diff --git "a/126994/metadata.json" "b/126994/metadata.json" new file mode 100644--- /dev/null +++ "b/126994/metadata.json" @@ -0,0 +1,29952 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "126994", + "quality_score": 0.8894, + "per_segment_quality_scores": [ + { + "start": 27.04, + "end": 30.02, + "probability": 0.887 + }, + { + "start": 30.22, + "end": 32.6, + "probability": 0.6429 + }, + { + "start": 32.72, + "end": 36.68, + "probability": 0.5958 + }, + { + "start": 36.68, + "end": 37.12, + "probability": 0.8907 + }, + { + "start": 37.38, + "end": 37.64, + "probability": 0.7672 + }, + { + "start": 38.28, + "end": 39.34, + "probability": 0.6762 + }, + { + "start": 39.46, + "end": 40.36, + "probability": 0.5691 + }, + { + "start": 40.44, + "end": 41.78, + "probability": 0.9859 + }, + { + "start": 42.5, + "end": 43.54, + "probability": 0.8597 + }, + { + "start": 43.66, + "end": 49.48, + "probability": 0.7425 + }, + { + "start": 51.48, + "end": 57.78, + "probability": 0.2209 + }, + { + "start": 57.82, + "end": 61.26, + "probability": 0.036 + }, + { + "start": 61.36, + "end": 63.94, + "probability": 0.3204 + }, + { + "start": 65.02, + "end": 75.1, + "probability": 0.076 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 147.0, + "end": 147.0, + "probability": 0.0 + }, + { + "start": 151.32, + "end": 153.44, + "probability": 0.455 + }, + { + "start": 153.48, + "end": 156.66, + "probability": 0.9736 + }, + { + "start": 156.66, + "end": 159.68, + "probability": 0.9673 + }, + { + "start": 160.04, + "end": 160.92, + "probability": 0.7947 + }, + { + "start": 161.04, + "end": 162.42, + "probability": 0.6497 + }, + { + "start": 162.5, + "end": 163.96, + "probability": 0.4804 + }, + { + "start": 164.1, + "end": 164.34, + "probability": 0.7268 + }, + { + "start": 166.04, + "end": 167.6, + "probability": 0.7794 + }, + { + "start": 167.7, + "end": 169.84, + "probability": 0.7149 + }, + { + "start": 169.9, + "end": 171.86, + "probability": 0.8951 + }, + { + "start": 172.78, + "end": 176.84, + "probability": 0.9895 + }, + { + "start": 176.88, + "end": 177.56, + "probability": 0.8344 + }, + { + "start": 177.74, + "end": 179.71, + "probability": 0.1443 + }, + { + "start": 180.8, + "end": 182.48, + "probability": 0.2048 + }, + { + "start": 186.96, + "end": 187.1, + "probability": 0.0454 + }, + { + "start": 188.06, + "end": 188.8, + "probability": 0.6042 + }, + { + "start": 215.7, + "end": 217.5, + "probability": 0.8293 + }, + { + "start": 217.76, + "end": 218.22, + "probability": 0.8623 + }, + { + "start": 218.4, + "end": 219.62, + "probability": 0.8752 + }, + { + "start": 219.9, + "end": 222.16, + "probability": 0.9058 + }, + { + "start": 223.12, + "end": 227.34, + "probability": 0.9761 + }, + { + "start": 228.12, + "end": 231.26, + "probability": 0.9983 + }, + { + "start": 231.4, + "end": 236.98, + "probability": 0.9989 + }, + { + "start": 238.12, + "end": 239.0, + "probability": 0.8159 + }, + { + "start": 239.66, + "end": 241.4, + "probability": 0.7086 + }, + { + "start": 242.2, + "end": 244.26, + "probability": 0.9952 + }, + { + "start": 244.3, + "end": 245.2, + "probability": 0.9736 + }, + { + "start": 245.64, + "end": 246.7, + "probability": 0.9812 + }, + { + "start": 246.74, + "end": 247.92, + "probability": 0.9678 + }, + { + "start": 248.08, + "end": 250.6, + "probability": 0.9683 + }, + { + "start": 251.22, + "end": 251.74, + "probability": 0.7143 + }, + { + "start": 252.88, + "end": 253.9, + "probability": 0.9554 + }, + { + "start": 254.34, + "end": 255.94, + "probability": 0.9908 + }, + { + "start": 256.02, + "end": 261.18, + "probability": 0.9958 + }, + { + "start": 261.7, + "end": 262.54, + "probability": 0.9603 + }, + { + "start": 263.58, + "end": 267.2, + "probability": 0.8637 + }, + { + "start": 267.86, + "end": 270.18, + "probability": 0.9995 + }, + { + "start": 271.52, + "end": 274.48, + "probability": 0.9827 + }, + { + "start": 275.08, + "end": 277.46, + "probability": 0.9984 + }, + { + "start": 277.56, + "end": 281.4, + "probability": 0.9713 + }, + { + "start": 282.0, + "end": 282.0, + "probability": 0.0552 + }, + { + "start": 282.0, + "end": 285.34, + "probability": 0.9951 + }, + { + "start": 285.92, + "end": 286.88, + "probability": 0.771 + }, + { + "start": 287.06, + "end": 288.06, + "probability": 0.8405 + }, + { + "start": 288.1, + "end": 290.58, + "probability": 0.9951 + }, + { + "start": 291.14, + "end": 294.36, + "probability": 0.863 + }, + { + "start": 294.76, + "end": 298.6, + "probability": 0.9756 + }, + { + "start": 299.02, + "end": 301.14, + "probability": 0.9894 + }, + { + "start": 301.18, + "end": 305.6, + "probability": 0.9773 + }, + { + "start": 306.44, + "end": 308.94, + "probability": 0.9993 + }, + { + "start": 309.46, + "end": 310.04, + "probability": 0.7874 + }, + { + "start": 310.94, + "end": 314.68, + "probability": 0.9939 + }, + { + "start": 314.9, + "end": 318.04, + "probability": 0.9922 + }, + { + "start": 318.16, + "end": 318.94, + "probability": 0.8178 + }, + { + "start": 319.86, + "end": 323.12, + "probability": 0.9833 + }, + { + "start": 323.72, + "end": 324.86, + "probability": 0.9652 + }, + { + "start": 325.42, + "end": 328.06, + "probability": 0.9923 + }, + { + "start": 328.54, + "end": 329.96, + "probability": 0.9897 + }, + { + "start": 330.12, + "end": 331.56, + "probability": 0.9907 + }, + { + "start": 331.74, + "end": 333.16, + "probability": 0.9944 + }, + { + "start": 333.54, + "end": 337.84, + "probability": 0.989 + }, + { + "start": 338.6, + "end": 341.18, + "probability": 0.9509 + }, + { + "start": 341.36, + "end": 344.8, + "probability": 0.9964 + }, + { + "start": 344.8, + "end": 348.0, + "probability": 0.9989 + }, + { + "start": 348.52, + "end": 349.88, + "probability": 0.9919 + }, + { + "start": 350.94, + "end": 351.26, + "probability": 0.754 + }, + { + "start": 351.34, + "end": 351.76, + "probability": 0.9211 + }, + { + "start": 351.88, + "end": 355.22, + "probability": 0.9946 + }, + { + "start": 355.32, + "end": 359.04, + "probability": 0.9935 + }, + { + "start": 359.28, + "end": 360.05, + "probability": 0.7993 + }, + { + "start": 360.74, + "end": 362.56, + "probability": 0.9709 + }, + { + "start": 362.84, + "end": 363.64, + "probability": 0.7725 + }, + { + "start": 363.78, + "end": 364.32, + "probability": 0.4972 + }, + { + "start": 365.22, + "end": 368.3, + "probability": 0.9531 + }, + { + "start": 369.24, + "end": 371.86, + "probability": 0.9888 + }, + { + "start": 372.02, + "end": 373.98, + "probability": 0.9737 + }, + { + "start": 374.54, + "end": 378.28, + "probability": 0.9946 + }, + { + "start": 378.78, + "end": 381.28, + "probability": 0.9956 + }, + { + "start": 381.98, + "end": 385.4, + "probability": 0.9814 + }, + { + "start": 386.12, + "end": 389.48, + "probability": 0.8485 + }, + { + "start": 390.24, + "end": 391.62, + "probability": 0.7551 + }, + { + "start": 392.2, + "end": 394.3, + "probability": 0.7697 + }, + { + "start": 394.52, + "end": 395.72, + "probability": 0.8033 + }, + { + "start": 396.26, + "end": 397.44, + "probability": 0.9412 + }, + { + "start": 397.54, + "end": 402.44, + "probability": 0.9937 + }, + { + "start": 403.0, + "end": 405.28, + "probability": 0.9121 + }, + { + "start": 405.34, + "end": 409.38, + "probability": 0.9957 + }, + { + "start": 409.86, + "end": 412.62, + "probability": 0.5149 + }, + { + "start": 413.28, + "end": 415.8, + "probability": 0.9259 + }, + { + "start": 415.8, + "end": 418.34, + "probability": 0.9986 + }, + { + "start": 418.9, + "end": 422.02, + "probability": 0.9993 + }, + { + "start": 422.02, + "end": 426.56, + "probability": 0.9985 + }, + { + "start": 427.06, + "end": 429.54, + "probability": 0.9249 + }, + { + "start": 430.56, + "end": 433.58, + "probability": 0.9183 + }, + { + "start": 433.58, + "end": 436.02, + "probability": 0.9734 + }, + { + "start": 436.7, + "end": 438.34, + "probability": 0.9985 + }, + { + "start": 438.9, + "end": 441.04, + "probability": 0.9877 + }, + { + "start": 441.26, + "end": 441.9, + "probability": 0.4929 + }, + { + "start": 442.76, + "end": 444.84, + "probability": 0.9068 + }, + { + "start": 444.94, + "end": 445.94, + "probability": 0.9856 + }, + { + "start": 446.68, + "end": 449.5, + "probability": 0.9952 + }, + { + "start": 449.5, + "end": 453.4, + "probability": 0.9734 + }, + { + "start": 454.24, + "end": 456.14, + "probability": 0.9718 + }, + { + "start": 456.66, + "end": 459.42, + "probability": 0.9412 + }, + { + "start": 459.44, + "end": 462.5, + "probability": 0.9871 + }, + { + "start": 463.2, + "end": 465.7, + "probability": 0.9367 + }, + { + "start": 466.48, + "end": 468.62, + "probability": 0.9291 + }, + { + "start": 469.7, + "end": 471.76, + "probability": 0.9989 + }, + { + "start": 472.12, + "end": 473.2, + "probability": 0.9828 + }, + { + "start": 473.24, + "end": 474.58, + "probability": 0.8995 + }, + { + "start": 475.06, + "end": 478.24, + "probability": 0.9969 + }, + { + "start": 478.46, + "end": 481.28, + "probability": 0.9878 + }, + { + "start": 482.16, + "end": 485.8, + "probability": 0.9709 + }, + { + "start": 486.36, + "end": 489.06, + "probability": 0.9797 + }, + { + "start": 489.2, + "end": 489.62, + "probability": 0.676 + }, + { + "start": 489.68, + "end": 490.14, + "probability": 0.8155 + }, + { + "start": 490.24, + "end": 490.8, + "probability": 0.4892 + }, + { + "start": 490.92, + "end": 491.18, + "probability": 0.974 + }, + { + "start": 491.26, + "end": 492.2, + "probability": 0.7273 + }, + { + "start": 492.94, + "end": 495.68, + "probability": 0.9946 + }, + { + "start": 496.1, + "end": 499.14, + "probability": 0.993 + }, + { + "start": 499.42, + "end": 503.74, + "probability": 0.8931 + }, + { + "start": 504.14, + "end": 508.58, + "probability": 0.9935 + }, + { + "start": 509.38, + "end": 509.9, + "probability": 0.6551 + }, + { + "start": 510.04, + "end": 512.82, + "probability": 0.9924 + }, + { + "start": 512.82, + "end": 515.7, + "probability": 0.9696 + }, + { + "start": 516.74, + "end": 519.12, + "probability": 0.998 + }, + { + "start": 519.24, + "end": 521.7, + "probability": 0.9973 + }, + { + "start": 522.18, + "end": 524.04, + "probability": 0.7141 + }, + { + "start": 524.86, + "end": 525.24, + "probability": 0.9207 + }, + { + "start": 525.28, + "end": 527.12, + "probability": 0.7979 + }, + { + "start": 527.32, + "end": 527.96, + "probability": 0.9507 + }, + { + "start": 529.12, + "end": 533.16, + "probability": 0.9977 + }, + { + "start": 533.64, + "end": 536.1, + "probability": 0.9927 + }, + { + "start": 536.2, + "end": 540.12, + "probability": 0.9867 + }, + { + "start": 540.8, + "end": 542.5, + "probability": 0.889 + }, + { + "start": 542.6, + "end": 543.06, + "probability": 0.9922 + }, + { + "start": 543.14, + "end": 543.62, + "probability": 0.943 + }, + { + "start": 543.68, + "end": 544.52, + "probability": 0.9499 + }, + { + "start": 545.28, + "end": 547.2, + "probability": 0.9917 + }, + { + "start": 547.98, + "end": 551.84, + "probability": 0.9907 + }, + { + "start": 552.3, + "end": 554.18, + "probability": 0.9664 + }, + { + "start": 554.26, + "end": 555.26, + "probability": 0.8502 + }, + { + "start": 555.8, + "end": 557.04, + "probability": 0.9578 + }, + { + "start": 557.72, + "end": 559.36, + "probability": 0.9621 + }, + { + "start": 559.94, + "end": 560.5, + "probability": 0.7886 + }, + { + "start": 560.98, + "end": 564.32, + "probability": 0.9909 + }, + { + "start": 564.44, + "end": 565.62, + "probability": 0.9709 + }, + { + "start": 566.62, + "end": 567.72, + "probability": 0.9717 + }, + { + "start": 568.16, + "end": 572.56, + "probability": 0.9433 + }, + { + "start": 573.04, + "end": 575.28, + "probability": 0.9841 + }, + { + "start": 576.22, + "end": 577.94, + "probability": 0.6507 + }, + { + "start": 578.92, + "end": 579.1, + "probability": 0.7749 + }, + { + "start": 579.14, + "end": 579.58, + "probability": 0.8411 + }, + { + "start": 579.66, + "end": 580.92, + "probability": 0.7918 + }, + { + "start": 581.08, + "end": 581.78, + "probability": 0.7715 + }, + { + "start": 582.28, + "end": 584.3, + "probability": 0.9951 + }, + { + "start": 584.9, + "end": 589.26, + "probability": 0.9976 + }, + { + "start": 589.82, + "end": 593.98, + "probability": 0.9981 + }, + { + "start": 594.9, + "end": 599.22, + "probability": 0.9808 + }, + { + "start": 601.1, + "end": 601.54, + "probability": 0.4758 + }, + { + "start": 601.68, + "end": 603.6, + "probability": 0.9622 + }, + { + "start": 603.72, + "end": 604.58, + "probability": 0.7734 + }, + { + "start": 605.54, + "end": 608.84, + "probability": 0.9062 + }, + { + "start": 609.32, + "end": 611.94, + "probability": 0.9544 + }, + { + "start": 612.58, + "end": 612.92, + "probability": 0.2992 + }, + { + "start": 613.62, + "end": 614.36, + "probability": 0.4007 + }, + { + "start": 615.04, + "end": 617.0, + "probability": 0.9614 + }, + { + "start": 617.02, + "end": 619.7, + "probability": 0.9586 + }, + { + "start": 620.28, + "end": 620.78, + "probability": 0.6164 + }, + { + "start": 621.64, + "end": 624.12, + "probability": 0.8199 + }, + { + "start": 624.5, + "end": 625.56, + "probability": 0.5511 + }, + { + "start": 625.66, + "end": 627.92, + "probability": 0.8766 + }, + { + "start": 628.1, + "end": 630.5, + "probability": 0.9061 + }, + { + "start": 630.98, + "end": 633.68, + "probability": 0.9836 + }, + { + "start": 633.9, + "end": 636.72, + "probability": 0.9597 + }, + { + "start": 636.98, + "end": 637.74, + "probability": 0.8728 + }, + { + "start": 638.68, + "end": 642.04, + "probability": 0.92 + }, + { + "start": 642.16, + "end": 642.7, + "probability": 0.8808 + }, + { + "start": 642.76, + "end": 643.38, + "probability": 0.7449 + }, + { + "start": 643.86, + "end": 648.26, + "probability": 0.9895 + }, + { + "start": 648.32, + "end": 652.4, + "probability": 0.9838 + }, + { + "start": 653.18, + "end": 653.8, + "probability": 0.6783 + }, + { + "start": 653.92, + "end": 655.1, + "probability": 0.936 + }, + { + "start": 655.2, + "end": 655.96, + "probability": 0.9044 + }, + { + "start": 656.34, + "end": 657.98, + "probability": 0.8287 + }, + { + "start": 658.64, + "end": 659.88, + "probability": 0.8736 + }, + { + "start": 660.08, + "end": 661.62, + "probability": 0.9377 + }, + { + "start": 662.24, + "end": 665.62, + "probability": 0.9983 + }, + { + "start": 665.62, + "end": 670.27, + "probability": 0.9995 + }, + { + "start": 671.18, + "end": 675.38, + "probability": 0.9978 + }, + { + "start": 676.08, + "end": 678.64, + "probability": 0.9912 + }, + { + "start": 679.32, + "end": 680.58, + "probability": 0.9423 + }, + { + "start": 680.86, + "end": 681.94, + "probability": 0.6781 + }, + { + "start": 682.76, + "end": 686.3, + "probability": 0.9912 + }, + { + "start": 686.92, + "end": 689.22, + "probability": 0.9456 + }, + { + "start": 689.6, + "end": 692.4, + "probability": 0.9396 + }, + { + "start": 692.68, + "end": 697.7, + "probability": 0.9966 + }, + { + "start": 697.7, + "end": 702.52, + "probability": 0.9985 + }, + { + "start": 703.36, + "end": 704.58, + "probability": 0.8561 + }, + { + "start": 705.12, + "end": 706.48, + "probability": 0.8224 + }, + { + "start": 706.84, + "end": 709.78, + "probability": 0.998 + }, + { + "start": 710.16, + "end": 711.22, + "probability": 0.8119 + }, + { + "start": 711.36, + "end": 712.88, + "probability": 0.7676 + }, + { + "start": 713.44, + "end": 716.4, + "probability": 0.998 + }, + { + "start": 716.4, + "end": 719.84, + "probability": 0.9985 + }, + { + "start": 721.08, + "end": 723.26, + "probability": 0.9849 + }, + { + "start": 723.46, + "end": 726.28, + "probability": 0.926 + }, + { + "start": 726.66, + "end": 729.7, + "probability": 0.9955 + }, + { + "start": 730.08, + "end": 732.22, + "probability": 0.9958 + }, + { + "start": 732.36, + "end": 736.24, + "probability": 0.8428 + }, + { + "start": 736.38, + "end": 738.66, + "probability": 0.854 + }, + { + "start": 739.5, + "end": 741.06, + "probability": 0.993 + }, + { + "start": 741.46, + "end": 744.18, + "probability": 0.996 + }, + { + "start": 744.78, + "end": 747.08, + "probability": 0.9673 + }, + { + "start": 747.46, + "end": 748.31, + "probability": 0.8244 + }, + { + "start": 749.12, + "end": 754.04, + "probability": 0.9992 + }, + { + "start": 754.16, + "end": 754.74, + "probability": 0.7815 + }, + { + "start": 755.34, + "end": 758.12, + "probability": 0.993 + }, + { + "start": 758.74, + "end": 759.14, + "probability": 0.9858 + }, + { + "start": 760.44, + "end": 762.02, + "probability": 0.9967 + }, + { + "start": 762.76, + "end": 765.04, + "probability": 0.9839 + }, + { + "start": 766.2, + "end": 770.94, + "probability": 0.9955 + }, + { + "start": 771.04, + "end": 771.5, + "probability": 0.9638 + }, + { + "start": 771.56, + "end": 771.94, + "probability": 0.9772 + }, + { + "start": 772.04, + "end": 772.38, + "probability": 0.9883 + }, + { + "start": 772.42, + "end": 772.96, + "probability": 0.9852 + }, + { + "start": 773.02, + "end": 773.5, + "probability": 0.7397 + }, + { + "start": 773.56, + "end": 774.0, + "probability": 0.9669 + }, + { + "start": 774.38, + "end": 775.32, + "probability": 0.9619 + }, + { + "start": 775.56, + "end": 777.2, + "probability": 0.9853 + }, + { + "start": 777.36, + "end": 778.4, + "probability": 0.9237 + }, + { + "start": 778.82, + "end": 779.8, + "probability": 0.6546 + }, + { + "start": 780.28, + "end": 781.98, + "probability": 0.9402 + }, + { + "start": 782.64, + "end": 786.2, + "probability": 0.9631 + }, + { + "start": 786.82, + "end": 788.0, + "probability": 0.9335 + }, + { + "start": 788.42, + "end": 790.94, + "probability": 0.8784 + }, + { + "start": 791.34, + "end": 792.7, + "probability": 0.9447 + }, + { + "start": 792.8, + "end": 795.64, + "probability": 0.9904 + }, + { + "start": 796.44, + "end": 798.66, + "probability": 0.9982 + }, + { + "start": 798.66, + "end": 803.24, + "probability": 0.9986 + }, + { + "start": 803.54, + "end": 804.92, + "probability": 0.998 + }, + { + "start": 805.02, + "end": 806.08, + "probability": 0.9835 + }, + { + "start": 806.32, + "end": 807.86, + "probability": 0.988 + }, + { + "start": 808.18, + "end": 811.0, + "probability": 0.9982 + }, + { + "start": 811.44, + "end": 813.66, + "probability": 0.9655 + }, + { + "start": 814.18, + "end": 816.46, + "probability": 0.9914 + }, + { + "start": 816.74, + "end": 817.22, + "probability": 0.901 + }, + { + "start": 818.8, + "end": 821.5, + "probability": 0.3738 + }, + { + "start": 821.6, + "end": 822.16, + "probability": 0.543 + }, + { + "start": 823.07, + "end": 826.62, + "probability": 0.9843 + }, + { + "start": 826.62, + "end": 829.44, + "probability": 0.9558 + }, + { + "start": 845.16, + "end": 845.82, + "probability": 0.5438 + }, + { + "start": 847.18, + "end": 848.66, + "probability": 0.6321 + }, + { + "start": 848.84, + "end": 851.2, + "probability": 0.8645 + }, + { + "start": 853.7, + "end": 858.02, + "probability": 0.6747 + }, + { + "start": 858.58, + "end": 860.32, + "probability": 0.8861 + }, + { + "start": 860.58, + "end": 863.82, + "probability": 0.9959 + }, + { + "start": 864.32, + "end": 869.7, + "probability": 0.9985 + }, + { + "start": 870.34, + "end": 871.66, + "probability": 0.9561 + }, + { + "start": 873.8, + "end": 878.64, + "probability": 0.96 + }, + { + "start": 879.3, + "end": 880.6, + "probability": 0.8999 + }, + { + "start": 880.96, + "end": 885.02, + "probability": 0.9905 + }, + { + "start": 885.14, + "end": 890.7, + "probability": 0.9972 + }, + { + "start": 891.42, + "end": 895.26, + "probability": 0.9541 + }, + { + "start": 895.26, + "end": 897.8, + "probability": 0.8022 + }, + { + "start": 897.92, + "end": 899.76, + "probability": 0.8313 + }, + { + "start": 900.74, + "end": 901.32, + "probability": 0.8673 + }, + { + "start": 901.46, + "end": 904.38, + "probability": 0.994 + }, + { + "start": 904.82, + "end": 905.98, + "probability": 0.9298 + }, + { + "start": 906.8, + "end": 910.42, + "probability": 0.8187 + }, + { + "start": 911.1, + "end": 911.52, + "probability": 0.7738 + }, + { + "start": 912.78, + "end": 915.76, + "probability": 0.9964 + }, + { + "start": 918.36, + "end": 921.98, + "probability": 0.9551 + }, + { + "start": 922.7, + "end": 924.92, + "probability": 0.9807 + }, + { + "start": 924.98, + "end": 931.46, + "probability": 0.9742 + }, + { + "start": 931.74, + "end": 934.48, + "probability": 0.9707 + }, + { + "start": 935.26, + "end": 938.46, + "probability": 0.9992 + }, + { + "start": 938.72, + "end": 941.4, + "probability": 0.8638 + }, + { + "start": 941.54, + "end": 943.18, + "probability": 0.4261 + }, + { + "start": 943.72, + "end": 944.92, + "probability": 0.8839 + }, + { + "start": 944.98, + "end": 950.96, + "probability": 0.9922 + }, + { + "start": 951.52, + "end": 952.02, + "probability": 0.5513 + }, + { + "start": 952.02, + "end": 954.96, + "probability": 0.9983 + }, + { + "start": 955.42, + "end": 958.62, + "probability": 0.9834 + }, + { + "start": 959.52, + "end": 961.2, + "probability": 0.736 + }, + { + "start": 961.66, + "end": 962.14, + "probability": 0.7052 + }, + { + "start": 962.2, + "end": 964.94, + "probability": 0.8248 + }, + { + "start": 965.26, + "end": 967.33, + "probability": 0.8909 + }, + { + "start": 967.5, + "end": 970.62, + "probability": 0.8665 + }, + { + "start": 970.78, + "end": 972.46, + "probability": 0.8652 + }, + { + "start": 974.28, + "end": 975.04, + "probability": 0.4127 + }, + { + "start": 975.58, + "end": 978.16, + "probability": 0.9551 + }, + { + "start": 978.16, + "end": 983.68, + "probability": 0.9762 + }, + { + "start": 984.9, + "end": 986.38, + "probability": 0.9949 + }, + { + "start": 987.14, + "end": 988.12, + "probability": 0.7744 + }, + { + "start": 988.32, + "end": 990.9, + "probability": 0.9945 + }, + { + "start": 992.04, + "end": 993.96, + "probability": 0.8761 + }, + { + "start": 994.48, + "end": 999.0, + "probability": 0.8905 + }, + { + "start": 999.94, + "end": 1001.82, + "probability": 0.8234 + }, + { + "start": 1002.06, + "end": 1003.64, + "probability": 0.8573 + }, + { + "start": 1003.84, + "end": 1006.92, + "probability": 0.9922 + }, + { + "start": 1007.08, + "end": 1008.12, + "probability": 0.8113 + }, + { + "start": 1008.56, + "end": 1011.56, + "probability": 0.9408 + }, + { + "start": 1012.02, + "end": 1013.8, + "probability": 0.8453 + }, + { + "start": 1014.96, + "end": 1018.4, + "probability": 0.995 + }, + { + "start": 1019.3, + "end": 1025.52, + "probability": 0.9941 + }, + { + "start": 1026.06, + "end": 1028.2, + "probability": 0.9877 + }, + { + "start": 1030.34, + "end": 1031.33, + "probability": 0.8604 + }, + { + "start": 1032.18, + "end": 1034.36, + "probability": 0.7186 + }, + { + "start": 1034.4, + "end": 1038.42, + "probability": 0.9946 + }, + { + "start": 1039.34, + "end": 1043.76, + "probability": 0.8516 + }, + { + "start": 1043.98, + "end": 1044.88, + "probability": 0.7867 + }, + { + "start": 1045.74, + "end": 1052.58, + "probability": 0.9785 + }, + { + "start": 1053.6, + "end": 1058.26, + "probability": 0.9595 + }, + { + "start": 1059.52, + "end": 1062.36, + "probability": 0.9725 + }, + { + "start": 1062.36, + "end": 1064.66, + "probability": 0.9941 + }, + { + "start": 1067.16, + "end": 1068.16, + "probability": 0.733 + }, + { + "start": 1069.08, + "end": 1070.7, + "probability": 0.8198 + }, + { + "start": 1071.7, + "end": 1074.8, + "probability": 0.9969 + }, + { + "start": 1076.08, + "end": 1078.63, + "probability": 0.9846 + }, + { + "start": 1078.98, + "end": 1080.0, + "probability": 0.9184 + }, + { + "start": 1081.42, + "end": 1083.96, + "probability": 0.9894 + }, + { + "start": 1085.06, + "end": 1088.06, + "probability": 0.9836 + }, + { + "start": 1090.1, + "end": 1092.0, + "probability": 0.9988 + }, + { + "start": 1092.26, + "end": 1094.06, + "probability": 0.9294 + }, + { + "start": 1094.48, + "end": 1095.94, + "probability": 0.9261 + }, + { + "start": 1096.48, + "end": 1103.4, + "probability": 0.9939 + }, + { + "start": 1103.6, + "end": 1104.14, + "probability": 0.8386 + }, + { + "start": 1105.18, + "end": 1110.68, + "probability": 0.9844 + }, + { + "start": 1111.68, + "end": 1113.28, + "probability": 0.7981 + }, + { + "start": 1114.48, + "end": 1114.64, + "probability": 0.8157 + }, + { + "start": 1116.9, + "end": 1118.09, + "probability": 0.9937 + }, + { + "start": 1119.0, + "end": 1120.9, + "probability": 0.9841 + }, + { + "start": 1121.5, + "end": 1122.84, + "probability": 0.9087 + }, + { + "start": 1123.92, + "end": 1127.2, + "probability": 0.9678 + }, + { + "start": 1128.0, + "end": 1129.14, + "probability": 0.592 + }, + { + "start": 1130.32, + "end": 1135.36, + "probability": 0.9057 + }, + { + "start": 1135.98, + "end": 1137.28, + "probability": 0.9835 + }, + { + "start": 1137.42, + "end": 1138.7, + "probability": 0.5246 + }, + { + "start": 1138.86, + "end": 1140.2, + "probability": 0.6029 + }, + { + "start": 1141.34, + "end": 1142.18, + "probability": 0.8645 + }, + { + "start": 1142.82, + "end": 1144.14, + "probability": 0.6197 + }, + { + "start": 1144.32, + "end": 1145.11, + "probability": 0.9468 + }, + { + "start": 1145.4, + "end": 1146.66, + "probability": 0.7568 + }, + { + "start": 1146.76, + "end": 1147.56, + "probability": 0.7705 + }, + { + "start": 1148.54, + "end": 1149.66, + "probability": 0.7004 + }, + { + "start": 1150.62, + "end": 1152.78, + "probability": 0.993 + }, + { + "start": 1153.5, + "end": 1157.78, + "probability": 0.9855 + }, + { + "start": 1159.0, + "end": 1160.18, + "probability": 0.7805 + }, + { + "start": 1161.36, + "end": 1164.44, + "probability": 0.9681 + }, + { + "start": 1164.72, + "end": 1165.78, + "probability": 0.9932 + }, + { + "start": 1167.0, + "end": 1170.24, + "probability": 0.9941 + }, + { + "start": 1170.24, + "end": 1174.12, + "probability": 0.9888 + }, + { + "start": 1174.32, + "end": 1175.38, + "probability": 0.7902 + }, + { + "start": 1176.04, + "end": 1178.48, + "probability": 0.971 + }, + { + "start": 1178.96, + "end": 1180.28, + "probability": 0.9243 + }, + { + "start": 1180.86, + "end": 1182.48, + "probability": 0.7225 + }, + { + "start": 1183.14, + "end": 1184.9, + "probability": 0.9685 + }, + { + "start": 1185.6, + "end": 1185.86, + "probability": 0.8843 + }, + { + "start": 1185.94, + "end": 1189.16, + "probability": 0.9849 + }, + { + "start": 1191.86, + "end": 1193.74, + "probability": 0.957 + }, + { + "start": 1194.84, + "end": 1196.38, + "probability": 0.9888 + }, + { + "start": 1197.8, + "end": 1201.0, + "probability": 0.9117 + }, + { + "start": 1201.14, + "end": 1201.3, + "probability": 0.8815 + }, + { + "start": 1201.42, + "end": 1202.4, + "probability": 0.9461 + }, + { + "start": 1202.52, + "end": 1205.68, + "probability": 0.7656 + }, + { + "start": 1207.78, + "end": 1208.06, + "probability": 0.95 + }, + { + "start": 1208.08, + "end": 1211.8, + "probability": 0.9564 + }, + { + "start": 1211.96, + "end": 1212.02, + "probability": 0.0327 + }, + { + "start": 1212.06, + "end": 1213.44, + "probability": 0.9335 + }, + { + "start": 1213.88, + "end": 1215.6, + "probability": 0.8634 + }, + { + "start": 1215.74, + "end": 1217.26, + "probability": 0.9128 + }, + { + "start": 1218.12, + "end": 1218.22, + "probability": 0.4531 + }, + { + "start": 1218.42, + "end": 1220.52, + "probability": 0.9692 + }, + { + "start": 1222.76, + "end": 1224.81, + "probability": 0.878 + }, + { + "start": 1226.22, + "end": 1230.7, + "probability": 0.758 + }, + { + "start": 1231.4, + "end": 1234.78, + "probability": 0.9917 + }, + { + "start": 1234.92, + "end": 1238.76, + "probability": 0.9894 + }, + { + "start": 1239.42, + "end": 1243.08, + "probability": 0.981 + }, + { + "start": 1243.86, + "end": 1247.78, + "probability": 0.9551 + }, + { + "start": 1248.2, + "end": 1249.8, + "probability": 0.8779 + }, + { + "start": 1249.86, + "end": 1251.1, + "probability": 0.9472 + }, + { + "start": 1251.46, + "end": 1254.12, + "probability": 0.976 + }, + { + "start": 1255.4, + "end": 1255.4, + "probability": 0.62 + }, + { + "start": 1255.74, + "end": 1258.82, + "probability": 0.6435 + }, + { + "start": 1258.92, + "end": 1260.42, + "probability": 0.9675 + }, + { + "start": 1260.48, + "end": 1261.2, + "probability": 0.7716 + }, + { + "start": 1261.72, + "end": 1264.38, + "probability": 0.9883 + }, + { + "start": 1265.6, + "end": 1271.86, + "probability": 0.9953 + }, + { + "start": 1272.74, + "end": 1273.76, + "probability": 0.8476 + }, + { + "start": 1273.86, + "end": 1274.14, + "probability": 0.8314 + }, + { + "start": 1274.7, + "end": 1276.46, + "probability": 0.9946 + }, + { + "start": 1277.38, + "end": 1279.3, + "probability": 0.6929 + }, + { + "start": 1279.84, + "end": 1280.84, + "probability": 0.6084 + }, + { + "start": 1281.16, + "end": 1282.82, + "probability": 0.993 + }, + { + "start": 1283.8, + "end": 1285.38, + "probability": 0.8582 + }, + { + "start": 1285.42, + "end": 1285.68, + "probability": 0.7687 + }, + { + "start": 1285.76, + "end": 1287.11, + "probability": 0.9907 + }, + { + "start": 1288.02, + "end": 1291.58, + "probability": 0.9631 + }, + { + "start": 1291.74, + "end": 1292.0, + "probability": 0.9068 + }, + { + "start": 1293.38, + "end": 1296.16, + "probability": 0.9733 + }, + { + "start": 1296.22, + "end": 1299.8, + "probability": 0.9923 + }, + { + "start": 1300.9, + "end": 1303.1, + "probability": 0.0159 + }, + { + "start": 1303.8, + "end": 1305.0, + "probability": 0.311 + }, + { + "start": 1305.24, + "end": 1309.18, + "probability": 0.8415 + }, + { + "start": 1309.38, + "end": 1310.58, + "probability": 0.8452 + }, + { + "start": 1310.88, + "end": 1313.42, + "probability": 0.8926 + }, + { + "start": 1314.32, + "end": 1315.38, + "probability": 0.9734 + }, + { + "start": 1315.56, + "end": 1318.06, + "probability": 0.9332 + }, + { + "start": 1318.16, + "end": 1321.82, + "probability": 0.8326 + }, + { + "start": 1322.18, + "end": 1325.76, + "probability": 0.993 + }, + { + "start": 1326.88, + "end": 1332.02, + "probability": 0.9158 + }, + { + "start": 1333.06, + "end": 1335.3, + "probability": 0.9889 + }, + { + "start": 1336.38, + "end": 1337.22, + "probability": 0.9349 + }, + { + "start": 1338.94, + "end": 1339.4, + "probability": 0.6216 + }, + { + "start": 1339.46, + "end": 1344.76, + "probability": 0.9917 + }, + { + "start": 1346.62, + "end": 1347.8, + "probability": 0.9874 + }, + { + "start": 1348.58, + "end": 1351.56, + "probability": 0.9551 + }, + { + "start": 1351.56, + "end": 1355.22, + "probability": 0.9623 + }, + { + "start": 1355.32, + "end": 1355.82, + "probability": 0.3169 + }, + { + "start": 1355.88, + "end": 1358.14, + "probability": 0.8407 + }, + { + "start": 1359.2, + "end": 1360.36, + "probability": 0.376 + }, + { + "start": 1362.2, + "end": 1362.48, + "probability": 0.615 + }, + { + "start": 1362.7, + "end": 1364.54, + "probability": 0.8994 + }, + { + "start": 1364.6, + "end": 1365.82, + "probability": 0.9249 + }, + { + "start": 1365.86, + "end": 1366.78, + "probability": 0.7931 + }, + { + "start": 1367.02, + "end": 1368.62, + "probability": 0.876 + }, + { + "start": 1369.46, + "end": 1370.32, + "probability": 0.6598 + }, + { + "start": 1371.04, + "end": 1374.94, + "probability": 0.9907 + }, + { + "start": 1375.0, + "end": 1375.42, + "probability": 0.354 + }, + { + "start": 1375.82, + "end": 1376.96, + "probability": 0.622 + }, + { + "start": 1377.62, + "end": 1379.16, + "probability": 0.954 + }, + { + "start": 1380.1, + "end": 1381.86, + "probability": 0.9142 + }, + { + "start": 1382.6, + "end": 1383.7, + "probability": 0.952 + }, + { + "start": 1383.8, + "end": 1386.64, + "probability": 0.9795 + }, + { + "start": 1388.38, + "end": 1389.08, + "probability": 0.9737 + }, + { + "start": 1389.7, + "end": 1392.08, + "probability": 0.973 + }, + { + "start": 1393.54, + "end": 1394.98, + "probability": 0.9605 + }, + { + "start": 1396.86, + "end": 1399.14, + "probability": 0.9826 + }, + { + "start": 1400.24, + "end": 1403.54, + "probability": 0.7559 + }, + { + "start": 1405.24, + "end": 1407.18, + "probability": 0.8785 + }, + { + "start": 1407.68, + "end": 1412.9, + "probability": 0.9949 + }, + { + "start": 1414.7, + "end": 1416.44, + "probability": 0.9836 + }, + { + "start": 1416.78, + "end": 1419.08, + "probability": 0.993 + }, + { + "start": 1419.08, + "end": 1421.72, + "probability": 0.9914 + }, + { + "start": 1422.2, + "end": 1424.5, + "probability": 0.9787 + }, + { + "start": 1426.56, + "end": 1429.46, + "probability": 0.9959 + }, + { + "start": 1430.6, + "end": 1430.98, + "probability": 0.9581 + }, + { + "start": 1431.9, + "end": 1433.12, + "probability": 0.9867 + }, + { + "start": 1433.32, + "end": 1434.04, + "probability": 0.7401 + }, + { + "start": 1434.04, + "end": 1435.26, + "probability": 0.9599 + }, + { + "start": 1435.7, + "end": 1437.66, + "probability": 0.9912 + }, + { + "start": 1438.86, + "end": 1441.34, + "probability": 0.9937 + }, + { + "start": 1441.76, + "end": 1445.6, + "probability": 0.9899 + }, + { + "start": 1445.62, + "end": 1447.5, + "probability": 0.9841 + }, + { + "start": 1447.88, + "end": 1449.19, + "probability": 0.9863 + }, + { + "start": 1450.28, + "end": 1452.26, + "probability": 0.9883 + }, + { + "start": 1453.38, + "end": 1455.46, + "probability": 0.9766 + }, + { + "start": 1456.12, + "end": 1458.24, + "probability": 0.9924 + }, + { + "start": 1459.32, + "end": 1465.06, + "probability": 0.9978 + }, + { + "start": 1466.04, + "end": 1466.64, + "probability": 0.7713 + }, + { + "start": 1466.68, + "end": 1467.48, + "probability": 0.7792 + }, + { + "start": 1467.62, + "end": 1468.4, + "probability": 0.8337 + }, + { + "start": 1468.76, + "end": 1470.02, + "probability": 0.9761 + }, + { + "start": 1470.08, + "end": 1475.18, + "probability": 0.9594 + }, + { + "start": 1476.08, + "end": 1477.14, + "probability": 0.8357 + }, + { + "start": 1477.32, + "end": 1478.44, + "probability": 0.8681 + }, + { + "start": 1478.48, + "end": 1482.98, + "probability": 0.9687 + }, + { + "start": 1483.14, + "end": 1484.4, + "probability": 0.8418 + }, + { + "start": 1484.88, + "end": 1487.56, + "probability": 0.9526 + }, + { + "start": 1487.58, + "end": 1490.96, + "probability": 0.984 + }, + { + "start": 1491.1, + "end": 1491.42, + "probability": 0.7517 + }, + { + "start": 1494.22, + "end": 1494.62, + "probability": 0.7692 + }, + { + "start": 1495.18, + "end": 1498.48, + "probability": 0.8522 + }, + { + "start": 1498.9, + "end": 1500.26, + "probability": 0.9275 + }, + { + "start": 1516.48, + "end": 1518.48, + "probability": 0.8876 + }, + { + "start": 1520.0, + "end": 1522.18, + "probability": 0.7751 + }, + { + "start": 1522.42, + "end": 1523.58, + "probability": 0.9861 + }, + { + "start": 1525.32, + "end": 1530.04, + "probability": 0.5484 + }, + { + "start": 1531.38, + "end": 1532.06, + "probability": 0.6449 + }, + { + "start": 1532.58, + "end": 1534.24, + "probability": 0.7715 + }, + { + "start": 1535.32, + "end": 1541.5, + "probability": 0.8914 + }, + { + "start": 1542.3, + "end": 1546.32, + "probability": 0.8481 + }, + { + "start": 1547.22, + "end": 1549.08, + "probability": 0.6886 + }, + { + "start": 1550.06, + "end": 1551.2, + "probability": 0.9579 + }, + { + "start": 1552.78, + "end": 1553.84, + "probability": 0.7086 + }, + { + "start": 1558.44, + "end": 1559.32, + "probability": 0.2945 + }, + { + "start": 1560.76, + "end": 1561.96, + "probability": 0.6993 + }, + { + "start": 1562.74, + "end": 1565.38, + "probability": 0.8365 + }, + { + "start": 1566.92, + "end": 1568.91, + "probability": 0.967 + }, + { + "start": 1570.4, + "end": 1573.16, + "probability": 0.7983 + }, + { + "start": 1574.16, + "end": 1575.7, + "probability": 0.9959 + }, + { + "start": 1577.5, + "end": 1578.7, + "probability": 0.9681 + }, + { + "start": 1579.82, + "end": 1580.58, + "probability": 0.8918 + }, + { + "start": 1582.36, + "end": 1583.4, + "probability": 0.8173 + }, + { + "start": 1584.76, + "end": 1586.1, + "probability": 0.9957 + }, + { + "start": 1586.64, + "end": 1587.34, + "probability": 0.869 + }, + { + "start": 1587.42, + "end": 1587.96, + "probability": 0.725 + }, + { + "start": 1588.64, + "end": 1590.9, + "probability": 0.9842 + }, + { + "start": 1592.92, + "end": 1594.1, + "probability": 0.9264 + }, + { + "start": 1595.18, + "end": 1595.78, + "probability": 0.9664 + }, + { + "start": 1597.0, + "end": 1600.38, + "probability": 0.9902 + }, + { + "start": 1602.88, + "end": 1603.78, + "probability": 0.8669 + }, + { + "start": 1606.24, + "end": 1611.76, + "probability": 0.9951 + }, + { + "start": 1611.8, + "end": 1612.42, + "probability": 0.8109 + }, + { + "start": 1612.64, + "end": 1616.66, + "probability": 0.8919 + }, + { + "start": 1617.78, + "end": 1619.42, + "probability": 0.6493 + }, + { + "start": 1619.56, + "end": 1619.86, + "probability": 0.2317 + }, + { + "start": 1621.78, + "end": 1622.46, + "probability": 0.8613 + }, + { + "start": 1623.94, + "end": 1625.14, + "probability": 0.7445 + }, + { + "start": 1626.5, + "end": 1627.5, + "probability": 0.6954 + }, + { + "start": 1628.16, + "end": 1631.64, + "probability": 0.9504 + }, + { + "start": 1632.66, + "end": 1633.22, + "probability": 0.8379 + }, + { + "start": 1635.18, + "end": 1636.7, + "probability": 0.8509 + }, + { + "start": 1636.86, + "end": 1640.82, + "probability": 0.9431 + }, + { + "start": 1644.38, + "end": 1646.82, + "probability": 0.9189 + }, + { + "start": 1647.08, + "end": 1649.22, + "probability": 0.9761 + }, + { + "start": 1649.64, + "end": 1650.2, + "probability": 0.8518 + }, + { + "start": 1650.98, + "end": 1657.2, + "probability": 0.9941 + }, + { + "start": 1657.8, + "end": 1661.67, + "probability": 0.9456 + }, + { + "start": 1662.94, + "end": 1666.32, + "probability": 0.9926 + }, + { + "start": 1667.34, + "end": 1669.68, + "probability": 0.9018 + }, + { + "start": 1671.18, + "end": 1671.6, + "probability": 0.3989 + }, + { + "start": 1672.08, + "end": 1673.94, + "probability": 0.9933 + }, + { + "start": 1673.96, + "end": 1674.82, + "probability": 0.9451 + }, + { + "start": 1676.06, + "end": 1677.16, + "probability": 0.8521 + }, + { + "start": 1680.08, + "end": 1683.72, + "probability": 0.9921 + }, + { + "start": 1684.5, + "end": 1687.84, + "probability": 0.9342 + }, + { + "start": 1687.92, + "end": 1688.32, + "probability": 0.8406 + }, + { + "start": 1689.5, + "end": 1691.92, + "probability": 0.8234 + }, + { + "start": 1694.28, + "end": 1698.48, + "probability": 0.9811 + }, + { + "start": 1698.7, + "end": 1703.3, + "probability": 0.9634 + }, + { + "start": 1703.7, + "end": 1709.54, + "probability": 0.9607 + }, + { + "start": 1710.34, + "end": 1710.92, + "probability": 0.4493 + }, + { + "start": 1712.16, + "end": 1713.54, + "probability": 0.7673 + }, + { + "start": 1717.0, + "end": 1719.92, + "probability": 0.9445 + }, + { + "start": 1722.04, + "end": 1724.02, + "probability": 0.9907 + }, + { + "start": 1726.02, + "end": 1726.12, + "probability": 0.4988 + }, + { + "start": 1726.12, + "end": 1727.66, + "probability": 0.8371 + }, + { + "start": 1729.32, + "end": 1730.92, + "probability": 0.8171 + }, + { + "start": 1731.08, + "end": 1732.5, + "probability": 0.4908 + }, + { + "start": 1732.7, + "end": 1736.86, + "probability": 0.682 + }, + { + "start": 1738.1, + "end": 1740.02, + "probability": 0.5592 + }, + { + "start": 1740.94, + "end": 1741.8, + "probability": 0.495 + }, + { + "start": 1741.94, + "end": 1742.76, + "probability": 0.3686 + }, + { + "start": 1744.53, + "end": 1746.78, + "probability": 0.9982 + }, + { + "start": 1747.48, + "end": 1751.66, + "probability": 0.9551 + }, + { + "start": 1754.27, + "end": 1754.94, + "probability": 0.2018 + }, + { + "start": 1754.94, + "end": 1754.94, + "probability": 0.1005 + }, + { + "start": 1754.94, + "end": 1758.76, + "probability": 0.2813 + }, + { + "start": 1761.2, + "end": 1763.26, + "probability": 0.7865 + }, + { + "start": 1764.7, + "end": 1765.85, + "probability": 0.7671 + }, + { + "start": 1766.88, + "end": 1768.4, + "probability": 0.991 + }, + { + "start": 1771.5, + "end": 1774.46, + "probability": 0.9922 + }, + { + "start": 1775.92, + "end": 1777.96, + "probability": 0.7889 + }, + { + "start": 1778.8, + "end": 1779.98, + "probability": 0.7188 + }, + { + "start": 1780.26, + "end": 1782.94, + "probability": 0.7821 + }, + { + "start": 1783.26, + "end": 1784.2, + "probability": 0.5618 + }, + { + "start": 1784.28, + "end": 1785.26, + "probability": 0.9227 + }, + { + "start": 1786.04, + "end": 1786.6, + "probability": 0.9272 + }, + { + "start": 1787.66, + "end": 1787.7, + "probability": 0.2607 + }, + { + "start": 1787.7, + "end": 1788.58, + "probability": 0.6627 + }, + { + "start": 1790.18, + "end": 1791.08, + "probability": 0.9458 + }, + { + "start": 1793.5, + "end": 1793.82, + "probability": 0.0811 + }, + { + "start": 1793.82, + "end": 1794.17, + "probability": 0.4345 + }, + { + "start": 1795.42, + "end": 1797.9, + "probability": 0.6779 + }, + { + "start": 1800.3, + "end": 1802.14, + "probability": 0.9873 + }, + { + "start": 1803.02, + "end": 1805.98, + "probability": 0.9464 + }, + { + "start": 1806.62, + "end": 1808.9, + "probability": 0.975 + }, + { + "start": 1812.1, + "end": 1817.54, + "probability": 0.9098 + }, + { + "start": 1817.8, + "end": 1821.08, + "probability": 0.7681 + }, + { + "start": 1822.96, + "end": 1828.1, + "probability": 0.9589 + }, + { + "start": 1828.16, + "end": 1830.28, + "probability": 0.9317 + }, + { + "start": 1831.08, + "end": 1831.87, + "probability": 0.9664 + }, + { + "start": 1832.72, + "end": 1834.16, + "probability": 0.6761 + }, + { + "start": 1835.44, + "end": 1836.8, + "probability": 0.5748 + }, + { + "start": 1837.2, + "end": 1839.08, + "probability": 0.9873 + }, + { + "start": 1839.16, + "end": 1841.2, + "probability": 0.5845 + }, + { + "start": 1841.84, + "end": 1844.41, + "probability": 0.7615 + }, + { + "start": 1846.24, + "end": 1849.94, + "probability": 0.9928 + }, + { + "start": 1850.76, + "end": 1853.6, + "probability": 0.9329 + }, + { + "start": 1855.58, + "end": 1857.42, + "probability": 0.753 + }, + { + "start": 1857.58, + "end": 1858.94, + "probability": 0.978 + }, + { + "start": 1859.66, + "end": 1861.46, + "probability": 0.8948 + }, + { + "start": 1862.6, + "end": 1864.24, + "probability": 0.9924 + }, + { + "start": 1864.86, + "end": 1865.78, + "probability": 0.8178 + }, + { + "start": 1867.5, + "end": 1869.02, + "probability": 0.9697 + }, + { + "start": 1869.98, + "end": 1871.04, + "probability": 0.7025 + }, + { + "start": 1873.44, + "end": 1874.66, + "probability": 0.9368 + }, + { + "start": 1875.5, + "end": 1877.04, + "probability": 0.9855 + }, + { + "start": 1877.58, + "end": 1878.16, + "probability": 0.9217 + }, + { + "start": 1878.36, + "end": 1881.96, + "probability": 0.998 + }, + { + "start": 1884.7, + "end": 1888.2, + "probability": 0.9753 + }, + { + "start": 1889.22, + "end": 1892.6, + "probability": 0.9412 + }, + { + "start": 1893.62, + "end": 1899.66, + "probability": 0.9177 + }, + { + "start": 1900.82, + "end": 1901.84, + "probability": 0.7986 + }, + { + "start": 1903.08, + "end": 1904.7, + "probability": 0.995 + }, + { + "start": 1904.78, + "end": 1905.82, + "probability": 0.8521 + }, + { + "start": 1906.38, + "end": 1910.5, + "probability": 0.9299 + }, + { + "start": 1912.62, + "end": 1913.22, + "probability": 0.7689 + }, + { + "start": 1913.24, + "end": 1914.04, + "probability": 0.7091 + }, + { + "start": 1914.06, + "end": 1914.56, + "probability": 0.8363 + }, + { + "start": 1914.68, + "end": 1918.1, + "probability": 0.858 + }, + { + "start": 1918.78, + "end": 1919.94, + "probability": 0.7046 + }, + { + "start": 1921.68, + "end": 1923.0, + "probability": 0.9827 + }, + { + "start": 1925.26, + "end": 1926.54, + "probability": 0.7736 + }, + { + "start": 1926.62, + "end": 1927.74, + "probability": 0.9575 + }, + { + "start": 1927.9, + "end": 1928.68, + "probability": 0.9265 + }, + { + "start": 1930.1, + "end": 1930.22, + "probability": 0.1558 + }, + { + "start": 1930.62, + "end": 1932.06, + "probability": 0.8462 + }, + { + "start": 1933.02, + "end": 1934.03, + "probability": 0.4001 + }, + { + "start": 1935.1, + "end": 1935.74, + "probability": 0.8474 + }, + { + "start": 1936.0, + "end": 1942.28, + "probability": 0.9818 + }, + { + "start": 1943.18, + "end": 1946.1, + "probability": 0.9881 + }, + { + "start": 1946.34, + "end": 1946.84, + "probability": 0.4424 + }, + { + "start": 1946.9, + "end": 1947.2, + "probability": 0.7062 + }, + { + "start": 1947.26, + "end": 1948.2, + "probability": 0.8202 + }, + { + "start": 1949.64, + "end": 1951.48, + "probability": 0.6564 + }, + { + "start": 1952.42, + "end": 1953.3, + "probability": 0.987 + }, + { + "start": 1954.52, + "end": 1956.72, + "probability": 0.9984 + }, + { + "start": 1958.02, + "end": 1958.9, + "probability": 0.8971 + }, + { + "start": 1959.6, + "end": 1960.14, + "probability": 0.8338 + }, + { + "start": 1960.66, + "end": 1962.66, + "probability": 0.9606 + }, + { + "start": 1962.68, + "end": 1963.06, + "probability": 0.7366 + }, + { + "start": 1963.1, + "end": 1964.04, + "probability": 0.6387 + }, + { + "start": 1964.14, + "end": 1964.76, + "probability": 0.5539 + }, + { + "start": 1965.54, + "end": 1970.8, + "probability": 0.8088 + }, + { + "start": 1971.92, + "end": 1973.66, + "probability": 0.9532 + }, + { + "start": 1974.82, + "end": 1978.74, + "probability": 0.9517 + }, + { + "start": 1979.32, + "end": 1981.0, + "probability": 0.6264 + }, + { + "start": 1982.38, + "end": 1986.74, + "probability": 0.9223 + }, + { + "start": 1987.12, + "end": 1987.88, + "probability": 0.7445 + }, + { + "start": 1988.56, + "end": 1990.06, + "probability": 0.9917 + }, + { + "start": 1991.66, + "end": 1992.92, + "probability": 0.9271 + }, + { + "start": 1996.18, + "end": 1997.64, + "probability": 0.6873 + }, + { + "start": 1999.72, + "end": 2002.48, + "probability": 0.8981 + }, + { + "start": 2002.66, + "end": 2005.72, + "probability": 0.9402 + }, + { + "start": 2006.84, + "end": 2008.92, + "probability": 0.9199 + }, + { + "start": 2010.08, + "end": 2012.14, + "probability": 0.812 + }, + { + "start": 2014.4, + "end": 2014.64, + "probability": 0.0587 + }, + { + "start": 2015.3, + "end": 2016.74, + "probability": 0.4538 + }, + { + "start": 2017.34, + "end": 2018.57, + "probability": 0.9946 + }, + { + "start": 2019.7, + "end": 2023.68, + "probability": 0.9854 + }, + { + "start": 2023.74, + "end": 2026.08, + "probability": 0.9855 + }, + { + "start": 2026.3, + "end": 2027.44, + "probability": 0.8787 + }, + { + "start": 2028.04, + "end": 2033.32, + "probability": 0.8781 + }, + { + "start": 2034.06, + "end": 2037.52, + "probability": 0.6536 + }, + { + "start": 2038.82, + "end": 2040.48, + "probability": 0.9875 + }, + { + "start": 2041.34, + "end": 2041.74, + "probability": 0.9074 + }, + { + "start": 2042.08, + "end": 2043.02, + "probability": 0.872 + }, + { + "start": 2044.94, + "end": 2045.72, + "probability": 0.9368 + }, + { + "start": 2047.04, + "end": 2047.16, + "probability": 0.4868 + }, + { + "start": 2047.16, + "end": 2048.28, + "probability": 0.6146 + }, + { + "start": 2048.4, + "end": 2052.64, + "probability": 0.6125 + }, + { + "start": 2054.84, + "end": 2056.74, + "probability": 0.6982 + }, + { + "start": 2058.22, + "end": 2061.33, + "probability": 0.7474 + }, + { + "start": 2061.58, + "end": 2063.0, + "probability": 0.9709 + }, + { + "start": 2063.78, + "end": 2066.43, + "probability": 0.9983 + }, + { + "start": 2068.46, + "end": 2070.9, + "probability": 0.6645 + }, + { + "start": 2072.96, + "end": 2079.32, + "probability": 0.8659 + }, + { + "start": 2079.5, + "end": 2081.16, + "probability": 0.7494 + }, + { + "start": 2082.26, + "end": 2084.18, + "probability": 0.9962 + }, + { + "start": 2084.78, + "end": 2086.68, + "probability": 0.8484 + }, + { + "start": 2087.48, + "end": 2088.66, + "probability": 0.9884 + }, + { + "start": 2089.72, + "end": 2091.29, + "probability": 0.8073 + }, + { + "start": 2092.36, + "end": 2097.22, + "probability": 0.7191 + }, + { + "start": 2098.16, + "end": 2099.12, + "probability": 0.7423 + }, + { + "start": 2099.96, + "end": 2101.34, + "probability": 0.7925 + }, + { + "start": 2102.98, + "end": 2105.9, + "probability": 0.8328 + }, + { + "start": 2107.52, + "end": 2107.52, + "probability": 0.1217 + }, + { + "start": 2107.52, + "end": 2107.8, + "probability": 0.5687 + }, + { + "start": 2108.5, + "end": 2112.1, + "probability": 0.9177 + }, + { + "start": 2112.4, + "end": 2113.72, + "probability": 0.6966 + }, + { + "start": 2113.78, + "end": 2115.93, + "probability": 0.2863 + }, + { + "start": 2117.24, + "end": 2120.3, + "probability": 0.6839 + }, + { + "start": 2121.48, + "end": 2125.38, + "probability": 0.858 + }, + { + "start": 2126.68, + "end": 2129.84, + "probability": 0.9773 + }, + { + "start": 2129.92, + "end": 2131.08, + "probability": 0.7507 + }, + { + "start": 2131.14, + "end": 2131.78, + "probability": 0.9293 + }, + { + "start": 2133.52, + "end": 2134.98, + "probability": 0.6842 + }, + { + "start": 2136.44, + "end": 2138.97, + "probability": 0.959 + }, + { + "start": 2141.72, + "end": 2145.32, + "probability": 0.9566 + }, + { + "start": 2146.6, + "end": 2148.58, + "probability": 0.88 + }, + { + "start": 2149.68, + "end": 2151.32, + "probability": 0.9908 + }, + { + "start": 2152.28, + "end": 2153.1, + "probability": 0.9831 + }, + { + "start": 2153.22, + "end": 2155.41, + "probability": 0.945 + }, + { + "start": 2156.96, + "end": 2158.84, + "probability": 0.9903 + }, + { + "start": 2159.86, + "end": 2166.38, + "probability": 0.8148 + }, + { + "start": 2166.48, + "end": 2167.01, + "probability": 0.8959 + }, + { + "start": 2169.34, + "end": 2170.76, + "probability": 0.7922 + }, + { + "start": 2170.82, + "end": 2171.26, + "probability": 0.8451 + }, + { + "start": 2171.26, + "end": 2173.83, + "probability": 0.9792 + }, + { + "start": 2174.5, + "end": 2175.6, + "probability": 0.5018 + }, + { + "start": 2176.26, + "end": 2178.76, + "probability": 0.8843 + }, + { + "start": 2179.1, + "end": 2180.1, + "probability": 0.0416 + }, + { + "start": 2181.24, + "end": 2181.96, + "probability": 0.3959 + }, + { + "start": 2182.06, + "end": 2182.28, + "probability": 0.3237 + }, + { + "start": 2182.3, + "end": 2183.26, + "probability": 0.657 + }, + { + "start": 2183.38, + "end": 2183.7, + "probability": 0.4339 + }, + { + "start": 2183.82, + "end": 2184.3, + "probability": 0.3461 + }, + { + "start": 2184.44, + "end": 2185.92, + "probability": 0.9506 + }, + { + "start": 2185.94, + "end": 2187.62, + "probability": 0.9604 + }, + { + "start": 2190.52, + "end": 2190.88, + "probability": 0.9751 + }, + { + "start": 2191.48, + "end": 2194.72, + "probability": 0.8078 + }, + { + "start": 2195.52, + "end": 2196.44, + "probability": 0.8461 + }, + { + "start": 2198.06, + "end": 2198.96, + "probability": 0.768 + }, + { + "start": 2199.0, + "end": 2199.98, + "probability": 0.8365 + }, + { + "start": 2200.3, + "end": 2201.46, + "probability": 0.4661 + }, + { + "start": 2201.64, + "end": 2202.93, + "probability": 0.4451 + }, + { + "start": 2203.7, + "end": 2204.36, + "probability": 0.9437 + }, + { + "start": 2204.84, + "end": 2209.6, + "probability": 0.643 + }, + { + "start": 2209.84, + "end": 2210.52, + "probability": 0.3398 + }, + { + "start": 2210.6, + "end": 2215.56, + "probability": 0.8914 + }, + { + "start": 2216.22, + "end": 2218.76, + "probability": 0.8852 + }, + { + "start": 2220.78, + "end": 2223.52, + "probability": 0.6044 + }, + { + "start": 2223.66, + "end": 2224.7, + "probability": 0.5002 + }, + { + "start": 2224.74, + "end": 2226.16, + "probability": 0.4926 + }, + { + "start": 2226.64, + "end": 2227.34, + "probability": 0.8531 + }, + { + "start": 2227.96, + "end": 2229.3, + "probability": 0.6953 + }, + { + "start": 2229.6, + "end": 2229.68, + "probability": 0.0384 + }, + { + "start": 2229.68, + "end": 2232.0, + "probability": 0.7896 + }, + { + "start": 2232.08, + "end": 2232.66, + "probability": 0.3515 + }, + { + "start": 2232.76, + "end": 2233.42, + "probability": 0.2827 + }, + { + "start": 2233.44, + "end": 2237.7, + "probability": 0.9519 + }, + { + "start": 2237.7, + "end": 2238.94, + "probability": 0.063 + }, + { + "start": 2240.88, + "end": 2240.88, + "probability": 0.2323 + }, + { + "start": 2242.27, + "end": 2243.68, + "probability": 0.178 + }, + { + "start": 2243.68, + "end": 2243.68, + "probability": 0.0767 + }, + { + "start": 2243.68, + "end": 2245.54, + "probability": 0.1351 + }, + { + "start": 2245.56, + "end": 2245.66, + "probability": 0.6249 + }, + { + "start": 2245.66, + "end": 2246.78, + "probability": 0.5384 + }, + { + "start": 2247.28, + "end": 2253.42, + "probability": 0.6155 + }, + { + "start": 2254.62, + "end": 2257.32, + "probability": 0.6894 + }, + { + "start": 2258.08, + "end": 2259.32, + "probability": 0.4209 + }, + { + "start": 2259.32, + "end": 2259.7, + "probability": 0.0554 + }, + { + "start": 2259.7, + "end": 2261.59, + "probability": 0.8763 + }, + { + "start": 2262.72, + "end": 2262.74, + "probability": 0.2492 + }, + { + "start": 2262.74, + "end": 2266.48, + "probability": 0.9888 + }, + { + "start": 2266.58, + "end": 2268.3, + "probability": 0.7472 + }, + { + "start": 2270.62, + "end": 2273.8, + "probability": 0.8922 + }, + { + "start": 2274.36, + "end": 2276.18, + "probability": 0.8948 + }, + { + "start": 2276.46, + "end": 2278.02, + "probability": 0.9922 + }, + { + "start": 2278.62, + "end": 2279.08, + "probability": 0.9847 + }, + { + "start": 2280.78, + "end": 2282.82, + "probability": 0.9405 + }, + { + "start": 2283.62, + "end": 2285.23, + "probability": 0.998 + }, + { + "start": 2285.66, + "end": 2287.96, + "probability": 0.7139 + }, + { + "start": 2288.28, + "end": 2288.36, + "probability": 0.1372 + }, + { + "start": 2288.36, + "end": 2288.36, + "probability": 0.1356 + }, + { + "start": 2288.36, + "end": 2288.94, + "probability": 0.4776 + }, + { + "start": 2289.48, + "end": 2290.42, + "probability": 0.4711 + }, + { + "start": 2290.56, + "end": 2293.0, + "probability": 0.4345 + }, + { + "start": 2293.0, + "end": 2294.22, + "probability": 0.6285 + }, + { + "start": 2294.3, + "end": 2296.32, + "probability": 0.8091 + }, + { + "start": 2297.02, + "end": 2298.38, + "probability": 0.502 + }, + { + "start": 2299.1, + "end": 2301.44, + "probability": 0.9782 + }, + { + "start": 2302.2, + "end": 2305.7, + "probability": 0.948 + }, + { + "start": 2306.5, + "end": 2312.56, + "probability": 0.9921 + }, + { + "start": 2313.14, + "end": 2315.58, + "probability": 0.6458 + }, + { + "start": 2316.04, + "end": 2316.04, + "probability": 0.1541 + }, + { + "start": 2316.04, + "end": 2316.2, + "probability": 0.5674 + }, + { + "start": 2316.34, + "end": 2317.62, + "probability": 0.9583 + }, + { + "start": 2319.22, + "end": 2321.38, + "probability": 0.9248 + }, + { + "start": 2322.5, + "end": 2324.62, + "probability": 0.958 + }, + { + "start": 2325.7, + "end": 2329.04, + "probability": 0.7665 + }, + { + "start": 2329.04, + "end": 2329.32, + "probability": 0.0192 + }, + { + "start": 2330.0, + "end": 2331.64, + "probability": 0.2209 + }, + { + "start": 2331.64, + "end": 2333.4, + "probability": 0.9204 + }, + { + "start": 2334.44, + "end": 2335.04, + "probability": 0.2506 + }, + { + "start": 2335.08, + "end": 2336.86, + "probability": 0.9518 + }, + { + "start": 2338.44, + "end": 2341.08, + "probability": 0.9253 + }, + { + "start": 2341.64, + "end": 2343.76, + "probability": 0.9986 + }, + { + "start": 2343.92, + "end": 2344.74, + "probability": 0.5717 + }, + { + "start": 2346.4, + "end": 2347.88, + "probability": 0.9172 + }, + { + "start": 2349.26, + "end": 2350.22, + "probability": 0.9141 + }, + { + "start": 2351.26, + "end": 2351.44, + "probability": 0.4268 + }, + { + "start": 2351.6, + "end": 2354.94, + "probability": 0.9966 + }, + { + "start": 2355.1, + "end": 2355.88, + "probability": 0.9465 + }, + { + "start": 2355.9, + "end": 2356.2, + "probability": 0.3664 + }, + { + "start": 2356.46, + "end": 2359.2, + "probability": 0.8782 + }, + { + "start": 2359.58, + "end": 2360.64, + "probability": 0.6147 + }, + { + "start": 2360.74, + "end": 2361.1, + "probability": 0.3091 + }, + { + "start": 2361.2, + "end": 2362.02, + "probability": 0.5428 + }, + { + "start": 2362.08, + "end": 2363.44, + "probability": 0.9946 + }, + { + "start": 2364.86, + "end": 2366.32, + "probability": 0.0097 + }, + { + "start": 2366.88, + "end": 2371.26, + "probability": 0.5226 + }, + { + "start": 2371.26, + "end": 2372.44, + "probability": 0.6284 + }, + { + "start": 2373.86, + "end": 2375.1, + "probability": 0.5974 + }, + { + "start": 2376.28, + "end": 2378.82, + "probability": 0.9839 + }, + { + "start": 2379.12, + "end": 2382.24, + "probability": 0.3849 + }, + { + "start": 2382.32, + "end": 2382.96, + "probability": 0.0188 + }, + { + "start": 2382.96, + "end": 2390.1, + "probability": 0.7524 + }, + { + "start": 2390.52, + "end": 2391.86, + "probability": 0.7206 + }, + { + "start": 2392.34, + "end": 2393.34, + "probability": 0.6247 + }, + { + "start": 2393.94, + "end": 2395.16, + "probability": 0.91 + }, + { + "start": 2395.3, + "end": 2396.48, + "probability": 0.96 + }, + { + "start": 2397.7, + "end": 2400.4, + "probability": 0.9941 + }, + { + "start": 2400.96, + "end": 2402.02, + "probability": 0.99 + }, + { + "start": 2403.22, + "end": 2403.22, + "probability": 0.4143 + }, + { + "start": 2403.3, + "end": 2404.66, + "probability": 0.9681 + }, + { + "start": 2405.12, + "end": 2405.56, + "probability": 0.9614 + }, + { + "start": 2405.62, + "end": 2408.76, + "probability": 0.9703 + }, + { + "start": 2409.1, + "end": 2410.08, + "probability": 0.8551 + }, + { + "start": 2411.0, + "end": 2414.86, + "probability": 0.1577 + }, + { + "start": 2414.86, + "end": 2416.24, + "probability": 0.0801 + }, + { + "start": 2416.4, + "end": 2420.76, + "probability": 0.962 + }, + { + "start": 2421.46, + "end": 2427.04, + "probability": 0.1872 + }, + { + "start": 2427.04, + "end": 2429.6, + "probability": 0.0921 + }, + { + "start": 2429.88, + "end": 2430.5, + "probability": 0.0362 + }, + { + "start": 2430.5, + "end": 2430.82, + "probability": 0.3988 + }, + { + "start": 2430.82, + "end": 2430.82, + "probability": 0.1115 + }, + { + "start": 2433.48, + "end": 2440.1, + "probability": 0.1042 + }, + { + "start": 2440.1, + "end": 2443.24, + "probability": 0.2751 + }, + { + "start": 2444.3, + "end": 2444.3, + "probability": 0.1119 + }, + { + "start": 2444.3, + "end": 2444.36, + "probability": 0.1205 + }, + { + "start": 2444.36, + "end": 2444.36, + "probability": 0.0339 + }, + { + "start": 2444.36, + "end": 2444.36, + "probability": 0.0795 + }, + { + "start": 2444.36, + "end": 2445.98, + "probability": 0.4393 + }, + { + "start": 2447.02, + "end": 2449.6, + "probability": 0.749 + }, + { + "start": 2450.78, + "end": 2455.48, + "probability": 0.9937 + }, + { + "start": 2455.6, + "end": 2455.6, + "probability": 0.0305 + }, + { + "start": 2455.6, + "end": 2458.12, + "probability": 0.9373 + }, + { + "start": 2458.7, + "end": 2459.06, + "probability": 0.0745 + }, + { + "start": 2459.18, + "end": 2460.56, + "probability": 0.9211 + }, + { + "start": 2460.6, + "end": 2464.38, + "probability": 0.8926 + }, + { + "start": 2465.32, + "end": 2468.66, + "probability": 0.9926 + }, + { + "start": 2469.24, + "end": 2473.66, + "probability": 0.9468 + }, + { + "start": 2473.7, + "end": 2473.7, + "probability": 0.0561 + }, + { + "start": 2473.8, + "end": 2474.8, + "probability": 0.8972 + }, + { + "start": 2474.86, + "end": 2476.4, + "probability": 0.91 + }, + { + "start": 2477.94, + "end": 2481.38, + "probability": 0.9775 + }, + { + "start": 2482.46, + "end": 2488.2, + "probability": 0.7286 + }, + { + "start": 2488.3, + "end": 2488.4, + "probability": 0.3304 + }, + { + "start": 2488.4, + "end": 2488.4, + "probability": 0.049 + }, + { + "start": 2488.4, + "end": 2488.4, + "probability": 0.0778 + }, + { + "start": 2488.4, + "end": 2490.04, + "probability": 0.6731 + }, + { + "start": 2491.1, + "end": 2493.4, + "probability": 0.8788 + }, + { + "start": 2493.52, + "end": 2495.22, + "probability": 0.6041 + }, + { + "start": 2496.38, + "end": 2496.9, + "probability": 0.9009 + }, + { + "start": 2497.6, + "end": 2501.24, + "probability": 0.9685 + }, + { + "start": 2501.34, + "end": 2503.32, + "probability": 0.9146 + }, + { + "start": 2503.74, + "end": 2504.14, + "probability": 0.8671 + }, + { + "start": 2504.92, + "end": 2506.0, + "probability": 0.7621 + }, + { + "start": 2507.6, + "end": 2509.74, + "probability": 0.479 + }, + { + "start": 2510.9, + "end": 2512.82, + "probability": 0.8462 + }, + { + "start": 2513.58, + "end": 2516.48, + "probability": 0.9359 + }, + { + "start": 2517.04, + "end": 2519.66, + "probability": 0.937 + }, + { + "start": 2520.04, + "end": 2521.84, + "probability": 0.949 + }, + { + "start": 2522.74, + "end": 2524.02, + "probability": 0.8586 + }, + { + "start": 2525.04, + "end": 2526.06, + "probability": 0.7445 + }, + { + "start": 2528.48, + "end": 2532.52, + "probability": 0.748 + }, + { + "start": 2533.3, + "end": 2533.96, + "probability": 0.7067 + }, + { + "start": 2534.04, + "end": 2535.12, + "probability": 0.9313 + }, + { + "start": 2535.54, + "end": 2537.64, + "probability": 0.9966 + }, + { + "start": 2539.42, + "end": 2541.4, + "probability": 0.9924 + }, + { + "start": 2542.18, + "end": 2543.82, + "probability": 0.9587 + }, + { + "start": 2544.5, + "end": 2546.16, + "probability": 0.9891 + }, + { + "start": 2546.64, + "end": 2547.41, + "probability": 0.9534 + }, + { + "start": 2547.72, + "end": 2548.07, + "probability": 0.3965 + }, + { + "start": 2548.82, + "end": 2551.64, + "probability": 0.8319 + }, + { + "start": 2552.56, + "end": 2554.26, + "probability": 0.9597 + }, + { + "start": 2554.34, + "end": 2555.2, + "probability": 0.9364 + }, + { + "start": 2555.32, + "end": 2556.4, + "probability": 0.9444 + }, + { + "start": 2556.54, + "end": 2558.34, + "probability": 0.96 + }, + { + "start": 2558.66, + "end": 2559.08, + "probability": 0.1022 + }, + { + "start": 2559.08, + "end": 2560.04, + "probability": 0.894 + }, + { + "start": 2560.22, + "end": 2560.38, + "probability": 0.8811 + }, + { + "start": 2561.34, + "end": 2561.5, + "probability": 0.5517 + }, + { + "start": 2561.62, + "end": 2562.1, + "probability": 0.9512 + }, + { + "start": 2563.54, + "end": 2564.96, + "probability": 0.2622 + }, + { + "start": 2565.58, + "end": 2565.62, + "probability": 0.1112 + }, + { + "start": 2565.62, + "end": 2569.19, + "probability": 0.9983 + }, + { + "start": 2569.7, + "end": 2570.34, + "probability": 0.6642 + }, + { + "start": 2570.36, + "end": 2571.78, + "probability": 0.9418 + }, + { + "start": 2572.46, + "end": 2575.34, + "probability": 0.6716 + }, + { + "start": 2575.4, + "end": 2575.84, + "probability": 0.4035 + }, + { + "start": 2575.84, + "end": 2577.42, + "probability": 0.9709 + }, + { + "start": 2579.54, + "end": 2583.09, + "probability": 0.5853 + }, + { + "start": 2584.38, + "end": 2584.48, + "probability": 0.7759 + }, + { + "start": 2584.48, + "end": 2585.52, + "probability": 0.7456 + }, + { + "start": 2585.74, + "end": 2587.88, + "probability": 0.16 + }, + { + "start": 2587.88, + "end": 2589.06, + "probability": 0.873 + }, + { + "start": 2589.2, + "end": 2590.52, + "probability": 0.9583 + }, + { + "start": 2590.54, + "end": 2591.44, + "probability": 0.9569 + }, + { + "start": 2591.62, + "end": 2592.97, + "probability": 0.9604 + }, + { + "start": 2593.92, + "end": 2599.16, + "probability": 0.9373 + }, + { + "start": 2599.9, + "end": 2603.89, + "probability": 0.8518 + }, + { + "start": 2604.96, + "end": 2606.96, + "probability": 0.5613 + }, + { + "start": 2607.56, + "end": 2608.56, + "probability": 0.7194 + }, + { + "start": 2608.82, + "end": 2609.66, + "probability": 0.9097 + }, + { + "start": 2610.12, + "end": 2613.12, + "probability": 0.9947 + }, + { + "start": 2613.18, + "end": 2613.84, + "probability": 0.4194 + }, + { + "start": 2614.78, + "end": 2617.5, + "probability": 0.7387 + }, + { + "start": 2618.91, + "end": 2623.02, + "probability": 0.942 + }, + { + "start": 2623.48, + "end": 2624.0, + "probability": 0.0858 + }, + { + "start": 2626.31, + "end": 2627.08, + "probability": 0.0768 + }, + { + "start": 2627.18, + "end": 2629.6, + "probability": 0.1073 + }, + { + "start": 2629.92, + "end": 2630.76, + "probability": 0.0253 + }, + { + "start": 2630.76, + "end": 2633.24, + "probability": 0.1934 + }, + { + "start": 2633.24, + "end": 2633.24, + "probability": 0.0963 + }, + { + "start": 2633.24, + "end": 2633.73, + "probability": 0.0702 + }, + { + "start": 2634.68, + "end": 2637.12, + "probability": 0.1317 + }, + { + "start": 2637.86, + "end": 2637.86, + "probability": 0.1647 + }, + { + "start": 2637.86, + "end": 2637.86, + "probability": 0.1045 + }, + { + "start": 2637.86, + "end": 2637.86, + "probability": 0.0754 + }, + { + "start": 2637.86, + "end": 2637.86, + "probability": 0.0496 + }, + { + "start": 2637.86, + "end": 2637.86, + "probability": 0.0377 + }, + { + "start": 2637.86, + "end": 2638.22, + "probability": 0.2715 + }, + { + "start": 2638.9, + "end": 2641.06, + "probability": 0.6377 + }, + { + "start": 2642.5, + "end": 2644.5, + "probability": 0.8739 + }, + { + "start": 2645.34, + "end": 2645.98, + "probability": 0.9899 + }, + { + "start": 2646.82, + "end": 2648.62, + "probability": 0.8179 + }, + { + "start": 2648.68, + "end": 2650.7, + "probability": 0.9686 + }, + { + "start": 2650.76, + "end": 2651.32, + "probability": 0.9692 + }, + { + "start": 2652.54, + "end": 2654.64, + "probability": 0.9608 + }, + { + "start": 2655.44, + "end": 2656.5, + "probability": 0.7715 + }, + { + "start": 2657.3, + "end": 2660.76, + "probability": 0.9475 + }, + { + "start": 2662.94, + "end": 2665.9, + "probability": 0.5638 + }, + { + "start": 2667.06, + "end": 2668.22, + "probability": 0.991 + }, + { + "start": 2670.34, + "end": 2675.8, + "probability": 0.9927 + }, + { + "start": 2677.4, + "end": 2678.52, + "probability": 0.9916 + }, + { + "start": 2678.62, + "end": 2681.24, + "probability": 0.9485 + }, + { + "start": 2682.66, + "end": 2684.48, + "probability": 0.9986 + }, + { + "start": 2685.62, + "end": 2690.12, + "probability": 0.8997 + }, + { + "start": 2693.32, + "end": 2696.6, + "probability": 0.9952 + }, + { + "start": 2696.76, + "end": 2698.26, + "probability": 0.9745 + }, + { + "start": 2698.9, + "end": 2700.44, + "probability": 0.9959 + }, + { + "start": 2702.56, + "end": 2704.24, + "probability": 0.9683 + }, + { + "start": 2706.5, + "end": 2709.28, + "probability": 0.9937 + }, + { + "start": 2710.52, + "end": 2713.58, + "probability": 0.9094 + }, + { + "start": 2714.86, + "end": 2715.96, + "probability": 0.5812 + }, + { + "start": 2715.96, + "end": 2716.76, + "probability": 0.7181 + }, + { + "start": 2716.86, + "end": 2721.02, + "probability": 0.9979 + }, + { + "start": 2723.62, + "end": 2724.84, + "probability": 0.9053 + }, + { + "start": 2725.62, + "end": 2727.96, + "probability": 0.7415 + }, + { + "start": 2728.86, + "end": 2730.32, + "probability": 0.9866 + }, + { + "start": 2731.08, + "end": 2732.16, + "probability": 0.9545 + }, + { + "start": 2733.86, + "end": 2736.32, + "probability": 0.765 + }, + { + "start": 2736.36, + "end": 2739.5, + "probability": 0.9581 + }, + { + "start": 2739.56, + "end": 2742.36, + "probability": 0.9574 + }, + { + "start": 2743.5, + "end": 2744.17, + "probability": 0.3041 + }, + { + "start": 2744.78, + "end": 2746.08, + "probability": 0.8308 + }, + { + "start": 2746.48, + "end": 2750.58, + "probability": 0.9355 + }, + { + "start": 2750.68, + "end": 2751.56, + "probability": 0.8848 + }, + { + "start": 2751.74, + "end": 2752.94, + "probability": 0.5347 + }, + { + "start": 2753.02, + "end": 2753.3, + "probability": 0.9451 + }, + { + "start": 2753.34, + "end": 2754.52, + "probability": 0.8624 + }, + { + "start": 2755.1, + "end": 2757.14, + "probability": 0.9734 + }, + { + "start": 2757.4, + "end": 2758.54, + "probability": 0.9482 + }, + { + "start": 2760.24, + "end": 2761.76, + "probability": 0.8383 + }, + { + "start": 2762.9, + "end": 2764.24, + "probability": 0.6671 + }, + { + "start": 2765.28, + "end": 2767.42, + "probability": 0.6473 + }, + { + "start": 2768.5, + "end": 2770.28, + "probability": 0.6361 + }, + { + "start": 2770.28, + "end": 2772.63, + "probability": 0.9758 + }, + { + "start": 2772.98, + "end": 2773.26, + "probability": 0.8896 + }, + { + "start": 2776.04, + "end": 2777.26, + "probability": 0.0242 + }, + { + "start": 2779.74, + "end": 2780.76, + "probability": 0.6572 + }, + { + "start": 2781.4, + "end": 2784.54, + "probability": 0.9962 + }, + { + "start": 2784.54, + "end": 2787.46, + "probability": 0.84 + }, + { + "start": 2787.52, + "end": 2788.28, + "probability": 0.8742 + }, + { + "start": 2799.94, + "end": 2802.14, + "probability": 0.6594 + }, + { + "start": 2805.16, + "end": 2805.88, + "probability": 0.9037 + }, + { + "start": 2807.38, + "end": 2812.26, + "probability": 0.99 + }, + { + "start": 2814.38, + "end": 2817.76, + "probability": 0.9479 + }, + { + "start": 2818.5, + "end": 2819.7, + "probability": 0.9243 + }, + { + "start": 2822.42, + "end": 2829.26, + "probability": 0.9862 + }, + { + "start": 2832.0, + "end": 2833.86, + "probability": 0.9019 + }, + { + "start": 2834.58, + "end": 2837.1, + "probability": 0.7584 + }, + { + "start": 2839.1, + "end": 2841.24, + "probability": 0.9243 + }, + { + "start": 2842.06, + "end": 2847.02, + "probability": 0.7448 + }, + { + "start": 2848.39, + "end": 2850.28, + "probability": 0.7552 + }, + { + "start": 2851.58, + "end": 2855.38, + "probability": 0.9835 + }, + { + "start": 2855.44, + "end": 2856.52, + "probability": 0.7111 + }, + { + "start": 2857.4, + "end": 2858.18, + "probability": 0.7238 + }, + { + "start": 2858.5, + "end": 2861.42, + "probability": 0.4729 + }, + { + "start": 2862.02, + "end": 2862.8, + "probability": 0.8759 + }, + { + "start": 2863.34, + "end": 2864.1, + "probability": 0.7137 + }, + { + "start": 2865.36, + "end": 2866.76, + "probability": 0.9286 + }, + { + "start": 2868.0, + "end": 2868.54, + "probability": 0.947 + }, + { + "start": 2869.28, + "end": 2870.66, + "probability": 0.978 + }, + { + "start": 2871.78, + "end": 2873.14, + "probability": 0.9569 + }, + { + "start": 2874.86, + "end": 2878.68, + "probability": 0.9688 + }, + { + "start": 2880.1, + "end": 2881.84, + "probability": 0.9812 + }, + { + "start": 2882.92, + "end": 2884.4, + "probability": 0.6866 + }, + { + "start": 2885.28, + "end": 2887.74, + "probability": 0.9529 + }, + { + "start": 2889.08, + "end": 2890.0, + "probability": 0.9687 + }, + { + "start": 2890.5, + "end": 2890.94, + "probability": 0.9802 + }, + { + "start": 2891.78, + "end": 2892.22, + "probability": 0.959 + }, + { + "start": 2893.0, + "end": 2894.0, + "probability": 0.8887 + }, + { + "start": 2894.34, + "end": 2895.28, + "probability": 0.705 + }, + { + "start": 2896.42, + "end": 2897.72, + "probability": 0.7408 + }, + { + "start": 2898.4, + "end": 2899.28, + "probability": 0.9785 + }, + { + "start": 2900.18, + "end": 2902.72, + "probability": 0.9766 + }, + { + "start": 2904.4, + "end": 2906.6, + "probability": 0.7911 + }, + { + "start": 2907.72, + "end": 2909.0, + "probability": 0.7446 + }, + { + "start": 2909.94, + "end": 2915.36, + "probability": 0.9873 + }, + { + "start": 2916.02, + "end": 2917.06, + "probability": 0.9792 + }, + { + "start": 2917.24, + "end": 2918.04, + "probability": 0.955 + }, + { + "start": 2920.34, + "end": 2923.26, + "probability": 0.8367 + }, + { + "start": 2924.39, + "end": 2928.08, + "probability": 0.9712 + }, + { + "start": 2928.78, + "end": 2929.94, + "probability": 0.9891 + }, + { + "start": 2931.34, + "end": 2933.11, + "probability": 0.78 + }, + { + "start": 2933.3, + "end": 2934.22, + "probability": 0.9194 + }, + { + "start": 2934.5, + "end": 2935.32, + "probability": 0.9641 + }, + { + "start": 2935.48, + "end": 2936.38, + "probability": 0.3849 + }, + { + "start": 2937.02, + "end": 2938.58, + "probability": 0.6636 + }, + { + "start": 2939.42, + "end": 2941.78, + "probability": 0.9645 + }, + { + "start": 2941.88, + "end": 2946.52, + "probability": 0.9606 + }, + { + "start": 2946.8, + "end": 2948.78, + "probability": 0.9746 + }, + { + "start": 2949.64, + "end": 2951.64, + "probability": 0.7066 + }, + { + "start": 2953.76, + "end": 2955.96, + "probability": 0.4895 + }, + { + "start": 2956.96, + "end": 2958.52, + "probability": 0.6762 + }, + { + "start": 2958.52, + "end": 2960.53, + "probability": 0.4993 + }, + { + "start": 2962.28, + "end": 2963.94, + "probability": 0.6779 + }, + { + "start": 2964.66, + "end": 2968.04, + "probability": 0.4163 + }, + { + "start": 2969.66, + "end": 2971.94, + "probability": 0.7837 + }, + { + "start": 2972.78, + "end": 2973.4, + "probability": 0.1286 + }, + { + "start": 2973.58, + "end": 2975.8, + "probability": 0.9189 + }, + { + "start": 2978.02, + "end": 2981.74, + "probability": 0.982 + }, + { + "start": 2981.8, + "end": 2983.5, + "probability": 0.9897 + }, + { + "start": 2983.56, + "end": 2984.3, + "probability": 0.9215 + }, + { + "start": 2985.68, + "end": 2987.12, + "probability": 0.9072 + }, + { + "start": 2987.5, + "end": 2989.04, + "probability": 0.968 + }, + { + "start": 2990.14, + "end": 2991.36, + "probability": 0.241 + }, + { + "start": 2992.08, + "end": 2993.42, + "probability": 0.6874 + }, + { + "start": 2995.0, + "end": 2997.28, + "probability": 0.9886 + }, + { + "start": 2999.3, + "end": 3002.26, + "probability": 0.9177 + }, + { + "start": 3003.48, + "end": 3005.92, + "probability": 0.5988 + }, + { + "start": 3006.84, + "end": 3008.1, + "probability": 0.9689 + }, + { + "start": 3010.36, + "end": 3011.04, + "probability": 0.5901 + }, + { + "start": 3013.1, + "end": 3015.08, + "probability": 0.8606 + }, + { + "start": 3015.76, + "end": 3016.94, + "probability": 0.3481 + }, + { + "start": 3017.72, + "end": 3019.8, + "probability": 0.6121 + }, + { + "start": 3019.84, + "end": 3020.46, + "probability": 0.4518 + }, + { + "start": 3021.9, + "end": 3025.48, + "probability": 0.8655 + }, + { + "start": 3027.98, + "end": 3029.54, + "probability": 0.978 + }, + { + "start": 3030.7, + "end": 3033.5, + "probability": 0.5779 + }, + { + "start": 3034.06, + "end": 3035.06, + "probability": 0.9259 + }, + { + "start": 3035.18, + "end": 3039.58, + "probability": 0.6806 + }, + { + "start": 3040.08, + "end": 3040.8, + "probability": 0.8247 + }, + { + "start": 3043.38, + "end": 3047.48, + "probability": 0.9612 + }, + { + "start": 3048.16, + "end": 3049.22, + "probability": 0.8772 + }, + { + "start": 3051.02, + "end": 3054.18, + "probability": 0.8723 + }, + { + "start": 3054.42, + "end": 3060.38, + "probability": 0.9264 + }, + { + "start": 3063.78, + "end": 3066.32, + "probability": 0.7035 + }, + { + "start": 3067.04, + "end": 3068.12, + "probability": 0.8668 + }, + { + "start": 3069.24, + "end": 3071.36, + "probability": 0.8671 + }, + { + "start": 3073.26, + "end": 3075.24, + "probability": 0.8834 + }, + { + "start": 3076.18, + "end": 3077.34, + "probability": 0.5641 + }, + { + "start": 3077.96, + "end": 3078.76, + "probability": 0.9895 + }, + { + "start": 3080.1, + "end": 3081.96, + "probability": 0.988 + }, + { + "start": 3084.0, + "end": 3088.28, + "probability": 0.6331 + }, + { + "start": 3090.3, + "end": 3091.9, + "probability": 0.9885 + }, + { + "start": 3092.52, + "end": 3093.34, + "probability": 0.6704 + }, + { + "start": 3093.76, + "end": 3096.8, + "probability": 0.4772 + }, + { + "start": 3096.8, + "end": 3097.46, + "probability": 0.5668 + }, + { + "start": 3098.1, + "end": 3098.16, + "probability": 0.0031 + }, + { + "start": 3101.99, + "end": 3112.18, + "probability": 0.7777 + }, + { + "start": 3113.26, + "end": 3114.2, + "probability": 0.9651 + }, + { + "start": 3116.12, + "end": 3119.11, + "probability": 0.9604 + }, + { + "start": 3120.42, + "end": 3121.7, + "probability": 0.9264 + }, + { + "start": 3121.92, + "end": 3124.98, + "probability": 0.9904 + }, + { + "start": 3128.0, + "end": 3130.8, + "probability": 0.9932 + }, + { + "start": 3131.42, + "end": 3132.26, + "probability": 0.8526 + }, + { + "start": 3134.1, + "end": 3135.4, + "probability": 0.6806 + }, + { + "start": 3136.06, + "end": 3137.19, + "probability": 0.7044 + }, + { + "start": 3138.24, + "end": 3141.3, + "probability": 0.8565 + }, + { + "start": 3143.18, + "end": 3145.04, + "probability": 0.9879 + }, + { + "start": 3147.38, + "end": 3148.36, + "probability": 0.8428 + }, + { + "start": 3149.34, + "end": 3150.66, + "probability": 0.9319 + }, + { + "start": 3153.96, + "end": 3155.78, + "probability": 0.9037 + }, + { + "start": 3157.56, + "end": 3159.98, + "probability": 0.9766 + }, + { + "start": 3160.88, + "end": 3162.04, + "probability": 0.9842 + }, + { + "start": 3162.84, + "end": 3164.28, + "probability": 0.9855 + }, + { + "start": 3164.92, + "end": 3166.18, + "probability": 0.9756 + }, + { + "start": 3167.48, + "end": 3168.36, + "probability": 0.8749 + }, + { + "start": 3170.46, + "end": 3172.36, + "probability": 0.5219 + }, + { + "start": 3172.48, + "end": 3173.74, + "probability": 0.7026 + }, + { + "start": 3174.58, + "end": 3177.46, + "probability": 0.8169 + }, + { + "start": 3179.32, + "end": 3181.56, + "probability": 0.6305 + }, + { + "start": 3181.7, + "end": 3182.68, + "probability": 0.6935 + }, + { + "start": 3183.18, + "end": 3184.04, + "probability": 0.8927 + }, + { + "start": 3184.6, + "end": 3185.52, + "probability": 0.9302 + }, + { + "start": 3186.84, + "end": 3189.78, + "probability": 0.7032 + }, + { + "start": 3189.86, + "end": 3192.22, + "probability": 0.8882 + }, + { + "start": 3192.94, + "end": 3194.64, + "probability": 0.9427 + }, + { + "start": 3195.5, + "end": 3200.5, + "probability": 0.9982 + }, + { + "start": 3201.8, + "end": 3202.7, + "probability": 0.6687 + }, + { + "start": 3203.6, + "end": 3204.6, + "probability": 0.8837 + }, + { + "start": 3205.02, + "end": 3205.8, + "probability": 0.7602 + }, + { + "start": 3206.24, + "end": 3210.66, + "probability": 0.7554 + }, + { + "start": 3211.54, + "end": 3212.6, + "probability": 0.8251 + }, + { + "start": 3213.66, + "end": 3215.62, + "probability": 0.9311 + }, + { + "start": 3217.36, + "end": 3219.96, + "probability": 0.5477 + }, + { + "start": 3221.84, + "end": 3223.36, + "probability": 0.9388 + }, + { + "start": 3225.88, + "end": 3226.88, + "probability": 0.9311 + }, + { + "start": 3227.74, + "end": 3230.8, + "probability": 0.8994 + }, + { + "start": 3232.4, + "end": 3238.08, + "probability": 0.9922 + }, + { + "start": 3238.88, + "end": 3241.44, + "probability": 0.9511 + }, + { + "start": 3242.7, + "end": 3243.96, + "probability": 0.8282 + }, + { + "start": 3244.06, + "end": 3245.12, + "probability": 0.8336 + }, + { + "start": 3245.4, + "end": 3246.92, + "probability": 0.881 + }, + { + "start": 3250.46, + "end": 3251.46, + "probability": 0.9838 + }, + { + "start": 3253.16, + "end": 3256.3, + "probability": 0.8428 + }, + { + "start": 3257.1, + "end": 3259.9, + "probability": 0.7152 + }, + { + "start": 3261.16, + "end": 3263.04, + "probability": 0.0847 + }, + { + "start": 3263.04, + "end": 3265.9, + "probability": 0.032 + }, + { + "start": 3267.06, + "end": 3273.28, + "probability": 0.4303 + }, + { + "start": 3275.1, + "end": 3278.46, + "probability": 0.1558 + }, + { + "start": 3278.46, + "end": 3279.06, + "probability": 0.0502 + }, + { + "start": 3279.06, + "end": 3279.4, + "probability": 0.111 + }, + { + "start": 3279.48, + "end": 3280.12, + "probability": 0.1258 + }, + { + "start": 3281.32, + "end": 3281.84, + "probability": 0.4033 + }, + { + "start": 3282.56, + "end": 3285.5, + "probability": 0.1772 + }, + { + "start": 3289.52, + "end": 3291.2, + "probability": 0.0805 + }, + { + "start": 3293.1, + "end": 3293.84, + "probability": 0.1513 + }, + { + "start": 3293.84, + "end": 3293.84, + "probability": 0.1064 + }, + { + "start": 3295.52, + "end": 3299.64, + "probability": 0.0727 + }, + { + "start": 3300.14, + "end": 3301.26, + "probability": 0.1012 + }, + { + "start": 3302.12, + "end": 3304.14, + "probability": 0.3596 + }, + { + "start": 3305.52, + "end": 3307.84, + "probability": 0.2292 + }, + { + "start": 3307.84, + "end": 3311.24, + "probability": 0.378 + }, + { + "start": 3311.84, + "end": 3314.78, + "probability": 0.1312 + }, + { + "start": 3315.74, + "end": 3317.54, + "probability": 0.1921 + }, + { + "start": 3319.06, + "end": 3320.54, + "probability": 0.3926 + }, + { + "start": 3321.1, + "end": 3323.76, + "probability": 0.4136 + }, + { + "start": 3324.96, + "end": 3326.7, + "probability": 0.3408 + }, + { + "start": 3327.66, + "end": 3328.34, + "probability": 0.0227 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3404.0, + "end": 3404.0, + "probability": 0.0 + }, + { + "start": 3405.7, + "end": 3409.54, + "probability": 0.7322 + }, + { + "start": 3410.62, + "end": 3411.32, + "probability": 0.8728 + }, + { + "start": 3413.7, + "end": 3416.16, + "probability": 0.9453 + }, + { + "start": 3417.66, + "end": 3419.96, + "probability": 0.795 + }, + { + "start": 3420.9, + "end": 3423.74, + "probability": 0.9697 + }, + { + "start": 3424.52, + "end": 3426.04, + "probability": 0.8545 + }, + { + "start": 3426.22, + "end": 3427.5, + "probability": 0.6658 + }, + { + "start": 3428.62, + "end": 3431.16, + "probability": 0.9929 + }, + { + "start": 3432.16, + "end": 3433.62, + "probability": 0.9524 + }, + { + "start": 3434.72, + "end": 3436.16, + "probability": 0.9956 + }, + { + "start": 3436.24, + "end": 3444.02, + "probability": 0.6716 + }, + { + "start": 3444.1, + "end": 3444.78, + "probability": 0.7979 + }, + { + "start": 3446.46, + "end": 3447.8, + "probability": 0.8765 + }, + { + "start": 3448.72, + "end": 3451.18, + "probability": 0.9148 + }, + { + "start": 3451.2, + "end": 3451.94, + "probability": 0.9131 + }, + { + "start": 3453.5, + "end": 3454.82, + "probability": 0.0495 + }, + { + "start": 3455.96, + "end": 3460.0, + "probability": 0.1488 + }, + { + "start": 3460.66, + "end": 3460.84, + "probability": 0.0513 + }, + { + "start": 3461.0, + "end": 3461.54, + "probability": 0.4621 + }, + { + "start": 3461.54, + "end": 3461.96, + "probability": 0.4581 + }, + { + "start": 3461.98, + "end": 3462.4, + "probability": 0.6429 + }, + { + "start": 3464.09, + "end": 3467.12, + "probability": 0.9629 + }, + { + "start": 3468.4, + "end": 3469.26, + "probability": 0.8711 + }, + { + "start": 3469.3, + "end": 3470.06, + "probability": 0.5204 + }, + { + "start": 3470.18, + "end": 3473.24, + "probability": 0.715 + }, + { + "start": 3473.34, + "end": 3474.72, + "probability": 0.6457 + }, + { + "start": 3474.9, + "end": 3477.3, + "probability": 0.6286 + }, + { + "start": 3478.89, + "end": 3482.9, + "probability": 0.8061 + }, + { + "start": 3484.44, + "end": 3490.66, + "probability": 0.9303 + }, + { + "start": 3491.24, + "end": 3492.38, + "probability": 0.4885 + }, + { + "start": 3494.04, + "end": 3496.02, + "probability": 0.9269 + }, + { + "start": 3498.08, + "end": 3499.61, + "probability": 0.9814 + }, + { + "start": 3501.48, + "end": 3504.82, + "probability": 0.9982 + }, + { + "start": 3505.52, + "end": 3507.9, + "probability": 0.9904 + }, + { + "start": 3507.98, + "end": 3509.14, + "probability": 0.9738 + }, + { + "start": 3510.38, + "end": 3510.8, + "probability": 0.8578 + }, + { + "start": 3511.36, + "end": 3512.54, + "probability": 0.9466 + }, + { + "start": 3513.96, + "end": 3515.36, + "probability": 0.9158 + }, + { + "start": 3518.14, + "end": 3519.44, + "probability": 0.738 + }, + { + "start": 3521.08, + "end": 3521.8, + "probability": 0.7624 + }, + { + "start": 3522.86, + "end": 3523.98, + "probability": 0.9891 + }, + { + "start": 3525.44, + "end": 3527.96, + "probability": 0.9633 + }, + { + "start": 3529.96, + "end": 3534.12, + "probability": 0.7311 + }, + { + "start": 3535.22, + "end": 3536.98, + "probability": 0.9042 + }, + { + "start": 3538.48, + "end": 3539.06, + "probability": 0.8539 + }, + { + "start": 3539.34, + "end": 3539.96, + "probability": 0.9702 + }, + { + "start": 3540.0, + "end": 3540.74, + "probability": 0.9855 + }, + { + "start": 3540.84, + "end": 3545.14, + "probability": 0.78 + }, + { + "start": 3545.76, + "end": 3546.71, + "probability": 0.972 + }, + { + "start": 3548.82, + "end": 3550.74, + "probability": 0.9993 + }, + { + "start": 3550.9, + "end": 3552.08, + "probability": 0.9145 + }, + { + "start": 3552.78, + "end": 3555.16, + "probability": 0.8318 + }, + { + "start": 3556.96, + "end": 3557.86, + "probability": 0.9468 + }, + { + "start": 3558.76, + "end": 3561.04, + "probability": 0.9827 + }, + { + "start": 3561.18, + "end": 3561.98, + "probability": 0.5439 + }, + { + "start": 3562.22, + "end": 3563.48, + "probability": 0.9279 + }, + { + "start": 3563.62, + "end": 3564.3, + "probability": 0.9137 + }, + { + "start": 3564.38, + "end": 3565.08, + "probability": 0.7466 + }, + { + "start": 3565.64, + "end": 3566.52, + "probability": 0.9729 + }, + { + "start": 3566.74, + "end": 3567.26, + "probability": 0.8762 + }, + { + "start": 3567.38, + "end": 3568.18, + "probability": 0.9502 + }, + { + "start": 3569.32, + "end": 3570.24, + "probability": 0.8785 + }, + { + "start": 3571.04, + "end": 3571.96, + "probability": 0.5536 + }, + { + "start": 3573.86, + "end": 3574.74, + "probability": 0.7637 + }, + { + "start": 3575.1, + "end": 3576.3, + "probability": 0.6128 + }, + { + "start": 3576.42, + "end": 3579.07, + "probability": 0.8384 + }, + { + "start": 3580.4, + "end": 3582.76, + "probability": 0.9871 + }, + { + "start": 3584.26, + "end": 3584.96, + "probability": 0.9873 + }, + { + "start": 3585.02, + "end": 3585.38, + "probability": 0.376 + }, + { + "start": 3585.4, + "end": 3586.28, + "probability": 0.7905 + }, + { + "start": 3586.74, + "end": 3588.1, + "probability": 0.8018 + }, + { + "start": 3588.88, + "end": 3591.92, + "probability": 0.7579 + }, + { + "start": 3592.5, + "end": 3593.92, + "probability": 0.8041 + }, + { + "start": 3594.94, + "end": 3595.56, + "probability": 0.9858 + }, + { + "start": 3596.84, + "end": 3601.04, + "probability": 0.9863 + }, + { + "start": 3602.7, + "end": 3604.12, + "probability": 0.999 + }, + { + "start": 3605.24, + "end": 3606.9, + "probability": 0.9963 + }, + { + "start": 3608.28, + "end": 3611.18, + "probability": 0.9863 + }, + { + "start": 3611.28, + "end": 3612.56, + "probability": 0.8461 + }, + { + "start": 3614.14, + "end": 3617.8, + "probability": 0.9089 + }, + { + "start": 3618.5, + "end": 3619.08, + "probability": 0.8949 + }, + { + "start": 3619.74, + "end": 3620.56, + "probability": 0.9292 + }, + { + "start": 3620.86, + "end": 3621.44, + "probability": 0.8539 + }, + { + "start": 3621.9, + "end": 3624.26, + "probability": 0.717 + }, + { + "start": 3624.38, + "end": 3625.38, + "probability": 0.6045 + }, + { + "start": 3625.74, + "end": 3628.0, + "probability": 0.896 + }, + { + "start": 3628.16, + "end": 3628.96, + "probability": 0.8236 + }, + { + "start": 3629.48, + "end": 3630.46, + "probability": 0.7812 + }, + { + "start": 3631.08, + "end": 3632.7, + "probability": 0.9288 + }, + { + "start": 3632.86, + "end": 3634.6, + "probability": 0.7524 + }, + { + "start": 3636.38, + "end": 3637.28, + "probability": 0.8604 + }, + { + "start": 3638.16, + "end": 3641.42, + "probability": 0.8637 + }, + { + "start": 3642.22, + "end": 3642.94, + "probability": 0.5866 + }, + { + "start": 3643.06, + "end": 3644.56, + "probability": 0.9707 + }, + { + "start": 3645.08, + "end": 3647.06, + "probability": 0.8188 + }, + { + "start": 3647.16, + "end": 3649.48, + "probability": 0.984 + }, + { + "start": 3651.42, + "end": 3654.22, + "probability": 0.8257 + }, + { + "start": 3654.26, + "end": 3655.82, + "probability": 0.993 + }, + { + "start": 3657.69, + "end": 3661.18, + "probability": 0.6391 + }, + { + "start": 3661.44, + "end": 3667.12, + "probability": 0.7225 + }, + { + "start": 3667.66, + "end": 3668.48, + "probability": 0.5111 + }, + { + "start": 3668.88, + "end": 3668.88, + "probability": 0.4119 + }, + { + "start": 3668.94, + "end": 3671.78, + "probability": 0.8661 + }, + { + "start": 3671.92, + "end": 3672.28, + "probability": 0.2623 + }, + { + "start": 3672.34, + "end": 3672.62, + "probability": 0.7845 + }, + { + "start": 3672.72, + "end": 3675.8, + "probability": 0.5749 + }, + { + "start": 3676.34, + "end": 3677.38, + "probability": 0.8126 + }, + { + "start": 3678.3, + "end": 3681.56, + "probability": 0.98 + }, + { + "start": 3682.38, + "end": 3685.18, + "probability": 0.8296 + }, + { + "start": 3685.44, + "end": 3686.18, + "probability": 0.9341 + }, + { + "start": 3686.92, + "end": 3687.02, + "probability": 0.022 + }, + { + "start": 3687.02, + "end": 3687.66, + "probability": 0.9663 + }, + { + "start": 3688.04, + "end": 3688.98, + "probability": 0.2813 + }, + { + "start": 3689.02, + "end": 3689.2, + "probability": 0.2931 + }, + { + "start": 3689.28, + "end": 3693.48, + "probability": 0.6418 + }, + { + "start": 3693.54, + "end": 3695.64, + "probability": 0.9088 + }, + { + "start": 3696.18, + "end": 3697.8, + "probability": 0.962 + }, + { + "start": 3697.9, + "end": 3699.0, + "probability": 0.5875 + }, + { + "start": 3699.08, + "end": 3700.34, + "probability": 0.9688 + }, + { + "start": 3700.42, + "end": 3701.22, + "probability": 0.8298 + }, + { + "start": 3701.28, + "end": 3704.16, + "probability": 0.8303 + }, + { + "start": 3704.62, + "end": 3704.94, + "probability": 0.6711 + }, + { + "start": 3705.14, + "end": 3709.44, + "probability": 0.847 + }, + { + "start": 3709.78, + "end": 3711.46, + "probability": 0.4269 + }, + { + "start": 3712.16, + "end": 3713.2, + "probability": 0.0452 + }, + { + "start": 3713.48, + "end": 3717.72, + "probability": 0.9885 + }, + { + "start": 3718.83, + "end": 3720.54, + "probability": 0.9329 + }, + { + "start": 3720.92, + "end": 3721.42, + "probability": 0.1996 + }, + { + "start": 3721.46, + "end": 3724.3, + "probability": 0.9777 + }, + { + "start": 3725.62, + "end": 3726.44, + "probability": 0.9127 + }, + { + "start": 3727.79, + "end": 3729.48, + "probability": 0.0722 + }, + { + "start": 3729.48, + "end": 3729.9, + "probability": 0.0601 + }, + { + "start": 3730.16, + "end": 3733.02, + "probability": 0.9415 + }, + { + "start": 3733.72, + "end": 3735.24, + "probability": 0.9768 + }, + { + "start": 3735.3, + "end": 3736.66, + "probability": 0.8878 + }, + { + "start": 3736.78, + "end": 3738.86, + "probability": 0.7828 + }, + { + "start": 3738.9, + "end": 3740.38, + "probability": 0.915 + }, + { + "start": 3741.78, + "end": 3744.6, + "probability": 0.4996 + }, + { + "start": 3744.8, + "end": 3745.26, + "probability": 0.4594 + }, + { + "start": 3745.38, + "end": 3748.12, + "probability": 0.928 + }, + { + "start": 3749.18, + "end": 3751.2, + "probability": 0.9843 + }, + { + "start": 3753.48, + "end": 3754.36, + "probability": 0.6964 + }, + { + "start": 3754.44, + "end": 3755.0, + "probability": 0.6729 + }, + { + "start": 3755.16, + "end": 3755.54, + "probability": 0.9202 + }, + { + "start": 3755.6, + "end": 3757.46, + "probability": 0.8014 + }, + { + "start": 3758.2, + "end": 3758.94, + "probability": 0.7309 + }, + { + "start": 3759.04, + "end": 3760.32, + "probability": 0.7662 + }, + { + "start": 3760.46, + "end": 3763.18, + "probability": 0.9257 + }, + { + "start": 3763.72, + "end": 3764.84, + "probability": 0.8122 + }, + { + "start": 3765.08, + "end": 3767.1, + "probability": 0.6621 + }, + { + "start": 3767.18, + "end": 3768.28, + "probability": 0.8618 + }, + { + "start": 3768.32, + "end": 3768.92, + "probability": 0.9695 + }, + { + "start": 3768.94, + "end": 3769.93, + "probability": 0.9675 + }, + { + "start": 3770.12, + "end": 3772.1, + "probability": 0.8958 + }, + { + "start": 3773.96, + "end": 3774.88, + "probability": 0.9104 + }, + { + "start": 3775.4, + "end": 3776.36, + "probability": 0.9628 + }, + { + "start": 3777.76, + "end": 3779.22, + "probability": 0.9298 + }, + { + "start": 3779.42, + "end": 3780.6, + "probability": 0.9373 + }, + { + "start": 3780.74, + "end": 3782.98, + "probability": 0.9465 + }, + { + "start": 3783.64, + "end": 3785.24, + "probability": 0.7308 + }, + { + "start": 3785.34, + "end": 3790.22, + "probability": 0.9912 + }, + { + "start": 3791.62, + "end": 3794.22, + "probability": 0.8948 + }, + { + "start": 3795.24, + "end": 3795.82, + "probability": 0.8411 + }, + { + "start": 3796.88, + "end": 3798.5, + "probability": 0.1365 + }, + { + "start": 3798.54, + "end": 3798.54, + "probability": 0.0639 + }, + { + "start": 3798.54, + "end": 3800.14, + "probability": 0.3934 + }, + { + "start": 3800.68, + "end": 3804.4, + "probability": 0.9116 + }, + { + "start": 3805.12, + "end": 3806.2, + "probability": 0.7689 + }, + { + "start": 3807.06, + "end": 3808.66, + "probability": 0.9746 + }, + { + "start": 3808.91, + "end": 3811.12, + "probability": 0.9929 + }, + { + "start": 3813.6, + "end": 3814.3, + "probability": 0.8992 + }, + { + "start": 3814.7, + "end": 3814.74, + "probability": 0.0446 + }, + { + "start": 3814.74, + "end": 3817.34, + "probability": 0.8121 + }, + { + "start": 3818.5, + "end": 3819.84, + "probability": 0.9192 + }, + { + "start": 3820.58, + "end": 3823.22, + "probability": 0.9114 + }, + { + "start": 3823.48, + "end": 3824.18, + "probability": 0.9172 + }, + { + "start": 3824.28, + "end": 3824.88, + "probability": 0.9608 + }, + { + "start": 3824.94, + "end": 3825.58, + "probability": 0.9802 + }, + { + "start": 3825.6, + "end": 3826.06, + "probability": 0.9502 + }, + { + "start": 3826.3, + "end": 3827.36, + "probability": 0.9915 + }, + { + "start": 3827.9, + "end": 3828.94, + "probability": 0.998 + }, + { + "start": 3830.7, + "end": 3831.26, + "probability": 0.641 + }, + { + "start": 3831.32, + "end": 3832.12, + "probability": 0.9152 + }, + { + "start": 3832.34, + "end": 3833.28, + "probability": 0.9872 + }, + { + "start": 3833.4, + "end": 3835.52, + "probability": 0.9798 + }, + { + "start": 3835.64, + "end": 3836.1, + "probability": 0.8859 + }, + { + "start": 3836.2, + "end": 3836.56, + "probability": 0.9196 + }, + { + "start": 3836.66, + "end": 3838.52, + "probability": 0.6443 + }, + { + "start": 3839.12, + "end": 3839.28, + "probability": 0.3762 + }, + { + "start": 3840.14, + "end": 3844.58, + "probability": 0.7659 + }, + { + "start": 3845.44, + "end": 3847.88, + "probability": 0.9971 + }, + { + "start": 3848.84, + "end": 3849.18, + "probability": 0.536 + }, + { + "start": 3850.38, + "end": 3853.74, + "probability": 0.9719 + }, + { + "start": 3854.34, + "end": 3858.6, + "probability": 0.9908 + }, + { + "start": 3858.9, + "end": 3859.8, + "probability": 0.9663 + }, + { + "start": 3860.38, + "end": 3862.68, + "probability": 0.9481 + }, + { + "start": 3863.24, + "end": 3865.2, + "probability": 0.9809 + }, + { + "start": 3865.94, + "end": 3866.92, + "probability": 0.6701 + }, + { + "start": 3867.06, + "end": 3867.96, + "probability": 0.7236 + }, + { + "start": 3868.0, + "end": 3870.42, + "probability": 0.5576 + }, + { + "start": 3870.66, + "end": 3871.86, + "probability": 0.9437 + }, + { + "start": 3871.94, + "end": 3872.98, + "probability": 0.9557 + }, + { + "start": 3873.9, + "end": 3874.48, + "probability": 0.0256 + }, + { + "start": 3874.54, + "end": 3877.42, + "probability": 0.981 + }, + { + "start": 3877.56, + "end": 3878.64, + "probability": 0.7711 + }, + { + "start": 3878.74, + "end": 3878.94, + "probability": 0.7637 + }, + { + "start": 3879.78, + "end": 3882.08, + "probability": 0.777 + }, + { + "start": 3882.36, + "end": 3884.06, + "probability": 0.7482 + }, + { + "start": 3884.08, + "end": 3884.4, + "probability": 0.8177 + }, + { + "start": 3886.56, + "end": 3886.76, + "probability": 0.1144 + }, + { + "start": 3888.6, + "end": 3889.99, + "probability": 0.9183 + }, + { + "start": 3890.44, + "end": 3891.42, + "probability": 0.0893 + }, + { + "start": 3892.12, + "end": 3894.68, + "probability": 0.1793 + }, + { + "start": 3896.6, + "end": 3899.3, + "probability": 0.8531 + }, + { + "start": 3901.14, + "end": 3902.38, + "probability": 0.9868 + }, + { + "start": 3904.83, + "end": 3907.54, + "probability": 0.7648 + }, + { + "start": 3908.04, + "end": 3908.72, + "probability": 0.9954 + }, + { + "start": 3909.24, + "end": 3909.74, + "probability": 0.724 + }, + { + "start": 3912.72, + "end": 3917.3, + "probability": 0.0196 + }, + { + "start": 3917.3, + "end": 3918.02, + "probability": 0.1908 + }, + { + "start": 3918.24, + "end": 3918.74, + "probability": 0.7302 + }, + { + "start": 3924.76, + "end": 3927.68, + "probability": 0.3555 + }, + { + "start": 3927.68, + "end": 3929.64, + "probability": 0.4904 + }, + { + "start": 3929.76, + "end": 3930.58, + "probability": 0.8337 + }, + { + "start": 3930.68, + "end": 3933.44, + "probability": 0.9626 + }, + { + "start": 3934.22, + "end": 3935.56, + "probability": 0.9883 + }, + { + "start": 3936.4, + "end": 3940.24, + "probability": 0.9414 + }, + { + "start": 3940.44, + "end": 3941.18, + "probability": 0.9982 + }, + { + "start": 3942.18, + "end": 3946.36, + "probability": 0.9805 + }, + { + "start": 3946.52, + "end": 3947.52, + "probability": 0.9932 + }, + { + "start": 3947.58, + "end": 3948.16, + "probability": 0.7632 + }, + { + "start": 3948.24, + "end": 3949.96, + "probability": 0.9971 + }, + { + "start": 3950.2, + "end": 3950.94, + "probability": 0.8666 + }, + { + "start": 3951.79, + "end": 3954.2, + "probability": 0.9777 + }, + { + "start": 3955.64, + "end": 3959.18, + "probability": 0.9995 + }, + { + "start": 3960.22, + "end": 3960.22, + "probability": 0.9009 + }, + { + "start": 3960.22, + "end": 3963.04, + "probability": 0.929 + }, + { + "start": 3965.41, + "end": 3968.62, + "probability": 0.9771 + }, + { + "start": 3969.66, + "end": 3971.52, + "probability": 0.9988 + }, + { + "start": 3971.9, + "end": 3976.0, + "probability": 0.9909 + }, + { + "start": 3976.42, + "end": 3977.0, + "probability": 0.6444 + }, + { + "start": 3977.12, + "end": 3977.5, + "probability": 0.781 + }, + { + "start": 3977.56, + "end": 3980.1, + "probability": 0.9712 + }, + { + "start": 3980.22, + "end": 3983.0, + "probability": 0.9062 + }, + { + "start": 3983.54, + "end": 3986.94, + "probability": 0.9882 + }, + { + "start": 3987.52, + "end": 3988.62, + "probability": 0.9833 + }, + { + "start": 3988.74, + "end": 3991.08, + "probability": 0.8275 + }, + { + "start": 3991.42, + "end": 3994.28, + "probability": 0.9883 + }, + { + "start": 3994.56, + "end": 3997.24, + "probability": 0.9931 + }, + { + "start": 3997.44, + "end": 3998.76, + "probability": 0.9395 + }, + { + "start": 3999.38, + "end": 4004.04, + "probability": 0.9918 + }, + { + "start": 4004.9, + "end": 4006.28, + "probability": 0.9569 + }, + { + "start": 4006.44, + "end": 4007.3, + "probability": 0.8992 + }, + { + "start": 4007.7, + "end": 4011.14, + "probability": 0.9979 + }, + { + "start": 4012.52, + "end": 4016.24, + "probability": 0.9525 + }, + { + "start": 4016.32, + "end": 4020.8, + "probability": 0.9968 + }, + { + "start": 4021.1, + "end": 4023.08, + "probability": 0.9937 + }, + { + "start": 4023.42, + "end": 4025.56, + "probability": 0.9821 + }, + { + "start": 4025.66, + "end": 4026.42, + "probability": 0.7287 + }, + { + "start": 4026.64, + "end": 4027.42, + "probability": 0.8663 + }, + { + "start": 4027.78, + "end": 4029.7, + "probability": 0.9888 + }, + { + "start": 4029.72, + "end": 4030.86, + "probability": 0.9002 + }, + { + "start": 4031.12, + "end": 4034.16, + "probability": 0.9862 + }, + { + "start": 4034.72, + "end": 4036.42, + "probability": 0.9929 + }, + { + "start": 4036.94, + "end": 4039.12, + "probability": 0.962 + }, + { + "start": 4039.48, + "end": 4039.82, + "probability": 0.792 + }, + { + "start": 4041.04, + "end": 4041.34, + "probability": 0.3883 + }, + { + "start": 4041.36, + "end": 4043.46, + "probability": 0.81 + }, + { + "start": 4069.04, + "end": 4071.64, + "probability": 0.6533 + }, + { + "start": 4072.86, + "end": 4078.56, + "probability": 0.9786 + }, + { + "start": 4079.68, + "end": 4082.5, + "probability": 0.9808 + }, + { + "start": 4082.94, + "end": 4088.02, + "probability": 0.9832 + }, + { + "start": 4088.56, + "end": 4094.4, + "probability": 0.9979 + }, + { + "start": 4095.16, + "end": 4100.0, + "probability": 0.9816 + }, + { + "start": 4100.4, + "end": 4102.46, + "probability": 0.9435 + }, + { + "start": 4102.52, + "end": 4103.58, + "probability": 0.8321 + }, + { + "start": 4103.8, + "end": 4105.0, + "probability": 0.9866 + }, + { + "start": 4106.0, + "end": 4108.52, + "probability": 0.9549 + }, + { + "start": 4109.76, + "end": 4111.2, + "probability": 0.5145 + }, + { + "start": 4112.4, + "end": 4118.18, + "probability": 0.9497 + }, + { + "start": 4118.96, + "end": 4125.66, + "probability": 0.9717 + }, + { + "start": 4126.42, + "end": 4133.36, + "probability": 0.9916 + }, + { + "start": 4134.0, + "end": 4138.74, + "probability": 0.9938 + }, + { + "start": 4139.36, + "end": 4141.2, + "probability": 0.871 + }, + { + "start": 4141.7, + "end": 4146.36, + "probability": 0.9873 + }, + { + "start": 4146.66, + "end": 4149.28, + "probability": 0.9267 + }, + { + "start": 4149.4, + "end": 4153.04, + "probability": 0.9515 + }, + { + "start": 4153.78, + "end": 4156.68, + "probability": 0.9941 + }, + { + "start": 4157.86, + "end": 4160.38, + "probability": 0.8038 + }, + { + "start": 4160.8, + "end": 4163.76, + "probability": 0.9946 + }, + { + "start": 4164.66, + "end": 4167.92, + "probability": 0.9976 + }, + { + "start": 4168.48, + "end": 4174.16, + "probability": 0.9575 + }, + { + "start": 4175.08, + "end": 4175.34, + "probability": 0.7036 + }, + { + "start": 4175.86, + "end": 4180.42, + "probability": 0.992 + }, + { + "start": 4180.42, + "end": 4185.5, + "probability": 0.9849 + }, + { + "start": 4186.22, + "end": 4186.84, + "probability": 0.2926 + }, + { + "start": 4187.32, + "end": 4188.8, + "probability": 0.8688 + }, + { + "start": 4188.96, + "end": 4190.24, + "probability": 0.9578 + }, + { + "start": 4190.34, + "end": 4191.7, + "probability": 0.9607 + }, + { + "start": 4191.8, + "end": 4193.86, + "probability": 0.9346 + }, + { + "start": 4193.86, + "end": 4195.64, + "probability": 0.9468 + }, + { + "start": 4196.34, + "end": 4197.87, + "probability": 0.9226 + }, + { + "start": 4198.56, + "end": 4202.62, + "probability": 0.9978 + }, + { + "start": 4203.2, + "end": 4207.95, + "probability": 0.8942 + }, + { + "start": 4208.6, + "end": 4210.27, + "probability": 0.9927 + }, + { + "start": 4211.1, + "end": 4213.1, + "probability": 0.9692 + }, + { + "start": 4213.6, + "end": 4216.5, + "probability": 0.9986 + }, + { + "start": 4217.72, + "end": 4220.24, + "probability": 0.9991 + }, + { + "start": 4220.8, + "end": 4227.02, + "probability": 0.9974 + }, + { + "start": 4227.42, + "end": 4231.02, + "probability": 0.9624 + }, + { + "start": 4231.44, + "end": 4233.54, + "probability": 0.9953 + }, + { + "start": 4233.98, + "end": 4238.58, + "probability": 0.999 + }, + { + "start": 4238.58, + "end": 4243.26, + "probability": 0.9994 + }, + { + "start": 4245.24, + "end": 4246.56, + "probability": 0.266 + }, + { + "start": 4246.58, + "end": 4248.18, + "probability": 0.7939 + }, + { + "start": 4266.82, + "end": 4269.34, + "probability": 0.6769 + }, + { + "start": 4270.62, + "end": 4277.28, + "probability": 0.8924 + }, + { + "start": 4278.88, + "end": 4283.66, + "probability": 0.847 + }, + { + "start": 4285.46, + "end": 4286.27, + "probability": 0.9568 + }, + { + "start": 4289.26, + "end": 4289.92, + "probability": 0.7179 + }, + { + "start": 4291.3, + "end": 4292.34, + "probability": 0.764 + }, + { + "start": 4293.18, + "end": 4296.4, + "probability": 0.9532 + }, + { + "start": 4297.64, + "end": 4301.96, + "probability": 0.9418 + }, + { + "start": 4303.32, + "end": 4306.02, + "probability": 0.9724 + }, + { + "start": 4306.8, + "end": 4309.44, + "probability": 0.9834 + }, + { + "start": 4310.52, + "end": 4315.04, + "probability": 0.7007 + }, + { + "start": 4316.12, + "end": 4317.48, + "probability": 0.8262 + }, + { + "start": 4318.86, + "end": 4326.96, + "probability": 0.9771 + }, + { + "start": 4328.6, + "end": 4332.8, + "probability": 0.8823 + }, + { + "start": 4334.68, + "end": 4338.16, + "probability": 0.9963 + }, + { + "start": 4339.4, + "end": 4341.66, + "probability": 0.9521 + }, + { + "start": 4343.58, + "end": 4349.12, + "probability": 0.9888 + }, + { + "start": 4349.12, + "end": 4354.82, + "probability": 0.9964 + }, + { + "start": 4355.56, + "end": 4358.74, + "probability": 0.968 + }, + { + "start": 4361.18, + "end": 4364.14, + "probability": 0.9714 + }, + { + "start": 4364.88, + "end": 4365.66, + "probability": 0.7992 + }, + { + "start": 4366.42, + "end": 4367.38, + "probability": 0.4994 + }, + { + "start": 4368.38, + "end": 4369.2, + "probability": 0.8811 + }, + { + "start": 4369.76, + "end": 4370.9, + "probability": 0.8602 + }, + { + "start": 4372.1, + "end": 4373.4, + "probability": 0.822 + }, + { + "start": 4373.98, + "end": 4375.04, + "probability": 0.6211 + }, + { + "start": 4375.54, + "end": 4376.84, + "probability": 0.9054 + }, + { + "start": 4376.84, + "end": 4377.98, + "probability": 0.8949 + }, + { + "start": 4378.48, + "end": 4379.34, + "probability": 0.7988 + }, + { + "start": 4379.46, + "end": 4379.94, + "probability": 0.974 + }, + { + "start": 4380.24, + "end": 4382.04, + "probability": 0.6609 + }, + { + "start": 4382.34, + "end": 4384.32, + "probability": 0.8962 + }, + { + "start": 4385.88, + "end": 4388.12, + "probability": 0.9935 + }, + { + "start": 4388.9, + "end": 4390.96, + "probability": 0.9227 + }, + { + "start": 4391.66, + "end": 4395.08, + "probability": 0.6734 + }, + { + "start": 4395.82, + "end": 4404.12, + "probability": 0.8301 + }, + { + "start": 4404.98, + "end": 4409.46, + "probability": 0.9729 + }, + { + "start": 4410.18, + "end": 4417.24, + "probability": 0.9812 + }, + { + "start": 4417.52, + "end": 4418.1, + "probability": 0.8021 + }, + { + "start": 4418.9, + "end": 4419.26, + "probability": 0.346 + }, + { + "start": 4419.28, + "end": 4420.24, + "probability": 0.546 + }, + { + "start": 4424.48, + "end": 4425.88, + "probability": 0.1721 + }, + { + "start": 4426.3, + "end": 4426.92, + "probability": 0.2191 + }, + { + "start": 4427.88, + "end": 4430.68, + "probability": 0.0108 + }, + { + "start": 4447.96, + "end": 4449.14, + "probability": 0.4572 + }, + { + "start": 4450.96, + "end": 4453.3, + "probability": 0.805 + }, + { + "start": 4454.64, + "end": 4457.63, + "probability": 0.998 + }, + { + "start": 4458.78, + "end": 4461.46, + "probability": 0.9624 + }, + { + "start": 4462.62, + "end": 4471.52, + "probability": 0.9935 + }, + { + "start": 4472.5, + "end": 4473.76, + "probability": 0.8702 + }, + { + "start": 4474.44, + "end": 4478.6, + "probability": 0.7969 + }, + { + "start": 4482.78, + "end": 4484.78, + "probability": 0.956 + }, + { + "start": 4485.5, + "end": 4485.6, + "probability": 0.999 + }, + { + "start": 4486.2, + "end": 4493.38, + "probability": 0.9784 + }, + { + "start": 4494.42, + "end": 4497.28, + "probability": 0.8859 + }, + { + "start": 4498.26, + "end": 4508.02, + "probability": 0.9585 + }, + { + "start": 4508.26, + "end": 4510.16, + "probability": 0.8198 + }, + { + "start": 4510.76, + "end": 4513.8, + "probability": 0.9616 + }, + { + "start": 4514.12, + "end": 4515.42, + "probability": 0.8782 + }, + { + "start": 4515.9, + "end": 4522.08, + "probability": 0.9976 + }, + { + "start": 4523.42, + "end": 4527.08, + "probability": 0.9667 + }, + { + "start": 4527.62, + "end": 4530.12, + "probability": 0.9901 + }, + { + "start": 4530.62, + "end": 4534.04, + "probability": 0.8488 + }, + { + "start": 4534.04, + "end": 4536.82, + "probability": 0.7044 + }, + { + "start": 4537.32, + "end": 4546.34, + "probability": 0.9674 + }, + { + "start": 4546.88, + "end": 4550.54, + "probability": 0.999 + }, + { + "start": 4551.92, + "end": 4554.82, + "probability": 0.8363 + }, + { + "start": 4555.34, + "end": 4555.92, + "probability": 0.7042 + }, + { + "start": 4556.28, + "end": 4563.66, + "probability": 0.9865 + }, + { + "start": 4564.34, + "end": 4570.06, + "probability": 0.9613 + }, + { + "start": 4570.4, + "end": 4572.14, + "probability": 0.9656 + }, + { + "start": 4572.36, + "end": 4573.42, + "probability": 0.6165 + }, + { + "start": 4573.48, + "end": 4576.76, + "probability": 0.6198 + }, + { + "start": 4577.24, + "end": 4578.34, + "probability": 0.8184 + }, + { + "start": 4578.54, + "end": 4579.14, + "probability": 0.7157 + }, + { + "start": 4579.52, + "end": 4584.4, + "probability": 0.9886 + }, + { + "start": 4585.6, + "end": 4587.36, + "probability": 0.8073 + }, + { + "start": 4587.8, + "end": 4595.88, + "probability": 0.8574 + }, + { + "start": 4596.38, + "end": 4601.18, + "probability": 0.9108 + }, + { + "start": 4601.82, + "end": 4608.42, + "probability": 0.9784 + }, + { + "start": 4608.74, + "end": 4615.34, + "probability": 0.7456 + }, + { + "start": 4615.4, + "end": 4620.92, + "probability": 0.7661 + }, + { + "start": 4621.48, + "end": 4623.26, + "probability": 0.5386 + }, + { + "start": 4623.44, + "end": 4626.08, + "probability": 0.6219 + }, + { + "start": 4626.28, + "end": 4632.86, + "probability": 0.848 + }, + { + "start": 4633.1, + "end": 4633.56, + "probability": 0.8315 + }, + { + "start": 4634.36, + "end": 4635.3, + "probability": 0.6336 + }, + { + "start": 4635.8, + "end": 4637.84, + "probability": 0.8399 + }, + { + "start": 4656.28, + "end": 4658.09, + "probability": 0.6283 + }, + { + "start": 4660.12, + "end": 4663.9, + "probability": 0.9383 + }, + { + "start": 4665.46, + "end": 4669.46, + "probability": 0.9866 + }, + { + "start": 4670.16, + "end": 4673.96, + "probability": 0.9984 + }, + { + "start": 4675.1, + "end": 4679.58, + "probability": 0.9523 + }, + { + "start": 4680.24, + "end": 4683.32, + "probability": 0.8391 + }, + { + "start": 4684.16, + "end": 4691.32, + "probability": 0.9737 + }, + { + "start": 4691.94, + "end": 4693.86, + "probability": 0.9347 + }, + { + "start": 4695.04, + "end": 4697.74, + "probability": 0.7298 + }, + { + "start": 4698.22, + "end": 4700.6, + "probability": 0.9836 + }, + { + "start": 4701.64, + "end": 4705.46, + "probability": 0.9966 + }, + { + "start": 4705.46, + "end": 4709.66, + "probability": 0.9775 + }, + { + "start": 4711.06, + "end": 4714.82, + "probability": 0.9806 + }, + { + "start": 4715.7, + "end": 4722.84, + "probability": 0.9969 + }, + { + "start": 4723.44, + "end": 4726.46, + "probability": 0.9884 + }, + { + "start": 4728.7, + "end": 4729.66, + "probability": 0.9775 + }, + { + "start": 4730.18, + "end": 4735.1, + "probability": 0.9755 + }, + { + "start": 4735.58, + "end": 4740.14, + "probability": 0.9974 + }, + { + "start": 4741.0, + "end": 4742.96, + "probability": 0.9956 + }, + { + "start": 4743.58, + "end": 4747.4, + "probability": 0.9978 + }, + { + "start": 4749.58, + "end": 4755.78, + "probability": 0.9938 + }, + { + "start": 4756.32, + "end": 4760.18, + "probability": 0.9735 + }, + { + "start": 4760.92, + "end": 4764.24, + "probability": 0.9139 + }, + { + "start": 4765.06, + "end": 4765.86, + "probability": 0.8424 + }, + { + "start": 4766.7, + "end": 4770.98, + "probability": 0.9288 + }, + { + "start": 4771.54, + "end": 4772.26, + "probability": 0.994 + }, + { + "start": 4773.96, + "end": 4778.26, + "probability": 0.9905 + }, + { + "start": 4778.26, + "end": 4782.3, + "probability": 0.9923 + }, + { + "start": 4782.98, + "end": 4788.32, + "probability": 0.9969 + }, + { + "start": 4789.76, + "end": 4793.84, + "probability": 0.998 + }, + { + "start": 4793.84, + "end": 4797.68, + "probability": 0.9948 + }, + { + "start": 4798.42, + "end": 4803.98, + "probability": 0.9535 + }, + { + "start": 4805.12, + "end": 4810.78, + "probability": 0.9973 + }, + { + "start": 4811.44, + "end": 4815.38, + "probability": 0.9905 + }, + { + "start": 4815.9, + "end": 4820.22, + "probability": 0.9667 + }, + { + "start": 4822.2, + "end": 4824.06, + "probability": 0.9828 + }, + { + "start": 4824.56, + "end": 4827.44, + "probability": 0.9764 + }, + { + "start": 4828.4, + "end": 4831.48, + "probability": 0.9948 + }, + { + "start": 4831.96, + "end": 4836.28, + "probability": 0.9959 + }, + { + "start": 4836.28, + "end": 4839.5, + "probability": 0.9837 + }, + { + "start": 4840.64, + "end": 4842.02, + "probability": 0.7004 + }, + { + "start": 4842.18, + "end": 4843.5, + "probability": 0.9273 + }, + { + "start": 4843.92, + "end": 4846.56, + "probability": 0.9744 + }, + { + "start": 4846.98, + "end": 4852.68, + "probability": 0.8637 + }, + { + "start": 4853.14, + "end": 4857.0, + "probability": 0.9938 + }, + { + "start": 4857.4, + "end": 4860.4, + "probability": 0.9894 + }, + { + "start": 4861.76, + "end": 4863.82, + "probability": 0.7597 + }, + { + "start": 4864.14, + "end": 4868.66, + "probability": 0.9774 + }, + { + "start": 4869.18, + "end": 4873.98, + "probability": 0.9958 + }, + { + "start": 4874.64, + "end": 4878.4, + "probability": 0.95 + }, + { + "start": 4914.28, + "end": 4915.2, + "probability": 0.1538 + }, + { + "start": 4917.02, + "end": 4919.96, + "probability": 0.3295 + }, + { + "start": 4920.12, + "end": 4921.12, + "probability": 0.224 + }, + { + "start": 4923.32, + "end": 4925.82, + "probability": 0.9556 + }, + { + "start": 4926.56, + "end": 4928.3, + "probability": 0.9945 + }, + { + "start": 4945.44, + "end": 4946.84, + "probability": 0.14 + }, + { + "start": 4949.14, + "end": 4951.68, + "probability": 0.3461 + }, + { + "start": 4953.76, + "end": 4955.54, + "probability": 0.2009 + }, + { + "start": 4956.18, + "end": 4956.24, + "probability": 0.0138 + }, + { + "start": 4958.76, + "end": 4960.07, + "probability": 0.1204 + }, + { + "start": 4961.02, + "end": 4961.64, + "probability": 0.0398 + }, + { + "start": 4961.66, + "end": 4961.76, + "probability": 0.1557 + }, + { + "start": 4968.16, + "end": 4970.1, + "probability": 0.0914 + }, + { + "start": 4970.1, + "end": 4970.36, + "probability": 0.0231 + }, + { + "start": 4971.6, + "end": 4972.86, + "probability": 0.0555 + }, + { + "start": 4972.86, + "end": 4975.58, + "probability": 0.1132 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.0, + "end": 4978.0, + "probability": 0.0 + }, + { + "start": 4978.1, + "end": 4980.26, + "probability": 0.6163 + }, + { + "start": 4980.94, + "end": 4982.8, + "probability": 0.9974 + }, + { + "start": 4983.42, + "end": 4987.84, + "probability": 0.9822 + }, + { + "start": 4989.08, + "end": 4992.28, + "probability": 0.9395 + }, + { + "start": 4992.62, + "end": 4997.86, + "probability": 0.9924 + }, + { + "start": 4997.94, + "end": 5001.08, + "probability": 0.9939 + }, + { + "start": 5001.08, + "end": 5004.54, + "probability": 0.9983 + }, + { + "start": 5005.54, + "end": 5010.16, + "probability": 0.9985 + }, + { + "start": 5010.6, + "end": 5011.84, + "probability": 0.9904 + }, + { + "start": 5013.14, + "end": 5017.04, + "probability": 0.9967 + }, + { + "start": 5017.74, + "end": 5021.54, + "probability": 0.9971 + }, + { + "start": 5022.4, + "end": 5024.06, + "probability": 0.7616 + }, + { + "start": 5024.72, + "end": 5029.04, + "probability": 0.999 + }, + { + "start": 5029.56, + "end": 5034.36, + "probability": 0.999 + }, + { + "start": 5035.78, + "end": 5039.88, + "probability": 0.9384 + }, + { + "start": 5040.56, + "end": 5042.88, + "probability": 0.9587 + }, + { + "start": 5043.96, + "end": 5047.56, + "probability": 0.791 + }, + { + "start": 5048.18, + "end": 5051.84, + "probability": 0.9963 + }, + { + "start": 5052.38, + "end": 5057.64, + "probability": 0.9865 + }, + { + "start": 5058.38, + "end": 5060.16, + "probability": 0.9779 + }, + { + "start": 5061.64, + "end": 5062.02, + "probability": 0.5532 + }, + { + "start": 5062.68, + "end": 5064.98, + "probability": 0.8346 + }, + { + "start": 5066.07, + "end": 5067.42, + "probability": 0.3188 + }, + { + "start": 5090.7, + "end": 5091.96, + "probability": 0.4098 + }, + { + "start": 5096.42, + "end": 5098.8, + "probability": 0.8821 + }, + { + "start": 5099.04, + "end": 5102.62, + "probability": 0.955 + }, + { + "start": 5103.22, + "end": 5104.36, + "probability": 0.5722 + }, + { + "start": 5105.38, + "end": 5106.32, + "probability": 0.9125 + }, + { + "start": 5107.75, + "end": 5114.36, + "probability": 0.9109 + }, + { + "start": 5115.7, + "end": 5116.04, + "probability": 0.4748 + }, + { + "start": 5118.7, + "end": 5121.78, + "probability": 0.7123 + }, + { + "start": 5121.82, + "end": 5124.4, + "probability": 0.9539 + }, + { + "start": 5124.58, + "end": 5129.08, + "probability": 0.9792 + }, + { + "start": 5129.52, + "end": 5130.55, + "probability": 0.8082 + }, + { + "start": 5132.22, + "end": 5136.42, + "probability": 0.9924 + }, + { + "start": 5136.42, + "end": 5141.7, + "probability": 0.9924 + }, + { + "start": 5143.26, + "end": 5144.94, + "probability": 0.9935 + }, + { + "start": 5145.32, + "end": 5149.92, + "probability": 0.9929 + }, + { + "start": 5150.48, + "end": 5152.0, + "probability": 0.7307 + }, + { + "start": 5152.36, + "end": 5153.2, + "probability": 0.9756 + }, + { + "start": 5157.96, + "end": 5159.94, + "probability": 0.856 + }, + { + "start": 5160.9, + "end": 5164.8, + "probability": 0.8953 + }, + { + "start": 5165.42, + "end": 5173.06, + "probability": 0.9838 + }, + { + "start": 5175.48, + "end": 5178.5, + "probability": 0.98 + }, + { + "start": 5182.3, + "end": 5185.58, + "probability": 0.9841 + }, + { + "start": 5186.32, + "end": 5187.84, + "probability": 0.6953 + }, + { + "start": 5187.98, + "end": 5195.02, + "probability": 0.9985 + }, + { + "start": 5195.88, + "end": 5197.5, + "probability": 0.694 + }, + { + "start": 5197.9, + "end": 5201.14, + "probability": 0.9553 + }, + { + "start": 5201.66, + "end": 5203.84, + "probability": 0.9911 + }, + { + "start": 5203.92, + "end": 5209.48, + "probability": 0.9666 + }, + { + "start": 5211.38, + "end": 5212.04, + "probability": 0.9609 + }, + { + "start": 5214.82, + "end": 5221.96, + "probability": 0.9961 + }, + { + "start": 5222.16, + "end": 5224.76, + "probability": 0.7438 + }, + { + "start": 5225.62, + "end": 5230.44, + "probability": 0.9543 + }, + { + "start": 5231.18, + "end": 5233.68, + "probability": 0.9395 + }, + { + "start": 5234.9, + "end": 5238.8, + "probability": 0.8723 + }, + { + "start": 5239.32, + "end": 5243.0, + "probability": 0.9956 + }, + { + "start": 5243.06, + "end": 5244.84, + "probability": 0.9673 + }, + { + "start": 5244.96, + "end": 5245.72, + "probability": 0.9311 + }, + { + "start": 5245.84, + "end": 5246.46, + "probability": 0.9798 + }, + { + "start": 5246.76, + "end": 5247.82, + "probability": 0.4885 + }, + { + "start": 5248.1, + "end": 5249.54, + "probability": 0.9955 + }, + { + "start": 5250.1, + "end": 5251.82, + "probability": 0.7853 + }, + { + "start": 5252.3, + "end": 5253.58, + "probability": 0.7706 + }, + { + "start": 5253.62, + "end": 5259.44, + "probability": 0.995 + }, + { + "start": 5265.12, + "end": 5268.16, + "probability": 0.9905 + }, + { + "start": 5268.16, + "end": 5274.44, + "probability": 0.8266 + }, + { + "start": 5277.08, + "end": 5280.78, + "probability": 0.9637 + }, + { + "start": 5281.62, + "end": 5283.44, + "probability": 0.9972 + }, + { + "start": 5284.4, + "end": 5286.6, + "probability": 0.9992 + }, + { + "start": 5289.44, + "end": 5291.44, + "probability": 0.7652 + }, + { + "start": 5295.3, + "end": 5299.54, + "probability": 0.8645 + }, + { + "start": 5301.92, + "end": 5305.82, + "probability": 0.9939 + }, + { + "start": 5305.82, + "end": 5310.18, + "probability": 0.9915 + }, + { + "start": 5310.18, + "end": 5314.38, + "probability": 0.9988 + }, + { + "start": 5317.1, + "end": 5320.56, + "probability": 0.7456 + }, + { + "start": 5320.64, + "end": 5322.44, + "probability": 0.9508 + }, + { + "start": 5323.6, + "end": 5327.34, + "probability": 0.9979 + }, + { + "start": 5327.5, + "end": 5333.04, + "probability": 0.9729 + }, + { + "start": 5333.1, + "end": 5337.38, + "probability": 0.9867 + }, + { + "start": 5338.96, + "end": 5341.78, + "probability": 0.9379 + }, + { + "start": 5342.04, + "end": 5347.26, + "probability": 0.8556 + }, + { + "start": 5348.52, + "end": 5352.66, + "probability": 0.9734 + }, + { + "start": 5352.7, + "end": 5355.6, + "probability": 0.9659 + }, + { + "start": 5356.98, + "end": 5360.08, + "probability": 0.9761 + }, + { + "start": 5360.08, + "end": 5363.78, + "probability": 0.9054 + }, + { + "start": 5363.94, + "end": 5366.84, + "probability": 0.9862 + }, + { + "start": 5366.94, + "end": 5368.16, + "probability": 0.9264 + }, + { + "start": 5368.26, + "end": 5370.04, + "probability": 0.7233 + }, + { + "start": 5370.22, + "end": 5371.68, + "probability": 0.8558 + }, + { + "start": 5371.74, + "end": 5372.64, + "probability": 0.9841 + }, + { + "start": 5373.36, + "end": 5379.8, + "probability": 0.9932 + }, + { + "start": 5381.26, + "end": 5382.45, + "probability": 0.6786 + }, + { + "start": 5382.58, + "end": 5384.96, + "probability": 0.9943 + }, + { + "start": 5384.96, + "end": 5387.26, + "probability": 0.9968 + }, + { + "start": 5388.46, + "end": 5391.12, + "probability": 0.9966 + }, + { + "start": 5391.98, + "end": 5393.44, + "probability": 0.9456 + }, + { + "start": 5394.58, + "end": 5396.52, + "probability": 0.9905 + }, + { + "start": 5396.66, + "end": 5402.28, + "probability": 0.9858 + }, + { + "start": 5403.32, + "end": 5406.5, + "probability": 0.9982 + }, + { + "start": 5408.48, + "end": 5415.26, + "probability": 0.9922 + }, + { + "start": 5416.58, + "end": 5419.44, + "probability": 0.9421 + }, + { + "start": 5420.34, + "end": 5421.4, + "probability": 0.8506 + }, + { + "start": 5421.58, + "end": 5423.96, + "probability": 0.9893 + }, + { + "start": 5424.14, + "end": 5427.58, + "probability": 0.9954 + }, + { + "start": 5429.3, + "end": 5432.48, + "probability": 0.9966 + }, + { + "start": 5432.48, + "end": 5435.14, + "probability": 0.9992 + }, + { + "start": 5435.7, + "end": 5440.42, + "probability": 0.9963 + }, + { + "start": 5440.58, + "end": 5441.3, + "probability": 0.8648 + }, + { + "start": 5441.42, + "end": 5443.7, + "probability": 0.9919 + }, + { + "start": 5444.22, + "end": 5446.8, + "probability": 0.9893 + }, + { + "start": 5448.36, + "end": 5451.76, + "probability": 0.9959 + }, + { + "start": 5452.32, + "end": 5455.54, + "probability": 0.9952 + }, + { + "start": 5455.54, + "end": 5459.48, + "probability": 0.9805 + }, + { + "start": 5460.64, + "end": 5463.38, + "probability": 0.9935 + }, + { + "start": 5463.98, + "end": 5468.12, + "probability": 0.9994 + }, + { + "start": 5468.12, + "end": 5472.06, + "probability": 0.9976 + }, + { + "start": 5473.6, + "end": 5475.68, + "probability": 0.7305 + }, + { + "start": 5475.74, + "end": 5477.8, + "probability": 0.7977 + }, + { + "start": 5477.88, + "end": 5478.88, + "probability": 0.8688 + }, + { + "start": 5479.72, + "end": 5484.42, + "probability": 0.9941 + }, + { + "start": 5484.42, + "end": 5489.3, + "probability": 0.9559 + }, + { + "start": 5490.24, + "end": 5492.62, + "probability": 0.7532 + }, + { + "start": 5493.34, + "end": 5498.66, + "probability": 0.9861 + }, + { + "start": 5499.78, + "end": 5501.64, + "probability": 0.9849 + }, + { + "start": 5502.3, + "end": 5506.26, + "probability": 0.9902 + }, + { + "start": 5506.96, + "end": 5510.82, + "probability": 0.999 + }, + { + "start": 5510.82, + "end": 5515.44, + "probability": 0.9863 + }, + { + "start": 5516.6, + "end": 5521.78, + "probability": 0.9208 + }, + { + "start": 5522.0, + "end": 5527.24, + "probability": 0.9831 + }, + { + "start": 5528.18, + "end": 5529.7, + "probability": 0.5444 + }, + { + "start": 5529.82, + "end": 5533.22, + "probability": 0.8421 + }, + { + "start": 5534.24, + "end": 5539.06, + "probability": 0.9749 + }, + { + "start": 5541.42, + "end": 5546.36, + "probability": 0.8748 + }, + { + "start": 5546.36, + "end": 5549.92, + "probability": 0.9966 + }, + { + "start": 5551.64, + "end": 5555.12, + "probability": 0.9961 + }, + { + "start": 5555.12, + "end": 5558.0, + "probability": 0.9972 + }, + { + "start": 5558.04, + "end": 5558.94, + "probability": 0.8897 + }, + { + "start": 5559.54, + "end": 5562.33, + "probability": 0.9309 + }, + { + "start": 5563.82, + "end": 5567.86, + "probability": 0.8856 + }, + { + "start": 5568.22, + "end": 5569.04, + "probability": 0.7588 + }, + { + "start": 5569.08, + "end": 5569.08, + "probability": 0.6809 + }, + { + "start": 5569.08, + "end": 5569.5, + "probability": 0.5187 + }, + { + "start": 5569.96, + "end": 5572.59, + "probability": 0.9688 + }, + { + "start": 5573.0, + "end": 5573.18, + "probability": 0.6274 + }, + { + "start": 5573.22, + "end": 5575.2, + "probability": 0.5159 + }, + { + "start": 5575.52, + "end": 5577.76, + "probability": 0.964 + }, + { + "start": 5578.12, + "end": 5578.72, + "probability": 0.7131 + }, + { + "start": 5578.72, + "end": 5580.78, + "probability": 0.9084 + }, + { + "start": 5580.96, + "end": 5582.48, + "probability": 0.6512 + }, + { + "start": 5583.02, + "end": 5583.68, + "probability": 0.529 + }, + { + "start": 5584.48, + "end": 5590.64, + "probability": 0.9776 + }, + { + "start": 5590.64, + "end": 5593.88, + "probability": 0.8961 + }, + { + "start": 5594.28, + "end": 5596.28, + "probability": 0.9838 + }, + { + "start": 5597.54, + "end": 5600.0, + "probability": 0.8937 + }, + { + "start": 5600.6, + "end": 5605.92, + "probability": 0.9546 + }, + { + "start": 5606.34, + "end": 5610.54, + "probability": 0.9889 + }, + { + "start": 5611.36, + "end": 5614.94, + "probability": 0.9976 + }, + { + "start": 5616.68, + "end": 5620.26, + "probability": 0.9856 + }, + { + "start": 5620.54, + "end": 5621.5, + "probability": 0.9771 + }, + { + "start": 5622.66, + "end": 5623.24, + "probability": 0.6713 + }, + { + "start": 5623.36, + "end": 5625.86, + "probability": 0.8299 + }, + { + "start": 5627.32, + "end": 5627.62, + "probability": 0.5209 + }, + { + "start": 5644.56, + "end": 5647.96, + "probability": 0.6882 + }, + { + "start": 5648.48, + "end": 5649.66, + "probability": 0.7459 + }, + { + "start": 5650.7, + "end": 5656.02, + "probability": 0.9861 + }, + { + "start": 5656.68, + "end": 5658.48, + "probability": 0.9939 + }, + { + "start": 5659.24, + "end": 5661.84, + "probability": 0.8677 + }, + { + "start": 5663.2, + "end": 5668.51, + "probability": 0.9559 + }, + { + "start": 5668.98, + "end": 5675.14, + "probability": 0.9913 + }, + { + "start": 5675.92, + "end": 5679.86, + "probability": 0.9955 + }, + { + "start": 5679.86, + "end": 5686.2, + "probability": 0.9999 + }, + { + "start": 5686.76, + "end": 5687.54, + "probability": 0.9904 + }, + { + "start": 5688.58, + "end": 5690.12, + "probability": 0.8515 + }, + { + "start": 5690.76, + "end": 5693.78, + "probability": 0.9875 + }, + { + "start": 5694.38, + "end": 5698.12, + "probability": 0.7929 + }, + { + "start": 5698.96, + "end": 5702.12, + "probability": 0.9955 + }, + { + "start": 5702.66, + "end": 5705.38, + "probability": 0.9983 + }, + { + "start": 5706.02, + "end": 5708.04, + "probability": 0.9747 + }, + { + "start": 5708.62, + "end": 5713.6, + "probability": 0.9994 + }, + { + "start": 5714.2, + "end": 5718.94, + "probability": 0.9996 + }, + { + "start": 5720.3, + "end": 5727.5, + "probability": 0.9924 + }, + { + "start": 5727.5, + "end": 5734.12, + "probability": 0.9966 + }, + { + "start": 5734.74, + "end": 5736.24, + "probability": 0.942 + }, + { + "start": 5736.92, + "end": 5744.08, + "probability": 0.9951 + }, + { + "start": 5744.94, + "end": 5747.54, + "probability": 0.8337 + }, + { + "start": 5748.2, + "end": 5751.54, + "probability": 0.9718 + }, + { + "start": 5752.44, + "end": 5755.72, + "probability": 0.9971 + }, + { + "start": 5756.5, + "end": 5760.02, + "probability": 0.9733 + }, + { + "start": 5760.58, + "end": 5763.12, + "probability": 0.9671 + }, + { + "start": 5763.64, + "end": 5767.94, + "probability": 0.9976 + }, + { + "start": 5768.6, + "end": 5776.14, + "probability": 0.9961 + }, + { + "start": 5776.68, + "end": 5778.3, + "probability": 0.9982 + }, + { + "start": 5779.9, + "end": 5782.86, + "probability": 0.9969 + }, + { + "start": 5782.86, + "end": 5787.36, + "probability": 0.9993 + }, + { + "start": 5788.7, + "end": 5791.88, + "probability": 0.9983 + }, + { + "start": 5791.88, + "end": 5795.96, + "probability": 0.9994 + }, + { + "start": 5796.68, + "end": 5797.96, + "probability": 0.9839 + }, + { + "start": 5798.46, + "end": 5799.94, + "probability": 0.8998 + }, + { + "start": 5800.26, + "end": 5806.04, + "probability": 0.9886 + }, + { + "start": 5806.6, + "end": 5808.92, + "probability": 0.9959 + }, + { + "start": 5809.9, + "end": 5815.96, + "probability": 0.9624 + }, + { + "start": 5816.82, + "end": 5819.62, + "probability": 0.9785 + }, + { + "start": 5820.32, + "end": 5824.64, + "probability": 0.9861 + }, + { + "start": 5825.16, + "end": 5832.96, + "probability": 0.9534 + }, + { + "start": 5833.44, + "end": 5835.76, + "probability": 0.9587 + }, + { + "start": 5836.4, + "end": 5841.46, + "probability": 0.9993 + }, + { + "start": 5841.46, + "end": 5845.28, + "probability": 0.9706 + }, + { + "start": 5846.38, + "end": 5850.94, + "probability": 0.998 + }, + { + "start": 5850.94, + "end": 5856.92, + "probability": 0.9991 + }, + { + "start": 5857.44, + "end": 5863.06, + "probability": 0.9911 + }, + { + "start": 5863.06, + "end": 5869.3, + "probability": 0.9776 + }, + { + "start": 5870.24, + "end": 5871.18, + "probability": 0.8805 + }, + { + "start": 5872.38, + "end": 5875.72, + "probability": 0.9797 + }, + { + "start": 5876.74, + "end": 5881.92, + "probability": 0.9917 + }, + { + "start": 5882.42, + "end": 5887.9, + "probability": 0.8992 + }, + { + "start": 5888.82, + "end": 5892.88, + "probability": 0.9946 + }, + { + "start": 5893.42, + "end": 5894.6, + "probability": 0.9009 + }, + { + "start": 5895.3, + "end": 5898.34, + "probability": 0.9983 + }, + { + "start": 5898.86, + "end": 5901.4, + "probability": 0.9465 + }, + { + "start": 5902.14, + "end": 5906.68, + "probability": 0.9941 + }, + { + "start": 5907.24, + "end": 5910.48, + "probability": 0.9919 + }, + { + "start": 5910.48, + "end": 5914.08, + "probability": 0.7029 + }, + { + "start": 5915.86, + "end": 5918.3, + "probability": 0.9835 + }, + { + "start": 5919.48, + "end": 5924.2, + "probability": 0.9964 + }, + { + "start": 5924.58, + "end": 5929.86, + "probability": 0.9874 + }, + { + "start": 5930.68, + "end": 5935.18, + "probability": 0.9924 + }, + { + "start": 5935.18, + "end": 5940.02, + "probability": 0.9988 + }, + { + "start": 5940.02, + "end": 5945.66, + "probability": 0.9995 + }, + { + "start": 5946.3, + "end": 5950.82, + "probability": 0.9402 + }, + { + "start": 5951.6, + "end": 5954.76, + "probability": 0.9985 + }, + { + "start": 5955.36, + "end": 5960.18, + "probability": 0.9989 + }, + { + "start": 5960.2, + "end": 5964.9, + "probability": 0.9996 + }, + { + "start": 5965.86, + "end": 5968.0, + "probability": 0.6396 + }, + { + "start": 5969.26, + "end": 5972.36, + "probability": 0.9985 + }, + { + "start": 5973.28, + "end": 5977.98, + "probability": 0.9987 + }, + { + "start": 5977.98, + "end": 5984.78, + "probability": 0.9993 + }, + { + "start": 5985.8, + "end": 5989.28, + "probability": 0.9963 + }, + { + "start": 5989.28, + "end": 5994.32, + "probability": 0.9982 + }, + { + "start": 5995.26, + "end": 6000.3, + "probability": 0.9808 + }, + { + "start": 6001.1, + "end": 6004.3, + "probability": 0.9986 + }, + { + "start": 6004.3, + "end": 6009.86, + "probability": 0.8429 + }, + { + "start": 6010.72, + "end": 6014.34, + "probability": 0.9127 + }, + { + "start": 6014.96, + "end": 6019.08, + "probability": 0.9985 + }, + { + "start": 6019.66, + "end": 6022.44, + "probability": 0.9767 + }, + { + "start": 6022.84, + "end": 6023.36, + "probability": 0.8715 + }, + { + "start": 6024.14, + "end": 6024.8, + "probability": 0.8855 + }, + { + "start": 6025.74, + "end": 6028.41, + "probability": 0.9536 + }, + { + "start": 6028.7, + "end": 6030.96, + "probability": 0.9362 + }, + { + "start": 6032.32, + "end": 6039.16, + "probability": 0.9555 + }, + { + "start": 6039.68, + "end": 6041.84, + "probability": 0.6147 + }, + { + "start": 6042.08, + "end": 6047.1, + "probability": 0.3663 + }, + { + "start": 6055.14, + "end": 6056.26, + "probability": 0.0342 + }, + { + "start": 6056.26, + "end": 6059.5, + "probability": 0.7735 + }, + { + "start": 6059.62, + "end": 6061.1, + "probability": 0.7567 + }, + { + "start": 6061.28, + "end": 6063.01, + "probability": 0.9639 + }, + { + "start": 6064.67, + "end": 6067.76, + "probability": 0.9573 + }, + { + "start": 6067.76, + "end": 6071.56, + "probability": 0.8342 + }, + { + "start": 6072.3, + "end": 6072.92, + "probability": 0.5182 + }, + { + "start": 6073.32, + "end": 6073.32, + "probability": 0.0225 + }, + { + "start": 6073.32, + "end": 6074.3, + "probability": 0.7915 + }, + { + "start": 6075.7, + "end": 6079.74, + "probability": 0.3834 + }, + { + "start": 6080.88, + "end": 6082.78, + "probability": 0.0445 + }, + { + "start": 6082.78, + "end": 6085.26, + "probability": 0.5897 + }, + { + "start": 6086.92, + "end": 6089.32, + "probability": 0.7654 + }, + { + "start": 6090.28, + "end": 6091.28, + "probability": 0.7376 + }, + { + "start": 6091.5, + "end": 6092.72, + "probability": 0.8057 + }, + { + "start": 6093.26, + "end": 6095.3, + "probability": 0.8898 + }, + { + "start": 6096.3, + "end": 6098.08, + "probability": 0.9038 + }, + { + "start": 6098.9, + "end": 6099.64, + "probability": 0.706 + }, + { + "start": 6100.4, + "end": 6105.2, + "probability": 0.7312 + }, + { + "start": 6106.22, + "end": 6108.58, + "probability": 0.4075 + }, + { + "start": 6114.22, + "end": 6120.52, + "probability": 0.0204 + }, + { + "start": 6120.56, + "end": 6123.34, + "probability": 0.5941 + }, + { + "start": 6123.54, + "end": 6125.32, + "probability": 0.9656 + }, + { + "start": 6125.48, + "end": 6127.62, + "probability": 0.9399 + }, + { + "start": 6140.63, + "end": 6145.24, + "probability": 0.7834 + }, + { + "start": 6145.24, + "end": 6145.44, + "probability": 0.7356 + }, + { + "start": 6146.22, + "end": 6147.12, + "probability": 0.6854 + }, + { + "start": 6147.22, + "end": 6148.08, + "probability": 0.4802 + }, + { + "start": 6148.08, + "end": 6149.18, + "probability": 0.7305 + }, + { + "start": 6149.3, + "end": 6150.46, + "probability": 0.9482 + }, + { + "start": 6151.08, + "end": 6153.82, + "probability": 0.8144 + }, + { + "start": 6153.94, + "end": 6155.1, + "probability": 0.4313 + }, + { + "start": 6155.58, + "end": 6157.12, + "probability": 0.914 + }, + { + "start": 6157.3, + "end": 6158.18, + "probability": 0.8288 + }, + { + "start": 6158.3, + "end": 6159.32, + "probability": 0.7577 + }, + { + "start": 6159.44, + "end": 6160.4, + "probability": 0.899 + }, + { + "start": 6160.44, + "end": 6161.26, + "probability": 0.9328 + }, + { + "start": 6161.82, + "end": 6164.38, + "probability": 0.6243 + }, + { + "start": 6164.92, + "end": 6167.78, + "probability": 0.9816 + }, + { + "start": 6167.94, + "end": 6168.76, + "probability": 0.3311 + }, + { + "start": 6169.6, + "end": 6170.98, + "probability": 0.7578 + }, + { + "start": 6171.02, + "end": 6171.6, + "probability": 0.6297 + }, + { + "start": 6171.7, + "end": 6173.3, + "probability": 0.7593 + }, + { + "start": 6173.86, + "end": 6182.42, + "probability": 0.7045 + }, + { + "start": 6186.42, + "end": 6187.74, + "probability": 0.6303 + }, + { + "start": 6187.92, + "end": 6188.42, + "probability": 0.806 + }, + { + "start": 6188.54, + "end": 6189.24, + "probability": 0.8912 + }, + { + "start": 6189.32, + "end": 6189.8, + "probability": 0.8833 + }, + { + "start": 6189.92, + "end": 6190.44, + "probability": 0.7909 + }, + { + "start": 6190.72, + "end": 6192.32, + "probability": 0.9195 + }, + { + "start": 6214.5, + "end": 6216.82, + "probability": 0.1457 + }, + { + "start": 6217.78, + "end": 6221.1, + "probability": 0.0738 + }, + { + "start": 6221.9, + "end": 6222.78, + "probability": 0.0786 + }, + { + "start": 6222.78, + "end": 6223.54, + "probability": 0.045 + }, + { + "start": 6224.26, + "end": 6224.92, + "probability": 0.1043 + }, + { + "start": 6225.19, + "end": 6227.14, + "probability": 0.0799 + }, + { + "start": 6227.14, + "end": 6231.46, + "probability": 0.0125 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.0, + "end": 6291.0, + "probability": 0.0 + }, + { + "start": 6291.44, + "end": 6292.78, + "probability": 0.849 + }, + { + "start": 6292.92, + "end": 6295.98, + "probability": 0.9654 + }, + { + "start": 6295.98, + "end": 6298.8, + "probability": 0.9573 + }, + { + "start": 6299.72, + "end": 6305.18, + "probability": 0.95 + }, + { + "start": 6305.84, + "end": 6307.44, + "probability": 0.9002 + }, + { + "start": 6307.52, + "end": 6309.1, + "probability": 0.9373 + }, + { + "start": 6309.22, + "end": 6310.54, + "probability": 0.7546 + }, + { + "start": 6311.44, + "end": 6313.5, + "probability": 0.4923 + }, + { + "start": 6313.6, + "end": 6314.1, + "probability": 0.8514 + }, + { + "start": 6314.16, + "end": 6317.64, + "probability": 0.9835 + }, + { + "start": 6318.22, + "end": 6320.78, + "probability": 0.8823 + }, + { + "start": 6321.54, + "end": 6323.12, + "probability": 0.9982 + }, + { + "start": 6325.12, + "end": 6329.44, + "probability": 0.9419 + }, + { + "start": 6330.06, + "end": 6333.48, + "probability": 0.9941 + }, + { + "start": 6333.48, + "end": 6337.06, + "probability": 0.9815 + }, + { + "start": 6337.84, + "end": 6341.14, + "probability": 0.7972 + }, + { + "start": 6341.24, + "end": 6343.46, + "probability": 0.8476 + }, + { + "start": 6344.1, + "end": 6347.12, + "probability": 0.9866 + }, + { + "start": 6347.7, + "end": 6350.88, + "probability": 0.9901 + }, + { + "start": 6350.88, + "end": 6355.14, + "probability": 0.9755 + }, + { + "start": 6355.22, + "end": 6357.26, + "probability": 0.8948 + }, + { + "start": 6357.84, + "end": 6361.0, + "probability": 0.9966 + }, + { + "start": 6361.6, + "end": 6364.68, + "probability": 0.9138 + }, + { + "start": 6365.34, + "end": 6367.8, + "probability": 0.9967 + }, + { + "start": 6367.88, + "end": 6368.58, + "probability": 0.7686 + }, + { + "start": 6368.64, + "end": 6371.92, + "probability": 0.9805 + }, + { + "start": 6372.14, + "end": 6373.96, + "probability": 0.817 + }, + { + "start": 6374.02, + "end": 6377.44, + "probability": 0.9138 + }, + { + "start": 6377.48, + "end": 6380.46, + "probability": 0.9838 + }, + { + "start": 6381.38, + "end": 6389.8, + "probability": 0.9878 + }, + { + "start": 6390.1, + "end": 6391.74, + "probability": 0.9984 + }, + { + "start": 6391.78, + "end": 6394.36, + "probability": 0.9963 + }, + { + "start": 6395.68, + "end": 6397.98, + "probability": 0.9929 + }, + { + "start": 6398.42, + "end": 6400.6, + "probability": 0.466 + }, + { + "start": 6401.56, + "end": 6404.64, + "probability": 0.9781 + }, + { + "start": 6405.46, + "end": 6406.6, + "probability": 0.999 + }, + { + "start": 6407.22, + "end": 6409.98, + "probability": 0.9985 + }, + { + "start": 6411.04, + "end": 6412.3, + "probability": 0.9077 + }, + { + "start": 6412.46, + "end": 6414.16, + "probability": 0.7993 + }, + { + "start": 6414.7, + "end": 6418.16, + "probability": 0.8684 + }, + { + "start": 6418.32, + "end": 6422.62, + "probability": 0.9791 + }, + { + "start": 6423.24, + "end": 6423.8, + "probability": 0.5021 + }, + { + "start": 6423.9, + "end": 6427.6, + "probability": 0.989 + }, + { + "start": 6427.7, + "end": 6430.34, + "probability": 0.9541 + }, + { + "start": 6430.9, + "end": 6433.38, + "probability": 0.9756 + }, + { + "start": 6434.22, + "end": 6438.96, + "probability": 0.8813 + }, + { + "start": 6439.16, + "end": 6442.38, + "probability": 0.9808 + }, + { + "start": 6442.78, + "end": 6443.84, + "probability": 0.9759 + }, + { + "start": 6444.42, + "end": 6446.82, + "probability": 0.9938 + }, + { + "start": 6447.88, + "end": 6452.86, + "probability": 0.9927 + }, + { + "start": 6453.02, + "end": 6453.92, + "probability": 0.7963 + }, + { + "start": 6454.66, + "end": 6455.54, + "probability": 0.8662 + }, + { + "start": 6455.78, + "end": 6456.34, + "probability": 0.8628 + }, + { + "start": 6456.64, + "end": 6458.0, + "probability": 0.8806 + }, + { + "start": 6458.6, + "end": 6459.64, + "probability": 0.9712 + }, + { + "start": 6460.2, + "end": 6463.76, + "probability": 0.9975 + }, + { + "start": 6464.3, + "end": 6467.88, + "probability": 0.9313 + }, + { + "start": 6468.02, + "end": 6468.86, + "probability": 0.9777 + }, + { + "start": 6468.98, + "end": 6472.08, + "probability": 0.8488 + }, + { + "start": 6472.08, + "end": 6474.86, + "probability": 0.9965 + }, + { + "start": 6475.04, + "end": 6479.24, + "probability": 0.9945 + }, + { + "start": 6479.66, + "end": 6481.92, + "probability": 0.9824 + }, + { + "start": 6482.12, + "end": 6482.54, + "probability": 0.9272 + }, + { + "start": 6483.24, + "end": 6485.46, + "probability": 0.9747 + }, + { + "start": 6485.6, + "end": 6485.96, + "probability": 0.9498 + }, + { + "start": 6486.04, + "end": 6488.06, + "probability": 0.9904 + }, + { + "start": 6488.86, + "end": 6489.78, + "probability": 0.7642 + }, + { + "start": 6489.82, + "end": 6491.42, + "probability": 0.5858 + }, + { + "start": 6491.78, + "end": 6494.74, + "probability": 0.9648 + }, + { + "start": 6495.32, + "end": 6500.34, + "probability": 0.7872 + }, + { + "start": 6500.98, + "end": 6501.54, + "probability": 0.4514 + }, + { + "start": 6501.6, + "end": 6504.78, + "probability": 0.9302 + }, + { + "start": 6505.58, + "end": 6508.72, + "probability": 0.9742 + }, + { + "start": 6509.24, + "end": 6512.52, + "probability": 0.9941 + }, + { + "start": 6512.56, + "end": 6517.42, + "probability": 0.99 + }, + { + "start": 6517.44, + "end": 6518.82, + "probability": 0.6489 + }, + { + "start": 6519.54, + "end": 6520.56, + "probability": 0.5289 + }, + { + "start": 6521.2, + "end": 6524.02, + "probability": 0.9386 + }, + { + "start": 6525.66, + "end": 6526.5, + "probability": 0.5448 + }, + { + "start": 6527.64, + "end": 6531.74, + "probability": 0.7469 + }, + { + "start": 6531.86, + "end": 6532.52, + "probability": 0.5719 + }, + { + "start": 6533.0, + "end": 6534.68, + "probability": 0.3481 + }, + { + "start": 6535.22, + "end": 6538.36, + "probability": 0.3105 + }, + { + "start": 6538.36, + "end": 6540.24, + "probability": 0.2772 + }, + { + "start": 6540.24, + "end": 6541.84, + "probability": 0.0073 + }, + { + "start": 6541.94, + "end": 6545.82, + "probability": 0.466 + }, + { + "start": 6547.7, + "end": 6552.0, + "probability": 0.5784 + }, + { + "start": 6552.14, + "end": 6554.14, + "probability": 0.9752 + }, + { + "start": 6554.42, + "end": 6555.4, + "probability": 0.4461 + }, + { + "start": 6555.52, + "end": 6556.22, + "probability": 0.3684 + }, + { + "start": 6556.3, + "end": 6556.9, + "probability": 0.3297 + }, + { + "start": 6557.42, + "end": 6558.38, + "probability": 0.5363 + }, + { + "start": 6558.4, + "end": 6563.0, + "probability": 0.9891 + }, + { + "start": 6563.0, + "end": 6564.36, + "probability": 0.3025 + }, + { + "start": 6564.53, + "end": 6567.46, + "probability": 0.5502 + }, + { + "start": 6567.48, + "end": 6567.72, + "probability": 0.2205 + }, + { + "start": 6567.72, + "end": 6567.72, + "probability": 0.3605 + }, + { + "start": 6567.72, + "end": 6570.82, + "probability": 0.9608 + }, + { + "start": 6570.92, + "end": 6573.36, + "probability": 0.9899 + }, + { + "start": 6574.16, + "end": 6577.28, + "probability": 0.95 + }, + { + "start": 6577.42, + "end": 6578.48, + "probability": 0.8338 + }, + { + "start": 6579.14, + "end": 6582.08, + "probability": 0.9504 + }, + { + "start": 6582.58, + "end": 6583.78, + "probability": 0.3477 + }, + { + "start": 6583.82, + "end": 6584.9, + "probability": 0.9772 + }, + { + "start": 6585.66, + "end": 6587.16, + "probability": 0.6927 + }, + { + "start": 6589.7, + "end": 6591.48, + "probability": 0.9561 + }, + { + "start": 6592.48, + "end": 6594.76, + "probability": 0.9832 + }, + { + "start": 6595.1, + "end": 6600.66, + "probability": 0.9948 + }, + { + "start": 6600.88, + "end": 6606.86, + "probability": 0.9823 + }, + { + "start": 6607.4, + "end": 6612.26, + "probability": 0.6444 + }, + { + "start": 6613.68, + "end": 6615.34, + "probability": 0.0002 + }, + { + "start": 6622.04, + "end": 6623.64, + "probability": 0.0397 + }, + { + "start": 6625.46, + "end": 6627.98, + "probability": 0.5861 + }, + { + "start": 6628.14, + "end": 6630.96, + "probability": 0.9817 + }, + { + "start": 6631.6, + "end": 6634.98, + "probability": 0.9541 + }, + { + "start": 6635.08, + "end": 6639.34, + "probability": 0.9537 + }, + { + "start": 6639.48, + "end": 6641.9, + "probability": 0.6313 + }, + { + "start": 6642.9, + "end": 6645.18, + "probability": 0.0517 + }, + { + "start": 6648.82, + "end": 6651.3, + "probability": 0.6853 + }, + { + "start": 6651.3, + "end": 6652.82, + "probability": 0.6356 + }, + { + "start": 6653.42, + "end": 6654.7, + "probability": 0.0109 + }, + { + "start": 6655.38, + "end": 6657.12, + "probability": 0.2231 + }, + { + "start": 6657.12, + "end": 6658.48, + "probability": 0.2346 + }, + { + "start": 6659.39, + "end": 6659.9, + "probability": 0.0184 + }, + { + "start": 6659.9, + "end": 6659.9, + "probability": 0.0369 + }, + { + "start": 6659.9, + "end": 6660.04, + "probability": 0.4668 + }, + { + "start": 6660.76, + "end": 6662.94, + "probability": 0.5107 + }, + { + "start": 6663.3, + "end": 6663.96, + "probability": 0.5065 + }, + { + "start": 6664.16, + "end": 6667.36, + "probability": 0.9829 + }, + { + "start": 6668.44, + "end": 6672.65, + "probability": 0.9615 + }, + { + "start": 6672.98, + "end": 6677.94, + "probability": 0.9883 + }, + { + "start": 6678.06, + "end": 6681.56, + "probability": 0.4394 + }, + { + "start": 6701.9, + "end": 6706.66, + "probability": 0.8794 + }, + { + "start": 6706.66, + "end": 6709.54, + "probability": 0.8077 + }, + { + "start": 6709.62, + "end": 6710.6, + "probability": 0.2795 + }, + { + "start": 6711.24, + "end": 6711.82, + "probability": 0.3055 + }, + { + "start": 6711.88, + "end": 6712.86, + "probability": 0.0702 + }, + { + "start": 6714.6, + "end": 6715.34, + "probability": 0.0816 + }, + { + "start": 6717.08, + "end": 6717.36, + "probability": 0.0431 + }, + { + "start": 6718.36, + "end": 6718.5, + "probability": 0.2561 + }, + { + "start": 6731.1, + "end": 6731.54, + "probability": 0.085 + }, + { + "start": 6731.54, + "end": 6733.56, + "probability": 0.0096 + }, + { + "start": 6736.6, + "end": 6741.7, + "probability": 0.2757 + }, + { + "start": 6747.14, + "end": 6749.96, + "probability": 0.0354 + }, + { + "start": 6752.85, + "end": 6760.17, + "probability": 0.1546 + }, + { + "start": 6760.28, + "end": 6760.9, + "probability": 0.061 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.0, + "end": 6778.0, + "probability": 0.0 + }, + { + "start": 6778.08, + "end": 6779.68, + "probability": 0.5508 + }, + { + "start": 6782.32, + "end": 6785.04, + "probability": 0.9973 + }, + { + "start": 6785.04, + "end": 6789.66, + "probability": 0.9855 + }, + { + "start": 6789.78, + "end": 6791.44, + "probability": 0.701 + }, + { + "start": 6792.0, + "end": 6793.16, + "probability": 0.9809 + }, + { + "start": 6793.92, + "end": 6798.19, + "probability": 0.7402 + }, + { + "start": 6799.26, + "end": 6802.12, + "probability": 0.9962 + }, + { + "start": 6802.12, + "end": 6805.06, + "probability": 0.9966 + }, + { + "start": 6805.88, + "end": 6809.58, + "probability": 0.9624 + }, + { + "start": 6810.02, + "end": 6812.88, + "probability": 0.9829 + }, + { + "start": 6813.76, + "end": 6817.94, + "probability": 0.9854 + }, + { + "start": 6818.8, + "end": 6822.68, + "probability": 0.8944 + }, + { + "start": 6822.68, + "end": 6825.76, + "probability": 0.9652 + }, + { + "start": 6826.3, + "end": 6830.4, + "probability": 0.6696 + }, + { + "start": 6831.18, + "end": 6832.16, + "probability": 0.685 + }, + { + "start": 6832.2, + "end": 6837.64, + "probability": 0.8092 + }, + { + "start": 6838.14, + "end": 6841.0, + "probability": 0.9982 + }, + { + "start": 6841.52, + "end": 6847.3, + "probability": 0.8396 + }, + { + "start": 6847.96, + "end": 6854.08, + "probability": 0.6601 + }, + { + "start": 6854.24, + "end": 6855.84, + "probability": 0.8868 + }, + { + "start": 6856.54, + "end": 6860.02, + "probability": 0.846 + }, + { + "start": 6860.02, + "end": 6863.58, + "probability": 0.9973 + }, + { + "start": 6863.58, + "end": 6867.1, + "probability": 0.9849 + }, + { + "start": 6867.3, + "end": 6869.14, + "probability": 0.7712 + }, + { + "start": 6869.66, + "end": 6871.62, + "probability": 0.9859 + }, + { + "start": 6872.4, + "end": 6873.02, + "probability": 0.7784 + }, + { + "start": 6873.12, + "end": 6876.77, + "probability": 0.961 + }, + { + "start": 6878.27, + "end": 6882.94, + "probability": 0.9967 + }, + { + "start": 6882.94, + "end": 6886.2, + "probability": 0.9915 + }, + { + "start": 6886.94, + "end": 6891.36, + "probability": 0.9929 + }, + { + "start": 6891.36, + "end": 6894.08, + "probability": 0.9763 + }, + { + "start": 6894.8, + "end": 6895.16, + "probability": 0.4563 + }, + { + "start": 6895.72, + "end": 6898.86, + "probability": 0.9929 + }, + { + "start": 6899.14, + "end": 6903.62, + "probability": 0.988 + }, + { + "start": 6904.16, + "end": 6907.18, + "probability": 0.9388 + }, + { + "start": 6907.6, + "end": 6907.74, + "probability": 0.6823 + }, + { + "start": 6907.82, + "end": 6910.38, + "probability": 0.9851 + }, + { + "start": 6911.26, + "end": 6914.8, + "probability": 0.9893 + }, + { + "start": 6915.0, + "end": 6919.28, + "probability": 0.9214 + }, + { + "start": 6919.66, + "end": 6924.06, + "probability": 0.9922 + }, + { + "start": 6924.06, + "end": 6931.56, + "probability": 0.776 + }, + { + "start": 6932.34, + "end": 6935.84, + "probability": 0.9732 + }, + { + "start": 6935.84, + "end": 6939.14, + "probability": 0.9395 + }, + { + "start": 6939.14, + "end": 6942.93, + "probability": 0.9873 + }, + { + "start": 6943.34, + "end": 6945.46, + "probability": 0.8473 + }, + { + "start": 6946.06, + "end": 6949.22, + "probability": 0.8983 + }, + { + "start": 6949.9, + "end": 6951.36, + "probability": 0.6993 + }, + { + "start": 6951.92, + "end": 6955.72, + "probability": 0.92 + }, + { + "start": 6956.22, + "end": 6959.9, + "probability": 0.9777 + }, + { + "start": 6960.74, + "end": 6963.66, + "probability": 0.9481 + }, + { + "start": 6964.5, + "end": 6965.46, + "probability": 0.9941 + }, + { + "start": 6966.2, + "end": 6969.46, + "probability": 0.9954 + }, + { + "start": 6970.1, + "end": 6970.82, + "probability": 0.6366 + }, + { + "start": 6971.52, + "end": 6975.42, + "probability": 0.9882 + }, + { + "start": 6975.42, + "end": 6978.98, + "probability": 0.9982 + }, + { + "start": 6979.54, + "end": 6982.0, + "probability": 0.9894 + }, + { + "start": 6982.58, + "end": 6985.06, + "probability": 0.8037 + }, + { + "start": 6985.6, + "end": 6985.98, + "probability": 0.3652 + }, + { + "start": 6986.02, + "end": 6990.7, + "probability": 0.7297 + }, + { + "start": 6991.36, + "end": 6993.82, + "probability": 0.9537 + }, + { + "start": 6994.5, + "end": 6998.02, + "probability": 0.9941 + }, + { + "start": 6998.78, + "end": 7002.1, + "probability": 0.7911 + }, + { + "start": 7003.48, + "end": 7006.56, + "probability": 0.9929 + }, + { + "start": 7007.16, + "end": 7009.08, + "probability": 0.7442 + }, + { + "start": 7009.48, + "end": 7010.36, + "probability": 0.9514 + }, + { + "start": 7010.66, + "end": 7012.4, + "probability": 0.9984 + }, + { + "start": 7012.4, + "end": 7014.34, + "probability": 0.9988 + }, + { + "start": 7014.36, + "end": 7018.7, + "probability": 0.952 + }, + { + "start": 7018.76, + "end": 7019.02, + "probability": 0.6874 + }, + { + "start": 7019.12, + "end": 7022.0, + "probability": 0.8313 + }, + { + "start": 7022.54, + "end": 7024.44, + "probability": 0.978 + }, + { + "start": 7025.16, + "end": 7026.62, + "probability": 0.5389 + }, + { + "start": 7027.18, + "end": 7027.61, + "probability": 0.9597 + }, + { + "start": 7028.56, + "end": 7030.97, + "probability": 0.8941 + }, + { + "start": 7031.6, + "end": 7035.03, + "probability": 0.9714 + }, + { + "start": 7036.88, + "end": 7037.3, + "probability": 0.5833 + }, + { + "start": 7037.3, + "end": 7037.6, + "probability": 0.4491 + }, + { + "start": 7038.6, + "end": 7042.54, + "probability": 0.9156 + }, + { + "start": 7043.62, + "end": 7044.38, + "probability": 0.752 + }, + { + "start": 7045.06, + "end": 7048.54, + "probability": 0.9317 + }, + { + "start": 7049.34, + "end": 7050.68, + "probability": 0.8766 + }, + { + "start": 7052.16, + "end": 7055.22, + "probability": 0.7465 + }, + { + "start": 7056.22, + "end": 7056.97, + "probability": 0.6048 + }, + { + "start": 7057.62, + "end": 7059.26, + "probability": 0.8288 + }, + { + "start": 7059.36, + "end": 7063.26, + "probability": 0.9565 + }, + { + "start": 7063.96, + "end": 7065.66, + "probability": 0.9982 + }, + { + "start": 7068.56, + "end": 7070.46, + "probability": 0.3838 + }, + { + "start": 7070.74, + "end": 7072.22, + "probability": 0.7532 + }, + { + "start": 7072.9, + "end": 7075.5, + "probability": 0.9117 + }, + { + "start": 7076.0, + "end": 7077.71, + "probability": 0.9296 + }, + { + "start": 7078.1, + "end": 7080.68, + "probability": 0.9537 + }, + { + "start": 7080.68, + "end": 7082.98, + "probability": 0.9074 + }, + { + "start": 7083.3, + "end": 7083.72, + "probability": 0.7218 + }, + { + "start": 7083.94, + "end": 7084.6, + "probability": 0.6396 + }, + { + "start": 7084.72, + "end": 7086.32, + "probability": 0.8842 + }, + { + "start": 7086.4, + "end": 7090.06, + "probability": 0.9176 + }, + { + "start": 7090.96, + "end": 7092.29, + "probability": 0.2382 + }, + { + "start": 7094.08, + "end": 7094.46, + "probability": 0.3762 + }, + { + "start": 7095.62, + "end": 7095.76, + "probability": 0.1602 + }, + { + "start": 7095.76, + "end": 7095.76, + "probability": 0.1147 + }, + { + "start": 7095.76, + "end": 7096.12, + "probability": 0.0925 + }, + { + "start": 7096.16, + "end": 7097.68, + "probability": 0.7963 + }, + { + "start": 7098.36, + "end": 7101.98, + "probability": 0.9596 + }, + { + "start": 7102.58, + "end": 7103.9, + "probability": 0.2788 + }, + { + "start": 7104.68, + "end": 7106.22, + "probability": 0.505 + }, + { + "start": 7106.78, + "end": 7106.9, + "probability": 0.2289 + }, + { + "start": 7106.94, + "end": 7107.38, + "probability": 0.6917 + }, + { + "start": 7115.96, + "end": 7116.92, + "probability": 0.0028 + }, + { + "start": 7119.68, + "end": 7121.7, + "probability": 0.5311 + }, + { + "start": 7121.82, + "end": 7123.94, + "probability": 0.9268 + }, + { + "start": 7124.3, + "end": 7128.46, + "probability": 0.9681 + }, + { + "start": 7128.84, + "end": 7131.92, + "probability": 0.6866 + }, + { + "start": 7132.22, + "end": 7138.02, + "probability": 0.444 + }, + { + "start": 7146.28, + "end": 7146.32, + "probability": 0.099 + }, + { + "start": 7146.32, + "end": 7147.86, + "probability": 0.1781 + }, + { + "start": 7148.02, + "end": 7151.32, + "probability": 0.9019 + }, + { + "start": 7151.48, + "end": 7152.54, + "probability": 0.777 + }, + { + "start": 7153.3, + "end": 7155.18, + "probability": 0.9646 + }, + { + "start": 7155.56, + "end": 7157.14, + "probability": 0.9718 + }, + { + "start": 7157.94, + "end": 7158.56, + "probability": 0.835 + }, + { + "start": 7158.62, + "end": 7160.02, + "probability": 0.8918 + }, + { + "start": 7160.18, + "end": 7163.94, + "probability": 0.9274 + }, + { + "start": 7164.54, + "end": 7165.74, + "probability": 0.1148 + }, + { + "start": 7165.82, + "end": 7166.4, + "probability": 0.6592 + }, + { + "start": 7166.46, + "end": 7167.46, + "probability": 0.4059 + }, + { + "start": 7167.62, + "end": 7168.36, + "probability": 0.6157 + }, + { + "start": 7168.8, + "end": 7171.24, + "probability": 0.9902 + }, + { + "start": 7171.24, + "end": 7173.92, + "probability": 0.9603 + }, + { + "start": 7174.24, + "end": 7175.08, + "probability": 0.8964 + }, + { + "start": 7177.82, + "end": 7179.42, + "probability": 0.1532 + }, + { + "start": 7179.97, + "end": 7182.68, + "probability": 0.8154 + }, + { + "start": 7191.7, + "end": 7192.66, + "probability": 0.769 + }, + { + "start": 7193.2, + "end": 7194.14, + "probability": 0.5851 + }, + { + "start": 7194.16, + "end": 7194.9, + "probability": 0.5325 + }, + { + "start": 7194.9, + "end": 7196.98, + "probability": 0.8518 + }, + { + "start": 7196.98, + "end": 7196.98, + "probability": 0.7066 + }, + { + "start": 7196.98, + "end": 7198.18, + "probability": 0.9943 + }, + { + "start": 7199.5, + "end": 7203.98, + "probability": 0.5037 + }, + { + "start": 7205.24, + "end": 7206.14, + "probability": 0.5206 + }, + { + "start": 7206.94, + "end": 7208.0, + "probability": 0.5176 + }, + { + "start": 7209.06, + "end": 7213.9, + "probability": 0.712 + }, + { + "start": 7214.26, + "end": 7217.5, + "probability": 0.4936 + }, + { + "start": 7217.62, + "end": 7218.32, + "probability": 0.6912 + }, + { + "start": 7218.42, + "end": 7224.34, + "probability": 0.4466 + }, + { + "start": 7224.34, + "end": 7227.28, + "probability": 0.6076 + }, + { + "start": 7227.54, + "end": 7228.9, + "probability": 0.1331 + }, + { + "start": 7229.6, + "end": 7235.06, + "probability": 0.9238 + }, + { + "start": 7235.28, + "end": 7236.16, + "probability": 0.7779 + }, + { + "start": 7236.2, + "end": 7237.4, + "probability": 0.7705 + }, + { + "start": 7238.02, + "end": 7239.94, + "probability": 0.9479 + }, + { + "start": 7240.1, + "end": 7241.0, + "probability": 0.9897 + }, + { + "start": 7241.58, + "end": 7242.48, + "probability": 0.7253 + }, + { + "start": 7243.4, + "end": 7246.36, + "probability": 0.7192 + }, + { + "start": 7247.38, + "end": 7249.44, + "probability": 0.9736 + }, + { + "start": 7249.98, + "end": 7252.3, + "probability": 0.6613 + }, + { + "start": 7253.9, + "end": 7258.36, + "probability": 0.5677 + }, + { + "start": 7258.66, + "end": 7260.08, + "probability": 0.8431 + }, + { + "start": 7260.18, + "end": 7263.9, + "probability": 0.9112 + }, + { + "start": 7263.92, + "end": 7264.34, + "probability": 0.946 + }, + { + "start": 7264.58, + "end": 7266.57, + "probability": 0.8975 + }, + { + "start": 7267.34, + "end": 7268.66, + "probability": 0.5855 + }, + { + "start": 7269.3, + "end": 7271.64, + "probability": 0.8111 + }, + { + "start": 7272.26, + "end": 7272.44, + "probability": 0.1372 + }, + { + "start": 7272.44, + "end": 7275.28, + "probability": 0.6603 + }, + { + "start": 7275.98, + "end": 7276.86, + "probability": 0.9878 + }, + { + "start": 7277.48, + "end": 7279.18, + "probability": 0.9978 + }, + { + "start": 7279.84, + "end": 7282.44, + "probability": 0.7095 + }, + { + "start": 7282.72, + "end": 7284.66, + "probability": 0.7835 + }, + { + "start": 7285.5, + "end": 7287.44, + "probability": 0.9035 + }, + { + "start": 7287.58, + "end": 7293.04, + "probability": 0.759 + }, + { + "start": 7293.64, + "end": 7295.82, + "probability": 0.8168 + }, + { + "start": 7296.08, + "end": 7296.58, + "probability": 0.6581 + }, + { + "start": 7296.8, + "end": 7300.88, + "probability": 0.9655 + }, + { + "start": 7301.0, + "end": 7302.48, + "probability": 0.7744 + }, + { + "start": 7302.54, + "end": 7303.92, + "probability": 0.7407 + }, + { + "start": 7303.98, + "end": 7304.44, + "probability": 0.4854 + }, + { + "start": 7304.98, + "end": 7307.4, + "probability": 0.8283 + }, + { + "start": 7308.0, + "end": 7310.8, + "probability": 0.5235 + }, + { + "start": 7311.0, + "end": 7311.6, + "probability": 0.716 + }, + { + "start": 7311.7, + "end": 7312.68, + "probability": 0.3294 + }, + { + "start": 7313.18, + "end": 7319.68, + "probability": 0.7266 + }, + { + "start": 7319.8, + "end": 7322.5, + "probability": 0.6668 + }, + { + "start": 7322.54, + "end": 7326.18, + "probability": 0.9306 + }, + { + "start": 7326.92, + "end": 7328.02, + "probability": 0.697 + }, + { + "start": 7328.1, + "end": 7333.82, + "probability": 0.7934 + }, + { + "start": 7334.14, + "end": 7334.54, + "probability": 0.2737 + }, + { + "start": 7334.64, + "end": 7335.93, + "probability": 0.5999 + }, + { + "start": 7336.42, + "end": 7341.62, + "probability": 0.5918 + }, + { + "start": 7341.96, + "end": 7342.42, + "probability": 0.1142 + }, + { + "start": 7342.74, + "end": 7343.88, + "probability": 0.7908 + }, + { + "start": 7344.04, + "end": 7345.92, + "probability": 0.8249 + }, + { + "start": 7348.48, + "end": 7350.84, + "probability": 0.9719 + }, + { + "start": 7351.18, + "end": 7351.58, + "probability": 0.7409 + }, + { + "start": 7351.97, + "end": 7356.48, + "probability": 0.725 + }, + { + "start": 7356.94, + "end": 7362.28, + "probability": 0.9311 + }, + { + "start": 7362.64, + "end": 7363.55, + "probability": 0.6042 + }, + { + "start": 7364.62, + "end": 7366.24, + "probability": 0.0089 + }, + { + "start": 7368.68, + "end": 7375.46, + "probability": 0.2366 + }, + { + "start": 7376.76, + "end": 7382.52, + "probability": 0.8011 + }, + { + "start": 7383.22, + "end": 7388.32, + "probability": 0.9501 + }, + { + "start": 7388.72, + "end": 7392.64, + "probability": 0.9331 + }, + { + "start": 7392.7, + "end": 7396.56, + "probability": 0.954 + }, + { + "start": 7396.64, + "end": 7400.42, + "probability": 0.664 + }, + { + "start": 7400.42, + "end": 7403.3, + "probability": 0.8389 + }, + { + "start": 7403.59, + "end": 7407.24, + "probability": 0.6292 + }, + { + "start": 7407.32, + "end": 7411.04, + "probability": 0.9093 + }, + { + "start": 7411.04, + "end": 7413.76, + "probability": 0.9985 + }, + { + "start": 7414.22, + "end": 7416.56, + "probability": 0.9919 + }, + { + "start": 7416.56, + "end": 7420.4, + "probability": 0.9329 + }, + { + "start": 7420.56, + "end": 7425.54, + "probability": 0.9604 + }, + { + "start": 7425.72, + "end": 7428.38, + "probability": 0.995 + }, + { + "start": 7428.48, + "end": 7429.82, + "probability": 0.8889 + }, + { + "start": 7430.42, + "end": 7431.68, + "probability": 0.7153 + }, + { + "start": 7431.82, + "end": 7434.16, + "probability": 0.9675 + }, + { + "start": 7434.84, + "end": 7434.94, + "probability": 0.8809 + }, + { + "start": 7435.46, + "end": 7438.68, + "probability": 0.9848 + }, + { + "start": 7439.18, + "end": 7442.52, + "probability": 0.6619 + }, + { + "start": 7442.6, + "end": 7444.12, + "probability": 0.9608 + }, + { + "start": 7444.3, + "end": 7445.64, + "probability": 0.9012 + }, + { + "start": 7446.06, + "end": 7446.86, + "probability": 0.7822 + }, + { + "start": 7447.16, + "end": 7448.44, + "probability": 0.9151 + }, + { + "start": 7448.5, + "end": 7449.42, + "probability": 0.6898 + }, + { + "start": 7450.14, + "end": 7450.28, + "probability": 0.6335 + }, + { + "start": 7450.28, + "end": 7450.38, + "probability": 0.7801 + }, + { + "start": 7450.44, + "end": 7450.44, + "probability": 0.0243 + }, + { + "start": 7451.34, + "end": 7452.52, + "probability": 0.7146 + }, + { + "start": 7453.04, + "end": 7455.24, + "probability": 0.9258 + }, + { + "start": 7455.24, + "end": 7458.36, + "probability": 0.94 + }, + { + "start": 7458.66, + "end": 7458.72, + "probability": 0.2277 + }, + { + "start": 7458.72, + "end": 7459.76, + "probability": 0.7899 + }, + { + "start": 7459.92, + "end": 7461.76, + "probability": 0.9221 + }, + { + "start": 7462.16, + "end": 7464.08, + "probability": 0.7651 + }, + { + "start": 7464.68, + "end": 7464.92, + "probability": 0.001 + }, + { + "start": 7465.68, + "end": 7469.32, + "probability": 0.8227 + }, + { + "start": 7469.44, + "end": 7471.88, + "probability": 0.9948 + }, + { + "start": 7471.88, + "end": 7474.94, + "probability": 0.9711 + }, + { + "start": 7474.94, + "end": 7479.28, + "probability": 0.7077 + }, + { + "start": 7480.18, + "end": 7481.44, + "probability": 0.7041 + }, + { + "start": 7481.82, + "end": 7485.66, + "probability": 0.9463 + }, + { + "start": 7486.3, + "end": 7489.58, + "probability": 0.7466 + }, + { + "start": 7489.72, + "end": 7490.96, + "probability": 0.3761 + }, + { + "start": 7491.56, + "end": 7492.72, + "probability": 0.7587 + }, + { + "start": 7492.72, + "end": 7493.48, + "probability": 0.6383 + }, + { + "start": 7493.54, + "end": 7494.64, + "probability": 0.9607 + }, + { + "start": 7496.12, + "end": 7498.4, + "probability": 0.033 + }, + { + "start": 7498.4, + "end": 7500.49, + "probability": 0.8701 + }, + { + "start": 7501.04, + "end": 7502.16, + "probability": 0.4022 + }, + { + "start": 7502.42, + "end": 7503.68, + "probability": 0.7243 + }, + { + "start": 7503.7, + "end": 7507.22, + "probability": 0.8742 + }, + { + "start": 7507.3, + "end": 7507.8, + "probability": 0.5506 + }, + { + "start": 7507.82, + "end": 7509.52, + "probability": 0.8919 + }, + { + "start": 7509.64, + "end": 7515.54, + "probability": 0.9463 + }, + { + "start": 7516.06, + "end": 7517.44, + "probability": 0.6084 + }, + { + "start": 7517.96, + "end": 7518.87, + "probability": 0.2596 + }, + { + "start": 7519.1, + "end": 7519.32, + "probability": 0.2177 + }, + { + "start": 7519.36, + "end": 7523.38, + "probability": 0.5794 + }, + { + "start": 7523.44, + "end": 7524.0, + "probability": 0.8978 + }, + { + "start": 7524.52, + "end": 7529.84, + "probability": 0.9519 + }, + { + "start": 7530.04, + "end": 7531.72, + "probability": 0.9893 + }, + { + "start": 7531.86, + "end": 7535.04, + "probability": 0.7746 + }, + { + "start": 7535.18, + "end": 7536.06, + "probability": 0.6914 + }, + { + "start": 7537.4, + "end": 7538.38, + "probability": 0.7401 + }, + { + "start": 7538.42, + "end": 7542.22, + "probability": 0.7679 + }, + { + "start": 7542.82, + "end": 7545.34, + "probability": 0.605 + }, + { + "start": 7546.18, + "end": 7546.84, + "probability": 0.6991 + }, + { + "start": 7547.06, + "end": 7550.44, + "probability": 0.8739 + }, + { + "start": 7550.5, + "end": 7551.2, + "probability": 0.7239 + }, + { + "start": 7551.74, + "end": 7555.14, + "probability": 0.9491 + }, + { + "start": 7555.2, + "end": 7559.18, + "probability": 0.8009 + }, + { + "start": 7559.22, + "end": 7560.28, + "probability": 0.9672 + }, + { + "start": 7560.44, + "end": 7561.96, + "probability": 0.908 + }, + { + "start": 7562.54, + "end": 7564.76, + "probability": 0.4507 + }, + { + "start": 7564.8, + "end": 7565.76, + "probability": 0.5981 + }, + { + "start": 7565.76, + "end": 7567.56, + "probability": 0.573 + }, + { + "start": 7567.7, + "end": 7569.22, + "probability": 0.9447 + }, + { + "start": 7569.76, + "end": 7571.68, + "probability": 0.9783 + }, + { + "start": 7572.72, + "end": 7574.9, + "probability": 0.7279 + }, + { + "start": 7575.66, + "end": 7577.12, + "probability": 0.9535 + }, + { + "start": 7579.64, + "end": 7580.36, + "probability": 0.7758 + }, + { + "start": 7580.48, + "end": 7580.78, + "probability": 0.0381 + }, + { + "start": 7580.78, + "end": 7581.96, + "probability": 0.8599 + }, + { + "start": 7582.08, + "end": 7583.62, + "probability": 0.1 + }, + { + "start": 7584.02, + "end": 7584.72, + "probability": 0.0053 + }, + { + "start": 7585.26, + "end": 7585.93, + "probability": 0.1834 + }, + { + "start": 7586.96, + "end": 7590.52, + "probability": 0.3046 + }, + { + "start": 7590.88, + "end": 7593.48, + "probability": 0.7826 + }, + { + "start": 7595.22, + "end": 7598.2, + "probability": 0.7896 + }, + { + "start": 7598.3, + "end": 7598.5, + "probability": 0.3488 + }, + { + "start": 7598.8, + "end": 7601.76, + "probability": 0.999 + }, + { + "start": 7601.88, + "end": 7604.72, + "probability": 0.9866 + }, + { + "start": 7604.9, + "end": 7605.96, + "probability": 0.9572 + }, + { + "start": 7606.56, + "end": 7607.64, + "probability": 0.9401 + }, + { + "start": 7608.42, + "end": 7608.52, + "probability": 0.628 + }, + { + "start": 7611.28, + "end": 7611.98, + "probability": 0.6571 + }, + { + "start": 7613.46, + "end": 7618.04, + "probability": 0.9124 + }, + { + "start": 7619.84, + "end": 7625.72, + "probability": 0.9954 + }, + { + "start": 7626.78, + "end": 7632.44, + "probability": 0.9749 + }, + { + "start": 7632.52, + "end": 7633.58, + "probability": 0.9065 + }, + { + "start": 7634.26, + "end": 7636.6, + "probability": 0.8149 + }, + { + "start": 7637.56, + "end": 7640.36, + "probability": 0.8061 + }, + { + "start": 7641.9, + "end": 7644.22, + "probability": 0.995 + }, + { + "start": 7644.22, + "end": 7646.74, + "probability": 0.8778 + }, + { + "start": 7646.84, + "end": 7647.42, + "probability": 0.8298 + }, + { + "start": 7647.56, + "end": 7648.9, + "probability": 0.6675 + }, + { + "start": 7649.5, + "end": 7651.37, + "probability": 0.6157 + }, + { + "start": 7652.42, + "end": 7654.18, + "probability": 0.9105 + }, + { + "start": 7654.26, + "end": 7655.52, + "probability": 0.9844 + }, + { + "start": 7655.52, + "end": 7657.08, + "probability": 0.9663 + }, + { + "start": 7657.76, + "end": 7662.1, + "probability": 0.9688 + }, + { + "start": 7663.22, + "end": 7665.54, + "probability": 0.8239 + }, + { + "start": 7666.34, + "end": 7666.7, + "probability": 0.5056 + }, + { + "start": 7666.78, + "end": 7671.44, + "probability": 0.9734 + }, + { + "start": 7673.32, + "end": 7673.62, + "probability": 0.3362 + }, + { + "start": 7673.78, + "end": 7674.87, + "probability": 0.9185 + }, + { + "start": 7675.28, + "end": 7677.92, + "probability": 0.4113 + }, + { + "start": 7677.92, + "end": 7678.28, + "probability": 0.0401 + }, + { + "start": 7678.62, + "end": 7681.0, + "probability": 0.981 + }, + { + "start": 7682.06, + "end": 7685.22, + "probability": 0.9728 + }, + { + "start": 7685.86, + "end": 7688.84, + "probability": 0.9909 + }, + { + "start": 7689.8, + "end": 7695.1, + "probability": 0.9758 + }, + { + "start": 7695.52, + "end": 7696.34, + "probability": 0.7543 + }, + { + "start": 7696.9, + "end": 7697.82, + "probability": 0.9917 + }, + { + "start": 7698.0, + "end": 7699.06, + "probability": 0.9855 + }, + { + "start": 7699.44, + "end": 7699.81, + "probability": 0.9165 + }, + { + "start": 7701.38, + "end": 7702.89, + "probability": 0.9785 + }, + { + "start": 7703.08, + "end": 7703.72, + "probability": 0.9672 + }, + { + "start": 7704.86, + "end": 7707.24, + "probability": 0.6577 + }, + { + "start": 7708.02, + "end": 7708.62, + "probability": 0.9856 + }, + { + "start": 7709.46, + "end": 7713.54, + "probability": 0.9845 + }, + { + "start": 7714.56, + "end": 7717.22, + "probability": 0.6835 + }, + { + "start": 7717.28, + "end": 7718.48, + "probability": 0.5846 + }, + { + "start": 7719.08, + "end": 7720.24, + "probability": 0.998 + }, + { + "start": 7721.3, + "end": 7728.86, + "probability": 0.9888 + }, + { + "start": 7730.6, + "end": 7733.92, + "probability": 0.9709 + }, + { + "start": 7734.6, + "end": 7736.78, + "probability": 0.9629 + }, + { + "start": 7737.8, + "end": 7737.86, + "probability": 0.2923 + }, + { + "start": 7737.86, + "end": 7743.96, + "probability": 0.9636 + }, + { + "start": 7744.02, + "end": 7745.28, + "probability": 0.701 + }, + { + "start": 7746.5, + "end": 7748.58, + "probability": 0.9939 + }, + { + "start": 7749.76, + "end": 7751.04, + "probability": 0.6836 + }, + { + "start": 7751.6, + "end": 7754.1, + "probability": 0.8377 + }, + { + "start": 7755.66, + "end": 7756.22, + "probability": 0.8394 + }, + { + "start": 7757.84, + "end": 7759.38, + "probability": 0.9255 + }, + { + "start": 7760.32, + "end": 7761.66, + "probability": 0.7764 + }, + { + "start": 7762.26, + "end": 7766.82, + "probability": 0.9841 + }, + { + "start": 7767.46, + "end": 7768.56, + "probability": 0.989 + }, + { + "start": 7768.82, + "end": 7770.72, + "probability": 0.8314 + }, + { + "start": 7770.88, + "end": 7772.28, + "probability": 0.877 + }, + { + "start": 7772.4, + "end": 7775.24, + "probability": 0.9009 + }, + { + "start": 7775.56, + "end": 7776.24, + "probability": 0.8201 + }, + { + "start": 7778.0, + "end": 7780.72, + "probability": 0.8756 + }, + { + "start": 7781.64, + "end": 7783.6, + "probability": 0.658 + }, + { + "start": 7783.72, + "end": 7785.6, + "probability": 0.9956 + }, + { + "start": 7785.7, + "end": 7787.26, + "probability": 0.8365 + }, + { + "start": 7787.32, + "end": 7788.12, + "probability": 0.8763 + }, + { + "start": 7789.32, + "end": 7791.48, + "probability": 0.9985 + }, + { + "start": 7792.64, + "end": 7795.6, + "probability": 0.9728 + }, + { + "start": 7797.0, + "end": 7797.54, + "probability": 0.8737 + }, + { + "start": 7798.38, + "end": 7800.56, + "probability": 0.525 + }, + { + "start": 7800.98, + "end": 7802.62, + "probability": 0.9023 + }, + { + "start": 7803.24, + "end": 7807.78, + "probability": 0.8843 + }, + { + "start": 7808.7, + "end": 7811.31, + "probability": 0.9251 + }, + { + "start": 7811.96, + "end": 7813.88, + "probability": 0.997 + }, + { + "start": 7815.54, + "end": 7818.24, + "probability": 0.9891 + }, + { + "start": 7818.5, + "end": 7819.36, + "probability": 0.7251 + }, + { + "start": 7819.96, + "end": 7821.4, + "probability": 0.9761 + }, + { + "start": 7821.98, + "end": 7823.92, + "probability": 0.925 + }, + { + "start": 7824.98, + "end": 7825.9, + "probability": 0.9971 + }, + { + "start": 7826.84, + "end": 7831.3, + "probability": 0.9596 + }, + { + "start": 7831.88, + "end": 7836.88, + "probability": 0.9926 + }, + { + "start": 7837.94, + "end": 7839.0, + "probability": 0.9896 + }, + { + "start": 7839.12, + "end": 7839.42, + "probability": 0.8652 + }, + { + "start": 7839.42, + "end": 7840.26, + "probability": 0.497 + }, + { + "start": 7843.14, + "end": 7851.38, + "probability": 0.9041 + }, + { + "start": 7856.98, + "end": 7857.73, + "probability": 0.2417 + }, + { + "start": 7858.54, + "end": 7861.96, + "probability": 0.7161 + }, + { + "start": 7863.0, + "end": 7864.84, + "probability": 0.9872 + }, + { + "start": 7865.06, + "end": 7866.54, + "probability": 0.9833 + }, + { + "start": 7866.9, + "end": 7868.0, + "probability": 0.8689 + }, + { + "start": 7868.22, + "end": 7869.32, + "probability": 0.3621 + }, + { + "start": 7870.02, + "end": 7870.98, + "probability": 0.9933 + }, + { + "start": 7871.98, + "end": 7875.36, + "probability": 0.9737 + }, + { + "start": 7876.32, + "end": 7881.04, + "probability": 0.9943 + }, + { + "start": 7881.26, + "end": 7882.47, + "probability": 0.9673 + }, + { + "start": 7882.78, + "end": 7883.12, + "probability": 0.7165 + }, + { + "start": 7883.72, + "end": 7886.54, + "probability": 0.6519 + }, + { + "start": 7887.56, + "end": 7890.96, + "probability": 0.7114 + }, + { + "start": 7891.48, + "end": 7891.96, + "probability": 0.8751 + }, + { + "start": 7892.06, + "end": 7895.44, + "probability": 0.9924 + }, + { + "start": 7895.94, + "end": 7897.32, + "probability": 0.9349 + }, + { + "start": 7898.04, + "end": 7900.16, + "probability": 0.9837 + }, + { + "start": 7900.22, + "end": 7900.98, + "probability": 0.9597 + }, + { + "start": 7901.1, + "end": 7902.22, + "probability": 0.9982 + }, + { + "start": 7903.16, + "end": 7905.6, + "probability": 0.9659 + }, + { + "start": 7905.82, + "end": 7907.9, + "probability": 0.9536 + }, + { + "start": 7908.4, + "end": 7910.52, + "probability": 0.9184 + }, + { + "start": 7911.1, + "end": 7913.02, + "probability": 0.7251 + }, + { + "start": 7913.8, + "end": 7917.84, + "probability": 0.9586 + }, + { + "start": 7918.7, + "end": 7920.7, + "probability": 0.8826 + }, + { + "start": 7920.78, + "end": 7922.28, + "probability": 0.6124 + }, + { + "start": 7922.28, + "end": 7923.54, + "probability": 0.9632 + }, + { + "start": 7923.64, + "end": 7924.56, + "probability": 0.9538 + }, + { + "start": 7925.06, + "end": 7927.38, + "probability": 0.8848 + }, + { + "start": 7927.86, + "end": 7930.98, + "probability": 0.8883 + }, + { + "start": 7931.4, + "end": 7933.76, + "probability": 0.9552 + }, + { + "start": 7933.76, + "end": 7936.84, + "probability": 0.8729 + }, + { + "start": 7937.28, + "end": 7938.6, + "probability": 0.6594 + }, + { + "start": 7939.12, + "end": 7940.46, + "probability": 0.9749 + }, + { + "start": 7940.56, + "end": 7941.66, + "probability": 0.9076 + }, + { + "start": 7941.8, + "end": 7942.64, + "probability": 0.966 + }, + { + "start": 7943.12, + "end": 7944.08, + "probability": 0.9462 + }, + { + "start": 7944.16, + "end": 7944.5, + "probability": 0.428 + }, + { + "start": 7944.56, + "end": 7945.62, + "probability": 0.9718 + }, + { + "start": 7945.94, + "end": 7947.28, + "probability": 0.9344 + }, + { + "start": 7947.46, + "end": 7950.44, + "probability": 0.9802 + }, + { + "start": 7950.52, + "end": 7954.32, + "probability": 0.9935 + }, + { + "start": 7954.42, + "end": 7955.88, + "probability": 0.7714 + }, + { + "start": 7955.96, + "end": 7956.06, + "probability": 0.4941 + }, + { + "start": 7956.12, + "end": 7957.13, + "probability": 0.6913 + }, + { + "start": 7957.72, + "end": 7959.26, + "probability": 0.9832 + }, + { + "start": 7959.44, + "end": 7960.18, + "probability": 0.6464 + }, + { + "start": 7960.46, + "end": 7962.06, + "probability": 0.9933 + }, + { + "start": 7962.12, + "end": 7962.96, + "probability": 0.9133 + }, + { + "start": 7962.96, + "end": 7965.18, + "probability": 0.8165 + }, + { + "start": 7965.3, + "end": 7970.0, + "probability": 0.9729 + }, + { + "start": 7970.88, + "end": 7974.24, + "probability": 0.9055 + }, + { + "start": 7974.94, + "end": 7976.34, + "probability": 0.9858 + }, + { + "start": 7976.54, + "end": 7977.1, + "probability": 0.1997 + }, + { + "start": 7977.1, + "end": 7977.98, + "probability": 0.902 + }, + { + "start": 7978.24, + "end": 7982.58, + "probability": 0.904 + }, + { + "start": 7982.58, + "end": 7984.8, + "probability": 0.9871 + }, + { + "start": 7985.22, + "end": 7986.5, + "probability": 0.8585 + }, + { + "start": 7986.74, + "end": 7988.2, + "probability": 0.827 + }, + { + "start": 7988.64, + "end": 7989.34, + "probability": 0.9432 + }, + { + "start": 7989.46, + "end": 7990.4, + "probability": 0.7883 + }, + { + "start": 7990.72, + "end": 7992.22, + "probability": 0.6872 + }, + { + "start": 7992.38, + "end": 7993.06, + "probability": 0.3958 + }, + { + "start": 7993.36, + "end": 7993.42, + "probability": 0.7654 + }, + { + "start": 7993.5, + "end": 7994.22, + "probability": 0.906 + }, + { + "start": 7995.2, + "end": 7996.32, + "probability": 0.8594 + }, + { + "start": 7996.7, + "end": 7999.16, + "probability": 0.926 + }, + { + "start": 7999.44, + "end": 7999.9, + "probability": 0.7566 + }, + { + "start": 8000.26, + "end": 8003.66, + "probability": 0.9937 + }, + { + "start": 8003.92, + "end": 8005.58, + "probability": 0.673 + }, + { + "start": 8006.12, + "end": 8009.9, + "probability": 0.8463 + }, + { + "start": 8010.3, + "end": 8012.26, + "probability": 0.9699 + }, + { + "start": 8012.68, + "end": 8016.22, + "probability": 0.9681 + }, + { + "start": 8016.46, + "end": 8017.92, + "probability": 0.8181 + }, + { + "start": 8017.98, + "end": 8018.2, + "probability": 0.8804 + }, + { + "start": 8018.24, + "end": 8018.77, + "probability": 0.9398 + }, + { + "start": 8019.18, + "end": 8020.84, + "probability": 0.9348 + }, + { + "start": 8021.02, + "end": 8022.56, + "probability": 0.9866 + }, + { + "start": 8022.68, + "end": 8023.28, + "probability": 0.4208 + }, + { + "start": 8023.62, + "end": 8024.94, + "probability": 0.8065 + }, + { + "start": 8025.22, + "end": 8027.32, + "probability": 0.9368 + }, + { + "start": 8027.44, + "end": 8030.2, + "probability": 0.9979 + }, + { + "start": 8030.28, + "end": 8030.78, + "probability": 0.5509 + }, + { + "start": 8031.12, + "end": 8032.64, + "probability": 0.9871 + }, + { + "start": 8033.2, + "end": 8036.98, + "probability": 0.66 + }, + { + "start": 8037.92, + "end": 8039.3, + "probability": 0.9927 + }, + { + "start": 8039.4, + "end": 8039.74, + "probability": 0.7103 + }, + { + "start": 8040.18, + "end": 8042.96, + "probability": 0.984 + }, + { + "start": 8043.22, + "end": 8047.42, + "probability": 0.98 + }, + { + "start": 8047.92, + "end": 8051.54, + "probability": 0.9026 + }, + { + "start": 8051.94, + "end": 8052.36, + "probability": 0.6771 + }, + { + "start": 8052.36, + "end": 8055.54, + "probability": 0.9427 + }, + { + "start": 8055.54, + "end": 8057.14, + "probability": 0.9924 + }, + { + "start": 8057.44, + "end": 8058.26, + "probability": 0.7555 + }, + { + "start": 8058.84, + "end": 8059.56, + "probability": 0.8774 + }, + { + "start": 8060.02, + "end": 8062.82, + "probability": 0.6793 + }, + { + "start": 8062.9, + "end": 8063.46, + "probability": 0.9462 + }, + { + "start": 8063.52, + "end": 8066.88, + "probability": 0.9404 + }, + { + "start": 8067.18, + "end": 8068.42, + "probability": 0.9584 + }, + { + "start": 8068.74, + "end": 8074.66, + "probability": 0.9828 + }, + { + "start": 8074.88, + "end": 8074.88, + "probability": 0.0644 + }, + { + "start": 8074.88, + "end": 8077.98, + "probability": 0.9055 + }, + { + "start": 8078.14, + "end": 8078.52, + "probability": 0.1108 + }, + { + "start": 8078.52, + "end": 8078.8, + "probability": 0.5774 + }, + { + "start": 8079.1, + "end": 8080.02, + "probability": 0.557 + }, + { + "start": 8080.06, + "end": 8082.8, + "probability": 0.7769 + }, + { + "start": 8083.0, + "end": 8083.58, + "probability": 0.543 + }, + { + "start": 8084.18, + "end": 8085.56, + "probability": 0.8152 + }, + { + "start": 8086.28, + "end": 8089.92, + "probability": 0.934 + }, + { + "start": 8090.5, + "end": 8092.14, + "probability": 0.8741 + }, + { + "start": 8092.4, + "end": 8093.3, + "probability": 0.3637 + }, + { + "start": 8099.96, + "end": 8101.04, + "probability": 0.611 + }, + { + "start": 8102.72, + "end": 8104.3, + "probability": 0.6462 + }, + { + "start": 8104.38, + "end": 8104.86, + "probability": 0.6966 + }, + { + "start": 8105.58, + "end": 8107.54, + "probability": 0.863 + }, + { + "start": 8108.24, + "end": 8114.42, + "probability": 0.959 + }, + { + "start": 8114.5, + "end": 8118.66, + "probability": 0.9833 + }, + { + "start": 8118.66, + "end": 8121.88, + "probability": 0.9996 + }, + { + "start": 8122.66, + "end": 8125.52, + "probability": 0.8715 + }, + { + "start": 8126.32, + "end": 8129.74, + "probability": 0.9866 + }, + { + "start": 8130.56, + "end": 8133.06, + "probability": 0.9104 + }, + { + "start": 8133.58, + "end": 8135.34, + "probability": 0.7178 + }, + { + "start": 8135.88, + "end": 8138.66, + "probability": 0.9935 + }, + { + "start": 8139.5, + "end": 8145.8, + "probability": 0.9936 + }, + { + "start": 8146.5, + "end": 8149.9, + "probability": 0.7607 + }, + { + "start": 8150.72, + "end": 8154.06, + "probability": 0.9991 + }, + { + "start": 8154.06, + "end": 8158.38, + "probability": 0.9981 + }, + { + "start": 8158.82, + "end": 8160.22, + "probability": 0.8386 + }, + { + "start": 8161.04, + "end": 8166.52, + "probability": 0.9979 + }, + { + "start": 8166.52, + "end": 8170.99, + "probability": 0.9993 + }, + { + "start": 8171.32, + "end": 8175.58, + "probability": 0.8445 + }, + { + "start": 8176.02, + "end": 8178.82, + "probability": 0.9978 + }, + { + "start": 8179.98, + "end": 8181.42, + "probability": 0.9937 + }, + { + "start": 8181.48, + "end": 8184.84, + "probability": 0.9944 + }, + { + "start": 8185.16, + "end": 8185.94, + "probability": 0.0833 + }, + { + "start": 8187.04, + "end": 8187.48, + "probability": 0.3354 + }, + { + "start": 8187.48, + "end": 8193.94, + "probability": 0.9327 + }, + { + "start": 8194.1, + "end": 8198.36, + "probability": 0.9458 + }, + { + "start": 8198.7, + "end": 8203.98, + "probability": 0.9483 + }, + { + "start": 8204.18, + "end": 8207.06, + "probability": 0.9869 + }, + { + "start": 8207.5, + "end": 8212.04, + "probability": 0.968 + }, + { + "start": 8212.3, + "end": 8213.68, + "probability": 0.9883 + }, + { + "start": 8214.46, + "end": 8216.34, + "probability": 0.5856 + }, + { + "start": 8216.34, + "end": 8216.42, + "probability": 0.6707 + }, + { + "start": 8216.42, + "end": 8217.14, + "probability": 0.3447 + }, + { + "start": 8217.26, + "end": 8222.18, + "probability": 0.949 + }, + { + "start": 8222.92, + "end": 8227.04, + "probability": 0.9811 + }, + { + "start": 8227.8, + "end": 8229.38, + "probability": 0.8436 + }, + { + "start": 8229.92, + "end": 8237.18, + "probability": 0.995 + }, + { + "start": 8237.74, + "end": 8238.14, + "probability": 0.4945 + }, + { + "start": 8238.24, + "end": 8239.86, + "probability": 0.9495 + }, + { + "start": 8240.26, + "end": 8244.4, + "probability": 0.9839 + }, + { + "start": 8244.4, + "end": 8248.72, + "probability": 0.9877 + }, + { + "start": 8249.24, + "end": 8254.44, + "probability": 0.7139 + }, + { + "start": 8255.28, + "end": 8256.46, + "probability": 0.2769 + }, + { + "start": 8257.12, + "end": 8257.8, + "probability": 0.0317 + }, + { + "start": 8258.06, + "end": 8260.04, + "probability": 0.0959 + }, + { + "start": 8260.04, + "end": 8262.44, + "probability": 0.3952 + }, + { + "start": 8262.72, + "end": 8264.18, + "probability": 0.854 + }, + { + "start": 8265.34, + "end": 8265.68, + "probability": 0.323 + }, + { + "start": 8265.78, + "end": 8268.72, + "probability": 0.7003 + }, + { + "start": 8269.16, + "end": 8270.2, + "probability": 0.8351 + }, + { + "start": 8270.58, + "end": 8273.06, + "probability": 0.8044 + }, + { + "start": 8273.4, + "end": 8276.96, + "probability": 0.7437 + }, + { + "start": 8277.22, + "end": 8279.65, + "probability": 0.8475 + }, + { + "start": 8279.76, + "end": 8285.74, + "probability": 0.9161 + }, + { + "start": 8286.16, + "end": 8288.06, + "probability": 0.8494 + }, + { + "start": 8288.74, + "end": 8293.84, + "probability": 0.9124 + }, + { + "start": 8293.94, + "end": 8293.94, + "probability": 0.7216 + }, + { + "start": 8294.2, + "end": 8296.48, + "probability": 0.9662 + }, + { + "start": 8297.14, + "end": 8301.9, + "probability": 0.9132 + }, + { + "start": 8302.54, + "end": 8305.98, + "probability": 0.8786 + }, + { + "start": 8306.02, + "end": 8306.86, + "probability": 0.4221 + }, + { + "start": 8306.98, + "end": 8308.4, + "probability": 0.9749 + }, + { + "start": 8309.2, + "end": 8310.72, + "probability": 0.6404 + }, + { + "start": 8310.78, + "end": 8311.3, + "probability": 0.9616 + }, + { + "start": 8319.6, + "end": 8320.04, + "probability": 0.828 + }, + { + "start": 8322.24, + "end": 8323.4, + "probability": 0.7252 + }, + { + "start": 8323.54, + "end": 8324.4, + "probability": 0.7015 + }, + { + "start": 8325.4, + "end": 8327.48, + "probability": 0.9979 + }, + { + "start": 8327.82, + "end": 8328.88, + "probability": 0.6241 + }, + { + "start": 8329.0, + "end": 8331.05, + "probability": 0.998 + }, + { + "start": 8332.16, + "end": 8334.48, + "probability": 0.992 + }, + { + "start": 8334.64, + "end": 8336.98, + "probability": 0.9216 + }, + { + "start": 8337.36, + "end": 8338.96, + "probability": 0.9769 + }, + { + "start": 8340.28, + "end": 8342.22, + "probability": 0.7168 + }, + { + "start": 8342.68, + "end": 8345.86, + "probability": 0.7612 + }, + { + "start": 8345.98, + "end": 8347.04, + "probability": 0.9215 + }, + { + "start": 8347.76, + "end": 8349.5, + "probability": 0.9907 + }, + { + "start": 8349.74, + "end": 8352.06, + "probability": 0.9867 + }, + { + "start": 8352.74, + "end": 8356.7, + "probability": 0.9964 + }, + { + "start": 8357.22, + "end": 8358.98, + "probability": 0.9896 + }, + { + "start": 8359.02, + "end": 8359.66, + "probability": 0.5078 + }, + { + "start": 8359.74, + "end": 8360.64, + "probability": 0.894 + }, + { + "start": 8361.1, + "end": 8365.82, + "probability": 0.9987 + }, + { + "start": 8366.68, + "end": 8369.02, + "probability": 0.9404 + }, + { + "start": 8369.58, + "end": 8371.7, + "probability": 0.9578 + }, + { + "start": 8372.26, + "end": 8372.52, + "probability": 0.9506 + }, + { + "start": 8372.64, + "end": 8376.94, + "probability": 0.9928 + }, + { + "start": 8377.16, + "end": 8382.3, + "probability": 0.9943 + }, + { + "start": 8382.82, + "end": 8383.34, + "probability": 0.4178 + }, + { + "start": 8384.16, + "end": 8386.92, + "probability": 0.9712 + }, + { + "start": 8387.5, + "end": 8389.32, + "probability": 0.9604 + }, + { + "start": 8390.46, + "end": 8392.8, + "probability": 0.9928 + }, + { + "start": 8393.24, + "end": 8396.48, + "probability": 0.998 + }, + { + "start": 8397.12, + "end": 8399.26, + "probability": 0.9961 + }, + { + "start": 8399.4, + "end": 8400.02, + "probability": 0.893 + }, + { + "start": 8400.24, + "end": 8401.66, + "probability": 0.9909 + }, + { + "start": 8401.88, + "end": 8402.96, + "probability": 0.9547 + }, + { + "start": 8403.62, + "end": 8406.54, + "probability": 0.9374 + }, + { + "start": 8407.48, + "end": 8411.0, + "probability": 0.9725 + }, + { + "start": 8411.22, + "end": 8412.0, + "probability": 0.6565 + }, + { + "start": 8412.32, + "end": 8414.95, + "probability": 0.9757 + }, + { + "start": 8415.12, + "end": 8415.9, + "probability": 0.9852 + }, + { + "start": 8416.04, + "end": 8418.36, + "probability": 0.9794 + }, + { + "start": 8419.0, + "end": 8421.88, + "probability": 0.9805 + }, + { + "start": 8422.4, + "end": 8422.5, + "probability": 0.646 + }, + { + "start": 8423.58, + "end": 8429.08, + "probability": 0.9936 + }, + { + "start": 8430.02, + "end": 8434.26, + "probability": 0.9913 + }, + { + "start": 8434.56, + "end": 8436.04, + "probability": 0.6895 + }, + { + "start": 8436.54, + "end": 8437.68, + "probability": 0.6182 + }, + { + "start": 8437.92, + "end": 8440.0, + "probability": 0.7703 + }, + { + "start": 8440.36, + "end": 8441.26, + "probability": 0.7926 + }, + { + "start": 8441.62, + "end": 8442.57, + "probability": 0.979 + }, + { + "start": 8443.14, + "end": 8444.3, + "probability": 0.9897 + }, + { + "start": 8444.62, + "end": 8446.84, + "probability": 0.9814 + }, + { + "start": 8447.4, + "end": 8448.9, + "probability": 0.6479 + }, + { + "start": 8449.56, + "end": 8452.94, + "probability": 0.9708 + }, + { + "start": 8453.4, + "end": 8456.14, + "probability": 0.9924 + }, + { + "start": 8456.14, + "end": 8456.62, + "probability": 0.9333 + }, + { + "start": 8456.96, + "end": 8459.32, + "probability": 0.9717 + }, + { + "start": 8459.66, + "end": 8460.58, + "probability": 0.6937 + }, + { + "start": 8460.96, + "end": 8463.72, + "probability": 0.9993 + }, + { + "start": 8464.04, + "end": 8467.0, + "probability": 0.9941 + }, + { + "start": 8467.0, + "end": 8470.1, + "probability": 0.9916 + }, + { + "start": 8470.18, + "end": 8471.2, + "probability": 0.7164 + }, + { + "start": 8471.58, + "end": 8474.96, + "probability": 0.9959 + }, + { + "start": 8475.54, + "end": 8479.46, + "probability": 0.9988 + }, + { + "start": 8480.32, + "end": 8483.4, + "probability": 0.9585 + }, + { + "start": 8483.84, + "end": 8487.26, + "probability": 0.9351 + }, + { + "start": 8487.4, + "end": 8491.68, + "probability": 0.9956 + }, + { + "start": 8492.14, + "end": 8494.24, + "probability": 0.8067 + }, + { + "start": 8494.52, + "end": 8495.58, + "probability": 0.9989 + }, + { + "start": 8498.02, + "end": 8502.3, + "probability": 0.9521 + }, + { + "start": 8502.86, + "end": 8503.58, + "probability": 0.7427 + }, + { + "start": 8504.28, + "end": 8506.94, + "probability": 0.9951 + }, + { + "start": 8507.24, + "end": 8509.44, + "probability": 0.9957 + }, + { + "start": 8509.76, + "end": 8512.46, + "probability": 0.7806 + }, + { + "start": 8514.4, + "end": 8514.4, + "probability": 0.2545 + }, + { + "start": 8514.4, + "end": 8514.48, + "probability": 0.1301 + }, + { + "start": 8514.48, + "end": 8517.8, + "probability": 0.8618 + }, + { + "start": 8518.96, + "end": 8520.58, + "probability": 0.6484 + }, + { + "start": 8521.54, + "end": 8525.42, + "probability": 0.9915 + }, + { + "start": 8525.82, + "end": 8527.15, + "probability": 0.9832 + }, + { + "start": 8527.4, + "end": 8528.1, + "probability": 0.898 + }, + { + "start": 8528.46, + "end": 8530.32, + "probability": 0.7147 + }, + { + "start": 8530.36, + "end": 8531.52, + "probability": 0.9711 + }, + { + "start": 8532.14, + "end": 8534.08, + "probability": 0.9963 + }, + { + "start": 8534.08, + "end": 8537.66, + "probability": 0.9473 + }, + { + "start": 8537.78, + "end": 8538.38, + "probability": 0.8775 + }, + { + "start": 8538.76, + "end": 8539.58, + "probability": 0.5291 + }, + { + "start": 8539.6, + "end": 8543.76, + "probability": 0.8729 + }, + { + "start": 8544.68, + "end": 8547.08, + "probability": 0.8364 + }, + { + "start": 8565.16, + "end": 8567.14, + "probability": 0.6741 + }, + { + "start": 8569.02, + "end": 8572.96, + "probability": 0.9956 + }, + { + "start": 8573.78, + "end": 8575.88, + "probability": 0.9753 + }, + { + "start": 8577.44, + "end": 8578.66, + "probability": 0.9632 + }, + { + "start": 8579.32, + "end": 8580.64, + "probability": 0.889 + }, + { + "start": 8581.46, + "end": 8584.68, + "probability": 0.9795 + }, + { + "start": 8585.2, + "end": 8587.26, + "probability": 0.4932 + }, + { + "start": 8588.2, + "end": 8590.46, + "probability": 0.8932 + }, + { + "start": 8592.04, + "end": 8596.48, + "probability": 0.9944 + }, + { + "start": 8596.48, + "end": 8601.78, + "probability": 0.9915 + }, + { + "start": 8602.44, + "end": 8605.38, + "probability": 0.9975 + }, + { + "start": 8605.98, + "end": 8607.38, + "probability": 0.9868 + }, + { + "start": 8608.76, + "end": 8610.48, + "probability": 0.9919 + }, + { + "start": 8611.1, + "end": 8614.76, + "probability": 0.9995 + }, + { + "start": 8615.94, + "end": 8619.98, + "probability": 0.9963 + }, + { + "start": 8619.98, + "end": 8625.06, + "probability": 0.9993 + }, + { + "start": 8626.46, + "end": 8635.66, + "probability": 0.998 + }, + { + "start": 8636.58, + "end": 8639.26, + "probability": 0.9956 + }, + { + "start": 8640.26, + "end": 8643.62, + "probability": 0.9739 + }, + { + "start": 8644.38, + "end": 8650.62, + "probability": 0.9841 + }, + { + "start": 8651.96, + "end": 8654.44, + "probability": 0.9976 + }, + { + "start": 8655.22, + "end": 8660.64, + "probability": 0.9774 + }, + { + "start": 8661.94, + "end": 8663.66, + "probability": 0.8324 + }, + { + "start": 8664.54, + "end": 8668.4, + "probability": 0.9867 + }, + { + "start": 8669.22, + "end": 8676.74, + "probability": 0.9904 + }, + { + "start": 8676.98, + "end": 8681.56, + "probability": 0.9872 + }, + { + "start": 8682.66, + "end": 8685.56, + "probability": 0.9944 + }, + { + "start": 8686.38, + "end": 8693.24, + "probability": 0.9982 + }, + { + "start": 8693.24, + "end": 8699.0, + "probability": 0.9983 + }, + { + "start": 8700.74, + "end": 8702.02, + "probability": 0.5957 + }, + { + "start": 8703.04, + "end": 8709.76, + "probability": 0.9788 + }, + { + "start": 8710.28, + "end": 8714.28, + "probability": 0.9713 + }, + { + "start": 8715.56, + "end": 8719.29, + "probability": 0.9983 + }, + { + "start": 8719.32, + "end": 8724.64, + "probability": 0.9973 + }, + { + "start": 8725.9, + "end": 8731.96, + "probability": 0.9976 + }, + { + "start": 8734.44, + "end": 8738.0, + "probability": 0.9965 + }, + { + "start": 8739.16, + "end": 8745.62, + "probability": 0.9917 + }, + { + "start": 8746.6, + "end": 8747.1, + "probability": 0.7039 + }, + { + "start": 8747.22, + "end": 8750.02, + "probability": 0.9124 + }, + { + "start": 8750.44, + "end": 8751.12, + "probability": 0.7658 + }, + { + "start": 8751.26, + "end": 8758.3, + "probability": 0.9771 + }, + { + "start": 8758.3, + "end": 8764.46, + "probability": 0.9983 + }, + { + "start": 8764.6, + "end": 8764.6, + "probability": 0.7886 + }, + { + "start": 8764.66, + "end": 8765.52, + "probability": 0.7566 + }, + { + "start": 8766.72, + "end": 8767.52, + "probability": 0.3008 + }, + { + "start": 8768.82, + "end": 8770.8, + "probability": 0.5782 + }, + { + "start": 8772.18, + "end": 8772.78, + "probability": 0.4529 + }, + { + "start": 8773.0, + "end": 8776.6, + "probability": 0.8563 + }, + { + "start": 8777.38, + "end": 8778.24, + "probability": 0.9893 + }, + { + "start": 8779.3, + "end": 8779.58, + "probability": 0.869 + }, + { + "start": 8790.94, + "end": 8791.64, + "probability": 0.4962 + }, + { + "start": 8791.64, + "end": 8792.54, + "probability": 0.6215 + }, + { + "start": 8794.06, + "end": 8797.0, + "probability": 0.9811 + }, + { + "start": 8797.28, + "end": 8802.66, + "probability": 0.8736 + }, + { + "start": 8803.98, + "end": 8807.68, + "probability": 0.9504 + }, + { + "start": 8808.88, + "end": 8812.26, + "probability": 0.8633 + }, + { + "start": 8812.94, + "end": 8813.42, + "probability": 0.9092 + }, + { + "start": 8814.34, + "end": 8816.7, + "probability": 0.9806 + }, + { + "start": 8817.56, + "end": 8818.16, + "probability": 0.9576 + }, + { + "start": 8819.6, + "end": 8824.5, + "probability": 0.9469 + }, + { + "start": 8825.28, + "end": 8825.82, + "probability": 0.9976 + }, + { + "start": 8826.62, + "end": 8828.34, + "probability": 0.9988 + }, + { + "start": 8829.68, + "end": 8830.98, + "probability": 0.9877 + }, + { + "start": 8831.58, + "end": 8833.52, + "probability": 0.9969 + }, + { + "start": 8833.6, + "end": 8835.3, + "probability": 0.8892 + }, + { + "start": 8837.0, + "end": 8837.96, + "probability": 0.9878 + }, + { + "start": 8838.72, + "end": 8842.8, + "probability": 0.9976 + }, + { + "start": 8843.78, + "end": 8845.44, + "probability": 0.9962 + }, + { + "start": 8845.52, + "end": 8846.5, + "probability": 0.899 + }, + { + "start": 8847.22, + "end": 8848.92, + "probability": 0.998 + }, + { + "start": 8849.5, + "end": 8852.68, + "probability": 0.7053 + }, + { + "start": 8853.24, + "end": 8857.0, + "probability": 0.9491 + }, + { + "start": 8858.0, + "end": 8858.8, + "probability": 0.0748 + }, + { + "start": 8861.04, + "end": 8861.28, + "probability": 0.0746 + }, + { + "start": 8861.28, + "end": 8861.46, + "probability": 0.2651 + }, + { + "start": 8861.48, + "end": 8862.5, + "probability": 0.5374 + }, + { + "start": 8863.62, + "end": 8865.66, + "probability": 0.9399 + }, + { + "start": 8867.08, + "end": 8867.56, + "probability": 0.7398 + }, + { + "start": 8867.98, + "end": 8868.64, + "probability": 0.995 + }, + { + "start": 8869.26, + "end": 8870.03, + "probability": 0.9931 + }, + { + "start": 8871.04, + "end": 8872.51, + "probability": 0.998 + }, + { + "start": 8873.46, + "end": 8877.46, + "probability": 0.9087 + }, + { + "start": 8877.88, + "end": 8878.98, + "probability": 0.8363 + }, + { + "start": 8879.72, + "end": 8880.72, + "probability": 0.9194 + }, + { + "start": 8881.62, + "end": 8883.1, + "probability": 0.999 + }, + { + "start": 8883.76, + "end": 8886.08, + "probability": 0.998 + }, + { + "start": 8887.02, + "end": 8889.6, + "probability": 0.9844 + }, + { + "start": 8890.58, + "end": 8893.17, + "probability": 0.7525 + }, + { + "start": 8894.02, + "end": 8895.34, + "probability": 0.971 + }, + { + "start": 8895.6, + "end": 8897.76, + "probability": 0.9775 + }, + { + "start": 8897.9, + "end": 8898.74, + "probability": 0.8025 + }, + { + "start": 8900.26, + "end": 8901.96, + "probability": 0.7592 + }, + { + "start": 8902.6, + "end": 8903.14, + "probability": 0.8855 + }, + { + "start": 8903.84, + "end": 8906.84, + "probability": 0.7632 + }, + { + "start": 8907.72, + "end": 8909.68, + "probability": 0.9603 + }, + { + "start": 8909.76, + "end": 8911.48, + "probability": 0.8938 + }, + { + "start": 8911.48, + "end": 8914.66, + "probability": 0.9985 + }, + { + "start": 8914.78, + "end": 8915.64, + "probability": 0.939 + }, + { + "start": 8917.1, + "end": 8919.34, + "probability": 0.8604 + }, + { + "start": 8920.16, + "end": 8921.34, + "probability": 0.9984 + }, + { + "start": 8922.68, + "end": 8927.94, + "probability": 0.9905 + }, + { + "start": 8928.0, + "end": 8928.48, + "probability": 0.3517 + }, + { + "start": 8928.62, + "end": 8929.9, + "probability": 0.9817 + }, + { + "start": 8930.7, + "end": 8931.78, + "probability": 0.9183 + }, + { + "start": 8932.66, + "end": 8933.44, + "probability": 0.9106 + }, + { + "start": 8934.92, + "end": 8937.02, + "probability": 0.9976 + }, + { + "start": 8937.08, + "end": 8937.77, + "probability": 0.8954 + }, + { + "start": 8938.2, + "end": 8938.52, + "probability": 0.8578 + }, + { + "start": 8938.58, + "end": 8938.98, + "probability": 0.8286 + }, + { + "start": 8939.04, + "end": 8939.12, + "probability": 0.7056 + }, + { + "start": 8939.12, + "end": 8940.2, + "probability": 0.7065 + }, + { + "start": 8940.32, + "end": 8941.68, + "probability": 0.9754 + }, + { + "start": 8942.66, + "end": 8943.58, + "probability": 0.9696 + }, + { + "start": 8945.5, + "end": 8948.26, + "probability": 0.9966 + }, + { + "start": 8948.26, + "end": 8950.98, + "probability": 0.9853 + }, + { + "start": 8951.08, + "end": 8952.8, + "probability": 0.9993 + }, + { + "start": 8953.6, + "end": 8955.64, + "probability": 0.9979 + }, + { + "start": 8956.46, + "end": 8958.02, + "probability": 0.9868 + }, + { + "start": 8958.34, + "end": 8959.7, + "probability": 0.9891 + }, + { + "start": 8960.1, + "end": 8961.02, + "probability": 0.9219 + }, + { + "start": 8961.08, + "end": 8965.49, + "probability": 0.9808 + }, + { + "start": 8966.4, + "end": 8968.5, + "probability": 0.8997 + }, + { + "start": 8969.02, + "end": 8971.54, + "probability": 0.9649 + }, + { + "start": 8971.74, + "end": 8972.12, + "probability": 0.8578 + }, + { + "start": 8972.4, + "end": 8973.32, + "probability": 0.591 + }, + { + "start": 8973.5, + "end": 8975.5, + "probability": 0.9588 + }, + { + "start": 8975.57, + "end": 8977.96, + "probability": 0.7991 + }, + { + "start": 8989.12, + "end": 8991.16, + "probability": 0.7071 + }, + { + "start": 8994.76, + "end": 8996.26, + "probability": 0.6656 + }, + { + "start": 8996.58, + "end": 8998.94, + "probability": 0.7983 + }, + { + "start": 8999.36, + "end": 9004.36, + "probability": 0.9607 + }, + { + "start": 9005.78, + "end": 9007.02, + "probability": 0.2046 + }, + { + "start": 9007.02, + "end": 9008.76, + "probability": 0.9874 + }, + { + "start": 9011.64, + "end": 9012.42, + "probability": 0.9492 + }, + { + "start": 9014.82, + "end": 9015.7, + "probability": 0.6016 + }, + { + "start": 9016.22, + "end": 9017.26, + "probability": 0.0843 + }, + { + "start": 9018.02, + "end": 9018.76, + "probability": 0.0593 + }, + { + "start": 9018.84, + "end": 9019.18, + "probability": 0.5943 + }, + { + "start": 9019.78, + "end": 9020.72, + "probability": 0.4531 + }, + { + "start": 9020.72, + "end": 9021.26, + "probability": 0.4769 + }, + { + "start": 9022.66, + "end": 9023.12, + "probability": 0.1051 + }, + { + "start": 9024.1, + "end": 9026.62, + "probability": 0.9624 + }, + { + "start": 9027.62, + "end": 9028.82, + "probability": 0.9931 + }, + { + "start": 9029.38, + "end": 9033.08, + "probability": 0.9601 + }, + { + "start": 9033.9, + "end": 9037.8, + "probability": 0.9858 + }, + { + "start": 9039.44, + "end": 9040.02, + "probability": 0.8574 + }, + { + "start": 9041.02, + "end": 9045.22, + "probability": 0.8496 + }, + { + "start": 9045.22, + "end": 9050.0, + "probability": 0.997 + }, + { + "start": 9050.9, + "end": 9055.14, + "probability": 0.9826 + }, + { + "start": 9056.58, + "end": 9057.46, + "probability": 0.8528 + }, + { + "start": 9058.02, + "end": 9062.42, + "probability": 0.7482 + }, + { + "start": 9062.64, + "end": 9065.3, + "probability": 0.8139 + }, + { + "start": 9065.54, + "end": 9066.96, + "probability": 0.9829 + }, + { + "start": 9067.36, + "end": 9069.3, + "probability": 0.7861 + }, + { + "start": 9071.28, + "end": 9073.02, + "probability": 0.7999 + }, + { + "start": 9075.26, + "end": 9077.42, + "probability": 0.8591 + }, + { + "start": 9079.02, + "end": 9079.38, + "probability": 0.8794 + }, + { + "start": 9080.26, + "end": 9082.88, + "probability": 0.9945 + }, + { + "start": 9083.98, + "end": 9090.08, + "probability": 0.9788 + }, + { + "start": 9090.2, + "end": 9094.66, + "probability": 0.9636 + }, + { + "start": 9096.46, + "end": 9100.16, + "probability": 0.9967 + }, + { + "start": 9100.86, + "end": 9104.34, + "probability": 0.9953 + }, + { + "start": 9105.1, + "end": 9105.84, + "probability": 0.597 + }, + { + "start": 9108.64, + "end": 9110.58, + "probability": 0.9789 + }, + { + "start": 9111.72, + "end": 9116.14, + "probability": 0.6862 + }, + { + "start": 9117.44, + "end": 9119.84, + "probability": 0.9968 + }, + { + "start": 9120.98, + "end": 9124.08, + "probability": 0.9131 + }, + { + "start": 9125.56, + "end": 9127.46, + "probability": 0.9453 + }, + { + "start": 9129.32, + "end": 9130.28, + "probability": 0.8644 + }, + { + "start": 9131.73, + "end": 9134.52, + "probability": 0.9973 + }, + { + "start": 9136.02, + "end": 9136.76, + "probability": 0.8705 + }, + { + "start": 9140.47, + "end": 9143.96, + "probability": 0.9729 + }, + { + "start": 9147.04, + "end": 9149.22, + "probability": 0.9315 + }, + { + "start": 9149.86, + "end": 9150.88, + "probability": 0.8396 + }, + { + "start": 9151.6, + "end": 9151.96, + "probability": 0.3419 + }, + { + "start": 9152.06, + "end": 9152.36, + "probability": 0.8693 + }, + { + "start": 9152.5, + "end": 9153.44, + "probability": 0.6829 + }, + { + "start": 9153.92, + "end": 9155.92, + "probability": 0.8806 + }, + { + "start": 9156.04, + "end": 9157.7, + "probability": 0.9728 + }, + { + "start": 9159.34, + "end": 9163.8, + "probability": 0.9886 + }, + { + "start": 9165.14, + "end": 9170.14, + "probability": 0.9758 + }, + { + "start": 9173.86, + "end": 9176.62, + "probability": 0.9917 + }, + { + "start": 9177.28, + "end": 9179.08, + "probability": 0.885 + }, + { + "start": 9180.56, + "end": 9181.36, + "probability": 0.9772 + }, + { + "start": 9181.8, + "end": 9184.61, + "probability": 0.9921 + }, + { + "start": 9185.14, + "end": 9185.14, + "probability": 0.2921 + }, + { + "start": 9185.14, + "end": 9185.14, + "probability": 0.5935 + }, + { + "start": 9185.16, + "end": 9189.1, + "probability": 0.9818 + }, + { + "start": 9191.89, + "end": 9192.72, + "probability": 0.1849 + }, + { + "start": 9193.24, + "end": 9196.36, + "probability": 0.959 + }, + { + "start": 9196.36, + "end": 9200.88, + "probability": 0.9807 + }, + { + "start": 9200.96, + "end": 9201.72, + "probability": 0.5132 + }, + { + "start": 9202.48, + "end": 9203.62, + "probability": 0.7611 + }, + { + "start": 9205.36, + "end": 9206.9, + "probability": 0.4237 + }, + { + "start": 9229.7, + "end": 9230.0, + "probability": 0.4965 + }, + { + "start": 9231.2, + "end": 9232.42, + "probability": 0.8298 + }, + { + "start": 9233.46, + "end": 9233.86, + "probability": 0.7611 + }, + { + "start": 9235.22, + "end": 9236.44, + "probability": 0.1067 + }, + { + "start": 9237.98, + "end": 9238.68, + "probability": 0.4133 + }, + { + "start": 9238.72, + "end": 9239.64, + "probability": 0.8507 + }, + { + "start": 9239.94, + "end": 9243.76, + "probability": 0.9971 + }, + { + "start": 9245.44, + "end": 9248.74, + "probability": 0.9774 + }, + { + "start": 9249.64, + "end": 9251.2, + "probability": 0.9966 + }, + { + "start": 9252.46, + "end": 9254.6, + "probability": 0.999 + }, + { + "start": 9255.58, + "end": 9257.8, + "probability": 0.984 + }, + { + "start": 9258.38, + "end": 9259.28, + "probability": 0.9764 + }, + { + "start": 9259.9, + "end": 9260.88, + "probability": 0.9701 + }, + { + "start": 9261.74, + "end": 9265.9, + "probability": 0.9478 + }, + { + "start": 9266.7, + "end": 9269.6, + "probability": 0.9685 + }, + { + "start": 9270.72, + "end": 9272.5, + "probability": 0.9481 + }, + { + "start": 9274.04, + "end": 9275.5, + "probability": 0.5253 + }, + { + "start": 9277.02, + "end": 9281.04, + "probability": 0.9559 + }, + { + "start": 9281.96, + "end": 9283.86, + "probability": 0.9884 + }, + { + "start": 9284.98, + "end": 9286.46, + "probability": 0.5014 + }, + { + "start": 9288.88, + "end": 9289.9, + "probability": 0.9846 + }, + { + "start": 9291.14, + "end": 9297.54, + "probability": 0.9776 + }, + { + "start": 9298.28, + "end": 9299.48, + "probability": 0.9665 + }, + { + "start": 9300.04, + "end": 9302.12, + "probability": 0.5614 + }, + { + "start": 9303.36, + "end": 9305.42, + "probability": 0.991 + }, + { + "start": 9307.06, + "end": 9308.26, + "probability": 0.5738 + }, + { + "start": 9308.92, + "end": 9309.78, + "probability": 0.8244 + }, + { + "start": 9310.52, + "end": 9314.7, + "probability": 0.7929 + }, + { + "start": 9315.82, + "end": 9318.1, + "probability": 0.8666 + }, + { + "start": 9319.98, + "end": 9322.98, + "probability": 0.8249 + }, + { + "start": 9325.1, + "end": 9326.9, + "probability": 0.937 + }, + { + "start": 9330.34, + "end": 9330.6, + "probability": 0.4804 + }, + { + "start": 9330.76, + "end": 9334.32, + "probability": 0.976 + }, + { + "start": 9336.14, + "end": 9337.38, + "probability": 0.9928 + }, + { + "start": 9339.8, + "end": 9342.1, + "probability": 0.8242 + }, + { + "start": 9343.76, + "end": 9344.46, + "probability": 0.6862 + }, + { + "start": 9345.54, + "end": 9346.16, + "probability": 0.6918 + }, + { + "start": 9346.78, + "end": 9348.06, + "probability": 0.9334 + }, + { + "start": 9348.7, + "end": 9352.74, + "probability": 0.9669 + }, + { + "start": 9354.72, + "end": 9355.4, + "probability": 0.7402 + }, + { + "start": 9356.72, + "end": 9360.22, + "probability": 0.939 + }, + { + "start": 9361.26, + "end": 9365.88, + "probability": 0.9688 + }, + { + "start": 9367.16, + "end": 9373.44, + "probability": 0.9313 + }, + { + "start": 9376.74, + "end": 9382.12, + "probability": 0.9658 + }, + { + "start": 9382.68, + "end": 9386.18, + "probability": 0.9888 + }, + { + "start": 9387.04, + "end": 9390.48, + "probability": 0.9932 + }, + { + "start": 9391.3, + "end": 9391.78, + "probability": 0.9699 + }, + { + "start": 9392.46, + "end": 9395.98, + "probability": 0.837 + }, + { + "start": 9397.22, + "end": 9398.54, + "probability": 0.9901 + }, + { + "start": 9399.66, + "end": 9404.32, + "probability": 0.8976 + }, + { + "start": 9405.58, + "end": 9408.06, + "probability": 0.9644 + }, + { + "start": 9409.22, + "end": 9411.26, + "probability": 0.896 + }, + { + "start": 9412.52, + "end": 9413.14, + "probability": 0.8099 + }, + { + "start": 9413.52, + "end": 9421.96, + "probability": 0.9914 + }, + { + "start": 9422.46, + "end": 9425.26, + "probability": 0.944 + }, + { + "start": 9426.1, + "end": 9431.56, + "probability": 0.9841 + }, + { + "start": 9431.56, + "end": 9437.78, + "probability": 0.9971 + }, + { + "start": 9438.38, + "end": 9442.84, + "probability": 0.9449 + }, + { + "start": 9443.58, + "end": 9444.5, + "probability": 0.7676 + }, + { + "start": 9445.08, + "end": 9447.12, + "probability": 0.9207 + }, + { + "start": 9448.76, + "end": 9449.72, + "probability": 0.9841 + }, + { + "start": 9450.28, + "end": 9456.28, + "probability": 0.925 + }, + { + "start": 9457.22, + "end": 9458.78, + "probability": 0.5939 + }, + { + "start": 9459.46, + "end": 9464.54, + "probability": 0.9937 + }, + { + "start": 9465.52, + "end": 9465.52, + "probability": 0.4753 + }, + { + "start": 9465.52, + "end": 9470.06, + "probability": 0.7009 + }, + { + "start": 9470.16, + "end": 9471.78, + "probability": 0.6684 + }, + { + "start": 9472.42, + "end": 9473.1, + "probability": 0.5159 + }, + { + "start": 9473.88, + "end": 9474.6, + "probability": 0.6494 + }, + { + "start": 9476.14, + "end": 9479.28, + "probability": 0.9555 + }, + { + "start": 9480.28, + "end": 9481.52, + "probability": 0.7808 + }, + { + "start": 9482.02, + "end": 9483.82, + "probability": 0.9949 + }, + { + "start": 9483.94, + "end": 9484.3, + "probability": 0.432 + }, + { + "start": 9484.3, + "end": 9484.4, + "probability": 0.6178 + }, + { + "start": 9485.3, + "end": 9489.22, + "probability": 0.7877 + }, + { + "start": 9489.42, + "end": 9490.62, + "probability": 0.8044 + }, + { + "start": 9492.28, + "end": 9495.68, + "probability": 0.9851 + }, + { + "start": 9495.84, + "end": 9497.72, + "probability": 0.9007 + }, + { + "start": 9504.76, + "end": 9506.56, + "probability": 0.8303 + }, + { + "start": 9506.94, + "end": 9509.56, + "probability": 0.812 + }, + { + "start": 9513.06, + "end": 9514.74, + "probability": 0.6876 + }, + { + "start": 9515.82, + "end": 9516.78, + "probability": 0.8396 + }, + { + "start": 9518.62, + "end": 9522.52, + "probability": 0.6664 + }, + { + "start": 9524.26, + "end": 9528.68, + "probability": 0.9937 + }, + { + "start": 9529.8, + "end": 9531.94, + "probability": 0.9925 + }, + { + "start": 9532.84, + "end": 9535.88, + "probability": 0.7975 + }, + { + "start": 9536.68, + "end": 9538.44, + "probability": 0.9828 + }, + { + "start": 9539.36, + "end": 9544.98, + "probability": 0.9574 + }, + { + "start": 9545.88, + "end": 9548.48, + "probability": 0.9871 + }, + { + "start": 9549.8, + "end": 9550.62, + "probability": 0.904 + }, + { + "start": 9551.4, + "end": 9556.46, + "probability": 0.9551 + }, + { + "start": 9557.08, + "end": 9559.12, + "probability": 0.5607 + }, + { + "start": 9561.5, + "end": 9563.04, + "probability": 0.2483 + }, + { + "start": 9563.38, + "end": 9566.98, + "probability": 0.96 + }, + { + "start": 9567.98, + "end": 9568.34, + "probability": 0.4734 + }, + { + "start": 9568.34, + "end": 9573.84, + "probability": 0.8969 + }, + { + "start": 9575.24, + "end": 9579.02, + "probability": 0.9687 + }, + { + "start": 9579.82, + "end": 9580.44, + "probability": 0.9119 + }, + { + "start": 9581.56, + "end": 9586.66, + "probability": 0.7043 + }, + { + "start": 9587.74, + "end": 9590.26, + "probability": 0.9265 + }, + { + "start": 9591.18, + "end": 9596.0, + "probability": 0.9778 + }, + { + "start": 9596.9, + "end": 9599.9, + "probability": 0.9639 + }, + { + "start": 9600.52, + "end": 9604.98, + "probability": 0.9762 + }, + { + "start": 9606.14, + "end": 9607.38, + "probability": 0.9932 + }, + { + "start": 9607.92, + "end": 9611.22, + "probability": 0.8297 + }, + { + "start": 9611.8, + "end": 9613.44, + "probability": 0.881 + }, + { + "start": 9614.32, + "end": 9617.36, + "probability": 0.9951 + }, + { + "start": 9618.02, + "end": 9622.5, + "probability": 0.9346 + }, + { + "start": 9622.96, + "end": 9624.38, + "probability": 0.8926 + }, + { + "start": 9625.06, + "end": 9628.24, + "probability": 0.9915 + }, + { + "start": 9629.46, + "end": 9634.58, + "probability": 0.9951 + }, + { + "start": 9635.42, + "end": 9637.34, + "probability": 0.991 + }, + { + "start": 9638.56, + "end": 9641.34, + "probability": 0.9306 + }, + { + "start": 9642.42, + "end": 9644.52, + "probability": 0.7692 + }, + { + "start": 9645.1, + "end": 9645.8, + "probability": 0.7538 + }, + { + "start": 9646.54, + "end": 9649.26, + "probability": 0.6497 + }, + { + "start": 9649.7, + "end": 9655.76, + "probability": 0.6672 + }, + { + "start": 9656.44, + "end": 9658.04, + "probability": 0.5159 + }, + { + "start": 9658.24, + "end": 9659.76, + "probability": 0.8897 + }, + { + "start": 9659.78, + "end": 9661.42, + "probability": 0.6981 + }, + { + "start": 9661.48, + "end": 9663.42, + "probability": 0.7301 + }, + { + "start": 9664.32, + "end": 9667.78, + "probability": 0.914 + }, + { + "start": 9668.96, + "end": 9669.34, + "probability": 0.4054 + }, + { + "start": 9670.06, + "end": 9676.6, + "probability": 0.8606 + }, + { + "start": 9678.52, + "end": 9679.78, + "probability": 0.5125 + }, + { + "start": 9681.2, + "end": 9684.46, + "probability": 0.7163 + }, + { + "start": 9685.5, + "end": 9685.92, + "probability": 0.5847 + }, + { + "start": 9686.76, + "end": 9689.64, + "probability": 0.6828 + }, + { + "start": 9690.66, + "end": 9693.64, + "probability": 0.6481 + }, + { + "start": 9701.52, + "end": 9702.54, + "probability": 0.5539 + }, + { + "start": 9703.06, + "end": 9704.06, + "probability": 0.5669 + }, + { + "start": 9705.12, + "end": 9708.3, + "probability": 0.9786 + }, + { + "start": 9708.48, + "end": 9711.86, + "probability": 0.9703 + }, + { + "start": 9712.5, + "end": 9713.56, + "probability": 0.6885 + }, + { + "start": 9714.68, + "end": 9719.38, + "probability": 0.9953 + }, + { + "start": 9721.32, + "end": 9722.84, + "probability": 0.7502 + }, + { + "start": 9724.04, + "end": 9727.16, + "probability": 0.7299 + }, + { + "start": 9728.92, + "end": 9731.54, + "probability": 0.8672 + }, + { + "start": 9733.68, + "end": 9734.98, + "probability": 0.9705 + }, + { + "start": 9735.6, + "end": 9738.88, + "probability": 0.9722 + }, + { + "start": 9740.8, + "end": 9741.74, + "probability": 0.9785 + }, + { + "start": 9745.7, + "end": 9749.14, + "probability": 0.9608 + }, + { + "start": 9751.42, + "end": 9754.9, + "probability": 0.83 + }, + { + "start": 9756.62, + "end": 9757.72, + "probability": 0.4592 + }, + { + "start": 9759.36, + "end": 9762.28, + "probability": 0.9927 + }, + { + "start": 9763.08, + "end": 9763.96, + "probability": 0.8511 + }, + { + "start": 9765.94, + "end": 9769.22, + "probability": 0.9958 + }, + { + "start": 9770.08, + "end": 9773.98, + "probability": 0.8954 + }, + { + "start": 9774.46, + "end": 9775.54, + "probability": 0.6295 + }, + { + "start": 9776.74, + "end": 9778.62, + "probability": 0.8145 + }, + { + "start": 9779.64, + "end": 9783.16, + "probability": 0.802 + }, + { + "start": 9784.82, + "end": 9788.48, + "probability": 0.7608 + }, + { + "start": 9789.64, + "end": 9792.78, + "probability": 0.9956 + }, + { + "start": 9793.54, + "end": 9795.46, + "probability": 0.7187 + }, + { + "start": 9795.58, + "end": 9799.06, + "probability": 0.9927 + }, + { + "start": 9800.28, + "end": 9802.62, + "probability": 0.8623 + }, + { + "start": 9803.3, + "end": 9808.24, + "probability": 0.9917 + }, + { + "start": 9809.1, + "end": 9810.1, + "probability": 0.8855 + }, + { + "start": 9811.14, + "end": 9812.08, + "probability": 0.9704 + }, + { + "start": 9814.04, + "end": 9815.8, + "probability": 0.7515 + }, + { + "start": 9817.01, + "end": 9819.28, + "probability": 0.8038 + }, + { + "start": 9820.88, + "end": 9822.74, + "probability": 0.899 + }, + { + "start": 9824.24, + "end": 9825.96, + "probability": 0.9849 + }, + { + "start": 9827.04, + "end": 9829.32, + "probability": 0.7635 + }, + { + "start": 9830.7, + "end": 9836.42, + "probability": 0.9825 + }, + { + "start": 9837.6, + "end": 9839.18, + "probability": 0.5767 + }, + { + "start": 9839.84, + "end": 9840.42, + "probability": 0.4067 + }, + { + "start": 9842.6, + "end": 9844.34, + "probability": 0.8298 + }, + { + "start": 9846.72, + "end": 9848.36, + "probability": 0.9517 + }, + { + "start": 9849.5, + "end": 9850.18, + "probability": 0.9883 + }, + { + "start": 9851.44, + "end": 9854.58, + "probability": 0.9487 + }, + { + "start": 9857.64, + "end": 9860.06, + "probability": 0.6953 + }, + { + "start": 9860.1, + "end": 9863.04, + "probability": 0.9435 + }, + { + "start": 9863.42, + "end": 9864.32, + "probability": 0.5733 + }, + { + "start": 9864.36, + "end": 9865.32, + "probability": 0.8237 + }, + { + "start": 9866.5, + "end": 9867.16, + "probability": 0.3389 + }, + { + "start": 9868.34, + "end": 9871.22, + "probability": 0.992 + }, + { + "start": 9872.42, + "end": 9875.14, + "probability": 0.9457 + }, + { + "start": 9876.74, + "end": 9877.28, + "probability": 0.8603 + }, + { + "start": 9879.94, + "end": 9880.96, + "probability": 0.6187 + }, + { + "start": 9881.26, + "end": 9883.78, + "probability": 0.8568 + }, + { + "start": 9884.46, + "end": 9886.0, + "probability": 0.6652 + }, + { + "start": 9906.94, + "end": 9909.18, + "probability": 0.6071 + }, + { + "start": 9910.58, + "end": 9914.14, + "probability": 0.9756 + }, + { + "start": 9914.14, + "end": 9916.88, + "probability": 0.9995 + }, + { + "start": 9917.56, + "end": 9919.46, + "probability": 0.9584 + }, + { + "start": 9920.18, + "end": 9922.1, + "probability": 0.9796 + }, + { + "start": 9923.06, + "end": 9925.18, + "probability": 0.9932 + }, + { + "start": 9925.98, + "end": 9935.22, + "probability": 0.8562 + }, + { + "start": 9935.34, + "end": 9936.06, + "probability": 0.7552 + }, + { + "start": 9937.12, + "end": 9940.78, + "probability": 0.9865 + }, + { + "start": 9942.29, + "end": 9946.62, + "probability": 0.8607 + }, + { + "start": 9947.26, + "end": 9948.78, + "probability": 0.8739 + }, + { + "start": 9949.14, + "end": 9950.6, + "probability": 0.9788 + }, + { + "start": 9951.04, + "end": 9953.52, + "probability": 0.9978 + }, + { + "start": 9955.14, + "end": 9960.68, + "probability": 0.9114 + }, + { + "start": 9961.78, + "end": 9962.58, + "probability": 0.9182 + }, + { + "start": 9963.36, + "end": 9964.18, + "probability": 0.9757 + }, + { + "start": 9965.58, + "end": 9968.34, + "probability": 0.585 + }, + { + "start": 9969.4, + "end": 9975.0, + "probability": 0.8495 + }, + { + "start": 9976.38, + "end": 9977.48, + "probability": 0.9761 + }, + { + "start": 9978.94, + "end": 9983.14, + "probability": 0.6631 + }, + { + "start": 9984.06, + "end": 9987.66, + "probability": 0.6132 + }, + { + "start": 9988.88, + "end": 9990.68, + "probability": 0.457 + }, + { + "start": 9991.16, + "end": 9992.3, + "probability": 0.9573 + }, + { + "start": 9992.94, + "end": 9993.18, + "probability": 0.8982 + }, + { + "start": 9994.14, + "end": 9996.32, + "probability": 0.8604 + }, + { + "start": 9997.22, + "end": 9998.66, + "probability": 0.8582 + }, + { + "start": 10000.54, + "end": 10001.66, + "probability": 0.9775 + }, + { + "start": 10002.52, + "end": 10004.0, + "probability": 0.8527 + }, + { + "start": 10004.98, + "end": 10007.1, + "probability": 0.8745 + }, + { + "start": 10007.78, + "end": 10008.74, + "probability": 0.6589 + }, + { + "start": 10010.08, + "end": 10013.2, + "probability": 0.939 + }, + { + "start": 10013.92, + "end": 10016.14, + "probability": 0.9856 + }, + { + "start": 10016.6, + "end": 10020.54, + "probability": 0.9745 + }, + { + "start": 10021.4, + "end": 10022.36, + "probability": 0.9338 + }, + { + "start": 10023.14, + "end": 10025.88, + "probability": 0.9669 + }, + { + "start": 10027.02, + "end": 10030.66, + "probability": 0.9323 + }, + { + "start": 10031.98, + "end": 10038.08, + "probability": 0.9375 + }, + { + "start": 10038.96, + "end": 10043.44, + "probability": 0.8111 + }, + { + "start": 10044.58, + "end": 10050.52, + "probability": 0.6744 + }, + { + "start": 10051.04, + "end": 10053.44, + "probability": 0.9941 + }, + { + "start": 10053.66, + "end": 10054.72, + "probability": 0.9832 + }, + { + "start": 10055.04, + "end": 10056.14, + "probability": 0.9553 + }, + { + "start": 10056.48, + "end": 10059.26, + "probability": 0.9832 + }, + { + "start": 10059.8, + "end": 10060.42, + "probability": 0.4942 + }, + { + "start": 10060.62, + "end": 10065.32, + "probability": 0.9447 + }, + { + "start": 10065.86, + "end": 10066.06, + "probability": 0.6988 + }, + { + "start": 10066.58, + "end": 10068.0, + "probability": 0.4624 + }, + { + "start": 10068.72, + "end": 10068.84, + "probability": 0.2864 + }, + { + "start": 10068.84, + "end": 10071.64, + "probability": 0.7949 + }, + { + "start": 10072.22, + "end": 10073.74, + "probability": 0.9514 + }, + { + "start": 10074.68, + "end": 10075.42, + "probability": 0.965 + }, + { + "start": 10077.12, + "end": 10079.98, + "probability": 0.9727 + }, + { + "start": 10080.92, + "end": 10082.7, + "probability": 0.9484 + }, + { + "start": 10093.64, + "end": 10095.74, + "probability": 0.2738 + }, + { + "start": 10099.67, + "end": 10101.84, + "probability": 0.6928 + }, + { + "start": 10102.7, + "end": 10104.14, + "probability": 0.9792 + }, + { + "start": 10105.16, + "end": 10108.04, + "probability": 0.9495 + }, + { + "start": 10108.9, + "end": 10111.42, + "probability": 0.9868 + }, + { + "start": 10112.16, + "end": 10116.02, + "probability": 0.9954 + }, + { + "start": 10117.36, + "end": 10122.08, + "probability": 0.9891 + }, + { + "start": 10122.22, + "end": 10123.12, + "probability": 0.956 + }, + { + "start": 10123.24, + "end": 10123.88, + "probability": 0.7592 + }, + { + "start": 10124.32, + "end": 10125.76, + "probability": 0.9935 + }, + { + "start": 10125.96, + "end": 10128.28, + "probability": 0.9771 + }, + { + "start": 10128.36, + "end": 10129.52, + "probability": 0.9353 + }, + { + "start": 10130.3, + "end": 10133.34, + "probability": 0.9142 + }, + { + "start": 10134.36, + "end": 10136.82, + "probability": 0.9514 + }, + { + "start": 10137.4, + "end": 10139.34, + "probability": 0.9385 + }, + { + "start": 10139.34, + "end": 10142.66, + "probability": 0.9884 + }, + { + "start": 10143.28, + "end": 10146.1, + "probability": 0.995 + }, + { + "start": 10146.22, + "end": 10146.38, + "probability": 0.3396 + }, + { + "start": 10147.0, + "end": 10147.43, + "probability": 0.9293 + }, + { + "start": 10148.44, + "end": 10152.04, + "probability": 0.9976 + }, + { + "start": 10152.26, + "end": 10154.3, + "probability": 0.786 + }, + { + "start": 10155.32, + "end": 10158.88, + "probability": 0.9917 + }, + { + "start": 10159.44, + "end": 10161.92, + "probability": 0.9406 + }, + { + "start": 10162.3, + "end": 10163.04, + "probability": 0.4609 + }, + { + "start": 10163.04, + "end": 10165.38, + "probability": 0.6269 + }, + { + "start": 10165.66, + "end": 10166.92, + "probability": 0.8994 + }, + { + "start": 10167.34, + "end": 10168.4, + "probability": 0.929 + }, + { + "start": 10168.66, + "end": 10171.26, + "probability": 0.9688 + }, + { + "start": 10172.08, + "end": 10173.92, + "probability": 0.7667 + }, + { + "start": 10174.42, + "end": 10176.83, + "probability": 0.9414 + }, + { + "start": 10177.98, + "end": 10183.16, + "probability": 0.9444 + }, + { + "start": 10183.22, + "end": 10184.44, + "probability": 0.9076 + }, + { + "start": 10185.06, + "end": 10188.42, + "probability": 0.9776 + }, + { + "start": 10188.9, + "end": 10190.78, + "probability": 0.9427 + }, + { + "start": 10190.9, + "end": 10192.44, + "probability": 0.9976 + }, + { + "start": 10192.98, + "end": 10196.8, + "probability": 0.9954 + }, + { + "start": 10197.78, + "end": 10201.0, + "probability": 0.6797 + }, + { + "start": 10202.2, + "end": 10206.88, + "probability": 0.9378 + }, + { + "start": 10207.38, + "end": 10209.52, + "probability": 0.9871 + }, + { + "start": 10210.06, + "end": 10212.7, + "probability": 0.9728 + }, + { + "start": 10212.8, + "end": 10216.32, + "probability": 0.9974 + }, + { + "start": 10216.78, + "end": 10217.55, + "probability": 0.9072 + }, + { + "start": 10217.82, + "end": 10219.16, + "probability": 0.4717 + }, + { + "start": 10219.58, + "end": 10220.96, + "probability": 0.9865 + }, + { + "start": 10221.4, + "end": 10222.52, + "probability": 0.8531 + }, + { + "start": 10222.66, + "end": 10224.02, + "probability": 0.9628 + }, + { + "start": 10224.62, + "end": 10227.68, + "probability": 0.9814 + }, + { + "start": 10228.32, + "end": 10232.88, + "probability": 0.9592 + }, + { + "start": 10233.76, + "end": 10235.26, + "probability": 0.8469 + }, + { + "start": 10235.86, + "end": 10239.04, + "probability": 0.9903 + }, + { + "start": 10239.82, + "end": 10241.68, + "probability": 0.9593 + }, + { + "start": 10241.96, + "end": 10244.38, + "probability": 0.6631 + }, + { + "start": 10245.02, + "end": 10249.54, + "probability": 0.9497 + }, + { + "start": 10250.26, + "end": 10251.92, + "probability": 0.9878 + }, + { + "start": 10252.0, + "end": 10253.64, + "probability": 0.9951 + }, + { + "start": 10254.16, + "end": 10256.54, + "probability": 0.9518 + }, + { + "start": 10257.1, + "end": 10258.66, + "probability": 0.8642 + }, + { + "start": 10258.9, + "end": 10263.34, + "probability": 0.6031 + }, + { + "start": 10264.84, + "end": 10265.0, + "probability": 0.167 + }, + { + "start": 10265.7, + "end": 10266.22, + "probability": 0.7576 + }, + { + "start": 10266.44, + "end": 10268.58, + "probability": 0.8423 + }, + { + "start": 10268.68, + "end": 10270.0, + "probability": 0.793 + }, + { + "start": 10270.5, + "end": 10271.74, + "probability": 0.9683 + }, + { + "start": 10271.88, + "end": 10272.72, + "probability": 0.8413 + }, + { + "start": 10273.18, + "end": 10274.34, + "probability": 0.9925 + }, + { + "start": 10274.46, + "end": 10276.12, + "probability": 0.9402 + }, + { + "start": 10277.02, + "end": 10278.12, + "probability": 0.6693 + }, + { + "start": 10278.36, + "end": 10279.66, + "probability": 0.988 + }, + { + "start": 10280.96, + "end": 10281.6, + "probability": 0.8545 + }, + { + "start": 10281.96, + "end": 10282.58, + "probability": 0.9822 + }, + { + "start": 10282.66, + "end": 10282.8, + "probability": 0.9315 + }, + { + "start": 10282.9, + "end": 10285.62, + "probability": 0.9589 + }, + { + "start": 10286.36, + "end": 10286.94, + "probability": 0.978 + }, + { + "start": 10287.1, + "end": 10289.16, + "probability": 0.7511 + }, + { + "start": 10289.52, + "end": 10293.26, + "probability": 0.9126 + }, + { + "start": 10293.94, + "end": 10296.42, + "probability": 0.9861 + }, + { + "start": 10296.5, + "end": 10297.26, + "probability": 0.9902 + }, + { + "start": 10297.34, + "end": 10298.86, + "probability": 0.9897 + }, + { + "start": 10298.96, + "end": 10299.59, + "probability": 0.7697 + }, + { + "start": 10300.24, + "end": 10301.72, + "probability": 0.994 + }, + { + "start": 10302.36, + "end": 10302.8, + "probability": 0.8575 + }, + { + "start": 10302.88, + "end": 10303.88, + "probability": 0.9853 + }, + { + "start": 10303.92, + "end": 10305.48, + "probability": 0.9929 + }, + { + "start": 10306.34, + "end": 10308.28, + "probability": 0.9873 + }, + { + "start": 10308.46, + "end": 10310.72, + "probability": 0.9936 + }, + { + "start": 10311.12, + "end": 10312.06, + "probability": 0.7981 + }, + { + "start": 10312.42, + "end": 10313.28, + "probability": 0.4957 + }, + { + "start": 10314.14, + "end": 10315.54, + "probability": 0.926 + }, + { + "start": 10315.7, + "end": 10317.94, + "probability": 0.9844 + }, + { + "start": 10318.64, + "end": 10320.34, + "probability": 0.9934 + }, + { + "start": 10320.48, + "end": 10324.28, + "probability": 0.9914 + }, + { + "start": 10324.86, + "end": 10326.72, + "probability": 0.934 + }, + { + "start": 10326.8, + "end": 10329.02, + "probability": 0.9657 + }, + { + "start": 10329.5, + "end": 10330.6, + "probability": 0.9873 + }, + { + "start": 10330.74, + "end": 10331.34, + "probability": 0.6918 + }, + { + "start": 10331.72, + "end": 10332.0, + "probability": 0.6377 + }, + { + "start": 10332.08, + "end": 10332.86, + "probability": 0.9436 + }, + { + "start": 10333.26, + "end": 10334.06, + "probability": 0.9279 + }, + { + "start": 10334.34, + "end": 10335.34, + "probability": 0.9276 + }, + { + "start": 10335.54, + "end": 10337.0, + "probability": 0.9651 + }, + { + "start": 10337.12, + "end": 10337.76, + "probability": 0.8687 + }, + { + "start": 10338.28, + "end": 10343.4, + "probability": 0.9791 + }, + { + "start": 10343.5, + "end": 10344.7, + "probability": 0.8029 + }, + { + "start": 10346.06, + "end": 10348.0, + "probability": 0.6059 + }, + { + "start": 10348.36, + "end": 10352.58, + "probability": 0.9775 + }, + { + "start": 10352.84, + "end": 10354.22, + "probability": 0.6593 + }, + { + "start": 10354.34, + "end": 10355.48, + "probability": 0.7886 + }, + { + "start": 10355.9, + "end": 10357.64, + "probability": 0.5679 + }, + { + "start": 10357.64, + "end": 10359.0, + "probability": 0.7176 + }, + { + "start": 10359.34, + "end": 10359.34, + "probability": 0.2566 + }, + { + "start": 10359.42, + "end": 10360.02, + "probability": 0.4985 + }, + { + "start": 10360.1, + "end": 10360.54, + "probability": 0.7585 + }, + { + "start": 10361.14, + "end": 10363.4, + "probability": 0.6349 + }, + { + "start": 10367.74, + "end": 10369.64, + "probability": 0.6772 + }, + { + "start": 10369.86, + "end": 10371.5, + "probability": 0.7957 + }, + { + "start": 10373.54, + "end": 10375.88, + "probability": 0.8052 + }, + { + "start": 10387.74, + "end": 10388.06, + "probability": 0.3376 + }, + { + "start": 10388.06, + "end": 10389.5, + "probability": 0.5854 + }, + { + "start": 10391.6, + "end": 10396.2, + "probability": 0.9772 + }, + { + "start": 10396.2, + "end": 10399.02, + "probability": 0.9218 + }, + { + "start": 10401.68, + "end": 10405.86, + "probability": 0.9938 + }, + { + "start": 10406.98, + "end": 10409.46, + "probability": 0.9535 + }, + { + "start": 10411.3, + "end": 10413.56, + "probability": 0.9765 + }, + { + "start": 10415.28, + "end": 10419.06, + "probability": 0.9985 + }, + { + "start": 10419.06, + "end": 10423.28, + "probability": 0.9966 + }, + { + "start": 10425.12, + "end": 10427.94, + "probability": 0.9835 + }, + { + "start": 10429.42, + "end": 10433.7, + "probability": 0.9873 + }, + { + "start": 10434.12, + "end": 10439.52, + "probability": 0.9425 + }, + { + "start": 10440.26, + "end": 10443.68, + "probability": 0.6657 + }, + { + "start": 10444.8, + "end": 10445.33, + "probability": 0.977 + }, + { + "start": 10446.82, + "end": 10448.5, + "probability": 0.7133 + }, + { + "start": 10450.45, + "end": 10455.64, + "probability": 0.9826 + }, + { + "start": 10455.64, + "end": 10459.54, + "probability": 0.9991 + }, + { + "start": 10460.44, + "end": 10463.52, + "probability": 0.9452 + }, + { + "start": 10463.52, + "end": 10468.6, + "probability": 0.9966 + }, + { + "start": 10470.28, + "end": 10472.42, + "probability": 0.9987 + }, + { + "start": 10472.94, + "end": 10478.2, + "probability": 0.9843 + }, + { + "start": 10479.68, + "end": 10483.44, + "probability": 0.987 + }, + { + "start": 10484.24, + "end": 10484.89, + "probability": 0.9995 + }, + { + "start": 10485.78, + "end": 10488.92, + "probability": 0.9995 + }, + { + "start": 10489.68, + "end": 10491.58, + "probability": 0.9968 + }, + { + "start": 10491.58, + "end": 10494.26, + "probability": 0.5499 + }, + { + "start": 10496.18, + "end": 10499.68, + "probability": 0.9411 + }, + { + "start": 10500.82, + "end": 10502.56, + "probability": 0.9954 + }, + { + "start": 10503.38, + "end": 10507.32, + "probability": 0.9979 + }, + { + "start": 10508.1, + "end": 10510.6, + "probability": 0.7263 + }, + { + "start": 10511.6, + "end": 10515.6, + "probability": 0.9897 + }, + { + "start": 10515.6, + "end": 10519.54, + "probability": 0.999 + }, + { + "start": 10520.76, + "end": 10522.98, + "probability": 0.9949 + }, + { + "start": 10524.04, + "end": 10524.48, + "probability": 0.7546 + }, + { + "start": 10525.18, + "end": 10526.22, + "probability": 0.5794 + }, + { + "start": 10526.3, + "end": 10528.68, + "probability": 0.9739 + }, + { + "start": 10529.5, + "end": 10530.26, + "probability": 0.6673 + }, + { + "start": 10531.28, + "end": 10532.12, + "probability": 0.4702 + }, + { + "start": 10533.34, + "end": 10535.74, + "probability": 0.9512 + }, + { + "start": 10538.64, + "end": 10540.53, + "probability": 0.985 + }, + { + "start": 10541.6, + "end": 10543.74, + "probability": 0.7323 + }, + { + "start": 10544.46, + "end": 10545.14, + "probability": 0.4038 + }, + { + "start": 10545.74, + "end": 10547.86, + "probability": 0.8259 + }, + { + "start": 10549.2, + "end": 10551.26, + "probability": 0.9414 + }, + { + "start": 10551.94, + "end": 10552.52, + "probability": 0.8784 + }, + { + "start": 10556.28, + "end": 10558.24, + "probability": 0.7699 + }, + { + "start": 10561.58, + "end": 10563.2, + "probability": 0.8289 + }, + { + "start": 10563.96, + "end": 10564.68, + "probability": 0.7237 + }, + { + "start": 10564.76, + "end": 10568.28, + "probability": 0.9856 + }, + { + "start": 10569.02, + "end": 10569.4, + "probability": 0.9548 + }, + { + "start": 10569.52, + "end": 10572.04, + "probability": 0.9967 + }, + { + "start": 10572.04, + "end": 10574.92, + "probability": 0.9904 + }, + { + "start": 10575.42, + "end": 10577.68, + "probability": 0.9788 + }, + { + "start": 10578.18, + "end": 10578.46, + "probability": 0.4361 + }, + { + "start": 10578.58, + "end": 10581.56, + "probability": 0.9876 + }, + { + "start": 10582.2, + "end": 10585.56, + "probability": 0.9836 + }, + { + "start": 10585.96, + "end": 10586.52, + "probability": 0.9254 + }, + { + "start": 10586.62, + "end": 10588.46, + "probability": 0.958 + }, + { + "start": 10588.56, + "end": 10590.38, + "probability": 0.9609 + }, + { + "start": 10591.06, + "end": 10595.38, + "probability": 0.9961 + }, + { + "start": 10595.42, + "end": 10599.1, + "probability": 0.9121 + }, + { + "start": 10599.62, + "end": 10600.16, + "probability": 0.0466 + }, + { + "start": 10600.16, + "end": 10600.26, + "probability": 0.1667 + }, + { + "start": 10600.26, + "end": 10605.16, + "probability": 0.9945 + }, + { + "start": 10605.28, + "end": 10606.18, + "probability": 0.9389 + }, + { + "start": 10607.02, + "end": 10608.0, + "probability": 0.3319 + }, + { + "start": 10608.4, + "end": 10610.22, + "probability": 0.9761 + }, + { + "start": 10610.24, + "end": 10614.2, + "probability": 0.9994 + }, + { + "start": 10614.68, + "end": 10615.08, + "probability": 0.8214 + }, + { + "start": 10616.9, + "end": 10619.7, + "probability": 0.9716 + }, + { + "start": 10620.0, + "end": 10620.74, + "probability": 0.9495 + }, + { + "start": 10621.36, + "end": 10623.7, + "probability": 0.9702 + }, + { + "start": 10624.36, + "end": 10628.22, + "probability": 0.965 + }, + { + "start": 10629.14, + "end": 10630.36, + "probability": 0.981 + }, + { + "start": 10630.4, + "end": 10632.08, + "probability": 0.9886 + }, + { + "start": 10632.38, + "end": 10633.14, + "probability": 0.7999 + }, + { + "start": 10633.68, + "end": 10635.46, + "probability": 0.8945 + }, + { + "start": 10635.56, + "end": 10637.46, + "probability": 0.8431 + }, + { + "start": 10637.7, + "end": 10638.16, + "probability": 0.7708 + }, + { + "start": 10638.22, + "end": 10639.52, + "probability": 0.7472 + }, + { + "start": 10640.04, + "end": 10640.72, + "probability": 0.6454 + }, + { + "start": 10641.24, + "end": 10643.18, + "probability": 0.7803 + }, + { + "start": 10643.7, + "end": 10644.2, + "probability": 0.9106 + }, + { + "start": 10644.8, + "end": 10645.46, + "probability": 0.9937 + }, + { + "start": 10645.98, + "end": 10646.84, + "probability": 0.8088 + }, + { + "start": 10647.34, + "end": 10650.12, + "probability": 0.8517 + }, + { + "start": 10650.76, + "end": 10653.74, + "probability": 0.8332 + }, + { + "start": 10653.9, + "end": 10654.98, + "probability": 0.9473 + }, + { + "start": 10655.1, + "end": 10657.48, + "probability": 0.9442 + }, + { + "start": 10658.26, + "end": 10659.04, + "probability": 0.9946 + }, + { + "start": 10659.2, + "end": 10661.18, + "probability": 0.9658 + }, + { + "start": 10661.4, + "end": 10662.54, + "probability": 0.9632 + }, + { + "start": 10663.02, + "end": 10665.64, + "probability": 0.989 + }, + { + "start": 10665.64, + "end": 10668.84, + "probability": 0.9873 + }, + { + "start": 10669.3, + "end": 10670.76, + "probability": 0.9605 + }, + { + "start": 10671.36, + "end": 10672.72, + "probability": 0.9236 + }, + { + "start": 10672.84, + "end": 10675.48, + "probability": 0.9719 + }, + { + "start": 10675.58, + "end": 10675.6, + "probability": 0.1688 + }, + { + "start": 10676.14, + "end": 10678.18, + "probability": 0.9361 + }, + { + "start": 10678.76, + "end": 10679.84, + "probability": 0.9766 + }, + { + "start": 10679.96, + "end": 10681.82, + "probability": 0.9837 + }, + { + "start": 10681.82, + "end": 10686.3, + "probability": 0.8442 + }, + { + "start": 10687.14, + "end": 10688.82, + "probability": 0.9734 + }, + { + "start": 10688.92, + "end": 10689.76, + "probability": 0.8215 + }, + { + "start": 10690.08, + "end": 10691.14, + "probability": 0.8523 + }, + { + "start": 10691.16, + "end": 10692.51, + "probability": 0.9865 + }, + { + "start": 10693.26, + "end": 10694.86, + "probability": 0.9846 + }, + { + "start": 10695.46, + "end": 10699.3, + "probability": 0.989 + }, + { + "start": 10700.72, + "end": 10703.0, + "probability": 0.9935 + }, + { + "start": 10703.82, + "end": 10704.86, + "probability": 0.7737 + }, + { + "start": 10705.56, + "end": 10707.52, + "probability": 0.8752 + }, + { + "start": 10707.58, + "end": 10708.48, + "probability": 0.9804 + }, + { + "start": 10708.52, + "end": 10709.2, + "probability": 0.948 + }, + { + "start": 10709.32, + "end": 10711.34, + "probability": 0.9472 + }, + { + "start": 10711.42, + "end": 10716.24, + "probability": 0.9693 + }, + { + "start": 10716.86, + "end": 10717.38, + "probability": 0.9233 + }, + { + "start": 10717.5, + "end": 10718.16, + "probability": 0.4813 + }, + { + "start": 10719.5, + "end": 10720.1, + "probability": 0.9223 + }, + { + "start": 10720.64, + "end": 10721.48, + "probability": 0.5192 + }, + { + "start": 10721.68, + "end": 10722.61, + "probability": 0.9302 + }, + { + "start": 10724.02, + "end": 10724.4, + "probability": 0.4773 + }, + { + "start": 10724.5, + "end": 10725.16, + "probability": 0.9287 + }, + { + "start": 10725.3, + "end": 10726.08, + "probability": 0.6103 + }, + { + "start": 10726.56, + "end": 10729.58, + "probability": 0.9528 + }, + { + "start": 10730.06, + "end": 10730.82, + "probability": 0.9238 + }, + { + "start": 10731.18, + "end": 10733.76, + "probability": 0.6697 + }, + { + "start": 10733.8, + "end": 10735.2, + "probability": 0.9789 + }, + { + "start": 10735.26, + "end": 10736.48, + "probability": 0.9288 + }, + { + "start": 10736.58, + "end": 10737.46, + "probability": 0.9219 + }, + { + "start": 10737.64, + "end": 10739.0, + "probability": 0.9307 + }, + { + "start": 10739.3, + "end": 10741.82, + "probability": 0.9845 + }, + { + "start": 10742.46, + "end": 10746.26, + "probability": 0.395 + }, + { + "start": 10746.94, + "end": 10749.92, + "probability": 0.9838 + }, + { + "start": 10750.48, + "end": 10752.62, + "probability": 0.976 + }, + { + "start": 10752.8, + "end": 10753.62, + "probability": 0.6429 + }, + { + "start": 10754.24, + "end": 10755.92, + "probability": 0.7641 + }, + { + "start": 10755.92, + "end": 10756.54, + "probability": 0.7006 + }, + { + "start": 10756.68, + "end": 10758.53, + "probability": 0.9968 + }, + { + "start": 10759.08, + "end": 10761.34, + "probability": 0.8263 + }, + { + "start": 10761.46, + "end": 10765.56, + "probability": 0.9715 + }, + { + "start": 10766.46, + "end": 10768.92, + "probability": 0.9649 + }, + { + "start": 10769.22, + "end": 10771.94, + "probability": 0.9915 + }, + { + "start": 10772.06, + "end": 10772.94, + "probability": 0.641 + }, + { + "start": 10774.1, + "end": 10776.62, + "probability": 0.9238 + }, + { + "start": 10776.8, + "end": 10780.94, + "probability": 0.8401 + }, + { + "start": 10781.06, + "end": 10783.36, + "probability": 0.9133 + }, + { + "start": 10783.9, + "end": 10784.3, + "probability": 0.9672 + }, + { + "start": 10798.18, + "end": 10800.34, + "probability": 0.3673 + }, + { + "start": 10805.12, + "end": 10805.78, + "probability": 0.5048 + }, + { + "start": 10805.84, + "end": 10808.26, + "probability": 0.7481 + }, + { + "start": 10811.34, + "end": 10812.38, + "probability": 0.7481 + }, + { + "start": 10813.86, + "end": 10814.68, + "probability": 0.5783 + }, + { + "start": 10815.76, + "end": 10821.72, + "probability": 0.9352 + }, + { + "start": 10822.26, + "end": 10824.12, + "probability": 0.9985 + }, + { + "start": 10824.82, + "end": 10826.92, + "probability": 0.9924 + }, + { + "start": 10828.08, + "end": 10830.78, + "probability": 0.9448 + }, + { + "start": 10832.16, + "end": 10835.28, + "probability": 0.7995 + }, + { + "start": 10835.28, + "end": 10836.42, + "probability": 0.9595 + }, + { + "start": 10837.24, + "end": 10838.24, + "probability": 0.8609 + }, + { + "start": 10838.24, + "end": 10839.46, + "probability": 0.9563 + }, + { + "start": 10840.08, + "end": 10843.06, + "probability": 0.9975 + }, + { + "start": 10844.0, + "end": 10844.28, + "probability": 0.9504 + }, + { + "start": 10846.55, + "end": 10850.06, + "probability": 0.9358 + }, + { + "start": 10852.16, + "end": 10854.6, + "probability": 0.9951 + }, + { + "start": 10855.94, + "end": 10857.04, + "probability": 0.4649 + }, + { + "start": 10857.8, + "end": 10860.58, + "probability": 0.9677 + }, + { + "start": 10861.92, + "end": 10866.24, + "probability": 0.969 + }, + { + "start": 10866.92, + "end": 10869.82, + "probability": 0.6284 + }, + { + "start": 10870.46, + "end": 10874.3, + "probability": 0.9157 + }, + { + "start": 10874.64, + "end": 10879.36, + "probability": 0.9893 + }, + { + "start": 10880.44, + "end": 10881.92, + "probability": 0.8633 + }, + { + "start": 10882.42, + "end": 10885.0, + "probability": 0.9941 + }, + { + "start": 10886.3, + "end": 10888.86, + "probability": 0.9509 + }, + { + "start": 10889.18, + "end": 10890.48, + "probability": 0.877 + }, + { + "start": 10890.74, + "end": 10892.4, + "probability": 0.8091 + }, + { + "start": 10892.52, + "end": 10892.64, + "probability": 0.6802 + }, + { + "start": 10893.2, + "end": 10895.32, + "probability": 0.7371 + }, + { + "start": 10895.72, + "end": 10896.8, + "probability": 0.9929 + }, + { + "start": 10897.46, + "end": 10903.14, + "probability": 0.9928 + }, + { + "start": 10904.06, + "end": 10905.18, + "probability": 0.9434 + }, + { + "start": 10906.0, + "end": 10908.66, + "probability": 0.9945 + }, + { + "start": 10909.52, + "end": 10912.0, + "probability": 0.9868 + }, + { + "start": 10913.4, + "end": 10914.36, + "probability": 0.9466 + }, + { + "start": 10915.0, + "end": 10918.88, + "probability": 0.9956 + }, + { + "start": 10919.58, + "end": 10920.64, + "probability": 0.8607 + }, + { + "start": 10920.7, + "end": 10921.81, + "probability": 0.9897 + }, + { + "start": 10922.32, + "end": 10923.3, + "probability": 0.7355 + }, + { + "start": 10923.8, + "end": 10924.62, + "probability": 0.9559 + }, + { + "start": 10925.1, + "end": 10925.96, + "probability": 0.6435 + }, + { + "start": 10926.06, + "end": 10930.64, + "probability": 0.7956 + }, + { + "start": 10931.14, + "end": 10933.58, + "probability": 0.8513 + }, + { + "start": 10933.68, + "end": 10935.58, + "probability": 0.9912 + }, + { + "start": 10936.22, + "end": 10938.7, + "probability": 0.8311 + }, + { + "start": 10939.7, + "end": 10941.5, + "probability": 0.7162 + }, + { + "start": 10942.5, + "end": 10947.5, + "probability": 0.9045 + }, + { + "start": 10948.52, + "end": 10950.28, + "probability": 0.9656 + }, + { + "start": 10950.92, + "end": 10954.86, + "probability": 0.9904 + }, + { + "start": 10955.54, + "end": 10957.67, + "probability": 0.9955 + }, + { + "start": 10959.14, + "end": 10962.18, + "probability": 0.9854 + }, + { + "start": 10963.36, + "end": 10965.2, + "probability": 0.9959 + }, + { + "start": 10965.24, + "end": 10966.34, + "probability": 0.8607 + }, + { + "start": 10966.96, + "end": 10970.04, + "probability": 0.9897 + }, + { + "start": 10971.52, + "end": 10973.98, + "probability": 0.5781 + }, + { + "start": 10975.0, + "end": 10977.25, + "probability": 0.608 + }, + { + "start": 10978.56, + "end": 10983.51, + "probability": 0.689 + }, + { + "start": 10984.56, + "end": 10987.4, + "probability": 0.791 + }, + { + "start": 10988.36, + "end": 10990.42, + "probability": 0.9307 + }, + { + "start": 10992.22, + "end": 10992.93, + "probability": 0.9893 + }, + { + "start": 10993.0, + "end": 10993.24, + "probability": 0.6802 + }, + { + "start": 10994.16, + "end": 10994.58, + "probability": 0.6989 + }, + { + "start": 10994.86, + "end": 10997.5, + "probability": 0.9129 + }, + { + "start": 10998.34, + "end": 10999.58, + "probability": 0.5427 + }, + { + "start": 11000.36, + "end": 11003.08, + "probability": 0.7636 + }, + { + "start": 11003.78, + "end": 11006.8, + "probability": 0.9263 + }, + { + "start": 11007.22, + "end": 11009.16, + "probability": 0.9946 + }, + { + "start": 11009.86, + "end": 11012.14, + "probability": 0.9275 + }, + { + "start": 11012.68, + "end": 11014.48, + "probability": 0.8242 + }, + { + "start": 11014.86, + "end": 11017.52, + "probability": 0.7844 + }, + { + "start": 11017.76, + "end": 11017.76, + "probability": 0.5573 + }, + { + "start": 11017.86, + "end": 11018.24, + "probability": 0.6595 + }, + { + "start": 11018.72, + "end": 11021.24, + "probability": 0.7233 + }, + { + "start": 11029.08, + "end": 11031.82, + "probability": 0.921 + }, + { + "start": 11032.74, + "end": 11034.94, + "probability": 0.4197 + }, + { + "start": 11035.56, + "end": 11035.78, + "probability": 0.2561 + }, + { + "start": 11035.78, + "end": 11035.78, + "probability": 0.4032 + }, + { + "start": 11035.78, + "end": 11037.12, + "probability": 0.722 + }, + { + "start": 11037.22, + "end": 11037.32, + "probability": 0.049 + }, + { + "start": 11037.34, + "end": 11037.4, + "probability": 0.0054 + }, + { + "start": 11037.4, + "end": 11039.68, + "probability": 0.7463 + }, + { + "start": 11039.9, + "end": 11040.74, + "probability": 0.5594 + }, + { + "start": 11040.74, + "end": 11041.08, + "probability": 0.5273 + }, + { + "start": 11042.1, + "end": 11042.64, + "probability": 0.874 + }, + { + "start": 11043.04, + "end": 11043.48, + "probability": 0.688 + }, + { + "start": 11043.52, + "end": 11044.22, + "probability": 0.8202 + }, + { + "start": 11044.42, + "end": 11045.91, + "probability": 0.6814 + }, + { + "start": 11047.67, + "end": 11052.6, + "probability": 0.9695 + }, + { + "start": 11055.4, + "end": 11059.04, + "probability": 0.9946 + }, + { + "start": 11060.9, + "end": 11063.54, + "probability": 0.1922 + }, + { + "start": 11063.74, + "end": 11066.1, + "probability": 0.9447 + }, + { + "start": 11066.18, + "end": 11068.8, + "probability": 0.9518 + }, + { + "start": 11069.54, + "end": 11071.34, + "probability": 0.9944 + }, + { + "start": 11071.88, + "end": 11075.86, + "probability": 0.7301 + }, + { + "start": 11081.2, + "end": 11085.28, + "probability": 0.9778 + }, + { + "start": 11086.16, + "end": 11089.58, + "probability": 0.7373 + }, + { + "start": 11089.8, + "end": 11090.44, + "probability": 0.9272 + }, + { + "start": 11090.98, + "end": 11092.12, + "probability": 0.9191 + }, + { + "start": 11092.2, + "end": 11093.1, + "probability": 0.9326 + }, + { + "start": 11093.2, + "end": 11093.9, + "probability": 0.8101 + }, + { + "start": 11095.52, + "end": 11095.87, + "probability": 0.5224 + }, + { + "start": 11098.54, + "end": 11100.86, + "probability": 0.9703 + }, + { + "start": 11102.22, + "end": 11108.7, + "probability": 0.9971 + }, + { + "start": 11108.82, + "end": 11111.02, + "probability": 0.8871 + }, + { + "start": 11111.46, + "end": 11116.72, + "probability": 0.9835 + }, + { + "start": 11116.72, + "end": 11120.78, + "probability": 0.9558 + }, + { + "start": 11120.78, + "end": 11122.46, + "probability": 0.8603 + }, + { + "start": 11122.66, + "end": 11122.68, + "probability": 0.1042 + }, + { + "start": 11123.2, + "end": 11124.76, + "probability": 0.9929 + }, + { + "start": 11125.68, + "end": 11128.36, + "probability": 0.8779 + }, + { + "start": 11128.42, + "end": 11131.88, + "probability": 0.9501 + }, + { + "start": 11132.62, + "end": 11133.44, + "probability": 0.994 + }, + { + "start": 11133.98, + "end": 11135.84, + "probability": 0.8948 + }, + { + "start": 11137.1, + "end": 11138.32, + "probability": 0.769 + }, + { + "start": 11138.32, + "end": 11143.18, + "probability": 0.9417 + }, + { + "start": 11143.86, + "end": 11144.82, + "probability": 0.9115 + }, + { + "start": 11144.88, + "end": 11145.98, + "probability": 0.9178 + }, + { + "start": 11146.06, + "end": 11149.97, + "probability": 0.8759 + }, + { + "start": 11151.18, + "end": 11153.28, + "probability": 0.9321 + }, + { + "start": 11153.46, + "end": 11155.7, + "probability": 0.6811 + }, + { + "start": 11155.92, + "end": 11156.92, + "probability": 0.6714 + }, + { + "start": 11156.96, + "end": 11157.3, + "probability": 0.0205 + }, + { + "start": 11157.3, + "end": 11160.84, + "probability": 0.6333 + }, + { + "start": 11161.3, + "end": 11162.88, + "probability": 0.8428 + }, + { + "start": 11163.0, + "end": 11163.68, + "probability": 0.7455 + }, + { + "start": 11163.76, + "end": 11164.94, + "probability": 0.5236 + }, + { + "start": 11165.14, + "end": 11166.14, + "probability": 0.7885 + }, + { + "start": 11166.74, + "end": 11168.0, + "probability": 0.9036 + }, + { + "start": 11168.04, + "end": 11170.82, + "probability": 0.7241 + }, + { + "start": 11171.28, + "end": 11171.8, + "probability": 0.8437 + }, + { + "start": 11171.9, + "end": 11172.67, + "probability": 0.8911 + }, + { + "start": 11173.14, + "end": 11174.68, + "probability": 0.5955 + }, + { + "start": 11175.06, + "end": 11178.94, + "probability": 0.9658 + }, + { + "start": 11179.08, + "end": 11179.66, + "probability": 0.4881 + }, + { + "start": 11180.08, + "end": 11181.5, + "probability": 0.7319 + }, + { + "start": 11181.56, + "end": 11182.14, + "probability": 0.7009 + }, + { + "start": 11182.4, + "end": 11183.04, + "probability": 0.7301 + }, + { + "start": 11183.14, + "end": 11184.52, + "probability": 0.9618 + }, + { + "start": 11184.78, + "end": 11185.88, + "probability": 0.7874 + }, + { + "start": 11185.92, + "end": 11186.98, + "probability": 0.9681 + }, + { + "start": 11187.14, + "end": 11188.0, + "probability": 0.9817 + }, + { + "start": 11188.0, + "end": 11188.54, + "probability": 0.9615 + }, + { + "start": 11188.74, + "end": 11189.72, + "probability": 0.9891 + }, + { + "start": 11189.86, + "end": 11190.56, + "probability": 0.9194 + }, + { + "start": 11190.88, + "end": 11191.58, + "probability": 0.9791 + }, + { + "start": 11191.58, + "end": 11192.12, + "probability": 0.9657 + }, + { + "start": 11192.5, + "end": 11192.95, + "probability": 0.7207 + }, + { + "start": 11193.38, + "end": 11194.4, + "probability": 0.4076 + }, + { + "start": 11194.4, + "end": 11195.06, + "probability": 0.8513 + }, + { + "start": 11195.14, + "end": 11195.78, + "probability": 0.5276 + }, + { + "start": 11195.96, + "end": 11196.83, + "probability": 0.9517 + }, + { + "start": 11197.44, + "end": 11198.52, + "probability": 0.5752 + }, + { + "start": 11198.78, + "end": 11199.38, + "probability": 0.9503 + }, + { + "start": 11199.4, + "end": 11200.54, + "probability": 0.7839 + }, + { + "start": 11200.76, + "end": 11201.32, + "probability": 0.8771 + }, + { + "start": 11201.4, + "end": 11202.42, + "probability": 0.6228 + }, + { + "start": 11202.54, + "end": 11203.68, + "probability": 0.9224 + }, + { + "start": 11203.72, + "end": 11204.9, + "probability": 0.6705 + }, + { + "start": 11205.12, + "end": 11205.72, + "probability": 0.9205 + }, + { + "start": 11205.76, + "end": 11207.74, + "probability": 0.7295 + }, + { + "start": 11207.9, + "end": 11208.72, + "probability": 0.8191 + }, + { + "start": 11208.86, + "end": 11209.62, + "probability": 0.1246 + }, + { + "start": 11209.98, + "end": 11210.62, + "probability": 0.7112 + }, + { + "start": 11210.68, + "end": 11212.24, + "probability": 0.485 + }, + { + "start": 11212.26, + "end": 11212.86, + "probability": 0.6873 + }, + { + "start": 11212.9, + "end": 11213.72, + "probability": 0.5773 + }, + { + "start": 11214.22, + "end": 11215.04, + "probability": 0.7353 + }, + { + "start": 11215.4, + "end": 11216.32, + "probability": 0.5347 + }, + { + "start": 11216.4, + "end": 11217.7, + "probability": 0.8192 + }, + { + "start": 11217.7, + "end": 11218.76, + "probability": 0.6208 + }, + { + "start": 11218.76, + "end": 11219.3, + "probability": 0.8337 + }, + { + "start": 11219.32, + "end": 11220.16, + "probability": 0.6121 + }, + { + "start": 11220.18, + "end": 11221.02, + "probability": 0.9141 + }, + { + "start": 11221.1, + "end": 11224.14, + "probability": 0.5861 + }, + { + "start": 11224.18, + "end": 11224.64, + "probability": 0.6448 + }, + { + "start": 11224.76, + "end": 11225.7, + "probability": 0.672 + }, + { + "start": 11226.02, + "end": 11226.66, + "probability": 0.8042 + }, + { + "start": 11226.74, + "end": 11227.48, + "probability": 0.7133 + }, + { + "start": 11227.76, + "end": 11228.34, + "probability": 0.7549 + }, + { + "start": 11228.4, + "end": 11229.4, + "probability": 0.4598 + }, + { + "start": 11229.56, + "end": 11230.36, + "probability": 0.7338 + }, + { + "start": 11230.4, + "end": 11232.14, + "probability": 0.8559 + }, + { + "start": 11232.16, + "end": 11233.08, + "probability": 0.9215 + }, + { + "start": 11233.16, + "end": 11233.52, + "probability": 0.5527 + }, + { + "start": 11233.52, + "end": 11234.14, + "probability": 0.9424 + }, + { + "start": 11234.14, + "end": 11235.0, + "probability": 0.5954 + }, + { + "start": 11235.18, + "end": 11235.82, + "probability": 0.7467 + }, + { + "start": 11236.34, + "end": 11238.58, + "probability": 0.8328 + }, + { + "start": 11238.58, + "end": 11240.04, + "probability": 0.7113 + }, + { + "start": 11240.08, + "end": 11240.48, + "probability": 0.7993 + }, + { + "start": 11241.3, + "end": 11245.9, + "probability": 0.9795 + }, + { + "start": 11246.46, + "end": 11247.48, + "probability": 0.8785 + }, + { + "start": 11247.74, + "end": 11248.78, + "probability": 0.7884 + }, + { + "start": 11248.88, + "end": 11249.88, + "probability": 0.6389 + }, + { + "start": 11249.88, + "end": 11251.4, + "probability": 0.5238 + }, + { + "start": 11251.84, + "end": 11252.2, + "probability": 0.5875 + }, + { + "start": 11252.6, + "end": 11254.22, + "probability": 0.8727 + }, + { + "start": 11254.56, + "end": 11255.94, + "probability": 0.7612 + }, + { + "start": 11256.58, + "end": 11257.92, + "probability": 0.4306 + }, + { + "start": 11257.92, + "end": 11259.7, + "probability": 0.7141 + }, + { + "start": 11259.82, + "end": 11262.19, + "probability": 0.7802 + }, + { + "start": 11276.66, + "end": 11277.0, + "probability": 0.2618 + }, + { + "start": 11277.02, + "end": 11279.88, + "probability": 0.6927 + }, + { + "start": 11280.74, + "end": 11282.04, + "probability": 0.8039 + }, + { + "start": 11283.16, + "end": 11287.2, + "probability": 0.8762 + }, + { + "start": 11288.12, + "end": 11290.9, + "probability": 0.9785 + }, + { + "start": 11290.9, + "end": 11295.32, + "probability": 0.95 + }, + { + "start": 11295.9, + "end": 11297.36, + "probability": 0.8201 + }, + { + "start": 11297.58, + "end": 11298.0, + "probability": 0.7458 + }, + { + "start": 11299.5, + "end": 11299.5, + "probability": 0.0009 + }, + { + "start": 11299.5, + "end": 11299.5, + "probability": 0.0611 + }, + { + "start": 11299.5, + "end": 11299.5, + "probability": 0.4026 + }, + { + "start": 11299.5, + "end": 11306.26, + "probability": 0.9625 + }, + { + "start": 11306.42, + "end": 11313.64, + "probability": 0.9368 + }, + { + "start": 11314.76, + "end": 11316.8, + "probability": 0.9167 + }, + { + "start": 11317.58, + "end": 11319.14, + "probability": 0.8995 + }, + { + "start": 11320.4, + "end": 11325.24, + "probability": 0.9248 + }, + { + "start": 11325.24, + "end": 11331.12, + "probability": 0.9851 + }, + { + "start": 11331.24, + "end": 11334.56, + "probability": 0.9922 + }, + { + "start": 11335.56, + "end": 11344.4, + "probability": 0.8806 + }, + { + "start": 11346.64, + "end": 11352.08, + "probability": 0.856 + }, + { + "start": 11352.3, + "end": 11352.6, + "probability": 0.3932 + }, + { + "start": 11352.78, + "end": 11353.26, + "probability": 0.8454 + }, + { + "start": 11354.08, + "end": 11354.73, + "probability": 0.989 + }, + { + "start": 11355.86, + "end": 11357.32, + "probability": 0.9673 + }, + { + "start": 11358.26, + "end": 11362.46, + "probability": 0.8928 + }, + { + "start": 11363.1, + "end": 11367.3, + "probability": 0.9912 + }, + { + "start": 11368.6, + "end": 11372.68, + "probability": 0.9928 + }, + { + "start": 11373.22, + "end": 11373.92, + "probability": 0.8502 + }, + { + "start": 11374.94, + "end": 11375.7, + "probability": 0.7055 + }, + { + "start": 11377.02, + "end": 11379.28, + "probability": 0.9852 + }, + { + "start": 11380.58, + "end": 11381.74, + "probability": 0.9498 + }, + { + "start": 11382.08, + "end": 11386.54, + "probability": 0.7857 + }, + { + "start": 11387.84, + "end": 11389.02, + "probability": 0.9708 + }, + { + "start": 11389.9, + "end": 11392.74, + "probability": 0.7295 + }, + { + "start": 11394.1, + "end": 11395.36, + "probability": 0.7863 + }, + { + "start": 11396.04, + "end": 11399.8, + "probability": 0.9956 + }, + { + "start": 11401.82, + "end": 11403.28, + "probability": 0.9901 + }, + { + "start": 11403.84, + "end": 11408.94, + "probability": 0.9389 + }, + { + "start": 11410.62, + "end": 11412.32, + "probability": 0.791 + }, + { + "start": 11412.4, + "end": 11413.08, + "probability": 0.6408 + }, + { + "start": 11413.24, + "end": 11417.1, + "probability": 0.982 + }, + { + "start": 11418.01, + "end": 11422.42, + "probability": 0.9873 + }, + { + "start": 11422.62, + "end": 11424.32, + "probability": 0.9969 + }, + { + "start": 11424.68, + "end": 11427.44, + "probability": 0.8359 + }, + { + "start": 11427.8, + "end": 11429.42, + "probability": 0.9488 + }, + { + "start": 11429.98, + "end": 11430.96, + "probability": 0.8795 + }, + { + "start": 11431.46, + "end": 11431.92, + "probability": 0.8159 + }, + { + "start": 11432.06, + "end": 11433.12, + "probability": 0.6238 + }, + { + "start": 11433.36, + "end": 11435.22, + "probability": 0.8954 + }, + { + "start": 11435.84, + "end": 11436.56, + "probability": 0.0341 + }, + { + "start": 11438.2, + "end": 11440.58, + "probability": 0.7356 + }, + { + "start": 11441.42, + "end": 11443.8, + "probability": 0.8703 + }, + { + "start": 11462.52, + "end": 11462.82, + "probability": 0.3695 + }, + { + "start": 11462.94, + "end": 11463.8, + "probability": 0.4543 + }, + { + "start": 11463.9, + "end": 11465.56, + "probability": 0.5363 + }, + { + "start": 11466.06, + "end": 11472.78, + "probability": 0.9867 + }, + { + "start": 11472.78, + "end": 11477.92, + "probability": 0.9619 + }, + { + "start": 11478.44, + "end": 11480.0, + "probability": 0.8495 + }, + { + "start": 11480.32, + "end": 11482.62, + "probability": 0.9901 + }, + { + "start": 11483.36, + "end": 11487.3, + "probability": 0.8525 + }, + { + "start": 11487.98, + "end": 11490.88, + "probability": 0.9978 + }, + { + "start": 11491.7, + "end": 11492.84, + "probability": 0.7877 + }, + { + "start": 11493.18, + "end": 11496.16, + "probability": 0.9167 + }, + { + "start": 11496.5, + "end": 11500.38, + "probability": 0.9982 + }, + { + "start": 11501.02, + "end": 11504.6, + "probability": 0.8196 + }, + { + "start": 11505.02, + "end": 11509.54, + "probability": 0.9798 + }, + { + "start": 11510.1, + "end": 11510.52, + "probability": 0.897 + }, + { + "start": 11511.16, + "end": 11512.53, + "probability": 0.9697 + }, + { + "start": 11512.66, + "end": 11516.42, + "probability": 0.9879 + }, + { + "start": 11517.34, + "end": 11520.08, + "probability": 0.9785 + }, + { + "start": 11520.08, + "end": 11522.5, + "probability": 0.9707 + }, + { + "start": 11522.98, + "end": 11524.74, + "probability": 0.9927 + }, + { + "start": 11525.54, + "end": 11531.48, + "probability": 0.9624 + }, + { + "start": 11531.68, + "end": 11533.44, + "probability": 0.9976 + }, + { + "start": 11534.16, + "end": 11536.16, + "probability": 0.9836 + }, + { + "start": 11536.58, + "end": 11537.4, + "probability": 0.8751 + }, + { + "start": 11537.74, + "end": 11542.12, + "probability": 0.9973 + }, + { + "start": 11542.56, + "end": 11547.9, + "probability": 0.726 + }, + { + "start": 11548.22, + "end": 11549.66, + "probability": 0.9001 + }, + { + "start": 11550.1, + "end": 11553.06, + "probability": 0.9206 + }, + { + "start": 11553.6, + "end": 11557.04, + "probability": 0.9837 + }, + { + "start": 11557.36, + "end": 11558.64, + "probability": 0.9963 + }, + { + "start": 11559.02, + "end": 11560.38, + "probability": 0.8853 + }, + { + "start": 11561.0, + "end": 11564.2, + "probability": 0.8721 + }, + { + "start": 11564.72, + "end": 11566.54, + "probability": 0.9788 + }, + { + "start": 11566.62, + "end": 11567.34, + "probability": 0.8329 + }, + { + "start": 11567.82, + "end": 11569.88, + "probability": 0.9745 + }, + { + "start": 11570.72, + "end": 11572.56, + "probability": 0.9678 + }, + { + "start": 11572.64, + "end": 11576.4, + "probability": 0.9948 + }, + { + "start": 11577.36, + "end": 11580.78, + "probability": 0.7012 + }, + { + "start": 11580.78, + "end": 11584.12, + "probability": 0.8445 + }, + { + "start": 11584.48, + "end": 11585.94, + "probability": 0.8356 + }, + { + "start": 11586.48, + "end": 11587.22, + "probability": 0.5668 + }, + { + "start": 11587.7, + "end": 11591.38, + "probability": 0.9825 + }, + { + "start": 11591.76, + "end": 11592.44, + "probability": 0.9846 + }, + { + "start": 11592.78, + "end": 11593.84, + "probability": 0.7577 + }, + { + "start": 11594.14, + "end": 11595.62, + "probability": 0.9923 + }, + { + "start": 11596.46, + "end": 11596.76, + "probability": 0.8268 + }, + { + "start": 11597.62, + "end": 11598.58, + "probability": 0.6218 + }, + { + "start": 11600.12, + "end": 11601.26, + "probability": 0.9893 + }, + { + "start": 11602.2, + "end": 11602.8, + "probability": 0.6164 + }, + { + "start": 11610.4, + "end": 11611.26, + "probability": 0.64 + }, + { + "start": 11613.98, + "end": 11615.48, + "probability": 0.3007 + }, + { + "start": 11616.74, + "end": 11617.42, + "probability": 0.3005 + }, + { + "start": 11623.56, + "end": 11624.64, + "probability": 0.3423 + }, + { + "start": 11628.56, + "end": 11629.58, + "probability": 0.7327 + }, + { + "start": 11630.5, + "end": 11632.16, + "probability": 0.7375 + }, + { + "start": 11633.36, + "end": 11636.92, + "probability": 0.9938 + }, + { + "start": 11637.5, + "end": 11638.44, + "probability": 0.9974 + }, + { + "start": 11639.9, + "end": 11640.52, + "probability": 0.7155 + }, + { + "start": 11641.4, + "end": 11642.7, + "probability": 0.9323 + }, + { + "start": 11642.74, + "end": 11644.4, + "probability": 0.9978 + }, + { + "start": 11645.22, + "end": 11646.74, + "probability": 0.8991 + }, + { + "start": 11647.82, + "end": 11650.42, + "probability": 0.7441 + }, + { + "start": 11650.5, + "end": 11653.36, + "probability": 0.9889 + }, + { + "start": 11655.04, + "end": 11658.88, + "probability": 0.9955 + }, + { + "start": 11659.58, + "end": 11660.64, + "probability": 0.7044 + }, + { + "start": 11661.44, + "end": 11664.2, + "probability": 0.9652 + }, + { + "start": 11665.72, + "end": 11670.88, + "probability": 0.7642 + }, + { + "start": 11671.0, + "end": 11672.82, + "probability": 0.9731 + }, + { + "start": 11672.9, + "end": 11674.24, + "probability": 0.8542 + }, + { + "start": 11674.3, + "end": 11675.65, + "probability": 0.9695 + }, + { + "start": 11675.92, + "end": 11677.31, + "probability": 0.6035 + }, + { + "start": 11678.14, + "end": 11682.58, + "probability": 0.8979 + }, + { + "start": 11683.08, + "end": 11684.0, + "probability": 0.9286 + }, + { + "start": 11684.12, + "end": 11687.24, + "probability": 0.9778 + }, + { + "start": 11688.4, + "end": 11690.88, + "probability": 0.9521 + }, + { + "start": 11692.08, + "end": 11697.18, + "probability": 0.9949 + }, + { + "start": 11697.76, + "end": 11699.26, + "probability": 0.9907 + }, + { + "start": 11700.5, + "end": 11703.22, + "probability": 0.9772 + }, + { + "start": 11704.04, + "end": 11706.16, + "probability": 0.9663 + }, + { + "start": 11707.14, + "end": 11708.82, + "probability": 0.9734 + }, + { + "start": 11708.94, + "end": 11711.46, + "probability": 0.8094 + }, + { + "start": 11711.9, + "end": 11714.64, + "probability": 0.9634 + }, + { + "start": 11714.72, + "end": 11715.06, + "probability": 0.8615 + }, + { + "start": 11715.16, + "end": 11715.74, + "probability": 0.561 + }, + { + "start": 11716.68, + "end": 11717.34, + "probability": 0.8424 + }, + { + "start": 11717.56, + "end": 11720.62, + "probability": 0.8997 + }, + { + "start": 11721.94, + "end": 11722.44, + "probability": 0.7309 + }, + { + "start": 11723.46, + "end": 11725.02, + "probability": 0.9764 + }, + { + "start": 11726.22, + "end": 11731.04, + "probability": 0.988 + }, + { + "start": 11731.7, + "end": 11735.31, + "probability": 0.996 + }, + { + "start": 11735.62, + "end": 11736.96, + "probability": 0.8113 + }, + { + "start": 11737.8, + "end": 11740.35, + "probability": 0.9933 + }, + { + "start": 11741.18, + "end": 11744.86, + "probability": 0.9986 + }, + { + "start": 11746.42, + "end": 11747.76, + "probability": 0.7824 + }, + { + "start": 11747.84, + "end": 11749.46, + "probability": 0.9817 + }, + { + "start": 11749.9, + "end": 11751.06, + "probability": 0.987 + }, + { + "start": 11751.26, + "end": 11752.56, + "probability": 0.9663 + }, + { + "start": 11752.74, + "end": 11756.38, + "probability": 0.9811 + }, + { + "start": 11756.96, + "end": 11758.18, + "probability": 0.4629 + }, + { + "start": 11758.3, + "end": 11759.58, + "probability": 0.944 + }, + { + "start": 11760.48, + "end": 11763.8, + "probability": 0.9966 + }, + { + "start": 11764.78, + "end": 11765.9, + "probability": 0.8382 + }, + { + "start": 11766.82, + "end": 11768.44, + "probability": 0.9946 + }, + { + "start": 11769.16, + "end": 11772.32, + "probability": 0.9871 + }, + { + "start": 11772.84, + "end": 11777.92, + "probability": 0.9961 + }, + { + "start": 11778.48, + "end": 11782.36, + "probability": 0.9895 + }, + { + "start": 11782.98, + "end": 11783.84, + "probability": 0.9229 + }, + { + "start": 11784.3, + "end": 11785.5, + "probability": 0.9796 + }, + { + "start": 11785.9, + "end": 11788.13, + "probability": 0.9951 + }, + { + "start": 11788.76, + "end": 11790.2, + "probability": 0.9556 + }, + { + "start": 11790.76, + "end": 11792.1, + "probability": 0.998 + }, + { + "start": 11792.58, + "end": 11793.7, + "probability": 0.9137 + }, + { + "start": 11793.84, + "end": 11794.02, + "probability": 0.8189 + }, + { + "start": 11794.88, + "end": 11795.92, + "probability": 0.4541 + }, + { + "start": 11795.98, + "end": 11797.26, + "probability": 0.9507 + }, + { + "start": 11797.3, + "end": 11802.14, + "probability": 0.9629 + }, + { + "start": 11803.08, + "end": 11804.86, + "probability": 0.8599 + }, + { + "start": 11805.0, + "end": 11807.34, + "probability": 0.9762 + }, + { + "start": 11808.22, + "end": 11810.08, + "probability": 0.4265 + }, + { + "start": 11814.56, + "end": 11817.46, + "probability": 0.3445 + }, + { + "start": 11817.46, + "end": 11821.8, + "probability": 0.5838 + }, + { + "start": 11821.88, + "end": 11825.22, + "probability": 0.6023 + }, + { + "start": 11825.24, + "end": 11826.01, + "probability": 0.5771 + }, + { + "start": 11829.14, + "end": 11834.04, + "probability": 0.7371 + }, + { + "start": 11834.8, + "end": 11837.68, + "probability": 0.6689 + }, + { + "start": 11841.84, + "end": 11845.4, + "probability": 0.4916 + }, + { + "start": 11845.5, + "end": 11846.38, + "probability": 0.7543 + }, + { + "start": 11846.54, + "end": 11848.64, + "probability": 0.6927 + }, + { + "start": 11849.04, + "end": 11853.78, + "probability": 0.9884 + }, + { + "start": 11853.78, + "end": 11858.26, + "probability": 0.9431 + }, + { + "start": 11858.26, + "end": 11861.16, + "probability": 0.8516 + }, + { + "start": 11863.46, + "end": 11868.56, + "probability": 0.9777 + }, + { + "start": 11868.56, + "end": 11873.44, + "probability": 0.9656 + }, + { + "start": 11874.36, + "end": 11877.92, + "probability": 0.7613 + }, + { + "start": 11878.64, + "end": 11879.9, + "probability": 0.9037 + }, + { + "start": 11880.16, + "end": 11881.1, + "probability": 0.5745 + }, + { + "start": 11881.5, + "end": 11885.98, + "probability": 0.9482 + }, + { + "start": 11886.46, + "end": 11889.46, + "probability": 0.9443 + }, + { + "start": 11890.44, + "end": 11892.66, + "probability": 0.913 + }, + { + "start": 11892.66, + "end": 11896.08, + "probability": 0.9768 + }, + { + "start": 11897.1, + "end": 11899.14, + "probability": 0.8748 + }, + { + "start": 11899.66, + "end": 11901.72, + "probability": 0.8265 + }, + { + "start": 11902.08, + "end": 11904.8, + "probability": 0.9398 + }, + { + "start": 11905.2, + "end": 11908.0, + "probability": 0.9905 + }, + { + "start": 11908.9, + "end": 11909.24, + "probability": 0.4354 + }, + { + "start": 11909.44, + "end": 11911.8, + "probability": 0.8413 + }, + { + "start": 11912.16, + "end": 11916.88, + "probability": 0.9858 + }, + { + "start": 11917.36, + "end": 11920.18, + "probability": 0.976 + }, + { + "start": 11921.22, + "end": 11924.08, + "probability": 0.9678 + }, + { + "start": 11924.72, + "end": 11928.46, + "probability": 0.9887 + }, + { + "start": 11928.74, + "end": 11932.76, + "probability": 0.9896 + }, + { + "start": 11933.78, + "end": 11938.92, + "probability": 0.9738 + }, + { + "start": 11939.36, + "end": 11941.6, + "probability": 0.9717 + }, + { + "start": 11942.64, + "end": 11943.56, + "probability": 0.6542 + }, + { + "start": 11944.56, + "end": 11947.37, + "probability": 0.9962 + }, + { + "start": 11947.84, + "end": 11951.66, + "probability": 0.9678 + }, + { + "start": 11952.14, + "end": 11953.42, + "probability": 0.7634 + }, + { + "start": 11954.14, + "end": 11956.98, + "probability": 0.9853 + }, + { + "start": 11957.56, + "end": 11959.12, + "probability": 0.7917 + }, + { + "start": 11959.22, + "end": 11961.64, + "probability": 0.9779 + }, + { + "start": 11961.84, + "end": 11962.78, + "probability": 0.6568 + }, + { + "start": 11963.24, + "end": 11967.68, + "probability": 0.981 + }, + { + "start": 11968.46, + "end": 11969.48, + "probability": 0.7225 + }, + { + "start": 11969.88, + "end": 11971.38, + "probability": 0.9126 + }, + { + "start": 11971.42, + "end": 11973.42, + "probability": 0.9743 + }, + { + "start": 11974.62, + "end": 11979.0, + "probability": 0.9722 + }, + { + "start": 11979.12, + "end": 11979.62, + "probability": 0.4903 + }, + { + "start": 11979.7, + "end": 11981.14, + "probability": 0.8585 + }, + { + "start": 11981.24, + "end": 11985.28, + "probability": 0.9728 + }, + { + "start": 11986.16, + "end": 11992.38, + "probability": 0.9559 + }, + { + "start": 11992.88, + "end": 11995.22, + "probability": 0.8665 + }, + { + "start": 11995.74, + "end": 12000.38, + "probability": 0.9928 + }, + { + "start": 12001.04, + "end": 12005.22, + "probability": 0.7886 + }, + { + "start": 12005.76, + "end": 12010.56, + "probability": 0.9778 + }, + { + "start": 12012.38, + "end": 12013.4, + "probability": 0.4403 + }, + { + "start": 12013.6, + "end": 12014.68, + "probability": 0.8019 + }, + { + "start": 12015.96, + "end": 12018.7, + "probability": 0.8462 + }, + { + "start": 12018.72, + "end": 12019.44, + "probability": 0.8631 + }, + { + "start": 12020.9, + "end": 12022.44, + "probability": 0.7461 + }, + { + "start": 12024.5, + "end": 12028.08, + "probability": 0.9449 + }, + { + "start": 12028.78, + "end": 12031.62, + "probability": 0.6543 + }, + { + "start": 12032.12, + "end": 12032.82, + "probability": 0.6591 + }, + { + "start": 12032.88, + "end": 12033.14, + "probability": 0.9722 + }, + { + "start": 12033.96, + "end": 12036.01, + "probability": 0.8303 + }, + { + "start": 12038.6, + "end": 12041.68, + "probability": 0.7543 + }, + { + "start": 12042.71, + "end": 12048.66, + "probability": 0.9717 + }, + { + "start": 12048.66, + "end": 12052.32, + "probability": 0.9974 + }, + { + "start": 12053.8, + "end": 12060.44, + "probability": 0.9701 + }, + { + "start": 12061.16, + "end": 12063.7, + "probability": 0.946 + }, + { + "start": 12063.78, + "end": 12068.82, + "probability": 0.8969 + }, + { + "start": 12070.3, + "end": 12072.28, + "probability": 0.9726 + }, + { + "start": 12073.12, + "end": 12076.22, + "probability": 0.9943 + }, + { + "start": 12077.0, + "end": 12080.72, + "probability": 0.8666 + }, + { + "start": 12081.3, + "end": 12084.46, + "probability": 0.9208 + }, + { + "start": 12085.16, + "end": 12087.32, + "probability": 0.9949 + }, + { + "start": 12088.32, + "end": 12092.16, + "probability": 0.9889 + }, + { + "start": 12093.66, + "end": 12098.78, + "probability": 0.9668 + }, + { + "start": 12099.86, + "end": 12103.3, + "probability": 0.995 + }, + { + "start": 12104.26, + "end": 12109.76, + "probability": 0.9971 + }, + { + "start": 12110.86, + "end": 12113.4, + "probability": 0.985 + }, + { + "start": 12114.36, + "end": 12116.94, + "probability": 0.9986 + }, + { + "start": 12116.94, + "end": 12122.02, + "probability": 0.9816 + }, + { + "start": 12122.96, + "end": 12124.28, + "probability": 0.9791 + }, + { + "start": 12124.92, + "end": 12125.6, + "probability": 0.3107 + }, + { + "start": 12126.58, + "end": 12127.18, + "probability": 0.8809 + }, + { + "start": 12127.96, + "end": 12134.1, + "probability": 0.9953 + }, + { + "start": 12134.3, + "end": 12135.04, + "probability": 0.9773 + }, + { + "start": 12135.72, + "end": 12141.46, + "probability": 0.9416 + }, + { + "start": 12143.76, + "end": 12146.84, + "probability": 0.971 + }, + { + "start": 12147.38, + "end": 12151.32, + "probability": 0.952 + }, + { + "start": 12151.94, + "end": 12155.46, + "probability": 0.9836 + }, + { + "start": 12156.32, + "end": 12158.34, + "probability": 0.9969 + }, + { + "start": 12158.8, + "end": 12162.92, + "probability": 0.998 + }, + { + "start": 12164.24, + "end": 12171.58, + "probability": 0.9847 + }, + { + "start": 12172.54, + "end": 12175.84, + "probability": 0.9941 + }, + { + "start": 12176.4, + "end": 12181.48, + "probability": 0.9966 + }, + { + "start": 12181.98, + "end": 12185.3, + "probability": 0.9845 + }, + { + "start": 12185.38, + "end": 12186.0, + "probability": 0.9084 + }, + { + "start": 12186.08, + "end": 12186.68, + "probability": 0.9645 + }, + { + "start": 12186.78, + "end": 12187.94, + "probability": 0.965 + }, + { + "start": 12189.5, + "end": 12194.96, + "probability": 0.9893 + }, + { + "start": 12195.36, + "end": 12196.24, + "probability": 0.9979 + }, + { + "start": 12196.68, + "end": 12198.94, + "probability": 0.882 + }, + { + "start": 12200.44, + "end": 12202.0, + "probability": 0.9813 + }, + { + "start": 12202.7, + "end": 12205.22, + "probability": 0.9878 + }, + { + "start": 12205.8, + "end": 12212.14, + "probability": 0.9962 + }, + { + "start": 12212.66, + "end": 12213.62, + "probability": 0.8218 + }, + { + "start": 12215.42, + "end": 12216.48, + "probability": 0.3865 + }, + { + "start": 12216.76, + "end": 12219.86, + "probability": 0.8528 + }, + { + "start": 12219.92, + "end": 12220.76, + "probability": 0.7744 + }, + { + "start": 12224.14, + "end": 12224.3, + "probability": 0.0606 + }, + { + "start": 12224.58, + "end": 12228.0, + "probability": 0.5063 + }, + { + "start": 12228.98, + "end": 12232.52, + "probability": 0.4413 + }, + { + "start": 12232.68, + "end": 12235.5, + "probability": 0.8119 + }, + { + "start": 12235.82, + "end": 12236.44, + "probability": 0.2172 + }, + { + "start": 12236.46, + "end": 12237.38, + "probability": 0.8883 + }, + { + "start": 12237.74, + "end": 12239.7, + "probability": 0.6254 + }, + { + "start": 12241.01, + "end": 12245.02, + "probability": 0.8123 + }, + { + "start": 12245.64, + "end": 12246.88, + "probability": 0.6984 + }, + { + "start": 12246.88, + "end": 12248.43, + "probability": 0.8461 + }, + { + "start": 12248.83, + "end": 12250.94, + "probability": 0.7192 + }, + { + "start": 12251.68, + "end": 12253.7, + "probability": 0.852 + }, + { + "start": 12254.1, + "end": 12254.64, + "probability": 0.9299 + }, + { + "start": 12255.78, + "end": 12258.54, + "probability": 0.424 + }, + { + "start": 12258.6, + "end": 12260.58, + "probability": 0.5658 + }, + { + "start": 12260.58, + "end": 12260.6, + "probability": 0.1719 + }, + { + "start": 12260.6, + "end": 12261.34, + "probability": 0.6065 + }, + { + "start": 12262.46, + "end": 12267.86, + "probability": 0.9951 + }, + { + "start": 12268.92, + "end": 12271.16, + "probability": 0.9548 + }, + { + "start": 12271.68, + "end": 12273.86, + "probability": 0.9163 + }, + { + "start": 12274.62, + "end": 12277.62, + "probability": 0.9888 + }, + { + "start": 12278.0, + "end": 12281.75, + "probability": 0.8374 + }, + { + "start": 12282.82, + "end": 12283.8, + "probability": 0.9495 + }, + { + "start": 12283.9, + "end": 12284.62, + "probability": 0.8885 + }, + { + "start": 12284.68, + "end": 12286.04, + "probability": 0.8173 + }, + { + "start": 12286.12, + "end": 12288.5, + "probability": 0.4931 + }, + { + "start": 12288.82, + "end": 12293.64, + "probability": 0.9867 + }, + { + "start": 12293.74, + "end": 12295.48, + "probability": 0.2574 + }, + { + "start": 12297.24, + "end": 12297.48, + "probability": 0.0108 + }, + { + "start": 12297.48, + "end": 12297.48, + "probability": 0.16 + }, + { + "start": 12297.48, + "end": 12298.04, + "probability": 0.1704 + }, + { + "start": 12298.72, + "end": 12301.08, + "probability": 0.7278 + }, + { + "start": 12301.42, + "end": 12304.32, + "probability": 0.7008 + }, + { + "start": 12304.4, + "end": 12305.64, + "probability": 0.7886 + }, + { + "start": 12305.76, + "end": 12309.12, + "probability": 0.9467 + }, + { + "start": 12309.44, + "end": 12314.68, + "probability": 0.5406 + }, + { + "start": 12314.92, + "end": 12316.38, + "probability": 0.1206 + }, + { + "start": 12316.38, + "end": 12317.22, + "probability": 0.0337 + }, + { + "start": 12319.54, + "end": 12321.83, + "probability": 0.8762 + }, + { + "start": 12323.94, + "end": 12324.26, + "probability": 0.3776 + }, + { + "start": 12324.88, + "end": 12325.26, + "probability": 0.0964 + }, + { + "start": 12325.26, + "end": 12325.26, + "probability": 0.1012 + }, + { + "start": 12325.26, + "end": 12325.26, + "probability": 0.0832 + }, + { + "start": 12325.26, + "end": 12325.26, + "probability": 0.2877 + }, + { + "start": 12325.26, + "end": 12326.68, + "probability": 0.3073 + }, + { + "start": 12327.36, + "end": 12327.86, + "probability": 0.097 + }, + { + "start": 12327.86, + "end": 12329.66, + "probability": 0.0745 + }, + { + "start": 12331.34, + "end": 12334.12, + "probability": 0.827 + }, + { + "start": 12335.02, + "end": 12342.64, + "probability": 0.999 + }, + { + "start": 12342.76, + "end": 12343.44, + "probability": 0.5745 + }, + { + "start": 12343.62, + "end": 12344.96, + "probability": 0.4995 + }, + { + "start": 12345.34, + "end": 12349.82, + "probability": 0.9686 + }, + { + "start": 12349.84, + "end": 12349.9, + "probability": 0.0794 + }, + { + "start": 12349.9, + "end": 12353.34, + "probability": 0.9119 + }, + { + "start": 12353.98, + "end": 12354.1, + "probability": 0.1081 + }, + { + "start": 12354.1, + "end": 12355.26, + "probability": 0.7226 + }, + { + "start": 12355.82, + "end": 12358.38, + "probability": 0.8633 + }, + { + "start": 12358.74, + "end": 12361.11, + "probability": 0.6093 + }, + { + "start": 12363.08, + "end": 12366.38, + "probability": 0.8489 + }, + { + "start": 12366.38, + "end": 12369.98, + "probability": 0.9967 + }, + { + "start": 12370.28, + "end": 12372.38, + "probability": 0.9278 + }, + { + "start": 12372.68, + "end": 12373.54, + "probability": 0.9293 + }, + { + "start": 12374.58, + "end": 12379.54, + "probability": 0.9973 + }, + { + "start": 12381.0, + "end": 12383.18, + "probability": 0.9837 + }, + { + "start": 12383.24, + "end": 12385.86, + "probability": 0.819 + }, + { + "start": 12386.88, + "end": 12388.46, + "probability": 0.9984 + }, + { + "start": 12389.0, + "end": 12392.98, + "probability": 0.979 + }, + { + "start": 12392.98, + "end": 12397.02, + "probability": 0.69 + }, + { + "start": 12398.4, + "end": 12400.42, + "probability": 0.8834 + }, + { + "start": 12400.84, + "end": 12402.44, + "probability": 0.1096 + }, + { + "start": 12402.58, + "end": 12403.36, + "probability": 0.115 + }, + { + "start": 12403.4, + "end": 12403.72, + "probability": 0.0537 + }, + { + "start": 12403.72, + "end": 12403.72, + "probability": 0.034 + }, + { + "start": 12403.72, + "end": 12404.9, + "probability": 0.7266 + }, + { + "start": 12406.37, + "end": 12407.66, + "probability": 0.7915 + }, + { + "start": 12407.66, + "end": 12407.78, + "probability": 0.1286 + }, + { + "start": 12408.12, + "end": 12408.66, + "probability": 0.8109 + }, + { + "start": 12409.56, + "end": 12409.7, + "probability": 0.2092 + }, + { + "start": 12409.7, + "end": 12411.76, + "probability": 0.677 + }, + { + "start": 12412.44, + "end": 12413.42, + "probability": 0.7822 + }, + { + "start": 12414.52, + "end": 12416.72, + "probability": 0.9861 + }, + { + "start": 12417.0, + "end": 12419.0, + "probability": 0.9834 + }, + { + "start": 12419.32, + "end": 12424.42, + "probability": 0.9744 + }, + { + "start": 12424.46, + "end": 12425.46, + "probability": 0.6388 + }, + { + "start": 12426.54, + "end": 12429.98, + "probability": 0.9944 + }, + { + "start": 12430.98, + "end": 12432.4, + "probability": 0.4628 + }, + { + "start": 12432.48, + "end": 12432.74, + "probability": 0.2241 + }, + { + "start": 12432.76, + "end": 12437.9, + "probability": 0.9846 + }, + { + "start": 12437.92, + "end": 12438.5, + "probability": 0.89 + }, + { + "start": 12438.58, + "end": 12440.27, + "probability": 0.9751 + }, + { + "start": 12440.56, + "end": 12442.22, + "probability": 0.3116 + }, + { + "start": 12442.52, + "end": 12446.72, + "probability": 0.8888 + }, + { + "start": 12446.9, + "end": 12448.2, + "probability": 0.9167 + }, + { + "start": 12448.48, + "end": 12450.0, + "probability": 0.8736 + }, + { + "start": 12450.0, + "end": 12451.16, + "probability": 0.4328 + }, + { + "start": 12451.7, + "end": 12455.56, + "probability": 0.5986 + }, + { + "start": 12455.68, + "end": 12456.2, + "probability": 0.7905 + }, + { + "start": 12456.26, + "end": 12459.74, + "probability": 0.9594 + }, + { + "start": 12459.78, + "end": 12460.82, + "probability": 0.135 + }, + { + "start": 12462.02, + "end": 12466.35, + "probability": 0.9097 + }, + { + "start": 12466.88, + "end": 12470.38, + "probability": 0.9907 + }, + { + "start": 12470.62, + "end": 12471.74, + "probability": 0.9938 + }, + { + "start": 12471.74, + "end": 12472.36, + "probability": 0.5987 + }, + { + "start": 12473.02, + "end": 12476.66, + "probability": 0.9561 + }, + { + "start": 12476.96, + "end": 12478.71, + "probability": 0.6521 + }, + { + "start": 12480.44, + "end": 12483.76, + "probability": 0.7454 + }, + { + "start": 12484.76, + "end": 12485.66, + "probability": 0.6268 + }, + { + "start": 12485.8, + "end": 12487.8, + "probability": 0.998 + }, + { + "start": 12488.81, + "end": 12491.72, + "probability": 0.9977 + }, + { + "start": 12491.8, + "end": 12493.28, + "probability": 0.8605 + }, + { + "start": 12494.44, + "end": 12496.22, + "probability": 0.9735 + }, + { + "start": 12496.32, + "end": 12497.28, + "probability": 0.4802 + }, + { + "start": 12497.48, + "end": 12497.5, + "probability": 0.0276 + }, + { + "start": 12497.5, + "end": 12497.5, + "probability": 0.1833 + }, + { + "start": 12497.5, + "end": 12501.04, + "probability": 0.7054 + }, + { + "start": 12501.88, + "end": 12511.58, + "probability": 0.9826 + }, + { + "start": 12514.56, + "end": 12515.76, + "probability": 0.8937 + }, + { + "start": 12516.3, + "end": 12516.32, + "probability": 0.3088 + }, + { + "start": 12516.96, + "end": 12519.5, + "probability": 0.8302 + }, + { + "start": 12520.46, + "end": 12522.9, + "probability": 0.8367 + }, + { + "start": 12525.04, + "end": 12527.08, + "probability": 0.9935 + }, + { + "start": 12527.16, + "end": 12529.52, + "probability": 0.9896 + }, + { + "start": 12529.66, + "end": 12530.2, + "probability": 0.8063 + }, + { + "start": 12530.3, + "end": 12533.48, + "probability": 0.9591 + }, + { + "start": 12533.76, + "end": 12535.1, + "probability": 0.8668 + }, + { + "start": 12536.22, + "end": 12538.32, + "probability": 0.8027 + }, + { + "start": 12539.18, + "end": 12543.46, + "probability": 0.9126 + }, + { + "start": 12543.64, + "end": 12545.28, + "probability": 0.9245 + }, + { + "start": 12546.04, + "end": 12549.52, + "probability": 0.9948 + }, + { + "start": 12549.52, + "end": 12553.18, + "probability": 0.7981 + }, + { + "start": 12554.7, + "end": 12558.72, + "probability": 0.996 + }, + { + "start": 12558.82, + "end": 12559.48, + "probability": 0.4764 + }, + { + "start": 12560.34, + "end": 12563.8, + "probability": 0.9883 + }, + { + "start": 12564.56, + "end": 12565.56, + "probability": 0.9834 + }, + { + "start": 12566.96, + "end": 12568.86, + "probability": 0.9829 + }, + { + "start": 12569.9, + "end": 12571.3, + "probability": 0.5113 + }, + { + "start": 12572.84, + "end": 12574.1, + "probability": 0.9664 + }, + { + "start": 12574.16, + "end": 12575.14, + "probability": 0.9743 + }, + { + "start": 12575.38, + "end": 12576.66, + "probability": 0.8439 + }, + { + "start": 12577.08, + "end": 12578.3, + "probability": 0.9241 + }, + { + "start": 12578.38, + "end": 12579.06, + "probability": 0.7609 + }, + { + "start": 12579.6, + "end": 12581.08, + "probability": 0.9799 + }, + { + "start": 12582.56, + "end": 12584.82, + "probability": 0.7076 + }, + { + "start": 12586.4, + "end": 12590.84, + "probability": 0.9946 + }, + { + "start": 12592.2, + "end": 12595.38, + "probability": 0.9974 + }, + { + "start": 12595.78, + "end": 12597.3, + "probability": 0.9875 + }, + { + "start": 12597.84, + "end": 12598.22, + "probability": 0.6958 + }, + { + "start": 12598.9, + "end": 12599.56, + "probability": 0.8975 + }, + { + "start": 12600.68, + "end": 12603.64, + "probability": 0.6455 + }, + { + "start": 12604.28, + "end": 12604.34, + "probability": 0.1157 + }, + { + "start": 12604.34, + "end": 12604.34, + "probability": 0.0129 + }, + { + "start": 12604.34, + "end": 12608.92, + "probability": 0.9784 + }, + { + "start": 12608.92, + "end": 12609.86, + "probability": 0.8367 + }, + { + "start": 12610.26, + "end": 12615.88, + "probability": 0.9834 + }, + { + "start": 12616.84, + "end": 12618.36, + "probability": 0.7429 + }, + { + "start": 12618.36, + "end": 12618.36, + "probability": 0.0419 + }, + { + "start": 12618.36, + "end": 12620.12, + "probability": 0.8159 + }, + { + "start": 12621.02, + "end": 12622.39, + "probability": 0.9937 + }, + { + "start": 12622.9, + "end": 12624.5, + "probability": 0.6152 + }, + { + "start": 12624.5, + "end": 12626.92, + "probability": 0.9573 + }, + { + "start": 12627.34, + "end": 12628.86, + "probability": 0.8838 + }, + { + "start": 12628.96, + "end": 12632.72, + "probability": 0.6751 + }, + { + "start": 12633.36, + "end": 12634.28, + "probability": 0.7133 + }, + { + "start": 12636.06, + "end": 12637.0, + "probability": 0.8966 + }, + { + "start": 12637.94, + "end": 12638.18, + "probability": 0.9209 + }, + { + "start": 12638.26, + "end": 12639.66, + "probability": 0.9814 + }, + { + "start": 12640.22, + "end": 12645.1, + "probability": 0.8716 + }, + { + "start": 12645.36, + "end": 12648.74, + "probability": 0.811 + }, + { + "start": 12649.1, + "end": 12649.94, + "probability": 0.3692 + }, + { + "start": 12650.52, + "end": 12655.26, + "probability": 0.8559 + }, + { + "start": 12655.36, + "end": 12656.28, + "probability": 0.6609 + }, + { + "start": 12657.04, + "end": 12658.04, + "probability": 0.7425 + }, + { + "start": 12658.08, + "end": 12658.72, + "probability": 0.0495 + }, + { + "start": 12659.54, + "end": 12660.8, + "probability": 0.9033 + }, + { + "start": 12660.98, + "end": 12666.04, + "probability": 0.9956 + }, + { + "start": 12666.12, + "end": 12666.84, + "probability": 0.3716 + }, + { + "start": 12666.88, + "end": 12669.7, + "probability": 0.2086 + }, + { + "start": 12670.6, + "end": 12675.92, + "probability": 0.9111 + }, + { + "start": 12676.1, + "end": 12677.42, + "probability": 0.8702 + }, + { + "start": 12677.66, + "end": 12678.97, + "probability": 0.9871 + }, + { + "start": 12679.46, + "end": 12680.43, + "probability": 0.9734 + }, + { + "start": 12682.2, + "end": 12690.34, + "probability": 0.9872 + }, + { + "start": 12690.9, + "end": 12695.72, + "probability": 0.6429 + }, + { + "start": 12696.4, + "end": 12698.28, + "probability": 0.8781 + }, + { + "start": 12698.44, + "end": 12702.52, + "probability": 0.9253 + }, + { + "start": 12702.58, + "end": 12703.76, + "probability": 0.2435 + }, + { + "start": 12703.8, + "end": 12703.86, + "probability": 0.5427 + }, + { + "start": 12703.86, + "end": 12704.68, + "probability": 0.8917 + }, + { + "start": 12704.8, + "end": 12707.48, + "probability": 0.6359 + }, + { + "start": 12707.74, + "end": 12708.44, + "probability": 0.8334 + }, + { + "start": 12708.82, + "end": 12710.04, + "probability": 0.8995 + }, + { + "start": 12710.68, + "end": 12712.96, + "probability": 0.7279 + }, + { + "start": 12713.36, + "end": 12716.02, + "probability": 0.9792 + }, + { + "start": 12716.12, + "end": 12719.5, + "probability": 0.85 + }, + { + "start": 12719.78, + "end": 12720.92, + "probability": 0.7496 + }, + { + "start": 12721.0, + "end": 12727.76, + "probability": 0.9941 + }, + { + "start": 12727.76, + "end": 12729.04, + "probability": 0.7695 + }, + { + "start": 12730.62, + "end": 12734.4, + "probability": 0.9429 + }, + { + "start": 12736.12, + "end": 12736.68, + "probability": 0.7332 + }, + { + "start": 12736.86, + "end": 12737.36, + "probability": 0.7844 + }, + { + "start": 12737.48, + "end": 12740.6, + "probability": 0.948 + }, + { + "start": 12741.44, + "end": 12741.44, + "probability": 0.0536 + }, + { + "start": 12741.44, + "end": 12745.41, + "probability": 0.9825 + }, + { + "start": 12746.02, + "end": 12752.12, + "probability": 0.9875 + }, + { + "start": 12753.94, + "end": 12756.86, + "probability": 0.6756 + }, + { + "start": 12756.9, + "end": 12761.04, + "probability": 0.9961 + }, + { + "start": 12761.54, + "end": 12762.22, + "probability": 0.4574 + }, + { + "start": 12762.22, + "end": 12762.3, + "probability": 0.0995 + }, + { + "start": 12762.34, + "end": 12762.34, + "probability": 0.5242 + }, + { + "start": 12762.34, + "end": 12762.64, + "probability": 0.2547 + }, + { + "start": 12762.8, + "end": 12762.92, + "probability": 0.4803 + }, + { + "start": 12762.92, + "end": 12763.89, + "probability": 0.741 + }, + { + "start": 12764.66, + "end": 12765.26, + "probability": 0.1616 + }, + { + "start": 12765.26, + "end": 12765.68, + "probability": 0.5011 + }, + { + "start": 12765.84, + "end": 12766.66, + "probability": 0.0657 + }, + { + "start": 12766.66, + "end": 12770.56, + "probability": 0.5527 + }, + { + "start": 12771.76, + "end": 12771.76, + "probability": 0.2324 + }, + { + "start": 12771.76, + "end": 12771.76, + "probability": 0.075 + }, + { + "start": 12771.76, + "end": 12772.58, + "probability": 0.8305 + }, + { + "start": 12772.8, + "end": 12779.2, + "probability": 0.7621 + }, + { + "start": 12779.3, + "end": 12780.69, + "probability": 0.9847 + }, + { + "start": 12781.12, + "end": 12782.09, + "probability": 0.7261 + }, + { + "start": 12782.68, + "end": 12785.72, + "probability": 0.9492 + }, + { + "start": 12785.88, + "end": 12785.9, + "probability": 0.1185 + }, + { + "start": 12785.9, + "end": 12786.54, + "probability": 0.0994 + }, + { + "start": 12786.66, + "end": 12791.78, + "probability": 0.9897 + }, + { + "start": 12791.94, + "end": 12792.3, + "probability": 0.0089 + }, + { + "start": 12792.42, + "end": 12792.5, + "probability": 0.0342 + }, + { + "start": 12792.5, + "end": 12797.62, + "probability": 0.995 + }, + { + "start": 12797.62, + "end": 12800.82, + "probability": 0.9944 + }, + { + "start": 12800.82, + "end": 12801.06, + "probability": 0.0578 + }, + { + "start": 12801.18, + "end": 12805.76, + "probability": 0.1044 + }, + { + "start": 12805.88, + "end": 12807.5, + "probability": 0.3349 + }, + { + "start": 12807.92, + "end": 12809.08, + "probability": 0.6305 + }, + { + "start": 12810.02, + "end": 12810.02, + "probability": 0.7406 + }, + { + "start": 12810.02, + "end": 12813.64, + "probability": 0.3934 + }, + { + "start": 12813.7, + "end": 12815.54, + "probability": 0.7709 + }, + { + "start": 12816.14, + "end": 12819.04, + "probability": 0.9761 + }, + { + "start": 12824.16, + "end": 12825.66, + "probability": 0.6139 + }, + { + "start": 12830.82, + "end": 12832.78, + "probability": 0.0307 + }, + { + "start": 12833.36, + "end": 12834.12, + "probability": 0.1958 + }, + { + "start": 12839.98, + "end": 12840.46, + "probability": 0.0942 + }, + { + "start": 12840.5, + "end": 12841.02, + "probability": 0.0535 + }, + { + "start": 12841.44, + "end": 12842.52, + "probability": 0.2034 + }, + { + "start": 12842.52, + "end": 12845.86, + "probability": 0.1016 + }, + { + "start": 12846.54, + "end": 12848.3, + "probability": 0.1081 + }, + { + "start": 12850.3, + "end": 12853.58, + "probability": 0.1749 + }, + { + "start": 12853.58, + "end": 12855.58, + "probability": 0.2855 + }, + { + "start": 12855.74, + "end": 12858.46, + "probability": 0.2172 + }, + { + "start": 12858.46, + "end": 12859.5, + "probability": 0.5574 + }, + { + "start": 12861.3, + "end": 12861.38, + "probability": 0.0141 + }, + { + "start": 12863.62, + "end": 12868.96, + "probability": 0.0814 + }, + { + "start": 12868.96, + "end": 12869.92, + "probability": 0.1079 + }, + { + "start": 12870.23, + "end": 12870.42, + "probability": 0.0359 + }, + { + "start": 12870.42, + "end": 12870.5, + "probability": 0.2219 + }, + { + "start": 12870.52, + "end": 12870.52, + "probability": 0.047 + }, + { + "start": 12870.52, + "end": 12871.22, + "probability": 0.0336 + }, + { + "start": 12871.22, + "end": 12872.46, + "probability": 0.2194 + }, + { + "start": 12872.46, + "end": 12872.98, + "probability": 0.0048 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.0, + "end": 12873.0, + "probability": 0.0 + }, + { + "start": 12873.1, + "end": 12873.52, + "probability": 0.0444 + }, + { + "start": 12873.52, + "end": 12876.04, + "probability": 0.0828 + }, + { + "start": 12876.6, + "end": 12879.3, + "probability": 0.9761 + }, + { + "start": 12880.06, + "end": 12883.78, + "probability": 0.9182 + }, + { + "start": 12884.68, + "end": 12884.68, + "probability": 0.0794 + }, + { + "start": 12884.68, + "end": 12885.92, + "probability": 0.7539 + }, + { + "start": 12898.26, + "end": 12898.96, + "probability": 0.0529 + }, + { + "start": 12906.72, + "end": 12910.22, + "probability": 0.116 + }, + { + "start": 12910.22, + "end": 12911.56, + "probability": 0.1035 + }, + { + "start": 12912.24, + "end": 12915.18, + "probability": 0.0295 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.0, + "end": 12999.0, + "probability": 0.0 + }, + { + "start": 12999.1, + "end": 12999.6, + "probability": 0.0796 + }, + { + "start": 12999.6, + "end": 13001.59, + "probability": 0.7245 + }, + { + "start": 13002.36, + "end": 13005.06, + "probability": 0.9131 + }, + { + "start": 13005.22, + "end": 13005.84, + "probability": 0.1246 + }, + { + "start": 13005.94, + "end": 13008.34, + "probability": 0.554 + }, + { + "start": 13008.54, + "end": 13011.38, + "probability": 0.5531 + }, + { + "start": 13011.6, + "end": 13015.46, + "probability": 0.8247 + }, + { + "start": 13015.6, + "end": 13017.26, + "probability": 0.5324 + }, + { + "start": 13017.6, + "end": 13018.74, + "probability": 0.0341 + }, + { + "start": 13018.96, + "end": 13021.04, + "probability": 0.8972 + }, + { + "start": 13021.26, + "end": 13022.44, + "probability": 0.862 + }, + { + "start": 13022.74, + "end": 13023.62, + "probability": 0.9377 + }, + { + "start": 13023.98, + "end": 13025.54, + "probability": 0.9917 + }, + { + "start": 13026.66, + "end": 13027.58, + "probability": 0.9463 + }, + { + "start": 13028.1, + "end": 13029.98, + "probability": 0.9167 + }, + { + "start": 13030.24, + "end": 13030.4, + "probability": 0.055 + }, + { + "start": 13030.4, + "end": 13030.4, + "probability": 0.095 + }, + { + "start": 13030.4, + "end": 13031.96, + "probability": 0.8271 + }, + { + "start": 13032.0, + "end": 13033.6, + "probability": 0.7419 + }, + { + "start": 13033.92, + "end": 13035.1, + "probability": 0.9976 + }, + { + "start": 13035.12, + "end": 13036.2, + "probability": 0.9142 + }, + { + "start": 13036.48, + "end": 13038.52, + "probability": 0.9588 + }, + { + "start": 13038.86, + "end": 13041.72, + "probability": 0.9089 + }, + { + "start": 13041.84, + "end": 13042.56, + "probability": 0.4037 + }, + { + "start": 13043.42, + "end": 13044.76, + "probability": 0.9429 + }, + { + "start": 13045.74, + "end": 13045.98, + "probability": 0.1402 + }, + { + "start": 13045.98, + "end": 13049.78, + "probability": 0.9406 + }, + { + "start": 13050.02, + "end": 13051.74, + "probability": 0.843 + }, + { + "start": 13052.44, + "end": 13054.04, + "probability": 0.9255 + }, + { + "start": 13054.16, + "end": 13054.88, + "probability": 0.4156 + }, + { + "start": 13057.12, + "end": 13059.24, + "probability": 0.9761 + }, + { + "start": 13059.32, + "end": 13060.14, + "probability": 0.051 + }, + { + "start": 13060.14, + "end": 13060.64, + "probability": 0.1647 + }, + { + "start": 13060.64, + "end": 13060.66, + "probability": 0.0349 + }, + { + "start": 13060.66, + "end": 13062.24, + "probability": 0.36 + }, + { + "start": 13062.42, + "end": 13063.28, + "probability": 0.9666 + }, + { + "start": 13063.92, + "end": 13067.36, + "probability": 0.0856 + }, + { + "start": 13068.18, + "end": 13072.14, + "probability": 0.3994 + }, + { + "start": 13072.2, + "end": 13075.28, + "probability": 0.1171 + }, + { + "start": 13076.2, + "end": 13078.54, + "probability": 0.1451 + }, + { + "start": 13078.74, + "end": 13081.84, + "probability": 0.7104 + }, + { + "start": 13082.1, + "end": 13083.2, + "probability": 0.7705 + }, + { + "start": 13083.22, + "end": 13090.14, + "probability": 0.9828 + }, + { + "start": 13090.5, + "end": 13093.66, + "probability": 0.9961 + }, + { + "start": 13094.18, + "end": 13098.26, + "probability": 0.1451 + }, + { + "start": 13098.26, + "end": 13101.4, + "probability": 0.0428 + }, + { + "start": 13101.4, + "end": 13102.93, + "probability": 0.0986 + }, + { + "start": 13105.58, + "end": 13109.58, + "probability": 0.0127 + }, + { + "start": 13110.59, + "end": 13113.32, + "probability": 0.1734 + }, + { + "start": 13114.82, + "end": 13118.88, + "probability": 0.0329 + }, + { + "start": 13120.84, + "end": 13122.7, + "probability": 0.0154 + }, + { + "start": 13122.7, + "end": 13124.78, + "probability": 0.0038 + }, + { + "start": 13125.2, + "end": 13131.06, + "probability": 0.1439 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.0, + "end": 13151.0, + "probability": 0.0 + }, + { + "start": 13151.5, + "end": 13152.22, + "probability": 0.3354 + }, + { + "start": 13152.28, + "end": 13153.08, + "probability": 0.727 + }, + { + "start": 13153.22, + "end": 13155.64, + "probability": 0.7953 + }, + { + "start": 13156.2, + "end": 13160.16, + "probability": 0.8135 + }, + { + "start": 13160.28, + "end": 13161.38, + "probability": 0.4769 + }, + { + "start": 13161.44, + "end": 13162.48, + "probability": 0.8608 + }, + { + "start": 13163.08, + "end": 13164.4, + "probability": 0.955 + }, + { + "start": 13164.86, + "end": 13165.52, + "probability": 0.3192 + }, + { + "start": 13165.6, + "end": 13167.0, + "probability": 0.9307 + }, + { + "start": 13167.36, + "end": 13169.5, + "probability": 0.9976 + }, + { + "start": 13170.46, + "end": 13177.9, + "probability": 0.9978 + }, + { + "start": 13178.36, + "end": 13179.12, + "probability": 0.8047 + }, + { + "start": 13180.62, + "end": 13183.74, + "probability": 0.9893 + }, + { + "start": 13184.68, + "end": 13187.4, + "probability": 0.9824 + }, + { + "start": 13189.74, + "end": 13190.06, + "probability": 0.6378 + }, + { + "start": 13191.02, + "end": 13193.38, + "probability": 0.8305 + }, + { + "start": 13193.48, + "end": 13196.36, + "probability": 0.6272 + }, + { + "start": 13196.62, + "end": 13198.78, + "probability": 0.6243 + }, + { + "start": 13198.78, + "end": 13200.46, + "probability": 0.9746 + }, + { + "start": 13201.58, + "end": 13203.77, + "probability": 0.7665 + }, + { + "start": 13204.44, + "end": 13206.2, + "probability": 0.8417 + }, + { + "start": 13210.42, + "end": 13211.58, + "probability": 0.21 + }, + { + "start": 13212.2, + "end": 13213.92, + "probability": 0.9371 + }, + { + "start": 13214.0, + "end": 13215.28, + "probability": 0.9495 + }, + { + "start": 13216.14, + "end": 13218.48, + "probability": 0.966 + }, + { + "start": 13218.56, + "end": 13221.92, + "probability": 0.9575 + }, + { + "start": 13223.98, + "end": 13226.12, + "probability": 0.0346 + }, + { + "start": 13226.12, + "end": 13227.98, + "probability": 0.3474 + }, + { + "start": 13229.12, + "end": 13233.52, + "probability": 0.0632 + }, + { + "start": 13234.22, + "end": 13234.54, + "probability": 0.4459 + }, + { + "start": 13234.64, + "end": 13235.74, + "probability": 0.5473 + }, + { + "start": 13236.04, + "end": 13237.1, + "probability": 0.895 + }, + { + "start": 13237.14, + "end": 13245.62, + "probability": 0.9591 + }, + { + "start": 13246.44, + "end": 13246.46, + "probability": 0.1452 + }, + { + "start": 13246.46, + "end": 13247.8, + "probability": 0.759 + }, + { + "start": 13248.56, + "end": 13249.6, + "probability": 0.4238 + }, + { + "start": 13249.68, + "end": 13250.44, + "probability": 0.884 + }, + { + "start": 13251.24, + "end": 13255.4, + "probability": 0.7666 + }, + { + "start": 13256.5, + "end": 13260.32, + "probability": 0.9916 + }, + { + "start": 13260.89, + "end": 13265.54, + "probability": 0.9648 + }, + { + "start": 13265.68, + "end": 13266.73, + "probability": 0.7508 + }, + { + "start": 13268.66, + "end": 13276.18, + "probability": 0.9224 + }, + { + "start": 13277.56, + "end": 13280.16, + "probability": 0.9667 + }, + { + "start": 13280.38, + "end": 13280.7, + "probability": 0.8577 + }, + { + "start": 13281.7, + "end": 13283.4, + "probability": 0.6755 + }, + { + "start": 13283.64, + "end": 13283.64, + "probability": 0.8764 + }, + { + "start": 13283.64, + "end": 13286.02, + "probability": 0.7511 + }, + { + "start": 13286.08, + "end": 13287.52, + "probability": 0.9494 + }, + { + "start": 13291.39, + "end": 13293.82, + "probability": 0.6958 + }, + { + "start": 13293.82, + "end": 13294.12, + "probability": 0.4761 + }, + { + "start": 13294.12, + "end": 13294.12, + "probability": 0.6655 + }, + { + "start": 13294.22, + "end": 13294.9, + "probability": 0.9451 + }, + { + "start": 13295.12, + "end": 13297.47, + "probability": 0.8493 + }, + { + "start": 13297.58, + "end": 13300.16, + "probability": 0.9511 + }, + { + "start": 13300.4, + "end": 13300.82, + "probability": 0.9441 + }, + { + "start": 13300.94, + "end": 13302.2, + "probability": 0.9183 + }, + { + "start": 13302.66, + "end": 13306.76, + "probability": 0.9924 + }, + { + "start": 13307.44, + "end": 13309.26, + "probability": 0.5101 + }, + { + "start": 13311.26, + "end": 13312.46, + "probability": 0.6447 + }, + { + "start": 13312.62, + "end": 13315.86, + "probability": 0.9753 + }, + { + "start": 13316.04, + "end": 13318.14, + "probability": 0.7829 + }, + { + "start": 13318.3, + "end": 13319.62, + "probability": 0.9084 + }, + { + "start": 13320.3, + "end": 13321.36, + "probability": 0.9297 + }, + { + "start": 13322.12, + "end": 13327.12, + "probability": 0.6505 + }, + { + "start": 13327.82, + "end": 13330.08, + "probability": 0.8782 + }, + { + "start": 13330.78, + "end": 13332.82, + "probability": 0.7698 + }, + { + "start": 13333.7, + "end": 13339.22, + "probability": 0.8007 + }, + { + "start": 13339.4, + "end": 13340.1, + "probability": 0.6 + }, + { + "start": 13340.64, + "end": 13341.08, + "probability": 0.6927 + }, + { + "start": 13341.14, + "end": 13343.06, + "probability": 0.8173 + }, + { + "start": 13343.3, + "end": 13345.92, + "probability": 0.8602 + }, + { + "start": 13345.96, + "end": 13346.92, + "probability": 0.9256 + }, + { + "start": 13346.98, + "end": 13348.94, + "probability": 0.6631 + }, + { + "start": 13348.94, + "end": 13350.2, + "probability": 0.7719 + }, + { + "start": 13350.34, + "end": 13354.06, + "probability": 0.8589 + }, + { + "start": 13354.81, + "end": 13358.72, + "probability": 0.9366 + }, + { + "start": 13359.54, + "end": 13363.54, + "probability": 0.9955 + }, + { + "start": 13363.68, + "end": 13364.68, + "probability": 0.9507 + }, + { + "start": 13365.4, + "end": 13366.52, + "probability": 0.9337 + }, + { + "start": 13366.76, + "end": 13368.34, + "probability": 0.6592 + }, + { + "start": 13368.76, + "end": 13370.8, + "probability": 0.7978 + }, + { + "start": 13371.08, + "end": 13371.95, + "probability": 0.4762 + }, + { + "start": 13372.2, + "end": 13372.3, + "probability": 0.0576 + }, + { + "start": 13372.3, + "end": 13374.3, + "probability": 0.9241 + }, + { + "start": 13374.72, + "end": 13375.72, + "probability": 0.9233 + }, + { + "start": 13377.04, + "end": 13382.04, + "probability": 0.9832 + }, + { + "start": 13384.9, + "end": 13388.1, + "probability": 0.9142 + }, + { + "start": 13389.08, + "end": 13390.38, + "probability": 0.225 + }, + { + "start": 13390.38, + "end": 13393.34, + "probability": 0.6507 + }, + { + "start": 13394.28, + "end": 13398.28, + "probability": 0.2852 + }, + { + "start": 13398.32, + "end": 13399.24, + "probability": 0.069 + }, + { + "start": 13399.26, + "end": 13399.26, + "probability": 0.0836 + }, + { + "start": 13399.28, + "end": 13403.08, + "probability": 0.7822 + }, + { + "start": 13404.6, + "end": 13404.78, + "probability": 0.2954 + }, + { + "start": 13404.78, + "end": 13404.78, + "probability": 0.0731 + }, + { + "start": 13404.78, + "end": 13404.78, + "probability": 0.5728 + }, + { + "start": 13404.78, + "end": 13404.78, + "probability": 0.4086 + }, + { + "start": 13404.78, + "end": 13408.54, + "probability": 0.4269 + }, + { + "start": 13409.82, + "end": 13414.96, + "probability": 0.8945 + }, + { + "start": 13415.16, + "end": 13415.98, + "probability": 0.747 + }, + { + "start": 13416.8, + "end": 13418.34, + "probability": 0.9828 + }, + { + "start": 13418.46, + "end": 13420.04, + "probability": 0.97 + }, + { + "start": 13420.16, + "end": 13421.44, + "probability": 0.8232 + }, + { + "start": 13421.68, + "end": 13422.76, + "probability": 0.9207 + }, + { + "start": 13422.76, + "end": 13422.84, + "probability": 0.0256 + }, + { + "start": 13422.84, + "end": 13423.78, + "probability": 0.1307 + }, + { + "start": 13424.12, + "end": 13425.71, + "probability": 0.7567 + }, + { + "start": 13427.04, + "end": 13432.56, + "probability": 0.6659 + }, + { + "start": 13433.42, + "end": 13434.6, + "probability": 0.7344 + }, + { + "start": 13435.84, + "end": 13440.0, + "probability": 0.7935 + }, + { + "start": 13440.1, + "end": 13441.07, + "probability": 0.8363 + }, + { + "start": 13441.58, + "end": 13444.1, + "probability": 0.9937 + }, + { + "start": 13445.36, + "end": 13451.68, + "probability": 0.8792 + }, + { + "start": 13451.86, + "end": 13451.96, + "probability": 0.255 + }, + { + "start": 13451.96, + "end": 13452.74, + "probability": 0.1485 + }, + { + "start": 13453.1, + "end": 13454.12, + "probability": 0.5837 + }, + { + "start": 13454.9, + "end": 13454.9, + "probability": 0.3658 + }, + { + "start": 13454.9, + "end": 13457.32, + "probability": 0.5627 + }, + { + "start": 13459.92, + "end": 13459.92, + "probability": 0.0465 + }, + { + "start": 13459.92, + "end": 13461.44, + "probability": 0.5788 + }, + { + "start": 13462.08, + "end": 13462.98, + "probability": 0.6099 + }, + { + "start": 13463.14, + "end": 13464.18, + "probability": 0.8105 + }, + { + "start": 13464.32, + "end": 13467.36, + "probability": 0.9275 + }, + { + "start": 13467.46, + "end": 13470.08, + "probability": 0.9562 + }, + { + "start": 13470.58, + "end": 13470.78, + "probability": 0.6096 + }, + { + "start": 13470.86, + "end": 13471.22, + "probability": 0.7922 + }, + { + "start": 13471.28, + "end": 13474.12, + "probability": 0.9054 + }, + { + "start": 13474.22, + "end": 13475.0, + "probability": 0.8499 + }, + { + "start": 13475.96, + "end": 13477.1, + "probability": 0.7874 + }, + { + "start": 13477.3, + "end": 13478.12, + "probability": 0.684 + }, + { + "start": 13478.12, + "end": 13479.02, + "probability": 0.8345 + }, + { + "start": 13479.24, + "end": 13480.73, + "probability": 0.9542 + }, + { + "start": 13481.36, + "end": 13484.5, + "probability": 0.9804 + }, + { + "start": 13485.5, + "end": 13489.5, + "probability": 0.934 + }, + { + "start": 13489.6, + "end": 13489.82, + "probability": 0.7678 + }, + { + "start": 13489.9, + "end": 13490.77, + "probability": 0.9487 + }, + { + "start": 13491.38, + "end": 13494.04, + "probability": 0.8892 + }, + { + "start": 13494.62, + "end": 13496.44, + "probability": 0.991 + }, + { + "start": 13496.56, + "end": 13497.2, + "probability": 0.5849 + }, + { + "start": 13497.4, + "end": 13501.62, + "probability": 0.9936 + }, + { + "start": 13503.82, + "end": 13506.04, + "probability": 0.5839 + }, + { + "start": 13506.56, + "end": 13508.16, + "probability": 0.9712 + }, + { + "start": 13510.16, + "end": 13511.5, + "probability": 0.9645 + }, + { + "start": 13512.0, + "end": 13512.94, + "probability": 0.3321 + }, + { + "start": 13513.52, + "end": 13513.74, + "probability": 0.5326 + }, + { + "start": 13513.94, + "end": 13515.52, + "probability": 0.8496 + }, + { + "start": 13515.68, + "end": 13516.54, + "probability": 0.0488 + }, + { + "start": 13517.56, + "end": 13520.15, + "probability": 0.0625 + }, + { + "start": 13521.76, + "end": 13523.42, + "probability": 0.7788 + }, + { + "start": 13523.56, + "end": 13525.38, + "probability": 0.1358 + }, + { + "start": 13525.38, + "end": 13532.48, + "probability": 0.974 + }, + { + "start": 13533.22, + "end": 13533.68, + "probability": 0.6486 + }, + { + "start": 13534.28, + "end": 13535.03, + "probability": 0.6256 + }, + { + "start": 13535.94, + "end": 13540.38, + "probability": 0.6656 + }, + { + "start": 13540.44, + "end": 13541.46, + "probability": 0.9004 + }, + { + "start": 13541.72, + "end": 13542.87, + "probability": 0.9988 + }, + { + "start": 13543.22, + "end": 13544.68, + "probability": 0.9703 + }, + { + "start": 13544.84, + "end": 13545.98, + "probability": 0.9215 + }, + { + "start": 13546.56, + "end": 13549.1, + "probability": 0.8015 + }, + { + "start": 13549.4, + "end": 13552.62, + "probability": 0.161 + }, + { + "start": 13552.94, + "end": 13553.32, + "probability": 0.4908 + }, + { + "start": 13553.88, + "end": 13555.48, + "probability": 0.1099 + }, + { + "start": 13555.48, + "end": 13557.22, + "probability": 0.0657 + }, + { + "start": 13557.22, + "end": 13557.92, + "probability": 0.2367 + }, + { + "start": 13558.02, + "end": 13559.34, + "probability": 0.1088 + }, + { + "start": 13560.34, + "end": 13560.88, + "probability": 0.1126 + }, + { + "start": 13560.88, + "end": 13560.88, + "probability": 0.0139 + }, + { + "start": 13560.88, + "end": 13561.2, + "probability": 0.0625 + }, + { + "start": 13561.5, + "end": 13562.84, + "probability": 0.9624 + }, + { + "start": 13563.94, + "end": 13566.22, + "probability": 0.376 + }, + { + "start": 13566.77, + "end": 13567.68, + "probability": 0.2763 + }, + { + "start": 13568.22, + "end": 13569.12, + "probability": 0.2077 + }, + { + "start": 13569.22, + "end": 13575.14, + "probability": 0.6402 + }, + { + "start": 13575.6, + "end": 13579.68, + "probability": 0.5545 + }, + { + "start": 13579.86, + "end": 13581.74, + "probability": 0.7379 + }, + { + "start": 13581.74, + "end": 13583.08, + "probability": 0.7078 + }, + { + "start": 13583.32, + "end": 13584.94, + "probability": 0.4053 + }, + { + "start": 13584.94, + "end": 13585.93, + "probability": 0.9165 + }, + { + "start": 13587.03, + "end": 13588.35, + "probability": 0.8879 + }, + { + "start": 13588.99, + "end": 13590.41, + "probability": 0.9237 + }, + { + "start": 13590.83, + "end": 13591.53, + "probability": 0.8906 + }, + { + "start": 13591.65, + "end": 13593.61, + "probability": 0.8367 + }, + { + "start": 13593.61, + "end": 13594.67, + "probability": 0.8023 + }, + { + "start": 13594.79, + "end": 13595.73, + "probability": 0.4429 + }, + { + "start": 13596.13, + "end": 13596.33, + "probability": 0.3879 + }, + { + "start": 13596.33, + "end": 13596.33, + "probability": 0.2583 + }, + { + "start": 13596.33, + "end": 13597.73, + "probability": 0.8621 + }, + { + "start": 13598.17, + "end": 13599.19, + "probability": 0.9816 + }, + { + "start": 13599.33, + "end": 13599.88, + "probability": 0.9731 + }, + { + "start": 13600.11, + "end": 13602.97, + "probability": 0.9708 + }, + { + "start": 13603.29, + "end": 13603.97, + "probability": 0.2858 + }, + { + "start": 13605.21, + "end": 13606.23, + "probability": 0.8797 + }, + { + "start": 13607.23, + "end": 13610.47, + "probability": 0.6958 + }, + { + "start": 13611.39, + "end": 13613.49, + "probability": 0.833 + }, + { + "start": 13614.17, + "end": 13617.91, + "probability": 0.9555 + }, + { + "start": 13618.23, + "end": 13620.43, + "probability": 0.9873 + }, + { + "start": 13621.17, + "end": 13622.95, + "probability": 0.7265 + }, + { + "start": 13624.89, + "end": 13626.09, + "probability": 0.8098 + }, + { + "start": 13626.57, + "end": 13631.29, + "probability": 0.9878 + }, + { + "start": 13631.29, + "end": 13634.07, + "probability": 0.7611 + }, + { + "start": 13634.15, + "end": 13635.31, + "probability": 0.3894 + }, + { + "start": 13635.73, + "end": 13636.39, + "probability": 0.5649 + }, + { + "start": 13636.95, + "end": 13638.65, + "probability": 0.9172 + }, + { + "start": 13639.49, + "end": 13646.37, + "probability": 0.9768 + }, + { + "start": 13646.75, + "end": 13649.35, + "probability": 0.9892 + }, + { + "start": 13652.01, + "end": 13652.09, + "probability": 0.0114 + }, + { + "start": 13654.41, + "end": 13658.67, + "probability": 0.0601 + }, + { + "start": 13659.39, + "end": 13664.85, + "probability": 0.8989 + }, + { + "start": 13664.85, + "end": 13664.85, + "probability": 0.0503 + }, + { + "start": 13664.85, + "end": 13665.09, + "probability": 0.1507 + }, + { + "start": 13666.14, + "end": 13667.41, + "probability": 0.3693 + }, + { + "start": 13667.41, + "end": 13673.91, + "probability": 0.8538 + }, + { + "start": 13675.17, + "end": 13675.75, + "probability": 0.2066 + }, + { + "start": 13675.75, + "end": 13676.41, + "probability": 0.0243 + }, + { + "start": 13676.53, + "end": 13676.61, + "probability": 0.1811 + }, + { + "start": 13676.61, + "end": 13677.34, + "probability": 0.8188 + }, + { + "start": 13679.49, + "end": 13681.99, + "probability": 0.7478 + }, + { + "start": 13682.25, + "end": 13683.94, + "probability": 0.981 + }, + { + "start": 13684.11, + "end": 13684.73, + "probability": 0.7612 + }, + { + "start": 13685.13, + "end": 13685.19, + "probability": 0.3659 + }, + { + "start": 13685.19, + "end": 13685.39, + "probability": 0.165 + }, + { + "start": 13685.39, + "end": 13685.75, + "probability": 0.7054 + }, + { + "start": 13685.85, + "end": 13687.79, + "probability": 0.8251 + }, + { + "start": 13688.01, + "end": 13693.91, + "probability": 0.9114 + }, + { + "start": 13694.05, + "end": 13695.95, + "probability": 0.9575 + }, + { + "start": 13696.19, + "end": 13696.95, + "probability": 0.5824 + }, + { + "start": 13696.97, + "end": 13697.51, + "probability": 0.0284 + }, + { + "start": 13697.63, + "end": 13699.09, + "probability": 0.7823 + }, + { + "start": 13699.25, + "end": 13700.97, + "probability": 0.8887 + }, + { + "start": 13701.03, + "end": 13705.57, + "probability": 0.8131 + }, + { + "start": 13705.99, + "end": 13707.63, + "probability": 0.8357 + }, + { + "start": 13707.67, + "end": 13708.5, + "probability": 0.7556 + }, + { + "start": 13709.17, + "end": 13709.79, + "probability": 0.0724 + }, + { + "start": 13710.03, + "end": 13710.03, + "probability": 0.0109 + }, + { + "start": 13710.03, + "end": 13710.63, + "probability": 0.6472 + }, + { + "start": 13710.67, + "end": 13712.87, + "probability": 0.073 + }, + { + "start": 13713.17, + "end": 13714.51, + "probability": 0.0749 + }, + { + "start": 13714.73, + "end": 13714.73, + "probability": 0.057 + }, + { + "start": 13714.73, + "end": 13715.69, + "probability": 0.4376 + }, + { + "start": 13715.71, + "end": 13718.07, + "probability": 0.9624 + }, + { + "start": 13718.43, + "end": 13719.47, + "probability": 0.7021 + }, + { + "start": 13719.69, + "end": 13720.64, + "probability": 0.8281 + }, + { + "start": 13721.39, + "end": 13722.59, + "probability": 0.9431 + }, + { + "start": 13723.01, + "end": 13723.25, + "probability": 0.767 + }, + { + "start": 13723.37, + "end": 13725.73, + "probability": 0.1726 + }, + { + "start": 13725.73, + "end": 13728.01, + "probability": 0.4909 + }, + { + "start": 13728.75, + "end": 13730.35, + "probability": 0.8697 + }, + { + "start": 13730.71, + "end": 13732.01, + "probability": 0.9576 + }, + { + "start": 13732.57, + "end": 13733.53, + "probability": 0.6816 + }, + { + "start": 13733.75, + "end": 13737.65, + "probability": 0.6792 + }, + { + "start": 13738.39, + "end": 13739.19, + "probability": 0.4777 + }, + { + "start": 13739.47, + "end": 13741.16, + "probability": 0.8924 + }, + { + "start": 13741.51, + "end": 13743.11, + "probability": 0.8305 + }, + { + "start": 13743.21, + "end": 13746.95, + "probability": 0.6856 + }, + { + "start": 13747.49, + "end": 13748.45, + "probability": 0.8084 + }, + { + "start": 13748.57, + "end": 13753.37, + "probability": 0.4765 + }, + { + "start": 13753.79, + "end": 13758.33, + "probability": 0.6884 + }, + { + "start": 13758.41, + "end": 13759.29, + "probability": 0.5086 + }, + { + "start": 13759.57, + "end": 13764.85, + "probability": 0.2069 + }, + { + "start": 13764.99, + "end": 13766.65, + "probability": 0.7233 + }, + { + "start": 13766.75, + "end": 13768.37, + "probability": 0.9592 + }, + { + "start": 13768.43, + "end": 13769.2, + "probability": 0.9339 + }, + { + "start": 13769.51, + "end": 13771.71, + "probability": 0.9613 + }, + { + "start": 13771.73, + "end": 13773.6, + "probability": 0.6704 + }, + { + "start": 13775.09, + "end": 13776.91, + "probability": 0.8209 + }, + { + "start": 13776.97, + "end": 13777.47, + "probability": 0.8621 + }, + { + "start": 13777.67, + "end": 13778.61, + "probability": 0.7397 + }, + { + "start": 13778.69, + "end": 13778.91, + "probability": 0.7594 + }, + { + "start": 13778.97, + "end": 13780.03, + "probability": 0.7292 + }, + { + "start": 13780.17, + "end": 13781.06, + "probability": 0.7228 + }, + { + "start": 13781.35, + "end": 13782.63, + "probability": 0.805 + }, + { + "start": 13782.75, + "end": 13784.57, + "probability": 0.7445 + }, + { + "start": 13784.61, + "end": 13785.33, + "probability": 0.2047 + }, + { + "start": 13785.71, + "end": 13787.77, + "probability": 0.8332 + }, + { + "start": 13788.23, + "end": 13789.57, + "probability": 0.6937 + }, + { + "start": 13789.73, + "end": 13791.13, + "probability": 0.8149 + }, + { + "start": 13791.25, + "end": 13791.87, + "probability": 0.3902 + }, + { + "start": 13792.33, + "end": 13795.63, + "probability": 0.633 + }, + { + "start": 13796.53, + "end": 13799.89, + "probability": 0.4492 + }, + { + "start": 13800.43, + "end": 13801.61, + "probability": 0.2204 + }, + { + "start": 13801.95, + "end": 13803.59, + "probability": 0.9085 + }, + { + "start": 13803.65, + "end": 13807.49, + "probability": 0.0677 + }, + { + "start": 13807.99, + "end": 13809.09, + "probability": 0.2974 + }, + { + "start": 13809.29, + "end": 13812.27, + "probability": 0.4946 + }, + { + "start": 13812.81, + "end": 13813.29, + "probability": 0.0441 + }, + { + "start": 13813.29, + "end": 13813.29, + "probability": 0.0493 + }, + { + "start": 13813.29, + "end": 13814.73, + "probability": 0.3908 + }, + { + "start": 13815.17, + "end": 13816.52, + "probability": 0.7018 + }, + { + "start": 13816.73, + "end": 13819.75, + "probability": 0.5886 + }, + { + "start": 13823.59, + "end": 13825.55, + "probability": 0.2051 + }, + { + "start": 13826.43, + "end": 13826.81, + "probability": 0.0836 + }, + { + "start": 13826.85, + "end": 13827.07, + "probability": 0.1541 + }, + { + "start": 13827.07, + "end": 13827.07, + "probability": 0.1501 + }, + { + "start": 13827.07, + "end": 13827.07, + "probability": 0.1499 + }, + { + "start": 13827.07, + "end": 13827.93, + "probability": 0.4889 + }, + { + "start": 13828.07, + "end": 13832.83, + "probability": 0.8657 + }, + { + "start": 13833.31, + "end": 13834.05, + "probability": 0.1399 + }, + { + "start": 13834.05, + "end": 13834.95, + "probability": 0.5693 + }, + { + "start": 13835.6, + "end": 13837.07, + "probability": 0.813 + }, + { + "start": 13837.09, + "end": 13839.27, + "probability": 0.8346 + }, + { + "start": 13839.63, + "end": 13840.25, + "probability": 0.3318 + }, + { + "start": 13840.25, + "end": 13840.95, + "probability": 0.8169 + }, + { + "start": 13840.95, + "end": 13844.59, + "probability": 0.9468 + }, + { + "start": 13845.15, + "end": 13845.79, + "probability": 0.834 + }, + { + "start": 13845.81, + "end": 13849.09, + "probability": 0.4954 + }, + { + "start": 13849.09, + "end": 13849.51, + "probability": 0.3766 + }, + { + "start": 13850.43, + "end": 13851.21, + "probability": 0.5411 + }, + { + "start": 13851.71, + "end": 13853.19, + "probability": 0.8386 + }, + { + "start": 13853.71, + "end": 13858.11, + "probability": 0.9333 + }, + { + "start": 13858.53, + "end": 13859.95, + "probability": 0.6478 + }, + { + "start": 13860.05, + "end": 13862.47, + "probability": 0.9884 + }, + { + "start": 13862.63, + "end": 13865.27, + "probability": 0.8813 + }, + { + "start": 13866.25, + "end": 13867.51, + "probability": 0.6271 + }, + { + "start": 13867.67, + "end": 13868.57, + "probability": 0.0572 + }, + { + "start": 13868.63, + "end": 13874.81, + "probability": 0.9142 + }, + { + "start": 13875.11, + "end": 13876.73, + "probability": 0.4025 + }, + { + "start": 13876.75, + "end": 13883.13, + "probability": 0.9414 + }, + { + "start": 13883.25, + "end": 13884.61, + "probability": 0.6276 + }, + { + "start": 13884.65, + "end": 13886.4, + "probability": 0.5308 + }, + { + "start": 13886.55, + "end": 13890.73, + "probability": 0.6806 + }, + { + "start": 13890.81, + "end": 13893.07, + "probability": 0.4196 + }, + { + "start": 13893.47, + "end": 13894.81, + "probability": 0.7375 + }, + { + "start": 13895.07, + "end": 13895.96, + "probability": 0.8702 + }, + { + "start": 13896.31, + "end": 13897.28, + "probability": 0.9915 + }, + { + "start": 13897.53, + "end": 13898.51, + "probability": 0.9215 + }, + { + "start": 13899.03, + "end": 13900.29, + "probability": 0.8619 + }, + { + "start": 13900.41, + "end": 13901.61, + "probability": 0.5568 + }, + { + "start": 13901.73, + "end": 13902.49, + "probability": 0.7132 + }, + { + "start": 13902.93, + "end": 13903.73, + "probability": 0.991 + }, + { + "start": 13904.45, + "end": 13906.0, + "probability": 0.1115 + }, + { + "start": 13907.05, + "end": 13907.93, + "probability": 0.3174 + }, + { + "start": 13907.93, + "end": 13907.93, + "probability": 0.0176 + }, + { + "start": 13907.93, + "end": 13909.68, + "probability": 0.738 + }, + { + "start": 13912.46, + "end": 13914.73, + "probability": 0.9253 + }, + { + "start": 13914.97, + "end": 13918.01, + "probability": 0.911 + }, + { + "start": 13918.13, + "end": 13918.93, + "probability": 0.8422 + }, + { + "start": 13919.83, + "end": 13926.13, + "probability": 0.8459 + }, + { + "start": 13926.51, + "end": 13930.11, + "probability": 0.3131 + }, + { + "start": 13930.61, + "end": 13931.25, + "probability": 0.9653 + }, + { + "start": 13931.31, + "end": 13933.33, + "probability": 0.6192 + }, + { + "start": 13933.33, + "end": 13935.07, + "probability": 0.9535 + }, + { + "start": 13935.09, + "end": 13935.39, + "probability": 0.5429 + }, + { + "start": 13935.45, + "end": 13937.01, + "probability": 0.3977 + }, + { + "start": 13938.49, + "end": 13938.93, + "probability": 0.643 + }, + { + "start": 13939.13, + "end": 13939.57, + "probability": 0.1672 + }, + { + "start": 13939.57, + "end": 13939.93, + "probability": 0.5547 + }, + { + "start": 13939.99, + "end": 13942.52, + "probability": 0.9102 + }, + { + "start": 13943.65, + "end": 13946.61, + "probability": 0.4664 + }, + { + "start": 13948.07, + "end": 13951.68, + "probability": 0.8657 + }, + { + "start": 13952.56, + "end": 13954.08, + "probability": 0.6899 + }, + { + "start": 13954.26, + "end": 13957.1, + "probability": 0.272 + }, + { + "start": 13957.38, + "end": 13957.72, + "probability": 0.1315 + }, + { + "start": 13957.72, + "end": 13960.3, + "probability": 0.7419 + }, + { + "start": 13960.66, + "end": 13960.94, + "probability": 0.7532 + }, + { + "start": 13961.04, + "end": 13961.56, + "probability": 0.6511 + }, + { + "start": 13962.72, + "end": 13964.0, + "probability": 0.8061 + }, + { + "start": 13964.28, + "end": 13964.5, + "probability": 0.4814 + }, + { + "start": 13964.6, + "end": 13965.78, + "probability": 0.9912 + }, + { + "start": 13965.8, + "end": 13970.94, + "probability": 0.8307 + }, + { + "start": 13971.22, + "end": 13971.9, + "probability": 0.7109 + }, + { + "start": 13971.96, + "end": 13974.24, + "probability": 0.3102 + }, + { + "start": 13978.32, + "end": 13980.98, + "probability": 0.3326 + }, + { + "start": 13981.08, + "end": 13982.24, + "probability": 0.3325 + }, + { + "start": 13982.68, + "end": 13986.4, + "probability": 0.4128 + }, + { + "start": 13986.92, + "end": 13987.26, + "probability": 0.3653 + }, + { + "start": 13987.26, + "end": 13989.44, + "probability": 0.7387 + }, + { + "start": 13994.12, + "end": 14001.28, + "probability": 0.3024 + }, + { + "start": 14001.82, + "end": 14006.74, + "probability": 0.896 + }, + { + "start": 14006.74, + "end": 14008.62, + "probability": 0.5273 + }, + { + "start": 14009.12, + "end": 14010.36, + "probability": 0.7003 + }, + { + "start": 14010.82, + "end": 14014.08, + "probability": 0.3951 + }, + { + "start": 14014.16, + "end": 14015.98, + "probability": 0.65 + }, + { + "start": 14016.32, + "end": 14017.81, + "probability": 0.9927 + }, + { + "start": 14019.58, + "end": 14020.54, + "probability": 0.063 + }, + { + "start": 14020.84, + "end": 14021.16, + "probability": 0.221 + }, + { + "start": 14021.6, + "end": 14024.44, + "probability": 0.9814 + }, + { + "start": 14025.76, + "end": 14027.16, + "probability": 0.9048 + }, + { + "start": 14027.76, + "end": 14029.54, + "probability": 0.9959 + }, + { + "start": 14030.3, + "end": 14031.08, + "probability": 0.0784 + }, + { + "start": 14031.2, + "end": 14035.18, + "probability": 0.936 + }, + { + "start": 14039.48, + "end": 14044.3, + "probability": 0.288 + }, + { + "start": 14044.96, + "end": 14046.68, + "probability": 0.0284 + }, + { + "start": 14047.0, + "end": 14048.54, + "probability": 0.8335 + }, + { + "start": 14048.8, + "end": 14049.01, + "probability": 0.3366 + }, + { + "start": 14050.16, + "end": 14053.9, + "probability": 0.1895 + }, + { + "start": 14054.08, + "end": 14054.08, + "probability": 0.1056 + }, + { + "start": 14054.08, + "end": 14054.08, + "probability": 0.1445 + }, + { + "start": 14054.08, + "end": 14054.08, + "probability": 0.0656 + }, + { + "start": 14054.08, + "end": 14058.32, + "probability": 0.7056 + }, + { + "start": 14058.95, + "end": 14059.6, + "probability": 0.1978 + }, + { + "start": 14059.62, + "end": 14061.7, + "probability": 0.5651 + }, + { + "start": 14061.78, + "end": 14064.92, + "probability": 0.9659 + }, + { + "start": 14066.78, + "end": 14067.52, + "probability": 0.8348 + }, + { + "start": 14067.58, + "end": 14069.02, + "probability": 0.6602 + }, + { + "start": 14069.2, + "end": 14069.98, + "probability": 0.9436 + }, + { + "start": 14070.08, + "end": 14071.62, + "probability": 0.889 + }, + { + "start": 14072.06, + "end": 14075.26, + "probability": 0.9167 + }, + { + "start": 14075.64, + "end": 14077.22, + "probability": 0.1809 + }, + { + "start": 14077.5, + "end": 14080.84, + "probability": 0.9546 + }, + { + "start": 14081.82, + "end": 14084.28, + "probability": 0.7892 + }, + { + "start": 14084.4, + "end": 14084.4, + "probability": 0.382 + }, + { + "start": 14084.42, + "end": 14086.22, + "probability": 0.5291 + }, + { + "start": 14086.36, + "end": 14086.96, + "probability": 0.1331 + }, + { + "start": 14086.96, + "end": 14088.32, + "probability": 0.4712 + }, + { + "start": 14088.42, + "end": 14090.7, + "probability": 0.8159 + }, + { + "start": 14091.12, + "end": 14091.68, + "probability": 0.761 + }, + { + "start": 14091.82, + "end": 14094.26, + "probability": 0.4889 + }, + { + "start": 14094.8, + "end": 14094.8, + "probability": 0.2138 + }, + { + "start": 14094.8, + "end": 14097.04, + "probability": 0.8892 + }, + { + "start": 14097.36, + "end": 14099.94, + "probability": 0.9974 + }, + { + "start": 14101.04, + "end": 14105.29, + "probability": 0.9854 + }, + { + "start": 14106.6, + "end": 14107.64, + "probability": 0.8403 + }, + { + "start": 14107.68, + "end": 14108.62, + "probability": 0.3288 + }, + { + "start": 14108.62, + "end": 14108.8, + "probability": 0.261 + }, + { + "start": 14108.8, + "end": 14112.34, + "probability": 0.9697 + }, + { + "start": 14112.44, + "end": 14113.12, + "probability": 0.7834 + }, + { + "start": 14113.2, + "end": 14114.54, + "probability": 0.265 + }, + { + "start": 14114.54, + "end": 14115.56, + "probability": 0.8099 + }, + { + "start": 14115.68, + "end": 14116.6, + "probability": 0.9841 + }, + { + "start": 14116.76, + "end": 14117.22, + "probability": 0.7352 + }, + { + "start": 14119.0, + "end": 14120.44, + "probability": 0.042 + }, + { + "start": 14120.44, + "end": 14124.0, + "probability": 0.8989 + }, + { + "start": 14124.58, + "end": 14128.24, + "probability": 0.8318 + }, + { + "start": 14131.1, + "end": 14135.24, + "probability": 0.9478 + }, + { + "start": 14135.24, + "end": 14135.46, + "probability": 0.162 + }, + { + "start": 14135.48, + "end": 14136.04, + "probability": 0.1636 + }, + { + "start": 14136.05, + "end": 14141.38, + "probability": 0.6144 + }, + { + "start": 14141.56, + "end": 14143.5, + "probability": 0.7928 + }, + { + "start": 14144.14, + "end": 14148.42, + "probability": 0.8517 + }, + { + "start": 14148.58, + "end": 14150.06, + "probability": 0.6912 + }, + { + "start": 14150.16, + "end": 14150.46, + "probability": 0.3784 + }, + { + "start": 14150.46, + "end": 14152.29, + "probability": 0.6203 + }, + { + "start": 14153.28, + "end": 14153.54, + "probability": 0.2082 + }, + { + "start": 14153.56, + "end": 14158.22, + "probability": 0.7566 + }, + { + "start": 14158.4, + "end": 14159.7, + "probability": 0.9902 + }, + { + "start": 14160.02, + "end": 14162.14, + "probability": 0.3579 + }, + { + "start": 14162.14, + "end": 14164.26, + "probability": 0.7229 + }, + { + "start": 14164.48, + "end": 14164.88, + "probability": 0.5588 + }, + { + "start": 14164.94, + "end": 14166.38, + "probability": 0.8903 + }, + { + "start": 14166.68, + "end": 14166.78, + "probability": 0.1249 + }, + { + "start": 14166.78, + "end": 14166.78, + "probability": 0.0786 + }, + { + "start": 14166.78, + "end": 14169.38, + "probability": 0.5361 + }, + { + "start": 14169.48, + "end": 14172.82, + "probability": 0.9016 + }, + { + "start": 14173.44, + "end": 14176.56, + "probability": 0.1798 + }, + { + "start": 14176.92, + "end": 14176.92, + "probability": 0.0594 + }, + { + "start": 14176.92, + "end": 14180.14, + "probability": 0.4267 + }, + { + "start": 14180.4, + "end": 14181.08, + "probability": 0.4763 + }, + { + "start": 14181.28, + "end": 14183.69, + "probability": 0.9124 + }, + { + "start": 14184.5, + "end": 14185.38, + "probability": 0.4658 + }, + { + "start": 14185.38, + "end": 14187.06, + "probability": 0.6854 + }, + { + "start": 14187.14, + "end": 14188.36, + "probability": 0.9932 + }, + { + "start": 14188.36, + "end": 14191.12, + "probability": 0.1154 + }, + { + "start": 14191.12, + "end": 14195.1, + "probability": 0.3134 + }, + { + "start": 14195.26, + "end": 14195.26, + "probability": 0.2079 + }, + { + "start": 14195.26, + "end": 14200.12, + "probability": 0.9342 + }, + { + "start": 14200.82, + "end": 14203.36, + "probability": 0.6165 + }, + { + "start": 14204.06, + "end": 14209.84, + "probability": 0.9785 + }, + { + "start": 14209.84, + "end": 14215.8, + "probability": 0.2257 + }, + { + "start": 14215.84, + "end": 14218.5, + "probability": 0.023 + }, + { + "start": 14218.5, + "end": 14219.4, + "probability": 0.0813 + }, + { + "start": 14226.64, + "end": 14227.54, + "probability": 0.252 + }, + { + "start": 14227.54, + "end": 14227.98, + "probability": 0.1614 + }, + { + "start": 14228.46, + "end": 14228.46, + "probability": 0.0987 + }, + { + "start": 14228.46, + "end": 14228.46, + "probability": 0.0352 + }, + { + "start": 14228.46, + "end": 14228.82, + "probability": 0.2881 + }, + { + "start": 14229.52, + "end": 14233.96, + "probability": 0.0818 + }, + { + "start": 14236.86, + "end": 14238.18, + "probability": 0.0239 + }, + { + "start": 14238.18, + "end": 14242.49, + "probability": 0.2271 + }, + { + "start": 14243.36, + "end": 14243.72, + "probability": 0.0565 + }, + { + "start": 14244.27, + "end": 14245.06, + "probability": 0.1183 + }, + { + "start": 14245.06, + "end": 14245.56, + "probability": 0.1081 + }, + { + "start": 14245.86, + "end": 14248.64, + "probability": 0.2819 + }, + { + "start": 14248.74, + "end": 14248.92, + "probability": 0.3347 + }, + { + "start": 14248.92, + "end": 14248.98, + "probability": 0.567 + }, + { + "start": 14248.98, + "end": 14248.98, + "probability": 0.2329 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.0, + "end": 14282.0, + "probability": 0.0 + }, + { + "start": 14282.12, + "end": 14283.88, + "probability": 0.2219 + }, + { + "start": 14283.88, + "end": 14283.9, + "probability": 0.053 + }, + { + "start": 14283.9, + "end": 14283.9, + "probability": 0.0676 + }, + { + "start": 14283.98, + "end": 14285.62, + "probability": 0.6514 + }, + { + "start": 14285.62, + "end": 14290.9, + "probability": 0.0162 + }, + { + "start": 14303.64, + "end": 14306.86, + "probability": 0.1045 + }, + { + "start": 14307.02, + "end": 14308.62, + "probability": 0.0331 + }, + { + "start": 14309.32, + "end": 14310.58, + "probability": 0.1023 + }, + { + "start": 14310.76, + "end": 14313.22, + "probability": 0.1297 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.0, + "end": 14402.0, + "probability": 0.0 + }, + { + "start": 14402.1, + "end": 14403.0, + "probability": 0.0166 + }, + { + "start": 14404.22, + "end": 14406.63, + "probability": 0.0823 + }, + { + "start": 14407.3, + "end": 14409.52, + "probability": 0.0212 + }, + { + "start": 14409.52, + "end": 14409.96, + "probability": 0.0476 + }, + { + "start": 14410.18, + "end": 14414.62, + "probability": 0.2275 + }, + { + "start": 14415.9, + "end": 14418.44, + "probability": 0.051 + }, + { + "start": 14418.86, + "end": 14420.06, + "probability": 0.0288 + }, + { + "start": 14420.78, + "end": 14421.02, + "probability": 0.2871 + }, + { + "start": 14421.02, + "end": 14421.02, + "probability": 0.3215 + }, + { + "start": 14421.02, + "end": 14421.8, + "probability": 0.2798 + }, + { + "start": 14421.9, + "end": 14424.54, + "probability": 0.8336 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14564.0, + "end": 14564.0, + "probability": 0.0 + }, + { + "start": 14565.88, + "end": 14565.88, + "probability": 0.1446 + }, + { + "start": 14565.88, + "end": 14567.08, + "probability": 0.4898 + }, + { + "start": 14567.36, + "end": 14568.48, + "probability": 0.7913 + }, + { + "start": 14568.66, + "end": 14569.66, + "probability": 0.7069 + }, + { + "start": 14569.82, + "end": 14576.68, + "probability": 0.6896 + }, + { + "start": 14576.68, + "end": 14581.82, + "probability": 0.9832 + }, + { + "start": 14582.04, + "end": 14582.66, + "probability": 0.6225 + }, + { + "start": 14584.62, + "end": 14585.84, + "probability": 0.5985 + }, + { + "start": 14585.94, + "end": 14588.52, + "probability": 0.9742 + }, + { + "start": 14588.64, + "end": 14591.94, + "probability": 0.9917 + }, + { + "start": 14591.94, + "end": 14594.76, + "probability": 0.9937 + }, + { + "start": 14595.5, + "end": 14599.36, + "probability": 0.9541 + }, + { + "start": 14599.36, + "end": 14603.44, + "probability": 0.9963 + }, + { + "start": 14603.5, + "end": 14605.48, + "probability": 0.9888 + }, + { + "start": 14606.08, + "end": 14609.42, + "probability": 0.7106 + }, + { + "start": 14610.06, + "end": 14611.54, + "probability": 0.7414 + }, + { + "start": 14612.24, + "end": 14612.38, + "probability": 0.0538 + }, + { + "start": 14612.98, + "end": 14616.72, + "probability": 0.9731 + }, + { + "start": 14617.24, + "end": 14619.36, + "probability": 0.8812 + }, + { + "start": 14620.32, + "end": 14620.46, + "probability": 0.5201 + }, + { + "start": 14620.78, + "end": 14624.76, + "probability": 0.9729 + }, + { + "start": 14625.36, + "end": 14625.56, + "probability": 0.7234 + }, + { + "start": 14625.82, + "end": 14627.12, + "probability": 0.985 + }, + { + "start": 14628.12, + "end": 14630.72, + "probability": 0.7435 + }, + { + "start": 14631.68, + "end": 14633.52, + "probability": 0.951 + }, + { + "start": 14635.04, + "end": 14635.24, + "probability": 0.1132 + }, + { + "start": 14635.38, + "end": 14638.12, + "probability": 0.9854 + }, + { + "start": 14638.12, + "end": 14641.52, + "probability": 0.9553 + }, + { + "start": 14642.02, + "end": 14642.6, + "probability": 0.9702 + }, + { + "start": 14644.02, + "end": 14646.48, + "probability": 0.963 + }, + { + "start": 14646.48, + "end": 14649.58, + "probability": 0.6427 + }, + { + "start": 14649.72, + "end": 14655.3, + "probability": 0.9163 + }, + { + "start": 14655.74, + "end": 14660.32, + "probability": 0.9649 + }, + { + "start": 14660.96, + "end": 14664.2, + "probability": 0.9908 + }, + { + "start": 14665.16, + "end": 14668.28, + "probability": 0.9778 + }, + { + "start": 14668.28, + "end": 14673.04, + "probability": 0.9205 + }, + { + "start": 14673.04, + "end": 14677.26, + "probability": 0.9995 + }, + { + "start": 14677.86, + "end": 14681.14, + "probability": 0.9531 + }, + { + "start": 14682.04, + "end": 14682.5, + "probability": 0.5926 + }, + { + "start": 14683.04, + "end": 14686.12, + "probability": 0.8748 + }, + { + "start": 14686.84, + "end": 14688.93, + "probability": 0.9512 + }, + { + "start": 14689.22, + "end": 14693.64, + "probability": 0.7286 + }, + { + "start": 14693.86, + "end": 14694.18, + "probability": 0.9379 + }, + { + "start": 14694.7, + "end": 14697.12, + "probability": 0.9905 + }, + { + "start": 14697.12, + "end": 14699.98, + "probability": 0.7721 + }, + { + "start": 14700.04, + "end": 14702.42, + "probability": 0.8853 + }, + { + "start": 14702.94, + "end": 14703.98, + "probability": 0.933 + }, + { + "start": 14704.52, + "end": 14706.86, + "probability": 0.9105 + }, + { + "start": 14706.86, + "end": 14710.3, + "probability": 0.6818 + }, + { + "start": 14710.9, + "end": 14716.96, + "probability": 0.9544 + }, + { + "start": 14717.38, + "end": 14721.4, + "probability": 0.802 + }, + { + "start": 14722.08, + "end": 14726.24, + "probability": 0.9431 + }, + { + "start": 14726.76, + "end": 14731.1, + "probability": 0.9754 + }, + { + "start": 14731.66, + "end": 14732.96, + "probability": 0.6724 + }, + { + "start": 14733.18, + "end": 14738.2, + "probability": 0.9841 + }, + { + "start": 14738.8, + "end": 14744.2, + "probability": 0.9216 + }, + { + "start": 14744.2, + "end": 14747.72, + "probability": 0.969 + }, + { + "start": 14748.24, + "end": 14748.7, + "probability": 0.6503 + }, + { + "start": 14749.34, + "end": 14751.84, + "probability": 0.8056 + }, + { + "start": 14752.02, + "end": 14756.06, + "probability": 0.8561 + }, + { + "start": 14756.06, + "end": 14760.6, + "probability": 0.9722 + }, + { + "start": 14761.04, + "end": 14764.48, + "probability": 0.9825 + }, + { + "start": 14765.04, + "end": 14765.36, + "probability": 0.5915 + }, + { + "start": 14766.74, + "end": 14769.84, + "probability": 0.9109 + }, + { + "start": 14769.84, + "end": 14772.38, + "probability": 0.9839 + }, + { + "start": 14772.86, + "end": 14775.78, + "probability": 0.3596 + }, + { + "start": 14776.36, + "end": 14776.58, + "probability": 0.2372 + }, + { + "start": 14778.29, + "end": 14781.32, + "probability": 0.988 + }, + { + "start": 14781.32, + "end": 14783.82, + "probability": 0.9883 + }, + { + "start": 14784.7, + "end": 14786.68, + "probability": 0.944 + }, + { + "start": 14787.2, + "end": 14789.04, + "probability": 0.8545 + }, + { + "start": 14789.6, + "end": 14790.02, + "probability": 0.691 + }, + { + "start": 14790.72, + "end": 14795.34, + "probability": 0.9887 + }, + { + "start": 14795.7, + "end": 14797.24, + "probability": 0.6568 + }, + { + "start": 14797.32, + "end": 14797.74, + "probability": 0.8578 + }, + { + "start": 14797.82, + "end": 14799.1, + "probability": 0.9068 + }, + { + "start": 14799.68, + "end": 14803.04, + "probability": 0.9836 + }, + { + "start": 14803.34, + "end": 14807.02, + "probability": 0.9778 + }, + { + "start": 14807.42, + "end": 14810.17, + "probability": 0.8722 + }, + { + "start": 14810.32, + "end": 14812.42, + "probability": 0.9936 + }, + { + "start": 14812.5, + "end": 14815.37, + "probability": 0.9546 + }, + { + "start": 14815.7, + "end": 14817.42, + "probability": 0.9812 + }, + { + "start": 14818.16, + "end": 14819.1, + "probability": 0.8265 + }, + { + "start": 14819.44, + "end": 14821.54, + "probability": 0.9893 + }, + { + "start": 14822.08, + "end": 14825.4, + "probability": 0.9335 + }, + { + "start": 14825.96, + "end": 14829.92, + "probability": 0.6427 + }, + { + "start": 14830.58, + "end": 14834.48, + "probability": 0.9899 + }, + { + "start": 14834.6, + "end": 14835.62, + "probability": 0.737 + }, + { + "start": 14836.22, + "end": 14838.4, + "probability": 0.9854 + }, + { + "start": 14838.52, + "end": 14841.42, + "probability": 0.7122 + }, + { + "start": 14841.66, + "end": 14842.18, + "probability": 0.7343 + }, + { + "start": 14842.94, + "end": 14844.3, + "probability": 0.8421 + }, + { + "start": 14844.48, + "end": 14846.35, + "probability": 0.9954 + }, + { + "start": 14846.84, + "end": 14849.46, + "probability": 0.945 + }, + { + "start": 14867.48, + "end": 14868.32, + "probability": 0.5557 + }, + { + "start": 14873.02, + "end": 14873.68, + "probability": 0.5562 + }, + { + "start": 14875.04, + "end": 14878.74, + "probability": 0.7747 + }, + { + "start": 14881.32, + "end": 14882.32, + "probability": 0.5086 + }, + { + "start": 14882.32, + "end": 14884.24, + "probability": 0.9933 + }, + { + "start": 14885.2, + "end": 14887.78, + "probability": 0.8149 + }, + { + "start": 14887.96, + "end": 14888.86, + "probability": 0.9081 + }, + { + "start": 14889.14, + "end": 14890.48, + "probability": 0.9912 + }, + { + "start": 14894.86, + "end": 14895.1, + "probability": 0.6469 + }, + { + "start": 14896.52, + "end": 14897.0, + "probability": 0.9232 + }, + { + "start": 14900.18, + "end": 14902.98, + "probability": 0.9819 + }, + { + "start": 14903.1, + "end": 14903.82, + "probability": 0.5703 + }, + { + "start": 14903.9, + "end": 14906.92, + "probability": 0.9668 + }, + { + "start": 14909.26, + "end": 14911.64, + "probability": 0.7406 + }, + { + "start": 14913.3, + "end": 14915.29, + "probability": 0.9893 + }, + { + "start": 14917.14, + "end": 14918.83, + "probability": 0.9402 + }, + { + "start": 14920.68, + "end": 14922.8, + "probability": 0.9642 + }, + { + "start": 14924.3, + "end": 14927.64, + "probability": 0.9923 + }, + { + "start": 14928.68, + "end": 14930.92, + "probability": 0.9113 + }, + { + "start": 14932.18, + "end": 14934.03, + "probability": 0.8672 + }, + { + "start": 14936.02, + "end": 14936.65, + "probability": 0.9944 + }, + { + "start": 14938.58, + "end": 14940.94, + "probability": 0.9342 + }, + { + "start": 14941.24, + "end": 14941.84, + "probability": 0.9742 + }, + { + "start": 14942.08, + "end": 14943.22, + "probability": 0.9961 + }, + { + "start": 14944.74, + "end": 14946.28, + "probability": 0.9956 + }, + { + "start": 14948.2, + "end": 14951.38, + "probability": 0.9862 + }, + { + "start": 14952.92, + "end": 14957.04, + "probability": 0.9762 + }, + { + "start": 14957.04, + "end": 14961.22, + "probability": 0.9984 + }, + { + "start": 14961.64, + "end": 14963.78, + "probability": 0.1821 + }, + { + "start": 14963.9, + "end": 14969.2, + "probability": 0.9983 + }, + { + "start": 14971.12, + "end": 14972.92, + "probability": 0.9951 + }, + { + "start": 14974.52, + "end": 14975.4, + "probability": 0.7766 + }, + { + "start": 14976.76, + "end": 14979.74, + "probability": 0.9971 + }, + { + "start": 14979.74, + "end": 14984.06, + "probability": 0.9639 + }, + { + "start": 14984.14, + "end": 14985.06, + "probability": 0.7578 + }, + { + "start": 14986.66, + "end": 14988.3, + "probability": 0.7945 + }, + { + "start": 14989.58, + "end": 14991.0, + "probability": 0.9187 + }, + { + "start": 14992.94, + "end": 14993.66, + "probability": 0.6931 + }, + { + "start": 14993.96, + "end": 14995.4, + "probability": 0.9924 + }, + { + "start": 14995.64, + "end": 14997.02, + "probability": 0.8442 + }, + { + "start": 14997.92, + "end": 15000.14, + "probability": 0.6758 + }, + { + "start": 15002.1, + "end": 15003.08, + "probability": 0.9677 + }, + { + "start": 15003.82, + "end": 15007.15, + "probability": 0.5007 + }, + { + "start": 15008.52, + "end": 15010.36, + "probability": 0.9475 + }, + { + "start": 15011.46, + "end": 15012.42, + "probability": 0.9442 + }, + { + "start": 15013.74, + "end": 15016.0, + "probability": 0.9837 + }, + { + "start": 15016.76, + "end": 15021.58, + "probability": 0.9961 + }, + { + "start": 15021.58, + "end": 15026.64, + "probability": 0.9878 + }, + { + "start": 15029.28, + "end": 15031.08, + "probability": 0.9278 + }, + { + "start": 15031.76, + "end": 15033.36, + "probability": 0.9976 + }, + { + "start": 15035.36, + "end": 15040.66, + "probability": 0.998 + }, + { + "start": 15042.34, + "end": 15046.34, + "probability": 0.9956 + }, + { + "start": 15046.56, + "end": 15048.46, + "probability": 0.9922 + }, + { + "start": 15048.68, + "end": 15051.6, + "probability": 0.9937 + }, + { + "start": 15052.02, + "end": 15054.18, + "probability": 0.9924 + }, + { + "start": 15054.66, + "end": 15056.1, + "probability": 0.8984 + }, + { + "start": 15056.26, + "end": 15058.9, + "probability": 0.9183 + }, + { + "start": 15060.6, + "end": 15064.82, + "probability": 0.824 + }, + { + "start": 15065.56, + "end": 15067.18, + "probability": 0.9469 + }, + { + "start": 15068.18, + "end": 15072.28, + "probability": 0.9552 + }, + { + "start": 15073.02, + "end": 15075.64, + "probability": 0.9109 + }, + { + "start": 15077.12, + "end": 15078.22, + "probability": 0.8579 + }, + { + "start": 15080.0, + "end": 15082.62, + "probability": 0.9976 + }, + { + "start": 15082.7, + "end": 15085.7, + "probability": 0.9932 + }, + { + "start": 15086.22, + "end": 15089.94, + "probability": 0.8079 + }, + { + "start": 15090.02, + "end": 15091.8, + "probability": 0.8016 + }, + { + "start": 15091.84, + "end": 15094.5, + "probability": 0.9904 + }, + { + "start": 15095.56, + "end": 15096.28, + "probability": 0.9286 + }, + { + "start": 15097.06, + "end": 15098.88, + "probability": 0.9918 + }, + { + "start": 15099.5, + "end": 15102.56, + "probability": 0.9989 + }, + { + "start": 15103.42, + "end": 15105.96, + "probability": 0.9924 + }, + { + "start": 15106.78, + "end": 15107.55, + "probability": 0.9954 + }, + { + "start": 15108.36, + "end": 15109.5, + "probability": 0.6687 + }, + { + "start": 15110.1, + "end": 15111.96, + "probability": 0.9438 + }, + { + "start": 15112.32, + "end": 15113.74, + "probability": 0.9553 + }, + { + "start": 15113.82, + "end": 15114.14, + "probability": 0.7708 + }, + { + "start": 15114.7, + "end": 15115.58, + "probability": 0.6859 + }, + { + "start": 15115.76, + "end": 15117.94, + "probability": 0.9626 + }, + { + "start": 15127.28, + "end": 15128.74, + "probability": 0.5286 + }, + { + "start": 15128.98, + "end": 15131.22, + "probability": 0.7639 + }, + { + "start": 15131.92, + "end": 15136.22, + "probability": 0.9714 + }, + { + "start": 15136.79, + "end": 15141.58, + "probability": 0.8572 + }, + { + "start": 15141.86, + "end": 15144.1, + "probability": 0.6157 + }, + { + "start": 15144.88, + "end": 15147.53, + "probability": 0.8988 + }, + { + "start": 15148.0, + "end": 15151.18, + "probability": 0.9629 + }, + { + "start": 15152.16, + "end": 15155.07, + "probability": 0.978 + }, + { + "start": 15156.06, + "end": 15160.68, + "probability": 0.9763 + }, + { + "start": 15161.32, + "end": 15165.16, + "probability": 0.9907 + }, + { + "start": 15165.86, + "end": 15168.44, + "probability": 0.8545 + }, + { + "start": 15169.26, + "end": 15171.74, + "probability": 0.9956 + }, + { + "start": 15171.94, + "end": 15175.66, + "probability": 0.9976 + }, + { + "start": 15176.18, + "end": 15180.48, + "probability": 0.9893 + }, + { + "start": 15180.48, + "end": 15184.68, + "probability": 0.9888 + }, + { + "start": 15184.9, + "end": 15186.66, + "probability": 0.8392 + }, + { + "start": 15187.8, + "end": 15189.28, + "probability": 0.6341 + }, + { + "start": 15189.34, + "end": 15189.86, + "probability": 0.7239 + }, + { + "start": 15190.36, + "end": 15196.8, + "probability": 0.9189 + }, + { + "start": 15196.84, + "end": 15197.4, + "probability": 0.9024 + }, + { + "start": 15197.48, + "end": 15197.9, + "probability": 0.9227 + }, + { + "start": 15197.96, + "end": 15201.58, + "probability": 0.9769 + }, + { + "start": 15202.38, + "end": 15203.9, + "probability": 0.9756 + }, + { + "start": 15204.84, + "end": 15205.9, + "probability": 0.4817 + }, + { + "start": 15206.8, + "end": 15209.3, + "probability": 0.9891 + }, + { + "start": 15209.82, + "end": 15211.48, + "probability": 0.8615 + }, + { + "start": 15212.12, + "end": 15214.06, + "probability": 0.9185 + }, + { + "start": 15215.08, + "end": 15221.48, + "probability": 0.9072 + }, + { + "start": 15222.08, + "end": 15227.04, + "probability": 0.9958 + }, + { + "start": 15227.64, + "end": 15229.44, + "probability": 0.973 + }, + { + "start": 15229.96, + "end": 15231.4, + "probability": 0.672 + }, + { + "start": 15231.92, + "end": 15233.42, + "probability": 0.9656 + }, + { + "start": 15234.08, + "end": 15235.38, + "probability": 0.9604 + }, + { + "start": 15235.82, + "end": 15237.72, + "probability": 0.9907 + }, + { + "start": 15238.4, + "end": 15240.84, + "probability": 0.9641 + }, + { + "start": 15241.36, + "end": 15243.28, + "probability": 0.9666 + }, + { + "start": 15244.16, + "end": 15251.76, + "probability": 0.9849 + }, + { + "start": 15253.28, + "end": 15253.38, + "probability": 0.1794 + }, + { + "start": 15254.8, + "end": 15256.06, + "probability": 0.9611 + }, + { + "start": 15256.36, + "end": 15258.66, + "probability": 0.9331 + }, + { + "start": 15259.62, + "end": 15263.44, + "probability": 0.9977 + }, + { + "start": 15263.93, + "end": 15267.6, + "probability": 0.9907 + }, + { + "start": 15268.44, + "end": 15269.56, + "probability": 0.985 + }, + { + "start": 15269.64, + "end": 15270.46, + "probability": 0.9816 + }, + { + "start": 15270.8, + "end": 15272.3, + "probability": 0.6546 + }, + { + "start": 15273.24, + "end": 15274.56, + "probability": 0.9961 + }, + { + "start": 15275.54, + "end": 15280.24, + "probability": 0.9863 + }, + { + "start": 15281.34, + "end": 15282.86, + "probability": 0.5384 + }, + { + "start": 15282.96, + "end": 15283.9, + "probability": 0.9636 + }, + { + "start": 15284.0, + "end": 15284.4, + "probability": 0.4866 + }, + { + "start": 15284.46, + "end": 15285.02, + "probability": 0.8959 + }, + { + "start": 15285.08, + "end": 15287.92, + "probability": 0.9073 + }, + { + "start": 15288.36, + "end": 15290.92, + "probability": 0.9875 + }, + { + "start": 15291.0, + "end": 15292.16, + "probability": 0.5198 + }, + { + "start": 15292.8, + "end": 15292.8, + "probability": 0.8491 + }, + { + "start": 15293.64, + "end": 15296.4, + "probability": 0.9758 + }, + { + "start": 15297.16, + "end": 15298.2, + "probability": 0.9581 + }, + { + "start": 15298.32, + "end": 15299.66, + "probability": 0.9584 + }, + { + "start": 15300.62, + "end": 15304.08, + "probability": 0.9893 + }, + { + "start": 15304.08, + "end": 15307.02, + "probability": 0.7791 + }, + { + "start": 15307.46, + "end": 15310.54, + "probability": 0.7953 + }, + { + "start": 15311.14, + "end": 15313.5, + "probability": 0.7594 + }, + { + "start": 15314.16, + "end": 15316.64, + "probability": 0.7417 + }, + { + "start": 15317.5, + "end": 15322.0, + "probability": 0.9018 + }, + { + "start": 15324.98, + "end": 15325.06, + "probability": 0.0225 + }, + { + "start": 15325.06, + "end": 15327.88, + "probability": 0.6782 + }, + { + "start": 15328.52, + "end": 15329.23, + "probability": 0.7324 + }, + { + "start": 15329.46, + "end": 15334.22, + "probability": 0.9868 + }, + { + "start": 15334.5, + "end": 15335.64, + "probability": 0.9705 + }, + { + "start": 15336.7, + "end": 15338.92, + "probability": 0.6866 + }, + { + "start": 15338.92, + "end": 15338.92, + "probability": 0.2897 + }, + { + "start": 15338.92, + "end": 15340.54, + "probability": 0.5987 + }, + { + "start": 15357.82, + "end": 15358.62, + "probability": 0.9929 + }, + { + "start": 15360.21, + "end": 15362.62, + "probability": 0.8953 + }, + { + "start": 15363.24, + "end": 15364.71, + "probability": 0.9873 + }, + { + "start": 15365.82, + "end": 15366.96, + "probability": 0.8651 + }, + { + "start": 15367.64, + "end": 15368.86, + "probability": 0.9885 + }, + { + "start": 15370.12, + "end": 15373.4, + "probability": 0.9948 + }, + { + "start": 15374.04, + "end": 15375.58, + "probability": 0.8706 + }, + { + "start": 15376.22, + "end": 15379.06, + "probability": 0.9916 + }, + { + "start": 15379.06, + "end": 15381.76, + "probability": 0.9991 + }, + { + "start": 15382.28, + "end": 15383.42, + "probability": 0.9979 + }, + { + "start": 15384.22, + "end": 15389.1, + "probability": 0.9565 + }, + { + "start": 15389.98, + "end": 15391.94, + "probability": 0.995 + }, + { + "start": 15392.3, + "end": 15396.84, + "probability": 0.9973 + }, + { + "start": 15396.96, + "end": 15397.58, + "probability": 0.5739 + }, + { + "start": 15397.92, + "end": 15399.32, + "probability": 0.8784 + }, + { + "start": 15399.98, + "end": 15403.64, + "probability": 0.9901 + }, + { + "start": 15404.3, + "end": 15407.45, + "probability": 0.9565 + }, + { + "start": 15407.96, + "end": 15409.94, + "probability": 0.9873 + }, + { + "start": 15409.94, + "end": 15412.36, + "probability": 0.9969 + }, + { + "start": 15412.7, + "end": 15415.54, + "probability": 0.9467 + }, + { + "start": 15415.54, + "end": 15419.68, + "probability": 0.9976 + }, + { + "start": 15420.2, + "end": 15422.28, + "probability": 0.7315 + }, + { + "start": 15423.3, + "end": 15425.38, + "probability": 0.9453 + }, + { + "start": 15425.86, + "end": 15426.66, + "probability": 0.807 + }, + { + "start": 15427.46, + "end": 15428.56, + "probability": 0.8809 + }, + { + "start": 15429.62, + "end": 15433.14, + "probability": 0.9912 + }, + { + "start": 15433.36, + "end": 15434.46, + "probability": 0.9479 + }, + { + "start": 15434.72, + "end": 15435.52, + "probability": 0.9409 + }, + { + "start": 15436.26, + "end": 15438.9, + "probability": 0.9644 + }, + { + "start": 15439.74, + "end": 15441.14, + "probability": 0.8599 + }, + { + "start": 15441.56, + "end": 15445.06, + "probability": 0.9946 + }, + { + "start": 15445.3, + "end": 15447.03, + "probability": 0.9866 + }, + { + "start": 15447.68, + "end": 15449.08, + "probability": 0.9491 + }, + { + "start": 15449.56, + "end": 15450.48, + "probability": 0.9502 + }, + { + "start": 15450.86, + "end": 15451.54, + "probability": 0.5691 + }, + { + "start": 15451.54, + "end": 15452.24, + "probability": 0.6491 + }, + { + "start": 15452.54, + "end": 15454.44, + "probability": 0.9229 + }, + { + "start": 15455.16, + "end": 15458.44, + "probability": 0.9277 + }, + { + "start": 15458.52, + "end": 15459.5, + "probability": 0.9951 + }, + { + "start": 15459.5, + "end": 15462.46, + "probability": 0.9954 + }, + { + "start": 15462.56, + "end": 15464.88, + "probability": 0.9789 + }, + { + "start": 15465.06, + "end": 15468.48, + "probability": 0.9965 + }, + { + "start": 15468.48, + "end": 15468.92, + "probability": 0.77 + }, + { + "start": 15469.26, + "end": 15470.52, + "probability": 0.8926 + }, + { + "start": 15470.8, + "end": 15472.22, + "probability": 0.9353 + }, + { + "start": 15472.78, + "end": 15474.26, + "probability": 0.9941 + }, + { + "start": 15474.52, + "end": 15475.72, + "probability": 0.9927 + }, + { + "start": 15476.18, + "end": 15479.22, + "probability": 0.9895 + }, + { + "start": 15479.6, + "end": 15481.04, + "probability": 0.7923 + }, + { + "start": 15482.24, + "end": 15483.7, + "probability": 0.9873 + }, + { + "start": 15484.06, + "end": 15485.02, + "probability": 0.98 + }, + { + "start": 15486.04, + "end": 15488.1, + "probability": 0.9802 + }, + { + "start": 15488.84, + "end": 15489.16, + "probability": 0.962 + }, + { + "start": 15489.24, + "end": 15491.77, + "probability": 0.9403 + }, + { + "start": 15492.6, + "end": 15494.88, + "probability": 0.6464 + }, + { + "start": 15495.02, + "end": 15497.02, + "probability": 0.9197 + }, + { + "start": 15497.54, + "end": 15498.7, + "probability": 0.9951 + }, + { + "start": 15498.76, + "end": 15499.66, + "probability": 0.8928 + }, + { + "start": 15500.18, + "end": 15501.92, + "probability": 0.962 + }, + { + "start": 15501.96, + "end": 15503.14, + "probability": 0.9252 + }, + { + "start": 15503.52, + "end": 15505.34, + "probability": 0.9194 + }, + { + "start": 15505.66, + "end": 15506.48, + "probability": 0.7562 + }, + { + "start": 15507.02, + "end": 15509.56, + "probability": 0.9771 + }, + { + "start": 15509.92, + "end": 15511.2, + "probability": 0.9918 + }, + { + "start": 15512.08, + "end": 15514.3, + "probability": 0.9672 + }, + { + "start": 15515.02, + "end": 15517.1, + "probability": 0.9863 + }, + { + "start": 15517.18, + "end": 15518.1, + "probability": 0.8 + }, + { + "start": 15518.14, + "end": 15519.38, + "probability": 0.898 + }, + { + "start": 15519.98, + "end": 15521.0, + "probability": 0.7855 + }, + { + "start": 15521.16, + "end": 15522.4, + "probability": 0.9656 + }, + { + "start": 15522.7, + "end": 15523.96, + "probability": 0.7404 + }, + { + "start": 15524.18, + "end": 15525.68, + "probability": 0.985 + }, + { + "start": 15525.76, + "end": 15527.61, + "probability": 0.9961 + }, + { + "start": 15528.16, + "end": 15529.4, + "probability": 0.9724 + }, + { + "start": 15530.34, + "end": 15531.66, + "probability": 0.9613 + }, + { + "start": 15532.38, + "end": 15533.38, + "probability": 0.8547 + }, + { + "start": 15533.74, + "end": 15534.94, + "probability": 0.8491 + }, + { + "start": 15535.0, + "end": 15535.86, + "probability": 0.9355 + }, + { + "start": 15536.7, + "end": 15537.64, + "probability": 0.9145 + }, + { + "start": 15537.74, + "end": 15539.12, + "probability": 0.9653 + }, + { + "start": 15539.34, + "end": 15540.94, + "probability": 0.9792 + }, + { + "start": 15541.0, + "end": 15542.94, + "probability": 0.7909 + }, + { + "start": 15544.22, + "end": 15545.44, + "probability": 0.7018 + }, + { + "start": 15545.58, + "end": 15547.73, + "probability": 0.9314 + }, + { + "start": 15548.72, + "end": 15549.55, + "probability": 0.9208 + }, + { + "start": 15550.2, + "end": 15551.38, + "probability": 0.9167 + }, + { + "start": 15551.44, + "end": 15553.64, + "probability": 0.8093 + }, + { + "start": 15554.2, + "end": 15554.44, + "probability": 0.1128 + }, + { + "start": 15554.56, + "end": 15554.56, + "probability": 0.2074 + }, + { + "start": 15554.56, + "end": 15557.84, + "probability": 0.9365 + }, + { + "start": 15558.2, + "end": 15559.18, + "probability": 0.8977 + }, + { + "start": 15559.3, + "end": 15560.25, + "probability": 0.9363 + }, + { + "start": 15560.66, + "end": 15561.88, + "probability": 0.7124 + }, + { + "start": 15562.16, + "end": 15562.78, + "probability": 0.8507 + }, + { + "start": 15563.64, + "end": 15565.04, + "probability": 0.9901 + }, + { + "start": 15565.7, + "end": 15566.68, + "probability": 0.9863 + }, + { + "start": 15567.0, + "end": 15567.58, + "probability": 0.8346 + }, + { + "start": 15567.7, + "end": 15569.3, + "probability": 0.9924 + }, + { + "start": 15569.4, + "end": 15569.91, + "probability": 0.8774 + }, + { + "start": 15570.12, + "end": 15573.9, + "probability": 0.9812 + }, + { + "start": 15574.18, + "end": 15577.9, + "probability": 0.9988 + }, + { + "start": 15578.28, + "end": 15582.14, + "probability": 0.9463 + }, + { + "start": 15582.14, + "end": 15585.8, + "probability": 0.9806 + }, + { + "start": 15586.26, + "end": 15586.8, + "probability": 0.7524 + }, + { + "start": 15587.52, + "end": 15588.88, + "probability": 0.8684 + }, + { + "start": 15590.88, + "end": 15591.72, + "probability": 0.2963 + }, + { + "start": 15592.08, + "end": 15593.3, + "probability": 0.9284 + }, + { + "start": 15594.42, + "end": 15596.76, + "probability": 0.3401 + }, + { + "start": 15603.98, + "end": 15606.9, + "probability": 0.8555 + }, + { + "start": 15607.92, + "end": 15609.66, + "probability": 0.9915 + }, + { + "start": 15611.12, + "end": 15619.36, + "probability": 0.7943 + }, + { + "start": 15619.62, + "end": 15621.58, + "probability": 0.9589 + }, + { + "start": 15622.78, + "end": 15625.74, + "probability": 0.7915 + }, + { + "start": 15626.56, + "end": 15630.8, + "probability": 0.8281 + }, + { + "start": 15631.52, + "end": 15635.04, + "probability": 0.9946 + }, + { + "start": 15635.64, + "end": 15640.2, + "probability": 0.9806 + }, + { + "start": 15640.2, + "end": 15643.8, + "probability": 0.9957 + }, + { + "start": 15644.56, + "end": 15645.76, + "probability": 0.4805 + }, + { + "start": 15646.3, + "end": 15648.96, + "probability": 0.97 + }, + { + "start": 15648.96, + "end": 15655.96, + "probability": 0.9957 + }, + { + "start": 15656.86, + "end": 15659.0, + "probability": 0.9965 + }, + { + "start": 15659.88, + "end": 15660.86, + "probability": 0.7959 + }, + { + "start": 15662.38, + "end": 15664.48, + "probability": 0.9927 + }, + { + "start": 15666.56, + "end": 15667.62, + "probability": 0.8722 + }, + { + "start": 15668.36, + "end": 15669.88, + "probability": 0.8494 + }, + { + "start": 15671.82, + "end": 15674.16, + "probability": 0.9901 + }, + { + "start": 15675.02, + "end": 15675.92, + "probability": 0.949 + }, + { + "start": 15676.44, + "end": 15678.42, + "probability": 0.9949 + }, + { + "start": 15679.22, + "end": 15681.34, + "probability": 0.9907 + }, + { + "start": 15682.32, + "end": 15684.72, + "probability": 0.9853 + }, + { + "start": 15684.92, + "end": 15686.88, + "probability": 0.866 + }, + { + "start": 15687.0, + "end": 15689.44, + "probability": 0.9954 + }, + { + "start": 15689.96, + "end": 15692.26, + "probability": 0.6865 + }, + { + "start": 15693.2, + "end": 15696.62, + "probability": 0.9897 + }, + { + "start": 15696.92, + "end": 15703.48, + "probability": 0.9889 + }, + { + "start": 15704.22, + "end": 15708.16, + "probability": 0.9977 + }, + { + "start": 15708.16, + "end": 15712.44, + "probability": 0.9847 + }, + { + "start": 15713.82, + "end": 15716.14, + "probability": 0.8637 + }, + { + "start": 15716.8, + "end": 15719.5, + "probability": 0.9697 + }, + { + "start": 15721.38, + "end": 15722.58, + "probability": 0.9814 + }, + { + "start": 15722.76, + "end": 15723.38, + "probability": 0.933 + }, + { + "start": 15724.96, + "end": 15727.1, + "probability": 0.9661 + }, + { + "start": 15728.2, + "end": 15730.92, + "probability": 0.983 + }, + { + "start": 15731.86, + "end": 15733.04, + "probability": 0.9792 + }, + { + "start": 15734.04, + "end": 15736.44, + "probability": 0.9747 + }, + { + "start": 15738.3, + "end": 15741.88, + "probability": 0.9629 + }, + { + "start": 15743.4, + "end": 15746.3, + "probability": 0.6227 + }, + { + "start": 15746.36, + "end": 15747.54, + "probability": 0.8776 + }, + { + "start": 15748.32, + "end": 15748.94, + "probability": 0.9252 + }, + { + "start": 15749.58, + "end": 15750.92, + "probability": 0.9418 + }, + { + "start": 15751.46, + "end": 15752.7, + "probability": 0.9829 + }, + { + "start": 15753.74, + "end": 15759.8, + "probability": 0.9878 + }, + { + "start": 15760.28, + "end": 15761.7, + "probability": 0.8636 + }, + { + "start": 15762.06, + "end": 15763.32, + "probability": 0.8801 + }, + { + "start": 15763.98, + "end": 15765.17, + "probability": 0.9971 + }, + { + "start": 15767.72, + "end": 15770.16, + "probability": 0.9933 + }, + { + "start": 15770.38, + "end": 15770.94, + "probability": 0.957 + }, + { + "start": 15771.6, + "end": 15774.1, + "probability": 0.9834 + }, + { + "start": 15774.4, + "end": 15775.96, + "probability": 0.6056 + }, + { + "start": 15776.0, + "end": 15779.66, + "probability": 0.999 + }, + { + "start": 15780.44, + "end": 15782.88, + "probability": 0.9996 + }, + { + "start": 15783.72, + "end": 15786.64, + "probability": 0.981 + }, + { + "start": 15791.14, + "end": 15795.6, + "probability": 0.9258 + }, + { + "start": 15796.84, + "end": 15799.16, + "probability": 0.9038 + }, + { + "start": 15799.68, + "end": 15801.12, + "probability": 0.6983 + }, + { + "start": 15801.54, + "end": 15803.0, + "probability": 0.9861 + }, + { + "start": 15803.54, + "end": 15804.7, + "probability": 0.9842 + }, + { + "start": 15805.38, + "end": 15810.92, + "probability": 0.9541 + }, + { + "start": 15812.08, + "end": 15812.08, + "probability": 0.056 + }, + { + "start": 15812.08, + "end": 15813.02, + "probability": 0.7844 + }, + { + "start": 15813.18, + "end": 15817.34, + "probability": 0.5963 + }, + { + "start": 15817.48, + "end": 15818.22, + "probability": 0.637 + }, + { + "start": 15818.7, + "end": 15822.74, + "probability": 0.9846 + }, + { + "start": 15822.84, + "end": 15823.74, + "probability": 0.8584 + }, + { + "start": 15823.88, + "end": 15825.68, + "probability": 0.8186 + }, + { + "start": 15825.82, + "end": 15827.04, + "probability": 0.1543 + }, + { + "start": 15827.26, + "end": 15828.2, + "probability": 0.0933 + }, + { + "start": 15828.38, + "end": 15828.38, + "probability": 0.2365 + }, + { + "start": 15828.38, + "end": 15828.38, + "probability": 0.0837 + }, + { + "start": 15828.38, + "end": 15829.64, + "probability": 0.3394 + }, + { + "start": 15830.14, + "end": 15832.6, + "probability": 0.703 + }, + { + "start": 15855.11, + "end": 15858.96, + "probability": 0.7293 + }, + { + "start": 15859.68, + "end": 15869.08, + "probability": 0.8756 + }, + { + "start": 15869.6, + "end": 15870.7, + "probability": 0.7355 + }, + { + "start": 15871.22, + "end": 15874.0, + "probability": 0.9534 + }, + { + "start": 15875.02, + "end": 15878.38, + "probability": 0.7511 + }, + { + "start": 15879.44, + "end": 15880.86, + "probability": 0.5963 + }, + { + "start": 15881.02, + "end": 15883.56, + "probability": 0.8044 + }, + { + "start": 15884.98, + "end": 15887.18, + "probability": 0.848 + }, + { + "start": 15887.82, + "end": 15888.44, + "probability": 0.0235 + }, + { + "start": 15888.52, + "end": 15888.98, + "probability": 0.0289 + }, + { + "start": 15889.1, + "end": 15891.6, + "probability": 0.6046 + }, + { + "start": 15896.82, + "end": 15898.92, + "probability": 0.8159 + }, + { + "start": 15899.04, + "end": 15904.56, + "probability": 0.9354 + }, + { + "start": 15904.98, + "end": 15910.24, + "probability": 0.9937 + }, + { + "start": 15910.24, + "end": 15915.14, + "probability": 0.9979 + }, + { + "start": 15915.24, + "end": 15920.98, + "probability": 0.9946 + }, + { + "start": 15921.72, + "end": 15929.08, + "probability": 0.864 + }, + { + "start": 15930.36, + "end": 15933.36, + "probability": 0.9822 + }, + { + "start": 15934.46, + "end": 15936.2, + "probability": 0.9806 + }, + { + "start": 15937.02, + "end": 15941.28, + "probability": 0.9982 + }, + { + "start": 15941.28, + "end": 15945.52, + "probability": 0.9993 + }, + { + "start": 15945.88, + "end": 15948.56, + "probability": 0.7433 + }, + { + "start": 15949.16, + "end": 15951.4, + "probability": 0.9415 + }, + { + "start": 15952.38, + "end": 15954.44, + "probability": 0.7762 + }, + { + "start": 15955.44, + "end": 15958.2, + "probability": 0.9243 + }, + { + "start": 15959.16, + "end": 15961.86, + "probability": 0.896 + }, + { + "start": 15962.58, + "end": 15969.42, + "probability": 0.9995 + }, + { + "start": 15970.1, + "end": 15971.8, + "probability": 0.9377 + }, + { + "start": 15972.44, + "end": 15972.78, + "probability": 0.479 + }, + { + "start": 15973.34, + "end": 15978.42, + "probability": 0.9909 + }, + { + "start": 15979.1, + "end": 15986.52, + "probability": 0.998 + }, + { + "start": 15987.34, + "end": 15989.7, + "probability": 0.7614 + }, + { + "start": 15990.46, + "end": 15992.98, + "probability": 0.994 + }, + { + "start": 15993.58, + "end": 15995.04, + "probability": 0.7109 + }, + { + "start": 15995.42, + "end": 15997.08, + "probability": 0.9964 + }, + { + "start": 15997.28, + "end": 15997.92, + "probability": 0.9378 + }, + { + "start": 15998.56, + "end": 16002.54, + "probability": 0.9858 + }, + { + "start": 16002.92, + "end": 16007.84, + "probability": 0.9968 + }, + { + "start": 16008.58, + "end": 16013.16, + "probability": 0.9003 + }, + { + "start": 16013.8, + "end": 16017.38, + "probability": 0.9718 + }, + { + "start": 16018.0, + "end": 16023.38, + "probability": 0.8496 + }, + { + "start": 16024.42, + "end": 16028.66, + "probability": 0.9677 + }, + { + "start": 16029.2, + "end": 16039.1, + "probability": 0.9948 + }, + { + "start": 16039.1, + "end": 16048.96, + "probability": 0.996 + }, + { + "start": 16049.76, + "end": 16052.08, + "probability": 0.7448 + }, + { + "start": 16052.64, + "end": 16057.22, + "probability": 0.9733 + }, + { + "start": 16057.92, + "end": 16061.04, + "probability": 0.9946 + }, + { + "start": 16061.74, + "end": 16063.46, + "probability": 0.5155 + }, + { + "start": 16063.62, + "end": 16066.38, + "probability": 0.8516 + }, + { + "start": 16066.98, + "end": 16071.08, + "probability": 0.8507 + }, + { + "start": 16071.08, + "end": 16075.74, + "probability": 0.9727 + }, + { + "start": 16076.2, + "end": 16079.36, + "probability": 0.9885 + }, + { + "start": 16079.44, + "end": 16082.56, + "probability": 0.9923 + }, + { + "start": 16083.28, + "end": 16083.86, + "probability": 0.5254 + }, + { + "start": 16083.92, + "end": 16084.56, + "probability": 0.5922 + }, + { + "start": 16084.64, + "end": 16086.4, + "probability": 0.7292 + }, + { + "start": 16086.56, + "end": 16088.22, + "probability": 0.521 + }, + { + "start": 16088.62, + "end": 16090.14, + "probability": 0.9812 + }, + { + "start": 16090.8, + "end": 16091.5, + "probability": 0.3876 + }, + { + "start": 16091.54, + "end": 16092.82, + "probability": 0.9549 + }, + { + "start": 16107.72, + "end": 16108.4, + "probability": 0.4478 + }, + { + "start": 16108.44, + "end": 16109.12, + "probability": 0.8279 + }, + { + "start": 16109.22, + "end": 16113.24, + "probability": 0.9938 + }, + { + "start": 16113.44, + "end": 16115.38, + "probability": 0.7691 + }, + { + "start": 16115.54, + "end": 16117.7, + "probability": 0.9933 + }, + { + "start": 16118.58, + "end": 16124.56, + "probability": 0.9863 + }, + { + "start": 16124.64, + "end": 16125.86, + "probability": 0.9844 + }, + { + "start": 16126.86, + "end": 16131.6, + "probability": 0.9275 + }, + { + "start": 16133.5, + "end": 16137.9, + "probability": 0.938 + }, + { + "start": 16138.7, + "end": 16142.7, + "probability": 0.9642 + }, + { + "start": 16143.2, + "end": 16147.78, + "probability": 0.9648 + }, + { + "start": 16148.98, + "end": 16151.28, + "probability": 0.979 + }, + { + "start": 16151.94, + "end": 16155.16, + "probability": 0.7627 + }, + { + "start": 16156.16, + "end": 16157.4, + "probability": 0.8694 + }, + { + "start": 16157.96, + "end": 16159.38, + "probability": 0.9888 + }, + { + "start": 16160.02, + "end": 16161.26, + "probability": 0.9846 + }, + { + "start": 16162.0, + "end": 16165.04, + "probability": 0.8879 + }, + { + "start": 16165.86, + "end": 16169.3, + "probability": 0.9951 + }, + { + "start": 16170.34, + "end": 16173.38, + "probability": 0.9439 + }, + { + "start": 16174.7, + "end": 16179.38, + "probability": 0.9829 + }, + { + "start": 16180.02, + "end": 16181.6, + "probability": 0.9741 + }, + { + "start": 16182.72, + "end": 16183.66, + "probability": 0.7568 + }, + { + "start": 16183.74, + "end": 16190.1, + "probability": 0.9562 + }, + { + "start": 16190.82, + "end": 16193.98, + "probability": 0.9455 + }, + { + "start": 16195.3, + "end": 16196.56, + "probability": 0.9542 + }, + { + "start": 16197.12, + "end": 16197.9, + "probability": 0.8928 + }, + { + "start": 16198.46, + "end": 16202.24, + "probability": 0.9884 + }, + { + "start": 16203.56, + "end": 16203.94, + "probability": 0.838 + }, + { + "start": 16203.98, + "end": 16204.74, + "probability": 0.9435 + }, + { + "start": 16205.18, + "end": 16209.48, + "probability": 0.9948 + }, + { + "start": 16210.8, + "end": 16211.22, + "probability": 0.274 + }, + { + "start": 16211.22, + "end": 16217.7, + "probability": 0.9791 + }, + { + "start": 16218.32, + "end": 16220.88, + "probability": 0.9165 + }, + { + "start": 16221.38, + "end": 16222.72, + "probability": 0.8793 + }, + { + "start": 16223.92, + "end": 16225.25, + "probability": 0.7864 + }, + { + "start": 16226.46, + "end": 16227.1, + "probability": 0.2232 + }, + { + "start": 16227.1, + "end": 16233.58, + "probability": 0.8781 + }, + { + "start": 16234.22, + "end": 16236.2, + "probability": 0.9431 + }, + { + "start": 16236.78, + "end": 16241.42, + "probability": 0.9484 + }, + { + "start": 16242.6, + "end": 16243.98, + "probability": 0.6454 + }, + { + "start": 16244.84, + "end": 16246.88, + "probability": 0.7974 + }, + { + "start": 16248.18, + "end": 16251.92, + "probability": 0.936 + }, + { + "start": 16252.9, + "end": 16259.4, + "probability": 0.993 + }, + { + "start": 16260.34, + "end": 16263.72, + "probability": 0.9331 + }, + { + "start": 16265.0, + "end": 16267.43, + "probability": 0.9976 + }, + { + "start": 16268.82, + "end": 16270.26, + "probability": 0.999 + }, + { + "start": 16271.1, + "end": 16274.06, + "probability": 0.9927 + }, + { + "start": 16274.86, + "end": 16277.12, + "probability": 0.9975 + }, + { + "start": 16278.04, + "end": 16280.14, + "probability": 0.743 + }, + { + "start": 16281.1, + "end": 16282.49, + "probability": 0.998 + }, + { + "start": 16283.42, + "end": 16285.04, + "probability": 0.9952 + }, + { + "start": 16286.2, + "end": 16293.14, + "probability": 0.9646 + }, + { + "start": 16294.1, + "end": 16296.06, + "probability": 0.6929 + }, + { + "start": 16296.2, + "end": 16298.08, + "probability": 0.0677 + }, + { + "start": 16298.28, + "end": 16298.28, + "probability": 0.1606 + }, + { + "start": 16298.28, + "end": 16298.28, + "probability": 0.0119 + }, + { + "start": 16298.28, + "end": 16300.3, + "probability": 0.9555 + }, + { + "start": 16300.32, + "end": 16300.76, + "probability": 0.1571 + }, + { + "start": 16301.18, + "end": 16301.6, + "probability": 0.4144 + }, + { + "start": 16301.66, + "end": 16305.1, + "probability": 0.9728 + }, + { + "start": 16305.44, + "end": 16305.94, + "probability": 0.1511 + }, + { + "start": 16306.08, + "end": 16309.88, + "probability": 0.0188 + }, + { + "start": 16310.56, + "end": 16310.76, + "probability": 0.0325 + }, + { + "start": 16310.76, + "end": 16311.54, + "probability": 0.118 + }, + { + "start": 16312.26, + "end": 16312.5, + "probability": 0.0681 + }, + { + "start": 16313.14, + "end": 16316.7, + "probability": 0.5184 + }, + { + "start": 16317.4, + "end": 16318.38, + "probability": 0.4786 + }, + { + "start": 16319.06, + "end": 16320.18, + "probability": 0.5603 + }, + { + "start": 16320.18, + "end": 16322.02, + "probability": 0.7286 + }, + { + "start": 16322.66, + "end": 16323.68, + "probability": 0.5678 + }, + { + "start": 16324.4, + "end": 16325.56, + "probability": 0.7455 + }, + { + "start": 16325.7, + "end": 16326.26, + "probability": 0.4639 + }, + { + "start": 16326.6, + "end": 16328.26, + "probability": 0.6751 + }, + { + "start": 16328.38, + "end": 16329.1, + "probability": 0.4889 + }, + { + "start": 16329.24, + "end": 16331.16, + "probability": 0.8053 + }, + { + "start": 16331.2, + "end": 16331.76, + "probability": 0.8515 + }, + { + "start": 16331.94, + "end": 16333.4, + "probability": 0.9857 + }, + { + "start": 16333.44, + "end": 16334.56, + "probability": 0.8987 + }, + { + "start": 16336.48, + "end": 16337.14, + "probability": 0.357 + }, + { + "start": 16337.14, + "end": 16337.14, + "probability": 0.4616 + }, + { + "start": 16337.14, + "end": 16337.48, + "probability": 0.4782 + }, + { + "start": 16337.52, + "end": 16338.1, + "probability": 0.8414 + }, + { + "start": 16338.2, + "end": 16339.08, + "probability": 0.7206 + }, + { + "start": 16339.18, + "end": 16339.7, + "probability": 0.8881 + }, + { + "start": 16340.46, + "end": 16341.62, + "probability": 0.7784 + }, + { + "start": 16341.7, + "end": 16342.36, + "probability": 0.8428 + }, + { + "start": 16342.42, + "end": 16343.98, + "probability": 0.7919 + }, + { + "start": 16344.16, + "end": 16345.52, + "probability": 0.4967 + }, + { + "start": 16345.56, + "end": 16346.72, + "probability": 0.6035 + }, + { + "start": 16346.82, + "end": 16347.14, + "probability": 0.5303 + }, + { + "start": 16347.28, + "end": 16349.12, + "probability": 0.8529 + }, + { + "start": 16349.22, + "end": 16350.08, + "probability": 0.9248 + }, + { + "start": 16350.12, + "end": 16350.54, + "probability": 0.8418 + }, + { + "start": 16351.26, + "end": 16353.44, + "probability": 0.8761 + }, + { + "start": 16353.98, + "end": 16355.24, + "probability": 0.8044 + }, + { + "start": 16355.26, + "end": 16355.62, + "probability": 0.5178 + }, + { + "start": 16355.74, + "end": 16357.02, + "probability": 0.9641 + }, + { + "start": 16357.1, + "end": 16357.62, + "probability": 0.8573 + }, + { + "start": 16358.4, + "end": 16359.64, + "probability": 0.6544 + }, + { + "start": 16359.7, + "end": 16360.14, + "probability": 0.9396 + }, + { + "start": 16360.2, + "end": 16361.12, + "probability": 0.9177 + }, + { + "start": 16361.2, + "end": 16361.54, + "probability": 0.6788 + }, + { + "start": 16361.7, + "end": 16362.58, + "probability": 0.8094 + }, + { + "start": 16362.66, + "end": 16362.98, + "probability": 0.8907 + }, + { + "start": 16363.16, + "end": 16364.16, + "probability": 0.9536 + }, + { + "start": 16364.64, + "end": 16365.16, + "probability": 0.9648 + }, + { + "start": 16365.32, + "end": 16366.48, + "probability": 0.9837 + }, + { + "start": 16366.64, + "end": 16367.38, + "probability": 0.9508 + }, + { + "start": 16368.12, + "end": 16370.66, + "probability": 0.9405 + }, + { + "start": 16374.25, + "end": 16374.46, + "probability": 0.1923 + }, + { + "start": 16374.46, + "end": 16374.46, + "probability": 0.6497 + }, + { + "start": 16374.46, + "end": 16375.23, + "probability": 0.7432 + }, + { + "start": 16377.88, + "end": 16380.82, + "probability": 0.3935 + }, + { + "start": 16381.02, + "end": 16382.82, + "probability": 0.6301 + }, + { + "start": 16383.1, + "end": 16383.8, + "probability": 0.8857 + }, + { + "start": 16383.9, + "end": 16384.92, + "probability": 0.9325 + }, + { + "start": 16385.36, + "end": 16385.92, + "probability": 0.715 + }, + { + "start": 16386.02, + "end": 16387.66, + "probability": 0.9508 + }, + { + "start": 16388.16, + "end": 16390.08, + "probability": 0.9053 + }, + { + "start": 16390.54, + "end": 16392.4, + "probability": 0.9013 + }, + { + "start": 16392.62, + "end": 16393.44, + "probability": 0.6746 + }, + { + "start": 16393.5, + "end": 16394.82, + "probability": 0.8033 + }, + { + "start": 16398.1, + "end": 16398.62, + "probability": 0.6956 + }, + { + "start": 16399.4, + "end": 16399.86, + "probability": 0.7053 + }, + { + "start": 16400.06, + "end": 16403.06, + "probability": 0.9855 + }, + { + "start": 16403.24, + "end": 16404.94, + "probability": 0.6026 + }, + { + "start": 16405.02, + "end": 16405.62, + "probability": 0.6499 + }, + { + "start": 16405.72, + "end": 16406.06, + "probability": 0.8175 + }, + { + "start": 16406.24, + "end": 16407.8, + "probability": 0.9051 + }, + { + "start": 16408.08, + "end": 16413.88, + "probability": 0.7263 + }, + { + "start": 16413.88, + "end": 16418.26, + "probability": 0.9904 + }, + { + "start": 16418.36, + "end": 16419.62, + "probability": 0.7835 + }, + { + "start": 16419.7, + "end": 16420.84, + "probability": 0.6042 + }, + { + "start": 16421.7, + "end": 16422.58, + "probability": 0.4136 + }, + { + "start": 16423.06, + "end": 16425.3, + "probability": 0.269 + }, + { + "start": 16436.3, + "end": 16444.42, + "probability": 0.4863 + }, + { + "start": 16444.42, + "end": 16447.36, + "probability": 0.1202 + }, + { + "start": 16447.36, + "end": 16447.42, + "probability": 0.5503 + }, + { + "start": 16447.88, + "end": 16450.94, + "probability": 0.7358 + }, + { + "start": 16451.18, + "end": 16453.21, + "probability": 0.9106 + }, + { + "start": 16456.9, + "end": 16457.4, + "probability": 0.0202 + }, + { + "start": 16457.92, + "end": 16459.44, + "probability": 0.1258 + }, + { + "start": 16460.6, + "end": 16461.5, + "probability": 0.0266 + }, + { + "start": 16465.27, + "end": 16466.34, + "probability": 0.0805 + }, + { + "start": 16466.42, + "end": 16467.06, + "probability": 0.1144 + }, + { + "start": 16467.08, + "end": 16468.4, + "probability": 0.2041 + }, + { + "start": 16469.34, + "end": 16469.56, + "probability": 0.1124 + }, + { + "start": 16469.56, + "end": 16472.56, + "probability": 0.0999 + }, + { + "start": 16472.72, + "end": 16477.78, + "probability": 0.1073 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16529.0, + "end": 16529.0, + "probability": 0.0 + }, + { + "start": 16534.43, + "end": 16535.66, + "probability": 0.64 + }, + { + "start": 16536.36, + "end": 16537.16, + "probability": 0.5817 + }, + { + "start": 16537.34, + "end": 16540.86, + "probability": 0.908 + }, + { + "start": 16541.72, + "end": 16544.26, + "probability": 0.194 + }, + { + "start": 16544.74, + "end": 16546.98, + "probability": 0.9104 + }, + { + "start": 16547.0, + "end": 16549.7, + "probability": 0.9108 + }, + { + "start": 16549.84, + "end": 16551.84, + "probability": 0.1954 + }, + { + "start": 16552.62, + "end": 16555.64, + "probability": 0.9959 + }, + { + "start": 16556.08, + "end": 16558.88, + "probability": 0.9882 + }, + { + "start": 16559.74, + "end": 16561.8, + "probability": 0.8533 + }, + { + "start": 16561.98, + "end": 16566.2, + "probability": 0.8697 + }, + { + "start": 16566.32, + "end": 16566.86, + "probability": 0.9147 + }, + { + "start": 16567.5, + "end": 16569.78, + "probability": 0.9896 + }, + { + "start": 16569.78, + "end": 16572.52, + "probability": 0.9588 + }, + { + "start": 16573.8, + "end": 16575.94, + "probability": 0.8373 + }, + { + "start": 16575.94, + "end": 16578.38, + "probability": 0.3411 + }, + { + "start": 16578.98, + "end": 16584.42, + "probability": 0.9379 + }, + { + "start": 16585.28, + "end": 16591.26, + "probability": 0.9292 + }, + { + "start": 16591.26, + "end": 16594.32, + "probability": 0.9964 + }, + { + "start": 16595.38, + "end": 16597.66, + "probability": 0.9504 + }, + { + "start": 16597.66, + "end": 16601.08, + "probability": 0.9847 + }, + { + "start": 16601.8, + "end": 16602.08, + "probability": 0.3741 + }, + { + "start": 16602.82, + "end": 16607.56, + "probability": 0.9954 + }, + { + "start": 16607.94, + "end": 16613.74, + "probability": 0.897 + }, + { + "start": 16614.14, + "end": 16614.64, + "probability": 0.7813 + }, + { + "start": 16615.54, + "end": 16615.76, + "probability": 0.3207 + }, + { + "start": 16615.98, + "end": 16619.42, + "probability": 0.9958 + }, + { + "start": 16619.46, + "end": 16623.46, + "probability": 0.9941 + }, + { + "start": 16624.22, + "end": 16624.72, + "probability": 0.9274 + }, + { + "start": 16625.66, + "end": 16629.7, + "probability": 0.9378 + }, + { + "start": 16629.7, + "end": 16638.36, + "probability": 0.9936 + }, + { + "start": 16639.52, + "end": 16643.68, + "probability": 0.9747 + }, + { + "start": 16643.68, + "end": 16647.8, + "probability": 0.9946 + }, + { + "start": 16647.8, + "end": 16654.28, + "probability": 0.9544 + }, + { + "start": 16654.5, + "end": 16656.86, + "probability": 0.8923 + }, + { + "start": 16656.9, + "end": 16657.76, + "probability": 0.6865 + }, + { + "start": 16657.86, + "end": 16661.9, + "probability": 0.9547 + }, + { + "start": 16661.9, + "end": 16665.22, + "probability": 0.8469 + }, + { + "start": 16665.26, + "end": 16668.0, + "probability": 0.7526 + }, + { + "start": 16668.1, + "end": 16672.58, + "probability": 0.9784 + }, + { + "start": 16673.43, + "end": 16677.26, + "probability": 0.9364 + }, + { + "start": 16677.44, + "end": 16678.86, + "probability": 0.9001 + }, + { + "start": 16679.66, + "end": 16683.12, + "probability": 0.8796 + }, + { + "start": 16683.16, + "end": 16685.42, + "probability": 0.9565 + }, + { + "start": 16686.02, + "end": 16688.36, + "probability": 0.9083 + }, + { + "start": 16688.36, + "end": 16692.22, + "probability": 0.9929 + }, + { + "start": 16693.1, + "end": 16694.12, + "probability": 0.8247 + }, + { + "start": 16695.14, + "end": 16699.74, + "probability": 0.9869 + }, + { + "start": 16700.3, + "end": 16702.44, + "probability": 0.809 + }, + { + "start": 16702.5, + "end": 16706.76, + "probability": 0.9187 + }, + { + "start": 16706.86, + "end": 16707.32, + "probability": 0.7457 + }, + { + "start": 16709.88, + "end": 16711.36, + "probability": 0.7595 + }, + { + "start": 16711.46, + "end": 16713.34, + "probability": 0.9238 + }, + { + "start": 16714.42, + "end": 16714.96, + "probability": 0.8094 + }, + { + "start": 16716.41, + "end": 16717.74, + "probability": 0.6693 + }, + { + "start": 16718.86, + "end": 16719.82, + "probability": 0.5725 + }, + { + "start": 16721.12, + "end": 16722.86, + "probability": 0.9386 + }, + { + "start": 16722.96, + "end": 16723.7, + "probability": 0.5608 + }, + { + "start": 16723.74, + "end": 16724.88, + "probability": 0.9305 + }, + { + "start": 16724.98, + "end": 16726.78, + "probability": 0.8731 + }, + { + "start": 16727.34, + "end": 16728.02, + "probability": 0.807 + }, + { + "start": 16728.54, + "end": 16729.48, + "probability": 0.6478 + }, + { + "start": 16729.58, + "end": 16729.86, + "probability": 0.6042 + }, + { + "start": 16730.02, + "end": 16731.06, + "probability": 0.9473 + }, + { + "start": 16731.16, + "end": 16731.8, + "probability": 0.8779 + }, + { + "start": 16732.28, + "end": 16733.84, + "probability": 0.8126 + }, + { + "start": 16736.86, + "end": 16740.84, + "probability": 0.3729 + }, + { + "start": 16741.44, + "end": 16743.92, + "probability": 0.7946 + }, + { + "start": 16744.86, + "end": 16745.62, + "probability": 0.2805 + }, + { + "start": 16745.72, + "end": 16746.56, + "probability": 0.2712 + }, + { + "start": 16746.94, + "end": 16747.48, + "probability": 0.7763 + }, + { + "start": 16747.64, + "end": 16748.04, + "probability": 0.9302 + }, + { + "start": 16756.02, + "end": 16761.36, + "probability": 0.1004 + }, + { + "start": 16763.98, + "end": 16767.14, + "probability": 0.1641 + }, + { + "start": 16767.7, + "end": 16769.0, + "probability": 0.6816 + }, + { + "start": 16769.82, + "end": 16771.54, + "probability": 0.0134 + }, + { + "start": 16771.56, + "end": 16772.46, + "probability": 0.396 + }, + { + "start": 16772.5, + "end": 16773.52, + "probability": 0.4064 + }, + { + "start": 16774.16, + "end": 16776.44, + "probability": 0.5452 + }, + { + "start": 16777.04, + "end": 16778.5, + "probability": 0.4426 + }, + { + "start": 16778.78, + "end": 16779.36, + "probability": 0.6938 + }, + { + "start": 16779.46, + "end": 16780.92, + "probability": 0.4454 + }, + { + "start": 16781.64, + "end": 16781.88, + "probability": 0.4969 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16852.01, + "end": 16855.33, + "probability": 0.0474 + }, + { + "start": 16857.56, + "end": 16858.2, + "probability": 0.0213 + }, + { + "start": 16860.4, + "end": 16864.46, + "probability": 0.325 + }, + { + "start": 16865.7, + "end": 16870.02, + "probability": 0.0476 + }, + { + "start": 16870.02, + "end": 16870.1, + "probability": 0.1863 + }, + { + "start": 16968.11, + "end": 16968.11, + "probability": 0.0 + }, + { + "start": 16968.11, + "end": 16968.11, + "probability": 0.0 + }, + { + "start": 16968.11, + "end": 16968.11, + "probability": 0.0 + } + ], + "segments_count": 5987, + "words_count": 29522, + "avg_words_per_segment": 4.931, + "avg_segment_duration": 1.9915, + "avg_words_per_minute": 104.3912, + "plenum_id": "126994", + "duration": 16968.1, + "title": null, + "plenum_date": "2024-06-03" +} \ No newline at end of file