diff --git "a/11466/metadata.json" "b/11466/metadata.json" new file mode 100644--- /dev/null +++ "b/11466/metadata.json" @@ -0,0 +1,54537 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11466", + "quality_score": 0.8154, + "per_segment_quality_scores": [ + { + "start": 45.88, + "end": 50.62, + "probability": 0.4592 + }, + { + "start": 51.3, + "end": 57.34, + "probability": 0.6144 + }, + { + "start": 58.16, + "end": 61.5, + "probability": 0.9935 + }, + { + "start": 62.08, + "end": 65.68, + "probability": 0.9232 + }, + { + "start": 66.74, + "end": 73.68, + "probability": 0.8672 + }, + { + "start": 74.22, + "end": 75.58, + "probability": 0.86 + }, + { + "start": 76.38, + "end": 82.82, + "probability": 0.9053 + }, + { + "start": 82.82, + "end": 87.7, + "probability": 0.4882 + }, + { + "start": 88.6, + "end": 89.24, + "probability": 0.2501 + }, + { + "start": 89.3, + "end": 91.8, + "probability": 0.2848 + }, + { + "start": 93.32, + "end": 95.22, + "probability": 0.534 + }, + { + "start": 96.44, + "end": 101.06, + "probability": 0.0974 + }, + { + "start": 102.3, + "end": 105.42, + "probability": 0.9549 + }, + { + "start": 105.42, + "end": 109.38, + "probability": 0.9607 + }, + { + "start": 109.84, + "end": 112.46, + "probability": 0.2327 + }, + { + "start": 112.46, + "end": 114.94, + "probability": 0.8643 + }, + { + "start": 115.7, + "end": 117.12, + "probability": 0.7897 + }, + { + "start": 117.9, + "end": 120.98, + "probability": 0.4054 + }, + { + "start": 121.04, + "end": 123.12, + "probability": 0.4999 + }, + { + "start": 123.66, + "end": 127.56, + "probability": 0.9761 + }, + { + "start": 128.26, + "end": 130.84, + "probability": 0.9847 + }, + { + "start": 131.1, + "end": 134.66, + "probability": 0.9575 + }, + { + "start": 134.82, + "end": 137.07, + "probability": 0.6661 + }, + { + "start": 137.4, + "end": 138.46, + "probability": 0.614 + }, + { + "start": 139.17, + "end": 141.76, + "probability": 0.3331 + }, + { + "start": 141.86, + "end": 142.28, + "probability": 0.5182 + }, + { + "start": 143.02, + "end": 143.62, + "probability": 0.6797 + }, + { + "start": 143.74, + "end": 145.68, + "probability": 0.7956 + }, + { + "start": 146.24, + "end": 147.2, + "probability": 0.9036 + }, + { + "start": 149.14, + "end": 151.7, + "probability": 0.8002 + }, + { + "start": 152.44, + "end": 157.98, + "probability": 0.7644 + }, + { + "start": 159.08, + "end": 161.62, + "probability": 0.456 + }, + { + "start": 162.72, + "end": 162.9, + "probability": 0.7073 + }, + { + "start": 162.96, + "end": 165.5, + "probability": 0.8872 + }, + { + "start": 165.78, + "end": 168.02, + "probability": 0.7183 + }, + { + "start": 169.64, + "end": 173.82, + "probability": 0.9634 + }, + { + "start": 176.56, + "end": 182.84, + "probability": 0.9961 + }, + { + "start": 183.82, + "end": 186.37, + "probability": 0.9912 + }, + { + "start": 186.44, + "end": 190.18, + "probability": 0.9052 + }, + { + "start": 190.78, + "end": 190.86, + "probability": 0.5041 + }, + { + "start": 191.02, + "end": 195.82, + "probability": 0.9953 + }, + { + "start": 195.96, + "end": 197.56, + "probability": 0.8929 + }, + { + "start": 198.64, + "end": 201.3, + "probability": 0.9096 + }, + { + "start": 201.34, + "end": 203.06, + "probability": 0.9193 + }, + { + "start": 203.6, + "end": 213.72, + "probability": 0.9351 + }, + { + "start": 213.72, + "end": 214.42, + "probability": 0.267 + }, + { + "start": 214.56, + "end": 215.54, + "probability": 0.4702 + }, + { + "start": 216.18, + "end": 217.68, + "probability": 0.7017 + }, + { + "start": 217.78, + "end": 221.76, + "probability": 0.9568 + }, + { + "start": 221.9, + "end": 224.34, + "probability": 0.888 + }, + { + "start": 224.8, + "end": 226.12, + "probability": 0.9573 + }, + { + "start": 227.5, + "end": 228.22, + "probability": 0.9714 + }, + { + "start": 228.38, + "end": 229.16, + "probability": 0.8802 + }, + { + "start": 229.26, + "end": 229.84, + "probability": 0.8552 + }, + { + "start": 230.32, + "end": 232.08, + "probability": 0.7963 + }, + { + "start": 232.62, + "end": 234.36, + "probability": 0.8524 + }, + { + "start": 234.82, + "end": 236.22, + "probability": 0.9383 + }, + { + "start": 236.28, + "end": 241.4, + "probability": 0.9141 + }, + { + "start": 241.56, + "end": 242.8, + "probability": 0.9492 + }, + { + "start": 242.8, + "end": 243.56, + "probability": 0.9187 + }, + { + "start": 243.62, + "end": 248.68, + "probability": 0.9322 + }, + { + "start": 248.76, + "end": 249.02, + "probability": 0.4671 + }, + { + "start": 252.0, + "end": 254.5, + "probability": 0.8987 + }, + { + "start": 254.98, + "end": 260.44, + "probability": 0.9113 + }, + { + "start": 260.44, + "end": 265.48, + "probability": 0.9656 + }, + { + "start": 266.5, + "end": 268.24, + "probability": 0.765 + }, + { + "start": 270.08, + "end": 278.38, + "probability": 0.9854 + }, + { + "start": 279.24, + "end": 283.96, + "probability": 0.9902 + }, + { + "start": 283.96, + "end": 288.82, + "probability": 0.9833 + }, + { + "start": 289.48, + "end": 290.74, + "probability": 0.7799 + }, + { + "start": 290.84, + "end": 293.7, + "probability": 0.9584 + }, + { + "start": 294.14, + "end": 297.28, + "probability": 0.97 + }, + { + "start": 298.18, + "end": 300.22, + "probability": 0.9842 + }, + { + "start": 300.34, + "end": 304.78, + "probability": 0.9824 + }, + { + "start": 305.48, + "end": 307.5, + "probability": 0.9834 + }, + { + "start": 307.6, + "end": 310.96, + "probability": 0.9158 + }, + { + "start": 311.42, + "end": 314.58, + "probability": 0.8463 + }, + { + "start": 315.38, + "end": 320.18, + "probability": 0.8936 + }, + { + "start": 320.24, + "end": 321.6, + "probability": 0.7439 + }, + { + "start": 322.04, + "end": 325.54, + "probability": 0.8639 + }, + { + "start": 325.66, + "end": 326.3, + "probability": 0.7643 + }, + { + "start": 326.84, + "end": 331.44, + "probability": 0.9574 + }, + { + "start": 332.2, + "end": 335.54, + "probability": 0.9818 + }, + { + "start": 336.32, + "end": 341.3, + "probability": 0.9067 + }, + { + "start": 341.38, + "end": 343.94, + "probability": 0.9592 + }, + { + "start": 344.72, + "end": 349.6, + "probability": 0.8513 + }, + { + "start": 349.74, + "end": 353.26, + "probability": 0.9954 + }, + { + "start": 353.32, + "end": 355.4, + "probability": 0.8485 + }, + { + "start": 355.78, + "end": 356.3, + "probability": 0.6187 + }, + { + "start": 356.34, + "end": 357.1, + "probability": 0.9517 + }, + { + "start": 357.32, + "end": 359.32, + "probability": 0.9213 + }, + { + "start": 360.0, + "end": 363.84, + "probability": 0.7931 + }, + { + "start": 364.04, + "end": 364.86, + "probability": 0.6251 + }, + { + "start": 364.98, + "end": 368.14, + "probability": 0.9164 + }, + { + "start": 368.76, + "end": 374.58, + "probability": 0.9644 + }, + { + "start": 377.45, + "end": 378.16, + "probability": 0.1315 + }, + { + "start": 378.16, + "end": 383.58, + "probability": 0.8737 + }, + { + "start": 384.56, + "end": 386.74, + "probability": 0.9271 + }, + { + "start": 387.5, + "end": 389.22, + "probability": 0.9526 + }, + { + "start": 389.34, + "end": 392.08, + "probability": 0.897 + }, + { + "start": 392.62, + "end": 394.14, + "probability": 0.8444 + }, + { + "start": 394.16, + "end": 395.34, + "probability": 0.8292 + }, + { + "start": 395.83, + "end": 399.52, + "probability": 0.9637 + }, + { + "start": 399.98, + "end": 403.0, + "probability": 0.9487 + }, + { + "start": 403.86, + "end": 406.56, + "probability": 0.8105 + }, + { + "start": 406.72, + "end": 407.34, + "probability": 0.7321 + }, + { + "start": 407.86, + "end": 409.98, + "probability": 0.8793 + }, + { + "start": 410.54, + "end": 412.08, + "probability": 0.985 + }, + { + "start": 412.2, + "end": 416.74, + "probability": 0.9965 + }, + { + "start": 416.92, + "end": 417.3, + "probability": 0.6436 + }, + { + "start": 417.32, + "end": 424.72, + "probability": 0.91 + }, + { + "start": 425.34, + "end": 426.9, + "probability": 0.9661 + }, + { + "start": 427.1, + "end": 427.44, + "probability": 0.4152 + }, + { + "start": 427.44, + "end": 427.86, + "probability": 0.8673 + }, + { + "start": 428.3, + "end": 430.32, + "probability": 0.9821 + }, + { + "start": 430.58, + "end": 431.46, + "probability": 0.863 + }, + { + "start": 431.54, + "end": 433.18, + "probability": 0.9927 + }, + { + "start": 433.44, + "end": 434.46, + "probability": 0.7144 + }, + { + "start": 434.66, + "end": 436.7, + "probability": 0.9934 + }, + { + "start": 437.1, + "end": 438.34, + "probability": 0.6329 + }, + { + "start": 438.42, + "end": 440.54, + "probability": 0.7655 + }, + { + "start": 440.72, + "end": 441.88, + "probability": 0.8415 + }, + { + "start": 442.1, + "end": 444.04, + "probability": 0.9697 + }, + { + "start": 444.12, + "end": 447.28, + "probability": 0.8667 + }, + { + "start": 447.68, + "end": 448.3, + "probability": 0.6362 + }, + { + "start": 448.44, + "end": 449.08, + "probability": 0.5936 + }, + { + "start": 449.14, + "end": 450.06, + "probability": 0.6651 + }, + { + "start": 450.22, + "end": 452.8, + "probability": 0.8253 + }, + { + "start": 453.16, + "end": 456.0, + "probability": 0.6423 + }, + { + "start": 456.08, + "end": 457.2, + "probability": 0.3594 + }, + { + "start": 457.28, + "end": 458.34, + "probability": 0.8254 + }, + { + "start": 458.42, + "end": 459.66, + "probability": 0.5452 + }, + { + "start": 460.54, + "end": 460.68, + "probability": 0.7133 + }, + { + "start": 460.78, + "end": 461.08, + "probability": 0.3558 + }, + { + "start": 461.2, + "end": 463.12, + "probability": 0.5912 + }, + { + "start": 463.18, + "end": 464.0, + "probability": 0.7663 + }, + { + "start": 464.71, + "end": 467.86, + "probability": 0.8066 + }, + { + "start": 468.08, + "end": 470.86, + "probability": 0.9798 + }, + { + "start": 470.92, + "end": 471.88, + "probability": 0.7544 + }, + { + "start": 472.06, + "end": 474.99, + "probability": 0.4341 + }, + { + "start": 475.36, + "end": 475.66, + "probability": 0.9442 + }, + { + "start": 475.74, + "end": 479.84, + "probability": 0.7551 + }, + { + "start": 480.22, + "end": 481.15, + "probability": 0.7339 + }, + { + "start": 481.16, + "end": 481.72, + "probability": 0.6211 + }, + { + "start": 481.76, + "end": 482.64, + "probability": 0.6495 + }, + { + "start": 484.41, + "end": 486.07, + "probability": 0.5797 + }, + { + "start": 487.44, + "end": 490.0, + "probability": 0.9349 + }, + { + "start": 490.0, + "end": 492.3, + "probability": 0.9937 + }, + { + "start": 492.5, + "end": 495.74, + "probability": 0.6058 + }, + { + "start": 496.26, + "end": 498.64, + "probability": 0.9646 + }, + { + "start": 499.22, + "end": 501.84, + "probability": 0.8695 + }, + { + "start": 502.96, + "end": 505.78, + "probability": 0.8073 + }, + { + "start": 506.34, + "end": 508.96, + "probability": 0.7843 + }, + { + "start": 509.1, + "end": 509.75, + "probability": 0.9082 + }, + { + "start": 510.34, + "end": 511.82, + "probability": 0.98 + }, + { + "start": 511.9, + "end": 512.68, + "probability": 0.9526 + }, + { + "start": 512.94, + "end": 517.5, + "probability": 0.8971 + }, + { + "start": 518.12, + "end": 521.98, + "probability": 0.7851 + }, + { + "start": 522.8, + "end": 525.02, + "probability": 0.8786 + }, + { + "start": 525.62, + "end": 529.16, + "probability": 0.9203 + }, + { + "start": 529.68, + "end": 531.88, + "probability": 0.8779 + }, + { + "start": 532.68, + "end": 534.56, + "probability": 0.9393 + }, + { + "start": 534.86, + "end": 537.72, + "probability": 0.8381 + }, + { + "start": 538.14, + "end": 539.28, + "probability": 0.6239 + }, + { + "start": 539.9, + "end": 542.49, + "probability": 0.9961 + }, + { + "start": 542.94, + "end": 546.92, + "probability": 0.629 + }, + { + "start": 546.94, + "end": 552.24, + "probability": 0.6086 + }, + { + "start": 552.3, + "end": 552.54, + "probability": 0.8643 + }, + { + "start": 553.6, + "end": 556.92, + "probability": 0.8823 + }, + { + "start": 557.5, + "end": 559.08, + "probability": 0.9956 + }, + { + "start": 559.08, + "end": 562.38, + "probability": 0.8876 + }, + { + "start": 562.98, + "end": 566.8, + "probability": 0.9449 + }, + { + "start": 567.3, + "end": 569.12, + "probability": 0.734 + }, + { + "start": 569.68, + "end": 573.9, + "probability": 0.9795 + }, + { + "start": 574.44, + "end": 575.5, + "probability": 0.8375 + }, + { + "start": 575.62, + "end": 578.98, + "probability": 0.9726 + }, + { + "start": 579.36, + "end": 580.36, + "probability": 0.9026 + }, + { + "start": 581.06, + "end": 581.48, + "probability": 0.9154 + }, + { + "start": 581.68, + "end": 586.24, + "probability": 0.9977 + }, + { + "start": 586.72, + "end": 589.5, + "probability": 0.9819 + }, + { + "start": 590.1, + "end": 591.6, + "probability": 0.7302 + }, + { + "start": 592.04, + "end": 594.76, + "probability": 0.9888 + }, + { + "start": 595.18, + "end": 595.52, + "probability": 0.8246 + }, + { + "start": 595.58, + "end": 596.45, + "probability": 0.9858 + }, + { + "start": 597.12, + "end": 598.7, + "probability": 0.6679 + }, + { + "start": 599.08, + "end": 600.4, + "probability": 0.947 + }, + { + "start": 600.9, + "end": 603.3, + "probability": 0.9944 + }, + { + "start": 604.02, + "end": 606.54, + "probability": 0.9578 + }, + { + "start": 607.16, + "end": 610.3, + "probability": 0.9807 + }, + { + "start": 610.72, + "end": 611.57, + "probability": 0.7643 + }, + { + "start": 612.21, + "end": 616.22, + "probability": 0.9944 + }, + { + "start": 616.22, + "end": 618.98, + "probability": 0.9123 + }, + { + "start": 621.32, + "end": 623.04, + "probability": 0.5092 + }, + { + "start": 623.4, + "end": 626.26, + "probability": 0.9692 + }, + { + "start": 628.24, + "end": 630.3, + "probability": 0.5773 + }, + { + "start": 630.48, + "end": 631.16, + "probability": 0.5758 + }, + { + "start": 631.24, + "end": 631.7, + "probability": 0.8176 + }, + { + "start": 631.8, + "end": 632.98, + "probability": 0.9387 + }, + { + "start": 633.16, + "end": 635.28, + "probability": 0.9742 + }, + { + "start": 636.16, + "end": 638.62, + "probability": 0.8479 + }, + { + "start": 638.62, + "end": 643.96, + "probability": 0.8266 + }, + { + "start": 644.72, + "end": 649.18, + "probability": 0.7277 + }, + { + "start": 649.78, + "end": 652.96, + "probability": 0.82 + }, + { + "start": 653.04, + "end": 653.78, + "probability": 0.7712 + }, + { + "start": 654.4, + "end": 655.76, + "probability": 0.6467 + }, + { + "start": 655.84, + "end": 657.34, + "probability": 0.7124 + }, + { + "start": 657.46, + "end": 659.44, + "probability": 0.4097 + }, + { + "start": 659.44, + "end": 659.96, + "probability": 0.7444 + }, + { + "start": 660.08, + "end": 662.14, + "probability": 0.5579 + }, + { + "start": 662.14, + "end": 667.26, + "probability": 0.9306 + }, + { + "start": 667.28, + "end": 667.6, + "probability": 0.3859 + }, + { + "start": 667.7, + "end": 671.72, + "probability": 0.8654 + }, + { + "start": 672.06, + "end": 673.44, + "probability": 0.944 + }, + { + "start": 673.64, + "end": 678.24, + "probability": 0.9297 + }, + { + "start": 678.24, + "end": 682.48, + "probability": 0.9595 + }, + { + "start": 682.48, + "end": 686.34, + "probability": 0.9871 + }, + { + "start": 686.5, + "end": 690.52, + "probability": 0.8636 + }, + { + "start": 690.58, + "end": 693.86, + "probability": 0.9397 + }, + { + "start": 693.92, + "end": 694.24, + "probability": 0.644 + }, + { + "start": 694.6, + "end": 694.84, + "probability": 0.2904 + }, + { + "start": 694.84, + "end": 696.52, + "probability": 0.7637 + }, + { + "start": 697.24, + "end": 697.64, + "probability": 0.742 + }, + { + "start": 702.02, + "end": 703.62, + "probability": 0.0859 + }, + { + "start": 703.92, + "end": 703.98, + "probability": 0.4471 + }, + { + "start": 703.98, + "end": 707.12, + "probability": 0.3661 + }, + { + "start": 707.26, + "end": 707.64, + "probability": 0.5504 + }, + { + "start": 707.8, + "end": 709.02, + "probability": 0.5471 + }, + { + "start": 709.32, + "end": 709.34, + "probability": 0.2517 + }, + { + "start": 709.34, + "end": 710.76, + "probability": 0.5656 + }, + { + "start": 710.84, + "end": 714.4, + "probability": 0.9182 + }, + { + "start": 715.24, + "end": 719.66, + "probability": 0.5562 + }, + { + "start": 721.28, + "end": 724.78, + "probability": 0.3856 + }, + { + "start": 724.78, + "end": 726.04, + "probability": 0.8597 + }, + { + "start": 727.66, + "end": 727.76, + "probability": 0.1095 + }, + { + "start": 727.76, + "end": 728.82, + "probability": 0.6585 + }, + { + "start": 729.42, + "end": 730.16, + "probability": 0.7781 + }, + { + "start": 730.22, + "end": 731.08, + "probability": 0.8186 + }, + { + "start": 731.18, + "end": 733.66, + "probability": 0.9673 + }, + { + "start": 734.8, + "end": 739.18, + "probability": 0.9867 + }, + { + "start": 739.54, + "end": 744.95, + "probability": 0.9888 + }, + { + "start": 746.1, + "end": 748.64, + "probability": 0.6227 + }, + { + "start": 749.16, + "end": 756.59, + "probability": 0.9813 + }, + { + "start": 756.92, + "end": 762.49, + "probability": 0.9844 + }, + { + "start": 763.4, + "end": 764.06, + "probability": 0.6029 + }, + { + "start": 764.22, + "end": 764.94, + "probability": 0.7594 + }, + { + "start": 765.39, + "end": 766.44, + "probability": 0.4989 + }, + { + "start": 766.74, + "end": 767.32, + "probability": 0.8076 + }, + { + "start": 767.76, + "end": 769.26, + "probability": 0.7306 + }, + { + "start": 769.5, + "end": 770.24, + "probability": 0.8774 + }, + { + "start": 771.16, + "end": 772.0, + "probability": 0.391 + }, + { + "start": 772.55, + "end": 774.7, + "probability": 0.4006 + }, + { + "start": 774.78, + "end": 778.45, + "probability": 0.9385 + }, + { + "start": 779.14, + "end": 782.32, + "probability": 0.7173 + }, + { + "start": 782.94, + "end": 784.48, + "probability": 0.899 + }, + { + "start": 784.66, + "end": 786.58, + "probability": 0.8608 + }, + { + "start": 786.88, + "end": 790.4, + "probability": 0.8467 + }, + { + "start": 790.58, + "end": 794.2, + "probability": 0.811 + }, + { + "start": 794.32, + "end": 797.44, + "probability": 0.9692 + }, + { + "start": 798.34, + "end": 798.92, + "probability": 0.962 + }, + { + "start": 799.0, + "end": 799.92, + "probability": 0.8823 + }, + { + "start": 800.28, + "end": 801.3, + "probability": 0.7887 + }, + { + "start": 801.56, + "end": 802.1, + "probability": 0.6304 + }, + { + "start": 802.24, + "end": 802.88, + "probability": 0.8059 + }, + { + "start": 803.2, + "end": 804.38, + "probability": 0.9943 + }, + { + "start": 804.5, + "end": 805.42, + "probability": 0.5793 + }, + { + "start": 805.66, + "end": 806.06, + "probability": 0.2213 + }, + { + "start": 806.34, + "end": 809.16, + "probability": 0.6145 + }, + { + "start": 809.28, + "end": 810.1, + "probability": 0.3775 + }, + { + "start": 810.52, + "end": 812.82, + "probability": 0.9305 + }, + { + "start": 813.5, + "end": 814.48, + "probability": 0.8027 + }, + { + "start": 814.58, + "end": 818.62, + "probability": 0.987 + }, + { + "start": 819.24, + "end": 821.38, + "probability": 0.3854 + }, + { + "start": 821.56, + "end": 823.35, + "probability": 0.9642 + }, + { + "start": 823.76, + "end": 826.39, + "probability": 0.9978 + }, + { + "start": 826.48, + "end": 828.64, + "probability": 0.9493 + }, + { + "start": 829.18, + "end": 831.94, + "probability": 0.9689 + }, + { + "start": 832.76, + "end": 836.5, + "probability": 0.6201 + }, + { + "start": 837.22, + "end": 839.52, + "probability": 0.9931 + }, + { + "start": 840.14, + "end": 842.04, + "probability": 0.9265 + }, + { + "start": 842.68, + "end": 843.2, + "probability": 0.7632 + }, + { + "start": 843.36, + "end": 846.0, + "probability": 0.9787 + }, + { + "start": 846.66, + "end": 849.36, + "probability": 0.8953 + }, + { + "start": 850.24, + "end": 851.34, + "probability": 0.694 + }, + { + "start": 851.46, + "end": 853.52, + "probability": 0.9968 + }, + { + "start": 853.84, + "end": 855.38, + "probability": 0.6714 + }, + { + "start": 855.74, + "end": 860.14, + "probability": 0.981 + }, + { + "start": 860.68, + "end": 864.94, + "probability": 0.8408 + }, + { + "start": 865.34, + "end": 866.76, + "probability": 0.9436 + }, + { + "start": 867.28, + "end": 876.52, + "probability": 0.8222 + }, + { + "start": 876.9, + "end": 879.36, + "probability": 0.9961 + }, + { + "start": 880.42, + "end": 884.34, + "probability": 0.8489 + }, + { + "start": 884.44, + "end": 885.26, + "probability": 0.6178 + }, + { + "start": 885.48, + "end": 887.9, + "probability": 0.9196 + }, + { + "start": 888.12, + "end": 889.6, + "probability": 0.8909 + }, + { + "start": 890.14, + "end": 890.76, + "probability": 0.7983 + }, + { + "start": 890.88, + "end": 894.55, + "probability": 0.9414 + }, + { + "start": 895.04, + "end": 898.68, + "probability": 0.9224 + }, + { + "start": 898.9, + "end": 902.24, + "probability": 0.8716 + }, + { + "start": 902.64, + "end": 904.82, + "probability": 0.9745 + }, + { + "start": 905.48, + "end": 906.48, + "probability": 0.9368 + }, + { + "start": 906.62, + "end": 909.8, + "probability": 0.993 + }, + { + "start": 909.94, + "end": 912.72, + "probability": 0.5038 + }, + { + "start": 912.76, + "end": 913.7, + "probability": 0.9979 + }, + { + "start": 914.58, + "end": 915.96, + "probability": 0.7404 + }, + { + "start": 916.56, + "end": 919.61, + "probability": 0.6001 + }, + { + "start": 920.62, + "end": 922.55, + "probability": 0.5008 + }, + { + "start": 922.76, + "end": 923.98, + "probability": 0.884 + }, + { + "start": 924.66, + "end": 925.26, + "probability": 0.8012 + }, + { + "start": 925.4, + "end": 929.38, + "probability": 0.8059 + }, + { + "start": 929.54, + "end": 930.72, + "probability": 0.9917 + }, + { + "start": 931.08, + "end": 931.56, + "probability": 0.6582 + }, + { + "start": 932.62, + "end": 937.8, + "probability": 0.9974 + }, + { + "start": 937.8, + "end": 946.36, + "probability": 0.9352 + }, + { + "start": 947.42, + "end": 949.66, + "probability": 0.9798 + }, + { + "start": 949.74, + "end": 951.14, + "probability": 0.77 + }, + { + "start": 952.02, + "end": 955.54, + "probability": 0.9424 + }, + { + "start": 955.74, + "end": 956.76, + "probability": 0.9454 + }, + { + "start": 956.9, + "end": 958.84, + "probability": 0.9102 + }, + { + "start": 959.04, + "end": 963.34, + "probability": 0.9894 + }, + { + "start": 963.48, + "end": 969.32, + "probability": 0.9609 + }, + { + "start": 969.56, + "end": 970.1, + "probability": 0.4526 + }, + { + "start": 971.12, + "end": 971.96, + "probability": 0.573 + }, + { + "start": 972.06, + "end": 975.4, + "probability": 0.9482 + }, + { + "start": 976.12, + "end": 979.35, + "probability": 0.9746 + }, + { + "start": 980.34, + "end": 982.16, + "probability": 0.8193 + }, + { + "start": 982.94, + "end": 986.44, + "probability": 0.9668 + }, + { + "start": 987.22, + "end": 988.74, + "probability": 0.7875 + }, + { + "start": 989.28, + "end": 992.7, + "probability": 0.9875 + }, + { + "start": 993.22, + "end": 998.78, + "probability": 0.8635 + }, + { + "start": 999.34, + "end": 1000.74, + "probability": 0.7437 + }, + { + "start": 1001.0, + "end": 1007.84, + "probability": 0.9761 + }, + { + "start": 1008.3, + "end": 1009.15, + "probability": 0.9907 + }, + { + "start": 1009.64, + "end": 1012.06, + "probability": 0.9906 + }, + { + "start": 1012.2, + "end": 1013.6, + "probability": 0.9379 + }, + { + "start": 1013.98, + "end": 1016.36, + "probability": 0.9386 + }, + { + "start": 1016.42, + "end": 1017.4, + "probability": 0.8636 + }, + { + "start": 1017.76, + "end": 1018.96, + "probability": 0.7514 + }, + { + "start": 1019.36, + "end": 1021.04, + "probability": 0.9722 + }, + { + "start": 1021.44, + "end": 1023.56, + "probability": 0.8628 + }, + { + "start": 1023.8, + "end": 1025.78, + "probability": 0.9556 + }, + { + "start": 1026.32, + "end": 1031.96, + "probability": 0.9502 + }, + { + "start": 1032.1, + "end": 1033.2, + "probability": 0.9238 + }, + { + "start": 1033.68, + "end": 1038.16, + "probability": 0.9872 + }, + { + "start": 1038.54, + "end": 1040.6, + "probability": 0.8636 + }, + { + "start": 1041.28, + "end": 1043.34, + "probability": 0.7711 + }, + { + "start": 1043.36, + "end": 1045.76, + "probability": 0.9982 + }, + { + "start": 1046.68, + "end": 1048.12, + "probability": 0.9381 + }, + { + "start": 1048.84, + "end": 1052.42, + "probability": 0.9671 + }, + { + "start": 1052.54, + "end": 1054.06, + "probability": 0.6246 + }, + { + "start": 1054.54, + "end": 1056.6, + "probability": 0.9196 + }, + { + "start": 1056.84, + "end": 1059.9, + "probability": 0.9207 + }, + { + "start": 1060.4, + "end": 1061.52, + "probability": 0.8266 + }, + { + "start": 1061.94, + "end": 1062.36, + "probability": 0.5154 + }, + { + "start": 1062.44, + "end": 1068.08, + "probability": 0.9634 + }, + { + "start": 1068.5, + "end": 1069.62, + "probability": 0.7418 + }, + { + "start": 1069.74, + "end": 1071.82, + "probability": 0.9889 + }, + { + "start": 1072.38, + "end": 1074.9, + "probability": 0.994 + }, + { + "start": 1075.28, + "end": 1081.52, + "probability": 0.9042 + }, + { + "start": 1082.0, + "end": 1084.34, + "probability": 0.9893 + }, + { + "start": 1084.64, + "end": 1087.66, + "probability": 0.9375 + }, + { + "start": 1088.3, + "end": 1090.88, + "probability": 0.9659 + }, + { + "start": 1091.58, + "end": 1092.34, + "probability": 0.9185 + }, + { + "start": 1092.5, + "end": 1094.93, + "probability": 0.8462 + }, + { + "start": 1095.84, + "end": 1099.94, + "probability": 0.9658 + }, + { + "start": 1099.94, + "end": 1103.0, + "probability": 0.723 + }, + { + "start": 1103.12, + "end": 1104.3, + "probability": 0.8607 + }, + { + "start": 1104.99, + "end": 1108.82, + "probability": 0.9329 + }, + { + "start": 1109.66, + "end": 1115.6, + "probability": 0.9632 + }, + { + "start": 1115.74, + "end": 1117.1, + "probability": 0.9417 + }, + { + "start": 1117.66, + "end": 1119.22, + "probability": 0.6266 + }, + { + "start": 1119.34, + "end": 1120.62, + "probability": 0.8084 + }, + { + "start": 1120.98, + "end": 1124.78, + "probability": 0.9847 + }, + { + "start": 1124.78, + "end": 1129.76, + "probability": 0.9684 + }, + { + "start": 1130.8, + "end": 1135.18, + "probability": 0.7192 + }, + { + "start": 1135.18, + "end": 1139.64, + "probability": 0.5983 + }, + { + "start": 1139.64, + "end": 1145.25, + "probability": 0.7605 + }, + { + "start": 1146.0, + "end": 1149.88, + "probability": 0.9893 + }, + { + "start": 1150.46, + "end": 1152.88, + "probability": 0.8095 + }, + { + "start": 1152.98, + "end": 1154.7, + "probability": 0.9586 + }, + { + "start": 1156.64, + "end": 1159.24, + "probability": 0.9222 + }, + { + "start": 1159.6, + "end": 1160.18, + "probability": 0.6651 + }, + { + "start": 1160.4, + "end": 1163.66, + "probability": 0.7746 + }, + { + "start": 1164.72, + "end": 1168.86, + "probability": 0.8392 + }, + { + "start": 1168.86, + "end": 1174.36, + "probability": 0.9248 + }, + { + "start": 1175.52, + "end": 1178.3, + "probability": 0.2198 + }, + { + "start": 1179.2, + "end": 1180.24, + "probability": 0.0559 + }, + { + "start": 1180.24, + "end": 1183.08, + "probability": 0.8722 + }, + { + "start": 1183.08, + "end": 1185.92, + "probability": 0.9972 + }, + { + "start": 1186.54, + "end": 1187.02, + "probability": 0.6983 + }, + { + "start": 1187.38, + "end": 1188.7, + "probability": 0.7197 + }, + { + "start": 1188.72, + "end": 1189.18, + "probability": 0.7229 + }, + { + "start": 1189.24, + "end": 1191.22, + "probability": 0.8955 + }, + { + "start": 1191.78, + "end": 1193.56, + "probability": 0.6124 + }, + { + "start": 1194.32, + "end": 1197.04, + "probability": 0.956 + }, + { + "start": 1197.04, + "end": 1202.54, + "probability": 0.9943 + }, + { + "start": 1203.3, + "end": 1206.08, + "probability": 0.9837 + }, + { + "start": 1206.08, + "end": 1208.72, + "probability": 0.9972 + }, + { + "start": 1209.28, + "end": 1213.76, + "probability": 0.986 + }, + { + "start": 1214.44, + "end": 1217.42, + "probability": 0.995 + }, + { + "start": 1217.42, + "end": 1220.68, + "probability": 0.9614 + }, + { + "start": 1220.8, + "end": 1222.4, + "probability": 0.5107 + }, + { + "start": 1223.16, + "end": 1228.64, + "probability": 0.9232 + }, + { + "start": 1229.14, + "end": 1232.92, + "probability": 0.9022 + }, + { + "start": 1233.74, + "end": 1236.06, + "probability": 0.9871 + }, + { + "start": 1236.22, + "end": 1238.84, + "probability": 0.9858 + }, + { + "start": 1239.64, + "end": 1245.42, + "probability": 0.9954 + }, + { + "start": 1245.42, + "end": 1249.36, + "probability": 0.9956 + }, + { + "start": 1250.0, + "end": 1252.0, + "probability": 0.7858 + }, + { + "start": 1252.08, + "end": 1253.0, + "probability": 0.7786 + }, + { + "start": 1253.44, + "end": 1253.94, + "probability": 0.9008 + }, + { + "start": 1254.04, + "end": 1258.72, + "probability": 0.9501 + }, + { + "start": 1259.4, + "end": 1262.24, + "probability": 0.9956 + }, + { + "start": 1262.82, + "end": 1265.42, + "probability": 0.9167 + }, + { + "start": 1266.28, + "end": 1267.94, + "probability": 0.9463 + }, + { + "start": 1268.02, + "end": 1270.58, + "probability": 0.9902 + }, + { + "start": 1271.02, + "end": 1276.54, + "probability": 0.9006 + }, + { + "start": 1277.14, + "end": 1280.3, + "probability": 0.3016 + }, + { + "start": 1280.34, + "end": 1281.26, + "probability": 0.614 + }, + { + "start": 1281.78, + "end": 1285.44, + "probability": 0.9915 + }, + { + "start": 1286.0, + "end": 1290.12, + "probability": 0.7169 + }, + { + "start": 1290.68, + "end": 1291.8, + "probability": 0.7295 + }, + { + "start": 1292.58, + "end": 1293.83, + "probability": 0.8574 + }, + { + "start": 1294.0, + "end": 1297.6, + "probability": 0.945 + }, + { + "start": 1297.66, + "end": 1298.4, + "probability": 0.5948 + }, + { + "start": 1298.54, + "end": 1299.14, + "probability": 0.9435 + }, + { + "start": 1299.96, + "end": 1303.92, + "probability": 0.9673 + }, + { + "start": 1305.12, + "end": 1307.16, + "probability": 0.7088 + }, + { + "start": 1307.26, + "end": 1314.04, + "probability": 0.8581 + }, + { + "start": 1314.16, + "end": 1314.7, + "probability": 0.2891 + }, + { + "start": 1315.4, + "end": 1316.1, + "probability": 0.1882 + }, + { + "start": 1316.5, + "end": 1317.1, + "probability": 0.8671 + }, + { + "start": 1317.22, + "end": 1318.88, + "probability": 0.8113 + }, + { + "start": 1319.08, + "end": 1319.58, + "probability": 0.8007 + }, + { + "start": 1319.64, + "end": 1325.72, + "probability": 0.9948 + }, + { + "start": 1325.96, + "end": 1327.17, + "probability": 0.8287 + }, + { + "start": 1327.36, + "end": 1328.68, + "probability": 0.5866 + }, + { + "start": 1328.8, + "end": 1330.78, + "probability": 0.8318 + }, + { + "start": 1331.3, + "end": 1334.12, + "probability": 0.8231 + }, + { + "start": 1334.44, + "end": 1335.68, + "probability": 0.7624 + }, + { + "start": 1335.78, + "end": 1336.48, + "probability": 0.6955 + }, + { + "start": 1337.2, + "end": 1337.42, + "probability": 0.2507 + }, + { + "start": 1337.44, + "end": 1338.3, + "probability": 0.4534 + }, + { + "start": 1345.9, + "end": 1346.1, + "probability": 0.5248 + }, + { + "start": 1346.16, + "end": 1346.88, + "probability": 0.744 + }, + { + "start": 1347.06, + "end": 1347.86, + "probability": 0.8705 + }, + { + "start": 1348.02, + "end": 1355.5, + "probability": 0.9813 + }, + { + "start": 1356.14, + "end": 1358.0, + "probability": 0.9907 + }, + { + "start": 1358.12, + "end": 1362.07, + "probability": 0.8798 + }, + { + "start": 1362.9, + "end": 1369.12, + "probability": 0.9816 + }, + { + "start": 1369.6, + "end": 1373.42, + "probability": 0.861 + }, + { + "start": 1373.64, + "end": 1375.22, + "probability": 0.8817 + }, + { + "start": 1375.62, + "end": 1377.48, + "probability": 0.313 + }, + { + "start": 1378.08, + "end": 1381.06, + "probability": 0.9906 + }, + { + "start": 1381.06, + "end": 1383.68, + "probability": 0.9963 + }, + { + "start": 1383.76, + "end": 1384.4, + "probability": 0.8248 + }, + { + "start": 1384.5, + "end": 1388.22, + "probability": 0.9897 + }, + { + "start": 1388.22, + "end": 1391.38, + "probability": 0.9605 + }, + { + "start": 1391.62, + "end": 1395.3, + "probability": 0.9886 + }, + { + "start": 1395.66, + "end": 1398.46, + "probability": 0.9969 + }, + { + "start": 1398.96, + "end": 1401.75, + "probability": 0.9653 + }, + { + "start": 1402.8, + "end": 1407.72, + "probability": 0.8871 + }, + { + "start": 1408.52, + "end": 1410.9, + "probability": 0.8987 + }, + { + "start": 1411.02, + "end": 1411.64, + "probability": 0.9397 + }, + { + "start": 1411.8, + "end": 1412.78, + "probability": 0.7515 + }, + { + "start": 1413.8, + "end": 1415.02, + "probability": 0.5068 + }, + { + "start": 1415.22, + "end": 1416.34, + "probability": 0.9771 + }, + { + "start": 1416.82, + "end": 1418.9, + "probability": 0.9928 + }, + { + "start": 1418.9, + "end": 1421.22, + "probability": 0.9752 + }, + { + "start": 1422.12, + "end": 1423.24, + "probability": 0.9118 + }, + { + "start": 1423.98, + "end": 1424.8, + "probability": 0.7729 + }, + { + "start": 1425.32, + "end": 1430.18, + "probability": 0.995 + }, + { + "start": 1430.7, + "end": 1432.41, + "probability": 0.9934 + }, + { + "start": 1433.32, + "end": 1434.3, + "probability": 0.6634 + }, + { + "start": 1434.42, + "end": 1435.42, + "probability": 0.9596 + }, + { + "start": 1435.64, + "end": 1436.95, + "probability": 0.891 + }, + { + "start": 1437.8, + "end": 1441.24, + "probability": 0.9786 + }, + { + "start": 1441.36, + "end": 1445.66, + "probability": 0.9838 + }, + { + "start": 1448.22, + "end": 1452.32, + "probability": 0.8716 + }, + { + "start": 1452.82, + "end": 1456.56, + "probability": 0.9908 + }, + { + "start": 1457.48, + "end": 1458.88, + "probability": 0.9666 + }, + { + "start": 1459.66, + "end": 1462.14, + "probability": 0.9962 + }, + { + "start": 1462.9, + "end": 1463.76, + "probability": 0.6559 + }, + { + "start": 1463.82, + "end": 1465.36, + "probability": 0.9412 + }, + { + "start": 1465.9, + "end": 1466.02, + "probability": 0.4611 + }, + { + "start": 1466.12, + "end": 1466.56, + "probability": 0.7814 + }, + { + "start": 1466.66, + "end": 1469.16, + "probability": 0.912 + }, + { + "start": 1469.2, + "end": 1470.14, + "probability": 0.8237 + }, + { + "start": 1470.82, + "end": 1473.9, + "probability": 0.9552 + }, + { + "start": 1474.6, + "end": 1476.5, + "probability": 0.7855 + }, + { + "start": 1477.74, + "end": 1477.9, + "probability": 0.0118 + }, + { + "start": 1478.68, + "end": 1482.52, + "probability": 0.9807 + }, + { + "start": 1482.54, + "end": 1483.3, + "probability": 0.6426 + }, + { + "start": 1483.8, + "end": 1484.44, + "probability": 0.9172 + }, + { + "start": 1484.52, + "end": 1485.02, + "probability": 0.929 + }, + { + "start": 1485.12, + "end": 1490.76, + "probability": 0.9872 + }, + { + "start": 1491.5, + "end": 1494.48, + "probability": 0.9954 + }, + { + "start": 1495.12, + "end": 1497.4, + "probability": 0.9912 + }, + { + "start": 1498.0, + "end": 1502.62, + "probability": 0.9357 + }, + { + "start": 1502.62, + "end": 1506.64, + "probability": 0.9391 + }, + { + "start": 1506.86, + "end": 1511.02, + "probability": 0.9364 + }, + { + "start": 1511.06, + "end": 1512.17, + "probability": 0.6492 + }, + { + "start": 1513.04, + "end": 1514.1, + "probability": 0.9778 + }, + { + "start": 1514.2, + "end": 1516.08, + "probability": 0.9045 + }, + { + "start": 1517.12, + "end": 1520.16, + "probability": 0.9582 + }, + { + "start": 1520.66, + "end": 1523.42, + "probability": 0.9551 + }, + { + "start": 1524.44, + "end": 1526.98, + "probability": 0.9736 + }, + { + "start": 1527.7, + "end": 1529.32, + "probability": 0.96 + }, + { + "start": 1529.38, + "end": 1533.22, + "probability": 0.894 + }, + { + "start": 1533.28, + "end": 1533.98, + "probability": 0.6965 + }, + { + "start": 1534.86, + "end": 1537.1, + "probability": 0.9941 + }, + { + "start": 1537.24, + "end": 1537.72, + "probability": 0.6433 + }, + { + "start": 1539.26, + "end": 1540.6, + "probability": 0.8035 + }, + { + "start": 1540.66, + "end": 1543.9, + "probability": 0.9745 + }, + { + "start": 1544.76, + "end": 1547.06, + "probability": 0.9963 + }, + { + "start": 1547.62, + "end": 1548.34, + "probability": 0.9775 + }, + { + "start": 1548.4, + "end": 1554.0, + "probability": 0.9807 + }, + { + "start": 1554.0, + "end": 1556.94, + "probability": 0.9985 + }, + { + "start": 1557.82, + "end": 1560.44, + "probability": 0.7263 + }, + { + "start": 1560.94, + "end": 1562.18, + "probability": 0.7744 + }, + { + "start": 1562.48, + "end": 1564.64, + "probability": 0.9976 + }, + { + "start": 1565.42, + "end": 1567.19, + "probability": 0.9453 + }, + { + "start": 1568.2, + "end": 1572.06, + "probability": 0.9915 + }, + { + "start": 1573.16, + "end": 1573.24, + "probability": 0.842 + }, + { + "start": 1573.34, + "end": 1575.7, + "probability": 0.9364 + }, + { + "start": 1575.72, + "end": 1578.18, + "probability": 0.9101 + }, + { + "start": 1578.92, + "end": 1579.72, + "probability": 0.6255 + }, + { + "start": 1579.8, + "end": 1580.18, + "probability": 0.4882 + }, + { + "start": 1580.26, + "end": 1583.26, + "probability": 0.9902 + }, + { + "start": 1583.36, + "end": 1586.24, + "probability": 0.9954 + }, + { + "start": 1587.34, + "end": 1587.46, + "probability": 0.6229 + }, + { + "start": 1587.6, + "end": 1589.53, + "probability": 0.9536 + }, + { + "start": 1590.1, + "end": 1591.16, + "probability": 0.9756 + }, + { + "start": 1591.92, + "end": 1593.44, + "probability": 0.7552 + }, + { + "start": 1593.74, + "end": 1594.4, + "probability": 0.9308 + }, + { + "start": 1594.56, + "end": 1597.44, + "probability": 0.9943 + }, + { + "start": 1598.18, + "end": 1599.58, + "probability": 0.7107 + }, + { + "start": 1600.08, + "end": 1601.72, + "probability": 0.8486 + }, + { + "start": 1602.92, + "end": 1603.58, + "probability": 0.7597 + }, + { + "start": 1603.76, + "end": 1608.82, + "probability": 0.9914 + }, + { + "start": 1610.5, + "end": 1612.58, + "probability": 0.9319 + }, + { + "start": 1612.58, + "end": 1615.66, + "probability": 0.8368 + }, + { + "start": 1616.12, + "end": 1620.32, + "probability": 0.9908 + }, + { + "start": 1620.38, + "end": 1622.42, + "probability": 0.9849 + }, + { + "start": 1622.88, + "end": 1623.88, + "probability": 0.4553 + }, + { + "start": 1624.0, + "end": 1628.73, + "probability": 0.9968 + }, + { + "start": 1628.8, + "end": 1630.46, + "probability": 0.7387 + }, + { + "start": 1630.62, + "end": 1633.92, + "probability": 0.9948 + }, + { + "start": 1633.92, + "end": 1636.84, + "probability": 0.9755 + }, + { + "start": 1637.7, + "end": 1638.56, + "probability": 0.7106 + }, + { + "start": 1638.62, + "end": 1639.32, + "probability": 0.8445 + }, + { + "start": 1639.4, + "end": 1639.54, + "probability": 0.3482 + }, + { + "start": 1639.58, + "end": 1644.28, + "probability": 0.989 + }, + { + "start": 1644.78, + "end": 1646.44, + "probability": 0.9634 + }, + { + "start": 1647.4, + "end": 1649.56, + "probability": 0.9939 + }, + { + "start": 1650.34, + "end": 1654.86, + "probability": 0.9006 + }, + { + "start": 1654.94, + "end": 1656.54, + "probability": 0.9367 + }, + { + "start": 1657.12, + "end": 1660.82, + "probability": 0.9716 + }, + { + "start": 1661.86, + "end": 1663.14, + "probability": 0.8591 + }, + { + "start": 1664.52, + "end": 1668.16, + "probability": 0.9896 + }, + { + "start": 1668.46, + "end": 1673.52, + "probability": 0.949 + }, + { + "start": 1673.52, + "end": 1677.64, + "probability": 0.9709 + }, + { + "start": 1677.66, + "end": 1679.66, + "probability": 0.8095 + }, + { + "start": 1679.78, + "end": 1682.98, + "probability": 0.9585 + }, + { + "start": 1683.1, + "end": 1686.26, + "probability": 0.8916 + }, + { + "start": 1686.56, + "end": 1688.87, + "probability": 0.996 + }, + { + "start": 1690.08, + "end": 1692.34, + "probability": 0.8831 + }, + { + "start": 1692.68, + "end": 1695.42, + "probability": 0.8309 + }, + { + "start": 1696.12, + "end": 1699.86, + "probability": 0.9879 + }, + { + "start": 1700.42, + "end": 1702.62, + "probability": 0.9018 + }, + { + "start": 1703.52, + "end": 1711.48, + "probability": 0.8116 + }, + { + "start": 1712.08, + "end": 1715.28, + "probability": 0.9963 + }, + { + "start": 1716.12, + "end": 1718.82, + "probability": 0.7587 + }, + { + "start": 1719.4, + "end": 1722.0, + "probability": 0.9919 + }, + { + "start": 1722.74, + "end": 1726.78, + "probability": 0.9955 + }, + { + "start": 1727.52, + "end": 1729.1, + "probability": 0.961 + }, + { + "start": 1730.28, + "end": 1730.48, + "probability": 0.7291 + }, + { + "start": 1730.58, + "end": 1735.34, + "probability": 0.9634 + }, + { + "start": 1735.36, + "end": 1735.72, + "probability": 0.7659 + }, + { + "start": 1735.86, + "end": 1736.6, + "probability": 0.9648 + }, + { + "start": 1736.94, + "end": 1737.96, + "probability": 0.9922 + }, + { + "start": 1738.16, + "end": 1739.62, + "probability": 0.6793 + }, + { + "start": 1740.52, + "end": 1744.56, + "probability": 0.856 + }, + { + "start": 1744.9, + "end": 1745.94, + "probability": 0.9746 + }, + { + "start": 1746.4, + "end": 1748.42, + "probability": 0.9766 + }, + { + "start": 1749.14, + "end": 1751.4, + "probability": 0.976 + }, + { + "start": 1752.75, + "end": 1753.88, + "probability": 0.219 + }, + { + "start": 1753.92, + "end": 1754.64, + "probability": 0.58 + }, + { + "start": 1754.8, + "end": 1755.06, + "probability": 0.1397 + }, + { + "start": 1755.12, + "end": 1756.86, + "probability": 0.7565 + }, + { + "start": 1756.94, + "end": 1758.14, + "probability": 0.6785 + }, + { + "start": 1758.2, + "end": 1759.62, + "probability": 0.9023 + }, + { + "start": 1759.78, + "end": 1761.84, + "probability": 0.981 + }, + { + "start": 1762.04, + "end": 1763.0, + "probability": 0.9156 + }, + { + "start": 1763.04, + "end": 1765.76, + "probability": 0.9917 + }, + { + "start": 1765.86, + "end": 1767.52, + "probability": 0.9522 + }, + { + "start": 1767.94, + "end": 1769.24, + "probability": 0.9635 + }, + { + "start": 1769.5, + "end": 1771.34, + "probability": 0.7646 + }, + { + "start": 1771.4, + "end": 1773.76, + "probability": 0.9619 + }, + { + "start": 1774.2, + "end": 1774.9, + "probability": 0.6903 + }, + { + "start": 1775.52, + "end": 1778.1, + "probability": 0.9463 + }, + { + "start": 1778.26, + "end": 1781.34, + "probability": 0.8187 + }, + { + "start": 1781.4, + "end": 1782.3, + "probability": 0.7934 + }, + { + "start": 1782.92, + "end": 1783.18, + "probability": 0.5371 + }, + { + "start": 1783.4, + "end": 1787.02, + "probability": 0.9938 + }, + { + "start": 1787.02, + "end": 1790.46, + "probability": 0.9986 + }, + { + "start": 1790.58, + "end": 1791.32, + "probability": 0.6928 + }, + { + "start": 1791.54, + "end": 1795.1, + "probability": 0.9839 + }, + { + "start": 1795.8, + "end": 1798.04, + "probability": 0.9378 + }, + { + "start": 1798.5, + "end": 1800.14, + "probability": 0.8555 + }, + { + "start": 1800.62, + "end": 1802.58, + "probability": 0.9928 + }, + { + "start": 1802.9, + "end": 1805.72, + "probability": 0.9246 + }, + { + "start": 1806.48, + "end": 1807.0, + "probability": 0.5136 + }, + { + "start": 1807.14, + "end": 1807.88, + "probability": 0.9022 + }, + { + "start": 1808.16, + "end": 1812.22, + "probability": 0.8037 + }, + { + "start": 1812.22, + "end": 1814.42, + "probability": 0.7705 + }, + { + "start": 1814.76, + "end": 1815.96, + "probability": 0.9907 + }, + { + "start": 1816.94, + "end": 1820.88, + "probability": 0.8434 + }, + { + "start": 1821.36, + "end": 1822.38, + "probability": 0.8503 + }, + { + "start": 1822.52, + "end": 1825.44, + "probability": 0.8058 + }, + { + "start": 1825.96, + "end": 1828.02, + "probability": 0.9958 + }, + { + "start": 1828.02, + "end": 1830.66, + "probability": 0.9933 + }, + { + "start": 1831.08, + "end": 1833.52, + "probability": 0.999 + }, + { + "start": 1833.52, + "end": 1838.72, + "probability": 0.9977 + }, + { + "start": 1839.3, + "end": 1840.04, + "probability": 0.5375 + }, + { + "start": 1840.2, + "end": 1844.4, + "probability": 0.4286 + }, + { + "start": 1848.78, + "end": 1848.78, + "probability": 0.2239 + }, + { + "start": 1848.78, + "end": 1848.78, + "probability": 0.3771 + }, + { + "start": 1848.78, + "end": 1849.3, + "probability": 0.6438 + }, + { + "start": 1849.5, + "end": 1850.3, + "probability": 0.8665 + }, + { + "start": 1850.5, + "end": 1852.4, + "probability": 0.1056 + }, + { + "start": 1852.58, + "end": 1854.54, + "probability": 0.5624 + }, + { + "start": 1854.62, + "end": 1855.32, + "probability": 0.8097 + }, + { + "start": 1855.78, + "end": 1858.18, + "probability": 0.8867 + }, + { + "start": 1859.18, + "end": 1860.72, + "probability": 0.9468 + }, + { + "start": 1860.96, + "end": 1863.92, + "probability": 0.9823 + }, + { + "start": 1865.42, + "end": 1867.98, + "probability": 0.996 + }, + { + "start": 1868.02, + "end": 1872.58, + "probability": 0.9225 + }, + { + "start": 1872.82, + "end": 1874.6, + "probability": 0.8124 + }, + { + "start": 1874.9, + "end": 1876.56, + "probability": 0.981 + }, + { + "start": 1877.74, + "end": 1878.3, + "probability": 0.6592 + }, + { + "start": 1878.5, + "end": 1881.62, + "probability": 0.8647 + }, + { + "start": 1881.64, + "end": 1881.78, + "probability": 0.1437 + }, + { + "start": 1882.14, + "end": 1886.26, + "probability": 0.7236 + }, + { + "start": 1886.48, + "end": 1889.5, + "probability": 0.9829 + }, + { + "start": 1889.5, + "end": 1890.44, + "probability": 0.4937 + }, + { + "start": 1890.7, + "end": 1892.96, + "probability": 0.8143 + }, + { + "start": 1893.16, + "end": 1895.6, + "probability": 0.9983 + }, + { + "start": 1895.6, + "end": 1898.64, + "probability": 0.9054 + }, + { + "start": 1898.84, + "end": 1902.54, + "probability": 0.5784 + }, + { + "start": 1902.8, + "end": 1904.32, + "probability": 0.7687 + }, + { + "start": 1904.82, + "end": 1911.28, + "probability": 0.9694 + }, + { + "start": 1911.66, + "end": 1917.26, + "probability": 0.992 + }, + { + "start": 1917.26, + "end": 1919.42, + "probability": 0.7686 + }, + { + "start": 1919.42, + "end": 1919.74, + "probability": 0.231 + }, + { + "start": 1919.74, + "end": 1920.93, + "probability": 0.7414 + }, + { + "start": 1920.98, + "end": 1922.2, + "probability": 0.5735 + }, + { + "start": 1922.34, + "end": 1924.56, + "probability": 0.9301 + }, + { + "start": 1925.04, + "end": 1926.2, + "probability": 0.2394 + }, + { + "start": 1926.26, + "end": 1926.36, + "probability": 0.4214 + }, + { + "start": 1926.36, + "end": 1926.9, + "probability": 0.5533 + }, + { + "start": 1927.22, + "end": 1928.16, + "probability": 0.7749 + }, + { + "start": 1928.34, + "end": 1931.3, + "probability": 0.6505 + }, + { + "start": 1931.3, + "end": 1931.34, + "probability": 0.4098 + }, + { + "start": 1931.34, + "end": 1933.77, + "probability": 0.5025 + }, + { + "start": 1933.82, + "end": 1935.84, + "probability": 0.9334 + }, + { + "start": 1935.98, + "end": 1936.5, + "probability": 0.2937 + }, + { + "start": 1936.58, + "end": 1937.2, + "probability": 0.5557 + }, + { + "start": 1937.2, + "end": 1939.86, + "probability": 0.9319 + }, + { + "start": 1940.38, + "end": 1944.3, + "probability": 0.9938 + }, + { + "start": 1944.6, + "end": 1949.54, + "probability": 0.9968 + }, + { + "start": 1950.6, + "end": 1953.34, + "probability": 0.6234 + }, + { + "start": 1953.72, + "end": 1956.0, + "probability": 0.9648 + }, + { + "start": 1956.02, + "end": 1960.76, + "probability": 0.8184 + }, + { + "start": 1961.24, + "end": 1963.24, + "probability": 0.9945 + }, + { + "start": 1963.46, + "end": 1964.83, + "probability": 0.7548 + }, + { + "start": 1965.6, + "end": 1966.44, + "probability": 0.7906 + }, + { + "start": 1966.52, + "end": 1967.5, + "probability": 0.4929 + }, + { + "start": 1967.62, + "end": 1972.3, + "probability": 0.9829 + }, + { + "start": 1972.34, + "end": 1972.56, + "probability": 0.0245 + }, + { + "start": 1972.56, + "end": 1973.24, + "probability": 0.2943 + }, + { + "start": 1973.36, + "end": 1973.56, + "probability": 0.2472 + }, + { + "start": 1973.56, + "end": 1975.36, + "probability": 0.6675 + }, + { + "start": 1975.5, + "end": 1978.6, + "probability": 0.8979 + }, + { + "start": 1978.8, + "end": 1980.42, + "probability": 0.9324 + }, + { + "start": 1981.5, + "end": 1985.06, + "probability": 0.9946 + }, + { + "start": 1985.06, + "end": 1990.22, + "probability": 0.9795 + }, + { + "start": 1991.54, + "end": 1995.12, + "probability": 0.9941 + }, + { + "start": 1996.32, + "end": 1996.64, + "probability": 0.5732 + }, + { + "start": 2002.0, + "end": 2004.1, + "probability": 0.6501 + }, + { + "start": 2006.28, + "end": 2008.9, + "probability": 0.7089 + }, + { + "start": 2009.72, + "end": 2012.48, + "probability": 0.5775 + }, + { + "start": 2012.62, + "end": 2015.34, + "probability": 0.5796 + }, + { + "start": 2015.38, + "end": 2015.78, + "probability": 0.6914 + }, + { + "start": 2016.26, + "end": 2021.3, + "probability": 0.8257 + }, + { + "start": 2021.72, + "end": 2023.7, + "probability": 0.9651 + }, + { + "start": 2024.18, + "end": 2028.22, + "probability": 0.9233 + }, + { + "start": 2028.26, + "end": 2029.78, + "probability": 0.9095 + }, + { + "start": 2029.86, + "end": 2032.72, + "probability": 0.6657 + }, + { + "start": 2032.88, + "end": 2037.14, + "probability": 0.8631 + }, + { + "start": 2037.16, + "end": 2037.6, + "probability": 0.5816 + }, + { + "start": 2037.66, + "end": 2038.32, + "probability": 0.3135 + }, + { + "start": 2038.44, + "end": 2038.92, + "probability": 0.8114 + }, + { + "start": 2039.54, + "end": 2041.38, + "probability": 0.5681 + }, + { + "start": 2041.58, + "end": 2042.64, + "probability": 0.7363 + }, + { + "start": 2042.94, + "end": 2047.96, + "probability": 0.7154 + }, + { + "start": 2048.18, + "end": 2052.32, + "probability": 0.9106 + }, + { + "start": 2052.32, + "end": 2054.76, + "probability": 0.9846 + }, + { + "start": 2055.38, + "end": 2060.06, + "probability": 0.9901 + }, + { + "start": 2060.66, + "end": 2065.7, + "probability": 0.8557 + }, + { + "start": 2066.36, + "end": 2069.0, + "probability": 0.8863 + }, + { + "start": 2069.6, + "end": 2076.14, + "probability": 0.7047 + }, + { + "start": 2077.18, + "end": 2077.88, + "probability": 0.5845 + }, + { + "start": 2077.96, + "end": 2079.96, + "probability": 0.9609 + }, + { + "start": 2080.04, + "end": 2081.68, + "probability": 0.5264 + }, + { + "start": 2081.86, + "end": 2084.54, + "probability": 0.9624 + }, + { + "start": 2085.28, + "end": 2087.66, + "probability": 0.8737 + }, + { + "start": 2088.26, + "end": 2092.86, + "probability": 0.8191 + }, + { + "start": 2093.38, + "end": 2094.9, + "probability": 0.7712 + }, + { + "start": 2095.58, + "end": 2097.54, + "probability": 0.6156 + }, + { + "start": 2098.14, + "end": 2098.46, + "probability": 0.6517 + }, + { + "start": 2098.56, + "end": 2101.86, + "probability": 0.8805 + }, + { + "start": 2103.38, + "end": 2104.56, + "probability": 0.2569 + }, + { + "start": 2105.26, + "end": 2105.94, + "probability": 0.3296 + }, + { + "start": 2106.4, + "end": 2108.64, + "probability": 0.6743 + }, + { + "start": 2108.96, + "end": 2109.24, + "probability": 0.4023 + }, + { + "start": 2109.34, + "end": 2119.28, + "probability": 0.9769 + }, + { + "start": 2119.28, + "end": 2127.0, + "probability": 0.9628 + }, + { + "start": 2127.14, + "end": 2129.56, + "probability": 0.9856 + }, + { + "start": 2129.94, + "end": 2134.46, + "probability": 0.9574 + }, + { + "start": 2134.84, + "end": 2136.98, + "probability": 0.9352 + }, + { + "start": 2137.54, + "end": 2141.3, + "probability": 0.8929 + }, + { + "start": 2141.64, + "end": 2147.3, + "probability": 0.998 + }, + { + "start": 2147.4, + "end": 2148.78, + "probability": 0.8889 + }, + { + "start": 2149.12, + "end": 2152.06, + "probability": 0.9033 + }, + { + "start": 2154.0, + "end": 2157.86, + "probability": 0.8856 + }, + { + "start": 2157.86, + "end": 2162.08, + "probability": 0.8805 + }, + { + "start": 2162.76, + "end": 2165.82, + "probability": 0.9991 + }, + { + "start": 2166.0, + "end": 2170.26, + "probability": 0.986 + }, + { + "start": 2170.92, + "end": 2173.3, + "probability": 0.9776 + }, + { + "start": 2175.08, + "end": 2178.92, + "probability": 0.8754 + }, + { + "start": 2179.08, + "end": 2181.76, + "probability": 0.9859 + }, + { + "start": 2182.4, + "end": 2182.68, + "probability": 0.6473 + }, + { + "start": 2183.34, + "end": 2185.2, + "probability": 0.7422 + }, + { + "start": 2185.46, + "end": 2192.0, + "probability": 0.8652 + }, + { + "start": 2192.5, + "end": 2199.06, + "probability": 0.9167 + }, + { + "start": 2200.24, + "end": 2202.8, + "probability": 0.7688 + }, + { + "start": 2204.5, + "end": 2206.68, + "probability": 0.9325 + }, + { + "start": 2207.02, + "end": 2211.5, + "probability": 0.9037 + }, + { + "start": 2214.1, + "end": 2215.3, + "probability": 0.9783 + }, + { + "start": 2215.4, + "end": 2217.14, + "probability": 0.9229 + }, + { + "start": 2217.6, + "end": 2222.58, + "probability": 0.9821 + }, + { + "start": 2222.98, + "end": 2228.92, + "probability": 0.9849 + }, + { + "start": 2229.28, + "end": 2229.72, + "probability": 0.8431 + }, + { + "start": 2229.8, + "end": 2231.34, + "probability": 0.9535 + }, + { + "start": 2231.7, + "end": 2235.82, + "probability": 0.987 + }, + { + "start": 2235.82, + "end": 2240.08, + "probability": 0.9888 + }, + { + "start": 2240.28, + "end": 2240.64, + "probability": 0.778 + }, + { + "start": 2242.04, + "end": 2242.96, + "probability": 0.1878 + }, + { + "start": 2242.96, + "end": 2245.02, + "probability": 0.7245 + }, + { + "start": 2246.84, + "end": 2247.54, + "probability": 0.5725 + }, + { + "start": 2249.04, + "end": 2249.34, + "probability": 0.0998 + }, + { + "start": 2249.6, + "end": 2251.34, + "probability": 0.9479 + }, + { + "start": 2253.36, + "end": 2254.22, + "probability": 0.2597 + }, + { + "start": 2254.78, + "end": 2259.97, + "probability": 0.9946 + }, + { + "start": 2260.92, + "end": 2263.14, + "probability": 0.6128 + }, + { + "start": 2263.14, + "end": 2267.72, + "probability": 0.9659 + }, + { + "start": 2267.86, + "end": 2268.02, + "probability": 0.2407 + }, + { + "start": 2268.06, + "end": 2269.15, + "probability": 0.9768 + }, + { + "start": 2270.0, + "end": 2275.58, + "probability": 0.8788 + }, + { + "start": 2275.58, + "end": 2277.28, + "probability": 0.4915 + }, + { + "start": 2278.28, + "end": 2281.06, + "probability": 0.3283 + }, + { + "start": 2281.96, + "end": 2283.54, + "probability": 0.6909 + }, + { + "start": 2283.58, + "end": 2284.28, + "probability": 0.2244 + }, + { + "start": 2285.14, + "end": 2287.14, + "probability": 0.7702 + }, + { + "start": 2287.96, + "end": 2291.16, + "probability": 0.7222 + }, + { + "start": 2291.22, + "end": 2295.42, + "probability": 0.9501 + }, + { + "start": 2296.22, + "end": 2300.14, + "probability": 0.6989 + }, + { + "start": 2300.44, + "end": 2304.02, + "probability": 0.2964 + }, + { + "start": 2304.7, + "end": 2305.86, + "probability": 0.8024 + }, + { + "start": 2306.0, + "end": 2310.0, + "probability": 0.7954 + }, + { + "start": 2310.16, + "end": 2313.22, + "probability": 0.7028 + }, + { + "start": 2313.64, + "end": 2317.26, + "probability": 0.5784 + }, + { + "start": 2318.16, + "end": 2320.1, + "probability": 0.8816 + }, + { + "start": 2320.18, + "end": 2323.29, + "probability": 0.5072 + }, + { + "start": 2324.06, + "end": 2325.24, + "probability": 0.8975 + }, + { + "start": 2325.7, + "end": 2328.66, + "probability": 0.9357 + }, + { + "start": 2329.76, + "end": 2331.2, + "probability": 0.3137 + }, + { + "start": 2331.28, + "end": 2331.74, + "probability": 0.7351 + }, + { + "start": 2331.86, + "end": 2335.16, + "probability": 0.9957 + }, + { + "start": 2335.32, + "end": 2335.48, + "probability": 0.8855 + }, + { + "start": 2335.7, + "end": 2340.12, + "probability": 0.9785 + }, + { + "start": 2340.72, + "end": 2344.43, + "probability": 0.8577 + }, + { + "start": 2345.64, + "end": 2345.64, + "probability": 0.5491 + }, + { + "start": 2345.64, + "end": 2347.94, + "probability": 0.4181 + }, + { + "start": 2348.34, + "end": 2350.97, + "probability": 0.9302 + }, + { + "start": 2351.02, + "end": 2353.58, + "probability": 0.5295 + }, + { + "start": 2353.68, + "end": 2356.16, + "probability": 0.2877 + }, + { + "start": 2357.38, + "end": 2359.7, + "probability": 0.0713 + }, + { + "start": 2359.8, + "end": 2360.43, + "probability": 0.8273 + }, + { + "start": 2361.2, + "end": 2363.48, + "probability": 0.9784 + }, + { + "start": 2363.48, + "end": 2364.28, + "probability": 0.8728 + }, + { + "start": 2364.54, + "end": 2366.84, + "probability": 0.3308 + }, + { + "start": 2368.54, + "end": 2368.62, + "probability": 0.039 + }, + { + "start": 2368.62, + "end": 2369.14, + "probability": 0.2163 + }, + { + "start": 2369.38, + "end": 2371.08, + "probability": 0.4737 + }, + { + "start": 2371.24, + "end": 2372.89, + "probability": 0.654 + }, + { + "start": 2373.06, + "end": 2373.58, + "probability": 0.091 + }, + { + "start": 2373.58, + "end": 2374.68, + "probability": 0.7215 + }, + { + "start": 2375.7, + "end": 2376.02, + "probability": 0.1007 + }, + { + "start": 2377.16, + "end": 2380.12, + "probability": 0.5072 + }, + { + "start": 2380.24, + "end": 2381.4, + "probability": 0.4019 + }, + { + "start": 2381.86, + "end": 2382.22, + "probability": 0.4661 + }, + { + "start": 2382.38, + "end": 2383.08, + "probability": 0.6885 + }, + { + "start": 2383.12, + "end": 2388.9, + "probability": 0.7043 + }, + { + "start": 2390.6, + "end": 2391.44, + "probability": 0.5954 + }, + { + "start": 2391.56, + "end": 2394.76, + "probability": 0.6597 + }, + { + "start": 2396.78, + "end": 2397.34, + "probability": 0.2008 + }, + { + "start": 2397.34, + "end": 2397.92, + "probability": 0.3546 + }, + { + "start": 2398.14, + "end": 2400.76, + "probability": 0.6573 + }, + { + "start": 2401.62, + "end": 2402.66, + "probability": 0.8555 + }, + { + "start": 2402.68, + "end": 2403.24, + "probability": 0.6119 + }, + { + "start": 2403.38, + "end": 2404.64, + "probability": 0.7005 + }, + { + "start": 2404.78, + "end": 2405.57, + "probability": 0.864 + }, + { + "start": 2406.12, + "end": 2408.3, + "probability": 0.6034 + }, + { + "start": 2408.68, + "end": 2410.16, + "probability": 0.781 + }, + { + "start": 2410.28, + "end": 2411.41, + "probability": 0.9448 + }, + { + "start": 2411.96, + "end": 2414.02, + "probability": 0.8822 + }, + { + "start": 2415.96, + "end": 2416.34, + "probability": 0.611 + }, + { + "start": 2416.7, + "end": 2417.65, + "probability": 0.6663 + }, + { + "start": 2419.04, + "end": 2419.82, + "probability": 0.3648 + }, + { + "start": 2420.02, + "end": 2420.82, + "probability": 0.9415 + }, + { + "start": 2421.0, + "end": 2422.36, + "probability": 0.8628 + }, + { + "start": 2422.42, + "end": 2422.81, + "probability": 0.8418 + }, + { + "start": 2423.3, + "end": 2425.4, + "probability": 0.6071 + }, + { + "start": 2425.48, + "end": 2425.84, + "probability": 0.4701 + }, + { + "start": 2425.84, + "end": 2426.8, + "probability": 0.4916 + }, + { + "start": 2426.82, + "end": 2427.22, + "probability": 0.3941 + }, + { + "start": 2427.22, + "end": 2427.64, + "probability": 0.6026 + }, + { + "start": 2427.66, + "end": 2428.84, + "probability": 0.8223 + }, + { + "start": 2428.94, + "end": 2430.04, + "probability": 0.6892 + }, + { + "start": 2430.18, + "end": 2432.04, + "probability": 0.7044 + }, + { + "start": 2432.06, + "end": 2432.56, + "probability": 0.5436 + }, + { + "start": 2432.8, + "end": 2433.62, + "probability": 0.7791 + }, + { + "start": 2433.68, + "end": 2434.21, + "probability": 0.4097 + }, + { + "start": 2434.48, + "end": 2435.88, + "probability": 0.8293 + }, + { + "start": 2436.3, + "end": 2438.94, + "probability": 0.7927 + }, + { + "start": 2439.16, + "end": 2440.14, + "probability": 0.7295 + }, + { + "start": 2440.2, + "end": 2440.7, + "probability": 0.6567 + }, + { + "start": 2440.76, + "end": 2441.7, + "probability": 0.7304 + }, + { + "start": 2442.1, + "end": 2442.5, + "probability": 0.3843 + }, + { + "start": 2442.54, + "end": 2444.69, + "probability": 0.9242 + }, + { + "start": 2444.96, + "end": 2446.4, + "probability": 0.7492 + }, + { + "start": 2446.74, + "end": 2452.38, + "probability": 0.9854 + }, + { + "start": 2452.56, + "end": 2455.1, + "probability": 0.3272 + }, + { + "start": 2455.12, + "end": 2456.88, + "probability": 0.7546 + }, + { + "start": 2457.06, + "end": 2458.86, + "probability": 0.8463 + }, + { + "start": 2459.2, + "end": 2460.18, + "probability": 0.646 + }, + { + "start": 2460.42, + "end": 2461.62, + "probability": 0.6198 + }, + { + "start": 2462.16, + "end": 2468.76, + "probability": 0.796 + }, + { + "start": 2469.0, + "end": 2471.66, + "probability": 0.9071 + }, + { + "start": 2471.9, + "end": 2472.98, + "probability": 0.8896 + }, + { + "start": 2473.06, + "end": 2477.3, + "probability": 0.9026 + }, + { + "start": 2477.36, + "end": 2481.16, + "probability": 0.9813 + }, + { + "start": 2481.48, + "end": 2487.76, + "probability": 0.9219 + }, + { + "start": 2487.8, + "end": 2489.06, + "probability": 0.5917 + }, + { + "start": 2489.92, + "end": 2494.74, + "probability": 0.5213 + }, + { + "start": 2494.78, + "end": 2496.22, + "probability": 0.7712 + }, + { + "start": 2496.44, + "end": 2497.6, + "probability": 0.8721 + }, + { + "start": 2497.62, + "end": 2501.42, + "probability": 0.9465 + }, + { + "start": 2501.82, + "end": 2503.74, + "probability": 0.5717 + }, + { + "start": 2503.82, + "end": 2506.02, + "probability": 0.9097 + }, + { + "start": 2506.18, + "end": 2507.2, + "probability": 0.5533 + }, + { + "start": 2507.32, + "end": 2507.68, + "probability": 0.493 + }, + { + "start": 2507.68, + "end": 2508.16, + "probability": 0.1065 + }, + { + "start": 2508.58, + "end": 2509.58, + "probability": 0.9102 + }, + { + "start": 2509.6, + "end": 2510.46, + "probability": 0.761 + }, + { + "start": 2510.92, + "end": 2512.7, + "probability": 0.9709 + }, + { + "start": 2514.38, + "end": 2515.88, + "probability": 0.9909 + }, + { + "start": 2516.8, + "end": 2520.08, + "probability": 0.9164 + }, + { + "start": 2520.42, + "end": 2524.32, + "probability": 0.9336 + }, + { + "start": 2524.86, + "end": 2527.86, + "probability": 0.986 + }, + { + "start": 2528.02, + "end": 2528.58, + "probability": 0.5376 + }, + { + "start": 2528.62, + "end": 2530.04, + "probability": 0.9481 + }, + { + "start": 2530.4, + "end": 2531.33, + "probability": 0.6709 + }, + { + "start": 2531.84, + "end": 2532.22, + "probability": 0.6938 + }, + { + "start": 2532.54, + "end": 2533.1, + "probability": 0.6083 + }, + { + "start": 2533.16, + "end": 2534.68, + "probability": 0.6307 + }, + { + "start": 2536.55, + "end": 2539.1, + "probability": 0.9463 + }, + { + "start": 2539.64, + "end": 2540.3, + "probability": 0.5319 + }, + { + "start": 2540.4, + "end": 2543.91, + "probability": 0.9766 + }, + { + "start": 2544.88, + "end": 2549.56, + "probability": 0.9375 + }, + { + "start": 2550.36, + "end": 2553.14, + "probability": 0.8677 + }, + { + "start": 2553.14, + "end": 2553.95, + "probability": 0.9895 + }, + { + "start": 2554.42, + "end": 2554.54, + "probability": 0.1359 + }, + { + "start": 2554.54, + "end": 2554.84, + "probability": 0.5444 + }, + { + "start": 2554.98, + "end": 2556.86, + "probability": 0.861 + }, + { + "start": 2557.2, + "end": 2558.78, + "probability": 0.6686 + }, + { + "start": 2558.86, + "end": 2559.94, + "probability": 0.9569 + }, + { + "start": 2560.06, + "end": 2560.72, + "probability": 0.4652 + }, + { + "start": 2560.82, + "end": 2561.82, + "probability": 0.1457 + }, + { + "start": 2562.02, + "end": 2562.74, + "probability": 0.6463 + }, + { + "start": 2563.3, + "end": 2565.32, + "probability": 0.8481 + }, + { + "start": 2565.5, + "end": 2568.24, + "probability": 0.802 + }, + { + "start": 2568.4, + "end": 2570.81, + "probability": 0.9701 + }, + { + "start": 2571.38, + "end": 2575.16, + "probability": 0.9072 + }, + { + "start": 2575.72, + "end": 2577.8, + "probability": 0.7187 + }, + { + "start": 2578.12, + "end": 2579.24, + "probability": 0.8674 + }, + { + "start": 2579.26, + "end": 2582.54, + "probability": 0.7342 + }, + { + "start": 2582.62, + "end": 2582.96, + "probability": 0.6969 + }, + { + "start": 2583.0, + "end": 2583.3, + "probability": 0.8305 + }, + { + "start": 2583.4, + "end": 2585.4, + "probability": 0.87 + }, + { + "start": 2585.54, + "end": 2588.9, + "probability": 0.9956 + }, + { + "start": 2589.74, + "end": 2591.78, + "probability": 0.8962 + }, + { + "start": 2591.94, + "end": 2593.88, + "probability": 0.8888 + }, + { + "start": 2594.08, + "end": 2594.52, + "probability": 0.5312 + }, + { + "start": 2594.58, + "end": 2595.12, + "probability": 0.6782 + }, + { + "start": 2595.24, + "end": 2598.42, + "probability": 0.6489 + }, + { + "start": 2599.68, + "end": 2602.96, + "probability": 0.9736 + }, + { + "start": 2606.24, + "end": 2606.58, + "probability": 0.027 + }, + { + "start": 2607.1, + "end": 2612.0, + "probability": 0.6902 + }, + { + "start": 2613.12, + "end": 2617.5, + "probability": 0.7248 + }, + { + "start": 2618.2, + "end": 2620.66, + "probability": 0.9694 + }, + { + "start": 2623.34, + "end": 2624.66, + "probability": 0.891 + }, + { + "start": 2624.78, + "end": 2626.5, + "probability": 0.4949 + }, + { + "start": 2627.68, + "end": 2629.16, + "probability": 0.8107 + }, + { + "start": 2629.8, + "end": 2633.34, + "probability": 0.941 + }, + { + "start": 2633.7, + "end": 2638.22, + "probability": 0.8354 + }, + { + "start": 2640.18, + "end": 2643.44, + "probability": 0.6429 + }, + { + "start": 2643.6, + "end": 2645.58, + "probability": 0.6008 + }, + { + "start": 2645.98, + "end": 2647.24, + "probability": 0.3404 + }, + { + "start": 2647.48, + "end": 2648.36, + "probability": 0.5068 + }, + { + "start": 2648.52, + "end": 2649.44, + "probability": 0.4419 + }, + { + "start": 2649.74, + "end": 2650.06, + "probability": 0.3789 + }, + { + "start": 2651.38, + "end": 2654.88, + "probability": 0.3845 + }, + { + "start": 2657.44, + "end": 2660.16, + "probability": 0.3825 + }, + { + "start": 2660.18, + "end": 2662.98, + "probability": 0.6365 + }, + { + "start": 2663.94, + "end": 2665.43, + "probability": 0.8211 + }, + { + "start": 2666.38, + "end": 2667.26, + "probability": 0.7808 + }, + { + "start": 2667.34, + "end": 2668.22, + "probability": 0.952 + }, + { + "start": 2668.6, + "end": 2670.18, + "probability": 0.7959 + }, + { + "start": 2670.56, + "end": 2673.14, + "probability": 0.9345 + }, + { + "start": 2673.88, + "end": 2676.4, + "probability": 0.7538 + }, + { + "start": 2676.64, + "end": 2678.2, + "probability": 0.5514 + }, + { + "start": 2678.26, + "end": 2679.2, + "probability": 0.5946 + }, + { + "start": 2679.24, + "end": 2683.82, + "probability": 0.8673 + }, + { + "start": 2683.86, + "end": 2684.52, + "probability": 0.917 + }, + { + "start": 2685.78, + "end": 2685.92, + "probability": 0.5796 + }, + { + "start": 2686.04, + "end": 2687.18, + "probability": 0.7851 + }, + { + "start": 2687.34, + "end": 2689.82, + "probability": 0.8148 + }, + { + "start": 2690.38, + "end": 2692.5, + "probability": 0.6402 + }, + { + "start": 2692.54, + "end": 2693.3, + "probability": 0.8967 + }, + { + "start": 2693.36, + "end": 2694.32, + "probability": 0.9777 + }, + { + "start": 2694.4, + "end": 2695.62, + "probability": 0.7346 + }, + { + "start": 2695.96, + "end": 2698.34, + "probability": 0.8081 + }, + { + "start": 2698.72, + "end": 2699.32, + "probability": 0.5641 + }, + { + "start": 2699.46, + "end": 2700.14, + "probability": 0.8037 + }, + { + "start": 2700.32, + "end": 2701.04, + "probability": 0.9037 + }, + { + "start": 2704.3, + "end": 2705.6, + "probability": 0.6889 + }, + { + "start": 2705.74, + "end": 2709.46, + "probability": 0.9418 + }, + { + "start": 2710.32, + "end": 2711.14, + "probability": 0.8371 + }, + { + "start": 2711.16, + "end": 2711.96, + "probability": 0.9518 + }, + { + "start": 2712.12, + "end": 2713.32, + "probability": 0.9336 + }, + { + "start": 2713.6, + "end": 2715.76, + "probability": 0.9399 + }, + { + "start": 2716.14, + "end": 2716.72, + "probability": 0.4724 + }, + { + "start": 2716.76, + "end": 2718.08, + "probability": 0.7805 + }, + { + "start": 2718.42, + "end": 2719.04, + "probability": 0.6625 + }, + { + "start": 2719.2, + "end": 2719.76, + "probability": 0.5456 + }, + { + "start": 2720.18, + "end": 2721.16, + "probability": 0.909 + }, + { + "start": 2721.34, + "end": 2722.88, + "probability": 0.8814 + }, + { + "start": 2723.5, + "end": 2726.34, + "probability": 0.6206 + }, + { + "start": 2726.64, + "end": 2731.04, + "probability": 0.9755 + }, + { + "start": 2731.22, + "end": 2732.28, + "probability": 0.8782 + }, + { + "start": 2732.4, + "end": 2734.9, + "probability": 0.703 + }, + { + "start": 2734.94, + "end": 2735.16, + "probability": 0.7326 + }, + { + "start": 2735.52, + "end": 2738.16, + "probability": 0.9395 + }, + { + "start": 2738.56, + "end": 2739.79, + "probability": 0.996 + }, + { + "start": 2740.58, + "end": 2745.2, + "probability": 0.9551 + }, + { + "start": 2745.2, + "end": 2749.46, + "probability": 0.634 + }, + { + "start": 2750.66, + "end": 2751.92, + "probability": 0.5815 + }, + { + "start": 2752.02, + "end": 2753.56, + "probability": 0.6115 + }, + { + "start": 2753.84, + "end": 2755.76, + "probability": 0.8876 + }, + { + "start": 2755.88, + "end": 2757.78, + "probability": 0.8015 + }, + { + "start": 2758.12, + "end": 2759.06, + "probability": 0.6708 + }, + { + "start": 2759.1, + "end": 2759.56, + "probability": 0.9125 + }, + { + "start": 2759.64, + "end": 2762.16, + "probability": 0.9741 + }, + { + "start": 2762.84, + "end": 2764.84, + "probability": 0.8077 + }, + { + "start": 2764.94, + "end": 2765.62, + "probability": 0.9247 + }, + { + "start": 2765.7, + "end": 2767.18, + "probability": 0.9383 + }, + { + "start": 2767.54, + "end": 2770.42, + "probability": 0.8291 + }, + { + "start": 2770.48, + "end": 2774.06, + "probability": 0.9689 + }, + { + "start": 2774.16, + "end": 2775.94, + "probability": 0.6725 + }, + { + "start": 2776.72, + "end": 2778.82, + "probability": 0.9609 + }, + { + "start": 2778.92, + "end": 2781.72, + "probability": 0.5251 + }, + { + "start": 2781.8, + "end": 2782.29, + "probability": 0.2689 + }, + { + "start": 2782.4, + "end": 2786.24, + "probability": 0.6993 + }, + { + "start": 2786.32, + "end": 2791.42, + "probability": 0.7312 + }, + { + "start": 2791.78, + "end": 2792.5, + "probability": 0.6364 + }, + { + "start": 2792.6, + "end": 2792.92, + "probability": 0.8751 + }, + { + "start": 2792.98, + "end": 2793.72, + "probability": 0.8375 + }, + { + "start": 2793.72, + "end": 2800.64, + "probability": 0.9712 + }, + { + "start": 2800.64, + "end": 2800.9, + "probability": 0.7755 + }, + { + "start": 2801.12, + "end": 2803.12, + "probability": 0.6625 + }, + { + "start": 2803.24, + "end": 2807.34, + "probability": 0.8231 + }, + { + "start": 2808.13, + "end": 2812.52, + "probability": 0.9115 + }, + { + "start": 2812.68, + "end": 2813.78, + "probability": 0.7146 + }, + { + "start": 2813.88, + "end": 2815.64, + "probability": 0.9927 + }, + { + "start": 2815.8, + "end": 2817.12, + "probability": 0.9027 + }, + { + "start": 2817.82, + "end": 2821.34, + "probability": 0.9146 + }, + { + "start": 2821.52, + "end": 2822.02, + "probability": 0.9172 + }, + { + "start": 2822.12, + "end": 2825.68, + "probability": 0.4841 + }, + { + "start": 2825.8, + "end": 2828.82, + "probability": 0.9863 + }, + { + "start": 2828.82, + "end": 2833.0, + "probability": 0.9965 + }, + { + "start": 2833.92, + "end": 2835.96, + "probability": 0.9308 + }, + { + "start": 2836.74, + "end": 2837.34, + "probability": 0.8289 + }, + { + "start": 2837.54, + "end": 2842.64, + "probability": 0.989 + }, + { + "start": 2843.62, + "end": 2848.46, + "probability": 0.973 + }, + { + "start": 2851.16, + "end": 2855.82, + "probability": 0.71 + }, + { + "start": 2856.38, + "end": 2859.04, + "probability": 0.9974 + }, + { + "start": 2859.16, + "end": 2860.6, + "probability": 0.6965 + }, + { + "start": 2860.88, + "end": 2863.42, + "probability": 0.7419 + }, + { + "start": 2863.78, + "end": 2865.12, + "probability": 0.4157 + }, + { + "start": 2866.56, + "end": 2866.72, + "probability": 0.317 + }, + { + "start": 2866.88, + "end": 2866.96, + "probability": 0.7009 + }, + { + "start": 2867.18, + "end": 2868.72, + "probability": 0.942 + }, + { + "start": 2868.84, + "end": 2869.32, + "probability": 0.6312 + }, + { + "start": 2869.38, + "end": 2871.88, + "probability": 0.868 + }, + { + "start": 2871.96, + "end": 2875.1, + "probability": 0.6942 + }, + { + "start": 2875.66, + "end": 2879.94, + "probability": 0.9865 + }, + { + "start": 2880.08, + "end": 2881.78, + "probability": 0.7787 + }, + { + "start": 2882.1, + "end": 2884.54, + "probability": 0.9908 + }, + { + "start": 2885.32, + "end": 2888.6, + "probability": 0.9617 + }, + { + "start": 2889.38, + "end": 2892.96, + "probability": 0.9839 + }, + { + "start": 2892.96, + "end": 2895.58, + "probability": 0.9947 + }, + { + "start": 2896.58, + "end": 2897.96, + "probability": 0.7317 + }, + { + "start": 2898.16, + "end": 2901.58, + "probability": 0.926 + }, + { + "start": 2902.7, + "end": 2908.78, + "probability": 0.9138 + }, + { + "start": 2909.1, + "end": 2913.04, + "probability": 0.986 + }, + { + "start": 2913.92, + "end": 2914.66, + "probability": 0.7481 + }, + { + "start": 2914.9, + "end": 2916.06, + "probability": 0.9578 + }, + { + "start": 2916.22, + "end": 2922.96, + "probability": 0.8734 + }, + { + "start": 2923.48, + "end": 2924.7, + "probability": 0.5787 + }, + { + "start": 2926.86, + "end": 2927.02, + "probability": 0.2619 + }, + { + "start": 2927.08, + "end": 2928.4, + "probability": 0.2402 + }, + { + "start": 2928.4, + "end": 2928.4, + "probability": 0.347 + }, + { + "start": 2928.4, + "end": 2928.4, + "probability": 0.0729 + }, + { + "start": 2928.4, + "end": 2929.06, + "probability": 0.6612 + }, + { + "start": 2929.2, + "end": 2932.8, + "probability": 0.7942 + }, + { + "start": 2932.96, + "end": 2935.28, + "probability": 0.9521 + }, + { + "start": 2936.8, + "end": 2937.5, + "probability": 0.8826 + }, + { + "start": 2937.74, + "end": 2938.26, + "probability": 0.6009 + }, + { + "start": 2938.32, + "end": 2941.44, + "probability": 0.8975 + }, + { + "start": 2941.54, + "end": 2942.18, + "probability": 0.4582 + }, + { + "start": 2942.36, + "end": 2945.0, + "probability": 0.6914 + }, + { + "start": 2945.42, + "end": 2945.98, + "probability": 0.7935 + }, + { + "start": 2946.2, + "end": 2948.08, + "probability": 0.663 + }, + { + "start": 2948.46, + "end": 2950.78, + "probability": 0.9739 + }, + { + "start": 2951.58, + "end": 2953.16, + "probability": 0.5984 + }, + { + "start": 2953.16, + "end": 2953.3, + "probability": 0.1956 + }, + { + "start": 2954.06, + "end": 2956.42, + "probability": 0.5876 + }, + { + "start": 2956.48, + "end": 2957.94, + "probability": 0.7334 + }, + { + "start": 2957.98, + "end": 2962.04, + "probability": 0.826 + }, + { + "start": 2962.16, + "end": 2963.0, + "probability": 0.815 + }, + { + "start": 2964.0, + "end": 2964.26, + "probability": 0.0723 + }, + { + "start": 2964.26, + "end": 2964.7, + "probability": 0.4862 + }, + { + "start": 2964.78, + "end": 2965.08, + "probability": 0.8542 + }, + { + "start": 2965.38, + "end": 2965.86, + "probability": 0.4576 + }, + { + "start": 2965.86, + "end": 2965.98, + "probability": 0.8529 + }, + { + "start": 2966.86, + "end": 2968.16, + "probability": 0.9886 + }, + { + "start": 2969.28, + "end": 2970.22, + "probability": 0.5787 + }, + { + "start": 2970.58, + "end": 2971.9, + "probability": 0.9028 + }, + { + "start": 2971.96, + "end": 2973.42, + "probability": 0.9397 + }, + { + "start": 2973.44, + "end": 2974.34, + "probability": 0.6865 + }, + { + "start": 2974.62, + "end": 2975.96, + "probability": 0.6711 + }, + { + "start": 2976.26, + "end": 2980.56, + "probability": 0.9166 + }, + { + "start": 2981.04, + "end": 2987.04, + "probability": 0.89 + }, + { + "start": 2987.16, + "end": 2988.08, + "probability": 0.6517 + }, + { + "start": 2988.18, + "end": 2988.93, + "probability": 0.9388 + }, + { + "start": 2989.32, + "end": 2995.78, + "probability": 0.7611 + }, + { + "start": 2996.06, + "end": 2998.6, + "probability": 0.8919 + }, + { + "start": 2998.76, + "end": 3000.5, + "probability": 0.8404 + }, + { + "start": 3003.5, + "end": 3003.52, + "probability": 0.0535 + }, + { + "start": 3003.52, + "end": 3007.6, + "probability": 0.8874 + }, + { + "start": 3007.6, + "end": 3014.06, + "probability": 0.8727 + }, + { + "start": 3014.6, + "end": 3015.42, + "probability": 0.5111 + }, + { + "start": 3015.44, + "end": 3018.94, + "probability": 0.835 + }, + { + "start": 3019.22, + "end": 3019.86, + "probability": 0.8398 + }, + { + "start": 3020.16, + "end": 3025.42, + "probability": 0.9403 + }, + { + "start": 3025.78, + "end": 3026.44, + "probability": 0.9527 + }, + { + "start": 3026.54, + "end": 3026.92, + "probability": 0.8185 + }, + { + "start": 3027.44, + "end": 3028.74, + "probability": 0.8594 + }, + { + "start": 3029.3, + "end": 3033.82, + "probability": 0.9437 + }, + { + "start": 3035.32, + "end": 3035.8, + "probability": 0.14 + }, + { + "start": 3035.82, + "end": 3036.74, + "probability": 0.6686 + }, + { + "start": 3036.82, + "end": 3038.86, + "probability": 0.8782 + }, + { + "start": 3039.06, + "end": 3042.16, + "probability": 0.8977 + }, + { + "start": 3042.52, + "end": 3042.84, + "probability": 0.6181 + }, + { + "start": 3042.98, + "end": 3044.74, + "probability": 0.704 + }, + { + "start": 3045.3, + "end": 3047.34, + "probability": 0.6881 + }, + { + "start": 3048.28, + "end": 3048.9, + "probability": 0.8426 + }, + { + "start": 3048.96, + "end": 3054.3, + "probability": 0.9826 + }, + { + "start": 3054.94, + "end": 3055.56, + "probability": 0.1783 + }, + { + "start": 3055.56, + "end": 3058.8, + "probability": 0.9088 + }, + { + "start": 3058.84, + "end": 3059.53, + "probability": 0.5497 + }, + { + "start": 3059.76, + "end": 3062.42, + "probability": 0.7911 + }, + { + "start": 3062.58, + "end": 3063.74, + "probability": 0.9582 + }, + { + "start": 3064.04, + "end": 3064.3, + "probability": 0.742 + }, + { + "start": 3064.96, + "end": 3066.12, + "probability": 0.5455 + }, + { + "start": 3066.24, + "end": 3072.34, + "probability": 0.7264 + }, + { + "start": 3073.94, + "end": 3074.83, + "probability": 0.5659 + }, + { + "start": 3076.04, + "end": 3078.98, + "probability": 0.7359 + }, + { + "start": 3079.04, + "end": 3081.5, + "probability": 0.86 + }, + { + "start": 3081.82, + "end": 3083.02, + "probability": 0.6563 + }, + { + "start": 3083.5, + "end": 3090.16, + "probability": 0.9162 + }, + { + "start": 3090.4, + "end": 3090.82, + "probability": 0.7758 + }, + { + "start": 3091.2, + "end": 3095.1, + "probability": 0.8239 + }, + { + "start": 3095.46, + "end": 3099.04, + "probability": 0.9934 + }, + { + "start": 3099.04, + "end": 3102.62, + "probability": 0.9993 + }, + { + "start": 3103.12, + "end": 3109.2, + "probability": 0.9078 + }, + { + "start": 3109.32, + "end": 3110.44, + "probability": 0.8665 + }, + { + "start": 3110.58, + "end": 3112.08, + "probability": 0.6675 + }, + { + "start": 3112.38, + "end": 3116.5, + "probability": 0.9632 + }, + { + "start": 3117.3, + "end": 3118.2, + "probability": 0.6304 + }, + { + "start": 3119.02, + "end": 3120.6, + "probability": 0.2238 + }, + { + "start": 3120.6, + "end": 3125.02, + "probability": 0.8729 + }, + { + "start": 3125.02, + "end": 3130.14, + "probability": 0.976 + }, + { + "start": 3130.7, + "end": 3133.5, + "probability": 0.9672 + }, + { + "start": 3133.56, + "end": 3137.1, + "probability": 0.9707 + }, + { + "start": 3137.44, + "end": 3140.22, + "probability": 0.9833 + }, + { + "start": 3140.9, + "end": 3143.54, + "probability": 0.9747 + }, + { + "start": 3143.78, + "end": 3145.18, + "probability": 0.833 + }, + { + "start": 3146.2, + "end": 3147.12, + "probability": 0.8691 + }, + { + "start": 3148.04, + "end": 3153.46, + "probability": 0.9941 + }, + { + "start": 3153.58, + "end": 3154.86, + "probability": 0.6145 + }, + { + "start": 3155.84, + "end": 3159.58, + "probability": 0.9484 + }, + { + "start": 3159.58, + "end": 3165.0, + "probability": 0.7358 + }, + { + "start": 3165.3, + "end": 3170.3, + "probability": 0.8894 + }, + { + "start": 3170.56, + "end": 3171.18, + "probability": 0.5016 + }, + { + "start": 3171.18, + "end": 3172.22, + "probability": 0.7384 + }, + { + "start": 3172.28, + "end": 3172.58, + "probability": 0.5995 + }, + { + "start": 3172.58, + "end": 3173.54, + "probability": 0.9082 + }, + { + "start": 3173.54, + "end": 3173.88, + "probability": 0.8966 + }, + { + "start": 3174.6, + "end": 3174.74, + "probability": 0.8916 + }, + { + "start": 3175.04, + "end": 3177.26, + "probability": 0.9594 + }, + { + "start": 3177.32, + "end": 3179.44, + "probability": 0.9941 + }, + { + "start": 3179.5, + "end": 3183.52, + "probability": 0.6715 + }, + { + "start": 3184.28, + "end": 3185.46, + "probability": 0.9388 + }, + { + "start": 3186.14, + "end": 3187.46, + "probability": 0.9634 + }, + { + "start": 3188.06, + "end": 3188.84, + "probability": 0.7341 + }, + { + "start": 3189.4, + "end": 3191.06, + "probability": 0.9958 + }, + { + "start": 3192.24, + "end": 3193.26, + "probability": 0.8128 + }, + { + "start": 3193.5, + "end": 3194.18, + "probability": 0.9299 + }, + { + "start": 3194.24, + "end": 3194.77, + "probability": 0.958 + }, + { + "start": 3195.18, + "end": 3199.0, + "probability": 0.9372 + }, + { + "start": 3199.0, + "end": 3201.98, + "probability": 0.9967 + }, + { + "start": 3202.44, + "end": 3204.3, + "probability": 0.9974 + }, + { + "start": 3204.58, + "end": 3205.94, + "probability": 0.868 + }, + { + "start": 3206.72, + "end": 3209.54, + "probability": 0.9724 + }, + { + "start": 3209.54, + "end": 3215.24, + "probability": 0.9862 + }, + { + "start": 3215.7, + "end": 3223.02, + "probability": 0.9365 + }, + { + "start": 3223.22, + "end": 3225.24, + "probability": 0.9901 + }, + { + "start": 3225.32, + "end": 3228.53, + "probability": 0.7945 + }, + { + "start": 3229.38, + "end": 3231.86, + "probability": 0.9799 + }, + { + "start": 3232.36, + "end": 3237.24, + "probability": 0.9878 + }, + { + "start": 3237.76, + "end": 3241.28, + "probability": 0.5443 + }, + { + "start": 3241.32, + "end": 3242.14, + "probability": 0.6084 + }, + { + "start": 3242.16, + "end": 3245.38, + "probability": 0.4716 + }, + { + "start": 3245.38, + "end": 3247.04, + "probability": 0.4832 + }, + { + "start": 3247.04, + "end": 3249.64, + "probability": 0.7831 + }, + { + "start": 3249.92, + "end": 3250.32, + "probability": 0.6616 + }, + { + "start": 3250.42, + "end": 3251.32, + "probability": 0.6831 + }, + { + "start": 3251.46, + "end": 3253.81, + "probability": 0.8239 + }, + { + "start": 3254.24, + "end": 3255.2, + "probability": 0.6424 + }, + { + "start": 3255.26, + "end": 3255.68, + "probability": 0.5504 + }, + { + "start": 3255.72, + "end": 3256.52, + "probability": 0.6662 + }, + { + "start": 3256.52, + "end": 3256.64, + "probability": 0.1373 + }, + { + "start": 3256.64, + "end": 3258.62, + "probability": 0.9877 + }, + { + "start": 3258.72, + "end": 3261.36, + "probability": 0.9931 + }, + { + "start": 3261.5, + "end": 3263.02, + "probability": 0.9874 + }, + { + "start": 3263.56, + "end": 3265.1, + "probability": 0.9751 + }, + { + "start": 3265.26, + "end": 3266.04, + "probability": 0.7216 + }, + { + "start": 3266.22, + "end": 3267.86, + "probability": 0.7344 + }, + { + "start": 3267.86, + "end": 3269.6, + "probability": 0.7908 + }, + { + "start": 3269.62, + "end": 3272.9, + "probability": 0.4984 + }, + { + "start": 3273.02, + "end": 3273.02, + "probability": 0.6489 + }, + { + "start": 3273.02, + "end": 3273.38, + "probability": 0.4295 + }, + { + "start": 3273.44, + "end": 3274.58, + "probability": 0.6901 + }, + { + "start": 3274.96, + "end": 3277.84, + "probability": 0.9194 + }, + { + "start": 3278.02, + "end": 3280.68, + "probability": 0.8445 + }, + { + "start": 3281.0, + "end": 3283.48, + "probability": 0.9968 + }, + { + "start": 3283.48, + "end": 3283.68, + "probability": 0.5962 + }, + { + "start": 3283.88, + "end": 3288.12, + "probability": 0.9865 + }, + { + "start": 3288.12, + "end": 3291.34, + "probability": 0.9834 + }, + { + "start": 3291.38, + "end": 3291.86, + "probability": 0.6078 + }, + { + "start": 3291.92, + "end": 3292.14, + "probability": 0.01 + }, + { + "start": 3292.14, + "end": 3292.78, + "probability": 0.7385 + }, + { + "start": 3293.45, + "end": 3295.46, + "probability": 0.3939 + }, + { + "start": 3295.46, + "end": 3295.74, + "probability": 0.7174 + }, + { + "start": 3295.74, + "end": 3295.88, + "probability": 0.596 + }, + { + "start": 3295.92, + "end": 3297.46, + "probability": 0.7195 + }, + { + "start": 3297.7, + "end": 3298.36, + "probability": 0.8684 + }, + { + "start": 3298.72, + "end": 3300.3, + "probability": 0.6262 + }, + { + "start": 3300.4, + "end": 3300.4, + "probability": 0.0286 + }, + { + "start": 3300.4, + "end": 3300.56, + "probability": 0.5633 + }, + { + "start": 3300.78, + "end": 3300.78, + "probability": 0.0012 + }, + { + "start": 3300.78, + "end": 3300.78, + "probability": 0.6058 + }, + { + "start": 3300.8, + "end": 3301.12, + "probability": 0.712 + }, + { + "start": 3301.12, + "end": 3301.46, + "probability": 0.4898 + }, + { + "start": 3301.48, + "end": 3304.92, + "probability": 0.7784 + }, + { + "start": 3305.02, + "end": 3306.54, + "probability": 0.8972 + }, + { + "start": 3306.56, + "end": 3307.62, + "probability": 0.5006 + }, + { + "start": 3307.74, + "end": 3307.76, + "probability": 0.6089 + }, + { + "start": 3307.76, + "end": 3312.07, + "probability": 0.9946 + }, + { + "start": 3312.46, + "end": 3316.92, + "probability": 0.92 + }, + { + "start": 3317.32, + "end": 3322.22, + "probability": 0.8331 + }, + { + "start": 3322.38, + "end": 3323.59, + "probability": 0.9683 + }, + { + "start": 3323.82, + "end": 3324.96, + "probability": 0.8916 + }, + { + "start": 3325.24, + "end": 3329.82, + "probability": 0.978 + }, + { + "start": 3329.88, + "end": 3334.82, + "probability": 0.9963 + }, + { + "start": 3334.98, + "end": 3337.84, + "probability": 0.7891 + }, + { + "start": 3337.96, + "end": 3339.04, + "probability": 0.7402 + }, + { + "start": 3339.14, + "end": 3339.74, + "probability": 0.7152 + }, + { + "start": 3339.96, + "end": 3340.72, + "probability": 0.6232 + }, + { + "start": 3340.84, + "end": 3341.2, + "probability": 0.8651 + }, + { + "start": 3341.36, + "end": 3341.88, + "probability": 0.9851 + }, + { + "start": 3342.14, + "end": 3343.36, + "probability": 0.2313 + }, + { + "start": 3343.36, + "end": 3343.78, + "probability": 0.3146 + }, + { + "start": 3343.96, + "end": 3344.44, + "probability": 0.1925 + }, + { + "start": 3344.76, + "end": 3345.0, + "probability": 0.2338 + }, + { + "start": 3345.08, + "end": 3345.48, + "probability": 0.5697 + }, + { + "start": 3345.54, + "end": 3345.58, + "probability": 0.523 + }, + { + "start": 3345.58, + "end": 3346.08, + "probability": 0.642 + }, + { + "start": 3346.12, + "end": 3346.44, + "probability": 0.6443 + }, + { + "start": 3346.58, + "end": 3347.72, + "probability": 0.711 + }, + { + "start": 3347.78, + "end": 3348.82, + "probability": 0.745 + }, + { + "start": 3348.9, + "end": 3349.62, + "probability": 0.2475 + }, + { + "start": 3350.3, + "end": 3356.2, + "probability": 0.9868 + }, + { + "start": 3356.58, + "end": 3357.9, + "probability": 0.9108 + }, + { + "start": 3358.26, + "end": 3362.3, + "probability": 0.9823 + }, + { + "start": 3362.36, + "end": 3365.7, + "probability": 0.9401 + }, + { + "start": 3365.94, + "end": 3369.54, + "probability": 0.6647 + }, + { + "start": 3369.68, + "end": 3371.06, + "probability": 0.897 + }, + { + "start": 3371.24, + "end": 3373.44, + "probability": 0.7675 + }, + { + "start": 3373.64, + "end": 3374.24, + "probability": 0.3741 + }, + { + "start": 3374.3, + "end": 3374.56, + "probability": 0.2911 + }, + { + "start": 3374.56, + "end": 3375.26, + "probability": 0.5571 + }, + { + "start": 3375.36, + "end": 3376.08, + "probability": 0.7029 + }, + { + "start": 3376.56, + "end": 3378.0, + "probability": 0.3776 + }, + { + "start": 3378.12, + "end": 3379.58, + "probability": 0.8663 + }, + { + "start": 3379.94, + "end": 3381.38, + "probability": 0.265 + }, + { + "start": 3381.46, + "end": 3382.63, + "probability": 0.1702 + }, + { + "start": 3383.46, + "end": 3385.08, + "probability": 0.4587 + }, + { + "start": 3385.08, + "end": 3385.9, + "probability": 0.3208 + }, + { + "start": 3385.9, + "end": 3387.06, + "probability": 0.4275 + }, + { + "start": 3387.16, + "end": 3387.68, + "probability": 0.1433 + }, + { + "start": 3387.68, + "end": 3387.74, + "probability": 0.2834 + }, + { + "start": 3387.76, + "end": 3388.06, + "probability": 0.5067 + }, + { + "start": 3388.06, + "end": 3388.58, + "probability": 0.3475 + }, + { + "start": 3388.58, + "end": 3389.28, + "probability": 0.7622 + }, + { + "start": 3389.28, + "end": 3390.84, + "probability": 0.8521 + }, + { + "start": 3390.92, + "end": 3392.12, + "probability": 0.7608 + }, + { + "start": 3392.18, + "end": 3393.34, + "probability": 0.3306 + }, + { + "start": 3393.94, + "end": 3394.9, + "probability": 0.4622 + }, + { + "start": 3394.94, + "end": 3400.55, + "probability": 0.976 + }, + { + "start": 3401.58, + "end": 3403.58, + "probability": 0.5543 + }, + { + "start": 3403.7, + "end": 3404.43, + "probability": 0.7654 + }, + { + "start": 3405.43, + "end": 3408.04, + "probability": 0.6406 + }, + { + "start": 3409.26, + "end": 3411.02, + "probability": 0.917 + }, + { + "start": 3411.26, + "end": 3412.38, + "probability": 0.7979 + }, + { + "start": 3413.42, + "end": 3416.18, + "probability": 0.9581 + }, + { + "start": 3416.46, + "end": 3416.86, + "probability": 0.8674 + }, + { + "start": 3417.0, + "end": 3417.72, + "probability": 0.8621 + }, + { + "start": 3418.16, + "end": 3419.42, + "probability": 0.8295 + }, + { + "start": 3420.2, + "end": 3422.88, + "probability": 0.9628 + }, + { + "start": 3423.26, + "end": 3430.56, + "probability": 0.9634 + }, + { + "start": 3431.8, + "end": 3433.26, + "probability": 0.9836 + }, + { + "start": 3433.5, + "end": 3434.24, + "probability": 0.677 + }, + { + "start": 3434.34, + "end": 3438.05, + "probability": 0.8889 + }, + { + "start": 3438.1, + "end": 3444.32, + "probability": 0.8695 + }, + { + "start": 3444.78, + "end": 3446.26, + "probability": 0.6678 + }, + { + "start": 3446.94, + "end": 3448.36, + "probability": 0.738 + }, + { + "start": 3448.96, + "end": 3450.16, + "probability": 0.8222 + }, + { + "start": 3450.82, + "end": 3452.7, + "probability": 0.8512 + }, + { + "start": 3453.48, + "end": 3459.82, + "probability": 0.9877 + }, + { + "start": 3460.52, + "end": 3463.66, + "probability": 0.9361 + }, + { + "start": 3464.3, + "end": 3470.62, + "probability": 0.9731 + }, + { + "start": 3470.88, + "end": 3474.98, + "probability": 0.981 + }, + { + "start": 3475.64, + "end": 3477.58, + "probability": 0.9309 + }, + { + "start": 3477.7, + "end": 3479.84, + "probability": 0.9974 + }, + { + "start": 3479.9, + "end": 3481.14, + "probability": 0.7899 + }, + { + "start": 3481.5, + "end": 3482.2, + "probability": 0.7612 + }, + { + "start": 3482.3, + "end": 3483.74, + "probability": 0.9073 + }, + { + "start": 3484.3, + "end": 3486.28, + "probability": 0.9868 + }, + { + "start": 3486.76, + "end": 3490.22, + "probability": 0.9759 + }, + { + "start": 3490.22, + "end": 3495.3, + "probability": 0.9459 + }, + { + "start": 3495.58, + "end": 3496.14, + "probability": 0.5446 + }, + { + "start": 3496.28, + "end": 3497.06, + "probability": 0.9021 + }, + { + "start": 3497.88, + "end": 3498.06, + "probability": 0.7 + }, + { + "start": 3498.06, + "end": 3499.2, + "probability": 0.7185 + }, + { + "start": 3499.48, + "end": 3504.26, + "probability": 0.9033 + }, + { + "start": 3504.48, + "end": 3505.26, + "probability": 0.7261 + }, + { + "start": 3506.6, + "end": 3509.46, + "probability": 0.6073 + }, + { + "start": 3510.56, + "end": 3512.06, + "probability": 0.9204 + }, + { + "start": 3512.72, + "end": 3514.5, + "probability": 0.6446 + }, + { + "start": 3514.96, + "end": 3515.4, + "probability": 0.9271 + }, + { + "start": 3515.46, + "end": 3518.66, + "probability": 0.9386 + }, + { + "start": 3519.7, + "end": 3520.16, + "probability": 0.2035 + }, + { + "start": 3520.36, + "end": 3526.16, + "probability": 0.9941 + }, + { + "start": 3526.24, + "end": 3527.7, + "probability": 0.9543 + }, + { + "start": 3527.72, + "end": 3528.14, + "probability": 0.6628 + }, + { + "start": 3528.28, + "end": 3531.72, + "probability": 0.9068 + }, + { + "start": 3532.12, + "end": 3533.6, + "probability": 0.905 + }, + { + "start": 3533.74, + "end": 3533.94, + "probability": 0.2238 + }, + { + "start": 3534.92, + "end": 3535.7, + "probability": 0.6853 + }, + { + "start": 3535.7, + "end": 3536.22, + "probability": 0.856 + }, + { + "start": 3536.46, + "end": 3538.22, + "probability": 0.9661 + }, + { + "start": 3538.54, + "end": 3542.04, + "probability": 0.7573 + }, + { + "start": 3542.99, + "end": 3545.86, + "probability": 0.9394 + }, + { + "start": 3546.3, + "end": 3546.56, + "probability": 0.8374 + }, + { + "start": 3546.82, + "end": 3548.6, + "probability": 0.9806 + }, + { + "start": 3548.76, + "end": 3549.66, + "probability": 0.8191 + }, + { + "start": 3551.44, + "end": 3555.16, + "probability": 0.9077 + }, + { + "start": 3555.94, + "end": 3558.54, + "probability": 0.7115 + }, + { + "start": 3558.68, + "end": 3562.78, + "probability": 0.9867 + }, + { + "start": 3562.99, + "end": 3566.74, + "probability": 0.8277 + }, + { + "start": 3566.84, + "end": 3569.66, + "probability": 0.9774 + }, + { + "start": 3569.8, + "end": 3573.66, + "probability": 0.9336 + }, + { + "start": 3574.12, + "end": 3577.66, + "probability": 0.7976 + }, + { + "start": 3577.88, + "end": 3579.9, + "probability": 0.8669 + }, + { + "start": 3580.64, + "end": 3583.76, + "probability": 0.7941 + }, + { + "start": 3584.16, + "end": 3588.18, + "probability": 0.9943 + }, + { + "start": 3588.5, + "end": 3589.7, + "probability": 0.8392 + }, + { + "start": 3589.72, + "end": 3591.55, + "probability": 0.912 + }, + { + "start": 3592.28, + "end": 3596.5, + "probability": 0.9893 + }, + { + "start": 3596.5, + "end": 3602.2, + "probability": 0.8512 + }, + { + "start": 3603.54, + "end": 3609.11, + "probability": 0.9151 + }, + { + "start": 3609.66, + "end": 3610.06, + "probability": 0.6902 + }, + { + "start": 3610.12, + "end": 3610.71, + "probability": 0.9927 + }, + { + "start": 3610.98, + "end": 3612.4, + "probability": 0.9719 + }, + { + "start": 3612.44, + "end": 3613.34, + "probability": 0.9695 + }, + { + "start": 3613.6, + "end": 3617.56, + "probability": 0.6992 + }, + { + "start": 3617.64, + "end": 3618.76, + "probability": 0.8311 + }, + { + "start": 3619.6, + "end": 3622.16, + "probability": 0.9944 + }, + { + "start": 3622.94, + "end": 3623.58, + "probability": 0.6242 + }, + { + "start": 3623.96, + "end": 3625.54, + "probability": 0.385 + }, + { + "start": 3625.66, + "end": 3626.01, + "probability": 0.8687 + }, + { + "start": 3626.3, + "end": 3629.82, + "probability": 0.9493 + }, + { + "start": 3630.0, + "end": 3633.34, + "probability": 0.9285 + }, + { + "start": 3633.5, + "end": 3634.24, + "probability": 0.7066 + }, + { + "start": 3634.42, + "end": 3635.17, + "probability": 0.9597 + }, + { + "start": 3635.42, + "end": 3637.82, + "probability": 0.9637 + }, + { + "start": 3637.94, + "end": 3638.12, + "probability": 0.214 + }, + { + "start": 3638.52, + "end": 3644.28, + "probability": 0.9827 + }, + { + "start": 3644.44, + "end": 3648.32, + "probability": 0.9734 + }, + { + "start": 3648.7, + "end": 3651.52, + "probability": 0.9877 + }, + { + "start": 3651.66, + "end": 3655.14, + "probability": 0.9827 + }, + { + "start": 3656.38, + "end": 3657.84, + "probability": 0.4687 + }, + { + "start": 3658.24, + "end": 3659.52, + "probability": 0.8443 + }, + { + "start": 3659.94, + "end": 3665.42, + "probability": 0.9638 + }, + { + "start": 3665.58, + "end": 3669.9, + "probability": 0.9126 + }, + { + "start": 3670.24, + "end": 3671.18, + "probability": 0.6983 + }, + { + "start": 3671.32, + "end": 3671.68, + "probability": 0.7527 + }, + { + "start": 3671.76, + "end": 3673.6, + "probability": 0.8469 + }, + { + "start": 3673.94, + "end": 3675.66, + "probability": 0.8748 + }, + { + "start": 3675.86, + "end": 3678.52, + "probability": 0.5137 + }, + { + "start": 3679.3, + "end": 3679.44, + "probability": 0.0169 + }, + { + "start": 3679.44, + "end": 3679.88, + "probability": 0.3801 + }, + { + "start": 3680.18, + "end": 3681.28, + "probability": 0.4452 + }, + { + "start": 3681.7, + "end": 3682.58, + "probability": 0.4352 + }, + { + "start": 3682.86, + "end": 3683.08, + "probability": 0.6587 + }, + { + "start": 3683.42, + "end": 3684.88, + "probability": 0.7115 + }, + { + "start": 3684.96, + "end": 3685.64, + "probability": 0.921 + }, + { + "start": 3685.66, + "end": 3686.6, + "probability": 0.8649 + }, + { + "start": 3687.32, + "end": 3689.18, + "probability": 0.8918 + }, + { + "start": 3689.34, + "end": 3691.8, + "probability": 0.9932 + }, + { + "start": 3692.36, + "end": 3692.36, + "probability": 0.3942 + }, + { + "start": 3692.36, + "end": 3692.36, + "probability": 0.2094 + }, + { + "start": 3692.36, + "end": 3693.41, + "probability": 0.5231 + }, + { + "start": 3693.48, + "end": 3694.66, + "probability": 0.6195 + }, + { + "start": 3696.18, + "end": 3696.8, + "probability": 0.2662 + }, + { + "start": 3696.8, + "end": 3696.84, + "probability": 0.0324 + }, + { + "start": 3696.84, + "end": 3697.8, + "probability": 0.3296 + }, + { + "start": 3697.94, + "end": 3698.48, + "probability": 0.2932 + }, + { + "start": 3698.48, + "end": 3703.26, + "probability": 0.9946 + }, + { + "start": 3703.86, + "end": 3710.18, + "probability": 0.9503 + }, + { + "start": 3713.36, + "end": 3714.34, + "probability": 0.4983 + }, + { + "start": 3714.88, + "end": 3715.24, + "probability": 0.4134 + }, + { + "start": 3715.24, + "end": 3718.06, + "probability": 0.9958 + }, + { + "start": 3718.06, + "end": 3722.08, + "probability": 0.9547 + }, + { + "start": 3722.82, + "end": 3725.64, + "probability": 0.8567 + }, + { + "start": 3726.2, + "end": 3727.18, + "probability": 0.9004 + }, + { + "start": 3727.65, + "end": 3730.34, + "probability": 0.8619 + }, + { + "start": 3730.46, + "end": 3732.28, + "probability": 0.9826 + }, + { + "start": 3733.34, + "end": 3735.92, + "probability": 0.9699 + }, + { + "start": 3736.3, + "end": 3738.08, + "probability": 0.9825 + }, + { + "start": 3738.28, + "end": 3738.74, + "probability": 0.6611 + }, + { + "start": 3738.92, + "end": 3740.86, + "probability": 0.9916 + }, + { + "start": 3741.78, + "end": 3742.86, + "probability": 0.5496 + }, + { + "start": 3742.92, + "end": 3743.36, + "probability": 0.6934 + }, + { + "start": 3743.48, + "end": 3747.04, + "probability": 0.9981 + }, + { + "start": 3747.08, + "end": 3749.14, + "probability": 0.9925 + }, + { + "start": 3749.3, + "end": 3751.58, + "probability": 0.7348 + }, + { + "start": 3752.22, + "end": 3755.82, + "probability": 0.8473 + }, + { + "start": 3756.14, + "end": 3757.52, + "probability": 0.41 + }, + { + "start": 3757.98, + "end": 3762.22, + "probability": 0.9789 + }, + { + "start": 3762.88, + "end": 3763.2, + "probability": 0.6794 + }, + { + "start": 3764.78, + "end": 3766.7, + "probability": 0.7403 + }, + { + "start": 3767.45, + "end": 3771.5, + "probability": 0.9838 + }, + { + "start": 3771.5, + "end": 3779.78, + "probability": 0.9851 + }, + { + "start": 3779.78, + "end": 3783.34, + "probability": 0.9974 + }, + { + "start": 3784.24, + "end": 3784.64, + "probability": 0.4382 + }, + { + "start": 3784.94, + "end": 3790.72, + "probability": 0.9767 + }, + { + "start": 3790.98, + "end": 3796.1, + "probability": 0.9012 + }, + { + "start": 3796.44, + "end": 3797.54, + "probability": 0.7987 + }, + { + "start": 3797.6, + "end": 3800.88, + "probability": 0.9829 + }, + { + "start": 3801.48, + "end": 3808.66, + "probability": 0.9917 + }, + { + "start": 3808.78, + "end": 3811.14, + "probability": 0.9883 + }, + { + "start": 3811.4, + "end": 3813.52, + "probability": 0.9725 + }, + { + "start": 3813.8, + "end": 3817.84, + "probability": 0.9965 + }, + { + "start": 3817.84, + "end": 3820.46, + "probability": 0.9824 + }, + { + "start": 3821.2, + "end": 3821.62, + "probability": 0.7157 + }, + { + "start": 3821.66, + "end": 3823.6, + "probability": 0.8681 + }, + { + "start": 3823.62, + "end": 3825.16, + "probability": 0.7628 + }, + { + "start": 3825.18, + "end": 3825.82, + "probability": 0.8255 + }, + { + "start": 3826.1, + "end": 3830.98, + "probability": 0.9848 + }, + { + "start": 3831.34, + "end": 3831.74, + "probability": 0.5369 + }, + { + "start": 3832.92, + "end": 3836.0, + "probability": 0.9315 + }, + { + "start": 3844.6, + "end": 3848.26, + "probability": 0.2624 + }, + { + "start": 3848.82, + "end": 3849.84, + "probability": 0.7073 + }, + { + "start": 3850.9, + "end": 3852.46, + "probability": 0.8164 + }, + { + "start": 3852.54, + "end": 3854.62, + "probability": 0.7289 + }, + { + "start": 3854.84, + "end": 3857.32, + "probability": 0.156 + }, + { + "start": 3857.72, + "end": 3860.14, + "probability": 0.9409 + }, + { + "start": 3860.58, + "end": 3864.54, + "probability": 0.9959 + }, + { + "start": 3864.54, + "end": 3868.04, + "probability": 0.995 + }, + { + "start": 3868.52, + "end": 3871.92, + "probability": 0.73 + }, + { + "start": 3872.62, + "end": 3876.44, + "probability": 0.7943 + }, + { + "start": 3877.1, + "end": 3881.42, + "probability": 0.9985 + }, + { + "start": 3881.42, + "end": 3887.78, + "probability": 0.9985 + }, + { + "start": 3888.32, + "end": 3892.64, + "probability": 0.987 + }, + { + "start": 3892.98, + "end": 3896.8, + "probability": 0.9265 + }, + { + "start": 3897.58, + "end": 3903.88, + "probability": 0.8213 + }, + { + "start": 3904.42, + "end": 3905.3, + "probability": 0.8258 + }, + { + "start": 3905.48, + "end": 3906.96, + "probability": 0.9924 + }, + { + "start": 3907.28, + "end": 3912.68, + "probability": 0.9552 + }, + { + "start": 3913.2, + "end": 3917.32, + "probability": 0.9709 + }, + { + "start": 3918.14, + "end": 3922.6, + "probability": 0.6588 + }, + { + "start": 3922.74, + "end": 3925.6, + "probability": 0.9809 + }, + { + "start": 3925.96, + "end": 3930.2, + "probability": 0.9153 + }, + { + "start": 3930.7, + "end": 3932.75, + "probability": 0.9941 + }, + { + "start": 3933.48, + "end": 3937.14, + "probability": 0.9477 + }, + { + "start": 3937.66, + "end": 3941.06, + "probability": 0.8187 + }, + { + "start": 3941.1, + "end": 3943.96, + "probability": 0.8674 + }, + { + "start": 3944.34, + "end": 3945.1, + "probability": 0.9433 + }, + { + "start": 3945.18, + "end": 3949.52, + "probability": 0.9475 + }, + { + "start": 3949.76, + "end": 3951.6, + "probability": 0.6662 + }, + { + "start": 3951.98, + "end": 3954.86, + "probability": 0.9702 + }, + { + "start": 3957.41, + "end": 3964.1, + "probability": 0.9818 + }, + { + "start": 3964.1, + "end": 3968.3, + "probability": 0.8783 + }, + { + "start": 3969.24, + "end": 3972.46, + "probability": 0.998 + }, + { + "start": 3972.46, + "end": 3976.78, + "probability": 0.8186 + }, + { + "start": 3977.42, + "end": 3980.92, + "probability": 0.9691 + }, + { + "start": 3980.92, + "end": 3986.0, + "probability": 0.9869 + }, + { + "start": 3986.4, + "end": 3988.32, + "probability": 0.6576 + }, + { + "start": 3988.54, + "end": 3992.14, + "probability": 0.9658 + }, + { + "start": 3992.22, + "end": 3994.7, + "probability": 0.8799 + }, + { + "start": 3996.22, + "end": 3998.36, + "probability": 0.9277 + }, + { + "start": 3998.74, + "end": 4001.0, + "probability": 0.7036 + }, + { + "start": 4001.58, + "end": 4004.6, + "probability": 0.975 + }, + { + "start": 4004.6, + "end": 4007.56, + "probability": 0.9981 + }, + { + "start": 4008.1, + "end": 4009.1, + "probability": 0.694 + }, + { + "start": 4009.56, + "end": 4012.48, + "probability": 0.9363 + }, + { + "start": 4012.48, + "end": 4014.82, + "probability": 0.7884 + }, + { + "start": 4015.46, + "end": 4019.08, + "probability": 0.9795 + }, + { + "start": 4019.82, + "end": 4024.98, + "probability": 0.9766 + }, + { + "start": 4025.48, + "end": 4027.52, + "probability": 0.994 + }, + { + "start": 4028.23, + "end": 4033.38, + "probability": 0.748 + }, + { + "start": 4033.38, + "end": 4037.08, + "probability": 0.9962 + }, + { + "start": 4037.46, + "end": 4039.12, + "probability": 0.9494 + }, + { + "start": 4039.68, + "end": 4041.56, + "probability": 0.5116 + }, + { + "start": 4041.88, + "end": 4044.78, + "probability": 0.2223 + }, + { + "start": 4044.78, + "end": 4045.58, + "probability": 0.1381 + }, + { + "start": 4045.98, + "end": 4045.98, + "probability": 0.119 + }, + { + "start": 4045.98, + "end": 4046.36, + "probability": 0.0204 + }, + { + "start": 4046.44, + "end": 4046.92, + "probability": 0.7364 + }, + { + "start": 4047.06, + "end": 4050.5, + "probability": 0.9782 + }, + { + "start": 4050.6, + "end": 4051.98, + "probability": 0.8861 + }, + { + "start": 4052.34, + "end": 4056.52, + "probability": 0.9883 + }, + { + "start": 4056.52, + "end": 4061.8, + "probability": 0.9833 + }, + { + "start": 4062.26, + "end": 4066.62, + "probability": 0.652 + }, + { + "start": 4066.62, + "end": 4068.78, + "probability": 0.7367 + }, + { + "start": 4068.82, + "end": 4069.34, + "probability": 0.3829 + }, + { + "start": 4069.64, + "end": 4070.22, + "probability": 0.5342 + }, + { + "start": 4070.44, + "end": 4070.74, + "probability": 0.2515 + }, + { + "start": 4070.78, + "end": 4071.52, + "probability": 0.4407 + }, + { + "start": 4077.52, + "end": 4078.2, + "probability": 0.2201 + }, + { + "start": 4089.26, + "end": 4089.82, + "probability": 0.001 + }, + { + "start": 4093.12, + "end": 4095.56, + "probability": 0.1093 + }, + { + "start": 4095.56, + "end": 4095.58, + "probability": 0.058 + }, + { + "start": 4098.06, + "end": 4100.02, + "probability": 0.015 + }, + { + "start": 4100.02, + "end": 4102.24, + "probability": 0.1262 + }, + { + "start": 4103.1, + "end": 4108.66, + "probability": 0.0931 + }, + { + "start": 4109.22, + "end": 4110.62, + "probability": 0.1776 + }, + { + "start": 4112.06, + "end": 4114.68, + "probability": 0.0637 + }, + { + "start": 4114.68, + "end": 4119.52, + "probability": 0.0706 + }, + { + "start": 4119.68, + "end": 4122.36, + "probability": 0.3705 + }, + { + "start": 4122.36, + "end": 4125.68, + "probability": 0.2417 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.0, + "end": 4148.0, + "probability": 0.0 + }, + { + "start": 4148.24, + "end": 4150.38, + "probability": 0.8997 + }, + { + "start": 4150.64, + "end": 4152.26, + "probability": 0.9949 + }, + { + "start": 4152.8, + "end": 4155.46, + "probability": 0.9884 + }, + { + "start": 4155.68, + "end": 4156.32, + "probability": 0.414 + }, + { + "start": 4156.5, + "end": 4158.37, + "probability": 0.8921 + }, + { + "start": 4159.18, + "end": 4159.86, + "probability": 0.7809 + }, + { + "start": 4160.14, + "end": 4161.88, + "probability": 0.3399 + }, + { + "start": 4161.98, + "end": 4162.08, + "probability": 0.2521 + }, + { + "start": 4162.2, + "end": 4162.46, + "probability": 0.0312 + }, + { + "start": 4162.46, + "end": 4163.7, + "probability": 0.1328 + }, + { + "start": 4164.08, + "end": 4165.38, + "probability": 0.8086 + }, + { + "start": 4165.5, + "end": 4166.13, + "probability": 0.6533 + }, + { + "start": 4166.28, + "end": 4168.42, + "probability": 0.7799 + }, + { + "start": 4168.54, + "end": 4169.38, + "probability": 0.858 + }, + { + "start": 4169.62, + "end": 4170.56, + "probability": 0.66 + }, + { + "start": 4172.08, + "end": 4174.5, + "probability": 0.4325 + }, + { + "start": 4174.86, + "end": 4177.45, + "probability": 0.4987 + }, + { + "start": 4178.64, + "end": 4180.88, + "probability": 0.9171 + }, + { + "start": 4182.21, + "end": 4186.02, + "probability": 0.6143 + }, + { + "start": 4186.26, + "end": 4186.72, + "probability": 0.7148 + }, + { + "start": 4186.78, + "end": 4188.46, + "probability": 0.8169 + }, + { + "start": 4188.8, + "end": 4190.7, + "probability": 0.8836 + }, + { + "start": 4191.02, + "end": 4192.68, + "probability": 0.866 + }, + { + "start": 4192.84, + "end": 4193.5, + "probability": 0.9352 + }, + { + "start": 4194.02, + "end": 4195.26, + "probability": 0.9939 + }, + { + "start": 4195.56, + "end": 4201.54, + "probability": 0.9755 + }, + { + "start": 4201.58, + "end": 4201.92, + "probability": 0.0797 + }, + { + "start": 4202.12, + "end": 4203.98, + "probability": 0.2428 + }, + { + "start": 4204.38, + "end": 4206.26, + "probability": 0.5109 + }, + { + "start": 4206.32, + "end": 4206.64, + "probability": 0.8518 + }, + { + "start": 4206.74, + "end": 4207.57, + "probability": 0.4997 + }, + { + "start": 4208.88, + "end": 4210.92, + "probability": 0.7642 + }, + { + "start": 4211.36, + "end": 4214.66, + "probability": 0.9331 + }, + { + "start": 4216.58, + "end": 4216.8, + "probability": 0.2254 + }, + { + "start": 4216.8, + "end": 4216.8, + "probability": 0.0182 + }, + { + "start": 4216.8, + "end": 4217.68, + "probability": 0.8358 + }, + { + "start": 4217.96, + "end": 4222.4, + "probability": 0.7971 + }, + { + "start": 4222.46, + "end": 4223.48, + "probability": 0.9057 + }, + { + "start": 4223.58, + "end": 4224.72, + "probability": 0.6523 + }, + { + "start": 4225.04, + "end": 4232.7, + "probability": 0.8809 + }, + { + "start": 4232.76, + "end": 4234.0, + "probability": 0.9738 + }, + { + "start": 4234.12, + "end": 4239.98, + "probability": 0.9578 + }, + { + "start": 4240.3, + "end": 4240.9, + "probability": 0.6503 + }, + { + "start": 4241.42, + "end": 4243.04, + "probability": 0.8105 + }, + { + "start": 4243.5, + "end": 4245.46, + "probability": 0.9784 + }, + { + "start": 4245.6, + "end": 4246.56, + "probability": 0.6658 + }, + { + "start": 4247.12, + "end": 4247.76, + "probability": 0.461 + }, + { + "start": 4247.76, + "end": 4251.62, + "probability": 0.9902 + }, + { + "start": 4251.62, + "end": 4256.82, + "probability": 0.9857 + }, + { + "start": 4257.24, + "end": 4259.8, + "probability": 0.9723 + }, + { + "start": 4260.38, + "end": 4262.1, + "probability": 0.6099 + }, + { + "start": 4262.26, + "end": 4263.62, + "probability": 0.8511 + }, + { + "start": 4264.0, + "end": 4264.98, + "probability": 0.5945 + }, + { + "start": 4265.18, + "end": 4269.68, + "probability": 0.8272 + }, + { + "start": 4269.68, + "end": 4274.62, + "probability": 0.9859 + }, + { + "start": 4274.84, + "end": 4275.04, + "probability": 0.7397 + }, + { + "start": 4275.16, + "end": 4276.86, + "probability": 0.8499 + }, + { + "start": 4276.98, + "end": 4278.48, + "probability": 0.7493 + }, + { + "start": 4278.6, + "end": 4279.64, + "probability": 0.9956 + }, + { + "start": 4279.74, + "end": 4281.02, + "probability": 0.9182 + }, + { + "start": 4281.4, + "end": 4284.2, + "probability": 0.769 + }, + { + "start": 4284.2, + "end": 4286.41, + "probability": 0.6371 + }, + { + "start": 4287.14, + "end": 4290.82, + "probability": 0.9087 + }, + { + "start": 4291.2, + "end": 4292.6, + "probability": 0.8497 + }, + { + "start": 4292.7, + "end": 4293.92, + "probability": 0.8599 + }, + { + "start": 4294.14, + "end": 4300.06, + "probability": 0.9928 + }, + { + "start": 4300.32, + "end": 4302.44, + "probability": 0.8779 + }, + { + "start": 4302.68, + "end": 4304.14, + "probability": 0.8764 + }, + { + "start": 4304.4, + "end": 4307.25, + "probability": 0.9964 + }, + { + "start": 4307.48, + "end": 4312.1, + "probability": 0.8991 + }, + { + "start": 4312.34, + "end": 4313.42, + "probability": 0.6614 + }, + { + "start": 4313.68, + "end": 4316.86, + "probability": 0.9918 + }, + { + "start": 4316.96, + "end": 4319.16, + "probability": 0.9586 + }, + { + "start": 4319.44, + "end": 4322.04, + "probability": 0.94 + }, + { + "start": 4322.04, + "end": 4325.1, + "probability": 0.98 + }, + { + "start": 4325.34, + "end": 4325.72, + "probability": 0.6314 + }, + { + "start": 4325.78, + "end": 4329.16, + "probability": 0.9091 + }, + { + "start": 4329.78, + "end": 4330.3, + "probability": 0.9469 + }, + { + "start": 4330.82, + "end": 4332.34, + "probability": 0.6761 + }, + { + "start": 4333.26, + "end": 4334.32, + "probability": 0.8933 + }, + { + "start": 4334.82, + "end": 4337.9, + "probability": 0.952 + }, + { + "start": 4338.08, + "end": 4339.04, + "probability": 0.9814 + }, + { + "start": 4340.36, + "end": 4342.06, + "probability": 0.8514 + }, + { + "start": 4342.62, + "end": 4343.72, + "probability": 0.7689 + }, + { + "start": 4345.3, + "end": 4353.02, + "probability": 0.9784 + }, + { + "start": 4353.82, + "end": 4357.48, + "probability": 0.9656 + }, + { + "start": 4357.52, + "end": 4364.52, + "probability": 0.9902 + }, + { + "start": 4365.32, + "end": 4368.02, + "probability": 0.9636 + }, + { + "start": 4368.94, + "end": 4372.32, + "probability": 0.9976 + }, + { + "start": 4372.72, + "end": 4378.06, + "probability": 0.9867 + }, + { + "start": 4378.26, + "end": 4379.94, + "probability": 0.6525 + }, + { + "start": 4380.32, + "end": 4380.88, + "probability": 0.5266 + }, + { + "start": 4381.02, + "end": 4382.24, + "probability": 0.9657 + }, + { + "start": 4382.62, + "end": 4387.28, + "probability": 0.9762 + }, + { + "start": 4387.98, + "end": 4390.82, + "probability": 0.8603 + }, + { + "start": 4391.0, + "end": 4391.56, + "probability": 0.914 + }, + { + "start": 4392.0, + "end": 4400.38, + "probability": 0.984 + }, + { + "start": 4400.82, + "end": 4405.08, + "probability": 0.9931 + }, + { + "start": 4405.08, + "end": 4408.4, + "probability": 0.9954 + }, + { + "start": 4409.32, + "end": 4415.46, + "probability": 0.9603 + }, + { + "start": 4416.02, + "end": 4421.86, + "probability": 0.9983 + }, + { + "start": 4422.32, + "end": 4422.98, + "probability": 0.4613 + }, + { + "start": 4423.36, + "end": 4428.96, + "probability": 0.9867 + }, + { + "start": 4429.3, + "end": 4430.48, + "probability": 0.7163 + }, + { + "start": 4431.12, + "end": 4434.1, + "probability": 0.9161 + }, + { + "start": 4435.74, + "end": 4440.13, + "probability": 0.9744 + }, + { + "start": 4441.2, + "end": 4445.34, + "probability": 0.8502 + }, + { + "start": 4446.16, + "end": 4451.74, + "probability": 0.7386 + }, + { + "start": 4452.98, + "end": 4456.46, + "probability": 0.9513 + }, + { + "start": 4456.56, + "end": 4460.42, + "probability": 0.9962 + }, + { + "start": 4460.7, + "end": 4462.54, + "probability": 0.9248 + }, + { + "start": 4462.62, + "end": 4463.3, + "probability": 0.8331 + }, + { + "start": 4464.38, + "end": 4471.3, + "probability": 0.9866 + }, + { + "start": 4471.7, + "end": 4474.72, + "probability": 0.853 + }, + { + "start": 4475.72, + "end": 4480.72, + "probability": 0.9414 + }, + { + "start": 4481.42, + "end": 4487.02, + "probability": 0.9956 + }, + { + "start": 4487.02, + "end": 4492.86, + "probability": 0.9927 + }, + { + "start": 4493.68, + "end": 4498.92, + "probability": 0.9156 + }, + { + "start": 4499.58, + "end": 4505.6, + "probability": 0.9813 + }, + { + "start": 4506.08, + "end": 4509.42, + "probability": 0.9624 + }, + { + "start": 4510.28, + "end": 4514.78, + "probability": 0.9421 + }, + { + "start": 4515.44, + "end": 4516.77, + "probability": 0.6021 + }, + { + "start": 4518.28, + "end": 4524.22, + "probability": 0.9543 + }, + { + "start": 4524.22, + "end": 4528.3, + "probability": 0.9725 + }, + { + "start": 4529.2, + "end": 4530.08, + "probability": 0.928 + }, + { + "start": 4530.34, + "end": 4531.95, + "probability": 0.9719 + }, + { + "start": 4532.28, + "end": 4535.3, + "probability": 0.9975 + }, + { + "start": 4535.3, + "end": 4538.3, + "probability": 0.9655 + }, + { + "start": 4538.92, + "end": 4541.32, + "probability": 0.7807 + }, + { + "start": 4541.7, + "end": 4544.02, + "probability": 0.9888 + }, + { + "start": 4544.24, + "end": 4545.76, + "probability": 0.8034 + }, + { + "start": 4546.1, + "end": 4551.62, + "probability": 0.9499 + }, + { + "start": 4551.62, + "end": 4552.32, + "probability": 0.7401 + }, + { + "start": 4552.44, + "end": 4556.63, + "probability": 0.9888 + }, + { + "start": 4556.92, + "end": 4557.26, + "probability": 0.2678 + }, + { + "start": 4557.56, + "end": 4558.6, + "probability": 0.6804 + }, + { + "start": 4559.1, + "end": 4562.78, + "probability": 0.6348 + }, + { + "start": 4562.8, + "end": 4563.38, + "probability": 0.3677 + }, + { + "start": 4563.62, + "end": 4567.96, + "probability": 0.7228 + }, + { + "start": 4568.24, + "end": 4571.2, + "probability": 0.7905 + }, + { + "start": 4571.28, + "end": 4572.5, + "probability": 0.9573 + }, + { + "start": 4572.52, + "end": 4573.02, + "probability": 0.8756 + }, + { + "start": 4573.12, + "end": 4575.01, + "probability": 0.8821 + }, + { + "start": 4575.44, + "end": 4578.04, + "probability": 0.6054 + }, + { + "start": 4578.14, + "end": 4582.88, + "probability": 0.7765 + }, + { + "start": 4582.88, + "end": 4582.88, + "probability": 0.0587 + }, + { + "start": 4582.88, + "end": 4584.84, + "probability": 0.981 + }, + { + "start": 4585.46, + "end": 4589.36, + "probability": 0.788 + }, + { + "start": 4589.44, + "end": 4593.56, + "probability": 0.9897 + }, + { + "start": 4593.86, + "end": 4597.28, + "probability": 0.4238 + }, + { + "start": 4598.32, + "end": 4599.64, + "probability": 0.7974 + }, + { + "start": 4599.74, + "end": 4600.94, + "probability": 0.7568 + }, + { + "start": 4601.08, + "end": 4606.46, + "probability": 0.9925 + }, + { + "start": 4606.64, + "end": 4613.46, + "probability": 0.7956 + }, + { + "start": 4613.92, + "end": 4616.24, + "probability": 0.8299 + }, + { + "start": 4616.81, + "end": 4622.7, + "probability": 0.8972 + }, + { + "start": 4622.76, + "end": 4623.56, + "probability": 0.8442 + }, + { + "start": 4623.76, + "end": 4626.22, + "probability": 0.6841 + }, + { + "start": 4626.52, + "end": 4627.36, + "probability": 0.6658 + }, + { + "start": 4627.62, + "end": 4628.14, + "probability": 0.6094 + }, + { + "start": 4628.16, + "end": 4628.44, + "probability": 0.8422 + }, + { + "start": 4628.5, + "end": 4629.92, + "probability": 0.8304 + }, + { + "start": 4630.2, + "end": 4630.64, + "probability": 0.5394 + }, + { + "start": 4630.7, + "end": 4634.96, + "probability": 0.9365 + }, + { + "start": 4640.06, + "end": 4644.64, + "probability": 0.4396 + }, + { + "start": 4645.6, + "end": 4648.04, + "probability": 0.7154 + }, + { + "start": 4648.52, + "end": 4653.04, + "probability": 0.998 + }, + { + "start": 4653.14, + "end": 4654.58, + "probability": 0.4048 + }, + { + "start": 4655.22, + "end": 4660.5, + "probability": 0.9895 + }, + { + "start": 4660.94, + "end": 4661.02, + "probability": 0.5585 + }, + { + "start": 4663.4, + "end": 4664.24, + "probability": 0.4899 + }, + { + "start": 4668.1, + "end": 4669.0, + "probability": 0.2407 + }, + { + "start": 4669.68, + "end": 4670.08, + "probability": 0.558 + }, + { + "start": 4670.24, + "end": 4671.74, + "probability": 0.7266 + }, + { + "start": 4683.37, + "end": 4684.54, + "probability": 0.3117 + }, + { + "start": 4684.54, + "end": 4686.76, + "probability": 0.9523 + }, + { + "start": 4687.26, + "end": 4688.12, + "probability": 0.0771 + }, + { + "start": 4688.12, + "end": 4691.37, + "probability": 0.0958 + }, + { + "start": 4692.36, + "end": 4696.62, + "probability": 0.2836 + }, + { + "start": 4697.22, + "end": 4701.8, + "probability": 0.045 + }, + { + "start": 4701.8, + "end": 4705.52, + "probability": 0.061 + }, + { + "start": 4709.22, + "end": 4710.84, + "probability": 0.0371 + }, + { + "start": 4712.04, + "end": 4713.19, + "probability": 0.0274 + }, + { + "start": 4714.6, + "end": 4715.7, + "probability": 0.3183 + }, + { + "start": 4727.73, + "end": 4728.97, + "probability": 0.065 + }, + { + "start": 4732.4, + "end": 4734.86, + "probability": 0.0664 + }, + { + "start": 4735.66, + "end": 4735.72, + "probability": 0.0345 + }, + { + "start": 4735.72, + "end": 4736.14, + "probability": 0.2268 + }, + { + "start": 4736.14, + "end": 4736.34, + "probability": 0.0124 + }, + { + "start": 4736.34, + "end": 4736.72, + "probability": 0.0037 + }, + { + "start": 4736.72, + "end": 4736.98, + "probability": 0.3335 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.0, + "end": 4737.0, + "probability": 0.0 + }, + { + "start": 4737.86, + "end": 4738.24, + "probability": 0.0617 + }, + { + "start": 4738.24, + "end": 4738.58, + "probability": 0.0587 + }, + { + "start": 4738.58, + "end": 4741.4, + "probability": 0.6442 + }, + { + "start": 4741.5, + "end": 4744.42, + "probability": 0.8163 + }, + { + "start": 4744.64, + "end": 4746.9, + "probability": 0.9932 + }, + { + "start": 4746.9, + "end": 4750.44, + "probability": 0.8266 + }, + { + "start": 4750.88, + "end": 4754.24, + "probability": 0.841 + }, + { + "start": 4754.8, + "end": 4756.82, + "probability": 0.9506 + }, + { + "start": 4757.1, + "end": 4757.84, + "probability": 0.6186 + }, + { + "start": 4758.18, + "end": 4760.06, + "probability": 0.96 + }, + { + "start": 4760.64, + "end": 4761.98, + "probability": 0.9521 + }, + { + "start": 4762.38, + "end": 4764.18, + "probability": 0.9767 + }, + { + "start": 4764.28, + "end": 4765.5, + "probability": 0.9176 + }, + { + "start": 4765.8, + "end": 4766.74, + "probability": 0.913 + }, + { + "start": 4766.88, + "end": 4769.06, + "probability": 0.9905 + }, + { + "start": 4769.48, + "end": 4771.7, + "probability": 0.9667 + }, + { + "start": 4771.72, + "end": 4775.08, + "probability": 0.9789 + }, + { + "start": 4775.14, + "end": 4777.7, + "probability": 0.9387 + }, + { + "start": 4778.26, + "end": 4778.54, + "probability": 0.3528 + }, + { + "start": 4778.86, + "end": 4782.32, + "probability": 0.7713 + }, + { + "start": 4796.26, + "end": 4800.58, + "probability": 0.9836 + }, + { + "start": 4800.74, + "end": 4802.2, + "probability": 0.9043 + }, + { + "start": 4802.9, + "end": 4803.98, + "probability": 0.849 + }, + { + "start": 4804.08, + "end": 4805.36, + "probability": 0.6938 + }, + { + "start": 4805.54, + "end": 4807.22, + "probability": 0.539 + }, + { + "start": 4807.48, + "end": 4811.38, + "probability": 0.7265 + }, + { + "start": 4811.84, + "end": 4814.92, + "probability": 0.5775 + }, + { + "start": 4814.98, + "end": 4816.44, + "probability": 0.6765 + }, + { + "start": 4816.94, + "end": 4821.22, + "probability": 0.8021 + }, + { + "start": 4821.32, + "end": 4825.04, + "probability": 0.9821 + }, + { + "start": 4825.16, + "end": 4825.88, + "probability": 0.7991 + }, + { + "start": 4826.0, + "end": 4826.72, + "probability": 0.9756 + }, + { + "start": 4826.9, + "end": 4828.44, + "probability": 0.6656 + }, + { + "start": 4829.06, + "end": 4830.12, + "probability": 0.7252 + }, + { + "start": 4830.68, + "end": 4831.08, + "probability": 0.5969 + }, + { + "start": 4831.7, + "end": 4832.28, + "probability": 0.8055 + }, + { + "start": 4838.19, + "end": 4841.92, + "probability": 0.2235 + }, + { + "start": 4841.92, + "end": 4842.4, + "probability": 0.6832 + }, + { + "start": 4842.56, + "end": 4843.2, + "probability": 0.4508 + }, + { + "start": 4844.7, + "end": 4848.78, + "probability": 0.3156 + }, + { + "start": 4851.38, + "end": 4855.1, + "probability": 0.7773 + }, + { + "start": 4855.94, + "end": 4859.62, + "probability": 0.9926 + }, + { + "start": 4859.82, + "end": 4861.38, + "probability": 0.9971 + }, + { + "start": 4861.84, + "end": 4864.62, + "probability": 0.6829 + }, + { + "start": 4864.72, + "end": 4865.86, + "probability": 0.5268 + }, + { + "start": 4865.98, + "end": 4867.68, + "probability": 0.6142 + }, + { + "start": 4868.12, + "end": 4872.68, + "probability": 0.9314 + }, + { + "start": 4872.68, + "end": 4879.22, + "probability": 0.7848 + }, + { + "start": 4879.7, + "end": 4883.9, + "probability": 0.8148 + }, + { + "start": 4884.12, + "end": 4886.82, + "probability": 0.4543 + }, + { + "start": 4886.96, + "end": 4888.16, + "probability": 0.7557 + }, + { + "start": 4888.5, + "end": 4889.26, + "probability": 0.4167 + }, + { + "start": 4889.28, + "end": 4889.88, + "probability": 0.4141 + }, + { + "start": 4889.9, + "end": 4892.52, + "probability": 0.7803 + }, + { + "start": 4892.52, + "end": 4897.62, + "probability": 0.8007 + }, + { + "start": 4897.72, + "end": 4899.82, + "probability": 0.5975 + }, + { + "start": 4899.82, + "end": 4902.1, + "probability": 0.8287 + }, + { + "start": 4902.34, + "end": 4904.76, + "probability": 0.9844 + }, + { + "start": 4905.34, + "end": 4905.84, + "probability": 0.3544 + }, + { + "start": 4905.9, + "end": 4908.32, + "probability": 0.5813 + }, + { + "start": 4909.28, + "end": 4912.04, + "probability": 0.5672 + }, + { + "start": 4912.22, + "end": 4913.04, + "probability": 0.5888 + }, + { + "start": 4914.5, + "end": 4917.96, + "probability": 0.5864 + }, + { + "start": 4918.18, + "end": 4918.56, + "probability": 0.6158 + }, + { + "start": 4918.68, + "end": 4924.06, + "probability": 0.7761 + }, + { + "start": 4924.42, + "end": 4927.68, + "probability": 0.6177 + }, + { + "start": 4927.7, + "end": 4934.5, + "probability": 0.3074 + }, + { + "start": 4934.5, + "end": 4937.12, + "probability": 0.8374 + }, + { + "start": 4937.16, + "end": 4938.68, + "probability": 0.5692 + }, + { + "start": 4938.78, + "end": 4940.78, + "probability": 0.8112 + }, + { + "start": 4940.86, + "end": 4944.84, + "probability": 0.7427 + }, + { + "start": 4944.96, + "end": 4950.58, + "probability": 0.7556 + }, + { + "start": 4950.66, + "end": 4951.92, + "probability": 0.749 + }, + { + "start": 4952.94, + "end": 4956.78, + "probability": 0.655 + }, + { + "start": 4956.9, + "end": 4959.4, + "probability": 0.9087 + }, + { + "start": 4959.78, + "end": 4962.54, + "probability": 0.7617 + }, + { + "start": 4963.58, + "end": 4966.24, + "probability": 0.7378 + }, + { + "start": 4966.44, + "end": 4970.04, + "probability": 0.5696 + }, + { + "start": 4970.48, + "end": 4973.58, + "probability": 0.6566 + }, + { + "start": 4974.08, + "end": 4974.52, + "probability": 0.31 + }, + { + "start": 4974.68, + "end": 4978.24, + "probability": 0.6852 + }, + { + "start": 4978.6, + "end": 4983.14, + "probability": 0.7913 + }, + { + "start": 4983.74, + "end": 4986.08, + "probability": 0.6621 + }, + { + "start": 4986.46, + "end": 4990.33, + "probability": 0.8817 + }, + { + "start": 4990.66, + "end": 4994.14, + "probability": 0.755 + }, + { + "start": 4994.76, + "end": 4995.6, + "probability": 0.8661 + }, + { + "start": 4996.0, + "end": 4996.46, + "probability": 0.7509 + }, + { + "start": 4996.56, + "end": 4998.94, + "probability": 0.7477 + }, + { + "start": 4999.04, + "end": 5001.22, + "probability": 0.7641 + }, + { + "start": 5001.42, + "end": 5002.78, + "probability": 0.4156 + }, + { + "start": 5004.12, + "end": 5009.16, + "probability": 0.9463 + }, + { + "start": 5010.02, + "end": 5014.76, + "probability": 0.5014 + }, + { + "start": 5014.76, + "end": 5015.54, + "probability": 0.1268 + }, + { + "start": 5022.1, + "end": 5022.94, + "probability": 0.072 + }, + { + "start": 5022.94, + "end": 5022.94, + "probability": 0.2299 + }, + { + "start": 5022.94, + "end": 5022.94, + "probability": 0.4814 + }, + { + "start": 5022.94, + "end": 5024.35, + "probability": 0.4209 + }, + { + "start": 5025.22, + "end": 5027.5, + "probability": 0.7497 + }, + { + "start": 5028.12, + "end": 5032.18, + "probability": 0.6665 + }, + { + "start": 5032.58, + "end": 5033.48, + "probability": 0.7876 + }, + { + "start": 5033.58, + "end": 5034.3, + "probability": 0.7975 + }, + { + "start": 5034.34, + "end": 5034.7, + "probability": 0.7878 + }, + { + "start": 5034.88, + "end": 5035.88, + "probability": 0.9314 + }, + { + "start": 5036.32, + "end": 5040.74, + "probability": 0.9757 + }, + { + "start": 5040.74, + "end": 5043.84, + "probability": 0.9823 + }, + { + "start": 5044.44, + "end": 5047.06, + "probability": 0.7055 + }, + { + "start": 5047.46, + "end": 5050.66, + "probability": 0.854 + }, + { + "start": 5050.66, + "end": 5054.0, + "probability": 0.9961 + }, + { + "start": 5054.14, + "end": 5057.62, + "probability": 0.9784 + }, + { + "start": 5057.62, + "end": 5060.82, + "probability": 0.998 + }, + { + "start": 5060.98, + "end": 5065.32, + "probability": 0.8292 + }, + { + "start": 5065.54, + "end": 5066.82, + "probability": 0.5752 + }, + { + "start": 5066.88, + "end": 5067.44, + "probability": 0.6754 + }, + { + "start": 5067.44, + "end": 5068.16, + "probability": 0.8806 + }, + { + "start": 5068.44, + "end": 5069.22, + "probability": 0.195 + }, + { + "start": 5069.88, + "end": 5070.28, + "probability": 0.3206 + }, + { + "start": 5085.74, + "end": 5091.16, + "probability": 0.801 + }, + { + "start": 5091.98, + "end": 5101.82, + "probability": 0.1139 + }, + { + "start": 5105.54, + "end": 5109.58, + "probability": 0.4312 + }, + { + "start": 5109.58, + "end": 5113.44, + "probability": 0.1345 + }, + { + "start": 5120.7, + "end": 5123.44, + "probability": 0.0451 + }, + { + "start": 5123.96, + "end": 5126.02, + "probability": 0.1248 + }, + { + "start": 5126.02, + "end": 5126.9, + "probability": 0.035 + }, + { + "start": 5127.74, + "end": 5128.74, + "probability": 0.2657 + }, + { + "start": 5134.04, + "end": 5139.02, + "probability": 0.0161 + }, + { + "start": 5140.54, + "end": 5143.14, + "probability": 0.0268 + }, + { + "start": 5143.3, + "end": 5143.76, + "probability": 0.0435 + }, + { + "start": 5145.25, + "end": 5145.37, + "probability": 0.0467 + }, + { + "start": 5147.91, + "end": 5149.88, + "probability": 0.0343 + }, + { + "start": 5149.88, + "end": 5149.88, + "probability": 0.0502 + }, + { + "start": 5151.86, + "end": 5152.84, + "probability": 0.0066 + }, + { + "start": 5152.84, + "end": 5153.64, + "probability": 0.2134 + }, + { + "start": 5156.05, + "end": 5156.78, + "probability": 0.0446 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.12, + "end": 5159.84, + "probability": 0.1131 + }, + { + "start": 5159.84, + "end": 5161.5, + "probability": 0.067 + }, + { + "start": 5161.64, + "end": 5163.62, + "probability": 0.0596 + }, + { + "start": 5164.14, + "end": 5164.24, + "probability": 0.0445 + }, + { + "start": 5164.24, + "end": 5164.24, + "probability": 0.0488 + }, + { + "start": 5164.24, + "end": 5164.24, + "probability": 0.021 + }, + { + "start": 5164.24, + "end": 5165.38, + "probability": 0.1802 + }, + { + "start": 5165.38, + "end": 5166.98, + "probability": 0.0899 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.0, + "end": 5281.0, + "probability": 0.0 + }, + { + "start": 5281.9, + "end": 5282.36, + "probability": 0.0192 + }, + { + "start": 5283.54, + "end": 5283.64, + "probability": 0.1036 + }, + { + "start": 5285.32, + "end": 5286.92, + "probability": 0.1147 + }, + { + "start": 5286.92, + "end": 5288.38, + "probability": 0.1146 + }, + { + "start": 5289.48, + "end": 5290.96, + "probability": 0.016 + }, + { + "start": 5290.96, + "end": 5291.62, + "probability": 0.0122 + }, + { + "start": 5294.47, + "end": 5296.27, + "probability": 0.085 + }, + { + "start": 5296.58, + "end": 5297.7, + "probability": 0.0338 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5401.0, + "end": 5401.0, + "probability": 0.0 + }, + { + "start": 5402.2, + "end": 5403.02, + "probability": 0.2853 + }, + { + "start": 5413.32, + "end": 5419.89, + "probability": 0.2104 + }, + { + "start": 5420.2, + "end": 5423.42, + "probability": 0.1246 + }, + { + "start": 5423.84, + "end": 5424.5, + "probability": 0.2671 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5523.0, + "end": 5523.0, + "probability": 0.0 + }, + { + "start": 5524.12, + "end": 5524.98, + "probability": 0.4012 + }, + { + "start": 5525.82, + "end": 5527.8, + "probability": 0.9653 + }, + { + "start": 5527.8, + "end": 5529.28, + "probability": 0.8877 + }, + { + "start": 5529.34, + "end": 5529.86, + "probability": 0.7467 + }, + { + "start": 5529.88, + "end": 5534.93, + "probability": 0.9097 + }, + { + "start": 5535.32, + "end": 5535.81, + "probability": 0.9702 + }, + { + "start": 5536.24, + "end": 5540.86, + "probability": 0.9904 + }, + { + "start": 5540.92, + "end": 5545.84, + "probability": 0.9966 + }, + { + "start": 5546.12, + "end": 5551.18, + "probability": 0.8665 + }, + { + "start": 5551.18, + "end": 5554.82, + "probability": 0.8599 + }, + { + "start": 5554.92, + "end": 5555.8, + "probability": 0.5958 + }, + { + "start": 5555.88, + "end": 5556.3, + "probability": 0.4675 + }, + { + "start": 5556.34, + "end": 5557.56, + "probability": 0.5213 + }, + { + "start": 5557.62, + "end": 5558.18, + "probability": 0.7958 + }, + { + "start": 5558.22, + "end": 5560.92, + "probability": 0.8447 + }, + { + "start": 5560.98, + "end": 5563.38, + "probability": 0.6072 + }, + { + "start": 5563.92, + "end": 5567.24, + "probability": 0.8984 + }, + { + "start": 5567.72, + "end": 5570.32, + "probability": 0.6232 + }, + { + "start": 5570.54, + "end": 5573.68, + "probability": 0.8903 + }, + { + "start": 5573.68, + "end": 5576.84, + "probability": 0.9892 + }, + { + "start": 5577.22, + "end": 5579.32, + "probability": 0.9547 + }, + { + "start": 5579.52, + "end": 5581.08, + "probability": 0.5481 + }, + { + "start": 5581.1, + "end": 5581.1, + "probability": 0.5259 + }, + { + "start": 5581.22, + "end": 5583.3, + "probability": 0.677 + }, + { + "start": 5583.38, + "end": 5585.34, + "probability": 0.9594 + }, + { + "start": 5585.66, + "end": 5586.52, + "probability": 0.7441 + }, + { + "start": 5586.92, + "end": 5588.64, + "probability": 0.533 + }, + { + "start": 5588.88, + "end": 5591.38, + "probability": 0.9429 + }, + { + "start": 5591.64, + "end": 5594.22, + "probability": 0.9385 + }, + { + "start": 5594.62, + "end": 5595.92, + "probability": 0.9794 + }, + { + "start": 5596.04, + "end": 5602.88, + "probability": 0.8513 + }, + { + "start": 5602.9, + "end": 5605.84, + "probability": 0.7708 + }, + { + "start": 5605.98, + "end": 5606.54, + "probability": 0.497 + }, + { + "start": 5607.5, + "end": 5609.98, + "probability": 0.985 + }, + { + "start": 5610.14, + "end": 5611.36, + "probability": 0.623 + }, + { + "start": 5611.8, + "end": 5612.96, + "probability": 0.9419 + }, + { + "start": 5612.98, + "end": 5618.42, + "probability": 0.6807 + }, + { + "start": 5618.82, + "end": 5620.5, + "probability": 0.9263 + }, + { + "start": 5620.76, + "end": 5624.32, + "probability": 0.8285 + }, + { + "start": 5624.5, + "end": 5627.4, + "probability": 0.9897 + }, + { + "start": 5627.56, + "end": 5629.3, + "probability": 0.4572 + }, + { + "start": 5629.6, + "end": 5631.59, + "probability": 0.7743 + }, + { + "start": 5631.62, + "end": 5632.18, + "probability": 0.6348 + }, + { + "start": 5632.44, + "end": 5632.82, + "probability": 0.6601 + }, + { + "start": 5632.88, + "end": 5634.16, + "probability": 0.7758 + }, + { + "start": 5634.16, + "end": 5636.31, + "probability": 0.9734 + }, + { + "start": 5636.82, + "end": 5639.0, + "probability": 0.9632 + }, + { + "start": 5640.62, + "end": 5647.1, + "probability": 0.7684 + }, + { + "start": 5647.16, + "end": 5647.76, + "probability": 0.2579 + }, + { + "start": 5647.86, + "end": 5648.52, + "probability": 0.2797 + }, + { + "start": 5648.58, + "end": 5649.0, + "probability": 0.2229 + }, + { + "start": 5649.04, + "end": 5653.64, + "probability": 0.9053 + }, + { + "start": 5653.64, + "end": 5655.02, + "probability": 0.7596 + }, + { + "start": 5655.1, + "end": 5656.16, + "probability": 0.7861 + }, + { + "start": 5656.54, + "end": 5662.34, + "probability": 0.9975 + }, + { + "start": 5662.38, + "end": 5663.26, + "probability": 0.4599 + }, + { + "start": 5663.36, + "end": 5664.16, + "probability": 0.9189 + }, + { + "start": 5666.98, + "end": 5668.04, + "probability": 0.4218 + }, + { + "start": 5668.06, + "end": 5669.54, + "probability": 0.6675 + }, + { + "start": 5669.68, + "end": 5673.7, + "probability": 0.9675 + }, + { + "start": 5673.92, + "end": 5674.58, + "probability": 0.9214 + }, + { + "start": 5675.34, + "end": 5677.6, + "probability": 0.8252 + }, + { + "start": 5678.06, + "end": 5681.54, + "probability": 0.8379 + }, + { + "start": 5683.01, + "end": 5684.28, + "probability": 0.4666 + }, + { + "start": 5684.28, + "end": 5685.5, + "probability": 0.9934 + }, + { + "start": 5688.68, + "end": 5689.72, + "probability": 0.0047 + }, + { + "start": 5690.82, + "end": 5694.26, + "probability": 0.5329 + }, + { + "start": 5694.3, + "end": 5694.36, + "probability": 0.0412 + }, + { + "start": 5694.38, + "end": 5694.48, + "probability": 0.1531 + }, + { + "start": 5694.48, + "end": 5695.96, + "probability": 0.8456 + }, + { + "start": 5696.14, + "end": 5697.4, + "probability": 0.8503 + }, + { + "start": 5697.44, + "end": 5701.0, + "probability": 0.9477 + }, + { + "start": 5701.02, + "end": 5703.32, + "probability": 0.713 + }, + { + "start": 5703.5, + "end": 5705.44, + "probability": 0.957 + }, + { + "start": 5705.44, + "end": 5707.86, + "probability": 0.9829 + }, + { + "start": 5708.2, + "end": 5711.58, + "probability": 0.9657 + }, + { + "start": 5711.7, + "end": 5713.82, + "probability": 0.675 + }, + { + "start": 5714.26, + "end": 5715.8, + "probability": 0.7898 + }, + { + "start": 5715.9, + "end": 5719.28, + "probability": 0.9893 + }, + { + "start": 5719.28, + "end": 5721.9, + "probability": 0.9189 + }, + { + "start": 5722.1, + "end": 5723.08, + "probability": 0.7433 + }, + { + "start": 5723.1, + "end": 5723.86, + "probability": 0.7803 + }, + { + "start": 5724.3, + "end": 5728.46, + "probability": 0.8561 + }, + { + "start": 5728.58, + "end": 5729.34, + "probability": 0.5307 + }, + { + "start": 5729.36, + "end": 5729.82, + "probability": 0.4935 + }, + { + "start": 5730.08, + "end": 5732.59, + "probability": 0.9969 + }, + { + "start": 5733.26, + "end": 5737.24, + "probability": 0.7617 + }, + { + "start": 5737.42, + "end": 5737.94, + "probability": 0.54 + }, + { + "start": 5738.52, + "end": 5745.58, + "probability": 0.9781 + }, + { + "start": 5745.88, + "end": 5748.94, + "probability": 0.7496 + }, + { + "start": 5749.36, + "end": 5751.96, + "probability": 0.6058 + }, + { + "start": 5752.8, + "end": 5754.48, + "probability": 0.8413 + }, + { + "start": 5754.62, + "end": 5755.6, + "probability": 0.9192 + }, + { + "start": 5755.7, + "end": 5756.93, + "probability": 0.9019 + }, + { + "start": 5757.6, + "end": 5760.74, + "probability": 0.9746 + }, + { + "start": 5761.46, + "end": 5764.34, + "probability": 0.8118 + }, + { + "start": 5764.34, + "end": 5764.72, + "probability": 0.6767 + }, + { + "start": 5764.98, + "end": 5766.18, + "probability": 0.7865 + }, + { + "start": 5767.48, + "end": 5768.76, + "probability": 0.488 + }, + { + "start": 5768.84, + "end": 5769.3, + "probability": 0.6691 + }, + { + "start": 5769.32, + "end": 5769.9, + "probability": 0.6686 + }, + { + "start": 5769.9, + "end": 5770.76, + "probability": 0.5937 + }, + { + "start": 5774.94, + "end": 5781.5, + "probability": 0.2145 + }, + { + "start": 5785.96, + "end": 5788.92, + "probability": 0.0915 + }, + { + "start": 5789.54, + "end": 5791.06, + "probability": 0.6227 + }, + { + "start": 5791.38, + "end": 5795.04, + "probability": 0.503 + }, + { + "start": 5795.38, + "end": 5798.44, + "probability": 0.0437 + }, + { + "start": 5798.44, + "end": 5800.72, + "probability": 0.0195 + }, + { + "start": 5800.72, + "end": 5801.92, + "probability": 0.1938 + }, + { + "start": 5802.04, + "end": 5803.32, + "probability": 0.2541 + }, + { + "start": 5803.48, + "end": 5804.3, + "probability": 0.0567 + }, + { + "start": 5804.72, + "end": 5806.82, + "probability": 0.0063 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.0, + "end": 5871.0, + "probability": 0.0 + }, + { + "start": 5871.8, + "end": 5872.2, + "probability": 0.0337 + }, + { + "start": 5872.2, + "end": 5876.42, + "probability": 0.7985 + }, + { + "start": 5878.16, + "end": 5881.68, + "probability": 0.3462 + }, + { + "start": 5882.4, + "end": 5883.14, + "probability": 0.0868 + }, + { + "start": 5883.44, + "end": 5886.01, + "probability": 0.327 + }, + { + "start": 5886.5, + "end": 5886.68, + "probability": 0.1887 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.0, + "end": 5993.0, + "probability": 0.0 + }, + { + "start": 5993.18, + "end": 5993.34, + "probability": 0.0141 + }, + { + "start": 5993.34, + "end": 5993.34, + "probability": 0.0176 + }, + { + "start": 5993.34, + "end": 5994.78, + "probability": 0.1417 + }, + { + "start": 5995.58, + "end": 5997.14, + "probability": 0.441 + }, + { + "start": 5997.18, + "end": 5998.2, + "probability": 0.6893 + }, + { + "start": 5998.34, + "end": 6000.45, + "probability": 0.6966 + }, + { + "start": 6001.82, + "end": 6003.49, + "probability": 0.5382 + }, + { + "start": 6004.36, + "end": 6005.58, + "probability": 0.8931 + }, + { + "start": 6006.2, + "end": 6015.3, + "probability": 0.9588 + }, + { + "start": 6015.56, + "end": 6016.52, + "probability": 0.884 + }, + { + "start": 6017.4, + "end": 6017.93, + "probability": 0.9456 + }, + { + "start": 6018.92, + "end": 6020.32, + "probability": 0.7688 + }, + { + "start": 6020.48, + "end": 6025.14, + "probability": 0.9852 + }, + { + "start": 6026.76, + "end": 6028.74, + "probability": 0.9985 + }, + { + "start": 6029.1, + "end": 6030.54, + "probability": 0.6016 + }, + { + "start": 6030.98, + "end": 6032.64, + "probability": 0.9327 + }, + { + "start": 6034.68, + "end": 6038.18, + "probability": 0.9827 + }, + { + "start": 6038.34, + "end": 6039.44, + "probability": 0.8582 + }, + { + "start": 6040.34, + "end": 6041.95, + "probability": 0.7081 + }, + { + "start": 6042.62, + "end": 6045.4, + "probability": 0.6589 + }, + { + "start": 6046.12, + "end": 6047.34, + "probability": 0.6772 + }, + { + "start": 6048.76, + "end": 6051.68, + "probability": 0.9148 + }, + { + "start": 6052.2, + "end": 6059.8, + "probability": 0.9674 + }, + { + "start": 6060.34, + "end": 6062.82, + "probability": 0.5467 + }, + { + "start": 6062.94, + "end": 6063.96, + "probability": 0.978 + }, + { + "start": 6064.04, + "end": 6065.58, + "probability": 0.942 + }, + { + "start": 6065.78, + "end": 6069.02, + "probability": 0.4562 + }, + { + "start": 6069.18, + "end": 6071.24, + "probability": 0.8495 + }, + { + "start": 6071.36, + "end": 6075.04, + "probability": 0.5281 + }, + { + "start": 6075.26, + "end": 6075.47, + "probability": 0.4159 + }, + { + "start": 6076.7, + "end": 6078.4, + "probability": 0.7144 + }, + { + "start": 6078.62, + "end": 6079.34, + "probability": 0.1272 + }, + { + "start": 6079.96, + "end": 6082.32, + "probability": 0.3342 + }, + { + "start": 6082.34, + "end": 6082.82, + "probability": 0.1339 + }, + { + "start": 6083.48, + "end": 6085.42, + "probability": 0.3501 + }, + { + "start": 6085.74, + "end": 6087.22, + "probability": 0.4271 + }, + { + "start": 6087.22, + "end": 6087.9, + "probability": 0.3214 + }, + { + "start": 6087.9, + "end": 6089.74, + "probability": 0.7793 + }, + { + "start": 6089.74, + "end": 6091.14, + "probability": 0.9402 + }, + { + "start": 6091.22, + "end": 6092.0, + "probability": 0.1176 + }, + { + "start": 6092.14, + "end": 6094.28, + "probability": 0.385 + }, + { + "start": 6094.56, + "end": 6095.26, + "probability": 0.6182 + }, + { + "start": 6095.26, + "end": 6096.24, + "probability": 0.7578 + }, + { + "start": 6096.24, + "end": 6104.7, + "probability": 0.9498 + }, + { + "start": 6105.28, + "end": 6107.46, + "probability": 0.4695 + }, + { + "start": 6107.46, + "end": 6111.78, + "probability": 0.8517 + }, + { + "start": 6112.44, + "end": 6112.68, + "probability": 0.595 + }, + { + "start": 6112.74, + "end": 6113.76, + "probability": 0.8586 + }, + { + "start": 6114.12, + "end": 6115.28, + "probability": 0.9031 + }, + { + "start": 6115.68, + "end": 6116.84, + "probability": 0.9633 + }, + { + "start": 6116.94, + "end": 6117.94, + "probability": 0.9022 + }, + { + "start": 6118.46, + "end": 6118.9, + "probability": 0.5726 + }, + { + "start": 6118.92, + "end": 6120.02, + "probability": 0.6915 + }, + { + "start": 6120.12, + "end": 6120.5, + "probability": 0.7682 + }, + { + "start": 6120.56, + "end": 6121.16, + "probability": 0.8215 + }, + { + "start": 6121.54, + "end": 6122.06, + "probability": 0.403 + }, + { + "start": 6122.16, + "end": 6124.84, + "probability": 0.8335 + }, + { + "start": 6125.4, + "end": 6128.84, + "probability": 0.6915 + }, + { + "start": 6128.98, + "end": 6130.98, + "probability": 0.8376 + }, + { + "start": 6131.04, + "end": 6131.74, + "probability": 0.5696 + }, + { + "start": 6132.56, + "end": 6136.58, + "probability": 0.8435 + }, + { + "start": 6136.94, + "end": 6138.24, + "probability": 0.7199 + }, + { + "start": 6138.56, + "end": 6139.2, + "probability": 0.7376 + }, + { + "start": 6139.38, + "end": 6142.98, + "probability": 0.866 + }, + { + "start": 6143.04, + "end": 6144.06, + "probability": 0.9122 + }, + { + "start": 6144.2, + "end": 6147.38, + "probability": 0.8735 + }, + { + "start": 6147.54, + "end": 6149.16, + "probability": 0.9854 + }, + { + "start": 6149.38, + "end": 6151.78, + "probability": 0.9844 + }, + { + "start": 6151.84, + "end": 6156.14, + "probability": 0.9722 + }, + { + "start": 6156.26, + "end": 6158.1, + "probability": 0.7915 + }, + { + "start": 6158.46, + "end": 6160.22, + "probability": 0.9917 + }, + { + "start": 6160.44, + "end": 6165.98, + "probability": 0.8542 + }, + { + "start": 6165.98, + "end": 6169.9, + "probability": 0.998 + }, + { + "start": 6170.08, + "end": 6170.88, + "probability": 0.7965 + }, + { + "start": 6171.0, + "end": 6174.33, + "probability": 0.9889 + }, + { + "start": 6174.78, + "end": 6178.88, + "probability": 0.9021 + }, + { + "start": 6179.1, + "end": 6180.1, + "probability": 0.9011 + }, + { + "start": 6180.46, + "end": 6181.4, + "probability": 0.9556 + }, + { + "start": 6181.46, + "end": 6182.38, + "probability": 0.5703 + }, + { + "start": 6182.48, + "end": 6184.15, + "probability": 0.9604 + }, + { + "start": 6184.84, + "end": 6186.22, + "probability": 0.6477 + }, + { + "start": 6186.34, + "end": 6187.36, + "probability": 0.8079 + }, + { + "start": 6187.96, + "end": 6191.48, + "probability": 0.9471 + }, + { + "start": 6191.6, + "end": 6192.58, + "probability": 0.6247 + }, + { + "start": 6192.94, + "end": 6194.31, + "probability": 0.7465 + }, + { + "start": 6195.06, + "end": 6197.92, + "probability": 0.7237 + }, + { + "start": 6198.42, + "end": 6200.0, + "probability": 0.8583 + }, + { + "start": 6200.4, + "end": 6202.9, + "probability": 0.8763 + }, + { + "start": 6203.48, + "end": 6205.9, + "probability": 0.9011 + }, + { + "start": 6206.46, + "end": 6206.54, + "probability": 0.0574 + }, + { + "start": 6206.62, + "end": 6207.6, + "probability": 0.9844 + }, + { + "start": 6207.7, + "end": 6211.5, + "probability": 0.9556 + }, + { + "start": 6211.54, + "end": 6213.37, + "probability": 0.7773 + }, + { + "start": 6213.94, + "end": 6218.9, + "probability": 0.9895 + }, + { + "start": 6219.46, + "end": 6222.16, + "probability": 0.9554 + }, + { + "start": 6222.4, + "end": 6223.24, + "probability": 0.6024 + }, + { + "start": 6223.82, + "end": 6225.02, + "probability": 0.7622 + }, + { + "start": 6225.74, + "end": 6226.54, + "probability": 0.8218 + }, + { + "start": 6226.54, + "end": 6228.52, + "probability": 0.9186 + }, + { + "start": 6228.6, + "end": 6229.4, + "probability": 0.8571 + }, + { + "start": 6229.72, + "end": 6234.1, + "probability": 0.8527 + }, + { + "start": 6234.66, + "end": 6236.48, + "probability": 0.8521 + }, + { + "start": 6236.58, + "end": 6237.4, + "probability": 0.9221 + }, + { + "start": 6237.48, + "end": 6240.4, + "probability": 0.9328 + }, + { + "start": 6241.0, + "end": 6242.47, + "probability": 0.8203 + }, + { + "start": 6242.72, + "end": 6243.68, + "probability": 0.2052 + }, + { + "start": 6243.68, + "end": 6243.96, + "probability": 0.4384 + }, + { + "start": 6244.06, + "end": 6245.24, + "probability": 0.6795 + }, + { + "start": 6245.58, + "end": 6247.2, + "probability": 0.8903 + }, + { + "start": 6247.5, + "end": 6250.7, + "probability": 0.981 + }, + { + "start": 6251.24, + "end": 6252.6, + "probability": 0.6278 + }, + { + "start": 6252.92, + "end": 6257.74, + "probability": 0.8227 + }, + { + "start": 6258.5, + "end": 6263.5, + "probability": 0.5906 + }, + { + "start": 6263.88, + "end": 6269.16, + "probability": 0.7782 + }, + { + "start": 6269.28, + "end": 6272.21, + "probability": 0.9954 + }, + { + "start": 6272.78, + "end": 6274.04, + "probability": 0.7144 + }, + { + "start": 6274.42, + "end": 6278.93, + "probability": 0.9421 + }, + { + "start": 6279.34, + "end": 6280.76, + "probability": 0.7686 + }, + { + "start": 6281.22, + "end": 6283.78, + "probability": 0.9782 + }, + { + "start": 6283.82, + "end": 6284.72, + "probability": 0.5534 + }, + { + "start": 6284.82, + "end": 6285.26, + "probability": 0.8235 + }, + { + "start": 6285.32, + "end": 6286.24, + "probability": 0.8892 + }, + { + "start": 6287.1, + "end": 6287.78, + "probability": 0.3619 + }, + { + "start": 6288.34, + "end": 6293.56, + "probability": 0.9126 + }, + { + "start": 6293.84, + "end": 6295.4, + "probability": 0.4868 + }, + { + "start": 6296.0, + "end": 6296.52, + "probability": 0.9678 + }, + { + "start": 6298.74, + "end": 6301.18, + "probability": 0.8754 + }, + { + "start": 6301.88, + "end": 6306.0, + "probability": 0.6688 + }, + { + "start": 6306.56, + "end": 6308.94, + "probability": 0.9038 + }, + { + "start": 6309.6, + "end": 6310.93, + "probability": 0.9017 + }, + { + "start": 6311.3, + "end": 6311.86, + "probability": 0.9556 + }, + { + "start": 6312.2, + "end": 6313.96, + "probability": 0.9779 + }, + { + "start": 6314.38, + "end": 6315.76, + "probability": 0.988 + }, + { + "start": 6315.84, + "end": 6318.86, + "probability": 0.9034 + }, + { + "start": 6318.98, + "end": 6321.06, + "probability": 0.6506 + }, + { + "start": 6321.7, + "end": 6324.12, + "probability": 0.8841 + }, + { + "start": 6324.18, + "end": 6325.0, + "probability": 0.7613 + }, + { + "start": 6325.12, + "end": 6326.7, + "probability": 0.9042 + }, + { + "start": 6327.0, + "end": 6329.66, + "probability": 0.6205 + }, + { + "start": 6330.18, + "end": 6333.32, + "probability": 0.7412 + }, + { + "start": 6333.8, + "end": 6335.16, + "probability": 0.9609 + }, + { + "start": 6335.56, + "end": 6337.0, + "probability": 0.743 + }, + { + "start": 6337.36, + "end": 6338.76, + "probability": 0.7599 + }, + { + "start": 6339.02, + "end": 6341.08, + "probability": 0.8236 + }, + { + "start": 6341.42, + "end": 6345.44, + "probability": 0.824 + }, + { + "start": 6346.18, + "end": 6346.94, + "probability": 0.7583 + }, + { + "start": 6347.02, + "end": 6347.3, + "probability": 0.7338 + }, + { + "start": 6347.4, + "end": 6348.08, + "probability": 0.9154 + }, + { + "start": 6348.14, + "end": 6352.6, + "probability": 0.7827 + }, + { + "start": 6352.76, + "end": 6355.9, + "probability": 0.8105 + }, + { + "start": 6356.26, + "end": 6357.2, + "probability": 0.766 + }, + { + "start": 6357.78, + "end": 6360.84, + "probability": 0.7791 + }, + { + "start": 6361.06, + "end": 6361.62, + "probability": 0.812 + }, + { + "start": 6362.18, + "end": 6363.4, + "probability": 0.8335 + }, + { + "start": 6363.5, + "end": 6367.74, + "probability": 0.9624 + }, + { + "start": 6367.8, + "end": 6368.18, + "probability": 0.311 + }, + { + "start": 6368.26, + "end": 6369.58, + "probability": 0.9771 + }, + { + "start": 6370.54, + "end": 6376.58, + "probability": 0.8247 + }, + { + "start": 6379.18, + "end": 6380.48, + "probability": 0.7592 + }, + { + "start": 6380.54, + "end": 6381.8, + "probability": 0.6686 + }, + { + "start": 6381.98, + "end": 6383.5, + "probability": 0.7792 + }, + { + "start": 6383.6, + "end": 6384.58, + "probability": 0.688 + }, + { + "start": 6384.66, + "end": 6385.68, + "probability": 0.6783 + }, + { + "start": 6385.78, + "end": 6387.46, + "probability": 0.7863 + }, + { + "start": 6387.54, + "end": 6388.96, + "probability": 0.8859 + }, + { + "start": 6389.35, + "end": 6392.82, + "probability": 0.9329 + }, + { + "start": 6393.54, + "end": 6395.62, + "probability": 0.9229 + }, + { + "start": 6396.08, + "end": 6397.16, + "probability": 0.7019 + }, + { + "start": 6397.4, + "end": 6398.48, + "probability": 0.7719 + }, + { + "start": 6398.74, + "end": 6402.12, + "probability": 0.9407 + }, + { + "start": 6402.32, + "end": 6406.54, + "probability": 0.6229 + }, + { + "start": 6406.58, + "end": 6406.94, + "probability": 0.4364 + }, + { + "start": 6407.02, + "end": 6407.34, + "probability": 0.6049 + }, + { + "start": 6407.36, + "end": 6408.06, + "probability": 0.9759 + }, + { + "start": 6408.4, + "end": 6411.42, + "probability": 0.9616 + }, + { + "start": 6411.46, + "end": 6417.84, + "probability": 0.9717 + }, + { + "start": 6418.16, + "end": 6418.99, + "probability": 0.7726 + }, + { + "start": 6419.44, + "end": 6422.83, + "probability": 0.565 + }, + { + "start": 6423.16, + "end": 6424.38, + "probability": 0.6221 + }, + { + "start": 6424.4, + "end": 6424.72, + "probability": 0.6622 + }, + { + "start": 6424.86, + "end": 6426.6, + "probability": 0.9253 + }, + { + "start": 6427.08, + "end": 6428.18, + "probability": 0.9365 + }, + { + "start": 6428.42, + "end": 6428.6, + "probability": 0.5205 + }, + { + "start": 6428.62, + "end": 6429.06, + "probability": 0.7211 + }, + { + "start": 6429.48, + "end": 6436.06, + "probability": 0.9883 + }, + { + "start": 6436.28, + "end": 6439.14, + "probability": 0.9721 + }, + { + "start": 6439.3, + "end": 6439.86, + "probability": 0.92 + }, + { + "start": 6440.04, + "end": 6441.58, + "probability": 0.9629 + }, + { + "start": 6442.58, + "end": 6444.0, + "probability": 0.5239 + }, + { + "start": 6444.22, + "end": 6445.7, + "probability": 0.6768 + }, + { + "start": 6446.96, + "end": 6449.6, + "probability": 0.8235 + }, + { + "start": 6450.48, + "end": 6450.54, + "probability": 0.2539 + }, + { + "start": 6450.58, + "end": 6451.02, + "probability": 0.7204 + }, + { + "start": 6451.1, + "end": 6456.44, + "probability": 0.9921 + }, + { + "start": 6457.24, + "end": 6458.72, + "probability": 0.9985 + }, + { + "start": 6459.12, + "end": 6463.28, + "probability": 0.9526 + }, + { + "start": 6464.2, + "end": 6465.28, + "probability": 0.492 + }, + { + "start": 6465.32, + "end": 6466.22, + "probability": 0.4583 + }, + { + "start": 6466.69, + "end": 6469.02, + "probability": 0.4829 + }, + { + "start": 6469.1, + "end": 6469.94, + "probability": 0.856 + }, + { + "start": 6469.98, + "end": 6471.0, + "probability": 0.2953 + }, + { + "start": 6471.0, + "end": 6471.38, + "probability": 0.1445 + }, + { + "start": 6471.38, + "end": 6474.06, + "probability": 0.7875 + }, + { + "start": 6474.18, + "end": 6476.26, + "probability": 0.9731 + }, + { + "start": 6476.96, + "end": 6479.62, + "probability": 0.9972 + }, + { + "start": 6480.22, + "end": 6482.04, + "probability": 0.9853 + }, + { + "start": 6482.26, + "end": 6483.28, + "probability": 0.4602 + }, + { + "start": 6483.54, + "end": 6485.1, + "probability": 0.9038 + }, + { + "start": 6485.76, + "end": 6487.7, + "probability": 0.8423 + }, + { + "start": 6488.04, + "end": 6488.62, + "probability": 0.9521 + }, + { + "start": 6488.92, + "end": 6490.02, + "probability": 0.4477 + }, + { + "start": 6490.16, + "end": 6490.23, + "probability": 0.7812 + }, + { + "start": 6490.9, + "end": 6497.0, + "probability": 0.9761 + }, + { + "start": 6497.72, + "end": 6501.12, + "probability": 0.9937 + }, + { + "start": 6501.78, + "end": 6504.5, + "probability": 0.9668 + }, + { + "start": 6504.94, + "end": 6506.9, + "probability": 0.4492 + }, + { + "start": 6507.46, + "end": 6509.84, + "probability": 0.9927 + }, + { + "start": 6509.96, + "end": 6510.42, + "probability": 0.2932 + }, + { + "start": 6510.48, + "end": 6511.5, + "probability": 0.7562 + }, + { + "start": 6511.84, + "end": 6513.26, + "probability": 0.8877 + }, + { + "start": 6513.5, + "end": 6513.7, + "probability": 0.661 + }, + { + "start": 6513.74, + "end": 6514.36, + "probability": 0.821 + }, + { + "start": 6514.74, + "end": 6518.86, + "probability": 0.8557 + }, + { + "start": 6519.1, + "end": 6521.04, + "probability": 0.7998 + }, + { + "start": 6521.88, + "end": 6526.8, + "probability": 0.9963 + }, + { + "start": 6527.0, + "end": 6528.08, + "probability": 0.947 + }, + { + "start": 6528.52, + "end": 6531.3, + "probability": 0.9417 + }, + { + "start": 6532.2, + "end": 6534.72, + "probability": 0.9575 + }, + { + "start": 6535.68, + "end": 6536.24, + "probability": 0.2107 + }, + { + "start": 6536.24, + "end": 6536.48, + "probability": 0.3448 + }, + { + "start": 6536.71, + "end": 6539.74, + "probability": 0.7632 + }, + { + "start": 6539.96, + "end": 6541.72, + "probability": 0.9058 + }, + { + "start": 6542.16, + "end": 6545.78, + "probability": 0.8212 + }, + { + "start": 6546.0, + "end": 6547.24, + "probability": 0.9959 + }, + { + "start": 6547.28, + "end": 6548.9, + "probability": 0.312 + }, + { + "start": 6548.98, + "end": 6550.9, + "probability": 0.9702 + }, + { + "start": 6551.34, + "end": 6553.76, + "probability": 0.993 + }, + { + "start": 6554.64, + "end": 6556.72, + "probability": 0.8745 + }, + { + "start": 6557.16, + "end": 6559.23, + "probability": 0.973 + }, + { + "start": 6559.76, + "end": 6561.04, + "probability": 0.7695 + }, + { + "start": 6561.92, + "end": 6564.76, + "probability": 0.7672 + }, + { + "start": 6564.8, + "end": 6565.34, + "probability": 0.7416 + }, + { + "start": 6565.36, + "end": 6566.54, + "probability": 0.8364 + }, + { + "start": 6566.92, + "end": 6568.22, + "probability": 0.9829 + }, + { + "start": 6568.64, + "end": 6574.14, + "probability": 0.9928 + }, + { + "start": 6574.64, + "end": 6577.52, + "probability": 0.9901 + }, + { + "start": 6577.56, + "end": 6578.2, + "probability": 0.868 + }, + { + "start": 6578.72, + "end": 6579.88, + "probability": 0.8892 + }, + { + "start": 6581.55, + "end": 6583.54, + "probability": 0.2611 + }, + { + "start": 6583.64, + "end": 6584.64, + "probability": 0.5456 + }, + { + "start": 6585.06, + "end": 6585.66, + "probability": 0.768 + }, + { + "start": 6585.74, + "end": 6586.33, + "probability": 0.6867 + }, + { + "start": 6586.48, + "end": 6586.86, + "probability": 0.7159 + }, + { + "start": 6587.02, + "end": 6589.22, + "probability": 0.8978 + }, + { + "start": 6590.0, + "end": 6594.42, + "probability": 0.986 + }, + { + "start": 6594.5, + "end": 6596.14, + "probability": 0.0431 + }, + { + "start": 6596.14, + "end": 6596.14, + "probability": 0.3299 + }, + { + "start": 6596.14, + "end": 6597.32, + "probability": 0.4106 + }, + { + "start": 6597.52, + "end": 6600.61, + "probability": 0.8001 + }, + { + "start": 6600.92, + "end": 6602.58, + "probability": 0.6909 + }, + { + "start": 6603.14, + "end": 6604.46, + "probability": 0.3793 + }, + { + "start": 6604.54, + "end": 6606.32, + "probability": 0.7161 + }, + { + "start": 6606.58, + "end": 6608.98, + "probability": 0.1218 + }, + { + "start": 6608.98, + "end": 6609.76, + "probability": 0.0059 + }, + { + "start": 6609.88, + "end": 6610.6, + "probability": 0.5929 + }, + { + "start": 6611.18, + "end": 6612.29, + "probability": 0.9644 + }, + { + "start": 6612.94, + "end": 6615.82, + "probability": 0.8452 + }, + { + "start": 6616.58, + "end": 6618.76, + "probability": 0.98 + }, + { + "start": 6619.38, + "end": 6621.04, + "probability": 0.894 + }, + { + "start": 6621.42, + "end": 6625.02, + "probability": 0.9699 + }, + { + "start": 6625.52, + "end": 6629.14, + "probability": 0.6241 + }, + { + "start": 6629.62, + "end": 6629.84, + "probability": 0.5555 + }, + { + "start": 6629.84, + "end": 6630.94, + "probability": 0.8961 + }, + { + "start": 6631.08, + "end": 6631.84, + "probability": 0.9634 + }, + { + "start": 6631.88, + "end": 6635.38, + "probability": 0.9769 + }, + { + "start": 6635.98, + "end": 6638.04, + "probability": 0.9705 + }, + { + "start": 6638.16, + "end": 6638.98, + "probability": 0.9971 + }, + { + "start": 6639.44, + "end": 6640.11, + "probability": 0.949 + }, + { + "start": 6640.42, + "end": 6641.64, + "probability": 0.8999 + }, + { + "start": 6641.84, + "end": 6642.35, + "probability": 0.8784 + }, + { + "start": 6643.02, + "end": 6646.6, + "probability": 0.8704 + }, + { + "start": 6647.22, + "end": 6650.24, + "probability": 0.7834 + }, + { + "start": 6650.24, + "end": 6654.38, + "probability": 0.9864 + }, + { + "start": 6654.7, + "end": 6655.58, + "probability": 0.6179 + }, + { + "start": 6656.1, + "end": 6658.46, + "probability": 0.89 + }, + { + "start": 6658.88, + "end": 6660.18, + "probability": 0.9611 + }, + { + "start": 6660.24, + "end": 6660.58, + "probability": 0.6113 + }, + { + "start": 6660.8, + "end": 6662.82, + "probability": 0.9897 + }, + { + "start": 6662.9, + "end": 6664.4, + "probability": 0.7881 + }, + { + "start": 6664.46, + "end": 6670.52, + "probability": 0.8014 + }, + { + "start": 6671.0, + "end": 6672.82, + "probability": 0.7533 + }, + { + "start": 6673.28, + "end": 6675.72, + "probability": 0.4478 + }, + { + "start": 6675.92, + "end": 6679.66, + "probability": 0.9929 + }, + { + "start": 6680.06, + "end": 6683.12, + "probability": 0.894 + }, + { + "start": 6683.18, + "end": 6684.22, + "probability": 0.7033 + }, + { + "start": 6685.1, + "end": 6686.98, + "probability": 0.1853 + }, + { + "start": 6687.3, + "end": 6688.46, + "probability": 0.5201 + }, + { + "start": 6688.58, + "end": 6690.26, + "probability": 0.8494 + }, + { + "start": 6690.84, + "end": 6692.12, + "probability": 0.2923 + }, + { + "start": 6692.16, + "end": 6693.09, + "probability": 0.8582 + }, + { + "start": 6693.6, + "end": 6694.24, + "probability": 0.711 + }, + { + "start": 6694.34, + "end": 6695.74, + "probability": 0.9366 + }, + { + "start": 6695.92, + "end": 6697.86, + "probability": 0.8279 + }, + { + "start": 6698.2, + "end": 6698.74, + "probability": 0.8963 + }, + { + "start": 6698.86, + "end": 6701.39, + "probability": 0.7286 + }, + { + "start": 6702.58, + "end": 6707.54, + "probability": 0.998 + }, + { + "start": 6708.22, + "end": 6709.8, + "probability": 0.9404 + }, + { + "start": 6710.38, + "end": 6715.38, + "probability": 0.9705 + }, + { + "start": 6715.38, + "end": 6718.66, + "probability": 0.9871 + }, + { + "start": 6719.6, + "end": 6723.26, + "probability": 0.998 + }, + { + "start": 6723.26, + "end": 6726.22, + "probability": 0.996 + }, + { + "start": 6727.98, + "end": 6733.54, + "probability": 0.9912 + }, + { + "start": 6733.8, + "end": 6735.04, + "probability": 0.9387 + }, + { + "start": 6738.36, + "end": 6738.36, + "probability": 0.144 + }, + { + "start": 6738.36, + "end": 6742.28, + "probability": 0.9175 + }, + { + "start": 6743.58, + "end": 6748.7, + "probability": 0.8727 + }, + { + "start": 6748.7, + "end": 6749.28, + "probability": 0.3847 + }, + { + "start": 6749.28, + "end": 6750.38, + "probability": 0.7638 + }, + { + "start": 6751.42, + "end": 6752.51, + "probability": 0.8227 + }, + { + "start": 6753.6, + "end": 6756.52, + "probability": 0.9692 + }, + { + "start": 6757.68, + "end": 6762.36, + "probability": 0.7197 + }, + { + "start": 6762.9, + "end": 6767.08, + "probability": 0.9721 + }, + { + "start": 6767.9, + "end": 6770.39, + "probability": 0.9814 + }, + { + "start": 6771.2, + "end": 6776.76, + "probability": 0.9772 + }, + { + "start": 6777.48, + "end": 6780.38, + "probability": 0.9529 + }, + { + "start": 6780.5, + "end": 6786.18, + "probability": 0.9399 + }, + { + "start": 6786.28, + "end": 6792.48, + "probability": 0.997 + }, + { + "start": 6793.48, + "end": 6795.28, + "probability": 0.9653 + }, + { + "start": 6796.48, + "end": 6799.02, + "probability": 0.9854 + }, + { + "start": 6800.48, + "end": 6803.04, + "probability": 0.957 + }, + { + "start": 6803.22, + "end": 6805.02, + "probability": 0.8203 + }, + { + "start": 6805.16, + "end": 6808.52, + "probability": 0.7143 + }, + { + "start": 6808.7, + "end": 6813.96, + "probability": 0.9946 + }, + { + "start": 6814.46, + "end": 6816.54, + "probability": 0.9087 + }, + { + "start": 6816.96, + "end": 6819.72, + "probability": 0.9146 + }, + { + "start": 6820.18, + "end": 6822.88, + "probability": 0.8427 + }, + { + "start": 6823.0, + "end": 6826.92, + "probability": 0.9758 + }, + { + "start": 6827.22, + "end": 6830.26, + "probability": 0.8672 + }, + { + "start": 6830.26, + "end": 6833.46, + "probability": 0.962 + }, + { + "start": 6833.46, + "end": 6836.84, + "probability": 0.9863 + }, + { + "start": 6837.62, + "end": 6843.52, + "probability": 0.9717 + }, + { + "start": 6844.16, + "end": 6848.31, + "probability": 0.9916 + }, + { + "start": 6850.12, + "end": 6852.96, + "probability": 0.8836 + }, + { + "start": 6853.12, + "end": 6856.42, + "probability": 0.9822 + }, + { + "start": 6856.68, + "end": 6859.22, + "probability": 0.9807 + }, + { + "start": 6860.78, + "end": 6862.32, + "probability": 0.8311 + }, + { + "start": 6862.42, + "end": 6862.6, + "probability": 0.8781 + }, + { + "start": 6862.68, + "end": 6865.04, + "probability": 0.7983 + }, + { + "start": 6865.06, + "end": 6867.94, + "probability": 0.0146 + }, + { + "start": 6868.12, + "end": 6868.5, + "probability": 0.6943 + }, + { + "start": 6868.54, + "end": 6871.2, + "probability": 0.5612 + }, + { + "start": 6871.26, + "end": 6873.28, + "probability": 0.8975 + }, + { + "start": 6873.44, + "end": 6877.82, + "probability": 0.798 + }, + { + "start": 6877.88, + "end": 6879.08, + "probability": 0.8655 + }, + { + "start": 6879.24, + "end": 6880.3, + "probability": 0.8242 + }, + { + "start": 6880.4, + "end": 6881.88, + "probability": 0.9496 + }, + { + "start": 6881.88, + "end": 6882.98, + "probability": 0.6284 + }, + { + "start": 6883.12, + "end": 6885.08, + "probability": 0.4705 + }, + { + "start": 6885.1, + "end": 6885.86, + "probability": 0.7602 + }, + { + "start": 6885.96, + "end": 6890.86, + "probability": 0.9699 + }, + { + "start": 6890.94, + "end": 6891.4, + "probability": 0.4647 + }, + { + "start": 6891.44, + "end": 6892.22, + "probability": 0.4203 + }, + { + "start": 6892.56, + "end": 6895.26, + "probability": 0.8779 + }, + { + "start": 6895.46, + "end": 6896.09, + "probability": 0.9119 + }, + { + "start": 6896.68, + "end": 6900.1, + "probability": 0.98 + }, + { + "start": 6900.18, + "end": 6904.74, + "probability": 0.9019 + }, + { + "start": 6905.46, + "end": 6907.24, + "probability": 0.684 + }, + { + "start": 6909.6, + "end": 6916.14, + "probability": 0.0128 + }, + { + "start": 6922.76, + "end": 6925.08, + "probability": 0.384 + }, + { + "start": 6925.9, + "end": 6928.38, + "probability": 0.5918 + }, + { + "start": 6928.54, + "end": 6930.92, + "probability": 0.9897 + }, + { + "start": 6930.92, + "end": 6935.36, + "probability": 0.9045 + }, + { + "start": 6936.24, + "end": 6938.58, + "probability": 0.0266 + }, + { + "start": 6938.58, + "end": 6939.26, + "probability": 0.29 + }, + { + "start": 6939.52, + "end": 6943.08, + "probability": 0.926 + }, + { + "start": 6943.4, + "end": 6946.12, + "probability": 0.9845 + }, + { + "start": 6946.44, + "end": 6947.3, + "probability": 0.5823 + }, + { + "start": 6947.36, + "end": 6955.8, + "probability": 0.9897 + }, + { + "start": 6956.46, + "end": 6963.16, + "probability": 0.9983 + }, + { + "start": 6963.8, + "end": 6964.3, + "probability": 0.3915 + }, + { + "start": 6964.42, + "end": 6965.2, + "probability": 0.5172 + }, + { + "start": 6965.36, + "end": 6968.62, + "probability": 0.9277 + }, + { + "start": 6968.8, + "end": 6971.32, + "probability": 0.7939 + }, + { + "start": 6971.86, + "end": 6978.26, + "probability": 0.9406 + }, + { + "start": 6978.4, + "end": 6979.86, + "probability": 0.9597 + }, + { + "start": 6980.34, + "end": 6982.36, + "probability": 0.9968 + }, + { + "start": 6982.4, + "end": 6987.76, + "probability": 0.9296 + }, + { + "start": 6988.32, + "end": 6989.08, + "probability": 0.9785 + }, + { + "start": 6989.16, + "end": 6992.0, + "probability": 0.7639 + }, + { + "start": 6992.88, + "end": 6998.36, + "probability": 0.9649 + }, + { + "start": 6998.68, + "end": 6999.24, + "probability": 0.8834 + }, + { + "start": 6999.66, + "end": 7002.83, + "probability": 0.899 + }, + { + "start": 7004.16, + "end": 7006.16, + "probability": 0.8857 + }, + { + "start": 7006.82, + "end": 7010.5, + "probability": 0.9839 + }, + { + "start": 7010.5, + "end": 7013.94, + "probability": 0.7493 + }, + { + "start": 7014.3, + "end": 7014.76, + "probability": 0.7348 + }, + { + "start": 7014.84, + "end": 7017.44, + "probability": 0.6674 + }, + { + "start": 7017.62, + "end": 7018.87, + "probability": 0.8863 + }, + { + "start": 7019.56, + "end": 7022.66, + "probability": 0.9956 + }, + { + "start": 7023.06, + "end": 7025.44, + "probability": 0.9949 + }, + { + "start": 7025.86, + "end": 7028.7, + "probability": 0.8789 + }, + { + "start": 7029.26, + "end": 7031.74, + "probability": 0.9237 + }, + { + "start": 7032.16, + "end": 7033.58, + "probability": 0.9758 + }, + { + "start": 7033.98, + "end": 7035.54, + "probability": 0.9647 + }, + { + "start": 7035.82, + "end": 7040.96, + "probability": 0.8931 + }, + { + "start": 7041.42, + "end": 7044.08, + "probability": 0.8793 + }, + { + "start": 7044.2, + "end": 7046.4, + "probability": 0.7496 + }, + { + "start": 7046.6, + "end": 7047.94, + "probability": 0.9767 + }, + { + "start": 7048.62, + "end": 7049.08, + "probability": 0.7598 + }, + { + "start": 7050.04, + "end": 7052.34, + "probability": 0.9194 + }, + { + "start": 7053.02, + "end": 7057.18, + "probability": 0.9785 + }, + { + "start": 7057.62, + "end": 7063.26, + "probability": 0.9948 + }, + { + "start": 7063.4, + "end": 7064.74, + "probability": 0.6427 + }, + { + "start": 7065.0, + "end": 7066.68, + "probability": 0.143 + }, + { + "start": 7067.16, + "end": 7068.96, + "probability": 0.8193 + }, + { + "start": 7069.3, + "end": 7071.14, + "probability": 0.936 + }, + { + "start": 7071.4, + "end": 7072.54, + "probability": 0.885 + }, + { + "start": 7072.64, + "end": 7075.0, + "probability": 0.9316 + }, + { + "start": 7075.02, + "end": 7076.94, + "probability": 0.9585 + }, + { + "start": 7077.34, + "end": 7078.34, + "probability": 0.8734 + }, + { + "start": 7078.44, + "end": 7079.28, + "probability": 0.8549 + }, + { + "start": 7079.34, + "end": 7081.62, + "probability": 0.9784 + }, + { + "start": 7082.6, + "end": 7085.19, + "probability": 0.9855 + }, + { + "start": 7085.86, + "end": 7087.26, + "probability": 0.521 + }, + { + "start": 7088.22, + "end": 7091.42, + "probability": 0.9952 + }, + { + "start": 7091.44, + "end": 7092.16, + "probability": 0.4167 + }, + { + "start": 7092.92, + "end": 7094.42, + "probability": 0.9176 + }, + { + "start": 7095.08, + "end": 7097.46, + "probability": 0.8864 + }, + { + "start": 7097.8, + "end": 7098.58, + "probability": 0.8868 + }, + { + "start": 7098.7, + "end": 7099.9, + "probability": 0.9127 + }, + { + "start": 7100.02, + "end": 7102.16, + "probability": 0.9058 + }, + { + "start": 7102.82, + "end": 7107.68, + "probability": 0.9793 + }, + { + "start": 7108.04, + "end": 7111.44, + "probability": 0.987 + }, + { + "start": 7112.24, + "end": 7115.26, + "probability": 0.9882 + }, + { + "start": 7115.8, + "end": 7120.02, + "probability": 0.8313 + }, + { + "start": 7120.52, + "end": 7121.44, + "probability": 0.5496 + }, + { + "start": 7121.9, + "end": 7122.9, + "probability": 0.9565 + }, + { + "start": 7123.9, + "end": 7124.5, + "probability": 0.8242 + }, + { + "start": 7124.66, + "end": 7127.5, + "probability": 0.9907 + }, + { + "start": 7128.82, + "end": 7131.2, + "probability": 0.9921 + }, + { + "start": 7131.2, + "end": 7136.54, + "probability": 0.9148 + }, + { + "start": 7136.78, + "end": 7137.5, + "probability": 0.5519 + }, + { + "start": 7137.7, + "end": 7141.68, + "probability": 0.8808 + }, + { + "start": 7142.3, + "end": 7143.58, + "probability": 0.6617 + }, + { + "start": 7143.62, + "end": 7144.8, + "probability": 0.9406 + }, + { + "start": 7144.84, + "end": 7147.44, + "probability": 0.8367 + }, + { + "start": 7147.72, + "end": 7148.92, + "probability": 0.6013 + }, + { + "start": 7149.0, + "end": 7150.12, + "probability": 0.9551 + }, + { + "start": 7150.46, + "end": 7151.62, + "probability": 0.7696 + }, + { + "start": 7151.72, + "end": 7152.84, + "probability": 0.7677 + }, + { + "start": 7152.88, + "end": 7154.38, + "probability": 0.775 + }, + { + "start": 7154.5, + "end": 7155.36, + "probability": 0.9688 + }, + { + "start": 7156.36, + "end": 7158.2, + "probability": 0.9479 + }, + { + "start": 7158.36, + "end": 7160.05, + "probability": 0.9681 + }, + { + "start": 7160.38, + "end": 7162.74, + "probability": 0.9803 + }, + { + "start": 7162.84, + "end": 7163.96, + "probability": 0.6405 + }, + { + "start": 7164.5, + "end": 7165.83, + "probability": 0.7907 + }, + { + "start": 7166.76, + "end": 7167.58, + "probability": 0.972 + }, + { + "start": 7170.46, + "end": 7172.16, + "probability": 0.7372 + }, + { + "start": 7172.44, + "end": 7175.78, + "probability": 0.981 + }, + { + "start": 7176.06, + "end": 7177.52, + "probability": 0.9239 + }, + { + "start": 7178.24, + "end": 7179.22, + "probability": 0.7361 + }, + { + "start": 7179.34, + "end": 7180.54, + "probability": 0.986 + }, + { + "start": 7180.6, + "end": 7182.48, + "probability": 0.8254 + }, + { + "start": 7182.52, + "end": 7187.5, + "probability": 0.9907 + }, + { + "start": 7187.5, + "end": 7191.3, + "probability": 0.9991 + }, + { + "start": 7191.7, + "end": 7193.3, + "probability": 0.9839 + }, + { + "start": 7193.36, + "end": 7193.94, + "probability": 0.4716 + }, + { + "start": 7194.3, + "end": 7196.3, + "probability": 0.9932 + }, + { + "start": 7196.3, + "end": 7199.42, + "probability": 0.5429 + }, + { + "start": 7199.86, + "end": 7201.74, + "probability": 0.8419 + }, + { + "start": 7202.12, + "end": 7204.24, + "probability": 0.5355 + }, + { + "start": 7204.26, + "end": 7206.37, + "probability": 0.729 + }, + { + "start": 7206.42, + "end": 7207.82, + "probability": 0.9018 + }, + { + "start": 7208.72, + "end": 7210.5, + "probability": 0.9236 + }, + { + "start": 7210.72, + "end": 7212.4, + "probability": 0.9712 + }, + { + "start": 7212.48, + "end": 7215.76, + "probability": 0.8934 + }, + { + "start": 7215.92, + "end": 7218.4, + "probability": 0.9835 + }, + { + "start": 7219.14, + "end": 7223.0, + "probability": 0.9467 + }, + { + "start": 7223.16, + "end": 7224.76, + "probability": 0.9539 + }, + { + "start": 7225.34, + "end": 7225.68, + "probability": 0.8339 + }, + { + "start": 7226.32, + "end": 7228.4, + "probability": 0.3937 + }, + { + "start": 7228.4, + "end": 7229.52, + "probability": 0.7738 + }, + { + "start": 7229.6, + "end": 7230.64, + "probability": 0.8454 + }, + { + "start": 7230.72, + "end": 7232.54, + "probability": 0.8462 + }, + { + "start": 7232.98, + "end": 7235.28, + "probability": 0.8972 + }, + { + "start": 7235.28, + "end": 7236.42, + "probability": 0.1483 + }, + { + "start": 7236.48, + "end": 7236.88, + "probability": 0.4458 + }, + { + "start": 7236.92, + "end": 7237.06, + "probability": 0.0113 + }, + { + "start": 7239.16, + "end": 7239.82, + "probability": 0.0381 + }, + { + "start": 7241.33, + "end": 7243.48, + "probability": 0.7699 + }, + { + "start": 7243.72, + "end": 7244.88, + "probability": 0.9692 + }, + { + "start": 7245.06, + "end": 7245.72, + "probability": 0.8372 + }, + { + "start": 7246.06, + "end": 7247.2, + "probability": 0.7016 + }, + { + "start": 7247.66, + "end": 7248.48, + "probability": 0.7993 + }, + { + "start": 7249.86, + "end": 7252.24, + "probability": 0.9357 + }, + { + "start": 7253.32, + "end": 7255.96, + "probability": 0.9927 + }, + { + "start": 7256.46, + "end": 7259.26, + "probability": 0.9966 + }, + { + "start": 7259.4, + "end": 7260.78, + "probability": 0.8479 + }, + { + "start": 7260.98, + "end": 7261.4, + "probability": 0.6905 + }, + { + "start": 7261.42, + "end": 7262.84, + "probability": 0.6724 + }, + { + "start": 7263.3, + "end": 7264.4, + "probability": 0.7632 + }, + { + "start": 7264.78, + "end": 7267.62, + "probability": 0.9927 + }, + { + "start": 7268.16, + "end": 7268.6, + "probability": 0.4556 + }, + { + "start": 7268.62, + "end": 7269.62, + "probability": 0.8499 + }, + { + "start": 7269.78, + "end": 7271.72, + "probability": 0.9255 + }, + { + "start": 7272.1, + "end": 7275.26, + "probability": 0.9723 + }, + { + "start": 7275.36, + "end": 7277.64, + "probability": 0.8479 + }, + { + "start": 7277.66, + "end": 7278.28, + "probability": 0.6297 + }, + { + "start": 7279.12, + "end": 7280.8, + "probability": 0.0391 + }, + { + "start": 7280.8, + "end": 7283.12, + "probability": 0.9071 + }, + { + "start": 7283.54, + "end": 7287.76, + "probability": 0.6768 + }, + { + "start": 7288.44, + "end": 7292.18, + "probability": 0.9871 + }, + { + "start": 7292.18, + "end": 7297.17, + "probability": 0.9929 + }, + { + "start": 7297.46, + "end": 7299.08, + "probability": 0.9978 + }, + { + "start": 7299.08, + "end": 7303.74, + "probability": 0.7158 + }, + { + "start": 7303.92, + "end": 7304.08, + "probability": 0.3912 + }, + { + "start": 7304.18, + "end": 7306.0, + "probability": 0.9563 + }, + { + "start": 7306.1, + "end": 7307.16, + "probability": 0.8378 + }, + { + "start": 7307.64, + "end": 7308.52, + "probability": 0.9902 + }, + { + "start": 7308.7, + "end": 7309.56, + "probability": 0.8271 + }, + { + "start": 7309.6, + "end": 7311.18, + "probability": 0.9766 + }, + { + "start": 7311.7, + "end": 7313.14, + "probability": 0.9247 + }, + { + "start": 7313.64, + "end": 7314.68, + "probability": 0.8577 + }, + { + "start": 7315.1, + "end": 7315.86, + "probability": 0.9533 + }, + { + "start": 7316.0, + "end": 7316.78, + "probability": 0.8841 + }, + { + "start": 7317.06, + "end": 7318.94, + "probability": 0.6051 + }, + { + "start": 7319.48, + "end": 7320.51, + "probability": 0.8525 + }, + { + "start": 7321.0, + "end": 7323.36, + "probability": 0.9873 + }, + { + "start": 7323.48, + "end": 7325.2, + "probability": 0.9869 + }, + { + "start": 7325.28, + "end": 7325.66, + "probability": 0.3434 + }, + { + "start": 7325.68, + "end": 7326.84, + "probability": 0.7459 + }, + { + "start": 7326.88, + "end": 7328.04, + "probability": 0.0204 + }, + { + "start": 7328.04, + "end": 7328.04, + "probability": 0.0101 + }, + { + "start": 7328.04, + "end": 7329.14, + "probability": 0.5112 + }, + { + "start": 7330.86, + "end": 7334.76, + "probability": 0.9877 + }, + { + "start": 7335.48, + "end": 7339.14, + "probability": 0.9889 + }, + { + "start": 7339.14, + "end": 7343.4, + "probability": 0.9953 + }, + { + "start": 7344.18, + "end": 7344.9, + "probability": 0.8213 + }, + { + "start": 7344.98, + "end": 7349.16, + "probability": 0.9714 + }, + { + "start": 7349.32, + "end": 7352.17, + "probability": 0.976 + }, + { + "start": 7353.2, + "end": 7356.6, + "probability": 0.5934 + }, + { + "start": 7357.24, + "end": 7359.64, + "probability": 0.9378 + }, + { + "start": 7360.14, + "end": 7364.88, + "probability": 0.9901 + }, + { + "start": 7365.38, + "end": 7371.78, + "probability": 0.9167 + }, + { + "start": 7371.8, + "end": 7374.36, + "probability": 0.6628 + }, + { + "start": 7374.36, + "end": 7375.98, + "probability": 0.6955 + }, + { + "start": 7376.08, + "end": 7377.06, + "probability": 0.8903 + }, + { + "start": 7377.16, + "end": 7378.44, + "probability": 0.7881 + }, + { + "start": 7379.02, + "end": 7382.56, + "probability": 0.8228 + }, + { + "start": 7382.66, + "end": 7384.02, + "probability": 0.9178 + }, + { + "start": 7384.74, + "end": 7388.76, + "probability": 0.5729 + }, + { + "start": 7389.7, + "end": 7389.7, + "probability": 0.0568 + }, + { + "start": 7389.72, + "end": 7395.18, + "probability": 0.6775 + }, + { + "start": 7397.1, + "end": 7399.58, + "probability": 0.6229 + }, + { + "start": 7401.0, + "end": 7402.24, + "probability": 0.5045 + }, + { + "start": 7402.32, + "end": 7403.68, + "probability": 0.962 + }, + { + "start": 7403.84, + "end": 7404.82, + "probability": 0.9774 + }, + { + "start": 7404.94, + "end": 7405.8, + "probability": 0.9902 + }, + { + "start": 7406.0, + "end": 7406.62, + "probability": 0.2825 + }, + { + "start": 7406.76, + "end": 7409.48, + "probability": 0.9142 + }, + { + "start": 7410.14, + "end": 7413.1, + "probability": 0.9749 + }, + { + "start": 7413.26, + "end": 7417.8, + "probability": 0.981 + }, + { + "start": 7418.18, + "end": 7419.5, + "probability": 0.9167 + }, + { + "start": 7419.62, + "end": 7419.62, + "probability": 0.0029 + }, + { + "start": 7422.24, + "end": 7422.7, + "probability": 0.0478 + }, + { + "start": 7422.7, + "end": 7424.06, + "probability": 0.0183 + }, + { + "start": 7424.06, + "end": 7425.02, + "probability": 0.7792 + }, + { + "start": 7425.76, + "end": 7429.24, + "probability": 0.9908 + }, + { + "start": 7429.4, + "end": 7433.44, + "probability": 0.9686 + }, + { + "start": 7434.1, + "end": 7436.14, + "probability": 0.632 + }, + { + "start": 7436.76, + "end": 7441.26, + "probability": 0.921 + }, + { + "start": 7441.82, + "end": 7443.0, + "probability": 0.7656 + }, + { + "start": 7443.16, + "end": 7443.65, + "probability": 0.8793 + }, + { + "start": 7444.1, + "end": 7451.72, + "probability": 0.957 + }, + { + "start": 7451.82, + "end": 7452.54, + "probability": 0.6472 + }, + { + "start": 7453.3, + "end": 7455.96, + "probability": 0.3716 + }, + { + "start": 7458.13, + "end": 7458.48, + "probability": 0.1516 + }, + { + "start": 7458.48, + "end": 7462.5, + "probability": 0.8696 + }, + { + "start": 7465.06, + "end": 7467.96, + "probability": 0.5905 + }, + { + "start": 7468.8, + "end": 7471.44, + "probability": 0.9854 + }, + { + "start": 7471.84, + "end": 7475.01, + "probability": 0.7405 + }, + { + "start": 7475.44, + "end": 7476.96, + "probability": 0.5465 + }, + { + "start": 7476.96, + "end": 7479.4, + "probability": 0.5275 + }, + { + "start": 7480.54, + "end": 7483.3, + "probability": 0.5879 + }, + { + "start": 7483.88, + "end": 7483.88, + "probability": 0.5032 + }, + { + "start": 7483.88, + "end": 7484.88, + "probability": 0.7764 + }, + { + "start": 7485.04, + "end": 7486.01, + "probability": 0.896 + }, + { + "start": 7486.18, + "end": 7487.06, + "probability": 0.9133 + }, + { + "start": 7487.12, + "end": 7488.78, + "probability": 0.8589 + }, + { + "start": 7488.78, + "end": 7490.64, + "probability": 0.902 + }, + { + "start": 7491.28, + "end": 7492.76, + "probability": 0.9941 + }, + { + "start": 7493.18, + "end": 7494.9, + "probability": 0.4842 + }, + { + "start": 7495.28, + "end": 7498.18, + "probability": 0.9703 + }, + { + "start": 7498.26, + "end": 7501.04, + "probability": 0.9844 + }, + { + "start": 7501.34, + "end": 7501.8, + "probability": 0.74 + }, + { + "start": 7501.94, + "end": 7503.06, + "probability": 0.8796 + }, + { + "start": 7503.76, + "end": 7508.72, + "probability": 0.9729 + }, + { + "start": 7508.82, + "end": 7511.68, + "probability": 0.969 + }, + { + "start": 7512.02, + "end": 7517.7, + "probability": 0.9985 + }, + { + "start": 7518.12, + "end": 7519.98, + "probability": 0.8836 + }, + { + "start": 7520.4, + "end": 7524.1, + "probability": 0.8158 + }, + { + "start": 7524.66, + "end": 7530.48, + "probability": 0.9603 + }, + { + "start": 7531.04, + "end": 7533.88, + "probability": 0.9543 + }, + { + "start": 7534.44, + "end": 7535.12, + "probability": 0.2839 + }, + { + "start": 7536.74, + "end": 7538.24, + "probability": 0.3727 + }, + { + "start": 7538.32, + "end": 7539.04, + "probability": 0.6528 + }, + { + "start": 7539.38, + "end": 7544.76, + "probability": 0.7159 + }, + { + "start": 7544.76, + "end": 7549.2, + "probability": 0.911 + }, + { + "start": 7549.94, + "end": 7550.54, + "probability": 0.0913 + }, + { + "start": 7550.56, + "end": 7550.56, + "probability": 0.1436 + }, + { + "start": 7550.66, + "end": 7550.68, + "probability": 0.0724 + }, + { + "start": 7550.68, + "end": 7552.26, + "probability": 0.6189 + }, + { + "start": 7553.18, + "end": 7554.02, + "probability": 0.5663 + }, + { + "start": 7554.68, + "end": 7555.56, + "probability": 0.0687 + }, + { + "start": 7555.92, + "end": 7557.7, + "probability": 0.9146 + }, + { + "start": 7557.82, + "end": 7559.98, + "probability": 0.6556 + }, + { + "start": 7559.98, + "end": 7561.2, + "probability": 0.2103 + }, + { + "start": 7561.78, + "end": 7565.4, + "probability": 0.8898 + }, + { + "start": 7565.52, + "end": 7565.98, + "probability": 0.8208 + }, + { + "start": 7566.06, + "end": 7567.11, + "probability": 0.9941 + }, + { + "start": 7567.74, + "end": 7570.36, + "probability": 0.9922 + }, + { + "start": 7571.22, + "end": 7575.74, + "probability": 0.9834 + }, + { + "start": 7575.84, + "end": 7577.9, + "probability": 0.9922 + }, + { + "start": 7578.34, + "end": 7579.52, + "probability": 0.8501 + }, + { + "start": 7579.54, + "end": 7585.18, + "probability": 0.8052 + }, + { + "start": 7585.18, + "end": 7589.78, + "probability": 0.9739 + }, + { + "start": 7590.04, + "end": 7590.2, + "probability": 0.1181 + }, + { + "start": 7590.2, + "end": 7592.24, + "probability": 0.8569 + }, + { + "start": 7592.78, + "end": 7594.7, + "probability": 0.9972 + }, + { + "start": 7594.76, + "end": 7598.6, + "probability": 0.998 + }, + { + "start": 7598.8, + "end": 7600.34, + "probability": 0.932 + }, + { + "start": 7600.84, + "end": 7602.42, + "probability": 0.9269 + }, + { + "start": 7603.2, + "end": 7603.94, + "probability": 0.752 + }, + { + "start": 7604.0, + "end": 7607.06, + "probability": 0.9258 + }, + { + "start": 7607.48, + "end": 7609.78, + "probability": 0.5503 + }, + { + "start": 7610.08, + "end": 7611.28, + "probability": 0.8065 + }, + { + "start": 7611.46, + "end": 7612.92, + "probability": 0.9454 + }, + { + "start": 7613.54, + "end": 7614.15, + "probability": 0.7615 + }, + { + "start": 7614.62, + "end": 7616.4, + "probability": 0.9834 + }, + { + "start": 7616.62, + "end": 7618.44, + "probability": 0.9946 + }, + { + "start": 7618.92, + "end": 7620.17, + "probability": 0.8091 + }, + { + "start": 7620.74, + "end": 7623.72, + "probability": 0.9142 + }, + { + "start": 7623.72, + "end": 7626.82, + "probability": 0.971 + }, + { + "start": 7627.64, + "end": 7629.1, + "probability": 0.8311 + }, + { + "start": 7629.24, + "end": 7633.62, + "probability": 0.9946 + }, + { + "start": 7634.04, + "end": 7635.62, + "probability": 0.9847 + }, + { + "start": 7636.1, + "end": 7638.66, + "probability": 0.9576 + }, + { + "start": 7638.74, + "end": 7644.12, + "probability": 0.9939 + }, + { + "start": 7644.6, + "end": 7645.8, + "probability": 0.7303 + }, + { + "start": 7646.0, + "end": 7648.56, + "probability": 0.9917 + }, + { + "start": 7648.88, + "end": 7650.64, + "probability": 0.9812 + }, + { + "start": 7651.33, + "end": 7653.88, + "probability": 0.9982 + }, + { + "start": 7654.14, + "end": 7656.16, + "probability": 0.9861 + }, + { + "start": 7656.36, + "end": 7658.12, + "probability": 0.953 + }, + { + "start": 7658.2, + "end": 7660.06, + "probability": 0.8525 + }, + { + "start": 7662.44, + "end": 7664.5, + "probability": 0.7474 + }, + { + "start": 7664.5, + "end": 7666.85, + "probability": 0.782 + }, + { + "start": 7667.5, + "end": 7672.22, + "probability": 0.9032 + }, + { + "start": 7672.32, + "end": 7674.08, + "probability": 0.9774 + }, + { + "start": 7674.46, + "end": 7674.76, + "probability": 0.9028 + }, + { + "start": 7674.8, + "end": 7675.42, + "probability": 0.9811 + }, + { + "start": 7675.48, + "end": 7676.7, + "probability": 0.7671 + }, + { + "start": 7676.78, + "end": 7682.88, + "probability": 0.8193 + }, + { + "start": 7683.28, + "end": 7685.24, + "probability": 0.8904 + }, + { + "start": 7685.5, + "end": 7687.52, + "probability": 0.976 + }, + { + "start": 7687.86, + "end": 7689.17, + "probability": 0.9907 + }, + { + "start": 7690.16, + "end": 7691.54, + "probability": 0.6647 + }, + { + "start": 7691.92, + "end": 7694.1, + "probability": 0.5921 + }, + { + "start": 7694.46, + "end": 7696.02, + "probability": 0.9548 + }, + { + "start": 7696.28, + "end": 7697.56, + "probability": 0.9794 + }, + { + "start": 7697.98, + "end": 7699.08, + "probability": 0.958 + }, + { + "start": 7699.5, + "end": 7700.74, + "probability": 0.9696 + }, + { + "start": 7700.98, + "end": 7703.06, + "probability": 0.8705 + }, + { + "start": 7703.3, + "end": 7705.68, + "probability": 0.9725 + }, + { + "start": 7705.96, + "end": 7707.9, + "probability": 0.9807 + }, + { + "start": 7708.56, + "end": 7712.35, + "probability": 0.8387 + }, + { + "start": 7712.64, + "end": 7713.66, + "probability": 0.9819 + }, + { + "start": 7713.78, + "end": 7714.36, + "probability": 0.6431 + }, + { + "start": 7714.96, + "end": 7716.68, + "probability": 0.964 + }, + { + "start": 7716.98, + "end": 7718.26, + "probability": 0.9345 + }, + { + "start": 7718.38, + "end": 7720.06, + "probability": 0.9888 + }, + { + "start": 7720.28, + "end": 7721.7, + "probability": 0.9902 + }, + { + "start": 7722.3, + "end": 7723.94, + "probability": 0.7624 + }, + { + "start": 7724.5, + "end": 7728.3, + "probability": 0.8801 + }, + { + "start": 7728.44, + "end": 7733.24, + "probability": 0.6973 + }, + { + "start": 7734.08, + "end": 7736.18, + "probability": 0.8726 + }, + { + "start": 7736.54, + "end": 7739.94, + "probability": 0.9896 + }, + { + "start": 7740.22, + "end": 7741.54, + "probability": 0.7332 + }, + { + "start": 7741.74, + "end": 7743.26, + "probability": 0.6228 + }, + { + "start": 7743.58, + "end": 7743.8, + "probability": 0.3996 + }, + { + "start": 7743.8, + "end": 7746.01, + "probability": 0.8586 + }, + { + "start": 7747.32, + "end": 7750.26, + "probability": 0.9058 + }, + { + "start": 7750.68, + "end": 7753.2, + "probability": 0.9071 + }, + { + "start": 7753.6, + "end": 7755.28, + "probability": 0.938 + }, + { + "start": 7755.38, + "end": 7756.94, + "probability": 0.9362 + }, + { + "start": 7757.06, + "end": 7758.84, + "probability": 0.981 + }, + { + "start": 7758.84, + "end": 7762.92, + "probability": 0.5961 + }, + { + "start": 7762.94, + "end": 7765.14, + "probability": 0.9604 + }, + { + "start": 7765.36, + "end": 7767.92, + "probability": 0.9569 + }, + { + "start": 7768.34, + "end": 7771.24, + "probability": 0.774 + }, + { + "start": 7771.4, + "end": 7774.88, + "probability": 0.998 + }, + { + "start": 7774.96, + "end": 7777.86, + "probability": 0.9623 + }, + { + "start": 7778.2, + "end": 7780.12, + "probability": 0.8769 + }, + { + "start": 7780.5, + "end": 7782.94, + "probability": 0.9747 + }, + { + "start": 7783.26, + "end": 7786.44, + "probability": 0.8149 + }, + { + "start": 7786.72, + "end": 7788.43, + "probability": 0.9814 + }, + { + "start": 7788.7, + "end": 7791.11, + "probability": 0.8646 + }, + { + "start": 7791.58, + "end": 7794.64, + "probability": 0.8828 + }, + { + "start": 7794.82, + "end": 7795.32, + "probability": 0.1664 + }, + { + "start": 7804.02, + "end": 7811.1, + "probability": 0.9239 + }, + { + "start": 7811.22, + "end": 7812.34, + "probability": 0.8987 + }, + { + "start": 7812.44, + "end": 7813.28, + "probability": 0.7499 + }, + { + "start": 7813.72, + "end": 7817.2, + "probability": 0.7874 + }, + { + "start": 7817.28, + "end": 7820.36, + "probability": 0.609 + }, + { + "start": 7820.68, + "end": 7822.06, + "probability": 0.9283 + }, + { + "start": 7822.18, + "end": 7825.34, + "probability": 0.6737 + }, + { + "start": 7825.42, + "end": 7826.94, + "probability": 0.8267 + }, + { + "start": 7826.94, + "end": 7827.42, + "probability": 0.6652 + }, + { + "start": 7828.36, + "end": 7829.12, + "probability": 0.2266 + }, + { + "start": 7829.12, + "end": 7829.44, + "probability": 0.3691 + }, + { + "start": 7829.66, + "end": 7831.1, + "probability": 0.385 + }, + { + "start": 7831.44, + "end": 7832.38, + "probability": 0.6094 + }, + { + "start": 7832.7, + "end": 7835.14, + "probability": 0.0073 + }, + { + "start": 7835.14, + "end": 7835.46, + "probability": 0.0667 + }, + { + "start": 7835.46, + "end": 7835.53, + "probability": 0.1304 + }, + { + "start": 7835.54, + "end": 7837.54, + "probability": 0.5935 + }, + { + "start": 7837.74, + "end": 7841.63, + "probability": 0.7541 + }, + { + "start": 7841.94, + "end": 7842.32, + "probability": 0.8494 + }, + { + "start": 7842.44, + "end": 7844.1, + "probability": 0.9711 + }, + { + "start": 7844.16, + "end": 7845.6, + "probability": 0.5005 + }, + { + "start": 7845.76, + "end": 7846.56, + "probability": 0.1059 + }, + { + "start": 7846.56, + "end": 7847.37, + "probability": 0.3284 + }, + { + "start": 7847.64, + "end": 7848.28, + "probability": 0.1592 + }, + { + "start": 7848.36, + "end": 7850.82, + "probability": 0.7879 + }, + { + "start": 7850.82, + "end": 7853.5, + "probability": 0.8724 + }, + { + "start": 7853.5, + "end": 7856.16, + "probability": 0.7925 + }, + { + "start": 7856.16, + "end": 7857.48, + "probability": 0.938 + }, + { + "start": 7857.8, + "end": 7858.04, + "probability": 0.6144 + }, + { + "start": 7858.08, + "end": 7858.68, + "probability": 0.7606 + }, + { + "start": 7858.7, + "end": 7859.4, + "probability": 0.7475 + }, + { + "start": 7859.46, + "end": 7860.72, + "probability": 0.6915 + }, + { + "start": 7860.86, + "end": 7861.22, + "probability": 0.5942 + }, + { + "start": 7861.38, + "end": 7862.64, + "probability": 0.9353 + }, + { + "start": 7862.82, + "end": 7864.16, + "probability": 0.9007 + }, + { + "start": 7864.3, + "end": 7866.32, + "probability": 0.9512 + }, + { + "start": 7866.36, + "end": 7868.32, + "probability": 0.926 + }, + { + "start": 7868.42, + "end": 7869.66, + "probability": 0.4439 + }, + { + "start": 7869.68, + "end": 7870.04, + "probability": 0.519 + }, + { + "start": 7870.04, + "end": 7870.71, + "probability": 0.5008 + }, + { + "start": 7871.16, + "end": 7875.08, + "probability": 0.9972 + }, + { + "start": 7875.36, + "end": 7879.09, + "probability": 0.9883 + }, + { + "start": 7879.8, + "end": 7882.48, + "probability": 0.285 + }, + { + "start": 7882.7, + "end": 7884.34, + "probability": 0.2596 + }, + { + "start": 7884.34, + "end": 7885.14, + "probability": 0.1782 + }, + { + "start": 7885.22, + "end": 7886.5, + "probability": 0.6695 + }, + { + "start": 7887.8, + "end": 7890.66, + "probability": 0.5477 + }, + { + "start": 7891.04, + "end": 7893.08, + "probability": 0.7935 + }, + { + "start": 7893.22, + "end": 7893.47, + "probability": 0.7827 + }, + { + "start": 7893.94, + "end": 7894.76, + "probability": 0.6208 + }, + { + "start": 7895.78, + "end": 7896.18, + "probability": 0.3645 + }, + { + "start": 7896.22, + "end": 7899.45, + "probability": 0.7863 + }, + { + "start": 7900.4, + "end": 7901.52, + "probability": 0.6831 + }, + { + "start": 7901.52, + "end": 7903.5, + "probability": 0.5937 + }, + { + "start": 7903.7, + "end": 7905.42, + "probability": 0.7709 + }, + { + "start": 7906.16, + "end": 7909.96, + "probability": 0.9788 + }, + { + "start": 7910.08, + "end": 7910.92, + "probability": 0.8391 + }, + { + "start": 7912.1, + "end": 7915.28, + "probability": 0.9844 + }, + { + "start": 7915.6, + "end": 7921.54, + "probability": 0.9546 + }, + { + "start": 7921.64, + "end": 7922.09, + "probability": 0.5193 + }, + { + "start": 7923.92, + "end": 7931.18, + "probability": 0.9537 + }, + { + "start": 7931.48, + "end": 7932.5, + "probability": 0.7627 + }, + { + "start": 7932.54, + "end": 7934.18, + "probability": 0.5738 + }, + { + "start": 7934.78, + "end": 7936.24, + "probability": 0.9343 + }, + { + "start": 7936.68, + "end": 7940.2, + "probability": 0.9667 + }, + { + "start": 7940.46, + "end": 7944.66, + "probability": 0.8591 + }, + { + "start": 7944.88, + "end": 7947.6, + "probability": 0.9885 + }, + { + "start": 7948.02, + "end": 7950.12, + "probability": 0.9039 + }, + { + "start": 7950.44, + "end": 7951.58, + "probability": 0.973 + }, + { + "start": 7951.92, + "end": 7952.24, + "probability": 0.0545 + }, + { + "start": 7952.24, + "end": 7952.84, + "probability": 0.4016 + }, + { + "start": 7952.92, + "end": 7953.42, + "probability": 0.4724 + }, + { + "start": 7953.52, + "end": 7954.16, + "probability": 0.8135 + }, + { + "start": 7954.22, + "end": 7954.71, + "probability": 0.8667 + }, + { + "start": 7954.96, + "end": 7955.48, + "probability": 0.4171 + }, + { + "start": 7955.54, + "end": 7955.98, + "probability": 0.192 + }, + { + "start": 7956.22, + "end": 7959.82, + "probability": 0.5712 + }, + { + "start": 7959.96, + "end": 7962.16, + "probability": 0.9331 + }, + { + "start": 7962.46, + "end": 7964.92, + "probability": 0.882 + }, + { + "start": 7965.14, + "end": 7965.59, + "probability": 0.0901 + }, + { + "start": 7967.16, + "end": 7968.2, + "probability": 0.5865 + }, + { + "start": 7968.94, + "end": 7971.46, + "probability": 0.221 + }, + { + "start": 7971.78, + "end": 7973.04, + "probability": 0.8942 + }, + { + "start": 7973.34, + "end": 7976.06, + "probability": 0.9272 + }, + { + "start": 7976.24, + "end": 7977.0, + "probability": 0.1143 + }, + { + "start": 7977.36, + "end": 7977.86, + "probability": 0.7185 + }, + { + "start": 7978.02, + "end": 7979.36, + "probability": 0.5726 + }, + { + "start": 7979.4, + "end": 7980.33, + "probability": 0.9316 + }, + { + "start": 7981.58, + "end": 7981.58, + "probability": 0.341 + }, + { + "start": 7981.66, + "end": 7981.66, + "probability": 0.3714 + }, + { + "start": 7981.8, + "end": 7982.74, + "probability": 0.2994 + }, + { + "start": 7982.74, + "end": 7985.12, + "probability": 0.9539 + }, + { + "start": 7985.62, + "end": 7991.3, + "probability": 0.9559 + }, + { + "start": 7991.96, + "end": 7993.76, + "probability": 0.9697 + }, + { + "start": 7994.12, + "end": 7994.78, + "probability": 0.0067 + }, + { + "start": 7994.78, + "end": 7995.56, + "probability": 0.7764 + }, + { + "start": 7995.68, + "end": 7996.61, + "probability": 0.8027 + }, + { + "start": 7997.2, + "end": 7998.36, + "probability": 0.9304 + }, + { + "start": 7998.54, + "end": 7999.04, + "probability": 0.9329 + }, + { + "start": 7999.24, + "end": 8001.48, + "probability": 0.9209 + }, + { + "start": 8001.66, + "end": 8003.73, + "probability": 0.9937 + }, + { + "start": 8004.02, + "end": 8009.18, + "probability": 0.9775 + }, + { + "start": 8009.78, + "end": 8010.5, + "probability": 0.3721 + }, + { + "start": 8010.72, + "end": 8012.86, + "probability": 0.9899 + }, + { + "start": 8013.18, + "end": 8014.7, + "probability": 0.8176 + }, + { + "start": 8014.7, + "end": 8017.34, + "probability": 0.4796 + }, + { + "start": 8017.58, + "end": 8020.38, + "probability": 0.9419 + }, + { + "start": 8021.2, + "end": 8021.4, + "probability": 0.3391 + }, + { + "start": 8021.46, + "end": 8024.86, + "probability": 0.9446 + }, + { + "start": 8025.04, + "end": 8030.52, + "probability": 0.9749 + }, + { + "start": 8031.24, + "end": 8034.62, + "probability": 0.9852 + }, + { + "start": 8034.86, + "end": 8036.05, + "probability": 0.9673 + }, + { + "start": 8036.18, + "end": 8038.22, + "probability": 0.9731 + }, + { + "start": 8038.26, + "end": 8038.54, + "probability": 0.2877 + }, + { + "start": 8038.94, + "end": 8039.54, + "probability": 0.7626 + }, + { + "start": 8039.72, + "end": 8042.48, + "probability": 0.8408 + }, + { + "start": 8042.9, + "end": 8044.56, + "probability": 0.2853 + }, + { + "start": 8045.0, + "end": 8046.48, + "probability": 0.1981 + }, + { + "start": 8046.82, + "end": 8048.42, + "probability": 0.6691 + }, + { + "start": 8048.66, + "end": 8050.54, + "probability": 0.9462 + }, + { + "start": 8051.0, + "end": 8053.08, + "probability": 0.9355 + }, + { + "start": 8053.38, + "end": 8053.78, + "probability": 0.1896 + }, + { + "start": 8053.78, + "end": 8054.28, + "probability": 0.4182 + }, + { + "start": 8054.68, + "end": 8056.44, + "probability": 0.9897 + }, + { + "start": 8056.44, + "end": 8056.82, + "probability": 0.5321 + }, + { + "start": 8056.92, + "end": 8057.46, + "probability": 0.6128 + }, + { + "start": 8057.58, + "end": 8058.02, + "probability": 0.8338 + }, + { + "start": 8058.26, + "end": 8061.26, + "probability": 0.9238 + }, + { + "start": 8062.66, + "end": 8064.96, + "probability": 0.8546 + }, + { + "start": 8065.22, + "end": 8072.24, + "probability": 0.9287 + }, + { + "start": 8072.38, + "end": 8077.18, + "probability": 0.941 + }, + { + "start": 8077.72, + "end": 8083.52, + "probability": 0.9535 + }, + { + "start": 8083.54, + "end": 8085.06, + "probability": 0.5076 + }, + { + "start": 8085.38, + "end": 8086.1, + "probability": 0.3412 + }, + { + "start": 8086.1, + "end": 8086.58, + "probability": 0.6152 + }, + { + "start": 8086.62, + "end": 8087.48, + "probability": 0.5948 + }, + { + "start": 8090.32, + "end": 8091.6, + "probability": 0.0297 + }, + { + "start": 8093.72, + "end": 8094.12, + "probability": 0.0022 + }, + { + "start": 8095.22, + "end": 8096.9, + "probability": 0.0563 + }, + { + "start": 8098.62, + "end": 8100.94, + "probability": 0.0207 + }, + { + "start": 8102.24, + "end": 8103.24, + "probability": 0.1072 + }, + { + "start": 8103.24, + "end": 8107.64, + "probability": 0.6166 + }, + { + "start": 8108.16, + "end": 8111.16, + "probability": 0.994 + }, + { + "start": 8111.32, + "end": 8115.14, + "probability": 0.7796 + }, + { + "start": 8115.24, + "end": 8116.76, + "probability": 0.4157 + }, + { + "start": 8116.84, + "end": 8116.84, + "probability": 0.3441 + }, + { + "start": 8116.86, + "end": 8120.9, + "probability": 0.6803 + }, + { + "start": 8121.04, + "end": 8123.12, + "probability": 0.6301 + }, + { + "start": 8123.44, + "end": 8125.3, + "probability": 0.7994 + }, + { + "start": 8125.64, + "end": 8127.61, + "probability": 0.9868 + }, + { + "start": 8128.14, + "end": 8128.84, + "probability": 0.5607 + }, + { + "start": 8129.46, + "end": 8130.8, + "probability": 0.7455 + }, + { + "start": 8132.1, + "end": 8137.3, + "probability": 0.8043 + }, + { + "start": 8146.28, + "end": 8149.08, + "probability": 0.7687 + }, + { + "start": 8150.2, + "end": 8152.28, + "probability": 0.7439 + }, + { + "start": 8152.8, + "end": 8154.41, + "probability": 0.8062 + }, + { + "start": 8155.12, + "end": 8157.16, + "probability": 0.8547 + }, + { + "start": 8157.42, + "end": 8160.08, + "probability": 0.6214 + }, + { + "start": 8182.52, + "end": 8183.84, + "probability": 0.6823 + }, + { + "start": 8184.0, + "end": 8187.94, + "probability": 0.8815 + }, + { + "start": 8188.06, + "end": 8189.18, + "probability": 0.4896 + }, + { + "start": 8189.66, + "end": 8192.3, + "probability": 0.7643 + }, + { + "start": 8193.08, + "end": 8194.64, + "probability": 0.7447 + }, + { + "start": 8194.7, + "end": 8198.94, + "probability": 0.8693 + }, + { + "start": 8200.12, + "end": 8204.3, + "probability": 0.9539 + }, + { + "start": 8204.96, + "end": 8207.7, + "probability": 0.8997 + }, + { + "start": 8208.8, + "end": 8211.02, + "probability": 0.8105 + }, + { + "start": 8212.02, + "end": 8213.06, + "probability": 0.8704 + }, + { + "start": 8213.56, + "end": 8214.28, + "probability": 0.7447 + }, + { + "start": 8214.42, + "end": 8217.2, + "probability": 0.9688 + }, + { + "start": 8217.76, + "end": 8219.08, + "probability": 0.9066 + }, + { + "start": 8219.22, + "end": 8219.74, + "probability": 0.8937 + }, + { + "start": 8219.8, + "end": 8220.2, + "probability": 0.9572 + }, + { + "start": 8220.38, + "end": 8221.2, + "probability": 0.8191 + }, + { + "start": 8221.38, + "end": 8222.56, + "probability": 0.9406 + }, + { + "start": 8222.6, + "end": 8224.16, + "probability": 0.9479 + }, + { + "start": 8224.2, + "end": 8225.28, + "probability": 0.8676 + }, + { + "start": 8225.34, + "end": 8228.26, + "probability": 0.5241 + }, + { + "start": 8228.26, + "end": 8230.54, + "probability": 0.7683 + }, + { + "start": 8231.68, + "end": 8232.7, + "probability": 0.1677 + }, + { + "start": 8232.84, + "end": 8237.78, + "probability": 0.9293 + }, + { + "start": 8237.96, + "end": 8241.12, + "probability": 0.9863 + }, + { + "start": 8241.28, + "end": 8244.16, + "probability": 0.9341 + }, + { + "start": 8244.74, + "end": 8250.72, + "probability": 0.9876 + }, + { + "start": 8250.88, + "end": 8254.05, + "probability": 0.5532 + }, + { + "start": 8254.7, + "end": 8259.54, + "probability": 0.6179 + }, + { + "start": 8264.96, + "end": 8271.28, + "probability": 0.6312 + }, + { + "start": 8272.06, + "end": 8273.22, + "probability": 0.6537 + }, + { + "start": 8276.02, + "end": 8277.1, + "probability": 0.8023 + }, + { + "start": 8277.2, + "end": 8278.2, + "probability": 0.8314 + }, + { + "start": 8278.44, + "end": 8282.86, + "probability": 0.9807 + }, + { + "start": 8285.92, + "end": 8288.68, + "probability": 0.8539 + }, + { + "start": 8291.56, + "end": 8293.12, + "probability": 0.753 + }, + { + "start": 8293.24, + "end": 8296.68, + "probability": 0.9254 + }, + { + "start": 8297.96, + "end": 8299.98, + "probability": 0.4228 + }, + { + "start": 8301.04, + "end": 8302.42, + "probability": 0.4423 + }, + { + "start": 8302.56, + "end": 8304.38, + "probability": 0.7266 + }, + { + "start": 8304.78, + "end": 8308.02, + "probability": 0.6023 + }, + { + "start": 8308.66, + "end": 8312.88, + "probability": 0.8586 + }, + { + "start": 8313.56, + "end": 8315.94, + "probability": 0.9779 + }, + { + "start": 8316.28, + "end": 8318.76, + "probability": 0.9529 + }, + { + "start": 8319.16, + "end": 8321.19, + "probability": 0.9161 + }, + { + "start": 8321.7, + "end": 8324.38, + "probability": 0.8925 + }, + { + "start": 8325.52, + "end": 8326.84, + "probability": 0.7429 + }, + { + "start": 8327.34, + "end": 8333.16, + "probability": 0.9302 + }, + { + "start": 8333.44, + "end": 8335.18, + "probability": 0.7774 + }, + { + "start": 8335.58, + "end": 8338.76, + "probability": 0.6273 + }, + { + "start": 8339.74, + "end": 8342.03, + "probability": 0.5739 + }, + { + "start": 8342.76, + "end": 8344.56, + "probability": 0.9099 + }, + { + "start": 8345.76, + "end": 8346.46, + "probability": 0.3396 + }, + { + "start": 8346.8, + "end": 8350.18, + "probability": 0.9844 + }, + { + "start": 8352.04, + "end": 8356.31, + "probability": 0.8065 + }, + { + "start": 8356.8, + "end": 8357.91, + "probability": 0.7869 + }, + { + "start": 8358.54, + "end": 8360.2, + "probability": 0.9425 + }, + { + "start": 8360.42, + "end": 8362.52, + "probability": 0.8337 + }, + { + "start": 8362.9, + "end": 8364.02, + "probability": 0.6288 + }, + { + "start": 8364.14, + "end": 8365.16, + "probability": 0.7256 + }, + { + "start": 8365.26, + "end": 8367.46, + "probability": 0.9525 + }, + { + "start": 8368.7, + "end": 8369.92, + "probability": 0.55 + }, + { + "start": 8370.04, + "end": 8373.9, + "probability": 0.832 + }, + { + "start": 8375.18, + "end": 8380.11, + "probability": 0.9877 + }, + { + "start": 8381.04, + "end": 8382.33, + "probability": 0.6782 + }, + { + "start": 8384.0, + "end": 8385.62, + "probability": 0.9492 + }, + { + "start": 8385.8, + "end": 8388.44, + "probability": 0.994 + }, + { + "start": 8388.8, + "end": 8389.62, + "probability": 0.947 + }, + { + "start": 8389.7, + "end": 8390.79, + "probability": 0.9961 + }, + { + "start": 8391.62, + "end": 8394.84, + "probability": 0.9945 + }, + { + "start": 8394.88, + "end": 8396.26, + "probability": 0.9397 + }, + { + "start": 8396.44, + "end": 8396.84, + "probability": 0.9331 + }, + { + "start": 8396.88, + "end": 8397.88, + "probability": 0.8643 + }, + { + "start": 8399.76, + "end": 8401.94, + "probability": 0.8695 + }, + { + "start": 8402.08, + "end": 8407.68, + "probability": 0.9528 + }, + { + "start": 8409.38, + "end": 8411.42, + "probability": 0.7435 + }, + { + "start": 8412.24, + "end": 8416.48, + "probability": 0.9771 + }, + { + "start": 8416.66, + "end": 8417.68, + "probability": 0.7533 + }, + { + "start": 8417.8, + "end": 8418.84, + "probability": 0.9698 + }, + { + "start": 8419.46, + "end": 8422.14, + "probability": 0.0117 + }, + { + "start": 8422.2, + "end": 8422.2, + "probability": 0.1447 + }, + { + "start": 8422.2, + "end": 8422.2, + "probability": 0.1581 + }, + { + "start": 8422.2, + "end": 8422.86, + "probability": 0.0352 + }, + { + "start": 8422.98, + "end": 8424.44, + "probability": 0.5247 + }, + { + "start": 8424.74, + "end": 8428.04, + "probability": 0.6914 + }, + { + "start": 8428.36, + "end": 8429.64, + "probability": 0.6074 + }, + { + "start": 8429.68, + "end": 8431.1, + "probability": 0.7837 + }, + { + "start": 8432.02, + "end": 8434.36, + "probability": 0.8697 + }, + { + "start": 8434.64, + "end": 8435.96, + "probability": 0.5216 + }, + { + "start": 8436.24, + "end": 8438.04, + "probability": 0.8864 + }, + { + "start": 8438.46, + "end": 8440.74, + "probability": 0.9178 + }, + { + "start": 8440.82, + "end": 8443.56, + "probability": 0.7285 + }, + { + "start": 8443.62, + "end": 8445.16, + "probability": 0.8626 + }, + { + "start": 8445.8, + "end": 8448.98, + "probability": 0.6441 + }, + { + "start": 8449.1, + "end": 8449.47, + "probability": 0.8382 + }, + { + "start": 8449.94, + "end": 8453.12, + "probability": 0.9458 + }, + { + "start": 8453.56, + "end": 8457.54, + "probability": 0.8428 + }, + { + "start": 8458.26, + "end": 8461.28, + "probability": 0.9606 + }, + { + "start": 8461.36, + "end": 8462.47, + "probability": 0.9597 + }, + { + "start": 8463.6, + "end": 8465.56, + "probability": 0.8599 + }, + { + "start": 8465.62, + "end": 8468.01, + "probability": 0.9922 + }, + { + "start": 8468.62, + "end": 8474.44, + "probability": 0.8909 + }, + { + "start": 8474.7, + "end": 8476.34, + "probability": 0.9855 + }, + { + "start": 8476.46, + "end": 8477.92, + "probability": 0.5259 + }, + { + "start": 8478.0, + "end": 8481.74, + "probability": 0.6668 + }, + { + "start": 8481.94, + "end": 8484.5, + "probability": 0.8127 + }, + { + "start": 8485.06, + "end": 8487.12, + "probability": 0.9238 + }, + { + "start": 8487.4, + "end": 8491.2, + "probability": 0.9889 + }, + { + "start": 8491.84, + "end": 8494.5, + "probability": 0.8428 + }, + { + "start": 8495.12, + "end": 8501.8, + "probability": 0.9711 + }, + { + "start": 8501.82, + "end": 8502.8, + "probability": 0.5648 + }, + { + "start": 8502.86, + "end": 8503.48, + "probability": 0.8894 + }, + { + "start": 8504.22, + "end": 8505.16, + "probability": 0.7384 + }, + { + "start": 8505.6, + "end": 8506.69, + "probability": 0.9657 + }, + { + "start": 8507.8, + "end": 8508.81, + "probability": 0.6943 + }, + { + "start": 8509.24, + "end": 8509.48, + "probability": 0.1366 + }, + { + "start": 8510.22, + "end": 8512.02, + "probability": 0.9178 + }, + { + "start": 8512.18, + "end": 8513.75, + "probability": 0.8181 + }, + { + "start": 8514.2, + "end": 8517.36, + "probability": 0.6782 + }, + { + "start": 8517.4, + "end": 8518.32, + "probability": 0.9556 + }, + { + "start": 8518.66, + "end": 8520.8, + "probability": 0.7229 + }, + { + "start": 8523.9, + "end": 8527.06, + "probability": 0.5042 + }, + { + "start": 8530.18, + "end": 8530.78, + "probability": 0.2352 + }, + { + "start": 8531.74, + "end": 8533.28, + "probability": 0.6668 + }, + { + "start": 8533.88, + "end": 8536.86, + "probability": 0.9262 + }, + { + "start": 8537.06, + "end": 8539.87, + "probability": 0.9888 + }, + { + "start": 8540.74, + "end": 8544.56, + "probability": 0.8062 + }, + { + "start": 8545.82, + "end": 8546.12, + "probability": 0.3214 + }, + { + "start": 8546.14, + "end": 8549.1, + "probability": 0.8622 + }, + { + "start": 8549.24, + "end": 8550.22, + "probability": 0.8716 + }, + { + "start": 8550.42, + "end": 8556.34, + "probability": 0.7952 + }, + { + "start": 8556.58, + "end": 8558.82, + "probability": 0.9474 + }, + { + "start": 8559.0, + "end": 8561.41, + "probability": 0.8599 + }, + { + "start": 8561.96, + "end": 8564.88, + "probability": 0.8129 + }, + { + "start": 8565.18, + "end": 8567.76, + "probability": 0.998 + }, + { + "start": 8568.54, + "end": 8569.5, + "probability": 0.5628 + }, + { + "start": 8569.98, + "end": 8572.48, + "probability": 0.7767 + }, + { + "start": 8572.56, + "end": 8572.98, + "probability": 0.1858 + }, + { + "start": 8573.22, + "end": 8577.96, + "probability": 0.9246 + }, + { + "start": 8578.06, + "end": 8579.08, + "probability": 0.3578 + }, + { + "start": 8579.52, + "end": 8581.2, + "probability": 0.8903 + }, + { + "start": 8581.3, + "end": 8582.53, + "probability": 0.9016 + }, + { + "start": 8582.72, + "end": 8584.6, + "probability": 0.5061 + }, + { + "start": 8585.12, + "end": 8586.5, + "probability": 0.8549 + }, + { + "start": 8586.88, + "end": 8587.97, + "probability": 0.4704 + }, + { + "start": 8588.82, + "end": 8590.34, + "probability": 0.9797 + }, + { + "start": 8591.14, + "end": 8591.92, + "probability": 0.6858 + }, + { + "start": 8592.16, + "end": 8594.42, + "probability": 0.7564 + }, + { + "start": 8595.26, + "end": 8596.46, + "probability": 0.7519 + }, + { + "start": 8597.28, + "end": 8600.24, + "probability": 0.9171 + }, + { + "start": 8600.56, + "end": 8603.46, + "probability": 0.8743 + }, + { + "start": 8603.6, + "end": 8603.86, + "probability": 0.659 + }, + { + "start": 8604.02, + "end": 8604.92, + "probability": 0.3557 + }, + { + "start": 8605.46, + "end": 8609.5, + "probability": 0.9928 + }, + { + "start": 8609.9, + "end": 8611.8, + "probability": 0.8523 + }, + { + "start": 8611.88, + "end": 8612.3, + "probability": 0.3055 + }, + { + "start": 8612.48, + "end": 8613.98, + "probability": 0.5453 + }, + { + "start": 8614.48, + "end": 8617.26, + "probability": 0.7939 + }, + { + "start": 8617.62, + "end": 8622.86, + "probability": 0.8062 + }, + { + "start": 8622.92, + "end": 8623.12, + "probability": 0.7482 + }, + { + "start": 8623.68, + "end": 8624.74, + "probability": 0.7982 + }, + { + "start": 8624.98, + "end": 8628.68, + "probability": 0.9668 + }, + { + "start": 8628.82, + "end": 8632.18, + "probability": 0.9048 + }, + { + "start": 8632.3, + "end": 8633.84, + "probability": 0.5447 + }, + { + "start": 8633.84, + "end": 8634.74, + "probability": 0.5513 + }, + { + "start": 8635.44, + "end": 8638.94, + "probability": 0.9797 + }, + { + "start": 8639.02, + "end": 8640.12, + "probability": 0.8786 + }, + { + "start": 8641.0, + "end": 8644.27, + "probability": 0.8258 + }, + { + "start": 8646.9, + "end": 8652.26, + "probability": 0.8232 + }, + { + "start": 8652.8, + "end": 8655.64, + "probability": 0.7356 + }, + { + "start": 8657.36, + "end": 8658.7, + "probability": 0.917 + }, + { + "start": 8658.88, + "end": 8662.14, + "probability": 0.7817 + }, + { + "start": 8662.36, + "end": 8668.44, + "probability": 0.8766 + }, + { + "start": 8669.22, + "end": 8671.4, + "probability": 0.5325 + }, + { + "start": 8672.18, + "end": 8673.64, + "probability": 0.8882 + }, + { + "start": 8673.76, + "end": 8675.68, + "probability": 0.8188 + }, + { + "start": 8676.26, + "end": 8676.98, + "probability": 0.3859 + }, + { + "start": 8677.0, + "end": 8680.26, + "probability": 0.856 + }, + { + "start": 8680.68, + "end": 8684.68, + "probability": 0.7967 + }, + { + "start": 8684.7, + "end": 8687.22, + "probability": 0.6876 + }, + { + "start": 8687.94, + "end": 8688.6, + "probability": 0.3543 + }, + { + "start": 8688.86, + "end": 8694.88, + "probability": 0.8103 + }, + { + "start": 8695.3, + "end": 8696.3, + "probability": 0.5275 + }, + { + "start": 8696.8, + "end": 8700.32, + "probability": 0.8509 + }, + { + "start": 8700.56, + "end": 8703.9, + "probability": 0.9071 + }, + { + "start": 8704.36, + "end": 8705.78, + "probability": 0.9849 + }, + { + "start": 8706.14, + "end": 8707.22, + "probability": 0.828 + }, + { + "start": 8714.66, + "end": 8715.82, + "probability": 0.7225 + }, + { + "start": 8715.92, + "end": 8719.84, + "probability": 0.9189 + }, + { + "start": 8720.26, + "end": 8721.42, + "probability": 0.8527 + }, + { + "start": 8721.42, + "end": 8723.4, + "probability": 0.6661 + }, + { + "start": 8724.18, + "end": 8727.44, + "probability": 0.9419 + }, + { + "start": 8727.8, + "end": 8729.24, + "probability": 0.8345 + }, + { + "start": 8729.36, + "end": 8731.7, + "probability": 0.6763 + }, + { + "start": 8732.04, + "end": 8733.58, + "probability": 0.9985 + }, + { + "start": 8734.18, + "end": 8736.0, + "probability": 0.9886 + }, + { + "start": 8736.66, + "end": 8737.12, + "probability": 0.7996 + }, + { + "start": 8737.22, + "end": 8743.88, + "probability": 0.9165 + }, + { + "start": 8743.98, + "end": 8745.34, + "probability": 0.7638 + }, + { + "start": 8745.44, + "end": 8747.72, + "probability": 0.8862 + }, + { + "start": 8748.64, + "end": 8752.58, + "probability": 0.813 + }, + { + "start": 8753.5, + "end": 8754.14, + "probability": 0.5922 + }, + { + "start": 8754.2, + "end": 8755.46, + "probability": 0.9896 + }, + { + "start": 8755.76, + "end": 8755.96, + "probability": 0.3343 + }, + { + "start": 8755.96, + "end": 8756.9, + "probability": 0.5537 + }, + { + "start": 8756.92, + "end": 8758.16, + "probability": 0.6499 + }, + { + "start": 8758.28, + "end": 8759.28, + "probability": 0.658 + }, + { + "start": 8759.32, + "end": 8760.52, + "probability": 0.8477 + }, + { + "start": 8760.84, + "end": 8763.12, + "probability": 0.9735 + }, + { + "start": 8763.2, + "end": 8764.48, + "probability": 0.9599 + }, + { + "start": 8764.62, + "end": 8765.86, + "probability": 0.6987 + }, + { + "start": 8766.12, + "end": 8767.66, + "probability": 0.7246 + }, + { + "start": 8767.68, + "end": 8769.28, + "probability": 0.9073 + }, + { + "start": 8769.88, + "end": 8771.34, + "probability": 0.5762 + }, + { + "start": 8771.46, + "end": 8772.04, + "probability": 0.8889 + }, + { + "start": 8772.08, + "end": 8773.8, + "probability": 0.9836 + }, + { + "start": 8775.02, + "end": 8776.78, + "probability": 0.6919 + }, + { + "start": 8776.94, + "end": 8781.12, + "probability": 0.628 + }, + { + "start": 8781.28, + "end": 8785.9, + "probability": 0.9033 + }, + { + "start": 8786.24, + "end": 8786.84, + "probability": 0.8966 + }, + { + "start": 8786.96, + "end": 8787.52, + "probability": 0.9678 + }, + { + "start": 8787.68, + "end": 8788.24, + "probability": 0.9814 + }, + { + "start": 8788.38, + "end": 8788.78, + "probability": 0.9876 + }, + { + "start": 8788.94, + "end": 8789.32, + "probability": 0.7377 + }, + { + "start": 8789.38, + "end": 8790.04, + "probability": 0.7247 + }, + { + "start": 8790.1, + "end": 8791.24, + "probability": 0.9211 + }, + { + "start": 8791.86, + "end": 8796.54, + "probability": 0.9896 + }, + { + "start": 8796.66, + "end": 8799.58, + "probability": 0.8657 + }, + { + "start": 8799.68, + "end": 8800.34, + "probability": 0.6116 + }, + { + "start": 8800.58, + "end": 8803.32, + "probability": 0.8841 + }, + { + "start": 8803.76, + "end": 8807.18, + "probability": 0.9528 + }, + { + "start": 8807.3, + "end": 8809.44, + "probability": 0.6474 + }, + { + "start": 8809.6, + "end": 8815.88, + "probability": 0.9814 + }, + { + "start": 8816.0, + "end": 8820.74, + "probability": 0.6772 + }, + { + "start": 8820.8, + "end": 8821.92, + "probability": 0.6869 + }, + { + "start": 8822.04, + "end": 8823.18, + "probability": 0.8243 + }, + { + "start": 8823.28, + "end": 8825.92, + "probability": 0.9803 + }, + { + "start": 8826.5, + "end": 8827.66, + "probability": 0.9592 + }, + { + "start": 8830.72, + "end": 8831.78, + "probability": 0.4396 + }, + { + "start": 8831.78, + "end": 8832.34, + "probability": 0.5457 + }, + { + "start": 8832.34, + "end": 8833.26, + "probability": 0.8923 + }, + { + "start": 8833.66, + "end": 8837.58, + "probability": 0.7335 + }, + { + "start": 8837.66, + "end": 8840.12, + "probability": 0.8986 + }, + { + "start": 8840.32, + "end": 8840.78, + "probability": 0.496 + }, + { + "start": 8840.8, + "end": 8845.1, + "probability": 0.9146 + }, + { + "start": 8845.2, + "end": 8845.56, + "probability": 0.816 + }, + { + "start": 8846.26, + "end": 8847.24, + "probability": 0.9175 + }, + { + "start": 8847.34, + "end": 8848.74, + "probability": 0.8124 + }, + { + "start": 8849.12, + "end": 8852.46, + "probability": 0.9327 + }, + { + "start": 8852.68, + "end": 8854.54, + "probability": 0.9884 + }, + { + "start": 8854.76, + "end": 8856.76, + "probability": 0.7349 + }, + { + "start": 8857.36, + "end": 8860.32, + "probability": 0.7935 + }, + { + "start": 8860.4, + "end": 8862.16, + "probability": 0.9907 + }, + { + "start": 8862.46, + "end": 8864.24, + "probability": 0.9189 + }, + { + "start": 8864.38, + "end": 8866.8, + "probability": 0.8894 + }, + { + "start": 8866.86, + "end": 8867.6, + "probability": 0.7764 + }, + { + "start": 8867.64, + "end": 8872.66, + "probability": 0.8214 + }, + { + "start": 8872.76, + "end": 8875.04, + "probability": 0.9328 + }, + { + "start": 8875.18, + "end": 8878.1, + "probability": 0.8745 + }, + { + "start": 8878.36, + "end": 8880.08, + "probability": 0.7092 + }, + { + "start": 8882.04, + "end": 8882.88, + "probability": 0.5097 + }, + { + "start": 8884.58, + "end": 8885.28, + "probability": 0.1732 + }, + { + "start": 8885.42, + "end": 8887.0, + "probability": 0.282 + }, + { + "start": 8887.6, + "end": 8888.18, + "probability": 0.479 + }, + { + "start": 8898.94, + "end": 8900.02, + "probability": 0.1225 + }, + { + "start": 8900.56, + "end": 8901.3, + "probability": 0.0443 + }, + { + "start": 8901.3, + "end": 8904.34, + "probability": 0.1211 + }, + { + "start": 8904.42, + "end": 8907.58, + "probability": 0.8236 + }, + { + "start": 8907.96, + "end": 8910.06, + "probability": 0.0367 + }, + { + "start": 8910.94, + "end": 8915.16, + "probability": 0.1289 + }, + { + "start": 8915.16, + "end": 8919.3, + "probability": 0.0572 + }, + { + "start": 8920.08, + "end": 8925.88, + "probability": 0.0205 + }, + { + "start": 8927.24, + "end": 8928.4, + "probability": 0.0049 + }, + { + "start": 8930.87, + "end": 8933.14, + "probability": 0.0541 + }, + { + "start": 8933.64, + "end": 8935.72, + "probability": 0.0764 + }, + { + "start": 8937.08, + "end": 8940.68, + "probability": 0.199 + }, + { + "start": 8941.92, + "end": 8942.34, + "probability": 0.4938 + }, + { + "start": 8945.52, + "end": 8946.84, + "probability": 0.0275 + }, + { + "start": 8946.84, + "end": 8948.14, + "probability": 0.0112 + }, + { + "start": 8949.2, + "end": 8950.6, + "probability": 0.0446 + }, + { + "start": 8950.69, + "end": 8950.98, + "probability": 0.0377 + }, + { + "start": 8950.98, + "end": 8951.26, + "probability": 0.0179 + }, + { + "start": 8951.26, + "end": 8951.26, + "probability": 0.0656 + }, + { + "start": 8951.3, + "end": 8952.98, + "probability": 0.1806 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.2, + "end": 8953.28, + "probability": 0.0217 + }, + { + "start": 8953.28, + "end": 8957.58, + "probability": 0.6934 + }, + { + "start": 8957.96, + "end": 8958.92, + "probability": 0.4877 + }, + { + "start": 8958.92, + "end": 8962.75, + "probability": 0.9335 + }, + { + "start": 8963.48, + "end": 8966.74, + "probability": 0.9113 + }, + { + "start": 8967.2, + "end": 8969.1, + "probability": 0.9961 + }, + { + "start": 8969.28, + "end": 8969.96, + "probability": 0.3144 + }, + { + "start": 8970.38, + "end": 8974.06, + "probability": 0.0968 + }, + { + "start": 8974.32, + "end": 8978.94, + "probability": 0.8673 + }, + { + "start": 8979.14, + "end": 8981.34, + "probability": 0.8398 + }, + { + "start": 8981.46, + "end": 8982.02, + "probability": 0.7471 + }, + { + "start": 8982.14, + "end": 8986.8, + "probability": 0.5464 + }, + { + "start": 8986.8, + "end": 8987.7, + "probability": 0.569 + }, + { + "start": 8988.04, + "end": 8988.48, + "probability": 0.1265 + }, + { + "start": 8988.48, + "end": 8989.66, + "probability": 0.5432 + }, + { + "start": 8989.72, + "end": 8990.62, + "probability": 0.9663 + }, + { + "start": 8993.52, + "end": 8995.84, + "probability": 0.579 + }, + { + "start": 8996.14, + "end": 8997.38, + "probability": 0.0598 + }, + { + "start": 8997.46, + "end": 8997.46, + "probability": 0.3221 + }, + { + "start": 8998.56, + "end": 9001.86, + "probability": 0.8341 + }, + { + "start": 9002.12, + "end": 9003.3, + "probability": 0.9431 + }, + { + "start": 9003.38, + "end": 9005.44, + "probability": 0.974 + }, + { + "start": 9005.7, + "end": 9006.1, + "probability": 0.4053 + }, + { + "start": 9006.18, + "end": 9007.3, + "probability": 0.8445 + }, + { + "start": 9007.38, + "end": 9008.6, + "probability": 0.8351 + }, + { + "start": 9008.74, + "end": 9010.22, + "probability": 0.9066 + }, + { + "start": 9010.24, + "end": 9011.06, + "probability": 0.9131 + }, + { + "start": 9011.48, + "end": 9019.6, + "probability": 0.9285 + }, + { + "start": 9020.24, + "end": 9021.82, + "probability": 0.9906 + }, + { + "start": 9025.12, + "end": 9025.98, + "probability": 0.1223 + }, + { + "start": 9026.98, + "end": 9029.1, + "probability": 0.4687 + }, + { + "start": 9029.46, + "end": 9030.1, + "probability": 0.0207 + }, + { + "start": 9030.62, + "end": 9031.48, + "probability": 0.1355 + }, + { + "start": 9031.48, + "end": 9032.22, + "probability": 0.1659 + }, + { + "start": 9032.36, + "end": 9032.94, + "probability": 0.4758 + }, + { + "start": 9033.06, + "end": 9034.26, + "probability": 0.1812 + }, + { + "start": 9034.86, + "end": 9037.27, + "probability": 0.5311 + }, + { + "start": 9037.48, + "end": 9038.5, + "probability": 0.1339 + }, + { + "start": 9038.5, + "end": 9042.86, + "probability": 0.8123 + }, + { + "start": 9043.04, + "end": 9047.31, + "probability": 0.9668 + }, + { + "start": 9047.62, + "end": 9048.2, + "probability": 0.2803 + }, + { + "start": 9048.2, + "end": 9049.76, + "probability": 0.6516 + }, + { + "start": 9050.5, + "end": 9051.8, + "probability": 0.8818 + }, + { + "start": 9052.22, + "end": 9054.32, + "probability": 0.562 + }, + { + "start": 9068.38, + "end": 9069.44, + "probability": 0.6 + }, + { + "start": 9072.1, + "end": 9073.5, + "probability": 0.9137 + }, + { + "start": 9075.4, + "end": 9085.08, + "probability": 0.849 + }, + { + "start": 9086.0, + "end": 9089.22, + "probability": 0.9526 + }, + { + "start": 9089.38, + "end": 9092.74, + "probability": 0.4724 + }, + { + "start": 9092.74, + "end": 9093.5, + "probability": 0.1097 + }, + { + "start": 9093.5, + "end": 9093.6, + "probability": 0.4778 + }, + { + "start": 9093.6, + "end": 9093.6, + "probability": 0.5271 + }, + { + "start": 9093.66, + "end": 9094.82, + "probability": 0.8376 + }, + { + "start": 9094.94, + "end": 9097.28, + "probability": 0.9953 + }, + { + "start": 9098.02, + "end": 9103.84, + "probability": 0.8461 + }, + { + "start": 9104.52, + "end": 9105.42, + "probability": 0.7177 + }, + { + "start": 9106.44, + "end": 9109.86, + "probability": 0.5571 + }, + { + "start": 9111.38, + "end": 9116.45, + "probability": 0.6636 + }, + { + "start": 9118.0, + "end": 9120.0, + "probability": 0.9591 + }, + { + "start": 9121.22, + "end": 9126.56, + "probability": 0.9777 + }, + { + "start": 9127.92, + "end": 9131.8, + "probability": 0.6728 + }, + { + "start": 9133.44, + "end": 9135.83, + "probability": 0.9586 + }, + { + "start": 9136.12, + "end": 9138.06, + "probability": 0.8237 + }, + { + "start": 9138.14, + "end": 9140.96, + "probability": 0.9299 + }, + { + "start": 9141.1, + "end": 9142.36, + "probability": 0.7737 + }, + { + "start": 9142.5, + "end": 9144.64, + "probability": 0.9914 + }, + { + "start": 9145.68, + "end": 9150.54, + "probability": 0.9023 + }, + { + "start": 9152.44, + "end": 9158.34, + "probability": 0.9473 + }, + { + "start": 9159.28, + "end": 9162.88, + "probability": 0.9728 + }, + { + "start": 9163.12, + "end": 9168.72, + "probability": 0.9832 + }, + { + "start": 9169.84, + "end": 9175.4, + "probability": 0.98 + }, + { + "start": 9175.46, + "end": 9176.68, + "probability": 0.7732 + }, + { + "start": 9176.76, + "end": 9177.72, + "probability": 0.9631 + }, + { + "start": 9178.84, + "end": 9182.88, + "probability": 0.9746 + }, + { + "start": 9182.88, + "end": 9185.36, + "probability": 0.3634 + }, + { + "start": 9186.24, + "end": 9187.14, + "probability": 0.6091 + }, + { + "start": 9187.24, + "end": 9190.21, + "probability": 0.8874 + }, + { + "start": 9191.22, + "end": 9192.64, + "probability": 0.6058 + }, + { + "start": 9194.0, + "end": 9198.26, + "probability": 0.7134 + }, + { + "start": 9198.26, + "end": 9203.68, + "probability": 0.829 + }, + { + "start": 9204.44, + "end": 9209.6, + "probability": 0.9088 + }, + { + "start": 9210.62, + "end": 9213.52, + "probability": 0.8905 + }, + { + "start": 9214.56, + "end": 9217.68, + "probability": 0.9963 + }, + { + "start": 9217.68, + "end": 9219.7, + "probability": 0.6945 + }, + { + "start": 9220.14, + "end": 9223.06, + "probability": 0.975 + }, + { + "start": 9224.1, + "end": 9226.43, + "probability": 0.5914 + }, + { + "start": 9228.0, + "end": 9232.38, + "probability": 0.9878 + }, + { + "start": 9233.48, + "end": 9235.26, + "probability": 0.9486 + }, + { + "start": 9236.4, + "end": 9237.88, + "probability": 0.9482 + }, + { + "start": 9238.62, + "end": 9239.16, + "probability": 0.252 + }, + { + "start": 9239.18, + "end": 9242.92, + "probability": 0.9814 + }, + { + "start": 9243.24, + "end": 9249.48, + "probability": 0.8525 + }, + { + "start": 9250.64, + "end": 9254.42, + "probability": 0.9639 + }, + { + "start": 9254.42, + "end": 9257.64, + "probability": 0.9656 + }, + { + "start": 9258.38, + "end": 9265.98, + "probability": 0.9215 + }, + { + "start": 9266.08, + "end": 9267.6, + "probability": 0.618 + }, + { + "start": 9269.08, + "end": 9269.46, + "probability": 0.6416 + }, + { + "start": 9269.62, + "end": 9278.58, + "probability": 0.9701 + }, + { + "start": 9278.64, + "end": 9279.26, + "probability": 0.5752 + }, + { + "start": 9279.66, + "end": 9280.16, + "probability": 0.6106 + }, + { + "start": 9280.2, + "end": 9283.78, + "probability": 0.9621 + }, + { + "start": 9284.01, + "end": 9288.14, + "probability": 0.9903 + }, + { + "start": 9289.02, + "end": 9290.62, + "probability": 0.8621 + }, + { + "start": 9291.1, + "end": 9294.34, + "probability": 0.9777 + }, + { + "start": 9297.36, + "end": 9298.28, + "probability": 0.6113 + }, + { + "start": 9298.42, + "end": 9299.38, + "probability": 0.6942 + }, + { + "start": 9299.6, + "end": 9306.84, + "probability": 0.9556 + }, + { + "start": 9306.84, + "end": 9312.6, + "probability": 0.9715 + }, + { + "start": 9313.34, + "end": 9317.0, + "probability": 0.7168 + }, + { + "start": 9317.18, + "end": 9322.04, + "probability": 0.7861 + }, + { + "start": 9322.04, + "end": 9326.44, + "probability": 0.993 + }, + { + "start": 9326.44, + "end": 9331.76, + "probability": 0.9745 + }, + { + "start": 9331.84, + "end": 9332.94, + "probability": 0.774 + }, + { + "start": 9333.08, + "end": 9333.8, + "probability": 0.7623 + }, + { + "start": 9335.12, + "end": 9339.46, + "probability": 0.998 + }, + { + "start": 9339.46, + "end": 9344.54, + "probability": 0.9907 + }, + { + "start": 9345.22, + "end": 9345.58, + "probability": 0.3873 + }, + { + "start": 9345.66, + "end": 9346.56, + "probability": 0.6994 + }, + { + "start": 9346.72, + "end": 9348.28, + "probability": 0.912 + }, + { + "start": 9348.84, + "end": 9351.08, + "probability": 0.7358 + }, + { + "start": 9351.8, + "end": 9354.24, + "probability": 0.9966 + }, + { + "start": 9355.06, + "end": 9358.88, + "probability": 0.9696 + }, + { + "start": 9360.08, + "end": 9360.64, + "probability": 0.6346 + }, + { + "start": 9360.7, + "end": 9362.66, + "probability": 0.9924 + }, + { + "start": 9362.66, + "end": 9365.6, + "probability": 0.9594 + }, + { + "start": 9366.36, + "end": 9371.78, + "probability": 0.8716 + }, + { + "start": 9372.36, + "end": 9374.76, + "probability": 0.911 + }, + { + "start": 9375.9, + "end": 9376.44, + "probability": 0.3004 + }, + { + "start": 9377.62, + "end": 9377.96, + "probability": 0.5325 + }, + { + "start": 9378.18, + "end": 9379.38, + "probability": 0.9472 + }, + { + "start": 9379.8, + "end": 9382.94, + "probability": 0.8154 + }, + { + "start": 9383.38, + "end": 9383.86, + "probability": 0.7252 + }, + { + "start": 9384.0, + "end": 9385.12, + "probability": 0.946 + }, + { + "start": 9385.2, + "end": 9386.46, + "probability": 0.707 + }, + { + "start": 9386.56, + "end": 9387.85, + "probability": 0.696 + }, + { + "start": 9388.38, + "end": 9390.08, + "probability": 0.9919 + }, + { + "start": 9391.5, + "end": 9393.06, + "probability": 0.6539 + }, + { + "start": 9393.58, + "end": 9398.86, + "probability": 0.8073 + }, + { + "start": 9399.12, + "end": 9401.36, + "probability": 0.993 + }, + { + "start": 9401.42, + "end": 9402.14, + "probability": 0.4888 + }, + { + "start": 9402.18, + "end": 9402.82, + "probability": 0.497 + }, + { + "start": 9403.34, + "end": 9404.6, + "probability": 0.6195 + }, + { + "start": 9404.6, + "end": 9405.04, + "probability": 0.7444 + }, + { + "start": 9405.16, + "end": 9409.72, + "probability": 0.052 + }, + { + "start": 9411.08, + "end": 9412.76, + "probability": 0.5957 + }, + { + "start": 9425.54, + "end": 9430.28, + "probability": 0.8537 + }, + { + "start": 9430.34, + "end": 9431.68, + "probability": 0.3416 + }, + { + "start": 9432.16, + "end": 9436.08, + "probability": 0.1218 + }, + { + "start": 9437.78, + "end": 9441.7, + "probability": 0.0708 + }, + { + "start": 9444.2, + "end": 9445.46, + "probability": 0.0296 + }, + { + "start": 9445.46, + "end": 9445.46, + "probability": 0.0746 + }, + { + "start": 9445.46, + "end": 9446.29, + "probability": 0.1806 + }, + { + "start": 9446.84, + "end": 9449.19, + "probability": 0.014 + }, + { + "start": 9450.48, + "end": 9453.3, + "probability": 0.0215 + }, + { + "start": 9453.3, + "end": 9456.34, + "probability": 0.0665 + }, + { + "start": 9456.83, + "end": 9458.72, + "probability": 0.0429 + }, + { + "start": 9458.72, + "end": 9460.62, + "probability": 0.1084 + }, + { + "start": 9463.48, + "end": 9465.58, + "probability": 0.3131 + }, + { + "start": 9465.78, + "end": 9468.56, + "probability": 0.0283 + }, + { + "start": 9468.56, + "end": 9472.48, + "probability": 0.0224 + }, + { + "start": 9472.6, + "end": 9476.32, + "probability": 0.0847 + }, + { + "start": 9478.3, + "end": 9481.7, + "probability": 0.08 + }, + { + "start": 9483.0, + "end": 9483.0, + "probability": 0.0 + }, + { + "start": 9483.0, + "end": 9483.0, + "probability": 0.0 + }, + { + "start": 9483.96, + "end": 9485.06, + "probability": 0.0057 + }, + { + "start": 9485.06, + "end": 9485.06, + "probability": 0.0036 + }, + { + "start": 9485.06, + "end": 9485.06, + "probability": 0.0331 + }, + { + "start": 9485.06, + "end": 9485.06, + "probability": 0.0867 + }, + { + "start": 9485.06, + "end": 9485.06, + "probability": 0.1548 + }, + { + "start": 9485.06, + "end": 9485.06, + "probability": 0.0919 + }, + { + "start": 9485.06, + "end": 9485.06, + "probability": 0.1297 + }, + { + "start": 9485.06, + "end": 9489.24, + "probability": 0.2642 + }, + { + "start": 9490.7, + "end": 9492.4, + "probability": 0.9431 + }, + { + "start": 9492.56, + "end": 9494.18, + "probability": 0.9941 + }, + { + "start": 9495.16, + "end": 9496.26, + "probability": 0.7148 + }, + { + "start": 9496.44, + "end": 9505.14, + "probability": 0.9578 + }, + { + "start": 9505.62, + "end": 9510.24, + "probability": 0.8386 + }, + { + "start": 9510.24, + "end": 9515.42, + "probability": 0.9972 + }, + { + "start": 9516.56, + "end": 9522.22, + "probability": 0.9562 + }, + { + "start": 9522.22, + "end": 9529.84, + "probability": 0.8482 + }, + { + "start": 9532.14, + "end": 9533.12, + "probability": 0.9109 + }, + { + "start": 9534.19, + "end": 9537.82, + "probability": 0.9918 + }, + { + "start": 9538.18, + "end": 9539.96, + "probability": 0.9219 + }, + { + "start": 9540.12, + "end": 9542.46, + "probability": 0.9472 + }, + { + "start": 9542.7, + "end": 9547.6, + "probability": 0.9224 + }, + { + "start": 9547.96, + "end": 9548.44, + "probability": 0.69 + }, + { + "start": 9548.48, + "end": 9550.42, + "probability": 0.8669 + }, + { + "start": 9550.52, + "end": 9551.74, + "probability": 0.8945 + }, + { + "start": 9551.82, + "end": 9552.88, + "probability": 0.9585 + }, + { + "start": 9553.04, + "end": 9555.84, + "probability": 0.9805 + }, + { + "start": 9556.52, + "end": 9559.8, + "probability": 0.9441 + }, + { + "start": 9560.8, + "end": 9562.96, + "probability": 0.0736 + }, + { + "start": 9562.96, + "end": 9562.96, + "probability": 0.018 + }, + { + "start": 9562.96, + "end": 9564.35, + "probability": 0.5629 + }, + { + "start": 9564.9, + "end": 9567.42, + "probability": 0.7278 + }, + { + "start": 9567.58, + "end": 9571.36, + "probability": 0.8674 + }, + { + "start": 9571.42, + "end": 9576.62, + "probability": 0.9668 + }, + { + "start": 9576.68, + "end": 9576.76, + "probability": 0.0165 + }, + { + "start": 9578.68, + "end": 9581.68, + "probability": 0.3655 + }, + { + "start": 9582.55, + "end": 9585.19, + "probability": 0.2465 + }, + { + "start": 9585.66, + "end": 9589.78, + "probability": 0.2972 + }, + { + "start": 9590.0, + "end": 9590.96, + "probability": 0.2551 + }, + { + "start": 9591.02, + "end": 9591.32, + "probability": 0.2239 + }, + { + "start": 9591.36, + "end": 9591.81, + "probability": 0.0305 + }, + { + "start": 9592.26, + "end": 9594.2, + "probability": 0.4952 + }, + { + "start": 9594.3, + "end": 9595.16, + "probability": 0.0731 + }, + { + "start": 9595.76, + "end": 9597.68, + "probability": 0.4047 + }, + { + "start": 9598.16, + "end": 9599.48, + "probability": 0.2783 + }, + { + "start": 9599.48, + "end": 9599.92, + "probability": 0.0544 + }, + { + "start": 9600.32, + "end": 9602.96, + "probability": 0.9641 + }, + { + "start": 9605.0, + "end": 9606.52, + "probability": 0.2457 + }, + { + "start": 9606.66, + "end": 9608.78, + "probability": 0.8635 + }, + { + "start": 9608.94, + "end": 9611.42, + "probability": 0.8822 + }, + { + "start": 9611.42, + "end": 9612.28, + "probability": 0.2398 + }, + { + "start": 9612.34, + "end": 9613.7, + "probability": 0.1337 + }, + { + "start": 9613.86, + "end": 9614.3, + "probability": 0.7297 + }, + { + "start": 9614.36, + "end": 9615.46, + "probability": 0.8914 + }, + { + "start": 9615.68, + "end": 9617.14, + "probability": 0.939 + }, + { + "start": 9617.92, + "end": 9618.8, + "probability": 0.3308 + }, + { + "start": 9619.24, + "end": 9620.82, + "probability": 0.9089 + }, + { + "start": 9621.04, + "end": 9621.42, + "probability": 0.1292 + }, + { + "start": 9621.42, + "end": 9622.22, + "probability": 0.099 + }, + { + "start": 9622.24, + "end": 9624.38, + "probability": 0.4852 + }, + { + "start": 9628.54, + "end": 9633.32, + "probability": 0.1662 + }, + { + "start": 9637.22, + "end": 9640.04, + "probability": 0.2331 + }, + { + "start": 9643.0, + "end": 9644.94, + "probability": 0.0246 + }, + { + "start": 9647.92, + "end": 9654.13, + "probability": 0.1753 + }, + { + "start": 9654.26, + "end": 9654.38, + "probability": 0.3128 + }, + { + "start": 9654.98, + "end": 9654.98, + "probability": 0.1042 + }, + { + "start": 9654.98, + "end": 9655.6, + "probability": 0.0615 + }, + { + "start": 9656.44, + "end": 9657.7, + "probability": 0.2045 + }, + { + "start": 9658.55, + "end": 9660.36, + "probability": 0.1048 + }, + { + "start": 9661.26, + "end": 9661.26, + "probability": 0.0046 + }, + { + "start": 9661.62, + "end": 9662.55, + "probability": 0.0627 + }, + { + "start": 9664.0, + "end": 9664.0, + "probability": 0.0714 + }, + { + "start": 9664.0, + "end": 9664.02, + "probability": 0.2666 + }, + { + "start": 9664.16, + "end": 9666.5, + "probability": 0.1561 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.0, + "end": 9678.0, + "probability": 0.0 + }, + { + "start": 9678.28, + "end": 9681.38, + "probability": 0.1061 + }, + { + "start": 9683.86, + "end": 9684.74, + "probability": 0.0481 + }, + { + "start": 9685.58, + "end": 9687.26, + "probability": 0.0047 + }, + { + "start": 9687.4, + "end": 9689.84, + "probability": 0.0977 + }, + { + "start": 9689.9, + "end": 9692.08, + "probability": 0.0191 + }, + { + "start": 9692.08, + "end": 9693.2, + "probability": 0.0637 + }, + { + "start": 9693.2, + "end": 9695.16, + "probability": 0.1795 + }, + { + "start": 9698.84, + "end": 9700.96, + "probability": 0.2288 + }, + { + "start": 9700.96, + "end": 9704.64, + "probability": 0.1254 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9798.0, + "end": 9798.0, + "probability": 0.0 + }, + { + "start": 9801.46, + "end": 9803.66, + "probability": 0.0223 + }, + { + "start": 9804.94, + "end": 9809.66, + "probability": 0.0953 + }, + { + "start": 9809.94, + "end": 9810.36, + "probability": 0.1414 + }, + { + "start": 9810.36, + "end": 9810.88, + "probability": 0.1625 + }, + { + "start": 9810.88, + "end": 9810.88, + "probability": 0.1423 + }, + { + "start": 9810.88, + "end": 9813.46, + "probability": 0.1633 + }, + { + "start": 9826.42, + "end": 9830.28, + "probability": 0.0166 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.0 + }, + { + "start": 9930.89, + "end": 9931.6, + "probability": 0.0666 + }, + { + "start": 9931.6, + "end": 9934.64, + "probability": 0.0361 + }, + { + "start": 9934.64, + "end": 9934.66, + "probability": 0.0529 + }, + { + "start": 9936.98, + "end": 9938.24, + "probability": 0.0357 + }, + { + "start": 9939.48, + "end": 9940.12, + "probability": 0.0316 + }, + { + "start": 9940.98, + "end": 9942.04, + "probability": 0.0612 + }, + { + "start": 9942.12, + "end": 9944.76, + "probability": 0.0821 + }, + { + "start": 9945.02, + "end": 9951.42, + "probability": 0.0915 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.0, + "end": 10046.0, + "probability": 0.0 + }, + { + "start": 10046.66, + "end": 10046.66, + "probability": 0.6392 + }, + { + "start": 10046.66, + "end": 10046.66, + "probability": 0.0384 + }, + { + "start": 10046.66, + "end": 10052.12, + "probability": 0.8798 + }, + { + "start": 10052.12, + "end": 10056.06, + "probability": 0.9278 + }, + { + "start": 10056.14, + "end": 10057.82, + "probability": 0.7744 + }, + { + "start": 10058.56, + "end": 10059.74, + "probability": 0.5517 + }, + { + "start": 10059.86, + "end": 10060.56, + "probability": 0.5344 + }, + { + "start": 10060.62, + "end": 10063.12, + "probability": 0.9281 + }, + { + "start": 10063.98, + "end": 10064.94, + "probability": 0.6605 + }, + { + "start": 10065.04, + "end": 10066.7, + "probability": 0.795 + }, + { + "start": 10066.78, + "end": 10068.63, + "probability": 0.8657 + }, + { + "start": 10069.36, + "end": 10069.74, + "probability": 0.948 + }, + { + "start": 10069.84, + "end": 10072.88, + "probability": 0.8647 + }, + { + "start": 10073.86, + "end": 10075.94, + "probability": 0.9186 + }, + { + "start": 10075.94, + "end": 10078.42, + "probability": 0.992 + }, + { + "start": 10079.08, + "end": 10080.8, + "probability": 0.8745 + }, + { + "start": 10080.8, + "end": 10084.22, + "probability": 0.7293 + }, + { + "start": 10085.24, + "end": 10089.0, + "probability": 0.9736 + }, + { + "start": 10089.76, + "end": 10092.74, + "probability": 0.9906 + }, + { + "start": 10093.56, + "end": 10098.7, + "probability": 0.5022 + }, + { + "start": 10099.54, + "end": 10100.7, + "probability": 0.5329 + }, + { + "start": 10100.86, + "end": 10104.84, + "probability": 0.9089 + }, + { + "start": 10105.16, + "end": 10108.03, + "probability": 0.935 + }, + { + "start": 10109.9, + "end": 10110.74, + "probability": 0.7155 + }, + { + "start": 10110.92, + "end": 10112.08, + "probability": 0.7868 + }, + { + "start": 10112.14, + "end": 10116.3, + "probability": 0.954 + }, + { + "start": 10116.51, + "end": 10120.08, + "probability": 0.8882 + }, + { + "start": 10120.68, + "end": 10123.86, + "probability": 0.9792 + }, + { + "start": 10123.86, + "end": 10128.98, + "probability": 0.8411 + }, + { + "start": 10129.62, + "end": 10132.62, + "probability": 0.7782 + }, + { + "start": 10133.12, + "end": 10133.88, + "probability": 0.8641 + }, + { + "start": 10134.4, + "end": 10136.62, + "probability": 0.9397 + }, + { + "start": 10136.62, + "end": 10141.04, + "probability": 0.9405 + }, + { + "start": 10141.88, + "end": 10144.8, + "probability": 0.1032 + }, + { + "start": 10145.52, + "end": 10150.0, + "probability": 0.0518 + }, + { + "start": 10152.88, + "end": 10154.34, + "probability": 0.0986 + }, + { + "start": 10154.58, + "end": 10161.46, + "probability": 0.1289 + }, + { + "start": 10172.66, + "end": 10175.44, + "probability": 0.0474 + }, + { + "start": 10210.42, + "end": 10214.92, + "probability": 0.9787 + }, + { + "start": 10214.92, + "end": 10218.32, + "probability": 0.9917 + }, + { + "start": 10218.4, + "end": 10218.94, + "probability": 0.0093 + }, + { + "start": 10220.28, + "end": 10221.6, + "probability": 0.2404 + }, + { + "start": 10222.36, + "end": 10223.28, + "probability": 0.7748 + }, + { + "start": 10223.46, + "end": 10225.94, + "probability": 0.9898 + }, + { + "start": 10225.94, + "end": 10226.0, + "probability": 0.0354 + }, + { + "start": 10226.08, + "end": 10229.38, + "probability": 0.9026 + }, + { + "start": 10229.38, + "end": 10232.44, + "probability": 0.9833 + }, + { + "start": 10232.9, + "end": 10233.81, + "probability": 0.7463 + }, + { + "start": 10234.2, + "end": 10236.8, + "probability": 0.8771 + }, + { + "start": 10236.92, + "end": 10238.48, + "probability": 0.9763 + }, + { + "start": 10238.76, + "end": 10239.41, + "probability": 0.9417 + }, + { + "start": 10239.82, + "end": 10245.52, + "probability": 0.8992 + }, + { + "start": 10247.08, + "end": 10247.36, + "probability": 0.564 + }, + { + "start": 10247.48, + "end": 10248.08, + "probability": 0.7124 + }, + { + "start": 10248.16, + "end": 10250.12, + "probability": 0.6903 + }, + { + "start": 10250.16, + "end": 10250.88, + "probability": 0.5725 + }, + { + "start": 10250.88, + "end": 10250.88, + "probability": 0.0362 + }, + { + "start": 10250.88, + "end": 10252.62, + "probability": 0.4909 + }, + { + "start": 10252.8, + "end": 10253.18, + "probability": 0.7445 + }, + { + "start": 10253.26, + "end": 10253.56, + "probability": 0.5727 + }, + { + "start": 10253.6, + "end": 10253.8, + "probability": 0.2244 + }, + { + "start": 10253.88, + "end": 10254.74, + "probability": 0.5498 + }, + { + "start": 10254.84, + "end": 10255.76, + "probability": 0.475 + }, + { + "start": 10255.88, + "end": 10256.94, + "probability": 0.6941 + }, + { + "start": 10257.64, + "end": 10258.06, + "probability": 0.3167 + }, + { + "start": 10258.56, + "end": 10261.98, + "probability": 0.9367 + }, + { + "start": 10262.8, + "end": 10263.92, + "probability": 0.8535 + }, + { + "start": 10264.1, + "end": 10265.27, + "probability": 0.9049 + }, + { + "start": 10265.38, + "end": 10265.76, + "probability": 0.6009 + }, + { + "start": 10265.92, + "end": 10267.84, + "probability": 0.804 + }, + { + "start": 10268.66, + "end": 10273.84, + "probability": 0.0401 + }, + { + "start": 10274.98, + "end": 10275.88, + "probability": 0.0442 + }, + { + "start": 10276.08, + "end": 10276.22, + "probability": 0.0057 + }, + { + "start": 10276.22, + "end": 10276.22, + "probability": 0.4235 + }, + { + "start": 10276.22, + "end": 10276.64, + "probability": 0.3692 + }, + { + "start": 10276.86, + "end": 10277.62, + "probability": 0.7285 + }, + { + "start": 10277.62, + "end": 10279.14, + "probability": 0.9507 + }, + { + "start": 10280.46, + "end": 10280.62, + "probability": 0.414 + }, + { + "start": 10280.68, + "end": 10281.26, + "probability": 0.7335 + }, + { + "start": 10281.3, + "end": 10284.18, + "probability": 0.5161 + }, + { + "start": 10284.98, + "end": 10293.6, + "probability": 0.957 + }, + { + "start": 10294.14, + "end": 10294.64, + "probability": 0.7512 + }, + { + "start": 10294.8, + "end": 10297.3, + "probability": 0.8215 + }, + { + "start": 10297.3, + "end": 10301.7, + "probability": 0.9718 + }, + { + "start": 10301.86, + "end": 10302.52, + "probability": 0.7933 + }, + { + "start": 10303.0, + "end": 10306.3, + "probability": 0.8455 + }, + { + "start": 10306.44, + "end": 10307.62, + "probability": 0.775 + }, + { + "start": 10307.86, + "end": 10309.37, + "probability": 0.9315 + }, + { + "start": 10310.26, + "end": 10311.36, + "probability": 0.7369 + }, + { + "start": 10311.44, + "end": 10313.52, + "probability": 0.9187 + }, + { + "start": 10314.24, + "end": 10318.34, + "probability": 0.9894 + }, + { + "start": 10318.36, + "end": 10318.54, + "probability": 0.1817 + }, + { + "start": 10318.6, + "end": 10321.92, + "probability": 0.6553 + }, + { + "start": 10322.56, + "end": 10324.28, + "probability": 0.8018 + }, + { + "start": 10324.3, + "end": 10324.54, + "probability": 0.5053 + }, + { + "start": 10324.66, + "end": 10328.46, + "probability": 0.9297 + }, + { + "start": 10328.48, + "end": 10330.04, + "probability": 0.6634 + }, + { + "start": 10330.04, + "end": 10331.22, + "probability": 0.6716 + }, + { + "start": 10331.32, + "end": 10333.2, + "probability": 0.6301 + }, + { + "start": 10333.34, + "end": 10335.66, + "probability": 0.7265 + }, + { + "start": 10335.88, + "end": 10336.18, + "probability": 0.5839 + }, + { + "start": 10336.2, + "end": 10336.56, + "probability": 0.7262 + }, + { + "start": 10336.62, + "end": 10337.72, + "probability": 0.6509 + }, + { + "start": 10338.06, + "end": 10339.76, + "probability": 0.6831 + }, + { + "start": 10339.78, + "end": 10343.0, + "probability": 0.7453 + }, + { + "start": 10343.18, + "end": 10347.11, + "probability": 0.9624 + }, + { + "start": 10347.74, + "end": 10348.66, + "probability": 0.3569 + }, + { + "start": 10348.98, + "end": 10350.84, + "probability": 0.5801 + }, + { + "start": 10350.84, + "end": 10353.52, + "probability": 0.5871 + }, + { + "start": 10353.52, + "end": 10356.88, + "probability": 0.3316 + }, + { + "start": 10366.86, + "end": 10367.26, + "probability": 0.3522 + }, + { + "start": 10367.26, + "end": 10369.16, + "probability": 0.2766 + }, + { + "start": 10369.24, + "end": 10373.68, + "probability": 0.6671 + }, + { + "start": 10373.68, + "end": 10377.92, + "probability": 0.9438 + }, + { + "start": 10377.92, + "end": 10380.04, + "probability": 0.9757 + }, + { + "start": 10380.08, + "end": 10380.38, + "probability": 0.6746 + }, + { + "start": 10381.0, + "end": 10386.0, + "probability": 0.9861 + }, + { + "start": 10386.0, + "end": 10391.5, + "probability": 0.826 + }, + { + "start": 10392.12, + "end": 10393.3, + "probability": 0.9692 + }, + { + "start": 10393.44, + "end": 10394.08, + "probability": 0.6008 + }, + { + "start": 10396.06, + "end": 10397.0, + "probability": 0.8696 + }, + { + "start": 10397.68, + "end": 10399.85, + "probability": 0.9767 + }, + { + "start": 10400.24, + "end": 10404.74, + "probability": 0.916 + }, + { + "start": 10404.74, + "end": 10410.04, + "probability": 0.773 + }, + { + "start": 10411.54, + "end": 10414.06, + "probability": 0.96 + }, + { + "start": 10414.78, + "end": 10415.4, + "probability": 0.79 + }, + { + "start": 10415.58, + "end": 10415.58, + "probability": 0.3735 + }, + { + "start": 10415.62, + "end": 10420.66, + "probability": 0.8325 + }, + { + "start": 10421.28, + "end": 10423.28, + "probability": 0.1164 + }, + { + "start": 10423.3, + "end": 10424.5, + "probability": 0.5265 + }, + { + "start": 10425.22, + "end": 10427.4, + "probability": 0.981 + }, + { + "start": 10427.46, + "end": 10428.74, + "probability": 0.7119 + }, + { + "start": 10428.8, + "end": 10429.26, + "probability": 0.9147 + }, + { + "start": 10429.3, + "end": 10430.88, + "probability": 0.9448 + }, + { + "start": 10432.08, + "end": 10434.55, + "probability": 0.7847 + }, + { + "start": 10435.24, + "end": 10436.74, + "probability": 0.5299 + }, + { + "start": 10436.8, + "end": 10437.1, + "probability": 0.6617 + }, + { + "start": 10437.14, + "end": 10437.63, + "probability": 0.7225 + }, + { + "start": 10437.82, + "end": 10439.28, + "probability": 0.9116 + }, + { + "start": 10439.56, + "end": 10439.66, + "probability": 0.4346 + }, + { + "start": 10439.8, + "end": 10441.96, + "probability": 0.9873 + }, + { + "start": 10442.38, + "end": 10443.4, + "probability": 0.9265 + }, + { + "start": 10443.5, + "end": 10443.94, + "probability": 0.7805 + }, + { + "start": 10444.12, + "end": 10444.64, + "probability": 0.4917 + }, + { + "start": 10444.68, + "end": 10446.04, + "probability": 0.6879 + }, + { + "start": 10446.2, + "end": 10447.1, + "probability": 0.8185 + }, + { + "start": 10447.82, + "end": 10449.88, + "probability": 0.9128 + }, + { + "start": 10450.08, + "end": 10452.25, + "probability": 0.9727 + }, + { + "start": 10452.4, + "end": 10453.22, + "probability": 0.6187 + }, + { + "start": 10454.22, + "end": 10457.94, + "probability": 0.9785 + }, + { + "start": 10457.94, + "end": 10460.82, + "probability": 0.9929 + }, + { + "start": 10461.18, + "end": 10461.38, + "probability": 0.2477 + }, + { + "start": 10461.38, + "end": 10461.96, + "probability": 0.2987 + }, + { + "start": 10462.06, + "end": 10464.62, + "probability": 0.9138 + }, + { + "start": 10464.62, + "end": 10465.22, + "probability": 0.5669 + }, + { + "start": 10465.28, + "end": 10469.6, + "probability": 0.989 + }, + { + "start": 10469.94, + "end": 10475.14, + "probability": 0.9917 + }, + { + "start": 10475.24, + "end": 10476.16, + "probability": 0.7589 + }, + { + "start": 10476.26, + "end": 10477.58, + "probability": 0.6562 + }, + { + "start": 10478.1, + "end": 10478.74, + "probability": 0.5659 + }, + { + "start": 10479.16, + "end": 10481.12, + "probability": 0.4984 + }, + { + "start": 10481.62, + "end": 10484.38, + "probability": 0.7489 + }, + { + "start": 10484.52, + "end": 10485.96, + "probability": 0.9507 + }, + { + "start": 10486.24, + "end": 10486.98, + "probability": 0.2625 + }, + { + "start": 10486.98, + "end": 10487.75, + "probability": 0.5284 + }, + { + "start": 10488.28, + "end": 10489.5, + "probability": 0.6122 + }, + { + "start": 10489.66, + "end": 10491.52, + "probability": 0.521 + }, + { + "start": 10491.62, + "end": 10492.74, + "probability": 0.8861 + }, + { + "start": 10492.98, + "end": 10495.8, + "probability": 0.9948 + }, + { + "start": 10496.08, + "end": 10497.04, + "probability": 0.9514 + }, + { + "start": 10497.5, + "end": 10498.52, + "probability": 0.2381 + }, + { + "start": 10498.68, + "end": 10498.96, + "probability": 0.2922 + }, + { + "start": 10499.12, + "end": 10499.96, + "probability": 0.3913 + }, + { + "start": 10500.02, + "end": 10503.16, + "probability": 0.8577 + }, + { + "start": 10503.34, + "end": 10504.28, + "probability": 0.5177 + }, + { + "start": 10504.36, + "end": 10504.48, + "probability": 0.7605 + }, + { + "start": 10504.5, + "end": 10505.28, + "probability": 0.6444 + }, + { + "start": 10505.34, + "end": 10506.0, + "probability": 0.877 + }, + { + "start": 10507.86, + "end": 10509.18, + "probability": 0.1093 + }, + { + "start": 10509.18, + "end": 10509.46, + "probability": 0.913 + }, + { + "start": 10509.76, + "end": 10511.29, + "probability": 0.973 + }, + { + "start": 10511.72, + "end": 10511.94, + "probability": 0.1429 + }, + { + "start": 10512.18, + "end": 10513.65, + "probability": 0.7461 + }, + { + "start": 10513.84, + "end": 10514.74, + "probability": 0.7319 + }, + { + "start": 10515.18, + "end": 10517.32, + "probability": 0.6116 + }, + { + "start": 10517.6, + "end": 10519.62, + "probability": 0.9714 + }, + { + "start": 10520.35, + "end": 10522.48, + "probability": 0.9888 + }, + { + "start": 10523.44, + "end": 10526.9, + "probability": 0.206 + }, + { + "start": 10527.42, + "end": 10527.92, + "probability": 0.3652 + }, + { + "start": 10529.08, + "end": 10535.9, + "probability": 0.6791 + }, + { + "start": 10536.64, + "end": 10538.82, + "probability": 0.947 + }, + { + "start": 10538.96, + "end": 10541.1, + "probability": 0.9421 + }, + { + "start": 10541.2, + "end": 10548.34, + "probability": 0.9806 + }, + { + "start": 10549.24, + "end": 10552.68, + "probability": 0.9832 + }, + { + "start": 10552.74, + "end": 10555.1, + "probability": 0.8854 + }, + { + "start": 10555.3, + "end": 10560.48, + "probability": 0.9699 + }, + { + "start": 10560.48, + "end": 10564.08, + "probability": 0.9932 + }, + { + "start": 10564.46, + "end": 10565.18, + "probability": 0.1597 + }, + { + "start": 10565.92, + "end": 10568.7, + "probability": 0.9885 + }, + { + "start": 10568.96, + "end": 10569.32, + "probability": 0.0036 + }, + { + "start": 10569.32, + "end": 10570.32, + "probability": 0.0955 + }, + { + "start": 10570.42, + "end": 10571.28, + "probability": 0.4621 + }, + { + "start": 10571.42, + "end": 10572.22, + "probability": 0.7068 + }, + { + "start": 10572.36, + "end": 10573.36, + "probability": 0.7296 + }, + { + "start": 10574.08, + "end": 10576.52, + "probability": 0.3705 + }, + { + "start": 10576.66, + "end": 10576.82, + "probability": 0.1875 + }, + { + "start": 10576.98, + "end": 10577.94, + "probability": 0.1932 + }, + { + "start": 10578.12, + "end": 10579.15, + "probability": 0.5981 + }, + { + "start": 10579.4, + "end": 10580.48, + "probability": 0.0517 + }, + { + "start": 10580.68, + "end": 10581.38, + "probability": 0.1112 + }, + { + "start": 10581.38, + "end": 10582.72, + "probability": 0.9524 + }, + { + "start": 10582.9, + "end": 10583.92, + "probability": 0.3509 + }, + { + "start": 10584.16, + "end": 10585.08, + "probability": 0.8098 + }, + { + "start": 10585.16, + "end": 10585.24, + "probability": 0.158 + }, + { + "start": 10585.28, + "end": 10587.1, + "probability": 0.9557 + }, + { + "start": 10587.38, + "end": 10589.22, + "probability": 0.9602 + }, + { + "start": 10589.56, + "end": 10593.84, + "probability": 0.9739 + }, + { + "start": 10594.46, + "end": 10595.98, + "probability": 0.6937 + }, + { + "start": 10596.34, + "end": 10599.46, + "probability": 0.7998 + }, + { + "start": 10600.1, + "end": 10602.12, + "probability": 0.9396 + }, + { + "start": 10602.34, + "end": 10602.8, + "probability": 0.7636 + }, + { + "start": 10604.82, + "end": 10608.34, + "probability": 0.9316 + }, + { + "start": 10608.34, + "end": 10611.44, + "probability": 0.9984 + }, + { + "start": 10611.6, + "end": 10612.3, + "probability": 0.0598 + }, + { + "start": 10612.7, + "end": 10617.14, + "probability": 0.9911 + }, + { + "start": 10617.26, + "end": 10617.26, + "probability": 0.0928 + }, + { + "start": 10617.26, + "end": 10621.92, + "probability": 0.9941 + }, + { + "start": 10622.54, + "end": 10622.84, + "probability": 0.4411 + }, + { + "start": 10623.0, + "end": 10627.04, + "probability": 0.9508 + }, + { + "start": 10627.14, + "end": 10633.16, + "probability": 0.9837 + }, + { + "start": 10633.98, + "end": 10636.24, + "probability": 0.9983 + }, + { + "start": 10636.24, + "end": 10639.76, + "probability": 0.9451 + }, + { + "start": 10640.3, + "end": 10641.64, + "probability": 0.9359 + }, + { + "start": 10642.04, + "end": 10645.5, + "probability": 0.9901 + }, + { + "start": 10645.5, + "end": 10648.62, + "probability": 0.9885 + }, + { + "start": 10649.5, + "end": 10652.22, + "probability": 0.7658 + }, + { + "start": 10652.22, + "end": 10654.68, + "probability": 0.9958 + }, + { + "start": 10654.82, + "end": 10658.12, + "probability": 0.9525 + }, + { + "start": 10658.24, + "end": 10660.51, + "probability": 0.9647 + }, + { + "start": 10660.7, + "end": 10661.26, + "probability": 0.4682 + }, + { + "start": 10661.36, + "end": 10661.92, + "probability": 0.5192 + }, + { + "start": 10662.32, + "end": 10664.14, + "probability": 0.863 + }, + { + "start": 10664.88, + "end": 10664.88, + "probability": 0.0019 + }, + { + "start": 10664.9, + "end": 10664.9, + "probability": 0.0884 + }, + { + "start": 10664.9, + "end": 10665.62, + "probability": 0.7283 + }, + { + "start": 10665.66, + "end": 10666.23, + "probability": 0.6796 + }, + { + "start": 10666.92, + "end": 10667.24, + "probability": 0.0564 + }, + { + "start": 10667.24, + "end": 10667.24, + "probability": 0.1982 + }, + { + "start": 10667.24, + "end": 10668.66, + "probability": 0.2362 + }, + { + "start": 10668.88, + "end": 10669.32, + "probability": 0.7629 + }, + { + "start": 10669.32, + "end": 10669.88, + "probability": 0.8784 + }, + { + "start": 10673.12, + "end": 10677.82, + "probability": 0.9974 + }, + { + "start": 10678.44, + "end": 10679.92, + "probability": 0.8629 + }, + { + "start": 10681.0, + "end": 10684.1, + "probability": 0.9953 + }, + { + "start": 10684.3, + "end": 10687.98, + "probability": 0.9735 + }, + { + "start": 10687.98, + "end": 10693.38, + "probability": 0.998 + }, + { + "start": 10694.14, + "end": 10698.68, + "probability": 0.9897 + }, + { + "start": 10698.68, + "end": 10703.76, + "probability": 0.9641 + }, + { + "start": 10703.76, + "end": 10708.38, + "probability": 0.9851 + }, + { + "start": 10709.3, + "end": 10711.92, + "probability": 0.989 + }, + { + "start": 10711.92, + "end": 10716.22, + "probability": 0.9915 + }, + { + "start": 10716.8, + "end": 10722.18, + "probability": 0.9811 + }, + { + "start": 10722.18, + "end": 10728.48, + "probability": 0.9805 + }, + { + "start": 10729.72, + "end": 10734.06, + "probability": 0.996 + }, + { + "start": 10734.06, + "end": 10739.76, + "probability": 0.9928 + }, + { + "start": 10740.46, + "end": 10741.52, + "probability": 0.8053 + }, + { + "start": 10741.7, + "end": 10743.48, + "probability": 0.8005 + }, + { + "start": 10746.16, + "end": 10747.0, + "probability": 0.8338 + }, + { + "start": 10747.04, + "end": 10748.08, + "probability": 0.5591 + }, + { + "start": 10748.16, + "end": 10750.22, + "probability": 0.9172 + }, + { + "start": 10750.36, + "end": 10751.9, + "probability": 0.903 + }, + { + "start": 10752.58, + "end": 10755.96, + "probability": 0.9921 + }, + { + "start": 10755.96, + "end": 10760.2, + "probability": 0.9946 + }, + { + "start": 10760.2, + "end": 10764.64, + "probability": 0.9976 + }, + { + "start": 10765.38, + "end": 10768.1, + "probability": 0.992 + }, + { + "start": 10768.84, + "end": 10773.1, + "probability": 0.9993 + }, + { + "start": 10773.1, + "end": 10777.1, + "probability": 0.9902 + }, + { + "start": 10777.6, + "end": 10779.86, + "probability": 0.9677 + }, + { + "start": 10780.04, + "end": 10782.16, + "probability": 0.837 + }, + { + "start": 10782.56, + "end": 10785.46, + "probability": 0.8636 + }, + { + "start": 10785.46, + "end": 10785.48, + "probability": 0.1796 + }, + { + "start": 10785.66, + "end": 10787.09, + "probability": 0.5467 + }, + { + "start": 10787.6, + "end": 10788.1, + "probability": 0.5961 + }, + { + "start": 10788.8, + "end": 10789.04, + "probability": 0.1613 + }, + { + "start": 10789.04, + "end": 10790.44, + "probability": 0.4326 + }, + { + "start": 10790.56, + "end": 10791.8, + "probability": 0.0928 + }, + { + "start": 10791.86, + "end": 10792.6, + "probability": 0.0114 + }, + { + "start": 10792.6, + "end": 10794.02, + "probability": 0.5076 + }, + { + "start": 10794.1, + "end": 10795.54, + "probability": 0.6157 + }, + { + "start": 10795.54, + "end": 10797.2, + "probability": 0.6545 + }, + { + "start": 10797.2, + "end": 10800.18, + "probability": 0.6055 + }, + { + "start": 10800.7, + "end": 10803.42, + "probability": 0.5275 + }, + { + "start": 10804.51, + "end": 10804.58, + "probability": 0.1389 + }, + { + "start": 10804.58, + "end": 10807.24, + "probability": 0.5657 + }, + { + "start": 10807.38, + "end": 10809.47, + "probability": 0.4535 + }, + { + "start": 10810.28, + "end": 10814.22, + "probability": 0.9864 + }, + { + "start": 10814.22, + "end": 10818.4, + "probability": 0.987 + }, + { + "start": 10819.24, + "end": 10821.68, + "probability": 0.9934 + }, + { + "start": 10821.7, + "end": 10824.46, + "probability": 0.992 + }, + { + "start": 10824.86, + "end": 10825.2, + "probability": 0.8634 + }, + { + "start": 10825.32, + "end": 10828.54, + "probability": 0.9955 + }, + { + "start": 10828.78, + "end": 10830.16, + "probability": 0.9427 + }, + { + "start": 10830.4, + "end": 10832.36, + "probability": 0.7858 + }, + { + "start": 10833.26, + "end": 10833.28, + "probability": 0.5905 + }, + { + "start": 10836.42, + "end": 10841.16, + "probability": 0.7154 + }, + { + "start": 10841.3, + "end": 10845.34, + "probability": 0.9972 + }, + { + "start": 10845.38, + "end": 10847.08, + "probability": 0.9314 + }, + { + "start": 10847.44, + "end": 10848.86, + "probability": 0.7468 + }, + { + "start": 10848.98, + "end": 10853.62, + "probability": 0.9817 + }, + { + "start": 10854.0, + "end": 10856.78, + "probability": 0.9589 + }, + { + "start": 10857.16, + "end": 10860.86, + "probability": 0.9633 + }, + { + "start": 10861.24, + "end": 10865.42, + "probability": 0.9944 + }, + { + "start": 10865.96, + "end": 10868.56, + "probability": 0.8245 + }, + { + "start": 10868.98, + "end": 10872.2, + "probability": 0.9075 + }, + { + "start": 10872.62, + "end": 10872.98, + "probability": 0.4869 + }, + { + "start": 10873.0, + "end": 10873.46, + "probability": 0.5908 + }, + { + "start": 10873.52, + "end": 10875.78, + "probability": 0.9871 + }, + { + "start": 10876.2, + "end": 10878.44, + "probability": 0.9921 + }, + { + "start": 10878.44, + "end": 10881.64, + "probability": 0.9966 + }, + { + "start": 10882.24, + "end": 10884.58, + "probability": 0.8058 + }, + { + "start": 10884.66, + "end": 10887.92, + "probability": 0.9758 + }, + { + "start": 10887.92, + "end": 10890.84, + "probability": 0.8895 + }, + { + "start": 10890.88, + "end": 10891.3, + "probability": 0.6812 + }, + { + "start": 10891.7, + "end": 10891.7, + "probability": 0.5312 + }, + { + "start": 10891.7, + "end": 10893.62, + "probability": 0.9602 + }, + { + "start": 10899.01, + "end": 10900.7, + "probability": 0.5161 + }, + { + "start": 10901.34, + "end": 10905.1, + "probability": 0.0383 + }, + { + "start": 10905.82, + "end": 10907.98, + "probability": 0.9379 + }, + { + "start": 10908.58, + "end": 10910.58, + "probability": 0.9871 + }, + { + "start": 10910.74, + "end": 10911.97, + "probability": 0.9932 + }, + { + "start": 10912.7, + "end": 10914.88, + "probability": 0.6328 + }, + { + "start": 10915.18, + "end": 10916.62, + "probability": 0.0257 + }, + { + "start": 10916.76, + "end": 10917.38, + "probability": 0.5709 + }, + { + "start": 10917.46, + "end": 10917.78, + "probability": 0.8313 + }, + { + "start": 10917.9, + "end": 10921.08, + "probability": 0.8204 + }, + { + "start": 10921.9, + "end": 10923.3, + "probability": 0.8704 + }, + { + "start": 10923.44, + "end": 10923.92, + "probability": 0.8443 + }, + { + "start": 10923.98, + "end": 10926.44, + "probability": 0.8757 + }, + { + "start": 10926.5, + "end": 10927.24, + "probability": 0.9659 + }, + { + "start": 10927.4, + "end": 10929.4, + "probability": 0.877 + }, + { + "start": 10929.66, + "end": 10931.7, + "probability": 0.9019 + }, + { + "start": 10932.06, + "end": 10935.94, + "probability": 0.6982 + }, + { + "start": 10936.2, + "end": 10938.46, + "probability": 0.9897 + }, + { + "start": 10938.46, + "end": 10939.86, + "probability": 0.8914 + }, + { + "start": 10940.02, + "end": 10943.16, + "probability": 0.9492 + }, + { + "start": 10943.24, + "end": 10943.58, + "probability": 0.2416 + }, + { + "start": 10943.78, + "end": 10944.14, + "probability": 0.3884 + }, + { + "start": 10944.22, + "end": 10944.62, + "probability": 0.4084 + }, + { + "start": 10944.68, + "end": 10944.68, + "probability": 0.7301 + }, + { + "start": 10944.68, + "end": 10945.34, + "probability": 0.9713 + }, + { + "start": 10945.6, + "end": 10948.3, + "probability": 0.9819 + }, + { + "start": 10948.3, + "end": 10949.5, + "probability": 0.7154 + }, + { + "start": 10949.66, + "end": 10950.7, + "probability": 0.8867 + }, + { + "start": 10950.8, + "end": 10951.06, + "probability": 0.1934 + }, + { + "start": 10951.06, + "end": 10952.02, + "probability": 0.3952 + }, + { + "start": 10952.02, + "end": 10953.12, + "probability": 0.6106 + }, + { + "start": 10953.14, + "end": 10953.98, + "probability": 0.652 + }, + { + "start": 10953.98, + "end": 10954.48, + "probability": 0.7311 + }, + { + "start": 10954.58, + "end": 10955.56, + "probability": 0.9692 + }, + { + "start": 10955.62, + "end": 10956.66, + "probability": 0.4822 + }, + { + "start": 10956.78, + "end": 10957.18, + "probability": 0.7227 + }, + { + "start": 10957.32, + "end": 10958.5, + "probability": 0.6836 + }, + { + "start": 10958.7, + "end": 10960.08, + "probability": 0.6031 + }, + { + "start": 10960.38, + "end": 10964.56, + "probability": 0.9123 + }, + { + "start": 10964.62, + "end": 10966.99, + "probability": 0.9147 + }, + { + "start": 10968.4, + "end": 10969.24, + "probability": 0.6166 + }, + { + "start": 10969.38, + "end": 10970.24, + "probability": 0.9673 + }, + { + "start": 10970.36, + "end": 10971.3, + "probability": 0.9382 + }, + { + "start": 10971.48, + "end": 10973.17, + "probability": 0.5179 + }, + { + "start": 10973.28, + "end": 10976.34, + "probability": 0.7551 + }, + { + "start": 10976.5, + "end": 10978.34, + "probability": 0.9937 + }, + { + "start": 10978.4, + "end": 10979.0, + "probability": 0.4134 + }, + { + "start": 10979.52, + "end": 10980.16, + "probability": 0.7901 + }, + { + "start": 10980.18, + "end": 10981.2, + "probability": 0.9525 + }, + { + "start": 10981.34, + "end": 10982.52, + "probability": 0.8993 + }, + { + "start": 10982.96, + "end": 10987.1, + "probability": 0.9883 + }, + { + "start": 10987.6, + "end": 10989.66, + "probability": 0.8474 + }, + { + "start": 10990.04, + "end": 10991.1, + "probability": 0.8695 + }, + { + "start": 10991.24, + "end": 10992.88, + "probability": 0.9927 + }, + { + "start": 10993.14, + "end": 10994.72, + "probability": 0.9819 + }, + { + "start": 10994.86, + "end": 10995.4, + "probability": 0.9599 + }, + { + "start": 10996.68, + "end": 10999.28, + "probability": 0.0292 + }, + { + "start": 10999.28, + "end": 10999.62, + "probability": 0.0238 + }, + { + "start": 10999.68, + "end": 11000.46, + "probability": 0.0412 + }, + { + "start": 11000.96, + "end": 11001.2, + "probability": 0.0165 + }, + { + "start": 11002.46, + "end": 11005.06, + "probability": 0.9229 + }, + { + "start": 11005.2, + "end": 11006.34, + "probability": 0.6802 + }, + { + "start": 11006.86, + "end": 11007.47, + "probability": 0.981 + }, + { + "start": 11007.92, + "end": 11010.74, + "probability": 0.9082 + }, + { + "start": 11010.98, + "end": 11011.79, + "probability": 0.7303 + }, + { + "start": 11012.54, + "end": 11014.5, + "probability": 0.5003 + }, + { + "start": 11014.62, + "end": 11015.58, + "probability": 0.8194 + }, + { + "start": 11015.6, + "end": 11019.82, + "probability": 0.7885 + }, + { + "start": 11020.06, + "end": 11021.14, + "probability": 0.8002 + }, + { + "start": 11021.26, + "end": 11022.0, + "probability": 0.2465 + }, + { + "start": 11022.0, + "end": 11023.76, + "probability": 0.6682 + }, + { + "start": 11024.46, + "end": 11025.7, + "probability": 0.9778 + }, + { + "start": 11025.86, + "end": 11028.09, + "probability": 0.9732 + }, + { + "start": 11028.96, + "end": 11030.2, + "probability": 0.4723 + }, + { + "start": 11030.56, + "end": 11035.44, + "probability": 0.3519 + }, + { + "start": 11036.68, + "end": 11036.82, + "probability": 0.0747 + }, + { + "start": 11036.82, + "end": 11036.84, + "probability": 0.0518 + }, + { + "start": 11036.84, + "end": 11040.32, + "probability": 0.5302 + }, + { + "start": 11040.32, + "end": 11040.74, + "probability": 0.1608 + }, + { + "start": 11041.76, + "end": 11043.54, + "probability": 0.0795 + }, + { + "start": 11043.76, + "end": 11043.84, + "probability": 0.2688 + }, + { + "start": 11043.98, + "end": 11044.46, + "probability": 0.4096 + }, + { + "start": 11044.7, + "end": 11048.38, + "probability": 0.5792 + }, + { + "start": 11048.58, + "end": 11050.1, + "probability": 0.6304 + }, + { + "start": 11050.82, + "end": 11051.98, + "probability": 0.353 + }, + { + "start": 11052.04, + "end": 11053.0, + "probability": 0.6751 + }, + { + "start": 11053.04, + "end": 11056.52, + "probability": 0.7965 + }, + { + "start": 11056.74, + "end": 11057.62, + "probability": 0.6385 + }, + { + "start": 11057.74, + "end": 11058.67, + "probability": 0.9336 + }, + { + "start": 11059.3, + "end": 11060.94, + "probability": 0.973 + }, + { + "start": 11060.94, + "end": 11061.15, + "probability": 0.0297 + }, + { + "start": 11061.3, + "end": 11062.12, + "probability": 0.5393 + }, + { + "start": 11062.32, + "end": 11064.6, + "probability": 0.9395 + }, + { + "start": 11064.76, + "end": 11066.4, + "probability": 0.9254 + }, + { + "start": 11067.08, + "end": 11070.86, + "probability": 0.7434 + }, + { + "start": 11071.86, + "end": 11075.39, + "probability": 0.9414 + }, + { + "start": 11075.84, + "end": 11076.32, + "probability": 0.0987 + }, + { + "start": 11076.34, + "end": 11077.42, + "probability": 0.4627 + }, + { + "start": 11077.5, + "end": 11080.66, + "probability": 0.526 + }, + { + "start": 11080.76, + "end": 11081.06, + "probability": 0.5378 + }, + { + "start": 11081.12, + "end": 11081.4, + "probability": 0.6819 + }, + { + "start": 11081.48, + "end": 11086.36, + "probability": 0.9927 + }, + { + "start": 11087.14, + "end": 11089.18, + "probability": 0.9962 + }, + { + "start": 11089.96, + "end": 11092.52, + "probability": 0.9385 + }, + { + "start": 11094.51, + "end": 11097.18, + "probability": 0.5492 + }, + { + "start": 11097.24, + "end": 11099.34, + "probability": 0.9177 + }, + { + "start": 11099.84, + "end": 11101.73, + "probability": 0.8821 + }, + { + "start": 11102.14, + "end": 11108.34, + "probability": 0.8517 + }, + { + "start": 11109.14, + "end": 11110.96, + "probability": 0.9122 + }, + { + "start": 11111.06, + "end": 11113.6, + "probability": 0.7705 + }, + { + "start": 11114.54, + "end": 11116.44, + "probability": 0.8842 + }, + { + "start": 11116.6, + "end": 11119.69, + "probability": 0.9551 + }, + { + "start": 11120.5, + "end": 11121.69, + "probability": 0.3942 + }, + { + "start": 11122.3, + "end": 11127.16, + "probability": 0.9312 + }, + { + "start": 11127.26, + "end": 11128.0, + "probability": 0.5895 + }, + { + "start": 11128.06, + "end": 11128.72, + "probability": 0.7386 + }, + { + "start": 11129.26, + "end": 11132.48, + "probability": 0.9245 + }, + { + "start": 11132.9, + "end": 11134.44, + "probability": 0.6863 + }, + { + "start": 11134.9, + "end": 11136.8, + "probability": 0.8348 + }, + { + "start": 11137.02, + "end": 11139.54, + "probability": 0.7393 + }, + { + "start": 11139.7, + "end": 11140.06, + "probability": 0.5437 + }, + { + "start": 11140.78, + "end": 11141.94, + "probability": 0.6639 + }, + { + "start": 11142.16, + "end": 11142.84, + "probability": 0.9773 + }, + { + "start": 11143.0, + "end": 11143.46, + "probability": 0.5912 + }, + { + "start": 11143.52, + "end": 11144.44, + "probability": 0.8042 + }, + { + "start": 11144.8, + "end": 11146.76, + "probability": 0.8311 + }, + { + "start": 11147.06, + "end": 11148.24, + "probability": 0.6473 + }, + { + "start": 11148.68, + "end": 11152.78, + "probability": 0.9774 + }, + { + "start": 11152.78, + "end": 11156.7, + "probability": 0.996 + }, + { + "start": 11157.5, + "end": 11158.74, + "probability": 0.7297 + }, + { + "start": 11159.7, + "end": 11159.94, + "probability": 0.7163 + }, + { + "start": 11160.46, + "end": 11161.46, + "probability": 0.2155 + }, + { + "start": 11161.6, + "end": 11162.42, + "probability": 0.4391 + }, + { + "start": 11162.44, + "end": 11162.74, + "probability": 0.4886 + }, + { + "start": 11162.84, + "end": 11163.68, + "probability": 0.5169 + }, + { + "start": 11163.9, + "end": 11169.3, + "probability": 0.8794 + }, + { + "start": 11169.32, + "end": 11171.6, + "probability": 0.9051 + }, + { + "start": 11171.72, + "end": 11174.56, + "probability": 0.777 + }, + { + "start": 11175.0, + "end": 11176.3, + "probability": 0.0359 + }, + { + "start": 11176.64, + "end": 11176.66, + "probability": 0.4903 + }, + { + "start": 11176.66, + "end": 11179.3, + "probability": 0.2409 + }, + { + "start": 11179.7, + "end": 11184.74, + "probability": 0.5027 + }, + { + "start": 11184.82, + "end": 11185.9, + "probability": 0.1483 + }, + { + "start": 11186.28, + "end": 11188.98, + "probability": 0.5667 + }, + { + "start": 11188.98, + "end": 11191.06, + "probability": 0.7804 + }, + { + "start": 11191.12, + "end": 11191.66, + "probability": 0.679 + }, + { + "start": 11191.76, + "end": 11191.9, + "probability": 0.2979 + }, + { + "start": 11191.96, + "end": 11192.46, + "probability": 0.8062 + }, + { + "start": 11192.5, + "end": 11193.01, + "probability": 0.616 + }, + { + "start": 11193.72, + "end": 11197.22, + "probability": 0.5089 + }, + { + "start": 11197.36, + "end": 11199.14, + "probability": 0.3647 + }, + { + "start": 11200.0, + "end": 11201.4, + "probability": 0.4614 + }, + { + "start": 11201.5, + "end": 11202.38, + "probability": 0.4925 + }, + { + "start": 11202.52, + "end": 11202.92, + "probability": 0.3121 + }, + { + "start": 11203.1, + "end": 11206.44, + "probability": 0.6833 + }, + { + "start": 11206.6, + "end": 11209.24, + "probability": 0.9587 + }, + { + "start": 11209.3, + "end": 11209.86, + "probability": 0.5527 + }, + { + "start": 11210.02, + "end": 11212.46, + "probability": 0.9867 + }, + { + "start": 11212.54, + "end": 11216.58, + "probability": 0.958 + }, + { + "start": 11216.94, + "end": 11217.4, + "probability": 0.4168 + }, + { + "start": 11217.78, + "end": 11220.02, + "probability": 0.9528 + }, + { + "start": 11220.18, + "end": 11222.14, + "probability": 0.801 + }, + { + "start": 11222.2, + "end": 11225.56, + "probability": 0.9686 + }, + { + "start": 11225.8, + "end": 11227.2, + "probability": 0.7988 + }, + { + "start": 11227.32, + "end": 11228.26, + "probability": 0.4999 + }, + { + "start": 11228.34, + "end": 11230.22, + "probability": 0.5422 + }, + { + "start": 11230.24, + "end": 11230.56, + "probability": 0.6936 + }, + { + "start": 11230.6, + "end": 11232.12, + "probability": 0.9496 + }, + { + "start": 11232.24, + "end": 11236.02, + "probability": 0.5897 + }, + { + "start": 11236.46, + "end": 11238.23, + "probability": 0.524 + }, + { + "start": 11238.82, + "end": 11239.7, + "probability": 0.3852 + }, + { + "start": 11239.82, + "end": 11241.29, + "probability": 0.6422 + }, + { + "start": 11241.74, + "end": 11242.68, + "probability": 0.6262 + }, + { + "start": 11242.74, + "end": 11244.18, + "probability": 0.8699 + }, + { + "start": 11244.48, + "end": 11245.1, + "probability": 0.9399 + }, + { + "start": 11245.24, + "end": 11246.6, + "probability": 0.7563 + }, + { + "start": 11246.68, + "end": 11247.44, + "probability": 0.7382 + }, + { + "start": 11247.88, + "end": 11249.36, + "probability": 0.8612 + }, + { + "start": 11250.44, + "end": 11252.63, + "probability": 0.8033 + }, + { + "start": 11253.14, + "end": 11253.46, + "probability": 0.4958 + }, + { + "start": 11253.58, + "end": 11255.03, + "probability": 0.8693 + }, + { + "start": 11255.28, + "end": 11256.07, + "probability": 0.2989 + }, + { + "start": 11256.26, + "end": 11257.0, + "probability": 0.2785 + }, + { + "start": 11257.42, + "end": 11257.54, + "probability": 0.4327 + }, + { + "start": 11257.72, + "end": 11258.98, + "probability": 0.8712 + }, + { + "start": 11259.1, + "end": 11262.58, + "probability": 0.8579 + }, + { + "start": 11262.86, + "end": 11265.58, + "probability": 0.9404 + }, + { + "start": 11265.78, + "end": 11269.32, + "probability": 0.7474 + }, + { + "start": 11269.76, + "end": 11272.7, + "probability": 0.8778 + }, + { + "start": 11273.24, + "end": 11274.06, + "probability": 0.9246 + }, + { + "start": 11274.22, + "end": 11277.42, + "probability": 0.9552 + }, + { + "start": 11277.54, + "end": 11279.0, + "probability": 0.9738 + }, + { + "start": 11279.1, + "end": 11280.8, + "probability": 0.9452 + }, + { + "start": 11280.86, + "end": 11281.68, + "probability": 0.6566 + }, + { + "start": 11282.14, + "end": 11283.32, + "probability": 0.3557 + }, + { + "start": 11283.78, + "end": 11284.86, + "probability": 0.7495 + }, + { + "start": 11284.9, + "end": 11287.84, + "probability": 0.9192 + }, + { + "start": 11288.0, + "end": 11289.12, + "probability": 0.6827 + }, + { + "start": 11289.44, + "end": 11292.8, + "probability": 0.794 + }, + { + "start": 11292.84, + "end": 11294.16, + "probability": 0.6521 + }, + { + "start": 11294.28, + "end": 11295.46, + "probability": 0.875 + }, + { + "start": 11295.54, + "end": 11296.9, + "probability": 0.6313 + }, + { + "start": 11297.1, + "end": 11298.14, + "probability": 0.6094 + }, + { + "start": 11298.32, + "end": 11299.44, + "probability": 0.9004 + }, + { + "start": 11299.54, + "end": 11303.18, + "probability": 0.6651 + }, + { + "start": 11303.46, + "end": 11305.64, + "probability": 0.9868 + }, + { + "start": 11305.64, + "end": 11307.94, + "probability": 0.9751 + }, + { + "start": 11308.2, + "end": 11310.14, + "probability": 0.7849 + }, + { + "start": 11310.28, + "end": 11312.18, + "probability": 0.9883 + }, + { + "start": 11312.44, + "end": 11315.78, + "probability": 0.8941 + }, + { + "start": 11315.9, + "end": 11317.1, + "probability": 0.6452 + }, + { + "start": 11317.2, + "end": 11319.72, + "probability": 0.5088 + }, + { + "start": 11319.82, + "end": 11320.52, + "probability": 0.711 + }, + { + "start": 11320.68, + "end": 11321.76, + "probability": 0.9897 + }, + { + "start": 11322.0, + "end": 11323.82, + "probability": 0.6712 + }, + { + "start": 11324.3, + "end": 11325.52, + "probability": 0.9912 + }, + { + "start": 11326.16, + "end": 11328.68, + "probability": 0.8912 + }, + { + "start": 11329.02, + "end": 11330.32, + "probability": 0.8802 + }, + { + "start": 11330.42, + "end": 11330.77, + "probability": 0.9119 + }, + { + "start": 11331.95, + "end": 11335.52, + "probability": 0.5964 + }, + { + "start": 11336.38, + "end": 11338.68, + "probability": 0.4997 + }, + { + "start": 11338.68, + "end": 11341.82, + "probability": 0.6056 + }, + { + "start": 11342.36, + "end": 11345.18, + "probability": 0.986 + }, + { + "start": 11345.18, + "end": 11350.02, + "probability": 0.777 + }, + { + "start": 11350.56, + "end": 11353.28, + "probability": 0.9833 + }, + { + "start": 11353.56, + "end": 11354.38, + "probability": 0.4697 + }, + { + "start": 11354.44, + "end": 11354.94, + "probability": 0.5469 + }, + { + "start": 11354.94, + "end": 11355.52, + "probability": 0.723 + }, + { + "start": 11363.34, + "end": 11366.74, + "probability": 0.0871 + }, + { + "start": 11371.33, + "end": 11377.05, + "probability": 0.0298 + }, + { + "start": 11377.05, + "end": 11379.19, + "probability": 0.0859 + }, + { + "start": 11379.39, + "end": 11380.03, + "probability": 0.0178 + }, + { + "start": 11381.49, + "end": 11381.87, + "probability": 0.026 + }, + { + "start": 11381.87, + "end": 11382.87, + "probability": 0.0898 + }, + { + "start": 11382.87, + "end": 11384.91, + "probability": 0.1194 + }, + { + "start": 11388.05, + "end": 11390.97, + "probability": 0.0571 + }, + { + "start": 11390.97, + "end": 11396.37, + "probability": 0.0389 + }, + { + "start": 11396.47, + "end": 11398.05, + "probability": 0.0086 + }, + { + "start": 11399.55, + "end": 11400.65, + "probability": 0.0512 + }, + { + "start": 11400.85, + "end": 11402.81, + "probability": 0.0202 + }, + { + "start": 11404.85, + "end": 11407.97, + "probability": 0.3324 + }, + { + "start": 11408.01, + "end": 11408.79, + "probability": 0.0084 + }, + { + "start": 11408.79, + "end": 11408.79, + "probability": 0.0718 + }, + { + "start": 11408.79, + "end": 11409.77, + "probability": 0.1837 + }, + { + "start": 11409.79, + "end": 11410.94, + "probability": 0.3839 + }, + { + "start": 11411.45, + "end": 11415.19, + "probability": 0.992 + }, + { + "start": 11415.29, + "end": 11417.43, + "probability": 0.7368 + }, + { + "start": 11418.33, + "end": 11421.03, + "probability": 0.5193 + }, + { + "start": 11421.83, + "end": 11425.87, + "probability": 0.8792 + }, + { + "start": 11426.33, + "end": 11427.41, + "probability": 0.4897 + }, + { + "start": 11427.75, + "end": 11432.09, + "probability": 0.9868 + }, + { + "start": 11432.27, + "end": 11435.53, + "probability": 0.7012 + }, + { + "start": 11435.97, + "end": 11439.87, + "probability": 0.8187 + }, + { + "start": 11441.19, + "end": 11446.87, + "probability": 0.6017 + }, + { + "start": 11447.37, + "end": 11448.31, + "probability": 0.8345 + }, + { + "start": 11448.97, + "end": 11450.25, + "probability": 0.7684 + }, + { + "start": 11451.55, + "end": 11452.69, + "probability": 0.8035 + }, + { + "start": 11454.19, + "end": 11461.73, + "probability": 0.9523 + }, + { + "start": 11462.47, + "end": 11463.75, + "probability": 0.7377 + }, + { + "start": 11464.35, + "end": 11466.41, + "probability": 0.8555 + }, + { + "start": 11466.81, + "end": 11474.87, + "probability": 0.9832 + }, + { + "start": 11475.63, + "end": 11477.54, + "probability": 0.9151 + }, + { + "start": 11478.37, + "end": 11479.27, + "probability": 0.7785 + }, + { + "start": 11479.63, + "end": 11485.65, + "probability": 0.6616 + }, + { + "start": 11486.37, + "end": 11487.87, + "probability": 0.6496 + }, + { + "start": 11488.47, + "end": 11496.54, + "probability": 0.9819 + }, + { + "start": 11497.13, + "end": 11497.85, + "probability": 0.7594 + }, + { + "start": 11498.67, + "end": 11501.38, + "probability": 0.5443 + }, + { + "start": 11505.65, + "end": 11507.93, + "probability": 0.4245 + }, + { + "start": 11510.03, + "end": 11515.47, + "probability": 0.5983 + }, + { + "start": 11516.27, + "end": 11516.43, + "probability": 0.7588 + }, + { + "start": 11517.53, + "end": 11524.33, + "probability": 0.9634 + }, + { + "start": 11525.01, + "end": 11532.21, + "probability": 0.9416 + }, + { + "start": 11533.25, + "end": 11536.23, + "probability": 0.7778 + }, + { + "start": 11538.33, + "end": 11542.41, + "probability": 0.4345 + }, + { + "start": 11542.55, + "end": 11545.87, + "probability": 0.196 + }, + { + "start": 11546.39, + "end": 11548.73, + "probability": 0.7915 + }, + { + "start": 11548.81, + "end": 11549.91, + "probability": 0.8201 + }, + { + "start": 11550.37, + "end": 11551.37, + "probability": 0.678 + }, + { + "start": 11551.57, + "end": 11555.51, + "probability": 0.7644 + }, + { + "start": 11555.59, + "end": 11557.11, + "probability": 0.8571 + }, + { + "start": 11557.45, + "end": 11560.65, + "probability": 0.8635 + }, + { + "start": 11561.37, + "end": 11565.25, + "probability": 0.9769 + }, + { + "start": 11566.15, + "end": 11567.93, + "probability": 0.5906 + }, + { + "start": 11568.59, + "end": 11572.95, + "probability": 0.8746 + }, + { + "start": 11573.17, + "end": 11573.85, + "probability": 0.9616 + }, + { + "start": 11574.01, + "end": 11576.59, + "probability": 0.7119 + }, + { + "start": 11577.07, + "end": 11580.71, + "probability": 0.897 + }, + { + "start": 11581.11, + "end": 11583.23, + "probability": 0.659 + }, + { + "start": 11584.51, + "end": 11586.65, + "probability": 0.9722 + }, + { + "start": 11587.07, + "end": 11589.49, + "probability": 0.5027 + }, + { + "start": 11589.89, + "end": 11593.51, + "probability": 0.9665 + }, + { + "start": 11594.33, + "end": 11596.37, + "probability": 0.9172 + }, + { + "start": 11597.09, + "end": 11601.25, + "probability": 0.8065 + }, + { + "start": 11602.07, + "end": 11603.75, + "probability": 0.8055 + }, + { + "start": 11604.93, + "end": 11606.55, + "probability": 0.9106 + }, + { + "start": 11607.21, + "end": 11608.19, + "probability": 0.965 + }, + { + "start": 11609.77, + "end": 11612.41, + "probability": 0.6793 + }, + { + "start": 11612.59, + "end": 11615.93, + "probability": 0.82 + }, + { + "start": 11616.47, + "end": 11618.99, + "probability": 0.8446 + }, + { + "start": 11619.69, + "end": 11622.33, + "probability": 0.614 + }, + { + "start": 11622.89, + "end": 11623.57, + "probability": 0.8036 + }, + { + "start": 11624.21, + "end": 11626.26, + "probability": 0.6872 + }, + { + "start": 11628.29, + "end": 11632.19, + "probability": 0.9076 + }, + { + "start": 11632.65, + "end": 11635.26, + "probability": 0.8652 + }, + { + "start": 11636.55, + "end": 11639.43, + "probability": 0.9786 + }, + { + "start": 11640.25, + "end": 11642.77, + "probability": 0.8687 + }, + { + "start": 11643.51, + "end": 11646.24, + "probability": 0.1594 + }, + { + "start": 11646.87, + "end": 11650.47, + "probability": 0.6942 + }, + { + "start": 11651.79, + "end": 11653.39, + "probability": 0.7879 + }, + { + "start": 11654.2, + "end": 11658.65, + "probability": 0.9526 + }, + { + "start": 11659.55, + "end": 11663.83, + "probability": 0.8737 + }, + { + "start": 11664.25, + "end": 11666.97, + "probability": 0.8876 + }, + { + "start": 11667.19, + "end": 11668.73, + "probability": 0.4839 + }, + { + "start": 11669.55, + "end": 11672.63, + "probability": 0.9466 + }, + { + "start": 11673.19, + "end": 11678.65, + "probability": 0.7525 + }, + { + "start": 11680.29, + "end": 11681.69, + "probability": 0.3906 + }, + { + "start": 11681.95, + "end": 11682.27, + "probability": 0.0396 + }, + { + "start": 11682.85, + "end": 11683.63, + "probability": 0.093 + }, + { + "start": 11683.63, + "end": 11685.19, + "probability": 0.5365 + }, + { + "start": 11685.31, + "end": 11688.15, + "probability": 0.5179 + }, + { + "start": 11688.31, + "end": 11688.93, + "probability": 0.7487 + }, + { + "start": 11689.45, + "end": 11693.37, + "probability": 0.8125 + }, + { + "start": 11694.09, + "end": 11699.87, + "probability": 0.4587 + }, + { + "start": 11699.87, + "end": 11701.43, + "probability": 0.3064 + }, + { + "start": 11701.97, + "end": 11704.21, + "probability": 0.9617 + }, + { + "start": 11706.49, + "end": 11708.19, + "probability": 0.6679 + }, + { + "start": 11708.27, + "end": 11711.19, + "probability": 0.3295 + }, + { + "start": 11711.85, + "end": 11712.45, + "probability": 0.4314 + }, + { + "start": 11712.55, + "end": 11712.99, + "probability": 0.2328 + }, + { + "start": 11712.99, + "end": 11719.13, + "probability": 0.9504 + }, + { + "start": 11719.13, + "end": 11719.13, + "probability": 0.2052 + }, + { + "start": 11719.13, + "end": 11719.65, + "probability": 0.5366 + }, + { + "start": 11719.67, + "end": 11722.06, + "probability": 0.4708 + }, + { + "start": 11723.03, + "end": 11726.53, + "probability": 0.7969 + }, + { + "start": 11726.59, + "end": 11730.95, + "probability": 0.999 + }, + { + "start": 11731.65, + "end": 11732.58, + "probability": 0.8779 + }, + { + "start": 11733.31, + "end": 11734.69, + "probability": 0.662 + }, + { + "start": 11734.71, + "end": 11736.71, + "probability": 0.8866 + }, + { + "start": 11736.85, + "end": 11737.27, + "probability": 0.4885 + }, + { + "start": 11739.29, + "end": 11740.83, + "probability": 0.4996 + }, + { + "start": 11741.19, + "end": 11741.75, + "probability": 0.2138 + }, + { + "start": 11742.09, + "end": 11747.55, + "probability": 0.7772 + }, + { + "start": 11748.07, + "end": 11751.73, + "probability": 0.7809 + }, + { + "start": 11752.11, + "end": 11753.25, + "probability": 0.8733 + }, + { + "start": 11753.85, + "end": 11756.67, + "probability": 0.8968 + }, + { + "start": 11761.05, + "end": 11763.86, + "probability": 0.9939 + }, + { + "start": 11764.83, + "end": 11767.29, + "probability": 0.9353 + }, + { + "start": 11767.57, + "end": 11772.73, + "probability": 0.8114 + }, + { + "start": 11773.83, + "end": 11777.55, + "probability": 0.8247 + }, + { + "start": 11777.89, + "end": 11779.09, + "probability": 0.9751 + }, + { + "start": 11779.37, + "end": 11780.17, + "probability": 0.9395 + }, + { + "start": 11780.65, + "end": 11781.65, + "probability": 0.9607 + }, + { + "start": 11782.33, + "end": 11783.43, + "probability": 0.7488 + }, + { + "start": 11785.27, + "end": 11786.15, + "probability": 0.8613 + }, + { + "start": 11786.25, + "end": 11787.67, + "probability": 0.9088 + }, + { + "start": 11787.91, + "end": 11791.35, + "probability": 0.9871 + }, + { + "start": 11791.35, + "end": 11796.13, + "probability": 0.9814 + }, + { + "start": 11797.11, + "end": 11798.31, + "probability": 0.8166 + }, + { + "start": 11798.99, + "end": 11804.29, + "probability": 0.986 + }, + { + "start": 11804.89, + "end": 11806.55, + "probability": 0.8723 + }, + { + "start": 11807.29, + "end": 11808.11, + "probability": 0.8851 + }, + { + "start": 11809.17, + "end": 11815.71, + "probability": 0.9429 + }, + { + "start": 11816.99, + "end": 11818.81, + "probability": 0.6216 + }, + { + "start": 11819.13, + "end": 11820.31, + "probability": 0.9464 + }, + { + "start": 11820.73, + "end": 11824.45, + "probability": 0.8462 + }, + { + "start": 11824.75, + "end": 11825.98, + "probability": 0.8496 + }, + { + "start": 11828.93, + "end": 11830.43, + "probability": 0.6973 + }, + { + "start": 11830.87, + "end": 11834.17, + "probability": 0.9318 + }, + { + "start": 11834.93, + "end": 11836.27, + "probability": 0.5562 + }, + { + "start": 11838.55, + "end": 11841.71, + "probability": 0.8887 + }, + { + "start": 11841.75, + "end": 11842.61, + "probability": 0.4843 + }, + { + "start": 11842.77, + "end": 11844.59, + "probability": 0.0239 + }, + { + "start": 11844.99, + "end": 11847.04, + "probability": 0.5391 + }, + { + "start": 11848.61, + "end": 11850.79, + "probability": 0.7672 + }, + { + "start": 11851.07, + "end": 11853.63, + "probability": 0.6667 + }, + { + "start": 11853.73, + "end": 11857.01, + "probability": 0.8052 + }, + { + "start": 11857.87, + "end": 11859.67, + "probability": 0.6796 + }, + { + "start": 11859.81, + "end": 11863.43, + "probability": 0.9404 + }, + { + "start": 11865.85, + "end": 11867.51, + "probability": 0.9802 + }, + { + "start": 11868.45, + "end": 11872.0, + "probability": 0.7822 + }, + { + "start": 11872.89, + "end": 11874.81, + "probability": 0.783 + }, + { + "start": 11875.51, + "end": 11878.09, + "probability": 0.9744 + }, + { + "start": 11878.83, + "end": 11886.07, + "probability": 0.9492 + }, + { + "start": 11886.19, + "end": 11886.95, + "probability": 0.8426 + }, + { + "start": 11889.09, + "end": 11890.47, + "probability": 0.3055 + }, + { + "start": 11891.43, + "end": 11892.83, + "probability": 0.9484 + }, + { + "start": 11893.65, + "end": 11895.19, + "probability": 0.8336 + }, + { + "start": 11895.55, + "end": 11897.75, + "probability": 0.9814 + }, + { + "start": 11897.93, + "end": 11899.75, + "probability": 0.9496 + }, + { + "start": 11899.85, + "end": 11900.35, + "probability": 0.8191 + }, + { + "start": 11900.45, + "end": 11903.01, + "probability": 0.9805 + }, + { + "start": 11903.65, + "end": 11909.69, + "probability": 0.6472 + }, + { + "start": 11910.19, + "end": 11911.39, + "probability": 0.9393 + }, + { + "start": 11913.1, + "end": 11915.69, + "probability": 0.5462 + }, + { + "start": 11915.95, + "end": 11922.05, + "probability": 0.4774 + }, + { + "start": 11922.05, + "end": 11923.23, + "probability": 0.7723 + }, + { + "start": 11924.02, + "end": 11924.93, + "probability": 0.0008 + }, + { + "start": 11924.99, + "end": 11928.75, + "probability": 0.9045 + }, + { + "start": 11929.13, + "end": 11930.83, + "probability": 0.5121 + }, + { + "start": 11930.91, + "end": 11934.45, + "probability": 0.7748 + }, + { + "start": 11934.57, + "end": 11935.89, + "probability": 0.7557 + }, + { + "start": 11936.57, + "end": 11938.45, + "probability": 0.9623 + }, + { + "start": 11938.63, + "end": 11939.87, + "probability": 0.8599 + }, + { + "start": 11940.47, + "end": 11942.65, + "probability": 0.9297 + }, + { + "start": 11943.07, + "end": 11945.9, + "probability": 0.7207 + }, + { + "start": 11946.25, + "end": 11950.93, + "probability": 0.7716 + }, + { + "start": 11951.61, + "end": 11954.69, + "probability": 0.6816 + }, + { + "start": 11955.23, + "end": 11957.13, + "probability": 0.9077 + }, + { + "start": 11957.43, + "end": 11963.03, + "probability": 0.7941 + }, + { + "start": 11963.17, + "end": 11964.89, + "probability": 0.5677 + }, + { + "start": 11965.21, + "end": 11968.55, + "probability": 0.6557 + }, + { + "start": 11968.69, + "end": 11969.53, + "probability": 0.7006 + }, + { + "start": 11970.33, + "end": 11974.77, + "probability": 0.9092 + }, + { + "start": 11974.77, + "end": 11978.17, + "probability": 0.9683 + }, + { + "start": 11978.73, + "end": 11981.61, + "probability": 0.9375 + }, + { + "start": 11982.83, + "end": 11985.31, + "probability": 0.8759 + }, + { + "start": 11985.91, + "end": 11991.21, + "probability": 0.8978 + }, + { + "start": 11992.01, + "end": 11993.51, + "probability": 0.3679 + }, + { + "start": 11994.75, + "end": 11995.41, + "probability": 0.4886 + }, + { + "start": 11995.49, + "end": 12000.77, + "probability": 0.5622 + }, + { + "start": 12001.29, + "end": 12002.62, + "probability": 0.261 + }, + { + "start": 12003.41, + "end": 12006.13, + "probability": 0.161 + }, + { + "start": 12006.73, + "end": 12008.11, + "probability": 0.4209 + }, + { + "start": 12008.13, + "end": 12016.01, + "probability": 0.2695 + }, + { + "start": 12016.21, + "end": 12019.65, + "probability": 0.7319 + }, + { + "start": 12020.21, + "end": 12021.45, + "probability": 0.4128 + }, + { + "start": 12021.71, + "end": 12022.19, + "probability": 0.3428 + }, + { + "start": 12023.22, + "end": 12024.31, + "probability": 0.0645 + }, + { + "start": 12024.43, + "end": 12028.05, + "probability": 0.3669 + }, + { + "start": 12028.51, + "end": 12029.39, + "probability": 0.1025 + }, + { + "start": 12029.67, + "end": 12034.35, + "probability": 0.4538 + }, + { + "start": 12035.89, + "end": 12041.53, + "probability": 0.2057 + }, + { + "start": 12043.87, + "end": 12043.87, + "probability": 0.041 + }, + { + "start": 12043.87, + "end": 12043.87, + "probability": 0.3518 + }, + { + "start": 12043.87, + "end": 12048.27, + "probability": 0.6139 + }, + { + "start": 12049.77, + "end": 12049.81, + "probability": 0.2193 + }, + { + "start": 12049.81, + "end": 12051.99, + "probability": 0.8505 + }, + { + "start": 12052.35, + "end": 12053.76, + "probability": 0.8735 + }, + { + "start": 12054.51, + "end": 12057.11, + "probability": 0.7907 + }, + { + "start": 12058.65, + "end": 12060.43, + "probability": 0.9733 + }, + { + "start": 12060.95, + "end": 12062.23, + "probability": 0.6461 + }, + { + "start": 12062.53, + "end": 12063.55, + "probability": 0.4674 + }, + { + "start": 12063.61, + "end": 12065.17, + "probability": 0.8452 + }, + { + "start": 12065.31, + "end": 12065.41, + "probability": 0.7124 + }, + { + "start": 12065.51, + "end": 12065.81, + "probability": 0.5157 + }, + { + "start": 12066.13, + "end": 12066.71, + "probability": 0.6196 + }, + { + "start": 12066.89, + "end": 12068.93, + "probability": 0.4724 + }, + { + "start": 12068.93, + "end": 12072.49, + "probability": 0.9474 + }, + { + "start": 12073.29, + "end": 12074.55, + "probability": 0.2852 + }, + { + "start": 12076.27, + "end": 12076.49, + "probability": 0.1633 + }, + { + "start": 12077.69, + "end": 12078.71, + "probability": 0.4267 + }, + { + "start": 12078.85, + "end": 12081.23, + "probability": 0.6243 + }, + { + "start": 12081.39, + "end": 12086.27, + "probability": 0.6038 + }, + { + "start": 12086.35, + "end": 12089.65, + "probability": 0.667 + }, + { + "start": 12090.19, + "end": 12092.51, + "probability": 0.4358 + }, + { + "start": 12093.05, + "end": 12096.67, + "probability": 0.7089 + }, + { + "start": 12097.25, + "end": 12099.43, + "probability": 0.7103 + }, + { + "start": 12099.79, + "end": 12100.39, + "probability": 0.1096 + }, + { + "start": 12100.63, + "end": 12101.53, + "probability": 0.8228 + }, + { + "start": 12101.61, + "end": 12105.97, + "probability": 0.9526 + }, + { + "start": 12106.71, + "end": 12111.33, + "probability": 0.9943 + }, + { + "start": 12111.33, + "end": 12114.49, + "probability": 0.84 + }, + { + "start": 12115.25, + "end": 12117.99, + "probability": 0.5631 + }, + { + "start": 12119.15, + "end": 12121.59, + "probability": 0.6784 + }, + { + "start": 12122.45, + "end": 12127.61, + "probability": 0.8904 + }, + { + "start": 12128.07, + "end": 12128.71, + "probability": 0.7008 + }, + { + "start": 12129.27, + "end": 12130.15, + "probability": 0.6251 + }, + { + "start": 12130.63, + "end": 12134.17, + "probability": 0.7504 + }, + { + "start": 12134.71, + "end": 12135.27, + "probability": 0.8492 + }, + { + "start": 12135.59, + "end": 12136.87, + "probability": 0.8291 + }, + { + "start": 12137.13, + "end": 12142.21, + "probability": 0.8778 + }, + { + "start": 12142.97, + "end": 12144.31, + "probability": 0.6781 + }, + { + "start": 12144.99, + "end": 12147.75, + "probability": 0.9629 + }, + { + "start": 12148.79, + "end": 12152.37, + "probability": 0.8542 + }, + { + "start": 12153.97, + "end": 12156.47, + "probability": 0.6685 + }, + { + "start": 12157.01, + "end": 12159.81, + "probability": 0.9082 + }, + { + "start": 12161.57, + "end": 12162.29, + "probability": 0.7859 + }, + { + "start": 12162.43, + "end": 12163.37, + "probability": 0.7746 + }, + { + "start": 12163.49, + "end": 12164.53, + "probability": 0.7944 + }, + { + "start": 12164.77, + "end": 12165.31, + "probability": 0.3874 + }, + { + "start": 12165.47, + "end": 12169.3, + "probability": 0.9796 + }, + { + "start": 12170.71, + "end": 12173.93, + "probability": 0.6765 + }, + { + "start": 12174.07, + "end": 12180.73, + "probability": 0.9498 + }, + { + "start": 12180.73, + "end": 12187.79, + "probability": 0.9959 + }, + { + "start": 12187.97, + "end": 12189.23, + "probability": 0.8031 + }, + { + "start": 12189.73, + "end": 12194.07, + "probability": 0.9938 + }, + { + "start": 12194.25, + "end": 12195.77, + "probability": 0.6865 + }, + { + "start": 12195.81, + "end": 12197.57, + "probability": 0.9421 + }, + { + "start": 12197.93, + "end": 12199.07, + "probability": 0.8493 + }, + { + "start": 12199.57, + "end": 12200.65, + "probability": 0.836 + }, + { + "start": 12200.79, + "end": 12202.22, + "probability": 0.9902 + }, + { + "start": 12202.97, + "end": 12206.67, + "probability": 0.9824 + }, + { + "start": 12206.89, + "end": 12210.47, + "probability": 0.8051 + }, + { + "start": 12210.57, + "end": 12210.97, + "probability": 0.6571 + }, + { + "start": 12211.19, + "end": 12212.07, + "probability": 0.6836 + }, + { + "start": 12212.15, + "end": 12212.78, + "probability": 0.8723 + }, + { + "start": 12213.63, + "end": 12214.63, + "probability": 0.9534 + }, + { + "start": 12215.19, + "end": 12218.47, + "probability": 0.9574 + }, + { + "start": 12218.77, + "end": 12219.95, + "probability": 0.9724 + }, + { + "start": 12220.03, + "end": 12221.39, + "probability": 0.9503 + }, + { + "start": 12221.81, + "end": 12225.59, + "probability": 0.8074 + }, + { + "start": 12225.81, + "end": 12230.43, + "probability": 0.9274 + }, + { + "start": 12230.85, + "end": 12232.51, + "probability": 0.4364 + }, + { + "start": 12232.93, + "end": 12236.19, + "probability": 0.9602 + }, + { + "start": 12236.55, + "end": 12236.97, + "probability": 0.7109 + }, + { + "start": 12237.09, + "end": 12237.47, + "probability": 0.9556 + }, + { + "start": 12237.57, + "end": 12238.71, + "probability": 0.9237 + }, + { + "start": 12238.93, + "end": 12243.21, + "probability": 0.9958 + }, + { + "start": 12243.97, + "end": 12244.51, + "probability": 0.624 + }, + { + "start": 12244.73, + "end": 12247.89, + "probability": 0.9957 + }, + { + "start": 12247.99, + "end": 12250.65, + "probability": 0.9209 + }, + { + "start": 12250.81, + "end": 12251.45, + "probability": 0.5879 + }, + { + "start": 12251.53, + "end": 12254.17, + "probability": 0.9663 + }, + { + "start": 12254.69, + "end": 12256.29, + "probability": 0.9832 + }, + { + "start": 12256.51, + "end": 12262.37, + "probability": 0.805 + }, + { + "start": 12263.29, + "end": 12265.09, + "probability": 0.8323 + }, + { + "start": 12265.77, + "end": 12265.77, + "probability": 0.104 + }, + { + "start": 12265.77, + "end": 12265.77, + "probability": 0.0386 + }, + { + "start": 12265.77, + "end": 12267.71, + "probability": 0.5894 + }, + { + "start": 12268.11, + "end": 12268.97, + "probability": 0.6223 + }, + { + "start": 12269.05, + "end": 12272.73, + "probability": 0.9889 + }, + { + "start": 12273.45, + "end": 12275.17, + "probability": 0.7064 + }, + { + "start": 12275.71, + "end": 12281.47, + "probability": 0.98 + }, + { + "start": 12281.55, + "end": 12282.09, + "probability": 0.6294 + }, + { + "start": 12282.61, + "end": 12283.23, + "probability": 0.7975 + }, + { + "start": 12283.27, + "end": 12284.85, + "probability": 0.8721 + }, + { + "start": 12285.31, + "end": 12286.69, + "probability": 0.9261 + }, + { + "start": 12286.79, + "end": 12287.61, + "probability": 0.7283 + }, + { + "start": 12287.77, + "end": 12288.91, + "probability": 0.9624 + }, + { + "start": 12289.05, + "end": 12291.11, + "probability": 0.9037 + }, + { + "start": 12291.49, + "end": 12292.89, + "probability": 0.6724 + }, + { + "start": 12293.39, + "end": 12296.47, + "probability": 0.9878 + }, + { + "start": 12296.59, + "end": 12299.71, + "probability": 0.9827 + }, + { + "start": 12300.01, + "end": 12302.61, + "probability": 0.9492 + }, + { + "start": 12303.07, + "end": 12309.03, + "probability": 0.9951 + }, + { + "start": 12309.59, + "end": 12314.04, + "probability": 0.9951 + }, + { + "start": 12315.23, + "end": 12319.37, + "probability": 0.9826 + }, + { + "start": 12319.41, + "end": 12321.25, + "probability": 0.9948 + }, + { + "start": 12321.65, + "end": 12323.67, + "probability": 0.9018 + }, + { + "start": 12324.09, + "end": 12325.89, + "probability": 0.7564 + }, + { + "start": 12327.03, + "end": 12328.48, + "probability": 0.9391 + }, + { + "start": 12328.91, + "end": 12332.41, + "probability": 0.8704 + }, + { + "start": 12332.41, + "end": 12336.37, + "probability": 0.7768 + }, + { + "start": 12336.77, + "end": 12338.91, + "probability": 0.975 + }, + { + "start": 12339.01, + "end": 12340.83, + "probability": 0.9076 + }, + { + "start": 12340.97, + "end": 12341.27, + "probability": 0.4378 + }, + { + "start": 12341.33, + "end": 12342.19, + "probability": 0.954 + }, + { + "start": 12342.35, + "end": 12345.07, + "probability": 0.9361 + }, + { + "start": 12345.25, + "end": 12347.7, + "probability": 0.9787 + }, + { + "start": 12348.07, + "end": 12349.39, + "probability": 0.8672 + }, + { + "start": 12349.65, + "end": 12351.47, + "probability": 0.9296 + }, + { + "start": 12351.89, + "end": 12354.11, + "probability": 0.9717 + }, + { + "start": 12354.11, + "end": 12356.13, + "probability": 0.9909 + }, + { + "start": 12356.15, + "end": 12357.57, + "probability": 0.9823 + }, + { + "start": 12357.73, + "end": 12360.03, + "probability": 0.9951 + }, + { + "start": 12360.33, + "end": 12361.51, + "probability": 0.9418 + }, + { + "start": 12361.97, + "end": 12362.55, + "probability": 0.762 + }, + { + "start": 12363.01, + "end": 12364.31, + "probability": 0.9817 + }, + { + "start": 12364.39, + "end": 12369.49, + "probability": 0.9863 + }, + { + "start": 12369.69, + "end": 12372.69, + "probability": 0.5348 + }, + { + "start": 12372.73, + "end": 12373.59, + "probability": 0.7841 + }, + { + "start": 12373.67, + "end": 12374.51, + "probability": 0.7953 + }, + { + "start": 12374.59, + "end": 12379.65, + "probability": 0.9926 + }, + { + "start": 12379.69, + "end": 12383.83, + "probability": 0.9816 + }, + { + "start": 12383.83, + "end": 12387.07, + "probability": 0.9814 + }, + { + "start": 12387.29, + "end": 12392.55, + "probability": 0.7708 + }, + { + "start": 12392.77, + "end": 12393.52, + "probability": 0.7267 + }, + { + "start": 12394.01, + "end": 12399.73, + "probability": 0.8588 + }, + { + "start": 12399.77, + "end": 12400.97, + "probability": 0.8188 + }, + { + "start": 12401.47, + "end": 12402.43, + "probability": 0.7155 + }, + { + "start": 12402.51, + "end": 12404.23, + "probability": 0.775 + }, + { + "start": 12404.57, + "end": 12405.05, + "probability": 0.7903 + }, + { + "start": 12405.27, + "end": 12406.45, + "probability": 0.9479 + }, + { + "start": 12406.47, + "end": 12407.79, + "probability": 0.9424 + }, + { + "start": 12408.03, + "end": 12408.41, + "probability": 0.4864 + }, + { + "start": 12408.43, + "end": 12408.83, + "probability": 0.5046 + }, + { + "start": 12408.83, + "end": 12409.29, + "probability": 0.9849 + }, + { + "start": 12409.39, + "end": 12410.91, + "probability": 0.8539 + }, + { + "start": 12411.47, + "end": 12412.57, + "probability": 0.9648 + }, + { + "start": 12412.63, + "end": 12413.83, + "probability": 0.8574 + }, + { + "start": 12414.11, + "end": 12419.01, + "probability": 0.95 + }, + { + "start": 12419.59, + "end": 12420.83, + "probability": 0.6609 + }, + { + "start": 12421.83, + "end": 12423.65, + "probability": 0.9499 + }, + { + "start": 12424.05, + "end": 12427.17, + "probability": 0.8321 + }, + { + "start": 12427.37, + "end": 12427.95, + "probability": 0.8665 + }, + { + "start": 12428.07, + "end": 12428.27, + "probability": 0.6006 + }, + { + "start": 12428.35, + "end": 12429.93, + "probability": 0.8906 + }, + { + "start": 12430.11, + "end": 12432.19, + "probability": 0.9066 + }, + { + "start": 12432.59, + "end": 12436.17, + "probability": 0.9263 + }, + { + "start": 12436.51, + "end": 12444.27, + "probability": 0.7931 + }, + { + "start": 12444.71, + "end": 12445.47, + "probability": 0.8318 + }, + { + "start": 12445.61, + "end": 12447.11, + "probability": 0.9173 + }, + { + "start": 12447.23, + "end": 12452.49, + "probability": 0.9977 + }, + { + "start": 12453.13, + "end": 12454.31, + "probability": 0.7099 + }, + { + "start": 12454.35, + "end": 12454.73, + "probability": 0.8424 + }, + { + "start": 12454.93, + "end": 12459.85, + "probability": 0.9842 + }, + { + "start": 12460.17, + "end": 12462.03, + "probability": 0.9719 + }, + { + "start": 12462.33, + "end": 12463.67, + "probability": 0.9969 + }, + { + "start": 12464.43, + "end": 12469.53, + "probability": 0.9891 + }, + { + "start": 12469.61, + "end": 12472.71, + "probability": 0.9068 + }, + { + "start": 12472.71, + "end": 12477.63, + "probability": 0.986 + }, + { + "start": 12478.17, + "end": 12478.77, + "probability": 0.5852 + }, + { + "start": 12479.47, + "end": 12480.03, + "probability": 0.5883 + }, + { + "start": 12482.96, + "end": 12485.07, + "probability": 0.0427 + }, + { + "start": 12485.07, + "end": 12485.75, + "probability": 0.048 + }, + { + "start": 12485.75, + "end": 12488.9, + "probability": 0.8445 + }, + { + "start": 12489.29, + "end": 12495.02, + "probability": 0.9688 + }, + { + "start": 12495.57, + "end": 12496.62, + "probability": 0.7496 + }, + { + "start": 12497.99, + "end": 12501.91, + "probability": 0.9968 + }, + { + "start": 12501.91, + "end": 12505.73, + "probability": 0.9938 + }, + { + "start": 12506.25, + "end": 12509.07, + "probability": 0.8984 + }, + { + "start": 12509.07, + "end": 12509.29, + "probability": 0.7535 + }, + { + "start": 12509.31, + "end": 12511.21, + "probability": 0.9738 + }, + { + "start": 12512.09, + "end": 12519.49, + "probability": 0.9968 + }, + { + "start": 12519.77, + "end": 12522.27, + "probability": 0.9888 + }, + { + "start": 12523.01, + "end": 12526.17, + "probability": 0.9906 + }, + { + "start": 12526.31, + "end": 12529.07, + "probability": 0.9106 + }, + { + "start": 12529.37, + "end": 12530.89, + "probability": 0.9771 + }, + { + "start": 12531.17, + "end": 12534.01, + "probability": 0.9871 + }, + { + "start": 12534.01, + "end": 12537.45, + "probability": 0.9946 + }, + { + "start": 12537.77, + "end": 12538.37, + "probability": 0.681 + }, + { + "start": 12538.49, + "end": 12539.97, + "probability": 0.926 + }, + { + "start": 12540.17, + "end": 12544.57, + "probability": 0.9044 + }, + { + "start": 12544.61, + "end": 12545.17, + "probability": 0.6128 + }, + { + "start": 12545.23, + "end": 12549.79, + "probability": 0.7653 + }, + { + "start": 12550.07, + "end": 12551.45, + "probability": 0.4498 + }, + { + "start": 12553.01, + "end": 12554.97, + "probability": 0.8136 + }, + { + "start": 12555.21, + "end": 12559.77, + "probability": 0.0781 + }, + { + "start": 12560.57, + "end": 12560.79, + "probability": 0.8138 + }, + { + "start": 12562.19, + "end": 12563.85, + "probability": 0.8171 + }, + { + "start": 12564.49, + "end": 12566.69, + "probability": 0.8066 + }, + { + "start": 12567.89, + "end": 12568.33, + "probability": 0.6482 + }, + { + "start": 12568.41, + "end": 12569.05, + "probability": 0.7598 + }, + { + "start": 12569.21, + "end": 12574.89, + "probability": 0.9942 + }, + { + "start": 12575.83, + "end": 12581.05, + "probability": 0.9947 + }, + { + "start": 12581.59, + "end": 12586.69, + "probability": 0.9956 + }, + { + "start": 12587.59, + "end": 12590.91, + "probability": 0.9854 + }, + { + "start": 12591.67, + "end": 12592.61, + "probability": 0.9736 + }, + { + "start": 12593.15, + "end": 12595.55, + "probability": 0.9771 + }, + { + "start": 12595.77, + "end": 12600.17, + "probability": 0.9982 + }, + { + "start": 12600.17, + "end": 12605.01, + "probability": 0.9984 + }, + { + "start": 12605.85, + "end": 12608.95, + "probability": 0.7374 + }, + { + "start": 12609.47, + "end": 12614.33, + "probability": 0.9109 + }, + { + "start": 12615.23, + "end": 12616.59, + "probability": 0.681 + }, + { + "start": 12616.81, + "end": 12619.03, + "probability": 0.8073 + }, + { + "start": 12619.51, + "end": 12622.31, + "probability": 0.9071 + }, + { + "start": 12622.83, + "end": 12623.37, + "probability": 0.0289 + }, + { + "start": 12623.37, + "end": 12628.01, + "probability": 0.0959 + }, + { + "start": 12629.63, + "end": 12632.69, + "probability": 0.1022 + }, + { + "start": 12632.95, + "end": 12634.45, + "probability": 0.9055 + }, + { + "start": 12635.17, + "end": 12636.07, + "probability": 0.1457 + }, + { + "start": 12636.35, + "end": 12637.19, + "probability": 0.1712 + }, + { + "start": 12637.31, + "end": 12639.39, + "probability": 0.4095 + }, + { + "start": 12640.59, + "end": 12641.77, + "probability": 0.9275 + }, + { + "start": 12642.17, + "end": 12644.09, + "probability": 0.2786 + }, + { + "start": 12645.29, + "end": 12646.95, + "probability": 0.0129 + }, + { + "start": 12647.07, + "end": 12647.15, + "probability": 0.4156 + }, + { + "start": 12649.55, + "end": 12650.65, + "probability": 0.1675 + }, + { + "start": 12650.65, + "end": 12651.69, + "probability": 0.1039 + }, + { + "start": 12651.89, + "end": 12654.93, + "probability": 0.7834 + }, + { + "start": 12655.63, + "end": 12656.67, + "probability": 0.8096 + }, + { + "start": 12656.73, + "end": 12658.91, + "probability": 0.5501 + }, + { + "start": 12658.97, + "end": 12660.41, + "probability": 0.7881 + }, + { + "start": 12660.87, + "end": 12661.66, + "probability": 0.9414 + }, + { + "start": 12661.79, + "end": 12662.21, + "probability": 0.7057 + }, + { + "start": 12662.27, + "end": 12663.45, + "probability": 0.9448 + }, + { + "start": 12663.51, + "end": 12664.57, + "probability": 0.8486 + }, + { + "start": 12664.69, + "end": 12665.39, + "probability": 0.6046 + }, + { + "start": 12665.47, + "end": 12670.11, + "probability": 0.9471 + }, + { + "start": 12670.49, + "end": 12672.75, + "probability": 0.7098 + }, + { + "start": 12673.11, + "end": 12674.09, + "probability": 0.6873 + }, + { + "start": 12674.63, + "end": 12675.73, + "probability": 0.8446 + }, + { + "start": 12675.97, + "end": 12677.43, + "probability": 0.936 + }, + { + "start": 12677.61, + "end": 12678.87, + "probability": 0.7125 + }, + { + "start": 12678.93, + "end": 12679.85, + "probability": 0.9396 + }, + { + "start": 12680.33, + "end": 12682.85, + "probability": 0.9724 + }, + { + "start": 12683.19, + "end": 12683.19, + "probability": 0.4967 + }, + { + "start": 12683.35, + "end": 12688.25, + "probability": 0.9806 + }, + { + "start": 12688.81, + "end": 12689.65, + "probability": 0.5262 + }, + { + "start": 12689.91, + "end": 12694.57, + "probability": 0.987 + }, + { + "start": 12694.95, + "end": 12695.65, + "probability": 0.8523 + }, + { + "start": 12696.31, + "end": 12696.99, + "probability": 0.7573 + }, + { + "start": 12697.05, + "end": 12698.81, + "probability": 0.9941 + }, + { + "start": 12699.49, + "end": 12701.69, + "probability": 0.9912 + }, + { + "start": 12701.95, + "end": 12705.55, + "probability": 0.9777 + }, + { + "start": 12705.67, + "end": 12706.49, + "probability": 0.4984 + }, + { + "start": 12706.53, + "end": 12707.01, + "probability": 0.5645 + }, + { + "start": 12707.05, + "end": 12707.21, + "probability": 0.7879 + }, + { + "start": 12707.27, + "end": 12707.73, + "probability": 0.7068 + }, + { + "start": 12707.77, + "end": 12708.99, + "probability": 0.9126 + }, + { + "start": 12709.09, + "end": 12711.43, + "probability": 0.8469 + }, + { + "start": 12711.89, + "end": 12712.99, + "probability": 0.9652 + }, + { + "start": 12713.29, + "end": 12716.03, + "probability": 0.4083 + }, + { + "start": 12716.41, + "end": 12716.75, + "probability": 0.616 + }, + { + "start": 12716.93, + "end": 12717.27, + "probability": 0.709 + }, + { + "start": 12717.27, + "end": 12719.01, + "probability": 0.8901 + }, + { + "start": 12719.07, + "end": 12720.85, + "probability": 0.9907 + }, + { + "start": 12721.09, + "end": 12721.93, + "probability": 0.8877 + }, + { + "start": 12722.01, + "end": 12724.2, + "probability": 0.9912 + }, + { + "start": 12724.47, + "end": 12726.91, + "probability": 0.1788 + }, + { + "start": 12728.73, + "end": 12729.89, + "probability": 0.2601 + }, + { + "start": 12730.03, + "end": 12731.83, + "probability": 0.996 + }, + { + "start": 12731.95, + "end": 12737.05, + "probability": 0.9932 + }, + { + "start": 12737.15, + "end": 12740.18, + "probability": 0.9338 + }, + { + "start": 12740.67, + "end": 12744.05, + "probability": 0.9909 + }, + { + "start": 12744.13, + "end": 12744.45, + "probability": 0.849 + }, + { + "start": 12744.55, + "end": 12745.05, + "probability": 0.7274 + }, + { + "start": 12745.19, + "end": 12745.87, + "probability": 0.4757 + }, + { + "start": 12746.05, + "end": 12749.05, + "probability": 0.9922 + }, + { + "start": 12749.81, + "end": 12751.53, + "probability": 0.8457 + }, + { + "start": 12752.25, + "end": 12752.43, + "probability": 0.4672 + }, + { + "start": 12752.53, + "end": 12753.75, + "probability": 0.9415 + }, + { + "start": 12753.87, + "end": 12755.47, + "probability": 0.8432 + }, + { + "start": 12755.77, + "end": 12758.57, + "probability": 0.8529 + }, + { + "start": 12758.57, + "end": 12760.51, + "probability": 0.9281 + }, + { + "start": 12761.05, + "end": 12763.19, + "probability": 0.9168 + }, + { + "start": 12763.95, + "end": 12765.77, + "probability": 0.7397 + }, + { + "start": 12767.17, + "end": 12767.57, + "probability": 0.2833 + }, + { + "start": 12767.71, + "end": 12769.03, + "probability": 0.7621 + }, + { + "start": 12769.35, + "end": 12771.67, + "probability": 0.9482 + }, + { + "start": 12771.67, + "end": 12774.49, + "probability": 0.848 + }, + { + "start": 12775.33, + "end": 12779.07, + "probability": 0.5746 + }, + { + "start": 12779.15, + "end": 12781.33, + "probability": 0.1888 + }, + { + "start": 12781.33, + "end": 12781.33, + "probability": 0.5784 + }, + { + "start": 12781.33, + "end": 12782.1, + "probability": 0.373 + }, + { + "start": 12782.69, + "end": 12784.95, + "probability": 0.4085 + }, + { + "start": 12785.25, + "end": 12789.5, + "probability": 0.9734 + }, + { + "start": 12790.05, + "end": 12790.83, + "probability": 0.9187 + }, + { + "start": 12790.89, + "end": 12792.01, + "probability": 0.896 + }, + { + "start": 12792.19, + "end": 12793.01, + "probability": 0.7089 + }, + { + "start": 12793.37, + "end": 12794.57, + "probability": 0.4449 + }, + { + "start": 12794.95, + "end": 12797.85, + "probability": 0.9727 + }, + { + "start": 12798.13, + "end": 12799.21, + "probability": 0.8279 + }, + { + "start": 12799.45, + "end": 12802.71, + "probability": 0.9857 + }, + { + "start": 12802.71, + "end": 12805.99, + "probability": 0.9806 + }, + { + "start": 12806.09, + "end": 12810.61, + "probability": 0.844 + }, + { + "start": 12810.81, + "end": 12812.73, + "probability": 0.9854 + }, + { + "start": 12812.93, + "end": 12813.69, + "probability": 0.689 + }, + { + "start": 12814.23, + "end": 12815.09, + "probability": 0.8736 + }, + { + "start": 12815.19, + "end": 12815.69, + "probability": 0.8331 + }, + { + "start": 12815.75, + "end": 12818.25, + "probability": 0.9562 + }, + { + "start": 12818.31, + "end": 12819.73, + "probability": 0.9569 + }, + { + "start": 12819.91, + "end": 12821.89, + "probability": 0.9946 + }, + { + "start": 12821.97, + "end": 12825.81, + "probability": 0.9767 + }, + { + "start": 12826.43, + "end": 12832.17, + "probability": 0.953 + }, + { + "start": 12832.35, + "end": 12833.07, + "probability": 0.9854 + }, + { + "start": 12833.23, + "end": 12835.53, + "probability": 0.9335 + }, + { + "start": 12836.17, + "end": 12840.27, + "probability": 0.974 + }, + { + "start": 12840.65, + "end": 12841.87, + "probability": 0.813 + }, + { + "start": 12842.17, + "end": 12842.55, + "probability": 0.6082 + }, + { + "start": 12842.57, + "end": 12843.57, + "probability": 0.7362 + }, + { + "start": 12843.75, + "end": 12845.41, + "probability": 0.8753 + }, + { + "start": 12845.49, + "end": 12847.01, + "probability": 0.7881 + }, + { + "start": 12847.53, + "end": 12849.21, + "probability": 0.9893 + }, + { + "start": 12849.51, + "end": 12849.57, + "probability": 0.0001 + }, + { + "start": 12849.57, + "end": 12850.27, + "probability": 0.448 + }, + { + "start": 12850.61, + "end": 12853.05, + "probability": 0.9915 + }, + { + "start": 12853.21, + "end": 12858.59, + "probability": 0.9475 + }, + { + "start": 12858.69, + "end": 12860.05, + "probability": 0.4619 + }, + { + "start": 12860.29, + "end": 12863.47, + "probability": 0.595 + }, + { + "start": 12864.27, + "end": 12866.21, + "probability": 0.7579 + }, + { + "start": 12866.55, + "end": 12873.51, + "probability": 0.728 + }, + { + "start": 12873.75, + "end": 12875.73, + "probability": 0.9214 + }, + { + "start": 12875.97, + "end": 12877.04, + "probability": 0.8687 + }, + { + "start": 12877.13, + "end": 12880.31, + "probability": 0.8892 + }, + { + "start": 12880.57, + "end": 12884.73, + "probability": 0.9851 + }, + { + "start": 12885.17, + "end": 12887.21, + "probability": 0.8311 + }, + { + "start": 12887.85, + "end": 12889.01, + "probability": 0.539 + }, + { + "start": 12889.85, + "end": 12890.65, + "probability": 0.5405 + }, + { + "start": 12890.75, + "end": 12895.01, + "probability": 0.9936 + }, + { + "start": 12895.63, + "end": 12896.59, + "probability": 0.7884 + }, + { + "start": 12896.89, + "end": 12898.77, + "probability": 0.9946 + }, + { + "start": 12899.07, + "end": 12900.89, + "probability": 0.9764 + }, + { + "start": 12901.25, + "end": 12905.95, + "probability": 0.9958 + }, + { + "start": 12906.27, + "end": 12907.09, + "probability": 0.9707 + }, + { + "start": 12907.21, + "end": 12910.05, + "probability": 0.8823 + }, + { + "start": 12910.53, + "end": 12913.75, + "probability": 0.9648 + }, + { + "start": 12913.91, + "end": 12915.96, + "probability": 0.8704 + }, + { + "start": 12917.89, + "end": 12920.03, + "probability": 0.4236 + }, + { + "start": 12920.03, + "end": 12921.61, + "probability": 0.7646 + }, + { + "start": 12921.95, + "end": 12924.87, + "probability": 0.6606 + }, + { + "start": 12925.23, + "end": 12926.65, + "probability": 0.943 + }, + { + "start": 12927.05, + "end": 12927.53, + "probability": 0.6693 + }, + { + "start": 12927.57, + "end": 12928.59, + "probability": 0.8476 + }, + { + "start": 12928.87, + "end": 12929.69, + "probability": 0.711 + }, + { + "start": 12930.03, + "end": 12931.99, + "probability": 0.9488 + }, + { + "start": 12932.23, + "end": 12934.43, + "probability": 0.9574 + }, + { + "start": 12934.75, + "end": 12934.85, + "probability": 0.022 + }, + { + "start": 12936.29, + "end": 12937.87, + "probability": 0.2411 + }, + { + "start": 12939.09, + "end": 12939.95, + "probability": 0.0618 + }, + { + "start": 12939.95, + "end": 12939.95, + "probability": 0.0176 + }, + { + "start": 12939.95, + "end": 12942.77, + "probability": 0.3743 + }, + { + "start": 12942.89, + "end": 12944.95, + "probability": 0.7072 + }, + { + "start": 12945.31, + "end": 12947.53, + "probability": 0.8766 + }, + { + "start": 12947.83, + "end": 12950.93, + "probability": 0.8438 + }, + { + "start": 12951.05, + "end": 12952.19, + "probability": 0.959 + }, + { + "start": 12952.57, + "end": 12953.73, + "probability": 0.8772 + }, + { + "start": 12954.03, + "end": 12955.55, + "probability": 0.8618 + }, + { + "start": 12955.71, + "end": 12957.51, + "probability": 0.7516 + }, + { + "start": 12957.63, + "end": 12959.01, + "probability": 0.2445 + }, + { + "start": 12959.11, + "end": 12960.57, + "probability": 0.9611 + }, + { + "start": 12960.75, + "end": 12964.31, + "probability": 0.1649 + }, + { + "start": 12964.35, + "end": 12966.83, + "probability": 0.2495 + }, + { + "start": 12967.05, + "end": 12970.29, + "probability": 0.7241 + }, + { + "start": 12970.47, + "end": 12972.27, + "probability": 0.9507 + }, + { + "start": 12972.99, + "end": 12975.35, + "probability": 0.5061 + }, + { + "start": 12975.53, + "end": 12976.45, + "probability": 0.7321 + }, + { + "start": 12976.61, + "end": 12979.77, + "probability": 0.9946 + }, + { + "start": 12980.21, + "end": 12983.81, + "probability": 0.9695 + }, + { + "start": 12983.83, + "end": 12984.81, + "probability": 0.731 + }, + { + "start": 12984.93, + "end": 12985.27, + "probability": 0.0658 + }, + { + "start": 12985.31, + "end": 12986.91, + "probability": 0.3351 + }, + { + "start": 12987.31, + "end": 12988.31, + "probability": 0.5325 + }, + { + "start": 12988.51, + "end": 12990.61, + "probability": 0.8926 + }, + { + "start": 12990.81, + "end": 12991.71, + "probability": 0.9486 + }, + { + "start": 12991.75, + "end": 12995.03, + "probability": 0.5622 + }, + { + "start": 12995.33, + "end": 12999.89, + "probability": 0.9447 + }, + { + "start": 12999.89, + "end": 12999.89, + "probability": 0.6395 + }, + { + "start": 12999.99, + "end": 13003.05, + "probability": 0.9585 + }, + { + "start": 13003.11, + "end": 13003.9, + "probability": 0.7073 + }, + { + "start": 13005.31, + "end": 13006.15, + "probability": 0.4378 + }, + { + "start": 13006.33, + "end": 13006.57, + "probability": 0.5606 + }, + { + "start": 13006.71, + "end": 13010.61, + "probability": 0.6709 + }, + { + "start": 13010.69, + "end": 13012.21, + "probability": 0.6642 + }, + { + "start": 13012.49, + "end": 13017.47, + "probability": 0.9766 + }, + { + "start": 13017.61, + "end": 13018.15, + "probability": 0.7333 + }, + { + "start": 13018.21, + "end": 13018.75, + "probability": 0.7133 + }, + { + "start": 13018.87, + "end": 13019.37, + "probability": 0.2589 + }, + { + "start": 13019.37, + "end": 13020.23, + "probability": 0.4939 + }, + { + "start": 13020.63, + "end": 13021.33, + "probability": 0.5116 + }, + { + "start": 13021.69, + "end": 13028.47, + "probability": 0.3572 + }, + { + "start": 13030.39, + "end": 13032.71, + "probability": 0.0073 + }, + { + "start": 13032.71, + "end": 13034.97, + "probability": 0.0334 + }, + { + "start": 13035.31, + "end": 13036.09, + "probability": 0.0623 + }, + { + "start": 13036.09, + "end": 13036.09, + "probability": 0.0831 + }, + { + "start": 13036.09, + "end": 13038.67, + "probability": 0.637 + }, + { + "start": 13039.07, + "end": 13040.87, + "probability": 0.9792 + }, + { + "start": 13041.23, + "end": 13043.55, + "probability": 0.9971 + }, + { + "start": 13044.07, + "end": 13045.55, + "probability": 0.8352 + }, + { + "start": 13045.93, + "end": 13046.31, + "probability": 0.485 + }, + { + "start": 13046.33, + "end": 13046.81, + "probability": 0.6979 + }, + { + "start": 13046.99, + "end": 13049.4, + "probability": 0.9824 + }, + { + "start": 13050.91, + "end": 13052.43, + "probability": 0.7296 + }, + { + "start": 13052.89, + "end": 13054.89, + "probability": 0.8595 + }, + { + "start": 13055.39, + "end": 13057.31, + "probability": 0.8227 + }, + { + "start": 13057.57, + "end": 13058.66, + "probability": 0.5692 + }, + { + "start": 13059.69, + "end": 13062.77, + "probability": 0.7782 + }, + { + "start": 13063.01, + "end": 13063.51, + "probability": 0.9235 + }, + { + "start": 13064.15, + "end": 13067.27, + "probability": 0.7273 + }, + { + "start": 13067.89, + "end": 13068.25, + "probability": 0.0013 + }, + { + "start": 13068.31, + "end": 13069.27, + "probability": 0.8789 + }, + { + "start": 13070.13, + "end": 13070.67, + "probability": 0.0455 + }, + { + "start": 13075.91, + "end": 13076.95, + "probability": 0.0156 + }, + { + "start": 13078.65, + "end": 13081.93, + "probability": 0.8289 + }, + { + "start": 13081.99, + "end": 13082.51, + "probability": 0.5782 + }, + { + "start": 13082.57, + "end": 13083.91, + "probability": 0.7548 + }, + { + "start": 13084.03, + "end": 13085.01, + "probability": 0.4118 + }, + { + "start": 13085.09, + "end": 13085.75, + "probability": 0.9255 + }, + { + "start": 13086.47, + "end": 13087.39, + "probability": 0.6464 + }, + { + "start": 13087.53, + "end": 13093.97, + "probability": 0.9536 + }, + { + "start": 13094.43, + "end": 13097.03, + "probability": 0.8904 + }, + { + "start": 13097.31, + "end": 13098.47, + "probability": 0.5925 + }, + { + "start": 13098.69, + "end": 13099.51, + "probability": 0.8406 + }, + { + "start": 13099.57, + "end": 13100.39, + "probability": 0.9368 + }, + { + "start": 13100.93, + "end": 13102.25, + "probability": 0.8975 + }, + { + "start": 13102.83, + "end": 13107.59, + "probability": 0.9832 + }, + { + "start": 13107.65, + "end": 13109.71, + "probability": 0.8845 + }, + { + "start": 13110.53, + "end": 13115.49, + "probability": 0.9736 + }, + { + "start": 13116.13, + "end": 13118.89, + "probability": 0.9683 + }, + { + "start": 13119.65, + "end": 13124.05, + "probability": 0.9809 + }, + { + "start": 13124.05, + "end": 13129.51, + "probability": 0.97 + }, + { + "start": 13130.09, + "end": 13132.15, + "probability": 0.7596 + }, + { + "start": 13132.91, + "end": 13134.31, + "probability": 0.9308 + }, + { + "start": 13134.41, + "end": 13135.93, + "probability": 0.9836 + }, + { + "start": 13136.63, + "end": 13138.43, + "probability": 0.76 + }, + { + "start": 13138.97, + "end": 13141.09, + "probability": 0.9948 + }, + { + "start": 13141.49, + "end": 13144.36, + "probability": 0.9006 + }, + { + "start": 13145.43, + "end": 13149.77, + "probability": 0.9594 + }, + { + "start": 13150.35, + "end": 13153.91, + "probability": 0.9657 + }, + { + "start": 13153.91, + "end": 13156.39, + "probability": 0.9983 + }, + { + "start": 13157.71, + "end": 13160.93, + "probability": 0.9836 + }, + { + "start": 13160.93, + "end": 13164.79, + "probability": 0.9976 + }, + { + "start": 13165.35, + "end": 13166.57, + "probability": 0.6925 + }, + { + "start": 13167.89, + "end": 13168.03, + "probability": 0.0109 + }, + { + "start": 13168.03, + "end": 13168.84, + "probability": 0.9561 + }, + { + "start": 13176.53, + "end": 13178.91, + "probability": 0.8199 + }, + { + "start": 13178.91, + "end": 13179.53, + "probability": 0.7931 + }, + { + "start": 13179.61, + "end": 13182.01, + "probability": 0.8843 + }, + { + "start": 13182.49, + "end": 13183.51, + "probability": 0.6025 + }, + { + "start": 13183.79, + "end": 13183.99, + "probability": 0.7126 + }, + { + "start": 13184.03, + "end": 13184.21, + "probability": 0.6498 + }, + { + "start": 13184.21, + "end": 13184.23, + "probability": 0.45 + }, + { + "start": 13184.25, + "end": 13186.19, + "probability": 0.7371 + }, + { + "start": 13186.47, + "end": 13189.71, + "probability": 0.1425 + }, + { + "start": 13189.73, + "end": 13191.95, + "probability": 0.5152 + }, + { + "start": 13193.85, + "end": 13194.45, + "probability": 0.1364 + }, + { + "start": 13194.45, + "end": 13196.04, + "probability": 0.5059 + }, + { + "start": 13197.59, + "end": 13201.09, + "probability": 0.9609 + }, + { + "start": 13201.23, + "end": 13204.29, + "probability": 0.787 + }, + { + "start": 13204.33, + "end": 13209.23, + "probability": 0.9111 + }, + { + "start": 13209.37, + "end": 13211.75, + "probability": 0.9008 + }, + { + "start": 13212.29, + "end": 13215.39, + "probability": 0.9718 + }, + { + "start": 13215.83, + "end": 13216.93, + "probability": 0.9985 + }, + { + "start": 13217.17, + "end": 13218.73, + "probability": 0.9632 + }, + { + "start": 13218.95, + "end": 13219.89, + "probability": 0.9358 + }, + { + "start": 13220.03, + "end": 13221.19, + "probability": 0.9912 + }, + { + "start": 13221.35, + "end": 13222.55, + "probability": 0.8517 + }, + { + "start": 13222.81, + "end": 13224.13, + "probability": 0.9602 + }, + { + "start": 13224.21, + "end": 13226.33, + "probability": 0.8669 + }, + { + "start": 13226.57, + "end": 13229.21, + "probability": 0.5949 + }, + { + "start": 13229.21, + "end": 13229.75, + "probability": 0.3594 + }, + { + "start": 13229.81, + "end": 13231.11, + "probability": 0.8735 + }, + { + "start": 13231.45, + "end": 13231.67, + "probability": 0.9442 + }, + { + "start": 13231.73, + "end": 13233.03, + "probability": 0.7424 + }, + { + "start": 13233.29, + "end": 13235.63, + "probability": 0.7789 + }, + { + "start": 13236.19, + "end": 13237.95, + "probability": 0.866 + }, + { + "start": 13238.21, + "end": 13241.13, + "probability": 0.9498 + }, + { + "start": 13241.65, + "end": 13242.19, + "probability": 0.3828 + }, + { + "start": 13243.27, + "end": 13246.59, + "probability": 0.8005 + }, + { + "start": 13246.69, + "end": 13248.29, + "probability": 0.4531 + }, + { + "start": 13248.45, + "end": 13249.09, + "probability": 0.7292 + }, + { + "start": 13249.33, + "end": 13250.39, + "probability": 0.7807 + }, + { + "start": 13250.53, + "end": 13258.83, + "probability": 0.2669 + }, + { + "start": 13259.87, + "end": 13261.91, + "probability": 0.1766 + }, + { + "start": 13264.09, + "end": 13264.49, + "probability": 0.0485 + }, + { + "start": 13264.49, + "end": 13264.49, + "probability": 0.0247 + }, + { + "start": 13264.49, + "end": 13265.69, + "probability": 0.4274 + }, + { + "start": 13266.57, + "end": 13270.41, + "probability": 0.1408 + }, + { + "start": 13271.31, + "end": 13272.89, + "probability": 0.0313 + }, + { + "start": 13273.45, + "end": 13273.63, + "probability": 0.0615 + }, + { + "start": 13273.63, + "end": 13273.63, + "probability": 0.0552 + }, + { + "start": 13273.63, + "end": 13273.91, + "probability": 0.0923 + }, + { + "start": 13274.77, + "end": 13278.67, + "probability": 0.7007 + }, + { + "start": 13279.19, + "end": 13282.79, + "probability": 0.4837 + }, + { + "start": 13283.13, + "end": 13286.39, + "probability": 0.81 + }, + { + "start": 13286.91, + "end": 13290.79, + "probability": 0.8595 + }, + { + "start": 13290.83, + "end": 13293.63, + "probability": 0.9284 + }, + { + "start": 13294.17, + "end": 13297.47, + "probability": 0.9888 + }, + { + "start": 13297.87, + "end": 13298.87, + "probability": 0.9635 + }, + { + "start": 13299.17, + "end": 13302.65, + "probability": 0.8355 + }, + { + "start": 13303.23, + "end": 13306.25, + "probability": 0.924 + }, + { + "start": 13306.71, + "end": 13311.63, + "probability": 0.9897 + }, + { + "start": 13311.87, + "end": 13314.72, + "probability": 0.9907 + }, + { + "start": 13315.09, + "end": 13316.65, + "probability": 0.9647 + }, + { + "start": 13316.73, + "end": 13318.52, + "probability": 0.9922 + }, + { + "start": 13319.15, + "end": 13320.57, + "probability": 0.9669 + }, + { + "start": 13320.75, + "end": 13321.37, + "probability": 0.9531 + }, + { + "start": 13321.47, + "end": 13325.78, + "probability": 0.9753 + }, + { + "start": 13325.97, + "end": 13327.19, + "probability": 0.7908 + }, + { + "start": 13327.63, + "end": 13332.67, + "probability": 0.9984 + }, + { + "start": 13333.17, + "end": 13335.29, + "probability": 0.8619 + }, + { + "start": 13335.87, + "end": 13336.55, + "probability": 0.9644 + }, + { + "start": 13341.17, + "end": 13344.51, + "probability": 0.6816 + }, + { + "start": 13345.13, + "end": 13348.15, + "probability": 0.9897 + }, + { + "start": 13348.35, + "end": 13352.71, + "probability": 0.448 + }, + { + "start": 13353.37, + "end": 13357.59, + "probability": 0.7416 + }, + { + "start": 13358.17, + "end": 13359.92, + "probability": 0.8821 + }, + { + "start": 13360.19, + "end": 13361.93, + "probability": 0.6655 + }, + { + "start": 13362.01, + "end": 13362.77, + "probability": 0.81 + }, + { + "start": 13363.37, + "end": 13364.17, + "probability": 0.7463 + }, + { + "start": 13364.93, + "end": 13366.67, + "probability": 0.9974 + }, + { + "start": 13366.97, + "end": 13368.69, + "probability": 0.9961 + }, + { + "start": 13368.93, + "end": 13370.63, + "probability": 0.9686 + }, + { + "start": 13371.07, + "end": 13372.65, + "probability": 0.9282 + }, + { + "start": 13374.13, + "end": 13376.03, + "probability": 0.8096 + }, + { + "start": 13376.07, + "end": 13376.39, + "probability": 0.3269 + }, + { + "start": 13376.39, + "end": 13377.09, + "probability": 0.7888 + }, + { + "start": 13377.11, + "end": 13380.73, + "probability": 0.4217 + }, + { + "start": 13381.17, + "end": 13382.85, + "probability": 0.2708 + }, + { + "start": 13382.85, + "end": 13383.57, + "probability": 0.1629 + }, + { + "start": 13383.81, + "end": 13384.67, + "probability": 0.4074 + }, + { + "start": 13384.73, + "end": 13386.81, + "probability": 0.6722 + }, + { + "start": 13386.81, + "end": 13392.83, + "probability": 0.9937 + }, + { + "start": 13392.83, + "end": 13395.91, + "probability": 0.9951 + }, + { + "start": 13396.29, + "end": 13401.79, + "probability": 0.8799 + }, + { + "start": 13402.25, + "end": 13404.75, + "probability": 0.6674 + }, + { + "start": 13404.87, + "end": 13406.29, + "probability": 0.8173 + }, + { + "start": 13406.67, + "end": 13409.65, + "probability": 0.9675 + }, + { + "start": 13409.83, + "end": 13411.19, + "probability": 0.8922 + }, + { + "start": 13411.63, + "end": 13412.61, + "probability": 0.7441 + }, + { + "start": 13413.47, + "end": 13413.55, + "probability": 0.0565 + }, + { + "start": 13414.29, + "end": 13414.37, + "probability": 0.0016 + }, + { + "start": 13414.37, + "end": 13415.28, + "probability": 0.5264 + }, + { + "start": 13415.49, + "end": 13416.95, + "probability": 0.1497 + }, + { + "start": 13417.05, + "end": 13417.57, + "probability": 0.7942 + }, + { + "start": 13417.69, + "end": 13418.21, + "probability": 0.5245 + }, + { + "start": 13418.31, + "end": 13419.33, + "probability": 0.7755 + }, + { + "start": 13419.39, + "end": 13421.11, + "probability": 0.5199 + }, + { + "start": 13421.11, + "end": 13421.51, + "probability": 0.0448 + }, + { + "start": 13421.55, + "end": 13424.15, + "probability": 0.2898 + }, + { + "start": 13424.67, + "end": 13425.58, + "probability": 0.0222 + }, + { + "start": 13426.07, + "end": 13426.93, + "probability": 0.1789 + }, + { + "start": 13427.55, + "end": 13427.55, + "probability": 0.0888 + }, + { + "start": 13427.55, + "end": 13428.21, + "probability": 0.2845 + }, + { + "start": 13428.63, + "end": 13429.51, + "probability": 0.1079 + }, + { + "start": 13429.51, + "end": 13430.27, + "probability": 0.5812 + }, + { + "start": 13430.55, + "end": 13432.49, + "probability": 0.5612 + }, + { + "start": 13432.49, + "end": 13438.75, + "probability": 0.7022 + }, + { + "start": 13438.89, + "end": 13440.15, + "probability": 0.936 + }, + { + "start": 13440.21, + "end": 13442.71, + "probability": 0.9126 + }, + { + "start": 13443.29, + "end": 13445.41, + "probability": 0.908 + }, + { + "start": 13445.91, + "end": 13449.15, + "probability": 0.9895 + }, + { + "start": 13449.71, + "end": 13455.13, + "probability": 0.998 + }, + { + "start": 13455.31, + "end": 13455.83, + "probability": 0.801 + }, + { + "start": 13455.89, + "end": 13457.35, + "probability": 0.9276 + }, + { + "start": 13457.67, + "end": 13459.03, + "probability": 0.9966 + }, + { + "start": 13459.35, + "end": 13460.83, + "probability": 0.9858 + }, + { + "start": 13461.31, + "end": 13464.83, + "probability": 0.9027 + }, + { + "start": 13465.17, + "end": 13466.7, + "probability": 0.9868 + }, + { + "start": 13467.29, + "end": 13468.29, + "probability": 0.8411 + }, + { + "start": 13468.63, + "end": 13470.63, + "probability": 0.9506 + }, + { + "start": 13470.87, + "end": 13472.83, + "probability": 0.805 + }, + { + "start": 13472.93, + "end": 13474.29, + "probability": 0.6691 + }, + { + "start": 13474.77, + "end": 13477.23, + "probability": 0.7458 + }, + { + "start": 13477.97, + "end": 13479.61, + "probability": 0.1978 + }, + { + "start": 13480.01, + "end": 13482.35, + "probability": 0.7074 + }, + { + "start": 13482.63, + "end": 13482.63, + "probability": 0.2194 + }, + { + "start": 13482.63, + "end": 13483.85, + "probability": 0.644 + }, + { + "start": 13484.53, + "end": 13486.25, + "probability": 0.9714 + }, + { + "start": 13486.57, + "end": 13487.99, + "probability": 0.4109 + }, + { + "start": 13488.41, + "end": 13490.41, + "probability": 0.0414 + }, + { + "start": 13491.79, + "end": 13492.75, + "probability": 0.0989 + }, + { + "start": 13493.33, + "end": 13493.33, + "probability": 0.3924 + }, + { + "start": 13493.33, + "end": 13493.68, + "probability": 0.0374 + }, + { + "start": 13495.37, + "end": 13495.77, + "probability": 0.585 + }, + { + "start": 13495.77, + "end": 13496.13, + "probability": 0.0378 + }, + { + "start": 13496.17, + "end": 13497.54, + "probability": 0.6212 + }, + { + "start": 13497.99, + "end": 13499.08, + "probability": 0.535 + }, + { + "start": 13499.35, + "end": 13500.65, + "probability": 0.9163 + }, + { + "start": 13500.69, + "end": 13502.51, + "probability": 0.1805 + }, + { + "start": 13502.51, + "end": 13505.39, + "probability": 0.5338 + }, + { + "start": 13505.59, + "end": 13508.93, + "probability": 0.8546 + }, + { + "start": 13509.33, + "end": 13510.99, + "probability": 0.9812 + }, + { + "start": 13511.15, + "end": 13513.07, + "probability": 0.9326 + }, + { + "start": 13513.37, + "end": 13515.71, + "probability": 0.9769 + }, + { + "start": 13516.07, + "end": 13517.47, + "probability": 0.553 + }, + { + "start": 13521.71, + "end": 13521.81, + "probability": 0.0557 + }, + { + "start": 13521.81, + "end": 13522.95, + "probability": 0.6587 + }, + { + "start": 13523.53, + "end": 13525.09, + "probability": 0.0121 + }, + { + "start": 13525.09, + "end": 13525.09, + "probability": 0.0249 + }, + { + "start": 13525.09, + "end": 13528.31, + "probability": 0.5041 + }, + { + "start": 13528.37, + "end": 13529.29, + "probability": 0.7826 + }, + { + "start": 13529.69, + "end": 13530.37, + "probability": 0.6858 + }, + { + "start": 13530.63, + "end": 13535.17, + "probability": 0.0699 + }, + { + "start": 13535.23, + "end": 13536.07, + "probability": 0.7707 + }, + { + "start": 13536.13, + "end": 13537.63, + "probability": 0.8013 + }, + { + "start": 13537.73, + "end": 13541.73, + "probability": 0.9957 + }, + { + "start": 13544.05, + "end": 13547.57, + "probability": 0.9077 + }, + { + "start": 13548.17, + "end": 13549.23, + "probability": 0.9188 + }, + { + "start": 13549.29, + "end": 13550.07, + "probability": 0.8709 + }, + { + "start": 13550.53, + "end": 13552.57, + "probability": 0.7505 + }, + { + "start": 13552.63, + "end": 13553.23, + "probability": 0.5447 + }, + { + "start": 13553.57, + "end": 13557.45, + "probability": 0.9797 + }, + { + "start": 13557.65, + "end": 13559.22, + "probability": 0.9722 + }, + { + "start": 13559.75, + "end": 13564.17, + "probability": 0.9982 + }, + { + "start": 13564.73, + "end": 13567.13, + "probability": 0.997 + }, + { + "start": 13567.81, + "end": 13568.09, + "probability": 0.5378 + }, + { + "start": 13568.13, + "end": 13569.05, + "probability": 0.8147 + }, + { + "start": 13569.07, + "end": 13574.53, + "probability": 0.9383 + }, + { + "start": 13574.65, + "end": 13575.73, + "probability": 0.9409 + }, + { + "start": 13576.55, + "end": 13583.25, + "probability": 0.9841 + }, + { + "start": 13583.73, + "end": 13586.57, + "probability": 0.9965 + }, + { + "start": 13587.07, + "end": 13588.91, + "probability": 0.8235 + }, + { + "start": 13588.95, + "end": 13590.41, + "probability": 0.9343 + }, + { + "start": 13590.47, + "end": 13590.53, + "probability": 0.4203 + }, + { + "start": 13590.59, + "end": 13590.77, + "probability": 0.0152 + }, + { + "start": 13590.85, + "end": 13594.25, + "probability": 0.9563 + }, + { + "start": 13594.25, + "end": 13595.44, + "probability": 0.0242 + }, + { + "start": 13595.57, + "end": 13596.01, + "probability": 0.343 + }, + { + "start": 13596.38, + "end": 13598.99, + "probability": 0.6207 + }, + { + "start": 13599.17, + "end": 13601.59, + "probability": 0.9871 + }, + { + "start": 13601.59, + "end": 13602.03, + "probability": 0.8525 + }, + { + "start": 13602.11, + "end": 13602.99, + "probability": 0.9745 + }, + { + "start": 13603.19, + "end": 13603.95, + "probability": 0.6221 + }, + { + "start": 13604.07, + "end": 13604.15, + "probability": 0.3263 + }, + { + "start": 13604.27, + "end": 13606.03, + "probability": 0.7549 + }, + { + "start": 13606.11, + "end": 13607.83, + "probability": 0.9884 + }, + { + "start": 13608.05, + "end": 13610.13, + "probability": 0.9102 + }, + { + "start": 13611.01, + "end": 13613.27, + "probability": 0.8822 + }, + { + "start": 13613.41, + "end": 13616.01, + "probability": 0.9674 + }, + { + "start": 13616.51, + "end": 13621.31, + "probability": 0.8555 + }, + { + "start": 13621.43, + "end": 13622.95, + "probability": 0.8051 + }, + { + "start": 13623.39, + "end": 13627.42, + "probability": 0.9839 + }, + { + "start": 13628.21, + "end": 13629.45, + "probability": 0.954 + }, + { + "start": 13629.63, + "end": 13632.03, + "probability": 0.9844 + }, + { + "start": 13632.59, + "end": 13633.29, + "probability": 0.6746 + }, + { + "start": 13633.43, + "end": 13637.23, + "probability": 0.9863 + }, + { + "start": 13637.27, + "end": 13637.53, + "probability": 0.6361 + }, + { + "start": 13637.63, + "end": 13638.47, + "probability": 0.7281 + }, + { + "start": 13638.65, + "end": 13639.04, + "probability": 0.8857 + }, + { + "start": 13639.39, + "end": 13640.01, + "probability": 0.938 + }, + { + "start": 13640.13, + "end": 13643.17, + "probability": 0.5867 + }, + { + "start": 13643.33, + "end": 13643.83, + "probability": 0.0086 + }, + { + "start": 13643.83, + "end": 13644.57, + "probability": 0.0416 + }, + { + "start": 13644.57, + "end": 13645.69, + "probability": 0.6105 + }, + { + "start": 13645.75, + "end": 13647.09, + "probability": 0.2846 + }, + { + "start": 13647.29, + "end": 13648.33, + "probability": 0.3528 + }, + { + "start": 13648.63, + "end": 13651.29, + "probability": 0.6287 + }, + { + "start": 13651.37, + "end": 13653.87, + "probability": 0.5259 + }, + { + "start": 13654.51, + "end": 13659.03, + "probability": 0.1346 + }, + { + "start": 13659.73, + "end": 13659.73, + "probability": 0.4223 + }, + { + "start": 13659.73, + "end": 13660.23, + "probability": 0.6865 + }, + { + "start": 13660.33, + "end": 13661.07, + "probability": 0.3231 + }, + { + "start": 13661.17, + "end": 13662.69, + "probability": 0.6246 + }, + { + "start": 13662.91, + "end": 13665.62, + "probability": 0.9792 + }, + { + "start": 13665.85, + "end": 13666.4, + "probability": 0.8692 + }, + { + "start": 13667.23, + "end": 13669.11, + "probability": 0.9809 + }, + { + "start": 13669.17, + "end": 13670.23, + "probability": 0.6394 + }, + { + "start": 13670.99, + "end": 13673.04, + "probability": 0.913 + }, + { + "start": 13673.53, + "end": 13675.43, + "probability": 0.9764 + }, + { + "start": 13675.59, + "end": 13676.03, + "probability": 0.9445 + }, + { + "start": 13676.43, + "end": 13679.43, + "probability": 0.8878 + }, + { + "start": 13679.43, + "end": 13682.77, + "probability": 0.967 + }, + { + "start": 13683.11, + "end": 13686.23, + "probability": 0.9683 + }, + { + "start": 13686.23, + "end": 13690.71, + "probability": 0.9881 + }, + { + "start": 13691.03, + "end": 13693.71, + "probability": 0.972 + }, + { + "start": 13693.73, + "end": 13698.03, + "probability": 0.7856 + }, + { + "start": 13698.79, + "end": 13702.23, + "probability": 0.9951 + }, + { + "start": 13702.73, + "end": 13704.77, + "probability": 0.9989 + }, + { + "start": 13704.85, + "end": 13704.99, + "probability": 0.7244 + }, + { + "start": 13705.43, + "end": 13706.63, + "probability": 0.8132 + }, + { + "start": 13706.89, + "end": 13709.75, + "probability": 0.9958 + }, + { + "start": 13709.85, + "end": 13710.87, + "probability": 0.5297 + }, + { + "start": 13711.33, + "end": 13712.41, + "probability": 0.8806 + }, + { + "start": 13712.55, + "end": 13713.61, + "probability": 0.6598 + }, + { + "start": 13713.77, + "end": 13715.61, + "probability": 0.9683 + }, + { + "start": 13715.69, + "end": 13717.28, + "probability": 0.9464 + }, + { + "start": 13717.51, + "end": 13718.49, + "probability": 0.9919 + }, + { + "start": 13718.95, + "end": 13719.95, + "probability": 0.4701 + }, + { + "start": 13720.07, + "end": 13721.11, + "probability": 0.7784 + }, + { + "start": 13721.45, + "end": 13723.43, + "probability": 0.2447 + }, + { + "start": 13723.43, + "end": 13729.57, + "probability": 0.7506 + }, + { + "start": 13729.89, + "end": 13731.81, + "probability": 0.9861 + }, + { + "start": 13732.89, + "end": 13735.56, + "probability": 0.6841 + }, + { + "start": 13735.73, + "end": 13736.15, + "probability": 0.6189 + }, + { + "start": 13736.33, + "end": 13737.13, + "probability": 0.0647 + }, + { + "start": 13737.51, + "end": 13737.79, + "probability": 0.005 + }, + { + "start": 13738.23, + "end": 13738.23, + "probability": 0.3345 + }, + { + "start": 13738.23, + "end": 13738.35, + "probability": 0.1224 + }, + { + "start": 13738.69, + "end": 13739.15, + "probability": 0.5223 + }, + { + "start": 13739.15, + "end": 13739.51, + "probability": 0.9481 + }, + { + "start": 13740.31, + "end": 13742.67, + "probability": 0.7479 + }, + { + "start": 13765.71, + "end": 13766.39, + "probability": 0.5494 + }, + { + "start": 13766.43, + "end": 13767.27, + "probability": 0.7944 + }, + { + "start": 13767.35, + "end": 13767.63, + "probability": 0.6048 + }, + { + "start": 13767.65, + "end": 13768.99, + "probability": 0.9157 + }, + { + "start": 13769.99, + "end": 13771.95, + "probability": 0.9415 + }, + { + "start": 13772.13, + "end": 13774.81, + "probability": 0.9469 + }, + { + "start": 13775.29, + "end": 13775.31, + "probability": 0.1191 + }, + { + "start": 13775.33, + "end": 13776.29, + "probability": 0.6951 + }, + { + "start": 13776.37, + "end": 13776.63, + "probability": 0.6622 + }, + { + "start": 13777.05, + "end": 13777.95, + "probability": 0.9863 + }, + { + "start": 13778.3, + "end": 13778.45, + "probability": 0.2786 + }, + { + "start": 13778.51, + "end": 13779.15, + "probability": 0.9837 + }, + { + "start": 13780.23, + "end": 13784.95, + "probability": 0.9739 + }, + { + "start": 13785.55, + "end": 13788.15, + "probability": 0.9849 + }, + { + "start": 13788.59, + "end": 13789.59, + "probability": 0.6898 + }, + { + "start": 13789.59, + "end": 13790.77, + "probability": 0.4941 + }, + { + "start": 13791.11, + "end": 13791.43, + "probability": 0.4191 + }, + { + "start": 13791.89, + "end": 13793.89, + "probability": 0.9974 + }, + { + "start": 13794.15, + "end": 13795.21, + "probability": 0.8907 + }, + { + "start": 13795.55, + "end": 13796.21, + "probability": 0.6495 + }, + { + "start": 13796.41, + "end": 13796.61, + "probability": 0.5818 + }, + { + "start": 13797.07, + "end": 13799.37, + "probability": 0.3938 + }, + { + "start": 13800.91, + "end": 13802.25, + "probability": 0.6679 + }, + { + "start": 13802.25, + "end": 13802.25, + "probability": 0.4141 + }, + { + "start": 13802.25, + "end": 13802.95, + "probability": 0.7408 + }, + { + "start": 13803.99, + "end": 13805.49, + "probability": 0.6299 + }, + { + "start": 13807.1, + "end": 13807.87, + "probability": 0.2678 + }, + { + "start": 13807.87, + "end": 13809.33, + "probability": 0.0309 + }, + { + "start": 13809.49, + "end": 13813.27, + "probability": 0.7263 + }, + { + "start": 13814.31, + "end": 13816.57, + "probability": 0.9626 + }, + { + "start": 13817.81, + "end": 13821.67, + "probability": 0.7942 + }, + { + "start": 13822.73, + "end": 13823.81, + "probability": 0.9197 + }, + { + "start": 13824.83, + "end": 13827.03, + "probability": 0.9701 + }, + { + "start": 13827.79, + "end": 13829.01, + "probability": 0.4878 + }, + { + "start": 13830.83, + "end": 13831.91, + "probability": 0.7222 + }, + { + "start": 13832.37, + "end": 13834.35, + "probability": 0.981 + }, + { + "start": 13834.77, + "end": 13837.89, + "probability": 0.1909 + }, + { + "start": 13837.89, + "end": 13837.97, + "probability": 0.1317 + }, + { + "start": 13838.07, + "end": 13838.69, + "probability": 0.4126 + }, + { + "start": 13838.89, + "end": 13840.83, + "probability": 0.3791 + }, + { + "start": 13844.67, + "end": 13845.73, + "probability": 0.0341 + }, + { + "start": 13845.73, + "end": 13849.01, + "probability": 0.6315 + }, + { + "start": 13849.76, + "end": 13851.39, + "probability": 0.7289 + }, + { + "start": 13852.29, + "end": 13855.65, + "probability": 0.9613 + }, + { + "start": 13855.69, + "end": 13857.81, + "probability": 0.7888 + }, + { + "start": 13859.51, + "end": 13864.19, + "probability": 0.9692 + }, + { + "start": 13864.79, + "end": 13867.21, + "probability": 0.948 + }, + { + "start": 13867.91, + "end": 13868.55, + "probability": 0.7907 + }, + { + "start": 13869.19, + "end": 13871.87, + "probability": 0.9738 + }, + { + "start": 13872.43, + "end": 13875.01, + "probability": 0.9277 + }, + { + "start": 13875.67, + "end": 13876.45, + "probability": 0.8286 + }, + { + "start": 13876.55, + "end": 13877.79, + "probability": 0.9501 + }, + { + "start": 13877.95, + "end": 13882.31, + "probability": 0.9761 + }, + { + "start": 13882.61, + "end": 13887.93, + "probability": 0.9909 + }, + { + "start": 13888.49, + "end": 13895.93, + "probability": 0.977 + }, + { + "start": 13895.95, + "end": 13899.21, + "probability": 0.6388 + }, + { + "start": 13899.61, + "end": 13900.81, + "probability": 0.2447 + }, + { + "start": 13900.81, + "end": 13901.35, + "probability": 0.7585 + }, + { + "start": 13901.45, + "end": 13902.21, + "probability": 0.7668 + }, + { + "start": 13902.29, + "end": 13902.87, + "probability": 0.8478 + }, + { + "start": 13902.95, + "end": 13903.9, + "probability": 0.4932 + }, + { + "start": 13904.19, + "end": 13909.41, + "probability": 0.883 + }, + { + "start": 13909.47, + "end": 13911.79, + "probability": 0.9212 + }, + { + "start": 13913.03, + "end": 13913.63, + "probability": 0.6415 + }, + { + "start": 13914.03, + "end": 13915.33, + "probability": 0.5888 + }, + { + "start": 13915.45, + "end": 13916.21, + "probability": 0.9497 + }, + { + "start": 13916.35, + "end": 13917.31, + "probability": 0.7765 + }, + { + "start": 13917.47, + "end": 13918.23, + "probability": 0.9651 + }, + { + "start": 13918.39, + "end": 13919.01, + "probability": 0.7064 + }, + { + "start": 13919.35, + "end": 13920.45, + "probability": 0.9577 + }, + { + "start": 13920.47, + "end": 13921.51, + "probability": 0.6626 + }, + { + "start": 13921.51, + "end": 13926.05, + "probability": 0.924 + }, + { + "start": 13926.93, + "end": 13928.65, + "probability": 0.8354 + }, + { + "start": 13929.31, + "end": 13932.89, + "probability": 0.8118 + }, + { + "start": 13932.93, + "end": 13933.37, + "probability": 0.8382 + }, + { + "start": 13933.39, + "end": 13937.61, + "probability": 0.9141 + }, + { + "start": 13938.01, + "end": 13940.59, + "probability": 0.8756 + }, + { + "start": 13940.61, + "end": 13943.65, + "probability": 0.7949 + }, + { + "start": 13944.19, + "end": 13944.59, + "probability": 0.505 + }, + { + "start": 13944.61, + "end": 13945.71, + "probability": 0.9758 + }, + { + "start": 13945.85, + "end": 13950.77, + "probability": 0.965 + }, + { + "start": 13951.57, + "end": 13953.53, + "probability": 0.2495 + }, + { + "start": 13953.53, + "end": 13953.57, + "probability": 0.7001 + }, + { + "start": 13953.73, + "end": 13954.73, + "probability": 0.5815 + }, + { + "start": 13955.39, + "end": 13955.39, + "probability": 0.6587 + }, + { + "start": 13955.39, + "end": 13955.69, + "probability": 0.7666 + }, + { + "start": 13955.69, + "end": 13955.75, + "probability": 0.7372 + }, + { + "start": 13955.85, + "end": 13956.27, + "probability": 0.6737 + }, + { + "start": 13956.31, + "end": 13956.75, + "probability": 0.0782 + }, + { + "start": 13956.85, + "end": 13958.91, + "probability": 0.739 + }, + { + "start": 13958.95, + "end": 13959.41, + "probability": 0.4705 + }, + { + "start": 13959.51, + "end": 13960.03, + "probability": 0.2019 + }, + { + "start": 13960.05, + "end": 13963.91, + "probability": 0.3558 + }, + { + "start": 13964.11, + "end": 13964.19, + "probability": 0.063 + }, + { + "start": 13964.19, + "end": 13964.19, + "probability": 0.0225 + }, + { + "start": 13964.19, + "end": 13964.33, + "probability": 0.398 + }, + { + "start": 13965.29, + "end": 13969.15, + "probability": 0.7779 + }, + { + "start": 13970.35, + "end": 13972.05, + "probability": 0.7597 + }, + { + "start": 13973.19, + "end": 13978.45, + "probability": 0.6611 + }, + { + "start": 13979.67, + "end": 13982.41, + "probability": 0.4863 + }, + { + "start": 13983.29, + "end": 13986.69, + "probability": 0.5093 + }, + { + "start": 13988.23, + "end": 13991.93, + "probability": 0.9375 + }, + { + "start": 13991.93, + "end": 13996.61, + "probability": 0.8157 + }, + { + "start": 13999.09, + "end": 14003.07, + "probability": 0.7058 + }, + { + "start": 14003.19, + "end": 14006.07, + "probability": 0.6182 + }, + { + "start": 14006.07, + "end": 14010.47, + "probability": 0.9106 + }, + { + "start": 14010.69, + "end": 14015.33, + "probability": 0.9764 + }, + { + "start": 14015.49, + "end": 14019.05, + "probability": 0.6936 + }, + { + "start": 14019.49, + "end": 14022.49, + "probability": 0.9154 + }, + { + "start": 14022.79, + "end": 14024.23, + "probability": 0.9216 + }, + { + "start": 14024.53, + "end": 14026.87, + "probability": 0.9851 + }, + { + "start": 14026.89, + "end": 14028.57, + "probability": 0.5076 + }, + { + "start": 14028.69, + "end": 14030.47, + "probability": 0.6803 + }, + { + "start": 14030.75, + "end": 14031.57, + "probability": 0.9657 + }, + { + "start": 14031.65, + "end": 14032.55, + "probability": 0.952 + }, + { + "start": 14032.59, + "end": 14032.87, + "probability": 0.8933 + }, + { + "start": 14032.93, + "end": 14033.77, + "probability": 0.8392 + }, + { + "start": 14033.79, + "end": 14036.29, + "probability": 0.84 + }, + { + "start": 14036.69, + "end": 14040.09, + "probability": 0.9934 + }, + { + "start": 14040.17, + "end": 14041.41, + "probability": 0.9954 + }, + { + "start": 14041.73, + "end": 14043.55, + "probability": 0.9159 + }, + { + "start": 14043.91, + "end": 14045.33, + "probability": 0.991 + }, + { + "start": 14045.53, + "end": 14047.67, + "probability": 0.9514 + }, + { + "start": 14047.79, + "end": 14051.73, + "probability": 0.9819 + }, + { + "start": 14052.09, + "end": 14057.43, + "probability": 0.9633 + }, + { + "start": 14057.75, + "end": 14059.33, + "probability": 0.9932 + }, + { + "start": 14060.15, + "end": 14061.35, + "probability": 0.739 + }, + { + "start": 14062.07, + "end": 14063.99, + "probability": 0.9846 + }, + { + "start": 14064.37, + "end": 14071.01, + "probability": 0.9212 + }, + { + "start": 14071.89, + "end": 14079.33, + "probability": 0.9203 + }, + { + "start": 14079.33, + "end": 14081.03, + "probability": 0.9849 + }, + { + "start": 14081.55, + "end": 14083.67, + "probability": 0.8287 + }, + { + "start": 14084.31, + "end": 14086.47, + "probability": 0.9801 + }, + { + "start": 14087.11, + "end": 14089.82, + "probability": 0.92 + }, + { + "start": 14090.45, + "end": 14091.31, + "probability": 0.9556 + }, + { + "start": 14092.11, + "end": 14093.45, + "probability": 0.711 + }, + { + "start": 14093.87, + "end": 14096.05, + "probability": 0.8607 + }, + { + "start": 14096.27, + "end": 14098.09, + "probability": 0.8589 + }, + { + "start": 14098.41, + "end": 14099.55, + "probability": 0.8545 + }, + { + "start": 14099.71, + "end": 14101.11, + "probability": 0.9849 + }, + { + "start": 14101.17, + "end": 14101.63, + "probability": 0.9304 + }, + { + "start": 14103.33, + "end": 14103.75, + "probability": 0.5891 + }, + { + "start": 14106.48, + "end": 14109.68, + "probability": 0.5592 + }, + { + "start": 14110.57, + "end": 14111.27, + "probability": 0.4346 + }, + { + "start": 14111.81, + "end": 14114.87, + "probability": 0.9873 + }, + { + "start": 14115.41, + "end": 14118.53, + "probability": 0.9847 + }, + { + "start": 14119.33, + "end": 14123.25, + "probability": 0.9759 + }, + { + "start": 14123.93, + "end": 14130.24, + "probability": 0.9971 + }, + { + "start": 14130.39, + "end": 14136.83, + "probability": 0.8934 + }, + { + "start": 14138.29, + "end": 14139.71, + "probability": 0.8191 + }, + { + "start": 14140.57, + "end": 14142.39, + "probability": 0.652 + }, + { + "start": 14143.15, + "end": 14146.57, + "probability": 0.8719 + }, + { + "start": 14147.29, + "end": 14148.11, + "probability": 0.6957 + }, + { + "start": 14148.59, + "end": 14151.77, + "probability": 0.9622 + }, + { + "start": 14152.77, + "end": 14156.33, + "probability": 0.9856 + }, + { + "start": 14157.29, + "end": 14161.19, + "probability": 0.8534 + }, + { + "start": 14162.07, + "end": 14163.37, + "probability": 0.8742 + }, + { + "start": 14163.57, + "end": 14164.67, + "probability": 0.9136 + }, + { + "start": 14164.79, + "end": 14166.22, + "probability": 0.98 + }, + { + "start": 14166.95, + "end": 14168.62, + "probability": 0.9946 + }, + { + "start": 14169.23, + "end": 14171.89, + "probability": 0.9816 + }, + { + "start": 14172.51, + "end": 14176.05, + "probability": 0.985 + }, + { + "start": 14176.59, + "end": 14178.17, + "probability": 0.9863 + }, + { + "start": 14178.45, + "end": 14179.27, + "probability": 0.9365 + }, + { + "start": 14179.41, + "end": 14181.78, + "probability": 0.9178 + }, + { + "start": 14182.13, + "end": 14184.13, + "probability": 0.9165 + }, + { + "start": 14184.75, + "end": 14185.87, + "probability": 0.7888 + }, + { + "start": 14185.99, + "end": 14189.29, + "probability": 0.7934 + }, + { + "start": 14189.81, + "end": 14191.89, + "probability": 0.9786 + }, + { + "start": 14191.89, + "end": 14195.31, + "probability": 0.9341 + }, + { + "start": 14195.41, + "end": 14195.59, + "probability": 0.5734 + }, + { + "start": 14195.67, + "end": 14196.53, + "probability": 0.9693 + }, + { + "start": 14196.59, + "end": 14197.43, + "probability": 0.9276 + }, + { + "start": 14197.79, + "end": 14199.57, + "probability": 0.749 + }, + { + "start": 14200.01, + "end": 14203.95, + "probability": 0.9691 + }, + { + "start": 14203.97, + "end": 14205.7, + "probability": 0.8833 + }, + { + "start": 14206.07, + "end": 14208.79, + "probability": 0.3738 + }, + { + "start": 14209.21, + "end": 14210.57, + "probability": 0.7816 + }, + { + "start": 14211.79, + "end": 14215.13, + "probability": 0.8616 + }, + { + "start": 14215.61, + "end": 14216.15, + "probability": 0.4661 + }, + { + "start": 14217.07, + "end": 14219.79, + "probability": 0.4819 + }, + { + "start": 14227.49, + "end": 14232.65, + "probability": 0.63 + }, + { + "start": 14233.49, + "end": 14236.69, + "probability": 0.8191 + }, + { + "start": 14237.89, + "end": 14240.0, + "probability": 0.9012 + }, + { + "start": 14241.27, + "end": 14244.59, + "probability": 0.9958 + }, + { + "start": 14244.61, + "end": 14245.95, + "probability": 0.8935 + }, + { + "start": 14246.65, + "end": 14247.47, + "probability": 0.4381 + }, + { + "start": 14248.11, + "end": 14248.99, + "probability": 0.6962 + }, + { + "start": 14249.86, + "end": 14252.3, + "probability": 0.896 + }, + { + "start": 14253.21, + "end": 14255.41, + "probability": 0.86 + }, + { + "start": 14255.85, + "end": 14256.81, + "probability": 0.5543 + }, + { + "start": 14256.95, + "end": 14260.07, + "probability": 0.9507 + }, + { + "start": 14260.23, + "end": 14260.57, + "probability": 0.7617 + }, + { + "start": 14260.63, + "end": 14264.03, + "probability": 0.5772 + }, + { + "start": 14264.55, + "end": 14268.35, + "probability": 0.9946 + }, + { + "start": 14268.35, + "end": 14272.19, + "probability": 0.9902 + }, + { + "start": 14272.83, + "end": 14275.23, + "probability": 0.9912 + }, + { + "start": 14276.22, + "end": 14278.91, + "probability": 0.7203 + }, + { + "start": 14279.61, + "end": 14282.99, + "probability": 0.9994 + }, + { + "start": 14282.99, + "end": 14285.93, + "probability": 0.998 + }, + { + "start": 14286.83, + "end": 14288.99, + "probability": 0.9932 + }, + { + "start": 14289.69, + "end": 14293.89, + "probability": 0.9851 + }, + { + "start": 14294.31, + "end": 14298.07, + "probability": 0.9279 + }, + { + "start": 14298.65, + "end": 14300.05, + "probability": 0.7498 + }, + { + "start": 14300.55, + "end": 14301.37, + "probability": 0.7299 + }, + { + "start": 14301.97, + "end": 14303.91, + "probability": 0.7827 + }, + { + "start": 14304.19, + "end": 14305.49, + "probability": 0.9811 + }, + { + "start": 14306.07, + "end": 14306.99, + "probability": 0.7557 + }, + { + "start": 14307.61, + "end": 14311.59, + "probability": 0.7063 + }, + { + "start": 14312.35, + "end": 14313.83, + "probability": 0.9961 + }, + { + "start": 14313.93, + "end": 14314.87, + "probability": 0.4491 + }, + { + "start": 14315.61, + "end": 14316.75, + "probability": 0.752 + }, + { + "start": 14316.95, + "end": 14318.87, + "probability": 0.7988 + }, + { + "start": 14319.37, + "end": 14321.95, + "probability": 0.7398 + }, + { + "start": 14322.27, + "end": 14324.23, + "probability": 0.99 + }, + { + "start": 14324.73, + "end": 14327.23, + "probability": 0.8144 + }, + { + "start": 14327.47, + "end": 14329.27, + "probability": 0.9855 + }, + { + "start": 14329.53, + "end": 14330.59, + "probability": 0.8829 + }, + { + "start": 14330.87, + "end": 14331.93, + "probability": 0.9222 + }, + { + "start": 14333.25, + "end": 14336.45, + "probability": 0.9888 + }, + { + "start": 14336.81, + "end": 14339.03, + "probability": 0.873 + }, + { + "start": 14339.51, + "end": 14342.8, + "probability": 0.9868 + }, + { + "start": 14343.25, + "end": 14347.27, + "probability": 0.9436 + }, + { + "start": 14347.99, + "end": 14350.45, + "probability": 0.9772 + }, + { + "start": 14350.71, + "end": 14350.89, + "probability": 0.2614 + }, + { + "start": 14350.99, + "end": 14351.53, + "probability": 0.6249 + }, + { + "start": 14351.65, + "end": 14353.86, + "probability": 0.8962 + }, + { + "start": 14354.23, + "end": 14356.51, + "probability": 0.8295 + }, + { + "start": 14356.77, + "end": 14357.11, + "probability": 0.8377 + }, + { + "start": 14357.11, + "end": 14357.91, + "probability": 0.9045 + }, + { + "start": 14357.97, + "end": 14359.94, + "probability": 0.9895 + }, + { + "start": 14360.27, + "end": 14362.61, + "probability": 0.7432 + }, + { + "start": 14363.03, + "end": 14365.9, + "probability": 0.9895 + }, + { + "start": 14366.43, + "end": 14368.21, + "probability": 0.8601 + }, + { + "start": 14368.51, + "end": 14370.62, + "probability": 0.9932 + }, + { + "start": 14371.45, + "end": 14372.87, + "probability": 0.4975 + }, + { + "start": 14373.19, + "end": 14375.83, + "probability": 0.9526 + }, + { + "start": 14375.97, + "end": 14378.09, + "probability": 0.7819 + }, + { + "start": 14378.51, + "end": 14381.12, + "probability": 0.995 + }, + { + "start": 14382.07, + "end": 14385.61, + "probability": 0.6275 + }, + { + "start": 14386.11, + "end": 14389.61, + "probability": 0.8877 + }, + { + "start": 14390.21, + "end": 14393.11, + "probability": 0.9945 + }, + { + "start": 14393.11, + "end": 14397.67, + "probability": 0.9966 + }, + { + "start": 14397.95, + "end": 14400.33, + "probability": 0.9969 + }, + { + "start": 14400.89, + "end": 14402.25, + "probability": 0.7523 + }, + { + "start": 14402.69, + "end": 14404.95, + "probability": 0.8015 + }, + { + "start": 14405.03, + "end": 14409.01, + "probability": 0.9136 + }, + { + "start": 14409.45, + "end": 14411.56, + "probability": 0.9983 + }, + { + "start": 14412.39, + "end": 14415.03, + "probability": 0.9883 + }, + { + "start": 14417.07, + "end": 14417.83, + "probability": 0.0101 + }, + { + "start": 14419.09, + "end": 14419.37, + "probability": 0.2052 + }, + { + "start": 14419.97, + "end": 14421.01, + "probability": 0.1299 + }, + { + "start": 14421.37, + "end": 14422.13, + "probability": 0.0902 + }, + { + "start": 14422.15, + "end": 14426.31, + "probability": 0.8215 + }, + { + "start": 14426.63, + "end": 14428.77, + "probability": 0.8532 + }, + { + "start": 14429.19, + "end": 14433.43, + "probability": 0.8363 + }, + { + "start": 14434.19, + "end": 14434.97, + "probability": 0.5891 + }, + { + "start": 14435.01, + "end": 14435.33, + "probability": 0.9381 + }, + { + "start": 14435.39, + "end": 14437.29, + "probability": 0.9197 + }, + { + "start": 14437.33, + "end": 14442.64, + "probability": 0.979 + }, + { + "start": 14443.09, + "end": 14445.57, + "probability": 0.8249 + }, + { + "start": 14445.75, + "end": 14449.29, + "probability": 0.8591 + }, + { + "start": 14449.37, + "end": 14455.07, + "probability": 0.984 + }, + { + "start": 14455.63, + "end": 14455.93, + "probability": 0.2928 + }, + { + "start": 14455.97, + "end": 14458.05, + "probability": 0.851 + }, + { + "start": 14458.17, + "end": 14461.77, + "probability": 0.7789 + }, + { + "start": 14462.23, + "end": 14466.25, + "probability": 0.9938 + }, + { + "start": 14466.61, + "end": 14466.77, + "probability": 0.0403 + }, + { + "start": 14466.77, + "end": 14467.03, + "probability": 0.0045 + }, + { + "start": 14467.07, + "end": 14468.39, + "probability": 0.3111 + }, + { + "start": 14468.61, + "end": 14471.73, + "probability": 0.863 + }, + { + "start": 14471.85, + "end": 14473.35, + "probability": 0.5602 + }, + { + "start": 14473.53, + "end": 14477.95, + "probability": 0.8965 + }, + { + "start": 14478.17, + "end": 14479.71, + "probability": 0.7606 + }, + { + "start": 14480.07, + "end": 14481.07, + "probability": 0.9582 + }, + { + "start": 14481.65, + "end": 14482.77, + "probability": 0.9649 + }, + { + "start": 14482.83, + "end": 14483.89, + "probability": 0.9541 + }, + { + "start": 14483.95, + "end": 14484.97, + "probability": 0.9461 + }, + { + "start": 14484.97, + "end": 14486.19, + "probability": 0.8307 + }, + { + "start": 14486.37, + "end": 14486.93, + "probability": 0.455 + }, + { + "start": 14487.21, + "end": 14487.79, + "probability": 0.9797 + }, + { + "start": 14487.85, + "end": 14488.22, + "probability": 0.9175 + }, + { + "start": 14488.59, + "end": 14489.81, + "probability": 0.79 + }, + { + "start": 14489.87, + "end": 14492.87, + "probability": 0.6079 + }, + { + "start": 14492.89, + "end": 14494.37, + "probability": 0.6393 + }, + { + "start": 14494.39, + "end": 14494.65, + "probability": 0.053 + }, + { + "start": 14495.07, + "end": 14497.09, + "probability": 0.6 + }, + { + "start": 14497.67, + "end": 14498.97, + "probability": 0.6187 + }, + { + "start": 14499.87, + "end": 14501.67, + "probability": 0.5014 + }, + { + "start": 14501.67, + "end": 14501.67, + "probability": 0.3562 + }, + { + "start": 14502.39, + "end": 14503.63, + "probability": 0.1975 + }, + { + "start": 14503.75, + "end": 14506.79, + "probability": 0.1305 + }, + { + "start": 14507.67, + "end": 14509.51, + "probability": 0.1388 + }, + { + "start": 14509.77, + "end": 14510.81, + "probability": 0.1067 + }, + { + "start": 14515.71, + "end": 14515.99, + "probability": 0.1396 + }, + { + "start": 14516.39, + "end": 14518.41, + "probability": 0.0021 + }, + { + "start": 14527.11, + "end": 14528.73, + "probability": 0.1671 + }, + { + "start": 14529.25, + "end": 14529.79, + "probability": 0.0756 + }, + { + "start": 14530.31, + "end": 14530.31, + "probability": 0.4001 + }, + { + "start": 14531.37, + "end": 14532.31, + "probability": 0.0153 + }, + { + "start": 14532.54, + "end": 14532.66, + "probability": 0.1806 + }, + { + "start": 14533.27, + "end": 14535.19, + "probability": 0.1161 + }, + { + "start": 14536.71, + "end": 14538.57, + "probability": 0.1429 + }, + { + "start": 14542.69, + "end": 14543.47, + "probability": 0.073 + }, + { + "start": 14543.47, + "end": 14543.67, + "probability": 0.2977 + }, + { + "start": 14543.69, + "end": 14545.49, + "probability": 0.0429 + }, + { + "start": 14547.45, + "end": 14548.01, + "probability": 0.0267 + }, + { + "start": 14548.01, + "end": 14548.01, + "probability": 0.0316 + }, + { + "start": 14548.33, + "end": 14548.95, + "probability": 0.0991 + }, + { + "start": 14548.95, + "end": 14548.95, + "probability": 0.08 + }, + { + "start": 14548.95, + "end": 14553.77, + "probability": 0.0496 + }, + { + "start": 14554.9, + "end": 14555.62, + "probability": 0.1096 + }, + { + "start": 14556.51, + "end": 14556.77, + "probability": 0.0824 + }, + { + "start": 14556.77, + "end": 14557.85, + "probability": 0.252 + }, + { + "start": 14560.11, + "end": 14564.75, + "probability": 0.0585 + }, + { + "start": 14566.77, + "end": 14566.93, + "probability": 0.0649 + }, + { + "start": 14576.0, + "end": 14576.0, + "probability": 0.0 + }, + { + "start": 14576.0, + "end": 14576.0, + "probability": 0.0 + }, + { + "start": 14576.0, + "end": 14576.0, + "probability": 0.0 + }, + { + "start": 14576.0, + "end": 14576.0, + "probability": 0.0 + }, + { + "start": 14576.0, + "end": 14576.0, + "probability": 0.0 + }, + { + "start": 14589.58, + "end": 14592.1, + "probability": 0.0235 + }, + { + "start": 14592.1, + "end": 14592.46, + "probability": 0.0301 + }, + { + "start": 14592.46, + "end": 14592.46, + "probability": 0.3612 + }, + { + "start": 14592.46, + "end": 14593.94, + "probability": 0.1041 + }, + { + "start": 14594.1, + "end": 14594.56, + "probability": 0.1209 + }, + { + "start": 14601.65, + "end": 14605.43, + "probability": 0.0629 + }, + { + "start": 14605.79, + "end": 14606.03, + "probability": 0.013 + }, + { + "start": 14607.27, + "end": 14608.65, + "probability": 0.1738 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.0, + "end": 14698.0, + "probability": 0.0 + }, + { + "start": 14698.32, + "end": 14700.58, + "probability": 0.0618 + }, + { + "start": 14700.58, + "end": 14700.64, + "probability": 0.0093 + }, + { + "start": 14700.64, + "end": 14700.64, + "probability": 0.2853 + }, + { + "start": 14700.64, + "end": 14702.2, + "probability": 0.3501 + }, + { + "start": 14702.3, + "end": 14703.8, + "probability": 0.7487 + }, + { + "start": 14703.86, + "end": 14704.62, + "probability": 0.7979 + }, + { + "start": 14704.98, + "end": 14706.84, + "probability": 0.5531 + }, + { + "start": 14707.16, + "end": 14710.72, + "probability": 0.8512 + }, + { + "start": 14711.78, + "end": 14716.78, + "probability": 0.9971 + }, + { + "start": 14716.88, + "end": 14718.7, + "probability": 0.8719 + }, + { + "start": 14719.89, + "end": 14721.68, + "probability": 0.8821 + }, + { + "start": 14722.12, + "end": 14723.5, + "probability": 0.9495 + }, + { + "start": 14723.7, + "end": 14724.82, + "probability": 0.9419 + }, + { + "start": 14725.2, + "end": 14726.68, + "probability": 0.9614 + }, + { + "start": 14727.26, + "end": 14728.12, + "probability": 0.9654 + }, + { + "start": 14728.2, + "end": 14733.38, + "probability": 0.953 + }, + { + "start": 14734.28, + "end": 14736.21, + "probability": 0.2102 + }, + { + "start": 14736.26, + "end": 14737.52, + "probability": 0.2851 + }, + { + "start": 14737.8, + "end": 14739.0, + "probability": 0.7798 + }, + { + "start": 14739.26, + "end": 14742.16, + "probability": 0.8511 + }, + { + "start": 14742.44, + "end": 14743.3, + "probability": 0.9268 + }, + { + "start": 14743.86, + "end": 14748.7, + "probability": 0.9518 + }, + { + "start": 14749.2, + "end": 14751.31, + "probability": 0.927 + }, + { + "start": 14751.84, + "end": 14753.06, + "probability": 0.8082 + }, + { + "start": 14753.38, + "end": 14753.94, + "probability": 0.8905 + }, + { + "start": 14754.16, + "end": 14756.34, + "probability": 0.9087 + }, + { + "start": 14756.74, + "end": 14760.52, + "probability": 0.8267 + }, + { + "start": 14760.88, + "end": 14764.48, + "probability": 0.9839 + }, + { + "start": 14765.08, + "end": 14769.22, + "probability": 0.8896 + }, + { + "start": 14769.56, + "end": 14772.14, + "probability": 0.8909 + }, + { + "start": 14772.88, + "end": 14777.84, + "probability": 0.7593 + }, + { + "start": 14777.96, + "end": 14779.16, + "probability": 0.9548 + }, + { + "start": 14779.24, + "end": 14780.16, + "probability": 0.9157 + }, + { + "start": 14780.36, + "end": 14781.26, + "probability": 0.8108 + }, + { + "start": 14781.44, + "end": 14782.0, + "probability": 0.6338 + }, + { + "start": 14782.18, + "end": 14783.18, + "probability": 0.7018 + }, + { + "start": 14783.34, + "end": 14786.62, + "probability": 0.8881 + }, + { + "start": 14786.8, + "end": 14787.26, + "probability": 0.7884 + }, + { + "start": 14787.42, + "end": 14789.76, + "probability": 0.8979 + }, + { + "start": 14790.14, + "end": 14791.05, + "probability": 0.9751 + }, + { + "start": 14791.36, + "end": 14792.4, + "probability": 0.9863 + }, + { + "start": 14792.68, + "end": 14793.64, + "probability": 0.9534 + }, + { + "start": 14793.9, + "end": 14795.1, + "probability": 0.6103 + }, + { + "start": 14795.3, + "end": 14796.64, + "probability": 0.9978 + }, + { + "start": 14796.92, + "end": 14798.32, + "probability": 0.6609 + }, + { + "start": 14798.54, + "end": 14800.33, + "probability": 0.9927 + }, + { + "start": 14800.6, + "end": 14802.2, + "probability": 0.946 + }, + { + "start": 14802.42, + "end": 14805.54, + "probability": 0.8901 + }, + { + "start": 14806.58, + "end": 14809.22, + "probability": 0.7954 + }, + { + "start": 14809.84, + "end": 14811.04, + "probability": 0.8423 + }, + { + "start": 14811.4, + "end": 14814.02, + "probability": 0.8912 + }, + { + "start": 14814.02, + "end": 14818.26, + "probability": 0.991 + }, + { + "start": 14818.46, + "end": 14819.82, + "probability": 0.999 + }, + { + "start": 14819.92, + "end": 14821.0, + "probability": 0.8842 + }, + { + "start": 14821.2, + "end": 14824.5, + "probability": 0.7452 + }, + { + "start": 14824.68, + "end": 14825.19, + "probability": 0.8413 + }, + { + "start": 14825.46, + "end": 14829.91, + "probability": 0.9289 + }, + { + "start": 14830.15, + "end": 14831.92, + "probability": 0.7635 + }, + { + "start": 14832.61, + "end": 14835.01, + "probability": 0.845 + }, + { + "start": 14835.23, + "end": 14835.85, + "probability": 0.9303 + }, + { + "start": 14835.99, + "end": 14838.16, + "probability": 0.9782 + }, + { + "start": 14838.63, + "end": 14842.29, + "probability": 0.9583 + }, + { + "start": 14842.71, + "end": 14845.89, + "probability": 0.7373 + }, + { + "start": 14846.17, + "end": 14846.57, + "probability": 0.5803 + }, + { + "start": 14846.71, + "end": 14848.37, + "probability": 0.9531 + }, + { + "start": 14848.49, + "end": 14850.43, + "probability": 0.9336 + }, + { + "start": 14850.55, + "end": 14850.95, + "probability": 0.8427 + }, + { + "start": 14851.13, + "end": 14852.65, + "probability": 0.7869 + }, + { + "start": 14852.83, + "end": 14854.61, + "probability": 0.8263 + }, + { + "start": 14856.15, + "end": 14858.47, + "probability": 0.5318 + }, + { + "start": 14858.55, + "end": 14859.69, + "probability": 0.6337 + }, + { + "start": 14859.79, + "end": 14862.45, + "probability": 0.5778 + }, + { + "start": 14862.45, + "end": 14862.87, + "probability": 0.3754 + }, + { + "start": 14863.35, + "end": 14864.09, + "probability": 0.699 + }, + { + "start": 14866.21, + "end": 14867.69, + "probability": 0.7646 + }, + { + "start": 14868.57, + "end": 14868.59, + "probability": 0.0 + }, + { + "start": 14869.79, + "end": 14871.35, + "probability": 0.1782 + }, + { + "start": 14871.57, + "end": 14871.89, + "probability": 0.2035 + }, + { + "start": 14872.97, + "end": 14877.35, + "probability": 0.0254 + }, + { + "start": 14879.05, + "end": 14880.49, + "probability": 0.074 + }, + { + "start": 14880.49, + "end": 14883.53, + "probability": 0.4791 + }, + { + "start": 14883.67, + "end": 14886.97, + "probability": 0.9686 + }, + { + "start": 14887.79, + "end": 14888.61, + "probability": 0.4148 + }, + { + "start": 14888.71, + "end": 14889.09, + "probability": 0.738 + }, + { + "start": 14889.15, + "end": 14890.21, + "probability": 0.7409 + }, + { + "start": 14890.35, + "end": 14892.27, + "probability": 0.9937 + }, + { + "start": 14892.39, + "end": 14895.79, + "probability": 0.8019 + }, + { + "start": 14896.35, + "end": 14899.59, + "probability": 0.989 + }, + { + "start": 14899.67, + "end": 14901.51, + "probability": 0.8184 + }, + { + "start": 14902.91, + "end": 14904.77, + "probability": 0.7825 + }, + { + "start": 14904.85, + "end": 14907.91, + "probability": 0.9913 + }, + { + "start": 14908.73, + "end": 14910.33, + "probability": 0.979 + }, + { + "start": 14919.73, + "end": 14920.29, + "probability": 0.5839 + }, + { + "start": 14920.79, + "end": 14921.43, + "probability": 0.8938 + }, + { + "start": 14922.13, + "end": 14925.25, + "probability": 0.874 + }, + { + "start": 14926.27, + "end": 14930.37, + "probability": 0.9925 + }, + { + "start": 14930.37, + "end": 14935.29, + "probability": 0.8188 + }, + { + "start": 14937.07, + "end": 14941.05, + "probability": 0.8701 + }, + { + "start": 14941.85, + "end": 14943.25, + "probability": 0.556 + }, + { + "start": 14957.3, + "end": 14958.74, + "probability": 0.0358 + }, + { + "start": 14958.74, + "end": 14958.74, + "probability": 0.0479 + }, + { + "start": 14958.74, + "end": 14958.74, + "probability": 0.1376 + }, + { + "start": 14958.74, + "end": 14963.76, + "probability": 0.3593 + }, + { + "start": 14964.74, + "end": 14966.08, + "probability": 0.7267 + }, + { + "start": 14966.26, + "end": 14968.98, + "probability": 0.9702 + }, + { + "start": 14969.54, + "end": 14974.26, + "probability": 0.9927 + }, + { + "start": 14975.78, + "end": 14976.44, + "probability": 0.7655 + }, + { + "start": 14976.5, + "end": 14977.5, + "probability": 0.9431 + }, + { + "start": 14977.68, + "end": 14981.56, + "probability": 0.926 + }, + { + "start": 14981.56, + "end": 14985.4, + "probability": 0.9933 + }, + { + "start": 14986.1, + "end": 14991.9, + "probability": 0.9242 + }, + { + "start": 14991.98, + "end": 14996.38, + "probability": 0.9976 + }, + { + "start": 14996.98, + "end": 15003.12, + "probability": 0.8796 + }, + { + "start": 15003.88, + "end": 15006.54, + "probability": 0.9575 + }, + { + "start": 15007.36, + "end": 15013.92, + "probability": 0.9775 + }, + { + "start": 15015.48, + "end": 15016.26, + "probability": 0.5127 + }, + { + "start": 15016.4, + "end": 15022.36, + "probability": 0.9279 + }, + { + "start": 15022.36, + "end": 15026.38, + "probability": 0.9832 + }, + { + "start": 15027.28, + "end": 15028.05, + "probability": 0.9346 + }, + { + "start": 15028.44, + "end": 15029.02, + "probability": 0.5667 + }, + { + "start": 15029.04, + "end": 15032.44, + "probability": 0.942 + }, + { + "start": 15032.54, + "end": 15035.26, + "probability": 0.7122 + }, + { + "start": 15036.02, + "end": 15037.21, + "probability": 0.7178 + }, + { + "start": 15037.34, + "end": 15040.3, + "probability": 0.9751 + }, + { + "start": 15040.88, + "end": 15044.0, + "probability": 0.9713 + }, + { + "start": 15044.52, + "end": 15048.82, + "probability": 0.9097 + }, + { + "start": 15048.86, + "end": 15052.22, + "probability": 0.9991 + }, + { + "start": 15052.82, + "end": 15059.96, + "probability": 0.9077 + }, + { + "start": 15061.48, + "end": 15062.82, + "probability": 0.4558 + }, + { + "start": 15063.4, + "end": 15065.84, + "probability": 0.9458 + }, + { + "start": 15066.32, + "end": 15069.56, + "probability": 0.9239 + }, + { + "start": 15069.76, + "end": 15074.18, + "probability": 0.9813 + }, + { + "start": 15075.36, + "end": 15076.8, + "probability": 0.7785 + }, + { + "start": 15077.16, + "end": 15080.8, + "probability": 0.9683 + }, + { + "start": 15082.48, + "end": 15090.8, + "probability": 0.9264 + }, + { + "start": 15090.88, + "end": 15091.58, + "probability": 0.3888 + }, + { + "start": 15092.38, + "end": 15097.4, + "probability": 0.7955 + }, + { + "start": 15097.84, + "end": 15101.4, + "probability": 0.9792 + }, + { + "start": 15102.58, + "end": 15103.58, + "probability": 0.8247 + }, + { + "start": 15104.12, + "end": 15106.5, + "probability": 0.8086 + }, + { + "start": 15108.5, + "end": 15111.48, + "probability": 0.9788 + }, + { + "start": 15112.12, + "end": 15113.08, + "probability": 0.9464 + }, + { + "start": 15113.34, + "end": 15114.4, + "probability": 0.9762 + }, + { + "start": 15116.56, + "end": 15120.52, + "probability": 0.9741 + }, + { + "start": 15121.44, + "end": 15122.72, + "probability": 0.9354 + }, + { + "start": 15123.48, + "end": 15123.6, + "probability": 0.6455 + }, + { + "start": 15127.16, + "end": 15130.92, + "probability": 0.9329 + }, + { + "start": 15131.3, + "end": 15135.72, + "probability": 0.9961 + }, + { + "start": 15136.04, + "end": 15136.48, + "probability": 0.8286 + }, + { + "start": 15136.94, + "end": 15140.16, + "probability": 0.9757 + }, + { + "start": 15140.7, + "end": 15141.94, + "probability": 0.9825 + }, + { + "start": 15143.72, + "end": 15146.2, + "probability": 0.9908 + }, + { + "start": 15146.2, + "end": 15150.16, + "probability": 0.9575 + }, + { + "start": 15151.04, + "end": 15152.26, + "probability": 0.937 + }, + { + "start": 15153.14, + "end": 15154.02, + "probability": 0.8864 + }, + { + "start": 15154.68, + "end": 15160.22, + "probability": 0.872 + }, + { + "start": 15161.58, + "end": 15163.78, + "probability": 0.8875 + }, + { + "start": 15165.62, + "end": 15170.96, + "probability": 0.9874 + }, + { + "start": 15171.26, + "end": 15172.8, + "probability": 0.8193 + }, + { + "start": 15173.74, + "end": 15178.44, + "probability": 0.98 + }, + { + "start": 15179.36, + "end": 15186.38, + "probability": 0.9908 + }, + { + "start": 15187.42, + "end": 15191.34, + "probability": 0.9275 + }, + { + "start": 15192.12, + "end": 15192.32, + "probability": 0.3596 + }, + { + "start": 15192.46, + "end": 15192.86, + "probability": 0.801 + }, + { + "start": 15192.96, + "end": 15195.26, + "probability": 0.99 + }, + { + "start": 15195.76, + "end": 15198.42, + "probability": 0.959 + }, + { + "start": 15200.08, + "end": 15202.34, + "probability": 0.9548 + }, + { + "start": 15202.58, + "end": 15204.48, + "probability": 0.9042 + }, + { + "start": 15205.42, + "end": 15208.3, + "probability": 0.6343 + }, + { + "start": 15208.38, + "end": 15210.18, + "probability": 0.959 + }, + { + "start": 15210.84, + "end": 15214.5, + "probability": 0.6764 + }, + { + "start": 15215.22, + "end": 15218.48, + "probability": 0.9041 + }, + { + "start": 15220.06, + "end": 15220.6, + "probability": 0.8314 + }, + { + "start": 15220.7, + "end": 15221.12, + "probability": 0.8006 + }, + { + "start": 15221.16, + "end": 15224.41, + "probability": 0.8785 + }, + { + "start": 15225.56, + "end": 15231.58, + "probability": 0.9966 + }, + { + "start": 15231.58, + "end": 15235.38, + "probability": 0.9393 + }, + { + "start": 15236.78, + "end": 15241.4, + "probability": 0.9629 + }, + { + "start": 15241.4, + "end": 15247.2, + "probability": 0.9797 + }, + { + "start": 15248.78, + "end": 15250.1, + "probability": 0.6519 + }, + { + "start": 15250.78, + "end": 15253.41, + "probability": 0.9858 + }, + { + "start": 15254.66, + "end": 15259.48, + "probability": 0.8071 + }, + { + "start": 15261.16, + "end": 15266.46, + "probability": 0.7508 + }, + { + "start": 15266.76, + "end": 15267.04, + "probability": 0.6044 + }, + { + "start": 15267.18, + "end": 15275.18, + "probability": 0.9124 + }, + { + "start": 15275.78, + "end": 15277.64, + "probability": 0.4446 + }, + { + "start": 15279.48, + "end": 15279.56, + "probability": 0.6239 + }, + { + "start": 15279.82, + "end": 15281.16, + "probability": 0.7411 + }, + { + "start": 15281.24, + "end": 15281.56, + "probability": 0.8021 + }, + { + "start": 15281.64, + "end": 15283.22, + "probability": 0.9636 + }, + { + "start": 15283.3, + "end": 15283.96, + "probability": 0.6719 + }, + { + "start": 15285.52, + "end": 15286.04, + "probability": 0.6169 + }, + { + "start": 15286.14, + "end": 15290.2, + "probability": 0.9144 + }, + { + "start": 15290.34, + "end": 15296.1, + "probability": 0.3572 + }, + { + "start": 15299.22, + "end": 15306.85, + "probability": 0.953 + }, + { + "start": 15308.3, + "end": 15313.68, + "probability": 0.9917 + }, + { + "start": 15313.68, + "end": 15318.52, + "probability": 0.9979 + }, + { + "start": 15320.12, + "end": 15321.5, + "probability": 0.7332 + }, + { + "start": 15322.08, + "end": 15324.74, + "probability": 0.891 + }, + { + "start": 15324.82, + "end": 15327.42, + "probability": 0.8841 + }, + { + "start": 15329.14, + "end": 15334.04, + "probability": 0.9966 + }, + { + "start": 15334.68, + "end": 15339.44, + "probability": 0.9259 + }, + { + "start": 15339.92, + "end": 15343.18, + "probability": 0.9224 + }, + { + "start": 15343.18, + "end": 15347.58, + "probability": 0.9961 + }, + { + "start": 15348.9, + "end": 15354.56, + "probability": 0.9859 + }, + { + "start": 15355.96, + "end": 15360.94, + "probability": 0.9868 + }, + { + "start": 15361.94, + "end": 15364.8, + "probability": 0.9731 + }, + { + "start": 15365.28, + "end": 15369.44, + "probability": 0.7984 + }, + { + "start": 15371.72, + "end": 15375.84, + "probability": 0.9521 + }, + { + "start": 15377.24, + "end": 15381.32, + "probability": 0.9693 + }, + { + "start": 15381.6, + "end": 15386.96, + "probability": 0.9846 + }, + { + "start": 15388.0, + "end": 15391.48, + "probability": 0.9911 + }, + { + "start": 15393.14, + "end": 15395.5, + "probability": 0.7039 + }, + { + "start": 15396.1, + "end": 15397.22, + "probability": 0.7884 + }, + { + "start": 15398.1, + "end": 15401.36, + "probability": 0.9357 + }, + { + "start": 15401.88, + "end": 15403.58, + "probability": 0.9508 + }, + { + "start": 15403.8, + "end": 15406.7, + "probability": 0.9191 + }, + { + "start": 15407.38, + "end": 15410.5, + "probability": 0.9949 + }, + { + "start": 15411.0, + "end": 15414.22, + "probability": 0.8845 + }, + { + "start": 15415.22, + "end": 15416.02, + "probability": 0.6883 + }, + { + "start": 15416.08, + "end": 15417.86, + "probability": 0.9894 + }, + { + "start": 15418.18, + "end": 15420.86, + "probability": 0.9778 + }, + { + "start": 15421.34, + "end": 15424.6, + "probability": 0.8857 + }, + { + "start": 15425.1, + "end": 15425.72, + "probability": 0.5149 + }, + { + "start": 15425.88, + "end": 15427.6, + "probability": 0.8749 + }, + { + "start": 15428.02, + "end": 15432.78, + "probability": 0.919 + }, + { + "start": 15433.52, + "end": 15439.22, + "probability": 0.9547 + }, + { + "start": 15439.38, + "end": 15441.0, + "probability": 0.8946 + }, + { + "start": 15441.64, + "end": 15442.28, + "probability": 0.844 + }, + { + "start": 15442.34, + "end": 15446.54, + "probability": 0.9645 + }, + { + "start": 15446.6, + "end": 15447.14, + "probability": 0.6903 + }, + { + "start": 15447.22, + "end": 15448.44, + "probability": 0.7164 + }, + { + "start": 15449.98, + "end": 15452.75, + "probability": 0.9901 + }, + { + "start": 15453.48, + "end": 15454.74, + "probability": 0.9677 + }, + { + "start": 15455.2, + "end": 15459.98, + "probability": 0.9952 + }, + { + "start": 15460.02, + "end": 15462.8, + "probability": 0.9888 + }, + { + "start": 15465.0, + "end": 15468.5, + "probability": 0.9405 + }, + { + "start": 15469.08, + "end": 15475.81, + "probability": 0.971 + }, + { + "start": 15476.48, + "end": 15480.68, + "probability": 0.9927 + }, + { + "start": 15482.5, + "end": 15487.18, + "probability": 0.9426 + }, + { + "start": 15487.62, + "end": 15493.17, + "probability": 0.9938 + }, + { + "start": 15495.0, + "end": 15498.78, + "probability": 0.936 + }, + { + "start": 15502.66, + "end": 15504.78, + "probability": 0.9958 + }, + { + "start": 15505.94, + "end": 15509.88, + "probability": 0.993 + }, + { + "start": 15509.94, + "end": 15513.34, + "probability": 0.9811 + }, + { + "start": 15513.56, + "end": 15514.34, + "probability": 0.7064 + }, + { + "start": 15514.86, + "end": 15520.34, + "probability": 0.99 + }, + { + "start": 15521.82, + "end": 15524.4, + "probability": 0.9705 + }, + { + "start": 15524.4, + "end": 15528.46, + "probability": 0.9976 + }, + { + "start": 15529.3, + "end": 15531.84, + "probability": 0.9397 + }, + { + "start": 15532.16, + "end": 15535.1, + "probability": 0.9819 + }, + { + "start": 15535.52, + "end": 15539.2, + "probability": 0.9652 + }, + { + "start": 15539.2, + "end": 15542.9, + "probability": 0.9989 + }, + { + "start": 15543.5, + "end": 15547.54, + "probability": 0.9334 + }, + { + "start": 15549.42, + "end": 15552.5, + "probability": 0.9041 + }, + { + "start": 15554.66, + "end": 15559.02, + "probability": 0.8223 + }, + { + "start": 15559.52, + "end": 15560.38, + "probability": 0.2837 + }, + { + "start": 15560.58, + "end": 15562.4, + "probability": 0.7627 + }, + { + "start": 15562.7, + "end": 15564.76, + "probability": 0.7619 + }, + { + "start": 15565.66, + "end": 15570.36, + "probability": 0.9267 + }, + { + "start": 15572.14, + "end": 15573.42, + "probability": 0.4948 + }, + { + "start": 15573.42, + "end": 15575.64, + "probability": 0.7993 + }, + { + "start": 15576.02, + "end": 15578.84, + "probability": 0.6266 + }, + { + "start": 15578.92, + "end": 15582.5, + "probability": 0.9769 + }, + { + "start": 15587.92, + "end": 15587.92, + "probability": 0.2587 + }, + { + "start": 15588.4, + "end": 15588.86, + "probability": 0.6998 + }, + { + "start": 15589.98, + "end": 15591.2, + "probability": 0.6007 + }, + { + "start": 15592.22, + "end": 15593.04, + "probability": 0.978 + }, + { + "start": 15593.44, + "end": 15593.7, + "probability": 0.8017 + }, + { + "start": 15595.32, + "end": 15598.36, + "probability": 0.8183 + }, + { + "start": 15598.54, + "end": 15600.06, + "probability": 0.5064 + }, + { + "start": 15600.76, + "end": 15604.18, + "probability": 0.5874 + }, + { + "start": 15604.18, + "end": 15604.9, + "probability": 0.674 + }, + { + "start": 15606.04, + "end": 15606.71, + "probability": 0.731 + }, + { + "start": 15606.82, + "end": 15607.78, + "probability": 0.9163 + }, + { + "start": 15608.72, + "end": 15610.0, + "probability": 0.1291 + }, + { + "start": 15611.34, + "end": 15611.92, + "probability": 0.9321 + }, + { + "start": 15614.72, + "end": 15616.72, + "probability": 0.8328 + }, + { + "start": 15617.68, + "end": 15619.86, + "probability": 0.7749 + }, + { + "start": 15620.74, + "end": 15625.42, + "probability": 0.9894 + }, + { + "start": 15625.78, + "end": 15627.7, + "probability": 0.6521 + }, + { + "start": 15628.52, + "end": 15630.28, + "probability": 0.8949 + }, + { + "start": 15630.38, + "end": 15633.78, + "probability": 0.9329 + }, + { + "start": 15634.77, + "end": 15640.56, + "probability": 0.938 + }, + { + "start": 15640.68, + "end": 15643.76, + "probability": 0.4797 + }, + { + "start": 15644.94, + "end": 15647.52, + "probability": 0.9731 + }, + { + "start": 15648.46, + "end": 15652.28, + "probability": 0.9788 + }, + { + "start": 15653.2, + "end": 15657.02, + "probability": 0.8079 + }, + { + "start": 15657.88, + "end": 15661.54, + "probability": 0.9204 + }, + { + "start": 15662.04, + "end": 15663.24, + "probability": 0.7878 + }, + { + "start": 15663.36, + "end": 15665.58, + "probability": 0.8889 + }, + { + "start": 15666.32, + "end": 15670.42, + "probability": 0.9665 + }, + { + "start": 15670.86, + "end": 15671.76, + "probability": 0.8606 + }, + { + "start": 15672.26, + "end": 15677.98, + "probability": 0.9792 + }, + { + "start": 15678.06, + "end": 15678.42, + "probability": 0.6294 + }, + { + "start": 15678.58, + "end": 15681.1, + "probability": 0.8507 + }, + { + "start": 15681.18, + "end": 15682.94, + "probability": 0.8339 + }, + { + "start": 15684.12, + "end": 15686.18, + "probability": 0.9797 + }, + { + "start": 15686.54, + "end": 15690.12, + "probability": 0.8583 + }, + { + "start": 15690.9, + "end": 15691.67, + "probability": 0.9597 + }, + { + "start": 15691.92, + "end": 15692.51, + "probability": 0.9419 + }, + { + "start": 15692.88, + "end": 15695.24, + "probability": 0.9214 + }, + { + "start": 15695.42, + "end": 15698.78, + "probability": 0.8944 + }, + { + "start": 15699.36, + "end": 15703.82, + "probability": 0.9925 + }, + { + "start": 15705.0, + "end": 15708.94, + "probability": 0.8486 + }, + { + "start": 15709.46, + "end": 15712.4, + "probability": 0.9852 + }, + { + "start": 15712.98, + "end": 15718.16, + "probability": 0.9578 + }, + { + "start": 15718.34, + "end": 15718.56, + "probability": 0.5492 + }, + { + "start": 15718.72, + "end": 15719.98, + "probability": 0.9824 + }, + { + "start": 15720.4, + "end": 15724.58, + "probability": 0.9717 + }, + { + "start": 15724.58, + "end": 15730.08, + "probability": 0.9844 + }, + { + "start": 15730.8, + "end": 15734.14, + "probability": 0.7408 + }, + { + "start": 15734.84, + "end": 15736.11, + "probability": 0.3336 + }, + { + "start": 15736.4, + "end": 15739.34, + "probability": 0.9694 + }, + { + "start": 15739.7, + "end": 15741.06, + "probability": 0.9454 + }, + { + "start": 15741.2, + "end": 15745.64, + "probability": 0.9849 + }, + { + "start": 15746.36, + "end": 15750.54, + "probability": 0.6819 + }, + { + "start": 15750.74, + "end": 15751.71, + "probability": 0.9594 + }, + { + "start": 15752.16, + "end": 15753.1, + "probability": 0.5989 + }, + { + "start": 15753.2, + "end": 15755.46, + "probability": 0.747 + }, + { + "start": 15755.52, + "end": 15756.4, + "probability": 0.6686 + }, + { + "start": 15756.96, + "end": 15760.76, + "probability": 0.9408 + }, + { + "start": 15760.89, + "end": 15765.74, + "probability": 0.9719 + }, + { + "start": 15766.26, + "end": 15767.18, + "probability": 0.7642 + }, + { + "start": 15767.76, + "end": 15774.36, + "probability": 0.9785 + }, + { + "start": 15774.7, + "end": 15775.74, + "probability": 0.9705 + }, + { + "start": 15776.26, + "end": 15778.46, + "probability": 0.8369 + }, + { + "start": 15778.94, + "end": 15782.38, + "probability": 0.9726 + }, + { + "start": 15782.74, + "end": 15783.92, + "probability": 0.974 + }, + { + "start": 15784.0, + "end": 15785.26, + "probability": 0.9145 + }, + { + "start": 15785.4, + "end": 15786.04, + "probability": 0.8928 + }, + { + "start": 15786.38, + "end": 15788.62, + "probability": 0.9907 + }, + { + "start": 15788.74, + "end": 15792.42, + "probability": 0.8118 + }, + { + "start": 15792.42, + "end": 15797.04, + "probability": 0.9907 + }, + { + "start": 15797.52, + "end": 15797.84, + "probability": 0.4458 + }, + { + "start": 15797.96, + "end": 15802.0, + "probability": 0.8889 + }, + { + "start": 15802.16, + "end": 15806.36, + "probability": 0.7843 + }, + { + "start": 15807.38, + "end": 15813.94, + "probability": 0.9818 + }, + { + "start": 15814.46, + "end": 15818.84, + "probability": 0.8997 + }, + { + "start": 15819.0, + "end": 15821.62, + "probability": 0.8193 + }, + { + "start": 15823.2, + "end": 15825.48, + "probability": 0.9805 + }, + { + "start": 15826.18, + "end": 15832.72, + "probability": 0.9475 + }, + { + "start": 15832.8, + "end": 15833.16, + "probability": 0.9712 + }, + { + "start": 15833.3, + "end": 15834.92, + "probability": 0.5879 + }, + { + "start": 15835.5, + "end": 15836.0, + "probability": 0.8177 + }, + { + "start": 15836.12, + "end": 15836.36, + "probability": 0.8991 + }, + { + "start": 15836.46, + "end": 15837.86, + "probability": 0.9602 + }, + { + "start": 15837.96, + "end": 15838.64, + "probability": 0.8153 + }, + { + "start": 15838.78, + "end": 15840.26, + "probability": 0.9748 + }, + { + "start": 15840.8, + "end": 15843.6, + "probability": 0.9894 + }, + { + "start": 15844.06, + "end": 15846.76, + "probability": 0.9822 + }, + { + "start": 15847.16, + "end": 15847.82, + "probability": 0.5418 + }, + { + "start": 15847.9, + "end": 15848.64, + "probability": 0.8899 + }, + { + "start": 15848.7, + "end": 15850.28, + "probability": 0.9575 + }, + { + "start": 15850.64, + "end": 15852.43, + "probability": 0.791 + }, + { + "start": 15853.1, + "end": 15856.09, + "probability": 0.9565 + }, + { + "start": 15856.4, + "end": 15858.84, + "probability": 0.9951 + }, + { + "start": 15859.2, + "end": 15861.38, + "probability": 0.9162 + }, + { + "start": 15861.76, + "end": 15866.08, + "probability": 0.9738 + }, + { + "start": 15866.3, + "end": 15867.12, + "probability": 0.7503 + }, + { + "start": 15867.44, + "end": 15869.26, + "probability": 0.9932 + }, + { + "start": 15869.26, + "end": 15872.5, + "probability": 0.9921 + }, + { + "start": 15873.22, + "end": 15875.22, + "probability": 0.5916 + }, + { + "start": 15875.28, + "end": 15876.62, + "probability": 0.7687 + }, + { + "start": 15876.98, + "end": 15879.66, + "probability": 0.9907 + }, + { + "start": 15879.66, + "end": 15883.47, + "probability": 0.9829 + }, + { + "start": 15883.82, + "end": 15886.12, + "probability": 0.8607 + }, + { + "start": 15886.52, + "end": 15890.52, + "probability": 0.9963 + }, + { + "start": 15890.64, + "end": 15891.04, + "probability": 0.7247 + }, + { + "start": 15891.88, + "end": 15893.38, + "probability": 0.6133 + }, + { + "start": 15894.28, + "end": 15896.34, + "probability": 0.7083 + }, + { + "start": 15897.84, + "end": 15898.68, + "probability": 0.9279 + }, + { + "start": 15899.64, + "end": 15900.58, + "probability": 0.6241 + }, + { + "start": 15911.34, + "end": 15911.6, + "probability": 0.6826 + }, + { + "start": 15919.8, + "end": 15920.06, + "probability": 0.2608 + }, + { + "start": 15920.12, + "end": 15920.54, + "probability": 0.3795 + }, + { + "start": 15920.54, + "end": 15921.5, + "probability": 0.7527 + }, + { + "start": 15921.66, + "end": 15923.66, + "probability": 0.5728 + }, + { + "start": 15923.72, + "end": 15927.06, + "probability": 0.9132 + }, + { + "start": 15927.06, + "end": 15927.86, + "probability": 0.9215 + }, + { + "start": 15929.3, + "end": 15930.86, + "probability": 0.79 + }, + { + "start": 15931.34, + "end": 15935.92, + "probability": 0.9152 + }, + { + "start": 15935.92, + "end": 15941.76, + "probability": 0.9258 + }, + { + "start": 15943.08, + "end": 15947.82, + "probability": 0.9655 + }, + { + "start": 15949.2, + "end": 15950.06, + "probability": 0.9611 + }, + { + "start": 15952.86, + "end": 15954.66, + "probability": 0.8193 + }, + { + "start": 15955.26, + "end": 15957.68, + "probability": 0.9884 + }, + { + "start": 15958.36, + "end": 15959.4, + "probability": 0.8651 + }, + { + "start": 15959.56, + "end": 15963.14, + "probability": 0.9655 + }, + { + "start": 15963.34, + "end": 15964.58, + "probability": 0.9377 + }, + { + "start": 15965.72, + "end": 15972.34, + "probability": 0.9004 + }, + { + "start": 15972.6, + "end": 15976.26, + "probability": 0.9136 + }, + { + "start": 15976.32, + "end": 15978.06, + "probability": 0.9971 + }, + { + "start": 15978.98, + "end": 15982.24, + "probability": 0.9683 + }, + { + "start": 15982.24, + "end": 15985.62, + "probability": 0.8895 + }, + { + "start": 15986.88, + "end": 15990.98, + "probability": 0.9584 + }, + { + "start": 15991.16, + "end": 15993.3, + "probability": 0.9751 + }, + { + "start": 15993.38, + "end": 15994.32, + "probability": 0.7449 + }, + { + "start": 15994.68, + "end": 15996.04, + "probability": 0.9976 + }, + { + "start": 15997.2, + "end": 15998.2, + "probability": 0.9077 + }, + { + "start": 15999.1, + "end": 16000.9, + "probability": 0.7365 + }, + { + "start": 16001.6, + "end": 16005.98, + "probability": 0.992 + }, + { + "start": 16005.98, + "end": 16010.3, + "probability": 0.7988 + }, + { + "start": 16010.58, + "end": 16015.26, + "probability": 0.9394 + }, + { + "start": 16015.4, + "end": 16017.94, + "probability": 0.8158 + }, + { + "start": 16018.8, + "end": 16021.32, + "probability": 0.9976 + }, + { + "start": 16021.32, + "end": 16023.94, + "probability": 0.9745 + }, + { + "start": 16024.14, + "end": 16026.06, + "probability": 0.9525 + }, + { + "start": 16026.06, + "end": 16026.9, + "probability": 0.7235 + }, + { + "start": 16027.46, + "end": 16030.94, + "probability": 0.946 + }, + { + "start": 16031.56, + "end": 16035.42, + "probability": 0.9327 + }, + { + "start": 16035.52, + "end": 16040.84, + "probability": 0.666 + }, + { + "start": 16041.62, + "end": 16043.48, + "probability": 0.8535 + }, + { + "start": 16044.0, + "end": 16046.54, + "probability": 0.4032 + }, + { + "start": 16047.18, + "end": 16049.74, + "probability": 0.9298 + }, + { + "start": 16051.88, + "end": 16053.88, + "probability": 0.94 + }, + { + "start": 16053.92, + "end": 16054.78, + "probability": 0.677 + }, + { + "start": 16054.86, + "end": 16055.88, + "probability": 0.3593 + }, + { + "start": 16056.24, + "end": 16061.16, + "probability": 0.9654 + }, + { + "start": 16061.26, + "end": 16065.64, + "probability": 0.7491 + }, + { + "start": 16066.3, + "end": 16067.75, + "probability": 0.7199 + }, + { + "start": 16068.36, + "end": 16072.54, + "probability": 0.6373 + }, + { + "start": 16073.7, + "end": 16077.51, + "probability": 0.6645 + }, + { + "start": 16078.04, + "end": 16079.0, + "probability": 0.6865 + }, + { + "start": 16079.0, + "end": 16080.66, + "probability": 0.8743 + }, + { + "start": 16081.3, + "end": 16081.88, + "probability": 0.4311 + }, + { + "start": 16081.92, + "end": 16083.66, + "probability": 0.4948 + }, + { + "start": 16083.76, + "end": 16088.4, + "probability": 0.9368 + }, + { + "start": 16088.84, + "end": 16090.28, + "probability": 0.6126 + }, + { + "start": 16092.06, + "end": 16094.98, + "probability": 0.9446 + }, + { + "start": 16095.06, + "end": 16095.64, + "probability": 0.8501 + }, + { + "start": 16095.64, + "end": 16098.96, + "probability": 0.9665 + }, + { + "start": 16099.04, + "end": 16100.42, + "probability": 0.9937 + }, + { + "start": 16101.3, + "end": 16104.28, + "probability": 0.8687 + }, + { + "start": 16104.42, + "end": 16106.52, + "probability": 0.8087 + }, + { + "start": 16106.78, + "end": 16107.74, + "probability": 0.3358 + }, + { + "start": 16108.3, + "end": 16110.58, + "probability": 0.9968 + }, + { + "start": 16111.32, + "end": 16114.92, + "probability": 0.8121 + }, + { + "start": 16115.46, + "end": 16120.14, + "probability": 0.9666 + }, + { + "start": 16120.3, + "end": 16120.68, + "probability": 0.2214 + }, + { + "start": 16120.76, + "end": 16122.3, + "probability": 0.8766 + }, + { + "start": 16123.0, + "end": 16125.37, + "probability": 0.9218 + }, + { + "start": 16125.66, + "end": 16130.34, + "probability": 0.9855 + }, + { + "start": 16132.48, + "end": 16136.87, + "probability": 0.9888 + }, + { + "start": 16137.38, + "end": 16138.17, + "probability": 0.6509 + }, + { + "start": 16138.5, + "end": 16139.06, + "probability": 0.7562 + }, + { + "start": 16140.09, + "end": 16141.84, + "probability": 0.8531 + }, + { + "start": 16141.98, + "end": 16146.24, + "probability": 0.9324 + }, + { + "start": 16146.36, + "end": 16151.28, + "probability": 0.9547 + }, + { + "start": 16151.56, + "end": 16155.74, + "probability": 0.8515 + }, + { + "start": 16158.42, + "end": 16160.56, + "probability": 0.7617 + }, + { + "start": 16161.44, + "end": 16161.98, + "probability": 0.6368 + }, + { + "start": 16162.3, + "end": 16163.84, + "probability": 0.9875 + }, + { + "start": 16164.22, + "end": 16165.8, + "probability": 0.9853 + }, + { + "start": 16166.08, + "end": 16167.82, + "probability": 0.9973 + }, + { + "start": 16168.38, + "end": 16172.32, + "probability": 0.9678 + }, + { + "start": 16173.74, + "end": 16175.96, + "probability": 0.925 + }, + { + "start": 16177.2, + "end": 16178.78, + "probability": 0.7854 + }, + { + "start": 16179.14, + "end": 16180.78, + "probability": 0.735 + }, + { + "start": 16181.48, + "end": 16186.34, + "probability": 0.9287 + }, + { + "start": 16186.9, + "end": 16190.38, + "probability": 0.9601 + }, + { + "start": 16191.62, + "end": 16192.94, + "probability": 0.8966 + }, + { + "start": 16193.58, + "end": 16196.98, + "probability": 0.9724 + }, + { + "start": 16197.52, + "end": 16200.38, + "probability": 0.7474 + }, + { + "start": 16200.52, + "end": 16202.98, + "probability": 0.896 + }, + { + "start": 16203.06, + "end": 16204.54, + "probability": 0.9795 + }, + { + "start": 16204.76, + "end": 16207.24, + "probability": 0.9982 + }, + { + "start": 16207.32, + "end": 16208.18, + "probability": 0.9004 + }, + { + "start": 16208.28, + "end": 16210.5, + "probability": 0.6377 + }, + { + "start": 16210.56, + "end": 16211.68, + "probability": 0.8264 + }, + { + "start": 16212.14, + "end": 16216.6, + "probability": 0.9733 + }, + { + "start": 16217.98, + "end": 16219.68, + "probability": 0.8617 + }, + { + "start": 16221.92, + "end": 16224.08, + "probability": 0.9748 + }, + { + "start": 16224.2, + "end": 16229.54, + "probability": 0.9951 + }, + { + "start": 16231.0, + "end": 16234.64, + "probability": 0.9567 + }, + { + "start": 16234.74, + "end": 16236.14, + "probability": 0.9914 + }, + { + "start": 16236.78, + "end": 16240.12, + "probability": 0.8384 + }, + { + "start": 16240.16, + "end": 16241.16, + "probability": 0.9692 + }, + { + "start": 16241.84, + "end": 16244.1, + "probability": 0.9515 + }, + { + "start": 16247.04, + "end": 16248.54, + "probability": 0.6564 + }, + { + "start": 16250.22, + "end": 16254.52, + "probability": 0.9375 + }, + { + "start": 16255.24, + "end": 16259.54, + "probability": 0.983 + }, + { + "start": 16259.64, + "end": 16260.02, + "probability": 0.5582 + }, + { + "start": 16260.12, + "end": 16262.62, + "probability": 0.7475 + }, + { + "start": 16262.92, + "end": 16266.24, + "probability": 0.9974 + }, + { + "start": 16268.92, + "end": 16270.36, + "probability": 0.5872 + }, + { + "start": 16271.08, + "end": 16276.26, + "probability": 0.9971 + }, + { + "start": 16277.44, + "end": 16278.02, + "probability": 0.9246 + }, + { + "start": 16278.8, + "end": 16279.66, + "probability": 0.8648 + }, + { + "start": 16280.54, + "end": 16283.42, + "probability": 0.9797 + }, + { + "start": 16285.8, + "end": 16286.46, + "probability": 0.4913 + }, + { + "start": 16286.92, + "end": 16288.68, + "probability": 0.4609 + }, + { + "start": 16289.02, + "end": 16289.54, + "probability": 0.3799 + }, + { + "start": 16289.68, + "end": 16291.58, + "probability": 0.9946 + }, + { + "start": 16291.7, + "end": 16292.82, + "probability": 0.8173 + }, + { + "start": 16293.0, + "end": 16294.88, + "probability": 0.9572 + }, + { + "start": 16295.04, + "end": 16296.74, + "probability": 0.9967 + }, + { + "start": 16297.54, + "end": 16299.18, + "probability": 0.93 + }, + { + "start": 16300.12, + "end": 16301.14, + "probability": 0.9717 + }, + { + "start": 16302.14, + "end": 16303.26, + "probability": 0.9443 + }, + { + "start": 16303.32, + "end": 16304.42, + "probability": 0.8372 + }, + { + "start": 16304.82, + "end": 16309.24, + "probability": 0.9626 + }, + { + "start": 16309.92, + "end": 16313.6, + "probability": 0.9802 + }, + { + "start": 16314.14, + "end": 16317.36, + "probability": 0.9926 + }, + { + "start": 16317.52, + "end": 16318.88, + "probability": 0.9238 + }, + { + "start": 16319.94, + "end": 16325.62, + "probability": 0.8049 + }, + { + "start": 16325.74, + "end": 16329.12, + "probability": 0.9941 + }, + { + "start": 16330.34, + "end": 16333.86, + "probability": 0.9958 + }, + { + "start": 16334.44, + "end": 16337.32, + "probability": 0.5644 + }, + { + "start": 16338.82, + "end": 16339.62, + "probability": 0.4654 + }, + { + "start": 16340.38, + "end": 16340.38, + "probability": 0.5795 + }, + { + "start": 16340.4, + "end": 16341.42, + "probability": 0.9717 + }, + { + "start": 16341.9, + "end": 16343.11, + "probability": 0.7192 + }, + { + "start": 16343.84, + "end": 16345.2, + "probability": 0.8467 + }, + { + "start": 16347.26, + "end": 16347.84, + "probability": 0.1374 + }, + { + "start": 16349.39, + "end": 16352.3, + "probability": 0.2175 + }, + { + "start": 16355.42, + "end": 16357.84, + "probability": 0.2187 + }, + { + "start": 16357.96, + "end": 16359.06, + "probability": 0.246 + }, + { + "start": 16359.24, + "end": 16363.18, + "probability": 0.7396 + }, + { + "start": 16364.24, + "end": 16364.72, + "probability": 0.6155 + }, + { + "start": 16364.8, + "end": 16366.02, + "probability": 0.8005 + }, + { + "start": 16366.1, + "end": 16367.3, + "probability": 0.6849 + }, + { + "start": 16367.76, + "end": 16369.58, + "probability": 0.6496 + }, + { + "start": 16370.14, + "end": 16377.14, + "probability": 0.2751 + }, + { + "start": 16377.76, + "end": 16379.98, + "probability": 0.0397 + }, + { + "start": 16380.14, + "end": 16380.18, + "probability": 0.011 + }, + { + "start": 16383.36, + "end": 16383.78, + "probability": 0.2206 + }, + { + "start": 16387.1, + "end": 16388.52, + "probability": 0.607 + }, + { + "start": 16388.62, + "end": 16394.02, + "probability": 0.8647 + }, + { + "start": 16394.02, + "end": 16397.36, + "probability": 0.7832 + }, + { + "start": 16397.56, + "end": 16400.54, + "probability": 0.6573 + }, + { + "start": 16401.18, + "end": 16401.58, + "probability": 0.3968 + }, + { + "start": 16401.6, + "end": 16404.6, + "probability": 0.7965 + }, + { + "start": 16404.72, + "end": 16407.7, + "probability": 0.8168 + }, + { + "start": 16407.7, + "end": 16411.64, + "probability": 0.8138 + }, + { + "start": 16411.78, + "end": 16412.8, + "probability": 0.1675 + }, + { + "start": 16413.26, + "end": 16415.48, + "probability": 0.9015 + }, + { + "start": 16415.74, + "end": 16418.64, + "probability": 0.908 + }, + { + "start": 16419.5, + "end": 16421.44, + "probability": 0.8774 + }, + { + "start": 16421.94, + "end": 16423.92, + "probability": 0.0401 + }, + { + "start": 16429.76, + "end": 16430.56, + "probability": 0.3294 + }, + { + "start": 16431.3, + "end": 16432.88, + "probability": 0.4696 + }, + { + "start": 16433.9, + "end": 16434.36, + "probability": 0.7788 + }, + { + "start": 16434.46, + "end": 16437.95, + "probability": 0.9712 + }, + { + "start": 16439.16, + "end": 16441.94, + "probability": 0.9888 + }, + { + "start": 16442.06, + "end": 16442.24, + "probability": 0.515 + }, + { + "start": 16442.36, + "end": 16443.84, + "probability": 0.9225 + }, + { + "start": 16444.18, + "end": 16445.13, + "probability": 0.8003 + }, + { + "start": 16446.04, + "end": 16449.62, + "probability": 0.8118 + }, + { + "start": 16450.06, + "end": 16452.06, + "probability": 0.3704 + }, + { + "start": 16452.62, + "end": 16454.86, + "probability": 0.7675 + }, + { + "start": 16454.9, + "end": 16454.9, + "probability": 0.2444 + }, + { + "start": 16454.98, + "end": 16458.13, + "probability": 0.2791 + }, + { + "start": 16458.66, + "end": 16466.04, + "probability": 0.9922 + }, + { + "start": 16466.14, + "end": 16470.94, + "probability": 0.9087 + }, + { + "start": 16471.56, + "end": 16476.0, + "probability": 0.9609 + }, + { + "start": 16477.38, + "end": 16480.06, + "probability": 0.9423 + }, + { + "start": 16480.54, + "end": 16487.52, + "probability": 0.9127 + }, + { + "start": 16487.6, + "end": 16495.68, + "probability": 0.9216 + }, + { + "start": 16496.14, + "end": 16498.36, + "probability": 0.9348 + }, + { + "start": 16498.64, + "end": 16503.98, + "probability": 0.9494 + }, + { + "start": 16504.52, + "end": 16507.46, + "probability": 0.9747 + }, + { + "start": 16507.74, + "end": 16508.26, + "probability": 0.6866 + }, + { + "start": 16508.28, + "end": 16510.42, + "probability": 0.9902 + }, + { + "start": 16510.44, + "end": 16510.85, + "probability": 0.729 + }, + { + "start": 16512.54, + "end": 16516.04, + "probability": 0.3433 + }, + { + "start": 16516.88, + "end": 16520.1, + "probability": 0.8735 + }, + { + "start": 16520.42, + "end": 16522.48, + "probability": 0.9409 + }, + { + "start": 16523.14, + "end": 16524.48, + "probability": 0.9259 + }, + { + "start": 16524.58, + "end": 16531.92, + "probability": 0.9116 + }, + { + "start": 16532.2, + "end": 16536.5, + "probability": 0.8721 + }, + { + "start": 16536.58, + "end": 16538.72, + "probability": 0.9941 + }, + { + "start": 16539.26, + "end": 16541.27, + "probability": 0.8524 + }, + { + "start": 16541.86, + "end": 16544.16, + "probability": 0.8947 + }, + { + "start": 16544.54, + "end": 16547.18, + "probability": 0.8896 + }, + { + "start": 16547.6, + "end": 16555.84, + "probability": 0.9774 + }, + { + "start": 16556.36, + "end": 16562.28, + "probability": 0.9962 + }, + { + "start": 16562.28, + "end": 16568.44, + "probability": 0.9958 + }, + { + "start": 16569.4, + "end": 16572.42, + "probability": 0.9049 + }, + { + "start": 16573.1, + "end": 16576.94, + "probability": 0.6218 + }, + { + "start": 16577.96, + "end": 16579.05, + "probability": 0.9716 + }, + { + "start": 16579.74, + "end": 16581.4, + "probability": 0.6671 + }, + { + "start": 16581.86, + "end": 16582.82, + "probability": 0.6977 + }, + { + "start": 16583.2, + "end": 16584.72, + "probability": 0.9099 + }, + { + "start": 16584.84, + "end": 16590.58, + "probability": 0.9825 + }, + { + "start": 16590.68, + "end": 16594.7, + "probability": 0.9676 + }, + { + "start": 16594.94, + "end": 16597.2, + "probability": 0.995 + }, + { + "start": 16597.68, + "end": 16599.18, + "probability": 0.8983 + }, + { + "start": 16599.48, + "end": 16600.54, + "probability": 0.5437 + }, + { + "start": 16600.6, + "end": 16602.24, + "probability": 0.8881 + }, + { + "start": 16602.24, + "end": 16603.78, + "probability": 0.9376 + }, + { + "start": 16604.06, + "end": 16606.34, + "probability": 0.9478 + }, + { + "start": 16606.8, + "end": 16609.22, + "probability": 0.9893 + }, + { + "start": 16609.66, + "end": 16614.68, + "probability": 0.9683 + }, + { + "start": 16614.82, + "end": 16615.26, + "probability": 0.7175 + }, + { + "start": 16615.38, + "end": 16617.16, + "probability": 0.9953 + }, + { + "start": 16617.7, + "end": 16619.09, + "probability": 0.0682 + }, + { + "start": 16619.86, + "end": 16621.88, + "probability": 0.9945 + }, + { + "start": 16622.52, + "end": 16626.12, + "probability": 0.8305 + }, + { + "start": 16626.28, + "end": 16627.2, + "probability": 0.8633 + }, + { + "start": 16627.8, + "end": 16629.53, + "probability": 0.9969 + }, + { + "start": 16630.04, + "end": 16633.52, + "probability": 0.8873 + }, + { + "start": 16633.62, + "end": 16635.2, + "probability": 0.9839 + }, + { + "start": 16635.88, + "end": 16641.86, + "probability": 0.8734 + }, + { + "start": 16642.3, + "end": 16643.24, + "probability": 0.9433 + }, + { + "start": 16643.26, + "end": 16644.9, + "probability": 0.9835 + }, + { + "start": 16645.22, + "end": 16648.5, + "probability": 0.9799 + }, + { + "start": 16648.5, + "end": 16652.32, + "probability": 0.9867 + }, + { + "start": 16652.48, + "end": 16653.5, + "probability": 0.8729 + }, + { + "start": 16654.0, + "end": 16654.72, + "probability": 0.7837 + }, + { + "start": 16654.84, + "end": 16655.18, + "probability": 0.4749 + }, + { + "start": 16655.28, + "end": 16656.44, + "probability": 0.7476 + }, + { + "start": 16656.76, + "end": 16658.52, + "probability": 0.662 + }, + { + "start": 16658.68, + "end": 16661.06, + "probability": 0.9968 + }, + { + "start": 16662.08, + "end": 16664.64, + "probability": 0.9746 + }, + { + "start": 16664.74, + "end": 16668.76, + "probability": 0.9948 + }, + { + "start": 16668.76, + "end": 16671.3, + "probability": 0.9937 + }, + { + "start": 16671.82, + "end": 16674.02, + "probability": 0.999 + }, + { + "start": 16674.38, + "end": 16679.74, + "probability": 0.9415 + }, + { + "start": 16680.4, + "end": 16681.64, + "probability": 0.988 + }, + { + "start": 16682.12, + "end": 16683.16, + "probability": 0.99 + }, + { + "start": 16683.52, + "end": 16685.09, + "probability": 0.9912 + }, + { + "start": 16685.98, + "end": 16687.4, + "probability": 0.9784 + }, + { + "start": 16687.66, + "end": 16689.04, + "probability": 0.9869 + }, + { + "start": 16689.14, + "end": 16690.84, + "probability": 0.9656 + }, + { + "start": 16691.12, + "end": 16697.1, + "probability": 0.9852 + }, + { + "start": 16698.08, + "end": 16699.8, + "probability": 0.6665 + }, + { + "start": 16700.52, + "end": 16703.0, + "probability": 0.9972 + }, + { + "start": 16703.54, + "end": 16704.48, + "probability": 0.8928 + }, + { + "start": 16704.52, + "end": 16709.84, + "probability": 0.7383 + }, + { + "start": 16710.22, + "end": 16712.54, + "probability": 0.8796 + }, + { + "start": 16712.72, + "end": 16716.16, + "probability": 0.8755 + }, + { + "start": 16716.22, + "end": 16717.22, + "probability": 0.875 + }, + { + "start": 16717.78, + "end": 16718.6, + "probability": 0.9263 + }, + { + "start": 16721.73, + "end": 16725.82, + "probability": 0.994 + }, + { + "start": 16726.18, + "end": 16727.44, + "probability": 0.9712 + }, + { + "start": 16728.22, + "end": 16729.88, + "probability": 0.9467 + }, + { + "start": 16730.36, + "end": 16733.58, + "probability": 0.8625 + }, + { + "start": 16734.14, + "end": 16735.38, + "probability": 0.9839 + }, + { + "start": 16736.14, + "end": 16737.34, + "probability": 0.889 + }, + { + "start": 16738.02, + "end": 16740.68, + "probability": 0.9758 + }, + { + "start": 16741.78, + "end": 16745.6, + "probability": 0.9559 + }, + { + "start": 16746.12, + "end": 16751.16, + "probability": 0.958 + }, + { + "start": 16751.74, + "end": 16756.04, + "probability": 0.8972 + }, + { + "start": 16756.3, + "end": 16759.6, + "probability": 0.8708 + }, + { + "start": 16760.1, + "end": 16760.86, + "probability": 0.7032 + }, + { + "start": 16761.2, + "end": 16762.42, + "probability": 0.9368 + }, + { + "start": 16762.74, + "end": 16765.38, + "probability": 0.9915 + }, + { + "start": 16765.38, + "end": 16768.46, + "probability": 0.9965 + }, + { + "start": 16772.28, + "end": 16776.42, + "probability": 0.6695 + }, + { + "start": 16779.84, + "end": 16781.09, + "probability": 0.2131 + }, + { + "start": 16781.94, + "end": 16784.05, + "probability": 0.4824 + }, + { + "start": 16784.26, + "end": 16787.9, + "probability": 0.8283 + }, + { + "start": 16787.9, + "end": 16791.52, + "probability": 0.0992 + }, + { + "start": 16791.74, + "end": 16794.82, + "probability": 0.9315 + }, + { + "start": 16794.9, + "end": 16795.74, + "probability": 0.0288 + }, + { + "start": 16795.74, + "end": 16796.46, + "probability": 0.0668 + }, + { + "start": 16796.46, + "end": 16800.13, + "probability": 0.3608 + }, + { + "start": 16800.56, + "end": 16801.42, + "probability": 0.5371 + }, + { + "start": 16801.66, + "end": 16805.0, + "probability": 0.6745 + }, + { + "start": 16805.1, + "end": 16806.16, + "probability": 0.8667 + }, + { + "start": 16806.32, + "end": 16807.74, + "probability": 0.895 + }, + { + "start": 16807.98, + "end": 16808.18, + "probability": 0.6358 + }, + { + "start": 16808.22, + "end": 16811.09, + "probability": 0.6755 + }, + { + "start": 16811.38, + "end": 16812.38, + "probability": 0.2027 + }, + { + "start": 16812.52, + "end": 16812.52, + "probability": 0.3134 + }, + { + "start": 16812.52, + "end": 16812.52, + "probability": 0.1306 + }, + { + "start": 16812.52, + "end": 16813.49, + "probability": 0.3374 + }, + { + "start": 16813.78, + "end": 16815.9, + "probability": 0.6052 + }, + { + "start": 16816.02, + "end": 16816.18, + "probability": 0.0173 + }, + { + "start": 16818.48, + "end": 16818.48, + "probability": 0.0877 + }, + { + "start": 16818.5, + "end": 16821.01, + "probability": 0.9495 + }, + { + "start": 16821.5, + "end": 16822.16, + "probability": 0.7472 + }, + { + "start": 16822.24, + "end": 16823.52, + "probability": 0.676 + }, + { + "start": 16823.64, + "end": 16823.82, + "probability": 0.594 + }, + { + "start": 16823.88, + "end": 16824.88, + "probability": 0.882 + }, + { + "start": 16825.0, + "end": 16825.4, + "probability": 0.4662 + }, + { + "start": 16825.54, + "end": 16826.6, + "probability": 0.5742 + }, + { + "start": 16826.6, + "end": 16829.04, + "probability": 0.7579 + }, + { + "start": 16829.14, + "end": 16829.22, + "probability": 0.3603 + }, + { + "start": 16829.28, + "end": 16830.52, + "probability": 0.7158 + }, + { + "start": 16830.72, + "end": 16835.54, + "probability": 0.8824 + }, + { + "start": 16835.7, + "end": 16840.14, + "probability": 0.8977 + }, + { + "start": 16840.14, + "end": 16840.48, + "probability": 0.5942 + }, + { + "start": 16840.68, + "end": 16842.42, + "probability": 0.5793 + }, + { + "start": 16842.54, + "end": 16844.87, + "probability": 0.9791 + }, + { + "start": 16844.96, + "end": 16845.83, + "probability": 0.9761 + }, + { + "start": 16845.98, + "end": 16846.48, + "probability": 0.4967 + }, + { + "start": 16846.92, + "end": 16849.18, + "probability": 0.3655 + }, + { + "start": 16849.18, + "end": 16850.54, + "probability": 0.9805 + }, + { + "start": 16850.58, + "end": 16851.18, + "probability": 0.708 + }, + { + "start": 16851.74, + "end": 16853.4, + "probability": 0.5297 + }, + { + "start": 16854.18, + "end": 16854.44, + "probability": 0.0082 + }, + { + "start": 16854.44, + "end": 16856.5, + "probability": 0.4812 + }, + { + "start": 16856.68, + "end": 16857.84, + "probability": 0.7846 + }, + { + "start": 16858.12, + "end": 16860.34, + "probability": 0.8215 + }, + { + "start": 16860.46, + "end": 16861.7, + "probability": 0.994 + }, + { + "start": 16862.04, + "end": 16862.5, + "probability": 0.9283 + }, + { + "start": 16862.68, + "end": 16863.32, + "probability": 0.9386 + }, + { + "start": 16863.4, + "end": 16864.36, + "probability": 0.6929 + }, + { + "start": 16864.5, + "end": 16866.48, + "probability": 0.9943 + }, + { + "start": 16866.52, + "end": 16870.24, + "probability": 0.9879 + }, + { + "start": 16870.62, + "end": 16873.34, + "probability": 0.8361 + }, + { + "start": 16873.6, + "end": 16878.2, + "probability": 0.981 + }, + { + "start": 16878.54, + "end": 16878.94, + "probability": 0.5181 + }, + { + "start": 16879.0, + "end": 16879.46, + "probability": 0.8208 + }, + { + "start": 16879.56, + "end": 16882.44, + "probability": 0.9557 + }, + { + "start": 16883.06, + "end": 16884.74, + "probability": 0.6995 + }, + { + "start": 16884.84, + "end": 16886.04, + "probability": 0.9087 + }, + { + "start": 16886.14, + "end": 16887.72, + "probability": 0.9458 + }, + { + "start": 16887.86, + "end": 16890.98, + "probability": 0.9864 + }, + { + "start": 16891.36, + "end": 16892.64, + "probability": 0.9314 + }, + { + "start": 16892.76, + "end": 16894.34, + "probability": 0.9794 + }, + { + "start": 16894.7, + "end": 16895.85, + "probability": 0.8602 + }, + { + "start": 16896.46, + "end": 16899.66, + "probability": 0.9839 + }, + { + "start": 16900.02, + "end": 16903.14, + "probability": 0.9865 + }, + { + "start": 16903.42, + "end": 16905.1, + "probability": 0.9843 + }, + { + "start": 16905.64, + "end": 16906.78, + "probability": 0.7097 + }, + { + "start": 16906.8, + "end": 16909.56, + "probability": 0.9126 + }, + { + "start": 16909.56, + "end": 16910.1, + "probability": 0.7738 + }, + { + "start": 16910.54, + "end": 16912.1, + "probability": 0.88 + }, + { + "start": 16912.44, + "end": 16913.74, + "probability": 0.8962 + }, + { + "start": 16913.88, + "end": 16914.94, + "probability": 0.9867 + }, + { + "start": 16915.08, + "end": 16915.76, + "probability": 0.8909 + }, + { + "start": 16915.8, + "end": 16917.78, + "probability": 0.9465 + }, + { + "start": 16918.12, + "end": 16919.1, + "probability": 0.8816 + }, + { + "start": 16919.16, + "end": 16925.34, + "probability": 0.9805 + }, + { + "start": 16925.38, + "end": 16926.9, + "probability": 0.9927 + }, + { + "start": 16927.54, + "end": 16928.76, + "probability": 0.9197 + }, + { + "start": 16929.06, + "end": 16929.42, + "probability": 0.8102 + }, + { + "start": 16929.5, + "end": 16930.66, + "probability": 0.9727 + }, + { + "start": 16930.82, + "end": 16931.4, + "probability": 0.9334 + }, + { + "start": 16931.44, + "end": 16933.12, + "probability": 0.9966 + }, + { + "start": 16933.5, + "end": 16937.14, + "probability": 0.9934 + }, + { + "start": 16937.14, + "end": 16940.0, + "probability": 0.7426 + }, + { + "start": 16940.46, + "end": 16941.66, + "probability": 0.8398 + }, + { + "start": 16941.82, + "end": 16942.98, + "probability": 0.9427 + }, + { + "start": 16943.14, + "end": 16943.96, + "probability": 0.9696 + }, + { + "start": 16944.08, + "end": 16944.9, + "probability": 0.9609 + }, + { + "start": 16944.94, + "end": 16945.9, + "probability": 0.7927 + }, + { + "start": 16946.22, + "end": 16947.48, + "probability": 0.8801 + }, + { + "start": 16948.66, + "end": 16951.04, + "probability": 0.979 + }, + { + "start": 16951.28, + "end": 16954.52, + "probability": 0.9824 + }, + { + "start": 16954.58, + "end": 16957.06, + "probability": 0.9591 + }, + { + "start": 16957.14, + "end": 16959.52, + "probability": 0.9648 + }, + { + "start": 16959.72, + "end": 16961.14, + "probability": 0.9 + }, + { + "start": 16961.5, + "end": 16963.0, + "probability": 0.9194 + }, + { + "start": 16963.26, + "end": 16965.72, + "probability": 0.7941 + }, + { + "start": 16966.3, + "end": 16970.18, + "probability": 0.8372 + }, + { + "start": 16970.48, + "end": 16973.06, + "probability": 0.9825 + }, + { + "start": 16973.08, + "end": 16973.72, + "probability": 0.8619 + }, + { + "start": 16973.9, + "end": 16974.6, + "probability": 0.6219 + }, + { + "start": 16974.9, + "end": 16975.12, + "probability": 0.7207 + }, + { + "start": 16975.18, + "end": 16976.74, + "probability": 0.9951 + }, + { + "start": 16976.76, + "end": 16979.8, + "probability": 0.9945 + }, + { + "start": 16980.04, + "end": 16981.72, + "probability": 0.5564 + }, + { + "start": 16981.8, + "end": 16982.3, + "probability": 0.5521 + }, + { + "start": 16982.48, + "end": 16983.1, + "probability": 0.9333 + }, + { + "start": 16983.26, + "end": 16986.84, + "probability": 0.9905 + }, + { + "start": 16987.16, + "end": 16988.94, + "probability": 0.9264 + }, + { + "start": 16989.6, + "end": 16992.52, + "probability": 0.9347 + }, + { + "start": 16993.98, + "end": 16996.54, + "probability": 0.9764 + }, + { + "start": 16997.06, + "end": 16999.32, + "probability": 0.9129 + }, + { + "start": 16999.92, + "end": 17003.3, + "probability": 0.7701 + }, + { + "start": 17003.3, + "end": 17006.12, + "probability": 0.8996 + }, + { + "start": 17006.5, + "end": 17008.52, + "probability": 0.9779 + }, + { + "start": 17008.68, + "end": 17009.72, + "probability": 0.4692 + }, + { + "start": 17010.06, + "end": 17015.98, + "probability": 0.9177 + }, + { + "start": 17016.42, + "end": 17017.34, + "probability": 0.7757 + }, + { + "start": 17017.42, + "end": 17019.68, + "probability": 0.8673 + }, + { + "start": 17020.1, + "end": 17022.12, + "probability": 0.8275 + }, + { + "start": 17022.48, + "end": 17025.62, + "probability": 0.9375 + }, + { + "start": 17026.1, + "end": 17029.36, + "probability": 0.9936 + }, + { + "start": 17030.35, + "end": 17032.94, + "probability": 0.8934 + }, + { + "start": 17033.64, + "end": 17035.14, + "probability": 0.7474 + }, + { + "start": 17035.56, + "end": 17037.08, + "probability": 0.9838 + }, + { + "start": 17037.4, + "end": 17039.76, + "probability": 0.9604 + }, + { + "start": 17040.32, + "end": 17041.56, + "probability": 0.9781 + }, + { + "start": 17042.3, + "end": 17042.74, + "probability": 0.8229 + }, + { + "start": 17043.1, + "end": 17044.54, + "probability": 0.9992 + }, + { + "start": 17044.68, + "end": 17044.88, + "probability": 0.5281 + }, + { + "start": 17044.92, + "end": 17046.0, + "probability": 0.9084 + }, + { + "start": 17046.3, + "end": 17047.66, + "probability": 0.959 + }, + { + "start": 17047.8, + "end": 17049.18, + "probability": 0.9917 + }, + { + "start": 17049.48, + "end": 17050.64, + "probability": 0.3983 + }, + { + "start": 17050.64, + "end": 17052.66, + "probability": 0.9878 + }, + { + "start": 17053.22, + "end": 17056.1, + "probability": 0.9906 + }, + { + "start": 17056.62, + "end": 17060.28, + "probability": 0.896 + }, + { + "start": 17060.98, + "end": 17063.52, + "probability": 0.9951 + }, + { + "start": 17064.02, + "end": 17066.82, + "probability": 0.9863 + }, + { + "start": 17067.02, + "end": 17067.12, + "probability": 0.5916 + }, + { + "start": 17067.12, + "end": 17070.14, + "probability": 0.9819 + }, + { + "start": 17070.52, + "end": 17072.3, + "probability": 0.9687 + }, + { + "start": 17072.66, + "end": 17074.78, + "probability": 0.9643 + }, + { + "start": 17074.86, + "end": 17075.38, + "probability": 0.673 + }, + { + "start": 17075.78, + "end": 17077.35, + "probability": 0.6965 + }, + { + "start": 17077.64, + "end": 17079.59, + "probability": 0.8065 + }, + { + "start": 17080.2, + "end": 17081.26, + "probability": 0.1592 + }, + { + "start": 17081.92, + "end": 17081.92, + "probability": 0.0171 + }, + { + "start": 17083.32, + "end": 17086.98, + "probability": 0.1855 + }, + { + "start": 17089.46, + "end": 17091.46, + "probability": 0.6588 + }, + { + "start": 17092.78, + "end": 17095.98, + "probability": 0.6128 + }, + { + "start": 17096.14, + "end": 17096.14, + "probability": 0.4066 + }, + { + "start": 17096.14, + "end": 17097.46, + "probability": 0.6681 + }, + { + "start": 17097.58, + "end": 17103.7, + "probability": 0.9744 + }, + { + "start": 17104.72, + "end": 17110.96, + "probability": 0.9847 + }, + { + "start": 17111.76, + "end": 17115.92, + "probability": 0.9722 + }, + { + "start": 17115.96, + "end": 17120.66, + "probability": 0.9966 + }, + { + "start": 17120.8, + "end": 17124.83, + "probability": 0.9725 + }, + { + "start": 17125.5, + "end": 17133.58, + "probability": 0.9829 + }, + { + "start": 17134.44, + "end": 17135.91, + "probability": 0.9297 + }, + { + "start": 17137.34, + "end": 17140.7, + "probability": 0.6879 + }, + { + "start": 17140.82, + "end": 17142.28, + "probability": 0.9532 + }, + { + "start": 17142.4, + "end": 17145.82, + "probability": 0.9841 + }, + { + "start": 17146.18, + "end": 17147.69, + "probability": 0.9224 + }, + { + "start": 17148.44, + "end": 17149.98, + "probability": 0.999 + }, + { + "start": 17152.01, + "end": 17155.99, + "probability": 0.9662 + }, + { + "start": 17156.96, + "end": 17161.1, + "probability": 0.9807 + }, + { + "start": 17161.26, + "end": 17166.02, + "probability": 0.9932 + }, + { + "start": 17166.02, + "end": 17173.78, + "probability": 0.9731 + }, + { + "start": 17174.2, + "end": 17174.74, + "probability": 0.4015 + }, + { + "start": 17175.54, + "end": 17176.16, + "probability": 0.8861 + }, + { + "start": 17176.26, + "end": 17177.08, + "probability": 0.8925 + }, + { + "start": 17177.6, + "end": 17179.18, + "probability": 0.9069 + }, + { + "start": 17180.38, + "end": 17184.12, + "probability": 0.793 + }, + { + "start": 17184.8, + "end": 17186.42, + "probability": 0.9637 + }, + { + "start": 17186.62, + "end": 17192.04, + "probability": 0.9799 + }, + { + "start": 17192.14, + "end": 17192.34, + "probability": 0.2954 + }, + { + "start": 17192.5, + "end": 17195.18, + "probability": 0.8092 + }, + { + "start": 17196.14, + "end": 17199.72, + "probability": 0.8942 + }, + { + "start": 17199.72, + "end": 17203.84, + "probability": 0.9441 + }, + { + "start": 17204.46, + "end": 17211.56, + "probability": 0.9807 + }, + { + "start": 17212.04, + "end": 17212.52, + "probability": 0.433 + }, + { + "start": 17212.7, + "end": 17215.92, + "probability": 0.9924 + }, + { + "start": 17215.92, + "end": 17221.0, + "probability": 0.9552 + }, + { + "start": 17221.18, + "end": 17221.82, + "probability": 0.8593 + }, + { + "start": 17221.88, + "end": 17229.28, + "probability": 0.9439 + }, + { + "start": 17229.42, + "end": 17229.86, + "probability": 0.4323 + }, + { + "start": 17229.88, + "end": 17233.62, + "probability": 0.9748 + }, + { + "start": 17234.4, + "end": 17239.88, + "probability": 0.9801 + }, + { + "start": 17239.88, + "end": 17245.44, + "probability": 0.9913 + }, + { + "start": 17246.18, + "end": 17250.62, + "probability": 0.9542 + }, + { + "start": 17251.18, + "end": 17254.8, + "probability": 0.9945 + }, + { + "start": 17254.8, + "end": 17260.16, + "probability": 0.9011 + }, + { + "start": 17260.38, + "end": 17262.15, + "probability": 0.9982 + }, + { + "start": 17262.92, + "end": 17269.38, + "probability": 0.9932 + }, + { + "start": 17270.66, + "end": 17271.72, + "probability": 0.778 + }, + { + "start": 17271.84, + "end": 17278.48, + "probability": 0.918 + }, + { + "start": 17279.36, + "end": 17282.68, + "probability": 0.9878 + }, + { + "start": 17282.74, + "end": 17288.12, + "probability": 0.984 + }, + { + "start": 17288.5, + "end": 17290.5, + "probability": 0.9856 + }, + { + "start": 17291.26, + "end": 17293.12, + "probability": 0.9987 + }, + { + "start": 17293.38, + "end": 17293.7, + "probability": 0.6999 + }, + { + "start": 17294.4, + "end": 17294.98, + "probability": 0.5246 + }, + { + "start": 17295.3, + "end": 17298.24, + "probability": 0.3566 + }, + { + "start": 17298.44, + "end": 17299.88, + "probability": 0.2786 + }, + { + "start": 17299.92, + "end": 17301.92, + "probability": 0.1685 + }, + { + "start": 17301.92, + "end": 17304.27, + "probability": 0.4431 + }, + { + "start": 17304.88, + "end": 17305.8, + "probability": 0.645 + }, + { + "start": 17305.9, + "end": 17307.62, + "probability": 0.2755 + }, + { + "start": 17308.24, + "end": 17311.16, + "probability": 0.8428 + }, + { + "start": 17311.24, + "end": 17313.42, + "probability": 0.9935 + }, + { + "start": 17313.78, + "end": 17314.83, + "probability": 0.9863 + }, + { + "start": 17315.48, + "end": 17319.48, + "probability": 0.9111 + }, + { + "start": 17319.66, + "end": 17324.32, + "probability": 0.9946 + }, + { + "start": 17324.86, + "end": 17329.44, + "probability": 0.9834 + }, + { + "start": 17330.2, + "end": 17335.02, + "probability": 0.9357 + }, + { + "start": 17335.18, + "end": 17335.5, + "probability": 0.8617 + }, + { + "start": 17335.64, + "end": 17336.68, + "probability": 0.9246 + }, + { + "start": 17336.72, + "end": 17339.78, + "probability": 0.8873 + }, + { + "start": 17340.1, + "end": 17340.78, + "probability": 0.4265 + }, + { + "start": 17340.92, + "end": 17345.36, + "probability": 0.9329 + }, + { + "start": 17345.36, + "end": 17350.08, + "probability": 0.7987 + }, + { + "start": 17350.22, + "end": 17351.2, + "probability": 0.6387 + }, + { + "start": 17351.24, + "end": 17352.68, + "probability": 0.7045 + }, + { + "start": 17352.7, + "end": 17354.24, + "probability": 0.7617 + }, + { + "start": 17354.3, + "end": 17355.74, + "probability": 0.9097 + }, + { + "start": 17356.08, + "end": 17356.66, + "probability": 0.8731 + }, + { + "start": 17356.74, + "end": 17360.16, + "probability": 0.9575 + }, + { + "start": 17360.36, + "end": 17361.78, + "probability": 0.9932 + }, + { + "start": 17362.04, + "end": 17363.74, + "probability": 0.9941 + }, + { + "start": 17363.82, + "end": 17367.8, + "probability": 0.9979 + }, + { + "start": 17367.8, + "end": 17371.6, + "probability": 0.9954 + }, + { + "start": 17371.6, + "end": 17375.16, + "probability": 0.9976 + }, + { + "start": 17375.36, + "end": 17378.26, + "probability": 0.9739 + }, + { + "start": 17378.58, + "end": 17383.98, + "probability": 0.9542 + }, + { + "start": 17384.04, + "end": 17385.13, + "probability": 0.9247 + }, + { + "start": 17385.34, + "end": 17385.92, + "probability": 0.9713 + }, + { + "start": 17386.0, + "end": 17386.9, + "probability": 0.8458 + }, + { + "start": 17387.16, + "end": 17389.76, + "probability": 0.9854 + }, + { + "start": 17389.82, + "end": 17394.34, + "probability": 0.9951 + }, + { + "start": 17394.96, + "end": 17396.8, + "probability": 0.6757 + }, + { + "start": 17397.54, + "end": 17399.9, + "probability": 0.9489 + }, + { + "start": 17400.44, + "end": 17402.32, + "probability": 0.6695 + }, + { + "start": 17402.72, + "end": 17405.92, + "probability": 0.7398 + }, + { + "start": 17406.02, + "end": 17407.5, + "probability": 0.9482 + }, + { + "start": 17407.68, + "end": 17409.22, + "probability": 0.9338 + }, + { + "start": 17409.6, + "end": 17411.24, + "probability": 0.9753 + }, + { + "start": 17411.42, + "end": 17415.9, + "probability": 0.9601 + }, + { + "start": 17415.9, + "end": 17418.16, + "probability": 0.9932 + }, + { + "start": 17418.16, + "end": 17422.58, + "probability": 0.8684 + }, + { + "start": 17422.86, + "end": 17425.34, + "probability": 0.9932 + }, + { + "start": 17425.92, + "end": 17431.54, + "probability": 0.9974 + }, + { + "start": 17431.54, + "end": 17435.66, + "probability": 0.9954 + }, + { + "start": 17435.84, + "end": 17437.68, + "probability": 0.8152 + }, + { + "start": 17438.16, + "end": 17440.36, + "probability": 0.9984 + }, + { + "start": 17440.82, + "end": 17445.78, + "probability": 0.9946 + }, + { + "start": 17445.98, + "end": 17446.8, + "probability": 0.7763 + }, + { + "start": 17447.34, + "end": 17449.82, + "probability": 0.9515 + }, + { + "start": 17449.96, + "end": 17450.22, + "probability": 0.8198 + }, + { + "start": 17451.14, + "end": 17452.02, + "probability": 0.7102 + }, + { + "start": 17452.14, + "end": 17453.96, + "probability": 0.6423 + }, + { + "start": 17455.17, + "end": 17458.02, + "probability": 0.0343 + }, + { + "start": 17458.02, + "end": 17461.86, + "probability": 0.0198 + }, + { + "start": 17482.98, + "end": 17488.32, + "probability": 0.4686 + }, + { + "start": 17488.48, + "end": 17489.38, + "probability": 0.2021 + }, + { + "start": 17489.54, + "end": 17490.26, + "probability": 0.7178 + }, + { + "start": 17490.98, + "end": 17493.64, + "probability": 0.3798 + }, + { + "start": 17493.64, + "end": 17497.86, + "probability": 0.7456 + }, + { + "start": 17498.59, + "end": 17503.58, + "probability": 0.0447 + }, + { + "start": 17503.58, + "end": 17504.78, + "probability": 0.069 + }, + { + "start": 17504.78, + "end": 17506.78, + "probability": 0.0265 + }, + { + "start": 17508.02, + "end": 17508.14, + "probability": 0.024 + }, + { + "start": 17511.08, + "end": 17512.0, + "probability": 0.1281 + }, + { + "start": 17512.68, + "end": 17513.44, + "probability": 0.0509 + }, + { + "start": 17514.78, + "end": 17516.02, + "probability": 0.0499 + }, + { + "start": 17516.02, + "end": 17516.16, + "probability": 0.3944 + }, + { + "start": 17516.16, + "end": 17516.6, + "probability": 0.0515 + }, + { + "start": 17518.5, + "end": 17520.58, + "probability": 0.6375 + }, + { + "start": 17522.32, + "end": 17523.64, + "probability": 0.6853 + }, + { + "start": 17523.78, + "end": 17525.22, + "probability": 0.7138 + }, + { + "start": 17525.64, + "end": 17533.84, + "probability": 0.9036 + }, + { + "start": 17534.02, + "end": 17539.44, + "probability": 0.9498 + }, + { + "start": 17539.44, + "end": 17544.46, + "probability": 0.9679 + }, + { + "start": 17545.74, + "end": 17550.42, + "probability": 0.9818 + }, + { + "start": 17551.04, + "end": 17553.3, + "probability": 0.7883 + }, + { + "start": 17554.42, + "end": 17556.34, + "probability": 0.7732 + }, + { + "start": 17557.98, + "end": 17560.38, + "probability": 0.9668 + }, + { + "start": 17560.94, + "end": 17566.16, + "probability": 0.9487 + }, + { + "start": 17566.8, + "end": 17569.28, + "probability": 0.9725 + }, + { + "start": 17570.42, + "end": 17575.82, + "probability": 0.9362 + }, + { + "start": 17576.32, + "end": 17577.48, + "probability": 0.8517 + }, + { + "start": 17578.4, + "end": 17578.92, + "probability": 0.9719 + }, + { + "start": 17579.58, + "end": 17584.66, + "probability": 0.9971 + }, + { + "start": 17585.06, + "end": 17587.2, + "probability": 0.9966 + }, + { + "start": 17587.68, + "end": 17590.02, + "probability": 0.9445 + }, + { + "start": 17590.04, + "end": 17594.72, + "probability": 0.9949 + }, + { + "start": 17594.94, + "end": 17596.56, + "probability": 0.7474 + }, + { + "start": 17597.92, + "end": 17601.76, + "probability": 0.9887 + }, + { + "start": 17602.22, + "end": 17608.34, + "probability": 0.9522 + }, + { + "start": 17608.66, + "end": 17610.6, + "probability": 0.9532 + }, + { + "start": 17611.42, + "end": 17615.64, + "probability": 0.9882 + }, + { + "start": 17616.18, + "end": 17622.0, + "probability": 0.9678 + }, + { + "start": 17622.51, + "end": 17631.42, + "probability": 0.9453 + }, + { + "start": 17631.52, + "end": 17633.26, + "probability": 0.7729 + }, + { + "start": 17633.8, + "end": 17634.4, + "probability": 0.2897 + }, + { + "start": 17634.58, + "end": 17638.48, + "probability": 0.978 + }, + { + "start": 17638.52, + "end": 17641.1, + "probability": 0.9325 + }, + { + "start": 17641.46, + "end": 17645.9, + "probability": 0.9822 + }, + { + "start": 17645.9, + "end": 17651.02, + "probability": 0.9758 + }, + { + "start": 17652.16, + "end": 17660.18, + "probability": 0.995 + }, + { + "start": 17660.18, + "end": 17666.42, + "probability": 0.999 + }, + { + "start": 17667.46, + "end": 17672.94, + "probability": 0.9907 + }, + { + "start": 17673.8, + "end": 17677.62, + "probability": 0.9939 + }, + { + "start": 17677.68, + "end": 17680.54, + "probability": 0.8905 + }, + { + "start": 17680.86, + "end": 17683.78, + "probability": 0.9904 + }, + { + "start": 17684.04, + "end": 17684.9, + "probability": 0.7245 + }, + { + "start": 17685.22, + "end": 17685.66, + "probability": 0.4947 + }, + { + "start": 17685.74, + "end": 17686.88, + "probability": 0.8857 + }, + { + "start": 17687.22, + "end": 17690.86, + "probability": 0.9465 + }, + { + "start": 17690.86, + "end": 17694.32, + "probability": 0.9209 + }, + { + "start": 17695.18, + "end": 17695.68, + "probability": 0.7075 + }, + { + "start": 17695.82, + "end": 17701.48, + "probability": 0.9912 + }, + { + "start": 17702.04, + "end": 17705.42, + "probability": 0.9932 + }, + { + "start": 17705.8, + "end": 17707.36, + "probability": 0.9563 + }, + { + "start": 17707.78, + "end": 17708.7, + "probability": 0.6366 + }, + { + "start": 17708.8, + "end": 17709.7, + "probability": 0.7806 + }, + { + "start": 17709.96, + "end": 17710.74, + "probability": 0.8981 + }, + { + "start": 17710.74, + "end": 17711.44, + "probability": 0.9878 + }, + { + "start": 17711.9, + "end": 17712.44, + "probability": 0.9802 + }, + { + "start": 17712.64, + "end": 17713.74, + "probability": 0.9742 + }, + { + "start": 17714.86, + "end": 17715.54, + "probability": 0.3641 + }, + { + "start": 17715.64, + "end": 17719.32, + "probability": 0.9595 + }, + { + "start": 17719.32, + "end": 17723.36, + "probability": 0.9966 + }, + { + "start": 17723.84, + "end": 17727.44, + "probability": 0.9893 + }, + { + "start": 17727.76, + "end": 17729.22, + "probability": 0.7651 + }, + { + "start": 17729.54, + "end": 17733.32, + "probability": 0.9514 + }, + { + "start": 17733.72, + "end": 17737.7, + "probability": 0.99 + }, + { + "start": 17737.7, + "end": 17743.64, + "probability": 0.9578 + }, + { + "start": 17744.14, + "end": 17747.84, + "probability": 0.9824 + }, + { + "start": 17748.18, + "end": 17751.22, + "probability": 0.9749 + }, + { + "start": 17753.06, + "end": 17758.06, + "probability": 0.9889 + }, + { + "start": 17758.06, + "end": 17762.52, + "probability": 0.998 + }, + { + "start": 17763.16, + "end": 17767.42, + "probability": 0.9915 + }, + { + "start": 17768.12, + "end": 17768.8, + "probability": 0.9137 + }, + { + "start": 17768.9, + "end": 17773.5, + "probability": 0.9892 + }, + { + "start": 17773.5, + "end": 17778.78, + "probability": 0.9971 + }, + { + "start": 17778.78, + "end": 17783.4, + "probability": 0.9976 + }, + { + "start": 17784.8, + "end": 17790.18, + "probability": 0.996 + }, + { + "start": 17790.76, + "end": 17795.46, + "probability": 0.9954 + }, + { + "start": 17795.46, + "end": 17801.6, + "probability": 0.9947 + }, + { + "start": 17802.56, + "end": 17806.84, + "probability": 0.9824 + }, + { + "start": 17807.46, + "end": 17811.6, + "probability": 0.9984 + }, + { + "start": 17811.6, + "end": 17817.14, + "probability": 0.9954 + }, + { + "start": 17817.56, + "end": 17820.14, + "probability": 0.8413 + }, + { + "start": 17820.74, + "end": 17821.22, + "probability": 0.4912 + }, + { + "start": 17821.3, + "end": 17826.74, + "probability": 0.9805 + }, + { + "start": 17826.74, + "end": 17832.42, + "probability": 0.984 + }, + { + "start": 17833.76, + "end": 17834.5, + "probability": 0.4701 + }, + { + "start": 17834.56, + "end": 17839.96, + "probability": 0.9863 + }, + { + "start": 17839.96, + "end": 17846.06, + "probability": 0.9982 + }, + { + "start": 17846.62, + "end": 17848.44, + "probability": 0.864 + }, + { + "start": 17849.24, + "end": 17853.06, + "probability": 0.9314 + }, + { + "start": 17853.84, + "end": 17857.4, + "probability": 0.8749 + }, + { + "start": 17857.52, + "end": 17863.73, + "probability": 0.7742 + }, + { + "start": 17864.34, + "end": 17868.9, + "probability": 0.9533 + }, + { + "start": 17868.9, + "end": 17874.26, + "probability": 0.9807 + }, + { + "start": 17875.54, + "end": 17877.12, + "probability": 0.6409 + }, + { + "start": 17878.5, + "end": 17885.26, + "probability": 0.9924 + }, + { + "start": 17885.3, + "end": 17891.36, + "probability": 0.9959 + }, + { + "start": 17892.36, + "end": 17898.46, + "probability": 0.9447 + }, + { + "start": 17898.46, + "end": 17903.1, + "probability": 0.9944 + }, + { + "start": 17904.32, + "end": 17907.28, + "probability": 0.9331 + }, + { + "start": 17907.82, + "end": 17911.58, + "probability": 0.97 + }, + { + "start": 17914.66, + "end": 17919.36, + "probability": 0.9643 + }, + { + "start": 17919.36, + "end": 17923.68, + "probability": 0.9897 + }, + { + "start": 17924.84, + "end": 17926.12, + "probability": 0.8171 + }, + { + "start": 17926.88, + "end": 17931.74, + "probability": 0.9756 + }, + { + "start": 17932.38, + "end": 17933.08, + "probability": 0.8116 + }, + { + "start": 17933.6, + "end": 17934.1, + "probability": 0.9791 + }, + { + "start": 17937.0, + "end": 17941.68, + "probability": 0.998 + }, + { + "start": 17941.68, + "end": 17945.06, + "probability": 0.9971 + }, + { + "start": 17945.72, + "end": 17947.08, + "probability": 0.8589 + }, + { + "start": 17947.62, + "end": 17949.56, + "probability": 0.9323 + }, + { + "start": 17949.7, + "end": 17952.88, + "probability": 0.9805 + }, + { + "start": 17953.32, + "end": 17954.84, + "probability": 0.6447 + }, + { + "start": 17955.36, + "end": 17960.38, + "probability": 0.9663 + }, + { + "start": 17960.44, + "end": 17963.14, + "probability": 0.9944 + }, + { + "start": 17963.9, + "end": 17970.76, + "probability": 0.9802 + }, + { + "start": 17971.46, + "end": 17973.52, + "probability": 0.9548 + }, + { + "start": 17974.08, + "end": 17978.96, + "probability": 0.9977 + }, + { + "start": 17979.26, + "end": 17980.66, + "probability": 0.9082 + }, + { + "start": 17980.88, + "end": 17982.24, + "probability": 0.7716 + }, + { + "start": 17982.36, + "end": 17982.94, + "probability": 0.8932 + }, + { + "start": 17983.04, + "end": 17984.4, + "probability": 0.9758 + }, + { + "start": 17984.88, + "end": 17988.52, + "probability": 0.9974 + }, + { + "start": 17988.52, + "end": 17992.86, + "probability": 0.9808 + }, + { + "start": 17993.36, + "end": 17995.92, + "probability": 0.9533 + }, + { + "start": 17995.92, + "end": 17999.96, + "probability": 0.9933 + }, + { + "start": 18000.36, + "end": 18001.76, + "probability": 0.7647 + }, + { + "start": 18001.92, + "end": 18002.82, + "probability": 0.7308 + }, + { + "start": 18003.26, + "end": 18005.32, + "probability": 0.9959 + }, + { + "start": 18006.26, + "end": 18014.06, + "probability": 0.9983 + }, + { + "start": 18014.42, + "end": 18019.8, + "probability": 0.9987 + }, + { + "start": 18020.18, + "end": 18022.88, + "probability": 0.9896 + }, + { + "start": 18023.06, + "end": 18027.94, + "probability": 0.9329 + }, + { + "start": 18028.16, + "end": 18028.56, + "probability": 0.736 + }, + { + "start": 18029.86, + "end": 18031.82, + "probability": 0.6312 + }, + { + "start": 18032.14, + "end": 18035.74, + "probability": 0.652 + }, + { + "start": 18049.6, + "end": 18050.34, + "probability": 0.4928 + }, + { + "start": 18050.42, + "end": 18051.6, + "probability": 0.8352 + }, + { + "start": 18051.98, + "end": 18057.28, + "probability": 0.9213 + }, + { + "start": 18057.54, + "end": 18059.59, + "probability": 0.647 + }, + { + "start": 18059.7, + "end": 18060.26, + "probability": 0.9801 + }, + { + "start": 18061.48, + "end": 18063.44, + "probability": 0.7344 + }, + { + "start": 18063.46, + "end": 18064.64, + "probability": 0.2582 + }, + { + "start": 18065.28, + "end": 18067.0, + "probability": 0.8079 + }, + { + "start": 18067.08, + "end": 18070.6, + "probability": 0.897 + }, + { + "start": 18070.6, + "end": 18070.82, + "probability": 0.6381 + }, + { + "start": 18072.2, + "end": 18077.2, + "probability": 0.2361 + }, + { + "start": 18077.2, + "end": 18077.7, + "probability": 0.0264 + }, + { + "start": 18078.56, + "end": 18080.36, + "probability": 0.0799 + }, + { + "start": 18096.46, + "end": 18098.92, + "probability": 0.5063 + }, + { + "start": 18099.04, + "end": 18099.74, + "probability": 0.8501 + }, + { + "start": 18102.3, + "end": 18109.06, + "probability": 0.5758 + }, + { + "start": 18109.24, + "end": 18111.64, + "probability": 0.5436 + }, + { + "start": 18112.08, + "end": 18118.02, + "probability": 0.4821 + }, + { + "start": 18118.62, + "end": 18119.8, + "probability": 0.691 + }, + { + "start": 18119.88, + "end": 18121.02, + "probability": 0.5104 + }, + { + "start": 18121.1, + "end": 18122.98, + "probability": 0.7797 + }, + { + "start": 18124.08, + "end": 18124.14, + "probability": 0.1376 + }, + { + "start": 18124.14, + "end": 18126.94, + "probability": 0.7406 + }, + { + "start": 18127.12, + "end": 18134.1, + "probability": 0.9453 + }, + { + "start": 18135.52, + "end": 18138.07, + "probability": 0.619 + }, + { + "start": 18138.38, + "end": 18141.72, + "probability": 0.6652 + }, + { + "start": 18144.66, + "end": 18147.1, + "probability": 0.8593 + }, + { + "start": 18147.52, + "end": 18150.28, + "probability": 0.8242 + }, + { + "start": 18150.28, + "end": 18154.36, + "probability": 0.996 + }, + { + "start": 18154.44, + "end": 18154.68, + "probability": 0.7413 + }, + { + "start": 18155.48, + "end": 18157.56, + "probability": 0.6428 + }, + { + "start": 18157.9, + "end": 18159.18, + "probability": 0.6611 + }, + { + "start": 18159.46, + "end": 18161.18, + "probability": 0.4958 + }, + { + "start": 18161.76, + "end": 18166.8, + "probability": 0.7909 + }, + { + "start": 18166.8, + "end": 18173.28, + "probability": 0.966 + }, + { + "start": 18173.84, + "end": 18176.07, + "probability": 0.0218 + }, + { + "start": 18177.84, + "end": 18179.86, + "probability": 0.5357 + }, + { + "start": 18181.98, + "end": 18185.96, + "probability": 0.894 + }, + { + "start": 18186.42, + "end": 18187.4, + "probability": 0.4383 + }, + { + "start": 18188.52, + "end": 18189.78, + "probability": 0.5562 + }, + { + "start": 18197.18, + "end": 18202.4, + "probability": 0.7148 + }, + { + "start": 18204.61, + "end": 18210.46, + "probability": 0.6709 + }, + { + "start": 18211.42, + "end": 18212.54, + "probability": 0.8282 + }, + { + "start": 18212.7, + "end": 18214.68, + "probability": 0.9693 + }, + { + "start": 18214.72, + "end": 18217.87, + "probability": 0.8198 + }, + { + "start": 18218.94, + "end": 18223.46, + "probability": 0.9637 + }, + { + "start": 18223.46, + "end": 18227.38, + "probability": 0.993 + }, + { + "start": 18228.0, + "end": 18234.18, + "probability": 0.9638 + }, + { + "start": 18234.54, + "end": 18239.56, + "probability": 0.9851 + }, + { + "start": 18240.44, + "end": 18242.94, + "probability": 0.8148 + }, + { + "start": 18243.26, + "end": 18243.54, + "probability": 0.8061 + }, + { + "start": 18243.6, + "end": 18244.64, + "probability": 0.8993 + }, + { + "start": 18245.1, + "end": 18248.06, + "probability": 0.9705 + }, + { + "start": 18248.66, + "end": 18250.86, + "probability": 0.97 + }, + { + "start": 18251.26, + "end": 18253.9, + "probability": 0.7336 + }, + { + "start": 18254.8, + "end": 18255.6, + "probability": 0.7559 + }, + { + "start": 18255.8, + "end": 18257.34, + "probability": 0.8984 + }, + { + "start": 18257.68, + "end": 18258.76, + "probability": 0.8225 + }, + { + "start": 18258.84, + "end": 18260.82, + "probability": 0.9253 + }, + { + "start": 18261.56, + "end": 18262.88, + "probability": 0.8995 + }, + { + "start": 18263.14, + "end": 18265.03, + "probability": 0.984 + }, + { + "start": 18265.84, + "end": 18267.02, + "probability": 0.9959 + }, + { + "start": 18268.02, + "end": 18270.92, + "probability": 0.3746 + }, + { + "start": 18271.26, + "end": 18276.72, + "probability": 0.9535 + }, + { + "start": 18276.82, + "end": 18277.28, + "probability": 0.6122 + }, + { + "start": 18277.36, + "end": 18277.94, + "probability": 0.9374 + }, + { + "start": 18278.34, + "end": 18279.66, + "probability": 0.869 + }, + { + "start": 18279.9, + "end": 18282.36, + "probability": 0.6888 + }, + { + "start": 18282.38, + "end": 18283.46, + "probability": 0.3299 + }, + { + "start": 18283.64, + "end": 18284.4, + "probability": 0.6069 + }, + { + "start": 18284.42, + "end": 18285.12, + "probability": 0.592 + }, + { + "start": 18285.18, + "end": 18286.28, + "probability": 0.9053 + }, + { + "start": 18287.08, + "end": 18290.74, + "probability": 0.8616 + }, + { + "start": 18290.74, + "end": 18294.34, + "probability": 0.96 + }, + { + "start": 18295.38, + "end": 18296.46, + "probability": 0.8865 + }, + { + "start": 18296.54, + "end": 18297.56, + "probability": 0.9584 + }, + { + "start": 18297.68, + "end": 18302.14, + "probability": 0.8613 + }, + { + "start": 18302.78, + "end": 18305.46, + "probability": 0.8416 + }, + { + "start": 18306.34, + "end": 18311.88, + "probability": 0.9646 + }, + { + "start": 18312.0, + "end": 18313.56, + "probability": 0.9631 + }, + { + "start": 18313.56, + "end": 18317.1, + "probability": 0.981 + }, + { + "start": 18317.6, + "end": 18321.4, + "probability": 0.8398 + }, + { + "start": 18321.88, + "end": 18323.02, + "probability": 0.7446 + }, + { + "start": 18323.32, + "end": 18325.84, + "probability": 0.9961 + }, + { + "start": 18326.0, + "end": 18327.42, + "probability": 0.627 + }, + { + "start": 18327.98, + "end": 18330.54, + "probability": 0.8807 + }, + { + "start": 18330.74, + "end": 18333.52, + "probability": 0.9683 + }, + { + "start": 18334.1, + "end": 18336.7, + "probability": 0.9746 + }, + { + "start": 18336.8, + "end": 18339.02, + "probability": 0.8451 + }, + { + "start": 18339.52, + "end": 18341.26, + "probability": 0.9304 + }, + { + "start": 18341.48, + "end": 18343.32, + "probability": 0.971 + }, + { + "start": 18343.38, + "end": 18344.06, + "probability": 0.6367 + }, + { + "start": 18344.52, + "end": 18349.1, + "probability": 0.9781 + }, + { + "start": 18349.7, + "end": 18352.98, + "probability": 0.9434 + }, + { + "start": 18353.7, + "end": 18355.44, + "probability": 0.9434 + }, + { + "start": 18355.68, + "end": 18359.74, + "probability": 0.9838 + }, + { + "start": 18360.14, + "end": 18360.62, + "probability": 0.939 + }, + { + "start": 18360.78, + "end": 18363.8, + "probability": 0.9889 + }, + { + "start": 18364.06, + "end": 18365.9, + "probability": 0.8486 + }, + { + "start": 18366.38, + "end": 18373.34, + "probability": 0.8252 + }, + { + "start": 18374.02, + "end": 18378.32, + "probability": 0.9412 + }, + { + "start": 18379.14, + "end": 18380.54, + "probability": 0.9794 + }, + { + "start": 18381.14, + "end": 18383.12, + "probability": 0.9391 + }, + { + "start": 18383.22, + "end": 18386.28, + "probability": 0.9964 + }, + { + "start": 18386.36, + "end": 18387.04, + "probability": 0.8633 + }, + { + "start": 18387.2, + "end": 18387.96, + "probability": 0.7427 + }, + { + "start": 18388.06, + "end": 18388.36, + "probability": 0.9221 + }, + { + "start": 18388.5, + "end": 18391.08, + "probability": 0.988 + }, + { + "start": 18391.9, + "end": 18392.9, + "probability": 0.4916 + }, + { + "start": 18393.08, + "end": 18394.58, + "probability": 0.748 + }, + { + "start": 18394.7, + "end": 18395.82, + "probability": 0.9878 + }, + { + "start": 18395.96, + "end": 18398.26, + "probability": 0.9293 + }, + { + "start": 18398.6, + "end": 18401.76, + "probability": 0.9983 + }, + { + "start": 18401.86, + "end": 18403.7, + "probability": 0.8863 + }, + { + "start": 18404.34, + "end": 18406.9, + "probability": 0.984 + }, + { + "start": 18407.18, + "end": 18408.84, + "probability": 0.3119 + }, + { + "start": 18412.13, + "end": 18412.34, + "probability": 0.0902 + }, + { + "start": 18412.34, + "end": 18412.34, + "probability": 0.0157 + }, + { + "start": 18412.34, + "end": 18412.34, + "probability": 0.1603 + }, + { + "start": 18412.34, + "end": 18413.08, + "probability": 0.4913 + }, + { + "start": 18415.22, + "end": 18416.7, + "probability": 0.3582 + }, + { + "start": 18417.94, + "end": 18419.44, + "probability": 0.4176 + }, + { + "start": 18420.2, + "end": 18422.0, + "probability": 0.4225 + }, + { + "start": 18423.02, + "end": 18423.92, + "probability": 0.357 + }, + { + "start": 18424.07, + "end": 18425.29, + "probability": 0.1514 + }, + { + "start": 18425.74, + "end": 18427.62, + "probability": 0.7901 + }, + { + "start": 18428.02, + "end": 18431.44, + "probability": 0.978 + }, + { + "start": 18431.78, + "end": 18432.88, + "probability": 0.3279 + }, + { + "start": 18433.3, + "end": 18434.92, + "probability": 0.7835 + }, + { + "start": 18434.98, + "end": 18438.41, + "probability": 0.9188 + }, + { + "start": 18439.4, + "end": 18439.56, + "probability": 0.1088 + }, + { + "start": 18439.56, + "end": 18441.24, + "probability": 0.4459 + }, + { + "start": 18441.7, + "end": 18443.18, + "probability": 0.908 + }, + { + "start": 18443.88, + "end": 18446.32, + "probability": 0.1911 + }, + { + "start": 18446.38, + "end": 18447.49, + "probability": 0.3039 + }, + { + "start": 18448.0, + "end": 18449.3, + "probability": 0.2919 + }, + { + "start": 18449.42, + "end": 18450.1, + "probability": 0.1039 + }, + { + "start": 18454.19, + "end": 18454.72, + "probability": 0.219 + }, + { + "start": 18454.72, + "end": 18457.59, + "probability": 0.4219 + }, + { + "start": 18458.0, + "end": 18458.9, + "probability": 0.0754 + }, + { + "start": 18458.9, + "end": 18459.08, + "probability": 0.1152 + }, + { + "start": 18459.12, + "end": 18460.66, + "probability": 0.1531 + }, + { + "start": 18461.04, + "end": 18461.18, + "probability": 0.0126 + }, + { + "start": 18461.18, + "end": 18461.18, + "probability": 0.5168 + }, + { + "start": 18461.18, + "end": 18461.18, + "probability": 0.0176 + }, + { + "start": 18461.18, + "end": 18462.46, + "probability": 0.3205 + }, + { + "start": 18462.58, + "end": 18463.24, + "probability": 0.3516 + }, + { + "start": 18463.32, + "end": 18469.04, + "probability": 0.5545 + }, + { + "start": 18470.42, + "end": 18472.56, + "probability": 0.5117 + }, + { + "start": 18473.28, + "end": 18474.46, + "probability": 0.1846 + }, + { + "start": 18474.54, + "end": 18474.68, + "probability": 0.1741 + }, + { + "start": 18474.94, + "end": 18477.42, + "probability": 0.6871 + }, + { + "start": 18477.48, + "end": 18479.1, + "probability": 0.9041 + }, + { + "start": 18479.26, + "end": 18480.68, + "probability": 0.2368 + }, + { + "start": 18480.72, + "end": 18481.88, + "probability": 0.0884 + }, + { + "start": 18482.54, + "end": 18485.78, + "probability": 0.1571 + }, + { + "start": 18486.1, + "end": 18486.6, + "probability": 0.3112 + }, + { + "start": 18486.84, + "end": 18488.38, + "probability": 0.0794 + }, + { + "start": 18489.68, + "end": 18490.74, + "probability": 0.1191 + }, + { + "start": 18491.4, + "end": 18493.74, + "probability": 0.0571 + }, + { + "start": 18493.88, + "end": 18496.28, + "probability": 0.7026 + }, + { + "start": 18505.5, + "end": 18505.78, + "probability": 0.0092 + }, + { + "start": 18508.7, + "end": 18509.16, + "probability": 0.1244 + }, + { + "start": 18509.24, + "end": 18509.26, + "probability": 0.0216 + }, + { + "start": 18512.01, + "end": 18512.72, + "probability": 0.0728 + }, + { + "start": 18512.9, + "end": 18514.02, + "probability": 0.0476 + }, + { + "start": 18514.02, + "end": 18514.58, + "probability": 0.1708 + }, + { + "start": 18514.8, + "end": 18515.7, + "probability": 0.1186 + }, + { + "start": 18519.09, + "end": 18521.24, + "probability": 0.0254 + }, + { + "start": 18521.24, + "end": 18521.24, + "probability": 0.0918 + }, + { + "start": 18521.7, + "end": 18524.98, + "probability": 0.1553 + }, + { + "start": 18524.98, + "end": 18526.18, + "probability": 0.0442 + }, + { + "start": 18526.64, + "end": 18527.78, + "probability": 0.1652 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.0, + "end": 18631.0, + "probability": 0.0 + }, + { + "start": 18631.94, + "end": 18632.22, + "probability": 0.0905 + }, + { + "start": 18633.96, + "end": 18635.54, + "probability": 0.1296 + }, + { + "start": 18635.54, + "end": 18635.92, + "probability": 0.1741 + }, + { + "start": 18636.28, + "end": 18636.28, + "probability": 0.0725 + }, + { + "start": 18636.28, + "end": 18637.19, + "probability": 0.4365 + }, + { + "start": 18638.36, + "end": 18642.1, + "probability": 0.4615 + }, + { + "start": 18642.8, + "end": 18645.51, + "probability": 0.4297 + }, + { + "start": 18646.06, + "end": 18648.92, + "probability": 0.5874 + }, + { + "start": 18651.02, + "end": 18651.3, + "probability": 0.178 + }, + { + "start": 18651.3, + "end": 18651.3, + "probability": 0.3061 + }, + { + "start": 18651.3, + "end": 18651.86, + "probability": 0.2575 + }, + { + "start": 18653.84, + "end": 18655.44, + "probability": 0.0175 + }, + { + "start": 18656.78, + "end": 18659.26, + "probability": 0.2773 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.26, + "end": 18763.34, + "probability": 0.1107 + }, + { + "start": 18763.34, + "end": 18763.34, + "probability": 0.3006 + }, + { + "start": 18763.34, + "end": 18764.64, + "probability": 0.4386 + }, + { + "start": 18765.26, + "end": 18769.58, + "probability": 0.0098 + }, + { + "start": 18770.02, + "end": 18770.58, + "probability": 0.0273 + }, + { + "start": 18770.66, + "end": 18771.42, + "probability": 0.0059 + }, + { + "start": 18776.12, + "end": 18781.38, + "probability": 0.1065 + }, + { + "start": 18791.08, + "end": 18791.72, + "probability": 0.3848 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.0, + "end": 18884.0, + "probability": 0.0 + }, + { + "start": 18884.1, + "end": 18886.24, + "probability": 0.5611 + }, + { + "start": 18886.42, + "end": 18886.92, + "probability": 0.099 + }, + { + "start": 18886.98, + "end": 18886.98, + "probability": 0.0405 + }, + { + "start": 18886.98, + "end": 18887.48, + "probability": 0.2618 + }, + { + "start": 18887.48, + "end": 18887.48, + "probability": 0.3034 + }, + { + "start": 18887.48, + "end": 18888.0, + "probability": 0.2332 + }, + { + "start": 18889.52, + "end": 18891.88, + "probability": 0.1313 + }, + { + "start": 18897.98, + "end": 18898.96, + "probability": 0.4691 + }, + { + "start": 18899.66, + "end": 18900.86, + "probability": 0.2247 + }, + { + "start": 18900.86, + "end": 18901.3, + "probability": 0.1075 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19004.0, + "end": 19004.0, + "probability": 0.0 + }, + { + "start": 19005.92, + "end": 19006.92, + "probability": 0.097 + }, + { + "start": 19013.94, + "end": 19017.46, + "probability": 0.0572 + }, + { + "start": 19017.94, + "end": 19020.2, + "probability": 0.1482 + }, + { + "start": 19020.6, + "end": 19021.68, + "probability": 0.1439 + }, + { + "start": 19027.98, + "end": 19028.42, + "probability": 0.5521 + }, + { + "start": 19030.2, + "end": 19031.52, + "probability": 0.1081 + }, + { + "start": 19033.42, + "end": 19035.0, + "probability": 0.0465 + }, + { + "start": 19035.24, + "end": 19038.12, + "probability": 0.0728 + }, + { + "start": 19039.16, + "end": 19039.28, + "probability": 0.0221 + }, + { + "start": 19039.28, + "end": 19040.12, + "probability": 0.092 + }, + { + "start": 19040.88, + "end": 19044.54, + "probability": 0.1611 + }, + { + "start": 19045.26, + "end": 19045.46, + "probability": 0.0564 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.0, + "end": 19130.0, + "probability": 0.0 + }, + { + "start": 19130.2, + "end": 19133.42, + "probability": 0.2849 + }, + { + "start": 19133.42, + "end": 19138.02, + "probability": 0.8164 + }, + { + "start": 19138.62, + "end": 19141.32, + "probability": 0.5116 + }, + { + "start": 19142.5, + "end": 19146.32, + "probability": 0.0417 + }, + { + "start": 19146.34, + "end": 19149.18, + "probability": 0.0761 + }, + { + "start": 19149.18, + "end": 19150.6, + "probability": 0.2153 + }, + { + "start": 19150.94, + "end": 19152.16, + "probability": 0.1158 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.2, + "end": 19257.25, + "probability": 0.0376 + }, + { + "start": 19258.76, + "end": 19262.24, + "probability": 0.0702 + }, + { + "start": 19262.24, + "end": 19262.24, + "probability": 0.0215 + }, + { + "start": 19262.24, + "end": 19262.24, + "probability": 0.3579 + }, + { + "start": 19262.24, + "end": 19262.24, + "probability": 0.0588 + }, + { + "start": 19262.24, + "end": 19263.64, + "probability": 0.534 + }, + { + "start": 19263.66, + "end": 19265.2, + "probability": 0.7396 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.0, + "end": 19377.0, + "probability": 0.0 + }, + { + "start": 19377.22, + "end": 19377.26, + "probability": 0.0023 + }, + { + "start": 19382.1, + "end": 19382.8, + "probability": 0.3581 + }, + { + "start": 19383.68, + "end": 19385.14, + "probability": 0.0296 + }, + { + "start": 19386.06, + "end": 19389.32, + "probability": 0.1711 + }, + { + "start": 19389.76, + "end": 19393.48, + "probability": 0.4714 + }, + { + "start": 19396.6, + "end": 19399.54, + "probability": 0.2094 + }, + { + "start": 19400.3, + "end": 19401.34, + "probability": 0.0209 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.0, + "end": 19497.0, + "probability": 0.0 + }, + { + "start": 19497.26, + "end": 19497.98, + "probability": 0.1429 + }, + { + "start": 19498.32, + "end": 19501.9, + "probability": 0.4047 + }, + { + "start": 19506.64, + "end": 19507.38, + "probability": 0.0215 + }, + { + "start": 19507.38, + "end": 19510.0, + "probability": 0.0761 + }, + { + "start": 19510.16, + "end": 19511.59, + "probability": 0.0738 + }, + { + "start": 19513.08, + "end": 19514.36, + "probability": 0.2572 + }, + { + "start": 19514.36, + "end": 19514.7, + "probability": 0.005 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.0, + "end": 19624.0, + "probability": 0.0 + }, + { + "start": 19624.1, + "end": 19624.32, + "probability": 0.208 + }, + { + "start": 19624.56, + "end": 19630.16, + "probability": 0.2319 + }, + { + "start": 19630.98, + "end": 19632.88, + "probability": 0.0442 + }, + { + "start": 19632.88, + "end": 19633.81, + "probability": 0.045 + }, + { + "start": 19634.84, + "end": 19638.42, + "probability": 0.4262 + }, + { + "start": 19638.8, + "end": 19640.44, + "probability": 0.2608 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.0, + "end": 19746.0, + "probability": 0.0 + }, + { + "start": 19746.22, + "end": 19748.34, + "probability": 0.7236 + }, + { + "start": 19748.82, + "end": 19750.5, + "probability": 0.825 + }, + { + "start": 19750.78, + "end": 19752.62, + "probability": 0.9193 + }, + { + "start": 19753.32, + "end": 19757.62, + "probability": 0.9902 + }, + { + "start": 19757.62, + "end": 19761.02, + "probability": 0.9979 + }, + { + "start": 19761.52, + "end": 19762.96, + "probability": 0.9903 + }, + { + "start": 19763.54, + "end": 19767.44, + "probability": 0.8372 + }, + { + "start": 19767.72, + "end": 19770.36, + "probability": 0.0839 + }, + { + "start": 19771.0, + "end": 19771.94, + "probability": 0.8073 + }, + { + "start": 19772.02, + "end": 19772.38, + "probability": 0.8374 + }, + { + "start": 19772.58, + "end": 19775.66, + "probability": 0.8654 + }, + { + "start": 19775.76, + "end": 19777.84, + "probability": 0.192 + }, + { + "start": 19779.98, + "end": 19780.86, + "probability": 0.2819 + }, + { + "start": 19781.96, + "end": 19783.92, + "probability": 0.9556 + }, + { + "start": 19783.96, + "end": 19784.94, + "probability": 0.9919 + }, + { + "start": 19786.12, + "end": 19788.77, + "probability": 0.9949 + }, + { + "start": 19789.4, + "end": 19792.98, + "probability": 0.9611 + }, + { + "start": 19793.08, + "end": 19795.56, + "probability": 0.855 + }, + { + "start": 19795.6, + "end": 19795.8, + "probability": 0.65 + }, + { + "start": 19795.92, + "end": 19801.06, + "probability": 0.2087 + }, + { + "start": 19801.46, + "end": 19801.86, + "probability": 0.7531 + }, + { + "start": 19802.0, + "end": 19804.5, + "probability": 0.8772 + }, + { + "start": 19804.6, + "end": 19809.36, + "probability": 0.9724 + }, + { + "start": 19810.54, + "end": 19812.12, + "probability": 0.9252 + }, + { + "start": 19813.66, + "end": 19813.98, + "probability": 0.1982 + }, + { + "start": 19814.7, + "end": 19815.38, + "probability": 0.1535 + }, + { + "start": 19815.66, + "end": 19816.48, + "probability": 0.5921 + }, + { + "start": 19816.78, + "end": 19818.12, + "probability": 0.6637 + }, + { + "start": 19818.38, + "end": 19819.68, + "probability": 0.6012 + }, + { + "start": 19819.82, + "end": 19820.9, + "probability": 0.2234 + }, + { + "start": 19821.16, + "end": 19824.6, + "probability": 0.7086 + }, + { + "start": 19824.72, + "end": 19825.7, + "probability": 0.7482 + }, + { + "start": 19826.24, + "end": 19829.74, + "probability": 0.6138 + }, + { + "start": 19829.76, + "end": 19831.36, + "probability": 0.7618 + }, + { + "start": 19831.44, + "end": 19833.56, + "probability": 0.9971 + }, + { + "start": 19833.8, + "end": 19838.32, + "probability": 0.9028 + }, + { + "start": 19838.4, + "end": 19839.26, + "probability": 0.5951 + }, + { + "start": 19839.52, + "end": 19840.44, + "probability": 0.5738 + }, + { + "start": 19840.62, + "end": 19842.18, + "probability": 0.9492 + }, + { + "start": 19842.3, + "end": 19843.58, + "probability": 0.8609 + }, + { + "start": 19843.76, + "end": 19845.02, + "probability": 0.5825 + }, + { + "start": 19845.12, + "end": 19846.04, + "probability": 0.9437 + }, + { + "start": 19846.14, + "end": 19847.12, + "probability": 0.8931 + }, + { + "start": 19847.2, + "end": 19848.22, + "probability": 0.9181 + }, + { + "start": 19848.32, + "end": 19849.1, + "probability": 0.6505 + }, + { + "start": 19849.16, + "end": 19850.46, + "probability": 0.6796 + }, + { + "start": 19851.3, + "end": 19855.0, + "probability": 0.8853 + }, + { + "start": 19855.7, + "end": 19859.98, + "probability": 0.9238 + }, + { + "start": 19860.44, + "end": 19863.52, + "probability": 0.7317 + }, + { + "start": 19863.7, + "end": 19863.76, + "probability": 0.3558 + }, + { + "start": 19863.92, + "end": 19864.1, + "probability": 0.6763 + }, + { + "start": 19864.16, + "end": 19864.84, + "probability": 0.5827 + }, + { + "start": 19865.2, + "end": 19872.58, + "probability": 0.9577 + }, + { + "start": 19873.68, + "end": 19875.82, + "probability": 0.8843 + }, + { + "start": 19876.04, + "end": 19880.46, + "probability": 0.9776 + }, + { + "start": 19881.62, + "end": 19883.4, + "probability": 0.788 + }, + { + "start": 19884.1, + "end": 19886.24, + "probability": 0.998 + }, + { + "start": 19887.0, + "end": 19888.98, + "probability": 0.8011 + }, + { + "start": 19889.08, + "end": 19890.42, + "probability": 0.885 + }, + { + "start": 19890.52, + "end": 19891.68, + "probability": 0.9924 + }, + { + "start": 19891.84, + "end": 19895.78, + "probability": 0.9529 + }, + { + "start": 19896.08, + "end": 19897.2, + "probability": 0.5837 + }, + { + "start": 19897.32, + "end": 19899.24, + "probability": 0.8909 + }, + { + "start": 19899.4, + "end": 19900.73, + "probability": 0.6748 + }, + { + "start": 19902.42, + "end": 19906.5, + "probability": 0.9972 + }, + { + "start": 19906.76, + "end": 19912.04, + "probability": 0.972 + }, + { + "start": 19912.5, + "end": 19912.5, + "probability": 0.0002 + }, + { + "start": 19913.42, + "end": 19913.78, + "probability": 0.0728 + }, + { + "start": 19913.78, + "end": 19915.46, + "probability": 0.5902 + }, + { + "start": 19915.54, + "end": 19918.36, + "probability": 0.818 + }, + { + "start": 19918.9, + "end": 19920.46, + "probability": 0.5732 + }, + { + "start": 19923.08, + "end": 19926.0, + "probability": 0.081 + }, + { + "start": 19931.92, + "end": 19934.42, + "probability": 0.0865 + }, + { + "start": 19934.42, + "end": 19934.42, + "probability": 0.1735 + }, + { + "start": 19934.42, + "end": 19934.42, + "probability": 0.0662 + }, + { + "start": 19934.42, + "end": 19936.21, + "probability": 0.8225 + }, + { + "start": 19937.14, + "end": 19944.4, + "probability": 0.7965 + }, + { + "start": 19945.6, + "end": 19946.02, + "probability": 0.0665 + }, + { + "start": 19946.02, + "end": 19947.3, + "probability": 0.4721 + }, + { + "start": 19947.66, + "end": 19951.32, + "probability": 0.6918 + }, + { + "start": 19951.36, + "end": 19952.96, + "probability": 0.8849 + }, + { + "start": 19953.1, + "end": 19954.18, + "probability": 0.6454 + }, + { + "start": 19954.48, + "end": 19957.68, + "probability": 0.9727 + }, + { + "start": 19958.26, + "end": 19960.94, + "probability": 0.9398 + }, + { + "start": 19961.54, + "end": 19965.78, + "probability": 0.7731 + }, + { + "start": 19966.1, + "end": 19968.68, + "probability": 0.6401 + }, + { + "start": 19968.9, + "end": 19970.0, + "probability": 0.5701 + }, + { + "start": 19970.1, + "end": 19971.76, + "probability": 0.5681 + }, + { + "start": 19972.1, + "end": 19975.74, + "probability": 0.5192 + }, + { + "start": 19976.02, + "end": 19977.42, + "probability": 0.6213 + }, + { + "start": 19977.78, + "end": 19980.46, + "probability": 0.7258 + }, + { + "start": 19981.42, + "end": 19981.42, + "probability": 0.5521 + }, + { + "start": 19982.16, + "end": 19987.46, + "probability": 0.929 + }, + { + "start": 19988.76, + "end": 19991.4, + "probability": 0.5378 + }, + { + "start": 19991.4, + "end": 19996.6, + "probability": 0.7128 + }, + { + "start": 19996.6, + "end": 20002.2, + "probability": 0.9848 + }, + { + "start": 20002.4, + "end": 20006.16, + "probability": 0.9425 + }, + { + "start": 20006.52, + "end": 20008.88, + "probability": 0.9616 + }, + { + "start": 20009.0, + "end": 20009.52, + "probability": 0.6276 + }, + { + "start": 20009.52, + "end": 20010.82, + "probability": 0.4376 + }, + { + "start": 20013.08, + "end": 20013.68, + "probability": 0.0999 + }, + { + "start": 20014.52, + "end": 20014.98, + "probability": 0.139 + }, + { + "start": 20014.98, + "end": 20015.06, + "probability": 0.2032 + }, + { + "start": 20015.06, + "end": 20015.92, + "probability": 0.0419 + }, + { + "start": 20015.92, + "end": 20017.14, + "probability": 0.0959 + }, + { + "start": 20017.5, + "end": 20018.76, + "probability": 0.0181 + }, + { + "start": 20018.92, + "end": 20022.66, + "probability": 0.5294 + }, + { + "start": 20023.12, + "end": 20024.82, + "probability": 0.8559 + }, + { + "start": 20024.88, + "end": 20025.14, + "probability": 0.5585 + }, + { + "start": 20025.34, + "end": 20026.44, + "probability": 0.1028 + }, + { + "start": 20026.72, + "end": 20031.5, + "probability": 0.4337 + }, + { + "start": 20031.5, + "end": 20035.56, + "probability": 0.5733 + }, + { + "start": 20035.56, + "end": 20040.4, + "probability": 0.98 + }, + { + "start": 20040.88, + "end": 20041.28, + "probability": 0.3085 + }, + { + "start": 20041.34, + "end": 20043.56, + "probability": 0.4923 + }, + { + "start": 20045.6, + "end": 20046.36, + "probability": 0.025 + }, + { + "start": 20047.24, + "end": 20049.16, + "probability": 0.284 + }, + { + "start": 20049.16, + "end": 20051.22, + "probability": 0.064 + }, + { + "start": 20051.52, + "end": 20055.44, + "probability": 0.2756 + }, + { + "start": 20058.82, + "end": 20060.82, + "probability": 0.0401 + }, + { + "start": 20063.19, + "end": 20068.86, + "probability": 0.3731 + }, + { + "start": 20068.96, + "end": 20073.4, + "probability": 0.833 + }, + { + "start": 20073.86, + "end": 20076.4, + "probability": 0.6405 + }, + { + "start": 20076.5, + "end": 20081.02, + "probability": 0.5306 + }, + { + "start": 20081.56, + "end": 20082.92, + "probability": 0.1626 + }, + { + "start": 20082.92, + "end": 20084.14, + "probability": 0.3514 + }, + { + "start": 20084.18, + "end": 20085.08, + "probability": 0.5411 + }, + { + "start": 20085.28, + "end": 20086.24, + "probability": 0.7488 + }, + { + "start": 20086.56, + "end": 20089.5, + "probability": 0.5977 + }, + { + "start": 20091.18, + "end": 20092.14, + "probability": 0.267 + }, + { + "start": 20092.14, + "end": 20092.14, + "probability": 0.4621 + }, + { + "start": 20092.14, + "end": 20093.55, + "probability": 0.4755 + }, + { + "start": 20094.46, + "end": 20095.08, + "probability": 0.6946 + }, + { + "start": 20095.1, + "end": 20096.74, + "probability": 0.7963 + }, + { + "start": 20097.0, + "end": 20097.46, + "probability": 0.7787 + }, + { + "start": 20097.48, + "end": 20098.66, + "probability": 0.853 + }, + { + "start": 20098.96, + "end": 20099.44, + "probability": 0.6501 + }, + { + "start": 20100.5, + "end": 20102.2, + "probability": 0.0813 + }, + { + "start": 20102.4, + "end": 20105.68, + "probability": 0.6231 + }, + { + "start": 20105.8, + "end": 20106.86, + "probability": 0.5869 + }, + { + "start": 20106.86, + "end": 20109.58, + "probability": 0.955 + }, + { + "start": 20110.02, + "end": 20113.82, + "probability": 0.9692 + }, + { + "start": 20114.62, + "end": 20118.94, + "probability": 0.979 + }, + { + "start": 20119.8, + "end": 20120.56, + "probability": 0.8333 + }, + { + "start": 20121.16, + "end": 20122.16, + "probability": 0.5827 + }, + { + "start": 20123.5, + "end": 20127.66, + "probability": 0.7253 + }, + { + "start": 20127.76, + "end": 20129.06, + "probability": 0.7207 + }, + { + "start": 20129.63, + "end": 20132.1, + "probability": 0.7037 + }, + { + "start": 20132.12, + "end": 20132.12, + "probability": 0.8789 + }, + { + "start": 20132.14, + "end": 20132.84, + "probability": 0.6929 + }, + { + "start": 20132.84, + "end": 20133.32, + "probability": 0.6764 + }, + { + "start": 20133.94, + "end": 20135.22, + "probability": 0.2966 + }, + { + "start": 20136.16, + "end": 20138.64, + "probability": 0.5158 + }, + { + "start": 20138.92, + "end": 20139.66, + "probability": 0.5434 + }, + { + "start": 20139.66, + "end": 20140.92, + "probability": 0.9915 + }, + { + "start": 20141.62, + "end": 20146.24, + "probability": 0.7217 + }, + { + "start": 20146.86, + "end": 20148.28, + "probability": 0.5936 + }, + { + "start": 20148.42, + "end": 20149.88, + "probability": 0.9207 + }, + { + "start": 20150.06, + "end": 20152.7, + "probability": 0.4438 + }, + { + "start": 20153.94, + "end": 20157.6, + "probability": 0.5448 + }, + { + "start": 20158.12, + "end": 20160.9, + "probability": 0.6234 + }, + { + "start": 20161.3, + "end": 20163.64, + "probability": 0.8847 + }, + { + "start": 20163.74, + "end": 20164.24, + "probability": 0.837 + }, + { + "start": 20164.34, + "end": 20165.78, + "probability": 0.5424 + }, + { + "start": 20165.88, + "end": 20167.48, + "probability": 0.7137 + }, + { + "start": 20168.28, + "end": 20171.56, + "probability": 0.3749 + }, + { + "start": 20171.64, + "end": 20171.9, + "probability": 0.0186 + }, + { + "start": 20171.9, + "end": 20171.9, + "probability": 0.376 + }, + { + "start": 20171.9, + "end": 20171.9, + "probability": 0.465 + }, + { + "start": 20171.9, + "end": 20172.98, + "probability": 0.0763 + }, + { + "start": 20173.18, + "end": 20174.22, + "probability": 0.0679 + }, + { + "start": 20176.1, + "end": 20177.42, + "probability": 0.631 + }, + { + "start": 20178.52, + "end": 20181.96, + "probability": 0.3817 + }, + { + "start": 20182.08, + "end": 20183.0, + "probability": 0.855 + }, + { + "start": 20183.7, + "end": 20183.74, + "probability": 0.1819 + }, + { + "start": 20183.74, + "end": 20183.74, + "probability": 0.0578 + }, + { + "start": 20183.74, + "end": 20183.74, + "probability": 0.0422 + }, + { + "start": 20183.74, + "end": 20184.92, + "probability": 0.7225 + }, + { + "start": 20185.1, + "end": 20188.32, + "probability": 0.7706 + }, + { + "start": 20188.42, + "end": 20189.04, + "probability": 0.7718 + }, + { + "start": 20189.16, + "end": 20190.1, + "probability": 0.5456 + }, + { + "start": 20191.54, + "end": 20192.12, + "probability": 0.9136 + }, + { + "start": 20192.22, + "end": 20193.92, + "probability": 0.9194 + }, + { + "start": 20194.04, + "end": 20194.64, + "probability": 0.9278 + }, + { + "start": 20194.9, + "end": 20196.04, + "probability": 0.4856 + }, + { + "start": 20196.46, + "end": 20197.12, + "probability": 0.8573 + }, + { + "start": 20197.22, + "end": 20198.98, + "probability": 0.8433 + }, + { + "start": 20199.18, + "end": 20200.04, + "probability": 0.9858 + }, + { + "start": 20200.04, + "end": 20201.32, + "probability": 0.4068 + }, + { + "start": 20201.8, + "end": 20203.2, + "probability": 0.9647 + }, + { + "start": 20203.52, + "end": 20204.86, + "probability": 0.9506 + }, + { + "start": 20205.2, + "end": 20206.38, + "probability": 0.9323 + }, + { + "start": 20206.6, + "end": 20207.64, + "probability": 0.9516 + }, + { + "start": 20207.84, + "end": 20210.54, + "probability": 0.9189 + }, + { + "start": 20211.12, + "end": 20212.02, + "probability": 0.6308 + }, + { + "start": 20212.76, + "end": 20214.12, + "probability": 0.8701 + }, + { + "start": 20214.26, + "end": 20216.5, + "probability": 0.9813 + }, + { + "start": 20216.78, + "end": 20217.36, + "probability": 0.8676 + }, + { + "start": 20217.4, + "end": 20218.28, + "probability": 0.7441 + }, + { + "start": 20218.38, + "end": 20220.04, + "probability": 0.9147 + }, + { + "start": 20220.74, + "end": 20221.6, + "probability": 0.9232 + }, + { + "start": 20221.7, + "end": 20222.68, + "probability": 0.9836 + }, + { + "start": 20222.82, + "end": 20224.86, + "probability": 0.9801 + }, + { + "start": 20224.96, + "end": 20226.76, + "probability": 0.6073 + }, + { + "start": 20226.88, + "end": 20228.02, + "probability": 0.9133 + }, + { + "start": 20228.42, + "end": 20230.16, + "probability": 0.9749 + }, + { + "start": 20230.26, + "end": 20234.26, + "probability": 0.9793 + }, + { + "start": 20234.96, + "end": 20235.94, + "probability": 0.8906 + }, + { + "start": 20236.54, + "end": 20238.48, + "probability": 0.9856 + }, + { + "start": 20238.76, + "end": 20240.04, + "probability": 0.7178 + }, + { + "start": 20240.72, + "end": 20243.18, + "probability": 0.9696 + }, + { + "start": 20243.3, + "end": 20245.94, + "probability": 0.9917 + }, + { + "start": 20246.46, + "end": 20248.66, + "probability": 0.9406 + }, + { + "start": 20249.36, + "end": 20253.7, + "probability": 0.9823 + }, + { + "start": 20254.48, + "end": 20257.13, + "probability": 0.6836 + }, + { + "start": 20257.86, + "end": 20260.66, + "probability": 0.8616 + }, + { + "start": 20260.76, + "end": 20262.18, + "probability": 0.9849 + }, + { + "start": 20262.46, + "end": 20264.5, + "probability": 0.9668 + }, + { + "start": 20264.66, + "end": 20265.84, + "probability": 0.8841 + }, + { + "start": 20266.02, + "end": 20267.06, + "probability": 0.7787 + }, + { + "start": 20267.1, + "end": 20269.72, + "probability": 0.9968 + }, + { + "start": 20270.0, + "end": 20270.98, + "probability": 0.907 + }, + { + "start": 20271.1, + "end": 20271.68, + "probability": 0.2132 + }, + { + "start": 20271.8, + "end": 20272.26, + "probability": 0.5822 + }, + { + "start": 20275.94, + "end": 20277.54, + "probability": 0.3172 + }, + { + "start": 20277.56, + "end": 20278.1, + "probability": 0.11 + }, + { + "start": 20284.74, + "end": 20285.74, + "probability": 0.413 + }, + { + "start": 20286.54, + "end": 20289.5, + "probability": 0.9053 + }, + { + "start": 20289.92, + "end": 20291.69, + "probability": 0.8061 + }, + { + "start": 20291.78, + "end": 20293.06, + "probability": 0.5003 + }, + { + "start": 20293.85, + "end": 20299.21, + "probability": 0.9064 + }, + { + "start": 20299.46, + "end": 20302.56, + "probability": 0.8779 + }, + { + "start": 20303.14, + "end": 20305.1, + "probability": 0.7479 + }, + { + "start": 20305.12, + "end": 20306.62, + "probability": 0.8255 + }, + { + "start": 20306.8, + "end": 20309.64, + "probability": 0.9784 + }, + { + "start": 20309.82, + "end": 20313.54, + "probability": 0.9963 + }, + { + "start": 20314.06, + "end": 20316.44, + "probability": 0.7375 + }, + { + "start": 20316.64, + "end": 20317.3, + "probability": 0.9582 + }, + { + "start": 20317.44, + "end": 20318.84, + "probability": 0.9339 + }, + { + "start": 20319.16, + "end": 20320.38, + "probability": 0.9112 + }, + { + "start": 20320.5, + "end": 20322.44, + "probability": 0.9289 + }, + { + "start": 20322.44, + "end": 20323.9, + "probability": 0.1409 + }, + { + "start": 20324.06, + "end": 20324.54, + "probability": 0.8076 + }, + { + "start": 20324.66, + "end": 20325.1, + "probability": 0.7837 + }, + { + "start": 20325.18, + "end": 20326.0, + "probability": 0.7514 + }, + { + "start": 20326.52, + "end": 20328.94, + "probability": 0.5462 + }, + { + "start": 20328.94, + "end": 20329.96, + "probability": 0.9097 + }, + { + "start": 20330.56, + "end": 20331.9, + "probability": 0.8608 + }, + { + "start": 20332.66, + "end": 20334.58, + "probability": 0.7363 + }, + { + "start": 20334.86, + "end": 20336.24, + "probability": 0.5788 + }, + { + "start": 20336.36, + "end": 20337.84, + "probability": 0.7089 + }, + { + "start": 20337.94, + "end": 20339.62, + "probability": 0.9479 + }, + { + "start": 20339.74, + "end": 20342.72, + "probability": 0.8598 + }, + { + "start": 20343.48, + "end": 20345.72, + "probability": 0.9778 + }, + { + "start": 20345.9, + "end": 20347.08, + "probability": 0.8733 + }, + { + "start": 20347.74, + "end": 20350.98, + "probability": 0.7571 + }, + { + "start": 20351.26, + "end": 20353.3, + "probability": 0.9308 + }, + { + "start": 20353.7, + "end": 20358.64, + "probability": 0.9762 + }, + { + "start": 20359.0, + "end": 20362.28, + "probability": 0.9956 + }, + { + "start": 20362.98, + "end": 20366.11, + "probability": 0.6548 + }, + { + "start": 20366.82, + "end": 20373.92, + "probability": 0.9943 + }, + { + "start": 20374.46, + "end": 20375.85, + "probability": 0.9945 + }, + { + "start": 20376.28, + "end": 20378.8, + "probability": 0.9924 + }, + { + "start": 20379.0, + "end": 20380.4, + "probability": 0.8472 + }, + { + "start": 20380.74, + "end": 20382.14, + "probability": 0.8073 + }, + { + "start": 20382.32, + "end": 20383.72, + "probability": 0.9631 + }, + { + "start": 20384.14, + "end": 20384.46, + "probability": 0.7361 + }, + { + "start": 20384.5, + "end": 20385.33, + "probability": 0.7104 + }, + { + "start": 20385.96, + "end": 20388.82, + "probability": 0.9477 + }, + { + "start": 20388.9, + "end": 20389.8, + "probability": 0.8386 + }, + { + "start": 20389.9, + "end": 20390.92, + "probability": 0.8562 + }, + { + "start": 20391.04, + "end": 20391.92, + "probability": 0.8849 + }, + { + "start": 20392.18, + "end": 20393.72, + "probability": 0.9976 + }, + { + "start": 20393.8, + "end": 20395.0, + "probability": 0.7126 + }, + { + "start": 20395.06, + "end": 20395.64, + "probability": 0.7201 + }, + { + "start": 20396.54, + "end": 20399.46, + "probability": 0.7788 + }, + { + "start": 20399.98, + "end": 20403.88, + "probability": 0.9785 + }, + { + "start": 20404.12, + "end": 20406.3, + "probability": 0.9897 + }, + { + "start": 20406.52, + "end": 20409.06, + "probability": 0.9862 + }, + { + "start": 20409.44, + "end": 20412.24, + "probability": 0.9976 + }, + { + "start": 20412.4, + "end": 20416.78, + "probability": 0.9082 + }, + { + "start": 20417.6, + "end": 20421.62, + "probability": 0.9729 + }, + { + "start": 20422.22, + "end": 20424.02, + "probability": 0.8734 + }, + { + "start": 20424.98, + "end": 20426.16, + "probability": 0.9731 + }, + { + "start": 20426.9, + "end": 20428.64, + "probability": 0.8552 + }, + { + "start": 20428.86, + "end": 20434.86, + "probability": 0.9917 + }, + { + "start": 20435.1, + "end": 20435.54, + "probability": 0.6881 + }, + { + "start": 20435.64, + "end": 20436.62, + "probability": 0.8192 + }, + { + "start": 20436.8, + "end": 20439.9, + "probability": 0.9209 + }, + { + "start": 20440.0, + "end": 20442.44, + "probability": 0.9912 + }, + { + "start": 20442.94, + "end": 20445.48, + "probability": 0.995 + }, + { + "start": 20445.92, + "end": 20448.52, + "probability": 0.9784 + }, + { + "start": 20449.12, + "end": 20451.4, + "probability": 0.9866 + }, + { + "start": 20451.84, + "end": 20454.04, + "probability": 0.5347 + }, + { + "start": 20454.12, + "end": 20454.78, + "probability": 0.924 + }, + { + "start": 20454.9, + "end": 20455.87, + "probability": 0.8672 + }, + { + "start": 20456.16, + "end": 20458.14, + "probability": 0.9881 + }, + { + "start": 20458.2, + "end": 20458.72, + "probability": 0.5825 + }, + { + "start": 20458.82, + "end": 20461.74, + "probability": 0.7786 + }, + { + "start": 20461.88, + "end": 20463.49, + "probability": 0.8129 + }, + { + "start": 20463.81, + "end": 20466.08, + "probability": 0.5526 + }, + { + "start": 20466.08, + "end": 20466.84, + "probability": 0.3123 + }, + { + "start": 20467.54, + "end": 20468.04, + "probability": 0.3586 + }, + { + "start": 20468.04, + "end": 20468.62, + "probability": 0.3405 + }, + { + "start": 20468.62, + "end": 20470.17, + "probability": 0.5837 + }, + { + "start": 20471.08, + "end": 20471.44, + "probability": 0.0868 + }, + { + "start": 20472.1, + "end": 20473.25, + "probability": 0.377 + }, + { + "start": 20473.46, + "end": 20475.12, + "probability": 0.1226 + }, + { + "start": 20475.3, + "end": 20476.16, + "probability": 0.1116 + }, + { + "start": 20476.26, + "end": 20477.2, + "probability": 0.7708 + }, + { + "start": 20477.48, + "end": 20479.22, + "probability": 0.09 + }, + { + "start": 20479.22, + "end": 20481.0, + "probability": 0.1081 + }, + { + "start": 20481.86, + "end": 20483.02, + "probability": 0.4719 + }, + { + "start": 20483.14, + "end": 20483.42, + "probability": 0.3331 + }, + { + "start": 20483.54, + "end": 20484.12, + "probability": 0.5955 + }, + { + "start": 20484.22, + "end": 20484.66, + "probability": 0.4611 + }, + { + "start": 20484.84, + "end": 20487.02, + "probability": 0.3707 + }, + { + "start": 20487.32, + "end": 20489.8, + "probability": 0.9111 + }, + { + "start": 20490.0, + "end": 20490.6, + "probability": 0.912 + }, + { + "start": 20490.74, + "end": 20490.96, + "probability": 0.9824 + }, + { + "start": 20491.12, + "end": 20492.36, + "probability": 0.9685 + }, + { + "start": 20492.56, + "end": 20494.42, + "probability": 0.8843 + }, + { + "start": 20494.68, + "end": 20499.82, + "probability": 0.9351 + }, + { + "start": 20499.88, + "end": 20501.32, + "probability": 0.8695 + }, + { + "start": 20501.36, + "end": 20502.12, + "probability": 0.906 + }, + { + "start": 20502.6, + "end": 20503.44, + "probability": 0.9741 + }, + { + "start": 20503.68, + "end": 20504.12, + "probability": 0.9197 + }, + { + "start": 20504.28, + "end": 20506.2, + "probability": 0.8452 + }, + { + "start": 20506.44, + "end": 20508.14, + "probability": 0.9828 + }, + { + "start": 20508.62, + "end": 20510.14, + "probability": 0.9494 + }, + { + "start": 20510.22, + "end": 20511.76, + "probability": 0.789 + }, + { + "start": 20511.84, + "end": 20514.18, + "probability": 0.9943 + }, + { + "start": 20514.18, + "end": 20516.58, + "probability": 0.9497 + }, + { + "start": 20516.7, + "end": 20518.06, + "probability": 0.7092 + }, + { + "start": 20518.52, + "end": 20520.24, + "probability": 0.9274 + }, + { + "start": 20520.32, + "end": 20523.48, + "probability": 0.9863 + }, + { + "start": 20523.48, + "end": 20527.58, + "probability": 0.888 + }, + { + "start": 20527.74, + "end": 20532.07, + "probability": 0.9705 + }, + { + "start": 20532.2, + "end": 20533.82, + "probability": 0.9329 + }, + { + "start": 20533.96, + "end": 20536.16, + "probability": 0.8413 + }, + { + "start": 20536.34, + "end": 20538.58, + "probability": 0.1818 + }, + { + "start": 20538.72, + "end": 20543.9, + "probability": 0.3528 + }, + { + "start": 20543.98, + "end": 20545.03, + "probability": 0.5019 + }, + { + "start": 20545.2, + "end": 20546.92, + "probability": 0.2136 + }, + { + "start": 20547.06, + "end": 20548.4, + "probability": 0.3888 + }, + { + "start": 20548.4, + "end": 20548.64, + "probability": 0.0854 + }, + { + "start": 20548.82, + "end": 20550.61, + "probability": 0.5355 + }, + { + "start": 20551.18, + "end": 20551.8, + "probability": 0.6945 + }, + { + "start": 20552.3, + "end": 20553.1, + "probability": 0.6899 + }, + { + "start": 20553.12, + "end": 20554.28, + "probability": 0.8406 + }, + { + "start": 20554.4, + "end": 20557.8, + "probability": 0.9212 + }, + { + "start": 20557.84, + "end": 20558.44, + "probability": 0.678 + }, + { + "start": 20558.5, + "end": 20559.24, + "probability": 0.6451 + }, + { + "start": 20559.46, + "end": 20560.74, + "probability": 0.7237 + }, + { + "start": 20561.18, + "end": 20561.8, + "probability": 0.738 + }, + { + "start": 20561.94, + "end": 20562.26, + "probability": 0.8831 + }, + { + "start": 20562.28, + "end": 20564.82, + "probability": 0.9759 + }, + { + "start": 20564.96, + "end": 20566.12, + "probability": 0.8241 + }, + { + "start": 20566.62, + "end": 20568.02, + "probability": 0.9404 + }, + { + "start": 20568.14, + "end": 20571.36, + "probability": 0.9884 + }, + { + "start": 20571.36, + "end": 20572.33, + "probability": 0.8477 + }, + { + "start": 20572.92, + "end": 20574.84, + "probability": 0.9873 + }, + { + "start": 20575.0, + "end": 20575.38, + "probability": 0.8395 + }, + { + "start": 20575.52, + "end": 20577.74, + "probability": 0.9487 + }, + { + "start": 20577.92, + "end": 20579.04, + "probability": 0.6552 + }, + { + "start": 20579.18, + "end": 20579.7, + "probability": 0.662 + }, + { + "start": 20579.82, + "end": 20580.58, + "probability": 0.4032 + }, + { + "start": 20580.66, + "end": 20581.42, + "probability": 0.5223 + }, + { + "start": 20581.54, + "end": 20582.64, + "probability": 0.9922 + }, + { + "start": 20582.68, + "end": 20584.72, + "probability": 0.5952 + }, + { + "start": 20584.78, + "end": 20585.78, + "probability": 0.6467 + }, + { + "start": 20585.9, + "end": 20586.87, + "probability": 0.7505 + }, + { + "start": 20588.88, + "end": 20590.42, + "probability": 0.1612 + }, + { + "start": 20590.42, + "end": 20590.42, + "probability": 0.0354 + }, + { + "start": 20590.42, + "end": 20591.82, + "probability": 0.2319 + }, + { + "start": 20592.56, + "end": 20595.98, + "probability": 0.1241 + }, + { + "start": 20596.54, + "end": 20598.74, + "probability": 0.1797 + }, + { + "start": 20599.06, + "end": 20599.62, + "probability": 0.1138 + }, + { + "start": 20599.66, + "end": 20602.66, + "probability": 0.0177 + }, + { + "start": 20603.22, + "end": 20604.22, + "probability": 0.0338 + }, + { + "start": 20604.22, + "end": 20604.48, + "probability": 0.0951 + }, + { + "start": 20604.92, + "end": 20604.92, + "probability": 0.0729 + }, + { + "start": 20604.92, + "end": 20604.92, + "probability": 0.1251 + }, + { + "start": 20604.92, + "end": 20606.64, + "probability": 0.8466 + }, + { + "start": 20606.74, + "end": 20607.62, + "probability": 0.5104 + }, + { + "start": 20608.14, + "end": 20610.06, + "probability": 0.7908 + }, + { + "start": 20610.08, + "end": 20611.82, + "probability": 0.9216 + }, + { + "start": 20612.12, + "end": 20614.04, + "probability": 0.969 + }, + { + "start": 20614.28, + "end": 20616.08, + "probability": 0.9037 + }, + { + "start": 20616.32, + "end": 20617.94, + "probability": 0.9731 + }, + { + "start": 20618.12, + "end": 20619.4, + "probability": 0.6844 + }, + { + "start": 20619.64, + "end": 20624.92, + "probability": 0.9873 + }, + { + "start": 20625.3, + "end": 20626.16, + "probability": 0.9568 + }, + { + "start": 20626.18, + "end": 20627.12, + "probability": 0.4664 + }, + { + "start": 20627.22, + "end": 20629.68, + "probability": 0.9844 + }, + { + "start": 20630.2, + "end": 20631.56, + "probability": 0.9056 + }, + { + "start": 20632.3, + "end": 20633.89, + "probability": 0.994 + }, + { + "start": 20634.2, + "end": 20636.24, + "probability": 0.9939 + }, + { + "start": 20636.42, + "end": 20637.89, + "probability": 0.8735 + }, + { + "start": 20637.98, + "end": 20640.5, + "probability": 0.6619 + }, + { + "start": 20640.7, + "end": 20643.1, + "probability": 0.9672 + }, + { + "start": 20643.4, + "end": 20646.06, + "probability": 0.9495 + }, + { + "start": 20646.82, + "end": 20647.78, + "probability": 0.5981 + }, + { + "start": 20647.86, + "end": 20649.3, + "probability": 0.0686 + }, + { + "start": 20649.36, + "end": 20650.98, + "probability": 0.8896 + }, + { + "start": 20651.3, + "end": 20655.56, + "probability": 0.9973 + }, + { + "start": 20655.96, + "end": 20657.96, + "probability": 0.972 + }, + { + "start": 20658.22, + "end": 20663.76, + "probability": 0.982 + }, + { + "start": 20663.76, + "end": 20670.02, + "probability": 0.9819 + }, + { + "start": 20670.18, + "end": 20672.42, + "probability": 0.8177 + }, + { + "start": 20672.92, + "end": 20678.66, + "probability": 0.9871 + }, + { + "start": 20678.88, + "end": 20679.32, + "probability": 0.3051 + }, + { + "start": 20679.52, + "end": 20680.6, + "probability": 0.8886 + }, + { + "start": 20680.74, + "end": 20682.14, + "probability": 0.9516 + }, + { + "start": 20682.5, + "end": 20685.14, + "probability": 0.9923 + }, + { + "start": 20685.32, + "end": 20686.6, + "probability": 0.9873 + }, + { + "start": 20686.78, + "end": 20687.34, + "probability": 0.8845 + }, + { + "start": 20687.46, + "end": 20690.24, + "probability": 0.8413 + }, + { + "start": 20690.3, + "end": 20692.12, + "probability": 0.9929 + }, + { + "start": 20692.6, + "end": 20694.04, + "probability": 0.9058 + }, + { + "start": 20694.26, + "end": 20696.72, + "probability": 0.9868 + }, + { + "start": 20696.96, + "end": 20698.14, + "probability": 0.445 + }, + { + "start": 20698.58, + "end": 20699.94, + "probability": 0.8024 + }, + { + "start": 20699.94, + "end": 20700.63, + "probability": 0.4923 + }, + { + "start": 20700.96, + "end": 20703.1, + "probability": 0.7971 + }, + { + "start": 20703.16, + "end": 20705.82, + "probability": 0.9896 + }, + { + "start": 20705.92, + "end": 20707.98, + "probability": 0.6897 + }, + { + "start": 20708.38, + "end": 20709.86, + "probability": 0.9844 + }, + { + "start": 20710.08, + "end": 20711.29, + "probability": 0.9786 + }, + { + "start": 20711.68, + "end": 20717.62, + "probability": 0.9789 + }, + { + "start": 20717.64, + "end": 20722.06, + "probability": 0.997 + }, + { + "start": 20722.16, + "end": 20722.66, + "probability": 0.7618 + }, + { + "start": 20722.76, + "end": 20723.28, + "probability": 0.6666 + }, + { + "start": 20723.36, + "end": 20724.58, + "probability": 0.923 + }, + { + "start": 20724.86, + "end": 20728.52, + "probability": 0.8562 + }, + { + "start": 20728.68, + "end": 20730.34, + "probability": 0.8223 + }, + { + "start": 20730.46, + "end": 20731.2, + "probability": 0.8953 + }, + { + "start": 20731.48, + "end": 20733.1, + "probability": 0.2369 + }, + { + "start": 20733.26, + "end": 20733.78, + "probability": 0.5804 + }, + { + "start": 20736.52, + "end": 20739.7, + "probability": 0.309 + }, + { + "start": 20740.18, + "end": 20741.1, + "probability": 0.3948 + }, + { + "start": 20741.14, + "end": 20744.22, + "probability": 0.9091 + }, + { + "start": 20744.72, + "end": 20748.16, + "probability": 0.7686 + }, + { + "start": 20748.86, + "end": 20751.22, + "probability": 0.9585 + }, + { + "start": 20751.22, + "end": 20753.68, + "probability": 0.876 + }, + { + "start": 20753.82, + "end": 20754.34, + "probability": 0.6417 + }, + { + "start": 20754.42, + "end": 20754.8, + "probability": 0.6795 + }, + { + "start": 20755.3, + "end": 20757.52, + "probability": 0.7464 + }, + { + "start": 20757.64, + "end": 20759.1, + "probability": 0.9056 + }, + { + "start": 20759.38, + "end": 20760.03, + "probability": 0.2615 + }, + { + "start": 20760.44, + "end": 20761.74, + "probability": 0.4973 + }, + { + "start": 20762.18, + "end": 20763.62, + "probability": 0.5057 + }, + { + "start": 20763.66, + "end": 20765.38, + "probability": 0.4011 + }, + { + "start": 20765.7, + "end": 20765.77, + "probability": 0.1327 + }, + { + "start": 20768.06, + "end": 20768.56, + "probability": 0.2062 + }, + { + "start": 20770.3, + "end": 20771.07, + "probability": 0.1071 + }, + { + "start": 20771.4, + "end": 20772.04, + "probability": 0.1817 + }, + { + "start": 20772.04, + "end": 20772.04, + "probability": 0.049 + }, + { + "start": 20772.04, + "end": 20772.04, + "probability": 0.0338 + }, + { + "start": 20772.04, + "end": 20772.6, + "probability": 0.2826 + }, + { + "start": 20772.84, + "end": 20774.51, + "probability": 0.587 + }, + { + "start": 20775.06, + "end": 20779.96, + "probability": 0.7929 + }, + { + "start": 20780.1, + "end": 20782.76, + "probability": 0.9277 + }, + { + "start": 20783.18, + "end": 20785.17, + "probability": 0.9927 + }, + { + "start": 20786.0, + "end": 20787.5, + "probability": 0.9925 + }, + { + "start": 20788.06, + "end": 20791.5, + "probability": 0.0986 + }, + { + "start": 20791.6, + "end": 20794.36, + "probability": 0.2413 + }, + { + "start": 20795.1, + "end": 20796.37, + "probability": 0.1639 + }, + { + "start": 20797.3, + "end": 20797.72, + "probability": 0.5837 + }, + { + "start": 20797.84, + "end": 20798.94, + "probability": 0.3942 + }, + { + "start": 20798.94, + "end": 20802.0, + "probability": 0.6677 + }, + { + "start": 20802.18, + "end": 20803.18, + "probability": 0.7546 + }, + { + "start": 20803.54, + "end": 20804.7, + "probability": 0.4022 + }, + { + "start": 20804.92, + "end": 20806.28, + "probability": 0.9423 + }, + { + "start": 20806.34, + "end": 20808.1, + "probability": 0.9567 + }, + { + "start": 20808.76, + "end": 20809.86, + "probability": 0.72 + }, + { + "start": 20809.86, + "end": 20813.4, + "probability": 0.5433 + }, + { + "start": 20813.84, + "end": 20815.42, + "probability": 0.8535 + }, + { + "start": 20815.42, + "end": 20818.0, + "probability": 0.0126 + }, + { + "start": 20818.74, + "end": 20821.2, + "probability": 0.6634 + }, + { + "start": 20822.02, + "end": 20822.9, + "probability": 0.461 + }, + { + "start": 20823.6, + "end": 20825.3, + "probability": 0.5749 + }, + { + "start": 20825.4, + "end": 20825.4, + "probability": 0.3062 + }, + { + "start": 20825.4, + "end": 20825.8, + "probability": 0.4266 + }, + { + "start": 20825.88, + "end": 20826.58, + "probability": 0.3579 + }, + { + "start": 20826.7, + "end": 20826.88, + "probability": 0.4623 + }, + { + "start": 20826.98, + "end": 20828.08, + "probability": 0.517 + }, + { + "start": 20828.08, + "end": 20829.54, + "probability": 0.7242 + }, + { + "start": 20829.6, + "end": 20831.04, + "probability": 0.7477 + }, + { + "start": 20831.2, + "end": 20832.74, + "probability": 0.7061 + }, + { + "start": 20832.92, + "end": 20835.64, + "probability": 0.978 + }, + { + "start": 20835.82, + "end": 20839.04, + "probability": 0.8552 + }, + { + "start": 20839.3, + "end": 20841.94, + "probability": 0.7153 + }, + { + "start": 20841.94, + "end": 20844.84, + "probability": 0.9376 + }, + { + "start": 20844.84, + "end": 20845.5, + "probability": 0.6519 + }, + { + "start": 20846.08, + "end": 20846.76, + "probability": 0.787 + }, + { + "start": 20846.9, + "end": 20848.92, + "probability": 0.9921 + }, + { + "start": 20848.92, + "end": 20852.36, + "probability": 0.9966 + }, + { + "start": 20852.36, + "end": 20852.76, + "probability": 0.4489 + }, + { + "start": 20852.8, + "end": 20853.86, + "probability": 0.9516 + }, + { + "start": 20853.98, + "end": 20856.04, + "probability": 0.9824 + }, + { + "start": 20856.56, + "end": 20860.66, + "probability": 0.9535 + }, + { + "start": 20860.78, + "end": 20863.9, + "probability": 0.6602 + }, + { + "start": 20863.96, + "end": 20865.16, + "probability": 0.9924 + }, + { + "start": 20865.24, + "end": 20865.82, + "probability": 0.5566 + }, + { + "start": 20866.22, + "end": 20867.38, + "probability": 0.8896 + }, + { + "start": 20867.72, + "end": 20869.41, + "probability": 0.555 + }, + { + "start": 20869.7, + "end": 20873.84, + "probability": 0.3217 + }, + { + "start": 20873.96, + "end": 20874.2, + "probability": 0.0239 + }, + { + "start": 20874.2, + "end": 20878.38, + "probability": 0.5204 + }, + { + "start": 20878.38, + "end": 20879.7, + "probability": 0.1501 + }, + { + "start": 20879.82, + "end": 20881.32, + "probability": 0.4998 + }, + { + "start": 20881.4, + "end": 20881.78, + "probability": 0.3822 + }, + { + "start": 20882.15, + "end": 20885.74, + "probability": 0.8763 + }, + { + "start": 20885.94, + "end": 20886.3, + "probability": 0.75 + }, + { + "start": 20886.4, + "end": 20888.3, + "probability": 0.755 + }, + { + "start": 20888.44, + "end": 20889.4, + "probability": 0.9326 + }, + { + "start": 20889.84, + "end": 20894.02, + "probability": 0.9472 + }, + { + "start": 20894.12, + "end": 20896.3, + "probability": 0.993 + }, + { + "start": 20897.14, + "end": 20900.56, + "probability": 0.8031 + }, + { + "start": 20900.64, + "end": 20904.22, + "probability": 0.9967 + }, + { + "start": 20904.24, + "end": 20904.74, + "probability": 0.6724 + }, + { + "start": 20904.74, + "end": 20908.52, + "probability": 0.9845 + }, + { + "start": 20908.52, + "end": 20911.88, + "probability": 0.9885 + }, + { + "start": 20912.68, + "end": 20916.84, + "probability": 0.9642 + }, + { + "start": 20917.08, + "end": 20920.5, + "probability": 0.9679 + }, + { + "start": 20920.94, + "end": 20923.9, + "probability": 0.9947 + }, + { + "start": 20923.96, + "end": 20928.38, + "probability": 0.9982 + }, + { + "start": 20928.8, + "end": 20933.88, + "probability": 0.97 + }, + { + "start": 20935.46, + "end": 20937.46, + "probability": 0.9834 + }, + { + "start": 20937.8, + "end": 20939.74, + "probability": 0.928 + }, + { + "start": 20939.82, + "end": 20940.62, + "probability": 0.8568 + }, + { + "start": 20940.72, + "end": 20944.16, + "probability": 0.9725 + }, + { + "start": 20944.16, + "end": 20947.72, + "probability": 0.9984 + }, + { + "start": 20948.38, + "end": 20952.52, + "probability": 0.9863 + }, + { + "start": 20953.02, + "end": 20954.44, + "probability": 0.9668 + }, + { + "start": 20954.58, + "end": 20956.4, + "probability": 0.9954 + }, + { + "start": 20957.18, + "end": 20959.98, + "probability": 0.9989 + }, + { + "start": 20960.08, + "end": 20962.59, + "probability": 0.9967 + }, + { + "start": 20963.22, + "end": 20967.76, + "probability": 0.9822 + }, + { + "start": 20968.7, + "end": 20971.72, + "probability": 0.9967 + }, + { + "start": 20971.72, + "end": 20974.98, + "probability": 0.8994 + }, + { + "start": 20975.58, + "end": 20978.38, + "probability": 0.7754 + }, + { + "start": 20978.94, + "end": 20981.34, + "probability": 0.909 + }, + { + "start": 20981.42, + "end": 20983.16, + "probability": 0.7061 + }, + { + "start": 20983.62, + "end": 20991.08, + "probability": 0.9783 + }, + { + "start": 20991.14, + "end": 20994.58, + "probability": 0.8349 + }, + { + "start": 20995.14, + "end": 20997.24, + "probability": 0.5883 + }, + { + "start": 20997.44, + "end": 20999.54, + "probability": 0.754 + }, + { + "start": 20999.56, + "end": 21003.26, + "probability": 0.9838 + }, + { + "start": 21003.26, + "end": 21007.96, + "probability": 0.9731 + }, + { + "start": 21008.02, + "end": 21008.4, + "probability": 0.8118 + }, + { + "start": 21008.4, + "end": 21010.16, + "probability": 0.8645 + }, + { + "start": 21010.68, + "end": 21012.06, + "probability": 0.6803 + }, + { + "start": 21012.2, + "end": 21013.38, + "probability": 0.9745 + }, + { + "start": 21013.94, + "end": 21018.02, + "probability": 0.9897 + }, + { + "start": 21018.11, + "end": 21022.76, + "probability": 0.9669 + }, + { + "start": 21022.88, + "end": 21025.68, + "probability": 0.7702 + }, + { + "start": 21025.86, + "end": 21026.82, + "probability": 0.326 + }, + { + "start": 21026.86, + "end": 21027.63, + "probability": 0.5933 + }, + { + "start": 21028.16, + "end": 21032.16, + "probability": 0.7912 + }, + { + "start": 21032.26, + "end": 21034.04, + "probability": 0.714 + }, + { + "start": 21034.12, + "end": 21034.73, + "probability": 0.2561 + }, + { + "start": 21035.08, + "end": 21035.26, + "probability": 0.4656 + }, + { + "start": 21035.38, + "end": 21037.98, + "probability": 0.7971 + }, + { + "start": 21038.22, + "end": 21039.7, + "probability": 0.4938 + }, + { + "start": 21040.02, + "end": 21041.94, + "probability": 0.9184 + }, + { + "start": 21041.96, + "end": 21044.62, + "probability": 0.9438 + }, + { + "start": 21045.38, + "end": 21046.92, + "probability": 0.9878 + }, + { + "start": 21047.02, + "end": 21047.81, + "probability": 0.9628 + }, + { + "start": 21048.26, + "end": 21050.04, + "probability": 0.8696 + }, + { + "start": 21051.06, + "end": 21051.52, + "probability": 0.0177 + }, + { + "start": 21054.26, + "end": 21054.68, + "probability": 0.0128 + }, + { + "start": 21054.68, + "end": 21054.68, + "probability": 0.0923 + }, + { + "start": 21054.68, + "end": 21054.68, + "probability": 0.1019 + }, + { + "start": 21054.68, + "end": 21056.93, + "probability": 0.2242 + }, + { + "start": 21057.7, + "end": 21061.66, + "probability": 0.8883 + }, + { + "start": 21061.74, + "end": 21063.18, + "probability": 0.817 + }, + { + "start": 21063.32, + "end": 21066.2, + "probability": 0.8474 + }, + { + "start": 21066.32, + "end": 21067.37, + "probability": 0.8501 + }, + { + "start": 21068.04, + "end": 21069.64, + "probability": 0.9971 + }, + { + "start": 21069.64, + "end": 21071.18, + "probability": 0.7615 + }, + { + "start": 21071.24, + "end": 21072.56, + "probability": 0.8263 + }, + { + "start": 21072.62, + "end": 21073.12, + "probability": 0.8638 + }, + { + "start": 21073.22, + "end": 21076.04, + "probability": 0.9889 + }, + { + "start": 21076.26, + "end": 21078.88, + "probability": 0.6894 + }, + { + "start": 21078.88, + "end": 21081.34, + "probability": 0.9662 + }, + { + "start": 21081.78, + "end": 21083.68, + "probability": 0.577 + }, + { + "start": 21083.9, + "end": 21085.76, + "probability": 0.8955 + }, + { + "start": 21085.96, + "end": 21086.72, + "probability": 0.4195 + }, + { + "start": 21086.76, + "end": 21087.34, + "probability": 0.6456 + }, + { + "start": 21087.52, + "end": 21088.06, + "probability": 0.8013 + }, + { + "start": 21088.16, + "end": 21090.64, + "probability": 0.9648 + }, + { + "start": 21091.56, + "end": 21092.84, + "probability": 0.98 + }, + { + "start": 21093.38, + "end": 21095.42, + "probability": 0.6559 + }, + { + "start": 21095.54, + "end": 21098.24, + "probability": 0.4271 + }, + { + "start": 21098.78, + "end": 21100.57, + "probability": 0.8886 + }, + { + "start": 21101.16, + "end": 21103.86, + "probability": 0.8459 + }, + { + "start": 21104.02, + "end": 21104.56, + "probability": 0.8897 + }, + { + "start": 21104.68, + "end": 21105.9, + "probability": 0.9761 + }, + { + "start": 21105.96, + "end": 21106.62, + "probability": 0.968 + }, + { + "start": 21107.06, + "end": 21107.24, + "probability": 0.4632 + }, + { + "start": 21107.38, + "end": 21112.84, + "probability": 0.682 + }, + { + "start": 21113.28, + "end": 21115.19, + "probability": 0.924 + }, + { + "start": 21116.16, + "end": 21120.18, + "probability": 0.9644 + }, + { + "start": 21120.4, + "end": 21121.11, + "probability": 0.6725 + }, + { + "start": 21121.28, + "end": 21122.18, + "probability": 0.9641 + }, + { + "start": 21122.26, + "end": 21122.98, + "probability": 0.8853 + }, + { + "start": 21123.04, + "end": 21123.54, + "probability": 0.4023 + }, + { + "start": 21123.98, + "end": 21123.98, + "probability": 0.0349 + }, + { + "start": 21124.58, + "end": 21124.82, + "probability": 0.508 + }, + { + "start": 21124.86, + "end": 21125.46, + "probability": 0.6592 + }, + { + "start": 21125.8, + "end": 21125.98, + "probability": 0.3076 + }, + { + "start": 21126.12, + "end": 21127.82, + "probability": 0.9521 + }, + { + "start": 21128.24, + "end": 21129.56, + "probability": 0.8345 + }, + { + "start": 21129.6, + "end": 21129.84, + "probability": 0.9197 + }, + { + "start": 21129.96, + "end": 21130.68, + "probability": 0.9365 + }, + { + "start": 21131.21, + "end": 21134.04, + "probability": 0.9677 + }, + { + "start": 21134.04, + "end": 21137.06, + "probability": 0.9673 + }, + { + "start": 21137.5, + "end": 21139.38, + "probability": 0.9961 + }, + { + "start": 21139.66, + "end": 21139.9, + "probability": 0.5735 + }, + { + "start": 21139.96, + "end": 21141.84, + "probability": 0.9937 + }, + { + "start": 21141.98, + "end": 21145.86, + "probability": 0.9924 + }, + { + "start": 21145.96, + "end": 21146.28, + "probability": 0.8761 + }, + { + "start": 21146.44, + "end": 21148.66, + "probability": 0.9821 + }, + { + "start": 21148.78, + "end": 21152.5, + "probability": 0.957 + }, + { + "start": 21152.78, + "end": 21155.14, + "probability": 0.7153 + }, + { + "start": 21155.26, + "end": 21156.42, + "probability": 0.884 + }, + { + "start": 21156.66, + "end": 21159.74, + "probability": 0.9961 + }, + { + "start": 21159.74, + "end": 21161.9, + "probability": 0.9225 + }, + { + "start": 21161.96, + "end": 21163.98, + "probability": 0.979 + }, + { + "start": 21164.35, + "end": 21166.62, + "probability": 0.9526 + }, + { + "start": 21166.62, + "end": 21169.1, + "probability": 0.9974 + }, + { + "start": 21169.24, + "end": 21169.94, + "probability": 0.9557 + }, + { + "start": 21170.12, + "end": 21170.56, + "probability": 0.3228 + }, + { + "start": 21170.62, + "end": 21171.54, + "probability": 0.8962 + }, + { + "start": 21171.56, + "end": 21175.78, + "probability": 0.7223 + }, + { + "start": 21176.04, + "end": 21182.64, + "probability": 0.8671 + }, + { + "start": 21182.74, + "end": 21185.3, + "probability": 0.9802 + }, + { + "start": 21186.18, + "end": 21192.62, + "probability": 0.9969 + }, + { + "start": 21193.64, + "end": 21195.56, + "probability": 0.9579 + }, + { + "start": 21195.66, + "end": 21196.8, + "probability": 0.9154 + }, + { + "start": 21196.86, + "end": 21198.33, + "probability": 0.991 + }, + { + "start": 21199.4, + "end": 21203.12, + "probability": 0.9614 + }, + { + "start": 21203.12, + "end": 21206.86, + "probability": 0.999 + }, + { + "start": 21206.96, + "end": 21207.8, + "probability": 0.87 + }, + { + "start": 21207.98, + "end": 21212.86, + "probability": 0.9964 + }, + { + "start": 21213.94, + "end": 21216.1, + "probability": 0.998 + }, + { + "start": 21217.12, + "end": 21219.52, + "probability": 0.9702 + }, + { + "start": 21220.22, + "end": 21225.7, + "probability": 0.9984 + }, + { + "start": 21226.28, + "end": 21229.08, + "probability": 0.9945 + }, + { + "start": 21229.59, + "end": 21234.28, + "probability": 0.9921 + }, + { + "start": 21234.36, + "end": 21234.78, + "probability": 0.9143 + }, + { + "start": 21236.1, + "end": 21239.8, + "probability": 0.9946 + }, + { + "start": 21240.18, + "end": 21240.18, + "probability": 0.5388 + }, + { + "start": 21240.18, + "end": 21241.36, + "probability": 0.8573 + }, + { + "start": 21241.6, + "end": 21244.4, + "probability": 0.9778 + }, + { + "start": 21244.46, + "end": 21245.64, + "probability": 0.9756 + }, + { + "start": 21246.06, + "end": 21248.42, + "probability": 0.9435 + }, + { + "start": 21248.42, + "end": 21250.62, + "probability": 0.7372 + }, + { + "start": 21250.62, + "end": 21251.46, + "probability": 0.6087 + }, + { + "start": 21251.54, + "end": 21252.16, + "probability": 0.263 + }, + { + "start": 21252.24, + "end": 21252.58, + "probability": 0.3133 + }, + { + "start": 21252.6, + "end": 21253.2, + "probability": 0.7886 + }, + { + "start": 21253.34, + "end": 21255.52, + "probability": 0.9913 + }, + { + "start": 21255.66, + "end": 21257.52, + "probability": 0.9976 + }, + { + "start": 21257.94, + "end": 21264.18, + "probability": 0.994 + }, + { + "start": 21264.74, + "end": 21269.4, + "probability": 0.9912 + }, + { + "start": 21269.68, + "end": 21270.94, + "probability": 0.8723 + }, + { + "start": 21271.08, + "end": 21272.82, + "probability": 0.9219 + }, + { + "start": 21272.86, + "end": 21273.16, + "probability": 0.6971 + }, + { + "start": 21274.14, + "end": 21275.72, + "probability": 0.7983 + }, + { + "start": 21276.2, + "end": 21278.02, + "probability": 0.8877 + }, + { + "start": 21278.98, + "end": 21279.6, + "probability": 0.6721 + }, + { + "start": 21280.32, + "end": 21283.02, + "probability": 0.9249 + }, + { + "start": 21291.28, + "end": 21292.24, + "probability": 0.6106 + }, + { + "start": 21292.4, + "end": 21293.12, + "probability": 0.3944 + }, + { + "start": 21293.38, + "end": 21295.4, + "probability": 0.875 + }, + { + "start": 21295.98, + "end": 21297.26, + "probability": 0.5812 + }, + { + "start": 21297.38, + "end": 21301.42, + "probability": 0.8075 + }, + { + "start": 21304.82, + "end": 21306.8, + "probability": 0.9031 + }, + { + "start": 21307.76, + "end": 21309.66, + "probability": 0.5275 + }, + { + "start": 21311.06, + "end": 21313.32, + "probability": 0.767 + }, + { + "start": 21314.59, + "end": 21317.48, + "probability": 0.9938 + }, + { + "start": 21318.34, + "end": 21321.66, + "probability": 0.8884 + }, + { + "start": 21322.3, + "end": 21323.22, + "probability": 0.9135 + }, + { + "start": 21324.12, + "end": 21325.26, + "probability": 0.9565 + }, + { + "start": 21326.24, + "end": 21326.74, + "probability": 0.7655 + }, + { + "start": 21326.96, + "end": 21331.72, + "probability": 0.9717 + }, + { + "start": 21332.46, + "end": 21338.7, + "probability": 0.9579 + }, + { + "start": 21339.7, + "end": 21341.62, + "probability": 0.7063 + }, + { + "start": 21341.72, + "end": 21344.18, + "probability": 0.738 + }, + { + "start": 21344.44, + "end": 21346.14, + "probability": 0.9893 + }, + { + "start": 21346.52, + "end": 21348.54, + "probability": 0.8346 + }, + { + "start": 21348.7, + "end": 21350.31, + "probability": 0.9883 + }, + { + "start": 21350.96, + "end": 21352.18, + "probability": 0.7122 + }, + { + "start": 21352.9, + "end": 21354.76, + "probability": 0.8221 + }, + { + "start": 21354.86, + "end": 21358.29, + "probability": 0.9478 + }, + { + "start": 21359.16, + "end": 21360.84, + "probability": 0.6963 + }, + { + "start": 21361.18, + "end": 21364.53, + "probability": 0.9806 + }, + { + "start": 21364.98, + "end": 21367.9, + "probability": 0.9978 + }, + { + "start": 21367.9, + "end": 21371.44, + "probability": 0.9878 + }, + { + "start": 21372.1, + "end": 21372.84, + "probability": 0.9437 + }, + { + "start": 21372.98, + "end": 21375.86, + "probability": 0.9976 + }, + { + "start": 21375.94, + "end": 21378.44, + "probability": 0.7604 + }, + { + "start": 21378.52, + "end": 21380.84, + "probability": 0.851 + }, + { + "start": 21381.26, + "end": 21383.44, + "probability": 0.8425 + }, + { + "start": 21383.44, + "end": 21386.12, + "probability": 0.8068 + }, + { + "start": 21386.12, + "end": 21388.82, + "probability": 0.7331 + }, + { + "start": 21388.92, + "end": 21391.66, + "probability": 0.9777 + }, + { + "start": 21392.78, + "end": 21392.8, + "probability": 0.0451 + }, + { + "start": 21392.8, + "end": 21393.74, + "probability": 0.6189 + }, + { + "start": 21393.78, + "end": 21394.62, + "probability": 0.7636 + }, + { + "start": 21394.78, + "end": 21397.8, + "probability": 0.8865 + }, + { + "start": 21397.92, + "end": 21398.54, + "probability": 0.9307 + }, + { + "start": 21398.62, + "end": 21402.52, + "probability": 0.9454 + }, + { + "start": 21403.94, + "end": 21409.06, + "probability": 0.8793 + }, + { + "start": 21410.04, + "end": 21412.48, + "probability": 0.8481 + }, + { + "start": 21412.48, + "end": 21415.66, + "probability": 0.905 + }, + { + "start": 21416.12, + "end": 21418.26, + "probability": 0.8168 + }, + { + "start": 21418.66, + "end": 21425.0, + "probability": 0.9745 + }, + { + "start": 21425.0, + "end": 21429.08, + "probability": 0.9585 + }, + { + "start": 21429.32, + "end": 21430.71, + "probability": 0.9343 + }, + { + "start": 21431.28, + "end": 21432.82, + "probability": 0.9487 + }, + { + "start": 21433.7, + "end": 21436.3, + "probability": 0.9306 + }, + { + "start": 21436.3, + "end": 21439.86, + "probability": 0.9505 + }, + { + "start": 21440.1, + "end": 21443.38, + "probability": 0.9934 + }, + { + "start": 21443.38, + "end": 21446.04, + "probability": 0.9748 + }, + { + "start": 21446.04, + "end": 21449.8, + "probability": 0.8996 + }, + { + "start": 21450.3, + "end": 21451.8, + "probability": 0.7383 + }, + { + "start": 21452.54, + "end": 21454.88, + "probability": 0.9173 + }, + { + "start": 21455.18, + "end": 21457.34, + "probability": 0.7965 + }, + { + "start": 21457.5, + "end": 21459.22, + "probability": 0.6708 + }, + { + "start": 21459.62, + "end": 21462.34, + "probability": 0.9843 + }, + { + "start": 21462.74, + "end": 21463.08, + "probability": 0.4612 + }, + { + "start": 21463.1, + "end": 21463.92, + "probability": 0.8507 + }, + { + "start": 21463.98, + "end": 21465.92, + "probability": 0.8587 + }, + { + "start": 21465.98, + "end": 21467.62, + "probability": 0.5474 + }, + { + "start": 21468.4, + "end": 21470.14, + "probability": 0.4655 + }, + { + "start": 21470.16, + "end": 21471.78, + "probability": 0.8975 + }, + { + "start": 21472.0, + "end": 21474.76, + "probability": 0.806 + }, + { + "start": 21475.4, + "end": 21477.72, + "probability": 0.9574 + }, + { + "start": 21478.32, + "end": 21480.82, + "probability": 0.9248 + }, + { + "start": 21481.22, + "end": 21486.52, + "probability": 0.9915 + }, + { + "start": 21486.58, + "end": 21493.22, + "probability": 0.9938 + }, + { + "start": 21493.36, + "end": 21494.58, + "probability": 0.9805 + }, + { + "start": 21494.64, + "end": 21496.13, + "probability": 0.924 + }, + { + "start": 21496.66, + "end": 21497.38, + "probability": 0.8138 + }, + { + "start": 21497.48, + "end": 21501.12, + "probability": 0.8823 + }, + { + "start": 21501.36, + "end": 21502.86, + "probability": 0.9905 + }, + { + "start": 21503.0, + "end": 21506.3, + "probability": 0.9521 + }, + { + "start": 21506.52, + "end": 21508.48, + "probability": 0.8792 + }, + { + "start": 21509.74, + "end": 21510.28, + "probability": 0.9951 + }, + { + "start": 21510.92, + "end": 21515.04, + "probability": 0.8643 + }, + { + "start": 21515.68, + "end": 21516.12, + "probability": 0.9341 + }, + { + "start": 21516.22, + "end": 21517.04, + "probability": 0.7062 + }, + { + "start": 21517.16, + "end": 21518.06, + "probability": 0.9246 + }, + { + "start": 21518.1, + "end": 21518.88, + "probability": 0.9844 + }, + { + "start": 21519.68, + "end": 21520.78, + "probability": 0.9388 + }, + { + "start": 21520.84, + "end": 21522.04, + "probability": 0.8585 + }, + { + "start": 21522.2, + "end": 21527.38, + "probability": 0.8779 + }, + { + "start": 21527.64, + "end": 21528.86, + "probability": 0.8011 + }, + { + "start": 21529.02, + "end": 21529.88, + "probability": 0.667 + }, + { + "start": 21530.06, + "end": 21531.22, + "probability": 0.966 + }, + { + "start": 21533.14, + "end": 21536.62, + "probability": 0.9829 + }, + { + "start": 21536.84, + "end": 21537.26, + "probability": 0.7053 + }, + { + "start": 21537.3, + "end": 21540.56, + "probability": 0.9463 + }, + { + "start": 21541.0, + "end": 21544.52, + "probability": 0.97 + }, + { + "start": 21544.6, + "end": 21546.12, + "probability": 0.7894 + }, + { + "start": 21546.44, + "end": 21549.36, + "probability": 0.7905 + }, + { + "start": 21549.66, + "end": 21552.16, + "probability": 0.8131 + }, + { + "start": 21552.42, + "end": 21556.27, + "probability": 0.9936 + }, + { + "start": 21556.56, + "end": 21560.32, + "probability": 0.9967 + }, + { + "start": 21560.54, + "end": 21561.28, + "probability": 0.7527 + }, + { + "start": 21561.4, + "end": 21562.2, + "probability": 0.453 + }, + { + "start": 21562.34, + "end": 21565.5, + "probability": 0.9731 + }, + { + "start": 21565.66, + "end": 21566.36, + "probability": 0.9934 + }, + { + "start": 21566.64, + "end": 21567.74, + "probability": 0.972 + }, + { + "start": 21568.04, + "end": 21568.26, + "probability": 0.7712 + }, + { + "start": 21568.66, + "end": 21569.6, + "probability": 0.6517 + }, + { + "start": 21570.56, + "end": 21573.96, + "probability": 0.83 + }, + { + "start": 21573.98, + "end": 21574.74, + "probability": 0.9402 + }, + { + "start": 21588.24, + "end": 21588.92, + "probability": 0.7411 + }, + { + "start": 21593.78, + "end": 21594.42, + "probability": 0.7332 + }, + { + "start": 21594.54, + "end": 21594.64, + "probability": 0.5524 + }, + { + "start": 21594.64, + "end": 21595.7, + "probability": 0.7432 + }, + { + "start": 21596.09, + "end": 21597.58, + "probability": 0.6787 + }, + { + "start": 21597.64, + "end": 21598.7, + "probability": 0.8859 + }, + { + "start": 21599.32, + "end": 21599.88, + "probability": 0.9726 + }, + { + "start": 21599.98, + "end": 21605.48, + "probability": 0.9413 + }, + { + "start": 21605.62, + "end": 21606.71, + "probability": 0.9634 + }, + { + "start": 21607.48, + "end": 21610.68, + "probability": 0.9871 + }, + { + "start": 21610.7, + "end": 21613.27, + "probability": 0.7716 + }, + { + "start": 21613.92, + "end": 21614.64, + "probability": 0.7249 + }, + { + "start": 21615.14, + "end": 21619.5, + "probability": 0.9524 + }, + { + "start": 21619.6, + "end": 21620.54, + "probability": 0.3433 + }, + { + "start": 21620.64, + "end": 21624.64, + "probability": 0.9886 + }, + { + "start": 21625.12, + "end": 21627.14, + "probability": 0.9983 + }, + { + "start": 21627.24, + "end": 21628.04, + "probability": 0.8569 + }, + { + "start": 21628.76, + "end": 21629.52, + "probability": 0.5887 + }, + { + "start": 21629.62, + "end": 21630.42, + "probability": 0.9486 + }, + { + "start": 21630.6, + "end": 21633.3, + "probability": 0.746 + }, + { + "start": 21633.42, + "end": 21634.46, + "probability": 0.9221 + }, + { + "start": 21634.54, + "end": 21635.98, + "probability": 0.9559 + }, + { + "start": 21636.06, + "end": 21639.74, + "probability": 0.9912 + }, + { + "start": 21639.84, + "end": 21640.19, + "probability": 0.8958 + }, + { + "start": 21640.66, + "end": 21641.18, + "probability": 0.5186 + }, + { + "start": 21641.18, + "end": 21642.42, + "probability": 0.8972 + }, + { + "start": 21642.74, + "end": 21643.6, + "probability": 0.7985 + }, + { + "start": 21643.66, + "end": 21645.08, + "probability": 0.8781 + }, + { + "start": 21645.58, + "end": 21650.34, + "probability": 0.9355 + }, + { + "start": 21650.4, + "end": 21650.72, + "probability": 0.513 + }, + { + "start": 21650.8, + "end": 21651.34, + "probability": 0.7541 + }, + { + "start": 21651.46, + "end": 21652.04, + "probability": 0.5086 + }, + { + "start": 21652.56, + "end": 21654.62, + "probability": 0.6396 + }, + { + "start": 21655.22, + "end": 21656.0, + "probability": 0.827 + }, + { + "start": 21656.02, + "end": 21659.4, + "probability": 0.7876 + }, + { + "start": 21659.84, + "end": 21666.16, + "probability": 0.9868 + }, + { + "start": 21666.62, + "end": 21669.54, + "probability": 0.6967 + }, + { + "start": 21669.68, + "end": 21670.96, + "probability": 0.9445 + }, + { + "start": 21671.22, + "end": 21674.18, + "probability": 0.6743 + }, + { + "start": 21674.8, + "end": 21676.58, + "probability": 0.5911 + }, + { + "start": 21676.8, + "end": 21678.86, + "probability": 0.9963 + }, + { + "start": 21678.9, + "end": 21680.32, + "probability": 0.9838 + }, + { + "start": 21680.58, + "end": 21682.39, + "probability": 0.9456 + }, + { + "start": 21682.66, + "end": 21685.52, + "probability": 0.9524 + }, + { + "start": 21685.62, + "end": 21687.24, + "probability": 0.8962 + }, + { + "start": 21687.36, + "end": 21689.32, + "probability": 0.7307 + }, + { + "start": 21689.46, + "end": 21690.16, + "probability": 0.9316 + }, + { + "start": 21690.24, + "end": 21691.6, + "probability": 0.817 + }, + { + "start": 21691.74, + "end": 21693.76, + "probability": 0.9539 + }, + { + "start": 21694.18, + "end": 21695.22, + "probability": 0.126 + }, + { + "start": 21695.34, + "end": 21700.48, + "probability": 0.2909 + }, + { + "start": 21701.0, + "end": 21703.14, + "probability": 0.494 + }, + { + "start": 21703.14, + "end": 21704.52, + "probability": 0.3403 + }, + { + "start": 21704.88, + "end": 21707.54, + "probability": 0.8972 + }, + { + "start": 21707.68, + "end": 21708.6, + "probability": 0.9609 + }, + { + "start": 21708.66, + "end": 21708.72, + "probability": 0.1706 + }, + { + "start": 21708.88, + "end": 21709.57, + "probability": 0.7978 + }, + { + "start": 21710.08, + "end": 21710.78, + "probability": 0.252 + }, + { + "start": 21710.84, + "end": 21711.72, + "probability": 0.7235 + }, + { + "start": 21711.88, + "end": 21714.2, + "probability": 0.9562 + }, + { + "start": 21714.24, + "end": 21716.82, + "probability": 0.5834 + }, + { + "start": 21716.94, + "end": 21718.32, + "probability": 0.7329 + }, + { + "start": 21718.52, + "end": 21720.1, + "probability": 0.9785 + }, + { + "start": 21721.04, + "end": 21726.06, + "probability": 0.9551 + }, + { + "start": 21726.06, + "end": 21729.66, + "probability": 0.9921 + }, + { + "start": 21730.28, + "end": 21732.08, + "probability": 0.9834 + }, + { + "start": 21732.68, + "end": 21734.56, + "probability": 0.9974 + }, + { + "start": 21734.95, + "end": 21736.62, + "probability": 0.7379 + }, + { + "start": 21736.7, + "end": 21739.22, + "probability": 0.949 + }, + { + "start": 21739.52, + "end": 21741.23, + "probability": 0.8424 + }, + { + "start": 21741.72, + "end": 21742.43, + "probability": 0.9679 + }, + { + "start": 21742.7, + "end": 21743.5, + "probability": 0.47 + }, + { + "start": 21747.78, + "end": 21749.02, + "probability": 0.3712 + }, + { + "start": 21752.0, + "end": 21758.38, + "probability": 0.4729 + }, + { + "start": 21758.42, + "end": 21759.74, + "probability": 0.6353 + }, + { + "start": 21760.48, + "end": 21764.6, + "probability": 0.985 + }, + { + "start": 21765.18, + "end": 21766.48, + "probability": 0.8815 + }, + { + "start": 21766.9, + "end": 21769.64, + "probability": 0.8179 + }, + { + "start": 21770.7, + "end": 21772.16, + "probability": 0.9497 + }, + { + "start": 21772.2, + "end": 21772.86, + "probability": 0.8528 + }, + { + "start": 21772.92, + "end": 21773.72, + "probability": 0.8566 + }, + { + "start": 21773.92, + "end": 21776.68, + "probability": 0.9971 + }, + { + "start": 21777.08, + "end": 21779.12, + "probability": 0.9932 + }, + { + "start": 21779.44, + "end": 21781.06, + "probability": 0.9509 + }, + { + "start": 21781.58, + "end": 21784.2, + "probability": 0.9828 + }, + { + "start": 21784.5, + "end": 21786.72, + "probability": 0.9382 + }, + { + "start": 21787.04, + "end": 21789.12, + "probability": 0.8048 + }, + { + "start": 21789.2, + "end": 21791.97, + "probability": 0.9431 + }, + { + "start": 21793.12, + "end": 21795.74, + "probability": 0.9935 + }, + { + "start": 21796.24, + "end": 21799.78, + "probability": 0.9596 + }, + { + "start": 21800.3, + "end": 21803.44, + "probability": 0.9941 + }, + { + "start": 21804.5, + "end": 21805.26, + "probability": 0.3933 + }, + { + "start": 21807.88, + "end": 21811.64, + "probability": 0.7865 + }, + { + "start": 21812.6, + "end": 21813.18, + "probability": 0.0204 + }, + { + "start": 21822.54, + "end": 21824.3, + "probability": 0.3504 + }, + { + "start": 21833.6, + "end": 21836.36, + "probability": 0.7255 + }, + { + "start": 21838.74, + "end": 21841.68, + "probability": 0.7059 + }, + { + "start": 21842.48, + "end": 21842.88, + "probability": 0.4329 + }, + { + "start": 21842.98, + "end": 21849.3, + "probability": 0.9543 + }, + { + "start": 21849.38, + "end": 21850.36, + "probability": 0.8264 + }, + { + "start": 21851.14, + "end": 21852.16, + "probability": 0.7536 + }, + { + "start": 21852.26, + "end": 21853.6, + "probability": 0.9519 + }, + { + "start": 21854.36, + "end": 21855.55, + "probability": 0.9951 + }, + { + "start": 21857.66, + "end": 21858.56, + "probability": 0.5799 + }, + { + "start": 21858.72, + "end": 21859.34, + "probability": 0.6921 + }, + { + "start": 21859.36, + "end": 21861.34, + "probability": 0.9368 + }, + { + "start": 21861.56, + "end": 21865.08, + "probability": 0.6716 + }, + { + "start": 21865.28, + "end": 21867.04, + "probability": 0.9868 + }, + { + "start": 21867.34, + "end": 21869.86, + "probability": 0.9133 + }, + { + "start": 21870.36, + "end": 21873.24, + "probability": 0.9233 + }, + { + "start": 21873.3, + "end": 21873.92, + "probability": 0.8315 + }, + { + "start": 21874.04, + "end": 21874.59, + "probability": 0.9189 + }, + { + "start": 21875.56, + "end": 21876.5, + "probability": 0.2756 + }, + { + "start": 21876.92, + "end": 21877.86, + "probability": 0.8768 + }, + { + "start": 21877.94, + "end": 21878.52, + "probability": 0.7406 + }, + { + "start": 21878.7, + "end": 21879.96, + "probability": 0.6943 + }, + { + "start": 21880.36, + "end": 21882.62, + "probability": 0.9849 + }, + { + "start": 21884.32, + "end": 21888.84, + "probability": 0.7838 + }, + { + "start": 21889.7, + "end": 21892.36, + "probability": 0.6724 + }, + { + "start": 21892.94, + "end": 21896.26, + "probability": 0.9575 + }, + { + "start": 21896.48, + "end": 21897.58, + "probability": 0.5555 + }, + { + "start": 21897.88, + "end": 21898.9, + "probability": 0.9824 + }, + { + "start": 21899.0, + "end": 21903.16, + "probability": 0.9893 + }, + { + "start": 21903.28, + "end": 21903.94, + "probability": 0.8205 + }, + { + "start": 21904.06, + "end": 21906.01, + "probability": 0.79 + }, + { + "start": 21906.74, + "end": 21911.72, + "probability": 0.7853 + }, + { + "start": 21911.88, + "end": 21915.66, + "probability": 0.7669 + }, + { + "start": 21916.04, + "end": 21918.16, + "probability": 0.8026 + }, + { + "start": 21918.86, + "end": 21919.8, + "probability": 0.917 + }, + { + "start": 21920.06, + "end": 21924.32, + "probability": 0.4945 + }, + { + "start": 21924.44, + "end": 21925.11, + "probability": 0.6693 + }, + { + "start": 21925.3, + "end": 21926.26, + "probability": 0.8309 + }, + { + "start": 21926.32, + "end": 21927.16, + "probability": 0.8428 + }, + { + "start": 21927.24, + "end": 21927.7, + "probability": 0.8063 + }, + { + "start": 21927.74, + "end": 21928.18, + "probability": 0.9644 + }, + { + "start": 21929.12, + "end": 21930.02, + "probability": 0.8817 + }, + { + "start": 21930.08, + "end": 21930.76, + "probability": 0.6474 + }, + { + "start": 21931.04, + "end": 21933.1, + "probability": 0.9475 + }, + { + "start": 21933.16, + "end": 21934.72, + "probability": 0.9724 + }, + { + "start": 21935.38, + "end": 21938.28, + "probability": 0.8879 + }, + { + "start": 21938.46, + "end": 21938.97, + "probability": 0.8206 + }, + { + "start": 21939.8, + "end": 21941.68, + "probability": 0.6619 + }, + { + "start": 21942.0, + "end": 21943.88, + "probability": 0.7343 + }, + { + "start": 21943.92, + "end": 21945.44, + "probability": 0.6461 + }, + { + "start": 21945.52, + "end": 21947.88, + "probability": 0.8977 + }, + { + "start": 21948.4, + "end": 21949.76, + "probability": 0.7917 + }, + { + "start": 21949.92, + "end": 21952.3, + "probability": 0.5241 + }, + { + "start": 21952.86, + "end": 21955.82, + "probability": 0.7801 + }, + { + "start": 21957.28, + "end": 21958.28, + "probability": 0.8148 + }, + { + "start": 21958.46, + "end": 21959.14, + "probability": 0.67 + }, + { + "start": 21959.14, + "end": 21960.28, + "probability": 0.7756 + }, + { + "start": 21960.4, + "end": 21960.42, + "probability": 0.9326 + }, + { + "start": 21961.0, + "end": 21961.84, + "probability": 0.8749 + }, + { + "start": 21962.98, + "end": 21966.27, + "probability": 0.9844 + }, + { + "start": 21967.61, + "end": 21970.1, + "probability": 0.7731 + }, + { + "start": 21970.26, + "end": 21971.08, + "probability": 0.9025 + }, + { + "start": 21971.62, + "end": 21973.56, + "probability": 0.9763 + }, + { + "start": 21973.88, + "end": 21975.0, + "probability": 0.7748 + }, + { + "start": 21975.3, + "end": 21980.6, + "probability": 0.8061 + }, + { + "start": 21980.98, + "end": 21982.02, + "probability": 0.407 + }, + { + "start": 21982.1, + "end": 21983.4, + "probability": 0.7762 + }, + { + "start": 21983.46, + "end": 21983.74, + "probability": 0.5949 + }, + { + "start": 21983.8, + "end": 21985.48, + "probability": 0.9669 + }, + { + "start": 21985.52, + "end": 21986.84, + "probability": 0.5787 + }, + { + "start": 21987.2, + "end": 21989.65, + "probability": 0.8441 + }, + { + "start": 21990.56, + "end": 21992.3, + "probability": 0.9961 + }, + { + "start": 21992.36, + "end": 21993.78, + "probability": 0.6938 + }, + { + "start": 21994.46, + "end": 21997.14, + "probability": 0.853 + }, + { + "start": 21997.78, + "end": 22001.2, + "probability": 0.716 + }, + { + "start": 22001.46, + "end": 22003.2, + "probability": 0.8969 + }, + { + "start": 22003.48, + "end": 22006.24, + "probability": 0.8788 + }, + { + "start": 22006.3, + "end": 22007.58, + "probability": 0.3699 + }, + { + "start": 22007.96, + "end": 22009.17, + "probability": 0.9541 + }, + { + "start": 22009.62, + "end": 22010.88, + "probability": 0.7296 + }, + { + "start": 22011.04, + "end": 22012.84, + "probability": 0.7291 + }, + { + "start": 22012.9, + "end": 22013.5, + "probability": 0.7891 + }, + { + "start": 22013.54, + "end": 22015.24, + "probability": 0.7481 + }, + { + "start": 22015.26, + "end": 22016.23, + "probability": 0.9699 + }, + { + "start": 22016.44, + "end": 22016.92, + "probability": 0.2598 + }, + { + "start": 22016.92, + "end": 22017.92, + "probability": 0.8268 + }, + { + "start": 22018.0, + "end": 22020.67, + "probability": 0.9058 + }, + { + "start": 22021.28, + "end": 22021.98, + "probability": 0.4525 + }, + { + "start": 22022.02, + "end": 22022.72, + "probability": 0.7025 + }, + { + "start": 22022.98, + "end": 22026.06, + "probability": 0.8105 + }, + { + "start": 22026.28, + "end": 22026.76, + "probability": 0.8577 + }, + { + "start": 22026.84, + "end": 22029.24, + "probability": 0.9834 + }, + { + "start": 22029.34, + "end": 22029.62, + "probability": 0.3335 + }, + { + "start": 22029.68, + "end": 22030.94, + "probability": 0.8855 + }, + { + "start": 22030.98, + "end": 22033.26, + "probability": 0.8794 + }, + { + "start": 22033.36, + "end": 22035.2, + "probability": 0.8932 + }, + { + "start": 22035.5, + "end": 22036.3, + "probability": 0.7714 + }, + { + "start": 22036.46, + "end": 22037.36, + "probability": 0.8686 + }, + { + "start": 22037.42, + "end": 22038.38, + "probability": 0.7609 + }, + { + "start": 22038.48, + "end": 22039.02, + "probability": 0.8835 + }, + { + "start": 22039.2, + "end": 22039.54, + "probability": 0.3389 + }, + { + "start": 22039.64, + "end": 22040.8, + "probability": 0.2576 + }, + { + "start": 22040.84, + "end": 22042.88, + "probability": 0.8933 + }, + { + "start": 22042.88, + "end": 22043.62, + "probability": 0.3986 + }, + { + "start": 22043.7, + "end": 22044.5, + "probability": 0.8887 + }, + { + "start": 22044.52, + "end": 22045.02, + "probability": 0.531 + }, + { + "start": 22045.66, + "end": 22046.48, + "probability": 0.2965 + }, + { + "start": 22046.48, + "end": 22047.84, + "probability": 0.7557 + }, + { + "start": 22048.12, + "end": 22049.9, + "probability": 0.8057 + }, + { + "start": 22050.42, + "end": 22053.38, + "probability": 0.5145 + }, + { + "start": 22054.1, + "end": 22057.54, + "probability": 0.6271 + }, + { + "start": 22057.8, + "end": 22060.94, + "probability": 0.9813 + }, + { + "start": 22061.08, + "end": 22062.51, + "probability": 0.9224 + }, + { + "start": 22063.08, + "end": 22063.96, + "probability": 0.8579 + }, + { + "start": 22064.0, + "end": 22070.08, + "probability": 0.8923 + }, + { + "start": 22070.22, + "end": 22070.6, + "probability": 0.741 + }, + { + "start": 22070.7, + "end": 22071.9, + "probability": 0.921 + }, + { + "start": 22071.96, + "end": 22073.84, + "probability": 0.8373 + }, + { + "start": 22074.62, + "end": 22078.04, + "probability": 0.6656 + }, + { + "start": 22078.64, + "end": 22082.26, + "probability": 0.9404 + }, + { + "start": 22083.02, + "end": 22086.1, + "probability": 0.8874 + }, + { + "start": 22086.56, + "end": 22089.97, + "probability": 0.8361 + }, + { + "start": 22091.22, + "end": 22091.32, + "probability": 0.0227 + }, + { + "start": 22091.32, + "end": 22092.0, + "probability": 0.5997 + }, + { + "start": 22092.06, + "end": 22092.52, + "probability": 0.8497 + }, + { + "start": 22092.6, + "end": 22093.28, + "probability": 0.9742 + }, + { + "start": 22093.36, + "end": 22094.78, + "probability": 0.8179 + }, + { + "start": 22095.14, + "end": 22096.38, + "probability": 0.5793 + }, + { + "start": 22096.54, + "end": 22097.4, + "probability": 0.8279 + }, + { + "start": 22097.7, + "end": 22098.12, + "probability": 0.6668 + }, + { + "start": 22098.22, + "end": 22098.96, + "probability": 0.519 + }, + { + "start": 22098.96, + "end": 22100.52, + "probability": 0.7684 + }, + { + "start": 22100.62, + "end": 22103.48, + "probability": 0.7361 + }, + { + "start": 22103.58, + "end": 22104.36, + "probability": 0.7722 + }, + { + "start": 22104.5, + "end": 22105.78, + "probability": 0.8422 + }, + { + "start": 22106.38, + "end": 22108.62, + "probability": 0.7117 + }, + { + "start": 22108.78, + "end": 22109.7, + "probability": 0.8146 + }, + { + "start": 22109.78, + "end": 22111.98, + "probability": 0.9086 + }, + { + "start": 22112.08, + "end": 22113.38, + "probability": 0.9266 + }, + { + "start": 22113.38, + "end": 22116.6, + "probability": 0.8511 + }, + { + "start": 22116.62, + "end": 22117.14, + "probability": 0.7562 + }, + { + "start": 22118.1, + "end": 22119.28, + "probability": 0.4688 + }, + { + "start": 22119.52, + "end": 22120.36, + "probability": 0.0636 + }, + { + "start": 22121.26, + "end": 22121.64, + "probability": 0.137 + }, + { + "start": 22121.74, + "end": 22124.4, + "probability": 0.141 + }, + { + "start": 22124.46, + "end": 22126.56, + "probability": 0.127 + }, + { + "start": 22126.94, + "end": 22128.26, + "probability": 0.4635 + }, + { + "start": 22128.96, + "end": 22129.28, + "probability": 0.9134 + }, + { + "start": 22136.92, + "end": 22138.2, + "probability": 0.033 + }, + { + "start": 22140.87, + "end": 22144.66, + "probability": 0.5471 + }, + { + "start": 22150.16, + "end": 22150.9, + "probability": 0.3399 + }, + { + "start": 22154.88, + "end": 22158.16, + "probability": 0.7483 + }, + { + "start": 22159.32, + "end": 22163.24, + "probability": 0.7427 + }, + { + "start": 22163.38, + "end": 22164.56, + "probability": 0.6454 + }, + { + "start": 22165.52, + "end": 22166.66, + "probability": 0.7174 + }, + { + "start": 22167.02, + "end": 22173.72, + "probability": 0.8704 + }, + { + "start": 22175.74, + "end": 22178.54, + "probability": 0.7107 + }, + { + "start": 22178.72, + "end": 22184.0, + "probability": 0.8155 + }, + { + "start": 22185.14, + "end": 22188.48, + "probability": 0.671 + }, + { + "start": 22188.64, + "end": 22191.7, + "probability": 0.8032 + }, + { + "start": 22192.48, + "end": 22196.82, + "probability": 0.9912 + }, + { + "start": 22196.82, + "end": 22201.27, + "probability": 0.9933 + }, + { + "start": 22202.12, + "end": 22207.52, + "probability": 0.9225 + }, + { + "start": 22208.12, + "end": 22211.3, + "probability": 0.9973 + }, + { + "start": 22211.3, + "end": 22216.4, + "probability": 0.9805 + }, + { + "start": 22217.26, + "end": 22219.06, + "probability": 0.5542 + }, + { + "start": 22219.26, + "end": 22219.6, + "probability": 0.6895 + }, + { + "start": 22220.14, + "end": 22222.4, + "probability": 0.6605 + }, + { + "start": 22222.5, + "end": 22223.56, + "probability": 0.8704 + }, + { + "start": 22223.56, + "end": 22224.16, + "probability": 0.4976 + }, + { + "start": 22224.22, + "end": 22224.62, + "probability": 0.6227 + }, + { + "start": 22224.64, + "end": 22225.44, + "probability": 0.6735 + }, + { + "start": 22225.54, + "end": 22227.7, + "probability": 0.7236 + }, + { + "start": 22227.76, + "end": 22228.04, + "probability": 0.4369 + }, + { + "start": 22228.32, + "end": 22228.92, + "probability": 0.8306 + }, + { + "start": 22228.98, + "end": 22230.32, + "probability": 0.9766 + }, + { + "start": 22230.36, + "end": 22230.84, + "probability": 0.4356 + }, + { + "start": 22230.86, + "end": 22231.54, + "probability": 0.6537 + }, + { + "start": 22231.68, + "end": 22232.5, + "probability": 0.2027 + }, + { + "start": 22232.94, + "end": 22233.0, + "probability": 0.0422 + }, + { + "start": 22233.0, + "end": 22234.24, + "probability": 0.8051 + }, + { + "start": 22234.36, + "end": 22235.56, + "probability": 0.9411 + }, + { + "start": 22235.9, + "end": 22238.24, + "probability": 0.8617 + }, + { + "start": 22238.4, + "end": 22239.02, + "probability": 0.5003 + }, + { + "start": 22239.08, + "end": 22241.16, + "probability": 0.8472 + }, + { + "start": 22241.52, + "end": 22244.52, + "probability": 0.9863 + }, + { + "start": 22245.74, + "end": 22246.22, + "probability": 0.1513 + }, + { + "start": 22246.22, + "end": 22246.64, + "probability": 0.5676 + }, + { + "start": 22247.16, + "end": 22248.26, + "probability": 0.7264 + }, + { + "start": 22248.74, + "end": 22253.74, + "probability": 0.8948 + }, + { + "start": 22254.28, + "end": 22258.0, + "probability": 0.9634 + }, + { + "start": 22258.82, + "end": 22263.22, + "probability": 0.7856 + }, + { + "start": 22263.36, + "end": 22266.26, + "probability": 0.8611 + }, + { + "start": 22267.06, + "end": 22268.0, + "probability": 0.4815 + }, + { + "start": 22268.0, + "end": 22268.74, + "probability": 0.8866 + }, + { + "start": 22268.84, + "end": 22270.62, + "probability": 0.7446 + }, + { + "start": 22271.34, + "end": 22275.42, + "probability": 0.8747 + }, + { + "start": 22275.52, + "end": 22277.12, + "probability": 0.9262 + }, + { + "start": 22277.2, + "end": 22278.98, + "probability": 0.7619 + }, + { + "start": 22280.36, + "end": 22283.62, + "probability": 0.9934 + }, + { + "start": 22283.84, + "end": 22284.28, + "probability": 0.6914 + }, + { + "start": 22284.38, + "end": 22286.97, + "probability": 0.9966 + }, + { + "start": 22287.3, + "end": 22289.24, + "probability": 0.9767 + }, + { + "start": 22289.54, + "end": 22291.62, + "probability": 0.8951 + }, + { + "start": 22291.62, + "end": 22293.7, + "probability": 0.8215 + }, + { + "start": 22294.06, + "end": 22300.86, + "probability": 0.9747 + }, + { + "start": 22301.76, + "end": 22304.26, + "probability": 0.9668 + }, + { + "start": 22304.42, + "end": 22304.44, + "probability": 0.1792 + }, + { + "start": 22304.44, + "end": 22308.36, + "probability": 0.0201 + }, + { + "start": 22308.36, + "end": 22308.94, + "probability": 0.1619 + }, + { + "start": 22308.94, + "end": 22310.54, + "probability": 0.4481 + }, + { + "start": 22311.26, + "end": 22314.06, + "probability": 0.7548 + }, + { + "start": 22314.54, + "end": 22320.4, + "probability": 0.7075 + }, + { + "start": 22320.96, + "end": 22326.32, + "probability": 0.9655 + }, + { + "start": 22326.5, + "end": 22329.38, + "probability": 0.8438 + }, + { + "start": 22329.88, + "end": 22335.6, + "probability": 0.9941 + }, + { + "start": 22336.18, + "end": 22339.44, + "probability": 0.8984 + }, + { + "start": 22340.14, + "end": 22342.4, + "probability": 0.9595 + }, + { + "start": 22344.48, + "end": 22349.82, + "probability": 0.5985 + }, + { + "start": 22349.82, + "end": 22354.0, + "probability": 0.9607 + }, + { + "start": 22354.52, + "end": 22356.8, + "probability": 0.9719 + }, + { + "start": 22356.94, + "end": 22360.48, + "probability": 0.8178 + }, + { + "start": 22360.48, + "end": 22363.98, + "probability": 0.9644 + }, + { + "start": 22364.42, + "end": 22366.54, + "probability": 0.9949 + }, + { + "start": 22366.54, + "end": 22370.16, + "probability": 0.9983 + }, + { + "start": 22370.66, + "end": 22373.68, + "probability": 0.9702 + }, + { + "start": 22374.14, + "end": 22376.18, + "probability": 0.9309 + }, + { + "start": 22376.3, + "end": 22378.46, + "probability": 0.8488 + }, + { + "start": 22378.84, + "end": 22381.56, + "probability": 0.9561 + }, + { + "start": 22381.9, + "end": 22383.4, + "probability": 0.8767 + }, + { + "start": 22384.38, + "end": 22391.32, + "probability": 0.8928 + }, + { + "start": 22391.76, + "end": 22396.58, + "probability": 0.6871 + }, + { + "start": 22397.0, + "end": 22400.28, + "probability": 0.8059 + }, + { + "start": 22400.28, + "end": 22405.64, + "probability": 0.9823 + }, + { + "start": 22407.52, + "end": 22412.75, + "probability": 0.8601 + }, + { + "start": 22413.8, + "end": 22416.6, + "probability": 0.9629 + }, + { + "start": 22417.3, + "end": 22420.2, + "probability": 0.9077 + }, + { + "start": 22420.68, + "end": 22421.52, + "probability": 0.428 + }, + { + "start": 22421.52, + "end": 22422.54, + "probability": 0.6181 + }, + { + "start": 22422.7, + "end": 22424.3, + "probability": 0.5553 + }, + { + "start": 22424.32, + "end": 22425.08, + "probability": 0.5336 + }, + { + "start": 22425.14, + "end": 22426.18, + "probability": 0.373 + }, + { + "start": 22427.36, + "end": 22428.9, + "probability": 0.3394 + }, + { + "start": 22429.68, + "end": 22431.36, + "probability": 0.7871 + }, + { + "start": 22431.8, + "end": 22436.78, + "probability": 0.9097 + }, + { + "start": 22436.9, + "end": 22440.34, + "probability": 0.9958 + }, + { + "start": 22441.0, + "end": 22443.42, + "probability": 0.7726 + }, + { + "start": 22443.56, + "end": 22443.92, + "probability": 0.7852 + }, + { + "start": 22444.12, + "end": 22445.3, + "probability": 0.9896 + }, + { + "start": 22445.48, + "end": 22446.8, + "probability": 0.9607 + }, + { + "start": 22447.0, + "end": 22447.62, + "probability": 0.5555 + }, + { + "start": 22447.72, + "end": 22451.22, + "probability": 0.8845 + }, + { + "start": 22451.36, + "end": 22454.24, + "probability": 0.792 + }, + { + "start": 22454.3, + "end": 22458.3, + "probability": 0.9683 + }, + { + "start": 22458.94, + "end": 22462.22, + "probability": 0.7604 + }, + { + "start": 22462.34, + "end": 22465.0, + "probability": 0.9943 + }, + { + "start": 22466.0, + "end": 22470.38, + "probability": 0.8754 + }, + { + "start": 22470.46, + "end": 22473.74, + "probability": 0.9854 + }, + { + "start": 22473.74, + "end": 22480.62, + "probability": 0.9195 + }, + { + "start": 22481.28, + "end": 22483.0, + "probability": 0.791 + }, + { + "start": 22483.04, + "end": 22484.37, + "probability": 0.937 + }, + { + "start": 22484.99, + "end": 22487.15, + "probability": 0.0376 + }, + { + "start": 22487.92, + "end": 22488.24, + "probability": 0.3919 + }, + { + "start": 22488.36, + "end": 22490.04, + "probability": 0.8701 + }, + { + "start": 22490.2, + "end": 22492.54, + "probability": 0.967 + }, + { + "start": 22493.04, + "end": 22496.06, + "probability": 0.9513 + }, + { + "start": 22498.0, + "end": 22498.14, + "probability": 0.6145 + }, + { + "start": 22498.92, + "end": 22501.94, + "probability": 0.991 + }, + { + "start": 22502.0, + "end": 22506.52, + "probability": 0.9614 + }, + { + "start": 22509.4, + "end": 22517.28, + "probability": 0.8572 + }, + { + "start": 22517.28, + "end": 22520.04, + "probability": 0.9263 + }, + { + "start": 22520.72, + "end": 22521.16, + "probability": 0.5576 + }, + { + "start": 22521.36, + "end": 22521.88, + "probability": 0.9316 + }, + { + "start": 22521.96, + "end": 22523.22, + "probability": 0.7954 + }, + { + "start": 22523.6, + "end": 22526.06, + "probability": 0.7947 + }, + { + "start": 22527.5, + "end": 22529.3, + "probability": 0.5589 + }, + { + "start": 22529.48, + "end": 22531.88, + "probability": 0.9764 + }, + { + "start": 22532.54, + "end": 22539.12, + "probability": 0.9962 + }, + { + "start": 22539.52, + "end": 22543.5, + "probability": 0.8267 + }, + { + "start": 22543.62, + "end": 22546.5, + "probability": 0.4449 + }, + { + "start": 22546.5, + "end": 22549.32, + "probability": 0.8763 + }, + { + "start": 22549.4, + "end": 22553.38, + "probability": 0.9937 + }, + { + "start": 22554.26, + "end": 22558.78, + "probability": 0.9979 + }, + { + "start": 22558.78, + "end": 22563.66, + "probability": 0.9951 + }, + { + "start": 22564.5, + "end": 22570.76, + "probability": 0.8835 + }, + { + "start": 22570.98, + "end": 22574.46, + "probability": 0.9409 + }, + { + "start": 22574.76, + "end": 22576.18, + "probability": 0.9662 + }, + { + "start": 22576.34, + "end": 22579.88, + "probability": 0.9659 + }, + { + "start": 22579.98, + "end": 22582.58, + "probability": 0.9944 + }, + { + "start": 22582.58, + "end": 22586.26, + "probability": 0.9829 + }, + { + "start": 22587.16, + "end": 22588.0, + "probability": 0.6572 + }, + { + "start": 22588.08, + "end": 22588.84, + "probability": 0.6293 + }, + { + "start": 22588.96, + "end": 22593.52, + "probability": 0.738 + }, + { + "start": 22593.6, + "end": 22594.36, + "probability": 0.2289 + }, + { + "start": 22594.48, + "end": 22594.97, + "probability": 0.7774 + }, + { + "start": 22595.18, + "end": 22595.96, + "probability": 0.6794 + }, + { + "start": 22595.98, + "end": 22597.52, + "probability": 0.5491 + }, + { + "start": 22597.9, + "end": 22603.98, + "probability": 0.9904 + }, + { + "start": 22604.22, + "end": 22607.4, + "probability": 0.9609 + }, + { + "start": 22607.94, + "end": 22610.32, + "probability": 0.8034 + }, + { + "start": 22611.41, + "end": 22616.16, + "probability": 0.8298 + }, + { + "start": 22616.22, + "end": 22619.78, + "probability": 0.9863 + }, + { + "start": 22619.86, + "end": 22620.22, + "probability": 0.9651 + }, + { + "start": 22621.0, + "end": 22622.84, + "probability": 0.9565 + }, + { + "start": 22623.16, + "end": 22623.44, + "probability": 0.6006 + }, + { + "start": 22623.56, + "end": 22624.62, + "probability": 0.6962 + }, + { + "start": 22625.1, + "end": 22626.07, + "probability": 0.9462 + }, + { + "start": 22626.24, + "end": 22630.32, + "probability": 0.7341 + }, + { + "start": 22630.86, + "end": 22632.52, + "probability": 0.98 + }, + { + "start": 22632.86, + "end": 22635.7, + "probability": 0.8789 + }, + { + "start": 22636.2, + "end": 22637.58, + "probability": 0.8308 + }, + { + "start": 22638.48, + "end": 22639.8, + "probability": 0.5974 + }, + { + "start": 22639.96, + "end": 22643.22, + "probability": 0.8896 + }, + { + "start": 22643.62, + "end": 22646.12, + "probability": 0.8196 + }, + { + "start": 22646.12, + "end": 22648.54, + "probability": 0.3119 + }, + { + "start": 22648.62, + "end": 22649.6, + "probability": 0.2528 + }, + { + "start": 22649.72, + "end": 22649.84, + "probability": 0.4194 + }, + { + "start": 22650.3, + "end": 22651.46, + "probability": 0.2828 + }, + { + "start": 22651.56, + "end": 22652.3, + "probability": 0.4273 + }, + { + "start": 22652.3, + "end": 22656.26, + "probability": 0.9819 + }, + { + "start": 22657.1, + "end": 22661.72, + "probability": 0.9951 + }, + { + "start": 22662.32, + "end": 22668.42, + "probability": 0.9958 + }, + { + "start": 22669.32, + "end": 22670.54, + "probability": 0.8385 + }, + { + "start": 22670.64, + "end": 22671.78, + "probability": 0.9516 + }, + { + "start": 22672.64, + "end": 22676.62, + "probability": 0.3795 + }, + { + "start": 22676.62, + "end": 22678.76, + "probability": 0.036 + }, + { + "start": 22679.36, + "end": 22681.24, + "probability": 0.5892 + }, + { + "start": 22681.4, + "end": 22685.14, + "probability": 0.2344 + }, + { + "start": 22685.76, + "end": 22685.96, + "probability": 0.0176 + }, + { + "start": 22686.78, + "end": 22686.88, + "probability": 0.2103 + }, + { + "start": 22686.88, + "end": 22686.88, + "probability": 0.0553 + }, + { + "start": 22686.88, + "end": 22690.08, + "probability": 0.7448 + }, + { + "start": 22690.62, + "end": 22691.92, + "probability": 0.5215 + }, + { + "start": 22695.74, + "end": 22698.72, + "probability": 0.7583 + }, + { + "start": 22698.86, + "end": 22699.84, + "probability": 0.6843 + }, + { + "start": 22699.94, + "end": 22701.26, + "probability": 0.7262 + }, + { + "start": 22701.36, + "end": 22702.16, + "probability": 0.2836 + }, + { + "start": 22702.16, + "end": 22704.22, + "probability": 0.5242 + }, + { + "start": 22704.34, + "end": 22704.6, + "probability": 0.0668 + }, + { + "start": 22704.62, + "end": 22705.92, + "probability": 0.337 + }, + { + "start": 22706.18, + "end": 22707.1, + "probability": 0.6652 + }, + { + "start": 22708.12, + "end": 22708.68, + "probability": 0.6061 + }, + { + "start": 22708.72, + "end": 22710.86, + "probability": 0.9814 + }, + { + "start": 22710.86, + "end": 22715.04, + "probability": 0.9801 + }, + { + "start": 22715.14, + "end": 22715.79, + "probability": 0.8157 + }, + { + "start": 22715.88, + "end": 22718.02, + "probability": 0.9211 + }, + { + "start": 22718.16, + "end": 22721.16, + "probability": 0.8024 + }, + { + "start": 22721.3, + "end": 22722.42, + "probability": 0.6494 + }, + { + "start": 22722.54, + "end": 22726.91, + "probability": 0.9966 + }, + { + "start": 22727.48, + "end": 22728.5, + "probability": 0.9526 + }, + { + "start": 22728.94, + "end": 22729.02, + "probability": 0.1275 + }, + { + "start": 22729.04, + "end": 22731.52, + "probability": 0.9385 + }, + { + "start": 22732.14, + "end": 22734.54, + "probability": 0.9518 + }, + { + "start": 22734.82, + "end": 22735.4, + "probability": 0.7747 + }, + { + "start": 22735.5, + "end": 22735.86, + "probability": 0.7498 + }, + { + "start": 22735.96, + "end": 22737.18, + "probability": 0.9032 + }, + { + "start": 22737.54, + "end": 22739.49, + "probability": 0.8532 + }, + { + "start": 22740.4, + "end": 22741.94, + "probability": 0.5949 + }, + { + "start": 22742.06, + "end": 22743.16, + "probability": 0.6863 + }, + { + "start": 22743.86, + "end": 22747.38, + "probability": 0.989 + }, + { + "start": 22747.46, + "end": 22748.66, + "probability": 0.9727 + }, + { + "start": 22748.72, + "end": 22749.55, + "probability": 0.9742 + }, + { + "start": 22750.28, + "end": 22753.16, + "probability": 0.9387 + }, + { + "start": 22753.26, + "end": 22753.88, + "probability": 0.3388 + }, + { + "start": 22754.0, + "end": 22755.28, + "probability": 0.5978 + }, + { + "start": 22755.58, + "end": 22756.04, + "probability": 0.8225 + }, + { + "start": 22756.14, + "end": 22756.78, + "probability": 0.6141 + }, + { + "start": 22756.9, + "end": 22759.28, + "probability": 0.6475 + }, + { + "start": 22759.4, + "end": 22761.46, + "probability": 0.9878 + }, + { + "start": 22761.8, + "end": 22762.8, + "probability": 0.9424 + }, + { + "start": 22763.3, + "end": 22766.1, + "probability": 0.9583 + }, + { + "start": 22766.24, + "end": 22767.4, + "probability": 0.7035 + }, + { + "start": 22767.94, + "end": 22771.56, + "probability": 0.8315 + }, + { + "start": 22771.76, + "end": 22773.98, + "probability": 0.9904 + }, + { + "start": 22774.7, + "end": 22777.38, + "probability": 0.7573 + }, + { + "start": 22777.88, + "end": 22778.76, + "probability": 0.4939 + }, + { + "start": 22778.94, + "end": 22779.64, + "probability": 0.5508 + }, + { + "start": 22779.68, + "end": 22780.64, + "probability": 0.9722 + }, + { + "start": 22780.74, + "end": 22781.68, + "probability": 0.9648 + }, + { + "start": 22782.32, + "end": 22783.12, + "probability": 0.9807 + }, + { + "start": 22783.24, + "end": 22784.94, + "probability": 0.4445 + }, + { + "start": 22785.14, + "end": 22785.72, + "probability": 0.4618 + }, + { + "start": 22785.76, + "end": 22786.88, + "probability": 0.5201 + }, + { + "start": 22787.02, + "end": 22790.74, + "probability": 0.9946 + }, + { + "start": 22790.84, + "end": 22793.52, + "probability": 0.8764 + }, + { + "start": 22794.24, + "end": 22795.08, + "probability": 0.8243 + }, + { + "start": 22795.24, + "end": 22795.88, + "probability": 0.8955 + }, + { + "start": 22795.92, + "end": 22796.78, + "probability": 0.4998 + }, + { + "start": 22797.28, + "end": 22798.08, + "probability": 0.6801 + }, + { + "start": 22798.14, + "end": 22799.5, + "probability": 0.593 + }, + { + "start": 22802.54, + "end": 22802.8, + "probability": 0.0682 + }, + { + "start": 22803.46, + "end": 22805.82, + "probability": 0.0954 + }, + { + "start": 22805.84, + "end": 22806.65, + "probability": 0.0508 + }, + { + "start": 22806.66, + "end": 22807.16, + "probability": 0.1489 + }, + { + "start": 22807.16, + "end": 22807.16, + "probability": 0.1129 + }, + { + "start": 22807.8, + "end": 22808.48, + "probability": 0.0119 + }, + { + "start": 22808.48, + "end": 22808.76, + "probability": 0.0165 + }, + { + "start": 22809.32, + "end": 22810.08, + "probability": 0.1541 + }, + { + "start": 22810.4, + "end": 22810.9, + "probability": 0.1925 + }, + { + "start": 22811.2, + "end": 22811.8, + "probability": 0.6022 + }, + { + "start": 22812.0, + "end": 22814.74, + "probability": 0.3795 + }, + { + "start": 22814.76, + "end": 22815.34, + "probability": 0.5479 + }, + { + "start": 22815.58, + "end": 22818.28, + "probability": 0.9678 + }, + { + "start": 22818.4, + "end": 22820.73, + "probability": 0.9456 + }, + { + "start": 22820.94, + "end": 22822.64, + "probability": 0.2401 + }, + { + "start": 22822.64, + "end": 22822.64, + "probability": 0.4665 + }, + { + "start": 22822.8, + "end": 22823.38, + "probability": 0.7717 + }, + { + "start": 22823.46, + "end": 22828.54, + "probability": 0.7817 + }, + { + "start": 22828.78, + "end": 22832.86, + "probability": 0.7786 + }, + { + "start": 22833.38, + "end": 22837.12, + "probability": 0.9946 + }, + { + "start": 22838.28, + "end": 22839.94, + "probability": 0.9807 + }, + { + "start": 22840.02, + "end": 22841.56, + "probability": 0.6481 + }, + { + "start": 22841.7, + "end": 22842.36, + "probability": 0.3091 + }, + { + "start": 22842.56, + "end": 22843.54, + "probability": 0.9749 + }, + { + "start": 22844.04, + "end": 22846.57, + "probability": 0.9644 + }, + { + "start": 22847.34, + "end": 22850.3, + "probability": 0.9862 + }, + { + "start": 22850.3, + "end": 22852.58, + "probability": 0.9822 + }, + { + "start": 22852.7, + "end": 22853.4, + "probability": 0.5503 + }, + { + "start": 22853.48, + "end": 22855.77, + "probability": 0.8443 + }, + { + "start": 22856.5, + "end": 22857.3, + "probability": 0.7886 + }, + { + "start": 22857.64, + "end": 22858.48, + "probability": 0.5258 + }, + { + "start": 22858.56, + "end": 22859.12, + "probability": 0.9806 + }, + { + "start": 22859.2, + "end": 22859.92, + "probability": 0.7283 + }, + { + "start": 22860.74, + "end": 22864.16, + "probability": 0.9758 + }, + { + "start": 22864.44, + "end": 22869.42, + "probability": 0.7511 + }, + { + "start": 22869.5, + "end": 22870.38, + "probability": 0.5316 + }, + { + "start": 22870.48, + "end": 22871.24, + "probability": 0.9023 + }, + { + "start": 22872.34, + "end": 22872.56, + "probability": 0.5756 + }, + { + "start": 22872.56, + "end": 22873.21, + "probability": 0.3259 + }, + { + "start": 22873.74, + "end": 22875.38, + "probability": 0.6627 + }, + { + "start": 22876.4, + "end": 22879.86, + "probability": 0.8807 + }, + { + "start": 22880.12, + "end": 22883.0, + "probability": 0.9941 + }, + { + "start": 22883.4, + "end": 22884.96, + "probability": 0.8626 + }, + { + "start": 22885.02, + "end": 22886.02, + "probability": 0.9019 + }, + { + "start": 22886.54, + "end": 22887.72, + "probability": 0.8975 + }, + { + "start": 22887.8, + "end": 22890.38, + "probability": 0.821 + }, + { + "start": 22890.48, + "end": 22891.12, + "probability": 0.9829 + }, + { + "start": 22891.2, + "end": 22892.04, + "probability": 0.8367 + }, + { + "start": 22892.4, + "end": 22895.14, + "probability": 0.9627 + }, + { + "start": 22895.2, + "end": 22895.82, + "probability": 0.7687 + }, + { + "start": 22896.22, + "end": 22896.3, + "probability": 0.3753 + }, + { + "start": 22896.48, + "end": 22897.7, + "probability": 0.6581 + }, + { + "start": 22898.0, + "end": 22899.28, + "probability": 0.9814 + }, + { + "start": 22899.38, + "end": 22903.06, + "probability": 0.5143 + }, + { + "start": 22903.24, + "end": 22903.6, + "probability": 0.7607 + }, + { + "start": 22903.72, + "end": 22904.76, + "probability": 0.699 + }, + { + "start": 22905.16, + "end": 22907.14, + "probability": 0.8719 + }, + { + "start": 22907.28, + "end": 22908.88, + "probability": 0.7369 + }, + { + "start": 22909.0, + "end": 22912.22, + "probability": 0.4922 + }, + { + "start": 22912.7, + "end": 22913.62, + "probability": 0.3365 + }, + { + "start": 22913.62, + "end": 22913.78, + "probability": 0.5032 + }, + { + "start": 22913.78, + "end": 22914.62, + "probability": 0.0632 + }, + { + "start": 22914.84, + "end": 22915.02, + "probability": 0.3636 + }, + { + "start": 22915.2, + "end": 22915.28, + "probability": 0.3447 + }, + { + "start": 22915.42, + "end": 22916.02, + "probability": 0.6327 + }, + { + "start": 22916.24, + "end": 22919.0, + "probability": 0.8358 + }, + { + "start": 22919.02, + "end": 22922.12, + "probability": 0.9839 + }, + { + "start": 22922.46, + "end": 22922.56, + "probability": 0.412 + }, + { + "start": 22922.66, + "end": 22925.06, + "probability": 0.5184 + }, + { + "start": 22925.5, + "end": 22926.33, + "probability": 0.9636 + }, + { + "start": 22926.6, + "end": 22927.1, + "probability": 0.8633 + }, + { + "start": 22927.22, + "end": 22928.76, + "probability": 0.8403 + }, + { + "start": 22929.02, + "end": 22929.51, + "probability": 0.9034 + }, + { + "start": 22931.04, + "end": 22931.7, + "probability": 0.1627 + }, + { + "start": 22931.78, + "end": 22932.46, + "probability": 0.6292 + }, + { + "start": 22932.9, + "end": 22936.62, + "probability": 0.8436 + }, + { + "start": 22936.7, + "end": 22938.26, + "probability": 0.6142 + }, + { + "start": 22938.4, + "end": 22943.12, + "probability": 0.7977 + }, + { + "start": 22944.18, + "end": 22944.18, + "probability": 0.2065 + }, + { + "start": 22944.18, + "end": 22944.18, + "probability": 0.0962 + }, + { + "start": 22944.18, + "end": 22947.22, + "probability": 0.3244 + }, + { + "start": 22947.22, + "end": 22947.92, + "probability": 0.3943 + }, + { + "start": 22948.06, + "end": 22948.76, + "probability": 0.5182 + }, + { + "start": 22949.42, + "end": 22951.2, + "probability": 0.5416 + }, + { + "start": 22951.7, + "end": 22952.95, + "probability": 0.9321 + }, + { + "start": 22952.98, + "end": 22953.58, + "probability": 0.0952 + }, + { + "start": 22953.72, + "end": 22954.72, + "probability": 0.4995 + }, + { + "start": 22955.2, + "end": 22955.78, + "probability": 0.8646 + }, + { + "start": 22955.94, + "end": 22957.32, + "probability": 0.5427 + }, + { + "start": 22959.4, + "end": 22960.82, + "probability": 0.228 + }, + { + "start": 22960.82, + "end": 22960.82, + "probability": 0.2902 + }, + { + "start": 22960.82, + "end": 22960.82, + "probability": 0.061 + }, + { + "start": 22960.82, + "end": 22963.14, + "probability": 0.5891 + }, + { + "start": 22963.3, + "end": 22964.8, + "probability": 0.8961 + }, + { + "start": 22964.84, + "end": 22967.84, + "probability": 0.1517 + }, + { + "start": 22967.84, + "end": 22967.84, + "probability": 0.0734 + }, + { + "start": 22967.84, + "end": 22968.65, + "probability": 0.8419 + }, + { + "start": 22968.92, + "end": 22969.52, + "probability": 0.6102 + }, + { + "start": 22969.62, + "end": 22970.52, + "probability": 0.8154 + }, + { + "start": 22970.6, + "end": 22972.2, + "probability": 0.8675 + }, + { + "start": 22972.36, + "end": 22974.0, + "probability": 0.8359 + }, + { + "start": 22974.8, + "end": 22975.04, + "probability": 0.2983 + }, + { + "start": 22975.04, + "end": 22975.74, + "probability": 0.4395 + }, + { + "start": 22975.9, + "end": 22976.0, + "probability": 0.0366 + }, + { + "start": 22976.0, + "end": 22976.0, + "probability": 0.3373 + }, + { + "start": 22976.0, + "end": 22976.44, + "probability": 0.7463 + }, + { + "start": 22976.56, + "end": 22976.66, + "probability": 0.3536 + }, + { + "start": 22976.66, + "end": 22979.62, + "probability": 0.8559 + }, + { + "start": 22979.72, + "end": 22980.5, + "probability": 0.8818 + }, + { + "start": 22981.9, + "end": 22982.18, + "probability": 0.3838 + }, + { + "start": 22982.18, + "end": 22983.36, + "probability": 0.4258 + }, + { + "start": 22983.54, + "end": 22985.64, + "probability": 0.7857 + }, + { + "start": 22985.76, + "end": 22986.28, + "probability": 0.5321 + }, + { + "start": 22986.48, + "end": 22987.52, + "probability": 0.2094 + }, + { + "start": 22989.36, + "end": 22990.06, + "probability": 0.7518 + }, + { + "start": 22991.0, + "end": 22994.08, + "probability": 0.6103 + }, + { + "start": 22994.4, + "end": 22994.62, + "probability": 0.0269 + }, + { + "start": 22994.9, + "end": 22996.25, + "probability": 0.2635 + }, + { + "start": 22996.48, + "end": 22997.62, + "probability": 0.7549 + }, + { + "start": 23003.92, + "end": 23008.02, + "probability": 0.5842 + }, + { + "start": 23008.22, + "end": 23009.96, + "probability": 0.4121 + }, + { + "start": 23010.32, + "end": 23012.38, + "probability": 0.5836 + }, + { + "start": 23013.24, + "end": 23013.44, + "probability": 0.144 + }, + { + "start": 23013.88, + "end": 23015.02, + "probability": 0.7422 + }, + { + "start": 23015.44, + "end": 23017.02, + "probability": 0.6019 + }, + { + "start": 23017.8, + "end": 23018.96, + "probability": 0.355 + }, + { + "start": 23019.22, + "end": 23020.6, + "probability": 0.5378 + }, + { + "start": 23020.76, + "end": 23023.1, + "probability": 0.4641 + }, + { + "start": 23023.14, + "end": 23023.8, + "probability": 0.6254 + }, + { + "start": 23024.56, + "end": 23025.98, + "probability": 0.0636 + }, + { + "start": 23026.44, + "end": 23031.72, + "probability": 0.2413 + }, + { + "start": 23032.14, + "end": 23032.28, + "probability": 0.0636 + }, + { + "start": 23033.0, + "end": 23037.04, + "probability": 0.3215 + }, + { + "start": 23037.64, + "end": 23039.46, + "probability": 0.7279 + }, + { + "start": 23039.56, + "end": 23040.36, + "probability": 0.5018 + }, + { + "start": 23040.92, + "end": 23041.64, + "probability": 0.5956 + }, + { + "start": 23042.14, + "end": 23044.14, + "probability": 0.6251 + }, + { + "start": 23044.14, + "end": 23045.2, + "probability": 0.6116 + }, + { + "start": 23045.42, + "end": 23046.58, + "probability": 0.0718 + }, + { + "start": 23046.58, + "end": 23048.9, + "probability": 0.859 + }, + { + "start": 23049.04, + "end": 23049.22, + "probability": 0.0101 + }, + { + "start": 23049.44, + "end": 23051.0, + "probability": 0.0697 + }, + { + "start": 23051.28, + "end": 23054.24, + "probability": 0.3716 + }, + { + "start": 23054.24, + "end": 23054.9, + "probability": 0.4723 + }, + { + "start": 23055.28, + "end": 23055.56, + "probability": 0.5653 + }, + { + "start": 23055.58, + "end": 23055.84, + "probability": 0.1892 + }, + { + "start": 23056.11, + "end": 23056.86, + "probability": 0.1327 + }, + { + "start": 23056.86, + "end": 23057.42, + "probability": 0.7262 + }, + { + "start": 23057.62, + "end": 23058.15, + "probability": 0.4709 + }, + { + "start": 23058.26, + "end": 23064.46, + "probability": 0.264 + }, + { + "start": 23064.46, + "end": 23064.46, + "probability": 0.4596 + }, + { + "start": 23064.46, + "end": 23064.46, + "probability": 0.229 + }, + { + "start": 23064.46, + "end": 23064.46, + "probability": 0.0571 + }, + { + "start": 23064.46, + "end": 23065.3, + "probability": 0.1447 + }, + { + "start": 23067.3, + "end": 23069.32, + "probability": 0.6469 + }, + { + "start": 23075.06, + "end": 23075.41, + "probability": 0.2774 + }, + { + "start": 23082.52, + "end": 23084.72, + "probability": 0.4957 + }, + { + "start": 23085.02, + "end": 23092.16, + "probability": 0.8591 + }, + { + "start": 23093.1, + "end": 23095.42, + "probability": 0.9469 + }, + { + "start": 23099.26, + "end": 23102.57, + "probability": 0.9559 + }, + { + "start": 23103.48, + "end": 23105.3, + "probability": 0.9193 + }, + { + "start": 23109.9, + "end": 23120.98, + "probability": 0.9756 + }, + { + "start": 23121.82, + "end": 23127.82, + "probability": 0.9499 + }, + { + "start": 23128.8, + "end": 23130.74, + "probability": 0.9961 + }, + { + "start": 23132.38, + "end": 23133.63, + "probability": 0.6673 + }, + { + "start": 23134.68, + "end": 23137.6, + "probability": 0.7151 + }, + { + "start": 23138.3, + "end": 23139.86, + "probability": 0.943 + }, + { + "start": 23140.02, + "end": 23146.19, + "probability": 0.8979 + }, + { + "start": 23147.12, + "end": 23147.92, + "probability": 0.8652 + }, + { + "start": 23149.54, + "end": 23150.22, + "probability": 0.288 + }, + { + "start": 23151.78, + "end": 23154.92, + "probability": 0.7545 + }, + { + "start": 23155.86, + "end": 23157.06, + "probability": 0.9692 + }, + { + "start": 23157.68, + "end": 23163.58, + "probability": 0.8927 + }, + { + "start": 23164.38, + "end": 23166.76, + "probability": 0.862 + }, + { + "start": 23166.76, + "end": 23167.78, + "probability": 0.922 + }, + { + "start": 23167.9, + "end": 23169.44, + "probability": 0.8481 + }, + { + "start": 23169.96, + "end": 23171.06, + "probability": 0.6483 + }, + { + "start": 23171.06, + "end": 23172.66, + "probability": 0.757 + }, + { + "start": 23172.98, + "end": 23173.68, + "probability": 0.7884 + }, + { + "start": 23173.78, + "end": 23175.34, + "probability": 0.8734 + }, + { + "start": 23175.92, + "end": 23178.36, + "probability": 0.8438 + }, + { + "start": 23179.28, + "end": 23181.22, + "probability": 0.9684 + }, + { + "start": 23182.5, + "end": 23183.92, + "probability": 0.8142 + }, + { + "start": 23184.2, + "end": 23185.22, + "probability": 0.9921 + }, + { + "start": 23185.72, + "end": 23189.3, + "probability": 0.9092 + }, + { + "start": 23190.52, + "end": 23193.36, + "probability": 0.582 + }, + { + "start": 23193.88, + "end": 23197.81, + "probability": 0.7875 + }, + { + "start": 23199.08, + "end": 23200.88, + "probability": 0.5488 + }, + { + "start": 23202.14, + "end": 23207.06, + "probability": 0.958 + }, + { + "start": 23207.74, + "end": 23208.64, + "probability": 0.5558 + }, + { + "start": 23209.28, + "end": 23210.28, + "probability": 0.7157 + }, + { + "start": 23211.96, + "end": 23213.02, + "probability": 0.612 + }, + { + "start": 23213.56, + "end": 23214.96, + "probability": 0.9869 + }, + { + "start": 23215.76, + "end": 23216.84, + "probability": 0.4401 + }, + { + "start": 23217.4, + "end": 23218.86, + "probability": 0.9867 + }, + { + "start": 23219.46, + "end": 23220.6, + "probability": 0.6641 + }, + { + "start": 23221.24, + "end": 23223.14, + "probability": 0.9744 + }, + { + "start": 23225.52, + "end": 23232.48, + "probability": 0.5876 + }, + { + "start": 23233.18, + "end": 23239.46, + "probability": 0.8347 + }, + { + "start": 23240.02, + "end": 23241.1, + "probability": 0.2549 + }, + { + "start": 23241.54, + "end": 23242.56, + "probability": 0.9539 + }, + { + "start": 23242.82, + "end": 23246.24, + "probability": 0.9304 + }, + { + "start": 23247.32, + "end": 23253.7, + "probability": 0.9924 + }, + { + "start": 23254.32, + "end": 23256.74, + "probability": 0.7334 + }, + { + "start": 23257.28, + "end": 23260.04, + "probability": 0.9811 + }, + { + "start": 23261.04, + "end": 23262.02, + "probability": 0.849 + }, + { + "start": 23262.5, + "end": 23263.82, + "probability": 0.9806 + }, + { + "start": 23264.3, + "end": 23265.72, + "probability": 0.8006 + }, + { + "start": 23266.16, + "end": 23269.02, + "probability": 0.7821 + }, + { + "start": 23270.72, + "end": 23271.32, + "probability": 0.2548 + }, + { + "start": 23271.44, + "end": 23273.18, + "probability": 0.355 + }, + { + "start": 23273.38, + "end": 23275.68, + "probability": 0.4896 + }, + { + "start": 23275.68, + "end": 23277.06, + "probability": 0.9475 + }, + { + "start": 23278.72, + "end": 23278.78, + "probability": 0.2006 + }, + { + "start": 23278.78, + "end": 23279.74, + "probability": 0.584 + }, + { + "start": 23280.04, + "end": 23281.96, + "probability": 0.4295 + }, + { + "start": 23282.3, + "end": 23285.12, + "probability": 0.9438 + }, + { + "start": 23305.52, + "end": 23309.32, + "probability": 0.7876 + }, + { + "start": 23311.48, + "end": 23322.42, + "probability": 0.8701 + }, + { + "start": 23323.92, + "end": 23329.44, + "probability": 0.9391 + }, + { + "start": 23330.64, + "end": 23331.58, + "probability": 0.9453 + }, + { + "start": 23333.68, + "end": 23338.14, + "probability": 0.8945 + }, + { + "start": 23339.34, + "end": 23346.28, + "probability": 0.9775 + }, + { + "start": 23346.3, + "end": 23348.73, + "probability": 0.9776 + }, + { + "start": 23348.98, + "end": 23349.74, + "probability": 0.8067 + }, + { + "start": 23349.9, + "end": 23352.3, + "probability": 0.9803 + }, + { + "start": 23353.66, + "end": 23358.37, + "probability": 0.8244 + }, + { + "start": 23359.84, + "end": 23366.76, + "probability": 0.9951 + }, + { + "start": 23367.44, + "end": 23368.12, + "probability": 0.4856 + }, + { + "start": 23368.48, + "end": 23370.24, + "probability": 0.9326 + }, + { + "start": 23370.34, + "end": 23371.66, + "probability": 0.8724 + }, + { + "start": 23372.76, + "end": 23377.32, + "probability": 0.9958 + }, + { + "start": 23378.9, + "end": 23386.62, + "probability": 0.9763 + }, + { + "start": 23387.54, + "end": 23392.68, + "probability": 0.7192 + }, + { + "start": 23393.96, + "end": 23400.4, + "probability": 0.9375 + }, + { + "start": 23401.04, + "end": 23403.32, + "probability": 0.9814 + }, + { + "start": 23403.56, + "end": 23410.56, + "probability": 0.9061 + }, + { + "start": 23410.64, + "end": 23417.55, + "probability": 0.9921 + }, + { + "start": 23417.94, + "end": 23427.72, + "probability": 0.9813 + }, + { + "start": 23428.66, + "end": 23435.46, + "probability": 0.9834 + }, + { + "start": 23435.54, + "end": 23436.2, + "probability": 0.8015 + }, + { + "start": 23436.56, + "end": 23442.48, + "probability": 0.9741 + }, + { + "start": 23443.1, + "end": 23445.84, + "probability": 0.5048 + }, + { + "start": 23446.3, + "end": 23446.72, + "probability": 0.3588 + }, + { + "start": 23446.8, + "end": 23447.72, + "probability": 0.8967 + }, + { + "start": 23447.81, + "end": 23451.18, + "probability": 0.9612 + }, + { + "start": 23451.5, + "end": 23453.34, + "probability": 0.89 + }, + { + "start": 23453.9, + "end": 23454.94, + "probability": 0.6721 + }, + { + "start": 23455.66, + "end": 23467.64, + "probability": 0.972 + }, + { + "start": 23467.86, + "end": 23469.1, + "probability": 0.7442 + }, + { + "start": 23469.38, + "end": 23470.32, + "probability": 0.9637 + }, + { + "start": 23470.48, + "end": 23474.28, + "probability": 0.9481 + }, + { + "start": 23475.82, + "end": 23477.82, + "probability": 0.8697 + }, + { + "start": 23477.94, + "end": 23482.26, + "probability": 0.9302 + }, + { + "start": 23482.9, + "end": 23484.04, + "probability": 0.8538 + }, + { + "start": 23484.48, + "end": 23492.24, + "probability": 0.9108 + }, + { + "start": 23492.4, + "end": 23495.76, + "probability": 0.9194 + }, + { + "start": 23496.2, + "end": 23498.0, + "probability": 0.9453 + }, + { + "start": 23498.2, + "end": 23501.64, + "probability": 0.9793 + }, + { + "start": 23501.98, + "end": 23508.68, + "probability": 0.9871 + }, + { + "start": 23509.08, + "end": 23512.16, + "probability": 0.9767 + }, + { + "start": 23512.3, + "end": 23516.56, + "probability": 0.9414 + }, + { + "start": 23516.68, + "end": 23517.7, + "probability": 0.9338 + }, + { + "start": 23517.86, + "end": 23518.74, + "probability": 0.6936 + }, + { + "start": 23518.9, + "end": 23520.98, + "probability": 0.7013 + }, + { + "start": 23521.1, + "end": 23522.7, + "probability": 0.9578 + }, + { + "start": 23523.8, + "end": 23528.58, + "probability": 0.9575 + }, + { + "start": 23529.1, + "end": 23533.84, + "probability": 0.9709 + }, + { + "start": 23533.98, + "end": 23534.16, + "probability": 0.8243 + }, + { + "start": 23534.74, + "end": 23535.6, + "probability": 0.6844 + }, + { + "start": 23536.28, + "end": 23539.18, + "probability": 0.7233 + }, + { + "start": 23549.42, + "end": 23550.6, + "probability": 0.4266 + }, + { + "start": 23550.8, + "end": 23552.72, + "probability": 0.9927 + }, + { + "start": 23553.3, + "end": 23554.29, + "probability": 0.9934 + }, + { + "start": 23555.72, + "end": 23557.92, + "probability": 0.8816 + }, + { + "start": 23558.28, + "end": 23563.38, + "probability": 0.8413 + }, + { + "start": 23563.86, + "end": 23570.58, + "probability": 0.9775 + }, + { + "start": 23570.82, + "end": 23574.88, + "probability": 0.922 + }, + { + "start": 23575.62, + "end": 23577.27, + "probability": 0.9215 + }, + { + "start": 23579.08, + "end": 23583.7, + "probability": 0.9891 + }, + { + "start": 23584.16, + "end": 23588.14, + "probability": 0.9959 + }, + { + "start": 23588.3, + "end": 23590.04, + "probability": 0.9785 + }, + { + "start": 23590.1, + "end": 23591.08, + "probability": 0.876 + }, + { + "start": 23591.4, + "end": 23593.06, + "probability": 0.9561 + }, + { + "start": 23593.5, + "end": 23596.96, + "probability": 0.9692 + }, + { + "start": 23597.24, + "end": 23598.96, + "probability": 0.9653 + }, + { + "start": 23599.16, + "end": 23600.88, + "probability": 0.9825 + }, + { + "start": 23601.84, + "end": 23603.52, + "probability": 0.9868 + }, + { + "start": 23604.08, + "end": 23605.14, + "probability": 0.8535 + }, + { + "start": 23605.5, + "end": 23608.04, + "probability": 0.9 + }, + { + "start": 23608.12, + "end": 23611.4, + "probability": 0.8877 + }, + { + "start": 23611.62, + "end": 23611.64, + "probability": 0.5272 + }, + { + "start": 23611.72, + "end": 23612.0, + "probability": 0.5874 + }, + { + "start": 23612.02, + "end": 23615.06, + "probability": 0.9206 + }, + { + "start": 23615.22, + "end": 23616.96, + "probability": 0.9509 + }, + { + "start": 23617.9, + "end": 23620.58, + "probability": 0.9865 + }, + { + "start": 23620.68, + "end": 23621.3, + "probability": 0.6693 + }, + { + "start": 23621.52, + "end": 23627.6, + "probability": 0.9033 + }, + { + "start": 23627.68, + "end": 23629.97, + "probability": 0.9519 + }, + { + "start": 23630.56, + "end": 23633.26, + "probability": 0.8516 + }, + { + "start": 23633.4, + "end": 23638.34, + "probability": 0.9845 + }, + { + "start": 23639.6, + "end": 23642.48, + "probability": 0.6979 + }, + { + "start": 23642.72, + "end": 23646.8, + "probability": 0.9951 + }, + { + "start": 23646.8, + "end": 23650.66, + "probability": 0.9485 + }, + { + "start": 23650.92, + "end": 23653.34, + "probability": 0.4735 + }, + { + "start": 23653.4, + "end": 23657.86, + "probability": 0.0718 + }, + { + "start": 23657.86, + "end": 23663.12, + "probability": 0.9203 + }, + { + "start": 23663.3, + "end": 23664.02, + "probability": 0.6637 + }, + { + "start": 23664.06, + "end": 23667.26, + "probability": 0.982 + }, + { + "start": 23667.38, + "end": 23668.14, + "probability": 0.6061 + }, + { + "start": 23668.24, + "end": 23668.48, + "probability": 0.3253 + }, + { + "start": 23669.26, + "end": 23671.38, + "probability": 0.6289 + }, + { + "start": 23671.42, + "end": 23674.4, + "probability": 0.8921 + }, + { + "start": 23675.0, + "end": 23676.1, + "probability": 0.9393 + }, + { + "start": 23676.16, + "end": 23679.06, + "probability": 0.9835 + }, + { + "start": 23679.38, + "end": 23680.58, + "probability": 0.8966 + }, + { + "start": 23680.64, + "end": 23686.3, + "probability": 0.9981 + }, + { + "start": 23686.66, + "end": 23690.78, + "probability": 0.9971 + }, + { + "start": 23691.06, + "end": 23693.7, + "probability": 0.9982 + }, + { + "start": 23694.06, + "end": 23696.3, + "probability": 0.854 + }, + { + "start": 23696.4, + "end": 23697.34, + "probability": 0.6449 + }, + { + "start": 23697.48, + "end": 23698.74, + "probability": 0.9529 + }, + { + "start": 23698.82, + "end": 23703.03, + "probability": 0.9797 + }, + { + "start": 23703.58, + "end": 23704.36, + "probability": 0.8788 + }, + { + "start": 23704.4, + "end": 23706.06, + "probability": 0.9077 + }, + { + "start": 23706.42, + "end": 23711.64, + "probability": 0.9927 + }, + { + "start": 23711.64, + "end": 23717.7, + "probability": 0.9865 + }, + { + "start": 23717.98, + "end": 23721.04, + "probability": 0.993 + }, + { + "start": 23721.84, + "end": 23723.56, + "probability": 0.4955 + }, + { + "start": 23724.22, + "end": 23726.7, + "probability": 0.9868 + }, + { + "start": 23727.92, + "end": 23733.58, + "probability": 0.8975 + }, + { + "start": 23734.44, + "end": 23736.12, + "probability": 0.8465 + }, + { + "start": 23736.7, + "end": 23740.19, + "probability": 0.7991 + }, + { + "start": 23740.78, + "end": 23742.12, + "probability": 0.1378 + }, + { + "start": 23744.92, + "end": 23746.02, + "probability": 0.034 + }, + { + "start": 23746.12, + "end": 23746.48, + "probability": 0.2479 + }, + { + "start": 23746.8, + "end": 23749.02, + "probability": 0.6095 + }, + { + "start": 23749.12, + "end": 23749.78, + "probability": 0.8687 + }, + { + "start": 23750.06, + "end": 23751.46, + "probability": 0.8973 + }, + { + "start": 23752.1, + "end": 23755.14, + "probability": 0.9246 + }, + { + "start": 23755.8, + "end": 23758.02, + "probability": 0.8928 + }, + { + "start": 23759.38, + "end": 23759.87, + "probability": 0.0484 + }, + { + "start": 23760.84, + "end": 23762.26, + "probability": 0.7927 + }, + { + "start": 23762.38, + "end": 23764.56, + "probability": 0.9868 + }, + { + "start": 23764.7, + "end": 23766.11, + "probability": 0.9451 + }, + { + "start": 23767.94, + "end": 23773.18, + "probability": 0.2123 + }, + { + "start": 23773.6, + "end": 23774.74, + "probability": 0.4065 + }, + { + "start": 23774.74, + "end": 23777.62, + "probability": 0.829 + }, + { + "start": 23777.78, + "end": 23779.16, + "probability": 0.9606 + }, + { + "start": 23779.32, + "end": 23780.52, + "probability": 0.9896 + }, + { + "start": 23780.76, + "end": 23786.02, + "probability": 0.9055 + }, + { + "start": 23786.66, + "end": 23787.98, + "probability": 0.4011 + }, + { + "start": 23788.64, + "end": 23789.44, + "probability": 0.347 + }, + { + "start": 23789.52, + "end": 23792.98, + "probability": 0.6082 + }, + { + "start": 23793.16, + "end": 23794.72, + "probability": 0.9846 + }, + { + "start": 23794.72, + "end": 23795.42, + "probability": 0.6937 + }, + { + "start": 23795.56, + "end": 23798.6, + "probability": 0.9788 + }, + { + "start": 23799.0, + "end": 23804.4, + "probability": 0.9946 + }, + { + "start": 23804.84, + "end": 23806.24, + "probability": 0.9263 + }, + { + "start": 23806.24, + "end": 23807.8, + "probability": 0.8632 + }, + { + "start": 23807.96, + "end": 23808.94, + "probability": 0.8817 + }, + { + "start": 23809.1, + "end": 23809.3, + "probability": 0.7169 + }, + { + "start": 23809.64, + "end": 23810.22, + "probability": 0.7281 + }, + { + "start": 23811.68, + "end": 23814.48, + "probability": 0.8384 + }, + { + "start": 23821.7, + "end": 23822.9, + "probability": 0.5231 + }, + { + "start": 23825.44, + "end": 23829.62, + "probability": 0.7687 + }, + { + "start": 23830.3, + "end": 23830.8, + "probability": 0.5197 + }, + { + "start": 23830.9, + "end": 23834.74, + "probability": 0.9084 + }, + { + "start": 23835.98, + "end": 23836.76, + "probability": 0.9814 + }, + { + "start": 23836.9, + "end": 23837.9, + "probability": 0.5818 + }, + { + "start": 23837.98, + "end": 23841.42, + "probability": 0.9873 + }, + { + "start": 23841.42, + "end": 23846.12, + "probability": 0.9966 + }, + { + "start": 23847.08, + "end": 23849.0, + "probability": 0.6222 + }, + { + "start": 23849.12, + "end": 23849.6, + "probability": 0.3439 + }, + { + "start": 23849.6, + "end": 23850.72, + "probability": 0.8329 + }, + { + "start": 23851.62, + "end": 23853.58, + "probability": 0.9814 + }, + { + "start": 23855.55, + "end": 23860.32, + "probability": 0.9964 + }, + { + "start": 23860.9, + "end": 23864.2, + "probability": 0.9358 + }, + { + "start": 23864.7, + "end": 23869.14, + "probability": 0.9373 + }, + { + "start": 23869.38, + "end": 23871.0, + "probability": 0.8403 + }, + { + "start": 23871.92, + "end": 23874.04, + "probability": 0.8253 + }, + { + "start": 23874.76, + "end": 23876.48, + "probability": 0.5313 + }, + { + "start": 23877.16, + "end": 23877.54, + "probability": 0.2624 + }, + { + "start": 23877.6, + "end": 23881.76, + "probability": 0.9949 + }, + { + "start": 23882.72, + "end": 23888.22, + "probability": 0.9734 + }, + { + "start": 23888.22, + "end": 23894.04, + "probability": 0.9766 + }, + { + "start": 23895.52, + "end": 23900.02, + "probability": 0.9856 + }, + { + "start": 23900.32, + "end": 23902.6, + "probability": 0.9836 + }, + { + "start": 23903.6, + "end": 23909.2, + "probability": 0.9959 + }, + { + "start": 23909.98, + "end": 23915.86, + "probability": 0.9968 + }, + { + "start": 23915.98, + "end": 23917.14, + "probability": 0.6736 + }, + { + "start": 23917.88, + "end": 23924.66, + "probability": 0.967 + }, + { + "start": 23926.93, + "end": 23930.52, + "probability": 0.969 + }, + { + "start": 23931.28, + "end": 23937.06, + "probability": 0.7875 + }, + { + "start": 23937.56, + "end": 23938.78, + "probability": 0.6239 + }, + { + "start": 23939.02, + "end": 23943.78, + "probability": 0.9312 + }, + { + "start": 23944.28, + "end": 23946.12, + "probability": 0.8455 + }, + { + "start": 23946.68, + "end": 23947.44, + "probability": 0.514 + }, + { + "start": 23947.5, + "end": 23950.92, + "probability": 0.9053 + }, + { + "start": 23951.04, + "end": 23954.81, + "probability": 0.9728 + }, + { + "start": 23955.02, + "end": 23960.44, + "probability": 0.9841 + }, + { + "start": 23960.46, + "end": 23961.08, + "probability": 0.5947 + }, + { + "start": 23961.16, + "end": 23962.86, + "probability": 0.912 + }, + { + "start": 23963.06, + "end": 23963.8, + "probability": 0.4991 + }, + { + "start": 23964.58, + "end": 23964.9, + "probability": 0.4856 + }, + { + "start": 23965.42, + "end": 23968.02, + "probability": 0.8527 + }, + { + "start": 23968.16, + "end": 23971.78, + "probability": 0.9217 + }, + { + "start": 23971.88, + "end": 23972.95, + "probability": 0.7579 + }, + { + "start": 23973.38, + "end": 23976.52, + "probability": 0.9683 + }, + { + "start": 23976.52, + "end": 23979.06, + "probability": 0.9851 + }, + { + "start": 23979.24, + "end": 23980.54, + "probability": 0.7562 + }, + { + "start": 23981.08, + "end": 23981.08, + "probability": 0.3593 + }, + { + "start": 23981.36, + "end": 23987.66, + "probability": 0.9166 + }, + { + "start": 23988.08, + "end": 23990.7, + "probability": 0.9644 + }, + { + "start": 23990.94, + "end": 23995.84, + "probability": 0.9824 + }, + { + "start": 23995.84, + "end": 24001.56, + "probability": 0.9973 + }, + { + "start": 24001.72, + "end": 24002.58, + "probability": 0.657 + }, + { + "start": 24003.08, + "end": 24007.18, + "probability": 0.8844 + }, + { + "start": 24007.5, + "end": 24012.12, + "probability": 0.8158 + }, + { + "start": 24012.16, + "end": 24013.42, + "probability": 0.6657 + }, + { + "start": 24013.98, + "end": 24014.44, + "probability": 0.6954 + }, + { + "start": 24014.6, + "end": 24015.0, + "probability": 0.9042 + }, + { + "start": 24016.28, + "end": 24020.39, + "probability": 0.8853 + }, + { + "start": 24023.46, + "end": 24025.42, + "probability": 0.9736 + }, + { + "start": 24025.9, + "end": 24028.28, + "probability": 0.8915 + }, + { + "start": 24028.42, + "end": 24029.04, + "probability": 0.556 + }, + { + "start": 24029.64, + "end": 24031.6, + "probability": 0.1965 + }, + { + "start": 24032.49, + "end": 24034.98, + "probability": 0.6398 + }, + { + "start": 24035.2, + "end": 24036.65, + "probability": 0.3923 + }, + { + "start": 24040.9, + "end": 24041.18, + "probability": 0.1399 + }, + { + "start": 24051.77, + "end": 24053.43, + "probability": 0.5344 + }, + { + "start": 24057.48, + "end": 24060.41, + "probability": 0.7323 + }, + { + "start": 24062.75, + "end": 24065.34, + "probability": 0.8833 + }, + { + "start": 24066.97, + "end": 24071.64, + "probability": 0.9365 + }, + { + "start": 24072.27, + "end": 24074.12, + "probability": 0.8452 + }, + { + "start": 24074.69, + "end": 24075.49, + "probability": 0.7385 + }, + { + "start": 24075.63, + "end": 24076.71, + "probability": 0.7661 + }, + { + "start": 24077.29, + "end": 24078.15, + "probability": 0.695 + }, + { + "start": 24079.11, + "end": 24080.29, + "probability": 0.5989 + }, + { + "start": 24081.13, + "end": 24085.43, + "probability": 0.8244 + }, + { + "start": 24085.91, + "end": 24090.69, + "probability": 0.9651 + }, + { + "start": 24091.67, + "end": 24094.35, + "probability": 0.9666 + }, + { + "start": 24094.97, + "end": 24099.35, + "probability": 0.9053 + }, + { + "start": 24099.37, + "end": 24099.95, + "probability": 0.0499 + }, + { + "start": 24099.95, + "end": 24101.77, + "probability": 0.3621 + }, + { + "start": 24101.93, + "end": 24103.39, + "probability": 0.7443 + }, + { + "start": 24103.43, + "end": 24104.07, + "probability": 0.0852 + }, + { + "start": 24104.09, + "end": 24106.15, + "probability": 0.9381 + }, + { + "start": 24106.21, + "end": 24106.71, + "probability": 0.0668 + }, + { + "start": 24106.77, + "end": 24108.91, + "probability": 0.9944 + }, + { + "start": 24109.45, + "end": 24111.04, + "probability": 0.895 + }, + { + "start": 24111.15, + "end": 24111.78, + "probability": 0.5804 + }, + { + "start": 24112.29, + "end": 24113.05, + "probability": 0.8382 + }, + { + "start": 24113.41, + "end": 24114.09, + "probability": 0.1791 + }, + { + "start": 24114.21, + "end": 24116.89, + "probability": 0.872 + }, + { + "start": 24117.81, + "end": 24118.83, + "probability": 0.552 + }, + { + "start": 24118.91, + "end": 24125.77, + "probability": 0.9073 + }, + { + "start": 24126.35, + "end": 24129.91, + "probability": 0.7274 + }, + { + "start": 24130.17, + "end": 24130.57, + "probability": 0.894 + }, + { + "start": 24130.71, + "end": 24133.33, + "probability": 0.9745 + }, + { + "start": 24133.59, + "end": 24134.59, + "probability": 0.7841 + }, + { + "start": 24135.17, + "end": 24137.27, + "probability": 0.9875 + }, + { + "start": 24137.59, + "end": 24140.79, + "probability": 0.9877 + }, + { + "start": 24141.47, + "end": 24142.66, + "probability": 0.7881 + }, + { + "start": 24143.25, + "end": 24143.99, + "probability": 0.9004 + }, + { + "start": 24144.91, + "end": 24145.79, + "probability": 0.9498 + }, + { + "start": 24146.83, + "end": 24150.91, + "probability": 0.7738 + }, + { + "start": 24151.55, + "end": 24154.19, + "probability": 0.7605 + }, + { + "start": 24154.89, + "end": 24156.85, + "probability": 0.8204 + }, + { + "start": 24157.11, + "end": 24159.41, + "probability": 0.8437 + }, + { + "start": 24159.91, + "end": 24160.83, + "probability": 0.7766 + }, + { + "start": 24161.23, + "end": 24164.13, + "probability": 0.9896 + }, + { + "start": 24164.45, + "end": 24165.41, + "probability": 0.8788 + }, + { + "start": 24165.85, + "end": 24167.55, + "probability": 0.8756 + }, + { + "start": 24167.77, + "end": 24168.51, + "probability": 0.7871 + }, + { + "start": 24168.75, + "end": 24170.49, + "probability": 0.8053 + }, + { + "start": 24170.97, + "end": 24174.51, + "probability": 0.7949 + }, + { + "start": 24175.55, + "end": 24177.73, + "probability": 0.9521 + }, + { + "start": 24178.35, + "end": 24181.33, + "probability": 0.9448 + }, + { + "start": 24181.65, + "end": 24183.81, + "probability": 0.9819 + }, + { + "start": 24184.51, + "end": 24189.07, + "probability": 0.8726 + }, + { + "start": 24189.55, + "end": 24192.51, + "probability": 0.8442 + }, + { + "start": 24193.25, + "end": 24195.81, + "probability": 0.7975 + }, + { + "start": 24196.07, + "end": 24197.03, + "probability": 0.6631 + }, + { + "start": 24197.69, + "end": 24201.39, + "probability": 0.9118 + }, + { + "start": 24201.39, + "end": 24205.93, + "probability": 0.9514 + }, + { + "start": 24206.83, + "end": 24206.83, + "probability": 0.0382 + }, + { + "start": 24206.83, + "end": 24207.53, + "probability": 0.5364 + }, + { + "start": 24207.95, + "end": 24210.25, + "probability": 0.9045 + }, + { + "start": 24210.75, + "end": 24210.77, + "probability": 0.214 + }, + { + "start": 24210.77, + "end": 24212.43, + "probability": 0.5136 + }, + { + "start": 24212.81, + "end": 24217.51, + "probability": 0.9337 + }, + { + "start": 24217.77, + "end": 24218.09, + "probability": 0.6783 + }, + { + "start": 24218.21, + "end": 24220.19, + "probability": 0.6666 + }, + { + "start": 24220.53, + "end": 24221.41, + "probability": 0.6878 + }, + { + "start": 24222.05, + "end": 24227.83, + "probability": 0.7571 + }, + { + "start": 24227.89, + "end": 24228.59, + "probability": 0.6589 + }, + { + "start": 24228.69, + "end": 24230.09, + "probability": 0.9747 + }, + { + "start": 24230.15, + "end": 24230.91, + "probability": 0.9851 + }, + { + "start": 24231.53, + "end": 24235.39, + "probability": 0.8249 + }, + { + "start": 24239.45, + "end": 24240.32, + "probability": 0.4769 + }, + { + "start": 24240.95, + "end": 24242.17, + "probability": 0.6015 + }, + { + "start": 24242.17, + "end": 24242.65, + "probability": 0.3521 + }, + { + "start": 24243.75, + "end": 24246.31, + "probability": 0.6768 + }, + { + "start": 24247.01, + "end": 24251.26, + "probability": 0.8013 + }, + { + "start": 24253.61, + "end": 24253.83, + "probability": 0.0331 + }, + { + "start": 24253.93, + "end": 24253.93, + "probability": 0.0161 + }, + { + "start": 24253.93, + "end": 24258.53, + "probability": 0.7656 + }, + { + "start": 24259.71, + "end": 24260.53, + "probability": 0.8696 + }, + { + "start": 24261.29, + "end": 24262.77, + "probability": 0.282 + }, + { + "start": 24263.37, + "end": 24264.11, + "probability": 0.5603 + }, + { + "start": 24265.57, + "end": 24267.47, + "probability": 0.6583 + }, + { + "start": 24267.97, + "end": 24271.41, + "probability": 0.9586 + }, + { + "start": 24272.39, + "end": 24273.37, + "probability": 0.7813 + }, + { + "start": 24273.65, + "end": 24276.63, + "probability": 0.777 + }, + { + "start": 24276.75, + "end": 24278.13, + "probability": 0.9029 + }, + { + "start": 24278.37, + "end": 24283.77, + "probability": 0.9579 + }, + { + "start": 24283.87, + "end": 24284.81, + "probability": 0.8267 + }, + { + "start": 24284.97, + "end": 24286.13, + "probability": 0.6075 + }, + { + "start": 24286.69, + "end": 24294.39, + "probability": 0.9639 + }, + { + "start": 24295.07, + "end": 24297.35, + "probability": 0.9434 + }, + { + "start": 24297.89, + "end": 24302.09, + "probability": 0.8906 + }, + { + "start": 24303.31, + "end": 24305.85, + "probability": 0.857 + }, + { + "start": 24306.27, + "end": 24308.05, + "probability": 0.8624 + }, + { + "start": 24308.53, + "end": 24313.29, + "probability": 0.6841 + }, + { + "start": 24313.91, + "end": 24317.09, + "probability": 0.8872 + }, + { + "start": 24317.27, + "end": 24318.49, + "probability": 0.5569 + }, + { + "start": 24318.89, + "end": 24320.11, + "probability": 0.7935 + }, + { + "start": 24320.27, + "end": 24321.37, + "probability": 0.2248 + }, + { + "start": 24321.57, + "end": 24323.25, + "probability": 0.951 + }, + { + "start": 24323.69, + "end": 24325.23, + "probability": 0.9424 + }, + { + "start": 24326.79, + "end": 24332.07, + "probability": 0.8945 + }, + { + "start": 24332.33, + "end": 24334.45, + "probability": 0.5448 + }, + { + "start": 24335.97, + "end": 24339.71, + "probability": 0.9519 + }, + { + "start": 24339.71, + "end": 24340.85, + "probability": 0.3969 + }, + { + "start": 24340.93, + "end": 24341.65, + "probability": 0.4464 + }, + { + "start": 24341.75, + "end": 24342.17, + "probability": 0.3484 + }, + { + "start": 24342.17, + "end": 24342.67, + "probability": 0.4141 + }, + { + "start": 24342.81, + "end": 24345.71, + "probability": 0.9696 + }, + { + "start": 24345.71, + "end": 24345.71, + "probability": 0.2919 + }, + { + "start": 24345.73, + "end": 24346.49, + "probability": 0.5706 + }, + { + "start": 24346.55, + "end": 24347.19, + "probability": 0.267 + }, + { + "start": 24347.31, + "end": 24347.65, + "probability": 0.1295 + }, + { + "start": 24347.83, + "end": 24349.71, + "probability": 0.8555 + }, + { + "start": 24349.79, + "end": 24350.29, + "probability": 0.2654 + }, + { + "start": 24350.35, + "end": 24352.03, + "probability": 0.5465 + }, + { + "start": 24352.25, + "end": 24353.37, + "probability": 0.8928 + }, + { + "start": 24353.47, + "end": 24358.21, + "probability": 0.814 + }, + { + "start": 24358.71, + "end": 24361.05, + "probability": 0.8236 + }, + { + "start": 24361.45, + "end": 24362.35, + "probability": 0.6496 + }, + { + "start": 24362.65, + "end": 24363.23, + "probability": 0.7877 + }, + { + "start": 24363.87, + "end": 24365.09, + "probability": 0.3329 + }, + { + "start": 24365.21, + "end": 24365.99, + "probability": 0.8651 + }, + { + "start": 24366.11, + "end": 24366.39, + "probability": 0.2593 + }, + { + "start": 24366.85, + "end": 24368.29, + "probability": 0.7498 + }, + { + "start": 24368.45, + "end": 24369.79, + "probability": 0.5299 + }, + { + "start": 24369.87, + "end": 24370.39, + "probability": 0.7007 + }, + { + "start": 24371.03, + "end": 24373.43, + "probability": 0.1559 + }, + { + "start": 24373.43, + "end": 24375.75, + "probability": 0.7856 + }, + { + "start": 24375.83, + "end": 24377.76, + "probability": 0.9658 + }, + { + "start": 24378.29, + "end": 24380.23, + "probability": 0.7098 + }, + { + "start": 24380.47, + "end": 24382.73, + "probability": 0.9576 + }, + { + "start": 24382.93, + "end": 24384.01, + "probability": 0.3691 + }, + { + "start": 24385.01, + "end": 24385.49, + "probability": 0.722 + }, + { + "start": 24385.61, + "end": 24386.88, + "probability": 0.9795 + }, + { + "start": 24388.01, + "end": 24389.96, + "probability": 0.3937 + }, + { + "start": 24390.82, + "end": 24396.61, + "probability": 0.9727 + }, + { + "start": 24396.61, + "end": 24402.15, + "probability": 0.9884 + }, + { + "start": 24402.55, + "end": 24403.46, + "probability": 0.6206 + }, + { + "start": 24403.73, + "end": 24404.63, + "probability": 0.7585 + }, + { + "start": 24404.89, + "end": 24405.52, + "probability": 0.4885 + }, + { + "start": 24407.67, + "end": 24408.57, + "probability": 0.9429 + }, + { + "start": 24414.73, + "end": 24418.53, + "probability": 0.5461 + }, + { + "start": 24419.79, + "end": 24421.25, + "probability": 0.6736 + }, + { + "start": 24421.47, + "end": 24423.41, + "probability": 0.6142 + }, + { + "start": 24424.13, + "end": 24424.33, + "probability": 0.1112 + }, + { + "start": 24425.33, + "end": 24427.85, + "probability": 0.8608 + }, + { + "start": 24428.28, + "end": 24431.49, + "probability": 0.6533 + }, + { + "start": 24431.61, + "end": 24432.07, + "probability": 0.4859 + }, + { + "start": 24432.23, + "end": 24433.63, + "probability": 0.7207 + }, + { + "start": 24433.97, + "end": 24435.41, + "probability": 0.4723 + }, + { + "start": 24435.49, + "end": 24437.49, + "probability": 0.9427 + }, + { + "start": 24438.11, + "end": 24438.95, + "probability": 0.9585 + }, + { + "start": 24439.87, + "end": 24440.75, + "probability": 0.4621 + }, + { + "start": 24441.01, + "end": 24442.85, + "probability": 0.4962 + }, + { + "start": 24444.03, + "end": 24447.69, + "probability": 0.9419 + }, + { + "start": 24448.11, + "end": 24449.39, + "probability": 0.9269 + }, + { + "start": 24450.49, + "end": 24453.07, + "probability": 0.6665 + }, + { + "start": 24453.15, + "end": 24453.91, + "probability": 0.8267 + }, + { + "start": 24454.05, + "end": 24456.55, + "probability": 0.8639 + }, + { + "start": 24457.73, + "end": 24458.75, + "probability": 0.7315 + }, + { + "start": 24458.79, + "end": 24460.83, + "probability": 0.6627 + }, + { + "start": 24460.83, + "end": 24461.61, + "probability": 0.1677 + }, + { + "start": 24461.61, + "end": 24463.87, + "probability": 0.4756 + }, + { + "start": 24463.95, + "end": 24466.23, + "probability": 0.7211 + }, + { + "start": 24468.57, + "end": 24471.77, + "probability": 0.2108 + }, + { + "start": 24472.51, + "end": 24473.65, + "probability": 0.0169 + }, + { + "start": 24473.65, + "end": 24473.65, + "probability": 0.3697 + }, + { + "start": 24473.65, + "end": 24474.19, + "probability": 0.3594 + }, + { + "start": 24474.67, + "end": 24475.09, + "probability": 0.5082 + }, + { + "start": 24475.65, + "end": 24478.43, + "probability": 0.5341 + }, + { + "start": 24478.45, + "end": 24479.72, + "probability": 0.7302 + }, + { + "start": 24480.25, + "end": 24480.57, + "probability": 0.7744 + }, + { + "start": 24481.23, + "end": 24482.53, + "probability": 0.3329 + }, + { + "start": 24482.61, + "end": 24483.83, + "probability": 0.5815 + }, + { + "start": 24484.53, + "end": 24485.39, + "probability": 0.4694 + }, + { + "start": 24485.39, + "end": 24485.87, + "probability": 0.687 + }, + { + "start": 24485.97, + "end": 24488.82, + "probability": 0.4652 + }, + { + "start": 24493.35, + "end": 24495.25, + "probability": 0.1331 + }, + { + "start": 24497.09, + "end": 24499.51, + "probability": 0.6083 + }, + { + "start": 24499.59, + "end": 24503.81, + "probability": 0.1036 + }, + { + "start": 24504.57, + "end": 24504.77, + "probability": 0.0406 + }, + { + "start": 24505.48, + "end": 24507.41, + "probability": 0.1218 + }, + { + "start": 24508.05, + "end": 24509.21, + "probability": 0.4052 + }, + { + "start": 24509.39, + "end": 24511.37, + "probability": 0.0259 + }, + { + "start": 24511.47, + "end": 24513.09, + "probability": 0.0558 + }, + { + "start": 24514.07, + "end": 24514.51, + "probability": 0.0545 + }, + { + "start": 24515.21, + "end": 24515.25, + "probability": 0.0645 + }, + { + "start": 24515.25, + "end": 24515.25, + "probability": 0.3362 + }, + { + "start": 24515.25, + "end": 24515.33, + "probability": 0.07 + }, + { + "start": 24515.63, + "end": 24518.11, + "probability": 0.1839 + }, + { + "start": 24518.11, + "end": 24520.93, + "probability": 0.0854 + }, + { + "start": 24525.11, + "end": 24525.67, + "probability": 0.0102 + }, + { + "start": 24527.32, + "end": 24528.93, + "probability": 0.0276 + }, + { + "start": 24528.97, + "end": 24528.97, + "probability": 0.1441 + }, + { + "start": 24528.97, + "end": 24530.27, + "probability": 0.0643 + }, + { + "start": 24530.27, + "end": 24532.75, + "probability": 0.3635 + }, + { + "start": 24532.75, + "end": 24535.43, + "probability": 0.4577 + }, + { + "start": 24537.57, + "end": 24537.69, + "probability": 0.0011 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.0, + "end": 24552.0, + "probability": 0.0 + }, + { + "start": 24552.12, + "end": 24555.98, + "probability": 0.5783 + }, + { + "start": 24556.4, + "end": 24558.02, + "probability": 0.6722 + }, + { + "start": 24558.04, + "end": 24559.44, + "probability": 0.5556 + }, + { + "start": 24560.06, + "end": 24561.11, + "probability": 0.8901 + }, + { + "start": 24561.22, + "end": 24562.94, + "probability": 0.9323 + }, + { + "start": 24565.86, + "end": 24569.86, + "probability": 0.466 + }, + { + "start": 24570.16, + "end": 24570.38, + "probability": 0.0001 + }, + { + "start": 24571.2, + "end": 24572.38, + "probability": 0.1014 + }, + { + "start": 24573.32, + "end": 24573.94, + "probability": 0.0472 + }, + { + "start": 24574.16, + "end": 24575.92, + "probability": 0.3345 + }, + { + "start": 24576.9, + "end": 24581.46, + "probability": 0.6388 + }, + { + "start": 24581.5, + "end": 24582.6, + "probability": 0.8654 + }, + { + "start": 24582.8, + "end": 24585.1, + "probability": 0.8416 + }, + { + "start": 24586.22, + "end": 24587.1, + "probability": 0.6482 + }, + { + "start": 24592.0, + "end": 24592.7, + "probability": 0.524 + }, + { + "start": 24592.74, + "end": 24593.42, + "probability": 0.8416 + }, + { + "start": 24593.54, + "end": 24594.2, + "probability": 0.6487 + }, + { + "start": 24594.2, + "end": 24598.06, + "probability": 0.9888 + }, + { + "start": 24598.54, + "end": 24599.02, + "probability": 0.7023 + }, + { + "start": 24599.1, + "end": 24602.6, + "probability": 0.9867 + }, + { + "start": 24603.34, + "end": 24609.1, + "probability": 0.9755 + }, + { + "start": 24609.38, + "end": 24611.04, + "probability": 0.8337 + }, + { + "start": 24611.68, + "end": 24614.54, + "probability": 0.9757 + }, + { + "start": 24615.18, + "end": 24620.04, + "probability": 0.8366 + }, + { + "start": 24620.22, + "end": 24621.02, + "probability": 0.9855 + }, + { + "start": 24621.1, + "end": 24623.44, + "probability": 0.8287 + }, + { + "start": 24623.8, + "end": 24624.46, + "probability": 0.932 + }, + { + "start": 24624.8, + "end": 24627.28, + "probability": 0.9917 + }, + { + "start": 24627.4, + "end": 24628.0, + "probability": 0.9415 + }, + { + "start": 24628.3, + "end": 24628.9, + "probability": 0.9546 + }, + { + "start": 24629.1, + "end": 24630.12, + "probability": 0.5828 + }, + { + "start": 24630.92, + "end": 24632.76, + "probability": 0.9858 + }, + { + "start": 24633.54, + "end": 24634.36, + "probability": 0.7559 + }, + { + "start": 24634.6, + "end": 24636.16, + "probability": 0.5542 + }, + { + "start": 24636.24, + "end": 24636.98, + "probability": 0.6384 + }, + { + "start": 24637.6, + "end": 24639.16, + "probability": 0.9925 + }, + { + "start": 24639.8, + "end": 24645.94, + "probability": 0.8019 + }, + { + "start": 24646.72, + "end": 24647.66, + "probability": 0.6962 + }, + { + "start": 24647.86, + "end": 24651.5, + "probability": 0.8052 + }, + { + "start": 24652.2, + "end": 24656.6, + "probability": 0.9449 + }, + { + "start": 24656.72, + "end": 24658.48, + "probability": 0.8869 + }, + { + "start": 24659.0, + "end": 24660.2, + "probability": 0.9032 + }, + { + "start": 24660.54, + "end": 24663.02, + "probability": 0.8258 + }, + { + "start": 24663.08, + "end": 24663.9, + "probability": 0.9258 + }, + { + "start": 24663.92, + "end": 24664.58, + "probability": 0.8798 + }, + { + "start": 24664.88, + "end": 24666.24, + "probability": 0.9289 + }, + { + "start": 24666.64, + "end": 24667.3, + "probability": 0.3582 + }, + { + "start": 24668.16, + "end": 24673.76, + "probability": 0.0459 + }, + { + "start": 24674.2, + "end": 24676.87, + "probability": 0.199 + }, + { + "start": 24676.92, + "end": 24679.24, + "probability": 0.0619 + }, + { + "start": 24679.58, + "end": 24680.42, + "probability": 0.3022 + }, + { + "start": 24680.5, + "end": 24680.88, + "probability": 0.1368 + }, + { + "start": 24681.2, + "end": 24682.86, + "probability": 0.4585 + }, + { + "start": 24683.04, + "end": 24683.4, + "probability": 0.8234 + }, + { + "start": 24683.54, + "end": 24687.32, + "probability": 0.9694 + }, + { + "start": 24687.32, + "end": 24690.34, + "probability": 0.9136 + }, + { + "start": 24690.36, + "end": 24690.82, + "probability": 0.4466 + }, + { + "start": 24691.22, + "end": 24698.82, + "probability": 0.9829 + }, + { + "start": 24698.96, + "end": 24699.32, + "probability": 0.7401 + }, + { + "start": 24699.36, + "end": 24704.4, + "probability": 0.7537 + }, + { + "start": 24704.48, + "end": 24708.93, + "probability": 0.9578 + }, + { + "start": 24709.74, + "end": 24711.62, + "probability": 0.1739 + }, + { + "start": 24711.82, + "end": 24715.74, + "probability": 0.1662 + }, + { + "start": 24715.74, + "end": 24718.44, + "probability": 0.418 + }, + { + "start": 24718.6, + "end": 24719.0, + "probability": 0.3662 + }, + { + "start": 24719.22, + "end": 24722.1, + "probability": 0.6458 + }, + { + "start": 24722.32, + "end": 24723.48, + "probability": 0.9402 + }, + { + "start": 24723.62, + "end": 24724.29, + "probability": 0.7754 + }, + { + "start": 24724.42, + "end": 24725.08, + "probability": 0.6792 + }, + { + "start": 24725.46, + "end": 24727.28, + "probability": 0.9795 + }, + { + "start": 24727.5, + "end": 24730.12, + "probability": 0.9868 + }, + { + "start": 24730.3, + "end": 24732.1, + "probability": 0.9911 + }, + { + "start": 24732.42, + "end": 24733.94, + "probability": 0.957 + }, + { + "start": 24734.62, + "end": 24736.8, + "probability": 0.8794 + }, + { + "start": 24736.9, + "end": 24738.98, + "probability": 0.9355 + }, + { + "start": 24739.04, + "end": 24739.6, + "probability": 0.9362 + }, + { + "start": 24739.68, + "end": 24740.38, + "probability": 0.9721 + }, + { + "start": 24740.58, + "end": 24741.3, + "probability": 0.9508 + }, + { + "start": 24741.68, + "end": 24742.2, + "probability": 0.8101 + }, + { + "start": 24742.24, + "end": 24742.68, + "probability": 0.819 + }, + { + "start": 24742.76, + "end": 24744.5, + "probability": 0.951 + }, + { + "start": 24745.1, + "end": 24745.7, + "probability": 0.6889 + }, + { + "start": 24745.78, + "end": 24747.16, + "probability": 0.8877 + }, + { + "start": 24747.4, + "end": 24748.02, + "probability": 0.5674 + }, + { + "start": 24748.24, + "end": 24750.74, + "probability": 0.6595 + }, + { + "start": 24751.42, + "end": 24754.28, + "probability": 0.761 + }, + { + "start": 24754.8, + "end": 24758.28, + "probability": 0.8517 + }, + { + "start": 24758.66, + "end": 24760.4, + "probability": 0.9836 + }, + { + "start": 24760.46, + "end": 24761.42, + "probability": 0.8802 + }, + { + "start": 24761.58, + "end": 24762.66, + "probability": 0.7843 + }, + { + "start": 24765.28, + "end": 24766.64, + "probability": 0.0024 + }, + { + "start": 24769.32, + "end": 24769.82, + "probability": 0.0856 + }, + { + "start": 24769.82, + "end": 24769.82, + "probability": 0.0105 + }, + { + "start": 24769.82, + "end": 24771.62, + "probability": 0.021 + }, + { + "start": 24771.92, + "end": 24773.02, + "probability": 0.8909 + }, + { + "start": 24773.86, + "end": 24774.76, + "probability": 0.7969 + }, + { + "start": 24774.96, + "end": 24777.46, + "probability": 0.9551 + }, + { + "start": 24778.04, + "end": 24778.82, + "probability": 0.5339 + }, + { + "start": 24778.82, + "end": 24780.98, + "probability": 0.6175 + }, + { + "start": 24781.38, + "end": 24781.42, + "probability": 0.0821 + }, + { + "start": 24781.54, + "end": 24785.94, + "probability": 0.2854 + }, + { + "start": 24786.12, + "end": 24786.8, + "probability": 0.0536 + }, + { + "start": 24786.8, + "end": 24787.04, + "probability": 0.407 + }, + { + "start": 24787.14, + "end": 24788.94, + "probability": 0.9365 + }, + { + "start": 24790.3, + "end": 24790.84, + "probability": 0.7597 + }, + { + "start": 24790.98, + "end": 24792.36, + "probability": 0.8817 + }, + { + "start": 24792.4, + "end": 24793.06, + "probability": 0.9297 + }, + { + "start": 24793.18, + "end": 24794.96, + "probability": 0.7102 + }, + { + "start": 24795.06, + "end": 24795.36, + "probability": 0.8996 + }, + { + "start": 24795.48, + "end": 24796.72, + "probability": 0.7852 + }, + { + "start": 24796.8, + "end": 24799.9, + "probability": 0.8848 + }, + { + "start": 24799.98, + "end": 24801.64, + "probability": 0.6732 + }, + { + "start": 24801.7, + "end": 24803.28, + "probability": 0.4188 + }, + { + "start": 24803.54, + "end": 24807.04, + "probability": 0.9884 + }, + { + "start": 24807.68, + "end": 24810.52, + "probability": 0.8253 + }, + { + "start": 24811.12, + "end": 24811.42, + "probability": 0.4722 + }, + { + "start": 24811.42, + "end": 24813.62, + "probability": 0.6762 + }, + { + "start": 24813.72, + "end": 24814.58, + "probability": 0.8242 + }, + { + "start": 24814.68, + "end": 24815.9, + "probability": 0.8456 + }, + { + "start": 24816.0, + "end": 24816.46, + "probability": 0.9105 + }, + { + "start": 24816.52, + "end": 24818.7, + "probability": 0.605 + }, + { + "start": 24818.88, + "end": 24823.48, + "probability": 0.9822 + }, + { + "start": 24824.3, + "end": 24827.68, + "probability": 0.9739 + }, + { + "start": 24827.96, + "end": 24829.46, + "probability": 0.9964 + }, + { + "start": 24829.72, + "end": 24833.08, + "probability": 0.9782 + }, + { + "start": 24833.22, + "end": 24836.16, + "probability": 0.6736 + }, + { + "start": 24836.72, + "end": 24839.94, + "probability": 0.6331 + }, + { + "start": 24840.24, + "end": 24845.26, + "probability": 0.7539 + }, + { + "start": 24845.44, + "end": 24848.06, + "probability": 0.9185 + }, + { + "start": 24848.38, + "end": 24855.61, + "probability": 0.6548 + }, + { + "start": 24856.08, + "end": 24862.44, + "probability": 0.698 + }, + { + "start": 24863.14, + "end": 24865.48, + "probability": 0.6137 + }, + { + "start": 24866.14, + "end": 24867.58, + "probability": 0.0471 + }, + { + "start": 24867.62, + "end": 24868.82, + "probability": 0.7213 + }, + { + "start": 24868.86, + "end": 24869.38, + "probability": 0.8007 + }, + { + "start": 24869.54, + "end": 24870.38, + "probability": 0.7489 + }, + { + "start": 24870.46, + "end": 24871.76, + "probability": 0.5817 + }, + { + "start": 24872.98, + "end": 24875.04, + "probability": 0.9563 + }, + { + "start": 24875.16, + "end": 24875.66, + "probability": 0.8788 + }, + { + "start": 24875.92, + "end": 24878.28, + "probability": 0.9077 + }, + { + "start": 24878.4, + "end": 24879.56, + "probability": 0.6568 + }, + { + "start": 24879.74, + "end": 24880.02, + "probability": 0.4403 + }, + { + "start": 24880.02, + "end": 24883.9, + "probability": 0.8499 + }, + { + "start": 24884.02, + "end": 24886.84, + "probability": 0.9316 + }, + { + "start": 24887.66, + "end": 24888.04, + "probability": 0.671 + }, + { + "start": 24890.04, + "end": 24894.04, + "probability": 0.8077 + }, + { + "start": 24894.18, + "end": 24897.49, + "probability": 0.9121 + }, + { + "start": 24897.78, + "end": 24898.58, + "probability": 0.7471 + }, + { + "start": 24898.88, + "end": 24902.06, + "probability": 0.8335 + }, + { + "start": 24902.14, + "end": 24906.92, + "probability": 0.9606 + }, + { + "start": 24907.26, + "end": 24909.94, + "probability": 0.9949 + }, + { + "start": 24909.94, + "end": 24912.2, + "probability": 0.945 + }, + { + "start": 24912.48, + "end": 24912.74, + "probability": 0.0941 + }, + { + "start": 24912.74, + "end": 24912.74, + "probability": 0.0293 + }, + { + "start": 24912.74, + "end": 24916.08, + "probability": 0.8027 + }, + { + "start": 24916.46, + "end": 24918.12, + "probability": 0.9834 + }, + { + "start": 24921.38, + "end": 24924.56, + "probability": 0.849 + }, + { + "start": 24924.7, + "end": 24925.38, + "probability": 0.5468 + }, + { + "start": 24925.72, + "end": 24928.98, + "probability": 0.9607 + }, + { + "start": 24929.1, + "end": 24934.86, + "probability": 0.925 + }, + { + "start": 24935.28, + "end": 24937.74, + "probability": 0.6416 + }, + { + "start": 24937.84, + "end": 24938.76, + "probability": 0.7009 + }, + { + "start": 24938.96, + "end": 24944.08, + "probability": 0.4525 + }, + { + "start": 24945.06, + "end": 24946.82, + "probability": 0.2694 + }, + { + "start": 24947.36, + "end": 24948.2, + "probability": 0.5134 + }, + { + "start": 24948.9, + "end": 24952.4, + "probability": 0.3751 + }, + { + "start": 24952.6, + "end": 24953.72, + "probability": 0.5122 + }, + { + "start": 24954.17, + "end": 24958.26, + "probability": 0.7872 + }, + { + "start": 24958.44, + "end": 24962.02, + "probability": 0.4477 + }, + { + "start": 24962.26, + "end": 24963.44, + "probability": 0.313 + }, + { + "start": 24963.6, + "end": 24964.83, + "probability": 0.1953 + }, + { + "start": 24965.1, + "end": 24965.56, + "probability": 0.0183 + }, + { + "start": 24965.56, + "end": 24966.04, + "probability": 0.3361 + }, + { + "start": 24966.32, + "end": 24968.64, + "probability": 0.6133 + }, + { + "start": 24968.94, + "end": 24970.57, + "probability": 0.541 + }, + { + "start": 24971.8, + "end": 24976.74, + "probability": 0.4564 + }, + { + "start": 24976.96, + "end": 24977.66, + "probability": 0.1079 + }, + { + "start": 24978.1, + "end": 24978.42, + "probability": 0.047 + }, + { + "start": 24979.16, + "end": 24982.42, + "probability": 0.4727 + }, + { + "start": 24982.72, + "end": 24984.84, + "probability": 0.4466 + }, + { + "start": 24985.28, + "end": 24985.28, + "probability": 0.2388 + }, + { + "start": 24985.28, + "end": 24992.36, + "probability": 0.6599 + }, + { + "start": 24994.86, + "end": 24996.44, + "probability": 0.7847 + }, + { + "start": 24996.96, + "end": 25000.82, + "probability": 0.994 + }, + { + "start": 25001.12, + "end": 25002.28, + "probability": 0.874 + }, + { + "start": 25002.38, + "end": 25003.64, + "probability": 0.8741 + }, + { + "start": 25003.78, + "end": 25007.28, + "probability": 0.9473 + }, + { + "start": 25008.08, + "end": 25009.94, + "probability": 0.9707 + }, + { + "start": 25010.36, + "end": 25011.36, + "probability": 0.4435 + }, + { + "start": 25011.42, + "end": 25013.02, + "probability": 0.2568 + }, + { + "start": 25013.04, + "end": 25013.66, + "probability": 0.7649 + }, + { + "start": 25013.74, + "end": 25014.62, + "probability": 0.965 + }, + { + "start": 25014.7, + "end": 25016.78, + "probability": 0.9697 + }, + { + "start": 25016.82, + "end": 25017.54, + "probability": 0.6086 + }, + { + "start": 25017.62, + "end": 25019.36, + "probability": 0.8319 + }, + { + "start": 25019.84, + "end": 25021.34, + "probability": 0.7972 + }, + { + "start": 25021.44, + "end": 25022.46, + "probability": 0.4319 + }, + { + "start": 25022.46, + "end": 25023.04, + "probability": 0.2433 + }, + { + "start": 25023.28, + "end": 25025.66, + "probability": 0.9309 + }, + { + "start": 25026.4, + "end": 25031.16, + "probability": 0.9921 + }, + { + "start": 25031.16, + "end": 25036.1, + "probability": 0.6445 + }, + { + "start": 25036.16, + "end": 25036.88, + "probability": 0.8045 + }, + { + "start": 25037.0, + "end": 25039.17, + "probability": 0.7475 + }, + { + "start": 25039.74, + "end": 25045.54, + "probability": 0.9465 + }, + { + "start": 25046.92, + "end": 25050.62, + "probability": 0.8294 + }, + { + "start": 25052.04, + "end": 25052.88, + "probability": 0.6325 + }, + { + "start": 25053.02, + "end": 25054.4, + "probability": 0.6318 + }, + { + "start": 25054.6, + "end": 25055.42, + "probability": 0.0381 + }, + { + "start": 25055.7, + "end": 25058.16, + "probability": 0.6909 + }, + { + "start": 25058.16, + "end": 25059.02, + "probability": 0.5383 + }, + { + "start": 25059.18, + "end": 25062.22, + "probability": 0.8365 + }, + { + "start": 25062.46, + "end": 25067.4, + "probability": 0.907 + }, + { + "start": 25067.7, + "end": 25070.22, + "probability": 0.1527 + }, + { + "start": 25070.7, + "end": 25074.2, + "probability": 0.7512 + }, + { + "start": 25074.58, + "end": 25074.96, + "probability": 0.3216 + }, + { + "start": 25075.34, + "end": 25078.7, + "probability": 0.9246 + }, + { + "start": 25078.78, + "end": 25079.96, + "probability": 0.6633 + }, + { + "start": 25080.26, + "end": 25082.22, + "probability": 0.6801 + }, + { + "start": 25082.22, + "end": 25084.68, + "probability": 0.3192 + }, + { + "start": 25084.78, + "end": 25086.26, + "probability": 0.5514 + }, + { + "start": 25086.36, + "end": 25087.39, + "probability": 0.3149 + }, + { + "start": 25089.08, + "end": 25089.92, + "probability": 0.0131 + }, + { + "start": 25090.46, + "end": 25097.7, + "probability": 0.5129 + }, + { + "start": 25097.94, + "end": 25099.26, + "probability": 0.6295 + }, + { + "start": 25099.34, + "end": 25102.26, + "probability": 0.4661 + }, + { + "start": 25102.7, + "end": 25104.02, + "probability": 0.2441 + }, + { + "start": 25104.02, + "end": 25104.48, + "probability": 0.2596 + }, + { + "start": 25104.48, + "end": 25105.3, + "probability": 0.5602 + }, + { + "start": 25106.26, + "end": 25109.62, + "probability": 0.7837 + }, + { + "start": 25110.17, + "end": 25115.28, + "probability": 0.9137 + }, + { + "start": 25115.74, + "end": 25118.42, + "probability": 0.9901 + }, + { + "start": 25118.88, + "end": 25122.5, + "probability": 0.986 + }, + { + "start": 25123.0, + "end": 25128.5, + "probability": 0.7339 + }, + { + "start": 25129.87, + "end": 25132.1, + "probability": 0.5188 + }, + { + "start": 25132.14, + "end": 25133.88, + "probability": 0.096 + }, + { + "start": 25134.5, + "end": 25135.58, + "probability": 0.6319 + }, + { + "start": 25135.66, + "end": 25137.04, + "probability": 0.4161 + }, + { + "start": 25137.26, + "end": 25139.98, + "probability": 0.4973 + }, + { + "start": 25140.06, + "end": 25141.5, + "probability": 0.5753 + }, + { + "start": 25143.56, + "end": 25145.88, + "probability": 0.7358 + }, + { + "start": 25146.02, + "end": 25146.22, + "probability": 0.2831 + }, + { + "start": 25146.28, + "end": 25149.28, + "probability": 0.9395 + }, + { + "start": 25149.28, + "end": 25152.72, + "probability": 0.9482 + }, + { + "start": 25153.08, + "end": 25156.98, + "probability": 0.7347 + }, + { + "start": 25157.32, + "end": 25158.16, + "probability": 0.4846 + }, + { + "start": 25158.28, + "end": 25163.0, + "probability": 0.9797 + }, + { + "start": 25163.12, + "end": 25165.46, + "probability": 0.9693 + }, + { + "start": 25165.74, + "end": 25166.52, + "probability": 0.899 + }, + { + "start": 25166.56, + "end": 25166.88, + "probability": 0.3729 + }, + { + "start": 25167.92, + "end": 25169.4, + "probability": 0.749 + }, + { + "start": 25169.56, + "end": 25170.76, + "probability": 0.5247 + }, + { + "start": 25170.78, + "end": 25174.4, + "probability": 0.816 + }, + { + "start": 25175.24, + "end": 25177.7, + "probability": 0.3778 + }, + { + "start": 25179.23, + "end": 25184.69, + "probability": 0.5926 + }, + { + "start": 25185.68, + "end": 25186.92, + "probability": 0.0842 + }, + { + "start": 25189.34, + "end": 25192.04, + "probability": 0.8802 + }, + { + "start": 25192.74, + "end": 25195.1, + "probability": 0.212 + }, + { + "start": 25195.68, + "end": 25196.64, + "probability": 0.6277 + }, + { + "start": 25200.3, + "end": 25203.94, + "probability": 0.8115 + }, + { + "start": 25205.39, + "end": 25209.2, + "probability": 0.856 + }, + { + "start": 25209.56, + "end": 25209.74, + "probability": 0.2687 + }, + { + "start": 25209.86, + "end": 25210.66, + "probability": 0.8029 + }, + { + "start": 25214.27, + "end": 25216.68, + "probability": 0.8176 + }, + { + "start": 25217.1, + "end": 25220.3, + "probability": 0.4736 + }, + { + "start": 25220.46, + "end": 25223.1, + "probability": 0.9691 + }, + { + "start": 25223.22, + "end": 25226.08, + "probability": 0.6626 + }, + { + "start": 25228.73, + "end": 25231.5, + "probability": 0.9541 + }, + { + "start": 25231.86, + "end": 25232.34, + "probability": 0.3964 + }, + { + "start": 25232.5, + "end": 25233.79, + "probability": 0.7717 + }, + { + "start": 25234.34, + "end": 25236.16, + "probability": 0.7228 + }, + { + "start": 25236.86, + "end": 25239.66, + "probability": 0.8617 + }, + { + "start": 25239.82, + "end": 25240.46, + "probability": 0.8754 + }, + { + "start": 25240.54, + "end": 25242.46, + "probability": 0.2739 + }, + { + "start": 25243.34, + "end": 25245.28, + "probability": 0.6421 + }, + { + "start": 25245.34, + "end": 25247.78, + "probability": 0.641 + }, + { + "start": 25248.02, + "end": 25248.88, + "probability": 0.1782 + }, + { + "start": 25249.28, + "end": 25250.24, + "probability": 0.9472 + }, + { + "start": 25250.34, + "end": 25251.9, + "probability": 0.4384 + }, + { + "start": 25251.96, + "end": 25252.94, + "probability": 0.9704 + }, + { + "start": 25253.21, + "end": 25256.26, + "probability": 0.6979 + }, + { + "start": 25256.26, + "end": 25257.9, + "probability": 0.3535 + }, + { + "start": 25258.22, + "end": 25259.26, + "probability": 0.7625 + }, + { + "start": 25260.0, + "end": 25262.02, + "probability": 0.9444 + }, + { + "start": 25262.68, + "end": 25263.76, + "probability": 0.6801 + }, + { + "start": 25263.94, + "end": 25265.96, + "probability": 0.8978 + }, + { + "start": 25266.05, + "end": 25270.0, + "probability": 0.6972 + }, + { + "start": 25271.14, + "end": 25273.06, + "probability": 0.98 + }, + { + "start": 25274.92, + "end": 25275.78, + "probability": 0.2298 + }, + { + "start": 25276.3, + "end": 25276.48, + "probability": 0.2039 + }, + { + "start": 25276.72, + "end": 25279.22, + "probability": 0.7941 + }, + { + "start": 25279.64, + "end": 25283.16, + "probability": 0.6675 + }, + { + "start": 25284.66, + "end": 25287.08, + "probability": 0.2685 + }, + { + "start": 25287.16, + "end": 25288.06, + "probability": 0.4366 + }, + { + "start": 25288.3, + "end": 25289.64, + "probability": 0.2325 + }, + { + "start": 25290.95, + "end": 25293.8, + "probability": 0.7891 + }, + { + "start": 25293.88, + "end": 25295.6, + "probability": 0.9746 + }, + { + "start": 25296.16, + "end": 25296.26, + "probability": 0.0971 + }, + { + "start": 25296.26, + "end": 25297.48, + "probability": 0.8021 + }, + { + "start": 25297.62, + "end": 25298.0, + "probability": 0.4857 + }, + { + "start": 25298.1, + "end": 25299.86, + "probability": 0.8932 + }, + { + "start": 25300.0, + "end": 25301.78, + "probability": 0.952 + }, + { + "start": 25302.82, + "end": 25304.28, + "probability": 0.965 + }, + { + "start": 25304.94, + "end": 25307.6, + "probability": 0.7258 + }, + { + "start": 25308.28, + "end": 25310.0, + "probability": 0.9072 + }, + { + "start": 25310.68, + "end": 25313.46, + "probability": 0.9906 + }, + { + "start": 25313.46, + "end": 25316.22, + "probability": 0.9355 + }, + { + "start": 25316.32, + "end": 25317.42, + "probability": 0.8838 + }, + { + "start": 25317.9, + "end": 25318.36, + "probability": 0.8755 + }, + { + "start": 25318.46, + "end": 25321.44, + "probability": 0.9987 + }, + { + "start": 25325.72, + "end": 25327.38, + "probability": 0.7005 + }, + { + "start": 25330.46, + "end": 25331.24, + "probability": 0.6819 + }, + { + "start": 25331.92, + "end": 25334.04, + "probability": 0.9972 + }, + { + "start": 25334.04, + "end": 25336.6, + "probability": 0.9263 + }, + { + "start": 25337.32, + "end": 25339.86, + "probability": 0.8395 + }, + { + "start": 25340.48, + "end": 25344.92, + "probability": 0.8875 + }, + { + "start": 25345.48, + "end": 25348.16, + "probability": 0.9696 + }, + { + "start": 25349.1, + "end": 25351.5, + "probability": 0.9924 + }, + { + "start": 25351.58, + "end": 25353.82, + "probability": 0.8688 + }, + { + "start": 25354.76, + "end": 25356.86, + "probability": 0.9374 + }, + { + "start": 25357.26, + "end": 25361.64, + "probability": 0.986 + }, + { + "start": 25361.64, + "end": 25368.14, + "probability": 0.9912 + }, + { + "start": 25369.22, + "end": 25371.3, + "probability": 0.4415 + }, + { + "start": 25371.96, + "end": 25373.71, + "probability": 0.7714 + }, + { + "start": 25374.3, + "end": 25376.54, + "probability": 0.955 + }, + { + "start": 25376.54, + "end": 25380.28, + "probability": 0.9779 + }, + { + "start": 25381.62, + "end": 25382.38, + "probability": 0.7592 + }, + { + "start": 25382.56, + "end": 25385.4, + "probability": 0.6873 + }, + { + "start": 25385.6, + "end": 25386.46, + "probability": 0.8811 + }, + { + "start": 25387.9, + "end": 25390.36, + "probability": 0.9302 + }, + { + "start": 25390.94, + "end": 25392.74, + "probability": 0.8297 + }, + { + "start": 25393.44, + "end": 25394.38, + "probability": 0.7501 + }, + { + "start": 25394.42, + "end": 25397.84, + "probability": 0.8183 + }, + { + "start": 25398.8, + "end": 25401.38, + "probability": 0.8992 + }, + { + "start": 25401.52, + "end": 25404.34, + "probability": 0.8677 + }, + { + "start": 25405.84, + "end": 25406.32, + "probability": 0.3176 + }, + { + "start": 25406.32, + "end": 25410.12, + "probability": 0.6808 + }, + { + "start": 25411.16, + "end": 25413.84, + "probability": 0.9445 + }, + { + "start": 25413.96, + "end": 25417.28, + "probability": 0.9952 + }, + { + "start": 25417.28, + "end": 25419.66, + "probability": 0.9717 + }, + { + "start": 25420.16, + "end": 25420.64, + "probability": 0.3826 + }, + { + "start": 25421.06, + "end": 25422.34, + "probability": 0.9615 + }, + { + "start": 25422.46, + "end": 25425.46, + "probability": 0.767 + }, + { + "start": 25427.5, + "end": 25427.72, + "probability": 0.3691 + }, + { + "start": 25427.8, + "end": 25428.86, + "probability": 0.7319 + }, + { + "start": 25428.92, + "end": 25429.22, + "probability": 0.848 + }, + { + "start": 25429.32, + "end": 25432.94, + "probability": 0.8459 + }, + { + "start": 25433.3, + "end": 25434.7, + "probability": 0.926 + }, + { + "start": 25435.08, + "end": 25435.99, + "probability": 0.953 + }, + { + "start": 25437.28, + "end": 25438.14, + "probability": 0.9741 + }, + { + "start": 25438.9, + "end": 25439.84, + "probability": 0.3466 + }, + { + "start": 25440.12, + "end": 25440.48, + "probability": 0.1635 + }, + { + "start": 25441.36, + "end": 25442.36, + "probability": 0.644 + }, + { + "start": 25442.62, + "end": 25445.44, + "probability": 0.5743 + }, + { + "start": 25449.25, + "end": 25452.72, + "probability": 0.7749 + }, + { + "start": 25460.06, + "end": 25462.14, + "probability": 0.4849 + }, + { + "start": 25462.54, + "end": 25465.52, + "probability": 0.4382 + }, + { + "start": 25480.52, + "end": 25481.18, + "probability": 0.009 + }, + { + "start": 25481.18, + "end": 25483.38, + "probability": 0.2428 + }, + { + "start": 25483.78, + "end": 25487.38, + "probability": 0.3652 + }, + { + "start": 25488.36, + "end": 25490.34, + "probability": 0.8716 + }, + { + "start": 25491.77, + "end": 25495.4, + "probability": 0.9877 + }, + { + "start": 25495.44, + "end": 25496.64, + "probability": 0.4445 + }, + { + "start": 25496.8, + "end": 25502.56, + "probability": 0.2955 + }, + { + "start": 25503.94, + "end": 25503.94, + "probability": 0.1005 + }, + { + "start": 25503.94, + "end": 25505.32, + "probability": 0.292 + }, + { + "start": 25512.08, + "end": 25512.08, + "probability": 0.2038 + }, + { + "start": 25512.08, + "end": 25513.6, + "probability": 0.729 + }, + { + "start": 25515.22, + "end": 25515.98, + "probability": 0.9741 + }, + { + "start": 25525.85, + "end": 25527.8, + "probability": 0.544 + }, + { + "start": 25528.0, + "end": 25529.22, + "probability": 0.6493 + }, + { + "start": 25530.52, + "end": 25534.04, + "probability": 0.8735 + }, + { + "start": 25535.0, + "end": 25540.06, + "probability": 0.9602 + }, + { + "start": 25542.94, + "end": 25545.66, + "probability": 0.9404 + }, + { + "start": 25547.42, + "end": 25549.4, + "probability": 0.9971 + }, + { + "start": 25549.5, + "end": 25550.8, + "probability": 0.5981 + }, + { + "start": 25553.97, + "end": 25557.99, + "probability": 0.5708 + }, + { + "start": 25559.46, + "end": 25564.24, + "probability": 0.9919 + }, + { + "start": 25564.74, + "end": 25566.28, + "probability": 0.9563 + }, + { + "start": 25568.6, + "end": 25574.06, + "probability": 0.9706 + }, + { + "start": 25576.02, + "end": 25577.7, + "probability": 0.7744 + }, + { + "start": 25578.86, + "end": 25581.8, + "probability": 0.5956 + }, + { + "start": 25582.72, + "end": 25585.0, + "probability": 0.9976 + }, + { + "start": 25586.26, + "end": 25586.5, + "probability": 0.5048 + }, + { + "start": 25586.58, + "end": 25589.54, + "probability": 0.9945 + }, + { + "start": 25589.54, + "end": 25593.22, + "probability": 0.7667 + }, + { + "start": 25593.32, + "end": 25594.36, + "probability": 0.9764 + }, + { + "start": 25594.56, + "end": 25595.48, + "probability": 0.4629 + }, + { + "start": 25595.48, + "end": 25595.9, + "probability": 0.4225 + }, + { + "start": 25596.24, + "end": 25600.08, + "probability": 0.7475 + }, + { + "start": 25600.7, + "end": 25601.52, + "probability": 0.1798 + }, + { + "start": 25601.52, + "end": 25602.15, + "probability": 0.3127 + }, + { + "start": 25602.18, + "end": 25603.54, + "probability": 0.3372 + }, + { + "start": 25603.54, + "end": 25604.12, + "probability": 0.8873 + }, + { + "start": 25604.8, + "end": 25605.84, + "probability": 0.8043 + }, + { + "start": 25606.74, + "end": 25608.98, + "probability": 0.9974 + }, + { + "start": 25609.76, + "end": 25610.16, + "probability": 0.5193 + }, + { + "start": 25610.52, + "end": 25611.1, + "probability": 0.9473 + }, + { + "start": 25611.2, + "end": 25612.4, + "probability": 0.957 + }, + { + "start": 25612.54, + "end": 25612.92, + "probability": 0.5125 + }, + { + "start": 25612.96, + "end": 25614.04, + "probability": 0.634 + }, + { + "start": 25614.76, + "end": 25616.56, + "probability": 0.9057 + }, + { + "start": 25617.12, + "end": 25619.2, + "probability": 0.7339 + }, + { + "start": 25621.16, + "end": 25622.32, + "probability": 0.9109 + }, + { + "start": 25623.86, + "end": 25624.78, + "probability": 0.7254 + }, + { + "start": 25625.21, + "end": 25628.4, + "probability": 0.9448 + }, + { + "start": 25628.4, + "end": 25630.02, + "probability": 0.5565 + }, + { + "start": 25630.08, + "end": 25630.58, + "probability": 0.7776 + }, + { + "start": 25630.68, + "end": 25633.67, + "probability": 0.8636 + }, + { + "start": 25635.12, + "end": 25639.26, + "probability": 0.8132 + }, + { + "start": 25639.76, + "end": 25641.86, + "probability": 0.989 + }, + { + "start": 25642.58, + "end": 25646.84, + "probability": 0.9685 + }, + { + "start": 25647.28, + "end": 25648.85, + "probability": 0.747 + }, + { + "start": 25649.76, + "end": 25651.76, + "probability": 0.6659 + }, + { + "start": 25652.26, + "end": 25654.24, + "probability": 0.7443 + }, + { + "start": 25654.9, + "end": 25656.44, + "probability": 0.97 + }, + { + "start": 25657.26, + "end": 25659.04, + "probability": 0.7286 + }, + { + "start": 25659.74, + "end": 25660.42, + "probability": 0.4555 + }, + { + "start": 25661.5, + "end": 25663.54, + "probability": 0.7106 + }, + { + "start": 25664.08, + "end": 25668.16, + "probability": 0.9583 + }, + { + "start": 25669.04, + "end": 25673.64, + "probability": 0.832 + }, + { + "start": 25674.06, + "end": 25675.5, + "probability": 0.9736 + }, + { + "start": 25675.98, + "end": 25679.72, + "probability": 0.6101 + }, + { + "start": 25680.46, + "end": 25681.58, + "probability": 0.8287 + }, + { + "start": 25681.62, + "end": 25683.76, + "probability": 0.9393 + }, + { + "start": 25685.05, + "end": 25688.86, + "probability": 0.6194 + }, + { + "start": 25689.74, + "end": 25693.88, + "probability": 0.9448 + }, + { + "start": 25694.44, + "end": 25695.9, + "probability": 0.9532 + }, + { + "start": 25696.74, + "end": 25698.24, + "probability": 0.9153 + }, + { + "start": 25699.24, + "end": 25703.5, + "probability": 0.5573 + }, + { + "start": 25703.5, + "end": 25706.74, + "probability": 0.4958 + }, + { + "start": 25707.32, + "end": 25711.62, + "probability": 0.8706 + }, + { + "start": 25712.64, + "end": 25716.24, + "probability": 0.8997 + }, + { + "start": 25718.47, + "end": 25724.4, + "probability": 0.7979 + }, + { + "start": 25726.8, + "end": 25727.48, + "probability": 0.8072 + }, + { + "start": 25727.54, + "end": 25730.92, + "probability": 0.515 + }, + { + "start": 25731.1, + "end": 25731.64, + "probability": 0.1681 + }, + { + "start": 25732.82, + "end": 25734.86, + "probability": 0.9951 + }, + { + "start": 25735.24, + "end": 25736.18, + "probability": 0.9849 + }, + { + "start": 25736.7, + "end": 25740.98, + "probability": 0.972 + }, + { + "start": 25742.27, + "end": 25745.12, + "probability": 0.7282 + }, + { + "start": 25746.76, + "end": 25746.86, + "probability": 0.0323 + }, + { + "start": 25748.12, + "end": 25752.96, + "probability": 0.8488 + }, + { + "start": 25753.32, + "end": 25755.08, + "probability": 0.9907 + }, + { + "start": 25755.58, + "end": 25755.86, + "probability": 0.687 + }, + { + "start": 25756.24, + "end": 25757.1, + "probability": 0.6456 + }, + { + "start": 25757.78, + "end": 25760.0, + "probability": 0.642 + }, + { + "start": 25760.62, + "end": 25762.86, + "probability": 0.7783 + }, + { + "start": 25763.0, + "end": 25765.08, + "probability": 0.9464 + }, + { + "start": 25765.14, + "end": 25766.08, + "probability": 0.8077 + }, + { + "start": 25767.52, + "end": 25768.02, + "probability": 0.227 + }, + { + "start": 25768.2, + "end": 25773.3, + "probability": 0.9602 + }, + { + "start": 25773.48, + "end": 25775.1, + "probability": 0.8606 + }, + { + "start": 25775.74, + "end": 25777.54, + "probability": 0.9128 + }, + { + "start": 25778.18, + "end": 25780.92, + "probability": 0.9612 + }, + { + "start": 25781.2, + "end": 25781.83, + "probability": 0.3797 + }, + { + "start": 25782.04, + "end": 25784.02, + "probability": 0.746 + }, + { + "start": 25784.02, + "end": 25786.86, + "probability": 0.4411 + }, + { + "start": 25787.06, + "end": 25789.44, + "probability": 0.8236 + }, + { + "start": 25789.5, + "end": 25795.9, + "probability": 0.5867 + }, + { + "start": 25796.12, + "end": 25796.16, + "probability": 0.0675 + }, + { + "start": 25797.2, + "end": 25797.68, + "probability": 0.0141 + }, + { + "start": 25797.68, + "end": 25797.7, + "probability": 0.1546 + }, + { + "start": 25797.7, + "end": 25797.7, + "probability": 0.023 + }, + { + "start": 25797.7, + "end": 25797.7, + "probability": 0.0621 + }, + { + "start": 25797.7, + "end": 25797.7, + "probability": 0.0488 + }, + { + "start": 25797.7, + "end": 25800.22, + "probability": 0.5419 + }, + { + "start": 25800.92, + "end": 25804.32, + "probability": 0.8167 + }, + { + "start": 25804.8, + "end": 25808.56, + "probability": 0.9575 + }, + { + "start": 25809.14, + "end": 25810.0, + "probability": 0.9491 + }, + { + "start": 25810.4, + "end": 25814.28, + "probability": 0.9348 + }, + { + "start": 25814.96, + "end": 25820.14, + "probability": 0.899 + }, + { + "start": 25820.56, + "end": 25824.24, + "probability": 0.9793 + }, + { + "start": 25824.24, + "end": 25828.74, + "probability": 0.9982 + }, + { + "start": 25829.46, + "end": 25833.26, + "probability": 0.934 + }, + { + "start": 25833.62, + "end": 25836.0, + "probability": 0.968 + }, + { + "start": 25837.14, + "end": 25838.8, + "probability": 0.8333 + }, + { + "start": 25838.8, + "end": 25839.7, + "probability": 0.6912 + }, + { + "start": 25840.16, + "end": 25841.4, + "probability": 0.696 + }, + { + "start": 25842.06, + "end": 25842.82, + "probability": 0.7826 + }, + { + "start": 25843.16, + "end": 25846.06, + "probability": 0.9001 + }, + { + "start": 25846.22, + "end": 25848.3, + "probability": 0.9683 + }, + { + "start": 25848.44, + "end": 25849.38, + "probability": 0.8938 + }, + { + "start": 25849.44, + "end": 25850.54, + "probability": 0.978 + }, + { + "start": 25851.02, + "end": 25852.84, + "probability": 0.9906 + }, + { + "start": 25853.26, + "end": 25856.18, + "probability": 0.6894 + }, + { + "start": 25856.32, + "end": 25859.14, + "probability": 0.9893 + }, + { + "start": 25859.3, + "end": 25863.54, + "probability": 0.943 + }, + { + "start": 25863.62, + "end": 25865.5, + "probability": 0.9737 + }, + { + "start": 25866.14, + "end": 25868.54, + "probability": 0.9358 + }, + { + "start": 25868.92, + "end": 25870.5, + "probability": 0.9276 + }, + { + "start": 25870.84, + "end": 25872.96, + "probability": 0.979 + }, + { + "start": 25873.28, + "end": 25874.66, + "probability": 0.9651 + }, + { + "start": 25874.88, + "end": 25877.34, + "probability": 0.9717 + }, + { + "start": 25877.7, + "end": 25880.36, + "probability": 0.9237 + }, + { + "start": 25880.74, + "end": 25882.46, + "probability": 0.9341 + }, + { + "start": 25882.58, + "end": 25885.32, + "probability": 0.7585 + }, + { + "start": 25886.54, + "end": 25887.78, + "probability": 0.8066 + }, + { + "start": 25887.9, + "end": 25888.58, + "probability": 0.8543 + }, + { + "start": 25888.66, + "end": 25889.46, + "probability": 0.9639 + }, + { + "start": 25889.7, + "end": 25893.83, + "probability": 0.9636 + }, + { + "start": 25894.36, + "end": 25896.2, + "probability": 0.7245 + }, + { + "start": 25896.6, + "end": 25899.24, + "probability": 0.9412 + }, + { + "start": 25899.86, + "end": 25900.94, + "probability": 0.9412 + }, + { + "start": 25901.04, + "end": 25901.54, + "probability": 0.8 + }, + { + "start": 25902.12, + "end": 25904.9, + "probability": 0.9502 + }, + { + "start": 25906.12, + "end": 25908.3, + "probability": 0.4464 + }, + { + "start": 25909.0, + "end": 25910.08, + "probability": 0.8359 + }, + { + "start": 25910.32, + "end": 25911.56, + "probability": 0.4588 + }, + { + "start": 25911.9, + "end": 25912.48, + "probability": 0.9118 + }, + { + "start": 25912.58, + "end": 25915.94, + "probability": 0.9709 + }, + { + "start": 25916.56, + "end": 25917.3, + "probability": 0.9233 + }, + { + "start": 25917.38, + "end": 25919.54, + "probability": 0.9145 + }, + { + "start": 25920.14, + "end": 25923.54, + "probability": 0.6278 + }, + { + "start": 25923.72, + "end": 25927.76, + "probability": 0.7347 + }, + { + "start": 25927.76, + "end": 25928.44, + "probability": 0.6189 + }, + { + "start": 25928.92, + "end": 25932.96, + "probability": 0.4747 + }, + { + "start": 25933.02, + "end": 25934.4, + "probability": 0.9424 + }, + { + "start": 25935.14, + "end": 25937.52, + "probability": 0.9663 + }, + { + "start": 25937.56, + "end": 25941.6, + "probability": 0.9865 + }, + { + "start": 25941.68, + "end": 25942.62, + "probability": 0.6245 + }, + { + "start": 25942.68, + "end": 25942.98, + "probability": 0.8207 + }, + { + "start": 25943.12, + "end": 25948.0, + "probability": 0.9348 + }, + { + "start": 25948.24, + "end": 25951.5, + "probability": 0.8198 + }, + { + "start": 25951.68, + "end": 25953.1, + "probability": 0.9419 + }, + { + "start": 25953.32, + "end": 25954.12, + "probability": 0.7542 + }, + { + "start": 25954.24, + "end": 25954.92, + "probability": 0.7993 + }, + { + "start": 25955.04, + "end": 25958.6, + "probability": 0.9292 + }, + { + "start": 25958.66, + "end": 25960.4, + "probability": 0.4151 + }, + { + "start": 25960.56, + "end": 25961.12, + "probability": 0.55 + }, + { + "start": 25961.18, + "end": 25963.42, + "probability": 0.6847 + }, + { + "start": 25963.5, + "end": 25964.32, + "probability": 0.5537 + }, + { + "start": 25964.76, + "end": 25966.24, + "probability": 0.576 + }, + { + "start": 25967.24, + "end": 25969.66, + "probability": 0.8851 + }, + { + "start": 25971.6, + "end": 25976.18, + "probability": 0.7681 + }, + { + "start": 25976.26, + "end": 25977.4, + "probability": 0.8775 + }, + { + "start": 25978.18, + "end": 25982.86, + "probability": 0.8369 + }, + { + "start": 25983.36, + "end": 25988.48, + "probability": 0.9467 + }, + { + "start": 25988.6, + "end": 25989.56, + "probability": 0.8159 + }, + { + "start": 25990.0, + "end": 25991.54, + "probability": 0.8158 + }, + { + "start": 25991.86, + "end": 25993.85, + "probability": 0.9434 + }, + { + "start": 25994.18, + "end": 25994.76, + "probability": 0.8647 + }, + { + "start": 25995.16, + "end": 25995.66, + "probability": 0.5038 + }, + { + "start": 25996.04, + "end": 25996.34, + "probability": 0.644 + }, + { + "start": 25996.38, + "end": 25996.68, + "probability": 0.2169 + }, + { + "start": 25996.68, + "end": 26001.86, + "probability": 0.9513 + }, + { + "start": 26002.16, + "end": 26003.46, + "probability": 0.5598 + }, + { + "start": 26003.74, + "end": 26007.04, + "probability": 0.9561 + }, + { + "start": 26007.18, + "end": 26008.93, + "probability": 0.8895 + }, + { + "start": 26009.68, + "end": 26011.5, + "probability": 0.8087 + }, + { + "start": 26012.22, + "end": 26013.5, + "probability": 0.9266 + }, + { + "start": 26013.56, + "end": 26014.5, + "probability": 0.9573 + }, + { + "start": 26014.68, + "end": 26017.53, + "probability": 0.9559 + }, + { + "start": 26017.74, + "end": 26019.72, + "probability": 0.9851 + }, + { + "start": 26019.88, + "end": 26021.24, + "probability": 0.9946 + }, + { + "start": 26021.36, + "end": 26024.04, + "probability": 0.9956 + }, + { + "start": 26024.04, + "end": 26026.86, + "probability": 0.9819 + }, + { + "start": 26027.2, + "end": 26031.12, + "probability": 0.9524 + }, + { + "start": 26031.38, + "end": 26034.14, + "probability": 0.9678 + }, + { + "start": 26034.52, + "end": 26036.74, + "probability": 0.7621 + }, + { + "start": 26037.28, + "end": 26039.46, + "probability": 0.7749 + }, + { + "start": 26039.46, + "end": 26043.54, + "probability": 0.993 + }, + { + "start": 26043.64, + "end": 26043.76, + "probability": 0.5705 + }, + { + "start": 26044.32, + "end": 26044.68, + "probability": 0.1115 + }, + { + "start": 26044.68, + "end": 26045.42, + "probability": 0.5686 + }, + { + "start": 26045.48, + "end": 26046.38, + "probability": 0.8114 + }, + { + "start": 26046.48, + "end": 26047.44, + "probability": 0.7234 + }, + { + "start": 26047.64, + "end": 26048.92, + "probability": 0.9621 + }, + { + "start": 26049.84, + "end": 26056.08, + "probability": 0.9219 + }, + { + "start": 26056.72, + "end": 26056.72, + "probability": 0.279 + }, + { + "start": 26056.72, + "end": 26056.72, + "probability": 0.4463 + }, + { + "start": 26056.72, + "end": 26057.14, + "probability": 0.3265 + }, + { + "start": 26057.3, + "end": 26058.6, + "probability": 0.8573 + }, + { + "start": 26058.66, + "end": 26059.29, + "probability": 0.8162 + }, + { + "start": 26060.78, + "end": 26062.2, + "probability": 0.9768 + }, + { + "start": 26063.08, + "end": 26063.88, + "probability": 0.7134 + }, + { + "start": 26063.96, + "end": 26065.26, + "probability": 0.8761 + }, + { + "start": 26065.54, + "end": 26069.88, + "probability": 0.9512 + }, + { + "start": 26070.06, + "end": 26070.99, + "probability": 0.4528 + }, + { + "start": 26071.18, + "end": 26074.16, + "probability": 0.629 + }, + { + "start": 26074.32, + "end": 26074.5, + "probability": 0.192 + }, + { + "start": 26074.56, + "end": 26075.46, + "probability": 0.7565 + }, + { + "start": 26075.72, + "end": 26078.48, + "probability": 0.8957 + }, + { + "start": 26079.4, + "end": 26079.92, + "probability": 0.1012 + }, + { + "start": 26079.94, + "end": 26080.08, + "probability": 0.0362 + }, + { + "start": 26080.08, + "end": 26080.08, + "probability": 0.2639 + }, + { + "start": 26080.08, + "end": 26080.92, + "probability": 0.7618 + }, + { + "start": 26081.18, + "end": 26082.65, + "probability": 0.7002 + }, + { + "start": 26083.62, + "end": 26088.82, + "probability": 0.5239 + }, + { + "start": 26089.1, + "end": 26090.38, + "probability": 0.6718 + }, + { + "start": 26091.84, + "end": 26094.38, + "probability": 0.8604 + }, + { + "start": 26095.65, + "end": 26098.62, + "probability": 0.3184 + }, + { + "start": 26098.8, + "end": 26100.1, + "probability": 0.7327 + }, + { + "start": 26100.28, + "end": 26101.62, + "probability": 0.2042 + }, + { + "start": 26101.8, + "end": 26102.34, + "probability": 0.3883 + }, + { + "start": 26103.96, + "end": 26106.94, + "probability": 0.6937 + }, + { + "start": 26110.84, + "end": 26114.0, + "probability": 0.3326 + }, + { + "start": 26114.64, + "end": 26116.28, + "probability": 0.6601 + }, + { + "start": 26116.5, + "end": 26117.84, + "probability": 0.8546 + }, + { + "start": 26117.98, + "end": 26120.14, + "probability": 0.6674 + }, + { + "start": 26120.38, + "end": 26125.56, + "probability": 0.8838 + }, + { + "start": 26126.12, + "end": 26130.0, + "probability": 0.7708 + }, + { + "start": 26130.36, + "end": 26132.12, + "probability": 0.2142 + }, + { + "start": 26132.12, + "end": 26134.64, + "probability": 0.4079 + }, + { + "start": 26135.14, + "end": 26135.98, + "probability": 0.1825 + }, + { + "start": 26135.98, + "end": 26135.98, + "probability": 0.6225 + }, + { + "start": 26135.98, + "end": 26139.12, + "probability": 0.6748 + }, + { + "start": 26140.25, + "end": 26141.42, + "probability": 0.2242 + }, + { + "start": 26141.58, + "end": 26143.5, + "probability": 0.0823 + }, + { + "start": 26143.64, + "end": 26145.94, + "probability": 0.8459 + }, + { + "start": 26146.44, + "end": 26149.56, + "probability": 0.9255 + }, + { + "start": 26150.24, + "end": 26152.48, + "probability": 0.9683 + }, + { + "start": 26152.58, + "end": 26153.8, + "probability": 0.6409 + }, + { + "start": 26155.2, + "end": 26156.14, + "probability": 0.9585 + }, + { + "start": 26156.14, + "end": 26157.0, + "probability": 0.6929 + }, + { + "start": 26157.12, + "end": 26159.5, + "probability": 0.9763 + }, + { + "start": 26160.54, + "end": 26161.52, + "probability": 0.9458 + }, + { + "start": 26161.68, + "end": 26163.62, + "probability": 0.9976 + }, + { + "start": 26165.04, + "end": 26165.64, + "probability": 0.7572 + }, + { + "start": 26166.26, + "end": 26167.62, + "probability": 0.9937 + }, + { + "start": 26168.0, + "end": 26169.96, + "probability": 0.9092 + }, + { + "start": 26170.02, + "end": 26171.2, + "probability": 0.7523 + }, + { + "start": 26172.06, + "end": 26175.36, + "probability": 0.965 + }, + { + "start": 26175.5, + "end": 26175.84, + "probability": 0.8309 + }, + { + "start": 26176.94, + "end": 26179.48, + "probability": 0.9577 + }, + { + "start": 26180.32, + "end": 26185.72, + "probability": 0.9543 + }, + { + "start": 26185.86, + "end": 26186.86, + "probability": 0.9852 + }, + { + "start": 26186.96, + "end": 26189.5, + "probability": 0.9523 + }, + { + "start": 26189.88, + "end": 26190.38, + "probability": 0.7288 + }, + { + "start": 26190.44, + "end": 26193.96, + "probability": 0.9289 + }, + { + "start": 26194.08, + "end": 26195.68, + "probability": 0.8799 + }, + { + "start": 26196.16, + "end": 26197.16, + "probability": 0.95 + }, + { + "start": 26197.22, + "end": 26200.84, + "probability": 0.9902 + }, + { + "start": 26200.9, + "end": 26201.88, + "probability": 0.8621 + }, + { + "start": 26202.04, + "end": 26202.54, + "probability": 0.6851 + }, + { + "start": 26202.6, + "end": 26203.82, + "probability": 0.772 + }, + { + "start": 26204.08, + "end": 26205.58, + "probability": 0.9234 + }, + { + "start": 26206.14, + "end": 26212.88, + "probability": 0.1407 + }, + { + "start": 26212.88, + "end": 26212.88, + "probability": 0.0037 + }, + { + "start": 26212.88, + "end": 26212.88, + "probability": 0.0626 + }, + { + "start": 26212.88, + "end": 26212.88, + "probability": 0.0872 + }, + { + "start": 26212.88, + "end": 26213.38, + "probability": 0.19 + }, + { + "start": 26213.38, + "end": 26215.66, + "probability": 0.8004 + }, + { + "start": 26216.41, + "end": 26218.18, + "probability": 0.8958 + }, + { + "start": 26218.42, + "end": 26219.76, + "probability": 0.8315 + }, + { + "start": 26220.76, + "end": 26221.62, + "probability": 0.877 + }, + { + "start": 26221.92, + "end": 26225.46, + "probability": 0.9845 + }, + { + "start": 26226.36, + "end": 26227.96, + "probability": 0.9984 + }, + { + "start": 26228.52, + "end": 26233.46, + "probability": 0.966 + }, + { + "start": 26233.46, + "end": 26237.34, + "probability": 0.9984 + }, + { + "start": 26237.6, + "end": 26238.76, + "probability": 0.7483 + }, + { + "start": 26239.18, + "end": 26241.72, + "probability": 0.8 + }, + { + "start": 26242.18, + "end": 26244.22, + "probability": 0.7004 + }, + { + "start": 26244.3, + "end": 26246.48, + "probability": 0.8873 + }, + { + "start": 26246.7, + "end": 26248.1, + "probability": 0.8938 + }, + { + "start": 26248.36, + "end": 26249.22, + "probability": 0.4464 + }, + { + "start": 26249.38, + "end": 26249.9, + "probability": 0.5503 + }, + { + "start": 26249.94, + "end": 26250.62, + "probability": 0.473 + }, + { + "start": 26250.8, + "end": 26253.74, + "probability": 0.8855 + }, + { + "start": 26253.74, + "end": 26259.48, + "probability": 0.5098 + }, + { + "start": 26259.9, + "end": 26262.06, + "probability": 0.8939 + }, + { + "start": 26262.36, + "end": 26262.72, + "probability": 0.596 + }, + { + "start": 26262.78, + "end": 26264.95, + "probability": 0.952 + }, + { + "start": 26265.48, + "end": 26269.98, + "probability": 0.9717 + }, + { + "start": 26270.14, + "end": 26271.2, + "probability": 0.9795 + }, + { + "start": 26271.74, + "end": 26273.92, + "probability": 0.9456 + }, + { + "start": 26274.12, + "end": 26274.9, + "probability": 0.6893 + }, + { + "start": 26275.12, + "end": 26279.26, + "probability": 0.989 + }, + { + "start": 26279.7, + "end": 26281.42, + "probability": 0.8066 + }, + { + "start": 26282.5, + "end": 26283.54, + "probability": 0.8693 + }, + { + "start": 26283.54, + "end": 26287.5, + "probability": 0.9032 + }, + { + "start": 26288.12, + "end": 26290.62, + "probability": 0.5167 + }, + { + "start": 26291.34, + "end": 26291.54, + "probability": 0.6063 + }, + { + "start": 26291.76, + "end": 26292.58, + "probability": 0.9091 + }, + { + "start": 26292.82, + "end": 26293.58, + "probability": 0.9099 + }, + { + "start": 26293.68, + "end": 26295.57, + "probability": 0.4434 + }, + { + "start": 26295.78, + "end": 26296.85, + "probability": 0.7922 + }, + { + "start": 26297.92, + "end": 26298.7, + "probability": 0.9443 + }, + { + "start": 26298.86, + "end": 26302.64, + "probability": 0.6827 + }, + { + "start": 26302.66, + "end": 26303.24, + "probability": 0.6112 + }, + { + "start": 26303.34, + "end": 26306.58, + "probability": 0.3687 + }, + { + "start": 26306.68, + "end": 26309.56, + "probability": 0.6033 + }, + { + "start": 26309.74, + "end": 26310.8, + "probability": 0.6562 + }, + { + "start": 26310.94, + "end": 26311.34, + "probability": 0.537 + }, + { + "start": 26311.38, + "end": 26312.38, + "probability": 0.8031 + }, + { + "start": 26312.62, + "end": 26315.27, + "probability": 0.9914 + }, + { + "start": 26316.74, + "end": 26320.58, + "probability": 0.9017 + }, + { + "start": 26321.92, + "end": 26321.92, + "probability": 0.1186 + }, + { + "start": 26321.92, + "end": 26323.55, + "probability": 0.8355 + }, + { + "start": 26324.08, + "end": 26325.44, + "probability": 0.7201 + }, + { + "start": 26325.5, + "end": 26329.62, + "probability": 0.8439 + }, + { + "start": 26330.12, + "end": 26330.78, + "probability": 0.6472 + }, + { + "start": 26330.88, + "end": 26332.56, + "probability": 0.9111 + }, + { + "start": 26333.18, + "end": 26334.44, + "probability": 0.9097 + }, + { + "start": 26335.0, + "end": 26335.18, + "probability": 0.2839 + }, + { + "start": 26335.26, + "end": 26336.36, + "probability": 0.9233 + }, + { + "start": 26336.4, + "end": 26337.18, + "probability": 0.8027 + }, + { + "start": 26337.22, + "end": 26338.54, + "probability": 0.844 + }, + { + "start": 26338.9, + "end": 26344.7, + "probability": 0.957 + }, + { + "start": 26344.8, + "end": 26345.86, + "probability": 0.4985 + }, + { + "start": 26346.12, + "end": 26346.74, + "probability": 0.7478 + }, + { + "start": 26347.0, + "end": 26348.74, + "probability": 0.7826 + }, + { + "start": 26348.78, + "end": 26353.74, + "probability": 0.7151 + }, + { + "start": 26353.74, + "end": 26355.0, + "probability": 0.1475 + }, + { + "start": 26355.34, + "end": 26356.32, + "probability": 0.5985 + }, + { + "start": 26357.04, + "end": 26359.32, + "probability": 0.3007 + }, + { + "start": 26359.72, + "end": 26361.28, + "probability": 0.0768 + }, + { + "start": 26361.36, + "end": 26364.44, + "probability": 0.0634 + }, + { + "start": 26364.52, + "end": 26365.16, + "probability": 0.1317 + }, + { + "start": 26365.56, + "end": 26365.56, + "probability": 0.0507 + }, + { + "start": 26365.56, + "end": 26365.56, + "probability": 0.0796 + }, + { + "start": 26365.56, + "end": 26368.34, + "probability": 0.8762 + }, + { + "start": 26368.48, + "end": 26368.72, + "probability": 0.6679 + }, + { + "start": 26368.84, + "end": 26372.22, + "probability": 0.8843 + }, + { + "start": 26372.52, + "end": 26377.3, + "probability": 0.8948 + }, + { + "start": 26377.46, + "end": 26378.6, + "probability": 0.9631 + }, + { + "start": 26378.62, + "end": 26379.78, + "probability": 0.8049 + }, + { + "start": 26379.98, + "end": 26381.0, + "probability": 0.3967 + }, + { + "start": 26381.04, + "end": 26381.32, + "probability": 0.3604 + }, + { + "start": 26381.32, + "end": 26381.95, + "probability": 0.9202 + }, + { + "start": 26382.6, + "end": 26383.84, + "probability": 0.7893 + }, + { + "start": 26383.96, + "end": 26384.92, + "probability": 0.7396 + }, + { + "start": 26385.0, + "end": 26385.74, + "probability": 0.4158 + }, + { + "start": 26386.28, + "end": 26388.68, + "probability": 0.1263 + }, + { + "start": 26389.96, + "end": 26395.12, + "probability": 0.8956 + }, + { + "start": 26395.48, + "end": 26395.84, + "probability": 0.3181 + }, + { + "start": 26395.84, + "end": 26397.08, + "probability": 0.2094 + }, + { + "start": 26397.18, + "end": 26398.4, + "probability": 0.4006 + }, + { + "start": 26398.4, + "end": 26405.24, + "probability": 0.7495 + }, + { + "start": 26406.36, + "end": 26408.54, + "probability": 0.7705 + }, + { + "start": 26408.56, + "end": 26409.86, + "probability": 0.1727 + }, + { + "start": 26410.04, + "end": 26410.04, + "probability": 0.3291 + }, + { + "start": 26410.04, + "end": 26413.56, + "probability": 0.4047 + }, + { + "start": 26414.32, + "end": 26418.84, + "probability": 0.6656 + }, + { + "start": 26418.96, + "end": 26423.16, + "probability": 0.7866 + }, + { + "start": 26423.26, + "end": 26424.7, + "probability": 0.4495 + }, + { + "start": 26424.8, + "end": 26425.28, + "probability": 0.6318 + }, + { + "start": 26426.32, + "end": 26427.42, + "probability": 0.9287 + }, + { + "start": 26427.86, + "end": 26429.12, + "probability": 0.5073 + }, + { + "start": 26429.32, + "end": 26430.12, + "probability": 0.6179 + }, + { + "start": 26430.2, + "end": 26430.75, + "probability": 0.5662 + }, + { + "start": 26431.84, + "end": 26433.18, + "probability": 0.5669 + }, + { + "start": 26433.24, + "end": 26434.2, + "probability": 0.6422 + }, + { + "start": 26434.2, + "end": 26435.43, + "probability": 0.5067 + }, + { + "start": 26435.74, + "end": 26436.72, + "probability": 0.6755 + }, + { + "start": 26437.22, + "end": 26438.12, + "probability": 0.7051 + }, + { + "start": 26438.22, + "end": 26438.96, + "probability": 0.059 + }, + { + "start": 26438.96, + "end": 26441.36, + "probability": 0.2152 + }, + { + "start": 26441.98, + "end": 26442.23, + "probability": 0.0611 + }, + { + "start": 26443.62, + "end": 26444.74, + "probability": 0.3187 + }, + { + "start": 26445.34, + "end": 26448.26, + "probability": 0.4559 + }, + { + "start": 26448.84, + "end": 26448.96, + "probability": 0.0147 + }, + { + "start": 26448.96, + "end": 26448.96, + "probability": 0.1708 + }, + { + "start": 26448.96, + "end": 26448.96, + "probability": 0.6138 + }, + { + "start": 26448.96, + "end": 26448.96, + "probability": 0.7583 + }, + { + "start": 26448.96, + "end": 26450.7, + "probability": 0.0488 + }, + { + "start": 26450.82, + "end": 26451.0, + "probability": 0.3639 + }, + { + "start": 26451.06, + "end": 26452.06, + "probability": 0.4385 + }, + { + "start": 26452.08, + "end": 26452.78, + "probability": 0.3418 + }, + { + "start": 26452.9, + "end": 26454.4, + "probability": 0.5594 + }, + { + "start": 26454.54, + "end": 26456.94, + "probability": 0.1593 + }, + { + "start": 26457.04, + "end": 26457.12, + "probability": 0.1836 + }, + { + "start": 26457.12, + "end": 26457.12, + "probability": 0.1016 + }, + { + "start": 26457.12, + "end": 26458.15, + "probability": 0.2994 + }, + { + "start": 26458.34, + "end": 26463.02, + "probability": 0.6778 + }, + { + "start": 26463.2, + "end": 26464.15, + "probability": 0.3909 + }, + { + "start": 26464.4, + "end": 26464.72, + "probability": 0.7534 + }, + { + "start": 26465.74, + "end": 26466.3, + "probability": 0.9023 + }, + { + "start": 26466.42, + "end": 26466.44, + "probability": 0.0104 + }, + { + "start": 26466.44, + "end": 26467.36, + "probability": 0.7626 + }, + { + "start": 26467.76, + "end": 26470.26, + "probability": 0.3722 + }, + { + "start": 26470.42, + "end": 26474.06, + "probability": 0.8442 + }, + { + "start": 26474.1, + "end": 26475.0, + "probability": 0.8137 + }, + { + "start": 26475.24, + "end": 26479.7, + "probability": 0.7867 + }, + { + "start": 26480.2, + "end": 26481.48, + "probability": 0.5132 + }, + { + "start": 26481.5, + "end": 26482.3, + "probability": 0.3416 + }, + { + "start": 26482.3, + "end": 26484.76, + "probability": 0.4332 + }, + { + "start": 26485.02, + "end": 26487.7, + "probability": 0.7901 + }, + { + "start": 26489.04, + "end": 26490.1, + "probability": 0.7707 + }, + { + "start": 26490.1, + "end": 26491.28, + "probability": 0.61 + }, + { + "start": 26492.31, + "end": 26495.28, + "probability": 0.7454 + }, + { + "start": 26495.44, + "end": 26496.34, + "probability": 0.6032 + }, + { + "start": 26496.46, + "end": 26497.82, + "probability": 0.3133 + }, + { + "start": 26498.44, + "end": 26499.35, + "probability": 0.6462 + }, + { + "start": 26499.64, + "end": 26501.86, + "probability": 0.538 + }, + { + "start": 26502.22, + "end": 26505.12, + "probability": 0.6333 + }, + { + "start": 26505.6, + "end": 26506.64, + "probability": 0.1683 + }, + { + "start": 26506.64, + "end": 26508.44, + "probability": 0.3557 + }, + { + "start": 26508.52, + "end": 26508.52, + "probability": 0.2491 + }, + { + "start": 26508.86, + "end": 26509.28, + "probability": 0.5233 + }, + { + "start": 26509.54, + "end": 26509.54, + "probability": 0.1799 + }, + { + "start": 26509.54, + "end": 26509.54, + "probability": 0.0214 + }, + { + "start": 26509.54, + "end": 26509.9, + "probability": 0.3935 + }, + { + "start": 26509.9, + "end": 26510.73, + "probability": 0.477 + }, + { + "start": 26510.84, + "end": 26512.3, + "probability": 0.7786 + }, + { + "start": 26512.38, + "end": 26513.08, + "probability": 0.3909 + }, + { + "start": 26513.08, + "end": 26513.58, + "probability": 0.2633 + }, + { + "start": 26513.74, + "end": 26514.1, + "probability": 0.8608 + }, + { + "start": 26514.94, + "end": 26514.98, + "probability": 0.0034 + }, + { + "start": 26514.98, + "end": 26515.96, + "probability": 0.7507 + }, + { + "start": 26516.16, + "end": 26517.8, + "probability": 0.9673 + }, + { + "start": 26517.82, + "end": 26519.46, + "probability": 0.5244 + }, + { + "start": 26519.56, + "end": 26520.9, + "probability": 0.5572 + }, + { + "start": 26520.9, + "end": 26521.86, + "probability": 0.2498 + }, + { + "start": 26521.92, + "end": 26526.84, + "probability": 0.7933 + }, + { + "start": 26527.18, + "end": 26527.18, + "probability": 0.0801 + }, + { + "start": 26527.18, + "end": 26529.02, + "probability": 0.721 + }, + { + "start": 26529.12, + "end": 26529.68, + "probability": 0.8907 + }, + { + "start": 26529.82, + "end": 26531.44, + "probability": 0.4411 + }, + { + "start": 26531.58, + "end": 26532.0, + "probability": 0.0871 + }, + { + "start": 26532.0, + "end": 26532.86, + "probability": 0.529 + }, + { + "start": 26532.86, + "end": 26534.42, + "probability": 0.4688 + }, + { + "start": 26535.54, + "end": 26535.54, + "probability": 0.0386 + }, + { + "start": 26535.54, + "end": 26536.46, + "probability": 0.7788 + }, + { + "start": 26536.66, + "end": 26538.52, + "probability": 0.2024 + }, + { + "start": 26539.74, + "end": 26541.74, + "probability": 0.7496 + }, + { + "start": 26541.74, + "end": 26542.05, + "probability": 0.1648 + }, + { + "start": 26542.68, + "end": 26545.74, + "probability": 0.0613 + }, + { + "start": 26546.36, + "end": 26547.7, + "probability": 0.0967 + }, + { + "start": 26547.78, + "end": 26547.88, + "probability": 0.1056 + }, + { + "start": 26547.88, + "end": 26548.16, + "probability": 0.0764 + }, + { + "start": 26548.16, + "end": 26548.44, + "probability": 0.3509 + }, + { + "start": 26548.96, + "end": 26551.22, + "probability": 0.6125 + }, + { + "start": 26551.24, + "end": 26553.68, + "probability": 0.7608 + }, + { + "start": 26553.7, + "end": 26554.82, + "probability": 0.8079 + }, + { + "start": 26554.9, + "end": 26555.86, + "probability": 0.6763 + }, + { + "start": 26555.94, + "end": 26557.0, + "probability": 0.2316 + }, + { + "start": 26557.2, + "end": 26559.52, + "probability": 0.7636 + }, + { + "start": 26559.64, + "end": 26559.88, + "probability": 0.4444 + }, + { + "start": 26559.92, + "end": 26561.08, + "probability": 0.2334 + }, + { + "start": 26561.14, + "end": 26562.91, + "probability": 0.9324 + }, + { + "start": 26563.22, + "end": 26564.56, + "probability": 0.9875 + }, + { + "start": 26564.64, + "end": 26565.7, + "probability": 0.7271 + }, + { + "start": 26565.92, + "end": 26566.43, + "probability": 0.8794 + }, + { + "start": 26566.9, + "end": 26569.28, + "probability": 0.8345 + }, + { + "start": 26570.86, + "end": 26572.84, + "probability": 0.4862 + }, + { + "start": 26572.84, + "end": 26575.36, + "probability": 0.4914 + }, + { + "start": 26575.38, + "end": 26575.46, + "probability": 0.2788 + }, + { + "start": 26575.46, + "end": 26576.72, + "probability": 0.6318 + }, + { + "start": 26576.98, + "end": 26579.22, + "probability": 0.5962 + }, + { + "start": 26579.54, + "end": 26580.86, + "probability": 0.8571 + }, + { + "start": 26581.0, + "end": 26584.32, + "probability": 0.9893 + }, + { + "start": 26584.42, + "end": 26587.32, + "probability": 0.3201 + }, + { + "start": 26587.32, + "end": 26587.32, + "probability": 0.5882 + }, + { + "start": 26587.32, + "end": 26590.24, + "probability": 0.7308 + }, + { + "start": 26590.34, + "end": 26591.56, + "probability": 0.7263 + }, + { + "start": 26591.56, + "end": 26594.45, + "probability": 0.5347 + }, + { + "start": 26594.46, + "end": 26595.86, + "probability": 0.5569 + }, + { + "start": 26596.04, + "end": 26596.86, + "probability": 0.4658 + }, + { + "start": 26596.86, + "end": 26598.16, + "probability": 0.8232 + }, + { + "start": 26598.7, + "end": 26600.62, + "probability": 0.6934 + }, + { + "start": 26600.72, + "end": 26600.94, + "probability": 0.6565 + }, + { + "start": 26601.02, + "end": 26601.66, + "probability": 0.196 + }, + { + "start": 26601.84, + "end": 26603.58, + "probability": 0.5698 + }, + { + "start": 26603.66, + "end": 26604.05, + "probability": 0.876 + }, + { + "start": 26604.16, + "end": 26607.68, + "probability": 0.8228 + }, + { + "start": 26608.36, + "end": 26610.34, + "probability": 0.9758 + }, + { + "start": 26610.34, + "end": 26613.22, + "probability": 0.5256 + }, + { + "start": 26613.26, + "end": 26617.94, + "probability": 0.741 + }, + { + "start": 26618.78, + "end": 26623.64, + "probability": 0.7656 + }, + { + "start": 26623.64, + "end": 26625.92, + "probability": 0.5109 + }, + { + "start": 26626.52, + "end": 26627.16, + "probability": 0.0281 + }, + { + "start": 26627.8, + "end": 26628.02, + "probability": 0.0554 + }, + { + "start": 26628.02, + "end": 26629.34, + "probability": 0.544 + }, + { + "start": 26629.5, + "end": 26630.04, + "probability": 0.6435 + }, + { + "start": 26630.16, + "end": 26633.48, + "probability": 0.8269 + }, + { + "start": 26633.62, + "end": 26638.72, + "probability": 0.964 + }, + { + "start": 26638.72, + "end": 26644.19, + "probability": 0.9666 + }, + { + "start": 26644.34, + "end": 26647.69, + "probability": 0.8528 + }, + { + "start": 26648.6, + "end": 26652.11, + "probability": 0.3826 + }, + { + "start": 26655.46, + "end": 26657.74, + "probability": 0.2132 + }, + { + "start": 26657.96, + "end": 26658.58, + "probability": 0.3761 + }, + { + "start": 26658.9, + "end": 26659.88, + "probability": 0.659 + }, + { + "start": 26659.94, + "end": 26660.84, + "probability": 0.8589 + }, + { + "start": 26662.16, + "end": 26663.0, + "probability": 0.7104 + }, + { + "start": 26664.08, + "end": 26666.66, + "probability": 0.713 + }, + { + "start": 26666.66, + "end": 26668.22, + "probability": 0.6304 + }, + { + "start": 26669.0, + "end": 26672.68, + "probability": 0.5277 + }, + { + "start": 26673.7, + "end": 26675.22, + "probability": 0.7425 + }, + { + "start": 26675.8, + "end": 26678.12, + "probability": 0.6857 + }, + { + "start": 26678.94, + "end": 26680.26, + "probability": 0.73 + }, + { + "start": 26682.9, + "end": 26687.28, + "probability": 0.2663 + }, + { + "start": 26693.06, + "end": 26694.56, + "probability": 0.0364 + }, + { + "start": 26697.04, + "end": 26700.02, + "probability": 0.5561 + }, + { + "start": 26702.28, + "end": 26703.28, + "probability": 0.2538 + }, + { + "start": 26704.2, + "end": 26706.74, + "probability": 0.4044 + }, + { + "start": 26707.14, + "end": 26708.66, + "probability": 0.6752 + }, + { + "start": 26708.66, + "end": 26708.66, + "probability": 0.1102 + }, + { + "start": 26708.66, + "end": 26710.46, + "probability": 0.7155 + }, + { + "start": 26710.72, + "end": 26715.42, + "probability": 0.5681 + }, + { + "start": 26716.1, + "end": 26719.94, + "probability": 0.7102 + }, + { + "start": 26720.7, + "end": 26720.98, + "probability": 0.0279 + }, + { + "start": 26720.98, + "end": 26720.98, + "probability": 0.2149 + }, + { + "start": 26720.98, + "end": 26720.98, + "probability": 0.2232 + }, + { + "start": 26720.98, + "end": 26720.98, + "probability": 0.084 + }, + { + "start": 26720.98, + "end": 26722.84, + "probability": 0.4901 + }, + { + "start": 26723.54, + "end": 26726.52, + "probability": 0.7483 + }, + { + "start": 26727.44, + "end": 26730.22, + "probability": 0.7729 + }, + { + "start": 26730.82, + "end": 26736.02, + "probability": 0.8647 + }, + { + "start": 26746.75, + "end": 26750.94, + "probability": 0.527 + }, + { + "start": 26753.83, + "end": 26756.66, + "probability": 0.9801 + }, + { + "start": 26757.12, + "end": 26757.32, + "probability": 0.6966 + }, + { + "start": 26757.32, + "end": 26757.98, + "probability": 0.3767 + }, + { + "start": 26758.6, + "end": 26762.26, + "probability": 0.3111 + }, + { + "start": 26762.32, + "end": 26762.86, + "probability": 0.7487 + }, + { + "start": 26763.85, + "end": 26770.88, + "probability": 0.7416 + }, + { + "start": 26771.0, + "end": 26772.96, + "probability": 0.6071 + }, + { + "start": 26774.3, + "end": 26777.94, + "probability": 0.3013 + }, + { + "start": 26778.48, + "end": 26780.22, + "probability": 0.639 + }, + { + "start": 26780.28, + "end": 26781.44, + "probability": 0.7354 + }, + { + "start": 26781.48, + "end": 26781.98, + "probability": 0.7579 + }, + { + "start": 26782.06, + "end": 26787.76, + "probability": 0.8076 + }, + { + "start": 26787.9, + "end": 26794.48, + "probability": 0.8184 + }, + { + "start": 26794.74, + "end": 26802.1, + "probability": 0.7193 + }, + { + "start": 26802.86, + "end": 26804.48, + "probability": 0.0541 + }, + { + "start": 26805.6, + "end": 26807.42, + "probability": 0.7534 + }, + { + "start": 26807.96, + "end": 26809.36, + "probability": 0.9178 + }, + { + "start": 26810.2, + "end": 26818.42, + "probability": 0.898 + }, + { + "start": 26819.48, + "end": 26823.5, + "probability": 0.923 + }, + { + "start": 26824.2, + "end": 26825.8, + "probability": 0.969 + }, + { + "start": 26826.86, + "end": 26827.8, + "probability": 0.5271 + }, + { + "start": 26828.72, + "end": 26831.66, + "probability": 0.8194 + }, + { + "start": 26832.52, + "end": 26839.26, + "probability": 0.8685 + }, + { + "start": 26839.32, + "end": 26841.28, + "probability": 0.7226 + }, + { + "start": 26842.28, + "end": 26842.28, + "probability": 0.0373 + }, + { + "start": 26842.28, + "end": 26846.03, + "probability": 0.9343 + }, + { + "start": 26846.9, + "end": 26850.52, + "probability": 0.5608 + }, + { + "start": 26852.46, + "end": 26854.3, + "probability": 0.9342 + }, + { + "start": 26854.42, + "end": 26859.2, + "probability": 0.5667 + }, + { + "start": 26860.59, + "end": 26864.08, + "probability": 0.9749 + }, + { + "start": 26864.08, + "end": 26869.52, + "probability": 0.7187 + }, + { + "start": 26870.94, + "end": 26872.3, + "probability": 0.8005 + }, + { + "start": 26872.48, + "end": 26875.74, + "probability": 0.8667 + }, + { + "start": 26875.74, + "end": 26879.82, + "probability": 0.8475 + }, + { + "start": 26880.14, + "end": 26883.24, + "probability": 0.8872 + }, + { + "start": 26883.74, + "end": 26888.52, + "probability": 0.8046 + }, + { + "start": 26888.86, + "end": 26889.64, + "probability": 0.6575 + }, + { + "start": 26889.76, + "end": 26891.18, + "probability": 0.9287 + }, + { + "start": 26891.5, + "end": 26892.22, + "probability": 0.9437 + }, + { + "start": 26893.32, + "end": 26894.26, + "probability": 0.081 + }, + { + "start": 26894.26, + "end": 26895.38, + "probability": 0.6794 + }, + { + "start": 26908.92, + "end": 26910.14, + "probability": 0.0613 + }, + { + "start": 26910.14, + "end": 26910.14, + "probability": 0.0211 + }, + { + "start": 26910.14, + "end": 26913.51, + "probability": 0.618 + }, + { + "start": 26913.88, + "end": 26919.9, + "probability": 0.9116 + }, + { + "start": 26920.96, + "end": 26927.51, + "probability": 0.7975 + }, + { + "start": 26928.14, + "end": 26933.94, + "probability": 0.9657 + }, + { + "start": 26934.26, + "end": 26935.52, + "probability": 0.6503 + }, + { + "start": 26935.56, + "end": 26941.8, + "probability": 0.8426 + }, + { + "start": 26942.06, + "end": 26943.8, + "probability": 0.6094 + }, + { + "start": 26944.16, + "end": 26945.34, + "probability": 0.9446 + }, + { + "start": 26945.7, + "end": 26949.72, + "probability": 0.9084 + }, + { + "start": 26950.08, + "end": 26953.8, + "probability": 0.9828 + }, + { + "start": 26954.16, + "end": 26959.52, + "probability": 0.9373 + }, + { + "start": 26960.02, + "end": 26963.7, + "probability": 0.9219 + }, + { + "start": 26965.56, + "end": 26966.84, + "probability": 0.8618 + }, + { + "start": 26971.74, + "end": 26972.96, + "probability": 0.2232 + }, + { + "start": 26973.06, + "end": 26973.2, + "probability": 0.0043 + }, + { + "start": 26973.2, + "end": 26974.96, + "probability": 0.6974 + }, + { + "start": 26975.74, + "end": 26978.4, + "probability": 0.8724 + }, + { + "start": 26978.54, + "end": 26979.96, + "probability": 0.6656 + }, + { + "start": 26980.5, + "end": 26981.32, + "probability": 0.7005 + }, + { + "start": 26981.48, + "end": 26981.76, + "probability": 0.8737 + }, + { + "start": 26981.88, + "end": 26983.24, + "probability": 0.8214 + }, + { + "start": 26983.4, + "end": 26990.54, + "probability": 0.9635 + }, + { + "start": 26992.2, + "end": 26999.06, + "probability": 0.938 + }, + { + "start": 26999.08, + "end": 27000.46, + "probability": 0.8372 + }, + { + "start": 27000.6, + "end": 27002.42, + "probability": 0.5922 + }, + { + "start": 27002.54, + "end": 27003.94, + "probability": 0.8777 + }, + { + "start": 27005.0, + "end": 27010.16, + "probability": 0.9485 + }, + { + "start": 27010.16, + "end": 27014.94, + "probability": 0.8705 + }, + { + "start": 27015.24, + "end": 27021.96, + "probability": 0.9644 + }, + { + "start": 27022.76, + "end": 27026.3, + "probability": 0.8463 + }, + { + "start": 27026.88, + "end": 27032.98, + "probability": 0.7533 + }, + { + "start": 27033.16, + "end": 27039.52, + "probability": 0.9746 + }, + { + "start": 27039.52, + "end": 27049.0, + "probability": 0.881 + }, + { + "start": 27049.4, + "end": 27050.5, + "probability": 0.6559 + }, + { + "start": 27051.3, + "end": 27057.74, + "probability": 0.9985 + }, + { + "start": 27057.96, + "end": 27058.68, + "probability": 0.3434 + }, + { + "start": 27058.68, + "end": 27060.58, + "probability": 0.796 + }, + { + "start": 27061.26, + "end": 27062.44, + "probability": 0.955 + }, + { + "start": 27062.56, + "end": 27063.28, + "probability": 0.7166 + }, + { + "start": 27063.58, + "end": 27065.58, + "probability": 0.8361 + }, + { + "start": 27065.72, + "end": 27066.32, + "probability": 0.222 + }, + { + "start": 27067.34, + "end": 27068.04, + "probability": 0.7007 + }, + { + "start": 27068.34, + "end": 27070.82, + "probability": 0.7797 + }, + { + "start": 27070.92, + "end": 27071.44, + "probability": 0.5925 + }, + { + "start": 27072.84, + "end": 27075.2, + "probability": 0.8675 + }, + { + "start": 27085.78, + "end": 27086.2, + "probability": 0.5335 + }, + { + "start": 27090.4, + "end": 27095.22, + "probability": 0.8169 + }, + { + "start": 27096.28, + "end": 27099.98, + "probability": 0.959 + }, + { + "start": 27101.2, + "end": 27104.7, + "probability": 0.7212 + }, + { + "start": 27105.68, + "end": 27110.56, + "probability": 0.9067 + }, + { + "start": 27111.74, + "end": 27113.96, + "probability": 0.985 + }, + { + "start": 27117.12, + "end": 27123.64, + "probability": 0.9951 + }, + { + "start": 27124.9, + "end": 27128.22, + "probability": 0.9959 + }, + { + "start": 27129.44, + "end": 27133.62, + "probability": 0.9844 + }, + { + "start": 27136.1, + "end": 27137.12, + "probability": 0.813 + }, + { + "start": 27141.66, + "end": 27143.02, + "probability": 0.714 + }, + { + "start": 27145.66, + "end": 27146.66, + "probability": 0.9995 + }, + { + "start": 27148.18, + "end": 27151.08, + "probability": 0.5963 + }, + { + "start": 27152.44, + "end": 27154.2, + "probability": 0.8688 + }, + { + "start": 27154.3, + "end": 27157.26, + "probability": 0.9952 + }, + { + "start": 27157.26, + "end": 27159.72, + "probability": 0.9854 + }, + { + "start": 27159.92, + "end": 27162.92, + "probability": 0.9675 + }, + { + "start": 27164.02, + "end": 27164.28, + "probability": 0.5095 + }, + { + "start": 27164.46, + "end": 27166.1, + "probability": 0.7284 + }, + { + "start": 27166.5, + "end": 27166.85, + "probability": 0.4922 + }, + { + "start": 27167.26, + "end": 27168.5, + "probability": 0.9192 + }, + { + "start": 27171.34, + "end": 27174.92, + "probability": 0.949 + }, + { + "start": 27175.0, + "end": 27176.7, + "probability": 0.9106 + }, + { + "start": 27177.16, + "end": 27177.62, + "probability": 0.932 + }, + { + "start": 27177.76, + "end": 27178.18, + "probability": 0.8973 + }, + { + "start": 27178.3, + "end": 27180.6, + "probability": 0.9299 + }, + { + "start": 27181.76, + "end": 27182.56, + "probability": 0.0015 + }, + { + "start": 27182.56, + "end": 27183.72, + "probability": 0.8188 + }, + { + "start": 27185.16, + "end": 27186.4, + "probability": 0.754 + }, + { + "start": 27186.74, + "end": 27188.46, + "probability": 0.883 + }, + { + "start": 27188.6, + "end": 27189.48, + "probability": 0.7407 + }, + { + "start": 27191.74, + "end": 27194.48, + "probability": 0.8911 + }, + { + "start": 27196.24, + "end": 27200.34, + "probability": 0.8618 + }, + { + "start": 27202.34, + "end": 27205.8, + "probability": 0.7828 + }, + { + "start": 27206.86, + "end": 27209.96, + "probability": 0.9384 + }, + { + "start": 27211.76, + "end": 27215.18, + "probability": 0.808 + }, + { + "start": 27215.76, + "end": 27217.1, + "probability": 0.328 + }, + { + "start": 27217.88, + "end": 27220.18, + "probability": 0.0435 + }, + { + "start": 27220.18, + "end": 27221.38, + "probability": 0.5716 + }, + { + "start": 27222.36, + "end": 27224.9, + "probability": 0.9605 + }, + { + "start": 27224.9, + "end": 27229.74, + "probability": 0.7773 + }, + { + "start": 27229.84, + "end": 27231.4, + "probability": 0.8039 + }, + { + "start": 27232.18, + "end": 27233.57, + "probability": 0.7561 + }, + { + "start": 27234.66, + "end": 27238.72, + "probability": 0.6478 + }, + { + "start": 27238.92, + "end": 27240.32, + "probability": 0.9565 + }, + { + "start": 27241.18, + "end": 27246.98, + "probability": 0.9575 + }, + { + "start": 27246.98, + "end": 27247.48, + "probability": 0.7236 + }, + { + "start": 27248.18, + "end": 27250.08, + "probability": 0.8245 + }, + { + "start": 27250.58, + "end": 27252.82, + "probability": 0.9672 + }, + { + "start": 27253.28, + "end": 27255.88, + "probability": 0.9902 + }, + { + "start": 27258.52, + "end": 27260.86, + "probability": 0.6679 + }, + { + "start": 27262.52, + "end": 27265.14, + "probability": 0.9927 + }, + { + "start": 27265.34, + "end": 27265.96, + "probability": 0.8866 + }, + { + "start": 27266.26, + "end": 27267.12, + "probability": 0.9589 + }, + { + "start": 27268.22, + "end": 27270.52, + "probability": 0.9609 + }, + { + "start": 27270.78, + "end": 27271.64, + "probability": 0.8964 + }, + { + "start": 27272.28, + "end": 27273.14, + "probability": 0.5764 + }, + { + "start": 27273.68, + "end": 27275.8, + "probability": 0.9704 + }, + { + "start": 27276.28, + "end": 27280.14, + "probability": 0.9052 + }, + { + "start": 27280.34, + "end": 27281.26, + "probability": 0.9038 + }, + { + "start": 27281.28, + "end": 27284.3, + "probability": 0.9946 + }, + { + "start": 27284.7, + "end": 27288.02, + "probability": 0.9786 + }, + { + "start": 27291.02, + "end": 27298.86, + "probability": 0.9991 + }, + { + "start": 27299.86, + "end": 27302.1, + "probability": 0.9884 + }, + { + "start": 27303.0, + "end": 27311.7, + "probability": 0.9292 + }, + { + "start": 27312.54, + "end": 27319.26, + "probability": 0.9961 + }, + { + "start": 27319.34, + "end": 27326.0, + "probability": 0.993 + }, + { + "start": 27326.24, + "end": 27328.5, + "probability": 0.9877 + }, + { + "start": 27331.14, + "end": 27334.38, + "probability": 0.9956 + }, + { + "start": 27334.38, + "end": 27338.82, + "probability": 0.9756 + }, + { + "start": 27341.6, + "end": 27346.4, + "probability": 0.9949 + }, + { + "start": 27347.22, + "end": 27349.28, + "probability": 0.8983 + }, + { + "start": 27349.32, + "end": 27354.22, + "probability": 0.9985 + }, + { + "start": 27354.22, + "end": 27359.06, + "probability": 0.7883 + }, + { + "start": 27359.82, + "end": 27362.14, + "probability": 0.9419 + }, + { + "start": 27363.72, + "end": 27364.24, + "probability": 0.9051 + }, + { + "start": 27365.08, + "end": 27367.05, + "probability": 0.6698 + }, + { + "start": 27367.8, + "end": 27370.44, + "probability": 0.8699 + }, + { + "start": 27385.2, + "end": 27387.82, + "probability": 0.689 + }, + { + "start": 27389.24, + "end": 27393.34, + "probability": 0.8391 + }, + { + "start": 27393.64, + "end": 27394.46, + "probability": 0.3354 + }, + { + "start": 27398.72, + "end": 27399.5, + "probability": 0.6357 + }, + { + "start": 27400.4, + "end": 27402.91, + "probability": 0.6113 + }, + { + "start": 27403.34, + "end": 27403.44, + "probability": 0.7205 + }, + { + "start": 27405.3, + "end": 27407.92, + "probability": 0.7519 + }, + { + "start": 27409.22, + "end": 27411.42, + "probability": 0.8186 + }, + { + "start": 27412.32, + "end": 27413.14, + "probability": 0.5126 + }, + { + "start": 27414.14, + "end": 27415.0, + "probability": 0.2445 + }, + { + "start": 27417.44, + "end": 27420.4, + "probability": 0.2596 + }, + { + "start": 27421.4, + "end": 27424.64, + "probability": 0.6033 + }, + { + "start": 27424.7, + "end": 27426.66, + "probability": 0.9 + }, + { + "start": 27427.2, + "end": 27428.26, + "probability": 0.9799 + }, + { + "start": 27429.82, + "end": 27431.48, + "probability": 0.5019 + }, + { + "start": 27431.5, + "end": 27432.1, + "probability": 0.2963 + }, + { + "start": 27434.61, + "end": 27437.22, + "probability": 0.711 + }, + { + "start": 27438.42, + "end": 27440.48, + "probability": 0.8811 + }, + { + "start": 27441.9, + "end": 27444.22, + "probability": 0.6185 + }, + { + "start": 27445.22, + "end": 27446.64, + "probability": 0.8766 + }, + { + "start": 27447.38, + "end": 27448.58, + "probability": 0.8708 + }, + { + "start": 27449.92, + "end": 27450.42, + "probability": 0.3953 + }, + { + "start": 27451.92, + "end": 27453.52, + "probability": 0.9688 + }, + { + "start": 27454.38, + "end": 27459.88, + "probability": 0.9554 + }, + { + "start": 27460.6, + "end": 27462.9, + "probability": 0.6197 + }, + { + "start": 27463.78, + "end": 27468.24, + "probability": 0.9521 + }, + { + "start": 27469.14, + "end": 27470.34, + "probability": 0.9526 + }, + { + "start": 27470.46, + "end": 27475.78, + "probability": 0.9937 + }, + { + "start": 27476.42, + "end": 27478.03, + "probability": 0.9351 + }, + { + "start": 27479.3, + "end": 27483.32, + "probability": 0.8645 + }, + { + "start": 27484.1, + "end": 27490.49, + "probability": 0.6866 + }, + { + "start": 27491.34, + "end": 27494.32, + "probability": 0.606 + }, + { + "start": 27495.0, + "end": 27497.36, + "probability": 0.9437 + }, + { + "start": 27497.86, + "end": 27500.76, + "probability": 0.9556 + }, + { + "start": 27502.14, + "end": 27503.7, + "probability": 0.9973 + }, + { + "start": 27504.14, + "end": 27507.28, + "probability": 0.9722 + }, + { + "start": 27507.92, + "end": 27514.24, + "probability": 0.8148 + }, + { + "start": 27514.74, + "end": 27516.7, + "probability": 0.8933 + }, + { + "start": 27519.04, + "end": 27520.48, + "probability": 0.9902 + }, + { + "start": 27520.64, + "end": 27522.75, + "probability": 0.8856 + }, + { + "start": 27525.0, + "end": 27526.16, + "probability": 0.7807 + }, + { + "start": 27526.7, + "end": 27527.06, + "probability": 0.5699 + }, + { + "start": 27527.1, + "end": 27529.69, + "probability": 0.3397 + }, + { + "start": 27529.8, + "end": 27530.98, + "probability": 0.81 + }, + { + "start": 27532.16, + "end": 27534.14, + "probability": 0.6208 + }, + { + "start": 27535.24, + "end": 27536.04, + "probability": 0.8301 + }, + { + "start": 27536.36, + "end": 27540.3, + "probability": 0.965 + }, + { + "start": 27540.96, + "end": 27544.3, + "probability": 0.768 + }, + { + "start": 27545.68, + "end": 27548.32, + "probability": 0.5415 + }, + { + "start": 27549.66, + "end": 27551.52, + "probability": 0.6947 + }, + { + "start": 27551.6, + "end": 27554.22, + "probability": 0.9929 + }, + { + "start": 27555.48, + "end": 27560.14, + "probability": 0.7666 + }, + { + "start": 27561.06, + "end": 27564.32, + "probability": 0.935 + }, + { + "start": 27564.48, + "end": 27565.99, + "probability": 0.677 + }, + { + "start": 27567.42, + "end": 27571.36, + "probability": 0.8708 + }, + { + "start": 27571.72, + "end": 27572.7, + "probability": 0.8686 + }, + { + "start": 27573.18, + "end": 27574.54, + "probability": 0.9251 + }, + { + "start": 27574.58, + "end": 27575.35, + "probability": 0.9575 + }, + { + "start": 27575.98, + "end": 27577.61, + "probability": 0.9712 + }, + { + "start": 27577.62, + "end": 27578.04, + "probability": 0.3179 + }, + { + "start": 27578.08, + "end": 27579.18, + "probability": 0.9493 + }, + { + "start": 27579.56, + "end": 27580.02, + "probability": 0.6558 + }, + { + "start": 27580.3, + "end": 27580.88, + "probability": 0.9108 + }, + { + "start": 27581.22, + "end": 27582.1, + "probability": 0.886 + }, + { + "start": 27582.78, + "end": 27584.6, + "probability": 0.9191 + }, + { + "start": 27584.86, + "end": 27586.98, + "probability": 0.7726 + }, + { + "start": 27587.82, + "end": 27588.04, + "probability": 0.5477 + }, + { + "start": 27588.32, + "end": 27588.7, + "probability": 0.5606 + }, + { + "start": 27589.1, + "end": 27591.0, + "probability": 0.809 + }, + { + "start": 27591.12, + "end": 27592.89, + "probability": 0.7251 + }, + { + "start": 27593.28, + "end": 27597.02, + "probability": 0.5903 + }, + { + "start": 27597.3, + "end": 27599.1, + "probability": 0.7881 + }, + { + "start": 27599.12, + "end": 27601.62, + "probability": 0.6026 + }, + { + "start": 27602.06, + "end": 27602.32, + "probability": 0.2703 + }, + { + "start": 27602.32, + "end": 27604.12, + "probability": 0.6768 + }, + { + "start": 27604.64, + "end": 27605.54, + "probability": 0.6294 + }, + { + "start": 27605.54, + "end": 27608.52, + "probability": 0.4462 + }, + { + "start": 27608.82, + "end": 27610.22, + "probability": 0.8354 + }, + { + "start": 27610.36, + "end": 27614.3, + "probability": 0.9824 + }, + { + "start": 27614.96, + "end": 27616.58, + "probability": 0.515 + }, + { + "start": 27616.68, + "end": 27619.04, + "probability": 0.7377 + }, + { + "start": 27619.38, + "end": 27621.36, + "probability": 0.7447 + }, + { + "start": 27621.86, + "end": 27622.62, + "probability": 0.5576 + }, + { + "start": 27622.62, + "end": 27625.8, + "probability": 0.6673 + }, + { + "start": 27626.22, + "end": 27627.22, + "probability": 0.7138 + }, + { + "start": 27627.44, + "end": 27627.79, + "probability": 0.281 + }, + { + "start": 27630.12, + "end": 27631.16, + "probability": 0.3749 + }, + { + "start": 27633.02, + "end": 27641.42, + "probability": 0.242 + }, + { + "start": 27646.1, + "end": 27647.04, + "probability": 0.0026 + }, + { + "start": 27647.04, + "end": 27647.62, + "probability": 0.6263 + }, + { + "start": 27657.68, + "end": 27658.96, + "probability": 0.5974 + }, + { + "start": 27660.22, + "end": 27662.96, + "probability": 0.9178 + }, + { + "start": 27663.06, + "end": 27670.22, + "probability": 0.7927 + }, + { + "start": 27675.98, + "end": 27680.54, + "probability": 0.6998 + }, + { + "start": 27681.3, + "end": 27687.22, + "probability": 0.928 + }, + { + "start": 27689.02, + "end": 27693.38, + "probability": 0.9951 + }, + { + "start": 27695.88, + "end": 27700.4, + "probability": 0.7592 + }, + { + "start": 27701.66, + "end": 27707.62, + "probability": 0.9106 + }, + { + "start": 27708.34, + "end": 27712.26, + "probability": 0.9214 + }, + { + "start": 27712.26, + "end": 27716.32, + "probability": 0.9963 + }, + { + "start": 27717.4, + "end": 27724.8, + "probability": 0.92 + }, + { + "start": 27725.92, + "end": 27730.22, + "probability": 0.9798 + }, + { + "start": 27730.38, + "end": 27731.66, + "probability": 0.6251 + }, + { + "start": 27732.58, + "end": 27733.22, + "probability": 0.639 + }, + { + "start": 27733.62, + "end": 27739.92, + "probability": 0.9234 + }, + { + "start": 27740.96, + "end": 27742.62, + "probability": 0.7292 + }, + { + "start": 27746.36, + "end": 27747.64, + "probability": 0.7922 + }, + { + "start": 27747.94, + "end": 27755.4, + "probability": 0.907 + }, + { + "start": 27755.96, + "end": 27757.4, + "probability": 0.6734 + }, + { + "start": 27759.18, + "end": 27765.79, + "probability": 0.977 + }, + { + "start": 27767.04, + "end": 27771.6, + "probability": 0.8302 + }, + { + "start": 27773.46, + "end": 27774.56, + "probability": 0.5074 + }, + { + "start": 27774.56, + "end": 27776.0, + "probability": 0.5246 + }, + { + "start": 27776.08, + "end": 27779.83, + "probability": 0.7921 + }, + { + "start": 27781.18, + "end": 27785.36, + "probability": 0.8637 + }, + { + "start": 27785.5, + "end": 27785.84, + "probability": 0.6964 + }, + { + "start": 27785.98, + "end": 27786.62, + "probability": 0.7306 + }, + { + "start": 27786.76, + "end": 27790.38, + "probability": 0.8938 + }, + { + "start": 27791.26, + "end": 27795.32, + "probability": 0.5943 + }, + { + "start": 27796.56, + "end": 27797.54, + "probability": 0.9794 + }, + { + "start": 27797.62, + "end": 27798.4, + "probability": 0.8632 + }, + { + "start": 27798.42, + "end": 27799.22, + "probability": 0.8666 + }, + { + "start": 27799.52, + "end": 27802.6, + "probability": 0.8915 + }, + { + "start": 27804.08, + "end": 27808.06, + "probability": 0.6304 + }, + { + "start": 27808.68, + "end": 27816.48, + "probability": 0.9949 + }, + { + "start": 27818.42, + "end": 27820.64, + "probability": 0.5633 + }, + { + "start": 27821.92, + "end": 27824.24, + "probability": 0.6048 + }, + { + "start": 27824.32, + "end": 27829.38, + "probability": 0.9858 + }, + { + "start": 27829.38, + "end": 27833.38, + "probability": 0.9883 + }, + { + "start": 27833.64, + "end": 27836.88, + "probability": 0.605 + }, + { + "start": 27837.2, + "end": 27838.5, + "probability": 0.8084 + }, + { + "start": 27841.1, + "end": 27847.12, + "probability": 0.958 + }, + { + "start": 27847.12, + "end": 27853.48, + "probability": 0.899 + }, + { + "start": 27854.6, + "end": 27860.68, + "probability": 0.9885 + }, + { + "start": 27861.2, + "end": 27866.34, + "probability": 0.9939 + }, + { + "start": 27866.34, + "end": 27869.48, + "probability": 0.7518 + }, + { + "start": 27869.64, + "end": 27873.66, + "probability": 0.7587 + }, + { + "start": 27874.96, + "end": 27881.3, + "probability": 0.9491 + }, + { + "start": 27882.58, + "end": 27884.66, + "probability": 0.8575 + }, + { + "start": 27885.82, + "end": 27888.22, + "probability": 0.785 + }, + { + "start": 27889.1, + "end": 27890.76, + "probability": 0.092 + }, + { + "start": 27890.84, + "end": 27895.6, + "probability": 0.8812 + }, + { + "start": 27896.84, + "end": 27898.82, + "probability": 0.9987 + }, + { + "start": 27899.82, + "end": 27904.22, + "probability": 0.9546 + }, + { + "start": 27904.58, + "end": 27908.78, + "probability": 0.9951 + }, + { + "start": 27909.6, + "end": 27913.06, + "probability": 0.9142 + }, + { + "start": 27914.66, + "end": 27917.42, + "probability": 0.9697 + }, + { + "start": 27918.34, + "end": 27918.78, + "probability": 0.8041 + }, + { + "start": 27918.88, + "end": 27921.94, + "probability": 0.913 + }, + { + "start": 27922.28, + "end": 27929.34, + "probability": 0.9386 + }, + { + "start": 27930.96, + "end": 27933.08, + "probability": 0.7866 + }, + { + "start": 27934.3, + "end": 27938.52, + "probability": 0.9948 + }, + { + "start": 27938.66, + "end": 27941.2, + "probability": 0.8607 + }, + { + "start": 27941.46, + "end": 27944.66, + "probability": 0.9966 + }, + { + "start": 27945.04, + "end": 27948.48, + "probability": 0.9932 + }, + { + "start": 27949.2, + "end": 27954.68, + "probability": 0.9442 + }, + { + "start": 27955.66, + "end": 27960.6, + "probability": 0.938 + }, + { + "start": 27960.74, + "end": 27961.68, + "probability": 0.7723 + }, + { + "start": 27962.22, + "end": 27965.24, + "probability": 0.988 + }, + { + "start": 27965.88, + "end": 27968.72, + "probability": 0.7966 + }, + { + "start": 27969.1, + "end": 27973.56, + "probability": 0.9856 + }, + { + "start": 27973.56, + "end": 27978.28, + "probability": 0.9502 + }, + { + "start": 27979.22, + "end": 27980.32, + "probability": 0.8989 + }, + { + "start": 27980.98, + "end": 27983.36, + "probability": 0.9965 + }, + { + "start": 27984.06, + "end": 27986.38, + "probability": 0.9987 + }, + { + "start": 27987.04, + "end": 27992.76, + "probability": 0.9887 + }, + { + "start": 27993.26, + "end": 27995.8, + "probability": 0.9329 + }, + { + "start": 27996.9, + "end": 27999.88, + "probability": 0.8787 + }, + { + "start": 28003.37, + "end": 28004.12, + "probability": 0.1365 + }, + { + "start": 28004.12, + "end": 28007.06, + "probability": 0.8896 + }, + { + "start": 28007.12, + "end": 28010.12, + "probability": 0.9681 + }, + { + "start": 28010.24, + "end": 28010.5, + "probability": 0.8245 + }, + { + "start": 28011.46, + "end": 28012.06, + "probability": 0.939 + }, + { + "start": 28012.22, + "end": 28012.78, + "probability": 0.9014 + }, + { + "start": 28013.18, + "end": 28016.31, + "probability": 0.8057 + }, + { + "start": 28016.86, + "end": 28017.38, + "probability": 0.5411 + }, + { + "start": 28017.6, + "end": 28019.72, + "probability": 0.5972 + }, + { + "start": 28020.18, + "end": 28023.26, + "probability": 0.8064 + }, + { + "start": 28024.3, + "end": 28025.54, + "probability": 0.8955 + }, + { + "start": 28026.74, + "end": 28028.04, + "probability": 0.979 + }, + { + "start": 28028.74, + "end": 28029.82, + "probability": 0.7382 + }, + { + "start": 28030.44, + "end": 28031.72, + "probability": 0.9725 + }, + { + "start": 28032.32, + "end": 28035.14, + "probability": 0.9965 + }, + { + "start": 28035.88, + "end": 28043.92, + "probability": 0.9407 + }, + { + "start": 28044.72, + "end": 28051.94, + "probability": 0.6717 + }, + { + "start": 28051.94, + "end": 28055.92, + "probability": 0.9398 + }, + { + "start": 28056.24, + "end": 28059.42, + "probability": 0.9619 + }, + { + "start": 28059.78, + "end": 28064.9, + "probability": 0.9801 + }, + { + "start": 28064.9, + "end": 28069.24, + "probability": 0.9954 + }, + { + "start": 28069.76, + "end": 28075.7, + "probability": 0.9833 + }, + { + "start": 28076.4, + "end": 28077.9, + "probability": 0.8389 + }, + { + "start": 28078.4, + "end": 28083.94, + "probability": 0.9486 + }, + { + "start": 28084.68, + "end": 28088.58, + "probability": 0.9844 + }, + { + "start": 28088.58, + "end": 28095.28, + "probability": 0.906 + }, + { + "start": 28096.04, + "end": 28098.26, + "probability": 0.9985 + }, + { + "start": 28099.44, + "end": 28100.51, + "probability": 0.8948 + }, + { + "start": 28101.6, + "end": 28105.46, + "probability": 0.8057 + }, + { + "start": 28105.64, + "end": 28106.87, + "probability": 0.4664 + }, + { + "start": 28107.82, + "end": 28108.62, + "probability": 0.8142 + }, + { + "start": 28108.68, + "end": 28110.33, + "probability": 0.7141 + }, + { + "start": 28110.94, + "end": 28112.86, + "probability": 0.1367 + }, + { + "start": 28114.54, + "end": 28118.1, + "probability": 0.43 + }, + { + "start": 28118.1, + "end": 28120.52, + "probability": 0.7555 + }, + { + "start": 28122.28, + "end": 28125.04, + "probability": 0.9548 + }, + { + "start": 28126.72, + "end": 28132.0, + "probability": 0.8384 + }, + { + "start": 28133.02, + "end": 28137.84, + "probability": 0.8947 + }, + { + "start": 28139.12, + "end": 28143.98, + "probability": 0.9336 + }, + { + "start": 28143.98, + "end": 28148.82, + "probability": 0.999 + }, + { + "start": 28149.86, + "end": 28150.7, + "probability": 0.7294 + }, + { + "start": 28151.56, + "end": 28153.86, + "probability": 0.6661 + }, + { + "start": 28155.14, + "end": 28159.56, + "probability": 0.6215 + }, + { + "start": 28160.42, + "end": 28165.24, + "probability": 0.9442 + }, + { + "start": 28165.62, + "end": 28169.16, + "probability": 0.8878 + }, + { + "start": 28170.82, + "end": 28172.2, + "probability": 0.6628 + }, + { + "start": 28174.62, + "end": 28175.96, + "probability": 0.7744 + }, + { + "start": 28177.46, + "end": 28180.52, + "probability": 0.6851 + }, + { + "start": 28186.24, + "end": 28193.64, + "probability": 0.9705 + }, + { + "start": 28193.8, + "end": 28198.72, + "probability": 0.9946 + }, + { + "start": 28199.8, + "end": 28202.1, + "probability": 0.6983 + }, + { + "start": 28202.72, + "end": 28203.72, + "probability": 0.803 + }, + { + "start": 28204.38, + "end": 28208.42, + "probability": 0.4535 + }, + { + "start": 28209.54, + "end": 28218.2, + "probability": 0.9414 + }, + { + "start": 28221.18, + "end": 28222.02, + "probability": 0.6686 + }, + { + "start": 28222.3, + "end": 28227.6, + "probability": 0.8233 + }, + { + "start": 28228.26, + "end": 28231.68, + "probability": 0.9812 + }, + { + "start": 28232.46, + "end": 28233.98, + "probability": 0.8277 + }, + { + "start": 28234.42, + "end": 28238.38, + "probability": 0.8553 + }, + { + "start": 28239.12, + "end": 28242.22, + "probability": 0.9397 + }, + { + "start": 28242.22, + "end": 28247.08, + "probability": 0.8425 + }, + { + "start": 28248.84, + "end": 28254.9, + "probability": 0.9814 + }, + { + "start": 28255.28, + "end": 28257.5, + "probability": 0.3627 + }, + { + "start": 28259.42, + "end": 28265.0, + "probability": 0.8794 + }, + { + "start": 28265.1, + "end": 28267.44, + "probability": 0.9362 + }, + { + "start": 28268.38, + "end": 28272.98, + "probability": 0.9797 + }, + { + "start": 28272.98, + "end": 28277.84, + "probability": 0.9924 + }, + { + "start": 28278.6, + "end": 28283.26, + "probability": 0.9751 + }, + { + "start": 28284.42, + "end": 28288.26, + "probability": 0.9627 + }, + { + "start": 28288.32, + "end": 28291.78, + "probability": 0.9922 + }, + { + "start": 28293.02, + "end": 28294.9, + "probability": 0.8979 + }, + { + "start": 28296.06, + "end": 28296.88, + "probability": 0.0948 + }, + { + "start": 28296.88, + "end": 28302.6, + "probability": 0.8289 + }, + { + "start": 28306.08, + "end": 28307.46, + "probability": 0.6043 + }, + { + "start": 28307.66, + "end": 28311.02, + "probability": 0.9751 + }, + { + "start": 28311.42, + "end": 28315.62, + "probability": 0.9417 + }, + { + "start": 28317.52, + "end": 28321.84, + "probability": 0.86 + }, + { + "start": 28322.5, + "end": 28327.54, + "probability": 0.9964 + }, + { + "start": 28331.74, + "end": 28334.32, + "probability": 0.7216 + }, + { + "start": 28334.34, + "end": 28342.46, + "probability": 0.7965 + }, + { + "start": 28342.46, + "end": 28348.9, + "probability": 0.4198 + }, + { + "start": 28348.96, + "end": 28350.86, + "probability": 0.8137 + }, + { + "start": 28351.02, + "end": 28352.24, + "probability": 0.2776 + }, + { + "start": 28352.24, + "end": 28356.42, + "probability": 0.057 + }, + { + "start": 28360.36, + "end": 28362.22, + "probability": 0.1568 + }, + { + "start": 28362.98, + "end": 28368.68, + "probability": 0.7445 + }, + { + "start": 28368.68, + "end": 28370.75, + "probability": 0.5614 + }, + { + "start": 28373.64, + "end": 28375.2, + "probability": 0.3457 + }, + { + "start": 28375.28, + "end": 28384.0, + "probability": 0.2948 + }, + { + "start": 28388.38, + "end": 28389.06, + "probability": 0.0333 + }, + { + "start": 28389.68, + "end": 28392.26, + "probability": 0.1278 + }, + { + "start": 28392.86, + "end": 28397.16, + "probability": 0.4679 + }, + { + "start": 28397.24, + "end": 28397.58, + "probability": 0.3713 + }, + { + "start": 28401.82, + "end": 28404.88, + "probability": 0.6968 + }, + { + "start": 28406.04, + "end": 28410.58, + "probability": 0.9218 + }, + { + "start": 28410.82, + "end": 28412.58, + "probability": 0.2582 + }, + { + "start": 28412.62, + "end": 28414.02, + "probability": 0.7029 + }, + { + "start": 28414.08, + "end": 28414.94, + "probability": 0.9396 + }, + { + "start": 28430.3, + "end": 28433.9, + "probability": 0.5923 + }, + { + "start": 28434.62, + "end": 28437.46, + "probability": 0.908 + }, + { + "start": 28438.46, + "end": 28443.12, + "probability": 0.9036 + }, + { + "start": 28443.12, + "end": 28447.88, + "probability": 0.9775 + }, + { + "start": 28448.66, + "end": 28452.44, + "probability": 0.9526 + }, + { + "start": 28453.28, + "end": 28455.44, + "probability": 0.8155 + }, + { + "start": 28455.56, + "end": 28457.02, + "probability": 0.7854 + }, + { + "start": 28457.28, + "end": 28457.66, + "probability": 0.5052 + }, + { + "start": 28457.72, + "end": 28458.18, + "probability": 0.5285 + }, + { + "start": 28458.28, + "end": 28458.94, + "probability": 0.7845 + }, + { + "start": 28459.5, + "end": 28460.16, + "probability": 0.6477 + }, + { + "start": 28460.24, + "end": 28460.9, + "probability": 0.5063 + }, + { + "start": 28460.9, + "end": 28468.12, + "probability": 0.9858 + }, + { + "start": 28468.22, + "end": 28470.58, + "probability": 0.9466 + }, + { + "start": 28472.32, + "end": 28480.36, + "probability": 0.8378 + }, + { + "start": 28481.0, + "end": 28483.68, + "probability": 0.9124 + }, + { + "start": 28484.56, + "end": 28486.78, + "probability": 0.6586 + }, + { + "start": 28488.05, + "end": 28495.21, + "probability": 0.8436 + }, + { + "start": 28497.62, + "end": 28499.96, + "probability": 0.7514 + }, + { + "start": 28501.92, + "end": 28506.16, + "probability": 0.8894 + }, + { + "start": 28507.6, + "end": 28513.76, + "probability": 0.9202 + }, + { + "start": 28514.42, + "end": 28516.26, + "probability": 0.9246 + }, + { + "start": 28517.64, + "end": 28521.96, + "probability": 0.995 + }, + { + "start": 28523.18, + "end": 28523.5, + "probability": 0.3549 + }, + { + "start": 28523.52, + "end": 28524.3, + "probability": 0.6821 + }, + { + "start": 28524.74, + "end": 28526.14, + "probability": 0.6481 + }, + { + "start": 28526.34, + "end": 28533.11, + "probability": 0.9296 + }, + { + "start": 28533.34, + "end": 28538.22, + "probability": 0.9067 + }, + { + "start": 28538.28, + "end": 28538.9, + "probability": 0.7003 + }, + { + "start": 28540.64, + "end": 28548.0, + "probability": 0.8115 + }, + { + "start": 28549.04, + "end": 28551.18, + "probability": 0.7383 + }, + { + "start": 28552.18, + "end": 28559.4, + "probability": 0.8736 + }, + { + "start": 28560.44, + "end": 28565.88, + "probability": 0.9087 + }, + { + "start": 28567.86, + "end": 28569.36, + "probability": 0.1859 + }, + { + "start": 28569.42, + "end": 28573.7, + "probability": 0.3414 + }, + { + "start": 28576.5, + "end": 28579.88, + "probability": 0.8367 + }, + { + "start": 28580.26, + "end": 28581.17, + "probability": 0.8497 + }, + { + "start": 28581.28, + "end": 28582.24, + "probability": 0.8442 + }, + { + "start": 28582.32, + "end": 28583.18, + "probability": 0.4053 + }, + { + "start": 28583.3, + "end": 28584.8, + "probability": 0.59 + }, + { + "start": 28586.06, + "end": 28588.76, + "probability": 0.4989 + }, + { + "start": 28588.96, + "end": 28590.38, + "probability": 0.7759 + }, + { + "start": 28590.38, + "end": 28592.32, + "probability": 0.9004 + }, + { + "start": 28592.8, + "end": 28596.48, + "probability": 0.9128 + }, + { + "start": 28597.58, + "end": 28598.04, + "probability": 0.4751 + }, + { + "start": 28598.3, + "end": 28603.17, + "probability": 0.3871 + }, + { + "start": 28603.72, + "end": 28605.42, + "probability": 0.8877 + }, + { + "start": 28606.26, + "end": 28609.84, + "probability": 0.9771 + }, + { + "start": 28610.48, + "end": 28613.96, + "probability": 0.9265 + }, + { + "start": 28614.76, + "end": 28616.75, + "probability": 0.9337 + }, + { + "start": 28618.08, + "end": 28622.16, + "probability": 0.9659 + }, + { + "start": 28622.52, + "end": 28623.88, + "probability": 0.9631 + }, + { + "start": 28624.06, + "end": 28624.34, + "probability": 0.1403 + }, + { + "start": 28624.4, + "end": 28625.66, + "probability": 0.9103 + }, + { + "start": 28626.62, + "end": 28630.14, + "probability": 0.9482 + }, + { + "start": 28630.28, + "end": 28633.0, + "probability": 0.6597 + }, + { + "start": 28633.48, + "end": 28634.44, + "probability": 0.7671 + }, + { + "start": 28634.8, + "end": 28639.54, + "probability": 0.9901 + }, + { + "start": 28639.8, + "end": 28641.16, + "probability": 0.6134 + }, + { + "start": 28641.24, + "end": 28641.94, + "probability": 0.6983 + }, + { + "start": 28643.56, + "end": 28644.74, + "probability": 0.9679 + }, + { + "start": 28645.46, + "end": 28646.34, + "probability": 0.9121 + }, + { + "start": 28647.0, + "end": 28647.78, + "probability": 0.7823 + }, + { + "start": 28649.18, + "end": 28650.44, + "probability": 0.7398 + }, + { + "start": 28651.4, + "end": 28654.48, + "probability": 0.8433 + }, + { + "start": 28655.08, + "end": 28656.6, + "probability": 0.8324 + }, + { + "start": 28657.46, + "end": 28660.14, + "probability": 0.7419 + }, + { + "start": 28660.56, + "end": 28665.18, + "probability": 0.9924 + }, + { + "start": 28665.6, + "end": 28669.48, + "probability": 0.9379 + }, + { + "start": 28670.04, + "end": 28674.1, + "probability": 0.9963 + }, + { + "start": 28674.24, + "end": 28675.8, + "probability": 0.9109 + }, + { + "start": 28675.82, + "end": 28677.5, + "probability": 0.4915 + }, + { + "start": 28677.84, + "end": 28679.78, + "probability": 0.9912 + }, + { + "start": 28679.96, + "end": 28680.64, + "probability": 0.5748 + }, + { + "start": 28680.74, + "end": 28681.52, + "probability": 0.2962 + }, + { + "start": 28681.82, + "end": 28686.0, + "probability": 0.868 + }, + { + "start": 28686.7, + "end": 28691.38, + "probability": 0.8418 + }, + { + "start": 28692.18, + "end": 28695.18, + "probability": 0.7384 + }, + { + "start": 28695.18, + "end": 28697.4, + "probability": 0.8762 + }, + { + "start": 28697.86, + "end": 28699.84, + "probability": 0.8525 + }, + { + "start": 28700.56, + "end": 28703.68, + "probability": 0.9592 + }, + { + "start": 28704.72, + "end": 28707.58, + "probability": 0.9924 + }, + { + "start": 28707.92, + "end": 28708.66, + "probability": 0.7117 + }, + { + "start": 28709.02, + "end": 28710.06, + "probability": 0.8698 + }, + { + "start": 28711.5, + "end": 28712.26, + "probability": 0.5922 + }, + { + "start": 28712.38, + "end": 28712.96, + "probability": 0.6501 + }, + { + "start": 28713.36, + "end": 28716.64, + "probability": 0.8271 + }, + { + "start": 28718.96, + "end": 28724.48, + "probability": 0.8414 + }, + { + "start": 28725.32, + "end": 28728.56, + "probability": 0.9969 + }, + { + "start": 28728.56, + "end": 28730.84, + "probability": 0.7499 + }, + { + "start": 28731.78, + "end": 28733.14, + "probability": 0.8727 + }, + { + "start": 28733.52, + "end": 28735.22, + "probability": 0.7556 + }, + { + "start": 28735.64, + "end": 28737.25, + "probability": 0.9465 + }, + { + "start": 28738.62, + "end": 28745.68, + "probability": 0.738 + }, + { + "start": 28746.36, + "end": 28748.16, + "probability": 0.9369 + }, + { + "start": 28748.86, + "end": 28750.26, + "probability": 0.6266 + }, + { + "start": 28750.38, + "end": 28755.46, + "probability": 0.9659 + }, + { + "start": 28755.58, + "end": 28756.62, + "probability": 0.9333 + }, + { + "start": 28757.34, + "end": 28760.64, + "probability": 0.8846 + }, + { + "start": 28760.96, + "end": 28761.44, + "probability": 0.9108 + }, + { + "start": 28761.56, + "end": 28766.1, + "probability": 0.8973 + }, + { + "start": 28767.24, + "end": 28768.9, + "probability": 0.7067 + }, + { + "start": 28769.6, + "end": 28772.0, + "probability": 0.9424 + }, + { + "start": 28772.72, + "end": 28774.96, + "probability": 0.7673 + }, + { + "start": 28775.42, + "end": 28777.7, + "probability": 0.7437 + }, + { + "start": 28778.12, + "end": 28783.76, + "probability": 0.8663 + }, + { + "start": 28784.88, + "end": 28787.0, + "probability": 0.6919 + }, + { + "start": 28787.86, + "end": 28791.02, + "probability": 0.9895 + }, + { + "start": 28791.98, + "end": 28793.9, + "probability": 0.9915 + }, + { + "start": 28794.04, + "end": 28795.64, + "probability": 0.6822 + }, + { + "start": 28796.02, + "end": 28799.58, + "probability": 0.7889 + }, + { + "start": 28799.9, + "end": 28800.98, + "probability": 0.9568 + }, + { + "start": 28801.26, + "end": 28806.5, + "probability": 0.9668 + }, + { + "start": 28807.44, + "end": 28812.0, + "probability": 0.8712 + }, + { + "start": 28812.58, + "end": 28815.26, + "probability": 0.9448 + }, + { + "start": 28815.86, + "end": 28818.64, + "probability": 0.2996 + }, + { + "start": 28819.52, + "end": 28823.16, + "probability": 0.972 + }, + { + "start": 28823.16, + "end": 28827.74, + "probability": 0.9397 + }, + { + "start": 28828.8, + "end": 28830.52, + "probability": 0.876 + }, + { + "start": 28830.94, + "end": 28831.58, + "probability": 0.8708 + }, + { + "start": 28831.72, + "end": 28833.4, + "probability": 0.8711 + }, + { + "start": 28833.68, + "end": 28837.34, + "probability": 0.9632 + }, + { + "start": 28837.34, + "end": 28840.76, + "probability": 0.923 + }, + { + "start": 28841.34, + "end": 28844.12, + "probability": 0.9818 + }, + { + "start": 28845.36, + "end": 28849.66, + "probability": 0.9256 + }, + { + "start": 28850.14, + "end": 28851.9, + "probability": 0.6739 + }, + { + "start": 28852.44, + "end": 28855.67, + "probability": 0.9782 + }, + { + "start": 28856.48, + "end": 28859.34, + "probability": 0.6384 + }, + { + "start": 28861.34, + "end": 28863.36, + "probability": 0.5787 + }, + { + "start": 28863.54, + "end": 28863.54, + "probability": 0.2921 + }, + { + "start": 28863.74, + "end": 28865.28, + "probability": 0.8846 + }, + { + "start": 28865.58, + "end": 28868.04, + "probability": 0.9827 + }, + { + "start": 28868.4, + "end": 28869.92, + "probability": 0.7454 + }, + { + "start": 28870.02, + "end": 28871.78, + "probability": 0.6548 + }, + { + "start": 28872.5, + "end": 28875.58, + "probability": 0.8512 + }, + { + "start": 28877.16, + "end": 28878.68, + "probability": 0.6296 + }, + { + "start": 28880.0, + "end": 28880.92, + "probability": 0.1739 + }, + { + "start": 28883.24, + "end": 28886.18, + "probability": 0.2544 + }, + { + "start": 28886.74, + "end": 28889.5, + "probability": 0.7995 + }, + { + "start": 28893.6, + "end": 28895.88, + "probability": 0.6266 + }, + { + "start": 28896.04, + "end": 28898.14, + "probability": 0.4159 + }, + { + "start": 28898.54, + "end": 28904.22, + "probability": 0.9763 + }, + { + "start": 28904.7, + "end": 28906.66, + "probability": 0.9452 + }, + { + "start": 28906.8, + "end": 28908.3, + "probability": 0.4421 + }, + { + "start": 28908.4, + "end": 28911.44, + "probability": 0.684 + }, + { + "start": 28911.84, + "end": 28915.58, + "probability": 0.6359 + }, + { + "start": 28915.7, + "end": 28919.42, + "probability": 0.7861 + }, + { + "start": 28920.24, + "end": 28923.51, + "probability": 0.9951 + }, + { + "start": 28924.16, + "end": 28927.18, + "probability": 0.8693 + }, + { + "start": 28927.38, + "end": 28929.2, + "probability": 0.9459 + }, + { + "start": 28930.18, + "end": 28930.28, + "probability": 0.0177 + }, + { + "start": 28930.28, + "end": 28931.08, + "probability": 0.571 + }, + { + "start": 28931.42, + "end": 28936.76, + "probability": 0.8426 + }, + { + "start": 28937.32, + "end": 28940.36, + "probability": 0.8045 + }, + { + "start": 28940.36, + "end": 28944.66, + "probability": 0.9731 + }, + { + "start": 28945.06, + "end": 28947.8, + "probability": 0.9607 + }, + { + "start": 28947.8, + "end": 28953.14, + "probability": 0.6203 + }, + { + "start": 28953.44, + "end": 28955.84, + "probability": 0.9311 + }, + { + "start": 28956.16, + "end": 28956.6, + "probability": 0.7108 + }, + { + "start": 28957.0, + "end": 28958.88, + "probability": 0.546 + }, + { + "start": 28959.58, + "end": 28962.12, + "probability": 0.8553 + }, + { + "start": 28962.12, + "end": 28965.12, + "probability": 0.8095 + }, + { + "start": 28981.14, + "end": 28981.46, + "probability": 0.1506 + }, + { + "start": 28981.46, + "end": 28983.12, + "probability": 0.5101 + }, + { + "start": 28985.42, + "end": 28986.74, + "probability": 0.6184 + }, + { + "start": 28987.34, + "end": 28990.32, + "probability": 0.5141 + }, + { + "start": 28990.64, + "end": 28991.86, + "probability": 0.6312 + }, + { + "start": 28991.86, + "end": 28992.5, + "probability": 0.3388 + }, + { + "start": 28992.72, + "end": 28994.16, + "probability": 0.7754 + }, + { + "start": 28994.62, + "end": 28995.46, + "probability": 0.9448 + }, + { + "start": 28995.64, + "end": 28996.99, + "probability": 0.8195 + }, + { + "start": 29002.06, + "end": 29005.28, + "probability": 0.9232 + }, + { + "start": 29005.38, + "end": 29010.28, + "probability": 0.8847 + }, + { + "start": 29010.8, + "end": 29012.04, + "probability": 0.7958 + }, + { + "start": 29013.72, + "end": 29017.68, + "probability": 0.86 + }, + { + "start": 29017.86, + "end": 29018.5, + "probability": 0.6754 + }, + { + "start": 29019.14, + "end": 29020.04, + "probability": 0.3797 + }, + { + "start": 29022.3, + "end": 29023.6, + "probability": 0.8215 + }, + { + "start": 29023.96, + "end": 29027.54, + "probability": 0.6489 + }, + { + "start": 29028.1, + "end": 29033.0, + "probability": 0.9632 + }, + { + "start": 29034.94, + "end": 29038.84, + "probability": 0.9409 + }, + { + "start": 29039.48, + "end": 29043.2, + "probability": 0.91 + }, + { + "start": 29043.7, + "end": 29046.12, + "probability": 0.8677 + }, + { + "start": 29046.76, + "end": 29051.42, + "probability": 0.9944 + }, + { + "start": 29052.54, + "end": 29053.04, + "probability": 0.5191 + }, + { + "start": 29053.08, + "end": 29058.88, + "probability": 0.6216 + }, + { + "start": 29059.44, + "end": 29060.64, + "probability": 0.661 + }, + { + "start": 29060.64, + "end": 29064.02, + "probability": 0.8897 + }, + { + "start": 29064.46, + "end": 29065.26, + "probability": 0.8688 + }, + { + "start": 29065.36, + "end": 29066.76, + "probability": 0.7102 + }, + { + "start": 29068.06, + "end": 29069.72, + "probability": 0.9775 + }, + { + "start": 29071.32, + "end": 29072.74, + "probability": 0.9945 + }, + { + "start": 29073.46, + "end": 29074.14, + "probability": 0.3849 + }, + { + "start": 29078.16, + "end": 29082.46, + "probability": 0.5472 + }, + { + "start": 29085.78, + "end": 29088.38, + "probability": 0.4749 + }, + { + "start": 29090.92, + "end": 29094.1, + "probability": 0.8782 + }, + { + "start": 29094.82, + "end": 29095.12, + "probability": 0.8625 + }, + { + "start": 29097.36, + "end": 29100.4, + "probability": 0.5797 + }, + { + "start": 29100.48, + "end": 29101.18, + "probability": 0.6844 + }, + { + "start": 29102.52, + "end": 29107.66, + "probability": 0.4602 + }, + { + "start": 29108.12, + "end": 29109.18, + "probability": 0.7267 + }, + { + "start": 29109.26, + "end": 29112.14, + "probability": 0.8248 + }, + { + "start": 29113.02, + "end": 29117.06, + "probability": 0.5875 + }, + { + "start": 29117.86, + "end": 29121.26, + "probability": 0.998 + }, + { + "start": 29121.26, + "end": 29126.24, + "probability": 0.947 + }, + { + "start": 29126.82, + "end": 29131.76, + "probability": 0.9529 + }, + { + "start": 29131.76, + "end": 29138.26, + "probability": 0.9528 + }, + { + "start": 29138.26, + "end": 29146.34, + "probability": 0.9753 + }, + { + "start": 29146.74, + "end": 29148.16, + "probability": 0.8492 + }, + { + "start": 29148.32, + "end": 29149.9, + "probability": 0.764 + }, + { + "start": 29149.96, + "end": 29155.14, + "probability": 0.8826 + }, + { + "start": 29155.62, + "end": 29160.18, + "probability": 0.9609 + }, + { + "start": 29160.18, + "end": 29164.08, + "probability": 0.9812 + }, + { + "start": 29165.16, + "end": 29168.44, + "probability": 0.9536 + }, + { + "start": 29169.28, + "end": 29169.96, + "probability": 0.8551 + }, + { + "start": 29170.12, + "end": 29171.1, + "probability": 0.9297 + }, + { + "start": 29171.56, + "end": 29173.04, + "probability": 0.8898 + }, + { + "start": 29173.14, + "end": 29174.04, + "probability": 0.6338 + }, + { + "start": 29174.12, + "end": 29176.98, + "probability": 0.8759 + }, + { + "start": 29177.64, + "end": 29181.87, + "probability": 0.7758 + }, + { + "start": 29183.54, + "end": 29184.36, + "probability": 0.7582 + }, + { + "start": 29184.54, + "end": 29185.66, + "probability": 0.8763 + }, + { + "start": 29185.96, + "end": 29188.96, + "probability": 0.9675 + }, + { + "start": 29189.78, + "end": 29195.16, + "probability": 0.9788 + }, + { + "start": 29195.16, + "end": 29199.2, + "probability": 0.9594 + }, + { + "start": 29199.82, + "end": 29204.38, + "probability": 0.9351 + }, + { + "start": 29205.56, + "end": 29208.92, + "probability": 0.9194 + }, + { + "start": 29210.42, + "end": 29213.68, + "probability": 0.9873 + }, + { + "start": 29213.81, + "end": 29217.66, + "probability": 0.733 + }, + { + "start": 29218.22, + "end": 29220.74, + "probability": 0.0433 + }, + { + "start": 29221.96, + "end": 29228.52, + "probability": 0.8807 + }, + { + "start": 29230.68, + "end": 29232.96, + "probability": 0.986 + }, + { + "start": 29233.92, + "end": 29238.02, + "probability": 0.9425 + }, + { + "start": 29238.7, + "end": 29242.92, + "probability": 0.8531 + }, + { + "start": 29243.54, + "end": 29245.9, + "probability": 0.4586 + }, + { + "start": 29246.56, + "end": 29249.06, + "probability": 0.9219 + }, + { + "start": 29250.6, + "end": 29256.44, + "probability": 0.8266 + }, + { + "start": 29256.44, + "end": 29259.88, + "probability": 0.9832 + }, + { + "start": 29261.86, + "end": 29268.34, + "probability": 0.9856 + }, + { + "start": 29268.98, + "end": 29271.8, + "probability": 0.7532 + }, + { + "start": 29271.8, + "end": 29276.16, + "probability": 0.9064 + }, + { + "start": 29276.92, + "end": 29277.72, + "probability": 0.691 + }, + { + "start": 29281.38, + "end": 29284.36, + "probability": 0.9985 + }, + { + "start": 29285.18, + "end": 29289.66, + "probability": 0.8941 + }, + { + "start": 29290.22, + "end": 29292.84, + "probability": 0.9832 + }, + { + "start": 29294.0, + "end": 29294.78, + "probability": 0.2756 + }, + { + "start": 29295.3, + "end": 29298.3, + "probability": 0.9284 + }, + { + "start": 29299.18, + "end": 29299.64, + "probability": 0.6789 + }, + { + "start": 29300.44, + "end": 29303.78, + "probability": 0.0477 + }, + { + "start": 29306.08, + "end": 29311.26, + "probability": 0.9051 + }, + { + "start": 29311.82, + "end": 29312.38, + "probability": 0.2417 + }, + { + "start": 29312.82, + "end": 29315.1, + "probability": 0.8498 + }, + { + "start": 29315.72, + "end": 29318.68, + "probability": 0.7673 + }, + { + "start": 29319.6, + "end": 29319.86, + "probability": 0.6034 + }, + { + "start": 29320.12, + "end": 29327.36, + "probability": 0.9406 + }, + { + "start": 29328.52, + "end": 29328.7, + "probability": 0.0094 + }, + { + "start": 29329.16, + "end": 29331.22, + "probability": 0.9987 + }, + { + "start": 29331.22, + "end": 29335.14, + "probability": 0.9126 + }, + { + "start": 29335.98, + "end": 29336.54, + "probability": 0.5519 + }, + { + "start": 29336.96, + "end": 29339.38, + "probability": 0.9788 + }, + { + "start": 29339.38, + "end": 29344.42, + "probability": 0.9557 + }, + { + "start": 29345.2, + "end": 29346.16, + "probability": 0.558 + }, + { + "start": 29346.16, + "end": 29351.12, + "probability": 0.9973 + }, + { + "start": 29351.8, + "end": 29355.14, + "probability": 0.9563 + }, + { + "start": 29364.34, + "end": 29367.92, + "probability": 0.7851 + }, + { + "start": 29368.7, + "end": 29371.06, + "probability": 0.9152 + }, + { + "start": 29373.26, + "end": 29375.98, + "probability": 0.9949 + }, + { + "start": 29376.68, + "end": 29379.44, + "probability": 0.9313 + }, + { + "start": 29380.3, + "end": 29384.48, + "probability": 0.9722 + }, + { + "start": 29385.06, + "end": 29390.66, + "probability": 0.9338 + }, + { + "start": 29391.1, + "end": 29393.9, + "probability": 0.9962 + }, + { + "start": 29394.42, + "end": 29397.4, + "probability": 0.8906 + }, + { + "start": 29397.4, + "end": 29402.12, + "probability": 0.9667 + }, + { + "start": 29403.38, + "end": 29408.76, + "probability": 0.9969 + }, + { + "start": 29408.76, + "end": 29413.04, + "probability": 0.8402 + }, + { + "start": 29413.2, + "end": 29414.36, + "probability": 0.9863 + }, + { + "start": 29415.06, + "end": 29415.62, + "probability": 0.2777 + }, + { + "start": 29415.78, + "end": 29418.7, + "probability": 0.8867 + }, + { + "start": 29419.5, + "end": 29424.76, + "probability": 0.9749 + }, + { + "start": 29425.94, + "end": 29432.48, + "probability": 0.8029 + }, + { + "start": 29433.74, + "end": 29440.46, + "probability": 0.9933 + }, + { + "start": 29440.46, + "end": 29447.0, + "probability": 0.9976 + }, + { + "start": 29447.0, + "end": 29456.56, + "probability": 0.7892 + }, + { + "start": 29457.14, + "end": 29462.66, + "probability": 0.9893 + }, + { + "start": 29462.84, + "end": 29466.2, + "probability": 0.9951 + }, + { + "start": 29466.78, + "end": 29467.86, + "probability": 0.7879 + }, + { + "start": 29468.34, + "end": 29469.88, + "probability": 0.9623 + }, + { + "start": 29470.2, + "end": 29474.02, + "probability": 0.9672 + }, + { + "start": 29474.44, + "end": 29475.72, + "probability": 0.9917 + }, + { + "start": 29477.68, + "end": 29479.18, + "probability": 0.4546 + }, + { + "start": 29479.96, + "end": 29483.78, + "probability": 0.9827 + }, + { + "start": 29487.16, + "end": 29487.76, + "probability": 0.345 + }, + { + "start": 29487.76, + "end": 29488.4, + "probability": 0.7753 + }, + { + "start": 29488.68, + "end": 29495.16, + "probability": 0.9904 + }, + { + "start": 29495.74, + "end": 29500.32, + "probability": 0.915 + }, + { + "start": 29501.1, + "end": 29503.96, + "probability": 0.9803 + }, + { + "start": 29504.23, + "end": 29509.1, + "probability": 0.6123 + }, + { + "start": 29509.26, + "end": 29513.22, + "probability": 0.9778 + }, + { + "start": 29513.94, + "end": 29517.72, + "probability": 0.8948 + }, + { + "start": 29517.72, + "end": 29522.62, + "probability": 0.9919 + }, + { + "start": 29523.18, + "end": 29527.3, + "probability": 0.9938 + }, + { + "start": 29527.3, + "end": 29531.8, + "probability": 0.9871 + }, + { + "start": 29532.52, + "end": 29537.98, + "probability": 0.9956 + }, + { + "start": 29539.92, + "end": 29542.88, + "probability": 0.9808 + }, + { + "start": 29543.72, + "end": 29551.58, + "probability": 0.9482 + }, + { + "start": 29551.58, + "end": 29555.52, + "probability": 0.9983 + }, + { + "start": 29556.52, + "end": 29560.56, + "probability": 0.9103 + }, + { + "start": 29561.74, + "end": 29565.28, + "probability": 0.8602 + }, + { + "start": 29566.88, + "end": 29566.88, + "probability": 0.099 + }, + { + "start": 29568.22, + "end": 29572.1, + "probability": 0.4993 + }, + { + "start": 29572.1, + "end": 29572.1, + "probability": 0.1043 + }, + { + "start": 29572.1, + "end": 29575.08, + "probability": 0.9968 + }, + { + "start": 29575.08, + "end": 29579.5, + "probability": 0.9764 + }, + { + "start": 29579.9, + "end": 29581.16, + "probability": 0.6845 + }, + { + "start": 29581.74, + "end": 29588.8, + "probability": 0.9683 + }, + { + "start": 29589.44, + "end": 29594.84, + "probability": 0.9761 + }, + { + "start": 29595.92, + "end": 29596.66, + "probability": 0.6529 + }, + { + "start": 29596.82, + "end": 29597.34, + "probability": 0.1218 + }, + { + "start": 29597.34, + "end": 29598.46, + "probability": 0.7127 + }, + { + "start": 29600.31, + "end": 29602.8, + "probability": 0.2631 + }, + { + "start": 29602.8, + "end": 29603.48, + "probability": 0.1242 + }, + { + "start": 29603.96, + "end": 29611.58, + "probability": 0.988 + }, + { + "start": 29611.6, + "end": 29614.34, + "probability": 0.9052 + }, + { + "start": 29614.48, + "end": 29616.06, + "probability": 0.936 + }, + { + "start": 29616.12, + "end": 29617.0, + "probability": 0.9587 + }, + { + "start": 29620.74, + "end": 29623.68, + "probability": 0.5026 + }, + { + "start": 29624.08, + "end": 29626.44, + "probability": 0.7116 + }, + { + "start": 29626.72, + "end": 29627.36, + "probability": 0.7477 + }, + { + "start": 29628.02, + "end": 29629.12, + "probability": 0.7154 + }, + { + "start": 29629.96, + "end": 29629.96, + "probability": 0.1316 + }, + { + "start": 29630.0, + "end": 29630.02, + "probability": 0.661 + }, + { + "start": 29630.02, + "end": 29633.0, + "probability": 0.4261 + }, + { + "start": 29633.84, + "end": 29634.34, + "probability": 0.7595 + }, + { + "start": 29634.96, + "end": 29635.68, + "probability": 0.7491 + }, + { + "start": 29636.24, + "end": 29637.38, + "probability": 0.8107 + }, + { + "start": 29638.56, + "end": 29638.6, + "probability": 0.3424 + }, + { + "start": 29648.01, + "end": 29649.54, + "probability": 0.109 + }, + { + "start": 29649.54, + "end": 29651.1, + "probability": 0.1645 + }, + { + "start": 29652.28, + "end": 29655.36, + "probability": 0.7605 + }, + { + "start": 29656.1, + "end": 29658.38, + "probability": 0.6859 + }, + { + "start": 29658.52, + "end": 29660.76, + "probability": 0.8754 + }, + { + "start": 29661.98, + "end": 29662.3, + "probability": 0.0041 + } + ], + "segments_count": 10904, + "words_count": 53606, + "avg_words_per_segment": 4.9162, + "avg_segment_duration": 2.0399, + "avg_words_per_minute": 107.8189, + "plenum_id": "11466", + "duration": 29831.14, + "title": null, + "plenum_date": "2011-01-05" +} \ No newline at end of file