diff --git "a/19445/metadata.json" "b/19445/metadata.json" new file mode 100644--- /dev/null +++ "b/19445/metadata.json" @@ -0,0 +1,35267 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "19445", + "quality_score": 0.8905, + "per_segment_quality_scores": [ + { + "start": 55.24, + "end": 55.84, + "probability": 0.1246 + }, + { + "start": 55.84, + "end": 56.04, + "probability": 0.3194 + }, + { + "start": 56.04, + "end": 56.04, + "probability": 0.2791 + }, + { + "start": 56.04, + "end": 56.04, + "probability": 0.1031 + }, + { + "start": 56.04, + "end": 56.04, + "probability": 0.1237 + }, + { + "start": 56.04, + "end": 56.62, + "probability": 0.0263 + }, + { + "start": 57.32, + "end": 59.43, + "probability": 0.8675 + }, + { + "start": 60.64, + "end": 63.42, + "probability": 0.6215 + }, + { + "start": 63.86, + "end": 64.22, + "probability": 0.6678 + }, + { + "start": 64.72, + "end": 65.76, + "probability": 0.8645 + }, + { + "start": 66.14, + "end": 67.52, + "probability": 0.8165 + }, + { + "start": 67.64, + "end": 69.28, + "probability": 0.7859 + }, + { + "start": 69.56, + "end": 70.2, + "probability": 0.7518 + }, + { + "start": 70.78, + "end": 71.64, + "probability": 0.9561 + }, + { + "start": 74.26, + "end": 75.26, + "probability": 0.2268 + }, + { + "start": 75.92, + "end": 76.56, + "probability": 0.8024 + }, + { + "start": 76.56, + "end": 78.03, + "probability": 0.633 + }, + { + "start": 78.98, + "end": 80.14, + "probability": 0.7952 + }, + { + "start": 80.7, + "end": 82.36, + "probability": 0.2931 + }, + { + "start": 82.9, + "end": 84.66, + "probability": 0.9949 + }, + { + "start": 85.42, + "end": 85.86, + "probability": 0.4758 + }, + { + "start": 86.54, + "end": 86.56, + "probability": 0.6576 + }, + { + "start": 89.82, + "end": 90.46, + "probability": 0.0667 + }, + { + "start": 91.16, + "end": 94.32, + "probability": 0.0088 + }, + { + "start": 96.27, + "end": 101.64, + "probability": 0.199 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 140.08, + "end": 143.94, + "probability": 0.401 + }, + { + "start": 145.0, + "end": 145.0, + "probability": 0.1115 + }, + { + "start": 145.0, + "end": 145.0, + "probability": 0.136 + }, + { + "start": 145.0, + "end": 145.0, + "probability": 0.5263 + }, + { + "start": 145.0, + "end": 146.56, + "probability": 0.0264 + }, + { + "start": 150.1, + "end": 150.2, + "probability": 0.1575 + }, + { + "start": 150.2, + "end": 150.4, + "probability": 0.0669 + }, + { + "start": 150.4, + "end": 151.2, + "probability": 0.08 + }, + { + "start": 151.2, + "end": 153.36, + "probability": 0.0192 + }, + { + "start": 155.84, + "end": 156.72, + "probability": 0.0122 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.0, + "end": 257.0, + "probability": 0.0 + }, + { + "start": 257.32, + "end": 258.76, + "probability": 0.051 + }, + { + "start": 258.9, + "end": 259.0, + "probability": 0.0313 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0673 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0254 + }, + { + "start": 259.0, + "end": 260.06, + "probability": 0.1494 + }, + { + "start": 260.98, + "end": 263.3, + "probability": 0.6818 + }, + { + "start": 263.92, + "end": 266.08, + "probability": 0.8635 + }, + { + "start": 266.66, + "end": 268.02, + "probability": 0.08 + }, + { + "start": 268.72, + "end": 270.44, + "probability": 0.1611 + }, + { + "start": 270.44, + "end": 272.58, + "probability": 0.8534 + }, + { + "start": 272.58, + "end": 274.34, + "probability": 0.6427 + }, + { + "start": 274.92, + "end": 276.04, + "probability": 0.9736 + }, + { + "start": 276.22, + "end": 279.62, + "probability": 0.6323 + }, + { + "start": 279.62, + "end": 280.68, + "probability": 0.2467 + }, + { + "start": 280.92, + "end": 283.16, + "probability": 0.9245 + }, + { + "start": 283.34, + "end": 284.1, + "probability": 0.2615 + }, + { + "start": 284.18, + "end": 284.8, + "probability": 0.1384 + }, + { + "start": 285.48, + "end": 295.22, + "probability": 0.9118 + }, + { + "start": 295.78, + "end": 299.21, + "probability": 0.9425 + }, + { + "start": 301.54, + "end": 306.68, + "probability": 0.6956 + }, + { + "start": 307.42, + "end": 311.04, + "probability": 0.6729 + }, + { + "start": 311.7, + "end": 315.34, + "probability": 0.9641 + }, + { + "start": 315.48, + "end": 315.98, + "probability": 0.8789 + }, + { + "start": 317.02, + "end": 321.32, + "probability": 0.953 + }, + { + "start": 323.18, + "end": 330.2, + "probability": 0.757 + }, + { + "start": 330.78, + "end": 331.54, + "probability": 0.9172 + }, + { + "start": 336.24, + "end": 340.32, + "probability": 0.6158 + }, + { + "start": 340.54, + "end": 343.84, + "probability": 0.7494 + }, + { + "start": 345.38, + "end": 346.62, + "probability": 0.4007 + }, + { + "start": 347.2, + "end": 354.54, + "probability": 0.9021 + }, + { + "start": 355.14, + "end": 358.48, + "probability": 0.4295 + }, + { + "start": 359.26, + "end": 361.02, + "probability": 0.7519 + }, + { + "start": 362.2, + "end": 365.68, + "probability": 0.7678 + }, + { + "start": 365.68, + "end": 369.72, + "probability": 0.9689 + }, + { + "start": 370.84, + "end": 375.58, + "probability": 0.7621 + }, + { + "start": 376.38, + "end": 380.18, + "probability": 0.9682 + }, + { + "start": 380.8, + "end": 382.1, + "probability": 0.8782 + }, + { + "start": 382.84, + "end": 385.92, + "probability": 0.9966 + }, + { + "start": 386.74, + "end": 388.66, + "probability": 0.7613 + }, + { + "start": 389.56, + "end": 390.92, + "probability": 0.5719 + }, + { + "start": 391.5, + "end": 393.36, + "probability": 0.9902 + }, + { + "start": 394.02, + "end": 399.52, + "probability": 0.753 + }, + { + "start": 400.14, + "end": 403.24, + "probability": 0.8569 + }, + { + "start": 403.7, + "end": 412.04, + "probability": 0.9368 + }, + { + "start": 412.78, + "end": 417.09, + "probability": 0.9976 + }, + { + "start": 418.06, + "end": 418.78, + "probability": 0.852 + }, + { + "start": 419.7, + "end": 420.54, + "probability": 0.9514 + }, + { + "start": 423.44, + "end": 425.46, + "probability": 0.7528 + }, + { + "start": 425.94, + "end": 429.96, + "probability": 0.9246 + }, + { + "start": 430.52, + "end": 432.76, + "probability": 0.9775 + }, + { + "start": 433.28, + "end": 435.66, + "probability": 0.9303 + }, + { + "start": 436.24, + "end": 439.94, + "probability": 0.8993 + }, + { + "start": 440.7, + "end": 444.98, + "probability": 0.8708 + }, + { + "start": 445.76, + "end": 448.48, + "probability": 0.8347 + }, + { + "start": 449.28, + "end": 452.68, + "probability": 0.8594 + }, + { + "start": 453.2, + "end": 454.9, + "probability": 0.9604 + }, + { + "start": 455.92, + "end": 458.3, + "probability": 0.8608 + }, + { + "start": 459.42, + "end": 464.26, + "probability": 0.9652 + }, + { + "start": 464.26, + "end": 468.86, + "probability": 0.7371 + }, + { + "start": 469.48, + "end": 472.88, + "probability": 0.9842 + }, + { + "start": 473.68, + "end": 477.96, + "probability": 0.9792 + }, + { + "start": 477.96, + "end": 481.96, + "probability": 0.9808 + }, + { + "start": 482.58, + "end": 484.56, + "probability": 0.7707 + }, + { + "start": 485.76, + "end": 492.52, + "probability": 0.8609 + }, + { + "start": 493.32, + "end": 498.92, + "probability": 0.9904 + }, + { + "start": 499.76, + "end": 501.88, + "probability": 0.8513 + }, + { + "start": 502.42, + "end": 505.78, + "probability": 0.949 + }, + { + "start": 506.58, + "end": 511.74, + "probability": 0.9614 + }, + { + "start": 512.34, + "end": 518.64, + "probability": 0.9471 + }, + { + "start": 519.38, + "end": 522.4, + "probability": 0.9645 + }, + { + "start": 522.54, + "end": 527.52, + "probability": 0.994 + }, + { + "start": 528.06, + "end": 528.64, + "probability": 0.513 + }, + { + "start": 529.22, + "end": 531.28, + "probability": 0.8357 + }, + { + "start": 532.22, + "end": 536.48, + "probability": 0.7232 + }, + { + "start": 537.54, + "end": 541.52, + "probability": 0.8296 + }, + { + "start": 542.22, + "end": 545.72, + "probability": 0.9449 + }, + { + "start": 546.3, + "end": 548.38, + "probability": 0.3577 + }, + { + "start": 549.28, + "end": 552.92, + "probability": 0.9863 + }, + { + "start": 554.46, + "end": 559.42, + "probability": 0.8918 + }, + { + "start": 560.14, + "end": 565.44, + "probability": 0.8882 + }, + { + "start": 566.56, + "end": 573.06, + "probability": 0.9099 + }, + { + "start": 573.52, + "end": 575.58, + "probability": 0.9237 + }, + { + "start": 576.18, + "end": 577.9, + "probability": 0.674 + }, + { + "start": 578.86, + "end": 580.18, + "probability": 0.9842 + }, + { + "start": 581.2, + "end": 586.22, + "probability": 0.9863 + }, + { + "start": 586.88, + "end": 587.34, + "probability": 0.9835 + }, + { + "start": 588.1, + "end": 589.76, + "probability": 0.5809 + }, + { + "start": 590.0, + "end": 595.86, + "probability": 0.7763 + }, + { + "start": 597.82, + "end": 600.06, + "probability": 0.9847 + }, + { + "start": 601.06, + "end": 606.44, + "probability": 0.9171 + }, + { + "start": 607.04, + "end": 608.12, + "probability": 0.9704 + }, + { + "start": 608.64, + "end": 611.28, + "probability": 0.9409 + }, + { + "start": 612.0, + "end": 617.76, + "probability": 0.9535 + }, + { + "start": 617.76, + "end": 624.04, + "probability": 0.8682 + }, + { + "start": 624.94, + "end": 625.14, + "probability": 0.5084 + }, + { + "start": 626.0, + "end": 630.48, + "probability": 0.9117 + }, + { + "start": 632.22, + "end": 636.18, + "probability": 0.9966 + }, + { + "start": 636.9, + "end": 638.4, + "probability": 0.7887 + }, + { + "start": 639.04, + "end": 642.78, + "probability": 0.9517 + }, + { + "start": 644.16, + "end": 650.12, + "probability": 0.9875 + }, + { + "start": 650.66, + "end": 652.4, + "probability": 0.8932 + }, + { + "start": 653.86, + "end": 659.08, + "probability": 0.9971 + }, + { + "start": 660.42, + "end": 663.66, + "probability": 0.9606 + }, + { + "start": 663.76, + "end": 663.94, + "probability": 0.1414 + }, + { + "start": 664.72, + "end": 666.75, + "probability": 0.8673 + }, + { + "start": 667.38, + "end": 668.7, + "probability": 0.7716 + }, + { + "start": 669.36, + "end": 673.68, + "probability": 0.9112 + }, + { + "start": 674.08, + "end": 674.92, + "probability": 0.9501 + }, + { + "start": 675.06, + "end": 677.04, + "probability": 0.98 + }, + { + "start": 678.14, + "end": 680.22, + "probability": 0.9356 + }, + { + "start": 681.86, + "end": 686.42, + "probability": 0.9711 + }, + { + "start": 696.02, + "end": 696.48, + "probability": 0.513 + }, + { + "start": 699.66, + "end": 702.62, + "probability": 0.6939 + }, + { + "start": 706.76, + "end": 710.12, + "probability": 0.7981 + }, + { + "start": 711.68, + "end": 716.86, + "probability": 0.9967 + }, + { + "start": 718.24, + "end": 721.56, + "probability": 0.9495 + }, + { + "start": 722.52, + "end": 725.22, + "probability": 0.9951 + }, + { + "start": 725.84, + "end": 727.62, + "probability": 0.9917 + }, + { + "start": 728.2, + "end": 731.9, + "probability": 0.9873 + }, + { + "start": 732.66, + "end": 734.04, + "probability": 0.7923 + }, + { + "start": 734.64, + "end": 735.64, + "probability": 0.9409 + }, + { + "start": 736.04, + "end": 737.7, + "probability": 0.8514 + }, + { + "start": 738.23, + "end": 740.5, + "probability": 0.6746 + }, + { + "start": 740.5, + "end": 741.52, + "probability": 0.8132 + }, + { + "start": 741.9, + "end": 744.09, + "probability": 0.7068 + }, + { + "start": 744.62, + "end": 744.62, + "probability": 0.0235 + }, + { + "start": 744.62, + "end": 746.74, + "probability": 0.6417 + }, + { + "start": 746.84, + "end": 746.96, + "probability": 0.2162 + }, + { + "start": 746.96, + "end": 748.8, + "probability": 0.9677 + }, + { + "start": 750.2, + "end": 751.86, + "probability": 0.9416 + }, + { + "start": 752.8, + "end": 754.55, + "probability": 0.7117 + }, + { + "start": 755.3, + "end": 755.84, + "probability": 0.4936 + }, + { + "start": 757.36, + "end": 757.46, + "probability": 0.2588 + }, + { + "start": 757.64, + "end": 759.68, + "probability": 0.538 + }, + { + "start": 760.54, + "end": 762.9, + "probability": 0.0956 + }, + { + "start": 763.34, + "end": 765.62, + "probability": 0.7105 + }, + { + "start": 765.98, + "end": 767.34, + "probability": 0.9739 + }, + { + "start": 767.92, + "end": 768.74, + "probability": 0.8403 + }, + { + "start": 769.64, + "end": 771.44, + "probability": 0.9768 + }, + { + "start": 772.04, + "end": 773.02, + "probability": 0.7802 + }, + { + "start": 774.78, + "end": 776.88, + "probability": 0.9773 + }, + { + "start": 777.26, + "end": 778.34, + "probability": 0.8792 + }, + { + "start": 778.62, + "end": 779.64, + "probability": 0.7515 + }, + { + "start": 780.22, + "end": 782.78, + "probability": 0.8387 + }, + { + "start": 783.3, + "end": 786.67, + "probability": 0.937 + }, + { + "start": 787.32, + "end": 788.6, + "probability": 0.9108 + }, + { + "start": 789.46, + "end": 790.22, + "probability": 0.992 + }, + { + "start": 791.26, + "end": 792.8, + "probability": 0.7678 + }, + { + "start": 793.0, + "end": 793.7, + "probability": 0.7702 + }, + { + "start": 794.06, + "end": 794.66, + "probability": 0.897 + }, + { + "start": 795.08, + "end": 795.66, + "probability": 0.7427 + }, + { + "start": 796.94, + "end": 799.6, + "probability": 0.9886 + }, + { + "start": 800.24, + "end": 801.82, + "probability": 0.9129 + }, + { + "start": 802.18, + "end": 802.62, + "probability": 0.7458 + }, + { + "start": 804.08, + "end": 805.16, + "probability": 0.8539 + }, + { + "start": 805.26, + "end": 806.22, + "probability": 0.9397 + }, + { + "start": 806.44, + "end": 807.42, + "probability": 0.9366 + }, + { + "start": 807.64, + "end": 808.8, + "probability": 0.9438 + }, + { + "start": 809.06, + "end": 810.28, + "probability": 0.9366 + }, + { + "start": 811.16, + "end": 811.98, + "probability": 0.636 + }, + { + "start": 812.16, + "end": 813.04, + "probability": 0.5591 + }, + { + "start": 813.4, + "end": 813.9, + "probability": 0.5801 + }, + { + "start": 814.48, + "end": 815.96, + "probability": 0.6981 + }, + { + "start": 816.46, + "end": 816.76, + "probability": 0.9448 + }, + { + "start": 818.04, + "end": 820.12, + "probability": 0.943 + }, + { + "start": 820.88, + "end": 824.06, + "probability": 0.917 + }, + { + "start": 824.56, + "end": 826.79, + "probability": 0.967 + }, + { + "start": 827.44, + "end": 830.98, + "probability": 0.9883 + }, + { + "start": 831.22, + "end": 832.56, + "probability": 0.6092 + }, + { + "start": 833.02, + "end": 835.7, + "probability": 0.8267 + }, + { + "start": 836.2, + "end": 837.2, + "probability": 0.9424 + }, + { + "start": 837.9, + "end": 838.28, + "probability": 0.8329 + }, + { + "start": 839.5, + "end": 841.48, + "probability": 0.6619 + }, + { + "start": 842.44, + "end": 842.72, + "probability": 0.0616 + }, + { + "start": 844.28, + "end": 847.5, + "probability": 0.0737 + }, + { + "start": 848.02, + "end": 848.44, + "probability": 0.022 + }, + { + "start": 850.18, + "end": 852.12, + "probability": 0.2181 + }, + { + "start": 854.24, + "end": 855.7, + "probability": 0.2092 + }, + { + "start": 859.44, + "end": 860.22, + "probability": 0.1868 + }, + { + "start": 861.04, + "end": 863.18, + "probability": 0.7964 + }, + { + "start": 864.32, + "end": 865.62, + "probability": 0.9117 + }, + { + "start": 866.3, + "end": 870.84, + "probability": 0.5012 + }, + { + "start": 871.4, + "end": 872.64, + "probability": 0.1819 + }, + { + "start": 873.78, + "end": 874.08, + "probability": 0.0309 + }, + { + "start": 874.08, + "end": 876.7, + "probability": 0.9896 + }, + { + "start": 877.7, + "end": 881.46, + "probability": 0.7271 + }, + { + "start": 883.58, + "end": 887.94, + "probability": 0.8048 + }, + { + "start": 889.06, + "end": 895.44, + "probability": 0.8825 + }, + { + "start": 896.26, + "end": 899.74, + "probability": 0.8188 + }, + { + "start": 900.02, + "end": 900.62, + "probability": 0.606 + }, + { + "start": 902.18, + "end": 902.6, + "probability": 0.8433 + }, + { + "start": 903.14, + "end": 903.92, + "probability": 0.5926 + }, + { + "start": 906.14, + "end": 906.76, + "probability": 0.9036 + }, + { + "start": 906.96, + "end": 909.1, + "probability": 0.8506 + }, + { + "start": 910.8, + "end": 912.1, + "probability": 0.4003 + }, + { + "start": 913.3, + "end": 914.36, + "probability": 0.9199 + }, + { + "start": 915.04, + "end": 916.54, + "probability": 0.7227 + }, + { + "start": 917.24, + "end": 920.98, + "probability": 0.8583 + }, + { + "start": 920.98, + "end": 924.1, + "probability": 0.9882 + }, + { + "start": 924.72, + "end": 927.48, + "probability": 0.9972 + }, + { + "start": 928.3, + "end": 932.96, + "probability": 0.6669 + }, + { + "start": 933.72, + "end": 934.2, + "probability": 0.0958 + }, + { + "start": 934.32, + "end": 935.54, + "probability": 0.598 + }, + { + "start": 935.6, + "end": 935.84, + "probability": 0.7459 + }, + { + "start": 936.3, + "end": 936.58, + "probability": 0.7191 + }, + { + "start": 937.3, + "end": 938.4, + "probability": 0.3455 + }, + { + "start": 939.72, + "end": 940.78, + "probability": 0.9364 + }, + { + "start": 942.66, + "end": 944.72, + "probability": 0.8914 + }, + { + "start": 945.9, + "end": 947.88, + "probability": 0.657 + }, + { + "start": 949.6, + "end": 949.94, + "probability": 0.2767 + }, + { + "start": 954.2, + "end": 954.84, + "probability": 0.3972 + }, + { + "start": 955.3, + "end": 956.3, + "probability": 0.7445 + }, + { + "start": 956.3, + "end": 957.21, + "probability": 0.6904 + }, + { + "start": 957.82, + "end": 960.4, + "probability": 0.524 + }, + { + "start": 960.74, + "end": 960.74, + "probability": 0.0053 + }, + { + "start": 961.6, + "end": 962.56, + "probability": 0.8036 + }, + { + "start": 962.56, + "end": 965.26, + "probability": 0.7128 + }, + { + "start": 967.22, + "end": 968.1, + "probability": 0.6259 + }, + { + "start": 969.76, + "end": 973.74, + "probability": 0.8503 + }, + { + "start": 975.28, + "end": 977.08, + "probability": 0.9155 + }, + { + "start": 977.62, + "end": 978.78, + "probability": 0.9121 + }, + { + "start": 979.78, + "end": 982.71, + "probability": 0.936 + }, + { + "start": 984.66, + "end": 985.14, + "probability": 0.9237 + }, + { + "start": 986.4, + "end": 988.76, + "probability": 0.8462 + }, + { + "start": 991.08, + "end": 994.02, + "probability": 0.973 + }, + { + "start": 994.7, + "end": 996.68, + "probability": 0.9102 + }, + { + "start": 997.56, + "end": 998.86, + "probability": 0.9636 + }, + { + "start": 1002.2, + "end": 1003.37, + "probability": 0.8097 + }, + { + "start": 1004.52, + "end": 1010.4, + "probability": 0.9925 + }, + { + "start": 1013.28, + "end": 1016.78, + "probability": 0.8847 + }, + { + "start": 1018.82, + "end": 1021.98, + "probability": 0.9805 + }, + { + "start": 1023.42, + "end": 1024.84, + "probability": 0.9945 + }, + { + "start": 1027.4, + "end": 1030.88, + "probability": 0.7327 + }, + { + "start": 1032.08, + "end": 1033.3, + "probability": 0.3609 + }, + { + "start": 1034.54, + "end": 1035.28, + "probability": 0.7559 + }, + { + "start": 1036.54, + "end": 1037.18, + "probability": 0.9025 + }, + { + "start": 1038.28, + "end": 1042.08, + "probability": 0.8743 + }, + { + "start": 1043.22, + "end": 1045.32, + "probability": 0.522 + }, + { + "start": 1045.32, + "end": 1045.88, + "probability": 0.715 + }, + { + "start": 1046.22, + "end": 1047.34, + "probability": 0.4473 + }, + { + "start": 1047.38, + "end": 1048.02, + "probability": 0.7572 + }, + { + "start": 1048.14, + "end": 1049.6, + "probability": 0.9032 + }, + { + "start": 1051.12, + "end": 1053.04, + "probability": 0.8714 + }, + { + "start": 1053.62, + "end": 1055.74, + "probability": 0.9891 + }, + { + "start": 1058.52, + "end": 1059.3, + "probability": 0.9177 + }, + { + "start": 1059.4, + "end": 1060.36, + "probability": 0.7521 + }, + { + "start": 1060.74, + "end": 1064.48, + "probability": 0.8688 + }, + { + "start": 1065.88, + "end": 1067.18, + "probability": 0.6548 + }, + { + "start": 1068.36, + "end": 1071.64, + "probability": 0.9899 + }, + { + "start": 1072.52, + "end": 1075.92, + "probability": 0.6446 + }, + { + "start": 1077.1, + "end": 1081.66, + "probability": 0.9919 + }, + { + "start": 1083.34, + "end": 1085.88, + "probability": 0.9929 + }, + { + "start": 1087.1, + "end": 1088.24, + "probability": 0.9564 + }, + { + "start": 1089.28, + "end": 1091.74, + "probability": 0.9859 + }, + { + "start": 1092.48, + "end": 1093.9, + "probability": 0.9932 + }, + { + "start": 1095.68, + "end": 1096.66, + "probability": 0.8266 + }, + { + "start": 1097.38, + "end": 1099.06, + "probability": 0.6655 + }, + { + "start": 1100.74, + "end": 1101.52, + "probability": 0.7862 + }, + { + "start": 1102.54, + "end": 1103.62, + "probability": 0.9464 + }, + { + "start": 1104.34, + "end": 1105.28, + "probability": 0.9668 + }, + { + "start": 1105.46, + "end": 1106.96, + "probability": 0.9686 + }, + { + "start": 1107.38, + "end": 1110.68, + "probability": 0.7747 + }, + { + "start": 1111.32, + "end": 1114.32, + "probability": 0.9858 + }, + { + "start": 1114.98, + "end": 1115.22, + "probability": 0.6807 + }, + { + "start": 1116.02, + "end": 1116.56, + "probability": 0.8907 + }, + { + "start": 1118.7, + "end": 1119.16, + "probability": 0.9556 + }, + { + "start": 1120.28, + "end": 1121.6, + "probability": 0.9061 + }, + { + "start": 1123.2, + "end": 1125.08, + "probability": 0.9219 + }, + { + "start": 1126.5, + "end": 1128.18, + "probability": 0.9562 + }, + { + "start": 1129.24, + "end": 1131.88, + "probability": 0.9973 + }, + { + "start": 1133.12, + "end": 1135.68, + "probability": 0.9291 + }, + { + "start": 1137.08, + "end": 1137.86, + "probability": 0.5954 + }, + { + "start": 1138.88, + "end": 1141.76, + "probability": 0.8676 + }, + { + "start": 1146.16, + "end": 1151.66, + "probability": 0.9983 + }, + { + "start": 1153.98, + "end": 1154.24, + "probability": 0.6582 + }, + { + "start": 1155.0, + "end": 1156.14, + "probability": 0.5458 + }, + { + "start": 1157.48, + "end": 1163.54, + "probability": 0.9251 + }, + { + "start": 1164.66, + "end": 1165.66, + "probability": 0.9946 + }, + { + "start": 1165.94, + "end": 1169.47, + "probability": 0.9952 + }, + { + "start": 1170.66, + "end": 1171.3, + "probability": 0.9642 + }, + { + "start": 1173.1, + "end": 1174.38, + "probability": 0.7594 + }, + { + "start": 1175.86, + "end": 1177.38, + "probability": 0.9911 + }, + { + "start": 1179.64, + "end": 1185.9, + "probability": 0.9775 + }, + { + "start": 1187.14, + "end": 1187.86, + "probability": 0.9777 + }, + { + "start": 1188.46, + "end": 1189.26, + "probability": 0.9904 + }, + { + "start": 1190.14, + "end": 1193.4, + "probability": 0.8475 + }, + { + "start": 1194.52, + "end": 1195.62, + "probability": 0.712 + }, + { + "start": 1196.1, + "end": 1199.94, + "probability": 0.9871 + }, + { + "start": 1200.18, + "end": 1200.98, + "probability": 0.9536 + }, + { + "start": 1201.76, + "end": 1203.52, + "probability": 0.6829 + }, + { + "start": 1204.06, + "end": 1205.1, + "probability": 0.8765 + }, + { + "start": 1205.42, + "end": 1206.7, + "probability": 0.8452 + }, + { + "start": 1207.22, + "end": 1212.04, + "probability": 0.3399 + }, + { + "start": 1212.66, + "end": 1214.02, + "probability": 0.9884 + }, + { + "start": 1215.32, + "end": 1216.96, + "probability": 0.2461 + }, + { + "start": 1217.98, + "end": 1221.18, + "probability": 0.9832 + }, + { + "start": 1221.88, + "end": 1222.58, + "probability": 0.4904 + }, + { + "start": 1223.54, + "end": 1224.98, + "probability": 0.7974 + }, + { + "start": 1227.02, + "end": 1227.7, + "probability": 0.8737 + }, + { + "start": 1227.92, + "end": 1228.84, + "probability": 0.9838 + }, + { + "start": 1229.0, + "end": 1229.68, + "probability": 0.9741 + }, + { + "start": 1229.84, + "end": 1230.46, + "probability": 0.9636 + }, + { + "start": 1230.5, + "end": 1230.86, + "probability": 0.9428 + }, + { + "start": 1232.3, + "end": 1233.97, + "probability": 0.9107 + }, + { + "start": 1234.92, + "end": 1237.04, + "probability": 0.9731 + }, + { + "start": 1237.14, + "end": 1237.78, + "probability": 0.8237 + }, + { + "start": 1238.22, + "end": 1238.62, + "probability": 0.5398 + }, + { + "start": 1240.38, + "end": 1242.64, + "probability": 0.9989 + }, + { + "start": 1244.1, + "end": 1250.0, + "probability": 0.9993 + }, + { + "start": 1250.0, + "end": 1254.58, + "probability": 0.9731 + }, + { + "start": 1256.56, + "end": 1258.86, + "probability": 0.9854 + }, + { + "start": 1259.64, + "end": 1261.78, + "probability": 0.8835 + }, + { + "start": 1262.9, + "end": 1264.84, + "probability": 0.9438 + }, + { + "start": 1264.84, + "end": 1265.7, + "probability": 0.8375 + }, + { + "start": 1265.76, + "end": 1267.4, + "probability": 0.8256 + }, + { + "start": 1267.4, + "end": 1267.52, + "probability": 0.425 + }, + { + "start": 1267.6, + "end": 1267.62, + "probability": 0.6193 + }, + { + "start": 1267.62, + "end": 1268.88, + "probability": 0.508 + }, + { + "start": 1270.36, + "end": 1272.2, + "probability": 0.0688 + }, + { + "start": 1272.2, + "end": 1273.78, + "probability": 0.26 + }, + { + "start": 1273.86, + "end": 1276.7, + "probability": 0.4843 + }, + { + "start": 1276.8, + "end": 1277.16, + "probability": 0.9198 + }, + { + "start": 1277.2, + "end": 1278.3, + "probability": 0.7216 + }, + { + "start": 1279.68, + "end": 1281.06, + "probability": 0.5714 + }, + { + "start": 1286.98, + "end": 1288.58, + "probability": 0.5406 + }, + { + "start": 1292.0, + "end": 1296.58, + "probability": 0.9875 + }, + { + "start": 1297.88, + "end": 1303.88, + "probability": 0.5197 + }, + { + "start": 1304.06, + "end": 1304.92, + "probability": 0.8249 + }, + { + "start": 1307.44, + "end": 1309.12, + "probability": 0.9671 + }, + { + "start": 1309.98, + "end": 1310.66, + "probability": 0.8685 + }, + { + "start": 1311.94, + "end": 1313.16, + "probability": 0.9041 + }, + { + "start": 1313.96, + "end": 1314.94, + "probability": 0.8962 + }, + { + "start": 1315.14, + "end": 1315.46, + "probability": 0.6038 + }, + { + "start": 1315.48, + "end": 1317.6, + "probability": 0.9979 + }, + { + "start": 1319.36, + "end": 1320.18, + "probability": 0.554 + }, + { + "start": 1321.02, + "end": 1325.28, + "probability": 0.9928 + }, + { + "start": 1325.9, + "end": 1327.66, + "probability": 0.8281 + }, + { + "start": 1328.52, + "end": 1330.12, + "probability": 0.2646 + }, + { + "start": 1331.38, + "end": 1335.84, + "probability": 0.8265 + }, + { + "start": 1337.42, + "end": 1340.02, + "probability": 0.8796 + }, + { + "start": 1341.48, + "end": 1347.08, + "probability": 0.9916 + }, + { + "start": 1349.62, + "end": 1355.58, + "probability": 0.814 + }, + { + "start": 1356.14, + "end": 1358.92, + "probability": 0.769 + }, + { + "start": 1359.76, + "end": 1362.0, + "probability": 0.9128 + }, + { + "start": 1364.68, + "end": 1367.44, + "probability": 0.7025 + }, + { + "start": 1368.16, + "end": 1371.12, + "probability": 0.9455 + }, + { + "start": 1373.88, + "end": 1376.02, + "probability": 0.7728 + }, + { + "start": 1376.74, + "end": 1378.3, + "probability": 0.7698 + }, + { + "start": 1379.04, + "end": 1381.4, + "probability": 0.823 + }, + { + "start": 1382.16, + "end": 1382.64, + "probability": 0.5241 + }, + { + "start": 1383.43, + "end": 1386.3, + "probability": 0.901 + }, + { + "start": 1387.18, + "end": 1388.06, + "probability": 0.9376 + }, + { + "start": 1389.08, + "end": 1390.42, + "probability": 0.9727 + }, + { + "start": 1391.6, + "end": 1393.14, + "probability": 0.9589 + }, + { + "start": 1393.9, + "end": 1395.4, + "probability": 0.9651 + }, + { + "start": 1396.58, + "end": 1398.7, + "probability": 0.9954 + }, + { + "start": 1399.84, + "end": 1401.82, + "probability": 0.8195 + }, + { + "start": 1402.4, + "end": 1404.46, + "probability": 0.7786 + }, + { + "start": 1405.54, + "end": 1406.7, + "probability": 0.8108 + }, + { + "start": 1407.88, + "end": 1411.58, + "probability": 0.916 + }, + { + "start": 1412.36, + "end": 1413.42, + "probability": 0.861 + }, + { + "start": 1415.98, + "end": 1416.82, + "probability": 0.9454 + }, + { + "start": 1418.14, + "end": 1419.38, + "probability": 0.7127 + }, + { + "start": 1420.78, + "end": 1424.86, + "probability": 0.9964 + }, + { + "start": 1425.66, + "end": 1427.1, + "probability": 0.991 + }, + { + "start": 1427.66, + "end": 1429.08, + "probability": 0.9666 + }, + { + "start": 1429.66, + "end": 1430.86, + "probability": 0.5473 + }, + { + "start": 1431.96, + "end": 1435.75, + "probability": 0.857 + }, + { + "start": 1440.14, + "end": 1441.18, + "probability": 0.9845 + }, + { + "start": 1441.82, + "end": 1442.44, + "probability": 0.6323 + }, + { + "start": 1443.48, + "end": 1446.1, + "probability": 0.991 + }, + { + "start": 1447.12, + "end": 1448.16, + "probability": 0.9852 + }, + { + "start": 1448.82, + "end": 1450.04, + "probability": 0.8611 + }, + { + "start": 1450.78, + "end": 1454.84, + "probability": 0.9762 + }, + { + "start": 1455.38, + "end": 1461.08, + "probability": 0.9964 + }, + { + "start": 1461.9, + "end": 1468.96, + "probability": 0.9996 + }, + { + "start": 1470.52, + "end": 1475.64, + "probability": 0.9792 + }, + { + "start": 1476.48, + "end": 1477.74, + "probability": 0.9587 + }, + { + "start": 1478.3, + "end": 1478.84, + "probability": 0.5024 + }, + { + "start": 1481.5, + "end": 1483.08, + "probability": 0.9961 + }, + { + "start": 1486.66, + "end": 1487.4, + "probability": 0.7094 + }, + { + "start": 1488.94, + "end": 1492.3, + "probability": 0.6856 + }, + { + "start": 1492.96, + "end": 1495.9, + "probability": 0.9746 + }, + { + "start": 1496.24, + "end": 1497.45, + "probability": 0.8471 + }, + { + "start": 1497.98, + "end": 1499.56, + "probability": 0.6043 + }, + { + "start": 1500.6, + "end": 1502.02, + "probability": 0.9814 + }, + { + "start": 1504.14, + "end": 1505.85, + "probability": 0.8171 + }, + { + "start": 1507.6, + "end": 1509.94, + "probability": 0.9492 + }, + { + "start": 1511.22, + "end": 1515.66, + "probability": 0.9705 + }, + { + "start": 1516.84, + "end": 1519.2, + "probability": 0.957 + }, + { + "start": 1519.44, + "end": 1521.68, + "probability": 0.9579 + }, + { + "start": 1524.8, + "end": 1526.41, + "probability": 0.9919 + }, + { + "start": 1529.28, + "end": 1530.8, + "probability": 0.4863 + }, + { + "start": 1532.1, + "end": 1534.04, + "probability": 0.652 + }, + { + "start": 1535.4, + "end": 1537.88, + "probability": 0.9927 + }, + { + "start": 1537.88, + "end": 1541.1, + "probability": 0.9977 + }, + { + "start": 1543.08, + "end": 1543.94, + "probability": 0.9594 + }, + { + "start": 1545.18, + "end": 1546.5, + "probability": 0.6044 + }, + { + "start": 1547.26, + "end": 1549.36, + "probability": 0.992 + }, + { + "start": 1550.04, + "end": 1551.72, + "probability": 0.9681 + }, + { + "start": 1552.74, + "end": 1554.92, + "probability": 0.5716 + }, + { + "start": 1555.66, + "end": 1560.1, + "probability": 0.9922 + }, + { + "start": 1560.18, + "end": 1564.74, + "probability": 0.8695 + }, + { + "start": 1565.04, + "end": 1565.74, + "probability": 0.9958 + }, + { + "start": 1568.68, + "end": 1569.0, + "probability": 0.9114 + }, + { + "start": 1571.24, + "end": 1575.28, + "probability": 0.9988 + }, + { + "start": 1576.84, + "end": 1578.34, + "probability": 0.9993 + }, + { + "start": 1579.4, + "end": 1585.42, + "probability": 0.9991 + }, + { + "start": 1587.34, + "end": 1588.8, + "probability": 0.9719 + }, + { + "start": 1589.98, + "end": 1590.9, + "probability": 0.7027 + }, + { + "start": 1591.08, + "end": 1591.62, + "probability": 0.7475 + }, + { + "start": 1591.96, + "end": 1594.62, + "probability": 0.809 + }, + { + "start": 1595.1, + "end": 1595.1, + "probability": 0.1249 + }, + { + "start": 1595.1, + "end": 1596.39, + "probability": 0.7441 + }, + { + "start": 1597.68, + "end": 1598.44, + "probability": 0.91 + }, + { + "start": 1598.64, + "end": 1599.72, + "probability": 0.7323 + }, + { + "start": 1599.84, + "end": 1600.82, + "probability": 0.5657 + }, + { + "start": 1601.04, + "end": 1601.64, + "probability": 0.6113 + }, + { + "start": 1602.16, + "end": 1602.54, + "probability": 0.6944 + }, + { + "start": 1604.84, + "end": 1607.96, + "probability": 0.9348 + }, + { + "start": 1609.06, + "end": 1616.02, + "probability": 0.9958 + }, + { + "start": 1617.12, + "end": 1619.7, + "probability": 0.9968 + }, + { + "start": 1620.7, + "end": 1622.96, + "probability": 0.9073 + }, + { + "start": 1625.38, + "end": 1627.35, + "probability": 0.9146 + }, + { + "start": 1628.42, + "end": 1629.26, + "probability": 0.7482 + }, + { + "start": 1629.72, + "end": 1631.18, + "probability": 0.9902 + }, + { + "start": 1632.62, + "end": 1634.26, + "probability": 0.9938 + }, + { + "start": 1634.84, + "end": 1635.48, + "probability": 0.9266 + }, + { + "start": 1636.4, + "end": 1637.5, + "probability": 0.5634 + }, + { + "start": 1638.04, + "end": 1639.02, + "probability": 0.2951 + }, + { + "start": 1639.82, + "end": 1641.32, + "probability": 0.7446 + }, + { + "start": 1642.52, + "end": 1644.4, + "probability": 0.8337 + }, + { + "start": 1646.88, + "end": 1648.04, + "probability": 0.9136 + }, + { + "start": 1649.56, + "end": 1650.7, + "probability": 0.5744 + }, + { + "start": 1651.5, + "end": 1656.16, + "probability": 0.6636 + }, + { + "start": 1657.08, + "end": 1659.94, + "probability": 0.6438 + }, + { + "start": 1660.9, + "end": 1661.08, + "probability": 0.2847 + }, + { + "start": 1661.08, + "end": 1661.5, + "probability": 0.8769 + }, + { + "start": 1663.52, + "end": 1664.24, + "probability": 0.7827 + }, + { + "start": 1664.3, + "end": 1665.98, + "probability": 0.8884 + }, + { + "start": 1666.16, + "end": 1667.14, + "probability": 0.6203 + }, + { + "start": 1667.76, + "end": 1672.26, + "probability": 0.9667 + }, + { + "start": 1674.34, + "end": 1675.06, + "probability": 0.8856 + }, + { + "start": 1676.16, + "end": 1679.62, + "probability": 0.674 + }, + { + "start": 1679.7, + "end": 1682.28, + "probability": 0.592 + }, + { + "start": 1682.82, + "end": 1684.0, + "probability": 0.9436 + }, + { + "start": 1685.7, + "end": 1686.71, + "probability": 0.9185 + }, + { + "start": 1689.5, + "end": 1690.56, + "probability": 0.6494 + }, + { + "start": 1690.74, + "end": 1693.28, + "probability": 0.7498 + }, + { + "start": 1693.5, + "end": 1693.96, + "probability": 0.4854 + }, + { + "start": 1700.9, + "end": 1701.96, + "probability": 0.2787 + }, + { + "start": 1702.48, + "end": 1705.62, + "probability": 0.394 + }, + { + "start": 1706.63, + "end": 1710.28, + "probability": 0.8231 + }, + { + "start": 1711.11, + "end": 1713.94, + "probability": 0.5911 + }, + { + "start": 1716.92, + "end": 1723.38, + "probability": 0.7941 + }, + { + "start": 1724.56, + "end": 1724.78, + "probability": 0.8992 + }, + { + "start": 1725.98, + "end": 1729.6, + "probability": 0.9878 + }, + { + "start": 1732.81, + "end": 1735.92, + "probability": 0.9965 + }, + { + "start": 1737.06, + "end": 1739.3, + "probability": 0.958 + }, + { + "start": 1741.66, + "end": 1743.58, + "probability": 0.9946 + }, + { + "start": 1744.66, + "end": 1745.96, + "probability": 0.9949 + }, + { + "start": 1747.54, + "end": 1748.48, + "probability": 0.9207 + }, + { + "start": 1750.4, + "end": 1753.76, + "probability": 0.9998 + }, + { + "start": 1755.24, + "end": 1756.02, + "probability": 0.9484 + }, + { + "start": 1757.04, + "end": 1758.02, + "probability": 0.8051 + }, + { + "start": 1759.12, + "end": 1760.38, + "probability": 0.8614 + }, + { + "start": 1763.26, + "end": 1768.44, + "probability": 0.9934 + }, + { + "start": 1769.58, + "end": 1771.23, + "probability": 0.9985 + }, + { + "start": 1772.24, + "end": 1773.04, + "probability": 0.9585 + }, + { + "start": 1774.78, + "end": 1776.76, + "probability": 0.9824 + }, + { + "start": 1778.4, + "end": 1782.74, + "probability": 0.9565 + }, + { + "start": 1784.0, + "end": 1786.18, + "probability": 0.9944 + }, + { + "start": 1786.96, + "end": 1792.46, + "probability": 0.9952 + }, + { + "start": 1794.32, + "end": 1800.64, + "probability": 0.9861 + }, + { + "start": 1802.6, + "end": 1802.97, + "probability": 0.9059 + }, + { + "start": 1804.87, + "end": 1810.36, + "probability": 0.8953 + }, + { + "start": 1811.7, + "end": 1814.8, + "probability": 0.9626 + }, + { + "start": 1817.62, + "end": 1819.24, + "probability": 0.9568 + }, + { + "start": 1820.18, + "end": 1821.44, + "probability": 0.9341 + }, + { + "start": 1821.92, + "end": 1824.81, + "probability": 0.9893 + }, + { + "start": 1825.02, + "end": 1825.79, + "probability": 0.9277 + }, + { + "start": 1826.88, + "end": 1828.46, + "probability": 0.8912 + }, + { + "start": 1828.72, + "end": 1833.24, + "probability": 0.9113 + }, + { + "start": 1833.44, + "end": 1834.04, + "probability": 0.9072 + }, + { + "start": 1834.98, + "end": 1835.33, + "probability": 0.812 + }, + { + "start": 1836.36, + "end": 1837.0, + "probability": 0.6571 + }, + { + "start": 1837.1, + "end": 1841.84, + "probability": 0.9701 + }, + { + "start": 1842.47, + "end": 1844.46, + "probability": 0.9669 + }, + { + "start": 1844.92, + "end": 1847.26, + "probability": 0.8403 + }, + { + "start": 1849.2, + "end": 1851.1, + "probability": 0.9443 + }, + { + "start": 1853.22, + "end": 1857.14, + "probability": 0.8883 + }, + { + "start": 1858.86, + "end": 1861.86, + "probability": 0.8385 + }, + { + "start": 1863.12, + "end": 1865.5, + "probability": 0.9028 + }, + { + "start": 1866.38, + "end": 1867.6, + "probability": 0.9369 + }, + { + "start": 1869.16, + "end": 1869.78, + "probability": 0.6042 + }, + { + "start": 1871.2, + "end": 1875.12, + "probability": 0.9897 + }, + { + "start": 1875.22, + "end": 1877.4, + "probability": 0.8333 + }, + { + "start": 1878.08, + "end": 1880.8, + "probability": 0.9335 + }, + { + "start": 1881.66, + "end": 1883.32, + "probability": 0.8652 + }, + { + "start": 1883.9, + "end": 1887.94, + "probability": 0.6567 + }, + { + "start": 1888.58, + "end": 1889.44, + "probability": 0.7004 + }, + { + "start": 1890.32, + "end": 1892.9, + "probability": 0.7256 + }, + { + "start": 1894.38, + "end": 1896.82, + "probability": 0.9678 + }, + { + "start": 1897.68, + "end": 1904.3, + "probability": 0.9834 + }, + { + "start": 1905.7, + "end": 1909.32, + "probability": 0.9883 + }, + { + "start": 1909.96, + "end": 1910.06, + "probability": 0.071 + }, + { + "start": 1910.06, + "end": 1911.68, + "probability": 0.9291 + }, + { + "start": 1912.9, + "end": 1915.16, + "probability": 0.9342 + }, + { + "start": 1916.92, + "end": 1920.28, + "probability": 0.993 + }, + { + "start": 1920.62, + "end": 1924.14, + "probability": 0.4067 + }, + { + "start": 1924.14, + "end": 1928.44, + "probability": 0.9731 + }, + { + "start": 1929.28, + "end": 1931.66, + "probability": 0.9804 + }, + { + "start": 1932.16, + "end": 1932.76, + "probability": 0.5168 + }, + { + "start": 1932.94, + "end": 1933.94, + "probability": 0.9569 + }, + { + "start": 1934.96, + "end": 1935.84, + "probability": 0.9957 + }, + { + "start": 1936.56, + "end": 1937.12, + "probability": 0.7143 + }, + { + "start": 1938.32, + "end": 1945.8, + "probability": 0.9837 + }, + { + "start": 1947.38, + "end": 1949.48, + "probability": 0.6702 + }, + { + "start": 1950.82, + "end": 1951.98, + "probability": 0.6096 + }, + { + "start": 1952.04, + "end": 1956.56, + "probability": 0.9827 + }, + { + "start": 1956.76, + "end": 1957.26, + "probability": 0.8043 + }, + { + "start": 1957.36, + "end": 1958.18, + "probability": 0.916 + }, + { + "start": 1958.78, + "end": 1959.9, + "probability": 0.9175 + }, + { + "start": 1961.34, + "end": 1965.96, + "probability": 0.9784 + }, + { + "start": 1966.48, + "end": 1972.52, + "probability": 0.9825 + }, + { + "start": 1972.7, + "end": 1973.02, + "probability": 0.4661 + }, + { + "start": 1973.44, + "end": 1974.14, + "probability": 0.7332 + }, + { + "start": 1974.42, + "end": 1974.76, + "probability": 0.9307 + }, + { + "start": 1975.26, + "end": 1977.9, + "probability": 0.9032 + }, + { + "start": 1979.0, + "end": 1983.74, + "probability": 0.9214 + }, + { + "start": 1984.38, + "end": 1985.44, + "probability": 0.9929 + }, + { + "start": 1986.5, + "end": 1987.9, + "probability": 0.9507 + }, + { + "start": 1989.78, + "end": 1992.8, + "probability": 0.9306 + }, + { + "start": 1994.48, + "end": 1997.58, + "probability": 0.9609 + }, + { + "start": 1998.98, + "end": 2011.38, + "probability": 0.9766 + }, + { + "start": 2012.48, + "end": 2016.62, + "probability": 0.9515 + }, + { + "start": 2020.5, + "end": 2024.48, + "probability": 0.9815 + }, + { + "start": 2025.7, + "end": 2030.04, + "probability": 0.9995 + }, + { + "start": 2031.36, + "end": 2036.14, + "probability": 0.9565 + }, + { + "start": 2036.9, + "end": 2040.44, + "probability": 0.9021 + }, + { + "start": 2041.5, + "end": 2043.84, + "probability": 0.7803 + }, + { + "start": 2044.86, + "end": 2045.48, + "probability": 0.7944 + }, + { + "start": 2046.6, + "end": 2050.76, + "probability": 0.9926 + }, + { + "start": 2051.0, + "end": 2052.26, + "probability": 0.9383 + }, + { + "start": 2053.36, + "end": 2054.98, + "probability": 0.7963 + }, + { + "start": 2055.86, + "end": 2057.76, + "probability": 0.9919 + }, + { + "start": 2058.22, + "end": 2058.86, + "probability": 0.8113 + }, + { + "start": 2058.98, + "end": 2059.78, + "probability": 0.8287 + }, + { + "start": 2060.98, + "end": 2061.82, + "probability": 0.7487 + }, + { + "start": 2062.92, + "end": 2065.07, + "probability": 0.9804 + }, + { + "start": 2066.1, + "end": 2067.76, + "probability": 0.7504 + }, + { + "start": 2068.76, + "end": 2069.49, + "probability": 0.6876 + }, + { + "start": 2070.98, + "end": 2073.94, + "probability": 0.8467 + }, + { + "start": 2075.34, + "end": 2079.9, + "probability": 0.8086 + }, + { + "start": 2080.68, + "end": 2083.54, + "probability": 0.9939 + }, + { + "start": 2084.38, + "end": 2086.44, + "probability": 0.781 + }, + { + "start": 2087.14, + "end": 2089.02, + "probability": 0.7779 + }, + { + "start": 2090.3, + "end": 2090.66, + "probability": 0.8574 + }, + { + "start": 2091.3, + "end": 2092.04, + "probability": 0.9901 + }, + { + "start": 2093.78, + "end": 2094.5, + "probability": 0.9868 + }, + { + "start": 2095.28, + "end": 2099.38, + "probability": 0.9834 + }, + { + "start": 2100.22, + "end": 2103.74, + "probability": 0.9596 + }, + { + "start": 2103.74, + "end": 2109.3, + "probability": 0.9921 + }, + { + "start": 2109.6, + "end": 2111.04, + "probability": 0.4787 + }, + { + "start": 2112.12, + "end": 2112.82, + "probability": 0.7657 + }, + { + "start": 2113.36, + "end": 2114.1, + "probability": 0.751 + }, + { + "start": 2114.44, + "end": 2117.36, + "probability": 0.5428 + }, + { + "start": 2117.54, + "end": 2118.52, + "probability": 0.9493 + }, + { + "start": 2118.76, + "end": 2119.92, + "probability": 0.7924 + }, + { + "start": 2120.52, + "end": 2125.34, + "probability": 0.9629 + }, + { + "start": 2126.12, + "end": 2126.32, + "probability": 0.7297 + }, + { + "start": 2127.82, + "end": 2128.86, + "probability": 0.9434 + }, + { + "start": 2129.62, + "end": 2131.52, + "probability": 0.98 + }, + { + "start": 2132.18, + "end": 2132.68, + "probability": 0.7937 + }, + { + "start": 2133.56, + "end": 2136.76, + "probability": 0.761 + }, + { + "start": 2137.64, + "end": 2139.32, + "probability": 0.7999 + }, + { + "start": 2139.52, + "end": 2142.82, + "probability": 0.9819 + }, + { + "start": 2143.4, + "end": 2146.06, + "probability": 0.9862 + }, + { + "start": 2146.86, + "end": 2148.04, + "probability": 0.9769 + }, + { + "start": 2150.8, + "end": 2151.74, + "probability": 0.8078 + }, + { + "start": 2152.38, + "end": 2153.54, + "probability": 0.859 + }, + { + "start": 2153.68, + "end": 2155.39, + "probability": 0.8374 + }, + { + "start": 2155.8, + "end": 2157.64, + "probability": 0.9411 + }, + { + "start": 2158.6, + "end": 2162.43, + "probability": 0.7747 + }, + { + "start": 2162.96, + "end": 2164.93, + "probability": 0.8944 + }, + { + "start": 2165.84, + "end": 2168.61, + "probability": 0.9487 + }, + { + "start": 2169.9, + "end": 2172.6, + "probability": 0.9624 + }, + { + "start": 2172.6, + "end": 2175.42, + "probability": 0.9617 + }, + { + "start": 2175.64, + "end": 2177.12, + "probability": 0.9727 + }, + { + "start": 2179.48, + "end": 2179.96, + "probability": 0.99 + }, + { + "start": 2180.9, + "end": 2183.52, + "probability": 0.9855 + }, + { + "start": 2183.7, + "end": 2184.81, + "probability": 0.7553 + }, + { + "start": 2185.14, + "end": 2189.44, + "probability": 0.9518 + }, + { + "start": 2189.52, + "end": 2191.64, + "probability": 0.9492 + }, + { + "start": 2196.84, + "end": 2198.02, + "probability": 0.9778 + }, + { + "start": 2200.88, + "end": 2205.22, + "probability": 0.9864 + }, + { + "start": 2207.42, + "end": 2211.38, + "probability": 0.9982 + }, + { + "start": 2212.42, + "end": 2214.04, + "probability": 0.9759 + }, + { + "start": 2214.98, + "end": 2216.46, + "probability": 0.9384 + }, + { + "start": 2217.16, + "end": 2218.6, + "probability": 0.7112 + }, + { + "start": 2219.32, + "end": 2222.02, + "probability": 0.5992 + }, + { + "start": 2223.34, + "end": 2226.1, + "probability": 0.6717 + }, + { + "start": 2226.92, + "end": 2227.68, + "probability": 0.6033 + }, + { + "start": 2229.38, + "end": 2232.02, + "probability": 0.9861 + }, + { + "start": 2232.66, + "end": 2233.92, + "probability": 0.9224 + }, + { + "start": 2234.66, + "end": 2237.78, + "probability": 0.9295 + }, + { + "start": 2238.52, + "end": 2240.6, + "probability": 0.8372 + }, + { + "start": 2241.32, + "end": 2242.12, + "probability": 0.9409 + }, + { + "start": 2243.4, + "end": 2246.92, + "probability": 0.9658 + }, + { + "start": 2249.38, + "end": 2249.98, + "probability": 0.6673 + }, + { + "start": 2250.06, + "end": 2251.67, + "probability": 0.8469 + }, + { + "start": 2252.12, + "end": 2252.32, + "probability": 0.7585 + }, + { + "start": 2252.46, + "end": 2253.3, + "probability": 0.8003 + }, + { + "start": 2253.44, + "end": 2254.7, + "probability": 0.7762 + }, + { + "start": 2256.4, + "end": 2259.96, + "probability": 0.7274 + }, + { + "start": 2260.82, + "end": 2268.39, + "probability": 0.9771 + }, + { + "start": 2269.32, + "end": 2269.8, + "probability": 0.9578 + }, + { + "start": 2275.5, + "end": 2279.26, + "probability": 0.9753 + }, + { + "start": 2279.9, + "end": 2281.06, + "probability": 0.8772 + }, + { + "start": 2282.02, + "end": 2283.92, + "probability": 0.9907 + }, + { + "start": 2284.74, + "end": 2286.02, + "probability": 0.9919 + }, + { + "start": 2286.9, + "end": 2287.38, + "probability": 0.9636 + }, + { + "start": 2288.39, + "end": 2293.0, + "probability": 0.9744 + }, + { + "start": 2294.06, + "end": 2295.52, + "probability": 0.9917 + }, + { + "start": 2297.42, + "end": 2298.9, + "probability": 0.7222 + }, + { + "start": 2300.56, + "end": 2302.28, + "probability": 0.8108 + }, + { + "start": 2303.28, + "end": 2304.9, + "probability": 0.8154 + }, + { + "start": 2306.08, + "end": 2306.94, + "probability": 0.4965 + }, + { + "start": 2307.74, + "end": 2308.36, + "probability": 0.9029 + }, + { + "start": 2308.48, + "end": 2309.87, + "probability": 0.9214 + }, + { + "start": 2310.5, + "end": 2311.86, + "probability": 0.9706 + }, + { + "start": 2312.56, + "end": 2313.54, + "probability": 0.9891 + }, + { + "start": 2314.6, + "end": 2316.48, + "probability": 0.9625 + }, + { + "start": 2317.3, + "end": 2317.9, + "probability": 0.8898 + }, + { + "start": 2318.3, + "end": 2322.94, + "probability": 0.9501 + }, + { + "start": 2323.12, + "end": 2323.5, + "probability": 0.9089 + }, + { + "start": 2323.68, + "end": 2326.86, + "probability": 0.8 + }, + { + "start": 2331.9, + "end": 2332.76, + "probability": 0.6405 + }, + { + "start": 2332.88, + "end": 2333.34, + "probability": 0.6085 + }, + { + "start": 2333.48, + "end": 2334.37, + "probability": 0.9602 + }, + { + "start": 2335.48, + "end": 2336.78, + "probability": 0.9878 + }, + { + "start": 2337.66, + "end": 2337.94, + "probability": 0.9176 + }, + { + "start": 2338.56, + "end": 2339.08, + "probability": 0.7587 + }, + { + "start": 2339.2, + "end": 2341.72, + "probability": 0.5024 + }, + { + "start": 2341.84, + "end": 2344.1, + "probability": 0.9124 + }, + { + "start": 2346.78, + "end": 2351.24, + "probability": 0.8338 + }, + { + "start": 2351.44, + "end": 2352.38, + "probability": 0.8376 + }, + { + "start": 2352.42, + "end": 2353.92, + "probability": 0.64 + }, + { + "start": 2354.36, + "end": 2355.2, + "probability": 0.6548 + }, + { + "start": 2355.92, + "end": 2360.08, + "probability": 0.9703 + }, + { + "start": 2361.32, + "end": 2364.66, + "probability": 0.5605 + }, + { + "start": 2364.74, + "end": 2364.74, + "probability": 0.4852 + }, + { + "start": 2365.46, + "end": 2365.92, + "probability": 0.7268 + }, + { + "start": 2367.62, + "end": 2369.68, + "probability": 0.6074 + }, + { + "start": 2370.56, + "end": 2371.14, + "probability": 0.705 + }, + { + "start": 2371.32, + "end": 2371.94, + "probability": 0.9571 + }, + { + "start": 2372.46, + "end": 2373.02, + "probability": 0.4973 + }, + { + "start": 2373.32, + "end": 2374.04, + "probability": 0.6713 + }, + { + "start": 2374.9, + "end": 2375.6, + "probability": 0.8481 + }, + { + "start": 2375.64, + "end": 2376.48, + "probability": 0.8733 + }, + { + "start": 2377.14, + "end": 2377.7, + "probability": 0.9785 + }, + { + "start": 2378.12, + "end": 2380.78, + "probability": 0.9772 + }, + { + "start": 2380.96, + "end": 2382.72, + "probability": 0.8508 + }, + { + "start": 2383.71, + "end": 2386.84, + "probability": 0.9211 + }, + { + "start": 2389.02, + "end": 2389.78, + "probability": 0.0376 + }, + { + "start": 2389.88, + "end": 2392.2, + "probability": 0.2293 + }, + { + "start": 2393.18, + "end": 2394.3, + "probability": 0.1349 + }, + { + "start": 2394.84, + "end": 2395.34, + "probability": 0.9593 + }, + { + "start": 2396.73, + "end": 2402.94, + "probability": 0.9339 + }, + { + "start": 2404.26, + "end": 2406.36, + "probability": 0.9473 + }, + { + "start": 2407.66, + "end": 2410.08, + "probability": 0.9883 + }, + { + "start": 2411.54, + "end": 2416.12, + "probability": 0.9584 + }, + { + "start": 2416.78, + "end": 2418.34, + "probability": 0.9273 + }, + { + "start": 2419.1, + "end": 2420.5, + "probability": 0.9277 + }, + { + "start": 2422.28, + "end": 2422.76, + "probability": 0.8485 + }, + { + "start": 2422.92, + "end": 2423.44, + "probability": 0.3888 + }, + { + "start": 2423.52, + "end": 2425.92, + "probability": 0.9861 + }, + { + "start": 2426.2, + "end": 2428.1, + "probability": 0.9834 + }, + { + "start": 2428.86, + "end": 2429.9, + "probability": 0.888 + }, + { + "start": 2431.2, + "end": 2432.84, + "probability": 0.9753 + }, + { + "start": 2433.34, + "end": 2440.26, + "probability": 0.964 + }, + { + "start": 2441.32, + "end": 2442.76, + "probability": 0.91 + }, + { + "start": 2443.84, + "end": 2444.8, + "probability": 0.9724 + }, + { + "start": 2445.26, + "end": 2446.14, + "probability": 0.7583 + }, + { + "start": 2446.26, + "end": 2446.94, + "probability": 0.91 + }, + { + "start": 2447.06, + "end": 2447.66, + "probability": 0.9976 + }, + { + "start": 2447.92, + "end": 2449.68, + "probability": 0.9963 + }, + { + "start": 2449.76, + "end": 2450.04, + "probability": 0.9644 + }, + { + "start": 2451.24, + "end": 2452.62, + "probability": 0.9873 + }, + { + "start": 2452.82, + "end": 2454.3, + "probability": 0.9658 + }, + { + "start": 2454.42, + "end": 2457.44, + "probability": 0.9355 + }, + { + "start": 2458.0, + "end": 2459.2, + "probability": 0.9822 + }, + { + "start": 2459.3, + "end": 2460.44, + "probability": 0.4598 + }, + { + "start": 2460.62, + "end": 2462.88, + "probability": 0.8951 + }, + { + "start": 2462.96, + "end": 2463.4, + "probability": 0.8012 + }, + { + "start": 2463.5, + "end": 2463.68, + "probability": 0.8751 + }, + { + "start": 2464.46, + "end": 2466.65, + "probability": 0.9805 + }, + { + "start": 2467.28, + "end": 2468.5, + "probability": 0.963 + }, + { + "start": 2469.52, + "end": 2470.05, + "probability": 0.9604 + }, + { + "start": 2471.0, + "end": 2472.0, + "probability": 0.9928 + }, + { + "start": 2472.22, + "end": 2473.46, + "probability": 0.9581 + }, + { + "start": 2474.28, + "end": 2476.68, + "probability": 0.9945 + }, + { + "start": 2478.34, + "end": 2481.66, + "probability": 0.7159 + }, + { + "start": 2483.52, + "end": 2484.9, + "probability": 0.9945 + }, + { + "start": 2485.94, + "end": 2488.7, + "probability": 0.9006 + }, + { + "start": 2489.46, + "end": 2491.12, + "probability": 0.8679 + }, + { + "start": 2492.46, + "end": 2500.98, + "probability": 0.9712 + }, + { + "start": 2501.26, + "end": 2501.48, + "probability": 0.8602 + }, + { + "start": 2501.84, + "end": 2504.26, + "probability": 0.9957 + }, + { + "start": 2505.44, + "end": 2507.54, + "probability": 0.7405 + }, + { + "start": 2507.66, + "end": 2507.84, + "probability": 0.484 + }, + { + "start": 2508.18, + "end": 2508.82, + "probability": 0.6294 + }, + { + "start": 2508.82, + "end": 2510.32, + "probability": 0.8278 + }, + { + "start": 2510.58, + "end": 2513.94, + "probability": 0.9167 + }, + { + "start": 2514.18, + "end": 2514.3, + "probability": 0.8044 + }, + { + "start": 2514.32, + "end": 2516.16, + "probability": 0.95 + }, + { + "start": 2516.72, + "end": 2518.06, + "probability": 0.9407 + }, + { + "start": 2518.12, + "end": 2520.02, + "probability": 0.9778 + }, + { + "start": 2520.43, + "end": 2523.02, + "probability": 0.9146 + }, + { + "start": 2523.02, + "end": 2526.08, + "probability": 0.9974 + }, + { + "start": 2527.18, + "end": 2529.72, + "probability": 0.9901 + }, + { + "start": 2529.98, + "end": 2530.74, + "probability": 0.8685 + }, + { + "start": 2531.16, + "end": 2531.72, + "probability": 0.7029 + }, + { + "start": 2531.8, + "end": 2532.16, + "probability": 0.7764 + }, + { + "start": 2532.46, + "end": 2535.68, + "probability": 0.9609 + }, + { + "start": 2536.08, + "end": 2540.53, + "probability": 0.9935 + }, + { + "start": 2540.94, + "end": 2542.56, + "probability": 0.7598 + }, + { + "start": 2543.18, + "end": 2543.5, + "probability": 0.5126 + }, + { + "start": 2543.66, + "end": 2547.8, + "probability": 0.8198 + }, + { + "start": 2547.84, + "end": 2548.02, + "probability": 0.0348 + }, + { + "start": 2548.44, + "end": 2550.7, + "probability": 0.4802 + }, + { + "start": 2550.72, + "end": 2552.54, + "probability": 0.7438 + }, + { + "start": 2552.74, + "end": 2555.34, + "probability": 0.9871 + }, + { + "start": 2555.34, + "end": 2558.52, + "probability": 0.8403 + }, + { + "start": 2559.22, + "end": 2560.26, + "probability": 0.8474 + }, + { + "start": 2560.42, + "end": 2563.15, + "probability": 0.9565 + }, + { + "start": 2565.74, + "end": 2566.28, + "probability": 0.6824 + }, + { + "start": 2566.4, + "end": 2567.08, + "probability": 0.9593 + }, + { + "start": 2567.18, + "end": 2568.6, + "probability": 0.5762 + }, + { + "start": 2569.06, + "end": 2573.0, + "probability": 0.9899 + }, + { + "start": 2573.1, + "end": 2577.08, + "probability": 0.9808 + }, + { + "start": 2578.4, + "end": 2582.1, + "probability": 0.9988 + }, + { + "start": 2583.72, + "end": 2589.89, + "probability": 0.9037 + }, + { + "start": 2591.3, + "end": 2593.4, + "probability": 0.8984 + }, + { + "start": 2596.78, + "end": 2599.92, + "probability": 0.9883 + }, + { + "start": 2600.04, + "end": 2602.4, + "probability": 0.9792 + }, + { + "start": 2606.4, + "end": 2608.78, + "probability": 0.917 + }, + { + "start": 2609.14, + "end": 2609.72, + "probability": 0.8706 + }, + { + "start": 2611.54, + "end": 2612.08, + "probability": 0.9361 + }, + { + "start": 2614.06, + "end": 2618.84, + "probability": 0.9875 + }, + { + "start": 2618.86, + "end": 2619.5, + "probability": 0.6798 + }, + { + "start": 2620.44, + "end": 2625.93, + "probability": 0.9905 + }, + { + "start": 2626.28, + "end": 2630.66, + "probability": 0.9816 + }, + { + "start": 2630.82, + "end": 2634.16, + "probability": 0.9126 + }, + { + "start": 2635.1, + "end": 2636.78, + "probability": 0.9963 + }, + { + "start": 2637.08, + "end": 2638.2, + "probability": 0.9968 + }, + { + "start": 2638.6, + "end": 2643.7, + "probability": 0.9646 + }, + { + "start": 2644.46, + "end": 2646.24, + "probability": 0.6236 + }, + { + "start": 2646.28, + "end": 2647.82, + "probability": 0.759 + }, + { + "start": 2647.9, + "end": 2649.46, + "probability": 0.9441 + }, + { + "start": 2650.0, + "end": 2652.68, + "probability": 0.9953 + }, + { + "start": 2655.48, + "end": 2659.86, + "probability": 0.9824 + }, + { + "start": 2660.12, + "end": 2661.4, + "probability": 0.9536 + }, + { + "start": 2662.04, + "end": 2664.14, + "probability": 0.9962 + }, + { + "start": 2668.18, + "end": 2671.24, + "probability": 0.9353 + }, + { + "start": 2671.78, + "end": 2674.0, + "probability": 0.8936 + }, + { + "start": 2675.28, + "end": 2679.3, + "probability": 0.9919 + }, + { + "start": 2680.22, + "end": 2683.5, + "probability": 0.8776 + }, + { + "start": 2684.96, + "end": 2688.54, + "probability": 0.8813 + }, + { + "start": 2689.48, + "end": 2690.4, + "probability": 0.9651 + }, + { + "start": 2690.94, + "end": 2692.37, + "probability": 0.9149 + }, + { + "start": 2692.6, + "end": 2693.86, + "probability": 0.3923 + }, + { + "start": 2694.16, + "end": 2697.36, + "probability": 0.3311 + }, + { + "start": 2697.36, + "end": 2697.36, + "probability": 0.5177 + }, + { + "start": 2697.36, + "end": 2698.82, + "probability": 0.1774 + }, + { + "start": 2698.82, + "end": 2700.54, + "probability": 0.6928 + }, + { + "start": 2700.78, + "end": 2701.38, + "probability": 0.3808 + }, + { + "start": 2701.52, + "end": 2704.54, + "probability": 0.7817 + }, + { + "start": 2704.58, + "end": 2706.12, + "probability": 0.6099 + }, + { + "start": 2706.18, + "end": 2707.14, + "probability": 0.9209 + }, + { + "start": 2707.42, + "end": 2708.02, + "probability": 0.5099 + }, + { + "start": 2708.22, + "end": 2709.64, + "probability": 0.6846 + }, + { + "start": 2709.76, + "end": 2712.85, + "probability": 0.6062 + }, + { + "start": 2713.7, + "end": 2715.34, + "probability": 0.7025 + }, + { + "start": 2716.34, + "end": 2717.88, + "probability": 0.9905 + }, + { + "start": 2717.98, + "end": 2719.04, + "probability": 0.9115 + }, + { + "start": 2720.14, + "end": 2720.64, + "probability": 0.7006 + }, + { + "start": 2720.74, + "end": 2723.5, + "probability": 0.7497 + }, + { + "start": 2723.54, + "end": 2727.08, + "probability": 0.9826 + }, + { + "start": 2729.22, + "end": 2733.08, + "probability": 0.916 + }, + { + "start": 2734.96, + "end": 2737.56, + "probability": 0.9902 + }, + { + "start": 2737.8, + "end": 2741.12, + "probability": 0.9899 + }, + { + "start": 2741.22, + "end": 2741.38, + "probability": 0.5944 + }, + { + "start": 2741.5, + "end": 2741.68, + "probability": 0.3624 + }, + { + "start": 2741.84, + "end": 2742.58, + "probability": 0.7629 + }, + { + "start": 2743.44, + "end": 2746.8, + "probability": 0.9648 + }, + { + "start": 2747.72, + "end": 2748.76, + "probability": 0.8803 + }, + { + "start": 2749.42, + "end": 2751.43, + "probability": 0.9912 + }, + { + "start": 2751.72, + "end": 2756.92, + "probability": 0.9847 + }, + { + "start": 2760.4, + "end": 2763.06, + "probability": 0.7783 + }, + { + "start": 2763.18, + "end": 2763.6, + "probability": 0.7471 + }, + { + "start": 2763.66, + "end": 2764.36, + "probability": 0.9525 + }, + { + "start": 2764.46, + "end": 2765.66, + "probability": 0.8071 + }, + { + "start": 2766.58, + "end": 2766.88, + "probability": 0.5259 + }, + { + "start": 2766.94, + "end": 2769.54, + "probability": 0.9826 + }, + { + "start": 2769.96, + "end": 2770.67, + "probability": 0.9462 + }, + { + "start": 2772.32, + "end": 2777.88, + "probability": 0.9562 + }, + { + "start": 2778.48, + "end": 2780.2, + "probability": 0.7995 + }, + { + "start": 2780.36, + "end": 2780.84, + "probability": 0.8738 + }, + { + "start": 2780.98, + "end": 2781.22, + "probability": 0.8538 + }, + { + "start": 2781.38, + "end": 2781.96, + "probability": 0.6875 + }, + { + "start": 2782.34, + "end": 2784.1, + "probability": 0.9673 + }, + { + "start": 2784.14, + "end": 2785.58, + "probability": 0.6973 + }, + { + "start": 2786.78, + "end": 2787.3, + "probability": 0.7184 + }, + { + "start": 2787.8, + "end": 2787.8, + "probability": 0.3448 + }, + { + "start": 2787.86, + "end": 2790.14, + "probability": 0.8104 + }, + { + "start": 2790.22, + "end": 2792.54, + "probability": 0.664 + }, + { + "start": 2793.94, + "end": 2794.33, + "probability": 0.9867 + }, + { + "start": 2794.96, + "end": 2798.92, + "probability": 0.7094 + }, + { + "start": 2799.0, + "end": 2800.12, + "probability": 0.7644 + }, + { + "start": 2800.16, + "end": 2800.53, + "probability": 0.9832 + }, + { + "start": 2800.66, + "end": 2802.2, + "probability": 0.9727 + }, + { + "start": 2803.24, + "end": 2806.64, + "probability": 0.967 + }, + { + "start": 2807.32, + "end": 2811.18, + "probability": 0.9265 + }, + { + "start": 2811.74, + "end": 2813.74, + "probability": 0.9849 + }, + { + "start": 2813.92, + "end": 2816.14, + "probability": 0.9861 + }, + { + "start": 2817.54, + "end": 2820.44, + "probability": 0.7819 + }, + { + "start": 2820.66, + "end": 2821.18, + "probability": 0.9799 + }, + { + "start": 2822.18, + "end": 2824.5, + "probability": 0.8873 + }, + { + "start": 2825.24, + "end": 2827.18, + "probability": 0.8424 + }, + { + "start": 2827.74, + "end": 2831.88, + "probability": 0.9959 + }, + { + "start": 2833.28, + "end": 2835.76, + "probability": 0.759 + }, + { + "start": 2836.92, + "end": 2838.47, + "probability": 0.9615 + }, + { + "start": 2839.66, + "end": 2842.02, + "probability": 0.9833 + }, + { + "start": 2843.98, + "end": 2845.54, + "probability": 0.9736 + }, + { + "start": 2846.8, + "end": 2847.66, + "probability": 0.9493 + }, + { + "start": 2848.82, + "end": 2849.4, + "probability": 0.5864 + }, + { + "start": 2849.46, + "end": 2850.58, + "probability": 0.9689 + }, + { + "start": 2850.92, + "end": 2851.62, + "probability": 0.8288 + }, + { + "start": 2851.98, + "end": 2852.8, + "probability": 0.9367 + }, + { + "start": 2854.04, + "end": 2855.76, + "probability": 0.9668 + }, + { + "start": 2855.88, + "end": 2857.48, + "probability": 0.9702 + }, + { + "start": 2858.48, + "end": 2858.58, + "probability": 0.2955 + }, + { + "start": 2859.0, + "end": 2860.08, + "probability": 0.9467 + }, + { + "start": 2860.18, + "end": 2861.12, + "probability": 0.9243 + }, + { + "start": 2861.12, + "end": 2862.0, + "probability": 0.646 + }, + { + "start": 2862.06, + "end": 2862.58, + "probability": 0.8497 + }, + { + "start": 2863.82, + "end": 2865.32, + "probability": 0.6472 + }, + { + "start": 2866.0, + "end": 2866.58, + "probability": 0.0414 + }, + { + "start": 2866.58, + "end": 2868.52, + "probability": 0.936 + }, + { + "start": 2869.06, + "end": 2871.08, + "probability": 0.9806 + }, + { + "start": 2871.66, + "end": 2872.4, + "probability": 0.6595 + }, + { + "start": 2872.44, + "end": 2877.24, + "probability": 0.9441 + }, + { + "start": 2877.6, + "end": 2879.52, + "probability": 0.8064 + }, + { + "start": 2879.94, + "end": 2880.6, + "probability": 0.9364 + }, + { + "start": 2880.66, + "end": 2881.34, + "probability": 0.9071 + }, + { + "start": 2881.38, + "end": 2884.98, + "probability": 0.886 + }, + { + "start": 2885.78, + "end": 2891.38, + "probability": 0.5191 + }, + { + "start": 2892.74, + "end": 2893.26, + "probability": 0.3603 + }, + { + "start": 2893.34, + "end": 2894.36, + "probability": 0.5251 + }, + { + "start": 2894.88, + "end": 2897.46, + "probability": 0.8094 + }, + { + "start": 2897.54, + "end": 2897.94, + "probability": 0.2246 + }, + { + "start": 2897.96, + "end": 2899.5, + "probability": 0.6617 + }, + { + "start": 2899.94, + "end": 2900.57, + "probability": 0.9712 + }, + { + "start": 2900.8, + "end": 2902.73, + "probability": 0.9761 + }, + { + "start": 2903.38, + "end": 2904.28, + "probability": 0.8692 + }, + { + "start": 2904.42, + "end": 2907.42, + "probability": 0.99 + }, + { + "start": 2907.9, + "end": 2909.7, + "probability": 0.866 + }, + { + "start": 2909.78, + "end": 2913.16, + "probability": 0.978 + }, + { + "start": 2913.5, + "end": 2916.94, + "probability": 0.7561 + }, + { + "start": 2917.24, + "end": 2919.08, + "probability": 0.9746 + }, + { + "start": 2919.14, + "end": 2919.62, + "probability": 0.8866 + }, + { + "start": 2919.66, + "end": 2920.32, + "probability": 0.8958 + }, + { + "start": 2920.94, + "end": 2921.45, + "probability": 0.9146 + }, + { + "start": 2922.54, + "end": 2924.01, + "probability": 0.957 + }, + { + "start": 2925.96, + "end": 2926.74, + "probability": 0.8983 + }, + { + "start": 2927.44, + "end": 2928.77, + "probability": 0.7944 + }, + { + "start": 2929.9, + "end": 2931.5, + "probability": 0.98 + }, + { + "start": 2932.88, + "end": 2933.3, + "probability": 0.7753 + }, + { + "start": 2934.02, + "end": 2936.08, + "probability": 0.3739 + }, + { + "start": 2936.78, + "end": 2938.96, + "probability": 0.5177 + }, + { + "start": 2939.34, + "end": 2939.46, + "probability": 0.6423 + }, + { + "start": 2940.02, + "end": 2940.88, + "probability": 0.9391 + }, + { + "start": 2941.4, + "end": 2943.4, + "probability": 0.692 + }, + { + "start": 2943.78, + "end": 2944.44, + "probability": 0.8882 + }, + { + "start": 2945.74, + "end": 2949.2, + "probability": 0.9663 + }, + { + "start": 2951.64, + "end": 2951.94, + "probability": 0.708 + }, + { + "start": 2953.3, + "end": 2955.94, + "probability": 0.9448 + }, + { + "start": 2957.14, + "end": 2958.22, + "probability": 0.9863 + }, + { + "start": 2959.22, + "end": 2960.2, + "probability": 0.9561 + }, + { + "start": 2961.36, + "end": 2964.08, + "probability": 0.9578 + }, + { + "start": 2965.34, + "end": 2966.06, + "probability": 0.7965 + }, + { + "start": 2966.2, + "end": 2966.58, + "probability": 0.8582 + }, + { + "start": 2966.74, + "end": 2968.28, + "probability": 0.9648 + }, + { + "start": 2968.38, + "end": 2970.74, + "probability": 0.9989 + }, + { + "start": 2972.44, + "end": 2974.87, + "probability": 0.9841 + }, + { + "start": 2975.92, + "end": 2977.66, + "probability": 0.6651 + }, + { + "start": 2978.44, + "end": 2980.54, + "probability": 0.9977 + }, + { + "start": 2981.92, + "end": 2984.9, + "probability": 0.9913 + }, + { + "start": 2985.7, + "end": 2986.36, + "probability": 0.9287 + }, + { + "start": 2987.66, + "end": 2989.96, + "probability": 0.8804 + }, + { + "start": 2990.36, + "end": 2991.66, + "probability": 0.8055 + }, + { + "start": 2991.98, + "end": 2992.18, + "probability": 0.886 + }, + { + "start": 2992.6, + "end": 2993.76, + "probability": 0.999 + }, + { + "start": 2994.88, + "end": 2996.02, + "probability": 0.9242 + }, + { + "start": 2996.42, + "end": 2999.9, + "probability": 0.9281 + }, + { + "start": 3000.12, + "end": 3004.16, + "probability": 0.9936 + }, + { + "start": 3005.54, + "end": 3006.52, + "probability": 0.9961 + }, + { + "start": 3006.64, + "end": 3008.44, + "probability": 0.9077 + }, + { + "start": 3008.52, + "end": 3009.04, + "probability": 0.6371 + }, + { + "start": 3009.14, + "end": 3009.3, + "probability": 0.8256 + }, + { + "start": 3009.86, + "end": 3010.62, + "probability": 0.0229 + }, + { + "start": 3011.88, + "end": 3012.8, + "probability": 0.8884 + }, + { + "start": 3013.68, + "end": 3017.68, + "probability": 0.708 + }, + { + "start": 3018.62, + "end": 3022.26, + "probability": 0.9057 + }, + { + "start": 3023.16, + "end": 3024.6, + "probability": 0.9853 + }, + { + "start": 3025.16, + "end": 3026.32, + "probability": 0.6477 + }, + { + "start": 3029.04, + "end": 3029.64, + "probability": 0.9755 + }, + { + "start": 3030.2, + "end": 3033.32, + "probability": 0.9506 + }, + { + "start": 3033.44, + "end": 3035.22, + "probability": 0.9614 + }, + { + "start": 3035.36, + "end": 3035.92, + "probability": 0.9842 + }, + { + "start": 3036.58, + "end": 3037.08, + "probability": 0.9405 + }, + { + "start": 3037.68, + "end": 3040.06, + "probability": 0.9587 + }, + { + "start": 3041.02, + "end": 3044.46, + "probability": 0.9096 + }, + { + "start": 3044.58, + "end": 3047.08, + "probability": 0.9919 + }, + { + "start": 3047.58, + "end": 3049.16, + "probability": 0.9545 + }, + { + "start": 3050.2, + "end": 3050.64, + "probability": 0.4626 + }, + { + "start": 3051.5, + "end": 3054.48, + "probability": 0.7458 + }, + { + "start": 3055.2, + "end": 3056.04, + "probability": 0.889 + }, + { + "start": 3056.7, + "end": 3060.02, + "probability": 0.9222 + }, + { + "start": 3064.76, + "end": 3068.56, + "probability": 0.9517 + }, + { + "start": 3068.62, + "end": 3068.96, + "probability": 0.8259 + }, + { + "start": 3068.96, + "end": 3069.32, + "probability": 0.5811 + }, + { + "start": 3069.42, + "end": 3070.06, + "probability": 0.6475 + }, + { + "start": 3070.88, + "end": 3074.26, + "probability": 0.9434 + }, + { + "start": 3074.86, + "end": 3078.56, + "probability": 0.9338 + }, + { + "start": 3079.14, + "end": 3083.24, + "probability": 0.9927 + }, + { + "start": 3083.72, + "end": 3086.64, + "probability": 0.9863 + }, + { + "start": 3086.78, + "end": 3089.68, + "probability": 0.9766 + }, + { + "start": 3091.79, + "end": 3094.62, + "probability": 0.9912 + }, + { + "start": 3095.42, + "end": 3098.3, + "probability": 0.6562 + }, + { + "start": 3099.5, + "end": 3103.98, + "probability": 0.9626 + }, + { + "start": 3104.5, + "end": 3107.74, + "probability": 0.976 + }, + { + "start": 3108.94, + "end": 3110.78, + "probability": 0.8893 + }, + { + "start": 3111.32, + "end": 3111.7, + "probability": 0.984 + }, + { + "start": 3113.74, + "end": 3115.62, + "probability": 0.6688 + }, + { + "start": 3116.44, + "end": 3120.2, + "probability": 0.9823 + }, + { + "start": 3121.44, + "end": 3122.56, + "probability": 0.9696 + }, + { + "start": 3123.04, + "end": 3125.71, + "probability": 0.9558 + }, + { + "start": 3126.5, + "end": 3126.92, + "probability": 0.9284 + }, + { + "start": 3127.04, + "end": 3127.32, + "probability": 0.9401 + }, + { + "start": 3127.38, + "end": 3127.98, + "probability": 0.8988 + }, + { + "start": 3128.7, + "end": 3130.52, + "probability": 0.6123 + }, + { + "start": 3131.1, + "end": 3132.65, + "probability": 0.9624 + }, + { + "start": 3138.72, + "end": 3141.18, + "probability": 0.9325 + }, + { + "start": 3142.68, + "end": 3145.24, + "probability": 0.9469 + }, + { + "start": 3146.2, + "end": 3149.36, + "probability": 0.9446 + }, + { + "start": 3151.14, + "end": 3153.32, + "probability": 0.8323 + }, + { + "start": 3154.24, + "end": 3156.21, + "probability": 0.8158 + }, + { + "start": 3157.34, + "end": 3159.76, + "probability": 0.9974 + }, + { + "start": 3160.62, + "end": 3162.88, + "probability": 0.7192 + }, + { + "start": 3163.1, + "end": 3163.24, + "probability": 0.5873 + }, + { + "start": 3163.4, + "end": 3166.88, + "probability": 0.1299 + }, + { + "start": 3167.22, + "end": 3168.04, + "probability": 0.9504 + }, + { + "start": 3169.26, + "end": 3171.36, + "probability": 0.917 + }, + { + "start": 3172.58, + "end": 3173.4, + "probability": 0.7627 + }, + { + "start": 3173.64, + "end": 3175.18, + "probability": 0.9121 + }, + { + "start": 3175.66, + "end": 3176.84, + "probability": 0.8685 + }, + { + "start": 3177.64, + "end": 3178.84, + "probability": 0.5319 + }, + { + "start": 3178.86, + "end": 3180.2, + "probability": 0.7174 + }, + { + "start": 3180.24, + "end": 3180.6, + "probability": 0.5448 + }, + { + "start": 3180.78, + "end": 3183.26, + "probability": 0.7481 + }, + { + "start": 3183.44, + "end": 3184.53, + "probability": 0.716 + }, + { + "start": 3185.12, + "end": 3186.34, + "probability": 0.6568 + }, + { + "start": 3186.62, + "end": 3190.5, + "probability": 0.9307 + }, + { + "start": 3191.28, + "end": 3192.6, + "probability": 0.8574 + }, + { + "start": 3192.68, + "end": 3193.76, + "probability": 0.9266 + }, + { + "start": 3194.36, + "end": 3195.42, + "probability": 0.8612 + }, + { + "start": 3195.82, + "end": 3197.16, + "probability": 0.8831 + }, + { + "start": 3197.36, + "end": 3199.46, + "probability": 0.7217 + }, + { + "start": 3199.6, + "end": 3200.7, + "probability": 0.9917 + }, + { + "start": 3202.36, + "end": 3203.98, + "probability": 0.6968 + }, + { + "start": 3204.62, + "end": 3205.88, + "probability": 0.98 + }, + { + "start": 3206.52, + "end": 3208.8, + "probability": 0.8761 + }, + { + "start": 3209.62, + "end": 3211.28, + "probability": 0.97 + }, + { + "start": 3211.38, + "end": 3212.2, + "probability": 0.8761 + }, + { + "start": 3212.42, + "end": 3212.98, + "probability": 0.4695 + }, + { + "start": 3213.12, + "end": 3213.54, + "probability": 0.82 + }, + { + "start": 3213.78, + "end": 3214.41, + "probability": 0.9629 + }, + { + "start": 3214.46, + "end": 3215.9, + "probability": 0.7506 + }, + { + "start": 3217.3, + "end": 3219.86, + "probability": 0.9367 + }, + { + "start": 3220.84, + "end": 3221.28, + "probability": 0.7648 + }, + { + "start": 3221.96, + "end": 3222.6, + "probability": 0.9819 + }, + { + "start": 3223.46, + "end": 3223.88, + "probability": 0.9832 + }, + { + "start": 3224.52, + "end": 3226.2, + "probability": 0.8988 + }, + { + "start": 3226.72, + "end": 3229.45, + "probability": 0.9993 + }, + { + "start": 3230.66, + "end": 3232.35, + "probability": 0.9958 + }, + { + "start": 3233.1, + "end": 3235.72, + "probability": 0.9377 + }, + { + "start": 3236.66, + "end": 3239.08, + "probability": 0.823 + }, + { + "start": 3239.74, + "end": 3240.16, + "probability": 0.9223 + }, + { + "start": 3240.7, + "end": 3241.28, + "probability": 0.9371 + }, + { + "start": 3241.46, + "end": 3241.97, + "probability": 0.9729 + }, + { + "start": 3242.32, + "end": 3242.78, + "probability": 0.9726 + }, + { + "start": 3243.24, + "end": 3243.75, + "probability": 0.9863 + }, + { + "start": 3244.3, + "end": 3244.78, + "probability": 0.9125 + }, + { + "start": 3244.84, + "end": 3246.52, + "probability": 0.9836 + }, + { + "start": 3247.42, + "end": 3248.44, + "probability": 0.9771 + }, + { + "start": 3250.08, + "end": 3252.34, + "probability": 0.7995 + }, + { + "start": 3252.9, + "end": 3254.24, + "probability": 0.9798 + }, + { + "start": 3254.5, + "end": 3255.44, + "probability": 0.7808 + }, + { + "start": 3256.38, + "end": 3258.34, + "probability": 0.9259 + }, + { + "start": 3258.68, + "end": 3260.24, + "probability": 0.8516 + }, + { + "start": 3260.94, + "end": 3263.16, + "probability": 0.7156 + }, + { + "start": 3263.82, + "end": 3269.46, + "probability": 0.9385 + }, + { + "start": 3270.2, + "end": 3273.76, + "probability": 0.7629 + }, + { + "start": 3274.24, + "end": 3276.12, + "probability": 0.9254 + }, + { + "start": 3276.76, + "end": 3278.33, + "probability": 0.5712 + }, + { + "start": 3279.28, + "end": 3281.38, + "probability": 0.5156 + }, + { + "start": 3282.3, + "end": 3283.1, + "probability": 0.5669 + }, + { + "start": 3287.78, + "end": 3288.48, + "probability": 0.7451 + }, + { + "start": 3288.62, + "end": 3289.38, + "probability": 0.3315 + }, + { + "start": 3291.52, + "end": 3292.5, + "probability": 0.9798 + }, + { + "start": 3292.78, + "end": 3296.14, + "probability": 0.9758 + }, + { + "start": 3296.3, + "end": 3296.78, + "probability": 0.5105 + }, + { + "start": 3296.94, + "end": 3299.42, + "probability": 0.9554 + }, + { + "start": 3299.42, + "end": 3299.56, + "probability": 0.4623 + }, + { + "start": 3300.28, + "end": 3301.78, + "probability": 0.8029 + }, + { + "start": 3302.56, + "end": 3303.52, + "probability": 0.9893 + }, + { + "start": 3303.82, + "end": 3304.08, + "probability": 0.3835 + }, + { + "start": 3304.18, + "end": 3304.7, + "probability": 0.8264 + }, + { + "start": 3304.8, + "end": 3306.3, + "probability": 0.9932 + }, + { + "start": 3306.44, + "end": 3307.66, + "probability": 0.9722 + }, + { + "start": 3307.94, + "end": 3307.94, + "probability": 0.9541 + }, + { + "start": 3308.96, + "end": 3312.0, + "probability": 0.9964 + }, + { + "start": 3312.24, + "end": 3317.02, + "probability": 0.9912 + }, + { + "start": 3317.6, + "end": 3318.44, + "probability": 0.7278 + }, + { + "start": 3319.34, + "end": 3322.28, + "probability": 0.9922 + }, + { + "start": 3322.8, + "end": 3323.42, + "probability": 0.7509 + }, + { + "start": 3323.96, + "end": 3326.38, + "probability": 0.8745 + }, + { + "start": 3326.56, + "end": 3328.62, + "probability": 0.7788 + }, + { + "start": 3328.74, + "end": 3331.29, + "probability": 0.9897 + }, + { + "start": 3332.42, + "end": 3335.46, + "probability": 0.9802 + }, + { + "start": 3336.75, + "end": 3339.04, + "probability": 0.9252 + }, + { + "start": 3339.12, + "end": 3340.38, + "probability": 0.6901 + }, + { + "start": 3340.44, + "end": 3342.49, + "probability": 0.9971 + }, + { + "start": 3342.6, + "end": 3342.82, + "probability": 0.6296 + }, + { + "start": 3343.82, + "end": 3347.32, + "probability": 0.9709 + }, + { + "start": 3348.02, + "end": 3349.08, + "probability": 0.7185 + }, + { + "start": 3349.46, + "end": 3351.6, + "probability": 0.9989 + }, + { + "start": 3352.48, + "end": 3353.1, + "probability": 0.698 + }, + { + "start": 3353.74, + "end": 3355.02, + "probability": 0.8919 + }, + { + "start": 3355.62, + "end": 3358.52, + "probability": 0.9809 + }, + { + "start": 3358.76, + "end": 3359.4, + "probability": 0.9858 + }, + { + "start": 3359.7, + "end": 3360.96, + "probability": 0.9919 + }, + { + "start": 3363.38, + "end": 3364.82, + "probability": 0.6105 + }, + { + "start": 3364.96, + "end": 3366.76, + "probability": 0.9909 + }, + { + "start": 3367.9, + "end": 3370.48, + "probability": 0.8296 + }, + { + "start": 3371.58, + "end": 3372.56, + "probability": 0.9617 + }, + { + "start": 3372.68, + "end": 3373.44, + "probability": 0.7925 + }, + { + "start": 3373.8, + "end": 3374.22, + "probability": 0.9788 + }, + { + "start": 3374.4, + "end": 3377.84, + "probability": 0.9405 + }, + { + "start": 3378.02, + "end": 3379.05, + "probability": 0.9535 + }, + { + "start": 3381.56, + "end": 3382.06, + "probability": 0.4886 + }, + { + "start": 3382.94, + "end": 3385.06, + "probability": 0.8311 + }, + { + "start": 3385.28, + "end": 3388.5, + "probability": 0.8511 + }, + { + "start": 3389.38, + "end": 3396.9, + "probability": 0.8006 + }, + { + "start": 3397.78, + "end": 3400.1, + "probability": 0.9628 + }, + { + "start": 3400.1, + "end": 3400.34, + "probability": 0.5892 + }, + { + "start": 3400.66, + "end": 3402.16, + "probability": 0.998 + }, + { + "start": 3403.16, + "end": 3408.73, + "probability": 0.998 + }, + { + "start": 3409.1, + "end": 3409.68, + "probability": 0.7979 + }, + { + "start": 3409.76, + "end": 3410.52, + "probability": 0.7498 + }, + { + "start": 3410.56, + "end": 3411.46, + "probability": 0.782 + }, + { + "start": 3412.06, + "end": 3414.04, + "probability": 0.9824 + }, + { + "start": 3414.2, + "end": 3415.12, + "probability": 0.984 + }, + { + "start": 3415.6, + "end": 3417.16, + "probability": 0.7493 + }, + { + "start": 3417.88, + "end": 3420.06, + "probability": 0.8691 + }, + { + "start": 3420.9, + "end": 3422.12, + "probability": 0.9011 + }, + { + "start": 3422.36, + "end": 3423.06, + "probability": 0.794 + }, + { + "start": 3423.46, + "end": 3424.7, + "probability": 0.9722 + }, + { + "start": 3425.2, + "end": 3429.44, + "probability": 0.9267 + }, + { + "start": 3430.84, + "end": 3432.43, + "probability": 0.8381 + }, + { + "start": 3433.82, + "end": 3436.1, + "probability": 0.7164 + }, + { + "start": 3436.18, + "end": 3437.14, + "probability": 0.7917 + }, + { + "start": 3437.18, + "end": 3439.2, + "probability": 0.9783 + }, + { + "start": 3439.34, + "end": 3439.86, + "probability": 0.6314 + }, + { + "start": 3440.06, + "end": 3440.48, + "probability": 0.6914 + }, + { + "start": 3441.36, + "end": 3442.7, + "probability": 0.98 + }, + { + "start": 3443.1, + "end": 3444.86, + "probability": 0.6047 + }, + { + "start": 3444.9, + "end": 3448.88, + "probability": 0.9241 + }, + { + "start": 3450.22, + "end": 3450.98, + "probability": 0.8209 + }, + { + "start": 3451.26, + "end": 3451.48, + "probability": 0.2723 + }, + { + "start": 3451.58, + "end": 3457.22, + "probability": 0.9707 + }, + { + "start": 3458.16, + "end": 3462.74, + "probability": 0.9767 + }, + { + "start": 3463.12, + "end": 3463.96, + "probability": 0.878 + }, + { + "start": 3464.82, + "end": 3466.16, + "probability": 0.9843 + }, + { + "start": 3467.34, + "end": 3469.2, + "probability": 0.8723 + }, + { + "start": 3470.4, + "end": 3471.0, + "probability": 0.9963 + }, + { + "start": 3471.52, + "end": 3473.81, + "probability": 0.8485 + }, + { + "start": 3474.32, + "end": 3477.56, + "probability": 0.9961 + }, + { + "start": 3478.08, + "end": 3480.4, + "probability": 0.9966 + }, + { + "start": 3481.04, + "end": 3482.2, + "probability": 0.9373 + }, + { + "start": 3482.94, + "end": 3483.3, + "probability": 0.9487 + }, + { + "start": 3483.96, + "end": 3485.92, + "probability": 0.9398 + }, + { + "start": 3486.76, + "end": 3487.68, + "probability": 0.9933 + }, + { + "start": 3488.78, + "end": 3489.1, + "probability": 0.7132 + }, + { + "start": 3489.28, + "end": 3489.9, + "probability": 0.5507 + }, + { + "start": 3489.98, + "end": 3490.22, + "probability": 0.9663 + }, + { + "start": 3490.56, + "end": 3490.84, + "probability": 0.9546 + }, + { + "start": 3491.74, + "end": 3492.46, + "probability": 0.9902 + }, + { + "start": 3493.02, + "end": 3494.02, + "probability": 0.985 + }, + { + "start": 3494.8, + "end": 3497.72, + "probability": 0.8653 + }, + { + "start": 3498.54, + "end": 3499.12, + "probability": 0.8879 + }, + { + "start": 3500.18, + "end": 3503.46, + "probability": 0.8214 + }, + { + "start": 3504.06, + "end": 3507.77, + "probability": 0.9397 + }, + { + "start": 3508.66, + "end": 3513.76, + "probability": 0.7756 + }, + { + "start": 3514.34, + "end": 3516.62, + "probability": 0.6587 + }, + { + "start": 3517.24, + "end": 3519.48, + "probability": 0.9436 + }, + { + "start": 3520.72, + "end": 3523.25, + "probability": 0.6393 + }, + { + "start": 3524.5, + "end": 3527.16, + "probability": 0.8843 + }, + { + "start": 3527.58, + "end": 3532.32, + "probability": 0.8261 + }, + { + "start": 3532.64, + "end": 3536.54, + "probability": 0.9187 + }, + { + "start": 3536.54, + "end": 3541.82, + "probability": 0.8882 + }, + { + "start": 3542.6, + "end": 3543.52, + "probability": 0.8089 + }, + { + "start": 3544.9, + "end": 3546.52, + "probability": 0.9722 + }, + { + "start": 3547.84, + "end": 3550.8, + "probability": 0.9155 + }, + { + "start": 3551.8, + "end": 3553.08, + "probability": 0.8065 + }, + { + "start": 3553.62, + "end": 3554.96, + "probability": 0.946 + }, + { + "start": 3555.94, + "end": 3559.98, + "probability": 0.7894 + }, + { + "start": 3562.84, + "end": 3563.32, + "probability": 0.4489 + }, + { + "start": 3564.88, + "end": 3565.6, + "probability": 0.5639 + }, + { + "start": 3565.78, + "end": 3568.42, + "probability": 0.9158 + }, + { + "start": 3568.66, + "end": 3569.8, + "probability": 0.7837 + }, + { + "start": 3570.92, + "end": 3573.84, + "probability": 0.8325 + }, + { + "start": 3574.82, + "end": 3578.04, + "probability": 0.9941 + }, + { + "start": 3579.18, + "end": 3583.8, + "probability": 0.9865 + }, + { + "start": 3583.8, + "end": 3589.88, + "probability": 0.9246 + }, + { + "start": 3590.0, + "end": 3595.8, + "probability": 0.9868 + }, + { + "start": 3596.56, + "end": 3600.32, + "probability": 0.6173 + }, + { + "start": 3601.24, + "end": 3602.94, + "probability": 0.8684 + }, + { + "start": 3603.6, + "end": 3605.88, + "probability": 0.749 + }, + { + "start": 3606.8, + "end": 3609.38, + "probability": 0.8264 + }, + { + "start": 3609.94, + "end": 3612.28, + "probability": 0.9771 + }, + { + "start": 3613.33, + "end": 3618.08, + "probability": 0.7183 + }, + { + "start": 3618.62, + "end": 3622.62, + "probability": 0.8086 + }, + { + "start": 3622.9, + "end": 3626.52, + "probability": 0.9988 + }, + { + "start": 3627.18, + "end": 3629.22, + "probability": 0.9926 + }, + { + "start": 3629.4, + "end": 3632.6, + "probability": 0.9685 + }, + { + "start": 3632.6, + "end": 3636.08, + "probability": 0.7789 + }, + { + "start": 3636.92, + "end": 3637.82, + "probability": 0.6935 + }, + { + "start": 3638.16, + "end": 3640.82, + "probability": 0.9761 + }, + { + "start": 3640.9, + "end": 3642.72, + "probability": 0.8372 + }, + { + "start": 3643.4, + "end": 3645.42, + "probability": 0.8457 + }, + { + "start": 3646.84, + "end": 3649.82, + "probability": 0.8381 + }, + { + "start": 3649.86, + "end": 3650.08, + "probability": 0.6746 + }, + { + "start": 3650.5, + "end": 3651.14, + "probability": 0.6484 + }, + { + "start": 3651.28, + "end": 3651.7, + "probability": 0.6912 + }, + { + "start": 3651.84, + "end": 3654.02, + "probability": 0.708 + }, + { + "start": 3654.16, + "end": 3658.02, + "probability": 0.7921 + }, + { + "start": 3658.86, + "end": 3662.42, + "probability": 0.9917 + }, + { + "start": 3663.3, + "end": 3670.5, + "probability": 0.9455 + }, + { + "start": 3671.2, + "end": 3673.96, + "probability": 0.991 + }, + { + "start": 3675.36, + "end": 3679.38, + "probability": 0.9263 + }, + { + "start": 3679.56, + "end": 3681.46, + "probability": 0.5896 + }, + { + "start": 3681.68, + "end": 3683.0, + "probability": 0.865 + }, + { + "start": 3683.32, + "end": 3684.28, + "probability": 0.7933 + }, + { + "start": 3684.4, + "end": 3685.04, + "probability": 0.5834 + }, + { + "start": 3686.16, + "end": 3692.72, + "probability": 0.9109 + }, + { + "start": 3693.54, + "end": 3695.58, + "probability": 0.9799 + }, + { + "start": 3695.72, + "end": 3699.46, + "probability": 0.8994 + }, + { + "start": 3700.22, + "end": 3705.74, + "probability": 0.9596 + }, + { + "start": 3705.8, + "end": 3706.32, + "probability": 0.8372 + }, + { + "start": 3706.92, + "end": 3709.46, + "probability": 0.9888 + }, + { + "start": 3709.56, + "end": 3712.26, + "probability": 0.9465 + }, + { + "start": 3712.6, + "end": 3714.48, + "probability": 0.8936 + }, + { + "start": 3715.2, + "end": 3717.32, + "probability": 0.888 + }, + { + "start": 3717.58, + "end": 3718.44, + "probability": 0.3962 + }, + { + "start": 3718.44, + "end": 3719.16, + "probability": 0.1592 + }, + { + "start": 3719.32, + "end": 3723.56, + "probability": 0.9498 + }, + { + "start": 3723.86, + "end": 3726.92, + "probability": 0.9049 + }, + { + "start": 3727.06, + "end": 3727.66, + "probability": 0.4094 + }, + { + "start": 3727.68, + "end": 3730.96, + "probability": 0.9797 + }, + { + "start": 3731.12, + "end": 3731.56, + "probability": 0.7178 + }, + { + "start": 3732.06, + "end": 3739.08, + "probability": 0.9883 + }, + { + "start": 3740.68, + "end": 3744.44, + "probability": 0.9943 + }, + { + "start": 3744.74, + "end": 3745.86, + "probability": 0.9839 + }, + { + "start": 3746.48, + "end": 3747.44, + "probability": 0.8521 + }, + { + "start": 3747.8, + "end": 3747.9, + "probability": 0.3553 + }, + { + "start": 3748.92, + "end": 3753.52, + "probability": 0.9166 + }, + { + "start": 3754.22, + "end": 3755.8, + "probability": 0.9702 + }, + { + "start": 3756.88, + "end": 3760.06, + "probability": 0.834 + }, + { + "start": 3760.66, + "end": 3761.62, + "probability": 0.8206 + }, + { + "start": 3761.7, + "end": 3762.22, + "probability": 0.8598 + }, + { + "start": 3762.44, + "end": 3763.24, + "probability": 0.9026 + }, + { + "start": 3763.38, + "end": 3763.68, + "probability": 0.7262 + }, + { + "start": 3763.88, + "end": 3764.52, + "probability": 0.6523 + }, + { + "start": 3765.08, + "end": 3767.76, + "probability": 0.944 + }, + { + "start": 3767.78, + "end": 3774.7, + "probability": 0.8765 + }, + { + "start": 3774.78, + "end": 3775.78, + "probability": 0.9431 + }, + { + "start": 3783.96, + "end": 3789.82, + "probability": 0.6722 + }, + { + "start": 3790.68, + "end": 3794.44, + "probability": 0.9928 + }, + { + "start": 3794.44, + "end": 3799.98, + "probability": 0.8873 + }, + { + "start": 3800.42, + "end": 3803.62, + "probability": 0.8838 + }, + { + "start": 3804.24, + "end": 3804.6, + "probability": 0.605 + }, + { + "start": 3804.86, + "end": 3811.88, + "probability": 0.9546 + }, + { + "start": 3812.82, + "end": 3817.34, + "probability": 0.9435 + }, + { + "start": 3818.16, + "end": 3823.5, + "probability": 0.9858 + }, + { + "start": 3824.96, + "end": 3825.5, + "probability": 0.7475 + }, + { + "start": 3825.64, + "end": 3829.34, + "probability": 0.9462 + }, + { + "start": 3829.74, + "end": 3830.9, + "probability": 0.754 + }, + { + "start": 3831.0, + "end": 3833.4, + "probability": 0.8726 + }, + { + "start": 3834.02, + "end": 3836.84, + "probability": 0.974 + }, + { + "start": 3837.42, + "end": 3840.42, + "probability": 0.9708 + }, + { + "start": 3840.98, + "end": 3847.42, + "probability": 0.8113 + }, + { + "start": 3848.24, + "end": 3848.92, + "probability": 0.5909 + }, + { + "start": 3849.04, + "end": 3853.6, + "probability": 0.9182 + }, + { + "start": 3853.8, + "end": 3854.92, + "probability": 0.8814 + }, + { + "start": 3855.44, + "end": 3857.12, + "probability": 0.6556 + }, + { + "start": 3857.18, + "end": 3858.26, + "probability": 0.6509 + }, + { + "start": 3858.9, + "end": 3860.18, + "probability": 0.8508 + }, + { + "start": 3860.26, + "end": 3860.68, + "probability": 0.9476 + }, + { + "start": 3860.9, + "end": 3862.88, + "probability": 0.7308 + }, + { + "start": 3863.56, + "end": 3866.46, + "probability": 0.9225 + }, + { + "start": 3866.5, + "end": 3870.94, + "probability": 0.9955 + }, + { + "start": 3871.94, + "end": 3872.78, + "probability": 0.2199 + }, + { + "start": 3875.54, + "end": 3876.8, + "probability": 0.95 + }, + { + "start": 3877.09, + "end": 3879.62, + "probability": 0.9551 + }, + { + "start": 3879.66, + "end": 3880.24, + "probability": 0.6563 + }, + { + "start": 3880.5, + "end": 3881.28, + "probability": 0.5494 + }, + { + "start": 3883.63, + "end": 3887.36, + "probability": 0.1665 + }, + { + "start": 3888.12, + "end": 3890.86, + "probability": 0.3494 + }, + { + "start": 3892.28, + "end": 3892.72, + "probability": 0.6978 + }, + { + "start": 3892.78, + "end": 3894.0, + "probability": 0.662 + }, + { + "start": 3894.25, + "end": 3900.56, + "probability": 0.7994 + }, + { + "start": 3901.04, + "end": 3901.75, + "probability": 0.9927 + }, + { + "start": 3901.96, + "end": 3902.32, + "probability": 0.5662 + }, + { + "start": 3902.42, + "end": 3906.32, + "probability": 0.7874 + }, + { + "start": 3907.4, + "end": 3913.9, + "probability": 0.9578 + }, + { + "start": 3914.18, + "end": 3915.06, + "probability": 0.8354 + }, + { + "start": 3915.54, + "end": 3919.82, + "probability": 0.949 + }, + { + "start": 3920.04, + "end": 3921.34, + "probability": 0.7082 + }, + { + "start": 3921.86, + "end": 3923.48, + "probability": 0.9907 + }, + { + "start": 3923.54, + "end": 3925.0, + "probability": 0.9746 + }, + { + "start": 3925.32, + "end": 3926.86, + "probability": 0.9818 + }, + { + "start": 3927.66, + "end": 3932.62, + "probability": 0.9512 + }, + { + "start": 3933.0, + "end": 3935.72, + "probability": 0.8719 + }, + { + "start": 3935.72, + "end": 3938.88, + "probability": 0.9785 + }, + { + "start": 3939.34, + "end": 3943.02, + "probability": 0.9937 + }, + { + "start": 3943.24, + "end": 3947.18, + "probability": 0.9954 + }, + { + "start": 3947.94, + "end": 3948.02, + "probability": 0.3402 + }, + { + "start": 3948.16, + "end": 3952.04, + "probability": 0.9447 + }, + { + "start": 3952.62, + "end": 3954.66, + "probability": 0.7172 + }, + { + "start": 3955.64, + "end": 3957.96, + "probability": 0.8589 + }, + { + "start": 3958.04, + "end": 3960.56, + "probability": 0.748 + }, + { + "start": 3960.6, + "end": 3960.88, + "probability": 0.8554 + }, + { + "start": 3961.28, + "end": 3965.2, + "probability": 0.8376 + }, + { + "start": 3966.16, + "end": 3968.46, + "probability": 0.9437 + }, + { + "start": 3968.56, + "end": 3969.22, + "probability": 0.7999 + }, + { + "start": 3969.34, + "end": 3971.02, + "probability": 0.9377 + }, + { + "start": 3971.2, + "end": 3972.42, + "probability": 0.968 + }, + { + "start": 3972.96, + "end": 3973.28, + "probability": 0.5294 + }, + { + "start": 3973.5, + "end": 3975.36, + "probability": 0.9297 + }, + { + "start": 3975.86, + "end": 3978.22, + "probability": 0.9577 + }, + { + "start": 3978.3, + "end": 3979.5, + "probability": 0.8623 + }, + { + "start": 3979.7, + "end": 3980.44, + "probability": 0.6137 + }, + { + "start": 3980.86, + "end": 3981.24, + "probability": 0.6994 + }, + { + "start": 3981.28, + "end": 3981.6, + "probability": 0.7537 + }, + { + "start": 3981.62, + "end": 3981.86, + "probability": 0.3539 + }, + { + "start": 3981.86, + "end": 3983.4, + "probability": 0.7287 + }, + { + "start": 3983.6, + "end": 3986.16, + "probability": 0.9764 + }, + { + "start": 3986.94, + "end": 3987.14, + "probability": 0.6577 + }, + { + "start": 3987.36, + "end": 3988.34, + "probability": 0.9419 + }, + { + "start": 3988.52, + "end": 3989.16, + "probability": 0.8444 + }, + { + "start": 3989.38, + "end": 3990.06, + "probability": 0.7276 + }, + { + "start": 3990.38, + "end": 3991.22, + "probability": 0.7153 + }, + { + "start": 3991.26, + "end": 3993.8, + "probability": 0.8475 + }, + { + "start": 3994.14, + "end": 3996.0, + "probability": 0.3739 + }, + { + "start": 3996.8, + "end": 4005.96, + "probability": 0.6044 + }, + { + "start": 4005.96, + "end": 4015.56, + "probability": 0.9908 + }, + { + "start": 4016.42, + "end": 4018.2, + "probability": 0.9075 + }, + { + "start": 4018.74, + "end": 4020.44, + "probability": 0.8181 + }, + { + "start": 4021.26, + "end": 4023.28, + "probability": 0.6718 + }, + { + "start": 4024.02, + "end": 4024.76, + "probability": 0.9815 + }, + { + "start": 4024.88, + "end": 4025.64, + "probability": 0.7357 + }, + { + "start": 4025.64, + "end": 4026.96, + "probability": 0.8823 + }, + { + "start": 4027.3, + "end": 4028.66, + "probability": 0.9478 + }, + { + "start": 4028.68, + "end": 4030.46, + "probability": 0.8882 + }, + { + "start": 4031.02, + "end": 4032.78, + "probability": 0.959 + }, + { + "start": 4033.3, + "end": 4033.96, + "probability": 0.1838 + }, + { + "start": 4034.9, + "end": 4038.3, + "probability": 0.9912 + }, + { + "start": 4038.3, + "end": 4040.38, + "probability": 0.9973 + }, + { + "start": 4040.54, + "end": 4041.29, + "probability": 0.5782 + }, + { + "start": 4041.78, + "end": 4045.42, + "probability": 0.9198 + }, + { + "start": 4045.42, + "end": 4049.36, + "probability": 0.9925 + }, + { + "start": 4049.72, + "end": 4050.6, + "probability": 0.6768 + }, + { + "start": 4051.16, + "end": 4052.18, + "probability": 0.9795 + }, + { + "start": 4053.02, + "end": 4054.26, + "probability": 0.9331 + }, + { + "start": 4054.38, + "end": 4055.14, + "probability": 0.7128 + }, + { + "start": 4055.14, + "end": 4056.26, + "probability": 0.8857 + }, + { + "start": 4057.22, + "end": 4060.84, + "probability": 0.9255 + }, + { + "start": 4061.58, + "end": 4067.78, + "probability": 0.9591 + }, + { + "start": 4068.14, + "end": 4068.68, + "probability": 0.1695 + }, + { + "start": 4068.76, + "end": 4073.1, + "probability": 0.866 + }, + { + "start": 4073.14, + "end": 4073.58, + "probability": 0.9421 + }, + { + "start": 4074.64, + "end": 4075.16, + "probability": 0.9712 + }, + { + "start": 4075.72, + "end": 4076.76, + "probability": 0.6601 + }, + { + "start": 4077.98, + "end": 4078.33, + "probability": 0.6586 + }, + { + "start": 4079.26, + "end": 4084.96, + "probability": 0.7997 + }, + { + "start": 4085.48, + "end": 4087.42, + "probability": 0.7575 + }, + { + "start": 4087.86, + "end": 4092.14, + "probability": 0.8242 + }, + { + "start": 4092.74, + "end": 4094.54, + "probability": 0.7163 + }, + { + "start": 4094.84, + "end": 4099.86, + "probability": 0.7505 + }, + { + "start": 4100.72, + "end": 4101.98, + "probability": 0.8495 + }, + { + "start": 4102.72, + "end": 4105.8, + "probability": 0.9003 + }, + { + "start": 4106.22, + "end": 4106.7, + "probability": 0.7359 + }, + { + "start": 4106.72, + "end": 4107.02, + "probability": 0.8776 + }, + { + "start": 4107.58, + "end": 4108.94, + "probability": 0.8964 + }, + { + "start": 4109.02, + "end": 4109.68, + "probability": 0.9303 + }, + { + "start": 4109.78, + "end": 4110.98, + "probability": 0.6565 + }, + { + "start": 4111.88, + "end": 4114.78, + "probability": 0.5538 + }, + { + "start": 4115.5, + "end": 4118.16, + "probability": 0.9505 + }, + { + "start": 4119.42, + "end": 4121.0, + "probability": 0.8574 + }, + { + "start": 4121.32, + "end": 4122.34, + "probability": 0.9922 + }, + { + "start": 4122.48, + "end": 4124.64, + "probability": 0.9639 + }, + { + "start": 4125.32, + "end": 4128.26, + "probability": 0.8406 + }, + { + "start": 4129.74, + "end": 4131.52, + "probability": 0.564 + }, + { + "start": 4132.19, + "end": 4134.82, + "probability": 0.9868 + }, + { + "start": 4134.88, + "end": 4136.78, + "probability": 0.6145 + }, + { + "start": 4137.0, + "end": 4137.74, + "probability": 0.7595 + }, + { + "start": 4139.28, + "end": 4140.06, + "probability": 0.425 + }, + { + "start": 4140.24, + "end": 4141.74, + "probability": 0.9508 + }, + { + "start": 4141.94, + "end": 4143.08, + "probability": 0.8413 + }, + { + "start": 4143.22, + "end": 4144.96, + "probability": 0.8607 + }, + { + "start": 4145.4, + "end": 4147.43, + "probability": 0.564 + }, + { + "start": 4148.0, + "end": 4154.38, + "probability": 0.9176 + }, + { + "start": 4155.16, + "end": 4157.34, + "probability": 0.9972 + }, + { + "start": 4157.42, + "end": 4158.64, + "probability": 0.8222 + }, + { + "start": 4158.82, + "end": 4160.74, + "probability": 0.8591 + }, + { + "start": 4160.82, + "end": 4163.6, + "probability": 0.9192 + }, + { + "start": 4163.6, + "end": 4166.98, + "probability": 0.9937 + }, + { + "start": 4168.02, + "end": 4169.28, + "probability": 0.6414 + }, + { + "start": 4169.88, + "end": 4172.98, + "probability": 0.9983 + }, + { + "start": 4172.98, + "end": 4176.6, + "probability": 0.9969 + }, + { + "start": 4177.1, + "end": 4179.04, + "probability": 0.729 + }, + { + "start": 4179.68, + "end": 4183.48, + "probability": 0.7983 + }, + { + "start": 4183.48, + "end": 4186.88, + "probability": 0.9789 + }, + { + "start": 4187.46, + "end": 4189.52, + "probability": 0.6786 + }, + { + "start": 4189.58, + "end": 4189.9, + "probability": 0.2905 + }, + { + "start": 4189.96, + "end": 4190.5, + "probability": 0.6729 + }, + { + "start": 4190.78, + "end": 4191.94, + "probability": 0.7502 + }, + { + "start": 4192.16, + "end": 4192.58, + "probability": 0.7509 + }, + { + "start": 4192.7, + "end": 4193.22, + "probability": 0.8693 + }, + { + "start": 4193.56, + "end": 4196.48, + "probability": 0.7646 + }, + { + "start": 4196.88, + "end": 4200.62, + "probability": 0.896 + }, + { + "start": 4201.2, + "end": 4201.56, + "probability": 0.9351 + }, + { + "start": 4202.36, + "end": 4202.96, + "probability": 0.9728 + }, + { + "start": 4203.48, + "end": 4204.42, + "probability": 0.8407 + }, + { + "start": 4204.52, + "end": 4205.28, + "probability": 0.8146 + }, + { + "start": 4205.7, + "end": 4209.1, + "probability": 0.7536 + }, + { + "start": 4210.6, + "end": 4214.14, + "probability": 0.939 + }, + { + "start": 4216.26, + "end": 4220.02, + "probability": 0.7812 + }, + { + "start": 4220.26, + "end": 4221.82, + "probability": 0.9276 + }, + { + "start": 4221.96, + "end": 4222.2, + "probability": 0.7543 + }, + { + "start": 4223.7, + "end": 4229.34, + "probability": 0.9358 + }, + { + "start": 4229.34, + "end": 4235.38, + "probability": 0.915 + }, + { + "start": 4236.36, + "end": 4238.0, + "probability": 0.915 + }, + { + "start": 4238.14, + "end": 4238.84, + "probability": 0.7472 + }, + { + "start": 4239.3, + "end": 4240.24, + "probability": 0.6443 + }, + { + "start": 4240.82, + "end": 4244.64, + "probability": 0.6087 + }, + { + "start": 4245.56, + "end": 4246.1, + "probability": 0.864 + }, + { + "start": 4246.24, + "end": 4246.64, + "probability": 0.9946 + }, + { + "start": 4246.7, + "end": 4247.16, + "probability": 0.8616 + }, + { + "start": 4247.58, + "end": 4249.82, + "probability": 0.9301 + }, + { + "start": 4250.5, + "end": 4251.56, + "probability": 0.6994 + }, + { + "start": 4251.72, + "end": 4253.86, + "probability": 0.9663 + }, + { + "start": 4253.94, + "end": 4255.52, + "probability": 0.6422 + }, + { + "start": 4255.6, + "end": 4256.02, + "probability": 0.3317 + }, + { + "start": 4256.42, + "end": 4257.42, + "probability": 0.849 + }, + { + "start": 4258.92, + "end": 4262.42, + "probability": 0.8635 + }, + { + "start": 4262.98, + "end": 4265.8, + "probability": 0.8377 + }, + { + "start": 4266.38, + "end": 4267.86, + "probability": 0.9583 + }, + { + "start": 4269.5, + "end": 4274.44, + "probability": 0.993 + }, + { + "start": 4275.46, + "end": 4276.36, + "probability": 0.7422 + }, + { + "start": 4276.46, + "end": 4278.1, + "probability": 0.889 + }, + { + "start": 4278.52, + "end": 4282.1, + "probability": 0.9991 + }, + { + "start": 4282.34, + "end": 4283.24, + "probability": 0.9497 + }, + { + "start": 4284.42, + "end": 4286.6, + "probability": 0.6304 + }, + { + "start": 4287.12, + "end": 4289.86, + "probability": 0.9878 + }, + { + "start": 4289.86, + "end": 4293.3, + "probability": 0.9342 + }, + { + "start": 4293.92, + "end": 4296.38, + "probability": 0.9431 + }, + { + "start": 4296.54, + "end": 4298.48, + "probability": 0.9557 + }, + { + "start": 4299.2, + "end": 4301.04, + "probability": 0.8424 + }, + { + "start": 4303.68, + "end": 4304.9, + "probability": 0.9551 + }, + { + "start": 4305.62, + "end": 4314.34, + "probability": 0.9832 + }, + { + "start": 4314.92, + "end": 4317.02, + "probability": 0.9355 + }, + { + "start": 4317.86, + "end": 4322.66, + "probability": 0.843 + }, + { + "start": 4323.18, + "end": 4323.86, + "probability": 0.8385 + }, + { + "start": 4324.76, + "end": 4325.78, + "probability": 0.4968 + }, + { + "start": 4325.9, + "end": 4328.24, + "probability": 0.9071 + }, + { + "start": 4329.04, + "end": 4335.66, + "probability": 0.9556 + }, + { + "start": 4336.48, + "end": 4338.42, + "probability": 0.7222 + }, + { + "start": 4339.64, + "end": 4342.5, + "probability": 0.9214 + }, + { + "start": 4342.82, + "end": 4345.42, + "probability": 0.9758 + }, + { + "start": 4345.66, + "end": 4350.04, + "probability": 0.9637 + }, + { + "start": 4351.1, + "end": 4355.1, + "probability": 0.9774 + }, + { + "start": 4355.14, + "end": 4356.74, + "probability": 0.8499 + }, + { + "start": 4357.6, + "end": 4360.26, + "probability": 0.967 + }, + { + "start": 4361.28, + "end": 4363.86, + "probability": 0.9858 + }, + { + "start": 4364.16, + "end": 4364.9, + "probability": 0.8234 + }, + { + "start": 4365.34, + "end": 4366.92, + "probability": 0.7129 + }, + { + "start": 4367.9, + "end": 4370.14, + "probability": 0.3375 + }, + { + "start": 4370.94, + "end": 4373.86, + "probability": 0.9808 + }, + { + "start": 4374.5, + "end": 4376.3, + "probability": 0.9971 + }, + { + "start": 4376.6, + "end": 4379.4, + "probability": 0.7584 + }, + { + "start": 4379.62, + "end": 4380.24, + "probability": 0.7845 + }, + { + "start": 4380.64, + "end": 4382.82, + "probability": 0.8965 + }, + { + "start": 4383.98, + "end": 4387.06, + "probability": 0.9834 + }, + { + "start": 4388.72, + "end": 4392.98, + "probability": 0.9905 + }, + { + "start": 4393.64, + "end": 4396.02, + "probability": 0.9146 + }, + { + "start": 4396.68, + "end": 4398.38, + "probability": 0.8735 + }, + { + "start": 4399.24, + "end": 4402.96, + "probability": 0.978 + }, + { + "start": 4403.6, + "end": 4404.58, + "probability": 0.7992 + }, + { + "start": 4405.62, + "end": 4413.66, + "probability": 0.7512 + }, + { + "start": 4414.52, + "end": 4415.2, + "probability": 0.5872 + }, + { + "start": 4415.98, + "end": 4419.16, + "probability": 0.981 + }, + { + "start": 4419.16, + "end": 4421.72, + "probability": 0.932 + }, + { + "start": 4422.12, + "end": 4426.4, + "probability": 0.9915 + }, + { + "start": 4426.84, + "end": 4427.72, + "probability": 0.8334 + }, + { + "start": 4427.82, + "end": 4428.84, + "probability": 0.7849 + }, + { + "start": 4428.94, + "end": 4430.94, + "probability": 0.9909 + }, + { + "start": 4432.08, + "end": 4434.58, + "probability": 0.8419 + }, + { + "start": 4434.78, + "end": 4435.33, + "probability": 0.9021 + }, + { + "start": 4436.02, + "end": 4436.66, + "probability": 0.9321 + }, + { + "start": 4436.73, + "end": 4436.8, + "probability": 0.1456 + }, + { + "start": 4436.8, + "end": 4437.16, + "probability": 0.5829 + }, + { + "start": 4437.4, + "end": 4437.88, + "probability": 0.5317 + }, + { + "start": 4437.88, + "end": 4438.14, + "probability": 0.3868 + }, + { + "start": 4438.28, + "end": 4438.68, + "probability": 0.8339 + }, + { + "start": 4439.64, + "end": 4440.64, + "probability": 0.4279 + }, + { + "start": 4440.64, + "end": 4441.56, + "probability": 0.8084 + }, + { + "start": 4442.32, + "end": 4445.16, + "probability": 0.8661 + }, + { + "start": 4445.26, + "end": 4448.26, + "probability": 0.7976 + }, + { + "start": 4448.64, + "end": 4450.78, + "probability": 0.8446 + }, + { + "start": 4451.38, + "end": 4458.56, + "probability": 0.9702 + }, + { + "start": 4458.66, + "end": 4460.0, + "probability": 0.8078 + }, + { + "start": 4460.42, + "end": 4461.18, + "probability": 0.9884 + }, + { + "start": 4462.38, + "end": 4464.66, + "probability": 0.7136 + }, + { + "start": 4465.38, + "end": 4465.9, + "probability": 0.9652 + }, + { + "start": 4466.82, + "end": 4469.76, + "probability": 0.8978 + }, + { + "start": 4469.98, + "end": 4471.02, + "probability": 0.7255 + }, + { + "start": 4471.44, + "end": 4472.42, + "probability": 0.8024 + }, + { + "start": 4472.96, + "end": 4477.7, + "probability": 0.9825 + }, + { + "start": 4477.7, + "end": 4482.74, + "probability": 0.9838 + }, + { + "start": 4483.66, + "end": 4488.22, + "probability": 0.7563 + }, + { + "start": 4488.22, + "end": 4491.34, + "probability": 0.9656 + }, + { + "start": 4491.34, + "end": 4494.0, + "probability": 0.5708 + }, + { + "start": 4494.14, + "end": 4498.56, + "probability": 0.8264 + }, + { + "start": 4498.82, + "end": 4499.88, + "probability": 0.5692 + }, + { + "start": 4500.06, + "end": 4503.38, + "probability": 0.9435 + }, + { + "start": 4503.68, + "end": 4504.16, + "probability": 0.8952 + }, + { + "start": 4504.52, + "end": 4505.0, + "probability": 0.3845 + }, + { + "start": 4505.26, + "end": 4506.24, + "probability": 0.9222 + }, + { + "start": 4506.36, + "end": 4509.06, + "probability": 0.9207 + }, + { + "start": 4509.28, + "end": 4509.82, + "probability": 0.7644 + }, + { + "start": 4509.9, + "end": 4510.36, + "probability": 0.78 + }, + { + "start": 4510.62, + "end": 4513.58, + "probability": 0.8452 + }, + { + "start": 4513.58, + "end": 4513.82, + "probability": 0.7238 + }, + { + "start": 4514.32, + "end": 4516.46, + "probability": 0.5277 + }, + { + "start": 4517.3, + "end": 4520.58, + "probability": 0.9924 + }, + { + "start": 4521.22, + "end": 4522.66, + "probability": 0.9265 + }, + { + "start": 4522.74, + "end": 4524.34, + "probability": 0.8791 + }, + { + "start": 4524.36, + "end": 4524.58, + "probability": 0.3419 + }, + { + "start": 4524.76, + "end": 4524.9, + "probability": 0.8527 + }, + { + "start": 4524.94, + "end": 4527.56, + "probability": 0.9504 + }, + { + "start": 4528.46, + "end": 4530.12, + "probability": 0.7612 + }, + { + "start": 4530.26, + "end": 4531.04, + "probability": 0.6682 + }, + { + "start": 4531.62, + "end": 4532.64, + "probability": 0.9065 + }, + { + "start": 4532.7, + "end": 4537.62, + "probability": 0.9067 + }, + { + "start": 4549.34, + "end": 4553.52, + "probability": 0.9984 + }, + { + "start": 4575.64, + "end": 4576.6, + "probability": 0.6678 + }, + { + "start": 4579.14, + "end": 4580.1, + "probability": 0.7949 + }, + { + "start": 4581.44, + "end": 4582.72, + "probability": 0.5632 + }, + { + "start": 4583.46, + "end": 4588.56, + "probability": 0.9932 + }, + { + "start": 4589.08, + "end": 4590.72, + "probability": 0.8272 + }, + { + "start": 4593.96, + "end": 4598.0, + "probability": 0.9368 + }, + { + "start": 4599.86, + "end": 4602.65, + "probability": 0.5384 + }, + { + "start": 4604.24, + "end": 4605.66, + "probability": 0.7711 + }, + { + "start": 4605.7, + "end": 4608.96, + "probability": 0.998 + }, + { + "start": 4610.92, + "end": 4611.78, + "probability": 0.9283 + }, + { + "start": 4612.72, + "end": 4613.4, + "probability": 0.8142 + }, + { + "start": 4613.78, + "end": 4615.52, + "probability": 0.9128 + }, + { + "start": 4617.02, + "end": 4617.26, + "probability": 0.9829 + }, + { + "start": 4617.82, + "end": 4618.42, + "probability": 0.4957 + }, + { + "start": 4622.58, + "end": 4623.3, + "probability": 0.8804 + }, + { + "start": 4623.32, + "end": 4623.92, + "probability": 0.7207 + }, + { + "start": 4624.0, + "end": 4624.5, + "probability": 0.9643 + }, + { + "start": 4624.64, + "end": 4626.88, + "probability": 0.6799 + }, + { + "start": 4627.74, + "end": 4631.03, + "probability": 0.9214 + }, + { + "start": 4632.3, + "end": 4633.32, + "probability": 0.5798 + }, + { + "start": 4634.0, + "end": 4634.78, + "probability": 0.3825 + }, + { + "start": 4634.8, + "end": 4634.94, + "probability": 0.2652 + }, + { + "start": 4636.1, + "end": 4637.28, + "probability": 0.4923 + }, + { + "start": 4637.56, + "end": 4638.34, + "probability": 0.0291 + }, + { + "start": 4639.87, + "end": 4641.78, + "probability": 0.8099 + }, + { + "start": 4642.94, + "end": 4645.24, + "probability": 0.9163 + }, + { + "start": 4645.34, + "end": 4645.86, + "probability": 0.8105 + }, + { + "start": 4646.47, + "end": 4648.02, + "probability": 0.833 + }, + { + "start": 4649.26, + "end": 4650.05, + "probability": 0.6592 + }, + { + "start": 4653.34, + "end": 4654.68, + "probability": 0.7386 + }, + { + "start": 4655.78, + "end": 4655.84, + "probability": 0.2367 + }, + { + "start": 4656.7, + "end": 4659.54, + "probability": 0.5521 + }, + { + "start": 4661.42, + "end": 4662.32, + "probability": 0.9132 + }, + { + "start": 4662.48, + "end": 4663.9, + "probability": 0.585 + }, + { + "start": 4664.2, + "end": 4664.76, + "probability": 0.5639 + }, + { + "start": 4665.14, + "end": 4669.46, + "probability": 0.8533 + }, + { + "start": 4670.62, + "end": 4671.34, + "probability": 0.4974 + }, + { + "start": 4671.34, + "end": 4672.5, + "probability": 0.557 + }, + { + "start": 4672.82, + "end": 4673.1, + "probability": 0.0179 + }, + { + "start": 4674.18, + "end": 4674.53, + "probability": 0.0719 + }, + { + "start": 4675.46, + "end": 4676.26, + "probability": 0.8754 + }, + { + "start": 4676.34, + "end": 4677.82, + "probability": 0.529 + }, + { + "start": 4677.82, + "end": 4678.92, + "probability": 0.2253 + }, + { + "start": 4679.16, + "end": 4681.6, + "probability": 0.2256 + }, + { + "start": 4681.82, + "end": 4683.34, + "probability": 0.3354 + }, + { + "start": 4683.4, + "end": 4684.52, + "probability": 0.0306 + }, + { + "start": 4685.32, + "end": 4688.56, + "probability": 0.388 + }, + { + "start": 4688.76, + "end": 4689.2, + "probability": 0.4976 + }, + { + "start": 4689.58, + "end": 4690.22, + "probability": 0.7331 + }, + { + "start": 4690.66, + "end": 4690.72, + "probability": 0.2027 + }, + { + "start": 4690.82, + "end": 4692.64, + "probability": 0.3974 + }, + { + "start": 4693.12, + "end": 4694.8, + "probability": 0.4081 + }, + { + "start": 4695.32, + "end": 4695.72, + "probability": 0.8446 + }, + { + "start": 4696.06, + "end": 4698.7, + "probability": 0.969 + }, + { + "start": 4699.32, + "end": 4699.71, + "probability": 0.9412 + }, + { + "start": 4700.86, + "end": 4701.34, + "probability": 0.7821 + }, + { + "start": 4702.86, + "end": 4703.54, + "probability": 0.8409 + }, + { + "start": 4704.74, + "end": 4705.78, + "probability": 0.825 + }, + { + "start": 4706.5, + "end": 4707.08, + "probability": 0.7179 + }, + { + "start": 4707.94, + "end": 4708.02, + "probability": 0.1125 + }, + { + "start": 4708.02, + "end": 4708.92, + "probability": 0.737 + }, + { + "start": 4709.4, + "end": 4710.5, + "probability": 0.1171 + }, + { + "start": 4710.5, + "end": 4711.72, + "probability": 0.567 + }, + { + "start": 4712.1, + "end": 4715.74, + "probability": 0.6379 + }, + { + "start": 4716.36, + "end": 4718.48, + "probability": 0.886 + }, + { + "start": 4722.32, + "end": 4724.76, + "probability": 0.7384 + }, + { + "start": 4725.6, + "end": 4732.42, + "probability": 0.9519 + }, + { + "start": 4733.6, + "end": 4736.84, + "probability": 0.9385 + }, + { + "start": 4737.86, + "end": 4741.1, + "probability": 0.9785 + }, + { + "start": 4742.22, + "end": 4746.38, + "probability": 0.9843 + }, + { + "start": 4747.66, + "end": 4748.92, + "probability": 0.9511 + }, + { + "start": 4749.0, + "end": 4751.34, + "probability": 0.9783 + }, + { + "start": 4751.66, + "end": 4755.42, + "probability": 0.992 + }, + { + "start": 4756.26, + "end": 4760.04, + "probability": 0.9427 + }, + { + "start": 4760.62, + "end": 4762.08, + "probability": 0.9559 + }, + { + "start": 4762.54, + "end": 4763.66, + "probability": 0.8269 + }, + { + "start": 4764.58, + "end": 4766.32, + "probability": 0.9099 + }, + { + "start": 4766.88, + "end": 4768.32, + "probability": 0.9963 + }, + { + "start": 4768.9, + "end": 4772.28, + "probability": 0.9543 + }, + { + "start": 4773.34, + "end": 4774.6, + "probability": 0.9954 + }, + { + "start": 4775.16, + "end": 4777.58, + "probability": 0.8846 + }, + { + "start": 4777.76, + "end": 4779.62, + "probability": 0.7985 + }, + { + "start": 4779.78, + "end": 4780.48, + "probability": 0.4565 + }, + { + "start": 4781.04, + "end": 4781.48, + "probability": 0.5971 + }, + { + "start": 4781.52, + "end": 4782.3, + "probability": 0.9835 + }, + { + "start": 4782.38, + "end": 4783.04, + "probability": 0.9363 + }, + { + "start": 4783.4, + "end": 4785.8, + "probability": 0.998 + }, + { + "start": 4786.4, + "end": 4789.56, + "probability": 0.6739 + }, + { + "start": 4790.68, + "end": 4791.88, + "probability": 0.9922 + }, + { + "start": 4792.06, + "end": 4793.26, + "probability": 0.924 + }, + { + "start": 4793.52, + "end": 4794.32, + "probability": 0.7655 + }, + { + "start": 4795.22, + "end": 4798.76, + "probability": 0.9964 + }, + { + "start": 4799.6, + "end": 4800.46, + "probability": 0.7747 + }, + { + "start": 4801.06, + "end": 4801.98, + "probability": 0.9043 + }, + { + "start": 4802.76, + "end": 4804.04, + "probability": 0.9069 + }, + { + "start": 4805.14, + "end": 4806.34, + "probability": 0.9051 + }, + { + "start": 4808.12, + "end": 4810.98, + "probability": 0.9879 + }, + { + "start": 4811.06, + "end": 4812.2, + "probability": 0.9713 + }, + { + "start": 4812.3, + "end": 4813.12, + "probability": 0.9886 + }, + { + "start": 4813.24, + "end": 4813.76, + "probability": 0.8236 + }, + { + "start": 4814.32, + "end": 4814.88, + "probability": 0.8576 + }, + { + "start": 4817.04, + "end": 4817.64, + "probability": 0.9019 + }, + { + "start": 4818.62, + "end": 4824.16, + "probability": 0.9862 + }, + { + "start": 4824.28, + "end": 4826.86, + "probability": 0.9927 + }, + { + "start": 4827.3, + "end": 4830.34, + "probability": 0.995 + }, + { + "start": 4831.44, + "end": 4831.82, + "probability": 0.4942 + }, + { + "start": 4832.02, + "end": 4834.24, + "probability": 0.9966 + }, + { + "start": 4834.3, + "end": 4838.9, + "probability": 0.988 + }, + { + "start": 4838.9, + "end": 4845.28, + "probability": 0.9985 + }, + { + "start": 4845.38, + "end": 4846.24, + "probability": 0.8141 + }, + { + "start": 4846.9, + "end": 4847.98, + "probability": 0.996 + }, + { + "start": 4849.42, + "end": 4850.78, + "probability": 0.9142 + }, + { + "start": 4851.58, + "end": 4853.42, + "probability": 0.9763 + }, + { + "start": 4853.68, + "end": 4855.48, + "probability": 0.8791 + }, + { + "start": 4856.02, + "end": 4858.12, + "probability": 0.8175 + }, + { + "start": 4859.28, + "end": 4861.18, + "probability": 0.7227 + }, + { + "start": 4861.48, + "end": 4864.74, + "probability": 0.9875 + }, + { + "start": 4865.58, + "end": 4867.02, + "probability": 0.6444 + }, + { + "start": 4867.26, + "end": 4867.72, + "probability": 0.5057 + }, + { + "start": 4867.74, + "end": 4868.54, + "probability": 0.518 + }, + { + "start": 4868.72, + "end": 4870.86, + "probability": 0.7875 + }, + { + "start": 4871.34, + "end": 4871.46, + "probability": 0.2416 + }, + { + "start": 4871.54, + "end": 4873.2, + "probability": 0.9717 + }, + { + "start": 4873.32, + "end": 4873.67, + "probability": 0.2766 + }, + { + "start": 4874.36, + "end": 4875.44, + "probability": 0.1129 + }, + { + "start": 4877.34, + "end": 4877.94, + "probability": 0.1568 + }, + { + "start": 4877.96, + "end": 4878.44, + "probability": 0.1823 + }, + { + "start": 4878.48, + "end": 4880.9, + "probability": 0.8241 + }, + { + "start": 4881.16, + "end": 4885.7, + "probability": 0.9836 + }, + { + "start": 4886.24, + "end": 4887.56, + "probability": 0.9636 + }, + { + "start": 4888.98, + "end": 4893.04, + "probability": 0.0989 + }, + { + "start": 4893.04, + "end": 4893.48, + "probability": 0.122 + }, + { + "start": 4893.48, + "end": 4896.28, + "probability": 0.9192 + }, + { + "start": 4896.38, + "end": 4897.96, + "probability": 0.9147 + }, + { + "start": 4898.06, + "end": 4900.98, + "probability": 0.9929 + }, + { + "start": 4901.32, + "end": 4903.38, + "probability": 0.9973 + }, + { + "start": 4904.24, + "end": 4905.22, + "probability": 0.6025 + }, + { + "start": 4906.14, + "end": 4910.14, + "probability": 0.9922 + }, + { + "start": 4910.54, + "end": 4911.3, + "probability": 0.9177 + }, + { + "start": 4911.76, + "end": 4912.52, + "probability": 0.9478 + }, + { + "start": 4913.46, + "end": 4916.3, + "probability": 0.967 + }, + { + "start": 4916.36, + "end": 4918.62, + "probability": 0.9152 + }, + { + "start": 4918.72, + "end": 4919.72, + "probability": 0.8999 + }, + { + "start": 4920.1, + "end": 4921.36, + "probability": 0.9937 + }, + { + "start": 4922.22, + "end": 4924.88, + "probability": 0.8069 + }, + { + "start": 4926.16, + "end": 4926.4, + "probability": 0.1113 + }, + { + "start": 4926.4, + "end": 4928.34, + "probability": 0.7349 + }, + { + "start": 4929.6, + "end": 4930.7, + "probability": 0.1789 + }, + { + "start": 4930.86, + "end": 4930.96, + "probability": 0.0292 + }, + { + "start": 4931.04, + "end": 4931.3, + "probability": 0.036 + }, + { + "start": 4931.32, + "end": 4931.4, + "probability": 0.0696 + }, + { + "start": 4931.4, + "end": 4932.08, + "probability": 0.5534 + }, + { + "start": 4932.2, + "end": 4933.14, + "probability": 0.2715 + }, + { + "start": 4933.14, + "end": 4933.96, + "probability": 0.5349 + }, + { + "start": 4933.98, + "end": 4935.44, + "probability": 0.9332 + }, + { + "start": 4935.78, + "end": 4938.86, + "probability": 0.9912 + }, + { + "start": 4943.38, + "end": 4943.78, + "probability": 0.1267 + }, + { + "start": 4943.78, + "end": 4947.09, + "probability": 0.2332 + }, + { + "start": 4947.4, + "end": 4947.82, + "probability": 0.1523 + }, + { + "start": 4947.86, + "end": 4954.14, + "probability": 0.2963 + }, + { + "start": 4955.36, + "end": 4960.12, + "probability": 0.167 + }, + { + "start": 4960.39, + "end": 4961.89, + "probability": 0.1015 + }, + { + "start": 4965.24, + "end": 4966.4, + "probability": 0.16 + }, + { + "start": 4976.36, + "end": 4977.62, + "probability": 0.1994 + }, + { + "start": 4978.2, + "end": 4983.74, + "probability": 0.1124 + }, + { + "start": 4984.62, + "end": 4987.62, + "probability": 0.0673 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.18, + "end": 5037.88, + "probability": 0.0717 + }, + { + "start": 5037.88, + "end": 5038.86, + "probability": 0.0828 + }, + { + "start": 5040.2, + "end": 5040.2, + "probability": 0.0068 + }, + { + "start": 5040.74, + "end": 5041.92, + "probability": 0.1516 + }, + { + "start": 5042.46, + "end": 5044.6, + "probability": 0.2905 + }, + { + "start": 5046.6, + "end": 5049.05, + "probability": 0.0422 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.0, + "end": 5157.0, + "probability": 0.0 + }, + { + "start": 5157.02, + "end": 5158.84, + "probability": 0.0147 + }, + { + "start": 5160.46, + "end": 5161.29, + "probability": 0.2396 + }, + { + "start": 5162.06, + "end": 5164.16, + "probability": 0.7419 + }, + { + "start": 5164.32, + "end": 5165.59, + "probability": 0.988 + }, + { + "start": 5165.74, + "end": 5167.76, + "probability": 0.6295 + }, + { + "start": 5167.78, + "end": 5167.78, + "probability": 0.4842 + }, + { + "start": 5167.78, + "end": 5167.78, + "probability": 0.3434 + }, + { + "start": 5167.8, + "end": 5167.88, + "probability": 0.1014 + }, + { + "start": 5167.9, + "end": 5169.04, + "probability": 0.3365 + }, + { + "start": 5169.56, + "end": 5169.62, + "probability": 0.1073 + }, + { + "start": 5169.76, + "end": 5170.64, + "probability": 0.6137 + }, + { + "start": 5172.04, + "end": 5179.28, + "probability": 0.9532 + }, + { + "start": 5180.12, + "end": 5182.7, + "probability": 0.8536 + }, + { + "start": 5184.48, + "end": 5188.6, + "probability": 0.9219 + }, + { + "start": 5189.42, + "end": 5193.22, + "probability": 0.891 + }, + { + "start": 5194.26, + "end": 5197.3, + "probability": 0.9775 + }, + { + "start": 5199.43, + "end": 5205.24, + "probability": 0.9005 + }, + { + "start": 5206.58, + "end": 5209.68, + "probability": 0.9255 + }, + { + "start": 5210.5, + "end": 5213.22, + "probability": 0.923 + }, + { + "start": 5213.92, + "end": 5215.1, + "probability": 0.5409 + }, + { + "start": 5216.14, + "end": 5217.42, + "probability": 0.7762 + }, + { + "start": 5218.24, + "end": 5224.26, + "probability": 0.9971 + }, + { + "start": 5225.86, + "end": 5227.3, + "probability": 0.9694 + }, + { + "start": 5227.84, + "end": 5230.54, + "probability": 0.9694 + }, + { + "start": 5230.7, + "end": 5231.26, + "probability": 0.9145 + }, + { + "start": 5231.86, + "end": 5236.64, + "probability": 0.9906 + }, + { + "start": 5237.34, + "end": 5239.38, + "probability": 0.9993 + }, + { + "start": 5240.02, + "end": 5245.1, + "probability": 0.9767 + }, + { + "start": 5245.8, + "end": 5252.5, + "probability": 0.9507 + }, + { + "start": 5253.72, + "end": 5255.28, + "probability": 0.6967 + }, + { + "start": 5256.22, + "end": 5258.84, + "probability": 0.9874 + }, + { + "start": 5259.56, + "end": 5262.88, + "probability": 0.9948 + }, + { + "start": 5263.4, + "end": 5264.5, + "probability": 0.847 + }, + { + "start": 5264.62, + "end": 5266.72, + "probability": 0.8131 + }, + { + "start": 5266.98, + "end": 5267.68, + "probability": 0.648 + }, + { + "start": 5271.24, + "end": 5271.24, + "probability": 0.7917 + }, + { + "start": 5271.24, + "end": 5272.36, + "probability": 0.0261 + }, + { + "start": 5272.36, + "end": 5274.58, + "probability": 0.7373 + }, + { + "start": 5274.64, + "end": 5277.02, + "probability": 0.666 + }, + { + "start": 5277.1, + "end": 5283.5, + "probability": 0.8093 + }, + { + "start": 5284.5, + "end": 5284.8, + "probability": 0.0472 + }, + { + "start": 5284.8, + "end": 5284.8, + "probability": 0.0483 + }, + { + "start": 5284.8, + "end": 5285.23, + "probability": 0.5074 + }, + { + "start": 5285.68, + "end": 5285.96, + "probability": 0.0801 + }, + { + "start": 5286.52, + "end": 5290.34, + "probability": 0.7164 + }, + { + "start": 5291.78, + "end": 5293.42, + "probability": 0.6631 + }, + { + "start": 5294.04, + "end": 5294.16, + "probability": 0.0394 + }, + { + "start": 5294.16, + "end": 5295.42, + "probability": 0.5546 + }, + { + "start": 5295.68, + "end": 5296.86, + "probability": 0.789 + }, + { + "start": 5297.56, + "end": 5298.16, + "probability": 0.9106 + }, + { + "start": 5298.98, + "end": 5300.0, + "probability": 0.9065 + }, + { + "start": 5300.16, + "end": 5302.9, + "probability": 0.7505 + }, + { + "start": 5303.4, + "end": 5307.56, + "probability": 0.9768 + }, + { + "start": 5308.04, + "end": 5309.34, + "probability": 0.9907 + }, + { + "start": 5309.94, + "end": 5310.92, + "probability": 0.9801 + }, + { + "start": 5311.26, + "end": 5312.2, + "probability": 0.9496 + }, + { + "start": 5312.66, + "end": 5315.84, + "probability": 0.9744 + }, + { + "start": 5316.1, + "end": 5316.18, + "probability": 0.1737 + }, + { + "start": 5316.18, + "end": 5316.9, + "probability": 0.9575 + }, + { + "start": 5317.6, + "end": 5318.96, + "probability": 0.6096 + }, + { + "start": 5319.48, + "end": 5319.98, + "probability": 0.5272 + }, + { + "start": 5320.98, + "end": 5322.74, + "probability": 0.0352 + }, + { + "start": 5323.16, + "end": 5323.34, + "probability": 0.0283 + }, + { + "start": 5323.82, + "end": 5327.6, + "probability": 0.8969 + }, + { + "start": 5327.7, + "end": 5328.26, + "probability": 0.9491 + }, + { + "start": 5328.88, + "end": 5329.28, + "probability": 0.8961 + }, + { + "start": 5330.0, + "end": 5330.38, + "probability": 0.8805 + }, + { + "start": 5330.42, + "end": 5334.88, + "probability": 0.9751 + }, + { + "start": 5335.1, + "end": 5337.08, + "probability": 0.7946 + }, + { + "start": 5337.38, + "end": 5341.88, + "probability": 0.9676 + }, + { + "start": 5342.46, + "end": 5344.06, + "probability": 0.7486 + }, + { + "start": 5344.54, + "end": 5348.26, + "probability": 0.8596 + }, + { + "start": 5348.7, + "end": 5354.16, + "probability": 0.9855 + }, + { + "start": 5354.3, + "end": 5355.88, + "probability": 0.6163 + }, + { + "start": 5356.08, + "end": 5358.46, + "probability": 0.0718 + }, + { + "start": 5358.48, + "end": 5360.6, + "probability": 0.9841 + }, + { + "start": 5361.6, + "end": 5362.56, + "probability": 0.9749 + }, + { + "start": 5362.68, + "end": 5363.97, + "probability": 0.8272 + }, + { + "start": 5364.32, + "end": 5365.3, + "probability": 0.9683 + }, + { + "start": 5365.44, + "end": 5369.02, + "probability": 0.9634 + }, + { + "start": 5369.12, + "end": 5369.52, + "probability": 0.6184 + }, + { + "start": 5369.52, + "end": 5370.46, + "probability": 0.5509 + }, + { + "start": 5370.74, + "end": 5371.62, + "probability": 0.772 + }, + { + "start": 5372.04, + "end": 5374.8, + "probability": 0.9794 + }, + { + "start": 5376.24, + "end": 5378.81, + "probability": 0.5434 + }, + { + "start": 5380.06, + "end": 5382.68, + "probability": 0.8633 + }, + { + "start": 5382.68, + "end": 5383.68, + "probability": 0.3871 + }, + { + "start": 5383.8, + "end": 5385.16, + "probability": 0.7026 + }, + { + "start": 5385.16, + "end": 5385.6, + "probability": 0.0715 + }, + { + "start": 5385.76, + "end": 5387.19, + "probability": 0.0495 + }, + { + "start": 5387.34, + "end": 5390.44, + "probability": 0.3207 + }, + { + "start": 5390.8, + "end": 5392.06, + "probability": 0.7485 + }, + { + "start": 5392.14, + "end": 5393.74, + "probability": 0.4249 + }, + { + "start": 5393.76, + "end": 5395.58, + "probability": 0.3089 + }, + { + "start": 5395.76, + "end": 5396.34, + "probability": 0.1051 + }, + { + "start": 5396.64, + "end": 5397.3, + "probability": 0.2777 + }, + { + "start": 5397.54, + "end": 5399.4, + "probability": 0.4657 + }, + { + "start": 5400.18, + "end": 5401.8, + "probability": 0.7495 + }, + { + "start": 5402.48, + "end": 5403.9, + "probability": 0.0881 + }, + { + "start": 5404.06, + "end": 5406.22, + "probability": 0.8112 + }, + { + "start": 5408.44, + "end": 5410.08, + "probability": 0.0734 + }, + { + "start": 5411.1, + "end": 5411.44, + "probability": 0.1178 + }, + { + "start": 5411.64, + "end": 5412.9, + "probability": 0.0479 + }, + { + "start": 5413.1, + "end": 5413.96, + "probability": 0.045 + }, + { + "start": 5414.65, + "end": 5417.6, + "probability": 0.6548 + }, + { + "start": 5417.8, + "end": 5418.24, + "probability": 0.0013 + }, + { + "start": 5493.26, + "end": 5493.65, + "probability": 0.044 + }, + { + "start": 5495.0, + "end": 5500.96, + "probability": 0.3559 + }, + { + "start": 5502.42, + "end": 5507.04, + "probability": 0.8398 + }, + { + "start": 5507.6, + "end": 5508.4, + "probability": 0.5298 + }, + { + "start": 5508.6, + "end": 5510.26, + "probability": 0.825 + }, + { + "start": 5511.26, + "end": 5512.12, + "probability": 0.4654 + }, + { + "start": 5512.23, + "end": 5514.32, + "probability": 0.6889 + }, + { + "start": 5529.24, + "end": 5529.7, + "probability": 0.1351 + }, + { + "start": 5559.8, + "end": 5561.3, + "probability": 0.5275 + }, + { + "start": 5561.42, + "end": 5562.7, + "probability": 0.6624 + }, + { + "start": 5562.84, + "end": 5565.08, + "probability": 0.4688 + }, + { + "start": 5565.24, + "end": 5567.43, + "probability": 0.9831 + }, + { + "start": 5568.34, + "end": 5571.76, + "probability": 0.8651 + }, + { + "start": 5572.4, + "end": 5574.76, + "probability": 0.7441 + }, + { + "start": 5575.82, + "end": 5577.04, + "probability": 0.5228 + }, + { + "start": 5577.08, + "end": 5577.5, + "probability": 0.7381 + }, + { + "start": 5577.6, + "end": 5583.58, + "probability": 0.9901 + }, + { + "start": 5584.18, + "end": 5587.92, + "probability": 0.9953 + }, + { + "start": 5588.4, + "end": 5590.64, + "probability": 0.9594 + }, + { + "start": 5593.08, + "end": 5598.16, + "probability": 0.991 + }, + { + "start": 5598.78, + "end": 5602.62, + "probability": 0.606 + }, + { + "start": 5602.96, + "end": 5604.62, + "probability": 0.9798 + }, + { + "start": 5604.84, + "end": 5605.84, + "probability": 0.8974 + }, + { + "start": 5606.04, + "end": 5608.08, + "probability": 0.8673 + }, + { + "start": 5609.04, + "end": 5609.52, + "probability": 0.0972 + }, + { + "start": 5609.6, + "end": 5610.94, + "probability": 0.1016 + }, + { + "start": 5610.94, + "end": 5610.94, + "probability": 0.4978 + }, + { + "start": 5610.94, + "end": 5613.98, + "probability": 0.5977 + }, + { + "start": 5615.42, + "end": 5617.32, + "probability": 0.8135 + }, + { + "start": 5617.92, + "end": 5620.24, + "probability": 0.8133 + }, + { + "start": 5621.56, + "end": 5622.28, + "probability": 0.7219 + }, + { + "start": 5622.84, + "end": 5623.72, + "probability": 0.701 + }, + { + "start": 5624.44, + "end": 5627.34, + "probability": 0.909 + }, + { + "start": 5627.54, + "end": 5628.9, + "probability": 0.9515 + }, + { + "start": 5629.32, + "end": 5633.96, + "probability": 0.2686 + }, + { + "start": 5634.56, + "end": 5636.28, + "probability": 0.325 + }, + { + "start": 5636.78, + "end": 5638.7, + "probability": 0.6243 + }, + { + "start": 5638.94, + "end": 5640.0, + "probability": 0.5663 + }, + { + "start": 5640.22, + "end": 5641.28, + "probability": 0.9844 + }, + { + "start": 5642.58, + "end": 5644.6, + "probability": 0.3789 + }, + { + "start": 5644.6, + "end": 5645.86, + "probability": 0.7296 + }, + { + "start": 5647.14, + "end": 5650.26, + "probability": 0.9829 + }, + { + "start": 5650.26, + "end": 5651.94, + "probability": 0.7477 + }, + { + "start": 5653.18, + "end": 5656.6, + "probability": 0.8917 + }, + { + "start": 5656.76, + "end": 5658.0, + "probability": 0.7536 + }, + { + "start": 5658.72, + "end": 5660.1, + "probability": 0.7863 + }, + { + "start": 5660.34, + "end": 5661.71, + "probability": 0.9927 + }, + { + "start": 5663.7, + "end": 5665.31, + "probability": 0.5525 + }, + { + "start": 5665.66, + "end": 5666.32, + "probability": 0.7484 + }, + { + "start": 5666.44, + "end": 5667.44, + "probability": 0.7697 + }, + { + "start": 5667.84, + "end": 5670.48, + "probability": 0.5891 + }, + { + "start": 5672.26, + "end": 5674.08, + "probability": 0.9573 + }, + { + "start": 5675.74, + "end": 5678.94, + "probability": 0.811 + }, + { + "start": 5680.06, + "end": 5685.78, + "probability": 0.9443 + }, + { + "start": 5687.16, + "end": 5691.32, + "probability": 0.9939 + }, + { + "start": 5691.32, + "end": 5694.66, + "probability": 0.9963 + }, + { + "start": 5695.72, + "end": 5697.56, + "probability": 0.9878 + }, + { + "start": 5699.0, + "end": 5703.46, + "probability": 0.9943 + }, + { + "start": 5703.62, + "end": 5704.32, + "probability": 0.7809 + }, + { + "start": 5704.78, + "end": 5705.52, + "probability": 0.5469 + }, + { + "start": 5705.66, + "end": 5708.88, + "probability": 0.874 + }, + { + "start": 5709.18, + "end": 5711.75, + "probability": 0.8926 + }, + { + "start": 5712.24, + "end": 5713.76, + "probability": 0.9204 + }, + { + "start": 5714.34, + "end": 5716.78, + "probability": 0.7392 + }, + { + "start": 5718.82, + "end": 5721.84, + "probability": 0.9889 + }, + { + "start": 5721.84, + "end": 5726.26, + "probability": 0.9968 + }, + { + "start": 5726.26, + "end": 5730.3, + "probability": 0.9963 + }, + { + "start": 5731.38, + "end": 5736.9, + "probability": 0.9197 + }, + { + "start": 5738.0, + "end": 5740.74, + "probability": 0.9968 + }, + { + "start": 5740.74, + "end": 5745.06, + "probability": 0.996 + }, + { + "start": 5746.52, + "end": 5748.54, + "probability": 0.629 + }, + { + "start": 5749.3, + "end": 5752.24, + "probability": 0.9924 + }, + { + "start": 5752.24, + "end": 5755.68, + "probability": 0.9922 + }, + { + "start": 5756.74, + "end": 5757.1, + "probability": 0.7435 + }, + { + "start": 5757.12, + "end": 5759.26, + "probability": 0.979 + }, + { + "start": 5759.38, + "end": 5761.34, + "probability": 0.9242 + }, + { + "start": 5762.04, + "end": 5764.4, + "probability": 0.9069 + }, + { + "start": 5765.1, + "end": 5767.9, + "probability": 0.9292 + }, + { + "start": 5768.6, + "end": 5770.7, + "probability": 0.9827 + }, + { + "start": 5771.22, + "end": 5774.44, + "probability": 0.9768 + }, + { + "start": 5774.44, + "end": 5780.14, + "probability": 0.9915 + }, + { + "start": 5781.32, + "end": 5783.8, + "probability": 0.6793 + }, + { + "start": 5784.98, + "end": 5786.34, + "probability": 0.7559 + }, + { + "start": 5788.36, + "end": 5792.72, + "probability": 0.9896 + }, + { + "start": 5793.38, + "end": 5796.22, + "probability": 0.8723 + }, + { + "start": 5796.98, + "end": 5798.42, + "probability": 0.7611 + }, + { + "start": 5798.62, + "end": 5799.7, + "probability": 0.7968 + }, + { + "start": 5800.18, + "end": 5805.42, + "probability": 0.9697 + }, + { + "start": 5806.42, + "end": 5807.24, + "probability": 0.793 + }, + { + "start": 5807.36, + "end": 5807.46, + "probability": 0.6687 + }, + { + "start": 5807.98, + "end": 5809.72, + "probability": 0.5754 + }, + { + "start": 5810.54, + "end": 5813.04, + "probability": 0.8252 + }, + { + "start": 5824.78, + "end": 5826.56, + "probability": 0.7088 + }, + { + "start": 5827.32, + "end": 5828.2, + "probability": 0.694 + }, + { + "start": 5831.96, + "end": 5832.7, + "probability": 0.5868 + }, + { + "start": 5833.56, + "end": 5834.4, + "probability": 0.8834 + }, + { + "start": 5835.22, + "end": 5837.14, + "probability": 0.9958 + }, + { + "start": 5838.06, + "end": 5839.04, + "probability": 0.9952 + }, + { + "start": 5840.76, + "end": 5841.24, + "probability": 0.6661 + }, + { + "start": 5841.94, + "end": 5844.48, + "probability": 0.9946 + }, + { + "start": 5845.2, + "end": 5845.48, + "probability": 0.976 + }, + { + "start": 5846.52, + "end": 5847.33, + "probability": 0.978 + }, + { + "start": 5848.46, + "end": 5849.9, + "probability": 0.9585 + }, + { + "start": 5850.48, + "end": 5853.24, + "probability": 0.9176 + }, + { + "start": 5854.26, + "end": 5855.96, + "probability": 0.8775 + }, + { + "start": 5856.78, + "end": 5857.32, + "probability": 0.9246 + }, + { + "start": 5858.02, + "end": 5864.78, + "probability": 0.9663 + }, + { + "start": 5865.32, + "end": 5867.14, + "probability": 0.9951 + }, + { + "start": 5868.74, + "end": 5870.26, + "probability": 0.9419 + }, + { + "start": 5870.64, + "end": 5872.84, + "probability": 0.9741 + }, + { + "start": 5872.86, + "end": 5873.4, + "probability": 0.6267 + }, + { + "start": 5873.96, + "end": 5875.52, + "probability": 0.9024 + }, + { + "start": 5876.48, + "end": 5876.6, + "probability": 0.7729 + }, + { + "start": 5877.2, + "end": 5880.24, + "probability": 0.9901 + }, + { + "start": 5881.04, + "end": 5883.2, + "probability": 0.9558 + }, + { + "start": 5883.94, + "end": 5884.94, + "probability": 0.9714 + }, + { + "start": 5885.7, + "end": 5888.6, + "probability": 0.847 + }, + { + "start": 5889.82, + "end": 5891.79, + "probability": 0.8629 + }, + { + "start": 5892.32, + "end": 5895.04, + "probability": 0.7877 + }, + { + "start": 5895.66, + "end": 5896.32, + "probability": 0.9858 + }, + { + "start": 5897.06, + "end": 5900.22, + "probability": 0.8557 + }, + { + "start": 5900.7, + "end": 5901.54, + "probability": 0.4591 + }, + { + "start": 5902.08, + "end": 5903.98, + "probability": 0.9889 + }, + { + "start": 5904.1, + "end": 5904.98, + "probability": 0.6258 + }, + { + "start": 5905.12, + "end": 5905.88, + "probability": 0.7465 + }, + { + "start": 5906.46, + "end": 5911.06, + "probability": 0.9227 + }, + { + "start": 5911.6, + "end": 5911.98, + "probability": 0.5012 + }, + { + "start": 5912.02, + "end": 5914.48, + "probability": 0.9268 + }, + { + "start": 5914.72, + "end": 5915.46, + "probability": 0.9778 + }, + { + "start": 5916.16, + "end": 5921.26, + "probability": 0.8718 + }, + { + "start": 5921.78, + "end": 5924.08, + "probability": 0.8707 + }, + { + "start": 5925.22, + "end": 5926.46, + "probability": 0.7913 + }, + { + "start": 5927.14, + "end": 5929.4, + "probability": 0.8591 + }, + { + "start": 5930.16, + "end": 5934.0, + "probability": 0.9972 + }, + { + "start": 5935.08, + "end": 5938.06, + "probability": 0.9577 + }, + { + "start": 5938.54, + "end": 5942.08, + "probability": 0.9484 + }, + { + "start": 5943.02, + "end": 5944.78, + "probability": 0.572 + }, + { + "start": 5945.82, + "end": 5948.14, + "probability": 0.9417 + }, + { + "start": 5948.84, + "end": 5949.74, + "probability": 0.5755 + }, + { + "start": 5950.42, + "end": 5952.36, + "probability": 0.269 + }, + { + "start": 5952.4, + "end": 5955.02, + "probability": 0.6637 + }, + { + "start": 5956.26, + "end": 5957.06, + "probability": 0.5068 + }, + { + "start": 5957.64, + "end": 5960.0, + "probability": 0.689 + }, + { + "start": 5961.22, + "end": 5965.46, + "probability": 0.8479 + }, + { + "start": 5965.46, + "end": 5969.2, + "probability": 0.9881 + }, + { + "start": 5970.5, + "end": 5974.64, + "probability": 0.9832 + }, + { + "start": 5975.44, + "end": 5978.48, + "probability": 0.7843 + }, + { + "start": 5979.2, + "end": 5982.1, + "probability": 0.9905 + }, + { + "start": 5982.64, + "end": 5983.24, + "probability": 0.864 + }, + { + "start": 5984.32, + "end": 5988.1, + "probability": 0.9899 + }, + { + "start": 5988.78, + "end": 5989.82, + "probability": 0.7704 + }, + { + "start": 5990.46, + "end": 5993.8, + "probability": 0.9133 + }, + { + "start": 5994.56, + "end": 5997.34, + "probability": 0.993 + }, + { + "start": 5997.98, + "end": 6000.04, + "probability": 0.8363 + }, + { + "start": 6000.56, + "end": 6001.28, + "probability": 0.8359 + }, + { + "start": 6001.86, + "end": 6002.92, + "probability": 0.9917 + }, + { + "start": 6003.38, + "end": 6005.74, + "probability": 0.9895 + }, + { + "start": 6006.5, + "end": 6007.56, + "probability": 0.7353 + }, + { + "start": 6008.16, + "end": 6010.0, + "probability": 0.9721 + }, + { + "start": 6010.56, + "end": 6011.88, + "probability": 0.9417 + }, + { + "start": 6012.24, + "end": 6015.18, + "probability": 0.9897 + }, + { + "start": 6016.1, + "end": 6019.84, + "probability": 0.8972 + }, + { + "start": 6020.48, + "end": 6022.4, + "probability": 0.9032 + }, + { + "start": 6023.14, + "end": 6025.14, + "probability": 0.9873 + }, + { + "start": 6025.7, + "end": 6028.1, + "probability": 0.8154 + }, + { + "start": 6028.52, + "end": 6031.36, + "probability": 0.9941 + }, + { + "start": 6031.78, + "end": 6034.7, + "probability": 0.8993 + }, + { + "start": 6035.52, + "end": 6036.3, + "probability": 0.7221 + }, + { + "start": 6036.4, + "end": 6037.08, + "probability": 0.6783 + }, + { + "start": 6037.24, + "end": 6038.56, + "probability": 0.331 + }, + { + "start": 6038.58, + "end": 6039.84, + "probability": 0.1782 + }, + { + "start": 6039.88, + "end": 6040.61, + "probability": 0.9401 + }, + { + "start": 6041.44, + "end": 6042.64, + "probability": 0.4754 + }, + { + "start": 6043.74, + "end": 6046.68, + "probability": 0.995 + }, + { + "start": 6047.68, + "end": 6049.8, + "probability": 0.8171 + }, + { + "start": 6051.36, + "end": 6052.72, + "probability": 0.7831 + }, + { + "start": 6053.0, + "end": 6053.66, + "probability": 0.639 + }, + { + "start": 6053.78, + "end": 6056.52, + "probability": 0.9214 + }, + { + "start": 6056.86, + "end": 6057.74, + "probability": 0.8799 + }, + { + "start": 6057.8, + "end": 6058.3, + "probability": 0.868 + }, + { + "start": 6058.72, + "end": 6060.68, + "probability": 0.938 + }, + { + "start": 6061.22, + "end": 6061.54, + "probability": 0.7946 + }, + { + "start": 6061.54, + "end": 6063.48, + "probability": 0.5097 + }, + { + "start": 6064.46, + "end": 6065.38, + "probability": 0.7684 + }, + { + "start": 6065.9, + "end": 6068.06, + "probability": 0.9507 + }, + { + "start": 6068.4, + "end": 6068.98, + "probability": 0.9203 + }, + { + "start": 6089.32, + "end": 6091.72, + "probability": 0.8737 + }, + { + "start": 6092.32, + "end": 6093.1, + "probability": 0.5237 + }, + { + "start": 6095.62, + "end": 6099.2, + "probability": 0.9642 + }, + { + "start": 6099.2, + "end": 6103.0, + "probability": 0.9448 + }, + { + "start": 6104.26, + "end": 6107.56, + "probability": 0.9685 + }, + { + "start": 6112.26, + "end": 6117.02, + "probability": 0.9823 + }, + { + "start": 6117.16, + "end": 6119.04, + "probability": 0.902 + }, + { + "start": 6120.46, + "end": 6123.28, + "probability": 0.9465 + }, + { + "start": 6123.28, + "end": 6128.16, + "probability": 0.8198 + }, + { + "start": 6129.82, + "end": 6132.58, + "probability": 0.9914 + }, + { + "start": 6134.26, + "end": 6135.13, + "probability": 0.9971 + }, + { + "start": 6136.12, + "end": 6137.46, + "probability": 0.9685 + }, + { + "start": 6137.82, + "end": 6138.6, + "probability": 0.793 + }, + { + "start": 6138.74, + "end": 6139.5, + "probability": 0.919 + }, + { + "start": 6142.26, + "end": 6146.22, + "probability": 0.822 + }, + { + "start": 6146.7, + "end": 6146.96, + "probability": 0.3148 + }, + { + "start": 6147.08, + "end": 6149.26, + "probability": 0.8984 + }, + { + "start": 6150.48, + "end": 6152.4, + "probability": 0.5842 + }, + { + "start": 6153.44, + "end": 6156.78, + "probability": 0.8536 + }, + { + "start": 6158.28, + "end": 6161.32, + "probability": 0.9683 + }, + { + "start": 6162.56, + "end": 6166.96, + "probability": 0.895 + }, + { + "start": 6169.96, + "end": 6175.22, + "probability": 0.9777 + }, + { + "start": 6176.66, + "end": 6181.16, + "probability": 0.8809 + }, + { + "start": 6181.3, + "end": 6182.68, + "probability": 0.7008 + }, + { + "start": 6183.5, + "end": 6185.96, + "probability": 0.8763 + }, + { + "start": 6186.82, + "end": 6187.66, + "probability": 0.7887 + }, + { + "start": 6188.28, + "end": 6189.22, + "probability": 0.7688 + }, + { + "start": 6190.68, + "end": 6194.44, + "probability": 0.3008 + }, + { + "start": 6194.44, + "end": 6195.44, + "probability": 0.4601 + }, + { + "start": 6199.74, + "end": 6203.88, + "probability": 0.9895 + }, + { + "start": 6204.06, + "end": 6206.52, + "probability": 0.7875 + }, + { + "start": 6207.28, + "end": 6209.0, + "probability": 0.8541 + }, + { + "start": 6209.7, + "end": 6211.92, + "probability": 0.8056 + }, + { + "start": 6211.98, + "end": 6213.42, + "probability": 0.6573 + }, + { + "start": 6214.32, + "end": 6217.32, + "probability": 0.8236 + }, + { + "start": 6217.32, + "end": 6219.46, + "probability": 0.9022 + }, + { + "start": 6221.0, + "end": 6225.16, + "probability": 0.9595 + }, + { + "start": 6226.08, + "end": 6227.08, + "probability": 0.6592 + }, + { + "start": 6227.84, + "end": 6231.68, + "probability": 0.9667 + }, + { + "start": 6233.46, + "end": 6235.46, + "probability": 0.9408 + }, + { + "start": 6236.84, + "end": 6237.5, + "probability": 0.9766 + }, + { + "start": 6238.36, + "end": 6239.14, + "probability": 0.7483 + }, + { + "start": 6240.0, + "end": 6241.38, + "probability": 0.9766 + }, + { + "start": 6242.54, + "end": 6243.72, + "probability": 0.8141 + }, + { + "start": 6244.58, + "end": 6244.84, + "probability": 0.7213 + }, + { + "start": 6246.2, + "end": 6247.92, + "probability": 0.6878 + }, + { + "start": 6249.14, + "end": 6252.72, + "probability": 0.9028 + }, + { + "start": 6254.14, + "end": 6257.96, + "probability": 0.9122 + }, + { + "start": 6259.24, + "end": 6260.64, + "probability": 0.2716 + }, + { + "start": 6261.16, + "end": 6263.58, + "probability": 0.8682 + }, + { + "start": 6264.4, + "end": 6264.8, + "probability": 0.8151 + }, + { + "start": 6295.84, + "end": 6296.48, + "probability": 0.8435 + }, + { + "start": 6297.12, + "end": 6298.08, + "probability": 0.7969 + }, + { + "start": 6298.18, + "end": 6304.32, + "probability": 0.9805 + }, + { + "start": 6305.1, + "end": 6308.08, + "probability": 0.9824 + }, + { + "start": 6310.6, + "end": 6311.12, + "probability": 0.9517 + }, + { + "start": 6311.8, + "end": 6312.24, + "probability": 0.4977 + }, + { + "start": 6313.92, + "end": 6315.06, + "probability": 0.3971 + }, + { + "start": 6315.42, + "end": 6315.42, + "probability": 0.5132 + }, + { + "start": 6315.56, + "end": 6316.5, + "probability": 0.6805 + }, + { + "start": 6316.58, + "end": 6316.86, + "probability": 0.6162 + }, + { + "start": 6318.4, + "end": 6319.84, + "probability": 0.904 + }, + { + "start": 6321.14, + "end": 6322.54, + "probability": 0.933 + }, + { + "start": 6324.12, + "end": 6329.1, + "probability": 0.9773 + }, + { + "start": 6331.52, + "end": 6339.38, + "probability": 0.9914 + }, + { + "start": 6341.58, + "end": 6342.88, + "probability": 0.7092 + }, + { + "start": 6345.48, + "end": 6346.2, + "probability": 0.8918 + }, + { + "start": 6348.08, + "end": 6349.58, + "probability": 0.9845 + }, + { + "start": 6350.82, + "end": 6353.1, + "probability": 0.9885 + }, + { + "start": 6355.36, + "end": 6357.16, + "probability": 0.8824 + }, + { + "start": 6357.26, + "end": 6359.08, + "probability": 0.9317 + }, + { + "start": 6359.96, + "end": 6360.46, + "probability": 0.8801 + }, + { + "start": 6361.5, + "end": 6362.16, + "probability": 0.8894 + }, + { + "start": 6365.78, + "end": 6368.8, + "probability": 0.9944 + }, + { + "start": 6370.36, + "end": 6371.79, + "probability": 0.9913 + }, + { + "start": 6372.54, + "end": 6374.38, + "probability": 0.998 + }, + { + "start": 6376.5, + "end": 6379.2, + "probability": 0.9919 + }, + { + "start": 6381.08, + "end": 6384.22, + "probability": 0.906 + }, + { + "start": 6385.98, + "end": 6387.28, + "probability": 0.9583 + }, + { + "start": 6388.22, + "end": 6389.7, + "probability": 0.7558 + }, + { + "start": 6390.78, + "end": 6394.54, + "probability": 0.8807 + }, + { + "start": 6395.66, + "end": 6398.46, + "probability": 0.6888 + }, + { + "start": 6400.78, + "end": 6402.0, + "probability": 0.7521 + }, + { + "start": 6404.12, + "end": 6405.5, + "probability": 0.7285 + }, + { + "start": 6406.04, + "end": 6406.63, + "probability": 0.2872 + }, + { + "start": 6407.44, + "end": 6408.42, + "probability": 0.9139 + }, + { + "start": 6409.24, + "end": 6412.06, + "probability": 0.9795 + }, + { + "start": 6412.12, + "end": 6415.76, + "probability": 0.8468 + }, + { + "start": 6417.42, + "end": 6418.8, + "probability": 0.7986 + }, + { + "start": 6420.3, + "end": 6422.64, + "probability": 0.9947 + }, + { + "start": 6423.82, + "end": 6425.5, + "probability": 0.9932 + }, + { + "start": 6426.28, + "end": 6428.84, + "probability": 0.9834 + }, + { + "start": 6429.78, + "end": 6432.5, + "probability": 0.9961 + }, + { + "start": 6434.26, + "end": 6436.14, + "probability": 0.8264 + }, + { + "start": 6436.66, + "end": 6439.59, + "probability": 0.9358 + }, + { + "start": 6440.56, + "end": 6441.72, + "probability": 0.9915 + }, + { + "start": 6442.82, + "end": 6443.68, + "probability": 0.8423 + }, + { + "start": 6447.1, + "end": 6451.88, + "probability": 0.9791 + }, + { + "start": 6451.94, + "end": 6453.38, + "probability": 0.5943 + }, + { + "start": 6453.5, + "end": 6454.48, + "probability": 0.3812 + }, + { + "start": 6455.22, + "end": 6457.68, + "probability": 0.6245 + }, + { + "start": 6457.72, + "end": 6459.0, + "probability": 0.7797 + }, + { + "start": 6459.04, + "end": 6459.68, + "probability": 0.7975 + }, + { + "start": 6460.38, + "end": 6462.3, + "probability": 0.9921 + }, + { + "start": 6463.08, + "end": 6464.44, + "probability": 0.9919 + }, + { + "start": 6464.54, + "end": 6469.18, + "probability": 0.9569 + }, + { + "start": 6470.16, + "end": 6471.32, + "probability": 0.9983 + }, + { + "start": 6471.96, + "end": 6473.2, + "probability": 0.9355 + }, + { + "start": 6474.36, + "end": 6475.37, + "probability": 0.8408 + }, + { + "start": 6476.24, + "end": 6478.42, + "probability": 0.9437 + }, + { + "start": 6479.44, + "end": 6482.04, + "probability": 0.9744 + }, + { + "start": 6482.9, + "end": 6485.3, + "probability": 0.8278 + }, + { + "start": 6485.32, + "end": 6486.81, + "probability": 0.9868 + }, + { + "start": 6488.02, + "end": 6491.16, + "probability": 0.9197 + }, + { + "start": 6491.3, + "end": 6492.0, + "probability": 0.5319 + }, + { + "start": 6492.18, + "end": 6492.86, + "probability": 0.7419 + }, + { + "start": 6493.8, + "end": 6495.02, + "probability": 0.6622 + }, + { + "start": 6495.84, + "end": 6499.1, + "probability": 0.8369 + }, + { + "start": 6501.54, + "end": 6503.88, + "probability": 0.7108 + }, + { + "start": 6504.84, + "end": 6508.36, + "probability": 0.7397 + }, + { + "start": 6509.1, + "end": 6511.02, + "probability": 0.8685 + }, + { + "start": 6511.78, + "end": 6514.26, + "probability": 0.7909 + }, + { + "start": 6514.82, + "end": 6516.18, + "probability": 0.9327 + }, + { + "start": 6517.04, + "end": 6518.16, + "probability": 0.8698 + }, + { + "start": 6518.82, + "end": 6520.04, + "probability": 0.9937 + }, + { + "start": 6520.66, + "end": 6521.66, + "probability": 0.9931 + }, + { + "start": 6522.2, + "end": 6524.36, + "probability": 0.7619 + }, + { + "start": 6525.5, + "end": 6527.96, + "probability": 0.9245 + }, + { + "start": 6528.64, + "end": 6529.3, + "probability": 0.9488 + }, + { + "start": 6530.12, + "end": 6533.08, + "probability": 0.8191 + }, + { + "start": 6533.28, + "end": 6533.68, + "probability": 0.543 + }, + { + "start": 6533.82, + "end": 6535.63, + "probability": 0.6534 + }, + { + "start": 6537.2, + "end": 6537.2, + "probability": 0.2235 + }, + { + "start": 6537.2, + "end": 6537.94, + "probability": 0.8439 + }, + { + "start": 6538.08, + "end": 6539.64, + "probability": 0.9456 + }, + { + "start": 6539.72, + "end": 6541.92, + "probability": 0.9249 + }, + { + "start": 6542.0, + "end": 6543.06, + "probability": 0.8392 + }, + { + "start": 6543.88, + "end": 6544.6, + "probability": 0.8854 + }, + { + "start": 6545.78, + "end": 6548.08, + "probability": 0.9754 + }, + { + "start": 6549.06, + "end": 6553.42, + "probability": 0.9253 + }, + { + "start": 6554.16, + "end": 6555.34, + "probability": 0.8381 + }, + { + "start": 6556.36, + "end": 6557.22, + "probability": 0.0668 + }, + { + "start": 6558.4, + "end": 6559.06, + "probability": 0.8243 + }, + { + "start": 6559.08, + "end": 6562.0, + "probability": 0.9419 + }, + { + "start": 6562.62, + "end": 6564.44, + "probability": 0.9329 + }, + { + "start": 6565.08, + "end": 6567.46, + "probability": 0.9608 + }, + { + "start": 6567.54, + "end": 6569.98, + "probability": 0.9729 + }, + { + "start": 6570.16, + "end": 6570.82, + "probability": 0.9516 + }, + { + "start": 6571.26, + "end": 6572.3, + "probability": 0.976 + }, + { + "start": 6573.22, + "end": 6573.24, + "probability": 0.6142 + }, + { + "start": 6573.24, + "end": 6577.8, + "probability": 0.9448 + }, + { + "start": 6578.7, + "end": 6583.1, + "probability": 0.9888 + }, + { + "start": 6583.14, + "end": 6583.5, + "probability": 0.7504 + }, + { + "start": 6583.68, + "end": 6585.67, + "probability": 0.8155 + }, + { + "start": 6587.78, + "end": 6589.56, + "probability": 0.801 + }, + { + "start": 6606.26, + "end": 6608.62, + "probability": 0.6929 + }, + { + "start": 6609.96, + "end": 6611.72, + "probability": 0.9744 + }, + { + "start": 6612.16, + "end": 6613.08, + "probability": 0.8463 + }, + { + "start": 6613.18, + "end": 6616.78, + "probability": 0.9927 + }, + { + "start": 6618.36, + "end": 6621.9, + "probability": 0.985 + }, + { + "start": 6621.98, + "end": 6622.34, + "probability": 0.9243 + }, + { + "start": 6622.54, + "end": 6625.48, + "probability": 0.9951 + }, + { + "start": 6626.36, + "end": 6627.98, + "probability": 0.6825 + }, + { + "start": 6628.94, + "end": 6635.28, + "probability": 0.9856 + }, + { + "start": 6635.36, + "end": 6640.28, + "probability": 0.9985 + }, + { + "start": 6641.1, + "end": 6642.12, + "probability": 0.7423 + }, + { + "start": 6642.18, + "end": 6645.72, + "probability": 0.7741 + }, + { + "start": 6645.84, + "end": 6646.02, + "probability": 0.0666 + }, + { + "start": 6646.56, + "end": 6647.32, + "probability": 0.7936 + }, + { + "start": 6647.5, + "end": 6648.6, + "probability": 0.9437 + }, + { + "start": 6648.66, + "end": 6654.48, + "probability": 0.9229 + }, + { + "start": 6656.58, + "end": 6657.08, + "probability": 0.7664 + }, + { + "start": 6657.12, + "end": 6658.36, + "probability": 0.8173 + }, + { + "start": 6658.6, + "end": 6663.6, + "probability": 0.9829 + }, + { + "start": 6664.34, + "end": 6667.04, + "probability": 0.9055 + }, + { + "start": 6668.91, + "end": 6672.62, + "probability": 0.9669 + }, + { + "start": 6673.38, + "end": 6675.0, + "probability": 0.7957 + }, + { + "start": 6675.9, + "end": 6680.52, + "probability": 0.9895 + }, + { + "start": 6681.06, + "end": 6681.56, + "probability": 0.9665 + }, + { + "start": 6682.44, + "end": 6686.3, + "probability": 0.9856 + }, + { + "start": 6687.34, + "end": 6688.78, + "probability": 0.8436 + }, + { + "start": 6689.54, + "end": 6693.1, + "probability": 0.6809 + }, + { + "start": 6693.96, + "end": 6695.38, + "probability": 0.9573 + }, + { + "start": 6696.12, + "end": 6700.44, + "probability": 0.9786 + }, + { + "start": 6700.52, + "end": 6701.98, + "probability": 0.7677 + }, + { + "start": 6702.6, + "end": 6708.26, + "probability": 0.9398 + }, + { + "start": 6709.1, + "end": 6711.9, + "probability": 0.9884 + }, + { + "start": 6712.32, + "end": 6715.82, + "probability": 0.8681 + }, + { + "start": 6716.14, + "end": 6721.44, + "probability": 0.9941 + }, + { + "start": 6721.86, + "end": 6725.52, + "probability": 0.9597 + }, + { + "start": 6726.14, + "end": 6730.66, + "probability": 0.8615 + }, + { + "start": 6732.3, + "end": 6734.78, + "probability": 0.9745 + }, + { + "start": 6735.34, + "end": 6738.66, + "probability": 0.999 + }, + { + "start": 6738.66, + "end": 6741.88, + "probability": 0.998 + }, + { + "start": 6742.48, + "end": 6748.2, + "probability": 0.9965 + }, + { + "start": 6749.32, + "end": 6752.96, + "probability": 0.4103 + }, + { + "start": 6753.64, + "end": 6755.04, + "probability": 0.9312 + }, + { + "start": 6755.46, + "end": 6757.44, + "probability": 0.9425 + }, + { + "start": 6757.6, + "end": 6762.14, + "probability": 0.9766 + }, + { + "start": 6763.32, + "end": 6765.64, + "probability": 0.9128 + }, + { + "start": 6766.2, + "end": 6771.38, + "probability": 0.9882 + }, + { + "start": 6771.64, + "end": 6775.04, + "probability": 0.9043 + }, + { + "start": 6775.66, + "end": 6777.72, + "probability": 0.9622 + }, + { + "start": 6777.82, + "end": 6779.89, + "probability": 0.9644 + }, + { + "start": 6780.34, + "end": 6784.14, + "probability": 0.8963 + }, + { + "start": 6785.44, + "end": 6787.36, + "probability": 0.8092 + }, + { + "start": 6787.98, + "end": 6794.28, + "probability": 0.9919 + }, + { + "start": 6794.36, + "end": 6800.17, + "probability": 0.9851 + }, + { + "start": 6800.52, + "end": 6802.36, + "probability": 0.987 + }, + { + "start": 6802.86, + "end": 6805.22, + "probability": 0.9885 + }, + { + "start": 6805.4, + "end": 6805.84, + "probability": 0.8999 + }, + { + "start": 6806.3, + "end": 6807.52, + "probability": 0.7065 + }, + { + "start": 6807.8, + "end": 6809.18, + "probability": 0.9917 + }, + { + "start": 6809.62, + "end": 6812.52, + "probability": 0.9456 + }, + { + "start": 6813.16, + "end": 6814.28, + "probability": 0.8013 + }, + { + "start": 6814.5, + "end": 6815.68, + "probability": 0.7421 + }, + { + "start": 6815.92, + "end": 6819.34, + "probability": 0.8347 + }, + { + "start": 6819.98, + "end": 6826.14, + "probability": 0.9851 + }, + { + "start": 6826.54, + "end": 6827.2, + "probability": 0.6453 + }, + { + "start": 6827.4, + "end": 6827.98, + "probability": 0.8967 + }, + { + "start": 6828.68, + "end": 6831.84, + "probability": 0.9316 + }, + { + "start": 6832.36, + "end": 6833.68, + "probability": 0.9744 + }, + { + "start": 6834.48, + "end": 6836.54, + "probability": 0.991 + }, + { + "start": 6837.04, + "end": 6839.76, + "probability": 0.9933 + }, + { + "start": 6840.0, + "end": 6840.88, + "probability": 0.9202 + }, + { + "start": 6841.26, + "end": 6846.98, + "probability": 0.9942 + }, + { + "start": 6847.7, + "end": 6852.14, + "probability": 0.9937 + }, + { + "start": 6852.68, + "end": 6855.4, + "probability": 0.8743 + }, + { + "start": 6856.08, + "end": 6856.62, + "probability": 0.9808 + }, + { + "start": 6856.7, + "end": 6857.7, + "probability": 0.9689 + }, + { + "start": 6858.18, + "end": 6858.86, + "probability": 0.7572 + }, + { + "start": 6859.14, + "end": 6860.64, + "probability": 0.9878 + }, + { + "start": 6860.72, + "end": 6864.44, + "probability": 0.9276 + }, + { + "start": 6864.78, + "end": 6865.08, + "probability": 0.6727 + }, + { + "start": 6865.26, + "end": 6866.44, + "probability": 0.7846 + }, + { + "start": 6866.6, + "end": 6869.7, + "probability": 0.9831 + }, + { + "start": 6869.96, + "end": 6871.82, + "probability": 0.8748 + }, + { + "start": 6872.34, + "end": 6873.68, + "probability": 0.5239 + }, + { + "start": 6873.82, + "end": 6874.86, + "probability": 0.9493 + }, + { + "start": 6874.98, + "end": 6879.28, + "probability": 0.9816 + }, + { + "start": 6879.82, + "end": 6880.14, + "probability": 0.2639 + }, + { + "start": 6880.64, + "end": 6881.16, + "probability": 0.683 + }, + { + "start": 6881.96, + "end": 6884.0, + "probability": 0.9937 + }, + { + "start": 6884.52, + "end": 6885.3, + "probability": 0.6851 + }, + { + "start": 6896.64, + "end": 6898.42, + "probability": 0.6212 + }, + { + "start": 6900.22, + "end": 6900.54, + "probability": 0.4517 + }, + { + "start": 6900.54, + "end": 6901.84, + "probability": 0.185 + }, + { + "start": 6901.84, + "end": 6903.94, + "probability": 0.2475 + }, + { + "start": 6903.94, + "end": 6905.5, + "probability": 0.0176 + }, + { + "start": 6906.78, + "end": 6908.21, + "probability": 0.0356 + }, + { + "start": 6916.69, + "end": 6918.8, + "probability": 0.9757 + }, + { + "start": 6920.22, + "end": 6921.14, + "probability": 0.8689 + }, + { + "start": 6921.26, + "end": 6923.89, + "probability": 0.7721 + }, + { + "start": 6925.36, + "end": 6926.28, + "probability": 0.6592 + }, + { + "start": 6927.88, + "end": 6929.36, + "probability": 0.7561 + }, + { + "start": 6930.96, + "end": 6932.12, + "probability": 0.9665 + }, + { + "start": 6932.24, + "end": 6933.88, + "probability": 0.9434 + }, + { + "start": 6935.92, + "end": 6936.36, + "probability": 0.9517 + }, + { + "start": 6938.16, + "end": 6940.76, + "probability": 0.8354 + }, + { + "start": 6942.28, + "end": 6944.32, + "probability": 0.9911 + }, + { + "start": 6946.38, + "end": 6951.1, + "probability": 0.9563 + }, + { + "start": 6951.18, + "end": 6951.92, + "probability": 0.8825 + }, + { + "start": 6953.08, + "end": 6954.8, + "probability": 0.7491 + }, + { + "start": 6955.8, + "end": 6956.92, + "probability": 0.8402 + }, + { + "start": 6958.54, + "end": 6959.57, + "probability": 0.9942 + }, + { + "start": 6961.52, + "end": 6963.14, + "probability": 0.7097 + }, + { + "start": 6964.4, + "end": 6965.58, + "probability": 0.9606 + }, + { + "start": 6965.74, + "end": 6972.26, + "probability": 0.9273 + }, + { + "start": 6972.46, + "end": 6973.44, + "probability": 0.8332 + }, + { + "start": 6974.74, + "end": 6977.28, + "probability": 0.7566 + }, + { + "start": 6978.28, + "end": 6981.62, + "probability": 0.8651 + }, + { + "start": 6982.44, + "end": 6983.9, + "probability": 0.8266 + }, + { + "start": 6984.1, + "end": 6985.58, + "probability": 0.9414 + }, + { + "start": 6986.94, + "end": 6991.08, + "probability": 0.9838 + }, + { + "start": 6992.3, + "end": 6994.28, + "probability": 0.8408 + }, + { + "start": 6994.54, + "end": 6995.84, + "probability": 0.9606 + }, + { + "start": 6996.72, + "end": 6997.72, + "probability": 0.6272 + }, + { + "start": 6998.9, + "end": 7004.38, + "probability": 0.9918 + }, + { + "start": 7006.16, + "end": 7008.14, + "probability": 0.961 + }, + { + "start": 7009.7, + "end": 7011.54, + "probability": 0.835 + }, + { + "start": 7011.58, + "end": 7017.1, + "probability": 0.9818 + }, + { + "start": 7017.16, + "end": 7020.96, + "probability": 0.9937 + }, + { + "start": 7021.2, + "end": 7021.94, + "probability": 0.8359 + }, + { + "start": 7023.38, + "end": 7025.66, + "probability": 0.9774 + }, + { + "start": 7028.08, + "end": 7033.05, + "probability": 0.9846 + }, + { + "start": 7033.6, + "end": 7034.62, + "probability": 0.9717 + }, + { + "start": 7035.7, + "end": 7038.06, + "probability": 0.9478 + }, + { + "start": 7039.12, + "end": 7040.04, + "probability": 0.9712 + }, + { + "start": 7041.9, + "end": 7043.58, + "probability": 0.9881 + }, + { + "start": 7045.38, + "end": 7046.7, + "probability": 0.9682 + }, + { + "start": 7048.5, + "end": 7051.84, + "probability": 0.9713 + }, + { + "start": 7052.8, + "end": 7054.04, + "probability": 0.7194 + }, + { + "start": 7054.2, + "end": 7056.08, + "probability": 0.9278 + }, + { + "start": 7056.5, + "end": 7058.66, + "probability": 0.9456 + }, + { + "start": 7059.38, + "end": 7062.74, + "probability": 0.9774 + }, + { + "start": 7063.96, + "end": 7064.4, + "probability": 0.8954 + }, + { + "start": 7064.48, + "end": 7067.08, + "probability": 0.974 + }, + { + "start": 7067.12, + "end": 7069.44, + "probability": 0.9457 + }, + { + "start": 7070.4, + "end": 7075.2, + "probability": 0.9767 + }, + { + "start": 7076.02, + "end": 7077.18, + "probability": 0.0335 + }, + { + "start": 7077.24, + "end": 7078.32, + "probability": 0.7949 + }, + { + "start": 7078.8, + "end": 7079.46, + "probability": 0.8788 + }, + { + "start": 7079.58, + "end": 7079.86, + "probability": 0.8317 + }, + { + "start": 7081.12, + "end": 7082.96, + "probability": 0.9875 + }, + { + "start": 7082.98, + "end": 7084.42, + "probability": 0.9446 + }, + { + "start": 7086.06, + "end": 7089.6, + "probability": 0.9579 + }, + { + "start": 7089.6, + "end": 7092.83, + "probability": 0.9969 + }, + { + "start": 7094.02, + "end": 7095.36, + "probability": 0.8513 + }, + { + "start": 7097.1, + "end": 7098.99, + "probability": 0.9395 + }, + { + "start": 7099.24, + "end": 7101.1, + "probability": 0.5437 + }, + { + "start": 7101.24, + "end": 7103.02, + "probability": 0.9013 + }, + { + "start": 7103.58, + "end": 7107.2, + "probability": 0.9966 + }, + { + "start": 7107.2, + "end": 7109.94, + "probability": 0.9985 + }, + { + "start": 7110.72, + "end": 7111.0, + "probability": 0.8993 + }, + { + "start": 7111.34, + "end": 7113.1, + "probability": 0.8932 + }, + { + "start": 7113.68, + "end": 7114.42, + "probability": 0.6667 + }, + { + "start": 7115.42, + "end": 7117.8, + "probability": 0.9907 + }, + { + "start": 7118.04, + "end": 7121.2, + "probability": 0.9917 + }, + { + "start": 7121.9, + "end": 7123.9, + "probability": 0.9537 + }, + { + "start": 7124.42, + "end": 7127.24, + "probability": 0.9747 + }, + { + "start": 7127.32, + "end": 7127.58, + "probability": 0.7856 + }, + { + "start": 7128.42, + "end": 7129.58, + "probability": 0.702 + }, + { + "start": 7129.6, + "end": 7131.8, + "probability": 0.5072 + }, + { + "start": 7138.84, + "end": 7138.88, + "probability": 0.4992 + }, + { + "start": 7138.88, + "end": 7138.88, + "probability": 0.1817 + }, + { + "start": 7138.88, + "end": 7138.88, + "probability": 0.091 + }, + { + "start": 7138.88, + "end": 7139.48, + "probability": 0.2611 + }, + { + "start": 7140.18, + "end": 7141.12, + "probability": 0.0304 + }, + { + "start": 7141.12, + "end": 7141.92, + "probability": 0.0542 + }, + { + "start": 7150.02, + "end": 7150.12, + "probability": 0.0076 + }, + { + "start": 7163.16, + "end": 7164.52, + "probability": 0.351 + }, + { + "start": 7165.54, + "end": 7171.72, + "probability": 0.9279 + }, + { + "start": 7172.02, + "end": 7173.6, + "probability": 0.6122 + }, + { + "start": 7173.66, + "end": 7174.84, + "probability": 0.9272 + }, + { + "start": 7176.38, + "end": 7177.5, + "probability": 0.5977 + }, + { + "start": 7178.36, + "end": 7180.24, + "probability": 0.7236 + }, + { + "start": 7181.66, + "end": 7182.58, + "probability": 0.73 + }, + { + "start": 7183.16, + "end": 7184.74, + "probability": 0.7384 + }, + { + "start": 7186.04, + "end": 7188.34, + "probability": 0.8958 + }, + { + "start": 7188.38, + "end": 7189.66, + "probability": 0.6656 + }, + { + "start": 7190.44, + "end": 7192.14, + "probability": 0.989 + }, + { + "start": 7193.34, + "end": 7194.78, + "probability": 0.9594 + }, + { + "start": 7195.78, + "end": 7196.98, + "probability": 0.6621 + }, + { + "start": 7197.86, + "end": 7201.79, + "probability": 0.9309 + }, + { + "start": 7203.2, + "end": 7203.86, + "probability": 0.7489 + }, + { + "start": 7205.22, + "end": 7207.34, + "probability": 0.9147 + }, + { + "start": 7209.2, + "end": 7210.8, + "probability": 0.7519 + }, + { + "start": 7211.22, + "end": 7214.5, + "probability": 0.9918 + }, + { + "start": 7215.04, + "end": 7215.94, + "probability": 0.9068 + }, + { + "start": 7216.26, + "end": 7218.95, + "probability": 0.9661 + }, + { + "start": 7220.46, + "end": 7220.98, + "probability": 0.8836 + }, + { + "start": 7221.5, + "end": 7222.26, + "probability": 0.9259 + }, + { + "start": 7222.74, + "end": 7224.7, + "probability": 0.9691 + }, + { + "start": 7224.94, + "end": 7227.68, + "probability": 0.8635 + }, + { + "start": 7228.38, + "end": 7228.92, + "probability": 0.4625 + }, + { + "start": 7229.0, + "end": 7230.14, + "probability": 0.4974 + }, + { + "start": 7230.42, + "end": 7234.76, + "probability": 0.9572 + }, + { + "start": 7235.28, + "end": 7236.46, + "probability": 0.9404 + }, + { + "start": 7236.98, + "end": 7239.72, + "probability": 0.9159 + }, + { + "start": 7240.08, + "end": 7242.64, + "probability": 0.7982 + }, + { + "start": 7243.26, + "end": 7243.84, + "probability": 0.8253 + }, + { + "start": 7243.92, + "end": 7245.38, + "probability": 0.8907 + }, + { + "start": 7245.4, + "end": 7249.06, + "probability": 0.9251 + }, + { + "start": 7249.64, + "end": 7252.86, + "probability": 0.8545 + }, + { + "start": 7253.46, + "end": 7258.86, + "probability": 0.9644 + }, + { + "start": 7259.34, + "end": 7261.06, + "probability": 0.6145 + }, + { + "start": 7261.68, + "end": 7265.42, + "probability": 0.8342 + }, + { + "start": 7266.0, + "end": 7267.4, + "probability": 0.9735 + }, + { + "start": 7267.96, + "end": 7272.26, + "probability": 0.8726 + }, + { + "start": 7272.8, + "end": 7275.8, + "probability": 0.9592 + }, + { + "start": 7276.48, + "end": 7278.48, + "probability": 0.9359 + }, + { + "start": 7278.72, + "end": 7279.58, + "probability": 0.9367 + }, + { + "start": 7279.68, + "end": 7280.34, + "probability": 0.9497 + }, + { + "start": 7280.8, + "end": 7281.78, + "probability": 0.8323 + }, + { + "start": 7282.46, + "end": 7286.54, + "probability": 0.9497 + }, + { + "start": 7287.14, + "end": 7289.66, + "probability": 0.8289 + }, + { + "start": 7290.08, + "end": 7294.62, + "probability": 0.9535 + }, + { + "start": 7294.96, + "end": 7296.04, + "probability": 0.904 + }, + { + "start": 7296.1, + "end": 7298.64, + "probability": 0.8646 + }, + { + "start": 7299.0, + "end": 7302.12, + "probability": 0.9978 + }, + { + "start": 7302.2, + "end": 7306.34, + "probability": 0.9824 + }, + { + "start": 7306.44, + "end": 7308.06, + "probability": 0.9107 + }, + { + "start": 7308.48, + "end": 7309.66, + "probability": 0.7799 + }, + { + "start": 7310.34, + "end": 7313.18, + "probability": 0.8958 + }, + { + "start": 7313.62, + "end": 7317.02, + "probability": 0.9652 + }, + { + "start": 7317.5, + "end": 7319.22, + "probability": 0.9955 + }, + { + "start": 7319.84, + "end": 7321.08, + "probability": 0.9975 + }, + { + "start": 7322.02, + "end": 7324.56, + "probability": 0.769 + }, + { + "start": 7324.88, + "end": 7329.46, + "probability": 0.9299 + }, + { + "start": 7330.2, + "end": 7331.27, + "probability": 0.9855 + }, + { + "start": 7331.7, + "end": 7332.44, + "probability": 0.8028 + }, + { + "start": 7332.9, + "end": 7333.72, + "probability": 0.7455 + }, + { + "start": 7334.12, + "end": 7337.22, + "probability": 0.996 + }, + { + "start": 7337.48, + "end": 7339.16, + "probability": 0.9641 + }, + { + "start": 7340.2, + "end": 7342.58, + "probability": 0.9959 + }, + { + "start": 7342.7, + "end": 7345.54, + "probability": 0.9939 + }, + { + "start": 7345.54, + "end": 7349.34, + "probability": 0.9964 + }, + { + "start": 7349.7, + "end": 7350.02, + "probability": 0.7888 + }, + { + "start": 7350.34, + "end": 7351.8, + "probability": 0.527 + }, + { + "start": 7353.14, + "end": 7355.46, + "probability": 0.824 + }, + { + "start": 7371.94, + "end": 7374.3, + "probability": 0.7677 + }, + { + "start": 7375.7, + "end": 7380.1, + "probability": 0.9915 + }, + { + "start": 7380.44, + "end": 7385.4, + "probability": 0.9822 + }, + { + "start": 7385.52, + "end": 7386.08, + "probability": 0.998 + }, + { + "start": 7386.8, + "end": 7393.98, + "probability": 0.9235 + }, + { + "start": 7394.2, + "end": 7397.54, + "probability": 0.9985 + }, + { + "start": 7397.54, + "end": 7400.5, + "probability": 0.9967 + }, + { + "start": 7401.18, + "end": 7402.9, + "probability": 0.8709 + }, + { + "start": 7404.27, + "end": 7406.96, + "probability": 0.9802 + }, + { + "start": 7407.54, + "end": 7409.72, + "probability": 0.7789 + }, + { + "start": 7409.78, + "end": 7410.46, + "probability": 0.99 + }, + { + "start": 7411.08, + "end": 7416.42, + "probability": 0.9842 + }, + { + "start": 7417.22, + "end": 7419.9, + "probability": 0.8697 + }, + { + "start": 7420.78, + "end": 7422.26, + "probability": 0.9155 + }, + { + "start": 7422.32, + "end": 7422.84, + "probability": 0.4596 + }, + { + "start": 7423.18, + "end": 7425.62, + "probability": 0.7568 + }, + { + "start": 7425.74, + "end": 7426.44, + "probability": 0.9002 + }, + { + "start": 7426.98, + "end": 7427.78, + "probability": 0.9478 + }, + { + "start": 7428.42, + "end": 7430.42, + "probability": 0.696 + }, + { + "start": 7431.18, + "end": 7432.86, + "probability": 0.9964 + }, + { + "start": 7433.6, + "end": 7436.98, + "probability": 0.883 + }, + { + "start": 7437.22, + "end": 7437.64, + "probability": 0.7651 + }, + { + "start": 7438.72, + "end": 7440.12, + "probability": 0.9915 + }, + { + "start": 7441.92, + "end": 7444.56, + "probability": 0.9407 + }, + { + "start": 7446.4, + "end": 7449.82, + "probability": 0.9874 + }, + { + "start": 7451.08, + "end": 7451.84, + "probability": 0.998 + }, + { + "start": 7453.08, + "end": 7455.16, + "probability": 0.8794 + }, + { + "start": 7455.74, + "end": 7456.3, + "probability": 0.995 + }, + { + "start": 7457.08, + "end": 7458.81, + "probability": 0.918 + }, + { + "start": 7460.1, + "end": 7463.9, + "probability": 0.8459 + }, + { + "start": 7464.64, + "end": 7465.22, + "probability": 0.8611 + }, + { + "start": 7465.82, + "end": 7467.52, + "probability": 0.6575 + }, + { + "start": 7469.86, + "end": 7471.98, + "probability": 0.9969 + }, + { + "start": 7472.88, + "end": 7473.8, + "probability": 0.867 + }, + { + "start": 7475.4, + "end": 7478.9, + "probability": 0.9832 + }, + { + "start": 7480.18, + "end": 7482.44, + "probability": 0.998 + }, + { + "start": 7483.48, + "end": 7484.48, + "probability": 0.9881 + }, + { + "start": 7486.22, + "end": 7488.14, + "probability": 0.9727 + }, + { + "start": 7489.02, + "end": 7492.92, + "probability": 0.9038 + }, + { + "start": 7493.8, + "end": 7494.64, + "probability": 0.9657 + }, + { + "start": 7495.3, + "end": 7497.46, + "probability": 0.9001 + }, + { + "start": 7498.24, + "end": 7503.0, + "probability": 0.9954 + }, + { + "start": 7503.32, + "end": 7504.38, + "probability": 0.9727 + }, + { + "start": 7504.82, + "end": 7505.44, + "probability": 0.9663 + }, + { + "start": 7506.62, + "end": 7506.66, + "probability": 0.0678 + }, + { + "start": 7506.84, + "end": 7507.3, + "probability": 0.6307 + }, + { + "start": 7507.52, + "end": 7511.1, + "probability": 0.9961 + }, + { + "start": 7511.24, + "end": 7512.56, + "probability": 0.9277 + }, + { + "start": 7514.4, + "end": 7518.88, + "probability": 0.7379 + }, + { + "start": 7520.78, + "end": 7521.72, + "probability": 0.8832 + }, + { + "start": 7522.66, + "end": 7523.46, + "probability": 0.4185 + }, + { + "start": 7523.66, + "end": 7524.33, + "probability": 0.9542 + }, + { + "start": 7524.5, + "end": 7525.06, + "probability": 0.9691 + }, + { + "start": 7525.3, + "end": 7527.54, + "probability": 0.9459 + }, + { + "start": 7528.28, + "end": 7530.56, + "probability": 0.9758 + }, + { + "start": 7531.3, + "end": 7533.62, + "probability": 0.8568 + }, + { + "start": 7534.7, + "end": 7535.24, + "probability": 0.9414 + }, + { + "start": 7535.82, + "end": 7539.34, + "probability": 0.9939 + }, + { + "start": 7540.14, + "end": 7541.18, + "probability": 0.9795 + }, + { + "start": 7541.96, + "end": 7543.92, + "probability": 0.9941 + }, + { + "start": 7545.42, + "end": 7548.24, + "probability": 0.9973 + }, + { + "start": 7548.36, + "end": 7550.58, + "probability": 0.9644 + }, + { + "start": 7550.66, + "end": 7551.54, + "probability": 0.9937 + }, + { + "start": 7551.68, + "end": 7553.3, + "probability": 0.8282 + }, + { + "start": 7553.32, + "end": 7553.42, + "probability": 0.1449 + }, + { + "start": 7553.42, + "end": 7553.77, + "probability": 0.3938 + }, + { + "start": 7554.6, + "end": 7555.64, + "probability": 0.1926 + }, + { + "start": 7555.84, + "end": 7558.78, + "probability": 0.6995 + }, + { + "start": 7559.32, + "end": 7561.0, + "probability": 0.98 + }, + { + "start": 7561.1, + "end": 7562.32, + "probability": 0.2022 + }, + { + "start": 7562.52, + "end": 7563.2, + "probability": 0.714 + }, + { + "start": 7563.4, + "end": 7564.68, + "probability": 0.7497 + }, + { + "start": 7565.4, + "end": 7568.68, + "probability": 0.9507 + }, + { + "start": 7569.42, + "end": 7572.24, + "probability": 0.9519 + }, + { + "start": 7573.5, + "end": 7574.96, + "probability": 0.9406 + }, + { + "start": 7575.12, + "end": 7577.34, + "probability": 0.8241 + }, + { + "start": 7577.38, + "end": 7580.78, + "probability": 0.8392 + }, + { + "start": 7581.52, + "end": 7583.04, + "probability": 0.7056 + }, + { + "start": 7583.12, + "end": 7583.56, + "probability": 0.7807 + }, + { + "start": 7583.64, + "end": 7585.8, + "probability": 0.949 + }, + { + "start": 7586.58, + "end": 7588.68, + "probability": 0.8392 + }, + { + "start": 7589.28, + "end": 7593.05, + "probability": 0.7117 + }, + { + "start": 7595.2, + "end": 7596.16, + "probability": 0.9561 + }, + { + "start": 7596.28, + "end": 7596.98, + "probability": 0.694 + }, + { + "start": 7597.18, + "end": 7597.42, + "probability": 0.585 + }, + { + "start": 7597.76, + "end": 7598.6, + "probability": 0.8458 + }, + { + "start": 7598.78, + "end": 7600.48, + "probability": 0.8615 + }, + { + "start": 7601.0, + "end": 7601.5, + "probability": 0.4988 + }, + { + "start": 7601.56, + "end": 7601.64, + "probability": 0.5242 + }, + { + "start": 7601.8, + "end": 7602.76, + "probability": 0.548 + }, + { + "start": 7602.84, + "end": 7604.46, + "probability": 0.9796 + }, + { + "start": 7605.1, + "end": 7608.74, + "probability": 0.9981 + }, + { + "start": 7608.8, + "end": 7609.22, + "probability": 0.3913 + }, + { + "start": 7609.3, + "end": 7610.48, + "probability": 0.4597 + }, + { + "start": 7610.62, + "end": 7612.6, + "probability": 0.8618 + }, + { + "start": 7616.92, + "end": 7618.82, + "probability": 0.849 + }, + { + "start": 7636.12, + "end": 7639.22, + "probability": 0.7321 + }, + { + "start": 7641.14, + "end": 7643.96, + "probability": 0.9031 + }, + { + "start": 7645.28, + "end": 7650.44, + "probability": 0.4519 + }, + { + "start": 7653.84, + "end": 7655.76, + "probability": 0.9546 + }, + { + "start": 7656.08, + "end": 7657.58, + "probability": 0.6542 + }, + { + "start": 7657.7, + "end": 7661.46, + "probability": 0.9862 + }, + { + "start": 7664.84, + "end": 7666.06, + "probability": 0.6835 + }, + { + "start": 7667.28, + "end": 7668.42, + "probability": 0.8695 + }, + { + "start": 7669.52, + "end": 7673.78, + "probability": 0.8223 + }, + { + "start": 7675.4, + "end": 7680.76, + "probability": 0.9846 + }, + { + "start": 7681.76, + "end": 7683.8, + "probability": 0.9744 + }, + { + "start": 7686.54, + "end": 7691.38, + "probability": 0.8802 + }, + { + "start": 7691.46, + "end": 7692.46, + "probability": 0.8215 + }, + { + "start": 7694.1, + "end": 7695.34, + "probability": 0.2262 + }, + { + "start": 7698.01, + "end": 7701.8, + "probability": 0.9878 + }, + { + "start": 7704.22, + "end": 7705.0, + "probability": 0.7609 + }, + { + "start": 7706.22, + "end": 7708.5, + "probability": 0.94 + }, + { + "start": 7711.02, + "end": 7711.58, + "probability": 0.9199 + }, + { + "start": 7714.64, + "end": 7718.36, + "probability": 0.9849 + }, + { + "start": 7720.78, + "end": 7722.32, + "probability": 0.9674 + }, + { + "start": 7723.68, + "end": 7724.92, + "probability": 0.9019 + }, + { + "start": 7727.0, + "end": 7729.86, + "probability": 0.9 + }, + { + "start": 7730.64, + "end": 7732.82, + "probability": 0.8287 + }, + { + "start": 7734.02, + "end": 7736.62, + "probability": 0.9985 + }, + { + "start": 7737.64, + "end": 7738.92, + "probability": 0.6577 + }, + { + "start": 7741.02, + "end": 7741.68, + "probability": 0.4707 + }, + { + "start": 7744.26, + "end": 7747.18, + "probability": 0.9985 + }, + { + "start": 7748.5, + "end": 7748.9, + "probability": 0.9548 + }, + { + "start": 7752.98, + "end": 7754.3, + "probability": 0.7479 + }, + { + "start": 7755.74, + "end": 7758.34, + "probability": 0.911 + }, + { + "start": 7759.7, + "end": 7761.1, + "probability": 0.9961 + }, + { + "start": 7763.05, + "end": 7763.58, + "probability": 0.8082 + }, + { + "start": 7763.94, + "end": 7764.92, + "probability": 0.6611 + }, + { + "start": 7767.3, + "end": 7768.3, + "probability": 0.6813 + }, + { + "start": 7770.74, + "end": 7773.7, + "probability": 0.9951 + }, + { + "start": 7775.4, + "end": 7778.62, + "probability": 0.9937 + }, + { + "start": 7780.56, + "end": 7783.54, + "probability": 0.9868 + }, + { + "start": 7785.12, + "end": 7788.5, + "probability": 0.9274 + }, + { + "start": 7789.44, + "end": 7791.98, + "probability": 0.9785 + }, + { + "start": 7793.6, + "end": 7794.18, + "probability": 0.7372 + }, + { + "start": 7796.04, + "end": 7803.26, + "probability": 0.9489 + }, + { + "start": 7804.66, + "end": 7806.66, + "probability": 0.9418 + }, + { + "start": 7807.42, + "end": 7808.56, + "probability": 0.9669 + }, + { + "start": 7809.94, + "end": 7811.52, + "probability": 0.6086 + }, + { + "start": 7812.72, + "end": 7812.72, + "probability": 0.5688 + }, + { + "start": 7814.08, + "end": 7817.02, + "probability": 0.8222 + }, + { + "start": 7817.38, + "end": 7818.84, + "probability": 0.7946 + }, + { + "start": 7819.9, + "end": 7824.0, + "probability": 0.9749 + }, + { + "start": 7824.64, + "end": 7828.3, + "probability": 0.9814 + }, + { + "start": 7829.1, + "end": 7831.34, + "probability": 0.9469 + }, + { + "start": 7831.76, + "end": 7833.48, + "probability": 0.8994 + }, + { + "start": 7834.04, + "end": 7837.64, + "probability": 0.9956 + }, + { + "start": 7838.14, + "end": 7841.84, + "probability": 0.9922 + }, + { + "start": 7842.56, + "end": 7842.88, + "probability": 0.8018 + }, + { + "start": 7843.18, + "end": 7844.85, + "probability": 0.5507 + }, + { + "start": 7845.68, + "end": 7846.8, + "probability": 0.8953 + }, + { + "start": 7863.8, + "end": 7863.8, + "probability": 0.321 + }, + { + "start": 7863.8, + "end": 7865.34, + "probability": 0.6024 + }, + { + "start": 7865.42, + "end": 7865.42, + "probability": 0.5909 + }, + { + "start": 7865.44, + "end": 7865.98, + "probability": 0.5991 + }, + { + "start": 7866.04, + "end": 7866.78, + "probability": 0.6672 + }, + { + "start": 7868.26, + "end": 7871.38, + "probability": 0.9349 + }, + { + "start": 7872.66, + "end": 7878.06, + "probability": 0.9725 + }, + { + "start": 7878.66, + "end": 7880.36, + "probability": 0.6267 + }, + { + "start": 7881.38, + "end": 7882.88, + "probability": 0.1039 + }, + { + "start": 7882.88, + "end": 7882.88, + "probability": 0.0964 + }, + { + "start": 7882.88, + "end": 7885.7, + "probability": 0.9771 + }, + { + "start": 7886.58, + "end": 7888.54, + "probability": 0.8717 + }, + { + "start": 7889.42, + "end": 7891.84, + "probability": 0.9908 + }, + { + "start": 7893.52, + "end": 7896.1, + "probability": 0.9812 + }, + { + "start": 7897.2, + "end": 7897.86, + "probability": 0.4472 + }, + { + "start": 7898.04, + "end": 7900.46, + "probability": 0.9675 + }, + { + "start": 7900.62, + "end": 7902.42, + "probability": 0.9652 + }, + { + "start": 7902.72, + "end": 7904.88, + "probability": 0.8941 + }, + { + "start": 7905.48, + "end": 7907.02, + "probability": 0.951 + }, + { + "start": 7907.22, + "end": 7907.38, + "probability": 0.7246 + }, + { + "start": 7907.54, + "end": 7910.14, + "probability": 0.994 + }, + { + "start": 7910.14, + "end": 7912.64, + "probability": 0.4214 + }, + { + "start": 7912.92, + "end": 7914.86, + "probability": 0.8755 + }, + { + "start": 7915.02, + "end": 7915.78, + "probability": 0.9199 + }, + { + "start": 7915.8, + "end": 7916.58, + "probability": 0.9532 + }, + { + "start": 7917.42, + "end": 7919.04, + "probability": 0.9878 + }, + { + "start": 7920.1, + "end": 7923.08, + "probability": 0.9897 + }, + { + "start": 7924.04, + "end": 7926.58, + "probability": 0.8234 + }, + { + "start": 7927.44, + "end": 7930.48, + "probability": 0.9956 + }, + { + "start": 7930.98, + "end": 7931.5, + "probability": 0.6865 + }, + { + "start": 7931.62, + "end": 7935.08, + "probability": 0.9893 + }, + { + "start": 7935.82, + "end": 7936.58, + "probability": 0.9861 + }, + { + "start": 7937.2, + "end": 7939.67, + "probability": 0.9826 + }, + { + "start": 7940.44, + "end": 7941.54, + "probability": 0.5086 + }, + { + "start": 7942.16, + "end": 7944.24, + "probability": 0.5155 + }, + { + "start": 7944.5, + "end": 7947.62, + "probability": 0.8021 + }, + { + "start": 7947.9, + "end": 7948.78, + "probability": 0.9957 + }, + { + "start": 7949.44, + "end": 7953.14, + "probability": 0.9855 + }, + { + "start": 7954.56, + "end": 7956.22, + "probability": 0.8997 + }, + { + "start": 7957.08, + "end": 7958.56, + "probability": 0.2993 + }, + { + "start": 7958.82, + "end": 7959.28, + "probability": 0.5319 + }, + { + "start": 7959.4, + "end": 7960.04, + "probability": 0.341 + }, + { + "start": 7960.29, + "end": 7962.28, + "probability": 0.7632 + }, + { + "start": 7962.3, + "end": 7962.4, + "probability": 0.8162 + }, + { + "start": 7962.68, + "end": 7964.04, + "probability": 0.9312 + }, + { + "start": 7964.26, + "end": 7967.12, + "probability": 0.9102 + }, + { + "start": 7967.18, + "end": 7969.7, + "probability": 0.8314 + }, + { + "start": 7970.76, + "end": 7973.62, + "probability": 0.9964 + }, + { + "start": 7973.96, + "end": 7975.88, + "probability": 0.8769 + }, + { + "start": 7976.4, + "end": 7977.74, + "probability": 0.8932 + }, + { + "start": 7978.18, + "end": 7979.3, + "probability": 0.9961 + }, + { + "start": 7979.46, + "end": 7980.88, + "probability": 0.9896 + }, + { + "start": 7981.1, + "end": 7981.92, + "probability": 0.9019 + }, + { + "start": 7983.24, + "end": 7986.94, + "probability": 0.8936 + }, + { + "start": 7987.16, + "end": 7988.98, + "probability": 0.9324 + }, + { + "start": 7989.32, + "end": 7990.82, + "probability": 0.9272 + }, + { + "start": 7992.28, + "end": 7995.52, + "probability": 0.5785 + }, + { + "start": 7995.62, + "end": 7996.08, + "probability": 0.884 + }, + { + "start": 7996.44, + "end": 8002.16, + "probability": 0.992 + }, + { + "start": 8003.58, + "end": 8004.76, + "probability": 0.7898 + }, + { + "start": 8005.34, + "end": 8006.33, + "probability": 0.4781 + }, + { + "start": 8006.66, + "end": 8009.18, + "probability": 0.8374 + }, + { + "start": 8009.28, + "end": 8010.36, + "probability": 0.9745 + }, + { + "start": 8011.78, + "end": 8013.18, + "probability": 0.7003 + }, + { + "start": 8013.52, + "end": 8019.18, + "probability": 0.8854 + }, + { + "start": 8020.72, + "end": 8020.72, + "probability": 0.0002 + }, + { + "start": 8020.72, + "end": 8024.52, + "probability": 0.9914 + }, + { + "start": 8024.8, + "end": 8027.78, + "probability": 0.9689 + }, + { + "start": 8028.3, + "end": 8032.62, + "probability": 0.9851 + }, + { + "start": 8033.3, + "end": 8033.3, + "probability": 0.0618 + }, + { + "start": 8033.3, + "end": 8037.88, + "probability": 0.9969 + }, + { + "start": 8038.34, + "end": 8038.64, + "probability": 0.7625 + }, + { + "start": 8039.26, + "end": 8044.72, + "probability": 0.9991 + }, + { + "start": 8044.72, + "end": 8049.98, + "probability": 0.9971 + }, + { + "start": 8050.68, + "end": 8054.32, + "probability": 0.9679 + }, + { + "start": 8054.94, + "end": 8060.16, + "probability": 0.9922 + }, + { + "start": 8060.88, + "end": 8063.48, + "probability": 0.9976 + }, + { + "start": 8063.66, + "end": 8066.82, + "probability": 0.9951 + }, + { + "start": 8068.3, + "end": 8070.54, + "probability": 0.9944 + }, + { + "start": 8071.38, + "end": 8071.85, + "probability": 0.1729 + }, + { + "start": 8072.76, + "end": 8075.6, + "probability": 0.9971 + }, + { + "start": 8076.74, + "end": 8082.02, + "probability": 0.9718 + }, + { + "start": 8082.02, + "end": 8087.14, + "probability": 0.999 + }, + { + "start": 8087.14, + "end": 8087.5, + "probability": 0.5607 + }, + { + "start": 8089.42, + "end": 8093.08, + "probability": 0.912 + }, + { + "start": 8094.46, + "end": 8097.44, + "probability": 0.8387 + }, + { + "start": 8097.62, + "end": 8098.36, + "probability": 0.9272 + }, + { + "start": 8098.9, + "end": 8102.18, + "probability": 0.8532 + }, + { + "start": 8102.7, + "end": 8103.9, + "probability": 0.9939 + }, + { + "start": 8104.48, + "end": 8107.48, + "probability": 0.997 + }, + { + "start": 8108.02, + "end": 8112.44, + "probability": 0.9498 + }, + { + "start": 8112.88, + "end": 8118.68, + "probability": 0.9965 + }, + { + "start": 8119.36, + "end": 8120.68, + "probability": 0.8908 + }, + { + "start": 8120.82, + "end": 8121.3, + "probability": 0.7308 + }, + { + "start": 8121.46, + "end": 8123.72, + "probability": 0.9512 + }, + { + "start": 8124.36, + "end": 8128.68, + "probability": 0.9985 + }, + { + "start": 8128.68, + "end": 8133.92, + "probability": 0.996 + }, + { + "start": 8134.16, + "end": 8135.2, + "probability": 0.5956 + }, + { + "start": 8135.32, + "end": 8137.78, + "probability": 0.9926 + }, + { + "start": 8137.78, + "end": 8140.8, + "probability": 0.988 + }, + { + "start": 8141.1, + "end": 8144.66, + "probability": 0.9471 + }, + { + "start": 8144.72, + "end": 8145.98, + "probability": 0.8868 + }, + { + "start": 8146.9, + "end": 8149.14, + "probability": 0.9252 + }, + { + "start": 8151.1, + "end": 8152.76, + "probability": 0.8743 + }, + { + "start": 8152.9, + "end": 8154.38, + "probability": 0.9658 + }, + { + "start": 8154.64, + "end": 8156.46, + "probability": 0.7506 + }, + { + "start": 8157.64, + "end": 8159.12, + "probability": 0.8732 + }, + { + "start": 8159.24, + "end": 8160.92, + "probability": 0.9881 + }, + { + "start": 8161.14, + "end": 8161.6, + "probability": 0.8492 + }, + { + "start": 8162.4, + "end": 8164.94, + "probability": 0.4408 + }, + { + "start": 8165.46, + "end": 8165.74, + "probability": 0.3453 + }, + { + "start": 8165.76, + "end": 8166.36, + "probability": 0.7021 + }, + { + "start": 8166.48, + "end": 8170.48, + "probability": 0.7833 + }, + { + "start": 8171.46, + "end": 8174.02, + "probability": 0.9785 + }, + { + "start": 8174.24, + "end": 8174.6, + "probability": 0.4796 + }, + { + "start": 8174.68, + "end": 8177.58, + "probability": 0.7559 + }, + { + "start": 8178.52, + "end": 8179.06, + "probability": 0.4989 + }, + { + "start": 8179.72, + "end": 8183.22, + "probability": 0.8152 + }, + { + "start": 8185.91, + "end": 8190.19, + "probability": 0.7501 + }, + { + "start": 8190.54, + "end": 8194.6, + "probability": 0.9812 + }, + { + "start": 8196.08, + "end": 8197.35, + "probability": 0.9995 + }, + { + "start": 8198.54, + "end": 8199.68, + "probability": 0.9661 + }, + { + "start": 8200.28, + "end": 8202.3, + "probability": 0.9939 + }, + { + "start": 8202.8, + "end": 8203.48, + "probability": 0.5396 + }, + { + "start": 8203.58, + "end": 8205.76, + "probability": 0.9301 + }, + { + "start": 8205.76, + "end": 8206.6, + "probability": 0.7573 + }, + { + "start": 8206.74, + "end": 8207.32, + "probability": 0.6415 + }, + { + "start": 8208.42, + "end": 8212.12, + "probability": 0.9626 + }, + { + "start": 8213.3, + "end": 8215.98, + "probability": 0.991 + }, + { + "start": 8217.08, + "end": 8219.06, + "probability": 0.907 + }, + { + "start": 8220.14, + "end": 8223.64, + "probability": 0.9949 + }, + { + "start": 8225.32, + "end": 8226.9, + "probability": 0.9995 + }, + { + "start": 8228.7, + "end": 8232.24, + "probability": 0.6652 + }, + { + "start": 8236.26, + "end": 8238.64, + "probability": 0.9957 + }, + { + "start": 8241.06, + "end": 8244.96, + "probability": 0.6287 + }, + { + "start": 8247.06, + "end": 8251.68, + "probability": 0.9824 + }, + { + "start": 8254.4, + "end": 8258.45, + "probability": 0.9414 + }, + { + "start": 8259.14, + "end": 8259.86, + "probability": 0.5999 + }, + { + "start": 8260.7, + "end": 8266.06, + "probability": 0.835 + }, + { + "start": 8266.88, + "end": 8268.34, + "probability": 0.7568 + }, + { + "start": 8269.06, + "end": 8270.01, + "probability": 0.911 + }, + { + "start": 8270.8, + "end": 8272.6, + "probability": 0.8469 + }, + { + "start": 8273.52, + "end": 8280.44, + "probability": 0.8059 + }, + { + "start": 8281.42, + "end": 8282.66, + "probability": 0.8068 + }, + { + "start": 8282.8, + "end": 8282.9, + "probability": 0.3475 + }, + { + "start": 8283.42, + "end": 8285.14, + "probability": 0.7014 + }, + { + "start": 8285.62, + "end": 8286.24, + "probability": 0.52 + }, + { + "start": 8286.44, + "end": 8290.72, + "probability": 0.7309 + }, + { + "start": 8291.42, + "end": 8295.16, + "probability": 0.9536 + }, + { + "start": 8295.16, + "end": 8298.96, + "probability": 0.6675 + }, + { + "start": 8299.62, + "end": 8303.62, + "probability": 0.8264 + }, + { + "start": 8304.3, + "end": 8306.24, + "probability": 0.9762 + }, + { + "start": 8306.68, + "end": 8309.36, + "probability": 0.9837 + }, + { + "start": 8309.72, + "end": 8310.4, + "probability": 0.908 + }, + { + "start": 8310.68, + "end": 8310.86, + "probability": 0.5693 + }, + { + "start": 8310.98, + "end": 8311.77, + "probability": 0.5576 + }, + { + "start": 8311.94, + "end": 8312.52, + "probability": 0.2013 + }, + { + "start": 8312.52, + "end": 8313.5, + "probability": 0.984 + }, + { + "start": 8313.72, + "end": 8315.78, + "probability": 0.9917 + }, + { + "start": 8315.92, + "end": 8316.74, + "probability": 0.6006 + }, + { + "start": 8316.76, + "end": 8317.06, + "probability": 0.495 + }, + { + "start": 8317.1, + "end": 8325.6, + "probability": 0.8598 + }, + { + "start": 8326.7, + "end": 8326.7, + "probability": 0.0354 + }, + { + "start": 8326.92, + "end": 8329.68, + "probability": 0.8097 + }, + { + "start": 8329.84, + "end": 8331.2, + "probability": 0.8279 + }, + { + "start": 8331.28, + "end": 8332.96, + "probability": 0.7698 + }, + { + "start": 8333.34, + "end": 8333.76, + "probability": 0.7944 + }, + { + "start": 8333.96, + "end": 8336.84, + "probability": 0.8499 + }, + { + "start": 8337.28, + "end": 8338.02, + "probability": 0.5957 + }, + { + "start": 8338.06, + "end": 8340.0, + "probability": 0.5892 + }, + { + "start": 8340.16, + "end": 8341.16, + "probability": 0.6036 + }, + { + "start": 8342.08, + "end": 8342.71, + "probability": 0.9033 + }, + { + "start": 8343.94, + "end": 8346.52, + "probability": 0.7396 + }, + { + "start": 8346.66, + "end": 8346.92, + "probability": 0.6322 + }, + { + "start": 8346.94, + "end": 8347.98, + "probability": 0.6803 + }, + { + "start": 8348.44, + "end": 8352.12, + "probability": 0.9752 + }, + { + "start": 8352.9, + "end": 8356.14, + "probability": 0.833 + }, + { + "start": 8356.62, + "end": 8360.12, + "probability": 0.9913 + }, + { + "start": 8361.04, + "end": 8361.96, + "probability": 0.8887 + }, + { + "start": 8362.24, + "end": 8363.94, + "probability": 0.9857 + }, + { + "start": 8364.76, + "end": 8368.06, + "probability": 0.9847 + }, + { + "start": 8368.26, + "end": 8371.08, + "probability": 0.9915 + }, + { + "start": 8371.9, + "end": 8377.32, + "probability": 0.8404 + }, + { + "start": 8377.46, + "end": 8381.18, + "probability": 0.9877 + }, + { + "start": 8384.56, + "end": 8386.52, + "probability": 0.985 + }, + { + "start": 8388.08, + "end": 8389.22, + "probability": 0.7079 + }, + { + "start": 8389.24, + "end": 8391.3, + "probability": 0.5711 + }, + { + "start": 8391.34, + "end": 8393.35, + "probability": 0.9807 + }, + { + "start": 8393.98, + "end": 8396.58, + "probability": 0.8799 + }, + { + "start": 8397.64, + "end": 8399.1, + "probability": 0.2697 + }, + { + "start": 8399.7, + "end": 8401.32, + "probability": 0.8895 + }, + { + "start": 8402.58, + "end": 8405.7, + "probability": 0.728 + }, + { + "start": 8407.44, + "end": 8410.96, + "probability": 0.8583 + }, + { + "start": 8411.52, + "end": 8415.28, + "probability": 0.8747 + }, + { + "start": 8416.14, + "end": 8418.86, + "probability": 0.9456 + }, + { + "start": 8419.4, + "end": 8420.2, + "probability": 0.9655 + }, + { + "start": 8421.26, + "end": 8423.5, + "probability": 0.9639 + }, + { + "start": 8424.52, + "end": 8428.18, + "probability": 0.9415 + }, + { + "start": 8429.2, + "end": 8431.24, + "probability": 0.8906 + }, + { + "start": 8431.92, + "end": 8432.64, + "probability": 0.9454 + }, + { + "start": 8433.02, + "end": 8434.04, + "probability": 0.8967 + }, + { + "start": 8434.16, + "end": 8434.56, + "probability": 0.9156 + }, + { + "start": 8434.7, + "end": 8435.88, + "probability": 0.9229 + }, + { + "start": 8436.6, + "end": 8437.9, + "probability": 0.7926 + }, + { + "start": 8438.42, + "end": 8445.04, + "probability": 0.9825 + }, + { + "start": 8445.82, + "end": 8448.24, + "probability": 0.5792 + }, + { + "start": 8449.02, + "end": 8451.4, + "probability": 0.7785 + }, + { + "start": 8452.08, + "end": 8452.12, + "probability": 0.4164 + }, + { + "start": 8452.24, + "end": 8452.8, + "probability": 0.6932 + }, + { + "start": 8453.26, + "end": 8455.74, + "probability": 0.9734 + }, + { + "start": 8457.5, + "end": 8464.12, + "probability": 0.7679 + }, + { + "start": 8465.36, + "end": 8466.62, + "probability": 0.8412 + }, + { + "start": 8467.86, + "end": 8468.54, + "probability": 0.9445 + }, + { + "start": 8469.18, + "end": 8472.1, + "probability": 0.9988 + }, + { + "start": 8473.54, + "end": 8476.56, + "probability": 0.9684 + }, + { + "start": 8477.88, + "end": 8479.04, + "probability": 0.9996 + }, + { + "start": 8480.06, + "end": 8484.04, + "probability": 0.9789 + }, + { + "start": 8486.74, + "end": 8491.46, + "probability": 0.7861 + }, + { + "start": 8492.44, + "end": 8493.68, + "probability": 0.7482 + }, + { + "start": 8495.44, + "end": 8496.4, + "probability": 0.9964 + }, + { + "start": 8497.6, + "end": 8502.64, + "probability": 0.7856 + }, + { + "start": 8504.68, + "end": 8508.81, + "probability": 0.9658 + }, + { + "start": 8510.22, + "end": 8513.14, + "probability": 0.9829 + }, + { + "start": 8513.2, + "end": 8514.54, + "probability": 0.7924 + }, + { + "start": 8515.6, + "end": 8515.81, + "probability": 0.4793 + }, + { + "start": 8526.02, + "end": 8528.16, + "probability": 0.5689 + }, + { + "start": 8528.92, + "end": 8531.0, + "probability": 0.654 + }, + { + "start": 8531.08, + "end": 8532.76, + "probability": 0.7939 + }, + { + "start": 8532.86, + "end": 8533.69, + "probability": 0.5917 + }, + { + "start": 8534.92, + "end": 8536.38, + "probability": 0.8203 + }, + { + "start": 8537.22, + "end": 8537.56, + "probability": 0.6205 + }, + { + "start": 8538.32, + "end": 8540.38, + "probability": 0.9063 + }, + { + "start": 8541.54, + "end": 8542.7, + "probability": 0.9757 + }, + { + "start": 8543.55, + "end": 8544.9, + "probability": 0.4192 + }, + { + "start": 8544.9, + "end": 8545.24, + "probability": 0.1494 + }, + { + "start": 8545.3, + "end": 8545.7, + "probability": 0.6725 + }, + { + "start": 8545.96, + "end": 8546.88, + "probability": 0.3755 + }, + { + "start": 8546.98, + "end": 8548.88, + "probability": 0.9911 + }, + { + "start": 8549.7, + "end": 8552.58, + "probability": 0.7864 + }, + { + "start": 8553.82, + "end": 8554.38, + "probability": 0.7431 + }, + { + "start": 8554.44, + "end": 8555.08, + "probability": 0.7986 + }, + { + "start": 8555.22, + "end": 8559.14, + "probability": 0.9817 + }, + { + "start": 8560.24, + "end": 8561.58, + "probability": 0.5123 + }, + { + "start": 8562.0, + "end": 8563.4, + "probability": 0.9269 + }, + { + "start": 8563.46, + "end": 8563.96, + "probability": 0.5604 + }, + { + "start": 8563.96, + "end": 8566.0, + "probability": 0.9428 + }, + { + "start": 8566.08, + "end": 8567.16, + "probability": 0.9679 + }, + { + "start": 8569.21, + "end": 8572.44, + "probability": 0.7795 + }, + { + "start": 8573.2, + "end": 8574.24, + "probability": 0.5638 + }, + { + "start": 8575.36, + "end": 8579.12, + "probability": 0.9704 + }, + { + "start": 8579.98, + "end": 8582.96, + "probability": 0.9891 + }, + { + "start": 8583.48, + "end": 8585.04, + "probability": 0.887 + }, + { + "start": 8585.18, + "end": 8588.8, + "probability": 0.9987 + }, + { + "start": 8588.96, + "end": 8590.5, + "probability": 0.9307 + }, + { + "start": 8593.12, + "end": 8598.42, + "probability": 0.8022 + }, + { + "start": 8600.0, + "end": 8603.14, + "probability": 0.9831 + }, + { + "start": 8603.98, + "end": 8606.72, + "probability": 0.9761 + }, + { + "start": 8606.72, + "end": 8609.94, + "probability": 0.9451 + }, + { + "start": 8610.74, + "end": 8612.76, + "probability": 0.6765 + }, + { + "start": 8613.66, + "end": 8614.42, + "probability": 0.7226 + }, + { + "start": 8616.34, + "end": 8619.96, + "probability": 0.7765 + }, + { + "start": 8625.56, + "end": 8628.3, + "probability": 0.9847 + }, + { + "start": 8629.0, + "end": 8630.74, + "probability": 0.9891 + }, + { + "start": 8632.22, + "end": 8634.2, + "probability": 0.4971 + }, + { + "start": 8635.02, + "end": 8637.56, + "probability": 0.137 + }, + { + "start": 8637.8, + "end": 8638.32, + "probability": 0.5065 + }, + { + "start": 8639.42, + "end": 8641.56, + "probability": 0.5665 + }, + { + "start": 8642.2, + "end": 8646.88, + "probability": 0.9833 + }, + { + "start": 8646.92, + "end": 8647.42, + "probability": 0.8113 + }, + { + "start": 8648.22, + "end": 8650.22, + "probability": 0.6592 + }, + { + "start": 8650.64, + "end": 8655.76, + "probability": 0.8082 + }, + { + "start": 8655.88, + "end": 8658.44, + "probability": 0.696 + }, + { + "start": 8659.08, + "end": 8661.18, + "probability": 0.695 + }, + { + "start": 8661.38, + "end": 8666.08, + "probability": 0.7139 + }, + { + "start": 8666.36, + "end": 8670.96, + "probability": 0.8768 + }, + { + "start": 8671.16, + "end": 8672.76, + "probability": 0.8295 + }, + { + "start": 8673.32, + "end": 8675.32, + "probability": 0.9414 + }, + { + "start": 8675.54, + "end": 8681.7, + "probability": 0.8609 + }, + { + "start": 8686.82, + "end": 8690.64, + "probability": 0.9008 + }, + { + "start": 8690.72, + "end": 8691.68, + "probability": 0.7213 + }, + { + "start": 8691.7, + "end": 8692.3, + "probability": 0.3936 + }, + { + "start": 8692.58, + "end": 8695.06, + "probability": 0.8094 + }, + { + "start": 8697.94, + "end": 8700.78, + "probability": 0.6575 + }, + { + "start": 8702.2, + "end": 8705.44, + "probability": 0.9635 + }, + { + "start": 8707.28, + "end": 8709.35, + "probability": 0.8709 + }, + { + "start": 8709.92, + "end": 8713.02, + "probability": 0.928 + }, + { + "start": 8713.4, + "end": 8715.82, + "probability": 0.9917 + }, + { + "start": 8715.84, + "end": 8717.46, + "probability": 0.998 + }, + { + "start": 8718.66, + "end": 8724.32, + "probability": 0.8285 + }, + { + "start": 8724.42, + "end": 8725.72, + "probability": 0.98 + }, + { + "start": 8727.04, + "end": 8727.42, + "probability": 0.5859 + }, + { + "start": 8727.48, + "end": 8728.2, + "probability": 0.778 + }, + { + "start": 8728.42, + "end": 8733.7, + "probability": 0.9988 + }, + { + "start": 8734.62, + "end": 8735.44, + "probability": 0.9745 + }, + { + "start": 8736.44, + "end": 8737.8, + "probability": 0.7479 + }, + { + "start": 8737.96, + "end": 8738.56, + "probability": 0.5647 + }, + { + "start": 8738.92, + "end": 8743.88, + "probability": 0.9904 + }, + { + "start": 8743.98, + "end": 8745.04, + "probability": 0.9907 + }, + { + "start": 8745.14, + "end": 8747.16, + "probability": 0.9775 + }, + { + "start": 8747.94, + "end": 8747.96, + "probability": 0.2141 + }, + { + "start": 8747.96, + "end": 8748.24, + "probability": 0.0979 + }, + { + "start": 8748.36, + "end": 8750.58, + "probability": 0.9729 + }, + { + "start": 8750.62, + "end": 8752.7, + "probability": 0.7187 + }, + { + "start": 8753.18, + "end": 8756.32, + "probability": 0.8247 + }, + { + "start": 8757.06, + "end": 8758.58, + "probability": 0.5193 + }, + { + "start": 8759.74, + "end": 8763.02, + "probability": 0.6797 + }, + { + "start": 8763.08, + "end": 8764.46, + "probability": 0.866 + }, + { + "start": 8764.5, + "end": 8765.04, + "probability": 0.7926 + }, + { + "start": 8765.62, + "end": 8766.14, + "probability": 0.4967 + }, + { + "start": 8766.34, + "end": 8766.46, + "probability": 0.5509 + }, + { + "start": 8766.46, + "end": 8766.76, + "probability": 0.7424 + }, + { + "start": 8767.02, + "end": 8773.78, + "probability": 0.9546 + }, + { + "start": 8774.2, + "end": 8777.72, + "probability": 0.9931 + }, + { + "start": 8778.04, + "end": 8778.74, + "probability": 0.812 + }, + { + "start": 8779.0, + "end": 8779.5, + "probability": 0.2803 + }, + { + "start": 8780.7, + "end": 8782.26, + "probability": 0.2211 + }, + { + "start": 8784.88, + "end": 8785.2, + "probability": 0.1271 + }, + { + "start": 8785.2, + "end": 8785.2, + "probability": 0.0405 + }, + { + "start": 8785.2, + "end": 8785.2, + "probability": 0.036 + }, + { + "start": 8785.2, + "end": 8785.69, + "probability": 0.2959 + }, + { + "start": 8785.98, + "end": 8786.54, + "probability": 0.6337 + }, + { + "start": 8786.66, + "end": 8789.16, + "probability": 0.9878 + }, + { + "start": 8789.34, + "end": 8791.26, + "probability": 0.7914 + }, + { + "start": 8791.78, + "end": 8797.54, + "probability": 0.8013 + }, + { + "start": 8797.54, + "end": 8797.89, + "probability": 0.4338 + }, + { + "start": 8798.16, + "end": 8798.8, + "probability": 0.4785 + }, + { + "start": 8799.26, + "end": 8801.5, + "probability": 0.9436 + }, + { + "start": 8801.96, + "end": 8804.64, + "probability": 0.9538 + }, + { + "start": 8807.46, + "end": 8807.68, + "probability": 0.6841 + }, + { + "start": 8807.68, + "end": 8808.26, + "probability": 0.7874 + }, + { + "start": 8808.66, + "end": 8809.6, + "probability": 0.546 + }, + { + "start": 8809.72, + "end": 8810.54, + "probability": 0.1631 + }, + { + "start": 8810.54, + "end": 8810.98, + "probability": 0.2485 + }, + { + "start": 8810.98, + "end": 8815.94, + "probability": 0.8472 + }, + { + "start": 8816.26, + "end": 8816.82, + "probability": 0.8091 + }, + { + "start": 8817.42, + "end": 8818.42, + "probability": 0.8485 + }, + { + "start": 8819.1, + "end": 8823.4, + "probability": 0.7554 + }, + { + "start": 8824.06, + "end": 8827.5, + "probability": 0.9924 + }, + { + "start": 8827.64, + "end": 8829.9, + "probability": 0.9973 + }, + { + "start": 8830.44, + "end": 8830.96, + "probability": 0.5039 + }, + { + "start": 8831.06, + "end": 8833.14, + "probability": 0.9917 + }, + { + "start": 8833.78, + "end": 8834.8, + "probability": 0.8994 + }, + { + "start": 8835.66, + "end": 8836.6, + "probability": 0.6846 + }, + { + "start": 8836.76, + "end": 8839.46, + "probability": 0.7562 + }, + { + "start": 8840.08, + "end": 8844.0, + "probability": 0.8907 + }, + { + "start": 8845.44, + "end": 8850.22, + "probability": 0.9728 + }, + { + "start": 8850.62, + "end": 8854.6, + "probability": 0.8215 + }, + { + "start": 8854.94, + "end": 8856.46, + "probability": 0.8778 + }, + { + "start": 8857.06, + "end": 8857.78, + "probability": 0.3758 + }, + { + "start": 8858.44, + "end": 8861.04, + "probability": 0.5944 + }, + { + "start": 8861.66, + "end": 8862.36, + "probability": 0.7835 + }, + { + "start": 8862.78, + "end": 8863.6, + "probability": 0.652 + }, + { + "start": 8865.88, + "end": 8870.02, + "probability": 0.2172 + }, + { + "start": 8872.62, + "end": 8872.8, + "probability": 0.0011 + }, + { + "start": 8874.36, + "end": 8877.34, + "probability": 0.7217 + }, + { + "start": 8877.34, + "end": 8878.4, + "probability": 0.3551 + }, + { + "start": 8879.04, + "end": 8880.54, + "probability": 0.8148 + }, + { + "start": 8881.32, + "end": 8881.92, + "probability": 0.7033 + }, + { + "start": 8882.06, + "end": 8884.92, + "probability": 0.9701 + }, + { + "start": 8884.92, + "end": 8887.82, + "probability": 0.801 + }, + { + "start": 8888.46, + "end": 8892.53, + "probability": 0.7798 + }, + { + "start": 8894.14, + "end": 8896.6, + "probability": 0.996 + }, + { + "start": 8896.6, + "end": 8900.16, + "probability": 0.9484 + }, + { + "start": 8900.64, + "end": 8904.1, + "probability": 0.78 + }, + { + "start": 8904.72, + "end": 8906.6, + "probability": 0.5413 + }, + { + "start": 8906.66, + "end": 8907.4, + "probability": 0.6943 + }, + { + "start": 8907.62, + "end": 8908.12, + "probability": 0.4222 + }, + { + "start": 8908.52, + "end": 8909.48, + "probability": 0.6009 + }, + { + "start": 8909.92, + "end": 8911.82, + "probability": 0.1812 + }, + { + "start": 8914.6, + "end": 8919.64, + "probability": 0.0327 + }, + { + "start": 8922.64, + "end": 8923.74, + "probability": 0.1238 + }, + { + "start": 8925.28, + "end": 8925.38, + "probability": 0.3245 + }, + { + "start": 8925.44, + "end": 8928.72, + "probability": 0.6507 + }, + { + "start": 8928.8, + "end": 8931.98, + "probability": 0.8761 + }, + { + "start": 8932.56, + "end": 8936.62, + "probability": 0.7762 + }, + { + "start": 8937.26, + "end": 8941.49, + "probability": 0.8385 + }, + { + "start": 8941.62, + "end": 8943.14, + "probability": 0.7047 + }, + { + "start": 8943.72, + "end": 8946.04, + "probability": 0.7097 + }, + { + "start": 8946.64, + "end": 8951.54, + "probability": 0.637 + }, + { + "start": 8951.78, + "end": 8953.24, + "probability": 0.6738 + }, + { + "start": 8953.54, + "end": 8954.14, + "probability": 0.6689 + }, + { + "start": 8954.16, + "end": 8954.66, + "probability": 0.8132 + }, + { + "start": 8954.76, + "end": 8955.58, + "probability": 0.7104 + }, + { + "start": 8955.84, + "end": 8958.68, + "probability": 0.12 + }, + { + "start": 8970.52, + "end": 8971.2, + "probability": 0.1211 + }, + { + "start": 8971.2, + "end": 8974.28, + "probability": 0.6505 + }, + { + "start": 8974.48, + "end": 8977.68, + "probability": 0.7407 + }, + { + "start": 8977.76, + "end": 8981.22, + "probability": 0.7895 + }, + { + "start": 8981.68, + "end": 8984.32, + "probability": 0.6943 + }, + { + "start": 8984.8, + "end": 8985.38, + "probability": 0.7501 + }, + { + "start": 8985.54, + "end": 8987.24, + "probability": 0.994 + }, + { + "start": 8987.84, + "end": 8988.16, + "probability": 0.7732 + }, + { + "start": 8989.06, + "end": 8990.22, + "probability": 0.929 + }, + { + "start": 8990.84, + "end": 8994.52, + "probability": 0.9949 + }, + { + "start": 8995.32, + "end": 8997.46, + "probability": 0.978 + }, + { + "start": 8998.44, + "end": 9000.04, + "probability": 0.8932 + }, + { + "start": 9000.96, + "end": 9001.68, + "probability": 0.8167 + }, + { + "start": 9002.42, + "end": 9005.24, + "probability": 0.9196 + }, + { + "start": 9005.76, + "end": 9006.66, + "probability": 0.9546 + }, + { + "start": 9008.1, + "end": 9010.28, + "probability": 0.9784 + }, + { + "start": 9010.28, + "end": 9011.32, + "probability": 0.6764 + }, + { + "start": 9012.18, + "end": 9017.8, + "probability": 0.8038 + }, + { + "start": 9045.08, + "end": 9047.24, + "probability": 0.7012 + }, + { + "start": 9048.3, + "end": 9052.72, + "probability": 0.9906 + }, + { + "start": 9053.58, + "end": 9056.84, + "probability": 0.5169 + }, + { + "start": 9057.84, + "end": 9058.98, + "probability": 0.6204 + }, + { + "start": 9059.92, + "end": 9062.84, + "probability": 0.8742 + }, + { + "start": 9063.78, + "end": 9070.22, + "probability": 0.9486 + }, + { + "start": 9070.7, + "end": 9074.84, + "probability": 0.9938 + }, + { + "start": 9075.7, + "end": 9079.42, + "probability": 0.9853 + }, + { + "start": 9079.42, + "end": 9083.02, + "probability": 0.9453 + }, + { + "start": 9083.54, + "end": 9087.24, + "probability": 0.9786 + }, + { + "start": 9087.76, + "end": 9092.06, + "probability": 0.9894 + }, + { + "start": 9092.56, + "end": 9095.2, + "probability": 0.7996 + }, + { + "start": 9095.68, + "end": 9099.02, + "probability": 0.9854 + }, + { + "start": 9099.62, + "end": 9101.16, + "probability": 0.9851 + }, + { + "start": 9101.72, + "end": 9104.5, + "probability": 0.9979 + }, + { + "start": 9105.32, + "end": 9106.02, + "probability": 0.9569 + }, + { + "start": 9106.88, + "end": 9111.08, + "probability": 0.9536 + }, + { + "start": 9111.46, + "end": 9112.62, + "probability": 0.8256 + }, + { + "start": 9113.02, + "end": 9115.84, + "probability": 0.9854 + }, + { + "start": 9116.36, + "end": 9118.86, + "probability": 0.8931 + }, + { + "start": 9119.74, + "end": 9122.1, + "probability": 0.9959 + }, + { + "start": 9123.0, + "end": 9125.1, + "probability": 0.9916 + }, + { + "start": 9125.1, + "end": 9128.76, + "probability": 0.9736 + }, + { + "start": 9129.3, + "end": 9130.08, + "probability": 0.8993 + }, + { + "start": 9130.3, + "end": 9135.46, + "probability": 0.941 + }, + { + "start": 9135.46, + "end": 9142.22, + "probability": 0.9894 + }, + { + "start": 9143.0, + "end": 9146.4, + "probability": 0.8712 + }, + { + "start": 9146.8, + "end": 9152.94, + "probability": 0.9463 + }, + { + "start": 9153.52, + "end": 9155.32, + "probability": 0.9076 + }, + { + "start": 9155.88, + "end": 9156.44, + "probability": 0.9694 + }, + { + "start": 9157.78, + "end": 9159.72, + "probability": 0.9968 + }, + { + "start": 9159.92, + "end": 9162.7, + "probability": 0.9959 + }, + { + "start": 9162.82, + "end": 9165.22, + "probability": 0.9945 + }, + { + "start": 9166.28, + "end": 9166.76, + "probability": 0.9932 + }, + { + "start": 9168.46, + "end": 9172.72, + "probability": 0.5118 + }, + { + "start": 9173.44, + "end": 9174.54, + "probability": 0.9424 + }, + { + "start": 9175.48, + "end": 9183.66, + "probability": 0.9888 + }, + { + "start": 9185.74, + "end": 9187.5, + "probability": 0.8699 + }, + { + "start": 9188.34, + "end": 9189.66, + "probability": 0.9976 + }, + { + "start": 9191.0, + "end": 9192.32, + "probability": 0.8568 + }, + { + "start": 9192.38, + "end": 9193.92, + "probability": 0.9866 + }, + { + "start": 9194.7, + "end": 9197.14, + "probability": 0.6901 + }, + { + "start": 9197.6, + "end": 9200.13, + "probability": 0.8706 + }, + { + "start": 9200.58, + "end": 9201.84, + "probability": 0.9863 + }, + { + "start": 9203.4, + "end": 9205.12, + "probability": 0.7631 + }, + { + "start": 9206.56, + "end": 9208.3, + "probability": 0.9391 + }, + { + "start": 9209.18, + "end": 9210.36, + "probability": 0.8979 + }, + { + "start": 9210.46, + "end": 9211.76, + "probability": 0.9836 + }, + { + "start": 9212.06, + "end": 9215.24, + "probability": 0.7926 + }, + { + "start": 9217.34, + "end": 9219.61, + "probability": 0.948 + }, + { + "start": 9220.02, + "end": 9223.51, + "probability": 0.8376 + }, + { + "start": 9224.0, + "end": 9225.36, + "probability": 0.8867 + }, + { + "start": 9225.42, + "end": 9227.1, + "probability": 0.9732 + }, + { + "start": 9227.74, + "end": 9230.06, + "probability": 0.9446 + }, + { + "start": 9230.92, + "end": 9232.64, + "probability": 0.1407 + }, + { + "start": 9232.88, + "end": 9234.5, + "probability": 0.692 + }, + { + "start": 9234.72, + "end": 9238.0, + "probability": 0.9709 + }, + { + "start": 9238.34, + "end": 9241.76, + "probability": 0.9231 + }, + { + "start": 9242.66, + "end": 9242.96, + "probability": 0.2689 + }, + { + "start": 9243.54, + "end": 9246.2, + "probability": 0.2306 + }, + { + "start": 9246.76, + "end": 9251.06, + "probability": 0.9756 + }, + { + "start": 9251.12, + "end": 9252.74, + "probability": 0.5387 + }, + { + "start": 9253.22, + "end": 9258.32, + "probability": 0.581 + }, + { + "start": 9259.16, + "end": 9261.76, + "probability": 0.9902 + }, + { + "start": 9262.44, + "end": 9265.62, + "probability": 0.9676 + }, + { + "start": 9266.04, + "end": 9267.5, + "probability": 0.7152 + }, + { + "start": 9267.5, + "end": 9272.18, + "probability": 0.962 + }, + { + "start": 9272.58, + "end": 9273.32, + "probability": 0.7957 + }, + { + "start": 9273.84, + "end": 9275.74, + "probability": 0.9666 + }, + { + "start": 9275.78, + "end": 9277.46, + "probability": 0.688 + }, + { + "start": 9277.56, + "end": 9279.2, + "probability": 0.9437 + }, + { + "start": 9279.56, + "end": 9279.9, + "probability": 0.8479 + }, + { + "start": 9279.98, + "end": 9286.24, + "probability": 0.959 + }, + { + "start": 9287.02, + "end": 9287.1, + "probability": 0.0006 + }, + { + "start": 9287.7, + "end": 9287.78, + "probability": 0.0031 + }, + { + "start": 9288.4, + "end": 9293.28, + "probability": 0.5037 + }, + { + "start": 9294.02, + "end": 9296.1, + "probability": 0.699 + }, + { + "start": 9296.76, + "end": 9300.54, + "probability": 0.9201 + }, + { + "start": 9300.98, + "end": 9302.76, + "probability": 0.8469 + }, + { + "start": 9302.9, + "end": 9304.86, + "probability": 0.9704 + }, + { + "start": 9304.86, + "end": 9306.98, + "probability": 0.857 + }, + { + "start": 9307.46, + "end": 9309.56, + "probability": 0.0013 + }, + { + "start": 9312.4, + "end": 9314.0, + "probability": 0.1673 + }, + { + "start": 9333.2, + "end": 9334.5, + "probability": 0.3411 + }, + { + "start": 9335.64, + "end": 9336.22, + "probability": 0.5685 + }, + { + "start": 9336.36, + "end": 9340.28, + "probability": 0.88 + }, + { + "start": 9340.94, + "end": 9341.86, + "probability": 0.7268 + }, + { + "start": 9342.94, + "end": 9344.69, + "probability": 0.666 + }, + { + "start": 9345.98, + "end": 9347.78, + "probability": 0.9255 + }, + { + "start": 9350.24, + "end": 9351.64, + "probability": 0.9302 + }, + { + "start": 9352.6, + "end": 9353.58, + "probability": 0.9875 + }, + { + "start": 9354.22, + "end": 9354.92, + "probability": 0.8578 + }, + { + "start": 9356.76, + "end": 9357.36, + "probability": 0.1228 + }, + { + "start": 9373.76, + "end": 9374.6, + "probability": 0.0207 + }, + { + "start": 9374.6, + "end": 9376.62, + "probability": 0.6244 + }, + { + "start": 9377.38, + "end": 9378.52, + "probability": 0.3976 + }, + { + "start": 9379.04, + "end": 9379.2, + "probability": 0.4329 + }, + { + "start": 9380.66, + "end": 9384.16, + "probability": 0.7977 + }, + { + "start": 9386.02, + "end": 9387.68, + "probability": 0.9263 + }, + { + "start": 9389.34, + "end": 9392.2, + "probability": 0.0703 + }, + { + "start": 9405.58, + "end": 9406.62, + "probability": 0.2151 + }, + { + "start": 9410.42, + "end": 9411.41, + "probability": 0.5564 + }, + { + "start": 9413.18, + "end": 9416.14, + "probability": 0.9185 + }, + { + "start": 9417.12, + "end": 9420.22, + "probability": 0.993 + }, + { + "start": 9420.8, + "end": 9426.4, + "probability": 0.9005 + }, + { + "start": 9427.56, + "end": 9429.5, + "probability": 0.1467 + }, + { + "start": 9430.0, + "end": 9432.91, + "probability": 0.3785 + }, + { + "start": 9434.2, + "end": 9435.36, + "probability": 0.915 + }, + { + "start": 9436.08, + "end": 9437.66, + "probability": 0.8564 + }, + { + "start": 9437.82, + "end": 9440.6, + "probability": 0.8739 + }, + { + "start": 9441.6, + "end": 9443.82, + "probability": 0.4096 + }, + { + "start": 9465.28, + "end": 9465.38, + "probability": 0.4858 + }, + { + "start": 9466.3, + "end": 9467.82, + "probability": 0.6427 + }, + { + "start": 9469.02, + "end": 9472.02, + "probability": 0.8979 + }, + { + "start": 9472.54, + "end": 9477.28, + "probability": 0.8184 + }, + { + "start": 9479.04, + "end": 9481.2, + "probability": 0.9797 + }, + { + "start": 9481.98, + "end": 9484.64, + "probability": 0.9652 + }, + { + "start": 9484.78, + "end": 9488.36, + "probability": 0.8911 + }, + { + "start": 9489.28, + "end": 9492.0, + "probability": 0.9944 + }, + { + "start": 9492.18, + "end": 9494.1, + "probability": 0.7558 + }, + { + "start": 9495.4, + "end": 9496.48, + "probability": 0.9962 + }, + { + "start": 9498.0, + "end": 9499.68, + "probability": 0.9905 + }, + { + "start": 9501.44, + "end": 9503.1, + "probability": 0.7796 + }, + { + "start": 9504.3, + "end": 9508.26, + "probability": 0.916 + }, + { + "start": 9508.82, + "end": 9512.62, + "probability": 0.9841 + }, + { + "start": 9512.68, + "end": 9513.5, + "probability": 0.6107 + }, + { + "start": 9514.64, + "end": 9515.92, + "probability": 0.8326 + }, + { + "start": 9516.14, + "end": 9516.56, + "probability": 0.5067 + }, + { + "start": 9516.82, + "end": 9519.66, + "probability": 0.8872 + }, + { + "start": 9520.22, + "end": 9525.56, + "probability": 0.9023 + }, + { + "start": 9526.02, + "end": 9527.34, + "probability": 0.8756 + }, + { + "start": 9528.86, + "end": 9531.32, + "probability": 0.9886 + }, + { + "start": 9531.78, + "end": 9535.68, + "probability": 0.8067 + }, + { + "start": 9535.94, + "end": 9539.5, + "probability": 0.7513 + }, + { + "start": 9539.52, + "end": 9542.05, + "probability": 0.731 + }, + { + "start": 9543.62, + "end": 9545.18, + "probability": 0.9594 + }, + { + "start": 9546.76, + "end": 9552.76, + "probability": 0.9596 + }, + { + "start": 9552.76, + "end": 9558.52, + "probability": 0.7324 + }, + { + "start": 9559.38, + "end": 9561.86, + "probability": 0.828 + }, + { + "start": 9561.96, + "end": 9562.86, + "probability": 0.623 + }, + { + "start": 9562.9, + "end": 9563.36, + "probability": 0.2839 + }, + { + "start": 9563.88, + "end": 9566.7, + "probability": 0.9915 + }, + { + "start": 9567.84, + "end": 9571.0, + "probability": 0.8381 + }, + { + "start": 9571.06, + "end": 9572.54, + "probability": 0.9732 + }, + { + "start": 9573.48, + "end": 9574.92, + "probability": 0.9717 + }, + { + "start": 9576.34, + "end": 9577.54, + "probability": 0.8804 + }, + { + "start": 9579.46, + "end": 9581.96, + "probability": 0.9886 + }, + { + "start": 9581.96, + "end": 9583.98, + "probability": 0.8738 + }, + { + "start": 9584.96, + "end": 9588.28, + "probability": 0.9908 + }, + { + "start": 9588.36, + "end": 9595.28, + "probability": 0.8086 + }, + { + "start": 9595.28, + "end": 9598.8, + "probability": 0.6346 + }, + { + "start": 9599.3, + "end": 9606.02, + "probability": 0.7497 + }, + { + "start": 9607.02, + "end": 9607.62, + "probability": 0.6299 + }, + { + "start": 9607.66, + "end": 9608.54, + "probability": 0.7287 + }, + { + "start": 9608.64, + "end": 9611.56, + "probability": 0.8947 + }, + { + "start": 9612.68, + "end": 9613.66, + "probability": 0.8503 + }, + { + "start": 9614.44, + "end": 9614.84, + "probability": 0.7495 + }, + { + "start": 9615.28, + "end": 9616.84, + "probability": 0.9685 + }, + { + "start": 9617.44, + "end": 9618.8, + "probability": 0.8009 + }, + { + "start": 9619.5, + "end": 9620.44, + "probability": 0.7372 + }, + { + "start": 9621.44, + "end": 9622.7, + "probability": 0.9929 + }, + { + "start": 9625.4, + "end": 9626.22, + "probability": 0.7563 + }, + { + "start": 9627.52, + "end": 9628.98, + "probability": 0.715 + }, + { + "start": 9629.64, + "end": 9630.24, + "probability": 0.734 + }, + { + "start": 9631.2, + "end": 9633.28, + "probability": 0.9328 + }, + { + "start": 9634.74, + "end": 9636.16, + "probability": 0.9495 + }, + { + "start": 9636.98, + "end": 9637.62, + "probability": 0.5765 + }, + { + "start": 9638.48, + "end": 9638.58, + "probability": 0.3322 + }, + { + "start": 9639.3, + "end": 9639.7, + "probability": 0.3829 + }, + { + "start": 9640.48, + "end": 9643.64, + "probability": 0.9733 + }, + { + "start": 9644.4, + "end": 9647.16, + "probability": 0.9128 + }, + { + "start": 9653.8, + "end": 9653.8, + "probability": 0.1654 + }, + { + "start": 9653.8, + "end": 9653.86, + "probability": 0.0184 + }, + { + "start": 9671.71, + "end": 9674.86, + "probability": 0.7193 + }, + { + "start": 9675.74, + "end": 9676.5, + "probability": 0.8108 + }, + { + "start": 9676.52, + "end": 9677.88, + "probability": 0.9138 + }, + { + "start": 9677.98, + "end": 9679.62, + "probability": 0.9443 + }, + { + "start": 9679.62, + "end": 9680.68, + "probability": 0.8007 + }, + { + "start": 9681.68, + "end": 9683.68, + "probability": 0.8865 + }, + { + "start": 9685.46, + "end": 9690.12, + "probability": 0.7436 + }, + { + "start": 9691.32, + "end": 9692.1, + "probability": 0.8364 + }, + { + "start": 9692.26, + "end": 9692.9, + "probability": 0.8674 + }, + { + "start": 9693.12, + "end": 9693.84, + "probability": 0.9878 + }, + { + "start": 9694.0, + "end": 9695.2, + "probability": 0.9614 + }, + { + "start": 9696.06, + "end": 9699.52, + "probability": 0.9184 + }, + { + "start": 9700.68, + "end": 9701.72, + "probability": 0.982 + }, + { + "start": 9702.34, + "end": 9704.04, + "probability": 0.8803 + }, + { + "start": 9704.96, + "end": 9708.0, + "probability": 0.8614 + }, + { + "start": 9708.86, + "end": 9709.34, + "probability": 0.8202 + }, + { + "start": 9710.0, + "end": 9712.64, + "probability": 0.8892 + }, + { + "start": 9713.74, + "end": 9719.72, + "probability": 0.9913 + }, + { + "start": 9721.04, + "end": 9721.82, + "probability": 0.8511 + }, + { + "start": 9722.94, + "end": 9724.12, + "probability": 0.8964 + }, + { + "start": 9725.42, + "end": 9725.94, + "probability": 0.9101 + }, + { + "start": 9727.6, + "end": 9728.8, + "probability": 0.9871 + }, + { + "start": 9729.5, + "end": 9733.28, + "probability": 0.9975 + }, + { + "start": 9734.86, + "end": 9735.92, + "probability": 0.9851 + }, + { + "start": 9737.24, + "end": 9740.04, + "probability": 0.9957 + }, + { + "start": 9740.04, + "end": 9744.52, + "probability": 0.9912 + }, + { + "start": 9744.54, + "end": 9745.68, + "probability": 0.7955 + }, + { + "start": 9745.86, + "end": 9746.32, + "probability": 0.3935 + }, + { + "start": 9747.14, + "end": 9748.0, + "probability": 0.8818 + }, + { + "start": 9748.14, + "end": 9748.64, + "probability": 0.7834 + }, + { + "start": 9749.78, + "end": 9751.9, + "probability": 0.9863 + }, + { + "start": 9751.98, + "end": 9752.4, + "probability": 0.8629 + }, + { + "start": 9752.5, + "end": 9753.44, + "probability": 0.9338 + }, + { + "start": 9754.26, + "end": 9755.48, + "probability": 0.8103 + }, + { + "start": 9756.7, + "end": 9758.38, + "probability": 0.9835 + }, + { + "start": 9759.34, + "end": 9759.92, + "probability": 0.4528 + }, + { + "start": 9760.14, + "end": 9761.12, + "probability": 0.9912 + }, + { + "start": 9761.2, + "end": 9762.08, + "probability": 0.8428 + }, + { + "start": 9762.18, + "end": 9763.52, + "probability": 0.8443 + }, + { + "start": 9764.2, + "end": 9766.86, + "probability": 0.995 + }, + { + "start": 9767.56, + "end": 9769.88, + "probability": 0.9543 + }, + { + "start": 9770.58, + "end": 9774.6, + "probability": 0.9624 + }, + { + "start": 9774.66, + "end": 9776.22, + "probability": 0.9406 + }, + { + "start": 9776.78, + "end": 9778.48, + "probability": 0.8415 + }, + { + "start": 9778.7, + "end": 9779.8, + "probability": 0.6093 + }, + { + "start": 9779.9, + "end": 9780.71, + "probability": 0.9331 + }, + { + "start": 9781.42, + "end": 9783.46, + "probability": 0.9683 + }, + { + "start": 9784.14, + "end": 9784.6, + "probability": 0.9638 + }, + { + "start": 9785.34, + "end": 9786.22, + "probability": 0.632 + }, + { + "start": 9787.67, + "end": 9791.2, + "probability": 0.8149 + }, + { + "start": 9791.9, + "end": 9795.06, + "probability": 0.9858 + }, + { + "start": 9795.6, + "end": 9797.06, + "probability": 0.9794 + }, + { + "start": 9797.5, + "end": 9800.54, + "probability": 0.9808 + }, + { + "start": 9801.46, + "end": 9805.06, + "probability": 0.9377 + }, + { + "start": 9805.98, + "end": 9811.08, + "probability": 0.8877 + }, + { + "start": 9811.96, + "end": 9813.42, + "probability": 0.9971 + }, + { + "start": 9814.08, + "end": 9816.78, + "probability": 0.9687 + }, + { + "start": 9816.9, + "end": 9821.66, + "probability": 0.9728 + }, + { + "start": 9821.92, + "end": 9822.62, + "probability": 0.8315 + }, + { + "start": 9823.54, + "end": 9825.52, + "probability": 0.9616 + }, + { + "start": 9826.1, + "end": 9830.8, + "probability": 0.9989 + }, + { + "start": 9831.44, + "end": 9832.4, + "probability": 0.8875 + }, + { + "start": 9832.92, + "end": 9833.61, + "probability": 0.0696 + }, + { + "start": 9834.6, + "end": 9834.6, + "probability": 0.0867 + }, + { + "start": 9834.6, + "end": 9836.18, + "probability": 0.8099 + }, + { + "start": 9836.64, + "end": 9838.22, + "probability": 0.0395 + }, + { + "start": 9838.86, + "end": 9842.32, + "probability": 0.5896 + }, + { + "start": 9842.46, + "end": 9842.62, + "probability": 0.6251 + }, + { + "start": 9842.76, + "end": 9844.16, + "probability": 0.8674 + }, + { + "start": 9844.5, + "end": 9845.2, + "probability": 0.8494 + }, + { + "start": 9845.26, + "end": 9847.84, + "probability": 0.9746 + }, + { + "start": 9848.28, + "end": 9850.1, + "probability": 0.987 + }, + { + "start": 9850.2, + "end": 9851.42, + "probability": 0.8968 + }, + { + "start": 9851.92, + "end": 9853.16, + "probability": 0.9785 + }, + { + "start": 9853.28, + "end": 9855.18, + "probability": 0.3194 + }, + { + "start": 9855.56, + "end": 9858.12, + "probability": 0.9834 + }, + { + "start": 9858.78, + "end": 9862.3, + "probability": 0.8843 + }, + { + "start": 9862.36, + "end": 9863.2, + "probability": 0.8544 + }, + { + "start": 9863.34, + "end": 9866.42, + "probability": 0.5764 + }, + { + "start": 9866.6, + "end": 9870.14, + "probability": 0.9926 + }, + { + "start": 9870.56, + "end": 9872.02, + "probability": 0.367 + }, + { + "start": 9872.62, + "end": 9873.8, + "probability": 0.9497 + }, + { + "start": 9873.94, + "end": 9875.82, + "probability": 0.8366 + }, + { + "start": 9876.04, + "end": 9877.76, + "probability": 0.7268 + }, + { + "start": 9878.24, + "end": 9878.48, + "probability": 0.6878 + }, + { + "start": 9878.5, + "end": 9880.08, + "probability": 0.6608 + }, + { + "start": 9880.84, + "end": 9882.66, + "probability": 0.9785 + }, + { + "start": 9896.06, + "end": 9898.24, + "probability": 0.8946 + }, + { + "start": 9899.36, + "end": 9900.1, + "probability": 0.8934 + }, + { + "start": 9901.02, + "end": 9903.18, + "probability": 0.9123 + }, + { + "start": 9904.34, + "end": 9906.6, + "probability": 0.8367 + }, + { + "start": 9907.64, + "end": 9909.86, + "probability": 0.9858 + }, + { + "start": 9910.82, + "end": 9913.18, + "probability": 0.8989 + }, + { + "start": 9913.86, + "end": 9914.56, + "probability": 0.0294 + }, + { + "start": 9914.64, + "end": 9918.22, + "probability": 0.5168 + }, + { + "start": 9918.22, + "end": 9919.38, + "probability": 0.2949 + }, + { + "start": 9919.7, + "end": 9920.18, + "probability": 0.0809 + }, + { + "start": 9920.2, + "end": 9924.38, + "probability": 0.9946 + }, + { + "start": 9925.9, + "end": 9926.0, + "probability": 0.1603 + }, + { + "start": 9926.0, + "end": 9926.0, + "probability": 0.1685 + }, + { + "start": 9926.0, + "end": 9926.58, + "probability": 0.146 + }, + { + "start": 9926.86, + "end": 9928.76, + "probability": 0.8705 + }, + { + "start": 9929.06, + "end": 9931.02, + "probability": 0.7578 + }, + { + "start": 9932.58, + "end": 9934.28, + "probability": 0.0334 + }, + { + "start": 9934.44, + "end": 9934.68, + "probability": 0.4234 + }, + { + "start": 9934.68, + "end": 9941.74, + "probability": 0.6982 + }, + { + "start": 9941.86, + "end": 9947.84, + "probability": 0.107 + }, + { + "start": 9948.78, + "end": 9949.36, + "probability": 0.0494 + }, + { + "start": 9949.36, + "end": 9949.36, + "probability": 0.3169 + }, + { + "start": 9949.36, + "end": 9949.36, + "probability": 0.0703 + }, + { + "start": 9949.36, + "end": 9949.36, + "probability": 0.3419 + }, + { + "start": 9949.36, + "end": 9949.36, + "probability": 0.6647 + }, + { + "start": 9949.36, + "end": 9951.2, + "probability": 0.3979 + }, + { + "start": 9951.82, + "end": 9953.2, + "probability": 0.6743 + }, + { + "start": 9953.8, + "end": 9957.02, + "probability": 0.5612 + }, + { + "start": 9957.02, + "end": 9957.12, + "probability": 0.3468 + }, + { + "start": 9957.12, + "end": 9957.62, + "probability": 0.0751 + }, + { + "start": 9957.88, + "end": 9961.4, + "probability": 0.5799 + }, + { + "start": 9962.46, + "end": 9964.32, + "probability": 0.9592 + }, + { + "start": 9964.42, + "end": 9964.72, + "probability": 0.8906 + }, + { + "start": 9964.92, + "end": 9966.42, + "probability": 0.5069 + }, + { + "start": 9966.5, + "end": 9967.82, + "probability": 0.8706 + }, + { + "start": 9968.34, + "end": 9969.62, + "probability": 0.6468 + }, + { + "start": 9969.84, + "end": 9971.06, + "probability": 0.2617 + }, + { + "start": 9971.24, + "end": 9972.18, + "probability": 0.0642 + }, + { + "start": 9972.28, + "end": 9972.38, + "probability": 0.4326 + }, + { + "start": 9972.38, + "end": 9972.38, + "probability": 0.5106 + }, + { + "start": 9972.38, + "end": 9974.28, + "probability": 0.7355 + }, + { + "start": 9974.34, + "end": 9976.32, + "probability": 0.8248 + }, + { + "start": 9976.96, + "end": 9979.24, + "probability": 0.448 + }, + { + "start": 9980.28, + "end": 9981.97, + "probability": 0.6138 + }, + { + "start": 9982.94, + "end": 9984.92, + "probability": 0.957 + }, + { + "start": 9985.56, + "end": 9988.02, + "probability": 0.9556 + }, + { + "start": 9988.76, + "end": 9992.76, + "probability": 0.9662 + }, + { + "start": 9994.2, + "end": 9996.6, + "probability": 0.7905 + }, + { + "start": 9997.0, + "end": 9997.0, + "probability": 0.0 + }, + { + "start": 9997.24, + "end": 9997.72, + "probability": 0.8186 + }, + { + "start": 9998.72, + "end": 10003.36, + "probability": 0.893 + }, + { + "start": 10003.88, + "end": 10004.22, + "probability": 0.9191 + }, + { + "start": 10005.46, + "end": 10006.22, + "probability": 0.4365 + }, + { + "start": 10006.92, + "end": 10008.34, + "probability": 0.552 + }, + { + "start": 10008.34, + "end": 10010.48, + "probability": 0.9928 + }, + { + "start": 10011.08, + "end": 10014.34, + "probability": 0.9404 + }, + { + "start": 10015.16, + "end": 10018.02, + "probability": 0.979 + }, + { + "start": 10018.64, + "end": 10022.02, + "probability": 0.9755 + }, + { + "start": 10022.22, + "end": 10023.88, + "probability": 0.9371 + }, + { + "start": 10024.54, + "end": 10025.5, + "probability": 0.9434 + }, + { + "start": 10026.68, + "end": 10028.82, + "probability": 0.9872 + }, + { + "start": 10029.02, + "end": 10031.4, + "probability": 0.9971 + }, + { + "start": 10031.76, + "end": 10033.38, + "probability": 0.9915 + }, + { + "start": 10034.14, + "end": 10034.98, + "probability": 0.4715 + }, + { + "start": 10035.18, + "end": 10037.96, + "probability": 0.2661 + }, + { + "start": 10038.04, + "end": 10040.74, + "probability": 0.3173 + }, + { + "start": 10040.96, + "end": 10041.6, + "probability": 0.0796 + }, + { + "start": 10042.18, + "end": 10043.01, + "probability": 0.7546 + }, + { + "start": 10043.36, + "end": 10043.74, + "probability": 0.401 + }, + { + "start": 10043.96, + "end": 10045.0, + "probability": 0.448 + }, + { + "start": 10045.32, + "end": 10046.62, + "probability": 0.9655 + }, + { + "start": 10046.68, + "end": 10047.38, + "probability": 0.6725 + }, + { + "start": 10047.78, + "end": 10048.5, + "probability": 0.9531 + }, + { + "start": 10049.34, + "end": 10050.62, + "probability": 0.9636 + }, + { + "start": 10051.32, + "end": 10052.22, + "probability": 0.9093 + }, + { + "start": 10053.04, + "end": 10053.76, + "probability": 0.8883 + }, + { + "start": 10054.68, + "end": 10056.46, + "probability": 0.9704 + }, + { + "start": 10057.0, + "end": 10058.58, + "probability": 0.9736 + }, + { + "start": 10059.6, + "end": 10063.44, + "probability": 0.9883 + }, + { + "start": 10064.06, + "end": 10065.08, + "probability": 0.8681 + }, + { + "start": 10065.82, + "end": 10071.86, + "probability": 0.8843 + }, + { + "start": 10073.02, + "end": 10074.96, + "probability": 0.8541 + }, + { + "start": 10075.06, + "end": 10075.74, + "probability": 0.7146 + }, + { + "start": 10076.28, + "end": 10079.14, + "probability": 0.9883 + }, + { + "start": 10079.68, + "end": 10080.42, + "probability": 0.9519 + }, + { + "start": 10080.56, + "end": 10080.74, + "probability": 0.9493 + }, + { + "start": 10080.9, + "end": 10081.28, + "probability": 0.9784 + }, + { + "start": 10081.32, + "end": 10082.24, + "probability": 0.938 + }, + { + "start": 10082.66, + "end": 10087.68, + "probability": 0.9949 + }, + { + "start": 10088.26, + "end": 10089.58, + "probability": 0.9324 + }, + { + "start": 10090.12, + "end": 10091.08, + "probability": 0.9336 + }, + { + "start": 10091.8, + "end": 10096.32, + "probability": 0.9905 + }, + { + "start": 10096.72, + "end": 10097.92, + "probability": 0.9864 + }, + { + "start": 10098.34, + "end": 10099.38, + "probability": 0.9556 + }, + { + "start": 10099.58, + "end": 10105.64, + "probability": 0.8691 + }, + { + "start": 10106.24, + "end": 10106.87, + "probability": 0.6558 + }, + { + "start": 10108.12, + "end": 10111.03, + "probability": 0.9656 + }, + { + "start": 10112.3, + "end": 10113.6, + "probability": 0.827 + }, + { + "start": 10114.16, + "end": 10117.72, + "probability": 0.9202 + }, + { + "start": 10118.38, + "end": 10118.7, + "probability": 0.6351 + }, + { + "start": 10118.9, + "end": 10119.22, + "probability": 0.3322 + }, + { + "start": 10119.24, + "end": 10120.54, + "probability": 0.8769 + }, + { + "start": 10120.94, + "end": 10123.82, + "probability": 0.8222 + }, + { + "start": 10123.84, + "end": 10124.4, + "probability": 0.7211 + }, + { + "start": 10124.9, + "end": 10130.26, + "probability": 0.9243 + }, + { + "start": 10130.34, + "end": 10130.92, + "probability": 0.5268 + }, + { + "start": 10131.32, + "end": 10133.38, + "probability": 0.9263 + }, + { + "start": 10133.78, + "end": 10137.66, + "probability": 0.9724 + }, + { + "start": 10137.74, + "end": 10138.42, + "probability": 0.7246 + }, + { + "start": 10138.72, + "end": 10140.0, + "probability": 0.9715 + }, + { + "start": 10140.4, + "end": 10141.94, + "probability": 0.7131 + }, + { + "start": 10142.28, + "end": 10143.82, + "probability": 0.9304 + }, + { + "start": 10160.36, + "end": 10161.02, + "probability": 0.6372 + }, + { + "start": 10161.16, + "end": 10161.18, + "probability": 0.5367 + }, + { + "start": 10161.18, + "end": 10167.24, + "probability": 0.9159 + }, + { + "start": 10168.38, + "end": 10169.2, + "probability": 0.4844 + }, + { + "start": 10170.58, + "end": 10174.52, + "probability": 0.9547 + }, + { + "start": 10175.08, + "end": 10176.91, + "probability": 0.9976 + }, + { + "start": 10177.56, + "end": 10179.86, + "probability": 0.9582 + }, + { + "start": 10181.9, + "end": 10186.46, + "probability": 0.6678 + }, + { + "start": 10187.38, + "end": 10189.76, + "probability": 0.9902 + }, + { + "start": 10190.98, + "end": 10191.5, + "probability": 0.8235 + }, + { + "start": 10191.56, + "end": 10193.98, + "probability": 0.9422 + }, + { + "start": 10194.64, + "end": 10198.56, + "probability": 0.998 + }, + { + "start": 10199.56, + "end": 10205.74, + "probability": 0.9636 + }, + { + "start": 10206.66, + "end": 10208.36, + "probability": 0.9973 + }, + { + "start": 10209.22, + "end": 10209.7, + "probability": 0.8132 + }, + { + "start": 10210.3, + "end": 10213.36, + "probability": 0.9949 + }, + { + "start": 10214.08, + "end": 10216.88, + "probability": 0.9984 + }, + { + "start": 10217.72, + "end": 10218.26, + "probability": 0.8709 + }, + { + "start": 10219.0, + "end": 10221.18, + "probability": 0.953 + }, + { + "start": 10221.26, + "end": 10223.42, + "probability": 0.9845 + }, + { + "start": 10223.86, + "end": 10225.82, + "probability": 0.8398 + }, + { + "start": 10226.82, + "end": 10229.64, + "probability": 0.9927 + }, + { + "start": 10230.22, + "end": 10231.86, + "probability": 0.8683 + }, + { + "start": 10232.38, + "end": 10235.57, + "probability": 0.8831 + }, + { + "start": 10237.68, + "end": 10241.5, + "probability": 0.9927 + }, + { + "start": 10242.32, + "end": 10242.66, + "probability": 0.3887 + }, + { + "start": 10242.78, + "end": 10244.34, + "probability": 0.8242 + }, + { + "start": 10244.72, + "end": 10245.58, + "probability": 0.9403 + }, + { + "start": 10245.8, + "end": 10246.78, + "probability": 0.9411 + }, + { + "start": 10247.7, + "end": 10250.0, + "probability": 0.9746 + }, + { + "start": 10250.6, + "end": 10254.08, + "probability": 0.9361 + }, + { + "start": 10254.52, + "end": 10257.38, + "probability": 0.989 + }, + { + "start": 10258.04, + "end": 10260.7, + "probability": 0.9205 + }, + { + "start": 10261.5, + "end": 10263.22, + "probability": 0.9657 + }, + { + "start": 10263.78, + "end": 10265.42, + "probability": 0.8685 + }, + { + "start": 10266.32, + "end": 10270.22, + "probability": 0.9901 + }, + { + "start": 10270.82, + "end": 10273.62, + "probability": 0.9382 + }, + { + "start": 10274.2, + "end": 10276.92, + "probability": 0.877 + }, + { + "start": 10277.66, + "end": 10278.7, + "probability": 0.8609 + }, + { + "start": 10278.84, + "end": 10279.6, + "probability": 0.4672 + }, + { + "start": 10279.6, + "end": 10284.6, + "probability": 0.8594 + }, + { + "start": 10285.06, + "end": 10288.64, + "probability": 0.9772 + }, + { + "start": 10289.28, + "end": 10293.64, + "probability": 0.9585 + }, + { + "start": 10293.78, + "end": 10294.5, + "probability": 0.8516 + }, + { + "start": 10294.82, + "end": 10295.5, + "probability": 0.9347 + }, + { + "start": 10295.64, + "end": 10296.12, + "probability": 0.9864 + }, + { + "start": 10296.26, + "end": 10296.76, + "probability": 0.7844 + }, + { + "start": 10297.32, + "end": 10302.68, + "probability": 0.7231 + }, + { + "start": 10303.48, + "end": 10305.44, + "probability": 0.9673 + }, + { + "start": 10306.34, + "end": 10306.92, + "probability": 0.9483 + }, + { + "start": 10307.06, + "end": 10307.4, + "probability": 0.8604 + }, + { + "start": 10307.88, + "end": 10313.06, + "probability": 0.9963 + }, + { + "start": 10313.58, + "end": 10315.66, + "probability": 0.917 + }, + { + "start": 10316.3, + "end": 10318.76, + "probability": 0.9966 + }, + { + "start": 10319.4, + "end": 10320.66, + "probability": 0.9838 + }, + { + "start": 10321.06, + "end": 10322.9, + "probability": 0.9985 + }, + { + "start": 10323.32, + "end": 10324.76, + "probability": 0.6794 + }, + { + "start": 10324.82, + "end": 10327.22, + "probability": 0.9967 + }, + { + "start": 10327.6, + "end": 10330.66, + "probability": 0.963 + }, + { + "start": 10331.06, + "end": 10333.92, + "probability": 0.9703 + }, + { + "start": 10334.18, + "end": 10334.76, + "probability": 0.5413 + }, + { + "start": 10334.9, + "end": 10335.26, + "probability": 0.7935 + }, + { + "start": 10335.32, + "end": 10335.86, + "probability": 0.9657 + }, + { + "start": 10336.3, + "end": 10336.76, + "probability": 0.9864 + }, + { + "start": 10336.82, + "end": 10337.36, + "probability": 0.9404 + }, + { + "start": 10337.72, + "end": 10341.6, + "probability": 0.9856 + }, + { + "start": 10342.02, + "end": 10346.3, + "probability": 0.9944 + }, + { + "start": 10346.8, + "end": 10348.24, + "probability": 0.6475 + }, + { + "start": 10348.34, + "end": 10349.16, + "probability": 0.9814 + }, + { + "start": 10349.68, + "end": 10352.36, + "probability": 0.9875 + }, + { + "start": 10352.66, + "end": 10353.26, + "probability": 0.7309 + }, + { + "start": 10353.5, + "end": 10355.44, + "probability": 0.6348 + }, + { + "start": 10356.34, + "end": 10358.86, + "probability": 0.8675 + }, + { + "start": 10372.06, + "end": 10373.02, + "probability": 0.6866 + }, + { + "start": 10373.78, + "end": 10375.14, + "probability": 0.7649 + }, + { + "start": 10376.74, + "end": 10378.54, + "probability": 0.9538 + }, + { + "start": 10379.88, + "end": 10380.62, + "probability": 0.9194 + }, + { + "start": 10381.48, + "end": 10381.86, + "probability": 0.7891 + }, + { + "start": 10381.96, + "end": 10383.54, + "probability": 0.8707 + }, + { + "start": 10384.04, + "end": 10386.06, + "probability": 0.9981 + }, + { + "start": 10387.16, + "end": 10389.96, + "probability": 0.9556 + }, + { + "start": 10391.9, + "end": 10396.02, + "probability": 0.9825 + }, + { + "start": 10396.6, + "end": 10397.58, + "probability": 0.7706 + }, + { + "start": 10400.5, + "end": 10402.78, + "probability": 0.4913 + }, + { + "start": 10403.78, + "end": 10405.84, + "probability": 0.9671 + }, + { + "start": 10406.94, + "end": 10411.6, + "probability": 0.9384 + }, + { + "start": 10412.56, + "end": 10415.18, + "probability": 0.9273 + }, + { + "start": 10416.96, + "end": 10418.16, + "probability": 0.7717 + }, + { + "start": 10419.76, + "end": 10420.48, + "probability": 0.6527 + }, + { + "start": 10420.72, + "end": 10420.96, + "probability": 0.2207 + }, + { + "start": 10420.98, + "end": 10421.88, + "probability": 0.5414 + }, + { + "start": 10422.1, + "end": 10425.42, + "probability": 0.9586 + }, + { + "start": 10426.84, + "end": 10427.9, + "probability": 0.8594 + }, + { + "start": 10430.0, + "end": 10432.42, + "probability": 0.9963 + }, + { + "start": 10432.62, + "end": 10433.32, + "probability": 0.8974 + }, + { + "start": 10433.42, + "end": 10434.7, + "probability": 0.9265 + }, + { + "start": 10434.9, + "end": 10436.8, + "probability": 0.6906 + }, + { + "start": 10436.92, + "end": 10439.88, + "probability": 0.9551 + }, + { + "start": 10441.22, + "end": 10443.32, + "probability": 0.8123 + }, + { + "start": 10444.22, + "end": 10444.92, + "probability": 0.9909 + }, + { + "start": 10446.2, + "end": 10448.64, + "probability": 0.9893 + }, + { + "start": 10450.16, + "end": 10451.5, + "probability": 0.9407 + }, + { + "start": 10452.58, + "end": 10453.76, + "probability": 0.8748 + }, + { + "start": 10454.04, + "end": 10454.54, + "probability": 0.5808 + }, + { + "start": 10454.62, + "end": 10458.52, + "probability": 0.7566 + }, + { + "start": 10459.38, + "end": 10462.26, + "probability": 0.8427 + }, + { + "start": 10463.48, + "end": 10464.7, + "probability": 0.7628 + }, + { + "start": 10465.74, + "end": 10466.92, + "probability": 0.9152 + }, + { + "start": 10467.58, + "end": 10469.58, + "probability": 0.9902 + }, + { + "start": 10470.54, + "end": 10471.86, + "probability": 0.6938 + }, + { + "start": 10472.64, + "end": 10477.04, + "probability": 0.4556 + }, + { + "start": 10482.07, + "end": 10483.54, + "probability": 0.9893 + }, + { + "start": 10483.66, + "end": 10484.44, + "probability": 0.8149 + }, + { + "start": 10484.6, + "end": 10485.78, + "probability": 0.7405 + }, + { + "start": 10485.88, + "end": 10486.48, + "probability": 0.8883 + }, + { + "start": 10486.74, + "end": 10488.94, + "probability": 0.4362 + }, + { + "start": 10489.7, + "end": 10492.18, + "probability": 0.9543 + }, + { + "start": 10493.24, + "end": 10495.02, + "probability": 0.9047 + }, + { + "start": 10495.72, + "end": 10496.82, + "probability": 0.9355 + }, + { + "start": 10497.36, + "end": 10505.36, + "probability": 0.9902 + }, + { + "start": 10506.3, + "end": 10509.68, + "probability": 0.8687 + }, + { + "start": 10510.28, + "end": 10512.26, + "probability": 0.9498 + }, + { + "start": 10513.16, + "end": 10514.66, + "probability": 0.9932 + }, + { + "start": 10515.3, + "end": 10519.98, + "probability": 0.9392 + }, + { + "start": 10520.1, + "end": 10521.32, + "probability": 0.9199 + }, + { + "start": 10521.42, + "end": 10522.56, + "probability": 0.8559 + }, + { + "start": 10523.9, + "end": 10524.14, + "probability": 0.6503 + }, + { + "start": 10524.26, + "end": 10525.04, + "probability": 0.7482 + }, + { + "start": 10525.12, + "end": 10529.04, + "probability": 0.9082 + }, + { + "start": 10529.44, + "end": 10531.18, + "probability": 0.9456 + }, + { + "start": 10531.94, + "end": 10534.2, + "probability": 0.8992 + }, + { + "start": 10534.9, + "end": 10535.94, + "probability": 0.854 + }, + { + "start": 10536.68, + "end": 10539.84, + "probability": 0.9399 + }, + { + "start": 10540.32, + "end": 10541.27, + "probability": 0.9 + }, + { + "start": 10541.56, + "end": 10545.84, + "probability": 0.9875 + }, + { + "start": 10546.28, + "end": 10546.86, + "probability": 0.9766 + }, + { + "start": 10547.54, + "end": 10552.8, + "probability": 0.9766 + }, + { + "start": 10553.9, + "end": 10558.2, + "probability": 0.9894 + }, + { + "start": 10558.28, + "end": 10558.84, + "probability": 0.6361 + }, + { + "start": 10559.88, + "end": 10564.68, + "probability": 0.97 + }, + { + "start": 10564.82, + "end": 10567.92, + "probability": 0.9856 + }, + { + "start": 10568.22, + "end": 10570.08, + "probability": 0.5934 + }, + { + "start": 10570.94, + "end": 10572.28, + "probability": 0.8515 + }, + { + "start": 10572.56, + "end": 10574.94, + "probability": 0.986 + }, + { + "start": 10575.12, + "end": 10576.12, + "probability": 0.5847 + }, + { + "start": 10576.58, + "end": 10577.56, + "probability": 0.6318 + }, + { + "start": 10578.38, + "end": 10580.18, + "probability": 0.9896 + }, + { + "start": 10580.42, + "end": 10583.38, + "probability": 0.9333 + }, + { + "start": 10584.16, + "end": 10588.98, + "probability": 0.9325 + }, + { + "start": 10589.62, + "end": 10591.48, + "probability": 0.9624 + }, + { + "start": 10591.72, + "end": 10598.26, + "probability": 0.8752 + }, + { + "start": 10598.86, + "end": 10602.4, + "probability": 0.9199 + }, + { + "start": 10602.54, + "end": 10603.96, + "probability": 0.8897 + }, + { + "start": 10604.34, + "end": 10606.46, + "probability": 0.9508 + }, + { + "start": 10606.82, + "end": 10608.06, + "probability": 0.4911 + }, + { + "start": 10608.06, + "end": 10609.12, + "probability": 0.1671 + }, + { + "start": 10609.66, + "end": 10612.13, + "probability": 0.7717 + }, + { + "start": 10625.48, + "end": 10626.78, + "probability": 0.4754 + }, + { + "start": 10627.62, + "end": 10629.41, + "probability": 0.6948 + }, + { + "start": 10629.58, + "end": 10633.12, + "probability": 0.944 + }, + { + "start": 10635.12, + "end": 10636.52, + "probability": 0.6762 + }, + { + "start": 10636.68, + "end": 10636.88, + "probability": 0.5515 + }, + { + "start": 10637.02, + "end": 10638.38, + "probability": 0.5076 + }, + { + "start": 10640.02, + "end": 10640.86, + "probability": 0.9932 + }, + { + "start": 10641.86, + "end": 10643.06, + "probability": 0.9978 + }, + { + "start": 10644.28, + "end": 10644.62, + "probability": 0.6334 + }, + { + "start": 10644.84, + "end": 10645.86, + "probability": 0.8584 + }, + { + "start": 10646.16, + "end": 10648.96, + "probability": 0.856 + }, + { + "start": 10650.06, + "end": 10654.06, + "probability": 0.9171 + }, + { + "start": 10655.02, + "end": 10655.88, + "probability": 0.8415 + }, + { + "start": 10656.5, + "end": 10659.24, + "probability": 0.9816 + }, + { + "start": 10659.24, + "end": 10661.52, + "probability": 0.9992 + }, + { + "start": 10661.62, + "end": 10662.28, + "probability": 0.9547 + }, + { + "start": 10663.82, + "end": 10665.54, + "probability": 0.9407 + }, + { + "start": 10666.62, + "end": 10668.4, + "probability": 0.9484 + }, + { + "start": 10669.18, + "end": 10671.16, + "probability": 0.9881 + }, + { + "start": 10671.86, + "end": 10673.38, + "probability": 0.8074 + }, + { + "start": 10674.46, + "end": 10675.65, + "probability": 0.9614 + }, + { + "start": 10676.54, + "end": 10679.82, + "probability": 0.9806 + }, + { + "start": 10680.86, + "end": 10682.4, + "probability": 0.9519 + }, + { + "start": 10682.48, + "end": 10683.96, + "probability": 0.8486 + }, + { + "start": 10684.68, + "end": 10687.18, + "probability": 0.7974 + }, + { + "start": 10688.18, + "end": 10689.72, + "probability": 0.8431 + }, + { + "start": 10690.32, + "end": 10690.86, + "probability": 0.3721 + }, + { + "start": 10691.68, + "end": 10693.84, + "probability": 0.5988 + }, + { + "start": 10694.0, + "end": 10695.0, + "probability": 0.7151 + }, + { + "start": 10696.04, + "end": 10700.72, + "probability": 0.7911 + }, + { + "start": 10701.95, + "end": 10703.34, + "probability": 0.2406 + }, + { + "start": 10703.94, + "end": 10703.98, + "probability": 0.6272 + }, + { + "start": 10703.98, + "end": 10704.58, + "probability": 0.2244 + }, + { + "start": 10704.7, + "end": 10705.32, + "probability": 0.8323 + }, + { + "start": 10706.06, + "end": 10706.88, + "probability": 0.4024 + }, + { + "start": 10708.4, + "end": 10710.24, + "probability": 0.9946 + }, + { + "start": 10711.12, + "end": 10713.16, + "probability": 0.5523 + }, + { + "start": 10713.7, + "end": 10716.04, + "probability": 0.8102 + }, + { + "start": 10716.04, + "end": 10717.5, + "probability": 0.8889 + }, + { + "start": 10718.04, + "end": 10721.02, + "probability": 0.9303 + }, + { + "start": 10721.56, + "end": 10724.3, + "probability": 0.9772 + }, + { + "start": 10724.42, + "end": 10725.56, + "probability": 0.8777 + }, + { + "start": 10726.42, + "end": 10726.94, + "probability": 0.9941 + }, + { + "start": 10727.68, + "end": 10735.04, + "probability": 0.9626 + }, + { + "start": 10735.16, + "end": 10736.02, + "probability": 0.2295 + }, + { + "start": 10736.66, + "end": 10739.16, + "probability": 0.8628 + }, + { + "start": 10741.26, + "end": 10741.38, + "probability": 0.7243 + }, + { + "start": 10741.46, + "end": 10743.4, + "probability": 0.8953 + }, + { + "start": 10743.88, + "end": 10746.98, + "probability": 0.9653 + }, + { + "start": 10747.66, + "end": 10749.72, + "probability": 0.9971 + }, + { + "start": 10750.42, + "end": 10752.92, + "probability": 0.9756 + }, + { + "start": 10753.02, + "end": 10753.46, + "probability": 0.4377 + }, + { + "start": 10753.54, + "end": 10753.64, + "probability": 0.4274 + }, + { + "start": 10754.34, + "end": 10756.28, + "probability": 0.8712 + }, + { + "start": 10756.72, + "end": 10757.58, + "probability": 0.6801 + }, + { + "start": 10758.18, + "end": 10760.44, + "probability": 0.5111 + }, + { + "start": 10761.6, + "end": 10764.06, + "probability": 0.6234 + }, + { + "start": 10764.74, + "end": 10765.96, + "probability": 0.7933 + }, + { + "start": 10766.18, + "end": 10768.24, + "probability": 0.9581 + }, + { + "start": 10768.7, + "end": 10770.32, + "probability": 0.608 + }, + { + "start": 10770.4, + "end": 10770.8, + "probability": 0.6892 + }, + { + "start": 10770.84, + "end": 10771.3, + "probability": 0.8758 + }, + { + "start": 10772.34, + "end": 10775.84, + "probability": 0.9397 + }, + { + "start": 10776.46, + "end": 10777.56, + "probability": 0.5918 + }, + { + "start": 10778.24, + "end": 10778.68, + "probability": 0.3393 + }, + { + "start": 10778.82, + "end": 10779.08, + "probability": 0.9713 + }, + { + "start": 10780.25, + "end": 10783.92, + "probability": 0.8712 + }, + { + "start": 10785.24, + "end": 10788.48, + "probability": 0.9805 + }, + { + "start": 10788.76, + "end": 10790.04, + "probability": 0.9299 + }, + { + "start": 10790.24, + "end": 10790.6, + "probability": 0.8936 + }, + { + "start": 10791.54, + "end": 10792.94, + "probability": 0.8892 + }, + { + "start": 10794.42, + "end": 10797.3, + "probability": 0.7986 + }, + { + "start": 10798.72, + "end": 10799.34, + "probability": 0.6918 + }, + { + "start": 10800.34, + "end": 10800.74, + "probability": 0.5192 + }, + { + "start": 10801.82, + "end": 10802.48, + "probability": 0.6759 + }, + { + "start": 10803.8, + "end": 10804.62, + "probability": 0.896 + }, + { + "start": 10805.66, + "end": 10806.44, + "probability": 0.1904 + }, + { + "start": 10806.68, + "end": 10808.78, + "probability": 0.9596 + }, + { + "start": 10809.44, + "end": 10810.58, + "probability": 0.5683 + }, + { + "start": 10811.02, + "end": 10813.23, + "probability": 0.1938 + }, + { + "start": 10813.74, + "end": 10816.32, + "probability": 0.5486 + }, + { + "start": 10816.76, + "end": 10817.58, + "probability": 0.9494 + }, + { + "start": 10818.72, + "end": 10819.16, + "probability": 0.9224 + }, + { + "start": 10819.72, + "end": 10821.5, + "probability": 0.8655 + }, + { + "start": 10822.3, + "end": 10822.74, + "probability": 0.6792 + }, + { + "start": 10822.86, + "end": 10825.88, + "probability": 0.9801 + }, + { + "start": 10826.12, + "end": 10827.16, + "probability": 0.9852 + }, + { + "start": 10827.22, + "end": 10827.54, + "probability": 0.4284 + }, + { + "start": 10827.62, + "end": 10830.22, + "probability": 0.8719 + }, + { + "start": 10830.3, + "end": 10832.06, + "probability": 0.7136 + }, + { + "start": 10832.18, + "end": 10832.22, + "probability": 0.5045 + }, + { + "start": 10832.32, + "end": 10832.74, + "probability": 0.6917 + }, + { + "start": 10833.56, + "end": 10835.79, + "probability": 0.9094 + }, + { + "start": 10836.5, + "end": 10837.0, + "probability": 0.9648 + }, + { + "start": 10839.12, + "end": 10842.16, + "probability": 0.4233 + }, + { + "start": 10842.42, + "end": 10842.46, + "probability": 0.069 + }, + { + "start": 10842.46, + "end": 10842.54, + "probability": 0.1897 + }, + { + "start": 10843.04, + "end": 10843.94, + "probability": 0.4205 + }, + { + "start": 10844.06, + "end": 10848.44, + "probability": 0.6989 + }, + { + "start": 10848.54, + "end": 10849.4, + "probability": 0.0746 + }, + { + "start": 10849.62, + "end": 10851.62, + "probability": 0.7585 + }, + { + "start": 10851.7, + "end": 10852.78, + "probability": 0.9705 + }, + { + "start": 10852.88, + "end": 10853.52, + "probability": 0.9367 + }, + { + "start": 10853.6, + "end": 10854.51, + "probability": 0.9893 + }, + { + "start": 10855.48, + "end": 10857.84, + "probability": 0.855 + }, + { + "start": 10857.98, + "end": 10859.12, + "probability": 0.8206 + }, + { + "start": 10859.42, + "end": 10860.8, + "probability": 0.9862 + }, + { + "start": 10861.48, + "end": 10863.52, + "probability": 0.9526 + }, + { + "start": 10864.26, + "end": 10864.64, + "probability": 0.7007 + }, + { + "start": 10864.64, + "end": 10864.98, + "probability": 0.0858 + }, + { + "start": 10865.12, + "end": 10866.94, + "probability": 0.9504 + }, + { + "start": 10868.18, + "end": 10870.07, + "probability": 0.7368 + }, + { + "start": 10871.06, + "end": 10875.82, + "probability": 0.674 + }, + { + "start": 10875.84, + "end": 10876.26, + "probability": 0.5148 + }, + { + "start": 10876.34, + "end": 10878.84, + "probability": 0.8749 + }, + { + "start": 10879.36, + "end": 10880.62, + "probability": 0.9639 + }, + { + "start": 10881.2, + "end": 10882.72, + "probability": 0.9086 + }, + { + "start": 10883.12, + "end": 10885.23, + "probability": 0.9645 + }, + { + "start": 10886.22, + "end": 10886.64, + "probability": 0.5713 + }, + { + "start": 10886.98, + "end": 10889.54, + "probability": 0.9135 + }, + { + "start": 10889.9, + "end": 10890.84, + "probability": 0.8871 + }, + { + "start": 10891.4, + "end": 10892.97, + "probability": 0.9 + }, + { + "start": 10893.28, + "end": 10894.32, + "probability": 0.1765 + }, + { + "start": 10894.72, + "end": 10895.44, + "probability": 0.7625 + }, + { + "start": 10896.02, + "end": 10896.5, + "probability": 0.9408 + }, + { + "start": 10896.58, + "end": 10897.08, + "probability": 0.9185 + }, + { + "start": 10897.24, + "end": 10898.84, + "probability": 0.9661 + }, + { + "start": 10899.0, + "end": 10901.34, + "probability": 0.8906 + }, + { + "start": 10902.04, + "end": 10903.3, + "probability": 0.8997 + }, + { + "start": 10903.92, + "end": 10906.18, + "probability": 0.853 + }, + { + "start": 10906.46, + "end": 10906.64, + "probability": 0.6492 + }, + { + "start": 10906.98, + "end": 10910.28, + "probability": 0.5085 + }, + { + "start": 10910.8, + "end": 10912.6, + "probability": 0.7305 + }, + { + "start": 10914.16, + "end": 10915.08, + "probability": 0.7412 + }, + { + "start": 10915.18, + "end": 10918.46, + "probability": 0.7494 + }, + { + "start": 10918.86, + "end": 10920.52, + "probability": 0.739 + }, + { + "start": 10920.62, + "end": 10921.22, + "probability": 0.8433 + }, + { + "start": 10921.92, + "end": 10922.86, + "probability": 0.7916 + }, + { + "start": 10923.88, + "end": 10927.66, + "probability": 0.9764 + }, + { + "start": 10928.06, + "end": 10929.46, + "probability": 0.9306 + }, + { + "start": 10929.92, + "end": 10931.46, + "probability": 0.7487 + }, + { + "start": 10932.18, + "end": 10932.3, + "probability": 0.2609 + }, + { + "start": 10932.46, + "end": 10932.78, + "probability": 0.476 + }, + { + "start": 10932.9, + "end": 10935.2, + "probability": 0.9663 + }, + { + "start": 10935.54, + "end": 10937.06, + "probability": 0.6895 + }, + { + "start": 10937.24, + "end": 10938.92, + "probability": 0.5718 + }, + { + "start": 10943.61, + "end": 10945.18, + "probability": 0.7328 + }, + { + "start": 10952.1, + "end": 10952.1, + "probability": 0.018 + }, + { + "start": 10952.12, + "end": 10952.12, + "probability": 0.0545 + }, + { + "start": 10952.12, + "end": 10952.12, + "probability": 0.1537 + }, + { + "start": 10952.12, + "end": 10952.12, + "probability": 0.1231 + }, + { + "start": 10952.14, + "end": 10952.16, + "probability": 0.1566 + }, + { + "start": 10952.16, + "end": 10952.16, + "probability": 0.0083 + }, + { + "start": 10967.08, + "end": 10968.72, + "probability": 0.8795 + }, + { + "start": 10969.26, + "end": 10972.36, + "probability": 0.9909 + }, + { + "start": 10972.36, + "end": 10975.78, + "probability": 0.9978 + }, + { + "start": 10976.22, + "end": 10978.46, + "probability": 0.847 + }, + { + "start": 10979.5, + "end": 10981.18, + "probability": 0.9904 + }, + { + "start": 10983.18, + "end": 10984.58, + "probability": 0.6765 + }, + { + "start": 10985.6, + "end": 10988.6, + "probability": 0.9263 + }, + { + "start": 10989.9, + "end": 10991.14, + "probability": 0.7492 + }, + { + "start": 10991.76, + "end": 10991.76, + "probability": 0.3898 + }, + { + "start": 10992.12, + "end": 10997.2, + "probability": 0.9109 + }, + { + "start": 10998.3, + "end": 11001.15, + "probability": 0.8249 + }, + { + "start": 11002.7, + "end": 11007.32, + "probability": 0.4658 + }, + { + "start": 11007.58, + "end": 11007.62, + "probability": 0.6118 + }, + { + "start": 11008.24, + "end": 11008.54, + "probability": 0.6595 + }, + { + "start": 11008.54, + "end": 11008.54, + "probability": 0.394 + }, + { + "start": 11008.54, + "end": 11011.32, + "probability": 0.5183 + }, + { + "start": 11012.58, + "end": 11013.78, + "probability": 0.9854 + }, + { + "start": 11014.52, + "end": 11015.38, + "probability": 0.8503 + }, + { + "start": 11016.38, + "end": 11020.22, + "probability": 0.9084 + }, + { + "start": 11021.58, + "end": 11023.06, + "probability": 0.9552 + }, + { + "start": 11023.22, + "end": 11024.86, + "probability": 0.7695 + }, + { + "start": 11026.1, + "end": 11026.12, + "probability": 0.0916 + }, + { + "start": 11026.12, + "end": 11026.86, + "probability": 0.3095 + }, + { + "start": 11027.28, + "end": 11028.12, + "probability": 0.7615 + }, + { + "start": 11029.04, + "end": 11030.5, + "probability": 0.5726 + }, + { + "start": 11031.7, + "end": 11035.04, + "probability": 0.9432 + }, + { + "start": 11035.74, + "end": 11035.84, + "probability": 0.0853 + }, + { + "start": 11035.84, + "end": 11036.97, + "probability": 0.9911 + }, + { + "start": 11037.78, + "end": 11039.6, + "probability": 0.686 + }, + { + "start": 11040.88, + "end": 11041.88, + "probability": 0.6689 + }, + { + "start": 11042.62, + "end": 11044.58, + "probability": 0.9335 + }, + { + "start": 11045.26, + "end": 11047.74, + "probability": 0.7005 + }, + { + "start": 11048.2, + "end": 11049.72, + "probability": 0.9551 + }, + { + "start": 11050.06, + "end": 11050.68, + "probability": 0.62 + }, + { + "start": 11050.78, + "end": 11051.54, + "probability": 0.6386 + }, + { + "start": 11052.5, + "end": 11052.88, + "probability": 0.3677 + }, + { + "start": 11052.88, + "end": 11053.46, + "probability": 0.1112 + }, + { + "start": 11053.48, + "end": 11053.99, + "probability": 0.5968 + }, + { + "start": 11055.22, + "end": 11057.24, + "probability": 0.826 + }, + { + "start": 11057.74, + "end": 11058.54, + "probability": 0.2744 + }, + { + "start": 11059.46, + "end": 11060.26, + "probability": 0.8192 + }, + { + "start": 11060.98, + "end": 11062.36, + "probability": 0.8862 + }, + { + "start": 11063.64, + "end": 11065.22, + "probability": 0.9651 + }, + { + "start": 11065.84, + "end": 11067.37, + "probability": 0.936 + }, + { + "start": 11067.84, + "end": 11073.38, + "probability": 0.9417 + }, + { + "start": 11074.14, + "end": 11074.76, + "probability": 0.7134 + }, + { + "start": 11075.44, + "end": 11077.98, + "probability": 0.9035 + }, + { + "start": 11078.9, + "end": 11084.22, + "probability": 0.9866 + }, + { + "start": 11084.98, + "end": 11086.56, + "probability": 0.7773 + }, + { + "start": 11087.44, + "end": 11088.84, + "probability": 0.9729 + }, + { + "start": 11089.64, + "end": 11092.64, + "probability": 0.9139 + }, + { + "start": 11093.08, + "end": 11093.44, + "probability": 0.0265 + }, + { + "start": 11093.9, + "end": 11094.78, + "probability": 0.0965 + }, + { + "start": 11094.82, + "end": 11094.92, + "probability": 0.189 + }, + { + "start": 11094.92, + "end": 11096.68, + "probability": 0.9751 + }, + { + "start": 11098.04, + "end": 11102.0, + "probability": 0.991 + }, + { + "start": 11102.88, + "end": 11104.24, + "probability": 0.7704 + }, + { + "start": 11105.06, + "end": 11106.84, + "probability": 0.9766 + }, + { + "start": 11107.92, + "end": 11109.1, + "probability": 0.7223 + }, + { + "start": 11109.72, + "end": 11113.5, + "probability": 0.991 + }, + { + "start": 11114.08, + "end": 11115.4, + "probability": 0.9366 + }, + { + "start": 11116.2, + "end": 11117.74, + "probability": 0.3785 + }, + { + "start": 11118.46, + "end": 11121.42, + "probability": 0.9072 + }, + { + "start": 11122.68, + "end": 11125.76, + "probability": 0.9292 + }, + { + "start": 11126.9, + "end": 11128.19, + "probability": 0.8129 + }, + { + "start": 11129.2, + "end": 11132.24, + "probability": 0.97 + }, + { + "start": 11132.24, + "end": 11136.64, + "probability": 0.9771 + }, + { + "start": 11137.06, + "end": 11138.36, + "probability": 0.9097 + }, + { + "start": 11139.08, + "end": 11139.76, + "probability": 0.9727 + }, + { + "start": 11140.78, + "end": 11142.36, + "probability": 0.9129 + }, + { + "start": 11143.32, + "end": 11144.28, + "probability": 0.6155 + }, + { + "start": 11144.9, + "end": 11146.5, + "probability": 0.972 + }, + { + "start": 11147.1, + "end": 11149.02, + "probability": 0.9671 + }, + { + "start": 11149.4, + "end": 11151.36, + "probability": 0.821 + }, + { + "start": 11151.64, + "end": 11155.16, + "probability": 0.8086 + }, + { + "start": 11155.16, + "end": 11157.7, + "probability": 0.6114 + }, + { + "start": 11158.36, + "end": 11159.34, + "probability": 0.9441 + }, + { + "start": 11160.48, + "end": 11161.56, + "probability": 0.9786 + }, + { + "start": 11178.24, + "end": 11180.18, + "probability": 0.6446 + }, + { + "start": 11181.18, + "end": 11183.78, + "probability": 0.8405 + }, + { + "start": 11184.68, + "end": 11187.22, + "probability": 0.969 + }, + { + "start": 11188.62, + "end": 11191.96, + "probability": 0.9865 + }, + { + "start": 11192.74, + "end": 11194.6, + "probability": 0.9682 + }, + { + "start": 11195.68, + "end": 11202.3, + "probability": 0.984 + }, + { + "start": 11203.28, + "end": 11206.62, + "probability": 0.9905 + }, + { + "start": 11206.62, + "end": 11211.44, + "probability": 0.9984 + }, + { + "start": 11212.26, + "end": 11214.0, + "probability": 0.9835 + }, + { + "start": 11215.12, + "end": 11218.52, + "probability": 0.9414 + }, + { + "start": 11219.66, + "end": 11220.62, + "probability": 0.7579 + }, + { + "start": 11221.62, + "end": 11224.54, + "probability": 0.9802 + }, + { + "start": 11225.62, + "end": 11225.9, + "probability": 0.5195 + }, + { + "start": 11225.94, + "end": 11234.22, + "probability": 0.9114 + }, + { + "start": 11235.28, + "end": 11237.4, + "probability": 0.9455 + }, + { + "start": 11238.46, + "end": 11240.82, + "probability": 0.7766 + }, + { + "start": 11242.06, + "end": 11245.56, + "probability": 0.8854 + }, + { + "start": 11246.12, + "end": 11252.62, + "probability": 0.9657 + }, + { + "start": 11252.94, + "end": 11253.56, + "probability": 0.786 + }, + { + "start": 11254.38, + "end": 11257.46, + "probability": 0.8763 + }, + { + "start": 11258.1, + "end": 11261.48, + "probability": 0.9628 + }, + { + "start": 11261.52, + "end": 11263.92, + "probability": 0.9928 + }, + { + "start": 11264.08, + "end": 11269.62, + "probability": 0.7465 + }, + { + "start": 11270.3, + "end": 11274.22, + "probability": 0.953 + }, + { + "start": 11275.5, + "end": 11278.38, + "probability": 0.9982 + }, + { + "start": 11278.5, + "end": 11279.98, + "probability": 0.9896 + }, + { + "start": 11280.08, + "end": 11281.94, + "probability": 0.9967 + }, + { + "start": 11283.06, + "end": 11286.06, + "probability": 0.9325 + }, + { + "start": 11286.66, + "end": 11289.92, + "probability": 0.988 + }, + { + "start": 11290.6, + "end": 11292.74, + "probability": 0.9336 + }, + { + "start": 11293.2, + "end": 11295.74, + "probability": 0.9799 + }, + { + "start": 11296.28, + "end": 11299.64, + "probability": 0.9962 + }, + { + "start": 11299.98, + "end": 11300.46, + "probability": 0.9265 + }, + { + "start": 11301.2, + "end": 11305.14, + "probability": 0.8984 + }, + { + "start": 11306.06, + "end": 11307.7, + "probability": 0.9834 + }, + { + "start": 11308.72, + "end": 11311.9, + "probability": 0.9736 + }, + { + "start": 11312.32, + "end": 11312.8, + "probability": 0.463 + }, + { + "start": 11313.34, + "end": 11316.18, + "probability": 0.9935 + }, + { + "start": 11316.76, + "end": 11318.26, + "probability": 0.9675 + }, + { + "start": 11319.28, + "end": 11321.88, + "probability": 0.9965 + }, + { + "start": 11322.22, + "end": 11324.24, + "probability": 0.993 + }, + { + "start": 11325.06, + "end": 11327.74, + "probability": 0.9595 + }, + { + "start": 11328.4, + "end": 11331.72, + "probability": 0.9917 + }, + { + "start": 11332.24, + "end": 11335.56, + "probability": 0.9883 + }, + { + "start": 11336.56, + "end": 11339.32, + "probability": 0.946 + }, + { + "start": 11339.36, + "end": 11340.76, + "probability": 0.9349 + }, + { + "start": 11341.48, + "end": 11342.54, + "probability": 0.8161 + }, + { + "start": 11342.72, + "end": 11344.84, + "probability": 0.968 + }, + { + "start": 11345.3, + "end": 11349.48, + "probability": 0.9851 + }, + { + "start": 11349.9, + "end": 11350.32, + "probability": 0.9333 + }, + { + "start": 11350.76, + "end": 11352.8, + "probability": 0.6793 + }, + { + "start": 11353.44, + "end": 11356.6, + "probability": 0.7502 + }, + { + "start": 11373.02, + "end": 11374.6, + "probability": 0.3303 + }, + { + "start": 11374.9, + "end": 11375.38, + "probability": 0.0807 + }, + { + "start": 11390.64, + "end": 11394.3, + "probability": 0.8185 + }, + { + "start": 11395.68, + "end": 11399.66, + "probability": 0.9929 + }, + { + "start": 11403.34, + "end": 11404.44, + "probability": 0.959 + }, + { + "start": 11406.72, + "end": 11411.96, + "probability": 0.9534 + }, + { + "start": 11412.74, + "end": 11413.5, + "probability": 0.9622 + }, + { + "start": 11414.52, + "end": 11418.06, + "probability": 0.9995 + }, + { + "start": 11419.48, + "end": 11420.62, + "probability": 0.9594 + }, + { + "start": 11422.44, + "end": 11423.36, + "probability": 0.928 + }, + { + "start": 11423.9, + "end": 11426.8, + "probability": 0.8428 + }, + { + "start": 11430.36, + "end": 11433.46, + "probability": 0.6341 + }, + { + "start": 11435.2, + "end": 11438.24, + "probability": 0.9899 + }, + { + "start": 11439.24, + "end": 11441.2, + "probability": 0.9946 + }, + { + "start": 11443.52, + "end": 11447.02, + "probability": 0.6749 + }, + { + "start": 11447.98, + "end": 11450.18, + "probability": 0.9849 + }, + { + "start": 11451.6, + "end": 11457.1, + "probability": 0.9966 + }, + { + "start": 11458.02, + "end": 11458.96, + "probability": 0.998 + }, + { + "start": 11459.8, + "end": 11462.5, + "probability": 0.8428 + }, + { + "start": 11463.1, + "end": 11466.06, + "probability": 0.8679 + }, + { + "start": 11466.9, + "end": 11468.6, + "probability": 0.9604 + }, + { + "start": 11469.92, + "end": 11475.62, + "probability": 0.9819 + }, + { + "start": 11478.1, + "end": 11479.66, + "probability": 0.8857 + }, + { + "start": 11481.36, + "end": 11484.4, + "probability": 0.9653 + }, + { + "start": 11484.58, + "end": 11485.96, + "probability": 0.9634 + }, + { + "start": 11486.16, + "end": 11487.04, + "probability": 0.9494 + }, + { + "start": 11487.94, + "end": 11490.56, + "probability": 0.9414 + }, + { + "start": 11491.22, + "end": 11495.4, + "probability": 0.991 + }, + { + "start": 11495.4, + "end": 11500.64, + "probability": 0.9881 + }, + { + "start": 11503.66, + "end": 11505.06, + "probability": 0.9966 + }, + { + "start": 11506.68, + "end": 11508.76, + "probability": 0.6852 + }, + { + "start": 11509.96, + "end": 11510.82, + "probability": 0.7455 + }, + { + "start": 11512.88, + "end": 11513.65, + "probability": 0.8684 + }, + { + "start": 11515.34, + "end": 11517.7, + "probability": 0.9965 + }, + { + "start": 11519.5, + "end": 11521.58, + "probability": 0.9362 + }, + { + "start": 11522.32, + "end": 11523.72, + "probability": 0.9453 + }, + { + "start": 11524.84, + "end": 11526.38, + "probability": 0.9866 + }, + { + "start": 11528.02, + "end": 11530.36, + "probability": 0.9971 + }, + { + "start": 11530.38, + "end": 11530.88, + "probability": 0.862 + }, + { + "start": 11530.9, + "end": 11531.48, + "probability": 0.3532 + }, + { + "start": 11533.26, + "end": 11534.74, + "probability": 0.9637 + }, + { + "start": 11534.96, + "end": 11537.04, + "probability": 0.9854 + }, + { + "start": 11540.38, + "end": 11541.32, + "probability": 0.7456 + }, + { + "start": 11541.5, + "end": 11545.08, + "probability": 0.9316 + }, + { + "start": 11546.04, + "end": 11548.06, + "probability": 0.8912 + }, + { + "start": 11548.74, + "end": 11550.04, + "probability": 0.8149 + }, + { + "start": 11551.8, + "end": 11556.12, + "probability": 0.9839 + }, + { + "start": 11559.72, + "end": 11560.9, + "probability": 0.9889 + }, + { + "start": 11561.74, + "end": 11567.64, + "probability": 0.9989 + }, + { + "start": 11569.8, + "end": 11571.64, + "probability": 0.9993 + }, + { + "start": 11572.96, + "end": 11574.3, + "probability": 0.9631 + }, + { + "start": 11574.94, + "end": 11575.22, + "probability": 0.2846 + }, + { + "start": 11575.42, + "end": 11577.0, + "probability": 0.8479 + }, + { + "start": 11577.2, + "end": 11578.06, + "probability": 0.4567 + }, + { + "start": 11578.38, + "end": 11580.76, + "probability": 0.3486 + }, + { + "start": 11580.76, + "end": 11580.76, + "probability": 0.2219 + }, + { + "start": 11580.76, + "end": 11587.58, + "probability": 0.9252 + }, + { + "start": 11589.06, + "end": 11591.94, + "probability": 0.9966 + }, + { + "start": 11591.94, + "end": 11595.28, + "probability": 0.8838 + }, + { + "start": 11596.68, + "end": 11597.92, + "probability": 0.8391 + }, + { + "start": 11598.52, + "end": 11602.94, + "probability": 0.8283 + }, + { + "start": 11603.72, + "end": 11605.1, + "probability": 0.8773 + }, + { + "start": 11606.46, + "end": 11608.88, + "probability": 0.8989 + }, + { + "start": 11609.04, + "end": 11609.46, + "probability": 0.6537 + }, + { + "start": 11609.78, + "end": 11610.08, + "probability": 0.8254 + }, + { + "start": 11610.14, + "end": 11611.5, + "probability": 0.9771 + }, + { + "start": 11612.52, + "end": 11613.72, + "probability": 0.9688 + }, + { + "start": 11614.36, + "end": 11615.9, + "probability": 0.9425 + }, + { + "start": 11616.98, + "end": 11620.5, + "probability": 0.9199 + }, + { + "start": 11621.14, + "end": 11622.66, + "probability": 0.7892 + }, + { + "start": 11623.36, + "end": 11626.32, + "probability": 0.9954 + }, + { + "start": 11626.84, + "end": 11628.3, + "probability": 0.829 + }, + { + "start": 11629.24, + "end": 11630.16, + "probability": 0.9131 + }, + { + "start": 11630.24, + "end": 11631.1, + "probability": 0.8242 + }, + { + "start": 11631.26, + "end": 11633.2, + "probability": 0.9976 + }, + { + "start": 11633.28, + "end": 11634.18, + "probability": 0.9432 + }, + { + "start": 11634.8, + "end": 11636.28, + "probability": 0.9399 + }, + { + "start": 11637.52, + "end": 11640.96, + "probability": 0.9874 + }, + { + "start": 11641.06, + "end": 11642.34, + "probability": 0.9584 + }, + { + "start": 11643.52, + "end": 11646.3, + "probability": 0.9508 + }, + { + "start": 11647.36, + "end": 11649.3, + "probability": 0.5124 + }, + { + "start": 11650.44, + "end": 11652.18, + "probability": 0.975 + }, + { + "start": 11652.74, + "end": 11654.9, + "probability": 0.9958 + }, + { + "start": 11655.96, + "end": 11657.48, + "probability": 0.9933 + }, + { + "start": 11658.44, + "end": 11663.98, + "probability": 0.9469 + }, + { + "start": 11664.51, + "end": 11668.98, + "probability": 0.9961 + }, + { + "start": 11669.88, + "end": 11671.04, + "probability": 0.875 + }, + { + "start": 11671.7, + "end": 11673.2, + "probability": 0.879 + }, + { + "start": 11675.32, + "end": 11678.6, + "probability": 0.9945 + }, + { + "start": 11679.92, + "end": 11684.86, + "probability": 0.9815 + }, + { + "start": 11685.94, + "end": 11687.62, + "probability": 0.9664 + }, + { + "start": 11687.7, + "end": 11688.14, + "probability": 0.8703 + }, + { + "start": 11688.2, + "end": 11690.3, + "probability": 0.9918 + }, + { + "start": 11691.12, + "end": 11693.04, + "probability": 0.9954 + }, + { + "start": 11693.16, + "end": 11694.44, + "probability": 0.9102 + }, + { + "start": 11695.44, + "end": 11697.94, + "probability": 0.5984 + }, + { + "start": 11698.0, + "end": 11698.2, + "probability": 0.4979 + }, + { + "start": 11698.38, + "end": 11698.7, + "probability": 0.9227 + }, + { + "start": 11699.16, + "end": 11700.56, + "probability": 0.9497 + }, + { + "start": 11702.32, + "end": 11705.34, + "probability": 0.9006 + }, + { + "start": 11705.34, + "end": 11708.54, + "probability": 0.9985 + }, + { + "start": 11708.76, + "end": 11710.58, + "probability": 0.9845 + }, + { + "start": 11711.2, + "end": 11715.54, + "probability": 0.9863 + }, + { + "start": 11717.42, + "end": 11718.98, + "probability": 0.8348 + }, + { + "start": 11721.72, + "end": 11723.02, + "probability": 0.9143 + }, + { + "start": 11724.52, + "end": 11727.46, + "probability": 0.8416 + }, + { + "start": 11728.24, + "end": 11732.04, + "probability": 0.994 + }, + { + "start": 11733.32, + "end": 11737.72, + "probability": 0.9454 + }, + { + "start": 11738.42, + "end": 11739.64, + "probability": 0.9165 + }, + { + "start": 11740.32, + "end": 11740.98, + "probability": 0.8625 + }, + { + "start": 11741.54, + "end": 11742.42, + "probability": 0.7883 + }, + { + "start": 11743.18, + "end": 11749.16, + "probability": 0.9518 + }, + { + "start": 11750.34, + "end": 11753.48, + "probability": 0.9761 + }, + { + "start": 11754.48, + "end": 11758.96, + "probability": 0.9873 + }, + { + "start": 11759.1, + "end": 11761.4, + "probability": 0.951 + }, + { + "start": 11762.5, + "end": 11765.38, + "probability": 0.7472 + }, + { + "start": 11766.56, + "end": 11768.54, + "probability": 0.7282 + }, + { + "start": 11769.96, + "end": 11773.12, + "probability": 0.904 + }, + { + "start": 11773.8, + "end": 11774.68, + "probability": 0.7592 + }, + { + "start": 11775.74, + "end": 11776.44, + "probability": 0.8678 + }, + { + "start": 11776.58, + "end": 11776.88, + "probability": 0.7998 + }, + { + "start": 11777.3, + "end": 11783.42, + "probability": 0.9873 + }, + { + "start": 11784.94, + "end": 11787.66, + "probability": 0.9775 + }, + { + "start": 11788.44, + "end": 11791.24, + "probability": 0.997 + }, + { + "start": 11791.94, + "end": 11795.52, + "probability": 0.9302 + }, + { + "start": 11796.9, + "end": 11798.88, + "probability": 0.9922 + }, + { + "start": 11799.68, + "end": 11802.22, + "probability": 0.7855 + }, + { + "start": 11803.48, + "end": 11805.62, + "probability": 0.9632 + }, + { + "start": 11807.66, + "end": 11807.76, + "probability": 0.05 + }, + { + "start": 11810.66, + "end": 11812.02, + "probability": 0.1583 + }, + { + "start": 11812.54, + "end": 11814.32, + "probability": 0.8877 + }, + { + "start": 11815.66, + "end": 11821.06, + "probability": 0.9339 + }, + { + "start": 11821.64, + "end": 11823.22, + "probability": 0.8324 + }, + { + "start": 11824.84, + "end": 11827.28, + "probability": 0.9231 + }, + { + "start": 11827.9, + "end": 11829.16, + "probability": 0.8149 + }, + { + "start": 11830.62, + "end": 11832.42, + "probability": 0.9791 + }, + { + "start": 11833.52, + "end": 11835.0, + "probability": 0.9366 + }, + { + "start": 11835.78, + "end": 11838.98, + "probability": 0.9795 + }, + { + "start": 11839.8, + "end": 11841.58, + "probability": 0.9703 + }, + { + "start": 11841.64, + "end": 11842.94, + "probability": 0.9877 + }, + { + "start": 11843.32, + "end": 11845.32, + "probability": 0.9929 + }, + { + "start": 11846.06, + "end": 11850.44, + "probability": 0.9811 + }, + { + "start": 11851.26, + "end": 11853.54, + "probability": 0.9883 + }, + { + "start": 11854.12, + "end": 11856.0, + "probability": 0.9678 + }, + { + "start": 11856.54, + "end": 11858.24, + "probability": 0.9595 + }, + { + "start": 11859.02, + "end": 11861.12, + "probability": 0.998 + }, + { + "start": 11861.86, + "end": 11867.16, + "probability": 0.9919 + }, + { + "start": 11867.24, + "end": 11867.74, + "probability": 0.7468 + }, + { + "start": 11868.38, + "end": 11870.94, + "probability": 0.5773 + }, + { + "start": 11870.98, + "end": 11873.93, + "probability": 0.9021 + }, + { + "start": 11874.4, + "end": 11877.42, + "probability": 0.9814 + }, + { + "start": 11877.42, + "end": 11882.8, + "probability": 0.9686 + }, + { + "start": 11882.8, + "end": 11886.84, + "probability": 0.5823 + }, + { + "start": 11887.38, + "end": 11889.76, + "probability": 0.5181 + }, + { + "start": 11889.82, + "end": 11890.36, + "probability": 0.5491 + }, + { + "start": 11891.02, + "end": 11891.58, + "probability": 0.7249 + }, + { + "start": 11892.12, + "end": 11892.8, + "probability": 0.7549 + }, + { + "start": 11915.66, + "end": 11920.28, + "probability": 0.0799 + }, + { + "start": 11922.06, + "end": 11923.74, + "probability": 0.051 + }, + { + "start": 11923.74, + "end": 11929.22, + "probability": 0.1426 + }, + { + "start": 11931.3, + "end": 11932.5, + "probability": 0.0932 + }, + { + "start": 11934.44, + "end": 11935.94, + "probability": 0.0985 + }, + { + "start": 11936.62, + "end": 11939.84, + "probability": 0.3581 + }, + { + "start": 11940.82, + "end": 11941.49, + "probability": 0.0066 + }, + { + "start": 11942.34, + "end": 11947.78, + "probability": 0.4271 + }, + { + "start": 11948.8, + "end": 11951.96, + "probability": 0.1504 + }, + { + "start": 11951.96, + "end": 11955.38, + "probability": 0.1044 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.0, + "end": 11990.0, + "probability": 0.0 + }, + { + "start": 11990.98, + "end": 11991.08, + "probability": 0.0432 + }, + { + "start": 11991.68, + "end": 11992.52, + "probability": 0.1238 + }, + { + "start": 11992.52, + "end": 11992.52, + "probability": 0.0431 + }, + { + "start": 11992.52, + "end": 11993.2, + "probability": 0.1815 + }, + { + "start": 11993.56, + "end": 11999.32, + "probability": 0.6249 + }, + { + "start": 12001.08, + "end": 12004.38, + "probability": 0.7436 + }, + { + "start": 12004.64, + "end": 12004.86, + "probability": 0.803 + }, + { + "start": 12005.58, + "end": 12007.16, + "probability": 0.7577 + }, + { + "start": 12007.24, + "end": 12007.86, + "probability": 0.4734 + }, + { + "start": 12008.7, + "end": 12012.32, + "probability": 0.6575 + }, + { + "start": 12014.26, + "end": 12018.0, + "probability": 0.5074 + }, + { + "start": 12018.42, + "end": 12019.66, + "probability": 0.8954 + }, + { + "start": 12020.2, + "end": 12021.22, + "probability": 0.8904 + }, + { + "start": 12022.36, + "end": 12025.76, + "probability": 0.9045 + }, + { + "start": 12026.24, + "end": 12030.28, + "probability": 0.1501 + }, + { + "start": 12031.24, + "end": 12033.68, + "probability": 0.3192 + }, + { + "start": 12049.98, + "end": 12049.98, + "probability": 0.0335 + }, + { + "start": 12049.98, + "end": 12050.12, + "probability": 0.0269 + }, + { + "start": 12072.28, + "end": 12073.08, + "probability": 0.0551 + }, + { + "start": 12076.14, + "end": 12078.88, + "probability": 0.6402 + }, + { + "start": 12079.02, + "end": 12080.42, + "probability": 0.6429 + }, + { + "start": 12081.04, + "end": 12082.66, + "probability": 0.9065 + }, + { + "start": 12083.48, + "end": 12085.66, + "probability": 0.963 + }, + { + "start": 12087.64, + "end": 12091.06, + "probability": 0.9421 + }, + { + "start": 12091.06, + "end": 12093.58, + "probability": 0.9825 + }, + { + "start": 12094.44, + "end": 12097.86, + "probability": 0.981 + }, + { + "start": 12098.68, + "end": 12100.26, + "probability": 0.5497 + }, + { + "start": 12100.36, + "end": 12102.7, + "probability": 0.9858 + }, + { + "start": 12103.34, + "end": 12106.34, + "probability": 0.963 + }, + { + "start": 12107.6, + "end": 12109.78, + "probability": 0.8362 + }, + { + "start": 12110.2, + "end": 12110.97, + "probability": 0.8483 + }, + { + "start": 12111.26, + "end": 12113.68, + "probability": 0.6763 + }, + { + "start": 12114.66, + "end": 12120.54, + "probability": 0.6997 + }, + { + "start": 12120.54, + "end": 12124.66, + "probability": 0.7059 + }, + { + "start": 12124.66, + "end": 12128.62, + "probability": 0.987 + }, + { + "start": 12129.4, + "end": 12129.84, + "probability": 0.9673 + }, + { + "start": 12131.5, + "end": 12136.0, + "probability": 0.8151 + }, + { + "start": 12136.8, + "end": 12139.92, + "probability": 0.7459 + }, + { + "start": 12139.92, + "end": 12144.68, + "probability": 0.8588 + }, + { + "start": 12145.96, + "end": 12146.72, + "probability": 0.4787 + }, + { + "start": 12147.3, + "end": 12150.86, + "probability": 0.9543 + }, + { + "start": 12150.86, + "end": 12154.84, + "probability": 0.9783 + }, + { + "start": 12155.76, + "end": 12158.12, + "probability": 0.9932 + }, + { + "start": 12158.12, + "end": 12160.62, + "probability": 0.8765 + }, + { + "start": 12161.7, + "end": 12162.19, + "probability": 0.7524 + }, + { + "start": 12162.4, + "end": 12162.74, + "probability": 0.7102 + }, + { + "start": 12162.84, + "end": 12165.7, + "probability": 0.9169 + }, + { + "start": 12166.82, + "end": 12168.76, + "probability": 0.7589 + }, + { + "start": 12169.28, + "end": 12170.38, + "probability": 0.6569 + }, + { + "start": 12171.02, + "end": 12174.56, + "probability": 0.7625 + }, + { + "start": 12174.78, + "end": 12175.78, + "probability": 0.9083 + }, + { + "start": 12176.56, + "end": 12177.24, + "probability": 0.7025 + }, + { + "start": 12177.4, + "end": 12180.34, + "probability": 0.9773 + }, + { + "start": 12181.22, + "end": 12183.14, + "probability": 0.719 + }, + { + "start": 12183.22, + "end": 12186.32, + "probability": 0.7704 + }, + { + "start": 12187.46, + "end": 12189.84, + "probability": 0.7032 + }, + { + "start": 12189.84, + "end": 12193.36, + "probability": 0.4596 + }, + { + "start": 12194.14, + "end": 12194.94, + "probability": 0.8234 + }, + { + "start": 12195.02, + "end": 12195.76, + "probability": 0.9718 + }, + { + "start": 12195.84, + "end": 12197.16, + "probability": 0.8986 + }, + { + "start": 12198.02, + "end": 12198.62, + "probability": 0.8737 + }, + { + "start": 12198.68, + "end": 12199.46, + "probability": 0.683 + }, + { + "start": 12199.52, + "end": 12202.32, + "probability": 0.8921 + }, + { + "start": 12203.52, + "end": 12205.56, + "probability": 0.8875 + }, + { + "start": 12205.68, + "end": 12206.28, + "probability": 0.4866 + }, + { + "start": 12206.38, + "end": 12209.34, + "probability": 0.9795 + }, + { + "start": 12209.68, + "end": 12212.12, + "probability": 0.9982 + }, + { + "start": 12213.12, + "end": 12215.7, + "probability": 0.8296 + }, + { + "start": 12216.94, + "end": 12218.26, + "probability": 0.0711 + }, + { + "start": 12218.58, + "end": 12220.4, + "probability": 0.9729 + }, + { + "start": 12221.22, + "end": 12222.86, + "probability": 0.7668 + }, + { + "start": 12222.86, + "end": 12223.84, + "probability": 0.8955 + }, + { + "start": 12229.72, + "end": 12231.04, + "probability": 0.9506 + }, + { + "start": 12231.16, + "end": 12233.78, + "probability": 0.9867 + }, + { + "start": 12235.54, + "end": 12235.9, + "probability": 0.8997 + }, + { + "start": 12249.76, + "end": 12251.14, + "probability": 0.6028 + }, + { + "start": 12251.98, + "end": 12252.84, + "probability": 0.8818 + }, + { + "start": 12255.34, + "end": 12256.88, + "probability": 0.607 + }, + { + "start": 12258.16, + "end": 12263.95, + "probability": 0.7756 + }, + { + "start": 12264.8, + "end": 12265.36, + "probability": 0.9174 + }, + { + "start": 12265.4, + "end": 12266.06, + "probability": 0.8907 + }, + { + "start": 12266.18, + "end": 12269.76, + "probability": 0.9984 + }, + { + "start": 12269.76, + "end": 12273.04, + "probability": 0.9976 + }, + { + "start": 12274.06, + "end": 12279.8, + "probability": 0.9878 + }, + { + "start": 12279.8, + "end": 12285.64, + "probability": 0.998 + }, + { + "start": 12286.4, + "end": 12293.38, + "probability": 0.9948 + }, + { + "start": 12293.38, + "end": 12298.5, + "probability": 0.9988 + }, + { + "start": 12300.64, + "end": 12302.74, + "probability": 0.905 + }, + { + "start": 12303.46, + "end": 12305.66, + "probability": 0.8644 + }, + { + "start": 12305.9, + "end": 12310.0, + "probability": 0.9189 + }, + { + "start": 12310.58, + "end": 12311.54, + "probability": 0.9598 + }, + { + "start": 12312.18, + "end": 12315.0, + "probability": 0.8383 + }, + { + "start": 12315.68, + "end": 12321.52, + "probability": 0.9694 + }, + { + "start": 12321.92, + "end": 12324.06, + "probability": 0.9648 + }, + { + "start": 12324.82, + "end": 12326.64, + "probability": 0.9875 + }, + { + "start": 12327.72, + "end": 12331.68, + "probability": 0.9252 + }, + { + "start": 12331.82, + "end": 12332.68, + "probability": 0.9052 + }, + { + "start": 12332.84, + "end": 12333.96, + "probability": 0.9266 + }, + { + "start": 12334.52, + "end": 12336.9, + "probability": 0.993 + }, + { + "start": 12337.32, + "end": 12338.36, + "probability": 0.9794 + }, + { + "start": 12338.86, + "end": 12340.58, + "probability": 0.988 + }, + { + "start": 12341.54, + "end": 12343.86, + "probability": 0.998 + }, + { + "start": 12344.48, + "end": 12347.47, + "probability": 0.9922 + }, + { + "start": 12348.42, + "end": 12351.2, + "probability": 0.9935 + }, + { + "start": 12353.9, + "end": 12356.04, + "probability": 0.7678 + }, + { + "start": 12356.66, + "end": 12357.2, + "probability": 0.8446 + }, + { + "start": 12358.36, + "end": 12359.28, + "probability": 0.9652 + }, + { + "start": 12359.5, + "end": 12362.84, + "probability": 0.9919 + }, + { + "start": 12363.72, + "end": 12366.36, + "probability": 0.9965 + }, + { + "start": 12367.48, + "end": 12368.44, + "probability": 0.7713 + }, + { + "start": 12370.04, + "end": 12372.97, + "probability": 0.981 + }, + { + "start": 12374.48, + "end": 12375.14, + "probability": 0.9723 + }, + { + "start": 12376.28, + "end": 12377.66, + "probability": 0.9974 + }, + { + "start": 12378.92, + "end": 12382.44, + "probability": 0.9968 + }, + { + "start": 12383.88, + "end": 12388.66, + "probability": 0.9775 + }, + { + "start": 12389.22, + "end": 12390.78, + "probability": 0.8426 + }, + { + "start": 12392.06, + "end": 12395.72, + "probability": 0.9976 + }, + { + "start": 12395.82, + "end": 12396.66, + "probability": 0.7418 + }, + { + "start": 12397.34, + "end": 12398.36, + "probability": 0.9808 + }, + { + "start": 12399.56, + "end": 12402.76, + "probability": 0.9797 + }, + { + "start": 12404.1, + "end": 12410.62, + "probability": 0.9966 + }, + { + "start": 12411.7, + "end": 12413.26, + "probability": 0.988 + }, + { + "start": 12414.72, + "end": 12421.04, + "probability": 0.9957 + }, + { + "start": 12421.92, + "end": 12422.94, + "probability": 0.6541 + }, + { + "start": 12423.56, + "end": 12424.1, + "probability": 0.8888 + }, + { + "start": 12424.7, + "end": 12426.52, + "probability": 0.7749 + }, + { + "start": 12427.12, + "end": 12431.04, + "probability": 0.9718 + }, + { + "start": 12431.56, + "end": 12434.42, + "probability": 0.9695 + }, + { + "start": 12435.54, + "end": 12437.32, + "probability": 0.7612 + }, + { + "start": 12438.12, + "end": 12439.24, + "probability": 0.9031 + }, + { + "start": 12439.88, + "end": 12444.56, + "probability": 0.9813 + }, + { + "start": 12445.28, + "end": 12448.9, + "probability": 0.8858 + }, + { + "start": 12449.24, + "end": 12449.68, + "probability": 0.7471 + }, + { + "start": 12450.24, + "end": 12452.06, + "probability": 0.8076 + }, + { + "start": 12452.7, + "end": 12454.56, + "probability": 0.6864 + }, + { + "start": 12455.28, + "end": 12456.76, + "probability": 0.9845 + }, + { + "start": 12456.98, + "end": 12458.08, + "probability": 0.8798 + }, + { + "start": 12458.12, + "end": 12458.6, + "probability": 0.8411 + }, + { + "start": 12459.06, + "end": 12461.3, + "probability": 0.7848 + }, + { + "start": 12462.14, + "end": 12466.16, + "probability": 0.3852 + }, + { + "start": 12467.28, + "end": 12468.2, + "probability": 0.2834 + }, + { + "start": 12468.64, + "end": 12470.3, + "probability": 0.7092 + }, + { + "start": 12470.44, + "end": 12471.06, + "probability": 0.3723 + }, + { + "start": 12471.64, + "end": 12472.24, + "probability": 0.8136 + }, + { + "start": 12472.82, + "end": 12473.66, + "probability": 0.7177 + }, + { + "start": 12495.18, + "end": 12496.61, + "probability": 0.133 + }, + { + "start": 12498.7, + "end": 12501.26, + "probability": 0.0957 + }, + { + "start": 12501.9, + "end": 12501.9, + "probability": 0.1117 + }, + { + "start": 12508.52, + "end": 12508.94, + "probability": 0.0127 + }, + { + "start": 12510.36, + "end": 12510.88, + "probability": 0.0121 + }, + { + "start": 12512.7, + "end": 12514.26, + "probability": 0.5566 + }, + { + "start": 12528.04, + "end": 12529.26, + "probability": 0.0537 + }, + { + "start": 12529.26, + "end": 12529.82, + "probability": 0.0452 + }, + { + "start": 12530.46, + "end": 12532.48, + "probability": 0.0169 + }, + { + "start": 12533.52, + "end": 12534.54, + "probability": 0.1141 + }, + { + "start": 12537.8, + "end": 12538.32, + "probability": 0.4739 + }, + { + "start": 12539.06, + "end": 12540.8, + "probability": 0.1068 + }, + { + "start": 12540.92, + "end": 12541.48, + "probability": 0.0503 + }, + { + "start": 12541.48, + "end": 12542.44, + "probability": 0.0347 + }, + { + "start": 12547.95, + "end": 12552.44, + "probability": 0.1569 + }, + { + "start": 12553.18, + "end": 12554.52, + "probability": 0.2453 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.0, + "end": 12596.0, + "probability": 0.0 + }, + { + "start": 12596.16, + "end": 12596.16, + "probability": 0.0599 + }, + { + "start": 12596.16, + "end": 12599.54, + "probability": 0.9574 + }, + { + "start": 12599.54, + "end": 12602.88, + "probability": 0.9975 + }, + { + "start": 12603.38, + "end": 12605.5, + "probability": 0.9326 + }, + { + "start": 12605.54, + "end": 12608.16, + "probability": 0.9781 + }, + { + "start": 12608.96, + "end": 12609.94, + "probability": 0.7878 + }, + { + "start": 12610.64, + "end": 12613.2, + "probability": 0.9955 + }, + { + "start": 12613.72, + "end": 12615.18, + "probability": 0.9774 + }, + { + "start": 12617.2, + "end": 12619.54, + "probability": 0.9504 + }, + { + "start": 12620.08, + "end": 12622.54, + "probability": 0.9971 + }, + { + "start": 12623.3, + "end": 12626.16, + "probability": 0.9579 + }, + { + "start": 12626.68, + "end": 12630.26, + "probability": 0.9886 + }, + { + "start": 12632.52, + "end": 12633.18, + "probability": 0.5302 + }, + { + "start": 12633.88, + "end": 12635.78, + "probability": 0.981 + }, + { + "start": 12636.56, + "end": 12638.02, + "probability": 0.9853 + }, + { + "start": 12638.54, + "end": 12643.62, + "probability": 0.9969 + }, + { + "start": 12644.64, + "end": 12647.0, + "probability": 0.7598 + }, + { + "start": 12647.52, + "end": 12650.34, + "probability": 0.9738 + }, + { + "start": 12653.3, + "end": 12657.72, + "probability": 0.9963 + }, + { + "start": 12658.26, + "end": 12661.28, + "probability": 0.8935 + }, + { + "start": 12661.8, + "end": 12662.94, + "probability": 0.8464 + }, + { + "start": 12663.48, + "end": 12665.42, + "probability": 0.976 + }, + { + "start": 12665.42, + "end": 12667.1, + "probability": 0.9075 + }, + { + "start": 12667.98, + "end": 12668.42, + "probability": 0.9343 + }, + { + "start": 12669.12, + "end": 12671.28, + "probability": 0.9737 + }, + { + "start": 12671.78, + "end": 12675.22, + "probability": 0.961 + }, + { + "start": 12676.16, + "end": 12679.18, + "probability": 0.9666 + }, + { + "start": 12679.78, + "end": 12682.02, + "probability": 0.8407 + }, + { + "start": 12683.5, + "end": 12685.34, + "probability": 0.7621 + }, + { + "start": 12686.02, + "end": 12686.68, + "probability": 0.723 + }, + { + "start": 12687.22, + "end": 12689.28, + "probability": 0.9086 + }, + { + "start": 12689.84, + "end": 12691.42, + "probability": 0.9244 + }, + { + "start": 12692.5, + "end": 12696.63, + "probability": 0.9875 + }, + { + "start": 12696.68, + "end": 12700.1, + "probability": 0.9789 + }, + { + "start": 12701.18, + "end": 12701.66, + "probability": 0.8222 + }, + { + "start": 12702.52, + "end": 12704.86, + "probability": 0.5962 + }, + { + "start": 12705.38, + "end": 12708.96, + "probability": 0.9002 + }, + { + "start": 12709.06, + "end": 12709.34, + "probability": 0.567 + }, + { + "start": 12709.5, + "end": 12710.58, + "probability": 0.7852 + }, + { + "start": 12711.34, + "end": 12712.08, + "probability": 0.9046 + }, + { + "start": 12712.64, + "end": 12714.28, + "probability": 0.9338 + }, + { + "start": 12715.48, + "end": 12715.94, + "probability": 0.7585 + }, + { + "start": 12716.54, + "end": 12718.84, + "probability": 0.7941 + }, + { + "start": 12719.44, + "end": 12721.9, + "probability": 0.9417 + }, + { + "start": 12722.6, + "end": 12724.7, + "probability": 0.6425 + }, + { + "start": 12725.46, + "end": 12726.58, + "probability": 0.7765 + }, + { + "start": 12727.22, + "end": 12728.86, + "probability": 0.9967 + }, + { + "start": 12729.06, + "end": 12733.04, + "probability": 0.9912 + }, + { + "start": 12734.2, + "end": 12736.18, + "probability": 0.9342 + }, + { + "start": 12736.88, + "end": 12740.44, + "probability": 0.9823 + }, + { + "start": 12740.48, + "end": 12741.5, + "probability": 0.8987 + }, + { + "start": 12742.08, + "end": 12745.08, + "probability": 0.9913 + }, + { + "start": 12745.54, + "end": 12747.7, + "probability": 0.7538 + }, + { + "start": 12748.1, + "end": 12750.16, + "probability": 0.9747 + }, + { + "start": 12751.2, + "end": 12753.6, + "probability": 0.7122 + }, + { + "start": 12754.82, + "end": 12755.0, + "probability": 0.6364 + }, + { + "start": 12755.92, + "end": 12757.44, + "probability": 0.9688 + }, + { + "start": 12757.56, + "end": 12759.04, + "probability": 0.8182 + }, + { + "start": 12759.46, + "end": 12759.56, + "probability": 0.1605 + }, + { + "start": 12760.86, + "end": 12763.3, + "probability": 0.7035 + }, + { + "start": 12763.48, + "end": 12765.22, + "probability": 0.2351 + }, + { + "start": 12765.88, + "end": 12766.68, + "probability": 0.3832 + }, + { + "start": 12766.68, + "end": 12769.02, + "probability": 0.8214 + }, + { + "start": 12769.32, + "end": 12770.08, + "probability": 0.9639 + }, + { + "start": 12770.68, + "end": 12772.11, + "probability": 0.686 + }, + { + "start": 12773.56, + "end": 12773.72, + "probability": 0.3351 + }, + { + "start": 12779.16, + "end": 12780.12, + "probability": 0.149 + }, + { + "start": 12780.32, + "end": 12784.18, + "probability": 0.8882 + }, + { + "start": 12784.2, + "end": 12785.46, + "probability": 0.9095 + }, + { + "start": 12786.28, + "end": 12786.98, + "probability": 0.7104 + }, + { + "start": 12788.6, + "end": 12790.22, + "probability": 0.7493 + }, + { + "start": 12790.58, + "end": 12791.64, + "probability": 0.9528 + }, + { + "start": 12792.92, + "end": 12795.18, + "probability": 0.9825 + }, + { + "start": 12796.34, + "end": 12796.46, + "probability": 0.4771 + }, + { + "start": 12798.66, + "end": 12799.66, + "probability": 0.9928 + }, + { + "start": 12800.58, + "end": 12802.6, + "probability": 0.9378 + }, + { + "start": 12803.76, + "end": 12805.8, + "probability": 0.821 + }, + { + "start": 12806.82, + "end": 12809.34, + "probability": 0.999 + }, + { + "start": 12810.2, + "end": 12814.36, + "probability": 0.9943 + }, + { + "start": 12814.36, + "end": 12817.54, + "probability": 0.9971 + }, + { + "start": 12818.06, + "end": 12820.84, + "probability": 0.8614 + }, + { + "start": 12821.26, + "end": 12822.14, + "probability": 0.7725 + }, + { + "start": 12822.38, + "end": 12823.56, + "probability": 0.7838 + }, + { + "start": 12824.6, + "end": 12826.7, + "probability": 0.9822 + }, + { + "start": 12827.76, + "end": 12829.58, + "probability": 0.8779 + }, + { + "start": 12830.42, + "end": 12833.78, + "probability": 0.9825 + }, + { + "start": 12834.3, + "end": 12835.44, + "probability": 0.9832 + }, + { + "start": 12835.96, + "end": 12837.84, + "probability": 0.7813 + }, + { + "start": 12838.38, + "end": 12839.62, + "probability": 0.9442 + }, + { + "start": 12840.24, + "end": 12843.42, + "probability": 0.9895 + }, + { + "start": 12844.22, + "end": 12844.78, + "probability": 0.8824 + }, + { + "start": 12845.4, + "end": 12849.88, + "probability": 0.9727 + }, + { + "start": 12850.56, + "end": 12850.98, + "probability": 0.9957 + }, + { + "start": 12851.66, + "end": 12854.46, + "probability": 0.8906 + }, + { + "start": 12855.04, + "end": 12857.82, + "probability": 0.9306 + }, + { + "start": 12858.46, + "end": 12860.72, + "probability": 0.9608 + }, + { + "start": 12861.82, + "end": 12865.99, + "probability": 0.9945 + }, + { + "start": 12866.74, + "end": 12868.5, + "probability": 0.9327 + }, + { + "start": 12869.26, + "end": 12869.78, + "probability": 0.9636 + }, + { + "start": 12870.02, + "end": 12873.5, + "probability": 0.9618 + }, + { + "start": 12874.34, + "end": 12878.06, + "probability": 0.9988 + }, + { + "start": 12878.4, + "end": 12879.56, + "probability": 0.909 + }, + { + "start": 12879.94, + "end": 12880.49, + "probability": 0.9386 + }, + { + "start": 12881.72, + "end": 12885.08, + "probability": 0.9753 + }, + { + "start": 12885.7, + "end": 12888.1, + "probability": 0.989 + }, + { + "start": 12888.62, + "end": 12889.14, + "probability": 0.7476 + }, + { + "start": 12889.92, + "end": 12892.32, + "probability": 0.984 + }, + { + "start": 12892.84, + "end": 12895.06, + "probability": 0.9774 + }, + { + "start": 12895.66, + "end": 12897.36, + "probability": 0.9976 + }, + { + "start": 12897.82, + "end": 12898.89, + "probability": 0.8818 + }, + { + "start": 12899.12, + "end": 12900.86, + "probability": 0.9703 + }, + { + "start": 12901.02, + "end": 12901.12, + "probability": 0.8245 + }, + { + "start": 12901.78, + "end": 12903.06, + "probability": 0.9375 + }, + { + "start": 12903.64, + "end": 12904.12, + "probability": 0.5169 + }, + { + "start": 12904.18, + "end": 12905.38, + "probability": 0.7183 + }, + { + "start": 12905.44, + "end": 12906.5, + "probability": 0.7503 + }, + { + "start": 12906.92, + "end": 12907.58, + "probability": 0.7815 + }, + { + "start": 12908.78, + "end": 12909.2, + "probability": 0.9691 + }, + { + "start": 12920.92, + "end": 12922.04, + "probability": 0.9512 + }, + { + "start": 12923.88, + "end": 12924.52, + "probability": 0.7194 + }, + { + "start": 12925.04, + "end": 12925.74, + "probability": 0.8946 + }, + { + "start": 12928.1, + "end": 12931.98, + "probability": 0.7442 + }, + { + "start": 12937.28, + "end": 12939.54, + "probability": 0.726 + }, + { + "start": 12940.28, + "end": 12944.3, + "probability": 0.9326 + }, + { + "start": 12944.42, + "end": 12945.34, + "probability": 0.8322 + }, + { + "start": 12945.48, + "end": 12946.62, + "probability": 0.91 + }, + { + "start": 12947.38, + "end": 12950.52, + "probability": 0.9905 + }, + { + "start": 12951.18, + "end": 12952.78, + "probability": 0.8523 + }, + { + "start": 12953.9, + "end": 12957.42, + "probability": 0.7207 + }, + { + "start": 12958.42, + "end": 12958.78, + "probability": 0.9785 + }, + { + "start": 12959.5, + "end": 12959.78, + "probability": 0.93 + }, + { + "start": 12960.46, + "end": 12963.58, + "probability": 0.9622 + }, + { + "start": 12964.52, + "end": 12967.3, + "probability": 0.9766 + }, + { + "start": 12967.46, + "end": 12968.68, + "probability": 0.519 + }, + { + "start": 12969.4, + "end": 12971.76, + "probability": 0.8414 + }, + { + "start": 12972.62, + "end": 12975.48, + "probability": 0.9048 + }, + { + "start": 12975.48, + "end": 12978.32, + "probability": 0.9973 + }, + { + "start": 12978.48, + "end": 12978.86, + "probability": 0.6583 + }, + { + "start": 12979.54, + "end": 12981.46, + "probability": 0.9968 + }, + { + "start": 12982.14, + "end": 12982.78, + "probability": 0.6175 + }, + { + "start": 12983.06, + "end": 12984.08, + "probability": 0.9468 + }, + { + "start": 12984.46, + "end": 12985.02, + "probability": 0.6916 + }, + { + "start": 12985.24, + "end": 12988.64, + "probability": 0.9802 + }, + { + "start": 12989.28, + "end": 12993.02, + "probability": 0.9823 + }, + { + "start": 12993.32, + "end": 12994.93, + "probability": 0.8549 + }, + { + "start": 12995.38, + "end": 12998.88, + "probability": 0.9874 + }, + { + "start": 12999.52, + "end": 13003.2, + "probability": 0.9922 + }, + { + "start": 13003.72, + "end": 13008.66, + "probability": 0.994 + }, + { + "start": 13008.84, + "end": 13011.28, + "probability": 0.7388 + }, + { + "start": 13011.78, + "end": 13012.7, + "probability": 0.9272 + }, + { + "start": 13013.3, + "end": 13015.72, + "probability": 0.9691 + }, + { + "start": 13016.38, + "end": 13016.84, + "probability": 0.8315 + }, + { + "start": 13017.48, + "end": 13018.04, + "probability": 0.9495 + }, + { + "start": 13018.66, + "end": 13023.44, + "probability": 0.9763 + }, + { + "start": 13023.54, + "end": 13026.78, + "probability": 0.8744 + }, + { + "start": 13027.24, + "end": 13028.04, + "probability": 0.7933 + }, + { + "start": 13028.46, + "end": 13031.5, + "probability": 0.8545 + }, + { + "start": 13031.64, + "end": 13035.54, + "probability": 0.9243 + }, + { + "start": 13035.92, + "end": 13038.98, + "probability": 0.8506 + }, + { + "start": 13039.36, + "end": 13040.08, + "probability": 0.911 + }, + { + "start": 13040.42, + "end": 13043.96, + "probability": 0.9791 + }, + { + "start": 13044.32, + "end": 13044.66, + "probability": 0.7454 + }, + { + "start": 13044.86, + "end": 13046.52, + "probability": 0.5837 + }, + { + "start": 13046.62, + "end": 13048.08, + "probability": 0.8941 + }, + { + "start": 13048.76, + "end": 13051.12, + "probability": 0.7716 + }, + { + "start": 13051.96, + "end": 13056.44, + "probability": 0.8755 + }, + { + "start": 13056.72, + "end": 13058.34, + "probability": 0.5809 + }, + { + "start": 13059.02, + "end": 13059.82, + "probability": 0.7394 + }, + { + "start": 13059.92, + "end": 13060.94, + "probability": 0.6743 + }, + { + "start": 13061.44, + "end": 13062.02, + "probability": 0.7202 + }, + { + "start": 13080.83, + "end": 13082.07, + "probability": 0.0041 + }, + { + "start": 13082.3, + "end": 13082.64, + "probability": 0.0635 + }, + { + "start": 13085.62, + "end": 13087.8, + "probability": 0.1225 + }, + { + "start": 13088.1, + "end": 13090.48, + "probability": 0.1749 + }, + { + "start": 13091.12, + "end": 13092.74, + "probability": 0.7725 + }, + { + "start": 13093.28, + "end": 13095.32, + "probability": 0.7216 + }, + { + "start": 13095.32, + "end": 13098.44, + "probability": 0.032 + }, + { + "start": 13099.08, + "end": 13100.28, + "probability": 0.0809 + }, + { + "start": 13100.28, + "end": 13102.02, + "probability": 0.0576 + }, + { + "start": 13104.07, + "end": 13105.09, + "probability": 0.323 + }, + { + "start": 13106.08, + "end": 13107.24, + "probability": 0.095 + }, + { + "start": 13107.92, + "end": 13110.9, + "probability": 0.0357 + }, + { + "start": 13111.56, + "end": 13113.24, + "probability": 0.038 + }, + { + "start": 13128.1, + "end": 13132.04, + "probability": 0.0633 + }, + { + "start": 13132.08, + "end": 13132.98, + "probability": 0.0466 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.0, + "end": 13155.0, + "probability": 0.0 + }, + { + "start": 13155.14, + "end": 13156.92, + "probability": 0.6494 + }, + { + "start": 13157.5, + "end": 13158.12, + "probability": 0.815 + }, + { + "start": 13168.08, + "end": 13170.54, + "probability": 0.9108 + }, + { + "start": 13172.1, + "end": 13176.76, + "probability": 0.7985 + }, + { + "start": 13176.8, + "end": 13179.02, + "probability": 0.9389 + }, + { + "start": 13179.74, + "end": 13181.28, + "probability": 0.9224 + }, + { + "start": 13182.16, + "end": 13186.98, + "probability": 0.9502 + }, + { + "start": 13188.02, + "end": 13191.14, + "probability": 0.7002 + }, + { + "start": 13191.84, + "end": 13193.48, + "probability": 0.923 + }, + { + "start": 13194.18, + "end": 13195.8, + "probability": 0.2965 + }, + { + "start": 13198.7, + "end": 13200.1, + "probability": 0.3935 + }, + { + "start": 13201.18, + "end": 13203.34, + "probability": 0.8568 + }, + { + "start": 13204.36, + "end": 13206.32, + "probability": 0.8261 + }, + { + "start": 13207.1, + "end": 13208.9, + "probability": 0.1847 + }, + { + "start": 13209.44, + "end": 13211.92, + "probability": 0.4575 + }, + { + "start": 13212.58, + "end": 13213.94, + "probability": 0.8875 + }, + { + "start": 13215.14, + "end": 13217.14, + "probability": 0.5849 + }, + { + "start": 13217.86, + "end": 13221.82, + "probability": 0.9595 + }, + { + "start": 13222.56, + "end": 13224.34, + "probability": 0.787 + }, + { + "start": 13225.2, + "end": 13226.82, + "probability": 0.643 + }, + { + "start": 13227.36, + "end": 13230.11, + "probability": 0.7343 + }, + { + "start": 13231.74, + "end": 13233.8, + "probability": 0.0054 + }, + { + "start": 13233.92, + "end": 13234.6, + "probability": 0.3461 + }, + { + "start": 13234.6, + "end": 13237.98, + "probability": 0.8774 + }, + { + "start": 13238.8, + "end": 13240.9, + "probability": 0.9045 + }, + { + "start": 13241.14, + "end": 13243.88, + "probability": 0.7107 + }, + { + "start": 13244.04, + "end": 13246.42, + "probability": 0.8617 + }, + { + "start": 13247.08, + "end": 13247.78, + "probability": 0.6771 + }, + { + "start": 13248.62, + "end": 13249.1, + "probability": 0.7321 + }, + { + "start": 13249.42, + "end": 13250.58, + "probability": 0.1861 + }, + { + "start": 13250.62, + "end": 13252.28, + "probability": 0.9222 + }, + { + "start": 13252.34, + "end": 13253.71, + "probability": 0.8203 + }, + { + "start": 13256.32, + "end": 13256.32, + "probability": 0.0294 + }, + { + "start": 13256.32, + "end": 13256.9, + "probability": 0.5201 + }, + { + "start": 13257.34, + "end": 13258.16, + "probability": 0.9214 + }, + { + "start": 13259.48, + "end": 13259.74, + "probability": 0.9385 + }, + { + "start": 13261.46, + "end": 13262.46, + "probability": 0.9489 + }, + { + "start": 13262.9, + "end": 13265.06, + "probability": 0.8379 + }, + { + "start": 13265.18, + "end": 13268.52, + "probability": 0.696 + }, + { + "start": 13269.58, + "end": 13272.11, + "probability": 0.4958 + }, + { + "start": 13272.42, + "end": 13273.73, + "probability": 0.8247 + }, + { + "start": 13275.24, + "end": 13277.32, + "probability": 0.9804 + }, + { + "start": 13277.96, + "end": 13278.38, + "probability": 0.5358 + }, + { + "start": 13278.56, + "end": 13279.12, + "probability": 0.8243 + }, + { + "start": 13279.52, + "end": 13282.28, + "probability": 0.7292 + }, + { + "start": 13283.14, + "end": 13284.84, + "probability": 0.9959 + }, + { + "start": 13284.88, + "end": 13285.88, + "probability": 0.7157 + }, + { + "start": 13286.98, + "end": 13289.46, + "probability": 0.8066 + }, + { + "start": 13290.98, + "end": 13293.52, + "probability": 0.9287 + }, + { + "start": 13294.16, + "end": 13294.72, + "probability": 0.1838 + }, + { + "start": 13297.71, + "end": 13298.78, + "probability": 0.6141 + }, + { + "start": 13299.82, + "end": 13299.84, + "probability": 0.1246 + }, + { + "start": 13299.84, + "end": 13299.84, + "probability": 0.0239 + }, + { + "start": 13299.84, + "end": 13300.06, + "probability": 0.0297 + }, + { + "start": 13300.92, + "end": 13302.66, + "probability": 0.7271 + }, + { + "start": 13304.18, + "end": 13305.72, + "probability": 0.9821 + }, + { + "start": 13305.84, + "end": 13306.76, + "probability": 0.8615 + }, + { + "start": 13306.86, + "end": 13309.36, + "probability": 0.9811 + }, + { + "start": 13310.9, + "end": 13314.48, + "probability": 0.9307 + }, + { + "start": 13315.11, + "end": 13318.88, + "probability": 0.9907 + }, + { + "start": 13318.96, + "end": 13324.46, + "probability": 0.9495 + }, + { + "start": 13324.46, + "end": 13324.8, + "probability": 0.4873 + }, + { + "start": 13325.98, + "end": 13329.72, + "probability": 0.9067 + }, + { + "start": 13329.84, + "end": 13333.1, + "probability": 0.9979 + }, + { + "start": 13333.4, + "end": 13337.46, + "probability": 0.9586 + }, + { + "start": 13337.64, + "end": 13342.46, + "probability": 0.995 + }, + { + "start": 13342.46, + "end": 13345.26, + "probability": 0.9995 + }, + { + "start": 13345.7, + "end": 13347.02, + "probability": 0.9328 + }, + { + "start": 13347.1, + "end": 13349.58, + "probability": 0.8803 + }, + { + "start": 13349.66, + "end": 13352.16, + "probability": 0.9861 + }, + { + "start": 13353.08, + "end": 13359.3, + "probability": 0.9915 + }, + { + "start": 13359.64, + "end": 13360.72, + "probability": 0.7325 + }, + { + "start": 13361.34, + "end": 13362.5, + "probability": 0.3567 + }, + { + "start": 13363.17, + "end": 13363.58, + "probability": 0.4606 + }, + { + "start": 13364.02, + "end": 13364.92, + "probability": 0.9524 + }, + { + "start": 13365.44, + "end": 13370.16, + "probability": 0.9934 + }, + { + "start": 13370.38, + "end": 13372.4, + "probability": 0.9608 + }, + { + "start": 13373.64, + "end": 13377.02, + "probability": 0.9866 + }, + { + "start": 13377.02, + "end": 13381.32, + "probability": 0.9965 + }, + { + "start": 13382.16, + "end": 13384.52, + "probability": 0.7074 + }, + { + "start": 13384.64, + "end": 13386.98, + "probability": 0.998 + }, + { + "start": 13387.56, + "end": 13389.2, + "probability": 0.8765 + }, + { + "start": 13389.32, + "end": 13392.08, + "probability": 0.9647 + }, + { + "start": 13393.16, + "end": 13394.32, + "probability": 0.0319 + }, + { + "start": 13396.84, + "end": 13398.64, + "probability": 0.1504 + }, + { + "start": 13399.92, + "end": 13404.86, + "probability": 0.0647 + }, + { + "start": 13405.16, + "end": 13405.16, + "probability": 0.143 + }, + { + "start": 13405.16, + "end": 13405.38, + "probability": 0.2068 + }, + { + "start": 13405.4, + "end": 13405.7, + "probability": 0.6289 + }, + { + "start": 13409.22, + "end": 13413.08, + "probability": 0.9885 + }, + { + "start": 13414.48, + "end": 13417.98, + "probability": 0.9644 + }, + { + "start": 13419.56, + "end": 13423.8, + "probability": 0.6296 + }, + { + "start": 13425.12, + "end": 13427.3, + "probability": 0.9634 + }, + { + "start": 13427.48, + "end": 13428.24, + "probability": 0.9907 + }, + { + "start": 13432.86, + "end": 13434.16, + "probability": 0.7238 + }, + { + "start": 13437.38, + "end": 13438.22, + "probability": 0.5655 + }, + { + "start": 13438.58, + "end": 13439.7, + "probability": 0.7493 + }, + { + "start": 13440.0, + "end": 13443.58, + "probability": 0.8861 + }, + { + "start": 13443.76, + "end": 13446.44, + "probability": 0.9214 + }, + { + "start": 13446.46, + "end": 13449.72, + "probability": 0.9944 + }, + { + "start": 13450.24, + "end": 13454.46, + "probability": 0.7882 + }, + { + "start": 13454.8, + "end": 13456.2, + "probability": 0.883 + }, + { + "start": 13457.12, + "end": 13458.44, + "probability": 0.8114 + }, + { + "start": 13460.0, + "end": 13462.54, + "probability": 0.7296 + }, + { + "start": 13463.37, + "end": 13465.48, + "probability": 0.8916 + }, + { + "start": 13466.32, + "end": 13467.44, + "probability": 0.9448 + }, + { + "start": 13468.16, + "end": 13470.86, + "probability": 0.9917 + }, + { + "start": 13471.56, + "end": 13474.22, + "probability": 0.978 + }, + { + "start": 13474.6, + "end": 13475.62, + "probability": 0.6679 + }, + { + "start": 13475.74, + "end": 13476.04, + "probability": 0.7156 + }, + { + "start": 13476.18, + "end": 13476.48, + "probability": 0.7706 + }, + { + "start": 13476.84, + "end": 13478.16, + "probability": 0.9951 + }, + { + "start": 13478.74, + "end": 13481.74, + "probability": 0.9336 + }, + { + "start": 13482.46, + "end": 13483.5, + "probability": 0.8709 + }, + { + "start": 13484.06, + "end": 13486.96, + "probability": 0.9019 + }, + { + "start": 13487.12, + "end": 13488.98, + "probability": 0.939 + }, + { + "start": 13489.44, + "end": 13490.7, + "probability": 0.9967 + }, + { + "start": 13491.76, + "end": 13495.13, + "probability": 0.5519 + }, + { + "start": 13495.5, + "end": 13496.02, + "probability": 0.2722 + }, + { + "start": 13496.04, + "end": 13496.96, + "probability": 0.8244 + }, + { + "start": 13497.48, + "end": 13498.46, + "probability": 0.6963 + }, + { + "start": 13498.58, + "end": 13500.6, + "probability": 0.9933 + }, + { + "start": 13500.98, + "end": 13502.42, + "probability": 0.8398 + }, + { + "start": 13502.98, + "end": 13505.18, + "probability": 0.8471 + }, + { + "start": 13505.78, + "end": 13506.98, + "probability": 0.9807 + }, + { + "start": 13507.14, + "end": 13510.04, + "probability": 0.756 + }, + { + "start": 13510.04, + "end": 13510.8, + "probability": 0.2267 + }, + { + "start": 13511.38, + "end": 13514.64, + "probability": 0.5595 + }, + { + "start": 13514.64, + "end": 13516.98, + "probability": 0.703 + }, + { + "start": 13517.74, + "end": 13518.26, + "probability": 0.417 + }, + { + "start": 13518.44, + "end": 13518.84, + "probability": 0.1865 + }, + { + "start": 13518.92, + "end": 13519.16, + "probability": 0.7286 + }, + { + "start": 13519.28, + "end": 13519.8, + "probability": 0.9546 + }, + { + "start": 13520.52, + "end": 13522.96, + "probability": 0.9817 + }, + { + "start": 13523.38, + "end": 13526.28, + "probability": 0.9843 + }, + { + "start": 13526.92, + "end": 13530.68, + "probability": 0.8763 + }, + { + "start": 13531.42, + "end": 13532.17, + "probability": 0.6865 + }, + { + "start": 13532.72, + "end": 13538.96, + "probability": 0.7632 + }, + { + "start": 13539.04, + "end": 13544.5, + "probability": 0.9549 + }, + { + "start": 13545.88, + "end": 13549.22, + "probability": 0.5641 + }, + { + "start": 13549.28, + "end": 13550.18, + "probability": 0.7759 + }, + { + "start": 13550.38, + "end": 13551.9, + "probability": 0.7722 + }, + { + "start": 13552.36, + "end": 13555.3, + "probability": 0.9173 + }, + { + "start": 13555.48, + "end": 13557.6, + "probability": 0.9622 + }, + { + "start": 13558.12, + "end": 13559.98, + "probability": 0.8662 + }, + { + "start": 13560.68, + "end": 13562.26, + "probability": 0.9819 + }, + { + "start": 13562.66, + "end": 13563.76, + "probability": 0.7735 + }, + { + "start": 13564.06, + "end": 13564.56, + "probability": 0.8526 + }, + { + "start": 13564.78, + "end": 13567.34, + "probability": 0.7126 + }, + { + "start": 13568.04, + "end": 13569.58, + "probability": 0.9399 + }, + { + "start": 13571.3, + "end": 13571.76, + "probability": 0.8773 + }, + { + "start": 13572.16, + "end": 13572.26, + "probability": 0.7163 + }, + { + "start": 13572.83, + "end": 13574.82, + "probability": 0.9857 + }, + { + "start": 13579.24, + "end": 13580.0, + "probability": 0.4974 + }, + { + "start": 13580.58, + "end": 13582.02, + "probability": 0.6766 + }, + { + "start": 13582.7, + "end": 13584.51, + "probability": 0.7595 + }, + { + "start": 13589.74, + "end": 13590.6, + "probability": 0.6892 + }, + { + "start": 13590.84, + "end": 13591.56, + "probability": 0.721 + }, + { + "start": 13591.74, + "end": 13593.32, + "probability": 0.8421 + }, + { + "start": 13593.82, + "end": 13596.24, + "probability": 0.9943 + }, + { + "start": 13597.18, + "end": 13598.82, + "probability": 0.9562 + }, + { + "start": 13598.94, + "end": 13600.6, + "probability": 0.9938 + }, + { + "start": 13600.76, + "end": 13601.78, + "probability": 0.5424 + }, + { + "start": 13602.6, + "end": 13603.8, + "probability": 0.8731 + }, + { + "start": 13604.0, + "end": 13606.39, + "probability": 0.9985 + }, + { + "start": 13607.06, + "end": 13607.5, + "probability": 0.8082 + }, + { + "start": 13607.56, + "end": 13609.37, + "probability": 0.9883 + }, + { + "start": 13610.12, + "end": 13614.9, + "probability": 0.9746 + }, + { + "start": 13615.94, + "end": 13620.96, + "probability": 0.9773 + }, + { + "start": 13621.64, + "end": 13624.92, + "probability": 0.9897 + }, + { + "start": 13625.6, + "end": 13630.24, + "probability": 0.8409 + }, + { + "start": 13631.08, + "end": 13633.96, + "probability": 0.7296 + }, + { + "start": 13634.64, + "end": 13639.66, + "probability": 0.9145 + }, + { + "start": 13639.66, + "end": 13644.82, + "probability": 0.8517 + }, + { + "start": 13645.42, + "end": 13652.75, + "probability": 0.8202 + }, + { + "start": 13652.82, + "end": 13653.51, + "probability": 0.844 + }, + { + "start": 13653.86, + "end": 13654.24, + "probability": 0.6818 + }, + { + "start": 13654.66, + "end": 13657.38, + "probability": 0.9287 + }, + { + "start": 13657.48, + "end": 13658.56, + "probability": 0.7946 + }, + { + "start": 13660.88, + "end": 13662.28, + "probability": 0.7913 + }, + { + "start": 13665.04, + "end": 13668.62, + "probability": 0.5659 + }, + { + "start": 13668.88, + "end": 13669.28, + "probability": 0.4902 + }, + { + "start": 13670.58, + "end": 13672.3, + "probability": 0.8943 + }, + { + "start": 13674.64, + "end": 13676.34, + "probability": 0.597 + }, + { + "start": 13682.7, + "end": 13684.36, + "probability": 0.5392 + }, + { + "start": 13685.32, + "end": 13687.62, + "probability": 0.9848 + }, + { + "start": 13688.54, + "end": 13691.82, + "probability": 0.9691 + }, + { + "start": 13692.88, + "end": 13699.22, + "probability": 0.9814 + }, + { + "start": 13700.7, + "end": 13701.96, + "probability": 0.739 + }, + { + "start": 13703.14, + "end": 13705.2, + "probability": 0.9961 + }, + { + "start": 13706.2, + "end": 13709.8, + "probability": 0.9797 + }, + { + "start": 13711.06, + "end": 13712.38, + "probability": 0.9873 + }, + { + "start": 13713.16, + "end": 13715.12, + "probability": 0.9941 + }, + { + "start": 13715.64, + "end": 13715.82, + "probability": 0.7177 + }, + { + "start": 13716.7, + "end": 13717.94, + "probability": 0.9648 + }, + { + "start": 13718.56, + "end": 13721.52, + "probability": 0.698 + }, + { + "start": 13722.3, + "end": 13723.48, + "probability": 0.5689 + }, + { + "start": 13725.12, + "end": 13728.44, + "probability": 0.873 + }, + { + "start": 13728.96, + "end": 13729.9, + "probability": 0.9325 + }, + { + "start": 13731.06, + "end": 13735.04, + "probability": 0.9543 + }, + { + "start": 13735.72, + "end": 13741.04, + "probability": 0.9725 + }, + { + "start": 13741.86, + "end": 13744.88, + "probability": 0.9812 + }, + { + "start": 13745.4, + "end": 13750.5, + "probability": 0.9282 + }, + { + "start": 13751.44, + "end": 13753.4, + "probability": 0.9449 + }, + { + "start": 13755.28, + "end": 13755.28, + "probability": 0.1454 + }, + { + "start": 13755.28, + "end": 13755.52, + "probability": 0.6768 + }, + { + "start": 13755.62, + "end": 13756.54, + "probability": 0.7119 + }, + { + "start": 13757.04, + "end": 13758.31, + "probability": 0.9551 + }, + { + "start": 13758.56, + "end": 13759.81, + "probability": 0.7583 + }, + { + "start": 13760.46, + "end": 13761.22, + "probability": 0.9829 + }, + { + "start": 13762.02, + "end": 13764.42, + "probability": 0.944 + }, + { + "start": 13765.16, + "end": 13768.4, + "probability": 0.9358 + }, + { + "start": 13768.48, + "end": 13768.82, + "probability": 0.7894 + }, + { + "start": 13769.04, + "end": 13770.58, + "probability": 0.9612 + }, + { + "start": 13771.44, + "end": 13773.04, + "probability": 0.9827 + }, + { + "start": 13773.06, + "end": 13773.58, + "probability": 0.9666 + }, + { + "start": 13774.28, + "end": 13774.68, + "probability": 0.8196 + }, + { + "start": 13774.82, + "end": 13776.66, + "probability": 0.9332 + }, + { + "start": 13777.12, + "end": 13778.34, + "probability": 0.8242 + }, + { + "start": 13778.36, + "end": 13779.28, + "probability": 0.9537 + }, + { + "start": 13780.04, + "end": 13783.07, + "probability": 0.7942 + }, + { + "start": 13783.48, + "end": 13788.94, + "probability": 0.7818 + }, + { + "start": 13789.12, + "end": 13790.78, + "probability": 0.6263 + }, + { + "start": 13790.82, + "end": 13792.12, + "probability": 0.8746 + }, + { + "start": 13792.22, + "end": 13792.66, + "probability": 0.7465 + }, + { + "start": 13792.78, + "end": 13793.52, + "probability": 0.2839 + }, + { + "start": 13793.84, + "end": 13794.86, + "probability": 0.5288 + }, + { + "start": 13799.05, + "end": 13799.64, + "probability": 0.0468 + }, + { + "start": 13804.06, + "end": 13805.84, + "probability": 0.0281 + }, + { + "start": 13806.44, + "end": 13807.56, + "probability": 0.0866 + }, + { + "start": 13807.8, + "end": 13808.18, + "probability": 0.7704 + }, + { + "start": 13808.26, + "end": 13810.28, + "probability": 0.7389 + }, + { + "start": 13811.08, + "end": 13812.28, + "probability": 0.112 + }, + { + "start": 13812.98, + "end": 13814.14, + "probability": 0.5787 + }, + { + "start": 13814.32, + "end": 13815.08, + "probability": 0.5718 + }, + { + "start": 13815.72, + "end": 13818.76, + "probability": 0.9465 + }, + { + "start": 13819.5, + "end": 13823.14, + "probability": 0.9396 + }, + { + "start": 13823.8, + "end": 13824.88, + "probability": 0.8448 + }, + { + "start": 13826.72, + "end": 13830.44, + "probability": 0.8305 + }, + { + "start": 13831.16, + "end": 13834.06, + "probability": 0.9751 + }, + { + "start": 13834.68, + "end": 13836.8, + "probability": 0.9949 + }, + { + "start": 13837.46, + "end": 13838.36, + "probability": 0.6321 + }, + { + "start": 13838.5, + "end": 13843.76, + "probability": 0.843 + }, + { + "start": 13844.2, + "end": 13845.78, + "probability": 0.9412 + }, + { + "start": 13847.72, + "end": 13847.72, + "probability": 0.2256 + }, + { + "start": 13848.36, + "end": 13851.12, + "probability": 0.1666 + }, + { + "start": 13853.9, + "end": 13854.58, + "probability": 0.8268 + }, + { + "start": 13855.22, + "end": 13857.5, + "probability": 0.9043 + }, + { + "start": 13858.98, + "end": 13862.42, + "probability": 0.7606 + }, + { + "start": 13863.3, + "end": 13866.28, + "probability": 0.4995 + }, + { + "start": 13866.38, + "end": 13867.88, + "probability": 0.5765 + }, + { + "start": 13868.12, + "end": 13868.56, + "probability": 0.8059 + }, + { + "start": 13869.5, + "end": 13870.24, + "probability": 0.931 + }, + { + "start": 13871.04, + "end": 13873.16, + "probability": 0.9871 + }, + { + "start": 13873.26, + "end": 13874.84, + "probability": 0.0976 + }, + { + "start": 13875.46, + "end": 13877.34, + "probability": 0.8579 + }, + { + "start": 13877.48, + "end": 13878.54, + "probability": 0.9897 + }, + { + "start": 13879.48, + "end": 13881.68, + "probability": 0.9741 + }, + { + "start": 13882.66, + "end": 13883.26, + "probability": 0.7949 + }, + { + "start": 13883.44, + "end": 13886.78, + "probability": 0.9824 + }, + { + "start": 13887.08, + "end": 13887.9, + "probability": 0.8217 + }, + { + "start": 13888.08, + "end": 13889.6, + "probability": 0.8026 + }, + { + "start": 13890.22, + "end": 13891.54, + "probability": 0.9784 + }, + { + "start": 13891.68, + "end": 13893.88, + "probability": 0.7867 + }, + { + "start": 13894.06, + "end": 13895.32, + "probability": 0.9882 + }, + { + "start": 13896.02, + "end": 13900.16, + "probability": 0.9591 + }, + { + "start": 13901.26, + "end": 13904.04, + "probability": 0.6832 + }, + { + "start": 13905.1, + "end": 13907.12, + "probability": 0.638 + }, + { + "start": 13907.22, + "end": 13908.92, + "probability": 0.9658 + }, + { + "start": 13909.82, + "end": 13912.02, + "probability": 0.9695 + }, + { + "start": 13913.12, + "end": 13914.32, + "probability": 0.6511 + }, + { + "start": 13914.46, + "end": 13915.82, + "probability": 0.48 + }, + { + "start": 13915.94, + "end": 13917.86, + "probability": 0.966 + }, + { + "start": 13917.98, + "end": 13918.38, + "probability": 0.7747 + }, + { + "start": 13919.14, + "end": 13920.14, + "probability": 0.6339 + }, + { + "start": 13921.76, + "end": 13923.58, + "probability": 0.8975 + }, + { + "start": 13924.74, + "end": 13925.12, + "probability": 0.7192 + }, + { + "start": 13926.2, + "end": 13928.82, + "probability": 0.9913 + }, + { + "start": 13928.82, + "end": 13932.24, + "probability": 0.9902 + }, + { + "start": 13933.8, + "end": 13937.36, + "probability": 0.9829 + }, + { + "start": 13937.36, + "end": 13941.82, + "probability": 0.9842 + }, + { + "start": 13942.54, + "end": 13947.14, + "probability": 0.9928 + }, + { + "start": 13947.58, + "end": 13949.66, + "probability": 0.9907 + }, + { + "start": 13949.66, + "end": 13952.6, + "probability": 0.959 + }, + { + "start": 13952.66, + "end": 13956.84, + "probability": 0.9506 + }, + { + "start": 13956.88, + "end": 13958.34, + "probability": 0.6389 + }, + { + "start": 13958.44, + "end": 13958.82, + "probability": 0.8746 + }, + { + "start": 13959.02, + "end": 13963.74, + "probability": 0.9731 + }, + { + "start": 13964.32, + "end": 13966.18, + "probability": 0.8819 + }, + { + "start": 13966.9, + "end": 13968.66, + "probability": 0.9766 + }, + { + "start": 13968.88, + "end": 13972.32, + "probability": 0.6963 + }, + { + "start": 13972.48, + "end": 13974.5, + "probability": 0.8997 + }, + { + "start": 13974.6, + "end": 13975.34, + "probability": 0.5758 + }, + { + "start": 13975.46, + "end": 13977.05, + "probability": 0.9902 + }, + { + "start": 13977.94, + "end": 13979.26, + "probability": 0.9916 + }, + { + "start": 13979.78, + "end": 13980.7, + "probability": 0.943 + }, + { + "start": 13980.92, + "end": 13982.9, + "probability": 0.9106 + }, + { + "start": 13983.68, + "end": 13985.59, + "probability": 0.9377 + }, + { + "start": 13985.9, + "end": 13987.96, + "probability": 0.2262 + }, + { + "start": 13988.8, + "end": 13990.12, + "probability": 0.8311 + }, + { + "start": 13990.36, + "end": 13991.52, + "probability": 0.3269 + }, + { + "start": 13991.64, + "end": 13992.78, + "probability": 0.9932 + }, + { + "start": 13992.82, + "end": 13995.28, + "probability": 0.5992 + }, + { + "start": 13995.48, + "end": 13996.93, + "probability": 0.9448 + }, + { + "start": 13997.82, + "end": 13999.84, + "probability": 0.9958 + }, + { + "start": 13999.84, + "end": 14002.58, + "probability": 0.9609 + }, + { + "start": 14003.1, + "end": 14003.64, + "probability": 0.7529 + }, + { + "start": 14004.72, + "end": 14005.84, + "probability": 0.9751 + }, + { + "start": 14005.94, + "end": 14009.27, + "probability": 0.9805 + }, + { + "start": 14010.62, + "end": 14011.82, + "probability": 0.9443 + }, + { + "start": 14012.14, + "end": 14014.8, + "probability": 0.9844 + }, + { + "start": 14015.64, + "end": 14018.8, + "probability": 0.9854 + }, + { + "start": 14019.02, + "end": 14022.14, + "probability": 0.9976 + }, + { + "start": 14022.76, + "end": 14024.32, + "probability": 0.9809 + }, + { + "start": 14025.76, + "end": 14026.08, + "probability": 0.6134 + }, + { + "start": 14026.2, + "end": 14028.16, + "probability": 0.9294 + }, + { + "start": 14028.46, + "end": 14030.32, + "probability": 0.9965 + }, + { + "start": 14030.86, + "end": 14033.2, + "probability": 0.7881 + }, + { + "start": 14034.2, + "end": 14034.62, + "probability": 0.7453 + }, + { + "start": 14034.7, + "end": 14036.82, + "probability": 0.9659 + }, + { + "start": 14036.94, + "end": 14037.66, + "probability": 0.6385 + }, + { + "start": 14038.02, + "end": 14039.96, + "probability": 0.9949 + }, + { + "start": 14040.5, + "end": 14043.02, + "probability": 0.5102 + }, + { + "start": 14043.88, + "end": 14045.74, + "probability": 0.8892 + }, + { + "start": 14045.96, + "end": 14048.08, + "probability": 0.891 + }, + { + "start": 14048.26, + "end": 14049.24, + "probability": 0.5045 + }, + { + "start": 14050.06, + "end": 14051.52, + "probability": 0.9612 + }, + { + "start": 14051.72, + "end": 14052.44, + "probability": 0.8042 + }, + { + "start": 14052.66, + "end": 14054.26, + "probability": 0.9681 + }, + { + "start": 14054.94, + "end": 14058.7, + "probability": 0.966 + }, + { + "start": 14058.78, + "end": 14059.32, + "probability": 0.8038 + }, + { + "start": 14059.42, + "end": 14059.96, + "probability": 0.9766 + }, + { + "start": 14059.98, + "end": 14060.62, + "probability": 0.9918 + }, + { + "start": 14060.78, + "end": 14061.56, + "probability": 0.9423 + }, + { + "start": 14062.02, + "end": 14063.82, + "probability": 0.9811 + }, + { + "start": 14063.86, + "end": 14065.38, + "probability": 0.9952 + }, + { + "start": 14066.22, + "end": 14067.08, + "probability": 0.7168 + }, + { + "start": 14067.2, + "end": 14067.62, + "probability": 0.7066 + }, + { + "start": 14068.62, + "end": 14068.92, + "probability": 0.3728 + }, + { + "start": 14068.92, + "end": 14069.26, + "probability": 0.6585 + }, + { + "start": 14069.32, + "end": 14072.62, + "probability": 0.911 + }, + { + "start": 14073.08, + "end": 14074.64, + "probability": 0.4138 + }, + { + "start": 14074.64, + "end": 14075.8, + "probability": 0.0619 + }, + { + "start": 14076.2, + "end": 14077.36, + "probability": 0.3763 + }, + { + "start": 14077.4, + "end": 14077.92, + "probability": 0.4277 + }, + { + "start": 14078.14, + "end": 14079.59, + "probability": 0.7671 + }, + { + "start": 14081.0, + "end": 14084.32, + "probability": 0.9034 + }, + { + "start": 14084.32, + "end": 14087.72, + "probability": 0.4713 + }, + { + "start": 14087.76, + "end": 14088.9, + "probability": 0.2745 + }, + { + "start": 14089.84, + "end": 14092.38, + "probability": 0.0641 + }, + { + "start": 14092.6, + "end": 14092.62, + "probability": 0.0353 + }, + { + "start": 14092.7, + "end": 14092.72, + "probability": 0.3286 + }, + { + "start": 14092.72, + "end": 14095.14, + "probability": 0.2032 + }, + { + "start": 14096.56, + "end": 14096.68, + "probability": 0.0122 + }, + { + "start": 14096.68, + "end": 14097.32, + "probability": 0.5159 + }, + { + "start": 14100.16, + "end": 14103.54, + "probability": 0.9729 + }, + { + "start": 14103.64, + "end": 14105.56, + "probability": 0.7557 + }, + { + "start": 14106.0, + "end": 14107.46, + "probability": 0.7894 + }, + { + "start": 14108.5, + "end": 14110.12, + "probability": 0.9408 + }, + { + "start": 14110.24, + "end": 14113.74, + "probability": 0.9879 + }, + { + "start": 14114.6, + "end": 14119.2, + "probability": 0.948 + }, + { + "start": 14119.36, + "end": 14123.88, + "probability": 0.7518 + }, + { + "start": 14123.88, + "end": 14129.64, + "probability": 0.7866 + }, + { + "start": 14130.14, + "end": 14131.34, + "probability": 0.7001 + }, + { + "start": 14134.08, + "end": 14136.0, + "probability": 0.8264 + }, + { + "start": 14138.28, + "end": 14140.94, + "probability": 0.9808 + }, + { + "start": 14140.94, + "end": 14143.5, + "probability": 0.4172 + }, + { + "start": 14143.78, + "end": 14145.24, + "probability": 0.1703 + }, + { + "start": 14146.22, + "end": 14152.9, + "probability": 0.9585 + }, + { + "start": 14153.44, + "end": 14158.36, + "probability": 0.9984 + }, + { + "start": 14159.02, + "end": 14164.14, + "probability": 0.9791 + }, + { + "start": 14164.18, + "end": 14165.27, + "probability": 0.9852 + }, + { + "start": 14165.9, + "end": 14166.94, + "probability": 0.7223 + }, + { + "start": 14168.2, + "end": 14168.76, + "probability": 0.5736 + }, + { + "start": 14168.82, + "end": 14169.58, + "probability": 0.8724 + }, + { + "start": 14169.68, + "end": 14171.66, + "probability": 0.9395 + }, + { + "start": 14172.16, + "end": 14173.66, + "probability": 0.966 + }, + { + "start": 14175.39, + "end": 14178.0, + "probability": 0.8226 + }, + { + "start": 14178.48, + "end": 14179.49, + "probability": 0.9814 + }, + { + "start": 14180.4, + "end": 14181.47, + "probability": 0.9958 + }, + { + "start": 14181.78, + "end": 14184.5, + "probability": 0.9882 + }, + { + "start": 14184.58, + "end": 14187.92, + "probability": 0.9158 + }, + { + "start": 14188.02, + "end": 14188.88, + "probability": 0.8944 + }, + { + "start": 14189.0, + "end": 14191.29, + "probability": 0.9187 + }, + { + "start": 14191.36, + "end": 14192.44, + "probability": 0.7754 + }, + { + "start": 14192.86, + "end": 14193.34, + "probability": 0.5801 + }, + { + "start": 14193.8, + "end": 14194.32, + "probability": 0.9439 + }, + { + "start": 14194.38, + "end": 14195.89, + "probability": 0.9849 + }, + { + "start": 14196.3, + "end": 14197.38, + "probability": 0.9751 + }, + { + "start": 14197.66, + "end": 14200.26, + "probability": 0.9777 + }, + { + "start": 14200.7, + "end": 14202.46, + "probability": 0.9747 + }, + { + "start": 14202.78, + "end": 14203.45, + "probability": 0.9868 + }, + { + "start": 14204.26, + "end": 14207.3, + "probability": 0.999 + }, + { + "start": 14207.36, + "end": 14208.98, + "probability": 0.9871 + }, + { + "start": 14209.82, + "end": 14211.06, + "probability": 0.9256 + }, + { + "start": 14211.56, + "end": 14213.38, + "probability": 0.9591 + }, + { + "start": 14213.4, + "end": 14214.2, + "probability": 0.8 + }, + { + "start": 14214.76, + "end": 14216.32, + "probability": 0.4852 + }, + { + "start": 14216.98, + "end": 14219.22, + "probability": 0.9818 + }, + { + "start": 14219.4, + "end": 14221.62, + "probability": 0.979 + }, + { + "start": 14222.48, + "end": 14225.8, + "probability": 0.9504 + }, + { + "start": 14226.98, + "end": 14228.94, + "probability": 0.9648 + }, + { + "start": 14229.9, + "end": 14231.9, + "probability": 0.937 + }, + { + "start": 14232.7, + "end": 14233.94, + "probability": 0.9248 + }, + { + "start": 14234.98, + "end": 14237.18, + "probability": 0.978 + }, + { + "start": 14237.74, + "end": 14238.78, + "probability": 0.9908 + }, + { + "start": 14239.3, + "end": 14239.64, + "probability": 0.9302 + }, + { + "start": 14239.76, + "end": 14240.28, + "probability": 0.8271 + }, + { + "start": 14240.34, + "end": 14241.36, + "probability": 0.989 + }, + { + "start": 14241.52, + "end": 14242.4, + "probability": 0.9421 + }, + { + "start": 14243.24, + "end": 14245.14, + "probability": 0.993 + }, + { + "start": 14245.66, + "end": 14247.3, + "probability": 0.9559 + }, + { + "start": 14247.4, + "end": 14250.58, + "probability": 0.6637 + }, + { + "start": 14250.64, + "end": 14252.24, + "probability": 0.9456 + }, + { + "start": 14252.4, + "end": 14254.14, + "probability": 0.9913 + }, + { + "start": 14254.8, + "end": 14255.32, + "probability": 0.6816 + }, + { + "start": 14255.42, + "end": 14257.96, + "probability": 0.9573 + }, + { + "start": 14257.96, + "end": 14260.88, + "probability": 0.9141 + }, + { + "start": 14262.52, + "end": 14263.2, + "probability": 0.5397 + }, + { + "start": 14263.28, + "end": 14265.9, + "probability": 0.6622 + }, + { + "start": 14266.12, + "end": 14269.14, + "probability": 0.8845 + }, + { + "start": 14269.96, + "end": 14272.98, + "probability": 0.9461 + }, + { + "start": 14273.54, + "end": 14277.64, + "probability": 0.9066 + }, + { + "start": 14277.82, + "end": 14278.04, + "probability": 0.407 + }, + { + "start": 14278.14, + "end": 14280.72, + "probability": 0.8992 + }, + { + "start": 14281.28, + "end": 14282.46, + "probability": 0.9421 + }, + { + "start": 14282.54, + "end": 14285.2, + "probability": 0.9365 + }, + { + "start": 14285.2, + "end": 14286.52, + "probability": 0.6951 + }, + { + "start": 14286.84, + "end": 14287.71, + "probability": 0.8229 + }, + { + "start": 14288.82, + "end": 14291.54, + "probability": 0.7913 + }, + { + "start": 14291.72, + "end": 14292.77, + "probability": 0.9785 + }, + { + "start": 14293.24, + "end": 14293.9, + "probability": 0.8983 + }, + { + "start": 14293.98, + "end": 14295.0, + "probability": 0.8247 + }, + { + "start": 14295.56, + "end": 14296.46, + "probability": 0.9218 + }, + { + "start": 14296.62, + "end": 14297.28, + "probability": 0.9727 + }, + { + "start": 14297.7, + "end": 14298.58, + "probability": 0.6756 + }, + { + "start": 14298.68, + "end": 14299.26, + "probability": 0.9877 + }, + { + "start": 14299.42, + "end": 14300.59, + "probability": 0.9932 + }, + { + "start": 14301.28, + "end": 14303.16, + "probability": 0.9649 + }, + { + "start": 14303.56, + "end": 14306.56, + "probability": 0.9472 + }, + { + "start": 14306.84, + "end": 14308.34, + "probability": 0.9296 + }, + { + "start": 14309.52, + "end": 14311.86, + "probability": 0.9946 + }, + { + "start": 14311.94, + "end": 14313.14, + "probability": 0.9561 + }, + { + "start": 14314.06, + "end": 14319.38, + "probability": 0.5167 + }, + { + "start": 14320.12, + "end": 14322.61, + "probability": 0.704 + }, + { + "start": 14324.02, + "end": 14325.26, + "probability": 0.724 + }, + { + "start": 14325.34, + "end": 14328.82, + "probability": 0.927 + }, + { + "start": 14329.88, + "end": 14331.78, + "probability": 0.89 + }, + { + "start": 14331.8, + "end": 14333.58, + "probability": 0.8254 + }, + { + "start": 14334.1, + "end": 14336.88, + "probability": 0.9219 + }, + { + "start": 14337.04, + "end": 14340.1, + "probability": 0.8149 + }, + { + "start": 14341.62, + "end": 14346.42, + "probability": 0.9264 + }, + { + "start": 14346.88, + "end": 14347.8, + "probability": 0.7794 + }, + { + "start": 14348.16, + "end": 14348.82, + "probability": 0.9816 + }, + { + "start": 14349.14, + "end": 14351.33, + "probability": 0.9701 + }, + { + "start": 14352.7, + "end": 14353.55, + "probability": 0.9666 + }, + { + "start": 14354.92, + "end": 14357.3, + "probability": 0.9375 + }, + { + "start": 14357.96, + "end": 14359.6, + "probability": 0.9881 + }, + { + "start": 14361.76, + "end": 14364.28, + "probability": 0.8276 + }, + { + "start": 14364.52, + "end": 14365.96, + "probability": 0.8885 + }, + { + "start": 14366.06, + "end": 14367.62, + "probability": 0.3209 + }, + { + "start": 14367.78, + "end": 14369.12, + "probability": 0.6601 + }, + { + "start": 14369.76, + "end": 14372.06, + "probability": 0.683 + }, + { + "start": 14372.12, + "end": 14375.1, + "probability": 0.9375 + }, + { + "start": 14375.18, + "end": 14377.34, + "probability": 0.8346 + }, + { + "start": 14377.44, + "end": 14381.6, + "probability": 0.4208 + }, + { + "start": 14381.6, + "end": 14383.92, + "probability": 0.792 + }, + { + "start": 14384.52, + "end": 14385.56, + "probability": 0.6193 + }, + { + "start": 14385.6, + "end": 14388.98, + "probability": 0.8708 + }, + { + "start": 14389.76, + "end": 14394.04, + "probability": 0.8661 + }, + { + "start": 14395.42, + "end": 14398.86, + "probability": 0.3471 + }, + { + "start": 14398.98, + "end": 14399.88, + "probability": 0.645 + }, + { + "start": 14400.02, + "end": 14401.42, + "probability": 0.7767 + }, + { + "start": 14402.4, + "end": 14404.04, + "probability": 0.9817 + }, + { + "start": 14405.02, + "end": 14407.86, + "probability": 0.5983 + }, + { + "start": 14407.96, + "end": 14410.18, + "probability": 0.938 + }, + { + "start": 14410.6, + "end": 14411.72, + "probability": 0.8728 + }, + { + "start": 14412.86, + "end": 14415.14, + "probability": 0.5349 + }, + { + "start": 14415.48, + "end": 14416.9, + "probability": 0.7635 + }, + { + "start": 14417.08, + "end": 14419.38, + "probability": 0.8846 + }, + { + "start": 14419.52, + "end": 14420.3, + "probability": 0.7717 + }, + { + "start": 14420.82, + "end": 14421.14, + "probability": 0.8819 + }, + { + "start": 14421.2, + "end": 14423.38, + "probability": 0.8646 + }, + { + "start": 14423.48, + "end": 14423.86, + "probability": 0.8562 + }, + { + "start": 14424.66, + "end": 14428.2, + "probability": 0.7351 + }, + { + "start": 14428.42, + "end": 14431.54, + "probability": 0.9833 + }, + { + "start": 14432.42, + "end": 14434.44, + "probability": 0.75 + }, + { + "start": 14435.18, + "end": 14436.94, + "probability": 0.6438 + }, + { + "start": 14436.94, + "end": 14438.18, + "probability": 0.2186 + }, + { + "start": 14438.26, + "end": 14440.9, + "probability": 0.5986 + }, + { + "start": 14441.24, + "end": 14441.44, + "probability": 0.0754 + }, + { + "start": 14461.86, + "end": 14462.5, + "probability": 0.1789 + }, + { + "start": 14464.35, + "end": 14468.52, + "probability": 0.0095 + }, + { + "start": 14468.52, + "end": 14469.37, + "probability": 0.0177 + }, + { + "start": 14475.68, + "end": 14479.91, + "probability": 0.214 + }, + { + "start": 14480.48, + "end": 14482.52, + "probability": 0.0092 + }, + { + "start": 14485.68, + "end": 14486.03, + "probability": 0.0392 + }, + { + "start": 14488.77, + "end": 14489.4, + "probability": 0.0791 + }, + { + "start": 14490.46, + "end": 14492.12, + "probability": 0.0784 + }, + { + "start": 14493.22, + "end": 14495.7, + "probability": 0.8023 + }, + { + "start": 14497.37, + "end": 14498.8, + "probability": 0.026 + }, + { + "start": 14498.82, + "end": 14500.06, + "probability": 0.4314 + }, + { + "start": 14500.54, + "end": 14501.94, + "probability": 0.7811 + }, + { + "start": 14502.8, + "end": 14508.54, + "probability": 0.1003 + }, + { + "start": 14515.43, + "end": 14516.92, + "probability": 0.0349 + }, + { + "start": 14516.92, + "end": 14517.52, + "probability": 0.0298 + }, + { + "start": 14517.88, + "end": 14520.02, + "probability": 0.1506 + }, + { + "start": 14520.02, + "end": 14520.5, + "probability": 0.1281 + }, + { + "start": 14520.5, + "end": 14520.94, + "probability": 0.0326 + }, + { + "start": 14520.94, + "end": 14520.94, + "probability": 0.0397 + }, + { + "start": 14525.4, + "end": 14526.24, + "probability": 0.0069 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14555.0, + "end": 14555.0, + "probability": 0.0 + }, + { + "start": 14559.84, + "end": 14563.74, + "probability": 0.8741 + }, + { + "start": 14564.28, + "end": 14566.98, + "probability": 0.9926 + }, + { + "start": 14567.86, + "end": 14571.22, + "probability": 0.8561 + }, + { + "start": 14572.2, + "end": 14579.86, + "probability": 0.9933 + }, + { + "start": 14579.86, + "end": 14584.9, + "probability": 0.9995 + }, + { + "start": 14585.76, + "end": 14587.16, + "probability": 0.979 + }, + { + "start": 14587.82, + "end": 14592.62, + "probability": 0.9977 + }, + { + "start": 14592.62, + "end": 14599.0, + "probability": 0.8666 + }, + { + "start": 14600.46, + "end": 14605.46, + "probability": 0.9639 + }, + { + "start": 14606.66, + "end": 14609.86, + "probability": 0.741 + }, + { + "start": 14610.54, + "end": 14613.5, + "probability": 0.97 + }, + { + "start": 14613.5, + "end": 14617.58, + "probability": 0.9636 + }, + { + "start": 14618.84, + "end": 14623.8, + "probability": 0.9952 + }, + { + "start": 14624.4, + "end": 14629.22, + "probability": 0.9993 + }, + { + "start": 14629.7, + "end": 14634.38, + "probability": 0.9922 + }, + { + "start": 14635.24, + "end": 14636.06, + "probability": 0.9707 + }, + { + "start": 14636.84, + "end": 14640.5, + "probability": 0.9935 + }, + { + "start": 14641.28, + "end": 14644.9, + "probability": 0.9058 + }, + { + "start": 14644.9, + "end": 14648.36, + "probability": 0.9987 + }, + { + "start": 14648.72, + "end": 14651.76, + "probability": 0.9869 + }, + { + "start": 14652.72, + "end": 14656.34, + "probability": 0.9937 + }, + { + "start": 14657.38, + "end": 14660.44, + "probability": 0.7576 + }, + { + "start": 14661.68, + "end": 14663.12, + "probability": 0.8322 + }, + { + "start": 14663.94, + "end": 14664.36, + "probability": 0.6548 + }, + { + "start": 14665.08, + "end": 14665.68, + "probability": 0.9004 + }, + { + "start": 14666.58, + "end": 14670.56, + "probability": 0.9727 + }, + { + "start": 14670.94, + "end": 14671.72, + "probability": 0.5014 + }, + { + "start": 14672.16, + "end": 14674.46, + "probability": 0.9751 + }, + { + "start": 14675.0, + "end": 14675.22, + "probability": 0.9574 + }, + { + "start": 14676.08, + "end": 14677.84, + "probability": 0.4549 + }, + { + "start": 14678.4, + "end": 14678.6, + "probability": 0.8385 + }, + { + "start": 14680.08, + "end": 14681.98, + "probability": 0.6869 + }, + { + "start": 14682.48, + "end": 14683.46, + "probability": 0.2478 + }, + { + "start": 14683.82, + "end": 14684.02, + "probability": 0.7874 + }, + { + "start": 14685.22, + "end": 14687.24, + "probability": 0.948 + }, + { + "start": 14689.26, + "end": 14690.92, + "probability": 0.7795 + }, + { + "start": 14693.24, + "end": 14694.76, + "probability": 0.899 + }, + { + "start": 14695.36, + "end": 14699.7, + "probability": 0.9819 + }, + { + "start": 14700.28, + "end": 14704.92, + "probability": 0.9954 + }, + { + "start": 14704.92, + "end": 14711.9, + "probability": 0.9841 + }, + { + "start": 14712.64, + "end": 14713.76, + "probability": 0.6158 + }, + { + "start": 14714.38, + "end": 14715.56, + "probability": 0.9771 + }, + { + "start": 14716.28, + "end": 14717.06, + "probability": 0.6249 + }, + { + "start": 14717.44, + "end": 14720.14, + "probability": 0.9301 + }, + { + "start": 14720.56, + "end": 14721.4, + "probability": 0.8349 + }, + { + "start": 14721.5, + "end": 14721.86, + "probability": 0.3444 + }, + { + "start": 14721.86, + "end": 14722.38, + "probability": 0.6956 + }, + { + "start": 14722.82, + "end": 14724.04, + "probability": 0.9771 + }, + { + "start": 14724.04, + "end": 14724.66, + "probability": 0.4798 + }, + { + "start": 14725.24, + "end": 14727.52, + "probability": 0.9578 + }, + { + "start": 14727.62, + "end": 14729.78, + "probability": 0.9856 + }, + { + "start": 14729.84, + "end": 14732.4, + "probability": 0.9836 + }, + { + "start": 14732.4, + "end": 14736.34, + "probability": 0.9311 + }, + { + "start": 14736.92, + "end": 14741.16, + "probability": 0.9951 + }, + { + "start": 14741.52, + "end": 14744.18, + "probability": 0.999 + }, + { + "start": 14744.82, + "end": 14745.94, + "probability": 0.0214 + }, + { + "start": 14746.02, + "end": 14747.7, + "probability": 0.9928 + }, + { + "start": 14748.62, + "end": 14749.08, + "probability": 0.797 + }, + { + "start": 14751.1, + "end": 14753.06, + "probability": 0.9676 + }, + { + "start": 14753.3, + "end": 14753.56, + "probability": 0.79 + }, + { + "start": 14753.62, + "end": 14754.92, + "probability": 0.8495 + }, + { + "start": 14755.0, + "end": 14755.66, + "probability": 0.7492 + }, + { + "start": 14756.22, + "end": 14760.48, + "probability": 0.942 + }, + { + "start": 14761.5, + "end": 14762.0, + "probability": 0.4268 + }, + { + "start": 14762.62, + "end": 14764.94, + "probability": 0.9721 + }, + { + "start": 14764.94, + "end": 14768.02, + "probability": 0.9823 + }, + { + "start": 14768.6, + "end": 14772.36, + "probability": 0.8125 + }, + { + "start": 14772.36, + "end": 14776.72, + "probability": 0.7746 + }, + { + "start": 14777.32, + "end": 14779.98, + "probability": 0.9686 + }, + { + "start": 14781.33, + "end": 14782.38, + "probability": 0.5566 + }, + { + "start": 14783.34, + "end": 14784.62, + "probability": 0.9467 + }, + { + "start": 14785.22, + "end": 14787.52, + "probability": 0.9938 + }, + { + "start": 14787.68, + "end": 14790.34, + "probability": 0.9882 + }, + { + "start": 14791.12, + "end": 14793.28, + "probability": 0.9304 + }, + { + "start": 14793.94, + "end": 14795.94, + "probability": 0.9877 + }, + { + "start": 14796.62, + "end": 14799.68, + "probability": 0.9013 + }, + { + "start": 14800.56, + "end": 14802.58, + "probability": 0.4484 + }, + { + "start": 14803.72, + "end": 14804.26, + "probability": 0.5805 + }, + { + "start": 14804.86, + "end": 14807.24, + "probability": 0.9888 + }, + { + "start": 14807.78, + "end": 14809.54, + "probability": 0.7271 + }, + { + "start": 14809.96, + "end": 14810.86, + "probability": 0.5039 + }, + { + "start": 14811.4, + "end": 14816.4, + "probability": 0.8688 + }, + { + "start": 14816.64, + "end": 14816.8, + "probability": 0.6705 + }, + { + "start": 14816.9, + "end": 14817.64, + "probability": 0.6993 + }, + { + "start": 14818.39, + "end": 14819.46, + "probability": 0.5124 + }, + { + "start": 14819.46, + "end": 14819.46, + "probability": 0.283 + }, + { + "start": 14819.54, + "end": 14820.04, + "probability": 0.5781 + }, + { + "start": 14820.41, + "end": 14822.44, + "probability": 0.8327 + }, + { + "start": 14823.06, + "end": 14823.28, + "probability": 0.137 + }, + { + "start": 14823.96, + "end": 14825.72, + "probability": 0.6274 + }, + { + "start": 14825.92, + "end": 14825.96, + "probability": 0.4015 + }, + { + "start": 14826.04, + "end": 14831.22, + "probability": 0.7773 + }, + { + "start": 14833.62, + "end": 14836.52, + "probability": 0.7755 + }, + { + "start": 14837.34, + "end": 14841.28, + "probability": 0.8975 + }, + { + "start": 14842.56, + "end": 14842.98, + "probability": 0.8971 + }, + { + "start": 14844.96, + "end": 14848.3, + "probability": 0.9045 + }, + { + "start": 14849.1, + "end": 14853.25, + "probability": 0.9868 + }, + { + "start": 14854.74, + "end": 14857.22, + "probability": 0.9688 + }, + { + "start": 14857.88, + "end": 14860.6, + "probability": 0.9979 + }, + { + "start": 14861.14, + "end": 14863.28, + "probability": 0.9738 + }, + { + "start": 14864.34, + "end": 14865.82, + "probability": 0.6475 + }, + { + "start": 14866.52, + "end": 14868.64, + "probability": 0.9956 + }, + { + "start": 14868.92, + "end": 14870.88, + "probability": 0.7054 + }, + { + "start": 14871.42, + "end": 14872.28, + "probability": 0.7874 + }, + { + "start": 14873.24, + "end": 14874.6, + "probability": 0.8982 + }, + { + "start": 14875.9, + "end": 14877.85, + "probability": 0.9717 + }, + { + "start": 14878.48, + "end": 14879.78, + "probability": 0.9844 + }, + { + "start": 14880.52, + "end": 14882.66, + "probability": 0.953 + }, + { + "start": 14883.5, + "end": 14885.78, + "probability": 0.8429 + }, + { + "start": 14886.58, + "end": 14890.82, + "probability": 0.9453 + }, + { + "start": 14891.6, + "end": 14892.38, + "probability": 0.5709 + }, + { + "start": 14892.52, + "end": 14893.7, + "probability": 0.6639 + }, + { + "start": 14893.8, + "end": 14895.24, + "probability": 0.8774 + }, + { + "start": 14895.78, + "end": 14896.28, + "probability": 0.7153 + }, + { + "start": 14898.1, + "end": 14901.04, + "probability": 0.9472 + }, + { + "start": 14902.2, + "end": 14902.5, + "probability": 0.7655 + }, + { + "start": 14902.56, + "end": 14907.26, + "probability": 0.8162 + }, + { + "start": 14907.8, + "end": 14910.22, + "probability": 0.9347 + }, + { + "start": 14910.32, + "end": 14911.14, + "probability": 0.6422 + }, + { + "start": 14911.74, + "end": 14918.38, + "probability": 0.9702 + }, + { + "start": 14919.02, + "end": 14920.0, + "probability": 0.5749 + }, + { + "start": 14920.04, + "end": 14923.82, + "probability": 0.9916 + }, + { + "start": 14924.26, + "end": 14925.78, + "probability": 0.9762 + }, + { + "start": 14926.34, + "end": 14926.68, + "probability": 0.7053 + }, + { + "start": 14926.74, + "end": 14928.74, + "probability": 0.7106 + }, + { + "start": 14929.36, + "end": 14931.32, + "probability": 0.8093 + }, + { + "start": 14931.98, + "end": 14933.2, + "probability": 0.9062 + }, + { + "start": 14933.94, + "end": 14938.62, + "probability": 0.9424 + }, + { + "start": 14939.16, + "end": 14941.74, + "probability": 0.7896 + }, + { + "start": 14942.6, + "end": 14945.4, + "probability": 0.9896 + }, + { + "start": 14945.4, + "end": 14948.6, + "probability": 0.4886 + }, + { + "start": 14948.66, + "end": 14951.46, + "probability": 0.7291 + }, + { + "start": 14951.52, + "end": 14952.1, + "probability": 0.8106 + }, + { + "start": 14952.18, + "end": 14952.76, + "probability": 0.6733 + }, + { + "start": 14953.3, + "end": 14953.84, + "probability": 0.585 + }, + { + "start": 14970.3, + "end": 14970.68, + "probability": 0.0032 + }, + { + "start": 14970.68, + "end": 14971.16, + "probability": 0.3332 + }, + { + "start": 14971.78, + "end": 14973.8, + "probability": 0.802 + }, + { + "start": 14973.9, + "end": 14976.04, + "probability": 0.8218 + }, + { + "start": 14976.64, + "end": 14978.78, + "probability": 0.8397 + }, + { + "start": 14979.06, + "end": 14979.84, + "probability": 0.1339 + }, + { + "start": 14992.76, + "end": 14994.2, + "probability": 0.9871 + }, + { + "start": 15000.78, + "end": 15001.34, + "probability": 0.0383 + }, + { + "start": 15001.34, + "end": 15001.94, + "probability": 0.1152 + }, + { + "start": 15002.5, + "end": 15003.38, + "probability": 0.196 + }, + { + "start": 15004.34, + "end": 15005.02, + "probability": 0.3218 + }, + { + "start": 15005.12, + "end": 15009.94, + "probability": 0.2938 + }, + { + "start": 15009.96, + "end": 15011.3, + "probability": 0.3284 + }, + { + "start": 15011.6, + "end": 15012.26, + "probability": 0.3738 + }, + { + "start": 15027.0, + "end": 15031.4, + "probability": 0.0377 + }, + { + "start": 15032.44, + "end": 15033.4, + "probability": 0.1197 + }, + { + "start": 15035.38, + "end": 15040.26, + "probability": 0.028 + }, + { + "start": 15041.26, + "end": 15041.35, + "probability": 0.0987 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15059.0, + "end": 15059.0, + "probability": 0.0 + }, + { + "start": 15062.4, + "end": 15062.5, + "probability": 0.4138 + }, + { + "start": 15063.46, + "end": 15065.8, + "probability": 0.9567 + }, + { + "start": 15066.64, + "end": 15067.54, + "probability": 0.9689 + }, + { + "start": 15068.14, + "end": 15070.78, + "probability": 0.9851 + }, + { + "start": 15071.14, + "end": 15072.5, + "probability": 0.3435 + }, + { + "start": 15073.7, + "end": 15075.68, + "probability": 0.8473 + }, + { + "start": 15075.68, + "end": 15078.7, + "probability": 0.9689 + }, + { + "start": 15080.06, + "end": 15080.92, + "probability": 0.687 + }, + { + "start": 15085.0, + "end": 15086.95, + "probability": 0.8488 + }, + { + "start": 15087.9, + "end": 15088.86, + "probability": 0.3906 + }, + { + "start": 15088.92, + "end": 15091.0, + "probability": 0.8826 + }, + { + "start": 15091.8, + "end": 15094.66, + "probability": 0.8059 + }, + { + "start": 15096.38, + "end": 15097.84, + "probability": 0.8303 + }, + { + "start": 15099.08, + "end": 15101.78, + "probability": 0.9971 + }, + { + "start": 15102.56, + "end": 15103.24, + "probability": 0.8449 + }, + { + "start": 15103.9, + "end": 15106.8, + "probability": 0.9455 + }, + { + "start": 15106.8, + "end": 15109.64, + "probability": 0.9503 + }, + { + "start": 15110.42, + "end": 15113.04, + "probability": 0.7607 + }, + { + "start": 15113.62, + "end": 15115.24, + "probability": 0.9027 + }, + { + "start": 15115.9, + "end": 15120.68, + "probability": 0.9897 + }, + { + "start": 15121.22, + "end": 15124.38, + "probability": 0.9937 + }, + { + "start": 15124.96, + "end": 15128.28, + "probability": 0.909 + }, + { + "start": 15128.56, + "end": 15128.96, + "probability": 0.8986 + }, + { + "start": 15129.64, + "end": 15131.6, + "probability": 0.9121 + }, + { + "start": 15132.08, + "end": 15135.8, + "probability": 0.8644 + }, + { + "start": 15136.34, + "end": 15137.78, + "probability": 0.9198 + }, + { + "start": 15139.42, + "end": 15140.72, + "probability": 0.9982 + }, + { + "start": 15141.4, + "end": 15144.72, + "probability": 0.993 + }, + { + "start": 15145.66, + "end": 15149.06, + "probability": 0.9905 + }, + { + "start": 15149.06, + "end": 15155.48, + "probability": 0.9802 + }, + { + "start": 15156.02, + "end": 15157.3, + "probability": 0.9913 + }, + { + "start": 15157.98, + "end": 15159.72, + "probability": 0.9413 + }, + { + "start": 15160.22, + "end": 15160.54, + "probability": 0.8037 + }, + { + "start": 15161.36, + "end": 15164.04, + "probability": 0.9491 + }, + { + "start": 15164.82, + "end": 15167.26, + "probability": 0.8587 + }, + { + "start": 15168.1, + "end": 15169.9, + "probability": 0.7202 + }, + { + "start": 15170.66, + "end": 15171.14, + "probability": 0.6206 + }, + { + "start": 15171.86, + "end": 15174.86, + "probability": 0.8562 + }, + { + "start": 15175.42, + "end": 15177.28, + "probability": 0.9878 + }, + { + "start": 15177.98, + "end": 15183.78, + "probability": 0.978 + }, + { + "start": 15184.2, + "end": 15187.86, + "probability": 0.8287 + }, + { + "start": 15188.26, + "end": 15193.62, + "probability": 0.8916 + }, + { + "start": 15194.12, + "end": 15195.0, + "probability": 0.8692 + }, + { + "start": 15196.28, + "end": 15198.36, + "probability": 0.8696 + }, + { + "start": 15201.74, + "end": 15206.16, + "probability": 0.984 + }, + { + "start": 15206.86, + "end": 15212.02, + "probability": 0.9937 + }, + { + "start": 15212.72, + "end": 15214.6, + "probability": 0.9985 + }, + { + "start": 15215.32, + "end": 15218.52, + "probability": 0.9751 + }, + { + "start": 15219.72, + "end": 15222.4, + "probability": 0.9973 + }, + { + "start": 15222.96, + "end": 15225.5, + "probability": 0.9816 + }, + { + "start": 15225.5, + "end": 15229.46, + "probability": 0.9886 + }, + { + "start": 15229.9, + "end": 15232.82, + "probability": 0.9893 + }, + { + "start": 15233.42, + "end": 15234.08, + "probability": 0.6664 + }, + { + "start": 15234.68, + "end": 15236.1, + "probability": 0.6207 + }, + { + "start": 15237.04, + "end": 15238.52, + "probability": 0.7511 + }, + { + "start": 15239.18, + "end": 15240.42, + "probability": 0.8613 + }, + { + "start": 15240.56, + "end": 15242.94, + "probability": 0.9429 + }, + { + "start": 15243.9, + "end": 15245.8, + "probability": 0.9659 + }, + { + "start": 15246.34, + "end": 15248.68, + "probability": 0.9778 + }, + { + "start": 15249.24, + "end": 15253.68, + "probability": 0.996 + }, + { + "start": 15255.32, + "end": 15257.46, + "probability": 0.9952 + }, + { + "start": 15257.96, + "end": 15259.4, + "probability": 0.9961 + }, + { + "start": 15260.0, + "end": 15261.72, + "probability": 0.9972 + }, + { + "start": 15262.84, + "end": 15266.29, + "probability": 0.9758 + }, + { + "start": 15267.82, + "end": 15274.64, + "probability": 0.9557 + }, + { + "start": 15275.98, + "end": 15278.48, + "probability": 0.9961 + }, + { + "start": 15279.08, + "end": 15280.48, + "probability": 0.9842 + }, + { + "start": 15281.16, + "end": 15283.18, + "probability": 0.7509 + }, + { + "start": 15283.82, + "end": 15286.42, + "probability": 0.9956 + }, + { + "start": 15286.96, + "end": 15288.43, + "probability": 0.5872 + }, + { + "start": 15289.1, + "end": 15291.02, + "probability": 0.6857 + }, + { + "start": 15291.64, + "end": 15292.12, + "probability": 0.2344 + }, + { + "start": 15292.28, + "end": 15294.02, + "probability": 0.8687 + }, + { + "start": 15294.34, + "end": 15295.74, + "probability": 0.9951 + }, + { + "start": 15295.84, + "end": 15297.92, + "probability": 0.9951 + }, + { + "start": 15298.5, + "end": 15299.14, + "probability": 0.7514 + }, + { + "start": 15299.7, + "end": 15300.92, + "probability": 0.9424 + }, + { + "start": 15301.9, + "end": 15303.17, + "probability": 0.9961 + }, + { + "start": 15304.96, + "end": 15306.76, + "probability": 0.84 + }, + { + "start": 15307.22, + "end": 15308.01, + "probability": 0.894 + }, + { + "start": 15310.7, + "end": 15311.46, + "probability": 0.726 + }, + { + "start": 15313.3, + "end": 15318.66, + "probability": 0.8026 + }, + { + "start": 15319.32, + "end": 15321.62, + "probability": 0.8797 + }, + { + "start": 15322.14, + "end": 15326.82, + "probability": 0.9868 + }, + { + "start": 15328.24, + "end": 15333.34, + "probability": 0.6666 + }, + { + "start": 15333.98, + "end": 15335.76, + "probability": 0.3555 + }, + { + "start": 15335.8, + "end": 15338.66, + "probability": 0.9744 + }, + { + "start": 15339.58, + "end": 15340.74, + "probability": 0.6169 + }, + { + "start": 15341.92, + "end": 15345.08, + "probability": 0.9673 + }, + { + "start": 15345.82, + "end": 15346.2, + "probability": 0.7739 + }, + { + "start": 15346.54, + "end": 15348.32, + "probability": 0.6489 + }, + { + "start": 15348.42, + "end": 15350.54, + "probability": 0.8254 + }, + { + "start": 15350.92, + "end": 15355.12, + "probability": 0.8382 + }, + { + "start": 15355.48, + "end": 15358.66, + "probability": 0.9447 + }, + { + "start": 15358.82, + "end": 15361.04, + "probability": 0.3073 + }, + { + "start": 15361.16, + "end": 15362.06, + "probability": 0.8602 + }, + { + "start": 15362.1, + "end": 15362.82, + "probability": 0.7075 + }, + { + "start": 15363.36, + "end": 15364.16, + "probability": 0.7265 + }, + { + "start": 15364.56, + "end": 15365.38, + "probability": 0.7205 + }, + { + "start": 15382.72, + "end": 15383.62, + "probability": 0.0067 + }, + { + "start": 15383.62, + "end": 15386.82, + "probability": 0.6057 + }, + { + "start": 15386.86, + "end": 15389.72, + "probability": 0.7309 + }, + { + "start": 15390.14, + "end": 15391.06, + "probability": 0.6607 + }, + { + "start": 15392.66, + "end": 15394.3, + "probability": 0.9877 + }, + { + "start": 15394.7, + "end": 15394.7, + "probability": 0.4242 + }, + { + "start": 15394.7, + "end": 15397.2, + "probability": 0.4719 + }, + { + "start": 15397.84, + "end": 15399.04, + "probability": 0.5326 + }, + { + "start": 15399.54, + "end": 15400.18, + "probability": 0.596 + }, + { + "start": 15402.42, + "end": 15404.3, + "probability": 0.0081 + }, + { + "start": 15412.62, + "end": 15413.04, + "probability": 0.0002 + }, + { + "start": 15414.26, + "end": 15416.86, + "probability": 0.3109 + }, + { + "start": 15417.34, + "end": 15422.2, + "probability": 0.6483 + }, + { + "start": 15422.22, + "end": 15422.76, + "probability": 0.746 + }, + { + "start": 15422.96, + "end": 15426.42, + "probability": 0.7587 + }, + { + "start": 15426.48, + "end": 15427.86, + "probability": 0.7207 + }, + { + "start": 15428.3, + "end": 15433.04, + "probability": 0.9915 + }, + { + "start": 15433.46, + "end": 15438.2, + "probability": 0.9611 + }, + { + "start": 15438.66, + "end": 15439.89, + "probability": 0.669 + }, + { + "start": 15440.18, + "end": 15440.36, + "probability": 0.8036 + }, + { + "start": 15440.44, + "end": 15442.34, + "probability": 0.9951 + }, + { + "start": 15442.52, + "end": 15447.16, + "probability": 0.9736 + }, + { + "start": 15447.26, + "end": 15448.56, + "probability": 0.9033 + }, + { + "start": 15448.62, + "end": 15449.83, + "probability": 0.997 + }, + { + "start": 15450.58, + "end": 15453.7, + "probability": 0.9724 + }, + { + "start": 15453.78, + "end": 15454.7, + "probability": 0.6761 + }, + { + "start": 15455.66, + "end": 15459.48, + "probability": 0.7248 + }, + { + "start": 15459.58, + "end": 15460.54, + "probability": 0.8602 + }, + { + "start": 15460.88, + "end": 15461.96, + "probability": 0.8198 + }, + { + "start": 15462.06, + "end": 15464.66, + "probability": 0.7248 + }, + { + "start": 15465.2, + "end": 15466.74, + "probability": 0.9985 + }, + { + "start": 15467.18, + "end": 15467.68, + "probability": 0.6251 + }, + { + "start": 15467.84, + "end": 15468.4, + "probability": 0.9597 + }, + { + "start": 15468.46, + "end": 15470.98, + "probability": 0.9371 + }, + { + "start": 15471.18, + "end": 15473.14, + "probability": 0.994 + }, + { + "start": 15473.58, + "end": 15475.34, + "probability": 0.8249 + }, + { + "start": 15475.76, + "end": 15475.98, + "probability": 0.7262 + }, + { + "start": 15476.06, + "end": 15478.78, + "probability": 0.9736 + }, + { + "start": 15479.62, + "end": 15481.48, + "probability": 0.9697 + }, + { + "start": 15482.08, + "end": 15483.64, + "probability": 0.9413 + }, + { + "start": 15484.18, + "end": 15486.98, + "probability": 0.9748 + }, + { + "start": 15487.64, + "end": 15488.36, + "probability": 0.6182 + }, + { + "start": 15488.67, + "end": 15490.33, + "probability": 0.6786 + }, + { + "start": 15491.0, + "end": 15492.14, + "probability": 0.5597 + }, + { + "start": 15492.4, + "end": 15493.93, + "probability": 0.8116 + }, + { + "start": 15494.08, + "end": 15496.6, + "probability": 0.9828 + }, + { + "start": 15497.34, + "end": 15498.04, + "probability": 0.5065 + }, + { + "start": 15498.1, + "end": 15500.31, + "probability": 0.9158 + }, + { + "start": 15500.66, + "end": 15502.5, + "probability": 0.9425 + }, + { + "start": 15502.5, + "end": 15506.58, + "probability": 0.9911 + }, + { + "start": 15506.72, + "end": 15507.22, + "probability": 0.7866 + }, + { + "start": 15507.54, + "end": 15508.62, + "probability": 0.9456 + }, + { + "start": 15509.14, + "end": 15512.22, + "probability": 0.992 + }, + { + "start": 15512.22, + "end": 15515.92, + "probability": 0.9854 + }, + { + "start": 15517.12, + "end": 15519.6, + "probability": 0.6713 + }, + { + "start": 15520.34, + "end": 15523.68, + "probability": 0.9443 + }, + { + "start": 15524.04, + "end": 15525.26, + "probability": 0.8519 + }, + { + "start": 15525.84, + "end": 15529.26, + "probability": 0.9736 + }, + { + "start": 15529.58, + "end": 15530.35, + "probability": 0.8302 + }, + { + "start": 15530.8, + "end": 15531.46, + "probability": 0.6294 + }, + { + "start": 15531.5, + "end": 15532.62, + "probability": 0.9346 + }, + { + "start": 15532.84, + "end": 15537.76, + "probability": 0.957 + }, + { + "start": 15538.61, + "end": 15541.18, + "probability": 0.916 + }, + { + "start": 15541.72, + "end": 15545.4, + "probability": 0.9827 + }, + { + "start": 15545.84, + "end": 15549.28, + "probability": 0.7802 + }, + { + "start": 15549.36, + "end": 15550.28, + "probability": 0.7768 + }, + { + "start": 15550.72, + "end": 15551.58, + "probability": 0.8574 + }, + { + "start": 15551.6, + "end": 15553.8, + "probability": 0.9724 + }, + { + "start": 15554.04, + "end": 15555.02, + "probability": 0.7443 + }, + { + "start": 15555.42, + "end": 15557.84, + "probability": 0.7834 + }, + { + "start": 15558.56, + "end": 15560.08, + "probability": 0.9631 + }, + { + "start": 15560.14, + "end": 15560.52, + "probability": 0.605 + }, + { + "start": 15560.68, + "end": 15561.16, + "probability": 0.7844 + }, + { + "start": 15561.62, + "end": 15563.98, + "probability": 0.9172 + }, + { + "start": 15564.6, + "end": 15569.58, + "probability": 0.9739 + }, + { + "start": 15570.36, + "end": 15572.16, + "probability": 0.7592 + }, + { + "start": 15572.4, + "end": 15573.9, + "probability": 0.2661 + }, + { + "start": 15574.54, + "end": 15578.2, + "probability": 0.9626 + }, + { + "start": 15578.26, + "end": 15579.72, + "probability": 0.9942 + }, + { + "start": 15580.12, + "end": 15581.28, + "probability": 0.7196 + }, + { + "start": 15581.4, + "end": 15584.6, + "probability": 0.952 + }, + { + "start": 15585.28, + "end": 15586.32, + "probability": 0.5813 + }, + { + "start": 15587.12, + "end": 15590.0, + "probability": 0.911 + }, + { + "start": 15590.08, + "end": 15591.0, + "probability": 0.3707 + }, + { + "start": 15591.88, + "end": 15593.7, + "probability": 0.9653 + }, + { + "start": 15594.08, + "end": 15595.14, + "probability": 0.9897 + }, + { + "start": 15595.82, + "end": 15599.86, + "probability": 0.9707 + }, + { + "start": 15600.18, + "end": 15601.33, + "probability": 0.6453 + }, + { + "start": 15604.82, + "end": 15606.62, + "probability": 0.6962 + }, + { + "start": 15608.04, + "end": 15608.36, + "probability": 0.5955 + }, + { + "start": 15609.78, + "end": 15612.08, + "probability": 0.9307 + }, + { + "start": 15613.36, + "end": 15616.1, + "probability": 0.9374 + }, + { + "start": 15617.37, + "end": 15619.52, + "probability": 0.9788 + }, + { + "start": 15620.5, + "end": 15625.02, + "probability": 0.9911 + }, + { + "start": 15625.8, + "end": 15630.66, + "probability": 0.6776 + }, + { + "start": 15631.94, + "end": 15633.16, + "probability": 0.8971 + }, + { + "start": 15633.98, + "end": 15635.81, + "probability": 0.901 + }, + { + "start": 15636.68, + "end": 15637.94, + "probability": 0.7667 + }, + { + "start": 15638.68, + "end": 15639.34, + "probability": 0.7832 + }, + { + "start": 15639.42, + "end": 15640.1, + "probability": 0.7404 + }, + { + "start": 15640.22, + "end": 15641.74, + "probability": 0.832 + }, + { + "start": 15642.16, + "end": 15643.7, + "probability": 0.9109 + }, + { + "start": 15644.4, + "end": 15645.36, + "probability": 0.6692 + }, + { + "start": 15647.44, + "end": 15648.86, + "probability": 0.8257 + }, + { + "start": 15649.02, + "end": 15653.0, + "probability": 0.982 + }, + { + "start": 15653.12, + "end": 15653.82, + "probability": 0.8113 + }, + { + "start": 15654.44, + "end": 15655.66, + "probability": 0.5506 + }, + { + "start": 15656.26, + "end": 15657.18, + "probability": 0.3998 + }, + { + "start": 15658.14, + "end": 15658.56, + "probability": 0.6991 + }, + { + "start": 15659.8, + "end": 15663.0, + "probability": 0.933 + }, + { + "start": 15663.94, + "end": 15664.6, + "probability": 0.9743 + }, + { + "start": 15664.7, + "end": 15665.12, + "probability": 0.9422 + }, + { + "start": 15665.24, + "end": 15666.04, + "probability": 0.9399 + }, + { + "start": 15666.28, + "end": 15667.76, + "probability": 0.9932 + }, + { + "start": 15668.26, + "end": 15670.16, + "probability": 0.9233 + }, + { + "start": 15671.46, + "end": 15673.54, + "probability": 0.8622 + }, + { + "start": 15673.68, + "end": 15678.52, + "probability": 0.9585 + }, + { + "start": 15678.52, + "end": 15681.86, + "probability": 0.9927 + }, + { + "start": 15682.94, + "end": 15687.28, + "probability": 0.9372 + }, + { + "start": 15687.74, + "end": 15689.56, + "probability": 0.98 + }, + { + "start": 15690.32, + "end": 15691.64, + "probability": 0.9712 + }, + { + "start": 15692.4, + "end": 15693.72, + "probability": 0.9995 + }, + { + "start": 15694.86, + "end": 15699.7, + "probability": 0.992 + }, + { + "start": 15699.82, + "end": 15701.0, + "probability": 0.1478 + }, + { + "start": 15701.52, + "end": 15701.74, + "probability": 0.1933 + }, + { + "start": 15701.8, + "end": 15702.94, + "probability": 0.9102 + }, + { + "start": 15703.06, + "end": 15703.59, + "probability": 0.724 + }, + { + "start": 15705.46, + "end": 15706.8, + "probability": 0.9907 + }, + { + "start": 15708.28, + "end": 15712.02, + "probability": 0.9924 + }, + { + "start": 15712.56, + "end": 15717.22, + "probability": 0.981 + }, + { + "start": 15717.22, + "end": 15723.4, + "probability": 0.9995 + }, + { + "start": 15724.62, + "end": 15728.89, + "probability": 0.7264 + }, + { + "start": 15730.48, + "end": 15730.48, + "probability": 0.2306 + }, + { + "start": 15730.48, + "end": 15735.92, + "probability": 0.9951 + }, + { + "start": 15735.92, + "end": 15743.46, + "probability": 0.9937 + }, + { + "start": 15743.96, + "end": 15745.86, + "probability": 0.9918 + }, + { + "start": 15746.42, + "end": 15748.4, + "probability": 0.9871 + }, + { + "start": 15750.0, + "end": 15751.1, + "probability": 0.9802 + }, + { + "start": 15751.88, + "end": 15755.88, + "probability": 0.9732 + }, + { + "start": 15755.88, + "end": 15759.7, + "probability": 0.9961 + }, + { + "start": 15760.26, + "end": 15761.38, + "probability": 0.9951 + }, + { + "start": 15762.22, + "end": 15762.96, + "probability": 0.8235 + }, + { + "start": 15763.5, + "end": 15765.62, + "probability": 0.9781 + }, + { + "start": 15767.76, + "end": 15770.72, + "probability": 0.7242 + }, + { + "start": 15772.0, + "end": 15775.35, + "probability": 0.9614 + }, + { + "start": 15776.24, + "end": 15778.25, + "probability": 0.655 + }, + { + "start": 15780.54, + "end": 15783.07, + "probability": 0.7496 + }, + { + "start": 15783.82, + "end": 15787.42, + "probability": 0.6868 + }, + { + "start": 15788.34, + "end": 15791.58, + "probability": 0.8612 + }, + { + "start": 15792.14, + "end": 15792.4, + "probability": 0.7914 + }, + { + "start": 15792.94, + "end": 15794.64, + "probability": 0.8566 + }, + { + "start": 15795.04, + "end": 15795.24, + "probability": 0.1402 + }, + { + "start": 15795.32, + "end": 15796.14, + "probability": 0.6203 + }, + { + "start": 15796.58, + "end": 15797.14, + "probability": 0.8098 + }, + { + "start": 15797.16, + "end": 15799.9, + "probability": 0.8051 + }, + { + "start": 15800.46, + "end": 15802.28, + "probability": 0.9202 + }, + { + "start": 15802.8, + "end": 15803.08, + "probability": 0.8542 + }, + { + "start": 15803.64, + "end": 15805.02, + "probability": 0.84 + }, + { + "start": 15805.34, + "end": 15809.08, + "probability": 0.9667 + }, + { + "start": 15809.48, + "end": 15810.38, + "probability": 0.8241 + }, + { + "start": 15811.06, + "end": 15811.34, + "probability": 0.7949 + }, + { + "start": 15811.52, + "end": 15813.88, + "probability": 0.6623 + }, + { + "start": 15814.14, + "end": 15816.1, + "probability": 0.9021 + }, + { + "start": 15816.64, + "end": 15818.92, + "probability": 0.7288 + }, + { + "start": 15819.56, + "end": 15820.74, + "probability": 0.9562 + }, + { + "start": 15821.4, + "end": 15823.42, + "probability": 0.8492 + }, + { + "start": 15824.2, + "end": 15826.97, + "probability": 0.9264 + }, + { + "start": 15827.62, + "end": 15831.42, + "probability": 0.666 + }, + { + "start": 15831.82, + "end": 15832.36, + "probability": 0.7205 + }, + { + "start": 15849.86, + "end": 15850.22, + "probability": 0.0051 + }, + { + "start": 15850.22, + "end": 15852.62, + "probability": 0.7789 + }, + { + "start": 15853.1, + "end": 15854.62, + "probability": 0.7522 + }, + { + "start": 15855.46, + "end": 15858.26, + "probability": 0.8794 + }, + { + "start": 15858.82, + "end": 15859.34, + "probability": 0.7079 + }, + { + "start": 15859.86, + "end": 15860.46, + "probability": 0.614 + }, + { + "start": 15878.62, + "end": 15882.94, + "probability": 0.346 + }, + { + "start": 15883.7, + "end": 15888.56, + "probability": 0.2296 + }, + { + "start": 15890.08, + "end": 15893.14, + "probability": 0.7159 + }, + { + "start": 15895.4, + "end": 15898.1, + "probability": 0.4356 + }, + { + "start": 15898.72, + "end": 15899.34, + "probability": 0.2838 + }, + { + "start": 15899.34, + "end": 15899.46, + "probability": 0.0851 + }, + { + "start": 15899.46, + "end": 15899.56, + "probability": 0.0661 + }, + { + "start": 15902.92, + "end": 15903.72, + "probability": 0.441 + }, + { + "start": 15905.44, + "end": 15908.18, + "probability": 0.8557 + }, + { + "start": 15909.66, + "end": 15914.22, + "probability": 0.6144 + }, + { + "start": 15915.02, + "end": 15916.04, + "probability": 0.9229 + }, + { + "start": 15917.08, + "end": 15920.64, + "probability": 0.8628 + }, + { + "start": 15921.7, + "end": 15924.06, + "probability": 0.888 + }, + { + "start": 15924.58, + "end": 15925.68, + "probability": 0.8918 + }, + { + "start": 15926.64, + "end": 15927.78, + "probability": 0.9546 + }, + { + "start": 15928.98, + "end": 15931.88, + "probability": 0.9282 + }, + { + "start": 15932.52, + "end": 15933.72, + "probability": 0.912 + }, + { + "start": 15934.5, + "end": 15937.06, + "probability": 0.9617 + }, + { + "start": 15938.18, + "end": 15940.83, + "probability": 0.7205 + }, + { + "start": 15941.56, + "end": 15943.54, + "probability": 0.99 + }, + { + "start": 15943.98, + "end": 15944.64, + "probability": 0.9819 + }, + { + "start": 15944.94, + "end": 15946.71, + "probability": 0.9966 + }, + { + "start": 15948.74, + "end": 15951.84, + "probability": 0.9431 + }, + { + "start": 15952.74, + "end": 15954.76, + "probability": 0.7246 + }, + { + "start": 15955.98, + "end": 15960.56, + "probability": 0.8703 + }, + { + "start": 15962.04, + "end": 15963.9, + "probability": 0.8618 + }, + { + "start": 15964.64, + "end": 15966.14, + "probability": 0.9707 + }, + { + "start": 15967.36, + "end": 15970.26, + "probability": 0.9507 + }, + { + "start": 15970.8, + "end": 15972.7, + "probability": 0.8268 + }, + { + "start": 15973.62, + "end": 15976.94, + "probability": 0.9832 + }, + { + "start": 15977.58, + "end": 15980.6, + "probability": 0.9279 + }, + { + "start": 15981.04, + "end": 15982.5, + "probability": 0.8713 + }, + { + "start": 15982.88, + "end": 15984.04, + "probability": 0.9506 + }, + { + "start": 15984.48, + "end": 15985.01, + "probability": 0.8677 + }, + { + "start": 15985.6, + "end": 15986.46, + "probability": 0.9697 + }, + { + "start": 15987.56, + "end": 15988.62, + "probability": 0.9837 + }, + { + "start": 15989.24, + "end": 15992.68, + "probability": 0.762 + }, + { + "start": 15993.22, + "end": 15993.42, + "probability": 0.771 + }, + { + "start": 15994.18, + "end": 15996.6, + "probability": 0.957 + }, + { + "start": 15997.36, + "end": 15998.54, + "probability": 0.7975 + }, + { + "start": 15998.66, + "end": 16003.54, + "probability": 0.7377 + }, + { + "start": 16004.86, + "end": 16006.25, + "probability": 0.2615 + }, + { + "start": 16007.08, + "end": 16008.92, + "probability": 0.9502 + }, + { + "start": 16009.8, + "end": 16012.86, + "probability": 0.9353 + }, + { + "start": 16012.94, + "end": 16013.86, + "probability": 0.9587 + }, + { + "start": 16014.42, + "end": 16015.58, + "probability": 0.8917 + }, + { + "start": 16018.06, + "end": 16020.0, + "probability": 0.6465 + }, + { + "start": 16022.18, + "end": 16023.58, + "probability": 0.8307 + }, + { + "start": 16024.8, + "end": 16025.6, + "probability": 0.7889 + }, + { + "start": 16026.12, + "end": 16029.26, + "probability": 0.5732 + }, + { + "start": 16030.26, + "end": 16031.82, + "probability": 0.4974 + }, + { + "start": 16032.78, + "end": 16033.9, + "probability": 0.7314 + }, + { + "start": 16034.14, + "end": 16034.5, + "probability": 0.6784 + }, + { + "start": 16034.5, + "end": 16037.42, + "probability": 0.2938 + }, + { + "start": 16039.52, + "end": 16044.16, + "probability": 0.6673 + }, + { + "start": 16044.78, + "end": 16046.32, + "probability": 0.7001 + }, + { + "start": 16047.5, + "end": 16048.98, + "probability": 0.9329 + }, + { + "start": 16051.94, + "end": 16053.88, + "probability": 0.2475 + }, + { + "start": 16054.02, + "end": 16055.2, + "probability": 0.647 + }, + { + "start": 16055.9, + "end": 16056.36, + "probability": 0.6891 + }, + { + "start": 16057.24, + "end": 16059.46, + "probability": 0.9146 + }, + { + "start": 16060.2, + "end": 16061.18, + "probability": 0.3295 + }, + { + "start": 16061.88, + "end": 16063.62, + "probability": 0.4775 + }, + { + "start": 16064.58, + "end": 16065.84, + "probability": 0.8721 + }, + { + "start": 16067.04, + "end": 16069.84, + "probability": 0.8858 + }, + { + "start": 16070.44, + "end": 16075.16, + "probability": 0.9963 + }, + { + "start": 16075.8, + "end": 16077.22, + "probability": 0.9399 + }, + { + "start": 16077.84, + "end": 16078.84, + "probability": 0.7572 + }, + { + "start": 16079.32, + "end": 16081.72, + "probability": 0.8531 + }, + { + "start": 16082.86, + "end": 16086.42, + "probability": 0.9956 + }, + { + "start": 16086.42, + "end": 16089.94, + "probability": 0.9962 + }, + { + "start": 16091.7, + "end": 16093.18, + "probability": 0.9591 + }, + { + "start": 16093.52, + "end": 16095.08, + "probability": 0.8148 + }, + { + "start": 16095.44, + "end": 16098.94, + "probability": 0.8485 + }, + { + "start": 16099.5, + "end": 16102.46, + "probability": 0.9868 + }, + { + "start": 16102.46, + "end": 16106.04, + "probability": 0.9986 + }, + { + "start": 16107.48, + "end": 16111.26, + "probability": 0.79 + }, + { + "start": 16112.07, + "end": 16115.18, + "probability": 0.4932 + }, + { + "start": 16115.86, + "end": 16118.24, + "probability": 0.8613 + }, + { + "start": 16118.88, + "end": 16120.28, + "probability": 0.9716 + }, + { + "start": 16120.58, + "end": 16125.38, + "probability": 0.9733 + }, + { + "start": 16125.9, + "end": 16129.66, + "probability": 0.9723 + }, + { + "start": 16130.46, + "end": 16134.42, + "probability": 0.7599 + }, + { + "start": 16134.42, + "end": 16138.46, + "probability": 0.9932 + }, + { + "start": 16138.86, + "end": 16142.74, + "probability": 0.997 + }, + { + "start": 16143.18, + "end": 16146.46, + "probability": 0.9993 + }, + { + "start": 16147.22, + "end": 16149.84, + "probability": 0.611 + }, + { + "start": 16151.94, + "end": 16154.12, + "probability": 0.6942 + }, + { + "start": 16154.84, + "end": 16157.3, + "probability": 0.9938 + }, + { + "start": 16158.04, + "end": 16162.46, + "probability": 0.936 + }, + { + "start": 16163.52, + "end": 16164.46, + "probability": 0.883 + }, + { + "start": 16164.98, + "end": 16166.66, + "probability": 0.9834 + }, + { + "start": 16167.06, + "end": 16170.78, + "probability": 0.9893 + }, + { + "start": 16170.86, + "end": 16172.84, + "probability": 0.7668 + }, + { + "start": 16173.6, + "end": 16178.26, + "probability": 0.8017 + }, + { + "start": 16178.72, + "end": 16183.38, + "probability": 0.9539 + }, + { + "start": 16183.82, + "end": 16189.6, + "probability": 0.9948 + }, + { + "start": 16190.46, + "end": 16190.74, + "probability": 0.9003 + }, + { + "start": 16191.6, + "end": 16194.2, + "probability": 0.7363 + }, + { + "start": 16194.34, + "end": 16195.04, + "probability": 0.8044 + }, + { + "start": 16195.28, + "end": 16196.24, + "probability": 0.7318 + }, + { + "start": 16196.44, + "end": 16199.66, + "probability": 0.8504 + }, + { + "start": 16199.94, + "end": 16203.32, + "probability": 0.7829 + }, + { + "start": 16203.58, + "end": 16204.48, + "probability": 0.3012 + }, + { + "start": 16204.8, + "end": 16205.38, + "probability": 0.8744 + }, + { + "start": 16205.42, + "end": 16205.72, + "probability": 0.7695 + }, + { + "start": 16205.88, + "end": 16206.32, + "probability": 0.3192 + }, + { + "start": 16206.32, + "end": 16206.94, + "probability": 0.4923 + }, + { + "start": 16213.78, + "end": 16215.32, + "probability": 0.0165 + }, + { + "start": 16216.3, + "end": 16216.6, + "probability": 0.0958 + }, + { + "start": 16223.32, + "end": 16224.36, + "probability": 0.4487 + }, + { + "start": 16224.92, + "end": 16226.04, + "probability": 0.9343 + }, + { + "start": 16226.6, + "end": 16227.46, + "probability": 0.5906 + }, + { + "start": 16227.68, + "end": 16229.64, + "probability": 0.9673 + }, + { + "start": 16229.96, + "end": 16231.64, + "probability": 0.8297 + }, + { + "start": 16231.68, + "end": 16232.14, + "probability": 0.7007 + }, + { + "start": 16232.5, + "end": 16233.76, + "probability": 0.5624 + }, + { + "start": 16234.24, + "end": 16236.54, + "probability": 0.1869 + }, + { + "start": 16236.54, + "end": 16236.9, + "probability": 0.0625 + }, + { + "start": 16237.4, + "end": 16237.48, + "probability": 0.2816 + }, + { + "start": 16237.48, + "end": 16237.78, + "probability": 0.554 + }, + { + "start": 16255.86, + "end": 16256.36, + "probability": 0.093 + }, + { + "start": 16256.36, + "end": 16256.36, + "probability": 0.2744 + }, + { + "start": 16256.36, + "end": 16256.36, + "probability": 0.3266 + }, + { + "start": 16256.36, + "end": 16256.72, + "probability": 0.1621 + }, + { + "start": 16257.14, + "end": 16258.38, + "probability": 0.2411 + }, + { + "start": 16259.54, + "end": 16263.72, + "probability": 0.4221 + }, + { + "start": 16264.44, + "end": 16267.34, + "probability": 0.851 + }, + { + "start": 16267.88, + "end": 16271.3, + "probability": 0.9895 + }, + { + "start": 16272.86, + "end": 16275.82, + "probability": 0.7683 + }, + { + "start": 16276.46, + "end": 16277.44, + "probability": 0.863 + }, + { + "start": 16278.06, + "end": 16278.6, + "probability": 0.8849 + }, + { + "start": 16279.68, + "end": 16282.0, + "probability": 0.9353 + }, + { + "start": 16282.54, + "end": 16283.46, + "probability": 0.7982 + }, + { + "start": 16284.38, + "end": 16287.58, + "probability": 0.9943 + }, + { + "start": 16289.08, + "end": 16292.06, + "probability": 0.9817 + }, + { + "start": 16292.22, + "end": 16294.8, + "probability": 0.9985 + }, + { + "start": 16295.18, + "end": 16296.4, + "probability": 0.9561 + }, + { + "start": 16297.44, + "end": 16302.18, + "probability": 0.9949 + }, + { + "start": 16302.72, + "end": 16303.1, + "probability": 0.5317 + }, + { + "start": 16303.72, + "end": 16305.06, + "probability": 0.9037 + }, + { + "start": 16305.78, + "end": 16312.62, + "probability": 0.9933 + }, + { + "start": 16312.82, + "end": 16316.04, + "probability": 0.981 + }, + { + "start": 16316.2, + "end": 16317.7, + "probability": 0.7472 + }, + { + "start": 16318.08, + "end": 16318.81, + "probability": 0.927 + }, + { + "start": 16319.54, + "end": 16323.32, + "probability": 0.9934 + }, + { + "start": 16323.9, + "end": 16328.14, + "probability": 0.8691 + }, + { + "start": 16328.72, + "end": 16333.85, + "probability": 0.9775 + }, + { + "start": 16334.44, + "end": 16337.18, + "probability": 0.959 + }, + { + "start": 16337.72, + "end": 16339.14, + "probability": 0.9916 + }, + { + "start": 16339.66, + "end": 16342.86, + "probability": 0.9962 + }, + { + "start": 16342.98, + "end": 16345.82, + "probability": 0.7305 + }, + { + "start": 16345.88, + "end": 16347.42, + "probability": 0.9889 + }, + { + "start": 16347.46, + "end": 16348.84, + "probability": 0.9369 + }, + { + "start": 16348.98, + "end": 16349.08, + "probability": 0.4689 + }, + { + "start": 16349.54, + "end": 16350.0, + "probability": 0.7165 + }, + { + "start": 16350.48, + "end": 16353.54, + "probability": 0.9912 + }, + { + "start": 16354.24, + "end": 16358.28, + "probability": 0.9901 + }, + { + "start": 16358.9, + "end": 16360.1, + "probability": 0.7322 + }, + { + "start": 16361.42, + "end": 16365.96, + "probability": 0.9956 + }, + { + "start": 16366.96, + "end": 16369.78, + "probability": 0.997 + }, + { + "start": 16372.24, + "end": 16372.7, + "probability": 0.3642 + }, + { + "start": 16373.46, + "end": 16375.08, + "probability": 0.7929 + }, + { + "start": 16375.5, + "end": 16377.46, + "probability": 0.9716 + }, + { + "start": 16377.58, + "end": 16378.14, + "probability": 0.8716 + }, + { + "start": 16378.46, + "end": 16380.32, + "probability": 0.9722 + }, + { + "start": 16380.84, + "end": 16381.1, + "probability": 0.6432 + }, + { + "start": 16381.22, + "end": 16385.76, + "probability": 0.9199 + }, + { + "start": 16386.0, + "end": 16387.42, + "probability": 0.7239 + }, + { + "start": 16387.5, + "end": 16389.82, + "probability": 0.8875 + }, + { + "start": 16390.78, + "end": 16392.36, + "probability": 0.9954 + }, + { + "start": 16393.04, + "end": 16396.84, + "probability": 0.9469 + }, + { + "start": 16397.48, + "end": 16397.58, + "probability": 0.3334 + }, + { + "start": 16398.52, + "end": 16398.52, + "probability": 0.1403 + }, + { + "start": 16398.52, + "end": 16398.76, + "probability": 0.2052 + }, + { + "start": 16399.22, + "end": 16399.66, + "probability": 0.5038 + }, + { + "start": 16399.78, + "end": 16401.93, + "probability": 0.9429 + }, + { + "start": 16402.76, + "end": 16403.94, + "probability": 0.7596 + }, + { + "start": 16403.98, + "end": 16404.64, + "probability": 0.9047 + }, + { + "start": 16404.8, + "end": 16405.78, + "probability": 0.947 + }, + { + "start": 16406.96, + "end": 16408.66, + "probability": 0.5153 + }, + { + "start": 16409.62, + "end": 16411.06, + "probability": 0.516 + }, + { + "start": 16412.0, + "end": 16418.98, + "probability": 0.9222 + }, + { + "start": 16419.94, + "end": 16425.76, + "probability": 0.8965 + }, + { + "start": 16427.22, + "end": 16429.84, + "probability": 0.5817 + }, + { + "start": 16429.96, + "end": 16433.28, + "probability": 0.8965 + }, + { + "start": 16433.7, + "end": 16437.42, + "probability": 0.8249 + }, + { + "start": 16439.62, + "end": 16443.18, + "probability": 0.973 + }, + { + "start": 16445.06, + "end": 16446.0, + "probability": 0.4982 + }, + { + "start": 16446.92, + "end": 16447.52, + "probability": 0.6426 + }, + { + "start": 16448.82, + "end": 16451.36, + "probability": 0.9952 + }, + { + "start": 16451.98, + "end": 16452.82, + "probability": 0.9328 + }, + { + "start": 16453.7, + "end": 16456.64, + "probability": 0.8214 + }, + { + "start": 16457.54, + "end": 16457.9, + "probability": 0.5614 + }, + { + "start": 16459.36, + "end": 16459.8, + "probability": 0.7451 + }, + { + "start": 16460.54, + "end": 16461.3, + "probability": 0.7439 + }, + { + "start": 16461.82, + "end": 16466.38, + "probability": 0.8864 + }, + { + "start": 16467.54, + "end": 16471.4, + "probability": 0.8583 + }, + { + "start": 16472.62, + "end": 16475.88, + "probability": 0.9896 + }, + { + "start": 16476.44, + "end": 16482.86, + "probability": 0.8044 + }, + { + "start": 16483.86, + "end": 16488.98, + "probability": 0.9809 + }, + { + "start": 16489.58, + "end": 16492.38, + "probability": 0.9797 + }, + { + "start": 16492.92, + "end": 16493.82, + "probability": 0.8079 + }, + { + "start": 16494.54, + "end": 16496.14, + "probability": 0.8327 + }, + { + "start": 16496.74, + "end": 16499.86, + "probability": 0.9128 + }, + { + "start": 16500.16, + "end": 16502.62, + "probability": 0.8712 + }, + { + "start": 16503.14, + "end": 16508.22, + "probability": 0.985 + }, + { + "start": 16508.8, + "end": 16511.64, + "probability": 0.944 + }, + { + "start": 16512.04, + "end": 16515.92, + "probability": 0.9394 + }, + { + "start": 16516.84, + "end": 16521.38, + "probability": 0.9882 + }, + { + "start": 16521.9, + "end": 16526.1, + "probability": 0.9994 + }, + { + "start": 16526.1, + "end": 16530.62, + "probability": 0.9987 + }, + { + "start": 16533.18, + "end": 16537.97, + "probability": 0.9345 + }, + { + "start": 16538.68, + "end": 16539.86, + "probability": 0.7162 + }, + { + "start": 16539.92, + "end": 16540.3, + "probability": 0.9135 + }, + { + "start": 16540.76, + "end": 16542.46, + "probability": 0.9357 + }, + { + "start": 16542.84, + "end": 16544.16, + "probability": 0.813 + }, + { + "start": 16545.2, + "end": 16548.56, + "probability": 0.9151 + }, + { + "start": 16548.56, + "end": 16553.94, + "probability": 0.9718 + }, + { + "start": 16554.54, + "end": 16556.68, + "probability": 0.9092 + }, + { + "start": 16557.26, + "end": 16559.76, + "probability": 0.8955 + }, + { + "start": 16560.42, + "end": 16562.5, + "probability": 0.7611 + }, + { + "start": 16563.22, + "end": 16564.88, + "probability": 0.9963 + }, + { + "start": 16565.52, + "end": 16572.92, + "probability": 0.9775 + }, + { + "start": 16573.74, + "end": 16575.28, + "probability": 0.9932 + }, + { + "start": 16575.92, + "end": 16582.64, + "probability": 0.9532 + }, + { + "start": 16583.72, + "end": 16587.02, + "probability": 0.9353 + }, + { + "start": 16587.6, + "end": 16592.58, + "probability": 0.6128 + }, + { + "start": 16593.1, + "end": 16593.84, + "probability": 0.6815 + }, + { + "start": 16593.86, + "end": 16594.54, + "probability": 0.7677 + }, + { + "start": 16594.64, + "end": 16596.42, + "probability": 0.9013 + }, + { + "start": 16596.78, + "end": 16600.24, + "probability": 0.9307 + }, + { + "start": 16600.88, + "end": 16606.98, + "probability": 0.9762 + }, + { + "start": 16607.42, + "end": 16611.9, + "probability": 0.9827 + }, + { + "start": 16611.9, + "end": 16616.94, + "probability": 0.7876 + }, + { + "start": 16617.62, + "end": 16618.56, + "probability": 0.6604 + }, + { + "start": 16618.8, + "end": 16621.22, + "probability": 0.9919 + }, + { + "start": 16621.62, + "end": 16623.36, + "probability": 0.8469 + }, + { + "start": 16623.94, + "end": 16626.5, + "probability": 0.9515 + }, + { + "start": 16627.0, + "end": 16629.6, + "probability": 0.9683 + }, + { + "start": 16630.72, + "end": 16635.34, + "probability": 0.9924 + }, + { + "start": 16635.48, + "end": 16641.52, + "probability": 0.9985 + }, + { + "start": 16641.88, + "end": 16645.12, + "probability": 0.9587 + }, + { + "start": 16645.74, + "end": 16647.96, + "probability": 0.9678 + }, + { + "start": 16648.36, + "end": 16651.18, + "probability": 0.9567 + }, + { + "start": 16651.88, + "end": 16654.06, + "probability": 0.9855 + }, + { + "start": 16654.94, + "end": 16657.38, + "probability": 0.9961 + }, + { + "start": 16657.72, + "end": 16660.64, + "probability": 0.9659 + }, + { + "start": 16661.22, + "end": 16662.14, + "probability": 0.5407 + }, + { + "start": 16665.04, + "end": 16667.26, + "probability": 0.7855 + }, + { + "start": 16668.06, + "end": 16669.44, + "probability": 0.5943 + }, + { + "start": 16669.52, + "end": 16672.64, + "probability": 0.863 + }, + { + "start": 16672.74, + "end": 16674.32, + "probability": 0.827 + }, + { + "start": 16675.26, + "end": 16679.48, + "probability": 0.8716 + }, + { + "start": 16680.16, + "end": 16680.78, + "probability": 0.55 + }, + { + "start": 16680.86, + "end": 16683.3, + "probability": 0.9961 + }, + { + "start": 16684.04, + "end": 16687.06, + "probability": 0.9783 + }, + { + "start": 16687.48, + "end": 16690.14, + "probability": 0.9811 + }, + { + "start": 16690.6, + "end": 16694.83, + "probability": 0.9825 + }, + { + "start": 16695.52, + "end": 16699.9, + "probability": 0.9725 + }, + { + "start": 16702.2, + "end": 16708.08, + "probability": 0.9862 + }, + { + "start": 16708.26, + "end": 16709.56, + "probability": 0.9925 + }, + { + "start": 16710.46, + "end": 16712.28, + "probability": 0.9118 + }, + { + "start": 16712.84, + "end": 16714.96, + "probability": 0.9897 + }, + { + "start": 16715.68, + "end": 16716.2, + "probability": 0.6418 + }, + { + "start": 16716.94, + "end": 16718.3, + "probability": 0.564 + }, + { + "start": 16719.46, + "end": 16720.42, + "probability": 0.6238 + }, + { + "start": 16721.32, + "end": 16723.56, + "probability": 0.8174 + }, + { + "start": 16723.64, + "end": 16724.32, + "probability": 0.6581 + }, + { + "start": 16724.74, + "end": 16725.94, + "probability": 0.8143 + }, + { + "start": 16727.86, + "end": 16728.78, + "probability": 0.6491 + }, + { + "start": 16728.82, + "end": 16729.7, + "probability": 0.9108 + }, + { + "start": 16730.0, + "end": 16730.88, + "probability": 0.7304 + }, + { + "start": 16731.02, + "end": 16731.22, + "probability": 0.2222 + }, + { + "start": 16731.22, + "end": 16731.92, + "probability": 0.5246 + }, + { + "start": 16732.68, + "end": 16734.14, + "probability": 0.5442 + }, + { + "start": 16734.46, + "end": 16736.1, + "probability": 0.8302 + }, + { + "start": 16736.6, + "end": 16738.3, + "probability": 0.7441 + }, + { + "start": 16739.22, + "end": 16744.02, + "probability": 0.8187 + }, + { + "start": 16744.84, + "end": 16745.86, + "probability": 0.8952 + }, + { + "start": 16749.28, + "end": 16753.08, + "probability": 0.9743 + }, + { + "start": 16753.28, + "end": 16755.58, + "probability": 0.9408 + }, + { + "start": 16755.86, + "end": 16756.2, + "probability": 0.7238 + }, + { + "start": 16756.88, + "end": 16758.72, + "probability": 0.7166 + }, + { + "start": 16758.82, + "end": 16759.62, + "probability": 0.8954 + }, + { + "start": 16759.76, + "end": 16760.68, + "probability": 0.9618 + }, + { + "start": 16761.2, + "end": 16761.28, + "probability": 0.4628 + }, + { + "start": 16761.28, + "end": 16765.86, + "probability": 0.9376 + }, + { + "start": 16765.98, + "end": 16768.44, + "probability": 0.6663 + }, + { + "start": 16768.52, + "end": 16768.7, + "probability": 0.443 + }, + { + "start": 16769.44, + "end": 16769.98, + "probability": 0.6095 + }, + { + "start": 16770.56, + "end": 16771.2, + "probability": 0.7393 + }, + { + "start": 16788.07, + "end": 16788.84, + "probability": 0.002 + }, + { + "start": 16788.84, + "end": 16789.24, + "probability": 0.2847 + }, + { + "start": 16789.78, + "end": 16791.82, + "probability": 0.6175 + }, + { + "start": 16792.14, + "end": 16793.86, + "probability": 0.8206 + }, + { + "start": 16794.3, + "end": 16796.04, + "probability": 0.9706 + }, + { + "start": 16796.72, + "end": 16797.82, + "probability": 0.7372 + }, + { + "start": 16798.4, + "end": 16799.12, + "probability": 0.9691 + }, + { + "start": 16808.36, + "end": 16808.36, + "probability": 0.1729 + }, + { + "start": 16808.36, + "end": 16808.36, + "probability": 0.0904 + }, + { + "start": 16808.36, + "end": 16808.42, + "probability": 0.1187 + }, + { + "start": 16808.42, + "end": 16808.42, + "probability": 0.0411 + }, + { + "start": 16815.34, + "end": 16817.22, + "probability": 0.3255 + }, + { + "start": 16817.26, + "end": 16817.42, + "probability": 0.1197 + }, + { + "start": 16817.46, + "end": 16817.7, + "probability": 0.3383 + }, + { + "start": 16817.84, + "end": 16819.8, + "probability": 0.9203 + }, + { + "start": 16819.94, + "end": 16821.14, + "probability": 0.4768 + }, + { + "start": 16822.89, + "end": 16825.42, + "probability": 0.9437 + }, + { + "start": 16826.08, + "end": 16828.76, + "probability": 0.9976 + }, + { + "start": 16829.16, + "end": 16830.22, + "probability": 0.8219 + }, + { + "start": 16830.78, + "end": 16833.04, + "probability": 0.7576 + }, + { + "start": 16845.02, + "end": 16847.6, + "probability": 0.7027 + }, + { + "start": 16848.34, + "end": 16851.2, + "probability": 0.9096 + }, + { + "start": 16851.76, + "end": 16853.06, + "probability": 0.945 + }, + { + "start": 16853.72, + "end": 16855.34, + "probability": 0.9741 + }, + { + "start": 16855.98, + "end": 16859.78, + "probability": 0.749 + }, + { + "start": 16860.6, + "end": 16861.34, + "probability": 0.7332 + }, + { + "start": 16862.1, + "end": 16862.77, + "probability": 0.9402 + }, + { + "start": 16863.52, + "end": 16865.13, + "probability": 0.9797 + }, + { + "start": 16865.68, + "end": 16866.24, + "probability": 0.8905 + }, + { + "start": 16867.5, + "end": 16869.47, + "probability": 0.7591 + }, + { + "start": 16870.4, + "end": 16872.8, + "probability": 0.9572 + }, + { + "start": 16874.0, + "end": 16876.86, + "probability": 0.9695 + }, + { + "start": 16876.94, + "end": 16879.3, + "probability": 0.9739 + }, + { + "start": 16881.2, + "end": 16884.6, + "probability": 0.9805 + }, + { + "start": 16884.78, + "end": 16888.36, + "probability": 0.9955 + }, + { + "start": 16889.06, + "end": 16889.38, + "probability": 0.5012 + }, + { + "start": 16889.52, + "end": 16890.02, + "probability": 0.5319 + }, + { + "start": 16890.06, + "end": 16890.32, + "probability": 0.6526 + }, + { + "start": 16890.46, + "end": 16890.82, + "probability": 0.7302 + }, + { + "start": 16891.18, + "end": 16892.82, + "probability": 0.8539 + }, + { + "start": 16893.82, + "end": 16895.98, + "probability": 0.977 + }, + { + "start": 16896.24, + "end": 16898.76, + "probability": 0.9945 + }, + { + "start": 16898.86, + "end": 16899.22, + "probability": 0.9741 + }, + { + "start": 16899.76, + "end": 16902.83, + "probability": 0.9966 + }, + { + "start": 16903.64, + "end": 16908.3, + "probability": 0.9823 + }, + { + "start": 16908.48, + "end": 16910.06, + "probability": 0.991 + }, + { + "start": 16910.22, + "end": 16911.46, + "probability": 0.9739 + }, + { + "start": 16911.94, + "end": 16913.98, + "probability": 0.9917 + }, + { + "start": 16914.48, + "end": 16917.88, + "probability": 0.8411 + }, + { + "start": 16918.8, + "end": 16923.0, + "probability": 0.951 + }, + { + "start": 16923.54, + "end": 16924.44, + "probability": 0.7807 + }, + { + "start": 16925.14, + "end": 16926.42, + "probability": 0.7213 + }, + { + "start": 16927.02, + "end": 16929.34, + "probability": 0.8993 + }, + { + "start": 16930.74, + "end": 16931.6, + "probability": 0.7436 + }, + { + "start": 16931.84, + "end": 16932.1, + "probability": 0.8331 + }, + { + "start": 16932.18, + "end": 16936.2, + "probability": 0.9955 + }, + { + "start": 16937.18, + "end": 16937.66, + "probability": 0.5588 + }, + { + "start": 16938.02, + "end": 16939.96, + "probability": 0.7705 + }, + { + "start": 16940.32, + "end": 16945.76, + "probability": 0.9556 + }, + { + "start": 16946.38, + "end": 16950.45, + "probability": 0.9929 + }, + { + "start": 16950.68, + "end": 16951.94, + "probability": 0.9922 + }, + { + "start": 16952.1, + "end": 16953.18, + "probability": 0.8018 + }, + { + "start": 16953.82, + "end": 16954.54, + "probability": 0.7745 + }, + { + "start": 16954.74, + "end": 16959.08, + "probability": 0.9957 + }, + { + "start": 16959.82, + "end": 16962.82, + "probability": 0.9968 + }, + { + "start": 16963.02, + "end": 16964.96, + "probability": 0.9013 + }, + { + "start": 16966.04, + "end": 16967.48, + "probability": 0.7362 + }, + { + "start": 16968.14, + "end": 16971.14, + "probability": 0.9883 + }, + { + "start": 16971.8, + "end": 16973.32, + "probability": 0.842 + }, + { + "start": 16974.63, + "end": 16978.3, + "probability": 0.9839 + }, + { + "start": 16978.56, + "end": 16981.58, + "probability": 0.9723 + }, + { + "start": 16981.68, + "end": 16982.9, + "probability": 0.961 + }, + { + "start": 16982.98, + "end": 16983.4, + "probability": 0.6804 + }, + { + "start": 16984.1, + "end": 16986.12, + "probability": 0.9961 + }, + { + "start": 16986.44, + "end": 16987.68, + "probability": 0.8302 + }, + { + "start": 16988.5, + "end": 16994.34, + "probability": 0.9843 + }, + { + "start": 16996.66, + "end": 16998.04, + "probability": 0.9374 + }, + { + "start": 16998.2, + "end": 16998.9, + "probability": 0.7377 + }, + { + "start": 16999.08, + "end": 16999.84, + "probability": 0.7886 + }, + { + "start": 16999.94, + "end": 17000.82, + "probability": 0.9666 + }, + { + "start": 17001.36, + "end": 17004.64, + "probability": 0.9953 + }, + { + "start": 17006.14, + "end": 17008.48, + "probability": 0.9951 + }, + { + "start": 17008.8, + "end": 17009.92, + "probability": 0.9922 + }, + { + "start": 17010.32, + "end": 17014.05, + "probability": 0.9885 + }, + { + "start": 17014.62, + "end": 17015.5, + "probability": 0.8558 + }, + { + "start": 17016.26, + "end": 17016.78, + "probability": 0.9262 + }, + { + "start": 17016.9, + "end": 17017.18, + "probability": 0.4314 + }, + { + "start": 17017.32, + "end": 17018.68, + "probability": 0.9248 + }, + { + "start": 17018.76, + "end": 17023.38, + "probability": 0.9507 + }, + { + "start": 17023.68, + "end": 17023.96, + "probability": 0.7386 + }, + { + "start": 17024.2, + "end": 17025.74, + "probability": 0.632 + }, + { + "start": 17025.94, + "end": 17029.58, + "probability": 0.8662 + }, + { + "start": 17039.94, + "end": 17040.48, + "probability": 0.5256 + }, + { + "start": 17040.78, + "end": 17042.22, + "probability": 0.6547 + }, + { + "start": 17042.32, + "end": 17042.66, + "probability": 0.4975 + }, + { + "start": 17042.66, + "end": 17044.98, + "probability": 0.8107 + }, + { + "start": 17045.32, + "end": 17045.52, + "probability": 0.8206 + }, + { + "start": 17047.06, + "end": 17049.08, + "probability": 0.9578 + }, + { + "start": 17050.87, + "end": 17053.37, + "probability": 0.9746 + }, + { + "start": 17054.0, + "end": 17056.66, + "probability": 0.8808 + }, + { + "start": 17057.6, + "end": 17061.22, + "probability": 0.9897 + }, + { + "start": 17061.38, + "end": 17063.26, + "probability": 0.9637 + }, + { + "start": 17063.84, + "end": 17067.08, + "probability": 0.9778 + }, + { + "start": 17067.5, + "end": 17068.9, + "probability": 0.9663 + }, + { + "start": 17069.18, + "end": 17071.94, + "probability": 0.9061 + }, + { + "start": 17072.12, + "end": 17072.6, + "probability": 0.498 + }, + { + "start": 17072.64, + "end": 17073.66, + "probability": 0.7589 + }, + { + "start": 17074.16, + "end": 17078.46, + "probability": 0.9731 + }, + { + "start": 17078.78, + "end": 17080.4, + "probability": 0.994 + }, + { + "start": 17080.94, + "end": 17081.92, + "probability": 0.9983 + }, + { + "start": 17082.44, + "end": 17086.38, + "probability": 0.9979 + }, + { + "start": 17086.48, + "end": 17090.22, + "probability": 0.9943 + }, + { + "start": 17090.3, + "end": 17091.32, + "probability": 0.9485 + }, + { + "start": 17091.88, + "end": 17093.38, + "probability": 0.8955 + }, + { + "start": 17094.86, + "end": 17098.66, + "probability": 0.957 + }, + { + "start": 17099.44, + "end": 17102.88, + "probability": 0.9656 + }, + { + "start": 17103.64, + "end": 17105.0, + "probability": 0.7408 + }, + { + "start": 17105.82, + "end": 17105.92, + "probability": 0.3571 + }, + { + "start": 17106.12, + "end": 17106.98, + "probability": 0.8346 + }, + { + "start": 17107.12, + "end": 17107.84, + "probability": 0.785 + }, + { + "start": 17108.16, + "end": 17109.56, + "probability": 0.9906 + }, + { + "start": 17110.06, + "end": 17110.86, + "probability": 0.9044 + }, + { + "start": 17111.4, + "end": 17113.32, + "probability": 0.9512 + }, + { + "start": 17113.36, + "end": 17115.8, + "probability": 0.9666 + }, + { + "start": 17116.2, + "end": 17116.8, + "probability": 0.8967 + }, + { + "start": 17116.84, + "end": 17117.44, + "probability": 0.9426 + }, + { + "start": 17117.58, + "end": 17119.0, + "probability": 0.8477 + }, + { + "start": 17119.2, + "end": 17122.98, + "probability": 0.992 + }, + { + "start": 17123.02, + "end": 17127.34, + "probability": 0.9937 + }, + { + "start": 17127.38, + "end": 17130.92, + "probability": 0.9666 + }, + { + "start": 17131.66, + "end": 17131.86, + "probability": 0.6145 + }, + { + "start": 17132.12, + "end": 17135.46, + "probability": 0.9917 + }, + { + "start": 17136.06, + "end": 17139.26, + "probability": 0.9971 + }, + { + "start": 17141.15, + "end": 17143.0, + "probability": 0.9968 + }, + { + "start": 17143.56, + "end": 17145.66, + "probability": 0.976 + }, + { + "start": 17146.12, + "end": 17148.8, + "probability": 0.9788 + }, + { + "start": 17148.98, + "end": 17149.44, + "probability": 0.4611 + }, + { + "start": 17149.72, + "end": 17150.02, + "probability": 0.5028 + }, + { + "start": 17150.6, + "end": 17157.0, + "probability": 0.9861 + }, + { + "start": 17157.88, + "end": 17160.56, + "probability": 0.9222 + }, + { + "start": 17160.88, + "end": 17162.74, + "probability": 0.9958 + }, + { + "start": 17163.14, + "end": 17165.14, + "probability": 0.6837 + }, + { + "start": 17165.76, + "end": 17167.28, + "probability": 0.8819 + }, + { + "start": 17167.74, + "end": 17170.3, + "probability": 0.9305 + }, + { + "start": 17170.82, + "end": 17172.06, + "probability": 0.8901 + }, + { + "start": 17172.2, + "end": 17173.86, + "probability": 0.9953 + }, + { + "start": 17174.68, + "end": 17177.06, + "probability": 0.9768 + }, + { + "start": 17177.7, + "end": 17179.72, + "probability": 0.7834 + }, + { + "start": 17179.9, + "end": 17180.7, + "probability": 0.7586 + }, + { + "start": 17181.16, + "end": 17183.18, + "probability": 0.9408 + }, + { + "start": 17183.56, + "end": 17185.48, + "probability": 0.9895 + }, + { + "start": 17186.12, + "end": 17188.78, + "probability": 0.9646 + }, + { + "start": 17189.12, + "end": 17195.06, + "probability": 0.7944 + }, + { + "start": 17195.22, + "end": 17195.58, + "probability": 0.8048 + }, + { + "start": 17195.68, + "end": 17197.62, + "probability": 0.9392 + }, + { + "start": 17198.24, + "end": 17200.56, + "probability": 0.997 + }, + { + "start": 17201.16, + "end": 17208.12, + "probability": 0.9581 + }, + { + "start": 17208.46, + "end": 17212.5, + "probability": 0.9737 + }, + { + "start": 17212.9, + "end": 17213.24, + "probability": 0.9372 + }, + { + "start": 17214.62, + "end": 17214.86, + "probability": 0.9063 + }, + { + "start": 17215.74, + "end": 17217.89, + "probability": 0.9395 + }, + { + "start": 17218.66, + "end": 17221.82, + "probability": 0.7872 + }, + { + "start": 17223.32, + "end": 17224.8, + "probability": 0.7326 + }, + { + "start": 17227.14, + "end": 17231.98, + "probability": 0.7439 + }, + { + "start": 17232.22, + "end": 17232.52, + "probability": 0.5447 + }, + { + "start": 17233.32, + "end": 17233.42, + "probability": 0.3353 + }, + { + "start": 17233.94, + "end": 17235.6, + "probability": 0.7873 + }, + { + "start": 17236.3, + "end": 17241.91, + "probability": 0.9905 + }, + { + "start": 17266.9, + "end": 17267.64, + "probability": 0.6106 + }, + { + "start": 17268.26, + "end": 17270.64, + "probability": 0.8542 + }, + { + "start": 17274.56, + "end": 17275.76, + "probability": 0.5254 + }, + { + "start": 17278.06, + "end": 17278.88, + "probability": 0.0011 + }, + { + "start": 17280.88, + "end": 17287.18, + "probability": 0.9916 + }, + { + "start": 17287.58, + "end": 17287.8, + "probability": 0.4292 + }, + { + "start": 17291.94, + "end": 17293.48, + "probability": 0.8728 + }, + { + "start": 17294.34, + "end": 17295.7, + "probability": 0.7407 + }, + { + "start": 17296.44, + "end": 17298.82, + "probability": 0.9938 + }, + { + "start": 17299.68, + "end": 17301.3, + "probability": 0.9597 + }, + { + "start": 17302.04, + "end": 17302.76, + "probability": 0.993 + }, + { + "start": 17303.94, + "end": 17304.84, + "probability": 0.9278 + }, + { + "start": 17305.74, + "end": 17307.2, + "probability": 0.7965 + }, + { + "start": 17308.0, + "end": 17308.7, + "probability": 0.8008 + }, + { + "start": 17311.7, + "end": 17312.94, + "probability": 0.8007 + }, + { + "start": 17313.94, + "end": 17314.7, + "probability": 0.93 + }, + { + "start": 17316.26, + "end": 17319.32, + "probability": 0.995 + }, + { + "start": 17319.44, + "end": 17322.8, + "probability": 0.9915 + }, + { + "start": 17324.24, + "end": 17325.92, + "probability": 0.7443 + }, + { + "start": 17326.58, + "end": 17328.08, + "probability": 0.9591 + }, + { + "start": 17328.8, + "end": 17330.12, + "probability": 0.9005 + }, + { + "start": 17330.8, + "end": 17332.8, + "probability": 0.9829 + }, + { + "start": 17332.8, + "end": 17335.02, + "probability": 0.9933 + }, + { + "start": 17336.4, + "end": 17337.04, + "probability": 0.6416 + }, + { + "start": 17338.26, + "end": 17339.28, + "probability": 0.979 + }, + { + "start": 17339.8, + "end": 17340.9, + "probability": 0.9897 + }, + { + "start": 17341.54, + "end": 17342.46, + "probability": 0.9956 + }, + { + "start": 17343.08, + "end": 17347.5, + "probability": 0.9945 + }, + { + "start": 17348.32, + "end": 17348.86, + "probability": 0.9932 + }, + { + "start": 17350.22, + "end": 17350.72, + "probability": 0.9585 + }, + { + "start": 17352.0, + "end": 17355.18, + "probability": 0.9521 + }, + { + "start": 17357.24, + "end": 17360.26, + "probability": 0.7621 + }, + { + "start": 17360.86, + "end": 17364.32, + "probability": 0.9899 + }, + { + "start": 17365.08, + "end": 17367.88, + "probability": 0.9965 + }, + { + "start": 17368.16, + "end": 17370.82, + "probability": 0.9954 + }, + { + "start": 17372.28, + "end": 17378.6, + "probability": 0.9828 + }, + { + "start": 17380.42, + "end": 17380.9, + "probability": 0.7992 + }, + { + "start": 17382.28, + "end": 17385.48, + "probability": 0.9946 + }, + { + "start": 17386.62, + "end": 17389.0, + "probability": 0.9874 + }, + { + "start": 17389.58, + "end": 17391.38, + "probability": 0.9795 + }, + { + "start": 17392.44, + "end": 17392.94, + "probability": 0.768 + }, + { + "start": 17393.82, + "end": 17396.1, + "probability": 0.9795 + }, + { + "start": 17396.88, + "end": 17398.62, + "probability": 0.9017 + }, + { + "start": 17399.54, + "end": 17401.3, + "probability": 0.9828 + }, + { + "start": 17402.52, + "end": 17408.02, + "probability": 0.9972 + }, + { + "start": 17408.64, + "end": 17411.2, + "probability": 0.9332 + }, + { + "start": 17411.2, + "end": 17413.92, + "probability": 0.9958 + }, + { + "start": 17415.16, + "end": 17415.5, + "probability": 0.7514 + }, + { + "start": 17416.34, + "end": 17418.84, + "probability": 0.9852 + }, + { + "start": 17419.8, + "end": 17422.32, + "probability": 0.9357 + }, + { + "start": 17423.76, + "end": 17426.72, + "probability": 0.9199 + }, + { + "start": 17426.72, + "end": 17430.2, + "probability": 0.9993 + }, + { + "start": 17430.82, + "end": 17431.44, + "probability": 0.9971 + }, + { + "start": 17432.02, + "end": 17433.02, + "probability": 0.8853 + }, + { + "start": 17434.74, + "end": 17436.44, + "probability": 0.9713 + }, + { + "start": 17437.46, + "end": 17438.14, + "probability": 0.7321 + }, + { + "start": 17438.86, + "end": 17441.64, + "probability": 0.9814 + }, + { + "start": 17442.56, + "end": 17445.7, + "probability": 0.9155 + }, + { + "start": 17446.58, + "end": 17448.66, + "probability": 0.7815 + }, + { + "start": 17449.72, + "end": 17452.4, + "probability": 0.4108 + }, + { + "start": 17452.92, + "end": 17457.58, + "probability": 0.9973 + }, + { + "start": 17458.16, + "end": 17460.06, + "probability": 0.9705 + }, + { + "start": 17460.94, + "end": 17463.26, + "probability": 0.9973 + }, + { + "start": 17463.5, + "end": 17467.28, + "probability": 0.9746 + }, + { + "start": 17468.34, + "end": 17470.42, + "probability": 0.9617 + }, + { + "start": 17470.9, + "end": 17473.62, + "probability": 0.9737 + }, + { + "start": 17475.22, + "end": 17477.58, + "probability": 0.9865 + }, + { + "start": 17478.22, + "end": 17480.0, + "probability": 0.9985 + }, + { + "start": 17480.68, + "end": 17482.24, + "probability": 0.9867 + }, + { + "start": 17484.68, + "end": 17484.8, + "probability": 0.3336 + }, + { + "start": 17485.46, + "end": 17485.74, + "probability": 0.6646 + }, + { + "start": 17486.8, + "end": 17491.22, + "probability": 0.9951 + }, + { + "start": 17491.7, + "end": 17495.24, + "probability": 0.9865 + }, + { + "start": 17495.82, + "end": 17498.82, + "probability": 0.9818 + }, + { + "start": 17500.0, + "end": 17500.18, + "probability": 0.696 + }, + { + "start": 17501.28, + "end": 17504.68, + "probability": 0.9958 + }, + { + "start": 17506.84, + "end": 17508.14, + "probability": 0.9777 + }, + { + "start": 17508.92, + "end": 17510.38, + "probability": 0.8867 + }, + { + "start": 17511.12, + "end": 17512.9, + "probability": 0.9928 + }, + { + "start": 17513.44, + "end": 17515.96, + "probability": 0.9814 + }, + { + "start": 17516.54, + "end": 17517.32, + "probability": 0.8371 + }, + { + "start": 17518.18, + "end": 17520.4, + "probability": 0.9914 + }, + { + "start": 17521.06, + "end": 17522.44, + "probability": 0.9985 + }, + { + "start": 17523.04, + "end": 17524.24, + "probability": 0.9737 + }, + { + "start": 17524.74, + "end": 17526.4, + "probability": 0.8727 + }, + { + "start": 17527.32, + "end": 17527.84, + "probability": 0.8654 + }, + { + "start": 17528.8, + "end": 17532.5, + "probability": 0.9987 + }, + { + "start": 17533.9, + "end": 17535.86, + "probability": 0.7812 + }, + { + "start": 17536.52, + "end": 17538.66, + "probability": 0.9855 + }, + { + "start": 17539.78, + "end": 17540.94, + "probability": 0.9034 + }, + { + "start": 17542.1, + "end": 17544.48, + "probability": 0.9712 + }, + { + "start": 17545.26, + "end": 17548.46, + "probability": 0.9974 + }, + { + "start": 17549.9, + "end": 17550.78, + "probability": 0.6527 + }, + { + "start": 17550.94, + "end": 17553.62, + "probability": 0.9907 + }, + { + "start": 17554.38, + "end": 17557.48, + "probability": 0.9823 + }, + { + "start": 17557.48, + "end": 17560.14, + "probability": 0.9958 + }, + { + "start": 17560.82, + "end": 17561.6, + "probability": 0.5786 + }, + { + "start": 17562.0, + "end": 17566.2, + "probability": 0.9937 + }, + { + "start": 17566.88, + "end": 17569.28, + "probability": 0.9372 + }, + { + "start": 17571.12, + "end": 17572.0, + "probability": 0.8948 + }, + { + "start": 17574.34, + "end": 17576.76, + "probability": 0.9869 + }, + { + "start": 17576.76, + "end": 17579.28, + "probability": 0.9949 + }, + { + "start": 17580.42, + "end": 17581.2, + "probability": 0.9301 + }, + { + "start": 17582.68, + "end": 17583.06, + "probability": 0.5561 + }, + { + "start": 17583.14, + "end": 17586.56, + "probability": 0.9958 + }, + { + "start": 17586.74, + "end": 17587.3, + "probability": 0.7953 + }, + { + "start": 17587.92, + "end": 17590.84, + "probability": 0.9793 + }, + { + "start": 17591.82, + "end": 17593.3, + "probability": 0.9611 + }, + { + "start": 17594.0, + "end": 17595.78, + "probability": 0.8426 + }, + { + "start": 17595.96, + "end": 17596.84, + "probability": 0.6521 + }, + { + "start": 17597.06, + "end": 17602.34, + "probability": 0.9851 + }, + { + "start": 17603.82, + "end": 17604.48, + "probability": 0.887 + }, + { + "start": 17606.2, + "end": 17609.76, + "probability": 0.9902 + }, + { + "start": 17610.58, + "end": 17614.86, + "probability": 0.9932 + }, + { + "start": 17615.6, + "end": 17620.22, + "probability": 0.9846 + }, + { + "start": 17620.88, + "end": 17623.22, + "probability": 0.9961 + }, + { + "start": 17624.0, + "end": 17626.52, + "probability": 0.9976 + }, + { + "start": 17626.52, + "end": 17629.64, + "probability": 0.9998 + }, + { + "start": 17630.48, + "end": 17634.9, + "probability": 0.9434 + }, + { + "start": 17636.26, + "end": 17638.02, + "probability": 0.7097 + }, + { + "start": 17638.68, + "end": 17639.82, + "probability": 0.9663 + }, + { + "start": 17640.18, + "end": 17642.84, + "probability": 0.9569 + }, + { + "start": 17643.52, + "end": 17644.72, + "probability": 0.876 + }, + { + "start": 17645.52, + "end": 17649.22, + "probability": 0.9727 + }, + { + "start": 17649.98, + "end": 17653.1, + "probability": 0.9896 + }, + { + "start": 17653.14, + "end": 17654.96, + "probability": 0.9974 + }, + { + "start": 17656.26, + "end": 17658.36, + "probability": 0.9924 + }, + { + "start": 17659.14, + "end": 17660.74, + "probability": 0.9598 + }, + { + "start": 17661.44, + "end": 17662.18, + "probability": 0.9601 + }, + { + "start": 17663.06, + "end": 17664.14, + "probability": 0.9791 + }, + { + "start": 17664.68, + "end": 17666.2, + "probability": 0.8971 + }, + { + "start": 17668.0, + "end": 17671.1, + "probability": 0.9866 + }, + { + "start": 17671.1, + "end": 17674.52, + "probability": 0.9984 + }, + { + "start": 17675.36, + "end": 17678.6, + "probability": 0.9927 + }, + { + "start": 17679.64, + "end": 17680.1, + "probability": 0.8571 + }, + { + "start": 17680.74, + "end": 17683.96, + "probability": 0.9595 + }, + { + "start": 17685.4, + "end": 17689.16, + "probability": 0.9587 + }, + { + "start": 17689.16, + "end": 17691.28, + "probability": 0.9186 + }, + { + "start": 17691.8, + "end": 17694.76, + "probability": 0.9902 + }, + { + "start": 17695.4, + "end": 17695.62, + "probability": 0.9388 + }, + { + "start": 17696.92, + "end": 17697.52, + "probability": 0.5819 + }, + { + "start": 17697.9, + "end": 17698.42, + "probability": 0.6435 + }, + { + "start": 17698.58, + "end": 17701.16, + "probability": 0.9309 + }, + { + "start": 17702.58, + "end": 17704.02, + "probability": 0.9287 + }, + { + "start": 17704.16, + "end": 17705.74, + "probability": 0.6404 + }, + { + "start": 17706.4, + "end": 17707.72, + "probability": 0.9815 + }, + { + "start": 17709.4, + "end": 17710.08, + "probability": 0.8271 + }, + { + "start": 17711.2, + "end": 17711.72, + "probability": 0.8406 + }, + { + "start": 17713.32, + "end": 17716.12, + "probability": 0.9849 + }, + { + "start": 17717.22, + "end": 17720.46, + "probability": 0.9622 + }, + { + "start": 17721.16, + "end": 17723.96, + "probability": 0.9906 + }, + { + "start": 17725.38, + "end": 17727.16, + "probability": 0.9546 + }, + { + "start": 17727.72, + "end": 17730.78, + "probability": 0.9943 + }, + { + "start": 17731.46, + "end": 17732.2, + "probability": 0.9264 + }, + { + "start": 17732.98, + "end": 17735.84, + "probability": 0.9242 + }, + { + "start": 17736.6, + "end": 17737.8, + "probability": 0.9013 + }, + { + "start": 17739.08, + "end": 17740.36, + "probability": 0.9985 + }, + { + "start": 17741.02, + "end": 17742.67, + "probability": 0.9536 + }, + { + "start": 17743.74, + "end": 17746.6, + "probability": 0.9957 + }, + { + "start": 17747.64, + "end": 17749.86, + "probability": 0.8811 + }, + { + "start": 17750.74, + "end": 17751.64, + "probability": 0.9115 + }, + { + "start": 17751.74, + "end": 17753.42, + "probability": 0.9517 + }, + { + "start": 17754.14, + "end": 17755.04, + "probability": 0.943 + }, + { + "start": 17756.34, + "end": 17758.98, + "probability": 0.9834 + }, + { + "start": 17760.3, + "end": 17761.92, + "probability": 0.7792 + }, + { + "start": 17762.68, + "end": 17764.58, + "probability": 0.5071 + }, + { + "start": 17765.26, + "end": 17765.99, + "probability": 0.9207 + }, + { + "start": 17766.94, + "end": 17768.26, + "probability": 0.942 + }, + { + "start": 17768.96, + "end": 17770.82, + "probability": 0.8115 + }, + { + "start": 17771.64, + "end": 17774.02, + "probability": 0.8359 + }, + { + "start": 17774.98, + "end": 17776.52, + "probability": 0.9493 + }, + { + "start": 17777.8, + "end": 17778.06, + "probability": 0.8498 + }, + { + "start": 17778.44, + "end": 17781.28, + "probability": 0.9108 + }, + { + "start": 17781.38, + "end": 17782.2, + "probability": 0.7225 + }, + { + "start": 17782.3, + "end": 17784.4, + "probability": 0.8843 + }, + { + "start": 17784.52, + "end": 17786.82, + "probability": 0.7475 + }, + { + "start": 17787.32, + "end": 17789.22, + "probability": 0.7747 + }, + { + "start": 17790.02, + "end": 17793.2, + "probability": 0.7249 + }, + { + "start": 17793.4, + "end": 17795.0, + "probability": 0.327 + }, + { + "start": 17795.74, + "end": 17797.24, + "probability": 0.9302 + }, + { + "start": 17797.26, + "end": 17798.4, + "probability": 0.6358 + }, + { + "start": 17798.64, + "end": 17799.02, + "probability": 0.4944 + }, + { + "start": 17816.48, + "end": 17816.84, + "probability": 0.0036 + }, + { + "start": 17816.84, + "end": 17817.14, + "probability": 0.2921 + }, + { + "start": 17817.82, + "end": 17819.88, + "probability": 0.5424 + }, + { + "start": 17820.08, + "end": 17821.62, + "probability": 0.9351 + }, + { + "start": 17821.64, + "end": 17822.8, + "probability": 0.9468 + }, + { + "start": 17823.86, + "end": 17826.4, + "probability": 0.5688 + }, + { + "start": 17827.22, + "end": 17827.86, + "probability": 0.7504 + }, + { + "start": 17847.49, + "end": 17853.16, + "probability": 0.2874 + }, + { + "start": 17854.02, + "end": 17854.62, + "probability": 0.3635 + }, + { + "start": 17856.58, + "end": 17858.92, + "probability": 0.8292 + }, + { + "start": 17861.16, + "end": 17866.2, + "probability": 0.6285 + }, + { + "start": 17866.46, + "end": 17867.04, + "probability": 0.3795 + }, + { + "start": 17867.34, + "end": 17869.82, + "probability": 0.2154 + }, + { + "start": 17870.64, + "end": 17871.92, + "probability": 0.2839 + }, + { + "start": 17871.94, + "end": 17873.3, + "probability": 0.0803 + }, + { + "start": 17873.86, + "end": 17875.76, + "probability": 0.3362 + }, + { + "start": 17878.59, + "end": 17879.02, + "probability": 0.198 + }, + { + "start": 17879.02, + "end": 17879.08, + "probability": 0.2454 + }, + { + "start": 17879.62, + "end": 17880.82, + "probability": 0.3504 + }, + { + "start": 17883.17, + "end": 17885.32, + "probability": 0.0463 + }, + { + "start": 17886.28, + "end": 17887.72, + "probability": 0.2868 + }, + { + "start": 17888.06, + "end": 17888.06, + "probability": 0.025 + }, + { + "start": 17888.06, + "end": 17888.06, + "probability": 0.0733 + }, + { + "start": 17888.06, + "end": 17888.06, + "probability": 0.1276 + }, + { + "start": 17888.06, + "end": 17888.06, + "probability": 0.1068 + }, + { + "start": 17888.06, + "end": 17888.48, + "probability": 0.1751 + }, + { + "start": 17889.34, + "end": 17891.16, + "probability": 0.3632 + }, + { + "start": 17892.72, + "end": 17895.02, + "probability": 0.6073 + }, + { + "start": 17895.1, + "end": 17901.72, + "probability": 0.9888 + }, + { + "start": 17902.42, + "end": 17902.74, + "probability": 0.8928 + }, + { + "start": 17903.28, + "end": 17906.28, + "probability": 0.8825 + }, + { + "start": 17907.14, + "end": 17908.96, + "probability": 0.8983 + }, + { + "start": 17909.7, + "end": 17910.08, + "probability": 0.5268 + }, + { + "start": 17910.82, + "end": 17912.11, + "probability": 0.6652 + }, + { + "start": 17913.0, + "end": 17913.0, + "probability": 0.0 + }, + { + "start": 17913.0, + "end": 17913.0, + "probability": 0.0 + }, + { + "start": 17918.14, + "end": 17921.1, + "probability": 0.6176 + }, + { + "start": 17922.06, + "end": 17924.86, + "probability": 0.886 + }, + { + "start": 17925.7, + "end": 17928.7, + "probability": 0.9611 + }, + { + "start": 17929.42, + "end": 17930.22, + "probability": 0.7828 + }, + { + "start": 17930.86, + "end": 17936.34, + "probability": 0.9592 + }, + { + "start": 17937.06, + "end": 17941.42, + "probability": 0.9785 + }, + { + "start": 17942.02, + "end": 17942.84, + "probability": 0.9226 + }, + { + "start": 17944.12, + "end": 17946.1, + "probability": 0.9924 + }, + { + "start": 17946.66, + "end": 17952.34, + "probability": 0.9741 + }, + { + "start": 17952.5, + "end": 17952.57, + "probability": 0.155 + }, + { + "start": 17953.68, + "end": 17954.72, + "probability": 0.9779 + }, + { + "start": 17954.84, + "end": 17960.82, + "probability": 0.9639 + }, + { + "start": 17961.72, + "end": 17964.08, + "probability": 0.9976 + }, + { + "start": 17964.64, + "end": 17966.08, + "probability": 0.8503 + }, + { + "start": 17966.62, + "end": 17970.92, + "probability": 0.9617 + }, + { + "start": 17971.78, + "end": 17975.02, + "probability": 0.9941 + }, + { + "start": 17977.34, + "end": 17979.24, + "probability": 0.4279 + }, + { + "start": 17980.38, + "end": 17982.06, + "probability": 0.7739 + }, + { + "start": 17982.4, + "end": 17983.56, + "probability": 0.797 + }, + { + "start": 17983.72, + "end": 17986.62, + "probability": 0.9921 + }, + { + "start": 17987.18, + "end": 17988.38, + "probability": 0.8887 + }, + { + "start": 17989.14, + "end": 17993.5, + "probability": 0.9868 + }, + { + "start": 17994.3, + "end": 17996.56, + "probability": 0.9313 + }, + { + "start": 17997.46, + "end": 17998.6, + "probability": 0.7386 + }, + { + "start": 17999.12, + "end": 18001.32, + "probability": 0.8291 + }, + { + "start": 18002.0, + "end": 18003.02, + "probability": 0.9458 + }, + { + "start": 18003.98, + "end": 18007.68, + "probability": 0.9789 + }, + { + "start": 18008.24, + "end": 18010.58, + "probability": 0.9648 + }, + { + "start": 18011.76, + "end": 18014.32, + "probability": 0.6364 + }, + { + "start": 18014.42, + "end": 18017.56, + "probability": 0.8366 + }, + { + "start": 18018.78, + "end": 18021.54, + "probability": 0.9937 + }, + { + "start": 18022.52, + "end": 18027.92, + "probability": 0.9014 + }, + { + "start": 18028.3, + "end": 18029.0, + "probability": 0.4084 + }, + { + "start": 18029.92, + "end": 18030.64, + "probability": 0.9374 + }, + { + "start": 18031.5, + "end": 18035.78, + "probability": 0.9732 + }, + { + "start": 18036.2, + "end": 18039.24, + "probability": 0.9088 + }, + { + "start": 18039.94, + "end": 18044.16, + "probability": 0.8965 + }, + { + "start": 18044.86, + "end": 18048.58, + "probability": 0.7626 + }, + { + "start": 18049.38, + "end": 18050.89, + "probability": 0.9956 + }, + { + "start": 18051.76, + "end": 18055.34, + "probability": 0.9372 + }, + { + "start": 18056.88, + "end": 18057.74, + "probability": 0.6078 + }, + { + "start": 18057.92, + "end": 18058.76, + "probability": 0.5321 + }, + { + "start": 18060.31, + "end": 18062.86, + "probability": 0.9007 + }, + { + "start": 18062.86, + "end": 18066.96, + "probability": 0.8525 + }, + { + "start": 18067.6, + "end": 18070.12, + "probability": 0.9845 + }, + { + "start": 18070.54, + "end": 18076.5, + "probability": 0.9858 + }, + { + "start": 18077.14, + "end": 18078.68, + "probability": 0.9792 + }, + { + "start": 18079.04, + "end": 18086.52, + "probability": 0.925 + }, + { + "start": 18086.92, + "end": 18091.02, + "probability": 0.9929 + }, + { + "start": 18091.08, + "end": 18094.24, + "probability": 0.9963 + }, + { + "start": 18095.08, + "end": 18101.22, + "probability": 0.9785 + }, + { + "start": 18102.06, + "end": 18104.42, + "probability": 0.8208 + }, + { + "start": 18104.98, + "end": 18106.94, + "probability": 0.6825 + }, + { + "start": 18107.64, + "end": 18110.6, + "probability": 0.9738 + }, + { + "start": 18111.4, + "end": 18112.8, + "probability": 0.6829 + }, + { + "start": 18114.03, + "end": 18120.9, + "probability": 0.6356 + }, + { + "start": 18121.44, + "end": 18124.32, + "probability": 0.9624 + }, + { + "start": 18125.7, + "end": 18128.96, + "probability": 0.9897 + }, + { + "start": 18129.52, + "end": 18133.22, + "probability": 0.9707 + }, + { + "start": 18133.38, + "end": 18138.56, + "probability": 0.9932 + }, + { + "start": 18139.82, + "end": 18144.88, + "probability": 0.8844 + }, + { + "start": 18145.34, + "end": 18147.58, + "probability": 0.0581 + }, + { + "start": 18147.84, + "end": 18151.56, + "probability": 0.9888 + }, + { + "start": 18151.56, + "end": 18156.02, + "probability": 0.9875 + }, + { + "start": 18156.62, + "end": 18156.72, + "probability": 0.0534 + }, + { + "start": 18156.82, + "end": 18161.72, + "probability": 0.9502 + }, + { + "start": 18162.38, + "end": 18168.76, + "probability": 0.6963 + }, + { + "start": 18168.76, + "end": 18176.3, + "probability": 0.9955 + }, + { + "start": 18176.84, + "end": 18180.08, + "probability": 0.8902 + }, + { + "start": 18181.3, + "end": 18181.74, + "probability": 0.8265 + }, + { + "start": 18183.4, + "end": 18186.58, + "probability": 0.7482 + }, + { + "start": 18186.9, + "end": 18192.72, + "probability": 0.99 + }, + { + "start": 18193.14, + "end": 18197.66, + "probability": 0.9406 + }, + { + "start": 18198.02, + "end": 18201.76, + "probability": 0.8648 + }, + { + "start": 18203.12, + "end": 18203.88, + "probability": 0.9073 + }, + { + "start": 18204.88, + "end": 18208.32, + "probability": 0.9937 + }, + { + "start": 18208.84, + "end": 18209.2, + "probability": 0.6082 + }, + { + "start": 18209.32, + "end": 18215.1, + "probability": 0.9315 + }, + { + "start": 18215.72, + "end": 18217.92, + "probability": 0.4904 + }, + { + "start": 18218.26, + "end": 18221.86, + "probability": 0.5028 + }, + { + "start": 18222.6, + "end": 18224.82, + "probability": 0.8175 + }, + { + "start": 18225.56, + "end": 18226.48, + "probability": 0.8307 + }, + { + "start": 18227.06, + "end": 18231.3, + "probability": 0.9732 + }, + { + "start": 18232.0, + "end": 18233.74, + "probability": 0.9946 + }, + { + "start": 18234.28, + "end": 18236.44, + "probability": 0.6641 + }, + { + "start": 18236.58, + "end": 18239.88, + "probability": 0.9804 + }, + { + "start": 18239.88, + "end": 18242.6, + "probability": 0.9802 + }, + { + "start": 18243.06, + "end": 18246.46, + "probability": 0.8737 + }, + { + "start": 18247.48, + "end": 18248.38, + "probability": 0.4765 + }, + { + "start": 18248.92, + "end": 18250.36, + "probability": 0.9271 + }, + { + "start": 18250.6, + "end": 18253.88, + "probability": 0.7896 + }, + { + "start": 18254.52, + "end": 18255.78, + "probability": 0.672 + }, + { + "start": 18255.84, + "end": 18257.12, + "probability": 0.7522 + }, + { + "start": 18257.42, + "end": 18261.52, + "probability": 0.7258 + }, + { + "start": 18261.74, + "end": 18263.6, + "probability": 0.6806 + }, + { + "start": 18264.18, + "end": 18267.3, + "probability": 0.9552 + }, + { + "start": 18269.14, + "end": 18271.2, + "probability": 0.668 + }, + { + "start": 18271.34, + "end": 18273.52, + "probability": 0.8268 + }, + { + "start": 18274.02, + "end": 18276.6, + "probability": 0.9968 + }, + { + "start": 18278.11, + "end": 18282.52, + "probability": 0.9665 + }, + { + "start": 18282.6, + "end": 18282.84, + "probability": 0.7674 + }, + { + "start": 18283.22, + "end": 18285.88, + "probability": 0.8271 + }, + { + "start": 18286.06, + "end": 18287.14, + "probability": 0.8836 + }, + { + "start": 18287.18, + "end": 18288.5, + "probability": 0.8032 + }, + { + "start": 18288.64, + "end": 18289.38, + "probability": 0.8761 + }, + { + "start": 18289.94, + "end": 18290.98, + "probability": 0.6892 + }, + { + "start": 18291.52, + "end": 18293.36, + "probability": 0.8309 + }, + { + "start": 18293.68, + "end": 18294.49, + "probability": 0.7998 + }, + { + "start": 18295.32, + "end": 18299.92, + "probability": 0.8417 + }, + { + "start": 18300.0, + "end": 18301.04, + "probability": 0.5202 + }, + { + "start": 18301.94, + "end": 18302.88, + "probability": 0.7387 + }, + { + "start": 18302.92, + "end": 18304.5, + "probability": 0.7025 + }, + { + "start": 18305.08, + "end": 18305.58, + "probability": 0.5912 + }, + { + "start": 18306.92, + "end": 18306.92, + "probability": 0.0882 + }, + { + "start": 18323.34, + "end": 18323.78, + "probability": 0.1027 + }, + { + "start": 18323.78, + "end": 18324.0, + "probability": 0.5576 + }, + { + "start": 18324.58, + "end": 18325.98, + "probability": 0.5092 + }, + { + "start": 18326.38, + "end": 18328.34, + "probability": 0.8687 + }, + { + "start": 18328.66, + "end": 18330.8, + "probability": 0.9932 + }, + { + "start": 18331.4, + "end": 18332.56, + "probability": 0.704 + }, + { + "start": 18332.86, + "end": 18333.58, + "probability": 0.719 + }, + { + "start": 18351.32, + "end": 18354.34, + "probability": 0.6433 + }, + { + "start": 18354.98, + "end": 18355.94, + "probability": 0.1512 + }, + { + "start": 18356.54, + "end": 18357.24, + "probability": 0.4778 + }, + { + "start": 18357.82, + "end": 18358.78, + "probability": 0.3281 + }, + { + "start": 18359.24, + "end": 18359.78, + "probability": 0.2163 + }, + { + "start": 18360.3, + "end": 18361.72, + "probability": 0.7672 + }, + { + "start": 18363.57, + "end": 18365.66, + "probability": 0.5945 + }, + { + "start": 18367.38, + "end": 18368.38, + "probability": 0.4928 + }, + { + "start": 18371.6, + "end": 18371.96, + "probability": 0.2226 + }, + { + "start": 18371.96, + "end": 18373.2, + "probability": 0.4947 + }, + { + "start": 18373.86, + "end": 18375.68, + "probability": 0.9521 + }, + { + "start": 18376.84, + "end": 18377.26, + "probability": 0.2044 + }, + { + "start": 18377.26, + "end": 18379.44, + "probability": 0.87 + }, + { + "start": 18379.7, + "end": 18379.8, + "probability": 0.4637 + }, + { + "start": 18379.8, + "end": 18380.12, + "probability": 0.6318 + }, + { + "start": 18399.76, + "end": 18399.84, + "probability": 0.2288 + }, + { + "start": 18399.84, + "end": 18400.66, + "probability": 0.9246 + }, + { + "start": 18410.08, + "end": 18410.08, + "probability": 0.5868 + }, + { + "start": 18410.08, + "end": 18410.26, + "probability": 0.5166 + }, + { + "start": 18410.38, + "end": 18412.62, + "probability": 0.9529 + }, + { + "start": 18413.26, + "end": 18414.7, + "probability": 0.8101 + }, + { + "start": 18415.38, + "end": 18418.22, + "probability": 0.9027 + }, + { + "start": 18419.3, + "end": 18420.28, + "probability": 0.7938 + }, + { + "start": 18420.88, + "end": 18423.02, + "probability": 0.7808 + }, + { + "start": 18424.8, + "end": 18426.7, + "probability": 0.5503 + }, + { + "start": 18427.26, + "end": 18428.26, + "probability": 0.6503 + }, + { + "start": 18429.06, + "end": 18430.66, + "probability": 0.7749 + }, + { + "start": 18432.42, + "end": 18435.56, + "probability": 0.8337 + }, + { + "start": 18437.32, + "end": 18441.83, + "probability": 0.7764 + }, + { + "start": 18442.74, + "end": 18445.72, + "probability": 0.6444 + }, + { + "start": 18446.8, + "end": 18448.4, + "probability": 0.8561 + }, + { + "start": 18449.26, + "end": 18451.48, + "probability": 0.8823 + }, + { + "start": 18452.16, + "end": 18453.38, + "probability": 0.8986 + }, + { + "start": 18454.16, + "end": 18456.0, + "probability": 0.9412 + }, + { + "start": 18456.06, + "end": 18459.32, + "probability": 0.9847 + }, + { + "start": 18459.32, + "end": 18464.6, + "probability": 0.9803 + }, + { + "start": 18465.54, + "end": 18467.18, + "probability": 0.9813 + }, + { + "start": 18467.76, + "end": 18469.76, + "probability": 0.8589 + }, + { + "start": 18471.2, + "end": 18477.12, + "probability": 0.9441 + }, + { + "start": 18477.64, + "end": 18479.34, + "probability": 0.9676 + }, + { + "start": 18479.86, + "end": 18480.06, + "probability": 0.7387 + }, + { + "start": 18481.04, + "end": 18481.04, + "probability": 0.008 + }, + { + "start": 18481.86, + "end": 18484.72, + "probability": 0.918 + }, + { + "start": 18484.94, + "end": 18485.54, + "probability": 0.8615 + }, + { + "start": 18485.74, + "end": 18486.48, + "probability": 0.8585 + }, + { + "start": 18486.72, + "end": 18486.72, + "probability": 0.0481 + }, + { + "start": 18486.72, + "end": 18487.4, + "probability": 0.3727 + }, + { + "start": 18488.2, + "end": 18490.22, + "probability": 0.6361 + }, + { + "start": 18490.54, + "end": 18493.18, + "probability": 0.5433 + }, + { + "start": 18493.22, + "end": 18496.98, + "probability": 0.9819 + }, + { + "start": 18497.18, + "end": 18499.46, + "probability": 0.9889 + }, + { + "start": 18499.8, + "end": 18501.34, + "probability": 0.9355 + }, + { + "start": 18502.24, + "end": 18503.16, + "probability": 0.7003 + }, + { + "start": 18503.2, + "end": 18504.06, + "probability": 0.8191 + }, + { + "start": 18504.14, + "end": 18506.1, + "probability": 0.9506 + }, + { + "start": 18507.12, + "end": 18507.34, + "probability": 0.6398 + }, + { + "start": 18507.42, + "end": 18509.89, + "probability": 0.9445 + }, + { + "start": 18510.56, + "end": 18512.04, + "probability": 0.704 + }, + { + "start": 18512.66, + "end": 18516.12, + "probability": 0.9021 + }, + { + "start": 18516.8, + "end": 18517.78, + "probability": 0.9549 + }, + { + "start": 18518.57, + "end": 18519.74, + "probability": 0.3928 + }, + { + "start": 18520.12, + "end": 18522.72, + "probability": 0.8726 + }, + { + "start": 18524.06, + "end": 18529.96, + "probability": 0.9897 + }, + { + "start": 18531.58, + "end": 18533.26, + "probability": 0.9585 + }, + { + "start": 18533.86, + "end": 18540.34, + "probability": 0.862 + }, + { + "start": 18540.44, + "end": 18543.94, + "probability": 0.8754 + }, + { + "start": 18544.38, + "end": 18547.26, + "probability": 0.8846 + }, + { + "start": 18547.54, + "end": 18549.48, + "probability": 0.7253 + }, + { + "start": 18549.58, + "end": 18552.28, + "probability": 0.8264 + }, + { + "start": 18552.28, + "end": 18555.44, + "probability": 0.9807 + }, + { + "start": 18556.26, + "end": 18558.04, + "probability": 0.9878 + }, + { + "start": 18558.54, + "end": 18562.76, + "probability": 0.9958 + }, + { + "start": 18563.42, + "end": 18569.11, + "probability": 0.9974 + }, + { + "start": 18569.8, + "end": 18571.52, + "probability": 0.5849 + }, + { + "start": 18572.26, + "end": 18575.84, + "probability": 0.9908 + }, + { + "start": 18577.56, + "end": 18581.38, + "probability": 0.9991 + }, + { + "start": 18581.62, + "end": 18583.94, + "probability": 0.9941 + }, + { + "start": 18584.1, + "end": 18585.16, + "probability": 0.6797 + }, + { + "start": 18585.28, + "end": 18587.68, + "probability": 0.8076 + }, + { + "start": 18588.68, + "end": 18591.1, + "probability": 0.8804 + }, + { + "start": 18591.1, + "end": 18595.08, + "probability": 0.9942 + }, + { + "start": 18596.0, + "end": 18597.68, + "probability": 0.9702 + }, + { + "start": 18598.1, + "end": 18600.24, + "probability": 0.6625 + }, + { + "start": 18601.04, + "end": 18604.68, + "probability": 0.6618 + }, + { + "start": 18605.08, + "end": 18606.0, + "probability": 0.9719 + }, + { + "start": 18606.18, + "end": 18610.04, + "probability": 0.8515 + }, + { + "start": 18610.68, + "end": 18613.58, + "probability": 0.9889 + }, + { + "start": 18614.32, + "end": 18615.34, + "probability": 0.5382 + }, + { + "start": 18615.42, + "end": 18616.3, + "probability": 0.6856 + }, + { + "start": 18617.72, + "end": 18622.66, + "probability": 0.9222 + }, + { + "start": 18623.5, + "end": 18629.74, + "probability": 0.9927 + }, + { + "start": 18630.64, + "end": 18631.56, + "probability": 0.5382 + }, + { + "start": 18632.26, + "end": 18635.14, + "probability": 0.5134 + }, + { + "start": 18636.24, + "end": 18640.18, + "probability": 0.9969 + }, + { + "start": 18640.9, + "end": 18642.76, + "probability": 0.8202 + }, + { + "start": 18655.06, + "end": 18655.88, + "probability": 0.4778 + }, + { + "start": 18658.8, + "end": 18659.36, + "probability": 0.8295 + }, + { + "start": 18660.46, + "end": 18661.28, + "probability": 0.9598 + }, + { + "start": 18664.16, + "end": 18664.76, + "probability": 0.892 + }, + { + "start": 18665.92, + "end": 18669.0, + "probability": 0.8712 + }, + { + "start": 18669.22, + "end": 18669.64, + "probability": 0.6145 + }, + { + "start": 18670.78, + "end": 18671.46, + "probability": 0.7183 + }, + { + "start": 18671.9, + "end": 18674.2, + "probability": 0.9355 + }, + { + "start": 18675.1, + "end": 18677.16, + "probability": 0.8301 + }, + { + "start": 18677.8, + "end": 18678.56, + "probability": 0.7539 + }, + { + "start": 18679.3, + "end": 18681.62, + "probability": 0.9341 + }, + { + "start": 18681.82, + "end": 18683.58, + "probability": 0.8257 + }, + { + "start": 18684.12, + "end": 18685.52, + "probability": 0.947 + }, + { + "start": 18686.44, + "end": 18689.88, + "probability": 0.9629 + }, + { + "start": 18690.3, + "end": 18691.64, + "probability": 0.8461 + }, + { + "start": 18692.62, + "end": 18693.42, + "probability": 0.8587 + }, + { + "start": 18693.94, + "end": 18694.34, + "probability": 0.9872 + }, + { + "start": 18694.9, + "end": 18695.62, + "probability": 0.6794 + }, + { + "start": 18695.68, + "end": 18696.14, + "probability": 0.9622 + }, + { + "start": 18696.56, + "end": 18699.96, + "probability": 0.9867 + }, + { + "start": 18700.48, + "end": 18703.06, + "probability": 0.9885 + }, + { + "start": 18704.04, + "end": 18704.94, + "probability": 0.7033 + }, + { + "start": 18705.04, + "end": 18705.9, + "probability": 0.9179 + }, + { + "start": 18706.24, + "end": 18708.0, + "probability": 0.9974 + }, + { + "start": 18708.7, + "end": 18710.75, + "probability": 0.9827 + }, + { + "start": 18711.52, + "end": 18713.34, + "probability": 0.9601 + }, + { + "start": 18713.92, + "end": 18716.56, + "probability": 0.9462 + }, + { + "start": 18717.16, + "end": 18719.38, + "probability": 0.834 + }, + { + "start": 18719.74, + "end": 18720.62, + "probability": 0.9725 + }, + { + "start": 18721.16, + "end": 18723.62, + "probability": 0.9656 + }, + { + "start": 18723.92, + "end": 18725.08, + "probability": 0.4179 + }, + { + "start": 18726.38, + "end": 18729.16, + "probability": 0.9927 + }, + { + "start": 18730.84, + "end": 18734.8, + "probability": 0.9202 + }, + { + "start": 18734.98, + "end": 18735.18, + "probability": 0.3225 + }, + { + "start": 18736.1, + "end": 18738.92, + "probability": 0.9136 + }, + { + "start": 18738.92, + "end": 18740.86, + "probability": 0.9972 + }, + { + "start": 18742.34, + "end": 18743.58, + "probability": 0.6903 + }, + { + "start": 18744.84, + "end": 18745.56, + "probability": 0.6897 + }, + { + "start": 18746.52, + "end": 18750.3, + "probability": 0.9837 + }, + { + "start": 18751.5, + "end": 18754.46, + "probability": 0.9807 + }, + { + "start": 18754.8, + "end": 18755.56, + "probability": 0.8261 + }, + { + "start": 18755.62, + "end": 18756.2, + "probability": 0.6764 + }, + { + "start": 18756.2, + "end": 18756.68, + "probability": 0.4933 + }, + { + "start": 18757.58, + "end": 18759.42, + "probability": 0.9833 + }, + { + "start": 18759.66, + "end": 18760.72, + "probability": 0.9961 + }, + { + "start": 18761.4, + "end": 18764.06, + "probability": 0.9138 + }, + { + "start": 18764.9, + "end": 18767.1, + "probability": 0.9886 + }, + { + "start": 18767.78, + "end": 18768.76, + "probability": 0.9775 + }, + { + "start": 18769.74, + "end": 18773.14, + "probability": 0.9712 + }, + { + "start": 18773.74, + "end": 18779.04, + "probability": 0.9945 + }, + { + "start": 18779.36, + "end": 18780.02, + "probability": 0.0198 + }, + { + "start": 18780.72, + "end": 18782.1, + "probability": 0.7974 + }, + { + "start": 18782.44, + "end": 18785.98, + "probability": 0.9922 + }, + { + "start": 18786.86, + "end": 18787.68, + "probability": 0.8733 + }, + { + "start": 18788.58, + "end": 18790.44, + "probability": 0.9939 + }, + { + "start": 18791.38, + "end": 18794.2, + "probability": 0.8054 + }, + { + "start": 18794.36, + "end": 18796.16, + "probability": 0.9353 + }, + { + "start": 18796.58, + "end": 18796.96, + "probability": 0.8898 + }, + { + "start": 18797.3, + "end": 18802.64, + "probability": 0.838 + }, + { + "start": 18802.72, + "end": 18803.1, + "probability": 0.7659 + }, + { + "start": 18803.18, + "end": 18804.98, + "probability": 0.5181 + }, + { + "start": 18805.16, + "end": 18805.82, + "probability": 0.8217 + }, + { + "start": 18805.9, + "end": 18806.57, + "probability": 0.5421 + }, + { + "start": 18808.64, + "end": 18813.54, + "probability": 0.6951 + }, + { + "start": 18815.1, + "end": 18818.36, + "probability": 0.5436 + }, + { + "start": 18818.36, + "end": 18822.66, + "probability": 0.792 + }, + { + "start": 18823.52, + "end": 18826.72, + "probability": 0.9925 + }, + { + "start": 18827.32, + "end": 18830.58, + "probability": 0.5957 + }, + { + "start": 18831.22, + "end": 18831.66, + "probability": 0.7155 + }, + { + "start": 18850.35, + "end": 18855.24, + "probability": 0.2798 + }, + { + "start": 18858.1, + "end": 18860.02, + "probability": 0.0191 + }, + { + "start": 18860.9, + "end": 18862.58, + "probability": 0.216 + }, + { + "start": 18863.32, + "end": 18864.0, + "probability": 0.0315 + }, + { + "start": 18864.0, + "end": 18866.34, + "probability": 0.164 + }, + { + "start": 18868.86, + "end": 18870.28, + "probability": 0.0754 + }, + { + "start": 18870.28, + "end": 18874.42, + "probability": 0.0673 + }, + { + "start": 18874.54, + "end": 18876.72, + "probability": 0.0429 + }, + { + "start": 18878.24, + "end": 18882.16, + "probability": 0.2239 + }, + { + "start": 18883.05, + "end": 18883.56, + "probability": 0.0075 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18939.0, + "end": 18939.0, + "probability": 0.0 + }, + { + "start": 18941.19, + "end": 18942.38, + "probability": 0.0103 + }, + { + "start": 18942.38, + "end": 18942.4, + "probability": 0.0608 + }, + { + "start": 18942.4, + "end": 18943.56, + "probability": 0.0822 + }, + { + "start": 18944.24, + "end": 18945.12, + "probability": 0.4015 + }, + { + "start": 18945.86, + "end": 18946.84, + "probability": 0.8283 + }, + { + "start": 18947.56, + "end": 18949.66, + "probability": 0.9173 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19065.0, + "end": 19065.0, + "probability": 0.0 + }, + { + "start": 19071.34, + "end": 19076.46, + "probability": 0.6671 + }, + { + "start": 19077.42, + "end": 19080.52, + "probability": 0.9736 + }, + { + "start": 19081.04, + "end": 19082.0, + "probability": 0.621 + }, + { + "start": 19082.76, + "end": 19088.52, + "probability": 0.8345 + }, + { + "start": 19089.2, + "end": 19092.1, + "probability": 0.8242 + }, + { + "start": 19093.36, + "end": 19096.4, + "probability": 0.9022 + }, + { + "start": 19096.92, + "end": 19100.08, + "probability": 0.9532 + }, + { + "start": 19100.72, + "end": 19105.06, + "probability": 0.8837 + }, + { + "start": 19106.14, + "end": 19110.72, + "probability": 0.8571 + }, + { + "start": 19111.74, + "end": 19115.18, + "probability": 0.9794 + }, + { + "start": 19116.54, + "end": 19120.26, + "probability": 0.9052 + }, + { + "start": 19121.22, + "end": 19125.08, + "probability": 0.8458 + }, + { + "start": 19125.92, + "end": 19131.34, + "probability": 0.8447 + }, + { + "start": 19132.28, + "end": 19133.92, + "probability": 0.7327 + }, + { + "start": 19134.58, + "end": 19140.86, + "probability": 0.8811 + }, + { + "start": 19141.56, + "end": 19143.74, + "probability": 0.9756 + }, + { + "start": 19144.36, + "end": 19151.52, + "probability": 0.9896 + }, + { + "start": 19152.14, + "end": 19153.16, + "probability": 0.998 + }, + { + "start": 19154.16, + "end": 19159.6, + "probability": 0.9946 + }, + { + "start": 19160.66, + "end": 19161.8, + "probability": 0.8254 + }, + { + "start": 19162.52, + "end": 19166.96, + "probability": 0.9023 + }, + { + "start": 19166.96, + "end": 19171.48, + "probability": 0.7507 + }, + { + "start": 19171.86, + "end": 19172.0, + "probability": 0.7528 + }, + { + "start": 19172.54, + "end": 19177.22, + "probability": 0.8107 + }, + { + "start": 19177.38, + "end": 19178.24, + "probability": 0.9845 + }, + { + "start": 19178.58, + "end": 19181.39, + "probability": 0.9727 + }, + { + "start": 19182.36, + "end": 19182.72, + "probability": 0.3907 + }, + { + "start": 19182.72, + "end": 19185.68, + "probability": 0.8154 + }, + { + "start": 19186.7, + "end": 19188.28, + "probability": 0.3904 + }, + { + "start": 19188.4, + "end": 19189.8, + "probability": 0.855 + }, + { + "start": 19190.32, + "end": 19190.88, + "probability": 0.7339 + }, + { + "start": 19214.36, + "end": 19217.5, + "probability": 0.4047 + }, + { + "start": 19219.42, + "end": 19220.18, + "probability": 0.6808 + }, + { + "start": 19220.48, + "end": 19221.6, + "probability": 0.856 + }, + { + "start": 19221.96, + "end": 19222.46, + "probability": 0.7353 + }, + { + "start": 19222.54, + "end": 19224.88, + "probability": 0.9663 + }, + { + "start": 19225.82, + "end": 19229.29, + "probability": 0.9336 + }, + { + "start": 19230.5, + "end": 19234.0, + "probability": 0.9744 + }, + { + "start": 19235.0, + "end": 19239.98, + "probability": 0.8217 + }, + { + "start": 19240.18, + "end": 19242.08, + "probability": 0.9597 + }, + { + "start": 19242.98, + "end": 19244.73, + "probability": 0.9751 + }, + { + "start": 19246.2, + "end": 19247.64, + "probability": 0.9971 + }, + { + "start": 19247.68, + "end": 19248.46, + "probability": 0.8721 + }, + { + "start": 19248.9, + "end": 19250.08, + "probability": 0.738 + }, + { + "start": 19253.66, + "end": 19255.2, + "probability": 0.8286 + }, + { + "start": 19255.32, + "end": 19256.84, + "probability": 0.6528 + }, + { + "start": 19256.94, + "end": 19261.36, + "probability": 0.9924 + }, + { + "start": 19263.44, + "end": 19264.18, + "probability": 0.9893 + }, + { + "start": 19264.9, + "end": 19267.2, + "probability": 0.9927 + }, + { + "start": 19269.12, + "end": 19270.12, + "probability": 0.9175 + }, + { + "start": 19271.46, + "end": 19271.46, + "probability": 0.9482 + }, + { + "start": 19273.18, + "end": 19274.84, + "probability": 0.9922 + }, + { + "start": 19276.64, + "end": 19277.3, + "probability": 0.899 + }, + { + "start": 19278.76, + "end": 19279.04, + "probability": 0.4935 + }, + { + "start": 19280.1, + "end": 19280.64, + "probability": 0.8784 + }, + { + "start": 19281.4, + "end": 19284.54, + "probability": 0.8179 + }, + { + "start": 19286.86, + "end": 19289.02, + "probability": 0.9855 + }, + { + "start": 19290.78, + "end": 19293.44, + "probability": 0.9988 + }, + { + "start": 19295.42, + "end": 19300.02, + "probability": 0.999 + }, + { + "start": 19300.02, + "end": 19303.12, + "probability": 1.0 + }, + { + "start": 19304.78, + "end": 19306.1, + "probability": 0.6217 + }, + { + "start": 19307.54, + "end": 19309.52, + "probability": 0.9857 + }, + { + "start": 19310.7, + "end": 19313.15, + "probability": 0.825 + }, + { + "start": 19313.88, + "end": 19319.32, + "probability": 0.9796 + }, + { + "start": 19320.6, + "end": 19322.92, + "probability": 0.9921 + }, + { + "start": 19325.78, + "end": 19327.28, + "probability": 0.9652 + }, + { + "start": 19327.58, + "end": 19328.84, + "probability": 0.5083 + }, + { + "start": 19328.9, + "end": 19329.82, + "probability": 0.9217 + }, + { + "start": 19330.68, + "end": 19331.6, + "probability": 0.9607 + }, + { + "start": 19332.7, + "end": 19335.26, + "probability": 0.9783 + }, + { + "start": 19336.32, + "end": 19337.8, + "probability": 0.9021 + }, + { + "start": 19338.44, + "end": 19339.22, + "probability": 0.9714 + }, + { + "start": 19340.08, + "end": 19340.76, + "probability": 0.8264 + }, + { + "start": 19341.72, + "end": 19344.2, + "probability": 0.9603 + }, + { + "start": 19345.42, + "end": 19346.76, + "probability": 0.5261 + }, + { + "start": 19347.72, + "end": 19351.5, + "probability": 0.9468 + }, + { + "start": 19352.18, + "end": 19355.48, + "probability": 0.9832 + }, + { + "start": 19356.14, + "end": 19358.14, + "probability": 0.7481 + }, + { + "start": 19359.2, + "end": 19361.32, + "probability": 0.9986 + }, + { + "start": 19361.44, + "end": 19363.04, + "probability": 0.9941 + }, + { + "start": 19364.48, + "end": 19366.12, + "probability": 0.9832 + }, + { + "start": 19366.56, + "end": 19367.56, + "probability": 0.9603 + }, + { + "start": 19368.8, + "end": 19372.1, + "probability": 0.9725 + }, + { + "start": 19372.64, + "end": 19378.1, + "probability": 0.9946 + }, + { + "start": 19379.24, + "end": 19380.32, + "probability": 0.584 + }, + { + "start": 19381.28, + "end": 19382.14, + "probability": 0.9037 + }, + { + "start": 19382.64, + "end": 19383.52, + "probability": 0.9689 + }, + { + "start": 19383.92, + "end": 19386.58, + "probability": 0.9825 + }, + { + "start": 19387.72, + "end": 19390.34, + "probability": 0.9419 + }, + { + "start": 19391.0, + "end": 19392.7, + "probability": 0.9951 + }, + { + "start": 19392.88, + "end": 19393.46, + "probability": 0.8651 + }, + { + "start": 19394.78, + "end": 19394.96, + "probability": 0.832 + }, + { + "start": 19395.4, + "end": 19396.17, + "probability": 0.8456 + }, + { + "start": 19396.22, + "end": 19398.92, + "probability": 0.9861 + }, + { + "start": 19399.38, + "end": 19400.66, + "probability": 0.9805 + }, + { + "start": 19401.3, + "end": 19403.82, + "probability": 0.9021 + }, + { + "start": 19404.76, + "end": 19407.6, + "probability": 0.9707 + }, + { + "start": 19408.06, + "end": 19409.22, + "probability": 0.8382 + }, + { + "start": 19409.26, + "end": 19411.12, + "probability": 0.9734 + }, + { + "start": 19411.44, + "end": 19415.3, + "probability": 0.9484 + }, + { + "start": 19415.38, + "end": 19416.06, + "probability": 0.9351 + }, + { + "start": 19416.08, + "end": 19417.32, + "probability": 0.7233 + }, + { + "start": 19417.74, + "end": 19419.9, + "probability": 0.987 + }, + { + "start": 19419.96, + "end": 19420.64, + "probability": 0.959 + }, + { + "start": 19421.06, + "end": 19423.0, + "probability": 0.9799 + }, + { + "start": 19423.38, + "end": 19425.74, + "probability": 0.9372 + }, + { + "start": 19426.5, + "end": 19428.78, + "probability": 0.9193 + }, + { + "start": 19430.62, + "end": 19430.94, + "probability": 0.2239 + }, + { + "start": 19430.94, + "end": 19434.32, + "probability": 0.9113 + }, + { + "start": 19434.78, + "end": 19437.08, + "probability": 0.8614 + }, + { + "start": 19437.66, + "end": 19439.12, + "probability": 0.9053 + }, + { + "start": 19439.56, + "end": 19441.7, + "probability": 0.9894 + }, + { + "start": 19442.14, + "end": 19447.42, + "probability": 0.8904 + }, + { + "start": 19448.06, + "end": 19449.66, + "probability": 0.9466 + }, + { + "start": 19450.02, + "end": 19451.6, + "probability": 0.9169 + }, + { + "start": 19451.62, + "end": 19452.86, + "probability": 0.9956 + }, + { + "start": 19453.14, + "end": 19453.56, + "probability": 0.8644 + }, + { + "start": 19454.14, + "end": 19456.22, + "probability": 0.9679 + }, + { + "start": 19456.66, + "end": 19456.96, + "probability": 0.7482 + }, + { + "start": 19458.32, + "end": 19459.66, + "probability": 0.763 + }, + { + "start": 19467.91, + "end": 19468.68, + "probability": 0.7331 + }, + { + "start": 19479.36, + "end": 19481.0, + "probability": 0.5404 + }, + { + "start": 19483.26, + "end": 19484.38, + "probability": 0.6811 + }, + { + "start": 19485.62, + "end": 19490.48, + "probability": 0.9647 + }, + { + "start": 19492.06, + "end": 19493.38, + "probability": 0.9846 + }, + { + "start": 19494.7, + "end": 19495.32, + "probability": 0.9543 + }, + { + "start": 19496.78, + "end": 19499.78, + "probability": 0.9454 + }, + { + "start": 19500.84, + "end": 19503.79, + "probability": 0.9612 + }, + { + "start": 19504.78, + "end": 19505.7, + "probability": 0.8073 + }, + { + "start": 19508.28, + "end": 19508.96, + "probability": 0.7735 + }, + { + "start": 19509.64, + "end": 19510.5, + "probability": 0.9748 + }, + { + "start": 19511.62, + "end": 19515.34, + "probability": 0.7291 + }, + { + "start": 19516.56, + "end": 19519.86, + "probability": 0.8337 + }, + { + "start": 19520.6, + "end": 19521.12, + "probability": 0.6215 + }, + { + "start": 19521.7, + "end": 19523.06, + "probability": 0.7202 + }, + { + "start": 19523.24, + "end": 19525.88, + "probability": 0.8445 + }, + { + "start": 19526.5, + "end": 19527.74, + "probability": 0.9802 + }, + { + "start": 19529.08, + "end": 19530.08, + "probability": 0.8366 + }, + { + "start": 19531.62, + "end": 19534.28, + "probability": 0.9855 + }, + { + "start": 19534.8, + "end": 19539.54, + "probability": 0.7938 + }, + { + "start": 19541.2, + "end": 19544.34, + "probability": 0.9644 + }, + { + "start": 19544.56, + "end": 19545.46, + "probability": 0.902 + }, + { + "start": 19546.26, + "end": 19547.48, + "probability": 0.7036 + }, + { + "start": 19547.96, + "end": 19549.55, + "probability": 0.8324 + }, + { + "start": 19550.18, + "end": 19552.42, + "probability": 0.9797 + }, + { + "start": 19552.92, + "end": 19555.0, + "probability": 0.998 + }, + { + "start": 19556.08, + "end": 19558.74, + "probability": 0.6877 + }, + { + "start": 19559.86, + "end": 19560.92, + "probability": 0.9941 + }, + { + "start": 19561.72, + "end": 19563.75, + "probability": 0.9966 + }, + { + "start": 19564.92, + "end": 19565.82, + "probability": 0.6912 + }, + { + "start": 19567.2, + "end": 19567.78, + "probability": 0.7989 + }, + { + "start": 19569.46, + "end": 19572.26, + "probability": 0.9829 + }, + { + "start": 19573.12, + "end": 19576.44, + "probability": 0.8962 + }, + { + "start": 19577.56, + "end": 19578.68, + "probability": 0.9874 + }, + { + "start": 19579.7, + "end": 19581.38, + "probability": 0.831 + }, + { + "start": 19582.56, + "end": 19583.08, + "probability": 0.6359 + }, + { + "start": 19583.08, + "end": 19585.28, + "probability": 0.7246 + }, + { + "start": 19586.48, + "end": 19587.26, + "probability": 0.9372 + }, + { + "start": 19587.88, + "end": 19589.4, + "probability": 0.9946 + }, + { + "start": 19590.12, + "end": 19595.02, + "probability": 0.7414 + }, + { + "start": 19595.34, + "end": 19595.72, + "probability": 0.716 + }, + { + "start": 19597.28, + "end": 19598.72, + "probability": 0.9033 + }, + { + "start": 19599.64, + "end": 19603.0, + "probability": 0.9961 + }, + { + "start": 19603.86, + "end": 19604.64, + "probability": 0.8472 + }, + { + "start": 19605.26, + "end": 19606.66, + "probability": 0.8187 + }, + { + "start": 19607.7, + "end": 19608.58, + "probability": 0.9835 + }, + { + "start": 19609.6, + "end": 19612.07, + "probability": 0.9772 + }, + { + "start": 19613.06, + "end": 19616.24, + "probability": 0.9518 + }, + { + "start": 19616.94, + "end": 19618.04, + "probability": 0.8089 + }, + { + "start": 19618.8, + "end": 19619.72, + "probability": 0.9997 + }, + { + "start": 19620.32, + "end": 19621.64, + "probability": 0.9758 + }, + { + "start": 19623.04, + "end": 19623.86, + "probability": 0.9401 + }, + { + "start": 19625.2, + "end": 19626.3, + "probability": 0.9592 + }, + { + "start": 19626.96, + "end": 19628.78, + "probability": 0.9214 + }, + { + "start": 19629.52, + "end": 19630.34, + "probability": 0.9918 + }, + { + "start": 19630.92, + "end": 19633.94, + "probability": 0.8525 + }, + { + "start": 19634.92, + "end": 19636.34, + "probability": 0.8448 + }, + { + "start": 19637.46, + "end": 19641.18, + "probability": 0.9822 + }, + { + "start": 19642.14, + "end": 19643.16, + "probability": 0.7501 + }, + { + "start": 19644.04, + "end": 19644.56, + "probability": 0.6777 + }, + { + "start": 19645.78, + "end": 19647.52, + "probability": 0.8188 + }, + { + "start": 19648.1, + "end": 19649.2, + "probability": 0.8923 + }, + { + "start": 19649.78, + "end": 19650.39, + "probability": 0.9546 + }, + { + "start": 19651.86, + "end": 19654.5, + "probability": 0.9608 + }, + { + "start": 19654.6, + "end": 19655.04, + "probability": 0.9427 + }, + { + "start": 19656.8, + "end": 19657.5, + "probability": 0.8957 + }, + { + "start": 19658.5, + "end": 19662.66, + "probability": 0.9102 + }, + { + "start": 19663.66, + "end": 19667.48, + "probability": 0.9543 + }, + { + "start": 19670.32, + "end": 19675.08, + "probability": 0.9731 + }, + { + "start": 19676.9, + "end": 19678.62, + "probability": 0.8597 + }, + { + "start": 19679.8, + "end": 19683.2, + "probability": 0.9404 + }, + { + "start": 19684.06, + "end": 19686.04, + "probability": 0.9814 + }, + { + "start": 19686.56, + "end": 19688.92, + "probability": 0.8687 + }, + { + "start": 19689.64, + "end": 19691.46, + "probability": 0.914 + }, + { + "start": 19692.34, + "end": 19694.08, + "probability": 0.6724 + }, + { + "start": 19694.62, + "end": 19696.1, + "probability": 0.6365 + }, + { + "start": 19696.58, + "end": 19697.3, + "probability": 0.6328 + }, + { + "start": 19697.5, + "end": 19699.12, + "probability": 0.994 + }, + { + "start": 19700.02, + "end": 19705.22, + "probability": 0.977 + }, + { + "start": 19706.7, + "end": 19708.34, + "probability": 0.9919 + }, + { + "start": 19708.7, + "end": 19709.4, + "probability": 0.3883 + }, + { + "start": 19709.52, + "end": 19710.73, + "probability": 0.672 + }, + { + "start": 19711.7, + "end": 19713.32, + "probability": 0.9852 + }, + { + "start": 19714.0, + "end": 19715.46, + "probability": 0.7068 + }, + { + "start": 19716.64, + "end": 19720.22, + "probability": 0.9853 + }, + { + "start": 19720.84, + "end": 19722.26, + "probability": 0.636 + }, + { + "start": 19723.26, + "end": 19726.38, + "probability": 0.6636 + }, + { + "start": 19727.62, + "end": 19728.04, + "probability": 0.8494 + }, + { + "start": 19729.16, + "end": 19730.98, + "probability": 0.9963 + }, + { + "start": 19732.08, + "end": 19735.36, + "probability": 0.9365 + }, + { + "start": 19735.9, + "end": 19737.82, + "probability": 0.7603 + }, + { + "start": 19738.68, + "end": 19740.62, + "probability": 0.8553 + }, + { + "start": 19741.34, + "end": 19743.35, + "probability": 0.649 + }, + { + "start": 19745.22, + "end": 19745.22, + "probability": 0.3844 + }, + { + "start": 19745.22, + "end": 19747.86, + "probability": 0.6382 + }, + { + "start": 19748.48, + "end": 19749.66, + "probability": 0.8794 + }, + { + "start": 19750.43, + "end": 19752.1, + "probability": 0.8141 + }, + { + "start": 19752.2, + "end": 19757.02, + "probability": 0.8807 + }, + { + "start": 19757.84, + "end": 19758.43, + "probability": 0.9058 + }, + { + "start": 19759.36, + "end": 19764.0, + "probability": 0.9946 + }, + { + "start": 19764.18, + "end": 19765.0, + "probability": 0.8994 + }, + { + "start": 19765.84, + "end": 19768.04, + "probability": 0.8556 + }, + { + "start": 19768.7, + "end": 19769.7, + "probability": 0.4547 + }, + { + "start": 19769.74, + "end": 19770.78, + "probability": 0.6818 + }, + { + "start": 19771.42, + "end": 19773.52, + "probability": 0.4035 + }, + { + "start": 19774.16, + "end": 19776.96, + "probability": 0.8148 + }, + { + "start": 19777.62, + "end": 19778.94, + "probability": 0.5586 + }, + { + "start": 19779.22, + "end": 19782.34, + "probability": 0.8838 + }, + { + "start": 19782.46, + "end": 19782.46, + "probability": 0.2187 + }, + { + "start": 19782.46, + "end": 19783.36, + "probability": 0.5985 + }, + { + "start": 19784.98, + "end": 19785.52, + "probability": 0.6657 + }, + { + "start": 19806.58, + "end": 19809.48, + "probability": 0.0579 + }, + { + "start": 19810.17, + "end": 19810.95, + "probability": 0.0805 + }, + { + "start": 19812.14, + "end": 19812.34, + "probability": 0.0302 + }, + { + "start": 19812.68, + "end": 19813.92, + "probability": 0.766 + }, + { + "start": 19814.18, + "end": 19816.0, + "probability": 0.7513 + }, + { + "start": 19816.0, + "end": 19817.0, + "probability": 0.2971 + }, + { + "start": 19818.42, + "end": 19820.82, + "probability": 0.0272 + }, + { + "start": 19825.56, + "end": 19827.32, + "probability": 0.1638 + }, + { + "start": 19828.25, + "end": 19828.82, + "probability": 0.0419 + }, + { + "start": 19830.46, + "end": 19836.22, + "probability": 0.1373 + }, + { + "start": 19836.22, + "end": 19838.44, + "probability": 0.1209 + }, + { + "start": 19847.72, + "end": 19848.38, + "probability": 0.0567 + }, + { + "start": 19848.38, + "end": 19850.38, + "probability": 0.0829 + }, + { + "start": 19851.66, + "end": 19851.84, + "probability": 0.0416 + }, + { + "start": 19851.84, + "end": 19853.23, + "probability": 0.0306 + }, + { + "start": 19858.02, + "end": 19859.62, + "probability": 0.1761 + }, + { + "start": 19872.08, + "end": 19873.1, + "probability": 0.1052 + }, + { + "start": 19874.12, + "end": 19875.98, + "probability": 0.2757 + }, + { + "start": 19877.08, + "end": 19879.62, + "probability": 0.0825 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19887.0, + "end": 19887.0, + "probability": 0.0 + }, + { + "start": 19888.24, + "end": 19890.12, + "probability": 0.6281 + }, + { + "start": 19891.1, + "end": 19891.98, + "probability": 0.7665 + }, + { + "start": 19894.05, + "end": 19895.96, + "probability": 0.718 + }, + { + "start": 19897.3, + "end": 19902.28, + "probability": 0.9135 + }, + { + "start": 19902.38, + "end": 19903.14, + "probability": 0.9854 + }, + { + "start": 19904.84, + "end": 19906.74, + "probability": 0.8585 + }, + { + "start": 19906.86, + "end": 19908.94, + "probability": 0.5945 + }, + { + "start": 19909.48, + "end": 19911.14, + "probability": 0.3899 + }, + { + "start": 19911.66, + "end": 19912.58, + "probability": 0.969 + }, + { + "start": 19913.24, + "end": 19916.3, + "probability": 0.7109 + }, + { + "start": 19916.8, + "end": 19919.2, + "probability": 0.3224 + }, + { + "start": 19919.2, + "end": 19920.3, + "probability": 0.1549 + }, + { + "start": 19920.3, + "end": 19923.24, + "probability": 0.9852 + }, + { + "start": 19923.48, + "end": 19926.7, + "probability": 0.9807 + }, + { + "start": 19927.72, + "end": 19930.0, + "probability": 0.8979 + }, + { + "start": 19930.16, + "end": 19930.96, + "probability": 0.924 + }, + { + "start": 19931.94, + "end": 19933.1, + "probability": 0.8978 + }, + { + "start": 19933.22, + "end": 19934.16, + "probability": 0.7041 + }, + { + "start": 19934.7, + "end": 19935.6, + "probability": 0.4211 + }, + { + "start": 19936.5, + "end": 19940.86, + "probability": 0.9801 + }, + { + "start": 19941.36, + "end": 19941.62, + "probability": 0.6483 + }, + { + "start": 19942.26, + "end": 19943.32, + "probability": 0.791 + }, + { + "start": 19944.44, + "end": 19948.34, + "probability": 0.8994 + }, + { + "start": 19948.5, + "end": 19949.22, + "probability": 0.5214 + }, + { + "start": 19950.4, + "end": 19950.7, + "probability": 0.7554 + }, + { + "start": 19952.32, + "end": 19956.56, + "probability": 0.9969 + }, + { + "start": 19957.52, + "end": 19958.76, + "probability": 0.9746 + }, + { + "start": 19959.32, + "end": 19960.44, + "probability": 0.6495 + }, + { + "start": 19960.48, + "end": 19962.76, + "probability": 0.9637 + }, + { + "start": 19962.92, + "end": 19965.4, + "probability": 0.9481 + }, + { + "start": 19965.92, + "end": 19966.74, + "probability": 0.8754 + }, + { + "start": 19967.34, + "end": 19968.51, + "probability": 0.8909 + }, + { + "start": 19970.92, + "end": 19972.22, + "probability": 0.2295 + }, + { + "start": 19972.48, + "end": 19972.48, + "probability": 0.6449 + }, + { + "start": 19972.76, + "end": 19974.06, + "probability": 0.8571 + }, + { + "start": 19974.76, + "end": 19977.88, + "probability": 0.9907 + }, + { + "start": 19978.76, + "end": 19980.78, + "probability": 0.8051 + }, + { + "start": 19981.7, + "end": 19983.14, + "probability": 0.8375 + }, + { + "start": 19984.0, + "end": 19986.62, + "probability": 0.9668 + }, + { + "start": 19987.12, + "end": 19988.7, + "probability": 0.9642 + }, + { + "start": 19989.22, + "end": 19990.0, + "probability": 0.9309 + }, + { + "start": 19990.56, + "end": 19994.78, + "probability": 0.8909 + }, + { + "start": 19995.2, + "end": 19997.02, + "probability": 0.6623 + }, + { + "start": 19998.5, + "end": 20001.38, + "probability": 0.9258 + }, + { + "start": 20002.18, + "end": 20004.6, + "probability": 0.9806 + }, + { + "start": 20004.64, + "end": 20008.92, + "probability": 0.986 + }, + { + "start": 20010.48, + "end": 20012.8, + "probability": 0.7805 + }, + { + "start": 20013.58, + "end": 20015.64, + "probability": 0.9797 + }, + { + "start": 20017.38, + "end": 20018.16, + "probability": 0.6598 + }, + { + "start": 20019.56, + "end": 20021.26, + "probability": 0.9912 + }, + { + "start": 20021.52, + "end": 20022.06, + "probability": 0.7777 + }, + { + "start": 20022.14, + "end": 20022.92, + "probability": 0.8566 + }, + { + "start": 20023.52, + "end": 20025.28, + "probability": 0.9917 + }, + { + "start": 20025.92, + "end": 20028.04, + "probability": 0.937 + }, + { + "start": 20029.76, + "end": 20031.48, + "probability": 0.7535 + }, + { + "start": 20032.1, + "end": 20032.88, + "probability": 0.8608 + }, + { + "start": 20034.52, + "end": 20035.98, + "probability": 0.958 + }, + { + "start": 20036.06, + "end": 20037.82, + "probability": 0.9956 + }, + { + "start": 20038.76, + "end": 20041.44, + "probability": 0.937 + }, + { + "start": 20042.52, + "end": 20042.92, + "probability": 0.9537 + }, + { + "start": 20044.32, + "end": 20045.36, + "probability": 0.785 + }, + { + "start": 20045.76, + "end": 20046.42, + "probability": 0.7706 + }, + { + "start": 20047.28, + "end": 20048.86, + "probability": 0.8501 + }, + { + "start": 20051.34, + "end": 20053.22, + "probability": 0.9451 + }, + { + "start": 20053.3, + "end": 20053.92, + "probability": 0.8357 + }, + { + "start": 20054.38, + "end": 20055.84, + "probability": 0.9677 + }, + { + "start": 20056.28, + "end": 20057.74, + "probability": 0.9424 + }, + { + "start": 20058.54, + "end": 20059.32, + "probability": 0.9823 + }, + { + "start": 20059.78, + "end": 20060.9, + "probability": 0.8506 + }, + { + "start": 20061.76, + "end": 20064.02, + "probability": 0.8287 + }, + { + "start": 20064.74, + "end": 20066.64, + "probability": 0.8049 + }, + { + "start": 20067.6, + "end": 20070.34, + "probability": 0.9872 + }, + { + "start": 20071.18, + "end": 20073.15, + "probability": 0.8381 + }, + { + "start": 20074.3, + "end": 20075.74, + "probability": 0.7849 + }, + { + "start": 20077.18, + "end": 20079.26, + "probability": 0.9631 + }, + { + "start": 20080.26, + "end": 20082.94, + "probability": 0.8966 + }, + { + "start": 20083.58, + "end": 20084.68, + "probability": 0.7256 + }, + { + "start": 20084.76, + "end": 20085.06, + "probability": 0.495 + }, + { + "start": 20085.3, + "end": 20086.4, + "probability": 0.6554 + }, + { + "start": 20086.72, + "end": 20090.24, + "probability": 0.9397 + }, + { + "start": 20091.44, + "end": 20091.64, + "probability": 0.7574 + }, + { + "start": 20092.7, + "end": 20094.14, + "probability": 0.8515 + }, + { + "start": 20095.2, + "end": 20096.24, + "probability": 0.9751 + }, + { + "start": 20096.32, + "end": 20096.84, + "probability": 0.9565 + }, + { + "start": 20097.6, + "end": 20100.84, + "probability": 0.9263 + }, + { + "start": 20101.58, + "end": 20102.58, + "probability": 0.8275 + }, + { + "start": 20103.26, + "end": 20104.44, + "probability": 0.6157 + }, + { + "start": 20104.96, + "end": 20105.44, + "probability": 0.4969 + }, + { + "start": 20105.52, + "end": 20107.08, + "probability": 0.8855 + }, + { + "start": 20107.88, + "end": 20108.68, + "probability": 0.9399 + }, + { + "start": 20109.88, + "end": 20111.18, + "probability": 0.9819 + }, + { + "start": 20111.3, + "end": 20112.92, + "probability": 0.9978 + }, + { + "start": 20113.86, + "end": 20117.02, + "probability": 0.7641 + }, + { + "start": 20118.6, + "end": 20119.64, + "probability": 0.9734 + }, + { + "start": 20120.2, + "end": 20121.6, + "probability": 0.8511 + }, + { + "start": 20122.46, + "end": 20123.72, + "probability": 0.4826 + }, + { + "start": 20123.72, + "end": 20124.72, + "probability": 0.8984 + }, + { + "start": 20126.28, + "end": 20127.06, + "probability": 0.9719 + }, + { + "start": 20127.98, + "end": 20135.04, + "probability": 0.8529 + }, + { + "start": 20135.16, + "end": 20135.72, + "probability": 0.3074 + }, + { + "start": 20135.84, + "end": 20137.28, + "probability": 0.8422 + }, + { + "start": 20137.34, + "end": 20138.52, + "probability": 0.6416 + }, + { + "start": 20138.84, + "end": 20139.68, + "probability": 0.6791 + }, + { + "start": 20140.54, + "end": 20142.68, + "probability": 0.9658 + }, + { + "start": 20142.74, + "end": 20143.28, + "probability": 0.8671 + }, + { + "start": 20143.34, + "end": 20146.08, + "probability": 0.9749 + }, + { + "start": 20147.08, + "end": 20150.34, + "probability": 0.9068 + }, + { + "start": 20150.8, + "end": 20152.84, + "probability": 0.9951 + }, + { + "start": 20153.52, + "end": 20154.56, + "probability": 0.8062 + }, + { + "start": 20154.78, + "end": 20155.18, + "probability": 0.6723 + }, + { + "start": 20155.68, + "end": 20157.2, + "probability": 0.9355 + }, + { + "start": 20158.02, + "end": 20160.58, + "probability": 0.9571 + }, + { + "start": 20161.62, + "end": 20167.14, + "probability": 0.8987 + }, + { + "start": 20167.44, + "end": 20168.06, + "probability": 0.8506 + }, + { + "start": 20168.12, + "end": 20168.4, + "probability": 0.8464 + }, + { + "start": 20168.86, + "end": 20171.54, + "probability": 0.9307 + }, + { + "start": 20171.96, + "end": 20173.8, + "probability": 0.9947 + }, + { + "start": 20174.46, + "end": 20175.46, + "probability": 0.4263 + }, + { + "start": 20177.48, + "end": 20179.64, + "probability": 0.9961 + }, + { + "start": 20179.82, + "end": 20182.46, + "probability": 0.9556 + }, + { + "start": 20183.78, + "end": 20185.12, + "probability": 0.8433 + }, + { + "start": 20185.42, + "end": 20186.58, + "probability": 0.7029 + }, + { + "start": 20186.98, + "end": 20188.38, + "probability": 0.9063 + }, + { + "start": 20188.44, + "end": 20191.24, + "probability": 0.7848 + }, + { + "start": 20192.4, + "end": 20196.4, + "probability": 0.9715 + }, + { + "start": 20197.48, + "end": 20199.42, + "probability": 0.7395 + }, + { + "start": 20200.6, + "end": 20203.82, + "probability": 0.9805 + }, + { + "start": 20204.22, + "end": 20206.72, + "probability": 0.9232 + }, + { + "start": 20207.3, + "end": 20208.5, + "probability": 0.8901 + }, + { + "start": 20209.02, + "end": 20211.14, + "probability": 0.993 + }, + { + "start": 20211.98, + "end": 20214.34, + "probability": 0.9515 + }, + { + "start": 20215.1, + "end": 20216.91, + "probability": 0.9412 + }, + { + "start": 20221.16, + "end": 20222.8, + "probability": 0.8773 + }, + { + "start": 20223.46, + "end": 20225.36, + "probability": 0.9982 + }, + { + "start": 20226.42, + "end": 20227.58, + "probability": 0.795 + }, + { + "start": 20227.7, + "end": 20228.34, + "probability": 0.8228 + }, + { + "start": 20228.84, + "end": 20230.0, + "probability": 0.2789 + }, + { + "start": 20230.0, + "end": 20231.8, + "probability": 0.8956 + }, + { + "start": 20232.52, + "end": 20234.96, + "probability": 0.8301 + }, + { + "start": 20235.64, + "end": 20236.2, + "probability": 0.7032 + }, + { + "start": 20236.46, + "end": 20240.28, + "probability": 0.9834 + }, + { + "start": 20240.7, + "end": 20241.25, + "probability": 0.9478 + }, + { + "start": 20241.9, + "end": 20244.12, + "probability": 0.843 + }, + { + "start": 20244.8, + "end": 20247.7, + "probability": 0.879 + }, + { + "start": 20247.82, + "end": 20248.82, + "probability": 0.8226 + }, + { + "start": 20250.9, + "end": 20252.62, + "probability": 0.9788 + }, + { + "start": 20253.22, + "end": 20254.14, + "probability": 0.9346 + }, + { + "start": 20254.5, + "end": 20258.18, + "probability": 0.9927 + }, + { + "start": 20258.3, + "end": 20259.82, + "probability": 0.9631 + }, + { + "start": 20260.58, + "end": 20262.58, + "probability": 0.9736 + }, + { + "start": 20263.5, + "end": 20265.86, + "probability": 0.9044 + }, + { + "start": 20266.2, + "end": 20267.02, + "probability": 0.6124 + }, + { + "start": 20267.16, + "end": 20268.68, + "probability": 0.9129 + }, + { + "start": 20269.28, + "end": 20270.42, + "probability": 0.2151 + }, + { + "start": 20270.94, + "end": 20272.2, + "probability": 0.7876 + }, + { + "start": 20272.46, + "end": 20273.67, + "probability": 0.9438 + }, + { + "start": 20274.8, + "end": 20276.58, + "probability": 0.9197 + }, + { + "start": 20276.74, + "end": 20277.33, + "probability": 0.779 + }, + { + "start": 20277.86, + "end": 20277.86, + "probability": 0.0305 + }, + { + "start": 20278.38, + "end": 20278.9, + "probability": 0.8505 + }, + { + "start": 20279.5, + "end": 20282.54, + "probability": 0.7185 + }, + { + "start": 20283.2, + "end": 20285.4, + "probability": 0.9464 + }, + { + "start": 20285.92, + "end": 20288.92, + "probability": 0.7655 + }, + { + "start": 20289.28, + "end": 20294.32, + "probability": 0.9695 + }, + { + "start": 20295.24, + "end": 20296.18, + "probability": 0.7827 + }, + { + "start": 20296.4, + "end": 20297.16, + "probability": 0.8718 + }, + { + "start": 20297.3, + "end": 20300.06, + "probability": 0.8608 + }, + { + "start": 20300.58, + "end": 20301.82, + "probability": 0.8553 + }, + { + "start": 20302.36, + "end": 20304.24, + "probability": 0.9766 + }, + { + "start": 20305.94, + "end": 20309.3, + "probability": 0.8379 + }, + { + "start": 20309.44, + "end": 20310.34, + "probability": 0.9886 + }, + { + "start": 20312.8, + "end": 20313.48, + "probability": 0.4982 + }, + { + "start": 20315.64, + "end": 20318.98, + "probability": 0.8749 + }, + { + "start": 20319.1, + "end": 20325.2, + "probability": 0.9656 + }, + { + "start": 20325.72, + "end": 20335.5, + "probability": 0.9895 + }, + { + "start": 20335.82, + "end": 20338.24, + "probability": 0.8839 + }, + { + "start": 20338.78, + "end": 20341.36, + "probability": 0.9825 + }, + { + "start": 20341.92, + "end": 20343.08, + "probability": 0.9987 + }, + { + "start": 20343.56, + "end": 20344.4, + "probability": 0.7821 + }, + { + "start": 20345.1, + "end": 20349.16, + "probability": 0.8082 + }, + { + "start": 20350.26, + "end": 20350.26, + "probability": 0.0691 + }, + { + "start": 20350.26, + "end": 20353.3, + "probability": 0.2561 + }, + { + "start": 20354.01, + "end": 20354.96, + "probability": 0.4549 + }, + { + "start": 20354.96, + "end": 20357.3, + "probability": 0.8631 + }, + { + "start": 20357.3, + "end": 20358.12, + "probability": 0.8291 + }, + { + "start": 20358.14, + "end": 20362.44, + "probability": 0.9392 + }, + { + "start": 20362.5, + "end": 20363.1, + "probability": 0.8472 + }, + { + "start": 20364.0, + "end": 20366.36, + "probability": 0.8193 + }, + { + "start": 20367.22, + "end": 20368.88, + "probability": 0.9728 + }, + { + "start": 20369.42, + "end": 20370.78, + "probability": 0.9203 + }, + { + "start": 20371.02, + "end": 20373.27, + "probability": 0.9482 + }, + { + "start": 20374.94, + "end": 20376.02, + "probability": 0.6768 + }, + { + "start": 20376.2, + "end": 20376.52, + "probability": 0.5502 + }, + { + "start": 20377.58, + "end": 20379.76, + "probability": 0.9513 + }, + { + "start": 20379.86, + "end": 20380.44, + "probability": 0.8124 + }, + { + "start": 20380.48, + "end": 20381.04, + "probability": 0.8009 + }, + { + "start": 20381.32, + "end": 20384.42, + "probability": 0.7644 + }, + { + "start": 20384.56, + "end": 20385.64, + "probability": 0.9054 + }, + { + "start": 20385.98, + "end": 20388.02, + "probability": 0.8642 + }, + { + "start": 20389.2, + "end": 20390.48, + "probability": 0.5403 + }, + { + "start": 20390.58, + "end": 20394.48, + "probability": 0.8384 + }, + { + "start": 20395.52, + "end": 20396.44, + "probability": 0.9287 + }, + { + "start": 20398.14, + "end": 20400.22, + "probability": 0.8886 + }, + { + "start": 20400.54, + "end": 20400.96, + "probability": 0.89 + }, + { + "start": 20401.22, + "end": 20401.54, + "probability": 0.7239 + }, + { + "start": 20401.96, + "end": 20404.3, + "probability": 0.6174 + }, + { + "start": 20406.04, + "end": 20406.94, + "probability": 0.8953 + }, + { + "start": 20408.0, + "end": 20408.8, + "probability": 0.7716 + }, + { + "start": 20409.9, + "end": 20411.78, + "probability": 0.9142 + }, + { + "start": 20412.12, + "end": 20415.34, + "probability": 0.8951 + }, + { + "start": 20416.1, + "end": 20421.72, + "probability": 0.992 + }, + { + "start": 20421.84, + "end": 20422.04, + "probability": 0.7432 + }, + { + "start": 20422.68, + "end": 20424.18, + "probability": 0.156 + }, + { + "start": 20424.66, + "end": 20426.1, + "probability": 0.9811 + }, + { + "start": 20427.75, + "end": 20429.8, + "probability": 0.7935 + }, + { + "start": 20430.08, + "end": 20430.62, + "probability": 0.8967 + }, + { + "start": 20430.72, + "end": 20432.4, + "probability": 0.7476 + }, + { + "start": 20432.4, + "end": 20432.82, + "probability": 0.5666 + }, + { + "start": 20433.04, + "end": 20433.4, + "probability": 0.2735 + }, + { + "start": 20433.66, + "end": 20434.74, + "probability": 0.8141 + }, + { + "start": 20435.28, + "end": 20436.62, + "probability": 0.9906 + }, + { + "start": 20437.2, + "end": 20438.12, + "probability": 0.9594 + }, + { + "start": 20440.32, + "end": 20442.12, + "probability": 0.7221 + }, + { + "start": 20442.82, + "end": 20443.76, + "probability": 0.6976 + }, + { + "start": 20444.52, + "end": 20445.32, + "probability": 0.8739 + }, + { + "start": 20447.94, + "end": 20450.8, + "probability": 0.7853 + }, + { + "start": 20451.46, + "end": 20452.08, + "probability": 0.7703 + }, + { + "start": 20452.74, + "end": 20455.58, + "probability": 0.9182 + }, + { + "start": 20456.26, + "end": 20456.5, + "probability": 0.9606 + }, + { + "start": 20457.04, + "end": 20459.3, + "probability": 0.9755 + }, + { + "start": 20459.72, + "end": 20460.7, + "probability": 0.7954 + }, + { + "start": 20461.66, + "end": 20462.76, + "probability": 0.0893 + }, + { + "start": 20463.92, + "end": 20467.08, + "probability": 0.6508 + }, + { + "start": 20467.26, + "end": 20469.8, + "probability": 0.9067 + }, + { + "start": 20470.14, + "end": 20471.32, + "probability": 0.721 + }, + { + "start": 20471.88, + "end": 20473.7, + "probability": 0.8864 + }, + { + "start": 20474.26, + "end": 20474.58, + "probability": 0.3324 + }, + { + "start": 20475.38, + "end": 20476.6, + "probability": 0.7446 + }, + { + "start": 20477.24, + "end": 20478.72, + "probability": 0.6968 + }, + { + "start": 20479.38, + "end": 20485.46, + "probability": 0.526 + } + ], + "segments_count": 7050, + "words_count": 33998, + "avg_words_per_segment": 4.8224, + "avg_segment_duration": 1.9539, + "avg_words_per_minute": 99.4745, + "plenum_id": "19445", + "duration": 20506.56, + "title": null, + "plenum_date": "2012-02-20" +} \ No newline at end of file