, + { + "start": 2307.24, + "end": 2310.44, + "probability": 0.9958 + }, + { + "start": 2310.62, + "end": 2314.66, + "probability": 0.968 + }, + { + "start": 2314.66, + "end": 2318.22, + "probability": 0.9778 + }, + { + "start": 2318.74, + "end": 2321.98, + "probability": 0.9924 + }, + { + "start": 2322.7, + "end": 2326.26, + "probability": 0.8866 + }, + { + "start": 2326.86, + "end": 2329.14, + "probability": 0.7927 + }, + { + "start": 2329.78, + "end": 2332.32, + "probability": 0.9564 + }, + { + "start": 2332.92, + "end": 2335.74, + "probability": 0.9064 + }, + { + "start": 2336.26, + "end": 2338.1, + "probability": 0.9904 + }, + { + "start": 2338.62, + "end": 2342.5, + "probability": 0.9779 + }, + { + "start": 2343.06, + "end": 2346.16, + "probability": 0.9871 + }, + { + "start": 2346.74, + "end": 2348.06, + "probability": 0.9694 + }, + { + "start": 2348.58, + "end": 2355.12, + "probability": 0.913 + }, + { + "start": 2355.92, + "end": 2360.32, + "probability": 0.8495 + }, + { + "start": 2360.32, + "end": 2362.78, + "probability": 0.8305 + }, + { + "start": 2363.36, + "end": 2364.6, + "probability": 0.8452 + }, + { + "start": 2364.66, + "end": 2369.26, + "probability": 0.9794 + }, + { + "start": 2369.74, + "end": 2373.82, + "probability": 0.9542 + }, + { + "start": 2374.12, + "end": 2377.66, + "probability": 0.9332 + }, + { + "start": 2377.76, + "end": 2382.44, + "probability": 0.9916 + }, + { + "start": 2382.44, + "end": 2386.86, + "probability": 0.9982 + }, + { + "start": 2387.48, + "end": 2389.6, + "probability": 0.9953 + }, + { + "start": 2389.6, + "end": 2392.96, + "probability": 0.9962 + }, + { + "start": 2393.52, + "end": 2397.94, + "probability": 0.9956 + }, + { + "start": 2397.94, + "end": 2401.88, + "probability": 0.9828 + }, + { + "start": 2402.42, + "end": 2403.06, + "probability": 0.5316 + }, + { + "start": 2403.22, + "end": 2408.94, + "probability": 0.9781 + }, + { + "start": 2409.14, + "end": 2410.8, + "probability": 0.9766 + }, + { + "start": 2411.4, + "end": 2415.34, + "probability": 0.9222 + }, + { + "start": 2415.88, + "end": 2422.88, + "probability": 0.7563 + }, + { + "start": 2423.7, + "end": 2427.86, + "probability": 0.9444 + }, + { + "start": 2428.54, + "end": 2431.24, + "probability": 0.6807 + }, + { + "start": 2431.38, + "end": 2433.26, + "probability": 0.9001 + }, + { + "start": 2433.68, + "end": 2435.28, + "probability": 0.7881 + }, + { + "start": 2435.74, + "end": 2439.86, + "probability": 0.9198 + }, + { + "start": 2440.58, + "end": 2444.44, + "probability": 0.8981 + }, + { + "start": 2444.92, + "end": 2451.52, + "probability": 0.9946 + }, + { + "start": 2452.18, + "end": 2456.14, + "probability": 0.8824 + }, + { + "start": 2456.94, + "end": 2460.72, + "probability": 0.976 + }, + { + "start": 2461.66, + "end": 2463.37, + "probability": 0.9683 + }, + { + "start": 2463.98, + "end": 2466.2, + "probability": 0.9958 + }, + { + "start": 2466.78, + "end": 2469.04, + "probability": 0.9921 + }, + { + "start": 2469.66, + "end": 2472.28, + "probability": 0.9243 + }, + { + "start": 2472.78, + "end": 2475.34, + "probability": 0.9873 + }, + { + "start": 2475.72, + "end": 2477.56, + "probability": 0.8322 + }, + { + "start": 2478.54, + "end": 2481.22, + "probability": 0.9841 + }, + { + "start": 2481.22, + "end": 2484.18, + "probability": 0.7982 + }, + { + "start": 2484.92, + "end": 2487.98, + "probability": 0.9341 + }, + { + "start": 2487.98, + "end": 2491.48, + "probability": 0.8944 + }, + { + "start": 2491.9, + "end": 2492.5, + "probability": 0.7837 + }, + { + "start": 2492.84, + "end": 2495.94, + "probability": 0.9412 + }, + { + "start": 2496.26, + "end": 2498.36, + "probability": 0.9639 + }, + { + "start": 2498.96, + "end": 2499.24, + "probability": 0.3421 + }, + { + "start": 2499.7, + "end": 2504.22, + "probability": 0.9855 + }, + { + "start": 2504.78, + "end": 2507.5, + "probability": 0.9868 + }, + { + "start": 2508.02, + "end": 2509.04, + "probability": 0.9625 + }, + { + "start": 2509.62, + "end": 2513.0, + "probability": 0.927 + }, + { + "start": 2513.4, + "end": 2518.78, + "probability": 0.9877 + }, + { + "start": 2519.6, + "end": 2520.16, + "probability": 0.9179 + }, + { + "start": 2520.68, + "end": 2524.3, + "probability": 0.8085 + }, + { + "start": 2524.86, + "end": 2526.48, + "probability": 0.8965 + }, + { + "start": 2527.22, + "end": 2528.22, + "probability": 0.9618 + }, + { + "start": 2529.12, + "end": 2531.17, + "probability": 0.8607 + }, + { + "start": 2531.94, + "end": 2535.88, + "probability": 0.9418 + }, + { + "start": 2536.46, + "end": 2538.86, + "probability": 0.9986 + }, + { + "start": 2539.42, + "end": 2540.78, + "probability": 0.8821 + }, + { + "start": 2541.3, + "end": 2545.04, + "probability": 0.9661 + }, + { + "start": 2545.82, + "end": 2547.42, + "probability": 0.9379 + }, + { + "start": 2547.86, + "end": 2551.52, + "probability": 0.9775 + }, + { + "start": 2551.52, + "end": 2555.56, + "probability": 0.9788 + }, + { + "start": 2556.02, + "end": 2557.9, + "probability": 0.7557 + }, + { + "start": 2558.6, + "end": 2560.14, + "probability": 0.7956 + }, + { + "start": 2560.84, + "end": 2568.44, + "probability": 0.8923 + }, + { + "start": 2569.08, + "end": 2571.48, + "probability": 0.9777 + }, + { + "start": 2571.92, + "end": 2573.4, + "probability": 0.9541 + }, + { + "start": 2573.74, + "end": 2575.74, + "probability": 0.933 + }, + { + "start": 2576.44, + "end": 2582.72, + "probability": 0.9806 + }, + { + "start": 2583.24, + "end": 2584.8, + "probability": 0.9766 + }, + { + "start": 2585.66, + "end": 2588.36, + "probability": 0.9272 + }, + { + "start": 2589.02, + "end": 2593.42, + "probability": 0.8258 + }, + { + "start": 2593.88, + "end": 2594.52, + "probability": 0.6262 + }, + { + "start": 2594.84, + "end": 2598.2, + "probability": 0.9922 + }, + { + "start": 2598.76, + "end": 2604.62, + "probability": 0.9953 + }, + { + "start": 2605.04, + "end": 2609.1, + "probability": 0.9351 + }, + { + "start": 2609.52, + "end": 2613.38, + "probability": 0.9639 + }, + { + "start": 2613.82, + "end": 2617.58, + "probability": 0.978 + }, + { + "start": 2618.24, + "end": 2621.42, + "probability": 0.9656 + }, + { + "start": 2621.7, + "end": 2624.88, + "probability": 0.9975 + }, + { + "start": 2625.46, + "end": 2628.26, + "probability": 0.7776 + }, + { + "start": 2629.14, + "end": 2631.6, + "probability": 0.3564 + }, + { + "start": 2633.68, + "end": 2637.94, + "probability": 0.1191 + }, + { + "start": 2637.94, + "end": 2638.1, + "probability": 0.0293 + }, + { + "start": 2638.1, + "end": 2638.12, + "probability": 0.2159 + }, + { + "start": 2638.12, + "end": 2638.12, + "probability": 0.0352 + }, + { + "start": 2638.12, + "end": 2638.94, + "probability": 0.1707 + }, + { + "start": 2639.02, + "end": 2645.22, + "probability": 0.6132 + }, + { + "start": 2645.68, + "end": 2650.48, + "probability": 0.6654 + }, + { + "start": 2651.1, + "end": 2651.88, + "probability": 0.8233 + }, + { + "start": 2652.04, + "end": 2652.66, + "probability": 0.5545 + }, + { + "start": 2652.66, + "end": 2654.54, + "probability": 0.864 + }, + { + "start": 2654.54, + "end": 2654.74, + "probability": 0.4661 + }, + { + "start": 2654.96, + "end": 2657.36, + "probability": 0.8099 + }, + { + "start": 2657.36, + "end": 2661.38, + "probability": 0.8323 + }, + { + "start": 2662.04, + "end": 2665.44, + "probability": 0.9219 + }, + { + "start": 2666.16, + "end": 2667.08, + "probability": 0.8493 + }, + { + "start": 2667.62, + "end": 2669.56, + "probability": 0.8864 + }, + { + "start": 2670.18, + "end": 2676.0, + "probability": 0.9742 + }, + { + "start": 2676.38, + "end": 2679.34, + "probability": 0.8316 + }, + { + "start": 2680.0, + "end": 2681.04, + "probability": 0.9821 + }, + { + "start": 2681.28, + "end": 2684.56, + "probability": 0.8892 + }, + { + "start": 2684.74, + "end": 2686.66, + "probability": 0.7035 + }, + { + "start": 2687.08, + "end": 2688.48, + "probability": 0.9915 + }, + { + "start": 2689.1, + "end": 2692.74, + "probability": 0.8979 + }, + { + "start": 2693.48, + "end": 2697.24, + "probability": 0.9949 + }, + { + "start": 2697.66, + "end": 2698.68, + "probability": 0.9317 + }, + { + "start": 2699.32, + "end": 2703.68, + "probability": 0.9107 + }, + { + "start": 2704.18, + "end": 2708.96, + "probability": 0.9928 + }, + { + "start": 2709.64, + "end": 2710.26, + "probability": 0.4161 + }, + { + "start": 2710.48, + "end": 2714.96, + "probability": 0.8122 + }, + { + "start": 2715.36, + "end": 2715.96, + "probability": 0.4905 + }, + { + "start": 2716.7, + "end": 2718.0, + "probability": 0.851 + }, + { + "start": 2718.4, + "end": 2721.2, + "probability": 0.9901 + }, + { + "start": 2721.56, + "end": 2725.4, + "probability": 0.8677 + }, + { + "start": 2725.8, + "end": 2726.4, + "probability": 0.5557 + }, + { + "start": 2726.56, + "end": 2728.78, + "probability": 0.9215 + }, + { + "start": 2729.08, + "end": 2733.72, + "probability": 0.9456 + }, + { + "start": 2733.9, + "end": 2737.72, + "probability": 0.983 + }, + { + "start": 2738.36, + "end": 2740.0, + "probability": 0.8534 + }, + { + "start": 2740.5, + "end": 2741.06, + "probability": 0.5944 + }, + { + "start": 2741.22, + "end": 2741.88, + "probability": 0.2328 + }, + { + "start": 2741.88, + "end": 2743.12, + "probability": 0.5151 + }, + { + "start": 2743.86, + "end": 2744.74, + "probability": 0.9748 + }, + { + "start": 2745.3, + "end": 2747.48, + "probability": 0.9963 + }, + { + "start": 2747.64, + "end": 2748.08, + "probability": 0.5704 + }, + { + "start": 2748.36, + "end": 2749.72, + "probability": 0.992 + }, + { + "start": 2750.08, + "end": 2751.95, + "probability": 0.7754 + }, + { + "start": 2753.08, + "end": 2754.9, + "probability": 0.9294 + }, + { + "start": 2754.94, + "end": 2756.52, + "probability": 0.9377 + }, + { + "start": 2756.74, + "end": 2759.42, + "probability": 0.9961 + }, + { + "start": 2759.54, + "end": 2761.58, + "probability": 0.9996 + }, + { + "start": 2762.46, + "end": 2763.08, + "probability": 0.9795 + }, + { + "start": 2764.42, + "end": 2764.7, + "probability": 0.122 + }, + { + "start": 2764.7, + "end": 2766.1, + "probability": 0.1308 + }, + { + "start": 2766.58, + "end": 2766.72, + "probability": 0.4434 + }, + { + "start": 2766.72, + "end": 2769.64, + "probability": 0.8169 + }, + { + "start": 2769.88, + "end": 2771.33, + "probability": 0.7314 + }, + { + "start": 2772.0, + "end": 2774.24, + "probability": 0.9505 + }, + { + "start": 2774.5, + "end": 2775.98, + "probability": 0.7414 + }, + { + "start": 2776.23, + "end": 2777.52, + "probability": 0.0192 + }, + { + "start": 2777.52, + "end": 2779.54, + "probability": 0.1096 + }, + { + "start": 2779.72, + "end": 2779.78, + "probability": 0.1401 + }, + { + "start": 2779.78, + "end": 2780.34, + "probability": 0.8287 + }, + { + "start": 2780.38, + "end": 2781.66, + "probability": 0.2486 + }, + { + "start": 2781.84, + "end": 2782.19, + "probability": 0.1028 + }, + { + "start": 2782.64, + "end": 2783.36, + "probability": 0.5336 + }, + { + "start": 2783.42, + "end": 2785.88, + "probability": 0.6733 + }, + { + "start": 2786.46, + "end": 2789.3, + "probability": 0.8947 + }, + { + "start": 2789.48, + "end": 2791.52, + "probability": 0.5818 + }, + { + "start": 2791.54, + "end": 2793.5, + "probability": 0.7876 + }, + { + "start": 2794.14, + "end": 2794.32, + "probability": 0.5538 + }, + { + "start": 2795.34, + "end": 2795.42, + "probability": 0.2085 + }, + { + "start": 2795.56, + "end": 2796.86, + "probability": 0.164 + }, + { + "start": 2797.0, + "end": 2800.58, + "probability": 0.9343 + }, + { + "start": 2801.46, + "end": 2803.18, + "probability": 0.7772 + }, + { + "start": 2803.2, + "end": 2805.2, + "probability": 0.5939 + }, + { + "start": 2806.58, + "end": 2807.82, + "probability": 0.6333 + }, + { + "start": 2808.6, + "end": 2808.82, + "probability": 0.1646 + }, + { + "start": 2808.82, + "end": 2808.92, + "probability": 0.1181 + }, + { + "start": 2809.18, + "end": 2809.3, + "probability": 0.0309 + }, + { + "start": 2809.36, + "end": 2814.34, + "probability": 0.9626 + }, + { + "start": 2814.56, + "end": 2816.94, + "probability": 0.9335 + }, + { + "start": 2817.1, + "end": 2818.04, + "probability": 0.9405 + }, + { + "start": 2819.24, + "end": 2819.7, + "probability": 0.0466 + }, + { + "start": 2820.18, + "end": 2820.34, + "probability": 0.0783 + }, + { + "start": 2820.34, + "end": 2820.34, + "probability": 0.387 + }, + { + "start": 2820.34, + "end": 2822.32, + "probability": 0.7794 + }, + { + "start": 2822.36, + "end": 2823.02, + "probability": 0.8788 + }, + { + "start": 2823.9, + "end": 2825.38, + "probability": 0.6222 + }, + { + "start": 2826.0, + "end": 2826.04, + "probability": 0.4504 + }, + { + "start": 2826.04, + "end": 2826.78, + "probability": 0.7525 + }, + { + "start": 2827.12, + "end": 2828.36, + "probability": 0.8962 + }, + { + "start": 2828.82, + "end": 2830.0, + "probability": 0.7163 + }, + { + "start": 2831.1, + "end": 2833.9, + "probability": 0.7133 + }, + { + "start": 2839.8, + "end": 2844.72, + "probability": 0.3118 + }, + { + "start": 2846.98, + "end": 2848.88, + "probability": 0.9924 + }, + { + "start": 2849.9, + "end": 2850.98, + "probability": 0.6627 + }, + { + "start": 2851.2, + "end": 2852.56, + "probability": 0.7715 + }, + { + "start": 2852.8, + "end": 2855.78, + "probability": 0.8991 + }, + { + "start": 2856.66, + "end": 2858.22, + "probability": 0.9905 + }, + { + "start": 2859.04, + "end": 2863.82, + "probability": 0.9823 + }, + { + "start": 2865.82, + "end": 2872.62, + "probability": 0.9993 + }, + { + "start": 2873.24, + "end": 2875.58, + "probability": 0.988 + }, + { + "start": 2876.2, + "end": 2877.86, + "probability": 0.997 + }, + { + "start": 2878.7, + "end": 2879.72, + "probability": 0.895 + }, + { + "start": 2880.94, + "end": 2882.04, + "probability": 0.7479 + }, + { + "start": 2882.78, + "end": 2889.32, + "probability": 0.9948 + }, + { + "start": 2890.36, + "end": 2893.76, + "probability": 0.6748 + }, + { + "start": 2894.42, + "end": 2897.98, + "probability": 0.9962 + }, + { + "start": 2898.8, + "end": 2901.24, + "probability": 0.9951 + }, + { + "start": 2901.24, + "end": 2904.5, + "probability": 0.9833 + }, + { + "start": 2905.14, + "end": 2908.2, + "probability": 0.9977 + }, + { + "start": 2909.74, + "end": 2910.0, + "probability": 0.364 + }, + { + "start": 2910.1, + "end": 2910.4, + "probability": 0.845 + }, + { + "start": 2910.44, + "end": 2911.0, + "probability": 0.7867 + }, + { + "start": 2911.2, + "end": 2917.1, + "probability": 0.8828 + }, + { + "start": 2917.34, + "end": 2919.06, + "probability": 0.9915 + }, + { + "start": 2919.62, + "end": 2920.78, + "probability": 0.924 + }, + { + "start": 2921.5, + "end": 2925.54, + "probability": 0.9919 + }, + { + "start": 2927.64, + "end": 2929.72, + "probability": 0.9959 + }, + { + "start": 2929.72, + "end": 2931.92, + "probability": 0.8938 + }, + { + "start": 2933.06, + "end": 2935.28, + "probability": 0.8711 + }, + { + "start": 2935.92, + "end": 2937.72, + "probability": 0.9996 + }, + { + "start": 2938.16, + "end": 2941.82, + "probability": 0.9912 + }, + { + "start": 2943.48, + "end": 2944.61, + "probability": 0.9123 + }, + { + "start": 2944.76, + "end": 2945.44, + "probability": 0.9334 + }, + { + "start": 2945.82, + "end": 2950.0, + "probability": 0.9917 + }, + { + "start": 2951.54, + "end": 2954.4, + "probability": 0.9802 + }, + { + "start": 2954.68, + "end": 2956.74, + "probability": 0.9829 + }, + { + "start": 2957.52, + "end": 2963.78, + "probability": 0.9667 + }, + { + "start": 2964.9, + "end": 2970.44, + "probability": 0.9971 + }, + { + "start": 2971.32, + "end": 2971.84, + "probability": 0.5187 + }, + { + "start": 2972.58, + "end": 2975.5, + "probability": 0.9492 + }, + { + "start": 2976.42, + "end": 2978.66, + "probability": 0.6836 + }, + { + "start": 2979.4, + "end": 2982.4, + "probability": 0.9826 + }, + { + "start": 2983.62, + "end": 2987.2, + "probability": 0.979 + }, + { + "start": 2987.3, + "end": 2988.06, + "probability": 0.8103 + }, + { + "start": 2988.52, + "end": 2990.32, + "probability": 0.9838 + }, + { + "start": 2991.54, + "end": 2995.32, + "probability": 0.9067 + }, + { + "start": 2996.04, + "end": 2999.16, + "probability": 0.9304 + }, + { + "start": 3000.08, + "end": 3000.62, + "probability": 0.9409 + }, + { + "start": 3002.54, + "end": 3005.86, + "probability": 0.9867 + }, + { + "start": 3005.86, + "end": 3008.5, + "probability": 0.9871 + }, + { + "start": 3008.76, + "end": 3014.94, + "probability": 0.9293 + }, + { + "start": 3014.94, + "end": 3018.68, + "probability": 0.9904 + }, + { + "start": 3018.82, + "end": 3025.38, + "probability": 0.9541 + }, + { + "start": 3026.62, + "end": 3027.54, + "probability": 0.7844 + }, + { + "start": 3027.7, + "end": 3031.64, + "probability": 0.7374 + }, + { + "start": 3032.12, + "end": 3034.42, + "probability": 0.4696 + }, + { + "start": 3035.7, + "end": 3038.16, + "probability": 0.9967 + }, + { + "start": 3038.28, + "end": 3040.14, + "probability": 0.9201 + }, + { + "start": 3041.24, + "end": 3045.58, + "probability": 0.8638 + }, + { + "start": 3045.82, + "end": 3046.88, + "probability": 0.8018 + }, + { + "start": 3048.18, + "end": 3048.8, + "probability": 0.7137 + }, + { + "start": 3049.48, + "end": 3050.0, + "probability": 0.7606 + }, + { + "start": 3051.32, + "end": 3054.5, + "probability": 0.9942 + }, + { + "start": 3055.08, + "end": 3058.36, + "probability": 0.997 + }, + { + "start": 3058.52, + "end": 3059.54, + "probability": 0.665 + }, + { + "start": 3060.3, + "end": 3062.34, + "probability": 0.8381 + }, + { + "start": 3063.3, + "end": 3065.44, + "probability": 0.9955 + }, + { + "start": 3066.22, + "end": 3070.06, + "probability": 0.7931 + }, + { + "start": 3070.68, + "end": 3076.42, + "probability": 0.9953 + }, + { + "start": 3078.26, + "end": 3081.22, + "probability": 0.9006 + }, + { + "start": 3081.28, + "end": 3082.26, + "probability": 0.9008 + }, + { + "start": 3082.84, + "end": 3084.18, + "probability": 0.845 + }, + { + "start": 3084.36, + "end": 3085.88, + "probability": 0.954 + }, + { + "start": 3086.64, + "end": 3088.34, + "probability": 0.9882 + }, + { + "start": 3088.6, + "end": 3089.76, + "probability": 0.9594 + }, + { + "start": 3090.04, + "end": 3090.9, + "probability": 0.841 + }, + { + "start": 3090.94, + "end": 3092.36, + "probability": 0.9229 + }, + { + "start": 3093.74, + "end": 3098.32, + "probability": 0.9188 + }, + { + "start": 3098.56, + "end": 3100.3, + "probability": 0.813 + }, + { + "start": 3100.82, + "end": 3102.28, + "probability": 0.3341 + }, + { + "start": 3103.48, + "end": 3111.7, + "probability": 0.802 + }, + { + "start": 3112.48, + "end": 3115.76, + "probability": 0.9741 + }, + { + "start": 3115.94, + "end": 3119.8, + "probability": 0.9319 + }, + { + "start": 3119.86, + "end": 3122.04, + "probability": 0.6508 + }, + { + "start": 3123.76, + "end": 3128.16, + "probability": 0.9805 + }, + { + "start": 3128.16, + "end": 3131.06, + "probability": 0.9961 + }, + { + "start": 3132.4, + "end": 3135.54, + "probability": 0.9597 + }, + { + "start": 3135.54, + "end": 3141.04, + "probability": 0.9974 + }, + { + "start": 3141.56, + "end": 3143.78, + "probability": 0.7379 + }, + { + "start": 3145.22, + "end": 3146.18, + "probability": 0.8504 + }, + { + "start": 3146.28, + "end": 3152.56, + "probability": 0.9854 + }, + { + "start": 3153.16, + "end": 3154.74, + "probability": 0.8432 + }, + { + "start": 3155.48, + "end": 3159.26, + "probability": 0.998 + }, + { + "start": 3159.86, + "end": 3163.24, + "probability": 0.9921 + }, + { + "start": 3163.34, + "end": 3166.58, + "probability": 0.9766 + }, + { + "start": 3166.64, + "end": 3166.96, + "probability": 0.7678 + }, + { + "start": 3167.98, + "end": 3169.56, + "probability": 0.7935 + }, + { + "start": 3169.6, + "end": 3172.64, + "probability": 0.8739 + }, + { + "start": 3172.96, + "end": 3173.52, + "probability": 0.8147 + }, + { + "start": 3178.84, + "end": 3179.68, + "probability": 0.3812 + }, + { + "start": 3179.68, + "end": 3182.5, + "probability": 0.787 + }, + { + "start": 3182.6, + "end": 3183.96, + "probability": 0.48 + }, + { + "start": 3184.76, + "end": 3186.58, + "probability": 0.9795 + }, + { + "start": 3189.28, + "end": 3190.14, + "probability": 0.6047 + }, + { + "start": 3194.22, + "end": 3194.22, + "probability": 0.3375 + }, + { + "start": 3194.22, + "end": 3196.22, + "probability": 0.3927 + }, + { + "start": 3197.34, + "end": 3201.06, + "probability": 0.9115 + }, + { + "start": 3202.42, + "end": 3206.84, + "probability": 0.9788 + }, + { + "start": 3207.14, + "end": 3208.42, + "probability": 0.9983 + }, + { + "start": 3209.38, + "end": 3210.68, + "probability": 0.9955 + }, + { + "start": 3211.42, + "end": 3212.26, + "probability": 0.7794 + }, + { + "start": 3213.64, + "end": 3215.7, + "probability": 0.9153 + }, + { + "start": 3216.08, + "end": 3216.54, + "probability": 0.4991 + }, + { + "start": 3216.78, + "end": 3216.96, + "probability": 0.7983 + }, + { + "start": 3217.74, + "end": 3220.68, + "probability": 0.9919 + }, + { + "start": 3221.28, + "end": 3222.9, + "probability": 0.9057 + }, + { + "start": 3222.9, + "end": 3225.44, + "probability": 0.7132 + }, + { + "start": 3226.32, + "end": 3227.66, + "probability": 0.4939 + }, + { + "start": 3228.32, + "end": 3230.58, + "probability": 0.3012 + }, + { + "start": 3231.32, + "end": 3233.36, + "probability": 0.9648 + }, + { + "start": 3234.3, + "end": 3238.51, + "probability": 0.5301 + }, + { + "start": 3240.0, + "end": 3240.48, + "probability": 0.0815 + }, + { + "start": 3240.66, + "end": 3247.0, + "probability": 0.6704 + }, + { + "start": 3247.38, + "end": 3249.94, + "probability": 0.5815 + }, + { + "start": 3251.1, + "end": 3253.88, + "probability": 0.9919 + }, + { + "start": 3253.98, + "end": 3254.76, + "probability": 0.7179 + }, + { + "start": 3256.24, + "end": 3260.17, + "probability": 0.9058 + }, + { + "start": 3261.44, + "end": 3263.66, + "probability": 0.9872 + }, + { + "start": 3264.2, + "end": 3268.4, + "probability": 0.936 + }, + { + "start": 3269.36, + "end": 3272.4, + "probability": 0.9954 + }, + { + "start": 3272.4, + "end": 3277.08, + "probability": 0.9906 + }, + { + "start": 3277.7, + "end": 3281.14, + "probability": 0.9961 + }, + { + "start": 3281.14, + "end": 3285.44, + "probability": 0.9906 + }, + { + "start": 3285.94, + "end": 3286.46, + "probability": 0.9165 + }, + { + "start": 3286.98, + "end": 3291.72, + "probability": 0.9971 + }, + { + "start": 3292.36, + "end": 3293.36, + "probability": 0.7761 + }, + { + "start": 3294.04, + "end": 3297.18, + "probability": 0.9915 + }, + { + "start": 3298.56, + "end": 3303.74, + "probability": 0.9706 + }, + { + "start": 3303.94, + "end": 3308.92, + "probability": 0.9435 + }, + { + "start": 3310.8, + "end": 3312.72, + "probability": 0.8399 + }, + { + "start": 3313.26, + "end": 3317.64, + "probability": 0.9873 + }, + { + "start": 3318.76, + "end": 3322.76, + "probability": 0.9664 + }, + { + "start": 3322.76, + "end": 3325.52, + "probability": 0.9832 + }, + { + "start": 3326.18, + "end": 3329.26, + "probability": 0.9882 + }, + { + "start": 3329.26, + "end": 3334.16, + "probability": 0.9937 + }, + { + "start": 3334.42, + "end": 3334.88, + "probability": 0.7225 + }, + { + "start": 3335.84, + "end": 3341.12, + "probability": 0.9364 + }, + { + "start": 3341.74, + "end": 3347.8, + "probability": 0.9938 + }, + { + "start": 3348.56, + "end": 3352.78, + "probability": 0.9841 + }, + { + "start": 3353.42, + "end": 3358.84, + "probability": 0.9775 + }, + { + "start": 3359.24, + "end": 3364.62, + "probability": 0.9914 + }, + { + "start": 3365.56, + "end": 3371.96, + "probability": 0.9668 + }, + { + "start": 3372.6, + "end": 3375.66, + "probability": 0.9991 + }, + { + "start": 3375.9, + "end": 3379.8, + "probability": 0.9995 + }, + { + "start": 3384.14, + "end": 3384.44, + "probability": 0.4585 + }, + { + "start": 3384.66, + "end": 3388.16, + "probability": 0.9574 + }, + { + "start": 3388.68, + "end": 3389.82, + "probability": 0.655 + }, + { + "start": 3390.54, + "end": 3390.74, + "probability": 0.4699 + }, + { + "start": 3390.9, + "end": 3394.56, + "probability": 0.9892 + }, + { + "start": 3394.58, + "end": 3397.26, + "probability": 0.9694 + }, + { + "start": 3398.74, + "end": 3403.26, + "probability": 0.9553 + }, + { + "start": 3404.0, + "end": 3404.68, + "probability": 0.7036 + }, + { + "start": 3405.2, + "end": 3406.18, + "probability": 0.9106 + }, + { + "start": 3406.4, + "end": 3409.56, + "probability": 0.9847 + }, + { + "start": 3411.14, + "end": 3411.68, + "probability": 0.7857 + }, + { + "start": 3411.84, + "end": 3414.98, + "probability": 0.9909 + }, + { + "start": 3415.5, + "end": 3418.68, + "probability": 0.9679 + }, + { + "start": 3419.18, + "end": 3420.8, + "probability": 0.5067 + }, + { + "start": 3421.36, + "end": 3421.9, + "probability": 0.6314 + }, + { + "start": 3422.56, + "end": 3425.72, + "probability": 0.8027 + }, + { + "start": 3426.26, + "end": 3427.02, + "probability": 0.9564 + }, + { + "start": 3428.26, + "end": 3429.88, + "probability": 0.9857 + }, + { + "start": 3430.46, + "end": 3435.42, + "probability": 0.9978 + }, + { + "start": 3436.96, + "end": 3437.24, + "probability": 0.6647 + }, + { + "start": 3437.96, + "end": 3442.3, + "probability": 0.9897 + }, + { + "start": 3442.8, + "end": 3448.14, + "probability": 0.9432 + }, + { + "start": 3449.02, + "end": 3454.94, + "probability": 0.9884 + }, + { + "start": 3454.94, + "end": 3460.42, + "probability": 0.9944 + }, + { + "start": 3460.94, + "end": 3463.9, + "probability": 0.9281 + }, + { + "start": 3465.34, + "end": 3465.74, + "probability": 0.7924 + }, + { + "start": 3466.28, + "end": 3468.84, + "probability": 0.9847 + }, + { + "start": 3469.36, + "end": 3471.26, + "probability": 0.9564 + }, + { + "start": 3471.4, + "end": 3473.64, + "probability": 0.7623 + }, + { + "start": 3474.38, + "end": 3478.26, + "probability": 0.9734 + }, + { + "start": 3478.86, + "end": 3483.48, + "probability": 0.9813 + }, + { + "start": 3484.08, + "end": 3486.64, + "probability": 0.7373 + }, + { + "start": 3487.14, + "end": 3488.89, + "probability": 0.9578 + }, + { + "start": 3489.72, + "end": 3493.36, + "probability": 0.9323 + }, + { + "start": 3494.7, + "end": 3497.84, + "probability": 0.9428 + }, + { + "start": 3498.4, + "end": 3499.3, + "probability": 0.747 + }, + { + "start": 3499.96, + "end": 3502.88, + "probability": 0.9073 + }, + { + "start": 3503.42, + "end": 3507.76, + "probability": 0.9857 + }, + { + "start": 3507.76, + "end": 3511.98, + "probability": 0.9988 + }, + { + "start": 3512.88, + "end": 3514.28, + "probability": 0.8251 + }, + { + "start": 3514.82, + "end": 3517.8, + "probability": 0.8836 + }, + { + "start": 3518.38, + "end": 3522.44, + "probability": 0.9823 + }, + { + "start": 3522.5, + "end": 3526.44, + "probability": 0.9639 + }, + { + "start": 3528.67, + "end": 3531.28, + "probability": 0.96 + }, + { + "start": 3532.28, + "end": 3534.34, + "probability": 0.7545 + }, + { + "start": 3534.66, + "end": 3534.86, + "probability": 0.7486 + }, + { + "start": 3535.88, + "end": 3539.42, + "probability": 0.9623 + }, + { + "start": 3540.66, + "end": 3542.12, + "probability": 0.8168 + }, + { + "start": 3542.79, + "end": 3545.86, + "probability": 0.4174 + }, + { + "start": 3546.66, + "end": 3548.44, + "probability": 0.7961 + }, + { + "start": 3548.92, + "end": 3549.36, + "probability": 0.6619 + }, + { + "start": 3549.72, + "end": 3549.74, + "probability": 0.1647 + }, + { + "start": 3549.8, + "end": 3552.34, + "probability": 0.9171 + }, + { + "start": 3552.8, + "end": 3552.8, + "probability": 0.0429 + }, + { + "start": 3552.8, + "end": 3556.22, + "probability": 0.8157 + }, + { + "start": 3556.68, + "end": 3560.16, + "probability": 0.996 + }, + { + "start": 3560.3, + "end": 3565.88, + "probability": 0.9847 + }, + { + "start": 3567.16, + "end": 3568.26, + "probability": 0.7236 + }, + { + "start": 3568.26, + "end": 3570.42, + "probability": 0.7319 + }, + { + "start": 3570.98, + "end": 3573.78, + "probability": 0.3949 + }, + { + "start": 3574.76, + "end": 3577.25, + "probability": 0.8113 + }, + { + "start": 3597.7, + "end": 3601.48, + "probability": 0.2256 + }, + { + "start": 3602.44, + "end": 3603.22, + "probability": 0.0402 + }, + { + "start": 3603.22, + "end": 3603.28, + "probability": 0.0512 + }, + { + "start": 3603.28, + "end": 3603.36, + "probability": 0.0254 + }, + { + "start": 3603.36, + "end": 3605.26, + "probability": 0.1239 + }, + { + "start": 3609.1, + "end": 3610.9, + "probability": 0.4816 + }, + { + "start": 3610.9, + "end": 3611.3, + "probability": 0.0383 + }, + { + "start": 3611.94, + "end": 3612.7, + "probability": 0.1163 + }, + { + "start": 3612.7, + "end": 3614.6, + "probability": 0.1152 + }, + { + "start": 3615.72, + "end": 3616.26, + "probability": 0.1897 + }, + { + "start": 3620.7, + "end": 3621.98, + "probability": 0.3295 + }, + { + "start": 3650.5, + "end": 3652.56, + "probability": 0.0181 + }, + { + "start": 3653.62, + "end": 3656.1, + "probability": 0.5534 + }, + { + "start": 3656.84, + "end": 3659.02, + "probability": 0.1107 + }, + { + "start": 3659.02, + "end": 3659.02, + "probability": 0.266 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.0, + "end": 3671.0, + "probability": 0.0 + }, + { + "start": 3671.62, + "end": 3671.62, + "probability": 0.1357 + }, + { + "start": 3671.62, + "end": 3671.62, + "probability": 0.1516 + }, + { + "start": 3671.62, + "end": 3671.62, + "probability": 0.1531 + }, + { + "start": 3671.62, + "end": 3673.46, + "probability": 0.1426 + }, + { + "start": 3674.72, + "end": 3676.56, + "probability": 0.5855 + }, + { + "start": 3676.56, + "end": 3684.72, + "probability": 0.8033 + }, + { + "start": 3686.06, + "end": 3688.06, + "probability": 0.8378 + }, + { + "start": 3688.2, + "end": 3689.8, + "probability": 0.992 + }, + { + "start": 3689.9, + "end": 3690.38, + "probability": 0.7866 + }, + { + "start": 3692.26, + "end": 3693.68, + "probability": 0.7762 + }, + { + "start": 3694.22, + "end": 3697.08, + "probability": 0.9209 + }, + { + "start": 3697.26, + "end": 3700.12, + "probability": 0.8663 + }, + { + "start": 3700.78, + "end": 3704.03, + "probability": 0.7928 + }, + { + "start": 3704.78, + "end": 3705.38, + "probability": 0.77 + }, + { + "start": 3705.46, + "end": 3706.18, + "probability": 0.8855 + }, + { + "start": 3706.36, + "end": 3707.54, + "probability": 0.7692 + }, + { + "start": 3708.5, + "end": 3709.1, + "probability": 0.1526 + }, + { + "start": 3709.1, + "end": 3713.02, + "probability": 0.4488 + }, + { + "start": 3713.14, + "end": 3717.18, + "probability": 0.8676 + }, + { + "start": 3724.22, + "end": 3725.12, + "probability": 0.0687 + }, + { + "start": 3735.6, + "end": 3736.52, + "probability": 0.5055 + }, + { + "start": 3736.52, + "end": 3737.62, + "probability": 0.8163 + }, + { + "start": 3743.22, + "end": 3744.28, + "probability": 0.4148 + }, + { + "start": 3745.64, + "end": 3748.12, + "probability": 0.4949 + }, + { + "start": 3748.12, + "end": 3748.74, + "probability": 0.3973 + }, + { + "start": 3749.06, + "end": 3750.12, + "probability": 0.747 + }, + { + "start": 3750.24, + "end": 3753.9, + "probability": 0.9642 + }, + { + "start": 3754.32, + "end": 3757.86, + "probability": 0.9818 + }, + { + "start": 3758.74, + "end": 3759.85, + "probability": 0.9056 + }, + { + "start": 3760.48, + "end": 3764.38, + "probability": 0.8804 + }, + { + "start": 3764.5, + "end": 3765.3, + "probability": 0.7244 + }, + { + "start": 3766.1, + "end": 3766.1, + "probability": 0.5091 + }, + { + "start": 3766.3, + "end": 3766.88, + "probability": 0.5005 + }, + { + "start": 3767.08, + "end": 3767.72, + "probability": 0.8692 + }, + { + "start": 3768.38, + "end": 3769.92, + "probability": 0.9451 + }, + { + "start": 3770.0, + "end": 3772.44, + "probability": 0.9785 + }, + { + "start": 3773.22, + "end": 3776.02, + "probability": 0.9943 + }, + { + "start": 3776.1, + "end": 3777.28, + "probability": 0.9714 + }, + { + "start": 3777.6, + "end": 3780.78, + "probability": 0.9409 + }, + { + "start": 3782.02, + "end": 3782.12, + "probability": 0.3144 + }, + { + "start": 3782.12, + "end": 3782.44, + "probability": 0.6439 + }, + { + "start": 3782.58, + "end": 3785.1, + "probability": 0.9938 + }, + { + "start": 3785.16, + "end": 3789.24, + "probability": 0.8597 + }, + { + "start": 3790.28, + "end": 3794.12, + "probability": 0.9811 + }, + { + "start": 3794.48, + "end": 3796.96, + "probability": 0.9946 + }, + { + "start": 3797.22, + "end": 3798.62, + "probability": 0.9968 + }, + { + "start": 3799.26, + "end": 3801.76, + "probability": 0.9794 + }, + { + "start": 3802.16, + "end": 3805.2, + "probability": 0.9945 + }, + { + "start": 3806.62, + "end": 3810.68, + "probability": 0.9959 + }, + { + "start": 3810.68, + "end": 3813.18, + "probability": 0.9985 + }, + { + "start": 3814.64, + "end": 3816.5, + "probability": 0.9995 + }, + { + "start": 3817.04, + "end": 3818.36, + "probability": 0.8819 + }, + { + "start": 3819.48, + "end": 3821.64, + "probability": 0.9951 + }, + { + "start": 3823.06, + "end": 3826.74, + "probability": 0.9585 + }, + { + "start": 3827.78, + "end": 3828.86, + "probability": 0.9717 + }, + { + "start": 3829.56, + "end": 3830.14, + "probability": 0.9057 + }, + { + "start": 3830.72, + "end": 3832.16, + "probability": 0.926 + }, + { + "start": 3832.96, + "end": 3834.12, + "probability": 0.8911 + }, + { + "start": 3834.68, + "end": 3836.24, + "probability": 0.9119 + }, + { + "start": 3839.02, + "end": 3839.14, + "probability": 0.1191 + }, + { + "start": 3839.14, + "end": 3839.14, + "probability": 0.122 + }, + { + "start": 3839.14, + "end": 3841.62, + "probability": 0.9824 + }, + { + "start": 3841.62, + "end": 3845.38, + "probability": 0.994 + }, + { + "start": 3845.72, + "end": 3846.4, + "probability": 0.2055 + }, + { + "start": 3846.66, + "end": 3852.08, + "probability": 0.9791 + }, + { + "start": 3852.56, + "end": 3853.88, + "probability": 0.5034 + }, + { + "start": 3854.44, + "end": 3855.49, + "probability": 0.3602 + }, + { + "start": 3858.22, + "end": 3860.0, + "probability": 0.699 + }, + { + "start": 3860.06, + "end": 3864.0, + "probability": 0.9832 + }, + { + "start": 3865.22, + "end": 3871.18, + "probability": 0.9909 + }, + { + "start": 3871.36, + "end": 3875.08, + "probability": 0.998 + }, + { + "start": 3876.44, + "end": 3879.12, + "probability": 0.7314 + }, + { + "start": 3880.08, + "end": 3883.64, + "probability": 0.989 + }, + { + "start": 3884.38, + "end": 3885.62, + "probability": 0.9834 + }, + { + "start": 3886.64, + "end": 3891.5, + "probability": 0.9907 + }, + { + "start": 3892.06, + "end": 3895.12, + "probability": 0.989 + }, + { + "start": 3895.86, + "end": 3899.02, + "probability": 0.9802 + }, + { + "start": 3899.18, + "end": 3904.46, + "probability": 0.9946 + }, + { + "start": 3905.06, + "end": 3906.08, + "probability": 0.998 + }, + { + "start": 3906.94, + "end": 3910.56, + "probability": 0.9979 + }, + { + "start": 3911.14, + "end": 3912.7, + "probability": 0.9159 + }, + { + "start": 3913.68, + "end": 3916.46, + "probability": 0.8877 + }, + { + "start": 3917.38, + "end": 3924.58, + "probability": 0.978 + }, + { + "start": 3925.52, + "end": 3926.78, + "probability": 0.9198 + }, + { + "start": 3927.66, + "end": 3927.94, + "probability": 0.4207 + }, + { + "start": 3928.08, + "end": 3932.14, + "probability": 0.9956 + }, + { + "start": 3932.14, + "end": 3935.04, + "probability": 0.9567 + }, + { + "start": 3936.24, + "end": 3937.14, + "probability": 0.8743 + }, + { + "start": 3937.28, + "end": 3937.7, + "probability": 0.7178 + }, + { + "start": 3937.76, + "end": 3938.78, + "probability": 0.9431 + }, + { + "start": 3939.08, + "end": 3939.98, + "probability": 0.4756 + }, + { + "start": 3940.14, + "end": 3940.86, + "probability": 0.4902 + }, + { + "start": 3941.4, + "end": 3942.26, + "probability": 0.5692 + }, + { + "start": 3942.42, + "end": 3944.22, + "probability": 0.9788 + }, + { + "start": 3944.72, + "end": 3947.2, + "probability": 0.9238 + }, + { + "start": 3947.38, + "end": 3947.88, + "probability": 0.3452 + }, + { + "start": 3947.94, + "end": 3948.16, + "probability": 0.3132 + }, + { + "start": 3948.22, + "end": 3949.24, + "probability": 0.9108 + }, + { + "start": 3949.32, + "end": 3950.94, + "probability": 0.9841 + }, + { + "start": 3950.98, + "end": 3954.24, + "probability": 0.9614 + }, + { + "start": 3954.64, + "end": 3955.62, + "probability": 0.6485 + }, + { + "start": 3955.78, + "end": 3955.8, + "probability": 0.5218 + }, + { + "start": 3955.8, + "end": 3958.04, + "probability": 0.9753 + }, + { + "start": 3958.16, + "end": 3959.22, + "probability": 0.9946 + }, + { + "start": 3960.58, + "end": 3963.58, + "probability": 0.9938 + }, + { + "start": 3964.36, + "end": 3968.58, + "probability": 0.9945 + }, + { + "start": 3968.58, + "end": 3970.88, + "probability": 0.9944 + }, + { + "start": 3971.88, + "end": 3976.72, + "probability": 0.8832 + }, + { + "start": 3977.22, + "end": 3981.04, + "probability": 0.9285 + }, + { + "start": 3981.1, + "end": 3981.84, + "probability": 0.8752 + }, + { + "start": 3981.98, + "end": 3982.84, + "probability": 0.5763 + }, + { + "start": 3983.32, + "end": 3986.22, + "probability": 0.9965 + }, + { + "start": 3986.98, + "end": 3990.0, + "probability": 0.9819 + }, + { + "start": 3990.88, + "end": 3990.96, + "probability": 0.5583 + }, + { + "start": 3990.98, + "end": 3992.9, + "probability": 0.9812 + }, + { + "start": 3993.3, + "end": 3994.9, + "probability": 0.9915 + }, + { + "start": 3994.94, + "end": 3995.6, + "probability": 0.6583 + }, + { + "start": 3996.18, + "end": 3999.18, + "probability": 0.8597 + }, + { + "start": 3999.26, + "end": 4000.58, + "probability": 0.9265 + }, + { + "start": 4000.94, + "end": 4005.5, + "probability": 0.9839 + }, + { + "start": 4005.98, + "end": 4007.96, + "probability": 0.8221 + }, + { + "start": 4008.44, + "end": 4010.32, + "probability": 0.9348 + }, + { + "start": 4011.76, + "end": 4013.76, + "probability": 0.98 + }, + { + "start": 4013.94, + "end": 4015.96, + "probability": 0.6909 + }, + { + "start": 4016.3, + "end": 4017.36, + "probability": 0.8895 + }, + { + "start": 4017.74, + "end": 4019.06, + "probability": 0.9961 + }, + { + "start": 4019.92, + "end": 4021.96, + "probability": 0.9842 + }, + { + "start": 4022.24, + "end": 4025.42, + "probability": 0.9965 + }, + { + "start": 4025.94, + "end": 4030.5, + "probability": 0.9932 + }, + { + "start": 4031.7, + "end": 4032.84, + "probability": 0.9497 + }, + { + "start": 4033.02, + "end": 4034.5, + "probability": 0.9305 + }, + { + "start": 4034.58, + "end": 4035.34, + "probability": 0.7728 + }, + { + "start": 4035.7, + "end": 4038.6, + "probability": 0.9265 + }, + { + "start": 4039.14, + "end": 4042.1, + "probability": 0.9954 + }, + { + "start": 4042.1, + "end": 4046.42, + "probability": 0.9865 + }, + { + "start": 4047.26, + "end": 4050.98, + "probability": 0.9936 + }, + { + "start": 4051.88, + "end": 4053.76, + "probability": 0.9785 + }, + { + "start": 4054.48, + "end": 4058.87, + "probability": 0.9922 + }, + { + "start": 4059.84, + "end": 4060.76, + "probability": 0.9614 + }, + { + "start": 4061.0, + "end": 4061.73, + "probability": 0.9843 + }, + { + "start": 4062.36, + "end": 4064.36, + "probability": 0.7468 + }, + { + "start": 4064.78, + "end": 4067.36, + "probability": 0.9956 + }, + { + "start": 4068.44, + "end": 4069.38, + "probability": 0.9897 + }, + { + "start": 4070.84, + "end": 4072.98, + "probability": 0.6094 + }, + { + "start": 4074.14, + "end": 4076.24, + "probability": 0.9364 + }, + { + "start": 4076.96, + "end": 4076.96, + "probability": 0.9365 + }, + { + "start": 4077.5, + "end": 4081.22, + "probability": 0.93 + }, + { + "start": 4082.24, + "end": 4085.24, + "probability": 0.9604 + }, + { + "start": 4085.24, + "end": 4088.34, + "probability": 0.9985 + }, + { + "start": 4089.28, + "end": 4093.58, + "probability": 0.9951 + }, + { + "start": 4093.88, + "end": 4094.16, + "probability": 0.695 + }, + { + "start": 4095.3, + "end": 4098.24, + "probability": 0.9938 + }, + { + "start": 4098.24, + "end": 4101.94, + "probability": 0.9971 + }, + { + "start": 4102.4, + "end": 4102.82, + "probability": 0.8216 + }, + { + "start": 4102.96, + "end": 4104.56, + "probability": 0.9871 + }, + { + "start": 4104.84, + "end": 4105.64, + "probability": 0.9683 + }, + { + "start": 4106.34, + "end": 4107.35, + "probability": 0.832 + }, + { + "start": 4107.98, + "end": 4110.64, + "probability": 0.9905 + }, + { + "start": 4110.84, + "end": 4112.26, + "probability": 0.8353 + }, + { + "start": 4112.84, + "end": 4114.32, + "probability": 0.8539 + }, + { + "start": 4114.8, + "end": 4116.54, + "probability": 0.9902 + }, + { + "start": 4116.62, + "end": 4117.78, + "probability": 0.8799 + }, + { + "start": 4118.04, + "end": 4120.32, + "probability": 0.9291 + }, + { + "start": 4120.88, + "end": 4122.98, + "probability": 0.8317 + }, + { + "start": 4123.92, + "end": 4126.02, + "probability": 0.9922 + }, + { + "start": 4126.7, + "end": 4128.28, + "probability": 0.995 + }, + { + "start": 4128.8, + "end": 4131.56, + "probability": 0.6587 + }, + { + "start": 4131.88, + "end": 4136.1, + "probability": 0.988 + }, + { + "start": 4136.88, + "end": 4141.24, + "probability": 0.9985 + }, + { + "start": 4141.88, + "end": 4145.0, + "probability": 0.9891 + }, + { + "start": 4145.4, + "end": 4146.36, + "probability": 0.6267 + }, + { + "start": 4146.68, + "end": 4148.57, + "probability": 0.7873 + }, + { + "start": 4148.88, + "end": 4151.34, + "probability": 0.9312 + }, + { + "start": 4152.22, + "end": 4152.32, + "probability": 0.8513 + }, + { + "start": 4166.52, + "end": 4168.8, + "probability": 0.5543 + }, + { + "start": 4170.2, + "end": 4174.86, + "probability": 0.4031 + }, + { + "start": 4175.86, + "end": 4179.78, + "probability": 0.9922 + }, + { + "start": 4181.42, + "end": 4187.54, + "probability": 0.8516 + }, + { + "start": 4189.0, + "end": 4191.38, + "probability": 0.724 + }, + { + "start": 4192.62, + "end": 4201.12, + "probability": 0.9781 + }, + { + "start": 4202.7, + "end": 4209.6, + "probability": 0.9028 + }, + { + "start": 4210.02, + "end": 4211.2, + "probability": 0.9937 + }, + { + "start": 4212.04, + "end": 4215.48, + "probability": 0.9038 + }, + { + "start": 4216.6, + "end": 4219.5, + "probability": 0.9594 + }, + { + "start": 4222.06, + "end": 4225.34, + "probability": 0.9862 + }, + { + "start": 4226.52, + "end": 4229.12, + "probability": 0.9425 + }, + { + "start": 4229.2, + "end": 4233.46, + "probability": 0.8537 + }, + { + "start": 4234.54, + "end": 4239.56, + "probability": 0.9059 + }, + { + "start": 4239.64, + "end": 4241.78, + "probability": 0.624 + }, + { + "start": 4241.78, + "end": 4244.12, + "probability": 0.8849 + }, + { + "start": 4244.96, + "end": 4247.74, + "probability": 0.6733 + }, + { + "start": 4248.42, + "end": 4252.52, + "probability": 0.9441 + }, + { + "start": 4253.64, + "end": 4258.16, + "probability": 0.9946 + }, + { + "start": 4258.73, + "end": 4263.94, + "probability": 0.9865 + }, + { + "start": 4264.48, + "end": 4269.66, + "probability": 0.9971 + }, + { + "start": 4269.66, + "end": 4273.4, + "probability": 0.9988 + }, + { + "start": 4274.32, + "end": 4277.68, + "probability": 0.7784 + }, + { + "start": 4279.4, + "end": 4282.84, + "probability": 0.1603 + }, + { + "start": 4284.66, + "end": 4289.68, + "probability": 0.7142 + }, + { + "start": 4290.24, + "end": 4292.54, + "probability": 0.8272 + }, + { + "start": 4293.32, + "end": 4294.94, + "probability": 0.948 + }, + { + "start": 4295.6, + "end": 4298.34, + "probability": 0.9856 + }, + { + "start": 4298.78, + "end": 4301.24, + "probability": 0.7988 + }, + { + "start": 4301.82, + "end": 4305.3, + "probability": 0.7738 + }, + { + "start": 4305.92, + "end": 4311.52, + "probability": 0.9939 + }, + { + "start": 4311.74, + "end": 4315.68, + "probability": 0.9683 + }, + { + "start": 4316.22, + "end": 4319.94, + "probability": 0.6956 + }, + { + "start": 4320.1, + "end": 4322.12, + "probability": 0.7752 + }, + { + "start": 4322.2, + "end": 4323.58, + "probability": 0.5004 + }, + { + "start": 4323.8, + "end": 4325.34, + "probability": 0.6241 + }, + { + "start": 4325.56, + "end": 4332.64, + "probability": 0.9644 + }, + { + "start": 4333.42, + "end": 4336.06, + "probability": 0.7495 + }, + { + "start": 4337.74, + "end": 4341.26, + "probability": 0.9842 + }, + { + "start": 4342.26, + "end": 4342.9, + "probability": 0.8098 + }, + { + "start": 4344.36, + "end": 4348.16, + "probability": 0.6784 + }, + { + "start": 4348.68, + "end": 4352.36, + "probability": 0.7214 + }, + { + "start": 4354.56, + "end": 4358.72, + "probability": 0.8501 + }, + { + "start": 4359.54, + "end": 4360.52, + "probability": 0.7321 + }, + { + "start": 4360.6, + "end": 4364.06, + "probability": 0.9276 + }, + { + "start": 4364.16, + "end": 4365.76, + "probability": 0.8677 + }, + { + "start": 4366.36, + "end": 4370.32, + "probability": 0.9895 + }, + { + "start": 4371.22, + "end": 4375.18, + "probability": 0.9036 + }, + { + "start": 4375.6, + "end": 4379.9, + "probability": 0.5347 + }, + { + "start": 4380.98, + "end": 4383.24, + "probability": 0.8999 + }, + { + "start": 4383.3, + "end": 4387.26, + "probability": 0.9984 + }, + { + "start": 4387.26, + "end": 4393.34, + "probability": 0.9565 + }, + { + "start": 4393.49, + "end": 4396.87, + "probability": 0.5013 + }, + { + "start": 4397.18, + "end": 4400.7, + "probability": 0.7623 + }, + { + "start": 4400.84, + "end": 4405.82, + "probability": 0.9128 + }, + { + "start": 4406.02, + "end": 4410.76, + "probability": 0.8783 + }, + { + "start": 4411.4, + "end": 4413.92, + "probability": 0.7727 + }, + { + "start": 4414.28, + "end": 4416.18, + "probability": 0.8789 + }, + { + "start": 4416.34, + "end": 4419.78, + "probability": 0.7806 + }, + { + "start": 4420.28, + "end": 4421.64, + "probability": 0.5005 + }, + { + "start": 4422.16, + "end": 4427.78, + "probability": 0.9743 + }, + { + "start": 4428.46, + "end": 4432.1, + "probability": 0.9416 + }, + { + "start": 4432.58, + "end": 4434.92, + "probability": 0.9694 + }, + { + "start": 4435.44, + "end": 4436.46, + "probability": 0.9193 + }, + { + "start": 4437.08, + "end": 4440.7, + "probability": 0.8287 + }, + { + "start": 4441.44, + "end": 4444.39, + "probability": 0.9845 + }, + { + "start": 4445.08, + "end": 4445.86, + "probability": 0.9123 + }, + { + "start": 4446.04, + "end": 4446.88, + "probability": 0.8409 + }, + { + "start": 4447.6, + "end": 4448.8, + "probability": 0.816 + }, + { + "start": 4448.86, + "end": 4449.96, + "probability": 0.511 + }, + { + "start": 4450.1, + "end": 4452.96, + "probability": 0.8925 + }, + { + "start": 4453.06, + "end": 4455.48, + "probability": 0.9652 + }, + { + "start": 4455.7, + "end": 4457.08, + "probability": 0.9922 + }, + { + "start": 4457.74, + "end": 4460.1, + "probability": 0.969 + }, + { + "start": 4460.7, + "end": 4468.68, + "probability": 0.9528 + }, + { + "start": 4469.52, + "end": 4472.48, + "probability": 0.9712 + }, + { + "start": 4473.22, + "end": 4475.22, + "probability": 0.9642 + }, + { + "start": 4475.3, + "end": 4479.56, + "probability": 0.5043 + }, + { + "start": 4480.58, + "end": 4487.26, + "probability": 0.9517 + }, + { + "start": 4487.74, + "end": 4489.04, + "probability": 0.9048 + }, + { + "start": 4489.58, + "end": 4492.98, + "probability": 0.5992 + }, + { + "start": 4493.36, + "end": 4496.0, + "probability": 0.9854 + }, + { + "start": 4496.5, + "end": 4503.62, + "probability": 0.8801 + }, + { + "start": 4503.98, + "end": 4504.68, + "probability": 0.7028 + }, + { + "start": 4506.22, + "end": 4509.96, + "probability": 0.8529 + }, + { + "start": 4512.68, + "end": 4519.38, + "probability": 0.9663 + }, + { + "start": 4521.06, + "end": 4522.1, + "probability": 0.6092 + }, + { + "start": 4522.28, + "end": 4525.48, + "probability": 0.9556 + }, + { + "start": 4526.02, + "end": 4529.14, + "probability": 0.9624 + }, + { + "start": 4530.36, + "end": 4532.08, + "probability": 0.9756 + }, + { + "start": 4532.82, + "end": 4536.36, + "probability": 0.9788 + }, + { + "start": 4537.02, + "end": 4537.74, + "probability": 0.8598 + }, + { + "start": 4553.06, + "end": 4554.74, + "probability": 0.3654 + }, + { + "start": 4555.66, + "end": 4558.38, + "probability": 0.6019 + }, + { + "start": 4559.61, + "end": 4565.82, + "probability": 0.9897 + }, + { + "start": 4567.24, + "end": 4571.9, + "probability": 0.9952 + }, + { + "start": 4574.34, + "end": 4582.06, + "probability": 0.9629 + }, + { + "start": 4584.6, + "end": 4587.06, + "probability": 0.9805 + }, + { + "start": 4588.04, + "end": 4589.56, + "probability": 0.9248 + }, + { + "start": 4589.7, + "end": 4592.26, + "probability": 0.9978 + }, + { + "start": 4592.98, + "end": 4594.96, + "probability": 0.9826 + }, + { + "start": 4595.84, + "end": 4599.78, + "probability": 0.9525 + }, + { + "start": 4599.78, + "end": 4604.98, + "probability": 0.9871 + }, + { + "start": 4606.08, + "end": 4607.16, + "probability": 0.7295 + }, + { + "start": 4608.02, + "end": 4610.9, + "probability": 0.9366 + }, + { + "start": 4611.66, + "end": 4613.28, + "probability": 0.9888 + }, + { + "start": 4613.46, + "end": 4615.17, + "probability": 0.8516 + }, + { + "start": 4615.86, + "end": 4619.16, + "probability": 0.9978 + }, + { + "start": 4621.74, + "end": 4623.8, + "probability": 0.9944 + }, + { + "start": 4623.94, + "end": 4627.0, + "probability": 0.9025 + }, + { + "start": 4627.04, + "end": 4627.48, + "probability": 0.2811 + }, + { + "start": 4629.5, + "end": 4630.84, + "probability": 0.7734 + }, + { + "start": 4630.96, + "end": 4634.68, + "probability": 0.9878 + }, + { + "start": 4634.94, + "end": 4636.42, + "probability": 0.6614 + }, + { + "start": 4637.02, + "end": 4639.18, + "probability": 0.9505 + }, + { + "start": 4640.84, + "end": 4643.8, + "probability": 0.9148 + }, + { + "start": 4644.84, + "end": 4646.08, + "probability": 0.9941 + }, + { + "start": 4647.44, + "end": 4652.08, + "probability": 0.9493 + }, + { + "start": 4653.28, + "end": 4653.97, + "probability": 0.9352 + }, + { + "start": 4656.83, + "end": 4662.48, + "probability": 0.9937 + }, + { + "start": 4663.88, + "end": 4667.92, + "probability": 0.7194 + }, + { + "start": 4669.72, + "end": 4672.16, + "probability": 0.9485 + }, + { + "start": 4673.8, + "end": 4674.26, + "probability": 0.9568 + }, + { + "start": 4675.16, + "end": 4675.94, + "probability": 0.9282 + }, + { + "start": 4676.54, + "end": 4679.28, + "probability": 0.8544 + }, + { + "start": 4681.6, + "end": 4682.94, + "probability": 0.9819 + }, + { + "start": 4684.56, + "end": 4688.14, + "probability": 0.9463 + }, + { + "start": 4688.84, + "end": 4690.23, + "probability": 0.9521 + }, + { + "start": 4691.0, + "end": 4695.62, + "probability": 0.9354 + }, + { + "start": 4697.34, + "end": 4699.68, + "probability": 0.9907 + }, + { + "start": 4701.96, + "end": 4706.84, + "probability": 0.9852 + }, + { + "start": 4707.26, + "end": 4711.72, + "probability": 0.9541 + }, + { + "start": 4712.28, + "end": 4714.5, + "probability": 0.8734 + }, + { + "start": 4716.4, + "end": 4718.32, + "probability": 0.9118 + }, + { + "start": 4719.32, + "end": 4721.1, + "probability": 0.9974 + }, + { + "start": 4721.88, + "end": 4724.62, + "probability": 0.9732 + }, + { + "start": 4725.68, + "end": 4730.76, + "probability": 0.948 + }, + { + "start": 4731.78, + "end": 4733.88, + "probability": 0.9979 + }, + { + "start": 4734.96, + "end": 4741.08, + "probability": 0.9933 + }, + { + "start": 4742.88, + "end": 4744.64, + "probability": 0.9574 + }, + { + "start": 4746.54, + "end": 4748.62, + "probability": 0.9919 + }, + { + "start": 4750.46, + "end": 4753.32, + "probability": 0.9917 + }, + { + "start": 4753.56, + "end": 4756.72, + "probability": 0.7052 + }, + { + "start": 4756.9, + "end": 4757.65, + "probability": 0.8271 + }, + { + "start": 4758.38, + "end": 4760.48, + "probability": 0.9756 + }, + { + "start": 4761.08, + "end": 4761.5, + "probability": 0.4973 + }, + { + "start": 4763.44, + "end": 4764.82, + "probability": 0.557 + }, + { + "start": 4766.28, + "end": 4766.88, + "probability": 0.8535 + }, + { + "start": 4766.96, + "end": 4769.02, + "probability": 0.272 + }, + { + "start": 4769.02, + "end": 4771.18, + "probability": 0.527 + }, + { + "start": 4771.26, + "end": 4771.48, + "probability": 0.1768 + }, + { + "start": 4772.0, + "end": 4773.74, + "probability": 0.9466 + }, + { + "start": 4774.34, + "end": 4778.62, + "probability": 0.9862 + }, + { + "start": 4779.8, + "end": 4780.62, + "probability": 0.9148 + }, + { + "start": 4781.78, + "end": 4784.42, + "probability": 0.9907 + }, + { + "start": 4784.5, + "end": 4785.64, + "probability": 0.8737 + }, + { + "start": 4785.94, + "end": 4789.24, + "probability": 0.856 + }, + { + "start": 4790.62, + "end": 4792.3, + "probability": 0.9941 + }, + { + "start": 4794.44, + "end": 4795.6, + "probability": 0.8407 + }, + { + "start": 4797.84, + "end": 4798.66, + "probability": 0.7618 + }, + { + "start": 4799.92, + "end": 4803.24, + "probability": 0.9705 + }, + { + "start": 4803.42, + "end": 4804.46, + "probability": 0.8586 + }, + { + "start": 4805.62, + "end": 4807.4, + "probability": 0.9355 + }, + { + "start": 4807.64, + "end": 4809.74, + "probability": 0.7488 + }, + { + "start": 4810.38, + "end": 4812.42, + "probability": 0.9356 + }, + { + "start": 4814.04, + "end": 4816.68, + "probability": 0.9958 + }, + { + "start": 4818.06, + "end": 4819.11, + "probability": 0.8421 + }, + { + "start": 4821.48, + "end": 4822.08, + "probability": 0.8342 + }, + { + "start": 4822.82, + "end": 4824.92, + "probability": 0.9798 + }, + { + "start": 4825.64, + "end": 4827.65, + "probability": 0.8848 + }, + { + "start": 4828.48, + "end": 4830.74, + "probability": 0.5701 + }, + { + "start": 4831.82, + "end": 4834.78, + "probability": 0.7778 + }, + { + "start": 4835.5, + "end": 4836.22, + "probability": 0.8913 + }, + { + "start": 4838.34, + "end": 4842.48, + "probability": 0.9688 + }, + { + "start": 4843.04, + "end": 4844.46, + "probability": 0.9969 + }, + { + "start": 4845.42, + "end": 4846.84, + "probability": 0.9898 + }, + { + "start": 4847.84, + "end": 4849.54, + "probability": 0.9956 + }, + { + "start": 4850.94, + "end": 4853.58, + "probability": 0.7757 + }, + { + "start": 4853.84, + "end": 4856.34, + "probability": 0.993 + }, + { + "start": 4857.18, + "end": 4857.94, + "probability": 0.9062 + }, + { + "start": 4858.66, + "end": 4861.56, + "probability": 0.7964 + }, + { + "start": 4862.72, + "end": 4863.52, + "probability": 0.9592 + }, + { + "start": 4864.42, + "end": 4867.16, + "probability": 0.9026 + }, + { + "start": 4868.08, + "end": 4869.04, + "probability": 0.6884 + }, + { + "start": 4869.1, + "end": 4869.9, + "probability": 0.9371 + }, + { + "start": 4870.18, + "end": 4873.62, + "probability": 0.9335 + }, + { + "start": 4874.54, + "end": 4877.2, + "probability": 0.9885 + }, + { + "start": 4879.04, + "end": 4882.22, + "probability": 0.9564 + }, + { + "start": 4883.16, + "end": 4886.24, + "probability": 0.7559 + }, + { + "start": 4887.46, + "end": 4888.86, + "probability": 0.9461 + }, + { + "start": 4890.0, + "end": 4891.58, + "probability": 0.9812 + }, + { + "start": 4892.82, + "end": 4895.32, + "probability": 0.9805 + }, + { + "start": 4896.18, + "end": 4898.86, + "probability": 0.9854 + }, + { + "start": 4900.56, + "end": 4902.65, + "probability": 0.9861 + }, + { + "start": 4904.32, + "end": 4906.6, + "probability": 0.7017 + }, + { + "start": 4908.32, + "end": 4909.72, + "probability": 0.9803 + }, + { + "start": 4911.24, + "end": 4911.96, + "probability": 0.9563 + }, + { + "start": 4912.98, + "end": 4915.9, + "probability": 0.967 + }, + { + "start": 4916.7, + "end": 4917.3, + "probability": 0.4994 + }, + { + "start": 4917.3, + "end": 4917.68, + "probability": 0.9099 + }, + { + "start": 4918.56, + "end": 4918.76, + "probability": 0.2082 + }, + { + "start": 4918.76, + "end": 4920.22, + "probability": 0.8474 + }, + { + "start": 4920.22, + "end": 4920.54, + "probability": 0.3789 + }, + { + "start": 4920.54, + "end": 4923.64, + "probability": 0.3385 + }, + { + "start": 4924.14, + "end": 4927.56, + "probability": 0.9917 + }, + { + "start": 4928.32, + "end": 4930.08, + "probability": 0.9761 + }, + { + "start": 4930.64, + "end": 4931.18, + "probability": 0.9795 + }, + { + "start": 4932.42, + "end": 4935.81, + "probability": 0.9958 + }, + { + "start": 4937.1, + "end": 4941.12, + "probability": 0.9918 + }, + { + "start": 4941.74, + "end": 4945.74, + "probability": 0.9723 + }, + { + "start": 4946.44, + "end": 4950.92, + "probability": 0.9172 + }, + { + "start": 4951.08, + "end": 4952.42, + "probability": 0.8142 + }, + { + "start": 4952.42, + "end": 4954.86, + "probability": 0.9902 + }, + { + "start": 4955.2, + "end": 4957.76, + "probability": 0.9668 + }, + { + "start": 4958.62, + "end": 4962.08, + "probability": 0.7087 + }, + { + "start": 4962.42, + "end": 4962.58, + "probability": 0.6693 + }, + { + "start": 4962.68, + "end": 4964.17, + "probability": 0.9911 + }, + { + "start": 4964.78, + "end": 4967.38, + "probability": 0.9924 + }, + { + "start": 4967.54, + "end": 4969.8, + "probability": 0.9524 + }, + { + "start": 4969.8, + "end": 4972.4, + "probability": 0.4988 + }, + { + "start": 4972.52, + "end": 4973.1, + "probability": 0.7318 + }, + { + "start": 4973.46, + "end": 4975.52, + "probability": 0.9087 + }, + { + "start": 4975.65, + "end": 4978.3, + "probability": 0.797 + }, + { + "start": 4980.3, + "end": 4981.02, + "probability": 0.0068 + }, + { + "start": 4990.0, + "end": 4990.04, + "probability": 0.7393 + }, + { + "start": 4990.04, + "end": 4991.74, + "probability": 0.2373 + }, + { + "start": 4993.08, + "end": 4994.2, + "probability": 0.2508 + }, + { + "start": 4995.26, + "end": 4995.56, + "probability": 0.565 + }, + { + "start": 4997.18, + "end": 5004.56, + "probability": 0.9952 + }, + { + "start": 5005.76, + "end": 5008.8, + "probability": 0.9982 + }, + { + "start": 5009.4, + "end": 5010.48, + "probability": 0.7663 + }, + { + "start": 5011.0, + "end": 5012.65, + "probability": 0.9979 + }, + { + "start": 5013.74, + "end": 5019.88, + "probability": 0.964 + }, + { + "start": 5022.62, + "end": 5027.24, + "probability": 0.974 + }, + { + "start": 5028.64, + "end": 5033.18, + "probability": 0.9756 + }, + { + "start": 5034.06, + "end": 5034.88, + "probability": 0.6369 + }, + { + "start": 5035.52, + "end": 5036.92, + "probability": 0.9133 + }, + { + "start": 5037.54, + "end": 5040.76, + "probability": 0.7717 + }, + { + "start": 5041.28, + "end": 5045.64, + "probability": 0.9189 + }, + { + "start": 5046.44, + "end": 5052.0, + "probability": 0.9843 + }, + { + "start": 5053.34, + "end": 5058.86, + "probability": 0.998 + }, + { + "start": 5061.56, + "end": 5063.0, + "probability": 0.9995 + }, + { + "start": 5063.96, + "end": 5066.42, + "probability": 0.998 + }, + { + "start": 5066.42, + "end": 5070.6, + "probability": 0.951 + }, + { + "start": 5072.4, + "end": 5075.82, + "probability": 0.9984 + }, + { + "start": 5078.22, + "end": 5080.28, + "probability": 0.9942 + }, + { + "start": 5080.54, + "end": 5081.74, + "probability": 0.6371 + }, + { + "start": 5081.9, + "end": 5083.12, + "probability": 0.9443 + }, + { + "start": 5085.52, + "end": 5088.4, + "probability": 0.9907 + }, + { + "start": 5088.94, + "end": 5089.65, + "probability": 0.9736 + }, + { + "start": 5090.76, + "end": 5092.84, + "probability": 0.9362 + }, + { + "start": 5095.54, + "end": 5097.76, + "probability": 0.9731 + }, + { + "start": 5098.26, + "end": 5102.3, + "probability": 0.9968 + }, + { + "start": 5102.98, + "end": 5104.04, + "probability": 0.9586 + }, + { + "start": 5104.2, + "end": 5105.88, + "probability": 0.9681 + }, + { + "start": 5107.82, + "end": 5110.62, + "probability": 0.9301 + }, + { + "start": 5111.7, + "end": 5113.57, + "probability": 0.9863 + }, + { + "start": 5114.2, + "end": 5114.94, + "probability": 0.9086 + }, + { + "start": 5116.34, + "end": 5118.46, + "probability": 0.997 + }, + { + "start": 5120.26, + "end": 5122.14, + "probability": 0.8036 + }, + { + "start": 5123.88, + "end": 5126.58, + "probability": 0.9803 + }, + { + "start": 5127.86, + "end": 5129.4, + "probability": 0.9539 + }, + { + "start": 5131.52, + "end": 5132.8, + "probability": 0.9916 + }, + { + "start": 5133.72, + "end": 5134.5, + "probability": 0.9916 + }, + { + "start": 5136.34, + "end": 5139.0, + "probability": 0.9948 + }, + { + "start": 5139.84, + "end": 5143.58, + "probability": 0.9873 + }, + { + "start": 5144.76, + "end": 5147.68, + "probability": 0.938 + }, + { + "start": 5148.28, + "end": 5151.22, + "probability": 0.9315 + }, + { + "start": 5152.7, + "end": 5154.14, + "probability": 0.9984 + }, + { + "start": 5155.87, + "end": 5156.46, + "probability": 0.9771 + }, + { + "start": 5159.34, + "end": 5163.72, + "probability": 0.9987 + }, + { + "start": 5163.72, + "end": 5170.78, + "probability": 0.9996 + }, + { + "start": 5170.78, + "end": 5176.12, + "probability": 0.9998 + }, + { + "start": 5176.74, + "end": 5177.96, + "probability": 0.9897 + }, + { + "start": 5178.96, + "end": 5183.58, + "probability": 0.9924 + }, + { + "start": 5186.52, + "end": 5188.84, + "probability": 0.9963 + }, + { + "start": 5190.64, + "end": 5194.2, + "probability": 0.9167 + }, + { + "start": 5196.56, + "end": 5201.78, + "probability": 0.9963 + }, + { + "start": 5203.22, + "end": 5204.46, + "probability": 0.6113 + }, + { + "start": 5205.96, + "end": 5206.6, + "probability": 0.5446 + }, + { + "start": 5208.5, + "end": 5210.16, + "probability": 0.998 + }, + { + "start": 5212.74, + "end": 5213.62, + "probability": 0.9439 + }, + { + "start": 5214.02, + "end": 5216.58, + "probability": 0.9938 + }, + { + "start": 5217.8, + "end": 5218.74, + "probability": 0.8628 + }, + { + "start": 5219.36, + "end": 5220.92, + "probability": 0.9944 + }, + { + "start": 5222.34, + "end": 5224.6, + "probability": 0.9896 + }, + { + "start": 5225.82, + "end": 5227.46, + "probability": 0.9905 + }, + { + "start": 5228.12, + "end": 5229.41, + "probability": 0.7366 + }, + { + "start": 5231.48, + "end": 5235.68, + "probability": 0.985 + }, + { + "start": 5237.18, + "end": 5239.2, + "probability": 0.9989 + }, + { + "start": 5241.22, + "end": 5243.52, + "probability": 0.999 + }, + { + "start": 5245.14, + "end": 5248.28, + "probability": 0.9954 + }, + { + "start": 5251.66, + "end": 5254.34, + "probability": 0.9997 + }, + { + "start": 5254.34, + "end": 5257.02, + "probability": 0.999 + }, + { + "start": 5257.82, + "end": 5259.62, + "probability": 0.9154 + }, + { + "start": 5260.68, + "end": 5264.36, + "probability": 0.9951 + }, + { + "start": 5264.56, + "end": 5265.62, + "probability": 0.8252 + }, + { + "start": 5266.94, + "end": 5271.26, + "probability": 0.9902 + }, + { + "start": 5272.92, + "end": 5275.44, + "probability": 0.9976 + }, + { + "start": 5277.16, + "end": 5280.74, + "probability": 0.9983 + }, + { + "start": 5281.66, + "end": 5283.66, + "probability": 0.5912 + }, + { + "start": 5283.84, + "end": 5285.24, + "probability": 0.9983 + }, + { + "start": 5286.36, + "end": 5288.1, + "probability": 0.9637 + }, + { + "start": 5288.84, + "end": 5290.26, + "probability": 0.994 + }, + { + "start": 5290.88, + "end": 5292.26, + "probability": 0.8363 + }, + { + "start": 5293.84, + "end": 5296.5, + "probability": 0.918 + }, + { + "start": 5296.84, + "end": 5297.82, + "probability": 0.5651 + }, + { + "start": 5297.92, + "end": 5300.76, + "probability": 0.9945 + }, + { + "start": 5302.18, + "end": 5305.32, + "probability": 0.9893 + }, + { + "start": 5306.56, + "end": 5311.26, + "probability": 0.998 + }, + { + "start": 5311.92, + "end": 5314.72, + "probability": 0.9209 + }, + { + "start": 5316.02, + "end": 5320.4, + "probability": 0.9955 + }, + { + "start": 5320.4, + "end": 5324.08, + "probability": 0.9853 + }, + { + "start": 5325.04, + "end": 5325.24, + "probability": 0.7613 + }, + { + "start": 5326.02, + "end": 5327.76, + "probability": 0.7968 + }, + { + "start": 5327.9, + "end": 5331.08, + "probability": 0.8748 + }, + { + "start": 5332.1, + "end": 5333.18, + "probability": 0.9025 + }, + { + "start": 5334.08, + "end": 5337.34, + "probability": 0.7494 + }, + { + "start": 5337.7, + "end": 5340.48, + "probability": 0.786 + }, + { + "start": 5340.58, + "end": 5343.32, + "probability": 0.9378 + }, + { + "start": 5345.6, + "end": 5346.46, + "probability": 0.4896 + }, + { + "start": 5346.58, + "end": 5347.18, + "probability": 0.7668 + }, + { + "start": 5347.86, + "end": 5349.14, + "probability": 0.8506 + }, + { + "start": 5349.54, + "end": 5350.22, + "probability": 0.0089 + }, + { + "start": 5352.74, + "end": 5353.98, + "probability": 0.016 + }, + { + "start": 5353.98, + "end": 5355.26, + "probability": 0.5654 + }, + { + "start": 5356.32, + "end": 5357.24, + "probability": 0.7876 + }, + { + "start": 5359.32, + "end": 5369.12, + "probability": 0.7599 + }, + { + "start": 5369.16, + "end": 5369.58, + "probability": 0.7182 + }, + { + "start": 5370.82, + "end": 5372.72, + "probability": 0.9409 + }, + { + "start": 5375.46, + "end": 5380.4, + "probability": 0.9638 + }, + { + "start": 5380.74, + "end": 5382.86, + "probability": 0.8713 + }, + { + "start": 5383.7, + "end": 5387.1, + "probability": 0.7948 + }, + { + "start": 5389.16, + "end": 5390.12, + "probability": 0.5638 + }, + { + "start": 5391.64, + "end": 5396.74, + "probability": 0.9673 + }, + { + "start": 5398.34, + "end": 5399.66, + "probability": 0.3424 + }, + { + "start": 5399.68, + "end": 5404.8, + "probability": 0.9656 + }, + { + "start": 5405.86, + "end": 5411.6, + "probability": 0.9854 + }, + { + "start": 5411.6, + "end": 5417.72, + "probability": 0.9954 + }, + { + "start": 5418.62, + "end": 5421.88, + "probability": 0.9902 + }, + { + "start": 5422.44, + "end": 5425.32, + "probability": 0.9805 + }, + { + "start": 5426.66, + "end": 5432.02, + "probability": 0.966 + }, + { + "start": 5434.18, + "end": 5435.79, + "probability": 0.8218 + }, + { + "start": 5438.28, + "end": 5441.08, + "probability": 0.4059 + }, + { + "start": 5445.74, + "end": 5447.58, + "probability": 0.9985 + }, + { + "start": 5449.78, + "end": 5455.42, + "probability": 0.9953 + }, + { + "start": 5455.42, + "end": 5462.58, + "probability": 0.9982 + }, + { + "start": 5462.76, + "end": 5465.18, + "probability": 0.9373 + }, + { + "start": 5468.7, + "end": 5475.98, + "probability": 0.999 + }, + { + "start": 5477.88, + "end": 5478.46, + "probability": 0.8533 + }, + { + "start": 5478.7, + "end": 5480.34, + "probability": 0.8853 + }, + { + "start": 5480.44, + "end": 5482.06, + "probability": 0.8287 + }, + { + "start": 5482.94, + "end": 5484.52, + "probability": 0.9297 + }, + { + "start": 5487.34, + "end": 5490.52, + "probability": 0.991 + }, + { + "start": 5491.32, + "end": 5497.14, + "probability": 0.7877 + }, + { + "start": 5497.72, + "end": 5501.52, + "probability": 0.8207 + }, + { + "start": 5502.28, + "end": 5506.52, + "probability": 0.8765 + }, + { + "start": 5507.5, + "end": 5512.66, + "probability": 0.9795 + }, + { + "start": 5514.32, + "end": 5521.42, + "probability": 0.9761 + }, + { + "start": 5521.9, + "end": 5523.56, + "probability": 0.8771 + }, + { + "start": 5524.3, + "end": 5526.42, + "probability": 0.8074 + }, + { + "start": 5527.04, + "end": 5529.24, + "probability": 0.9126 + }, + { + "start": 5529.42, + "end": 5530.78, + "probability": 0.764 + }, + { + "start": 5531.46, + "end": 5534.08, + "probability": 0.8337 + }, + { + "start": 5535.32, + "end": 5536.2, + "probability": 0.6671 + }, + { + "start": 5537.64, + "end": 5538.41, + "probability": 0.8008 + }, + { + "start": 5539.04, + "end": 5540.88, + "probability": 0.4971 + }, + { + "start": 5540.88, + "end": 5544.12, + "probability": 0.9952 + }, + { + "start": 5545.26, + "end": 5550.4, + "probability": 0.9485 + }, + { + "start": 5551.38, + "end": 5552.4, + "probability": 0.6589 + }, + { + "start": 5554.58, + "end": 5555.7, + "probability": 0.5009 + }, + { + "start": 5557.98, + "end": 5560.86, + "probability": 0.9902 + }, + { + "start": 5561.98, + "end": 5563.42, + "probability": 0.9719 + }, + { + "start": 5564.42, + "end": 5565.28, + "probability": 0.9775 + }, + { + "start": 5566.92, + "end": 5572.2, + "probability": 0.8952 + }, + { + "start": 5572.52, + "end": 5574.78, + "probability": 0.917 + }, + { + "start": 5576.38, + "end": 5581.22, + "probability": 0.954 + }, + { + "start": 5581.66, + "end": 5583.4, + "probability": 0.8938 + }, + { + "start": 5583.88, + "end": 5586.28, + "probability": 0.8161 + }, + { + "start": 5587.24, + "end": 5588.86, + "probability": 0.6758 + }, + { + "start": 5589.38, + "end": 5590.84, + "probability": 0.8633 + }, + { + "start": 5592.5, + "end": 5594.38, + "probability": 0.9992 + }, + { + "start": 5594.66, + "end": 5596.92, + "probability": 0.9233 + }, + { + "start": 5597.62, + "end": 5597.72, + "probability": 0.6992 + }, + { + "start": 5598.04, + "end": 5600.68, + "probability": 0.996 + }, + { + "start": 5600.82, + "end": 5606.76, + "probability": 0.9912 + }, + { + "start": 5606.9, + "end": 5607.64, + "probability": 0.4531 + }, + { + "start": 5609.12, + "end": 5612.58, + "probability": 0.9458 + }, + { + "start": 5612.76, + "end": 5613.86, + "probability": 0.9812 + }, + { + "start": 5614.72, + "end": 5618.96, + "probability": 0.9478 + }, + { + "start": 5619.08, + "end": 5619.96, + "probability": 0.8877 + }, + { + "start": 5620.02, + "end": 5621.0, + "probability": 0.7474 + }, + { + "start": 5622.6, + "end": 5623.28, + "probability": 0.8485 + }, + { + "start": 5625.16, + "end": 5627.16, + "probability": 0.9218 + }, + { + "start": 5628.7, + "end": 5630.08, + "probability": 0.642 + }, + { + "start": 5631.46, + "end": 5632.34, + "probability": 0.7506 + }, + { + "start": 5634.84, + "end": 5638.36, + "probability": 0.9009 + }, + { + "start": 5638.88, + "end": 5641.42, + "probability": 0.9678 + }, + { + "start": 5641.9, + "end": 5642.72, + "probability": 0.5602 + }, + { + "start": 5642.88, + "end": 5643.52, + "probability": 0.7122 + }, + { + "start": 5644.32, + "end": 5647.9, + "probability": 0.8346 + }, + { + "start": 5647.92, + "end": 5651.68, + "probability": 0.97 + }, + { + "start": 5652.32, + "end": 5655.12, + "probability": 0.7046 + }, + { + "start": 5655.12, + "end": 5656.68, + "probability": 0.711 + }, + { + "start": 5657.52, + "end": 5661.62, + "probability": 0.9902 + }, + { + "start": 5663.2, + "end": 5666.25, + "probability": 0.8431 + }, + { + "start": 5666.94, + "end": 5669.98, + "probability": 0.8384 + }, + { + "start": 5671.12, + "end": 5673.72, + "probability": 0.8638 + }, + { + "start": 5674.36, + "end": 5677.42, + "probability": 0.9937 + }, + { + "start": 5677.94, + "end": 5678.66, + "probability": 0.8692 + }, + { + "start": 5681.1, + "end": 5682.62, + "probability": 0.8423 + }, + { + "start": 5685.3, + "end": 5687.98, + "probability": 0.9967 + }, + { + "start": 5688.6, + "end": 5693.74, + "probability": 0.9272 + }, + { + "start": 5694.38, + "end": 5698.02, + "probability": 0.947 + }, + { + "start": 5699.7, + "end": 5702.26, + "probability": 0.9824 + }, + { + "start": 5702.84, + "end": 5703.88, + "probability": 0.4408 + }, + { + "start": 5704.62, + "end": 5708.9, + "probability": 0.9038 + }, + { + "start": 5710.24, + "end": 5711.76, + "probability": 0.7891 + }, + { + "start": 5711.88, + "end": 5716.7, + "probability": 0.97 + }, + { + "start": 5718.06, + "end": 5722.54, + "probability": 0.9652 + }, + { + "start": 5722.58, + "end": 5728.62, + "probability": 0.9929 + }, + { + "start": 5733.06, + "end": 5734.82, + "probability": 0.7866 + }, + { + "start": 5735.72, + "end": 5737.8, + "probability": 0.9714 + }, + { + "start": 5739.26, + "end": 5743.5, + "probability": 0.6938 + }, + { + "start": 5744.68, + "end": 5745.66, + "probability": 0.4676 + }, + { + "start": 5746.78, + "end": 5752.08, + "probability": 0.9539 + }, + { + "start": 5752.52, + "end": 5754.3, + "probability": 0.9715 + }, + { + "start": 5755.16, + "end": 5755.64, + "probability": 0.8651 + }, + { + "start": 5758.05, + "end": 5762.72, + "probability": 0.9329 + }, + { + "start": 5763.46, + "end": 5768.18, + "probability": 0.8711 + }, + { + "start": 5768.18, + "end": 5773.82, + "probability": 0.9805 + }, + { + "start": 5774.22, + "end": 5776.42, + "probability": 0.5094 + }, + { + "start": 5776.52, + "end": 5777.44, + "probability": 0.1096 + }, + { + "start": 5777.66, + "end": 5777.92, + "probability": 0.75 + }, + { + "start": 5778.62, + "end": 5782.02, + "probability": 0.6202 + }, + { + "start": 5782.02, + "end": 5783.6, + "probability": 0.4275 + }, + { + "start": 5795.42, + "end": 5796.96, + "probability": 0.6793 + }, + { + "start": 5799.54, + "end": 5800.56, + "probability": 0.838 + }, + { + "start": 5806.64, + "end": 5807.12, + "probability": 0.3698 + }, + { + "start": 5807.22, + "end": 5808.28, + "probability": 0.7568 + }, + { + "start": 5808.46, + "end": 5811.58, + "probability": 0.7468 + }, + { + "start": 5813.32, + "end": 5815.68, + "probability": 0.9996 + }, + { + "start": 5816.98, + "end": 5817.98, + "probability": 0.8697 + }, + { + "start": 5820.18, + "end": 5822.64, + "probability": 0.9873 + }, + { + "start": 5824.1, + "end": 5826.56, + "probability": 0.9551 + }, + { + "start": 5827.62, + "end": 5831.52, + "probability": 0.9152 + }, + { + "start": 5834.02, + "end": 5836.4, + "probability": 0.828 + }, + { + "start": 5836.94, + "end": 5839.2, + "probability": 0.969 + }, + { + "start": 5840.28, + "end": 5841.66, + "probability": 0.9899 + }, + { + "start": 5843.04, + "end": 5845.48, + "probability": 0.8273 + }, + { + "start": 5847.18, + "end": 5851.66, + "probability": 0.9937 + }, + { + "start": 5854.44, + "end": 5856.7, + "probability": 0.7999 + }, + { + "start": 5858.42, + "end": 5859.08, + "probability": 0.7004 + }, + { + "start": 5860.16, + "end": 5860.84, + "probability": 0.7065 + }, + { + "start": 5861.72, + "end": 5865.1, + "probability": 0.9104 + }, + { + "start": 5866.76, + "end": 5866.94, + "probability": 0.8474 + }, + { + "start": 5870.0, + "end": 5871.68, + "probability": 0.4861 + }, + { + "start": 5872.2, + "end": 5874.62, + "probability": 0.2348 + }, + { + "start": 5875.26, + "end": 5876.84, + "probability": 0.6863 + }, + { + "start": 5877.28, + "end": 5878.28, + "probability": 0.8516 + }, + { + "start": 5878.64, + "end": 5880.42, + "probability": 0.5714 + }, + { + "start": 5880.52, + "end": 5880.66, + "probability": 0.551 + }, + { + "start": 5880.78, + "end": 5882.86, + "probability": 0.9575 + }, + { + "start": 5882.86, + "end": 5887.08, + "probability": 0.9258 + }, + { + "start": 5887.08, + "end": 5890.0, + "probability": 0.7317 + }, + { + "start": 5890.0, + "end": 5892.04, + "probability": 0.9484 + }, + { + "start": 5892.34, + "end": 5894.58, + "probability": 0.6547 + }, + { + "start": 5898.94, + "end": 5902.14, + "probability": 0.99 + }, + { + "start": 5902.78, + "end": 5903.6, + "probability": 0.9566 + }, + { + "start": 5905.3, + "end": 5909.92, + "probability": 0.9947 + }, + { + "start": 5910.58, + "end": 5911.86, + "probability": 0.8208 + }, + { + "start": 5912.46, + "end": 5916.62, + "probability": 0.8755 + }, + { + "start": 5917.28, + "end": 5919.94, + "probability": 0.8122 + }, + { + "start": 5921.34, + "end": 5924.34, + "probability": 0.8615 + }, + { + "start": 5924.54, + "end": 5926.85, + "probability": 0.7728 + }, + { + "start": 5929.26, + "end": 5930.82, + "probability": 0.8793 + }, + { + "start": 5931.49, + "end": 5934.56, + "probability": 0.865 + }, + { + "start": 5934.76, + "end": 5935.96, + "probability": 0.9626 + }, + { + "start": 5936.06, + "end": 5936.72, + "probability": 0.9697 + }, + { + "start": 5938.14, + "end": 5938.86, + "probability": 0.636 + }, + { + "start": 5939.98, + "end": 5943.4, + "probability": 0.5016 + }, + { + "start": 5943.78, + "end": 5946.16, + "probability": 0.9163 + }, + { + "start": 5946.48, + "end": 5950.46, + "probability": 0.653 + }, + { + "start": 5950.52, + "end": 5951.68, + "probability": 0.9789 + }, + { + "start": 5952.64, + "end": 5956.74, + "probability": 0.8978 + }, + { + "start": 5957.28, + "end": 5958.82, + "probability": 0.9272 + }, + { + "start": 5959.44, + "end": 5960.84, + "probability": 0.9828 + }, + { + "start": 5962.22, + "end": 5968.02, + "probability": 0.7106 + }, + { + "start": 5968.82, + "end": 5972.56, + "probability": 0.9696 + }, + { + "start": 5975.24, + "end": 5976.2, + "probability": 0.2061 + }, + { + "start": 5976.44, + "end": 5977.56, + "probability": 0.7186 + }, + { + "start": 5978.2, + "end": 5979.72, + "probability": 0.9212 + }, + { + "start": 5981.48, + "end": 5983.0, + "probability": 0.9937 + }, + { + "start": 5986.38, + "end": 5990.3, + "probability": 0.5915 + }, + { + "start": 5990.44, + "end": 5991.58, + "probability": 0.7258 + }, + { + "start": 5991.62, + "end": 5993.98, + "probability": 0.7066 + }, + { + "start": 5994.5, + "end": 5999.16, + "probability": 0.9433 + }, + { + "start": 6000.54, + "end": 6001.1, + "probability": 0.9806 + }, + { + "start": 6002.1, + "end": 6008.32, + "probability": 0.9629 + }, + { + "start": 6009.22, + "end": 6014.7, + "probability": 0.9707 + }, + { + "start": 6016.16, + "end": 6019.6, + "probability": 0.9852 + }, + { + "start": 6020.96, + "end": 6024.12, + "probability": 0.9829 + }, + { + "start": 6025.5, + "end": 6026.7, + "probability": 0.7626 + }, + { + "start": 6027.42, + "end": 6028.01, + "probability": 0.6476 + }, + { + "start": 6029.04, + "end": 6030.02, + "probability": 0.8326 + }, + { + "start": 6030.86, + "end": 6031.86, + "probability": 0.9429 + }, + { + "start": 6033.74, + "end": 6036.28, + "probability": 0.9135 + }, + { + "start": 6037.68, + "end": 6041.72, + "probability": 0.9902 + }, + { + "start": 6041.72, + "end": 6047.4, + "probability": 0.8275 + }, + { + "start": 6047.66, + "end": 6052.08, + "probability": 0.9413 + }, + { + "start": 6053.12, + "end": 6053.92, + "probability": 0.6073 + }, + { + "start": 6054.24, + "end": 6055.6, + "probability": 0.5889 + }, + { + "start": 6055.92, + "end": 6057.7, + "probability": 0.8198 + }, + { + "start": 6058.34, + "end": 6059.26, + "probability": 0.7185 + }, + { + "start": 6061.84, + "end": 6066.1, + "probability": 0.9758 + }, + { + "start": 6068.46, + "end": 6071.72, + "probability": 0.7672 + }, + { + "start": 6072.26, + "end": 6076.28, + "probability": 0.7603 + }, + { + "start": 6076.46, + "end": 6077.6, + "probability": 0.6164 + }, + { + "start": 6078.26, + "end": 6079.96, + "probability": 0.7911 + }, + { + "start": 6080.68, + "end": 6081.7, + "probability": 0.8345 + }, + { + "start": 6082.42, + "end": 6083.42, + "probability": 0.7253 + }, + { + "start": 6084.96, + "end": 6087.9, + "probability": 0.9839 + }, + { + "start": 6088.3, + "end": 6090.62, + "probability": 0.9123 + }, + { + "start": 6092.3, + "end": 6096.94, + "probability": 0.6307 + }, + { + "start": 6098.87, + "end": 6101.06, + "probability": 0.9507 + }, + { + "start": 6101.32, + "end": 6102.74, + "probability": 0.9956 + }, + { + "start": 6103.66, + "end": 6109.14, + "probability": 0.8027 + }, + { + "start": 6110.0, + "end": 6110.64, + "probability": 0.5576 + }, + { + "start": 6112.06, + "end": 6113.26, + "probability": 0.8812 + }, + { + "start": 6113.96, + "end": 6115.62, + "probability": 0.4883 + }, + { + "start": 6116.68, + "end": 6118.22, + "probability": 0.963 + }, + { + "start": 6119.92, + "end": 6124.4, + "probability": 0.9629 + }, + { + "start": 6125.32, + "end": 6128.8, + "probability": 0.696 + }, + { + "start": 6129.4, + "end": 6131.08, + "probability": 0.9378 + }, + { + "start": 6133.68, + "end": 6133.88, + "probability": 0.1307 + }, + { + "start": 6134.4, + "end": 6137.58, + "probability": 0.8377 + }, + { + "start": 6137.78, + "end": 6140.72, + "probability": 0.8796 + }, + { + "start": 6140.78, + "end": 6143.98, + "probability": 0.6721 + }, + { + "start": 6144.4, + "end": 6145.14, + "probability": 0.8436 + }, + { + "start": 6145.22, + "end": 6146.14, + "probability": 0.9426 + }, + { + "start": 6146.2, + "end": 6146.98, + "probability": 0.8687 + }, + { + "start": 6147.1, + "end": 6149.78, + "probability": 0.6616 + }, + { + "start": 6150.04, + "end": 6151.74, + "probability": 0.8011 + }, + { + "start": 6152.72, + "end": 6156.04, + "probability": 0.7851 + }, + { + "start": 6157.56, + "end": 6160.7, + "probability": 0.9864 + }, + { + "start": 6161.0, + "end": 6164.1, + "probability": 0.766 + }, + { + "start": 6164.28, + "end": 6168.66, + "probability": 0.8475 + }, + { + "start": 6169.1, + "end": 6172.68, + "probability": 0.9472 + }, + { + "start": 6173.42, + "end": 6178.72, + "probability": 0.8468 + }, + { + "start": 6179.36, + "end": 6183.38, + "probability": 0.7438 + }, + { + "start": 6183.62, + "end": 6186.76, + "probability": 0.9207 + }, + { + "start": 6187.96, + "end": 6191.18, + "probability": 0.9419 + }, + { + "start": 6192.22, + "end": 6192.86, + "probability": 0.7613 + }, + { + "start": 6194.32, + "end": 6198.7, + "probability": 0.915 + }, + { + "start": 6199.96, + "end": 6199.98, + "probability": 0.0093 + }, + { + "start": 6199.98, + "end": 6203.66, + "probability": 0.7678 + }, + { + "start": 6206.28, + "end": 6210.34, + "probability": 0.9797 + }, + { + "start": 6211.34, + "end": 6213.04, + "probability": 0.5569 + }, + { + "start": 6213.14, + "end": 6214.18, + "probability": 0.9891 + }, + { + "start": 6214.3, + "end": 6215.2, + "probability": 0.8779 + }, + { + "start": 6215.43, + "end": 6218.42, + "probability": 0.9901 + }, + { + "start": 6218.48, + "end": 6218.98, + "probability": 0.9479 + }, + { + "start": 6220.44, + "end": 6225.32, + "probability": 0.9989 + }, + { + "start": 6225.44, + "end": 6227.24, + "probability": 0.9967 + }, + { + "start": 6227.42, + "end": 6228.44, + "probability": 0.6286 + }, + { + "start": 6228.9, + "end": 6231.08, + "probability": 0.7148 + }, + { + "start": 6231.24, + "end": 6233.54, + "probability": 0.7889 + }, + { + "start": 6233.66, + "end": 6237.98, + "probability": 0.9475 + }, + { + "start": 6238.42, + "end": 6241.76, + "probability": 0.9926 + }, + { + "start": 6241.76, + "end": 6246.82, + "probability": 0.9459 + }, + { + "start": 6247.76, + "end": 6249.38, + "probability": 0.6142 + }, + { + "start": 6249.44, + "end": 6253.38, + "probability": 0.9932 + }, + { + "start": 6253.58, + "end": 6254.72, + "probability": 0.7671 + }, + { + "start": 6255.02, + "end": 6258.52, + "probability": 0.9817 + }, + { + "start": 6260.28, + "end": 6262.64, + "probability": 0.7363 + }, + { + "start": 6284.94, + "end": 6286.06, + "probability": 0.4689 + }, + { + "start": 6286.92, + "end": 6288.74, + "probability": 0.9595 + }, + { + "start": 6288.9, + "end": 6290.92, + "probability": 0.6709 + }, + { + "start": 6292.04, + "end": 6296.32, + "probability": 0.9798 + }, + { + "start": 6296.32, + "end": 6302.84, + "probability": 0.9671 + }, + { + "start": 6302.84, + "end": 6307.9, + "probability": 0.9885 + }, + { + "start": 6308.46, + "end": 6310.24, + "probability": 0.9959 + }, + { + "start": 6311.4, + "end": 6314.66, + "probability": 0.7316 + }, + { + "start": 6315.26, + "end": 6323.58, + "probability": 0.9916 + }, + { + "start": 6324.36, + "end": 6328.22, + "probability": 0.9423 + }, + { + "start": 6329.8, + "end": 6334.0, + "probability": 0.993 + }, + { + "start": 6334.52, + "end": 6335.08, + "probability": 0.8685 + }, + { + "start": 6335.44, + "end": 6337.58, + "probability": 0.8979 + }, + { + "start": 6338.26, + "end": 6339.94, + "probability": 0.9856 + }, + { + "start": 6341.56, + "end": 6346.94, + "probability": 0.9954 + }, + { + "start": 6347.92, + "end": 6351.7, + "probability": 0.7472 + }, + { + "start": 6354.44, + "end": 6362.0, + "probability": 0.9517 + }, + { + "start": 6363.12, + "end": 6367.64, + "probability": 0.8996 + }, + { + "start": 6369.05, + "end": 6373.52, + "probability": 0.9868 + }, + { + "start": 6377.86, + "end": 6379.58, + "probability": 0.8709 + }, + { + "start": 6380.26, + "end": 6384.62, + "probability": 0.9933 + }, + { + "start": 6385.22, + "end": 6387.44, + "probability": 0.9786 + }, + { + "start": 6388.38, + "end": 6389.92, + "probability": 0.7422 + }, + { + "start": 6390.86, + "end": 6397.76, + "probability": 0.9847 + }, + { + "start": 6399.26, + "end": 6401.66, + "probability": 0.9946 + }, + { + "start": 6402.3, + "end": 6407.72, + "probability": 0.9873 + }, + { + "start": 6409.2, + "end": 6412.66, + "probability": 0.9716 + }, + { + "start": 6413.52, + "end": 6417.12, + "probability": 0.9553 + }, + { + "start": 6417.68, + "end": 6418.76, + "probability": 0.7683 + }, + { + "start": 6419.52, + "end": 6423.64, + "probability": 0.9051 + }, + { + "start": 6424.42, + "end": 6428.5, + "probability": 0.979 + }, + { + "start": 6430.8, + "end": 6435.2, + "probability": 0.9728 + }, + { + "start": 6436.38, + "end": 6439.36, + "probability": 0.9904 + }, + { + "start": 6440.9, + "end": 6442.84, + "probability": 0.9861 + }, + { + "start": 6443.52, + "end": 6449.26, + "probability": 0.8766 + }, + { + "start": 6450.5, + "end": 6456.08, + "probability": 0.9889 + }, + { + "start": 6456.78, + "end": 6459.94, + "probability": 0.9958 + }, + { + "start": 6461.22, + "end": 6465.8, + "probability": 0.9686 + }, + { + "start": 6466.82, + "end": 6469.72, + "probability": 0.9766 + }, + { + "start": 6470.88, + "end": 6472.26, + "probability": 0.999 + }, + { + "start": 6472.82, + "end": 6478.52, + "probability": 0.9985 + }, + { + "start": 6479.52, + "end": 6484.58, + "probability": 0.9709 + }, + { + "start": 6485.52, + "end": 6489.22, + "probability": 0.9821 + }, + { + "start": 6489.62, + "end": 6491.76, + "probability": 0.9751 + }, + { + "start": 6493.1, + "end": 6497.46, + "probability": 0.9951 + }, + { + "start": 6498.34, + "end": 6501.82, + "probability": 0.9832 + }, + { + "start": 6502.34, + "end": 6504.04, + "probability": 0.9771 + }, + { + "start": 6504.64, + "end": 6505.9, + "probability": 0.7253 + }, + { + "start": 6506.86, + "end": 6509.12, + "probability": 0.962 + }, + { + "start": 6509.68, + "end": 6514.62, + "probability": 0.9753 + }, + { + "start": 6516.5, + "end": 6523.08, + "probability": 0.9772 + }, + { + "start": 6523.84, + "end": 6524.56, + "probability": 0.9857 + }, + { + "start": 6525.16, + "end": 6526.0, + "probability": 0.8702 + }, + { + "start": 6526.54, + "end": 6527.82, + "probability": 0.9114 + }, + { + "start": 6529.04, + "end": 6530.32, + "probability": 0.9979 + }, + { + "start": 6530.9, + "end": 6534.62, + "probability": 0.9967 + }, + { + "start": 6534.82, + "end": 6537.56, + "probability": 0.9775 + }, + { + "start": 6537.92, + "end": 6540.04, + "probability": 0.9906 + }, + { + "start": 6540.9, + "end": 6547.76, + "probability": 0.9956 + }, + { + "start": 6548.1, + "end": 6549.6, + "probability": 0.8611 + }, + { + "start": 6551.2, + "end": 6558.68, + "probability": 0.8993 + }, + { + "start": 6559.42, + "end": 6563.3, + "probability": 0.9814 + }, + { + "start": 6563.84, + "end": 6565.02, + "probability": 0.9672 + }, + { + "start": 6565.9, + "end": 6569.36, + "probability": 0.8049 + }, + { + "start": 6569.88, + "end": 6571.24, + "probability": 0.9132 + }, + { + "start": 6571.68, + "end": 6572.9, + "probability": 0.9704 + }, + { + "start": 6573.22, + "end": 6573.94, + "probability": 0.9695 + }, + { + "start": 6574.34, + "end": 6575.3, + "probability": 0.9866 + }, + { + "start": 6575.66, + "end": 6576.68, + "probability": 0.9568 + }, + { + "start": 6576.74, + "end": 6579.82, + "probability": 0.9712 + }, + { + "start": 6580.42, + "end": 6582.62, + "probability": 0.886 + }, + { + "start": 6583.3, + "end": 6588.58, + "probability": 0.936 + }, + { + "start": 6589.4, + "end": 6593.62, + "probability": 0.9804 + }, + { + "start": 6599.74, + "end": 6600.9, + "probability": 0.8213 + }, + { + "start": 6601.52, + "end": 6604.6, + "probability": 0.9854 + }, + { + "start": 6605.72, + "end": 6608.14, + "probability": 0.7044 + }, + { + "start": 6609.06, + "end": 6612.19, + "probability": 0.9343 + }, + { + "start": 6614.44, + "end": 6615.9, + "probability": 0.7119 + }, + { + "start": 6616.42, + "end": 6617.02, + "probability": 0.6961 + }, + { + "start": 6617.78, + "end": 6622.0, + "probability": 0.8968 + }, + { + "start": 6622.8, + "end": 6627.92, + "probability": 0.9942 + }, + { + "start": 6629.12, + "end": 6635.16, + "probability": 0.9922 + }, + { + "start": 6636.04, + "end": 6642.4, + "probability": 0.9971 + }, + { + "start": 6644.04, + "end": 6646.98, + "probability": 0.9065 + }, + { + "start": 6647.52, + "end": 6648.84, + "probability": 0.9758 + }, + { + "start": 6649.3, + "end": 6652.6, + "probability": 0.9892 + }, + { + "start": 6653.22, + "end": 6658.98, + "probability": 0.9974 + }, + { + "start": 6659.36, + "end": 6662.26, + "probability": 0.9356 + }, + { + "start": 6662.88, + "end": 6665.79, + "probability": 0.7807 + }, + { + "start": 6666.3, + "end": 6672.28, + "probability": 0.9211 + }, + { + "start": 6672.28, + "end": 6677.28, + "probability": 0.994 + }, + { + "start": 6677.78, + "end": 6682.64, + "probability": 0.9872 + }, + { + "start": 6683.46, + "end": 6684.96, + "probability": 0.4593 + }, + { + "start": 6685.84, + "end": 6687.24, + "probability": 0.9096 + }, + { + "start": 6688.64, + "end": 6694.32, + "probability": 0.9875 + }, + { + "start": 6696.1, + "end": 6697.46, + "probability": 0.4992 + }, + { + "start": 6697.98, + "end": 6698.72, + "probability": 0.838 + }, + { + "start": 6699.52, + "end": 6701.06, + "probability": 0.8542 + }, + { + "start": 6701.88, + "end": 6704.16, + "probability": 0.9901 + }, + { + "start": 6705.68, + "end": 6710.82, + "probability": 0.9976 + }, + { + "start": 6712.04, + "end": 6714.52, + "probability": 0.9854 + }, + { + "start": 6715.18, + "end": 6718.76, + "probability": 0.9387 + }, + { + "start": 6719.4, + "end": 6721.58, + "probability": 0.7818 + }, + { + "start": 6722.2, + "end": 6728.14, + "probability": 0.9678 + }, + { + "start": 6728.96, + "end": 6730.8, + "probability": 0.7315 + }, + { + "start": 6733.97, + "end": 6735.9, + "probability": 0.9216 + }, + { + "start": 6736.96, + "end": 6738.39, + "probability": 0.9869 + }, + { + "start": 6739.06, + "end": 6740.86, + "probability": 0.5225 + }, + { + "start": 6741.92, + "end": 6746.68, + "probability": 0.9836 + }, + { + "start": 6748.36, + "end": 6752.52, + "probability": 0.9388 + }, + { + "start": 6753.94, + "end": 6756.22, + "probability": 0.7313 + }, + { + "start": 6756.24, + "end": 6757.06, + "probability": 0.9626 + }, + { + "start": 6757.22, + "end": 6758.2, + "probability": 0.8628 + }, + { + "start": 6758.68, + "end": 6764.18, + "probability": 0.999 + }, + { + "start": 6764.76, + "end": 6766.1, + "probability": 0.9858 + }, + { + "start": 6767.9, + "end": 6773.28, + "probability": 0.9987 + }, + { + "start": 6774.12, + "end": 6779.14, + "probability": 0.9767 + }, + { + "start": 6779.92, + "end": 6784.56, + "probability": 0.9927 + }, + { + "start": 6784.56, + "end": 6789.46, + "probability": 0.992 + }, + { + "start": 6792.14, + "end": 6792.88, + "probability": 0.9105 + }, + { + "start": 6793.4, + "end": 6798.44, + "probability": 0.9971 + }, + { + "start": 6798.44, + "end": 6804.02, + "probability": 0.992 + }, + { + "start": 6805.5, + "end": 6809.52, + "probability": 0.9982 + }, + { + "start": 6809.96, + "end": 6813.46, + "probability": 0.994 + }, + { + "start": 6813.46, + "end": 6816.84, + "probability": 0.939 + }, + { + "start": 6817.7, + "end": 6820.84, + "probability": 0.7357 + }, + { + "start": 6821.04, + "end": 6821.78, + "probability": 0.7449 + }, + { + "start": 6822.26, + "end": 6823.4, + "probability": 0.9612 + }, + { + "start": 6823.9, + "end": 6829.16, + "probability": 0.6686 + }, + { + "start": 6830.08, + "end": 6832.32, + "probability": 0.945 + }, + { + "start": 6832.82, + "end": 6836.5, + "probability": 0.9517 + }, + { + "start": 6837.98, + "end": 6840.32, + "probability": 0.7864 + }, + { + "start": 6840.86, + "end": 6845.06, + "probability": 0.8065 + }, + { + "start": 6845.82, + "end": 6849.94, + "probability": 0.9948 + }, + { + "start": 6849.94, + "end": 6853.42, + "probability": 0.9824 + }, + { + "start": 6854.2, + "end": 6856.24, + "probability": 0.9921 + }, + { + "start": 6857.96, + "end": 6861.58, + "probability": 0.801 + }, + { + "start": 6862.32, + "end": 6863.64, + "probability": 0.9954 + }, + { + "start": 6864.28, + "end": 6865.98, + "probability": 0.5088 + }, + { + "start": 6868.44, + "end": 6873.04, + "probability": 0.996 + }, + { + "start": 6875.38, + "end": 6878.14, + "probability": 0.9971 + }, + { + "start": 6878.7, + "end": 6882.22, + "probability": 0.9434 + }, + { + "start": 6882.84, + "end": 6887.22, + "probability": 0.866 + }, + { + "start": 6887.74, + "end": 6890.84, + "probability": 0.8844 + }, + { + "start": 6892.16, + "end": 6892.98, + "probability": 0.727 + }, + { + "start": 6893.14, + "end": 6897.04, + "probability": 0.9812 + }, + { + "start": 6897.46, + "end": 6898.66, + "probability": 0.8047 + }, + { + "start": 6899.28, + "end": 6903.36, + "probability": 0.9912 + }, + { + "start": 6904.66, + "end": 6909.66, + "probability": 0.9563 + }, + { + "start": 6910.14, + "end": 6912.72, + "probability": 0.814 + }, + { + "start": 6913.56, + "end": 6914.9, + "probability": 0.6394 + }, + { + "start": 6915.78, + "end": 6917.9, + "probability": 0.2922 + }, + { + "start": 6918.44, + "end": 6920.76, + "probability": 0.9334 + }, + { + "start": 6921.88, + "end": 6929.62, + "probability": 0.9839 + }, + { + "start": 6931.3, + "end": 6932.94, + "probability": 0.601 + }, + { + "start": 6934.2, + "end": 6937.02, + "probability": 0.9865 + }, + { + "start": 6937.78, + "end": 6939.38, + "probability": 0.8991 + }, + { + "start": 6940.28, + "end": 6945.68, + "probability": 0.9569 + }, + { + "start": 6946.76, + "end": 6949.24, + "probability": 0.853 + }, + { + "start": 6949.86, + "end": 6954.42, + "probability": 0.9802 + }, + { + "start": 6955.5, + "end": 6957.9, + "probability": 0.8672 + }, + { + "start": 6958.5, + "end": 6959.18, + "probability": 0.6675 + }, + { + "start": 6959.94, + "end": 6964.14, + "probability": 0.9606 + }, + { + "start": 6965.04, + "end": 6966.84, + "probability": 0.8872 + }, + { + "start": 6967.58, + "end": 6974.18, + "probability": 0.9963 + }, + { + "start": 6974.52, + "end": 6978.54, + "probability": 0.9922 + }, + { + "start": 6979.18, + "end": 6985.58, + "probability": 0.9878 + }, + { + "start": 6986.42, + "end": 6988.55, + "probability": 0.9844 + }, + { + "start": 6989.28, + "end": 6992.02, + "probability": 0.9067 + }, + { + "start": 6992.68, + "end": 6994.4, + "probability": 0.978 + }, + { + "start": 6995.92, + "end": 6996.88, + "probability": 0.67 + }, + { + "start": 6997.68, + "end": 7001.9, + "probability": 0.9897 + }, + { + "start": 7002.44, + "end": 7004.64, + "probability": 0.8449 + }, + { + "start": 7004.74, + "end": 7005.26, + "probability": 0.7377 + }, + { + "start": 7005.44, + "end": 7006.74, + "probability": 0.8115 + }, + { + "start": 7007.92, + "end": 7011.94, + "probability": 0.7068 + }, + { + "start": 7012.46, + "end": 7016.6, + "probability": 0.7737 + }, + { + "start": 7017.14, + "end": 7019.48, + "probability": 0.9873 + }, + { + "start": 7019.66, + "end": 7021.34, + "probability": 0.323 + }, + { + "start": 7021.62, + "end": 7026.74, + "probability": 0.8825 + }, + { + "start": 7030.3, + "end": 7030.3, + "probability": 0.1726 + }, + { + "start": 7030.3, + "end": 7032.52, + "probability": 0.0857 + }, + { + "start": 7033.58, + "end": 7037.06, + "probability": 0.9133 + }, + { + "start": 7038.32, + "end": 7039.0, + "probability": 0.6914 + }, + { + "start": 7044.28, + "end": 7044.92, + "probability": 0.7755 + }, + { + "start": 7045.44, + "end": 7047.98, + "probability": 0.9563 + }, + { + "start": 7048.08, + "end": 7049.8, + "probability": 0.5519 + }, + { + "start": 7049.88, + "end": 7051.87, + "probability": 0.1809 + }, + { + "start": 7051.98, + "end": 7052.19, + "probability": 0.4302 + }, + { + "start": 7052.56, + "end": 7057.92, + "probability": 0.567 + }, + { + "start": 7059.12, + "end": 7064.42, + "probability": 0.9612 + }, + { + "start": 7064.92, + "end": 7066.98, + "probability": 0.6577 + }, + { + "start": 7068.3, + "end": 7072.5, + "probability": 0.9864 + }, + { + "start": 7073.3, + "end": 7078.9, + "probability": 0.9626 + }, + { + "start": 7079.7, + "end": 7083.36, + "probability": 0.9357 + }, + { + "start": 7087.16, + "end": 7094.54, + "probability": 0.9911 + }, + { + "start": 7095.3, + "end": 7095.9, + "probability": 0.4812 + }, + { + "start": 7095.98, + "end": 7097.04, + "probability": 0.7884 + }, + { + "start": 7097.7, + "end": 7102.34, + "probability": 0.9858 + }, + { + "start": 7102.86, + "end": 7104.18, + "probability": 0.8323 + }, + { + "start": 7104.76, + "end": 7108.28, + "probability": 0.9388 + }, + { + "start": 7110.8, + "end": 7115.98, + "probability": 0.961 + }, + { + "start": 7116.86, + "end": 7120.8, + "probability": 0.9824 + }, + { + "start": 7121.66, + "end": 7123.68, + "probability": 0.3317 + }, + { + "start": 7126.06, + "end": 7129.58, + "probability": 0.6278 + }, + { + "start": 7129.64, + "end": 7130.43, + "probability": 0.9316 + }, + { + "start": 7130.78, + "end": 7134.32, + "probability": 0.9668 + }, + { + "start": 7134.42, + "end": 7136.04, + "probability": 0.7521 + }, + { + "start": 7137.08, + "end": 7141.94, + "probability": 0.9771 + }, + { + "start": 7141.94, + "end": 7145.64, + "probability": 0.9268 + }, + { + "start": 7146.12, + "end": 7149.32, + "probability": 0.9921 + }, + { + "start": 7150.46, + "end": 7154.78, + "probability": 0.9839 + }, + { + "start": 7154.86, + "end": 7157.1, + "probability": 0.9792 + }, + { + "start": 7157.58, + "end": 7163.13, + "probability": 0.9744 + }, + { + "start": 7163.42, + "end": 7166.18, + "probability": 0.7109 + }, + { + "start": 7166.82, + "end": 7169.96, + "probability": 0.9618 + }, + { + "start": 7170.28, + "end": 7174.48, + "probability": 0.8138 + }, + { + "start": 7174.98, + "end": 7180.46, + "probability": 0.8371 + }, + { + "start": 7180.54, + "end": 7181.44, + "probability": 0.7713 + }, + { + "start": 7181.86, + "end": 7184.76, + "probability": 0.958 + }, + { + "start": 7184.76, + "end": 7185.4, + "probability": 0.8017 + }, + { + "start": 7186.24, + "end": 7191.84, + "probability": 0.9592 + }, + { + "start": 7191.84, + "end": 7198.0, + "probability": 0.9927 + }, + { + "start": 7198.0, + "end": 7203.14, + "probability": 0.9614 + }, + { + "start": 7203.3, + "end": 7206.74, + "probability": 0.9916 + }, + { + "start": 7206.98, + "end": 7208.46, + "probability": 0.7973 + }, + { + "start": 7209.16, + "end": 7213.42, + "probability": 0.9951 + }, + { + "start": 7214.48, + "end": 7219.34, + "probability": 0.9739 + }, + { + "start": 7219.78, + "end": 7221.62, + "probability": 0.9455 + }, + { + "start": 7222.16, + "end": 7224.78, + "probability": 0.8165 + }, + { + "start": 7225.16, + "end": 7226.58, + "probability": 0.8962 + }, + { + "start": 7227.3, + "end": 7230.82, + "probability": 0.9664 + }, + { + "start": 7231.36, + "end": 7233.3, + "probability": 0.9731 + }, + { + "start": 7234.1, + "end": 7235.3, + "probability": 0.9538 + }, + { + "start": 7235.92, + "end": 7236.78, + "probability": 0.7653 + }, + { + "start": 7236.86, + "end": 7240.04, + "probability": 0.9854 + }, + { + "start": 7240.04, + "end": 7244.06, + "probability": 0.9576 + }, + { + "start": 7244.7, + "end": 7245.56, + "probability": 0.6947 + }, + { + "start": 7246.22, + "end": 7249.68, + "probability": 0.956 + }, + { + "start": 7250.14, + "end": 7253.06, + "probability": 0.9964 + }, + { + "start": 7254.1, + "end": 7258.96, + "probability": 0.9916 + }, + { + "start": 7258.96, + "end": 7264.28, + "probability": 0.9958 + }, + { + "start": 7265.18, + "end": 7265.86, + "probability": 0.8711 + }, + { + "start": 7266.44, + "end": 7269.82, + "probability": 0.9986 + }, + { + "start": 7270.3, + "end": 7274.64, + "probability": 0.9944 + }, + { + "start": 7275.34, + "end": 7276.04, + "probability": 0.7496 + }, + { + "start": 7276.96, + "end": 7279.7, + "probability": 0.9654 + }, + { + "start": 7279.96, + "end": 7282.4, + "probability": 0.9958 + }, + { + "start": 7283.78, + "end": 7285.76, + "probability": 0.998 + }, + { + "start": 7285.76, + "end": 7288.92, + "probability": 0.9867 + }, + { + "start": 7289.62, + "end": 7289.82, + "probability": 0.6521 + }, + { + "start": 7290.06, + "end": 7290.6, + "probability": 0.9474 + }, + { + "start": 7291.06, + "end": 7292.96, + "probability": 0.9845 + }, + { + "start": 7293.08, + "end": 7295.48, + "probability": 0.9666 + }, + { + "start": 7295.86, + "end": 7304.68, + "probability": 0.9762 + }, + { + "start": 7305.2, + "end": 7309.76, + "probability": 0.9598 + }, + { + "start": 7309.92, + "end": 7311.68, + "probability": 0.8877 + }, + { + "start": 7311.8, + "end": 7313.26, + "probability": 0.9919 + }, + { + "start": 7313.72, + "end": 7316.4, + "probability": 0.99 + }, + { + "start": 7316.4, + "end": 7319.56, + "probability": 0.9808 + }, + { + "start": 7320.52, + "end": 7322.42, + "probability": 0.7933 + }, + { + "start": 7322.96, + "end": 7323.54, + "probability": 0.8841 + }, + { + "start": 7323.68, + "end": 7328.74, + "probability": 0.8145 + }, + { + "start": 7328.82, + "end": 7333.24, + "probability": 0.9966 + }, + { + "start": 7333.5, + "end": 7334.13, + "probability": 0.5063 + }, + { + "start": 7334.22, + "end": 7334.72, + "probability": 0.6229 + }, + { + "start": 7335.18, + "end": 7337.28, + "probability": 0.9385 + }, + { + "start": 7338.42, + "end": 7340.58, + "probability": 0.9287 + }, + { + "start": 7340.82, + "end": 7342.28, + "probability": 0.9267 + }, + { + "start": 7342.7, + "end": 7344.9, + "probability": 0.8916 + }, + { + "start": 7345.2, + "end": 7348.84, + "probability": 0.9906 + }, + { + "start": 7348.92, + "end": 7350.48, + "probability": 0.937 + }, + { + "start": 7350.9, + "end": 7352.9, + "probability": 0.9937 + }, + { + "start": 7352.9, + "end": 7356.62, + "probability": 0.9891 + }, + { + "start": 7357.06, + "end": 7360.6, + "probability": 0.9674 + }, + { + "start": 7362.5, + "end": 7365.42, + "probability": 0.9069 + }, + { + "start": 7365.96, + "end": 7368.92, + "probability": 0.922 + }, + { + "start": 7369.46, + "end": 7370.97, + "probability": 0.9943 + }, + { + "start": 7371.1, + "end": 7373.62, + "probability": 0.7692 + }, + { + "start": 7373.62, + "end": 7376.02, + "probability": 0.9888 + }, + { + "start": 7376.56, + "end": 7377.1, + "probability": 0.7732 + }, + { + "start": 7377.52, + "end": 7378.2, + "probability": 0.7628 + }, + { + "start": 7378.7, + "end": 7380.38, + "probability": 0.9259 + }, + { + "start": 7380.8, + "end": 7385.14, + "probability": 0.9768 + }, + { + "start": 7385.64, + "end": 7386.1, + "probability": 0.8867 + }, + { + "start": 7386.5, + "end": 7387.74, + "probability": 0.9963 + }, + { + "start": 7388.06, + "end": 7390.24, + "probability": 0.9951 + }, + { + "start": 7390.78, + "end": 7392.16, + "probability": 0.6687 + }, + { + "start": 7396.44, + "end": 7398.5, + "probability": 0.9656 + }, + { + "start": 7398.66, + "end": 7400.28, + "probability": 0.5898 + }, + { + "start": 7400.36, + "end": 7400.9, + "probability": 0.8055 + }, + { + "start": 7401.12, + "end": 7402.78, + "probability": 0.752 + }, + { + "start": 7402.94, + "end": 7403.52, + "probability": 0.5764 + }, + { + "start": 7404.06, + "end": 7405.46, + "probability": 0.6536 + }, + { + "start": 7406.9, + "end": 7407.68, + "probability": 0.7176 + }, + { + "start": 7413.8, + "end": 7414.94, + "probability": 0.0031 + }, + { + "start": 7428.48, + "end": 7428.56, + "probability": 0.0946 + }, + { + "start": 7428.56, + "end": 7429.2, + "probability": 0.6998 + }, + { + "start": 7429.78, + "end": 7430.0, + "probability": 0.928 + }, + { + "start": 7431.1, + "end": 7433.98, + "probability": 0.5594 + }, + { + "start": 7434.88, + "end": 7438.44, + "probability": 0.9071 + }, + { + "start": 7440.12, + "end": 7445.68, + "probability": 0.6655 + }, + { + "start": 7447.18, + "end": 7451.48, + "probability": 0.8591 + }, + { + "start": 7451.84, + "end": 7452.22, + "probability": 0.7661 + }, + { + "start": 7453.26, + "end": 7456.3, + "probability": 0.9892 + }, + { + "start": 7457.24, + "end": 7460.44, + "probability": 0.9932 + }, + { + "start": 7461.9, + "end": 7466.12, + "probability": 0.9102 + }, + { + "start": 7467.14, + "end": 7469.38, + "probability": 0.7918 + }, + { + "start": 7470.3, + "end": 7472.4, + "probability": 0.1349 + }, + { + "start": 7473.82, + "end": 7482.46, + "probability": 0.9777 + }, + { + "start": 7482.82, + "end": 7484.54, + "probability": 0.7599 + }, + { + "start": 7485.34, + "end": 7488.62, + "probability": 0.7356 + }, + { + "start": 7492.18, + "end": 7492.68, + "probability": 0.1429 + }, + { + "start": 7492.68, + "end": 7494.08, + "probability": 0.8397 + }, + { + "start": 7494.18, + "end": 7495.5, + "probability": 0.9941 + }, + { + "start": 7496.64, + "end": 7498.64, + "probability": 0.7436 + }, + { + "start": 7499.58, + "end": 7502.46, + "probability": 0.9546 + }, + { + "start": 7502.64, + "end": 7503.66, + "probability": 0.9126 + }, + { + "start": 7504.98, + "end": 7506.81, + "probability": 0.8234 + }, + { + "start": 7507.06, + "end": 7507.5, + "probability": 0.7009 + }, + { + "start": 7508.6, + "end": 7512.6, + "probability": 0.8364 + }, + { + "start": 7513.18, + "end": 7516.32, + "probability": 0.9041 + }, + { + "start": 7517.64, + "end": 7523.44, + "probability": 0.9946 + }, + { + "start": 7524.18, + "end": 7525.66, + "probability": 0.8801 + }, + { + "start": 7525.96, + "end": 7532.62, + "probability": 0.9374 + }, + { + "start": 7533.26, + "end": 7534.3, + "probability": 0.6795 + }, + { + "start": 7534.54, + "end": 7536.34, + "probability": 0.8464 + }, + { + "start": 7536.96, + "end": 7538.24, + "probability": 0.9508 + }, + { + "start": 7538.94, + "end": 7539.76, + "probability": 0.6674 + }, + { + "start": 7540.74, + "end": 7541.74, + "probability": 0.7415 + }, + { + "start": 7542.38, + "end": 7545.6, + "probability": 0.9633 + }, + { + "start": 7546.22, + "end": 7547.06, + "probability": 0.8575 + }, + { + "start": 7547.32, + "end": 7547.66, + "probability": 0.745 + }, + { + "start": 7547.76, + "end": 7553.64, + "probability": 0.9432 + }, + { + "start": 7554.24, + "end": 7556.58, + "probability": 0.9761 + }, + { + "start": 7557.16, + "end": 7558.78, + "probability": 0.9347 + }, + { + "start": 7559.42, + "end": 7560.2, + "probability": 0.9909 + }, + { + "start": 7560.72, + "end": 7562.89, + "probability": 0.8226 + }, + { + "start": 7563.32, + "end": 7563.64, + "probability": 0.925 + }, + { + "start": 7564.16, + "end": 7566.78, + "probability": 0.773 + }, + { + "start": 7567.46, + "end": 7568.32, + "probability": 0.5022 + }, + { + "start": 7568.62, + "end": 7569.56, + "probability": 0.9253 + }, + { + "start": 7570.22, + "end": 7572.18, + "probability": 0.9716 + }, + { + "start": 7572.96, + "end": 7574.76, + "probability": 0.7053 + }, + { + "start": 7575.3, + "end": 7577.74, + "probability": 0.9891 + }, + { + "start": 7578.88, + "end": 7581.78, + "probability": 0.9222 + }, + { + "start": 7582.34, + "end": 7583.98, + "probability": 0.913 + }, + { + "start": 7584.82, + "end": 7587.68, + "probability": 0.7669 + }, + { + "start": 7588.32, + "end": 7593.08, + "probability": 0.7749 + }, + { + "start": 7593.16, + "end": 7593.84, + "probability": 0.324 + }, + { + "start": 7594.84, + "end": 7600.14, + "probability": 0.9026 + }, + { + "start": 7601.02, + "end": 7604.05, + "probability": 0.7839 + }, + { + "start": 7605.46, + "end": 7606.56, + "probability": 0.8125 + }, + { + "start": 7607.32, + "end": 7611.14, + "probability": 0.804 + }, + { + "start": 7612.06, + "end": 7614.0, + "probability": 0.7812 + }, + { + "start": 7614.06, + "end": 7618.56, + "probability": 0.8805 + }, + { + "start": 7619.16, + "end": 7619.94, + "probability": 0.4769 + }, + { + "start": 7621.1, + "end": 7623.18, + "probability": 0.8223 + }, + { + "start": 7623.8, + "end": 7625.22, + "probability": 0.8145 + }, + { + "start": 7626.24, + "end": 7633.6, + "probability": 0.9006 + }, + { + "start": 7633.6, + "end": 7635.08, + "probability": 0.9601 + }, + { + "start": 7635.3, + "end": 7636.69, + "probability": 0.645 + }, + { + "start": 7637.38, + "end": 7639.96, + "probability": 0.9847 + }, + { + "start": 7640.06, + "end": 7640.69, + "probability": 0.8248 + }, + { + "start": 7640.8, + "end": 7641.34, + "probability": 0.9309 + }, + { + "start": 7641.88, + "end": 7643.1, + "probability": 0.9233 + }, + { + "start": 7643.5, + "end": 7644.7, + "probability": 0.6298 + }, + { + "start": 7644.7, + "end": 7645.62, + "probability": 0.9663 + }, + { + "start": 7645.96, + "end": 7649.96, + "probability": 0.9583 + }, + { + "start": 7649.96, + "end": 7654.82, + "probability": 0.9671 + }, + { + "start": 7655.16, + "end": 7655.36, + "probability": 0.7382 + }, + { + "start": 7656.5, + "end": 7660.36, + "probability": 0.9919 + }, + { + "start": 7660.54, + "end": 7663.5, + "probability": 0.7674 + }, + { + "start": 7691.38, + "end": 7692.87, + "probability": 0.3372 + }, + { + "start": 7694.32, + "end": 7694.32, + "probability": 0.0114 + }, + { + "start": 7698.84, + "end": 7702.48, + "probability": 0.1261 + }, + { + "start": 7709.3, + "end": 7713.16, + "probability": 0.4278 + }, + { + "start": 7721.7, + "end": 7721.8, + "probability": 0.0505 + }, + { + "start": 7722.12, + "end": 7723.5, + "probability": 0.0887 + }, + { + "start": 7723.72, + "end": 7724.1, + "probability": 0.0222 + }, + { + "start": 7724.5, + "end": 7726.54, + "probability": 0.0879 + }, + { + "start": 7731.84, + "end": 7733.94, + "probability": 0.0193 + }, + { + "start": 7734.18, + "end": 7735.32, + "probability": 0.0369 + }, + { + "start": 7735.66, + "end": 7738.44, + "probability": 0.0353 + }, + { + "start": 7738.44, + "end": 7739.16, + "probability": 0.2211 + }, + { + "start": 7739.32, + "end": 7739.58, + "probability": 0.0317 + }, + { + "start": 7739.58, + "end": 7739.58, + "probability": 0.0463 + }, + { + "start": 7739.58, + "end": 7739.919, + "probability": 0.0135 + }, + { + "start": 7739.919, + "end": 7739.919, + "probability": 0.0 + }, + { + "start": 7739.919, + "end": 7739.919, + "probability": 0.0 + }, + { + "start": 7739.919, + "end": 7739.919, + "probability": 0.0 + }, + { + "start": 7739.919, + "end": 7739.919, + "probability": 0.0 + }, + { + "start": 7739.919, + "end": 7739.919, + "probability": 0.0 + }, + { + "start": 7739.919, + "end": 7739.919, + "probability": 0.0 + } + ], + "segments_count": 2355, + "words_count": 12462, + "avg_words_per_segment": 5.2917, + "avg_segment_duration": 2.3653, + "avg_words_per_minute": 96.6059, + "plenum_id": "10273", + "duration": 7739.9, + "title": null, + "plenum_date": "2010-11-23" +} \ No newline at end of file