diff --git "a/135114/metadata.json" "b/135114/metadata.json" new file mode 100644--- /dev/null +++ "b/135114/metadata.json" @@ -0,0 +1,82442 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "135114", + "quality_score": 0.896, + "per_segment_quality_scores": [ + { + "start": 16.2, + "end": 20.14, + "probability": 0.559 + }, + { + "start": 21.08, + "end": 27.2, + "probability": 0.9154 + }, + { + "start": 27.9, + "end": 30.2, + "probability": 0.9844 + }, + { + "start": 30.8, + "end": 31.7, + "probability": 0.7711 + }, + { + "start": 31.88, + "end": 33.64, + "probability": 0.9707 + }, + { + "start": 34.32, + "end": 34.84, + "probability": 0.949 + }, + { + "start": 35.76, + "end": 38.18, + "probability": 0.7653 + }, + { + "start": 39.04, + "end": 39.4, + "probability": 0.429 + }, + { + "start": 39.54, + "end": 40.86, + "probability": 0.8381 + }, + { + "start": 40.94, + "end": 41.6, + "probability": 0.931 + }, + { + "start": 41.68, + "end": 45.06, + "probability": 0.8976 + }, + { + "start": 45.48, + "end": 48.98, + "probability": 0.9872 + }, + { + "start": 48.98, + "end": 53.2, + "probability": 0.9819 + }, + { + "start": 53.76, + "end": 56.88, + "probability": 0.926 + }, + { + "start": 57.5, + "end": 58.0, + "probability": 0.8676 + }, + { + "start": 61.58, + "end": 63.04, + "probability": 0.8494 + }, + { + "start": 63.42, + "end": 65.82, + "probability": 0.7285 + }, + { + "start": 66.16, + "end": 66.8, + "probability": 0.9194 + }, + { + "start": 66.94, + "end": 72.3, + "probability": 0.9443 + }, + { + "start": 73.08, + "end": 76.0, + "probability": 0.9942 + }, + { + "start": 76.04, + "end": 76.96, + "probability": 0.7128 + }, + { + "start": 77.58, + "end": 81.58, + "probability": 0.9018 + }, + { + "start": 81.82, + "end": 85.8, + "probability": 0.9956 + }, + { + "start": 86.0, + "end": 86.22, + "probability": 0.659 + }, + { + "start": 86.4, + "end": 87.0, + "probability": 0.5466 + }, + { + "start": 87.08, + "end": 87.7, + "probability": 0.5418 + }, + { + "start": 87.9, + "end": 89.23, + "probability": 0.9155 + }, + { + "start": 91.22, + "end": 94.78, + "probability": 0.9125 + }, + { + "start": 95.52, + "end": 98.89, + "probability": 0.9512 + }, + { + "start": 98.96, + "end": 103.02, + "probability": 0.8795 + }, + { + "start": 103.66, + "end": 103.66, + "probability": 0.5468 + }, + { + "start": 103.66, + "end": 103.66, + "probability": 0.8842 + }, + { + "start": 103.66, + "end": 105.9, + "probability": 0.8193 + }, + { + "start": 110.02, + "end": 113.9, + "probability": 0.9403 + }, + { + "start": 114.92, + "end": 116.56, + "probability": 0.7016 + }, + { + "start": 117.26, + "end": 126.02, + "probability": 0.9915 + }, + { + "start": 126.16, + "end": 127.94, + "probability": 0.9497 + }, + { + "start": 128.16, + "end": 129.24, + "probability": 0.8885 + }, + { + "start": 129.96, + "end": 132.32, + "probability": 0.916 + }, + { + "start": 132.36, + "end": 137.12, + "probability": 0.9595 + }, + { + "start": 137.22, + "end": 138.46, + "probability": 0.9729 + }, + { + "start": 139.48, + "end": 143.08, + "probability": 0.9373 + }, + { + "start": 143.16, + "end": 144.04, + "probability": 0.9786 + }, + { + "start": 145.24, + "end": 146.34, + "probability": 0.3013 + }, + { + "start": 146.36, + "end": 147.96, + "probability": 0.9232 + }, + { + "start": 148.16, + "end": 152.28, + "probability": 0.96 + }, + { + "start": 152.9, + "end": 158.92, + "probability": 0.9938 + }, + { + "start": 159.56, + "end": 161.63, + "probability": 0.9718 + }, + { + "start": 162.32, + "end": 168.28, + "probability": 0.9919 + }, + { + "start": 169.16, + "end": 169.8, + "probability": 0.6437 + }, + { + "start": 169.82, + "end": 170.44, + "probability": 0.5954 + }, + { + "start": 170.62, + "end": 171.62, + "probability": 0.3032 + }, + { + "start": 172.4, + "end": 177.58, + "probability": 0.9905 + }, + { + "start": 177.76, + "end": 180.54, + "probability": 0.647 + }, + { + "start": 181.14, + "end": 183.06, + "probability": 0.6834 + }, + { + "start": 183.28, + "end": 185.64, + "probability": 0.9604 + }, + { + "start": 186.2, + "end": 188.74, + "probability": 0.6464 + }, + { + "start": 189.26, + "end": 190.72, + "probability": 0.9966 + }, + { + "start": 191.24, + "end": 192.96, + "probability": 0.9772 + }, + { + "start": 193.1, + "end": 196.96, + "probability": 0.9985 + }, + { + "start": 197.82, + "end": 201.02, + "probability": 0.9038 + }, + { + "start": 201.48, + "end": 203.1, + "probability": 0.7993 + }, + { + "start": 203.62, + "end": 205.3, + "probability": 0.9957 + }, + { + "start": 205.34, + "end": 205.9, + "probability": 0.9548 + }, + { + "start": 206.46, + "end": 211.85, + "probability": 0.9944 + }, + { + "start": 212.44, + "end": 213.12, + "probability": 0.7723 + }, + { + "start": 213.42, + "end": 214.62, + "probability": 0.6947 + }, + { + "start": 214.74, + "end": 216.36, + "probability": 0.9683 + }, + { + "start": 216.5, + "end": 217.62, + "probability": 0.3423 + }, + { + "start": 217.66, + "end": 218.18, + "probability": 0.8605 + }, + { + "start": 226.12, + "end": 228.14, + "probability": 0.9012 + }, + { + "start": 231.24, + "end": 234.2, + "probability": 0.3112 + }, + { + "start": 234.84, + "end": 235.24, + "probability": 0.3926 + }, + { + "start": 235.62, + "end": 235.86, + "probability": 0.7149 + }, + { + "start": 235.98, + "end": 236.5, + "probability": 0.7456 + }, + { + "start": 236.62, + "end": 237.34, + "probability": 0.8733 + }, + { + "start": 237.62, + "end": 240.31, + "probability": 0.9657 + }, + { + "start": 241.4, + "end": 243.84, + "probability": 0.6528 + }, + { + "start": 244.28, + "end": 246.68, + "probability": 0.9669 + }, + { + "start": 246.78, + "end": 247.34, + "probability": 0.9976 + }, + { + "start": 248.58, + "end": 250.06, + "probability": 0.9879 + }, + { + "start": 251.22, + "end": 251.24, + "probability": 0.3823 + }, + { + "start": 251.36, + "end": 252.08, + "probability": 0.8947 + }, + { + "start": 252.14, + "end": 253.4, + "probability": 0.8686 + }, + { + "start": 253.5, + "end": 255.46, + "probability": 0.9282 + }, + { + "start": 255.9, + "end": 259.78, + "probability": 0.9913 + }, + { + "start": 259.9, + "end": 260.4, + "probability": 0.5786 + }, + { + "start": 260.69, + "end": 262.0, + "probability": 0.7961 + }, + { + "start": 262.28, + "end": 264.0, + "probability": 0.9161 + }, + { + "start": 264.66, + "end": 267.34, + "probability": 0.8759 + }, + { + "start": 267.64, + "end": 271.44, + "probability": 0.9929 + }, + { + "start": 271.76, + "end": 275.6, + "probability": 0.9789 + }, + { + "start": 276.28, + "end": 279.32, + "probability": 0.8689 + }, + { + "start": 280.16, + "end": 287.82, + "probability": 0.9814 + }, + { + "start": 288.44, + "end": 289.26, + "probability": 0.8318 + }, + { + "start": 289.3, + "end": 295.26, + "probability": 0.998 + }, + { + "start": 295.8, + "end": 297.54, + "probability": 0.6756 + }, + { + "start": 297.72, + "end": 299.98, + "probability": 0.7687 + }, + { + "start": 301.54, + "end": 308.5, + "probability": 0.7231 + }, + { + "start": 308.5, + "end": 308.5, + "probability": 0.0019 + }, + { + "start": 311.38, + "end": 311.54, + "probability": 0.095 + }, + { + "start": 311.54, + "end": 311.54, + "probability": 0.1714 + }, + { + "start": 311.54, + "end": 311.66, + "probability": 0.0293 + }, + { + "start": 311.72, + "end": 312.6, + "probability": 0.4807 + }, + { + "start": 312.6, + "end": 312.62, + "probability": 0.4143 + }, + { + "start": 312.7, + "end": 313.0, + "probability": 0.9167 + }, + { + "start": 313.34, + "end": 314.36, + "probability": 0.8083 + }, + { + "start": 315.22, + "end": 318.8, + "probability": 0.9226 + }, + { + "start": 320.62, + "end": 322.34, + "probability": 0.9924 + }, + { + "start": 322.42, + "end": 323.44, + "probability": 0.9172 + }, + { + "start": 324.04, + "end": 324.78, + "probability": 0.9314 + }, + { + "start": 324.82, + "end": 326.24, + "probability": 0.8137 + }, + { + "start": 326.28, + "end": 327.2, + "probability": 0.8101 + }, + { + "start": 327.32, + "end": 328.04, + "probability": 0.7311 + }, + { + "start": 328.14, + "end": 330.06, + "probability": 0.9439 + }, + { + "start": 330.16, + "end": 331.7, + "probability": 0.7032 + }, + { + "start": 331.92, + "end": 332.36, + "probability": 0.8044 + }, + { + "start": 332.82, + "end": 333.76, + "probability": 0.9038 + }, + { + "start": 333.76, + "end": 335.74, + "probability": 0.9481 + }, + { + "start": 335.78, + "end": 339.4, + "probability": 0.93 + }, + { + "start": 339.84, + "end": 341.34, + "probability": 0.9248 + }, + { + "start": 341.62, + "end": 342.66, + "probability": 0.8461 + }, + { + "start": 343.22, + "end": 344.03, + "probability": 0.6035 + }, + { + "start": 344.1, + "end": 344.86, + "probability": 0.5242 + }, + { + "start": 344.94, + "end": 345.86, + "probability": 0.8013 + }, + { + "start": 346.28, + "end": 348.36, + "probability": 0.976 + }, + { + "start": 349.56, + "end": 355.32, + "probability": 0.9388 + }, + { + "start": 355.78, + "end": 355.86, + "probability": 0.408 + }, + { + "start": 355.86, + "end": 357.82, + "probability": 0.9366 + }, + { + "start": 358.12, + "end": 358.88, + "probability": 0.8524 + }, + { + "start": 359.0, + "end": 360.64, + "probability": 0.9369 + }, + { + "start": 361.26, + "end": 363.18, + "probability": 0.9977 + }, + { + "start": 363.22, + "end": 367.02, + "probability": 0.8987 + }, + { + "start": 367.6, + "end": 369.6, + "probability": 0.8278 + }, + { + "start": 369.78, + "end": 370.64, + "probability": 0.669 + }, + { + "start": 370.7, + "end": 371.7, + "probability": 0.8763 + }, + { + "start": 372.08, + "end": 372.62, + "probability": 0.812 + }, + { + "start": 372.7, + "end": 373.84, + "probability": 0.972 + }, + { + "start": 373.88, + "end": 377.46, + "probability": 0.9214 + }, + { + "start": 377.6, + "end": 379.0, + "probability": 0.9187 + }, + { + "start": 379.42, + "end": 381.12, + "probability": 0.9216 + }, + { + "start": 381.82, + "end": 385.34, + "probability": 0.9438 + }, + { + "start": 385.7, + "end": 386.38, + "probability": 0.5726 + }, + { + "start": 386.38, + "end": 387.32, + "probability": 0.8857 + }, + { + "start": 387.44, + "end": 389.68, + "probability": 0.6888 + }, + { + "start": 389.82, + "end": 391.42, + "probability": 0.9889 + }, + { + "start": 391.54, + "end": 391.64, + "probability": 0.4285 + }, + { + "start": 394.0, + "end": 394.5, + "probability": 0.6525 + }, + { + "start": 394.96, + "end": 398.58, + "probability": 0.9565 + }, + { + "start": 399.52, + "end": 401.66, + "probability": 0.9409 + }, + { + "start": 401.92, + "end": 406.3, + "probability": 0.9559 + }, + { + "start": 406.78, + "end": 410.02, + "probability": 0.9593 + }, + { + "start": 410.9, + "end": 412.18, + "probability": 0.7988 + }, + { + "start": 412.26, + "end": 414.32, + "probability": 0.9933 + }, + { + "start": 414.46, + "end": 416.62, + "probability": 0.9975 + }, + { + "start": 417.24, + "end": 419.08, + "probability": 0.7703 + }, + { + "start": 419.2, + "end": 421.38, + "probability": 0.984 + }, + { + "start": 421.38, + "end": 425.04, + "probability": 0.978 + }, + { + "start": 425.12, + "end": 427.48, + "probability": 0.7945 + }, + { + "start": 428.22, + "end": 431.38, + "probability": 0.9243 + }, + { + "start": 431.94, + "end": 434.06, + "probability": 0.9683 + }, + { + "start": 434.66, + "end": 435.08, + "probability": 0.0979 + }, + { + "start": 435.08, + "end": 435.66, + "probability": 0.2323 + }, + { + "start": 438.87, + "end": 443.32, + "probability": 0.8758 + }, + { + "start": 443.7, + "end": 445.2, + "probability": 0.9529 + }, + { + "start": 445.34, + "end": 446.93, + "probability": 0.9937 + }, + { + "start": 447.96, + "end": 449.78, + "probability": 0.9797 + }, + { + "start": 449.84, + "end": 450.76, + "probability": 0.9855 + }, + { + "start": 450.8, + "end": 456.04, + "probability": 0.9624 + }, + { + "start": 456.08, + "end": 457.61, + "probability": 0.9914 + }, + { + "start": 458.26, + "end": 458.96, + "probability": 0.9579 + }, + { + "start": 460.02, + "end": 461.76, + "probability": 0.9951 + }, + { + "start": 461.86, + "end": 463.02, + "probability": 0.9929 + }, + { + "start": 463.26, + "end": 464.46, + "probability": 0.8901 + }, + { + "start": 464.88, + "end": 469.76, + "probability": 0.9667 + }, + { + "start": 470.24, + "end": 474.32, + "probability": 0.9709 + }, + { + "start": 474.62, + "end": 475.74, + "probability": 0.9144 + }, + { + "start": 475.78, + "end": 480.02, + "probability": 0.1911 + }, + { + "start": 482.0, + "end": 484.34, + "probability": 0.5901 + }, + { + "start": 485.7, + "end": 487.32, + "probability": 0.2527 + }, + { + "start": 488.6, + "end": 490.4, + "probability": 0.9334 + }, + { + "start": 490.6, + "end": 494.06, + "probability": 0.7473 + }, + { + "start": 495.36, + "end": 498.24, + "probability": 0.7693 + }, + { + "start": 498.4, + "end": 501.46, + "probability": 0.9927 + }, + { + "start": 501.54, + "end": 503.44, + "probability": 0.9497 + }, + { + "start": 503.96, + "end": 508.7, + "probability": 0.9731 + }, + { + "start": 509.16, + "end": 513.74, + "probability": 0.9029 + }, + { + "start": 514.42, + "end": 515.46, + "probability": 0.8682 + }, + { + "start": 517.44, + "end": 523.34, + "probability": 0.9912 + }, + { + "start": 523.48, + "end": 523.8, + "probability": 0.8517 + }, + { + "start": 524.08, + "end": 526.68, + "probability": 0.9895 + }, + { + "start": 527.1, + "end": 530.66, + "probability": 0.9951 + }, + { + "start": 530.66, + "end": 533.74, + "probability": 0.8923 + }, + { + "start": 533.86, + "end": 536.16, + "probability": 0.9921 + }, + { + "start": 542.31, + "end": 544.61, + "probability": 0.9819 + }, + { + "start": 546.38, + "end": 549.36, + "probability": 0.5957 + }, + { + "start": 550.2, + "end": 553.96, + "probability": 0.9944 + }, + { + "start": 554.74, + "end": 556.04, + "probability": 0.6951 + }, + { + "start": 557.74, + "end": 558.94, + "probability": 0.9194 + }, + { + "start": 559.64, + "end": 560.64, + "probability": 0.7573 + }, + { + "start": 563.52, + "end": 565.48, + "probability": 0.7099 + }, + { + "start": 565.92, + "end": 566.88, + "probability": 0.9353 + }, + { + "start": 567.28, + "end": 568.38, + "probability": 0.5532 + }, + { + "start": 569.68, + "end": 570.68, + "probability": 0.7779 + }, + { + "start": 570.74, + "end": 572.43, + "probability": 0.7086 + }, + { + "start": 572.78, + "end": 578.94, + "probability": 0.9187 + }, + { + "start": 579.02, + "end": 580.2, + "probability": 0.9044 + }, + { + "start": 580.36, + "end": 581.04, + "probability": 0.6678 + }, + { + "start": 581.72, + "end": 585.78, + "probability": 0.8474 + }, + { + "start": 585.86, + "end": 588.6, + "probability": 0.9393 + }, + { + "start": 588.6, + "end": 591.44, + "probability": 0.9839 + }, + { + "start": 592.26, + "end": 592.95, + "probability": 0.3435 + }, + { + "start": 593.1, + "end": 596.18, + "probability": 0.9788 + }, + { + "start": 596.72, + "end": 597.6, + "probability": 0.6187 + }, + { + "start": 598.1, + "end": 598.82, + "probability": 0.844 + }, + { + "start": 608.64, + "end": 609.96, + "probability": 0.7011 + }, + { + "start": 610.22, + "end": 612.9, + "probability": 0.8693 + }, + { + "start": 613.54, + "end": 616.22, + "probability": 0.9979 + }, + { + "start": 616.22, + "end": 618.92, + "probability": 0.958 + }, + { + "start": 619.76, + "end": 625.62, + "probability": 0.9261 + }, + { + "start": 625.62, + "end": 628.34, + "probability": 0.9679 + }, + { + "start": 628.9, + "end": 631.98, + "probability": 0.5797 + }, + { + "start": 633.66, + "end": 634.68, + "probability": 0.8513 + }, + { + "start": 635.36, + "end": 638.3, + "probability": 0.9904 + }, + { + "start": 638.98, + "end": 640.28, + "probability": 0.8244 + }, + { + "start": 641.1, + "end": 644.26, + "probability": 0.6478 + }, + { + "start": 644.26, + "end": 648.4, + "probability": 0.9653 + }, + { + "start": 649.08, + "end": 653.22, + "probability": 0.8085 + }, + { + "start": 653.54, + "end": 655.66, + "probability": 0.9727 + }, + { + "start": 656.36, + "end": 660.32, + "probability": 0.899 + }, + { + "start": 660.82, + "end": 664.68, + "probability": 0.8181 + }, + { + "start": 666.24, + "end": 669.32, + "probability": 0.9932 + }, + { + "start": 669.32, + "end": 674.4, + "probability": 0.9291 + }, + { + "start": 675.04, + "end": 678.18, + "probability": 0.9791 + }, + { + "start": 678.84, + "end": 680.8, + "probability": 0.8257 + }, + { + "start": 681.28, + "end": 685.74, + "probability": 0.9893 + }, + { + "start": 686.72, + "end": 691.8, + "probability": 0.009 + }, + { + "start": 693.16, + "end": 694.64, + "probability": 0.0565 + }, + { + "start": 706.54, + "end": 707.34, + "probability": 0.0046 + }, + { + "start": 709.42, + "end": 711.74, + "probability": 0.1341 + }, + { + "start": 712.66, + "end": 713.3, + "probability": 0.2113 + }, + { + "start": 715.68, + "end": 717.62, + "probability": 0.0703 + }, + { + "start": 717.62, + "end": 718.5, + "probability": 0.0099 + }, + { + "start": 719.2, + "end": 724.8, + "probability": 0.0151 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.0, + "end": 782.0, + "probability": 0.0 + }, + { + "start": 782.92, + "end": 782.92, + "probability": 0.0357 + }, + { + "start": 782.92, + "end": 785.08, + "probability": 0.9 + }, + { + "start": 785.68, + "end": 789.86, + "probability": 0.7263 + }, + { + "start": 790.44, + "end": 792.82, + "probability": 0.9955 + }, + { + "start": 793.04, + "end": 797.62, + "probability": 0.9845 + }, + { + "start": 797.72, + "end": 798.84, + "probability": 0.6675 + }, + { + "start": 799.58, + "end": 800.02, + "probability": 0.5633 + }, + { + "start": 800.1, + "end": 804.06, + "probability": 0.9892 + }, + { + "start": 804.06, + "end": 808.44, + "probability": 0.98 + }, + { + "start": 809.64, + "end": 810.36, + "probability": 0.0773 + }, + { + "start": 812.04, + "end": 814.02, + "probability": 0.0215 + }, + { + "start": 815.62, + "end": 816.98, + "probability": 0.0203 + }, + { + "start": 817.34, + "end": 819.62, + "probability": 0.2386 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.0, + "end": 918.0, + "probability": 0.0 + }, + { + "start": 918.12, + "end": 918.16, + "probability": 0.2163 + }, + { + "start": 918.16, + "end": 920.74, + "probability": 0.6916 + }, + { + "start": 925.68, + "end": 928.22, + "probability": 0.7888 + }, + { + "start": 928.26, + "end": 929.54, + "probability": 0.875 + }, + { + "start": 930.1, + "end": 931.5, + "probability": 0.861 + }, + { + "start": 932.26, + "end": 940.9, + "probability": 0.9862 + }, + { + "start": 941.0, + "end": 942.4, + "probability": 0.9489 + }, + { + "start": 943.7, + "end": 950.9, + "probability": 0.9993 + }, + { + "start": 950.9, + "end": 956.6, + "probability": 0.9998 + }, + { + "start": 957.38, + "end": 962.66, + "probability": 0.9995 + }, + { + "start": 963.2, + "end": 967.56, + "probability": 0.9803 + }, + { + "start": 968.22, + "end": 973.68, + "probability": 0.8203 + }, + { + "start": 973.68, + "end": 976.24, + "probability": 0.9923 + }, + { + "start": 976.86, + "end": 978.4, + "probability": 0.9565 + }, + { + "start": 979.48, + "end": 980.06, + "probability": 0.418 + }, + { + "start": 980.12, + "end": 982.04, + "probability": 0.7858 + }, + { + "start": 986.56, + "end": 987.24, + "probability": 0.8001 + }, + { + "start": 987.34, + "end": 990.22, + "probability": 0.9964 + }, + { + "start": 990.22, + "end": 993.52, + "probability": 0.9701 + }, + { + "start": 994.48, + "end": 997.52, + "probability": 0.9896 + }, + { + "start": 999.18, + "end": 1000.42, + "probability": 0.8646 + }, + { + "start": 1000.74, + "end": 1003.9, + "probability": 0.7155 + }, + { + "start": 1004.0, + "end": 1005.42, + "probability": 0.9775 + }, + { + "start": 1006.16, + "end": 1007.7, + "probability": 0.9753 + }, + { + "start": 1008.3, + "end": 1013.28, + "probability": 0.9734 + }, + { + "start": 1013.8, + "end": 1019.14, + "probability": 0.9829 + }, + { + "start": 1019.74, + "end": 1022.56, + "probability": 0.9884 + }, + { + "start": 1022.56, + "end": 1025.3, + "probability": 0.9607 + }, + { + "start": 1025.82, + "end": 1026.38, + "probability": 0.8406 + }, + { + "start": 1027.08, + "end": 1032.92, + "probability": 0.9515 + }, + { + "start": 1033.46, + "end": 1036.78, + "probability": 0.9791 + }, + { + "start": 1036.86, + "end": 1037.35, + "probability": 0.064 + }, + { + "start": 1038.84, + "end": 1040.7, + "probability": 0.2128 + }, + { + "start": 1040.7, + "end": 1042.26, + "probability": 0.3167 + }, + { + "start": 1042.3, + "end": 1044.0, + "probability": 0.8253 + }, + { + "start": 1044.38, + "end": 1047.96, + "probability": 0.7674 + }, + { + "start": 1048.16, + "end": 1049.2, + "probability": 0.8159 + }, + { + "start": 1049.24, + "end": 1050.12, + "probability": 0.4663 + }, + { + "start": 1050.26, + "end": 1050.72, + "probability": 0.8341 + }, + { + "start": 1050.74, + "end": 1053.56, + "probability": 0.655 + }, + { + "start": 1053.68, + "end": 1055.48, + "probability": 0.6535 + }, + { + "start": 1055.58, + "end": 1059.28, + "probability": 0.9914 + }, + { + "start": 1059.62, + "end": 1062.41, + "probability": 0.666 + }, + { + "start": 1062.62, + "end": 1067.14, + "probability": 0.7586 + }, + { + "start": 1067.14, + "end": 1069.62, + "probability": 0.9879 + }, + { + "start": 1070.24, + "end": 1072.48, + "probability": 0.7629 + }, + { + "start": 1072.92, + "end": 1075.6, + "probability": 0.8787 + }, + { + "start": 1076.4, + "end": 1079.16, + "probability": 0.8944 + }, + { + "start": 1080.02, + "end": 1081.68, + "probability": 0.9513 + }, + { + "start": 1082.02, + "end": 1083.12, + "probability": 0.5663 + }, + { + "start": 1083.39, + "end": 1085.74, + "probability": 0.8148 + }, + { + "start": 1085.8, + "end": 1088.74, + "probability": 0.9941 + }, + { + "start": 1089.78, + "end": 1090.94, + "probability": 0.8882 + }, + { + "start": 1091.14, + "end": 1093.67, + "probability": 0.9537 + }, + { + "start": 1094.48, + "end": 1095.92, + "probability": 0.7383 + }, + { + "start": 1096.66, + "end": 1097.7, + "probability": 0.7897 + }, + { + "start": 1098.26, + "end": 1100.96, + "probability": 0.81 + }, + { + "start": 1101.78, + "end": 1103.36, + "probability": 0.875 + }, + { + "start": 1104.56, + "end": 1107.12, + "probability": 0.7292 + }, + { + "start": 1107.64, + "end": 1108.42, + "probability": 0.6359 + }, + { + "start": 1108.98, + "end": 1112.04, + "probability": 0.98 + }, + { + "start": 1112.82, + "end": 1118.24, + "probability": 0.978 + }, + { + "start": 1118.32, + "end": 1121.1, + "probability": 0.8718 + }, + { + "start": 1121.42, + "end": 1123.18, + "probability": 0.8939 + }, + { + "start": 1124.0, + "end": 1127.68, + "probability": 0.9893 + }, + { + "start": 1128.88, + "end": 1130.42, + "probability": 0.6315 + }, + { + "start": 1131.1, + "end": 1133.4, + "probability": 0.9255 + }, + { + "start": 1134.78, + "end": 1137.5, + "probability": 0.6206 + }, + { + "start": 1137.58, + "end": 1138.68, + "probability": 0.9926 + }, + { + "start": 1139.26, + "end": 1141.82, + "probability": 0.9583 + }, + { + "start": 1142.64, + "end": 1142.78, + "probability": 0.7595 + }, + { + "start": 1142.94, + "end": 1143.54, + "probability": 0.8564 + }, + { + "start": 1143.64, + "end": 1145.0, + "probability": 0.9722 + }, + { + "start": 1145.14, + "end": 1145.62, + "probability": 0.8809 + }, + { + "start": 1145.92, + "end": 1146.34, + "probability": 0.6957 + }, + { + "start": 1147.42, + "end": 1148.57, + "probability": 0.9808 + }, + { + "start": 1148.66, + "end": 1151.98, + "probability": 0.9795 + }, + { + "start": 1153.26, + "end": 1155.38, + "probability": 0.9409 + }, + { + "start": 1156.18, + "end": 1160.0, + "probability": 0.8929 + }, + { + "start": 1160.78, + "end": 1164.48, + "probability": 0.9665 + }, + { + "start": 1165.4, + "end": 1167.88, + "probability": 0.9644 + }, + { + "start": 1168.64, + "end": 1171.49, + "probability": 0.9935 + }, + { + "start": 1172.6, + "end": 1173.82, + "probability": 0.9435 + }, + { + "start": 1174.08, + "end": 1175.64, + "probability": 0.9966 + }, + { + "start": 1177.08, + "end": 1179.1, + "probability": 0.6659 + }, + { + "start": 1179.88, + "end": 1188.94, + "probability": 0.9966 + }, + { + "start": 1190.16, + "end": 1194.64, + "probability": 0.9827 + }, + { + "start": 1195.44, + "end": 1197.38, + "probability": 0.9944 + }, + { + "start": 1198.62, + "end": 1199.58, + "probability": 0.0341 + }, + { + "start": 1200.26, + "end": 1200.8, + "probability": 0.3279 + }, + { + "start": 1200.8, + "end": 1203.15, + "probability": 0.6295 + }, + { + "start": 1204.1, + "end": 1205.2, + "probability": 0.9066 + }, + { + "start": 1205.28, + "end": 1207.02, + "probability": 0.9521 + }, + { + "start": 1207.4, + "end": 1209.05, + "probability": 0.8271 + }, + { + "start": 1210.18, + "end": 1213.7, + "probability": 0.7703 + }, + { + "start": 1214.4, + "end": 1216.02, + "probability": 0.6356 + }, + { + "start": 1216.76, + "end": 1218.1, + "probability": 0.924 + }, + { + "start": 1219.0, + "end": 1219.07, + "probability": 0.1761 + }, + { + "start": 1219.14, + "end": 1221.82, + "probability": 0.8715 + }, + { + "start": 1222.48, + "end": 1224.12, + "probability": 0.9096 + }, + { + "start": 1224.94, + "end": 1225.93, + "probability": 0.9697 + }, + { + "start": 1226.2, + "end": 1227.02, + "probability": 0.8967 + }, + { + "start": 1228.2, + "end": 1232.16, + "probability": 0.9946 + }, + { + "start": 1232.16, + "end": 1236.32, + "probability": 0.9988 + }, + { + "start": 1236.98, + "end": 1238.43, + "probability": 0.9818 + }, + { + "start": 1239.44, + "end": 1242.98, + "probability": 0.8825 + }, + { + "start": 1244.42, + "end": 1249.9, + "probability": 0.8696 + }, + { + "start": 1249.98, + "end": 1251.42, + "probability": 0.9094 + }, + { + "start": 1252.42, + "end": 1252.76, + "probability": 0.2249 + }, + { + "start": 1253.28, + "end": 1255.54, + "probability": 0.9953 + }, + { + "start": 1256.06, + "end": 1257.06, + "probability": 0.6628 + }, + { + "start": 1260.12, + "end": 1262.84, + "probability": 0.665 + }, + { + "start": 1262.88, + "end": 1265.74, + "probability": 0.9278 + }, + { + "start": 1267.38, + "end": 1271.14, + "probability": 0.9324 + }, + { + "start": 1272.36, + "end": 1274.54, + "probability": 0.9425 + }, + { + "start": 1275.42, + "end": 1278.9, + "probability": 0.8059 + }, + { + "start": 1280.64, + "end": 1284.84, + "probability": 0.7126 + }, + { + "start": 1285.94, + "end": 1287.24, + "probability": 0.8522 + }, + { + "start": 1288.24, + "end": 1291.32, + "probability": 0.7562 + }, + { + "start": 1292.22, + "end": 1293.24, + "probability": 0.6905 + }, + { + "start": 1293.44, + "end": 1293.95, + "probability": 0.9058 + }, + { + "start": 1294.42, + "end": 1294.84, + "probability": 0.7709 + }, + { + "start": 1294.86, + "end": 1295.38, + "probability": 0.5847 + }, + { + "start": 1295.58, + "end": 1295.88, + "probability": 0.9426 + }, + { + "start": 1296.06, + "end": 1296.44, + "probability": 0.7173 + }, + { + "start": 1296.88, + "end": 1298.18, + "probability": 0.962 + }, + { + "start": 1299.42, + "end": 1300.86, + "probability": 0.9973 + }, + { + "start": 1301.94, + "end": 1303.84, + "probability": 0.3998 + }, + { + "start": 1304.6, + "end": 1306.52, + "probability": 0.7276 + }, + { + "start": 1307.32, + "end": 1310.0, + "probability": 0.8195 + }, + { + "start": 1310.7, + "end": 1316.12, + "probability": 0.9948 + }, + { + "start": 1316.84, + "end": 1318.3, + "probability": 0.9584 + }, + { + "start": 1319.06, + "end": 1322.12, + "probability": 0.9383 + }, + { + "start": 1323.52, + "end": 1323.62, + "probability": 0.6381 + }, + { + "start": 1323.68, + "end": 1325.02, + "probability": 0.9301 + }, + { + "start": 1325.1, + "end": 1329.14, + "probability": 0.9948 + }, + { + "start": 1330.44, + "end": 1332.88, + "probability": 0.8618 + }, + { + "start": 1333.2, + "end": 1333.88, + "probability": 0.903 + }, + { + "start": 1335.0, + "end": 1336.2, + "probability": 0.9512 + }, + { + "start": 1349.2, + "end": 1350.08, + "probability": 0.0944 + }, + { + "start": 1350.08, + "end": 1350.08, + "probability": 0.0103 + }, + { + "start": 1350.08, + "end": 1350.08, + "probability": 0.0409 + }, + { + "start": 1350.08, + "end": 1350.08, + "probability": 0.0581 + }, + { + "start": 1350.08, + "end": 1351.28, + "probability": 0.4787 + }, + { + "start": 1352.38, + "end": 1354.28, + "probability": 0.8862 + }, + { + "start": 1354.66, + "end": 1356.4, + "probability": 0.9616 + }, + { + "start": 1357.22, + "end": 1358.76, + "probability": 0.8402 + }, + { + "start": 1359.26, + "end": 1359.96, + "probability": 0.7533 + }, + { + "start": 1360.04, + "end": 1360.86, + "probability": 0.8365 + }, + { + "start": 1360.9, + "end": 1361.74, + "probability": 0.8428 + }, + { + "start": 1362.12, + "end": 1363.64, + "probability": 0.7836 + }, + { + "start": 1364.7, + "end": 1368.22, + "probability": 0.8445 + }, + { + "start": 1369.0, + "end": 1370.16, + "probability": 0.7611 + }, + { + "start": 1370.24, + "end": 1374.18, + "probability": 0.9827 + }, + { + "start": 1374.78, + "end": 1375.6, + "probability": 0.7435 + }, + { + "start": 1375.74, + "end": 1375.84, + "probability": 0.7917 + }, + { + "start": 1375.96, + "end": 1377.58, + "probability": 0.7888 + }, + { + "start": 1377.66, + "end": 1378.7, + "probability": 0.7949 + }, + { + "start": 1379.58, + "end": 1379.94, + "probability": 0.5828 + }, + { + "start": 1380.04, + "end": 1382.22, + "probability": 0.9248 + }, + { + "start": 1383.38, + "end": 1386.98, + "probability": 0.9258 + }, + { + "start": 1387.54, + "end": 1389.61, + "probability": 0.8333 + }, + { + "start": 1390.36, + "end": 1392.17, + "probability": 0.9924 + }, + { + "start": 1392.82, + "end": 1393.14, + "probability": 0.9834 + }, + { + "start": 1393.14, + "end": 1397.7, + "probability": 0.938 + }, + { + "start": 1397.76, + "end": 1398.72, + "probability": 0.6736 + }, + { + "start": 1399.72, + "end": 1400.78, + "probability": 0.5624 + }, + { + "start": 1400.9, + "end": 1402.09, + "probability": 0.9858 + }, + { + "start": 1402.92, + "end": 1403.84, + "probability": 0.9946 + }, + { + "start": 1403.92, + "end": 1404.16, + "probability": 0.3715 + }, + { + "start": 1404.2, + "end": 1404.7, + "probability": 0.8435 + }, + { + "start": 1404.74, + "end": 1405.58, + "probability": 0.6837 + }, + { + "start": 1406.06, + "end": 1408.46, + "probability": 0.9403 + }, + { + "start": 1409.3, + "end": 1413.82, + "probability": 0.8534 + }, + { + "start": 1414.96, + "end": 1415.66, + "probability": 0.9144 + }, + { + "start": 1416.44, + "end": 1419.08, + "probability": 0.6213 + }, + { + "start": 1419.62, + "end": 1422.54, + "probability": 0.6202 + }, + { + "start": 1422.62, + "end": 1424.1, + "probability": 0.9772 + }, + { + "start": 1424.96, + "end": 1427.34, + "probability": 0.928 + }, + { + "start": 1428.0, + "end": 1431.18, + "probability": 0.9834 + }, + { + "start": 1431.32, + "end": 1432.58, + "probability": 0.6271 + }, + { + "start": 1433.18, + "end": 1434.43, + "probability": 0.9521 + }, + { + "start": 1435.0, + "end": 1437.0, + "probability": 0.7139 + }, + { + "start": 1437.7, + "end": 1438.98, + "probability": 0.7826 + }, + { + "start": 1439.24, + "end": 1439.99, + "probability": 0.9744 + }, + { + "start": 1441.0, + "end": 1442.73, + "probability": 0.6851 + }, + { + "start": 1443.12, + "end": 1444.68, + "probability": 0.9749 + }, + { + "start": 1444.82, + "end": 1449.64, + "probability": 0.9135 + }, + { + "start": 1449.64, + "end": 1452.84, + "probability": 0.6554 + }, + { + "start": 1453.68, + "end": 1454.92, + "probability": 0.8604 + }, + { + "start": 1455.02, + "end": 1455.48, + "probability": 0.5981 + }, + { + "start": 1456.32, + "end": 1457.16, + "probability": 0.6713 + }, + { + "start": 1457.4, + "end": 1461.36, + "probability": 0.8684 + }, + { + "start": 1461.88, + "end": 1465.92, + "probability": 0.9047 + }, + { + "start": 1467.3, + "end": 1468.32, + "probability": 0.6755 + }, + { + "start": 1468.58, + "end": 1470.33, + "probability": 0.87 + }, + { + "start": 1470.42, + "end": 1472.44, + "probability": 0.9697 + }, + { + "start": 1473.26, + "end": 1476.42, + "probability": 0.9137 + }, + { + "start": 1477.1, + "end": 1477.76, + "probability": 0.9006 + }, + { + "start": 1478.38, + "end": 1481.0, + "probability": 0.7654 + }, + { + "start": 1481.9, + "end": 1484.2, + "probability": 0.9369 + }, + { + "start": 1486.02, + "end": 1487.6, + "probability": 0.8373 + }, + { + "start": 1488.4, + "end": 1491.72, + "probability": 0.9848 + }, + { + "start": 1491.74, + "end": 1492.38, + "probability": 0.8579 + }, + { + "start": 1493.92, + "end": 1496.1, + "probability": 0.9624 + }, + { + "start": 1496.12, + "end": 1497.18, + "probability": 0.7356 + }, + { + "start": 1497.18, + "end": 1497.6, + "probability": 0.9355 + }, + { + "start": 1498.5, + "end": 1500.9, + "probability": 0.7703 + }, + { + "start": 1501.08, + "end": 1503.16, + "probability": 0.8888 + }, + { + "start": 1503.88, + "end": 1505.0, + "probability": 0.7837 + }, + { + "start": 1506.28, + "end": 1507.54, + "probability": 0.4154 + }, + { + "start": 1508.12, + "end": 1510.08, + "probability": 0.6563 + }, + { + "start": 1510.78, + "end": 1513.82, + "probability": 0.9346 + }, + { + "start": 1514.94, + "end": 1516.3, + "probability": 0.9851 + }, + { + "start": 1517.9, + "end": 1519.72, + "probability": 0.6624 + }, + { + "start": 1519.84, + "end": 1520.34, + "probability": 0.9274 + }, + { + "start": 1520.42, + "end": 1520.85, + "probability": 0.8833 + }, + { + "start": 1522.0, + "end": 1525.1, + "probability": 0.8503 + }, + { + "start": 1526.16, + "end": 1529.56, + "probability": 0.9806 + }, + { + "start": 1530.34, + "end": 1532.42, + "probability": 0.7694 + }, + { + "start": 1533.22, + "end": 1539.48, + "probability": 0.9832 + }, + { + "start": 1540.3, + "end": 1541.06, + "probability": 0.5001 + }, + { + "start": 1541.06, + "end": 1543.86, + "probability": 0.5062 + }, + { + "start": 1543.94, + "end": 1545.44, + "probability": 0.8338 + }, + { + "start": 1545.64, + "end": 1546.9, + "probability": 0.8013 + }, + { + "start": 1547.76, + "end": 1548.06, + "probability": 0.1473 + }, + { + "start": 1548.18, + "end": 1551.79, + "probability": 0.1482 + }, + { + "start": 1554.66, + "end": 1557.8, + "probability": 0.8876 + }, + { + "start": 1558.34, + "end": 1559.58, + "probability": 0.9225 + }, + { + "start": 1559.86, + "end": 1563.4, + "probability": 0.8538 + }, + { + "start": 1564.5, + "end": 1566.74, + "probability": 0.9541 + }, + { + "start": 1567.22, + "end": 1569.2, + "probability": 0.9463 + }, + { + "start": 1569.94, + "end": 1570.92, + "probability": 0.9842 + }, + { + "start": 1572.0, + "end": 1572.95, + "probability": 0.8057 + }, + { + "start": 1574.04, + "end": 1576.36, + "probability": 0.9917 + }, + { + "start": 1576.48, + "end": 1578.34, + "probability": 0.9585 + }, + { + "start": 1579.52, + "end": 1582.1, + "probability": 0.8003 + }, + { + "start": 1582.66, + "end": 1582.76, + "probability": 0.9992 + }, + { + "start": 1583.48, + "end": 1584.72, + "probability": 0.8881 + }, + { + "start": 1585.42, + "end": 1589.66, + "probability": 0.834 + }, + { + "start": 1590.3, + "end": 1591.84, + "probability": 0.927 + }, + { + "start": 1592.62, + "end": 1593.66, + "probability": 0.9692 + }, + { + "start": 1594.92, + "end": 1597.62, + "probability": 0.9829 + }, + { + "start": 1599.0, + "end": 1602.12, + "probability": 0.9462 + }, + { + "start": 1602.94, + "end": 1604.36, + "probability": 0.9251 + }, + { + "start": 1605.7, + "end": 1607.39, + "probability": 0.8788 + }, + { + "start": 1609.12, + "end": 1614.56, + "probability": 0.9312 + }, + { + "start": 1615.12, + "end": 1616.17, + "probability": 0.9653 + }, + { + "start": 1617.2, + "end": 1619.1, + "probability": 0.9768 + }, + { + "start": 1619.18, + "end": 1621.4, + "probability": 0.9821 + }, + { + "start": 1622.78, + "end": 1623.3, + "probability": 0.6237 + }, + { + "start": 1623.9, + "end": 1624.43, + "probability": 0.9713 + }, + { + "start": 1625.02, + "end": 1625.22, + "probability": 0.3429 + }, + { + "start": 1625.24, + "end": 1626.28, + "probability": 0.9004 + }, + { + "start": 1626.48, + "end": 1627.88, + "probability": 0.9649 + }, + { + "start": 1628.5, + "end": 1629.66, + "probability": 0.9778 + }, + { + "start": 1629.86, + "end": 1630.5, + "probability": 0.959 + }, + { + "start": 1631.32, + "end": 1632.12, + "probability": 0.5701 + }, + { + "start": 1632.18, + "end": 1636.38, + "probability": 0.9243 + }, + { + "start": 1637.14, + "end": 1639.08, + "probability": 0.8631 + }, + { + "start": 1640.16, + "end": 1644.72, + "probability": 0.9955 + }, + { + "start": 1645.46, + "end": 1646.36, + "probability": 0.9659 + }, + { + "start": 1647.06, + "end": 1648.96, + "probability": 0.9851 + }, + { + "start": 1649.0, + "end": 1649.9, + "probability": 0.969 + }, + { + "start": 1650.4, + "end": 1651.16, + "probability": 0.3841 + }, + { + "start": 1651.94, + "end": 1653.96, + "probability": 0.9205 + }, + { + "start": 1654.82, + "end": 1655.62, + "probability": 0.8015 + }, + { + "start": 1656.24, + "end": 1657.46, + "probability": 0.9198 + }, + { + "start": 1658.74, + "end": 1661.96, + "probability": 0.9018 + }, + { + "start": 1662.5, + "end": 1663.49, + "probability": 0.9854 + }, + { + "start": 1664.46, + "end": 1667.06, + "probability": 0.9183 + }, + { + "start": 1667.18, + "end": 1669.08, + "probability": 0.9751 + }, + { + "start": 1670.0, + "end": 1670.92, + "probability": 0.7632 + }, + { + "start": 1671.96, + "end": 1673.76, + "probability": 0.855 + }, + { + "start": 1673.84, + "end": 1679.0, + "probability": 0.7859 + }, + { + "start": 1679.86, + "end": 1681.42, + "probability": 0.4426 + }, + { + "start": 1681.62, + "end": 1683.46, + "probability": 0.5236 + }, + { + "start": 1683.66, + "end": 1684.52, + "probability": 0.7513 + }, + { + "start": 1684.7, + "end": 1686.5, + "probability": 0.7751 + }, + { + "start": 1687.08, + "end": 1690.98, + "probability": 0.8329 + }, + { + "start": 1691.68, + "end": 1692.94, + "probability": 0.843 + }, + { + "start": 1693.02, + "end": 1693.88, + "probability": 0.9256 + }, + { + "start": 1694.56, + "end": 1699.06, + "probability": 0.9203 + }, + { + "start": 1699.24, + "end": 1699.34, + "probability": 0.2595 + }, + { + "start": 1699.68, + "end": 1700.26, + "probability": 0.6002 + }, + { + "start": 1700.5, + "end": 1701.88, + "probability": 0.8573 + }, + { + "start": 1702.4, + "end": 1703.36, + "probability": 0.891 + }, + { + "start": 1703.92, + "end": 1706.78, + "probability": 0.856 + }, + { + "start": 1707.38, + "end": 1708.52, + "probability": 0.882 + }, + { + "start": 1708.6, + "end": 1710.0, + "probability": 0.9246 + }, + { + "start": 1710.72, + "end": 1711.36, + "probability": 0.9917 + }, + { + "start": 1711.42, + "end": 1712.3, + "probability": 0.9956 + }, + { + "start": 1712.84, + "end": 1714.88, + "probability": 0.8643 + }, + { + "start": 1715.86, + "end": 1718.32, + "probability": 0.9932 + }, + { + "start": 1718.44, + "end": 1718.76, + "probability": 0.8971 + }, + { + "start": 1718.86, + "end": 1720.82, + "probability": 0.4904 + }, + { + "start": 1720.88, + "end": 1722.24, + "probability": 0.68 + }, + { + "start": 1723.24, + "end": 1726.56, + "probability": 0.6756 + }, + { + "start": 1727.08, + "end": 1728.18, + "probability": 0.3487 + }, + { + "start": 1728.24, + "end": 1729.86, + "probability": 0.8826 + }, + { + "start": 1730.56, + "end": 1732.04, + "probability": 0.9526 + }, + { + "start": 1732.08, + "end": 1732.45, + "probability": 0.8574 + }, + { + "start": 1732.72, + "end": 1733.7, + "probability": 0.8792 + }, + { + "start": 1734.04, + "end": 1735.92, + "probability": 0.8604 + }, + { + "start": 1736.06, + "end": 1736.5, + "probability": 0.6498 + }, + { + "start": 1736.6, + "end": 1738.24, + "probability": 0.9927 + }, + { + "start": 1739.02, + "end": 1740.0, + "probability": 0.7281 + }, + { + "start": 1740.66, + "end": 1741.89, + "probability": 0.3004 + }, + { + "start": 1742.84, + "end": 1743.74, + "probability": 0.5659 + }, + { + "start": 1743.9, + "end": 1748.32, + "probability": 0.9003 + }, + { + "start": 1748.88, + "end": 1750.56, + "probability": 0.9008 + }, + { + "start": 1750.96, + "end": 1752.76, + "probability": 0.6198 + }, + { + "start": 1752.9, + "end": 1756.04, + "probability": 0.9937 + }, + { + "start": 1756.64, + "end": 1757.74, + "probability": 0.7758 + }, + { + "start": 1757.86, + "end": 1760.1, + "probability": 0.8281 + }, + { + "start": 1760.98, + "end": 1761.88, + "probability": 0.5244 + }, + { + "start": 1762.08, + "end": 1763.72, + "probability": 0.9894 + }, + { + "start": 1764.76, + "end": 1766.88, + "probability": 0.8332 + }, + { + "start": 1767.02, + "end": 1769.26, + "probability": 0.9165 + }, + { + "start": 1769.9, + "end": 1773.06, + "probability": 0.9575 + }, + { + "start": 1773.64, + "end": 1774.48, + "probability": 0.3769 + }, + { + "start": 1774.6, + "end": 1777.44, + "probability": 0.5514 + }, + { + "start": 1778.06, + "end": 1780.1, + "probability": 0.7388 + }, + { + "start": 1780.18, + "end": 1781.56, + "probability": 0.6641 + }, + { + "start": 1781.7, + "end": 1784.82, + "probability": 0.936 + }, + { + "start": 1784.94, + "end": 1785.8, + "probability": 0.7498 + }, + { + "start": 1785.92, + "end": 1787.32, + "probability": 0.6998 + }, + { + "start": 1787.9, + "end": 1789.79, + "probability": 0.933 + }, + { + "start": 1790.96, + "end": 1792.7, + "probability": 0.533 + }, + { + "start": 1793.46, + "end": 1796.1, + "probability": 0.8326 + }, + { + "start": 1797.46, + "end": 1798.37, + "probability": 0.6501 + }, + { + "start": 1798.84, + "end": 1799.7, + "probability": 0.8096 + }, + { + "start": 1799.9, + "end": 1800.58, + "probability": 0.6489 + }, + { + "start": 1800.66, + "end": 1801.4, + "probability": 0.6576 + }, + { + "start": 1801.52, + "end": 1802.33, + "probability": 0.6773 + }, + { + "start": 1803.7, + "end": 1806.82, + "probability": 0.866 + }, + { + "start": 1806.9, + "end": 1809.72, + "probability": 0.6689 + }, + { + "start": 1810.12, + "end": 1811.56, + "probability": 0.5169 + }, + { + "start": 1826.46, + "end": 1827.46, + "probability": 0.1836 + }, + { + "start": 1827.95, + "end": 1828.58, + "probability": 0.0122 + }, + { + "start": 1828.58, + "end": 1828.78, + "probability": 0.0166 + }, + { + "start": 1828.78, + "end": 1828.78, + "probability": 0.1972 + }, + { + "start": 1828.78, + "end": 1828.78, + "probability": 0.0976 + }, + { + "start": 1828.78, + "end": 1829.36, + "probability": 0.018 + }, + { + "start": 1830.91, + "end": 1831.82, + "probability": 0.0408 + }, + { + "start": 1833.0, + "end": 1834.44, + "probability": 0.2851 + }, + { + "start": 1835.34, + "end": 1835.54, + "probability": 0.0986 + }, + { + "start": 1835.54, + "end": 1835.54, + "probability": 0.0771 + }, + { + "start": 1835.54, + "end": 1835.54, + "probability": 0.0264 + }, + { + "start": 1835.54, + "end": 1835.54, + "probability": 0.0868 + }, + { + "start": 1835.54, + "end": 1836.1, + "probability": 0.1206 + }, + { + "start": 1836.66, + "end": 1837.36, + "probability": 0.6906 + }, + { + "start": 1837.62, + "end": 1838.74, + "probability": 0.6839 + }, + { + "start": 1840.4, + "end": 1841.6, + "probability": 0.8696 + }, + { + "start": 1842.72, + "end": 1845.66, + "probability": 0.9736 + }, + { + "start": 1846.14, + "end": 1847.12, + "probability": 0.8283 + }, + { + "start": 1847.98, + "end": 1849.26, + "probability": 0.8116 + }, + { + "start": 1850.22, + "end": 1850.82, + "probability": 0.7247 + }, + { + "start": 1850.92, + "end": 1853.19, + "probability": 0.6782 + }, + { + "start": 1854.04, + "end": 1856.28, + "probability": 0.9262 + }, + { + "start": 1856.38, + "end": 1856.88, + "probability": 0.8677 + }, + { + "start": 1857.74, + "end": 1858.7, + "probability": 0.834 + }, + { + "start": 1859.42, + "end": 1863.34, + "probability": 0.6655 + }, + { + "start": 1864.36, + "end": 1865.16, + "probability": 0.656 + }, + { + "start": 1865.78, + "end": 1868.38, + "probability": 0.8547 + }, + { + "start": 1869.33, + "end": 1872.32, + "probability": 0.981 + }, + { + "start": 1872.8, + "end": 1874.0, + "probability": 0.958 + }, + { + "start": 1875.08, + "end": 1877.24, + "probability": 0.9238 + }, + { + "start": 1877.92, + "end": 1881.74, + "probability": 0.7245 + }, + { + "start": 1881.78, + "end": 1882.15, + "probability": 0.899 + }, + { + "start": 1883.32, + "end": 1884.71, + "probability": 0.798 + }, + { + "start": 1885.32, + "end": 1886.66, + "probability": 0.8863 + }, + { + "start": 1887.44, + "end": 1889.46, + "probability": 0.772 + }, + { + "start": 1890.08, + "end": 1895.54, + "probability": 0.9615 + }, + { + "start": 1895.98, + "end": 1896.8, + "probability": 0.723 + }, + { + "start": 1897.32, + "end": 1898.5, + "probability": 0.8665 + }, + { + "start": 1899.22, + "end": 1902.48, + "probability": 0.9222 + }, + { + "start": 1903.08, + "end": 1904.06, + "probability": 0.9888 + }, + { + "start": 1905.34, + "end": 1908.1, + "probability": 0.967 + }, + { + "start": 1908.74, + "end": 1911.68, + "probability": 0.8264 + }, + { + "start": 1912.14, + "end": 1912.78, + "probability": 0.3548 + }, + { + "start": 1913.52, + "end": 1916.38, + "probability": 0.7557 + }, + { + "start": 1916.76, + "end": 1918.04, + "probability": 0.9976 + }, + { + "start": 1918.4, + "end": 1920.07, + "probability": 0.9119 + }, + { + "start": 1921.0, + "end": 1924.32, + "probability": 0.9795 + }, + { + "start": 1924.88, + "end": 1926.88, + "probability": 0.9177 + }, + { + "start": 1927.54, + "end": 1930.58, + "probability": 0.9568 + }, + { + "start": 1930.78, + "end": 1931.18, + "probability": 0.9032 + }, + { + "start": 1931.66, + "end": 1935.02, + "probability": 0.9756 + }, + { + "start": 1935.94, + "end": 1936.88, + "probability": 0.6401 + }, + { + "start": 1936.94, + "end": 1939.14, + "probability": 0.9677 + }, + { + "start": 1939.86, + "end": 1941.48, + "probability": 0.9738 + }, + { + "start": 1941.56, + "end": 1942.4, + "probability": 0.8398 + }, + { + "start": 1942.44, + "end": 1943.02, + "probability": 0.8626 + }, + { + "start": 1943.76, + "end": 1945.38, + "probability": 0.9726 + }, + { + "start": 1946.04, + "end": 1946.88, + "probability": 0.9292 + }, + { + "start": 1946.98, + "end": 1948.2, + "probability": 0.9963 + }, + { + "start": 1948.86, + "end": 1949.78, + "probability": 0.9024 + }, + { + "start": 1949.88, + "end": 1950.64, + "probability": 0.9605 + }, + { + "start": 1951.12, + "end": 1952.84, + "probability": 0.9909 + }, + { + "start": 1953.92, + "end": 1957.06, + "probability": 0.7359 + }, + { + "start": 1957.92, + "end": 1958.66, + "probability": 0.8558 + }, + { + "start": 1959.84, + "end": 1960.54, + "probability": 0.0557 + }, + { + "start": 1960.72, + "end": 1961.88, + "probability": 0.5835 + }, + { + "start": 1963.3, + "end": 1964.48, + "probability": 0.7463 + }, + { + "start": 1965.54, + "end": 1968.94, + "probability": 0.8171 + }, + { + "start": 1968.94, + "end": 1975.32, + "probability": 0.8604 + }, + { + "start": 1976.48, + "end": 1977.94, + "probability": 0.7387 + }, + { + "start": 1978.76, + "end": 1980.48, + "probability": 0.6068 + }, + { + "start": 1980.88, + "end": 1981.36, + "probability": 0.9532 + }, + { + "start": 1981.7, + "end": 1984.96, + "probability": 0.973 + }, + { + "start": 1985.02, + "end": 1986.92, + "probability": 0.6947 + }, + { + "start": 1987.72, + "end": 1989.08, + "probability": 0.9417 + }, + { + "start": 1989.44, + "end": 1990.1, + "probability": 0.7816 + }, + { + "start": 1990.54, + "end": 1991.22, + "probability": 0.298 + }, + { + "start": 1991.76, + "end": 1992.54, + "probability": 0.6161 + }, + { + "start": 1993.22, + "end": 1994.36, + "probability": 0.7089 + }, + { + "start": 1994.46, + "end": 1995.68, + "probability": 0.7131 + }, + { + "start": 1996.22, + "end": 1998.42, + "probability": 0.9328 + }, + { + "start": 1999.22, + "end": 2000.52, + "probability": 0.9326 + }, + { + "start": 2000.92, + "end": 2004.0, + "probability": 0.9232 + }, + { + "start": 2004.08, + "end": 2006.18, + "probability": 0.9478 + }, + { + "start": 2006.74, + "end": 2008.18, + "probability": 0.7444 + }, + { + "start": 2008.48, + "end": 2011.32, + "probability": 0.7769 + }, + { + "start": 2012.46, + "end": 2013.86, + "probability": 0.6797 + }, + { + "start": 2014.28, + "end": 2015.1, + "probability": 0.5112 + }, + { + "start": 2015.92, + "end": 2018.34, + "probability": 0.9655 + }, + { + "start": 2018.44, + "end": 2019.22, + "probability": 0.6802 + }, + { + "start": 2019.32, + "end": 2022.18, + "probability": 0.6486 + }, + { + "start": 2022.68, + "end": 2024.46, + "probability": 0.9341 + }, + { + "start": 2025.74, + "end": 2027.78, + "probability": 0.822 + }, + { + "start": 2028.14, + "end": 2029.24, + "probability": 0.6214 + }, + { + "start": 2029.34, + "end": 2031.04, + "probability": 0.6256 + }, + { + "start": 2031.58, + "end": 2031.9, + "probability": 0.5868 + }, + { + "start": 2034.1, + "end": 2034.1, + "probability": 0.1285 + }, + { + "start": 2034.1, + "end": 2035.22, + "probability": 0.0869 + }, + { + "start": 2035.38, + "end": 2035.7, + "probability": 0.3396 + }, + { + "start": 2035.7, + "end": 2036.54, + "probability": 0.7249 + }, + { + "start": 2036.6, + "end": 2036.74, + "probability": 0.3849 + }, + { + "start": 2037.4, + "end": 2039.68, + "probability": 0.8566 + }, + { + "start": 2040.2, + "end": 2042.32, + "probability": 0.9106 + }, + { + "start": 2042.8, + "end": 2047.06, + "probability": 0.8843 + }, + { + "start": 2047.4, + "end": 2049.64, + "probability": 0.7078 + }, + { + "start": 2049.96, + "end": 2051.34, + "probability": 0.8606 + }, + { + "start": 2051.46, + "end": 2052.59, + "probability": 0.5003 + }, + { + "start": 2052.76, + "end": 2056.44, + "probability": 0.9124 + }, + { + "start": 2056.6, + "end": 2057.31, + "probability": 0.0898 + }, + { + "start": 2057.56, + "end": 2059.92, + "probability": 0.9547 + }, + { + "start": 2059.92, + "end": 2062.76, + "probability": 0.7925 + }, + { + "start": 2062.76, + "end": 2063.78, + "probability": 0.9296 + }, + { + "start": 2063.84, + "end": 2064.96, + "probability": 0.661 + }, + { + "start": 2065.3, + "end": 2066.88, + "probability": 0.9603 + }, + { + "start": 2067.0, + "end": 2068.02, + "probability": 0.4393 + }, + { + "start": 2069.24, + "end": 2074.34, + "probability": 0.947 + }, + { + "start": 2074.58, + "end": 2076.21, + "probability": 0.8726 + }, + { + "start": 2076.34, + "end": 2077.56, + "probability": 0.68 + }, + { + "start": 2077.58, + "end": 2078.78, + "probability": 0.5646 + }, + { + "start": 2078.86, + "end": 2080.74, + "probability": 0.9045 + }, + { + "start": 2080.8, + "end": 2084.0, + "probability": 0.8438 + }, + { + "start": 2084.0, + "end": 2085.0, + "probability": 0.1826 + }, + { + "start": 2088.5, + "end": 2090.94, + "probability": 0.9802 + }, + { + "start": 2093.5, + "end": 2095.32, + "probability": 0.696 + }, + { + "start": 2095.4, + "end": 2097.36, + "probability": 0.9303 + }, + { + "start": 2097.36, + "end": 2100.84, + "probability": 0.9901 + }, + { + "start": 2100.96, + "end": 2105.18, + "probability": 0.9111 + }, + { + "start": 2105.4, + "end": 2108.14, + "probability": 0.7678 + }, + { + "start": 2108.74, + "end": 2110.44, + "probability": 0.9847 + }, + { + "start": 2111.02, + "end": 2111.53, + "probability": 0.7605 + }, + { + "start": 2111.78, + "end": 2114.04, + "probability": 0.8697 + }, + { + "start": 2114.04, + "end": 2117.2, + "probability": 0.9856 + }, + { + "start": 2117.94, + "end": 2120.94, + "probability": 0.8342 + }, + { + "start": 2121.04, + "end": 2122.55, + "probability": 0.9725 + }, + { + "start": 2123.22, + "end": 2126.72, + "probability": 0.9709 + }, + { + "start": 2126.86, + "end": 2127.36, + "probability": 0.382 + }, + { + "start": 2127.36, + "end": 2128.41, + "probability": 0.5216 + }, + { + "start": 2128.68, + "end": 2132.18, + "probability": 0.9268 + }, + { + "start": 2133.42, + "end": 2134.98, + "probability": 0.993 + }, + { + "start": 2135.0, + "end": 2135.36, + "probability": 0.6365 + }, + { + "start": 2135.74, + "end": 2136.52, + "probability": 0.8347 + }, + { + "start": 2138.14, + "end": 2141.8, + "probability": 0.9776 + }, + { + "start": 2142.8, + "end": 2146.98, + "probability": 0.9578 + }, + { + "start": 2148.12, + "end": 2150.26, + "probability": 0.8386 + }, + { + "start": 2151.08, + "end": 2153.52, + "probability": 0.8315 + }, + { + "start": 2153.72, + "end": 2156.96, + "probability": 0.8691 + }, + { + "start": 2158.1, + "end": 2164.54, + "probability": 0.9912 + }, + { + "start": 2164.64, + "end": 2167.48, + "probability": 0.8193 + }, + { + "start": 2168.16, + "end": 2169.28, + "probability": 0.8741 + }, + { + "start": 2170.32, + "end": 2171.14, + "probability": 0.9945 + }, + { + "start": 2172.08, + "end": 2173.1, + "probability": 0.5439 + }, + { + "start": 2173.14, + "end": 2176.06, + "probability": 0.9262 + }, + { + "start": 2176.82, + "end": 2177.73, + "probability": 0.7272 + }, + { + "start": 2178.18, + "end": 2183.14, + "probability": 0.9857 + }, + { + "start": 2183.96, + "end": 2184.7, + "probability": 0.7822 + }, + { + "start": 2185.4, + "end": 2188.62, + "probability": 0.6148 + }, + { + "start": 2189.62, + "end": 2192.18, + "probability": 0.6317 + }, + { + "start": 2192.3, + "end": 2193.66, + "probability": 0.8418 + }, + { + "start": 2194.68, + "end": 2196.32, + "probability": 0.6797 + }, + { + "start": 2196.94, + "end": 2198.78, + "probability": 0.9792 + }, + { + "start": 2198.9, + "end": 2200.76, + "probability": 0.965 + }, + { + "start": 2201.62, + "end": 2203.46, + "probability": 0.9915 + }, + { + "start": 2204.62, + "end": 2207.44, + "probability": 0.9961 + }, + { + "start": 2207.44, + "end": 2211.64, + "probability": 0.9977 + }, + { + "start": 2212.38, + "end": 2212.4, + "probability": 0.1853 + }, + { + "start": 2212.5, + "end": 2212.64, + "probability": 0.8259 + }, + { + "start": 2212.7, + "end": 2213.92, + "probability": 0.9882 + }, + { + "start": 2213.96, + "end": 2215.12, + "probability": 0.8225 + }, + { + "start": 2215.94, + "end": 2217.84, + "probability": 0.9897 + }, + { + "start": 2217.9, + "end": 2219.18, + "probability": 0.949 + }, + { + "start": 2219.92, + "end": 2222.6, + "probability": 0.8511 + }, + { + "start": 2223.74, + "end": 2224.8, + "probability": 0.8871 + }, + { + "start": 2224.82, + "end": 2227.34, + "probability": 0.9261 + }, + { + "start": 2228.12, + "end": 2229.94, + "probability": 0.7607 + }, + { + "start": 2230.52, + "end": 2233.22, + "probability": 0.975 + }, + { + "start": 2233.96, + "end": 2236.24, + "probability": 0.6572 + }, + { + "start": 2236.32, + "end": 2237.3, + "probability": 0.9199 + }, + { + "start": 2238.7, + "end": 2242.18, + "probability": 0.6313 + }, + { + "start": 2243.89, + "end": 2247.29, + "probability": 0.9917 + }, + { + "start": 2247.9, + "end": 2249.72, + "probability": 0.7852 + }, + { + "start": 2250.1, + "end": 2250.68, + "probability": 0.7908 + }, + { + "start": 2250.74, + "end": 2254.72, + "probability": 0.7393 + }, + { + "start": 2254.82, + "end": 2256.66, + "probability": 0.7854 + }, + { + "start": 2257.42, + "end": 2259.14, + "probability": 0.6612 + }, + { + "start": 2259.2, + "end": 2260.58, + "probability": 0.679 + }, + { + "start": 2261.08, + "end": 2262.36, + "probability": 0.8123 + }, + { + "start": 2263.62, + "end": 2267.56, + "probability": 0.9497 + }, + { + "start": 2268.24, + "end": 2271.5, + "probability": 0.8792 + }, + { + "start": 2272.64, + "end": 2274.16, + "probability": 0.9876 + }, + { + "start": 2275.46, + "end": 2276.94, + "probability": 0.7083 + }, + { + "start": 2277.2, + "end": 2279.26, + "probability": 0.8691 + }, + { + "start": 2279.96, + "end": 2281.86, + "probability": 0.9452 + }, + { + "start": 2282.56, + "end": 2284.04, + "probability": 0.9871 + }, + { + "start": 2284.58, + "end": 2288.44, + "probability": 0.662 + }, + { + "start": 2289.3, + "end": 2291.08, + "probability": 0.8127 + }, + { + "start": 2291.94, + "end": 2293.24, + "probability": 0.5168 + }, + { + "start": 2293.38, + "end": 2293.94, + "probability": 0.7759 + }, + { + "start": 2294.68, + "end": 2295.94, + "probability": 0.8281 + }, + { + "start": 2296.68, + "end": 2300.84, + "probability": 0.8791 + }, + { + "start": 2301.4, + "end": 2302.44, + "probability": 0.8138 + }, + { + "start": 2303.14, + "end": 2305.5, + "probability": 0.8965 + }, + { + "start": 2306.26, + "end": 2307.44, + "probability": 0.9457 + }, + { + "start": 2308.28, + "end": 2311.58, + "probability": 0.938 + }, + { + "start": 2312.66, + "end": 2315.1, + "probability": 0.811 + }, + { + "start": 2315.18, + "end": 2316.8, + "probability": 0.9872 + }, + { + "start": 2318.06, + "end": 2318.72, + "probability": 0.5065 + }, + { + "start": 2319.62, + "end": 2321.4, + "probability": 0.8408 + }, + { + "start": 2321.5, + "end": 2322.16, + "probability": 0.8688 + }, + { + "start": 2322.8, + "end": 2324.72, + "probability": 0.9023 + }, + { + "start": 2325.34, + "end": 2327.3, + "probability": 0.9607 + }, + { + "start": 2328.22, + "end": 2331.56, + "probability": 0.9574 + }, + { + "start": 2332.56, + "end": 2333.92, + "probability": 0.9604 + }, + { + "start": 2334.18, + "end": 2336.24, + "probability": 0.9811 + }, + { + "start": 2337.48, + "end": 2338.52, + "probability": 0.8037 + }, + { + "start": 2339.82, + "end": 2343.16, + "probability": 0.95 + }, + { + "start": 2343.22, + "end": 2345.6, + "probability": 0.9988 + }, + { + "start": 2346.82, + "end": 2347.38, + "probability": 0.7375 + }, + { + "start": 2348.0, + "end": 2348.06, + "probability": 0.0006 + }, + { + "start": 2348.06, + "end": 2349.16, + "probability": 0.6216 + }, + { + "start": 2350.24, + "end": 2350.54, + "probability": 0.32 + }, + { + "start": 2350.7, + "end": 2353.3, + "probability": 0.9928 + }, + { + "start": 2354.04, + "end": 2354.74, + "probability": 0.9017 + }, + { + "start": 2355.54, + "end": 2357.66, + "probability": 0.9259 + }, + { + "start": 2358.38, + "end": 2360.74, + "probability": 0.9971 + }, + { + "start": 2361.08, + "end": 2364.7, + "probability": 0.8944 + }, + { + "start": 2365.78, + "end": 2368.6, + "probability": 0.9826 + }, + { + "start": 2368.78, + "end": 2370.2, + "probability": 0.7905 + }, + { + "start": 2370.9, + "end": 2372.7, + "probability": 0.9067 + }, + { + "start": 2373.74, + "end": 2378.14, + "probability": 0.9822 + }, + { + "start": 2378.22, + "end": 2378.92, + "probability": 0.9164 + }, + { + "start": 2379.04, + "end": 2379.8, + "probability": 0.9016 + }, + { + "start": 2380.4, + "end": 2381.62, + "probability": 0.9447 + }, + { + "start": 2382.32, + "end": 2385.58, + "probability": 0.6686 + }, + { + "start": 2385.66, + "end": 2389.3, + "probability": 0.777 + }, + { + "start": 2390.02, + "end": 2391.32, + "probability": 0.9428 + }, + { + "start": 2391.96, + "end": 2394.58, + "probability": 0.9875 + }, + { + "start": 2395.16, + "end": 2397.32, + "probability": 0.8667 + }, + { + "start": 2398.52, + "end": 2401.39, + "probability": 0.8567 + }, + { + "start": 2402.0, + "end": 2405.24, + "probability": 0.9276 + }, + { + "start": 2406.14, + "end": 2407.0, + "probability": 0.9384 + }, + { + "start": 2407.0, + "end": 2409.1, + "probability": 0.9707 + }, + { + "start": 2409.98, + "end": 2411.34, + "probability": 0.8374 + }, + { + "start": 2412.0, + "end": 2415.4, + "probability": 0.8814 + }, + { + "start": 2416.46, + "end": 2416.92, + "probability": 0.4768 + }, + { + "start": 2417.18, + "end": 2418.3, + "probability": 0.9857 + }, + { + "start": 2418.42, + "end": 2419.7, + "probability": 0.9435 + }, + { + "start": 2420.8, + "end": 2424.66, + "probability": 0.9758 + }, + { + "start": 2425.54, + "end": 2428.52, + "probability": 0.7125 + }, + { + "start": 2429.18, + "end": 2431.08, + "probability": 0.9927 + }, + { + "start": 2431.78, + "end": 2434.68, + "probability": 0.7464 + }, + { + "start": 2434.76, + "end": 2435.78, + "probability": 0.7759 + }, + { + "start": 2436.52, + "end": 2438.3, + "probability": 0.9077 + }, + { + "start": 2438.4, + "end": 2439.24, + "probability": 0.5912 + }, + { + "start": 2440.0, + "end": 2441.48, + "probability": 0.9675 + }, + { + "start": 2442.9, + "end": 2445.96, + "probability": 0.9063 + }, + { + "start": 2446.8, + "end": 2449.46, + "probability": 0.9807 + }, + { + "start": 2450.18, + "end": 2453.58, + "probability": 0.8628 + }, + { + "start": 2454.3, + "end": 2456.77, + "probability": 0.9308 + }, + { + "start": 2457.36, + "end": 2459.74, + "probability": 0.9769 + }, + { + "start": 2460.36, + "end": 2460.86, + "probability": 0.636 + }, + { + "start": 2460.96, + "end": 2462.82, + "probability": 0.6215 + }, + { + "start": 2462.9, + "end": 2465.7, + "probability": 0.9036 + }, + { + "start": 2466.36, + "end": 2467.66, + "probability": 0.8587 + }, + { + "start": 2481.54, + "end": 2483.24, + "probability": 0.9756 + }, + { + "start": 2483.48, + "end": 2483.88, + "probability": 0.7287 + }, + { + "start": 2488.92, + "end": 2491.48, + "probability": 0.843 + }, + { + "start": 2500.4, + "end": 2501.72, + "probability": 0.848 + }, + { + "start": 2503.08, + "end": 2504.94, + "probability": 0.9835 + }, + { + "start": 2505.02, + "end": 2506.22, + "probability": 0.8503 + }, + { + "start": 2506.34, + "end": 2510.22, + "probability": 0.972 + }, + { + "start": 2510.4, + "end": 2514.08, + "probability": 0.9902 + }, + { + "start": 2514.88, + "end": 2515.22, + "probability": 0.8817 + }, + { + "start": 2515.28, + "end": 2519.26, + "probability": 0.9725 + }, + { + "start": 2519.48, + "end": 2520.98, + "probability": 0.7065 + }, + { + "start": 2522.04, + "end": 2523.7, + "probability": 0.6846 + }, + { + "start": 2524.18, + "end": 2526.98, + "probability": 0.9922 + }, + { + "start": 2526.98, + "end": 2530.9, + "probability": 0.9905 + }, + { + "start": 2531.6, + "end": 2531.68, + "probability": 0.3378 + }, + { + "start": 2531.76, + "end": 2532.18, + "probability": 0.75 + }, + { + "start": 2532.9, + "end": 2534.84, + "probability": 0.9561 + }, + { + "start": 2534.88, + "end": 2536.5, + "probability": 0.8897 + }, + { + "start": 2536.56, + "end": 2538.1, + "probability": 0.9087 + }, + { + "start": 2538.16, + "end": 2538.73, + "probability": 0.5719 + }, + { + "start": 2539.98, + "end": 2540.54, + "probability": 0.2363 + }, + { + "start": 2540.84, + "end": 2540.84, + "probability": 0.6707 + }, + { + "start": 2540.84, + "end": 2542.1, + "probability": 0.6571 + }, + { + "start": 2543.0, + "end": 2545.34, + "probability": 0.5729 + }, + { + "start": 2545.66, + "end": 2546.3, + "probability": 0.4623 + }, + { + "start": 2546.44, + "end": 2547.22, + "probability": 0.5137 + }, + { + "start": 2548.04, + "end": 2550.84, + "probability": 0.8183 + }, + { + "start": 2551.42, + "end": 2555.0, + "probability": 0.9796 + }, + { + "start": 2556.0, + "end": 2556.32, + "probability": 0.5304 + }, + { + "start": 2556.44, + "end": 2557.28, + "probability": 0.743 + }, + { + "start": 2557.34, + "end": 2558.16, + "probability": 0.8973 + }, + { + "start": 2558.38, + "end": 2559.62, + "probability": 0.9199 + }, + { + "start": 2560.36, + "end": 2567.48, + "probability": 0.9561 + }, + { + "start": 2568.69, + "end": 2573.34, + "probability": 0.9528 + }, + { + "start": 2573.9, + "end": 2575.44, + "probability": 0.9872 + }, + { + "start": 2575.96, + "end": 2577.36, + "probability": 0.8677 + }, + { + "start": 2578.16, + "end": 2580.66, + "probability": 0.866 + }, + { + "start": 2580.66, + "end": 2583.84, + "probability": 0.9995 + }, + { + "start": 2584.48, + "end": 2586.76, + "probability": 0.8663 + }, + { + "start": 2586.84, + "end": 2587.76, + "probability": 0.763 + }, + { + "start": 2588.9, + "end": 2593.3, + "probability": 0.9807 + }, + { + "start": 2593.3, + "end": 2596.52, + "probability": 0.9995 + }, + { + "start": 2597.52, + "end": 2600.14, + "probability": 0.9957 + }, + { + "start": 2600.7, + "end": 2604.62, + "probability": 0.9902 + }, + { + "start": 2605.7, + "end": 2610.04, + "probability": 0.9973 + }, + { + "start": 2610.88, + "end": 2617.14, + "probability": 0.9884 + }, + { + "start": 2617.72, + "end": 2620.32, + "probability": 0.9928 + }, + { + "start": 2621.18, + "end": 2625.0, + "probability": 0.947 + }, + { + "start": 2625.14, + "end": 2626.12, + "probability": 0.9093 + }, + { + "start": 2626.74, + "end": 2629.08, + "probability": 0.9761 + }, + { + "start": 2629.68, + "end": 2630.14, + "probability": 0.2571 + }, + { + "start": 2630.96, + "end": 2632.48, + "probability": 0.5148 + }, + { + "start": 2632.58, + "end": 2637.0, + "probability": 0.9585 + }, + { + "start": 2637.56, + "end": 2639.56, + "probability": 0.9626 + }, + { + "start": 2640.24, + "end": 2641.56, + "probability": 0.8728 + }, + { + "start": 2643.34, + "end": 2644.18, + "probability": 0.887 + }, + { + "start": 2645.1, + "end": 2647.24, + "probability": 0.842 + }, + { + "start": 2648.28, + "end": 2650.8, + "probability": 0.9875 + }, + { + "start": 2650.9, + "end": 2651.84, + "probability": 0.9013 + }, + { + "start": 2651.98, + "end": 2652.34, + "probability": 0.2115 + }, + { + "start": 2652.48, + "end": 2653.16, + "probability": 0.9046 + }, + { + "start": 2654.28, + "end": 2656.7, + "probability": 0.5356 + }, + { + "start": 2657.14, + "end": 2658.84, + "probability": 0.6973 + }, + { + "start": 2659.94, + "end": 2663.06, + "probability": 0.934 + }, + { + "start": 2663.46, + "end": 2664.0, + "probability": 0.8072 + }, + { + "start": 2664.62, + "end": 2665.6, + "probability": 0.797 + }, + { + "start": 2666.52, + "end": 2667.98, + "probability": 0.8744 + }, + { + "start": 2668.08, + "end": 2670.56, + "probability": 0.8688 + }, + { + "start": 2671.06, + "end": 2673.22, + "probability": 0.902 + }, + { + "start": 2674.08, + "end": 2674.76, + "probability": 0.8052 + }, + { + "start": 2675.04, + "end": 2679.62, + "probability": 0.9377 + }, + { + "start": 2680.52, + "end": 2681.58, + "probability": 0.6315 + }, + { + "start": 2681.82, + "end": 2682.7, + "probability": 0.888 + }, + { + "start": 2682.86, + "end": 2683.86, + "probability": 0.981 + }, + { + "start": 2684.36, + "end": 2685.16, + "probability": 0.9441 + }, + { + "start": 2685.26, + "end": 2685.94, + "probability": 0.8314 + }, + { + "start": 2686.42, + "end": 2687.14, + "probability": 0.5875 + }, + { + "start": 2687.9, + "end": 2689.12, + "probability": 0.9419 + }, + { + "start": 2689.42, + "end": 2692.26, + "probability": 0.8696 + }, + { + "start": 2693.0, + "end": 2694.3, + "probability": 0.982 + }, + { + "start": 2695.42, + "end": 2697.72, + "probability": 0.7595 + }, + { + "start": 2698.46, + "end": 2699.48, + "probability": 0.5848 + }, + { + "start": 2700.0, + "end": 2704.4, + "probability": 0.9395 + }, + { + "start": 2704.68, + "end": 2709.12, + "probability": 0.9644 + }, + { + "start": 2709.22, + "end": 2710.18, + "probability": 0.9443 + }, + { + "start": 2710.84, + "end": 2711.5, + "probability": 0.7287 + }, + { + "start": 2711.64, + "end": 2712.26, + "probability": 0.8636 + }, + { + "start": 2712.56, + "end": 2716.74, + "probability": 0.9919 + }, + { + "start": 2717.3, + "end": 2717.42, + "probability": 0.4052 + }, + { + "start": 2718.0, + "end": 2721.18, + "probability": 0.9969 + }, + { + "start": 2721.8, + "end": 2722.74, + "probability": 0.6457 + }, + { + "start": 2723.7, + "end": 2729.78, + "probability": 0.9626 + }, + { + "start": 2730.6, + "end": 2731.84, + "probability": 0.9099 + }, + { + "start": 2732.18, + "end": 2734.65, + "probability": 0.9951 + }, + { + "start": 2735.24, + "end": 2737.7, + "probability": 0.9174 + }, + { + "start": 2738.5, + "end": 2739.76, + "probability": 0.9971 + }, + { + "start": 2740.52, + "end": 2746.5, + "probability": 0.9924 + }, + { + "start": 2746.7, + "end": 2748.08, + "probability": 0.9128 + }, + { + "start": 2748.64, + "end": 2751.94, + "probability": 0.9023 + }, + { + "start": 2752.48, + "end": 2753.88, + "probability": 0.6648 + }, + { + "start": 2754.1, + "end": 2755.84, + "probability": 0.8472 + }, + { + "start": 2757.04, + "end": 2761.58, + "probability": 0.8859 + }, + { + "start": 2762.38, + "end": 2764.02, + "probability": 0.8936 + }, + { + "start": 2764.88, + "end": 2766.44, + "probability": 0.928 + }, + { + "start": 2766.58, + "end": 2771.68, + "probability": 0.9784 + }, + { + "start": 2771.68, + "end": 2774.3, + "probability": 0.9959 + }, + { + "start": 2775.4, + "end": 2775.6, + "probability": 0.6521 + }, + { + "start": 2775.72, + "end": 2777.34, + "probability": 0.6947 + }, + { + "start": 2777.42, + "end": 2780.44, + "probability": 0.7542 + }, + { + "start": 2781.94, + "end": 2783.02, + "probability": 0.8161 + }, + { + "start": 2783.62, + "end": 2790.38, + "probability": 0.9034 + }, + { + "start": 2790.4, + "end": 2791.3, + "probability": 0.6886 + }, + { + "start": 2792.1, + "end": 2793.64, + "probability": 0.6917 + }, + { + "start": 2794.34, + "end": 2797.46, + "probability": 0.9928 + }, + { + "start": 2797.46, + "end": 2801.1, + "probability": 0.9878 + }, + { + "start": 2801.3, + "end": 2805.42, + "probability": 0.9736 + }, + { + "start": 2805.42, + "end": 2813.3, + "probability": 0.98 + }, + { + "start": 2813.94, + "end": 2816.8, + "probability": 0.8471 + }, + { + "start": 2816.9, + "end": 2817.38, + "probability": 0.8903 + }, + { + "start": 2817.44, + "end": 2818.7, + "probability": 0.9062 + }, + { + "start": 2818.82, + "end": 2819.42, + "probability": 0.8345 + }, + { + "start": 2819.52, + "end": 2820.3, + "probability": 0.8844 + }, + { + "start": 2820.42, + "end": 2821.5, + "probability": 0.7878 + }, + { + "start": 2821.58, + "end": 2822.28, + "probability": 0.9128 + }, + { + "start": 2822.36, + "end": 2827.54, + "probability": 0.96 + }, + { + "start": 2828.44, + "end": 2830.68, + "probability": 0.993 + }, + { + "start": 2830.78, + "end": 2833.82, + "probability": 0.7931 + }, + { + "start": 2834.32, + "end": 2834.78, + "probability": 0.4952 + }, + { + "start": 2834.92, + "end": 2838.12, + "probability": 0.9878 + }, + { + "start": 2838.12, + "end": 2841.44, + "probability": 0.9565 + }, + { + "start": 2843.18, + "end": 2843.62, + "probability": 0.4514 + }, + { + "start": 2843.64, + "end": 2843.64, + "probability": 0.2395 + }, + { + "start": 2843.84, + "end": 2845.2, + "probability": 0.9222 + }, + { + "start": 2850.3, + "end": 2853.6, + "probability": 0.7248 + }, + { + "start": 2854.22, + "end": 2857.06, + "probability": 0.6679 + }, + { + "start": 2857.28, + "end": 2857.5, + "probability": 0.8792 + }, + { + "start": 2857.52, + "end": 2857.86, + "probability": 0.4773 + }, + { + "start": 2858.02, + "end": 2862.36, + "probability": 0.9374 + }, + { + "start": 2862.76, + "end": 2863.64, + "probability": 0.9941 + }, + { + "start": 2863.76, + "end": 2864.26, + "probability": 0.9362 + }, + { + "start": 2864.52, + "end": 2866.1, + "probability": 0.7712 + }, + { + "start": 2866.12, + "end": 2867.68, + "probability": 0.5657 + }, + { + "start": 2867.74, + "end": 2869.16, + "probability": 0.8217 + }, + { + "start": 2869.4, + "end": 2870.08, + "probability": 0.6125 + }, + { + "start": 2870.08, + "end": 2873.7, + "probability": 0.7368 + }, + { + "start": 2873.84, + "end": 2875.54, + "probability": 0.8578 + }, + { + "start": 2875.88, + "end": 2876.98, + "probability": 0.5585 + }, + { + "start": 2877.32, + "end": 2877.9, + "probability": 0.6486 + }, + { + "start": 2878.28, + "end": 2880.81, + "probability": 0.9888 + }, + { + "start": 2881.16, + "end": 2883.08, + "probability": 0.8904 + }, + { + "start": 2883.66, + "end": 2889.4, + "probability": 0.9862 + }, + { + "start": 2889.66, + "end": 2891.38, + "probability": 0.7753 + }, + { + "start": 2891.78, + "end": 2892.74, + "probability": 0.8907 + }, + { + "start": 2893.72, + "end": 2896.42, + "probability": 0.9662 + }, + { + "start": 2896.76, + "end": 2900.62, + "probability": 0.9889 + }, + { + "start": 2901.12, + "end": 2903.96, + "probability": 0.7702 + }, + { + "start": 2904.7, + "end": 2906.84, + "probability": 0.9485 + }, + { + "start": 2907.18, + "end": 2908.08, + "probability": 0.4732 + }, + { + "start": 2908.2, + "end": 2909.34, + "probability": 0.9843 + }, + { + "start": 2909.74, + "end": 2911.72, + "probability": 0.8916 + }, + { + "start": 2911.92, + "end": 2914.72, + "probability": 0.9215 + }, + { + "start": 2915.22, + "end": 2917.18, + "probability": 0.6003 + }, + { + "start": 2917.26, + "end": 2918.26, + "probability": 0.7185 + }, + { + "start": 2918.66, + "end": 2919.5, + "probability": 0.8277 + }, + { + "start": 2919.88, + "end": 2920.22, + "probability": 0.9427 + }, + { + "start": 2920.3, + "end": 2921.72, + "probability": 0.9785 + }, + { + "start": 2921.98, + "end": 2924.22, + "probability": 0.9723 + }, + { + "start": 2924.34, + "end": 2925.3, + "probability": 0.9667 + }, + { + "start": 2925.72, + "end": 2928.16, + "probability": 0.9204 + }, + { + "start": 2929.08, + "end": 2930.6, + "probability": 0.9971 + }, + { + "start": 2930.68, + "end": 2932.16, + "probability": 0.9866 + }, + { + "start": 2932.44, + "end": 2933.86, + "probability": 0.8013 + }, + { + "start": 2934.22, + "end": 2935.96, + "probability": 0.993 + }, + { + "start": 2936.56, + "end": 2937.82, + "probability": 0.8429 + }, + { + "start": 2938.48, + "end": 2939.8, + "probability": 0.9945 + }, + { + "start": 2939.98, + "end": 2940.8, + "probability": 0.8173 + }, + { + "start": 2941.16, + "end": 2942.41, + "probability": 0.7766 + }, + { + "start": 2942.52, + "end": 2943.54, + "probability": 0.887 + }, + { + "start": 2944.5, + "end": 2950.06, + "probability": 0.9561 + }, + { + "start": 2950.06, + "end": 2951.04, + "probability": 0.9474 + }, + { + "start": 2951.18, + "end": 2951.38, + "probability": 0.7262 + }, + { + "start": 2951.5, + "end": 2951.92, + "probability": 0.5506 + }, + { + "start": 2951.94, + "end": 2952.46, + "probability": 0.7548 + }, + { + "start": 2953.14, + "end": 2953.3, + "probability": 0.3671 + }, + { + "start": 2953.3, + "end": 2954.62, + "probability": 0.5761 + }, + { + "start": 2954.62, + "end": 2955.02, + "probability": 0.5205 + }, + { + "start": 2955.77, + "end": 2957.36, + "probability": 0.9686 + }, + { + "start": 2957.44, + "end": 2958.67, + "probability": 0.7904 + }, + { + "start": 2959.44, + "end": 2961.4, + "probability": 0.9757 + }, + { + "start": 2961.52, + "end": 2962.22, + "probability": 0.805 + }, + { + "start": 2962.34, + "end": 2963.04, + "probability": 0.7032 + }, + { + "start": 2963.14, + "end": 2963.56, + "probability": 0.8658 + }, + { + "start": 2963.6, + "end": 2965.12, + "probability": 0.9432 + }, + { + "start": 2965.58, + "end": 2970.92, + "probability": 0.9756 + }, + { + "start": 2972.1, + "end": 2976.02, + "probability": 0.6823 + }, + { + "start": 2976.12, + "end": 2977.04, + "probability": 0.8011 + }, + { + "start": 2977.1, + "end": 2977.7, + "probability": 0.7041 + }, + { + "start": 2977.76, + "end": 2978.28, + "probability": 0.5859 + }, + { + "start": 2978.82, + "end": 2979.54, + "probability": 0.8552 + }, + { + "start": 2979.84, + "end": 2980.96, + "probability": 0.8138 + }, + { + "start": 2981.56, + "end": 2984.66, + "probability": 0.9246 + }, + { + "start": 2985.26, + "end": 2987.42, + "probability": 0.895 + }, + { + "start": 2988.54, + "end": 2991.8, + "probability": 0.6744 + }, + { + "start": 2992.32, + "end": 2995.02, + "probability": 0.789 + }, + { + "start": 2995.74, + "end": 2999.06, + "probability": 0.9046 + }, + { + "start": 2999.8, + "end": 3002.08, + "probability": 0.4856 + }, + { + "start": 3002.38, + "end": 3004.71, + "probability": 0.6755 + }, + { + "start": 3005.36, + "end": 3006.9, + "probability": 0.7634 + }, + { + "start": 3007.8, + "end": 3008.88, + "probability": 0.9058 + }, + { + "start": 3008.96, + "end": 3011.54, + "probability": 0.9414 + }, + { + "start": 3012.56, + "end": 3013.78, + "probability": 0.9741 + }, + { + "start": 3013.82, + "end": 3016.38, + "probability": 0.9583 + }, + { + "start": 3019.8, + "end": 3020.28, + "probability": 0.0234 + }, + { + "start": 3020.28, + "end": 3022.14, + "probability": 0.804 + }, + { + "start": 3022.22, + "end": 3022.96, + "probability": 0.7756 + }, + { + "start": 3023.14, + "end": 3023.7, + "probability": 0.8027 + }, + { + "start": 3024.62, + "end": 3026.36, + "probability": 0.5209 + }, + { + "start": 3026.52, + "end": 3026.96, + "probability": 0.9814 + }, + { + "start": 3027.22, + "end": 3027.36, + "probability": 0.0019 + }, + { + "start": 3027.88, + "end": 3028.18, + "probability": 0.4433 + }, + { + "start": 3029.74, + "end": 3032.44, + "probability": 0.6876 + }, + { + "start": 3033.12, + "end": 3035.12, + "probability": 0.4883 + }, + { + "start": 3035.26, + "end": 3037.18, + "probability": 0.6921 + }, + { + "start": 3037.24, + "end": 3039.2, + "probability": 0.9305 + }, + { + "start": 3039.3, + "end": 3040.38, + "probability": 0.9302 + }, + { + "start": 3040.56, + "end": 3041.68, + "probability": 0.8992 + }, + { + "start": 3042.54, + "end": 3043.2, + "probability": 0.9387 + }, + { + "start": 3043.92, + "end": 3044.02, + "probability": 0.2099 + }, + { + "start": 3044.28, + "end": 3045.22, + "probability": 0.1084 + }, + { + "start": 3045.28, + "end": 3047.54, + "probability": 0.8586 + }, + { + "start": 3048.76, + "end": 3049.88, + "probability": 0.8722 + }, + { + "start": 3051.28, + "end": 3052.1, + "probability": 0.4043 + }, + { + "start": 3052.98, + "end": 3054.98, + "probability": 0.9841 + }, + { + "start": 3055.94, + "end": 3056.72, + "probability": 0.2896 + }, + { + "start": 3058.04, + "end": 3059.9, + "probability": 0.5053 + }, + { + "start": 3060.54, + "end": 3061.4, + "probability": 0.5944 + }, + { + "start": 3061.52, + "end": 3062.58, + "probability": 0.9058 + }, + { + "start": 3063.22, + "end": 3066.4, + "probability": 0.9305 + }, + { + "start": 3067.4, + "end": 3068.26, + "probability": 0.9067 + }, + { + "start": 3068.84, + "end": 3073.2, + "probability": 0.9957 + }, + { + "start": 3073.2, + "end": 3078.6, + "probability": 0.6813 + }, + { + "start": 3079.2, + "end": 3081.08, + "probability": 0.8798 + }, + { + "start": 3081.26, + "end": 3083.14, + "probability": 0.993 + }, + { + "start": 3084.02, + "end": 3086.12, + "probability": 0.8691 + }, + { + "start": 3086.78, + "end": 3091.34, + "probability": 0.8321 + }, + { + "start": 3091.44, + "end": 3094.46, + "probability": 0.6891 + }, + { + "start": 3095.36, + "end": 3097.52, + "probability": 0.9639 + }, + { + "start": 3098.26, + "end": 3099.56, + "probability": 0.9236 + }, + { + "start": 3100.08, + "end": 3101.48, + "probability": 0.9832 + }, + { + "start": 3102.3, + "end": 3103.46, + "probability": 0.8877 + }, + { + "start": 3104.38, + "end": 3105.36, + "probability": 0.3317 + }, + { + "start": 3106.16, + "end": 3106.58, + "probability": 0.2116 + }, + { + "start": 3107.1, + "end": 3107.34, + "probability": 0.0147 + }, + { + "start": 3111.7, + "end": 3112.1, + "probability": 0.1893 + }, + { + "start": 3112.22, + "end": 3113.42, + "probability": 0.7869 + }, + { + "start": 3117.06, + "end": 3117.96, + "probability": 0.7488 + }, + { + "start": 3117.98, + "end": 3118.9, + "probability": 0.7975 + }, + { + "start": 3118.92, + "end": 3119.04, + "probability": 0.7314 + }, + { + "start": 3119.58, + "end": 3122.56, + "probability": 0.6631 + }, + { + "start": 3122.7, + "end": 3123.48, + "probability": 0.5835 + }, + { + "start": 3123.6, + "end": 3127.48, + "probability": 0.5391 + }, + { + "start": 3129.86, + "end": 3130.16, + "probability": 0.1677 + }, + { + "start": 3130.16, + "end": 3130.16, + "probability": 0.2555 + }, + { + "start": 3130.16, + "end": 3131.36, + "probability": 0.7422 + }, + { + "start": 3132.36, + "end": 3134.6, + "probability": 0.9707 + }, + { + "start": 3134.74, + "end": 3135.38, + "probability": 0.9683 + }, + { + "start": 3136.38, + "end": 3139.64, + "probability": 0.7872 + }, + { + "start": 3140.78, + "end": 3142.14, + "probability": 0.7561 + }, + { + "start": 3142.94, + "end": 3145.02, + "probability": 0.887 + }, + { + "start": 3145.12, + "end": 3145.4, + "probability": 0.9382 + }, + { + "start": 3145.52, + "end": 3147.26, + "probability": 0.9699 + }, + { + "start": 3147.32, + "end": 3148.14, + "probability": 0.6536 + }, + { + "start": 3148.66, + "end": 3150.28, + "probability": 0.8481 + }, + { + "start": 3150.8, + "end": 3151.92, + "probability": 0.9837 + }, + { + "start": 3152.02, + "end": 3154.38, + "probability": 0.8714 + }, + { + "start": 3155.3, + "end": 3158.3, + "probability": 0.9781 + }, + { + "start": 3159.08, + "end": 3161.0, + "probability": 0.9445 + }, + { + "start": 3161.92, + "end": 3163.76, + "probability": 0.5496 + }, + { + "start": 3163.82, + "end": 3164.08, + "probability": 0.8158 + }, + { + "start": 3164.32, + "end": 3170.76, + "probability": 0.5413 + }, + { + "start": 3170.82, + "end": 3172.72, + "probability": 0.5225 + }, + { + "start": 3172.8, + "end": 3173.74, + "probability": 0.9143 + }, + { + "start": 3174.02, + "end": 3175.28, + "probability": 0.9806 + }, + { + "start": 3175.36, + "end": 3175.8, + "probability": 0.7925 + }, + { + "start": 3175.94, + "end": 3178.04, + "probability": 0.8382 + }, + { + "start": 3178.12, + "end": 3178.32, + "probability": 0.1013 + }, + { + "start": 3178.56, + "end": 3181.8, + "probability": 0.875 + }, + { + "start": 3181.86, + "end": 3182.06, + "probability": 0.0724 + }, + { + "start": 3182.06, + "end": 3185.44, + "probability": 0.9915 + }, + { + "start": 3185.44, + "end": 3188.28, + "probability": 0.9815 + }, + { + "start": 3188.36, + "end": 3188.6, + "probability": 0.0867 + }, + { + "start": 3188.66, + "end": 3188.98, + "probability": 0.8347 + }, + { + "start": 3189.02, + "end": 3189.78, + "probability": 0.8832 + }, + { + "start": 3190.26, + "end": 3190.52, + "probability": 0.8621 + }, + { + "start": 3191.04, + "end": 3192.3, + "probability": 0.7664 + }, + { + "start": 3192.86, + "end": 3193.68, + "probability": 0.3871 + }, + { + "start": 3194.48, + "end": 3196.82, + "probability": 0.9947 + }, + { + "start": 3197.54, + "end": 3197.6, + "probability": 0.0466 + }, + { + "start": 3197.6, + "end": 3199.98, + "probability": 0.6276 + }, + { + "start": 3201.5, + "end": 3203.06, + "probability": 0.9802 + }, + { + "start": 3203.88, + "end": 3205.54, + "probability": 0.9985 + }, + { + "start": 3205.7, + "end": 3208.58, + "probability": 0.8396 + }, + { + "start": 3210.11, + "end": 3214.78, + "probability": 0.9949 + }, + { + "start": 3215.7, + "end": 3215.8, + "probability": 0.0414 + }, + { + "start": 3215.8, + "end": 3217.38, + "probability": 0.867 + }, + { + "start": 3217.74, + "end": 3217.88, + "probability": 0.7819 + }, + { + "start": 3219.7, + "end": 3220.62, + "probability": 0.9178 + }, + { + "start": 3221.48, + "end": 3223.04, + "probability": 0.978 + }, + { + "start": 3223.38, + "end": 3224.5, + "probability": 0.8583 + }, + { + "start": 3225.06, + "end": 3227.28, + "probability": 0.8939 + }, + { + "start": 3228.28, + "end": 3230.62, + "probability": 0.9766 + }, + { + "start": 3231.62, + "end": 3235.6, + "probability": 0.9413 + }, + { + "start": 3235.62, + "end": 3237.22, + "probability": 0.9945 + }, + { + "start": 3237.95, + "end": 3238.3, + "probability": 0.6391 + }, + { + "start": 3238.86, + "end": 3239.56, + "probability": 0.4112 + }, + { + "start": 3239.66, + "end": 3240.76, + "probability": 0.0406 + }, + { + "start": 3240.76, + "end": 3243.1, + "probability": 0.8396 + }, + { + "start": 3243.94, + "end": 3246.6, + "probability": 0.7484 + }, + { + "start": 3246.91, + "end": 3252.3, + "probability": 0.781 + }, + { + "start": 3252.86, + "end": 3254.62, + "probability": 0.9897 + }, + { + "start": 3255.32, + "end": 3257.64, + "probability": 0.9668 + }, + { + "start": 3258.34, + "end": 3259.58, + "probability": 0.9475 + }, + { + "start": 3260.28, + "end": 3261.14, + "probability": 0.7318 + }, + { + "start": 3261.74, + "end": 3265.0, + "probability": 0.9277 + }, + { + "start": 3266.02, + "end": 3267.04, + "probability": 0.794 + }, + { + "start": 3267.84, + "end": 3267.84, + "probability": 0.1482 + }, + { + "start": 3267.84, + "end": 3268.46, + "probability": 0.2533 + }, + { + "start": 3268.46, + "end": 3268.46, + "probability": 0.0413 + }, + { + "start": 3268.46, + "end": 3270.18, + "probability": 0.3497 + }, + { + "start": 3270.9, + "end": 3271.94, + "probability": 0.3288 + }, + { + "start": 3272.06, + "end": 3273.14, + "probability": 0.8475 + }, + { + "start": 3273.92, + "end": 3274.58, + "probability": 0.617 + }, + { + "start": 3275.18, + "end": 3275.86, + "probability": 0.5591 + }, + { + "start": 3275.88, + "end": 3276.52, + "probability": 0.8071 + }, + { + "start": 3277.36, + "end": 3277.36, + "probability": 0.1356 + }, + { + "start": 3277.58, + "end": 3278.72, + "probability": 0.5866 + }, + { + "start": 3279.28, + "end": 3281.5, + "probability": 0.9902 + }, + { + "start": 3282.32, + "end": 3284.49, + "probability": 0.9651 + }, + { + "start": 3285.4, + "end": 3286.3, + "probability": 0.9009 + }, + { + "start": 3287.26, + "end": 3288.76, + "probability": 0.9199 + }, + { + "start": 3288.76, + "end": 3289.57, + "probability": 0.9653 + }, + { + "start": 3291.32, + "end": 3291.58, + "probability": 0.2905 + }, + { + "start": 3292.76, + "end": 3293.76, + "probability": 0.9758 + }, + { + "start": 3294.18, + "end": 3294.56, + "probability": 0.3705 + }, + { + "start": 3294.62, + "end": 3296.24, + "probability": 0.9761 + }, + { + "start": 3297.1, + "end": 3300.42, + "probability": 0.9927 + }, + { + "start": 3301.53, + "end": 3303.82, + "probability": 0.0375 + }, + { + "start": 3305.84, + "end": 3306.6, + "probability": 0.0379 + }, + { + "start": 3306.6, + "end": 3308.96, + "probability": 0.1068 + }, + { + "start": 3308.96, + "end": 3309.82, + "probability": 0.1123 + }, + { + "start": 3310.82, + "end": 3311.06, + "probability": 0.1579 + }, + { + "start": 3311.67, + "end": 3316.1, + "probability": 0.4719 + }, + { + "start": 3317.0, + "end": 3320.72, + "probability": 0.3321 + }, + { + "start": 3320.72, + "end": 3321.78, + "probability": 0.2146 + }, + { + "start": 3321.78, + "end": 3324.76, + "probability": 0.1294 + }, + { + "start": 3325.46, + "end": 3331.3, + "probability": 0.1874 + }, + { + "start": 3331.54, + "end": 3331.86, + "probability": 0.0425 + }, + { + "start": 3336.16, + "end": 3336.52, + "probability": 0.1249 + }, + { + "start": 3337.44, + "end": 3337.58, + "probability": 0.0435 + }, + { + "start": 3337.58, + "end": 3337.58, + "probability": 0.0917 + }, + { + "start": 3337.58, + "end": 3337.67, + "probability": 0.047 + }, + { + "start": 3341.76, + "end": 3342.8, + "probability": 0.0968 + }, + { + "start": 3342.8, + "end": 3343.58, + "probability": 0.2331 + }, + { + "start": 3344.84, + "end": 3346.46, + "probability": 0.13 + }, + { + "start": 3347.5, + "end": 3347.5, + "probability": 0.0364 + }, + { + "start": 3348.26, + "end": 3349.18, + "probability": 0.3096 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3364.0, + "end": 3364.0, + "probability": 0.0 + }, + { + "start": 3365.28, + "end": 3367.9, + "probability": 0.1474 + }, + { + "start": 3368.06, + "end": 3369.1, + "probability": 0.1839 + }, + { + "start": 3369.96, + "end": 3376.7, + "probability": 0.0211 + }, + { + "start": 3377.58, + "end": 3379.1, + "probability": 0.1054 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.0, + "end": 3489.0, + "probability": 0.0 + }, + { + "start": 3489.4, + "end": 3491.78, + "probability": 0.6053 + }, + { + "start": 3493.24, + "end": 3498.06, + "probability": 0.9944 + }, + { + "start": 3498.06, + "end": 3503.16, + "probability": 0.9537 + }, + { + "start": 3503.74, + "end": 3504.4, + "probability": 0.6932 + }, + { + "start": 3505.5, + "end": 3512.66, + "probability": 0.9933 + }, + { + "start": 3514.8, + "end": 3517.95, + "probability": 0.9857 + }, + { + "start": 3519.02, + "end": 3524.2, + "probability": 0.9971 + }, + { + "start": 3524.2, + "end": 3528.28, + "probability": 0.9723 + }, + { + "start": 3529.44, + "end": 3532.62, + "probability": 0.8383 + }, + { + "start": 3534.18, + "end": 3538.5, + "probability": 0.7939 + }, + { + "start": 3539.1, + "end": 3544.9, + "probability": 0.9896 + }, + { + "start": 3546.84, + "end": 3552.52, + "probability": 0.9858 + }, + { + "start": 3552.52, + "end": 3558.58, + "probability": 0.9897 + }, + { + "start": 3561.04, + "end": 3566.26, + "probability": 0.9924 + }, + { + "start": 3567.34, + "end": 3570.76, + "probability": 0.9792 + }, + { + "start": 3572.08, + "end": 3573.24, + "probability": 0.7664 + }, + { + "start": 3573.76, + "end": 3577.1, + "probability": 0.9955 + }, + { + "start": 3577.78, + "end": 3582.26, + "probability": 0.9761 + }, + { + "start": 3583.08, + "end": 3587.3, + "probability": 0.6777 + }, + { + "start": 3588.6, + "end": 3593.44, + "probability": 0.9773 + }, + { + "start": 3594.36, + "end": 3598.12, + "probability": 0.998 + }, + { + "start": 3598.58, + "end": 3602.2, + "probability": 0.846 + }, + { + "start": 3603.86, + "end": 3606.46, + "probability": 0.9949 + }, + { + "start": 3606.46, + "end": 3611.08, + "probability": 0.994 + }, + { + "start": 3612.9, + "end": 3613.76, + "probability": 0.6402 + }, + { + "start": 3614.3, + "end": 3618.86, + "probability": 0.9722 + }, + { + "start": 3619.72, + "end": 3626.02, + "probability": 0.893 + }, + { + "start": 3626.76, + "end": 3627.36, + "probability": 0.884 + }, + { + "start": 3628.1, + "end": 3635.25, + "probability": 0.9818 + }, + { + "start": 3636.02, + "end": 3637.64, + "probability": 0.7625 + }, + { + "start": 3640.28, + "end": 3643.04, + "probability": 0.9096 + }, + { + "start": 3645.58, + "end": 3649.74, + "probability": 0.9775 + }, + { + "start": 3650.54, + "end": 3654.84, + "probability": 0.9943 + }, + { + "start": 3655.86, + "end": 3658.02, + "probability": 0.9127 + }, + { + "start": 3658.92, + "end": 3662.4, + "probability": 0.8522 + }, + { + "start": 3664.78, + "end": 3667.95, + "probability": 0.8447 + }, + { + "start": 3669.12, + "end": 3674.32, + "probability": 0.957 + }, + { + "start": 3675.14, + "end": 3677.0, + "probability": 0.3485 + }, + { + "start": 3677.38, + "end": 3684.02, + "probability": 0.8922 + }, + { + "start": 3684.08, + "end": 3684.72, + "probability": 0.6686 + }, + { + "start": 3685.98, + "end": 3687.0, + "probability": 0.9685 + }, + { + "start": 3687.82, + "end": 3688.98, + "probability": 0.875 + }, + { + "start": 3689.62, + "end": 3690.88, + "probability": 0.6374 + }, + { + "start": 3690.98, + "end": 3695.02, + "probability": 0.9824 + }, + { + "start": 3695.92, + "end": 3703.9, + "probability": 0.9618 + }, + { + "start": 3703.9, + "end": 3710.92, + "probability": 0.9639 + }, + { + "start": 3711.12, + "end": 3715.62, + "probability": 0.9565 + }, + { + "start": 3716.42, + "end": 3718.34, + "probability": 0.9438 + }, + { + "start": 3718.58, + "end": 3723.02, + "probability": 0.7832 + }, + { + "start": 3724.28, + "end": 3724.78, + "probability": 0.8075 + }, + { + "start": 3724.88, + "end": 3724.88, + "probability": 0.5697 + }, + { + "start": 3724.88, + "end": 3725.92, + "probability": 0.9629 + }, + { + "start": 3725.94, + "end": 3728.22, + "probability": 0.9407 + }, + { + "start": 3728.48, + "end": 3731.86, + "probability": 0.9985 + }, + { + "start": 3732.42, + "end": 3732.76, + "probability": 0.5294 + }, + { + "start": 3758.6, + "end": 3760.24, + "probability": 0.5318 + }, + { + "start": 3760.26, + "end": 3761.64, + "probability": 0.849 + }, + { + "start": 3762.06, + "end": 3767.22, + "probability": 0.9512 + }, + { + "start": 3767.22, + "end": 3772.58, + "probability": 0.9985 + }, + { + "start": 3777.1, + "end": 3777.64, + "probability": 0.9844 + }, + { + "start": 3778.76, + "end": 3782.38, + "probability": 0.9759 + }, + { + "start": 3782.54, + "end": 3786.44, + "probability": 0.9967 + }, + { + "start": 3786.44, + "end": 3789.86, + "probability": 0.9985 + }, + { + "start": 3790.14, + "end": 3794.14, + "probability": 0.7598 + }, + { + "start": 3795.12, + "end": 3798.9, + "probability": 0.9932 + }, + { + "start": 3799.96, + "end": 3803.84, + "probability": 0.7553 + }, + { + "start": 3803.84, + "end": 3808.0, + "probability": 0.989 + }, + { + "start": 3808.74, + "end": 3814.58, + "probability": 0.9994 + }, + { + "start": 3814.78, + "end": 3820.3, + "probability": 0.9515 + }, + { + "start": 3820.52, + "end": 3822.92, + "probability": 0.6174 + }, + { + "start": 3823.0, + "end": 3824.56, + "probability": 0.9749 + }, + { + "start": 3824.68, + "end": 3825.74, + "probability": 0.5832 + }, + { + "start": 3826.42, + "end": 3830.6, + "probability": 0.9626 + }, + { + "start": 3830.6, + "end": 3834.36, + "probability": 0.9908 + }, + { + "start": 3835.44, + "end": 3835.86, + "probability": 0.8471 + }, + { + "start": 3835.94, + "end": 3836.42, + "probability": 0.9272 + }, + { + "start": 3836.82, + "end": 3841.56, + "probability": 0.997 + }, + { + "start": 3842.74, + "end": 3843.76, + "probability": 0.8835 + }, + { + "start": 3843.88, + "end": 3844.22, + "probability": 0.8554 + }, + { + "start": 3844.3, + "end": 3845.56, + "probability": 0.9568 + }, + { + "start": 3845.7, + "end": 3850.34, + "probability": 0.9613 + }, + { + "start": 3851.14, + "end": 3853.32, + "probability": 0.9903 + }, + { + "start": 3853.4, + "end": 3859.74, + "probability": 0.986 + }, + { + "start": 3860.96, + "end": 3862.38, + "probability": 0.5273 + }, + { + "start": 3862.48, + "end": 3864.48, + "probability": 0.9904 + }, + { + "start": 3864.58, + "end": 3869.48, + "probability": 0.9782 + }, + { + "start": 3869.88, + "end": 3877.0, + "probability": 0.9873 + }, + { + "start": 3877.0, + "end": 3881.68, + "probability": 0.9926 + }, + { + "start": 3883.02, + "end": 3883.9, + "probability": 0.7328 + }, + { + "start": 3883.96, + "end": 3884.78, + "probability": 0.427 + }, + { + "start": 3884.94, + "end": 3889.18, + "probability": 0.9987 + }, + { + "start": 3889.18, + "end": 3893.52, + "probability": 0.9971 + }, + { + "start": 3894.79, + "end": 3898.14, + "probability": 0.9695 + }, + { + "start": 3898.22, + "end": 3898.74, + "probability": 0.7158 + }, + { + "start": 3898.84, + "end": 3900.82, + "probability": 0.9829 + }, + { + "start": 3901.0, + "end": 3901.77, + "probability": 0.9487 + }, + { + "start": 3901.82, + "end": 3903.22, + "probability": 0.952 + }, + { + "start": 3903.42, + "end": 3905.56, + "probability": 0.9222 + }, + { + "start": 3905.72, + "end": 3913.9, + "probability": 0.9863 + }, + { + "start": 3914.02, + "end": 3917.72, + "probability": 0.9742 + }, + { + "start": 3917.98, + "end": 3922.56, + "probability": 0.6383 + }, + { + "start": 3922.64, + "end": 3927.76, + "probability": 0.907 + }, + { + "start": 3928.86, + "end": 3931.26, + "probability": 0.5672 + }, + { + "start": 3931.26, + "end": 3931.42, + "probability": 0.6468 + }, + { + "start": 3931.42, + "end": 3932.76, + "probability": 0.7516 + }, + { + "start": 3933.7, + "end": 3935.76, + "probability": 0.8839 + }, + { + "start": 3936.2, + "end": 3938.9, + "probability": 0.8477 + }, + { + "start": 3938.9, + "end": 3942.16, + "probability": 0.9902 + }, + { + "start": 3942.54, + "end": 3943.22, + "probability": 0.4868 + }, + { + "start": 3943.32, + "end": 3945.56, + "probability": 0.8975 + }, + { + "start": 3945.74, + "end": 3946.56, + "probability": 0.7365 + }, + { + "start": 3947.04, + "end": 3949.92, + "probability": 0.9953 + }, + { + "start": 3950.16, + "end": 3950.36, + "probability": 0.813 + }, + { + "start": 3951.48, + "end": 3952.8, + "probability": 0.8159 + }, + { + "start": 3952.86, + "end": 3957.12, + "probability": 0.976 + }, + { + "start": 3958.26, + "end": 3960.14, + "probability": 0.6008 + }, + { + "start": 3960.74, + "end": 3961.48, + "probability": 0.5708 + }, + { + "start": 3963.16, + "end": 3963.16, + "probability": 0.6909 + }, + { + "start": 3963.16, + "end": 3964.62, + "probability": 0.943 + }, + { + "start": 3964.85, + "end": 3967.1, + "probability": 0.8461 + }, + { + "start": 3967.92, + "end": 3972.0, + "probability": 0.9834 + }, + { + "start": 3972.02, + "end": 3973.14, + "probability": 0.6735 + }, + { + "start": 3973.2, + "end": 3976.68, + "probability": 0.6631 + }, + { + "start": 3977.0, + "end": 3977.36, + "probability": 0.4081 + }, + { + "start": 3989.72, + "end": 4000.02, + "probability": 0.4111 + }, + { + "start": 4000.02, + "end": 4001.18, + "probability": 0.7726 + }, + { + "start": 4001.86, + "end": 4003.12, + "probability": 0.5591 + }, + { + "start": 4005.44, + "end": 4010.29, + "probability": 0.5322 + }, + { + "start": 4012.2, + "end": 4013.86, + "probability": 0.1255 + }, + { + "start": 4018.54, + "end": 4019.34, + "probability": 0.139 + }, + { + "start": 4020.05, + "end": 4022.62, + "probability": 0.028 + }, + { + "start": 4022.64, + "end": 4024.14, + "probability": 0.0219 + }, + { + "start": 4024.48, + "end": 4025.22, + "probability": 0.1903 + }, + { + "start": 4027.36, + "end": 4029.04, + "probability": 0.047 + }, + { + "start": 4029.9, + "end": 4032.12, + "probability": 0.0485 + }, + { + "start": 4034.82, + "end": 4037.36, + "probability": 0.0955 + }, + { + "start": 4037.36, + "end": 4037.6, + "probability": 0.0788 + }, + { + "start": 4037.6, + "end": 4038.02, + "probability": 0.1524 + }, + { + "start": 4038.08, + "end": 4044.34, + "probability": 0.0682 + }, + { + "start": 4044.57, + "end": 4047.98, + "probability": 0.016 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.0, + "end": 4048.0, + "probability": 0.0 + }, + { + "start": 4048.95, + "end": 4049.72, + "probability": 0.8029 + }, + { + "start": 4050.68, + "end": 4052.94, + "probability": 0.4097 + }, + { + "start": 4053.39, + "end": 4055.14, + "probability": 0.6892 + }, + { + "start": 4055.86, + "end": 4057.72, + "probability": 0.7048 + }, + { + "start": 4058.98, + "end": 4059.74, + "probability": 0.8848 + }, + { + "start": 4061.32, + "end": 4062.84, + "probability": 0.6781 + }, + { + "start": 4064.18, + "end": 4067.08, + "probability": 0.6943 + }, + { + "start": 4068.02, + "end": 4071.18, + "probability": 0.6547 + }, + { + "start": 4071.18, + "end": 4074.16, + "probability": 0.507 + }, + { + "start": 4075.26, + "end": 4079.94, + "probability": 0.5767 + }, + { + "start": 4080.68, + "end": 4084.58, + "probability": 0.7711 + }, + { + "start": 4084.86, + "end": 4087.64, + "probability": 0.9293 + }, + { + "start": 4088.34, + "end": 4093.6, + "probability": 0.7786 + }, + { + "start": 4094.4, + "end": 4101.34, + "probability": 0.7717 + }, + { + "start": 4102.52, + "end": 4106.56, + "probability": 0.8583 + }, + { + "start": 4108.02, + "end": 4113.88, + "probability": 0.9632 + }, + { + "start": 4114.9, + "end": 4117.36, + "probability": 0.8802 + }, + { + "start": 4117.36, + "end": 4120.76, + "probability": 0.9193 + }, + { + "start": 4121.38, + "end": 4123.78, + "probability": 0.7536 + }, + { + "start": 4124.34, + "end": 4129.28, + "probability": 0.9839 + }, + { + "start": 4130.14, + "end": 4133.56, + "probability": 0.9888 + }, + { + "start": 4134.14, + "end": 4135.8, + "probability": 0.9724 + }, + { + "start": 4136.38, + "end": 4140.36, + "probability": 0.7513 + }, + { + "start": 4141.1, + "end": 4143.04, + "probability": 0.9288 + }, + { + "start": 4144.3, + "end": 4145.34, + "probability": 0.7404 + }, + { + "start": 4145.76, + "end": 4147.98, + "probability": 0.8834 + }, + { + "start": 4148.84, + "end": 4149.98, + "probability": 0.9638 + }, + { + "start": 4151.42, + "end": 4154.18, + "probability": 0.8014 + }, + { + "start": 4155.36, + "end": 4159.81, + "probability": 0.9497 + }, + { + "start": 4160.36, + "end": 4161.16, + "probability": 0.7705 + }, + { + "start": 4162.2, + "end": 4167.08, + "probability": 0.7857 + }, + { + "start": 4168.3, + "end": 4169.7, + "probability": 0.9169 + }, + { + "start": 4170.36, + "end": 4173.82, + "probability": 0.9293 + }, + { + "start": 4174.8, + "end": 4177.42, + "probability": 0.9637 + }, + { + "start": 4178.42, + "end": 4181.62, + "probability": 0.9187 + }, + { + "start": 4182.96, + "end": 4184.8, + "probability": 0.5359 + }, + { + "start": 4185.48, + "end": 4187.54, + "probability": 0.9841 + }, + { + "start": 4187.54, + "end": 4190.78, + "probability": 0.9946 + }, + { + "start": 4191.7, + "end": 4192.26, + "probability": 0.7266 + }, + { + "start": 4192.84, + "end": 4194.34, + "probability": 0.9673 + }, + { + "start": 4194.76, + "end": 4198.22, + "probability": 0.8324 + }, + { + "start": 4198.8, + "end": 4202.76, + "probability": 0.8714 + }, + { + "start": 4203.74, + "end": 4205.22, + "probability": 0.6345 + }, + { + "start": 4205.72, + "end": 4208.64, + "probability": 0.9897 + }, + { + "start": 4209.88, + "end": 4210.18, + "probability": 0.8442 + }, + { + "start": 4210.8, + "end": 4214.32, + "probability": 0.9229 + }, + { + "start": 4214.94, + "end": 4217.18, + "probability": 0.9826 + }, + { + "start": 4218.04, + "end": 4218.3, + "probability": 0.8555 + }, + { + "start": 4218.62, + "end": 4219.6, + "probability": 0.6898 + }, + { + "start": 4219.82, + "end": 4224.16, + "probability": 0.989 + }, + { + "start": 4224.16, + "end": 4231.14, + "probability": 0.9404 + }, + { + "start": 4231.64, + "end": 4233.02, + "probability": 0.9041 + }, + { + "start": 4233.9, + "end": 4237.18, + "probability": 0.9515 + }, + { + "start": 4237.68, + "end": 4241.68, + "probability": 0.9515 + }, + { + "start": 4246.66, + "end": 4248.52, + "probability": 0.7136 + }, + { + "start": 4248.52, + "end": 4251.34, + "probability": 0.8151 + }, + { + "start": 4251.94, + "end": 4252.5, + "probability": 0.4593 + }, + { + "start": 4252.5, + "end": 4255.38, + "probability": 0.9429 + }, + { + "start": 4255.76, + "end": 4258.12, + "probability": 0.9255 + }, + { + "start": 4258.56, + "end": 4261.14, + "probability": 0.9761 + }, + { + "start": 4262.16, + "end": 4264.86, + "probability": 0.9033 + }, + { + "start": 4265.46, + "end": 4267.34, + "probability": 0.9963 + }, + { + "start": 4267.98, + "end": 4270.98, + "probability": 0.9693 + }, + { + "start": 4274.36, + "end": 4276.98, + "probability": 0.9578 + }, + { + "start": 4277.4, + "end": 4282.94, + "probability": 0.9788 + }, + { + "start": 4284.38, + "end": 4285.87, + "probability": 0.8597 + }, + { + "start": 4286.56, + "end": 4289.66, + "probability": 0.8625 + }, + { + "start": 4290.88, + "end": 4293.54, + "probability": 0.9974 + }, + { + "start": 4294.26, + "end": 4296.12, + "probability": 0.9888 + }, + { + "start": 4297.64, + "end": 4300.22, + "probability": 0.9664 + }, + { + "start": 4302.32, + "end": 4303.1, + "probability": 0.7142 + }, + { + "start": 4303.74, + "end": 4305.56, + "probability": 0.9663 + }, + { + "start": 4306.0, + "end": 4309.72, + "probability": 0.919 + }, + { + "start": 4310.2, + "end": 4313.62, + "probability": 0.9572 + }, + { + "start": 4315.08, + "end": 4317.72, + "probability": 0.7785 + }, + { + "start": 4318.42, + "end": 4319.54, + "probability": 0.8933 + }, + { + "start": 4320.14, + "end": 4321.16, + "probability": 0.9152 + }, + { + "start": 4321.62, + "end": 4325.64, + "probability": 0.9902 + }, + { + "start": 4326.4, + "end": 4329.48, + "probability": 0.7887 + }, + { + "start": 4330.06, + "end": 4333.88, + "probability": 0.994 + }, + { + "start": 4334.68, + "end": 4337.4, + "probability": 0.9928 + }, + { + "start": 4338.5, + "end": 4343.72, + "probability": 0.9719 + }, + { + "start": 4344.88, + "end": 4347.96, + "probability": 0.9974 + }, + { + "start": 4349.02, + "end": 4353.62, + "probability": 0.9876 + }, + { + "start": 4354.4, + "end": 4354.96, + "probability": 0.5073 + }, + { + "start": 4355.16, + "end": 4359.08, + "probability": 0.9063 + }, + { + "start": 4359.84, + "end": 4363.84, + "probability": 0.9922 + }, + { + "start": 4364.42, + "end": 4367.86, + "probability": 0.9863 + }, + { + "start": 4368.92, + "end": 4372.28, + "probability": 0.9845 + }, + { + "start": 4372.7, + "end": 4373.28, + "probability": 0.7607 + }, + { + "start": 4374.42, + "end": 4376.62, + "probability": 0.9492 + }, + { + "start": 4376.92, + "end": 4378.36, + "probability": 0.9404 + }, + { + "start": 4378.6, + "end": 4381.1, + "probability": 0.9632 + }, + { + "start": 4383.8, + "end": 4385.68, + "probability": 0.9965 + }, + { + "start": 4386.28, + "end": 4387.72, + "probability": 0.9734 + }, + { + "start": 4388.26, + "end": 4391.02, + "probability": 0.9528 + }, + { + "start": 4391.48, + "end": 4393.74, + "probability": 0.9268 + }, + { + "start": 4395.48, + "end": 4397.06, + "probability": 0.9468 + }, + { + "start": 4397.38, + "end": 4399.46, + "probability": 0.875 + }, + { + "start": 4399.54, + "end": 4399.98, + "probability": 0.6931 + }, + { + "start": 4400.04, + "end": 4401.28, + "probability": 0.8176 + }, + { + "start": 4402.38, + "end": 4402.94, + "probability": 0.7888 + }, + { + "start": 4403.54, + "end": 4406.06, + "probability": 0.8232 + }, + { + "start": 4406.64, + "end": 4409.98, + "probability": 0.9899 + }, + { + "start": 4410.84, + "end": 4413.51, + "probability": 0.9731 + }, + { + "start": 4413.7, + "end": 4416.6, + "probability": 0.9909 + }, + { + "start": 4417.06, + "end": 4417.76, + "probability": 0.7378 + }, + { + "start": 4418.28, + "end": 4423.6, + "probability": 0.8306 + }, + { + "start": 4424.52, + "end": 4427.62, + "probability": 0.996 + }, + { + "start": 4428.1, + "end": 4431.0, + "probability": 0.8566 + }, + { + "start": 4431.68, + "end": 4433.32, + "probability": 0.7061 + }, + { + "start": 4433.92, + "end": 4438.26, + "probability": 0.9973 + }, + { + "start": 4438.62, + "end": 4442.66, + "probability": 0.9749 + }, + { + "start": 4446.74, + "end": 4450.54, + "probability": 0.9858 + }, + { + "start": 4451.18, + "end": 4452.18, + "probability": 0.9182 + }, + { + "start": 4452.82, + "end": 4455.28, + "probability": 0.9858 + }, + { + "start": 4455.88, + "end": 4458.08, + "probability": 0.8574 + }, + { + "start": 4458.5, + "end": 4459.12, + "probability": 0.9277 + }, + { + "start": 4459.32, + "end": 4463.44, + "probability": 0.9855 + }, + { + "start": 4464.22, + "end": 4466.92, + "probability": 0.97 + }, + { + "start": 4467.52, + "end": 4471.5, + "probability": 0.8654 + }, + { + "start": 4471.78, + "end": 4474.02, + "probability": 0.9971 + }, + { + "start": 4474.32, + "end": 4477.0, + "probability": 0.976 + }, + { + "start": 4477.28, + "end": 4482.38, + "probability": 0.9922 + }, + { + "start": 4482.92, + "end": 4484.38, + "probability": 0.9721 + }, + { + "start": 4484.84, + "end": 4486.72, + "probability": 0.9927 + }, + { + "start": 4487.16, + "end": 4487.76, + "probability": 0.8267 + }, + { + "start": 4488.42, + "end": 4490.34, + "probability": 0.9853 + }, + { + "start": 4490.86, + "end": 4493.72, + "probability": 0.9889 + }, + { + "start": 4494.26, + "end": 4497.08, + "probability": 0.9906 + }, + { + "start": 4497.78, + "end": 4498.48, + "probability": 0.7542 + }, + { + "start": 4498.54, + "end": 4499.2, + "probability": 0.8177 + }, + { + "start": 4499.6, + "end": 4501.48, + "probability": 0.8149 + }, + { + "start": 4501.62, + "end": 4504.88, + "probability": 0.9961 + }, + { + "start": 4505.08, + "end": 4507.96, + "probability": 0.8213 + }, + { + "start": 4508.0, + "end": 4508.38, + "probability": 0.7015 + }, + { + "start": 4509.0, + "end": 4509.44, + "probability": 0.8848 + }, + { + "start": 4509.86, + "end": 4513.14, + "probability": 0.9414 + }, + { + "start": 4513.46, + "end": 4515.06, + "probability": 0.8389 + }, + { + "start": 4515.14, + "end": 4517.64, + "probability": 0.9351 + }, + { + "start": 4517.64, + "end": 4520.86, + "probability": 0.6833 + }, + { + "start": 4521.28, + "end": 4523.09, + "probability": 0.9868 + }, + { + "start": 4523.66, + "end": 4526.24, + "probability": 0.9448 + }, + { + "start": 4526.58, + "end": 4530.34, + "probability": 0.9447 + }, + { + "start": 4530.9, + "end": 4534.96, + "probability": 0.9679 + }, + { + "start": 4535.3, + "end": 4537.45, + "probability": 0.9437 + }, + { + "start": 4537.64, + "end": 4539.84, + "probability": 0.9274 + }, + { + "start": 4540.22, + "end": 4544.54, + "probability": 0.9403 + }, + { + "start": 4545.02, + "end": 4548.14, + "probability": 0.665 + }, + { + "start": 4548.36, + "end": 4548.84, + "probability": 0.6953 + }, + { + "start": 4548.86, + "end": 4549.8, + "probability": 0.7901 + }, + { + "start": 4550.22, + "end": 4550.9, + "probability": 0.8844 + }, + { + "start": 4551.16, + "end": 4551.8, + "probability": 0.8756 + }, + { + "start": 4552.04, + "end": 4553.68, + "probability": 0.9644 + }, + { + "start": 4553.92, + "end": 4554.74, + "probability": 0.7051 + }, + { + "start": 4555.06, + "end": 4556.98, + "probability": 0.7862 + }, + { + "start": 4557.0, + "end": 4557.4, + "probability": 0.6976 + }, + { + "start": 4557.5, + "end": 4557.9, + "probability": 0.8388 + }, + { + "start": 4558.02, + "end": 4558.74, + "probability": 0.8366 + }, + { + "start": 4559.06, + "end": 4559.68, + "probability": 0.876 + }, + { + "start": 4559.74, + "end": 4564.18, + "probability": 0.859 + }, + { + "start": 4564.18, + "end": 4568.56, + "probability": 0.9463 + }, + { + "start": 4568.62, + "end": 4572.08, + "probability": 0.9299 + }, + { + "start": 4573.02, + "end": 4574.42, + "probability": 0.7834 + }, + { + "start": 4578.31, + "end": 4580.47, + "probability": 0.1158 + }, + { + "start": 4580.54, + "end": 4581.68, + "probability": 0.2518 + }, + { + "start": 4588.98, + "end": 4590.22, + "probability": 0.0268 + }, + { + "start": 4593.36, + "end": 4595.52, + "probability": 0.7428 + }, + { + "start": 4596.12, + "end": 4596.94, + "probability": 0.8798 + }, + { + "start": 4598.22, + "end": 4598.72, + "probability": 0.8655 + }, + { + "start": 4599.34, + "end": 4599.66, + "probability": 0.8605 + }, + { + "start": 4599.7, + "end": 4602.62, + "probability": 0.9949 + }, + { + "start": 4603.52, + "end": 4607.08, + "probability": 0.9724 + }, + { + "start": 4607.72, + "end": 4608.36, + "probability": 0.5773 + }, + { + "start": 4608.4, + "end": 4609.38, + "probability": 0.9619 + }, + { + "start": 4609.46, + "end": 4611.02, + "probability": 0.8375 + }, + { + "start": 4611.12, + "end": 4613.42, + "probability": 0.9511 + }, + { + "start": 4614.4, + "end": 4615.28, + "probability": 0.8579 + }, + { + "start": 4616.08, + "end": 4622.16, + "probability": 0.9374 + }, + { + "start": 4623.5, + "end": 4626.34, + "probability": 0.8301 + }, + { + "start": 4626.44, + "end": 4626.98, + "probability": 0.8134 + }, + { + "start": 4627.72, + "end": 4629.64, + "probability": 0.9927 + }, + { + "start": 4629.64, + "end": 4631.94, + "probability": 0.9988 + }, + { + "start": 4632.56, + "end": 4633.64, + "probability": 0.9686 + }, + { + "start": 4633.72, + "end": 4636.18, + "probability": 0.9162 + }, + { + "start": 4636.96, + "end": 4638.32, + "probability": 0.8482 + }, + { + "start": 4638.98, + "end": 4640.58, + "probability": 0.9629 + }, + { + "start": 4640.62, + "end": 4643.04, + "probability": 0.985 + }, + { + "start": 4643.7, + "end": 4647.08, + "probability": 0.9941 + }, + { + "start": 4648.76, + "end": 4651.64, + "probability": 0.9987 + }, + { + "start": 4651.76, + "end": 4655.14, + "probability": 0.9851 + }, + { + "start": 4656.0, + "end": 4656.44, + "probability": 0.8527 + }, + { + "start": 4656.72, + "end": 4661.06, + "probability": 0.9982 + }, + { + "start": 4661.5, + "end": 4664.12, + "probability": 0.995 + }, + { + "start": 4664.76, + "end": 4668.8, + "probability": 0.9814 + }, + { + "start": 4669.64, + "end": 4670.44, + "probability": 0.749 + }, + { + "start": 4671.88, + "end": 4672.74, + "probability": 0.892 + }, + { + "start": 4673.28, + "end": 4676.32, + "probability": 0.9782 + }, + { + "start": 4676.98, + "end": 4680.56, + "probability": 0.9987 + }, + { + "start": 4681.24, + "end": 4684.64, + "probability": 0.9975 + }, + { + "start": 4685.22, + "end": 4687.8, + "probability": 0.99 + }, + { + "start": 4688.26, + "end": 4691.8, + "probability": 0.9401 + }, + { + "start": 4692.6, + "end": 4698.42, + "probability": 0.9888 + }, + { + "start": 4702.01, + "end": 4705.34, + "probability": 0.5437 + }, + { + "start": 4709.06, + "end": 4709.88, + "probability": 0.4501 + }, + { + "start": 4710.04, + "end": 4710.04, + "probability": 0.3283 + }, + { + "start": 4710.04, + "end": 4712.98, + "probability": 0.8569 + }, + { + "start": 4713.22, + "end": 4716.34, + "probability": 0.9954 + }, + { + "start": 4716.98, + "end": 4721.66, + "probability": 0.9983 + }, + { + "start": 4721.66, + "end": 4726.0, + "probability": 0.9955 + }, + { + "start": 4726.66, + "end": 4727.44, + "probability": 0.7137 + }, + { + "start": 4728.34, + "end": 4730.88, + "probability": 0.9754 + }, + { + "start": 4731.76, + "end": 4736.34, + "probability": 0.9716 + }, + { + "start": 4737.52, + "end": 4738.34, + "probability": 0.9381 + }, + { + "start": 4738.36, + "end": 4738.88, + "probability": 0.8555 + }, + { + "start": 4738.92, + "end": 4740.38, + "probability": 0.6589 + }, + { + "start": 4740.44, + "end": 4741.84, + "probability": 0.9974 + }, + { + "start": 4742.08, + "end": 4744.8, + "probability": 0.9857 + }, + { + "start": 4745.64, + "end": 4749.68, + "probability": 0.9968 + }, + { + "start": 4750.2, + "end": 4751.8, + "probability": 0.8301 + }, + { + "start": 4752.34, + "end": 4753.1, + "probability": 0.9634 + }, + { + "start": 4753.88, + "end": 4754.66, + "probability": 0.7784 + }, + { + "start": 4755.76, + "end": 4755.97, + "probability": 0.4348 + }, + { + "start": 4756.68, + "end": 4757.56, + "probability": 0.6424 + }, + { + "start": 4763.64, + "end": 4765.08, + "probability": 0.0123 + }, + { + "start": 4767.66, + "end": 4767.96, + "probability": 0.0222 + }, + { + "start": 4773.32, + "end": 4777.02, + "probability": 0.9948 + }, + { + "start": 4777.02, + "end": 4777.74, + "probability": 0.7136 + }, + { + "start": 4779.22, + "end": 4779.86, + "probability": 0.8998 + }, + { + "start": 4783.96, + "end": 4787.0, + "probability": 0.5233 + }, + { + "start": 4788.66, + "end": 4791.68, + "probability": 0.3058 + }, + { + "start": 4792.08, + "end": 4792.26, + "probability": 0.275 + }, + { + "start": 4793.3, + "end": 4795.66, + "probability": 0.4552 + }, + { + "start": 4797.24, + "end": 4798.12, + "probability": 0.2993 + }, + { + "start": 4798.3, + "end": 4799.28, + "probability": 0.6191 + }, + { + "start": 4799.64, + "end": 4801.64, + "probability": 0.481 + }, + { + "start": 4802.5, + "end": 4803.22, + "probability": 0.0511 + }, + { + "start": 4803.22, + "end": 4804.46, + "probability": 0.9851 + }, + { + "start": 4805.06, + "end": 4808.22, + "probability": 0.9365 + }, + { + "start": 4808.6, + "end": 4809.36, + "probability": 0.1879 + }, + { + "start": 4810.12, + "end": 4815.16, + "probability": 0.7209 + }, + { + "start": 4816.98, + "end": 4817.14, + "probability": 0.0536 + }, + { + "start": 4817.14, + "end": 4817.14, + "probability": 0.0049 + }, + { + "start": 4817.14, + "end": 4817.72, + "probability": 0.2968 + }, + { + "start": 4818.58, + "end": 4821.38, + "probability": 0.913 + }, + { + "start": 4821.67, + "end": 4823.38, + "probability": 0.5004 + }, + { + "start": 4823.38, + "end": 4824.58, + "probability": 0.7093 + }, + { + "start": 4826.14, + "end": 4829.12, + "probability": 0.9927 + }, + { + "start": 4829.72, + "end": 4831.16, + "probability": 0.7899 + }, + { + "start": 4832.27, + "end": 4834.6, + "probability": 0.3318 + }, + { + "start": 4834.6, + "end": 4834.94, + "probability": 0.4197 + }, + { + "start": 4834.94, + "end": 4835.68, + "probability": 0.5564 + }, + { + "start": 4836.0, + "end": 4840.02, + "probability": 0.5203 + }, + { + "start": 4840.78, + "end": 4844.18, + "probability": 0.9564 + }, + { + "start": 4847.9, + "end": 4848.94, + "probability": 0.926 + }, + { + "start": 4849.74, + "end": 4852.32, + "probability": 0.9639 + }, + { + "start": 4853.58, + "end": 4854.16, + "probability": 0.595 + }, + { + "start": 4854.4, + "end": 4855.04, + "probability": 0.7561 + }, + { + "start": 4855.51, + "end": 4857.1, + "probability": 0.1169 + }, + { + "start": 4857.46, + "end": 4857.88, + "probability": 0.8352 + }, + { + "start": 4858.4, + "end": 4859.46, + "probability": 0.4286 + }, + { + "start": 4859.86, + "end": 4860.16, + "probability": 0.5867 + }, + { + "start": 4860.54, + "end": 4864.72, + "probability": 0.8794 + }, + { + "start": 4865.18, + "end": 4865.86, + "probability": 0.4637 + }, + { + "start": 4866.21, + "end": 4866.84, + "probability": 0.7979 + }, + { + "start": 4867.16, + "end": 4867.5, + "probability": 0.847 + }, + { + "start": 4867.62, + "end": 4869.16, + "probability": 0.79 + }, + { + "start": 4869.28, + "end": 4869.78, + "probability": 0.9175 + }, + { + "start": 4870.44, + "end": 4870.9, + "probability": 0.3656 + }, + { + "start": 4871.54, + "end": 4872.9, + "probability": 0.362 + }, + { + "start": 4872.98, + "end": 4873.7, + "probability": 0.8506 + }, + { + "start": 4875.56, + "end": 4876.44, + "probability": 0.0025 + }, + { + "start": 4876.52, + "end": 4876.52, + "probability": 0.1966 + }, + { + "start": 4876.52, + "end": 4876.52, + "probability": 0.0689 + }, + { + "start": 4876.52, + "end": 4880.34, + "probability": 0.6229 + }, + { + "start": 4880.6, + "end": 4880.6, + "probability": 0.0581 + }, + { + "start": 4880.6, + "end": 4884.68, + "probability": 0.2535 + }, + { + "start": 4885.38, + "end": 4886.1, + "probability": 0.8478 + }, + { + "start": 4886.65, + "end": 4888.94, + "probability": 0.9832 + }, + { + "start": 4889.66, + "end": 4894.64, + "probability": 0.9951 + }, + { + "start": 4895.7, + "end": 4896.12, + "probability": 0.4717 + }, + { + "start": 4897.34, + "end": 4898.0, + "probability": 0.4971 + }, + { + "start": 4898.14, + "end": 4899.16, + "probability": 0.9629 + }, + { + "start": 4899.7, + "end": 4900.22, + "probability": 0.8692 + }, + { + "start": 4900.3, + "end": 4901.0, + "probability": 0.7531 + }, + { + "start": 4902.18, + "end": 4903.08, + "probability": 0.8878 + }, + { + "start": 4903.18, + "end": 4904.32, + "probability": 0.553 + }, + { + "start": 4904.66, + "end": 4905.32, + "probability": 0.3468 + }, + { + "start": 4905.76, + "end": 4906.66, + "probability": 0.5476 + }, + { + "start": 4906.68, + "end": 4908.8, + "probability": 0.5657 + }, + { + "start": 4908.8, + "end": 4912.82, + "probability": 0.1758 + }, + { + "start": 4912.94, + "end": 4914.1, + "probability": 0.6601 + }, + { + "start": 4914.26, + "end": 4914.26, + "probability": 0.0789 + }, + { + "start": 4914.26, + "end": 4914.96, + "probability": 0.5507 + }, + { + "start": 4914.96, + "end": 4916.22, + "probability": 0.5244 + }, + { + "start": 4916.22, + "end": 4925.1, + "probability": 0.9749 + }, + { + "start": 4926.34, + "end": 4929.14, + "probability": 0.9988 + }, + { + "start": 4929.14, + "end": 4933.48, + "probability": 0.9501 + }, + { + "start": 4933.56, + "end": 4934.02, + "probability": 0.3572 + }, + { + "start": 4934.02, + "end": 4935.66, + "probability": 0.7898 + }, + { + "start": 4936.02, + "end": 4936.18, + "probability": 0.035 + }, + { + "start": 4936.18, + "end": 4936.66, + "probability": 0.52 + }, + { + "start": 4936.98, + "end": 4938.6, + "probability": 0.9779 + }, + { + "start": 4938.68, + "end": 4939.3, + "probability": 0.172 + }, + { + "start": 4939.46, + "end": 4940.41, + "probability": 0.5696 + }, + { + "start": 4940.92, + "end": 4941.12, + "probability": 0.044 + }, + { + "start": 4941.12, + "end": 4941.47, + "probability": 0.5129 + }, + { + "start": 4942.1, + "end": 4946.11, + "probability": 0.9385 + }, + { + "start": 4946.18, + "end": 4950.46, + "probability": 0.8926 + }, + { + "start": 4950.52, + "end": 4951.2, + "probability": 0.8287 + }, + { + "start": 4951.3, + "end": 4951.5, + "probability": 0.2933 + }, + { + "start": 4951.52, + "end": 4952.26, + "probability": 0.6629 + }, + { + "start": 4952.74, + "end": 4954.22, + "probability": 0.8821 + }, + { + "start": 4954.8, + "end": 4957.52, + "probability": 0.9829 + }, + { + "start": 4957.62, + "end": 4958.6, + "probability": 0.987 + }, + { + "start": 4959.14, + "end": 4960.36, + "probability": 0.8496 + }, + { + "start": 4961.14, + "end": 4962.38, + "probability": 0.9867 + }, + { + "start": 4963.16, + "end": 4964.78, + "probability": 0.8748 + }, + { + "start": 4966.66, + "end": 4967.22, + "probability": 0.7321 + }, + { + "start": 4967.8, + "end": 4968.9, + "probability": 0.542 + }, + { + "start": 4969.08, + "end": 4971.03, + "probability": 0.9956 + }, + { + "start": 4971.68, + "end": 4976.62, + "probability": 0.8944 + }, + { + "start": 4977.02, + "end": 4977.7, + "probability": 0.1356 + }, + { + "start": 4977.86, + "end": 4979.5, + "probability": 0.5983 + }, + { + "start": 4979.92, + "end": 4981.3, + "probability": 0.3159 + }, + { + "start": 4981.98, + "end": 4984.56, + "probability": 0.6862 + }, + { + "start": 4984.74, + "end": 4986.04, + "probability": 0.7351 + }, + { + "start": 4986.14, + "end": 4986.7, + "probability": 0.7158 + }, + { + "start": 4987.44, + "end": 4991.66, + "probability": 0.9893 + }, + { + "start": 4991.96, + "end": 4995.36, + "probability": 0.865 + }, + { + "start": 4996.52, + "end": 4997.72, + "probability": 0.9642 + }, + { + "start": 4998.6, + "end": 5001.44, + "probability": 0.9675 + }, + { + "start": 5002.38, + "end": 5004.1, + "probability": 0.3378 + }, + { + "start": 5004.18, + "end": 5004.9, + "probability": 0.6682 + }, + { + "start": 5004.94, + "end": 5006.0, + "probability": 0.5787 + }, + { + "start": 5006.32, + "end": 5007.56, + "probability": 0.9683 + }, + { + "start": 5008.24, + "end": 5013.69, + "probability": 0.9932 + }, + { + "start": 5016.13, + "end": 5016.82, + "probability": 0.0685 + }, + { + "start": 5016.82, + "end": 5017.22, + "probability": 0.2156 + }, + { + "start": 5017.78, + "end": 5021.18, + "probability": 0.722 + }, + { + "start": 5021.32, + "end": 5023.34, + "probability": 0.6879 + }, + { + "start": 5023.34, + "end": 5026.56, + "probability": 0.6652 + }, + { + "start": 5026.76, + "end": 5027.1, + "probability": 0.5475 + }, + { + "start": 5027.18, + "end": 5028.08, + "probability": 0.6665 + }, + { + "start": 5028.16, + "end": 5028.7, + "probability": 0.7544 + }, + { + "start": 5029.3, + "end": 5030.48, + "probability": 0.8152 + }, + { + "start": 5030.54, + "end": 5034.8, + "probability": 0.8893 + }, + { + "start": 5036.36, + "end": 5040.56, + "probability": 0.9932 + }, + { + "start": 5040.56, + "end": 5044.86, + "probability": 0.9376 + }, + { + "start": 5045.34, + "end": 5048.34, + "probability": 0.753 + }, + { + "start": 5050.42, + "end": 5052.6, + "probability": 0.9721 + }, + { + "start": 5058.96, + "end": 5061.24, + "probability": 0.7543 + }, + { + "start": 5062.08, + "end": 5066.62, + "probability": 0.7318 + }, + { + "start": 5067.16, + "end": 5070.76, + "probability": 0.9437 + }, + { + "start": 5071.89, + "end": 5078.44, + "probability": 0.804 + }, + { + "start": 5078.8, + "end": 5079.28, + "probability": 0.6324 + }, + { + "start": 5079.6, + "end": 5080.32, + "probability": 0.7264 + }, + { + "start": 5080.4, + "end": 5081.54, + "probability": 0.4417 + }, + { + "start": 5082.02, + "end": 5087.92, + "probability": 0.9856 + }, + { + "start": 5087.92, + "end": 5096.08, + "probability": 0.9744 + }, + { + "start": 5096.9, + "end": 5102.54, + "probability": 0.9358 + }, + { + "start": 5102.54, + "end": 5106.04, + "probability": 0.9014 + }, + { + "start": 5106.12, + "end": 5108.42, + "probability": 0.9203 + }, + { + "start": 5108.84, + "end": 5111.96, + "probability": 0.9843 + }, + { + "start": 5111.98, + "end": 5113.64, + "probability": 0.8097 + }, + { + "start": 5114.4, + "end": 5114.68, + "probability": 0.2897 + }, + { + "start": 5114.68, + "end": 5116.6, + "probability": 0.2985 + }, + { + "start": 5116.6, + "end": 5118.6, + "probability": 0.1746 + }, + { + "start": 5118.62, + "end": 5119.96, + "probability": 0.8985 + }, + { + "start": 5120.36, + "end": 5120.36, + "probability": 0.021 + }, + { + "start": 5120.36, + "end": 5121.44, + "probability": 0.0889 + }, + { + "start": 5121.44, + "end": 5124.31, + "probability": 0.423 + }, + { + "start": 5125.12, + "end": 5125.12, + "probability": 0.1448 + }, + { + "start": 5125.16, + "end": 5128.64, + "probability": 0.9744 + }, + { + "start": 5128.74, + "end": 5131.0, + "probability": 0.8998 + }, + { + "start": 5131.0, + "end": 5134.25, + "probability": 0.9973 + }, + { + "start": 5134.58, + "end": 5135.76, + "probability": 0.6018 + }, + { + "start": 5136.3, + "end": 5141.62, + "probability": 0.9788 + }, + { + "start": 5142.18, + "end": 5146.24, + "probability": 0.9945 + }, + { + "start": 5146.68, + "end": 5149.06, + "probability": 0.9919 + }, + { + "start": 5149.4, + "end": 5151.32, + "probability": 0.9076 + }, + { + "start": 5151.74, + "end": 5153.74, + "probability": 0.9839 + }, + { + "start": 5154.14, + "end": 5158.28, + "probability": 0.9943 + }, + { + "start": 5158.4, + "end": 5160.8, + "probability": 0.9969 + }, + { + "start": 5161.32, + "end": 5163.96, + "probability": 0.9529 + }, + { + "start": 5164.04, + "end": 5169.02, + "probability": 0.9409 + }, + { + "start": 5169.02, + "end": 5173.4, + "probability": 0.9988 + }, + { + "start": 5173.86, + "end": 5176.4, + "probability": 0.9653 + }, + { + "start": 5176.58, + "end": 5177.72, + "probability": 0.5533 + }, + { + "start": 5178.06, + "end": 5182.92, + "probability": 0.9843 + }, + { + "start": 5183.2, + "end": 5186.04, + "probability": 0.9923 + }, + { + "start": 5186.04, + "end": 5189.32, + "probability": 0.9935 + }, + { + "start": 5189.8, + "end": 5194.16, + "probability": 0.9972 + }, + { + "start": 5194.96, + "end": 5199.9, + "probability": 0.995 + }, + { + "start": 5200.42, + "end": 5204.42, + "probability": 0.958 + }, + { + "start": 5204.82, + "end": 5206.66, + "probability": 0.7988 + }, + { + "start": 5206.82, + "end": 5207.16, + "probability": 0.4009 + }, + { + "start": 5207.34, + "end": 5210.44, + "probability": 0.7784 + }, + { + "start": 5210.82, + "end": 5211.36, + "probability": 0.9164 + }, + { + "start": 5211.52, + "end": 5212.2, + "probability": 0.9081 + }, + { + "start": 5212.6, + "end": 5218.38, + "probability": 0.9803 + }, + { + "start": 5218.74, + "end": 5222.48, + "probability": 0.9527 + }, + { + "start": 5222.9, + "end": 5226.0, + "probability": 0.9782 + }, + { + "start": 5226.0, + "end": 5232.34, + "probability": 0.8737 + }, + { + "start": 5232.62, + "end": 5234.18, + "probability": 0.6205 + }, + { + "start": 5234.3, + "end": 5237.3, + "probability": 0.0162 + }, + { + "start": 5237.3, + "end": 5239.54, + "probability": 0.0167 + }, + { + "start": 5239.54, + "end": 5240.8, + "probability": 0.5977 + }, + { + "start": 5241.54, + "end": 5247.02, + "probability": 0.9788 + }, + { + "start": 5247.66, + "end": 5249.16, + "probability": 0.7234 + }, + { + "start": 5249.16, + "end": 5250.74, + "probability": 0.913 + }, + { + "start": 5251.16, + "end": 5254.54, + "probability": 0.9956 + }, + { + "start": 5254.68, + "end": 5256.4, + "probability": 0.8086 + }, + { + "start": 5256.48, + "end": 5260.94, + "probability": 0.9918 + }, + { + "start": 5263.38, + "end": 5269.82, + "probability": 0.9929 + }, + { + "start": 5270.9, + "end": 5272.02, + "probability": 0.7644 + }, + { + "start": 5272.48, + "end": 5274.12, + "probability": 0.908 + }, + { + "start": 5274.6, + "end": 5275.86, + "probability": 0.6926 + }, + { + "start": 5275.94, + "end": 5276.1, + "probability": 0.4406 + }, + { + "start": 5276.2, + "end": 5277.1, + "probability": 0.7413 + }, + { + "start": 5277.98, + "end": 5280.28, + "probability": 0.9845 + }, + { + "start": 5280.78, + "end": 5282.78, + "probability": 0.9746 + }, + { + "start": 5283.4, + "end": 5284.68, + "probability": 0.9807 + }, + { + "start": 5284.8, + "end": 5285.14, + "probability": 0.5164 + }, + { + "start": 5285.28, + "end": 5286.56, + "probability": 0.96 + }, + { + "start": 5286.76, + "end": 5287.78, + "probability": 0.9553 + }, + { + "start": 5288.14, + "end": 5292.98, + "probability": 0.8978 + }, + { + "start": 5293.06, + "end": 5295.12, + "probability": 0.6691 + }, + { + "start": 5295.54, + "end": 5296.6, + "probability": 0.774 + }, + { + "start": 5297.22, + "end": 5298.48, + "probability": 0.9009 + }, + { + "start": 5298.98, + "end": 5302.06, + "probability": 0.9883 + }, + { + "start": 5302.46, + "end": 5305.48, + "probability": 0.8964 + }, + { + "start": 5305.78, + "end": 5305.98, + "probability": 0.602 + }, + { + "start": 5306.28, + "end": 5310.7, + "probability": 0.9454 + }, + { + "start": 5311.12, + "end": 5312.22, + "probability": 0.5632 + }, + { + "start": 5312.24, + "end": 5315.14, + "probability": 0.9854 + }, + { + "start": 5315.14, + "end": 5318.46, + "probability": 0.9677 + }, + { + "start": 5318.46, + "end": 5320.14, + "probability": 0.5838 + }, + { + "start": 5320.9, + "end": 5322.5, + "probability": 0.9429 + }, + { + "start": 5322.84, + "end": 5324.7, + "probability": 0.7772 + }, + { + "start": 5328.65, + "end": 5329.97, + "probability": 0.2573 + }, + { + "start": 5330.74, + "end": 5333.22, + "probability": 0.8278 + }, + { + "start": 5333.36, + "end": 5334.62, + "probability": 0.7175 + }, + { + "start": 5334.62, + "end": 5335.9, + "probability": 0.8451 + }, + { + "start": 5337.14, + "end": 5337.5, + "probability": 0.9744 + }, + { + "start": 5339.08, + "end": 5340.08, + "probability": 0.8933 + }, + { + "start": 5340.26, + "end": 5342.1, + "probability": 0.912 + }, + { + "start": 5342.1, + "end": 5343.4, + "probability": 0.4209 + }, + { + "start": 5344.62, + "end": 5346.64, + "probability": 0.593 + }, + { + "start": 5347.4, + "end": 5348.7, + "probability": 0.7186 + }, + { + "start": 5348.8, + "end": 5350.72, + "probability": 0.8049 + }, + { + "start": 5351.22, + "end": 5352.42, + "probability": 0.9049 + }, + { + "start": 5352.5, + "end": 5353.66, + "probability": 0.9174 + }, + { + "start": 5355.08, + "end": 5356.6, + "probability": 0.9784 + }, + { + "start": 5357.2, + "end": 5359.34, + "probability": 0.5394 + }, + { + "start": 5359.86, + "end": 5361.3, + "probability": 0.8385 + }, + { + "start": 5363.34, + "end": 5366.14, + "probability": 0.8983 + }, + { + "start": 5367.42, + "end": 5367.84, + "probability": 0.8555 + }, + { + "start": 5369.14, + "end": 5369.98, + "probability": 0.8186 + }, + { + "start": 5370.7, + "end": 5373.04, + "probability": 0.9615 + }, + { + "start": 5373.04, + "end": 5374.28, + "probability": 0.9199 + }, + { + "start": 5374.4, + "end": 5375.54, + "probability": 0.5722 + }, + { + "start": 5377.2, + "end": 5379.3, + "probability": 0.6791 + }, + { + "start": 5381.1, + "end": 5383.32, + "probability": 0.9001 + }, + { + "start": 5384.04, + "end": 5385.46, + "probability": 0.9695 + }, + { + "start": 5385.56, + "end": 5387.08, + "probability": 0.9969 + }, + { + "start": 5387.56, + "end": 5389.08, + "probability": 0.9755 + }, + { + "start": 5389.6, + "end": 5392.22, + "probability": 0.7387 + }, + { + "start": 5392.86, + "end": 5393.24, + "probability": 0.582 + }, + { + "start": 5395.38, + "end": 5398.08, + "probability": 0.5656 + }, + { + "start": 5398.64, + "end": 5400.02, + "probability": 0.901 + }, + { + "start": 5401.48, + "end": 5403.6, + "probability": 0.908 + }, + { + "start": 5403.62, + "end": 5404.76, + "probability": 0.9128 + }, + { + "start": 5404.84, + "end": 5405.92, + "probability": 0.9876 + }, + { + "start": 5406.06, + "end": 5406.54, + "probability": 0.7282 + }, + { + "start": 5407.14, + "end": 5407.82, + "probability": 0.6175 + }, + { + "start": 5408.28, + "end": 5409.58, + "probability": 0.8362 + }, + { + "start": 5409.66, + "end": 5410.84, + "probability": 0.9312 + }, + { + "start": 5410.88, + "end": 5412.44, + "probability": 0.6731 + }, + { + "start": 5412.64, + "end": 5413.34, + "probability": 0.864 + }, + { + "start": 5414.48, + "end": 5415.54, + "probability": 0.3706 + }, + { + "start": 5417.82, + "end": 5419.28, + "probability": 0.922 + }, + { + "start": 5420.0, + "end": 5422.46, + "probability": 0.3859 + }, + { + "start": 5423.32, + "end": 5424.64, + "probability": 0.3386 + }, + { + "start": 5424.7, + "end": 5425.96, + "probability": 0.8913 + }, + { + "start": 5426.28, + "end": 5427.96, + "probability": 0.9512 + }, + { + "start": 5428.0, + "end": 5429.68, + "probability": 0.8345 + }, + { + "start": 5429.68, + "end": 5431.1, + "probability": 0.8057 + }, + { + "start": 5431.32, + "end": 5432.78, + "probability": 0.7394 + }, + { + "start": 5432.88, + "end": 5433.76, + "probability": 0.3247 + }, + { + "start": 5433.84, + "end": 5435.72, + "probability": 0.8025 + }, + { + "start": 5435.76, + "end": 5436.66, + "probability": 0.2905 + }, + { + "start": 5436.74, + "end": 5437.78, + "probability": 0.8114 + }, + { + "start": 5438.24, + "end": 5439.56, + "probability": 0.8446 + }, + { + "start": 5439.89, + "end": 5442.64, + "probability": 0.6712 + }, + { + "start": 5442.72, + "end": 5444.0, + "probability": 0.7964 + }, + { + "start": 5444.12, + "end": 5445.48, + "probability": 0.9267 + }, + { + "start": 5445.7, + "end": 5448.36, + "probability": 0.9344 + }, + { + "start": 5449.1, + "end": 5450.22, + "probability": 0.8276 + }, + { + "start": 5450.22, + "end": 5450.96, + "probability": 0.5777 + }, + { + "start": 5451.16, + "end": 5452.82, + "probability": 0.8568 + }, + { + "start": 5452.84, + "end": 5453.98, + "probability": 0.7328 + }, + { + "start": 5454.1, + "end": 5455.12, + "probability": 0.5533 + }, + { + "start": 5456.22, + "end": 5456.62, + "probability": 0.7471 + }, + { + "start": 5457.82, + "end": 5458.94, + "probability": 0.7824 + }, + { + "start": 5458.94, + "end": 5459.86, + "probability": 0.7495 + }, + { + "start": 5459.94, + "end": 5461.1, + "probability": 0.4444 + }, + { + "start": 5461.18, + "end": 5462.06, + "probability": 0.8025 + }, + { + "start": 5462.91, + "end": 5465.08, + "probability": 0.6658 + }, + { + "start": 5466.5, + "end": 5468.22, + "probability": 0.4436 + }, + { + "start": 5468.28, + "end": 5469.38, + "probability": 0.7725 + }, + { + "start": 5469.4, + "end": 5470.22, + "probability": 0.6192 + }, + { + "start": 5470.3, + "end": 5471.52, + "probability": 0.626 + }, + { + "start": 5472.74, + "end": 5473.12, + "probability": 0.9082 + }, + { + "start": 5474.02, + "end": 5474.78, + "probability": 0.8231 + }, + { + "start": 5474.88, + "end": 5475.72, + "probability": 0.8216 + }, + { + "start": 5475.8, + "end": 5476.98, + "probability": 0.6048 + }, + { + "start": 5477.9, + "end": 5480.1, + "probability": 0.6625 + }, + { + "start": 5483.26, + "end": 5485.52, + "probability": 0.8057 + }, + { + "start": 5488.94, + "end": 5492.9, + "probability": 0.9212 + }, + { + "start": 5493.56, + "end": 5495.36, + "probability": 0.889 + }, + { + "start": 5496.74, + "end": 5497.08, + "probability": 0.8948 + }, + { + "start": 5497.98, + "end": 5498.74, + "probability": 0.6855 + }, + { + "start": 5500.64, + "end": 5503.38, + "probability": 0.7106 + }, + { + "start": 5503.44, + "end": 5504.38, + "probability": 0.9224 + }, + { + "start": 5504.44, + "end": 5505.62, + "probability": 0.9335 + }, + { + "start": 5505.66, + "end": 5508.78, + "probability": 0.8397 + }, + { + "start": 5516.78, + "end": 5517.04, + "probability": 0.0019 + }, + { + "start": 5519.58, + "end": 5520.7, + "probability": 0.542 + }, + { + "start": 5524.16, + "end": 5525.1, + "probability": 0.384 + }, + { + "start": 5525.86, + "end": 5526.28, + "probability": 0.5291 + }, + { + "start": 5528.18, + "end": 5529.26, + "probability": 0.6245 + }, + { + "start": 5530.57, + "end": 5532.46, + "probability": 0.8936 + }, + { + "start": 5532.46, + "end": 5533.54, + "probability": 0.68 + }, + { + "start": 5533.66, + "end": 5534.9, + "probability": 0.8127 + }, + { + "start": 5536.57, + "end": 5539.0, + "probability": 0.9031 + }, + { + "start": 5543.72, + "end": 5543.72, + "probability": 0.1374 + }, + { + "start": 5543.72, + "end": 5544.16, + "probability": 0.3883 + }, + { + "start": 5544.18, + "end": 5545.68, + "probability": 0.6978 + }, + { + "start": 5547.34, + "end": 5551.5, + "probability": 0.3885 + }, + { + "start": 5552.34, + "end": 5552.84, + "probability": 0.9436 + }, + { + "start": 5554.72, + "end": 5557.72, + "probability": 0.8423 + }, + { + "start": 5558.26, + "end": 5560.98, + "probability": 0.7791 + }, + { + "start": 5562.0, + "end": 5562.4, + "probability": 0.7737 + }, + { + "start": 5564.22, + "end": 5565.08, + "probability": 0.7087 + }, + { + "start": 5565.46, + "end": 5566.62, + "probability": 0.7483 + }, + { + "start": 5566.7, + "end": 5568.06, + "probability": 0.7591 + }, + { + "start": 5568.1, + "end": 5570.24, + "probability": 0.5621 + }, + { + "start": 5570.34, + "end": 5571.74, + "probability": 0.8658 + }, + { + "start": 5574.28, + "end": 5574.7, + "probability": 0.6957 + }, + { + "start": 5575.72, + "end": 5576.76, + "probability": 0.8483 + }, + { + "start": 5577.26, + "end": 5579.32, + "probability": 0.8944 + }, + { + "start": 5579.8, + "end": 5581.0, + "probability": 0.8682 + }, + { + "start": 5581.1, + "end": 5582.16, + "probability": 0.9196 + }, + { + "start": 5582.76, + "end": 5585.24, + "probability": 0.9677 + }, + { + "start": 5587.0, + "end": 5588.5, + "probability": 0.9622 + }, + { + "start": 5590.16, + "end": 5592.62, + "probability": 0.9924 + }, + { + "start": 5593.48, + "end": 5595.62, + "probability": 0.8684 + }, + { + "start": 5596.28, + "end": 5597.66, + "probability": 0.6615 + }, + { + "start": 5597.72, + "end": 5599.76, + "probability": 0.7822 + }, + { + "start": 5600.28, + "end": 5601.08, + "probability": 0.7805 + }, + { + "start": 5602.86, + "end": 5604.06, + "probability": 0.9405 + }, + { + "start": 5604.62, + "end": 5606.38, + "probability": 0.896 + }, + { + "start": 5606.52, + "end": 5607.74, + "probability": 0.8515 + }, + { + "start": 5607.8, + "end": 5608.94, + "probability": 0.7556 + }, + { + "start": 5610.04, + "end": 5612.54, + "probability": 0.7465 + }, + { + "start": 5613.14, + "end": 5613.92, + "probability": 0.4326 + }, + { + "start": 5614.02, + "end": 5615.22, + "probability": 0.479 + }, + { + "start": 5615.34, + "end": 5615.86, + "probability": 0.9318 + }, + { + "start": 5616.66, + "end": 5617.98, + "probability": 0.787 + }, + { + "start": 5619.46, + "end": 5620.18, + "probability": 0.2268 + }, + { + "start": 5620.28, + "end": 5621.4, + "probability": 0.668 + }, + { + "start": 5621.76, + "end": 5624.0, + "probability": 0.2769 + }, + { + "start": 5624.0, + "end": 5624.35, + "probability": 0.2901 + }, + { + "start": 5624.62, + "end": 5625.42, + "probability": 0.3585 + }, + { + "start": 5626.28, + "end": 5626.52, + "probability": 0.6249 + }, + { + "start": 5628.16, + "end": 5629.44, + "probability": 0.423 + }, + { + "start": 5629.44, + "end": 5630.9, + "probability": 0.7272 + }, + { + "start": 5630.98, + "end": 5632.0, + "probability": 0.5566 + }, + { + "start": 5632.0, + "end": 5633.4, + "probability": 0.6503 + }, + { + "start": 5633.46, + "end": 5635.02, + "probability": 0.8368 + }, + { + "start": 5636.4, + "end": 5636.4, + "probability": 0.0587 + }, + { + "start": 5636.4, + "end": 5636.92, + "probability": 0.4756 + }, + { + "start": 5636.94, + "end": 5638.06, + "probability": 0.4368 + }, + { + "start": 5638.12, + "end": 5639.5, + "probability": 0.8624 + }, + { + "start": 5640.7, + "end": 5641.5, + "probability": 0.9792 + }, + { + "start": 5642.3, + "end": 5643.0, + "probability": 0.7642 + }, + { + "start": 5643.02, + "end": 5644.44, + "probability": 0.8336 + }, + { + "start": 5644.44, + "end": 5645.86, + "probability": 0.8139 + }, + { + "start": 5646.94, + "end": 5647.0, + "probability": 0.0451 + }, + { + "start": 5647.0, + "end": 5647.66, + "probability": 0.2807 + }, + { + "start": 5647.74, + "end": 5648.58, + "probability": 0.4295 + }, + { + "start": 5648.68, + "end": 5649.54, + "probability": 0.879 + }, + { + "start": 5649.58, + "end": 5650.72, + "probability": 0.9169 + }, + { + "start": 5650.82, + "end": 5652.86, + "probability": 0.832 + }, + { + "start": 5652.88, + "end": 5653.36, + "probability": 0.9563 + }, + { + "start": 5654.34, + "end": 5655.04, + "probability": 0.0694 + }, + { + "start": 5655.88, + "end": 5656.26, + "probability": 0.5717 + }, + { + "start": 5657.58, + "end": 5658.42, + "probability": 0.6501 + }, + { + "start": 5659.7, + "end": 5662.58, + "probability": 0.7939 + }, + { + "start": 5665.56, + "end": 5666.58, + "probability": 0.5712 + }, + { + "start": 5668.52, + "end": 5669.74, + "probability": 0.9262 + }, + { + "start": 5669.74, + "end": 5670.9, + "probability": 0.7206 + }, + { + "start": 5670.9, + "end": 5671.9, + "probability": 0.8751 + }, + { + "start": 5671.92, + "end": 5672.44, + "probability": 0.9012 + }, + { + "start": 5672.96, + "end": 5675.4, + "probability": 0.6397 + }, + { + "start": 5676.0, + "end": 5676.36, + "probability": 0.7996 + }, + { + "start": 5677.12, + "end": 5678.76, + "probability": 0.9276 + }, + { + "start": 5679.92, + "end": 5681.7, + "probability": 0.6199 + }, + { + "start": 5683.38, + "end": 5685.8, + "probability": 0.5046 + }, + { + "start": 5685.9, + "end": 5687.18, + "probability": 0.8474 + }, + { + "start": 5687.34, + "end": 5689.56, + "probability": 0.7638 + }, + { + "start": 5689.66, + "end": 5691.22, + "probability": 0.7518 + }, + { + "start": 5691.3, + "end": 5691.92, + "probability": 0.4363 + }, + { + "start": 5692.68, + "end": 5694.12, + "probability": 0.744 + }, + { + "start": 5694.18, + "end": 5695.0, + "probability": 0.3595 + }, + { + "start": 5695.06, + "end": 5696.16, + "probability": 0.8198 + }, + { + "start": 5696.28, + "end": 5697.76, + "probability": 0.4936 + }, + { + "start": 5697.84, + "end": 5698.68, + "probability": 0.7243 + }, + { + "start": 5698.68, + "end": 5699.8, + "probability": 0.7937 + }, + { + "start": 5700.82, + "end": 5701.2, + "probability": 0.7327 + }, + { + "start": 5703.08, + "end": 5703.86, + "probability": 0.876 + }, + { + "start": 5704.44, + "end": 5706.16, + "probability": 0.8904 + }, + { + "start": 5707.04, + "end": 5707.28, + "probability": 0.9382 + }, + { + "start": 5709.36, + "end": 5710.6, + "probability": 0.8581 + }, + { + "start": 5711.56, + "end": 5712.22, + "probability": 0.7735 + }, + { + "start": 5712.85, + "end": 5714.16, + "probability": 0.4509 + }, + { + "start": 5714.16, + "end": 5714.58, + "probability": 0.5174 + }, + { + "start": 5714.68, + "end": 5715.62, + "probability": 0.5222 + }, + { + "start": 5715.66, + "end": 5716.56, + "probability": 0.6306 + }, + { + "start": 5716.68, + "end": 5717.14, + "probability": 0.9293 + }, + { + "start": 5717.96, + "end": 5718.86, + "probability": 0.8446 + }, + { + "start": 5718.88, + "end": 5719.88, + "probability": 0.7802 + }, + { + "start": 5719.96, + "end": 5721.04, + "probability": 0.4648 + }, + { + "start": 5721.3, + "end": 5722.92, + "probability": 0.4266 + }, + { + "start": 5722.92, + "end": 5723.48, + "probability": 0.7568 + }, + { + "start": 5723.48, + "end": 5724.46, + "probability": 0.7816 + }, + { + "start": 5724.88, + "end": 5726.42, + "probability": 0.6944 + }, + { + "start": 5726.5, + "end": 5727.62, + "probability": 0.787 + }, + { + "start": 5727.62, + "end": 5729.24, + "probability": 0.9209 + }, + { + "start": 5729.24, + "end": 5730.56, + "probability": 0.795 + }, + { + "start": 5730.64, + "end": 5732.62, + "probability": 0.3944 + }, + { + "start": 5733.28, + "end": 5735.06, + "probability": 0.9041 + }, + { + "start": 5735.84, + "end": 5737.1, + "probability": 0.662 + }, + { + "start": 5740.62, + "end": 5743.84, + "probability": 0.6785 + }, + { + "start": 5745.02, + "end": 5749.52, + "probability": 0.8959 + }, + { + "start": 5752.22, + "end": 5753.7, + "probability": 0.8731 + }, + { + "start": 5753.8, + "end": 5754.72, + "probability": 0.7891 + }, + { + "start": 5754.8, + "end": 5755.84, + "probability": 0.7813 + }, + { + "start": 5755.92, + "end": 5757.09, + "probability": 0.6403 + }, + { + "start": 5758.22, + "end": 5760.08, + "probability": 0.9492 + }, + { + "start": 5760.12, + "end": 5761.34, + "probability": 0.806 + }, + { + "start": 5761.44, + "end": 5763.28, + "probability": 0.961 + }, + { + "start": 5763.38, + "end": 5764.34, + "probability": 0.6217 + }, + { + "start": 5764.42, + "end": 5766.08, + "probability": 0.7302 + }, + { + "start": 5766.52, + "end": 5768.88, + "probability": 0.8655 + }, + { + "start": 5769.12, + "end": 5770.44, + "probability": 0.9514 + }, + { + "start": 5770.48, + "end": 5771.54, + "probability": 0.9297 + }, + { + "start": 5771.64, + "end": 5772.1, + "probability": 0.9567 + }, + { + "start": 5773.28, + "end": 5773.8, + "probability": 0.3904 + }, + { + "start": 5773.82, + "end": 5778.36, + "probability": 0.3656 + }, + { + "start": 5778.56, + "end": 5781.06, + "probability": 0.6212 + }, + { + "start": 5781.14, + "end": 5782.42, + "probability": 0.8472 + }, + { + "start": 5782.54, + "end": 5785.06, + "probability": 0.9099 + }, + { + "start": 5786.48, + "end": 5786.84, + "probability": 0.9409 + }, + { + "start": 5788.4, + "end": 5789.28, + "probability": 0.9551 + }, + { + "start": 5789.46, + "end": 5790.68, + "probability": 0.6934 + }, + { + "start": 5791.1, + "end": 5792.26, + "probability": 0.3664 + }, + { + "start": 5792.34, + "end": 5794.86, + "probability": 0.839 + }, + { + "start": 5795.14, + "end": 5795.88, + "probability": 0.954 + }, + { + "start": 5797.76, + "end": 5798.44, + "probability": 0.8051 + }, + { + "start": 5798.56, + "end": 5799.52, + "probability": 0.9446 + }, + { + "start": 5799.62, + "end": 5800.9, + "probability": 0.7789 + }, + { + "start": 5800.98, + "end": 5802.86, + "probability": 0.9148 + }, + { + "start": 5803.34, + "end": 5805.22, + "probability": 0.9736 + }, + { + "start": 5805.3, + "end": 5806.66, + "probability": 0.6604 + }, + { + "start": 5806.8, + "end": 5807.88, + "probability": 0.5946 + }, + { + "start": 5807.92, + "end": 5809.04, + "probability": 0.6259 + }, + { + "start": 5810.0, + "end": 5814.66, + "probability": 0.6899 + }, + { + "start": 5814.66, + "end": 5816.3, + "probability": 0.5105 + }, + { + "start": 5816.38, + "end": 5818.96, + "probability": 0.9982 + }, + { + "start": 5819.9, + "end": 5823.88, + "probability": 0.7121 + }, + { + "start": 5824.18, + "end": 5824.8, + "probability": 0.7918 + }, + { + "start": 5829.14, + "end": 5830.64, + "probability": 0.4016 + }, + { + "start": 5831.24, + "end": 5831.34, + "probability": 0.4543 + }, + { + "start": 5831.8, + "end": 5832.26, + "probability": 0.6531 + }, + { + "start": 5832.34, + "end": 5832.94, + "probability": 0.5872 + }, + { + "start": 5833.86, + "end": 5839.86, + "probability": 0.0577 + }, + { + "start": 5840.58, + "end": 5840.68, + "probability": 0.0111 + }, + { + "start": 5841.34, + "end": 5842.46, + "probability": 0.1671 + }, + { + "start": 5847.44, + "end": 5851.54, + "probability": 0.0146 + }, + { + "start": 5856.7, + "end": 5857.51, + "probability": 0.0389 + }, + { + "start": 5859.44, + "end": 5861.8, + "probability": 0.0518 + }, + { + "start": 5863.6, + "end": 5864.12, + "probability": 0.0528 + }, + { + "start": 5909.68, + "end": 5913.96, + "probability": 0.9674 + }, + { + "start": 5914.14, + "end": 5914.3, + "probability": 0.041 + }, + { + "start": 5917.02, + "end": 5920.7, + "probability": 0.7468 + }, + { + "start": 5921.26, + "end": 5923.32, + "probability": 0.8088 + }, + { + "start": 5923.94, + "end": 5927.4, + "probability": 0.9033 + }, + { + "start": 5927.78, + "end": 5928.14, + "probability": 0.5265 + }, + { + "start": 5928.86, + "end": 5931.06, + "probability": 0.7072 + }, + { + "start": 5933.16, + "end": 5935.16, + "probability": 0.5076 + }, + { + "start": 5935.7, + "end": 5937.08, + "probability": 0.81 + }, + { + "start": 5938.26, + "end": 5938.72, + "probability": 0.6164 + }, + { + "start": 5939.28, + "end": 5939.5, + "probability": 0.3661 + }, + { + "start": 5960.43, + "end": 5962.52, + "probability": 0.6055 + }, + { + "start": 5962.52, + "end": 5964.56, + "probability": 0.7744 + }, + { + "start": 5964.98, + "end": 5966.04, + "probability": 0.5318 + }, + { + "start": 5966.34, + "end": 5971.78, + "probability": 0.041 + }, + { + "start": 5972.09, + "end": 5973.44, + "probability": 0.7467 + }, + { + "start": 5999.68, + "end": 6003.58, + "probability": 0.0038 + }, + { + "start": 6006.7, + "end": 6007.0, + "probability": 0.6973 + }, + { + "start": 6016.41, + "end": 6022.1, + "probability": 0.036 + }, + { + "start": 6022.74, + "end": 6023.84, + "probability": 0.0687 + }, + { + "start": 6024.02, + "end": 6030.54, + "probability": 0.1964 + }, + { + "start": 6030.54, + "end": 6035.14, + "probability": 0.0948 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6039.0, + "end": 6039.0, + "probability": 0.0 + }, + { + "start": 6045.9, + "end": 6048.34, + "probability": 0.1621 + }, + { + "start": 6049.33, + "end": 6049.84, + "probability": 0.1417 + }, + { + "start": 6050.08, + "end": 6051.04, + "probability": 0.1408 + }, + { + "start": 6051.04, + "end": 6051.1, + "probability": 0.0335 + }, + { + "start": 6065.88, + "end": 6067.92, + "probability": 0.0902 + }, + { + "start": 6067.92, + "end": 6070.5, + "probability": 0.7541 + }, + { + "start": 6071.14, + "end": 6072.74, + "probability": 0.2314 + }, + { + "start": 6073.7, + "end": 6077.26, + "probability": 0.9858 + }, + { + "start": 6077.36, + "end": 6078.0, + "probability": 0.9115 + }, + { + "start": 6078.04, + "end": 6078.42, + "probability": 0.5059 + }, + { + "start": 6078.8, + "end": 6081.58, + "probability": 0.9671 + }, + { + "start": 6082.7, + "end": 6084.98, + "probability": 0.981 + }, + { + "start": 6084.98, + "end": 6088.02, + "probability": 0.9946 + }, + { + "start": 6091.04, + "end": 6092.8, + "probability": 0.8252 + }, + { + "start": 6094.36, + "end": 6096.76, + "probability": 0.9884 + }, + { + "start": 6096.94, + "end": 6098.92, + "probability": 0.8992 + }, + { + "start": 6099.56, + "end": 6101.66, + "probability": 0.9861 + }, + { + "start": 6101.8, + "end": 6103.52, + "probability": 0.9917 + }, + { + "start": 6104.2, + "end": 6104.7, + "probability": 0.9556 + }, + { + "start": 6104.94, + "end": 6105.82, + "probability": 0.9434 + }, + { + "start": 6105.9, + "end": 6106.14, + "probability": 0.8086 + }, + { + "start": 6106.46, + "end": 6107.94, + "probability": 0.9527 + }, + { + "start": 6109.1, + "end": 6111.06, + "probability": 0.673 + }, + { + "start": 6112.12, + "end": 6112.78, + "probability": 0.3915 + }, + { + "start": 6114.1, + "end": 6114.72, + "probability": 0.43 + }, + { + "start": 6114.74, + "end": 6115.06, + "probability": 0.8691 + }, + { + "start": 6115.18, + "end": 6117.26, + "probability": 0.7602 + }, + { + "start": 6118.98, + "end": 6119.8, + "probability": 0.6807 + }, + { + "start": 6119.8, + "end": 6124.14, + "probability": 0.9823 + }, + { + "start": 6124.3, + "end": 6126.18, + "probability": 0.9867 + }, + { + "start": 6126.48, + "end": 6129.34, + "probability": 0.9956 + }, + { + "start": 6130.38, + "end": 6134.74, + "probability": 0.9968 + }, + { + "start": 6135.8, + "end": 6136.56, + "probability": 0.5693 + }, + { + "start": 6137.78, + "end": 6140.8, + "probability": 0.9847 + }, + { + "start": 6141.12, + "end": 6142.94, + "probability": 0.9991 + }, + { + "start": 6143.98, + "end": 6146.88, + "probability": 0.9956 + }, + { + "start": 6147.0, + "end": 6147.24, + "probability": 0.752 + }, + { + "start": 6147.52, + "end": 6148.62, + "probability": 0.996 + }, + { + "start": 6149.78, + "end": 6150.94, + "probability": 0.8701 + }, + { + "start": 6151.5, + "end": 6156.22, + "probability": 0.9933 + }, + { + "start": 6157.3, + "end": 6160.44, + "probability": 0.993 + }, + { + "start": 6161.32, + "end": 6162.0, + "probability": 0.5641 + }, + { + "start": 6163.38, + "end": 6164.56, + "probability": 0.6248 + }, + { + "start": 6164.66, + "end": 6166.17, + "probability": 0.9834 + }, + { + "start": 6166.32, + "end": 6168.88, + "probability": 0.9892 + }, + { + "start": 6168.88, + "end": 6173.8, + "probability": 0.8446 + }, + { + "start": 6174.1, + "end": 6176.52, + "probability": 0.8258 + }, + { + "start": 6178.26, + "end": 6181.24, + "probability": 0.9908 + }, + { + "start": 6181.24, + "end": 6184.32, + "probability": 0.9973 + }, + { + "start": 6186.16, + "end": 6186.84, + "probability": 0.8062 + }, + { + "start": 6186.86, + "end": 6187.96, + "probability": 0.9808 + }, + { + "start": 6188.1, + "end": 6189.44, + "probability": 0.7918 + }, + { + "start": 6189.92, + "end": 6190.26, + "probability": 0.2273 + }, + { + "start": 6191.9, + "end": 6194.54, + "probability": 0.9971 + }, + { + "start": 6194.54, + "end": 6198.28, + "probability": 0.9995 + }, + { + "start": 6198.84, + "end": 6202.5, + "probability": 0.9935 + }, + { + "start": 6203.58, + "end": 6204.4, + "probability": 0.6794 + }, + { + "start": 6204.66, + "end": 6210.99, + "probability": 0.9324 + }, + { + "start": 6211.32, + "end": 6213.34, + "probability": 0.7996 + }, + { + "start": 6214.48, + "end": 6218.66, + "probability": 0.9801 + }, + { + "start": 6219.6, + "end": 6222.74, + "probability": 0.9514 + }, + { + "start": 6223.56, + "end": 6224.08, + "probability": 0.7869 + }, + { + "start": 6224.16, + "end": 6224.74, + "probability": 0.8385 + }, + { + "start": 6225.98, + "end": 6229.98, + "probability": 0.9653 + }, + { + "start": 6230.02, + "end": 6230.54, + "probability": 0.7627 + }, + { + "start": 6231.8, + "end": 6233.7, + "probability": 0.9176 + }, + { + "start": 6234.18, + "end": 6235.56, + "probability": 0.6361 + }, + { + "start": 6236.54, + "end": 6237.34, + "probability": 0.9659 + }, + { + "start": 6239.94, + "end": 6243.6, + "probability": 0.9922 + }, + { + "start": 6243.98, + "end": 6246.27, + "probability": 0.9956 + }, + { + "start": 6247.14, + "end": 6248.58, + "probability": 0.0679 + }, + { + "start": 6252.1, + "end": 6253.7, + "probability": 0.5705 + }, + { + "start": 6259.92, + "end": 6261.1, + "probability": 0.5463 + }, + { + "start": 6264.51, + "end": 6268.02, + "probability": 0.5064 + }, + { + "start": 6270.4, + "end": 6272.09, + "probability": 0.8413 + }, + { + "start": 6275.22, + "end": 6275.76, + "probability": 0.5791 + }, + { + "start": 6279.12, + "end": 6281.3, + "probability": 0.2334 + }, + { + "start": 6288.38, + "end": 6290.38, + "probability": 0.5944 + }, + { + "start": 6292.42, + "end": 6295.36, + "probability": 0.7766 + }, + { + "start": 6296.14, + "end": 6299.62, + "probability": 0.8584 + }, + { + "start": 6300.34, + "end": 6302.74, + "probability": 0.9757 + }, + { + "start": 6303.8, + "end": 6306.3, + "probability": 0.6662 + }, + { + "start": 6306.62, + "end": 6307.04, + "probability": 0.8657 + }, + { + "start": 6307.38, + "end": 6307.96, + "probability": 0.2223 + }, + { + "start": 6309.46, + "end": 6310.52, + "probability": 0.4529 + }, + { + "start": 6311.5, + "end": 6312.94, + "probability": 0.9944 + }, + { + "start": 6313.34, + "end": 6317.48, + "probability": 0.6696 + }, + { + "start": 6318.98, + "end": 6330.82, + "probability": 0.9971 + }, + { + "start": 6331.88, + "end": 6338.99, + "probability": 0.9966 + }, + { + "start": 6340.14, + "end": 6341.22, + "probability": 0.6468 + }, + { + "start": 6341.86, + "end": 6343.12, + "probability": 0.9486 + }, + { + "start": 6343.72, + "end": 6348.56, + "probability": 0.9956 + }, + { + "start": 6350.32, + "end": 6353.08, + "probability": 0.9922 + }, + { + "start": 6353.8, + "end": 6359.49, + "probability": 0.7269 + }, + { + "start": 6359.72, + "end": 6366.46, + "probability": 0.9862 + }, + { + "start": 6367.74, + "end": 6374.52, + "probability": 0.9867 + }, + { + "start": 6378.18, + "end": 6381.1, + "probability": 0.7961 + }, + { + "start": 6381.9, + "end": 6384.2, + "probability": 0.9824 + }, + { + "start": 6384.82, + "end": 6389.42, + "probability": 0.9734 + }, + { + "start": 6389.42, + "end": 6396.4, + "probability": 0.9958 + }, + { + "start": 6396.6, + "end": 6397.8, + "probability": 0.8319 + }, + { + "start": 6398.28, + "end": 6399.58, + "probability": 0.7805 + }, + { + "start": 6400.58, + "end": 6406.38, + "probability": 0.832 + }, + { + "start": 6406.54, + "end": 6411.14, + "probability": 0.9985 + }, + { + "start": 6411.64, + "end": 6416.32, + "probability": 0.9285 + }, + { + "start": 6416.86, + "end": 6419.42, + "probability": 0.768 + }, + { + "start": 6420.08, + "end": 6426.86, + "probability": 0.9577 + }, + { + "start": 6426.9, + "end": 6428.3, + "probability": 0.9839 + }, + { + "start": 6428.56, + "end": 6430.8, + "probability": 0.9661 + }, + { + "start": 6431.43, + "end": 6434.66, + "probability": 0.9878 + }, + { + "start": 6434.82, + "end": 6436.92, + "probability": 0.829 + }, + { + "start": 6437.04, + "end": 6439.92, + "probability": 0.9928 + }, + { + "start": 6442.67, + "end": 6445.58, + "probability": 0.9707 + }, + { + "start": 6446.42, + "end": 6451.36, + "probability": 0.9571 + }, + { + "start": 6451.56, + "end": 6453.96, + "probability": 0.9647 + }, + { + "start": 6454.42, + "end": 6458.04, + "probability": 0.9335 + }, + { + "start": 6458.14, + "end": 6458.76, + "probability": 0.4808 + }, + { + "start": 6459.14, + "end": 6459.9, + "probability": 0.6722 + }, + { + "start": 6460.02, + "end": 6461.0, + "probability": 0.982 + }, + { + "start": 6461.14, + "end": 6463.64, + "probability": 0.979 + }, + { + "start": 6464.24, + "end": 6465.8, + "probability": 0.9785 + }, + { + "start": 6466.5, + "end": 6466.74, + "probability": 0.0369 + }, + { + "start": 6467.5, + "end": 6469.88, + "probability": 0.7606 + }, + { + "start": 6469.88, + "end": 6469.94, + "probability": 0.195 + }, + { + "start": 6469.94, + "end": 6471.12, + "probability": 0.5816 + }, + { + "start": 6471.56, + "end": 6477.32, + "probability": 0.9497 + }, + { + "start": 6477.32, + "end": 6480.9, + "probability": 0.9959 + }, + { + "start": 6481.56, + "end": 6481.92, + "probability": 0.6615 + }, + { + "start": 6481.92, + "end": 6483.04, + "probability": 0.351 + }, + { + "start": 6484.57, + "end": 6487.68, + "probability": 0.94 + }, + { + "start": 6487.78, + "end": 6490.78, + "probability": 0.9985 + }, + { + "start": 6490.78, + "end": 6495.26, + "probability": 0.9888 + }, + { + "start": 6496.0, + "end": 6496.42, + "probability": 0.5246 + }, + { + "start": 6496.82, + "end": 6497.63, + "probability": 0.9932 + }, + { + "start": 6497.94, + "end": 6499.68, + "probability": 0.671 + }, + { + "start": 6500.42, + "end": 6506.82, + "probability": 0.9005 + }, + { + "start": 6508.1, + "end": 6510.38, + "probability": 0.7529 + }, + { + "start": 6511.04, + "end": 6511.58, + "probability": 0.6004 + }, + { + "start": 6511.66, + "end": 6516.12, + "probability": 0.8905 + }, + { + "start": 6516.14, + "end": 6519.62, + "probability": 0.9871 + }, + { + "start": 6519.9, + "end": 6522.58, + "probability": 0.5591 + }, + { + "start": 6523.44, + "end": 6524.58, + "probability": 0.7172 + }, + { + "start": 6528.1, + "end": 6531.32, + "probability": 0.1691 + }, + { + "start": 6531.96, + "end": 6534.32, + "probability": 0.8018 + }, + { + "start": 6535.0, + "end": 6538.94, + "probability": 0.8887 + }, + { + "start": 6539.74, + "end": 6540.56, + "probability": 0.452 + }, + { + "start": 6540.58, + "end": 6541.86, + "probability": 0.9212 + }, + { + "start": 6541.94, + "end": 6543.48, + "probability": 0.2788 + }, + { + "start": 6544.06, + "end": 6546.14, + "probability": 0.804 + }, + { + "start": 6546.6, + "end": 6547.98, + "probability": 0.7745 + }, + { + "start": 6548.08, + "end": 6549.18, + "probability": 0.6708 + }, + { + "start": 6549.26, + "end": 6550.34, + "probability": 0.8782 + }, + { + "start": 6550.4, + "end": 6552.02, + "probability": 0.8393 + }, + { + "start": 6552.34, + "end": 6554.06, + "probability": 0.9621 + }, + { + "start": 6554.14, + "end": 6555.74, + "probability": 0.5191 + }, + { + "start": 6555.86, + "end": 6557.7, + "probability": 0.6906 + }, + { + "start": 6558.06, + "end": 6562.46, + "probability": 0.6509 + }, + { + "start": 6562.9, + "end": 6567.32, + "probability": 0.8621 + }, + { + "start": 6567.54, + "end": 6569.2, + "probability": 0.9731 + }, + { + "start": 6569.2, + "end": 6570.86, + "probability": 0.8665 + }, + { + "start": 6570.98, + "end": 6572.26, + "probability": 0.6776 + }, + { + "start": 6572.74, + "end": 6575.58, + "probability": 0.8021 + }, + { + "start": 6575.8, + "end": 6577.2, + "probability": 0.799 + }, + { + "start": 6577.24, + "end": 6578.47, + "probability": 0.703 + }, + { + "start": 6579.1, + "end": 6583.4, + "probability": 0.9796 + }, + { + "start": 6584.8, + "end": 6592.04, + "probability": 0.6658 + }, + { + "start": 6593.02, + "end": 6595.0, + "probability": 0.7973 + }, + { + "start": 6595.56, + "end": 6598.2, + "probability": 0.9257 + }, + { + "start": 6599.82, + "end": 6603.76, + "probability": 0.812 + }, + { + "start": 6605.84, + "end": 6610.76, + "probability": 0.9628 + }, + { + "start": 6611.82, + "end": 6614.0, + "probability": 0.7775 + }, + { + "start": 6614.56, + "end": 6616.54, + "probability": 0.9723 + }, + { + "start": 6617.62, + "end": 6620.0, + "probability": 0.8831 + }, + { + "start": 6620.98, + "end": 6625.12, + "probability": 0.975 + }, + { + "start": 6626.2, + "end": 6628.14, + "probability": 0.698 + }, + { + "start": 6628.94, + "end": 6629.24, + "probability": 0.1175 + }, + { + "start": 6630.68, + "end": 6633.04, + "probability": 0.5488 + }, + { + "start": 6633.16, + "end": 6634.5, + "probability": 0.7232 + }, + { + "start": 6635.0, + "end": 6636.56, + "probability": 0.9194 + }, + { + "start": 6636.62, + "end": 6638.62, + "probability": 0.6976 + }, + { + "start": 6638.64, + "end": 6640.14, + "probability": 0.613 + }, + { + "start": 6640.37, + "end": 6642.86, + "probability": 0.1149 + }, + { + "start": 6642.86, + "end": 6643.34, + "probability": 0.1028 + }, + { + "start": 6643.34, + "end": 6644.42, + "probability": 0.5139 + }, + { + "start": 6644.48, + "end": 6645.42, + "probability": 0.3048 + }, + { + "start": 6645.42, + "end": 6646.76, + "probability": 0.7266 + }, + { + "start": 6646.78, + "end": 6647.96, + "probability": 0.7768 + }, + { + "start": 6648.7, + "end": 6648.96, + "probability": 0.7416 + }, + { + "start": 6650.1, + "end": 6652.0, + "probability": 0.7929 + }, + { + "start": 6653.0, + "end": 6657.34, + "probability": 0.8944 + }, + { + "start": 6657.88, + "end": 6658.92, + "probability": 0.737 + }, + { + "start": 6658.94, + "end": 6659.68, + "probability": 0.7363 + }, + { + "start": 6659.88, + "end": 6660.76, + "probability": 0.4579 + }, + { + "start": 6660.82, + "end": 6661.72, + "probability": 0.6893 + }, + { + "start": 6662.56, + "end": 6665.64, + "probability": 0.2461 + }, + { + "start": 6665.64, + "end": 6666.06, + "probability": 0.3767 + }, + { + "start": 6666.06, + "end": 6666.88, + "probability": 0.4172 + }, + { + "start": 6666.94, + "end": 6667.94, + "probability": 0.1482 + }, + { + "start": 6667.98, + "end": 6669.12, + "probability": 0.6454 + }, + { + "start": 6669.48, + "end": 6670.7, + "probability": 0.7913 + }, + { + "start": 6672.42, + "end": 6675.82, + "probability": 0.6765 + }, + { + "start": 6676.04, + "end": 6677.2, + "probability": 0.4576 + }, + { + "start": 6677.36, + "end": 6678.26, + "probability": 0.5907 + }, + { + "start": 6678.3, + "end": 6679.92, + "probability": 0.7353 + }, + { + "start": 6679.96, + "end": 6681.74, + "probability": 0.6898 + }, + { + "start": 6682.16, + "end": 6685.08, + "probability": 0.869 + }, + { + "start": 6685.42, + "end": 6686.84, + "probability": 0.8358 + }, + { + "start": 6686.9, + "end": 6688.04, + "probability": 0.5101 + }, + { + "start": 6688.24, + "end": 6690.54, + "probability": 0.5554 + }, + { + "start": 6691.12, + "end": 6694.34, + "probability": 0.5203 + }, + { + "start": 6694.96, + "end": 6696.3, + "probability": 0.9663 + }, + { + "start": 6696.9, + "end": 6698.96, + "probability": 0.932 + }, + { + "start": 6700.04, + "end": 6702.08, + "probability": 0.7292 + }, + { + "start": 6704.7, + "end": 6706.3, + "probability": 0.6486 + }, + { + "start": 6712.78, + "end": 6717.1, + "probability": 0.5402 + }, + { + "start": 6717.18, + "end": 6718.02, + "probability": 0.7825 + }, + { + "start": 6718.16, + "end": 6719.52, + "probability": 0.9018 + }, + { + "start": 6719.6, + "end": 6723.28, + "probability": 0.8116 + }, + { + "start": 6723.7, + "end": 6726.28, + "probability": 0.9065 + }, + { + "start": 6729.18, + "end": 6731.24, + "probability": 0.7766 + }, + { + "start": 6731.38, + "end": 6735.46, + "probability": 0.6324 + }, + { + "start": 6735.82, + "end": 6737.06, + "probability": 0.6846 + }, + { + "start": 6737.18, + "end": 6738.32, + "probability": 0.6394 + }, + { + "start": 6739.52, + "end": 6741.82, + "probability": 0.9136 + }, + { + "start": 6741.84, + "end": 6742.78, + "probability": 0.7369 + }, + { + "start": 6742.82, + "end": 6744.56, + "probability": 0.8413 + }, + { + "start": 6745.46, + "end": 6747.96, + "probability": 0.9375 + }, + { + "start": 6749.58, + "end": 6751.12, + "probability": 0.4928 + }, + { + "start": 6751.6, + "end": 6757.9, + "probability": 0.3466 + }, + { + "start": 6758.2, + "end": 6761.34, + "probability": 0.6989 + }, + { + "start": 6761.42, + "end": 6762.68, + "probability": 0.7855 + }, + { + "start": 6762.92, + "end": 6764.26, + "probability": 0.6265 + }, + { + "start": 6764.3, + "end": 6765.58, + "probability": 0.9415 + }, + { + "start": 6766.22, + "end": 6768.28, + "probability": 0.8998 + }, + { + "start": 6773.76, + "end": 6778.46, + "probability": 0.7245 + }, + { + "start": 6778.56, + "end": 6779.98, + "probability": 0.7069 + }, + { + "start": 6780.1, + "end": 6782.44, + "probability": 0.8313 + }, + { + "start": 6782.48, + "end": 6784.26, + "probability": 0.9323 + }, + { + "start": 6784.92, + "end": 6787.38, + "probability": 0.8244 + }, + { + "start": 6787.38, + "end": 6788.52, + "probability": 0.8391 + }, + { + "start": 6788.6, + "end": 6789.78, + "probability": 0.4826 + }, + { + "start": 6790.18, + "end": 6793.7, + "probability": 0.7705 + }, + { + "start": 6793.98, + "end": 6795.08, + "probability": 0.8807 + }, + { + "start": 6795.32, + "end": 6797.57, + "probability": 0.873 + }, + { + "start": 6802.82, + "end": 6805.44, + "probability": 0.7196 + }, + { + "start": 6806.06, + "end": 6808.38, + "probability": 0.932 + }, + { + "start": 6808.54, + "end": 6810.32, + "probability": 0.9371 + }, + { + "start": 6810.6, + "end": 6812.4, + "probability": 0.9645 + }, + { + "start": 6815.46, + "end": 6816.6, + "probability": 0.2847 + }, + { + "start": 6817.06, + "end": 6820.52, + "probability": 0.5759 + }, + { + "start": 6820.54, + "end": 6822.11, + "probability": 0.6946 + }, + { + "start": 6822.38, + "end": 6824.0, + "probability": 0.7845 + }, + { + "start": 6826.24, + "end": 6827.0, + "probability": 0.9554 + }, + { + "start": 6830.06, + "end": 6830.92, + "probability": 0.6227 + }, + { + "start": 6831.66, + "end": 6833.96, + "probability": 0.6163 + }, + { + "start": 6834.66, + "end": 6836.46, + "probability": 0.7216 + }, + { + "start": 6836.6, + "end": 6841.32, + "probability": 0.7779 + }, + { + "start": 6841.38, + "end": 6841.9, + "probability": 0.4933 + }, + { + "start": 6843.22, + "end": 6844.24, + "probability": 0.0854 + }, + { + "start": 6845.96, + "end": 6846.96, + "probability": 0.7693 + }, + { + "start": 6847.66, + "end": 6852.22, + "probability": 0.8113 + }, + { + "start": 6852.22, + "end": 6854.76, + "probability": 0.4331 + }, + { + "start": 6854.9, + "end": 6857.06, + "probability": 0.7155 + }, + { + "start": 6857.52, + "end": 6859.58, + "probability": 0.7328 + }, + { + "start": 6859.64, + "end": 6862.14, + "probability": 0.8992 + }, + { + "start": 6862.36, + "end": 6863.96, + "probability": 0.7827 + }, + { + "start": 6865.1, + "end": 6869.0, + "probability": 0.5487 + }, + { + "start": 6869.0, + "end": 6870.06, + "probability": 0.639 + }, + { + "start": 6870.16, + "end": 6872.9, + "probability": 0.9177 + }, + { + "start": 6873.3, + "end": 6874.92, + "probability": 0.8673 + }, + { + "start": 6874.98, + "end": 6876.1, + "probability": 0.8217 + }, + { + "start": 6876.24, + "end": 6878.1, + "probability": 0.8456 + }, + { + "start": 6878.54, + "end": 6881.1, + "probability": 0.6168 + }, + { + "start": 6881.1, + "end": 6882.6, + "probability": 0.7823 + }, + { + "start": 6883.2, + "end": 6885.16, + "probability": 0.8802 + }, + { + "start": 6885.94, + "end": 6888.3, + "probability": 0.9587 + }, + { + "start": 6890.96, + "end": 6893.92, + "probability": 0.1629 + }, + { + "start": 6895.68, + "end": 6896.52, + "probability": 0.5973 + }, + { + "start": 6896.52, + "end": 6897.22, + "probability": 0.8167 + }, + { + "start": 6899.8, + "end": 6900.36, + "probability": 0.0147 + }, + { + "start": 6900.36, + "end": 6901.73, + "probability": 0.178 + }, + { + "start": 6903.16, + "end": 6903.34, + "probability": 0.022 + }, + { + "start": 6903.34, + "end": 6903.34, + "probability": 0.2183 + }, + { + "start": 6903.34, + "end": 6903.48, + "probability": 0.4812 + }, + { + "start": 6907.68, + "end": 6908.92, + "probability": 0.4876 + }, + { + "start": 6909.84, + "end": 6912.24, + "probability": 0.9097 + }, + { + "start": 6912.84, + "end": 6914.18, + "probability": 0.9718 + }, + { + "start": 6914.6, + "end": 6916.72, + "probability": 0.9915 + }, + { + "start": 6916.86, + "end": 6918.54, + "probability": 0.9523 + }, + { + "start": 6919.78, + "end": 6926.0, + "probability": 0.9758 + }, + { + "start": 6926.96, + "end": 6930.36, + "probability": 0.7642 + }, + { + "start": 6931.72, + "end": 6933.74, + "probability": 0.9807 + }, + { + "start": 6933.84, + "end": 6935.28, + "probability": 0.9266 + }, + { + "start": 6935.78, + "end": 6938.12, + "probability": 0.9679 + }, + { + "start": 6939.42, + "end": 6942.02, + "probability": 0.9737 + }, + { + "start": 6942.06, + "end": 6943.74, + "probability": 0.7156 + }, + { + "start": 6943.98, + "end": 6945.66, + "probability": 0.6489 + }, + { + "start": 6946.66, + "end": 6948.96, + "probability": 0.8563 + }, + { + "start": 6949.4, + "end": 6952.0, + "probability": 0.9176 + }, + { + "start": 6952.14, + "end": 6955.18, + "probability": 0.7822 + }, + { + "start": 6955.28, + "end": 6956.44, + "probability": 0.8489 + }, + { + "start": 6956.46, + "end": 6958.24, + "probability": 0.9526 + }, + { + "start": 6958.42, + "end": 6959.14, + "probability": 0.9729 + }, + { + "start": 6959.96, + "end": 6962.8, + "probability": 0.7417 + }, + { + "start": 6963.46, + "end": 6965.76, + "probability": 0.8712 + }, + { + "start": 6966.32, + "end": 6967.56, + "probability": 0.4791 + }, + { + "start": 6967.6, + "end": 6969.12, + "probability": 0.7653 + }, + { + "start": 6969.18, + "end": 6970.64, + "probability": 0.8403 + }, + { + "start": 6970.78, + "end": 6973.28, + "probability": 0.9227 + }, + { + "start": 6973.86, + "end": 6977.12, + "probability": 0.8216 + }, + { + "start": 6977.72, + "end": 6981.18, + "probability": 0.9041 + }, + { + "start": 6981.8, + "end": 6985.9, + "probability": 0.9883 + }, + { + "start": 6987.34, + "end": 6988.98, + "probability": 0.938 + }, + { + "start": 6989.14, + "end": 6991.94, + "probability": 0.7794 + }, + { + "start": 6991.96, + "end": 6993.58, + "probability": 0.7736 + }, + { + "start": 6994.28, + "end": 6997.62, + "probability": 0.385 + }, + { + "start": 6999.66, + "end": 7001.0, + "probability": 0.3839 + }, + { + "start": 7001.14, + "end": 7002.5, + "probability": 0.6832 + }, + { + "start": 7002.6, + "end": 7004.56, + "probability": 0.9321 + }, + { + "start": 7005.52, + "end": 7008.3, + "probability": 0.7172 + }, + { + "start": 7008.86, + "end": 7011.02, + "probability": 0.9714 + }, + { + "start": 7011.7, + "end": 7014.06, + "probability": 0.955 + }, + { + "start": 7014.66, + "end": 7014.8, + "probability": 0.9077 + }, + { + "start": 7015.4, + "end": 7016.32, + "probability": 0.561 + }, + { + "start": 7016.9, + "end": 7019.56, + "probability": 0.8889 + }, + { + "start": 7020.28, + "end": 7020.6, + "probability": 0.6799 + }, + { + "start": 7021.84, + "end": 7028.5, + "probability": 0.738 + }, + { + "start": 7029.22, + "end": 7034.84, + "probability": 0.8623 + }, + { + "start": 7035.8, + "end": 7038.48, + "probability": 0.9632 + }, + { + "start": 7039.84, + "end": 7040.64, + "probability": 0.445 + }, + { + "start": 7043.22, + "end": 7044.82, + "probability": 0.6786 + }, + { + "start": 7045.94, + "end": 7049.26, + "probability": 0.8225 + }, + { + "start": 7050.22, + "end": 7054.06, + "probability": 0.7754 + }, + { + "start": 7054.48, + "end": 7057.16, + "probability": 0.8485 + }, + { + "start": 7058.2, + "end": 7061.02, + "probability": 0.9523 + }, + { + "start": 7062.5, + "end": 7064.82, + "probability": 0.959 + }, + { + "start": 7064.84, + "end": 7066.22, + "probability": 0.918 + }, + { + "start": 7066.28, + "end": 7068.12, + "probability": 0.5434 + }, + { + "start": 7069.54, + "end": 7071.7, + "probability": 0.9499 + }, + { + "start": 7072.86, + "end": 7077.76, + "probability": 0.9724 + }, + { + "start": 7078.44, + "end": 7082.58, + "probability": 0.9486 + }, + { + "start": 7082.86, + "end": 7084.68, + "probability": 0.9425 + }, + { + "start": 7084.7, + "end": 7086.36, + "probability": 0.8327 + }, + { + "start": 7086.84, + "end": 7088.62, + "probability": 0.8572 + }, + { + "start": 7089.46, + "end": 7092.72, + "probability": 0.9496 + }, + { + "start": 7093.3, + "end": 7096.16, + "probability": 0.9612 + }, + { + "start": 7096.7, + "end": 7100.14, + "probability": 0.7099 + }, + { + "start": 7101.36, + "end": 7104.88, + "probability": 0.8027 + }, + { + "start": 7105.84, + "end": 7108.46, + "probability": 0.9287 + }, + { + "start": 7109.18, + "end": 7110.86, + "probability": 0.8993 + }, + { + "start": 7111.82, + "end": 7116.54, + "probability": 0.9355 + }, + { + "start": 7118.2, + "end": 7118.58, + "probability": 0.9854 + }, + { + "start": 7123.82, + "end": 7125.46, + "probability": 0.5309 + }, + { + "start": 7125.76, + "end": 7128.36, + "probability": 0.9192 + }, + { + "start": 7128.56, + "end": 7130.48, + "probability": 0.9258 + }, + { + "start": 7131.12, + "end": 7131.38, + "probability": 0.9219 + }, + { + "start": 7135.06, + "end": 7135.62, + "probability": 0.7526 + }, + { + "start": 7139.02, + "end": 7139.82, + "probability": 0.5766 + }, + { + "start": 7140.9, + "end": 7141.6, + "probability": 0.3747 + }, + { + "start": 7146.1, + "end": 7147.22, + "probability": 0.5218 + }, + { + "start": 7148.14, + "end": 7151.76, + "probability": 0.8748 + }, + { + "start": 7152.84, + "end": 7154.02, + "probability": 0.9037 + }, + { + "start": 7154.66, + "end": 7156.7, + "probability": 0.8848 + }, + { + "start": 7157.28, + "end": 7160.76, + "probability": 0.9807 + }, + { + "start": 7162.0, + "end": 7165.14, + "probability": 0.7727 + }, + { + "start": 7165.76, + "end": 7166.66, + "probability": 0.7196 + }, + { + "start": 7166.66, + "end": 7167.88, + "probability": 0.2828 + }, + { + "start": 7168.88, + "end": 7171.58, + "probability": 0.4897 + }, + { + "start": 7171.66, + "end": 7172.38, + "probability": 0.5062 + }, + { + "start": 7174.4, + "end": 7177.0, + "probability": 0.9972 + }, + { + "start": 7177.0, + "end": 7180.76, + "probability": 0.9186 + }, + { + "start": 7181.02, + "end": 7184.32, + "probability": 0.8002 + }, + { + "start": 7184.58, + "end": 7186.02, + "probability": 0.9083 + }, + { + "start": 7186.16, + "end": 7186.18, + "probability": 0.1888 + }, + { + "start": 7186.2, + "end": 7187.88, + "probability": 0.6402 + }, + { + "start": 7188.24, + "end": 7189.9, + "probability": 0.7338 + }, + { + "start": 7194.6, + "end": 7199.02, + "probability": 0.1261 + }, + { + "start": 7200.2, + "end": 7200.56, + "probability": 0.0252 + }, + { + "start": 7201.08, + "end": 7201.26, + "probability": 0.1032 + }, + { + "start": 7202.88, + "end": 7203.48, + "probability": 0.0136 + }, + { + "start": 7205.22, + "end": 7205.3, + "probability": 0.0116 + }, + { + "start": 7235.61, + "end": 7240.02, + "probability": 0.9255 + }, + { + "start": 7240.02, + "end": 7242.35, + "probability": 0.6722 + }, + { + "start": 7242.78, + "end": 7244.98, + "probability": 0.501 + }, + { + "start": 7244.98, + "end": 7250.44, + "probability": 0.968 + }, + { + "start": 7251.1, + "end": 7252.28, + "probability": 0.8271 + }, + { + "start": 7252.94, + "end": 7253.86, + "probability": 0.7359 + }, + { + "start": 7253.86, + "end": 7255.14, + "probability": 0.8046 + }, + { + "start": 7255.3, + "end": 7257.92, + "probability": 0.7764 + }, + { + "start": 7258.02, + "end": 7260.26, + "probability": 0.7642 + }, + { + "start": 7260.66, + "end": 7262.02, + "probability": 0.5993 + }, + { + "start": 7262.62, + "end": 7264.41, + "probability": 0.9832 + }, + { + "start": 7265.62, + "end": 7266.75, + "probability": 0.5058 + }, + { + "start": 7267.36, + "end": 7272.46, + "probability": 0.979 + }, + { + "start": 7272.46, + "end": 7276.16, + "probability": 0.9717 + }, + { + "start": 7276.24, + "end": 7279.42, + "probability": 0.8572 + }, + { + "start": 7279.42, + "end": 7282.7, + "probability": 0.66 + }, + { + "start": 7287.3, + "end": 7287.56, + "probability": 0.3305 + }, + { + "start": 7297.4, + "end": 7299.24, + "probability": 0.1963 + }, + { + "start": 7303.68, + "end": 7306.38, + "probability": 0.4991 + }, + { + "start": 7306.54, + "end": 7308.98, + "probability": 0.7524 + }, + { + "start": 7309.2, + "end": 7310.1, + "probability": 0.3671 + }, + { + "start": 7310.5, + "end": 7313.38, + "probability": 0.7256 + }, + { + "start": 7314.02, + "end": 7316.62, + "probability": 0.9383 + }, + { + "start": 7318.46, + "end": 7321.68, + "probability": 0.0663 + }, + { + "start": 7323.74, + "end": 7324.32, + "probability": 0.1585 + }, + { + "start": 7324.7, + "end": 7325.32, + "probability": 0.2306 + }, + { + "start": 7325.32, + "end": 7337.7, + "probability": 0.0518 + }, + { + "start": 7339.24, + "end": 7339.78, + "probability": 0.0521 + }, + { + "start": 7349.24, + "end": 7352.96, + "probability": 0.09 + }, + { + "start": 7357.86, + "end": 7360.0, + "probability": 0.0898 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.0, + "probability": 0.0 + }, + { + "start": 7429.0, + "end": 7429.16, + "probability": 0.0728 + }, + { + "start": 7429.16, + "end": 7429.46, + "probability": 0.251 + }, + { + "start": 7429.46, + "end": 7430.72, + "probability": 0.4091 + }, + { + "start": 7430.84, + "end": 7432.12, + "probability": 0.7372 + }, + { + "start": 7437.94, + "end": 7439.7, + "probability": 0.7312 + }, + { + "start": 7439.84, + "end": 7440.72, + "probability": 0.4919 + }, + { + "start": 7441.65, + "end": 7449.88, + "probability": 0.9713 + }, + { + "start": 7449.96, + "end": 7452.06, + "probability": 0.8265 + }, + { + "start": 7452.68, + "end": 7455.7, + "probability": 0.4565 + }, + { + "start": 7455.8, + "end": 7458.48, + "probability": 0.6649 + }, + { + "start": 7459.04, + "end": 7463.1, + "probability": 0.9024 + }, + { + "start": 7463.76, + "end": 7465.46, + "probability": 0.9652 + }, + { + "start": 7466.18, + "end": 7467.78, + "probability": 0.9832 + }, + { + "start": 7469.4, + "end": 7470.66, + "probability": 0.9857 + }, + { + "start": 7470.76, + "end": 7472.32, + "probability": 0.9924 + }, + { + "start": 7474.72, + "end": 7477.2, + "probability": 0.7911 + }, + { + "start": 7477.2, + "end": 7480.76, + "probability": 0.9679 + }, + { + "start": 7481.36, + "end": 7482.62, + "probability": 0.7581 + }, + { + "start": 7484.08, + "end": 7490.32, + "probability": 0.9294 + }, + { + "start": 7490.4, + "end": 7491.22, + "probability": 0.7316 + }, + { + "start": 7491.3, + "end": 7492.08, + "probability": 0.9528 + }, + { + "start": 7492.8, + "end": 7494.16, + "probability": 0.855 + }, + { + "start": 7495.72, + "end": 7497.9, + "probability": 0.9411 + }, + { + "start": 7498.56, + "end": 7500.66, + "probability": 0.7522 + }, + { + "start": 7501.2, + "end": 7502.98, + "probability": 0.9294 + }, + { + "start": 7504.62, + "end": 7505.6, + "probability": 0.76 + }, + { + "start": 7505.74, + "end": 7508.56, + "probability": 0.9837 + }, + { + "start": 7509.1, + "end": 7510.38, + "probability": 0.9257 + }, + { + "start": 7511.42, + "end": 7512.5, + "probability": 0.9135 + }, + { + "start": 7513.38, + "end": 7519.38, + "probability": 0.8546 + }, + { + "start": 7520.08, + "end": 7526.48, + "probability": 0.985 + }, + { + "start": 7527.42, + "end": 7528.2, + "probability": 0.627 + }, + { + "start": 7528.26, + "end": 7533.22, + "probability": 0.9913 + }, + { + "start": 7533.22, + "end": 7537.24, + "probability": 0.8331 + }, + { + "start": 7537.54, + "end": 7539.36, + "probability": 0.1751 + }, + { + "start": 7540.24, + "end": 7540.78, + "probability": 0.5225 + }, + { + "start": 7541.46, + "end": 7545.04, + "probability": 0.9774 + }, + { + "start": 7545.54, + "end": 7547.07, + "probability": 0.9761 + }, + { + "start": 7548.68, + "end": 7551.42, + "probability": 0.5709 + }, + { + "start": 7552.8, + "end": 7555.18, + "probability": 0.9452 + }, + { + "start": 7556.52, + "end": 7561.02, + "probability": 0.9907 + }, + { + "start": 7562.58, + "end": 7563.6, + "probability": 0.0933 + }, + { + "start": 7563.6, + "end": 7564.74, + "probability": 0.8763 + }, + { + "start": 7564.84, + "end": 7567.18, + "probability": 0.9867 + }, + { + "start": 7567.3, + "end": 7571.3, + "probability": 0.7327 + }, + { + "start": 7572.14, + "end": 7573.34, + "probability": 0.8443 + }, + { + "start": 7574.44, + "end": 7577.46, + "probability": 0.6671 + }, + { + "start": 7577.98, + "end": 7580.42, + "probability": 0.9653 + }, + { + "start": 7581.16, + "end": 7581.9, + "probability": 0.9298 + }, + { + "start": 7581.96, + "end": 7586.5, + "probability": 0.944 + }, + { + "start": 7587.6, + "end": 7590.41, + "probability": 0.3926 + }, + { + "start": 7591.64, + "end": 7594.7, + "probability": 0.9285 + }, + { + "start": 7595.32, + "end": 7597.92, + "probability": 0.9233 + }, + { + "start": 7599.56, + "end": 7599.84, + "probability": 0.8345 + }, + { + "start": 7600.82, + "end": 7602.06, + "probability": 0.8515 + }, + { + "start": 7602.72, + "end": 7607.56, + "probability": 0.9639 + }, + { + "start": 7609.06, + "end": 7613.16, + "probability": 0.9592 + }, + { + "start": 7614.44, + "end": 7617.28, + "probability": 0.9919 + }, + { + "start": 7618.42, + "end": 7619.92, + "probability": 0.7778 + }, + { + "start": 7619.98, + "end": 7625.12, + "probability": 0.8472 + }, + { + "start": 7625.8, + "end": 7627.3, + "probability": 0.6213 + }, + { + "start": 7628.7, + "end": 7630.92, + "probability": 0.9513 + }, + { + "start": 7632.22, + "end": 7640.5, + "probability": 0.9172 + }, + { + "start": 7640.82, + "end": 7641.58, + "probability": 0.6649 + }, + { + "start": 7642.2, + "end": 7645.0, + "probability": 0.7109 + }, + { + "start": 7645.7, + "end": 7647.44, + "probability": 0.9764 + }, + { + "start": 7649.68, + "end": 7651.58, + "probability": 0.3621 + }, + { + "start": 7652.6, + "end": 7656.44, + "probability": 0.992 + }, + { + "start": 7656.44, + "end": 7660.76, + "probability": 0.9961 + }, + { + "start": 7661.72, + "end": 7666.48, + "probability": 0.9663 + }, + { + "start": 7667.24, + "end": 7671.54, + "probability": 0.9353 + }, + { + "start": 7672.0, + "end": 7673.6, + "probability": 0.793 + }, + { + "start": 7674.48, + "end": 7678.12, + "probability": 0.9144 + }, + { + "start": 7680.2, + "end": 7682.52, + "probability": 0.9961 + }, + { + "start": 7682.78, + "end": 7684.12, + "probability": 0.8887 + }, + { + "start": 7684.9, + "end": 7686.42, + "probability": 0.7028 + }, + { + "start": 7687.1, + "end": 7688.74, + "probability": 0.7345 + }, + { + "start": 7690.0, + "end": 7695.22, + "probability": 0.8946 + }, + { + "start": 7696.06, + "end": 7697.36, + "probability": 0.8711 + }, + { + "start": 7698.2, + "end": 7700.3, + "probability": 0.894 + }, + { + "start": 7701.0, + "end": 7703.56, + "probability": 0.9816 + }, + { + "start": 7704.7, + "end": 7705.72, + "probability": 0.9916 + }, + { + "start": 7706.76, + "end": 7711.14, + "probability": 0.8878 + }, + { + "start": 7711.48, + "end": 7713.48, + "probability": 0.9849 + }, + { + "start": 7714.12, + "end": 7716.22, + "probability": 0.8949 + }, + { + "start": 7717.14, + "end": 7719.5, + "probability": 0.7041 + }, + { + "start": 7720.54, + "end": 7721.82, + "probability": 0.9214 + }, + { + "start": 7722.4, + "end": 7724.26, + "probability": 0.9972 + }, + { + "start": 7724.92, + "end": 7726.1, + "probability": 0.7396 + }, + { + "start": 7726.52, + "end": 7727.24, + "probability": 0.8269 + }, + { + "start": 7727.38, + "end": 7728.3, + "probability": 0.5936 + }, + { + "start": 7728.78, + "end": 7731.76, + "probability": 0.9984 + }, + { + "start": 7732.62, + "end": 7734.13, + "probability": 0.8221 + }, + { + "start": 7734.96, + "end": 7737.94, + "probability": 0.9378 + }, + { + "start": 7738.48, + "end": 7741.4, + "probability": 0.964 + }, + { + "start": 7741.64, + "end": 7742.99, + "probability": 0.9775 + }, + { + "start": 7743.64, + "end": 7747.54, + "probability": 0.8882 + }, + { + "start": 7748.22, + "end": 7754.2, + "probability": 0.9769 + }, + { + "start": 7754.32, + "end": 7757.78, + "probability": 0.9973 + }, + { + "start": 7758.32, + "end": 7759.92, + "probability": 0.4672 + }, + { + "start": 7760.6, + "end": 7763.52, + "probability": 0.8088 + }, + { + "start": 7764.16, + "end": 7764.98, + "probability": 0.6208 + }, + { + "start": 7766.44, + "end": 7768.44, + "probability": 0.9419 + }, + { + "start": 7769.3, + "end": 7771.18, + "probability": 0.868 + }, + { + "start": 7771.88, + "end": 7772.96, + "probability": 0.9146 + }, + { + "start": 7773.78, + "end": 7775.68, + "probability": 0.9719 + }, + { + "start": 7776.38, + "end": 7779.04, + "probability": 0.989 + }, + { + "start": 7780.02, + "end": 7783.48, + "probability": 0.9964 + }, + { + "start": 7784.38, + "end": 7786.31, + "probability": 0.9558 + }, + { + "start": 7786.94, + "end": 7789.12, + "probability": 0.9867 + }, + { + "start": 7790.08, + "end": 7791.32, + "probability": 0.9739 + }, + { + "start": 7792.12, + "end": 7794.54, + "probability": 0.9745 + }, + { + "start": 7795.06, + "end": 7796.92, + "probability": 0.9884 + }, + { + "start": 7798.58, + "end": 7803.65, + "probability": 0.9966 + }, + { + "start": 7804.32, + "end": 7806.6, + "probability": 0.8878 + }, + { + "start": 7807.36, + "end": 7809.28, + "probability": 0.8084 + }, + { + "start": 7809.62, + "end": 7811.04, + "probability": 0.9512 + }, + { + "start": 7811.68, + "end": 7814.84, + "probability": 0.8929 + }, + { + "start": 7815.74, + "end": 7817.08, + "probability": 0.8105 + }, + { + "start": 7817.2, + "end": 7819.83, + "probability": 0.9623 + }, + { + "start": 7821.02, + "end": 7822.28, + "probability": 0.7506 + }, + { + "start": 7822.78, + "end": 7824.38, + "probability": 0.9746 + }, + { + "start": 7824.38, + "end": 7826.74, + "probability": 0.9894 + }, + { + "start": 7828.34, + "end": 7831.0, + "probability": 0.989 + }, + { + "start": 7832.2, + "end": 7835.46, + "probability": 0.995 + }, + { + "start": 7836.26, + "end": 7838.06, + "probability": 0.9677 + }, + { + "start": 7838.22, + "end": 7844.68, + "probability": 0.8632 + }, + { + "start": 7845.68, + "end": 7851.14, + "probability": 0.9987 + }, + { + "start": 7851.86, + "end": 7854.38, + "probability": 0.7106 + }, + { + "start": 7855.68, + "end": 7857.82, + "probability": 0.5781 + }, + { + "start": 7858.46, + "end": 7863.08, + "probability": 0.9984 + }, + { + "start": 7863.08, + "end": 7868.62, + "probability": 0.8958 + }, + { + "start": 7869.2, + "end": 7870.5, + "probability": 0.9504 + }, + { + "start": 7871.16, + "end": 7871.72, + "probability": 0.6612 + }, + { + "start": 7872.98, + "end": 7876.72, + "probability": 0.9951 + }, + { + "start": 7876.72, + "end": 7882.96, + "probability": 0.9926 + }, + { + "start": 7883.0, + "end": 7889.06, + "probability": 0.9641 + }, + { + "start": 7889.58, + "end": 7891.32, + "probability": 0.8288 + }, + { + "start": 7892.32, + "end": 7896.9, + "probability": 0.9669 + }, + { + "start": 7897.66, + "end": 7902.26, + "probability": 0.871 + }, + { + "start": 7903.02, + "end": 7906.59, + "probability": 0.5776 + }, + { + "start": 7907.44, + "end": 7911.36, + "probability": 0.8505 + }, + { + "start": 7911.42, + "end": 7912.71, + "probability": 0.9547 + }, + { + "start": 7914.22, + "end": 7917.21, + "probability": 0.8159 + }, + { + "start": 7917.34, + "end": 7921.22, + "probability": 0.7629 + }, + { + "start": 7922.3, + "end": 7926.65, + "probability": 0.5074 + }, + { + "start": 7927.56, + "end": 7928.6, + "probability": 0.008 + }, + { + "start": 7929.42, + "end": 7930.62, + "probability": 0.0084 + }, + { + "start": 7930.62, + "end": 7931.18, + "probability": 0.3682 + }, + { + "start": 7931.32, + "end": 7931.95, + "probability": 0.7622 + }, + { + "start": 7932.42, + "end": 7932.46, + "probability": 0.4937 + }, + { + "start": 7932.46, + "end": 7938.36, + "probability": 0.9932 + }, + { + "start": 7938.52, + "end": 7941.96, + "probability": 0.8637 + }, + { + "start": 7942.92, + "end": 7945.08, + "probability": 0.9443 + }, + { + "start": 7945.74, + "end": 7948.58, + "probability": 0.7424 + }, + { + "start": 7948.58, + "end": 7952.42, + "probability": 0.6903 + }, + { + "start": 7952.42, + "end": 7952.42, + "probability": 0.6866 + }, + { + "start": 7952.42, + "end": 7954.0, + "probability": 0.8979 + }, + { + "start": 7954.44, + "end": 7957.6, + "probability": 0.8145 + }, + { + "start": 7957.66, + "end": 7959.41, + "probability": 0.4323 + }, + { + "start": 7959.86, + "end": 7960.8, + "probability": 0.8403 + }, + { + "start": 7961.2, + "end": 7962.8, + "probability": 0.9657 + }, + { + "start": 7963.38, + "end": 7968.82, + "probability": 0.9841 + }, + { + "start": 7969.06, + "end": 7970.06, + "probability": 0.8583 + }, + { + "start": 7970.24, + "end": 7970.96, + "probability": 0.787 + }, + { + "start": 7971.24, + "end": 7976.96, + "probability": 0.9929 + }, + { + "start": 7977.7, + "end": 7979.34, + "probability": 0.973 + }, + { + "start": 7980.0, + "end": 7986.12, + "probability": 0.6446 + }, + { + "start": 8008.62, + "end": 8013.24, + "probability": 0.757 + }, + { + "start": 8016.09, + "end": 8016.56, + "probability": 0.0349 + }, + { + "start": 8027.08, + "end": 8032.04, + "probability": 0.5009 + }, + { + "start": 8032.7, + "end": 8032.7, + "probability": 0.4981 + }, + { + "start": 8032.7, + "end": 8035.74, + "probability": 0.8171 + }, + { + "start": 8036.38, + "end": 8038.12, + "probability": 0.9047 + }, + { + "start": 8038.82, + "end": 8043.54, + "probability": 0.9935 + }, + { + "start": 8043.54, + "end": 8048.86, + "probability": 0.9812 + }, + { + "start": 8050.82, + "end": 8056.98, + "probability": 0.9836 + }, + { + "start": 8057.8, + "end": 8059.32, + "probability": 0.0935 + }, + { + "start": 8059.42, + "end": 8060.48, + "probability": 0.0172 + }, + { + "start": 8060.48, + "end": 8060.48, + "probability": 0.0845 + }, + { + "start": 8060.48, + "end": 8061.84, + "probability": 0.4859 + }, + { + "start": 8063.36, + "end": 8064.36, + "probability": 0.1025 + }, + { + "start": 8064.6, + "end": 8065.08, + "probability": 0.3605 + }, + { + "start": 8065.44, + "end": 8065.94, + "probability": 0.021 + }, + { + "start": 8068.62, + "end": 8068.76, + "probability": 0.5489 + }, + { + "start": 8070.18, + "end": 8071.66, + "probability": 0.1147 + }, + { + "start": 8072.38, + "end": 8072.8, + "probability": 0.368 + }, + { + "start": 8073.08, + "end": 8074.1, + "probability": 0.5659 + }, + { + "start": 8076.04, + "end": 8078.02, + "probability": 0.1932 + }, + { + "start": 8078.2, + "end": 8078.24, + "probability": 0.0804 + }, + { + "start": 8078.24, + "end": 8078.26, + "probability": 0.052 + }, + { + "start": 8078.26, + "end": 8078.26, + "probability": 0.0381 + }, + { + "start": 8078.26, + "end": 8079.66, + "probability": 0.8005 + }, + { + "start": 8079.9, + "end": 8080.06, + "probability": 0.1413 + }, + { + "start": 8081.2, + "end": 8088.08, + "probability": 0.9937 + }, + { + "start": 8088.2, + "end": 8093.4, + "probability": 0.9901 + }, + { + "start": 8094.46, + "end": 8095.32, + "probability": 0.9413 + }, + { + "start": 8096.22, + "end": 8097.82, + "probability": 0.7259 + }, + { + "start": 8098.44, + "end": 8103.7, + "probability": 0.9645 + }, + { + "start": 8104.46, + "end": 8107.84, + "probability": 0.9957 + }, + { + "start": 8108.52, + "end": 8113.3, + "probability": 0.9858 + }, + { + "start": 8114.54, + "end": 8117.68, + "probability": 0.9781 + }, + { + "start": 8118.3, + "end": 8123.74, + "probability": 0.9964 + }, + { + "start": 8124.3, + "end": 8126.24, + "probability": 0.7936 + }, + { + "start": 8127.48, + "end": 8127.52, + "probability": 0.5175 + }, + { + "start": 8127.64, + "end": 8128.72, + "probability": 0.9912 + }, + { + "start": 8128.96, + "end": 8132.88, + "probability": 0.9936 + }, + { + "start": 8133.64, + "end": 8140.84, + "probability": 0.9741 + }, + { + "start": 8141.66, + "end": 8143.66, + "probability": 0.245 + }, + { + "start": 8145.92, + "end": 8146.56, + "probability": 0.7871 + }, + { + "start": 8146.66, + "end": 8147.48, + "probability": 0.8312 + }, + { + "start": 8148.65, + "end": 8155.2, + "probability": 0.9687 + }, + { + "start": 8155.2, + "end": 8158.06, + "probability": 0.942 + }, + { + "start": 8158.22, + "end": 8160.48, + "probability": 0.9446 + }, + { + "start": 8161.72, + "end": 8163.76, + "probability": 0.9645 + }, + { + "start": 8163.98, + "end": 8167.36, + "probability": 0.8419 + }, + { + "start": 8168.04, + "end": 8170.86, + "probability": 0.9908 + }, + { + "start": 8171.48, + "end": 8178.22, + "probability": 0.9901 + }, + { + "start": 8178.46, + "end": 8181.7, + "probability": 0.8027 + }, + { + "start": 8184.68, + "end": 8186.42, + "probability": 0.5518 + }, + { + "start": 8186.42, + "end": 8190.1, + "probability": 0.5247 + }, + { + "start": 8190.36, + "end": 8190.92, + "probability": 0.8304 + }, + { + "start": 8191.48, + "end": 8191.6, + "probability": 0.0235 + }, + { + "start": 8191.7, + "end": 8194.6, + "probability": 0.8383 + }, + { + "start": 8195.02, + "end": 8197.0, + "probability": 0.024 + }, + { + "start": 8197.5, + "end": 8197.5, + "probability": 0.0081 + }, + { + "start": 8197.5, + "end": 8200.1, + "probability": 0.9972 + }, + { + "start": 8201.16, + "end": 8202.03, + "probability": 0.9417 + }, + { + "start": 8203.4, + "end": 8206.16, + "probability": 0.8164 + }, + { + "start": 8206.82, + "end": 8216.04, + "probability": 0.9967 + }, + { + "start": 8220.1, + "end": 8223.02, + "probability": 0.9979 + }, + { + "start": 8223.22, + "end": 8224.5, + "probability": 0.4932 + }, + { + "start": 8227.33, + "end": 8229.74, + "probability": 0.4779 + }, + { + "start": 8229.86, + "end": 8231.98, + "probability": 0.3926 + }, + { + "start": 8231.98, + "end": 8233.7, + "probability": 0.8809 + }, + { + "start": 8233.74, + "end": 8235.28, + "probability": 0.941 + }, + { + "start": 8235.28, + "end": 8238.42, + "probability": 0.0291 + }, + { + "start": 8239.7, + "end": 8244.76, + "probability": 0.9453 + }, + { + "start": 8244.92, + "end": 8245.04, + "probability": 0.0755 + }, + { + "start": 8245.04, + "end": 8245.04, + "probability": 0.126 + }, + { + "start": 8245.04, + "end": 8246.82, + "probability": 0.6269 + }, + { + "start": 8249.11, + "end": 8255.8, + "probability": 0.9305 + }, + { + "start": 8255.88, + "end": 8259.72, + "probability": 0.9989 + }, + { + "start": 8259.72, + "end": 8264.38, + "probability": 0.9995 + }, + { + "start": 8265.98, + "end": 8266.88, + "probability": 0.6337 + }, + { + "start": 8267.16, + "end": 8275.28, + "probability": 0.9881 + }, + { + "start": 8276.68, + "end": 8281.38, + "probability": 0.9947 + }, + { + "start": 8282.8, + "end": 8287.84, + "probability": 0.9902 + }, + { + "start": 8288.02, + "end": 8288.36, + "probability": 0.9454 + }, + { + "start": 8288.56, + "end": 8296.18, + "probability": 0.6342 + }, + { + "start": 8296.22, + "end": 8299.66, + "probability": 0.067 + }, + { + "start": 8299.76, + "end": 8306.7, + "probability": 0.2885 + }, + { + "start": 8306.7, + "end": 8306.74, + "probability": 0.1064 + }, + { + "start": 8306.74, + "end": 8307.4, + "probability": 0.0424 + }, + { + "start": 8307.4, + "end": 8309.02, + "probability": 0.1734 + }, + { + "start": 8310.42, + "end": 8312.04, + "probability": 0.4336 + }, + { + "start": 8312.14, + "end": 8315.38, + "probability": 0.8645 + }, + { + "start": 8316.08, + "end": 8319.38, + "probability": 0.9408 + }, + { + "start": 8319.84, + "end": 8321.5, + "probability": 0.8949 + }, + { + "start": 8321.92, + "end": 8327.56, + "probability": 0.9959 + }, + { + "start": 8328.2, + "end": 8329.66, + "probability": 0.9111 + }, + { + "start": 8331.04, + "end": 8333.3, + "probability": 0.877 + }, + { + "start": 8333.34, + "end": 8335.94, + "probability": 0.945 + }, + { + "start": 8336.37, + "end": 8338.77, + "probability": 0.9968 + }, + { + "start": 8339.48, + "end": 8343.7, + "probability": 0.9968 + }, + { + "start": 8344.62, + "end": 8345.67, + "probability": 0.9438 + }, + { + "start": 8346.1, + "end": 8356.78, + "probability": 0.9252 + }, + { + "start": 8357.28, + "end": 8358.9, + "probability": 0.9718 + }, + { + "start": 8359.86, + "end": 8364.76, + "probability": 0.9106 + }, + { + "start": 8366.8, + "end": 8367.62, + "probability": 0.5558 + }, + { + "start": 8367.76, + "end": 8369.4, + "probability": 0.7066 + }, + { + "start": 8369.92, + "end": 8375.1, + "probability": 0.9732 + }, + { + "start": 8375.1, + "end": 8376.22, + "probability": 0.4852 + }, + { + "start": 8376.74, + "end": 8378.65, + "probability": 0.2164 + }, + { + "start": 8379.86, + "end": 8381.7, + "probability": 0.1943 + }, + { + "start": 8382.5, + "end": 8383.38, + "probability": 0.1142 + }, + { + "start": 8385.22, + "end": 8387.06, + "probability": 0.835 + }, + { + "start": 8387.6, + "end": 8393.48, + "probability": 0.9976 + }, + { + "start": 8394.98, + "end": 8400.9, + "probability": 0.9993 + }, + { + "start": 8402.4, + "end": 8409.16, + "probability": 0.9954 + }, + { + "start": 8409.2, + "end": 8417.76, + "probability": 0.9759 + }, + { + "start": 8418.68, + "end": 8424.1, + "probability": 0.998 + }, + { + "start": 8424.1, + "end": 8428.84, + "probability": 0.9958 + }, + { + "start": 8431.04, + "end": 8431.82, + "probability": 0.662 + }, + { + "start": 8432.02, + "end": 8435.31, + "probability": 0.9972 + }, + { + "start": 8435.98, + "end": 8440.96, + "probability": 0.9899 + }, + { + "start": 8442.7, + "end": 8445.92, + "probability": 0.9969 + }, + { + "start": 8446.12, + "end": 8447.16, + "probability": 0.7683 + }, + { + "start": 8447.66, + "end": 8449.48, + "probability": 0.9729 + }, + { + "start": 8449.74, + "end": 8450.88, + "probability": 0.9053 + }, + { + "start": 8451.26, + "end": 8452.32, + "probability": 0.656 + }, + { + "start": 8453.12, + "end": 8454.48, + "probability": 0.9804 + }, + { + "start": 8455.16, + "end": 8459.64, + "probability": 0.9938 + }, + { + "start": 8459.76, + "end": 8461.18, + "probability": 0.9231 + }, + { + "start": 8461.26, + "end": 8463.78, + "probability": 0.7915 + }, + { + "start": 8464.6, + "end": 8469.06, + "probability": 0.9652 + }, + { + "start": 8469.72, + "end": 8470.38, + "probability": 0.6925 + }, + { + "start": 8470.9, + "end": 8472.42, + "probability": 0.8926 + }, + { + "start": 8472.8, + "end": 8478.34, + "probability": 0.9829 + }, + { + "start": 8478.96, + "end": 8480.64, + "probability": 0.773 + }, + { + "start": 8481.18, + "end": 8483.62, + "probability": 0.8301 + }, + { + "start": 8484.22, + "end": 8491.0, + "probability": 0.9948 + }, + { + "start": 8491.72, + "end": 8493.38, + "probability": 0.6068 + }, + { + "start": 8493.86, + "end": 8498.72, + "probability": 0.9834 + }, + { + "start": 8499.38, + "end": 8501.5, + "probability": 0.7288 + }, + { + "start": 8502.1, + "end": 8504.06, + "probability": 0.9915 + }, + { + "start": 8504.14, + "end": 8505.92, + "probability": 0.926 + }, + { + "start": 8505.98, + "end": 8508.38, + "probability": 0.9758 + }, + { + "start": 8509.16, + "end": 8512.68, + "probability": 0.998 + }, + { + "start": 8513.48, + "end": 8517.56, + "probability": 0.9864 + }, + { + "start": 8518.06, + "end": 8520.44, + "probability": 0.9657 + }, + { + "start": 8520.94, + "end": 8523.46, + "probability": 0.886 + }, + { + "start": 8523.8, + "end": 8530.74, + "probability": 0.814 + }, + { + "start": 8532.01, + "end": 8539.15, + "probability": 0.9833 + }, + { + "start": 8540.56, + "end": 8541.0, + "probability": 0.6979 + }, + { + "start": 8541.12, + "end": 8545.52, + "probability": 0.9945 + }, + { + "start": 8545.9, + "end": 8546.94, + "probability": 0.9376 + }, + { + "start": 8547.1, + "end": 8548.98, + "probability": 0.9639 + }, + { + "start": 8549.4, + "end": 8552.14, + "probability": 0.9979 + }, + { + "start": 8552.72, + "end": 8553.28, + "probability": 0.8682 + }, + { + "start": 8553.4, + "end": 8556.32, + "probability": 0.9868 + }, + { + "start": 8556.7, + "end": 8558.94, + "probability": 0.9392 + }, + { + "start": 8559.26, + "end": 8561.5, + "probability": 0.9719 + }, + { + "start": 8561.9, + "end": 8567.54, + "probability": 0.9852 + }, + { + "start": 8567.78, + "end": 8569.68, + "probability": 0.981 + }, + { + "start": 8570.54, + "end": 8572.84, + "probability": 0.9143 + }, + { + "start": 8574.4, + "end": 8577.82, + "probability": 0.9954 + }, + { + "start": 8579.94, + "end": 8584.66, + "probability": 0.9193 + }, + { + "start": 8588.02, + "end": 8591.0, + "probability": 0.9889 + }, + { + "start": 8591.18, + "end": 8592.3, + "probability": 0.7224 + }, + { + "start": 8592.5, + "end": 8595.92, + "probability": 0.9587 + }, + { + "start": 8596.5, + "end": 8600.48, + "probability": 0.998 + }, + { + "start": 8601.16, + "end": 8604.58, + "probability": 0.9892 + }, + { + "start": 8605.44, + "end": 8607.74, + "probability": 0.9915 + }, + { + "start": 8608.44, + "end": 8611.84, + "probability": 0.98 + }, + { + "start": 8612.18, + "end": 8615.8, + "probability": 0.9873 + }, + { + "start": 8616.32, + "end": 8618.41, + "probability": 0.9989 + }, + { + "start": 8619.24, + "end": 8620.45, + "probability": 0.9647 + }, + { + "start": 8621.08, + "end": 8624.5, + "probability": 0.9971 + }, + { + "start": 8624.96, + "end": 8626.08, + "probability": 0.7163 + }, + { + "start": 8626.6, + "end": 8626.68, + "probability": 0.5516 + }, + { + "start": 8626.68, + "end": 8628.24, + "probability": 0.9014 + }, + { + "start": 8628.3, + "end": 8630.58, + "probability": 0.9244 + }, + { + "start": 8630.96, + "end": 8632.36, + "probability": 0.973 + }, + { + "start": 8632.44, + "end": 8635.42, + "probability": 0.7335 + }, + { + "start": 8636.06, + "end": 8637.6, + "probability": 0.9263 + }, + { + "start": 8642.43, + "end": 8645.16, + "probability": 0.7321 + }, + { + "start": 8645.22, + "end": 8647.6, + "probability": 0.1614 + }, + { + "start": 8658.5, + "end": 8659.82, + "probability": 0.7258 + }, + { + "start": 8659.82, + "end": 8663.22, + "probability": 0.9694 + }, + { + "start": 8663.34, + "end": 8664.72, + "probability": 0.9207 + }, + { + "start": 8665.22, + "end": 8666.02, + "probability": 0.7191 + }, + { + "start": 8667.44, + "end": 8671.78, + "probability": 0.9933 + }, + { + "start": 8672.22, + "end": 8676.96, + "probability": 0.9694 + }, + { + "start": 8677.84, + "end": 8682.74, + "probability": 0.7749 + }, + { + "start": 8682.88, + "end": 8687.46, + "probability": 0.9921 + }, + { + "start": 8687.52, + "end": 8688.96, + "probability": 0.7374 + }, + { + "start": 8689.42, + "end": 8692.54, + "probability": 0.8385 + }, + { + "start": 8692.96, + "end": 8693.96, + "probability": 0.939 + }, + { + "start": 8694.14, + "end": 8695.34, + "probability": 0.8645 + }, + { + "start": 8696.06, + "end": 8697.72, + "probability": 0.8652 + }, + { + "start": 8697.78, + "end": 8699.52, + "probability": 0.799 + }, + { + "start": 8700.28, + "end": 8703.98, + "probability": 0.9308 + }, + { + "start": 8704.4, + "end": 8707.88, + "probability": 0.8624 + }, + { + "start": 8708.58, + "end": 8712.68, + "probability": 0.9425 + }, + { + "start": 8713.44, + "end": 8716.26, + "probability": 0.9969 + }, + { + "start": 8717.34, + "end": 8720.94, + "probability": 0.9897 + }, + { + "start": 8721.06, + "end": 8723.2, + "probability": 0.9325 + }, + { + "start": 8723.54, + "end": 8725.85, + "probability": 0.9943 + }, + { + "start": 8726.82, + "end": 8730.33, + "probability": 0.9528 + }, + { + "start": 8731.26, + "end": 8735.2, + "probability": 0.9966 + }, + { + "start": 8735.84, + "end": 8737.94, + "probability": 0.9062 + }, + { + "start": 8738.5, + "end": 8741.32, + "probability": 0.8476 + }, + { + "start": 8742.02, + "end": 8745.62, + "probability": 0.9668 + }, + { + "start": 8745.62, + "end": 8750.38, + "probability": 0.9786 + }, + { + "start": 8751.26, + "end": 8755.7, + "probability": 0.9686 + }, + { + "start": 8756.32, + "end": 8761.46, + "probability": 0.9642 + }, + { + "start": 8761.46, + "end": 8765.42, + "probability": 0.9446 + }, + { + "start": 8765.94, + "end": 8768.52, + "probability": 0.9835 + }, + { + "start": 8768.66, + "end": 8771.76, + "probability": 0.942 + }, + { + "start": 8772.6, + "end": 8773.82, + "probability": 0.5614 + }, + { + "start": 8773.9, + "end": 8777.6, + "probability": 0.9809 + }, + { + "start": 8778.12, + "end": 8785.32, + "probability": 0.9676 + }, + { + "start": 8785.32, + "end": 8790.74, + "probability": 0.9949 + }, + { + "start": 8791.42, + "end": 8793.94, + "probability": 0.9974 + }, + { + "start": 8801.48, + "end": 8803.4, + "probability": 0.0097 + }, + { + "start": 8804.56, + "end": 8805.3, + "probability": 0.5075 + }, + { + "start": 8805.38, + "end": 8807.14, + "probability": 0.7547 + }, + { + "start": 8807.34, + "end": 8813.84, + "probability": 0.9896 + }, + { + "start": 8813.92, + "end": 8816.4, + "probability": 0.9681 + }, + { + "start": 8816.84, + "end": 8820.22, + "probability": 0.9346 + }, + { + "start": 8821.08, + "end": 8824.2, + "probability": 0.9346 + }, + { + "start": 8824.8, + "end": 8826.46, + "probability": 0.8099 + }, + { + "start": 8827.1, + "end": 8832.75, + "probability": 0.9771 + }, + { + "start": 8833.08, + "end": 8835.2, + "probability": 0.7356 + }, + { + "start": 8835.78, + "end": 8837.22, + "probability": 0.8098 + }, + { + "start": 8838.4, + "end": 8841.78, + "probability": 0.9588 + }, + { + "start": 8843.1, + "end": 8848.2, + "probability": 0.9584 + }, + { + "start": 8848.88, + "end": 8852.26, + "probability": 0.991 + }, + { + "start": 8852.8, + "end": 8858.96, + "probability": 0.9927 + }, + { + "start": 8859.44, + "end": 8865.3, + "probability": 0.9992 + }, + { + "start": 8865.36, + "end": 8871.94, + "probability": 0.9574 + }, + { + "start": 8872.5, + "end": 8873.3, + "probability": 0.6667 + }, + { + "start": 8873.8, + "end": 8875.65, + "probability": 0.781 + }, + { + "start": 8876.2, + "end": 8876.94, + "probability": 0.6088 + }, + { + "start": 8877.18, + "end": 8883.38, + "probability": 0.9845 + }, + { + "start": 8883.52, + "end": 8889.38, + "probability": 0.6045 + }, + { + "start": 8891.38, + "end": 8899.54, + "probability": 0.224 + }, + { + "start": 8899.9, + "end": 8901.04, + "probability": 0.4627 + }, + { + "start": 8901.04, + "end": 8901.18, + "probability": 0.3294 + }, + { + "start": 8902.14, + "end": 8903.86, + "probability": 0.7192 + }, + { + "start": 8904.4, + "end": 8905.64, + "probability": 0.6917 + }, + { + "start": 8905.74, + "end": 8907.5, + "probability": 0.7927 + }, + { + "start": 8907.84, + "end": 8911.92, + "probability": 0.9922 + }, + { + "start": 8912.58, + "end": 8917.48, + "probability": 0.6324 + }, + { + "start": 8917.86, + "end": 8919.44, + "probability": 0.7533 + }, + { + "start": 8919.6, + "end": 8925.28, + "probability": 0.1921 + }, + { + "start": 8925.4, + "end": 8926.58, + "probability": 0.734 + }, + { + "start": 8926.86, + "end": 8928.28, + "probability": 0.781 + }, + { + "start": 8928.44, + "end": 8933.5, + "probability": 0.924 + }, + { + "start": 8933.92, + "end": 8935.54, + "probability": 0.4107 + }, + { + "start": 8936.22, + "end": 8938.14, + "probability": 0.9876 + }, + { + "start": 8938.78, + "end": 8943.28, + "probability": 0.9967 + }, + { + "start": 8943.56, + "end": 8945.01, + "probability": 0.9575 + }, + { + "start": 8957.74, + "end": 8959.19, + "probability": 0.5217 + }, + { + "start": 8959.46, + "end": 8960.58, + "probability": 0.8451 + }, + { + "start": 8961.66, + "end": 8962.64, + "probability": 0.8379 + }, + { + "start": 8963.83, + "end": 8965.88, + "probability": 0.7808 + }, + { + "start": 8967.49, + "end": 8973.04, + "probability": 0.7882 + }, + { + "start": 8974.42, + "end": 8978.82, + "probability": 0.998 + }, + { + "start": 8979.94, + "end": 8984.58, + "probability": 0.9859 + }, + { + "start": 8985.76, + "end": 8990.58, + "probability": 0.9905 + }, + { + "start": 8990.58, + "end": 8996.78, + "probability": 0.9983 + }, + { + "start": 8997.52, + "end": 8997.76, + "probability": 0.3357 + }, + { + "start": 8997.86, + "end": 8998.72, + "probability": 0.9313 + }, + { + "start": 8998.88, + "end": 9000.56, + "probability": 0.8372 + }, + { + "start": 9001.34, + "end": 9006.02, + "probability": 0.9916 + }, + { + "start": 9006.02, + "end": 9010.34, + "probability": 0.998 + }, + { + "start": 9010.9, + "end": 9013.14, + "probability": 0.8801 + }, + { + "start": 9013.68, + "end": 9017.3, + "probability": 0.9965 + }, + { + "start": 9017.46, + "end": 9018.9, + "probability": 0.3647 + }, + { + "start": 9019.06, + "end": 9020.04, + "probability": 0.8884 + }, + { + "start": 9020.26, + "end": 9021.42, + "probability": 0.7881 + }, + { + "start": 9022.14, + "end": 9023.3, + "probability": 0.8887 + }, + { + "start": 9023.58, + "end": 9026.38, + "probability": 0.9595 + }, + { + "start": 9026.48, + "end": 9028.68, + "probability": 0.9588 + }, + { + "start": 9028.96, + "end": 9033.14, + "probability": 0.9671 + }, + { + "start": 9033.56, + "end": 9036.38, + "probability": 0.9968 + }, + { + "start": 9037.0, + "end": 9037.24, + "probability": 0.8138 + }, + { + "start": 9038.12, + "end": 9040.16, + "probability": 0.6132 + }, + { + "start": 9040.64, + "end": 9043.16, + "probability": 0.826 + }, + { + "start": 9043.42, + "end": 9045.72, + "probability": 0.9736 + }, + { + "start": 9045.82, + "end": 9048.82, + "probability": 0.9171 + }, + { + "start": 9049.2, + "end": 9052.05, + "probability": 0.995 + }, + { + "start": 9052.44, + "end": 9053.22, + "probability": 0.99 + }, + { + "start": 9053.3, + "end": 9054.14, + "probability": 0.9458 + }, + { + "start": 9054.28, + "end": 9054.92, + "probability": 0.0421 + }, + { + "start": 9055.12, + "end": 9057.68, + "probability": 0.8678 + }, + { + "start": 9058.34, + "end": 9064.24, + "probability": 0.9974 + }, + { + "start": 9064.46, + "end": 9065.54, + "probability": 0.9012 + }, + { + "start": 9065.84, + "end": 9067.21, + "probability": 0.9823 + }, + { + "start": 9067.64, + "end": 9070.27, + "probability": 0.9987 + }, + { + "start": 9073.3, + "end": 9073.76, + "probability": 0.0381 + }, + { + "start": 9073.76, + "end": 9075.76, + "probability": 0.8164 + }, + { + "start": 9076.26, + "end": 9077.22, + "probability": 0.4169 + }, + { + "start": 9077.56, + "end": 9080.2, + "probability": 0.9837 + }, + { + "start": 9080.64, + "end": 9083.02, + "probability": 0.9724 + }, + { + "start": 9084.72, + "end": 9089.08, + "probability": 0.9504 + }, + { + "start": 9089.3, + "end": 9091.38, + "probability": 0.998 + }, + { + "start": 9091.86, + "end": 9096.26, + "probability": 0.964 + }, + { + "start": 9097.06, + "end": 9100.38, + "probability": 0.9481 + }, + { + "start": 9100.9, + "end": 9105.26, + "probability": 0.9904 + }, + { + "start": 9106.0, + "end": 9111.28, + "probability": 0.9495 + }, + { + "start": 9112.06, + "end": 9115.44, + "probability": 0.9328 + }, + { + "start": 9115.7, + "end": 9122.68, + "probability": 0.9548 + }, + { + "start": 9123.32, + "end": 9125.6, + "probability": 0.9076 + }, + { + "start": 9125.9, + "end": 9127.76, + "probability": 0.9864 + }, + { + "start": 9128.0, + "end": 9130.06, + "probability": 0.9759 + }, + { + "start": 9130.24, + "end": 9133.24, + "probability": 0.9968 + }, + { + "start": 9133.34, + "end": 9135.6, + "probability": 0.8961 + }, + { + "start": 9136.42, + "end": 9138.72, + "probability": 0.9976 + }, + { + "start": 9139.18, + "end": 9145.96, + "probability": 0.9976 + }, + { + "start": 9146.64, + "end": 9150.88, + "probability": 0.7952 + }, + { + "start": 9151.52, + "end": 9153.24, + "probability": 0.9782 + }, + { + "start": 9153.68, + "end": 9154.84, + "probability": 0.9795 + }, + { + "start": 9155.24, + "end": 9157.24, + "probability": 0.996 + }, + { + "start": 9157.64, + "end": 9160.76, + "probability": 0.9816 + }, + { + "start": 9161.88, + "end": 9165.42, + "probability": 0.9734 + }, + { + "start": 9166.22, + "end": 9167.28, + "probability": 0.9375 + }, + { + "start": 9167.44, + "end": 9169.06, + "probability": 0.9713 + }, + { + "start": 9169.18, + "end": 9171.77, + "probability": 0.9365 + }, + { + "start": 9172.02, + "end": 9174.22, + "probability": 0.9741 + }, + { + "start": 9174.58, + "end": 9175.88, + "probability": 0.9888 + }, + { + "start": 9175.9, + "end": 9179.1, + "probability": 0.997 + }, + { + "start": 9179.44, + "end": 9182.1, + "probability": 0.9781 + }, + { + "start": 9182.1, + "end": 9185.94, + "probability": 0.9972 + }, + { + "start": 9186.12, + "end": 9186.88, + "probability": 0.6992 + }, + { + "start": 9187.36, + "end": 9188.74, + "probability": 0.9849 + }, + { + "start": 9189.24, + "end": 9192.22, + "probability": 0.9973 + }, + { + "start": 9192.82, + "end": 9194.84, + "probability": 0.9955 + }, + { + "start": 9195.18, + "end": 9195.54, + "probability": 0.7416 + }, + { + "start": 9195.68, + "end": 9196.62, + "probability": 0.7602 + }, + { + "start": 9196.84, + "end": 9198.46, + "probability": 0.939 + }, + { + "start": 9198.74, + "end": 9199.78, + "probability": 0.9684 + }, + { + "start": 9200.08, + "end": 9201.2, + "probability": 0.9604 + }, + { + "start": 9201.58, + "end": 9202.7, + "probability": 0.8662 + }, + { + "start": 9202.9, + "end": 9203.76, + "probability": 0.9834 + }, + { + "start": 9203.88, + "end": 9205.84, + "probability": 0.9576 + }, + { + "start": 9206.28, + "end": 9209.34, + "probability": 0.9722 + }, + { + "start": 9210.1, + "end": 9213.26, + "probability": 0.9106 + }, + { + "start": 9214.46, + "end": 9217.04, + "probability": 0.8695 + }, + { + "start": 9217.34, + "end": 9221.1, + "probability": 0.9968 + }, + { + "start": 9221.48, + "end": 9224.42, + "probability": 0.9562 + }, + { + "start": 9224.84, + "end": 9225.4, + "probability": 0.8126 + }, + { + "start": 9225.54, + "end": 9227.46, + "probability": 0.9487 + }, + { + "start": 9227.74, + "end": 9230.2, + "probability": 0.9766 + }, + { + "start": 9230.52, + "end": 9231.7, + "probability": 0.8672 + }, + { + "start": 9232.2, + "end": 9234.64, + "probability": 0.9982 + }, + { + "start": 9234.92, + "end": 9238.5, + "probability": 0.9845 + }, + { + "start": 9238.84, + "end": 9241.24, + "probability": 0.9568 + }, + { + "start": 9243.1, + "end": 9247.3, + "probability": 0.9947 + }, + { + "start": 9247.72, + "end": 9250.72, + "probability": 0.9379 + }, + { + "start": 9251.06, + "end": 9252.98, + "probability": 0.9836 + }, + { + "start": 9253.16, + "end": 9258.9, + "probability": 0.9826 + }, + { + "start": 9259.3, + "end": 9262.26, + "probability": 0.9847 + }, + { + "start": 9262.66, + "end": 9266.44, + "probability": 0.9963 + }, + { + "start": 9266.7, + "end": 9268.56, + "probability": 0.9802 + }, + { + "start": 9268.92, + "end": 9271.84, + "probability": 0.9832 + }, + { + "start": 9272.08, + "end": 9274.94, + "probability": 0.9854 + }, + { + "start": 9275.22, + "end": 9280.02, + "probability": 0.9982 + }, + { + "start": 9280.38, + "end": 9283.86, + "probability": 0.9722 + }, + { + "start": 9283.86, + "end": 9286.46, + "probability": 0.989 + }, + { + "start": 9287.34, + "end": 9291.44, + "probability": 0.9871 + }, + { + "start": 9291.44, + "end": 9294.86, + "probability": 0.9929 + }, + { + "start": 9295.18, + "end": 9296.91, + "probability": 0.7802 + }, + { + "start": 9297.26, + "end": 9299.44, + "probability": 0.9019 + }, + { + "start": 9299.64, + "end": 9300.58, + "probability": 0.8395 + }, + { + "start": 9300.68, + "end": 9305.74, + "probability": 0.9316 + }, + { + "start": 9305.74, + "end": 9306.28, + "probability": 0.3202 + }, + { + "start": 9306.92, + "end": 9310.88, + "probability": 0.9354 + }, + { + "start": 9311.38, + "end": 9315.38, + "probability": 0.9204 + }, + { + "start": 9315.64, + "end": 9321.7, + "probability": 0.9638 + }, + { + "start": 9322.28, + "end": 9324.78, + "probability": 0.8157 + }, + { + "start": 9325.06, + "end": 9326.72, + "probability": 0.948 + }, + { + "start": 9326.78, + "end": 9328.2, + "probability": 0.8562 + }, + { + "start": 9328.34, + "end": 9329.32, + "probability": 0.6527 + }, + { + "start": 9329.66, + "end": 9334.4, + "probability": 0.9891 + }, + { + "start": 9335.38, + "end": 9338.64, + "probability": 0.9058 + }, + { + "start": 9339.56, + "end": 9341.32, + "probability": 0.9609 + }, + { + "start": 9341.42, + "end": 9344.02, + "probability": 0.9075 + }, + { + "start": 9344.44, + "end": 9345.68, + "probability": 0.8919 + }, + { + "start": 9345.96, + "end": 9348.7, + "probability": 0.9791 + }, + { + "start": 9348.7, + "end": 9352.8, + "probability": 0.9863 + }, + { + "start": 9353.44, + "end": 9354.44, + "probability": 0.552 + }, + { + "start": 9354.96, + "end": 9356.12, + "probability": 0.9282 + }, + { + "start": 9356.28, + "end": 9357.47, + "probability": 0.9808 + }, + { + "start": 9358.36, + "end": 9359.66, + "probability": 0.8518 + }, + { + "start": 9360.22, + "end": 9363.96, + "probability": 0.9952 + }, + { + "start": 9363.96, + "end": 9367.98, + "probability": 0.9981 + }, + { + "start": 9368.54, + "end": 9373.18, + "probability": 0.9969 + }, + { + "start": 9373.62, + "end": 9374.6, + "probability": 0.7904 + }, + { + "start": 9374.76, + "end": 9380.14, + "probability": 0.9895 + }, + { + "start": 9380.54, + "end": 9384.1, + "probability": 0.9634 + }, + { + "start": 9384.32, + "end": 9387.94, + "probability": 0.8224 + }, + { + "start": 9388.08, + "end": 9389.44, + "probability": 0.7778 + }, + { + "start": 9390.24, + "end": 9392.04, + "probability": 0.9819 + }, + { + "start": 9392.16, + "end": 9392.9, + "probability": 0.9102 + }, + { + "start": 9392.98, + "end": 9394.1, + "probability": 0.897 + }, + { + "start": 9394.5, + "end": 9395.71, + "probability": 0.9744 + }, + { + "start": 9396.24, + "end": 9399.46, + "probability": 0.9963 + }, + { + "start": 9399.94, + "end": 9402.34, + "probability": 0.8279 + }, + { + "start": 9403.18, + "end": 9404.8, + "probability": 0.9943 + }, + { + "start": 9405.7, + "end": 9410.28, + "probability": 0.9884 + }, + { + "start": 9410.54, + "end": 9413.34, + "probability": 0.996 + }, + { + "start": 9413.54, + "end": 9415.9, + "probability": 0.9894 + }, + { + "start": 9415.92, + "end": 9418.8, + "probability": 0.9388 + }, + { + "start": 9419.36, + "end": 9422.62, + "probability": 0.9971 + }, + { + "start": 9423.54, + "end": 9431.5, + "probability": 0.996 + }, + { + "start": 9432.04, + "end": 9436.3, + "probability": 0.9944 + }, + { + "start": 9436.6, + "end": 9441.14, + "probability": 0.9895 + }, + { + "start": 9441.4, + "end": 9442.32, + "probability": 0.382 + }, + { + "start": 9442.34, + "end": 9443.04, + "probability": 0.83 + }, + { + "start": 9443.26, + "end": 9447.26, + "probability": 0.9836 + }, + { + "start": 9447.46, + "end": 9449.06, + "probability": 0.9697 + }, + { + "start": 9450.26, + "end": 9456.26, + "probability": 0.9964 + }, + { + "start": 9456.94, + "end": 9459.86, + "probability": 0.6568 + }, + { + "start": 9460.24, + "end": 9461.6, + "probability": 0.7248 + }, + { + "start": 9461.68, + "end": 9464.62, + "probability": 0.8695 + }, + { + "start": 9464.88, + "end": 9466.7, + "probability": 0.9015 + }, + { + "start": 9467.88, + "end": 9468.56, + "probability": 0.9414 + }, + { + "start": 9468.9, + "end": 9471.92, + "probability": 0.963 + }, + { + "start": 9472.28, + "end": 9474.52, + "probability": 0.8856 + }, + { + "start": 9474.66, + "end": 9476.02, + "probability": 0.7533 + }, + { + "start": 9476.1, + "end": 9481.8, + "probability": 0.9932 + }, + { + "start": 9482.44, + "end": 9483.72, + "probability": 0.2298 + }, + { + "start": 9483.82, + "end": 9487.44, + "probability": 0.7374 + }, + { + "start": 9487.84, + "end": 9490.22, + "probability": 0.8997 + }, + { + "start": 9490.44, + "end": 9491.92, + "probability": 0.3868 + }, + { + "start": 9492.02, + "end": 9492.72, + "probability": 0.1761 + }, + { + "start": 9492.92, + "end": 9493.6, + "probability": 0.3122 + }, + { + "start": 9493.76, + "end": 9495.44, + "probability": 0.678 + }, + { + "start": 9495.62, + "end": 9499.54, + "probability": 0.886 + }, + { + "start": 9499.96, + "end": 9501.3, + "probability": 0.6881 + }, + { + "start": 9502.22, + "end": 9503.17, + "probability": 0.1071 + }, + { + "start": 9503.75, + "end": 9507.4, + "probability": 0.2994 + }, + { + "start": 9508.1, + "end": 9508.88, + "probability": 0.4583 + }, + { + "start": 9509.8, + "end": 9512.22, + "probability": 0.2794 + }, + { + "start": 9512.8, + "end": 9513.7, + "probability": 0.2038 + }, + { + "start": 9513.7, + "end": 9514.68, + "probability": 0.6751 + }, + { + "start": 9515.18, + "end": 9516.46, + "probability": 0.105 + }, + { + "start": 9517.48, + "end": 9521.84, + "probability": 0.8455 + }, + { + "start": 9522.08, + "end": 9524.54, + "probability": 0.4436 + }, + { + "start": 9525.22, + "end": 9526.84, + "probability": 0.7171 + }, + { + "start": 9527.26, + "end": 9529.26, + "probability": 0.6668 + }, + { + "start": 9529.38, + "end": 9530.76, + "probability": 0.9092 + }, + { + "start": 9530.76, + "end": 9530.92, + "probability": 0.2962 + }, + { + "start": 9530.94, + "end": 9531.74, + "probability": 0.5151 + }, + { + "start": 9531.74, + "end": 9532.12, + "probability": 0.0166 + }, + { + "start": 9532.72, + "end": 9533.72, + "probability": 0.5407 + }, + { + "start": 9535.48, + "end": 9536.34, + "probability": 0.1425 + }, + { + "start": 9536.34, + "end": 9542.26, + "probability": 0.5255 + }, + { + "start": 9542.94, + "end": 9543.76, + "probability": 0.3602 + }, + { + "start": 9544.46, + "end": 9546.08, + "probability": 0.6481 + }, + { + "start": 9546.44, + "end": 9547.44, + "probability": 0.5596 + }, + { + "start": 9547.74, + "end": 9549.9, + "probability": 0.7182 + }, + { + "start": 9550.22, + "end": 9552.44, + "probability": 0.8533 + }, + { + "start": 9553.18, + "end": 9554.44, + "probability": 0.0483 + }, + { + "start": 9554.44, + "end": 9557.72, + "probability": 0.9772 + }, + { + "start": 9558.02, + "end": 9560.1, + "probability": 0.7752 + }, + { + "start": 9560.12, + "end": 9562.22, + "probability": 0.8463 + }, + { + "start": 9562.48, + "end": 9565.92, + "probability": 0.4276 + }, + { + "start": 9568.44, + "end": 9568.9, + "probability": 0.083 + }, + { + "start": 9568.9, + "end": 9569.0, + "probability": 0.3682 + }, + { + "start": 9569.6, + "end": 9571.16, + "probability": 0.4351 + }, + { + "start": 9572.78, + "end": 9575.56, + "probability": 0.5905 + }, + { + "start": 9575.66, + "end": 9575.66, + "probability": 0.4504 + }, + { + "start": 9575.72, + "end": 9581.5, + "probability": 0.8123 + }, + { + "start": 9581.88, + "end": 9584.2, + "probability": 0.1971 + }, + { + "start": 9584.64, + "end": 9586.14, + "probability": 0.4774 + }, + { + "start": 9586.46, + "end": 9586.52, + "probability": 0.2959 + }, + { + "start": 9586.72, + "end": 9586.72, + "probability": 0.3339 + }, + { + "start": 9587.34, + "end": 9589.34, + "probability": 0.8667 + }, + { + "start": 9589.89, + "end": 9591.8, + "probability": 0.7681 + }, + { + "start": 9592.32, + "end": 9592.39, + "probability": 0.016 + }, + { + "start": 9592.7, + "end": 9592.78, + "probability": 0.3481 + }, + { + "start": 9592.78, + "end": 9593.87, + "probability": 0.6292 + }, + { + "start": 9594.82, + "end": 9597.42, + "probability": 0.7993 + }, + { + "start": 9597.46, + "end": 9600.46, + "probability": 0.5695 + }, + { + "start": 9600.66, + "end": 9602.1, + "probability": 0.6254 + }, + { + "start": 9602.24, + "end": 9605.0, + "probability": 0.7603 + }, + { + "start": 9605.08, + "end": 9609.22, + "probability": 0.8714 + }, + { + "start": 9609.7, + "end": 9611.6, + "probability": 0.5485 + }, + { + "start": 9611.64, + "end": 9616.02, + "probability": 0.8859 + }, + { + "start": 9616.16, + "end": 9617.4, + "probability": 0.9452 + }, + { + "start": 9617.4, + "end": 9617.4, + "probability": 0.4246 + }, + { + "start": 9617.4, + "end": 9619.58, + "probability": 0.7673 + }, + { + "start": 9619.98, + "end": 9622.36, + "probability": 0.9941 + }, + { + "start": 9622.64, + "end": 9624.36, + "probability": 0.9022 + }, + { + "start": 9624.54, + "end": 9626.77, + "probability": 0.9656 + }, + { + "start": 9627.21, + "end": 9629.31, + "probability": 0.9844 + }, + { + "start": 9629.45, + "end": 9630.95, + "probability": 0.5217 + }, + { + "start": 9630.95, + "end": 9631.11, + "probability": 0.3734 + }, + { + "start": 9631.21, + "end": 9632.33, + "probability": 0.7525 + }, + { + "start": 9632.43, + "end": 9633.57, + "probability": 0.3982 + }, + { + "start": 9633.83, + "end": 9635.29, + "probability": 0.8315 + }, + { + "start": 9635.35, + "end": 9637.89, + "probability": 0.8089 + }, + { + "start": 9638.29, + "end": 9641.03, + "probability": 0.8394 + }, + { + "start": 9641.19, + "end": 9644.81, + "probability": 0.9788 + }, + { + "start": 9645.41, + "end": 9649.55, + "probability": 0.8626 + }, + { + "start": 9649.69, + "end": 9650.61, + "probability": 0.6958 + }, + { + "start": 9650.91, + "end": 9652.61, + "probability": 0.99 + }, + { + "start": 9652.61, + "end": 9655.03, + "probability": 0.9727 + }, + { + "start": 9655.11, + "end": 9655.11, + "probability": 0.6458 + }, + { + "start": 9655.23, + "end": 9655.31, + "probability": 0.6481 + }, + { + "start": 9655.31, + "end": 9660.57, + "probability": 0.8301 + }, + { + "start": 9660.57, + "end": 9660.57, + "probability": 0.3067 + }, + { + "start": 9660.57, + "end": 9662.25, + "probability": 0.7834 + }, + { + "start": 9662.27, + "end": 9663.21, + "probability": 0.6285 + }, + { + "start": 9663.25, + "end": 9663.83, + "probability": 0.6249 + }, + { + "start": 9663.91, + "end": 9664.91, + "probability": 0.215 + }, + { + "start": 9665.03, + "end": 9669.63, + "probability": 0.4034 + }, + { + "start": 9669.69, + "end": 9669.69, + "probability": 0.0417 + }, + { + "start": 9669.69, + "end": 9669.69, + "probability": 0.3049 + }, + { + "start": 9669.69, + "end": 9670.15, + "probability": 0.1908 + }, + { + "start": 9670.45, + "end": 9671.85, + "probability": 0.7343 + }, + { + "start": 9672.49, + "end": 9673.07, + "probability": 0.6593 + }, + { + "start": 9673.25, + "end": 9674.43, + "probability": 0.5403 + }, + { + "start": 9675.07, + "end": 9675.71, + "probability": 0.1499 + }, + { + "start": 9675.77, + "end": 9676.57, + "probability": 0.5559 + }, + { + "start": 9676.57, + "end": 9677.59, + "probability": 0.4176 + }, + { + "start": 9679.09, + "end": 9679.95, + "probability": 0.5662 + }, + { + "start": 9679.95, + "end": 9681.65, + "probability": 0.3876 + }, + { + "start": 9681.77, + "end": 9684.37, + "probability": 0.3517 + }, + { + "start": 9684.55, + "end": 9684.55, + "probability": 0.5395 + }, + { + "start": 9684.55, + "end": 9684.87, + "probability": 0.2467 + }, + { + "start": 9684.91, + "end": 9684.91, + "probability": 0.3868 + }, + { + "start": 9685.13, + "end": 9685.57, + "probability": 0.0859 + }, + { + "start": 9685.81, + "end": 9687.09, + "probability": 0.2545 + }, + { + "start": 9687.13, + "end": 9688.57, + "probability": 0.7866 + }, + { + "start": 9689.21, + "end": 9690.87, + "probability": 0.4117 + }, + { + "start": 9691.01, + "end": 9694.27, + "probability": 0.0708 + }, + { + "start": 9694.35, + "end": 9694.35, + "probability": 0.0139 + }, + { + "start": 9694.67, + "end": 9695.09, + "probability": 0.344 + }, + { + "start": 9697.05, + "end": 9697.41, + "probability": 0.1526 + }, + { + "start": 9697.41, + "end": 9697.73, + "probability": 0.2144 + }, + { + "start": 9699.21, + "end": 9700.13, + "probability": 0.1282 + }, + { + "start": 9701.11, + "end": 9701.21, + "probability": 0.1124 + }, + { + "start": 9701.21, + "end": 9701.21, + "probability": 0.5649 + }, + { + "start": 9701.25, + "end": 9702.15, + "probability": 0.2531 + }, + { + "start": 9702.29, + "end": 9702.29, + "probability": 0.5937 + }, + { + "start": 9702.29, + "end": 9705.11, + "probability": 0.3989 + }, + { + "start": 9705.17, + "end": 9707.58, + "probability": 0.0645 + }, + { + "start": 9710.27, + "end": 9713.65, + "probability": 0.4956 + }, + { + "start": 9713.73, + "end": 9717.23, + "probability": 0.1919 + }, + { + "start": 9717.49, + "end": 9718.98, + "probability": 0.6149 + }, + { + "start": 9720.53, + "end": 9721.83, + "probability": 0.0057 + }, + { + "start": 9725.83, + "end": 9729.15, + "probability": 0.287 + }, + { + "start": 9730.26, + "end": 9734.43, + "probability": 0.6511 + }, + { + "start": 9734.61, + "end": 9737.59, + "probability": 0.2793 + }, + { + "start": 9738.11, + "end": 9738.69, + "probability": 0.4297 + }, + { + "start": 9739.67, + "end": 9741.71, + "probability": 0.387 + }, + { + "start": 9741.79, + "end": 9742.45, + "probability": 0.1905 + }, + { + "start": 9742.45, + "end": 9743.45, + "probability": 0.1835 + }, + { + "start": 9744.63, + "end": 9746.35, + "probability": 0.227 + }, + { + "start": 9746.35, + "end": 9747.33, + "probability": 0.1008 + }, + { + "start": 9747.57, + "end": 9749.37, + "probability": 0.174 + }, + { + "start": 9749.51, + "end": 9753.39, + "probability": 0.1544 + }, + { + "start": 9753.41, + "end": 9754.43, + "probability": 0.4324 + }, + { + "start": 9755.21, + "end": 9759.03, + "probability": 0.1281 + }, + { + "start": 9760.17, + "end": 9762.67, + "probability": 0.6237 + }, + { + "start": 9763.0, + "end": 9763.0, + "probability": 0.0 + }, + { + "start": 9763.0, + "end": 9763.0, + "probability": 0.0 + }, + { + "start": 9763.82, + "end": 9770.76, + "probability": 0.3069 + }, + { + "start": 9774.02, + "end": 9776.42, + "probability": 0.366 + }, + { + "start": 9776.72, + "end": 9779.58, + "probability": 0.0003 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9886.14, + "end": 9887.58, + "probability": 0.1941 + }, + { + "start": 9887.58, + "end": 9893.84, + "probability": 0.6332 + }, + { + "start": 9894.49, + "end": 9898.06, + "probability": 0.4028 + }, + { + "start": 9898.2, + "end": 9899.04, + "probability": 0.6543 + }, + { + "start": 9899.16, + "end": 9906.58, + "probability": 0.2404 + }, + { + "start": 9906.58, + "end": 9907.0, + "probability": 0.0873 + }, + { + "start": 9907.32, + "end": 9909.06, + "probability": 0.506 + }, + { + "start": 9910.04, + "end": 9914.98, + "probability": 0.5983 + }, + { + "start": 9916.16, + "end": 9916.5, + "probability": 0.1854 + }, + { + "start": 9916.5, + "end": 9918.18, + "probability": 0.1557 + }, + { + "start": 9918.36, + "end": 9919.16, + "probability": 0.8875 + }, + { + "start": 9919.52, + "end": 9926.04, + "probability": 0.5342 + }, + { + "start": 9926.04, + "end": 9928.94, + "probability": 0.2736 + }, + { + "start": 9928.94, + "end": 9930.26, + "probability": 0.1463 + }, + { + "start": 9930.65, + "end": 9932.38, + "probability": 0.1683 + }, + { + "start": 9932.48, + "end": 9933.1, + "probability": 0.2182 + }, + { + "start": 9933.1, + "end": 9935.2, + "probability": 0.6829 + }, + { + "start": 9935.2, + "end": 9940.66, + "probability": 0.8791 + }, + { + "start": 9941.42, + "end": 9943.51, + "probability": 0.8892 + }, + { + "start": 9943.96, + "end": 9948.52, + "probability": 0.5893 + }, + { + "start": 9948.52, + "end": 9948.76, + "probability": 0.2717 + }, + { + "start": 9948.9, + "end": 9949.44, + "probability": 0.2126 + }, + { + "start": 9950.18, + "end": 9950.7, + "probability": 0.1036 + }, + { + "start": 9951.36, + "end": 9951.72, + "probability": 0.1264 + }, + { + "start": 9952.2, + "end": 9952.24, + "probability": 0.0502 + }, + { + "start": 9952.24, + "end": 9954.32, + "probability": 0.3586 + }, + { + "start": 9955.18, + "end": 9958.2, + "probability": 0.1595 + }, + { + "start": 9958.42, + "end": 9958.82, + "probability": 0.1061 + }, + { + "start": 9958.98, + "end": 9959.8, + "probability": 0.2313 + }, + { + "start": 9959.8, + "end": 9962.24, + "probability": 0.3992 + }, + { + "start": 9963.32, + "end": 9965.14, + "probability": 0.0295 + }, + { + "start": 9965.26, + "end": 9966.02, + "probability": 0.1696 + }, + { + "start": 9966.02, + "end": 9966.42, + "probability": 0.4468 + }, + { + "start": 9967.36, + "end": 9968.3, + "probability": 0.4307 + }, + { + "start": 9968.3, + "end": 9968.56, + "probability": 0.3698 + }, + { + "start": 9968.56, + "end": 9970.0, + "probability": 0.6342 + }, + { + "start": 9970.18, + "end": 9971.34, + "probability": 0.8797 + }, + { + "start": 9972.08, + "end": 9974.38, + "probability": 0.8606 + }, + { + "start": 9975.06, + "end": 9977.88, + "probability": 0.8438 + }, + { + "start": 9978.42, + "end": 9983.04, + "probability": 0.8025 + }, + { + "start": 9983.38, + "end": 9985.71, + "probability": 0.6432 + }, + { + "start": 9986.12, + "end": 9990.16, + "probability": 0.8169 + }, + { + "start": 9990.8, + "end": 9994.92, + "probability": 0.8609 + }, + { + "start": 9995.22, + "end": 9996.9, + "probability": 0.8842 + }, + { + "start": 9997.32, + "end": 9999.66, + "probability": 0.5333 + }, + { + "start": 9999.72, + "end": 10000.18, + "probability": 0.2136 + }, + { + "start": 10000.46, + "end": 10000.54, + "probability": 0.4804 + }, + { + "start": 10000.54, + "end": 10000.54, + "probability": 0.5425 + }, + { + "start": 10000.54, + "end": 10001.63, + "probability": 0.8281 + }, + { + "start": 10002.62, + "end": 10004.53, + "probability": 0.8537 + }, + { + "start": 10005.2, + "end": 10006.02, + "probability": 0.8279 + }, + { + "start": 10006.1, + "end": 10007.24, + "probability": 0.986 + }, + { + "start": 10007.28, + "end": 10011.24, + "probability": 0.9565 + }, + { + "start": 10011.24, + "end": 10012.42, + "probability": 0.2736 + }, + { + "start": 10013.36, + "end": 10016.12, + "probability": 0.7881 + }, + { + "start": 10016.64, + "end": 10016.64, + "probability": 0.4039 + }, + { + "start": 10016.64, + "end": 10017.76, + "probability": 0.464 + }, + { + "start": 10017.78, + "end": 10021.5, + "probability": 0.4645 + }, + { + "start": 10021.96, + "end": 10022.56, + "probability": 0.1783 + }, + { + "start": 10022.6, + "end": 10022.84, + "probability": 0.1293 + }, + { + "start": 10022.84, + "end": 10023.12, + "probability": 0.0734 + }, + { + "start": 10023.12, + "end": 10023.4, + "probability": 0.1338 + }, + { + "start": 10023.4, + "end": 10023.4, + "probability": 0.0652 + }, + { + "start": 10023.4, + "end": 10023.72, + "probability": 0.1549 + }, + { + "start": 10023.96, + "end": 10024.48, + "probability": 0.614 + }, + { + "start": 10025.2, + "end": 10028.22, + "probability": 0.4447 + }, + { + "start": 10029.82, + "end": 10031.78, + "probability": 0.1668 + }, + { + "start": 10031.78, + "end": 10032.4, + "probability": 0.1003 + }, + { + "start": 10032.76, + "end": 10034.88, + "probability": 0.7671 + }, + { + "start": 10035.44, + "end": 10037.46, + "probability": 0.6539 + }, + { + "start": 10038.45, + "end": 10039.5, + "probability": 0.207 + }, + { + "start": 10039.78, + "end": 10039.78, + "probability": 0.2249 + }, + { + "start": 10039.78, + "end": 10042.82, + "probability": 0.7561 + }, + { + "start": 10043.26, + "end": 10045.18, + "probability": 0.8674 + }, + { + "start": 10045.56, + "end": 10047.61, + "probability": 0.8654 + }, + { + "start": 10048.24, + "end": 10050.36, + "probability": 0.9932 + }, + { + "start": 10051.52, + "end": 10054.7, + "probability": 0.3535 + }, + { + "start": 10054.74, + "end": 10054.88, + "probability": 0.1132 + }, + { + "start": 10055.58, + "end": 10056.98, + "probability": 0.0702 + }, + { + "start": 10056.98, + "end": 10060.02, + "probability": 0.3098 + }, + { + "start": 10060.02, + "end": 10060.66, + "probability": 0.4688 + }, + { + "start": 10060.84, + "end": 10063.5, + "probability": 0.2423 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.0, + "end": 10122.0, + "probability": 0.0 + }, + { + "start": 10122.62, + "end": 10124.04, + "probability": 0.1121 + }, + { + "start": 10125.16, + "end": 10125.36, + "probability": 0.058 + }, + { + "start": 10125.36, + "end": 10129.92, + "probability": 0.1108 + }, + { + "start": 10130.24, + "end": 10131.8, + "probability": 0.1742 + }, + { + "start": 10132.24, + "end": 10133.56, + "probability": 0.1238 + }, + { + "start": 10133.76, + "end": 10137.02, + "probability": 0.1355 + }, + { + "start": 10137.02, + "end": 10137.46, + "probability": 0.0706 + }, + { + "start": 10137.46, + "end": 10137.78, + "probability": 0.1594 + }, + { + "start": 10137.78, + "end": 10138.8, + "probability": 0.0955 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.0, + "end": 10259.0, + "probability": 0.0 + }, + { + "start": 10259.36, + "end": 10259.7, + "probability": 0.0008 + }, + { + "start": 10260.14, + "end": 10263.48, + "probability": 0.6262 + }, + { + "start": 10263.48, + "end": 10266.62, + "probability": 0.9516 + }, + { + "start": 10266.74, + "end": 10272.74, + "probability": 0.7016 + }, + { + "start": 10273.24, + "end": 10280.08, + "probability": 0.9661 + }, + { + "start": 10280.98, + "end": 10282.2, + "probability": 0.8604 + }, + { + "start": 10282.92, + "end": 10287.54, + "probability": 0.9994 + }, + { + "start": 10287.6, + "end": 10291.12, + "probability": 0.9994 + }, + { + "start": 10291.4, + "end": 10292.32, + "probability": 0.603 + }, + { + "start": 10292.34, + "end": 10293.18, + "probability": 0.4411 + }, + { + "start": 10293.98, + "end": 10298.26, + "probability": 0.98 + }, + { + "start": 10298.4, + "end": 10300.2, + "probability": 0.5244 + }, + { + "start": 10300.34, + "end": 10300.96, + "probability": 0.5831 + }, + { + "start": 10301.52, + "end": 10302.5, + "probability": 0.9087 + }, + { + "start": 10302.8, + "end": 10304.12, + "probability": 0.9897 + }, + { + "start": 10304.36, + "end": 10305.82, + "probability": 0.8491 + }, + { + "start": 10306.34, + "end": 10308.26, + "probability": 0.994 + }, + { + "start": 10308.7, + "end": 10312.98, + "probability": 0.6672 + }, + { + "start": 10313.28, + "end": 10316.01, + "probability": 0.7868 + }, + { + "start": 10316.76, + "end": 10317.9, + "probability": 0.959 + }, + { + "start": 10317.9, + "end": 10320.7, + "probability": 0.6775 + }, + { + "start": 10321.28, + "end": 10324.26, + "probability": 0.9762 + }, + { + "start": 10325.04, + "end": 10325.06, + "probability": 0.5319 + }, + { + "start": 10325.06, + "end": 10330.48, + "probability": 0.9475 + }, + { + "start": 10331.1, + "end": 10334.42, + "probability": 0.8134 + }, + { + "start": 10334.42, + "end": 10337.34, + "probability": 0.8319 + }, + { + "start": 10337.34, + "end": 10341.5, + "probability": 0.9924 + }, + { + "start": 10341.5, + "end": 10343.66, + "probability": 0.8969 + }, + { + "start": 10344.02, + "end": 10347.78, + "probability": 0.9941 + }, + { + "start": 10347.96, + "end": 10353.2, + "probability": 0.7994 + }, + { + "start": 10353.92, + "end": 10355.3, + "probability": 0.2854 + }, + { + "start": 10356.37, + "end": 10363.62, + "probability": 0.747 + }, + { + "start": 10364.84, + "end": 10367.86, + "probability": 0.7129 + }, + { + "start": 10368.4, + "end": 10370.68, + "probability": 0.0382 + }, + { + "start": 10371.24, + "end": 10372.06, + "probability": 0.5287 + }, + { + "start": 10372.7, + "end": 10379.58, + "probability": 0.9401 + }, + { + "start": 10380.48, + "end": 10387.62, + "probability": 0.6648 + }, + { + "start": 10388.4, + "end": 10390.62, + "probability": 0.8713 + }, + { + "start": 10391.14, + "end": 10392.96, + "probability": 0.9119 + }, + { + "start": 10393.56, + "end": 10395.9, + "probability": 0.7359 + }, + { + "start": 10398.41, + "end": 10405.16, + "probability": 0.8594 + }, + { + "start": 10407.1, + "end": 10408.58, + "probability": 0.8586 + }, + { + "start": 10409.6, + "end": 10412.42, + "probability": 0.6966 + }, + { + "start": 10412.96, + "end": 10414.98, + "probability": 0.7977 + }, + { + "start": 10417.74, + "end": 10421.92, + "probability": 0.9695 + }, + { + "start": 10422.82, + "end": 10426.26, + "probability": 0.7426 + }, + { + "start": 10427.32, + "end": 10432.02, + "probability": 0.9292 + }, + { + "start": 10432.45, + "end": 10436.92, + "probability": 0.6086 + }, + { + "start": 10439.52, + "end": 10447.3, + "probability": 0.8754 + }, + { + "start": 10447.86, + "end": 10452.94, + "probability": 0.7957 + }, + { + "start": 10453.82, + "end": 10462.1, + "probability": 0.0435 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.0, + "end": 10554.0, + "probability": 0.0 + }, + { + "start": 10554.14, + "end": 10554.38, + "probability": 0.0271 + }, + { + "start": 10554.38, + "end": 10554.38, + "probability": 0.1763 + }, + { + "start": 10554.38, + "end": 10556.86, + "probability": 0.4122 + }, + { + "start": 10557.44, + "end": 10558.6, + "probability": 0.2712 + }, + { + "start": 10561.16, + "end": 10563.34, + "probability": 0.0222 + }, + { + "start": 10563.34, + "end": 10563.83, + "probability": 0.0506 + }, + { + "start": 10565.14, + "end": 10568.4, + "probability": 0.6537 + }, + { + "start": 10569.43, + "end": 10570.99, + "probability": 0.3615 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10863.0, + "end": 10863.0, + "probability": 0.0 + }, + { + "start": 10866.68, + "end": 10871.3, + "probability": 0.7793 + }, + { + "start": 10872.4, + "end": 10876.06, + "probability": 0.8626 + }, + { + "start": 10877.0, + "end": 10882.66, + "probability": 0.937 + }, + { + "start": 10884.68, + "end": 10891.8, + "probability": 0.9766 + }, + { + "start": 10892.38, + "end": 10894.1, + "probability": 0.9785 + }, + { + "start": 10895.52, + "end": 10898.16, + "probability": 0.6787 + }, + { + "start": 10899.24, + "end": 10901.5, + "probability": 0.7407 + }, + { + "start": 10902.42, + "end": 10904.8, + "probability": 0.8309 + }, + { + "start": 10905.34, + "end": 10906.6, + "probability": 0.9724 + }, + { + "start": 10911.24, + "end": 10912.74, + "probability": 0.8252 + }, + { + "start": 10914.18, + "end": 10915.11, + "probability": 0.2432 + }, + { + "start": 10918.58, + "end": 10922.08, + "probability": 0.6625 + }, + { + "start": 10922.7, + "end": 10923.0, + "probability": 0.9893 + }, + { + "start": 10925.84, + "end": 10926.6, + "probability": 0.6762 + }, + { + "start": 10927.22, + "end": 10929.7, + "probability": 0.8084 + }, + { + "start": 10930.96, + "end": 10934.3, + "probability": 0.9495 + }, + { + "start": 10936.56, + "end": 10940.16, + "probability": 0.9399 + }, + { + "start": 10940.94, + "end": 10945.22, + "probability": 0.9829 + }, + { + "start": 10945.88, + "end": 10948.46, + "probability": 0.9861 + }, + { + "start": 10949.2, + "end": 10951.96, + "probability": 0.9503 + }, + { + "start": 10952.54, + "end": 10954.41, + "probability": 0.8558 + }, + { + "start": 10955.14, + "end": 10957.22, + "probability": 0.7435 + }, + { + "start": 10957.74, + "end": 10960.92, + "probability": 0.7937 + }, + { + "start": 10961.84, + "end": 10964.36, + "probability": 0.9337 + }, + { + "start": 10965.42, + "end": 10967.6, + "probability": 0.8798 + }, + { + "start": 10968.92, + "end": 10969.36, + "probability": 0.984 + }, + { + "start": 10975.58, + "end": 10976.4, + "probability": 0.7208 + }, + { + "start": 10977.14, + "end": 10979.84, + "probability": 0.7816 + }, + { + "start": 10981.2, + "end": 10983.84, + "probability": 0.9608 + }, + { + "start": 10984.32, + "end": 10986.54, + "probability": 0.9764 + }, + { + "start": 10986.94, + "end": 10989.12, + "probability": 0.8801 + }, + { + "start": 10989.48, + "end": 10993.1, + "probability": 0.6431 + }, + { + "start": 10994.26, + "end": 10996.18, + "probability": 0.9648 + }, + { + "start": 10996.5, + "end": 10999.18, + "probability": 0.5668 + }, + { + "start": 10999.92, + "end": 11002.62, + "probability": 0.9544 + }, + { + "start": 11003.0, + "end": 11007.9, + "probability": 0.6502 + }, + { + "start": 11008.32, + "end": 11010.64, + "probability": 0.9451 + }, + { + "start": 11011.2, + "end": 11020.62, + "probability": 0.9905 + }, + { + "start": 11023.96, + "end": 11024.24, + "probability": 0.5786 + }, + { + "start": 11030.62, + "end": 11032.1, + "probability": 0.1343 + }, + { + "start": 11032.28, + "end": 11036.7, + "probability": 0.1461 + }, + { + "start": 11043.86, + "end": 11044.3, + "probability": 0.0455 + }, + { + "start": 11161.2, + "end": 11161.2, + "probability": 0.0167 + }, + { + "start": 11161.2, + "end": 11162.78, + "probability": 0.9193 + }, + { + "start": 11162.78, + "end": 11164.7, + "probability": 0.6114 + }, + { + "start": 11166.38, + "end": 11171.8, + "probability": 0.9373 + }, + { + "start": 11171.8, + "end": 11176.25, + "probability": 0.5259 + }, + { + "start": 11176.46, + "end": 11179.42, + "probability": 0.3899 + }, + { + "start": 11183.16, + "end": 11190.24, + "probability": 0.0498 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.0, + "end": 11285.0, + "probability": 0.0 + }, + { + "start": 11285.4, + "end": 11286.18, + "probability": 0.0102 + }, + { + "start": 11286.18, + "end": 11286.18, + "probability": 0.0542 + }, + { + "start": 11286.18, + "end": 11288.16, + "probability": 0.569 + }, + { + "start": 11288.66, + "end": 11292.22, + "probability": 0.9867 + }, + { + "start": 11292.26, + "end": 11297.24, + "probability": 0.9968 + }, + { + "start": 11297.4, + "end": 11297.48, + "probability": 0.0576 + }, + { + "start": 11297.48, + "end": 11297.9, + "probability": 0.6683 + }, + { + "start": 11297.96, + "end": 11301.0, + "probability": 0.9635 + }, + { + "start": 11301.3, + "end": 11301.3, + "probability": 0.5853 + }, + { + "start": 11301.3, + "end": 11302.2, + "probability": 0.8363 + }, + { + "start": 11302.8, + "end": 11303.96, + "probability": 0.4598 + }, + { + "start": 11304.0, + "end": 11305.44, + "probability": 0.2368 + }, + { + "start": 11305.46, + "end": 11305.81, + "probability": 0.7834 + }, + { + "start": 11306.74, + "end": 11307.28, + "probability": 0.8442 + }, + { + "start": 11307.66, + "end": 11311.12, + "probability": 0.9562 + }, + { + "start": 11311.5, + "end": 11315.3, + "probability": 0.8685 + }, + { + "start": 11315.98, + "end": 11319.28, + "probability": 0.9297 + }, + { + "start": 11319.7, + "end": 11322.86, + "probability": 0.788 + }, + { + "start": 11322.86, + "end": 11327.06, + "probability": 0.9826 + }, + { + "start": 11327.62, + "end": 11331.78, + "probability": 0.8241 + }, + { + "start": 11332.1, + "end": 11335.94, + "probability": 0.9154 + }, + { + "start": 11336.18, + "end": 11338.66, + "probability": 0.6624 + }, + { + "start": 11338.72, + "end": 11339.98, + "probability": 0.8145 + }, + { + "start": 11340.26, + "end": 11340.74, + "probability": 0.9155 + }, + { + "start": 11341.36, + "end": 11343.42, + "probability": 0.9797 + }, + { + "start": 11343.82, + "end": 11344.72, + "probability": 0.9215 + }, + { + "start": 11345.16, + "end": 11346.8, + "probability": 0.9875 + }, + { + "start": 11346.86, + "end": 11347.64, + "probability": 0.7931 + }, + { + "start": 11348.16, + "end": 11353.52, + "probability": 0.9246 + }, + { + "start": 11353.66, + "end": 11355.32, + "probability": 0.8608 + }, + { + "start": 11356.08, + "end": 11359.62, + "probability": 0.9395 + }, + { + "start": 11359.62, + "end": 11360.98, + "probability": 0.3399 + }, + { + "start": 11361.48, + "end": 11363.1, + "probability": 0.6849 + }, + { + "start": 11363.1, + "end": 11364.92, + "probability": 0.9662 + }, + { + "start": 11364.98, + "end": 11365.54, + "probability": 0.9619 + }, + { + "start": 11365.56, + "end": 11368.18, + "probability": 0.9369 + }, + { + "start": 11368.26, + "end": 11369.42, + "probability": 0.9904 + }, + { + "start": 11369.72, + "end": 11373.86, + "probability": 0.9901 + }, + { + "start": 11373.98, + "end": 11377.88, + "probability": 0.6936 + }, + { + "start": 11378.26, + "end": 11381.1, + "probability": 0.828 + }, + { + "start": 11381.46, + "end": 11388.08, + "probability": 0.9732 + }, + { + "start": 11388.28, + "end": 11390.38, + "probability": 0.9761 + }, + { + "start": 11391.24, + "end": 11392.72, + "probability": 0.3189 + }, + { + "start": 11392.94, + "end": 11396.66, + "probability": 0.8829 + }, + { + "start": 11397.16, + "end": 11397.6, + "probability": 0.0149 + }, + { + "start": 11398.5, + "end": 11399.22, + "probability": 0.1881 + }, + { + "start": 11399.22, + "end": 11400.98, + "probability": 0.5947 + }, + { + "start": 11401.0, + "end": 11403.88, + "probability": 0.379 + }, + { + "start": 11404.24, + "end": 11409.4, + "probability": 0.9179 + }, + { + "start": 11409.76, + "end": 11415.38, + "probability": 0.6662 + }, + { + "start": 11415.66, + "end": 11420.14, + "probability": 0.7102 + }, + { + "start": 11420.16, + "end": 11421.92, + "probability": 0.7489 + }, + { + "start": 11423.27, + "end": 11425.04, + "probability": 0.4277 + }, + { + "start": 11425.04, + "end": 11425.4, + "probability": 0.1601 + }, + { + "start": 11425.4, + "end": 11425.4, + "probability": 0.7401 + }, + { + "start": 11425.4, + "end": 11425.56, + "probability": 0.221 + }, + { + "start": 11425.92, + "end": 11432.9, + "probability": 0.7936 + }, + { + "start": 11433.18, + "end": 11434.1, + "probability": 0.845 + }, + { + "start": 11434.62, + "end": 11435.54, + "probability": 0.9542 + }, + { + "start": 11435.7, + "end": 11437.02, + "probability": 0.9736 + }, + { + "start": 11437.36, + "end": 11439.44, + "probability": 0.9196 + }, + { + "start": 11439.62, + "end": 11442.09, + "probability": 0.9981 + }, + { + "start": 11442.66, + "end": 11444.6, + "probability": 0.9561 + }, + { + "start": 11444.96, + "end": 11448.7, + "probability": 0.9753 + }, + { + "start": 11449.12, + "end": 11451.08, + "probability": 0.9985 + }, + { + "start": 11451.34, + "end": 11453.2, + "probability": 0.9907 + }, + { + "start": 11454.0, + "end": 11460.54, + "probability": 0.9883 + }, + { + "start": 11461.1, + "end": 11461.1, + "probability": 0.07 + }, + { + "start": 11461.1, + "end": 11462.92, + "probability": 0.9823 + }, + { + "start": 11462.94, + "end": 11464.06, + "probability": 0.4699 + }, + { + "start": 11464.54, + "end": 11468.7, + "probability": 0.9545 + }, + { + "start": 11469.14, + "end": 11470.68, + "probability": 0.8186 + }, + { + "start": 11472.44, + "end": 11477.12, + "probability": 0.9591 + }, + { + "start": 11477.36, + "end": 11478.98, + "probability": 0.7763 + }, + { + "start": 11479.38, + "end": 11479.38, + "probability": 0.0922 + }, + { + "start": 11479.38, + "end": 11479.84, + "probability": 0.1754 + }, + { + "start": 11479.86, + "end": 11480.7, + "probability": 0.4351 + }, + { + "start": 11480.88, + "end": 11485.44, + "probability": 0.9548 + }, + { + "start": 11486.76, + "end": 11488.16, + "probability": 0.7379 + }, + { + "start": 11488.48, + "end": 11490.02, + "probability": 0.9755 + }, + { + "start": 11490.06, + "end": 11491.22, + "probability": 0.8014 + }, + { + "start": 11491.4, + "end": 11492.66, + "probability": 0.9631 + }, + { + "start": 11492.8, + "end": 11494.6, + "probability": 0.982 + }, + { + "start": 11494.66, + "end": 11495.14, + "probability": 0.9054 + }, + { + "start": 11495.48, + "end": 11497.98, + "probability": 0.9916 + }, + { + "start": 11497.98, + "end": 11502.8, + "probability": 0.8164 + }, + { + "start": 11503.38, + "end": 11504.42, + "probability": 0.9557 + }, + { + "start": 11504.7, + "end": 11507.9, + "probability": 0.9831 + }, + { + "start": 11508.5, + "end": 11510.07, + "probability": 0.9946 + }, + { + "start": 11510.78, + "end": 11514.06, + "probability": 0.9965 + }, + { + "start": 11514.48, + "end": 11517.68, + "probability": 0.9861 + }, + { + "start": 11517.96, + "end": 11518.58, + "probability": 0.1137 + }, + { + "start": 11518.58, + "end": 11518.58, + "probability": 0.6436 + }, + { + "start": 11518.58, + "end": 11518.58, + "probability": 0.0185 + }, + { + "start": 11518.58, + "end": 11518.58, + "probability": 0.483 + }, + { + "start": 11518.58, + "end": 11519.56, + "probability": 0.2883 + }, + { + "start": 11519.56, + "end": 11527.12, + "probability": 0.5155 + }, + { + "start": 11527.18, + "end": 11527.42, + "probability": 0.2496 + }, + { + "start": 11527.64, + "end": 11527.64, + "probability": 0.1948 + }, + { + "start": 11527.64, + "end": 11532.32, + "probability": 0.9851 + }, + { + "start": 11532.4, + "end": 11533.9, + "probability": 0.9658 + }, + { + "start": 11533.9, + "end": 11533.9, + "probability": 0.6485 + }, + { + "start": 11533.9, + "end": 11534.72, + "probability": 0.373 + }, + { + "start": 11535.16, + "end": 11537.76, + "probability": 0.7877 + }, + { + "start": 11537.82, + "end": 11542.4, + "probability": 0.9529 + }, + { + "start": 11542.82, + "end": 11543.24, + "probability": 0.6875 + }, + { + "start": 11543.32, + "end": 11545.36, + "probability": 0.2474 + }, + { + "start": 11546.08, + "end": 11547.16, + "probability": 0.748 + }, + { + "start": 11547.3, + "end": 11549.25, + "probability": 0.3795 + }, + { + "start": 11550.71, + "end": 11553.94, + "probability": 0.1262 + }, + { + "start": 11554.58, + "end": 11556.16, + "probability": 0.5801 + }, + { + "start": 11556.44, + "end": 11557.53, + "probability": 0.0272 + }, + { + "start": 11557.54, + "end": 11558.36, + "probability": 0.0371 + }, + { + "start": 11558.36, + "end": 11559.22, + "probability": 0.0558 + }, + { + "start": 11559.22, + "end": 11559.88, + "probability": 0.1902 + }, + { + "start": 11561.52, + "end": 11563.3, + "probability": 0.7268 + }, + { + "start": 11563.5, + "end": 11565.48, + "probability": 0.0654 + }, + { + "start": 11565.52, + "end": 11566.13, + "probability": 0.5375 + }, + { + "start": 11566.58, + "end": 11567.04, + "probability": 0.1583 + }, + { + "start": 11567.32, + "end": 11567.82, + "probability": 0.2219 + }, + { + "start": 11568.12, + "end": 11569.68, + "probability": 0.2987 + }, + { + "start": 11570.72, + "end": 11574.28, + "probability": 0.5444 + }, + { + "start": 11574.82, + "end": 11575.2, + "probability": 0.0223 + }, + { + "start": 11577.16, + "end": 11577.56, + "probability": 0.0165 + }, + { + "start": 11578.08, + "end": 11581.34, + "probability": 0.3261 + }, + { + "start": 11581.58, + "end": 11583.04, + "probability": 0.3353 + }, + { + "start": 11583.12, + "end": 11583.12, + "probability": 0.3696 + }, + { + "start": 11583.12, + "end": 11584.44, + "probability": 0.4179 + }, + { + "start": 11584.52, + "end": 11585.12, + "probability": 0.8665 + }, + { + "start": 11585.28, + "end": 11588.84, + "probability": 0.7553 + }, + { + "start": 11589.06, + "end": 11594.6, + "probability": 0.74 + }, + { + "start": 11594.78, + "end": 11596.0, + "probability": 0.1726 + }, + { + "start": 11596.88, + "end": 11599.18, + "probability": 0.0521 + }, + { + "start": 11602.62, + "end": 11604.14, + "probability": 0.0316 + }, + { + "start": 11605.2, + "end": 11606.28, + "probability": 0.5271 + }, + { + "start": 11606.28, + "end": 11606.28, + "probability": 0.0643 + }, + { + "start": 11606.28, + "end": 11606.28, + "probability": 0.1371 + }, + { + "start": 11606.28, + "end": 11606.28, + "probability": 0.115 + }, + { + "start": 11606.28, + "end": 11607.28, + "probability": 0.2454 + }, + { + "start": 11607.36, + "end": 11612.44, + "probability": 0.5202 + }, + { + "start": 11612.46, + "end": 11615.26, + "probability": 0.7573 + }, + { + "start": 11615.68, + "end": 11618.38, + "probability": 0.691 + }, + { + "start": 11618.6, + "end": 11620.72, + "probability": 0.2444 + }, + { + "start": 11621.74, + "end": 11621.92, + "probability": 0.0152 + }, + { + "start": 11621.92, + "end": 11622.82, + "probability": 0.4664 + }, + { + "start": 11623.04, + "end": 11623.68, + "probability": 0.045 + }, + { + "start": 11625.08, + "end": 11625.52, + "probability": 0.0764 + }, + { + "start": 11629.18, + "end": 11629.36, + "probability": 0.3273 + }, + { + "start": 11629.36, + "end": 11629.36, + "probability": 0.2024 + }, + { + "start": 11629.36, + "end": 11630.39, + "probability": 0.5679 + }, + { + "start": 11630.68, + "end": 11632.36, + "probability": 0.9036 + }, + { + "start": 11632.5, + "end": 11634.18, + "probability": 0.7271 + }, + { + "start": 11634.46, + "end": 11635.7, + "probability": 0.4758 + }, + { + "start": 11637.32, + "end": 11641.94, + "probability": 0.4997 + }, + { + "start": 11642.54, + "end": 11643.28, + "probability": 0.0637 + }, + { + "start": 11643.44, + "end": 11644.86, + "probability": 0.5039 + }, + { + "start": 11645.12, + "end": 11645.62, + "probability": 0.5768 + }, + { + "start": 11646.2, + "end": 11648.04, + "probability": 0.8547 + }, + { + "start": 11648.8, + "end": 11649.72, + "probability": 0.461 + }, + { + "start": 11649.84, + "end": 11651.62, + "probability": 0.7559 + }, + { + "start": 11653.78, + "end": 11656.22, + "probability": 0.5865 + }, + { + "start": 11656.34, + "end": 11656.66, + "probability": 0.6465 + }, + { + "start": 11656.66, + "end": 11658.56, + "probability": 0.9858 + }, + { + "start": 11658.72, + "end": 11659.32, + "probability": 0.8657 + }, + { + "start": 11659.38, + "end": 11660.76, + "probability": 0.5104 + }, + { + "start": 11660.76, + "end": 11663.38, + "probability": 0.4994 + }, + { + "start": 11663.4, + "end": 11663.94, + "probability": 0.0108 + }, + { + "start": 11664.54, + "end": 11664.9, + "probability": 0.4069 + }, + { + "start": 11665.36, + "end": 11666.04, + "probability": 0.0641 + }, + { + "start": 11666.8, + "end": 11669.74, + "probability": 0.0085 + }, + { + "start": 11670.46, + "end": 11672.76, + "probability": 0.0361 + }, + { + "start": 11672.76, + "end": 11677.06, + "probability": 0.2653 + }, + { + "start": 11677.28, + "end": 11677.84, + "probability": 0.0351 + }, + { + "start": 11677.84, + "end": 11678.54, + "probability": 0.076 + }, + { + "start": 11679.82, + "end": 11681.62, + "probability": 0.4621 + }, + { + "start": 11681.76, + "end": 11683.54, + "probability": 0.6933 + }, + { + "start": 11684.52, + "end": 11684.88, + "probability": 0.0176 + }, + { + "start": 11684.88, + "end": 11686.38, + "probability": 0.0882 + }, + { + "start": 11686.38, + "end": 11688.7, + "probability": 0.0842 + }, + { + "start": 11689.06, + "end": 11689.84, + "probability": 0.7846 + }, + { + "start": 11690.0, + "end": 11690.9, + "probability": 0.518 + }, + { + "start": 11691.44, + "end": 11692.38, + "probability": 0.1547 + }, + { + "start": 11692.54, + "end": 11698.56, + "probability": 0.1337 + }, + { + "start": 11699.54, + "end": 11700.46, + "probability": 0.7293 + }, + { + "start": 11700.62, + "end": 11701.84, + "probability": 0.8962 + }, + { + "start": 11701.94, + "end": 11706.18, + "probability": 0.9967 + }, + { + "start": 11707.16, + "end": 11711.6, + "probability": 0.9948 + }, + { + "start": 11711.85, + "end": 11716.5, + "probability": 0.9965 + }, + { + "start": 11716.68, + "end": 11719.14, + "probability": 0.7982 + }, + { + "start": 11719.28, + "end": 11719.48, + "probability": 0.3179 + }, + { + "start": 11719.66, + "end": 11721.14, + "probability": 0.9625 + }, + { + "start": 11721.22, + "end": 11722.26, + "probability": 0.8702 + }, + { + "start": 11722.82, + "end": 11724.42, + "probability": 0.8292 + }, + { + "start": 11725.14, + "end": 11727.3, + "probability": 0.9738 + }, + { + "start": 11727.52, + "end": 11728.39, + "probability": 0.9478 + }, + { + "start": 11729.52, + "end": 11732.73, + "probability": 0.9727 + }, + { + "start": 11732.88, + "end": 11735.48, + "probability": 0.9914 + }, + { + "start": 11735.48, + "end": 11738.98, + "probability": 0.9937 + }, + { + "start": 11739.34, + "end": 11745.64, + "probability": 0.9975 + }, + { + "start": 11745.92, + "end": 11747.54, + "probability": 0.6052 + }, + { + "start": 11747.68, + "end": 11748.72, + "probability": 0.7591 + }, + { + "start": 11748.88, + "end": 11749.44, + "probability": 0.9499 + }, + { + "start": 11750.54, + "end": 11753.8, + "probability": 0.9956 + }, + { + "start": 11754.16, + "end": 11754.72, + "probability": 0.8937 + }, + { + "start": 11754.86, + "end": 11758.64, + "probability": 0.9756 + }, + { + "start": 11759.1, + "end": 11759.12, + "probability": 0.5863 + }, + { + "start": 11759.3, + "end": 11759.88, + "probability": 0.9688 + }, + { + "start": 11760.0, + "end": 11760.28, + "probability": 0.6037 + }, + { + "start": 11760.38, + "end": 11760.72, + "probability": 0.934 + }, + { + "start": 11760.98, + "end": 11761.8, + "probability": 0.6456 + }, + { + "start": 11761.8, + "end": 11763.44, + "probability": 0.9487 + }, + { + "start": 11764.0, + "end": 11765.5, + "probability": 0.786 + }, + { + "start": 11765.76, + "end": 11766.5, + "probability": 0.9531 + }, + { + "start": 11766.6, + "end": 11767.86, + "probability": 0.9033 + }, + { + "start": 11768.26, + "end": 11768.87, + "probability": 0.9851 + }, + { + "start": 11770.26, + "end": 11771.18, + "probability": 0.7569 + }, + { + "start": 11771.86, + "end": 11773.94, + "probability": 0.9797 + }, + { + "start": 11774.28, + "end": 11776.3, + "probability": 0.9748 + }, + { + "start": 11776.74, + "end": 11777.94, + "probability": 0.8953 + }, + { + "start": 11778.32, + "end": 11779.48, + "probability": 0.8119 + }, + { + "start": 11779.92, + "end": 11781.34, + "probability": 0.6294 + }, + { + "start": 11781.82, + "end": 11788.02, + "probability": 0.9463 + }, + { + "start": 11788.26, + "end": 11790.42, + "probability": 0.9714 + }, + { + "start": 11790.98, + "end": 11792.8, + "probability": 0.9817 + }, + { + "start": 11792.96, + "end": 11794.3, + "probability": 0.9703 + }, + { + "start": 11794.72, + "end": 11795.69, + "probability": 0.9885 + }, + { + "start": 11795.92, + "end": 11797.36, + "probability": 0.9767 + }, + { + "start": 11797.74, + "end": 11797.86, + "probability": 0.7151 + }, + { + "start": 11797.98, + "end": 11798.44, + "probability": 0.901 + }, + { + "start": 11798.96, + "end": 11802.44, + "probability": 0.9312 + }, + { + "start": 11803.14, + "end": 11804.56, + "probability": 0.9969 + }, + { + "start": 11805.1, + "end": 11808.9, + "probability": 0.9942 + }, + { + "start": 11809.52, + "end": 11811.69, + "probability": 0.8302 + }, + { + "start": 11812.56, + "end": 11813.68, + "probability": 0.7362 + }, + { + "start": 11814.2, + "end": 11817.56, + "probability": 0.9463 + }, + { + "start": 11818.18, + "end": 11820.96, + "probability": 0.9493 + }, + { + "start": 11821.72, + "end": 11827.32, + "probability": 0.9854 + }, + { + "start": 11827.94, + "end": 11828.18, + "probability": 0.6156 + }, + { + "start": 11828.22, + "end": 11828.96, + "probability": 0.7093 + }, + { + "start": 11829.0, + "end": 11832.94, + "probability": 0.9946 + }, + { + "start": 11833.76, + "end": 11836.36, + "probability": 0.9966 + }, + { + "start": 11836.84, + "end": 11839.44, + "probability": 0.821 + }, + { + "start": 11839.74, + "end": 11840.38, + "probability": 0.8883 + }, + { + "start": 11841.22, + "end": 11842.6, + "probability": 0.9672 + }, + { + "start": 11843.36, + "end": 11844.16, + "probability": 0.9611 + }, + { + "start": 11844.32, + "end": 11849.0, + "probability": 0.9897 + }, + { + "start": 11849.0, + "end": 11853.66, + "probability": 0.9754 + }, + { + "start": 11855.0, + "end": 11855.52, + "probability": 0.6908 + }, + { + "start": 11855.6, + "end": 11856.4, + "probability": 0.9331 + }, + { + "start": 11856.4, + "end": 11861.26, + "probability": 0.9486 + }, + { + "start": 11862.92, + "end": 11864.11, + "probability": 0.4702 + }, + { + "start": 11864.34, + "end": 11864.92, + "probability": 0.9199 + }, + { + "start": 11865.54, + "end": 11867.24, + "probability": 0.9818 + }, + { + "start": 11867.28, + "end": 11868.54, + "probability": 0.9513 + }, + { + "start": 11869.22, + "end": 11870.69, + "probability": 0.9946 + }, + { + "start": 11871.16, + "end": 11872.75, + "probability": 0.9901 + }, + { + "start": 11873.5, + "end": 11876.14, + "probability": 0.8461 + }, + { + "start": 11876.76, + "end": 11880.01, + "probability": 0.6153 + }, + { + "start": 11881.68, + "end": 11883.96, + "probability": 0.9016 + }, + { + "start": 11884.08, + "end": 11884.62, + "probability": 0.6033 + }, + { + "start": 11884.66, + "end": 11885.02, + "probability": 0.8106 + }, + { + "start": 11885.1, + "end": 11885.54, + "probability": 0.6721 + }, + { + "start": 11885.94, + "end": 11887.72, + "probability": 0.9955 + }, + { + "start": 11888.16, + "end": 11894.26, + "probability": 0.7705 + }, + { + "start": 11894.34, + "end": 11894.82, + "probability": 0.5828 + }, + { + "start": 11894.9, + "end": 11899.14, + "probability": 0.9273 + }, + { + "start": 11899.6, + "end": 11902.06, + "probability": 0.9888 + }, + { + "start": 11902.16, + "end": 11902.88, + "probability": 0.8875 + }, + { + "start": 11903.24, + "end": 11904.88, + "probability": 0.9767 + }, + { + "start": 11905.82, + "end": 11910.52, + "probability": 0.8477 + }, + { + "start": 11910.66, + "end": 11913.88, + "probability": 0.9622 + }, + { + "start": 11914.4, + "end": 11918.2, + "probability": 0.8499 + }, + { + "start": 11919.3, + "end": 11920.85, + "probability": 0.9924 + }, + { + "start": 11921.3, + "end": 11923.82, + "probability": 0.9427 + }, + { + "start": 11924.18, + "end": 11924.81, + "probability": 0.9667 + }, + { + "start": 11925.42, + "end": 11931.88, + "probability": 0.9976 + }, + { + "start": 11932.47, + "end": 11935.71, + "probability": 0.9888 + }, + { + "start": 11936.7, + "end": 11937.68, + "probability": 0.9868 + }, + { + "start": 11939.22, + "end": 11942.44, + "probability": 0.835 + }, + { + "start": 11942.98, + "end": 11945.34, + "probability": 0.8831 + }, + { + "start": 11945.72, + "end": 11949.66, + "probability": 0.9865 + }, + { + "start": 11949.66, + "end": 11954.8, + "probability": 0.9348 + }, + { + "start": 11955.54, + "end": 11956.04, + "probability": 0.6659 + }, + { + "start": 11956.3, + "end": 11959.68, + "probability": 0.9734 + }, + { + "start": 11959.68, + "end": 11963.7, + "probability": 0.6005 + }, + { + "start": 11963.78, + "end": 11965.88, + "probability": 0.962 + }, + { + "start": 11965.94, + "end": 11966.98, + "probability": 0.8496 + }, + { + "start": 11967.6, + "end": 11972.1, + "probability": 0.9874 + }, + { + "start": 11972.56, + "end": 11973.06, + "probability": 0.3184 + }, + { + "start": 11973.18, + "end": 11973.94, + "probability": 0.738 + }, + { + "start": 11974.38, + "end": 11976.14, + "probability": 0.7285 + }, + { + "start": 11976.74, + "end": 11978.74, + "probability": 0.9077 + }, + { + "start": 11979.32, + "end": 11982.7, + "probability": 0.9722 + }, + { + "start": 11983.08, + "end": 11987.1, + "probability": 0.9968 + }, + { + "start": 11987.1, + "end": 11991.28, + "probability": 0.8851 + }, + { + "start": 11991.76, + "end": 11996.34, + "probability": 0.754 + }, + { + "start": 11996.86, + "end": 12000.92, + "probability": 0.9946 + }, + { + "start": 12000.92, + "end": 12005.48, + "probability": 0.9789 + }, + { + "start": 12005.9, + "end": 12007.12, + "probability": 0.8739 + }, + { + "start": 12007.92, + "end": 12013.5, + "probability": 0.9778 + }, + { + "start": 12014.0, + "end": 12016.0, + "probability": 0.8335 + }, + { + "start": 12016.48, + "end": 12018.21, + "probability": 0.5204 + }, + { + "start": 12018.52, + "end": 12020.6, + "probability": 0.6052 + }, + { + "start": 12020.6, + "end": 12024.44, + "probability": 0.9749 + }, + { + "start": 12024.78, + "end": 12025.78, + "probability": 0.8352 + }, + { + "start": 12025.86, + "end": 12027.52, + "probability": 0.9177 + }, + { + "start": 12027.94, + "end": 12030.72, + "probability": 0.8784 + }, + { + "start": 12030.78, + "end": 12031.28, + "probability": 0.5412 + }, + { + "start": 12031.38, + "end": 12033.62, + "probability": 0.5888 + }, + { + "start": 12034.4, + "end": 12035.5, + "probability": 0.9688 + }, + { + "start": 12035.88, + "end": 12039.72, + "probability": 0.981 + }, + { + "start": 12039.74, + "end": 12040.46, + "probability": 0.0095 + }, + { + "start": 12040.56, + "end": 12042.85, + "probability": 0.8601 + }, + { + "start": 12043.1, + "end": 12044.56, + "probability": 0.9845 + }, + { + "start": 12045.3, + "end": 12047.24, + "probability": 0.8459 + }, + { + "start": 12047.88, + "end": 12049.94, + "probability": 0.894 + }, + { + "start": 12050.24, + "end": 12057.76, + "probability": 0.9745 + }, + { + "start": 12057.86, + "end": 12057.88, + "probability": 0.4555 + }, + { + "start": 12057.88, + "end": 12058.58, + "probability": 0.6404 + }, + { + "start": 12058.64, + "end": 12059.3, + "probability": 0.9163 + }, + { + "start": 12059.66, + "end": 12061.48, + "probability": 0.9677 + }, + { + "start": 12061.52, + "end": 12062.68, + "probability": 0.981 + }, + { + "start": 12063.42, + "end": 12067.86, + "probability": 0.9331 + }, + { + "start": 12068.26, + "end": 12069.18, + "probability": 0.9233 + }, + { + "start": 12069.6, + "end": 12074.22, + "probability": 0.986 + }, + { + "start": 12074.3, + "end": 12075.28, + "probability": 0.7669 + }, + { + "start": 12075.82, + "end": 12079.6, + "probability": 0.9192 + }, + { + "start": 12080.0, + "end": 12083.82, + "probability": 0.9971 + }, + { + "start": 12083.82, + "end": 12088.08, + "probability": 0.9928 + }, + { + "start": 12088.6, + "end": 12089.08, + "probability": 0.4418 + }, + { + "start": 12089.54, + "end": 12090.76, + "probability": 0.5713 + }, + { + "start": 12090.92, + "end": 12093.54, + "probability": 0.8489 + }, + { + "start": 12094.08, + "end": 12095.28, + "probability": 0.9867 + }, + { + "start": 12095.6, + "end": 12096.78, + "probability": 0.9385 + }, + { + "start": 12097.06, + "end": 12101.24, + "probability": 0.9569 + }, + { + "start": 12101.24, + "end": 12104.4, + "probability": 0.9946 + }, + { + "start": 12104.86, + "end": 12107.4, + "probability": 0.9951 + }, + { + "start": 12107.74, + "end": 12108.66, + "probability": 0.8735 + }, + { + "start": 12109.08, + "end": 12110.04, + "probability": 0.8691 + }, + { + "start": 12110.42, + "end": 12112.06, + "probability": 0.7743 + }, + { + "start": 12112.5, + "end": 12115.68, + "probability": 0.9747 + }, + { + "start": 12116.98, + "end": 12117.55, + "probability": 0.9866 + }, + { + "start": 12118.46, + "end": 12119.17, + "probability": 0.9932 + }, + { + "start": 12119.9, + "end": 12123.48, + "probability": 0.9072 + }, + { + "start": 12123.86, + "end": 12124.22, + "probability": 0.7517 + }, + { + "start": 12124.66, + "end": 12127.04, + "probability": 0.7385 + }, + { + "start": 12127.42, + "end": 12128.1, + "probability": 0.8614 + }, + { + "start": 12128.26, + "end": 12128.82, + "probability": 0.9542 + }, + { + "start": 12128.94, + "end": 12129.52, + "probability": 0.9325 + }, + { + "start": 12129.66, + "end": 12133.1, + "probability": 0.8931 + }, + { + "start": 12133.1, + "end": 12138.25, + "probability": 0.8597 + }, + { + "start": 12139.22, + "end": 12140.66, + "probability": 0.9714 + }, + { + "start": 12140.96, + "end": 12142.1, + "probability": 0.9912 + }, + { + "start": 12142.46, + "end": 12143.68, + "probability": 0.9258 + }, + { + "start": 12144.06, + "end": 12145.6, + "probability": 0.9775 + }, + { + "start": 12146.28, + "end": 12149.64, + "probability": 0.9285 + }, + { + "start": 12150.62, + "end": 12151.88, + "probability": 0.9726 + }, + { + "start": 12151.98, + "end": 12153.19, + "probability": 0.9844 + }, + { + "start": 12153.48, + "end": 12154.48, + "probability": 0.8511 + }, + { + "start": 12154.84, + "end": 12158.08, + "probability": 0.827 + }, + { + "start": 12158.22, + "end": 12161.76, + "probability": 0.9937 + }, + { + "start": 12162.2, + "end": 12165.98, + "probability": 0.9802 + }, + { + "start": 12166.52, + "end": 12168.13, + "probability": 0.8116 + }, + { + "start": 12168.8, + "end": 12174.0, + "probability": 0.9805 + }, + { + "start": 12174.48, + "end": 12176.62, + "probability": 0.84 + }, + { + "start": 12176.8, + "end": 12180.22, + "probability": 0.9883 + }, + { + "start": 12180.36, + "end": 12181.08, + "probability": 0.7642 + }, + { + "start": 12181.86, + "end": 12184.22, + "probability": 0.9678 + }, + { + "start": 12184.82, + "end": 12186.24, + "probability": 0.9592 + }, + { + "start": 12186.78, + "end": 12187.82, + "probability": 0.9713 + }, + { + "start": 12187.9, + "end": 12189.3, + "probability": 0.8005 + }, + { + "start": 12189.94, + "end": 12190.84, + "probability": 0.9983 + }, + { + "start": 12191.62, + "end": 12193.78, + "probability": 0.5254 + }, + { + "start": 12194.34, + "end": 12196.34, + "probability": 0.9956 + }, + { + "start": 12196.86, + "end": 12198.72, + "probability": 0.8501 + }, + { + "start": 12199.3, + "end": 12202.36, + "probability": 0.9432 + }, + { + "start": 12202.8, + "end": 12205.6, + "probability": 0.9949 + }, + { + "start": 12206.3, + "end": 12209.82, + "probability": 0.9968 + }, + { + "start": 12210.38, + "end": 12211.48, + "probability": 0.4383 + }, + { + "start": 12211.62, + "end": 12214.32, + "probability": 0.9839 + }, + { + "start": 12215.02, + "end": 12219.86, + "probability": 0.9735 + }, + { + "start": 12220.36, + "end": 12221.9, + "probability": 0.9966 + }, + { + "start": 12222.56, + "end": 12224.1, + "probability": 0.9224 + }, + { + "start": 12224.22, + "end": 12228.38, + "probability": 0.957 + }, + { + "start": 12228.38, + "end": 12231.8, + "probability": 0.9973 + }, + { + "start": 12232.46, + "end": 12236.54, + "probability": 0.9961 + }, + { + "start": 12236.92, + "end": 12239.36, + "probability": 0.9935 + }, + { + "start": 12239.74, + "end": 12242.86, + "probability": 0.9916 + }, + { + "start": 12243.22, + "end": 12246.56, + "probability": 0.9813 + }, + { + "start": 12246.82, + "end": 12247.64, + "probability": 0.9885 + }, + { + "start": 12248.1, + "end": 12249.82, + "probability": 0.6903 + }, + { + "start": 12250.08, + "end": 12251.16, + "probability": 0.9015 + }, + { + "start": 12251.26, + "end": 12251.46, + "probability": 0.6945 + }, + { + "start": 12251.58, + "end": 12252.84, + "probability": 0.5936 + }, + { + "start": 12253.02, + "end": 12255.14, + "probability": 0.5531 + }, + { + "start": 12256.18, + "end": 12257.56, + "probability": 0.7031 + }, + { + "start": 12282.62, + "end": 12285.4, + "probability": 0.8069 + }, + { + "start": 12285.74, + "end": 12288.9, + "probability": 0.6299 + }, + { + "start": 12288.98, + "end": 12289.7, + "probability": 0.6026 + }, + { + "start": 12289.8, + "end": 12290.18, + "probability": 0.8823 + }, + { + "start": 12290.36, + "end": 12297.36, + "probability": 0.9048 + }, + { + "start": 12297.6, + "end": 12298.6, + "probability": 0.9097 + }, + { + "start": 12299.32, + "end": 12300.54, + "probability": 0.7413 + }, + { + "start": 12300.8, + "end": 12303.24, + "probability": 0.9935 + }, + { + "start": 12303.24, + "end": 12308.66, + "probability": 0.5887 + }, + { + "start": 12308.74, + "end": 12310.5, + "probability": 0.8948 + }, + { + "start": 12311.26, + "end": 12314.52, + "probability": 0.981 + }, + { + "start": 12314.56, + "end": 12317.68, + "probability": 0.9906 + }, + { + "start": 12317.68, + "end": 12320.16, + "probability": 0.998 + }, + { + "start": 12320.84, + "end": 12322.06, + "probability": 0.9293 + }, + { + "start": 12322.62, + "end": 12325.08, + "probability": 0.971 + }, + { + "start": 12325.78, + "end": 12330.16, + "probability": 0.9519 + }, + { + "start": 12330.16, + "end": 12333.42, + "probability": 0.9981 + }, + { + "start": 12334.68, + "end": 12337.2, + "probability": 0.996 + }, + { + "start": 12337.2, + "end": 12340.28, + "probability": 0.9211 + }, + { + "start": 12341.18, + "end": 12344.6, + "probability": 0.9984 + }, + { + "start": 12344.6, + "end": 12347.2, + "probability": 0.991 + }, + { + "start": 12347.62, + "end": 12348.7, + "probability": 0.7781 + }, + { + "start": 12349.32, + "end": 12352.96, + "probability": 0.8093 + }, + { + "start": 12353.02, + "end": 12353.94, + "probability": 0.9903 + }, + { + "start": 12355.16, + "end": 12358.4, + "probability": 0.9932 + }, + { + "start": 12358.4, + "end": 12362.76, + "probability": 0.9894 + }, + { + "start": 12362.76, + "end": 12366.72, + "probability": 0.9934 + }, + { + "start": 12368.04, + "end": 12371.42, + "probability": 0.9728 + }, + { + "start": 12371.95, + "end": 12377.24, + "probability": 0.9858 + }, + { + "start": 12378.02, + "end": 12379.56, + "probability": 0.5912 + }, + { + "start": 12379.86, + "end": 12380.48, + "probability": 0.3705 + }, + { + "start": 12380.5, + "end": 12382.76, + "probability": 0.9441 + }, + { + "start": 12383.3, + "end": 12385.36, + "probability": 0.8981 + }, + { + "start": 12385.9, + "end": 12392.28, + "probability": 0.946 + }, + { + "start": 12393.86, + "end": 12395.54, + "probability": 0.8692 + }, + { + "start": 12396.24, + "end": 12397.2, + "probability": 0.7385 + }, + { + "start": 12397.3, + "end": 12399.82, + "probability": 0.993 + }, + { + "start": 12400.52, + "end": 12401.84, + "probability": 0.9958 + }, + { + "start": 12404.82, + "end": 12406.34, + "probability": 0.8615 + }, + { + "start": 12406.42, + "end": 12407.5, + "probability": 0.8041 + }, + { + "start": 12407.82, + "end": 12408.58, + "probability": 0.8867 + }, + { + "start": 12408.7, + "end": 12410.26, + "probability": 0.9287 + }, + { + "start": 12410.92, + "end": 12413.2, + "probability": 0.0456 + }, + { + "start": 12413.2, + "end": 12414.04, + "probability": 0.051 + }, + { + "start": 12414.16, + "end": 12418.64, + "probability": 0.9815 + }, + { + "start": 12418.7, + "end": 12419.82, + "probability": 0.5848 + }, + { + "start": 12420.04, + "end": 12420.98, + "probability": 0.9937 + }, + { + "start": 12422.32, + "end": 12422.48, + "probability": 0.0251 + }, + { + "start": 12422.48, + "end": 12422.48, + "probability": 0.2432 + }, + { + "start": 12422.48, + "end": 12422.48, + "probability": 0.1888 + }, + { + "start": 12422.48, + "end": 12423.66, + "probability": 0.1398 + }, + { + "start": 12425.8, + "end": 12427.22, + "probability": 0.7439 + }, + { + "start": 12427.38, + "end": 12427.72, + "probability": 0.6106 + }, + { + "start": 12428.94, + "end": 12429.44, + "probability": 0.0275 + }, + { + "start": 12429.98, + "end": 12431.38, + "probability": 0.047 + }, + { + "start": 12432.22, + "end": 12435.44, + "probability": 0.6534 + }, + { + "start": 12435.56, + "end": 12436.68, + "probability": 0.6318 + }, + { + "start": 12436.68, + "end": 12439.08, + "probability": 0.958 + }, + { + "start": 12439.28, + "end": 12441.52, + "probability": 0.9708 + }, + { + "start": 12441.6, + "end": 12442.12, + "probability": 0.7417 + }, + { + "start": 12442.54, + "end": 12444.38, + "probability": 0.9011 + }, + { + "start": 12444.42, + "end": 12447.04, + "probability": 0.8214 + }, + { + "start": 12447.68, + "end": 12448.2, + "probability": 0.7498 + }, + { + "start": 12448.32, + "end": 12449.31, + "probability": 0.8213 + }, + { + "start": 12450.0, + "end": 12453.56, + "probability": 0.9385 + }, + { + "start": 12453.56, + "end": 12456.84, + "probability": 0.9858 + }, + { + "start": 12457.1, + "end": 12457.84, + "probability": 0.6831 + }, + { + "start": 12458.42, + "end": 12459.7, + "probability": 0.8182 + }, + { + "start": 12460.0, + "end": 12462.64, + "probability": 0.9883 + }, + { + "start": 12463.28, + "end": 12465.58, + "probability": 0.9966 + }, + { + "start": 12466.3, + "end": 12468.86, + "probability": 0.9859 + }, + { + "start": 12468.86, + "end": 12471.28, + "probability": 0.9976 + }, + { + "start": 12472.56, + "end": 12472.88, + "probability": 0.02 + }, + { + "start": 12472.88, + "end": 12474.36, + "probability": 0.1395 + }, + { + "start": 12474.42, + "end": 12475.01, + "probability": 0.893 + }, + { + "start": 12475.3, + "end": 12476.44, + "probability": 0.5438 + }, + { + "start": 12477.36, + "end": 12482.36, + "probability": 0.0637 + }, + { + "start": 12482.36, + "end": 12485.94, + "probability": 0.0509 + }, + { + "start": 12488.69, + "end": 12489.62, + "probability": 0.0586 + }, + { + "start": 12489.62, + "end": 12489.62, + "probability": 0.1128 + }, + { + "start": 12489.62, + "end": 12489.62, + "probability": 0.1692 + }, + { + "start": 12489.62, + "end": 12489.62, + "probability": 0.2963 + }, + { + "start": 12489.62, + "end": 12491.77, + "probability": 0.8979 + }, + { + "start": 12492.74, + "end": 12494.92, + "probability": 0.9609 + }, + { + "start": 12494.92, + "end": 12496.96, + "probability": 0.9673 + }, + { + "start": 12497.22, + "end": 12497.44, + "probability": 0.1849 + }, + { + "start": 12497.5, + "end": 12498.48, + "probability": 0.107 + }, + { + "start": 12498.48, + "end": 12501.43, + "probability": 0.3638 + }, + { + "start": 12503.46, + "end": 12505.72, + "probability": 0.0933 + }, + { + "start": 12506.46, + "end": 12507.48, + "probability": 0.3652 + }, + { + "start": 12507.68, + "end": 12508.48, + "probability": 0.8711 + }, + { + "start": 12508.56, + "end": 12510.9, + "probability": 0.925 + }, + { + "start": 12511.69, + "end": 12512.81, + "probability": 0.8812 + }, + { + "start": 12513.46, + "end": 12514.57, + "probability": 0.9628 + }, + { + "start": 12514.94, + "end": 12515.75, + "probability": 0.9806 + }, + { + "start": 12516.9, + "end": 12518.36, + "probability": 0.9814 + }, + { + "start": 12519.0, + "end": 12519.82, + "probability": 0.4919 + }, + { + "start": 12519.86, + "end": 12524.16, + "probability": 0.72 + }, + { + "start": 12524.5, + "end": 12525.78, + "probability": 0.9034 + }, + { + "start": 12526.04, + "end": 12529.04, + "probability": 0.9451 + }, + { + "start": 12529.32, + "end": 12532.24, + "probability": 0.969 + }, + { + "start": 12532.44, + "end": 12534.97, + "probability": 0.9963 + }, + { + "start": 12535.94, + "end": 12540.04, + "probability": 0.7818 + }, + { + "start": 12540.12, + "end": 12540.74, + "probability": 0.9109 + }, + { + "start": 12540.8, + "end": 12541.76, + "probability": 0.7989 + }, + { + "start": 12542.14, + "end": 12542.28, + "probability": 0.5209 + }, + { + "start": 12542.38, + "end": 12543.06, + "probability": 0.5106 + }, + { + "start": 12543.22, + "end": 12546.42, + "probability": 0.9531 + }, + { + "start": 12546.42, + "end": 12551.88, + "probability": 0.9937 + }, + { + "start": 12552.68, + "end": 12556.48, + "probability": 0.6577 + }, + { + "start": 12558.21, + "end": 12562.3, + "probability": 0.7451 + }, + { + "start": 12563.04, + "end": 12565.5, + "probability": 0.9873 + }, + { + "start": 12565.5, + "end": 12568.36, + "probability": 0.9697 + }, + { + "start": 12568.6, + "end": 12571.14, + "probability": 0.9597 + }, + { + "start": 12571.18, + "end": 12575.06, + "probability": 0.6762 + }, + { + "start": 12575.56, + "end": 12576.26, + "probability": 0.3576 + }, + { + "start": 12576.26, + "end": 12577.16, + "probability": 0.2836 + }, + { + "start": 12578.36, + "end": 12579.96, + "probability": 0.8727 + }, + { + "start": 12580.1, + "end": 12580.1, + "probability": 0.1235 + }, + { + "start": 12580.1, + "end": 12582.98, + "probability": 0.7475 + }, + { + "start": 12583.68, + "end": 12584.08, + "probability": 0.5857 + }, + { + "start": 12584.08, + "end": 12585.64, + "probability": 0.5162 + }, + { + "start": 12586.03, + "end": 12587.3, + "probability": 0.0559 + }, + { + "start": 12587.52, + "end": 12589.2, + "probability": 0.8586 + }, + { + "start": 12589.6, + "end": 12591.18, + "probability": 0.5052 + }, + { + "start": 12591.42, + "end": 12592.42, + "probability": 0.7566 + }, + { + "start": 12592.46, + "end": 12594.02, + "probability": 0.8415 + }, + { + "start": 12594.12, + "end": 12595.42, + "probability": 0.792 + }, + { + "start": 12595.9, + "end": 12596.82, + "probability": 0.8227 + }, + { + "start": 12596.92, + "end": 12597.71, + "probability": 0.8433 + }, + { + "start": 12597.83, + "end": 12599.06, + "probability": 0.8945 + }, + { + "start": 12599.18, + "end": 12600.26, + "probability": 0.8438 + }, + { + "start": 12600.26, + "end": 12600.46, + "probability": 0.5585 + }, + { + "start": 12600.6, + "end": 12600.64, + "probability": 0.5557 + }, + { + "start": 12600.64, + "end": 12601.1, + "probability": 0.1854 + }, + { + "start": 12601.18, + "end": 12603.6, + "probability": 0.9781 + }, + { + "start": 12603.66, + "end": 12605.74, + "probability": 0.7411 + }, + { + "start": 12607.18, + "end": 12608.04, + "probability": 0.7813 + }, + { + "start": 12608.12, + "end": 12609.0, + "probability": 0.8125 + }, + { + "start": 12609.04, + "end": 12609.55, + "probability": 0.9843 + }, + { + "start": 12610.38, + "end": 12611.92, + "probability": 0.9227 + }, + { + "start": 12612.1, + "end": 12613.41, + "probability": 0.9174 + }, + { + "start": 12614.04, + "end": 12617.38, + "probability": 0.7246 + }, + { + "start": 12617.4, + "end": 12618.06, + "probability": 0.7727 + }, + { + "start": 12618.74, + "end": 12621.98, + "probability": 0.0851 + }, + { + "start": 12621.98, + "end": 12623.8, + "probability": 0.7315 + }, + { + "start": 12624.24, + "end": 12624.68, + "probability": 0.2713 + }, + { + "start": 12624.68, + "end": 12625.62, + "probability": 0.7204 + }, + { + "start": 12625.84, + "end": 12628.38, + "probability": 0.6252 + }, + { + "start": 12640.74, + "end": 12640.92, + "probability": 0.3594 + }, + { + "start": 12645.34, + "end": 12646.22, + "probability": 0.2044 + }, + { + "start": 12646.68, + "end": 12650.22, + "probability": 0.0375 + }, + { + "start": 12650.76, + "end": 12652.3, + "probability": 0.2671 + }, + { + "start": 12653.93, + "end": 12655.92, + "probability": 0.0229 + }, + { + "start": 12655.92, + "end": 12656.08, + "probability": 0.0759 + }, + { + "start": 12656.62, + "end": 12659.98, + "probability": 0.1396 + }, + { + "start": 12659.98, + "end": 12660.26, + "probability": 0.0557 + }, + { + "start": 12660.26, + "end": 12660.56, + "probability": 0.0638 + }, + { + "start": 12660.56, + "end": 12660.66, + "probability": 0.0823 + }, + { + "start": 12660.66, + "end": 12661.1, + "probability": 0.0306 + }, + { + "start": 12663.22, + "end": 12667.42, + "probability": 0.1036 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12726.0, + "end": 12726.0, + "probability": 0.0 + }, + { + "start": 12734.02, + "end": 12735.72, + "probability": 0.0458 + }, + { + "start": 12738.4, + "end": 12739.72, + "probability": 0.1192 + }, + { + "start": 12740.42, + "end": 12740.56, + "probability": 0.0619 + }, + { + "start": 12740.56, + "end": 12740.56, + "probability": 0.0295 + }, + { + "start": 12740.56, + "end": 12746.4, + "probability": 0.0898 + }, + { + "start": 12750.12, + "end": 12753.14, + "probability": 0.1859 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.0, + "end": 12857.0, + "probability": 0.0 + }, + { + "start": 12857.02, + "end": 12858.96, + "probability": 0.7398 + }, + { + "start": 12859.06, + "end": 12862.0, + "probability": 0.8548 + }, + { + "start": 12862.29, + "end": 12863.92, + "probability": 0.6724 + }, + { + "start": 12864.04, + "end": 12866.16, + "probability": 0.9276 + }, + { + "start": 12866.5, + "end": 12867.94, + "probability": 0.974 + }, + { + "start": 12868.81, + "end": 12870.57, + "probability": 0.5122 + }, + { + "start": 12870.98, + "end": 12871.89, + "probability": 0.9946 + }, + { + "start": 12872.18, + "end": 12873.62, + "probability": 0.9015 + }, + { + "start": 12873.8, + "end": 12874.16, + "probability": 0.7938 + }, + { + "start": 12874.4, + "end": 12875.8, + "probability": 0.7947 + }, + { + "start": 12877.12, + "end": 12881.86, + "probability": 0.6665 + }, + { + "start": 12891.56, + "end": 12893.78, + "probability": 0.7764 + }, + { + "start": 12894.92, + "end": 12896.8, + "probability": 0.6741 + }, + { + "start": 12897.34, + "end": 12901.4, + "probability": 0.955 + }, + { + "start": 12902.3, + "end": 12905.34, + "probability": 0.9985 + }, + { + "start": 12905.94, + "end": 12908.28, + "probability": 0.9561 + }, + { + "start": 12908.85, + "end": 12911.02, + "probability": 0.9957 + }, + { + "start": 12911.52, + "end": 12913.38, + "probability": 0.7008 + }, + { + "start": 12913.46, + "end": 12921.0, + "probability": 0.9935 + }, + { + "start": 12921.42, + "end": 12922.83, + "probability": 0.9983 + }, + { + "start": 12923.28, + "end": 12929.28, + "probability": 0.9982 + }, + { + "start": 12929.51, + "end": 12933.02, + "probability": 0.9976 + }, + { + "start": 12933.2, + "end": 12938.42, + "probability": 0.999 + }, + { + "start": 12938.48, + "end": 12944.66, + "probability": 0.883 + }, + { + "start": 12945.35, + "end": 12945.93, + "probability": 0.1881 + }, + { + "start": 12946.82, + "end": 12948.0, + "probability": 0.1825 + }, + { + "start": 12948.0, + "end": 12948.0, + "probability": 0.1512 + }, + { + "start": 12948.0, + "end": 12948.34, + "probability": 0.6076 + }, + { + "start": 12948.54, + "end": 12950.72, + "probability": 0.9773 + }, + { + "start": 12950.74, + "end": 12953.1, + "probability": 0.9542 + }, + { + "start": 12953.34, + "end": 12955.22, + "probability": 0.8446 + }, + { + "start": 12957.26, + "end": 12958.72, + "probability": 0.5229 + }, + { + "start": 12958.8, + "end": 12959.26, + "probability": 0.2966 + }, + { + "start": 12959.26, + "end": 12963.46, + "probability": 0.9902 + }, + { + "start": 12963.9, + "end": 12964.6, + "probability": 0.7691 + }, + { + "start": 12964.68, + "end": 12966.74, + "probability": 0.7424 + }, + { + "start": 12966.78, + "end": 12973.46, + "probability": 0.9307 + }, + { + "start": 12973.64, + "end": 12975.1, + "probability": 0.9627 + }, + { + "start": 12975.2, + "end": 12976.39, + "probability": 0.986 + }, + { + "start": 12976.9, + "end": 12978.16, + "probability": 0.9793 + }, + { + "start": 12979.28, + "end": 12983.54, + "probability": 0.9703 + }, + { + "start": 12984.16, + "end": 12985.5, + "probability": 0.9363 + }, + { + "start": 12985.7, + "end": 12988.43, + "probability": 0.8721 + }, + { + "start": 12989.24, + "end": 12991.12, + "probability": 0.9371 + }, + { + "start": 12991.82, + "end": 12994.36, + "probability": 0.9941 + }, + { + "start": 12994.44, + "end": 12996.16, + "probability": 0.9201 + }, + { + "start": 12996.18, + "end": 12999.14, + "probability": 0.9968 + }, + { + "start": 13000.14, + "end": 13002.92, + "probability": 0.9912 + }, + { + "start": 13003.82, + "end": 13004.28, + "probability": 0.9862 + }, + { + "start": 13005.56, + "end": 13006.96, + "probability": 0.7243 + }, + { + "start": 13007.04, + "end": 13008.68, + "probability": 0.9932 + }, + { + "start": 13008.74, + "end": 13010.04, + "probability": 0.9448 + }, + { + "start": 13010.44, + "end": 13014.06, + "probability": 0.9976 + }, + { + "start": 13015.04, + "end": 13017.14, + "probability": 0.3515 + }, + { + "start": 13017.28, + "end": 13019.21, + "probability": 0.9702 + }, + { + "start": 13019.36, + "end": 13021.08, + "probability": 0.192 + }, + { + "start": 13021.08, + "end": 13021.4, + "probability": 0.6847 + }, + { + "start": 13021.5, + "end": 13024.88, + "probability": 0.6624 + }, + { + "start": 13025.0, + "end": 13025.98, + "probability": 0.4376 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.0, + "end": 13026.0, + "probability": 0.0 + }, + { + "start": 13026.68, + "end": 13027.53, + "probability": 0.3212 + }, + { + "start": 13028.9, + "end": 13031.24, + "probability": 0.7512 + }, + { + "start": 13031.57, + "end": 13034.84, + "probability": 0.8791 + }, + { + "start": 13035.2, + "end": 13038.56, + "probability": 0.0922 + }, + { + "start": 13045.84, + "end": 13045.94, + "probability": 0.0617 + }, + { + "start": 13045.94, + "end": 13045.94, + "probability": 0.0367 + }, + { + "start": 13045.94, + "end": 13046.28, + "probability": 0.0076 + }, + { + "start": 13046.28, + "end": 13049.14, + "probability": 0.3939 + }, + { + "start": 13063.64, + "end": 13068.94, + "probability": 0.3246 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13194.08, + "end": 13194.24, + "probability": 0.0341 + }, + { + "start": 13194.36, + "end": 13197.22, + "probability": 0.7507 + }, + { + "start": 13198.18, + "end": 13200.98, + "probability": 0.6431 + }, + { + "start": 13201.18, + "end": 13201.96, + "probability": 0.7682 + }, + { + "start": 13202.08, + "end": 13203.68, + "probability": 0.9706 + }, + { + "start": 13203.74, + "end": 13204.4, + "probability": 0.94 + }, + { + "start": 13204.82, + "end": 13206.22, + "probability": 0.8757 + }, + { + "start": 13206.66, + "end": 13209.02, + "probability": 0.95 + }, + { + "start": 13209.1, + "end": 13211.24, + "probability": 0.9023 + }, + { + "start": 13211.72, + "end": 13213.34, + "probability": 0.7229 + }, + { + "start": 13214.32, + "end": 13217.76, + "probability": 0.9929 + }, + { + "start": 13218.34, + "end": 13219.22, + "probability": 0.7349 + }, + { + "start": 13219.3, + "end": 13222.34, + "probability": 0.9651 + }, + { + "start": 13222.6, + "end": 13224.24, + "probability": 0.4182 + }, + { + "start": 13224.28, + "end": 13227.12, + "probability": 0.7867 + }, + { + "start": 13227.26, + "end": 13228.92, + "probability": 0.998 + }, + { + "start": 13229.32, + "end": 13230.9, + "probability": 0.8341 + }, + { + "start": 13231.04, + "end": 13232.26, + "probability": 0.2289 + }, + { + "start": 13233.36, + "end": 13236.22, + "probability": 0.9093 + }, + { + "start": 13236.24, + "end": 13237.78, + "probability": 0.5155 + }, + { + "start": 13237.78, + "end": 13239.36, + "probability": 0.9536 + }, + { + "start": 13239.38, + "end": 13240.56, + "probability": 0.9159 + }, + { + "start": 13240.9, + "end": 13243.22, + "probability": 0.6358 + }, + { + "start": 13243.28, + "end": 13244.1, + "probability": 0.7273 + }, + { + "start": 13244.12, + "end": 13246.09, + "probability": 0.8864 + }, + { + "start": 13246.72, + "end": 13247.1, + "probability": 0.0937 + }, + { + "start": 13247.87, + "end": 13249.92, + "probability": 0.7039 + }, + { + "start": 13249.94, + "end": 13251.04, + "probability": 0.8079 + }, + { + "start": 13251.04, + "end": 13254.0, + "probability": 0.7286 + }, + { + "start": 13255.48, + "end": 13263.0, + "probability": 0.9485 + }, + { + "start": 13263.16, + "end": 13264.16, + "probability": 0.8657 + }, + { + "start": 13264.52, + "end": 13268.37, + "probability": 0.9958 + }, + { + "start": 13268.7, + "end": 13269.54, + "probability": 0.7303 + }, + { + "start": 13270.26, + "end": 13275.06, + "probability": 0.885 + }, + { + "start": 13275.62, + "end": 13275.62, + "probability": 0.5785 + }, + { + "start": 13275.62, + "end": 13279.76, + "probability": 0.8289 + }, + { + "start": 13279.76, + "end": 13284.34, + "probability": 0.9956 + }, + { + "start": 13284.78, + "end": 13287.94, + "probability": 0.984 + }, + { + "start": 13288.18, + "end": 13289.62, + "probability": 0.8258 + }, + { + "start": 13290.06, + "end": 13292.2, + "probability": 0.5386 + }, + { + "start": 13293.4, + "end": 13294.28, + "probability": 0.7306 + }, + { + "start": 13294.42, + "end": 13295.54, + "probability": 0.8545 + }, + { + "start": 13295.76, + "end": 13299.64, + "probability": 0.9875 + }, + { + "start": 13299.64, + "end": 13304.64, + "probability": 0.8578 + }, + { + "start": 13304.86, + "end": 13311.0, + "probability": 0.825 + }, + { + "start": 13311.5, + "end": 13312.84, + "probability": 0.7816 + }, + { + "start": 13313.22, + "end": 13316.04, + "probability": 0.9948 + }, + { + "start": 13316.04, + "end": 13323.66, + "probability": 0.9863 + }, + { + "start": 13324.1, + "end": 13327.4, + "probability": 0.9919 + }, + { + "start": 13327.9, + "end": 13327.9, + "probability": 0.5054 + }, + { + "start": 13327.9, + "end": 13336.36, + "probability": 0.9235 + }, + { + "start": 13336.84, + "end": 13338.32, + "probability": 0.8862 + }, + { + "start": 13338.9, + "end": 13342.72, + "probability": 0.9591 + }, + { + "start": 13343.1, + "end": 13343.8, + "probability": 0.9707 + }, + { + "start": 13343.92, + "end": 13344.76, + "probability": 0.8805 + }, + { + "start": 13345.16, + "end": 13349.74, + "probability": 0.9966 + }, + { + "start": 13350.74, + "end": 13351.8, + "probability": 0.9104 + }, + { + "start": 13352.12, + "end": 13354.06, + "probability": 0.8059 + }, + { + "start": 13354.24, + "end": 13356.88, + "probability": 0.9813 + }, + { + "start": 13357.4, + "end": 13359.96, + "probability": 0.9989 + }, + { + "start": 13360.4, + "end": 13363.2, + "probability": 0.9907 + }, + { + "start": 13363.2, + "end": 13367.1, + "probability": 0.9989 + }, + { + "start": 13367.58, + "end": 13369.08, + "probability": 0.9298 + }, + { + "start": 13369.48, + "end": 13371.32, + "probability": 0.6507 + }, + { + "start": 13371.68, + "end": 13375.4, + "probability": 0.8873 + }, + { + "start": 13375.9, + "end": 13376.58, + "probability": 0.9535 + }, + { + "start": 13376.96, + "end": 13377.8, + "probability": 0.7246 + }, + { + "start": 13377.9, + "end": 13380.22, + "probability": 0.5837 + }, + { + "start": 13380.36, + "end": 13380.36, + "probability": 0.2437 + }, + { + "start": 13380.36, + "end": 13381.04, + "probability": 0.6687 + }, + { + "start": 13381.18, + "end": 13381.64, + "probability": 0.6395 + }, + { + "start": 13381.94, + "end": 13385.84, + "probability": 0.9816 + }, + { + "start": 13386.36, + "end": 13389.42, + "probability": 0.9981 + }, + { + "start": 13389.96, + "end": 13393.4, + "probability": 0.9226 + }, + { + "start": 13394.02, + "end": 13398.38, + "probability": 0.9946 + }, + { + "start": 13398.94, + "end": 13401.8, + "probability": 0.9267 + }, + { + "start": 13401.8, + "end": 13403.98, + "probability": 0.9606 + }, + { + "start": 13404.16, + "end": 13405.02, + "probability": 0.8586 + }, + { + "start": 13405.58, + "end": 13407.34, + "probability": 0.7917 + }, + { + "start": 13407.42, + "end": 13410.74, + "probability": 0.0759 + }, + { + "start": 13410.74, + "end": 13411.48, + "probability": 0.1938 + }, + { + "start": 13411.61, + "end": 13416.66, + "probability": 0.2182 + }, + { + "start": 13416.66, + "end": 13417.24, + "probability": 0.4787 + }, + { + "start": 13417.24, + "end": 13420.52, + "probability": 0.2906 + }, + { + "start": 13420.64, + "end": 13422.8, + "probability": 0.9221 + }, + { + "start": 13422.88, + "end": 13423.44, + "probability": 0.2594 + }, + { + "start": 13423.78, + "end": 13424.72, + "probability": 0.7444 + }, + { + "start": 13424.82, + "end": 13426.55, + "probability": 0.487 + }, + { + "start": 13428.86, + "end": 13430.5, + "probability": 0.4872 + }, + { + "start": 13430.54, + "end": 13431.52, + "probability": 0.6216 + }, + { + "start": 13431.6, + "end": 13433.68, + "probability": 0.946 + }, + { + "start": 13443.48, + "end": 13445.4, + "probability": 0.3659 + }, + { + "start": 13445.5, + "end": 13446.67, + "probability": 0.5576 + }, + { + "start": 13446.98, + "end": 13449.32, + "probability": 0.7241 + }, + { + "start": 13449.58, + "end": 13450.02, + "probability": 0.316 + }, + { + "start": 13450.86, + "end": 13454.1, + "probability": 0.8375 + }, + { + "start": 13455.38, + "end": 13458.48, + "probability": 0.8173 + }, + { + "start": 13458.6, + "end": 13460.2, + "probability": 0.7581 + }, + { + "start": 13460.64, + "end": 13462.36, + "probability": 0.8613 + }, + { + "start": 13462.44, + "end": 13466.14, + "probability": 0.7806 + }, + { + "start": 13466.38, + "end": 13473.34, + "probability": 0.9937 + }, + { + "start": 13473.34, + "end": 13479.48, + "probability": 0.9961 + }, + { + "start": 13479.94, + "end": 13480.82, + "probability": 0.7553 + }, + { + "start": 13480.94, + "end": 13486.48, + "probability": 0.993 + }, + { + "start": 13486.48, + "end": 13493.3, + "probability": 0.9961 + }, + { + "start": 13493.72, + "end": 13495.12, + "probability": 0.8113 + }, + { + "start": 13495.72, + "end": 13496.76, + "probability": 0.6284 + }, + { + "start": 13497.6, + "end": 13504.18, + "probability": 0.988 + }, + { + "start": 13504.64, + "end": 13505.44, + "probability": 0.7715 + }, + { + "start": 13505.92, + "end": 13507.04, + "probability": 0.7247 + }, + { + "start": 13507.82, + "end": 13508.64, + "probability": 0.8787 + }, + { + "start": 13509.32, + "end": 13511.44, + "probability": 0.7691 + }, + { + "start": 13511.5, + "end": 13519.64, + "probability": 0.9924 + }, + { + "start": 13520.16, + "end": 13524.14, + "probability": 0.974 + }, + { + "start": 13524.88, + "end": 13527.98, + "probability": 0.9906 + }, + { + "start": 13528.52, + "end": 13532.2, + "probability": 0.8211 + }, + { + "start": 13532.6, + "end": 13533.66, + "probability": 0.544 + }, + { + "start": 13533.72, + "end": 13537.74, + "probability": 0.9559 + }, + { + "start": 13538.16, + "end": 13541.46, + "probability": 0.8728 + }, + { + "start": 13541.96, + "end": 13546.08, + "probability": 0.9927 + }, + { + "start": 13546.76, + "end": 13550.4, + "probability": 0.9547 + }, + { + "start": 13550.96, + "end": 13554.92, + "probability": 0.9872 + }, + { + "start": 13555.62, + "end": 13556.94, + "probability": 0.6781 + }, + { + "start": 13557.16, + "end": 13558.41, + "probability": 0.9673 + }, + { + "start": 13558.8, + "end": 13560.28, + "probability": 0.9897 + }, + { + "start": 13560.4, + "end": 13560.9, + "probability": 0.3878 + }, + { + "start": 13560.94, + "end": 13561.14, + "probability": 0.7371 + }, + { + "start": 13561.14, + "end": 13561.24, + "probability": 0.0274 + }, + { + "start": 13561.88, + "end": 13564.44, + "probability": 0.8979 + }, + { + "start": 13564.48, + "end": 13567.56, + "probability": 0.9893 + }, + { + "start": 13568.24, + "end": 13571.84, + "probability": 0.7607 + }, + { + "start": 13572.96, + "end": 13576.18, + "probability": 0.9092 + }, + { + "start": 13576.78, + "end": 13579.46, + "probability": 0.9985 + }, + { + "start": 13580.2, + "end": 13585.88, + "probability": 0.9947 + }, + { + "start": 13586.0, + "end": 13592.2, + "probability": 0.9294 + }, + { + "start": 13592.78, + "end": 13597.76, + "probability": 0.9577 + }, + { + "start": 13598.6, + "end": 13600.2, + "probability": 0.7416 + }, + { + "start": 13600.46, + "end": 13602.29, + "probability": 0.9412 + }, + { + "start": 13602.48, + "end": 13608.8, + "probability": 0.988 + }, + { + "start": 13609.32, + "end": 13613.54, + "probability": 0.9976 + }, + { + "start": 13614.24, + "end": 13617.08, + "probability": 0.9806 + }, + { + "start": 13617.66, + "end": 13619.94, + "probability": 0.8703 + }, + { + "start": 13620.78, + "end": 13625.3, + "probability": 0.9945 + }, + { + "start": 13625.3, + "end": 13630.34, + "probability": 0.9907 + }, + { + "start": 13630.88, + "end": 13635.2, + "probability": 0.9963 + }, + { + "start": 13635.62, + "end": 13639.34, + "probability": 0.9859 + }, + { + "start": 13639.34, + "end": 13644.4, + "probability": 0.9868 + }, + { + "start": 13644.72, + "end": 13645.96, + "probability": 0.622 + }, + { + "start": 13646.98, + "end": 13647.38, + "probability": 0.1128 + }, + { + "start": 13647.38, + "end": 13648.08, + "probability": 0.5188 + }, + { + "start": 13648.76, + "end": 13649.5, + "probability": 0.5529 + }, + { + "start": 13649.56, + "end": 13651.14, + "probability": 0.8234 + }, + { + "start": 13651.94, + "end": 13653.46, + "probability": 0.3811 + }, + { + "start": 13653.98, + "end": 13654.36, + "probability": 0.8875 + }, + { + "start": 13655.38, + "end": 13656.16, + "probability": 0.5872 + }, + { + "start": 13657.92, + "end": 13658.46, + "probability": 0.2748 + }, + { + "start": 13658.8, + "end": 13659.3, + "probability": 0.8772 + }, + { + "start": 13659.56, + "end": 13660.8, + "probability": 0.2549 + }, + { + "start": 13661.86, + "end": 13666.98, + "probability": 0.55 + }, + { + "start": 13667.1, + "end": 13667.58, + "probability": 0.2361 + }, + { + "start": 13667.96, + "end": 13668.54, + "probability": 0.6376 + }, + { + "start": 13669.36, + "end": 13669.78, + "probability": 0.538 + }, + { + "start": 13672.28, + "end": 13674.8, + "probability": 0.9006 + }, + { + "start": 13694.48, + "end": 13695.96, + "probability": 0.5004 + }, + { + "start": 13696.16, + "end": 13698.02, + "probability": 0.6 + }, + { + "start": 13699.1, + "end": 13700.06, + "probability": 0.8086 + }, + { + "start": 13700.12, + "end": 13701.96, + "probability": 0.9941 + }, + { + "start": 13704.48, + "end": 13707.24, + "probability": 0.6678 + }, + { + "start": 13707.24, + "end": 13710.9, + "probability": 0.9624 + }, + { + "start": 13710.94, + "end": 13714.06, + "probability": 0.9879 + }, + { + "start": 13714.88, + "end": 13716.28, + "probability": 0.9095 + }, + { + "start": 13716.5, + "end": 13719.56, + "probability": 0.9987 + }, + { + "start": 13720.6, + "end": 13724.34, + "probability": 0.988 + }, + { + "start": 13724.8, + "end": 13725.88, + "probability": 0.9838 + }, + { + "start": 13726.02, + "end": 13727.9, + "probability": 0.8989 + }, + { + "start": 13728.48, + "end": 13731.32, + "probability": 0.9891 + }, + { + "start": 13732.48, + "end": 13734.26, + "probability": 0.7666 + }, + { + "start": 13734.92, + "end": 13735.12, + "probability": 0.2701 + }, + { + "start": 13735.2, + "end": 13736.92, + "probability": 0.9872 + }, + { + "start": 13737.02, + "end": 13739.62, + "probability": 0.9886 + }, + { + "start": 13740.28, + "end": 13741.96, + "probability": 0.8656 + }, + { + "start": 13742.04, + "end": 13742.26, + "probability": 0.8936 + }, + { + "start": 13742.32, + "end": 13745.78, + "probability": 0.9971 + }, + { + "start": 13749.48, + "end": 13753.58, + "probability": 0.7505 + }, + { + "start": 13753.62, + "end": 13756.78, + "probability": 0.7796 + }, + { + "start": 13756.78, + "end": 13758.28, + "probability": 0.9215 + }, + { + "start": 13761.18, + "end": 13761.34, + "probability": 0.0386 + }, + { + "start": 13763.02, + "end": 13764.52, + "probability": 0.026 + }, + { + "start": 13764.6, + "end": 13765.5, + "probability": 0.1616 + }, + { + "start": 13765.5, + "end": 13766.94, + "probability": 0.352 + }, + { + "start": 13771.6, + "end": 13773.04, + "probability": 0.3155 + }, + { + "start": 13773.74, + "end": 13778.1, + "probability": 0.537 + }, + { + "start": 13778.34, + "end": 13783.2, + "probability": 0.9932 + }, + { + "start": 13784.2, + "end": 13787.76, + "probability": 0.9444 + }, + { + "start": 13789.2, + "end": 13790.12, + "probability": 0.7169 + }, + { + "start": 13790.5, + "end": 13795.74, + "probability": 0.7548 + }, + { + "start": 13795.92, + "end": 13797.48, + "probability": 0.6858 + }, + { + "start": 13797.7, + "end": 13798.2, + "probability": 0.973 + }, + { + "start": 13798.3, + "end": 13798.6, + "probability": 0.8807 + }, + { + "start": 13798.66, + "end": 13801.12, + "probability": 0.8779 + }, + { + "start": 13801.56, + "end": 13806.94, + "probability": 0.9827 + }, + { + "start": 13807.5, + "end": 13808.94, + "probability": 0.9159 + }, + { + "start": 13809.16, + "end": 13810.26, + "probability": 0.9971 + }, + { + "start": 13810.34, + "end": 13810.94, + "probability": 0.8805 + }, + { + "start": 13811.02, + "end": 13811.94, + "probability": 0.5778 + }, + { + "start": 13812.38, + "end": 13812.86, + "probability": 0.9613 + }, + { + "start": 13813.08, + "end": 13813.74, + "probability": 0.9832 + }, + { + "start": 13814.7, + "end": 13817.7, + "probability": 0.8642 + }, + { + "start": 13818.34, + "end": 13819.34, + "probability": 0.6719 + }, + { + "start": 13819.4, + "end": 13821.78, + "probability": 0.9888 + }, + { + "start": 13821.9, + "end": 13824.98, + "probability": 0.9985 + }, + { + "start": 13825.04, + "end": 13825.98, + "probability": 0.9915 + }, + { + "start": 13826.84, + "end": 13830.56, + "probability": 0.9976 + }, + { + "start": 13830.9, + "end": 13831.84, + "probability": 0.9158 + }, + { + "start": 13832.08, + "end": 13836.84, + "probability": 0.9937 + }, + { + "start": 13836.84, + "end": 13840.44, + "probability": 0.9128 + }, + { + "start": 13840.52, + "end": 13842.09, + "probability": 0.99 + }, + { + "start": 13842.2, + "end": 13843.62, + "probability": 0.9851 + }, + { + "start": 13843.72, + "end": 13845.76, + "probability": 0.9342 + }, + { + "start": 13845.86, + "end": 13847.94, + "probability": 0.9958 + }, + { + "start": 13848.36, + "end": 13851.88, + "probability": 0.9992 + }, + { + "start": 13852.26, + "end": 13853.28, + "probability": 0.8442 + }, + { + "start": 13853.36, + "end": 13855.24, + "probability": 0.9829 + }, + { + "start": 13855.3, + "end": 13856.0, + "probability": 0.8317 + }, + { + "start": 13856.18, + "end": 13860.06, + "probability": 0.9653 + }, + { + "start": 13860.36, + "end": 13862.8, + "probability": 0.8492 + }, + { + "start": 13863.2, + "end": 13867.68, + "probability": 0.9687 + }, + { + "start": 13868.72, + "end": 13869.9, + "probability": 0.5358 + }, + { + "start": 13870.26, + "end": 13871.52, + "probability": 0.9702 + }, + { + "start": 13871.56, + "end": 13873.52, + "probability": 0.7878 + }, + { + "start": 13873.72, + "end": 13875.54, + "probability": 0.8343 + }, + { + "start": 13875.64, + "end": 13876.5, + "probability": 0.371 + }, + { + "start": 13876.56, + "end": 13877.94, + "probability": 0.8172 + }, + { + "start": 13878.82, + "end": 13880.74, + "probability": 0.8195 + }, + { + "start": 13881.98, + "end": 13886.41, + "probability": 0.9776 + }, + { + "start": 13887.46, + "end": 13888.62, + "probability": 0.8831 + }, + { + "start": 13888.86, + "end": 13892.94, + "probability": 0.9072 + }, + { + "start": 13892.98, + "end": 13896.56, + "probability": 0.9876 + }, + { + "start": 13896.56, + "end": 13900.56, + "probability": 0.9062 + }, + { + "start": 13900.88, + "end": 13902.42, + "probability": 0.8281 + }, + { + "start": 13902.96, + "end": 13904.98, + "probability": 0.7755 + }, + { + "start": 13905.1, + "end": 13908.12, + "probability": 0.6596 + }, + { + "start": 13908.18, + "end": 13908.84, + "probability": 0.4773 + }, + { + "start": 13908.9, + "end": 13911.24, + "probability": 0.8667 + }, + { + "start": 13911.9, + "end": 13913.83, + "probability": 0.5326 + }, + { + "start": 13914.98, + "end": 13914.98, + "probability": 0.0331 + }, + { + "start": 13914.98, + "end": 13917.62, + "probability": 0.9598 + }, + { + "start": 13918.02, + "end": 13918.4, + "probability": 0.9468 + }, + { + "start": 13918.5, + "end": 13919.42, + "probability": 0.9902 + }, + { + "start": 13919.58, + "end": 13920.05, + "probability": 0.8651 + }, + { + "start": 13920.72, + "end": 13920.86, + "probability": 0.7287 + }, + { + "start": 13920.96, + "end": 13922.14, + "probability": 0.9593 + }, + { + "start": 13922.28, + "end": 13924.0, + "probability": 0.6878 + }, + { + "start": 13924.08, + "end": 13924.92, + "probability": 0.7458 + }, + { + "start": 13925.56, + "end": 13928.16, + "probability": 0.7434 + }, + { + "start": 13929.12, + "end": 13930.96, + "probability": 0.6256 + }, + { + "start": 13932.2, + "end": 13935.64, + "probability": 0.6934 + }, + { + "start": 13936.54, + "end": 13939.02, + "probability": 0.811 + }, + { + "start": 13939.44, + "end": 13939.74, + "probability": 0.934 + }, + { + "start": 13940.12, + "end": 13941.18, + "probability": 0.8616 + }, + { + "start": 13941.32, + "end": 13945.16, + "probability": 0.9552 + }, + { + "start": 13945.16, + "end": 13947.76, + "probability": 0.9896 + }, + { + "start": 13948.4, + "end": 13949.24, + "probability": 0.7011 + }, + { + "start": 13949.78, + "end": 13951.3, + "probability": 0.5034 + }, + { + "start": 13951.44, + "end": 13956.57, + "probability": 0.7213 + }, + { + "start": 13957.54, + "end": 13960.8, + "probability": 0.7794 + }, + { + "start": 13961.36, + "end": 13964.68, + "probability": 0.6751 + }, + { + "start": 13965.5, + "end": 13966.4, + "probability": 0.9357 + }, + { + "start": 13966.4, + "end": 13968.06, + "probability": 0.9285 + }, + { + "start": 13968.72, + "end": 13971.18, + "probability": 0.8876 + }, + { + "start": 13971.9, + "end": 13972.82, + "probability": 0.9927 + }, + { + "start": 13973.86, + "end": 13976.44, + "probability": 0.8213 + }, + { + "start": 13977.3, + "end": 13981.22, + "probability": 0.6742 + }, + { + "start": 13981.26, + "end": 13982.58, + "probability": 0.9983 + }, + { + "start": 13982.7, + "end": 13985.28, + "probability": 0.9772 + }, + { + "start": 13985.62, + "end": 13987.3, + "probability": 0.9954 + }, + { + "start": 13987.48, + "end": 13988.41, + "probability": 0.6902 + }, + { + "start": 13989.62, + "end": 13990.3, + "probability": 0.543 + }, + { + "start": 13990.5, + "end": 13990.96, + "probability": 0.7987 + }, + { + "start": 13991.04, + "end": 13991.8, + "probability": 0.9786 + }, + { + "start": 13991.84, + "end": 13992.44, + "probability": 0.9511 + }, + { + "start": 13992.5, + "end": 13993.14, + "probability": 0.962 + }, + { + "start": 13994.34, + "end": 13997.56, + "probability": 0.9477 + }, + { + "start": 13997.64, + "end": 13998.26, + "probability": 0.8949 + }, + { + "start": 13998.26, + "end": 13998.72, + "probability": 0.7607 + }, + { + "start": 13998.74, + "end": 14000.18, + "probability": 0.6681 + }, + { + "start": 14000.38, + "end": 14003.1, + "probability": 0.9743 + }, + { + "start": 14003.2, + "end": 14004.7, + "probability": 0.8929 + }, + { + "start": 14004.78, + "end": 14008.14, + "probability": 0.9147 + }, + { + "start": 14008.48, + "end": 14009.56, + "probability": 0.538 + }, + { + "start": 14010.2, + "end": 14013.8, + "probability": 0.7742 + }, + { + "start": 14013.86, + "end": 14015.64, + "probability": 0.938 + }, + { + "start": 14017.08, + "end": 14018.66, + "probability": 0.9314 + }, + { + "start": 14018.7, + "end": 14020.2, + "probability": 0.9974 + }, + { + "start": 14021.24, + "end": 14022.32, + "probability": 0.8596 + }, + { + "start": 14022.32, + "end": 14024.38, + "probability": 0.9889 + }, + { + "start": 14026.7, + "end": 14028.24, + "probability": 0.6323 + }, + { + "start": 14028.34, + "end": 14029.16, + "probability": 0.209 + }, + { + "start": 14029.48, + "end": 14031.38, + "probability": 0.4861 + }, + { + "start": 14031.42, + "end": 14032.08, + "probability": 0.8057 + }, + { + "start": 14032.12, + "end": 14036.2, + "probability": 0.7275 + }, + { + "start": 14036.2, + "end": 14037.26, + "probability": 0.0562 + }, + { + "start": 14037.52, + "end": 14038.47, + "probability": 0.4113 + }, + { + "start": 14039.52, + "end": 14040.74, + "probability": 0.0573 + }, + { + "start": 14040.74, + "end": 14044.86, + "probability": 0.3813 + }, + { + "start": 14045.84, + "end": 14047.34, + "probability": 0.6867 + }, + { + "start": 14047.64, + "end": 14047.94, + "probability": 0.7909 + }, + { + "start": 14048.02, + "end": 14048.76, + "probability": 0.8467 + }, + { + "start": 14051.16, + "end": 14053.18, + "probability": 0.5009 + }, + { + "start": 14053.28, + "end": 14054.6, + "probability": 0.2745 + }, + { + "start": 14054.64, + "end": 14054.96, + "probability": 0.3082 + }, + { + "start": 14055.02, + "end": 14055.66, + "probability": 0.8903 + }, + { + "start": 14055.74, + "end": 14056.9, + "probability": 0.9834 + }, + { + "start": 14056.96, + "end": 14059.22, + "probability": 0.8689 + }, + { + "start": 14059.7, + "end": 14062.18, + "probability": 0.9945 + }, + { + "start": 14062.6, + "end": 14064.14, + "probability": 0.9567 + }, + { + "start": 14064.18, + "end": 14064.9, + "probability": 0.7563 + }, + { + "start": 14065.54, + "end": 14069.62, + "probability": 0.8888 + }, + { + "start": 14069.68, + "end": 14072.46, + "probability": 0.8767 + }, + { + "start": 14072.92, + "end": 14073.58, + "probability": 0.6986 + }, + { + "start": 14073.62, + "end": 14074.2, + "probability": 0.7192 + }, + { + "start": 14074.24, + "end": 14074.94, + "probability": 0.8018 + }, + { + "start": 14075.5, + "end": 14076.5, + "probability": 0.7766 + }, + { + "start": 14076.58, + "end": 14077.24, + "probability": 0.7379 + }, + { + "start": 14077.28, + "end": 14077.84, + "probability": 0.8951 + }, + { + "start": 14077.88, + "end": 14081.08, + "probability": 0.8182 + }, + { + "start": 14081.6, + "end": 14082.08, + "probability": 0.8652 + }, + { + "start": 14082.12, + "end": 14083.69, + "probability": 0.9692 + }, + { + "start": 14084.56, + "end": 14087.5, + "probability": 0.5903 + }, + { + "start": 14089.38, + "end": 14089.48, + "probability": 0.5675 + }, + { + "start": 14090.02, + "end": 14090.1, + "probability": 0.7996 + }, + { + "start": 14090.28, + "end": 14091.46, + "probability": 0.8053 + }, + { + "start": 14091.7, + "end": 14092.7, + "probability": 0.5032 + }, + { + "start": 14093.56, + "end": 14093.58, + "probability": 0.0416 + }, + { + "start": 14094.12, + "end": 14095.0, + "probability": 0.8472 + }, + { + "start": 14095.04, + "end": 14095.58, + "probability": 0.7282 + }, + { + "start": 14095.7, + "end": 14096.36, + "probability": 0.7278 + }, + { + "start": 14096.78, + "end": 14099.7, + "probability": 0.9344 + }, + { + "start": 14099.88, + "end": 14101.72, + "probability": 0.597 + }, + { + "start": 14101.98, + "end": 14102.74, + "probability": 0.9785 + }, + { + "start": 14103.22, + "end": 14107.46, + "probability": 0.7166 + }, + { + "start": 14107.66, + "end": 14110.84, + "probability": 0.8137 + }, + { + "start": 14111.5, + "end": 14112.98, + "probability": 0.9597 + }, + { + "start": 14113.5, + "end": 14115.94, + "probability": 0.7931 + }, + { + "start": 14116.14, + "end": 14118.52, + "probability": 0.949 + }, + { + "start": 14118.58, + "end": 14121.92, + "probability": 0.9952 + }, + { + "start": 14122.06, + "end": 14124.54, + "probability": 0.9719 + }, + { + "start": 14124.78, + "end": 14125.44, + "probability": 0.332 + }, + { + "start": 14125.98, + "end": 14127.78, + "probability": 0.9774 + }, + { + "start": 14127.92, + "end": 14129.44, + "probability": 0.7505 + }, + { + "start": 14129.78, + "end": 14130.24, + "probability": 0.7915 + }, + { + "start": 14130.32, + "end": 14130.76, + "probability": 0.839 + }, + { + "start": 14131.02, + "end": 14131.68, + "probability": 0.7369 + }, + { + "start": 14131.78, + "end": 14133.36, + "probability": 0.9965 + }, + { + "start": 14133.36, + "end": 14136.04, + "probability": 0.7555 + }, + { + "start": 14136.44, + "end": 14138.66, + "probability": 0.7627 + }, + { + "start": 14138.8, + "end": 14140.6, + "probability": 0.705 + }, + { + "start": 14140.84, + "end": 14141.98, + "probability": 0.8897 + }, + { + "start": 14142.04, + "end": 14143.98, + "probability": 0.8895 + }, + { + "start": 14144.48, + "end": 14146.96, + "probability": 0.9483 + }, + { + "start": 14147.18, + "end": 14148.22, + "probability": 0.5649 + }, + { + "start": 14148.28, + "end": 14149.04, + "probability": 0.9243 + }, + { + "start": 14149.48, + "end": 14150.74, + "probability": 0.9575 + }, + { + "start": 14150.82, + "end": 14151.52, + "probability": 0.9863 + }, + { + "start": 14151.8, + "end": 14152.68, + "probability": 0.9941 + }, + { + "start": 14152.78, + "end": 14154.74, + "probability": 0.9476 + }, + { + "start": 14155.0, + "end": 14155.98, + "probability": 0.9178 + }, + { + "start": 14156.28, + "end": 14158.35, + "probability": 0.9927 + }, + { + "start": 14159.36, + "end": 14161.15, + "probability": 0.9382 + }, + { + "start": 14161.74, + "end": 14162.32, + "probability": 0.6646 + }, + { + "start": 14164.27, + "end": 14167.46, + "probability": 0.9431 + }, + { + "start": 14168.7, + "end": 14171.28, + "probability": 0.8478 + }, + { + "start": 14172.2, + "end": 14176.22, + "probability": 0.7998 + }, + { + "start": 14177.04, + "end": 14177.88, + "probability": 0.295 + }, + { + "start": 14177.98, + "end": 14180.54, + "probability": 0.4179 + }, + { + "start": 14180.7, + "end": 14182.05, + "probability": 0.9384 + }, + { + "start": 14182.18, + "end": 14182.76, + "probability": 0.9218 + }, + { + "start": 14183.26, + "end": 14183.86, + "probability": 0.8567 + }, + { + "start": 14183.96, + "end": 14184.1, + "probability": 0.8068 + }, + { + "start": 14184.1, + "end": 14184.48, + "probability": 0.6096 + }, + { + "start": 14184.56, + "end": 14186.6, + "probability": 0.6571 + }, + { + "start": 14187.16, + "end": 14191.02, + "probability": 0.9714 + }, + { + "start": 14191.32, + "end": 14191.96, + "probability": 0.6777 + }, + { + "start": 14192.38, + "end": 14193.12, + "probability": 0.8802 + }, + { + "start": 14193.38, + "end": 14193.84, + "probability": 0.4824 + }, + { + "start": 14194.46, + "end": 14195.56, + "probability": 0.9966 + }, + { + "start": 14196.18, + "end": 14198.2, + "probability": 0.9839 + }, + { + "start": 14198.32, + "end": 14199.04, + "probability": 0.9941 + }, + { + "start": 14199.1, + "end": 14200.42, + "probability": 0.8017 + }, + { + "start": 14201.3, + "end": 14202.3, + "probability": 0.751 + }, + { + "start": 14203.8, + "end": 14204.93, + "probability": 0.9985 + }, + { + "start": 14206.62, + "end": 14208.55, + "probability": 0.8464 + }, + { + "start": 14209.06, + "end": 14211.74, + "probability": 0.9106 + }, + { + "start": 14211.74, + "end": 14212.02, + "probability": 0.1865 + }, + { + "start": 14212.7, + "end": 14214.5, + "probability": 0.9763 + }, + { + "start": 14214.58, + "end": 14216.58, + "probability": 0.9092 + }, + { + "start": 14217.28, + "end": 14218.24, + "probability": 0.7027 + }, + { + "start": 14219.2, + "end": 14222.62, + "probability": 0.6968 + }, + { + "start": 14223.48, + "end": 14225.88, + "probability": 0.9897 + }, + { + "start": 14226.7, + "end": 14227.02, + "probability": 0.3481 + }, + { + "start": 14227.42, + "end": 14231.62, + "probability": 0.8114 + }, + { + "start": 14231.68, + "end": 14233.82, + "probability": 0.9832 + }, + { + "start": 14234.0, + "end": 14234.2, + "probability": 0.6948 + }, + { + "start": 14234.2, + "end": 14234.62, + "probability": 0.256 + }, + { + "start": 14235.36, + "end": 14239.64, + "probability": 0.8799 + }, + { + "start": 14239.72, + "end": 14240.37, + "probability": 0.7139 + }, + { + "start": 14240.76, + "end": 14242.4, + "probability": 0.9544 + }, + { + "start": 14242.48, + "end": 14243.46, + "probability": 0.8928 + }, + { + "start": 14243.54, + "end": 14244.54, + "probability": 0.8215 + }, + { + "start": 14244.62, + "end": 14245.54, + "probability": 0.8738 + }, + { + "start": 14245.86, + "end": 14246.44, + "probability": 0.5538 + }, + { + "start": 14246.64, + "end": 14247.94, + "probability": 0.8667 + }, + { + "start": 14247.96, + "end": 14248.39, + "probability": 0.4177 + }, + { + "start": 14249.87, + "end": 14252.74, + "probability": 0.9486 + }, + { + "start": 14253.66, + "end": 14258.18, + "probability": 0.8091 + }, + { + "start": 14258.8, + "end": 14259.2, + "probability": 0.6033 + }, + { + "start": 14259.7, + "end": 14262.5, + "probability": 0.9976 + }, + { + "start": 14262.5, + "end": 14264.54, + "probability": 0.9949 + }, + { + "start": 14264.58, + "end": 14265.48, + "probability": 0.6994 + }, + { + "start": 14265.5, + "end": 14265.91, + "probability": 0.9153 + }, + { + "start": 14266.32, + "end": 14267.1, + "probability": 0.9023 + }, + { + "start": 14267.24, + "end": 14268.56, + "probability": 0.8389 + }, + { + "start": 14269.12, + "end": 14272.84, + "probability": 0.9504 + }, + { + "start": 14273.28, + "end": 14273.68, + "probability": 0.5328 + }, + { + "start": 14273.74, + "end": 14276.56, + "probability": 0.9438 + }, + { + "start": 14277.24, + "end": 14278.38, + "probability": 0.7699 + }, + { + "start": 14278.84, + "end": 14279.08, + "probability": 0.7346 + }, + { + "start": 14279.16, + "end": 14280.92, + "probability": 0.929 + }, + { + "start": 14281.64, + "end": 14285.12, + "probability": 0.9521 + }, + { + "start": 14285.26, + "end": 14287.16, + "probability": 0.9812 + }, + { + "start": 14288.26, + "end": 14289.98, + "probability": 0.9591 + }, + { + "start": 14291.16, + "end": 14292.9, + "probability": 0.8977 + }, + { + "start": 14294.3, + "end": 14296.38, + "probability": 0.8992 + }, + { + "start": 14297.4, + "end": 14298.52, + "probability": 0.9115 + }, + { + "start": 14298.62, + "end": 14299.98, + "probability": 0.9863 + }, + { + "start": 14300.62, + "end": 14304.32, + "probability": 0.9972 + }, + { + "start": 14305.14, + "end": 14305.76, + "probability": 0.9755 + }, + { + "start": 14305.86, + "end": 14307.14, + "probability": 0.1419 + }, + { + "start": 14308.4, + "end": 14309.22, + "probability": 0.9601 + }, + { + "start": 14309.36, + "end": 14313.62, + "probability": 0.1354 + }, + { + "start": 14313.66, + "end": 14314.8, + "probability": 0.5878 + }, + { + "start": 14315.9, + "end": 14319.04, + "probability": 0.4053 + }, + { + "start": 14319.52, + "end": 14322.44, + "probability": 0.1924 + }, + { + "start": 14322.44, + "end": 14326.08, + "probability": 0.0911 + }, + { + "start": 14326.36, + "end": 14330.78, + "probability": 0.0707 + }, + { + "start": 14330.94, + "end": 14331.38, + "probability": 0.1198 + }, + { + "start": 14331.66, + "end": 14332.26, + "probability": 0.5859 + }, + { + "start": 14332.34, + "end": 14333.94, + "probability": 0.917 + }, + { + "start": 14334.7, + "end": 14335.0, + "probability": 0.5404 + }, + { + "start": 14335.1, + "end": 14340.59, + "probability": 0.1979 + }, + { + "start": 14340.6, + "end": 14340.6, + "probability": 0.0703 + }, + { + "start": 14340.6, + "end": 14340.6, + "probability": 0.0288 + }, + { + "start": 14340.6, + "end": 14343.88, + "probability": 0.6552 + }, + { + "start": 14344.66, + "end": 14345.06, + "probability": 0.5946 + }, + { + "start": 14345.16, + "end": 14347.88, + "probability": 0.9592 + }, + { + "start": 14347.96, + "end": 14349.02, + "probability": 0.6547 + }, + { + "start": 14349.44, + "end": 14352.72, + "probability": 0.9931 + }, + { + "start": 14352.84, + "end": 14354.36, + "probability": 0.9906 + }, + { + "start": 14354.52, + "end": 14356.74, + "probability": 0.9622 + }, + { + "start": 14356.94, + "end": 14357.78, + "probability": 0.9303 + }, + { + "start": 14357.92, + "end": 14358.58, + "probability": 0.7828 + }, + { + "start": 14358.66, + "end": 14359.78, + "probability": 0.9963 + }, + { + "start": 14360.78, + "end": 14364.84, + "probability": 0.9965 + }, + { + "start": 14365.12, + "end": 14365.88, + "probability": 0.7007 + }, + { + "start": 14366.02, + "end": 14366.66, + "probability": 0.8368 + }, + { + "start": 14366.9, + "end": 14367.84, + "probability": 0.7075 + }, + { + "start": 14368.4, + "end": 14369.26, + "probability": 0.5233 + }, + { + "start": 14369.32, + "end": 14370.84, + "probability": 0.7296 + }, + { + "start": 14371.64, + "end": 14372.66, + "probability": 0.9951 + }, + { + "start": 14373.38, + "end": 14376.72, + "probability": 0.9792 + }, + { + "start": 14377.14, + "end": 14378.6, + "probability": 0.639 + }, + { + "start": 14378.66, + "end": 14380.14, + "probability": 0.8515 + }, + { + "start": 14380.82, + "end": 14381.52, + "probability": 0.8803 + }, + { + "start": 14381.58, + "end": 14382.61, + "probability": 0.9736 + }, + { + "start": 14382.78, + "end": 14383.76, + "probability": 0.9114 + }, + { + "start": 14383.94, + "end": 14384.8, + "probability": 0.7776 + }, + { + "start": 14384.92, + "end": 14385.3, + "probability": 0.5394 + }, + { + "start": 14385.4, + "end": 14385.78, + "probability": 0.5762 + }, + { + "start": 14386.28, + "end": 14387.04, + "probability": 0.9409 + }, + { + "start": 14387.48, + "end": 14390.08, + "probability": 0.9863 + }, + { + "start": 14390.18, + "end": 14392.72, + "probability": 0.972 + }, + { + "start": 14392.86, + "end": 14395.34, + "probability": 0.9387 + }, + { + "start": 14395.79, + "end": 14398.68, + "probability": 0.9764 + }, + { + "start": 14398.74, + "end": 14400.22, + "probability": 0.7972 + }, + { + "start": 14400.28, + "end": 14400.66, + "probability": 0.9278 + }, + { + "start": 14400.74, + "end": 14401.26, + "probability": 0.5613 + }, + { + "start": 14401.76, + "end": 14404.54, + "probability": 0.9958 + }, + { + "start": 14404.54, + "end": 14408.4, + "probability": 0.7891 + }, + { + "start": 14408.42, + "end": 14409.11, + "probability": 0.8132 + }, + { + "start": 14409.26, + "end": 14410.54, + "probability": 0.4294 + }, + { + "start": 14410.58, + "end": 14411.18, + "probability": 0.7213 + }, + { + "start": 14411.84, + "end": 14412.88, + "probability": 0.9917 + }, + { + "start": 14413.3, + "end": 14414.22, + "probability": 0.9222 + }, + { + "start": 14414.32, + "end": 14415.38, + "probability": 0.2152 + }, + { + "start": 14416.16, + "end": 14417.58, + "probability": 0.7505 + }, + { + "start": 14420.01, + "end": 14420.64, + "probability": 0.0443 + }, + { + "start": 14420.64, + "end": 14423.06, + "probability": 0.78 + }, + { + "start": 14423.22, + "end": 14424.98, + "probability": 0.7692 + }, + { + "start": 14425.84, + "end": 14428.36, + "probability": 0.7357 + }, + { + "start": 14429.16, + "end": 14429.62, + "probability": 0.9712 + }, + { + "start": 14430.52, + "end": 14433.66, + "probability": 0.9839 + }, + { + "start": 14433.74, + "end": 14437.32, + "probability": 0.9736 + }, + { + "start": 14437.44, + "end": 14437.92, + "probability": 0.7969 + }, + { + "start": 14438.56, + "end": 14439.5, + "probability": 0.889 + }, + { + "start": 14440.74, + "end": 14441.78, + "probability": 0.9148 + }, + { + "start": 14443.02, + "end": 14444.26, + "probability": 0.868 + }, + { + "start": 14444.58, + "end": 14446.74, + "probability": 0.8029 + }, + { + "start": 14447.46, + "end": 14449.98, + "probability": 0.6731 + }, + { + "start": 14450.12, + "end": 14450.84, + "probability": 0.7281 + }, + { + "start": 14450.92, + "end": 14451.4, + "probability": 0.8486 + }, + { + "start": 14451.44, + "end": 14453.44, + "probability": 0.9782 + }, + { + "start": 14453.44, + "end": 14454.56, + "probability": 0.6803 + }, + { + "start": 14455.14, + "end": 14456.9, + "probability": 0.9767 + }, + { + "start": 14457.62, + "end": 14458.78, + "probability": 0.9282 + }, + { + "start": 14458.96, + "end": 14461.06, + "probability": 0.0334 + }, + { + "start": 14461.1, + "end": 14461.8, + "probability": 0.3127 + }, + { + "start": 14462.7, + "end": 14464.56, + "probability": 0.6201 + }, + { + "start": 14464.56, + "end": 14467.72, + "probability": 0.0839 + }, + { + "start": 14470.54, + "end": 14471.04, + "probability": 0.0138 + }, + { + "start": 14471.04, + "end": 14471.32, + "probability": 0.3128 + }, + { + "start": 14471.32, + "end": 14471.32, + "probability": 0.017 + }, + { + "start": 14471.32, + "end": 14471.32, + "probability": 0.0816 + }, + { + "start": 14471.38, + "end": 14471.5, + "probability": 0.329 + }, + { + "start": 14471.5, + "end": 14471.6, + "probability": 0.0867 + }, + { + "start": 14471.68, + "end": 14475.4, + "probability": 0.9152 + }, + { + "start": 14475.46, + "end": 14477.55, + "probability": 0.9404 + }, + { + "start": 14478.36, + "end": 14478.91, + "probability": 0.723 + }, + { + "start": 14479.72, + "end": 14480.74, + "probability": 0.3586 + }, + { + "start": 14480.78, + "end": 14481.54, + "probability": 0.7696 + }, + { + "start": 14481.8, + "end": 14482.21, + "probability": 0.8267 + }, + { + "start": 14482.94, + "end": 14484.22, + "probability": 0.9616 + }, + { + "start": 14484.28, + "end": 14485.14, + "probability": 0.9751 + }, + { + "start": 14487.56, + "end": 14489.98, + "probability": 0.9803 + }, + { + "start": 14490.12, + "end": 14490.7, + "probability": 0.6067 + }, + { + "start": 14490.96, + "end": 14492.82, + "probability": 0.9822 + }, + { + "start": 14492.82, + "end": 14494.46, + "probability": 0.9934 + }, + { + "start": 14494.56, + "end": 14496.94, + "probability": 0.9017 + }, + { + "start": 14497.3, + "end": 14498.08, + "probability": 0.8462 + }, + { + "start": 14498.44, + "end": 14499.3, + "probability": 0.985 + }, + { + "start": 14499.4, + "end": 14499.7, + "probability": 0.813 + }, + { + "start": 14499.8, + "end": 14500.12, + "probability": 0.6031 + }, + { + "start": 14500.3, + "end": 14501.34, + "probability": 0.5808 + }, + { + "start": 14501.38, + "end": 14502.0, + "probability": 0.9893 + }, + { + "start": 14502.44, + "end": 14503.58, + "probability": 0.9218 + }, + { + "start": 14504.04, + "end": 14505.16, + "probability": 0.9912 + }, + { + "start": 14505.36, + "end": 14505.92, + "probability": 0.9937 + }, + { + "start": 14507.02, + "end": 14507.82, + "probability": 0.4995 + }, + { + "start": 14507.88, + "end": 14508.32, + "probability": 0.8553 + }, + { + "start": 14508.98, + "end": 14510.38, + "probability": 0.919 + }, + { + "start": 14511.62, + "end": 14512.88, + "probability": 0.522 + }, + { + "start": 14513.02, + "end": 14513.64, + "probability": 0.8158 + }, + { + "start": 14514.46, + "end": 14514.88, + "probability": 0.8234 + }, + { + "start": 14514.94, + "end": 14517.8, + "probability": 0.9871 + }, + { + "start": 14518.22, + "end": 14519.78, + "probability": 0.9901 + }, + { + "start": 14519.84, + "end": 14520.4, + "probability": 0.9927 + }, + { + "start": 14520.5, + "end": 14522.34, + "probability": 0.9248 + }, + { + "start": 14522.44, + "end": 14522.58, + "probability": 0.3199 + }, + { + "start": 14522.66, + "end": 14522.92, + "probability": 0.5303 + }, + { + "start": 14522.94, + "end": 14524.06, + "probability": 0.8988 + }, + { + "start": 14524.14, + "end": 14526.42, + "probability": 0.988 + }, + { + "start": 14526.82, + "end": 14529.12, + "probability": 0.9836 + }, + { + "start": 14529.12, + "end": 14531.6, + "probability": 0.8943 + }, + { + "start": 14531.6, + "end": 14531.96, + "probability": 0.4695 + }, + { + "start": 14532.16, + "end": 14536.22, + "probability": 0.9912 + }, + { + "start": 14536.8, + "end": 14539.54, + "probability": 0.9795 + }, + { + "start": 14540.56, + "end": 14542.08, + "probability": 0.6335 + }, + { + "start": 14542.72, + "end": 14543.62, + "probability": 0.6608 + }, + { + "start": 14543.76, + "end": 14543.92, + "probability": 0.8141 + }, + { + "start": 14544.08, + "end": 14544.46, + "probability": 0.6087 + }, + { + "start": 14544.52, + "end": 14546.24, + "probability": 0.9915 + }, + { + "start": 14546.7, + "end": 14547.6, + "probability": 0.6573 + }, + { + "start": 14547.68, + "end": 14551.52, + "probability": 0.8062 + }, + { + "start": 14552.04, + "end": 14553.32, + "probability": 0.5948 + }, + { + "start": 14553.38, + "end": 14553.92, + "probability": 0.5845 + }, + { + "start": 14554.26, + "end": 14555.44, + "probability": 0.9762 + }, + { + "start": 14555.7, + "end": 14556.32, + "probability": 0.8732 + }, + { + "start": 14556.46, + "end": 14557.46, + "probability": 0.8652 + }, + { + "start": 14557.52, + "end": 14557.98, + "probability": 0.8574 + }, + { + "start": 14558.48, + "end": 14561.14, + "probability": 0.902 + }, + { + "start": 14561.28, + "end": 14561.68, + "probability": 0.7411 + }, + { + "start": 14562.26, + "end": 14564.68, + "probability": 0.9894 + }, + { + "start": 14564.68, + "end": 14567.46, + "probability": 0.921 + }, + { + "start": 14567.52, + "end": 14568.02, + "probability": 0.9309 + }, + { + "start": 14568.38, + "end": 14570.1, + "probability": 0.7855 + }, + { + "start": 14570.66, + "end": 14571.2, + "probability": 0.921 + }, + { + "start": 14571.24, + "end": 14571.96, + "probability": 0.9236 + }, + { + "start": 14572.46, + "end": 14573.71, + "probability": 0.8542 + }, + { + "start": 14574.36, + "end": 14576.06, + "probability": 0.9335 + }, + { + "start": 14576.7, + "end": 14577.88, + "probability": 0.9397 + }, + { + "start": 14578.9, + "end": 14579.76, + "probability": 0.9791 + }, + { + "start": 14580.4, + "end": 14580.4, + "probability": 0.0225 + }, + { + "start": 14580.4, + "end": 14581.2, + "probability": 0.6433 + }, + { + "start": 14581.86, + "end": 14584.76, + "probability": 0.5146 + }, + { + "start": 14585.02, + "end": 14588.48, + "probability": 0.9563 + }, + { + "start": 14588.6, + "end": 14589.4, + "probability": 0.6626 + }, + { + "start": 14589.92, + "end": 14591.94, + "probability": 0.9961 + }, + { + "start": 14592.74, + "end": 14593.55, + "probability": 0.981 + }, + { + "start": 14594.2, + "end": 14594.82, + "probability": 0.9985 + }, + { + "start": 14595.12, + "end": 14597.28, + "probability": 0.9796 + }, + { + "start": 14597.28, + "end": 14599.98, + "probability": 0.9893 + }, + { + "start": 14599.98, + "end": 14602.38, + "probability": 0.9906 + }, + { + "start": 14603.22, + "end": 14604.78, + "probability": 0.7063 + }, + { + "start": 14604.88, + "end": 14607.1, + "probability": 0.8189 + }, + { + "start": 14607.16, + "end": 14607.38, + "probability": 0.2378 + }, + { + "start": 14607.58, + "end": 14607.88, + "probability": 0.6931 + }, + { + "start": 14608.14, + "end": 14609.62, + "probability": 0.9452 + }, + { + "start": 14609.64, + "end": 14610.26, + "probability": 0.7444 + }, + { + "start": 14610.26, + "end": 14610.7, + "probability": 0.8237 + }, + { + "start": 14610.76, + "end": 14611.24, + "probability": 0.937 + }, + { + "start": 14612.76, + "end": 14614.05, + "probability": 0.9539 + }, + { + "start": 14614.12, + "end": 14615.92, + "probability": 0.9688 + }, + { + "start": 14616.16, + "end": 14616.94, + "probability": 0.8553 + }, + { + "start": 14617.02, + "end": 14617.42, + "probability": 0.7441 + }, + { + "start": 14617.48, + "end": 14618.66, + "probability": 0.9403 + }, + { + "start": 14618.78, + "end": 14619.48, + "probability": 0.9902 + }, + { + "start": 14619.7, + "end": 14620.38, + "probability": 0.9365 + }, + { + "start": 14620.6, + "end": 14621.4, + "probability": 0.7425 + }, + { + "start": 14621.5, + "end": 14621.9, + "probability": 0.678 + }, + { + "start": 14622.14, + "end": 14622.88, + "probability": 0.6887 + }, + { + "start": 14622.94, + "end": 14625.14, + "probability": 0.9581 + }, + { + "start": 14625.16, + "end": 14625.84, + "probability": 0.8323 + }, + { + "start": 14625.92, + "end": 14626.5, + "probability": 0.8072 + }, + { + "start": 14627.22, + "end": 14627.92, + "probability": 0.8725 + }, + { + "start": 14628.8, + "end": 14631.0, + "probability": 0.6705 + }, + { + "start": 14631.36, + "end": 14632.88, + "probability": 0.8581 + }, + { + "start": 14633.42, + "end": 14634.14, + "probability": 0.9592 + }, + { + "start": 14634.76, + "end": 14634.92, + "probability": 0.9194 + }, + { + "start": 14634.98, + "end": 14638.32, + "probability": 0.9928 + }, + { + "start": 14639.04, + "end": 14639.52, + "probability": 0.7328 + }, + { + "start": 14639.52, + "end": 14641.28, + "probability": 0.7869 + }, + { + "start": 14641.4, + "end": 14642.6, + "probability": 0.889 + }, + { + "start": 14642.84, + "end": 14644.02, + "probability": 0.7195 + }, + { + "start": 14644.02, + "end": 14646.76, + "probability": 0.9723 + }, + { + "start": 14647.24, + "end": 14652.72, + "probability": 0.0277 + }, + { + "start": 14652.72, + "end": 14652.72, + "probability": 0.0858 + }, + { + "start": 14652.72, + "end": 14652.72, + "probability": 0.0356 + }, + { + "start": 14652.72, + "end": 14652.72, + "probability": 0.04 + }, + { + "start": 14652.72, + "end": 14654.46, + "probability": 0.5431 + }, + { + "start": 14656.86, + "end": 14658.2, + "probability": 0.0611 + }, + { + "start": 14658.22, + "end": 14660.26, + "probability": 0.3212 + }, + { + "start": 14660.48, + "end": 14663.3, + "probability": 0.2937 + }, + { + "start": 14663.98, + "end": 14673.2, + "probability": 0.6 + }, + { + "start": 14676.44, + "end": 14680.36, + "probability": 0.0095 + }, + { + "start": 14681.06, + "end": 14684.7, + "probability": 0.1155 + }, + { + "start": 14684.7, + "end": 14685.86, + "probability": 0.0902 + }, + { + "start": 14688.38, + "end": 14688.48, + "probability": 0.1827 + }, + { + "start": 14691.9, + "end": 14694.56, + "probability": 0.0528 + }, + { + "start": 14694.56, + "end": 14700.78, + "probability": 0.0344 + }, + { + "start": 14701.56, + "end": 14707.64, + "probability": 0.0249 + }, + { + "start": 14707.66, + "end": 14708.02, + "probability": 0.3176 + }, + { + "start": 14708.14, + "end": 14708.9, + "probability": 0.0376 + }, + { + "start": 14709.06, + "end": 14710.38, + "probability": 0.0807 + }, + { + "start": 14710.38, + "end": 14711.44, + "probability": 0.0301 + }, + { + "start": 14711.44, + "end": 14711.66, + "probability": 0.0505 + }, + { + "start": 14711.78, + "end": 14711.78, + "probability": 0.0517 + }, + { + "start": 14711.78, + "end": 14711.86, + "probability": 0.163 + }, + { + "start": 14711.86, + "end": 14711.96, + "probability": 0.0308 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.0, + "end": 14712.0, + "probability": 0.0 + }, + { + "start": 14712.16, + "end": 14712.46, + "probability": 0.0978 + }, + { + "start": 14713.8, + "end": 14716.24, + "probability": 0.3141 + }, + { + "start": 14716.24, + "end": 14716.92, + "probability": 0.0319 + }, + { + "start": 14719.86, + "end": 14722.68, + "probability": 0.817 + }, + { + "start": 14722.68, + "end": 14723.06, + "probability": 0.6875 + }, + { + "start": 14724.2, + "end": 14725.56, + "probability": 0.3243 + }, + { + "start": 14725.8, + "end": 14727.26, + "probability": 0.957 + }, + { + "start": 14727.34, + "end": 14728.32, + "probability": 0.9516 + }, + { + "start": 14729.16, + "end": 14730.28, + "probability": 0.0194 + }, + { + "start": 14730.86, + "end": 14733.08, + "probability": 0.939 + }, + { + "start": 14733.12, + "end": 14734.5, + "probability": 0.5284 + }, + { + "start": 14734.64, + "end": 14735.9, + "probability": 0.7436 + }, + { + "start": 14735.9, + "end": 14737.2, + "probability": 0.6809 + }, + { + "start": 14738.04, + "end": 14739.1, + "probability": 0.0726 + }, + { + "start": 14739.1, + "end": 14740.58, + "probability": 0.7533 + }, + { + "start": 14741.42, + "end": 14744.5, + "probability": 0.8691 + }, + { + "start": 14744.84, + "end": 14745.12, + "probability": 0.9282 + }, + { + "start": 14745.16, + "end": 14746.74, + "probability": 0.9275 + }, + { + "start": 14746.74, + "end": 14748.82, + "probability": 0.9724 + }, + { + "start": 14749.0, + "end": 14749.88, + "probability": 0.7571 + }, + { + "start": 14749.98, + "end": 14751.54, + "probability": 0.982 + }, + { + "start": 14751.96, + "end": 14752.36, + "probability": 0.762 + }, + { + "start": 14752.46, + "end": 14752.74, + "probability": 0.9313 + }, + { + "start": 14752.8, + "end": 14753.42, + "probability": 0.7851 + }, + { + "start": 14753.52, + "end": 14755.34, + "probability": 0.843 + }, + { + "start": 14755.64, + "end": 14756.64, + "probability": 0.916 + }, + { + "start": 14756.8, + "end": 14757.54, + "probability": 0.7585 + }, + { + "start": 14757.64, + "end": 14757.76, + "probability": 0.7224 + }, + { + "start": 14757.84, + "end": 14758.42, + "probability": 0.4996 + }, + { + "start": 14758.46, + "end": 14758.88, + "probability": 0.6652 + }, + { + "start": 14759.68, + "end": 14762.0, + "probability": 0.9983 + }, + { + "start": 14762.12, + "end": 14763.12, + "probability": 0.9247 + }, + { + "start": 14764.04, + "end": 14765.18, + "probability": 0.9649 + }, + { + "start": 14765.96, + "end": 14767.68, + "probability": 0.8857 + }, + { + "start": 14768.28, + "end": 14769.54, + "probability": 0.7095 + }, + { + "start": 14769.66, + "end": 14771.14, + "probability": 0.7379 + }, + { + "start": 14771.3, + "end": 14772.74, + "probability": 0.4952 + }, + { + "start": 14772.76, + "end": 14777.64, + "probability": 0.9491 + }, + { + "start": 14777.84, + "end": 14778.18, + "probability": 0.526 + }, + { + "start": 14778.3, + "end": 14780.5, + "probability": 0.9839 + }, + { + "start": 14780.6, + "end": 14781.38, + "probability": 0.5803 + }, + { + "start": 14781.5, + "end": 14784.32, + "probability": 0.8873 + }, + { + "start": 14784.64, + "end": 14786.84, + "probability": 0.7792 + }, + { + "start": 14786.98, + "end": 14787.76, + "probability": 0.5694 + }, + { + "start": 14788.12, + "end": 14789.34, + "probability": 0.7138 + }, + { + "start": 14789.56, + "end": 14790.1, + "probability": 0.3487 + }, + { + "start": 14790.28, + "end": 14792.94, + "probability": 0.8787 + }, + { + "start": 14793.28, + "end": 14795.28, + "probability": 0.9453 + }, + { + "start": 14797.72, + "end": 14798.4, + "probability": 0.0747 + }, + { + "start": 14798.4, + "end": 14800.18, + "probability": 0.3453 + }, + { + "start": 14800.18, + "end": 14801.34, + "probability": 0.0385 + }, + { + "start": 14802.86, + "end": 14804.82, + "probability": 0.2628 + }, + { + "start": 14805.14, + "end": 14807.36, + "probability": 0.8368 + }, + { + "start": 14808.17, + "end": 14808.8, + "probability": 0.189 + }, + { + "start": 14809.04, + "end": 14809.36, + "probability": 0.8809 + }, + { + "start": 14809.52, + "end": 14812.1, + "probability": 0.938 + }, + { + "start": 14812.44, + "end": 14814.4, + "probability": 0.8668 + }, + { + "start": 14814.58, + "end": 14815.66, + "probability": 0.0861 + }, + { + "start": 14816.42, + "end": 14816.46, + "probability": 0.1327 + }, + { + "start": 14816.46, + "end": 14816.92, + "probability": 0.03 + }, + { + "start": 14817.14, + "end": 14817.62, + "probability": 0.3988 + }, + { + "start": 14817.74, + "end": 14817.74, + "probability": 0.411 + }, + { + "start": 14817.74, + "end": 14819.12, + "probability": 0.4256 + }, + { + "start": 14819.16, + "end": 14820.42, + "probability": 0.0296 + }, + { + "start": 14821.4, + "end": 14821.82, + "probability": 0.0067 + }, + { + "start": 14821.88, + "end": 14822.2, + "probability": 0.0204 + }, + { + "start": 14822.2, + "end": 14823.02, + "probability": 0.2164 + }, + { + "start": 14823.32, + "end": 14823.88, + "probability": 0.2164 + }, + { + "start": 14824.06, + "end": 14825.9, + "probability": 0.9839 + }, + { + "start": 14826.2, + "end": 14828.9, + "probability": 0.9324 + }, + { + "start": 14829.42, + "end": 14831.67, + "probability": 0.605 + }, + { + "start": 14832.74, + "end": 14837.18, + "probability": 0.9507 + }, + { + "start": 14837.54, + "end": 14838.84, + "probability": 0.7046 + }, + { + "start": 14839.24, + "end": 14839.68, + "probability": 0.6615 + }, + { + "start": 14839.72, + "end": 14840.28, + "probability": 0.7643 + }, + { + "start": 14840.58, + "end": 14841.58, + "probability": 0.7751 + }, + { + "start": 14841.84, + "end": 14846.24, + "probability": 0.9987 + }, + { + "start": 14846.24, + "end": 14849.66, + "probability": 0.9762 + }, + { + "start": 14850.74, + "end": 14853.42, + "probability": 0.8853 + }, + { + "start": 14853.8, + "end": 14854.02, + "probability": 0.5625 + }, + { + "start": 14854.12, + "end": 14854.48, + "probability": 0.9385 + }, + { + "start": 14854.52, + "end": 14856.98, + "probability": 0.9332 + }, + { + "start": 14857.16, + "end": 14857.16, + "probability": 0.1645 + }, + { + "start": 14857.16, + "end": 14857.91, + "probability": 0.3761 + }, + { + "start": 14858.3, + "end": 14861.44, + "probability": 0.3942 + }, + { + "start": 14862.02, + "end": 14867.6, + "probability": 0.7038 + }, + { + "start": 14867.72, + "end": 14868.46, + "probability": 0.505 + }, + { + "start": 14869.1, + "end": 14870.42, + "probability": 0.8882 + }, + { + "start": 14870.58, + "end": 14872.48, + "probability": 0.1319 + }, + { + "start": 14872.66, + "end": 14875.14, + "probability": 0.5183 + }, + { + "start": 14875.22, + "end": 14876.22, + "probability": 0.7723 + }, + { + "start": 14877.12, + "end": 14878.56, + "probability": 0.1182 + }, + { + "start": 14880.84, + "end": 14882.82, + "probability": 0.3404 + }, + { + "start": 14883.22, + "end": 14883.84, + "probability": 0.0311 + }, + { + "start": 14883.96, + "end": 14884.12, + "probability": 0.0876 + }, + { + "start": 14884.12, + "end": 14884.12, + "probability": 0.1118 + }, + { + "start": 14884.12, + "end": 14884.12, + "probability": 0.114 + }, + { + "start": 14884.12, + "end": 14885.56, + "probability": 0.2582 + }, + { + "start": 14887.24, + "end": 14887.26, + "probability": 0.1152 + }, + { + "start": 14887.26, + "end": 14887.9, + "probability": 0.2469 + }, + { + "start": 14887.92, + "end": 14889.36, + "probability": 0.6161 + }, + { + "start": 14890.04, + "end": 14891.9, + "probability": 0.3737 + }, + { + "start": 14891.94, + "end": 14894.2, + "probability": 0.34 + }, + { + "start": 14894.44, + "end": 14894.54, + "probability": 0.4225 + }, + { + "start": 14896.14, + "end": 14897.18, + "probability": 0.0874 + }, + { + "start": 14897.18, + "end": 14898.32, + "probability": 0.3566 + }, + { + "start": 14899.1, + "end": 14900.66, + "probability": 0.6008 + }, + { + "start": 14901.53, + "end": 14903.53, + "probability": 0.7928 + }, + { + "start": 14906.26, + "end": 14907.38, + "probability": 0.0882 + }, + { + "start": 14907.48, + "end": 14908.68, + "probability": 0.0259 + }, + { + "start": 14910.4, + "end": 14910.4, + "probability": 0.0032 + }, + { + "start": 14910.4, + "end": 14910.4, + "probability": 0.2753 + }, + { + "start": 14910.4, + "end": 14910.64, + "probability": 0.5772 + }, + { + "start": 14910.72, + "end": 14912.08, + "probability": 0.988 + }, + { + "start": 14912.38, + "end": 14916.04, + "probability": 0.9143 + }, + { + "start": 14916.04, + "end": 14916.42, + "probability": 0.8089 + }, + { + "start": 14916.42, + "end": 14917.1, + "probability": 0.9816 + }, + { + "start": 14917.12, + "end": 14917.68, + "probability": 0.7017 + }, + { + "start": 14918.22, + "end": 14920.58, + "probability": 0.8743 + }, + { + "start": 14920.68, + "end": 14921.42, + "probability": 0.6306 + }, + { + "start": 14921.46, + "end": 14922.24, + "probability": 0.8446 + }, + { + "start": 14923.1, + "end": 14924.98, + "probability": 0.6484 + }, + { + "start": 14925.22, + "end": 14929.46, + "probability": 0.7476 + }, + { + "start": 14929.58, + "end": 14929.58, + "probability": 0.4323 + }, + { + "start": 14929.58, + "end": 14929.94, + "probability": 0.4682 + }, + { + "start": 14930.0, + "end": 14931.0, + "probability": 0.9805 + }, + { + "start": 14931.04, + "end": 14931.8, + "probability": 0.8392 + }, + { + "start": 14932.0, + "end": 14932.46, + "probability": 0.2683 + }, + { + "start": 14932.58, + "end": 14933.5, + "probability": 0.4514 + }, + { + "start": 14933.6, + "end": 14933.7, + "probability": 0.504 + }, + { + "start": 14933.9, + "end": 14934.52, + "probability": 0.3945 + }, + { + "start": 14934.58, + "end": 14935.02, + "probability": 0.4222 + }, + { + "start": 14935.16, + "end": 14936.02, + "probability": 0.8682 + }, + { + "start": 14936.08, + "end": 14938.62, + "probability": 0.9115 + }, + { + "start": 14938.72, + "end": 14939.28, + "probability": 0.4796 + }, + { + "start": 14939.52, + "end": 14940.42, + "probability": 0.7231 + }, + { + "start": 14941.04, + "end": 14943.12, + "probability": 0.8499 + }, + { + "start": 14943.24, + "end": 14943.51, + "probability": 0.411 + }, + { + "start": 14943.88, + "end": 14945.6, + "probability": 0.6185 + }, + { + "start": 14945.68, + "end": 14946.43, + "probability": 0.3972 + }, + { + "start": 14946.72, + "end": 14947.38, + "probability": 0.9899 + }, + { + "start": 14948.16, + "end": 14948.53, + "probability": 0.0029 + }, + { + "start": 14949.54, + "end": 14950.68, + "probability": 0.8641 + }, + { + "start": 14950.88, + "end": 14951.82, + "probability": 0.7817 + }, + { + "start": 14952.1, + "end": 14952.46, + "probability": 0.918 + }, + { + "start": 14953.1, + "end": 14955.63, + "probability": 0.9668 + }, + { + "start": 14956.1, + "end": 14956.89, + "probability": 0.1504 + }, + { + "start": 14957.06, + "end": 14958.38, + "probability": 0.9751 + }, + { + "start": 14958.52, + "end": 14958.7, + "probability": 0.8171 + }, + { + "start": 14958.76, + "end": 14959.22, + "probability": 0.7556 + }, + { + "start": 14959.26, + "end": 14961.02, + "probability": 0.8082 + }, + { + "start": 14961.08, + "end": 14961.5, + "probability": 0.6169 + }, + { + "start": 14961.76, + "end": 14962.22, + "probability": 0.8192 + }, + { + "start": 14962.28, + "end": 14962.48, + "probability": 0.3436 + }, + { + "start": 14962.58, + "end": 14962.72, + "probability": 0.5648 + }, + { + "start": 14962.72, + "end": 14964.2, + "probability": 0.9196 + }, + { + "start": 14964.26, + "end": 14964.78, + "probability": 0.352 + }, + { + "start": 14964.9, + "end": 14965.42, + "probability": 0.6022 + }, + { + "start": 14965.72, + "end": 14966.7, + "probability": 0.7579 + }, + { + "start": 14967.24, + "end": 14968.8, + "probability": 0.7156 + }, + { + "start": 14968.84, + "end": 14969.28, + "probability": 0.7876 + }, + { + "start": 14969.3, + "end": 14969.98, + "probability": 0.8374 + }, + { + "start": 14970.28, + "end": 14972.68, + "probability": 0.8897 + }, + { + "start": 14972.96, + "end": 14973.76, + "probability": 0.5725 + }, + { + "start": 14974.22, + "end": 14976.68, + "probability": 0.7921 + }, + { + "start": 14976.78, + "end": 14979.18, + "probability": 0.9741 + }, + { + "start": 14979.28, + "end": 14980.7, + "probability": 0.9226 + }, + { + "start": 14980.74, + "end": 14981.2, + "probability": 0.45 + }, + { + "start": 14981.74, + "end": 14982.84, + "probability": 0.5328 + }, + { + "start": 14983.5, + "end": 14985.26, + "probability": 0.8797 + }, + { + "start": 14985.6, + "end": 14986.94, + "probability": 0.7785 + }, + { + "start": 14987.14, + "end": 14988.42, + "probability": 0.9143 + }, + { + "start": 14988.76, + "end": 14990.76, + "probability": 0.9009 + }, + { + "start": 14990.82, + "end": 14992.28, + "probability": 0.9676 + }, + { + "start": 14992.54, + "end": 14994.62, + "probability": 0.8931 + }, + { + "start": 14994.72, + "end": 14994.96, + "probability": 0.7309 + }, + { + "start": 14995.22, + "end": 14995.82, + "probability": 0.8257 + }, + { + "start": 14996.08, + "end": 14998.03, + "probability": 0.5242 + }, + { + "start": 14998.72, + "end": 15000.1, + "probability": 0.8983 + }, + { + "start": 15010.9, + "end": 15011.36, + "probability": 0.8174 + }, + { + "start": 15011.62, + "end": 15012.24, + "probability": 0.8604 + }, + { + "start": 15012.32, + "end": 15013.36, + "probability": 0.7871 + }, + { + "start": 15013.44, + "end": 15014.1, + "probability": 0.8816 + }, + { + "start": 15014.18, + "end": 15014.52, + "probability": 0.9617 + }, + { + "start": 15015.28, + "end": 15015.9, + "probability": 0.9752 + }, + { + "start": 15016.52, + "end": 15016.72, + "probability": 0.4064 + }, + { + "start": 15016.96, + "end": 15018.64, + "probability": 0.9899 + }, + { + "start": 15019.48, + "end": 15022.58, + "probability": 0.9479 + }, + { + "start": 15023.22, + "end": 15026.46, + "probability": 0.9199 + }, + { + "start": 15026.54, + "end": 15029.76, + "probability": 0.7734 + }, + { + "start": 15030.56, + "end": 15032.7, + "probability": 0.9915 + }, + { + "start": 15033.62, + "end": 15037.3, + "probability": 0.8842 + }, + { + "start": 15037.92, + "end": 15039.9, + "probability": 0.6886 + }, + { + "start": 15040.48, + "end": 15043.98, + "probability": 0.9055 + }, + { + "start": 15044.28, + "end": 15046.8, + "probability": 0.7649 + }, + { + "start": 15047.38, + "end": 15049.24, + "probability": 0.8807 + }, + { + "start": 15049.66, + "end": 15052.26, + "probability": 0.9874 + }, + { + "start": 15052.34, + "end": 15053.25, + "probability": 0.6304 + }, + { + "start": 15053.3, + "end": 15053.7, + "probability": 0.6288 + }, + { + "start": 15053.78, + "end": 15055.26, + "probability": 0.9883 + }, + { + "start": 15055.4, + "end": 15055.54, + "probability": 0.9676 + }, + { + "start": 15056.04, + "end": 15057.54, + "probability": 0.6326 + }, + { + "start": 15057.58, + "end": 15060.0, + "probability": 0.9568 + }, + { + "start": 15063.64, + "end": 15066.28, + "probability": 0.8724 + }, + { + "start": 15066.88, + "end": 15069.25, + "probability": 0.9409 + }, + { + "start": 15069.48, + "end": 15071.24, + "probability": 0.6497 + }, + { + "start": 15071.72, + "end": 15072.0, + "probability": 0.322 + }, + { + "start": 15072.4, + "end": 15072.68, + "probability": 0.245 + }, + { + "start": 15072.72, + "end": 15075.88, + "probability": 0.9369 + }, + { + "start": 15076.5, + "end": 15078.13, + "probability": 0.9934 + }, + { + "start": 15078.24, + "end": 15080.42, + "probability": 0.9846 + }, + { + "start": 15080.8, + "end": 15082.2, + "probability": 0.9829 + }, + { + "start": 15082.26, + "end": 15082.7, + "probability": 0.8772 + }, + { + "start": 15083.6, + "end": 15086.6, + "probability": 0.9846 + }, + { + "start": 15087.26, + "end": 15088.26, + "probability": 0.5278 + }, + { + "start": 15088.3, + "end": 15088.74, + "probability": 0.5104 + }, + { + "start": 15088.8, + "end": 15089.34, + "probability": 0.725 + }, + { + "start": 15089.4, + "end": 15090.9, + "probability": 0.7747 + }, + { + "start": 15091.04, + "end": 15091.62, + "probability": 0.9672 + }, + { + "start": 15092.2, + "end": 15092.64, + "probability": 0.7863 + }, + { + "start": 15092.72, + "end": 15093.26, + "probability": 0.916 + }, + { + "start": 15093.32, + "end": 15095.24, + "probability": 0.9201 + }, + { + "start": 15095.32, + "end": 15098.2, + "probability": 0.7411 + }, + { + "start": 15098.26, + "end": 15099.48, + "probability": 0.959 + }, + { + "start": 15099.9, + "end": 15101.24, + "probability": 0.9652 + }, + { + "start": 15102.0, + "end": 15103.68, + "probability": 0.9497 + }, + { + "start": 15105.0, + "end": 15107.06, + "probability": 0.9978 + }, + { + "start": 15107.6, + "end": 15107.88, + "probability": 0.7096 + }, + { + "start": 15107.9, + "end": 15109.8, + "probability": 0.8713 + }, + { + "start": 15109.88, + "end": 15110.76, + "probability": 0.8729 + }, + { + "start": 15110.88, + "end": 15112.12, + "probability": 0.9602 + }, + { + "start": 15112.32, + "end": 15115.84, + "probability": 0.94 + }, + { + "start": 15115.84, + "end": 15116.36, + "probability": 0.8947 + }, + { + "start": 15116.76, + "end": 15117.16, + "probability": 0.3541 + }, + { + "start": 15117.4, + "end": 15117.66, + "probability": 0.8093 + }, + { + "start": 15117.66, + "end": 15120.96, + "probability": 0.8245 + }, + { + "start": 15121.1, + "end": 15122.48, + "probability": 0.9543 + }, + { + "start": 15123.2, + "end": 15124.78, + "probability": 0.9124 + }, + { + "start": 15125.8, + "end": 15126.26, + "probability": 0.9058 + }, + { + "start": 15126.28, + "end": 15130.52, + "probability": 0.9908 + }, + { + "start": 15130.56, + "end": 15131.56, + "probability": 0.7553 + }, + { + "start": 15132.3, + "end": 15132.82, + "probability": 0.5468 + }, + { + "start": 15132.9, + "end": 15135.88, + "probability": 0.9837 + }, + { + "start": 15136.38, + "end": 15136.64, + "probability": 0.7307 + }, + { + "start": 15136.68, + "end": 15141.84, + "probability": 0.979 + }, + { + "start": 15142.58, + "end": 15146.14, + "probability": 0.9795 + }, + { + "start": 15146.36, + "end": 15149.2, + "probability": 0.5959 + }, + { + "start": 15149.8, + "end": 15151.32, + "probability": 0.9885 + }, + { + "start": 15151.64, + "end": 15154.45, + "probability": 0.9453 + }, + { + "start": 15155.7, + "end": 15156.96, + "probability": 0.5982 + }, + { + "start": 15157.4, + "end": 15159.5, + "probability": 0.9675 + }, + { + "start": 15159.98, + "end": 15161.3, + "probability": 0.9949 + }, + { + "start": 15161.32, + "end": 15163.16, + "probability": 0.9889 + }, + { + "start": 15163.42, + "end": 15164.84, + "probability": 0.9672 + }, + { + "start": 15164.96, + "end": 15165.66, + "probability": 0.9475 + }, + { + "start": 15166.12, + "end": 15167.08, + "probability": 0.2877 + }, + { + "start": 15167.32, + "end": 15170.3, + "probability": 0.5295 + }, + { + "start": 15170.3, + "end": 15170.4, + "probability": 0.2796 + }, + { + "start": 15170.4, + "end": 15170.66, + "probability": 0.6161 + }, + { + "start": 15170.66, + "end": 15170.96, + "probability": 0.6233 + }, + { + "start": 15171.36, + "end": 15171.38, + "probability": 0.5161 + }, + { + "start": 15171.44, + "end": 15175.68, + "probability": 0.9962 + }, + { + "start": 15175.94, + "end": 15177.8, + "probability": 0.9155 + }, + { + "start": 15177.8, + "end": 15178.52, + "probability": 0.9482 + }, + { + "start": 15178.76, + "end": 15179.92, + "probability": 0.9697 + }, + { + "start": 15180.0, + "end": 15182.44, + "probability": 0.9653 + }, + { + "start": 15183.14, + "end": 15183.46, + "probability": 0.5592 + }, + { + "start": 15183.62, + "end": 15184.46, + "probability": 0.4882 + }, + { + "start": 15184.76, + "end": 15185.88, + "probability": 0.9421 + }, + { + "start": 15186.26, + "end": 15187.98, + "probability": 0.8233 + }, + { + "start": 15190.78, + "end": 15192.9, + "probability": 0.9898 + }, + { + "start": 15193.24, + "end": 15196.96, + "probability": 0.9904 + }, + { + "start": 15197.88, + "end": 15200.6, + "probability": 0.9663 + }, + { + "start": 15200.6, + "end": 15203.74, + "probability": 0.9974 + }, + { + "start": 15204.7, + "end": 15205.86, + "probability": 0.382 + }, + { + "start": 15206.88, + "end": 15207.1, + "probability": 0.7981 + }, + { + "start": 15207.82, + "end": 15209.8, + "probability": 0.9615 + }, + { + "start": 15211.38, + "end": 15213.42, + "probability": 0.7586 + }, + { + "start": 15213.68, + "end": 15214.36, + "probability": 0.5914 + }, + { + "start": 15214.46, + "end": 15215.72, + "probability": 0.752 + }, + { + "start": 15215.76, + "end": 15216.2, + "probability": 0.932 + }, + { + "start": 15217.66, + "end": 15218.8, + "probability": 0.9287 + }, + { + "start": 15218.92, + "end": 15220.82, + "probability": 0.8122 + }, + { + "start": 15220.92, + "end": 15222.0, + "probability": 0.9549 + }, + { + "start": 15222.1, + "end": 15224.26, + "probability": 0.9939 + }, + { + "start": 15225.06, + "end": 15228.68, + "probability": 0.9903 + }, + { + "start": 15228.72, + "end": 15230.92, + "probability": 0.9019 + }, + { + "start": 15231.94, + "end": 15233.1, + "probability": 0.9229 + }, + { + "start": 15234.04, + "end": 15236.24, + "probability": 0.9402 + }, + { + "start": 15236.62, + "end": 15237.82, + "probability": 0.8935 + }, + { + "start": 15237.84, + "end": 15238.0, + "probability": 0.5083 + }, + { + "start": 15238.0, + "end": 15239.42, + "probability": 0.9371 + }, + { + "start": 15239.82, + "end": 15241.48, + "probability": 0.7344 + }, + { + "start": 15242.28, + "end": 15242.28, + "probability": 0.4011 + }, + { + "start": 15242.28, + "end": 15243.64, + "probability": 0.8784 + }, + { + "start": 15244.98, + "end": 15245.42, + "probability": 0.8495 + }, + { + "start": 15246.16, + "end": 15250.08, + "probability": 0.9921 + }, + { + "start": 15251.12, + "end": 15252.24, + "probability": 0.8674 + }, + { + "start": 15252.9, + "end": 15255.22, + "probability": 0.9604 + }, + { + "start": 15257.08, + "end": 15260.36, + "probability": 0.9939 + }, + { + "start": 15260.48, + "end": 15262.84, + "probability": 0.9667 + }, + { + "start": 15263.22, + "end": 15263.88, + "probability": 0.9022 + }, + { + "start": 15264.32, + "end": 15264.94, + "probability": 0.9807 + }, + { + "start": 15264.98, + "end": 15266.08, + "probability": 0.9907 + }, + { + "start": 15266.18, + "end": 15267.96, + "probability": 0.8546 + }, + { + "start": 15268.12, + "end": 15269.7, + "probability": 0.9222 + }, + { + "start": 15270.24, + "end": 15272.3, + "probability": 0.8666 + }, + { + "start": 15273.68, + "end": 15276.88, + "probability": 0.9775 + }, + { + "start": 15276.98, + "end": 15277.6, + "probability": 0.9468 + }, + { + "start": 15278.66, + "end": 15279.94, + "probability": 0.7269 + }, + { + "start": 15280.72, + "end": 15282.66, + "probability": 0.9443 + }, + { + "start": 15282.66, + "end": 15284.5, + "probability": 0.1264 + }, + { + "start": 15285.04, + "end": 15286.36, + "probability": 0.827 + }, + { + "start": 15286.48, + "end": 15287.96, + "probability": 0.6713 + }, + { + "start": 15287.96, + "end": 15288.12, + "probability": 0.087 + }, + { + "start": 15288.2, + "end": 15288.28, + "probability": 0.8152 + }, + { + "start": 15288.36, + "end": 15291.04, + "probability": 0.8096 + }, + { + "start": 15292.5, + "end": 15294.0, + "probability": 0.874 + }, + { + "start": 15294.08, + "end": 15294.5, + "probability": 0.0451 + }, + { + "start": 15294.52, + "end": 15294.52, + "probability": 0.3306 + }, + { + "start": 15294.64, + "end": 15295.18, + "probability": 0.6431 + }, + { + "start": 15295.38, + "end": 15295.82, + "probability": 0.5082 + }, + { + "start": 15296.34, + "end": 15297.31, + "probability": 0.4675 + }, + { + "start": 15298.1, + "end": 15298.3, + "probability": 0.0248 + }, + { + "start": 15298.3, + "end": 15299.51, + "probability": 0.7185 + }, + { + "start": 15300.16, + "end": 15301.14, + "probability": 0.9271 + }, + { + "start": 15301.22, + "end": 15303.12, + "probability": 0.9663 + }, + { + "start": 15303.22, + "end": 15303.42, + "probability": 0.9596 + }, + { + "start": 15304.18, + "end": 15305.33, + "probability": 0.9033 + }, + { + "start": 15305.82, + "end": 15306.85, + "probability": 0.8392 + }, + { + "start": 15307.06, + "end": 15308.82, + "probability": 0.8567 + }, + { + "start": 15308.84, + "end": 15310.16, + "probability": 0.834 + }, + { + "start": 15310.22, + "end": 15310.84, + "probability": 0.9668 + }, + { + "start": 15311.04, + "end": 15311.36, + "probability": 0.9154 + }, + { + "start": 15311.44, + "end": 15311.92, + "probability": 0.3299 + }, + { + "start": 15312.6, + "end": 15314.2, + "probability": 0.9188 + }, + { + "start": 15314.84, + "end": 15316.7, + "probability": 0.9869 + }, + { + "start": 15316.84, + "end": 15317.74, + "probability": 0.9639 + }, + { + "start": 15317.82, + "end": 15319.94, + "probability": 0.9964 + }, + { + "start": 15320.48, + "end": 15323.44, + "probability": 0.9628 + }, + { + "start": 15323.7, + "end": 15325.04, + "probability": 0.8867 + }, + { + "start": 15325.44, + "end": 15326.1, + "probability": 0.3518 + }, + { + "start": 15326.24, + "end": 15330.0, + "probability": 0.1614 + }, + { + "start": 15330.0, + "end": 15330.65, + "probability": 0.1287 + }, + { + "start": 15331.54, + "end": 15331.96, + "probability": 0.4165 + }, + { + "start": 15332.0, + "end": 15332.26, + "probability": 0.3762 + }, + { + "start": 15332.46, + "end": 15332.88, + "probability": 0.618 + }, + { + "start": 15332.88, + "end": 15336.3, + "probability": 0.7881 + }, + { + "start": 15336.38, + "end": 15339.0, + "probability": 0.788 + }, + { + "start": 15339.08, + "end": 15340.04, + "probability": 0.9302 + }, + { + "start": 15340.06, + "end": 15340.86, + "probability": 0.9625 + }, + { + "start": 15340.9, + "end": 15342.1, + "probability": 0.9604 + }, + { + "start": 15342.34, + "end": 15343.16, + "probability": 0.9944 + }, + { + "start": 15343.44, + "end": 15344.28, + "probability": 0.9876 + }, + { + "start": 15344.42, + "end": 15344.52, + "probability": 0.4908 + }, + { + "start": 15344.56, + "end": 15345.27, + "probability": 0.8765 + }, + { + "start": 15345.6, + "end": 15347.18, + "probability": 0.8432 + }, + { + "start": 15347.44, + "end": 15348.18, + "probability": 0.9707 + }, + { + "start": 15348.3, + "end": 15348.82, + "probability": 0.9607 + }, + { + "start": 15349.36, + "end": 15351.66, + "probability": 0.9619 + }, + { + "start": 15351.78, + "end": 15351.78, + "probability": 0.0466 + }, + { + "start": 15351.78, + "end": 15352.53, + "probability": 0.8853 + }, + { + "start": 15353.28, + "end": 15355.22, + "probability": 0.9679 + }, + { + "start": 15355.3, + "end": 15355.62, + "probability": 0.5903 + }, + { + "start": 15355.72, + "end": 15356.02, + "probability": 0.3448 + }, + { + "start": 15356.06, + "end": 15357.34, + "probability": 0.6655 + }, + { + "start": 15357.44, + "end": 15361.08, + "probability": 0.9808 + }, + { + "start": 15361.54, + "end": 15362.7, + "probability": 0.4335 + }, + { + "start": 15362.76, + "end": 15365.79, + "probability": 0.9203 + }, + { + "start": 15366.16, + "end": 15367.6, + "probability": 0.9939 + }, + { + "start": 15367.6, + "end": 15369.66, + "probability": 0.9392 + }, + { + "start": 15370.08, + "end": 15370.92, + "probability": 0.9024 + }, + { + "start": 15371.36, + "end": 15373.66, + "probability": 0.7278 + }, + { + "start": 15374.43, + "end": 15377.95, + "probability": 0.9951 + }, + { + "start": 15378.36, + "end": 15380.84, + "probability": 0.9961 + }, + { + "start": 15380.94, + "end": 15382.74, + "probability": 0.9747 + }, + { + "start": 15382.82, + "end": 15385.46, + "probability": 0.9407 + }, + { + "start": 15385.74, + "end": 15387.34, + "probability": 0.6196 + }, + { + "start": 15387.44, + "end": 15390.12, + "probability": 0.6956 + }, + { + "start": 15390.74, + "end": 15391.52, + "probability": 0.9819 + }, + { + "start": 15391.58, + "end": 15391.88, + "probability": 0.0249 + }, + { + "start": 15391.88, + "end": 15392.28, + "probability": 0.2488 + }, + { + "start": 15393.28, + "end": 15393.94, + "probability": 0.1413 + }, + { + "start": 15394.04, + "end": 15394.62, + "probability": 0.275 + }, + { + "start": 15395.18, + "end": 15396.08, + "probability": 0.6001 + }, + { + "start": 15396.14, + "end": 15398.68, + "probability": 0.725 + }, + { + "start": 15400.9, + "end": 15402.2, + "probability": 0.7403 + }, + { + "start": 15402.26, + "end": 15403.06, + "probability": 0.453 + }, + { + "start": 15403.22, + "end": 15404.72, + "probability": 0.8757 + }, + { + "start": 15407.98, + "end": 15408.0, + "probability": 0.2526 + }, + { + "start": 15408.0, + "end": 15408.12, + "probability": 0.3547 + }, + { + "start": 15408.12, + "end": 15408.6, + "probability": 0.9394 + }, + { + "start": 15408.79, + "end": 15411.32, + "probability": 0.2278 + }, + { + "start": 15411.46, + "end": 15411.82, + "probability": 0.519 + }, + { + "start": 15411.9, + "end": 15412.4, + "probability": 0.2311 + }, + { + "start": 15413.78, + "end": 15415.79, + "probability": 0.5542 + }, + { + "start": 15417.04, + "end": 15418.64, + "probability": 0.165 + }, + { + "start": 15418.88, + "end": 15420.4, + "probability": 0.1417 + }, + { + "start": 15420.48, + "end": 15420.72, + "probability": 0.0082 + }, + { + "start": 15420.72, + "end": 15424.58, + "probability": 0.2412 + }, + { + "start": 15424.98, + "end": 15425.32, + "probability": 0.5776 + }, + { + "start": 15426.32, + "end": 15427.98, + "probability": 0.4235 + }, + { + "start": 15428.02, + "end": 15428.78, + "probability": 0.7996 + }, + { + "start": 15429.52, + "end": 15430.02, + "probability": 0.155 + }, + { + "start": 15431.52, + "end": 15432.48, + "probability": 0.0855 + }, + { + "start": 15432.48, + "end": 15432.48, + "probability": 0.1692 + }, + { + "start": 15432.48, + "end": 15432.48, + "probability": 0.5345 + }, + { + "start": 15432.48, + "end": 15432.48, + "probability": 0.643 + }, + { + "start": 15432.48, + "end": 15432.48, + "probability": 0.0557 + }, + { + "start": 15432.48, + "end": 15432.94, + "probability": 0.1887 + }, + { + "start": 15433.68, + "end": 15433.9, + "probability": 0.5542 + }, + { + "start": 15434.0, + "end": 15439.76, + "probability": 0.8899 + }, + { + "start": 15440.72, + "end": 15441.92, + "probability": 0.6442 + }, + { + "start": 15447.3, + "end": 15448.44, + "probability": 0.1554 + }, + { + "start": 15452.8, + "end": 15453.92, + "probability": 0.4843 + }, + { + "start": 15456.9, + "end": 15458.12, + "probability": 0.5046 + }, + { + "start": 15458.12, + "end": 15461.08, + "probability": 0.7987 + }, + { + "start": 15461.08, + "end": 15464.34, + "probability": 0.8837 + }, + { + "start": 15464.46, + "end": 15466.92, + "probability": 0.9775 + }, + { + "start": 15467.12, + "end": 15468.74, + "probability": 0.9013 + }, + { + "start": 15470.96, + "end": 15471.88, + "probability": 0.5929 + }, + { + "start": 15472.02, + "end": 15472.96, + "probability": 0.6427 + }, + { + "start": 15473.0, + "end": 15475.16, + "probability": 0.9025 + }, + { + "start": 15475.76, + "end": 15480.32, + "probability": 0.8667 + }, + { + "start": 15480.9, + "end": 15482.96, + "probability": 0.7356 + }, + { + "start": 15483.28, + "end": 15485.96, + "probability": 0.9097 + }, + { + "start": 15486.1, + "end": 15489.72, + "probability": 0.9688 + }, + { + "start": 15489.82, + "end": 15490.12, + "probability": 0.765 + }, + { + "start": 15490.92, + "end": 15491.58, + "probability": 0.534 + }, + { + "start": 15491.66, + "end": 15492.06, + "probability": 0.3981 + }, + { + "start": 15492.08, + "end": 15492.34, + "probability": 0.3329 + }, + { + "start": 15492.38, + "end": 15497.14, + "probability": 0.5289 + }, + { + "start": 15497.82, + "end": 15500.88, + "probability": 0.5676 + }, + { + "start": 15501.4, + "end": 15502.78, + "probability": 0.8262 + }, + { + "start": 15503.02, + "end": 15508.34, + "probability": 0.636 + }, + { + "start": 15508.38, + "end": 15508.8, + "probability": 0.6893 + }, + { + "start": 15511.32, + "end": 15513.84, + "probability": 0.9305 + }, + { + "start": 15515.96, + "end": 15516.1, + "probability": 0.1162 + }, + { + "start": 15516.1, + "end": 15519.02, + "probability": 0.8145 + }, + { + "start": 15522.11, + "end": 15525.42, + "probability": 0.7551 + }, + { + "start": 15527.28, + "end": 15533.47, + "probability": 0.733 + }, + { + "start": 15537.2, + "end": 15542.02, + "probability": 0.978 + }, + { + "start": 15543.5, + "end": 15546.52, + "probability": 0.6926 + }, + { + "start": 15547.7, + "end": 15548.94, + "probability": 0.856 + }, + { + "start": 15550.3, + "end": 15555.2, + "probability": 0.9889 + }, + { + "start": 15556.38, + "end": 15558.22, + "probability": 0.9724 + }, + { + "start": 15559.34, + "end": 15564.98, + "probability": 0.9734 + }, + { + "start": 15566.44, + "end": 15566.94, + "probability": 0.4829 + }, + { + "start": 15568.46, + "end": 15570.78, + "probability": 0.9795 + }, + { + "start": 15571.7, + "end": 15573.92, + "probability": 0.8467 + }, + { + "start": 15574.14, + "end": 15578.76, + "probability": 0.9565 + }, + { + "start": 15580.58, + "end": 15584.34, + "probability": 0.9946 + }, + { + "start": 15584.8, + "end": 15585.86, + "probability": 0.6519 + }, + { + "start": 15586.24, + "end": 15587.42, + "probability": 0.8975 + }, + { + "start": 15588.24, + "end": 15591.84, + "probability": 0.9799 + }, + { + "start": 15591.96, + "end": 15593.62, + "probability": 0.9917 + }, + { + "start": 15594.62, + "end": 15596.98, + "probability": 0.9938 + }, + { + "start": 15597.1, + "end": 15598.3, + "probability": 0.9985 + }, + { + "start": 15598.38, + "end": 15602.74, + "probability": 0.7574 + }, + { + "start": 15603.48, + "end": 15605.82, + "probability": 0.9604 + }, + { + "start": 15607.74, + "end": 15613.56, + "probability": 0.9589 + }, + { + "start": 15614.28, + "end": 15616.6, + "probability": 0.9943 + }, + { + "start": 15618.54, + "end": 15620.72, + "probability": 0.953 + }, + { + "start": 15622.14, + "end": 15628.24, + "probability": 0.9934 + }, + { + "start": 15628.36, + "end": 15631.8, + "probability": 0.9959 + }, + { + "start": 15632.74, + "end": 15634.24, + "probability": 0.9178 + }, + { + "start": 15634.48, + "end": 15640.34, + "probability": 0.993 + }, + { + "start": 15640.44, + "end": 15643.4, + "probability": 0.9797 + }, + { + "start": 15643.4, + "end": 15646.76, + "probability": 0.9894 + }, + { + "start": 15648.1, + "end": 15655.1, + "probability": 0.9903 + }, + { + "start": 15655.22, + "end": 15655.68, + "probability": 0.911 + }, + { + "start": 15656.3, + "end": 15657.54, + "probability": 0.9198 + }, + { + "start": 15657.62, + "end": 15659.02, + "probability": 0.9893 + }, + { + "start": 15659.24, + "end": 15660.48, + "probability": 0.9559 + }, + { + "start": 15661.76, + "end": 15664.0, + "probability": 0.9987 + }, + { + "start": 15666.17, + "end": 15667.86, + "probability": 0.7371 + }, + { + "start": 15668.42, + "end": 15670.4, + "probability": 0.9985 + }, + { + "start": 15671.24, + "end": 15674.82, + "probability": 0.9927 + }, + { + "start": 15674.98, + "end": 15676.9, + "probability": 0.8346 + }, + { + "start": 15677.02, + "end": 15679.4, + "probability": 0.9696 + }, + { + "start": 15680.22, + "end": 15680.68, + "probability": 0.9894 + }, + { + "start": 15683.32, + "end": 15687.84, + "probability": 0.9901 + }, + { + "start": 15689.02, + "end": 15691.76, + "probability": 0.9707 + }, + { + "start": 15692.5, + "end": 15696.74, + "probability": 0.9983 + }, + { + "start": 15696.82, + "end": 15698.18, + "probability": 0.9163 + }, + { + "start": 15698.58, + "end": 15699.52, + "probability": 0.9766 + }, + { + "start": 15699.6, + "end": 15700.7, + "probability": 0.7241 + }, + { + "start": 15701.16, + "end": 15702.88, + "probability": 0.9625 + }, + { + "start": 15703.0, + "end": 15704.76, + "probability": 0.9937 + }, + { + "start": 15705.08, + "end": 15705.74, + "probability": 0.9805 + }, + { + "start": 15705.92, + "end": 15711.76, + "probability": 0.9596 + }, + { + "start": 15713.3, + "end": 15717.7, + "probability": 0.9953 + }, + { + "start": 15717.78, + "end": 15719.6, + "probability": 0.9943 + }, + { + "start": 15719.64, + "end": 15721.26, + "probability": 0.7797 + }, + { + "start": 15723.46, + "end": 15726.12, + "probability": 0.9824 + }, + { + "start": 15726.12, + "end": 15730.6, + "probability": 0.9948 + }, + { + "start": 15730.72, + "end": 15735.72, + "probability": 0.9801 + }, + { + "start": 15736.6, + "end": 15738.78, + "probability": 0.814 + }, + { + "start": 15739.16, + "end": 15741.56, + "probability": 0.8507 + }, + { + "start": 15742.06, + "end": 15747.0, + "probability": 0.9964 + }, + { + "start": 15747.72, + "end": 15750.5, + "probability": 0.9297 + }, + { + "start": 15750.92, + "end": 15753.39, + "probability": 0.9934 + }, + { + "start": 15754.4, + "end": 15760.86, + "probability": 0.9842 + }, + { + "start": 15761.42, + "end": 15763.22, + "probability": 0.9629 + }, + { + "start": 15763.32, + "end": 15769.28, + "probability": 0.9344 + }, + { + "start": 15769.32, + "end": 15771.48, + "probability": 0.9921 + }, + { + "start": 15771.48, + "end": 15773.66, + "probability": 0.9908 + }, + { + "start": 15774.3, + "end": 15775.82, + "probability": 0.9855 + }, + { + "start": 15777.1, + "end": 15778.56, + "probability": 0.9724 + }, + { + "start": 15779.4, + "end": 15782.2, + "probability": 0.9921 + }, + { + "start": 15782.48, + "end": 15784.06, + "probability": 0.9854 + }, + { + "start": 15784.12, + "end": 15785.62, + "probability": 0.998 + }, + { + "start": 15786.28, + "end": 15787.28, + "probability": 0.9944 + }, + { + "start": 15788.5, + "end": 15792.3, + "probability": 0.9634 + }, + { + "start": 15793.08, + "end": 15794.5, + "probability": 0.9955 + }, + { + "start": 15794.6, + "end": 15796.78, + "probability": 0.7604 + }, + { + "start": 15797.84, + "end": 15798.48, + "probability": 0.6653 + }, + { + "start": 15799.02, + "end": 15800.22, + "probability": 0.9851 + }, + { + "start": 15800.34, + "end": 15801.22, + "probability": 0.933 + }, + { + "start": 15801.32, + "end": 15804.52, + "probability": 0.0362 + }, + { + "start": 15804.52, + "end": 15804.52, + "probability": 0.215 + }, + { + "start": 15804.52, + "end": 15804.94, + "probability": 0.3656 + }, + { + "start": 15807.96, + "end": 15811.34, + "probability": 0.8464 + }, + { + "start": 15812.09, + "end": 15816.1, + "probability": 0.933 + }, + { + "start": 15816.26, + "end": 15821.02, + "probability": 0.9934 + }, + { + "start": 15822.36, + "end": 15825.46, + "probability": 0.9961 + }, + { + "start": 15825.5, + "end": 15826.1, + "probability": 0.8649 + }, + { + "start": 15826.2, + "end": 15827.06, + "probability": 0.888 + }, + { + "start": 15827.6, + "end": 15832.74, + "probability": 0.9907 + }, + { + "start": 15833.56, + "end": 15834.1, + "probability": 0.364 + }, + { + "start": 15834.58, + "end": 15836.26, + "probability": 0.8517 + }, + { + "start": 15836.42, + "end": 15837.98, + "probability": 0.7729 + }, + { + "start": 15838.46, + "end": 15839.64, + "probability": 0.8817 + }, + { + "start": 15840.74, + "end": 15843.88, + "probability": 0.9836 + }, + { + "start": 15843.88, + "end": 15847.36, + "probability": 0.981 + }, + { + "start": 15848.82, + "end": 15852.24, + "probability": 0.9961 + }, + { + "start": 15853.66, + "end": 15857.4, + "probability": 0.8132 + }, + { + "start": 15859.79, + "end": 15866.96, + "probability": 0.9953 + }, + { + "start": 15866.96, + "end": 15871.26, + "probability": 0.9989 + }, + { + "start": 15871.28, + "end": 15872.5, + "probability": 0.7009 + }, + { + "start": 15874.2, + "end": 15876.92, + "probability": 0.8943 + }, + { + "start": 15877.6, + "end": 15879.92, + "probability": 0.8897 + }, + { + "start": 15880.62, + "end": 15882.98, + "probability": 0.9974 + }, + { + "start": 15883.42, + "end": 15887.84, + "probability": 0.9935 + }, + { + "start": 15888.02, + "end": 15891.23, + "probability": 0.9924 + }, + { + "start": 15892.02, + "end": 15892.56, + "probability": 0.4981 + }, + { + "start": 15893.1, + "end": 15896.22, + "probability": 0.9778 + }, + { + "start": 15897.06, + "end": 15900.64, + "probability": 0.9688 + }, + { + "start": 15902.34, + "end": 15905.1, + "probability": 0.5965 + }, + { + "start": 15906.42, + "end": 15909.88, + "probability": 0.9875 + }, + { + "start": 15910.42, + "end": 15915.68, + "probability": 0.9842 + }, + { + "start": 15916.72, + "end": 15917.32, + "probability": 0.7888 + }, + { + "start": 15918.6, + "end": 15925.42, + "probability": 0.9797 + }, + { + "start": 15927.49, + "end": 15933.3, + "probability": 0.9318 + }, + { + "start": 15935.52, + "end": 15936.98, + "probability": 0.9198 + }, + { + "start": 15937.58, + "end": 15940.32, + "probability": 0.9579 + }, + { + "start": 15940.86, + "end": 15942.24, + "probability": 0.9691 + }, + { + "start": 15944.88, + "end": 15946.92, + "probability": 0.9939 + }, + { + "start": 15948.42, + "end": 15952.23, + "probability": 0.8946 + }, + { + "start": 15953.04, + "end": 15954.96, + "probability": 0.8383 + }, + { + "start": 15954.96, + "end": 15956.0, + "probability": 0.734 + }, + { + "start": 15956.12, + "end": 15956.12, + "probability": 0.0191 + }, + { + "start": 15956.12, + "end": 15956.52, + "probability": 0.6212 + }, + { + "start": 15957.42, + "end": 15959.36, + "probability": 0.9932 + }, + { + "start": 15959.5, + "end": 15961.06, + "probability": 0.8696 + }, + { + "start": 15961.8, + "end": 15962.2, + "probability": 0.0689 + }, + { + "start": 15962.94, + "end": 15964.1, + "probability": 0.7186 + }, + { + "start": 15966.7, + "end": 15966.74, + "probability": 0.3962 + }, + { + "start": 15966.74, + "end": 15966.96, + "probability": 0.1504 + }, + { + "start": 15966.96, + "end": 15967.36, + "probability": 0.0666 + }, + { + "start": 15967.46, + "end": 15968.74, + "probability": 0.1804 + }, + { + "start": 15968.74, + "end": 15970.56, + "probability": 0.27 + }, + { + "start": 15970.56, + "end": 15972.06, + "probability": 0.4104 + }, + { + "start": 15972.2, + "end": 15972.58, + "probability": 0.0745 + }, + { + "start": 15972.76, + "end": 15973.38, + "probability": 0.4217 + }, + { + "start": 15973.42, + "end": 15974.16, + "probability": 0.4752 + }, + { + "start": 15974.22, + "end": 15975.68, + "probability": 0.5386 + }, + { + "start": 15975.82, + "end": 15976.16, + "probability": 0.2004 + }, + { + "start": 15976.32, + "end": 15977.64, + "probability": 0.0403 + }, + { + "start": 15977.68, + "end": 15978.76, + "probability": 0.2154 + }, + { + "start": 15978.84, + "end": 15983.14, + "probability": 0.9618 + }, + { + "start": 15983.28, + "end": 15985.96, + "probability": 0.7871 + }, + { + "start": 15986.54, + "end": 15989.12, + "probability": 0.9379 + }, + { + "start": 15989.82, + "end": 15991.58, + "probability": 0.6902 + }, + { + "start": 15992.28, + "end": 15994.4, + "probability": 0.9205 + }, + { + "start": 15994.96, + "end": 15996.29, + "probability": 0.9864 + }, + { + "start": 15997.44, + "end": 16001.44, + "probability": 0.9962 + }, + { + "start": 16003.84, + "end": 16007.26, + "probability": 0.9644 + }, + { + "start": 16008.0, + "end": 16008.6, + "probability": 0.8472 + }, + { + "start": 16009.54, + "end": 16010.56, + "probability": 0.7648 + }, + { + "start": 16011.4, + "end": 16013.26, + "probability": 0.9853 + }, + { + "start": 16014.14, + "end": 16017.08, + "probability": 0.9712 + }, + { + "start": 16018.38, + "end": 16022.16, + "probability": 0.649 + }, + { + "start": 16022.24, + "end": 16025.24, + "probability": 0.7857 + }, + { + "start": 16025.78, + "end": 16028.58, + "probability": 0.7983 + }, + { + "start": 16029.68, + "end": 16034.96, + "probability": 0.9909 + }, + { + "start": 16035.04, + "end": 16035.62, + "probability": 0.7514 + }, + { + "start": 16036.46, + "end": 16036.8, + "probability": 0.7093 + }, + { + "start": 16036.86, + "end": 16041.06, + "probability": 0.9735 + }, + { + "start": 16042.88, + "end": 16044.43, + "probability": 0.9324 + }, + { + "start": 16045.08, + "end": 16048.08, + "probability": 0.9917 + }, + { + "start": 16049.18, + "end": 16052.04, + "probability": 0.9991 + }, + { + "start": 16052.14, + "end": 16055.34, + "probability": 0.9966 + }, + { + "start": 16056.12, + "end": 16057.24, + "probability": 0.9895 + }, + { + "start": 16057.88, + "end": 16058.82, + "probability": 0.9888 + }, + { + "start": 16059.56, + "end": 16067.14, + "probability": 0.9824 + }, + { + "start": 16067.9, + "end": 16070.96, + "probability": 0.9198 + }, + { + "start": 16072.32, + "end": 16080.42, + "probability": 0.9787 + }, + { + "start": 16082.06, + "end": 16085.6, + "probability": 0.9765 + }, + { + "start": 16085.64, + "end": 16087.88, + "probability": 0.9372 + }, + { + "start": 16088.24, + "end": 16089.14, + "probability": 0.7071 + }, + { + "start": 16089.78, + "end": 16094.06, + "probability": 0.9956 + }, + { + "start": 16099.76, + "end": 16103.96, + "probability": 0.9753 + }, + { + "start": 16104.72, + "end": 16109.34, + "probability": 0.9974 + }, + { + "start": 16110.2, + "end": 16112.3, + "probability": 0.9703 + }, + { + "start": 16112.42, + "end": 16117.14, + "probability": 0.9981 + }, + { + "start": 16117.82, + "end": 16125.08, + "probability": 0.9947 + }, + { + "start": 16125.26, + "end": 16125.98, + "probability": 0.9805 + }, + { + "start": 16126.86, + "end": 16128.86, + "probability": 0.9922 + }, + { + "start": 16129.46, + "end": 16131.04, + "probability": 0.991 + }, + { + "start": 16131.76, + "end": 16133.64, + "probability": 0.982 + }, + { + "start": 16133.82, + "end": 16137.36, + "probability": 0.9519 + }, + { + "start": 16137.82, + "end": 16141.58, + "probability": 0.9971 + }, + { + "start": 16141.58, + "end": 16145.16, + "probability": 0.9946 + }, + { + "start": 16146.24, + "end": 16147.1, + "probability": 0.8788 + }, + { + "start": 16148.74, + "end": 16150.1, + "probability": 0.6023 + }, + { + "start": 16150.76, + "end": 16151.52, + "probability": 0.9766 + }, + { + "start": 16153.04, + "end": 16153.74, + "probability": 0.4038 + }, + { + "start": 16153.9, + "end": 16159.44, + "probability": 0.9958 + }, + { + "start": 16159.96, + "end": 16161.92, + "probability": 0.9977 + }, + { + "start": 16162.98, + "end": 16167.24, + "probability": 0.9974 + }, + { + "start": 16167.38, + "end": 16168.24, + "probability": 0.8502 + }, + { + "start": 16168.8, + "end": 16169.82, + "probability": 0.9582 + }, + { + "start": 16172.42, + "end": 16173.18, + "probability": 0.4687 + }, + { + "start": 16173.18, + "end": 16173.44, + "probability": 0.4101 + }, + { + "start": 16173.64, + "end": 16178.02, + "probability": 0.9945 + }, + { + "start": 16179.64, + "end": 16182.78, + "probability": 0.7702 + }, + { + "start": 16183.46, + "end": 16186.28, + "probability": 0.9937 + }, + { + "start": 16186.42, + "end": 16189.8, + "probability": 0.9838 + }, + { + "start": 16190.44, + "end": 16190.86, + "probability": 0.7745 + }, + { + "start": 16190.94, + "end": 16195.08, + "probability": 0.9917 + }, + { + "start": 16195.74, + "end": 16199.24, + "probability": 0.9542 + }, + { + "start": 16200.46, + "end": 16204.48, + "probability": 0.9764 + }, + { + "start": 16204.7, + "end": 16206.64, + "probability": 0.9357 + }, + { + "start": 16207.08, + "end": 16208.91, + "probability": 0.9797 + }, + { + "start": 16209.24, + "end": 16209.92, + "probability": 0.9533 + }, + { + "start": 16210.02, + "end": 16214.62, + "probability": 0.9931 + }, + { + "start": 16214.82, + "end": 16215.6, + "probability": 0.9803 + }, + { + "start": 16215.68, + "end": 16216.38, + "probability": 0.992 + }, + { + "start": 16216.52, + "end": 16219.12, + "probability": 0.998 + }, + { + "start": 16219.7, + "end": 16222.54, + "probability": 0.9895 + }, + { + "start": 16223.3, + "end": 16226.04, + "probability": 0.9788 + }, + { + "start": 16226.76, + "end": 16228.76, + "probability": 0.8608 + }, + { + "start": 16229.12, + "end": 16230.63, + "probability": 0.7383 + }, + { + "start": 16234.56, + "end": 16237.7, + "probability": 0.4912 + }, + { + "start": 16238.52, + "end": 16239.56, + "probability": 0.9881 + }, + { + "start": 16239.66, + "end": 16240.86, + "probability": 0.9047 + }, + { + "start": 16240.94, + "end": 16244.0, + "probability": 0.9681 + }, + { + "start": 16244.18, + "end": 16247.86, + "probability": 0.8356 + }, + { + "start": 16247.98, + "end": 16248.99, + "probability": 0.8516 + }, + { + "start": 16249.42, + "end": 16252.0, + "probability": 0.9366 + }, + { + "start": 16252.0, + "end": 16254.48, + "probability": 0.9869 + }, + { + "start": 16254.88, + "end": 16255.62, + "probability": 0.9562 + }, + { + "start": 16256.46, + "end": 16258.92, + "probability": 0.9591 + }, + { + "start": 16258.92, + "end": 16262.6, + "probability": 0.9971 + }, + { + "start": 16263.28, + "end": 16266.48, + "probability": 0.8813 + }, + { + "start": 16267.0, + "end": 16269.88, + "probability": 0.9955 + }, + { + "start": 16269.88, + "end": 16273.46, + "probability": 0.9976 + }, + { + "start": 16274.36, + "end": 16277.34, + "probability": 0.9985 + }, + { + "start": 16277.34, + "end": 16281.5, + "probability": 0.9966 + }, + { + "start": 16282.14, + "end": 16284.0, + "probability": 0.6842 + }, + { + "start": 16285.26, + "end": 16285.54, + "probability": 0.6679 + }, + { + "start": 16285.78, + "end": 16288.15, + "probability": 0.9857 + }, + { + "start": 16289.16, + "end": 16291.96, + "probability": 0.9936 + }, + { + "start": 16292.34, + "end": 16295.34, + "probability": 0.9834 + }, + { + "start": 16296.5, + "end": 16299.08, + "probability": 0.9624 + }, + { + "start": 16299.78, + "end": 16302.76, + "probability": 0.9902 + }, + { + "start": 16302.76, + "end": 16306.48, + "probability": 0.9969 + }, + { + "start": 16307.12, + "end": 16307.58, + "probability": 0.3774 + }, + { + "start": 16308.12, + "end": 16311.0, + "probability": 0.9876 + }, + { + "start": 16311.58, + "end": 16312.7, + "probability": 0.7558 + }, + { + "start": 16313.28, + "end": 16315.94, + "probability": 0.9953 + }, + { + "start": 16316.76, + "end": 16322.16, + "probability": 0.9601 + }, + { + "start": 16322.62, + "end": 16325.5, + "probability": 0.9824 + }, + { + "start": 16326.38, + "end": 16330.82, + "probability": 0.9954 + }, + { + "start": 16330.82, + "end": 16336.94, + "probability": 0.9892 + }, + { + "start": 16338.08, + "end": 16339.16, + "probability": 0.7349 + }, + { + "start": 16340.02, + "end": 16344.54, + "probability": 0.9951 + }, + { + "start": 16344.64, + "end": 16344.98, + "probability": 0.8149 + }, + { + "start": 16345.12, + "end": 16345.64, + "probability": 0.7372 + }, + { + "start": 16346.26, + "end": 16349.6, + "probability": 0.9772 + }, + { + "start": 16350.58, + "end": 16353.26, + "probability": 0.9595 + }, + { + "start": 16353.72, + "end": 16356.06, + "probability": 0.9973 + }, + { + "start": 16356.76, + "end": 16359.44, + "probability": 0.9915 + }, + { + "start": 16361.55, + "end": 16365.12, + "probability": 0.9989 + }, + { + "start": 16365.7, + "end": 16367.18, + "probability": 0.7703 + }, + { + "start": 16367.8, + "end": 16370.64, + "probability": 0.9928 + }, + { + "start": 16371.62, + "end": 16374.56, + "probability": 0.9854 + }, + { + "start": 16375.04, + "end": 16378.88, + "probability": 0.9992 + }, + { + "start": 16378.88, + "end": 16383.04, + "probability": 0.9961 + }, + { + "start": 16384.4, + "end": 16384.62, + "probability": 0.6546 + }, + { + "start": 16385.24, + "end": 16387.06, + "probability": 0.9924 + }, + { + "start": 16387.06, + "end": 16389.18, + "probability": 0.925 + }, + { + "start": 16390.62, + "end": 16392.44, + "probability": 0.9891 + }, + { + "start": 16392.44, + "end": 16395.64, + "probability": 0.9988 + }, + { + "start": 16396.18, + "end": 16399.38, + "probability": 0.9995 + }, + { + "start": 16400.5, + "end": 16403.44, + "probability": 0.9994 + }, + { + "start": 16404.32, + "end": 16406.24, + "probability": 0.7394 + }, + { + "start": 16406.96, + "end": 16410.28, + "probability": 0.9976 + }, + { + "start": 16410.78, + "end": 16413.12, + "probability": 0.8894 + }, + { + "start": 16413.98, + "end": 16416.22, + "probability": 0.9977 + }, + { + "start": 16416.9, + "end": 16419.56, + "probability": 0.8768 + }, + { + "start": 16420.08, + "end": 16425.18, + "probability": 0.9905 + }, + { + "start": 16426.16, + "end": 16428.88, + "probability": 0.9645 + }, + { + "start": 16428.98, + "end": 16435.78, + "probability": 0.9246 + }, + { + "start": 16435.94, + "end": 16439.4, + "probability": 0.6913 + }, + { + "start": 16439.72, + "end": 16440.46, + "probability": 0.8725 + }, + { + "start": 16440.96, + "end": 16442.98, + "probability": 0.8666 + }, + { + "start": 16444.0, + "end": 16446.42, + "probability": 0.9952 + }, + { + "start": 16446.42, + "end": 16450.14, + "probability": 0.9231 + }, + { + "start": 16450.76, + "end": 16451.82, + "probability": 0.7543 + }, + { + "start": 16451.98, + "end": 16455.1, + "probability": 0.9927 + }, + { + "start": 16455.8, + "end": 16458.16, + "probability": 0.9744 + }, + { + "start": 16458.53, + "end": 16463.98, + "probability": 0.9434 + }, + { + "start": 16464.52, + "end": 16466.64, + "probability": 0.994 + }, + { + "start": 16467.08, + "end": 16469.28, + "probability": 0.9839 + }, + { + "start": 16469.28, + "end": 16472.5, + "probability": 0.9951 + }, + { + "start": 16473.8, + "end": 16475.54, + "probability": 0.9894 + }, + { + "start": 16479.27, + "end": 16482.08, + "probability": 0.7495 + }, + { + "start": 16483.5, + "end": 16486.8, + "probability": 0.9777 + }, + { + "start": 16487.58, + "end": 16492.96, + "probability": 0.9939 + }, + { + "start": 16494.32, + "end": 16497.78, + "probability": 0.9908 + }, + { + "start": 16497.78, + "end": 16501.48, + "probability": 0.9932 + }, + { + "start": 16502.2, + "end": 16503.92, + "probability": 0.9888 + }, + { + "start": 16503.92, + "end": 16507.44, + "probability": 0.9933 + }, + { + "start": 16508.66, + "end": 16511.08, + "probability": 0.9949 + }, + { + "start": 16511.98, + "end": 16516.82, + "probability": 0.9373 + }, + { + "start": 16516.82, + "end": 16521.82, + "probability": 0.9987 + }, + { + "start": 16522.4, + "end": 16525.34, + "probability": 0.9745 + }, + { + "start": 16526.04, + "end": 16530.14, + "probability": 0.986 + }, + { + "start": 16530.4, + "end": 16531.14, + "probability": 0.8488 + }, + { + "start": 16531.26, + "end": 16533.02, + "probability": 0.9714 + }, + { + "start": 16533.56, + "end": 16536.89, + "probability": 0.9811 + }, + { + "start": 16537.58, + "end": 16538.34, + "probability": 0.6272 + }, + { + "start": 16538.38, + "end": 16541.8, + "probability": 0.9968 + }, + { + "start": 16542.46, + "end": 16545.22, + "probability": 0.9344 + }, + { + "start": 16545.58, + "end": 16547.98, + "probability": 0.9877 + }, + { + "start": 16548.38, + "end": 16552.64, + "probability": 0.9916 + }, + { + "start": 16553.68, + "end": 16554.08, + "probability": 0.6496 + }, + { + "start": 16554.7, + "end": 16559.66, + "probability": 0.8241 + }, + { + "start": 16560.14, + "end": 16563.3, + "probability": 0.976 + }, + { + "start": 16564.16, + "end": 16565.49, + "probability": 0.9346 + }, + { + "start": 16565.92, + "end": 16568.36, + "probability": 0.8185 + }, + { + "start": 16569.22, + "end": 16570.28, + "probability": 0.8165 + }, + { + "start": 16570.42, + "end": 16570.84, + "probability": 0.9014 + }, + { + "start": 16570.96, + "end": 16574.96, + "probability": 0.9053 + }, + { + "start": 16575.44, + "end": 16577.32, + "probability": 0.9437 + }, + { + "start": 16577.6, + "end": 16579.82, + "probability": 0.9866 + }, + { + "start": 16580.72, + "end": 16582.14, + "probability": 0.7028 + }, + { + "start": 16583.1, + "end": 16585.3, + "probability": 0.9941 + }, + { + "start": 16585.3, + "end": 16588.54, + "probability": 0.9342 + }, + { + "start": 16589.6, + "end": 16589.72, + "probability": 0.0172 + }, + { + "start": 16589.74, + "end": 16594.62, + "probability": 0.9849 + }, + { + "start": 16595.68, + "end": 16596.06, + "probability": 0.8689 + }, + { + "start": 16596.68, + "end": 16600.56, + "probability": 0.9898 + }, + { + "start": 16601.14, + "end": 16603.58, + "probability": 0.9325 + }, + { + "start": 16604.18, + "end": 16609.04, + "probability": 0.9805 + }, + { + "start": 16609.21, + "end": 16615.44, + "probability": 0.9653 + }, + { + "start": 16616.34, + "end": 16618.48, + "probability": 0.998 + }, + { + "start": 16618.48, + "end": 16621.24, + "probability": 0.9987 + }, + { + "start": 16622.74, + "end": 16623.3, + "probability": 0.9792 + }, + { + "start": 16624.36, + "end": 16628.94, + "probability": 0.7855 + }, + { + "start": 16629.4, + "end": 16629.86, + "probability": 0.6189 + }, + { + "start": 16629.9, + "end": 16634.54, + "probability": 0.9472 + }, + { + "start": 16634.64, + "end": 16636.7, + "probability": 0.928 + }, + { + "start": 16636.9, + "end": 16638.72, + "probability": 0.8785 + }, + { + "start": 16639.44, + "end": 16639.8, + "probability": 0.5615 + }, + { + "start": 16640.38, + "end": 16644.9, + "probability": 0.9372 + }, + { + "start": 16644.9, + "end": 16648.14, + "probability": 0.9933 + }, + { + "start": 16648.26, + "end": 16651.96, + "probability": 0.9646 + }, + { + "start": 16651.96, + "end": 16656.22, + "probability": 0.9827 + }, + { + "start": 16656.54, + "end": 16658.22, + "probability": 0.7603 + }, + { + "start": 16658.68, + "end": 16659.5, + "probability": 0.9341 + }, + { + "start": 16660.38, + "end": 16661.96, + "probability": 0.8278 + }, + { + "start": 16662.44, + "end": 16664.92, + "probability": 0.9978 + }, + { + "start": 16664.92, + "end": 16667.94, + "probability": 0.9838 + }, + { + "start": 16668.94, + "end": 16669.48, + "probability": 0.8521 + }, + { + "start": 16669.72, + "end": 16670.12, + "probability": 0.7466 + }, + { + "start": 16670.82, + "end": 16671.92, + "probability": 0.7634 + }, + { + "start": 16672.06, + "end": 16672.46, + "probability": 0.657 + }, + { + "start": 16672.52, + "end": 16674.57, + "probability": 0.5269 + }, + { + "start": 16674.68, + "end": 16675.34, + "probability": 0.6968 + }, + { + "start": 16675.44, + "end": 16675.84, + "probability": 0.3982 + }, + { + "start": 16675.92, + "end": 16676.28, + "probability": 0.583 + }, + { + "start": 16676.38, + "end": 16677.46, + "probability": 0.488 + }, + { + "start": 16678.12, + "end": 16678.7, + "probability": 0.8717 + }, + { + "start": 16679.24, + "end": 16681.54, + "probability": 0.5471 + }, + { + "start": 16692.98, + "end": 16694.14, + "probability": 0.5732 + }, + { + "start": 16694.42, + "end": 16696.58, + "probability": 0.9003 + }, + { + "start": 16697.2, + "end": 16698.94, + "probability": 0.6698 + }, + { + "start": 16699.5, + "end": 16699.72, + "probability": 0.9364 + }, + { + "start": 16699.82, + "end": 16701.74, + "probability": 0.9746 + }, + { + "start": 16701.86, + "end": 16703.42, + "probability": 0.4072 + }, + { + "start": 16703.48, + "end": 16704.16, + "probability": 0.9043 + }, + { + "start": 16704.28, + "end": 16705.76, + "probability": 0.6873 + }, + { + "start": 16705.84, + "end": 16706.35, + "probability": 0.5962 + }, + { + "start": 16706.86, + "end": 16708.04, + "probability": 0.9634 + }, + { + "start": 16709.1, + "end": 16709.82, + "probability": 0.9789 + }, + { + "start": 16710.98, + "end": 16713.08, + "probability": 0.8708 + }, + { + "start": 16713.58, + "end": 16716.01, + "probability": 0.9701 + }, + { + "start": 16716.26, + "end": 16717.24, + "probability": 0.2396 + }, + { + "start": 16717.26, + "end": 16719.62, + "probability": 0.9731 + }, + { + "start": 16720.15, + "end": 16721.66, + "probability": 0.9868 + }, + { + "start": 16721.74, + "end": 16721.82, + "probability": 0.8679 + }, + { + "start": 16721.96, + "end": 16726.12, + "probability": 0.9787 + }, + { + "start": 16726.2, + "end": 16728.14, + "probability": 0.9072 + }, + { + "start": 16728.6, + "end": 16728.95, + "probability": 0.0412 + }, + { + "start": 16729.22, + "end": 16729.62, + "probability": 0.3454 + }, + { + "start": 16729.74, + "end": 16730.9, + "probability": 0.9915 + }, + { + "start": 16730.98, + "end": 16732.82, + "probability": 0.7755 + }, + { + "start": 16732.98, + "end": 16733.5, + "probability": 0.813 + }, + { + "start": 16733.9, + "end": 16735.82, + "probability": 0.9801 + }, + { + "start": 16736.48, + "end": 16738.8, + "probability": 0.9207 + }, + { + "start": 16739.42, + "end": 16740.5, + "probability": 0.8984 + }, + { + "start": 16740.64, + "end": 16741.76, + "probability": 0.9616 + }, + { + "start": 16741.86, + "end": 16743.38, + "probability": 0.9831 + }, + { + "start": 16743.74, + "end": 16746.28, + "probability": 0.9877 + }, + { + "start": 16746.76, + "end": 16747.66, + "probability": 0.5787 + }, + { + "start": 16747.78, + "end": 16748.92, + "probability": 0.4685 + }, + { + "start": 16749.1, + "end": 16750.22, + "probability": 0.9863 + }, + { + "start": 16750.42, + "end": 16752.44, + "probability": 0.9004 + }, + { + "start": 16752.76, + "end": 16753.76, + "probability": 0.5059 + }, + { + "start": 16753.94, + "end": 16754.6, + "probability": 0.3898 + }, + { + "start": 16754.9, + "end": 16756.5, + "probability": 0.0631 + }, + { + "start": 16756.64, + "end": 16758.12, + "probability": 0.253 + }, + { + "start": 16758.22, + "end": 16758.26, + "probability": 0.4116 + }, + { + "start": 16758.28, + "end": 16761.08, + "probability": 0.8505 + }, + { + "start": 16761.16, + "end": 16761.34, + "probability": 0.4988 + }, + { + "start": 16761.42, + "end": 16762.1, + "probability": 0.8017 + }, + { + "start": 16762.1, + "end": 16762.48, + "probability": 0.9434 + }, + { + "start": 16762.66, + "end": 16764.76, + "probability": 0.8221 + }, + { + "start": 16767.04, + "end": 16767.04, + "probability": 0.0454 + }, + { + "start": 16767.04, + "end": 16769.4, + "probability": 0.6228 + }, + { + "start": 16769.56, + "end": 16771.44, + "probability": 0.1256 + }, + { + "start": 16771.6, + "end": 16772.2, + "probability": 0.1816 + }, + { + "start": 16773.52, + "end": 16774.5, + "probability": 0.392 + }, + { + "start": 16774.66, + "end": 16775.1, + "probability": 0.7022 + }, + { + "start": 16775.36, + "end": 16776.92, + "probability": 0.8563 + }, + { + "start": 16777.2, + "end": 16778.04, + "probability": 0.8186 + }, + { + "start": 16778.2, + "end": 16782.38, + "probability": 0.9546 + }, + { + "start": 16783.44, + "end": 16786.92, + "probability": 0.9302 + }, + { + "start": 16787.6, + "end": 16787.82, + "probability": 0.7826 + }, + { + "start": 16788.12, + "end": 16789.58, + "probability": 0.7439 + }, + { + "start": 16790.06, + "end": 16790.16, + "probability": 0.1365 + }, + { + "start": 16790.22, + "end": 16791.02, + "probability": 0.8308 + }, + { + "start": 16791.08, + "end": 16791.43, + "probability": 0.9301 + }, + { + "start": 16792.6, + "end": 16793.82, + "probability": 0.9832 + }, + { + "start": 16794.02, + "end": 16796.5, + "probability": 0.9532 + }, + { + "start": 16797.04, + "end": 16798.84, + "probability": 0.8821 + }, + { + "start": 16800.28, + "end": 16801.08, + "probability": 0.5725 + }, + { + "start": 16801.1, + "end": 16803.48, + "probability": 0.9234 + }, + { + "start": 16804.64, + "end": 16807.16, + "probability": 0.9696 + }, + { + "start": 16808.54, + "end": 16808.54, + "probability": 0.0618 + }, + { + "start": 16808.76, + "end": 16812.04, + "probability": 0.9487 + }, + { + "start": 16812.48, + "end": 16816.16, + "probability": 0.9481 + }, + { + "start": 16817.68, + "end": 16821.04, + "probability": 0.9971 + }, + { + "start": 16823.26, + "end": 16823.84, + "probability": 0.8856 + }, + { + "start": 16824.78, + "end": 16825.34, + "probability": 0.5253 + }, + { + "start": 16826.22, + "end": 16827.8, + "probability": 0.801 + }, + { + "start": 16829.16, + "end": 16830.62, + "probability": 0.9766 + }, + { + "start": 16830.64, + "end": 16831.58, + "probability": 0.8004 + }, + { + "start": 16832.08, + "end": 16832.42, + "probability": 0.6018 + }, + { + "start": 16832.42, + "end": 16832.8, + "probability": 0.5021 + }, + { + "start": 16832.82, + "end": 16833.41, + "probability": 0.9785 + }, + { + "start": 16833.58, + "end": 16833.84, + "probability": 0.5994 + }, + { + "start": 16834.07, + "end": 16836.28, + "probability": 0.9814 + }, + { + "start": 16836.5, + "end": 16839.18, + "probability": 0.7686 + }, + { + "start": 16840.04, + "end": 16843.48, + "probability": 0.9834 + }, + { + "start": 16844.56, + "end": 16848.78, + "probability": 0.9238 + }, + { + "start": 16849.08, + "end": 16849.46, + "probability": 0.7 + }, + { + "start": 16853.64, + "end": 16853.64, + "probability": 0.0693 + }, + { + "start": 16853.64, + "end": 16853.64, + "probability": 0.2383 + }, + { + "start": 16853.64, + "end": 16857.64, + "probability": 0.4685 + }, + { + "start": 16858.2, + "end": 16859.36, + "probability": 0.4695 + }, + { + "start": 16859.42, + "end": 16860.46, + "probability": 0.3355 + }, + { + "start": 16860.66, + "end": 16862.76, + "probability": 0.4226 + }, + { + "start": 16862.98, + "end": 16863.3, + "probability": 0.0228 + }, + { + "start": 16863.72, + "end": 16869.32, + "probability": 0.4383 + }, + { + "start": 16869.58, + "end": 16870.91, + "probability": 0.7494 + }, + { + "start": 16871.22, + "end": 16874.78, + "probability": 0.9956 + }, + { + "start": 16874.78, + "end": 16877.16, + "probability": 0.9954 + }, + { + "start": 16877.2, + "end": 16878.26, + "probability": 0.3573 + }, + { + "start": 16878.34, + "end": 16879.26, + "probability": 0.3718 + }, + { + "start": 16879.4, + "end": 16880.96, + "probability": 0.6926 + }, + { + "start": 16881.48, + "end": 16883.26, + "probability": 0.8719 + }, + { + "start": 16883.38, + "end": 16883.38, + "probability": 0.0576 + }, + { + "start": 16883.38, + "end": 16884.58, + "probability": 0.9692 + }, + { + "start": 16884.86, + "end": 16884.88, + "probability": 0.379 + }, + { + "start": 16884.88, + "end": 16885.58, + "probability": 0.7835 + }, + { + "start": 16887.06, + "end": 16887.36, + "probability": 0.0815 + }, + { + "start": 16887.36, + "end": 16887.98, + "probability": 0.3891 + }, + { + "start": 16888.08, + "end": 16890.4, + "probability": 0.071 + }, + { + "start": 16890.4, + "end": 16890.4, + "probability": 0.0787 + }, + { + "start": 16890.4, + "end": 16890.42, + "probability": 0.022 + }, + { + "start": 16890.42, + "end": 16890.66, + "probability": 0.4671 + }, + { + "start": 16890.66, + "end": 16892.24, + "probability": 0.8289 + }, + { + "start": 16892.38, + "end": 16895.22, + "probability": 0.5633 + }, + { + "start": 16895.32, + "end": 16895.48, + "probability": 0.6871 + }, + { + "start": 16895.58, + "end": 16896.32, + "probability": 0.9343 + }, + { + "start": 16896.36, + "end": 16897.59, + "probability": 0.9698 + }, + { + "start": 16897.76, + "end": 16900.42, + "probability": 0.9178 + }, + { + "start": 16901.22, + "end": 16903.0, + "probability": 0.9214 + }, + { + "start": 16904.32, + "end": 16905.44, + "probability": 0.8655 + }, + { + "start": 16906.28, + "end": 16908.44, + "probability": 0.7196 + }, + { + "start": 16908.56, + "end": 16909.77, + "probability": 0.9941 + }, + { + "start": 16912.26, + "end": 16912.28, + "probability": 0.7458 + }, + { + "start": 16912.38, + "end": 16913.99, + "probability": 0.5202 + }, + { + "start": 16914.26, + "end": 16914.97, + "probability": 0.9244 + }, + { + "start": 16915.42, + "end": 16918.63, + "probability": 0.9863 + }, + { + "start": 16919.32, + "end": 16920.82, + "probability": 0.8138 + }, + { + "start": 16921.06, + "end": 16922.54, + "probability": 0.9352 + }, + { + "start": 16922.86, + "end": 16924.64, + "probability": 0.9992 + }, + { + "start": 16926.94, + "end": 16927.7, + "probability": 0.8975 + }, + { + "start": 16928.46, + "end": 16929.28, + "probability": 0.8913 + }, + { + "start": 16931.14, + "end": 16934.66, + "probability": 0.9669 + }, + { + "start": 16934.88, + "end": 16935.92, + "probability": 0.9364 + }, + { + "start": 16937.16, + "end": 16937.78, + "probability": 0.9779 + }, + { + "start": 16938.36, + "end": 16940.38, + "probability": 0.991 + }, + { + "start": 16940.44, + "end": 16941.52, + "probability": 0.6624 + }, + { + "start": 16941.72, + "end": 16946.0, + "probability": 0.8783 + }, + { + "start": 16946.3, + "end": 16947.18, + "probability": 0.7422 + }, + { + "start": 16948.72, + "end": 16949.76, + "probability": 0.9714 + }, + { + "start": 16951.3, + "end": 16957.14, + "probability": 0.9578 + }, + { + "start": 16957.14, + "end": 16958.85, + "probability": 0.9277 + }, + { + "start": 16959.64, + "end": 16960.8, + "probability": 0.9375 + }, + { + "start": 16961.46, + "end": 16962.56, + "probability": 0.8791 + }, + { + "start": 16963.28, + "end": 16964.34, + "probability": 0.9945 + }, + { + "start": 16965.12, + "end": 16965.7, + "probability": 0.9951 + }, + { + "start": 16966.46, + "end": 16970.92, + "probability": 0.9347 + }, + { + "start": 16971.44, + "end": 16972.52, + "probability": 0.9963 + }, + { + "start": 16972.66, + "end": 16973.82, + "probability": 0.9614 + }, + { + "start": 16974.08, + "end": 16974.78, + "probability": 0.5313 + }, + { + "start": 16974.88, + "end": 16976.28, + "probability": 0.9415 + }, + { + "start": 16976.48, + "end": 16978.16, + "probability": 0.6355 + }, + { + "start": 16978.84, + "end": 16979.9, + "probability": 0.9507 + }, + { + "start": 16980.02, + "end": 16984.46, + "probability": 0.9673 + }, + { + "start": 16986.0, + "end": 16989.48, + "probability": 0.9824 + }, + { + "start": 16990.28, + "end": 16992.24, + "probability": 0.77 + }, + { + "start": 16992.54, + "end": 16994.64, + "probability": 0.7093 + }, + { + "start": 16995.26, + "end": 16997.86, + "probability": 0.9941 + }, + { + "start": 16998.42, + "end": 17000.52, + "probability": 0.9551 + }, + { + "start": 17001.9, + "end": 17005.8, + "probability": 0.9822 + }, + { + "start": 17005.98, + "end": 17011.38, + "probability": 0.88 + }, + { + "start": 17011.68, + "end": 17013.22, + "probability": 0.8905 + }, + { + "start": 17013.52, + "end": 17016.86, + "probability": 0.9852 + }, + { + "start": 17017.42, + "end": 17019.08, + "probability": 0.8481 + }, + { + "start": 17020.96, + "end": 17021.54, + "probability": 0.7313 + }, + { + "start": 17023.12, + "end": 17024.26, + "probability": 0.9503 + }, + { + "start": 17024.34, + "end": 17025.2, + "probability": 0.958 + }, + { + "start": 17025.28, + "end": 17025.93, + "probability": 0.7251 + }, + { + "start": 17025.98, + "end": 17027.38, + "probability": 0.9535 + }, + { + "start": 17027.96, + "end": 17030.72, + "probability": 0.9941 + }, + { + "start": 17031.38, + "end": 17032.5, + "probability": 0.6231 + }, + { + "start": 17033.24, + "end": 17034.84, + "probability": 0.6719 + }, + { + "start": 17035.28, + "end": 17038.52, + "probability": 0.8738 + }, + { + "start": 17038.64, + "end": 17040.22, + "probability": 0.9902 + }, + { + "start": 17040.32, + "end": 17040.96, + "probability": 0.9699 + }, + { + "start": 17041.1, + "end": 17041.62, + "probability": 0.699 + }, + { + "start": 17041.62, + "end": 17045.92, + "probability": 0.9812 + }, + { + "start": 17046.22, + "end": 17046.76, + "probability": 0.413 + }, + { + "start": 17046.92, + "end": 17047.66, + "probability": 0.5272 + }, + { + "start": 17047.66, + "end": 17048.25, + "probability": 0.3843 + }, + { + "start": 17048.96, + "end": 17049.48, + "probability": 0.5278 + }, + { + "start": 17050.68, + "end": 17052.08, + "probability": 0.9948 + }, + { + "start": 17052.22, + "end": 17052.78, + "probability": 0.8636 + }, + { + "start": 17052.9, + "end": 17053.38, + "probability": 0.3551 + }, + { + "start": 17053.38, + "end": 17053.93, + "probability": 0.7697 + }, + { + "start": 17054.16, + "end": 17055.7, + "probability": 0.7177 + }, + { + "start": 17056.38, + "end": 17057.46, + "probability": 0.9867 + }, + { + "start": 17057.58, + "end": 17058.09, + "probability": 0.8685 + }, + { + "start": 17058.54, + "end": 17059.58, + "probability": 0.772 + }, + { + "start": 17059.94, + "end": 17061.66, + "probability": 0.6701 + }, + { + "start": 17061.7, + "end": 17065.62, + "probability": 0.9636 + }, + { + "start": 17065.8, + "end": 17067.22, + "probability": 0.9869 + }, + { + "start": 17067.38, + "end": 17067.82, + "probability": 0.6387 + }, + { + "start": 17067.82, + "end": 17070.1, + "probability": 0.8903 + }, + { + "start": 17070.18, + "end": 17073.16, + "probability": 0.8137 + }, + { + "start": 17073.3, + "end": 17074.64, + "probability": 0.9146 + }, + { + "start": 17075.28, + "end": 17076.2, + "probability": 0.7012 + }, + { + "start": 17076.58, + "end": 17077.96, + "probability": 0.6244 + }, + { + "start": 17078.4, + "end": 17079.32, + "probability": 0.8301 + }, + { + "start": 17080.34, + "end": 17081.02, + "probability": 0.3892 + }, + { + "start": 17081.12, + "end": 17081.12, + "probability": 0.0245 + }, + { + "start": 17081.12, + "end": 17082.7, + "probability": 0.2203 + }, + { + "start": 17082.74, + "end": 17085.04, + "probability": 0.4573 + }, + { + "start": 17085.28, + "end": 17086.1, + "probability": 0.924 + }, + { + "start": 17086.12, + "end": 17088.2, + "probability": 0.6553 + }, + { + "start": 17088.32, + "end": 17090.9, + "probability": 0.9854 + }, + { + "start": 17092.36, + "end": 17092.88, + "probability": 0.9396 + }, + { + "start": 17093.86, + "end": 17094.78, + "probability": 0.211 + }, + { + "start": 17094.78, + "end": 17097.68, + "probability": 0.9857 + }, + { + "start": 17098.88, + "end": 17099.48, + "probability": 0.0863 + }, + { + "start": 17099.48, + "end": 17099.58, + "probability": 0.729 + }, + { + "start": 17099.7, + "end": 17099.96, + "probability": 0.9392 + }, + { + "start": 17100.0, + "end": 17100.62, + "probability": 0.4501 + }, + { + "start": 17100.96, + "end": 17103.76, + "probability": 0.6886 + }, + { + "start": 17104.04, + "end": 17106.4, + "probability": 0.9895 + }, + { + "start": 17106.4, + "end": 17108.32, + "probability": 0.8329 + }, + { + "start": 17108.42, + "end": 17109.76, + "probability": 0.9876 + }, + { + "start": 17109.78, + "end": 17110.4, + "probability": 0.5551 + }, + { + "start": 17111.36, + "end": 17114.32, + "probability": 0.9934 + }, + { + "start": 17115.4, + "end": 17116.9, + "probability": 0.8199 + }, + { + "start": 17116.96, + "end": 17117.34, + "probability": 0.7954 + }, + { + "start": 17117.48, + "end": 17117.78, + "probability": 0.5602 + }, + { + "start": 17117.8, + "end": 17119.76, + "probability": 0.9901 + }, + { + "start": 17119.88, + "end": 17121.14, + "probability": 0.9601 + }, + { + "start": 17121.42, + "end": 17126.36, + "probability": 0.9914 + }, + { + "start": 17127.28, + "end": 17130.46, + "probability": 0.9805 + }, + { + "start": 17130.58, + "end": 17132.26, + "probability": 0.9578 + }, + { + "start": 17132.34, + "end": 17133.42, + "probability": 0.7639 + }, + { + "start": 17133.7, + "end": 17133.88, + "probability": 0.545 + }, + { + "start": 17133.88, + "end": 17134.8, + "probability": 0.8353 + }, + { + "start": 17135.56, + "end": 17136.84, + "probability": 0.8925 + }, + { + "start": 17137.36, + "end": 17141.02, + "probability": 0.9616 + }, + { + "start": 17141.6, + "end": 17142.16, + "probability": 0.2677 + }, + { + "start": 17142.36, + "end": 17144.2, + "probability": 0.9593 + }, + { + "start": 17144.66, + "end": 17144.84, + "probability": 0.6091 + }, + { + "start": 17144.92, + "end": 17146.7, + "probability": 0.9643 + }, + { + "start": 17146.9, + "end": 17147.72, + "probability": 0.6856 + }, + { + "start": 17148.18, + "end": 17150.42, + "probability": 0.8146 + }, + { + "start": 17151.94, + "end": 17153.4, + "probability": 0.9136 + }, + { + "start": 17154.2, + "end": 17155.42, + "probability": 0.7589 + }, + { + "start": 17155.5, + "end": 17155.9, + "probability": 0.7191 + }, + { + "start": 17155.96, + "end": 17156.32, + "probability": 0.7374 + }, + { + "start": 17156.42, + "end": 17157.86, + "probability": 0.9791 + }, + { + "start": 17158.42, + "end": 17161.02, + "probability": 0.998 + }, + { + "start": 17161.94, + "end": 17163.36, + "probability": 0.9937 + }, + { + "start": 17163.4, + "end": 17163.56, + "probability": 0.2245 + }, + { + "start": 17163.72, + "end": 17167.22, + "probability": 0.6998 + }, + { + "start": 17168.24, + "end": 17169.6, + "probability": 0.9814 + }, + { + "start": 17169.86, + "end": 17170.66, + "probability": 0.7921 + }, + { + "start": 17171.52, + "end": 17172.64, + "probability": 0.7976 + }, + { + "start": 17172.82, + "end": 17178.66, + "probability": 0.7482 + }, + { + "start": 17178.66, + "end": 17180.86, + "probability": 0.9365 + }, + { + "start": 17181.0, + "end": 17181.26, + "probability": 0.6752 + }, + { + "start": 17181.34, + "end": 17184.72, + "probability": 0.9751 + }, + { + "start": 17184.86, + "end": 17186.58, + "probability": 0.2865 + }, + { + "start": 17187.08, + "end": 17189.21, + "probability": 0.7833 + }, + { + "start": 17189.84, + "end": 17190.52, + "probability": 0.0311 + }, + { + "start": 17190.52, + "end": 17191.56, + "probability": 0.6979 + }, + { + "start": 17191.68, + "end": 17192.98, + "probability": 0.7944 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0984 + }, + { + "start": 17193.12, + "end": 17196.68, + "probability": 0.024 + }, + { + "start": 17197.36, + "end": 17197.5, + "probability": 0.0762 + }, + { + "start": 17197.5, + "end": 17197.5, + "probability": 0.045 + }, + { + "start": 17197.5, + "end": 17197.5, + "probability": 0.0767 + }, + { + "start": 17197.5, + "end": 17197.5, + "probability": 0.0154 + }, + { + "start": 17197.5, + "end": 17198.06, + "probability": 0.1154 + }, + { + "start": 17198.06, + "end": 17199.68, + "probability": 0.6831 + }, + { + "start": 17200.12, + "end": 17201.14, + "probability": 0.969 + }, + { + "start": 17202.08, + "end": 17202.54, + "probability": 0.0405 + }, + { + "start": 17202.62, + "end": 17204.26, + "probability": 0.9591 + }, + { + "start": 17205.18, + "end": 17205.88, + "probability": 0.857 + }, + { + "start": 17206.9, + "end": 17208.56, + "probability": 0.9906 + }, + { + "start": 17208.64, + "end": 17209.36, + "probability": 0.9763 + }, + { + "start": 17210.28, + "end": 17211.02, + "probability": 0.7693 + }, + { + "start": 17212.02, + "end": 17213.98, + "probability": 0.9072 + }, + { + "start": 17214.66, + "end": 17216.26, + "probability": 0.9964 + }, + { + "start": 17216.82, + "end": 17217.78, + "probability": 0.665 + }, + { + "start": 17217.98, + "end": 17219.76, + "probability": 0.8319 + }, + { + "start": 17220.72, + "end": 17221.84, + "probability": 0.9571 + }, + { + "start": 17221.9, + "end": 17223.04, + "probability": 0.8383 + }, + { + "start": 17223.16, + "end": 17225.42, + "probability": 0.9957 + }, + { + "start": 17225.42, + "end": 17228.14, + "probability": 0.9793 + }, + { + "start": 17229.06, + "end": 17230.81, + "probability": 0.6829 + }, + { + "start": 17231.72, + "end": 17232.83, + "probability": 0.6004 + }, + { + "start": 17233.72, + "end": 17235.2, + "probability": 0.9878 + }, + { + "start": 17236.14, + "end": 17237.34, + "probability": 0.9971 + }, + { + "start": 17237.88, + "end": 17238.86, + "probability": 0.9346 + }, + { + "start": 17239.46, + "end": 17241.66, + "probability": 0.9587 + }, + { + "start": 17242.56, + "end": 17245.68, + "probability": 0.9979 + }, + { + "start": 17246.34, + "end": 17247.97, + "probability": 0.986 + }, + { + "start": 17248.6, + "end": 17250.88, + "probability": 0.9956 + }, + { + "start": 17251.3, + "end": 17255.78, + "probability": 0.9885 + }, + { + "start": 17255.94, + "end": 17256.12, + "probability": 0.9578 + }, + { + "start": 17256.24, + "end": 17258.24, + "probability": 0.9359 + }, + { + "start": 17258.36, + "end": 17259.86, + "probability": 0.7359 + }, + { + "start": 17260.56, + "end": 17263.64, + "probability": 0.9206 + }, + { + "start": 17264.24, + "end": 17265.52, + "probability": 0.7261 + }, + { + "start": 17266.58, + "end": 17267.6, + "probability": 0.9502 + }, + { + "start": 17268.62, + "end": 17269.4, + "probability": 0.4894 + }, + { + "start": 17269.64, + "end": 17270.78, + "probability": 0.999 + }, + { + "start": 17272.22, + "end": 17272.98, + "probability": 0.6817 + }, + { + "start": 17273.58, + "end": 17275.37, + "probability": 0.833 + }, + { + "start": 17275.76, + "end": 17275.98, + "probability": 0.657 + }, + { + "start": 17276.04, + "end": 17276.38, + "probability": 0.9354 + }, + { + "start": 17276.9, + "end": 17277.28, + "probability": 0.4531 + }, + { + "start": 17277.54, + "end": 17278.08, + "probability": 0.7303 + }, + { + "start": 17279.34, + "end": 17281.36, + "probability": 0.6289 + }, + { + "start": 17281.7, + "end": 17282.08, + "probability": 0.8453 + }, + { + "start": 17282.16, + "end": 17284.38, + "probability": 0.9855 + }, + { + "start": 17285.13, + "end": 17287.96, + "probability": 0.9985 + }, + { + "start": 17288.68, + "end": 17289.66, + "probability": 0.8199 + }, + { + "start": 17290.0, + "end": 17291.9, + "probability": 0.4083 + }, + { + "start": 17291.98, + "end": 17291.98, + "probability": 0.5107 + }, + { + "start": 17291.98, + "end": 17293.18, + "probability": 0.992 + }, + { + "start": 17293.4, + "end": 17295.66, + "probability": 0.3299 + }, + { + "start": 17295.66, + "end": 17297.9, + "probability": 0.9092 + }, + { + "start": 17298.04, + "end": 17298.49, + "probability": 0.9683 + }, + { + "start": 17299.12, + "end": 17300.98, + "probability": 0.9897 + }, + { + "start": 17301.12, + "end": 17303.74, + "probability": 0.9443 + }, + { + "start": 17304.32, + "end": 17306.32, + "probability": 0.9965 + }, + { + "start": 17306.76, + "end": 17308.48, + "probability": 0.9839 + }, + { + "start": 17309.34, + "end": 17309.88, + "probability": 0.8689 + }, + { + "start": 17309.94, + "end": 17310.66, + "probability": 0.8245 + }, + { + "start": 17310.8, + "end": 17312.44, + "probability": 0.9605 + }, + { + "start": 17313.18, + "end": 17316.14, + "probability": 0.8562 + }, + { + "start": 17317.52, + "end": 17319.46, + "probability": 0.9736 + }, + { + "start": 17319.74, + "end": 17320.09, + "probability": 0.7036 + }, + { + "start": 17321.14, + "end": 17322.76, + "probability": 0.9872 + }, + { + "start": 17323.1, + "end": 17323.38, + "probability": 0.835 + }, + { + "start": 17324.56, + "end": 17325.8, + "probability": 0.7847 + }, + { + "start": 17326.64, + "end": 17328.26, + "probability": 0.815 + }, + { + "start": 17328.82, + "end": 17330.42, + "probability": 0.9502 + }, + { + "start": 17330.92, + "end": 17332.02, + "probability": 0.8673 + }, + { + "start": 17332.12, + "end": 17332.7, + "probability": 0.4041 + }, + { + "start": 17332.7, + "end": 17333.05, + "probability": 0.0572 + }, + { + "start": 17334.0, + "end": 17335.98, + "probability": 0.4228 + }, + { + "start": 17336.04, + "end": 17337.34, + "probability": 0.9583 + }, + { + "start": 17337.48, + "end": 17337.58, + "probability": 0.4758 + }, + { + "start": 17338.82, + "end": 17341.46, + "probability": 0.8789 + }, + { + "start": 17341.52, + "end": 17342.86, + "probability": 0.4369 + }, + { + "start": 17344.02, + "end": 17345.9, + "probability": 0.8047 + }, + { + "start": 17348.06, + "end": 17350.44, + "probability": 0.9222 + }, + { + "start": 17350.94, + "end": 17352.12, + "probability": 0.6848 + }, + { + "start": 17352.76, + "end": 17354.48, + "probability": 0.9705 + }, + { + "start": 17354.58, + "end": 17355.58, + "probability": 0.6189 + }, + { + "start": 17355.96, + "end": 17356.6, + "probability": 0.9444 + }, + { + "start": 17356.7, + "end": 17359.32, + "probability": 0.6826 + }, + { + "start": 17359.62, + "end": 17359.64, + "probability": 0.1957 + }, + { + "start": 17361.92, + "end": 17362.68, + "probability": 0.8097 + }, + { + "start": 17365.24, + "end": 17368.18, + "probability": 0.9806 + }, + { + "start": 17369.1, + "end": 17369.94, + "probability": 0.8477 + }, + { + "start": 17371.2, + "end": 17372.04, + "probability": 0.9699 + }, + { + "start": 17372.76, + "end": 17374.4, + "probability": 0.993 + }, + { + "start": 17375.72, + "end": 17378.04, + "probability": 0.7983 + }, + { + "start": 17378.28, + "end": 17379.8, + "probability": 0.7823 + }, + { + "start": 17381.4, + "end": 17385.04, + "probability": 0.8881 + }, + { + "start": 17386.46, + "end": 17387.4, + "probability": 0.5104 + }, + { + "start": 17390.64, + "end": 17392.52, + "probability": 0.9872 + }, + { + "start": 17393.32, + "end": 17394.06, + "probability": 0.9036 + }, + { + "start": 17394.9, + "end": 17397.0, + "probability": 0.3879 + }, + { + "start": 17398.83, + "end": 17401.52, + "probability": 0.0148 + }, + { + "start": 17402.66, + "end": 17405.36, + "probability": 0.8797 + }, + { + "start": 17406.84, + "end": 17408.52, + "probability": 0.985 + }, + { + "start": 17411.9, + "end": 17412.82, + "probability": 0.7261 + }, + { + "start": 17412.92, + "end": 17414.32, + "probability": 0.9341 + }, + { + "start": 17414.52, + "end": 17416.8, + "probability": 0.9628 + }, + { + "start": 17417.32, + "end": 17418.42, + "probability": 0.7955 + }, + { + "start": 17420.18, + "end": 17421.06, + "probability": 0.6273 + }, + { + "start": 17421.36, + "end": 17421.56, + "probability": 0.8579 + }, + { + "start": 17421.64, + "end": 17426.7, + "probability": 0.9833 + }, + { + "start": 17426.7, + "end": 17433.12, + "probability": 0.91 + }, + { + "start": 17433.12, + "end": 17433.76, + "probability": 0.2668 + }, + { + "start": 17434.46, + "end": 17435.36, + "probability": 0.9982 + }, + { + "start": 17436.34, + "end": 17438.0, + "probability": 0.7758 + }, + { + "start": 17439.48, + "end": 17441.58, + "probability": 0.6576 + }, + { + "start": 17442.7, + "end": 17445.62, + "probability": 0.9938 + }, + { + "start": 17445.92, + "end": 17447.14, + "probability": 0.9868 + }, + { + "start": 17447.24, + "end": 17450.0, + "probability": 0.9898 + }, + { + "start": 17450.12, + "end": 17451.78, + "probability": 0.9532 + }, + { + "start": 17453.26, + "end": 17455.68, + "probability": 0.9984 + }, + { + "start": 17455.88, + "end": 17456.88, + "probability": 0.9503 + }, + { + "start": 17457.0, + "end": 17458.27, + "probability": 0.9392 + }, + { + "start": 17458.84, + "end": 17463.52, + "probability": 0.735 + }, + { + "start": 17463.7, + "end": 17464.44, + "probability": 0.9038 + }, + { + "start": 17464.5, + "end": 17465.28, + "probability": 0.4759 + }, + { + "start": 17465.64, + "end": 17469.2, + "probability": 0.9947 + }, + { + "start": 17469.3, + "end": 17470.48, + "probability": 0.7872 + }, + { + "start": 17471.74, + "end": 17472.24, + "probability": 0.8256 + }, + { + "start": 17474.06, + "end": 17476.9, + "probability": 0.8714 + }, + { + "start": 17479.2, + "end": 17481.1, + "probability": 0.9846 + }, + { + "start": 17481.18, + "end": 17483.5, + "probability": 0.9887 + }, + { + "start": 17483.88, + "end": 17485.24, + "probability": 0.94 + }, + { + "start": 17485.34, + "end": 17486.64, + "probability": 0.9883 + }, + { + "start": 17487.48, + "end": 17490.25, + "probability": 0.9778 + }, + { + "start": 17492.32, + "end": 17495.94, + "probability": 0.7867 + }, + { + "start": 17496.3, + "end": 17497.96, + "probability": 0.9871 + }, + { + "start": 17500.62, + "end": 17502.82, + "probability": 0.9939 + }, + { + "start": 17504.38, + "end": 17506.06, + "probability": 0.7785 + }, + { + "start": 17507.52, + "end": 17509.1, + "probability": 0.8381 + }, + { + "start": 17510.74, + "end": 17514.98, + "probability": 0.999 + }, + { + "start": 17516.84, + "end": 17517.68, + "probability": 0.9534 + }, + { + "start": 17519.84, + "end": 17524.1, + "probability": 0.8872 + }, + { + "start": 17525.24, + "end": 17528.54, + "probability": 0.8778 + }, + { + "start": 17529.5, + "end": 17533.38, + "probability": 0.9904 + }, + { + "start": 17533.58, + "end": 17535.44, + "probability": 0.9591 + }, + { + "start": 17536.98, + "end": 17542.48, + "probability": 0.9203 + }, + { + "start": 17542.5, + "end": 17544.56, + "probability": 0.7492 + }, + { + "start": 17546.1, + "end": 17551.42, + "probability": 0.9636 + }, + { + "start": 17551.42, + "end": 17552.18, + "probability": 0.877 + }, + { + "start": 17552.96, + "end": 17555.64, + "probability": 0.9185 + }, + { + "start": 17557.34, + "end": 17559.04, + "probability": 0.9939 + }, + { + "start": 17559.64, + "end": 17561.48, + "probability": 0.9565 + }, + { + "start": 17561.58, + "end": 17562.28, + "probability": 0.2901 + }, + { + "start": 17562.38, + "end": 17563.22, + "probability": 0.8055 + }, + { + "start": 17564.0, + "end": 17566.44, + "probability": 0.9535 + }, + { + "start": 17567.84, + "end": 17569.2, + "probability": 0.9597 + }, + { + "start": 17570.72, + "end": 17573.36, + "probability": 0.9758 + }, + { + "start": 17574.76, + "end": 17576.4, + "probability": 0.9904 + }, + { + "start": 17577.02, + "end": 17578.42, + "probability": 0.732 + }, + { + "start": 17579.24, + "end": 17580.56, + "probability": 0.8408 + }, + { + "start": 17580.76, + "end": 17583.94, + "probability": 0.9725 + }, + { + "start": 17584.06, + "end": 17584.64, + "probability": 0.5991 + }, + { + "start": 17585.5, + "end": 17586.78, + "probability": 0.9907 + }, + { + "start": 17586.8, + "end": 17589.34, + "probability": 0.9651 + }, + { + "start": 17590.02, + "end": 17592.6, + "probability": 0.828 + }, + { + "start": 17593.28, + "end": 17595.54, + "probability": 0.9168 + }, + { + "start": 17597.76, + "end": 17598.82, + "probability": 0.7103 + }, + { + "start": 17598.86, + "end": 17600.08, + "probability": 0.953 + }, + { + "start": 17600.22, + "end": 17605.44, + "probability": 0.9771 + }, + { + "start": 17607.58, + "end": 17611.28, + "probability": 0.8705 + }, + { + "start": 17611.9, + "end": 17612.78, + "probability": 0.7385 + }, + { + "start": 17613.58, + "end": 17618.4, + "probability": 0.9794 + }, + { + "start": 17619.08, + "end": 17620.64, + "probability": 0.7246 + }, + { + "start": 17621.52, + "end": 17623.76, + "probability": 0.9769 + }, + { + "start": 17623.8, + "end": 17626.68, + "probability": 0.9604 + }, + { + "start": 17627.5, + "end": 17628.3, + "probability": 0.0635 + }, + { + "start": 17628.3, + "end": 17629.02, + "probability": 0.9426 + }, + { + "start": 17629.02, + "end": 17630.12, + "probability": 0.8643 + }, + { + "start": 17630.48, + "end": 17630.78, + "probability": 0.7898 + }, + { + "start": 17630.86, + "end": 17631.76, + "probability": 0.8001 + }, + { + "start": 17632.16, + "end": 17632.68, + "probability": 0.2134 + }, + { + "start": 17633.44, + "end": 17634.22, + "probability": 0.978 + }, + { + "start": 17634.28, + "end": 17634.92, + "probability": 0.8838 + }, + { + "start": 17634.98, + "end": 17636.76, + "probability": 0.6086 + }, + { + "start": 17636.96, + "end": 17638.48, + "probability": 0.9038 + }, + { + "start": 17639.22, + "end": 17641.74, + "probability": 0.9135 + }, + { + "start": 17642.44, + "end": 17645.94, + "probability": 0.96 + }, + { + "start": 17646.25, + "end": 17650.04, + "probability": 0.7718 + }, + { + "start": 17650.92, + "end": 17652.04, + "probability": 0.9986 + }, + { + "start": 17653.54, + "end": 17655.56, + "probability": 0.9608 + }, + { + "start": 17656.32, + "end": 17657.71, + "probability": 0.9993 + }, + { + "start": 17658.95, + "end": 17660.01, + "probability": 0.8386 + }, + { + "start": 17660.73, + "end": 17663.95, + "probability": 0.998 + }, + { + "start": 17664.01, + "end": 17665.78, + "probability": 0.5178 + }, + { + "start": 17666.15, + "end": 17667.51, + "probability": 0.9188 + }, + { + "start": 17667.61, + "end": 17667.81, + "probability": 0.1447 + }, + { + "start": 17668.04, + "end": 17671.69, + "probability": 0.9248 + }, + { + "start": 17671.99, + "end": 17673.47, + "probability": 0.8589 + }, + { + "start": 17673.83, + "end": 17677.35, + "probability": 0.9891 + }, + { + "start": 17677.95, + "end": 17679.01, + "probability": 0.9126 + }, + { + "start": 17679.91, + "end": 17680.09, + "probability": 0.9065 + }, + { + "start": 17681.45, + "end": 17681.63, + "probability": 0.1916 + }, + { + "start": 17681.63, + "end": 17683.59, + "probability": 0.5145 + }, + { + "start": 17688.49, + "end": 17690.63, + "probability": 0.6587 + }, + { + "start": 17693.81, + "end": 17696.93, + "probability": 0.9647 + }, + { + "start": 17696.99, + "end": 17697.97, + "probability": 0.8668 + }, + { + "start": 17698.87, + "end": 17700.61, + "probability": 0.8574 + }, + { + "start": 17701.19, + "end": 17701.31, + "probability": 0.0464 + }, + { + "start": 17702.89, + "end": 17704.11, + "probability": 0.2646 + }, + { + "start": 17704.11, + "end": 17706.53, + "probability": 0.3691 + }, + { + "start": 17707.11, + "end": 17708.26, + "probability": 0.507 + }, + { + "start": 17708.37, + "end": 17708.55, + "probability": 0.4941 + }, + { + "start": 17708.65, + "end": 17709.23, + "probability": 0.2288 + }, + { + "start": 17709.63, + "end": 17710.93, + "probability": 0.8351 + }, + { + "start": 17711.25, + "end": 17713.19, + "probability": 0.7745 + }, + { + "start": 17713.27, + "end": 17714.33, + "probability": 0.7854 + }, + { + "start": 17714.55, + "end": 17715.18, + "probability": 0.2597 + }, + { + "start": 17715.41, + "end": 17715.81, + "probability": 0.6349 + }, + { + "start": 17715.93, + "end": 17716.35, + "probability": 0.7813 + }, + { + "start": 17716.43, + "end": 17716.75, + "probability": 0.8721 + }, + { + "start": 17716.85, + "end": 17717.19, + "probability": 0.7741 + }, + { + "start": 17717.19, + "end": 17718.09, + "probability": 0.6116 + }, + { + "start": 17718.15, + "end": 17719.11, + "probability": 0.5097 + }, + { + "start": 17719.39, + "end": 17720.45, + "probability": 0.8835 + }, + { + "start": 17720.53, + "end": 17721.33, + "probability": 0.3857 + }, + { + "start": 17721.33, + "end": 17722.03, + "probability": 0.5902 + }, + { + "start": 17722.23, + "end": 17723.75, + "probability": 0.1501 + }, + { + "start": 17723.75, + "end": 17724.21, + "probability": 0.6058 + }, + { + "start": 17724.38, + "end": 17728.87, + "probability": 0.5051 + }, + { + "start": 17729.27, + "end": 17729.55, + "probability": 0.5651 + }, + { + "start": 17729.55, + "end": 17731.7, + "probability": 0.4318 + }, + { + "start": 17732.69, + "end": 17732.77, + "probability": 0.2644 + }, + { + "start": 17732.77, + "end": 17733.21, + "probability": 0.3687 + }, + { + "start": 17733.21, + "end": 17736.75, + "probability": 0.1166 + }, + { + "start": 17736.75, + "end": 17738.65, + "probability": 0.2447 + }, + { + "start": 17741.25, + "end": 17741.39, + "probability": 0.0647 + }, + { + "start": 17741.45, + "end": 17742.53, + "probability": 0.5009 + }, + { + "start": 17743.99, + "end": 17747.55, + "probability": 0.3541 + }, + { + "start": 17750.39, + "end": 17751.23, + "probability": 0.091 + }, + { + "start": 17752.49, + "end": 17752.71, + "probability": 0.303 + }, + { + "start": 17752.71, + "end": 17754.77, + "probability": 0.3643 + }, + { + "start": 17754.87, + "end": 17755.77, + "probability": 0.5121 + }, + { + "start": 17755.77, + "end": 17758.09, + "probability": 0.3942 + }, + { + "start": 17758.19, + "end": 17759.13, + "probability": 0.1143 + }, + { + "start": 17759.57, + "end": 17759.91, + "probability": 0.347 + }, + { + "start": 17759.91, + "end": 17760.23, + "probability": 0.5685 + }, + { + "start": 17760.29, + "end": 17761.19, + "probability": 0.4197 + }, + { + "start": 17761.75, + "end": 17761.99, + "probability": 0.5285 + }, + { + "start": 17762.79, + "end": 17763.21, + "probability": 0.156 + }, + { + "start": 17763.21, + "end": 17763.49, + "probability": 0.3847 + }, + { + "start": 17763.49, + "end": 17764.81, + "probability": 0.0762 + }, + { + "start": 17765.05, + "end": 17766.79, + "probability": 0.5708 + }, + { + "start": 17766.79, + "end": 17766.79, + "probability": 0.3079 + }, + { + "start": 17766.79, + "end": 17766.79, + "probability": 0.1757 + }, + { + "start": 17766.79, + "end": 17766.79, + "probability": 0.0087 + }, + { + "start": 17766.79, + "end": 17767.42, + "probability": 0.4059 + }, + { + "start": 17767.85, + "end": 17768.59, + "probability": 0.4071 + }, + { + "start": 17768.79, + "end": 17769.61, + "probability": 0.3245 + }, + { + "start": 17769.87, + "end": 17770.69, + "probability": 0.1187 + }, + { + "start": 17770.69, + "end": 17770.69, + "probability": 0.1083 + }, + { + "start": 17770.69, + "end": 17772.97, + "probability": 0.5989 + }, + { + "start": 17772.97, + "end": 17775.57, + "probability": 0.336 + }, + { + "start": 17775.69, + "end": 17777.54, + "probability": 0.4686 + }, + { + "start": 17777.71, + "end": 17779.59, + "probability": 0.7527 + }, + { + "start": 17779.65, + "end": 17779.71, + "probability": 0.0742 + }, + { + "start": 17779.71, + "end": 17784.97, + "probability": 0.4171 + }, + { + "start": 17785.0, + "end": 17785.0, + "probability": 0.0 + }, + { + "start": 17785.0, + "end": 17785.0, + "probability": 0.0 + }, + { + "start": 17785.18, + "end": 17786.0, + "probability": 0.3886 + }, + { + "start": 17786.16, + "end": 17787.72, + "probability": 0.1388 + }, + { + "start": 17788.16, + "end": 17788.3, + "probability": 0.4376 + }, + { + "start": 17788.3, + "end": 17789.9, + "probability": 0.5922 + }, + { + "start": 17791.26, + "end": 17792.08, + "probability": 0.5041 + }, + { + "start": 17794.39, + "end": 17795.9, + "probability": 0.2376 + }, + { + "start": 17797.93, + "end": 17799.1, + "probability": 0.1505 + }, + { + "start": 17799.1, + "end": 17800.36, + "probability": 0.0748 + }, + { + "start": 17800.36, + "end": 17802.34, + "probability": 0.2546 + }, + { + "start": 17802.46, + "end": 17803.2, + "probability": 0.3794 + }, + { + "start": 17805.43, + "end": 17807.94, + "probability": 0.2452 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.0, + "end": 17910.0, + "probability": 0.0 + }, + { + "start": 17910.1, + "end": 17911.87, + "probability": 0.3998 + }, + { + "start": 17914.38, + "end": 17915.22, + "probability": 0.9058 + }, + { + "start": 17916.98, + "end": 17918.56, + "probability": 0.9845 + }, + { + "start": 17919.76, + "end": 17921.7, + "probability": 0.9146 + }, + { + "start": 17923.38, + "end": 17926.56, + "probability": 0.9348 + }, + { + "start": 17928.6, + "end": 17930.06, + "probability": 0.983 + }, + { + "start": 17930.82, + "end": 17932.08, + "probability": 0.9659 + }, + { + "start": 17933.44, + "end": 17935.17, + "probability": 0.9932 + }, + { + "start": 17936.88, + "end": 17937.88, + "probability": 0.6976 + }, + { + "start": 17939.4, + "end": 17941.42, + "probability": 0.8265 + }, + { + "start": 17942.52, + "end": 17947.36, + "probability": 0.9321 + }, + { + "start": 17948.34, + "end": 17949.2, + "probability": 0.9001 + }, + { + "start": 17949.86, + "end": 17950.94, + "probability": 0.6973 + }, + { + "start": 17951.84, + "end": 17952.82, + "probability": 0.7719 + }, + { + "start": 17953.8, + "end": 17955.4, + "probability": 0.9697 + }, + { + "start": 17957.62, + "end": 17959.26, + "probability": 0.8882 + }, + { + "start": 17961.08, + "end": 17962.52, + "probability": 0.999 + }, + { + "start": 17963.42, + "end": 17965.08, + "probability": 0.9998 + }, + { + "start": 17967.06, + "end": 17968.16, + "probability": 0.7971 + }, + { + "start": 17969.76, + "end": 17970.9, + "probability": 0.8941 + }, + { + "start": 17971.52, + "end": 17972.14, + "probability": 0.795 + }, + { + "start": 17973.16, + "end": 17978.08, + "probability": 0.9958 + }, + { + "start": 17979.76, + "end": 17980.98, + "probability": 0.9879 + }, + { + "start": 17982.0, + "end": 17983.6, + "probability": 0.9927 + }, + { + "start": 17984.72, + "end": 17986.1, + "probability": 0.7447 + }, + { + "start": 17987.82, + "end": 17990.04, + "probability": 0.8883 + }, + { + "start": 17991.06, + "end": 17993.16, + "probability": 0.9462 + }, + { + "start": 17995.04, + "end": 17996.92, + "probability": 0.925 + }, + { + "start": 17997.46, + "end": 17999.34, + "probability": 0.9262 + }, + { + "start": 18000.68, + "end": 18005.8, + "probability": 0.9814 + }, + { + "start": 18006.74, + "end": 18007.64, + "probability": 0.97 + }, + { + "start": 18009.14, + "end": 18012.4, + "probability": 0.7608 + }, + { + "start": 18013.56, + "end": 18016.64, + "probability": 0.7664 + }, + { + "start": 18017.9, + "end": 18019.78, + "probability": 0.9613 + }, + { + "start": 18020.38, + "end": 18021.66, + "probability": 0.9985 + }, + { + "start": 18022.6, + "end": 18022.96, + "probability": 0.6004 + }, + { + "start": 18023.56, + "end": 18024.48, + "probability": 0.9505 + }, + { + "start": 18027.18, + "end": 18028.7, + "probability": 0.9147 + }, + { + "start": 18029.58, + "end": 18030.57, + "probability": 0.7437 + }, + { + "start": 18033.08, + "end": 18033.78, + "probability": 0.9604 + }, + { + "start": 18035.86, + "end": 18042.02, + "probability": 0.8495 + }, + { + "start": 18042.58, + "end": 18043.64, + "probability": 0.9851 + }, + { + "start": 18047.12, + "end": 18047.82, + "probability": 0.4627 + }, + { + "start": 18048.64, + "end": 18049.16, + "probability": 0.4856 + }, + { + "start": 18051.84, + "end": 18054.46, + "probability": 0.9626 + }, + { + "start": 18055.18, + "end": 18056.22, + "probability": 0.899 + }, + { + "start": 18057.76, + "end": 18058.82, + "probability": 0.9373 + }, + { + "start": 18060.54, + "end": 18062.28, + "probability": 0.866 + }, + { + "start": 18063.58, + "end": 18064.94, + "probability": 0.8832 + }, + { + "start": 18065.4, + "end": 18067.84, + "probability": 0.9718 + }, + { + "start": 18068.76, + "end": 18070.5, + "probability": 0.905 + }, + { + "start": 18072.92, + "end": 18074.04, + "probability": 0.9626 + }, + { + "start": 18075.58, + "end": 18077.9, + "probability": 0.7432 + }, + { + "start": 18078.68, + "end": 18080.94, + "probability": 0.9163 + }, + { + "start": 18082.32, + "end": 18085.68, + "probability": 0.9985 + }, + { + "start": 18086.54, + "end": 18087.62, + "probability": 0.8558 + }, + { + "start": 18089.56, + "end": 18091.3, + "probability": 0.4753 + }, + { + "start": 18092.24, + "end": 18093.36, + "probability": 0.9542 + }, + { + "start": 18094.9, + "end": 18095.94, + "probability": 0.7584 + }, + { + "start": 18097.84, + "end": 18098.34, + "probability": 0.6525 + }, + { + "start": 18099.3, + "end": 18108.9, + "probability": 0.8251 + }, + { + "start": 18110.98, + "end": 18112.12, + "probability": 0.9702 + }, + { + "start": 18113.24, + "end": 18116.38, + "probability": 0.8198 + }, + { + "start": 18118.06, + "end": 18120.0, + "probability": 0.9736 + }, + { + "start": 18122.04, + "end": 18124.96, + "probability": 0.9983 + }, + { + "start": 18127.76, + "end": 18131.72, + "probability": 0.5693 + }, + { + "start": 18132.92, + "end": 18134.92, + "probability": 0.9898 + }, + { + "start": 18135.84, + "end": 18137.0, + "probability": 0.4909 + }, + { + "start": 18139.56, + "end": 18143.58, + "probability": 0.9962 + }, + { + "start": 18144.94, + "end": 18146.8, + "probability": 0.9349 + }, + { + "start": 18147.38, + "end": 18149.74, + "probability": 0.79 + }, + { + "start": 18151.44, + "end": 18153.36, + "probability": 0.9207 + }, + { + "start": 18155.36, + "end": 18159.42, + "probability": 0.9927 + }, + { + "start": 18161.06, + "end": 18162.14, + "probability": 0.9644 + }, + { + "start": 18163.78, + "end": 18165.58, + "probability": 0.9254 + }, + { + "start": 18167.16, + "end": 18169.66, + "probability": 0.994 + }, + { + "start": 18171.14, + "end": 18172.39, + "probability": 0.9237 + }, + { + "start": 18175.1, + "end": 18176.6, + "probability": 0.7643 + }, + { + "start": 18178.2, + "end": 18183.34, + "probability": 0.9891 + }, + { + "start": 18186.08, + "end": 18190.12, + "probability": 0.8494 + }, + { + "start": 18191.22, + "end": 18192.68, + "probability": 0.9505 + }, + { + "start": 18193.8, + "end": 18199.36, + "probability": 0.709 + }, + { + "start": 18200.6, + "end": 18202.94, + "probability": 0.9085 + }, + { + "start": 18203.6, + "end": 18206.94, + "probability": 0.88 + }, + { + "start": 18207.16, + "end": 18207.58, + "probability": 0.8031 + }, + { + "start": 18208.14, + "end": 18209.12, + "probability": 0.5751 + }, + { + "start": 18209.12, + "end": 18210.9, + "probability": 0.7781 + }, + { + "start": 18213.9, + "end": 18215.9, + "probability": 0.6923 + }, + { + "start": 18215.98, + "end": 18216.4, + "probability": 0.7335 + }, + { + "start": 18216.76, + "end": 18217.68, + "probability": 0.7559 + }, + { + "start": 18217.78, + "end": 18221.54, + "probability": 0.8785 + }, + { + "start": 18221.54, + "end": 18228.92, + "probability": 0.84 + }, + { + "start": 18228.92, + "end": 18229.58, + "probability": 0.0679 + }, + { + "start": 18229.58, + "end": 18229.72, + "probability": 0.4536 + }, + { + "start": 18234.52, + "end": 18237.0, + "probability": 0.5979 + }, + { + "start": 18237.58, + "end": 18238.4, + "probability": 0.4059 + }, + { + "start": 18238.4, + "end": 18239.0, + "probability": 0.7032 + }, + { + "start": 18239.1, + "end": 18239.24, + "probability": 0.2601 + }, + { + "start": 18239.88, + "end": 18240.34, + "probability": 0.7088 + }, + { + "start": 18240.52, + "end": 18242.58, + "probability": 0.6378 + }, + { + "start": 18242.66, + "end": 18243.58, + "probability": 0.8563 + }, + { + "start": 18246.66, + "end": 18248.72, + "probability": 0.7714 + }, + { + "start": 18249.62, + "end": 18250.82, + "probability": 0.6991 + }, + { + "start": 18251.36, + "end": 18252.76, + "probability": 0.748 + }, + { + "start": 18255.1, + "end": 18257.04, + "probability": 0.9993 + }, + { + "start": 18258.56, + "end": 18259.98, + "probability": 0.8418 + }, + { + "start": 18260.54, + "end": 18262.5, + "probability": 0.7489 + }, + { + "start": 18263.96, + "end": 18265.7, + "probability": 0.6995 + }, + { + "start": 18267.3, + "end": 18271.92, + "probability": 0.9291 + }, + { + "start": 18272.7, + "end": 18275.54, + "probability": 0.9037 + }, + { + "start": 18276.8, + "end": 18281.34, + "probability": 0.7999 + }, + { + "start": 18281.56, + "end": 18285.4, + "probability": 0.8114 + }, + { + "start": 18285.78, + "end": 18288.2, + "probability": 0.9316 + }, + { + "start": 18289.1, + "end": 18290.88, + "probability": 0.8737 + }, + { + "start": 18291.46, + "end": 18292.07, + "probability": 0.9395 + }, + { + "start": 18293.52, + "end": 18294.4, + "probability": 0.8789 + }, + { + "start": 18295.64, + "end": 18297.27, + "probability": 0.9639 + }, + { + "start": 18298.2, + "end": 18300.48, + "probability": 0.9824 + }, + { + "start": 18301.3, + "end": 18303.44, + "probability": 0.9777 + }, + { + "start": 18304.14, + "end": 18305.76, + "probability": 0.6844 + }, + { + "start": 18306.64, + "end": 18307.58, + "probability": 0.7993 + }, + { + "start": 18308.34, + "end": 18311.06, + "probability": 0.8574 + }, + { + "start": 18311.46, + "end": 18314.27, + "probability": 0.958 + }, + { + "start": 18314.62, + "end": 18318.76, + "probability": 0.9622 + }, + { + "start": 18319.1, + "end": 18322.56, + "probability": 0.8036 + }, + { + "start": 18323.94, + "end": 18325.28, + "probability": 0.993 + }, + { + "start": 18325.88, + "end": 18328.94, + "probability": 0.969 + }, + { + "start": 18330.42, + "end": 18334.12, + "probability": 0.8018 + }, + { + "start": 18334.64, + "end": 18337.36, + "probability": 0.783 + }, + { + "start": 18338.2, + "end": 18338.78, + "probability": 0.7596 + }, + { + "start": 18339.76, + "end": 18341.9, + "probability": 0.9389 + }, + { + "start": 18342.62, + "end": 18345.66, + "probability": 0.9879 + }, + { + "start": 18346.78, + "end": 18348.98, + "probability": 0.9512 + }, + { + "start": 18349.44, + "end": 18350.28, + "probability": 0.7975 + }, + { + "start": 18351.04, + "end": 18351.76, + "probability": 0.8191 + }, + { + "start": 18352.46, + "end": 18353.74, + "probability": 0.8123 + }, + { + "start": 18354.54, + "end": 18355.32, + "probability": 0.915 + }, + { + "start": 18356.12, + "end": 18357.0, + "probability": 0.6182 + }, + { + "start": 18357.88, + "end": 18364.22, + "probability": 0.9854 + }, + { + "start": 18365.04, + "end": 18367.52, + "probability": 0.9016 + }, + { + "start": 18368.58, + "end": 18371.7, + "probability": 0.9023 + }, + { + "start": 18372.68, + "end": 18375.56, + "probability": 0.9976 + }, + { + "start": 18375.84, + "end": 18377.02, + "probability": 0.8176 + }, + { + "start": 18377.44, + "end": 18378.82, + "probability": 0.8648 + }, + { + "start": 18379.0, + "end": 18379.6, + "probability": 0.7437 + }, + { + "start": 18380.0, + "end": 18380.84, + "probability": 0.9193 + }, + { + "start": 18381.52, + "end": 18381.8, + "probability": 0.856 + }, + { + "start": 18382.04, + "end": 18382.5, + "probability": 0.8271 + }, + { + "start": 18382.86, + "end": 18387.94, + "probability": 0.9471 + }, + { + "start": 18388.02, + "end": 18389.5, + "probability": 0.7675 + }, + { + "start": 18390.04, + "end": 18391.46, + "probability": 0.7615 + }, + { + "start": 18392.4, + "end": 18393.76, + "probability": 0.8034 + }, + { + "start": 18394.54, + "end": 18395.52, + "probability": 0.9514 + }, + { + "start": 18396.3, + "end": 18400.32, + "probability": 0.831 + }, + { + "start": 18400.34, + "end": 18402.96, + "probability": 0.9646 + }, + { + "start": 18403.54, + "end": 18406.16, + "probability": 0.929 + }, + { + "start": 18406.8, + "end": 18407.54, + "probability": 0.2183 + }, + { + "start": 18407.9, + "end": 18409.57, + "probability": 0.8682 + }, + { + "start": 18410.38, + "end": 18411.96, + "probability": 0.7337 + }, + { + "start": 18412.6, + "end": 18415.24, + "probability": 0.8288 + }, + { + "start": 18416.88, + "end": 18417.02, + "probability": 0.6826 + }, + { + "start": 18417.92, + "end": 18418.64, + "probability": 0.9771 + }, + { + "start": 18419.2, + "end": 18419.5, + "probability": 0.8981 + }, + { + "start": 18420.6, + "end": 18421.68, + "probability": 0.9739 + }, + { + "start": 18422.44, + "end": 18424.06, + "probability": 0.9758 + }, + { + "start": 18425.06, + "end": 18426.78, + "probability": 0.6593 + }, + { + "start": 18427.46, + "end": 18430.18, + "probability": 0.9773 + }, + { + "start": 18430.6, + "end": 18431.48, + "probability": 0.8111 + }, + { + "start": 18432.32, + "end": 18435.18, + "probability": 0.9736 + }, + { + "start": 18437.68, + "end": 18440.05, + "probability": 0.9734 + }, + { + "start": 18440.96, + "end": 18442.06, + "probability": 0.9585 + }, + { + "start": 18442.86, + "end": 18443.56, + "probability": 0.7993 + }, + { + "start": 18444.2, + "end": 18446.04, + "probability": 0.9896 + }, + { + "start": 18446.98, + "end": 18447.2, + "probability": 0.7038 + }, + { + "start": 18447.28, + "end": 18447.46, + "probability": 0.2938 + }, + { + "start": 18447.48, + "end": 18447.84, + "probability": 0.7754 + }, + { + "start": 18447.94, + "end": 18448.4, + "probability": 0.67 + }, + { + "start": 18448.58, + "end": 18449.38, + "probability": 0.701 + }, + { + "start": 18449.4, + "end": 18450.04, + "probability": 0.9729 + }, + { + "start": 18450.16, + "end": 18451.24, + "probability": 0.9493 + }, + { + "start": 18451.58, + "end": 18452.84, + "probability": 0.9717 + }, + { + "start": 18454.1, + "end": 18455.08, + "probability": 0.9571 + }, + { + "start": 18455.16, + "end": 18456.14, + "probability": 0.9934 + }, + { + "start": 18456.24, + "end": 18461.72, + "probability": 0.9938 + }, + { + "start": 18462.06, + "end": 18463.26, + "probability": 0.3397 + }, + { + "start": 18464.06, + "end": 18467.6, + "probability": 0.9927 + }, + { + "start": 18467.9, + "end": 18470.48, + "probability": 0.9316 + }, + { + "start": 18470.56, + "end": 18471.26, + "probability": 0.5599 + }, + { + "start": 18471.7, + "end": 18472.98, + "probability": 0.8329 + }, + { + "start": 18476.25, + "end": 18478.05, + "probability": 0.4639 + }, + { + "start": 18479.04, + "end": 18483.98, + "probability": 0.8076 + }, + { + "start": 18484.66, + "end": 18486.76, + "probability": 0.9993 + }, + { + "start": 18487.54, + "end": 18488.2, + "probability": 0.652 + }, + { + "start": 18488.26, + "end": 18489.26, + "probability": 0.8123 + }, + { + "start": 18489.76, + "end": 18491.71, + "probability": 0.8647 + }, + { + "start": 18492.5, + "end": 18495.56, + "probability": 0.7782 + }, + { + "start": 18495.92, + "end": 18497.78, + "probability": 0.8816 + }, + { + "start": 18498.3, + "end": 18499.81, + "probability": 0.6993 + }, + { + "start": 18500.7, + "end": 18500.98, + "probability": 0.8027 + }, + { + "start": 18502.0, + "end": 18504.44, + "probability": 0.9902 + }, + { + "start": 18504.84, + "end": 18505.46, + "probability": 0.6374 + }, + { + "start": 18505.52, + "end": 18509.47, + "probability": 0.9963 + }, + { + "start": 18510.32, + "end": 18515.34, + "probability": 0.9747 + }, + { + "start": 18515.64, + "end": 18516.64, + "probability": 0.9692 + }, + { + "start": 18517.36, + "end": 18521.4, + "probability": 0.9783 + }, + { + "start": 18522.78, + "end": 18524.04, + "probability": 0.9497 + }, + { + "start": 18524.74, + "end": 18525.76, + "probability": 0.5109 + }, + { + "start": 18526.32, + "end": 18530.44, + "probability": 0.6301 + }, + { + "start": 18530.44, + "end": 18531.7, + "probability": 0.8654 + }, + { + "start": 18532.26, + "end": 18533.82, + "probability": 0.7877 + }, + { + "start": 18533.9, + "end": 18534.58, + "probability": 0.9338 + }, + { + "start": 18535.06, + "end": 18537.34, + "probability": 0.779 + }, + { + "start": 18538.96, + "end": 18542.92, + "probability": 0.9834 + }, + { + "start": 18543.1, + "end": 18543.7, + "probability": 0.6954 + }, + { + "start": 18544.38, + "end": 18545.21, + "probability": 0.689 + }, + { + "start": 18545.94, + "end": 18547.34, + "probability": 0.9907 + }, + { + "start": 18547.44, + "end": 18548.84, + "probability": 0.9907 + }, + { + "start": 18549.16, + "end": 18550.72, + "probability": 0.7154 + }, + { + "start": 18551.0, + "end": 18551.7, + "probability": 0.9941 + }, + { + "start": 18553.04, + "end": 18555.84, + "probability": 0.9988 + }, + { + "start": 18556.6, + "end": 18558.92, + "probability": 0.8282 + }, + { + "start": 18559.4, + "end": 18561.22, + "probability": 0.6843 + }, + { + "start": 18561.84, + "end": 18562.54, + "probability": 0.4653 + }, + { + "start": 18562.56, + "end": 18563.42, + "probability": 0.6865 + }, + { + "start": 18564.42, + "end": 18565.16, + "probability": 0.5816 + }, + { + "start": 18565.36, + "end": 18566.44, + "probability": 0.6447 + }, + { + "start": 18566.48, + "end": 18567.89, + "probability": 0.9511 + }, + { + "start": 18569.08, + "end": 18574.24, + "probability": 0.938 + }, + { + "start": 18575.1, + "end": 18576.38, + "probability": 0.9756 + }, + { + "start": 18578.56, + "end": 18579.86, + "probability": 0.5118 + }, + { + "start": 18580.02, + "end": 18581.3, + "probability": 0.9905 + }, + { + "start": 18581.96, + "end": 18585.38, + "probability": 0.7404 + }, + { + "start": 18586.18, + "end": 18589.16, + "probability": 0.6922 + }, + { + "start": 18589.32, + "end": 18590.44, + "probability": 0.9896 + }, + { + "start": 18591.66, + "end": 18592.92, + "probability": 0.9988 + }, + { + "start": 18593.48, + "end": 18594.86, + "probability": 0.9939 + }, + { + "start": 18595.02, + "end": 18595.76, + "probability": 0.3939 + }, + { + "start": 18597.08, + "end": 18599.06, + "probability": 0.9295 + }, + { + "start": 18599.68, + "end": 18605.4, + "probability": 0.8786 + }, + { + "start": 18606.12, + "end": 18607.08, + "probability": 0.8186 + }, + { + "start": 18607.9, + "end": 18611.04, + "probability": 0.9623 + }, + { + "start": 18611.48, + "end": 18612.76, + "probability": 0.9736 + }, + { + "start": 18613.04, + "end": 18613.36, + "probability": 0.9404 + }, + { + "start": 18614.04, + "end": 18616.52, + "probability": 0.9049 + }, + { + "start": 18617.16, + "end": 18618.64, + "probability": 0.9932 + }, + { + "start": 18618.86, + "end": 18623.6, + "probability": 0.9896 + }, + { + "start": 18624.12, + "end": 18625.64, + "probability": 0.5332 + }, + { + "start": 18626.76, + "end": 18628.48, + "probability": 0.7657 + }, + { + "start": 18629.86, + "end": 18634.26, + "probability": 0.8873 + }, + { + "start": 18634.46, + "end": 18634.9, + "probability": 0.9439 + }, + { + "start": 18635.36, + "end": 18639.48, + "probability": 0.9755 + }, + { + "start": 18640.3, + "end": 18641.82, + "probability": 0.9507 + }, + { + "start": 18642.44, + "end": 18643.24, + "probability": 0.9611 + }, + { + "start": 18643.32, + "end": 18644.48, + "probability": 0.8778 + }, + { + "start": 18644.92, + "end": 18648.34, + "probability": 0.8084 + }, + { + "start": 18649.08, + "end": 18652.76, + "probability": 0.9313 + }, + { + "start": 18652.98, + "end": 18653.6, + "probability": 0.6971 + }, + { + "start": 18654.0, + "end": 18655.44, + "probability": 0.9599 + }, + { + "start": 18656.32, + "end": 18657.6, + "probability": 0.936 + }, + { + "start": 18657.72, + "end": 18658.78, + "probability": 0.9988 + }, + { + "start": 18659.84, + "end": 18664.52, + "probability": 0.9757 + }, + { + "start": 18665.12, + "end": 18666.16, + "probability": 0.7723 + }, + { + "start": 18666.84, + "end": 18668.05, + "probability": 0.9469 + }, + { + "start": 18668.52, + "end": 18669.8, + "probability": 0.9912 + }, + { + "start": 18670.36, + "end": 18674.12, + "probability": 0.8187 + }, + { + "start": 18674.34, + "end": 18676.78, + "probability": 0.9775 + }, + { + "start": 18678.54, + "end": 18680.06, + "probability": 0.8406 + }, + { + "start": 18681.78, + "end": 18685.1, + "probability": 0.9342 + }, + { + "start": 18687.18, + "end": 18688.84, + "probability": 0.7771 + }, + { + "start": 18689.28, + "end": 18689.96, + "probability": 0.5869 + }, + { + "start": 18690.02, + "end": 18690.24, + "probability": 0.3363 + }, + { + "start": 18690.26, + "end": 18691.74, + "probability": 0.625 + }, + { + "start": 18692.29, + "end": 18694.16, + "probability": 0.8031 + }, + { + "start": 18694.64, + "end": 18695.3, + "probability": 0.6473 + }, + { + "start": 18696.24, + "end": 18697.4, + "probability": 0.632 + }, + { + "start": 18698.64, + "end": 18698.66, + "probability": 0.0856 + }, + { + "start": 18698.66, + "end": 18699.0, + "probability": 0.3594 + }, + { + "start": 18699.64, + "end": 18700.28, + "probability": 0.767 + }, + { + "start": 18701.54, + "end": 18703.74, + "probability": 0.7169 + }, + { + "start": 18703.8, + "end": 18705.32, + "probability": 0.9252 + }, + { + "start": 18706.06, + "end": 18706.76, + "probability": 0.6184 + }, + { + "start": 18707.24, + "end": 18708.3, + "probability": 0.8094 + }, + { + "start": 18709.14, + "end": 18709.2, + "probability": 0.9004 + }, + { + "start": 18710.2, + "end": 18716.36, + "probability": 0.998 + }, + { + "start": 18717.36, + "end": 18718.0, + "probability": 0.8145 + }, + { + "start": 18718.66, + "end": 18725.02, + "probability": 0.9905 + }, + { + "start": 18725.66, + "end": 18728.52, + "probability": 0.728 + }, + { + "start": 18729.08, + "end": 18729.9, + "probability": 0.7585 + }, + { + "start": 18730.78, + "end": 18731.85, + "probability": 0.7168 + }, + { + "start": 18732.42, + "end": 18735.0, + "probability": 0.9673 + }, + { + "start": 18736.28, + "end": 18737.2, + "probability": 0.9809 + }, + { + "start": 18738.4, + "end": 18739.9, + "probability": 0.9868 + }, + { + "start": 18740.34, + "end": 18741.14, + "probability": 0.8309 + }, + { + "start": 18742.32, + "end": 18743.44, + "probability": 0.9769 + }, + { + "start": 18745.16, + "end": 18748.7, + "probability": 0.9756 + }, + { + "start": 18749.92, + "end": 18750.86, + "probability": 0.961 + }, + { + "start": 18751.74, + "end": 18752.54, + "probability": 0.8521 + }, + { + "start": 18753.32, + "end": 18754.04, + "probability": 0.781 + }, + { + "start": 18754.18, + "end": 18757.04, + "probability": 0.8796 + }, + { + "start": 18757.52, + "end": 18761.58, + "probability": 0.8846 + }, + { + "start": 18763.2, + "end": 18764.08, + "probability": 0.9202 + }, + { + "start": 18764.76, + "end": 18770.84, + "probability": 0.9816 + }, + { + "start": 18771.36, + "end": 18773.06, + "probability": 0.9189 + }, + { + "start": 18773.9, + "end": 18775.1, + "probability": 0.8623 + }, + { + "start": 18775.94, + "end": 18780.0, + "probability": 0.9807 + }, + { + "start": 18780.6, + "end": 18781.4, + "probability": 0.7733 + }, + { + "start": 18782.14, + "end": 18782.9, + "probability": 0.8304 + }, + { + "start": 18783.54, + "end": 18784.8, + "probability": 0.7789 + }, + { + "start": 18785.96, + "end": 18791.86, + "probability": 0.9033 + }, + { + "start": 18792.96, + "end": 18795.92, + "probability": 0.9967 + }, + { + "start": 18796.98, + "end": 18800.5, + "probability": 0.9299 + }, + { + "start": 18802.48, + "end": 18804.86, + "probability": 0.9468 + }, + { + "start": 18805.92, + "end": 18810.68, + "probability": 0.9971 + }, + { + "start": 18811.94, + "end": 18813.52, + "probability": 0.9326 + }, + { + "start": 18814.2, + "end": 18818.82, + "probability": 0.9084 + }, + { + "start": 18819.78, + "end": 18823.98, + "probability": 0.9943 + }, + { + "start": 18825.44, + "end": 18826.26, + "probability": 0.4138 + }, + { + "start": 18829.1, + "end": 18830.36, + "probability": 0.9749 + }, + { + "start": 18853.76, + "end": 18855.1, + "probability": 0.5444 + }, + { + "start": 18855.2, + "end": 18856.14, + "probability": 0.6642 + }, + { + "start": 18856.18, + "end": 18862.5, + "probability": 0.9782 + }, + { + "start": 18863.62, + "end": 18868.38, + "probability": 0.9983 + }, + { + "start": 18868.52, + "end": 18869.32, + "probability": 0.8638 + }, + { + "start": 18869.44, + "end": 18870.8, + "probability": 0.7887 + }, + { + "start": 18872.68, + "end": 18876.58, + "probability": 0.9395 + }, + { + "start": 18877.16, + "end": 18879.52, + "probability": 0.9988 + }, + { + "start": 18879.72, + "end": 18880.0, + "probability": 0.7242 + }, + { + "start": 18880.66, + "end": 18884.14, + "probability": 0.8638 + }, + { + "start": 18888.92, + "end": 18891.32, + "probability": 0.9817 + }, + { + "start": 18891.4, + "end": 18893.44, + "probability": 0.9277 + }, + { + "start": 18893.54, + "end": 18895.0, + "probability": 0.7036 + }, + { + "start": 18895.04, + "end": 18896.28, + "probability": 0.8126 + }, + { + "start": 18897.36, + "end": 18899.36, + "probability": 0.9943 + }, + { + "start": 18900.1, + "end": 18901.0, + "probability": 0.9216 + }, + { + "start": 18903.76, + "end": 18910.18, + "probability": 0.9973 + }, + { + "start": 18911.16, + "end": 18912.86, + "probability": 0.9854 + }, + { + "start": 18913.46, + "end": 18918.68, + "probability": 0.9897 + }, + { + "start": 18918.68, + "end": 18922.7, + "probability": 0.9904 + }, + { + "start": 18924.02, + "end": 18927.68, + "probability": 0.976 + }, + { + "start": 18929.16, + "end": 18934.34, + "probability": 0.9434 + }, + { + "start": 18934.98, + "end": 18941.27, + "probability": 0.9633 + }, + { + "start": 18941.56, + "end": 18947.92, + "probability": 0.991 + }, + { + "start": 18948.0, + "end": 18948.96, + "probability": 0.8184 + }, + { + "start": 18949.74, + "end": 18954.16, + "probability": 0.9908 + }, + { + "start": 18954.42, + "end": 18957.92, + "probability": 0.988 + }, + { + "start": 18963.0, + "end": 18966.08, + "probability": 0.9916 + }, + { + "start": 18967.6, + "end": 18971.72, + "probability": 0.9629 + }, + { + "start": 18973.58, + "end": 18978.28, + "probability": 0.9982 + }, + { + "start": 18978.96, + "end": 18979.83, + "probability": 0.9854 + }, + { + "start": 18982.22, + "end": 18986.0, + "probability": 0.9917 + }, + { + "start": 18986.22, + "end": 18987.58, + "probability": 0.9283 + }, + { + "start": 18987.64, + "end": 18990.57, + "probability": 0.9865 + }, + { + "start": 18990.82, + "end": 18991.78, + "probability": 0.7488 + }, + { + "start": 18992.26, + "end": 18994.42, + "probability": 0.8816 + }, + { + "start": 18996.68, + "end": 19000.5, + "probability": 0.9875 + }, + { + "start": 19003.06, + "end": 19003.84, + "probability": 0.7635 + }, + { + "start": 19004.64, + "end": 19005.62, + "probability": 0.9889 + }, + { + "start": 19006.2, + "end": 19008.98, + "probability": 0.8613 + }, + { + "start": 19010.38, + "end": 19016.12, + "probability": 0.8692 + }, + { + "start": 19017.91, + "end": 19020.64, + "probability": 0.9778 + }, + { + "start": 19021.38, + "end": 19021.6, + "probability": 0.4583 + }, + { + "start": 19022.44, + "end": 19025.38, + "probability": 0.9794 + }, + { + "start": 19026.9, + "end": 19031.7, + "probability": 0.8765 + }, + { + "start": 19034.48, + "end": 19038.38, + "probability": 0.8562 + }, + { + "start": 19039.38, + "end": 19040.52, + "probability": 0.8303 + }, + { + "start": 19041.04, + "end": 19043.61, + "probability": 0.9019 + }, + { + "start": 19045.48, + "end": 19050.46, + "probability": 0.9219 + }, + { + "start": 19050.54, + "end": 19051.22, + "probability": 0.7432 + }, + { + "start": 19052.48, + "end": 19055.64, + "probability": 0.9952 + }, + { + "start": 19056.78, + "end": 19057.82, + "probability": 0.4521 + }, + { + "start": 19057.92, + "end": 19059.12, + "probability": 0.8828 + }, + { + "start": 19060.6, + "end": 19063.54, + "probability": 0.9224 + }, + { + "start": 19067.85, + "end": 19073.13, + "probability": 0.9741 + }, + { + "start": 19076.7, + "end": 19077.92, + "probability": 0.8082 + }, + { + "start": 19078.82, + "end": 19085.98, + "probability": 0.9906 + }, + { + "start": 19086.68, + "end": 19088.44, + "probability": 0.8249 + }, + { + "start": 19089.16, + "end": 19091.76, + "probability": 0.8729 + }, + { + "start": 19092.72, + "end": 19093.42, + "probability": 0.7288 + }, + { + "start": 19094.3, + "end": 19101.34, + "probability": 0.7957 + }, + { + "start": 19101.86, + "end": 19104.02, + "probability": 0.6088 + }, + { + "start": 19107.74, + "end": 19111.36, + "probability": 0.9634 + }, + { + "start": 19111.86, + "end": 19112.7, + "probability": 0.8599 + }, + { + "start": 19115.08, + "end": 19117.52, + "probability": 0.7493 + }, + { + "start": 19118.36, + "end": 19121.76, + "probability": 0.9595 + }, + { + "start": 19122.74, + "end": 19124.64, + "probability": 0.9658 + }, + { + "start": 19125.64, + "end": 19127.86, + "probability": 0.9935 + }, + { + "start": 19128.28, + "end": 19132.78, + "probability": 0.9607 + }, + { + "start": 19133.36, + "end": 19134.6, + "probability": 0.988 + }, + { + "start": 19134.68, + "end": 19136.16, + "probability": 0.9796 + }, + { + "start": 19136.24, + "end": 19137.9, + "probability": 0.8801 + }, + { + "start": 19138.5, + "end": 19144.4, + "probability": 0.9607 + }, + { + "start": 19144.6, + "end": 19146.08, + "probability": 0.9235 + }, + { + "start": 19146.16, + "end": 19151.64, + "probability": 0.9946 + }, + { + "start": 19151.78, + "end": 19152.22, + "probability": 0.8738 + }, + { + "start": 19152.86, + "end": 19158.32, + "probability": 0.9939 + }, + { + "start": 19158.9, + "end": 19160.18, + "probability": 0.981 + }, + { + "start": 19160.84, + "end": 19163.24, + "probability": 0.9728 + }, + { + "start": 19164.2, + "end": 19164.2, + "probability": 0.8853 + }, + { + "start": 19166.88, + "end": 19168.1, + "probability": 0.9383 + }, + { + "start": 19168.72, + "end": 19170.62, + "probability": 0.7271 + }, + { + "start": 19170.7, + "end": 19172.24, + "probability": 0.7128 + }, + { + "start": 19172.28, + "end": 19175.32, + "probability": 0.8989 + }, + { + "start": 19176.0, + "end": 19179.16, + "probability": 0.9963 + }, + { + "start": 19180.86, + "end": 19181.54, + "probability": 0.7567 + }, + { + "start": 19182.24, + "end": 19183.76, + "probability": 0.7423 + }, + { + "start": 19183.92, + "end": 19185.52, + "probability": 0.8014 + }, + { + "start": 19186.38, + "end": 19186.96, + "probability": 0.9618 + }, + { + "start": 19187.44, + "end": 19187.7, + "probability": 0.9234 + }, + { + "start": 19188.38, + "end": 19188.76, + "probability": 0.6094 + }, + { + "start": 19189.0, + "end": 19190.11, + "probability": 0.1141 + }, + { + "start": 19190.36, + "end": 19190.7, + "probability": 0.9421 + }, + { + "start": 19191.46, + "end": 19193.48, + "probability": 0.9917 + }, + { + "start": 19194.22, + "end": 19196.52, + "probability": 0.9871 + }, + { + "start": 19197.04, + "end": 19198.16, + "probability": 0.8447 + }, + { + "start": 19199.36, + "end": 19202.52, + "probability": 0.759 + }, + { + "start": 19203.62, + "end": 19205.74, + "probability": 0.6294 + }, + { + "start": 19206.32, + "end": 19209.18, + "probability": 0.8786 + }, + { + "start": 19209.4, + "end": 19211.78, + "probability": 0.9869 + }, + { + "start": 19212.34, + "end": 19212.74, + "probability": 0.9652 + }, + { + "start": 19213.5, + "end": 19216.5, + "probability": 0.9557 + }, + { + "start": 19217.28, + "end": 19218.56, + "probability": 0.9597 + }, + { + "start": 19218.68, + "end": 19219.76, + "probability": 0.9348 + }, + { + "start": 19219.9, + "end": 19220.72, + "probability": 0.9202 + }, + { + "start": 19220.78, + "end": 19221.82, + "probability": 0.8588 + }, + { + "start": 19222.36, + "end": 19224.42, + "probability": 0.9482 + }, + { + "start": 19225.94, + "end": 19227.9, + "probability": 0.9412 + }, + { + "start": 19227.92, + "end": 19228.24, + "probability": 0.9469 + }, + { + "start": 19229.62, + "end": 19230.88, + "probability": 0.9912 + }, + { + "start": 19230.92, + "end": 19230.92, + "probability": 0.2158 + }, + { + "start": 19230.92, + "end": 19233.42, + "probability": 0.8735 + }, + { + "start": 19233.6, + "end": 19235.04, + "probability": 0.7317 + }, + { + "start": 19235.1, + "end": 19236.24, + "probability": 0.6613 + }, + { + "start": 19236.5, + "end": 19237.52, + "probability": 0.764 + }, + { + "start": 19237.9, + "end": 19238.27, + "probability": 0.8066 + }, + { + "start": 19238.52, + "end": 19238.7, + "probability": 0.7623 + }, + { + "start": 19238.8, + "end": 19238.8, + "probability": 0.399 + }, + { + "start": 19238.8, + "end": 19239.72, + "probability": 0.4236 + }, + { + "start": 19240.32, + "end": 19244.36, + "probability": 0.4835 + }, + { + "start": 19244.92, + "end": 19244.92, + "probability": 0.365 + }, + { + "start": 19244.92, + "end": 19244.92, + "probability": 0.0776 + }, + { + "start": 19245.12, + "end": 19246.38, + "probability": 0.5691 + }, + { + "start": 19246.46, + "end": 19248.58, + "probability": 0.841 + }, + { + "start": 19248.8, + "end": 19249.56, + "probability": 0.7019 + }, + { + "start": 19249.92, + "end": 19251.58, + "probability": 0.5502 + }, + { + "start": 19253.14, + "end": 19254.28, + "probability": 0.7607 + }, + { + "start": 19254.44, + "end": 19254.44, + "probability": 0.0477 + }, + { + "start": 19254.44, + "end": 19254.44, + "probability": 0.0701 + }, + { + "start": 19254.44, + "end": 19254.54, + "probability": 0.1428 + }, + { + "start": 19255.52, + "end": 19257.32, + "probability": 0.8919 + }, + { + "start": 19257.56, + "end": 19258.26, + "probability": 0.6964 + }, + { + "start": 19258.32, + "end": 19259.44, + "probability": 0.7466 + }, + { + "start": 19259.7, + "end": 19262.72, + "probability": 0.7227 + }, + { + "start": 19263.42, + "end": 19263.84, + "probability": 0.2967 + }, + { + "start": 19263.84, + "end": 19269.48, + "probability": 0.9646 + }, + { + "start": 19269.88, + "end": 19272.1, + "probability": 0.9 + }, + { + "start": 19272.82, + "end": 19273.62, + "probability": 0.763 + }, + { + "start": 19273.82, + "end": 19275.48, + "probability": 0.9797 + }, + { + "start": 19276.34, + "end": 19277.86, + "probability": 0.9824 + }, + { + "start": 19278.04, + "end": 19281.56, + "probability": 0.8408 + }, + { + "start": 19282.8, + "end": 19284.98, + "probability": 0.9876 + }, + { + "start": 19285.48, + "end": 19285.92, + "probability": 0.9634 + }, + { + "start": 19286.46, + "end": 19287.84, + "probability": 0.9727 + }, + { + "start": 19288.5, + "end": 19291.82, + "probability": 0.9835 + }, + { + "start": 19292.56, + "end": 19298.24, + "probability": 0.8555 + }, + { + "start": 19298.68, + "end": 19300.82, + "probability": 0.9899 + }, + { + "start": 19301.58, + "end": 19304.84, + "probability": 0.9203 + }, + { + "start": 19306.81, + "end": 19309.64, + "probability": 0.9025 + }, + { + "start": 19310.72, + "end": 19312.97, + "probability": 0.9573 + }, + { + "start": 19314.46, + "end": 19320.26, + "probability": 0.9756 + }, + { + "start": 19320.76, + "end": 19320.94, + "probability": 0.8477 + }, + { + "start": 19321.04, + "end": 19322.18, + "probability": 0.6291 + }, + { + "start": 19322.3, + "end": 19324.8, + "probability": 0.9786 + }, + { + "start": 19325.18, + "end": 19326.28, + "probability": 0.9377 + }, + { + "start": 19326.58, + "end": 19331.08, + "probability": 0.9733 + }, + { + "start": 19331.96, + "end": 19334.13, + "probability": 0.9625 + }, + { + "start": 19335.46, + "end": 19338.42, + "probability": 0.9638 + }, + { + "start": 19340.0, + "end": 19343.5, + "probability": 0.7701 + }, + { + "start": 19343.58, + "end": 19344.16, + "probability": 0.8029 + }, + { + "start": 19344.86, + "end": 19346.64, + "probability": 0.9606 + }, + { + "start": 19347.82, + "end": 19349.56, + "probability": 0.9332 + }, + { + "start": 19350.7, + "end": 19351.49, + "probability": 0.8257 + }, + { + "start": 19352.42, + "end": 19355.54, + "probability": 0.9109 + }, + { + "start": 19356.34, + "end": 19358.06, + "probability": 0.9526 + }, + { + "start": 19358.8, + "end": 19361.34, + "probability": 0.7536 + }, + { + "start": 19361.86, + "end": 19363.5, + "probability": 0.5268 + }, + { + "start": 19364.12, + "end": 19366.06, + "probability": 0.9303 + }, + { + "start": 19366.6, + "end": 19369.0, + "probability": 0.7555 + }, + { + "start": 19369.2, + "end": 19371.96, + "probability": 0.7577 + }, + { + "start": 19372.16, + "end": 19375.32, + "probability": 0.8261 + }, + { + "start": 19375.58, + "end": 19379.1, + "probability": 0.8862 + }, + { + "start": 19379.1, + "end": 19382.58, + "probability": 0.5821 + }, + { + "start": 19383.56, + "end": 19385.54, + "probability": 0.7544 + }, + { + "start": 19386.1, + "end": 19386.64, + "probability": 0.2465 + }, + { + "start": 19387.66, + "end": 19389.72, + "probability": 0.9971 + }, + { + "start": 19391.4, + "end": 19392.16, + "probability": 0.393 + }, + { + "start": 19392.84, + "end": 19394.54, + "probability": 0.9974 + }, + { + "start": 19395.72, + "end": 19400.56, + "probability": 0.018 + }, + { + "start": 19401.16, + "end": 19401.26, + "probability": 0.0 + }, + { + "start": 19403.02, + "end": 19405.14, + "probability": 0.0638 + }, + { + "start": 19421.94, + "end": 19424.92, + "probability": 0.8906 + }, + { + "start": 19425.94, + "end": 19429.38, + "probability": 0.9976 + }, + { + "start": 19430.24, + "end": 19437.8, + "probability": 0.9951 + }, + { + "start": 19438.88, + "end": 19442.04, + "probability": 0.8145 + }, + { + "start": 19443.16, + "end": 19444.34, + "probability": 0.9113 + }, + { + "start": 19444.66, + "end": 19448.38, + "probability": 0.8942 + }, + { + "start": 19448.54, + "end": 19453.46, + "probability": 0.9621 + }, + { + "start": 19454.3, + "end": 19457.44, + "probability": 0.988 + }, + { + "start": 19457.84, + "end": 19462.02, + "probability": 0.7392 + }, + { + "start": 19462.7, + "end": 19464.08, + "probability": 0.6773 + }, + { + "start": 19465.0, + "end": 19469.68, + "probability": 0.931 + }, + { + "start": 19470.62, + "end": 19471.02, + "probability": 0.5172 + }, + { + "start": 19471.56, + "end": 19471.86, + "probability": 0.2767 + }, + { + "start": 19472.7, + "end": 19475.44, + "probability": 0.7518 + }, + { + "start": 19476.18, + "end": 19479.18, + "probability": 0.5331 + }, + { + "start": 19480.72, + "end": 19481.74, + "probability": 0.8796 + }, + { + "start": 19482.82, + "end": 19482.82, + "probability": 0.1915 + }, + { + "start": 19482.82, + "end": 19483.9, + "probability": 0.7541 + }, + { + "start": 19484.4, + "end": 19485.94, + "probability": 0.8611 + }, + { + "start": 19486.5, + "end": 19489.22, + "probability": 0.9372 + }, + { + "start": 19490.9, + "end": 19491.58, + "probability": 0.892 + }, + { + "start": 19492.56, + "end": 19493.48, + "probability": 0.4457 + }, + { + "start": 19495.79, + "end": 19496.56, + "probability": 0.0487 + }, + { + "start": 19496.56, + "end": 19497.46, + "probability": 0.7752 + }, + { + "start": 19499.6, + "end": 19500.54, + "probability": 0.9601 + }, + { + "start": 19502.33, + "end": 19508.9, + "probability": 0.919 + }, + { + "start": 19508.96, + "end": 19509.3, + "probability": 0.8452 + }, + { + "start": 19509.64, + "end": 19511.08, + "probability": 0.9556 + }, + { + "start": 19515.0, + "end": 19518.4, + "probability": 0.9038 + }, + { + "start": 19519.16, + "end": 19524.68, + "probability": 0.792 + }, + { + "start": 19524.96, + "end": 19525.94, + "probability": 0.8829 + }, + { + "start": 19526.72, + "end": 19528.54, + "probability": 0.9838 + }, + { + "start": 19530.24, + "end": 19530.56, + "probability": 0.6133 + }, + { + "start": 19531.12, + "end": 19531.4, + "probability": 0.5603 + }, + { + "start": 19531.86, + "end": 19532.96, + "probability": 0.5678 + }, + { + "start": 19532.96, + "end": 19534.06, + "probability": 0.674 + }, + { + "start": 19536.78, + "end": 19538.82, + "probability": 0.9057 + }, + { + "start": 19540.26, + "end": 19544.29, + "probability": 0.9536 + }, + { + "start": 19544.84, + "end": 19545.82, + "probability": 0.7046 + }, + { + "start": 19546.54, + "end": 19548.02, + "probability": 0.8761 + }, + { + "start": 19548.16, + "end": 19553.42, + "probability": 0.98 + }, + { + "start": 19554.34, + "end": 19559.86, + "probability": 0.9986 + }, + { + "start": 19561.18, + "end": 19563.86, + "probability": 0.9944 + }, + { + "start": 19565.06, + "end": 19567.82, + "probability": 0.9277 + }, + { + "start": 19568.5, + "end": 19569.7, + "probability": 0.9043 + }, + { + "start": 19570.28, + "end": 19572.0, + "probability": 0.8092 + }, + { + "start": 19573.32, + "end": 19576.12, + "probability": 0.9058 + }, + { + "start": 19577.48, + "end": 19578.46, + "probability": 0.3241 + }, + { + "start": 19579.63, + "end": 19584.06, + "probability": 0.9722 + }, + { + "start": 19584.76, + "end": 19586.56, + "probability": 0.837 + }, + { + "start": 19586.72, + "end": 19594.22, + "probability": 0.9468 + }, + { + "start": 19594.84, + "end": 19598.12, + "probability": 0.9564 + }, + { + "start": 19599.6, + "end": 19601.94, + "probability": 0.8638 + }, + { + "start": 19603.72, + "end": 19606.1, + "probability": 0.993 + }, + { + "start": 19606.16, + "end": 19606.56, + "probability": 0.9715 + }, + { + "start": 19606.6, + "end": 19610.4, + "probability": 0.9498 + }, + { + "start": 19610.92, + "end": 19613.0, + "probability": 0.7833 + }, + { + "start": 19613.18, + "end": 19615.27, + "probability": 0.9595 + }, + { + "start": 19615.7, + "end": 19618.46, + "probability": 0.7929 + }, + { + "start": 19618.8, + "end": 19623.11, + "probability": 0.9884 + }, + { + "start": 19624.08, + "end": 19625.22, + "probability": 0.9917 + }, + { + "start": 19625.56, + "end": 19627.02, + "probability": 0.9849 + }, + { + "start": 19628.12, + "end": 19628.78, + "probability": 0.9526 + }, + { + "start": 19629.02, + "end": 19631.24, + "probability": 0.9772 + }, + { + "start": 19631.34, + "end": 19632.18, + "probability": 0.9671 + }, + { + "start": 19632.86, + "end": 19634.36, + "probability": 0.9889 + }, + { + "start": 19634.42, + "end": 19635.84, + "probability": 0.9592 + }, + { + "start": 19636.18, + "end": 19637.28, + "probability": 0.9907 + }, + { + "start": 19638.48, + "end": 19639.26, + "probability": 0.9933 + }, + { + "start": 19639.96, + "end": 19642.88, + "probability": 0.9228 + }, + { + "start": 19643.4, + "end": 19649.47, + "probability": 0.9379 + }, + { + "start": 19651.21, + "end": 19655.5, + "probability": 0.9992 + }, + { + "start": 19655.58, + "end": 19655.88, + "probability": 0.9131 + }, + { + "start": 19656.52, + "end": 19657.94, + "probability": 0.1368 + }, + { + "start": 19660.16, + "end": 19660.9, + "probability": 0.0903 + }, + { + "start": 19661.68, + "end": 19663.7, + "probability": 0.3384 + }, + { + "start": 19663.7, + "end": 19668.78, + "probability": 0.7761 + }, + { + "start": 19668.86, + "end": 19670.62, + "probability": 0.9976 + }, + { + "start": 19671.12, + "end": 19673.32, + "probability": 0.3566 + }, + { + "start": 19673.46, + "end": 19677.82, + "probability": 0.9355 + }, + { + "start": 19678.52, + "end": 19680.76, + "probability": 0.9539 + }, + { + "start": 19681.9, + "end": 19684.94, + "probability": 0.9878 + }, + { + "start": 19685.06, + "end": 19686.64, + "probability": 0.799 + }, + { + "start": 19686.68, + "end": 19687.64, + "probability": 0.8333 + }, + { + "start": 19687.74, + "end": 19688.92, + "probability": 0.7013 + }, + { + "start": 19689.06, + "end": 19690.26, + "probability": 0.613 + }, + { + "start": 19690.32, + "end": 19690.8, + "probability": 0.8198 + }, + { + "start": 19691.16, + "end": 19692.14, + "probability": 0.9697 + }, + { + "start": 19693.36, + "end": 19694.32, + "probability": 0.7944 + }, + { + "start": 19694.4, + "end": 19698.56, + "probability": 0.9661 + }, + { + "start": 19698.74, + "end": 19700.68, + "probability": 0.7646 + }, + { + "start": 19701.06, + "end": 19701.42, + "probability": 0.7228 + }, + { + "start": 19701.72, + "end": 19702.38, + "probability": 0.8713 + }, + { + "start": 19702.52, + "end": 19703.17, + "probability": 0.9756 + }, + { + "start": 19703.3, + "end": 19704.4, + "probability": 0.8049 + }, + { + "start": 19704.94, + "end": 19706.78, + "probability": 0.6695 + }, + { + "start": 19707.72, + "end": 19708.9, + "probability": 0.7744 + }, + { + "start": 19709.5, + "end": 19712.8, + "probability": 0.7249 + }, + { + "start": 19713.24, + "end": 19716.82, + "probability": 0.7554 + }, + { + "start": 19718.42, + "end": 19718.94, + "probability": 0.377 + }, + { + "start": 19719.04, + "end": 19719.6, + "probability": 0.539 + }, + { + "start": 19719.78, + "end": 19722.3, + "probability": 0.8332 + }, + { + "start": 19722.38, + "end": 19723.92, + "probability": 0.9784 + }, + { + "start": 19724.34, + "end": 19726.86, + "probability": 0.8324 + }, + { + "start": 19727.12, + "end": 19727.78, + "probability": 0.9939 + }, + { + "start": 19728.96, + "end": 19731.64, + "probability": 0.6652 + }, + { + "start": 19732.12, + "end": 19734.12, + "probability": 0.6618 + }, + { + "start": 19734.86, + "end": 19736.68, + "probability": 0.3935 + }, + { + "start": 19736.8, + "end": 19738.62, + "probability": 0.9932 + }, + { + "start": 19739.06, + "end": 19740.72, + "probability": 0.9355 + }, + { + "start": 19741.18, + "end": 19743.52, + "probability": 0.8838 + }, + { + "start": 19743.88, + "end": 19744.2, + "probability": 0.7059 + }, + { + "start": 19745.54, + "end": 19745.89, + "probability": 0.8342 + }, + { + "start": 19746.72, + "end": 19755.3, + "probability": 0.9121 + }, + { + "start": 19756.06, + "end": 19756.56, + "probability": 0.7132 + }, + { + "start": 19756.6, + "end": 19760.28, + "probability": 0.9971 + }, + { + "start": 19760.94, + "end": 19762.28, + "probability": 0.8872 + }, + { + "start": 19762.34, + "end": 19763.76, + "probability": 0.9993 + }, + { + "start": 19764.58, + "end": 19764.96, + "probability": 0.1922 + }, + { + "start": 19765.06, + "end": 19765.86, + "probability": 0.9829 + }, + { + "start": 19766.02, + "end": 19772.26, + "probability": 0.8977 + }, + { + "start": 19772.34, + "end": 19772.78, + "probability": 0.8476 + }, + { + "start": 19772.88, + "end": 19774.36, + "probability": 0.0211 + }, + { + "start": 19774.6, + "end": 19775.54, + "probability": 0.1764 + }, + { + "start": 19775.56, + "end": 19779.44, + "probability": 0.7083 + }, + { + "start": 19779.58, + "end": 19781.62, + "probability": 0.9555 + }, + { + "start": 19781.88, + "end": 19783.24, + "probability": 0.4793 + }, + { + "start": 19783.36, + "end": 19789.32, + "probability": 0.9157 + }, + { + "start": 19789.58, + "end": 19791.2, + "probability": 0.531 + }, + { + "start": 19791.2, + "end": 19791.99, + "probability": 0.1303 + }, + { + "start": 19793.58, + "end": 19795.78, + "probability": 0.9884 + }, + { + "start": 19798.16, + "end": 19799.66, + "probability": 0.8281 + }, + { + "start": 19800.5, + "end": 19803.58, + "probability": 0.7403 + }, + { + "start": 19803.58, + "end": 19805.52, + "probability": 0.7982 + }, + { + "start": 19805.84, + "end": 19808.36, + "probability": 0.9671 + }, + { + "start": 19808.36, + "end": 19811.32, + "probability": 0.995 + }, + { + "start": 19812.54, + "end": 19814.8, + "probability": 0.958 + }, + { + "start": 19815.42, + "end": 19816.04, + "probability": 0.8813 + }, + { + "start": 19816.82, + "end": 19819.92, + "probability": 0.795 + }, + { + "start": 19820.8, + "end": 19822.98, + "probability": 0.931 + }, + { + "start": 19823.12, + "end": 19824.04, + "probability": 0.9463 + }, + { + "start": 19824.42, + "end": 19826.1, + "probability": 0.8579 + }, + { + "start": 19826.8, + "end": 19828.34, + "probability": 0.5571 + }, + { + "start": 19828.64, + "end": 19831.8, + "probability": 0.9771 + }, + { + "start": 19833.65, + "end": 19838.74, + "probability": 0.9839 + }, + { + "start": 19838.74, + "end": 19842.14, + "probability": 0.9486 + }, + { + "start": 19842.32, + "end": 19844.7, + "probability": 0.9212 + }, + { + "start": 19845.22, + "end": 19849.4, + "probability": 0.9386 + }, + { + "start": 19849.42, + "end": 19850.06, + "probability": 0.6228 + }, + { + "start": 19850.1, + "end": 19850.48, + "probability": 0.944 + }, + { + "start": 19851.5, + "end": 19852.22, + "probability": 0.9404 + }, + { + "start": 19853.48, + "end": 19854.7, + "probability": 0.8955 + }, + { + "start": 19855.42, + "end": 19856.68, + "probability": 0.4924 + }, + { + "start": 19857.26, + "end": 19859.88, + "probability": 0.9708 + }, + { + "start": 19860.82, + "end": 19866.43, + "probability": 0.7936 + }, + { + "start": 19867.08, + "end": 19870.54, + "probability": 0.998 + }, + { + "start": 19871.26, + "end": 19871.92, + "probability": 0.9911 + }, + { + "start": 19875.98, + "end": 19877.14, + "probability": 0.831 + }, + { + "start": 19877.32, + "end": 19878.14, + "probability": 0.8549 + }, + { + "start": 19878.14, + "end": 19878.24, + "probability": 0.7213 + }, + { + "start": 19878.56, + "end": 19878.98, + "probability": 0.9288 + }, + { + "start": 19879.82, + "end": 19881.34, + "probability": 0.9749 + }, + { + "start": 19881.5, + "end": 19882.04, + "probability": 0.9404 + }, + { + "start": 19883.22, + "end": 19883.4, + "probability": 0.0012 + }, + { + "start": 19883.48, + "end": 19884.14, + "probability": 0.921 + }, + { + "start": 19884.8, + "end": 19885.88, + "probability": 0.9057 + }, + { + "start": 19885.88, + "end": 19887.02, + "probability": 0.0195 + }, + { + "start": 19887.02, + "end": 19887.04, + "probability": 0.0931 + }, + { + "start": 19887.04, + "end": 19887.34, + "probability": 0.0626 + }, + { + "start": 19887.48, + "end": 19888.8, + "probability": 0.7576 + }, + { + "start": 19888.9, + "end": 19890.48, + "probability": 0.9785 + }, + { + "start": 19891.22, + "end": 19893.38, + "probability": 0.3295 + }, + { + "start": 19893.6, + "end": 19898.66, + "probability": 0.8757 + }, + { + "start": 19898.76, + "end": 19899.58, + "probability": 0.7594 + }, + { + "start": 19900.04, + "end": 19902.9, + "probability": 0.957 + }, + { + "start": 19902.96, + "end": 19905.66, + "probability": 0.981 + }, + { + "start": 19905.76, + "end": 19906.72, + "probability": 0.9885 + }, + { + "start": 19906.72, + "end": 19909.25, + "probability": 0.7441 + }, + { + "start": 19910.6, + "end": 19913.16, + "probability": 0.4949 + }, + { + "start": 19913.76, + "end": 19914.32, + "probability": 0.748 + }, + { + "start": 19914.42, + "end": 19915.82, + "probability": 0.8389 + }, + { + "start": 19915.96, + "end": 19916.46, + "probability": 0.3251 + }, + { + "start": 19916.6, + "end": 19918.88, + "probability": 0.7492 + }, + { + "start": 19919.0, + "end": 19925.08, + "probability": 0.8117 + }, + { + "start": 19926.48, + "end": 19927.82, + "probability": 0.9776 + }, + { + "start": 19929.46, + "end": 19932.22, + "probability": 0.9674 + }, + { + "start": 19932.86, + "end": 19938.78, + "probability": 0.9819 + }, + { + "start": 19939.02, + "end": 19940.24, + "probability": 0.9905 + }, + { + "start": 19940.38, + "end": 19945.71, + "probability": 0.9468 + }, + { + "start": 19946.16, + "end": 19946.9, + "probability": 0.7551 + }, + { + "start": 19947.0, + "end": 19948.3, + "probability": 0.7289 + }, + { + "start": 19948.66, + "end": 19949.66, + "probability": 0.9073 + }, + { + "start": 19949.94, + "end": 19951.32, + "probability": 0.9142 + }, + { + "start": 19952.1, + "end": 19954.78, + "probability": 0.9363 + }, + { + "start": 19955.6, + "end": 19955.74, + "probability": 0.792 + }, + { + "start": 19955.78, + "end": 19957.32, + "probability": 0.699 + }, + { + "start": 19957.44, + "end": 19958.32, + "probability": 0.5069 + }, + { + "start": 19958.42, + "end": 19960.7, + "probability": 0.9832 + }, + { + "start": 19961.44, + "end": 19963.6, + "probability": 0.9823 + }, + { + "start": 19964.26, + "end": 19964.44, + "probability": 0.6761 + }, + { + "start": 19964.54, + "end": 19967.96, + "probability": 0.9196 + }, + { + "start": 19968.62, + "end": 19970.52, + "probability": 0.9809 + }, + { + "start": 19970.64, + "end": 19971.02, + "probability": 0.6301 + }, + { + "start": 19971.12, + "end": 19972.58, + "probability": 0.7293 + }, + { + "start": 19972.62, + "end": 19973.23, + "probability": 0.9316 + }, + { + "start": 19973.64, + "end": 19976.2, + "probability": 0.9379 + }, + { + "start": 19976.36, + "end": 19979.7, + "probability": 0.9976 + }, + { + "start": 19980.24, + "end": 19981.5, + "probability": 0.9884 + }, + { + "start": 19982.46, + "end": 19983.44, + "probability": 0.8334 + }, + { + "start": 19984.38, + "end": 19987.12, + "probability": 0.9872 + }, + { + "start": 19987.96, + "end": 19990.06, + "probability": 0.9302 + }, + { + "start": 19990.7, + "end": 19991.78, + "probability": 0.9917 + }, + { + "start": 19991.82, + "end": 19992.18, + "probability": 0.8182 + }, + { + "start": 19992.26, + "end": 19994.48, + "probability": 0.9833 + }, + { + "start": 19995.04, + "end": 19996.7, + "probability": 0.9929 + }, + { + "start": 19997.82, + "end": 20002.38, + "probability": 0.9951 + }, + { + "start": 20002.5, + "end": 20009.08, + "probability": 0.9868 + }, + { + "start": 20009.08, + "end": 20015.6, + "probability": 0.9964 + }, + { + "start": 20016.08, + "end": 20016.86, + "probability": 0.5381 + }, + { + "start": 20017.04, + "end": 20017.86, + "probability": 0.9025 + }, + { + "start": 20018.6, + "end": 20020.92, + "probability": 0.8873 + }, + { + "start": 20022.06, + "end": 20023.78, + "probability": 0.9354 + }, + { + "start": 20023.9, + "end": 20024.12, + "probability": 0.8977 + }, + { + "start": 20024.98, + "end": 20026.24, + "probability": 0.9988 + }, + { + "start": 20026.88, + "end": 20028.48, + "probability": 0.7171 + }, + { + "start": 20030.16, + "end": 20033.6, + "probability": 0.9249 + }, + { + "start": 20035.4, + "end": 20038.26, + "probability": 0.9942 + }, + { + "start": 20038.64, + "end": 20039.24, + "probability": 0.6793 + }, + { + "start": 20040.4, + "end": 20041.5, + "probability": 0.972 + }, + { + "start": 20042.9, + "end": 20043.96, + "probability": 0.7964 + }, + { + "start": 20043.96, + "end": 20045.36, + "probability": 0.7878 + }, + { + "start": 20046.32, + "end": 20049.22, + "probability": 0.9379 + }, + { + "start": 20049.6, + "end": 20054.78, + "probability": 0.9985 + }, + { + "start": 20055.2, + "end": 20055.56, + "probability": 0.3807 + }, + { + "start": 20055.7, + "end": 20056.88, + "probability": 0.9846 + }, + { + "start": 20057.48, + "end": 20060.64, + "probability": 0.8729 + }, + { + "start": 20060.92, + "end": 20065.32, + "probability": 0.9966 + }, + { + "start": 20065.32, + "end": 20065.64, + "probability": 0.3697 + }, + { + "start": 20065.92, + "end": 20068.66, + "probability": 0.9762 + }, + { + "start": 20069.2, + "end": 20071.58, + "probability": 0.9417 + }, + { + "start": 20071.64, + "end": 20073.04, + "probability": 0.9475 + }, + { + "start": 20073.68, + "end": 20076.68, + "probability": 0.9673 + }, + { + "start": 20078.14, + "end": 20079.44, + "probability": 0.9792 + }, + { + "start": 20079.54, + "end": 20081.06, + "probability": 0.9949 + }, + { + "start": 20081.18, + "end": 20083.06, + "probability": 0.7112 + }, + { + "start": 20083.94, + "end": 20086.62, + "probability": 0.9397 + }, + { + "start": 20087.98, + "end": 20091.1, + "probability": 0.8951 + }, + { + "start": 20091.76, + "end": 20092.74, + "probability": 0.981 + }, + { + "start": 20092.94, + "end": 20094.98, + "probability": 0.9712 + }, + { + "start": 20095.28, + "end": 20097.24, + "probability": 0.8707 + }, + { + "start": 20097.3, + "end": 20099.64, + "probability": 0.9871 + }, + { + "start": 20099.74, + "end": 20100.88, + "probability": 0.9733 + }, + { + "start": 20101.24, + "end": 20109.02, + "probability": 0.952 + }, + { + "start": 20109.02, + "end": 20114.78, + "probability": 0.9994 + }, + { + "start": 20115.4, + "end": 20116.62, + "probability": 0.9888 + }, + { + "start": 20116.92, + "end": 20118.56, + "probability": 0.7181 + }, + { + "start": 20118.72, + "end": 20119.36, + "probability": 0.7884 + }, + { + "start": 20119.42, + "end": 20120.66, + "probability": 0.9858 + }, + { + "start": 20120.92, + "end": 20121.56, + "probability": 0.9954 + }, + { + "start": 20122.0, + "end": 20122.48, + "probability": 0.9628 + }, + { + "start": 20122.56, + "end": 20123.26, + "probability": 0.9521 + }, + { + "start": 20123.68, + "end": 20125.06, + "probability": 0.8684 + }, + { + "start": 20125.14, + "end": 20126.52, + "probability": 0.834 + }, + { + "start": 20126.96, + "end": 20127.3, + "probability": 0.6069 + }, + { + "start": 20127.36, + "end": 20130.88, + "probability": 0.9932 + }, + { + "start": 20131.46, + "end": 20132.51, + "probability": 0.9258 + }, + { + "start": 20132.9, + "end": 20133.6, + "probability": 0.8879 + }, + { + "start": 20133.82, + "end": 20138.62, + "probability": 0.8478 + }, + { + "start": 20139.12, + "end": 20142.04, + "probability": 0.9694 + }, + { + "start": 20144.28, + "end": 20146.58, + "probability": 0.4962 + }, + { + "start": 20147.08, + "end": 20149.14, + "probability": 0.5808 + }, + { + "start": 20149.32, + "end": 20150.46, + "probability": 0.9264 + }, + { + "start": 20151.76, + "end": 20152.44, + "probability": 0.4976 + }, + { + "start": 20152.62, + "end": 20155.92, + "probability": 0.9603 + }, + { + "start": 20156.22, + "end": 20160.06, + "probability": 0.9074 + }, + { + "start": 20160.58, + "end": 20161.92, + "probability": 0.8164 + }, + { + "start": 20162.68, + "end": 20163.51, + "probability": 0.981 + }, + { + "start": 20163.72, + "end": 20167.88, + "probability": 0.9731 + }, + { + "start": 20168.26, + "end": 20170.36, + "probability": 0.9849 + }, + { + "start": 20170.72, + "end": 20175.22, + "probability": 0.9476 + }, + { + "start": 20175.48, + "end": 20177.46, + "probability": 0.9888 + }, + { + "start": 20178.68, + "end": 20180.34, + "probability": 0.6882 + }, + { + "start": 20180.6, + "end": 20182.66, + "probability": 0.9965 + }, + { + "start": 20182.72, + "end": 20184.58, + "probability": 0.9961 + }, + { + "start": 20185.4, + "end": 20186.24, + "probability": 0.9603 + }, + { + "start": 20186.36, + "end": 20193.38, + "probability": 0.9448 + }, + { + "start": 20193.54, + "end": 20194.82, + "probability": 0.8967 + }, + { + "start": 20197.1, + "end": 20197.36, + "probability": 0.8173 + }, + { + "start": 20198.92, + "end": 20202.06, + "probability": 0.9958 + }, + { + "start": 20202.66, + "end": 20204.58, + "probability": 0.9375 + }, + { + "start": 20206.78, + "end": 20209.78, + "probability": 0.5963 + }, + { + "start": 20210.86, + "end": 20215.06, + "probability": 0.7729 + }, + { + "start": 20216.28, + "end": 20218.88, + "probability": 0.6102 + }, + { + "start": 20219.52, + "end": 20222.78, + "probability": 0.8634 + }, + { + "start": 20223.24, + "end": 20224.6, + "probability": 0.8803 + }, + { + "start": 20225.4, + "end": 20229.92, + "probability": 0.5282 + }, + { + "start": 20230.42, + "end": 20230.68, + "probability": 0.7305 + }, + { + "start": 20230.72, + "end": 20232.66, + "probability": 0.946 + }, + { + "start": 20232.92, + "end": 20234.8, + "probability": 0.9233 + }, + { + "start": 20236.14, + "end": 20239.34, + "probability": 0.9979 + }, + { + "start": 20239.34, + "end": 20244.02, + "probability": 0.9951 + }, + { + "start": 20244.38, + "end": 20245.86, + "probability": 0.9934 + }, + { + "start": 20245.86, + "end": 20246.42, + "probability": 0.5992 + }, + { + "start": 20246.5, + "end": 20247.6, + "probability": 0.8534 + }, + { + "start": 20248.1, + "end": 20252.76, + "probability": 0.99 + }, + { + "start": 20253.54, + "end": 20257.34, + "probability": 0.9175 + }, + { + "start": 20257.9, + "end": 20262.08, + "probability": 0.9441 + }, + { + "start": 20262.7, + "end": 20264.11, + "probability": 0.9257 + }, + { + "start": 20264.44, + "end": 20266.02, + "probability": 0.3376 + }, + { + "start": 20266.16, + "end": 20271.64, + "probability": 0.7316 + }, + { + "start": 20271.88, + "end": 20274.52, + "probability": 0.9745 + }, + { + "start": 20274.82, + "end": 20277.0, + "probability": 0.9777 + }, + { + "start": 20277.06, + "end": 20278.96, + "probability": 0.9545 + }, + { + "start": 20279.46, + "end": 20282.92, + "probability": 0.9613 + }, + { + "start": 20283.46, + "end": 20283.68, + "probability": 0.9507 + }, + { + "start": 20285.2, + "end": 20289.32, + "probability": 0.9966 + }, + { + "start": 20290.1, + "end": 20291.2, + "probability": 0.9365 + }, + { + "start": 20291.3, + "end": 20292.5, + "probability": 0.7962 + }, + { + "start": 20292.56, + "end": 20298.42, + "probability": 0.9833 + }, + { + "start": 20300.46, + "end": 20301.32, + "probability": 0.6196 + }, + { + "start": 20301.32, + "end": 20302.78, + "probability": 0.2457 + }, + { + "start": 20302.78, + "end": 20303.58, + "probability": 0.8026 + }, + { + "start": 20304.18, + "end": 20305.0, + "probability": 0.676 + }, + { + "start": 20305.0, + "end": 20306.3, + "probability": 0.5472 + }, + { + "start": 20307.92, + "end": 20308.62, + "probability": 0.0057 + }, + { + "start": 20308.62, + "end": 20308.62, + "probability": 0.0444 + }, + { + "start": 20308.62, + "end": 20308.62, + "probability": 0.0076 + }, + { + "start": 20308.62, + "end": 20308.62, + "probability": 0.0417 + }, + { + "start": 20308.62, + "end": 20309.8, + "probability": 0.5114 + }, + { + "start": 20310.8, + "end": 20311.48, + "probability": 0.6272 + }, + { + "start": 20311.6, + "end": 20311.76, + "probability": 0.2311 + }, + { + "start": 20311.76, + "end": 20313.56, + "probability": 0.5931 + }, + { + "start": 20313.56, + "end": 20314.84, + "probability": 0.7124 + }, + { + "start": 20315.46, + "end": 20315.84, + "probability": 0.7602 + }, + { + "start": 20315.88, + "end": 20317.44, + "probability": 0.7695 + }, + { + "start": 20317.54, + "end": 20317.8, + "probability": 0.4074 + }, + { + "start": 20317.8, + "end": 20319.16, + "probability": 0.9112 + }, + { + "start": 20319.22, + "end": 20321.28, + "probability": 0.8135 + }, + { + "start": 20321.36, + "end": 20322.5, + "probability": 0.957 + }, + { + "start": 20322.56, + "end": 20324.2, + "probability": 0.9945 + }, + { + "start": 20324.54, + "end": 20325.06, + "probability": 0.7747 + }, + { + "start": 20327.28, + "end": 20328.82, + "probability": 0.9639 + }, + { + "start": 20328.82, + "end": 20328.9, + "probability": 0.1797 + }, + { + "start": 20328.9, + "end": 20329.32, + "probability": 0.0804 + }, + { + "start": 20329.5, + "end": 20330.52, + "probability": 0.3555 + }, + { + "start": 20330.58, + "end": 20331.86, + "probability": 0.9561 + }, + { + "start": 20331.86, + "end": 20332.3, + "probability": 0.7911 + }, + { + "start": 20332.34, + "end": 20333.56, + "probability": 0.841 + }, + { + "start": 20333.68, + "end": 20334.02, + "probability": 0.4994 + }, + { + "start": 20334.16, + "end": 20334.34, + "probability": 0.9335 + }, + { + "start": 20334.38, + "end": 20335.12, + "probability": 0.9471 + }, + { + "start": 20335.9, + "end": 20336.51, + "probability": 0.5113 + }, + { + "start": 20336.8, + "end": 20337.44, + "probability": 0.5628 + }, + { + "start": 20337.52, + "end": 20337.84, + "probability": 0.7906 + }, + { + "start": 20337.94, + "end": 20338.54, + "probability": 0.5705 + }, + { + "start": 20338.56, + "end": 20338.7, + "probability": 0.4733 + }, + { + "start": 20338.76, + "end": 20340.2, + "probability": 0.5338 + }, + { + "start": 20340.26, + "end": 20340.46, + "probability": 0.46 + }, + { + "start": 20340.46, + "end": 20340.9, + "probability": 0.8553 + }, + { + "start": 20341.1, + "end": 20341.94, + "probability": 0.9843 + }, + { + "start": 20341.98, + "end": 20342.85, + "probability": 0.4841 + }, + { + "start": 20343.28, + "end": 20345.22, + "probability": 0.9982 + }, + { + "start": 20345.62, + "end": 20347.62, + "probability": 0.5194 + }, + { + "start": 20347.96, + "end": 20348.14, + "probability": 0.194 + }, + { + "start": 20348.2, + "end": 20349.88, + "probability": 0.8894 + }, + { + "start": 20349.94, + "end": 20352.28, + "probability": 0.6276 + }, + { + "start": 20352.46, + "end": 20354.54, + "probability": 0.3958 + }, + { + "start": 20354.78, + "end": 20354.92, + "probability": 0.2288 + }, + { + "start": 20354.92, + "end": 20355.32, + "probability": 0.8755 + }, + { + "start": 20355.32, + "end": 20355.42, + "probability": 0.8408 + }, + { + "start": 20355.5, + "end": 20355.5, + "probability": 0.7325 + }, + { + "start": 20355.52, + "end": 20356.16, + "probability": 0.9116 + }, + { + "start": 20356.84, + "end": 20357.16, + "probability": 0.1988 + }, + { + "start": 20358.08, + "end": 20358.3, + "probability": 0.0219 + }, + { + "start": 20358.3, + "end": 20358.3, + "probability": 0.1694 + }, + { + "start": 20358.3, + "end": 20358.68, + "probability": 0.2847 + }, + { + "start": 20358.78, + "end": 20360.1, + "probability": 0.9776 + }, + { + "start": 20361.14, + "end": 20361.34, + "probability": 0.3837 + }, + { + "start": 20361.44, + "end": 20362.74, + "probability": 0.6741 + }, + { + "start": 20362.82, + "end": 20364.0, + "probability": 0.6763 + }, + { + "start": 20364.16, + "end": 20365.6, + "probability": 0.8962 + }, + { + "start": 20365.72, + "end": 20366.94, + "probability": 0.9668 + }, + { + "start": 20367.36, + "end": 20367.62, + "probability": 0.8058 + }, + { + "start": 20367.76, + "end": 20368.82, + "probability": 0.4253 + }, + { + "start": 20369.02, + "end": 20369.02, + "probability": 0.5593 + }, + { + "start": 20369.07, + "end": 20371.29, + "probability": 0.6891 + }, + { + "start": 20371.74, + "end": 20372.76, + "probability": 0.9169 + }, + { + "start": 20373.08, + "end": 20373.8, + "probability": 0.6483 + }, + { + "start": 20373.86, + "end": 20374.2, + "probability": 0.9697 + }, + { + "start": 20374.24, + "end": 20375.81, + "probability": 0.9926 + }, + { + "start": 20376.46, + "end": 20377.64, + "probability": 0.6961 + }, + { + "start": 20379.02, + "end": 20379.38, + "probability": 0.0425 + }, + { + "start": 20379.38, + "end": 20379.56, + "probability": 0.4105 + }, + { + "start": 20380.92, + "end": 20381.36, + "probability": 0.0575 + }, + { + "start": 20381.36, + "end": 20382.68, + "probability": 0.7998 + }, + { + "start": 20382.74, + "end": 20383.16, + "probability": 0.8542 + }, + { + "start": 20383.18, + "end": 20383.56, + "probability": 0.186 + }, + { + "start": 20383.68, + "end": 20385.26, + "probability": 0.6962 + }, + { + "start": 20385.5, + "end": 20386.06, + "probability": 0.6333 + }, + { + "start": 20386.06, + "end": 20386.96, + "probability": 0.6138 + }, + { + "start": 20387.62, + "end": 20389.1, + "probability": 0.7398 + }, + { + "start": 20389.6, + "end": 20389.86, + "probability": 0.3603 + }, + { + "start": 20389.96, + "end": 20390.64, + "probability": 0.8457 + }, + { + "start": 20390.74, + "end": 20393.12, + "probability": 0.9062 + }, + { + "start": 20393.24, + "end": 20393.92, + "probability": 0.4482 + }, + { + "start": 20393.98, + "end": 20394.46, + "probability": 0.9278 + }, + { + "start": 20394.64, + "end": 20396.54, + "probability": 0.9675 + }, + { + "start": 20396.84, + "end": 20399.9, + "probability": 0.9176 + }, + { + "start": 20400.02, + "end": 20401.27, + "probability": 0.8887 + }, + { + "start": 20401.32, + "end": 20403.68, + "probability": 0.9008 + }, + { + "start": 20404.34, + "end": 20407.16, + "probability": 0.7449 + }, + { + "start": 20407.36, + "end": 20408.06, + "probability": 0.824 + }, + { + "start": 20408.18, + "end": 20408.96, + "probability": 0.8605 + }, + { + "start": 20409.1, + "end": 20411.12, + "probability": 0.8873 + }, + { + "start": 20413.08, + "end": 20415.7, + "probability": 0.8115 + }, + { + "start": 20416.04, + "end": 20416.06, + "probability": 0.3853 + }, + { + "start": 20416.06, + "end": 20421.42, + "probability": 0.9818 + }, + { + "start": 20422.16, + "end": 20427.12, + "probability": 0.9927 + }, + { + "start": 20427.68, + "end": 20429.42, + "probability": 0.9473 + }, + { + "start": 20429.76, + "end": 20432.42, + "probability": 0.8658 + }, + { + "start": 20433.52, + "end": 20434.26, + "probability": 0.8494 + }, + { + "start": 20435.0, + "end": 20437.58, + "probability": 0.5456 + }, + { + "start": 20437.6, + "end": 20438.7, + "probability": 0.9039 + }, + { + "start": 20439.48, + "end": 20440.28, + "probability": 0.3465 + }, + { + "start": 20440.42, + "end": 20443.54, + "probability": 0.9715 + }, + { + "start": 20444.36, + "end": 20450.2, + "probability": 0.986 + }, + { + "start": 20450.68, + "end": 20455.04, + "probability": 0.9984 + }, + { + "start": 20455.26, + "end": 20457.92, + "probability": 0.6885 + }, + { + "start": 20458.22, + "end": 20458.88, + "probability": 0.4366 + }, + { + "start": 20459.34, + "end": 20461.82, + "probability": 0.9706 + }, + { + "start": 20462.02, + "end": 20469.48, + "probability": 0.9755 + }, + { + "start": 20469.54, + "end": 20470.44, + "probability": 0.8633 + }, + { + "start": 20470.64, + "end": 20474.02, + "probability": 0.6601 + }, + { + "start": 20474.02, + "end": 20475.6, + "probability": 0.8805 + }, + { + "start": 20475.9, + "end": 20480.2, + "probability": 0.8448 + }, + { + "start": 20480.72, + "end": 20484.52, + "probability": 0.9895 + }, + { + "start": 20485.5, + "end": 20488.7, + "probability": 0.9544 + }, + { + "start": 20490.5, + "end": 20495.3, + "probability": 0.9883 + }, + { + "start": 20496.04, + "end": 20496.86, + "probability": 0.8063 + }, + { + "start": 20496.96, + "end": 20499.5, + "probability": 0.9897 + }, + { + "start": 20499.72, + "end": 20501.19, + "probability": 0.9924 + }, + { + "start": 20502.26, + "end": 20505.52, + "probability": 0.9751 + }, + { + "start": 20506.3, + "end": 20509.96, + "probability": 0.983 + }, + { + "start": 20510.5, + "end": 20512.56, + "probability": 0.8374 + }, + { + "start": 20513.2, + "end": 20513.54, + "probability": 0.6305 + }, + { + "start": 20514.06, + "end": 20514.74, + "probability": 0.7494 + }, + { + "start": 20515.1, + "end": 20517.42, + "probability": 0.7729 + }, + { + "start": 20517.5, + "end": 20519.5, + "probability": 0.782 + }, + { + "start": 20519.62, + "end": 20520.8, + "probability": 0.7456 + }, + { + "start": 20520.94, + "end": 20522.94, + "probability": 0.9714 + }, + { + "start": 20522.94, + "end": 20526.14, + "probability": 0.9984 + }, + { + "start": 20526.48, + "end": 20529.08, + "probability": 0.9938 + }, + { + "start": 20529.32, + "end": 20529.58, + "probability": 0.7369 + }, + { + "start": 20529.7, + "end": 20530.64, + "probability": 0.8418 + }, + { + "start": 20530.94, + "end": 20533.06, + "probability": 0.8862 + }, + { + "start": 20533.74, + "end": 20535.42, + "probability": 0.9697 + }, + { + "start": 20535.94, + "end": 20536.82, + "probability": 0.7858 + }, + { + "start": 20538.26, + "end": 20539.54, + "probability": 0.8857 + }, + { + "start": 20539.64, + "end": 20543.04, + "probability": 0.9001 + }, + { + "start": 20543.74, + "end": 20545.78, + "probability": 0.8943 + }, + { + "start": 20546.94, + "end": 20551.22, + "probability": 0.9662 + }, + { + "start": 20551.64, + "end": 20554.78, + "probability": 0.9574 + }, + { + "start": 20555.1, + "end": 20556.22, + "probability": 0.8316 + }, + { + "start": 20556.8, + "end": 20560.56, + "probability": 0.9885 + }, + { + "start": 20560.56, + "end": 20563.82, + "probability": 0.9816 + }, + { + "start": 20564.08, + "end": 20564.38, + "probability": 0.6558 + }, + { + "start": 20564.42, + "end": 20565.24, + "probability": 0.5426 + }, + { + "start": 20565.48, + "end": 20567.1, + "probability": 0.9939 + }, + { + "start": 20567.56, + "end": 20569.26, + "probability": 0.9098 + }, + { + "start": 20569.9, + "end": 20572.07, + "probability": 0.9949 + }, + { + "start": 20573.22, + "end": 20574.93, + "probability": 0.9932 + }, + { + "start": 20575.82, + "end": 20577.75, + "probability": 0.9985 + }, + { + "start": 20578.34, + "end": 20581.04, + "probability": 0.9884 + }, + { + "start": 20581.44, + "end": 20587.04, + "probability": 0.984 + }, + { + "start": 20587.18, + "end": 20588.54, + "probability": 0.9807 + }, + { + "start": 20589.46, + "end": 20590.1, + "probability": 0.7481 + }, + { + "start": 20590.8, + "end": 20591.74, + "probability": 0.9963 + }, + { + "start": 20592.06, + "end": 20594.0, + "probability": 0.9694 + }, + { + "start": 20595.84, + "end": 20596.74, + "probability": 0.8396 + }, + { + "start": 20597.04, + "end": 20597.88, + "probability": 0.9379 + }, + { + "start": 20598.02, + "end": 20599.18, + "probability": 0.6089 + }, + { + "start": 20599.64, + "end": 20602.98, + "probability": 0.9854 + }, + { + "start": 20604.06, + "end": 20605.46, + "probability": 0.9346 + }, + { + "start": 20605.96, + "end": 20606.06, + "probability": 0.8313 + }, + { + "start": 20606.28, + "end": 20606.7, + "probability": 0.731 + }, + { + "start": 20606.76, + "end": 20608.54, + "probability": 0.8098 + }, + { + "start": 20608.62, + "end": 20609.43, + "probability": 0.8328 + }, + { + "start": 20611.26, + "end": 20611.84, + "probability": 0.7191 + }, + { + "start": 20611.92, + "end": 20614.06, + "probability": 0.5059 + }, + { + "start": 20614.08, + "end": 20615.84, + "probability": 0.9827 + }, + { + "start": 20616.22, + "end": 20617.22, + "probability": 0.9556 + }, + { + "start": 20617.56, + "end": 20620.16, + "probability": 0.8924 + }, + { + "start": 20620.34, + "end": 20620.84, + "probability": 0.7686 + }, + { + "start": 20620.94, + "end": 20621.5, + "probability": 0.7576 + }, + { + "start": 20622.5, + "end": 20623.78, + "probability": 0.9622 + }, + { + "start": 20624.1, + "end": 20625.8, + "probability": 0.7496 + }, + { + "start": 20626.3, + "end": 20627.42, + "probability": 0.8961 + }, + { + "start": 20627.44, + "end": 20631.24, + "probability": 0.9473 + }, + { + "start": 20631.4, + "end": 20636.32, + "probability": 0.8569 + }, + { + "start": 20636.46, + "end": 20638.06, + "probability": 0.8386 + }, + { + "start": 20638.16, + "end": 20641.08, + "probability": 0.9689 + }, + { + "start": 20641.72, + "end": 20642.78, + "probability": 0.5653 + }, + { + "start": 20643.42, + "end": 20644.16, + "probability": 0.8888 + }, + { + "start": 20644.26, + "end": 20645.36, + "probability": 0.9347 + }, + { + "start": 20645.7, + "end": 20647.62, + "probability": 0.738 + }, + { + "start": 20647.72, + "end": 20651.89, + "probability": 0.4644 + }, + { + "start": 20652.4, + "end": 20652.9, + "probability": 0.1806 + }, + { + "start": 20653.78, + "end": 20656.04, + "probability": 0.3884 + }, + { + "start": 20656.06, + "end": 20657.88, + "probability": 0.9944 + }, + { + "start": 20657.98, + "end": 20662.12, + "probability": 0.2248 + }, + { + "start": 20662.96, + "end": 20664.7, + "probability": 0.9156 + }, + { + "start": 20664.72, + "end": 20668.66, + "probability": 0.8233 + }, + { + "start": 20668.78, + "end": 20670.9, + "probability": 0.6467 + }, + { + "start": 20671.42, + "end": 20674.88, + "probability": 0.491 + }, + { + "start": 20675.04, + "end": 20675.7, + "probability": 0.7045 + }, + { + "start": 20675.86, + "end": 20677.1, + "probability": 0.4734 + }, + { + "start": 20677.28, + "end": 20677.65, + "probability": 0.1616 + }, + { + "start": 20679.0, + "end": 20681.36, + "probability": 0.9532 + }, + { + "start": 20681.54, + "end": 20681.8, + "probability": 0.6402 + }, + { + "start": 20681.94, + "end": 20682.89, + "probability": 0.6634 + }, + { + "start": 20683.62, + "end": 20684.82, + "probability": 0.6583 + }, + { + "start": 20685.48, + "end": 20686.32, + "probability": 0.5569 + }, + { + "start": 20687.0, + "end": 20687.98, + "probability": 0.8445 + }, + { + "start": 20688.18, + "end": 20691.98, + "probability": 0.2978 + }, + { + "start": 20692.32, + "end": 20694.5, + "probability": 0.5398 + }, + { + "start": 20694.78, + "end": 20698.28, + "probability": 0.7876 + }, + { + "start": 20699.18, + "end": 20701.5, + "probability": 0.8597 + }, + { + "start": 20701.5, + "end": 20701.96, + "probability": 0.4549 + }, + { + "start": 20701.98, + "end": 20703.0, + "probability": 0.7304 + }, + { + "start": 20703.02, + "end": 20704.24, + "probability": 0.1264 + }, + { + "start": 20704.24, + "end": 20704.98, + "probability": 0.1355 + }, + { + "start": 20706.25, + "end": 20707.44, + "probability": 0.1031 + }, + { + "start": 20707.54, + "end": 20709.92, + "probability": 0.7886 + }, + { + "start": 20710.08, + "end": 20711.08, + "probability": 0.6486 + }, + { + "start": 20711.22, + "end": 20712.58, + "probability": 0.9784 + }, + { + "start": 20713.22, + "end": 20715.66, + "probability": 0.913 + }, + { + "start": 20716.79, + "end": 20717.6, + "probability": 0.667 + }, + { + "start": 20717.6, + "end": 20718.86, + "probability": 0.8979 + }, + { + "start": 20719.02, + "end": 20720.06, + "probability": 0.9678 + }, + { + "start": 20720.14, + "end": 20721.34, + "probability": 0.6746 + }, + { + "start": 20721.66, + "end": 20724.08, + "probability": 0.6938 + }, + { + "start": 20724.28, + "end": 20724.6, + "probability": 0.4715 + }, + { + "start": 20724.62, + "end": 20725.36, + "probability": 0.514 + }, + { + "start": 20725.64, + "end": 20728.56, + "probability": 0.7886 + }, + { + "start": 20729.16, + "end": 20733.92, + "probability": 0.5193 + }, + { + "start": 20734.04, + "end": 20734.3, + "probability": 0.1249 + }, + { + "start": 20734.3, + "end": 20736.7, + "probability": 0.6731 + }, + { + "start": 20736.88, + "end": 20737.8, + "probability": 0.3427 + }, + { + "start": 20738.32, + "end": 20738.6, + "probability": 0.5046 + }, + { + "start": 20738.68, + "end": 20740.04, + "probability": 0.9148 + }, + { + "start": 20740.5, + "end": 20743.72, + "probability": 0.77 + }, + { + "start": 20743.8, + "end": 20749.36, + "probability": 0.768 + }, + { + "start": 20749.98, + "end": 20751.7, + "probability": 0.7123 + }, + { + "start": 20751.75, + "end": 20752.08, + "probability": 0.045 + }, + { + "start": 20752.08, + "end": 20752.42, + "probability": 0.3797 + }, + { + "start": 20752.46, + "end": 20753.8, + "probability": 0.1933 + }, + { + "start": 20754.48, + "end": 20756.07, + "probability": 0.801 + }, + { + "start": 20756.48, + "end": 20757.95, + "probability": 0.4227 + }, + { + "start": 20759.46, + "end": 20759.82, + "probability": 0.0675 + }, + { + "start": 20759.82, + "end": 20760.36, + "probability": 0.4347 + }, + { + "start": 20760.36, + "end": 20760.7, + "probability": 0.2525 + }, + { + "start": 20760.86, + "end": 20761.8, + "probability": 0.5594 + }, + { + "start": 20761.9, + "end": 20762.86, + "probability": 0.7424 + }, + { + "start": 20762.86, + "end": 20763.94, + "probability": 0.2369 + }, + { + "start": 20763.94, + "end": 20765.12, + "probability": 0.433 + }, + { + "start": 20765.18, + "end": 20767.74, + "probability": 0.0777 + }, + { + "start": 20767.74, + "end": 20770.04, + "probability": 0.863 + }, + { + "start": 20770.26, + "end": 20770.56, + "probability": 0.021 + }, + { + "start": 20770.56, + "end": 20775.1, + "probability": 0.933 + }, + { + "start": 20775.22, + "end": 20775.36, + "probability": 0.4048 + }, + { + "start": 20775.48, + "end": 20778.08, + "probability": 0.7891 + }, + { + "start": 20778.18, + "end": 20781.46, + "probability": 0.6636 + }, + { + "start": 20781.46, + "end": 20784.24, + "probability": 0.926 + }, + { + "start": 20784.7, + "end": 20785.4, + "probability": 0.5672 + }, + { + "start": 20785.5, + "end": 20786.3, + "probability": 0.1698 + }, + { + "start": 20786.42, + "end": 20787.22, + "probability": 0.1142 + }, + { + "start": 20787.32, + "end": 20788.62, + "probability": 0.0572 + }, + { + "start": 20788.72, + "end": 20790.48, + "probability": 0.425 + }, + { + "start": 20790.58, + "end": 20791.04, + "probability": 0.6083 + }, + { + "start": 20791.14, + "end": 20793.97, + "probability": 0.4777 + }, + { + "start": 20794.88, + "end": 20796.8, + "probability": 0.4872 + }, + { + "start": 20796.84, + "end": 20797.5, + "probability": 0.5477 + }, + { + "start": 20799.42, + "end": 20800.26, + "probability": 0.5681 + }, + { + "start": 20800.38, + "end": 20802.54, + "probability": 0.1239 + }, + { + "start": 20802.54, + "end": 20805.8, + "probability": 0.3863 + }, + { + "start": 20805.92, + "end": 20806.64, + "probability": 0.627 + }, + { + "start": 20806.78, + "end": 20807.57, + "probability": 0.8955 + }, + { + "start": 20807.84, + "end": 20808.79, + "probability": 0.8821 + }, + { + "start": 20809.04, + "end": 20811.74, + "probability": 0.8638 + }, + { + "start": 20812.84, + "end": 20814.04, + "probability": 0.6711 + }, + { + "start": 20814.42, + "end": 20815.74, + "probability": 0.8151 + }, + { + "start": 20815.94, + "end": 20817.24, + "probability": 0.1649 + }, + { + "start": 20817.78, + "end": 20820.06, + "probability": 0.2125 + }, + { + "start": 20820.2, + "end": 20820.98, + "probability": 0.0971 + }, + { + "start": 20821.3, + "end": 20821.7, + "probability": 0.1743 + }, + { + "start": 20821.7, + "end": 20822.58, + "probability": 0.2085 + }, + { + "start": 20823.16, + "end": 20823.98, + "probability": 0.3583 + }, + { + "start": 20824.64, + "end": 20827.6, + "probability": 0.7227 + }, + { + "start": 20827.86, + "end": 20829.78, + "probability": 0.8186 + }, + { + "start": 20829.88, + "end": 20830.8, + "probability": 0.039 + }, + { + "start": 20830.8, + "end": 20831.57, + "probability": 0.5412 + }, + { + "start": 20831.64, + "end": 20836.04, + "probability": 0.3157 + }, + { + "start": 20836.48, + "end": 20838.26, + "probability": 0.34 + }, + { + "start": 20838.98, + "end": 20839.9, + "probability": 0.4482 + }, + { + "start": 20839.9, + "end": 20842.42, + "probability": 0.6362 + }, + { + "start": 20842.52, + "end": 20847.2, + "probability": 0.7335 + }, + { + "start": 20847.9, + "end": 20850.6, + "probability": 0.4771 + }, + { + "start": 20850.6, + "end": 20850.94, + "probability": 0.6131 + }, + { + "start": 20851.02, + "end": 20851.52, + "probability": 0.63 + }, + { + "start": 20851.6, + "end": 20853.14, + "probability": 0.144 + }, + { + "start": 20853.14, + "end": 20853.32, + "probability": 0.0885 + }, + { + "start": 20853.44, + "end": 20853.86, + "probability": 0.8617 + }, + { + "start": 20854.0, + "end": 20855.16, + "probability": 0.6676 + }, + { + "start": 20855.26, + "end": 20855.84, + "probability": 0.1752 + }, + { + "start": 20856.3, + "end": 20857.32, + "probability": 0.9611 + }, + { + "start": 20857.44, + "end": 20858.18, + "probability": 0.7958 + }, + { + "start": 20858.58, + "end": 20858.88, + "probability": 0.4937 + }, + { + "start": 20859.12, + "end": 20861.8, + "probability": 0.6282 + }, + { + "start": 20861.88, + "end": 20863.04, + "probability": 0.8983 + }, + { + "start": 20863.38, + "end": 20865.5, + "probability": 0.7075 + }, + { + "start": 20865.56, + "end": 20866.68, + "probability": 0.941 + }, + { + "start": 20866.68, + "end": 20867.67, + "probability": 0.1774 + }, + { + "start": 20867.92, + "end": 20869.34, + "probability": 0.687 + }, + { + "start": 20870.86, + "end": 20871.94, + "probability": 0.3742 + }, + { + "start": 20872.1, + "end": 20877.44, + "probability": 0.5246 + }, + { + "start": 20877.44, + "end": 20881.4, + "probability": 0.9109 + }, + { + "start": 20881.66, + "end": 20882.12, + "probability": 0.7265 + }, + { + "start": 20882.28, + "end": 20882.72, + "probability": 0.6683 + }, + { + "start": 20882.88, + "end": 20884.96, + "probability": 0.8069 + }, + { + "start": 20885.4, + "end": 20889.92, + "probability": 0.8201 + }, + { + "start": 20889.94, + "end": 20890.66, + "probability": 0.7896 + }, + { + "start": 20890.88, + "end": 20893.0, + "probability": 0.7897 + }, + { + "start": 20893.06, + "end": 20894.34, + "probability": 0.9811 + }, + { + "start": 20894.4, + "end": 20895.0, + "probability": 0.7671 + }, + { + "start": 20895.56, + "end": 20896.28, + "probability": 0.7998 + }, + { + "start": 20896.28, + "end": 20897.43, + "probability": 0.3989 + }, + { + "start": 20900.2, + "end": 20902.98, + "probability": 0.638 + }, + { + "start": 20903.16, + "end": 20906.36, + "probability": 0.6458 + }, + { + "start": 20906.52, + "end": 20908.88, + "probability": 0.6553 + }, + { + "start": 20908.92, + "end": 20909.5, + "probability": 0.1479 + }, + { + "start": 20909.6, + "end": 20909.88, + "probability": 0.3698 + }, + { + "start": 20910.12, + "end": 20913.9, + "probability": 0.4662 + }, + { + "start": 20914.08, + "end": 20918.14, + "probability": 0.9121 + }, + { + "start": 20918.34, + "end": 20923.82, + "probability": 0.9951 + }, + { + "start": 20924.46, + "end": 20926.64, + "probability": 0.826 + }, + { + "start": 20926.84, + "end": 20930.3, + "probability": 0.6892 + }, + { + "start": 20930.3, + "end": 20930.3, + "probability": 0.1344 + }, + { + "start": 20930.3, + "end": 20932.4, + "probability": 0.2758 + }, + { + "start": 20933.2, + "end": 20934.84, + "probability": 0.2565 + }, + { + "start": 20934.86, + "end": 20935.6, + "probability": 0.739 + }, + { + "start": 20936.0, + "end": 20936.0, + "probability": 0.631 + }, + { + "start": 20936.0, + "end": 20938.0, + "probability": 0.7706 + }, + { + "start": 20938.42, + "end": 20939.18, + "probability": 0.7753 + }, + { + "start": 20939.3, + "end": 20940.92, + "probability": 0.7778 + }, + { + "start": 20940.94, + "end": 20942.54, + "probability": 0.8755 + }, + { + "start": 20942.68, + "end": 20945.31, + "probability": 0.944 + }, + { + "start": 20945.86, + "end": 20946.86, + "probability": 0.6888 + }, + { + "start": 20946.92, + "end": 20950.48, + "probability": 0.9883 + }, + { + "start": 20950.74, + "end": 20951.1, + "probability": 0.0259 + }, + { + "start": 20951.1, + "end": 20951.1, + "probability": 0.0692 + }, + { + "start": 20951.1, + "end": 20951.31, + "probability": 0.706 + }, + { + "start": 20952.28, + "end": 20955.78, + "probability": 0.6978 + }, + { + "start": 20955.82, + "end": 20956.86, + "probability": 0.7485 + }, + { + "start": 20957.12, + "end": 20957.86, + "probability": 0.9149 + }, + { + "start": 20958.04, + "end": 20958.82, + "probability": 0.6286 + }, + { + "start": 20959.4, + "end": 20961.48, + "probability": 0.8363 + }, + { + "start": 20961.48, + "end": 20964.76, + "probability": 0.7257 + }, + { + "start": 20964.9, + "end": 20969.32, + "probability": 0.9967 + }, + { + "start": 20969.92, + "end": 20973.28, + "probability": 0.9258 + }, + { + "start": 20973.28, + "end": 20976.74, + "probability": 0.7537 + }, + { + "start": 20976.78, + "end": 20977.2, + "probability": 0.3798 + }, + { + "start": 20977.48, + "end": 20977.78, + "probability": 0.3419 + }, + { + "start": 20977.88, + "end": 20978.26, + "probability": 0.7383 + }, + { + "start": 20978.64, + "end": 20979.13, + "probability": 0.9517 + }, + { + "start": 20979.42, + "end": 20979.6, + "probability": 0.9001 + }, + { + "start": 20980.22, + "end": 20981.32, + "probability": 0.4895 + }, + { + "start": 20981.4, + "end": 20981.68, + "probability": 0.9158 + }, + { + "start": 20981.76, + "end": 20982.48, + "probability": 0.6989 + }, + { + "start": 20982.68, + "end": 20984.98, + "probability": 0.8512 + }, + { + "start": 20985.1, + "end": 20986.1, + "probability": 0.9492 + }, + { + "start": 20986.52, + "end": 20988.4, + "probability": 0.9131 + }, + { + "start": 20988.52, + "end": 20989.18, + "probability": 0.5605 + }, + { + "start": 20989.18, + "end": 20989.48, + "probability": 0.1639 + }, + { + "start": 20989.54, + "end": 20991.22, + "probability": 0.5999 + }, + { + "start": 20991.86, + "end": 20992.4, + "probability": 0.2788 + }, + { + "start": 20992.4, + "end": 20993.04, + "probability": 0.4151 + }, + { + "start": 20993.12, + "end": 20994.96, + "probability": 0.8791 + }, + { + "start": 20995.02, + "end": 20997.96, + "probability": 0.9204 + }, + { + "start": 20998.28, + "end": 20999.56, + "probability": 0.733 + }, + { + "start": 20999.82, + "end": 21002.0, + "probability": 0.6577 + }, + { + "start": 21002.34, + "end": 21002.92, + "probability": 0.8008 + }, + { + "start": 21002.94, + "end": 21004.11, + "probability": 0.656 + }, + { + "start": 21004.38, + "end": 21005.8, + "probability": 0.4444 + }, + { + "start": 21006.08, + "end": 21007.32, + "probability": 0.9507 + }, + { + "start": 21007.66, + "end": 21008.56, + "probability": 0.9797 + }, + { + "start": 21011.14, + "end": 21012.58, + "probability": 0.91 + }, + { + "start": 21014.7, + "end": 21015.72, + "probability": 0.2978 + }, + { + "start": 21015.72, + "end": 21016.36, + "probability": 0.6902 + }, + { + "start": 21016.98, + "end": 21020.1, + "probability": 0.8872 + }, + { + "start": 21020.12, + "end": 21020.8, + "probability": 0.6816 + }, + { + "start": 21020.86, + "end": 21021.7, + "probability": 0.9229 + }, + { + "start": 21021.88, + "end": 21030.46, + "probability": 0.9702 + }, + { + "start": 21030.46, + "end": 21037.0, + "probability": 0.9953 + }, + { + "start": 21037.02, + "end": 21038.46, + "probability": 0.9966 + }, + { + "start": 21039.32, + "end": 21040.32, + "probability": 0.6371 + }, + { + "start": 21040.7, + "end": 21044.64, + "probability": 0.9922 + }, + { + "start": 21044.88, + "end": 21045.84, + "probability": 0.8222 + }, + { + "start": 21045.88, + "end": 21047.76, + "probability": 0.8709 + }, + { + "start": 21048.1, + "end": 21051.26, + "probability": 0.9852 + }, + { + "start": 21051.3, + "end": 21051.62, + "probability": 0.5186 + }, + { + "start": 21051.8, + "end": 21054.8, + "probability": 0.9915 + }, + { + "start": 21054.8, + "end": 21057.24, + "probability": 0.8321 + }, + { + "start": 21057.54, + "end": 21060.04, + "probability": 0.988 + }, + { + "start": 21060.46, + "end": 21061.36, + "probability": 0.8409 + }, + { + "start": 21061.42, + "end": 21062.08, + "probability": 0.9662 + }, + { + "start": 21062.12, + "end": 21065.08, + "probability": 0.9843 + }, + { + "start": 21065.48, + "end": 21069.32, + "probability": 0.9946 + }, + { + "start": 21069.46, + "end": 21070.54, + "probability": 0.8411 + }, + { + "start": 21072.22, + "end": 21072.26, + "probability": 0.0429 + }, + { + "start": 21072.26, + "end": 21075.36, + "probability": 0.3942 + }, + { + "start": 21075.52, + "end": 21079.68, + "probability": 0.7031 + }, + { + "start": 21079.84, + "end": 21080.24, + "probability": 0.3914 + }, + { + "start": 21080.26, + "end": 21080.8, + "probability": 0.6946 + }, + { + "start": 21080.92, + "end": 21083.24, + "probability": 0.9851 + }, + { + "start": 21083.44, + "end": 21084.56, + "probability": 0.7084 + }, + { + "start": 21084.62, + "end": 21085.78, + "probability": 0.9775 + }, + { + "start": 21086.26, + "end": 21087.64, + "probability": 0.7627 + }, + { + "start": 21087.72, + "end": 21088.78, + "probability": 0.6506 + }, + { + "start": 21089.06, + "end": 21090.96, + "probability": 0.9025 + }, + { + "start": 21091.3, + "end": 21092.56, + "probability": 0.8715 + }, + { + "start": 21093.28, + "end": 21093.52, + "probability": 0.366 + }, + { + "start": 21093.92, + "end": 21095.44, + "probability": 0.1253 + }, + { + "start": 21095.52, + "end": 21100.09, + "probability": 0.9922 + }, + { + "start": 21100.54, + "end": 21100.72, + "probability": 0.5367 + }, + { + "start": 21100.94, + "end": 21101.64, + "probability": 0.289 + }, + { + "start": 21101.72, + "end": 21103.44, + "probability": 0.5142 + }, + { + "start": 21103.84, + "end": 21107.2, + "probability": 0.918 + }, + { + "start": 21107.66, + "end": 21109.26, + "probability": 0.8596 + }, + { + "start": 21109.62, + "end": 21113.32, + "probability": 0.9805 + }, + { + "start": 21113.88, + "end": 21116.1, + "probability": 0.8786 + }, + { + "start": 21117.5, + "end": 21120.66, + "probability": 0.999 + }, + { + "start": 21121.18, + "end": 21125.96, + "probability": 0.9954 + }, + { + "start": 21126.34, + "end": 21127.26, + "probability": 0.9755 + }, + { + "start": 21127.6, + "end": 21130.62, + "probability": 0.9705 + }, + { + "start": 21130.7, + "end": 21132.46, + "probability": 0.7527 + }, + { + "start": 21132.52, + "end": 21133.34, + "probability": 0.1451 + }, + { + "start": 21133.86, + "end": 21135.48, + "probability": 0.9915 + }, + { + "start": 21135.68, + "end": 21137.34, + "probability": 0.9767 + }, + { + "start": 21138.32, + "end": 21139.06, + "probability": 0.9099 + }, + { + "start": 21139.18, + "end": 21142.72, + "probability": 0.908 + }, + { + "start": 21143.46, + "end": 21146.22, + "probability": 0.9863 + }, + { + "start": 21146.28, + "end": 21149.28, + "probability": 0.9934 + }, + { + "start": 21149.44, + "end": 21152.44, + "probability": 0.9939 + }, + { + "start": 21152.72, + "end": 21157.16, + "probability": 0.8725 + }, + { + "start": 21157.26, + "end": 21161.72, + "probability": 0.9955 + }, + { + "start": 21161.84, + "end": 21162.61, + "probability": 0.5892 + }, + { + "start": 21163.74, + "end": 21165.68, + "probability": 0.7874 + }, + { + "start": 21166.3, + "end": 21169.02, + "probability": 0.9051 + }, + { + "start": 21171.4, + "end": 21172.78, + "probability": 0.9966 + }, + { + "start": 21173.14, + "end": 21174.94, + "probability": 0.9354 + }, + { + "start": 21176.04, + "end": 21177.3, + "probability": 0.9274 + }, + { + "start": 21177.84, + "end": 21178.54, + "probability": 0.4333 + }, + { + "start": 21178.54, + "end": 21180.63, + "probability": 0.8078 + }, + { + "start": 21180.8, + "end": 21181.48, + "probability": 0.7911 + }, + { + "start": 21183.26, + "end": 21183.76, + "probability": 0.6368 + }, + { + "start": 21183.76, + "end": 21185.42, + "probability": 0.927 + }, + { + "start": 21186.3, + "end": 21187.12, + "probability": 0.2532 + }, + { + "start": 21187.16, + "end": 21187.42, + "probability": 0.2493 + }, + { + "start": 21187.5, + "end": 21187.82, + "probability": 0.6166 + }, + { + "start": 21188.12, + "end": 21188.42, + "probability": 0.8244 + }, + { + "start": 21189.12, + "end": 21190.55, + "probability": 0.5446 + }, + { + "start": 21190.9, + "end": 21195.32, + "probability": 0.7341 + }, + { + "start": 21195.48, + "end": 21200.5, + "probability": 0.4799 + }, + { + "start": 21201.92, + "end": 21201.92, + "probability": 0.3011 + }, + { + "start": 21202.46, + "end": 21208.68, + "probability": 0.9344 + }, + { + "start": 21208.68, + "end": 21210.5, + "probability": 0.4515 + }, + { + "start": 21239.86, + "end": 21240.42, + "probability": 0.0348 + }, + { + "start": 21241.26, + "end": 21250.14, + "probability": 0.0228 + }, + { + "start": 21251.58, + "end": 21255.34, + "probability": 0.0176 + }, + { + "start": 21255.34, + "end": 21256.3, + "probability": 0.0683 + }, + { + "start": 21256.5, + "end": 21259.54, + "probability": 0.199 + }, + { + "start": 21260.66, + "end": 21262.09, + "probability": 0.0695 + }, + { + "start": 21262.57, + "end": 21266.64, + "probability": 0.0182 + }, + { + "start": 21267.3, + "end": 21269.06, + "probability": 0.2163 + }, + { + "start": 21269.4, + "end": 21271.34, + "probability": 0.0203 + }, + { + "start": 21272.16, + "end": 21272.68, + "probability": 0.2746 + }, + { + "start": 21272.68, + "end": 21272.68, + "probability": 0.016 + }, + { + "start": 21275.26, + "end": 21277.24, + "probability": 0.0411 + }, + { + "start": 21281.58, + "end": 21282.8, + "probability": 0.0201 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.0, + "end": 21283.0, + "probability": 0.0 + }, + { + "start": 21283.06, + "end": 21284.11, + "probability": 0.835 + }, + { + "start": 21284.42, + "end": 21286.97, + "probability": 0.9988 + }, + { + "start": 21287.55, + "end": 21291.72, + "probability": 0.9941 + }, + { + "start": 21292.08, + "end": 21295.06, + "probability": 0.9242 + }, + { + "start": 21296.1, + "end": 21297.36, + "probability": 0.7415 + }, + { + "start": 21297.5, + "end": 21297.66, + "probability": 0.3639 + }, + { + "start": 21297.8, + "end": 21301.0, + "probability": 0.9553 + }, + { + "start": 21301.14, + "end": 21303.16, + "probability": 0.9951 + }, + { + "start": 21303.46, + "end": 21308.9, + "probability": 0.8237 + }, + { + "start": 21308.96, + "end": 21310.4, + "probability": 0.9517 + }, + { + "start": 21311.04, + "end": 21312.36, + "probability": 0.7939 + }, + { + "start": 21312.42, + "end": 21315.12, + "probability": 0.9243 + }, + { + "start": 21316.12, + "end": 21316.94, + "probability": 0.598 + }, + { + "start": 21317.5, + "end": 21319.9, + "probability": 0.8845 + }, + { + "start": 21320.72, + "end": 21322.4, + "probability": 0.5618 + }, + { + "start": 21322.49, + "end": 21324.4, + "probability": 0.5768 + }, + { + "start": 21324.46, + "end": 21328.3, + "probability": 0.9753 + }, + { + "start": 21328.46, + "end": 21330.36, + "probability": 0.988 + }, + { + "start": 21331.0, + "end": 21337.0, + "probability": 0.9812 + }, + { + "start": 21337.56, + "end": 21338.2, + "probability": 0.8244 + }, + { + "start": 21338.34, + "end": 21340.82, + "probability": 0.9297 + }, + { + "start": 21341.38, + "end": 21345.7, + "probability": 0.9673 + }, + { + "start": 21345.8, + "end": 21347.96, + "probability": 0.9443 + }, + { + "start": 21349.18, + "end": 21351.06, + "probability": 0.9702 + }, + { + "start": 21351.48, + "end": 21352.64, + "probability": 0.6413 + }, + { + "start": 21352.92, + "end": 21353.72, + "probability": 0.9778 + }, + { + "start": 21353.98, + "end": 21354.54, + "probability": 0.7564 + }, + { + "start": 21355.28, + "end": 21358.7, + "probability": 0.9478 + }, + { + "start": 21358.88, + "end": 21359.46, + "probability": 0.7256 + }, + { + "start": 21369.1, + "end": 21369.1, + "probability": 0.0054 + }, + { + "start": 21371.58, + "end": 21375.5, + "probability": 0.3096 + }, + { + "start": 21375.94, + "end": 21375.94, + "probability": 0.0181 + }, + { + "start": 21375.94, + "end": 21375.94, + "probability": 0.013 + }, + { + "start": 21376.92, + "end": 21377.27, + "probability": 0.2865 + }, + { + "start": 21389.4, + "end": 21395.14, + "probability": 0.0402 + }, + { + "start": 21395.14, + "end": 21397.22, + "probability": 0.0409 + }, + { + "start": 21406.26, + "end": 21409.36, + "probability": 0.0659 + }, + { + "start": 21410.74, + "end": 21413.44, + "probability": 0.1515 + }, + { + "start": 21413.44, + "end": 21414.16, + "probability": 0.0098 + }, + { + "start": 21414.84, + "end": 21417.32, + "probability": 0.2151 + }, + { + "start": 21417.89, + "end": 21419.3, + "probability": 0.0354 + }, + { + "start": 21419.3, + "end": 21419.46, + "probability": 0.0624 + }, + { + "start": 21419.46, + "end": 21420.98, + "probability": 0.0042 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.0, + "end": 21421.0, + "probability": 0.0 + }, + { + "start": 21421.16, + "end": 21421.32, + "probability": 0.0105 + }, + { + "start": 21421.32, + "end": 21421.32, + "probability": 0.0864 + }, + { + "start": 21421.32, + "end": 21421.32, + "probability": 0.0681 + }, + { + "start": 21421.32, + "end": 21421.32, + "probability": 0.0631 + }, + { + "start": 21421.32, + "end": 21421.94, + "probability": 0.0497 + }, + { + "start": 21422.56, + "end": 21425.94, + "probability": 0.665 + }, + { + "start": 21426.18, + "end": 21427.64, + "probability": 0.6359 + }, + { + "start": 21427.72, + "end": 21428.44, + "probability": 0.7785 + }, + { + "start": 21428.8, + "end": 21429.34, + "probability": 0.6724 + }, + { + "start": 21430.72, + "end": 21431.4, + "probability": 0.8466 + }, + { + "start": 21432.36, + "end": 21432.84, + "probability": 0.8857 + }, + { + "start": 21436.82, + "end": 21438.44, + "probability": 0.6124 + }, + { + "start": 21441.64, + "end": 21441.88, + "probability": 0.5001 + }, + { + "start": 21441.96, + "end": 21443.0, + "probability": 0.8157 + }, + { + "start": 21443.08, + "end": 21443.98, + "probability": 0.924 + }, + { + "start": 21444.1, + "end": 21445.03, + "probability": 0.6423 + }, + { + "start": 21445.3, + "end": 21446.14, + "probability": 0.551 + }, + { + "start": 21446.48, + "end": 21446.92, + "probability": 0.7287 + }, + { + "start": 21447.46, + "end": 21448.92, + "probability": 0.8942 + }, + { + "start": 21449.0, + "end": 21449.24, + "probability": 0.2373 + }, + { + "start": 21449.24, + "end": 21449.83, + "probability": 0.5727 + }, + { + "start": 21450.5, + "end": 21451.52, + "probability": 0.9248 + }, + { + "start": 21451.66, + "end": 21452.72, + "probability": 0.9462 + }, + { + "start": 21453.08, + "end": 21454.38, + "probability": 0.9785 + }, + { + "start": 21456.06, + "end": 21457.96, + "probability": 0.5273 + }, + { + "start": 21457.98, + "end": 21458.28, + "probability": 0.6496 + }, + { + "start": 21458.36, + "end": 21458.99, + "probability": 0.8919 + }, + { + "start": 21459.64, + "end": 21460.7, + "probability": 0.6518 + }, + { + "start": 21460.86, + "end": 21462.1, + "probability": 0.6965 + }, + { + "start": 21462.66, + "end": 21465.46, + "probability": 0.5953 + }, + { + "start": 21469.86, + "end": 21470.16, + "probability": 0.0429 + }, + { + "start": 21470.9, + "end": 21472.76, + "probability": 0.4856 + }, + { + "start": 21473.36, + "end": 21473.56, + "probability": 0.6968 + }, + { + "start": 21474.34, + "end": 21475.8, + "probability": 0.5169 + }, + { + "start": 21477.78, + "end": 21480.44, + "probability": 0.9269 + }, + { + "start": 21481.92, + "end": 21482.72, + "probability": 0.7537 + }, + { + "start": 21484.4, + "end": 21485.4, + "probability": 0.855 + }, + { + "start": 21488.72, + "end": 21491.98, + "probability": 0.9287 + }, + { + "start": 21495.2, + "end": 21496.84, + "probability": 0.9956 + }, + { + "start": 21497.16, + "end": 21499.86, + "probability": 0.9811 + }, + { + "start": 21504.3, + "end": 21509.16, + "probability": 0.9807 + }, + { + "start": 21510.64, + "end": 21514.64, + "probability": 0.9751 + }, + { + "start": 21517.94, + "end": 21520.38, + "probability": 0.9074 + }, + { + "start": 21521.92, + "end": 21526.56, + "probability": 0.9684 + }, + { + "start": 21528.66, + "end": 21532.26, + "probability": 0.9822 + }, + { + "start": 21534.04, + "end": 21539.59, + "probability": 0.8768 + }, + { + "start": 21541.52, + "end": 21544.2, + "probability": 0.9751 + }, + { + "start": 21545.42, + "end": 21546.06, + "probability": 0.8917 + }, + { + "start": 21548.12, + "end": 21549.4, + "probability": 0.7293 + }, + { + "start": 21550.78, + "end": 21556.96, + "probability": 0.9741 + }, + { + "start": 21559.26, + "end": 21561.48, + "probability": 0.8875 + }, + { + "start": 21562.08, + "end": 21562.74, + "probability": 0.6545 + }, + { + "start": 21563.6, + "end": 21564.46, + "probability": 0.9707 + }, + { + "start": 21567.68, + "end": 21574.64, + "probability": 0.9702 + }, + { + "start": 21577.32, + "end": 21578.72, + "probability": 0.9909 + }, + { + "start": 21580.68, + "end": 21582.24, + "probability": 0.9479 + }, + { + "start": 21583.98, + "end": 21586.46, + "probability": 0.5032 + }, + { + "start": 21587.38, + "end": 21590.76, + "probability": 0.9702 + }, + { + "start": 21591.12, + "end": 21591.76, + "probability": 0.522 + }, + { + "start": 21591.86, + "end": 21592.28, + "probability": 0.865 + }, + { + "start": 21593.6, + "end": 21594.52, + "probability": 0.9029 + }, + { + "start": 21596.08, + "end": 21597.46, + "probability": 0.8664 + }, + { + "start": 21600.04, + "end": 21601.42, + "probability": 0.816 + }, + { + "start": 21604.8, + "end": 21606.0, + "probability": 0.5887 + }, + { + "start": 21607.48, + "end": 21610.18, + "probability": 0.8976 + }, + { + "start": 21610.82, + "end": 21612.16, + "probability": 0.9083 + }, + { + "start": 21614.86, + "end": 21617.72, + "probability": 0.8582 + }, + { + "start": 21619.32, + "end": 21620.56, + "probability": 0.4794 + }, + { + "start": 21620.68, + "end": 21625.04, + "probability": 0.9821 + }, + { + "start": 21627.04, + "end": 21627.88, + "probability": 0.99 + }, + { + "start": 21629.42, + "end": 21630.76, + "probability": 0.999 + }, + { + "start": 21633.5, + "end": 21637.5, + "probability": 0.9712 + }, + { + "start": 21641.1, + "end": 21642.44, + "probability": 0.7663 + }, + { + "start": 21645.52, + "end": 21647.06, + "probability": 0.9976 + }, + { + "start": 21649.7, + "end": 21651.78, + "probability": 0.8901 + }, + { + "start": 21652.98, + "end": 21655.54, + "probability": 0.9637 + }, + { + "start": 21656.12, + "end": 21657.52, + "probability": 0.8916 + }, + { + "start": 21658.58, + "end": 21659.2, + "probability": 0.9409 + }, + { + "start": 21660.8, + "end": 21662.34, + "probability": 0.9628 + }, + { + "start": 21664.2, + "end": 21665.78, + "probability": 0.6753 + }, + { + "start": 21667.64, + "end": 21669.52, + "probability": 0.9065 + }, + { + "start": 21670.82, + "end": 21672.26, + "probability": 0.5713 + }, + { + "start": 21674.6, + "end": 21676.48, + "probability": 0.766 + }, + { + "start": 21677.44, + "end": 21681.52, + "probability": 0.8232 + }, + { + "start": 21682.16, + "end": 21683.04, + "probability": 0.8931 + }, + { + "start": 21684.94, + "end": 21686.28, + "probability": 0.9805 + }, + { + "start": 21688.58, + "end": 21691.92, + "probability": 0.9617 + }, + { + "start": 21693.96, + "end": 21697.21, + "probability": 0.8454 + }, + { + "start": 21700.96, + "end": 21703.48, + "probability": 0.782 + }, + { + "start": 21704.22, + "end": 21705.06, + "probability": 0.8151 + }, + { + "start": 21706.32, + "end": 21707.7, + "probability": 0.8198 + }, + { + "start": 21710.12, + "end": 21712.04, + "probability": 0.9901 + }, + { + "start": 21714.12, + "end": 21714.88, + "probability": 0.7425 + }, + { + "start": 21716.02, + "end": 21716.9, + "probability": 0.7747 + }, + { + "start": 21717.96, + "end": 21719.73, + "probability": 0.963 + }, + { + "start": 21721.92, + "end": 21722.98, + "probability": 0.9943 + }, + { + "start": 21724.74, + "end": 21725.6, + "probability": 0.3864 + }, + { + "start": 21728.48, + "end": 21730.06, + "probability": 0.9795 + }, + { + "start": 21731.68, + "end": 21734.64, + "probability": 0.959 + }, + { + "start": 21736.58, + "end": 21737.74, + "probability": 0.9839 + }, + { + "start": 21739.62, + "end": 21740.96, + "probability": 0.9639 + }, + { + "start": 21743.54, + "end": 21745.42, + "probability": 0.9862 + }, + { + "start": 21746.66, + "end": 21748.38, + "probability": 0.9367 + }, + { + "start": 21750.04, + "end": 21753.58, + "probability": 0.8643 + }, + { + "start": 21756.02, + "end": 21759.88, + "probability": 0.8552 + }, + { + "start": 21761.98, + "end": 21764.4, + "probability": 0.934 + }, + { + "start": 21765.98, + "end": 21767.14, + "probability": 0.9243 + }, + { + "start": 21769.26, + "end": 21770.1, + "probability": 0.6548 + }, + { + "start": 21773.56, + "end": 21776.24, + "probability": 0.9865 + }, + { + "start": 21776.32, + "end": 21777.44, + "probability": 0.7478 + }, + { + "start": 21779.42, + "end": 21780.18, + "probability": 0.9443 + }, + { + "start": 21782.92, + "end": 21785.6, + "probability": 0.9985 + }, + { + "start": 21787.26, + "end": 21788.28, + "probability": 0.8334 + }, + { + "start": 21789.02, + "end": 21792.44, + "probability": 0.5473 + }, + { + "start": 21794.44, + "end": 21796.34, + "probability": 0.9507 + }, + { + "start": 21798.22, + "end": 21799.95, + "probability": 0.9688 + }, + { + "start": 21800.8, + "end": 21801.94, + "probability": 0.632 + }, + { + "start": 21802.08, + "end": 21804.04, + "probability": 0.8176 + }, + { + "start": 21806.31, + "end": 21808.4, + "probability": 0.8452 + }, + { + "start": 21809.86, + "end": 21814.54, + "probability": 0.9469 + }, + { + "start": 21815.8, + "end": 21817.2, + "probability": 0.9891 + }, + { + "start": 21817.28, + "end": 21818.22, + "probability": 0.7683 + }, + { + "start": 21818.26, + "end": 21820.3, + "probability": 0.7966 + }, + { + "start": 21820.98, + "end": 21822.48, + "probability": 0.9985 + }, + { + "start": 21825.74, + "end": 21828.1, + "probability": 0.7398 + }, + { + "start": 21831.16, + "end": 21833.28, + "probability": 0.8997 + }, + { + "start": 21838.92, + "end": 21839.6, + "probability": 0.0213 + }, + { + "start": 21842.54, + "end": 21843.45, + "probability": 0.9729 + }, + { + "start": 21844.2, + "end": 21846.26, + "probability": 0.8693 + }, + { + "start": 21848.16, + "end": 21849.7, + "probability": 0.7793 + }, + { + "start": 21850.26, + "end": 21850.96, + "probability": 0.7589 + }, + { + "start": 21853.38, + "end": 21857.58, + "probability": 0.9659 + }, + { + "start": 21859.04, + "end": 21861.16, + "probability": 0.7584 + }, + { + "start": 21863.0, + "end": 21865.78, + "probability": 0.8217 + }, + { + "start": 21865.78, + "end": 21866.72, + "probability": 0.3164 + }, + { + "start": 21869.16, + "end": 21870.1, + "probability": 0.5558 + }, + { + "start": 21870.62, + "end": 21872.46, + "probability": 0.9859 + }, + { + "start": 21873.66, + "end": 21875.16, + "probability": 0.9208 + }, + { + "start": 21875.92, + "end": 21877.16, + "probability": 0.7525 + }, + { + "start": 21879.5, + "end": 21880.56, + "probability": 0.5526 + }, + { + "start": 21882.9, + "end": 21885.64, + "probability": 0.9957 + }, + { + "start": 21886.86, + "end": 21887.58, + "probability": 0.7623 + }, + { + "start": 21888.78, + "end": 21889.26, + "probability": 0.4985 + }, + { + "start": 21889.34, + "end": 21890.94, + "probability": 0.9405 + }, + { + "start": 21891.14, + "end": 21893.0, + "probability": 0.9887 + }, + { + "start": 21894.22, + "end": 21895.48, + "probability": 0.9585 + }, + { + "start": 21897.42, + "end": 21898.52, + "probability": 0.5516 + }, + { + "start": 21901.04, + "end": 21902.26, + "probability": 0.9564 + }, + { + "start": 21905.54, + "end": 21907.24, + "probability": 0.7654 + }, + { + "start": 21908.74, + "end": 21912.0, + "probability": 0.8146 + }, + { + "start": 21913.04, + "end": 21919.36, + "probability": 0.9165 + }, + { + "start": 21920.72, + "end": 21922.14, + "probability": 0.9363 + }, + { + "start": 21922.56, + "end": 21923.78, + "probability": 0.8572 + }, + { + "start": 21924.6, + "end": 21925.84, + "probability": 0.9587 + }, + { + "start": 21928.04, + "end": 21929.86, + "probability": 0.9956 + }, + { + "start": 21932.88, + "end": 21934.48, + "probability": 0.8178 + }, + { + "start": 21935.8, + "end": 21937.56, + "probability": 0.9674 + }, + { + "start": 21938.42, + "end": 21939.74, + "probability": 0.8801 + }, + { + "start": 21943.4, + "end": 21946.52, + "probability": 0.9832 + }, + { + "start": 21949.1, + "end": 21952.38, + "probability": 0.8708 + }, + { + "start": 21953.04, + "end": 21954.26, + "probability": 0.8713 + }, + { + "start": 21955.9, + "end": 21958.18, + "probability": 0.9756 + }, + { + "start": 21961.08, + "end": 21964.76, + "probability": 0.9948 + }, + { + "start": 21965.88, + "end": 21968.5, + "probability": 0.9986 + }, + { + "start": 21969.5, + "end": 21971.38, + "probability": 0.9847 + }, + { + "start": 21974.8, + "end": 21980.68, + "probability": 0.9901 + }, + { + "start": 21981.76, + "end": 21982.88, + "probability": 0.9834 + }, + { + "start": 21983.76, + "end": 21985.8, + "probability": 0.9908 + }, + { + "start": 21987.16, + "end": 21991.6, + "probability": 0.9419 + }, + { + "start": 21993.24, + "end": 21994.6, + "probability": 0.6453 + }, + { + "start": 21998.08, + "end": 22001.76, + "probability": 0.9798 + }, + { + "start": 22002.34, + "end": 22003.68, + "probability": 0.9907 + }, + { + "start": 22004.54, + "end": 22006.38, + "probability": 0.904 + }, + { + "start": 22007.1, + "end": 22008.12, + "probability": 0.8342 + }, + { + "start": 22009.58, + "end": 22011.02, + "probability": 0.9589 + }, + { + "start": 22013.22, + "end": 22015.72, + "probability": 0.973 + }, + { + "start": 22018.92, + "end": 22020.86, + "probability": 0.9941 + }, + { + "start": 22020.92, + "end": 22022.08, + "probability": 0.9985 + }, + { + "start": 22024.56, + "end": 22025.7, + "probability": 0.4061 + }, + { + "start": 22027.06, + "end": 22028.18, + "probability": 0.5117 + }, + { + "start": 22030.48, + "end": 22031.42, + "probability": 0.8856 + }, + { + "start": 22032.34, + "end": 22033.42, + "probability": 0.9388 + }, + { + "start": 22034.4, + "end": 22035.46, + "probability": 0.9065 + }, + { + "start": 22036.44, + "end": 22037.9, + "probability": 0.9947 + }, + { + "start": 22038.8, + "end": 22040.5, + "probability": 0.9984 + }, + { + "start": 22041.94, + "end": 22044.24, + "probability": 0.9182 + }, + { + "start": 22046.44, + "end": 22047.8, + "probability": 0.6661 + }, + { + "start": 22051.4, + "end": 22051.6, + "probability": 0.7383 + }, + { + "start": 22054.0, + "end": 22055.5, + "probability": 0.7654 + }, + { + "start": 22081.88, + "end": 22085.82, + "probability": 0.7545 + }, + { + "start": 22087.16, + "end": 22091.1, + "probability": 0.9962 + }, + { + "start": 22091.72, + "end": 22092.83, + "probability": 0.8657 + }, + { + "start": 22094.84, + "end": 22094.9, + "probability": 0.2617 + }, + { + "start": 22094.9, + "end": 22099.56, + "probability": 0.9792 + }, + { + "start": 22099.56, + "end": 22101.88, + "probability": 0.9965 + }, + { + "start": 22102.78, + "end": 22103.34, + "probability": 0.416 + }, + { + "start": 22103.48, + "end": 22104.4, + "probability": 0.5711 + }, + { + "start": 22104.4, + "end": 22108.46, + "probability": 0.8831 + }, + { + "start": 22109.56, + "end": 22114.26, + "probability": 0.9564 + }, + { + "start": 22114.9, + "end": 22117.78, + "probability": 0.9884 + }, + { + "start": 22118.88, + "end": 22121.94, + "probability": 0.959 + }, + { + "start": 22123.48, + "end": 22123.94, + "probability": 0.9371 + }, + { + "start": 22124.56, + "end": 22126.42, + "probability": 0.963 + }, + { + "start": 22127.58, + "end": 22131.58, + "probability": 0.984 + }, + { + "start": 22131.74, + "end": 22135.58, + "probability": 0.9932 + }, + { + "start": 22136.18, + "end": 22137.64, + "probability": 0.7864 + }, + { + "start": 22138.6, + "end": 22141.22, + "probability": 0.8199 + }, + { + "start": 22141.98, + "end": 22144.06, + "probability": 0.8314 + }, + { + "start": 22144.74, + "end": 22146.24, + "probability": 0.877 + }, + { + "start": 22146.44, + "end": 22149.78, + "probability": 0.9838 + }, + { + "start": 22149.78, + "end": 22152.0, + "probability": 0.9401 + }, + { + "start": 22153.68, + "end": 22154.62, + "probability": 0.9347 + }, + { + "start": 22154.7, + "end": 22156.06, + "probability": 0.9806 + }, + { + "start": 22156.24, + "end": 22157.28, + "probability": 0.9087 + }, + { + "start": 22158.24, + "end": 22160.02, + "probability": 0.9551 + }, + { + "start": 22160.4, + "end": 22162.96, + "probability": 0.973 + }, + { + "start": 22163.94, + "end": 22167.38, + "probability": 0.8961 + }, + { + "start": 22168.2, + "end": 22170.78, + "probability": 0.9886 + }, + { + "start": 22171.06, + "end": 22173.28, + "probability": 0.9426 + }, + { + "start": 22173.78, + "end": 22176.2, + "probability": 0.9898 + }, + { + "start": 22176.96, + "end": 22179.02, + "probability": 0.9988 + }, + { + "start": 22179.66, + "end": 22182.52, + "probability": 0.9932 + }, + { + "start": 22183.34, + "end": 22187.12, + "probability": 0.9986 + }, + { + "start": 22187.84, + "end": 22189.2, + "probability": 0.8742 + }, + { + "start": 22189.22, + "end": 22194.6, + "probability": 0.9861 + }, + { + "start": 22195.48, + "end": 22196.16, + "probability": 0.4518 + }, + { + "start": 22196.72, + "end": 22199.16, + "probability": 0.9945 + }, + { + "start": 22199.5, + "end": 22202.46, + "probability": 0.9951 + }, + { + "start": 22203.18, + "end": 22205.86, + "probability": 0.341 + }, + { + "start": 22206.38, + "end": 22208.56, + "probability": 0.99 + }, + { + "start": 22209.3, + "end": 22211.56, + "probability": 0.999 + }, + { + "start": 22211.68, + "end": 22213.2, + "probability": 0.8704 + }, + { + "start": 22213.8, + "end": 22216.78, + "probability": 0.9865 + }, + { + "start": 22217.28, + "end": 22217.82, + "probability": 0.8376 + }, + { + "start": 22218.48, + "end": 22219.72, + "probability": 0.7115 + }, + { + "start": 22219.88, + "end": 22221.34, + "probability": 0.7504 + }, + { + "start": 22223.52, + "end": 22224.76, + "probability": 0.2531 + }, + { + "start": 22224.8, + "end": 22227.92, + "probability": 0.642 + }, + { + "start": 22228.02, + "end": 22228.24, + "probability": 0.8183 + }, + { + "start": 22228.8, + "end": 22230.28, + "probability": 0.9048 + }, + { + "start": 22230.86, + "end": 22232.06, + "probability": 0.9645 + }, + { + "start": 22232.24, + "end": 22234.84, + "probability": 0.916 + }, + { + "start": 22234.84, + "end": 22237.1, + "probability": 0.9881 + }, + { + "start": 22237.68, + "end": 22240.2, + "probability": 0.9993 + }, + { + "start": 22240.62, + "end": 22243.74, + "probability": 0.9436 + }, + { + "start": 22243.82, + "end": 22245.24, + "probability": 0.7342 + }, + { + "start": 22245.84, + "end": 22249.04, + "probability": 0.9762 + }, + { + "start": 22249.8, + "end": 22251.68, + "probability": 0.7276 + }, + { + "start": 22251.68, + "end": 22254.16, + "probability": 0.9671 + }, + { + "start": 22254.68, + "end": 22259.0, + "probability": 0.8813 + }, + { + "start": 22259.58, + "end": 22262.9, + "probability": 0.9112 + }, + { + "start": 22263.48, + "end": 22265.32, + "probability": 0.9207 + }, + { + "start": 22265.46, + "end": 22270.8, + "probability": 0.9951 + }, + { + "start": 22271.34, + "end": 22274.02, + "probability": 0.8877 + }, + { + "start": 22274.1, + "end": 22276.72, + "probability": 0.9976 + }, + { + "start": 22277.48, + "end": 22279.86, + "probability": 0.9868 + }, + { + "start": 22279.86, + "end": 22282.5, + "probability": 0.9966 + }, + { + "start": 22282.78, + "end": 22284.66, + "probability": 0.7646 + }, + { + "start": 22285.34, + "end": 22290.06, + "probability": 0.9682 + }, + { + "start": 22290.26, + "end": 22291.22, + "probability": 0.47 + }, + { + "start": 22291.74, + "end": 22292.5, + "probability": 0.733 + }, + { + "start": 22293.36, + "end": 22295.3, + "probability": 0.8915 + }, + { + "start": 22295.74, + "end": 22296.36, + "probability": 0.9138 + }, + { + "start": 22296.46, + "end": 22299.22, + "probability": 0.9846 + }, + { + "start": 22299.36, + "end": 22300.14, + "probability": 0.9891 + }, + { + "start": 22300.86, + "end": 22301.3, + "probability": 0.9063 + }, + { + "start": 22302.1, + "end": 22305.32, + "probability": 0.9647 + }, + { + "start": 22306.26, + "end": 22313.26, + "probability": 0.9777 + }, + { + "start": 22314.64, + "end": 22317.36, + "probability": 0.5697 + }, + { + "start": 22318.08, + "end": 22319.35, + "probability": 0.9756 + }, + { + "start": 22319.64, + "end": 22319.86, + "probability": 0.7754 + }, + { + "start": 22319.96, + "end": 22320.33, + "probability": 0.9453 + }, + { + "start": 22320.68, + "end": 22321.4, + "probability": 0.6403 + }, + { + "start": 22321.48, + "end": 22321.8, + "probability": 0.8717 + }, + { + "start": 22322.24, + "end": 22323.56, + "probability": 0.7081 + }, + { + "start": 22323.56, + "end": 22324.64, + "probability": 0.892 + }, + { + "start": 22325.5, + "end": 22327.6, + "probability": 0.9871 + }, + { + "start": 22328.2, + "end": 22329.68, + "probability": 0.8277 + }, + { + "start": 22330.22, + "end": 22331.82, + "probability": 0.9993 + }, + { + "start": 22332.5, + "end": 22333.18, + "probability": 0.3917 + }, + { + "start": 22333.22, + "end": 22334.98, + "probability": 0.8736 + }, + { + "start": 22336.2, + "end": 22337.64, + "probability": 0.9005 + }, + { + "start": 22337.8, + "end": 22338.29, + "probability": 0.896 + }, + { + "start": 22339.58, + "end": 22340.84, + "probability": 0.9687 + }, + { + "start": 22341.48, + "end": 22343.9, + "probability": 0.9481 + }, + { + "start": 22345.12, + "end": 22346.82, + "probability": 0.7682 + }, + { + "start": 22347.7, + "end": 22351.18, + "probability": 0.9002 + }, + { + "start": 22351.34, + "end": 22352.36, + "probability": 0.4995 + }, + { + "start": 22353.18, + "end": 22355.42, + "probability": 0.9789 + }, + { + "start": 22356.52, + "end": 22357.8, + "probability": 0.9971 + }, + { + "start": 22358.44, + "end": 22360.5, + "probability": 0.9078 + }, + { + "start": 22361.18, + "end": 22364.46, + "probability": 0.9358 + }, + { + "start": 22364.86, + "end": 22367.32, + "probability": 0.9933 + }, + { + "start": 22368.14, + "end": 22375.08, + "probability": 0.8587 + }, + { + "start": 22375.34, + "end": 22375.8, + "probability": 0.4391 + }, + { + "start": 22376.34, + "end": 22383.06, + "probability": 0.9581 + }, + { + "start": 22383.26, + "end": 22384.88, + "probability": 0.8073 + }, + { + "start": 22385.32, + "end": 22387.36, + "probability": 0.9942 + }, + { + "start": 22388.04, + "end": 22391.5, + "probability": 0.9434 + }, + { + "start": 22391.8, + "end": 22393.18, + "probability": 0.9836 + }, + { + "start": 22394.4, + "end": 22397.3, + "probability": 0.9648 + }, + { + "start": 22397.38, + "end": 22398.7, + "probability": 0.7189 + }, + { + "start": 22399.08, + "end": 22399.5, + "probability": 0.3868 + }, + { + "start": 22399.88, + "end": 22402.14, + "probability": 0.9473 + }, + { + "start": 22402.24, + "end": 22402.9, + "probability": 0.7651 + }, + { + "start": 22403.72, + "end": 22407.78, + "probability": 0.8426 + }, + { + "start": 22407.84, + "end": 22410.32, + "probability": 0.8182 + }, + { + "start": 22410.8, + "end": 22413.6, + "probability": 0.6207 + }, + { + "start": 22414.44, + "end": 22415.68, + "probability": 0.765 + }, + { + "start": 22415.8, + "end": 22420.28, + "probability": 0.8551 + }, + { + "start": 22420.54, + "end": 22421.7, + "probability": 0.9116 + }, + { + "start": 22421.78, + "end": 22422.31, + "probability": 0.9722 + }, + { + "start": 22422.92, + "end": 22426.2, + "probability": 0.9871 + }, + { + "start": 22426.2, + "end": 22426.72, + "probability": 0.572 + }, + { + "start": 22427.5, + "end": 22428.52, + "probability": 0.995 + }, + { + "start": 22429.74, + "end": 22432.48, + "probability": 0.756 + }, + { + "start": 22432.66, + "end": 22433.44, + "probability": 0.9802 + }, + { + "start": 22437.92, + "end": 22440.02, + "probability": 0.2188 + }, + { + "start": 22440.74, + "end": 22442.62, + "probability": 0.8234 + }, + { + "start": 22443.32, + "end": 22443.81, + "probability": 0.9185 + }, + { + "start": 22444.2, + "end": 22446.56, + "probability": 0.8484 + }, + { + "start": 22447.46, + "end": 22450.42, + "probability": 0.975 + }, + { + "start": 22451.0, + "end": 22452.38, + "probability": 0.9886 + }, + { + "start": 22453.28, + "end": 22456.44, + "probability": 0.9989 + }, + { + "start": 22457.54, + "end": 22462.0, + "probability": 0.9948 + }, + { + "start": 22462.8, + "end": 22466.39, + "probability": 0.9963 + }, + { + "start": 22467.2, + "end": 22470.49, + "probability": 0.9977 + }, + { + "start": 22471.28, + "end": 22472.95, + "probability": 0.9478 + }, + { + "start": 22473.22, + "end": 22479.38, + "probability": 0.9949 + }, + { + "start": 22479.48, + "end": 22480.86, + "probability": 0.8068 + }, + { + "start": 22480.9, + "end": 22481.56, + "probability": 0.7821 + }, + { + "start": 22481.66, + "end": 22481.98, + "probability": 0.6996 + }, + { + "start": 22482.08, + "end": 22482.66, + "probability": 0.8331 + }, + { + "start": 22483.38, + "end": 22488.9, + "probability": 0.9912 + }, + { + "start": 22489.32, + "end": 22490.12, + "probability": 0.6763 + }, + { + "start": 22490.82, + "end": 22492.22, + "probability": 0.8001 + }, + { + "start": 22492.3, + "end": 22492.92, + "probability": 0.4965 + }, + { + "start": 22493.5, + "end": 22494.62, + "probability": 0.6764 + }, + { + "start": 22495.22, + "end": 22497.56, + "probability": 0.9856 + }, + { + "start": 22498.2, + "end": 22504.92, + "probability": 0.9618 + }, + { + "start": 22505.96, + "end": 22507.78, + "probability": 0.8921 + }, + { + "start": 22508.5, + "end": 22513.28, + "probability": 0.9645 + }, + { + "start": 22513.94, + "end": 22515.12, + "probability": 0.9206 + }, + { + "start": 22515.52, + "end": 22515.7, + "probability": 0.6648 + }, + { + "start": 22516.56, + "end": 22516.74, + "probability": 0.5048 + }, + { + "start": 22517.12, + "end": 22518.84, + "probability": 0.9978 + }, + { + "start": 22520.08, + "end": 22522.32, + "probability": 0.9656 + }, + { + "start": 22523.14, + "end": 22525.1, + "probability": 0.6386 + }, + { + "start": 22525.16, + "end": 22527.88, + "probability": 0.9526 + }, + { + "start": 22528.02, + "end": 22531.78, + "probability": 0.9489 + }, + { + "start": 22531.94, + "end": 22533.24, + "probability": 0.8994 + }, + { + "start": 22533.82, + "end": 22535.42, + "probability": 0.9375 + }, + { + "start": 22535.5, + "end": 22538.14, + "probability": 0.9756 + }, + { + "start": 22538.86, + "end": 22539.4, + "probability": 0.9877 + }, + { + "start": 22540.5, + "end": 22542.12, + "probability": 0.9233 + }, + { + "start": 22542.72, + "end": 22544.38, + "probability": 0.792 + }, + { + "start": 22545.12, + "end": 22547.66, + "probability": 0.9732 + }, + { + "start": 22547.78, + "end": 22549.02, + "probability": 0.9951 + }, + { + "start": 22549.16, + "end": 22549.62, + "probability": 0.8488 + }, + { + "start": 22550.44, + "end": 22551.92, + "probability": 0.894 + }, + { + "start": 22551.92, + "end": 22554.26, + "probability": 0.9043 + }, + { + "start": 22554.7, + "end": 22555.54, + "probability": 0.3929 + }, + { + "start": 22556.74, + "end": 22560.96, + "probability": 0.9872 + }, + { + "start": 22561.34, + "end": 22563.62, + "probability": 0.6841 + }, + { + "start": 22564.9, + "end": 22565.76, + "probability": 0.2204 + }, + { + "start": 22566.72, + "end": 22567.1, + "probability": 0.8411 + }, + { + "start": 22567.2, + "end": 22569.68, + "probability": 0.9917 + }, + { + "start": 22570.24, + "end": 22573.48, + "probability": 0.9309 + }, + { + "start": 22574.48, + "end": 22576.38, + "probability": 0.9238 + }, + { + "start": 22577.56, + "end": 22580.06, + "probability": 0.953 + }, + { + "start": 22580.14, + "end": 22580.44, + "probability": 0.9153 + }, + { + "start": 22580.88, + "end": 22586.82, + "probability": 0.9888 + }, + { + "start": 22587.04, + "end": 22587.6, + "probability": 0.5936 + }, + { + "start": 22587.64, + "end": 22588.4, + "probability": 0.7472 + }, + { + "start": 22589.34, + "end": 22591.54, + "probability": 0.9698 + }, + { + "start": 22592.22, + "end": 22593.94, + "probability": 0.9966 + }, + { + "start": 22594.08, + "end": 22594.74, + "probability": 0.5565 + }, + { + "start": 22594.76, + "end": 22595.58, + "probability": 0.9766 + }, + { + "start": 22596.68, + "end": 22597.94, + "probability": 0.975 + }, + { + "start": 22598.86, + "end": 22603.32, + "probability": 0.9597 + }, + { + "start": 22603.94, + "end": 22604.24, + "probability": 0.8884 + }, + { + "start": 22604.34, + "end": 22606.38, + "probability": 0.8317 + }, + { + "start": 22606.74, + "end": 22608.62, + "probability": 0.9754 + }, + { + "start": 22608.92, + "end": 22610.56, + "probability": 0.957 + }, + { + "start": 22611.2, + "end": 22611.6, + "probability": 0.4923 + }, + { + "start": 22611.6, + "end": 22613.0, + "probability": 0.94 + }, + { + "start": 22614.04, + "end": 22615.48, + "probability": 0.9534 + }, + { + "start": 22617.18, + "end": 22619.1, + "probability": 0.9962 + }, + { + "start": 22622.68, + "end": 22626.22, + "probability": 0.8915 + }, + { + "start": 22627.22, + "end": 22629.88, + "probability": 0.9873 + }, + { + "start": 22630.1, + "end": 22630.78, + "probability": 0.543 + }, + { + "start": 22630.78, + "end": 22631.32, + "probability": 0.9026 + }, + { + "start": 22631.46, + "end": 22632.58, + "probability": 0.8929 + }, + { + "start": 22632.7, + "end": 22633.3, + "probability": 0.7192 + }, + { + "start": 22633.98, + "end": 22635.74, + "probability": 0.936 + }, + { + "start": 22636.36, + "end": 22639.64, + "probability": 0.9972 + }, + { + "start": 22640.66, + "end": 22641.08, + "probability": 0.6002 + }, + { + "start": 22642.04, + "end": 22643.42, + "probability": 0.855 + }, + { + "start": 22643.82, + "end": 22645.82, + "probability": 0.9456 + }, + { + "start": 22646.08, + "end": 22646.28, + "probability": 0.6474 + }, + { + "start": 22647.44, + "end": 22648.53, + "probability": 0.7144 + }, + { + "start": 22648.74, + "end": 22650.12, + "probability": 0.8578 + }, + { + "start": 22651.26, + "end": 22655.0, + "probability": 0.9886 + }, + { + "start": 22655.68, + "end": 22658.02, + "probability": 0.8986 + }, + { + "start": 22658.78, + "end": 22663.84, + "probability": 0.9841 + }, + { + "start": 22664.82, + "end": 22669.12, + "probability": 0.9923 + }, + { + "start": 22669.2, + "end": 22671.98, + "probability": 0.9929 + }, + { + "start": 22672.52, + "end": 22673.4, + "probability": 0.8291 + }, + { + "start": 22673.5, + "end": 22674.44, + "probability": 0.9522 + }, + { + "start": 22674.56, + "end": 22675.16, + "probability": 0.6893 + }, + { + "start": 22676.06, + "end": 22678.02, + "probability": 0.9897 + }, + { + "start": 22678.64, + "end": 22681.5, + "probability": 0.9777 + }, + { + "start": 22682.36, + "end": 22683.41, + "probability": 0.3726 + }, + { + "start": 22685.68, + "end": 22687.71, + "probability": 0.8843 + }, + { + "start": 22688.26, + "end": 22690.94, + "probability": 0.8178 + }, + { + "start": 22692.2, + "end": 22692.64, + "probability": 0.6746 + }, + { + "start": 22693.24, + "end": 22693.58, + "probability": 0.9582 + }, + { + "start": 22694.64, + "end": 22697.02, + "probability": 0.9657 + }, + { + "start": 22697.66, + "end": 22703.12, + "probability": 0.849 + }, + { + "start": 22704.01, + "end": 22707.5, + "probability": 0.9686 + }, + { + "start": 22708.14, + "end": 22713.18, + "probability": 0.9668 + }, + { + "start": 22713.22, + "end": 22714.0, + "probability": 0.8074 + }, + { + "start": 22714.06, + "end": 22716.12, + "probability": 0.8953 + }, + { + "start": 22716.72, + "end": 22718.78, + "probability": 0.9985 + }, + { + "start": 22718.78, + "end": 22723.24, + "probability": 0.9777 + }, + { + "start": 22723.34, + "end": 22725.12, + "probability": 0.9961 + }, + { + "start": 22725.68, + "end": 22730.2, + "probability": 0.9809 + }, + { + "start": 22730.92, + "end": 22733.56, + "probability": 0.9897 + }, + { + "start": 22734.22, + "end": 22735.96, + "probability": 0.9869 + }, + { + "start": 22737.26, + "end": 22739.14, + "probability": 0.8015 + }, + { + "start": 22739.5, + "end": 22741.18, + "probability": 0.8838 + }, + { + "start": 22741.78, + "end": 22744.3, + "probability": 0.9852 + }, + { + "start": 22744.34, + "end": 22746.06, + "probability": 0.9851 + }, + { + "start": 22746.92, + "end": 22750.32, + "probability": 0.936 + }, + { + "start": 22751.3, + "end": 22753.5, + "probability": 0.74 + }, + { + "start": 22754.12, + "end": 22756.52, + "probability": 0.8149 + }, + { + "start": 22757.22, + "end": 22758.62, + "probability": 0.911 + }, + { + "start": 22759.14, + "end": 22762.06, + "probability": 0.9698 + }, + { + "start": 22762.58, + "end": 22764.76, + "probability": 0.985 + }, + { + "start": 22765.56, + "end": 22766.84, + "probability": 0.9939 + }, + { + "start": 22767.74, + "end": 22768.35, + "probability": 0.6044 + }, + { + "start": 22768.56, + "end": 22769.06, + "probability": 0.8203 + }, + { + "start": 22769.2, + "end": 22770.02, + "probability": 0.9775 + }, + { + "start": 22770.14, + "end": 22771.1, + "probability": 0.9105 + }, + { + "start": 22771.42, + "end": 22772.18, + "probability": 0.731 + }, + { + "start": 22772.76, + "end": 22775.27, + "probability": 0.9718 + }, + { + "start": 22776.18, + "end": 22778.04, + "probability": 0.9675 + }, + { + "start": 22778.98, + "end": 22781.0, + "probability": 0.7499 + }, + { + "start": 22781.38, + "end": 22783.34, + "probability": 0.8521 + }, + { + "start": 22784.04, + "end": 22787.2, + "probability": 0.9947 + }, + { + "start": 22788.32, + "end": 22791.03, + "probability": 0.9679 + }, + { + "start": 22791.8, + "end": 22792.74, + "probability": 0.9399 + }, + { + "start": 22793.34, + "end": 22798.68, + "probability": 0.9919 + }, + { + "start": 22799.1, + "end": 22801.12, + "probability": 0.9912 + }, + { + "start": 22801.2, + "end": 22801.96, + "probability": 0.7863 + }, + { + "start": 22802.7, + "end": 22806.58, + "probability": 0.9651 + }, + { + "start": 22806.72, + "end": 22807.22, + "probability": 0.1307 + }, + { + "start": 22807.8, + "end": 22812.52, + "probability": 0.9893 + }, + { + "start": 22813.32, + "end": 22814.62, + "probability": 0.9331 + }, + { + "start": 22815.04, + "end": 22815.91, + "probability": 0.6823 + }, + { + "start": 22816.34, + "end": 22817.04, + "probability": 0.7239 + }, + { + "start": 22817.7, + "end": 22819.22, + "probability": 0.8944 + }, + { + "start": 22820.18, + "end": 22821.6, + "probability": 0.9257 + }, + { + "start": 22822.02, + "end": 22823.86, + "probability": 0.9775 + }, + { + "start": 22824.52, + "end": 22828.24, + "probability": 0.9922 + }, + { + "start": 22828.34, + "end": 22829.16, + "probability": 0.8569 + }, + { + "start": 22829.74, + "end": 22830.58, + "probability": 0.6326 + }, + { + "start": 22831.26, + "end": 22834.4, + "probability": 0.9539 + }, + { + "start": 22835.28, + "end": 22836.28, + "probability": 0.9265 + }, + { + "start": 22837.38, + "end": 22838.38, + "probability": 0.9939 + }, + { + "start": 22838.56, + "end": 22838.98, + "probability": 0.7322 + }, + { + "start": 22839.82, + "end": 22840.0, + "probability": 0.7878 + }, + { + "start": 22840.66, + "end": 22842.74, + "probability": 0.9853 + }, + { + "start": 22842.82, + "end": 22848.44, + "probability": 0.9713 + }, + { + "start": 22848.52, + "end": 22849.58, + "probability": 0.8748 + }, + { + "start": 22849.74, + "end": 22850.7, + "probability": 0.8543 + }, + { + "start": 22850.82, + "end": 22851.78, + "probability": 0.89 + }, + { + "start": 22852.4, + "end": 22853.64, + "probability": 0.9741 + }, + { + "start": 22854.92, + "end": 22857.54, + "probability": 0.9754 + }, + { + "start": 22858.08, + "end": 22859.9, + "probability": 0.9984 + }, + { + "start": 22860.34, + "end": 22862.58, + "probability": 0.9868 + }, + { + "start": 22862.84, + "end": 22865.8, + "probability": 0.8813 + }, + { + "start": 22865.94, + "end": 22870.66, + "probability": 0.9853 + }, + { + "start": 22870.66, + "end": 22873.8, + "probability": 0.9882 + }, + { + "start": 22873.84, + "end": 22875.16, + "probability": 0.5029 + }, + { + "start": 22875.22, + "end": 22878.84, + "probability": 0.9589 + }, + { + "start": 22879.18, + "end": 22880.34, + "probability": 0.9773 + }, + { + "start": 22880.94, + "end": 22884.44, + "probability": 0.9728 + }, + { + "start": 22884.98, + "end": 22885.42, + "probability": 0.975 + }, + { + "start": 22886.06, + "end": 22887.4, + "probability": 0.834 + }, + { + "start": 22888.08, + "end": 22888.44, + "probability": 0.7447 + }, + { + "start": 22888.54, + "end": 22891.72, + "probability": 0.9478 + }, + { + "start": 22891.78, + "end": 22892.3, + "probability": 0.7103 + }, + { + "start": 22892.42, + "end": 22894.3, + "probability": 0.9963 + }, + { + "start": 22895.6, + "end": 22897.0, + "probability": 0.961 + }, + { + "start": 22897.28, + "end": 22898.02, + "probability": 0.9821 + }, + { + "start": 22898.06, + "end": 22898.38, + "probability": 0.9158 + }, + { + "start": 22898.86, + "end": 22899.78, + "probability": 0.8549 + }, + { + "start": 22899.94, + "end": 22900.28, + "probability": 0.8522 + }, + { + "start": 22900.46, + "end": 22901.08, + "probability": 0.9209 + }, + { + "start": 22901.8, + "end": 22906.12, + "probability": 0.9062 + }, + { + "start": 22906.8, + "end": 22909.72, + "probability": 0.7486 + }, + { + "start": 22910.26, + "end": 22911.34, + "probability": 0.6143 + }, + { + "start": 22912.02, + "end": 22912.76, + "probability": 0.96 + }, + { + "start": 22913.02, + "end": 22917.64, + "probability": 0.8712 + }, + { + "start": 22917.72, + "end": 22919.42, + "probability": 0.6375 + }, + { + "start": 22920.02, + "end": 22920.92, + "probability": 0.9534 + }, + { + "start": 22921.6, + "end": 22924.7, + "probability": 0.9811 + }, + { + "start": 22925.1, + "end": 22929.79, + "probability": 0.8778 + }, + { + "start": 22930.3, + "end": 22932.64, + "probability": 0.8314 + }, + { + "start": 22933.36, + "end": 22935.65, + "probability": 0.9915 + }, + { + "start": 22937.96, + "end": 22940.84, + "probability": 0.8579 + }, + { + "start": 22940.88, + "end": 22941.96, + "probability": 0.7007 + }, + { + "start": 22942.34, + "end": 22945.06, + "probability": 0.7496 + }, + { + "start": 22945.68, + "end": 22951.24, + "probability": 0.9917 + }, + { + "start": 22952.06, + "end": 22953.84, + "probability": 0.9705 + }, + { + "start": 22954.52, + "end": 22956.94, + "probability": 0.9987 + }, + { + "start": 22957.6, + "end": 22959.48, + "probability": 0.8075 + }, + { + "start": 22960.22, + "end": 22960.72, + "probability": 0.8906 + }, + { + "start": 22960.94, + "end": 22961.72, + "probability": 0.8544 + }, + { + "start": 22961.8, + "end": 22966.08, + "probability": 0.8708 + }, + { + "start": 22966.52, + "end": 22968.32, + "probability": 0.9264 + }, + { + "start": 22968.44, + "end": 22968.94, + "probability": 0.6764 + }, + { + "start": 22969.32, + "end": 22969.88, + "probability": 0.4165 + }, + { + "start": 22970.44, + "end": 22972.58, + "probability": 0.9319 + }, + { + "start": 22972.64, + "end": 22976.8, + "probability": 0.8085 + }, + { + "start": 22977.18, + "end": 22980.38, + "probability": 0.993 + }, + { + "start": 22980.8, + "end": 22981.48, + "probability": 0.7514 + }, + { + "start": 22981.6, + "end": 22981.96, + "probability": 0.4725 + }, + { + "start": 22981.96, + "end": 22983.54, + "probability": 0.4078 + }, + { + "start": 22983.84, + "end": 22985.58, + "probability": 0.8735 + }, + { + "start": 22986.42, + "end": 22988.04, + "probability": 0.6324 + }, + { + "start": 22988.7, + "end": 22992.58, + "probability": 0.8394 + }, + { + "start": 22993.46, + "end": 22993.84, + "probability": 0.8918 + }, + { + "start": 22994.0, + "end": 22994.82, + "probability": 0.5886 + }, + { + "start": 22994.86, + "end": 22996.56, + "probability": 0.9614 + }, + { + "start": 22996.62, + "end": 22997.82, + "probability": 0.8198 + }, + { + "start": 22998.55, + "end": 23000.46, + "probability": 0.8545 + }, + { + "start": 23000.9, + "end": 23001.6, + "probability": 0.865 + }, + { + "start": 23002.02, + "end": 23006.14, + "probability": 0.9941 + }, + { + "start": 23006.14, + "end": 23009.3, + "probability": 0.995 + }, + { + "start": 23010.64, + "end": 23015.28, + "probability": 0.972 + }, + { + "start": 23016.0, + "end": 23019.62, + "probability": 0.9476 + }, + { + "start": 23020.42, + "end": 23021.72, + "probability": 0.916 + }, + { + "start": 23021.76, + "end": 23024.34, + "probability": 0.9961 + }, + { + "start": 23025.77, + "end": 23029.62, + "probability": 0.9647 + }, + { + "start": 23030.1, + "end": 23031.14, + "probability": 0.9642 + }, + { + "start": 23032.02, + "end": 23033.92, + "probability": 0.8852 + }, + { + "start": 23034.3, + "end": 23036.24, + "probability": 0.946 + }, + { + "start": 23036.24, + "end": 23040.94, + "probability": 0.9928 + }, + { + "start": 23041.46, + "end": 23043.3, + "probability": 0.997 + }, + { + "start": 23043.62, + "end": 23050.0, + "probability": 0.9927 + }, + { + "start": 23050.56, + "end": 23053.72, + "probability": 0.9869 + }, + { + "start": 23054.32, + "end": 23057.78, + "probability": 0.9608 + }, + { + "start": 23058.48, + "end": 23060.04, + "probability": 0.9224 + }, + { + "start": 23060.52, + "end": 23062.73, + "probability": 0.9826 + }, + { + "start": 23063.3, + "end": 23064.76, + "probability": 0.9971 + }, + { + "start": 23065.74, + "end": 23066.84, + "probability": 0.9914 + }, + { + "start": 23066.92, + "end": 23069.56, + "probability": 0.9897 + }, + { + "start": 23070.28, + "end": 23074.8, + "probability": 0.9995 + }, + { + "start": 23076.08, + "end": 23078.56, + "probability": 0.9922 + }, + { + "start": 23078.86, + "end": 23080.74, + "probability": 0.835 + }, + { + "start": 23081.3, + "end": 23083.3, + "probability": 0.9412 + }, + { + "start": 23083.94, + "end": 23086.22, + "probability": 0.9174 + }, + { + "start": 23087.06, + "end": 23091.62, + "probability": 0.9985 + }, + { + "start": 23092.3, + "end": 23094.06, + "probability": 0.9194 + }, + { + "start": 23094.14, + "end": 23097.58, + "probability": 0.9907 + }, + { + "start": 23097.94, + "end": 23099.06, + "probability": 0.8412 + }, + { + "start": 23099.86, + "end": 23104.62, + "probability": 0.9979 + }, + { + "start": 23104.72, + "end": 23106.68, + "probability": 0.745 + }, + { + "start": 23107.38, + "end": 23108.22, + "probability": 0.8117 + }, + { + "start": 23108.8, + "end": 23111.62, + "probability": 0.9743 + }, + { + "start": 23111.7, + "end": 23112.4, + "probability": 0.5508 + }, + { + "start": 23112.46, + "end": 23113.88, + "probability": 0.5892 + }, + { + "start": 23113.94, + "end": 23114.43, + "probability": 0.9354 + }, + { + "start": 23115.04, + "end": 23116.4, + "probability": 0.9434 + }, + { + "start": 23116.82, + "end": 23117.96, + "probability": 0.9629 + }, + { + "start": 23118.08, + "end": 23118.94, + "probability": 0.9362 + }, + { + "start": 23119.62, + "end": 23120.58, + "probability": 0.6673 + }, + { + "start": 23121.2, + "end": 23124.7, + "probability": 0.9829 + }, + { + "start": 23125.06, + "end": 23126.54, + "probability": 0.9974 + }, + { + "start": 23127.46, + "end": 23128.8, + "probability": 0.4197 + }, + { + "start": 23128.84, + "end": 23130.8, + "probability": 0.7891 + }, + { + "start": 23131.6, + "end": 23134.17, + "probability": 0.9614 + }, + { + "start": 23135.02, + "end": 23136.54, + "probability": 0.9166 + }, + { + "start": 23136.7, + "end": 23138.04, + "probability": 0.7239 + }, + { + "start": 23138.5, + "end": 23140.28, + "probability": 0.7736 + }, + { + "start": 23141.22, + "end": 23141.84, + "probability": 0.8577 + }, + { + "start": 23142.52, + "end": 23143.68, + "probability": 0.9932 + }, + { + "start": 23143.72, + "end": 23146.44, + "probability": 0.8774 + }, + { + "start": 23146.62, + "end": 23147.54, + "probability": 0.6944 + }, + { + "start": 23147.64, + "end": 23150.68, + "probability": 0.6954 + }, + { + "start": 23150.94, + "end": 23152.46, + "probability": 0.5592 + }, + { + "start": 23152.56, + "end": 23155.34, + "probability": 0.883 + }, + { + "start": 23155.72, + "end": 23156.29, + "probability": 0.7661 + }, + { + "start": 23156.88, + "end": 23158.04, + "probability": 0.8229 + }, + { + "start": 23158.94, + "end": 23160.42, + "probability": 0.8777 + }, + { + "start": 23161.12, + "end": 23163.08, + "probability": 0.748 + }, + { + "start": 23163.12, + "end": 23164.02, + "probability": 0.9308 + }, + { + "start": 23164.44, + "end": 23166.06, + "probability": 0.8882 + }, + { + "start": 23166.12, + "end": 23166.26, + "probability": 0.9858 + }, + { + "start": 23167.12, + "end": 23169.64, + "probability": 0.626 + }, + { + "start": 23170.48, + "end": 23173.32, + "probability": 0.9696 + }, + { + "start": 23174.2, + "end": 23178.92, + "probability": 0.9656 + }, + { + "start": 23179.83, + "end": 23185.84, + "probability": 0.9971 + }, + { + "start": 23186.0, + "end": 23188.12, + "probability": 0.9989 + }, + { + "start": 23188.12, + "end": 23190.18, + "probability": 0.9243 + }, + { + "start": 23190.32, + "end": 23191.56, + "probability": 0.6722 + }, + { + "start": 23191.8, + "end": 23193.06, + "probability": 0.6309 + }, + { + "start": 23193.06, + "end": 23195.6, + "probability": 0.6035 + }, + { + "start": 23195.6, + "end": 23195.84, + "probability": 0.5334 + }, + { + "start": 23195.84, + "end": 23197.51, + "probability": 0.6899 + }, + { + "start": 23197.72, + "end": 23197.82, + "probability": 0.6151 + }, + { + "start": 23197.88, + "end": 23199.9, + "probability": 0.8797 + }, + { + "start": 23200.18, + "end": 23203.66, + "probability": 0.6861 + }, + { + "start": 23203.66, + "end": 23203.72, + "probability": 0.0304 + }, + { + "start": 23203.72, + "end": 23203.98, + "probability": 0.4547 + }, + { + "start": 23203.98, + "end": 23204.76, + "probability": 0.7211 + }, + { + "start": 23205.42, + "end": 23207.3, + "probability": 0.6752 + }, + { + "start": 23207.66, + "end": 23208.08, + "probability": 0.4425 + }, + { + "start": 23208.16, + "end": 23208.34, + "probability": 0.958 + }, + { + "start": 23208.38, + "end": 23209.0, + "probability": 0.893 + }, + { + "start": 23209.18, + "end": 23209.58, + "probability": 0.6183 + }, + { + "start": 23210.28, + "end": 23211.0, + "probability": 0.8477 + }, + { + "start": 23211.94, + "end": 23212.38, + "probability": 0.8447 + }, + { + "start": 23212.94, + "end": 23216.22, + "probability": 0.5546 + }, + { + "start": 23216.38, + "end": 23219.6, + "probability": 0.8778 + }, + { + "start": 23220.04, + "end": 23221.9, + "probability": 0.9159 + }, + { + "start": 23222.44, + "end": 23224.68, + "probability": 0.8628 + }, + { + "start": 23225.26, + "end": 23226.84, + "probability": 0.9951 + }, + { + "start": 23227.74, + "end": 23230.24, + "probability": 0.7913 + }, + { + "start": 23231.51, + "end": 23233.08, + "probability": 0.9266 + }, + { + "start": 23233.32, + "end": 23235.3, + "probability": 0.8257 + }, + { + "start": 23235.96, + "end": 23236.54, + "probability": 0.4915 + }, + { + "start": 23237.12, + "end": 23238.54, + "probability": 0.9086 + }, + { + "start": 23239.06, + "end": 23240.88, + "probability": 0.6605 + }, + { + "start": 23240.96, + "end": 23241.98, + "probability": 0.4148 + }, + { + "start": 23242.4, + "end": 23243.22, + "probability": 0.7043 + }, + { + "start": 23243.26, + "end": 23244.9, + "probability": 0.9103 + }, + { + "start": 23245.14, + "end": 23246.08, + "probability": 0.7915 + }, + { + "start": 23246.5, + "end": 23247.6, + "probability": 0.6012 + }, + { + "start": 23247.92, + "end": 23252.1, + "probability": 0.7985 + }, + { + "start": 23252.1, + "end": 23253.04, + "probability": 0.6875 + }, + { + "start": 23253.16, + "end": 23255.38, + "probability": 0.6247 + }, + { + "start": 23256.14, + "end": 23258.28, + "probability": 0.8491 + }, + { + "start": 23259.06, + "end": 23264.42, + "probability": 0.9857 + }, + { + "start": 23264.9, + "end": 23268.3, + "probability": 0.9904 + }, + { + "start": 23268.74, + "end": 23271.18, + "probability": 0.8135 + }, + { + "start": 23271.84, + "end": 23273.46, + "probability": 0.2203 + }, + { + "start": 23273.52, + "end": 23273.8, + "probability": 0.4692 + }, + { + "start": 23274.22, + "end": 23277.32, + "probability": 0.9655 + }, + { + "start": 23277.48, + "end": 23278.78, + "probability": 0.9709 + }, + { + "start": 23279.2, + "end": 23279.78, + "probability": 0.7894 + }, + { + "start": 23279.86, + "end": 23280.24, + "probability": 0.8395 + }, + { + "start": 23280.48, + "end": 23280.92, + "probability": 0.874 + }, + { + "start": 23281.54, + "end": 23282.56, + "probability": 0.8494 + }, + { + "start": 23283.62, + "end": 23285.18, + "probability": 0.9388 + }, + { + "start": 23288.52, + "end": 23290.8, + "probability": 0.8159 + }, + { + "start": 23290.84, + "end": 23291.28, + "probability": 0.4968 + }, + { + "start": 23291.4, + "end": 23292.54, + "probability": 0.7959 + }, + { + "start": 23292.6, + "end": 23293.82, + "probability": 0.6201 + }, + { + "start": 23293.86, + "end": 23295.5, + "probability": 0.9713 + }, + { + "start": 23295.62, + "end": 23297.08, + "probability": 0.9816 + }, + { + "start": 23297.66, + "end": 23299.84, + "probability": 0.9971 + }, + { + "start": 23299.84, + "end": 23303.72, + "probability": 0.9991 + }, + { + "start": 23303.76, + "end": 23305.34, + "probability": 0.6275 + }, + { + "start": 23305.6, + "end": 23306.62, + "probability": 0.8075 + }, + { + "start": 23306.76, + "end": 23307.54, + "probability": 0.8048 + }, + { + "start": 23307.7, + "end": 23307.98, + "probability": 0.7628 + }, + { + "start": 23308.54, + "end": 23308.96, + "probability": 0.7848 + }, + { + "start": 23329.84, + "end": 23330.32, + "probability": 0.5191 + }, + { + "start": 23330.44, + "end": 23332.38, + "probability": 0.5514 + }, + { + "start": 23332.44, + "end": 23333.01, + "probability": 0.8085 + }, + { + "start": 23333.74, + "end": 23333.82, + "probability": 0.1045 + }, + { + "start": 23333.82, + "end": 23334.52, + "probability": 0.8692 + }, + { + "start": 23334.88, + "end": 23338.68, + "probability": 0.9484 + }, + { + "start": 23339.06, + "end": 23339.56, + "probability": 0.9007 + }, + { + "start": 23340.18, + "end": 23340.4, + "probability": 0.8955 + }, + { + "start": 23340.9, + "end": 23341.36, + "probability": 0.8935 + }, + { + "start": 23341.48, + "end": 23342.12, + "probability": 0.73 + }, + { + "start": 23342.26, + "end": 23343.32, + "probability": 0.6662 + }, + { + "start": 23344.3, + "end": 23346.26, + "probability": 0.8628 + }, + { + "start": 23349.66, + "end": 23350.84, + "probability": 0.9187 + }, + { + "start": 23351.54, + "end": 23352.25, + "probability": 0.9901 + }, + { + "start": 23353.52, + "end": 23356.52, + "probability": 0.9929 + }, + { + "start": 23357.14, + "end": 23359.5, + "probability": 0.9951 + }, + { + "start": 23360.68, + "end": 23361.46, + "probability": 0.9803 + }, + { + "start": 23361.48, + "end": 23364.4, + "probability": 0.9882 + }, + { + "start": 23365.06, + "end": 23369.1, + "probability": 0.9619 + }, + { + "start": 23369.4, + "end": 23371.22, + "probability": 0.8116 + }, + { + "start": 23371.36, + "end": 23373.58, + "probability": 0.9844 + }, + { + "start": 23374.78, + "end": 23375.58, + "probability": 0.9535 + }, + { + "start": 23375.72, + "end": 23378.72, + "probability": 0.8571 + }, + { + "start": 23378.96, + "end": 23379.76, + "probability": 0.2788 + }, + { + "start": 23380.54, + "end": 23383.32, + "probability": 0.9747 + }, + { + "start": 23384.16, + "end": 23388.32, + "probability": 0.8987 + }, + { + "start": 23388.94, + "end": 23393.36, + "probability": 0.976 + }, + { + "start": 23394.56, + "end": 23397.54, + "probability": 0.9943 + }, + { + "start": 23397.54, + "end": 23401.44, + "probability": 0.9961 + }, + { + "start": 23402.38, + "end": 23406.54, + "probability": 0.9907 + }, + { + "start": 23406.54, + "end": 23410.4, + "probability": 0.9969 + }, + { + "start": 23411.86, + "end": 23413.38, + "probability": 0.998 + }, + { + "start": 23414.52, + "end": 23417.2, + "probability": 0.9818 + }, + { + "start": 23417.2, + "end": 23420.26, + "probability": 0.9947 + }, + { + "start": 23421.0, + "end": 23423.56, + "probability": 0.9607 + }, + { + "start": 23423.86, + "end": 23429.5, + "probability": 0.9914 + }, + { + "start": 23430.94, + "end": 23436.2, + "probability": 0.9969 + }, + { + "start": 23436.58, + "end": 23441.94, + "probability": 0.9963 + }, + { + "start": 23442.5, + "end": 23447.28, + "probability": 0.9917 + }, + { + "start": 23449.52, + "end": 23453.7, + "probability": 0.9973 + }, + { + "start": 23453.86, + "end": 23457.08, + "probability": 0.841 + }, + { + "start": 23457.5, + "end": 23458.08, + "probability": 0.8777 + }, + { + "start": 23458.46, + "end": 23462.68, + "probability": 0.9891 + }, + { + "start": 23463.26, + "end": 23466.48, + "probability": 0.9955 + }, + { + "start": 23468.74, + "end": 23472.54, + "probability": 0.9937 + }, + { + "start": 23473.24, + "end": 23474.74, + "probability": 0.9949 + }, + { + "start": 23475.44, + "end": 23476.6, + "probability": 0.958 + }, + { + "start": 23476.92, + "end": 23483.36, + "probability": 0.9934 + }, + { + "start": 23483.76, + "end": 23488.56, + "probability": 0.9888 + }, + { + "start": 23489.24, + "end": 23493.28, + "probability": 0.9917 + }, + { + "start": 23494.42, + "end": 23496.38, + "probability": 0.7505 + }, + { + "start": 23496.56, + "end": 23497.5, + "probability": 0.0315 + }, + { + "start": 23498.0, + "end": 23499.01, + "probability": 0.5836 + }, + { + "start": 23500.08, + "end": 23502.62, + "probability": 0.0742 + }, + { + "start": 23502.62, + "end": 23502.62, + "probability": 0.039 + }, + { + "start": 23502.62, + "end": 23503.65, + "probability": 0.5712 + }, + { + "start": 23503.92, + "end": 23506.04, + "probability": 0.9963 + }, + { + "start": 23506.06, + "end": 23507.28, + "probability": 0.9727 + }, + { + "start": 23507.28, + "end": 23507.72, + "probability": 0.5845 + }, + { + "start": 23507.72, + "end": 23508.68, + "probability": 0.7874 + }, + { + "start": 23508.84, + "end": 23511.72, + "probability": 0.7871 + }, + { + "start": 23511.8, + "end": 23512.14, + "probability": 0.4904 + }, + { + "start": 23512.14, + "end": 23513.5, + "probability": 0.2263 + }, + { + "start": 23513.7, + "end": 23514.92, + "probability": 0.8849 + }, + { + "start": 23515.0, + "end": 23516.74, + "probability": 0.8794 + }, + { + "start": 23516.8, + "end": 23517.64, + "probability": 0.7773 + }, + { + "start": 23517.7, + "end": 23518.9, + "probability": 0.2052 + }, + { + "start": 23519.06, + "end": 23520.92, + "probability": 0.234 + }, + { + "start": 23520.92, + "end": 23521.22, + "probability": 0.0319 + }, + { + "start": 23521.58, + "end": 23522.48, + "probability": 0.9153 + }, + { + "start": 23522.56, + "end": 23525.16, + "probability": 0.978 + }, + { + "start": 23525.36, + "end": 23528.48, + "probability": 0.9856 + }, + { + "start": 23528.82, + "end": 23532.1, + "probability": 0.7428 + }, + { + "start": 23532.12, + "end": 23537.2, + "probability": 0.912 + }, + { + "start": 23537.24, + "end": 23537.94, + "probability": 0.862 + }, + { + "start": 23538.76, + "end": 23538.94, + "probability": 0.0261 + }, + { + "start": 23538.94, + "end": 23538.94, + "probability": 0.1285 + }, + { + "start": 23538.94, + "end": 23540.68, + "probability": 0.7243 + }, + { + "start": 23540.76, + "end": 23542.04, + "probability": 0.9503 + }, + { + "start": 23542.12, + "end": 23545.1, + "probability": 0.9714 + }, + { + "start": 23545.2, + "end": 23546.0, + "probability": 0.9788 + }, + { + "start": 23546.2, + "end": 23546.78, + "probability": 0.5012 + }, + { + "start": 23547.06, + "end": 23547.78, + "probability": 0.5975 + }, + { + "start": 23547.88, + "end": 23549.32, + "probability": 0.984 + }, + { + "start": 23549.32, + "end": 23549.32, + "probability": 0.522 + }, + { + "start": 23549.32, + "end": 23549.8, + "probability": 0.5492 + }, + { + "start": 23550.22, + "end": 23553.98, + "probability": 0.2771 + }, + { + "start": 23554.04, + "end": 23554.28, + "probability": 0.8408 + }, + { + "start": 23554.28, + "end": 23555.54, + "probability": 0.9905 + }, + { + "start": 23556.16, + "end": 23557.42, + "probability": 0.7652 + }, + { + "start": 23557.56, + "end": 23559.28, + "probability": 0.7696 + }, + { + "start": 23559.38, + "end": 23561.08, + "probability": 0.5815 + }, + { + "start": 23561.5, + "end": 23563.6, + "probability": 0.6289 + }, + { + "start": 23563.66, + "end": 23571.24, + "probability": 0.9536 + }, + { + "start": 23571.72, + "end": 23572.52, + "probability": 0.156 + }, + { + "start": 23572.84, + "end": 23573.12, + "probability": 0.113 + }, + { + "start": 23573.12, + "end": 23575.23, + "probability": 0.9182 + }, + { + "start": 23575.76, + "end": 23578.64, + "probability": 0.8672 + }, + { + "start": 23580.14, + "end": 23581.12, + "probability": 0.2408 + }, + { + "start": 23581.12, + "end": 23586.72, + "probability": 0.9927 + }, + { + "start": 23587.02, + "end": 23589.1, + "probability": 0.9756 + }, + { + "start": 23589.1, + "end": 23590.94, + "probability": 0.364 + }, + { + "start": 23590.98, + "end": 23593.02, + "probability": 0.9517 + }, + { + "start": 23593.14, + "end": 23594.2, + "probability": 0.1903 + }, + { + "start": 23594.22, + "end": 23594.92, + "probability": 0.7937 + }, + { + "start": 23594.92, + "end": 23597.88, + "probability": 0.5921 + }, + { + "start": 23598.2, + "end": 23600.5, + "probability": 0.3933 + }, + { + "start": 23600.68, + "end": 23601.86, + "probability": 0.4979 + }, + { + "start": 23601.94, + "end": 23601.94, + "probability": 0.7961 + }, + { + "start": 23601.94, + "end": 23604.08, + "probability": 0.9622 + }, + { + "start": 23604.08, + "end": 23604.7, + "probability": 0.2128 + }, + { + "start": 23604.8, + "end": 23609.74, + "probability": 0.3021 + }, + { + "start": 23610.42, + "end": 23612.04, + "probability": 0.0821 + }, + { + "start": 23612.04, + "end": 23612.04, + "probability": 0.1961 + }, + { + "start": 23612.04, + "end": 23612.04, + "probability": 0.019 + }, + { + "start": 23612.04, + "end": 23614.24, + "probability": 0.7454 + }, + { + "start": 23614.34, + "end": 23615.64, + "probability": 0.9867 + }, + { + "start": 23616.28, + "end": 23617.2, + "probability": 0.8733 + }, + { + "start": 23617.46, + "end": 23619.84, + "probability": 0.9937 + }, + { + "start": 23620.16, + "end": 23621.0, + "probability": 0.4903 + }, + { + "start": 23621.0, + "end": 23622.5, + "probability": 0.9779 + }, + { + "start": 23622.6, + "end": 23622.94, + "probability": 0.8552 + }, + { + "start": 23623.02, + "end": 23623.7, + "probability": 0.735 + }, + { + "start": 23625.88, + "end": 23628.8, + "probability": 0.9829 + }, + { + "start": 23629.76, + "end": 23632.8, + "probability": 0.9338 + }, + { + "start": 23632.94, + "end": 23633.46, + "probability": 0.8758 + }, + { + "start": 23633.52, + "end": 23636.14, + "probability": 0.9876 + }, + { + "start": 23639.97, + "end": 23641.06, + "probability": 0.1142 + }, + { + "start": 23641.06, + "end": 23641.64, + "probability": 0.3899 + }, + { + "start": 23641.64, + "end": 23642.4, + "probability": 0.3216 + }, + { + "start": 23642.6, + "end": 23644.86, + "probability": 0.667 + }, + { + "start": 23645.76, + "end": 23646.78, + "probability": 0.7397 + }, + { + "start": 23646.98, + "end": 23650.52, + "probability": 0.7969 + }, + { + "start": 23650.82, + "end": 23650.82, + "probability": 0.6228 + }, + { + "start": 23650.9, + "end": 23653.34, + "probability": 0.966 + }, + { + "start": 23653.34, + "end": 23655.4, + "probability": 0.9941 + }, + { + "start": 23655.66, + "end": 23657.16, + "probability": 0.9744 + }, + { + "start": 23657.66, + "end": 23658.12, + "probability": 0.9366 + }, + { + "start": 23658.92, + "end": 23659.78, + "probability": 0.6414 + }, + { + "start": 23659.84, + "end": 23661.94, + "probability": 0.973 + }, + { + "start": 23662.32, + "end": 23663.34, + "probability": 0.9864 + }, + { + "start": 23663.58, + "end": 23668.44, + "probability": 0.917 + }, + { + "start": 23668.54, + "end": 23670.36, + "probability": 0.9631 + }, + { + "start": 23670.78, + "end": 23673.62, + "probability": 0.997 + }, + { + "start": 23673.62, + "end": 23677.92, + "probability": 0.9758 + }, + { + "start": 23678.58, + "end": 23683.0, + "probability": 0.9977 + }, + { + "start": 23683.0, + "end": 23687.02, + "probability": 0.9974 + }, + { + "start": 23687.76, + "end": 23691.28, + "probability": 0.9935 + }, + { + "start": 23691.54, + "end": 23694.04, + "probability": 0.9556 + }, + { + "start": 23700.5, + "end": 23705.44, + "probability": 0.995 + }, + { + "start": 23706.06, + "end": 23707.96, + "probability": 0.753 + }, + { + "start": 23708.2, + "end": 23710.84, + "probability": 0.9958 + }, + { + "start": 23710.84, + "end": 23713.44, + "probability": 0.9973 + }, + { + "start": 23714.34, + "end": 23716.4, + "probability": 0.9713 + }, + { + "start": 23716.86, + "end": 23720.1, + "probability": 0.9956 + }, + { + "start": 23720.86, + "end": 23722.16, + "probability": 0.9034 + }, + { + "start": 23722.72, + "end": 23724.64, + "probability": 0.9542 + }, + { + "start": 23725.3, + "end": 23728.28, + "probability": 0.9896 + }, + { + "start": 23728.66, + "end": 23730.06, + "probability": 0.7618 + }, + { + "start": 23730.74, + "end": 23735.3, + "probability": 0.9849 + }, + { + "start": 23735.3, + "end": 23741.2, + "probability": 0.9956 + }, + { + "start": 23742.04, + "end": 23742.94, + "probability": 0.8783 + }, + { + "start": 23743.38, + "end": 23744.22, + "probability": 0.7669 + }, + { + "start": 23744.68, + "end": 23746.2, + "probability": 0.9959 + }, + { + "start": 23746.94, + "end": 23751.14, + "probability": 0.9813 + }, + { + "start": 23751.54, + "end": 23753.88, + "probability": 0.9976 + }, + { + "start": 23754.1, + "end": 23755.86, + "probability": 0.9257 + }, + { + "start": 23756.52, + "end": 23758.74, + "probability": 0.9238 + }, + { + "start": 23759.18, + "end": 23763.08, + "probability": 0.9558 + }, + { + "start": 23763.56, + "end": 23766.04, + "probability": 0.9883 + }, + { + "start": 23766.04, + "end": 23770.5, + "probability": 0.9696 + }, + { + "start": 23771.0, + "end": 23772.39, + "probability": 0.9961 + }, + { + "start": 23773.02, + "end": 23774.5, + "probability": 0.9015 + }, + { + "start": 23774.64, + "end": 23777.58, + "probability": 0.9459 + }, + { + "start": 23777.94, + "end": 23779.34, + "probability": 0.8836 + }, + { + "start": 23779.64, + "end": 23783.96, + "probability": 0.9729 + }, + { + "start": 23783.96, + "end": 23787.32, + "probability": 0.9995 + }, + { + "start": 23787.5, + "end": 23787.86, + "probability": 0.517 + }, + { + "start": 23788.36, + "end": 23788.82, + "probability": 0.6024 + }, + { + "start": 23789.78, + "end": 23790.96, + "probability": 0.8344 + }, + { + "start": 23792.02, + "end": 23797.76, + "probability": 0.6183 + }, + { + "start": 23797.86, + "end": 23799.76, + "probability": 0.9399 + }, + { + "start": 23799.96, + "end": 23800.44, + "probability": 0.2889 + }, + { + "start": 23801.12, + "end": 23802.4, + "probability": 0.6573 + }, + { + "start": 23802.4, + "end": 23802.47, + "probability": 0.0237 + }, + { + "start": 23803.28, + "end": 23804.15, + "probability": 0.1535 + }, + { + "start": 23804.28, + "end": 23804.54, + "probability": 0.4953 + }, + { + "start": 23804.6, + "end": 23806.62, + "probability": 0.8671 + }, + { + "start": 23806.8, + "end": 23807.52, + "probability": 0.7397 + }, + { + "start": 23807.6, + "end": 23808.28, + "probability": 0.2394 + }, + { + "start": 23808.48, + "end": 23809.28, + "probability": 0.3596 + }, + { + "start": 23809.32, + "end": 23811.36, + "probability": 0.8989 + }, + { + "start": 23811.36, + "end": 23814.72, + "probability": 0.6003 + }, + { + "start": 23814.84, + "end": 23817.51, + "probability": 0.9183 + }, + { + "start": 23818.56, + "end": 23822.52, + "probability": 0.6715 + }, + { + "start": 23824.88, + "end": 23825.38, + "probability": 0.8682 + }, + { + "start": 23827.4, + "end": 23829.55, + "probability": 0.894 + }, + { + "start": 23831.04, + "end": 23833.02, + "probability": 0.9449 + }, + { + "start": 23835.02, + "end": 23837.3, + "probability": 0.7798 + }, + { + "start": 23838.18, + "end": 23840.86, + "probability": 0.9935 + }, + { + "start": 23842.86, + "end": 23844.44, + "probability": 0.9948 + }, + { + "start": 23846.5, + "end": 23849.82, + "probability": 0.9689 + }, + { + "start": 23850.68, + "end": 23854.24, + "probability": 0.9793 + }, + { + "start": 23855.4, + "end": 23857.62, + "probability": 0.95 + }, + { + "start": 23858.26, + "end": 23860.0, + "probability": 0.7569 + }, + { + "start": 23861.3, + "end": 23863.2, + "probability": 0.9483 + }, + { + "start": 23864.24, + "end": 23864.85, + "probability": 0.8309 + }, + { + "start": 23866.04, + "end": 23868.94, + "probability": 0.9747 + }, + { + "start": 23869.74, + "end": 23872.16, + "probability": 0.9213 + }, + { + "start": 23873.3, + "end": 23877.58, + "probability": 0.974 + }, + { + "start": 23878.8, + "end": 23882.66, + "probability": 0.8849 + }, + { + "start": 23884.82, + "end": 23887.74, + "probability": 0.9993 + }, + { + "start": 23888.66, + "end": 23892.92, + "probability": 0.9227 + }, + { + "start": 23895.36, + "end": 23897.72, + "probability": 0.9909 + }, + { + "start": 23898.46, + "end": 23901.32, + "probability": 0.9491 + }, + { + "start": 23902.72, + "end": 23904.84, + "probability": 0.9678 + }, + { + "start": 23905.88, + "end": 23910.34, + "probability": 0.9839 + }, + { + "start": 23911.66, + "end": 23914.32, + "probability": 0.9932 + }, + { + "start": 23915.1, + "end": 23918.08, + "probability": 0.9802 + }, + { + "start": 23919.74, + "end": 23921.42, + "probability": 0.9189 + }, + { + "start": 23922.96, + "end": 23925.62, + "probability": 0.9944 + }, + { + "start": 23926.68, + "end": 23930.86, + "probability": 0.7617 + }, + { + "start": 23932.04, + "end": 23932.7, + "probability": 0.8496 + }, + { + "start": 23932.86, + "end": 23935.44, + "probability": 0.9391 + }, + { + "start": 23935.44, + "end": 23939.48, + "probability": 0.9921 + }, + { + "start": 23942.54, + "end": 23944.02, + "probability": 0.9539 + }, + { + "start": 23944.22, + "end": 23949.62, + "probability": 0.9768 + }, + { + "start": 23951.4, + "end": 23952.92, + "probability": 0.9818 + }, + { + "start": 23954.38, + "end": 23956.56, + "probability": 0.8243 + }, + { + "start": 23957.1, + "end": 23959.08, + "probability": 0.9751 + }, + { + "start": 23960.18, + "end": 23962.3, + "probability": 0.8224 + }, + { + "start": 23963.04, + "end": 23965.0, + "probability": 0.9863 + }, + { + "start": 23966.2, + "end": 23968.14, + "probability": 0.9586 + }, + { + "start": 23969.3, + "end": 23970.58, + "probability": 0.9695 + }, + { + "start": 23972.04, + "end": 23975.46, + "probability": 0.9941 + }, + { + "start": 23976.56, + "end": 23979.38, + "probability": 0.9563 + }, + { + "start": 23980.96, + "end": 23982.36, + "probability": 0.9562 + }, + { + "start": 23983.56, + "end": 23984.74, + "probability": 0.9932 + }, + { + "start": 23984.82, + "end": 23985.58, + "probability": 0.7496 + }, + { + "start": 23985.68, + "end": 23989.56, + "probability": 0.984 + }, + { + "start": 23990.1, + "end": 23994.12, + "probability": 0.9863 + }, + { + "start": 23996.72, + "end": 23998.74, + "probability": 0.8987 + }, + { + "start": 23999.96, + "end": 24002.38, + "probability": 0.9519 + }, + { + "start": 24003.3, + "end": 24004.26, + "probability": 0.9955 + }, + { + "start": 24005.5, + "end": 24008.02, + "probability": 0.9882 + }, + { + "start": 24009.52, + "end": 24010.46, + "probability": 0.9985 + }, + { + "start": 24011.74, + "end": 24014.08, + "probability": 0.9745 + }, + { + "start": 24014.66, + "end": 24015.52, + "probability": 0.8647 + }, + { + "start": 24016.44, + "end": 24019.96, + "probability": 0.992 + }, + { + "start": 24020.58, + "end": 24021.08, + "probability": 0.522 + }, + { + "start": 24021.76, + "end": 24023.1, + "probability": 0.9243 + }, + { + "start": 24024.3, + "end": 24027.5, + "probability": 0.959 + }, + { + "start": 24028.08, + "end": 24029.81, + "probability": 0.9869 + }, + { + "start": 24031.98, + "end": 24034.08, + "probability": 0.9863 + }, + { + "start": 24034.12, + "end": 24040.5, + "probability": 0.9727 + }, + { + "start": 24041.62, + "end": 24043.4, + "probability": 0.9917 + }, + { + "start": 24045.4, + "end": 24048.26, + "probability": 0.6953 + }, + { + "start": 24049.26, + "end": 24050.74, + "probability": 0.9444 + }, + { + "start": 24052.52, + "end": 24053.44, + "probability": 0.749 + }, + { + "start": 24053.94, + "end": 24056.04, + "probability": 0.8724 + }, + { + "start": 24056.12, + "end": 24058.72, + "probability": 0.9952 + }, + { + "start": 24060.36, + "end": 24062.68, + "probability": 0.9596 + }, + { + "start": 24065.0, + "end": 24066.5, + "probability": 0.9079 + }, + { + "start": 24067.3, + "end": 24070.34, + "probability": 0.8887 + }, + { + "start": 24071.06, + "end": 24072.62, + "probability": 0.9575 + }, + { + "start": 24073.02, + "end": 24073.82, + "probability": 0.8681 + }, + { + "start": 24073.88, + "end": 24074.72, + "probability": 0.9619 + }, + { + "start": 24074.76, + "end": 24074.92, + "probability": 0.3746 + }, + { + "start": 24076.0, + "end": 24077.32, + "probability": 0.9875 + }, + { + "start": 24077.4, + "end": 24078.75, + "probability": 0.9878 + }, + { + "start": 24081.12, + "end": 24084.6, + "probability": 0.9913 + }, + { + "start": 24084.72, + "end": 24086.2, + "probability": 0.9683 + }, + { + "start": 24086.5, + "end": 24088.78, + "probability": 0.9183 + }, + { + "start": 24089.34, + "end": 24092.84, + "probability": 0.9596 + }, + { + "start": 24094.28, + "end": 24098.79, + "probability": 0.598 + }, + { + "start": 24099.31, + "end": 24102.48, + "probability": 0.9848 + }, + { + "start": 24102.86, + "end": 24104.66, + "probability": 0.7895 + }, + { + "start": 24106.8, + "end": 24108.92, + "probability": 0.9365 + }, + { + "start": 24109.9, + "end": 24111.24, + "probability": 0.9932 + }, + { + "start": 24112.96, + "end": 24116.9, + "probability": 0.996 + }, + { + "start": 24118.68, + "end": 24119.94, + "probability": 0.7104 + }, + { + "start": 24120.08, + "end": 24122.32, + "probability": 0.9397 + }, + { + "start": 24122.38, + "end": 24123.14, + "probability": 0.9404 + }, + { + "start": 24124.16, + "end": 24125.68, + "probability": 0.9549 + }, + { + "start": 24126.92, + "end": 24129.18, + "probability": 0.9961 + }, + { + "start": 24130.14, + "end": 24131.94, + "probability": 0.6646 + }, + { + "start": 24133.44, + "end": 24135.92, + "probability": 0.9964 + }, + { + "start": 24135.92, + "end": 24140.46, + "probability": 0.9876 + }, + { + "start": 24141.02, + "end": 24141.86, + "probability": 0.7775 + }, + { + "start": 24142.6, + "end": 24143.22, + "probability": 0.5916 + }, + { + "start": 24143.38, + "end": 24145.04, + "probability": 0.6733 + }, + { + "start": 24159.64, + "end": 24160.08, + "probability": 0.3091 + }, + { + "start": 24161.8, + "end": 24162.9, + "probability": 0.5657 + }, + { + "start": 24163.22, + "end": 24163.6, + "probability": 0.5106 + }, + { + "start": 24164.88, + "end": 24164.88, + "probability": 0.1263 + }, + { + "start": 24164.96, + "end": 24166.38, + "probability": 0.5393 + }, + { + "start": 24167.1, + "end": 24168.22, + "probability": 0.3687 + }, + { + "start": 24169.5, + "end": 24174.5, + "probability": 0.9383 + }, + { + "start": 24175.56, + "end": 24181.0, + "probability": 0.995 + }, + { + "start": 24182.52, + "end": 24188.82, + "probability": 0.98 + }, + { + "start": 24189.2, + "end": 24189.86, + "probability": 0.7648 + }, + { + "start": 24190.86, + "end": 24193.4, + "probability": 0.9892 + }, + { + "start": 24194.6, + "end": 24200.98, + "probability": 0.9764 + }, + { + "start": 24201.66, + "end": 24204.94, + "probability": 0.9547 + }, + { + "start": 24206.68, + "end": 24209.8, + "probability": 0.9792 + }, + { + "start": 24210.6, + "end": 24214.74, + "probability": 0.9963 + }, + { + "start": 24214.74, + "end": 24219.16, + "probability": 0.9931 + }, + { + "start": 24221.22, + "end": 24224.14, + "probability": 0.6816 + }, + { + "start": 24225.82, + "end": 24229.08, + "probability": 0.988 + }, + { + "start": 24230.1, + "end": 24232.6, + "probability": 0.9877 + }, + { + "start": 24233.46, + "end": 24237.62, + "probability": 0.9957 + }, + { + "start": 24238.3, + "end": 24241.9, + "probability": 0.972 + }, + { + "start": 24243.86, + "end": 24248.36, + "probability": 0.9971 + }, + { + "start": 24249.54, + "end": 24253.7, + "probability": 0.8711 + }, + { + "start": 24254.34, + "end": 24256.86, + "probability": 0.9728 + }, + { + "start": 24257.66, + "end": 24262.26, + "probability": 0.9854 + }, + { + "start": 24263.2, + "end": 24264.76, + "probability": 0.8975 + }, + { + "start": 24265.36, + "end": 24268.96, + "probability": 0.9445 + }, + { + "start": 24269.62, + "end": 24270.71, + "probability": 0.9271 + }, + { + "start": 24271.84, + "end": 24275.6, + "probability": 0.9966 + }, + { + "start": 24276.5, + "end": 24278.24, + "probability": 0.9268 + }, + { + "start": 24279.14, + "end": 24280.66, + "probability": 0.9639 + }, + { + "start": 24281.34, + "end": 24282.56, + "probability": 0.5409 + }, + { + "start": 24283.26, + "end": 24286.23, + "probability": 0.9749 + }, + { + "start": 24287.4, + "end": 24289.32, + "probability": 0.9361 + }, + { + "start": 24290.44, + "end": 24294.24, + "probability": 0.9957 + }, + { + "start": 24295.04, + "end": 24299.8, + "probability": 0.9966 + }, + { + "start": 24300.62, + "end": 24303.34, + "probability": 0.9818 + }, + { + "start": 24303.48, + "end": 24304.26, + "probability": 0.8813 + }, + { + "start": 24304.4, + "end": 24306.98, + "probability": 0.9745 + }, + { + "start": 24309.98, + "end": 24312.04, + "probability": 0.997 + }, + { + "start": 24312.64, + "end": 24318.8, + "probability": 0.9876 + }, + { + "start": 24320.26, + "end": 24327.34, + "probability": 0.9937 + }, + { + "start": 24328.98, + "end": 24332.4, + "probability": 0.9711 + }, + { + "start": 24333.84, + "end": 24336.5, + "probability": 0.9971 + }, + { + "start": 24336.5, + "end": 24341.0, + "probability": 0.9988 + }, + { + "start": 24341.1, + "end": 24347.28, + "probability": 0.9995 + }, + { + "start": 24347.98, + "end": 24349.96, + "probability": 0.9977 + }, + { + "start": 24350.52, + "end": 24360.6, + "probability": 0.9893 + }, + { + "start": 24361.56, + "end": 24364.4, + "probability": 0.9813 + }, + { + "start": 24364.84, + "end": 24366.15, + "probability": 0.674 + }, + { + "start": 24367.88, + "end": 24368.54, + "probability": 0.8835 + }, + { + "start": 24368.62, + "end": 24369.66, + "probability": 0.957 + }, + { + "start": 24369.74, + "end": 24370.5, + "probability": 0.727 + }, + { + "start": 24370.86, + "end": 24375.64, + "probability": 0.825 + }, + { + "start": 24376.76, + "end": 24378.7, + "probability": 0.9856 + }, + { + "start": 24379.62, + "end": 24383.5, + "probability": 0.7334 + }, + { + "start": 24384.04, + "end": 24387.28, + "probability": 0.9894 + }, + { + "start": 24387.88, + "end": 24388.9, + "probability": 0.9482 + }, + { + "start": 24389.74, + "end": 24391.06, + "probability": 0.9966 + }, + { + "start": 24391.06, + "end": 24392.78, + "probability": 0.9979 + }, + { + "start": 24393.2, + "end": 24394.86, + "probability": 0.9873 + }, + { + "start": 24394.86, + "end": 24397.02, + "probability": 0.8691 + }, + { + "start": 24397.56, + "end": 24397.75, + "probability": 0.3012 + }, + { + "start": 24401.22, + "end": 24406.28, + "probability": 0.9175 + }, + { + "start": 24407.16, + "end": 24410.74, + "probability": 0.9331 + }, + { + "start": 24411.48, + "end": 24413.08, + "probability": 0.7373 + }, + { + "start": 24413.28, + "end": 24417.0, + "probability": 0.9863 + }, + { + "start": 24417.06, + "end": 24418.6, + "probability": 0.6677 + }, + { + "start": 24420.34, + "end": 24423.9, + "probability": 0.9929 + }, + { + "start": 24424.32, + "end": 24426.12, + "probability": 0.4343 + }, + { + "start": 24426.46, + "end": 24428.62, + "probability": 0.9946 + }, + { + "start": 24430.24, + "end": 24432.76, + "probability": 0.9954 + }, + { + "start": 24433.14, + "end": 24436.14, + "probability": 0.9886 + }, + { + "start": 24436.5, + "end": 24438.82, + "probability": 0.9983 + }, + { + "start": 24439.32, + "end": 24440.16, + "probability": 0.7283 + }, + { + "start": 24440.22, + "end": 24441.18, + "probability": 0.8893 + }, + { + "start": 24441.18, + "end": 24444.24, + "probability": 0.6548 + }, + { + "start": 24445.08, + "end": 24447.21, + "probability": 0.9907 + }, + { + "start": 24447.84, + "end": 24449.4, + "probability": 0.7629 + }, + { + "start": 24450.04, + "end": 24451.66, + "probability": 0.9802 + }, + { + "start": 24452.16, + "end": 24457.24, + "probability": 0.9834 + }, + { + "start": 24458.14, + "end": 24461.78, + "probability": 0.9671 + }, + { + "start": 24462.34, + "end": 24467.28, + "probability": 0.9848 + }, + { + "start": 24467.84, + "end": 24470.18, + "probability": 0.62 + }, + { + "start": 24470.86, + "end": 24472.99, + "probability": 0.792 + }, + { + "start": 24473.92, + "end": 24474.26, + "probability": 0.4837 + }, + { + "start": 24474.92, + "end": 24475.82, + "probability": 0.4989 + }, + { + "start": 24476.5, + "end": 24480.0, + "probability": 0.9745 + }, + { + "start": 24480.58, + "end": 24481.53, + "probability": 0.6793 + }, + { + "start": 24482.08, + "end": 24484.86, + "probability": 0.9724 + }, + { + "start": 24484.92, + "end": 24485.58, + "probability": 0.7963 + }, + { + "start": 24486.08, + "end": 24488.58, + "probability": 0.8589 + }, + { + "start": 24488.58, + "end": 24492.02, + "probability": 0.9966 + }, + { + "start": 24492.44, + "end": 24493.6, + "probability": 0.9802 + }, + { + "start": 24494.16, + "end": 24497.54, + "probability": 0.9929 + }, + { + "start": 24497.54, + "end": 24502.14, + "probability": 0.9746 + }, + { + "start": 24502.54, + "end": 24503.1, + "probability": 0.7721 + }, + { + "start": 24503.2, + "end": 24504.28, + "probability": 0.8118 + }, + { + "start": 24504.98, + "end": 24508.04, + "probability": 0.998 + }, + { + "start": 24508.62, + "end": 24510.24, + "probability": 0.9951 + }, + { + "start": 24510.96, + "end": 24512.65, + "probability": 0.9942 + }, + { + "start": 24513.38, + "end": 24515.98, + "probability": 0.9982 + }, + { + "start": 24518.3, + "end": 24521.02, + "probability": 0.9973 + }, + { + "start": 24521.32, + "end": 24524.78, + "probability": 0.9945 + }, + { + "start": 24525.62, + "end": 24526.84, + "probability": 0.8123 + }, + { + "start": 24527.36, + "end": 24530.32, + "probability": 0.9126 + }, + { + "start": 24531.68, + "end": 24534.72, + "probability": 0.9577 + }, + { + "start": 24536.18, + "end": 24537.08, + "probability": 0.7869 + }, + { + "start": 24537.84, + "end": 24539.64, + "probability": 0.7909 + }, + { + "start": 24540.58, + "end": 24543.18, + "probability": 0.9701 + }, + { + "start": 24544.58, + "end": 24545.76, + "probability": 0.9639 + }, + { + "start": 24546.36, + "end": 24550.34, + "probability": 0.9583 + }, + { + "start": 24551.2, + "end": 24551.66, + "probability": 0.6931 + }, + { + "start": 24552.36, + "end": 24554.22, + "probability": 0.9624 + }, + { + "start": 24555.06, + "end": 24557.04, + "probability": 0.9872 + }, + { + "start": 24557.54, + "end": 24560.76, + "probability": 0.9924 + }, + { + "start": 24561.7, + "end": 24565.74, + "probability": 0.8503 + }, + { + "start": 24566.8, + "end": 24568.94, + "probability": 0.8619 + }, + { + "start": 24570.16, + "end": 24574.74, + "probability": 0.824 + }, + { + "start": 24575.5, + "end": 24576.2, + "probability": 0.9722 + }, + { + "start": 24576.86, + "end": 24579.54, + "probability": 0.7029 + }, + { + "start": 24580.08, + "end": 24582.36, + "probability": 0.752 + }, + { + "start": 24585.0, + "end": 24587.04, + "probability": 0.8052 + }, + { + "start": 24587.44, + "end": 24588.02, + "probability": 0.9223 + }, + { + "start": 24588.92, + "end": 24591.74, + "probability": 0.9873 + }, + { + "start": 24593.18, + "end": 24597.08, + "probability": 0.8609 + }, + { + "start": 24597.96, + "end": 24598.76, + "probability": 0.9744 + }, + { + "start": 24599.78, + "end": 24602.2, + "probability": 0.9863 + }, + { + "start": 24602.66, + "end": 24605.8, + "probability": 0.9783 + }, + { + "start": 24605.96, + "end": 24608.74, + "probability": 0.737 + }, + { + "start": 24609.44, + "end": 24611.24, + "probability": 0.9738 + }, + { + "start": 24611.9, + "end": 24613.66, + "probability": 0.9 + }, + { + "start": 24614.58, + "end": 24615.48, + "probability": 0.7734 + }, + { + "start": 24616.14, + "end": 24622.02, + "probability": 0.9575 + }, + { + "start": 24622.14, + "end": 24623.84, + "probability": 0.9951 + }, + { + "start": 24624.72, + "end": 24628.26, + "probability": 0.8726 + }, + { + "start": 24628.42, + "end": 24628.88, + "probability": 0.5412 + }, + { + "start": 24629.38, + "end": 24632.16, + "probability": 0.9985 + }, + { + "start": 24633.22, + "end": 24636.98, + "probability": 0.8083 + }, + { + "start": 24638.24, + "end": 24641.82, + "probability": 0.9028 + }, + { + "start": 24642.78, + "end": 24645.98, + "probability": 0.9804 + }, + { + "start": 24646.84, + "end": 24651.2, + "probability": 0.9961 + }, + { + "start": 24651.66, + "end": 24658.46, + "probability": 0.9981 + }, + { + "start": 24659.3, + "end": 24661.25, + "probability": 0.8403 + }, + { + "start": 24662.46, + "end": 24663.52, + "probability": 0.8736 + }, + { + "start": 24664.92, + "end": 24667.14, + "probability": 0.9976 + }, + { + "start": 24668.7, + "end": 24671.6, + "probability": 0.9661 + }, + { + "start": 24672.04, + "end": 24673.86, + "probability": 0.9982 + }, + { + "start": 24676.24, + "end": 24676.72, + "probability": 0.182 + }, + { + "start": 24676.72, + "end": 24677.88, + "probability": 0.3856 + }, + { + "start": 24678.72, + "end": 24679.52, + "probability": 0.8428 + }, + { + "start": 24680.16, + "end": 24680.88, + "probability": 0.545 + }, + { + "start": 24681.54, + "end": 24683.2, + "probability": 0.752 + }, + { + "start": 24683.86, + "end": 24685.3, + "probability": 0.9896 + }, + { + "start": 24685.44, + "end": 24686.48, + "probability": 0.9656 + }, + { + "start": 24699.22, + "end": 24701.6, + "probability": 0.0675 + }, + { + "start": 24701.82, + "end": 24701.92, + "probability": 0.0509 + }, + { + "start": 24701.92, + "end": 24701.92, + "probability": 0.079 + }, + { + "start": 24701.92, + "end": 24702.32, + "probability": 0.1127 + }, + { + "start": 24703.98, + "end": 24704.48, + "probability": 0.0618 + }, + { + "start": 24705.2, + "end": 24705.94, + "probability": 0.2524 + }, + { + "start": 24706.28, + "end": 24706.28, + "probability": 0.1125 + }, + { + "start": 24706.28, + "end": 24706.28, + "probability": 0.095 + }, + { + "start": 24706.28, + "end": 24706.28, + "probability": 0.018 + }, + { + "start": 24706.28, + "end": 24706.52, + "probability": 0.1027 + }, + { + "start": 24707.88, + "end": 24710.64, + "probability": 0.8257 + }, + { + "start": 24711.52, + "end": 24714.92, + "probability": 0.6491 + }, + { + "start": 24715.64, + "end": 24717.49, + "probability": 0.8014 + }, + { + "start": 24718.3, + "end": 24718.82, + "probability": 0.6901 + }, + { + "start": 24719.52, + "end": 24721.48, + "probability": 0.9812 + }, + { + "start": 24722.22, + "end": 24722.98, + "probability": 0.5774 + }, + { + "start": 24723.5, + "end": 24727.1, + "probability": 0.99 + }, + { + "start": 24728.08, + "end": 24732.04, + "probability": 0.9541 + }, + { + "start": 24732.08, + "end": 24732.9, + "probability": 0.8454 + }, + { + "start": 24733.04, + "end": 24733.94, + "probability": 0.8263 + }, + { + "start": 24734.36, + "end": 24736.1, + "probability": 0.854 + }, + { + "start": 24736.74, + "end": 24737.3, + "probability": 0.9436 + }, + { + "start": 24738.18, + "end": 24740.8, + "probability": 0.5941 + }, + { + "start": 24741.16, + "end": 24744.86, + "probability": 0.8511 + }, + { + "start": 24745.78, + "end": 24746.64, + "probability": 0.9744 + }, + { + "start": 24747.32, + "end": 24748.26, + "probability": 0.9789 + }, + { + "start": 24748.82, + "end": 24749.88, + "probability": 0.9942 + }, + { + "start": 24750.18, + "end": 24750.74, + "probability": 0.8171 + }, + { + "start": 24752.06, + "end": 24753.34, + "probability": 0.9492 + }, + { + "start": 24753.62, + "end": 24754.82, + "probability": 0.9703 + }, + { + "start": 24755.82, + "end": 24758.22, + "probability": 0.875 + }, + { + "start": 24758.88, + "end": 24759.98, + "probability": 0.902 + }, + { + "start": 24761.16, + "end": 24762.65, + "probability": 0.9731 + }, + { + "start": 24763.08, + "end": 24764.1, + "probability": 0.9844 + }, + { + "start": 24764.18, + "end": 24765.35, + "probability": 0.9772 + }, + { + "start": 24765.6, + "end": 24766.98, + "probability": 0.9961 + }, + { + "start": 24767.58, + "end": 24769.06, + "probability": 0.9618 + }, + { + "start": 24769.52, + "end": 24771.82, + "probability": 0.9589 + }, + { + "start": 24773.12, + "end": 24775.3, + "probability": 0.9856 + }, + { + "start": 24775.74, + "end": 24779.56, + "probability": 0.9512 + }, + { + "start": 24780.04, + "end": 24781.54, + "probability": 0.7126 + }, + { + "start": 24783.8, + "end": 24790.02, + "probability": 0.9873 + }, + { + "start": 24790.16, + "end": 24790.44, + "probability": 0.7489 + }, + { + "start": 24791.7, + "end": 24792.2, + "probability": 0.5934 + }, + { + "start": 24792.26, + "end": 24793.5, + "probability": 0.8561 + }, + { + "start": 24810.09, + "end": 24813.8, + "probability": 0.8131 + }, + { + "start": 24814.68, + "end": 24816.46, + "probability": 0.5896 + }, + { + "start": 24816.54, + "end": 24817.98, + "probability": 0.9647 + }, + { + "start": 24818.7, + "end": 24822.6, + "probability": 0.8843 + }, + { + "start": 24837.34, + "end": 24839.54, + "probability": 0.7634 + }, + { + "start": 24840.2, + "end": 24842.94, + "probability": 0.6905 + }, + { + "start": 24844.38, + "end": 24845.42, + "probability": 0.8398 + }, + { + "start": 24846.74, + "end": 24847.34, + "probability": 0.9948 + }, + { + "start": 24851.5, + "end": 24852.66, + "probability": 0.886 + }, + { + "start": 24853.44, + "end": 24856.46, + "probability": 0.9683 + }, + { + "start": 24856.46, + "end": 24857.51, + "probability": 0.6661 + }, + { + "start": 24858.58, + "end": 24863.86, + "probability": 0.98 + }, + { + "start": 24863.96, + "end": 24864.28, + "probability": 0.4823 + }, + { + "start": 24864.7, + "end": 24866.45, + "probability": 0.9937 + }, + { + "start": 24866.99, + "end": 24870.44, + "probability": 0.9847 + }, + { + "start": 24870.64, + "end": 24874.12, + "probability": 0.9353 + }, + { + "start": 24874.2, + "end": 24875.12, + "probability": 0.483 + }, + { + "start": 24875.64, + "end": 24875.64, + "probability": 0.1054 + }, + { + "start": 24875.68, + "end": 24877.02, + "probability": 0.4152 + }, + { + "start": 24877.18, + "end": 24877.94, + "probability": 0.3701 + }, + { + "start": 24878.42, + "end": 24881.56, + "probability": 0.743 + }, + { + "start": 24881.72, + "end": 24884.2, + "probability": 0.8448 + }, + { + "start": 24884.84, + "end": 24890.98, + "probability": 0.9977 + }, + { + "start": 24893.08, + "end": 24893.98, + "probability": 0.7937 + }, + { + "start": 24894.14, + "end": 24895.16, + "probability": 0.9939 + }, + { + "start": 24895.4, + "end": 24896.78, + "probability": 0.7251 + }, + { + "start": 24897.64, + "end": 24905.04, + "probability": 0.9738 + }, + { + "start": 24906.02, + "end": 24907.86, + "probability": 0.9421 + }, + { + "start": 24909.1, + "end": 24912.94, + "probability": 0.9928 + }, + { + "start": 24914.18, + "end": 24915.12, + "probability": 0.6084 + }, + { + "start": 24916.04, + "end": 24918.54, + "probability": 0.9858 + }, + { + "start": 24919.68, + "end": 24921.58, + "probability": 0.9471 + }, + { + "start": 24922.8, + "end": 24926.44, + "probability": 0.987 + }, + { + "start": 24927.66, + "end": 24933.54, + "probability": 0.9978 + }, + { + "start": 24934.8, + "end": 24943.06, + "probability": 0.9992 + }, + { + "start": 24943.92, + "end": 24950.4, + "probability": 0.9065 + }, + { + "start": 24951.9, + "end": 24954.14, + "probability": 0.9862 + }, + { + "start": 24956.14, + "end": 24957.72, + "probability": 0.9391 + }, + { + "start": 24958.16, + "end": 24964.54, + "probability": 0.9958 + }, + { + "start": 24964.54, + "end": 24971.16, + "probability": 0.9994 + }, + { + "start": 24972.0, + "end": 24976.7, + "probability": 0.6948 + }, + { + "start": 24976.96, + "end": 24979.86, + "probability": 0.7924 + }, + { + "start": 24981.1, + "end": 24986.34, + "probability": 0.8776 + }, + { + "start": 24986.34, + "end": 24992.06, + "probability": 0.9998 + }, + { + "start": 24993.06, + "end": 24997.34, + "probability": 0.9976 + }, + { + "start": 24997.8, + "end": 25001.44, + "probability": 0.8598 + }, + { + "start": 25002.78, + "end": 25006.34, + "probability": 0.9844 + }, + { + "start": 25007.5, + "end": 25013.28, + "probability": 0.9907 + }, + { + "start": 25014.0, + "end": 25021.62, + "probability": 0.9971 + }, + { + "start": 25022.42, + "end": 25023.96, + "probability": 0.9575 + }, + { + "start": 25025.02, + "end": 25027.08, + "probability": 0.9595 + }, + { + "start": 25027.88, + "end": 25033.74, + "probability": 0.998 + }, + { + "start": 25034.56, + "end": 25035.12, + "probability": 0.8092 + }, + { + "start": 25035.16, + "end": 25040.42, + "probability": 0.9874 + }, + { + "start": 25041.04, + "end": 25046.9, + "probability": 0.9213 + }, + { + "start": 25047.46, + "end": 25050.9, + "probability": 0.9978 + }, + { + "start": 25050.9, + "end": 25057.36, + "probability": 0.9868 + }, + { + "start": 25057.94, + "end": 25061.06, + "probability": 0.9948 + }, + { + "start": 25062.02, + "end": 25066.48, + "probability": 0.9963 + }, + { + "start": 25066.48, + "end": 25071.94, + "probability": 0.989 + }, + { + "start": 25072.42, + "end": 25075.1, + "probability": 0.9897 + }, + { + "start": 25076.62, + "end": 25079.88, + "probability": 0.7868 + }, + { + "start": 25081.26, + "end": 25085.72, + "probability": 0.9958 + }, + { + "start": 25085.72, + "end": 25090.3, + "probability": 0.9969 + }, + { + "start": 25091.28, + "end": 25095.58, + "probability": 0.6061 + }, + { + "start": 25095.72, + "end": 25097.58, + "probability": 0.9788 + }, + { + "start": 25098.84, + "end": 25100.5, + "probability": 0.9937 + }, + { + "start": 25101.36, + "end": 25103.9, + "probability": 0.8149 + }, + { + "start": 25104.6, + "end": 25105.96, + "probability": 0.827 + }, + { + "start": 25106.16, + "end": 25107.42, + "probability": 0.8599 + }, + { + "start": 25108.44, + "end": 25112.84, + "probability": 0.9927 + }, + { + "start": 25113.66, + "end": 25119.98, + "probability": 0.9947 + }, + { + "start": 25121.48, + "end": 25123.1, + "probability": 0.8361 + }, + { + "start": 25123.8, + "end": 25129.68, + "probability": 0.991 + }, + { + "start": 25131.06, + "end": 25136.24, + "probability": 0.9961 + }, + { + "start": 25137.32, + "end": 25140.05, + "probability": 0.9934 + }, + { + "start": 25140.78, + "end": 25142.88, + "probability": 0.8914 + }, + { + "start": 25143.32, + "end": 25144.98, + "probability": 0.967 + }, + { + "start": 25146.04, + "end": 25150.48, + "probability": 0.9519 + }, + { + "start": 25151.42, + "end": 25153.76, + "probability": 0.9615 + }, + { + "start": 25154.98, + "end": 25156.08, + "probability": 0.7592 + }, + { + "start": 25157.92, + "end": 25159.58, + "probability": 0.472 + }, + { + "start": 25159.88, + "end": 25161.84, + "probability": 0.9523 + }, + { + "start": 25161.96, + "end": 25165.54, + "probability": 0.7661 + }, + { + "start": 25165.72, + "end": 25166.5, + "probability": 0.5938 + }, + { + "start": 25166.6, + "end": 25167.4, + "probability": 0.4221 + }, + { + "start": 25168.64, + "end": 25169.6, + "probability": 0.5606 + }, + { + "start": 25170.4, + "end": 25174.74, + "probability": 0.9924 + }, + { + "start": 25175.5, + "end": 25179.18, + "probability": 0.8832 + }, + { + "start": 25179.76, + "end": 25182.14, + "probability": 0.8291 + }, + { + "start": 25182.8, + "end": 25184.48, + "probability": 0.9766 + }, + { + "start": 25185.06, + "end": 25189.5, + "probability": 0.9803 + }, + { + "start": 25189.64, + "end": 25191.32, + "probability": 0.9899 + }, + { + "start": 25191.84, + "end": 25194.28, + "probability": 0.765 + }, + { + "start": 25194.88, + "end": 25197.44, + "probability": 0.7904 + }, + { + "start": 25197.92, + "end": 25202.86, + "probability": 0.9028 + }, + { + "start": 25202.86, + "end": 25207.16, + "probability": 0.9951 + }, + { + "start": 25207.32, + "end": 25208.42, + "probability": 0.9269 + }, + { + "start": 25208.52, + "end": 25210.04, + "probability": 0.7903 + }, + { + "start": 25210.06, + "end": 25213.6, + "probability": 0.931 + }, + { + "start": 25214.28, + "end": 25216.75, + "probability": 0.9702 + }, + { + "start": 25217.96, + "end": 25219.56, + "probability": 0.9854 + }, + { + "start": 25219.68, + "end": 25219.96, + "probability": 0.2732 + }, + { + "start": 25221.46, + "end": 25222.88, + "probability": 0.2608 + }, + { + "start": 25223.44, + "end": 25224.44, + "probability": 0.7684 + }, + { + "start": 25225.2, + "end": 25227.45, + "probability": 0.8823 + }, + { + "start": 25228.32, + "end": 25230.56, + "probability": 0.9919 + }, + { + "start": 25231.12, + "end": 25234.6, + "probability": 0.9906 + }, + { + "start": 25235.24, + "end": 25237.7, + "probability": 0.9883 + }, + { + "start": 25239.48, + "end": 25241.8, + "probability": 0.9155 + }, + { + "start": 25243.16, + "end": 25250.84, + "probability": 0.9849 + }, + { + "start": 25252.96, + "end": 25256.5, + "probability": 0.999 + }, + { + "start": 25257.64, + "end": 25259.44, + "probability": 0.9993 + }, + { + "start": 25260.24, + "end": 25262.32, + "probability": 0.7741 + }, + { + "start": 25263.2, + "end": 25267.28, + "probability": 0.9958 + }, + { + "start": 25267.96, + "end": 25271.66, + "probability": 0.981 + }, + { + "start": 25272.16, + "end": 25274.24, + "probability": 0.9802 + }, + { + "start": 25274.68, + "end": 25276.68, + "probability": 0.9966 + }, + { + "start": 25276.9, + "end": 25279.12, + "probability": 0.8159 + }, + { + "start": 25280.26, + "end": 25281.8, + "probability": 0.802 + }, + { + "start": 25282.96, + "end": 25284.58, + "probability": 0.9961 + }, + { + "start": 25285.22, + "end": 25286.94, + "probability": 0.9612 + }, + { + "start": 25288.14, + "end": 25291.28, + "probability": 0.7922 + }, + { + "start": 25295.18, + "end": 25300.46, + "probability": 0.9858 + }, + { + "start": 25301.98, + "end": 25303.36, + "probability": 0.9964 + }, + { + "start": 25304.42, + "end": 25309.22, + "probability": 0.9958 + }, + { + "start": 25309.98, + "end": 25311.72, + "probability": 0.9529 + }, + { + "start": 25312.9, + "end": 25319.26, + "probability": 0.9658 + }, + { + "start": 25320.24, + "end": 25322.83, + "probability": 0.8267 + }, + { + "start": 25323.82, + "end": 25327.31, + "probability": 0.9519 + }, + { + "start": 25328.56, + "end": 25330.4, + "probability": 0.8962 + }, + { + "start": 25332.14, + "end": 25335.0, + "probability": 0.9972 + }, + { + "start": 25335.0, + "end": 25339.44, + "probability": 0.9988 + }, + { + "start": 25340.46, + "end": 25341.58, + "probability": 0.9993 + }, + { + "start": 25343.18, + "end": 25350.0, + "probability": 0.9972 + }, + { + "start": 25350.88, + "end": 25351.74, + "probability": 0.9396 + }, + { + "start": 25352.26, + "end": 25353.22, + "probability": 0.8917 + }, + { + "start": 25353.86, + "end": 25359.1, + "probability": 0.9842 + }, + { + "start": 25360.08, + "end": 25368.08, + "probability": 0.9908 + }, + { + "start": 25369.52, + "end": 25370.0, + "probability": 0.3637 + }, + { + "start": 25370.1, + "end": 25375.38, + "probability": 0.9954 + }, + { + "start": 25377.02, + "end": 25377.74, + "probability": 0.6721 + }, + { + "start": 25378.18, + "end": 25383.8, + "probability": 0.9863 + }, + { + "start": 25384.34, + "end": 25387.74, + "probability": 0.8025 + }, + { + "start": 25387.82, + "end": 25388.88, + "probability": 0.7323 + }, + { + "start": 25389.1, + "end": 25390.0, + "probability": 0.4967 + }, + { + "start": 25391.38, + "end": 25393.54, + "probability": 0.8621 + }, + { + "start": 25394.8, + "end": 25400.8, + "probability": 0.9479 + }, + { + "start": 25401.34, + "end": 25404.96, + "probability": 0.9899 + }, + { + "start": 25405.34, + "end": 25408.8, + "probability": 0.9916 + }, + { + "start": 25409.86, + "end": 25411.42, + "probability": 0.9611 + }, + { + "start": 25413.38, + "end": 25421.3, + "probability": 0.9913 + }, + { + "start": 25422.72, + "end": 25428.72, + "probability": 0.9917 + }, + { + "start": 25430.68, + "end": 25433.8, + "probability": 0.9963 + }, + { + "start": 25435.04, + "end": 25440.82, + "probability": 0.999 + }, + { + "start": 25442.38, + "end": 25442.96, + "probability": 0.6096 + }, + { + "start": 25443.72, + "end": 25446.14, + "probability": 0.8398 + }, + { + "start": 25446.88, + "end": 25448.76, + "probability": 0.9349 + }, + { + "start": 25450.4, + "end": 25452.76, + "probability": 0.9965 + }, + { + "start": 25453.5, + "end": 25456.42, + "probability": 0.9916 + }, + { + "start": 25457.18, + "end": 25460.42, + "probability": 0.9947 + }, + { + "start": 25461.04, + "end": 25464.72, + "probability": 0.987 + }, + { + "start": 25465.48, + "end": 25468.44, + "probability": 0.999 + }, + { + "start": 25469.08, + "end": 25472.3, + "probability": 0.9955 + }, + { + "start": 25472.84, + "end": 25475.28, + "probability": 0.9954 + }, + { + "start": 25475.72, + "end": 25480.03, + "probability": 0.991 + }, + { + "start": 25480.88, + "end": 25482.62, + "probability": 0.7282 + }, + { + "start": 25483.3, + "end": 25487.68, + "probability": 0.9314 + }, + { + "start": 25488.42, + "end": 25494.42, + "probability": 0.9914 + }, + { + "start": 25495.14, + "end": 25498.94, + "probability": 0.9052 + }, + { + "start": 25499.62, + "end": 25505.76, + "probability": 0.8135 + }, + { + "start": 25505.76, + "end": 25506.25, + "probability": 0.7316 + }, + { + "start": 25508.0, + "end": 25511.06, + "probability": 0.9812 + }, + { + "start": 25511.66, + "end": 25516.56, + "probability": 0.9692 + }, + { + "start": 25516.56, + "end": 25520.08, + "probability": 0.9978 + }, + { + "start": 25521.74, + "end": 25524.1, + "probability": 0.8789 + }, + { + "start": 25525.2, + "end": 25526.2, + "probability": 0.817 + }, + { + "start": 25528.6, + "end": 25532.76, + "probability": 0.9918 + }, + { + "start": 25534.1, + "end": 25540.08, + "probability": 0.9883 + }, + { + "start": 25541.48, + "end": 25542.06, + "probability": 0.3638 + }, + { + "start": 25542.06, + "end": 25547.94, + "probability": 0.9934 + }, + { + "start": 25548.44, + "end": 25550.61, + "probability": 0.9171 + }, + { + "start": 25552.2, + "end": 25555.04, + "probability": 0.9983 + }, + { + "start": 25555.84, + "end": 25561.86, + "probability": 0.9888 + }, + { + "start": 25562.34, + "end": 25563.4, + "probability": 0.833 + }, + { + "start": 25564.1, + "end": 25567.76, + "probability": 0.9883 + }, + { + "start": 25568.18, + "end": 25569.81, + "probability": 0.9248 + }, + { + "start": 25571.08, + "end": 25572.24, + "probability": 0.6472 + }, + { + "start": 25573.66, + "end": 25580.66, + "probability": 0.9919 + }, + { + "start": 25582.1, + "end": 25588.0, + "probability": 0.9328 + }, + { + "start": 25589.54, + "end": 25591.4, + "probability": 0.9913 + }, + { + "start": 25593.64, + "end": 25600.0, + "probability": 0.989 + }, + { + "start": 25600.0, + "end": 25604.84, + "probability": 0.9985 + }, + { + "start": 25607.84, + "end": 25612.98, + "probability": 0.9977 + }, + { + "start": 25612.98, + "end": 25619.6, + "probability": 0.9916 + }, + { + "start": 25620.12, + "end": 25621.48, + "probability": 0.6729 + }, + { + "start": 25622.44, + "end": 25623.74, + "probability": 0.868 + }, + { + "start": 25624.3, + "end": 25628.96, + "probability": 0.877 + }, + { + "start": 25628.96, + "end": 25632.76, + "probability": 0.9891 + }, + { + "start": 25633.82, + "end": 25637.18, + "probability": 0.8231 + }, + { + "start": 25638.32, + "end": 25642.06, + "probability": 0.9918 + }, + { + "start": 25643.24, + "end": 25646.62, + "probability": 0.9927 + }, + { + "start": 25647.26, + "end": 25647.94, + "probability": 0.7144 + }, + { + "start": 25648.06, + "end": 25652.74, + "probability": 0.9932 + }, + { + "start": 25653.26, + "end": 25659.44, + "probability": 0.9948 + }, + { + "start": 25659.46, + "end": 25661.2, + "probability": 0.6671 + }, + { + "start": 25662.08, + "end": 25662.8, + "probability": 0.5376 + }, + { + "start": 25664.02, + "end": 25669.68, + "probability": 0.9914 + }, + { + "start": 25671.64, + "end": 25672.08, + "probability": 0.8381 + }, + { + "start": 25672.78, + "end": 25673.76, + "probability": 0.7428 + }, + { + "start": 25674.14, + "end": 25675.06, + "probability": 0.8162 + }, + { + "start": 25675.14, + "end": 25675.86, + "probability": 0.4606 + }, + { + "start": 25675.88, + "end": 25676.68, + "probability": 0.9631 + }, + { + "start": 25676.68, + "end": 25678.34, + "probability": 0.9485 + }, + { + "start": 25678.96, + "end": 25680.53, + "probability": 0.96 + }, + { + "start": 25681.28, + "end": 25688.62, + "probability": 0.9954 + }, + { + "start": 25689.22, + "end": 25695.84, + "probability": 0.8198 + }, + { + "start": 25696.5, + "end": 25699.24, + "probability": 0.8906 + }, + { + "start": 25699.84, + "end": 25700.62, + "probability": 0.7499 + }, + { + "start": 25701.0, + "end": 25703.7, + "probability": 0.9575 + }, + { + "start": 25703.74, + "end": 25709.92, + "probability": 0.9833 + }, + { + "start": 25710.98, + "end": 25717.38, + "probability": 0.9966 + }, + { + "start": 25717.38, + "end": 25722.72, + "probability": 0.999 + }, + { + "start": 25723.12, + "end": 25723.66, + "probability": 0.8008 + }, + { + "start": 25724.14, + "end": 25728.64, + "probability": 0.9966 + }, + { + "start": 25729.46, + "end": 25733.26, + "probability": 0.9602 + }, + { + "start": 25734.2, + "end": 25734.58, + "probability": 0.3287 + }, + { + "start": 25734.72, + "end": 25736.18, + "probability": 0.745 + }, + { + "start": 25736.2, + "end": 25739.32, + "probability": 0.9747 + }, + { + "start": 25739.32, + "end": 25739.38, + "probability": 0.5493 + }, + { + "start": 25740.2, + "end": 25740.24, + "probability": 0.0368 + }, + { + "start": 25740.24, + "end": 25741.28, + "probability": 0.9837 + }, + { + "start": 25741.48, + "end": 25742.11, + "probability": 0.7406 + }, + { + "start": 25742.68, + "end": 25744.2, + "probability": 0.5442 + }, + { + "start": 25744.58, + "end": 25745.98, + "probability": 0.9407 + }, + { + "start": 25746.36, + "end": 25749.16, + "probability": 0.8805 + }, + { + "start": 25749.28, + "end": 25751.88, + "probability": 0.7606 + }, + { + "start": 25751.94, + "end": 25753.78, + "probability": 0.1996 + }, + { + "start": 25754.28, + "end": 25755.96, + "probability": 0.6606 + }, + { + "start": 25756.02, + "end": 25757.9, + "probability": 0.931 + }, + { + "start": 25758.0, + "end": 25758.98, + "probability": 0.984 + }, + { + "start": 25759.66, + "end": 25763.42, + "probability": 0.9591 + }, + { + "start": 25763.64, + "end": 25765.44, + "probability": 0.6804 + }, + { + "start": 25765.92, + "end": 25766.06, + "probability": 0.7512 + }, + { + "start": 25766.44, + "end": 25767.48, + "probability": 0.8201 + }, + { + "start": 25767.54, + "end": 25768.24, + "probability": 0.75 + }, + { + "start": 25768.3, + "end": 25769.3, + "probability": 0.7428 + }, + { + "start": 25769.42, + "end": 25771.59, + "probability": 0.9954 + }, + { + "start": 25772.6, + "end": 25776.22, + "probability": 0.9907 + }, + { + "start": 25776.28, + "end": 25777.02, + "probability": 0.9147 + }, + { + "start": 25777.5, + "end": 25781.6, + "probability": 0.9925 + }, + { + "start": 25782.36, + "end": 25786.44, + "probability": 0.9897 + }, + { + "start": 25787.34, + "end": 25792.32, + "probability": 0.9994 + }, + { + "start": 25792.32, + "end": 25798.52, + "probability": 0.994 + }, + { + "start": 25798.96, + "end": 25809.36, + "probability": 0.9897 + }, + { + "start": 25809.46, + "end": 25811.54, + "probability": 0.9518 + }, + { + "start": 25812.4, + "end": 25818.6, + "probability": 0.9941 + }, + { + "start": 25819.62, + "end": 25821.76, + "probability": 0.9733 + }, + { + "start": 25823.08, + "end": 25829.16, + "probability": 0.9958 + }, + { + "start": 25829.44, + "end": 25835.5, + "probability": 0.9991 + }, + { + "start": 25836.4, + "end": 25841.08, + "probability": 0.9989 + }, + { + "start": 25841.08, + "end": 25848.12, + "probability": 0.9971 + }, + { + "start": 25849.44, + "end": 25849.98, + "probability": 0.6109 + }, + { + "start": 25851.18, + "end": 25854.78, + "probability": 0.9791 + }, + { + "start": 25855.08, + "end": 25855.9, + "probability": 0.9399 + }, + { + "start": 25857.16, + "end": 25858.9, + "probability": 0.9507 + }, + { + "start": 25859.86, + "end": 25861.7, + "probability": 0.958 + }, + { + "start": 25862.66, + "end": 25866.02, + "probability": 0.9514 + }, + { + "start": 25866.64, + "end": 25867.52, + "probability": 0.98 + }, + { + "start": 25868.02, + "end": 25868.92, + "probability": 0.7523 + }, + { + "start": 25869.14, + "end": 25871.98, + "probability": 0.7842 + }, + { + "start": 25873.24, + "end": 25879.6, + "probability": 0.992 + }, + { + "start": 25880.32, + "end": 25882.16, + "probability": 0.9136 + }, + { + "start": 25883.42, + "end": 25884.22, + "probability": 0.9399 + }, + { + "start": 25884.84, + "end": 25888.8, + "probability": 0.9634 + }, + { + "start": 25890.28, + "end": 25891.92, + "probability": 0.9985 + }, + { + "start": 25893.44, + "end": 25895.14, + "probability": 0.9614 + }, + { + "start": 25896.94, + "end": 25898.84, + "probability": 0.6463 + }, + { + "start": 25899.92, + "end": 25902.86, + "probability": 0.967 + }, + { + "start": 25904.18, + "end": 25908.94, + "probability": 0.9916 + }, + { + "start": 25909.3, + "end": 25911.08, + "probability": 0.6468 + }, + { + "start": 25911.16, + "end": 25911.4, + "probability": 0.5444 + }, + { + "start": 25911.44, + "end": 25912.1, + "probability": 0.9252 + }, + { + "start": 25912.2, + "end": 25913.34, + "probability": 0.9834 + }, + { + "start": 25913.64, + "end": 25914.92, + "probability": 0.9529 + }, + { + "start": 25915.88, + "end": 25917.9, + "probability": 0.9402 + }, + { + "start": 25918.2, + "end": 25921.6, + "probability": 0.9413 + }, + { + "start": 25923.04, + "end": 25926.18, + "probability": 0.9955 + }, + { + "start": 25927.76, + "end": 25929.16, + "probability": 0.6983 + }, + { + "start": 25929.94, + "end": 25932.9, + "probability": 0.9868 + }, + { + "start": 25932.98, + "end": 25934.22, + "probability": 0.9966 + }, + { + "start": 25934.34, + "end": 25934.64, + "probability": 0.8536 + }, + { + "start": 25934.74, + "end": 25935.76, + "probability": 0.7914 + }, + { + "start": 25937.16, + "end": 25939.4, + "probability": 0.6033 + }, + { + "start": 25940.0, + "end": 25942.66, + "probability": 0.9806 + }, + { + "start": 25942.86, + "end": 25944.94, + "probability": 0.9962 + }, + { + "start": 25946.88, + "end": 25947.33, + "probability": 0.9768 + }, + { + "start": 25949.32, + "end": 25951.18, + "probability": 0.9868 + }, + { + "start": 25951.7, + "end": 25954.1, + "probability": 0.9886 + }, + { + "start": 25954.5, + "end": 25957.26, + "probability": 0.9961 + }, + { + "start": 25957.56, + "end": 25961.22, + "probability": 0.9696 + }, + { + "start": 25961.74, + "end": 25962.22, + "probability": 0.325 + }, + { + "start": 25963.96, + "end": 25970.16, + "probability": 0.9475 + }, + { + "start": 25970.32, + "end": 25971.28, + "probability": 0.9854 + }, + { + "start": 25972.66, + "end": 25977.24, + "probability": 0.9966 + }, + { + "start": 25977.82, + "end": 25981.84, + "probability": 0.9853 + }, + { + "start": 25981.84, + "end": 25986.34, + "probability": 0.9995 + }, + { + "start": 25987.42, + "end": 25989.22, + "probability": 0.9878 + }, + { + "start": 25989.96, + "end": 25991.53, + "probability": 0.998 + }, + { + "start": 25991.62, + "end": 25997.58, + "probability": 0.9927 + }, + { + "start": 25997.86, + "end": 26003.72, + "probability": 0.9979 + }, + { + "start": 26004.2, + "end": 26005.0, + "probability": 0.8173 + }, + { + "start": 26005.64, + "end": 26008.06, + "probability": 0.9467 + }, + { + "start": 26008.78, + "end": 26010.02, + "probability": 0.5555 + }, + { + "start": 26011.7, + "end": 26014.64, + "probability": 0.9591 + }, + { + "start": 26015.24, + "end": 26016.28, + "probability": 0.8627 + }, + { + "start": 26017.7, + "end": 26019.62, + "probability": 0.9613 + }, + { + "start": 26020.92, + "end": 26025.6, + "probability": 0.9848 + }, + { + "start": 26027.94, + "end": 26034.0, + "probability": 0.9902 + }, + { + "start": 26034.6, + "end": 26035.92, + "probability": 0.8163 + }, + { + "start": 26036.86, + "end": 26038.16, + "probability": 0.9166 + }, + { + "start": 26038.82, + "end": 26042.8, + "probability": 0.8332 + }, + { + "start": 26044.92, + "end": 26050.36, + "probability": 0.9971 + }, + { + "start": 26052.24, + "end": 26053.62, + "probability": 0.9904 + }, + { + "start": 26054.94, + "end": 26059.44, + "probability": 0.997 + }, + { + "start": 26059.52, + "end": 26060.5, + "probability": 0.8958 + }, + { + "start": 26060.94, + "end": 26062.12, + "probability": 0.7027 + }, + { + "start": 26063.32, + "end": 26065.14, + "probability": 0.998 + }, + { + "start": 26066.92, + "end": 26068.06, + "probability": 0.9958 + }, + { + "start": 26069.66, + "end": 26074.96, + "probability": 0.9875 + }, + { + "start": 26076.24, + "end": 26076.54, + "probability": 0.6016 + }, + { + "start": 26077.1, + "end": 26085.06, + "probability": 0.9967 + }, + { + "start": 26085.06, + "end": 26091.64, + "probability": 0.9965 + }, + { + "start": 26092.24, + "end": 26094.86, + "probability": 0.9941 + }, + { + "start": 26094.86, + "end": 26099.22, + "probability": 0.9706 + }, + { + "start": 26100.32, + "end": 26102.4, + "probability": 0.8802 + }, + { + "start": 26103.58, + "end": 26106.92, + "probability": 0.7429 + }, + { + "start": 26107.48, + "end": 26109.44, + "probability": 0.7713 + }, + { + "start": 26110.96, + "end": 26112.86, + "probability": 0.9964 + }, + { + "start": 26114.06, + "end": 26115.76, + "probability": 0.9943 + }, + { + "start": 26116.96, + "end": 26119.52, + "probability": 0.9853 + }, + { + "start": 26120.1, + "end": 26122.1, + "probability": 0.9974 + }, + { + "start": 26123.8, + "end": 26131.2, + "probability": 0.9704 + }, + { + "start": 26132.7, + "end": 26133.4, + "probability": 0.8732 + }, + { + "start": 26136.16, + "end": 26139.8, + "probability": 0.8022 + }, + { + "start": 26140.32, + "end": 26142.92, + "probability": 0.7812 + }, + { + "start": 26144.9, + "end": 26146.28, + "probability": 0.9852 + }, + { + "start": 26147.08, + "end": 26150.26, + "probability": 0.7749 + }, + { + "start": 26152.0, + "end": 26153.96, + "probability": 0.9396 + }, + { + "start": 26155.1, + "end": 26156.04, + "probability": 0.7722 + }, + { + "start": 26157.08, + "end": 26161.86, + "probability": 0.9921 + }, + { + "start": 26162.82, + "end": 26167.66, + "probability": 0.9762 + }, + { + "start": 26168.08, + "end": 26168.78, + "probability": 0.9253 + }, + { + "start": 26169.46, + "end": 26170.64, + "probability": 0.9143 + }, + { + "start": 26170.88, + "end": 26171.62, + "probability": 0.9634 + }, + { + "start": 26171.7, + "end": 26172.46, + "probability": 0.9483 + }, + { + "start": 26173.8, + "end": 26174.48, + "probability": 0.9653 + }, + { + "start": 26175.22, + "end": 26178.86, + "probability": 0.873 + }, + { + "start": 26179.4, + "end": 26182.44, + "probability": 0.9751 + }, + { + "start": 26182.82, + "end": 26183.96, + "probability": 0.9612 + }, + { + "start": 26184.0, + "end": 26189.22, + "probability": 0.9876 + }, + { + "start": 26189.22, + "end": 26190.04, + "probability": 0.2921 + }, + { + "start": 26190.2, + "end": 26192.14, + "probability": 0.5761 + }, + { + "start": 26193.54, + "end": 26196.66, + "probability": 0.988 + }, + { + "start": 26197.42, + "end": 26202.16, + "probability": 0.9908 + }, + { + "start": 26202.3, + "end": 26202.5, + "probability": 0.275 + }, + { + "start": 26203.24, + "end": 26208.5, + "probability": 0.9796 + }, + { + "start": 26208.5, + "end": 26213.5, + "probability": 0.9993 + }, + { + "start": 26213.82, + "end": 26215.74, + "probability": 0.8231 + }, + { + "start": 26216.88, + "end": 26218.8, + "probability": 0.9716 + }, + { + "start": 26219.7, + "end": 26221.02, + "probability": 0.4394 + }, + { + "start": 26221.68, + "end": 26224.98, + "probability": 0.9942 + }, + { + "start": 26225.5, + "end": 26227.86, + "probability": 0.996 + }, + { + "start": 26229.4, + "end": 26230.56, + "probability": 0.8203 + }, + { + "start": 26232.26, + "end": 26233.76, + "probability": 0.719 + }, + { + "start": 26235.0, + "end": 26237.62, + "probability": 0.9282 + }, + { + "start": 26238.26, + "end": 26240.95, + "probability": 0.9956 + }, + { + "start": 26241.98, + "end": 26248.28, + "probability": 0.9932 + }, + { + "start": 26249.8, + "end": 26250.44, + "probability": 0.8899 + }, + { + "start": 26252.1, + "end": 26256.72, + "probability": 0.9819 + }, + { + "start": 26258.96, + "end": 26261.86, + "probability": 0.9805 + }, + { + "start": 26263.86, + "end": 26269.02, + "probability": 0.9974 + }, + { + "start": 26270.38, + "end": 26273.38, + "probability": 0.8513 + }, + { + "start": 26274.06, + "end": 26276.56, + "probability": 0.8989 + }, + { + "start": 26278.4, + "end": 26281.56, + "probability": 0.9522 + }, + { + "start": 26283.9, + "end": 26289.5, + "probability": 0.9636 + }, + { + "start": 26290.04, + "end": 26292.9, + "probability": 0.8835 + }, + { + "start": 26294.12, + "end": 26295.38, + "probability": 0.9164 + }, + { + "start": 26297.56, + "end": 26298.82, + "probability": 0.6917 + }, + { + "start": 26300.2, + "end": 26305.38, + "probability": 0.9688 + }, + { + "start": 26305.48, + "end": 26308.24, + "probability": 0.9644 + }, + { + "start": 26309.1, + "end": 26310.4, + "probability": 0.7405 + }, + { + "start": 26311.76, + "end": 26313.64, + "probability": 0.9987 + }, + { + "start": 26314.28, + "end": 26317.84, + "probability": 0.9995 + }, + { + "start": 26321.18, + "end": 26325.58, + "probability": 0.9942 + }, + { + "start": 26327.3, + "end": 26329.92, + "probability": 0.9564 + }, + { + "start": 26330.16, + "end": 26331.06, + "probability": 0.9575 + }, + { + "start": 26331.32, + "end": 26331.68, + "probability": 0.7368 + }, + { + "start": 26333.32, + "end": 26334.62, + "probability": 0.728 + }, + { + "start": 26335.34, + "end": 26337.72, + "probability": 0.9199 + }, + { + "start": 26339.5, + "end": 26342.04, + "probability": 0.7227 + }, + { + "start": 26342.66, + "end": 26345.54, + "probability": 0.8745 + }, + { + "start": 26346.18, + "end": 26347.3, + "probability": 0.8332 + }, + { + "start": 26348.04, + "end": 26351.1, + "probability": 0.9961 + }, + { + "start": 26351.1, + "end": 26356.18, + "probability": 0.9856 + }, + { + "start": 26357.36, + "end": 26362.98, + "probability": 0.9969 + }, + { + "start": 26363.24, + "end": 26364.52, + "probability": 0.8818 + }, + { + "start": 26364.92, + "end": 26366.52, + "probability": 0.9169 + }, + { + "start": 26366.84, + "end": 26367.72, + "probability": 0.9488 + }, + { + "start": 26369.68, + "end": 26372.0, + "probability": 0.993 + }, + { + "start": 26374.36, + "end": 26375.74, + "probability": 0.9327 + }, + { + "start": 26377.8, + "end": 26380.02, + "probability": 0.9909 + }, + { + "start": 26381.9, + "end": 26384.12, + "probability": 0.9977 + }, + { + "start": 26385.54, + "end": 26387.52, + "probability": 0.9771 + }, + { + "start": 26388.7, + "end": 26391.54, + "probability": 0.9947 + }, + { + "start": 26393.9, + "end": 26397.4, + "probability": 0.9823 + }, + { + "start": 26397.52, + "end": 26398.42, + "probability": 0.9006 + }, + { + "start": 26398.88, + "end": 26399.44, + "probability": 0.8258 + }, + { + "start": 26400.74, + "end": 26403.22, + "probability": 0.8921 + }, + { + "start": 26406.9, + "end": 26409.32, + "probability": 0.9996 + }, + { + "start": 26410.6, + "end": 26413.54, + "probability": 0.806 + }, + { + "start": 26414.88, + "end": 26417.58, + "probability": 0.981 + }, + { + "start": 26418.72, + "end": 26421.82, + "probability": 0.9962 + }, + { + "start": 26422.3, + "end": 26425.4, + "probability": 0.9833 + }, + { + "start": 26427.44, + "end": 26431.62, + "probability": 0.9919 + }, + { + "start": 26432.86, + "end": 26433.56, + "probability": 0.8191 + }, + { + "start": 26434.0, + "end": 26442.54, + "probability": 0.974 + }, + { + "start": 26443.2, + "end": 26446.46, + "probability": 0.9963 + }, + { + "start": 26447.52, + "end": 26448.74, + "probability": 0.9225 + }, + { + "start": 26449.48, + "end": 26453.38, + "probability": 0.9761 + }, + { + "start": 26453.82, + "end": 26457.12, + "probability": 0.8648 + }, + { + "start": 26457.88, + "end": 26459.88, + "probability": 0.9679 + }, + { + "start": 26462.24, + "end": 26462.76, + "probability": 0.8445 + }, + { + "start": 26463.26, + "end": 26465.92, + "probability": 0.9954 + }, + { + "start": 26465.98, + "end": 26467.14, + "probability": 0.8917 + }, + { + "start": 26467.74, + "end": 26474.34, + "probability": 0.9644 + }, + { + "start": 26475.88, + "end": 26479.9, + "probability": 0.9956 + }, + { + "start": 26480.54, + "end": 26481.74, + "probability": 0.8243 + }, + { + "start": 26484.14, + "end": 26489.6, + "probability": 0.9785 + }, + { + "start": 26489.6, + "end": 26493.7, + "probability": 0.934 + }, + { + "start": 26495.2, + "end": 26498.25, + "probability": 0.9805 + }, + { + "start": 26499.38, + "end": 26500.96, + "probability": 0.9971 + }, + { + "start": 26502.58, + "end": 26509.06, + "probability": 0.9935 + }, + { + "start": 26510.86, + "end": 26513.14, + "probability": 0.9131 + }, + { + "start": 26513.5, + "end": 26518.04, + "probability": 0.9752 + }, + { + "start": 26518.48, + "end": 26523.34, + "probability": 0.9197 + }, + { + "start": 26524.04, + "end": 26531.34, + "probability": 0.9889 + }, + { + "start": 26533.24, + "end": 26534.96, + "probability": 0.8751 + }, + { + "start": 26535.84, + "end": 26536.94, + "probability": 0.7764 + }, + { + "start": 26537.12, + "end": 26541.6, + "probability": 0.9974 + }, + { + "start": 26542.98, + "end": 26544.76, + "probability": 0.999 + }, + { + "start": 26546.02, + "end": 26547.22, + "probability": 0.5357 + }, + { + "start": 26547.8, + "end": 26552.2, + "probability": 0.714 + }, + { + "start": 26552.56, + "end": 26554.43, + "probability": 0.9766 + }, + { + "start": 26554.88, + "end": 26558.66, + "probability": 0.9842 + }, + { + "start": 26560.66, + "end": 26560.96, + "probability": 0.3647 + }, + { + "start": 26561.1, + "end": 26561.66, + "probability": 0.5756 + }, + { + "start": 26561.8, + "end": 26563.18, + "probability": 0.837 + }, + { + "start": 26563.62, + "end": 26567.28, + "probability": 0.9732 + }, + { + "start": 26568.98, + "end": 26576.74, + "probability": 0.9744 + }, + { + "start": 26576.86, + "end": 26579.08, + "probability": 0.9932 + }, + { + "start": 26580.06, + "end": 26581.86, + "probability": 0.9957 + }, + { + "start": 26582.94, + "end": 26583.7, + "probability": 0.7017 + }, + { + "start": 26584.7, + "end": 26585.66, + "probability": 0.6144 + }, + { + "start": 26585.74, + "end": 26586.16, + "probability": 0.4874 + }, + { + "start": 26586.56, + "end": 26589.3, + "probability": 0.9968 + }, + { + "start": 26589.48, + "end": 26589.98, + "probability": 0.944 + }, + { + "start": 26590.26, + "end": 26593.36, + "probability": 0.8106 + }, + { + "start": 26593.54, + "end": 26595.6, + "probability": 0.9282 + }, + { + "start": 26595.9, + "end": 26598.94, + "probability": 0.8668 + }, + { + "start": 26598.94, + "end": 26601.96, + "probability": 0.9854 + }, + { + "start": 26602.4, + "end": 26603.78, + "probability": 0.686 + }, + { + "start": 26604.24, + "end": 26605.76, + "probability": 0.9718 + }, + { + "start": 26607.56, + "end": 26611.74, + "probability": 0.9887 + }, + { + "start": 26612.12, + "end": 26613.8, + "probability": 0.9968 + }, + { + "start": 26615.48, + "end": 26621.26, + "probability": 0.9977 + }, + { + "start": 26621.26, + "end": 26628.76, + "probability": 0.9868 + }, + { + "start": 26629.02, + "end": 26632.42, + "probability": 0.9927 + }, + { + "start": 26632.42, + "end": 26636.8, + "probability": 0.9426 + }, + { + "start": 26637.8, + "end": 26640.8, + "probability": 0.7875 + }, + { + "start": 26641.66, + "end": 26642.78, + "probability": 0.8323 + }, + { + "start": 26643.68, + "end": 26645.34, + "probability": 0.8931 + }, + { + "start": 26645.72, + "end": 26647.22, + "probability": 0.9356 + }, + { + "start": 26647.58, + "end": 26649.36, + "probability": 0.9819 + }, + { + "start": 26649.98, + "end": 26650.82, + "probability": 0.9941 + }, + { + "start": 26652.06, + "end": 26653.2, + "probability": 0.9937 + }, + { + "start": 26655.28, + "end": 26660.12, + "probability": 0.9973 + }, + { + "start": 26661.08, + "end": 26668.36, + "probability": 0.999 + }, + { + "start": 26669.26, + "end": 26670.14, + "probability": 0.8068 + }, + { + "start": 26671.0, + "end": 26671.34, + "probability": 0.2843 + }, + { + "start": 26671.36, + "end": 26672.68, + "probability": 0.8463 + }, + { + "start": 26672.82, + "end": 26677.68, + "probability": 0.9976 + }, + { + "start": 26678.2, + "end": 26680.08, + "probability": 0.8856 + }, + { + "start": 26680.82, + "end": 26683.58, + "probability": 0.9972 + }, + { + "start": 26684.22, + "end": 26686.72, + "probability": 0.9878 + }, + { + "start": 26687.22, + "end": 26689.52, + "probability": 0.9971 + }, + { + "start": 26690.06, + "end": 26694.84, + "probability": 0.9943 + }, + { + "start": 26695.6, + "end": 26701.26, + "probability": 0.969 + }, + { + "start": 26701.7, + "end": 26704.18, + "probability": 0.9136 + }, + { + "start": 26704.68, + "end": 26705.26, + "probability": 0.7346 + }, + { + "start": 26705.98, + "end": 26708.47, + "probability": 0.9421 + }, + { + "start": 26709.98, + "end": 26710.34, + "probability": 0.6647 + }, + { + "start": 26710.44, + "end": 26712.06, + "probability": 0.786 + }, + { + "start": 26715.48, + "end": 26715.58, + "probability": 0.4105 + }, + { + "start": 26736.07, + "end": 26738.86, + "probability": 0.5614 + }, + { + "start": 26740.08, + "end": 26742.42, + "probability": 0.9511 + }, + { + "start": 26743.08, + "end": 26745.76, + "probability": 0.9941 + }, + { + "start": 26746.61, + "end": 26748.19, + "probability": 0.7928 + }, + { + "start": 26749.52, + "end": 26750.6, + "probability": 0.896 + }, + { + "start": 26751.44, + "end": 26752.4, + "probability": 0.7545 + }, + { + "start": 26752.82, + "end": 26753.88, + "probability": 0.9941 + }, + { + "start": 26754.72, + "end": 26757.32, + "probability": 0.9761 + }, + { + "start": 26757.32, + "end": 26761.32, + "probability": 0.9967 + }, + { + "start": 26761.88, + "end": 26763.04, + "probability": 0.9801 + }, + { + "start": 26765.01, + "end": 26768.26, + "probability": 0.9941 + }, + { + "start": 26769.0, + "end": 26770.28, + "probability": 0.6346 + }, + { + "start": 26771.4, + "end": 26775.92, + "probability": 0.8856 + }, + { + "start": 26777.56, + "end": 26781.83, + "probability": 0.6625 + }, + { + "start": 26782.92, + "end": 26783.52, + "probability": 0.5325 + }, + { + "start": 26784.1, + "end": 26787.8, + "probability": 0.9806 + }, + { + "start": 26788.56, + "end": 26788.92, + "probability": 0.6677 + }, + { + "start": 26789.62, + "end": 26791.52, + "probability": 0.9654 + }, + { + "start": 26792.84, + "end": 26796.88, + "probability": 0.9718 + }, + { + "start": 26797.88, + "end": 26798.88, + "probability": 0.8736 + }, + { + "start": 26800.02, + "end": 26801.78, + "probability": 0.7573 + }, + { + "start": 26802.72, + "end": 26806.26, + "probability": 0.9898 + }, + { + "start": 26810.28, + "end": 26811.62, + "probability": 0.5009 + }, + { + "start": 26812.74, + "end": 26813.26, + "probability": 0.687 + }, + { + "start": 26814.2, + "end": 26815.4, + "probability": 0.9559 + }, + { + "start": 26816.6, + "end": 26821.78, + "probability": 0.6643 + }, + { + "start": 26821.82, + "end": 26822.8, + "probability": 0.7758 + }, + { + "start": 26822.84, + "end": 26824.98, + "probability": 0.9895 + }, + { + "start": 26825.7, + "end": 26830.42, + "probability": 0.9861 + }, + { + "start": 26831.76, + "end": 26832.46, + "probability": 0.9932 + }, + { + "start": 26833.6, + "end": 26834.6, + "probability": 0.7102 + }, + { + "start": 26836.44, + "end": 26837.46, + "probability": 0.8964 + }, + { + "start": 26837.52, + "end": 26840.7, + "probability": 0.8442 + }, + { + "start": 26841.64, + "end": 26846.92, + "probability": 0.9988 + }, + { + "start": 26847.48, + "end": 26852.58, + "probability": 0.9946 + }, + { + "start": 26852.76, + "end": 26855.2, + "probability": 0.9736 + }, + { + "start": 26856.98, + "end": 26859.14, + "probability": 0.891 + }, + { + "start": 26859.38, + "end": 26860.44, + "probability": 0.9932 + }, + { + "start": 26861.28, + "end": 26864.46, + "probability": 0.9791 + }, + { + "start": 26865.62, + "end": 26867.3, + "probability": 0.9707 + }, + { + "start": 26867.42, + "end": 26871.92, + "probability": 0.9819 + }, + { + "start": 26873.92, + "end": 26874.84, + "probability": 0.809 + }, + { + "start": 26876.46, + "end": 26879.42, + "probability": 0.9862 + }, + { + "start": 26879.54, + "end": 26881.02, + "probability": 0.9541 + }, + { + "start": 26881.74, + "end": 26883.8, + "probability": 0.9518 + }, + { + "start": 26884.74, + "end": 26886.36, + "probability": 0.5093 + }, + { + "start": 26887.66, + "end": 26890.58, + "probability": 0.96 + }, + { + "start": 26891.84, + "end": 26893.86, + "probability": 0.9924 + }, + { + "start": 26894.7, + "end": 26895.3, + "probability": 0.6681 + }, + { + "start": 26896.28, + "end": 26899.1, + "probability": 0.9676 + }, + { + "start": 26900.58, + "end": 26904.7, + "probability": 0.9972 + }, + { + "start": 26905.9, + "end": 26909.5, + "probability": 0.9979 + }, + { + "start": 26909.5, + "end": 26913.44, + "probability": 0.9974 + }, + { + "start": 26914.82, + "end": 26916.3, + "probability": 0.9805 + }, + { + "start": 26916.4, + "end": 26916.64, + "probability": 0.5245 + }, + { + "start": 26916.64, + "end": 26916.86, + "probability": 0.2795 + }, + { + "start": 26916.88, + "end": 26918.58, + "probability": 0.9473 + }, + { + "start": 26918.7, + "end": 26920.24, + "probability": 0.8321 + }, + { + "start": 26920.3, + "end": 26921.14, + "probability": 0.4995 + }, + { + "start": 26922.1, + "end": 26924.26, + "probability": 0.8247 + }, + { + "start": 26926.14, + "end": 26926.91, + "probability": 0.9776 + }, + { + "start": 26927.98, + "end": 26929.04, + "probability": 0.9009 + }, + { + "start": 26930.14, + "end": 26932.4, + "probability": 0.9136 + }, + { + "start": 26933.54, + "end": 26936.9, + "probability": 0.9829 + }, + { + "start": 26938.24, + "end": 26938.74, + "probability": 0.9805 + }, + { + "start": 26939.28, + "end": 26940.86, + "probability": 0.5215 + }, + { + "start": 26941.5, + "end": 26946.04, + "probability": 0.8772 + }, + { + "start": 26946.22, + "end": 26948.48, + "probability": 0.772 + }, + { + "start": 26949.04, + "end": 26951.8, + "probability": 0.9644 + }, + { + "start": 26953.3, + "end": 26955.02, + "probability": 0.7808 + }, + { + "start": 26956.86, + "end": 26957.41, + "probability": 0.7974 + }, + { + "start": 26958.96, + "end": 26963.3, + "probability": 0.9539 + }, + { + "start": 26964.22, + "end": 26965.01, + "probability": 0.8486 + }, + { + "start": 26965.36, + "end": 26967.46, + "probability": 0.9912 + }, + { + "start": 26967.8, + "end": 26970.32, + "probability": 0.7961 + }, + { + "start": 26970.88, + "end": 26973.48, + "probability": 0.9904 + }, + { + "start": 26974.34, + "end": 26976.82, + "probability": 0.9842 + }, + { + "start": 26978.04, + "end": 26978.8, + "probability": 0.5865 + }, + { + "start": 26979.3, + "end": 26980.64, + "probability": 0.9355 + }, + { + "start": 26981.26, + "end": 26984.48, + "probability": 0.9281 + }, + { + "start": 26985.42, + "end": 26986.56, + "probability": 0.5627 + }, + { + "start": 26986.96, + "end": 26987.34, + "probability": 0.3487 + }, + { + "start": 26987.34, + "end": 26987.96, + "probability": 0.5891 + }, + { + "start": 26988.36, + "end": 26988.92, + "probability": 0.7717 + }, + { + "start": 26989.06, + "end": 26990.5, + "probability": 0.6787 + }, + { + "start": 26990.6, + "end": 26993.3, + "probability": 0.9714 + }, + { + "start": 26993.38, + "end": 26994.8, + "probability": 0.8069 + }, + { + "start": 26995.04, + "end": 26996.14, + "probability": 0.871 + }, + { + "start": 26997.0, + "end": 26997.88, + "probability": 0.9338 + }, + { + "start": 26998.26, + "end": 27000.44, + "probability": 0.9701 + }, + { + "start": 27000.5, + "end": 27001.08, + "probability": 0.6882 + }, + { + "start": 27001.14, + "end": 27001.72, + "probability": 0.9814 + }, + { + "start": 27003.7, + "end": 27006.54, + "probability": 0.8314 + }, + { + "start": 27006.8, + "end": 27010.34, + "probability": 0.9718 + }, + { + "start": 27011.58, + "end": 27014.08, + "probability": 0.9855 + }, + { + "start": 27014.76, + "end": 27016.68, + "probability": 0.7018 + }, + { + "start": 27018.36, + "end": 27018.96, + "probability": 0.9294 + }, + { + "start": 27021.26, + "end": 27022.94, + "probability": 0.9829 + }, + { + "start": 27024.02, + "end": 27026.53, + "probability": 0.9977 + }, + { + "start": 27027.6, + "end": 27030.46, + "probability": 0.9639 + }, + { + "start": 27031.74, + "end": 27035.84, + "probability": 0.9943 + }, + { + "start": 27037.08, + "end": 27041.42, + "probability": 0.9717 + }, + { + "start": 27042.6, + "end": 27045.48, + "probability": 0.9839 + }, + { + "start": 27046.74, + "end": 27048.96, + "probability": 0.9343 + }, + { + "start": 27049.66, + "end": 27052.24, + "probability": 0.9868 + }, + { + "start": 27053.0, + "end": 27057.9, + "probability": 0.9974 + }, + { + "start": 27057.92, + "end": 27061.36, + "probability": 0.996 + }, + { + "start": 27062.36, + "end": 27063.62, + "probability": 0.8467 + }, + { + "start": 27064.16, + "end": 27067.5, + "probability": 0.9353 + }, + { + "start": 27067.64, + "end": 27072.12, + "probability": 0.9956 + }, + { + "start": 27075.54, + "end": 27078.88, + "probability": 0.9608 + }, + { + "start": 27078.98, + "end": 27080.48, + "probability": 0.9806 + }, + { + "start": 27080.52, + "end": 27081.12, + "probability": 0.8225 + }, + { + "start": 27082.16, + "end": 27084.46, + "probability": 0.9709 + }, + { + "start": 27085.74, + "end": 27086.3, + "probability": 0.5983 + }, + { + "start": 27086.96, + "end": 27087.54, + "probability": 0.5456 + }, + { + "start": 27088.34, + "end": 27090.08, + "probability": 0.9394 + }, + { + "start": 27092.12, + "end": 27095.14, + "probability": 0.973 + }, + { + "start": 27096.42, + "end": 27099.8, + "probability": 0.9945 + }, + { + "start": 27101.04, + "end": 27102.42, + "probability": 0.9473 + }, + { + "start": 27102.48, + "end": 27102.92, + "probability": 0.4834 + }, + { + "start": 27103.06, + "end": 27103.38, + "probability": 0.725 + }, + { + "start": 27103.44, + "end": 27105.58, + "probability": 0.9902 + }, + { + "start": 27106.32, + "end": 27107.48, + "probability": 0.9834 + }, + { + "start": 27110.2, + "end": 27111.2, + "probability": 0.909 + }, + { + "start": 27112.38, + "end": 27115.06, + "probability": 0.9962 + }, + { + "start": 27115.06, + "end": 27120.02, + "probability": 0.9516 + }, + { + "start": 27122.16, + "end": 27127.36, + "probability": 0.9773 + }, + { + "start": 27128.18, + "end": 27129.48, + "probability": 0.7005 + }, + { + "start": 27130.18, + "end": 27135.96, + "probability": 0.9945 + }, + { + "start": 27136.08, + "end": 27137.0, + "probability": 0.8621 + }, + { + "start": 27137.9, + "end": 27140.56, + "probability": 0.9978 + }, + { + "start": 27142.08, + "end": 27142.76, + "probability": 0.8402 + }, + { + "start": 27143.52, + "end": 27144.42, + "probability": 0.9955 + }, + { + "start": 27144.64, + "end": 27145.68, + "probability": 0.9489 + }, + { + "start": 27145.76, + "end": 27151.38, + "probability": 0.9979 + }, + { + "start": 27151.44, + "end": 27158.0, + "probability": 0.995 + }, + { + "start": 27159.08, + "end": 27161.16, + "probability": 0.9995 + }, + { + "start": 27161.16, + "end": 27164.48, + "probability": 0.9458 + }, + { + "start": 27165.66, + "end": 27169.52, + "probability": 0.9985 + }, + { + "start": 27170.42, + "end": 27171.38, + "probability": 0.9648 + }, + { + "start": 27172.12, + "end": 27174.28, + "probability": 0.974 + }, + { + "start": 27175.2, + "end": 27176.1, + "probability": 0.9676 + }, + { + "start": 27176.9, + "end": 27179.78, + "probability": 0.9564 + }, + { + "start": 27180.6, + "end": 27181.65, + "probability": 0.968 + }, + { + "start": 27182.68, + "end": 27183.42, + "probability": 0.9035 + }, + { + "start": 27183.48, + "end": 27184.42, + "probability": 0.8713 + }, + { + "start": 27184.56, + "end": 27185.46, + "probability": 0.9902 + }, + { + "start": 27186.16, + "end": 27188.56, + "probability": 0.9954 + }, + { + "start": 27189.76, + "end": 27193.58, + "probability": 0.93 + }, + { + "start": 27194.7, + "end": 27197.48, + "probability": 0.7154 + }, + { + "start": 27197.6, + "end": 27198.3, + "probability": 0.906 + }, + { + "start": 27198.42, + "end": 27200.1, + "probability": 0.8202 + }, + { + "start": 27203.14, + "end": 27204.82, + "probability": 0.9492 + }, + { + "start": 27205.44, + "end": 27208.2, + "probability": 0.9784 + }, + { + "start": 27208.32, + "end": 27210.26, + "probability": 0.9469 + }, + { + "start": 27210.78, + "end": 27212.96, + "probability": 0.9059 + }, + { + "start": 27214.12, + "end": 27217.82, + "probability": 0.9905 + }, + { + "start": 27217.88, + "end": 27220.4, + "probability": 0.8462 + }, + { + "start": 27220.4, + "end": 27223.26, + "probability": 0.9979 + }, + { + "start": 27223.36, + "end": 27224.6, + "probability": 0.7628 + }, + { + "start": 27224.72, + "end": 27225.44, + "probability": 0.6414 + }, + { + "start": 27226.02, + "end": 27226.66, + "probability": 0.7444 + }, + { + "start": 27226.84, + "end": 27227.18, + "probability": 0.9472 + }, + { + "start": 27227.18, + "end": 27229.18, + "probability": 0.8484 + }, + { + "start": 27229.18, + "end": 27230.48, + "probability": 0.5717 + }, + { + "start": 27230.52, + "end": 27230.86, + "probability": 0.8499 + }, + { + "start": 27230.9, + "end": 27230.96, + "probability": 0.7383 + }, + { + "start": 27230.96, + "end": 27232.26, + "probability": 0.9785 + }, + { + "start": 27232.36, + "end": 27233.22, + "probability": 0.7234 + }, + { + "start": 27233.38, + "end": 27237.5, + "probability": 0.9106 + }, + { + "start": 27238.44, + "end": 27239.5, + "probability": 0.9287 + }, + { + "start": 27239.7, + "end": 27240.76, + "probability": 0.886 + }, + { + "start": 27241.1, + "end": 27242.14, + "probability": 0.9838 + }, + { + "start": 27243.34, + "end": 27246.62, + "probability": 0.6652 + }, + { + "start": 27247.06, + "end": 27248.14, + "probability": 0.5022 + }, + { + "start": 27248.26, + "end": 27249.38, + "probability": 0.9188 + }, + { + "start": 27249.66, + "end": 27252.82, + "probability": 0.9875 + }, + { + "start": 27252.98, + "end": 27256.62, + "probability": 0.7744 + }, + { + "start": 27256.62, + "end": 27257.2, + "probability": 0.5834 + }, + { + "start": 27257.74, + "end": 27258.78, + "probability": 0.9966 + }, + { + "start": 27259.36, + "end": 27262.9, + "probability": 0.9954 + }, + { + "start": 27263.68, + "end": 27265.12, + "probability": 0.9958 + }, + { + "start": 27265.66, + "end": 27269.38, + "probability": 0.9861 + }, + { + "start": 27269.46, + "end": 27269.68, + "probability": 0.7318 + }, + { + "start": 27269.76, + "end": 27272.0, + "probability": 0.9954 + }, + { + "start": 27272.6, + "end": 27276.32, + "probability": 0.9967 + }, + { + "start": 27276.86, + "end": 27279.54, + "probability": 0.9969 + }, + { + "start": 27280.1, + "end": 27281.36, + "probability": 0.697 + }, + { + "start": 27281.48, + "end": 27282.44, + "probability": 0.9946 + }, + { + "start": 27283.32, + "end": 27287.06, + "probability": 0.9859 + }, + { + "start": 27289.23, + "end": 27291.02, + "probability": 0.9976 + }, + { + "start": 27291.12, + "end": 27294.52, + "probability": 0.9978 + }, + { + "start": 27295.14, + "end": 27296.6, + "probability": 0.475 + }, + { + "start": 27297.54, + "end": 27302.78, + "probability": 0.9892 + }, + { + "start": 27302.84, + "end": 27304.6, + "probability": 0.9991 + }, + { + "start": 27305.18, + "end": 27306.24, + "probability": 0.9515 + }, + { + "start": 27306.32, + "end": 27306.78, + "probability": 0.9132 + }, + { + "start": 27306.92, + "end": 27310.06, + "probability": 0.9718 + }, + { + "start": 27310.16, + "end": 27311.78, + "probability": 0.7672 + }, + { + "start": 27312.02, + "end": 27312.46, + "probability": 0.6404 + }, + { + "start": 27312.6, + "end": 27318.06, + "probability": 0.9873 + }, + { + "start": 27319.08, + "end": 27323.28, + "probability": 0.9972 + }, + { + "start": 27323.9, + "end": 27326.14, + "probability": 0.8981 + }, + { + "start": 27327.04, + "end": 27328.16, + "probability": 0.9638 + }, + { + "start": 27328.86, + "end": 27330.38, + "probability": 0.9642 + }, + { + "start": 27330.68, + "end": 27335.0, + "probability": 0.9981 + }, + { + "start": 27335.64, + "end": 27339.46, + "probability": 0.7951 + }, + { + "start": 27339.46, + "end": 27342.58, + "probability": 0.9911 + }, + { + "start": 27343.16, + "end": 27348.74, + "probability": 0.996 + }, + { + "start": 27349.6, + "end": 27352.86, + "probability": 0.9953 + }, + { + "start": 27353.04, + "end": 27360.32, + "probability": 0.981 + }, + { + "start": 27360.98, + "end": 27365.0, + "probability": 0.9987 + }, + { + "start": 27365.22, + "end": 27367.24, + "probability": 0.835 + }, + { + "start": 27368.1, + "end": 27372.86, + "probability": 0.997 + }, + { + "start": 27373.1, + "end": 27374.64, + "probability": 0.7377 + }, + { + "start": 27374.98, + "end": 27376.7, + "probability": 0.94 + }, + { + "start": 27376.94, + "end": 27377.7, + "probability": 0.6954 + }, + { + "start": 27377.76, + "end": 27380.14, + "probability": 0.9881 + }, + { + "start": 27380.14, + "end": 27383.24, + "probability": 0.8354 + }, + { + "start": 27383.76, + "end": 27386.78, + "probability": 0.8987 + }, + { + "start": 27387.46, + "end": 27389.62, + "probability": 0.9987 + }, + { + "start": 27390.1, + "end": 27392.42, + "probability": 0.6656 + }, + { + "start": 27392.52, + "end": 27394.06, + "probability": 0.8604 + }, + { + "start": 27394.28, + "end": 27395.14, + "probability": 0.8977 + }, + { + "start": 27395.5, + "end": 27398.36, + "probability": 0.9863 + }, + { + "start": 27399.16, + "end": 27401.94, + "probability": 0.9963 + }, + { + "start": 27403.32, + "end": 27405.22, + "probability": 0.9486 + }, + { + "start": 27408.74, + "end": 27412.8, + "probability": 0.9983 + }, + { + "start": 27412.8, + "end": 27416.08, + "probability": 0.9985 + }, + { + "start": 27416.2, + "end": 27417.14, + "probability": 0.9047 + }, + { + "start": 27418.16, + "end": 27421.58, + "probability": 0.9959 + }, + { + "start": 27422.5, + "end": 27424.14, + "probability": 0.9494 + }, + { + "start": 27425.72, + "end": 27426.24, + "probability": 0.883 + }, + { + "start": 27428.58, + "end": 27429.12, + "probability": 0.9862 + }, + { + "start": 27429.96, + "end": 27430.6, + "probability": 0.9667 + }, + { + "start": 27432.24, + "end": 27433.32, + "probability": 0.9713 + }, + { + "start": 27434.74, + "end": 27436.96, + "probability": 0.9995 + }, + { + "start": 27439.58, + "end": 27445.48, + "probability": 0.9919 + }, + { + "start": 27446.94, + "end": 27449.51, + "probability": 0.9467 + }, + { + "start": 27450.84, + "end": 27451.66, + "probability": 0.9574 + }, + { + "start": 27452.36, + "end": 27456.76, + "probability": 0.974 + }, + { + "start": 27457.76, + "end": 27459.4, + "probability": 0.9867 + }, + { + "start": 27459.42, + "end": 27461.52, + "probability": 0.9834 + }, + { + "start": 27462.76, + "end": 27464.86, + "probability": 0.9076 + }, + { + "start": 27466.26, + "end": 27467.78, + "probability": 0.368 + }, + { + "start": 27467.84, + "end": 27468.59, + "probability": 0.7759 + }, + { + "start": 27468.74, + "end": 27470.02, + "probability": 0.4102 + }, + { + "start": 27470.16, + "end": 27471.6, + "probability": 0.8857 + }, + { + "start": 27471.64, + "end": 27472.03, + "probability": 0.8192 + }, + { + "start": 27472.18, + "end": 27473.44, + "probability": 0.8961 + }, + { + "start": 27473.56, + "end": 27474.86, + "probability": 0.7999 + }, + { + "start": 27474.98, + "end": 27477.62, + "probability": 0.1028 + }, + { + "start": 27477.96, + "end": 27478.77, + "probability": 0.8398 + }, + { + "start": 27478.94, + "end": 27479.62, + "probability": 0.012 + }, + { + "start": 27479.82, + "end": 27480.78, + "probability": 0.7543 + }, + { + "start": 27481.42, + "end": 27484.04, + "probability": 0.9044 + }, + { + "start": 27484.9, + "end": 27486.03, + "probability": 0.9502 + }, + { + "start": 27486.64, + "end": 27487.32, + "probability": 0.9581 + }, + { + "start": 27487.32, + "end": 27490.62, + "probability": 0.9557 + }, + { + "start": 27491.51, + "end": 27492.7, + "probability": 0.8352 + }, + { + "start": 27492.7, + "end": 27493.1, + "probability": 0.1219 + }, + { + "start": 27493.6, + "end": 27494.1, + "probability": 0.6677 + }, + { + "start": 27494.8, + "end": 27501.32, + "probability": 0.9924 + }, + { + "start": 27501.64, + "end": 27502.24, + "probability": 0.6484 + }, + { + "start": 27502.78, + "end": 27505.5, + "probability": 0.979 + }, + { + "start": 27506.54, + "end": 27509.54, + "probability": 0.7588 + }, + { + "start": 27509.66, + "end": 27514.14, + "probability": 0.9949 + }, + { + "start": 27515.0, + "end": 27518.42, + "probability": 0.8201 + }, + { + "start": 27519.24, + "end": 27523.38, + "probability": 0.9956 + }, + { + "start": 27523.38, + "end": 27526.63, + "probability": 0.9966 + }, + { + "start": 27526.82, + "end": 27530.52, + "probability": 0.9957 + }, + { + "start": 27531.7, + "end": 27534.4, + "probability": 0.8696 + }, + { + "start": 27534.92, + "end": 27536.0, + "probability": 0.9473 + }, + { + "start": 27536.06, + "end": 27539.9, + "probability": 0.9517 + }, + { + "start": 27540.94, + "end": 27543.84, + "probability": 0.9797 + }, + { + "start": 27544.92, + "end": 27545.86, + "probability": 0.9818 + }, + { + "start": 27546.88, + "end": 27549.56, + "probability": 0.9979 + }, + { + "start": 27549.78, + "end": 27553.94, + "probability": 0.9976 + }, + { + "start": 27556.02, + "end": 27558.72, + "probability": 0.838 + }, + { + "start": 27558.76, + "end": 27561.36, + "probability": 0.8521 + }, + { + "start": 27562.52, + "end": 27567.16, + "probability": 0.9277 + }, + { + "start": 27569.64, + "end": 27573.32, + "probability": 0.9896 + }, + { + "start": 27573.46, + "end": 27575.58, + "probability": 0.9937 + }, + { + "start": 27576.86, + "end": 27579.0, + "probability": 0.7788 + }, + { + "start": 27579.74, + "end": 27581.68, + "probability": 0.9988 + }, + { + "start": 27584.56, + "end": 27588.4, + "probability": 0.9594 + }, + { + "start": 27588.96, + "end": 27590.07, + "probability": 0.994 + }, + { + "start": 27590.76, + "end": 27592.96, + "probability": 0.9739 + }, + { + "start": 27594.44, + "end": 27595.42, + "probability": 0.9128 + }, + { + "start": 27596.3, + "end": 27597.34, + "probability": 0.8 + }, + { + "start": 27597.76, + "end": 27601.96, + "probability": 0.9943 + }, + { + "start": 27603.28, + "end": 27606.67, + "probability": 0.9977 + }, + { + "start": 27607.22, + "end": 27607.56, + "probability": 0.7064 + }, + { + "start": 27607.7, + "end": 27608.16, + "probability": 0.8237 + }, + { + "start": 27608.64, + "end": 27608.82, + "probability": 0.5446 + }, + { + "start": 27608.88, + "end": 27610.44, + "probability": 0.9766 + }, + { + "start": 27611.42, + "end": 27617.36, + "probability": 0.9747 + }, + { + "start": 27618.16, + "end": 27619.16, + "probability": 0.7822 + }, + { + "start": 27620.4, + "end": 27621.6, + "probability": 0.8938 + }, + { + "start": 27621.62, + "end": 27626.14, + "probability": 0.9978 + }, + { + "start": 27626.74, + "end": 27630.72, + "probability": 0.5844 + }, + { + "start": 27632.0, + "end": 27636.92, + "probability": 0.8206 + }, + { + "start": 27637.44, + "end": 27642.18, + "probability": 0.9867 + }, + { + "start": 27643.06, + "end": 27644.46, + "probability": 0.9915 + }, + { + "start": 27645.72, + "end": 27646.62, + "probability": 0.9141 + }, + { + "start": 27646.68, + "end": 27647.86, + "probability": 0.8165 + }, + { + "start": 27647.98, + "end": 27649.16, + "probability": 0.7715 + }, + { + "start": 27650.26, + "end": 27651.53, + "probability": 0.9844 + }, + { + "start": 27652.52, + "end": 27655.3, + "probability": 0.8185 + }, + { + "start": 27656.68, + "end": 27659.98, + "probability": 0.8834 + }, + { + "start": 27660.88, + "end": 27664.6, + "probability": 0.9958 + }, + { + "start": 27666.36, + "end": 27668.77, + "probability": 0.9898 + }, + { + "start": 27669.72, + "end": 27671.54, + "probability": 0.9915 + }, + { + "start": 27672.48, + "end": 27674.44, + "probability": 0.9731 + }, + { + "start": 27675.16, + "end": 27675.92, + "probability": 0.9921 + }, + { + "start": 27676.84, + "end": 27680.42, + "probability": 0.9985 + }, + { + "start": 27683.56, + "end": 27687.16, + "probability": 0.9805 + }, + { + "start": 27688.24, + "end": 27692.04, + "probability": 0.9989 + }, + { + "start": 27692.56, + "end": 27696.3, + "probability": 0.9921 + }, + { + "start": 27697.64, + "end": 27698.86, + "probability": 0.4706 + }, + { + "start": 27701.92, + "end": 27703.9, + "probability": 0.9878 + }, + { + "start": 27704.08, + "end": 27704.44, + "probability": 0.8295 + }, + { + "start": 27704.5, + "end": 27706.52, + "probability": 0.9722 + }, + { + "start": 27708.82, + "end": 27710.7, + "probability": 0.9979 + }, + { + "start": 27713.7, + "end": 27715.08, + "probability": 0.9874 + }, + { + "start": 27715.78, + "end": 27718.4, + "probability": 0.95 + }, + { + "start": 27719.24, + "end": 27721.36, + "probability": 0.9615 + }, + { + "start": 27721.7, + "end": 27722.68, + "probability": 0.981 + }, + { + "start": 27723.56, + "end": 27727.76, + "probability": 0.8041 + }, + { + "start": 27729.88, + "end": 27736.18, + "probability": 0.9711 + }, + { + "start": 27736.6, + "end": 27737.42, + "probability": 0.8239 + }, + { + "start": 27738.36, + "end": 27739.48, + "probability": 0.9932 + }, + { + "start": 27739.54, + "end": 27741.22, + "probability": 0.9906 + }, + { + "start": 27742.16, + "end": 27743.32, + "probability": 0.9481 + }, + { + "start": 27744.48, + "end": 27751.36, + "probability": 0.9897 + }, + { + "start": 27753.03, + "end": 27756.7, + "probability": 0.65 + }, + { + "start": 27758.42, + "end": 27762.48, + "probability": 0.9941 + }, + { + "start": 27763.36, + "end": 27764.48, + "probability": 0.9606 + }, + { + "start": 27765.18, + "end": 27767.34, + "probability": 0.9615 + }, + { + "start": 27768.28, + "end": 27770.04, + "probability": 0.9831 + }, + { + "start": 27770.12, + "end": 27773.28, + "probability": 0.9688 + }, + { + "start": 27774.5, + "end": 27775.06, + "probability": 0.3764 + }, + { + "start": 27776.74, + "end": 27778.98, + "probability": 0.9612 + }, + { + "start": 27779.16, + "end": 27782.4, + "probability": 0.7262 + }, + { + "start": 27783.86, + "end": 27790.88, + "probability": 0.9573 + }, + { + "start": 27791.02, + "end": 27792.34, + "probability": 0.9657 + }, + { + "start": 27794.82, + "end": 27796.64, + "probability": 0.9866 + }, + { + "start": 27797.74, + "end": 27804.06, + "probability": 0.9963 + }, + { + "start": 27804.22, + "end": 27805.36, + "probability": 0.9195 + }, + { + "start": 27806.16, + "end": 27807.34, + "probability": 0.9824 + }, + { + "start": 27808.76, + "end": 27812.14, + "probability": 0.9973 + }, + { + "start": 27812.14, + "end": 27815.48, + "probability": 0.9545 + }, + { + "start": 27815.5, + "end": 27817.38, + "probability": 0.8581 + }, + { + "start": 27818.38, + "end": 27819.3, + "probability": 0.8718 + }, + { + "start": 27819.36, + "end": 27821.44, + "probability": 0.7866 + }, + { + "start": 27823.28, + "end": 27827.48, + "probability": 0.9565 + }, + { + "start": 27828.7, + "end": 27829.92, + "probability": 0.9276 + }, + { + "start": 27831.36, + "end": 27833.72, + "probability": 0.9668 + }, + { + "start": 27834.36, + "end": 27835.22, + "probability": 0.9902 + }, + { + "start": 27836.82, + "end": 27837.84, + "probability": 0.9395 + }, + { + "start": 27838.9, + "end": 27840.38, + "probability": 0.9571 + }, + { + "start": 27841.52, + "end": 27842.76, + "probability": 0.8448 + }, + { + "start": 27844.78, + "end": 27849.28, + "probability": 0.8911 + }, + { + "start": 27850.2, + "end": 27852.32, + "probability": 0.75 + }, + { + "start": 27855.74, + "end": 27856.32, + "probability": 0.5129 + }, + { + "start": 27860.78, + "end": 27861.25, + "probability": 0.2781 + }, + { + "start": 27863.32, + "end": 27865.9, + "probability": 0.9915 + }, + { + "start": 27867.9, + "end": 27869.2, + "probability": 0.9878 + }, + { + "start": 27870.46, + "end": 27871.56, + "probability": 0.9877 + }, + { + "start": 27873.68, + "end": 27874.72, + "probability": 0.5371 + }, + { + "start": 27875.62, + "end": 27876.9, + "probability": 0.8074 + }, + { + "start": 27877.32, + "end": 27878.08, + "probability": 0.5728 + }, + { + "start": 27878.34, + "end": 27882.22, + "probability": 0.9814 + }, + { + "start": 27882.36, + "end": 27885.12, + "probability": 0.96 + }, + { + "start": 27886.72, + "end": 27887.71, + "probability": 0.9966 + }, + { + "start": 27888.38, + "end": 27892.26, + "probability": 0.9982 + }, + { + "start": 27893.82, + "end": 27894.38, + "probability": 0.818 + }, + { + "start": 27895.84, + "end": 27897.54, + "probability": 0.9964 + }, + { + "start": 27898.32, + "end": 27900.5, + "probability": 0.7549 + }, + { + "start": 27901.64, + "end": 27905.18, + "probability": 0.9771 + }, + { + "start": 27905.78, + "end": 27906.44, + "probability": 0.8271 + }, + { + "start": 27907.6, + "end": 27908.0, + "probability": 0.9117 + }, + { + "start": 27910.24, + "end": 27910.56, + "probability": 0.2788 + }, + { + "start": 27910.58, + "end": 27911.56, + "probability": 0.6474 + }, + { + "start": 27938.34, + "end": 27942.66, + "probability": 0.6811 + }, + { + "start": 27943.32, + "end": 27944.3, + "probability": 0.5903 + }, + { + "start": 27946.3, + "end": 27950.42, + "probability": 0.9416 + }, + { + "start": 27951.22, + "end": 27954.75, + "probability": 0.9926 + }, + { + "start": 27955.84, + "end": 27959.0, + "probability": 0.9931 + }, + { + "start": 27959.98, + "end": 27964.16, + "probability": 0.9988 + }, + { + "start": 27965.06, + "end": 27969.0, + "probability": 0.9937 + }, + { + "start": 27969.12, + "end": 27970.22, + "probability": 0.7903 + }, + { + "start": 27970.3, + "end": 27971.3, + "probability": 0.9927 + }, + { + "start": 27972.32, + "end": 27975.14, + "probability": 0.9956 + }, + { + "start": 27976.46, + "end": 27977.72, + "probability": 0.9559 + }, + { + "start": 27981.02, + "end": 27982.46, + "probability": 0.8679 + }, + { + "start": 27983.08, + "end": 27984.5, + "probability": 0.9982 + }, + { + "start": 27985.08, + "end": 27988.29, + "probability": 0.9983 + }, + { + "start": 27989.24, + "end": 27992.3, + "probability": 0.9502 + }, + { + "start": 27993.32, + "end": 27999.88, + "probability": 0.9808 + }, + { + "start": 28000.56, + "end": 28003.08, + "probability": 0.9214 + }, + { + "start": 28005.1, + "end": 28006.76, + "probability": 0.9869 + }, + { + "start": 28007.68, + "end": 28012.62, + "probability": 0.9917 + }, + { + "start": 28013.58, + "end": 28014.32, + "probability": 0.8892 + }, + { + "start": 28015.08, + "end": 28018.94, + "probability": 0.9893 + }, + { + "start": 28018.94, + "end": 28022.06, + "probability": 0.9931 + }, + { + "start": 28022.14, + "end": 28025.04, + "probability": 0.9811 + }, + { + "start": 28025.32, + "end": 28025.82, + "probability": 0.9337 + }, + { + "start": 28025.86, + "end": 28026.92, + "probability": 0.9819 + }, + { + "start": 28026.98, + "end": 28028.04, + "probability": 0.9779 + }, + { + "start": 28028.54, + "end": 28031.88, + "probability": 0.994 + }, + { + "start": 28033.76, + "end": 28037.42, + "probability": 0.98 + }, + { + "start": 28038.48, + "end": 28043.86, + "probability": 0.9673 + }, + { + "start": 28045.26, + "end": 28047.26, + "probability": 0.9729 + }, + { + "start": 28049.78, + "end": 28052.36, + "probability": 0.877 + }, + { + "start": 28053.07, + "end": 28058.56, + "probability": 0.9905 + }, + { + "start": 28058.56, + "end": 28061.9, + "probability": 0.8465 + }, + { + "start": 28063.24, + "end": 28066.06, + "probability": 0.7458 + }, + { + "start": 28066.42, + "end": 28068.28, + "probability": 0.9832 + }, + { + "start": 28068.7, + "end": 28069.43, + "probability": 0.9933 + }, + { + "start": 28069.64, + "end": 28070.3, + "probability": 0.8884 + }, + { + "start": 28071.22, + "end": 28077.66, + "probability": 0.9896 + }, + { + "start": 28078.34, + "end": 28082.72, + "probability": 0.9971 + }, + { + "start": 28082.72, + "end": 28086.14, + "probability": 0.9967 + }, + { + "start": 28086.72, + "end": 28087.72, + "probability": 0.544 + }, + { + "start": 28089.22, + "end": 28090.01, + "probability": 0.9753 + }, + { + "start": 28090.74, + "end": 28093.56, + "probability": 0.7392 + }, + { + "start": 28094.3, + "end": 28096.62, + "probability": 0.9823 + }, + { + "start": 28097.92, + "end": 28098.84, + "probability": 0.9136 + }, + { + "start": 28099.54, + "end": 28102.26, + "probability": 0.9903 + }, + { + "start": 28103.0, + "end": 28106.1, + "probability": 0.9998 + }, + { + "start": 28108.42, + "end": 28111.84, + "probability": 0.9994 + }, + { + "start": 28113.2, + "end": 28114.07, + "probability": 0.6436 + }, + { + "start": 28119.66, + "end": 28121.12, + "probability": 0.993 + }, + { + "start": 28121.98, + "end": 28123.08, + "probability": 0.9957 + }, + { + "start": 28124.42, + "end": 28125.82, + "probability": 0.9435 + }, + { + "start": 28126.94, + "end": 28131.32, + "probability": 0.9953 + }, + { + "start": 28132.56, + "end": 28136.1, + "probability": 0.7378 + }, + { + "start": 28137.12, + "end": 28139.82, + "probability": 0.7361 + }, + { + "start": 28141.94, + "end": 28143.0, + "probability": 0.9413 + }, + { + "start": 28143.5, + "end": 28147.71, + "probability": 0.9914 + }, + { + "start": 28149.8, + "end": 28152.08, + "probability": 0.992 + }, + { + "start": 28152.72, + "end": 28156.66, + "probability": 0.9794 + }, + { + "start": 28157.3, + "end": 28160.92, + "probability": 0.9895 + }, + { + "start": 28161.08, + "end": 28162.28, + "probability": 0.9976 + }, + { + "start": 28167.4, + "end": 28171.02, + "probability": 0.997 + }, + { + "start": 28171.22, + "end": 28174.26, + "probability": 0.9964 + }, + { + "start": 28174.34, + "end": 28178.32, + "probability": 0.979 + }, + { + "start": 28178.76, + "end": 28182.3, + "probability": 0.9858 + }, + { + "start": 28182.48, + "end": 28183.54, + "probability": 0.8892 + }, + { + "start": 28184.08, + "end": 28185.04, + "probability": 0.8132 + }, + { + "start": 28187.12, + "end": 28187.62, + "probability": 0.8938 + }, + { + "start": 28188.22, + "end": 28192.28, + "probability": 0.9799 + }, + { + "start": 28192.7, + "end": 28197.2, + "probability": 0.9971 + }, + { + "start": 28197.82, + "end": 28198.16, + "probability": 0.9189 + }, + { + "start": 28199.2, + "end": 28200.78, + "probability": 0.9168 + }, + { + "start": 28202.34, + "end": 28206.3, + "probability": 0.7642 + }, + { + "start": 28207.58, + "end": 28210.84, + "probability": 0.9995 + }, + { + "start": 28211.74, + "end": 28219.42, + "probability": 0.9744 + }, + { + "start": 28222.58, + "end": 28223.33, + "probability": 0.9956 + }, + { + "start": 28227.86, + "end": 28229.72, + "probability": 0.975 + }, + { + "start": 28230.8, + "end": 28232.74, + "probability": 0.6887 + }, + { + "start": 28232.8, + "end": 28233.58, + "probability": 0.6648 + }, + { + "start": 28233.62, + "end": 28234.48, + "probability": 0.7876 + }, + { + "start": 28235.04, + "end": 28236.94, + "probability": 0.9536 + }, + { + "start": 28238.14, + "end": 28242.48, + "probability": 0.9877 + }, + { + "start": 28243.22, + "end": 28243.72, + "probability": 0.9454 + }, + { + "start": 28245.24, + "end": 28248.64, + "probability": 0.9973 + }, + { + "start": 28250.56, + "end": 28251.32, + "probability": 0.9224 + }, + { + "start": 28258.02, + "end": 28259.38, + "probability": 0.9824 + }, + { + "start": 28261.16, + "end": 28265.56, + "probability": 0.8309 + }, + { + "start": 28268.64, + "end": 28270.88, + "probability": 0.8473 + }, + { + "start": 28272.26, + "end": 28273.6, + "probability": 0.7993 + }, + { + "start": 28274.86, + "end": 28278.22, + "probability": 0.8368 + }, + { + "start": 28278.32, + "end": 28279.24, + "probability": 0.8438 + }, + { + "start": 28279.98, + "end": 28284.3, + "probability": 0.9802 + }, + { + "start": 28286.08, + "end": 28288.54, + "probability": 0.8428 + }, + { + "start": 28289.36, + "end": 28290.94, + "probability": 0.9726 + }, + { + "start": 28292.44, + "end": 28296.9, + "probability": 0.9785 + }, + { + "start": 28299.84, + "end": 28300.0, + "probability": 0.2792 + }, + { + "start": 28300.08, + "end": 28300.22, + "probability": 0.6284 + }, + { + "start": 28300.34, + "end": 28302.36, + "probability": 0.8645 + }, + { + "start": 28302.9, + "end": 28305.52, + "probability": 0.9551 + }, + { + "start": 28307.26, + "end": 28309.16, + "probability": 0.9746 + }, + { + "start": 28309.34, + "end": 28312.8, + "probability": 0.9897 + }, + { + "start": 28315.06, + "end": 28316.66, + "probability": 0.9346 + }, + { + "start": 28317.0, + "end": 28317.76, + "probability": 0.719 + }, + { + "start": 28318.16, + "end": 28321.58, + "probability": 0.9987 + }, + { + "start": 28321.58, + "end": 28324.1, + "probability": 0.9984 + }, + { + "start": 28325.64, + "end": 28329.1, + "probability": 0.994 + }, + { + "start": 28329.72, + "end": 28332.36, + "probability": 0.9989 + }, + { + "start": 28332.62, + "end": 28334.0, + "probability": 0.8268 + }, + { + "start": 28334.42, + "end": 28335.1, + "probability": 0.923 + }, + { + "start": 28336.52, + "end": 28340.46, + "probability": 0.9677 + }, + { + "start": 28340.46, + "end": 28345.3, + "probability": 0.999 + }, + { + "start": 28345.84, + "end": 28346.36, + "probability": 0.8673 + }, + { + "start": 28348.08, + "end": 28349.1, + "probability": 0.6965 + }, + { + "start": 28349.78, + "end": 28352.64, + "probability": 0.8707 + }, + { + "start": 28353.22, + "end": 28354.62, + "probability": 0.9918 + }, + { + "start": 28356.22, + "end": 28359.18, + "probability": 0.8323 + }, + { + "start": 28359.36, + "end": 28360.32, + "probability": 0.8419 + }, + { + "start": 28361.3, + "end": 28364.04, + "probability": 0.9993 + }, + { + "start": 28364.6, + "end": 28365.92, + "probability": 0.8397 + }, + { + "start": 28366.86, + "end": 28370.2, + "probability": 0.9766 + }, + { + "start": 28370.82, + "end": 28373.5, + "probability": 0.9753 + }, + { + "start": 28376.06, + "end": 28376.48, + "probability": 0.9772 + }, + { + "start": 28376.62, + "end": 28377.32, + "probability": 0.8821 + }, + { + "start": 28377.4, + "end": 28378.14, + "probability": 0.7352 + }, + { + "start": 28378.18, + "end": 28378.96, + "probability": 0.9019 + }, + { + "start": 28379.52, + "end": 28384.1, + "probability": 0.9674 + }, + { + "start": 28384.82, + "end": 28386.04, + "probability": 0.9893 + }, + { + "start": 28386.96, + "end": 28391.0, + "probability": 0.9869 + }, + { + "start": 28392.26, + "end": 28395.53, + "probability": 0.9892 + }, + { + "start": 28396.6, + "end": 28398.86, + "probability": 0.9576 + }, + { + "start": 28399.94, + "end": 28400.86, + "probability": 0.9456 + }, + { + "start": 28402.74, + "end": 28403.9, + "probability": 0.994 + }, + { + "start": 28405.3, + "end": 28409.74, + "probability": 0.6712 + }, + { + "start": 28413.58, + "end": 28414.84, + "probability": 0.8293 + }, + { + "start": 28416.46, + "end": 28418.38, + "probability": 0.8261 + }, + { + "start": 28419.78, + "end": 28421.94, + "probability": 0.6953 + }, + { + "start": 28423.04, + "end": 28423.8, + "probability": 0.9702 + }, + { + "start": 28425.36, + "end": 28426.12, + "probability": 0.679 + }, + { + "start": 28427.46, + "end": 28429.5, + "probability": 0.8857 + }, + { + "start": 28430.68, + "end": 28433.8, + "probability": 0.8933 + }, + { + "start": 28434.97, + "end": 28436.35, + "probability": 0.3241 + }, + { + "start": 28437.66, + "end": 28441.0, + "probability": 0.9808 + }, + { + "start": 28441.24, + "end": 28442.02, + "probability": 0.7702 + }, + { + "start": 28442.06, + "end": 28442.86, + "probability": 0.7744 + }, + { + "start": 28446.72, + "end": 28447.22, + "probability": 0.6517 + }, + { + "start": 28451.8, + "end": 28458.34, + "probability": 0.9941 + }, + { + "start": 28458.38, + "end": 28459.1, + "probability": 0.7024 + }, + { + "start": 28461.12, + "end": 28463.92, + "probability": 0.9386 + }, + { + "start": 28464.1, + "end": 28465.2, + "probability": 0.9218 + }, + { + "start": 28465.98, + "end": 28466.66, + "probability": 0.8489 + }, + { + "start": 28467.84, + "end": 28469.16, + "probability": 0.9893 + }, + { + "start": 28470.28, + "end": 28471.3, + "probability": 0.9764 + }, + { + "start": 28473.4, + "end": 28475.84, + "probability": 0.9627 + }, + { + "start": 28476.9, + "end": 28479.7, + "probability": 0.8901 + }, + { + "start": 28480.82, + "end": 28482.66, + "probability": 0.9673 + }, + { + "start": 28484.2, + "end": 28485.28, + "probability": 0.8877 + }, + { + "start": 28486.26, + "end": 28488.26, + "probability": 0.9902 + }, + { + "start": 28488.46, + "end": 28489.31, + "probability": 0.7769 + }, + { + "start": 28490.52, + "end": 28492.76, + "probability": 0.997 + }, + { + "start": 28494.22, + "end": 28498.46, + "probability": 0.9717 + }, + { + "start": 28499.66, + "end": 28501.0, + "probability": 0.9281 + }, + { + "start": 28501.06, + "end": 28502.64, + "probability": 0.4172 + }, + { + "start": 28505.68, + "end": 28507.34, + "probability": 0.1294 + }, + { + "start": 28507.58, + "end": 28510.12, + "probability": 0.9963 + }, + { + "start": 28510.76, + "end": 28511.64, + "probability": 0.9185 + }, + { + "start": 28512.8, + "end": 28514.3, + "probability": 0.9824 + }, + { + "start": 28516.16, + "end": 28518.98, + "probability": 0.9768 + }, + { + "start": 28519.76, + "end": 28521.18, + "probability": 0.9694 + }, + { + "start": 28521.86, + "end": 28523.08, + "probability": 0.8203 + }, + { + "start": 28524.48, + "end": 28527.08, + "probability": 0.9977 + }, + { + "start": 28527.74, + "end": 28529.16, + "probability": 0.976 + }, + { + "start": 28530.88, + "end": 28533.12, + "probability": 0.9821 + }, + { + "start": 28535.18, + "end": 28537.08, + "probability": 0.9856 + }, + { + "start": 28537.14, + "end": 28538.72, + "probability": 0.9932 + }, + { + "start": 28538.76, + "end": 28539.7, + "probability": 0.855 + }, + { + "start": 28540.58, + "end": 28541.45, + "probability": 0.999 + }, + { + "start": 28543.2, + "end": 28548.08, + "probability": 0.9925 + }, + { + "start": 28548.66, + "end": 28549.02, + "probability": 0.8809 + }, + { + "start": 28549.58, + "end": 28550.26, + "probability": 0.9813 + }, + { + "start": 28551.32, + "end": 28553.12, + "probability": 0.9985 + }, + { + "start": 28554.0, + "end": 28555.72, + "probability": 0.9615 + }, + { + "start": 28557.04, + "end": 28560.12, + "probability": 0.9811 + }, + { + "start": 28561.54, + "end": 28564.56, + "probability": 0.9761 + }, + { + "start": 28566.2, + "end": 28567.71, + "probability": 0.9814 + }, + { + "start": 28569.68, + "end": 28572.16, + "probability": 0.9961 + }, + { + "start": 28572.38, + "end": 28572.98, + "probability": 0.8988 + }, + { + "start": 28573.12, + "end": 28575.9, + "probability": 0.9966 + }, + { + "start": 28577.42, + "end": 28580.42, + "probability": 0.9897 + }, + { + "start": 28580.42, + "end": 28581.19, + "probability": 0.9769 + }, + { + "start": 28581.7, + "end": 28582.6, + "probability": 0.8024 + }, + { + "start": 28583.58, + "end": 28588.1, + "probability": 0.9946 + }, + { + "start": 28588.2, + "end": 28589.3, + "probability": 0.5781 + }, + { + "start": 28590.36, + "end": 28591.32, + "probability": 0.7703 + }, + { + "start": 28593.04, + "end": 28596.8, + "probability": 0.9847 + }, + { + "start": 28597.44, + "end": 28600.0, + "probability": 0.7471 + }, + { + "start": 28601.16, + "end": 28603.16, + "probability": 0.9784 + }, + { + "start": 28604.5, + "end": 28607.14, + "probability": 0.762 + }, + { + "start": 28607.82, + "end": 28608.44, + "probability": 0.84 + }, + { + "start": 28609.78, + "end": 28610.84, + "probability": 0.9845 + }, + { + "start": 28611.6, + "end": 28612.98, + "probability": 0.9875 + }, + { + "start": 28614.72, + "end": 28619.18, + "probability": 0.985 + }, + { + "start": 28621.22, + "end": 28622.78, + "probability": 0.9795 + }, + { + "start": 28622.86, + "end": 28623.7, + "probability": 0.9612 + }, + { + "start": 28623.76, + "end": 28626.68, + "probability": 0.9631 + }, + { + "start": 28627.06, + "end": 28628.7, + "probability": 0.4991 + }, + { + "start": 28629.8, + "end": 28631.22, + "probability": 0.9202 + }, + { + "start": 28631.86, + "end": 28633.52, + "probability": 0.9131 + }, + { + "start": 28635.18, + "end": 28638.66, + "probability": 0.9771 + }, + { + "start": 28639.52, + "end": 28640.82, + "probability": 0.6822 + }, + { + "start": 28642.34, + "end": 28644.26, + "probability": 0.9946 + }, + { + "start": 28644.68, + "end": 28646.72, + "probability": 0.9902 + }, + { + "start": 28646.9, + "end": 28647.68, + "probability": 0.9517 + }, + { + "start": 28647.92, + "end": 28648.8, + "probability": 0.9618 + }, + { + "start": 28650.6, + "end": 28652.86, + "probability": 0.9966 + }, + { + "start": 28654.78, + "end": 28658.32, + "probability": 0.8376 + }, + { + "start": 28668.74, + "end": 28668.98, + "probability": 0.6258 + }, + { + "start": 28670.04, + "end": 28671.2, + "probability": 0.9958 + }, + { + "start": 28671.28, + "end": 28672.06, + "probability": 0.7664 + }, + { + "start": 28672.74, + "end": 28675.8, + "probability": 0.9225 + }, + { + "start": 28675.88, + "end": 28681.36, + "probability": 0.9966 + }, + { + "start": 28681.42, + "end": 28681.88, + "probability": 0.7009 + }, + { + "start": 28682.42, + "end": 28684.3, + "probability": 0.984 + }, + { + "start": 28688.76, + "end": 28690.14, + "probability": 0.7928 + }, + { + "start": 28693.76, + "end": 28695.2, + "probability": 0.6846 + }, + { + "start": 28695.8, + "end": 28701.86, + "probability": 0.9956 + }, + { + "start": 28703.22, + "end": 28704.32, + "probability": 0.6744 + }, + { + "start": 28704.44, + "end": 28705.46, + "probability": 0.7616 + }, + { + "start": 28705.54, + "end": 28706.71, + "probability": 0.6473 + }, + { + "start": 28706.84, + "end": 28707.26, + "probability": 0.4585 + }, + { + "start": 28707.34, + "end": 28708.38, + "probability": 0.7443 + }, + { + "start": 28709.8, + "end": 28711.05, + "probability": 0.9946 + }, + { + "start": 28711.46, + "end": 28713.92, + "probability": 0.933 + }, + { + "start": 28714.12, + "end": 28717.48, + "probability": 0.9932 + }, + { + "start": 28718.86, + "end": 28720.08, + "probability": 0.9878 + }, + { + "start": 28720.52, + "end": 28721.22, + "probability": 0.9574 + }, + { + "start": 28722.46, + "end": 28724.98, + "probability": 0.999 + }, + { + "start": 28726.96, + "end": 28730.2, + "probability": 0.9711 + }, + { + "start": 28731.82, + "end": 28734.16, + "probability": 0.9852 + }, + { + "start": 28734.38, + "end": 28734.72, + "probability": 0.632 + }, + { + "start": 28734.86, + "end": 28740.08, + "probability": 0.7274 + }, + { + "start": 28740.36, + "end": 28740.7, + "probability": 0.9301 + }, + { + "start": 28740.82, + "end": 28741.92, + "probability": 0.9753 + }, + { + "start": 28743.74, + "end": 28745.14, + "probability": 0.9979 + }, + { + "start": 28747.78, + "end": 28750.2, + "probability": 0.9694 + }, + { + "start": 28750.46, + "end": 28751.98, + "probability": 0.8751 + }, + { + "start": 28752.8, + "end": 28754.92, + "probability": 0.8604 + }, + { + "start": 28755.04, + "end": 28756.42, + "probability": 0.9812 + }, + { + "start": 28759.32, + "end": 28760.98, + "probability": 0.7066 + }, + { + "start": 28763.12, + "end": 28766.56, + "probability": 0.9707 + }, + { + "start": 28766.84, + "end": 28768.7, + "probability": 0.9864 + }, + { + "start": 28769.36, + "end": 28770.72, + "probability": 0.9802 + }, + { + "start": 28771.34, + "end": 28776.38, + "probability": 0.9816 + }, + { + "start": 28778.1, + "end": 28779.75, + "probability": 0.4814 + }, + { + "start": 28781.2, + "end": 28784.54, + "probability": 0.9699 + }, + { + "start": 28786.72, + "end": 28787.81, + "probability": 0.9315 + }, + { + "start": 28788.76, + "end": 28790.7, + "probability": 0.9875 + }, + { + "start": 28790.94, + "end": 28791.58, + "probability": 0.4008 + }, + { + "start": 28791.7, + "end": 28793.16, + "probability": 0.9188 + }, + { + "start": 28793.28, + "end": 28794.35, + "probability": 0.963 + }, + { + "start": 28794.86, + "end": 28798.1, + "probability": 0.9657 + }, + { + "start": 28798.68, + "end": 28801.2, + "probability": 0.9897 + }, + { + "start": 28802.7, + "end": 28806.3, + "probability": 0.9968 + }, + { + "start": 28807.78, + "end": 28809.7, + "probability": 0.9954 + }, + { + "start": 28809.8, + "end": 28812.16, + "probability": 0.7002 + }, + { + "start": 28812.64, + "end": 28813.5, + "probability": 0.8473 + }, + { + "start": 28814.2, + "end": 28815.22, + "probability": 0.4777 + }, + { + "start": 28816.96, + "end": 28818.26, + "probability": 0.9897 + }, + { + "start": 28818.78, + "end": 28821.28, + "probability": 0.9178 + }, + { + "start": 28821.82, + "end": 28824.58, + "probability": 0.9912 + }, + { + "start": 28825.78, + "end": 28827.36, + "probability": 0.999 + }, + { + "start": 28828.08, + "end": 28829.96, + "probability": 0.9993 + }, + { + "start": 28831.26, + "end": 28832.76, + "probability": 0.7195 + }, + { + "start": 28833.84, + "end": 28835.58, + "probability": 0.8086 + }, + { + "start": 28836.04, + "end": 28838.62, + "probability": 0.9902 + }, + { + "start": 28841.13, + "end": 28845.02, + "probability": 0.8312 + }, + { + "start": 28846.26, + "end": 28848.62, + "probability": 0.5829 + }, + { + "start": 28849.18, + "end": 28851.36, + "probability": 0.988 + }, + { + "start": 28854.12, + "end": 28854.68, + "probability": 0.6138 + }, + { + "start": 28857.78, + "end": 28860.52, + "probability": 0.9965 + }, + { + "start": 28861.38, + "end": 28862.06, + "probability": 0.8911 + }, + { + "start": 28862.62, + "end": 28870.48, + "probability": 0.999 + }, + { + "start": 28873.38, + "end": 28875.66, + "probability": 0.9357 + }, + { + "start": 28876.18, + "end": 28877.76, + "probability": 0.9958 + }, + { + "start": 28878.02, + "end": 28879.92, + "probability": 0.9958 + }, + { + "start": 28880.62, + "end": 28881.98, + "probability": 0.9988 + }, + { + "start": 28883.32, + "end": 28884.98, + "probability": 0.9974 + }, + { + "start": 28886.5, + "end": 28888.78, + "probability": 0.9965 + }, + { + "start": 28890.76, + "end": 28893.84, + "probability": 0.987 + }, + { + "start": 28894.96, + "end": 28899.12, + "probability": 0.9905 + }, + { + "start": 28899.68, + "end": 28902.4, + "probability": 0.9976 + }, + { + "start": 28903.4, + "end": 28907.14, + "probability": 0.9976 + }, + { + "start": 28908.6, + "end": 28911.12, + "probability": 0.9954 + }, + { + "start": 28912.26, + "end": 28913.78, + "probability": 0.9854 + }, + { + "start": 28915.04, + "end": 28917.74, + "probability": 0.9976 + }, + { + "start": 28917.9, + "end": 28918.7, + "probability": 0.9429 + }, + { + "start": 28920.92, + "end": 28921.74, + "probability": 0.9483 + }, + { + "start": 28923.86, + "end": 28926.2, + "probability": 0.5621 + }, + { + "start": 28926.86, + "end": 28930.14, + "probability": 0.5449 + }, + { + "start": 28930.14, + "end": 28933.1, + "probability": 0.9576 + }, + { + "start": 28939.98, + "end": 28944.32, + "probability": 0.9749 + }, + { + "start": 28945.14, + "end": 28946.54, + "probability": 0.9622 + }, + { + "start": 28946.72, + "end": 28947.9, + "probability": 0.9643 + }, + { + "start": 28948.02, + "end": 28949.78, + "probability": 0.9863 + }, + { + "start": 28951.52, + "end": 28954.52, + "probability": 0.991 + }, + { + "start": 28955.9, + "end": 28956.96, + "probability": 0.8363 + }, + { + "start": 28957.04, + "end": 28960.8, + "probability": 0.951 + }, + { + "start": 28961.4, + "end": 28962.34, + "probability": 0.9471 + }, + { + "start": 28963.38, + "end": 28965.74, + "probability": 0.9753 + }, + { + "start": 28966.32, + "end": 28970.1, + "probability": 0.9599 + }, + { + "start": 28971.94, + "end": 28975.16, + "probability": 0.9178 + }, + { + "start": 28977.42, + "end": 28978.66, + "probability": 0.9358 + }, + { + "start": 28980.06, + "end": 28982.36, + "probability": 0.666 + }, + { + "start": 28983.6, + "end": 28984.98, + "probability": 0.9021 + }, + { + "start": 28986.92, + "end": 28988.52, + "probability": 0.9717 + }, + { + "start": 28989.36, + "end": 28991.88, + "probability": 0.9919 + }, + { + "start": 28992.92, + "end": 28995.56, + "probability": 0.8447 + }, + { + "start": 28996.14, + "end": 28997.12, + "probability": 0.786 + }, + { + "start": 28997.16, + "end": 28999.64, + "probability": 0.3796 + }, + { + "start": 28999.74, + "end": 29002.96, + "probability": 0.9334 + }, + { + "start": 29003.16, + "end": 29007.04, + "probability": 0.8212 + }, + { + "start": 29007.72, + "end": 29010.64, + "probability": 0.9753 + }, + { + "start": 29011.8, + "end": 29015.92, + "probability": 0.9932 + }, + { + "start": 29016.74, + "end": 29019.52, + "probability": 0.9677 + }, + { + "start": 29020.06, + "end": 29022.3, + "probability": 0.6215 + }, + { + "start": 29023.0, + "end": 29024.78, + "probability": 0.7692 + }, + { + "start": 29025.46, + "end": 29026.58, + "probability": 0.5697 + }, + { + "start": 29027.2, + "end": 29028.09, + "probability": 0.9105 + }, + { + "start": 29029.34, + "end": 29030.26, + "probability": 0.9917 + }, + { + "start": 29031.74, + "end": 29036.28, + "probability": 0.9869 + }, + { + "start": 29036.68, + "end": 29037.86, + "probability": 0.9891 + }, + { + "start": 29037.88, + "end": 29038.78, + "probability": 0.886 + }, + { + "start": 29038.86, + "end": 29041.86, + "probability": 0.9803 + }, + { + "start": 29042.54, + "end": 29043.32, + "probability": 0.8659 + }, + { + "start": 29043.98, + "end": 29048.7, + "probability": 0.9446 + }, + { + "start": 29050.64, + "end": 29051.34, + "probability": 0.67 + }, + { + "start": 29054.82, + "end": 29055.12, + "probability": 0.9531 + }, + { + "start": 29057.2, + "end": 29058.44, + "probability": 0.5487 + }, + { + "start": 29059.12, + "end": 29059.98, + "probability": 0.9962 + }, + { + "start": 29062.46, + "end": 29065.98, + "probability": 0.8349 + }, + { + "start": 29067.18, + "end": 29068.64, + "probability": 0.8286 + }, + { + "start": 29070.68, + "end": 29076.68, + "probability": 0.9976 + }, + { + "start": 29079.42, + "end": 29081.02, + "probability": 0.9861 + }, + { + "start": 29082.48, + "end": 29086.16, + "probability": 0.9926 + }, + { + "start": 29086.22, + "end": 29088.78, + "probability": 0.8016 + }, + { + "start": 29089.74, + "end": 29090.98, + "probability": 0.9467 + }, + { + "start": 29092.72, + "end": 29094.16, + "probability": 0.9992 + }, + { + "start": 29094.78, + "end": 29097.52, + "probability": 0.9822 + }, + { + "start": 29099.16, + "end": 29100.54, + "probability": 0.9739 + }, + { + "start": 29101.76, + "end": 29105.26, + "probability": 0.9945 + }, + { + "start": 29106.56, + "end": 29109.58, + "probability": 0.9817 + }, + { + "start": 29110.44, + "end": 29112.14, + "probability": 0.9987 + }, + { + "start": 29112.9, + "end": 29115.44, + "probability": 0.8867 + }, + { + "start": 29116.08, + "end": 29119.68, + "probability": 0.9906 + }, + { + "start": 29120.56, + "end": 29121.54, + "probability": 0.8057 + }, + { + "start": 29123.48, + "end": 29125.48, + "probability": 0.7094 + }, + { + "start": 29127.04, + "end": 29128.68, + "probability": 0.2282 + }, + { + "start": 29154.16, + "end": 29155.74, + "probability": 0.5453 + }, + { + "start": 29158.88, + "end": 29159.74, + "probability": 0.6346 + }, + { + "start": 29160.86, + "end": 29161.7, + "probability": 0.8019 + }, + { + "start": 29163.56, + "end": 29164.94, + "probability": 0.9646 + }, + { + "start": 29165.46, + "end": 29166.56, + "probability": 0.699 + }, + { + "start": 29167.78, + "end": 29169.38, + "probability": 0.8691 + }, + { + "start": 29171.26, + "end": 29176.32, + "probability": 0.8148 + }, + { + "start": 29178.32, + "end": 29178.94, + "probability": 0.5995 + }, + { + "start": 29180.7, + "end": 29181.18, + "probability": 0.5 + }, + { + "start": 29184.5, + "end": 29185.7, + "probability": 0.6349 + }, + { + "start": 29187.06, + "end": 29187.66, + "probability": 0.7632 + }, + { + "start": 29188.54, + "end": 29189.06, + "probability": 0.7455 + }, + { + "start": 29190.2, + "end": 29190.76, + "probability": 0.9001 + }, + { + "start": 29192.36, + "end": 29194.02, + "probability": 0.8162 + }, + { + "start": 29194.98, + "end": 29201.28, + "probability": 0.9871 + }, + { + "start": 29202.36, + "end": 29205.02, + "probability": 0.9574 + }, + { + "start": 29206.7, + "end": 29213.04, + "probability": 0.9633 + }, + { + "start": 29213.88, + "end": 29216.6, + "probability": 0.8599 + }, + { + "start": 29218.08, + "end": 29220.18, + "probability": 0.8602 + }, + { + "start": 29222.28, + "end": 29228.16, + "probability": 0.8911 + }, + { + "start": 29229.68, + "end": 29231.0, + "probability": 0.7207 + }, + { + "start": 29231.18, + "end": 29232.78, + "probability": 0.5911 + }, + { + "start": 29234.2, + "end": 29234.9, + "probability": 0.4541 + }, + { + "start": 29235.66, + "end": 29236.82, + "probability": 0.998 + }, + { + "start": 29237.52, + "end": 29238.66, + "probability": 0.8056 + }, + { + "start": 29239.62, + "end": 29240.4, + "probability": 0.9883 + }, + { + "start": 29241.4, + "end": 29242.44, + "probability": 0.3155 + }, + { + "start": 29242.54, + "end": 29243.92, + "probability": 0.9919 + }, + { + "start": 29244.72, + "end": 29248.64, + "probability": 0.9541 + }, + { + "start": 29249.44, + "end": 29250.14, + "probability": 0.3718 + }, + { + "start": 29250.6, + "end": 29251.68, + "probability": 0.5183 + }, + { + "start": 29252.46, + "end": 29254.38, + "probability": 0.768 + }, + { + "start": 29255.0, + "end": 29258.66, + "probability": 0.7112 + }, + { + "start": 29259.3, + "end": 29265.94, + "probability": 0.8831 + }, + { + "start": 29267.56, + "end": 29272.2, + "probability": 0.9967 + }, + { + "start": 29273.74, + "end": 29276.54, + "probability": 0.8564 + }, + { + "start": 29277.26, + "end": 29278.48, + "probability": 0.6331 + }, + { + "start": 29280.94, + "end": 29283.74, + "probability": 0.6845 + }, + { + "start": 29285.36, + "end": 29286.71, + "probability": 0.7178 + }, + { + "start": 29287.66, + "end": 29292.46, + "probability": 0.9297 + }, + { + "start": 29293.0, + "end": 29294.5, + "probability": 0.644 + }, + { + "start": 29295.96, + "end": 29297.1, + "probability": 0.8139 + }, + { + "start": 29297.86, + "end": 29299.08, + "probability": 0.8172 + }, + { + "start": 29300.3, + "end": 29307.2, + "probability": 0.9574 + }, + { + "start": 29308.68, + "end": 29311.06, + "probability": 0.994 + }, + { + "start": 29311.88, + "end": 29314.1, + "probability": 0.998 + }, + { + "start": 29314.94, + "end": 29317.8, + "probability": 0.9388 + }, + { + "start": 29318.94, + "end": 29320.92, + "probability": 0.8546 + }, + { + "start": 29321.08, + "end": 29321.86, + "probability": 0.7232 + }, + { + "start": 29322.32, + "end": 29325.58, + "probability": 0.9985 + }, + { + "start": 29327.3, + "end": 29329.36, + "probability": 0.9215 + }, + { + "start": 29330.1, + "end": 29333.66, + "probability": 0.6707 + }, + { + "start": 29333.88, + "end": 29337.82, + "probability": 0.9529 + }, + { + "start": 29339.62, + "end": 29340.26, + "probability": 0.8586 + }, + { + "start": 29341.8, + "end": 29344.78, + "probability": 0.9484 + }, + { + "start": 29345.46, + "end": 29348.38, + "probability": 0.6889 + }, + { + "start": 29349.04, + "end": 29351.12, + "probability": 0.8381 + }, + { + "start": 29352.24, + "end": 29354.78, + "probability": 0.9533 + }, + { + "start": 29356.0, + "end": 29358.28, + "probability": 0.981 + }, + { + "start": 29359.32, + "end": 29361.1, + "probability": 0.731 + }, + { + "start": 29362.06, + "end": 29366.42, + "probability": 0.7308 + }, + { + "start": 29366.8, + "end": 29369.7, + "probability": 0.8924 + }, + { + "start": 29370.68, + "end": 29373.94, + "probability": 0.8504 + }, + { + "start": 29375.14, + "end": 29379.76, + "probability": 0.8725 + }, + { + "start": 29380.9, + "end": 29385.42, + "probability": 0.9775 + }, + { + "start": 29386.4, + "end": 29387.84, + "probability": 0.5417 + }, + { + "start": 29388.7, + "end": 29398.78, + "probability": 0.9881 + }, + { + "start": 29399.7, + "end": 29405.62, + "probability": 0.9565 + }, + { + "start": 29406.14, + "end": 29410.7, + "probability": 0.8794 + }, + { + "start": 29411.24, + "end": 29412.38, + "probability": 0.5771 + }, + { + "start": 29412.96, + "end": 29414.68, + "probability": 0.9604 + }, + { + "start": 29416.84, + "end": 29420.0, + "probability": 0.7911 + }, + { + "start": 29421.24, + "end": 29424.18, + "probability": 0.9933 + }, + { + "start": 29426.36, + "end": 29431.88, + "probability": 0.9648 + }, + { + "start": 29433.26, + "end": 29435.38, + "probability": 0.9742 + }, + { + "start": 29436.98, + "end": 29437.0, + "probability": 0.2302 + }, + { + "start": 29437.62, + "end": 29445.96, + "probability": 0.9829 + }, + { + "start": 29446.52, + "end": 29450.4, + "probability": 0.9952 + }, + { + "start": 29451.18, + "end": 29454.9, + "probability": 0.9976 + }, + { + "start": 29455.74, + "end": 29460.56, + "probability": 0.9823 + }, + { + "start": 29461.1, + "end": 29464.4, + "probability": 0.9946 + }, + { + "start": 29464.76, + "end": 29467.64, + "probability": 0.8337 + }, + { + "start": 29468.18, + "end": 29472.0, + "probability": 0.9708 + }, + { + "start": 29473.7, + "end": 29476.8, + "probability": 0.9292 + }, + { + "start": 29477.8, + "end": 29482.32, + "probability": 0.9357 + }, + { + "start": 29483.22, + "end": 29486.68, + "probability": 0.8701 + }, + { + "start": 29487.68, + "end": 29488.24, + "probability": 0.9997 + }, + { + "start": 29489.18, + "end": 29490.82, + "probability": 0.9991 + }, + { + "start": 29493.18, + "end": 29496.14, + "probability": 0.9974 + }, + { + "start": 29497.32, + "end": 29498.23, + "probability": 0.4998 + }, + { + "start": 29499.62, + "end": 29503.76, + "probability": 0.8367 + }, + { + "start": 29505.0, + "end": 29506.12, + "probability": 0.959 + }, + { + "start": 29507.04, + "end": 29510.54, + "probability": 0.8149 + }, + { + "start": 29511.14, + "end": 29515.82, + "probability": 0.8679 + }, + { + "start": 29516.98, + "end": 29518.72, + "probability": 0.7651 + }, + { + "start": 29519.4, + "end": 29522.7, + "probability": 0.9348 + }, + { + "start": 29524.34, + "end": 29525.48, + "probability": 0.8734 + }, + { + "start": 29525.8, + "end": 29527.56, + "probability": 0.5594 + }, + { + "start": 29527.94, + "end": 29528.96, + "probability": 0.6913 + }, + { + "start": 29530.26, + "end": 29535.8, + "probability": 0.8711 + }, + { + "start": 29536.44, + "end": 29541.28, + "probability": 0.9383 + }, + { + "start": 29542.8, + "end": 29544.28, + "probability": 0.9989 + }, + { + "start": 29546.5, + "end": 29548.86, + "probability": 0.8923 + }, + { + "start": 29549.72, + "end": 29550.9, + "probability": 0.9546 + }, + { + "start": 29552.04, + "end": 29557.96, + "probability": 0.9829 + }, + { + "start": 29559.08, + "end": 29564.64, + "probability": 0.9789 + }, + { + "start": 29565.88, + "end": 29569.74, + "probability": 0.9127 + }, + { + "start": 29570.6, + "end": 29573.4, + "probability": 0.9794 + }, + { + "start": 29574.68, + "end": 29576.98, + "probability": 0.9967 + }, + { + "start": 29577.54, + "end": 29580.32, + "probability": 0.4837 + }, + { + "start": 29581.16, + "end": 29587.3, + "probability": 0.9913 + }, + { + "start": 29590.16, + "end": 29593.96, + "probability": 0.4102 + }, + { + "start": 29595.66, + "end": 29598.23, + "probability": 0.8687 + }, + { + "start": 29600.28, + "end": 29604.84, + "probability": 0.991 + }, + { + "start": 29605.62, + "end": 29609.0, + "probability": 0.9461 + }, + { + "start": 29609.94, + "end": 29611.66, + "probability": 0.799 + }, + { + "start": 29612.94, + "end": 29616.76, + "probability": 0.949 + }, + { + "start": 29617.46, + "end": 29621.4, + "probability": 0.7884 + }, + { + "start": 29621.92, + "end": 29626.32, + "probability": 0.9927 + }, + { + "start": 29627.62, + "end": 29631.82, + "probability": 0.9882 + }, + { + "start": 29631.82, + "end": 29637.6, + "probability": 0.9448 + }, + { + "start": 29638.5, + "end": 29641.34, + "probability": 0.9949 + }, + { + "start": 29642.08, + "end": 29642.84, + "probability": 0.5494 + }, + { + "start": 29643.26, + "end": 29648.32, + "probability": 0.8536 + }, + { + "start": 29648.76, + "end": 29651.88, + "probability": 0.9756 + }, + { + "start": 29652.8, + "end": 29654.26, + "probability": 0.9938 + }, + { + "start": 29654.7, + "end": 29656.07, + "probability": 0.649 + }, + { + "start": 29657.22, + "end": 29659.42, + "probability": 0.5035 + }, + { + "start": 29659.74, + "end": 29662.34, + "probability": 0.9078 + }, + { + "start": 29662.52, + "end": 29663.8, + "probability": 0.8679 + }, + { + "start": 29664.28, + "end": 29665.35, + "probability": 0.9338 + }, + { + "start": 29666.62, + "end": 29668.02, + "probability": 0.9565 + }, + { + "start": 29669.14, + "end": 29675.62, + "probability": 0.858 + }, + { + "start": 29676.56, + "end": 29681.44, + "probability": 0.8862 + }, + { + "start": 29682.16, + "end": 29685.38, + "probability": 0.9279 + }, + { + "start": 29686.24, + "end": 29688.08, + "probability": 0.7853 + }, + { + "start": 29688.58, + "end": 29693.04, + "probability": 0.8063 + }, + { + "start": 29693.42, + "end": 29696.06, + "probability": 0.8789 + }, + { + "start": 29696.48, + "end": 29697.54, + "probability": 0.8855 + }, + { + "start": 29697.88, + "end": 29700.34, + "probability": 0.883 + }, + { + "start": 29701.28, + "end": 29703.22, + "probability": 0.7785 + }, + { + "start": 29703.78, + "end": 29705.94, + "probability": 0.5602 + }, + { + "start": 29707.32, + "end": 29709.99, + "probability": 0.9894 + }, + { + "start": 29710.22, + "end": 29711.28, + "probability": 0.9302 + }, + { + "start": 29712.08, + "end": 29712.56, + "probability": 0.4205 + }, + { + "start": 29712.58, + "end": 29713.12, + "probability": 0.6016 + }, + { + "start": 29713.6, + "end": 29718.34, + "probability": 0.9141 + }, + { + "start": 29718.88, + "end": 29719.98, + "probability": 0.7269 + }, + { + "start": 29720.66, + "end": 29724.02, + "probability": 0.9885 + }, + { + "start": 29724.66, + "end": 29729.82, + "probability": 0.9811 + }, + { + "start": 29730.34, + "end": 29732.38, + "probability": 0.8989 + }, + { + "start": 29733.52, + "end": 29740.7, + "probability": 0.9762 + }, + { + "start": 29740.7, + "end": 29747.06, + "probability": 0.9878 + }, + { + "start": 29748.12, + "end": 29750.41, + "probability": 0.7516 + }, + { + "start": 29751.28, + "end": 29752.64, + "probability": 0.772 + }, + { + "start": 29752.72, + "end": 29757.46, + "probability": 0.9378 + }, + { + "start": 29758.12, + "end": 29760.18, + "probability": 0.984 + }, + { + "start": 29761.04, + "end": 29766.46, + "probability": 0.9582 + }, + { + "start": 29767.3, + "end": 29768.1, + "probability": 0.8242 + }, + { + "start": 29768.52, + "end": 29775.22, + "probability": 0.8925 + }, + { + "start": 29775.58, + "end": 29776.92, + "probability": 0.9417 + }, + { + "start": 29777.56, + "end": 29782.96, + "probability": 0.9265 + }, + { + "start": 29783.68, + "end": 29784.62, + "probability": 0.7522 + }, + { + "start": 29785.72, + "end": 29786.36, + "probability": 0.8378 + }, + { + "start": 29787.02, + "end": 29790.46, + "probability": 0.7688 + }, + { + "start": 29791.88, + "end": 29792.34, + "probability": 0.2148 + }, + { + "start": 29792.34, + "end": 29793.38, + "probability": 0.5709 + }, + { + "start": 29808.28, + "end": 29811.4, + "probability": 0.6153 + }, + { + "start": 29811.94, + "end": 29814.58, + "probability": 0.366 + }, + { + "start": 29815.3, + "end": 29819.78, + "probability": 0.8844 + }, + { + "start": 29821.66, + "end": 29826.48, + "probability": 0.9978 + }, + { + "start": 29826.64, + "end": 29829.2, + "probability": 0.9935 + }, + { + "start": 29829.84, + "end": 29830.14, + "probability": 0.9048 + }, + { + "start": 29830.28, + "end": 29834.84, + "probability": 0.7433 + }, + { + "start": 29835.62, + "end": 29841.36, + "probability": 0.9959 + }, + { + "start": 29841.36, + "end": 29846.64, + "probability": 0.984 + }, + { + "start": 29848.1, + "end": 29852.36, + "probability": 0.9504 + }, + { + "start": 29852.36, + "end": 29855.7, + "probability": 0.9966 + }, + { + "start": 29856.34, + "end": 29858.46, + "probability": 0.7495 + }, + { + "start": 29858.98, + "end": 29863.95, + "probability": 0.6618 + }, + { + "start": 29864.52, + "end": 29868.76, + "probability": 0.8214 + }, + { + "start": 29868.92, + "end": 29869.46, + "probability": 0.9008 + }, + { + "start": 29869.64, + "end": 29870.82, + "probability": 0.8031 + }, + { + "start": 29871.68, + "end": 29874.28, + "probability": 0.9778 + }, + { + "start": 29874.58, + "end": 29877.3, + "probability": 0.9762 + }, + { + "start": 29877.78, + "end": 29881.12, + "probability": 0.96 + }, + { + "start": 29881.12, + "end": 29884.56, + "probability": 0.9969 + }, + { + "start": 29885.24, + "end": 29887.66, + "probability": 0.9512 + }, + { + "start": 29888.04, + "end": 29893.74, + "probability": 0.9916 + }, + { + "start": 29894.56, + "end": 29898.26, + "probability": 0.8252 + }, + { + "start": 29898.36, + "end": 29902.3, + "probability": 0.9873 + }, + { + "start": 29902.38, + "end": 29908.84, + "probability": 0.9826 + }, + { + "start": 29909.92, + "end": 29913.02, + "probability": 0.7665 + }, + { + "start": 29914.08, + "end": 29920.4, + "probability": 0.9967 + }, + { + "start": 29920.84, + "end": 29925.66, + "probability": 0.9312 + }, + { + "start": 29926.38, + "end": 29929.1, + "probability": 0.9766 + }, + { + "start": 29929.54, + "end": 29935.08, + "probability": 0.783 + }, + { + "start": 29935.7, + "end": 29940.4, + "probability": 0.9961 + }, + { + "start": 29941.38, + "end": 29942.8, + "probability": 0.9792 + }, + { + "start": 29943.06, + "end": 29944.92, + "probability": 0.7769 + }, + { + "start": 29945.88, + "end": 29946.52, + "probability": 0.8142 + }, + { + "start": 29946.92, + "end": 29950.26, + "probability": 0.961 + }, + { + "start": 29950.5, + "end": 29954.22, + "probability": 0.9943 + }, + { + "start": 29954.22, + "end": 29958.96, + "probability": 0.9893 + }, + { + "start": 29959.1, + "end": 29962.6, + "probability": 0.9775 + }, + { + "start": 29964.16, + "end": 29964.84, + "probability": 0.7228 + }, + { + "start": 29965.08, + "end": 29970.1, + "probability": 0.8906 + }, + { + "start": 29970.74, + "end": 29974.14, + "probability": 0.7153 + }, + { + "start": 29976.48, + "end": 29979.5, + "probability": 0.9584 + }, + { + "start": 29979.5, + "end": 29984.07, + "probability": 0.9786 + }, + { + "start": 29986.02, + "end": 29987.46, + "probability": 0.9995 + }, + { + "start": 29987.9, + "end": 29992.86, + "probability": 0.9909 + }, + { + "start": 29992.86, + "end": 29999.64, + "probability": 0.9843 + }, + { + "start": 29999.72, + "end": 30000.92, + "probability": 0.6953 + }, + { + "start": 30002.18, + "end": 30008.44, + "probability": 0.9791 + }, + { + "start": 30009.3, + "end": 30014.25, + "probability": 0.8694 + }, + { + "start": 30015.2, + "end": 30022.86, + "probability": 0.9976 + }, + { + "start": 30024.22, + "end": 30029.44, + "probability": 0.9656 + }, + { + "start": 30029.68, + "end": 30030.66, + "probability": 0.4918 + }, + { + "start": 30032.28, + "end": 30039.38, + "probability": 0.9239 + }, + { + "start": 30040.1, + "end": 30040.96, + "probability": 0.8567 + }, + { + "start": 30041.9, + "end": 30045.44, + "probability": 0.9002 + }, + { + "start": 30045.72, + "end": 30049.02, + "probability": 0.8955 + }, + { + "start": 30049.24, + "end": 30054.32, + "probability": 0.9721 + }, + { + "start": 30055.58, + "end": 30062.48, + "probability": 0.9705 + }, + { + "start": 30063.08, + "end": 30063.66, + "probability": 0.2546 + }, + { + "start": 30064.4, + "end": 30065.62, + "probability": 0.9648 + }, + { + "start": 30066.2, + "end": 30073.14, + "probability": 0.7041 + }, + { + "start": 30074.06, + "end": 30076.92, + "probability": 0.8489 + }, + { + "start": 30077.02, + "end": 30080.38, + "probability": 0.9447 + }, + { + "start": 30081.14, + "end": 30085.34, + "probability": 0.9325 + }, + { + "start": 30085.86, + "end": 30088.12, + "probability": 0.4659 + }, + { + "start": 30088.82, + "end": 30092.8, + "probability": 0.9783 + }, + { + "start": 30093.58, + "end": 30094.9, + "probability": 0.7033 + }, + { + "start": 30095.66, + "end": 30098.92, + "probability": 0.9289 + }, + { + "start": 30099.16, + "end": 30102.44, + "probability": 0.8717 + }, + { + "start": 30102.74, + "end": 30104.78, + "probability": 0.6667 + }, + { + "start": 30104.94, + "end": 30105.52, + "probability": 0.7043 + }, + { + "start": 30106.18, + "end": 30110.72, + "probability": 0.9478 + }, + { + "start": 30111.14, + "end": 30112.8, + "probability": 0.8019 + }, + { + "start": 30113.22, + "end": 30117.26, + "probability": 0.9958 + }, + { + "start": 30118.2, + "end": 30123.38, + "probability": 0.9847 + }, + { + "start": 30124.18, + "end": 30124.76, + "probability": 0.8126 + }, + { + "start": 30125.32, + "end": 30129.72, + "probability": 0.948 + }, + { + "start": 30130.3, + "end": 30131.32, + "probability": 0.8924 + }, + { + "start": 30131.92, + "end": 30132.26, + "probability": 0.6686 + }, + { + "start": 30132.42, + "end": 30132.96, + "probability": 0.8662 + }, + { + "start": 30133.18, + "end": 30138.16, + "probability": 0.9784 + }, + { + "start": 30139.6, + "end": 30143.06, + "probability": 0.9219 + }, + { + "start": 30143.06, + "end": 30149.08, + "probability": 0.9553 + }, + { + "start": 30150.44, + "end": 30152.74, + "probability": 0.947 + }, + { + "start": 30152.74, + "end": 30156.52, + "probability": 0.996 + }, + { + "start": 30157.14, + "end": 30162.26, + "probability": 0.9784 + }, + { + "start": 30163.16, + "end": 30164.3, + "probability": 0.6687 + }, + { + "start": 30164.86, + "end": 30168.12, + "probability": 0.9664 + }, + { + "start": 30168.12, + "end": 30175.04, + "probability": 0.9788 + }, + { + "start": 30175.96, + "end": 30176.18, + "probability": 0.2982 + }, + { + "start": 30176.44, + "end": 30183.7, + "probability": 0.9791 + }, + { + "start": 30184.88, + "end": 30186.38, + "probability": 0.7582 + }, + { + "start": 30186.38, + "end": 30186.8, + "probability": 0.448 + }, + { + "start": 30187.45, + "end": 30188.04, + "probability": 0.8229 + }, + { + "start": 30189.48, + "end": 30190.5, + "probability": 0.8987 + }, + { + "start": 30191.1, + "end": 30193.8, + "probability": 0.9588 + }, + { + "start": 30194.12, + "end": 30196.1, + "probability": 0.9888 + }, + { + "start": 30196.54, + "end": 30199.76, + "probability": 0.9496 + }, + { + "start": 30199.76, + "end": 30203.6, + "probability": 0.9468 + }, + { + "start": 30204.14, + "end": 30208.6, + "probability": 0.9844 + }, + { + "start": 30209.68, + "end": 30213.46, + "probability": 0.9873 + }, + { + "start": 30215.06, + "end": 30219.64, + "probability": 0.9703 + }, + { + "start": 30219.64, + "end": 30222.2, + "probability": 0.9855 + }, + { + "start": 30222.26, + "end": 30224.98, + "probability": 0.8013 + }, + { + "start": 30226.14, + "end": 30227.34, + "probability": 0.9868 + }, + { + "start": 30227.7, + "end": 30233.32, + "probability": 0.9761 + }, + { + "start": 30233.54, + "end": 30238.48, + "probability": 0.8358 + }, + { + "start": 30239.62, + "end": 30243.6, + "probability": 0.8462 + }, + { + "start": 30244.4, + "end": 30245.88, + "probability": 0.8136 + }, + { + "start": 30246.56, + "end": 30249.66, + "probability": 0.9679 + }, + { + "start": 30251.06, + "end": 30255.2, + "probability": 0.9691 + }, + { + "start": 30255.78, + "end": 30256.28, + "probability": 0.9442 + }, + { + "start": 30257.58, + "end": 30259.54, + "probability": 0.9483 + }, + { + "start": 30260.66, + "end": 30261.26, + "probability": 0.8694 + }, + { + "start": 30262.18, + "end": 30263.46, + "probability": 0.9191 + }, + { + "start": 30264.04, + "end": 30267.52, + "probability": 0.9945 + }, + { + "start": 30269.02, + "end": 30271.04, + "probability": 0.9677 + }, + { + "start": 30271.7, + "end": 30278.04, + "probability": 0.9976 + }, + { + "start": 30279.0, + "end": 30285.42, + "probability": 0.9758 + }, + { + "start": 30285.94, + "end": 30290.82, + "probability": 0.9655 + }, + { + "start": 30292.0, + "end": 30295.28, + "probability": 0.9876 + }, + { + "start": 30295.28, + "end": 30299.58, + "probability": 0.9904 + }, + { + "start": 30299.7, + "end": 30303.06, + "probability": 0.9888 + }, + { + "start": 30305.28, + "end": 30307.73, + "probability": 0.7993 + }, + { + "start": 30308.58, + "end": 30316.6, + "probability": 0.9831 + }, + { + "start": 30317.04, + "end": 30320.62, + "probability": 0.9915 + }, + { + "start": 30321.2, + "end": 30326.63, + "probability": 0.9933 + }, + { + "start": 30327.72, + "end": 30329.81, + "probability": 0.9452 + }, + { + "start": 30330.14, + "end": 30332.56, + "probability": 0.9083 + }, + { + "start": 30335.08, + "end": 30335.76, + "probability": 0.6013 + }, + { + "start": 30335.94, + "end": 30341.88, + "probability": 0.9792 + }, + { + "start": 30341.88, + "end": 30345.16, + "probability": 0.9877 + }, + { + "start": 30345.3, + "end": 30350.3, + "probability": 0.998 + }, + { + "start": 30353.96, + "end": 30356.87, + "probability": 0.9248 + }, + { + "start": 30358.76, + "end": 30365.04, + "probability": 0.9908 + }, + { + "start": 30366.52, + "end": 30368.44, + "probability": 0.9393 + }, + { + "start": 30368.86, + "end": 30369.1, + "probability": 0.7581 + }, + { + "start": 30369.64, + "end": 30370.76, + "probability": 0.9701 + }, + { + "start": 30371.58, + "end": 30372.36, + "probability": 0.7787 + }, + { + "start": 30373.66, + "end": 30375.66, + "probability": 0.9788 + }, + { + "start": 30376.38, + "end": 30378.94, + "probability": 0.9956 + }, + { + "start": 30379.64, + "end": 30382.0, + "probability": 0.9763 + }, + { + "start": 30382.42, + "end": 30386.84, + "probability": 0.9161 + }, + { + "start": 30388.5, + "end": 30391.32, + "probability": 0.9126 + }, + { + "start": 30393.48, + "end": 30396.18, + "probability": 0.8694 + }, + { + "start": 30397.32, + "end": 30398.02, + "probability": 0.7576 + }, + { + "start": 30399.4, + "end": 30399.74, + "probability": 0.3756 + }, + { + "start": 30399.84, + "end": 30402.22, + "probability": 0.6616 + }, + { + "start": 30408.4, + "end": 30409.16, + "probability": 0.7102 + }, + { + "start": 30410.24, + "end": 30410.84, + "probability": 0.6196 + }, + { + "start": 30411.74, + "end": 30413.38, + "probability": 0.6113 + }, + { + "start": 30413.38, + "end": 30413.88, + "probability": 0.71 + }, + { + "start": 30414.22, + "end": 30414.78, + "probability": 0.4674 + }, + { + "start": 30414.82, + "end": 30415.82, + "probability": 0.5692 + }, + { + "start": 30416.82, + "end": 30417.48, + "probability": 0.6584 + }, + { + "start": 30419.12, + "end": 30420.44, + "probability": 0.2933 + }, + { + "start": 30420.7, + "end": 30422.44, + "probability": 0.7076 + }, + { + "start": 30426.14, + "end": 30426.5, + "probability": 0.255 + }, + { + "start": 30426.54, + "end": 30430.5, + "probability": 0.7024 + }, + { + "start": 30433.68, + "end": 30437.48, + "probability": 0.9893 + }, + { + "start": 30438.16, + "end": 30439.96, + "probability": 0.9706 + }, + { + "start": 30440.42, + "end": 30442.16, + "probability": 0.5466 + }, + { + "start": 30442.42, + "end": 30444.16, + "probability": 0.9203 + }, + { + "start": 30444.86, + "end": 30447.62, + "probability": 0.9901 + }, + { + "start": 30448.14, + "end": 30449.56, + "probability": 0.95 + }, + { + "start": 30450.54, + "end": 30451.76, + "probability": 0.9035 + }, + { + "start": 30452.56, + "end": 30456.16, + "probability": 0.8702 + }, + { + "start": 30456.74, + "end": 30458.98, + "probability": 0.8961 + }, + { + "start": 30459.52, + "end": 30461.18, + "probability": 0.936 + }, + { + "start": 30461.68, + "end": 30462.22, + "probability": 0.2591 + }, + { + "start": 30462.32, + "end": 30462.6, + "probability": 0.3782 + }, + { + "start": 30462.66, + "end": 30464.14, + "probability": 0.8896 + }, + { + "start": 30464.84, + "end": 30467.36, + "probability": 0.9511 + }, + { + "start": 30467.98, + "end": 30469.7, + "probability": 0.5028 + }, + { + "start": 30469.88, + "end": 30471.18, + "probability": 0.9869 + }, + { + "start": 30471.84, + "end": 30474.04, + "probability": 0.9966 + }, + { + "start": 30474.04, + "end": 30478.64, + "probability": 0.9962 + }, + { + "start": 30479.12, + "end": 30480.26, + "probability": 0.8866 + }, + { + "start": 30480.8, + "end": 30481.06, + "probability": 0.8193 + }, + { + "start": 30481.2, + "end": 30482.68, + "probability": 0.8645 + }, + { + "start": 30482.88, + "end": 30484.6, + "probability": 0.8875 + }, + { + "start": 30484.98, + "end": 30485.6, + "probability": 0.9275 + }, + { + "start": 30486.48, + "end": 30489.66, + "probability": 0.7054 + }, + { + "start": 30490.32, + "end": 30493.6, + "probability": 0.8843 + }, + { + "start": 30494.3, + "end": 30498.98, + "probability": 0.8984 + }, + { + "start": 30499.64, + "end": 30502.74, + "probability": 0.9819 + }, + { + "start": 30503.52, + "end": 30507.56, + "probability": 0.9915 + }, + { + "start": 30508.38, + "end": 30511.36, + "probability": 0.4941 + }, + { + "start": 30511.46, + "end": 30512.3, + "probability": 0.6145 + }, + { + "start": 30512.75, + "end": 30515.26, + "probability": 0.6989 + }, + { + "start": 30515.94, + "end": 30520.26, + "probability": 0.8883 + }, + { + "start": 30521.36, + "end": 30523.44, + "probability": 0.7604 + }, + { + "start": 30524.3, + "end": 30528.58, + "probability": 0.9849 + }, + { + "start": 30529.16, + "end": 30530.06, + "probability": 0.831 + }, + { + "start": 30531.1, + "end": 30532.68, + "probability": 0.5838 + }, + { + "start": 30536.74, + "end": 30539.38, + "probability": 0.7975 + }, + { + "start": 30541.78, + "end": 30547.1, + "probability": 0.6639 + }, + { + "start": 30547.16, + "end": 30547.78, + "probability": 0.6458 + }, + { + "start": 30548.26, + "end": 30553.8, + "probability": 0.9823 + }, + { + "start": 30554.76, + "end": 30556.74, + "probability": 0.9024 + }, + { + "start": 30557.46, + "end": 30562.26, + "probability": 0.9834 + }, + { + "start": 30562.26, + "end": 30567.1, + "probability": 0.9995 + }, + { + "start": 30568.06, + "end": 30569.5, + "probability": 0.9964 + }, + { + "start": 30569.8, + "end": 30572.74, + "probability": 0.9707 + }, + { + "start": 30573.52, + "end": 30575.78, + "probability": 0.9957 + }, + { + "start": 30576.16, + "end": 30580.1, + "probability": 0.9666 + }, + { + "start": 30580.84, + "end": 30584.96, + "probability": 0.9897 + }, + { + "start": 30584.96, + "end": 30588.68, + "probability": 0.9913 + }, + { + "start": 30590.02, + "end": 30590.26, + "probability": 0.8588 + }, + { + "start": 30590.62, + "end": 30592.14, + "probability": 0.998 + }, + { + "start": 30592.48, + "end": 30592.93, + "probability": 0.836 + }, + { + "start": 30593.38, + "end": 30594.12, + "probability": 0.9584 + }, + { + "start": 30594.82, + "end": 30597.22, + "probability": 0.8389 + }, + { + "start": 30597.9, + "end": 30600.08, + "probability": 0.9863 + }, + { + "start": 30600.56, + "end": 30602.78, + "probability": 0.9974 + }, + { + "start": 30603.28, + "end": 30605.38, + "probability": 0.9702 + }, + { + "start": 30605.94, + "end": 30609.68, + "probability": 0.9148 + }, + { + "start": 30610.2, + "end": 30612.6, + "probability": 0.9933 + }, + { + "start": 30613.34, + "end": 30615.5, + "probability": 0.9941 + }, + { + "start": 30617.54, + "end": 30619.38, + "probability": 0.8169 + }, + { + "start": 30619.5, + "end": 30622.58, + "probability": 0.9909 + }, + { + "start": 30622.88, + "end": 30626.22, + "probability": 0.8524 + }, + { + "start": 30626.84, + "end": 30630.9, + "probability": 0.996 + }, + { + "start": 30631.74, + "end": 30633.08, + "probability": 0.9932 + }, + { + "start": 30633.72, + "end": 30634.87, + "probability": 0.9676 + }, + { + "start": 30635.76, + "end": 30636.42, + "probability": 0.9541 + }, + { + "start": 30637.34, + "end": 30639.82, + "probability": 0.993 + }, + { + "start": 30639.82, + "end": 30643.06, + "probability": 0.9938 + }, + { + "start": 30643.72, + "end": 30645.28, + "probability": 0.6721 + }, + { + "start": 30646.82, + "end": 30652.72, + "probability": 0.9919 + }, + { + "start": 30653.4, + "end": 30653.82, + "probability": 0.78 + }, + { + "start": 30654.78, + "end": 30655.2, + "probability": 0.7847 + }, + { + "start": 30655.46, + "end": 30660.08, + "probability": 0.9983 + }, + { + "start": 30660.6, + "end": 30663.14, + "probability": 0.9909 + }, + { + "start": 30663.14, + "end": 30665.9, + "probability": 0.9879 + }, + { + "start": 30666.68, + "end": 30667.76, + "probability": 0.9806 + }, + { + "start": 30668.36, + "end": 30669.21, + "probability": 0.9915 + }, + { + "start": 30671.94, + "end": 30675.58, + "probability": 0.9723 + }, + { + "start": 30676.04, + "end": 30676.74, + "probability": 0.7497 + }, + { + "start": 30677.6, + "end": 30682.02, + "probability": 0.9287 + }, + { + "start": 30682.54, + "end": 30685.66, + "probability": 0.5765 + }, + { + "start": 30687.48, + "end": 30689.96, + "probability": 0.9774 + }, + { + "start": 30690.76, + "end": 30691.66, + "probability": 0.824 + }, + { + "start": 30693.34, + "end": 30697.7, + "probability": 0.9571 + }, + { + "start": 30697.7, + "end": 30700.38, + "probability": 0.9961 + }, + { + "start": 30701.14, + "end": 30704.46, + "probability": 0.9344 + }, + { + "start": 30705.04, + "end": 30708.48, + "probability": 0.9866 + }, + { + "start": 30709.02, + "end": 30712.54, + "probability": 0.9948 + }, + { + "start": 30714.22, + "end": 30717.78, + "probability": 0.9237 + }, + { + "start": 30718.32, + "end": 30721.18, + "probability": 0.995 + }, + { + "start": 30722.8, + "end": 30724.8, + "probability": 0.663 + }, + { + "start": 30725.36, + "end": 30728.58, + "probability": 0.8427 + }, + { + "start": 30729.54, + "end": 30732.36, + "probability": 0.9803 + }, + { + "start": 30732.42, + "end": 30734.86, + "probability": 0.9954 + }, + { + "start": 30735.94, + "end": 30736.5, + "probability": 0.6498 + }, + { + "start": 30736.56, + "end": 30737.38, + "probability": 0.9409 + }, + { + "start": 30737.48, + "end": 30741.44, + "probability": 0.9961 + }, + { + "start": 30742.22, + "end": 30743.52, + "probability": 0.666 + }, + { + "start": 30744.74, + "end": 30745.34, + "probability": 0.9118 + }, + { + "start": 30745.54, + "end": 30749.06, + "probability": 0.9941 + }, + { + "start": 30750.06, + "end": 30753.18, + "probability": 0.9832 + }, + { + "start": 30753.96, + "end": 30756.42, + "probability": 0.9481 + }, + { + "start": 30756.7, + "end": 30758.76, + "probability": 0.7454 + }, + { + "start": 30759.16, + "end": 30760.54, + "probability": 0.9548 + }, + { + "start": 30760.84, + "end": 30762.02, + "probability": 0.988 + }, + { + "start": 30762.06, + "end": 30763.46, + "probability": 0.8895 + }, + { + "start": 30764.18, + "end": 30764.88, + "probability": 0.9271 + }, + { + "start": 30765.16, + "end": 30766.0, + "probability": 0.8754 + }, + { + "start": 30766.62, + "end": 30767.2, + "probability": 0.9824 + }, + { + "start": 30768.44, + "end": 30772.38, + "probability": 0.8882 + }, + { + "start": 30772.92, + "end": 30777.86, + "probability": 0.9893 + }, + { + "start": 30778.6, + "end": 30780.41, + "probability": 0.9147 + }, + { + "start": 30780.48, + "end": 30780.68, + "probability": 0.7845 + }, + { + "start": 30780.78, + "end": 30783.6, + "probability": 0.9903 + }, + { + "start": 30783.74, + "end": 30787.04, + "probability": 0.9017 + }, + { + "start": 30787.12, + "end": 30787.94, + "probability": 0.922 + }, + { + "start": 30788.08, + "end": 30793.06, + "probability": 0.8391 + }, + { + "start": 30793.44, + "end": 30794.02, + "probability": 0.4504 + }, + { + "start": 30794.58, + "end": 30794.82, + "probability": 0.2351 + }, + { + "start": 30795.38, + "end": 30796.74, + "probability": 0.9967 + }, + { + "start": 30798.26, + "end": 30803.5, + "probability": 0.9478 + }, + { + "start": 30804.34, + "end": 30805.06, + "probability": 0.9067 + }, + { + "start": 30805.58, + "end": 30806.04, + "probability": 0.9026 + }, + { + "start": 30806.12, + "end": 30808.28, + "probability": 0.9865 + }, + { + "start": 30808.38, + "end": 30809.32, + "probability": 0.774 + }, + { + "start": 30809.38, + "end": 30810.32, + "probability": 0.8466 + }, + { + "start": 30811.38, + "end": 30815.56, + "probability": 0.9689 + }, + { + "start": 30816.14, + "end": 30818.06, + "probability": 0.9251 + }, + { + "start": 30819.0, + "end": 30820.32, + "probability": 0.9851 + }, + { + "start": 30820.48, + "end": 30824.92, + "probability": 0.9928 + }, + { + "start": 30826.22, + "end": 30827.66, + "probability": 0.7927 + }, + { + "start": 30828.2, + "end": 30831.18, + "probability": 0.9328 + }, + { + "start": 30831.64, + "end": 30833.44, + "probability": 0.9567 + }, + { + "start": 30833.52, + "end": 30834.44, + "probability": 0.9297 + }, + { + "start": 30834.82, + "end": 30835.88, + "probability": 0.969 + }, + { + "start": 30836.74, + "end": 30839.22, + "probability": 0.9971 + }, + { + "start": 30839.22, + "end": 30841.88, + "probability": 0.9987 + }, + { + "start": 30842.94, + "end": 30845.17, + "probability": 0.9626 + }, + { + "start": 30847.08, + "end": 30850.38, + "probability": 0.9048 + }, + { + "start": 30851.16, + "end": 30853.12, + "probability": 0.9717 + }, + { + "start": 30853.96, + "end": 30855.86, + "probability": 0.9909 + }, + { + "start": 30857.34, + "end": 30857.84, + "probability": 0.45 + }, + { + "start": 30858.08, + "end": 30859.24, + "probability": 0.8843 + }, + { + "start": 30859.28, + "end": 30862.33, + "probability": 0.9494 + }, + { + "start": 30862.84, + "end": 30867.16, + "probability": 0.793 + }, + { + "start": 30867.16, + "end": 30870.22, + "probability": 0.9941 + }, + { + "start": 30870.6, + "end": 30871.1, + "probability": 0.8168 + }, + { + "start": 30871.58, + "end": 30872.98, + "probability": 0.9906 + }, + { + "start": 30873.4, + "end": 30874.34, + "probability": 0.6331 + }, + { + "start": 30874.82, + "end": 30875.36, + "probability": 0.7341 + }, + { + "start": 30876.7, + "end": 30877.68, + "probability": 0.8147 + }, + { + "start": 30877.78, + "end": 30878.18, + "probability": 0.9015 + }, + { + "start": 30878.28, + "end": 30883.04, + "probability": 0.9955 + }, + { + "start": 30883.86, + "end": 30884.7, + "probability": 0.3984 + }, + { + "start": 30885.24, + "end": 30886.6, + "probability": 0.8203 + }, + { + "start": 30887.04, + "end": 30889.3, + "probability": 0.9811 + }, + { + "start": 30889.86, + "end": 30894.6, + "probability": 0.9703 + }, + { + "start": 30894.6, + "end": 30898.16, + "probability": 0.9528 + }, + { + "start": 30898.94, + "end": 30899.82, + "probability": 0.4789 + }, + { + "start": 30904.26, + "end": 30905.28, + "probability": 0.709 + }, + { + "start": 30906.78, + "end": 30910.08, + "probability": 0.9808 + }, + { + "start": 30910.7, + "end": 30912.2, + "probability": 0.9285 + }, + { + "start": 30912.84, + "end": 30914.02, + "probability": 0.5707 + }, + { + "start": 30915.14, + "end": 30916.74, + "probability": 0.8434 + }, + { + "start": 30917.48, + "end": 30920.16, + "probability": 0.7537 + }, + { + "start": 30920.72, + "end": 30923.34, + "probability": 0.8641 + }, + { + "start": 30923.74, + "end": 30924.43, + "probability": 0.8657 + }, + { + "start": 30924.58, + "end": 30925.14, + "probability": 0.9609 + }, + { + "start": 30925.56, + "end": 30928.3, + "probability": 0.8763 + }, + { + "start": 30928.8, + "end": 30931.64, + "probability": 0.9953 + }, + { + "start": 30932.9, + "end": 30934.42, + "probability": 0.7172 + }, + { + "start": 30935.14, + "end": 30938.1, + "probability": 0.9048 + }, + { + "start": 30939.18, + "end": 30939.68, + "probability": 0.4786 + }, + { + "start": 30940.2, + "end": 30943.4, + "probability": 0.9783 + }, + { + "start": 30944.5, + "end": 30945.26, + "probability": 0.8857 + }, + { + "start": 30945.36, + "end": 30951.08, + "probability": 0.9956 + }, + { + "start": 30951.58, + "end": 30954.04, + "probability": 0.9909 + }, + { + "start": 30954.48, + "end": 30958.14, + "probability": 0.9934 + }, + { + "start": 30959.9, + "end": 30962.46, + "probability": 0.9973 + }, + { + "start": 30962.46, + "end": 30967.36, + "probability": 0.9938 + }, + { + "start": 30967.36, + "end": 30968.9, + "probability": 0.8823 + }, + { + "start": 30969.0, + "end": 30971.34, + "probability": 0.9949 + }, + { + "start": 30971.86, + "end": 30975.32, + "probability": 0.9422 + }, + { + "start": 30976.04, + "end": 30978.39, + "probability": 0.7526 + }, + { + "start": 30978.88, + "end": 30982.0, + "probability": 0.9958 + }, + { + "start": 30983.12, + "end": 30988.14, + "probability": 0.8726 + }, + { + "start": 30989.02, + "end": 30990.54, + "probability": 0.9766 + }, + { + "start": 30991.16, + "end": 30994.5, + "probability": 0.9772 + }, + { + "start": 30994.74, + "end": 30997.22, + "probability": 0.9958 + }, + { + "start": 30997.76, + "end": 31003.78, + "probability": 0.9907 + }, + { + "start": 31005.14, + "end": 31006.74, + "probability": 0.8748 + }, + { + "start": 31007.42, + "end": 31010.84, + "probability": 0.9969 + }, + { + "start": 31012.14, + "end": 31012.14, + "probability": 0.3789 + }, + { + "start": 31012.14, + "end": 31016.4, + "probability": 0.9732 + }, + { + "start": 31016.72, + "end": 31020.1, + "probability": 0.998 + }, + { + "start": 31020.12, + "end": 31023.02, + "probability": 0.9988 + }, + { + "start": 31023.92, + "end": 31025.28, + "probability": 0.6648 + }, + { + "start": 31025.48, + "end": 31029.52, + "probability": 0.8906 + }, + { + "start": 31030.1, + "end": 31032.42, + "probability": 0.998 + }, + { + "start": 31033.12, + "end": 31033.78, + "probability": 0.9179 + }, + { + "start": 31034.12, + "end": 31037.82, + "probability": 0.9217 + }, + { + "start": 31038.58, + "end": 31040.88, + "probability": 0.9958 + }, + { + "start": 31049.12, + "end": 31051.48, + "probability": 0.6599 + }, + { + "start": 31051.66, + "end": 31052.08, + "probability": 0.4924 + }, + { + "start": 31052.66, + "end": 31053.88, + "probability": 0.5656 + }, + { + "start": 31054.4, + "end": 31055.14, + "probability": 0.1423 + }, + { + "start": 31055.36, + "end": 31059.58, + "probability": 0.9637 + }, + { + "start": 31059.86, + "end": 31060.78, + "probability": 0.9414 + }, + { + "start": 31061.22, + "end": 31061.7, + "probability": 0.4124 + }, + { + "start": 31061.82, + "end": 31062.5, + "probability": 0.9037 + }, + { + "start": 31063.96, + "end": 31067.18, + "probability": 0.6576 + }, + { + "start": 31067.78, + "end": 31069.56, + "probability": 0.9306 + }, + { + "start": 31070.2, + "end": 31072.61, + "probability": 0.999 + }, + { + "start": 31074.2, + "end": 31078.3, + "probability": 0.9988 + }, + { + "start": 31079.2, + "end": 31084.32, + "probability": 0.9967 + }, + { + "start": 31085.44, + "end": 31089.56, + "probability": 0.9971 + }, + { + "start": 31090.14, + "end": 31093.49, + "probability": 0.9776 + }, + { + "start": 31094.06, + "end": 31096.42, + "probability": 0.8368 + }, + { + "start": 31096.88, + "end": 31098.92, + "probability": 0.9949 + }, + { + "start": 31099.44, + "end": 31102.16, + "probability": 0.9728 + }, + { + "start": 31102.84, + "end": 31103.66, + "probability": 0.9286 + }, + { + "start": 31104.43, + "end": 31106.6, + "probability": 0.9274 + }, + { + "start": 31106.66, + "end": 31108.58, + "probability": 0.9402 + }, + { + "start": 31108.6, + "end": 31108.88, + "probability": 0.3388 + }, + { + "start": 31109.8, + "end": 31111.78, + "probability": 0.957 + }, + { + "start": 31112.46, + "end": 31114.38, + "probability": 0.9639 + }, + { + "start": 31114.88, + "end": 31116.94, + "probability": 0.9993 + }, + { + "start": 31117.36, + "end": 31122.12, + "probability": 0.9944 + }, + { + "start": 31122.62, + "end": 31124.08, + "probability": 0.9605 + }, + { + "start": 31124.72, + "end": 31127.8, + "probability": 0.9794 + }, + { + "start": 31128.18, + "end": 31128.44, + "probability": 0.8783 + }, + { + "start": 31131.4, + "end": 31131.9, + "probability": 0.4382 + }, + { + "start": 31131.92, + "end": 31132.74, + "probability": 0.8862 + }, + { + "start": 31168.24, + "end": 31169.78, + "probability": 0.6308 + }, + { + "start": 31170.98, + "end": 31173.58, + "probability": 0.9927 + }, + { + "start": 31174.94, + "end": 31177.08, + "probability": 0.9749 + }, + { + "start": 31178.78, + "end": 31181.7, + "probability": 0.8921 + }, + { + "start": 31183.14, + "end": 31183.62, + "probability": 0.959 + }, + { + "start": 31184.52, + "end": 31186.4, + "probability": 0.7625 + }, + { + "start": 31188.18, + "end": 31189.02, + "probability": 0.5868 + }, + { + "start": 31189.08, + "end": 31190.06, + "probability": 0.8398 + }, + { + "start": 31190.22, + "end": 31193.6, + "probability": 0.9188 + }, + { + "start": 31194.7, + "end": 31197.3, + "probability": 0.9534 + }, + { + "start": 31197.46, + "end": 31198.78, + "probability": 0.4852 + }, + { + "start": 31199.4, + "end": 31200.82, + "probability": 0.9693 + }, + { + "start": 31202.0, + "end": 31205.56, + "probability": 0.9648 + }, + { + "start": 31207.0, + "end": 31210.12, + "probability": 0.8666 + }, + { + "start": 31211.18, + "end": 31215.2, + "probability": 0.9431 + }, + { + "start": 31216.58, + "end": 31221.02, + "probability": 0.9577 + }, + { + "start": 31221.02, + "end": 31226.54, + "probability": 0.9246 + }, + { + "start": 31227.8, + "end": 31229.8, + "probability": 0.9943 + }, + { + "start": 31231.22, + "end": 31232.7, + "probability": 0.8139 + }, + { + "start": 31232.72, + "end": 31239.64, + "probability": 0.838 + }, + { + "start": 31241.14, + "end": 31242.54, + "probability": 0.8155 + }, + { + "start": 31243.48, + "end": 31245.62, + "probability": 0.9904 + }, + { + "start": 31246.6, + "end": 31250.16, + "probability": 0.9162 + }, + { + "start": 31250.82, + "end": 31252.34, + "probability": 0.8596 + }, + { + "start": 31252.48, + "end": 31254.36, + "probability": 0.9959 + }, + { + "start": 31255.02, + "end": 31257.54, + "probability": 0.9914 + }, + { + "start": 31257.62, + "end": 31259.5, + "probability": 0.7376 + }, + { + "start": 31260.04, + "end": 31260.97, + "probability": 0.957 + }, + { + "start": 31261.9, + "end": 31265.9, + "probability": 0.9919 + }, + { + "start": 31266.96, + "end": 31270.34, + "probability": 0.9828 + }, + { + "start": 31271.46, + "end": 31274.44, + "probability": 0.9826 + }, + { + "start": 31274.6, + "end": 31277.28, + "probability": 0.9929 + }, + { + "start": 31278.72, + "end": 31282.72, + "probability": 0.9831 + }, + { + "start": 31283.44, + "end": 31284.84, + "probability": 0.8531 + }, + { + "start": 31284.9, + "end": 31285.58, + "probability": 0.774 + }, + { + "start": 31285.74, + "end": 31285.96, + "probability": 0.9023 + }, + { + "start": 31286.06, + "end": 31287.68, + "probability": 0.9904 + }, + { + "start": 31288.48, + "end": 31290.48, + "probability": 0.9932 + }, + { + "start": 31290.6, + "end": 31294.16, + "probability": 0.9383 + }, + { + "start": 31294.96, + "end": 31296.72, + "probability": 0.965 + }, + { + "start": 31296.88, + "end": 31301.1, + "probability": 0.9741 + }, + { + "start": 31301.74, + "end": 31304.98, + "probability": 0.9619 + }, + { + "start": 31305.64, + "end": 31307.68, + "probability": 0.9836 + }, + { + "start": 31308.7, + "end": 31312.58, + "probability": 0.9573 + }, + { + "start": 31313.4, + "end": 31315.12, + "probability": 0.8294 + }, + { + "start": 31315.22, + "end": 31315.68, + "probability": 0.3714 + }, + { + "start": 31315.74, + "end": 31316.58, + "probability": 0.8403 + }, + { + "start": 31316.7, + "end": 31317.26, + "probability": 0.6728 + }, + { + "start": 31317.82, + "end": 31321.0, + "probability": 0.9805 + }, + { + "start": 31321.98, + "end": 31328.18, + "probability": 0.9801 + }, + { + "start": 31329.72, + "end": 31333.8, + "probability": 0.9967 + }, + { + "start": 31333.9, + "end": 31336.1, + "probability": 0.9993 + }, + { + "start": 31337.62, + "end": 31340.52, + "probability": 0.8582 + }, + { + "start": 31341.36, + "end": 31346.32, + "probability": 0.9901 + }, + { + "start": 31347.14, + "end": 31348.46, + "probability": 0.9785 + }, + { + "start": 31349.48, + "end": 31356.48, + "probability": 0.9842 + }, + { + "start": 31357.24, + "end": 31359.64, + "probability": 0.9954 + }, + { + "start": 31359.64, + "end": 31362.84, + "probability": 0.9943 + }, + { + "start": 31362.96, + "end": 31364.26, + "probability": 0.9882 + }, + { + "start": 31365.3, + "end": 31367.66, + "probability": 0.9925 + }, + { + "start": 31368.46, + "end": 31369.9, + "probability": 0.8961 + }, + { + "start": 31370.02, + "end": 31374.8, + "probability": 0.9756 + }, + { + "start": 31375.38, + "end": 31378.96, + "probability": 0.9355 + }, + { + "start": 31379.7, + "end": 31381.22, + "probability": 0.882 + }, + { + "start": 31382.0, + "end": 31387.4, + "probability": 0.98 + }, + { + "start": 31387.94, + "end": 31392.08, + "probability": 0.9905 + }, + { + "start": 31393.3, + "end": 31397.38, + "probability": 0.9964 + }, + { + "start": 31398.64, + "end": 31401.62, + "probability": 0.9752 + }, + { + "start": 31402.38, + "end": 31404.12, + "probability": 0.9971 + }, + { + "start": 31404.66, + "end": 31406.14, + "probability": 0.9344 + }, + { + "start": 31406.88, + "end": 31412.1, + "probability": 0.7717 + }, + { + "start": 31413.34, + "end": 31419.1, + "probability": 0.9905 + }, + { + "start": 31419.78, + "end": 31420.74, + "probability": 0.9883 + }, + { + "start": 31423.26, + "end": 31429.3, + "probability": 0.9124 + }, + { + "start": 31429.4, + "end": 31431.26, + "probability": 0.7974 + }, + { + "start": 31432.16, + "end": 31435.46, + "probability": 0.9904 + }, + { + "start": 31436.74, + "end": 31441.76, + "probability": 0.9531 + }, + { + "start": 31442.74, + "end": 31446.3, + "probability": 0.9921 + }, + { + "start": 31447.86, + "end": 31450.12, + "probability": 0.9501 + }, + { + "start": 31450.68, + "end": 31451.8, + "probability": 0.943 + }, + { + "start": 31452.06, + "end": 31455.56, + "probability": 0.637 + }, + { + "start": 31455.62, + "end": 31456.7, + "probability": 0.7436 + }, + { + "start": 31456.76, + "end": 31461.06, + "probability": 0.8826 + }, + { + "start": 31462.54, + "end": 31462.98, + "probability": 0.7466 + }, + { + "start": 31463.08, + "end": 31468.98, + "probability": 0.9663 + }, + { + "start": 31469.2, + "end": 31470.38, + "probability": 0.8576 + }, + { + "start": 31471.42, + "end": 31472.3, + "probability": 0.5745 + }, + { + "start": 31472.54, + "end": 31474.14, + "probability": 0.9928 + }, + { + "start": 31475.36, + "end": 31478.3, + "probability": 0.9232 + }, + { + "start": 31479.1, + "end": 31483.22, + "probability": 0.9083 + }, + { + "start": 31484.48, + "end": 31487.4, + "probability": 0.9893 + }, + { + "start": 31488.72, + "end": 31492.46, + "probability": 0.989 + }, + { + "start": 31493.46, + "end": 31500.12, + "probability": 0.9939 + }, + { + "start": 31500.12, + "end": 31506.8, + "probability": 0.9704 + }, + { + "start": 31507.78, + "end": 31511.48, + "probability": 0.7654 + }, + { + "start": 31511.58, + "end": 31512.46, + "probability": 0.7352 + }, + { + "start": 31512.46, + "end": 31514.64, + "probability": 0.3168 + }, + { + "start": 31514.64, + "end": 31515.1, + "probability": 0.3722 + }, + { + "start": 31515.18, + "end": 31517.96, + "probability": 0.975 + }, + { + "start": 31518.2, + "end": 31518.76, + "probability": 0.7939 + }, + { + "start": 31519.36, + "end": 31520.08, + "probability": 0.8427 + }, + { + "start": 31527.58, + "end": 31527.72, + "probability": 0.1737 + }, + { + "start": 31527.72, + "end": 31527.84, + "probability": 0.1887 + }, + { + "start": 31527.84, + "end": 31527.94, + "probability": 0.0205 + }, + { + "start": 31527.94, + "end": 31528.16, + "probability": 0.0263 + }, + { + "start": 31546.9, + "end": 31549.46, + "probability": 0.7558 + }, + { + "start": 31550.22, + "end": 31555.14, + "probability": 0.7138 + }, + { + "start": 31556.44, + "end": 31561.2, + "probability": 0.9738 + }, + { + "start": 31562.46, + "end": 31565.5, + "probability": 0.9949 + }, + { + "start": 31565.78, + "end": 31568.34, + "probability": 0.9526 + }, + { + "start": 31568.78, + "end": 31570.24, + "probability": 0.938 + }, + { + "start": 31570.26, + "end": 31570.7, + "probability": 0.9572 + }, + { + "start": 31571.78, + "end": 31575.08, + "probability": 0.9893 + }, + { + "start": 31575.92, + "end": 31576.98, + "probability": 0.896 + }, + { + "start": 31577.1, + "end": 31579.5, + "probability": 0.9805 + }, + { + "start": 31580.18, + "end": 31583.4, + "probability": 0.9852 + }, + { + "start": 31583.92, + "end": 31584.78, + "probability": 0.8102 + }, + { + "start": 31586.3, + "end": 31589.5, + "probability": 0.9601 + }, + { + "start": 31589.56, + "end": 31592.34, + "probability": 0.9299 + }, + { + "start": 31592.88, + "end": 31593.94, + "probability": 0.9047 + }, + { + "start": 31594.02, + "end": 31595.8, + "probability": 0.9907 + }, + { + "start": 31596.26, + "end": 31599.52, + "probability": 0.9938 + }, + { + "start": 31600.72, + "end": 31603.08, + "probability": 0.9988 + }, + { + "start": 31603.08, + "end": 31606.06, + "probability": 0.9802 + }, + { + "start": 31606.86, + "end": 31609.5, + "probability": 0.8103 + }, + { + "start": 31610.48, + "end": 31613.68, + "probability": 0.969 + }, + { + "start": 31613.8, + "end": 31615.36, + "probability": 0.9956 + }, + { + "start": 31615.52, + "end": 31616.86, + "probability": 0.7767 + }, + { + "start": 31616.98, + "end": 31618.52, + "probability": 0.9792 + }, + { + "start": 31619.54, + "end": 31623.22, + "probability": 0.9952 + }, + { + "start": 31623.78, + "end": 31625.02, + "probability": 0.9065 + }, + { + "start": 31626.28, + "end": 31626.86, + "probability": 0.6763 + }, + { + "start": 31627.9, + "end": 31629.2, + "probability": 0.9767 + }, + { + "start": 31629.86, + "end": 31632.5, + "probability": 0.9235 + }, + { + "start": 31632.72, + "end": 31634.64, + "probability": 0.9608 + }, + { + "start": 31635.16, + "end": 31637.08, + "probability": 0.9615 + }, + { + "start": 31637.56, + "end": 31639.66, + "probability": 0.9989 + }, + { + "start": 31640.46, + "end": 31643.58, + "probability": 0.9702 + }, + { + "start": 31644.92, + "end": 31649.92, + "probability": 0.9886 + }, + { + "start": 31650.5, + "end": 31654.3, + "probability": 0.7466 + }, + { + "start": 31654.64, + "end": 31657.32, + "probability": 0.9952 + }, + { + "start": 31657.4, + "end": 31658.19, + "probability": 0.9909 + }, + { + "start": 31659.28, + "end": 31662.36, + "probability": 0.9747 + }, + { + "start": 31662.7, + "end": 31663.86, + "probability": 0.9667 + }, + { + "start": 31664.34, + "end": 31666.58, + "probability": 0.9855 + }, + { + "start": 31667.3, + "end": 31670.34, + "probability": 0.9372 + }, + { + "start": 31671.38, + "end": 31676.94, + "probability": 0.9902 + }, + { + "start": 31677.0, + "end": 31678.04, + "probability": 0.8677 + }, + { + "start": 31678.76, + "end": 31682.2, + "probability": 0.9928 + }, + { + "start": 31683.04, + "end": 31684.86, + "probability": 0.9969 + }, + { + "start": 31685.72, + "end": 31689.32, + "probability": 0.9841 + }, + { + "start": 31689.92, + "end": 31692.08, + "probability": 0.9932 + }, + { + "start": 31692.82, + "end": 31696.0, + "probability": 0.7757 + }, + { + "start": 31696.52, + "end": 31698.96, + "probability": 0.9893 + }, + { + "start": 31699.18, + "end": 31703.1, + "probability": 0.9927 + }, + { + "start": 31703.88, + "end": 31705.0, + "probability": 0.7225 + }, + { + "start": 31705.52, + "end": 31708.36, + "probability": 0.7825 + }, + { + "start": 31708.9, + "end": 31713.52, + "probability": 0.9819 + }, + { + "start": 31713.74, + "end": 31714.34, + "probability": 0.9544 + }, + { + "start": 31715.04, + "end": 31715.74, + "probability": 0.6027 + }, + { + "start": 31715.76, + "end": 31717.3, + "probability": 0.9308 + }, + { + "start": 31717.52, + "end": 31719.26, + "probability": 0.9993 + }, + { + "start": 31720.14, + "end": 31721.92, + "probability": 0.6699 + }, + { + "start": 31722.62, + "end": 31724.32, + "probability": 0.8669 + }, + { + "start": 31725.3, + "end": 31726.9, + "probability": 0.8359 + }, + { + "start": 31727.08, + "end": 31730.22, + "probability": 0.9932 + }, + { + "start": 31731.83, + "end": 31736.22, + "probability": 0.9799 + }, + { + "start": 31737.1, + "end": 31739.54, + "probability": 0.9589 + }, + { + "start": 31739.54, + "end": 31742.64, + "probability": 0.9201 + }, + { + "start": 31742.94, + "end": 31744.8, + "probability": 0.973 + }, + { + "start": 31744.9, + "end": 31745.9, + "probability": 0.9655 + }, + { + "start": 31746.0, + "end": 31748.48, + "probability": 0.9924 + }, + { + "start": 31748.7, + "end": 31750.52, + "probability": 0.943 + }, + { + "start": 31751.76, + "end": 31754.0, + "probability": 0.8442 + }, + { + "start": 31754.24, + "end": 31755.9, + "probability": 0.8147 + }, + { + "start": 31756.44, + "end": 31758.34, + "probability": 0.9913 + }, + { + "start": 31758.82, + "end": 31762.04, + "probability": 0.9827 + }, + { + "start": 31762.9, + "end": 31763.5, + "probability": 0.7213 + }, + { + "start": 31763.66, + "end": 31767.16, + "probability": 0.9958 + }, + { + "start": 31768.32, + "end": 31771.06, + "probability": 0.804 + }, + { + "start": 31771.22, + "end": 31774.22, + "probability": 0.9046 + }, + { + "start": 31775.06, + "end": 31777.8, + "probability": 0.9897 + }, + { + "start": 31778.46, + "end": 31780.04, + "probability": 0.9863 + }, + { + "start": 31780.46, + "end": 31781.08, + "probability": 0.9411 + }, + { + "start": 31781.72, + "end": 31784.56, + "probability": 0.9913 + }, + { + "start": 31785.1, + "end": 31785.68, + "probability": 0.9938 + }, + { + "start": 31786.4, + "end": 31786.74, + "probability": 0.8472 + }, + { + "start": 31787.42, + "end": 31790.74, + "probability": 0.9963 + }, + { + "start": 31792.54, + "end": 31794.26, + "probability": 0.6815 + }, + { + "start": 31794.74, + "end": 31795.22, + "probability": 0.7058 + }, + { + "start": 31795.66, + "end": 31798.76, + "probability": 0.9754 + }, + { + "start": 31799.1, + "end": 31799.34, + "probability": 0.8831 + }, + { + "start": 31799.36, + "end": 31804.5, + "probability": 0.988 + }, + { + "start": 31805.02, + "end": 31806.86, + "probability": 0.656 + }, + { + "start": 31807.14, + "end": 31808.08, + "probability": 0.9453 + }, + { + "start": 31808.14, + "end": 31809.44, + "probability": 0.9346 + }, + { + "start": 31810.4, + "end": 31812.62, + "probability": 0.7519 + }, + { + "start": 31813.18, + "end": 31816.98, + "probability": 0.9792 + }, + { + "start": 31817.3, + "end": 31819.78, + "probability": 0.8704 + }, + { + "start": 31820.3, + "end": 31822.52, + "probability": 0.9975 + }, + { + "start": 31823.0, + "end": 31824.47, + "probability": 0.9761 + }, + { + "start": 31825.66, + "end": 31828.74, + "probability": 0.958 + }, + { + "start": 31828.88, + "end": 31831.7, + "probability": 0.9841 + }, + { + "start": 31831.92, + "end": 31834.74, + "probability": 0.9882 + }, + { + "start": 31835.74, + "end": 31836.96, + "probability": 0.9896 + }, + { + "start": 31837.82, + "end": 31838.78, + "probability": 0.8511 + }, + { + "start": 31838.9, + "end": 31839.86, + "probability": 0.9207 + }, + { + "start": 31839.94, + "end": 31841.66, + "probability": 0.9067 + }, + { + "start": 31841.8, + "end": 31843.36, + "probability": 0.7815 + }, + { + "start": 31843.98, + "end": 31846.5, + "probability": 0.6007 + }, + { + "start": 31847.6, + "end": 31849.5, + "probability": 0.9824 + }, + { + "start": 31849.96, + "end": 31851.48, + "probability": 0.9955 + }, + { + "start": 31852.68, + "end": 31855.82, + "probability": 0.8 + }, + { + "start": 31856.37, + "end": 31858.96, + "probability": 0.9985 + }, + { + "start": 31859.9, + "end": 31864.36, + "probability": 0.9977 + }, + { + "start": 31864.98, + "end": 31866.7, + "probability": 0.7908 + }, + { + "start": 31868.58, + "end": 31869.28, + "probability": 0.4897 + }, + { + "start": 31869.36, + "end": 31871.24, + "probability": 0.9772 + }, + { + "start": 31871.8, + "end": 31875.34, + "probability": 0.9261 + }, + { + "start": 31875.9, + "end": 31879.82, + "probability": 0.9932 + }, + { + "start": 31881.78, + "end": 31883.0, + "probability": 0.887 + }, + { + "start": 31883.14, + "end": 31885.86, + "probability": 0.9948 + }, + { + "start": 31886.58, + "end": 31887.36, + "probability": 0.9482 + }, + { + "start": 31888.36, + "end": 31891.48, + "probability": 0.9937 + }, + { + "start": 31892.36, + "end": 31895.62, + "probability": 0.9763 + }, + { + "start": 31896.2, + "end": 31898.18, + "probability": 0.9916 + }, + { + "start": 31899.24, + "end": 31902.28, + "probability": 0.9951 + }, + { + "start": 31902.38, + "end": 31903.36, + "probability": 0.9888 + }, + { + "start": 31903.82, + "end": 31907.04, + "probability": 0.9618 + }, + { + "start": 31907.76, + "end": 31912.06, + "probability": 0.9991 + }, + { + "start": 31912.54, + "end": 31915.58, + "probability": 0.9982 + }, + { + "start": 31916.26, + "end": 31918.14, + "probability": 0.9853 + }, + { + "start": 31918.6, + "end": 31920.7, + "probability": 0.9269 + }, + { + "start": 31921.44, + "end": 31923.28, + "probability": 0.6578 + }, + { + "start": 31923.84, + "end": 31925.08, + "probability": 0.7859 + }, + { + "start": 31925.12, + "end": 31929.7, + "probability": 0.9922 + }, + { + "start": 31930.7, + "end": 31931.76, + "probability": 0.8799 + }, + { + "start": 31932.28, + "end": 31933.26, + "probability": 0.9835 + }, + { + "start": 31933.74, + "end": 31936.44, + "probability": 0.9799 + }, + { + "start": 31936.7, + "end": 31937.24, + "probability": 0.9521 + }, + { + "start": 31938.28, + "end": 31940.1, + "probability": 0.8289 + }, + { + "start": 31942.98, + "end": 31945.36, + "probability": 0.9897 + }, + { + "start": 31946.36, + "end": 31949.36, + "probability": 0.9932 + }, + { + "start": 31949.48, + "end": 31950.58, + "probability": 0.6722 + }, + { + "start": 31950.88, + "end": 31953.28, + "probability": 0.9753 + }, + { + "start": 31953.28, + "end": 31956.34, + "probability": 0.9905 + }, + { + "start": 31956.44, + "end": 31958.02, + "probability": 0.9976 + }, + { + "start": 31958.84, + "end": 31961.26, + "probability": 0.9678 + }, + { + "start": 31962.16, + "end": 31965.04, + "probability": 0.8948 + }, + { + "start": 31965.76, + "end": 31968.44, + "probability": 0.9828 + }, + { + "start": 31968.44, + "end": 31970.96, + "probability": 0.9643 + }, + { + "start": 31971.76, + "end": 31972.64, + "probability": 0.9888 + }, + { + "start": 31972.76, + "end": 31973.86, + "probability": 0.9822 + }, + { + "start": 31973.98, + "end": 31975.98, + "probability": 0.9894 + }, + { + "start": 31976.54, + "end": 31978.88, + "probability": 0.8803 + }, + { + "start": 31978.96, + "end": 31983.58, + "probability": 0.9882 + }, + { + "start": 31984.22, + "end": 31986.6, + "probability": 0.9889 + }, + { + "start": 31986.6, + "end": 31990.06, + "probability": 0.9985 + }, + { + "start": 31990.68, + "end": 31992.28, + "probability": 0.5594 + }, + { + "start": 31992.56, + "end": 31995.1, + "probability": 0.8879 + }, + { + "start": 31995.96, + "end": 31996.98, + "probability": 0.9188 + }, + { + "start": 31998.12, + "end": 31999.3, + "probability": 0.8912 + }, + { + "start": 31999.5, + "end": 32001.62, + "probability": 0.7505 + }, + { + "start": 32002.24, + "end": 32005.82, + "probability": 0.7501 + }, + { + "start": 32005.9, + "end": 32006.84, + "probability": 0.835 + }, + { + "start": 32006.86, + "end": 32008.38, + "probability": 0.9856 + }, + { + "start": 32009.38, + "end": 32012.96, + "probability": 0.9656 + }, + { + "start": 32013.44, + "end": 32015.38, + "probability": 0.9819 + }, + { + "start": 32016.36, + "end": 32018.16, + "probability": 0.7643 + }, + { + "start": 32019.28, + "end": 32022.12, + "probability": 0.9835 + }, + { + "start": 32023.02, + "end": 32025.17, + "probability": 0.9738 + }, + { + "start": 32025.86, + "end": 32026.64, + "probability": 0.7164 + }, + { + "start": 32026.76, + "end": 32027.78, + "probability": 0.9682 + }, + { + "start": 32027.86, + "end": 32029.7, + "probability": 0.9178 + }, + { + "start": 32029.9, + "end": 32031.9, + "probability": 0.9681 + }, + { + "start": 32033.06, + "end": 32035.76, + "probability": 0.8851 + }, + { + "start": 32036.38, + "end": 32039.1, + "probability": 0.9949 + }, + { + "start": 32039.44, + "end": 32041.56, + "probability": 0.859 + }, + { + "start": 32042.1, + "end": 32043.46, + "probability": 0.9654 + }, + { + "start": 32044.26, + "end": 32046.24, + "probability": 0.9985 + }, + { + "start": 32046.54, + "end": 32047.74, + "probability": 0.5314 + }, + { + "start": 32047.92, + "end": 32048.7, + "probability": 0.9679 + }, + { + "start": 32048.86, + "end": 32050.56, + "probability": 0.9617 + }, + { + "start": 32052.02, + "end": 32052.18, + "probability": 0.7459 + }, + { + "start": 32052.2, + "end": 32054.58, + "probability": 0.9863 + }, + { + "start": 32054.58, + "end": 32056.96, + "probability": 0.9956 + }, + { + "start": 32057.74, + "end": 32061.28, + "probability": 0.9805 + }, + { + "start": 32064.04, + "end": 32064.94, + "probability": 0.9009 + }, + { + "start": 32066.22, + "end": 32070.3, + "probability": 0.994 + }, + { + "start": 32071.12, + "end": 32072.64, + "probability": 0.9944 + }, + { + "start": 32072.64, + "end": 32074.82, + "probability": 0.9108 + }, + { + "start": 32074.94, + "end": 32075.84, + "probability": 0.9384 + }, + { + "start": 32076.3, + "end": 32077.42, + "probability": 0.9858 + }, + { + "start": 32078.08, + "end": 32081.24, + "probability": 0.9773 + }, + { + "start": 32082.18, + "end": 32085.04, + "probability": 0.9927 + }, + { + "start": 32085.04, + "end": 32088.26, + "probability": 0.9961 + }, + { + "start": 32089.72, + "end": 32093.14, + "probability": 0.9934 + }, + { + "start": 32094.18, + "end": 32094.84, + "probability": 0.9218 + }, + { + "start": 32094.9, + "end": 32099.82, + "probability": 0.9913 + }, + { + "start": 32100.4, + "end": 32103.02, + "probability": 0.9589 + }, + { + "start": 32103.72, + "end": 32104.34, + "probability": 0.943 + }, + { + "start": 32105.0, + "end": 32108.74, + "probability": 0.9979 + }, + { + "start": 32109.44, + "end": 32113.14, + "probability": 0.9979 + }, + { + "start": 32113.86, + "end": 32116.68, + "probability": 0.9989 + }, + { + "start": 32117.18, + "end": 32122.06, + "probability": 0.9873 + }, + { + "start": 32122.62, + "end": 32124.62, + "probability": 0.9707 + }, + { + "start": 32125.0, + "end": 32125.44, + "probability": 0.7374 + }, + { + "start": 32125.78, + "end": 32126.84, + "probability": 0.9949 + }, + { + "start": 32127.68, + "end": 32131.14, + "probability": 0.9989 + }, + { + "start": 32131.64, + "end": 32133.1, + "probability": 0.9985 + }, + { + "start": 32133.74, + "end": 32135.98, + "probability": 0.9906 + }, + { + "start": 32136.95, + "end": 32139.52, + "probability": 0.884 + }, + { + "start": 32140.48, + "end": 32141.8, + "probability": 0.9307 + }, + { + "start": 32142.92, + "end": 32145.98, + "probability": 0.8543 + }, + { + "start": 32146.32, + "end": 32146.7, + "probability": 0.6408 + }, + { + "start": 32146.72, + "end": 32148.16, + "probability": 0.9749 + }, + { + "start": 32148.5, + "end": 32149.66, + "probability": 0.966 + }, + { + "start": 32150.6, + "end": 32153.12, + "probability": 0.9686 + }, + { + "start": 32153.36, + "end": 32156.8, + "probability": 0.9703 + }, + { + "start": 32157.56, + "end": 32159.74, + "probability": 0.9429 + }, + { + "start": 32161.08, + "end": 32163.78, + "probability": 0.9977 + }, + { + "start": 32164.7, + "end": 32167.45, + "probability": 0.9673 + }, + { + "start": 32168.04, + "end": 32169.0, + "probability": 0.948 + }, + { + "start": 32169.98, + "end": 32171.94, + "probability": 0.9775 + }, + { + "start": 32171.98, + "end": 32173.88, + "probability": 0.9841 + }, + { + "start": 32173.92, + "end": 32174.56, + "probability": 0.8796 + }, + { + "start": 32175.2, + "end": 32176.78, + "probability": 0.9037 + }, + { + "start": 32177.3, + "end": 32178.9, + "probability": 0.9825 + }, + { + "start": 32180.52, + "end": 32182.15, + "probability": 0.9695 + }, + { + "start": 32182.78, + "end": 32182.92, + "probability": 0.2758 + }, + { + "start": 32183.02, + "end": 32185.42, + "probability": 0.9615 + }, + { + "start": 32185.6, + "end": 32186.6, + "probability": 0.9787 + }, + { + "start": 32186.62, + "end": 32187.24, + "probability": 0.7275 + }, + { + "start": 32187.62, + "end": 32191.12, + "probability": 0.9783 + }, + { + "start": 32191.84, + "end": 32192.98, + "probability": 0.8234 + }, + { + "start": 32193.04, + "end": 32194.24, + "probability": 0.8526 + }, + { + "start": 32194.46, + "end": 32195.34, + "probability": 0.9689 + }, + { + "start": 32196.6, + "end": 32197.32, + "probability": 0.8617 + }, + { + "start": 32197.56, + "end": 32201.16, + "probability": 0.9849 + }, + { + "start": 32201.82, + "end": 32202.4, + "probability": 0.7051 + }, + { + "start": 32203.7, + "end": 32205.18, + "probability": 0.9766 + }, + { + "start": 32205.24, + "end": 32206.28, + "probability": 0.9606 + }, + { + "start": 32206.42, + "end": 32208.14, + "probability": 0.7841 + }, + { + "start": 32209.98, + "end": 32212.78, + "probability": 0.8501 + }, + { + "start": 32213.32, + "end": 32215.34, + "probability": 0.8519 + }, + { + "start": 32216.1, + "end": 32218.16, + "probability": 0.9205 + }, + { + "start": 32218.58, + "end": 32221.16, + "probability": 0.9669 + }, + { + "start": 32222.06, + "end": 32222.74, + "probability": 0.7378 + }, + { + "start": 32223.68, + "end": 32223.94, + "probability": 0.3331 + }, + { + "start": 32224.0, + "end": 32228.16, + "probability": 0.9857 + }, + { + "start": 32228.76, + "end": 32231.84, + "probability": 0.9879 + }, + { + "start": 32231.84, + "end": 32236.0, + "probability": 0.9652 + }, + { + "start": 32236.66, + "end": 32237.56, + "probability": 0.7861 + }, + { + "start": 32237.76, + "end": 32240.72, + "probability": 0.9924 + }, + { + "start": 32241.58, + "end": 32244.0, + "probability": 0.9243 + }, + { + "start": 32245.46, + "end": 32248.44, + "probability": 0.9836 + }, + { + "start": 32249.18, + "end": 32250.76, + "probability": 0.8642 + }, + { + "start": 32251.32, + "end": 32253.76, + "probability": 0.9789 + }, + { + "start": 32253.84, + "end": 32254.85, + "probability": 0.9601 + }, + { + "start": 32255.5, + "end": 32256.96, + "probability": 0.9922 + }, + { + "start": 32257.7, + "end": 32258.46, + "probability": 0.7473 + }, + { + "start": 32258.54, + "end": 32262.86, + "probability": 0.9849 + }, + { + "start": 32263.46, + "end": 32267.88, + "probability": 0.9917 + }, + { + "start": 32268.62, + "end": 32272.14, + "probability": 0.9904 + }, + { + "start": 32273.04, + "end": 32274.39, + "probability": 0.9912 + }, + { + "start": 32275.06, + "end": 32275.4, + "probability": 0.8044 + }, + { + "start": 32275.46, + "end": 32276.46, + "probability": 0.9922 + }, + { + "start": 32276.54, + "end": 32278.82, + "probability": 0.9805 + }, + { + "start": 32279.74, + "end": 32281.86, + "probability": 0.8918 + }, + { + "start": 32281.96, + "end": 32284.8, + "probability": 0.9771 + }, + { + "start": 32285.86, + "end": 32288.26, + "probability": 0.9862 + }, + { + "start": 32288.26, + "end": 32291.88, + "probability": 0.9831 + }, + { + "start": 32292.36, + "end": 32295.3, + "probability": 0.7981 + }, + { + "start": 32296.32, + "end": 32297.64, + "probability": 0.9949 + }, + { + "start": 32297.7, + "end": 32300.74, + "probability": 0.9797 + }, + { + "start": 32301.12, + "end": 32303.68, + "probability": 0.9745 + }, + { + "start": 32304.86, + "end": 32309.22, + "probability": 0.9889 + }, + { + "start": 32309.44, + "end": 32310.52, + "probability": 0.9961 + }, + { + "start": 32310.96, + "end": 32312.24, + "probability": 0.9455 + }, + { + "start": 32312.88, + "end": 32314.72, + "probability": 0.9045 + }, + { + "start": 32315.46, + "end": 32316.56, + "probability": 0.9648 + }, + { + "start": 32316.62, + "end": 32318.52, + "probability": 0.9927 + }, + { + "start": 32318.72, + "end": 32320.36, + "probability": 0.788 + }, + { + "start": 32320.78, + "end": 32323.32, + "probability": 0.9614 + }, + { + "start": 32325.42, + "end": 32328.26, + "probability": 0.7501 + }, + { + "start": 32329.14, + "end": 32330.52, + "probability": 0.4885 + }, + { + "start": 32330.96, + "end": 32332.22, + "probability": 0.7328 + }, + { + "start": 32332.64, + "end": 32334.56, + "probability": 0.8793 + }, + { + "start": 32335.28, + "end": 32337.56, + "probability": 0.9956 + }, + { + "start": 32338.86, + "end": 32343.18, + "probability": 0.9902 + }, + { + "start": 32343.92, + "end": 32345.22, + "probability": 0.4998 + }, + { + "start": 32345.28, + "end": 32345.9, + "probability": 0.9321 + }, + { + "start": 32346.26, + "end": 32349.14, + "probability": 0.9841 + }, + { + "start": 32350.3, + "end": 32352.52, + "probability": 0.6863 + }, + { + "start": 32353.1, + "end": 32355.54, + "probability": 0.9658 + }, + { + "start": 32356.94, + "end": 32359.54, + "probability": 0.9149 + }, + { + "start": 32359.72, + "end": 32364.04, + "probability": 0.8833 + }, + { + "start": 32364.74, + "end": 32366.34, + "probability": 0.9792 + }, + { + "start": 32366.42, + "end": 32368.32, + "probability": 0.9456 + }, + { + "start": 32368.54, + "end": 32372.08, + "probability": 0.9646 + }, + { + "start": 32372.7, + "end": 32373.77, + "probability": 0.963 + }, + { + "start": 32373.86, + "end": 32374.24, + "probability": 0.757 + }, + { + "start": 32374.36, + "end": 32375.14, + "probability": 0.9183 + }, + { + "start": 32375.24, + "end": 32376.7, + "probability": 0.988 + }, + { + "start": 32377.42, + "end": 32379.86, + "probability": 0.9893 + }, + { + "start": 32380.38, + "end": 32381.12, + "probability": 0.9818 + }, + { + "start": 32382.68, + "end": 32384.36, + "probability": 0.961 + }, + { + "start": 32384.64, + "end": 32385.6, + "probability": 0.6626 + }, + { + "start": 32385.66, + "end": 32386.66, + "probability": 0.9035 + }, + { + "start": 32387.46, + "end": 32390.16, + "probability": 0.9332 + }, + { + "start": 32390.68, + "end": 32393.54, + "probability": 0.9041 + }, + { + "start": 32394.94, + "end": 32399.3, + "probability": 0.9966 + }, + { + "start": 32400.52, + "end": 32403.5, + "probability": 0.9878 + }, + { + "start": 32404.04, + "end": 32407.52, + "probability": 0.9989 + }, + { + "start": 32408.2, + "end": 32409.68, + "probability": 0.7802 + }, + { + "start": 32409.8, + "end": 32411.98, + "probability": 0.9823 + }, + { + "start": 32412.44, + "end": 32414.68, + "probability": 0.9888 + }, + { + "start": 32415.6, + "end": 32417.88, + "probability": 0.9952 + }, + { + "start": 32418.1, + "end": 32420.06, + "probability": 0.9875 + }, + { + "start": 32420.98, + "end": 32423.26, + "probability": 0.98 + }, + { + "start": 32423.42, + "end": 32426.12, + "probability": 0.8467 + }, + { + "start": 32427.06, + "end": 32427.98, + "probability": 0.9694 + }, + { + "start": 32428.04, + "end": 32428.74, + "probability": 0.9966 + }, + { + "start": 32428.78, + "end": 32429.96, + "probability": 0.9672 + }, + { + "start": 32430.56, + "end": 32431.82, + "probability": 0.8046 + }, + { + "start": 32432.2, + "end": 32433.76, + "probability": 0.9976 + }, + { + "start": 32433.84, + "end": 32434.92, + "probability": 0.8002 + }, + { + "start": 32435.28, + "end": 32435.92, + "probability": 0.5461 + }, + { + "start": 32436.5, + "end": 32437.72, + "probability": 0.8013 + }, + { + "start": 32438.24, + "end": 32438.86, + "probability": 0.9774 + }, + { + "start": 32440.22, + "end": 32441.76, + "probability": 0.8635 + }, + { + "start": 32442.24, + "end": 32445.76, + "probability": 0.9927 + }, + { + "start": 32446.3, + "end": 32449.12, + "probability": 0.9966 + }, + { + "start": 32450.24, + "end": 32450.92, + "probability": 0.9564 + }, + { + "start": 32451.22, + "end": 32452.84, + "probability": 0.9969 + }, + { + "start": 32452.96, + "end": 32454.2, + "probability": 0.9541 + }, + { + "start": 32454.72, + "end": 32456.8, + "probability": 0.7446 + }, + { + "start": 32457.26, + "end": 32458.86, + "probability": 0.9861 + }, + { + "start": 32459.3, + "end": 32460.9, + "probability": 0.984 + }, + { + "start": 32461.06, + "end": 32462.78, + "probability": 0.9224 + }, + { + "start": 32463.34, + "end": 32465.38, + "probability": 0.9961 + }, + { + "start": 32466.2, + "end": 32467.74, + "probability": 0.9862 + }, + { + "start": 32468.2, + "end": 32469.48, + "probability": 0.9543 + }, + { + "start": 32470.1, + "end": 32471.98, + "probability": 0.981 + }, + { + "start": 32472.48, + "end": 32473.26, + "probability": 0.9055 + }, + { + "start": 32473.6, + "end": 32474.48, + "probability": 0.987 + }, + { + "start": 32475.2, + "end": 32477.92, + "probability": 0.9866 + }, + { + "start": 32479.0, + "end": 32480.88, + "probability": 0.9698 + }, + { + "start": 32481.64, + "end": 32482.82, + "probability": 0.6486 + }, + { + "start": 32482.92, + "end": 32483.54, + "probability": 0.7698 + }, + { + "start": 32483.66, + "end": 32487.76, + "probability": 0.9706 + }, + { + "start": 32488.94, + "end": 32492.32, + "probability": 0.9805 + }, + { + "start": 32492.86, + "end": 32495.64, + "probability": 0.8652 + }, + { + "start": 32496.04, + "end": 32499.76, + "probability": 0.9944 + }, + { + "start": 32500.56, + "end": 32503.12, + "probability": 0.9907 + }, + { + "start": 32503.4, + "end": 32505.34, + "probability": 0.9453 + }, + { + "start": 32506.28, + "end": 32508.36, + "probability": 0.9361 + }, + { + "start": 32508.94, + "end": 32512.3, + "probability": 0.9814 + }, + { + "start": 32512.88, + "end": 32514.76, + "probability": 0.9909 + }, + { + "start": 32515.76, + "end": 32515.96, + "probability": 0.7722 + }, + { + "start": 32516.02, + "end": 32518.0, + "probability": 0.9844 + }, + { + "start": 32518.0, + "end": 32521.04, + "probability": 0.9927 + }, + { + "start": 32521.92, + "end": 32524.32, + "probability": 0.997 + }, + { + "start": 32525.22, + "end": 32528.16, + "probability": 0.9627 + }, + { + "start": 32529.38, + "end": 32531.52, + "probability": 0.9026 + }, + { + "start": 32531.64, + "end": 32532.42, + "probability": 0.7882 + }, + { + "start": 32532.48, + "end": 32533.68, + "probability": 0.9795 + }, + { + "start": 32533.8, + "end": 32535.2, + "probability": 0.9736 + }, + { + "start": 32535.98, + "end": 32536.72, + "probability": 0.9594 + }, + { + "start": 32537.58, + "end": 32540.62, + "probability": 0.985 + }, + { + "start": 32540.76, + "end": 32541.48, + "probability": 0.8474 + }, + { + "start": 32541.6, + "end": 32543.46, + "probability": 0.9841 + }, + { + "start": 32544.52, + "end": 32548.18, + "probability": 0.9731 + }, + { + "start": 32548.66, + "end": 32553.02, + "probability": 0.9978 + }, + { + "start": 32553.74, + "end": 32556.84, + "probability": 0.9974 + }, + { + "start": 32557.38, + "end": 32559.42, + "probability": 0.9794 + }, + { + "start": 32559.96, + "end": 32561.96, + "probability": 0.8664 + }, + { + "start": 32561.98, + "end": 32562.6, + "probability": 0.7457 + }, + { + "start": 32562.7, + "end": 32563.1, + "probability": 0.8425 + }, + { + "start": 32563.9, + "end": 32565.42, + "probability": 0.7604 + }, + { + "start": 32566.5, + "end": 32568.22, + "probability": 0.7744 + }, + { + "start": 32568.32, + "end": 32569.74, + "probability": 0.9448 + }, + { + "start": 32569.76, + "end": 32570.56, + "probability": 0.8038 + }, + { + "start": 32571.16, + "end": 32572.42, + "probability": 0.9197 + }, + { + "start": 32572.78, + "end": 32574.06, + "probability": 0.9941 + }, + { + "start": 32574.26, + "end": 32577.9, + "probability": 0.9377 + }, + { + "start": 32579.04, + "end": 32580.74, + "probability": 0.9852 + }, + { + "start": 32581.3, + "end": 32583.5, + "probability": 0.9198 + }, + { + "start": 32583.92, + "end": 32586.38, + "probability": 0.9464 + }, + { + "start": 32586.9, + "end": 32588.38, + "probability": 0.9141 + }, + { + "start": 32588.7, + "end": 32589.86, + "probability": 0.9909 + }, + { + "start": 32591.2, + "end": 32595.46, + "probability": 0.9844 + }, + { + "start": 32596.4, + "end": 32598.96, + "probability": 0.993 + }, + { + "start": 32599.04, + "end": 32600.12, + "probability": 0.8733 + }, + { + "start": 32600.3, + "end": 32602.02, + "probability": 0.9678 + }, + { + "start": 32602.78, + "end": 32605.46, + "probability": 0.8872 + }, + { + "start": 32605.94, + "end": 32608.14, + "probability": 0.9931 + }, + { + "start": 32609.1, + "end": 32610.5, + "probability": 0.9968 + }, + { + "start": 32610.58, + "end": 32611.7, + "probability": 0.8932 + }, + { + "start": 32611.86, + "end": 32614.76, + "probability": 0.986 + }, + { + "start": 32615.66, + "end": 32617.24, + "probability": 0.9171 + }, + { + "start": 32617.58, + "end": 32618.44, + "probability": 0.9956 + }, + { + "start": 32618.64, + "end": 32619.38, + "probability": 0.945 + }, + { + "start": 32619.46, + "end": 32620.8, + "probability": 0.9928 + }, + { + "start": 32621.66, + "end": 32623.91, + "probability": 0.9829 + }, + { + "start": 32623.98, + "end": 32625.1, + "probability": 0.9912 + }, + { + "start": 32625.28, + "end": 32626.44, + "probability": 0.9874 + }, + { + "start": 32627.18, + "end": 32628.32, + "probability": 0.9733 + }, + { + "start": 32629.4, + "end": 32631.7, + "probability": 0.7713 + }, + { + "start": 32631.88, + "end": 32635.66, + "probability": 0.9956 + }, + { + "start": 32636.36, + "end": 32638.86, + "probability": 0.8577 + }, + { + "start": 32639.5, + "end": 32641.5, + "probability": 0.9902 + }, + { + "start": 32641.92, + "end": 32642.68, + "probability": 0.8088 + }, + { + "start": 32642.86, + "end": 32644.54, + "probability": 0.8779 + }, + { + "start": 32645.46, + "end": 32648.56, + "probability": 0.9935 + }, + { + "start": 32648.58, + "end": 32649.42, + "probability": 0.8351 + }, + { + "start": 32650.38, + "end": 32651.16, + "probability": 0.9711 + }, + { + "start": 32651.44, + "end": 32652.1, + "probability": 0.9344 + }, + { + "start": 32652.24, + "end": 32652.92, + "probability": 0.9839 + }, + { + "start": 32653.08, + "end": 32654.2, + "probability": 0.9236 + }, + { + "start": 32654.3, + "end": 32655.2, + "probability": 0.8876 + }, + { + "start": 32655.24, + "end": 32655.84, + "probability": 0.8779 + }, + { + "start": 32655.9, + "end": 32656.82, + "probability": 0.7981 + }, + { + "start": 32657.52, + "end": 32659.18, + "probability": 0.9936 + }, + { + "start": 32659.96, + "end": 32661.98, + "probability": 0.8999 + }, + { + "start": 32662.22, + "end": 32666.0, + "probability": 0.9775 + }, + { + "start": 32667.26, + "end": 32669.98, + "probability": 0.9936 + }, + { + "start": 32670.74, + "end": 32671.82, + "probability": 0.9716 + }, + { + "start": 32671.96, + "end": 32672.86, + "probability": 0.9164 + }, + { + "start": 32672.92, + "end": 32673.88, + "probability": 0.7853 + }, + { + "start": 32674.36, + "end": 32676.68, + "probability": 0.9871 + }, + { + "start": 32677.24, + "end": 32681.81, + "probability": 0.9946 + }, + { + "start": 32683.8, + "end": 32684.62, + "probability": 0.5512 + }, + { + "start": 32685.18, + "end": 32686.9, + "probability": 0.9965 + }, + { + "start": 32687.74, + "end": 32691.0, + "probability": 0.9702 + }, + { + "start": 32691.0, + "end": 32694.0, + "probability": 0.981 + }, + { + "start": 32694.66, + "end": 32695.22, + "probability": 0.4761 + }, + { + "start": 32695.42, + "end": 32697.64, + "probability": 0.998 + }, + { + "start": 32698.34, + "end": 32701.32, + "probability": 0.9901 + }, + { + "start": 32702.24, + "end": 32704.22, + "probability": 0.959 + }, + { + "start": 32704.4, + "end": 32706.92, + "probability": 0.9954 + }, + { + "start": 32707.78, + "end": 32708.7, + "probability": 0.867 + }, + { + "start": 32709.16, + "end": 32709.44, + "probability": 0.8403 + }, + { + "start": 32709.5, + "end": 32711.14, + "probability": 0.9135 + }, + { + "start": 32711.56, + "end": 32712.92, + "probability": 0.6345 + }, + { + "start": 32713.48, + "end": 32715.9, + "probability": 0.9646 + }, + { + "start": 32716.34, + "end": 32721.3, + "probability": 0.8248 + }, + { + "start": 32721.7, + "end": 32724.88, + "probability": 0.8937 + }, + { + "start": 32725.74, + "end": 32727.26, + "probability": 0.9989 + }, + { + "start": 32727.32, + "end": 32728.38, + "probability": 0.8963 + }, + { + "start": 32728.66, + "end": 32730.56, + "probability": 0.9122 + }, + { + "start": 32731.54, + "end": 32733.24, + "probability": 0.8868 + }, + { + "start": 32733.34, + "end": 32733.88, + "probability": 0.9278 + }, + { + "start": 32734.26, + "end": 32734.86, + "probability": 0.969 + }, + { + "start": 32735.9, + "end": 32737.44, + "probability": 0.9531 + }, + { + "start": 32737.5, + "end": 32737.74, + "probability": 0.8365 + }, + { + "start": 32737.88, + "end": 32740.52, + "probability": 0.9993 + }, + { + "start": 32741.66, + "end": 32744.08, + "probability": 0.9928 + }, + { + "start": 32744.6, + "end": 32745.4, + "probability": 0.6437 + }, + { + "start": 32745.98, + "end": 32748.64, + "probability": 0.9779 + }, + { + "start": 32749.2, + "end": 32750.78, + "probability": 0.7552 + }, + { + "start": 32751.08, + "end": 32752.6, + "probability": 0.9729 + }, + { + "start": 32752.9, + "end": 32753.76, + "probability": 0.8908 + }, + { + "start": 32754.48, + "end": 32755.46, + "probability": 0.9774 + }, + { + "start": 32756.46, + "end": 32756.88, + "probability": 0.9529 + }, + { + "start": 32757.04, + "end": 32757.93, + "probability": 0.9974 + }, + { + "start": 32758.24, + "end": 32760.64, + "probability": 0.9845 + }, + { + "start": 32761.18, + "end": 32766.6, + "probability": 0.9932 + }, + { + "start": 32767.26, + "end": 32769.59, + "probability": 0.9905 + }, + { + "start": 32770.12, + "end": 32774.82, + "probability": 0.9938 + }, + { + "start": 32775.64, + "end": 32778.92, + "probability": 0.9727 + }, + { + "start": 32779.44, + "end": 32782.0, + "probability": 0.9884 + }, + { + "start": 32782.56, + "end": 32783.96, + "probability": 0.5902 + }, + { + "start": 32784.74, + "end": 32790.9, + "probability": 0.9744 + }, + { + "start": 32791.58, + "end": 32795.46, + "probability": 0.9967 + }, + { + "start": 32797.78, + "end": 32797.98, + "probability": 0.1517 + }, + { + "start": 32797.98, + "end": 32798.62, + "probability": 0.374 + }, + { + "start": 32799.38, + "end": 32801.4, + "probability": 0.9448 + }, + { + "start": 32801.96, + "end": 32802.98, + "probability": 0.4893 + }, + { + "start": 32803.66, + "end": 32809.36, + "probability": 0.997 + }, + { + "start": 32809.5, + "end": 32809.92, + "probability": 0.8162 + }, + { + "start": 32814.94, + "end": 32815.36, + "probability": 0.2642 + }, + { + "start": 32815.48, + "end": 32816.28, + "probability": 0.8387 + }, + { + "start": 32817.22, + "end": 32819.69, + "probability": 0.8955 + }, + { + "start": 32821.14, + "end": 32823.12, + "probability": 0.8625 + }, + { + "start": 32823.46, + "end": 32823.76, + "probability": 0.2893 + }, + { + "start": 32823.76, + "end": 32824.78, + "probability": 0.0181 + }, + { + "start": 32827.26, + "end": 32829.9, + "probability": 0.2558 + }, + { + "start": 32829.9, + "end": 32830.58, + "probability": 0.1879 + }, + { + "start": 32830.58, + "end": 32834.34, + "probability": 0.0518 + }, + { + "start": 32841.84, + "end": 32845.38, + "probability": 0.0693 + }, + { + "start": 32851.24, + "end": 32852.06, + "probability": 0.0903 + }, + { + "start": 32855.42, + "end": 32861.18, + "probability": 0.1207 + }, + { + "start": 32890.74, + "end": 32892.16, + "probability": 0.6637 + }, + { + "start": 32893.4, + "end": 32895.56, + "probability": 0.5701 + }, + { + "start": 32896.32, + "end": 32896.42, + "probability": 0.9954 + }, + { + "start": 32898.42, + "end": 32899.92, + "probability": 0.9629 + }, + { + "start": 32900.84, + "end": 32902.92, + "probability": 0.6543 + }, + { + "start": 32902.98, + "end": 32908.52, + "probability": 0.9505 + }, + { + "start": 32909.64, + "end": 32911.92, + "probability": 0.9026 + }, + { + "start": 32912.76, + "end": 32920.08, + "probability": 0.8838 + }, + { + "start": 32921.58, + "end": 32926.06, + "probability": 0.9753 + }, + { + "start": 32926.2, + "end": 32926.64, + "probability": 0.7052 + }, + { + "start": 32926.64, + "end": 32928.14, + "probability": 0.9942 + }, + { + "start": 32929.16, + "end": 32935.82, + "probability": 0.9909 + }, + { + "start": 32935.94, + "end": 32936.7, + "probability": 0.4533 + }, + { + "start": 32937.38, + "end": 32939.52, + "probability": 0.9379 + }, + { + "start": 32940.38, + "end": 32944.62, + "probability": 0.9915 + }, + { + "start": 32944.68, + "end": 32946.88, + "probability": 0.9827 + }, + { + "start": 32947.58, + "end": 32954.36, + "probability": 0.8794 + }, + { + "start": 32955.7, + "end": 32958.4, + "probability": 0.663 + }, + { + "start": 32959.24, + "end": 32962.8, + "probability": 0.9641 + }, + { + "start": 32963.56, + "end": 32969.5, + "probability": 0.9575 + }, + { + "start": 32970.3, + "end": 32970.92, + "probability": 0.7654 + }, + { + "start": 32971.84, + "end": 32973.28, + "probability": 0.8622 + }, + { + "start": 32973.94, + "end": 32978.5, + "probability": 0.9915 + }, + { + "start": 32978.92, + "end": 32986.36, + "probability": 0.9924 + }, + { + "start": 32987.58, + "end": 32988.78, + "probability": 0.5251 + }, + { + "start": 32989.78, + "end": 32992.44, + "probability": 0.9356 + }, + { + "start": 32993.14, + "end": 32999.6, + "probability": 0.9808 + }, + { + "start": 32999.6, + "end": 33006.18, + "probability": 0.9972 + }, + { + "start": 33006.78, + "end": 33009.36, + "probability": 0.9984 + }, + { + "start": 33011.04, + "end": 33012.54, + "probability": 0.4833 + }, + { + "start": 33013.92, + "end": 33020.18, + "probability": 0.9971 + }, + { + "start": 33021.56, + "end": 33022.82, + "probability": 0.9931 + }, + { + "start": 33024.38, + "end": 33026.71, + "probability": 0.9932 + }, + { + "start": 33028.6, + "end": 33029.22, + "probability": 0.3534 + }, + { + "start": 33029.38, + "end": 33031.91, + "probability": 0.959 + }, + { + "start": 33032.26, + "end": 33037.54, + "probability": 0.995 + }, + { + "start": 33039.4, + "end": 33041.56, + "probability": 0.8586 + }, + { + "start": 33042.58, + "end": 33044.2, + "probability": 0.918 + }, + { + "start": 33044.98, + "end": 33050.14, + "probability": 0.958 + }, + { + "start": 33051.24, + "end": 33054.96, + "probability": 0.7471 + }, + { + "start": 33056.18, + "end": 33058.48, + "probability": 0.8645 + }, + { + "start": 33059.38, + "end": 33061.78, + "probability": 0.9977 + }, + { + "start": 33063.28, + "end": 33066.88, + "probability": 0.9942 + }, + { + "start": 33068.04, + "end": 33070.96, + "probability": 0.9728 + }, + { + "start": 33073.02, + "end": 33078.64, + "probability": 0.969 + }, + { + "start": 33079.28, + "end": 33081.6, + "probability": 0.747 + }, + { + "start": 33081.88, + "end": 33084.86, + "probability": 0.9876 + }, + { + "start": 33086.44, + "end": 33089.22, + "probability": 0.9787 + }, + { + "start": 33090.86, + "end": 33092.1, + "probability": 0.8032 + }, + { + "start": 33093.36, + "end": 33096.54, + "probability": 0.6808 + }, + { + "start": 33097.6, + "end": 33098.22, + "probability": 0.3435 + }, + { + "start": 33099.58, + "end": 33101.28, + "probability": 0.2728 + }, + { + "start": 33102.3, + "end": 33104.06, + "probability": 0.9731 + }, + { + "start": 33106.14, + "end": 33106.98, + "probability": 0.9184 + }, + { + "start": 33107.06, + "end": 33107.67, + "probability": 0.9775 + }, + { + "start": 33108.26, + "end": 33113.88, + "probability": 0.993 + }, + { + "start": 33114.84, + "end": 33117.1, + "probability": 0.9493 + }, + { + "start": 33117.94, + "end": 33121.46, + "probability": 0.9468 + }, + { + "start": 33121.56, + "end": 33122.1, + "probability": 0.4366 + }, + { + "start": 33122.48, + "end": 33123.58, + "probability": 0.9731 + }, + { + "start": 33123.72, + "end": 33126.84, + "probability": 0.9037 + }, + { + "start": 33127.86, + "end": 33129.72, + "probability": 0.999 + }, + { + "start": 33131.22, + "end": 33132.16, + "probability": 0.9225 + }, + { + "start": 33133.28, + "end": 33135.66, + "probability": 0.9704 + }, + { + "start": 33136.42, + "end": 33137.48, + "probability": 0.7173 + }, + { + "start": 33139.52, + "end": 33145.54, + "probability": 0.9716 + }, + { + "start": 33146.24, + "end": 33147.52, + "probability": 0.8764 + }, + { + "start": 33148.16, + "end": 33150.1, + "probability": 0.8869 + }, + { + "start": 33152.51, + "end": 33156.24, + "probability": 0.7777 + }, + { + "start": 33157.36, + "end": 33158.96, + "probability": 0.9189 + }, + { + "start": 33159.02, + "end": 33160.96, + "probability": 0.9946 + }, + { + "start": 33162.24, + "end": 33162.34, + "probability": 0.5348 + }, + { + "start": 33164.32, + "end": 33165.38, + "probability": 0.8157 + }, + { + "start": 33166.58, + "end": 33169.98, + "probability": 0.8285 + }, + { + "start": 33170.9, + "end": 33173.98, + "probability": 0.8879 + }, + { + "start": 33175.8, + "end": 33178.94, + "probability": 0.9902 + }, + { + "start": 33179.36, + "end": 33184.07, + "probability": 0.9933 + }, + { + "start": 33185.74, + "end": 33186.86, + "probability": 0.7861 + }, + { + "start": 33187.56, + "end": 33188.42, + "probability": 0.8056 + }, + { + "start": 33189.84, + "end": 33190.7, + "probability": 0.9745 + }, + { + "start": 33191.86, + "end": 33192.84, + "probability": 0.8589 + }, + { + "start": 33194.68, + "end": 33198.02, + "probability": 0.9436 + }, + { + "start": 33199.88, + "end": 33203.4, + "probability": 0.999 + }, + { + "start": 33204.72, + "end": 33212.8, + "probability": 0.9517 + }, + { + "start": 33213.52, + "end": 33215.08, + "probability": 0.9546 + }, + { + "start": 33216.7, + "end": 33218.74, + "probability": 0.9129 + }, + { + "start": 33219.3, + "end": 33221.26, + "probability": 0.9412 + }, + { + "start": 33222.36, + "end": 33222.78, + "probability": 0.6218 + }, + { + "start": 33223.42, + "end": 33227.84, + "probability": 0.9794 + }, + { + "start": 33227.94, + "end": 33229.02, + "probability": 0.9797 + }, + { + "start": 33230.48, + "end": 33234.44, + "probability": 0.9752 + }, + { + "start": 33235.9, + "end": 33238.02, + "probability": 0.7667 + }, + { + "start": 33238.82, + "end": 33242.88, + "probability": 0.9208 + }, + { + "start": 33243.86, + "end": 33246.92, + "probability": 0.7177 + }, + { + "start": 33247.66, + "end": 33249.02, + "probability": 0.9515 + }, + { + "start": 33250.1, + "end": 33253.04, + "probability": 0.9978 + }, + { + "start": 33254.12, + "end": 33255.3, + "probability": 0.8995 + }, + { + "start": 33256.36, + "end": 33258.5, + "probability": 0.8508 + }, + { + "start": 33259.84, + "end": 33263.12, + "probability": 0.9565 + }, + { + "start": 33263.14, + "end": 33264.2, + "probability": 0.8686 + }, + { + "start": 33264.28, + "end": 33265.22, + "probability": 0.8617 + }, + { + "start": 33265.56, + "end": 33266.62, + "probability": 0.8344 + }, + { + "start": 33267.14, + "end": 33269.5, + "probability": 0.829 + }, + { + "start": 33270.18, + "end": 33271.06, + "probability": 0.8715 + }, + { + "start": 33271.8, + "end": 33272.96, + "probability": 0.9457 + }, + { + "start": 33273.58, + "end": 33274.2, + "probability": 0.7164 + }, + { + "start": 33274.68, + "end": 33278.42, + "probability": 0.9969 + }, + { + "start": 33278.42, + "end": 33283.16, + "probability": 0.9951 + }, + { + "start": 33283.4, + "end": 33284.14, + "probability": 0.8226 + }, + { + "start": 33284.2, + "end": 33284.7, + "probability": 0.608 + }, + { + "start": 33285.68, + "end": 33289.64, + "probability": 0.9938 + }, + { + "start": 33290.98, + "end": 33292.8, + "probability": 0.6032 + }, + { + "start": 33293.52, + "end": 33294.26, + "probability": 0.9872 + }, + { + "start": 33294.78, + "end": 33300.18, + "probability": 0.9863 + }, + { + "start": 33301.02, + "end": 33304.08, + "probability": 0.9104 + }, + { + "start": 33304.66, + "end": 33307.06, + "probability": 0.9952 + }, + { + "start": 33307.72, + "end": 33309.96, + "probability": 0.9968 + }, + { + "start": 33310.52, + "end": 33311.48, + "probability": 0.5136 + }, + { + "start": 33311.62, + "end": 33318.96, + "probability": 0.9831 + }, + { + "start": 33321.96, + "end": 33326.75, + "probability": 0.9696 + }, + { + "start": 33329.53, + "end": 33331.71, + "probability": 0.226 + }, + { + "start": 33333.02, + "end": 33334.58, + "probability": 0.5958 + }, + { + "start": 33334.72, + "end": 33338.96, + "probability": 0.9166 + }, + { + "start": 33339.08, + "end": 33343.84, + "probability": 0.7862 + }, + { + "start": 33345.26, + "end": 33350.2, + "probability": 0.9862 + }, + { + "start": 33350.28, + "end": 33353.18, + "probability": 0.9219 + }, + { + "start": 33356.74, + "end": 33364.32, + "probability": 0.9299 + }, + { + "start": 33364.94, + "end": 33367.3, + "probability": 0.8821 + }, + { + "start": 33369.36, + "end": 33372.74, + "probability": 0.7802 + }, + { + "start": 33374.02, + "end": 33374.9, + "probability": 0.8446 + }, + { + "start": 33376.58, + "end": 33377.18, + "probability": 0.9811 + }, + { + "start": 33377.94, + "end": 33388.22, + "probability": 0.996 + }, + { + "start": 33388.7, + "end": 33396.0, + "probability": 0.9933 + }, + { + "start": 33396.62, + "end": 33397.3, + "probability": 0.5339 + }, + { + "start": 33398.6, + "end": 33401.34, + "probability": 0.8491 + }, + { + "start": 33402.58, + "end": 33403.9, + "probability": 0.9904 + }, + { + "start": 33405.68, + "end": 33406.84, + "probability": 0.9698 + }, + { + "start": 33408.08, + "end": 33409.54, + "probability": 0.7087 + }, + { + "start": 33410.34, + "end": 33412.26, + "probability": 0.6756 + }, + { + "start": 33413.9, + "end": 33414.64, + "probability": 0.9438 + }, + { + "start": 33416.42, + "end": 33421.22, + "probability": 0.9932 + }, + { + "start": 33422.3, + "end": 33424.08, + "probability": 0.7283 + }, + { + "start": 33425.68, + "end": 33426.48, + "probability": 0.9951 + }, + { + "start": 33427.16, + "end": 33432.38, + "probability": 0.9925 + }, + { + "start": 33433.66, + "end": 33438.68, + "probability": 0.9946 + }, + { + "start": 33438.76, + "end": 33441.56, + "probability": 0.8878 + }, + { + "start": 33442.82, + "end": 33443.76, + "probability": 0.7961 + }, + { + "start": 33445.62, + "end": 33447.48, + "probability": 0.9594 + }, + { + "start": 33448.44, + "end": 33449.86, + "probability": 0.9974 + }, + { + "start": 33450.62, + "end": 33451.34, + "probability": 0.968 + }, + { + "start": 33452.3, + "end": 33452.88, + "probability": 0.7416 + }, + { + "start": 33454.52, + "end": 33455.22, + "probability": 0.81 + }, + { + "start": 33455.78, + "end": 33461.56, + "probability": 0.8283 + }, + { + "start": 33462.92, + "end": 33465.68, + "probability": 0.9037 + }, + { + "start": 33466.96, + "end": 33469.72, + "probability": 0.9979 + }, + { + "start": 33471.04, + "end": 33473.06, + "probability": 0.8413 + }, + { + "start": 33474.36, + "end": 33480.48, + "probability": 0.9933 + }, + { + "start": 33481.2, + "end": 33482.66, + "probability": 0.7184 + }, + { + "start": 33483.64, + "end": 33487.36, + "probability": 0.9621 + }, + { + "start": 33487.92, + "end": 33489.66, + "probability": 0.9489 + }, + { + "start": 33490.84, + "end": 33491.56, + "probability": 0.9884 + }, + { + "start": 33493.3, + "end": 33494.5, + "probability": 0.7394 + }, + { + "start": 33494.98, + "end": 33499.68, + "probability": 0.6385 + }, + { + "start": 33499.84, + "end": 33500.18, + "probability": 0.7297 + }, + { + "start": 33501.92, + "end": 33507.22, + "probability": 0.9724 + }, + { + "start": 33507.42, + "end": 33509.36, + "probability": 0.9761 + }, + { + "start": 33509.66, + "end": 33510.33, + "probability": 0.3108 + }, + { + "start": 33510.72, + "end": 33512.5, + "probability": 0.6676 + }, + { + "start": 33512.66, + "end": 33514.06, + "probability": 0.6599 + }, + { + "start": 33514.2, + "end": 33514.6, + "probability": 0.9277 + }, + { + "start": 33514.6, + "end": 33516.52, + "probability": 0.9728 + }, + { + "start": 33517.34, + "end": 33525.0, + "probability": 0.9894 + }, + { + "start": 33526.26, + "end": 33528.28, + "probability": 0.9201 + }, + { + "start": 33529.38, + "end": 33531.14, + "probability": 0.9841 + }, + { + "start": 33531.9, + "end": 33535.72, + "probability": 0.9631 + }, + { + "start": 33537.42, + "end": 33544.46, + "probability": 0.8397 + }, + { + "start": 33546.42, + "end": 33554.74, + "probability": 0.9341 + }, + { + "start": 33555.28, + "end": 33557.32, + "probability": 0.8576 + }, + { + "start": 33558.66, + "end": 33559.32, + "probability": 0.8363 + }, + { + "start": 33560.36, + "end": 33564.74, + "probability": 0.9742 + }, + { + "start": 33564.86, + "end": 33566.18, + "probability": 0.9559 + }, + { + "start": 33567.72, + "end": 33572.16, + "probability": 0.921 + }, + { + "start": 33572.96, + "end": 33576.46, + "probability": 0.9823 + }, + { + "start": 33578.1, + "end": 33578.9, + "probability": 0.9995 + }, + { + "start": 33579.76, + "end": 33582.36, + "probability": 0.9969 + }, + { + "start": 33584.2, + "end": 33589.62, + "probability": 0.8574 + }, + { + "start": 33589.84, + "end": 33592.48, + "probability": 0.9318 + }, + { + "start": 33594.4, + "end": 33598.23, + "probability": 0.9213 + }, + { + "start": 33599.26, + "end": 33601.22, + "probability": 0.9991 + }, + { + "start": 33601.76, + "end": 33602.94, + "probability": 0.8629 + }, + { + "start": 33603.74, + "end": 33607.76, + "probability": 0.9924 + }, + { + "start": 33609.04, + "end": 33609.58, + "probability": 0.9067 + }, + { + "start": 33612.26, + "end": 33617.08, + "probability": 0.9978 + }, + { + "start": 33618.16, + "end": 33618.86, + "probability": 0.7617 + }, + { + "start": 33620.46, + "end": 33621.34, + "probability": 0.9036 + }, + { + "start": 33622.08, + "end": 33622.42, + "probability": 0.4899 + }, + { + "start": 33624.66, + "end": 33625.3, + "probability": 0.7202 + }, + { + "start": 33626.32, + "end": 33633.94, + "probability": 0.8444 + }, + { + "start": 33634.5, + "end": 33635.36, + "probability": 0.6783 + }, + { + "start": 33636.86, + "end": 33638.61, + "probability": 0.9227 + }, + { + "start": 33638.82, + "end": 33641.34, + "probability": 0.8408 + }, + { + "start": 33641.76, + "end": 33645.88, + "probability": 0.9987 + }, + { + "start": 33647.26, + "end": 33651.72, + "probability": 0.9519 + }, + { + "start": 33652.2, + "end": 33656.44, + "probability": 0.9962 + }, + { + "start": 33658.4, + "end": 33664.28, + "probability": 0.9943 + }, + { + "start": 33664.88, + "end": 33666.14, + "probability": 0.9938 + }, + { + "start": 33667.18, + "end": 33669.9, + "probability": 0.9333 + }, + { + "start": 33671.62, + "end": 33680.5, + "probability": 0.9701 + }, + { + "start": 33680.58, + "end": 33686.75, + "probability": 0.9902 + }, + { + "start": 33686.84, + "end": 33687.28, + "probability": 0.4905 + }, + { + "start": 33687.34, + "end": 33688.74, + "probability": 0.9073 + }, + { + "start": 33688.88, + "end": 33690.3, + "probability": 0.6276 + }, + { + "start": 33690.86, + "end": 33691.6, + "probability": 0.7178 + }, + { + "start": 33691.68, + "end": 33694.5, + "probability": 0.9937 + }, + { + "start": 33695.18, + "end": 33699.29, + "probability": 0.8838 + }, + { + "start": 33699.66, + "end": 33701.56, + "probability": 0.8618 + }, + { + "start": 33701.6, + "end": 33704.28, + "probability": 0.9779 + }, + { + "start": 33705.16, + "end": 33712.82, + "probability": 0.998 + }, + { + "start": 33713.6, + "end": 33717.82, + "probability": 0.9945 + }, + { + "start": 33718.62, + "end": 33721.92, + "probability": 0.9161 + }, + { + "start": 33722.72, + "end": 33727.38, + "probability": 0.9951 + }, + { + "start": 33728.2, + "end": 33730.22, + "probability": 0.6976 + }, + { + "start": 33730.9, + "end": 33732.36, + "probability": 0.7917 + }, + { + "start": 33733.1, + "end": 33739.16, + "probability": 0.9352 + }, + { + "start": 33739.88, + "end": 33744.78, + "probability": 0.9423 + }, + { + "start": 33745.44, + "end": 33746.92, + "probability": 0.7238 + }, + { + "start": 33746.92, + "end": 33748.42, + "probability": 0.5334 + }, + { + "start": 33749.65, + "end": 33757.32, + "probability": 0.9885 + }, + { + "start": 33757.4, + "end": 33759.84, + "probability": 0.9856 + }, + { + "start": 33760.04, + "end": 33761.58, + "probability": 0.9118 + }, + { + "start": 33762.18, + "end": 33762.98, + "probability": 0.996 + }, + { + "start": 33764.08, + "end": 33767.98, + "probability": 0.9072 + }, + { + "start": 33768.8, + "end": 33771.15, + "probability": 0.8107 + }, + { + "start": 33773.14, + "end": 33776.22, + "probability": 0.9683 + }, + { + "start": 33776.22, + "end": 33780.43, + "probability": 0.8984 + }, + { + "start": 33781.66, + "end": 33782.52, + "probability": 0.6589 + }, + { + "start": 33783.0, + "end": 33785.87, + "probability": 0.7543 + }, + { + "start": 33786.28, + "end": 33787.76, + "probability": 0.7421 + }, + { + "start": 33787.92, + "end": 33788.7, + "probability": 0.5054 + }, + { + "start": 33788.7, + "end": 33790.18, + "probability": 0.9609 + }, + { + "start": 33790.7, + "end": 33793.88, + "probability": 0.9281 + }, + { + "start": 33794.48, + "end": 33797.46, + "probability": 0.8336 + }, + { + "start": 33798.12, + "end": 33798.88, + "probability": 0.8295 + }, + { + "start": 33801.38, + "end": 33802.72, + "probability": 0.5983 + }, + { + "start": 33803.34, + "end": 33809.26, + "probability": 0.8987 + }, + { + "start": 33809.38, + "end": 33815.06, + "probability": 0.9938 + }, + { + "start": 33816.0, + "end": 33822.14, + "probability": 0.9952 + }, + { + "start": 33822.34, + "end": 33823.36, + "probability": 0.5994 + }, + { + "start": 33823.58, + "end": 33824.04, + "probability": 0.7067 + }, + { + "start": 33824.56, + "end": 33826.62, + "probability": 0.9841 + }, + { + "start": 33827.18, + "end": 33830.06, + "probability": 0.8831 + }, + { + "start": 33830.68, + "end": 33833.28, + "probability": 0.8613 + }, + { + "start": 33833.84, + "end": 33843.44, + "probability": 0.9595 + }, + { + "start": 33843.8, + "end": 33845.24, + "probability": 0.9937 + }, + { + "start": 33846.52, + "end": 33854.02, + "probability": 0.9877 + }, + { + "start": 33854.28, + "end": 33857.72, + "probability": 0.9968 + }, + { + "start": 33858.86, + "end": 33863.6, + "probability": 0.9976 + }, + { + "start": 33863.74, + "end": 33866.26, + "probability": 0.9761 + }, + { + "start": 33868.9, + "end": 33871.28, + "probability": 0.9425 + }, + { + "start": 33872.62, + "end": 33878.44, + "probability": 0.9323 + }, + { + "start": 33879.16, + "end": 33883.66, + "probability": 0.9982 + }, + { + "start": 33884.42, + "end": 33886.0, + "probability": 0.9811 + }, + { + "start": 33886.64, + "end": 33887.54, + "probability": 0.9614 + }, + { + "start": 33888.26, + "end": 33890.52, + "probability": 0.968 + }, + { + "start": 33891.72, + "end": 33893.96, + "probability": 0.9936 + }, + { + "start": 33894.52, + "end": 33899.76, + "probability": 0.9225 + }, + { + "start": 33900.44, + "end": 33903.62, + "probability": 0.9937 + }, + { + "start": 33904.36, + "end": 33906.78, + "probability": 0.9609 + }, + { + "start": 33907.68, + "end": 33911.84, + "probability": 0.9873 + }, + { + "start": 33912.62, + "end": 33913.02, + "probability": 0.5619 + }, + { + "start": 33914.2, + "end": 33918.8, + "probability": 0.9843 + }, + { + "start": 33918.8, + "end": 33924.2, + "probability": 0.9854 + }, + { + "start": 33924.84, + "end": 33925.72, + "probability": 0.8199 + }, + { + "start": 33926.2, + "end": 33926.94, + "probability": 0.9399 + }, + { + "start": 33927.4, + "end": 33931.8, + "probability": 0.9949 + }, + { + "start": 33932.46, + "end": 33934.46, + "probability": 0.8465 + }, + { + "start": 33935.26, + "end": 33936.62, + "probability": 0.8567 + }, + { + "start": 33937.84, + "end": 33938.88, + "probability": 0.6389 + }, + { + "start": 33939.44, + "end": 33939.9, + "probability": 0.7278 + }, + { + "start": 33940.86, + "end": 33941.26, + "probability": 0.6862 + }, + { + "start": 33942.6, + "end": 33943.86, + "probability": 0.8882 + }, + { + "start": 33944.82, + "end": 33945.72, + "probability": 0.9109 + }, + { + "start": 33946.26, + "end": 33946.84, + "probability": 0.9286 + }, + { + "start": 33947.68, + "end": 33950.16, + "probability": 0.9868 + }, + { + "start": 33950.94, + "end": 33952.48, + "probability": 0.9968 + }, + { + "start": 33953.64, + "end": 33956.48, + "probability": 0.7791 + }, + { + "start": 33958.78, + "end": 33960.72, + "probability": 0.7956 + }, + { + "start": 33961.96, + "end": 33962.5, + "probability": 0.5173 + }, + { + "start": 33963.8, + "end": 33968.1, + "probability": 0.9936 + }, + { + "start": 33969.92, + "end": 33976.4, + "probability": 0.9871 + }, + { + "start": 33976.4, + "end": 33981.06, + "probability": 0.9969 + }, + { + "start": 33982.0, + "end": 33983.3, + "probability": 0.9898 + }, + { + "start": 33984.08, + "end": 33989.48, + "probability": 0.9964 + }, + { + "start": 33989.92, + "end": 33990.34, + "probability": 0.8736 + }, + { + "start": 33990.98, + "end": 33991.38, + "probability": 0.9762 + }, + { + "start": 33992.08, + "end": 33992.52, + "probability": 0.9819 + }, + { + "start": 33993.14, + "end": 33996.44, + "probability": 0.9442 + }, + { + "start": 33997.44, + "end": 34002.76, + "probability": 0.9679 + }, + { + "start": 34003.22, + "end": 34003.68, + "probability": 0.9827 + }, + { + "start": 34004.5, + "end": 34005.9, + "probability": 0.8892 + }, + { + "start": 34007.76, + "end": 34008.34, + "probability": 0.4847 + }, + { + "start": 34009.66, + "end": 34012.58, + "probability": 0.9406 + }, + { + "start": 34014.3, + "end": 34016.0, + "probability": 0.9452 + }, + { + "start": 34017.56, + "end": 34019.66, + "probability": 0.8904 + }, + { + "start": 34020.3, + "end": 34023.68, + "probability": 0.6447 + }, + { + "start": 34025.28, + "end": 34030.21, + "probability": 0.9035 + }, + { + "start": 34031.32, + "end": 34033.46, + "probability": 0.8079 + }, + { + "start": 34034.4, + "end": 34035.54, + "probability": 0.7941 + }, + { + "start": 34035.62, + "end": 34035.96, + "probability": 0.8223 + }, + { + "start": 34036.02, + "end": 34036.48, + "probability": 0.6259 + }, + { + "start": 34036.58, + "end": 34037.12, + "probability": 0.6684 + }, + { + "start": 34037.82, + "end": 34046.24, + "probability": 0.756 + }, + { + "start": 34047.96, + "end": 34053.66, + "probability": 0.987 + }, + { + "start": 34053.74, + "end": 34054.7, + "probability": 0.8368 + }, + { + "start": 34054.8, + "end": 34059.54, + "probability": 0.9655 + }, + { + "start": 34059.68, + "end": 34060.2, + "probability": 0.9978 + }, + { + "start": 34060.88, + "end": 34066.08, + "probability": 0.9923 + }, + { + "start": 34067.72, + "end": 34071.46, + "probability": 0.9126 + }, + { + "start": 34073.52, + "end": 34074.88, + "probability": 0.7651 + }, + { + "start": 34075.82, + "end": 34078.03, + "probability": 0.9987 + }, + { + "start": 34078.4, + "end": 34083.04, + "probability": 0.8316 + }, + { + "start": 34084.5, + "end": 34087.66, + "probability": 0.9797 + }, + { + "start": 34089.24, + "end": 34089.74, + "probability": 0.7097 + }, + { + "start": 34091.08, + "end": 34092.52, + "probability": 0.9949 + }, + { + "start": 34093.64, + "end": 34095.7, + "probability": 0.9017 + }, + { + "start": 34096.9, + "end": 34097.92, + "probability": 0.9807 + }, + { + "start": 34099.44, + "end": 34101.48, + "probability": 0.9464 + }, + { + "start": 34101.56, + "end": 34103.22, + "probability": 0.9581 + }, + { + "start": 34103.78, + "end": 34106.14, + "probability": 0.7792 + }, + { + "start": 34106.82, + "end": 34107.5, + "probability": 0.8364 + }, + { + "start": 34108.52, + "end": 34113.1, + "probability": 0.9568 + }, + { + "start": 34114.18, + "end": 34120.66, + "probability": 0.9782 + }, + { + "start": 34121.9, + "end": 34124.08, + "probability": 0.8628 + }, + { + "start": 34124.86, + "end": 34125.28, + "probability": 0.8966 + }, + { + "start": 34125.8, + "end": 34126.76, + "probability": 0.9211 + }, + { + "start": 34128.2, + "end": 34129.64, + "probability": 0.7682 + }, + { + "start": 34130.38, + "end": 34131.48, + "probability": 0.9872 + }, + { + "start": 34132.48, + "end": 34134.44, + "probability": 0.997 + }, + { + "start": 34136.12, + "end": 34141.86, + "probability": 0.8153 + }, + { + "start": 34142.52, + "end": 34143.66, + "probability": 0.8904 + }, + { + "start": 34144.28, + "end": 34145.76, + "probability": 0.9913 + }, + { + "start": 34146.62, + "end": 34149.7, + "probability": 0.9971 + }, + { + "start": 34150.36, + "end": 34152.7, + "probability": 0.998 + }, + { + "start": 34153.78, + "end": 34158.5, + "probability": 0.866 + }, + { + "start": 34159.26, + "end": 34167.04, + "probability": 0.9981 + }, + { + "start": 34167.7, + "end": 34173.4, + "probability": 0.9487 + }, + { + "start": 34173.4, + "end": 34179.58, + "probability": 0.9935 + }, + { + "start": 34180.56, + "end": 34181.26, + "probability": 0.6532 + }, + { + "start": 34182.38, + "end": 34187.2, + "probability": 0.8883 + }, + { + "start": 34187.22, + "end": 34188.06, + "probability": 0.8067 + }, + { + "start": 34188.72, + "end": 34193.88, + "probability": 0.9601 + }, + { + "start": 34195.12, + "end": 34197.62, + "probability": 0.8721 + }, + { + "start": 34198.36, + "end": 34208.3, + "probability": 0.9926 + }, + { + "start": 34209.02, + "end": 34209.5, + "probability": 0.6925 + }, + { + "start": 34210.02, + "end": 34213.7, + "probability": 0.9485 + }, + { + "start": 34214.64, + "end": 34221.67, + "probability": 0.9884 + }, + { + "start": 34223.82, + "end": 34224.96, + "probability": 0.8804 + }, + { + "start": 34225.86, + "end": 34227.72, + "probability": 0.7973 + }, + { + "start": 34228.94, + "end": 34230.3, + "probability": 0.5398 + }, + { + "start": 34231.78, + "end": 34236.1, + "probability": 0.9993 + }, + { + "start": 34237.02, + "end": 34240.08, + "probability": 0.7677 + }, + { + "start": 34241.02, + "end": 34245.0, + "probability": 0.9349 + }, + { + "start": 34246.22, + "end": 34248.22, + "probability": 0.8498 + }, + { + "start": 34248.3, + "end": 34249.52, + "probability": 0.6993 + }, + { + "start": 34249.7, + "end": 34253.38, + "probability": 0.8131 + }, + { + "start": 34254.38, + "end": 34255.92, + "probability": 0.7291 + }, + { + "start": 34256.56, + "end": 34257.94, + "probability": 0.7577 + }, + { + "start": 34260.0, + "end": 34262.72, + "probability": 0.98 + }, + { + "start": 34262.78, + "end": 34265.12, + "probability": 0.9834 + }, + { + "start": 34266.86, + "end": 34271.66, + "probability": 0.9657 + }, + { + "start": 34272.56, + "end": 34275.18, + "probability": 0.9906 + }, + { + "start": 34275.94, + "end": 34279.48, + "probability": 0.998 + }, + { + "start": 34279.6, + "end": 34283.54, + "probability": 0.984 + }, + { + "start": 34283.7, + "end": 34284.54, + "probability": 0.832 + }, + { + "start": 34285.78, + "end": 34287.36, + "probability": 0.9421 + }, + { + "start": 34288.2, + "end": 34291.08, + "probability": 0.894 + }, + { + "start": 34292.38, + "end": 34293.78, + "probability": 0.9702 + }, + { + "start": 34295.04, + "end": 34296.58, + "probability": 0.768 + }, + { + "start": 34297.4, + "end": 34297.86, + "probability": 0.5996 + }, + { + "start": 34301.02, + "end": 34303.34, + "probability": 0.5454 + }, + { + "start": 34304.24, + "end": 34307.64, + "probability": 0.9816 + }, + { + "start": 34311.4, + "end": 34311.82, + "probability": 0.2031 + }, + { + "start": 34312.36, + "end": 34312.76, + "probability": 0.7412 + }, + { + "start": 34314.26, + "end": 34316.34, + "probability": 0.735 + }, + { + "start": 34319.42, + "end": 34321.2, + "probability": 0.8645 + }, + { + "start": 34323.46, + "end": 34323.8, + "probability": 0.5105 + }, + { + "start": 34326.9, + "end": 34329.86, + "probability": 0.7772 + }, + { + "start": 34329.92, + "end": 34330.62, + "probability": 0.6724 + }, + { + "start": 34331.12, + "end": 34332.3, + "probability": 0.6366 + }, + { + "start": 34332.48, + "end": 34332.78, + "probability": 0.4234 + }, + { + "start": 34332.9, + "end": 34333.2, + "probability": 0.3453 + }, + { + "start": 34333.22, + "end": 34333.44, + "probability": 0.8383 + }, + { + "start": 34333.98, + "end": 34335.12, + "probability": 0.9476 + }, + { + "start": 34335.72, + "end": 34343.06, + "probability": 0.8558 + }, + { + "start": 34344.08, + "end": 34345.74, + "probability": 0.6549 + }, + { + "start": 34345.76, + "end": 34350.4, + "probability": 0.9272 + }, + { + "start": 34351.62, + "end": 34357.02, + "probability": 0.9472 + }, + { + "start": 34357.72, + "end": 34361.64, + "probability": 0.9286 + }, + { + "start": 34363.18, + "end": 34366.12, + "probability": 0.9087 + }, + { + "start": 34366.76, + "end": 34368.7, + "probability": 0.9777 + }, + { + "start": 34371.22, + "end": 34376.12, + "probability": 0.8481 + }, + { + "start": 34377.62, + "end": 34379.49, + "probability": 0.8511 + }, + { + "start": 34380.78, + "end": 34384.54, + "probability": 0.9912 + }, + { + "start": 34384.7, + "end": 34385.42, + "probability": 0.9685 + }, + { + "start": 34385.5, + "end": 34386.22, + "probability": 0.708 + }, + { + "start": 34388.42, + "end": 34390.18, + "probability": 0.9943 + }, + { + "start": 34390.8, + "end": 34393.78, + "probability": 0.9427 + }, + { + "start": 34395.16, + "end": 34399.84, + "probability": 0.9948 + }, + { + "start": 34400.36, + "end": 34403.6, + "probability": 0.9871 + }, + { + "start": 34404.08, + "end": 34404.98, + "probability": 0.8942 + }, + { + "start": 34405.97, + "end": 34407.44, + "probability": 0.8981 + }, + { + "start": 34408.18, + "end": 34411.18, + "probability": 0.9418 + }, + { + "start": 34412.7, + "end": 34413.96, + "probability": 0.8486 + }, + { + "start": 34415.02, + "end": 34419.84, + "probability": 0.9719 + }, + { + "start": 34421.5, + "end": 34424.62, + "probability": 0.988 + }, + { + "start": 34424.84, + "end": 34427.6, + "probability": 0.8339 + }, + { + "start": 34427.76, + "end": 34428.56, + "probability": 0.8617 + }, + { + "start": 34428.88, + "end": 34431.4, + "probability": 0.9908 + }, + { + "start": 34432.16, + "end": 34434.83, + "probability": 0.9885 + }, + { + "start": 34435.06, + "end": 34439.04, + "probability": 0.9948 + }, + { + "start": 34439.12, + "end": 34439.32, + "probability": 0.6803 + }, + { + "start": 34440.24, + "end": 34442.1, + "probability": 0.9374 + }, + { + "start": 34442.66, + "end": 34443.72, + "probability": 0.6355 + }, + { + "start": 34444.7, + "end": 34450.34, + "probability": 0.9619 + }, + { + "start": 34450.34, + "end": 34455.94, + "probability": 0.9805 + }, + { + "start": 34457.0, + "end": 34460.48, + "probability": 0.9919 + }, + { + "start": 34460.82, + "end": 34464.82, + "probability": 0.9967 + }, + { + "start": 34464.82, + "end": 34468.56, + "probability": 0.9828 + }, + { + "start": 34469.24, + "end": 34472.46, + "probability": 0.9873 + }, + { + "start": 34473.06, + "end": 34474.32, + "probability": 0.724 + }, + { + "start": 34475.04, + "end": 34477.78, + "probability": 0.9935 + }, + { + "start": 34478.3, + "end": 34481.26, + "probability": 0.9961 + }, + { + "start": 34482.0, + "end": 34487.46, + "probability": 0.9981 + }, + { + "start": 34488.4, + "end": 34490.38, + "probability": 0.8099 + }, + { + "start": 34491.0, + "end": 34494.38, + "probability": 0.7728 + }, + { + "start": 34494.98, + "end": 34501.22, + "probability": 0.9858 + }, + { + "start": 34501.78, + "end": 34504.92, + "probability": 0.9967 + }, + { + "start": 34505.26, + "end": 34506.86, + "probability": 0.7903 + }, + { + "start": 34507.64, + "end": 34509.96, + "probability": 0.9324 + }, + { + "start": 34511.0, + "end": 34511.94, + "probability": 0.7195 + }, + { + "start": 34512.48, + "end": 34515.18, + "probability": 0.8804 + }, + { + "start": 34515.4, + "end": 34519.76, + "probability": 0.9794 + }, + { + "start": 34519.88, + "end": 34521.64, + "probability": 0.9941 + }, + { + "start": 34522.26, + "end": 34524.14, + "probability": 0.9496 + }, + { + "start": 34524.7, + "end": 34527.02, + "probability": 0.9731 + }, + { + "start": 34527.02, + "end": 34530.04, + "probability": 0.9937 + }, + { + "start": 34530.88, + "end": 34535.72, + "probability": 0.9644 + }, + { + "start": 34535.72, + "end": 34540.5, + "probability": 0.9948 + }, + { + "start": 34541.38, + "end": 34542.68, + "probability": 0.9669 + }, + { + "start": 34543.68, + "end": 34546.26, + "probability": 0.9262 + }, + { + "start": 34546.42, + "end": 34550.2, + "probability": 0.9461 + }, + { + "start": 34550.8, + "end": 34552.1, + "probability": 0.7927 + }, + { + "start": 34552.6, + "end": 34556.3, + "probability": 0.9926 + }, + { + "start": 34557.0, + "end": 34559.2, + "probability": 0.9115 + }, + { + "start": 34560.5, + "end": 34563.42, + "probability": 0.8704 + }, + { + "start": 34563.8, + "end": 34566.38, + "probability": 0.9917 + }, + { + "start": 34567.0, + "end": 34568.88, + "probability": 0.9971 + }, + { + "start": 34569.36, + "end": 34574.96, + "probability": 0.9976 + }, + { + "start": 34575.66, + "end": 34578.18, + "probability": 0.9819 + }, + { + "start": 34578.18, + "end": 34581.4, + "probability": 0.9893 + }, + { + "start": 34581.52, + "end": 34584.16, + "probability": 0.9901 + }, + { + "start": 34584.76, + "end": 34585.04, + "probability": 0.7524 + }, + { + "start": 34585.1, + "end": 34588.5, + "probability": 0.9925 + }, + { + "start": 34588.6, + "end": 34591.9, + "probability": 0.9276 + }, + { + "start": 34592.48, + "end": 34593.74, + "probability": 0.7184 + }, + { + "start": 34594.28, + "end": 34597.22, + "probability": 0.9543 + }, + { + "start": 34598.1, + "end": 34600.42, + "probability": 0.9966 + }, + { + "start": 34600.42, + "end": 34604.68, + "probability": 0.9901 + }, + { + "start": 34605.38, + "end": 34609.44, + "probability": 0.9917 + }, + { + "start": 34610.0, + "end": 34613.84, + "probability": 0.9933 + }, + { + "start": 34613.84, + "end": 34617.78, + "probability": 0.9986 + }, + { + "start": 34618.56, + "end": 34623.04, + "probability": 0.9376 + }, + { + "start": 34623.16, + "end": 34625.82, + "probability": 0.9742 + }, + { + "start": 34626.62, + "end": 34631.78, + "probability": 0.9736 + }, + { + "start": 34632.22, + "end": 34635.18, + "probability": 0.99 + }, + { + "start": 34635.72, + "end": 34639.28, + "probability": 0.9976 + }, + { + "start": 34639.28, + "end": 34643.42, + "probability": 0.9874 + }, + { + "start": 34643.98, + "end": 34645.7, + "probability": 0.9995 + }, + { + "start": 34646.64, + "end": 34649.88, + "probability": 0.8977 + }, + { + "start": 34649.88, + "end": 34652.82, + "probability": 0.9993 + }, + { + "start": 34653.74, + "end": 34656.68, + "probability": 0.8304 + }, + { + "start": 34658.19, + "end": 34659.68, + "probability": 0.9625 + }, + { + "start": 34660.74, + "end": 34664.76, + "probability": 0.9634 + }, + { + "start": 34665.6, + "end": 34667.86, + "probability": 0.9569 + }, + { + "start": 34667.86, + "end": 34671.72, + "probability": 0.9829 + }, + { + "start": 34671.84, + "end": 34674.8, + "probability": 0.9967 + }, + { + "start": 34674.8, + "end": 34678.84, + "probability": 0.9985 + }, + { + "start": 34679.38, + "end": 34682.22, + "probability": 0.9594 + }, + { + "start": 34682.9, + "end": 34687.82, + "probability": 0.9315 + }, + { + "start": 34688.88, + "end": 34691.94, + "probability": 0.8409 + }, + { + "start": 34692.5, + "end": 34694.9, + "probability": 0.8174 + }, + { + "start": 34694.9, + "end": 34698.74, + "probability": 0.9897 + }, + { + "start": 34698.78, + "end": 34701.08, + "probability": 0.9961 + }, + { + "start": 34702.84, + "end": 34704.8, + "probability": 0.7324 + }, + { + "start": 34705.88, + "end": 34714.78, + "probability": 0.9742 + }, + { + "start": 34716.08, + "end": 34717.16, + "probability": 0.8221 + }, + { + "start": 34717.28, + "end": 34718.68, + "probability": 0.6897 + }, + { + "start": 34719.06, + "end": 34723.36, + "probability": 0.9985 + }, + { + "start": 34724.0, + "end": 34726.5, + "probability": 0.8431 + }, + { + "start": 34727.62, + "end": 34731.12, + "probability": 0.9596 + }, + { + "start": 34731.58, + "end": 34732.82, + "probability": 0.5584 + }, + { + "start": 34732.9, + "end": 34734.48, + "probability": 0.9722 + }, + { + "start": 34735.14, + "end": 34738.84, + "probability": 0.9902 + }, + { + "start": 34739.12, + "end": 34742.6, + "probability": 0.9996 + }, + { + "start": 34743.08, + "end": 34747.26, + "probability": 0.9979 + }, + { + "start": 34747.92, + "end": 34751.28, + "probability": 0.9857 + }, + { + "start": 34751.68, + "end": 34752.9, + "probability": 0.914 + }, + { + "start": 34752.98, + "end": 34755.01, + "probability": 0.8283 + }, + { + "start": 34757.32, + "end": 34763.88, + "probability": 0.98 + }, + { + "start": 34764.92, + "end": 34770.28, + "probability": 0.9986 + }, + { + "start": 34770.78, + "end": 34774.48, + "probability": 0.9818 + }, + { + "start": 34774.86, + "end": 34776.34, + "probability": 0.8867 + }, + { + "start": 34776.44, + "end": 34777.58, + "probability": 0.8402 + }, + { + "start": 34777.94, + "end": 34782.78, + "probability": 0.982 + }, + { + "start": 34783.46, + "end": 34787.66, + "probability": 0.9575 + }, + { + "start": 34788.14, + "end": 34793.58, + "probability": 0.9208 + }, + { + "start": 34794.22, + "end": 34797.72, + "probability": 0.986 + }, + { + "start": 34797.72, + "end": 34801.58, + "probability": 0.9994 + }, + { + "start": 34802.5, + "end": 34806.1, + "probability": 0.9849 + }, + { + "start": 34806.74, + "end": 34812.2, + "probability": 0.6829 + }, + { + "start": 34812.52, + "end": 34816.16, + "probability": 0.5017 + }, + { + "start": 34816.26, + "end": 34817.08, + "probability": 0.8191 + }, + { + "start": 34817.62, + "end": 34820.02, + "probability": 0.9821 + }, + { + "start": 34821.06, + "end": 34827.04, + "probability": 0.9901 + }, + { + "start": 34827.62, + "end": 34827.98, + "probability": 0.7375 + }, + { + "start": 34828.14, + "end": 34828.84, + "probability": 0.8804 + }, + { + "start": 34828.92, + "end": 34829.72, + "probability": 0.9025 + }, + { + "start": 34830.14, + "end": 34833.64, + "probability": 0.9496 + }, + { + "start": 34833.64, + "end": 34837.71, + "probability": 0.9989 + }, + { + "start": 34839.44, + "end": 34844.64, + "probability": 0.9572 + }, + { + "start": 34845.3, + "end": 34847.86, + "probability": 0.9932 + }, + { + "start": 34847.86, + "end": 34850.36, + "probability": 0.8217 + }, + { + "start": 34851.38, + "end": 34852.36, + "probability": 0.8727 + }, + { + "start": 34853.2, + "end": 34854.92, + "probability": 0.7881 + }, + { + "start": 34855.02, + "end": 34855.36, + "probability": 0.6752 + }, + { + "start": 34855.7, + "end": 34857.78, + "probability": 0.9804 + }, + { + "start": 34858.68, + "end": 34859.98, + "probability": 0.66 + }, + { + "start": 34860.14, + "end": 34865.06, + "probability": 0.9811 + }, + { + "start": 34865.6, + "end": 34866.02, + "probability": 0.7528 + }, + { + "start": 34866.08, + "end": 34869.78, + "probability": 0.9383 + }, + { + "start": 34869.78, + "end": 34872.9, + "probability": 0.9518 + }, + { + "start": 34873.02, + "end": 34875.94, + "probability": 0.9489 + }, + { + "start": 34876.88, + "end": 34878.78, + "probability": 0.9788 + }, + { + "start": 34879.42, + "end": 34880.82, + "probability": 0.9736 + }, + { + "start": 34881.38, + "end": 34885.04, + "probability": 0.9678 + }, + { + "start": 34885.04, + "end": 34888.42, + "probability": 0.9343 + }, + { + "start": 34888.92, + "end": 34892.82, + "probability": 0.9618 + }, + { + "start": 34892.94, + "end": 34896.8, + "probability": 0.9868 + }, + { + "start": 34896.8, + "end": 34900.78, + "probability": 0.9983 + }, + { + "start": 34900.78, + "end": 34905.62, + "probability": 0.9982 + }, + { + "start": 34906.2, + "end": 34910.1, + "probability": 0.993 + }, + { + "start": 34911.04, + "end": 34913.68, + "probability": 0.9946 + }, + { + "start": 34913.68, + "end": 34916.42, + "probability": 0.9922 + }, + { + "start": 34916.94, + "end": 34918.62, + "probability": 0.9937 + }, + { + "start": 34918.74, + "end": 34922.98, + "probability": 0.9096 + }, + { + "start": 34923.12, + "end": 34924.9, + "probability": 0.8962 + }, + { + "start": 34927.38, + "end": 34931.94, + "probability": 0.9902 + }, + { + "start": 34931.94, + "end": 34937.48, + "probability": 0.9958 + }, + { + "start": 34937.58, + "end": 34941.46, + "probability": 0.9381 + }, + { + "start": 34942.3, + "end": 34948.82, + "probability": 0.9956 + }, + { + "start": 34949.42, + "end": 34952.96, + "probability": 0.9951 + }, + { + "start": 34952.96, + "end": 34957.48, + "probability": 0.9961 + }, + { + "start": 34957.88, + "end": 34959.06, + "probability": 0.9222 + }, + { + "start": 34959.12, + "end": 34963.58, + "probability": 0.9933 + }, + { + "start": 34964.28, + "end": 34967.64, + "probability": 0.9944 + }, + { + "start": 34968.4, + "end": 34969.44, + "probability": 0.9512 + }, + { + "start": 34970.32, + "end": 34972.72, + "probability": 0.9398 + }, + { + "start": 34973.32, + "end": 34975.48, + "probability": 0.9731 + }, + { + "start": 34975.74, + "end": 34978.04, + "probability": 0.9888 + }, + { + "start": 34978.62, + "end": 34982.58, + "probability": 0.9048 + }, + { + "start": 34982.58, + "end": 34985.82, + "probability": 0.9858 + }, + { + "start": 34986.24, + "end": 34990.14, + "probability": 0.9964 + }, + { + "start": 34990.14, + "end": 34995.36, + "probability": 0.9646 + }, + { + "start": 34996.68, + "end": 34999.5, + "probability": 0.8205 + }, + { + "start": 34999.88, + "end": 35002.46, + "probability": 0.996 + }, + { + "start": 35002.86, + "end": 35008.16, + "probability": 0.9825 + }, + { + "start": 35009.86, + "end": 35010.32, + "probability": 0.6232 + }, + { + "start": 35013.24, + "end": 35014.78, + "probability": 0.8164 + }, + { + "start": 35016.24, + "end": 35017.12, + "probability": 0.9897 + }, + { + "start": 35017.2, + "end": 35020.66, + "probability": 0.7573 + }, + { + "start": 35021.38, + "end": 35022.1, + "probability": 0.792 + }, + { + "start": 35022.22, + "end": 35022.82, + "probability": 0.5061 + }, + { + "start": 35023.02, + "end": 35024.48, + "probability": 0.6295 + }, + { + "start": 35024.48, + "end": 35025.12, + "probability": 0.9737 + }, + { + "start": 35025.32, + "end": 35029.72, + "probability": 0.8667 + }, + { + "start": 35029.82, + "end": 35030.22, + "probability": 0.9136 + }, + { + "start": 35030.64, + "end": 35031.62, + "probability": 0.9706 + }, + { + "start": 35031.68, + "end": 35032.76, + "probability": 0.8894 + }, + { + "start": 35034.12, + "end": 35039.64, + "probability": 0.9003 + }, + { + "start": 35040.2, + "end": 35045.58, + "probability": 0.6945 + }, + { + "start": 35046.32, + "end": 35052.24, + "probability": 0.9361 + }, + { + "start": 35053.2, + "end": 35058.56, + "probability": 0.9968 + }, + { + "start": 35061.34, + "end": 35063.72, + "probability": 0.6807 + }, + { + "start": 35063.84, + "end": 35066.66, + "probability": 0.8135 + }, + { + "start": 35067.84, + "end": 35071.2, + "probability": 0.7919 + }, + { + "start": 35071.76, + "end": 35074.04, + "probability": 0.9332 + }, + { + "start": 35074.6, + "end": 35075.82, + "probability": 0.8145 + }, + { + "start": 35079.16, + "end": 35080.76, + "probability": 0.4901 + }, + { + "start": 35081.42, + "end": 35084.38, + "probability": 0.8417 + }, + { + "start": 35085.04, + "end": 35088.5, + "probability": 0.9885 + }, + { + "start": 35088.56, + "end": 35090.0, + "probability": 0.637 + }, + { + "start": 35090.0, + "end": 35091.52, + "probability": 0.9239 + }, + { + "start": 35092.02, + "end": 35093.2, + "probability": 0.9842 + }, + { + "start": 35094.0, + "end": 35099.32, + "probability": 0.9654 + }, + { + "start": 35100.34, + "end": 35104.5, + "probability": 0.9592 + }, + { + "start": 35104.5, + "end": 35108.32, + "probability": 0.923 + }, + { + "start": 35110.24, + "end": 35112.74, + "probability": 0.894 + }, + { + "start": 35113.4, + "end": 35118.0, + "probability": 0.9857 + }, + { + "start": 35118.68, + "end": 35124.38, + "probability": 0.988 + }, + { + "start": 35125.9, + "end": 35131.34, + "probability": 0.9827 + }, + { + "start": 35131.5, + "end": 35132.3, + "probability": 0.8077 + }, + { + "start": 35132.68, + "end": 35133.02, + "probability": 0.9547 + }, + { + "start": 35133.12, + "end": 35133.76, + "probability": 0.9681 + }, + { + "start": 35133.88, + "end": 35136.16, + "probability": 0.8523 + }, + { + "start": 35136.46, + "end": 35140.1, + "probability": 0.9011 + }, + { + "start": 35140.62, + "end": 35144.16, + "probability": 0.9994 + }, + { + "start": 35144.94, + "end": 35151.06, + "probability": 0.9722 + }, + { + "start": 35152.32, + "end": 35153.58, + "probability": 0.7681 + }, + { + "start": 35154.38, + "end": 35154.84, + "probability": 0.9048 + }, + { + "start": 35154.94, + "end": 35159.78, + "probability": 0.9861 + }, + { + "start": 35159.88, + "end": 35161.3, + "probability": 0.8306 + }, + { + "start": 35161.68, + "end": 35163.98, + "probability": 0.8537 + }, + { + "start": 35164.44, + "end": 35166.4, + "probability": 0.9595 + }, + { + "start": 35166.82, + "end": 35168.28, + "probability": 0.9757 + }, + { + "start": 35168.8, + "end": 35171.02, + "probability": 0.9805 + }, + { + "start": 35171.36, + "end": 35173.94, + "probability": 0.9636 + }, + { + "start": 35174.48, + "end": 35175.4, + "probability": 0.8641 + }, + { + "start": 35176.12, + "end": 35177.76, + "probability": 0.6976 + }, + { + "start": 35178.34, + "end": 35180.52, + "probability": 0.9029 + }, + { + "start": 35180.52, + "end": 35185.06, + "probability": 0.986 + }, + { + "start": 35185.9, + "end": 35186.2, + "probability": 0.7898 + }, + { + "start": 35186.32, + "end": 35189.1, + "probability": 0.9981 + }, + { + "start": 35189.58, + "end": 35194.48, + "probability": 0.9678 + }, + { + "start": 35194.54, + "end": 35196.3, + "probability": 0.7012 + }, + { + "start": 35196.36, + "end": 35197.42, + "probability": 0.8197 + }, + { + "start": 35198.02, + "end": 35200.0, + "probability": 0.9916 + }, + { + "start": 35200.36, + "end": 35200.96, + "probability": 0.9729 + }, + { + "start": 35201.24, + "end": 35205.72, + "probability": 0.9519 + }, + { + "start": 35207.02, + "end": 35208.42, + "probability": 0.8513 + }, + { + "start": 35208.58, + "end": 35212.88, + "probability": 0.8965 + }, + { + "start": 35212.88, + "end": 35215.7, + "probability": 0.7554 + }, + { + "start": 35216.4, + "end": 35217.8, + "probability": 0.9751 + }, + { + "start": 35218.08, + "end": 35220.82, + "probability": 0.934 + }, + { + "start": 35220.9, + "end": 35221.64, + "probability": 0.9036 + }, + { + "start": 35222.0, + "end": 35224.0, + "probability": 0.7935 + }, + { + "start": 35224.56, + "end": 35225.18, + "probability": 0.2911 + }, + { + "start": 35225.36, + "end": 35225.74, + "probability": 0.3623 + }, + { + "start": 35226.12, + "end": 35228.64, + "probability": 0.675 + }, + { + "start": 35229.0, + "end": 35235.66, + "probability": 0.9583 + }, + { + "start": 35236.32, + "end": 35240.34, + "probability": 0.4388 + }, + { + "start": 35242.32, + "end": 35244.66, + "probability": 0.9199 + }, + { + "start": 35245.84, + "end": 35249.52, + "probability": 0.5039 + }, + { + "start": 35250.08, + "end": 35251.02, + "probability": 0.7067 + }, + { + "start": 35251.52, + "end": 35253.18, + "probability": 0.8121 + }, + { + "start": 35253.74, + "end": 35257.56, + "probability": 0.9382 + }, + { + "start": 35258.14, + "end": 35258.8, + "probability": 0.9312 + }, + { + "start": 35259.34, + "end": 35260.48, + "probability": 0.9729 + }, + { + "start": 35261.14, + "end": 35265.24, + "probability": 0.9298 + }, + { + "start": 35265.36, + "end": 35267.7, + "probability": 0.9495 + }, + { + "start": 35269.59, + "end": 35274.46, + "probability": 0.9971 + }, + { + "start": 35274.92, + "end": 35281.04, + "probability": 0.9901 + }, + { + "start": 35281.64, + "end": 35281.74, + "probability": 0.7122 + }, + { + "start": 35281.92, + "end": 35283.14, + "probability": 0.6938 + }, + { + "start": 35284.66, + "end": 35287.48, + "probability": 0.9495 + }, + { + "start": 35288.04, + "end": 35289.7, + "probability": 0.784 + }, + { + "start": 35305.82, + "end": 35307.36, + "probability": 0.5633 + }, + { + "start": 35307.52, + "end": 35308.28, + "probability": 0.8609 + }, + { + "start": 35309.06, + "end": 35311.88, + "probability": 0.6882 + }, + { + "start": 35313.34, + "end": 35318.3, + "probability": 0.9943 + }, + { + "start": 35319.88, + "end": 35320.54, + "probability": 0.9484 + }, + { + "start": 35321.06, + "end": 35321.8, + "probability": 0.9049 + }, + { + "start": 35322.98, + "end": 35327.52, + "probability": 0.9849 + }, + { + "start": 35328.36, + "end": 35331.82, + "probability": 0.9894 + }, + { + "start": 35332.46, + "end": 35334.86, + "probability": 0.8882 + }, + { + "start": 35335.66, + "end": 35342.94, + "probability": 0.988 + }, + { + "start": 35343.6, + "end": 35344.3, + "probability": 0.8441 + }, + { + "start": 35345.04, + "end": 35346.74, + "probability": 0.8343 + }, + { + "start": 35347.84, + "end": 35349.04, + "probability": 0.8806 + }, + { + "start": 35349.22, + "end": 35350.18, + "probability": 0.9414 + }, + { + "start": 35351.22, + "end": 35355.1, + "probability": 0.9578 + }, + { + "start": 35356.0, + "end": 35360.38, + "probability": 0.9757 + }, + { + "start": 35361.94, + "end": 35362.4, + "probability": 0.7849 + }, + { + "start": 35362.58, + "end": 35363.28, + "probability": 0.9341 + }, + { + "start": 35363.76, + "end": 35368.86, + "probability": 0.991 + }, + { + "start": 35369.94, + "end": 35370.8, + "probability": 0.9427 + }, + { + "start": 35371.94, + "end": 35372.46, + "probability": 0.8556 + }, + { + "start": 35373.44, + "end": 35377.14, + "probability": 0.9961 + }, + { + "start": 35378.16, + "end": 35380.0, + "probability": 0.8275 + }, + { + "start": 35380.62, + "end": 35384.08, + "probability": 0.7783 + }, + { + "start": 35384.9, + "end": 35387.98, + "probability": 0.9159 + }, + { + "start": 35388.88, + "end": 35392.0, + "probability": 0.9888 + }, + { + "start": 35393.34, + "end": 35394.74, + "probability": 0.9812 + }, + { + "start": 35395.46, + "end": 35399.04, + "probability": 0.832 + }, + { + "start": 35399.6, + "end": 35402.62, + "probability": 0.9551 + }, + { + "start": 35403.5, + "end": 35404.92, + "probability": 0.9901 + }, + { + "start": 35405.54, + "end": 35406.58, + "probability": 0.955 + }, + { + "start": 35408.36, + "end": 35409.87, + "probability": 0.8936 + }, + { + "start": 35411.28, + "end": 35412.78, + "probability": 0.7993 + }, + { + "start": 35413.4, + "end": 35415.42, + "probability": 0.8862 + }, + { + "start": 35416.62, + "end": 35418.8, + "probability": 0.7063 + }, + { + "start": 35420.6, + "end": 35423.32, + "probability": 0.683 + }, + { + "start": 35424.66, + "end": 35429.58, + "probability": 0.9976 + }, + { + "start": 35429.58, + "end": 35435.72, + "probability": 0.9968 + }, + { + "start": 35435.72, + "end": 35440.92, + "probability": 0.9497 + }, + { + "start": 35441.54, + "end": 35443.78, + "probability": 0.6736 + }, + { + "start": 35444.3, + "end": 35450.48, + "probability": 0.9909 + }, + { + "start": 35451.04, + "end": 35453.92, + "probability": 0.981 + }, + { + "start": 35454.74, + "end": 35459.2, + "probability": 0.8326 + }, + { + "start": 35459.76, + "end": 35462.48, + "probability": 0.8229 + }, + { + "start": 35463.92, + "end": 35466.56, + "probability": 0.9852 + }, + { + "start": 35467.42, + "end": 35469.98, + "probability": 0.6603 + }, + { + "start": 35470.7, + "end": 35473.6, + "probability": 0.9961 + }, + { + "start": 35474.56, + "end": 35478.18, + "probability": 0.886 + }, + { + "start": 35478.88, + "end": 35480.86, + "probability": 0.9469 + }, + { + "start": 35481.38, + "end": 35483.22, + "probability": 0.9897 + }, + { + "start": 35483.68, + "end": 35486.76, + "probability": 0.9988 + }, + { + "start": 35487.36, + "end": 35490.5, + "probability": 0.988 + }, + { + "start": 35491.22, + "end": 35493.44, + "probability": 0.6827 + }, + { + "start": 35493.9, + "end": 35495.5, + "probability": 0.8804 + }, + { + "start": 35496.16, + "end": 35499.8, + "probability": 0.9525 + }, + { + "start": 35501.98, + "end": 35503.58, + "probability": 0.9971 + }, + { + "start": 35503.82, + "end": 35505.38, + "probability": 0.8715 + }, + { + "start": 35506.32, + "end": 35509.34, + "probability": 0.8713 + }, + { + "start": 35509.42, + "end": 35511.17, + "probability": 0.5186 + }, + { + "start": 35512.68, + "end": 35513.88, + "probability": 0.9254 + }, + { + "start": 35514.0, + "end": 35515.2, + "probability": 0.99 + }, + { + "start": 35515.66, + "end": 35517.02, + "probability": 0.9775 + }, + { + "start": 35518.16, + "end": 35519.76, + "probability": 0.9734 + }, + { + "start": 35520.82, + "end": 35524.66, + "probability": 0.7258 + }, + { + "start": 35525.76, + "end": 35526.54, + "probability": 0.599 + }, + { + "start": 35527.34, + "end": 35530.86, + "probability": 0.9822 + }, + { + "start": 35531.6, + "end": 35533.96, + "probability": 0.9725 + }, + { + "start": 35534.7, + "end": 35537.38, + "probability": 0.9695 + }, + { + "start": 35538.82, + "end": 35541.06, + "probability": 0.7806 + }, + { + "start": 35541.56, + "end": 35542.94, + "probability": 0.9756 + }, + { + "start": 35544.48, + "end": 35545.96, + "probability": 0.9924 + }, + { + "start": 35546.02, + "end": 35547.54, + "probability": 0.8707 + }, + { + "start": 35548.4, + "end": 35551.02, + "probability": 0.9839 + }, + { + "start": 35551.52, + "end": 35553.84, + "probability": 0.9937 + }, + { + "start": 35554.54, + "end": 35557.32, + "probability": 0.9968 + }, + { + "start": 35557.38, + "end": 35559.62, + "probability": 0.9129 + }, + { + "start": 35559.84, + "end": 35560.88, + "probability": 0.7377 + }, + { + "start": 35561.58, + "end": 35563.66, + "probability": 0.7393 + }, + { + "start": 35564.34, + "end": 35565.04, + "probability": 0.6807 + }, + { + "start": 35566.38, + "end": 35567.26, + "probability": 0.6444 + }, + { + "start": 35568.12, + "end": 35568.58, + "probability": 0.9565 + }, + { + "start": 35569.92, + "end": 35570.65, + "probability": 0.999 + }, + { + "start": 35571.44, + "end": 35572.76, + "probability": 0.842 + }, + { + "start": 35574.12, + "end": 35575.64, + "probability": 0.979 + }, + { + "start": 35575.64, + "end": 35577.92, + "probability": 0.9871 + }, + { + "start": 35579.06, + "end": 35579.62, + "probability": 0.728 + }, + { + "start": 35581.04, + "end": 35581.69, + "probability": 0.3336 + }, + { + "start": 35582.92, + "end": 35590.72, + "probability": 0.9206 + }, + { + "start": 35590.84, + "end": 35591.42, + "probability": 0.7401 + }, + { + "start": 35592.85, + "end": 35595.98, + "probability": 0.9309 + }, + { + "start": 35596.8, + "end": 35598.48, + "probability": 0.911 + }, + { + "start": 35598.78, + "end": 35600.36, + "probability": 0.8573 + }, + { + "start": 35602.08, + "end": 35603.88, + "probability": 0.9851 + }, + { + "start": 35603.98, + "end": 35606.48, + "probability": 0.9786 + }, + { + "start": 35608.06, + "end": 35610.44, + "probability": 0.992 + }, + { + "start": 35610.68, + "end": 35613.16, + "probability": 0.9195 + }, + { + "start": 35614.12, + "end": 35617.28, + "probability": 0.8657 + }, + { + "start": 35617.84, + "end": 35619.96, + "probability": 0.9983 + }, + { + "start": 35620.54, + "end": 35623.44, + "probability": 0.9955 + }, + { + "start": 35623.8, + "end": 35626.46, + "probability": 0.8152 + }, + { + "start": 35626.78, + "end": 35629.32, + "probability": 0.9988 + }, + { + "start": 35629.7, + "end": 35631.14, + "probability": 0.9865 + }, + { + "start": 35632.28, + "end": 35635.98, + "probability": 0.9651 + }, + { + "start": 35637.14, + "end": 35638.94, + "probability": 0.9175 + }, + { + "start": 35639.42, + "end": 35639.68, + "probability": 0.8774 + }, + { + "start": 35640.4, + "end": 35641.12, + "probability": 0.6386 + }, + { + "start": 35641.18, + "end": 35641.7, + "probability": 0.7282 + }, + { + "start": 35642.4, + "end": 35645.59, + "probability": 0.9795 + }, + { + "start": 35647.1, + "end": 35650.4, + "probability": 0.6386 + }, + { + "start": 35651.5, + "end": 35651.58, + "probability": 0.8718 + }, + { + "start": 35651.7, + "end": 35651.8, + "probability": 0.4887 + }, + { + "start": 35651.86, + "end": 35652.54, + "probability": 0.6858 + }, + { + "start": 35652.9, + "end": 35656.96, + "probability": 0.9716 + }, + { + "start": 35657.78, + "end": 35660.94, + "probability": 0.6317 + }, + { + "start": 35661.84, + "end": 35662.92, + "probability": 0.5911 + }, + { + "start": 35663.1, + "end": 35668.14, + "probability": 0.9875 + }, + { + "start": 35668.78, + "end": 35671.96, + "probability": 0.9839 + }, + { + "start": 35672.48, + "end": 35674.98, + "probability": 0.9984 + }, + { + "start": 35678.84, + "end": 35682.32, + "probability": 0.9213 + }, + { + "start": 35683.8, + "end": 35684.76, + "probability": 0.8127 + }, + { + "start": 35687.61, + "end": 35689.9, + "probability": 0.9819 + }, + { + "start": 35694.24, + "end": 35695.52, + "probability": 0.5308 + }, + { + "start": 35697.84, + "end": 35700.3, + "probability": 0.8546 + }, + { + "start": 35700.44, + "end": 35702.0, + "probability": 0.9574 + }, + { + "start": 35702.74, + "end": 35703.78, + "probability": 0.3734 + }, + { + "start": 35704.38, + "end": 35704.6, + "probability": 0.468 + }, + { + "start": 35704.74, + "end": 35705.78, + "probability": 0.7373 + }, + { + "start": 35705.82, + "end": 35708.26, + "probability": 0.9113 + }, + { + "start": 35708.38, + "end": 35711.52, + "probability": 0.9767 + }, + { + "start": 35711.78, + "end": 35714.32, + "probability": 0.2653 + }, + { + "start": 35714.72, + "end": 35716.06, + "probability": 0.6745 + }, + { + "start": 35716.24, + "end": 35717.14, + "probability": 0.5577 + }, + { + "start": 35717.24, + "end": 35721.34, + "probability": 0.9187 + }, + { + "start": 35722.88, + "end": 35724.26, + "probability": 0.0072 + }, + { + "start": 35724.8, + "end": 35725.08, + "probability": 0.0486 + }, + { + "start": 35725.08, + "end": 35725.08, + "probability": 0.0696 + }, + { + "start": 35725.08, + "end": 35725.08, + "probability": 0.0648 + }, + { + "start": 35725.08, + "end": 35725.08, + "probability": 0.1123 + }, + { + "start": 35725.08, + "end": 35725.08, + "probability": 0.1748 + }, + { + "start": 35725.08, + "end": 35726.02, + "probability": 0.461 + }, + { + "start": 35726.2, + "end": 35729.6, + "probability": 0.211 + }, + { + "start": 35729.6, + "end": 35730.98, + "probability": 0.0503 + }, + { + "start": 35731.16, + "end": 35731.48, + "probability": 0.0522 + }, + { + "start": 35731.6, + "end": 35732.0, + "probability": 0.3777 + }, + { + "start": 35732.04, + "end": 35732.04, + "probability": 0.2167 + }, + { + "start": 35732.04, + "end": 35734.2, + "probability": 0.6116 + }, + { + "start": 35734.26, + "end": 35735.5, + "probability": 0.9231 + }, + { + "start": 35735.76, + "end": 35736.48, + "probability": 0.5294 + }, + { + "start": 35736.48, + "end": 35737.7, + "probability": 0.9633 + }, + { + "start": 35738.08, + "end": 35738.96, + "probability": 0.8958 + }, + { + "start": 35739.06, + "end": 35740.48, + "probability": 0.9882 + }, + { + "start": 35740.76, + "end": 35741.68, + "probability": 0.8407 + }, + { + "start": 35742.06, + "end": 35742.74, + "probability": 0.8411 + }, + { + "start": 35743.24, + "end": 35744.78, + "probability": 0.9167 + }, + { + "start": 35745.18, + "end": 35745.94, + "probability": 0.8569 + }, + { + "start": 35746.0, + "end": 35746.06, + "probability": 0.6896 + }, + { + "start": 35746.14, + "end": 35746.48, + "probability": 0.8623 + }, + { + "start": 35746.8, + "end": 35747.38, + "probability": 0.879 + }, + { + "start": 35747.68, + "end": 35748.36, + "probability": 0.8379 + }, + { + "start": 35748.86, + "end": 35749.66, + "probability": 0.1852 + }, + { + "start": 35749.8, + "end": 35750.54, + "probability": 0.1161 + }, + { + "start": 35755.26, + "end": 35755.7, + "probability": 0.0996 + }, + { + "start": 35755.7, + "end": 35755.7, + "probability": 0.2205 + }, + { + "start": 35755.7, + "end": 35756.62, + "probability": 0.162 + }, + { + "start": 35756.62, + "end": 35761.2, + "probability": 0.8558 + }, + { + "start": 35761.8, + "end": 35764.12, + "probability": 0.9471 + }, + { + "start": 35764.7, + "end": 35765.0, + "probability": 0.4366 + }, + { + "start": 35766.48, + "end": 35767.69, + "probability": 0.8754 + }, + { + "start": 35769.16, + "end": 35770.88, + "probability": 0.7957 + }, + { + "start": 35771.54, + "end": 35773.42, + "probability": 0.9972 + }, + { + "start": 35773.5, + "end": 35774.76, + "probability": 0.9624 + }, + { + "start": 35774.82, + "end": 35777.06, + "probability": 0.897 + }, + { + "start": 35778.56, + "end": 35781.76, + "probability": 0.9934 + }, + { + "start": 35783.1, + "end": 35785.83, + "probability": 0.9913 + }, + { + "start": 35786.38, + "end": 35788.6, + "probability": 0.9443 + }, + { + "start": 35789.44, + "end": 35790.46, + "probability": 0.973 + }, + { + "start": 35791.0, + "end": 35791.96, + "probability": 0.7686 + }, + { + "start": 35794.36, + "end": 35796.58, + "probability": 0.9893 + }, + { + "start": 35798.86, + "end": 35799.64, + "probability": 0.8223 + }, + { + "start": 35800.28, + "end": 35804.64, + "probability": 0.9814 + }, + { + "start": 35805.22, + "end": 35806.36, + "probability": 0.8656 + }, + { + "start": 35806.9, + "end": 35807.94, + "probability": 0.7528 + }, + { + "start": 35808.8, + "end": 35811.98, + "probability": 0.9976 + }, + { + "start": 35812.76, + "end": 35819.84, + "probability": 0.9683 + }, + { + "start": 35820.74, + "end": 35821.5, + "probability": 0.9906 + }, + { + "start": 35821.72, + "end": 35823.98, + "probability": 0.6489 + }, + { + "start": 35824.28, + "end": 35825.06, + "probability": 0.919 + }, + { + "start": 35825.76, + "end": 35825.76, + "probability": 0.4232 + }, + { + "start": 35825.76, + "end": 35828.86, + "probability": 0.6329 + }, + { + "start": 35829.42, + "end": 35832.32, + "probability": 0.5842 + }, + { + "start": 35833.18, + "end": 35837.6, + "probability": 0.992 + }, + { + "start": 35838.62, + "end": 35838.94, + "probability": 0.9495 + }, + { + "start": 35840.24, + "end": 35844.46, + "probability": 0.7466 + }, + { + "start": 35845.26, + "end": 35846.7, + "probability": 0.9057 + }, + { + "start": 35849.1, + "end": 35851.52, + "probability": 0.9706 + }, + { + "start": 35852.08, + "end": 35853.62, + "probability": 0.9769 + }, + { + "start": 35854.48, + "end": 35855.78, + "probability": 0.6972 + }, + { + "start": 35856.3, + "end": 35859.18, + "probability": 0.8314 + }, + { + "start": 35859.2, + "end": 35860.46, + "probability": 0.6266 + }, + { + "start": 35861.18, + "end": 35863.02, + "probability": 0.8135 + }, + { + "start": 35863.54, + "end": 35865.54, + "probability": 0.9053 + }, + { + "start": 35866.3, + "end": 35869.26, + "probability": 0.9884 + }, + { + "start": 35869.74, + "end": 35870.66, + "probability": 0.7715 + }, + { + "start": 35871.24, + "end": 35874.84, + "probability": 0.9624 + }, + { + "start": 35875.64, + "end": 35880.42, + "probability": 0.9966 + }, + { + "start": 35881.4, + "end": 35882.37, + "probability": 0.6036 + }, + { + "start": 35883.18, + "end": 35884.9, + "probability": 0.9794 + }, + { + "start": 35887.0, + "end": 35888.04, + "probability": 0.9008 + }, + { + "start": 35889.5, + "end": 35891.34, + "probability": 0.8874 + }, + { + "start": 35891.48, + "end": 35894.74, + "probability": 0.8006 + }, + { + "start": 35895.66, + "end": 35897.16, + "probability": 0.8821 + }, + { + "start": 35898.36, + "end": 35900.56, + "probability": 0.9987 + }, + { + "start": 35900.56, + "end": 35904.6, + "probability": 0.9945 + }, + { + "start": 35905.3, + "end": 35908.64, + "probability": 0.797 + }, + { + "start": 35909.22, + "end": 35910.38, + "probability": 0.7638 + }, + { + "start": 35912.98, + "end": 35914.03, + "probability": 0.7524 + }, + { + "start": 35915.66, + "end": 35918.04, + "probability": 0.998 + }, + { + "start": 35918.54, + "end": 35922.2, + "probability": 0.9161 + }, + { + "start": 35922.96, + "end": 35924.78, + "probability": 0.9989 + }, + { + "start": 35925.44, + "end": 35926.04, + "probability": 0.6415 + }, + { + "start": 35926.66, + "end": 35930.28, + "probability": 0.9441 + }, + { + "start": 35930.42, + "end": 35931.95, + "probability": 0.9371 + }, + { + "start": 35932.8, + "end": 35934.62, + "probability": 0.984 + }, + { + "start": 35936.46, + "end": 35938.52, + "probability": 0.9266 + }, + { + "start": 35939.84, + "end": 35942.46, + "probability": 0.9261 + }, + { + "start": 35942.96, + "end": 35944.46, + "probability": 0.6268 + }, + { + "start": 35945.68, + "end": 35947.12, + "probability": 0.9927 + }, + { + "start": 35947.72, + "end": 35948.84, + "probability": 0.8845 + }, + { + "start": 35949.72, + "end": 35951.66, + "probability": 0.9883 + }, + { + "start": 35952.42, + "end": 35954.18, + "probability": 0.9623 + }, + { + "start": 35954.72, + "end": 35957.46, + "probability": 0.9612 + }, + { + "start": 35958.28, + "end": 35961.44, + "probability": 0.999 + }, + { + "start": 35962.4, + "end": 35964.02, + "probability": 0.9796 + }, + { + "start": 35964.84, + "end": 35965.82, + "probability": 0.8855 + }, + { + "start": 35966.6, + "end": 35968.7, + "probability": 0.9749 + }, + { + "start": 35969.9, + "end": 35972.44, + "probability": 0.9948 + }, + { + "start": 35972.44, + "end": 35976.62, + "probability": 0.9502 + }, + { + "start": 35976.62, + "end": 35976.86, + "probability": 0.0101 + }, + { + "start": 35977.58, + "end": 35980.12, + "probability": 0.9614 + }, + { + "start": 35980.7, + "end": 35981.85, + "probability": 0.8543 + }, + { + "start": 35983.16, + "end": 35985.88, + "probability": 0.9561 + }, + { + "start": 35986.48, + "end": 35988.62, + "probability": 0.865 + }, + { + "start": 35989.49, + "end": 35991.04, + "probability": 0.9896 + }, + { + "start": 35991.86, + "end": 35992.48, + "probability": 0.9349 + }, + { + "start": 35993.04, + "end": 35996.32, + "probability": 0.9933 + }, + { + "start": 35997.0, + "end": 36001.38, + "probability": 0.9932 + }, + { + "start": 36002.28, + "end": 36007.44, + "probability": 0.9768 + }, + { + "start": 36008.46, + "end": 36011.36, + "probability": 0.9973 + }, + { + "start": 36011.92, + "end": 36015.52, + "probability": 0.9825 + }, + { + "start": 36016.32, + "end": 36018.56, + "probability": 0.9135 + }, + { + "start": 36018.88, + "end": 36019.52, + "probability": 0.7814 + }, + { + "start": 36019.8, + "end": 36023.12, + "probability": 0.863 + }, + { + "start": 36023.12, + "end": 36024.96, + "probability": 0.9415 + }, + { + "start": 36025.44, + "end": 36026.52, + "probability": 0.9993 + }, + { + "start": 36027.8, + "end": 36029.86, + "probability": 0.9969 + }, + { + "start": 36032.92, + "end": 36036.1, + "probability": 0.9834 + }, + { + "start": 36036.94, + "end": 36038.44, + "probability": 0.8992 + }, + { + "start": 36039.02, + "end": 36041.62, + "probability": 0.9482 + }, + { + "start": 36042.58, + "end": 36045.22, + "probability": 0.9709 + }, + { + "start": 36045.9, + "end": 36049.84, + "probability": 0.9911 + }, + { + "start": 36051.0, + "end": 36053.64, + "probability": 0.9995 + }, + { + "start": 36054.18, + "end": 36055.74, + "probability": 0.9798 + }, + { + "start": 36056.4, + "end": 36057.28, + "probability": 0.5314 + }, + { + "start": 36058.08, + "end": 36062.54, + "probability": 0.9949 + }, + { + "start": 36063.56, + "end": 36066.24, + "probability": 0.9946 + }, + { + "start": 36066.6, + "end": 36068.38, + "probability": 0.8467 + }, + { + "start": 36069.52, + "end": 36070.22, + "probability": 0.8608 + }, + { + "start": 36070.3, + "end": 36070.62, + "probability": 0.8318 + }, + { + "start": 36070.68, + "end": 36071.18, + "probability": 0.9514 + }, + { + "start": 36071.36, + "end": 36075.18, + "probability": 0.9829 + }, + { + "start": 36075.24, + "end": 36076.0, + "probability": 0.8805 + }, + { + "start": 36076.48, + "end": 36079.42, + "probability": 0.9952 + }, + { + "start": 36080.1, + "end": 36081.36, + "probability": 0.9931 + }, + { + "start": 36081.98, + "end": 36083.06, + "probability": 0.8565 + }, + { + "start": 36083.68, + "end": 36084.4, + "probability": 0.9287 + }, + { + "start": 36085.2, + "end": 36089.95, + "probability": 0.9883 + }, + { + "start": 36091.4, + "end": 36094.36, + "probability": 0.9548 + }, + { + "start": 36094.36, + "end": 36097.74, + "probability": 0.9965 + }, + { + "start": 36098.32, + "end": 36102.12, + "probability": 0.9874 + }, + { + "start": 36102.98, + "end": 36105.76, + "probability": 0.9941 + }, + { + "start": 36105.76, + "end": 36108.58, + "probability": 0.9973 + }, + { + "start": 36109.04, + "end": 36110.0, + "probability": 0.9605 + }, + { + "start": 36110.78, + "end": 36114.06, + "probability": 0.9648 + }, + { + "start": 36114.88, + "end": 36116.64, + "probability": 0.9273 + }, + { + "start": 36117.22, + "end": 36118.2, + "probability": 0.9435 + }, + { + "start": 36118.66, + "end": 36121.45, + "probability": 0.9924 + }, + { + "start": 36122.16, + "end": 36124.16, + "probability": 0.9946 + }, + { + "start": 36124.48, + "end": 36126.44, + "probability": 0.9905 + }, + { + "start": 36128.06, + "end": 36128.4, + "probability": 0.662 + }, + { + "start": 36128.76, + "end": 36129.98, + "probability": 0.8181 + }, + { + "start": 36130.08, + "end": 36132.62, + "probability": 0.9341 + }, + { + "start": 36133.42, + "end": 36134.34, + "probability": 0.9814 + }, + { + "start": 36134.78, + "end": 36136.06, + "probability": 0.9785 + }, + { + "start": 36136.44, + "end": 36138.98, + "probability": 0.9905 + }, + { + "start": 36139.98, + "end": 36140.84, + "probability": 0.9694 + }, + { + "start": 36141.48, + "end": 36144.9, + "probability": 0.9518 + }, + { + "start": 36144.9, + "end": 36147.86, + "probability": 0.999 + }, + { + "start": 36148.8, + "end": 36154.77, + "probability": 0.998 + }, + { + "start": 36155.34, + "end": 36155.44, + "probability": 0.8934 + }, + { + "start": 36155.92, + "end": 36156.85, + "probability": 0.9706 + }, + { + "start": 36157.84, + "end": 36161.4, + "probability": 0.8977 + }, + { + "start": 36162.16, + "end": 36164.12, + "probability": 0.9912 + }, + { + "start": 36164.62, + "end": 36167.02, + "probability": 0.9878 + }, + { + "start": 36168.3, + "end": 36170.46, + "probability": 0.9693 + }, + { + "start": 36171.28, + "end": 36175.92, + "probability": 0.9925 + }, + { + "start": 36176.68, + "end": 36179.1, + "probability": 0.9751 + }, + { + "start": 36180.2, + "end": 36186.16, + "probability": 0.9968 + }, + { + "start": 36187.0, + "end": 36188.16, + "probability": 0.98 + }, + { + "start": 36189.06, + "end": 36193.9, + "probability": 0.9956 + }, + { + "start": 36194.52, + "end": 36195.4, + "probability": 0.9894 + }, + { + "start": 36196.24, + "end": 36197.82, + "probability": 0.9635 + }, + { + "start": 36198.5, + "end": 36199.1, + "probability": 0.5611 + }, + { + "start": 36200.38, + "end": 36202.36, + "probability": 0.9875 + }, + { + "start": 36202.36, + "end": 36207.26, + "probability": 0.9783 + }, + { + "start": 36207.26, + "end": 36210.34, + "probability": 0.999 + }, + { + "start": 36211.36, + "end": 36219.0, + "probability": 0.9907 + }, + { + "start": 36219.52, + "end": 36221.9, + "probability": 0.9732 + }, + { + "start": 36223.02, + "end": 36227.64, + "probability": 0.9978 + }, + { + "start": 36228.28, + "end": 36228.82, + "probability": 0.7681 + }, + { + "start": 36228.98, + "end": 36229.42, + "probability": 0.9405 + }, + { + "start": 36229.88, + "end": 36233.84, + "probability": 0.9854 + }, + { + "start": 36234.58, + "end": 36237.5, + "probability": 0.9893 + }, + { + "start": 36238.34, + "end": 36242.92, + "probability": 0.9899 + }, + { + "start": 36244.34, + "end": 36247.56, + "probability": 0.955 + }, + { + "start": 36248.62, + "end": 36251.96, + "probability": 0.9965 + }, + { + "start": 36251.96, + "end": 36254.7, + "probability": 0.9986 + }, + { + "start": 36255.56, + "end": 36260.48, + "probability": 0.9992 + }, + { + "start": 36261.14, + "end": 36262.1, + "probability": 0.9933 + }, + { + "start": 36263.76, + "end": 36265.8, + "probability": 0.9973 + }, + { + "start": 36266.58, + "end": 36269.12, + "probability": 0.9928 + }, + { + "start": 36270.4, + "end": 36272.8, + "probability": 0.9933 + }, + { + "start": 36272.8, + "end": 36276.5, + "probability": 0.9982 + }, + { + "start": 36277.4, + "end": 36278.28, + "probability": 0.6925 + }, + { + "start": 36278.38, + "end": 36281.96, + "probability": 0.9245 + }, + { + "start": 36282.46, + "end": 36286.88, + "probability": 0.9847 + }, + { + "start": 36288.02, + "end": 36292.1, + "probability": 0.9627 + }, + { + "start": 36292.1, + "end": 36295.26, + "probability": 0.9898 + }, + { + "start": 36296.2, + "end": 36297.1, + "probability": 0.4798 + }, + { + "start": 36297.58, + "end": 36300.06, + "probability": 0.9938 + }, + { + "start": 36300.06, + "end": 36305.01, + "probability": 0.9355 + }, + { + "start": 36306.02, + "end": 36307.28, + "probability": 0.9059 + }, + { + "start": 36307.42, + "end": 36311.89, + "probability": 0.6997 + }, + { + "start": 36312.02, + "end": 36314.7, + "probability": 0.9576 + }, + { + "start": 36315.58, + "end": 36316.7, + "probability": 0.8344 + }, + { + "start": 36317.98, + "end": 36319.3, + "probability": 0.9764 + }, + { + "start": 36320.08, + "end": 36322.3, + "probability": 0.9874 + }, + { + "start": 36323.38, + "end": 36324.04, + "probability": 0.9669 + }, + { + "start": 36325.18, + "end": 36330.96, + "probability": 0.9969 + }, + { + "start": 36332.26, + "end": 36337.5, + "probability": 0.9971 + }, + { + "start": 36338.26, + "end": 36340.82, + "probability": 0.9913 + }, + { + "start": 36342.24, + "end": 36345.78, + "probability": 0.98 + }, + { + "start": 36346.34, + "end": 36347.38, + "probability": 0.9766 + }, + { + "start": 36347.92, + "end": 36349.5, + "probability": 0.7943 + }, + { + "start": 36350.22, + "end": 36351.09, + "probability": 0.9863 + }, + { + "start": 36352.18, + "end": 36353.6, + "probability": 0.9412 + }, + { + "start": 36354.52, + "end": 36356.63, + "probability": 0.9631 + }, + { + "start": 36357.8, + "end": 36361.84, + "probability": 0.9982 + }, + { + "start": 36362.78, + "end": 36363.68, + "probability": 0.9688 + }, + { + "start": 36364.58, + "end": 36372.2, + "probability": 0.9998 + }, + { + "start": 36372.98, + "end": 36374.8, + "probability": 0.9972 + }, + { + "start": 36376.0, + "end": 36378.64, + "probability": 0.9982 + }, + { + "start": 36380.12, + "end": 36382.24, + "probability": 0.9951 + }, + { + "start": 36383.56, + "end": 36384.18, + "probability": 0.9819 + }, + { + "start": 36385.56, + "end": 36388.9, + "probability": 0.9969 + }, + { + "start": 36389.86, + "end": 36395.56, + "probability": 0.9932 + }, + { + "start": 36396.34, + "end": 36397.04, + "probability": 0.6633 + }, + { + "start": 36397.96, + "end": 36400.52, + "probability": 0.9847 + }, + { + "start": 36401.86, + "end": 36404.1, + "probability": 0.9076 + }, + { + "start": 36405.48, + "end": 36406.96, + "probability": 0.9452 + }, + { + "start": 36408.4, + "end": 36412.1, + "probability": 0.9981 + }, + { + "start": 36412.84, + "end": 36413.9, + "probability": 0.9966 + }, + { + "start": 36414.54, + "end": 36419.34, + "probability": 1.0 + }, + { + "start": 36420.68, + "end": 36422.98, + "probability": 0.9971 + }, + { + "start": 36425.02, + "end": 36426.64, + "probability": 0.9805 + }, + { + "start": 36427.54, + "end": 36429.78, + "probability": 0.9983 + }, + { + "start": 36431.84, + "end": 36434.47, + "probability": 0.9968 + }, + { + "start": 36437.32, + "end": 36438.84, + "probability": 0.9331 + }, + { + "start": 36439.5, + "end": 36439.62, + "probability": 0.2441 + }, + { + "start": 36439.62, + "end": 36441.21, + "probability": 0.9858 + }, + { + "start": 36441.84, + "end": 36443.24, + "probability": 0.8032 + }, + { + "start": 36444.16, + "end": 36444.64, + "probability": 0.9937 + }, + { + "start": 36444.98, + "end": 36445.4, + "probability": 0.8501 + }, + { + "start": 36445.62, + "end": 36446.05, + "probability": 0.9794 + }, + { + "start": 36446.36, + "end": 36446.84, + "probability": 0.9565 + }, + { + "start": 36448.6, + "end": 36451.56, + "probability": 0.999 + }, + { + "start": 36451.56, + "end": 36456.0, + "probability": 0.9373 + }, + { + "start": 36457.22, + "end": 36459.08, + "probability": 0.9985 + }, + { + "start": 36461.02, + "end": 36461.76, + "probability": 0.7519 + }, + { + "start": 36462.72, + "end": 36463.98, + "probability": 0.9218 + }, + { + "start": 36464.7, + "end": 36467.0, + "probability": 0.9362 + }, + { + "start": 36467.52, + "end": 36468.9, + "probability": 0.925 + }, + { + "start": 36470.6, + "end": 36473.3, + "probability": 0.9773 + }, + { + "start": 36474.24, + "end": 36475.58, + "probability": 0.98 + }, + { + "start": 36476.46, + "end": 36479.38, + "probability": 0.4549 + }, + { + "start": 36480.7, + "end": 36482.44, + "probability": 0.7596 + }, + { + "start": 36483.34, + "end": 36486.75, + "probability": 0.9895 + }, + { + "start": 36487.48, + "end": 36488.6, + "probability": 0.9922 + }, + { + "start": 36488.7, + "end": 36493.86, + "probability": 0.9902 + }, + { + "start": 36494.38, + "end": 36496.98, + "probability": 0.9812 + }, + { + "start": 36499.04, + "end": 36505.14, + "probability": 0.9834 + }, + { + "start": 36506.02, + "end": 36506.34, + "probability": 0.684 + }, + { + "start": 36508.58, + "end": 36510.08, + "probability": 0.7857 + }, + { + "start": 36510.2, + "end": 36511.8, + "probability": 0.7199 + }, + { + "start": 36512.56, + "end": 36513.7, + "probability": 0.652 + }, + { + "start": 36529.3, + "end": 36529.82, + "probability": 0.5621 + }, + { + "start": 36530.57, + "end": 36535.28, + "probability": 0.7925 + }, + { + "start": 36535.92, + "end": 36540.9, + "probability": 0.9942 + }, + { + "start": 36541.04, + "end": 36542.14, + "probability": 0.8049 + }, + { + "start": 36543.7, + "end": 36544.0, + "probability": 0.6978 + }, + { + "start": 36544.02, + "end": 36545.7, + "probability": 0.696 + }, + { + "start": 36545.74, + "end": 36547.42, + "probability": 0.9822 + }, + { + "start": 36547.44, + "end": 36549.16, + "probability": 0.9856 + }, + { + "start": 36549.94, + "end": 36550.56, + "probability": 0.7356 + }, + { + "start": 36552.11, + "end": 36553.56, + "probability": 0.9995 + }, + { + "start": 36553.72, + "end": 36557.96, + "probability": 0.9423 + }, + { + "start": 36558.12, + "end": 36558.58, + "probability": 0.9287 + }, + { + "start": 36558.64, + "end": 36561.04, + "probability": 0.9977 + }, + { + "start": 36561.2, + "end": 36564.44, + "probability": 0.9974 + }, + { + "start": 36565.08, + "end": 36565.5, + "probability": 0.9053 + }, + { + "start": 36566.48, + "end": 36568.08, + "probability": 0.9435 + }, + { + "start": 36568.16, + "end": 36569.34, + "probability": 0.9639 + }, + { + "start": 36569.38, + "end": 36570.26, + "probability": 0.9548 + }, + { + "start": 36570.38, + "end": 36572.04, + "probability": 0.9436 + }, + { + "start": 36572.82, + "end": 36578.84, + "probability": 0.8998 + }, + { + "start": 36578.84, + "end": 36583.9, + "probability": 0.9878 + }, + { + "start": 36586.96, + "end": 36588.66, + "probability": 0.7954 + }, + { + "start": 36588.74, + "end": 36589.06, + "probability": 0.8002 + }, + { + "start": 36589.08, + "end": 36590.34, + "probability": 0.9985 + }, + { + "start": 36590.38, + "end": 36593.46, + "probability": 0.9611 + }, + { + "start": 36594.1, + "end": 36598.04, + "probability": 0.9978 + }, + { + "start": 36598.7, + "end": 36600.62, + "probability": 0.7253 + }, + { + "start": 36601.48, + "end": 36606.36, + "probability": 0.9961 + }, + { + "start": 36606.76, + "end": 36610.26, + "probability": 0.9731 + }, + { + "start": 36610.26, + "end": 36613.06, + "probability": 0.9987 + }, + { + "start": 36613.62, + "end": 36614.48, + "probability": 0.9908 + }, + { + "start": 36615.78, + "end": 36616.6, + "probability": 0.8979 + }, + { + "start": 36617.88, + "end": 36618.94, + "probability": 0.9675 + }, + { + "start": 36619.44, + "end": 36621.32, + "probability": 0.9976 + }, + { + "start": 36622.18, + "end": 36624.16, + "probability": 0.9336 + }, + { + "start": 36624.26, + "end": 36626.9, + "probability": 0.9748 + }, + { + "start": 36627.86, + "end": 36629.26, + "probability": 0.499 + }, + { + "start": 36630.8, + "end": 36633.18, + "probability": 0.8156 + }, + { + "start": 36633.24, + "end": 36636.08, + "probability": 0.9755 + }, + { + "start": 36636.34, + "end": 36637.3, + "probability": 0.7732 + }, + { + "start": 36640.14, + "end": 36641.5, + "probability": 0.5789 + }, + { + "start": 36641.62, + "end": 36648.7, + "probability": 0.9918 + }, + { + "start": 36648.7, + "end": 36653.66, + "probability": 0.998 + }, + { + "start": 36654.76, + "end": 36655.56, + "probability": 0.7744 + }, + { + "start": 36655.66, + "end": 36659.36, + "probability": 0.9988 + }, + { + "start": 36659.36, + "end": 36665.56, + "probability": 0.999 + }, + { + "start": 36665.7, + "end": 36666.8, + "probability": 0.9788 + }, + { + "start": 36667.26, + "end": 36668.34, + "probability": 0.9191 + }, + { + "start": 36668.88, + "end": 36669.9, + "probability": 0.9964 + }, + { + "start": 36670.42, + "end": 36672.2, + "probability": 0.95 + }, + { + "start": 36673.02, + "end": 36677.6, + "probability": 0.9424 + }, + { + "start": 36677.66, + "end": 36679.12, + "probability": 0.9804 + }, + { + "start": 36681.14, + "end": 36687.8, + "probability": 0.9734 + }, + { + "start": 36689.84, + "end": 36695.22, + "probability": 0.9141 + }, + { + "start": 36695.34, + "end": 36696.46, + "probability": 0.6817 + }, + { + "start": 36697.2, + "end": 36698.06, + "probability": 0.657 + }, + { + "start": 36698.08, + "end": 36700.14, + "probability": 0.8848 + }, + { + "start": 36700.92, + "end": 36703.6, + "probability": 0.9137 + }, + { + "start": 36703.76, + "end": 36704.98, + "probability": 0.9543 + }, + { + "start": 36705.1, + "end": 36707.04, + "probability": 0.9482 + }, + { + "start": 36707.3, + "end": 36708.16, + "probability": 0.9679 + }, + { + "start": 36708.88, + "end": 36710.18, + "probability": 0.574 + }, + { + "start": 36710.74, + "end": 36712.4, + "probability": 0.9318 + }, + { + "start": 36713.18, + "end": 36715.18, + "probability": 0.9148 + }, + { + "start": 36715.26, + "end": 36716.86, + "probability": 0.9734 + }, + { + "start": 36716.94, + "end": 36718.74, + "probability": 0.9564 + }, + { + "start": 36719.3, + "end": 36726.22, + "probability": 0.982 + }, + { + "start": 36727.1, + "end": 36727.78, + "probability": 0.6477 + }, + { + "start": 36727.98, + "end": 36730.92, + "probability": 0.8774 + }, + { + "start": 36732.8, + "end": 36737.86, + "probability": 0.9922 + }, + { + "start": 36738.46, + "end": 36741.06, + "probability": 0.9731 + }, + { + "start": 36741.18, + "end": 36741.88, + "probability": 0.9036 + }, + { + "start": 36741.96, + "end": 36742.56, + "probability": 0.9414 + }, + { + "start": 36742.72, + "end": 36746.32, + "probability": 0.8666 + }, + { + "start": 36746.54, + "end": 36747.82, + "probability": 0.881 + }, + { + "start": 36748.48, + "end": 36749.68, + "probability": 0.7414 + }, + { + "start": 36749.84, + "end": 36753.04, + "probability": 0.9889 + }, + { + "start": 36754.04, + "end": 36757.18, + "probability": 0.9907 + }, + { + "start": 36757.18, + "end": 36760.6, + "probability": 0.9927 + }, + { + "start": 36761.88, + "end": 36769.18, + "probability": 0.8452 + }, + { + "start": 36770.08, + "end": 36776.38, + "probability": 0.9944 + }, + { + "start": 36776.38, + "end": 36781.7, + "probability": 0.9985 + }, + { + "start": 36782.1, + "end": 36785.34, + "probability": 0.9961 + }, + { + "start": 36786.16, + "end": 36790.14, + "probability": 0.9956 + }, + { + "start": 36791.24, + "end": 36793.08, + "probability": 0.9868 + }, + { + "start": 36797.14, + "end": 36799.56, + "probability": 0.7122 + }, + { + "start": 36799.72, + "end": 36801.42, + "probability": 0.6307 + }, + { + "start": 36802.48, + "end": 36806.1, + "probability": 0.9921 + }, + { + "start": 36806.1, + "end": 36809.18, + "probability": 0.9976 + }, + { + "start": 36810.54, + "end": 36811.84, + "probability": 0.753 + }, + { + "start": 36812.58, + "end": 36818.52, + "probability": 0.9973 + }, + { + "start": 36819.06, + "end": 36821.4, + "probability": 0.9923 + }, + { + "start": 36822.06, + "end": 36823.5, + "probability": 0.9995 + }, + { + "start": 36824.16, + "end": 36829.48, + "probability": 0.9932 + }, + { + "start": 36829.58, + "end": 36830.46, + "probability": 0.7262 + }, + { + "start": 36830.76, + "end": 36831.94, + "probability": 0.9211 + }, + { + "start": 36838.96, + "end": 36841.22, + "probability": 0.9888 + }, + { + "start": 36847.2, + "end": 36849.72, + "probability": 0.4939 + }, + { + "start": 36850.38, + "end": 36850.58, + "probability": 0.1853 + }, + { + "start": 36850.66, + "end": 36852.88, + "probability": 0.9965 + }, + { + "start": 36852.88, + "end": 36856.17, + "probability": 0.995 + }, + { + "start": 36856.84, + "end": 36860.14, + "probability": 0.9353 + }, + { + "start": 36860.24, + "end": 36863.56, + "probability": 0.9933 + }, + { + "start": 36864.18, + "end": 36865.26, + "probability": 0.7322 + }, + { + "start": 36865.3, + "end": 36866.48, + "probability": 0.7862 + }, + { + "start": 36866.62, + "end": 36868.44, + "probability": 0.9491 + }, + { + "start": 36869.32, + "end": 36871.16, + "probability": 0.9603 + }, + { + "start": 36871.58, + "end": 36875.56, + "probability": 0.9928 + }, + { + "start": 36876.46, + "end": 36878.72, + "probability": 0.9982 + }, + { + "start": 36878.8, + "end": 36882.02, + "probability": 0.9984 + }, + { + "start": 36882.26, + "end": 36883.94, + "probability": 0.9849 + }, + { + "start": 36884.04, + "end": 36884.98, + "probability": 0.9913 + }, + { + "start": 36885.02, + "end": 36888.36, + "probability": 0.993 + }, + { + "start": 36888.9, + "end": 36890.26, + "probability": 0.8982 + }, + { + "start": 36890.5, + "end": 36893.2, + "probability": 0.9941 + }, + { + "start": 36894.3, + "end": 36894.96, + "probability": 0.4527 + }, + { + "start": 36895.42, + "end": 36895.74, + "probability": 0.7023 + }, + { + "start": 36895.92, + "end": 36899.64, + "probability": 0.9935 + }, + { + "start": 36900.68, + "end": 36906.4, + "probability": 0.9766 + }, + { + "start": 36911.9, + "end": 36914.28, + "probability": 0.9883 + }, + { + "start": 36914.32, + "end": 36916.84, + "probability": 0.9843 + }, + { + "start": 36916.88, + "end": 36918.78, + "probability": 0.9988 + }, + { + "start": 36919.18, + "end": 36920.62, + "probability": 0.7899 + }, + { + "start": 36921.08, + "end": 36924.62, + "probability": 0.9859 + }, + { + "start": 36924.72, + "end": 36925.7, + "probability": 0.8239 + }, + { + "start": 36926.78, + "end": 36929.66, + "probability": 0.9672 + }, + { + "start": 36929.68, + "end": 36930.78, + "probability": 0.9737 + }, + { + "start": 36930.8, + "end": 36932.44, + "probability": 0.9836 + }, + { + "start": 36932.86, + "end": 36933.96, + "probability": 0.9075 + }, + { + "start": 36934.06, + "end": 36936.36, + "probability": 0.6714 + }, + { + "start": 36936.79, + "end": 36938.66, + "probability": 0.5069 + }, + { + "start": 36938.66, + "end": 36939.36, + "probability": 0.8101 + }, + { + "start": 36939.52, + "end": 36940.3, + "probability": 0.3817 + }, + { + "start": 36940.3, + "end": 36940.88, + "probability": 0.9981 + }, + { + "start": 36941.48, + "end": 36941.92, + "probability": 0.4114 + }, + { + "start": 36942.24, + "end": 36945.06, + "probability": 0.9448 + }, + { + "start": 36945.36, + "end": 36946.68, + "probability": 0.9703 + }, + { + "start": 36947.58, + "end": 36951.16, + "probability": 0.8049 + }, + { + "start": 36953.96, + "end": 36957.02, + "probability": 0.9766 + }, + { + "start": 36958.14, + "end": 36958.86, + "probability": 0.6995 + }, + { + "start": 36959.64, + "end": 36960.92, + "probability": 0.9539 + }, + { + "start": 36961.04, + "end": 36962.88, + "probability": 0.9948 + }, + { + "start": 36963.06, + "end": 36964.16, + "probability": 0.9983 + }, + { + "start": 36964.54, + "end": 36965.96, + "probability": 0.9948 + }, + { + "start": 36966.5, + "end": 36967.2, + "probability": 0.7696 + }, + { + "start": 36967.38, + "end": 36970.08, + "probability": 0.6396 + }, + { + "start": 36970.6, + "end": 36975.2, + "probability": 0.954 + }, + { + "start": 36975.48, + "end": 36977.46, + "probability": 0.8911 + }, + { + "start": 36977.82, + "end": 36979.04, + "probability": 0.9456 + }, + { + "start": 36979.36, + "end": 36984.66, + "probability": 0.9862 + }, + { + "start": 36985.8, + "end": 36986.7, + "probability": 0.8413 + }, + { + "start": 36986.84, + "end": 36987.64, + "probability": 0.9873 + }, + { + "start": 36987.66, + "end": 36988.42, + "probability": 0.9969 + }, + { + "start": 36988.68, + "end": 36989.48, + "probability": 0.9926 + }, + { + "start": 36990.72, + "end": 36992.29, + "probability": 0.978 + }, + { + "start": 36994.76, + "end": 36995.76, + "probability": 0.5248 + }, + { + "start": 36995.78, + "end": 36996.44, + "probability": 0.6433 + }, + { + "start": 36996.54, + "end": 36998.72, + "probability": 0.8088 + }, + { + "start": 36998.96, + "end": 37002.6, + "probability": 0.9712 + }, + { + "start": 37002.78, + "end": 37003.9, + "probability": 0.9873 + }, + { + "start": 37004.68, + "end": 37008.68, + "probability": 0.9959 + }, + { + "start": 37008.76, + "end": 37009.74, + "probability": 0.9345 + }, + { + "start": 37009.9, + "end": 37012.3, + "probability": 0.9834 + }, + { + "start": 37012.72, + "end": 37016.4, + "probability": 0.9932 + }, + { + "start": 37016.56, + "end": 37017.22, + "probability": 0.2714 + }, + { + "start": 37018.5, + "end": 37022.84, + "probability": 0.9944 + }, + { + "start": 37023.5, + "end": 37026.74, + "probability": 0.9983 + }, + { + "start": 37027.3, + "end": 37029.84, + "probability": 0.8677 + }, + { + "start": 37030.76, + "end": 37033.12, + "probability": 0.9695 + }, + { + "start": 37033.92, + "end": 37035.96, + "probability": 0.9903 + }, + { + "start": 37036.52, + "end": 37038.08, + "probability": 0.9788 + }, + { + "start": 37038.5, + "end": 37042.34, + "probability": 0.9597 + }, + { + "start": 37042.92, + "end": 37046.28, + "probability": 0.9932 + }, + { + "start": 37046.28, + "end": 37050.08, + "probability": 0.9972 + }, + { + "start": 37050.82, + "end": 37056.14, + "probability": 0.9979 + }, + { + "start": 37056.78, + "end": 37059.66, + "probability": 0.9995 + }, + { + "start": 37059.82, + "end": 37060.96, + "probability": 0.9058 + }, + { + "start": 37061.38, + "end": 37062.92, + "probability": 0.8959 + }, + { + "start": 37063.8, + "end": 37067.42, + "probability": 0.9947 + }, + { + "start": 37068.1, + "end": 37072.26, + "probability": 0.9871 + }, + { + "start": 37073.22, + "end": 37076.78, + "probability": 0.9944 + }, + { + "start": 37077.38, + "end": 37081.08, + "probability": 0.9893 + }, + { + "start": 37081.88, + "end": 37085.22, + "probability": 0.881 + }, + { + "start": 37086.44, + "end": 37092.22, + "probability": 0.995 + }, + { + "start": 37092.72, + "end": 37094.36, + "probability": 0.9865 + }, + { + "start": 37095.06, + "end": 37095.64, + "probability": 0.8328 + }, + { + "start": 37096.02, + "end": 37096.74, + "probability": 0.8405 + }, + { + "start": 37097.0, + "end": 37097.8, + "probability": 0.6348 + }, + { + "start": 37098.16, + "end": 37098.66, + "probability": 0.6635 + }, + { + "start": 37099.1, + "end": 37099.26, + "probability": 0.625 + }, + { + "start": 37099.72, + "end": 37101.24, + "probability": 0.8817 + }, + { + "start": 37101.84, + "end": 37105.86, + "probability": 0.9838 + }, + { + "start": 37106.28, + "end": 37108.42, + "probability": 0.9775 + }, + { + "start": 37108.72, + "end": 37113.38, + "probability": 0.998 + }, + { + "start": 37113.84, + "end": 37116.1, + "probability": 0.8615 + }, + { + "start": 37116.64, + "end": 37122.78, + "probability": 0.9953 + }, + { + "start": 37123.14, + "end": 37125.76, + "probability": 0.9554 + }, + { + "start": 37127.56, + "end": 37132.58, + "probability": 0.9907 + }, + { + "start": 37132.58, + "end": 37135.98, + "probability": 0.9921 + }, + { + "start": 37136.42, + "end": 37138.16, + "probability": 0.9673 + }, + { + "start": 37139.02, + "end": 37141.3, + "probability": 0.9609 + }, + { + "start": 37141.44, + "end": 37142.28, + "probability": 0.8729 + }, + { + "start": 37142.64, + "end": 37145.3, + "probability": 0.999 + }, + { + "start": 37146.84, + "end": 37146.96, + "probability": 0.4794 + }, + { + "start": 37146.98, + "end": 37147.9, + "probability": 0.9857 + }, + { + "start": 37148.22, + "end": 37155.1, + "probability": 0.98 + }, + { + "start": 37156.14, + "end": 37159.22, + "probability": 0.9976 + }, + { + "start": 37159.22, + "end": 37164.38, + "probability": 0.9937 + }, + { + "start": 37164.68, + "end": 37165.36, + "probability": 0.9537 + }, + { + "start": 37165.66, + "end": 37166.98, + "probability": 0.7562 + }, + { + "start": 37168.22, + "end": 37171.6, + "probability": 0.9976 + }, + { + "start": 37171.6, + "end": 37175.98, + "probability": 0.9962 + }, + { + "start": 37176.14, + "end": 37176.68, + "probability": 0.6723 + }, + { + "start": 37177.38, + "end": 37178.66, + "probability": 0.9441 + }, + { + "start": 37178.8, + "end": 37179.6, + "probability": 0.9846 + }, + { + "start": 37179.74, + "end": 37185.3, + "probability": 0.7782 + }, + { + "start": 37185.74, + "end": 37187.9, + "probability": 0.8624 + }, + { + "start": 37188.28, + "end": 37191.42, + "probability": 0.9878 + }, + { + "start": 37191.78, + "end": 37193.5, + "probability": 0.7867 + }, + { + "start": 37194.46, + "end": 37198.08, + "probability": 0.5522 + }, + { + "start": 37198.16, + "end": 37198.62, + "probability": 0.8944 + }, + { + "start": 37200.16, + "end": 37200.46, + "probability": 0.948 + }, + { + "start": 37200.62, + "end": 37203.74, + "probability": 0.9064 + }, + { + "start": 37203.82, + "end": 37205.74, + "probability": 0.7557 + }, + { + "start": 37205.84, + "end": 37208.0, + "probability": 0.8751 + }, + { + "start": 37208.02, + "end": 37211.02, + "probability": 0.998 + }, + { + "start": 37211.14, + "end": 37213.32, + "probability": 0.962 + }, + { + "start": 37215.8, + "end": 37220.44, + "probability": 0.9533 + }, + { + "start": 37221.08, + "end": 37224.42, + "probability": 0.991 + }, + { + "start": 37224.84, + "end": 37225.84, + "probability": 0.838 + }, + { + "start": 37225.9, + "end": 37226.98, + "probability": 0.9415 + }, + { + "start": 37227.14, + "end": 37232.24, + "probability": 0.9658 + }, + { + "start": 37232.74, + "end": 37240.38, + "probability": 0.9759 + }, + { + "start": 37240.48, + "end": 37243.0, + "probability": 0.9976 + }, + { + "start": 37243.68, + "end": 37244.22, + "probability": 0.494 + }, + { + "start": 37244.28, + "end": 37244.88, + "probability": 0.4975 + }, + { + "start": 37244.92, + "end": 37246.9, + "probability": 0.7603 + }, + { + "start": 37246.98, + "end": 37247.22, + "probability": 0.7205 + }, + { + "start": 37247.72, + "end": 37249.1, + "probability": 0.9745 + }, + { + "start": 37249.58, + "end": 37251.0, + "probability": 0.9694 + }, + { + "start": 37251.26, + "end": 37252.3, + "probability": 0.8804 + }, + { + "start": 37253.02, + "end": 37255.4, + "probability": 0.9189 + }, + { + "start": 37255.84, + "end": 37260.16, + "probability": 0.9975 + }, + { + "start": 37260.16, + "end": 37263.48, + "probability": 0.9997 + }, + { + "start": 37264.92, + "end": 37271.46, + "probability": 0.9866 + }, + { + "start": 37271.72, + "end": 37272.16, + "probability": 0.5341 + }, + { + "start": 37272.24, + "end": 37274.48, + "probability": 0.9941 + }, + { + "start": 37275.4, + "end": 37277.36, + "probability": 0.9937 + }, + { + "start": 37278.24, + "end": 37280.88, + "probability": 0.9943 + }, + { + "start": 37281.5, + "end": 37282.38, + "probability": 0.5572 + }, + { + "start": 37282.44, + "end": 37286.92, + "probability": 0.988 + }, + { + "start": 37287.38, + "end": 37288.46, + "probability": 0.9541 + }, + { + "start": 37288.68, + "end": 37290.02, + "probability": 0.9635 + }, + { + "start": 37290.16, + "end": 37293.5, + "probability": 0.9938 + }, + { + "start": 37293.84, + "end": 37297.44, + "probability": 0.9944 + }, + { + "start": 37297.88, + "end": 37299.82, + "probability": 0.8682 + }, + { + "start": 37300.16, + "end": 37305.22, + "probability": 0.9852 + }, + { + "start": 37305.3, + "end": 37306.3, + "probability": 0.9613 + }, + { + "start": 37306.38, + "end": 37307.1, + "probability": 0.9841 + }, + { + "start": 37307.2, + "end": 37311.2, + "probability": 0.999 + }, + { + "start": 37311.36, + "end": 37311.86, + "probability": 0.8287 + }, + { + "start": 37312.34, + "end": 37312.86, + "probability": 0.9467 + }, + { + "start": 37317.98, + "end": 37318.86, + "probability": 0.472 + }, + { + "start": 37320.38, + "end": 37325.8, + "probability": 0.9985 + }, + { + "start": 37326.06, + "end": 37328.9, + "probability": 0.9248 + }, + { + "start": 37329.0, + "end": 37329.0, + "probability": 0.4971 + }, + { + "start": 37329.0, + "end": 37330.8, + "probability": 0.9958 + }, + { + "start": 37332.8, + "end": 37335.64, + "probability": 0.9718 + }, + { + "start": 37335.7, + "end": 37338.36, + "probability": 0.9972 + }, + { + "start": 37338.8, + "end": 37344.02, + "probability": 0.9485 + }, + { + "start": 37344.72, + "end": 37347.42, + "probability": 0.9474 + }, + { + "start": 37347.62, + "end": 37348.7, + "probability": 0.2485 + }, + { + "start": 37348.86, + "end": 37350.22, + "probability": 0.998 + }, + { + "start": 37350.3, + "end": 37351.76, + "probability": 0.9495 + }, + { + "start": 37352.36, + "end": 37354.28, + "probability": 0.9546 + }, + { + "start": 37355.2, + "end": 37356.78, + "probability": 0.9497 + }, + { + "start": 37357.5, + "end": 37360.4, + "probability": 0.9429 + }, + { + "start": 37361.1, + "end": 37362.84, + "probability": 0.999 + }, + { + "start": 37363.4, + "end": 37364.2, + "probability": 0.8726 + }, + { + "start": 37364.78, + "end": 37368.74, + "probability": 0.996 + }, + { + "start": 37368.9, + "end": 37369.98, + "probability": 0.7923 + }, + { + "start": 37370.04, + "end": 37373.94, + "probability": 0.9823 + }, + { + "start": 37374.42, + "end": 37377.62, + "probability": 0.9966 + }, + { + "start": 37377.82, + "end": 37379.48, + "probability": 0.978 + }, + { + "start": 37379.88, + "end": 37381.98, + "probability": 0.9955 + }, + { + "start": 37385.36, + "end": 37389.58, + "probability": 0.9778 + }, + { + "start": 37390.48, + "end": 37394.62, + "probability": 0.8876 + }, + { + "start": 37395.08, + "end": 37399.62, + "probability": 0.9868 + }, + { + "start": 37400.52, + "end": 37403.5, + "probability": 0.9613 + }, + { + "start": 37403.92, + "end": 37404.6, + "probability": 0.5385 + }, + { + "start": 37405.24, + "end": 37409.96, + "probability": 0.9884 + }, + { + "start": 37411.68, + "end": 37413.44, + "probability": 0.768 + }, + { + "start": 37413.84, + "end": 37414.44, + "probability": 0.8443 + }, + { + "start": 37414.6, + "end": 37417.08, + "probability": 0.9446 + }, + { + "start": 37417.4, + "end": 37418.78, + "probability": 0.8893 + }, + { + "start": 37419.54, + "end": 37423.04, + "probability": 0.9929 + }, + { + "start": 37423.76, + "end": 37425.58, + "probability": 0.9125 + }, + { + "start": 37426.02, + "end": 37427.78, + "probability": 0.9497 + }, + { + "start": 37428.2, + "end": 37431.06, + "probability": 0.9857 + }, + { + "start": 37431.52, + "end": 37434.34, + "probability": 0.9948 + }, + { + "start": 37434.62, + "end": 37438.6, + "probability": 0.994 + }, + { + "start": 37439.04, + "end": 37439.46, + "probability": 0.7289 + }, + { + "start": 37441.54, + "end": 37442.02, + "probability": 0.256 + }, + { + "start": 37442.12, + "end": 37442.5, + "probability": 0.1699 + }, + { + "start": 37442.5, + "end": 37442.74, + "probability": 0.0674 + }, + { + "start": 37443.32, + "end": 37444.26, + "probability": 0.8882 + }, + { + "start": 37445.3, + "end": 37447.42, + "probability": 0.3807 + }, + { + "start": 37447.7, + "end": 37449.13, + "probability": 0.6046 + }, + { + "start": 37451.72, + "end": 37452.88, + "probability": 0.4772 + }, + { + "start": 37453.0, + "end": 37454.84, + "probability": 0.9317 + }, + { + "start": 37454.92, + "end": 37455.68, + "probability": 0.8251 + }, + { + "start": 37455.72, + "end": 37458.7, + "probability": 0.8237 + }, + { + "start": 37458.82, + "end": 37458.84, + "probability": 0.4083 + }, + { + "start": 37458.84, + "end": 37460.07, + "probability": 0.853 + }, + { + "start": 37460.58, + "end": 37462.8, + "probability": 0.9966 + }, + { + "start": 37463.38, + "end": 37464.26, + "probability": 0.4346 + }, + { + "start": 37465.66, + "end": 37467.74, + "probability": 0.6511 + }, + { + "start": 37469.08, + "end": 37470.52, + "probability": 0.5685 + }, + { + "start": 37470.54, + "end": 37472.36, + "probability": 0.8616 + }, + { + "start": 37475.72, + "end": 37477.58, + "probability": 0.8651 + }, + { + "start": 37478.82, + "end": 37480.36, + "probability": 0.3738 + }, + { + "start": 37482.82, + "end": 37483.64, + "probability": 0.2332 + }, + { + "start": 37483.64, + "end": 37483.64, + "probability": 0.0246 + }, + { + "start": 37484.08, + "end": 37484.74, + "probability": 0.1624 + }, + { + "start": 37484.84, + "end": 37484.84, + "probability": 0.1781 + }, + { + "start": 37484.92, + "end": 37488.02, + "probability": 0.1329 + }, + { + "start": 37497.44, + "end": 37497.82, + "probability": 0.1609 + }, + { + "start": 37497.82, + "end": 37498.8, + "probability": 0.3246 + }, + { + "start": 37499.6, + "end": 37499.7, + "probability": 0.1799 + }, + { + "start": 37500.25, + "end": 37500.46, + "probability": 0.8821 + }, + { + "start": 37500.46, + "end": 37502.22, + "probability": 0.0678 + }, + { + "start": 37514.04, + "end": 37514.76, + "probability": 0.2424 + }, + { + "start": 37531.56, + "end": 37531.98, + "probability": 0.5569 + }, + { + "start": 37532.06, + "end": 37533.74, + "probability": 0.9678 + }, + { + "start": 37533.78, + "end": 37534.39, + "probability": 0.8096 + }, + { + "start": 37536.34, + "end": 37537.82, + "probability": 0.9128 + }, + { + "start": 37538.3, + "end": 37540.2, + "probability": 0.9838 + }, + { + "start": 37540.3, + "end": 37541.06, + "probability": 0.7537 + }, + { + "start": 37541.16, + "end": 37542.8, + "probability": 0.9923 + }, + { + "start": 37543.1, + "end": 37545.62, + "probability": 0.9837 + }, + { + "start": 37545.92, + "end": 37547.92, + "probability": 0.9635 + }, + { + "start": 37548.42, + "end": 37551.62, + "probability": 0.9993 + }, + { + "start": 37552.04, + "end": 37553.14, + "probability": 0.9965 + }, + { + "start": 37553.24, + "end": 37554.98, + "probability": 0.9928 + }, + { + "start": 37555.44, + "end": 37556.82, + "probability": 0.9832 + }, + { + "start": 37557.18, + "end": 37557.64, + "probability": 0.0806 + }, + { + "start": 37557.84, + "end": 37558.14, + "probability": 0.7 + }, + { + "start": 37558.8, + "end": 37560.58, + "probability": 0.305 + }, + { + "start": 37561.42, + "end": 37564.54, + "probability": 0.346 + }, + { + "start": 37564.82, + "end": 37565.7, + "probability": 0.3404 + }, + { + "start": 37566.1, + "end": 37571.84, + "probability": 0.8678 + }, + { + "start": 37572.58, + "end": 37576.48, + "probability": 0.8807 + }, + { + "start": 37576.5, + "end": 37577.72, + "probability": 0.5637 + }, + { + "start": 37577.8, + "end": 37577.96, + "probability": 0.887 + }, + { + "start": 37578.04, + "end": 37579.32, + "probability": 0.7625 + }, + { + "start": 37579.42, + "end": 37580.7, + "probability": 0.5541 + }, + { + "start": 37580.8, + "end": 37582.58, + "probability": 0.7795 + }, + { + "start": 37582.86, + "end": 37584.58, + "probability": 0.8799 + }, + { + "start": 37585.59, + "end": 37588.3, + "probability": 0.9438 + }, + { + "start": 37588.48, + "end": 37589.06, + "probability": 0.518 + }, + { + "start": 37589.36, + "end": 37590.02, + "probability": 0.4795 + }, + { + "start": 37590.24, + "end": 37593.24, + "probability": 0.9924 + }, + { + "start": 37593.26, + "end": 37595.06, + "probability": 0.7952 + }, + { + "start": 37595.12, + "end": 37596.2, + "probability": 0.8869 + }, + { + "start": 37596.38, + "end": 37598.7, + "probability": 0.772 + }, + { + "start": 37599.0, + "end": 37599.83, + "probability": 0.6774 + }, + { + "start": 37600.3, + "end": 37601.83, + "probability": 0.9932 + }, + { + "start": 37601.98, + "end": 37602.98, + "probability": 0.946 + }, + { + "start": 37603.02, + "end": 37604.16, + "probability": 0.4057 + }, + { + "start": 37604.72, + "end": 37605.83, + "probability": 0.9951 + }, + { + "start": 37606.08, + "end": 37606.78, + "probability": 0.9694 + }, + { + "start": 37607.18, + "end": 37612.68, + "probability": 0.8696 + }, + { + "start": 37612.86, + "end": 37614.22, + "probability": 0.4637 + }, + { + "start": 37614.3, + "end": 37614.54, + "probability": 0.8496 + }, + { + "start": 37614.62, + "end": 37616.32, + "probability": 0.9922 + }, + { + "start": 37616.7, + "end": 37617.38, + "probability": 0.5703 + }, + { + "start": 37617.42, + "end": 37619.16, + "probability": 0.6455 + }, + { + "start": 37619.24, + "end": 37619.56, + "probability": 0.427 + }, + { + "start": 37619.6, + "end": 37620.66, + "probability": 0.7834 + }, + { + "start": 37620.66, + "end": 37621.54, + "probability": 0.2434 + }, + { + "start": 37621.84, + "end": 37623.2, + "probability": 0.8141 + }, + { + "start": 37623.4, + "end": 37624.17, + "probability": 0.9302 + }, + { + "start": 37625.15, + "end": 37628.5, + "probability": 0.9541 + }, + { + "start": 37628.5, + "end": 37629.78, + "probability": 0.5722 + }, + { + "start": 37629.8, + "end": 37630.74, + "probability": 0.7713 + }, + { + "start": 37630.88, + "end": 37631.9, + "probability": 0.9492 + }, + { + "start": 37632.02, + "end": 37633.71, + "probability": 0.9819 + }, + { + "start": 37634.32, + "end": 37635.58, + "probability": 0.7921 + }, + { + "start": 37635.64, + "end": 37636.42, + "probability": 0.7263 + }, + { + "start": 37637.0, + "end": 37637.4, + "probability": 0.3557 + }, + { + "start": 37637.5, + "end": 37638.46, + "probability": 0.3427 + }, + { + "start": 37638.46, + "end": 37638.48, + "probability": 0.1196 + }, + { + "start": 37638.48, + "end": 37639.18, + "probability": 0.8388 + }, + { + "start": 37639.42, + "end": 37642.14, + "probability": 0.8576 + }, + { + "start": 37642.34, + "end": 37644.62, + "probability": 0.7997 + }, + { + "start": 37644.7, + "end": 37647.73, + "probability": 0.8849 + }, + { + "start": 37648.42, + "end": 37650.32, + "probability": 0.6058 + }, + { + "start": 37651.24, + "end": 37651.62, + "probability": 0.5089 + }, + { + "start": 37651.74, + "end": 37652.72, + "probability": 0.9196 + }, + { + "start": 37653.26, + "end": 37653.62, + "probability": 0.9004 + }, + { + "start": 37653.7, + "end": 37653.7, + "probability": 0.7856 + }, + { + "start": 37653.7, + "end": 37654.73, + "probability": 0.9043 + }, + { + "start": 37655.12, + "end": 37656.9, + "probability": 0.4463 + }, + { + "start": 37657.26, + "end": 37659.32, + "probability": 0.9546 + }, + { + "start": 37659.84, + "end": 37659.84, + "probability": 0.458 + }, + { + "start": 37659.98, + "end": 37662.52, + "probability": 0.8262 + }, + { + "start": 37662.82, + "end": 37664.92, + "probability": 0.7379 + }, + { + "start": 37664.92, + "end": 37667.12, + "probability": 0.9736 + }, + { + "start": 37667.18, + "end": 37667.7, + "probability": 0.8066 + }, + { + "start": 37667.8, + "end": 37668.28, + "probability": 0.8301 + }, + { + "start": 37668.32, + "end": 37669.0, + "probability": 0.4256 + }, + { + "start": 37669.02, + "end": 37669.64, + "probability": 0.8373 + }, + { + "start": 37669.64, + "end": 37671.22, + "probability": 0.9141 + }, + { + "start": 37671.3, + "end": 37671.62, + "probability": 0.2708 + }, + { + "start": 37671.7, + "end": 37673.96, + "probability": 0.3661 + }, + { + "start": 37673.96, + "end": 37674.28, + "probability": 0.3429 + }, + { + "start": 37674.4, + "end": 37676.06, + "probability": 0.9773 + }, + { + "start": 37677.04, + "end": 37679.5, + "probability": 0.9299 + }, + { + "start": 37680.02, + "end": 37681.06, + "probability": 0.9828 + }, + { + "start": 37681.1, + "end": 37684.54, + "probability": 0.7216 + }, + { + "start": 37685.0, + "end": 37687.21, + "probability": 0.9937 + }, + { + "start": 37688.12, + "end": 37688.86, + "probability": 0.3868 + }, + { + "start": 37688.98, + "end": 37690.08, + "probability": 0.8917 + }, + { + "start": 37690.18, + "end": 37690.18, + "probability": 0.5786 + }, + { + "start": 37690.18, + "end": 37692.56, + "probability": 0.8269 + }, + { + "start": 37692.86, + "end": 37693.1, + "probability": 0.7212 + }, + { + "start": 37693.14, + "end": 37693.84, + "probability": 0.6347 + }, + { + "start": 37693.96, + "end": 37698.02, + "probability": 0.9766 + }, + { + "start": 37698.1, + "end": 37698.32, + "probability": 0.5107 + }, + { + "start": 37698.6, + "end": 37701.48, + "probability": 0.7459 + }, + { + "start": 37701.8, + "end": 37705.2, + "probability": 0.766 + }, + { + "start": 37705.6, + "end": 37706.6, + "probability": 0.9158 + }, + { + "start": 37706.64, + "end": 37707.18, + "probability": 0.4297 + }, + { + "start": 37707.38, + "end": 37709.22, + "probability": 0.9705 + }, + { + "start": 37709.36, + "end": 37710.46, + "probability": 0.9561 + }, + { + "start": 37710.82, + "end": 37712.4, + "probability": 0.4874 + }, + { + "start": 37712.56, + "end": 37714.28, + "probability": 0.908 + }, + { + "start": 37715.32, + "end": 37716.42, + "probability": 0.7006 + }, + { + "start": 37716.86, + "end": 37717.9, + "probability": 0.792 + }, + { + "start": 37718.04, + "end": 37718.58, + "probability": 0.8473 + }, + { + "start": 37718.74, + "end": 37719.66, + "probability": 0.7903 + }, + { + "start": 37719.68, + "end": 37720.16, + "probability": 0.8279 + }, + { + "start": 37720.26, + "end": 37721.16, + "probability": 0.9719 + }, + { + "start": 37721.3, + "end": 37721.84, + "probability": 0.9355 + }, + { + "start": 37722.38, + "end": 37722.9, + "probability": 0.941 + }, + { + "start": 37723.0, + "end": 37723.64, + "probability": 0.9429 + }, + { + "start": 37724.06, + "end": 37726.16, + "probability": 0.8055 + }, + { + "start": 37727.1, + "end": 37729.22, + "probability": 0.8322 + }, + { + "start": 37730.46, + "end": 37731.08, + "probability": 0.8236 + }, + { + "start": 37731.16, + "end": 37731.72, + "probability": 0.6895 + }, + { + "start": 37731.86, + "end": 37733.3, + "probability": 0.9808 + }, + { + "start": 37733.34, + "end": 37736.14, + "probability": 0.9159 + }, + { + "start": 37736.76, + "end": 37739.06, + "probability": 0.9542 + }, + { + "start": 37739.16, + "end": 37740.26, + "probability": 0.8741 + }, + { + "start": 37741.28, + "end": 37742.9, + "probability": 0.703 + }, + { + "start": 37743.08, + "end": 37743.34, + "probability": 0.9026 + }, + { + "start": 37744.56, + "end": 37745.12, + "probability": 0.018 + }, + { + "start": 37745.72, + "end": 37745.78, + "probability": 0.0371 + }, + { + "start": 37745.78, + "end": 37748.8, + "probability": 0.7292 + }, + { + "start": 37749.12, + "end": 37750.28, + "probability": 0.754 + }, + { + "start": 37750.34, + "end": 37750.96, + "probability": 0.6762 + }, + { + "start": 37751.1, + "end": 37751.88, + "probability": 0.8096 + }, + { + "start": 37752.04, + "end": 37753.14, + "probability": 0.4434 + }, + { + "start": 37753.14, + "end": 37754.32, + "probability": 0.7232 + }, + { + "start": 37754.92, + "end": 37759.74, + "probability": 0.9585 + }, + { + "start": 37760.26, + "end": 37760.76, + "probability": 0.7549 + }, + { + "start": 37760.76, + "end": 37761.56, + "probability": 0.6932 + }, + { + "start": 37761.62, + "end": 37761.88, + "probability": 0.8807 + }, + { + "start": 37762.02, + "end": 37762.72, + "probability": 0.7722 + }, + { + "start": 37762.72, + "end": 37764.68, + "probability": 0.802 + }, + { + "start": 37765.14, + "end": 37767.12, + "probability": 0.9702 + }, + { + "start": 37767.6, + "end": 37772.66, + "probability": 0.841 + }, + { + "start": 37772.78, + "end": 37773.8, + "probability": 0.5356 + }, + { + "start": 37774.74, + "end": 37776.96, + "probability": 0.9404 + }, + { + "start": 37777.46, + "end": 37778.7, + "probability": 0.9554 + }, + { + "start": 37778.8, + "end": 37780.4, + "probability": 0.8303 + }, + { + "start": 37780.4, + "end": 37781.28, + "probability": 0.7357 + }, + { + "start": 37782.1, + "end": 37784.02, + "probability": 0.9357 + }, + { + "start": 37784.66, + "end": 37786.19, + "probability": 0.9603 + }, + { + "start": 37786.8, + "end": 37789.73, + "probability": 0.9051 + }, + { + "start": 37789.84, + "end": 37791.36, + "probability": 0.9406 + }, + { + "start": 37791.52, + "end": 37792.2, + "probability": 0.6502 + }, + { + "start": 37792.58, + "end": 37794.6, + "probability": 0.9647 + }, + { + "start": 37794.94, + "end": 37797.28, + "probability": 0.8489 + }, + { + "start": 37797.82, + "end": 37800.78, + "probability": 0.9445 + }, + { + "start": 37800.92, + "end": 37802.77, + "probability": 0.9927 + }, + { + "start": 37803.7, + "end": 37803.96, + "probability": 0.9478 + }, + { + "start": 37804.08, + "end": 37805.04, + "probability": 0.8928 + }, + { + "start": 37807.43, + "end": 37809.44, + "probability": 0.8073 + }, + { + "start": 37810.38, + "end": 37813.04, + "probability": 0.9863 + }, + { + "start": 37813.18, + "end": 37813.8, + "probability": 0.7199 + }, + { + "start": 37814.06, + "end": 37814.34, + "probability": 0.6073 + }, + { + "start": 37814.38, + "end": 37815.32, + "probability": 0.7734 + }, + { + "start": 37816.1, + "end": 37817.46, + "probability": 0.9939 + }, + { + "start": 37817.6, + "end": 37819.12, + "probability": 0.6977 + }, + { + "start": 37819.14, + "end": 37821.76, + "probability": 0.9456 + }, + { + "start": 37822.32, + "end": 37824.9, + "probability": 0.999 + }, + { + "start": 37825.22, + "end": 37826.57, + "probability": 0.9933 + }, + { + "start": 37827.0, + "end": 37827.52, + "probability": 0.9579 + }, + { + "start": 37827.86, + "end": 37828.92, + "probability": 0.9355 + }, + { + "start": 37829.06, + "end": 37833.46, + "probability": 0.9431 + }, + { + "start": 37834.74, + "end": 37836.9, + "probability": 0.8584 + }, + { + "start": 37837.12, + "end": 37839.26, + "probability": 0.9781 + }, + { + "start": 37839.88, + "end": 37841.94, + "probability": 0.9751 + }, + { + "start": 37842.9, + "end": 37845.54, + "probability": 0.9836 + }, + { + "start": 37845.94, + "end": 37847.58, + "probability": 0.8528 + }, + { + "start": 37849.22, + "end": 37849.92, + "probability": 0.8491 + }, + { + "start": 37849.92, + "end": 37850.08, + "probability": 0.5537 + }, + { + "start": 37850.08, + "end": 37850.7, + "probability": 0.5212 + }, + { + "start": 37850.78, + "end": 37851.9, + "probability": 0.8457 + }, + { + "start": 37851.92, + "end": 37854.94, + "probability": 0.6639 + }, + { + "start": 37855.58, + "end": 37858.18, + "probability": 0.7409 + }, + { + "start": 37858.88, + "end": 37859.99, + "probability": 0.666 + }, + { + "start": 37861.04, + "end": 37864.0, + "probability": 0.8372 + }, + { + "start": 37866.7, + "end": 37868.28, + "probability": 0.9841 + }, + { + "start": 37868.5, + "end": 37869.54, + "probability": 0.9238 + }, + { + "start": 37870.24, + "end": 37872.88, + "probability": 0.8066 + }, + { + "start": 37875.88, + "end": 37879.84, + "probability": 0.9374 + }, + { + "start": 37880.36, + "end": 37888.76, + "probability": 0.8424 + }, + { + "start": 37889.88, + "end": 37890.28, + "probability": 0.9429 + }, + { + "start": 37891.9, + "end": 37893.66, + "probability": 0.8994 + }, + { + "start": 37894.86, + "end": 37900.64, + "probability": 0.9897 + }, + { + "start": 37900.76, + "end": 37901.93, + "probability": 0.9624 + }, + { + "start": 37903.2, + "end": 37905.04, + "probability": 0.6079 + }, + { + "start": 37906.77, + "end": 37907.5, + "probability": 0.6859 + }, + { + "start": 37907.72, + "end": 37909.0, + "probability": 0.9565 + }, + { + "start": 37909.12, + "end": 37911.96, + "probability": 0.9978 + }, + { + "start": 37913.03, + "end": 37916.16, + "probability": 0.9963 + }, + { + "start": 37917.7, + "end": 37920.52, + "probability": 0.9816 + }, + { + "start": 37920.72, + "end": 37923.48, + "probability": 0.6888 + }, + { + "start": 37923.6, + "end": 37925.88, + "probability": 0.8184 + }, + { + "start": 37926.04, + "end": 37927.06, + "probability": 0.9958 + }, + { + "start": 37928.16, + "end": 37931.86, + "probability": 0.9218 + }, + { + "start": 37932.7, + "end": 37939.9, + "probability": 0.9644 + }, + { + "start": 37941.1, + "end": 37943.63, + "probability": 0.9478 + }, + { + "start": 37944.2, + "end": 37945.86, + "probability": 0.9993 + }, + { + "start": 37946.32, + "end": 37947.7, + "probability": 0.7958 + }, + { + "start": 37947.98, + "end": 37948.18, + "probability": 0.9675 + }, + { + "start": 37951.56, + "end": 37956.62, + "probability": 0.619 + }, + { + "start": 37957.46, + "end": 37958.53, + "probability": 0.8481 + }, + { + "start": 37958.84, + "end": 37959.34, + "probability": 0.8535 + }, + { + "start": 37959.4, + "end": 37960.04, + "probability": 0.7738 + }, + { + "start": 37960.2, + "end": 37961.38, + "probability": 0.9882 + }, + { + "start": 37961.64, + "end": 37963.44, + "probability": 0.7163 + }, + { + "start": 37964.32, + "end": 37965.56, + "probability": 0.8994 + }, + { + "start": 37966.14, + "end": 37967.0, + "probability": 0.944 + }, + { + "start": 37967.12, + "end": 37967.96, + "probability": 0.9239 + }, + { + "start": 37968.86, + "end": 37970.74, + "probability": 0.989 + }, + { + "start": 37971.2, + "end": 37972.42, + "probability": 0.972 + }, + { + "start": 37972.58, + "end": 37973.56, + "probability": 0.8469 + }, + { + "start": 37974.14, + "end": 37976.98, + "probability": 0.9985 + }, + { + "start": 37977.16, + "end": 37978.23, + "probability": 0.9619 + }, + { + "start": 37978.94, + "end": 37979.8, + "probability": 0.9799 + }, + { + "start": 37979.88, + "end": 37981.08, + "probability": 0.9787 + }, + { + "start": 37981.38, + "end": 37983.46, + "probability": 0.8784 + }, + { + "start": 37983.9, + "end": 37985.7, + "probability": 0.8654 + }, + { + "start": 37986.28, + "end": 37987.7, + "probability": 0.9797 + }, + { + "start": 37987.88, + "end": 37990.0, + "probability": 0.6902 + }, + { + "start": 37990.08, + "end": 37990.82, + "probability": 0.6199 + }, + { + "start": 37991.24, + "end": 37993.84, + "probability": 0.8491 + }, + { + "start": 37994.56, + "end": 38002.4, + "probability": 0.8316 + }, + { + "start": 38003.32, + "end": 38007.14, + "probability": 0.9945 + }, + { + "start": 38008.04, + "end": 38009.52, + "probability": 0.7638 + }, + { + "start": 38010.22, + "end": 38011.1, + "probability": 0.6416 + }, + { + "start": 38011.22, + "end": 38014.62, + "probability": 0.943 + }, + { + "start": 38015.56, + "end": 38017.39, + "probability": 0.9985 + }, + { + "start": 38018.02, + "end": 38020.16, + "probability": 0.8608 + }, + { + "start": 38020.28, + "end": 38021.78, + "probability": 0.98 + }, + { + "start": 38022.18, + "end": 38026.36, + "probability": 0.9865 + }, + { + "start": 38027.64, + "end": 38032.18, + "probability": 0.9746 + }, + { + "start": 38032.18, + "end": 38037.32, + "probability": 0.8943 + }, + { + "start": 38037.82, + "end": 38039.4, + "probability": 0.8114 + }, + { + "start": 38039.88, + "end": 38042.58, + "probability": 0.8782 + }, + { + "start": 38042.96, + "end": 38045.48, + "probability": 0.9267 + }, + { + "start": 38045.78, + "end": 38048.06, + "probability": 0.7927 + }, + { + "start": 38048.78, + "end": 38050.74, + "probability": 0.9973 + }, + { + "start": 38050.74, + "end": 38053.58, + "probability": 0.9618 + }, + { + "start": 38054.0, + "end": 38058.7, + "probability": 0.9987 + }, + { + "start": 38059.74, + "end": 38063.85, + "probability": 0.9717 + }, + { + "start": 38065.06, + "end": 38068.49, + "probability": 0.8665 + }, + { + "start": 38069.32, + "end": 38073.5, + "probability": 0.9951 + }, + { + "start": 38073.94, + "end": 38074.9, + "probability": 0.9985 + }, + { + "start": 38075.56, + "end": 38077.4, + "probability": 0.4703 + }, + { + "start": 38077.82, + "end": 38082.54, + "probability": 0.9757 + }, + { + "start": 38082.64, + "end": 38084.88, + "probability": 0.9982 + }, + { + "start": 38084.88, + "end": 38089.02, + "probability": 0.8228 + }, + { + "start": 38089.82, + "end": 38092.9, + "probability": 0.9875 + }, + { + "start": 38092.94, + "end": 38094.3, + "probability": 0.8507 + }, + { + "start": 38094.96, + "end": 38098.34, + "probability": 0.9634 + }, + { + "start": 38099.02, + "end": 38101.36, + "probability": 0.9878 + }, + { + "start": 38102.12, + "end": 38103.46, + "probability": 0.494 + }, + { + "start": 38103.52, + "end": 38110.1, + "probability": 0.8796 + }, + { + "start": 38110.74, + "end": 38113.44, + "probability": 0.9961 + }, + { + "start": 38114.14, + "end": 38115.54, + "probability": 0.9392 + }, + { + "start": 38115.68, + "end": 38116.82, + "probability": 0.7568 + }, + { + "start": 38116.86, + "end": 38117.48, + "probability": 0.8828 + }, + { + "start": 38117.78, + "end": 38119.28, + "probability": 0.9185 + }, + { + "start": 38119.74, + "end": 38121.46, + "probability": 0.9949 + }, + { + "start": 38123.2, + "end": 38124.4, + "probability": 0.8547 + }, + { + "start": 38125.58, + "end": 38126.26, + "probability": 0.7234 + }, + { + "start": 38127.4, + "end": 38128.16, + "probability": 0.7678 + }, + { + "start": 38128.26, + "end": 38128.26, + "probability": 0.0434 + }, + { + "start": 38128.26, + "end": 38132.54, + "probability": 0.6275 + }, + { + "start": 38133.08, + "end": 38137.72, + "probability": 0.8988 + }, + { + "start": 38139.18, + "end": 38139.76, + "probability": 0.5382 + }, + { + "start": 38139.88, + "end": 38143.3, + "probability": 0.264 + }, + { + "start": 38143.46, + "end": 38145.5, + "probability": 0.6625 + }, + { + "start": 38146.28, + "end": 38146.9, + "probability": 0.6472 + }, + { + "start": 38147.1, + "end": 38147.6, + "probability": 0.2849 + }, + { + "start": 38148.48, + "end": 38150.64, + "probability": 0.2866 + }, + { + "start": 38150.64, + "end": 38150.78, + "probability": 0.5828 + }, + { + "start": 38150.92, + "end": 38151.86, + "probability": 0.5975 + }, + { + "start": 38152.36, + "end": 38153.81, + "probability": 0.7617 + }, + { + "start": 38155.1, + "end": 38158.62, + "probability": 0.9839 + }, + { + "start": 38158.7, + "end": 38159.0, + "probability": 0.4906 + }, + { + "start": 38159.36, + "end": 38160.52, + "probability": 0.8389 + }, + { + "start": 38161.22, + "end": 38162.1, + "probability": 0.8964 + }, + { + "start": 38162.16, + "end": 38164.96, + "probability": 0.789 + }, + { + "start": 38165.12, + "end": 38167.22, + "probability": 0.9656 + }, + { + "start": 38168.04, + "end": 38169.22, + "probability": 0.6842 + }, + { + "start": 38169.81, + "end": 38171.64, + "probability": 0.9601 + }, + { + "start": 38172.72, + "end": 38173.0, + "probability": 0.8973 + }, + { + "start": 38174.02, + "end": 38175.16, + "probability": 0.5693 + }, + { + "start": 38175.2, + "end": 38177.88, + "probability": 0.9077 + }, + { + "start": 38178.74, + "end": 38180.8, + "probability": 0.9535 + }, + { + "start": 38182.76, + "end": 38186.08, + "probability": 0.8905 + }, + { + "start": 38186.54, + "end": 38187.78, + "probability": 0.1897 + }, + { + "start": 38188.1, + "end": 38189.9, + "probability": 0.9089 + }, + { + "start": 38190.3, + "end": 38193.6, + "probability": 0.4049 + }, + { + "start": 38195.62, + "end": 38195.98, + "probability": 0.197 + }, + { + "start": 38202.9, + "end": 38204.1, + "probability": 0.3519 + }, + { + "start": 38207.48, + "end": 38210.4, + "probability": 0.5365 + }, + { + "start": 38211.22, + "end": 38213.26, + "probability": 0.7983 + }, + { + "start": 38214.16, + "end": 38215.28, + "probability": 0.7956 + }, + { + "start": 38216.86, + "end": 38217.78, + "probability": 0.8453 + }, + { + "start": 38217.84, + "end": 38218.37, + "probability": 0.9844 + }, + { + "start": 38219.63, + "end": 38221.74, + "probability": 0.6851 + }, + { + "start": 38222.74, + "end": 38224.14, + "probability": 0.666 + }, + { + "start": 38224.8, + "end": 38224.98, + "probability": 0.4853 + }, + { + "start": 38225.04, + "end": 38230.44, + "probability": 0.9862 + }, + { + "start": 38231.16, + "end": 38232.64, + "probability": 0.9971 + }, + { + "start": 38233.24, + "end": 38239.72, + "probability": 0.9421 + }, + { + "start": 38244.3, + "end": 38245.92, + "probability": 0.4987 + }, + { + "start": 38246.1, + "end": 38249.72, + "probability": 0.9796 + }, + { + "start": 38250.78, + "end": 38252.38, + "probability": 0.995 + }, + { + "start": 38253.16, + "end": 38255.52, + "probability": 0.7742 + }, + { + "start": 38255.66, + "end": 38259.28, + "probability": 0.9844 + }, + { + "start": 38259.64, + "end": 38261.56, + "probability": 0.9318 + }, + { + "start": 38261.58, + "end": 38264.22, + "probability": 0.9901 + }, + { + "start": 38264.38, + "end": 38267.72, + "probability": 0.9998 + }, + { + "start": 38267.96, + "end": 38272.76, + "probability": 0.9887 + }, + { + "start": 38273.62, + "end": 38274.74, + "probability": 0.9966 + }, + { + "start": 38276.4, + "end": 38277.18, + "probability": 0.7266 + }, + { + "start": 38279.58, + "end": 38281.54, + "probability": 0.9792 + }, + { + "start": 38283.7, + "end": 38285.06, + "probability": 0.8058 + }, + { + "start": 38285.96, + "end": 38286.8, + "probability": 0.9688 + }, + { + "start": 38286.92, + "end": 38292.55, + "probability": 0.9544 + }, + { + "start": 38293.48, + "end": 38294.84, + "probability": 0.9164 + }, + { + "start": 38294.86, + "end": 38295.76, + "probability": 0.8706 + }, + { + "start": 38296.16, + "end": 38297.9, + "probability": 0.9722 + }, + { + "start": 38298.48, + "end": 38299.74, + "probability": 0.7164 + }, + { + "start": 38299.76, + "end": 38301.06, + "probability": 0.989 + }, + { + "start": 38301.2, + "end": 38302.18, + "probability": 0.9436 + }, + { + "start": 38302.68, + "end": 38304.4, + "probability": 0.9186 + }, + { + "start": 38304.82, + "end": 38306.18, + "probability": 0.9797 + }, + { + "start": 38306.2, + "end": 38306.42, + "probability": 0.8538 + }, + { + "start": 38306.5, + "end": 38307.06, + "probability": 0.9089 + }, + { + "start": 38307.16, + "end": 38308.33, + "probability": 0.9165 + }, + { + "start": 38308.9, + "end": 38310.9, + "probability": 0.6704 + }, + { + "start": 38311.36, + "end": 38312.28, + "probability": 0.9651 + }, + { + "start": 38312.92, + "end": 38316.14, + "probability": 0.6079 + }, + { + "start": 38317.72, + "end": 38319.26, + "probability": 0.7993 + }, + { + "start": 38319.84, + "end": 38323.14, + "probability": 0.7475 + }, + { + "start": 38323.62, + "end": 38325.98, + "probability": 0.7902 + }, + { + "start": 38326.02, + "end": 38329.42, + "probability": 0.7125 + }, + { + "start": 38330.08, + "end": 38330.66, + "probability": 0.5781 + }, + { + "start": 38330.84, + "end": 38331.02, + "probability": 0.7745 + }, + { + "start": 38331.56, + "end": 38332.96, + "probability": 0.5676 + }, + { + "start": 38333.04, + "end": 38333.5, + "probability": 0.5546 + }, + { + "start": 38333.86, + "end": 38337.22, + "probability": 0.9785 + }, + { + "start": 38337.38, + "end": 38339.04, + "probability": 0.987 + }, + { + "start": 38339.42, + "end": 38341.96, + "probability": 0.9616 + }, + { + "start": 38342.02, + "end": 38344.08, + "probability": 0.95 + }, + { + "start": 38344.46, + "end": 38344.74, + "probability": 0.8048 + }, + { + "start": 38344.86, + "end": 38345.48, + "probability": 0.9411 + }, + { + "start": 38345.96, + "end": 38346.6, + "probability": 0.949 + }, + { + "start": 38346.6, + "end": 38349.74, + "probability": 0.9547 + }, + { + "start": 38350.14, + "end": 38352.08, + "probability": 0.9909 + }, + { + "start": 38352.32, + "end": 38354.14, + "probability": 0.9906 + }, + { + "start": 38354.78, + "end": 38356.55, + "probability": 0.9904 + }, + { + "start": 38356.9, + "end": 38359.82, + "probability": 0.9979 + }, + { + "start": 38359.82, + "end": 38362.82, + "probability": 0.999 + }, + { + "start": 38363.58, + "end": 38365.14, + "probability": 0.9072 + }, + { + "start": 38365.42, + "end": 38367.38, + "probability": 0.9133 + }, + { + "start": 38367.44, + "end": 38368.66, + "probability": 0.9754 + }, + { + "start": 38368.8, + "end": 38372.82, + "probability": 0.9941 + }, + { + "start": 38372.98, + "end": 38373.8, + "probability": 0.5355 + }, + { + "start": 38374.14, + "end": 38375.12, + "probability": 0.9332 + }, + { + "start": 38375.54, + "end": 38377.64, + "probability": 0.9927 + }, + { + "start": 38378.12, + "end": 38378.84, + "probability": 0.6828 + }, + { + "start": 38378.9, + "end": 38380.7, + "probability": 0.8817 + }, + { + "start": 38381.14, + "end": 38383.66, + "probability": 0.8674 + }, + { + "start": 38383.66, + "end": 38383.66, + "probability": 0.3642 + }, + { + "start": 38383.66, + "end": 38383.66, + "probability": 0.0629 + }, + { + "start": 38383.66, + "end": 38385.5, + "probability": 0.9827 + }, + { + "start": 38387.36, + "end": 38387.95, + "probability": 0.7916 + }, + { + "start": 38388.46, + "end": 38390.74, + "probability": 0.0133 + }, + { + "start": 38396.7, + "end": 38399.38, + "probability": 0.7284 + }, + { + "start": 38400.36, + "end": 38401.68, + "probability": 0.7228 + }, + { + "start": 38401.92, + "end": 38402.34, + "probability": 0.4362 + }, + { + "start": 38402.5, + "end": 38403.26, + "probability": 0.9319 + }, + { + "start": 38403.34, + "end": 38403.48, + "probability": 0.9028 + }, + { + "start": 38403.52, + "end": 38405.22, + "probability": 0.8352 + }, + { + "start": 38405.3, + "end": 38405.82, + "probability": 0.6911 + }, + { + "start": 38405.96, + "end": 38406.06, + "probability": 0.824 + }, + { + "start": 38406.08, + "end": 38407.18, + "probability": 0.3659 + }, + { + "start": 38407.4, + "end": 38407.76, + "probability": 0.8437 + }, + { + "start": 38407.92, + "end": 38409.64, + "probability": 0.9623 + }, + { + "start": 38409.8, + "end": 38413.06, + "probability": 0.9009 + }, + { + "start": 38413.06, + "end": 38416.46, + "probability": 0.6471 + }, + { + "start": 38416.46, + "end": 38417.26, + "probability": 0.6444 + }, + { + "start": 38417.28, + "end": 38417.84, + "probability": 0.4526 + }, + { + "start": 38417.86, + "end": 38420.4, + "probability": 0.1753 + }, + { + "start": 38420.48, + "end": 38421.44, + "probability": 0.6508 + }, + { + "start": 38421.56, + "end": 38421.64, + "probability": 0.4029 + }, + { + "start": 38421.64, + "end": 38422.02, + "probability": 0.1043 + }, + { + "start": 38422.02, + "end": 38422.02, + "probability": 0.0911 + }, + { + "start": 38422.02, + "end": 38422.02, + "probability": 0.3465 + }, + { + "start": 38422.02, + "end": 38422.02, + "probability": 0.6047 + }, + { + "start": 38422.04, + "end": 38425.1, + "probability": 0.6879 + }, + { + "start": 38426.78, + "end": 38427.64, + "probability": 0.0242 + }, + { + "start": 38427.64, + "end": 38431.02, + "probability": 0.7934 + }, + { + "start": 38432.86, + "end": 38433.34, + "probability": 0.0025 + }, + { + "start": 38433.34, + "end": 38433.34, + "probability": 0.0546 + }, + { + "start": 38433.34, + "end": 38433.34, + "probability": 0.1499 + }, + { + "start": 38433.34, + "end": 38433.34, + "probability": 0.0365 + }, + { + "start": 38433.34, + "end": 38434.94, + "probability": 0.5586 + }, + { + "start": 38435.96, + "end": 38440.1, + "probability": 0.8264 + }, + { + "start": 38440.26, + "end": 38441.88, + "probability": 0.8364 + }, + { + "start": 38442.12, + "end": 38443.66, + "probability": 0.9111 + }, + { + "start": 38444.3, + "end": 38448.52, + "probability": 0.9907 + }, + { + "start": 38449.18, + "end": 38451.36, + "probability": 0.9262 + }, + { + "start": 38451.7, + "end": 38457.26, + "probability": 0.9954 + }, + { + "start": 38457.64, + "end": 38459.3, + "probability": 0.9927 + }, + { + "start": 38459.58, + "end": 38460.48, + "probability": 0.9976 + }, + { + "start": 38461.18, + "end": 38463.46, + "probability": 0.9836 + }, + { + "start": 38464.0, + "end": 38468.24, + "probability": 0.9919 + }, + { + "start": 38468.98, + "end": 38469.7, + "probability": 0.9595 + }, + { + "start": 38469.88, + "end": 38475.0, + "probability": 0.9641 + }, + { + "start": 38475.36, + "end": 38476.32, + "probability": 0.7278 + }, + { + "start": 38476.44, + "end": 38477.6, + "probability": 0.9932 + }, + { + "start": 38477.62, + "end": 38479.48, + "probability": 0.9515 + }, + { + "start": 38479.56, + "end": 38480.64, + "probability": 0.9707 + }, + { + "start": 38481.08, + "end": 38482.02, + "probability": 0.9917 + }, + { + "start": 38482.22, + "end": 38483.06, + "probability": 0.7314 + }, + { + "start": 38483.84, + "end": 38484.3, + "probability": 0.9876 + }, + { + "start": 38484.36, + "end": 38487.32, + "probability": 0.8298 + }, + { + "start": 38487.74, + "end": 38490.0, + "probability": 0.8179 + }, + { + "start": 38490.5, + "end": 38491.64, + "probability": 0.9851 + }, + { + "start": 38492.56, + "end": 38495.1, + "probability": 0.9963 + }, + { + "start": 38495.7, + "end": 38496.46, + "probability": 0.7726 + }, + { + "start": 38497.26, + "end": 38497.84, + "probability": 0.9325 + }, + { + "start": 38498.82, + "end": 38498.82, + "probability": 0.0383 + }, + { + "start": 38498.82, + "end": 38499.26, + "probability": 0.5282 + }, + { + "start": 38500.74, + "end": 38502.4, + "probability": 0.3338 + }, + { + "start": 38502.48, + "end": 38502.6, + "probability": 0.1718 + }, + { + "start": 38502.64, + "end": 38503.84, + "probability": 0.5984 + }, + { + "start": 38504.26, + "end": 38506.38, + "probability": 0.8358 + }, + { + "start": 38506.54, + "end": 38507.44, + "probability": 0.9229 + }, + { + "start": 38507.68, + "end": 38510.62, + "probability": 0.7532 + }, + { + "start": 38511.98, + "end": 38512.14, + "probability": 0.018 + }, + { + "start": 38512.14, + "end": 38512.18, + "probability": 0.1884 + }, + { + "start": 38512.42, + "end": 38513.02, + "probability": 0.6039 + }, + { + "start": 38513.22, + "end": 38514.04, + "probability": 0.9778 + }, + { + "start": 38514.22, + "end": 38514.46, + "probability": 0.8315 + }, + { + "start": 38514.98, + "end": 38515.66, + "probability": 0.7517 + }, + { + "start": 38515.72, + "end": 38518.02, + "probability": 0.6967 + }, + { + "start": 38518.06, + "end": 38519.0, + "probability": 0.7508 + }, + { + "start": 38519.38, + "end": 38520.14, + "probability": 0.5311 + }, + { + "start": 38520.24, + "end": 38521.08, + "probability": 0.8966 + }, + { + "start": 38521.2, + "end": 38521.5, + "probability": 0.1974 + }, + { + "start": 38521.7, + "end": 38522.44, + "probability": 0.9623 + }, + { + "start": 38522.75, + "end": 38525.26, + "probability": 0.9024 + }, + { + "start": 38525.3, + "end": 38525.92, + "probability": 0.8955 + }, + { + "start": 38525.96, + "end": 38527.64, + "probability": 0.9476 + }, + { + "start": 38527.86, + "end": 38527.86, + "probability": 0.0745 + }, + { + "start": 38527.86, + "end": 38529.08, + "probability": 0.5088 + }, + { + "start": 38529.44, + "end": 38532.06, + "probability": 0.5795 + }, + { + "start": 38533.38, + "end": 38536.7, + "probability": 0.7362 + }, + { + "start": 38536.82, + "end": 38538.08, + "probability": 0.9672 + }, + { + "start": 38540.02, + "end": 38540.04, + "probability": 0.0591 + }, + { + "start": 38540.04, + "end": 38540.48, + "probability": 0.6936 + }, + { + "start": 38540.58, + "end": 38542.54, + "probability": 0.9871 + }, + { + "start": 38542.96, + "end": 38546.08, + "probability": 0.9769 + }, + { + "start": 38546.14, + "end": 38547.2, + "probability": 0.917 + }, + { + "start": 38550.54, + "end": 38551.5, + "probability": 0.8631 + }, + { + "start": 38551.66, + "end": 38552.78, + "probability": 0.7269 + }, + { + "start": 38552.92, + "end": 38553.06, + "probability": 0.2191 + }, + { + "start": 38553.42, + "end": 38554.94, + "probability": 0.7015 + }, + { + "start": 38555.0, + "end": 38555.92, + "probability": 0.7022 + }, + { + "start": 38556.2, + "end": 38558.76, + "probability": 0.8906 + }, + { + "start": 38559.0, + "end": 38560.98, + "probability": 0.5387 + }, + { + "start": 38561.52, + "end": 38562.42, + "probability": 0.8367 + }, + { + "start": 38562.92, + "end": 38564.02, + "probability": 0.6295 + }, + { + "start": 38564.2, + "end": 38568.82, + "probability": 0.845 + }, + { + "start": 38569.3, + "end": 38571.78, + "probability": 0.1564 + }, + { + "start": 38572.4, + "end": 38572.44, + "probability": 0.0185 + }, + { + "start": 38572.44, + "end": 38572.44, + "probability": 0.2765 + }, + { + "start": 38572.44, + "end": 38572.44, + "probability": 0.1909 + }, + { + "start": 38572.44, + "end": 38574.4, + "probability": 0.98 + }, + { + "start": 38575.02, + "end": 38575.94, + "probability": 0.9346 + }, + { + "start": 38576.56, + "end": 38581.36, + "probability": 0.9866 + }, + { + "start": 38581.38, + "end": 38584.14, + "probability": 0.9501 + }, + { + "start": 38584.14, + "end": 38587.04, + "probability": 0.9972 + }, + { + "start": 38587.7, + "end": 38590.28, + "probability": 0.9994 + }, + { + "start": 38590.78, + "end": 38591.91, + "probability": 0.9941 + }, + { + "start": 38593.58, + "end": 38594.1, + "probability": 0.3392 + }, + { + "start": 38594.1, + "end": 38595.64, + "probability": 0.564 + }, + { + "start": 38596.06, + "end": 38597.82, + "probability": 0.96 + }, + { + "start": 38598.02, + "end": 38599.62, + "probability": 0.9156 + }, + { + "start": 38599.86, + "end": 38600.94, + "probability": 0.9677 + }, + { + "start": 38601.22, + "end": 38602.28, + "probability": 0.9951 + }, + { + "start": 38602.42, + "end": 38602.6, + "probability": 0.4561 + }, + { + "start": 38602.68, + "end": 38607.28, + "probability": 0.9751 + }, + { + "start": 38607.76, + "end": 38608.36, + "probability": 0.194 + }, + { + "start": 38608.42, + "end": 38608.86, + "probability": 0.8657 + }, + { + "start": 38609.1, + "end": 38609.46, + "probability": 0.7642 + }, + { + "start": 38610.2, + "end": 38610.85, + "probability": 0.9373 + }, + { + "start": 38611.08, + "end": 38612.54, + "probability": 0.9913 + }, + { + "start": 38613.3, + "end": 38613.56, + "probability": 0.5394 + }, + { + "start": 38613.68, + "end": 38614.3, + "probability": 0.3278 + }, + { + "start": 38614.84, + "end": 38615.45, + "probability": 0.0846 + }, + { + "start": 38618.78, + "end": 38619.2, + "probability": 0.2213 + }, + { + "start": 38619.2, + "end": 38619.34, + "probability": 0.3771 + }, + { + "start": 38619.34, + "end": 38620.72, + "probability": 0.9166 + }, + { + "start": 38620.96, + "end": 38621.46, + "probability": 0.5901 + }, + { + "start": 38621.54, + "end": 38623.66, + "probability": 0.6867 + }, + { + "start": 38623.76, + "end": 38624.88, + "probability": 0.9897 + }, + { + "start": 38625.22, + "end": 38626.0, + "probability": 0.4836 + }, + { + "start": 38626.12, + "end": 38626.86, + "probability": 0.5068 + }, + { + "start": 38626.98, + "end": 38630.38, + "probability": 0.9442 + }, + { + "start": 38630.6, + "end": 38631.76, + "probability": 0.9829 + }, + { + "start": 38632.32, + "end": 38634.92, + "probability": 0.7937 + }, + { + "start": 38635.42, + "end": 38637.42, + "probability": 0.9866 + }, + { + "start": 38638.14, + "end": 38640.56, + "probability": 0.8944 + }, + { + "start": 38642.7, + "end": 38643.72, + "probability": 0.1392 + }, + { + "start": 38643.76, + "end": 38644.52, + "probability": 0.0633 + }, + { + "start": 38644.52, + "end": 38645.1, + "probability": 0.324 + }, + { + "start": 38645.34, + "end": 38645.44, + "probability": 0.6228 + }, + { + "start": 38645.54, + "end": 38647.28, + "probability": 0.9671 + }, + { + "start": 38647.44, + "end": 38650.12, + "probability": 0.9693 + }, + { + "start": 38650.9, + "end": 38652.08, + "probability": 0.951 + }, + { + "start": 38652.18, + "end": 38654.02, + "probability": 0.9762 + }, + { + "start": 38654.1, + "end": 38655.1, + "probability": 0.9758 + }, + { + "start": 38655.36, + "end": 38656.46, + "probability": 0.3154 + }, + { + "start": 38656.72, + "end": 38657.28, + "probability": 0.2579 + }, + { + "start": 38657.28, + "end": 38658.53, + "probability": 0.7164 + }, + { + "start": 38658.64, + "end": 38660.4, + "probability": 0.8061 + }, + { + "start": 38660.58, + "end": 38662.88, + "probability": 0.9209 + }, + { + "start": 38662.94, + "end": 38664.38, + "probability": 0.2715 + }, + { + "start": 38664.5, + "end": 38664.98, + "probability": 0.8414 + }, + { + "start": 38665.16, + "end": 38667.72, + "probability": 0.9859 + }, + { + "start": 38667.84, + "end": 38670.52, + "probability": 0.9886 + }, + { + "start": 38670.76, + "end": 38674.08, + "probability": 0.7446 + }, + { + "start": 38674.38, + "end": 38675.42, + "probability": 0.812 + }, + { + "start": 38675.46, + "end": 38675.7, + "probability": 0.0709 + }, + { + "start": 38675.74, + "end": 38675.84, + "probability": 0.0292 + }, + { + "start": 38675.84, + "end": 38676.96, + "probability": 0.8789 + }, + { + "start": 38677.46, + "end": 38681.24, + "probability": 0.8682 + }, + { + "start": 38683.5, + "end": 38684.9, + "probability": 0.9689 + }, + { + "start": 38685.48, + "end": 38687.18, + "probability": 0.8895 + }, + { + "start": 38687.66, + "end": 38688.96, + "probability": 0.8181 + }, + { + "start": 38689.16, + "end": 38690.72, + "probability": 0.9569 + }, + { + "start": 38690.82, + "end": 38691.82, + "probability": 0.6642 + }, + { + "start": 38691.88, + "end": 38692.34, + "probability": 0.4861 + }, + { + "start": 38692.34, + "end": 38694.56, + "probability": 0.7329 + }, + { + "start": 38694.9, + "end": 38696.78, + "probability": 0.9686 + }, + { + "start": 38696.82, + "end": 38697.64, + "probability": 0.756 + }, + { + "start": 38697.66, + "end": 38698.62, + "probability": 0.8494 + }, + { + "start": 38698.66, + "end": 38700.0, + "probability": 0.9956 + }, + { + "start": 38700.56, + "end": 38704.39, + "probability": 0.9854 + }, + { + "start": 38705.3, + "end": 38706.12, + "probability": 0.5753 + }, + { + "start": 38706.18, + "end": 38706.72, + "probability": 0.6853 + }, + { + "start": 38706.8, + "end": 38707.26, + "probability": 0.5191 + }, + { + "start": 38707.32, + "end": 38708.72, + "probability": 0.9928 + }, + { + "start": 38708.86, + "end": 38709.97, + "probability": 0.889 + }, + { + "start": 38710.48, + "end": 38712.34, + "probability": 0.1927 + }, + { + "start": 38712.44, + "end": 38712.72, + "probability": 0.5165 + }, + { + "start": 38712.76, + "end": 38713.98, + "probability": 0.5918 + }, + { + "start": 38714.1, + "end": 38715.92, + "probability": 0.9872 + }, + { + "start": 38715.98, + "end": 38717.4, + "probability": 0.7581 + }, + { + "start": 38717.92, + "end": 38718.72, + "probability": 0.6638 + }, + { + "start": 38718.8, + "end": 38722.18, + "probability": 0.6702 + }, + { + "start": 38722.34, + "end": 38723.44, + "probability": 0.8072 + }, + { + "start": 38723.54, + "end": 38724.3, + "probability": 0.9917 + }, + { + "start": 38724.38, + "end": 38726.12, + "probability": 0.9925 + }, + { + "start": 38726.7, + "end": 38731.18, + "probability": 0.9692 + }, + { + "start": 38731.26, + "end": 38732.2, + "probability": 0.8965 + }, + { + "start": 38732.42, + "end": 38733.48, + "probability": 0.856 + }, + { + "start": 38733.7, + "end": 38735.84, + "probability": 0.8871 + }, + { + "start": 38736.8, + "end": 38738.08, + "probability": 0.6682 + }, + { + "start": 38738.24, + "end": 38738.94, + "probability": 0.887 + }, + { + "start": 38739.02, + "end": 38740.04, + "probability": 0.914 + }, + { + "start": 38740.32, + "end": 38740.62, + "probability": 0.8579 + }, + { + "start": 38740.7, + "end": 38744.8, + "probability": 0.794 + }, + { + "start": 38744.88, + "end": 38746.0, + "probability": 0.6362 + }, + { + "start": 38746.1, + "end": 38747.64, + "probability": 0.9844 + }, + { + "start": 38748.0, + "end": 38749.4, + "probability": 0.6882 + }, + { + "start": 38749.9, + "end": 38750.58, + "probability": 0.8258 + }, + { + "start": 38750.9, + "end": 38751.43, + "probability": 0.9666 + }, + { + "start": 38751.62, + "end": 38752.36, + "probability": 0.4586 + }, + { + "start": 38752.38, + "end": 38755.38, + "probability": 0.979 + }, + { + "start": 38755.9, + "end": 38759.9, + "probability": 0.7865 + }, + { + "start": 38760.64, + "end": 38762.22, + "probability": 0.9714 + }, + { + "start": 38762.8, + "end": 38765.54, + "probability": 0.9659 + }, + { + "start": 38765.6, + "end": 38766.58, + "probability": 0.7768 + }, + { + "start": 38767.9, + "end": 38769.0, + "probability": 0.9814 + }, + { + "start": 38769.4, + "end": 38772.28, + "probability": 0.9949 + }, + { + "start": 38772.34, + "end": 38773.06, + "probability": 0.998 + }, + { + "start": 38773.74, + "end": 38776.74, + "probability": 0.9969 + }, + { + "start": 38777.2, + "end": 38779.32, + "probability": 0.9518 + }, + { + "start": 38779.68, + "end": 38780.96, + "probability": 0.9874 + }, + { + "start": 38781.3, + "end": 38782.64, + "probability": 0.8908 + }, + { + "start": 38782.92, + "end": 38784.3, + "probability": 0.986 + }, + { + "start": 38784.7, + "end": 38786.14, + "probability": 0.9961 + }, + { + "start": 38786.26, + "end": 38787.66, + "probability": 0.999 + }, + { + "start": 38787.96, + "end": 38791.93, + "probability": 0.9904 + }, + { + "start": 38792.64, + "end": 38793.98, + "probability": 0.9192 + }, + { + "start": 38794.82, + "end": 38795.72, + "probability": 0.936 + }, + { + "start": 38796.24, + "end": 38798.58, + "probability": 0.9062 + }, + { + "start": 38798.84, + "end": 38799.92, + "probability": 0.8073 + }, + { + "start": 38800.0, + "end": 38801.74, + "probability": 0.9463 + }, + { + "start": 38801.88, + "end": 38804.28, + "probability": 0.9953 + }, + { + "start": 38804.98, + "end": 38808.9, + "probability": 0.9947 + }, + { + "start": 38809.62, + "end": 38812.32, + "probability": 0.9739 + }, + { + "start": 38812.88, + "end": 38813.96, + "probability": 0.9954 + }, + { + "start": 38814.92, + "end": 38816.56, + "probability": 0.377 + }, + { + "start": 38816.72, + "end": 38817.96, + "probability": 0.9765 + }, + { + "start": 38818.08, + "end": 38819.8, + "probability": 0.8798 + }, + { + "start": 38819.9, + "end": 38820.86, + "probability": 0.9682 + }, + { + "start": 38821.06, + "end": 38821.68, + "probability": 0.9079 + }, + { + "start": 38821.74, + "end": 38825.54, + "probability": 0.9965 + }, + { + "start": 38826.0, + "end": 38826.66, + "probability": 0.8084 + }, + { + "start": 38826.82, + "end": 38827.32, + "probability": 0.8331 + }, + { + "start": 38827.4, + "end": 38828.06, + "probability": 0.8082 + }, + { + "start": 38830.06, + "end": 38830.58, + "probability": 0.6255 + }, + { + "start": 38831.34, + "end": 38833.14, + "probability": 0.8984 + }, + { + "start": 38833.18, + "end": 38833.2, + "probability": 0.1148 + }, + { + "start": 38833.2, + "end": 38834.9, + "probability": 0.3714 + }, + { + "start": 38834.9, + "end": 38835.82, + "probability": 0.3462 + }, + { + "start": 38835.96, + "end": 38836.32, + "probability": 0.7388 + }, + { + "start": 38836.38, + "end": 38838.58, + "probability": 0.987 + }, + { + "start": 38838.72, + "end": 38839.34, + "probability": 0.8617 + }, + { + "start": 38839.44, + "end": 38841.16, + "probability": 0.9989 + }, + { + "start": 38841.22, + "end": 38842.78, + "probability": 0.9985 + }, + { + "start": 38843.02, + "end": 38843.98, + "probability": 0.4324 + }, + { + "start": 38843.98, + "end": 38845.22, + "probability": 0.4864 + }, + { + "start": 38845.4, + "end": 38846.26, + "probability": 0.9777 + }, + { + "start": 38846.5, + "end": 38848.28, + "probability": 0.8257 + }, + { + "start": 38848.74, + "end": 38849.62, + "probability": 0.5495 + }, + { + "start": 38850.24, + "end": 38855.18, + "probability": 0.9985 + }, + { + "start": 38855.24, + "end": 38856.41, + "probability": 0.9417 + }, + { + "start": 38856.86, + "end": 38857.72, + "probability": 0.9196 + }, + { + "start": 38857.88, + "end": 38858.76, + "probability": 0.9692 + }, + { + "start": 38859.08, + "end": 38859.96, + "probability": 0.8381 + }, + { + "start": 38860.3, + "end": 38861.82, + "probability": 0.5691 + }, + { + "start": 38862.58, + "end": 38866.34, + "probability": 0.9421 + }, + { + "start": 38866.76, + "end": 38867.55, + "probability": 0.8896 + }, + { + "start": 38867.94, + "end": 38868.83, + "probability": 0.9823 + }, + { + "start": 38869.02, + "end": 38870.92, + "probability": 0.9779 + }, + { + "start": 38871.04, + "end": 38873.08, + "probability": 0.8126 + }, + { + "start": 38873.5, + "end": 38876.16, + "probability": 0.9951 + }, + { + "start": 38876.72, + "end": 38877.48, + "probability": 0.939 + }, + { + "start": 38878.08, + "end": 38881.54, + "probability": 0.9834 + }, + { + "start": 38881.92, + "end": 38883.4, + "probability": 0.999 + }, + { + "start": 38883.5, + "end": 38885.32, + "probability": 0.9944 + }, + { + "start": 38885.74, + "end": 38887.49, + "probability": 0.9996 + }, + { + "start": 38888.14, + "end": 38889.92, + "probability": 0.7677 + }, + { + "start": 38890.7, + "end": 38892.0, + "probability": 0.9876 + }, + { + "start": 38892.68, + "end": 38895.64, + "probability": 0.6943 + }, + { + "start": 38896.24, + "end": 38897.57, + "probability": 0.991 + }, + { + "start": 38897.88, + "end": 38899.8, + "probability": 0.9969 + }, + { + "start": 38899.86, + "end": 38902.76, + "probability": 0.9567 + }, + { + "start": 38902.94, + "end": 38903.76, + "probability": 0.9902 + }, + { + "start": 38904.32, + "end": 38905.74, + "probability": 0.9772 + }, + { + "start": 38906.16, + "end": 38907.34, + "probability": 0.9929 + }, + { + "start": 38907.38, + "end": 38907.86, + "probability": 0.848 + }, + { + "start": 38908.38, + "end": 38909.38, + "probability": 0.9868 + }, + { + "start": 38909.5, + "end": 38911.8, + "probability": 0.9972 + }, + { + "start": 38912.28, + "end": 38913.74, + "probability": 0.998 + }, + { + "start": 38914.34, + "end": 38915.52, + "probability": 0.8077 + }, + { + "start": 38916.22, + "end": 38918.8, + "probability": 0.9859 + }, + { + "start": 38919.06, + "end": 38920.22, + "probability": 0.978 + }, + { + "start": 38920.28, + "end": 38923.09, + "probability": 0.99 + }, + { + "start": 38923.66, + "end": 38927.74, + "probability": 0.9875 + }, + { + "start": 38928.36, + "end": 38930.64, + "probability": 0.9944 + }, + { + "start": 38931.18, + "end": 38933.74, + "probability": 0.9634 + }, + { + "start": 38934.34, + "end": 38936.14, + "probability": 0.9171 + }, + { + "start": 38936.22, + "end": 38936.98, + "probability": 0.9932 + }, + { + "start": 38937.38, + "end": 38940.74, + "probability": 0.9982 + }, + { + "start": 38941.36, + "end": 38943.92, + "probability": 0.9985 + }, + { + "start": 38944.44, + "end": 38946.14, + "probability": 0.999 + }, + { + "start": 38946.24, + "end": 38948.3, + "probability": 0.9879 + }, + { + "start": 38949.04, + "end": 38953.84, + "probability": 0.9064 + }, + { + "start": 38953.98, + "end": 38954.58, + "probability": 0.7563 + }, + { + "start": 38956.62, + "end": 38957.72, + "probability": 0.5435 + }, + { + "start": 38957.84, + "end": 38958.8, + "probability": 0.9692 + }, + { + "start": 38958.88, + "end": 38959.7, + "probability": 0.7089 + }, + { + "start": 38959.94, + "end": 38961.84, + "probability": 0.9535 + }, + { + "start": 38962.34, + "end": 38962.86, + "probability": 0.7613 + }, + { + "start": 38962.94, + "end": 38963.53, + "probability": 0.9783 + }, + { + "start": 38963.64, + "end": 38964.06, + "probability": 0.7579 + }, + { + "start": 38964.42, + "end": 38966.72, + "probability": 0.9914 + }, + { + "start": 38966.8, + "end": 38967.62, + "probability": 0.9954 + }, + { + "start": 38968.12, + "end": 38969.7, + "probability": 0.9904 + }, + { + "start": 38969.82, + "end": 38970.82, + "probability": 0.9985 + }, + { + "start": 38971.38, + "end": 38972.72, + "probability": 0.6357 + }, + { + "start": 38972.92, + "end": 38974.9, + "probability": 0.9113 + }, + { + "start": 38975.34, + "end": 38976.84, + "probability": 0.9908 + }, + { + "start": 38977.06, + "end": 38978.26, + "probability": 0.8292 + }, + { + "start": 38979.62, + "end": 38984.04, + "probability": 0.9918 + }, + { + "start": 38984.34, + "end": 38986.38, + "probability": 0.9958 + }, + { + "start": 38986.96, + "end": 38987.87, + "probability": 0.9847 + }, + { + "start": 38988.18, + "end": 38993.18, + "probability": 0.997 + }, + { + "start": 38993.56, + "end": 38995.49, + "probability": 0.9983 + }, + { + "start": 38996.28, + "end": 38997.38, + "probability": 0.947 + }, + { + "start": 38998.2, + "end": 38998.82, + "probability": 0.9717 + }, + { + "start": 38999.28, + "end": 39000.48, + "probability": 0.6741 + }, + { + "start": 39000.64, + "end": 39001.6, + "probability": 0.9426 + }, + { + "start": 39001.7, + "end": 39003.08, + "probability": 0.9916 + }, + { + "start": 39003.66, + "end": 39004.74, + "probability": 0.9884 + }, + { + "start": 39005.18, + "end": 39006.24, + "probability": 0.8138 + }, + { + "start": 39006.84, + "end": 39008.52, + "probability": 0.9891 + }, + { + "start": 39009.54, + "end": 39011.18, + "probability": 0.9968 + }, + { + "start": 39011.5, + "end": 39012.44, + "probability": 0.8517 + }, + { + "start": 39012.74, + "end": 39013.25, + "probability": 0.9663 + }, + { + "start": 39014.26, + "end": 39016.36, + "probability": 0.9225 + }, + { + "start": 39017.2, + "end": 39017.56, + "probability": 0.7154 + }, + { + "start": 39017.64, + "end": 39018.48, + "probability": 0.9473 + }, + { + "start": 39018.62, + "end": 39020.48, + "probability": 0.9537 + }, + { + "start": 39020.8, + "end": 39022.08, + "probability": 0.7649 + }, + { + "start": 39023.16, + "end": 39027.02, + "probability": 0.9868 + }, + { + "start": 39027.02, + "end": 39030.38, + "probability": 0.9298 + }, + { + "start": 39031.26, + "end": 39034.48, + "probability": 0.6127 + }, + { + "start": 39035.26, + "end": 39036.12, + "probability": 0.8537 + }, + { + "start": 39036.52, + "end": 39038.97, + "probability": 0.8708 + }, + { + "start": 39039.5, + "end": 39041.6, + "probability": 0.9304 + }, + { + "start": 39042.46, + "end": 39044.92, + "probability": 0.9972 + }, + { + "start": 39047.0, + "end": 39047.8, + "probability": 0.9881 + }, + { + "start": 39048.8, + "end": 39051.34, + "probability": 0.9911 + }, + { + "start": 39051.56, + "end": 39053.96, + "probability": 0.9941 + }, + { + "start": 39054.64, + "end": 39056.52, + "probability": 0.9206 + }, + { + "start": 39056.84, + "end": 39062.58, + "probability": 0.9939 + }, + { + "start": 39062.7, + "end": 39064.64, + "probability": 0.9829 + }, + { + "start": 39065.16, + "end": 39066.38, + "probability": 0.9983 + }, + { + "start": 39066.42, + "end": 39066.88, + "probability": 0.6718 + }, + { + "start": 39067.56, + "end": 39069.16, + "probability": 0.9989 + }, + { + "start": 39069.6, + "end": 39071.7, + "probability": 0.7881 + }, + { + "start": 39071.72, + "end": 39073.74, + "probability": 0.9771 + }, + { + "start": 39073.84, + "end": 39074.6, + "probability": 0.9937 + }, + { + "start": 39074.8, + "end": 39075.32, + "probability": 0.377 + }, + { + "start": 39075.4, + "end": 39075.7, + "probability": 0.7701 + }, + { + "start": 39075.84, + "end": 39076.74, + "probability": 0.7866 + }, + { + "start": 39076.78, + "end": 39078.28, + "probability": 0.9459 + }, + { + "start": 39078.76, + "end": 39078.86, + "probability": 0.8463 + }, + { + "start": 39079.88, + "end": 39080.32, + "probability": 0.915 + }, + { + "start": 39081.34, + "end": 39082.12, + "probability": 0.9912 + }, + { + "start": 39082.64, + "end": 39083.24, + "probability": 0.7163 + }, + { + "start": 39083.3, + "end": 39083.9, + "probability": 0.8965 + }, + { + "start": 39084.02, + "end": 39086.28, + "probability": 0.9614 + }, + { + "start": 39086.4, + "end": 39088.34, + "probability": 0.9894 + }, + { + "start": 39088.5, + "end": 39090.72, + "probability": 0.9793 + }, + { + "start": 39091.3, + "end": 39092.22, + "probability": 0.9893 + }, + { + "start": 39093.24, + "end": 39095.64, + "probability": 0.9325 + }, + { + "start": 39096.2, + "end": 39096.88, + "probability": 0.9002 + }, + { + "start": 39097.58, + "end": 39098.62, + "probability": 0.9919 + }, + { + "start": 39098.64, + "end": 39099.8, + "probability": 0.8629 + }, + { + "start": 39100.3, + "end": 39101.86, + "probability": 0.9971 + }, + { + "start": 39101.96, + "end": 39103.66, + "probability": 0.9977 + }, + { + "start": 39104.98, + "end": 39108.22, + "probability": 0.9706 + }, + { + "start": 39108.36, + "end": 39111.58, + "probability": 0.9078 + }, + { + "start": 39112.26, + "end": 39113.1, + "probability": 0.8963 + }, + { + "start": 39113.2, + "end": 39114.02, + "probability": 0.9427 + }, + { + "start": 39114.1, + "end": 39115.54, + "probability": 0.8923 + }, + { + "start": 39116.0, + "end": 39116.96, + "probability": 0.9863 + }, + { + "start": 39117.16, + "end": 39120.3, + "probability": 0.9783 + }, + { + "start": 39120.78, + "end": 39121.26, + "probability": 0.9819 + }, + { + "start": 39121.66, + "end": 39122.16, + "probability": 0.9709 + }, + { + "start": 39123.34, + "end": 39123.93, + "probability": 0.7826 + }, + { + "start": 39124.42, + "end": 39124.84, + "probability": 0.8252 + }, + { + "start": 39124.98, + "end": 39126.22, + "probability": 0.9935 + }, + { + "start": 39126.32, + "end": 39126.66, + "probability": 0.615 + }, + { + "start": 39126.84, + "end": 39128.4, + "probability": 0.9916 + }, + { + "start": 39128.8, + "end": 39130.12, + "probability": 0.9985 + }, + { + "start": 39131.34, + "end": 39131.68, + "probability": 0.6195 + }, + { + "start": 39132.1, + "end": 39132.24, + "probability": 0.8567 + }, + { + "start": 39132.36, + "end": 39133.34, + "probability": 0.9859 + }, + { + "start": 39133.68, + "end": 39135.93, + "probability": 0.8 + }, + { + "start": 39136.52, + "end": 39137.24, + "probability": 0.8913 + }, + { + "start": 39137.4, + "end": 39138.02, + "probability": 0.4641 + }, + { + "start": 39138.18, + "end": 39138.52, + "probability": 0.3552 + }, + { + "start": 39138.76, + "end": 39140.58, + "probability": 0.8391 + }, + { + "start": 39140.72, + "end": 39142.9, + "probability": 0.9331 + }, + { + "start": 39142.92, + "end": 39143.46, + "probability": 0.9688 + }, + { + "start": 39143.48, + "end": 39144.48, + "probability": 0.7714 + }, + { + "start": 39144.76, + "end": 39145.32, + "probability": 0.6755 + }, + { + "start": 39145.84, + "end": 39147.0, + "probability": 0.9726 + }, + { + "start": 39147.08, + "end": 39151.3, + "probability": 0.995 + }, + { + "start": 39152.36, + "end": 39153.82, + "probability": 0.9944 + }, + { + "start": 39154.34, + "end": 39156.16, + "probability": 0.8905 + }, + { + "start": 39157.04, + "end": 39157.68, + "probability": 0.652 + }, + { + "start": 39158.7, + "end": 39160.0, + "probability": 0.9971 + }, + { + "start": 39160.04, + "end": 39161.62, + "probability": 0.9614 + }, + { + "start": 39162.16, + "end": 39163.21, + "probability": 0.4996 + }, + { + "start": 39164.06, + "end": 39167.68, + "probability": 0.9047 + }, + { + "start": 39168.06, + "end": 39169.02, + "probability": 0.9929 + }, + { + "start": 39169.16, + "end": 39170.04, + "probability": 0.9945 + }, + { + "start": 39170.14, + "end": 39173.54, + "probability": 0.9946 + }, + { + "start": 39174.72, + "end": 39175.76, + "probability": 0.8628 + }, + { + "start": 39175.84, + "end": 39177.32, + "probability": 0.9937 + }, + { + "start": 39177.4, + "end": 39180.6, + "probability": 0.9901 + }, + { + "start": 39180.7, + "end": 39182.9, + "probability": 0.9984 + }, + { + "start": 39183.44, + "end": 39184.52, + "probability": 0.5548 + }, + { + "start": 39184.6, + "end": 39186.75, + "probability": 0.961 + }, + { + "start": 39187.66, + "end": 39188.46, + "probability": 0.7391 + }, + { + "start": 39189.68, + "end": 39191.06, + "probability": 0.925 + }, + { + "start": 39192.08, + "end": 39192.9, + "probability": 0.9768 + }, + { + "start": 39194.02, + "end": 39196.22, + "probability": 0.482 + }, + { + "start": 39196.66, + "end": 39197.5, + "probability": 0.9789 + }, + { + "start": 39197.82, + "end": 39198.54, + "probability": 0.9926 + }, + { + "start": 39198.72, + "end": 39199.42, + "probability": 0.9179 + }, + { + "start": 39199.62, + "end": 39200.44, + "probability": 0.9923 + }, + { + "start": 39200.56, + "end": 39201.3, + "probability": 0.9509 + }, + { + "start": 39203.78, + "end": 39204.08, + "probability": 0.679 + }, + { + "start": 39204.08, + "end": 39204.58, + "probability": 0.7726 + }, + { + "start": 39204.66, + "end": 39205.33, + "probability": 0.9845 + }, + { + "start": 39205.34, + "end": 39206.58, + "probability": 0.9535 + }, + { + "start": 39206.94, + "end": 39209.0, + "probability": 0.998 + }, + { + "start": 39209.4, + "end": 39210.14, + "probability": 0.79 + }, + { + "start": 39210.28, + "end": 39210.94, + "probability": 0.4869 + }, + { + "start": 39210.98, + "end": 39211.53, + "probability": 0.9342 + }, + { + "start": 39212.22, + "end": 39213.74, + "probability": 0.7247 + }, + { + "start": 39213.94, + "end": 39214.96, + "probability": 0.9611 + }, + { + "start": 39215.5, + "end": 39216.94, + "probability": 0.9912 + }, + { + "start": 39217.02, + "end": 39219.34, + "probability": 0.9548 + }, + { + "start": 39219.42, + "end": 39221.6, + "probability": 0.9694 + }, + { + "start": 39222.04, + "end": 39224.12, + "probability": 0.9976 + }, + { + "start": 39224.58, + "end": 39226.2, + "probability": 0.6666 + }, + { + "start": 39226.26, + "end": 39227.3, + "probability": 0.9757 + }, + { + "start": 39227.78, + "end": 39228.56, + "probability": 0.8597 + }, + { + "start": 39228.62, + "end": 39229.2, + "probability": 0.9292 + }, + { + "start": 39229.26, + "end": 39230.18, + "probability": 0.9517 + }, + { + "start": 39230.22, + "end": 39231.84, + "probability": 0.9062 + }, + { + "start": 39232.52, + "end": 39233.94, + "probability": 0.6609 + }, + { + "start": 39234.84, + "end": 39237.64, + "probability": 0.9045 + }, + { + "start": 39238.26, + "end": 39239.1, + "probability": 0.9803 + }, + { + "start": 39239.76, + "end": 39241.18, + "probability": 0.9558 + }, + { + "start": 39242.38, + "end": 39242.94, + "probability": 0.8014 + }, + { + "start": 39243.04, + "end": 39244.32, + "probability": 0.9387 + }, + { + "start": 39244.4, + "end": 39245.18, + "probability": 0.9883 + }, + { + "start": 39245.64, + "end": 39246.7, + "probability": 0.9175 + }, + { + "start": 39246.82, + "end": 39247.64, + "probability": 0.9956 + }, + { + "start": 39247.68, + "end": 39249.0, + "probability": 0.9686 + }, + { + "start": 39249.48, + "end": 39250.96, + "probability": 0.9736 + }, + { + "start": 39253.25, + "end": 39253.8, + "probability": 0.0711 + }, + { + "start": 39254.38, + "end": 39255.4, + "probability": 0.9937 + }, + { + "start": 39256.18, + "end": 39257.4, + "probability": 0.9883 + }, + { + "start": 39257.6, + "end": 39260.24, + "probability": 0.87 + }, + { + "start": 39260.24, + "end": 39264.86, + "probability": 0.6884 + }, + { + "start": 39265.1, + "end": 39266.25, + "probability": 0.552 + }, + { + "start": 39266.34, + "end": 39266.78, + "probability": 0.8434 + }, + { + "start": 39266.86, + "end": 39267.28, + "probability": 0.549 + }, + { + "start": 39267.28, + "end": 39268.58, + "probability": 0.9837 + }, + { + "start": 39268.66, + "end": 39269.96, + "probability": 0.8111 + }, + { + "start": 39270.08, + "end": 39271.16, + "probability": 0.9131 + }, + { + "start": 39271.3, + "end": 39276.61, + "probability": 0.8105 + }, + { + "start": 39276.66, + "end": 39277.48, + "probability": 0.9985 + }, + { + "start": 39277.78, + "end": 39282.22, + "probability": 0.8644 + }, + { + "start": 39282.58, + "end": 39284.04, + "probability": 0.996 + }, + { + "start": 39284.44, + "end": 39286.1, + "probability": 0.9832 + }, + { + "start": 39286.28, + "end": 39286.68, + "probability": 0.8035 + }, + { + "start": 39286.76, + "end": 39288.22, + "probability": 0.8185 + }, + { + "start": 39288.6, + "end": 39289.38, + "probability": 0.9707 + }, + { + "start": 39289.88, + "end": 39290.36, + "probability": 0.9286 + }, + { + "start": 39290.4, + "end": 39291.3, + "probability": 0.897 + }, + { + "start": 39291.88, + "end": 39292.94, + "probability": 0.7209 + }, + { + "start": 39293.12, + "end": 39293.18, + "probability": 0.2605 + }, + { + "start": 39293.18, + "end": 39295.18, + "probability": 0.9698 + }, + { + "start": 39295.22, + "end": 39296.58, + "probability": 0.9834 + }, + { + "start": 39296.68, + "end": 39297.86, + "probability": 0.9685 + }, + { + "start": 39298.02, + "end": 39299.22, + "probability": 0.8309 + }, + { + "start": 39299.76, + "end": 39301.04, + "probability": 0.9722 + }, + { + "start": 39301.48, + "end": 39305.24, + "probability": 0.9965 + }, + { + "start": 39305.46, + "end": 39311.26, + "probability": 0.9919 + }, + { + "start": 39311.82, + "end": 39312.7, + "probability": 0.8633 + }, + { + "start": 39313.16, + "end": 39315.38, + "probability": 0.9418 + }, + { + "start": 39315.46, + "end": 39318.62, + "probability": 0.9663 + }, + { + "start": 39319.12, + "end": 39320.64, + "probability": 0.998 + }, + { + "start": 39320.94, + "end": 39322.22, + "probability": 0.9705 + }, + { + "start": 39322.42, + "end": 39322.7, + "probability": 0.7539 + }, + { + "start": 39322.74, + "end": 39324.58, + "probability": 0.8267 + }, + { + "start": 39324.66, + "end": 39325.74, + "probability": 0.8918 + }, + { + "start": 39326.02, + "end": 39327.38, + "probability": 0.9851 + }, + { + "start": 39327.68, + "end": 39328.7, + "probability": 0.8065 + }, + { + "start": 39328.84, + "end": 39329.12, + "probability": 0.9805 + }, + { + "start": 39329.24, + "end": 39329.84, + "probability": 0.858 + }, + { + "start": 39329.94, + "end": 39332.34, + "probability": 0.9841 + }, + { + "start": 39332.46, + "end": 39335.99, + "probability": 0.9644 + }, + { + "start": 39336.42, + "end": 39336.86, + "probability": 0.4447 + }, + { + "start": 39337.02, + "end": 39338.28, + "probability": 0.9929 + }, + { + "start": 39338.34, + "end": 39339.4, + "probability": 0.9902 + }, + { + "start": 39339.5, + "end": 39341.31, + "probability": 0.9967 + }, + { + "start": 39341.76, + "end": 39342.5, + "probability": 0.7674 + }, + { + "start": 39342.68, + "end": 39343.5, + "probability": 0.9702 + }, + { + "start": 39343.6, + "end": 39344.31, + "probability": 0.9971 + }, + { + "start": 39344.88, + "end": 39346.04, + "probability": 0.9303 + }, + { + "start": 39346.66, + "end": 39350.06, + "probability": 0.9747 + }, + { + "start": 39350.14, + "end": 39352.13, + "probability": 0.7461 + }, + { + "start": 39352.68, + "end": 39353.08, + "probability": 0.869 + }, + { + "start": 39354.16, + "end": 39355.36, + "probability": 0.9273 + }, + { + "start": 39356.02, + "end": 39360.88, + "probability": 0.9997 + }, + { + "start": 39360.98, + "end": 39361.64, + "probability": 0.5151 + }, + { + "start": 39362.06, + "end": 39363.16, + "probability": 0.9754 + }, + { + "start": 39363.3, + "end": 39364.42, + "probability": 0.9507 + }, + { + "start": 39364.44, + "end": 39365.7, + "probability": 0.7797 + }, + { + "start": 39365.82, + "end": 39368.72, + "probability": 0.8771 + }, + { + "start": 39369.26, + "end": 39371.06, + "probability": 0.9988 + }, + { + "start": 39371.76, + "end": 39373.24, + "probability": 0.8347 + }, + { + "start": 39373.32, + "end": 39374.02, + "probability": 0.8101 + }, + { + "start": 39374.08, + "end": 39376.68, + "probability": 0.9951 + }, + { + "start": 39376.96, + "end": 39378.4, + "probability": 0.9974 + }, + { + "start": 39378.76, + "end": 39380.88, + "probability": 0.9492 + }, + { + "start": 39381.34, + "end": 39382.9, + "probability": 0.9943 + }, + { + "start": 39382.98, + "end": 39384.36, + "probability": 0.9696 + }, + { + "start": 39384.42, + "end": 39385.98, + "probability": 0.7113 + }, + { + "start": 39386.5, + "end": 39389.78, + "probability": 0.8879 + }, + { + "start": 39390.28, + "end": 39391.24, + "probability": 0.9971 + }, + { + "start": 39391.52, + "end": 39392.74, + "probability": 0.9937 + }, + { + "start": 39393.0, + "end": 39395.1, + "probability": 0.9851 + }, + { + "start": 39395.14, + "end": 39395.8, + "probability": 0.9274 + }, + { + "start": 39395.84, + "end": 39400.78, + "probability": 0.9893 + }, + { + "start": 39401.08, + "end": 39402.34, + "probability": 0.9233 + }, + { + "start": 39402.72, + "end": 39406.56, + "probability": 0.9901 + }, + { + "start": 39406.64, + "end": 39407.8, + "probability": 0.9103 + }, + { + "start": 39408.22, + "end": 39409.04, + "probability": 0.9323 + }, + { + "start": 39409.26, + "end": 39410.7, + "probability": 0.8737 + }, + { + "start": 39411.18, + "end": 39413.42, + "probability": 0.9846 + }, + { + "start": 39413.56, + "end": 39414.36, + "probability": 0.995 + }, + { + "start": 39414.42, + "end": 39414.9, + "probability": 0.9836 + }, + { + "start": 39414.94, + "end": 39415.4, + "probability": 0.9292 + }, + { + "start": 39415.92, + "end": 39417.2, + "probability": 0.963 + }, + { + "start": 39417.5, + "end": 39420.87, + "probability": 0.9917 + }, + { + "start": 39422.58, + "end": 39422.58, + "probability": 0.1914 + }, + { + "start": 39422.58, + "end": 39423.22, + "probability": 0.5187 + }, + { + "start": 39423.22, + "end": 39423.82, + "probability": 0.5016 + }, + { + "start": 39424.24, + "end": 39425.26, + "probability": 0.98 + }, + { + "start": 39425.82, + "end": 39428.08, + "probability": 0.8416 + }, + { + "start": 39429.32, + "end": 39430.18, + "probability": 0.8181 + }, + { + "start": 39430.24, + "end": 39431.74, + "probability": 0.9296 + }, + { + "start": 39433.44, + "end": 39434.16, + "probability": 0.7318 + }, + { + "start": 39436.68, + "end": 39437.98, + "probability": 0.8986 + }, + { + "start": 39438.98, + "end": 39439.28, + "probability": 0.9561 + }, + { + "start": 39444.26, + "end": 39445.68, + "probability": 0.465 + }, + { + "start": 39447.42, + "end": 39448.76, + "probability": 0.6087 + }, + { + "start": 39449.0, + "end": 39451.28, + "probability": 0.6341 + }, + { + "start": 39451.4, + "end": 39455.0, + "probability": 0.9026 + }, + { + "start": 39455.1, + "end": 39459.11, + "probability": 0.9798 + }, + { + "start": 39460.18, + "end": 39464.14, + "probability": 0.8514 + }, + { + "start": 39465.18, + "end": 39467.39, + "probability": 0.9331 + }, + { + "start": 39469.14, + "end": 39469.82, + "probability": 0.6514 + }, + { + "start": 39469.94, + "end": 39471.84, + "probability": 0.8741 + }, + { + "start": 39471.94, + "end": 39474.0, + "probability": 0.9902 + }, + { + "start": 39474.82, + "end": 39476.7, + "probability": 0.9812 + }, + { + "start": 39477.44, + "end": 39479.89, + "probability": 0.7388 + }, + { + "start": 39480.86, + "end": 39485.9, + "probability": 0.9248 + }, + { + "start": 39486.96, + "end": 39490.44, + "probability": 0.9979 + }, + { + "start": 39490.66, + "end": 39493.77, + "probability": 0.891 + }, + { + "start": 39495.44, + "end": 39497.16, + "probability": 0.6034 + }, + { + "start": 39498.82, + "end": 39499.49, + "probability": 0.9595 + }, + { + "start": 39500.16, + "end": 39504.56, + "probability": 0.964 + }, + { + "start": 39506.7, + "end": 39507.86, + "probability": 0.9924 + }, + { + "start": 39508.28, + "end": 39508.88, + "probability": 0.4383 + }, + { + "start": 39509.72, + "end": 39513.24, + "probability": 0.9839 + }, + { + "start": 39514.1, + "end": 39515.38, + "probability": 0.9126 + }, + { + "start": 39515.4, + "end": 39518.12, + "probability": 0.7992 + }, + { + "start": 39518.26, + "end": 39524.16, + "probability": 0.9911 + }, + { + "start": 39525.34, + "end": 39525.7, + "probability": 0.7093 + }, + { + "start": 39526.36, + "end": 39527.74, + "probability": 0.7701 + }, + { + "start": 39528.8, + "end": 39530.58, + "probability": 0.9007 + }, + { + "start": 39531.02, + "end": 39535.7, + "probability": 0.9948 + }, + { + "start": 39535.7, + "end": 39540.58, + "probability": 0.9634 + }, + { + "start": 39542.66, + "end": 39544.98, + "probability": 0.9947 + }, + { + "start": 39545.06, + "end": 39547.3, + "probability": 0.9932 + }, + { + "start": 39551.46, + "end": 39552.64, + "probability": 0.5953 + }, + { + "start": 39552.76, + "end": 39556.44, + "probability": 0.9775 + }, + { + "start": 39557.88, + "end": 39565.22, + "probability": 0.9765 + }, + { + "start": 39567.7, + "end": 39570.88, + "probability": 0.7751 + }, + { + "start": 39571.88, + "end": 39573.64, + "probability": 0.7393 + }, + { + "start": 39574.16, + "end": 39577.02, + "probability": 0.9912 + }, + { + "start": 39578.38, + "end": 39582.4, + "probability": 0.8789 + }, + { + "start": 39584.28, + "end": 39588.23, + "probability": 0.9961 + }, + { + "start": 39589.74, + "end": 39590.82, + "probability": 0.5429 + }, + { + "start": 39591.12, + "end": 39592.28, + "probability": 0.8981 + }, + { + "start": 39596.16, + "end": 39597.16, + "probability": 0.4944 + }, + { + "start": 39598.04, + "end": 39600.54, + "probability": 0.5461 + }, + { + "start": 39600.66, + "end": 39602.3, + "probability": 0.799 + }, + { + "start": 39604.12, + "end": 39605.64, + "probability": 0.9885 + }, + { + "start": 39608.18, + "end": 39609.56, + "probability": 0.9849 + }, + { + "start": 39611.28, + "end": 39617.92, + "probability": 0.9963 + }, + { + "start": 39620.08, + "end": 39622.66, + "probability": 0.698 + }, + { + "start": 39625.27, + "end": 39629.36, + "probability": 0.8317 + }, + { + "start": 39630.5, + "end": 39632.26, + "probability": 0.9961 + }, + { + "start": 39633.9, + "end": 39637.8, + "probability": 0.8782 + }, + { + "start": 39638.64, + "end": 39639.74, + "probability": 0.8038 + }, + { + "start": 39641.26, + "end": 39644.02, + "probability": 0.93 + }, + { + "start": 39645.2, + "end": 39647.96, + "probability": 0.9792 + }, + { + "start": 39648.98, + "end": 39651.74, + "probability": 0.9873 + }, + { + "start": 39652.82, + "end": 39657.08, + "probability": 0.8996 + }, + { + "start": 39658.48, + "end": 39659.62, + "probability": 0.8296 + }, + { + "start": 39660.36, + "end": 39662.22, + "probability": 0.8199 + }, + { + "start": 39663.2, + "end": 39664.16, + "probability": 0.9245 + }, + { + "start": 39664.22, + "end": 39666.82, + "probability": 0.897 + }, + { + "start": 39667.32, + "end": 39670.6, + "probability": 0.9509 + }, + { + "start": 39672.0, + "end": 39673.32, + "probability": 0.8065 + }, + { + "start": 39674.82, + "end": 39676.44, + "probability": 0.9471 + }, + { + "start": 39677.14, + "end": 39681.84, + "probability": 0.689 + }, + { + "start": 39682.92, + "end": 39684.5, + "probability": 0.9316 + }, + { + "start": 39685.64, + "end": 39687.86, + "probability": 0.8462 + }, + { + "start": 39691.76, + "end": 39693.12, + "probability": 0.6786 + }, + { + "start": 39693.42, + "end": 39695.6, + "probability": 0.9604 + }, + { + "start": 39695.84, + "end": 39697.1, + "probability": 0.9526 + }, + { + "start": 39697.58, + "end": 39698.46, + "probability": 0.9231 + }, + { + "start": 39699.46, + "end": 39702.42, + "probability": 0.9967 + }, + { + "start": 39703.64, + "end": 39705.32, + "probability": 0.9542 + }, + { + "start": 39705.94, + "end": 39707.68, + "probability": 0.8784 + }, + { + "start": 39709.5, + "end": 39713.78, + "probability": 0.9082 + }, + { + "start": 39714.34, + "end": 39718.42, + "probability": 0.9954 + }, + { + "start": 39719.44, + "end": 39720.22, + "probability": 0.4322 + }, + { + "start": 39720.34, + "end": 39720.78, + "probability": 0.8357 + }, + { + "start": 39720.96, + "end": 39721.98, + "probability": 0.738 + }, + { + "start": 39722.48, + "end": 39725.06, + "probability": 0.9796 + }, + { + "start": 39728.28, + "end": 39730.9, + "probability": 0.9958 + }, + { + "start": 39732.96, + "end": 39733.7, + "probability": 0.603 + }, + { + "start": 39734.94, + "end": 39735.9, + "probability": 0.7251 + }, + { + "start": 39736.56, + "end": 39738.64, + "probability": 0.9663 + }, + { + "start": 39739.4, + "end": 39740.54, + "probability": 0.928 + }, + { + "start": 39742.5, + "end": 39744.24, + "probability": 0.9824 + }, + { + "start": 39746.1, + "end": 39750.38, + "probability": 0.9961 + }, + { + "start": 39751.88, + "end": 39755.3, + "probability": 0.9943 + }, + { + "start": 39755.3, + "end": 39758.74, + "probability": 0.9962 + }, + { + "start": 39761.38, + "end": 39767.2, + "probability": 0.9295 + }, + { + "start": 39769.52, + "end": 39775.34, + "probability": 0.9977 + }, + { + "start": 39775.44, + "end": 39776.24, + "probability": 0.6727 + }, + { + "start": 39783.72, + "end": 39785.16, + "probability": 0.8795 + }, + { + "start": 39790.26, + "end": 39790.61, + "probability": 0.483 + }, + { + "start": 39792.08, + "end": 39796.7, + "probability": 0.9194 + }, + { + "start": 39798.02, + "end": 39799.18, + "probability": 0.7861 + }, + { + "start": 39800.04, + "end": 39801.32, + "probability": 0.5625 + }, + { + "start": 39801.4, + "end": 39803.92, + "probability": 0.7811 + }, + { + "start": 39805.82, + "end": 39807.44, + "probability": 0.9612 + }, + { + "start": 39808.18, + "end": 39810.14, + "probability": 0.9238 + }, + { + "start": 39813.48, + "end": 39815.04, + "probability": 0.9007 + }, + { + "start": 39816.3, + "end": 39818.26, + "probability": 0.9753 + }, + { + "start": 39824.34, + "end": 39825.56, + "probability": 0.9067 + }, + { + "start": 39826.82, + "end": 39829.36, + "probability": 0.998 + }, + { + "start": 39831.36, + "end": 39834.8, + "probability": 0.993 + }, + { + "start": 39836.6, + "end": 39838.59, + "probability": 0.8111 + }, + { + "start": 39840.42, + "end": 39840.94, + "probability": 0.9507 + }, + { + "start": 39841.02, + "end": 39843.84, + "probability": 0.9896 + }, + { + "start": 39848.6, + "end": 39851.4, + "probability": 0.7204 + }, + { + "start": 39853.94, + "end": 39857.72, + "probability": 0.9965 + }, + { + "start": 39859.32, + "end": 39861.26, + "probability": 0.9688 + }, + { + "start": 39862.12, + "end": 39864.16, + "probability": 0.9989 + }, + { + "start": 39866.04, + "end": 39867.92, + "probability": 0.9612 + }, + { + "start": 39868.38, + "end": 39869.94, + "probability": 0.9946 + }, + { + "start": 39870.16, + "end": 39872.5, + "probability": 0.9917 + }, + { + "start": 39875.88, + "end": 39879.08, + "probability": 0.9951 + }, + { + "start": 39880.54, + "end": 39883.24, + "probability": 0.9944 + }, + { + "start": 39884.52, + "end": 39885.5, + "probability": 0.5776 + }, + { + "start": 39888.42, + "end": 39891.72, + "probability": 0.9946 + }, + { + "start": 39893.14, + "end": 39896.5, + "probability": 0.999 + }, + { + "start": 39897.04, + "end": 39901.18, + "probability": 0.9928 + }, + { + "start": 39901.86, + "end": 39903.78, + "probability": 0.9001 + }, + { + "start": 39904.56, + "end": 39906.42, + "probability": 0.996 + }, + { + "start": 39907.36, + "end": 39913.2, + "probability": 0.8354 + }, + { + "start": 39914.72, + "end": 39914.72, + "probability": 0.0893 + }, + { + "start": 39915.26, + "end": 39916.3, + "probability": 0.1713 + }, + { + "start": 39916.44, + "end": 39918.98, + "probability": 0.4418 + }, + { + "start": 39919.6, + "end": 39921.46, + "probability": 0.7231 + }, + { + "start": 39922.76, + "end": 39924.68, + "probability": 0.9951 + }, + { + "start": 39924.82, + "end": 39927.64, + "probability": 0.998 + }, + { + "start": 39928.4, + "end": 39932.04, + "probability": 0.896 + }, + { + "start": 39932.64, + "end": 39933.7, + "probability": 0.5269 + }, + { + "start": 39934.64, + "end": 39939.64, + "probability": 0.9327 + }, + { + "start": 39941.08, + "end": 39941.66, + "probability": 0.793 + }, + { + "start": 39942.36, + "end": 39943.52, + "probability": 0.8619 + }, + { + "start": 39943.66, + "end": 39947.82, + "probability": 0.9105 + }, + { + "start": 39948.02, + "end": 39949.78, + "probability": 0.9329 + }, + { + "start": 39950.22, + "end": 39951.96, + "probability": 0.9995 + }, + { + "start": 39955.74, + "end": 39959.02, + "probability": 0.7887 + }, + { + "start": 39959.82, + "end": 39964.78, + "probability": 0.9282 + }, + { + "start": 39965.58, + "end": 39970.02, + "probability": 0.9833 + }, + { + "start": 39970.76, + "end": 39973.02, + "probability": 0.9937 + }, + { + "start": 39973.08, + "end": 39973.72, + "probability": 0.7173 + }, + { + "start": 39973.84, + "end": 39974.54, + "probability": 0.7849 + }, + { + "start": 39975.18, + "end": 39976.26, + "probability": 0.5997 + }, + { + "start": 39976.92, + "end": 39981.3, + "probability": 0.9956 + }, + { + "start": 39982.56, + "end": 39988.0, + "probability": 0.9972 + }, + { + "start": 39988.96, + "end": 39992.52, + "probability": 0.9863 + }, + { + "start": 39993.8, + "end": 39997.22, + "probability": 0.7218 + }, + { + "start": 39998.08, + "end": 40000.36, + "probability": 0.8767 + }, + { + "start": 40005.08, + "end": 40008.82, + "probability": 0.9924 + }, + { + "start": 40009.02, + "end": 40009.66, + "probability": 0.9866 + }, + { + "start": 40010.68, + "end": 40011.38, + "probability": 0.7339 + }, + { + "start": 40013.42, + "end": 40015.6, + "probability": 0.8813 + }, + { + "start": 40016.18, + "end": 40019.3, + "probability": 0.9857 + }, + { + "start": 40020.76, + "end": 40021.82, + "probability": 0.7147 + }, + { + "start": 40022.58, + "end": 40024.74, + "probability": 0.9829 + }, + { + "start": 40026.32, + "end": 40027.58, + "probability": 0.9656 + }, + { + "start": 40030.14, + "end": 40032.16, + "probability": 0.9717 + }, + { + "start": 40032.4, + "end": 40035.32, + "probability": 0.9841 + }, + { + "start": 40035.42, + "end": 40038.42, + "probability": 0.9813 + }, + { + "start": 40039.34, + "end": 40042.0, + "probability": 0.8602 + }, + { + "start": 40042.82, + "end": 40043.8, + "probability": 0.7837 + }, + { + "start": 40044.76, + "end": 40046.34, + "probability": 0.9932 + }, + { + "start": 40046.42, + "end": 40047.94, + "probability": 0.9669 + }, + { + "start": 40048.06, + "end": 40050.26, + "probability": 0.9586 + }, + { + "start": 40050.32, + "end": 40050.84, + "probability": 0.9118 + }, + { + "start": 40051.3, + "end": 40052.06, + "probability": 0.6666 + }, + { + "start": 40052.4, + "end": 40056.76, + "probability": 0.7548 + }, + { + "start": 40069.76, + "end": 40071.92, + "probability": 0.6388 + }, + { + "start": 40072.04, + "end": 40073.02, + "probability": 0.6246 + }, + { + "start": 40074.16, + "end": 40077.04, + "probability": 0.7952 + }, + { + "start": 40077.76, + "end": 40078.4, + "probability": 0.1889 + }, + { + "start": 40080.04, + "end": 40080.9, + "probability": 0.9647 + }, + { + "start": 40081.24, + "end": 40082.28, + "probability": 0.9409 + }, + { + "start": 40082.58, + "end": 40086.16, + "probability": 0.9547 + }, + { + "start": 40087.54, + "end": 40090.7, + "probability": 0.9037 + }, + { + "start": 40091.24, + "end": 40093.1, + "probability": 0.9902 + }, + { + "start": 40094.44, + "end": 40096.34, + "probability": 0.9117 + }, + { + "start": 40096.76, + "end": 40101.08, + "probability": 0.9133 + }, + { + "start": 40102.06, + "end": 40107.04, + "probability": 0.9424 + }, + { + "start": 40108.2, + "end": 40109.96, + "probability": 0.8998 + }, + { + "start": 40110.82, + "end": 40113.08, + "probability": 0.9352 + }, + { + "start": 40113.22, + "end": 40120.32, + "probability": 0.9324 + }, + { + "start": 40121.08, + "end": 40123.74, + "probability": 0.8936 + }, + { + "start": 40123.74, + "end": 40128.74, + "probability": 0.9945 + }, + { + "start": 40129.72, + "end": 40130.76, + "probability": 0.969 + }, + { + "start": 40131.66, + "end": 40132.02, + "probability": 0.7032 + }, + { + "start": 40132.76, + "end": 40137.74, + "probability": 0.9873 + }, + { + "start": 40137.82, + "end": 40139.4, + "probability": 0.9988 + }, + { + "start": 40140.24, + "end": 40146.58, + "probability": 0.9702 + }, + { + "start": 40147.5, + "end": 40148.52, + "probability": 0.7246 + }, + { + "start": 40149.9, + "end": 40152.0, + "probability": 0.8951 + }, + { + "start": 40152.2, + "end": 40157.26, + "probability": 0.9693 + }, + { + "start": 40158.54, + "end": 40161.52, + "probability": 0.8778 + }, + { + "start": 40163.02, + "end": 40169.24, + "probability": 0.9771 + }, + { + "start": 40170.14, + "end": 40171.78, + "probability": 0.9666 + }, + { + "start": 40172.76, + "end": 40175.64, + "probability": 0.963 + }, + { + "start": 40176.26, + "end": 40177.36, + "probability": 0.6905 + }, + { + "start": 40178.78, + "end": 40183.2, + "probability": 0.8987 + }, + { + "start": 40184.04, + "end": 40186.66, + "probability": 0.9364 + }, + { + "start": 40188.06, + "end": 40188.74, + "probability": 0.7969 + }, + { + "start": 40189.46, + "end": 40190.02, + "probability": 0.773 + }, + { + "start": 40190.84, + "end": 40191.58, + "probability": 0.9525 + }, + { + "start": 40193.62, + "end": 40193.88, + "probability": 0.5184 + }, + { + "start": 40193.9, + "end": 40197.52, + "probability": 0.8798 + }, + { + "start": 40198.64, + "end": 40201.66, + "probability": 0.8982 + }, + { + "start": 40202.3, + "end": 40203.73, + "probability": 0.9883 + }, + { + "start": 40204.58, + "end": 40205.94, + "probability": 0.817 + }, + { + "start": 40206.82, + "end": 40209.8, + "probability": 0.9517 + }, + { + "start": 40210.42, + "end": 40211.54, + "probability": 0.9851 + }, + { + "start": 40211.8, + "end": 40217.94, + "probability": 0.989 + }, + { + "start": 40219.14, + "end": 40220.0, + "probability": 0.9668 + }, + { + "start": 40220.54, + "end": 40223.64, + "probability": 0.9241 + }, + { + "start": 40224.52, + "end": 40225.54, + "probability": 0.7561 + }, + { + "start": 40227.16, + "end": 40233.46, + "probability": 0.9894 + }, + { + "start": 40234.42, + "end": 40235.74, + "probability": 0.9725 + }, + { + "start": 40236.06, + "end": 40236.7, + "probability": 0.8649 + }, + { + "start": 40236.8, + "end": 40242.14, + "probability": 0.9962 + }, + { + "start": 40242.42, + "end": 40246.76, + "probability": 0.9299 + }, + { + "start": 40246.96, + "end": 40251.12, + "probability": 0.7627 + }, + { + "start": 40252.56, + "end": 40256.72, + "probability": 0.8658 + }, + { + "start": 40258.4, + "end": 40261.4, + "probability": 0.9828 + }, + { + "start": 40262.42, + "end": 40266.04, + "probability": 0.9478 + }, + { + "start": 40266.6, + "end": 40268.64, + "probability": 0.7999 + }, + { + "start": 40269.46, + "end": 40273.0, + "probability": 0.9515 + }, + { + "start": 40273.86, + "end": 40274.44, + "probability": 0.8677 + }, + { + "start": 40274.54, + "end": 40275.14, + "probability": 0.9067 + }, + { + "start": 40275.42, + "end": 40277.2, + "probability": 0.936 + }, + { + "start": 40277.64, + "end": 40279.16, + "probability": 0.9685 + }, + { + "start": 40279.74, + "end": 40283.52, + "probability": 0.8757 + }, + { + "start": 40284.32, + "end": 40286.34, + "probability": 0.8398 + }, + { + "start": 40286.92, + "end": 40288.08, + "probability": 0.6003 + }, + { + "start": 40288.2, + "end": 40293.7, + "probability": 0.9928 + }, + { + "start": 40294.06, + "end": 40298.92, + "probability": 0.9956 + }, + { + "start": 40300.4, + "end": 40303.7, + "probability": 0.9725 + }, + { + "start": 40303.7, + "end": 40306.98, + "probability": 0.9659 + }, + { + "start": 40309.52, + "end": 40313.46, + "probability": 0.897 + }, + { + "start": 40314.9, + "end": 40321.4, + "probability": 0.9101 + }, + { + "start": 40321.48, + "end": 40323.16, + "probability": 0.8883 + }, + { + "start": 40323.52, + "end": 40324.22, + "probability": 0.8958 + }, + { + "start": 40324.9, + "end": 40327.26, + "probability": 0.9617 + }, + { + "start": 40328.5, + "end": 40330.84, + "probability": 0.9847 + }, + { + "start": 40331.68, + "end": 40333.24, + "probability": 0.7783 + }, + { + "start": 40334.48, + "end": 40338.7, + "probability": 0.9883 + }, + { + "start": 40339.82, + "end": 40342.34, + "probability": 0.9787 + }, + { + "start": 40343.3, + "end": 40345.16, + "probability": 0.9871 + }, + { + "start": 40345.82, + "end": 40346.7, + "probability": 0.8333 + }, + { + "start": 40347.24, + "end": 40348.98, + "probability": 0.915 + }, + { + "start": 40350.76, + "end": 40356.06, + "probability": 0.9957 + }, + { + "start": 40356.7, + "end": 40362.98, + "probability": 0.9823 + }, + { + "start": 40363.94, + "end": 40364.66, + "probability": 0.3695 + }, + { + "start": 40364.74, + "end": 40365.66, + "probability": 0.6163 + }, + { + "start": 40365.76, + "end": 40366.4, + "probability": 0.6145 + }, + { + "start": 40366.5, + "end": 40370.54, + "probability": 0.9049 + }, + { + "start": 40370.96, + "end": 40371.32, + "probability": 0.6205 + }, + { + "start": 40372.14, + "end": 40376.38, + "probability": 0.9897 + }, + { + "start": 40377.3, + "end": 40384.06, + "probability": 0.9954 + }, + { + "start": 40384.12, + "end": 40385.18, + "probability": 0.6965 + }, + { + "start": 40385.66, + "end": 40386.88, + "probability": 0.8854 + }, + { + "start": 40387.08, + "end": 40387.68, + "probability": 0.4783 + }, + { + "start": 40388.46, + "end": 40397.4, + "probability": 0.9765 + }, + { + "start": 40397.68, + "end": 40401.86, + "probability": 0.9608 + }, + { + "start": 40403.1, + "end": 40403.62, + "probability": 0.8622 + }, + { + "start": 40405.18, + "end": 40406.68, + "probability": 0.9305 + }, + { + "start": 40407.66, + "end": 40409.66, + "probability": 0.8638 + }, + { + "start": 40410.56, + "end": 40413.0, + "probability": 0.9847 + }, + { + "start": 40413.36, + "end": 40414.56, + "probability": 0.7525 + }, + { + "start": 40415.4, + "end": 40415.7, + "probability": 0.5134 + }, + { + "start": 40416.4, + "end": 40419.6, + "probability": 0.7791 + }, + { + "start": 40419.72, + "end": 40421.32, + "probability": 0.4952 + }, + { + "start": 40422.18, + "end": 40426.24, + "probability": 0.9566 + }, + { + "start": 40426.42, + "end": 40429.58, + "probability": 0.9568 + }, + { + "start": 40430.02, + "end": 40431.98, + "probability": 0.8564 + }, + { + "start": 40432.36, + "end": 40436.2, + "probability": 0.9895 + }, + { + "start": 40437.14, + "end": 40437.92, + "probability": 0.7514 + }, + { + "start": 40438.64, + "end": 40439.98, + "probability": 0.9665 + }, + { + "start": 40442.14, + "end": 40443.56, + "probability": 0.9726 + }, + { + "start": 40444.18, + "end": 40445.1, + "probability": 0.6273 + }, + { + "start": 40445.28, + "end": 40453.4, + "probability": 0.761 + }, + { + "start": 40453.6, + "end": 40454.96, + "probability": 0.9659 + }, + { + "start": 40455.6, + "end": 40458.1, + "probability": 0.923 + }, + { + "start": 40459.78, + "end": 40463.62, + "probability": 0.8782 + }, + { + "start": 40464.32, + "end": 40467.44, + "probability": 0.9681 + }, + { + "start": 40468.5, + "end": 40471.0, + "probability": 0.9946 + }, + { + "start": 40472.04, + "end": 40473.12, + "probability": 0.9095 + }, + { + "start": 40473.74, + "end": 40481.68, + "probability": 0.8345 + }, + { + "start": 40482.94, + "end": 40487.28, + "probability": 0.9658 + }, + { + "start": 40487.34, + "end": 40489.94, + "probability": 0.9836 + }, + { + "start": 40490.64, + "end": 40494.14, + "probability": 0.9805 + }, + { + "start": 40494.3, + "end": 40498.02, + "probability": 0.9852 + }, + { + "start": 40498.17, + "end": 40502.18, + "probability": 0.9893 + }, + { + "start": 40504.66, + "end": 40505.52, + "probability": 0.5794 + }, + { + "start": 40506.5, + "end": 40508.24, + "probability": 0.9786 + }, + { + "start": 40508.94, + "end": 40510.47, + "probability": 0.9949 + }, + { + "start": 40511.42, + "end": 40516.3, + "probability": 0.9925 + }, + { + "start": 40517.44, + "end": 40518.36, + "probability": 0.9727 + }, + { + "start": 40518.82, + "end": 40521.76, + "probability": 0.9385 + }, + { + "start": 40521.76, + "end": 40525.26, + "probability": 0.986 + }, + { + "start": 40526.4, + "end": 40530.64, + "probability": 0.8497 + }, + { + "start": 40531.3, + "end": 40532.96, + "probability": 0.9908 + }, + { + "start": 40534.0, + "end": 40535.0, + "probability": 0.9083 + }, + { + "start": 40536.42, + "end": 40538.58, + "probability": 0.7998 + }, + { + "start": 40539.4, + "end": 40540.02, + "probability": 0.9901 + }, + { + "start": 40540.74, + "end": 40543.06, + "probability": 0.9105 + }, + { + "start": 40544.76, + "end": 40546.42, + "probability": 0.7541 + }, + { + "start": 40547.3, + "end": 40548.34, + "probability": 0.9156 + }, + { + "start": 40549.56, + "end": 40556.32, + "probability": 0.9753 + }, + { + "start": 40556.42, + "end": 40561.9, + "probability": 0.9796 + }, + { + "start": 40562.94, + "end": 40565.5, + "probability": 0.9596 + }, + { + "start": 40566.54, + "end": 40567.26, + "probability": 0.9658 + }, + { + "start": 40568.1, + "end": 40569.28, + "probability": 0.9985 + }, + { + "start": 40570.74, + "end": 40571.58, + "probability": 0.9263 + }, + { + "start": 40572.48, + "end": 40575.02, + "probability": 0.9587 + }, + { + "start": 40575.7, + "end": 40578.18, + "probability": 0.9028 + }, + { + "start": 40578.88, + "end": 40581.5, + "probability": 0.929 + }, + { + "start": 40582.32, + "end": 40584.92, + "probability": 0.9543 + }, + { + "start": 40584.92, + "end": 40589.02, + "probability": 0.981 + }, + { + "start": 40589.6, + "end": 40594.96, + "probability": 0.9854 + }, + { + "start": 40594.96, + "end": 40600.76, + "probability": 0.9823 + }, + { + "start": 40601.3, + "end": 40606.9, + "probability": 0.9622 + }, + { + "start": 40607.06, + "end": 40608.58, + "probability": 0.8829 + }, + { + "start": 40609.14, + "end": 40611.16, + "probability": 0.7208 + }, + { + "start": 40611.28, + "end": 40612.34, + "probability": 0.5838 + }, + { + "start": 40612.46, + "end": 40618.38, + "probability": 0.9856 + }, + { + "start": 40619.42, + "end": 40622.66, + "probability": 0.7985 + }, + { + "start": 40622.92, + "end": 40628.18, + "probability": 0.7507 + }, + { + "start": 40628.6, + "end": 40629.42, + "probability": 0.8069 + }, + { + "start": 40629.58, + "end": 40631.94, + "probability": 0.6719 + }, + { + "start": 40632.9, + "end": 40637.04, + "probability": 0.9834 + }, + { + "start": 40637.94, + "end": 40643.06, + "probability": 0.9616 + }, + { + "start": 40645.36, + "end": 40645.9, + "probability": 0.1919 + }, + { + "start": 40647.3, + "end": 40649.08, + "probability": 0.9933 + }, + { + "start": 40651.33, + "end": 40654.86, + "probability": 0.9189 + }, + { + "start": 40655.04, + "end": 40655.72, + "probability": 0.7462 + }, + { + "start": 40656.36, + "end": 40659.56, + "probability": 0.6753 + }, + { + "start": 40671.88, + "end": 40673.54, + "probability": 0.7377 + }, + { + "start": 40680.36, + "end": 40687.36, + "probability": 0.7912 + }, + { + "start": 40688.5, + "end": 40690.8, + "probability": 0.8608 + }, + { + "start": 40693.06, + "end": 40699.22, + "probability": 0.9484 + }, + { + "start": 40699.8, + "end": 40700.9, + "probability": 0.7422 + }, + { + "start": 40703.56, + "end": 40706.82, + "probability": 0.7072 + }, + { + "start": 40708.18, + "end": 40711.14, + "probability": 0.6872 + }, + { + "start": 40712.78, + "end": 40715.56, + "probability": 0.911 + }, + { + "start": 40718.38, + "end": 40720.88, + "probability": 0.8998 + }, + { + "start": 40722.26, + "end": 40728.7, + "probability": 0.9087 + }, + { + "start": 40729.34, + "end": 40736.82, + "probability": 0.8727 + }, + { + "start": 40736.82, + "end": 40740.82, + "probability": 0.9683 + }, + { + "start": 40742.14, + "end": 40744.74, + "probability": 0.6377 + }, + { + "start": 40746.6, + "end": 40752.08, + "probability": 0.9111 + }, + { + "start": 40752.9, + "end": 40760.52, + "probability": 0.9417 + }, + { + "start": 40760.52, + "end": 40767.08, + "probability": 0.9836 + }, + { + "start": 40769.02, + "end": 40773.18, + "probability": 0.8307 + }, + { + "start": 40775.46, + "end": 40778.4, + "probability": 0.9919 + }, + { + "start": 40779.48, + "end": 40781.08, + "probability": 0.9725 + }, + { + "start": 40782.72, + "end": 40789.9, + "probability": 0.9489 + }, + { + "start": 40792.24, + "end": 40795.62, + "probability": 0.943 + }, + { + "start": 40796.74, + "end": 40801.94, + "probability": 0.995 + }, + { + "start": 40802.96, + "end": 40807.6, + "probability": 0.9292 + }, + { + "start": 40807.6, + "end": 40813.46, + "probability": 0.9541 + }, + { + "start": 40813.72, + "end": 40814.96, + "probability": 0.8361 + }, + { + "start": 40815.66, + "end": 40821.98, + "probability": 0.842 + }, + { + "start": 40823.42, + "end": 40825.98, + "probability": 0.6314 + }, + { + "start": 40827.4, + "end": 40830.54, + "probability": 0.9928 + }, + { + "start": 40832.38, + "end": 40834.58, + "probability": 0.6774 + }, + { + "start": 40834.72, + "end": 40835.96, + "probability": 0.8347 + }, + { + "start": 40836.32, + "end": 40837.7, + "probability": 0.9838 + }, + { + "start": 40837.86, + "end": 40838.62, + "probability": 0.9257 + }, + { + "start": 40839.84, + "end": 40841.12, + "probability": 0.77 + }, + { + "start": 40841.52, + "end": 40847.34, + "probability": 0.6484 + }, + { + "start": 40847.42, + "end": 40849.9, + "probability": 0.9539 + }, + { + "start": 40850.08, + "end": 40850.9, + "probability": 0.4226 + }, + { + "start": 40851.56, + "end": 40852.77, + "probability": 0.7851 + }, + { + "start": 40853.54, + "end": 40855.52, + "probability": 0.8652 + }, + { + "start": 40857.02, + "end": 40860.62, + "probability": 0.7489 + }, + { + "start": 40861.92, + "end": 40866.76, + "probability": 0.9895 + }, + { + "start": 40870.21, + "end": 40877.64, + "probability": 0.7609 + }, + { + "start": 40879.0, + "end": 40881.18, + "probability": 0.7479 + }, + { + "start": 40882.9, + "end": 40885.96, + "probability": 0.5438 + }, + { + "start": 40886.18, + "end": 40893.66, + "probability": 0.7504 + }, + { + "start": 40896.6, + "end": 40902.1, + "probability": 0.9766 + }, + { + "start": 40902.45, + "end": 40903.53, + "probability": 0.4984 + }, + { + "start": 40903.92, + "end": 40904.42, + "probability": 0.1252 + }, + { + "start": 40907.74, + "end": 40907.86, + "probability": 0.0004 + }, + { + "start": 40913.5, + "end": 40920.96, + "probability": 0.7751 + }, + { + "start": 40922.7, + "end": 40928.78, + "probability": 0.9663 + }, + { + "start": 40930.0, + "end": 40935.32, + "probability": 0.9687 + }, + { + "start": 40937.92, + "end": 40938.68, + "probability": 0.5314 + }, + { + "start": 40941.88, + "end": 40945.76, + "probability": 0.8849 + }, + { + "start": 40946.4, + "end": 40949.6, + "probability": 0.9673 + }, + { + "start": 40951.26, + "end": 40956.62, + "probability": 0.9156 + }, + { + "start": 40958.06, + "end": 40959.4, + "probability": 0.9492 + }, + { + "start": 40959.98, + "end": 40960.22, + "probability": 0.1007 + }, + { + "start": 40960.38, + "end": 40966.74, + "probability": 0.9056 + }, + { + "start": 40968.1, + "end": 40968.72, + "probability": 0.9819 + }, + { + "start": 40969.34, + "end": 40973.84, + "probability": 0.9473 + }, + { + "start": 40975.64, + "end": 40977.38, + "probability": 0.8961 + }, + { + "start": 40977.94, + "end": 40981.5, + "probability": 0.9953 + }, + { + "start": 40983.0, + "end": 40989.0, + "probability": 0.8876 + }, + { + "start": 40989.72, + "end": 40993.14, + "probability": 0.9851 + }, + { + "start": 40994.3, + "end": 40996.22, + "probability": 0.9583 + }, + { + "start": 40997.08, + "end": 40999.08, + "probability": 0.9942 + }, + { + "start": 40999.92, + "end": 41002.74, + "probability": 0.9959 + }, + { + "start": 41004.82, + "end": 41007.34, + "probability": 0.858 + }, + { + "start": 41008.48, + "end": 41010.7, + "probability": 0.875 + }, + { + "start": 41011.48, + "end": 41012.42, + "probability": 0.9667 + }, + { + "start": 41013.52, + "end": 41018.44, + "probability": 0.8211 + }, + { + "start": 41018.58, + "end": 41021.9, + "probability": 0.8994 + }, + { + "start": 41022.76, + "end": 41027.96, + "probability": 0.9955 + }, + { + "start": 41028.16, + "end": 41035.0, + "probability": 0.9952 + }, + { + "start": 41035.0, + "end": 41038.34, + "probability": 0.9989 + }, + { + "start": 41039.26, + "end": 41042.66, + "probability": 0.874 + }, + { + "start": 41043.56, + "end": 41050.46, + "probability": 0.8867 + }, + { + "start": 41050.58, + "end": 41052.14, + "probability": 0.9982 + }, + { + "start": 41053.68, + "end": 41054.64, + "probability": 0.6304 + }, + { + "start": 41054.78, + "end": 41055.4, + "probability": 0.3487 + }, + { + "start": 41055.5, + "end": 41060.74, + "probability": 0.9837 + }, + { + "start": 41061.74, + "end": 41065.0, + "probability": 0.7292 + }, + { + "start": 41066.32, + "end": 41070.42, + "probability": 0.6436 + }, + { + "start": 41071.2, + "end": 41073.58, + "probability": 0.9065 + }, + { + "start": 41074.5, + "end": 41077.4, + "probability": 0.863 + }, + { + "start": 41078.4, + "end": 41080.94, + "probability": 0.7758 + }, + { + "start": 41082.9, + "end": 41085.12, + "probability": 0.9552 + }, + { + "start": 41087.76, + "end": 41091.76, + "probability": 0.961 + }, + { + "start": 41092.64, + "end": 41094.98, + "probability": 0.7252 + }, + { + "start": 41095.04, + "end": 41098.86, + "probability": 0.9915 + }, + { + "start": 41100.04, + "end": 41106.58, + "probability": 0.9224 + }, + { + "start": 41107.1, + "end": 41114.0, + "probability": 0.8407 + }, + { + "start": 41114.1, + "end": 41122.36, + "probability": 0.9897 + }, + { + "start": 41122.5, + "end": 41131.32, + "probability": 0.9961 + }, + { + "start": 41133.22, + "end": 41134.98, + "probability": 0.4863 + }, + { + "start": 41135.16, + "end": 41140.9, + "probability": 0.9955 + }, + { + "start": 41141.92, + "end": 41149.08, + "probability": 0.9369 + }, + { + "start": 41149.68, + "end": 41150.7, + "probability": 0.9528 + }, + { + "start": 41151.4, + "end": 41154.24, + "probability": 0.9592 + }, + { + "start": 41155.22, + "end": 41158.26, + "probability": 0.9928 + }, + { + "start": 41158.26, + "end": 41161.76, + "probability": 0.9983 + }, + { + "start": 41162.5, + "end": 41167.72, + "probability": 0.9954 + }, + { + "start": 41168.92, + "end": 41172.86, + "probability": 0.7389 + }, + { + "start": 41174.34, + "end": 41178.04, + "probability": 0.8707 + }, + { + "start": 41179.3, + "end": 41179.72, + "probability": 0.5955 + }, + { + "start": 41180.32, + "end": 41183.22, + "probability": 0.95 + }, + { + "start": 41183.42, + "end": 41186.36, + "probability": 0.6563 + }, + { + "start": 41187.0, + "end": 41191.16, + "probability": 0.9888 + }, + { + "start": 41191.9, + "end": 41198.56, + "probability": 0.8543 + }, + { + "start": 41199.26, + "end": 41202.82, + "probability": 0.9637 + }, + { + "start": 41203.54, + "end": 41208.3, + "probability": 0.9622 + }, + { + "start": 41208.82, + "end": 41211.44, + "probability": 0.5989 + }, + { + "start": 41212.24, + "end": 41216.4, + "probability": 0.9921 + }, + { + "start": 41217.14, + "end": 41221.96, + "probability": 0.9274 + }, + { + "start": 41222.68, + "end": 41229.14, + "probability": 0.9888 + }, + { + "start": 41229.14, + "end": 41229.14, + "probability": 0.0132 + }, + { + "start": 41229.78, + "end": 41237.64, + "probability": 0.9689 + }, + { + "start": 41238.58, + "end": 41241.58, + "probability": 0.5343 + }, + { + "start": 41242.56, + "end": 41244.82, + "probability": 0.867 + }, + { + "start": 41246.24, + "end": 41249.56, + "probability": 0.9924 + }, + { + "start": 41250.6, + "end": 41252.84, + "probability": 0.8782 + }, + { + "start": 41253.42, + "end": 41255.22, + "probability": 0.8394 + }, + { + "start": 41256.18, + "end": 41261.22, + "probability": 0.999 + }, + { + "start": 41262.08, + "end": 41265.28, + "probability": 0.9769 + }, + { + "start": 41266.32, + "end": 41274.18, + "probability": 0.9971 + }, + { + "start": 41274.76, + "end": 41278.42, + "probability": 0.9924 + }, + { + "start": 41278.54, + "end": 41279.52, + "probability": 0.8459 + }, + { + "start": 41279.6, + "end": 41281.06, + "probability": 0.6434 + }, + { + "start": 41281.76, + "end": 41283.36, + "probability": 0.4849 + }, + { + "start": 41283.8, + "end": 41289.32, + "probability": 0.9854 + }, + { + "start": 41289.7, + "end": 41294.08, + "probability": 0.9789 + }, + { + "start": 41294.2, + "end": 41294.74, + "probability": 0.801 + }, + { + "start": 41294.98, + "end": 41295.76, + "probability": 0.7019 + }, + { + "start": 41296.14, + "end": 41297.58, + "probability": 0.9311 + }, + { + "start": 41298.28, + "end": 41300.2, + "probability": 0.9396 + }, + { + "start": 41300.72, + "end": 41302.98, + "probability": 0.3019 + }, + { + "start": 41311.86, + "end": 41313.26, + "probability": 0.6525 + }, + { + "start": 41314.8, + "end": 41315.62, + "probability": 0.8659 + }, + { + "start": 41315.8, + "end": 41316.52, + "probability": 0.7045 + }, + { + "start": 41316.6, + "end": 41316.9, + "probability": 0.8717 + }, + { + "start": 41317.06, + "end": 41323.5, + "probability": 0.9609 + }, + { + "start": 41323.62, + "end": 41326.14, + "probability": 0.9458 + }, + { + "start": 41327.14, + "end": 41329.34, + "probability": 0.9746 + }, + { + "start": 41329.98, + "end": 41331.16, + "probability": 0.7512 + }, + { + "start": 41331.92, + "end": 41336.24, + "probability": 0.9792 + }, + { + "start": 41336.9, + "end": 41338.38, + "probability": 0.8296 + }, + { + "start": 41338.73, + "end": 41340.62, + "probability": 0.9937 + }, + { + "start": 41341.38, + "end": 41343.52, + "probability": 0.6643 + }, + { + "start": 41344.2, + "end": 41345.66, + "probability": 0.9032 + }, + { + "start": 41345.8, + "end": 41346.64, + "probability": 0.9426 + }, + { + "start": 41347.14, + "end": 41354.9, + "probability": 0.9954 + }, + { + "start": 41355.0, + "end": 41358.18, + "probability": 0.9961 + }, + { + "start": 41358.82, + "end": 41363.64, + "probability": 0.9922 + }, + { + "start": 41364.62, + "end": 41366.75, + "probability": 0.9257 + }, + { + "start": 41367.48, + "end": 41370.32, + "probability": 0.9848 + }, + { + "start": 41371.46, + "end": 41375.34, + "probability": 0.9932 + }, + { + "start": 41375.94, + "end": 41380.96, + "probability": 0.9455 + }, + { + "start": 41380.96, + "end": 41385.64, + "probability": 0.9884 + }, + { + "start": 41386.24, + "end": 41387.56, + "probability": 0.8838 + }, + { + "start": 41388.46, + "end": 41390.76, + "probability": 0.9958 + }, + { + "start": 41391.2, + "end": 41391.58, + "probability": 0.7739 + }, + { + "start": 41391.58, + "end": 41392.52, + "probability": 0.992 + }, + { + "start": 41392.7, + "end": 41393.38, + "probability": 0.7768 + }, + { + "start": 41393.88, + "end": 41395.12, + "probability": 0.9953 + }, + { + "start": 41395.46, + "end": 41397.02, + "probability": 0.8669 + }, + { + "start": 41397.52, + "end": 41398.44, + "probability": 0.9873 + }, + { + "start": 41400.76, + "end": 41403.16, + "probability": 0.402 + }, + { + "start": 41403.16, + "end": 41405.74, + "probability": 0.9688 + }, + { + "start": 41406.58, + "end": 41409.66, + "probability": 0.7859 + }, + { + "start": 41411.16, + "end": 41414.0, + "probability": 0.8873 + }, + { + "start": 41415.54, + "end": 41419.54, + "probability": 0.9391 + }, + { + "start": 41419.54, + "end": 41422.3, + "probability": 0.9312 + }, + { + "start": 41423.22, + "end": 41425.74, + "probability": 0.6919 + }, + { + "start": 41426.38, + "end": 41428.42, + "probability": 0.8027 + }, + { + "start": 41429.14, + "end": 41433.2, + "probability": 0.9922 + }, + { + "start": 41434.26, + "end": 41438.28, + "probability": 0.9839 + }, + { + "start": 41438.7, + "end": 41440.32, + "probability": 0.9871 + }, + { + "start": 41440.88, + "end": 41442.0, + "probability": 0.9831 + }, + { + "start": 41442.44, + "end": 41443.08, + "probability": 0.7199 + }, + { + "start": 41443.56, + "end": 41444.34, + "probability": 0.6636 + }, + { + "start": 41444.68, + "end": 41447.93, + "probability": 0.9701 + }, + { + "start": 41453.18, + "end": 41455.24, + "probability": 0.7602 + }, + { + "start": 41458.12, + "end": 41461.16, + "probability": 0.9198 + }, + { + "start": 41463.98, + "end": 41467.54, + "probability": 0.7341 + }, + { + "start": 41467.54, + "end": 41471.08, + "probability": 0.9958 + }, + { + "start": 41471.14, + "end": 41475.92, + "probability": 0.9813 + }, + { + "start": 41477.24, + "end": 41480.84, + "probability": 0.884 + }, + { + "start": 41483.13, + "end": 41485.54, + "probability": 0.9585 + }, + { + "start": 41486.4, + "end": 41490.6, + "probability": 0.9914 + }, + { + "start": 41492.56, + "end": 41493.16, + "probability": 0.9933 + }, + { + "start": 41495.53, + "end": 41501.79, + "probability": 0.9955 + }, + { + "start": 41503.09, + "end": 41505.11, + "probability": 0.9921 + }, + { + "start": 41505.27, + "end": 41507.19, + "probability": 0.9987 + }, + { + "start": 41508.08, + "end": 41508.99, + "probability": 0.9912 + }, + { + "start": 41510.01, + "end": 41511.27, + "probability": 0.9499 + }, + { + "start": 41511.43, + "end": 41514.43, + "probability": 0.9915 + }, + { + "start": 41514.63, + "end": 41516.55, + "probability": 0.9978 + }, + { + "start": 41517.51, + "end": 41522.29, + "probability": 0.9682 + }, + { + "start": 41522.39, + "end": 41523.93, + "probability": 0.877 + }, + { + "start": 41524.37, + "end": 41532.93, + "probability": 0.8711 + }, + { + "start": 41532.93, + "end": 41535.89, + "probability": 0.8551 + }, + { + "start": 41537.41, + "end": 41538.37, + "probability": 0.9965 + }, + { + "start": 41543.83, + "end": 41552.93, + "probability": 0.9982 + }, + { + "start": 41554.31, + "end": 41558.28, + "probability": 0.9893 + }, + { + "start": 41558.61, + "end": 41561.85, + "probability": 0.9993 + }, + { + "start": 41562.65, + "end": 41564.19, + "probability": 0.9679 + }, + { + "start": 41564.41, + "end": 41565.47, + "probability": 0.8833 + }, + { + "start": 41567.03, + "end": 41571.71, + "probability": 0.9786 + }, + { + "start": 41571.83, + "end": 41577.63, + "probability": 0.9893 + }, + { + "start": 41577.85, + "end": 41579.11, + "probability": 0.8258 + }, + { + "start": 41580.83, + "end": 41582.69, + "probability": 0.9635 + }, + { + "start": 41584.21, + "end": 41590.05, + "probability": 0.9927 + }, + { + "start": 41593.67, + "end": 41598.2, + "probability": 0.997 + }, + { + "start": 41599.23, + "end": 41601.59, + "probability": 0.9526 + }, + { + "start": 41603.15, + "end": 41610.61, + "probability": 0.9972 + }, + { + "start": 41612.07, + "end": 41615.71, + "probability": 0.9982 + }, + { + "start": 41617.61, + "end": 41619.45, + "probability": 0.7574 + }, + { + "start": 41620.51, + "end": 41623.61, + "probability": 0.7144 + }, + { + "start": 41624.13, + "end": 41626.91, + "probability": 0.9946 + }, + { + "start": 41627.01, + "end": 41628.75, + "probability": 0.8148 + }, + { + "start": 41629.53, + "end": 41633.63, + "probability": 0.9651 + }, + { + "start": 41633.75, + "end": 41635.79, + "probability": 0.9947 + }, + { + "start": 41637.37, + "end": 41640.39, + "probability": 0.9992 + }, + { + "start": 41641.57, + "end": 41642.79, + "probability": 0.999 + }, + { + "start": 41644.01, + "end": 41645.61, + "probability": 0.8865 + }, + { + "start": 41647.01, + "end": 41650.99, + "probability": 0.9891 + }, + { + "start": 41651.45, + "end": 41654.93, + "probability": 0.9162 + }, + { + "start": 41656.99, + "end": 41661.73, + "probability": 0.9967 + }, + { + "start": 41661.87, + "end": 41665.33, + "probability": 0.9971 + }, + { + "start": 41666.07, + "end": 41667.13, + "probability": 0.9607 + }, + { + "start": 41669.77, + "end": 41674.37, + "probability": 0.9983 + }, + { + "start": 41674.45, + "end": 41679.03, + "probability": 0.9609 + }, + { + "start": 41681.01, + "end": 41684.87, + "probability": 0.9482 + }, + { + "start": 41686.37, + "end": 41695.13, + "probability": 0.9949 + }, + { + "start": 41698.57, + "end": 41703.19, + "probability": 0.9673 + }, + { + "start": 41704.49, + "end": 41708.11, + "probability": 0.9982 + }, + { + "start": 41710.01, + "end": 41713.79, + "probability": 0.996 + }, + { + "start": 41714.01, + "end": 41716.25, + "probability": 0.875 + }, + { + "start": 41718.03, + "end": 41718.51, + "probability": 0.9839 + }, + { + "start": 41718.59, + "end": 41720.09, + "probability": 0.9949 + }, + { + "start": 41720.25, + "end": 41723.43, + "probability": 0.9935 + }, + { + "start": 41724.35, + "end": 41728.39, + "probability": 0.9282 + }, + { + "start": 41729.63, + "end": 41733.57, + "probability": 0.9877 + }, + { + "start": 41733.97, + "end": 41736.87, + "probability": 0.9967 + }, + { + "start": 41738.01, + "end": 41740.53, + "probability": 0.9512 + }, + { + "start": 41741.87, + "end": 41744.37, + "probability": 0.9458 + }, + { + "start": 41744.91, + "end": 41746.15, + "probability": 0.8662 + }, + { + "start": 41747.77, + "end": 41751.28, + "probability": 0.9972 + }, + { + "start": 41753.55, + "end": 41755.27, + "probability": 0.9995 + }, + { + "start": 41756.39, + "end": 41758.35, + "probability": 0.9831 + }, + { + "start": 41758.85, + "end": 41760.83, + "probability": 0.9858 + }, + { + "start": 41761.03, + "end": 41762.89, + "probability": 0.712 + }, + { + "start": 41763.91, + "end": 41766.29, + "probability": 0.998 + }, + { + "start": 41766.51, + "end": 41766.83, + "probability": 0.7328 + }, + { + "start": 41767.49, + "end": 41769.95, + "probability": 0.774 + }, + { + "start": 41771.09, + "end": 41775.29, + "probability": 0.9601 + }, + { + "start": 41775.33, + "end": 41776.51, + "probability": 0.9746 + }, + { + "start": 41777.65, + "end": 41784.53, + "probability": 0.9936 + }, + { + "start": 41784.71, + "end": 41786.11, + "probability": 0.7747 + }, + { + "start": 41786.15, + "end": 41786.47, + "probability": 0.7378 + }, + { + "start": 41787.37, + "end": 41789.83, + "probability": 0.7538 + }, + { + "start": 41792.07, + "end": 41793.47, + "probability": 0.9745 + }, + { + "start": 41793.99, + "end": 41795.37, + "probability": 0.9635 + }, + { + "start": 41796.09, + "end": 41797.07, + "probability": 0.7937 + }, + { + "start": 41798.87, + "end": 41801.29, + "probability": 0.7969 + }, + { + "start": 41801.83, + "end": 41802.67, + "probability": 0.7727 + }, + { + "start": 41802.73, + "end": 41803.65, + "probability": 0.6497 + }, + { + "start": 41804.61, + "end": 41806.35, + "probability": 0.7007 + }, + { + "start": 41806.77, + "end": 41808.17, + "probability": 0.6214 + }, + { + "start": 41808.39, + "end": 41810.79, + "probability": 0.4559 + }, + { + "start": 41810.89, + "end": 41817.45, + "probability": 0.96 + }, + { + "start": 41817.45, + "end": 41823.71, + "probability": 0.9069 + }, + { + "start": 41824.85, + "end": 41829.17, + "probability": 0.9945 + }, + { + "start": 41830.27, + "end": 41836.59, + "probability": 0.9854 + }, + { + "start": 41837.43, + "end": 41840.73, + "probability": 0.999 + }, + { + "start": 41841.35, + "end": 41842.45, + "probability": 0.8095 + }, + { + "start": 41842.81, + "end": 41843.85, + "probability": 0.7811 + }, + { + "start": 41843.97, + "end": 41846.61, + "probability": 0.9878 + }, + { + "start": 41847.09, + "end": 41853.45, + "probability": 0.9977 + }, + { + "start": 41854.59, + "end": 41856.99, + "probability": 0.9564 + }, + { + "start": 41857.65, + "end": 41860.97, + "probability": 0.9955 + }, + { + "start": 41861.43, + "end": 41865.41, + "probability": 0.9061 + }, + { + "start": 41865.75, + "end": 41869.25, + "probability": 0.9988 + }, + { + "start": 41869.25, + "end": 41872.81, + "probability": 0.9979 + }, + { + "start": 41873.85, + "end": 41876.61, + "probability": 0.9899 + }, + { + "start": 41878.03, + "end": 41879.77, + "probability": 0.5008 + }, + { + "start": 41879.85, + "end": 41881.05, + "probability": 0.7328 + }, + { + "start": 41881.27, + "end": 41882.29, + "probability": 0.6754 + }, + { + "start": 41882.85, + "end": 41885.45, + "probability": 0.5603 + }, + { + "start": 41885.79, + "end": 41888.17, + "probability": 0.756 + }, + { + "start": 41889.0, + "end": 41891.53, + "probability": 0.9572 + }, + { + "start": 41892.03, + "end": 41893.53, + "probability": 0.9619 + }, + { + "start": 41893.55, + "end": 41894.27, + "probability": 0.9341 + }, + { + "start": 41896.87, + "end": 41899.23, + "probability": 0.9946 + }, + { + "start": 41900.63, + "end": 41903.17, + "probability": 0.7731 + }, + { + "start": 41904.05, + "end": 41906.65, + "probability": 0.9989 + }, + { + "start": 41907.59, + "end": 41909.27, + "probability": 0.9448 + }, + { + "start": 41909.73, + "end": 41911.89, + "probability": 0.9825 + }, + { + "start": 41912.57, + "end": 41914.51, + "probability": 0.9915 + }, + { + "start": 41914.93, + "end": 41915.63, + "probability": 0.7841 + }, + { + "start": 41915.75, + "end": 41917.59, + "probability": 0.9046 + }, + { + "start": 41918.69, + "end": 41922.95, + "probability": 0.9855 + }, + { + "start": 41923.37, + "end": 41927.12, + "probability": 0.9917 + }, + { + "start": 41928.27, + "end": 41932.39, + "probability": 0.9807 + }, + { + "start": 41932.55, + "end": 41933.47, + "probability": 0.7437 + }, + { + "start": 41933.87, + "end": 41935.21, + "probability": 0.9006 + }, + { + "start": 41936.09, + "end": 41938.07, + "probability": 0.6335 + }, + { + "start": 41939.77, + "end": 41941.57, + "probability": 0.9839 + }, + { + "start": 41941.69, + "end": 41944.23, + "probability": 0.993 + }, + { + "start": 41944.69, + "end": 41946.29, + "probability": 0.915 + }, + { + "start": 41946.81, + "end": 41949.55, + "probability": 0.7629 + }, + { + "start": 41950.13, + "end": 41953.09, + "probability": 0.9871 + }, + { + "start": 41953.53, + "end": 41956.36, + "probability": 0.5712 + }, + { + "start": 41957.11, + "end": 41960.13, + "probability": 0.992 + }, + { + "start": 41960.63, + "end": 41962.09, + "probability": 0.9941 + }, + { + "start": 41963.05, + "end": 41968.43, + "probability": 0.6772 + }, + { + "start": 41969.47, + "end": 41971.25, + "probability": 0.9266 + }, + { + "start": 41971.27, + "end": 41971.33, + "probability": 0.2891 + }, + { + "start": 41971.45, + "end": 41972.51, + "probability": 0.6987 + }, + { + "start": 41972.63, + "end": 41975.46, + "probability": 0.8645 + }, + { + "start": 41976.43, + "end": 41978.35, + "probability": 0.5655 + }, + { + "start": 41978.83, + "end": 41979.55, + "probability": 0.8008 + }, + { + "start": 41979.91, + "end": 41984.65, + "probability": 0.966 + }, + { + "start": 41985.59, + "end": 41988.15, + "probability": 0.9875 + }, + { + "start": 41989.21, + "end": 41992.77, + "probability": 0.8385 + }, + { + "start": 41993.49, + "end": 41993.83, + "probability": 0.7587 + }, + { + "start": 41993.99, + "end": 41994.47, + "probability": 0.6637 + }, + { + "start": 41994.53, + "end": 41995.75, + "probability": 0.9445 + }, + { + "start": 41995.83, + "end": 41997.09, + "probability": 0.9357 + }, + { + "start": 41997.49, + "end": 41999.51, + "probability": 0.9136 + }, + { + "start": 42000.59, + "end": 42002.15, + "probability": 0.6521 + }, + { + "start": 42002.23, + "end": 42002.43, + "probability": 0.8214 + }, + { + "start": 42002.55, + "end": 42003.07, + "probability": 0.9142 + }, + { + "start": 42003.13, + "end": 42005.17, + "probability": 0.9896 + }, + { + "start": 42005.99, + "end": 42010.73, + "probability": 0.991 + }, + { + "start": 42011.69, + "end": 42014.75, + "probability": 0.9714 + }, + { + "start": 42015.31, + "end": 42016.51, + "probability": 0.8581 + }, + { + "start": 42016.73, + "end": 42021.11, + "probability": 0.9863 + }, + { + "start": 42021.25, + "end": 42023.47, + "probability": 0.9414 + }, + { + "start": 42023.77, + "end": 42025.59, + "probability": 0.9696 + }, + { + "start": 42026.07, + "end": 42027.25, + "probability": 0.8059 + }, + { + "start": 42027.35, + "end": 42031.99, + "probability": 0.5895 + }, + { + "start": 42032.17, + "end": 42032.39, + "probability": 0.1971 + }, + { + "start": 42033.33, + "end": 42037.65, + "probability": 0.9896 + }, + { + "start": 42037.95, + "end": 42039.17, + "probability": 0.8804 + }, + { + "start": 42039.77, + "end": 42042.47, + "probability": 0.9695 + }, + { + "start": 42042.97, + "end": 42044.57, + "probability": 0.8555 + }, + { + "start": 42044.71, + "end": 42045.51, + "probability": 0.5077 + }, + { + "start": 42045.67, + "end": 42045.89, + "probability": 0.198 + }, + { + "start": 42046.29, + "end": 42047.79, + "probability": 0.9675 + }, + { + "start": 42047.89, + "end": 42048.81, + "probability": 0.959 + }, + { + "start": 42048.83, + "end": 42050.03, + "probability": 0.9879 + }, + { + "start": 42050.21, + "end": 42051.2, + "probability": 0.9951 + }, + { + "start": 42051.43, + "end": 42055.09, + "probability": 0.9273 + }, + { + "start": 42055.29, + "end": 42056.63, + "probability": 0.9612 + }, + { + "start": 42057.27, + "end": 42059.07, + "probability": 0.9855 + }, + { + "start": 42059.59, + "end": 42062.61, + "probability": 0.9944 + }, + { + "start": 42063.15, + "end": 42066.05, + "probability": 0.9696 + }, + { + "start": 42066.71, + "end": 42067.61, + "probability": 0.7627 + }, + { + "start": 42067.69, + "end": 42069.01, + "probability": 0.9911 + }, + { + "start": 42069.21, + "end": 42072.47, + "probability": 0.9423 + }, + { + "start": 42073.23, + "end": 42073.57, + "probability": 0.2679 + }, + { + "start": 42073.57, + "end": 42074.81, + "probability": 0.8384 + }, + { + "start": 42074.85, + "end": 42076.65, + "probability": 0.9413 + }, + { + "start": 42077.09, + "end": 42078.67, + "probability": 0.9849 + }, + { + "start": 42079.41, + "end": 42080.17, + "probability": 0.6737 + }, + { + "start": 42080.25, + "end": 42082.83, + "probability": 0.9883 + }, + { + "start": 42083.27, + "end": 42084.91, + "probability": 0.9094 + }, + { + "start": 42085.37, + "end": 42086.6, + "probability": 0.5799 + }, + { + "start": 42086.91, + "end": 42091.33, + "probability": 0.979 + }, + { + "start": 42092.49, + "end": 42095.35, + "probability": 0.9657 + }, + { + "start": 42095.45, + "end": 42096.63, + "probability": 0.9218 + }, + { + "start": 42097.19, + "end": 42100.87, + "probability": 0.8193 + }, + { + "start": 42101.77, + "end": 42106.81, + "probability": 0.9786 + }, + { + "start": 42107.77, + "end": 42108.77, + "probability": 0.7526 + }, + { + "start": 42109.23, + "end": 42110.81, + "probability": 0.9695 + }, + { + "start": 42111.03, + "end": 42113.59, + "probability": 0.844 + }, + { + "start": 42113.65, + "end": 42114.31, + "probability": 0.9304 + }, + { + "start": 42115.31, + "end": 42116.27, + "probability": 0.8297 + }, + { + "start": 42117.05, + "end": 42118.95, + "probability": 0.9507 + }, + { + "start": 42119.71, + "end": 42122.17, + "probability": 0.9832 + }, + { + "start": 42122.77, + "end": 42123.95, + "probability": 0.7868 + }, + { + "start": 42125.37, + "end": 42126.37, + "probability": 0.8462 + }, + { + "start": 42126.55, + "end": 42130.33, + "probability": 0.4084 + }, + { + "start": 42130.83, + "end": 42133.69, + "probability": 0.9729 + }, + { + "start": 42134.41, + "end": 42137.63, + "probability": 0.8663 + }, + { + "start": 42138.13, + "end": 42141.89, + "probability": 0.9786 + }, + { + "start": 42142.65, + "end": 42143.89, + "probability": 0.6685 + }, + { + "start": 42144.33, + "end": 42146.09, + "probability": 0.9771 + }, + { + "start": 42146.63, + "end": 42147.01, + "probability": 0.8289 + }, + { + "start": 42147.43, + "end": 42148.31, + "probability": 0.9242 + }, + { + "start": 42148.59, + "end": 42150.25, + "probability": 0.9194 + }, + { + "start": 42151.53, + "end": 42155.35, + "probability": 0.7822 + }, + { + "start": 42155.75, + "end": 42156.39, + "probability": 0.4564 + }, + { + "start": 42157.17, + "end": 42159.7, + "probability": 0.9971 + }, + { + "start": 42160.59, + "end": 42163.55, + "probability": 0.7371 + }, + { + "start": 42164.13, + "end": 42165.65, + "probability": 0.231 + }, + { + "start": 42166.29, + "end": 42166.99, + "probability": 0.6536 + }, + { + "start": 42167.21, + "end": 42168.15, + "probability": 0.4904 + }, + { + "start": 42168.45, + "end": 42170.43, + "probability": 0.6596 + }, + { + "start": 42170.63, + "end": 42172.83, + "probability": 0.5684 + }, + { + "start": 42173.79, + "end": 42176.93, + "probability": 0.6951 + }, + { + "start": 42177.97, + "end": 42179.01, + "probability": 0.8864 + }, + { + "start": 42179.65, + "end": 42180.97, + "probability": 0.8179 + }, + { + "start": 42182.34, + "end": 42183.6, + "probability": 0.9308 + }, + { + "start": 42183.79, + "end": 42185.79, + "probability": 0.3483 + }, + { + "start": 42185.91, + "end": 42187.01, + "probability": 0.9907 + }, + { + "start": 42187.43, + "end": 42189.9, + "probability": 0.9871 + }, + { + "start": 42190.33, + "end": 42191.45, + "probability": 0.8042 + }, + { + "start": 42192.13, + "end": 42194.59, + "probability": 0.7839 + }, + { + "start": 42195.15, + "end": 42196.07, + "probability": 0.9116 + }, + { + "start": 42196.77, + "end": 42202.09, + "probability": 0.9856 + }, + { + "start": 42203.19, + "end": 42206.65, + "probability": 0.9977 + }, + { + "start": 42207.41, + "end": 42211.33, + "probability": 0.8274 + }, + { + "start": 42212.03, + "end": 42212.99, + "probability": 0.7015 + }, + { + "start": 42213.45, + "end": 42215.63, + "probability": 0.8891 + }, + { + "start": 42216.33, + "end": 42216.95, + "probability": 0.8468 + }, + { + "start": 42217.71, + "end": 42218.57, + "probability": 0.9361 + }, + { + "start": 42219.15, + "end": 42221.67, + "probability": 0.9062 + }, + { + "start": 42222.95, + "end": 42224.33, + "probability": 0.9479 + }, + { + "start": 42225.31, + "end": 42227.33, + "probability": 0.9842 + }, + { + "start": 42227.77, + "end": 42231.77, + "probability": 0.9864 + }, + { + "start": 42233.07, + "end": 42238.03, + "probability": 0.9012 + }, + { + "start": 42238.03, + "end": 42243.03, + "probability": 0.9979 + }, + { + "start": 42244.67, + "end": 42247.87, + "probability": 0.9663 + }, + { + "start": 42247.87, + "end": 42251.95, + "probability": 0.9946 + }, + { + "start": 42253.31, + "end": 42256.29, + "probability": 0.889 + }, + { + "start": 42257.31, + "end": 42258.59, + "probability": 0.8506 + }, + { + "start": 42259.15, + "end": 42261.03, + "probability": 0.9883 + }, + { + "start": 42261.97, + "end": 42265.71, + "probability": 0.9928 + }, + { + "start": 42266.35, + "end": 42270.21, + "probability": 0.9956 + }, + { + "start": 42271.51, + "end": 42275.09, + "probability": 0.9983 + }, + { + "start": 42275.61, + "end": 42278.15, + "probability": 0.9849 + }, + { + "start": 42279.37, + "end": 42280.41, + "probability": 0.9961 + }, + { + "start": 42281.61, + "end": 42286.33, + "probability": 0.5699 + }, + { + "start": 42286.71, + "end": 42292.57, + "probability": 0.9817 + }, + { + "start": 42293.25, + "end": 42295.49, + "probability": 0.9956 + }, + { + "start": 42295.89, + "end": 42299.25, + "probability": 0.9897 + }, + { + "start": 42299.81, + "end": 42304.13, + "probability": 0.749 + }, + { + "start": 42304.33, + "end": 42306.35, + "probability": 0.906 + }, + { + "start": 42306.41, + "end": 42307.71, + "probability": 0.7865 + }, + { + "start": 42307.99, + "end": 42309.85, + "probability": 0.7662 + }, + { + "start": 42310.47, + "end": 42312.63, + "probability": 0.7129 + }, + { + "start": 42313.49, + "end": 42315.57, + "probability": 0.9958 + }, + { + "start": 42315.57, + "end": 42318.05, + "probability": 0.9932 + }, + { + "start": 42318.55, + "end": 42318.93, + "probability": 0.7382 + }, + { + "start": 42319.95, + "end": 42320.37, + "probability": 0.1767 + }, + { + "start": 42320.71, + "end": 42321.57, + "probability": 0.666 + }, + { + "start": 42321.63, + "end": 42322.57, + "probability": 0.884 + }, + { + "start": 42323.11, + "end": 42323.87, + "probability": 0.8064 + }, + { + "start": 42323.89, + "end": 42324.87, + "probability": 0.9407 + }, + { + "start": 42325.23, + "end": 42326.29, + "probability": 0.9724 + }, + { + "start": 42326.39, + "end": 42328.21, + "probability": 0.9276 + }, + { + "start": 42328.57, + "end": 42332.07, + "probability": 0.8486 + }, + { + "start": 42332.73, + "end": 42334.39, + "probability": 0.894 + }, + { + "start": 42335.87, + "end": 42337.57, + "probability": 0.8735 + }, + { + "start": 42338.25, + "end": 42339.57, + "probability": 0.989 + }, + { + "start": 42339.69, + "end": 42343.49, + "probability": 0.9538 + }, + { + "start": 42343.69, + "end": 42344.03, + "probability": 0.5811 + }, + { + "start": 42344.21, + "end": 42345.19, + "probability": 0.6795 + }, + { + "start": 42346.33, + "end": 42351.85, + "probability": 0.9878 + }, + { + "start": 42352.83, + "end": 42354.45, + "probability": 0.7928 + }, + { + "start": 42355.23, + "end": 42358.81, + "probability": 0.9438 + }, + { + "start": 42359.33, + "end": 42360.05, + "probability": 0.6182 + }, + { + "start": 42361.25, + "end": 42364.61, + "probability": 0.9818 + }, + { + "start": 42364.61, + "end": 42368.43, + "probability": 0.9084 + }, + { + "start": 42368.77, + "end": 42370.51, + "probability": 0.3581 + }, + { + "start": 42370.57, + "end": 42371.03, + "probability": 0.5313 + }, + { + "start": 42371.35, + "end": 42372.01, + "probability": 0.5949 + }, + { + "start": 42373.01, + "end": 42374.71, + "probability": 0.8979 + }, + { + "start": 42376.27, + "end": 42379.27, + "probability": 0.9946 + }, + { + "start": 42379.63, + "end": 42381.57, + "probability": 0.9379 + }, + { + "start": 42381.93, + "end": 42383.05, + "probability": 0.998 + }, + { + "start": 42383.33, + "end": 42386.81, + "probability": 0.974 + }, + { + "start": 42386.91, + "end": 42387.25, + "probability": 0.7757 + }, + { + "start": 42387.41, + "end": 42387.91, + "probability": 0.4919 + }, + { + "start": 42388.59, + "end": 42393.59, + "probability": 0.9946 + }, + { + "start": 42394.15, + "end": 42398.81, + "probability": 0.9817 + }, + { + "start": 42399.49, + "end": 42400.69, + "probability": 0.9556 + }, + { + "start": 42400.79, + "end": 42401.43, + "probability": 0.8148 + }, + { + "start": 42401.59, + "end": 42405.73, + "probability": 0.9843 + }, + { + "start": 42406.73, + "end": 42408.01, + "probability": 0.7732 + }, + { + "start": 42408.43, + "end": 42411.49, + "probability": 0.9768 + }, + { + "start": 42411.85, + "end": 42414.77, + "probability": 0.8552 + }, + { + "start": 42415.11, + "end": 42415.49, + "probability": 0.724 + }, + { + "start": 42416.31, + "end": 42423.17, + "probability": 0.7577 + }, + { + "start": 42423.69, + "end": 42430.07, + "probability": 0.8335 + }, + { + "start": 42430.77, + "end": 42433.17, + "probability": 0.4046 + }, + { + "start": 42433.95, + "end": 42437.73, + "probability": 0.6975 + }, + { + "start": 42437.73, + "end": 42441.43, + "probability": 0.9661 + }, + { + "start": 42441.89, + "end": 42444.14, + "probability": 0.9085 + }, + { + "start": 42446.19, + "end": 42448.27, + "probability": 0.5868 + }, + { + "start": 42449.25, + "end": 42449.77, + "probability": 0.769 + }, + { + "start": 42450.01, + "end": 42451.87, + "probability": 0.7314 + }, + { + "start": 42452.05, + "end": 42452.43, + "probability": 0.7039 + }, + { + "start": 42452.77, + "end": 42453.05, + "probability": 0.5834 + }, + { + "start": 42454.21, + "end": 42455.99, + "probability": 0.8721 + }, + { + "start": 42456.67, + "end": 42457.47, + "probability": 0.6685 + }, + { + "start": 42457.59, + "end": 42458.21, + "probability": 0.9468 + }, + { + "start": 42458.25, + "end": 42459.65, + "probability": 0.8816 + }, + { + "start": 42459.73, + "end": 42460.09, + "probability": 0.5722 + }, + { + "start": 42460.51, + "end": 42464.23, + "probability": 0.8209 + }, + { + "start": 42464.29, + "end": 42466.25, + "probability": 0.9973 + }, + { + "start": 42466.31, + "end": 42467.7, + "probability": 0.8848 + }, + { + "start": 42468.28, + "end": 42468.48, + "probability": 0.7935 + }, + { + "start": 42468.56, + "end": 42470.88, + "probability": 0.9159 + }, + { + "start": 42471.16, + "end": 42471.76, + "probability": 0.5164 + }, + { + "start": 42471.84, + "end": 42473.16, + "probability": 0.9885 + }, + { + "start": 42473.94, + "end": 42478.76, + "probability": 0.9963 + }, + { + "start": 42479.38, + "end": 42480.16, + "probability": 0.9041 + }, + { + "start": 42481.24, + "end": 42482.1, + "probability": 0.883 + }, + { + "start": 42482.16, + "end": 42482.57, + "probability": 0.9849 + }, + { + "start": 42482.88, + "end": 42486.68, + "probability": 0.9326 + }, + { + "start": 42487.28, + "end": 42487.88, + "probability": 0.8527 + }, + { + "start": 42488.82, + "end": 42498.18, + "probability": 0.9939 + }, + { + "start": 42498.3, + "end": 42499.14, + "probability": 0.9529 + }, + { + "start": 42499.96, + "end": 42503.4, + "probability": 0.9124 + }, + { + "start": 42504.42, + "end": 42509.06, + "probability": 0.9939 + }, + { + "start": 42509.64, + "end": 42514.9, + "probability": 0.9633 + }, + { + "start": 42515.42, + "end": 42520.04, + "probability": 0.9822 + }, + { + "start": 42520.38, + "end": 42521.42, + "probability": 0.3801 + }, + { + "start": 42521.42, + "end": 42521.42, + "probability": 0.0141 + }, + { + "start": 42521.42, + "end": 42525.16, + "probability": 0.1796 + }, + { + "start": 42525.42, + "end": 42528.38, + "probability": 0.0735 + }, + { + "start": 42529.26, + "end": 42530.0, + "probability": 0.0352 + }, + { + "start": 42530.34, + "end": 42530.96, + "probability": 0.1177 + }, + { + "start": 42531.18, + "end": 42533.74, + "probability": 0.0588 + }, + { + "start": 42535.28, + "end": 42535.79, + "probability": 0.0411 + }, + { + "start": 42536.4, + "end": 42538.16, + "probability": 0.2849 + }, + { + "start": 42538.24, + "end": 42538.52, + "probability": 0.6923 + }, + { + "start": 42539.97, + "end": 42542.62, + "probability": 0.298 + }, + { + "start": 42542.78, + "end": 42543.48, + "probability": 0.0924 + }, + { + "start": 42543.52, + "end": 42544.42, + "probability": 0.0489 + }, + { + "start": 42547.16, + "end": 42547.48, + "probability": 0.0309 + }, + { + "start": 42550.94, + "end": 42554.54, + "probability": 0.0581 + }, + { + "start": 42556.96, + "end": 42557.64, + "probability": 0.2523 + }, + { + "start": 42558.83, + "end": 42562.2, + "probability": 0.2072 + }, + { + "start": 42565.16, + "end": 42566.24, + "probability": 0.0276 + }, + { + "start": 42568.68, + "end": 42569.32, + "probability": 0.0319 + }, + { + "start": 42569.32, + "end": 42570.0, + "probability": 0.1907 + }, + { + "start": 42570.0, + "end": 42570.6, + "probability": 0.0177 + }, + { + "start": 42570.6, + "end": 42571.44, + "probability": 0.2537 + }, + { + "start": 42572.0, + "end": 42572.1, + "probability": 0.2802 + }, + { + "start": 42572.16, + "end": 42572.54, + "probability": 0.078 + }, + { + "start": 42572.88, + "end": 42573.92, + "probability": 0.1428 + }, + { + "start": 42574.84, + "end": 42575.44, + "probability": 0.2795 + }, + { + "start": 42575.44, + "end": 42576.16, + "probability": 0.2563 + }, + { + "start": 42577.53, + "end": 42582.31, + "probability": 0.0138 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.0, + "end": 42590.0, + "probability": 0.0 + }, + { + "start": 42590.18, + "end": 42590.18, + "probability": 0.1562 + }, + { + "start": 42590.18, + "end": 42590.18, + "probability": 0.0926 + }, + { + "start": 42590.18, + "end": 42590.18, + "probability": 0.0288 + }, + { + "start": 42590.18, + "end": 42590.18, + "probability": 0.2059 + }, + { + "start": 42590.18, + "end": 42590.18, + "probability": 0.1488 + }, + { + "start": 42590.18, + "end": 42596.58, + "probability": 0.679 + }, + { + "start": 42596.98, + "end": 42598.28, + "probability": 0.7203 + }, + { + "start": 42599.32, + "end": 42600.28, + "probability": 0.2061 + }, + { + "start": 42600.48, + "end": 42603.14, + "probability": 0.8266 + }, + { + "start": 42603.14, + "end": 42608.14, + "probability": 0.9565 + }, + { + "start": 42609.46, + "end": 42611.02, + "probability": 0.746 + }, + { + "start": 42611.6, + "end": 42614.66, + "probability": 0.8756 + }, + { + "start": 42615.44, + "end": 42615.88, + "probability": 0.9512 + }, + { + "start": 42616.56, + "end": 42616.62, + "probability": 0.3621 + }, + { + "start": 42616.62, + "end": 42616.97, + "probability": 0.8652 + }, + { + "start": 42617.78, + "end": 42618.77, + "probability": 0.8588 + }, + { + "start": 42620.44, + "end": 42621.84, + "probability": 0.9697 + }, + { + "start": 42622.76, + "end": 42625.4, + "probability": 0.9648 + }, + { + "start": 42626.84, + "end": 42632.14, + "probability": 0.9795 + }, + { + "start": 42632.62, + "end": 42633.82, + "probability": 0.9108 + }, + { + "start": 42633.88, + "end": 42634.78, + "probability": 0.7408 + }, + { + "start": 42634.86, + "end": 42635.94, + "probability": 0.9979 + }, + { + "start": 42636.6, + "end": 42637.06, + "probability": 0.8298 + }, + { + "start": 42637.82, + "end": 42640.48, + "probability": 0.8262 + }, + { + "start": 42640.92, + "end": 42644.22, + "probability": 0.9844 + }, + { + "start": 42644.6, + "end": 42645.68, + "probability": 0.8839 + }, + { + "start": 42646.58, + "end": 42650.4, + "probability": 0.9066 + }, + { + "start": 42650.94, + "end": 42654.04, + "probability": 0.9778 + }, + { + "start": 42654.76, + "end": 42658.12, + "probability": 0.9285 + }, + { + "start": 42658.56, + "end": 42661.22, + "probability": 0.9658 + }, + { + "start": 42661.52, + "end": 42662.2, + "probability": 0.7038 + }, + { + "start": 42663.48, + "end": 42670.15, + "probability": 0.9741 + }, + { + "start": 42671.98, + "end": 42672.72, + "probability": 0.2484 + }, + { + "start": 42673.26, + "end": 42674.76, + "probability": 0.9747 + }, + { + "start": 42675.48, + "end": 42676.3, + "probability": 0.7015 + }, + { + "start": 42678.0, + "end": 42678.91, + "probability": 0.6489 + }, + { + "start": 42679.58, + "end": 42681.9, + "probability": 0.9733 + }, + { + "start": 42683.08, + "end": 42684.06, + "probability": 0.9229 + }, + { + "start": 42684.84, + "end": 42685.84, + "probability": 0.5256 + }, + { + "start": 42687.62, + "end": 42689.54, + "probability": 0.7411 + }, + { + "start": 42690.44, + "end": 42693.28, + "probability": 0.9907 + }, + { + "start": 42693.44, + "end": 42694.18, + "probability": 0.6375 + }, + { + "start": 42695.48, + "end": 42698.3, + "probability": 0.9982 + }, + { + "start": 42700.39, + "end": 42702.24, + "probability": 0.8103 + }, + { + "start": 42702.28, + "end": 42704.94, + "probability": 0.8774 + }, + { + "start": 42705.72, + "end": 42706.1, + "probability": 0.4938 + }, + { + "start": 42707.3, + "end": 42709.74, + "probability": 0.9966 + }, + { + "start": 42710.12, + "end": 42711.7, + "probability": 0.9316 + }, + { + "start": 42712.72, + "end": 42714.06, + "probability": 0.9395 + }, + { + "start": 42714.36, + "end": 42715.88, + "probability": 0.8825 + }, + { + "start": 42715.88, + "end": 42718.08, + "probability": 0.9788 + }, + { + "start": 42720.74, + "end": 42723.88, + "probability": 0.8753 + }, + { + "start": 42724.0, + "end": 42724.3, + "probability": 0.7742 + }, + { + "start": 42724.4, + "end": 42725.36, + "probability": 0.9949 + }, + { + "start": 42726.24, + "end": 42729.94, + "probability": 0.6663 + }, + { + "start": 42730.82, + "end": 42732.08, + "probability": 0.6914 + }, + { + "start": 42733.18, + "end": 42736.44, + "probability": 0.9703 + }, + { + "start": 42737.28, + "end": 42740.08, + "probability": 0.9697 + }, + { + "start": 42741.32, + "end": 42743.7, + "probability": 0.5627 + }, + { + "start": 42744.26, + "end": 42745.4, + "probability": 0.8501 + }, + { + "start": 42745.52, + "end": 42746.12, + "probability": 0.5677 + }, + { + "start": 42746.6, + "end": 42746.64, + "probability": 0.3641 + }, + { + "start": 42746.64, + "end": 42749.66, + "probability": 0.9697 + }, + { + "start": 42750.4, + "end": 42753.26, + "probability": 0.8931 + }, + { + "start": 42754.06, + "end": 42757.38, + "probability": 0.9557 + }, + { + "start": 42757.42, + "end": 42758.18, + "probability": 0.7387 + }, + { + "start": 42759.3, + "end": 42760.52, + "probability": 0.9897 + }, + { + "start": 42762.52, + "end": 42766.62, + "probability": 0.9653 + }, + { + "start": 42767.32, + "end": 42769.06, + "probability": 0.8544 + }, + { + "start": 42769.36, + "end": 42771.56, + "probability": 0.9722 + }, + { + "start": 42772.16, + "end": 42772.38, + "probability": 0.7369 + }, + { + "start": 42772.38, + "end": 42772.48, + "probability": 0.4059 + }, + { + "start": 42772.48, + "end": 42774.86, + "probability": 0.9185 + }, + { + "start": 42775.33, + "end": 42781.04, + "probability": 0.986 + }, + { + "start": 42781.04, + "end": 42784.18, + "probability": 0.9978 + }, + { + "start": 42785.62, + "end": 42787.22, + "probability": 0.8933 + }, + { + "start": 42787.38, + "end": 42788.88, + "probability": 0.8452 + }, + { + "start": 42788.96, + "end": 42791.14, + "probability": 0.8875 + }, + { + "start": 42791.3, + "end": 42791.76, + "probability": 0.3831 + }, + { + "start": 42793.14, + "end": 42796.2, + "probability": 0.9881 + }, + { + "start": 42796.32, + "end": 42797.17, + "probability": 0.9716 + }, + { + "start": 42797.98, + "end": 42798.52, + "probability": 0.3588 + }, + { + "start": 42799.12, + "end": 42801.12, + "probability": 0.9961 + }, + { + "start": 42801.54, + "end": 42803.16, + "probability": 0.9477 + }, + { + "start": 42803.5, + "end": 42803.76, + "probability": 0.4616 + }, + { + "start": 42803.86, + "end": 42805.28, + "probability": 0.9331 + }, + { + "start": 42806.98, + "end": 42810.62, + "probability": 0.9715 + }, + { + "start": 42810.74, + "end": 42811.6, + "probability": 0.9136 + }, + { + "start": 42811.96, + "end": 42813.12, + "probability": 0.6035 + }, + { + "start": 42813.68, + "end": 42814.48, + "probability": 0.8013 + }, + { + "start": 42815.76, + "end": 42818.88, + "probability": 0.9688 + }, + { + "start": 42819.48, + "end": 42820.14, + "probability": 0.2533 + }, + { + "start": 42820.95, + "end": 42822.58, + "probability": 0.9396 + }, + { + "start": 42823.52, + "end": 42829.16, + "probability": 0.9917 + }, + { + "start": 42829.72, + "end": 42832.88, + "probability": 0.9475 + }, + { + "start": 42833.62, + "end": 42837.6, + "probability": 0.9933 + }, + { + "start": 42837.66, + "end": 42838.01, + "probability": 0.8494 + }, + { + "start": 42839.08, + "end": 42843.22, + "probability": 0.9927 + }, + { + "start": 42844.06, + "end": 42845.68, + "probability": 0.8627 + }, + { + "start": 42846.12, + "end": 42847.16, + "probability": 0.9455 + }, + { + "start": 42847.82, + "end": 42848.88, + "probability": 0.5588 + }, + { + "start": 42850.18, + "end": 42851.48, + "probability": 0.6769 + }, + { + "start": 42851.68, + "end": 42855.0, + "probability": 0.8309 + }, + { + "start": 42856.26, + "end": 42859.78, + "probability": 0.9932 + }, + { + "start": 42860.68, + "end": 42863.22, + "probability": 0.9941 + }, + { + "start": 42864.38, + "end": 42868.78, + "probability": 0.9321 + }, + { + "start": 42868.9, + "end": 42872.22, + "probability": 0.9023 + }, + { + "start": 42872.68, + "end": 42872.96, + "probability": 0.3385 + }, + { + "start": 42873.84, + "end": 42875.16, + "probability": 0.8335 + }, + { + "start": 42875.2, + "end": 42875.88, + "probability": 0.9394 + }, + { + "start": 42876.06, + "end": 42877.3, + "probability": 0.8129 + }, + { + "start": 42877.6, + "end": 42880.32, + "probability": 0.9781 + }, + { + "start": 42880.72, + "end": 42881.64, + "probability": 0.9879 + }, + { + "start": 42881.68, + "end": 42882.96, + "probability": 0.9932 + }, + { + "start": 42883.08, + "end": 42884.06, + "probability": 0.9974 + }, + { + "start": 42884.14, + "end": 42886.1, + "probability": 0.9463 + }, + { + "start": 42886.56, + "end": 42887.72, + "probability": 0.7373 + }, + { + "start": 42888.52, + "end": 42890.24, + "probability": 0.9422 + }, + { + "start": 42891.06, + "end": 42894.16, + "probability": 0.9969 + }, + { + "start": 42894.16, + "end": 42899.66, + "probability": 0.9893 + }, + { + "start": 42900.18, + "end": 42901.96, + "probability": 0.9973 + }, + { + "start": 42902.44, + "end": 42904.2, + "probability": 0.9974 + }, + { + "start": 42905.36, + "end": 42908.28, + "probability": 0.9947 + }, + { + "start": 42908.9, + "end": 42910.54, + "probability": 0.8578 + }, + { + "start": 42910.62, + "end": 42911.28, + "probability": 0.963 + }, + { + "start": 42911.52, + "end": 42912.62, + "probability": 0.8993 + }, + { + "start": 42912.7, + "end": 42913.4, + "probability": 0.7909 + }, + { + "start": 42913.9, + "end": 42916.52, + "probability": 0.8846 + }, + { + "start": 42916.88, + "end": 42918.96, + "probability": 0.9899 + }, + { + "start": 42919.66, + "end": 42920.38, + "probability": 0.9937 + }, + { + "start": 42920.46, + "end": 42920.9, + "probability": 0.7336 + }, + { + "start": 42921.16, + "end": 42925.26, + "probability": 0.9308 + }, + { + "start": 42925.36, + "end": 42926.38, + "probability": 0.8861 + }, + { + "start": 42926.68, + "end": 42929.5, + "probability": 0.9143 + }, + { + "start": 42929.6, + "end": 42930.52, + "probability": 0.8807 + }, + { + "start": 42931.68, + "end": 42932.3, + "probability": 0.833 + }, + { + "start": 42932.64, + "end": 42933.54, + "probability": 0.7952 + }, + { + "start": 42933.9, + "end": 42935.72, + "probability": 0.9268 + }, + { + "start": 42935.96, + "end": 42936.6, + "probability": 0.7441 + }, + { + "start": 42937.16, + "end": 42937.84, + "probability": 0.9318 + }, + { + "start": 42938.7, + "end": 42940.62, + "probability": 0.9736 + }, + { + "start": 42941.4, + "end": 42944.24, + "probability": 0.9972 + }, + { + "start": 42944.92, + "end": 42947.02, + "probability": 0.5452 + }, + { + "start": 42947.18, + "end": 42950.42, + "probability": 0.8999 + }, + { + "start": 42951.24, + "end": 42951.74, + "probability": 0.9431 + }, + { + "start": 42952.06, + "end": 42953.76, + "probability": 0.9971 + }, + { + "start": 42953.96, + "end": 42955.18, + "probability": 0.7306 + }, + { + "start": 42955.72, + "end": 42957.74, + "probability": 0.9929 + }, + { + "start": 42959.26, + "end": 42960.89, + "probability": 0.6661 + }, + { + "start": 42962.1, + "end": 42962.82, + "probability": 0.9517 + }, + { + "start": 42962.96, + "end": 42963.66, + "probability": 0.6846 + }, + { + "start": 42964.02, + "end": 42964.34, + "probability": 0.708 + }, + { + "start": 42964.84, + "end": 42967.62, + "probability": 0.8647 + }, + { + "start": 42968.28, + "end": 42969.54, + "probability": 0.8124 + }, + { + "start": 42970.82, + "end": 42973.48, + "probability": 0.9879 + }, + { + "start": 42973.48, + "end": 42976.48, + "probability": 0.992 + }, + { + "start": 42977.78, + "end": 42981.22, + "probability": 0.9832 + }, + { + "start": 42981.3, + "end": 42982.02, + "probability": 0.6753 + }, + { + "start": 42982.48, + "end": 42983.75, + "probability": 0.9274 + }, + { + "start": 42983.84, + "end": 42985.08, + "probability": 0.978 + }, + { + "start": 42985.64, + "end": 42986.86, + "probability": 0.99 + }, + { + "start": 42987.52, + "end": 42990.76, + "probability": 0.9193 + }, + { + "start": 42990.92, + "end": 42991.06, + "probability": 0.2967 + }, + { + "start": 42991.08, + "end": 42991.82, + "probability": 0.9458 + }, + { + "start": 42992.5, + "end": 42994.28, + "probability": 0.9897 + }, + { + "start": 42995.56, + "end": 42996.24, + "probability": 0.9137 + }, + { + "start": 42996.62, + "end": 42997.3, + "probability": 0.5575 + }, + { + "start": 42998.34, + "end": 42999.18, + "probability": 0.9592 + }, + { + "start": 42999.48, + "end": 43000.7, + "probability": 0.9162 + }, + { + "start": 43001.44, + "end": 43004.33, + "probability": 0.7781 + }, + { + "start": 43004.7, + "end": 43004.78, + "probability": 0.0344 + }, + { + "start": 43004.78, + "end": 43008.36, + "probability": 0.9462 + }, + { + "start": 43008.62, + "end": 43008.96, + "probability": 0.747 + }, + { + "start": 43009.38, + "end": 43013.16, + "probability": 0.9971 + }, + { + "start": 43014.2, + "end": 43015.56, + "probability": 0.9714 + }, + { + "start": 43015.82, + "end": 43016.26, + "probability": 0.5793 + }, + { + "start": 43016.28, + "end": 43017.34, + "probability": 0.6384 + }, + { + "start": 43017.36, + "end": 43018.86, + "probability": 0.0993 + }, + { + "start": 43018.92, + "end": 43019.14, + "probability": 0.8272 + }, + { + "start": 43019.22, + "end": 43020.46, + "probability": 0.7662 + }, + { + "start": 43021.3, + "end": 43024.84, + "probability": 0.4055 + }, + { + "start": 43024.9, + "end": 43025.96, + "probability": 0.5928 + }, + { + "start": 43026.16, + "end": 43027.04, + "probability": 0.5843 + }, + { + "start": 43027.06, + "end": 43027.62, + "probability": 0.9419 + }, + { + "start": 43027.82, + "end": 43027.82, + "probability": 0.0135 + }, + { + "start": 43027.82, + "end": 43027.84, + "probability": 0.1728 + }, + { + "start": 43027.84, + "end": 43034.24, + "probability": 0.6609 + }, + { + "start": 43034.58, + "end": 43041.48, + "probability": 0.5233 + }, + { + "start": 43041.99, + "end": 43042.92, + "probability": 0.3707 + }, + { + "start": 43042.94, + "end": 43044.46, + "probability": 0.2476 + }, + { + "start": 43044.84, + "end": 43047.56, + "probability": 0.9622 + }, + { + "start": 43047.7, + "end": 43053.64, + "probability": 0.5169 + }, + { + "start": 43054.48, + "end": 43054.48, + "probability": 0.4832 + }, + { + "start": 43054.48, + "end": 43056.78, + "probability": 0.2246 + }, + { + "start": 43058.02, + "end": 43061.8, + "probability": 0.9184 + }, + { + "start": 43062.36, + "end": 43064.04, + "probability": 0.6955 + }, + { + "start": 43064.48, + "end": 43066.48, + "probability": 0.9719 + }, + { + "start": 43066.54, + "end": 43070.78, + "probability": 0.9359 + }, + { + "start": 43070.86, + "end": 43071.08, + "probability": 0.6136 + }, + { + "start": 43071.08, + "end": 43071.52, + "probability": 0.4922 + }, + { + "start": 43071.54, + "end": 43074.06, + "probability": 0.9224 + }, + { + "start": 43075.94, + "end": 43077.48, + "probability": 0.9822 + }, + { + "start": 43109.34, + "end": 43114.54, + "probability": 0.9858 + }, + { + "start": 43114.98, + "end": 43117.16, + "probability": 0.9814 + }, + { + "start": 43117.58, + "end": 43121.67, + "probability": 0.9833 + }, + { + "start": 43121.82, + "end": 43126.4, + "probability": 0.9799 + }, + { + "start": 43126.94, + "end": 43128.18, + "probability": 0.9692 + }, + { + "start": 43129.0, + "end": 43135.15, + "probability": 0.9906 + }, + { + "start": 43136.84, + "end": 43139.98, + "probability": 0.9947 + }, + { + "start": 43141.4, + "end": 43141.6, + "probability": 0.7103 + }, + { + "start": 43141.76, + "end": 43147.82, + "probability": 0.9938 + }, + { + "start": 43147.9, + "end": 43148.56, + "probability": 0.8503 + }, + { + "start": 43148.64, + "end": 43149.7, + "probability": 0.8507 + }, + { + "start": 43149.88, + "end": 43150.6, + "probability": 0.7915 + }, + { + "start": 43151.44, + "end": 43155.06, + "probability": 0.8378 + }, + { + "start": 43155.22, + "end": 43156.06, + "probability": 0.6121 + }, + { + "start": 43156.62, + "end": 43158.34, + "probability": 0.9439 + }, + { + "start": 43159.6, + "end": 43159.98, + "probability": 0.4891 + }, + { + "start": 43162.48, + "end": 43163.5, + "probability": 0.8689 + }, + { + "start": 43165.12, + "end": 43168.32, + "probability": 0.986 + }, + { + "start": 43168.44, + "end": 43172.7, + "probability": 0.9875 + }, + { + "start": 43179.42, + "end": 43180.92, + "probability": 0.4822 + }, + { + "start": 43182.26, + "end": 43185.24, + "probability": 0.881 + }, + { + "start": 43185.42, + "end": 43186.5, + "probability": 0.8428 + }, + { + "start": 43186.6, + "end": 43188.4, + "probability": 0.6716 + }, + { + "start": 43188.48, + "end": 43188.6, + "probability": 0.6682 + }, + { + "start": 43188.6, + "end": 43189.92, + "probability": 0.5384 + }, + { + "start": 43191.98, + "end": 43195.68, + "probability": 0.9435 + }, + { + "start": 43196.72, + "end": 43204.38, + "probability": 0.986 + }, + { + "start": 43204.38, + "end": 43209.46, + "probability": 0.9985 + }, + { + "start": 43209.92, + "end": 43211.04, + "probability": 0.8936 + }, + { + "start": 43211.08, + "end": 43212.66, + "probability": 0.9837 + }, + { + "start": 43212.88, + "end": 43214.62, + "probability": 0.9951 + }, + { + "start": 43215.0, + "end": 43218.8, + "probability": 0.9911 + }, + { + "start": 43218.88, + "end": 43220.13, + "probability": 0.8435 + }, + { + "start": 43220.48, + "end": 43224.6, + "probability": 0.9597 + }, + { + "start": 43224.64, + "end": 43227.82, + "probability": 0.9952 + }, + { + "start": 43227.82, + "end": 43231.94, + "probability": 0.9871 + }, + { + "start": 43232.2, + "end": 43237.5, + "probability": 0.7045 + }, + { + "start": 43238.06, + "end": 43242.82, + "probability": 0.9834 + }, + { + "start": 43242.82, + "end": 43251.22, + "probability": 0.9587 + }, + { + "start": 43252.28, + "end": 43255.5, + "probability": 0.857 + }, + { + "start": 43258.4, + "end": 43259.88, + "probability": 0.9983 + }, + { + "start": 43260.96, + "end": 43267.08, + "probability": 0.9863 + }, + { + "start": 43267.1, + "end": 43269.16, + "probability": 0.829 + }, + { + "start": 43269.16, + "end": 43269.8, + "probability": 0.7732 + }, + { + "start": 43269.86, + "end": 43269.94, + "probability": 0.7734 + }, + { + "start": 43272.94, + "end": 43276.3, + "probability": 0.814 + }, + { + "start": 43277.94, + "end": 43281.32, + "probability": 0.9866 + }, + { + "start": 43281.32, + "end": 43285.14, + "probability": 0.9727 + }, + { + "start": 43285.18, + "end": 43286.9, + "probability": 0.9121 + }, + { + "start": 43288.02, + "end": 43295.12, + "probability": 0.9866 + }, + { + "start": 43297.22, + "end": 43297.32, + "probability": 0.8545 + }, + { + "start": 43300.26, + "end": 43305.56, + "probability": 0.9927 + }, + { + "start": 43305.8, + "end": 43306.48, + "probability": 0.5309 + }, + { + "start": 43306.9, + "end": 43307.94, + "probability": 0.8735 + }, + { + "start": 43309.02, + "end": 43310.08, + "probability": 0.9265 + }, + { + "start": 43310.78, + "end": 43317.1, + "probability": 0.6547 + }, + { + "start": 43317.18, + "end": 43317.54, + "probability": 0.9244 + }, + { + "start": 43317.66, + "end": 43318.74, + "probability": 0.8764 + }, + { + "start": 43318.76, + "end": 43320.02, + "probability": 0.7572 + }, + { + "start": 43320.6, + "end": 43327.16, + "probability": 0.9923 + }, + { + "start": 43327.62, + "end": 43328.8, + "probability": 0.3219 + }, + { + "start": 43329.98, + "end": 43332.34, + "probability": 0.8028 + }, + { + "start": 43332.56, + "end": 43335.16, + "probability": 0.5373 + }, + { + "start": 43335.36, + "end": 43336.04, + "probability": 0.3788 + }, + { + "start": 43336.22, + "end": 43336.38, + "probability": 0.5715 + }, + { + "start": 43336.46, + "end": 43336.8, + "probability": 0.3573 + }, + { + "start": 43336.96, + "end": 43339.92, + "probability": 0.9946 + }, + { + "start": 43341.9, + "end": 43344.64, + "probability": 0.9976 + }, + { + "start": 43344.82, + "end": 43345.72, + "probability": 0.689 + }, + { + "start": 43345.9, + "end": 43349.14, + "probability": 0.8473 + }, + { + "start": 43349.48, + "end": 43351.18, + "probability": 0.9346 + }, + { + "start": 43351.64, + "end": 43353.94, + "probability": 0.9983 + }, + { + "start": 43354.32, + "end": 43358.88, + "probability": 0.9793 + }, + { + "start": 43359.64, + "end": 43363.82, + "probability": 0.9871 + }, + { + "start": 43365.2, + "end": 43372.04, + "probability": 0.9977 + }, + { + "start": 43372.04, + "end": 43378.04, + "probability": 0.9966 + }, + { + "start": 43379.2, + "end": 43380.42, + "probability": 0.8698 + }, + { + "start": 43380.68, + "end": 43382.06, + "probability": 0.7367 + }, + { + "start": 43382.62, + "end": 43387.06, + "probability": 0.8651 + }, + { + "start": 43387.2, + "end": 43388.14, + "probability": 0.7622 + }, + { + "start": 43390.52, + "end": 43391.04, + "probability": 0.2841 + }, + { + "start": 43391.94, + "end": 43395.74, + "probability": 0.9931 + }, + { + "start": 43396.08, + "end": 43399.3, + "probability": 0.9912 + }, + { + "start": 43400.58, + "end": 43401.96, + "probability": 0.4987 + }, + { + "start": 43402.94, + "end": 43404.98, + "probability": 0.9886 + }, + { + "start": 43405.08, + "end": 43407.46, + "probability": 0.9946 + }, + { + "start": 43409.96, + "end": 43412.72, + "probability": 0.9984 + }, + { + "start": 43412.86, + "end": 43414.26, + "probability": 0.9877 + }, + { + "start": 43415.64, + "end": 43425.02, + "probability": 0.9907 + }, + { + "start": 43427.02, + "end": 43427.68, + "probability": 0.6176 + }, + { + "start": 43428.56, + "end": 43429.96, + "probability": 0.6813 + }, + { + "start": 43430.86, + "end": 43431.94, + "probability": 0.8799 + }, + { + "start": 43434.12, + "end": 43436.44, + "probability": 0.5132 + }, + { + "start": 43437.08, + "end": 43438.04, + "probability": 0.9738 + }, + { + "start": 43438.58, + "end": 43440.8, + "probability": 0.9425 + }, + { + "start": 43453.58, + "end": 43454.34, + "probability": 0.5059 + }, + { + "start": 43454.34, + "end": 43455.24, + "probability": 0.6971 + }, + { + "start": 43455.88, + "end": 43459.58, + "probability": 0.9827 + }, + { + "start": 43460.45, + "end": 43464.07, + "probability": 0.9971 + }, + { + "start": 43464.21, + "end": 43465.35, + "probability": 0.9678 + }, + { + "start": 43466.69, + "end": 43467.19, + "probability": 0.3449 + }, + { + "start": 43467.91, + "end": 43475.61, + "probability": 0.9979 + }, + { + "start": 43475.69, + "end": 43477.57, + "probability": 0.9176 + }, + { + "start": 43477.93, + "end": 43478.09, + "probability": 0.1808 + }, + { + "start": 43478.57, + "end": 43481.67, + "probability": 0.1179 + }, + { + "start": 43482.67, + "end": 43482.93, + "probability": 0.0981 + }, + { + "start": 43482.93, + "end": 43483.05, + "probability": 0.4887 + }, + { + "start": 43483.57, + "end": 43485.69, + "probability": 0.978 + }, + { + "start": 43488.95, + "end": 43490.41, + "probability": 0.538 + }, + { + "start": 43491.41, + "end": 43495.83, + "probability": 0.6118 + }, + { + "start": 43495.83, + "end": 43497.72, + "probability": 0.623 + }, + { + "start": 43498.19, + "end": 43502.15, + "probability": 0.9702 + }, + { + "start": 43502.47, + "end": 43503.37, + "probability": 0.9438 + }, + { + "start": 43504.33, + "end": 43507.27, + "probability": 0.9854 + }, + { + "start": 43508.55, + "end": 43511.57, + "probability": 0.8855 + }, + { + "start": 43512.97, + "end": 43514.83, + "probability": 0.7201 + }, + { + "start": 43514.97, + "end": 43516.17, + "probability": 0.9665 + }, + { + "start": 43516.25, + "end": 43516.47, + "probability": 0.889 + }, + { + "start": 43516.57, + "end": 43518.81, + "probability": 0.9952 + }, + { + "start": 43519.37, + "end": 43523.91, + "probability": 0.8503 + }, + { + "start": 43524.53, + "end": 43525.39, + "probability": 0.5445 + }, + { + "start": 43526.67, + "end": 43528.97, + "probability": 0.9002 + }, + { + "start": 43529.45, + "end": 43531.75, + "probability": 0.3359 + }, + { + "start": 43531.75, + "end": 43531.99, + "probability": 0.4668 + }, + { + "start": 43531.99, + "end": 43532.65, + "probability": 0.5089 + }, + { + "start": 43532.79, + "end": 43533.75, + "probability": 0.4165 + }, + { + "start": 43534.37, + "end": 43535.01, + "probability": 0.0734 + }, + { + "start": 43535.01, + "end": 43535.23, + "probability": 0.1172 + }, + { + "start": 43535.95, + "end": 43535.95, + "probability": 0.1217 + }, + { + "start": 43535.95, + "end": 43535.95, + "probability": 0.4273 + }, + { + "start": 43535.95, + "end": 43537.17, + "probability": 0.1602 + }, + { + "start": 43537.17, + "end": 43537.97, + "probability": 0.5216 + }, + { + "start": 43538.13, + "end": 43538.73, + "probability": 0.2078 + }, + { + "start": 43538.73, + "end": 43538.85, + "probability": 0.2918 + }, + { + "start": 43538.99, + "end": 43538.99, + "probability": 0.3049 + }, + { + "start": 43538.99, + "end": 43541.71, + "probability": 0.9066 + }, + { + "start": 43541.79, + "end": 43542.57, + "probability": 0.282 + }, + { + "start": 43542.65, + "end": 43543.23, + "probability": 0.273 + }, + { + "start": 43543.23, + "end": 43543.23, + "probability": 0.4326 + }, + { + "start": 43543.23, + "end": 43543.23, + "probability": 0.4521 + }, + { + "start": 43543.23, + "end": 43543.57, + "probability": 0.2389 + }, + { + "start": 43543.81, + "end": 43547.55, + "probability": 0.6895 + }, + { + "start": 43547.83, + "end": 43549.21, + "probability": 0.4215 + }, + { + "start": 43549.21, + "end": 43549.21, + "probability": 0.4539 + }, + { + "start": 43549.35, + "end": 43550.35, + "probability": 0.9229 + }, + { + "start": 43550.63, + "end": 43553.39, + "probability": 0.8267 + }, + { + "start": 43553.41, + "end": 43554.79, + "probability": 0.9009 + }, + { + "start": 43554.89, + "end": 43555.49, + "probability": 0.2026 + }, + { + "start": 43555.49, + "end": 43555.59, + "probability": 0.0514 + }, + { + "start": 43555.59, + "end": 43556.13, + "probability": 0.6156 + }, + { + "start": 43556.13, + "end": 43558.53, + "probability": 0.8777 + }, + { + "start": 43558.75, + "end": 43559.07, + "probability": 0.5035 + }, + { + "start": 43559.13, + "end": 43563.21, + "probability": 0.9895 + }, + { + "start": 43563.41, + "end": 43565.29, + "probability": 0.9661 + }, + { + "start": 43565.41, + "end": 43568.19, + "probability": 0.9232 + }, + { + "start": 43568.75, + "end": 43571.63, + "probability": 0.9902 + }, + { + "start": 43571.95, + "end": 43572.71, + "probability": 0.8554 + }, + { + "start": 43573.47, + "end": 43578.43, + "probability": 0.9354 + }, + { + "start": 43579.67, + "end": 43581.95, + "probability": 0.8579 + }, + { + "start": 43582.01, + "end": 43583.29, + "probability": 0.9731 + }, + { + "start": 43583.31, + "end": 43584.81, + "probability": 0.9613 + }, + { + "start": 43585.03, + "end": 43586.43, + "probability": 0.9417 + }, + { + "start": 43587.13, + "end": 43588.35, + "probability": 0.8324 + }, + { + "start": 43589.67, + "end": 43595.41, + "probability": 0.996 + }, + { + "start": 43595.71, + "end": 43598.25, + "probability": 0.9836 + }, + { + "start": 43598.53, + "end": 43599.31, + "probability": 0.1132 + }, + { + "start": 43599.31, + "end": 43603.83, + "probability": 0.9709 + }, + { + "start": 43603.95, + "end": 43606.17, + "probability": 0.9285 + }, + { + "start": 43606.29, + "end": 43608.09, + "probability": 0.7763 + }, + { + "start": 43608.09, + "end": 43610.43, + "probability": 0.6623 + }, + { + "start": 43610.85, + "end": 43612.45, + "probability": 0.6386 + }, + { + "start": 43612.49, + "end": 43615.03, + "probability": 0.0644 + }, + { + "start": 43615.47, + "end": 43616.41, + "probability": 0.1489 + }, + { + "start": 43616.51, + "end": 43616.59, + "probability": 0.0039 + }, + { + "start": 43616.59, + "end": 43619.53, + "probability": 0.9177 + }, + { + "start": 43619.97, + "end": 43621.07, + "probability": 0.5057 + }, + { + "start": 43621.09, + "end": 43622.37, + "probability": 0.7948 + }, + { + "start": 43622.45, + "end": 43623.15, + "probability": 0.5557 + }, + { + "start": 43623.15, + "end": 43625.27, + "probability": 0.8342 + }, + { + "start": 43625.27, + "end": 43626.03, + "probability": 0.0911 + }, + { + "start": 43626.35, + "end": 43628.15, + "probability": 0.1814 + }, + { + "start": 43628.27, + "end": 43630.99, + "probability": 0.2765 + }, + { + "start": 43631.47, + "end": 43632.53, + "probability": 0.1509 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.0, + "end": 43740.0, + "probability": 0.0 + }, + { + "start": 43740.18, + "end": 43741.81, + "probability": 0.4484 + }, + { + "start": 43742.44, + "end": 43745.42, + "probability": 0.7295 + }, + { + "start": 43745.56, + "end": 43747.81, + "probability": 0.896 + }, + { + "start": 43748.14, + "end": 43749.66, + "probability": 0.9897 + }, + { + "start": 43749.84, + "end": 43751.32, + "probability": 0.9427 + }, + { + "start": 43751.54, + "end": 43752.98, + "probability": 0.9124 + }, + { + "start": 43753.26, + "end": 43754.36, + "probability": 0.5643 + }, + { + "start": 43754.72, + "end": 43756.47, + "probability": 0.9673 + }, + { + "start": 43757.34, + "end": 43759.14, + "probability": 0.9139 + }, + { + "start": 43759.32, + "end": 43761.86, + "probability": 0.1803 + }, + { + "start": 43761.86, + "end": 43763.06, + "probability": 0.1174 + }, + { + "start": 43763.32, + "end": 43766.7, + "probability": 0.0459 + }, + { + "start": 43766.7, + "end": 43767.3, + "probability": 0.3022 + }, + { + "start": 43767.44, + "end": 43767.44, + "probability": 0.1045 + }, + { + "start": 43767.44, + "end": 43767.44, + "probability": 0.0525 + }, + { + "start": 43767.44, + "end": 43770.97, + "probability": 0.687 + }, + { + "start": 43772.12, + "end": 43773.28, + "probability": 0.6426 + }, + { + "start": 43773.28, + "end": 43773.28, + "probability": 0.1551 + }, + { + "start": 43773.28, + "end": 43775.08, + "probability": 0.295 + }, + { + "start": 43775.32, + "end": 43778.14, + "probability": 0.7629 + }, + { + "start": 43779.62, + "end": 43779.62, + "probability": 0.0312 + }, + { + "start": 43779.62, + "end": 43779.62, + "probability": 0.4864 + }, + { + "start": 43779.62, + "end": 43782.58, + "probability": 0.8271 + }, + { + "start": 43782.8, + "end": 43785.38, + "probability": 0.3635 + }, + { + "start": 43785.5, + "end": 43788.0, + "probability": 0.6598 + }, + { + "start": 43788.06, + "end": 43790.94, + "probability": 0.7032 + }, + { + "start": 43791.16, + "end": 43794.14, + "probability": 0.2998 + }, + { + "start": 43794.14, + "end": 43794.14, + "probability": 0.0424 + }, + { + "start": 43794.14, + "end": 43794.2, + "probability": 0.0681 + }, + { + "start": 43794.2, + "end": 43794.2, + "probability": 0.111 + }, + { + "start": 43794.2, + "end": 43794.96, + "probability": 0.4073 + }, + { + "start": 43794.98, + "end": 43795.82, + "probability": 0.4399 + }, + { + "start": 43795.92, + "end": 43798.94, + "probability": 0.5035 + }, + { + "start": 43799.08, + "end": 43800.15, + "probability": 0.4182 + }, + { + "start": 43800.58, + "end": 43801.64, + "probability": 0.7157 + }, + { + "start": 43801.76, + "end": 43802.52, + "probability": 0.7658 + }, + { + "start": 43802.66, + "end": 43804.72, + "probability": 0.9531 + }, + { + "start": 43804.74, + "end": 43805.96, + "probability": 0.2298 + }, + { + "start": 43806.12, + "end": 43807.54, + "probability": 0.7073 + }, + { + "start": 43809.02, + "end": 43811.86, + "probability": 0.6417 + }, + { + "start": 43812.6, + "end": 43814.88, + "probability": 0.4977 + }, + { + "start": 43815.38, + "end": 43816.76, + "probability": 0.5468 + }, + { + "start": 43816.92, + "end": 43819.28, + "probability": 0.703 + }, + { + "start": 43819.38, + "end": 43820.66, + "probability": 0.7122 + }, + { + "start": 43821.38, + "end": 43821.66, + "probability": 0.2822 + }, + { + "start": 43821.66, + "end": 43823.02, + "probability": 0.4681 + }, + { + "start": 43823.02, + "end": 43826.06, + "probability": 0.4215 + }, + { + "start": 43826.72, + "end": 43827.14, + "probability": 0.3899 + }, + { + "start": 43827.82, + "end": 43828.16, + "probability": 0.2556 + }, + { + "start": 43829.12, + "end": 43829.3, + "probability": 0.0508 + }, + { + "start": 43829.3, + "end": 43829.3, + "probability": 0.2797 + }, + { + "start": 43829.3, + "end": 43829.3, + "probability": 0.3177 + }, + { + "start": 43829.3, + "end": 43831.12, + "probability": 0.1482 + }, + { + "start": 43831.4, + "end": 43832.2, + "probability": 0.5548 + }, + { + "start": 43832.2, + "end": 43833.3, + "probability": 0.4927 + }, + { + "start": 43833.48, + "end": 43834.08, + "probability": 0.1352 + }, + { + "start": 43834.5, + "end": 43836.6, + "probability": 0.8829 + }, + { + "start": 43838.03, + "end": 43840.66, + "probability": 0.7838 + }, + { + "start": 43840.78, + "end": 43841.86, + "probability": 0.3347 + }, + { + "start": 43842.08, + "end": 43844.54, + "probability": 0.7611 + }, + { + "start": 43844.72, + "end": 43845.8, + "probability": 0.8659 + }, + { + "start": 43845.92, + "end": 43847.82, + "probability": 0.6715 + }, + { + "start": 43848.15, + "end": 43852.94, + "probability": 0.999 + }, + { + "start": 43852.94, + "end": 43855.7, + "probability": 0.9943 + }, + { + "start": 43856.42, + "end": 43860.14, + "probability": 0.9934 + }, + { + "start": 43860.66, + "end": 43863.02, + "probability": 0.9143 + }, + { + "start": 43863.64, + "end": 43866.82, + "probability": 0.9854 + }, + { + "start": 43867.24, + "end": 43870.39, + "probability": 0.9201 + }, + { + "start": 43871.1, + "end": 43873.42, + "probability": 0.5687 + }, + { + "start": 43875.62, + "end": 43877.78, + "probability": 0.8184 + }, + { + "start": 43878.34, + "end": 43880.42, + "probability": 0.4597 + }, + { + "start": 43881.67, + "end": 43884.28, + "probability": 0.6862 + }, + { + "start": 43887.16, + "end": 43892.16, + "probability": 0.9544 + }, + { + "start": 43892.6, + "end": 43893.72, + "probability": 0.9057 + }, + { + "start": 43894.94, + "end": 43896.24, + "probability": 0.8418 + }, + { + "start": 43896.94, + "end": 43900.99, + "probability": 0.9802 + }, + { + "start": 43902.18, + "end": 43904.8, + "probability": 0.9993 + }, + { + "start": 43905.6, + "end": 43909.17, + "probability": 0.9932 + }, + { + "start": 43909.32, + "end": 43910.18, + "probability": 0.4457 + }, + { + "start": 43910.9, + "end": 43913.66, + "probability": 0.9951 + }, + { + "start": 43913.96, + "end": 43916.72, + "probability": 0.9926 + }, + { + "start": 43917.76, + "end": 43919.98, + "probability": 0.8521 + }, + { + "start": 43920.74, + "end": 43921.04, + "probability": 0.5561 + }, + { + "start": 43921.12, + "end": 43921.54, + "probability": 0.8166 + }, + { + "start": 43921.6, + "end": 43922.36, + "probability": 0.8085 + }, + { + "start": 43922.48, + "end": 43923.5, + "probability": 0.8901 + }, + { + "start": 43923.58, + "end": 43923.66, + "probability": 0.6211 + }, + { + "start": 43923.76, + "end": 43926.64, + "probability": 0.2671 + }, + { + "start": 43926.78, + "end": 43927.52, + "probability": 0.578 + }, + { + "start": 43927.84, + "end": 43929.54, + "probability": 0.9479 + }, + { + "start": 43929.68, + "end": 43931.88, + "probability": 0.7206 + }, + { + "start": 43932.74, + "end": 43935.92, + "probability": 0.5826 + }, + { + "start": 43937.52, + "end": 43938.9, + "probability": 0.9094 + }, + { + "start": 43940.1, + "end": 43941.62, + "probability": 0.998 + }, + { + "start": 43942.84, + "end": 43943.08, + "probability": 0.793 + }, + { + "start": 43943.16, + "end": 43946.32, + "probability": 0.9355 + }, + { + "start": 43946.42, + "end": 43946.94, + "probability": 0.714 + }, + { + "start": 43947.06, + "end": 43947.86, + "probability": 0.7083 + }, + { + "start": 43948.48, + "end": 43949.5, + "probability": 0.6839 + }, + { + "start": 43949.64, + "end": 43950.12, + "probability": 0.2219 + }, + { + "start": 43950.86, + "end": 43951.44, + "probability": 0.7749 + }, + { + "start": 43952.46, + "end": 43955.22, + "probability": 0.9238 + }, + { + "start": 43956.2, + "end": 43965.02, + "probability": 0.9971 + }, + { + "start": 43966.78, + "end": 43970.06, + "probability": 0.7746 + }, + { + "start": 43970.18, + "end": 43971.06, + "probability": 0.9518 + }, + { + "start": 43971.16, + "end": 43972.22, + "probability": 0.9206 + }, + { + "start": 43973.18, + "end": 43977.76, + "probability": 0.9764 + }, + { + "start": 43979.23, + "end": 43983.46, + "probability": 0.6935 + }, + { + "start": 43984.32, + "end": 43986.6, + "probability": 0.7314 + }, + { + "start": 43986.6, + "end": 43987.16, + "probability": 0.7316 + }, + { + "start": 43987.22, + "end": 43988.28, + "probability": 0.9813 + }, + { + "start": 43989.3, + "end": 43993.52, + "probability": 0.9846 + }, + { + "start": 43994.4, + "end": 43996.44, + "probability": 0.8097 + }, + { + "start": 43997.06, + "end": 43997.28, + "probability": 0.6777 + }, + { + "start": 43997.66, + "end": 44002.62, + "probability": 0.77 + }, + { + "start": 44002.96, + "end": 44003.96, + "probability": 0.7666 + }, + { + "start": 44004.1, + "end": 44006.1, + "probability": 0.888 + }, + { + "start": 44006.8, + "end": 44008.81, + "probability": 0.9912 + }, + { + "start": 44009.89, + "end": 44012.72, + "probability": 0.9009 + }, + { + "start": 44012.72, + "end": 44013.04, + "probability": 0.1146 + }, + { + "start": 44013.24, + "end": 44013.24, + "probability": 0.8456 + }, + { + "start": 44013.24, + "end": 44013.6, + "probability": 0.608 + }, + { + "start": 44013.62, + "end": 44014.24, + "probability": 0.6019 + }, + { + "start": 44014.28, + "end": 44014.8, + "probability": 0.6143 + }, + { + "start": 44014.82, + "end": 44019.04, + "probability": 0.5572 + }, + { + "start": 44020.0, + "end": 44020.86, + "probability": 0.1051 + }, + { + "start": 44020.86, + "end": 44020.98, + "probability": 0.0756 + }, + { + "start": 44020.98, + "end": 44020.98, + "probability": 0.3188 + }, + { + "start": 44020.98, + "end": 44020.98, + "probability": 0.5205 + }, + { + "start": 44020.98, + "end": 44021.19, + "probability": 0.5229 + }, + { + "start": 44021.42, + "end": 44022.28, + "probability": 0.9003 + }, + { + "start": 44022.56, + "end": 44024.68, + "probability": 0.432 + }, + { + "start": 44024.7, + "end": 44024.91, + "probability": 0.6567 + }, + { + "start": 44026.7, + "end": 44026.74, + "probability": 0.0079 + }, + { + "start": 44026.74, + "end": 44028.62, + "probability": 0.648 + }, + { + "start": 44028.72, + "end": 44034.86, + "probability": 0.9906 + }, + { + "start": 44035.7, + "end": 44036.52, + "probability": 0.8142 + }, + { + "start": 44037.04, + "end": 44038.9, + "probability": 0.9347 + }, + { + "start": 44039.75, + "end": 44043.2, + "probability": 0.971 + }, + { + "start": 44043.32, + "end": 44044.36, + "probability": 0.947 + }, + { + "start": 44045.44, + "end": 44048.07, + "probability": 0.9866 + }, + { + "start": 44049.12, + "end": 44050.82, + "probability": 0.9884 + }, + { + "start": 44051.28, + "end": 44052.68, + "probability": 0.8219 + }, + { + "start": 44052.84, + "end": 44054.8, + "probability": 0.998 + }, + { + "start": 44055.02, + "end": 44055.88, + "probability": 0.7321 + }, + { + "start": 44055.9, + "end": 44057.1, + "probability": 0.9835 + }, + { + "start": 44057.1, + "end": 44059.9, + "probability": 0.9013 + }, + { + "start": 44060.64, + "end": 44060.64, + "probability": 0.0923 + }, + { + "start": 44060.64, + "end": 44061.66, + "probability": 0.9763 + }, + { + "start": 44062.38, + "end": 44064.22, + "probability": 0.6943 + }, + { + "start": 44064.34, + "end": 44065.3, + "probability": 0.3218 + }, + { + "start": 44066.54, + "end": 44067.07, + "probability": 0.8362 + }, + { + "start": 44068.72, + "end": 44070.82, + "probability": 0.9606 + }, + { + "start": 44070.96, + "end": 44072.3, + "probability": 0.9772 + }, + { + "start": 44072.32, + "end": 44073.9, + "probability": 0.9695 + }, + { + "start": 44074.84, + "end": 44077.6, + "probability": 0.9371 + }, + { + "start": 44077.72, + "end": 44079.58, + "probability": 0.8687 + }, + { + "start": 44080.24, + "end": 44081.38, + "probability": 0.9231 + }, + { + "start": 44081.54, + "end": 44082.24, + "probability": 0.8473 + }, + { + "start": 44082.3, + "end": 44083.88, + "probability": 0.9984 + }, + { + "start": 44084.34, + "end": 44086.64, + "probability": 0.8661 + }, + { + "start": 44086.82, + "end": 44088.12, + "probability": 0.9945 + }, + { + "start": 44088.66, + "end": 44092.39, + "probability": 0.9308 + }, + { + "start": 44092.82, + "end": 44093.32, + "probability": 0.2606 + }, + { + "start": 44093.44, + "end": 44094.7, + "probability": 0.9858 + }, + { + "start": 44094.74, + "end": 44096.62, + "probability": 0.908 + }, + { + "start": 44096.94, + "end": 44098.08, + "probability": 0.9964 + }, + { + "start": 44098.22, + "end": 44099.4, + "probability": 0.9588 + }, + { + "start": 44099.7, + "end": 44101.18, + "probability": 0.978 + }, + { + "start": 44101.74, + "end": 44103.84, + "probability": 0.847 + }, + { + "start": 44103.98, + "end": 44104.46, + "probability": 0.6494 + }, + { + "start": 44104.58, + "end": 44108.24, + "probability": 0.8351 + }, + { + "start": 44108.26, + "end": 44109.74, + "probability": 0.5208 + }, + { + "start": 44109.92, + "end": 44110.5, + "probability": 0.6927 + }, + { + "start": 44110.68, + "end": 44112.06, + "probability": 0.7807 + }, + { + "start": 44112.2, + "end": 44114.28, + "probability": 0.9927 + }, + { + "start": 44114.38, + "end": 44117.38, + "probability": 0.9731 + }, + { + "start": 44117.8, + "end": 44118.5, + "probability": 0.9716 + }, + { + "start": 44118.74, + "end": 44120.04, + "probability": 0.8579 + }, + { + "start": 44120.66, + "end": 44121.86, + "probability": 0.5189 + }, + { + "start": 44122.04, + "end": 44124.82, + "probability": 0.9906 + }, + { + "start": 44125.1, + "end": 44127.67, + "probability": 0.9859 + }, + { + "start": 44128.0, + "end": 44131.04, + "probability": 0.9896 + }, + { + "start": 44131.28, + "end": 44133.36, + "probability": 0.8668 + }, + { + "start": 44133.5, + "end": 44135.32, + "probability": 0.9368 + }, + { + "start": 44135.5, + "end": 44138.7, + "probability": 0.9712 + }, + { + "start": 44138.88, + "end": 44140.72, + "probability": 0.7326 + }, + { + "start": 44142.42, + "end": 44145.32, + "probability": 0.9869 + }, + { + "start": 44146.52, + "end": 44151.68, + "probability": 0.9927 + }, + { + "start": 44152.6, + "end": 44158.68, + "probability": 0.9635 + }, + { + "start": 44160.08, + "end": 44165.28, + "probability": 0.8906 + }, + { + "start": 44166.1, + "end": 44167.39, + "probability": 0.9114 + }, + { + "start": 44167.84, + "end": 44172.7, + "probability": 0.7651 + }, + { + "start": 44173.24, + "end": 44175.18, + "probability": 0.7133 + }, + { + "start": 44176.16, + "end": 44180.6, + "probability": 0.9083 + }, + { + "start": 44180.72, + "end": 44181.7, + "probability": 0.8446 + }, + { + "start": 44181.76, + "end": 44184.98, + "probability": 0.9868 + }, + { + "start": 44185.32, + "end": 44187.73, + "probability": 0.9788 + }, + { + "start": 44188.44, + "end": 44193.0, + "probability": 0.9956 + }, + { + "start": 44193.22, + "end": 44196.02, + "probability": 0.9981 + }, + { + "start": 44196.3, + "end": 44198.66, + "probability": 0.993 + }, + { + "start": 44198.96, + "end": 44203.32, + "probability": 0.9542 + }, + { + "start": 44203.9, + "end": 44205.54, + "probability": 0.6561 + }, + { + "start": 44207.78, + "end": 44212.9, + "probability": 0.9879 + }, + { + "start": 44213.34, + "end": 44215.02, + "probability": 0.998 + }, + { + "start": 44215.12, + "end": 44220.14, + "probability": 0.9921 + }, + { + "start": 44220.23, + "end": 44225.7, + "probability": 0.998 + }, + { + "start": 44225.76, + "end": 44226.89, + "probability": 0.9966 + }, + { + "start": 44227.72, + "end": 44229.46, + "probability": 0.9937 + }, + { + "start": 44230.04, + "end": 44231.84, + "probability": 0.9615 + }, + { + "start": 44231.92, + "end": 44232.94, + "probability": 0.788 + }, + { + "start": 44233.58, + "end": 44235.06, + "probability": 0.9943 + }, + { + "start": 44235.82, + "end": 44238.64, + "probability": 0.97 + }, + { + "start": 44238.76, + "end": 44240.93, + "probability": 0.9918 + }, + { + "start": 44241.08, + "end": 44241.86, + "probability": 0.6323 + }, + { + "start": 44241.86, + "end": 44242.08, + "probability": 0.3271 + }, + { + "start": 44242.14, + "end": 44242.92, + "probability": 0.2577 + }, + { + "start": 44243.54, + "end": 44249.0, + "probability": 0.7197 + }, + { + "start": 44249.4, + "end": 44254.76, + "probability": 0.9717 + }, + { + "start": 44255.16, + "end": 44258.22, + "probability": 0.9434 + }, + { + "start": 44258.68, + "end": 44260.52, + "probability": 0.989 + }, + { + "start": 44260.97, + "end": 44264.06, + "probability": 0.9756 + }, + { + "start": 44264.88, + "end": 44266.38, + "probability": 0.9917 + }, + { + "start": 44266.84, + "end": 44267.24, + "probability": 0.4944 + }, + { + "start": 44267.32, + "end": 44269.88, + "probability": 0.9636 + }, + { + "start": 44270.52, + "end": 44272.1, + "probability": 0.9878 + }, + { + "start": 44272.92, + "end": 44274.94, + "probability": 0.9927 + }, + { + "start": 44275.32, + "end": 44277.34, + "probability": 0.9718 + }, + { + "start": 44277.46, + "end": 44280.38, + "probability": 0.0138 + }, + { + "start": 44280.94, + "end": 44283.68, + "probability": 0.4111 + }, + { + "start": 44284.42, + "end": 44286.54, + "probability": 0.9426 + }, + { + "start": 44287.6, + "end": 44294.2, + "probability": 0.874 + }, + { + "start": 44295.44, + "end": 44297.28, + "probability": 0.9958 + }, + { + "start": 44297.44, + "end": 44303.84, + "probability": 0.9683 + }, + { + "start": 44305.37, + "end": 44309.24, + "probability": 0.4706 + }, + { + "start": 44309.46, + "end": 44310.3, + "probability": 0.1186 + }, + { + "start": 44310.76, + "end": 44315.42, + "probability": 0.8802 + }, + { + "start": 44315.48, + "end": 44315.86, + "probability": 0.7357 + }, + { + "start": 44315.92, + "end": 44316.32, + "probability": 0.4521 + }, + { + "start": 44317.16, + "end": 44319.2, + "probability": 0.9142 + }, + { + "start": 44319.2, + "end": 44320.44, + "probability": 0.998 + }, + { + "start": 44320.96, + "end": 44322.92, + "probability": 0.832 + }, + { + "start": 44323.3, + "end": 44323.64, + "probability": 0.7113 + }, + { + "start": 44323.72, + "end": 44324.88, + "probability": 0.7952 + }, + { + "start": 44325.02, + "end": 44328.82, + "probability": 0.6656 + }, + { + "start": 44328.96, + "end": 44330.48, + "probability": 0.676 + }, + { + "start": 44330.8, + "end": 44334.58, + "probability": 0.9877 + }, + { + "start": 44335.2, + "end": 44336.52, + "probability": 0.9415 + }, + { + "start": 44336.98, + "end": 44339.5, + "probability": 0.9518 + }, + { + "start": 44340.06, + "end": 44342.86, + "probability": 0.9971 + }, + { + "start": 44343.74, + "end": 44345.42, + "probability": 0.8723 + }, + { + "start": 44345.6, + "end": 44347.54, + "probability": 0.8763 + }, + { + "start": 44348.04, + "end": 44350.78, + "probability": 0.9756 + }, + { + "start": 44351.28, + "end": 44353.06, + "probability": 0.9938 + }, + { + "start": 44353.34, + "end": 44355.94, + "probability": 0.9461 + }, + { + "start": 44356.64, + "end": 44359.94, + "probability": 0.9958 + }, + { + "start": 44360.04, + "end": 44363.58, + "probability": 0.5718 + }, + { + "start": 44363.58, + "end": 44371.28, + "probability": 0.9861 + }, + { + "start": 44371.48, + "end": 44373.46, + "probability": 0.855 + }, + { + "start": 44373.7, + "end": 44376.28, + "probability": 0.9886 + }, + { + "start": 44376.4, + "end": 44378.56, + "probability": 0.8784 + }, + { + "start": 44378.86, + "end": 44381.38, + "probability": 0.992 + }, + { + "start": 44381.6, + "end": 44383.17, + "probability": 0.9668 + }, + { + "start": 44383.36, + "end": 44385.76, + "probability": 0.7092 + }, + { + "start": 44385.92, + "end": 44387.12, + "probability": 0.998 + }, + { + "start": 44387.6, + "end": 44390.8, + "probability": 0.9834 + }, + { + "start": 44391.4, + "end": 44394.04, + "probability": 0.9964 + }, + { + "start": 44394.44, + "end": 44395.14, + "probability": 0.7539 + }, + { + "start": 44395.76, + "end": 44396.54, + "probability": 0.6995 + }, + { + "start": 44396.76, + "end": 44397.8, + "probability": 0.6536 + }, + { + "start": 44398.36, + "end": 44401.16, + "probability": 0.8473 + }, + { + "start": 44401.84, + "end": 44403.86, + "probability": 0.8215 + }, + { + "start": 44404.46, + "end": 44407.5, + "probability": 0.9355 + }, + { + "start": 44408.34, + "end": 44409.5, + "probability": 0.9418 + }, + { + "start": 44410.0, + "end": 44411.88, + "probability": 0.9952 + }, + { + "start": 44412.42, + "end": 44413.5, + "probability": 0.6282 + }, + { + "start": 44414.06, + "end": 44416.32, + "probability": 0.9568 + }, + { + "start": 44417.24, + "end": 44418.03, + "probability": 0.8704 + }, + { + "start": 44419.08, + "end": 44421.34, + "probability": 0.6976 + }, + { + "start": 44422.58, + "end": 44429.02, + "probability": 0.9917 + }, + { + "start": 44429.44, + "end": 44430.28, + "probability": 0.547 + }, + { + "start": 44430.96, + "end": 44434.58, + "probability": 0.9956 + }, + { + "start": 44434.58, + "end": 44437.58, + "probability": 0.9952 + }, + { + "start": 44438.04, + "end": 44439.74, + "probability": 0.9617 + }, + { + "start": 44440.64, + "end": 44443.16, + "probability": 0.9829 + }, + { + "start": 44443.54, + "end": 44445.2, + "probability": 0.4838 + }, + { + "start": 44445.78, + "end": 44446.72, + "probability": 0.5793 + }, + { + "start": 44446.89, + "end": 44451.08, + "probability": 0.7188 + }, + { + "start": 44451.08, + "end": 44454.78, + "probability": 0.9971 + }, + { + "start": 44455.18, + "end": 44460.02, + "probability": 0.9926 + }, + { + "start": 44460.7, + "end": 44463.82, + "probability": 0.989 + }, + { + "start": 44464.12, + "end": 44469.58, + "probability": 0.9787 + }, + { + "start": 44470.58, + "end": 44472.6, + "probability": 0.9114 + }, + { + "start": 44473.42, + "end": 44475.38, + "probability": 0.9844 + }, + { + "start": 44475.6, + "end": 44477.47, + "probability": 0.9583 + }, + { + "start": 44477.64, + "end": 44479.5, + "probability": 0.9016 + }, + { + "start": 44479.84, + "end": 44480.64, + "probability": 0.967 + }, + { + "start": 44480.86, + "end": 44482.4, + "probability": 0.5636 + }, + { + "start": 44482.8, + "end": 44484.4, + "probability": 0.8345 + }, + { + "start": 44484.52, + "end": 44487.76, + "probability": 0.8481 + }, + { + "start": 44487.98, + "end": 44489.62, + "probability": 0.989 + }, + { + "start": 44489.98, + "end": 44490.98, + "probability": 0.8495 + }, + { + "start": 44491.8, + "end": 44493.42, + "probability": 0.3159 + }, + { + "start": 44493.66, + "end": 44494.5, + "probability": 0.2641 + }, + { + "start": 44494.68, + "end": 44495.52, + "probability": 0.7298 + }, + { + "start": 44495.54, + "end": 44500.0, + "probability": 0.8232 + }, + { + "start": 44500.04, + "end": 44506.58, + "probability": 0.9879 + }, + { + "start": 44507.64, + "end": 44513.42, + "probability": 0.8892 + }, + { + "start": 44513.66, + "end": 44514.72, + "probability": 0.1931 + }, + { + "start": 44515.6, + "end": 44517.16, + "probability": 0.4503 + }, + { + "start": 44521.37, + "end": 44522.32, + "probability": 0.9478 + }, + { + "start": 44524.82, + "end": 44526.1, + "probability": 0.4591 + }, + { + "start": 44528.3, + "end": 44532.86, + "probability": 0.842 + }, + { + "start": 44533.86, + "end": 44537.2, + "probability": 0.9329 + }, + { + "start": 44538.0, + "end": 44544.8, + "probability": 0.9424 + }, + { + "start": 44545.46, + "end": 44548.76, + "probability": 0.9399 + }, + { + "start": 44548.86, + "end": 44551.66, + "probability": 0.8449 + }, + { + "start": 44551.78, + "end": 44553.41, + "probability": 0.7578 + }, + { + "start": 44555.22, + "end": 44557.28, + "probability": 0.886 + }, + { + "start": 44558.66, + "end": 44562.12, + "probability": 0.8241 + }, + { + "start": 44562.6, + "end": 44565.06, + "probability": 0.9827 + }, + { + "start": 44565.83, + "end": 44568.51, + "probability": 0.9946 + }, + { + "start": 44570.71, + "end": 44574.68, + "probability": 0.3119 + }, + { + "start": 44575.0, + "end": 44576.24, + "probability": 0.9849 + }, + { + "start": 44576.44, + "end": 44578.54, + "probability": 0.9974 + }, + { + "start": 44579.4, + "end": 44582.98, + "probability": 0.1143 + }, + { + "start": 44583.54, + "end": 44584.36, + "probability": 0.0495 + }, + { + "start": 44585.05, + "end": 44586.63, + "probability": 0.1428 + }, + { + "start": 44587.52, + "end": 44589.98, + "probability": 0.9072 + }, + { + "start": 44590.26, + "end": 44591.65, + "probability": 0.7549 + }, + { + "start": 44592.46, + "end": 44595.34, + "probability": 0.5162 + }, + { + "start": 44595.34, + "end": 44597.1, + "probability": 0.8049 + }, + { + "start": 44597.1, + "end": 44598.28, + "probability": 0.8447 + }, + { + "start": 44598.58, + "end": 44602.4, + "probability": 0.7177 + }, + { + "start": 44602.6, + "end": 44603.06, + "probability": 0.5479 + }, + { + "start": 44603.16, + "end": 44605.84, + "probability": 0.9821 + }, + { + "start": 44605.86, + "end": 44606.24, + "probability": 0.5011 + }, + { + "start": 44606.32, + "end": 44607.92, + "probability": 0.5943 + }, + { + "start": 44608.5, + "end": 44611.38, + "probability": 0.9617 + }, + { + "start": 44611.4, + "end": 44611.96, + "probability": 0.9424 + }, + { + "start": 44612.38, + "end": 44614.0, + "probability": 0.8131 + }, + { + "start": 44614.08, + "end": 44614.64, + "probability": 0.884 + }, + { + "start": 44614.68, + "end": 44616.96, + "probability": 0.9791 + }, + { + "start": 44616.96, + "end": 44620.36, + "probability": 0.4739 + }, + { + "start": 44621.2, + "end": 44624.24, + "probability": 0.5091 + }, + { + "start": 44624.48, + "end": 44628.2, + "probability": 0.9639 + }, + { + "start": 44628.36, + "end": 44629.5, + "probability": 0.9473 + }, + { + "start": 44629.56, + "end": 44630.36, + "probability": 0.8793 + }, + { + "start": 44631.22, + "end": 44634.8, + "probability": 0.843 + }, + { + "start": 44635.54, + "end": 44636.64, + "probability": 0.2683 + }, + { + "start": 44641.38, + "end": 44641.66, + "probability": 0.1144 + }, + { + "start": 44641.66, + "end": 44646.44, + "probability": 0.0632 + }, + { + "start": 44646.88, + "end": 44647.02, + "probability": 0.0203 + }, + { + "start": 44647.02, + "end": 44647.56, + "probability": 0.0583 + }, + { + "start": 44651.58, + "end": 44654.28, + "probability": 0.0124 + }, + { + "start": 44656.1, + "end": 44662.58, + "probability": 0.0392 + }, + { + "start": 44663.76, + "end": 44667.08, + "probability": 0.0596 + }, + { + "start": 44667.66, + "end": 44671.17, + "probability": 0.0893 + }, + { + "start": 44674.94, + "end": 44675.66, + "probability": 0.0477 + }, + { + "start": 44677.8, + "end": 44678.6, + "probability": 0.1253 + }, + { + "start": 44679.38, + "end": 44679.8, + "probability": 0.021 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44689.0, + "end": 44689.0, + "probability": 0.0 + }, + { + "start": 44690.11, + "end": 44691.78, + "probability": 0.1536 + }, + { + "start": 44691.78, + "end": 44691.78, + "probability": 0.0682 + }, + { + "start": 44691.78, + "end": 44694.82, + "probability": 0.4707 + }, + { + "start": 44695.2, + "end": 44696.8, + "probability": 0.6129 + }, + { + "start": 44697.6, + "end": 44698.52, + "probability": 0.1872 + }, + { + "start": 44707.18, + "end": 44707.58, + "probability": 0.1475 + }, + { + "start": 44707.58, + "end": 44709.02, + "probability": 0.5548 + }, + { + "start": 44709.22, + "end": 44712.88, + "probability": 0.6633 + }, + { + "start": 44713.08, + "end": 44719.85, + "probability": 0.9077 + }, + { + "start": 44721.48, + "end": 44726.66, + "probability": 0.6394 + }, + { + "start": 44734.22, + "end": 44735.96, + "probability": 0.3945 + }, + { + "start": 44736.12, + "end": 44738.0, + "probability": 0.5565 + }, + { + "start": 44738.52, + "end": 44744.36, + "probability": 0.8685 + }, + { + "start": 44745.12, + "end": 44747.32, + "probability": 0.292 + }, + { + "start": 44753.48, + "end": 44754.28, + "probability": 0.0842 + }, + { + "start": 44756.0, + "end": 44759.32, + "probability": 0.3069 + }, + { + "start": 44759.34, + "end": 44760.46, + "probability": 0.855 + }, + { + "start": 44760.66, + "end": 44763.94, + "probability": 0.5597 + }, + { + "start": 44763.94, + "end": 44764.78, + "probability": 0.3356 + }, + { + "start": 44767.24, + "end": 44767.8, + "probability": 0.0003 + }, + { + "start": 44779.16, + "end": 44779.92, + "probability": 0.1759 + }, + { + "start": 44779.92, + "end": 44782.22, + "probability": 0.4622 + }, + { + "start": 44782.22, + "end": 44783.5, + "probability": 0.941 + }, + { + "start": 44783.92, + "end": 44786.28, + "probability": 0.7162 + }, + { + "start": 44786.82, + "end": 44788.62, + "probability": 0.629 + }, + { + "start": 44788.62, + "end": 44794.18, + "probability": 0.5397 + }, + { + "start": 44794.18, + "end": 44794.2, + "probability": 0.2052 + }, + { + "start": 44794.2, + "end": 44796.8, + "probability": 0.2747 + }, + { + "start": 44796.8, + "end": 44798.9, + "probability": 0.3344 + }, + { + "start": 44808.74, + "end": 44814.12, + "probability": 0.626 + }, + { + "start": 44825.76, + "end": 44826.28, + "probability": 0.1966 + }, + { + "start": 44826.28, + "end": 44827.6, + "probability": 0.477 + }, + { + "start": 44827.7, + "end": 44828.8, + "probability": 0.9116 + }, + { + "start": 44829.28, + "end": 44835.22, + "probability": 0.7336 + }, + { + "start": 44848.44, + "end": 44848.88, + "probability": 0.1528 + }, + { + "start": 44848.88, + "end": 44850.22, + "probability": 0.1788 + }, + { + "start": 44850.26, + "end": 44851.66, + "probability": 0.5692 + }, + { + "start": 44851.72, + "end": 44855.4, + "probability": 0.5747 + }, + { + "start": 44856.08, + "end": 44857.42, + "probability": 0.5038 + }, + { + "start": 44857.72, + "end": 44860.7, + "probability": 0.2863 + }, + { + "start": 44862.18, + "end": 44863.8, + "probability": 0.1643 + }, + { + "start": 44871.2, + "end": 44872.62, + "probability": 0.5249 + }, + { + "start": 44872.76, + "end": 44874.62, + "probability": 0.972 + }, + { + "start": 44875.38, + "end": 44889.82, + "probability": 0.6936 + }, + { + "start": 44889.82, + "end": 44891.1, + "probability": 0.1976 + }, + { + "start": 44891.22, + "end": 44892.38, + "probability": 0.5669 + }, + { + "start": 44892.46, + "end": 44897.57, + "probability": 0.4033 + }, + { + "start": 44902.15, + "end": 44903.24, + "probability": 0.7944 + }, + { + "start": 44907.7, + "end": 44908.3, + "probability": 0.158 + }, + { + "start": 44908.44, + "end": 44911.34, + "probability": 0.6117 + }, + { + "start": 44913.28, + "end": 44915.26, + "probability": 0.412 + }, + { + "start": 44915.3, + "end": 44916.14, + "probability": 0.9604 + }, + { + "start": 44916.26, + "end": 44921.14, + "probability": 0.895 + }, + { + "start": 44924.86, + "end": 44925.86, + "probability": 0.3236 + }, + { + "start": 44927.26, + "end": 44932.32, + "probability": 0.1104 + }, + { + "start": 44932.68, + "end": 44934.36, + "probability": 0.4602 + }, + { + "start": 44934.36, + "end": 44935.8, + "probability": 0.6277 + }, + { + "start": 44935.86, + "end": 44940.88, + "probability": 0.8678 + }, + { + "start": 44940.98, + "end": 44941.88, + "probability": 0.8397 + }, + { + "start": 44941.88, + "end": 44944.34, + "probability": 0.6097 + }, + { + "start": 44951.24, + "end": 44953.06, + "probability": 0.5953 + }, + { + "start": 44953.14, + "end": 44955.32, + "probability": 0.7974 + }, + { + "start": 44955.54, + "end": 44960.9, + "probability": 0.9583 + }, + { + "start": 44961.56, + "end": 44967.94, + "probability": 0.5844 + }, + { + "start": 44970.43, + "end": 44974.04, + "probability": 0.6144 + }, + { + "start": 44974.08, + "end": 44975.16, + "probability": 0.9 + }, + { + "start": 44975.28, + "end": 44991.44, + "probability": 0.8129 + }, + { + "start": 44991.44, + "end": 44991.5, + "probability": 0.1616 + }, + { + "start": 44991.5, + "end": 44993.08, + "probability": 0.4664 + }, + { + "start": 44993.08, + "end": 44994.12, + "probability": 0.6358 + }, + { + "start": 44994.26, + "end": 44997.46, + "probability": 0.9128 + }, + { + "start": 44997.46, + "end": 45004.72, + "probability": 0.5914 + }, + { + "start": 45015.34, + "end": 45017.62, + "probability": 0.6227 + }, + { + "start": 45017.7, + "end": 45018.88, + "probability": 0.8246 + }, + { + "start": 45018.94, + "end": 45023.28, + "probability": 0.9576 + }, + { + "start": 45024.14, + "end": 45027.35, + "probability": 0.973 + }, + { + "start": 45028.1, + "end": 45032.84, + "probability": 0.4168 + }, + { + "start": 45040.3, + "end": 45040.66, + "probability": 0.1562 + }, + { + "start": 45040.66, + "end": 45042.0, + "probability": 0.2122 + }, + { + "start": 45042.0, + "end": 45045.02, + "probability": 0.7222 + }, + { + "start": 45045.58, + "end": 45045.68, + "probability": 0.2962 + }, + { + "start": 45045.68, + "end": 45051.74, + "probability": 0.9015 + }, + { + "start": 45051.92, + "end": 45054.06, + "probability": 0.6336 + }, + { + "start": 45066.32, + "end": 45066.84, + "probability": 0.1606 + }, + { + "start": 45066.84, + "end": 45068.08, + "probability": 0.348 + }, + { + "start": 45068.18, + "end": 45069.32, + "probability": 0.6116 + }, + { + "start": 45069.38, + "end": 45072.36, + "probability": 0.6054 + }, + { + "start": 45072.36, + "end": 45085.82, + "probability": 0.4764 + }, + { + "start": 45085.82, + "end": 45087.3, + "probability": 0.313 + }, + { + "start": 45087.36, + "end": 45088.5, + "probability": 0.8785 + }, + { + "start": 45088.52, + "end": 45092.98, + "probability": 0.9232 + }, + { + "start": 45093.76, + "end": 45097.26, + "probability": 0.454 + }, + { + "start": 45097.26, + "end": 45098.8, + "probability": 0.1426 + }, + { + "start": 45107.28, + "end": 45108.58, + "probability": 0.8225 + }, + { + "start": 45108.64, + "end": 45112.6, + "probability": 0.8852 + }, + { + "start": 45113.39, + "end": 45117.52, + "probability": 0.9409 + }, + { + "start": 45119.44, + "end": 45120.56, + "probability": 0.1209 + }, + { + "start": 45126.56, + "end": 45128.46, + "probability": 0.4489 + }, + { + "start": 45128.48, + "end": 45129.78, + "probability": 0.6859 + }, + { + "start": 45129.82, + "end": 45135.34, + "probability": 0.9208 + }, + { + "start": 45135.92, + "end": 45140.46, + "probability": 0.366 + }, + { + "start": 45144.63, + "end": 45149.46, + "probability": 0.5989 + }, + { + "start": 45149.66, + "end": 45155.06, + "probability": 0.9326 + }, + { + "start": 45156.04, + "end": 45160.72, + "probability": 0.3112 + }, + { + "start": 45166.1, + "end": 45169.88, + "probability": 0.6802 + }, + { + "start": 45170.02, + "end": 45172.22, + "probability": 0.9375 + }, + { + "start": 45172.3, + "end": 45176.28, + "probability": 0.8602 + }, + { + "start": 45176.28, + "end": 45189.1, + "probability": 0.6713 + }, + { + "start": 45189.1, + "end": 45190.66, + "probability": 0.3061 + }, + { + "start": 45190.7, + "end": 45192.9, + "probability": 0.8848 + }, + { + "start": 45193.28, + "end": 45204.36, + "probability": 0.7164 + }, + { + "start": 45207.43, + "end": 45211.16, + "probability": 0.574 + }, + { + "start": 45211.32, + "end": 45213.14, + "probability": 0.9331 + }, + { + "start": 45213.2, + "end": 45213.62, + "probability": 0.9585 + }, + { + "start": 45214.14, + "end": 45219.08, + "probability": 0.8925 + }, + { + "start": 45219.74, + "end": 45224.9, + "probability": 0.361 + }, + { + "start": 45230.05, + "end": 45234.7, + "probability": 0.6831 + }, + { + "start": 45235.02, + "end": 45236.74, + "probability": 0.9412 + }, + { + "start": 45236.76, + "end": 45245.0, + "probability": 0.854 + }, + { + "start": 45245.0, + "end": 45245.99, + "probability": 0.1301 + }, + { + "start": 45247.46, + "end": 45251.24, + "probability": 0.498 + }, + { + "start": 45259.42, + "end": 45260.26, + "probability": 0.6066 + }, + { + "start": 45260.8, + "end": 45264.46, + "probability": 0.973 + }, + { + "start": 45264.84, + "end": 45268.72, + "probability": 0.9734 + }, + { + "start": 45269.4, + "end": 45272.56, + "probability": 0.4698 + }, + { + "start": 45273.42, + "end": 45274.88, + "probability": 0.3014 + }, + { + "start": 45277.54, + "end": 45280.5, + "probability": 0.2059 + }, + { + "start": 45281.21, + "end": 45285.46, + "probability": 0.5077 + }, + { + "start": 45285.64, + "end": 45288.08, + "probability": 0.7088 + }, + { + "start": 45288.6, + "end": 45288.6, + "probability": 0.3403 + }, + { + "start": 45288.6, + "end": 45297.58, + "probability": 0.9556 + }, + { + "start": 45309.84, + "end": 45310.54, + "probability": 0.1464 + }, + { + "start": 45310.54, + "end": 45313.86, + "probability": 0.5422 + }, + { + "start": 45314.3, + "end": 45315.56, + "probability": 0.9741 + }, + { + "start": 45315.58, + "end": 45319.36, + "probability": 0.9157 + }, + { + "start": 45320.74, + "end": 45323.76, + "probability": 0.9803 + }, + { + "start": 45324.42, + "end": 45326.9, + "probability": 0.5336 + }, + { + "start": 45335.98, + "end": 45342.22, + "probability": 0.3145 + }, + { + "start": 45344.9, + "end": 45348.7, + "probability": 0.5049 + }, + { + "start": 45349.2, + "end": 45353.08, + "probability": 0.4308 + }, + { + "start": 45353.08, + "end": 45357.0, + "probability": 0.8153 + }, + { + "start": 45357.16, + "end": 45357.92, + "probability": 0.8152 + }, + { + "start": 45358.4, + "end": 45362.76, + "probability": 0.539 + }, + { + "start": 45370.96, + "end": 45372.36, + "probability": 0.1402 + }, + { + "start": 45374.88, + "end": 45377.02, + "probability": 0.4245 + }, + { + "start": 45377.04, + "end": 45378.26, + "probability": 0.8979 + }, + { + "start": 45378.74, + "end": 45382.6, + "probability": 0.844 + }, + { + "start": 45382.6, + "end": 45387.68, + "probability": 0.4767 + }, + { + "start": 45387.68, + "end": 45389.4, + "probability": 0.2175 + }, + { + "start": 45389.47, + "end": 45390.56, + "probability": 0.7833 + }, + { + "start": 45391.02, + "end": 45391.04, + "probability": 0.0012 + }, + { + "start": 45407.06, + "end": 45412.64, + "probability": 0.7057 + }, + { + "start": 45412.9, + "end": 45415.26, + "probability": 0.6394 + }, + { + "start": 45426.6, + "end": 45427.06, + "probability": 0.2589 + }, + { + "start": 45427.06, + "end": 45428.5, + "probability": 0.2702 + }, + { + "start": 45428.5, + "end": 45430.08, + "probability": 0.8035 + }, + { + "start": 45430.38, + "end": 45448.58, + "probability": 0.7394 + }, + { + "start": 45448.58, + "end": 45449.78, + "probability": 0.1395 + }, + { + "start": 45449.92, + "end": 45451.1, + "probability": 0.5739 + }, + { + "start": 45451.16, + "end": 45460.64, + "probability": 0.587 + }, + { + "start": 45469.96, + "end": 45472.52, + "probability": 0.4854 + }, + { + "start": 45472.8, + "end": 45474.2, + "probability": 0.9382 + }, + { + "start": 45474.2, + "end": 45481.14, + "probability": 0.7776 + }, + { + "start": 45481.64, + "end": 45485.22, + "probability": 0.1866 + }, + { + "start": 45485.62, + "end": 45487.52, + "probability": 0.8367 + }, + { + "start": 45488.3, + "end": 45488.66, + "probability": 0.4945 + }, + { + "start": 45488.8, + "end": 45489.06, + "probability": 0.7329 + }, + { + "start": 45496.26, + "end": 45511.0, + "probability": 0.5582 + }, + { + "start": 45511.0, + "end": 45512.18, + "probability": 0.4478 + }, + { + "start": 45512.18, + "end": 45513.34, + "probability": 0.7663 + }, + { + "start": 45513.72, + "end": 45517.4, + "probability": 0.9641 + }, + { + "start": 45517.4, + "end": 45523.4, + "probability": 0.6215 + }, + { + "start": 45530.24, + "end": 45533.56, + "probability": 0.8363 + }, + { + "start": 45533.68, + "end": 45535.06, + "probability": 0.8339 + }, + { + "start": 45535.12, + "end": 45539.92, + "probability": 0.9832 + }, + { + "start": 45540.8, + "end": 45543.58, + "probability": 0.986 + }, + { + "start": 45544.02, + "end": 45553.36, + "probability": 0.3396 + }, + { + "start": 45556.04, + "end": 45556.88, + "probability": 0.1913 + }, + { + "start": 45556.88, + "end": 45558.94, + "probability": 0.539 + }, + { + "start": 45558.96, + "end": 45561.98, + "probability": 0.6797 + }, + { + "start": 45561.98, + "end": 45566.84, + "probability": 0.9043 + }, + { + "start": 45566.96, + "end": 45569.78, + "probability": 0.9002 + }, + { + "start": 45581.8, + "end": 45582.66, + "probability": 0.1551 + }, + { + "start": 45582.66, + "end": 45584.32, + "probability": 0.2192 + }, + { + "start": 45584.46, + "end": 45585.52, + "probability": 0.8804 + }, + { + "start": 45586.14, + "end": 45590.44, + "probability": 0.9028 + }, + { + "start": 45590.84, + "end": 45591.64, + "probability": 0.8179 + }, + { + "start": 45596.52, + "end": 45596.8, + "probability": 0.4711 + }, + { + "start": 45603.88, + "end": 45605.54, + "probability": 0.0003 + }, + { + "start": 45605.54, + "end": 45608.04, + "probability": 0.5729 + }, + { + "start": 45608.32, + "end": 45609.62, + "probability": 0.7912 + }, + { + "start": 45610.1, + "end": 45614.58, + "probability": 0.9644 + }, + { + "start": 45615.42, + "end": 45619.44, + "probability": 0.9124 + }, + { + "start": 45619.58, + "end": 45620.92, + "probability": 0.6759 + }, + { + "start": 45621.48, + "end": 45624.04, + "probability": 0.0722 + }, + { + "start": 45627.24, + "end": 45631.38, + "probability": 0.151 + }, + { + "start": 45631.38, + "end": 45634.44, + "probability": 0.6754 + }, + { + "start": 45634.8, + "end": 45638.44, + "probability": 0.8003 + }, + { + "start": 45638.44, + "end": 45643.52, + "probability": 0.9114 + }, + { + "start": 45643.7, + "end": 45644.06, + "probability": 0.8335 + }, + { + "start": 45658.36, + "end": 45658.92, + "probability": 0.1805 + }, + { + "start": 45658.92, + "end": 45660.7, + "probability": 0.2819 + }, + { + "start": 45661.28, + "end": 45662.62, + "probability": 0.8423 + }, + { + "start": 45662.76, + "end": 45668.52, + "probability": 0.887 + }, + { + "start": 45673.9, + "end": 45674.26, + "probability": 0.7083 + }, + { + "start": 45680.14, + "end": 45681.36, + "probability": 0.0 + }, + { + "start": 45681.36, + "end": 45682.68, + "probability": 0.4837 + }, + { + "start": 45683.32, + "end": 45684.82, + "probability": 0.9047 + }, + { + "start": 45685.0, + "end": 45688.48, + "probability": 0.4849 + }, + { + "start": 45688.48, + "end": 45691.36, + "probability": 0.4786 + }, + { + "start": 45691.36, + "end": 45691.82, + "probability": 0.5236 + }, + { + "start": 45692.38, + "end": 45693.44, + "probability": 0.1076 + }, + { + "start": 45704.38, + "end": 45706.16, + "probability": 0.7251 + }, + { + "start": 45706.3, + "end": 45709.86, + "probability": 0.9648 + }, + { + "start": 45709.86, + "end": 45725.16, + "probability": 0.6132 + }, + { + "start": 45725.16, + "end": 45726.1, + "probability": 0.3286 + }, + { + "start": 45726.38, + "end": 45736.2, + "probability": 0.6687 + }, + { + "start": 45742.58, + "end": 45749.38, + "probability": 0.8728 + }, + { + "start": 45749.9, + "end": 45755.28, + "probability": 0.5896 + }, + { + "start": 45755.44, + "end": 45763.28, + "probability": 0.3062 + }, + { + "start": 45763.64, + "end": 45763.64, + "probability": 0.0316 + }, + { + "start": 45771.96, + "end": 45776.74, + "probability": 0.8659 + }, + { + "start": 45777.54, + "end": 45780.0, + "probability": 0.9849 + }, + { + "start": 45780.48, + "end": 45783.34, + "probability": 0.4427 + }, + { + "start": 45784.14, + "end": 45785.5, + "probability": 0.1572 + }, + { + "start": 45785.64, + "end": 45787.04, + "probability": 0.2624 + }, + { + "start": 45794.98, + "end": 45795.84, + "probability": 0.0897 + }, + { + "start": 45797.24, + "end": 45798.74, + "probability": 0.6142 + }, + { + "start": 45799.38, + "end": 45799.4, + "probability": 0.0622 + }, + { + "start": 45799.4, + "end": 45805.7, + "probability": 0.8955 + }, + { + "start": 45806.32, + "end": 45810.24, + "probability": 0.1154 + }, + { + "start": 45820.1, + "end": 45820.9, + "probability": 0.0817 + }, + { + "start": 45821.36, + "end": 45823.16, + "probability": 0.4329 + }, + { + "start": 45823.24, + "end": 45824.38, + "probability": 0.897 + }, + { + "start": 45824.44, + "end": 45833.9, + "probability": 0.6839 + }, + { + "start": 45841.06, + "end": 45842.38, + "probability": 0.0821 + }, + { + "start": 45842.38, + "end": 45846.66, + "probability": 0.6501 + }, + { + "start": 45847.08, + "end": 45851.66, + "probability": 0.9114 + }, + { + "start": 45852.08, + "end": 45853.74, + "probability": 0.4481 + }, + { + "start": 45856.32, + "end": 45860.82, + "probability": 0.3969 + }, + { + "start": 45860.92, + "end": 45862.64, + "probability": 0.1154 + }, + { + "start": 45862.66, + "end": 45863.38, + "probability": 0.4574 + }, + { + "start": 45865.91, + "end": 45869.01, + "probability": 0.6901 + }, + { + "start": 45869.56, + "end": 45871.62, + "probability": 0.2422 + }, + { + "start": 45871.92, + "end": 45872.9, + "probability": 0.2693 + }, + { + "start": 45873.8, + "end": 45875.5, + "probability": 0.8119 + }, + { + "start": 45876.22, + "end": 45879.44, + "probability": 0.9174 + }, + { + "start": 45879.56, + "end": 45882.44, + "probability": 0.7421 + }, + { + "start": 45883.08, + "end": 45886.88, + "probability": 0.9874 + }, + { + "start": 45886.88, + "end": 45890.76, + "probability": 0.9733 + }, + { + "start": 45891.3, + "end": 45898.02, + "probability": 0.463 + }, + { + "start": 45904.7, + "end": 45909.02, + "probability": 0.2538 + }, + { + "start": 45909.38, + "end": 45910.34, + "probability": 0.2565 + }, + { + "start": 45910.34, + "end": 45910.94, + "probability": 0.2675 + }, + { + "start": 45914.44, + "end": 45915.54, + "probability": 0.2321 + }, + { + "start": 45915.76, + "end": 45916.72, + "probability": 0.2926 + }, + { + "start": 45916.88, + "end": 45921.16, + "probability": 0.8267 + }, + { + "start": 45921.6, + "end": 45923.4, + "probability": 0.5005 + }, + { + "start": 45924.12, + "end": 45926.92, + "probability": 0.9525 + }, + { + "start": 45927.08, + "end": 45929.14, + "probability": 0.7595 + }, + { + "start": 46167.33, + "end": 46167.33, + "probability": 0.0 + } + ], + "segments_count": 16485, + "words_count": 82615, + "avg_words_per_segment": 5.0115, + "avg_segment_duration": 2.002, + "avg_words_per_minute": 107.3681, + "plenum_id": "135114", + "duration": 46167.33, + "title": null, + "plenum_date": "2025-01-22" +} \ No newline at end of file