diff --git "a/50421/metadata.json" "b/50421/metadata.json" new file mode 100644--- /dev/null +++ "b/50421/metadata.json" @@ -0,0 +1,42857 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "50421", + "quality_score": 0.8799, + "per_segment_quality_scores": [ + { + "start": 36.36, + "end": 40.52, + "probability": 0.6718 + }, + { + "start": 41.46, + "end": 47.34, + "probability": 0.9468 + }, + { + "start": 47.36, + "end": 49.38, + "probability": 0.9754 + }, + { + "start": 50.68, + "end": 51.74, + "probability": 0.9219 + }, + { + "start": 51.8, + "end": 53.1, + "probability": 0.8706 + }, + { + "start": 53.36, + "end": 54.75, + "probability": 0.8471 + }, + { + "start": 55.32, + "end": 56.86, + "probability": 0.9234 + }, + { + "start": 57.44, + "end": 60.08, + "probability": 0.7339 + }, + { + "start": 60.32, + "end": 61.5, + "probability": 0.3928 + }, + { + "start": 61.98, + "end": 63.42, + "probability": 0.9364 + }, + { + "start": 64.16, + "end": 66.43, + "probability": 0.9391 + }, + { + "start": 66.79, + "end": 67.89, + "probability": 0.4855 + }, + { + "start": 68.01, + "end": 69.17, + "probability": 0.9285 + }, + { + "start": 69.31, + "end": 70.01, + "probability": 0.8469 + }, + { + "start": 70.71, + "end": 72.45, + "probability": 0.6527 + }, + { + "start": 73.27, + "end": 76.65, + "probability": 0.9971 + }, + { + "start": 76.65, + "end": 80.25, + "probability": 0.6201 + }, + { + "start": 80.31, + "end": 81.65, + "probability": 0.4217 + }, + { + "start": 82.11, + "end": 83.63, + "probability": 0.9847 + }, + { + "start": 84.37, + "end": 85.27, + "probability": 0.0817 + }, + { + "start": 85.83, + "end": 88.03, + "probability": 0.7074 + }, + { + "start": 88.53, + "end": 90.91, + "probability": 0.6732 + }, + { + "start": 91.01, + "end": 91.89, + "probability": 0.7577 + }, + { + "start": 92.43, + "end": 96.15, + "probability": 0.9891 + }, + { + "start": 97.23, + "end": 100.03, + "probability": 0.4785 + }, + { + "start": 100.73, + "end": 102.45, + "probability": 0.9565 + }, + { + "start": 102.57, + "end": 105.25, + "probability": 0.9545 + }, + { + "start": 106.13, + "end": 106.93, + "probability": 0.7855 + }, + { + "start": 107.45, + "end": 108.23, + "probability": 0.895 + }, + { + "start": 111.13, + "end": 112.01, + "probability": 0.4736 + }, + { + "start": 112.05, + "end": 112.97, + "probability": 0.6667 + }, + { + "start": 113.55, + "end": 117.39, + "probability": 0.8346 + }, + { + "start": 118.75, + "end": 122.21, + "probability": 0.3829 + }, + { + "start": 177.29, + "end": 178.49, + "probability": 0.0847 + }, + { + "start": 179.97, + "end": 181.39, + "probability": 0.0222 + }, + { + "start": 195.23, + "end": 198.0, + "probability": 0.0578 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.0, + "end": 198.0, + "probability": 0.0 + }, + { + "start": 198.18, + "end": 198.34, + "probability": 0.2798 + }, + { + "start": 199.86, + "end": 204.02, + "probability": 0.9926 + }, + { + "start": 205.08, + "end": 208.62, + "probability": 0.9685 + }, + { + "start": 209.56, + "end": 211.1, + "probability": 0.7104 + }, + { + "start": 212.12, + "end": 217.17, + "probability": 0.9362 + }, + { + "start": 217.96, + "end": 218.66, + "probability": 0.8699 + }, + { + "start": 220.36, + "end": 223.74, + "probability": 0.9854 + }, + { + "start": 224.96, + "end": 228.16, + "probability": 0.9937 + }, + { + "start": 229.08, + "end": 231.62, + "probability": 0.9804 + }, + { + "start": 232.02, + "end": 236.24, + "probability": 0.9961 + }, + { + "start": 237.5, + "end": 239.63, + "probability": 0.5703 + }, + { + "start": 240.2, + "end": 241.28, + "probability": 0.9954 + }, + { + "start": 242.42, + "end": 244.61, + "probability": 0.831 + }, + { + "start": 245.52, + "end": 248.14, + "probability": 0.9389 + }, + { + "start": 249.2, + "end": 249.72, + "probability": 0.7233 + }, + { + "start": 251.56, + "end": 252.34, + "probability": 0.9412 + }, + { + "start": 252.44, + "end": 255.78, + "probability": 0.9963 + }, + { + "start": 257.1, + "end": 263.24, + "probability": 0.9959 + }, + { + "start": 263.9, + "end": 267.48, + "probability": 0.7223 + }, + { + "start": 268.14, + "end": 274.2, + "probability": 0.9966 + }, + { + "start": 275.6, + "end": 276.56, + "probability": 0.9067 + }, + { + "start": 277.42, + "end": 280.2, + "probability": 0.9415 + }, + { + "start": 281.1, + "end": 282.24, + "probability": 0.974 + }, + { + "start": 282.82, + "end": 285.44, + "probability": 0.9981 + }, + { + "start": 285.96, + "end": 287.56, + "probability": 0.8448 + }, + { + "start": 288.24, + "end": 294.44, + "probability": 0.9349 + }, + { + "start": 294.98, + "end": 299.48, + "probability": 0.9658 + }, + { + "start": 300.74, + "end": 302.86, + "probability": 0.9711 + }, + { + "start": 303.44, + "end": 309.6, + "probability": 0.9743 + }, + { + "start": 310.28, + "end": 310.84, + "probability": 0.8788 + }, + { + "start": 313.06, + "end": 314.02, + "probability": 0.8317 + }, + { + "start": 314.6, + "end": 319.34, + "probability": 0.853 + }, + { + "start": 320.12, + "end": 321.08, + "probability": 0.6241 + }, + { + "start": 322.5, + "end": 326.02, + "probability": 0.9142 + }, + { + "start": 326.12, + "end": 327.38, + "probability": 0.9224 + }, + { + "start": 327.64, + "end": 328.86, + "probability": 0.9615 + }, + { + "start": 328.98, + "end": 330.1, + "probability": 0.8993 + }, + { + "start": 330.3, + "end": 331.42, + "probability": 0.8208 + }, + { + "start": 332.08, + "end": 332.9, + "probability": 0.9204 + }, + { + "start": 333.08, + "end": 337.54, + "probability": 0.9487 + }, + { + "start": 338.1, + "end": 341.53, + "probability": 0.9634 + }, + { + "start": 341.94, + "end": 342.82, + "probability": 0.824 + }, + { + "start": 343.32, + "end": 345.5, + "probability": 0.9922 + }, + { + "start": 346.16, + "end": 350.36, + "probability": 0.9951 + }, + { + "start": 351.68, + "end": 352.5, + "probability": 0.9277 + }, + { + "start": 353.02, + "end": 356.2, + "probability": 0.989 + }, + { + "start": 357.28, + "end": 358.2, + "probability": 0.7395 + }, + { + "start": 358.8, + "end": 359.72, + "probability": 0.843 + }, + { + "start": 360.24, + "end": 364.6, + "probability": 0.9827 + }, + { + "start": 365.48, + "end": 367.34, + "probability": 0.8755 + }, + { + "start": 367.46, + "end": 369.7, + "probability": 0.9868 + }, + { + "start": 370.18, + "end": 370.84, + "probability": 0.9927 + }, + { + "start": 371.08, + "end": 371.58, + "probability": 0.6374 + }, + { + "start": 371.74, + "end": 373.98, + "probability": 0.9359 + }, + { + "start": 374.28, + "end": 376.62, + "probability": 0.644 + }, + { + "start": 377.82, + "end": 380.76, + "probability": 0.9728 + }, + { + "start": 380.76, + "end": 384.2, + "probability": 0.7843 + }, + { + "start": 384.46, + "end": 385.56, + "probability": 0.8131 + }, + { + "start": 386.14, + "end": 390.2, + "probability": 0.9114 + }, + { + "start": 391.58, + "end": 392.9, + "probability": 0.7642 + }, + { + "start": 393.02, + "end": 393.8, + "probability": 0.5285 + }, + { + "start": 394.22, + "end": 399.86, + "probability": 0.947 + }, + { + "start": 400.6, + "end": 401.18, + "probability": 0.9518 + }, + { + "start": 401.84, + "end": 404.72, + "probability": 0.9676 + }, + { + "start": 405.18, + "end": 406.78, + "probability": 0.9957 + }, + { + "start": 407.96, + "end": 408.34, + "probability": 0.836 + }, + { + "start": 408.62, + "end": 413.52, + "probability": 0.9845 + }, + { + "start": 414.08, + "end": 417.36, + "probability": 0.9478 + }, + { + "start": 418.44, + "end": 421.34, + "probability": 0.9611 + }, + { + "start": 422.16, + "end": 425.98, + "probability": 0.9758 + }, + { + "start": 427.16, + "end": 428.94, + "probability": 0.9836 + }, + { + "start": 429.58, + "end": 430.38, + "probability": 0.7388 + }, + { + "start": 431.2, + "end": 436.02, + "probability": 0.9766 + }, + { + "start": 436.48, + "end": 438.48, + "probability": 0.8666 + }, + { + "start": 439.82, + "end": 440.34, + "probability": 0.9404 + }, + { + "start": 440.86, + "end": 443.76, + "probability": 0.9812 + }, + { + "start": 444.52, + "end": 445.7, + "probability": 0.9562 + }, + { + "start": 446.38, + "end": 449.16, + "probability": 0.8099 + }, + { + "start": 450.24, + "end": 454.3, + "probability": 0.9175 + }, + { + "start": 455.32, + "end": 456.56, + "probability": 0.9961 + }, + { + "start": 457.24, + "end": 458.38, + "probability": 0.8563 + }, + { + "start": 459.9, + "end": 462.32, + "probability": 0.9267 + }, + { + "start": 463.14, + "end": 463.94, + "probability": 0.6955 + }, + { + "start": 464.66, + "end": 466.8, + "probability": 0.9587 + }, + { + "start": 467.64, + "end": 469.54, + "probability": 0.946 + }, + { + "start": 470.7, + "end": 473.22, + "probability": 0.9935 + }, + { + "start": 474.32, + "end": 475.62, + "probability": 0.997 + }, + { + "start": 476.16, + "end": 480.66, + "probability": 0.8329 + }, + { + "start": 480.66, + "end": 483.06, + "probability": 0.9976 + }, + { + "start": 484.34, + "end": 486.58, + "probability": 0.7535 + }, + { + "start": 487.28, + "end": 488.56, + "probability": 0.9802 + }, + { + "start": 489.22, + "end": 495.0, + "probability": 0.915 + }, + { + "start": 495.82, + "end": 501.2, + "probability": 0.9404 + }, + { + "start": 501.28, + "end": 502.2, + "probability": 0.7726 + }, + { + "start": 503.26, + "end": 504.86, + "probability": 0.934 + }, + { + "start": 505.76, + "end": 507.8, + "probability": 0.9959 + }, + { + "start": 508.78, + "end": 513.16, + "probability": 0.9197 + }, + { + "start": 513.76, + "end": 516.16, + "probability": 0.6998 + }, + { + "start": 517.22, + "end": 518.42, + "probability": 0.7976 + }, + { + "start": 519.44, + "end": 521.64, + "probability": 0.9025 + }, + { + "start": 522.4, + "end": 524.98, + "probability": 0.9764 + }, + { + "start": 525.92, + "end": 529.58, + "probability": 0.9852 + }, + { + "start": 529.92, + "end": 533.92, + "probability": 0.9989 + }, + { + "start": 535.04, + "end": 539.06, + "probability": 0.9856 + }, + { + "start": 539.76, + "end": 542.58, + "probability": 0.8922 + }, + { + "start": 543.2, + "end": 546.1, + "probability": 0.9778 + }, + { + "start": 546.16, + "end": 546.94, + "probability": 0.9373 + }, + { + "start": 547.04, + "end": 547.3, + "probability": 0.4972 + }, + { + "start": 547.5, + "end": 550.18, + "probability": 0.754 + }, + { + "start": 550.72, + "end": 553.24, + "probability": 0.934 + }, + { + "start": 554.52, + "end": 557.4, + "probability": 0.85 + }, + { + "start": 558.04, + "end": 560.52, + "probability": 0.9917 + }, + { + "start": 561.3, + "end": 564.36, + "probability": 0.9957 + }, + { + "start": 564.86, + "end": 567.2, + "probability": 0.98 + }, + { + "start": 567.2, + "end": 571.38, + "probability": 0.9814 + }, + { + "start": 572.54, + "end": 574.34, + "probability": 0.8903 + }, + { + "start": 574.9, + "end": 575.88, + "probability": 0.8364 + }, + { + "start": 576.48, + "end": 577.44, + "probability": 0.9744 + }, + { + "start": 578.18, + "end": 580.92, + "probability": 0.9697 + }, + { + "start": 582.2, + "end": 585.72, + "probability": 0.9771 + }, + { + "start": 585.72, + "end": 589.12, + "probability": 0.9983 + }, + { + "start": 589.74, + "end": 590.9, + "probability": 0.9347 + }, + { + "start": 591.58, + "end": 592.9, + "probability": 0.8897 + }, + { + "start": 593.24, + "end": 594.44, + "probability": 0.7835 + }, + { + "start": 594.72, + "end": 599.56, + "probability": 0.9827 + }, + { + "start": 600.06, + "end": 602.92, + "probability": 0.953 + }, + { + "start": 602.92, + "end": 605.44, + "probability": 0.9969 + }, + { + "start": 606.34, + "end": 609.6, + "probability": 0.8774 + }, + { + "start": 610.62, + "end": 612.12, + "probability": 0.8402 + }, + { + "start": 612.72, + "end": 613.98, + "probability": 0.8248 + }, + { + "start": 614.5, + "end": 617.32, + "probability": 0.946 + }, + { + "start": 617.6, + "end": 618.44, + "probability": 0.9838 + }, + { + "start": 619.64, + "end": 619.76, + "probability": 0.8015 + }, + { + "start": 619.88, + "end": 623.3, + "probability": 0.9849 + }, + { + "start": 623.3, + "end": 626.5, + "probability": 0.9476 + }, + { + "start": 627.34, + "end": 629.38, + "probability": 0.9954 + }, + { + "start": 629.7, + "end": 631.64, + "probability": 0.9669 + }, + { + "start": 632.36, + "end": 634.24, + "probability": 0.9696 + }, + { + "start": 634.96, + "end": 640.48, + "probability": 0.9852 + }, + { + "start": 640.84, + "end": 641.26, + "probability": 0.3894 + }, + { + "start": 641.6, + "end": 642.25, + "probability": 0.6479 + }, + { + "start": 642.8, + "end": 645.06, + "probability": 0.9893 + }, + { + "start": 645.86, + "end": 648.16, + "probability": 0.9764 + }, + { + "start": 648.72, + "end": 650.66, + "probability": 0.9971 + }, + { + "start": 651.9, + "end": 654.56, + "probability": 0.9154 + }, + { + "start": 655.58, + "end": 658.42, + "probability": 0.7798 + }, + { + "start": 659.02, + "end": 659.96, + "probability": 0.7423 + }, + { + "start": 660.54, + "end": 663.04, + "probability": 0.9961 + }, + { + "start": 663.5, + "end": 667.76, + "probability": 0.9753 + }, + { + "start": 669.72, + "end": 673.58, + "probability": 0.9777 + }, + { + "start": 673.58, + "end": 678.22, + "probability": 0.9971 + }, + { + "start": 678.4, + "end": 678.62, + "probability": 0.7479 + }, + { + "start": 679.46, + "end": 681.28, + "probability": 0.9014 + }, + { + "start": 682.28, + "end": 683.16, + "probability": 0.9163 + }, + { + "start": 683.86, + "end": 685.04, + "probability": 0.7368 + }, + { + "start": 685.54, + "end": 686.16, + "probability": 0.6858 + }, + { + "start": 686.34, + "end": 687.06, + "probability": 0.7664 + }, + { + "start": 687.4, + "end": 688.08, + "probability": 0.8315 + }, + { + "start": 688.3, + "end": 689.04, + "probability": 0.9152 + }, + { + "start": 689.54, + "end": 690.48, + "probability": 0.8662 + }, + { + "start": 690.92, + "end": 692.26, + "probability": 0.9332 + }, + { + "start": 692.94, + "end": 696.24, + "probability": 0.9582 + }, + { + "start": 697.18, + "end": 701.58, + "probability": 0.9955 + }, + { + "start": 701.66, + "end": 707.1, + "probability": 0.9941 + }, + { + "start": 709.66, + "end": 709.98, + "probability": 0.5081 + }, + { + "start": 710.02, + "end": 710.78, + "probability": 0.781 + }, + { + "start": 711.12, + "end": 715.28, + "probability": 0.8818 + }, + { + "start": 715.76, + "end": 716.72, + "probability": 0.7107 + }, + { + "start": 717.18, + "end": 721.42, + "probability": 0.943 + }, + { + "start": 722.2, + "end": 722.3, + "probability": 0.4032 + }, + { + "start": 722.62, + "end": 724.22, + "probability": 0.8509 + }, + { + "start": 724.5, + "end": 726.22, + "probability": 0.8501 + }, + { + "start": 726.52, + "end": 727.94, + "probability": 0.8556 + }, + { + "start": 728.08, + "end": 729.13, + "probability": 0.0242 + }, + { + "start": 729.28, + "end": 729.54, + "probability": 0.1143 + }, + { + "start": 730.78, + "end": 731.08, + "probability": 0.1173 + }, + { + "start": 732.9, + "end": 733.74, + "probability": 0.7376 + }, + { + "start": 734.12, + "end": 734.54, + "probability": 0.3367 + }, + { + "start": 735.6, + "end": 735.66, + "probability": 0.1476 + }, + { + "start": 735.82, + "end": 737.4, + "probability": 0.8614 + }, + { + "start": 737.44, + "end": 742.26, + "probability": 0.9458 + }, + { + "start": 743.46, + "end": 744.14, + "probability": 0.9636 + }, + { + "start": 744.2, + "end": 745.78, + "probability": 0.9805 + }, + { + "start": 746.22, + "end": 746.8, + "probability": 0.8802 + }, + { + "start": 746.9, + "end": 748.0, + "probability": 0.9619 + }, + { + "start": 748.26, + "end": 749.32, + "probability": 0.6816 + }, + { + "start": 749.82, + "end": 751.56, + "probability": 0.9875 + }, + { + "start": 752.52, + "end": 757.58, + "probability": 0.9649 + }, + { + "start": 758.56, + "end": 759.94, + "probability": 0.7864 + }, + { + "start": 760.64, + "end": 764.1, + "probability": 0.9951 + }, + { + "start": 765.0, + "end": 766.59, + "probability": 0.6305 + }, + { + "start": 767.34, + "end": 767.46, + "probability": 0.7739 + }, + { + "start": 768.04, + "end": 773.92, + "probability": 0.9921 + }, + { + "start": 774.42, + "end": 777.84, + "probability": 0.8923 + }, + { + "start": 777.84, + "end": 780.96, + "probability": 0.9888 + }, + { + "start": 781.64, + "end": 784.18, + "probability": 0.7415 + }, + { + "start": 784.56, + "end": 789.7, + "probability": 0.9915 + }, + { + "start": 789.9, + "end": 790.3, + "probability": 0.7908 + }, + { + "start": 791.06, + "end": 793.26, + "probability": 0.8162 + }, + { + "start": 793.52, + "end": 798.28, + "probability": 0.9369 + }, + { + "start": 799.9, + "end": 802.89, + "probability": 0.9736 + }, + { + "start": 812.8, + "end": 815.38, + "probability": 0.7114 + }, + { + "start": 816.58, + "end": 816.84, + "probability": 0.717 + }, + { + "start": 816.88, + "end": 817.08, + "probability": 0.8568 + }, + { + "start": 817.1, + "end": 822.72, + "probability": 0.9589 + }, + { + "start": 823.9, + "end": 827.14, + "probability": 0.8514 + }, + { + "start": 828.64, + "end": 830.52, + "probability": 0.9825 + }, + { + "start": 830.66, + "end": 834.74, + "probability": 0.9565 + }, + { + "start": 835.24, + "end": 836.6, + "probability": 0.7977 + }, + { + "start": 837.16, + "end": 837.98, + "probability": 0.737 + }, + { + "start": 838.06, + "end": 838.38, + "probability": 0.8586 + }, + { + "start": 838.82, + "end": 843.48, + "probability": 0.9832 + }, + { + "start": 844.04, + "end": 844.94, + "probability": 0.9666 + }, + { + "start": 845.56, + "end": 846.54, + "probability": 0.7567 + }, + { + "start": 847.08, + "end": 848.44, + "probability": 0.6406 + }, + { + "start": 849.14, + "end": 852.26, + "probability": 0.819 + }, + { + "start": 852.36, + "end": 852.56, + "probability": 0.7665 + }, + { + "start": 854.46, + "end": 857.02, + "probability": 0.7872 + }, + { + "start": 858.1, + "end": 863.16, + "probability": 0.8841 + }, + { + "start": 865.68, + "end": 869.26, + "probability": 0.9704 + }, + { + "start": 869.26, + "end": 875.56, + "probability": 0.4029 + }, + { + "start": 876.63, + "end": 879.56, + "probability": 0.719 + }, + { + "start": 879.74, + "end": 880.18, + "probability": 0.4183 + }, + { + "start": 880.3, + "end": 883.0, + "probability": 0.9502 + }, + { + "start": 883.16, + "end": 883.94, + "probability": 0.7431 + }, + { + "start": 884.06, + "end": 886.28, + "probability": 0.7805 + }, + { + "start": 886.44, + "end": 887.06, + "probability": 0.33 + }, + { + "start": 887.38, + "end": 887.88, + "probability": 0.8128 + }, + { + "start": 887.94, + "end": 889.02, + "probability": 0.6591 + }, + { + "start": 889.98, + "end": 893.5, + "probability": 0.8074 + }, + { + "start": 894.22, + "end": 896.7, + "probability": 0.9088 + }, + { + "start": 897.4, + "end": 901.24, + "probability": 0.9564 + }, + { + "start": 903.34, + "end": 906.16, + "probability": 0.982 + }, + { + "start": 906.96, + "end": 908.9, + "probability": 0.7778 + }, + { + "start": 909.58, + "end": 910.06, + "probability": 0.9574 + }, + { + "start": 910.68, + "end": 911.58, + "probability": 0.991 + }, + { + "start": 912.68, + "end": 916.74, + "probability": 0.9209 + }, + { + "start": 917.5, + "end": 918.7, + "probability": 0.6593 + }, + { + "start": 918.7, + "end": 920.36, + "probability": 0.1849 + }, + { + "start": 920.96, + "end": 922.42, + "probability": 0.4041 + }, + { + "start": 922.66, + "end": 923.32, + "probability": 0.5446 + }, + { + "start": 923.5, + "end": 927.02, + "probability": 0.8857 + }, + { + "start": 927.22, + "end": 931.42, + "probability": 0.9286 + }, + { + "start": 931.88, + "end": 935.32, + "probability": 0.5892 + }, + { + "start": 935.34, + "end": 937.82, + "probability": 0.7266 + }, + { + "start": 938.5, + "end": 940.06, + "probability": 0.1518 + }, + { + "start": 940.32, + "end": 941.54, + "probability": 0.5844 + }, + { + "start": 941.88, + "end": 943.0, + "probability": 0.1553 + }, + { + "start": 943.08, + "end": 943.58, + "probability": 0.3862 + }, + { + "start": 943.68, + "end": 944.28, + "probability": 0.1598 + }, + { + "start": 944.28, + "end": 949.44, + "probability": 0.0457 + }, + { + "start": 949.56, + "end": 951.14, + "probability": 0.0708 + }, + { + "start": 951.28, + "end": 951.82, + "probability": 0.0145 + }, + { + "start": 952.56, + "end": 955.12, + "probability": 0.4583 + }, + { + "start": 955.44, + "end": 957.1, + "probability": 0.9006 + }, + { + "start": 957.1, + "end": 961.0, + "probability": 0.1735 + }, + { + "start": 961.18, + "end": 961.54, + "probability": 0.1625 + }, + { + "start": 961.68, + "end": 967.12, + "probability": 0.7288 + }, + { + "start": 967.24, + "end": 967.94, + "probability": 0.9587 + }, + { + "start": 968.78, + "end": 971.44, + "probability": 0.9462 + }, + { + "start": 971.88, + "end": 972.34, + "probability": 0.9071 + }, + { + "start": 972.58, + "end": 974.84, + "probability": 0.9032 + }, + { + "start": 975.02, + "end": 976.64, + "probability": 0.8545 + }, + { + "start": 977.54, + "end": 980.14, + "probability": 0.9927 + }, + { + "start": 980.76, + "end": 981.3, + "probability": 0.9707 + }, + { + "start": 982.02, + "end": 984.92, + "probability": 0.9953 + }, + { + "start": 986.34, + "end": 990.32, + "probability": 0.9266 + }, + { + "start": 991.3, + "end": 996.62, + "probability": 0.8877 + }, + { + "start": 997.14, + "end": 1000.58, + "probability": 0.9741 + }, + { + "start": 1001.4, + "end": 1007.12, + "probability": 0.9868 + }, + { + "start": 1008.04, + "end": 1008.7, + "probability": 0.6451 + }, + { + "start": 1009.76, + "end": 1011.4, + "probability": 0.6065 + }, + { + "start": 1012.56, + "end": 1014.3, + "probability": 0.6694 + }, + { + "start": 1015.54, + "end": 1018.04, + "probability": 0.9694 + }, + { + "start": 1018.84, + "end": 1022.28, + "probability": 0.8761 + }, + { + "start": 1023.28, + "end": 1024.88, + "probability": 0.9377 + }, + { + "start": 1026.14, + "end": 1031.22, + "probability": 0.9927 + }, + { + "start": 1032.34, + "end": 1035.24, + "probability": 0.9494 + }, + { + "start": 1035.74, + "end": 1036.46, + "probability": 0.59 + }, + { + "start": 1036.88, + "end": 1038.14, + "probability": 0.5991 + }, + { + "start": 1039.02, + "end": 1042.58, + "probability": 0.987 + }, + { + "start": 1043.7, + "end": 1044.22, + "probability": 0.7645 + }, + { + "start": 1045.0, + "end": 1049.3, + "probability": 0.956 + }, + { + "start": 1049.92, + "end": 1054.42, + "probability": 0.9937 + }, + { + "start": 1055.22, + "end": 1057.1, + "probability": 0.8451 + }, + { + "start": 1058.16, + "end": 1060.4, + "probability": 0.9919 + }, + { + "start": 1061.8, + "end": 1062.64, + "probability": 0.6356 + }, + { + "start": 1063.78, + "end": 1068.9, + "probability": 0.9814 + }, + { + "start": 1069.8, + "end": 1074.92, + "probability": 0.9971 + }, + { + "start": 1075.86, + "end": 1077.06, + "probability": 0.8964 + }, + { + "start": 1077.68, + "end": 1079.96, + "probability": 0.9172 + }, + { + "start": 1080.98, + "end": 1081.86, + "probability": 0.591 + }, + { + "start": 1082.56, + "end": 1083.86, + "probability": 0.7745 + }, + { + "start": 1084.84, + "end": 1087.18, + "probability": 0.8948 + }, + { + "start": 1087.74, + "end": 1091.0, + "probability": 0.5194 + }, + { + "start": 1091.54, + "end": 1093.2, + "probability": 0.7578 + }, + { + "start": 1093.96, + "end": 1099.76, + "probability": 0.9554 + }, + { + "start": 1101.34, + "end": 1105.58, + "probability": 0.9936 + }, + { + "start": 1106.86, + "end": 1110.06, + "probability": 0.6541 + }, + { + "start": 1110.98, + "end": 1114.16, + "probability": 0.8168 + }, + { + "start": 1114.94, + "end": 1116.42, + "probability": 0.9746 + }, + { + "start": 1117.0, + "end": 1121.74, + "probability": 0.9932 + }, + { + "start": 1122.54, + "end": 1125.12, + "probability": 0.6813 + }, + { + "start": 1126.44, + "end": 1131.32, + "probability": 0.9256 + }, + { + "start": 1132.14, + "end": 1135.34, + "probability": 0.9532 + }, + { + "start": 1136.12, + "end": 1140.3, + "probability": 0.9921 + }, + { + "start": 1141.72, + "end": 1142.32, + "probability": 0.6226 + }, + { + "start": 1144.86, + "end": 1152.1, + "probability": 0.9222 + }, + { + "start": 1153.22, + "end": 1158.26, + "probability": 0.8207 + }, + { + "start": 1159.22, + "end": 1162.7, + "probability": 0.825 + }, + { + "start": 1163.62, + "end": 1169.94, + "probability": 0.9882 + }, + { + "start": 1171.06, + "end": 1173.78, + "probability": 0.5397 + }, + { + "start": 1174.62, + "end": 1178.18, + "probability": 0.8179 + }, + { + "start": 1178.72, + "end": 1185.14, + "probability": 0.9733 + }, + { + "start": 1186.2, + "end": 1190.08, + "probability": 0.9281 + }, + { + "start": 1191.36, + "end": 1198.98, + "probability": 0.8827 + }, + { + "start": 1199.76, + "end": 1201.9, + "probability": 0.7144 + }, + { + "start": 1202.44, + "end": 1206.76, + "probability": 0.9661 + }, + { + "start": 1208.46, + "end": 1210.12, + "probability": 0.9896 + }, + { + "start": 1210.88, + "end": 1214.62, + "probability": 0.9886 + }, + { + "start": 1214.62, + "end": 1219.06, + "probability": 0.9746 + }, + { + "start": 1220.76, + "end": 1224.18, + "probability": 0.9946 + }, + { + "start": 1225.58, + "end": 1230.86, + "probability": 0.7385 + }, + { + "start": 1231.62, + "end": 1233.0, + "probability": 0.9051 + }, + { + "start": 1233.54, + "end": 1239.32, + "probability": 0.9561 + }, + { + "start": 1240.58, + "end": 1246.64, + "probability": 0.9941 + }, + { + "start": 1247.44, + "end": 1248.02, + "probability": 0.8209 + }, + { + "start": 1248.96, + "end": 1252.88, + "probability": 0.9958 + }, + { + "start": 1253.59, + "end": 1257.4, + "probability": 0.9613 + }, + { + "start": 1259.46, + "end": 1262.66, + "probability": 0.9526 + }, + { + "start": 1263.68, + "end": 1265.24, + "probability": 0.5788 + }, + { + "start": 1266.22, + "end": 1269.92, + "probability": 0.8582 + }, + { + "start": 1270.44, + "end": 1277.06, + "probability": 0.8616 + }, + { + "start": 1278.08, + "end": 1279.26, + "probability": 0.9688 + }, + { + "start": 1279.82, + "end": 1281.38, + "probability": 0.995 + }, + { + "start": 1282.1, + "end": 1287.26, + "probability": 0.9909 + }, + { + "start": 1288.54, + "end": 1289.42, + "probability": 0.6176 + }, + { + "start": 1290.02, + "end": 1293.04, + "probability": 0.9694 + }, + { + "start": 1293.64, + "end": 1297.26, + "probability": 0.9171 + }, + { + "start": 1298.1, + "end": 1303.32, + "probability": 0.9966 + }, + { + "start": 1303.32, + "end": 1308.62, + "probability": 0.9927 + }, + { + "start": 1311.16, + "end": 1313.38, + "probability": 0.7581 + }, + { + "start": 1314.52, + "end": 1319.6, + "probability": 0.9749 + }, + { + "start": 1319.64, + "end": 1324.9, + "probability": 0.9867 + }, + { + "start": 1325.5, + "end": 1326.28, + "probability": 0.7418 + }, + { + "start": 1327.56, + "end": 1333.9, + "probability": 0.9894 + }, + { + "start": 1333.9, + "end": 1340.5, + "probability": 0.9974 + }, + { + "start": 1341.76, + "end": 1345.58, + "probability": 0.8463 + }, + { + "start": 1346.96, + "end": 1351.34, + "probability": 0.9517 + }, + { + "start": 1352.16, + "end": 1357.48, + "probability": 0.9966 + }, + { + "start": 1358.5, + "end": 1360.32, + "probability": 0.6816 + }, + { + "start": 1361.42, + "end": 1364.8, + "probability": 0.9947 + }, + { + "start": 1365.5, + "end": 1370.08, + "probability": 0.8229 + }, + { + "start": 1371.56, + "end": 1379.14, + "probability": 0.7516 + }, + { + "start": 1380.34, + "end": 1381.94, + "probability": 0.9573 + }, + { + "start": 1382.56, + "end": 1385.3, + "probability": 0.9115 + }, + { + "start": 1386.3, + "end": 1390.0, + "probability": 0.9613 + }, + { + "start": 1390.68, + "end": 1392.74, + "probability": 0.7352 + }, + { + "start": 1394.1, + "end": 1399.42, + "probability": 0.9928 + }, + { + "start": 1400.08, + "end": 1402.21, + "probability": 0.9056 + }, + { + "start": 1402.72, + "end": 1404.28, + "probability": 0.9761 + }, + { + "start": 1404.76, + "end": 1406.57, + "probability": 0.9858 + }, + { + "start": 1408.08, + "end": 1411.28, + "probability": 0.9399 + }, + { + "start": 1412.16, + "end": 1414.42, + "probability": 0.994 + }, + { + "start": 1415.04, + "end": 1423.14, + "probability": 0.9906 + }, + { + "start": 1423.4, + "end": 1424.02, + "probability": 0.8094 + }, + { + "start": 1424.04, + "end": 1425.1, + "probability": 0.8726 + }, + { + "start": 1427.81, + "end": 1431.7, + "probability": 0.762 + }, + { + "start": 1432.44, + "end": 1432.58, + "probability": 0.0584 + }, + { + "start": 1432.58, + "end": 1433.88, + "probability": 0.5269 + }, + { + "start": 1434.38, + "end": 1435.62, + "probability": 0.8001 + }, + { + "start": 1436.14, + "end": 1439.74, + "probability": 0.9839 + }, + { + "start": 1440.28, + "end": 1442.14, + "probability": 0.8878 + }, + { + "start": 1443.2, + "end": 1446.02, + "probability": 0.9497 + }, + { + "start": 1446.78, + "end": 1449.94, + "probability": 0.9978 + }, + { + "start": 1450.8, + "end": 1453.4, + "probability": 0.8689 + }, + { + "start": 1453.94, + "end": 1459.34, + "probability": 0.98 + }, + { + "start": 1459.34, + "end": 1464.92, + "probability": 0.9696 + }, + { + "start": 1464.92, + "end": 1470.04, + "probability": 0.9562 + }, + { + "start": 1471.5, + "end": 1472.14, + "probability": 0.6371 + }, + { + "start": 1472.66, + "end": 1473.3, + "probability": 0.6791 + }, + { + "start": 1474.66, + "end": 1476.34, + "probability": 0.8483 + }, + { + "start": 1477.44, + "end": 1480.82, + "probability": 0.6808 + }, + { + "start": 1481.82, + "end": 1484.46, + "probability": 0.8961 + }, + { + "start": 1485.28, + "end": 1488.24, + "probability": 0.9399 + }, + { + "start": 1489.86, + "end": 1494.0, + "probability": 0.9969 + }, + { + "start": 1495.1, + "end": 1496.32, + "probability": 0.8743 + }, + { + "start": 1496.4, + "end": 1500.28, + "probability": 0.9806 + }, + { + "start": 1500.28, + "end": 1503.8, + "probability": 0.7778 + }, + { + "start": 1503.8, + "end": 1503.92, + "probability": 0.5371 + }, + { + "start": 1504.12, + "end": 1506.18, + "probability": 0.849 + }, + { + "start": 1506.64, + "end": 1509.2, + "probability": 0.8667 + }, + { + "start": 1509.8, + "end": 1511.68, + "probability": 0.9771 + }, + { + "start": 1512.22, + "end": 1512.84, + "probability": 0.8789 + }, + { + "start": 1513.0, + "end": 1516.92, + "probability": 0.9725 + }, + { + "start": 1517.6, + "end": 1518.4, + "probability": 0.8467 + }, + { + "start": 1519.2, + "end": 1521.14, + "probability": 0.7805 + }, + { + "start": 1521.78, + "end": 1522.86, + "probability": 0.8273 + }, + { + "start": 1523.38, + "end": 1526.96, + "probability": 0.9046 + }, + { + "start": 1527.66, + "end": 1529.34, + "probability": 0.9372 + }, + { + "start": 1530.34, + "end": 1534.96, + "probability": 0.9749 + }, + { + "start": 1535.5, + "end": 1538.24, + "probability": 0.9781 + }, + { + "start": 1538.7, + "end": 1547.08, + "probability": 0.8589 + }, + { + "start": 1547.8, + "end": 1550.98, + "probability": 0.9827 + }, + { + "start": 1551.5, + "end": 1556.28, + "probability": 0.8747 + }, + { + "start": 1556.36, + "end": 1556.68, + "probability": 0.5544 + }, + { + "start": 1556.7, + "end": 1558.36, + "probability": 0.8336 + }, + { + "start": 1558.92, + "end": 1559.54, + "probability": 0.513 + }, + { + "start": 1559.54, + "end": 1561.3, + "probability": 0.5556 + }, + { + "start": 1562.14, + "end": 1565.66, + "probability": 0.9898 + }, + { + "start": 1565.66, + "end": 1569.34, + "probability": 0.9511 + }, + { + "start": 1577.76, + "end": 1579.14, + "probability": 0.0602 + }, + { + "start": 1579.7, + "end": 1579.8, + "probability": 0.1663 + }, + { + "start": 1579.8, + "end": 1582.88, + "probability": 0.7376 + }, + { + "start": 1584.2, + "end": 1585.52, + "probability": 0.9663 + }, + { + "start": 1586.24, + "end": 1586.82, + "probability": 0.7915 + }, + { + "start": 1587.12, + "end": 1589.36, + "probability": 0.9744 + }, + { + "start": 1589.66, + "end": 1590.58, + "probability": 0.9338 + }, + { + "start": 1591.31, + "end": 1594.02, + "probability": 0.4 + }, + { + "start": 1594.02, + "end": 1596.14, + "probability": 0.9353 + }, + { + "start": 1596.26, + "end": 1596.92, + "probability": 0.6168 + }, + { + "start": 1596.94, + "end": 1599.12, + "probability": 0.9548 + }, + { + "start": 1599.36, + "end": 1601.28, + "probability": 0.9963 + }, + { + "start": 1601.52, + "end": 1605.06, + "probability": 0.9713 + }, + { + "start": 1605.5, + "end": 1606.72, + "probability": 0.6796 + }, + { + "start": 1607.04, + "end": 1609.15, + "probability": 0.9966 + }, + { + "start": 1609.76, + "end": 1609.8, + "probability": 0.1395 + }, + { + "start": 1609.8, + "end": 1611.56, + "probability": 0.5706 + }, + { + "start": 1611.56, + "end": 1613.3, + "probability": 0.8406 + }, + { + "start": 1614.89, + "end": 1617.34, + "probability": 0.7462 + }, + { + "start": 1617.48, + "end": 1617.56, + "probability": 0.2827 + }, + { + "start": 1617.56, + "end": 1619.12, + "probability": 0.5994 + }, + { + "start": 1619.27, + "end": 1620.6, + "probability": 0.284 + }, + { + "start": 1621.2, + "end": 1623.6, + "probability": 0.9144 + }, + { + "start": 1624.78, + "end": 1629.14, + "probability": 0.882 + }, + { + "start": 1630.16, + "end": 1632.02, + "probability": 0.8359 + }, + { + "start": 1633.18, + "end": 1634.98, + "probability": 0.7638 + }, + { + "start": 1635.7, + "end": 1636.6, + "probability": 0.9013 + }, + { + "start": 1637.14, + "end": 1642.28, + "probability": 0.9673 + }, + { + "start": 1645.64, + "end": 1647.6, + "probability": 0.7872 + }, + { + "start": 1648.32, + "end": 1649.16, + "probability": 0.9937 + }, + { + "start": 1649.32, + "end": 1650.32, + "probability": 0.9457 + }, + { + "start": 1650.32, + "end": 1652.16, + "probability": 0.9634 + }, + { + "start": 1652.88, + "end": 1656.24, + "probability": 0.9753 + }, + { + "start": 1656.92, + "end": 1657.88, + "probability": 0.9624 + }, + { + "start": 1658.86, + "end": 1660.62, + "probability": 0.9885 + }, + { + "start": 1661.94, + "end": 1664.78, + "probability": 0.9905 + }, + { + "start": 1665.72, + "end": 1666.94, + "probability": 0.9521 + }, + { + "start": 1667.0, + "end": 1669.16, + "probability": 0.8112 + }, + { + "start": 1669.22, + "end": 1670.14, + "probability": 0.8149 + }, + { + "start": 1670.6, + "end": 1671.62, + "probability": 0.9373 + }, + { + "start": 1672.18, + "end": 1674.34, + "probability": 0.9512 + }, + { + "start": 1674.46, + "end": 1674.64, + "probability": 0.8817 + }, + { + "start": 1675.14, + "end": 1676.64, + "probability": 0.5511 + }, + { + "start": 1676.94, + "end": 1680.96, + "probability": 0.9963 + }, + { + "start": 1681.28, + "end": 1684.16, + "probability": 0.9876 + }, + { + "start": 1685.28, + "end": 1687.36, + "probability": 0.9404 + }, + { + "start": 1687.82, + "end": 1688.58, + "probability": 0.7835 + }, + { + "start": 1688.96, + "end": 1690.3, + "probability": 0.8548 + }, + { + "start": 1690.98, + "end": 1692.76, + "probability": 0.9401 + }, + { + "start": 1692.84, + "end": 1693.86, + "probability": 0.8217 + }, + { + "start": 1694.16, + "end": 1695.82, + "probability": 0.9842 + }, + { + "start": 1696.5, + "end": 1697.8, + "probability": 0.733 + }, + { + "start": 1698.44, + "end": 1701.97, + "probability": 0.9946 + }, + { + "start": 1703.34, + "end": 1704.28, + "probability": 0.9653 + }, + { + "start": 1705.48, + "end": 1708.28, + "probability": 0.9949 + }, + { + "start": 1710.36, + "end": 1711.82, + "probability": 0.8955 + }, + { + "start": 1712.56, + "end": 1713.1, + "probability": 0.7737 + }, + { + "start": 1713.78, + "end": 1714.47, + "probability": 0.7285 + }, + { + "start": 1715.84, + "end": 1717.94, + "probability": 0.8066 + }, + { + "start": 1718.46, + "end": 1720.44, + "probability": 0.9715 + }, + { + "start": 1722.08, + "end": 1722.38, + "probability": 0.7447 + }, + { + "start": 1722.44, + "end": 1722.7, + "probability": 0.9189 + }, + { + "start": 1723.2, + "end": 1723.52, + "probability": 0.2469 + }, + { + "start": 1723.6, + "end": 1724.16, + "probability": 0.9639 + }, + { + "start": 1724.3, + "end": 1728.68, + "probability": 0.9644 + }, + { + "start": 1728.88, + "end": 1731.78, + "probability": 0.8841 + }, + { + "start": 1733.45, + "end": 1736.78, + "probability": 0.976 + }, + { + "start": 1736.78, + "end": 1740.08, + "probability": 0.9762 + }, + { + "start": 1740.96, + "end": 1742.64, + "probability": 0.8788 + }, + { + "start": 1742.8, + "end": 1745.8, + "probability": 0.8125 + }, + { + "start": 1746.62, + "end": 1747.88, + "probability": 0.9804 + }, + { + "start": 1748.04, + "end": 1749.22, + "probability": 0.8885 + }, + { + "start": 1749.38, + "end": 1752.08, + "probability": 0.7475 + }, + { + "start": 1752.4, + "end": 1753.2, + "probability": 0.9751 + }, + { + "start": 1753.46, + "end": 1756.0, + "probability": 0.8285 + }, + { + "start": 1756.5, + "end": 1757.48, + "probability": 0.6034 + }, + { + "start": 1758.08, + "end": 1762.5, + "probability": 0.8702 + }, + { + "start": 1763.5, + "end": 1764.14, + "probability": 0.8447 + }, + { + "start": 1764.24, + "end": 1764.9, + "probability": 0.7521 + }, + { + "start": 1765.06, + "end": 1770.3, + "probability": 0.9548 + }, + { + "start": 1770.3, + "end": 1775.46, + "probability": 0.983 + }, + { + "start": 1776.0, + "end": 1778.62, + "probability": 0.9905 + }, + { + "start": 1778.62, + "end": 1782.9, + "probability": 0.9758 + }, + { + "start": 1783.18, + "end": 1783.64, + "probability": 0.6353 + }, + { + "start": 1783.74, + "end": 1787.66, + "probability": 0.9907 + }, + { + "start": 1787.86, + "end": 1788.34, + "probability": 0.8925 + }, + { + "start": 1788.84, + "end": 1790.58, + "probability": 0.9844 + }, + { + "start": 1790.7, + "end": 1796.08, + "probability": 0.9604 + }, + { + "start": 1796.72, + "end": 1800.28, + "probability": 0.9661 + }, + { + "start": 1800.72, + "end": 1801.16, + "probability": 0.364 + }, + { + "start": 1801.28, + "end": 1804.4, + "probability": 0.9747 + }, + { + "start": 1804.88, + "end": 1808.68, + "probability": 0.9819 + }, + { + "start": 1808.68, + "end": 1811.94, + "probability": 0.9967 + }, + { + "start": 1813.18, + "end": 1815.06, + "probability": 0.7477 + }, + { + "start": 1815.6, + "end": 1816.66, + "probability": 0.7786 + }, + { + "start": 1817.14, + "end": 1820.12, + "probability": 0.9874 + }, + { + "start": 1820.6, + "end": 1822.74, + "probability": 0.9954 + }, + { + "start": 1823.22, + "end": 1825.68, + "probability": 0.9845 + }, + { + "start": 1826.1, + "end": 1828.78, + "probability": 0.9889 + }, + { + "start": 1829.28, + "end": 1830.76, + "probability": 0.9868 + }, + { + "start": 1830.9, + "end": 1831.7, + "probability": 0.8173 + }, + { + "start": 1832.18, + "end": 1833.18, + "probability": 0.5334 + }, + { + "start": 1835.12, + "end": 1836.66, + "probability": 0.8913 + }, + { + "start": 1837.64, + "end": 1837.94, + "probability": 0.6261 + }, + { + "start": 1838.08, + "end": 1838.8, + "probability": 0.8126 + }, + { + "start": 1838.92, + "end": 1840.35, + "probability": 0.9897 + }, + { + "start": 1840.86, + "end": 1842.72, + "probability": 0.9836 + }, + { + "start": 1843.34, + "end": 1847.38, + "probability": 0.9134 + }, + { + "start": 1848.62, + "end": 1851.86, + "probability": 0.9989 + }, + { + "start": 1852.72, + "end": 1853.65, + "probability": 0.686 + }, + { + "start": 1854.26, + "end": 1855.88, + "probability": 0.922 + }, + { + "start": 1856.1, + "end": 1858.24, + "probability": 0.9745 + }, + { + "start": 1858.26, + "end": 1858.7, + "probability": 0.5826 + }, + { + "start": 1859.82, + "end": 1861.04, + "probability": 0.991 + }, + { + "start": 1861.6, + "end": 1864.24, + "probability": 0.9906 + }, + { + "start": 1864.78, + "end": 1867.56, + "probability": 0.3127 + }, + { + "start": 1868.22, + "end": 1869.16, + "probability": 0.0707 + }, + { + "start": 1869.16, + "end": 1871.16, + "probability": 0.7707 + }, + { + "start": 1871.62, + "end": 1872.74, + "probability": 0.6255 + }, + { + "start": 1873.1, + "end": 1873.5, + "probability": 0.4354 + }, + { + "start": 1873.58, + "end": 1874.64, + "probability": 0.7098 + }, + { + "start": 1874.64, + "end": 1875.96, + "probability": 0.6026 + }, + { + "start": 1876.24, + "end": 1877.26, + "probability": 0.8095 + }, + { + "start": 1877.34, + "end": 1879.64, + "probability": 0.664 + }, + { + "start": 1879.92, + "end": 1882.96, + "probability": 0.0424 + }, + { + "start": 1883.08, + "end": 1883.08, + "probability": 0.3895 + }, + { + "start": 1883.6, + "end": 1883.64, + "probability": 0.484 + }, + { + "start": 1883.64, + "end": 1888.05, + "probability": 0.5027 + }, + { + "start": 1889.88, + "end": 1890.78, + "probability": 0.0702 + }, + { + "start": 1890.78, + "end": 1890.78, + "probability": 0.0358 + }, + { + "start": 1890.78, + "end": 1890.78, + "probability": 0.171 + }, + { + "start": 1890.78, + "end": 1891.7, + "probability": 0.2831 + }, + { + "start": 1891.7, + "end": 1893.82, + "probability": 0.9509 + }, + { + "start": 1894.72, + "end": 1896.72, + "probability": 0.9063 + }, + { + "start": 1897.6, + "end": 1900.33, + "probability": 0.9919 + }, + { + "start": 1901.42, + "end": 1905.74, + "probability": 0.9863 + }, + { + "start": 1907.18, + "end": 1908.8, + "probability": 0.5513 + }, + { + "start": 1909.88, + "end": 1910.72, + "probability": 0.8458 + }, + { + "start": 1911.8, + "end": 1912.44, + "probability": 0.9546 + }, + { + "start": 1912.98, + "end": 1913.7, + "probability": 0.9501 + }, + { + "start": 1914.38, + "end": 1915.62, + "probability": 0.9869 + }, + { + "start": 1915.96, + "end": 1919.3, + "probability": 0.9945 + }, + { + "start": 1919.98, + "end": 1921.56, + "probability": 0.9751 + }, + { + "start": 1921.84, + "end": 1925.54, + "probability": 0.9944 + }, + { + "start": 1926.0, + "end": 1927.02, + "probability": 0.6276 + }, + { + "start": 1927.76, + "end": 1928.96, + "probability": 0.9701 + }, + { + "start": 1929.24, + "end": 1930.4, + "probability": 0.9924 + }, + { + "start": 1930.66, + "end": 1931.44, + "probability": 0.9494 + }, + { + "start": 1931.72, + "end": 1932.5, + "probability": 0.9572 + }, + { + "start": 1932.58, + "end": 1933.15, + "probability": 0.9839 + }, + { + "start": 1933.6, + "end": 1934.46, + "probability": 0.7628 + }, + { + "start": 1934.96, + "end": 1937.6, + "probability": 0.9858 + }, + { + "start": 1938.04, + "end": 1940.19, + "probability": 0.9984 + }, + { + "start": 1940.36, + "end": 1940.5, + "probability": 0.0847 + }, + { + "start": 1940.5, + "end": 1943.8, + "probability": 0.6045 + }, + { + "start": 1944.44, + "end": 1947.27, + "probability": 0.5907 + }, + { + "start": 1947.54, + "end": 1947.9, + "probability": 0.0827 + }, + { + "start": 1947.94, + "end": 1951.34, + "probability": 0.8156 + }, + { + "start": 1951.34, + "end": 1955.14, + "probability": 0.7992 + }, + { + "start": 1955.54, + "end": 1956.11, + "probability": 0.1016 + }, + { + "start": 1956.54, + "end": 1957.38, + "probability": 0.3884 + }, + { + "start": 1957.44, + "end": 1958.24, + "probability": 0.2632 + }, + { + "start": 1958.28, + "end": 1959.8, + "probability": 0.746 + }, + { + "start": 1960.06, + "end": 1961.48, + "probability": 0.7223 + }, + { + "start": 1962.64, + "end": 1963.76, + "probability": 0.1944 + }, + { + "start": 1963.76, + "end": 1966.38, + "probability": 0.515 + }, + { + "start": 1966.56, + "end": 1967.44, + "probability": 0.7981 + }, + { + "start": 1968.22, + "end": 1969.94, + "probability": 0.3649 + }, + { + "start": 1970.83, + "end": 1972.45, + "probability": 0.5219 + }, + { + "start": 1974.12, + "end": 1975.44, + "probability": 0.6692 + }, + { + "start": 1975.72, + "end": 1978.42, + "probability": 0.5892 + }, + { + "start": 1978.48, + "end": 1981.13, + "probability": 0.7546 + }, + { + "start": 1981.34, + "end": 1984.12, + "probability": 0.8896 + }, + { + "start": 1984.22, + "end": 1985.52, + "probability": 0.7302 + }, + { + "start": 1986.02, + "end": 1986.4, + "probability": 0.2361 + }, + { + "start": 1986.42, + "end": 1988.07, + "probability": 0.9658 + }, + { + "start": 1988.36, + "end": 1988.5, + "probability": 0.4697 + }, + { + "start": 1988.66, + "end": 1989.36, + "probability": 0.6227 + }, + { + "start": 1989.4, + "end": 1992.4, + "probability": 0.8591 + }, + { + "start": 1992.88, + "end": 1993.78, + "probability": 0.9504 + }, + { + "start": 1993.9, + "end": 1994.46, + "probability": 0.9517 + }, + { + "start": 1994.76, + "end": 1995.72, + "probability": 0.7778 + }, + { + "start": 1995.92, + "end": 1997.54, + "probability": 0.9862 + }, + { + "start": 1998.16, + "end": 1999.42, + "probability": 0.7516 + }, + { + "start": 1999.46, + "end": 2001.58, + "probability": 0.9864 + }, + { + "start": 2002.52, + "end": 2002.72, + "probability": 0.546 + }, + { + "start": 2002.74, + "end": 2004.86, + "probability": 0.9662 + }, + { + "start": 2004.94, + "end": 2005.38, + "probability": 0.6552 + }, + { + "start": 2005.94, + "end": 2009.6, + "probability": 0.9823 + }, + { + "start": 2009.6, + "end": 2012.42, + "probability": 0.9992 + }, + { + "start": 2013.06, + "end": 2013.82, + "probability": 0.8033 + }, + { + "start": 2014.08, + "end": 2015.52, + "probability": 0.9765 + }, + { + "start": 2015.96, + "end": 2016.74, + "probability": 0.483 + }, + { + "start": 2016.92, + "end": 2017.24, + "probability": 0.2723 + }, + { + "start": 2017.24, + "end": 2017.24, + "probability": 0.0092 + }, + { + "start": 2017.24, + "end": 2017.24, + "probability": 0.136 + }, + { + "start": 2017.24, + "end": 2017.24, + "probability": 0.3089 + }, + { + "start": 2017.24, + "end": 2018.96, + "probability": 0.4991 + }, + { + "start": 2019.4, + "end": 2021.89, + "probability": 0.8884 + }, + { + "start": 2023.76, + "end": 2025.5, + "probability": 0.1241 + }, + { + "start": 2027.66, + "end": 2028.0, + "probability": 0.0024 + }, + { + "start": 2028.0, + "end": 2028.0, + "probability": 0.277 + }, + { + "start": 2028.0, + "end": 2028.0, + "probability": 0.1342 + }, + { + "start": 2028.0, + "end": 2028.34, + "probability": 0.3806 + }, + { + "start": 2028.34, + "end": 2031.06, + "probability": 0.9666 + }, + { + "start": 2031.94, + "end": 2032.36, + "probability": 0.27 + }, + { + "start": 2032.36, + "end": 2033.94, + "probability": 0.7665 + }, + { + "start": 2033.94, + "end": 2035.59, + "probability": 0.9048 + }, + { + "start": 2035.74, + "end": 2036.86, + "probability": 0.5834 + }, + { + "start": 2036.94, + "end": 2040.28, + "probability": 0.9575 + }, + { + "start": 2040.42, + "end": 2041.34, + "probability": 0.8962 + }, + { + "start": 2041.46, + "end": 2042.04, + "probability": 0.1198 + }, + { + "start": 2042.48, + "end": 2043.26, + "probability": 0.4655 + }, + { + "start": 2043.32, + "end": 2044.02, + "probability": 0.0335 + }, + { + "start": 2044.08, + "end": 2045.3, + "probability": 0.9238 + }, + { + "start": 2045.58, + "end": 2046.62, + "probability": 0.5914 + }, + { + "start": 2047.47, + "end": 2050.16, + "probability": 0.1136 + }, + { + "start": 2050.26, + "end": 2052.6, + "probability": 0.447 + }, + { + "start": 2052.76, + "end": 2053.2, + "probability": 0.0896 + }, + { + "start": 2053.2, + "end": 2055.52, + "probability": 0.8061 + }, + { + "start": 2055.56, + "end": 2055.76, + "probability": 0.0888 + }, + { + "start": 2056.28, + "end": 2057.98, + "probability": 0.7406 + }, + { + "start": 2061.86, + "end": 2066.44, + "probability": 0.9409 + }, + { + "start": 2067.34, + "end": 2068.56, + "probability": 0.7357 + }, + { + "start": 2068.86, + "end": 2069.96, + "probability": 0.2235 + }, + { + "start": 2070.06, + "end": 2070.56, + "probability": 0.7535 + }, + { + "start": 2070.94, + "end": 2073.72, + "probability": 0.9973 + }, + { + "start": 2075.94, + "end": 2077.12, + "probability": 0.1199 + }, + { + "start": 2077.34, + "end": 2077.34, + "probability": 0.197 + }, + { + "start": 2077.34, + "end": 2078.36, + "probability": 0.5361 + }, + { + "start": 2078.36, + "end": 2080.53, + "probability": 0.866 + }, + { + "start": 2081.4, + "end": 2082.79, + "probability": 0.7636 + }, + { + "start": 2083.64, + "end": 2084.41, + "probability": 0.6455 + }, + { + "start": 2084.82, + "end": 2086.38, + "probability": 0.9179 + }, + { + "start": 2086.66, + "end": 2091.96, + "probability": 0.9329 + }, + { + "start": 2092.66, + "end": 2093.68, + "probability": 0.4581 + }, + { + "start": 2093.76, + "end": 2095.32, + "probability": 0.9161 + }, + { + "start": 2096.02, + "end": 2098.62, + "probability": 0.9954 + }, + { + "start": 2098.68, + "end": 2102.62, + "probability": 0.884 + }, + { + "start": 2103.18, + "end": 2108.16, + "probability": 0.9929 + }, + { + "start": 2108.46, + "end": 2109.92, + "probability": 0.9993 + }, + { + "start": 2110.76, + "end": 2111.9, + "probability": 0.6096 + }, + { + "start": 2112.92, + "end": 2114.56, + "probability": 0.0007 + }, + { + "start": 2115.1, + "end": 2115.68, + "probability": 0.2941 + }, + { + "start": 2115.86, + "end": 2115.92, + "probability": 0.5216 + }, + { + "start": 2115.92, + "end": 2116.5, + "probability": 0.5042 + }, + { + "start": 2116.89, + "end": 2118.5, + "probability": 0.2981 + }, + { + "start": 2118.5, + "end": 2119.5, + "probability": 0.0484 + }, + { + "start": 2123.7, + "end": 2124.5, + "probability": 0.5839 + }, + { + "start": 2124.94, + "end": 2126.8, + "probability": 0.479 + }, + { + "start": 2128.27, + "end": 2130.16, + "probability": 0.2398 + }, + { + "start": 2130.62, + "end": 2131.58, + "probability": 0.7304 + }, + { + "start": 2131.58, + "end": 2132.04, + "probability": 0.3233 + }, + { + "start": 2132.04, + "end": 2132.04, + "probability": 0.1395 + }, + { + "start": 2132.04, + "end": 2132.04, + "probability": 0.1151 + }, + { + "start": 2132.04, + "end": 2132.04, + "probability": 0.2853 + }, + { + "start": 2132.04, + "end": 2134.76, + "probability": 0.8565 + }, + { + "start": 2134.94, + "end": 2135.82, + "probability": 0.699 + }, + { + "start": 2135.88, + "end": 2137.42, + "probability": 0.6293 + }, + { + "start": 2139.2, + "end": 2140.91, + "probability": 0.4209 + }, + { + "start": 2141.38, + "end": 2143.36, + "probability": 0.9668 + }, + { + "start": 2144.08, + "end": 2148.51, + "probability": 0.9823 + }, + { + "start": 2148.96, + "end": 2150.32, + "probability": 0.8689 + }, + { + "start": 2150.68, + "end": 2151.8, + "probability": 0.7633 + }, + { + "start": 2151.9, + "end": 2152.84, + "probability": 0.6831 + }, + { + "start": 2153.02, + "end": 2156.26, + "probability": 0.7728 + }, + { + "start": 2156.5, + "end": 2157.52, + "probability": 0.9931 + }, + { + "start": 2157.84, + "end": 2158.38, + "probability": 0.8582 + }, + { + "start": 2158.46, + "end": 2159.34, + "probability": 0.68 + }, + { + "start": 2159.44, + "end": 2159.58, + "probability": 0.0151 + }, + { + "start": 2159.62, + "end": 2159.72, + "probability": 0.2059 + }, + { + "start": 2159.72, + "end": 2161.02, + "probability": 0.9206 + }, + { + "start": 2161.84, + "end": 2162.3, + "probability": 0.5843 + }, + { + "start": 2162.6, + "end": 2163.56, + "probability": 0.867 + }, + { + "start": 2163.66, + "end": 2166.7, + "probability": 0.9928 + }, + { + "start": 2167.08, + "end": 2170.62, + "probability": 0.8986 + }, + { + "start": 2172.62, + "end": 2174.68, + "probability": 0.9012 + }, + { + "start": 2175.46, + "end": 2175.72, + "probability": 0.8522 + }, + { + "start": 2177.14, + "end": 2180.38, + "probability": 0.9141 + }, + { + "start": 2181.92, + "end": 2186.08, + "probability": 0.9477 + }, + { + "start": 2186.78, + "end": 2190.0, + "probability": 0.8838 + }, + { + "start": 2190.18, + "end": 2192.94, + "probability": 0.9563 + }, + { + "start": 2193.7, + "end": 2194.33, + "probability": 0.8857 + }, + { + "start": 2194.56, + "end": 2195.72, + "probability": 0.5276 + }, + { + "start": 2195.8, + "end": 2200.48, + "probability": 0.9933 + }, + { + "start": 2201.06, + "end": 2202.36, + "probability": 0.9665 + }, + { + "start": 2202.76, + "end": 2203.44, + "probability": 0.8521 + }, + { + "start": 2203.56, + "end": 2205.7, + "probability": 0.9771 + }, + { + "start": 2206.24, + "end": 2208.14, + "probability": 0.975 + }, + { + "start": 2208.66, + "end": 2210.98, + "probability": 0.6274 + }, + { + "start": 2211.68, + "end": 2212.02, + "probability": 0.4284 + }, + { + "start": 2212.82, + "end": 2215.52, + "probability": 0.8881 + }, + { + "start": 2215.96, + "end": 2217.32, + "probability": 0.7488 + }, + { + "start": 2217.48, + "end": 2219.7, + "probability": 0.9529 + }, + { + "start": 2220.5, + "end": 2222.42, + "probability": 0.9496 + }, + { + "start": 2222.62, + "end": 2225.4, + "probability": 0.7604 + }, + { + "start": 2225.96, + "end": 2227.58, + "probability": 0.6566 + }, + { + "start": 2228.46, + "end": 2231.66, + "probability": 0.9946 + }, + { + "start": 2231.66, + "end": 2235.46, + "probability": 0.9949 + }, + { + "start": 2236.06, + "end": 2237.26, + "probability": 0.4264 + }, + { + "start": 2238.06, + "end": 2238.84, + "probability": 0.7134 + }, + { + "start": 2238.92, + "end": 2240.1, + "probability": 0.9427 + }, + { + "start": 2240.14, + "end": 2243.0, + "probability": 0.9801 + }, + { + "start": 2243.82, + "end": 2245.54, + "probability": 0.6744 + }, + { + "start": 2246.28, + "end": 2247.69, + "probability": 0.8491 + }, + { + "start": 2248.64, + "end": 2250.32, + "probability": 0.9552 + }, + { + "start": 2251.42, + "end": 2254.56, + "probability": 0.9927 + }, + { + "start": 2255.22, + "end": 2259.76, + "probability": 0.9829 + }, + { + "start": 2260.5, + "end": 2263.61, + "probability": 0.9957 + }, + { + "start": 2264.64, + "end": 2268.8, + "probability": 0.9849 + }, + { + "start": 2269.5, + "end": 2275.4, + "probability": 0.9867 + }, + { + "start": 2275.9, + "end": 2281.04, + "probability": 0.9805 + }, + { + "start": 2281.66, + "end": 2282.74, + "probability": 0.8115 + }, + { + "start": 2283.82, + "end": 2290.98, + "probability": 0.9877 + }, + { + "start": 2291.9, + "end": 2294.1, + "probability": 0.9951 + }, + { + "start": 2295.7, + "end": 2301.66, + "probability": 0.9717 + }, + { + "start": 2302.42, + "end": 2304.56, + "probability": 0.9834 + }, + { + "start": 2305.1, + "end": 2311.92, + "probability": 0.9672 + }, + { + "start": 2312.14, + "end": 2313.9, + "probability": 0.5507 + }, + { + "start": 2314.66, + "end": 2318.7, + "probability": 0.9351 + }, + { + "start": 2319.38, + "end": 2321.28, + "probability": 0.8979 + }, + { + "start": 2322.08, + "end": 2324.9, + "probability": 0.9944 + }, + { + "start": 2325.68, + "end": 2327.48, + "probability": 0.9794 + }, + { + "start": 2327.96, + "end": 2334.66, + "probability": 0.995 + }, + { + "start": 2335.54, + "end": 2338.96, + "probability": 0.8882 + }, + { + "start": 2339.58, + "end": 2342.92, + "probability": 0.9844 + }, + { + "start": 2344.3, + "end": 2348.96, + "probability": 0.8565 + }, + { + "start": 2349.64, + "end": 2356.08, + "probability": 0.98 + }, + { + "start": 2359.06, + "end": 2359.64, + "probability": 0.544 + }, + { + "start": 2359.74, + "end": 2363.58, + "probability": 0.9776 + }, + { + "start": 2364.24, + "end": 2368.92, + "probability": 0.9964 + }, + { + "start": 2369.62, + "end": 2373.68, + "probability": 0.9758 + }, + { + "start": 2374.12, + "end": 2375.92, + "probability": 0.7047 + }, + { + "start": 2376.44, + "end": 2377.06, + "probability": 0.9564 + }, + { + "start": 2377.2, + "end": 2378.04, + "probability": 0.9812 + }, + { + "start": 2378.4, + "end": 2379.54, + "probability": 0.9676 + }, + { + "start": 2379.74, + "end": 2380.2, + "probability": 0.97 + }, + { + "start": 2380.36, + "end": 2382.1, + "probability": 0.8199 + }, + { + "start": 2383.04, + "end": 2387.1, + "probability": 0.8616 + }, + { + "start": 2388.06, + "end": 2390.28, + "probability": 0.8413 + }, + { + "start": 2390.8, + "end": 2391.7, + "probability": 0.9211 + }, + { + "start": 2392.42, + "end": 2394.2, + "probability": 0.9613 + }, + { + "start": 2394.5, + "end": 2397.16, + "probability": 0.5939 + }, + { + "start": 2398.28, + "end": 2401.88, + "probability": 0.9751 + }, + { + "start": 2402.6, + "end": 2407.1, + "probability": 0.9816 + }, + { + "start": 2407.78, + "end": 2408.8, + "probability": 0.9486 + }, + { + "start": 2408.92, + "end": 2409.96, + "probability": 0.9254 + }, + { + "start": 2410.4, + "end": 2411.82, + "probability": 0.9887 + }, + { + "start": 2412.22, + "end": 2414.22, + "probability": 0.9866 + }, + { + "start": 2414.78, + "end": 2418.7, + "probability": 0.9897 + }, + { + "start": 2419.4, + "end": 2423.64, + "probability": 0.9205 + }, + { + "start": 2425.36, + "end": 2427.82, + "probability": 0.949 + }, + { + "start": 2428.52, + "end": 2432.9, + "probability": 0.9976 + }, + { + "start": 2433.6, + "end": 2435.96, + "probability": 0.9816 + }, + { + "start": 2436.78, + "end": 2443.36, + "probability": 0.9692 + }, + { + "start": 2443.96, + "end": 2446.8, + "probability": 0.9883 + }, + { + "start": 2447.44, + "end": 2451.62, + "probability": 0.9961 + }, + { + "start": 2452.06, + "end": 2452.42, + "probability": 0.6326 + }, + { + "start": 2452.48, + "end": 2452.98, + "probability": 0.9202 + }, + { + "start": 2453.12, + "end": 2456.88, + "probability": 0.9605 + }, + { + "start": 2457.5, + "end": 2458.68, + "probability": 0.9742 + }, + { + "start": 2459.74, + "end": 2462.3, + "probability": 0.9685 + }, + { + "start": 2462.92, + "end": 2465.68, + "probability": 0.9529 + }, + { + "start": 2466.26, + "end": 2468.96, + "probability": 0.8229 + }, + { + "start": 2469.82, + "end": 2471.96, + "probability": 0.9868 + }, + { + "start": 2473.4, + "end": 2476.24, + "probability": 0.9714 + }, + { + "start": 2476.78, + "end": 2478.36, + "probability": 0.9614 + }, + { + "start": 2478.4, + "end": 2479.87, + "probability": 0.9769 + }, + { + "start": 2480.36, + "end": 2481.16, + "probability": 0.975 + }, + { + "start": 2482.12, + "end": 2483.54, + "probability": 0.9633 + }, + { + "start": 2484.06, + "end": 2488.32, + "probability": 0.9748 + }, + { + "start": 2488.82, + "end": 2490.88, + "probability": 0.9104 + }, + { + "start": 2491.56, + "end": 2495.34, + "probability": 0.9792 + }, + { + "start": 2495.92, + "end": 2498.92, + "probability": 0.9458 + }, + { + "start": 2499.56, + "end": 2503.18, + "probability": 0.7366 + }, + { + "start": 2503.82, + "end": 2504.88, + "probability": 0.7552 + }, + { + "start": 2505.44, + "end": 2505.66, + "probability": 0.41 + }, + { + "start": 2505.68, + "end": 2506.28, + "probability": 0.9507 + }, + { + "start": 2506.44, + "end": 2513.14, + "probability": 0.9337 + }, + { + "start": 2513.58, + "end": 2517.76, + "probability": 0.9614 + }, + { + "start": 2518.26, + "end": 2522.36, + "probability": 0.9256 + }, + { + "start": 2522.92, + "end": 2524.42, + "probability": 0.84 + }, + { + "start": 2525.0, + "end": 2525.52, + "probability": 0.9654 + }, + { + "start": 2526.12, + "end": 2528.36, + "probability": 0.9907 + }, + { + "start": 2528.92, + "end": 2531.57, + "probability": 0.9814 + }, + { + "start": 2533.16, + "end": 2537.3, + "probability": 0.9531 + }, + { + "start": 2537.9, + "end": 2538.54, + "probability": 0.6539 + }, + { + "start": 2538.7, + "end": 2539.84, + "probability": 0.969 + }, + { + "start": 2540.22, + "end": 2542.26, + "probability": 0.9398 + }, + { + "start": 2542.74, + "end": 2546.66, + "probability": 0.9567 + }, + { + "start": 2547.5, + "end": 2551.0, + "probability": 0.6784 + }, + { + "start": 2551.7, + "end": 2553.1, + "probability": 0.9805 + }, + { + "start": 2554.06, + "end": 2556.22, + "probability": 0.9802 + }, + { + "start": 2556.22, + "end": 2559.58, + "probability": 0.9792 + }, + { + "start": 2560.12, + "end": 2561.76, + "probability": 0.9961 + }, + { + "start": 2562.34, + "end": 2564.74, + "probability": 0.5728 + }, + { + "start": 2565.84, + "end": 2566.86, + "probability": 0.8772 + }, + { + "start": 2567.02, + "end": 2569.82, + "probability": 0.8663 + }, + { + "start": 2570.0, + "end": 2574.06, + "probability": 0.9491 + }, + { + "start": 2575.34, + "end": 2577.2, + "probability": 0.9801 + }, + { + "start": 2577.34, + "end": 2579.86, + "probability": 0.8715 + }, + { + "start": 2580.3, + "end": 2582.4, + "probability": 0.8742 + }, + { + "start": 2583.18, + "end": 2584.3, + "probability": 0.9792 + }, + { + "start": 2584.38, + "end": 2587.76, + "probability": 0.9674 + }, + { + "start": 2587.98, + "end": 2588.58, + "probability": 0.7505 + }, + { + "start": 2589.2, + "end": 2590.04, + "probability": 0.6641 + }, + { + "start": 2590.82, + "end": 2594.66, + "probability": 0.9337 + }, + { + "start": 2594.66, + "end": 2597.68, + "probability": 0.9656 + }, + { + "start": 2598.3, + "end": 2599.78, + "probability": 0.9582 + }, + { + "start": 2600.42, + "end": 2602.06, + "probability": 0.9893 + }, + { + "start": 2602.58, + "end": 2603.9, + "probability": 0.8425 + }, + { + "start": 2604.56, + "end": 2607.34, + "probability": 0.979 + }, + { + "start": 2607.9, + "end": 2608.52, + "probability": 0.6069 + }, + { + "start": 2608.64, + "end": 2609.56, + "probability": 0.9441 + }, + { + "start": 2610.06, + "end": 2614.54, + "probability": 0.9671 + }, + { + "start": 2615.06, + "end": 2616.51, + "probability": 0.9873 + }, + { + "start": 2618.12, + "end": 2620.42, + "probability": 0.9893 + }, + { + "start": 2620.92, + "end": 2622.56, + "probability": 0.9756 + }, + { + "start": 2623.04, + "end": 2625.24, + "probability": 0.851 + }, + { + "start": 2625.7, + "end": 2626.52, + "probability": 0.7374 + }, + { + "start": 2627.0, + "end": 2629.04, + "probability": 0.8807 + }, + { + "start": 2629.62, + "end": 2630.01, + "probability": 0.5659 + }, + { + "start": 2630.92, + "end": 2631.8, + "probability": 0.8352 + }, + { + "start": 2632.3, + "end": 2636.84, + "probability": 0.9835 + }, + { + "start": 2637.38, + "end": 2638.88, + "probability": 0.9771 + }, + { + "start": 2640.12, + "end": 2644.6, + "probability": 0.9768 + }, + { + "start": 2645.24, + "end": 2648.58, + "probability": 0.9875 + }, + { + "start": 2649.38, + "end": 2649.86, + "probability": 0.7225 + }, + { + "start": 2650.18, + "end": 2650.94, + "probability": 0.8876 + }, + { + "start": 2651.32, + "end": 2653.66, + "probability": 0.8301 + }, + { + "start": 2654.4, + "end": 2655.54, + "probability": 0.7268 + }, + { + "start": 2656.16, + "end": 2660.84, + "probability": 0.9868 + }, + { + "start": 2661.46, + "end": 2662.54, + "probability": 0.902 + }, + { + "start": 2662.66, + "end": 2664.49, + "probability": 0.8481 + }, + { + "start": 2664.72, + "end": 2666.22, + "probability": 0.9839 + }, + { + "start": 2666.66, + "end": 2668.11, + "probability": 0.9858 + }, + { + "start": 2669.38, + "end": 2672.5, + "probability": 0.9939 + }, + { + "start": 2673.88, + "end": 2674.76, + "probability": 0.6895 + }, + { + "start": 2675.16, + "end": 2676.2, + "probability": 0.8153 + }, + { + "start": 2676.62, + "end": 2678.44, + "probability": 0.9847 + }, + { + "start": 2679.32, + "end": 2682.76, + "probability": 0.9768 + }, + { + "start": 2684.02, + "end": 2687.14, + "probability": 0.8427 + }, + { + "start": 2687.66, + "end": 2689.18, + "probability": 0.9229 + }, + { + "start": 2690.54, + "end": 2695.92, + "probability": 0.9189 + }, + { + "start": 2696.62, + "end": 2697.42, + "probability": 0.8712 + }, + { + "start": 2697.82, + "end": 2698.98, + "probability": 0.8179 + }, + { + "start": 2699.62, + "end": 2702.9, + "probability": 0.9803 + }, + { + "start": 2704.68, + "end": 2706.54, + "probability": 0.7868 + }, + { + "start": 2707.12, + "end": 2709.4, + "probability": 0.993 + }, + { + "start": 2710.14, + "end": 2714.06, + "probability": 0.9005 + }, + { + "start": 2714.82, + "end": 2720.64, + "probability": 0.9928 + }, + { + "start": 2721.52, + "end": 2724.06, + "probability": 0.7291 + }, + { + "start": 2725.14, + "end": 2730.42, + "probability": 0.9033 + }, + { + "start": 2731.32, + "end": 2733.32, + "probability": 0.9831 + }, + { + "start": 2749.12, + "end": 2751.36, + "probability": 0.7001 + }, + { + "start": 2752.2, + "end": 2755.5, + "probability": 0.9009 + }, + { + "start": 2756.56, + "end": 2762.06, + "probability": 0.8244 + }, + { + "start": 2762.08, + "end": 2763.82, + "probability": 0.9258 + }, + { + "start": 2764.4, + "end": 2765.24, + "probability": 0.7156 + }, + { + "start": 2767.2, + "end": 2769.41, + "probability": 0.9719 + }, + { + "start": 2772.12, + "end": 2774.82, + "probability": 0.8414 + }, + { + "start": 2777.46, + "end": 2782.26, + "probability": 0.9833 + }, + { + "start": 2783.42, + "end": 2784.54, + "probability": 0.9715 + }, + { + "start": 2786.32, + "end": 2787.7, + "probability": 0.9679 + }, + { + "start": 2788.06, + "end": 2789.58, + "probability": 0.9915 + }, + { + "start": 2793.0, + "end": 2793.92, + "probability": 0.6708 + }, + { + "start": 2795.7, + "end": 2798.74, + "probability": 0.9082 + }, + { + "start": 2799.88, + "end": 2801.4, + "probability": 0.6157 + }, + { + "start": 2802.38, + "end": 2811.46, + "probability": 0.8022 + }, + { + "start": 2813.06, + "end": 2813.82, + "probability": 0.927 + }, + { + "start": 2814.18, + "end": 2815.22, + "probability": 0.636 + }, + { + "start": 2815.64, + "end": 2816.87, + "probability": 0.9966 + }, + { + "start": 2817.8, + "end": 2819.74, + "probability": 0.8754 + }, + { + "start": 2819.94, + "end": 2820.46, + "probability": 0.8184 + }, + { + "start": 2820.84, + "end": 2822.22, + "probability": 0.9482 + }, + { + "start": 2822.58, + "end": 2826.82, + "probability": 0.9523 + }, + { + "start": 2826.88, + "end": 2827.36, + "probability": 0.7722 + }, + { + "start": 2828.78, + "end": 2830.01, + "probability": 0.9927 + }, + { + "start": 2831.6, + "end": 2832.56, + "probability": 0.4536 + }, + { + "start": 2832.96, + "end": 2833.94, + "probability": 0.6774 + }, + { + "start": 2834.78, + "end": 2835.4, + "probability": 0.864 + }, + { + "start": 2835.88, + "end": 2840.48, + "probability": 0.9341 + }, + { + "start": 2841.24, + "end": 2843.68, + "probability": 0.9753 + }, + { + "start": 2845.08, + "end": 2847.86, + "probability": 0.9895 + }, + { + "start": 2847.86, + "end": 2851.06, + "probability": 0.9982 + }, + { + "start": 2851.46, + "end": 2852.22, + "probability": 0.6177 + }, + { + "start": 2852.3, + "end": 2852.78, + "probability": 0.7102 + }, + { + "start": 2852.96, + "end": 2856.08, + "probability": 0.909 + }, + { + "start": 2857.2, + "end": 2859.45, + "probability": 0.8894 + }, + { + "start": 2860.32, + "end": 2862.76, + "probability": 0.9847 + }, + { + "start": 2862.9, + "end": 2865.06, + "probability": 0.6724 + }, + { + "start": 2865.24, + "end": 2866.06, + "probability": 0.866 + }, + { + "start": 2867.0, + "end": 2869.42, + "probability": 0.8352 + }, + { + "start": 2870.52, + "end": 2872.48, + "probability": 0.0305 + }, + { + "start": 2872.6, + "end": 2873.41, + "probability": 0.9907 + }, + { + "start": 2875.16, + "end": 2876.08, + "probability": 0.8999 + }, + { + "start": 2877.36, + "end": 2879.74, + "probability": 0.886 + }, + { + "start": 2879.86, + "end": 2881.74, + "probability": 0.6519 + }, + { + "start": 2882.36, + "end": 2884.07, + "probability": 0.8667 + }, + { + "start": 2885.18, + "end": 2886.98, + "probability": 0.7006 + }, + { + "start": 2887.58, + "end": 2892.4, + "probability": 0.9746 + }, + { + "start": 2893.08, + "end": 2897.02, + "probability": 0.9064 + }, + { + "start": 2898.12, + "end": 2901.68, + "probability": 0.6192 + }, + { + "start": 2901.76, + "end": 2902.76, + "probability": 0.9534 + }, + { + "start": 2904.94, + "end": 2905.72, + "probability": 0.7779 + }, + { + "start": 2905.8, + "end": 2907.58, + "probability": 0.9941 + }, + { + "start": 2907.72, + "end": 2908.5, + "probability": 0.7794 + }, + { + "start": 2908.92, + "end": 2913.68, + "probability": 0.999 + }, + { + "start": 2914.02, + "end": 2917.34, + "probability": 0.9944 + }, + { + "start": 2917.76, + "end": 2921.2, + "probability": 0.9107 + }, + { + "start": 2921.22, + "end": 2923.18, + "probability": 0.7513 + }, + { + "start": 2923.38, + "end": 2924.88, + "probability": 0.3779 + }, + { + "start": 2924.92, + "end": 2925.72, + "probability": 0.8155 + }, + { + "start": 2926.4, + "end": 2927.91, + "probability": 0.9976 + }, + { + "start": 2928.24, + "end": 2931.04, + "probability": 0.8838 + }, + { + "start": 2931.18, + "end": 2931.94, + "probability": 0.7937 + }, + { + "start": 2932.62, + "end": 2934.02, + "probability": 0.604 + }, + { + "start": 2934.96, + "end": 2937.84, + "probability": 0.9185 + }, + { + "start": 2938.36, + "end": 2943.88, + "probability": 0.9697 + }, + { + "start": 2944.74, + "end": 2945.58, + "probability": 0.8307 + }, + { + "start": 2946.2, + "end": 2949.96, + "probability": 0.9614 + }, + { + "start": 2951.24, + "end": 2953.66, + "probability": 0.7153 + }, + { + "start": 2954.24, + "end": 2955.82, + "probability": 0.896 + }, + { + "start": 2956.44, + "end": 2958.96, + "probability": 0.0163 + }, + { + "start": 2959.26, + "end": 2959.44, + "probability": 0.0657 + }, + { + "start": 2959.44, + "end": 2959.96, + "probability": 0.6029 + }, + { + "start": 2959.96, + "end": 2961.12, + "probability": 0.5836 + }, + { + "start": 2962.44, + "end": 2963.94, + "probability": 0.8994 + }, + { + "start": 2964.66, + "end": 2967.18, + "probability": 0.6074 + }, + { + "start": 2967.66, + "end": 2969.34, + "probability": 0.9041 + }, + { + "start": 2969.58, + "end": 2971.74, + "probability": 0.9139 + }, + { + "start": 2972.34, + "end": 2976.34, + "probability": 0.9668 + }, + { + "start": 2976.48, + "end": 2977.5, + "probability": 0.5327 + }, + { + "start": 2979.02, + "end": 2981.84, + "probability": 0.0594 + }, + { + "start": 2982.86, + "end": 2983.8, + "probability": 0.0131 + }, + { + "start": 2984.0, + "end": 2984.98, + "probability": 0.5029 + }, + { + "start": 2985.06, + "end": 2985.94, + "probability": 0.244 + }, + { + "start": 2988.97, + "end": 2991.02, + "probability": 0.2986 + }, + { + "start": 2991.02, + "end": 2991.02, + "probability": 0.0293 + }, + { + "start": 2991.02, + "end": 2991.02, + "probability": 0.2631 + }, + { + "start": 2991.02, + "end": 2991.02, + "probability": 0.2824 + }, + { + "start": 2991.02, + "end": 2991.02, + "probability": 0.1925 + }, + { + "start": 2991.02, + "end": 2991.02, + "probability": 0.0434 + }, + { + "start": 2991.02, + "end": 2992.72, + "probability": 0.444 + }, + { + "start": 2993.92, + "end": 2994.7, + "probability": 0.4952 + }, + { + "start": 2998.44, + "end": 2999.22, + "probability": 0.4985 + }, + { + "start": 2999.5, + "end": 3002.4, + "probability": 0.9673 + }, + { + "start": 3003.76, + "end": 3005.42, + "probability": 0.7054 + }, + { + "start": 3009.96, + "end": 3012.34, + "probability": 0.8798 + }, + { + "start": 3012.42, + "end": 3014.68, + "probability": 0.4509 + }, + { + "start": 3015.62, + "end": 3017.42, + "probability": 0.0753 + }, + { + "start": 3017.84, + "end": 3019.34, + "probability": 0.4171 + }, + { + "start": 3020.02, + "end": 3021.26, + "probability": 0.0557 + }, + { + "start": 3022.4, + "end": 3026.48, + "probability": 0.2673 + }, + { + "start": 3027.0, + "end": 3027.06, + "probability": 0.0175 + }, + { + "start": 3027.06, + "end": 3027.06, + "probability": 0.1028 + }, + { + "start": 3027.06, + "end": 3029.52, + "probability": 0.1348 + }, + { + "start": 3029.52, + "end": 3032.76, + "probability": 0.3066 + }, + { + "start": 3032.88, + "end": 3033.62, + "probability": 0.6674 + }, + { + "start": 3034.32, + "end": 3035.02, + "probability": 0.1127 + }, + { + "start": 3038.9, + "end": 3039.9, + "probability": 0.2527 + }, + { + "start": 3042.5, + "end": 3042.7, + "probability": 0.119 + }, + { + "start": 3059.86, + "end": 3060.26, + "probability": 0.1849 + }, + { + "start": 3061.88, + "end": 3063.9, + "probability": 0.5803 + }, + { + "start": 3065.58, + "end": 3066.44, + "probability": 0.1035 + }, + { + "start": 3066.44, + "end": 3066.44, + "probability": 0.5582 + }, + { + "start": 3066.44, + "end": 3066.44, + "probability": 0.1271 + }, + { + "start": 3066.44, + "end": 3066.82, + "probability": 0.2166 + }, + { + "start": 3066.82, + "end": 3066.82, + "probability": 0.1487 + }, + { + "start": 3066.82, + "end": 3066.82, + "probability": 0.3166 + }, + { + "start": 3066.82, + "end": 3066.88, + "probability": 0.173 + }, + { + "start": 3066.88, + "end": 3066.96, + "probability": 0.3295 + }, + { + "start": 3066.96, + "end": 3066.96, + "probability": 0.1691 + }, + { + "start": 3066.96, + "end": 3066.96, + "probability": 0.0384 + }, + { + "start": 3066.96, + "end": 3066.96, + "probability": 0.0099 + }, + { + "start": 3067.0, + "end": 3067.0, + "probability": 0.0 + }, + { + "start": 3067.0, + "end": 3067.0, + "probability": 0.0 + }, + { + "start": 3068.12, + "end": 3068.12, + "probability": 0.0268 + }, + { + "start": 3068.12, + "end": 3068.12, + "probability": 0.163 + }, + { + "start": 3068.12, + "end": 3068.12, + "probability": 0.0637 + }, + { + "start": 3068.12, + "end": 3068.83, + "probability": 0.1994 + }, + { + "start": 3070.06, + "end": 3070.98, + "probability": 0.7928 + }, + { + "start": 3071.9, + "end": 3072.84, + "probability": 0.828 + }, + { + "start": 3074.32, + "end": 3074.88, + "probability": 0.5252 + }, + { + "start": 3076.18, + "end": 3076.86, + "probability": 0.735 + }, + { + "start": 3077.44, + "end": 3080.18, + "probability": 0.6771 + }, + { + "start": 3081.14, + "end": 3083.17, + "probability": 0.9853 + }, + { + "start": 3083.88, + "end": 3087.9, + "probability": 0.9937 + }, + { + "start": 3088.94, + "end": 3089.64, + "probability": 0.5867 + }, + { + "start": 3090.48, + "end": 3091.08, + "probability": 0.9246 + }, + { + "start": 3091.98, + "end": 3095.92, + "probability": 0.4036 + }, + { + "start": 3096.14, + "end": 3098.46, + "probability": 0.9814 + }, + { + "start": 3099.08, + "end": 3104.0, + "probability": 0.9941 + }, + { + "start": 3104.44, + "end": 3107.16, + "probability": 0.9967 + }, + { + "start": 3107.76, + "end": 3110.18, + "probability": 0.9421 + }, + { + "start": 3110.78, + "end": 3112.72, + "probability": 0.9987 + }, + { + "start": 3113.6, + "end": 3116.18, + "probability": 0.862 + }, + { + "start": 3116.98, + "end": 3118.5, + "probability": 0.8704 + }, + { + "start": 3118.68, + "end": 3119.08, + "probability": 0.4594 + }, + { + "start": 3119.26, + "end": 3119.7, + "probability": 0.8408 + }, + { + "start": 3120.2, + "end": 3121.92, + "probability": 0.9714 + }, + { + "start": 3122.32, + "end": 3125.04, + "probability": 0.3387 + }, + { + "start": 3125.94, + "end": 3128.16, + "probability": 0.9925 + }, + { + "start": 3129.32, + "end": 3131.04, + "probability": 0.8729 + }, + { + "start": 3132.66, + "end": 3135.5, + "probability": 0.9918 + }, + { + "start": 3136.12, + "end": 3139.72, + "probability": 0.9969 + }, + { + "start": 3140.24, + "end": 3142.3, + "probability": 0.9216 + }, + { + "start": 3142.96, + "end": 3146.4, + "probability": 0.9968 + }, + { + "start": 3147.44, + "end": 3148.26, + "probability": 0.8172 + }, + { + "start": 3148.32, + "end": 3150.3, + "probability": 0.9897 + }, + { + "start": 3150.38, + "end": 3155.24, + "probability": 0.9946 + }, + { + "start": 3156.16, + "end": 3160.22, + "probability": 0.9984 + }, + { + "start": 3161.1, + "end": 3161.58, + "probability": 0.5582 + }, + { + "start": 3162.28, + "end": 3164.1, + "probability": 0.9825 + }, + { + "start": 3164.66, + "end": 3167.02, + "probability": 0.499 + }, + { + "start": 3167.66, + "end": 3170.46, + "probability": 0.7931 + }, + { + "start": 3171.72, + "end": 3172.38, + "probability": 0.6866 + }, + { + "start": 3172.4, + "end": 3172.54, + "probability": 0.7263 + }, + { + "start": 3172.56, + "end": 3173.06, + "probability": 0.9131 + }, + { + "start": 3173.2, + "end": 3177.28, + "probability": 0.9468 + }, + { + "start": 3177.96, + "end": 3180.28, + "probability": 0.9126 + }, + { + "start": 3180.84, + "end": 3181.46, + "probability": 0.7464 + }, + { + "start": 3182.0, + "end": 3183.06, + "probability": 0.9405 + }, + { + "start": 3183.62, + "end": 3187.51, + "probability": 0.7332 + }, + { + "start": 3188.48, + "end": 3190.5, + "probability": 0.9229 + }, + { + "start": 3191.84, + "end": 3195.24, + "probability": 0.9956 + }, + { + "start": 3195.92, + "end": 3199.74, + "probability": 0.9985 + }, + { + "start": 3200.34, + "end": 3203.82, + "probability": 0.996 + }, + { + "start": 3204.46, + "end": 3208.14, + "probability": 0.9917 + }, + { + "start": 3208.74, + "end": 3211.14, + "probability": 0.6278 + }, + { + "start": 3211.78, + "end": 3212.94, + "probability": 0.9705 + }, + { + "start": 3213.0, + "end": 3213.82, + "probability": 0.7934 + }, + { + "start": 3214.2, + "end": 3217.54, + "probability": 0.9917 + }, + { + "start": 3217.72, + "end": 3218.1, + "probability": 0.3256 + }, + { + "start": 3218.1, + "end": 3218.58, + "probability": 0.9652 + }, + { + "start": 3219.18, + "end": 3221.62, + "probability": 0.9062 + }, + { + "start": 3222.36, + "end": 3224.52, + "probability": 0.8663 + }, + { + "start": 3224.96, + "end": 3227.26, + "probability": 0.9897 + }, + { + "start": 3227.26, + "end": 3230.32, + "probability": 0.9961 + }, + { + "start": 3230.64, + "end": 3232.22, + "probability": 0.896 + }, + { + "start": 3232.94, + "end": 3235.76, + "probability": 0.8769 + }, + { + "start": 3236.32, + "end": 3240.18, + "probability": 0.9963 + }, + { + "start": 3240.68, + "end": 3240.72, + "probability": 0.4908 + }, + { + "start": 3240.72, + "end": 3243.26, + "probability": 0.9089 + }, + { + "start": 3243.54, + "end": 3243.9, + "probability": 0.8694 + }, + { + "start": 3244.1, + "end": 3245.04, + "probability": 0.6615 + }, + { + "start": 3245.16, + "end": 3247.48, + "probability": 0.9551 + }, + { + "start": 3255.16, + "end": 3255.42, + "probability": 0.427 + }, + { + "start": 3255.42, + "end": 3255.84, + "probability": 0.4481 + }, + { + "start": 3256.7, + "end": 3257.7, + "probability": 0.4135 + }, + { + "start": 3259.32, + "end": 3262.08, + "probability": 0.395 + }, + { + "start": 3264.44, + "end": 3265.7, + "probability": 0.9588 + }, + { + "start": 3265.7, + "end": 3266.4, + "probability": 0.7747 + }, + { + "start": 3268.6, + "end": 3271.6, + "probability": 0.6588 + }, + { + "start": 3272.9, + "end": 3274.46, + "probability": 0.6265 + }, + { + "start": 3275.38, + "end": 3281.1, + "probability": 0.9434 + }, + { + "start": 3281.44, + "end": 3282.7, + "probability": 0.9476 + }, + { + "start": 3283.54, + "end": 3286.5, + "probability": 0.4026 + }, + { + "start": 3287.38, + "end": 3290.5, + "probability": 0.8651 + }, + { + "start": 3291.62, + "end": 3296.8, + "probability": 0.8075 + }, + { + "start": 3297.5, + "end": 3299.38, + "probability": 0.845 + }, + { + "start": 3300.24, + "end": 3301.82, + "probability": 0.9929 + }, + { + "start": 3302.76, + "end": 3307.42, + "probability": 0.9863 + }, + { + "start": 3309.16, + "end": 3310.14, + "probability": 0.7768 + }, + { + "start": 3310.78, + "end": 3312.74, + "probability": 0.9935 + }, + { + "start": 3313.46, + "end": 3314.8, + "probability": 0.9984 + }, + { + "start": 3315.28, + "end": 3320.32, + "probability": 0.9891 + }, + { + "start": 3321.16, + "end": 3323.62, + "probability": 0.7541 + }, + { + "start": 3324.58, + "end": 3335.46, + "probability": 0.9424 + }, + { + "start": 3335.5, + "end": 3336.22, + "probability": 0.3492 + }, + { + "start": 3336.88, + "end": 3338.74, + "probability": 0.8777 + }, + { + "start": 3339.54, + "end": 3341.48, + "probability": 0.9332 + }, + { + "start": 3342.02, + "end": 3342.82, + "probability": 0.8221 + }, + { + "start": 3343.38, + "end": 3344.02, + "probability": 0.9597 + }, + { + "start": 3344.54, + "end": 3346.22, + "probability": 0.8174 + }, + { + "start": 3346.48, + "end": 3346.84, + "probability": 0.8256 + }, + { + "start": 3347.28, + "end": 3351.94, + "probability": 0.9851 + }, + { + "start": 3352.06, + "end": 3353.0, + "probability": 0.7712 + }, + { + "start": 3353.44, + "end": 3354.24, + "probability": 0.657 + }, + { + "start": 3355.3, + "end": 3358.98, + "probability": 0.9707 + }, + { + "start": 3359.92, + "end": 3361.18, + "probability": 0.9507 + }, + { + "start": 3361.32, + "end": 3362.18, + "probability": 0.8074 + }, + { + "start": 3362.3, + "end": 3368.16, + "probability": 0.7357 + }, + { + "start": 3368.94, + "end": 3372.32, + "probability": 0.8948 + }, + { + "start": 3372.92, + "end": 3374.02, + "probability": 0.6444 + }, + { + "start": 3374.64, + "end": 3376.8, + "probability": 0.6083 + }, + { + "start": 3378.08, + "end": 3379.7, + "probability": 0.9827 + }, + { + "start": 3379.74, + "end": 3381.8, + "probability": 0.8789 + }, + { + "start": 3383.18, + "end": 3383.94, + "probability": 0.8521 + }, + { + "start": 3384.74, + "end": 3387.52, + "probability": 0.8562 + }, + { + "start": 3388.12, + "end": 3390.2, + "probability": 0.8612 + }, + { + "start": 3390.8, + "end": 3394.02, + "probability": 0.9627 + }, + { + "start": 3394.78, + "end": 3400.6, + "probability": 0.9535 + }, + { + "start": 3401.24, + "end": 3404.02, + "probability": 0.9417 + }, + { + "start": 3405.1, + "end": 3405.97, + "probability": 0.9839 + }, + { + "start": 3406.82, + "end": 3408.72, + "probability": 0.8057 + }, + { + "start": 3409.66, + "end": 3411.24, + "probability": 0.6166 + }, + { + "start": 3412.18, + "end": 3413.82, + "probability": 0.978 + }, + { + "start": 3414.62, + "end": 3415.4, + "probability": 0.883 + }, + { + "start": 3416.1, + "end": 3417.52, + "probability": 0.9752 + }, + { + "start": 3418.52, + "end": 3418.89, + "probability": 0.5136 + }, + { + "start": 3419.56, + "end": 3420.38, + "probability": 0.593 + }, + { + "start": 3421.04, + "end": 3422.86, + "probability": 0.9224 + }, + { + "start": 3439.42, + "end": 3439.62, + "probability": 0.8233 + }, + { + "start": 3439.62, + "end": 3440.0, + "probability": 0.5603 + }, + { + "start": 3440.46, + "end": 3440.98, + "probability": 0.7429 + }, + { + "start": 3442.78, + "end": 3445.18, + "probability": 0.6159 + }, + { + "start": 3446.38, + "end": 3448.3, + "probability": 0.4336 + }, + { + "start": 3448.6, + "end": 3449.16, + "probability": 0.6551 + }, + { + "start": 3451.18, + "end": 3451.78, + "probability": 0.9636 + }, + { + "start": 3453.08, + "end": 3454.52, + "probability": 0.5957 + }, + { + "start": 3454.64, + "end": 3455.32, + "probability": 0.5754 + }, + { + "start": 3455.88, + "end": 3456.24, + "probability": 0.4259 + }, + { + "start": 3456.44, + "end": 3457.2, + "probability": 0.4568 + }, + { + "start": 3458.75, + "end": 3459.84, + "probability": 0.5309 + }, + { + "start": 3460.14, + "end": 3461.06, + "probability": 0.3092 + }, + { + "start": 3462.2, + "end": 3462.22, + "probability": 0.076 + }, + { + "start": 3462.22, + "end": 3462.58, + "probability": 0.4576 + }, + { + "start": 3462.6, + "end": 3463.26, + "probability": 0.6269 + }, + { + "start": 3463.34, + "end": 3465.48, + "probability": 0.4598 + }, + { + "start": 3465.48, + "end": 3468.54, + "probability": 0.5874 + }, + { + "start": 3468.56, + "end": 3468.82, + "probability": 0.7939 + }, + { + "start": 3468.84, + "end": 3470.8, + "probability": 0.3246 + }, + { + "start": 3470.8, + "end": 3474.34, + "probability": 0.9954 + }, + { + "start": 3474.76, + "end": 3475.4, + "probability": 0.603 + }, + { + "start": 3477.36, + "end": 3480.16, + "probability": 0.4228 + }, + { + "start": 3480.5, + "end": 3483.71, + "probability": 0.7438 + }, + { + "start": 3484.64, + "end": 3486.36, + "probability": 0.8159 + }, + { + "start": 3486.62, + "end": 3488.4, + "probability": 0.9961 + }, + { + "start": 3489.68, + "end": 3490.36, + "probability": 0.7055 + }, + { + "start": 3490.5, + "end": 3491.7, + "probability": 0.9783 + }, + { + "start": 3491.78, + "end": 3492.5, + "probability": 0.9312 + }, + { + "start": 3492.54, + "end": 3493.56, + "probability": 0.9359 + }, + { + "start": 3493.58, + "end": 3496.68, + "probability": 0.9725 + }, + { + "start": 3498.22, + "end": 3503.14, + "probability": 0.9723 + }, + { + "start": 3503.4, + "end": 3504.14, + "probability": 0.4383 + }, + { + "start": 3504.6, + "end": 3505.5, + "probability": 0.984 + }, + { + "start": 3505.64, + "end": 3506.82, + "probability": 0.9397 + }, + { + "start": 3507.34, + "end": 3512.14, + "probability": 0.8788 + }, + { + "start": 3513.22, + "end": 3517.86, + "probability": 0.8198 + }, + { + "start": 3519.08, + "end": 3522.3, + "probability": 0.9246 + }, + { + "start": 3522.97, + "end": 3524.14, + "probability": 0.9126 + }, + { + "start": 3526.48, + "end": 3528.18, + "probability": 0.5698 + }, + { + "start": 3528.24, + "end": 3529.72, + "probability": 0.9659 + }, + { + "start": 3529.84, + "end": 3532.46, + "probability": 0.9815 + }, + { + "start": 3533.8, + "end": 3538.5, + "probability": 0.9957 + }, + { + "start": 3539.98, + "end": 3540.42, + "probability": 0.5423 + }, + { + "start": 3541.1, + "end": 3542.56, + "probability": 0.9592 + }, + { + "start": 3542.78, + "end": 3546.98, + "probability": 0.9943 + }, + { + "start": 3547.76, + "end": 3548.86, + "probability": 0.6234 + }, + { + "start": 3550.76, + "end": 3552.78, + "probability": 0.9847 + }, + { + "start": 3554.44, + "end": 3555.9, + "probability": 0.9749 + }, + { + "start": 3556.56, + "end": 3558.04, + "probability": 0.7075 + }, + { + "start": 3559.54, + "end": 3563.82, + "probability": 0.9805 + }, + { + "start": 3564.98, + "end": 3567.14, + "probability": 0.9963 + }, + { + "start": 3568.14, + "end": 3570.58, + "probability": 0.9009 + }, + { + "start": 3571.96, + "end": 3575.98, + "probability": 0.9987 + }, + { + "start": 3577.88, + "end": 3581.96, + "probability": 0.9296 + }, + { + "start": 3582.9, + "end": 3586.59, + "probability": 0.9982 + }, + { + "start": 3586.68, + "end": 3592.88, + "probability": 0.9919 + }, + { + "start": 3594.42, + "end": 3597.96, + "probability": 0.9437 + }, + { + "start": 3600.34, + "end": 3605.06, + "probability": 0.9786 + }, + { + "start": 3605.84, + "end": 3607.38, + "probability": 0.6183 + }, + { + "start": 3608.56, + "end": 3610.78, + "probability": 0.9951 + }, + { + "start": 3611.88, + "end": 3614.68, + "probability": 0.9884 + }, + { + "start": 3614.78, + "end": 3615.3, + "probability": 0.9374 + }, + { + "start": 3615.44, + "end": 3615.8, + "probability": 0.6968 + }, + { + "start": 3615.82, + "end": 3618.22, + "probability": 0.9849 + }, + { + "start": 3618.8, + "end": 3620.5, + "probability": 0.7196 + }, + { + "start": 3620.62, + "end": 3621.64, + "probability": 0.6541 + }, + { + "start": 3622.44, + "end": 3625.44, + "probability": 0.9777 + }, + { + "start": 3625.44, + "end": 3630.5, + "probability": 0.9834 + }, + { + "start": 3630.96, + "end": 3635.72, + "probability": 0.959 + }, + { + "start": 3635.72, + "end": 3639.22, + "probability": 0.9902 + }, + { + "start": 3639.36, + "end": 3639.36, + "probability": 0.5268 + }, + { + "start": 3639.6, + "end": 3643.16, + "probability": 0.9781 + }, + { + "start": 3643.44, + "end": 3645.02, + "probability": 0.9912 + }, + { + "start": 3645.4, + "end": 3645.48, + "probability": 0.2672 + }, + { + "start": 3645.5, + "end": 3645.88, + "probability": 0.5072 + }, + { + "start": 3645.88, + "end": 3647.76, + "probability": 0.8564 + }, + { + "start": 3666.88, + "end": 3667.06, + "probability": 0.2856 + }, + { + "start": 3667.16, + "end": 3668.92, + "probability": 0.6346 + }, + { + "start": 3670.14, + "end": 3672.86, + "probability": 0.9435 + }, + { + "start": 3673.62, + "end": 3675.62, + "probability": 0.9879 + }, + { + "start": 3676.52, + "end": 3679.3, + "probability": 0.9813 + }, + { + "start": 3680.04, + "end": 3682.0, + "probability": 0.6925 + }, + { + "start": 3682.74, + "end": 3684.02, + "probability": 0.8577 + }, + { + "start": 3684.6, + "end": 3687.17, + "probability": 0.8817 + }, + { + "start": 3688.04, + "end": 3689.22, + "probability": 0.8735 + }, + { + "start": 3689.3, + "end": 3691.04, + "probability": 0.9514 + }, + { + "start": 3691.06, + "end": 3693.64, + "probability": 0.9721 + }, + { + "start": 3694.16, + "end": 3695.0, + "probability": 0.9292 + }, + { + "start": 3696.36, + "end": 3697.02, + "probability": 0.4438 + }, + { + "start": 3697.68, + "end": 3700.66, + "probability": 0.8236 + }, + { + "start": 3703.28, + "end": 3703.62, + "probability": 0.4907 + }, + { + "start": 3703.7, + "end": 3705.2, + "probability": 0.9612 + }, + { + "start": 3705.64, + "end": 3707.69, + "probability": 0.9972 + }, + { + "start": 3708.42, + "end": 3710.6, + "probability": 0.9878 + }, + { + "start": 3711.64, + "end": 3714.76, + "probability": 0.9282 + }, + { + "start": 3714.94, + "end": 3716.24, + "probability": 0.8847 + }, + { + "start": 3717.02, + "end": 3718.43, + "probability": 0.6641 + }, + { + "start": 3719.88, + "end": 3722.74, + "probability": 0.8529 + }, + { + "start": 3723.8, + "end": 3725.04, + "probability": 0.8692 + }, + { + "start": 3725.58, + "end": 3728.7, + "probability": 0.8709 + }, + { + "start": 3729.12, + "end": 3731.62, + "probability": 0.9981 + }, + { + "start": 3732.32, + "end": 3734.78, + "probability": 0.9827 + }, + { + "start": 3735.7, + "end": 3736.68, + "probability": 0.5678 + }, + { + "start": 3736.78, + "end": 3737.56, + "probability": 0.5385 + }, + { + "start": 3737.72, + "end": 3739.08, + "probability": 0.8417 + }, + { + "start": 3739.54, + "end": 3740.2, + "probability": 0.7331 + }, + { + "start": 3740.24, + "end": 3741.96, + "probability": 0.9148 + }, + { + "start": 3742.58, + "end": 3744.72, + "probability": 0.9608 + }, + { + "start": 3744.72, + "end": 3746.6, + "probability": 0.844 + }, + { + "start": 3746.72, + "end": 3746.74, + "probability": 0.0544 + }, + { + "start": 3746.82, + "end": 3747.24, + "probability": 0.5391 + }, + { + "start": 3748.2, + "end": 3751.62, + "probability": 0.9911 + }, + { + "start": 3752.42, + "end": 3755.46, + "probability": 0.9863 + }, + { + "start": 3755.46, + "end": 3759.92, + "probability": 0.9595 + }, + { + "start": 3760.16, + "end": 3763.72, + "probability": 0.9902 + }, + { + "start": 3764.46, + "end": 3765.0, + "probability": 0.2286 + }, + { + "start": 3765.0, + "end": 3765.52, + "probability": 0.489 + }, + { + "start": 3765.54, + "end": 3766.24, + "probability": 0.5826 + }, + { + "start": 3766.7, + "end": 3767.76, + "probability": 0.9614 + }, + { + "start": 3767.84, + "end": 3768.78, + "probability": 0.8917 + }, + { + "start": 3769.34, + "end": 3773.94, + "probability": 0.7842 + }, + { + "start": 3774.02, + "end": 3777.76, + "probability": 0.9627 + }, + { + "start": 3777.88, + "end": 3782.3, + "probability": 0.9961 + }, + { + "start": 3782.3, + "end": 3785.44, + "probability": 0.9892 + }, + { + "start": 3786.14, + "end": 3786.96, + "probability": 0.875 + }, + { + "start": 3787.34, + "end": 3790.26, + "probability": 0.9692 + }, + { + "start": 3790.44, + "end": 3793.9, + "probability": 0.9905 + }, + { + "start": 3794.62, + "end": 3796.06, + "probability": 0.9607 + }, + { + "start": 3796.22, + "end": 3799.04, + "probability": 0.9907 + }, + { + "start": 3799.32, + "end": 3800.09, + "probability": 0.9937 + }, + { + "start": 3800.74, + "end": 3802.67, + "probability": 0.9888 + }, + { + "start": 3802.9, + "end": 3805.05, + "probability": 0.9943 + }, + { + "start": 3805.94, + "end": 3806.72, + "probability": 0.9052 + }, + { + "start": 3807.5, + "end": 3809.37, + "probability": 0.992 + }, + { + "start": 3810.04, + "end": 3813.2, + "probability": 0.9229 + }, + { + "start": 3813.72, + "end": 3816.1, + "probability": 0.965 + }, + { + "start": 3816.66, + "end": 3818.0, + "probability": 0.9687 + }, + { + "start": 3818.64, + "end": 3819.8, + "probability": 0.8027 + }, + { + "start": 3820.38, + "end": 3821.56, + "probability": 0.8583 + }, + { + "start": 3821.64, + "end": 3824.1, + "probability": 0.9182 + }, + { + "start": 3824.82, + "end": 3827.06, + "probability": 0.9868 + }, + { + "start": 3827.58, + "end": 3829.94, + "probability": 0.9478 + }, + { + "start": 3830.58, + "end": 3831.24, + "probability": 0.6219 + }, + { + "start": 3831.4, + "end": 3835.16, + "probability": 0.7846 + }, + { + "start": 3835.84, + "end": 3838.86, + "probability": 0.9575 + }, + { + "start": 3839.32, + "end": 3842.92, + "probability": 0.9929 + }, + { + "start": 3843.2, + "end": 3845.52, + "probability": 0.7426 + }, + { + "start": 3845.52, + "end": 3848.92, + "probability": 0.9612 + }, + { + "start": 3849.26, + "end": 3850.08, + "probability": 0.8188 + }, + { + "start": 3850.5, + "end": 3853.28, + "probability": 0.9983 + }, + { + "start": 3853.38, + "end": 3855.36, + "probability": 0.8842 + }, + { + "start": 3855.74, + "end": 3858.39, + "probability": 0.9927 + }, + { + "start": 3858.46, + "end": 3859.1, + "probability": 0.4513 + }, + { + "start": 3859.26, + "end": 3862.46, + "probability": 0.9099 + }, + { + "start": 3862.58, + "end": 3863.11, + "probability": 0.6879 + }, + { + "start": 3863.92, + "end": 3866.32, + "probability": 0.6981 + }, + { + "start": 3866.46, + "end": 3867.72, + "probability": 0.9504 + }, + { + "start": 3867.72, + "end": 3868.3, + "probability": 0.8099 + }, + { + "start": 3868.64, + "end": 3869.12, + "probability": 0.9166 + }, + { + "start": 3869.22, + "end": 3869.9, + "probability": 0.6492 + }, + { + "start": 3869.98, + "end": 3872.46, + "probability": 0.9837 + }, + { + "start": 3873.04, + "end": 3873.18, + "probability": 0.6658 + }, + { + "start": 3873.22, + "end": 3874.02, + "probability": 0.9463 + }, + { + "start": 3874.14, + "end": 3877.32, + "probability": 0.9741 + }, + { + "start": 3877.7, + "end": 3881.52, + "probability": 0.8759 + }, + { + "start": 3881.66, + "end": 3884.84, + "probability": 0.9939 + }, + { + "start": 3884.9, + "end": 3885.18, + "probability": 0.5823 + }, + { + "start": 3885.22, + "end": 3886.16, + "probability": 0.6425 + }, + { + "start": 3886.24, + "end": 3888.14, + "probability": 0.9236 + }, + { + "start": 3888.44, + "end": 3889.3, + "probability": 0.6459 + }, + { + "start": 3903.64, + "end": 3904.5, + "probability": 0.6484 + }, + { + "start": 3905.78, + "end": 3907.1, + "probability": 0.6347 + }, + { + "start": 3908.44, + "end": 3913.3, + "probability": 0.7209 + }, + { + "start": 3914.0, + "end": 3915.52, + "probability": 0.923 + }, + { + "start": 3916.6, + "end": 3921.32, + "probability": 0.9756 + }, + { + "start": 3921.44, + "end": 3923.32, + "probability": 0.7173 + }, + { + "start": 3924.54, + "end": 3926.28, + "probability": 0.9962 + }, + { + "start": 3927.32, + "end": 3933.88, + "probability": 0.9725 + }, + { + "start": 3934.58, + "end": 3938.4, + "probability": 0.9805 + }, + { + "start": 3939.18, + "end": 3940.62, + "probability": 0.7813 + }, + { + "start": 3941.44, + "end": 3943.52, + "probability": 0.7513 + }, + { + "start": 3944.44, + "end": 3945.74, + "probability": 0.955 + }, + { + "start": 3947.28, + "end": 3949.78, + "probability": 0.9461 + }, + { + "start": 3950.8, + "end": 3953.58, + "probability": 0.8747 + }, + { + "start": 3955.66, + "end": 3960.1, + "probability": 0.9275 + }, + { + "start": 3961.02, + "end": 3962.39, + "probability": 0.4479 + }, + { + "start": 3962.72, + "end": 3963.48, + "probability": 0.9365 + }, + { + "start": 3964.92, + "end": 3966.98, + "probability": 0.8499 + }, + { + "start": 3967.18, + "end": 3967.6, + "probability": 0.0809 + }, + { + "start": 3967.74, + "end": 3968.28, + "probability": 0.0691 + }, + { + "start": 3968.62, + "end": 3968.62, + "probability": 0.2702 + }, + { + "start": 3968.62, + "end": 3974.48, + "probability": 0.676 + }, + { + "start": 3975.48, + "end": 3981.04, + "probability": 0.9495 + }, + { + "start": 3981.22, + "end": 3981.24, + "probability": 0.2623 + }, + { + "start": 3981.24, + "end": 3983.16, + "probability": 0.9084 + }, + { + "start": 3983.86, + "end": 3985.42, + "probability": 0.9259 + }, + { + "start": 4000.0, + "end": 4000.02, + "probability": 0.0168 + }, + { + "start": 4011.0, + "end": 4011.68, + "probability": 0.1589 + }, + { + "start": 4011.7, + "end": 4014.14, + "probability": 0.2845 + }, + { + "start": 4014.14, + "end": 4016.0, + "probability": 0.0101 + }, + { + "start": 4016.0, + "end": 4018.74, + "probability": 0.0912 + }, + { + "start": 4019.66, + "end": 4020.46, + "probability": 0.0606 + }, + { + "start": 4020.46, + "end": 4021.88, + "probability": 0.3012 + }, + { + "start": 4022.58, + "end": 4027.68, + "probability": 0.0486 + }, + { + "start": 4029.68, + "end": 4034.2, + "probability": 0.0508 + }, + { + "start": 4034.78, + "end": 4036.16, + "probability": 0.0284 + }, + { + "start": 4036.16, + "end": 4036.47, + "probability": 0.1499 + }, + { + "start": 4041.44, + "end": 4044.26, + "probability": 0.1337 + }, + { + "start": 4049.5, + "end": 4053.06, + "probability": 0.0993 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4063.0, + "end": 4063.0, + "probability": 0.0 + }, + { + "start": 4065.24, + "end": 4065.36, + "probability": 0.2053 + }, + { + "start": 4065.36, + "end": 4065.36, + "probability": 0.1264 + }, + { + "start": 4065.36, + "end": 4065.81, + "probability": 0.1505 + }, + { + "start": 4066.7, + "end": 4068.66, + "probability": 0.0417 + }, + { + "start": 4069.68, + "end": 4070.75, + "probability": 0.0444 + }, + { + "start": 4071.8, + "end": 4072.82, + "probability": 0.0194 + }, + { + "start": 4073.06, + "end": 4074.37, + "probability": 0.3575 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.91, + "end": 4194.06, + "probability": 0.0206 + }, + { + "start": 4194.08, + "end": 4195.75, + "probability": 0.3459 + }, + { + "start": 4209.56, + "end": 4212.32, + "probability": 0.7802 + }, + { + "start": 4213.58, + "end": 4216.36, + "probability": 0.087 + }, + { + "start": 4216.48, + "end": 4217.68, + "probability": 0.7926 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4316.0, + "end": 4316.0, + "probability": 0.0 + }, + { + "start": 4326.02, + "end": 4329.14, + "probability": 0.0261 + }, + { + "start": 4329.73, + "end": 4332.56, + "probability": 0.1118 + }, + { + "start": 4339.86, + "end": 4340.18, + "probability": 0.0332 + }, + { + "start": 4341.31, + "end": 4341.78, + "probability": 0.0265 + }, + { + "start": 4342.02, + "end": 4344.82, + "probability": 0.0258 + }, + { + "start": 4344.98, + "end": 4344.98, + "probability": 0.0274 + }, + { + "start": 4344.98, + "end": 4346.61, + "probability": 0.0368 + }, + { + "start": 4347.72, + "end": 4348.86, + "probability": 0.0491 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.0, + "end": 4447.0, + "probability": 0.0 + }, + { + "start": 4447.12, + "end": 4448.24, + "probability": 0.0182 + }, + { + "start": 4449.46, + "end": 4453.66, + "probability": 0.1141 + }, + { + "start": 4458.98, + "end": 4459.5, + "probability": 0.3633 + }, + { + "start": 4462.42, + "end": 4463.0, + "probability": 0.0597 + }, + { + "start": 4470.08, + "end": 4473.56, + "probability": 0.4311 + }, + { + "start": 4473.62, + "end": 4473.62, + "probability": 0.194 + }, + { + "start": 4473.62, + "end": 4473.72, + "probability": 0.0128 + }, + { + "start": 4476.77, + "end": 4477.84, + "probability": 0.0134 + }, + { + "start": 4479.02, + "end": 4480.36, + "probability": 0.0634 + }, + { + "start": 4480.4, + "end": 4480.52, + "probability": 0.1375 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4578.0, + "end": 4578.0, + "probability": 0.0 + }, + { + "start": 4579.29, + "end": 4581.44, + "probability": 0.1944 + }, + { + "start": 4582.14, + "end": 4583.14, + "probability": 0.1332 + }, + { + "start": 4583.14, + "end": 4584.4, + "probability": 0.0959 + }, + { + "start": 4587.36, + "end": 4589.6, + "probability": 0.208 + }, + { + "start": 4590.55, + "end": 4593.83, + "probability": 0.0287 + }, + { + "start": 4595.0, + "end": 4597.78, + "probability": 0.2064 + }, + { + "start": 4598.62, + "end": 4601.26, + "probability": 0.0224 + }, + { + "start": 4603.58, + "end": 4607.3, + "probability": 0.0318 + }, + { + "start": 4608.87, + "end": 4609.34, + "probability": 0.0559 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.0, + "end": 4700.0, + "probability": 0.0 + }, + { + "start": 4700.58, + "end": 4700.94, + "probability": 0.0354 + }, + { + "start": 4700.94, + "end": 4702.3, + "probability": 0.5955 + }, + { + "start": 4702.72, + "end": 4703.52, + "probability": 0.6816 + }, + { + "start": 4703.6, + "end": 4709.52, + "probability": 0.9867 + }, + { + "start": 4710.0, + "end": 4711.14, + "probability": 0.994 + }, + { + "start": 4711.86, + "end": 4714.8, + "probability": 0.9954 + }, + { + "start": 4714.96, + "end": 4717.74, + "probability": 0.751 + }, + { + "start": 4717.84, + "end": 4719.66, + "probability": 0.5182 + }, + { + "start": 4720.14, + "end": 4724.62, + "probability": 0.7422 + }, + { + "start": 4724.72, + "end": 4730.9, + "probability": 0.9456 + }, + { + "start": 4731.68, + "end": 4732.68, + "probability": 0.7722 + }, + { + "start": 4733.54, + "end": 4736.04, + "probability": 0.7661 + }, + { + "start": 4737.07, + "end": 4742.84, + "probability": 0.2897 + }, + { + "start": 4742.98, + "end": 4744.38, + "probability": 0.8126 + }, + { + "start": 4744.52, + "end": 4744.72, + "probability": 0.6104 + }, + { + "start": 4744.8, + "end": 4746.82, + "probability": 0.6825 + }, + { + "start": 4746.86, + "end": 4747.96, + "probability": 0.4731 + }, + { + "start": 4748.16, + "end": 4749.92, + "probability": 0.8107 + }, + { + "start": 4750.44, + "end": 4751.82, + "probability": 0.5697 + }, + { + "start": 4752.54, + "end": 4755.18, + "probability": 0.9829 + }, + { + "start": 4755.34, + "end": 4757.12, + "probability": 0.5727 + }, + { + "start": 4757.28, + "end": 4759.08, + "probability": 0.8521 + }, + { + "start": 4759.46, + "end": 4762.02, + "probability": 0.6847 + }, + { + "start": 4762.14, + "end": 4762.38, + "probability": 0.6488 + }, + { + "start": 4762.42, + "end": 4762.81, + "probability": 0.4981 + }, + { + "start": 4763.48, + "end": 4764.82, + "probability": 0.9863 + }, + { + "start": 4766.28, + "end": 4767.46, + "probability": 0.9223 + }, + { + "start": 4767.94, + "end": 4769.21, + "probability": 0.7222 + }, + { + "start": 4769.3, + "end": 4773.34, + "probability": 0.9706 + }, + { + "start": 4774.46, + "end": 4777.42, + "probability": 0.9911 + }, + { + "start": 4778.22, + "end": 4780.32, + "probability": 0.9585 + }, + { + "start": 4780.42, + "end": 4781.78, + "probability": 0.9313 + }, + { + "start": 4781.82, + "end": 4783.44, + "probability": 0.6892 + }, + { + "start": 4784.66, + "end": 4787.84, + "probability": 0.5784 + }, + { + "start": 4789.22, + "end": 4791.6, + "probability": 0.9829 + }, + { + "start": 4792.66, + "end": 4793.78, + "probability": 0.6532 + }, + { + "start": 4794.3, + "end": 4796.31, + "probability": 0.9958 + }, + { + "start": 4797.42, + "end": 4799.3, + "probability": 0.9891 + }, + { + "start": 4799.76, + "end": 4800.86, + "probability": 0.9937 + }, + { + "start": 4801.18, + "end": 4804.1, + "probability": 0.9894 + }, + { + "start": 4804.68, + "end": 4807.78, + "probability": 0.8966 + }, + { + "start": 4807.8, + "end": 4809.64, + "probability": 0.4973 + }, + { + "start": 4809.96, + "end": 4811.16, + "probability": 0.4113 + }, + { + "start": 4811.24, + "end": 4813.14, + "probability": 0.8333 + }, + { + "start": 4813.68, + "end": 4816.26, + "probability": 0.7701 + }, + { + "start": 4816.48, + "end": 4817.92, + "probability": 0.8421 + }, + { + "start": 4818.02, + "end": 4818.78, + "probability": 0.8823 + }, + { + "start": 4819.46, + "end": 4820.18, + "probability": 0.9694 + }, + { + "start": 4820.26, + "end": 4821.22, + "probability": 0.9489 + }, + { + "start": 4821.34, + "end": 4822.5, + "probability": 0.9683 + }, + { + "start": 4823.84, + "end": 4825.16, + "probability": 0.8817 + }, + { + "start": 4825.32, + "end": 4825.82, + "probability": 0.2792 + }, + { + "start": 4825.9, + "end": 4826.14, + "probability": 0.4373 + }, + { + "start": 4826.14, + "end": 4826.6, + "probability": 0.3793 + }, + { + "start": 4826.6, + "end": 4827.38, + "probability": 0.7634 + }, + { + "start": 4827.5, + "end": 4828.8, + "probability": 0.9238 + }, + { + "start": 4829.28, + "end": 4830.24, + "probability": 0.5557 + }, + { + "start": 4830.24, + "end": 4831.5, + "probability": 0.7138 + }, + { + "start": 4831.52, + "end": 4832.16, + "probability": 0.2965 + }, + { + "start": 4832.2, + "end": 4832.72, + "probability": 0.8472 + }, + { + "start": 4833.2, + "end": 4834.82, + "probability": 0.9506 + }, + { + "start": 4834.9, + "end": 4838.88, + "probability": 0.998 + }, + { + "start": 4839.1, + "end": 4840.12, + "probability": 0.6553 + }, + { + "start": 4840.22, + "end": 4841.84, + "probability": 0.8802 + }, + { + "start": 4842.46, + "end": 4845.38, + "probability": 0.8304 + }, + { + "start": 4845.72, + "end": 4849.12, + "probability": 0.9756 + }, + { + "start": 4850.68, + "end": 4852.48, + "probability": 0.6158 + }, + { + "start": 4852.54, + "end": 4853.72, + "probability": 0.5879 + }, + { + "start": 4853.76, + "end": 4854.14, + "probability": 0.5007 + }, + { + "start": 4854.22, + "end": 4854.46, + "probability": 0.2617 + }, + { + "start": 4854.46, + "end": 4855.54, + "probability": 0.8044 + }, + { + "start": 4855.56, + "end": 4856.16, + "probability": 0.697 + }, + { + "start": 4856.54, + "end": 4859.26, + "probability": 0.8862 + }, + { + "start": 4859.38, + "end": 4860.12, + "probability": 0.7093 + }, + { + "start": 4860.3, + "end": 4861.14, + "probability": 0.0501 + }, + { + "start": 4861.46, + "end": 4863.24, + "probability": 0.7622 + }, + { + "start": 4863.48, + "end": 4863.82, + "probability": 0.299 + }, + { + "start": 4864.15, + "end": 4865.12, + "probability": 0.5755 + }, + { + "start": 4865.12, + "end": 4865.12, + "probability": 0.3712 + }, + { + "start": 4865.12, + "end": 4868.01, + "probability": 0.7926 + }, + { + "start": 4873.08, + "end": 4875.36, + "probability": 0.6971 + }, + { + "start": 4877.24, + "end": 4878.22, + "probability": 0.3623 + }, + { + "start": 4878.22, + "end": 4878.98, + "probability": 0.4411 + }, + { + "start": 4878.98, + "end": 4880.2, + "probability": 0.6459 + }, + { + "start": 4883.24, + "end": 4884.3, + "probability": 0.6046 + }, + { + "start": 4884.3, + "end": 4885.5, + "probability": 0.1332 + }, + { + "start": 4886.18, + "end": 4888.8, + "probability": 0.7074 + }, + { + "start": 4890.06, + "end": 4891.6, + "probability": 0.782 + }, + { + "start": 4891.82, + "end": 4896.1, + "probability": 0.9907 + }, + { + "start": 4897.04, + "end": 4902.1, + "probability": 0.9377 + }, + { + "start": 4903.2, + "end": 4905.18, + "probability": 0.9038 + }, + { + "start": 4906.98, + "end": 4909.68, + "probability": 0.9043 + }, + { + "start": 4910.28, + "end": 4914.66, + "probability": 0.9151 + }, + { + "start": 4915.94, + "end": 4918.44, + "probability": 0.9452 + }, + { + "start": 4919.46, + "end": 4923.66, + "probability": 0.9583 + }, + { + "start": 4924.82, + "end": 4933.72, + "probability": 0.9749 + }, + { + "start": 4935.18, + "end": 4935.66, + "probability": 0.916 + }, + { + "start": 4937.38, + "end": 4945.04, + "probability": 0.9741 + }, + { + "start": 4946.22, + "end": 4947.74, + "probability": 0.926 + }, + { + "start": 4949.18, + "end": 4950.4, + "probability": 0.9214 + }, + { + "start": 4951.22, + "end": 4951.84, + "probability": 0.6346 + }, + { + "start": 4952.36, + "end": 4955.48, + "probability": 0.981 + }, + { + "start": 4956.24, + "end": 4960.14, + "probability": 0.6428 + }, + { + "start": 4961.02, + "end": 4962.12, + "probability": 0.6166 + }, + { + "start": 4963.06, + "end": 4964.52, + "probability": 0.9669 + }, + { + "start": 4965.12, + "end": 4967.6, + "probability": 0.8856 + }, + { + "start": 4968.44, + "end": 4971.18, + "probability": 0.9801 + }, + { + "start": 4971.82, + "end": 4972.46, + "probability": 0.9689 + }, + { + "start": 4972.52, + "end": 4979.36, + "probability": 0.9019 + }, + { + "start": 4979.92, + "end": 4981.88, + "probability": 0.9945 + }, + { + "start": 4983.2, + "end": 4984.9, + "probability": 0.5061 + }, + { + "start": 4985.54, + "end": 4987.34, + "probability": 0.8411 + }, + { + "start": 4987.94, + "end": 4993.08, + "probability": 0.9781 + }, + { + "start": 4993.8, + "end": 4995.03, + "probability": 0.9639 + }, + { + "start": 4995.86, + "end": 5001.72, + "probability": 0.9844 + }, + { + "start": 5002.6, + "end": 5004.36, + "probability": 0.9985 + }, + { + "start": 5005.3, + "end": 5007.22, + "probability": 0.9725 + }, + { + "start": 5008.1, + "end": 5009.16, + "probability": 0.9613 + }, + { + "start": 5009.72, + "end": 5010.96, + "probability": 0.9883 + }, + { + "start": 5011.52, + "end": 5012.12, + "probability": 0.7422 + }, + { + "start": 5012.22, + "end": 5013.44, + "probability": 0.7433 + }, + { + "start": 5014.18, + "end": 5016.41, + "probability": 0.9714 + }, + { + "start": 5017.24, + "end": 5019.78, + "probability": 0.9871 + }, + { + "start": 5020.32, + "end": 5021.1, + "probability": 0.9719 + }, + { + "start": 5021.86, + "end": 5026.6, + "probability": 0.9568 + }, + { + "start": 5027.2, + "end": 5027.98, + "probability": 0.9412 + }, + { + "start": 5028.98, + "end": 5029.72, + "probability": 0.8945 + }, + { + "start": 5029.84, + "end": 5030.48, + "probability": 0.8232 + }, + { + "start": 5030.54, + "end": 5031.16, + "probability": 0.9424 + }, + { + "start": 5031.34, + "end": 5033.98, + "probability": 0.9012 + }, + { + "start": 5034.44, + "end": 5036.62, + "probability": 0.7623 + }, + { + "start": 5036.9, + "end": 5039.38, + "probability": 0.9902 + }, + { + "start": 5041.06, + "end": 5042.58, + "probability": 0.6999 + }, + { + "start": 5043.18, + "end": 5046.08, + "probability": 0.8333 + }, + { + "start": 5046.56, + "end": 5054.22, + "probability": 0.9131 + }, + { + "start": 5055.06, + "end": 5056.2, + "probability": 0.9609 + }, + { + "start": 5056.42, + "end": 5058.12, + "probability": 0.9437 + }, + { + "start": 5058.78, + "end": 5059.28, + "probability": 0.456 + }, + { + "start": 5059.72, + "end": 5060.98, + "probability": 0.8633 + }, + { + "start": 5061.68, + "end": 5063.5, + "probability": 0.2713 + }, + { + "start": 5063.8, + "end": 5065.11, + "probability": 0.9429 + }, + { + "start": 5066.02, + "end": 5072.26, + "probability": 0.8916 + }, + { + "start": 5072.34, + "end": 5072.92, + "probability": 0.518 + }, + { + "start": 5072.94, + "end": 5075.24, + "probability": 0.9987 + }, + { + "start": 5076.96, + "end": 5077.5, + "probability": 0.5285 + }, + { + "start": 5078.18, + "end": 5080.2, + "probability": 0.9922 + }, + { + "start": 5080.86, + "end": 5082.04, + "probability": 0.5925 + }, + { + "start": 5082.04, + "end": 5082.67, + "probability": 0.4566 + }, + { + "start": 5083.14, + "end": 5083.52, + "probability": 0.5899 + }, + { + "start": 5083.52, + "end": 5084.34, + "probability": 0.7074 + }, + { + "start": 5084.9, + "end": 5085.95, + "probability": 0.9893 + }, + { + "start": 5087.0, + "end": 5088.44, + "probability": 0.825 + }, + { + "start": 5094.04, + "end": 5099.56, + "probability": 0.9198 + }, + { + "start": 5107.82, + "end": 5107.92, + "probability": 0.8282 + }, + { + "start": 5109.16, + "end": 5109.5, + "probability": 0.1511 + }, + { + "start": 5109.74, + "end": 5110.3, + "probability": 0.7348 + }, + { + "start": 5115.02, + "end": 5115.66, + "probability": 0.8654 + }, + { + "start": 5120.42, + "end": 5122.48, + "probability": 0.7568 + }, + { + "start": 5123.48, + "end": 5126.52, + "probability": 0.8599 + }, + { + "start": 5127.64, + "end": 5128.68, + "probability": 0.9592 + }, + { + "start": 5129.48, + "end": 5130.32, + "probability": 0.8827 + }, + { + "start": 5131.08, + "end": 5132.62, + "probability": 0.9956 + }, + { + "start": 5133.36, + "end": 5137.66, + "probability": 0.9119 + }, + { + "start": 5138.98, + "end": 5141.18, + "probability": 0.9871 + }, + { + "start": 5143.24, + "end": 5144.48, + "probability": 0.7661 + }, + { + "start": 5144.64, + "end": 5147.64, + "probability": 0.9841 + }, + { + "start": 5148.74, + "end": 5149.76, + "probability": 0.8886 + }, + { + "start": 5150.72, + "end": 5152.96, + "probability": 0.2756 + }, + { + "start": 5153.08, + "end": 5153.58, + "probability": 0.8644 + }, + { + "start": 5153.64, + "end": 5154.34, + "probability": 0.8201 + }, + { + "start": 5154.52, + "end": 5155.44, + "probability": 0.9194 + }, + { + "start": 5155.52, + "end": 5156.16, + "probability": 0.934 + }, + { + "start": 5157.36, + "end": 5158.42, + "probability": 0.985 + }, + { + "start": 5159.1, + "end": 5160.26, + "probability": 0.9989 + }, + { + "start": 5164.62, + "end": 5169.88, + "probability": 0.9421 + }, + { + "start": 5170.54, + "end": 5171.42, + "probability": 0.5417 + }, + { + "start": 5173.68, + "end": 5176.28, + "probability": 0.917 + }, + { + "start": 5176.4, + "end": 5178.24, + "probability": 0.9958 + }, + { + "start": 5179.12, + "end": 5180.34, + "probability": 0.5006 + }, + { + "start": 5183.3, + "end": 5185.48, + "probability": 0.6856 + }, + { + "start": 5186.94, + "end": 5191.36, + "probability": 0.9661 + }, + { + "start": 5192.6, + "end": 5194.06, + "probability": 0.998 + }, + { + "start": 5194.18, + "end": 5199.4, + "probability": 0.9899 + }, + { + "start": 5199.86, + "end": 5202.74, + "probability": 0.9869 + }, + { + "start": 5203.24, + "end": 5204.82, + "probability": 0.8913 + }, + { + "start": 5204.88, + "end": 5205.48, + "probability": 0.7421 + }, + { + "start": 5205.6, + "end": 5208.84, + "probability": 0.9321 + }, + { + "start": 5208.92, + "end": 5209.98, + "probability": 0.8937 + }, + { + "start": 5211.72, + "end": 5212.9, + "probability": 0.9392 + }, + { + "start": 5213.86, + "end": 5215.72, + "probability": 0.9872 + }, + { + "start": 5216.04, + "end": 5218.52, + "probability": 0.9326 + }, + { + "start": 5218.88, + "end": 5222.14, + "probability": 0.9941 + }, + { + "start": 5222.72, + "end": 5226.52, + "probability": 0.9758 + }, + { + "start": 5227.72, + "end": 5230.72, + "probability": 0.9995 + }, + { + "start": 5231.86, + "end": 5234.44, + "probability": 0.9206 + }, + { + "start": 5235.08, + "end": 5236.66, + "probability": 0.4567 + }, + { + "start": 5238.02, + "end": 5239.38, + "probability": 0.9927 + }, + { + "start": 5241.0, + "end": 5242.94, + "probability": 0.9185 + }, + { + "start": 5243.2, + "end": 5245.1, + "probability": 0.7114 + }, + { + "start": 5245.14, + "end": 5245.72, + "probability": 0.8752 + }, + { + "start": 5245.74, + "end": 5250.04, + "probability": 0.9943 + }, + { + "start": 5250.04, + "end": 5250.14, + "probability": 0.8565 + }, + { + "start": 5251.94, + "end": 5252.7, + "probability": 0.651 + }, + { + "start": 5254.06, + "end": 5255.02, + "probability": 0.9878 + }, + { + "start": 5256.78, + "end": 5259.9, + "probability": 0.9955 + }, + { + "start": 5259.9, + "end": 5265.0, + "probability": 0.9909 + }, + { + "start": 5266.54, + "end": 5268.16, + "probability": 0.9422 + }, + { + "start": 5268.8, + "end": 5272.44, + "probability": 0.9943 + }, + { + "start": 5273.24, + "end": 5273.38, + "probability": 0.0223 + }, + { + "start": 5273.38, + "end": 5273.38, + "probability": 0.1799 + }, + { + "start": 5273.38, + "end": 5274.84, + "probability": 0.6443 + }, + { + "start": 5275.46, + "end": 5276.64, + "probability": 0.8429 + }, + { + "start": 5276.76, + "end": 5277.98, + "probability": 0.968 + }, + { + "start": 5278.46, + "end": 5283.32, + "probability": 0.9842 + }, + { + "start": 5283.8, + "end": 5288.76, + "probability": 0.9727 + }, + { + "start": 5289.52, + "end": 5290.52, + "probability": 0.6806 + }, + { + "start": 5290.64, + "end": 5291.36, + "probability": 0.9062 + }, + { + "start": 5291.9, + "end": 5296.4, + "probability": 0.9927 + }, + { + "start": 5297.02, + "end": 5299.12, + "probability": 0.9935 + }, + { + "start": 5300.34, + "end": 5306.84, + "probability": 0.9936 + }, + { + "start": 5307.54, + "end": 5311.86, + "probability": 0.8197 + }, + { + "start": 5312.76, + "end": 5315.32, + "probability": 0.8629 + }, + { + "start": 5315.32, + "end": 5316.96, + "probability": 0.5753 + }, + { + "start": 5317.52, + "end": 5317.94, + "probability": 0.9043 + }, + { + "start": 5320.11, + "end": 5322.0, + "probability": 0.4439 + }, + { + "start": 5322.0, + "end": 5322.54, + "probability": 0.922 + }, + { + "start": 5322.6, + "end": 5323.12, + "probability": 0.8734 + }, + { + "start": 5323.24, + "end": 5323.96, + "probability": 0.7753 + }, + { + "start": 5324.26, + "end": 5329.1, + "probability": 0.9081 + }, + { + "start": 5329.18, + "end": 5329.96, + "probability": 0.8394 + }, + { + "start": 5330.22, + "end": 5331.12, + "probability": 0.9367 + }, + { + "start": 5331.16, + "end": 5331.52, + "probability": 0.7019 + }, + { + "start": 5331.56, + "end": 5333.8, + "probability": 0.998 + }, + { + "start": 5334.56, + "end": 5337.54, + "probability": 0.9049 + }, + { + "start": 5337.94, + "end": 5338.6, + "probability": 0.5817 + }, + { + "start": 5338.86, + "end": 5339.32, + "probability": 0.7942 + }, + { + "start": 5339.36, + "end": 5341.7, + "probability": 0.9431 + }, + { + "start": 5342.04, + "end": 5342.94, + "probability": 0.9482 + }, + { + "start": 5343.14, + "end": 5344.22, + "probability": 0.9513 + }, + { + "start": 5344.58, + "end": 5345.26, + "probability": 0.8323 + }, + { + "start": 5345.72, + "end": 5348.28, + "probability": 0.9915 + }, + { + "start": 5348.56, + "end": 5350.84, + "probability": 0.6632 + }, + { + "start": 5350.96, + "end": 5351.32, + "probability": 0.8936 + }, + { + "start": 5351.62, + "end": 5352.58, + "probability": 0.6818 + }, + { + "start": 5352.7, + "end": 5354.64, + "probability": 0.9644 + }, + { + "start": 5354.88, + "end": 5357.38, + "probability": 0.7645 + }, + { + "start": 5372.74, + "end": 5372.84, + "probability": 0.6459 + }, + { + "start": 5380.42, + "end": 5383.8, + "probability": 0.6449 + }, + { + "start": 5385.68, + "end": 5391.56, + "probability": 0.9896 + }, + { + "start": 5391.68, + "end": 5393.44, + "probability": 0.0156 + }, + { + "start": 5393.86, + "end": 5395.6, + "probability": 0.7974 + }, + { + "start": 5398.48, + "end": 5398.7, + "probability": 0.1033 + }, + { + "start": 5404.26, + "end": 5406.8, + "probability": 0.0234 + }, + { + "start": 5407.09, + "end": 5408.18, + "probability": 0.1051 + }, + { + "start": 5409.11, + "end": 5409.64, + "probability": 0.1203 + }, + { + "start": 5409.64, + "end": 5409.64, + "probability": 0.0227 + }, + { + "start": 5409.64, + "end": 5409.84, + "probability": 0.4961 + }, + { + "start": 5409.84, + "end": 5410.22, + "probability": 0.645 + }, + { + "start": 5410.96, + "end": 5412.8, + "probability": 0.3204 + }, + { + "start": 5413.1, + "end": 5413.32, + "probability": 0.0164 + }, + { + "start": 5421.21, + "end": 5423.8, + "probability": 0.0415 + }, + { + "start": 5425.18, + "end": 5428.5, + "probability": 0.026 + }, + { + "start": 5428.5, + "end": 5430.62, + "probability": 0.5897 + }, + { + "start": 5430.62, + "end": 5431.68, + "probability": 0.3747 + }, + { + "start": 5431.91, + "end": 5432.28, + "probability": 0.1884 + }, + { + "start": 5432.28, + "end": 5437.03, + "probability": 0.1155 + }, + { + "start": 5439.12, + "end": 5439.4, + "probability": 0.0865 + }, + { + "start": 5439.4, + "end": 5439.4, + "probability": 0.0774 + }, + { + "start": 5439.4, + "end": 5439.84, + "probability": 0.0371 + }, + { + "start": 5439.84, + "end": 5439.98, + "probability": 0.0694 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.0, + "end": 5440.0, + "probability": 0.0 + }, + { + "start": 5440.82, + "end": 5440.86, + "probability": 0.0308 + }, + { + "start": 5440.86, + "end": 5440.86, + "probability": 0.1535 + }, + { + "start": 5440.86, + "end": 5440.86, + "probability": 0.1075 + }, + { + "start": 5440.86, + "end": 5440.86, + "probability": 0.0808 + }, + { + "start": 5440.86, + "end": 5442.0, + "probability": 0.0767 + }, + { + "start": 5442.08, + "end": 5443.39, + "probability": 0.4078 + }, + { + "start": 5443.76, + "end": 5446.64, + "probability": 0.8542 + }, + { + "start": 5446.76, + "end": 5447.98, + "probability": 0.991 + }, + { + "start": 5448.08, + "end": 5449.02, + "probability": 0.6372 + }, + { + "start": 5449.46, + "end": 5455.18, + "probability": 0.9518 + }, + { + "start": 5455.54, + "end": 5457.28, + "probability": 0.8598 + }, + { + "start": 5457.64, + "end": 5459.06, + "probability": 0.1143 + }, + { + "start": 5459.44, + "end": 5462.22, + "probability": 0.4041 + }, + { + "start": 5462.78, + "end": 5462.78, + "probability": 0.0112 + }, + { + "start": 5462.78, + "end": 5462.78, + "probability": 0.1041 + }, + { + "start": 5462.78, + "end": 5463.34, + "probability": 0.4279 + }, + { + "start": 5463.34, + "end": 5463.34, + "probability": 0.2661 + }, + { + "start": 5463.34, + "end": 5464.11, + "probability": 0.9133 + }, + { + "start": 5464.26, + "end": 5465.08, + "probability": 0.8628 + }, + { + "start": 5465.12, + "end": 5468.16, + "probability": 0.9692 + }, + { + "start": 5468.6, + "end": 5469.54, + "probability": 0.0917 + }, + { + "start": 5470.12, + "end": 5471.78, + "probability": 0.1887 + }, + { + "start": 5471.94, + "end": 5471.96, + "probability": 0.0379 + }, + { + "start": 5471.96, + "end": 5474.58, + "probability": 0.9209 + }, + { + "start": 5474.64, + "end": 5474.64, + "probability": 0.3997 + }, + { + "start": 5474.64, + "end": 5475.26, + "probability": 0.4641 + }, + { + "start": 5475.26, + "end": 5475.56, + "probability": 0.7182 + }, + { + "start": 5476.22, + "end": 5476.62, + "probability": 0.4311 + }, + { + "start": 5476.72, + "end": 5478.34, + "probability": 0.9548 + }, + { + "start": 5478.72, + "end": 5480.9, + "probability": 0.7558 + }, + { + "start": 5480.92, + "end": 5480.98, + "probability": 0.0994 + }, + { + "start": 5481.26, + "end": 5482.34, + "probability": 0.5258 + }, + { + "start": 5482.36, + "end": 5483.2, + "probability": 0.6025 + }, + { + "start": 5483.56, + "end": 5485.54, + "probability": 0.9894 + }, + { + "start": 5485.58, + "end": 5486.12, + "probability": 0.7597 + }, + { + "start": 5486.24, + "end": 5487.98, + "probability": 0.873 + }, + { + "start": 5489.04, + "end": 5490.06, + "probability": 0.9871 + }, + { + "start": 5490.22, + "end": 5491.04, + "probability": 0.3727 + }, + { + "start": 5491.04, + "end": 5491.16, + "probability": 0.0238 + }, + { + "start": 5491.16, + "end": 5492.96, + "probability": 0.312 + }, + { + "start": 5492.98, + "end": 5493.04, + "probability": 0.0324 + }, + { + "start": 5493.08, + "end": 5499.6, + "probability": 0.9647 + }, + { + "start": 5501.38, + "end": 5506.2, + "probability": 0.9655 + }, + { + "start": 5507.24, + "end": 5508.44, + "probability": 0.7503 + }, + { + "start": 5509.36, + "end": 5510.33, + "probability": 0.6547 + }, + { + "start": 5512.14, + "end": 5512.48, + "probability": 0.5041 + }, + { + "start": 5512.52, + "end": 5513.22, + "probability": 0.8584 + }, + { + "start": 5513.34, + "end": 5514.18, + "probability": 0.7872 + }, + { + "start": 5514.3, + "end": 5516.4, + "probability": 0.6488 + }, + { + "start": 5516.62, + "end": 5517.64, + "probability": 0.9271 + }, + { + "start": 5519.08, + "end": 5524.56, + "probability": 0.9705 + }, + { + "start": 5525.76, + "end": 5526.34, + "probability": 0.8176 + }, + { + "start": 5526.98, + "end": 5529.54, + "probability": 0.9029 + }, + { + "start": 5529.94, + "end": 5531.34, + "probability": 0.923 + }, + { + "start": 5532.25, + "end": 5533.08, + "probability": 0.0769 + }, + { + "start": 5533.24, + "end": 5535.7, + "probability": 0.9714 + }, + { + "start": 5537.78, + "end": 5538.02, + "probability": 0.0009 + }, + { + "start": 5538.8, + "end": 5538.94, + "probability": 0.0013 + }, + { + "start": 5538.94, + "end": 5539.08, + "probability": 0.0846 + }, + { + "start": 5539.7, + "end": 5542.62, + "probability": 0.8431 + }, + { + "start": 5543.0, + "end": 5546.54, + "probability": 0.9941 + }, + { + "start": 5547.18, + "end": 5548.0, + "probability": 0.9255 + }, + { + "start": 5548.06, + "end": 5549.4, + "probability": 0.932 + }, + { + "start": 5549.72, + "end": 5550.44, + "probability": 0.5402 + }, + { + "start": 5550.62, + "end": 5551.9, + "probability": 0.9129 + }, + { + "start": 5552.22, + "end": 5556.38, + "probability": 0.7957 + }, + { + "start": 5557.0, + "end": 5558.82, + "probability": 0.2639 + }, + { + "start": 5558.88, + "end": 5561.38, + "probability": 0.7808 + }, + { + "start": 5561.98, + "end": 5562.36, + "probability": 0.2193 + }, + { + "start": 5562.4, + "end": 5564.3, + "probability": 0.7566 + }, + { + "start": 5565.32, + "end": 5567.86, + "probability": 0.37 + }, + { + "start": 5568.77, + "end": 5569.6, + "probability": 0.1375 + }, + { + "start": 5569.62, + "end": 5570.86, + "probability": 0.7056 + }, + { + "start": 5571.62, + "end": 5573.1, + "probability": 0.8527 + }, + { + "start": 5573.1, + "end": 5573.14, + "probability": 0.2694 + }, + { + "start": 5573.14, + "end": 5573.14, + "probability": 0.2646 + }, + { + "start": 5573.14, + "end": 5574.08, + "probability": 0.8651 + }, + { + "start": 5574.08, + "end": 5576.52, + "probability": 0.7393 + }, + { + "start": 5576.6, + "end": 5576.68, + "probability": 0.0409 + }, + { + "start": 5576.82, + "end": 5576.82, + "probability": 0.3693 + }, + { + "start": 5576.82, + "end": 5577.72, + "probability": 0.5305 + }, + { + "start": 5578.38, + "end": 5580.7, + "probability": 0.7757 + }, + { + "start": 5580.74, + "end": 5582.12, + "probability": 0.5432 + }, + { + "start": 5582.22, + "end": 5586.86, + "probability": 0.3101 + }, + { + "start": 5599.02, + "end": 5599.7, + "probability": 0.0529 + }, + { + "start": 5599.7, + "end": 5599.7, + "probability": 0.0785 + }, + { + "start": 5599.7, + "end": 5599.7, + "probability": 0.1906 + }, + { + "start": 5599.7, + "end": 5599.7, + "probability": 0.0497 + }, + { + "start": 5599.7, + "end": 5599.7, + "probability": 0.108 + }, + { + "start": 5599.7, + "end": 5602.42, + "probability": 0.609 + }, + { + "start": 5603.3, + "end": 5604.18, + "probability": 0.8823 + }, + { + "start": 5604.82, + "end": 5606.36, + "probability": 0.8265 + }, + { + "start": 5606.92, + "end": 5608.68, + "probability": 0.8752 + }, + { + "start": 5609.66, + "end": 5611.22, + "probability": 0.5311 + }, + { + "start": 5611.88, + "end": 5612.76, + "probability": 0.7864 + }, + { + "start": 5612.88, + "end": 5614.91, + "probability": 0.3025 + }, + { + "start": 5615.16, + "end": 5617.22, + "probability": 0.8713 + }, + { + "start": 5617.72, + "end": 5618.08, + "probability": 0.5309 + }, + { + "start": 5619.04, + "end": 5621.52, + "probability": 0.6491 + }, + { + "start": 5621.58, + "end": 5622.82, + "probability": 0.9344 + }, + { + "start": 5622.82, + "end": 5623.86, + "probability": 0.3944 + }, + { + "start": 5623.98, + "end": 5625.06, + "probability": 0.9154 + }, + { + "start": 5625.12, + "end": 5625.96, + "probability": 0.8301 + }, + { + "start": 5626.12, + "end": 5628.15, + "probability": 0.7834 + }, + { + "start": 5628.72, + "end": 5629.55, + "probability": 0.1038 + }, + { + "start": 5630.54, + "end": 5631.4, + "probability": 0.946 + }, + { + "start": 5631.78, + "end": 5633.14, + "probability": 0.9785 + }, + { + "start": 5633.32, + "end": 5638.18, + "probability": 0.7739 + }, + { + "start": 5638.3, + "end": 5639.02, + "probability": 0.7696 + }, + { + "start": 5639.34, + "end": 5642.2, + "probability": 0.9568 + }, + { + "start": 5642.68, + "end": 5643.52, + "probability": 0.4937 + }, + { + "start": 5643.56, + "end": 5644.58, + "probability": 0.9477 + }, + { + "start": 5645.04, + "end": 5646.73, + "probability": 0.4052 + }, + { + "start": 5646.76, + "end": 5647.74, + "probability": 0.8718 + }, + { + "start": 5648.6, + "end": 5650.46, + "probability": 0.9966 + }, + { + "start": 5650.7, + "end": 5654.18, + "probability": 0.9983 + }, + { + "start": 5654.4, + "end": 5657.54, + "probability": 0.9706 + }, + { + "start": 5657.96, + "end": 5658.72, + "probability": 0.5729 + }, + { + "start": 5658.82, + "end": 5660.68, + "probability": 0.9919 + }, + { + "start": 5662.38, + "end": 5664.84, + "probability": 0.9727 + }, + { + "start": 5666.08, + "end": 5669.64, + "probability": 0.9946 + }, + { + "start": 5670.74, + "end": 5673.08, + "probability": 0.8933 + }, + { + "start": 5673.38, + "end": 5674.9, + "probability": 0.6249 + }, + { + "start": 5674.96, + "end": 5676.66, + "probability": 0.9532 + }, + { + "start": 5677.12, + "end": 5678.06, + "probability": 0.9052 + }, + { + "start": 5678.78, + "end": 5681.6, + "probability": 0.8428 + }, + { + "start": 5682.18, + "end": 5683.04, + "probability": 0.9176 + }, + { + "start": 5683.36, + "end": 5684.14, + "probability": 0.8942 + }, + { + "start": 5684.28, + "end": 5684.62, + "probability": 0.7977 + }, + { + "start": 5684.78, + "end": 5685.22, + "probability": 0.7615 + }, + { + "start": 5685.5, + "end": 5686.9, + "probability": 0.9048 + }, + { + "start": 5687.16, + "end": 5689.96, + "probability": 0.897 + }, + { + "start": 5690.46, + "end": 5691.3, + "probability": 0.5588 + }, + { + "start": 5691.4, + "end": 5695.3, + "probability": 0.9785 + }, + { + "start": 5695.32, + "end": 5695.42, + "probability": 0.0614 + }, + { + "start": 5695.42, + "end": 5699.36, + "probability": 0.9849 + }, + { + "start": 5699.98, + "end": 5700.96, + "probability": 0.8911 + }, + { + "start": 5701.3, + "end": 5703.34, + "probability": 0.9884 + }, + { + "start": 5703.4, + "end": 5704.28, + "probability": 0.7205 + }, + { + "start": 5704.82, + "end": 5706.32, + "probability": 0.9307 + }, + { + "start": 5706.9, + "end": 5707.22, + "probability": 0.8205 + }, + { + "start": 5707.32, + "end": 5710.5, + "probability": 0.9863 + }, + { + "start": 5711.5, + "end": 5711.84, + "probability": 0.5732 + }, + { + "start": 5713.12, + "end": 5714.0, + "probability": 0.6791 + }, + { + "start": 5714.58, + "end": 5718.34, + "probability": 0.9795 + }, + { + "start": 5718.84, + "end": 5719.36, + "probability": 0.9055 + }, + { + "start": 5719.42, + "end": 5721.16, + "probability": 0.9969 + }, + { + "start": 5721.56, + "end": 5725.78, + "probability": 0.9926 + }, + { + "start": 5725.9, + "end": 5727.82, + "probability": 0.5802 + }, + { + "start": 5727.82, + "end": 5728.14, + "probability": 0.4935 + }, + { + "start": 5728.28, + "end": 5729.05, + "probability": 0.9832 + }, + { + "start": 5729.92, + "end": 5731.18, + "probability": 0.9945 + }, + { + "start": 5731.3, + "end": 5733.52, + "probability": 0.3592 + }, + { + "start": 5735.94, + "end": 5737.24, + "probability": 0.4887 + }, + { + "start": 5737.48, + "end": 5742.92, + "probability": 0.2597 + }, + { + "start": 5742.92, + "end": 5742.92, + "probability": 0.1463 + }, + { + "start": 5742.92, + "end": 5742.92, + "probability": 0.1015 + }, + { + "start": 5742.92, + "end": 5742.92, + "probability": 0.0459 + }, + { + "start": 5742.92, + "end": 5744.17, + "probability": 0.3678 + }, + { + "start": 5745.12, + "end": 5746.06, + "probability": 0.6763 + }, + { + "start": 5746.24, + "end": 5747.18, + "probability": 0.9648 + }, + { + "start": 5747.66, + "end": 5750.78, + "probability": 0.7699 + }, + { + "start": 5750.94, + "end": 5751.38, + "probability": 0.0142 + }, + { + "start": 5751.4, + "end": 5752.56, + "probability": 0.5336 + }, + { + "start": 5752.66, + "end": 5753.8, + "probability": 0.9396 + }, + { + "start": 5753.86, + "end": 5754.96, + "probability": 0.7462 + }, + { + "start": 5754.96, + "end": 5756.18, + "probability": 0.4317 + }, + { + "start": 5756.18, + "end": 5756.68, + "probability": 0.3518 + }, + { + "start": 5756.76, + "end": 5760.86, + "probability": 0.8631 + }, + { + "start": 5761.5, + "end": 5762.66, + "probability": 0.2115 + }, + { + "start": 5763.06, + "end": 5765.48, + "probability": 0.2147 + }, + { + "start": 5766.08, + "end": 5768.1, + "probability": 0.8407 + }, + { + "start": 5768.34, + "end": 5768.82, + "probability": 0.512 + }, + { + "start": 5768.94, + "end": 5770.27, + "probability": 0.536 + }, + { + "start": 5770.64, + "end": 5771.14, + "probability": 0.6787 + }, + { + "start": 5771.14, + "end": 5772.76, + "probability": 0.6406 + }, + { + "start": 5772.94, + "end": 5774.02, + "probability": 0.8961 + }, + { + "start": 5774.38, + "end": 5775.45, + "probability": 0.9656 + }, + { + "start": 5775.86, + "end": 5777.4, + "probability": 0.7561 + }, + { + "start": 5777.74, + "end": 5778.62, + "probability": 0.949 + }, + { + "start": 5779.22, + "end": 5782.3, + "probability": 0.9621 + }, + { + "start": 5782.38, + "end": 5784.18, + "probability": 0.7879 + }, + { + "start": 5784.36, + "end": 5785.27, + "probability": 0.6375 + }, + { + "start": 5785.7, + "end": 5785.74, + "probability": 0.0078 + }, + { + "start": 5785.74, + "end": 5787.96, + "probability": 0.8877 + }, + { + "start": 5789.06, + "end": 5794.74, + "probability": 0.9483 + }, + { + "start": 5794.88, + "end": 5794.88, + "probability": 0.0415 + }, + { + "start": 5794.88, + "end": 5796.5, + "probability": 0.6444 + }, + { + "start": 5797.08, + "end": 5799.0, + "probability": 0.8152 + }, + { + "start": 5799.44, + "end": 5800.16, + "probability": 0.0404 + }, + { + "start": 5800.16, + "end": 5800.16, + "probability": 0.1231 + }, + { + "start": 5800.16, + "end": 5802.37, + "probability": 0.5275 + }, + { + "start": 5803.2, + "end": 5810.18, + "probability": 0.9783 + }, + { + "start": 5810.42, + "end": 5812.22, + "probability": 0.877 + }, + { + "start": 5812.3, + "end": 5815.0, + "probability": 0.9797 + }, + { + "start": 5815.5, + "end": 5815.86, + "probability": 0.0845 + }, + { + "start": 5815.86, + "end": 5815.86, + "probability": 0.2024 + }, + { + "start": 5815.86, + "end": 5820.0, + "probability": 0.6629 + }, + { + "start": 5820.7, + "end": 5822.14, + "probability": 0.4702 + }, + { + "start": 5822.4, + "end": 5823.46, + "probability": 0.9895 + }, + { + "start": 5823.78, + "end": 5824.8, + "probability": 0.805 + }, + { + "start": 5824.96, + "end": 5828.8, + "probability": 0.8967 + }, + { + "start": 5828.86, + "end": 5831.68, + "probability": 0.9908 + }, + { + "start": 5831.68, + "end": 5832.14, + "probability": 0.1163 + }, + { + "start": 5832.22, + "end": 5832.24, + "probability": 0.2812 + }, + { + "start": 5832.76, + "end": 5833.5, + "probability": 0.8112 + }, + { + "start": 5833.86, + "end": 5839.98, + "probability": 0.9629 + }, + { + "start": 5840.14, + "end": 5840.14, + "probability": 0.0211 + }, + { + "start": 5840.14, + "end": 5841.14, + "probability": 0.5223 + }, + { + "start": 5841.28, + "end": 5845.88, + "probability": 0.8519 + }, + { + "start": 5845.9, + "end": 5848.06, + "probability": 0.0789 + }, + { + "start": 5848.08, + "end": 5848.08, + "probability": 0.4573 + }, + { + "start": 5848.08, + "end": 5850.76, + "probability": 0.9335 + }, + { + "start": 5851.26, + "end": 5852.88, + "probability": 0.7883 + }, + { + "start": 5853.22, + "end": 5854.26, + "probability": 0.8486 + }, + { + "start": 5854.39, + "end": 5855.08, + "probability": 0.0338 + }, + { + "start": 5855.2, + "end": 5859.2, + "probability": 0.8923 + }, + { + "start": 5860.2, + "end": 5860.52, + "probability": 0.8126 + }, + { + "start": 5860.54, + "end": 5863.44, + "probability": 0.8538 + }, + { + "start": 5863.86, + "end": 5868.22, + "probability": 0.9937 + }, + { + "start": 5868.52, + "end": 5875.5, + "probability": 0.9613 + }, + { + "start": 5875.72, + "end": 5876.6, + "probability": 0.834 + }, + { + "start": 5877.16, + "end": 5877.36, + "probability": 0.0859 + }, + { + "start": 5877.36, + "end": 5879.66, + "probability": 0.8687 + }, + { + "start": 5880.38, + "end": 5882.6, + "probability": 0.9587 + }, + { + "start": 5882.9, + "end": 5884.8, + "probability": 0.4716 + }, + { + "start": 5885.28, + "end": 5887.76, + "probability": 0.8064 + }, + { + "start": 5887.96, + "end": 5889.3, + "probability": 0.6873 + }, + { + "start": 5889.44, + "end": 5898.72, + "probability": 0.9132 + }, + { + "start": 5899.54, + "end": 5901.0, + "probability": 0.5807 + }, + { + "start": 5901.78, + "end": 5907.64, + "probability": 0.764 + }, + { + "start": 5908.89, + "end": 5910.38, + "probability": 0.0466 + }, + { + "start": 5910.38, + "end": 5912.12, + "probability": 0.1986 + }, + { + "start": 5912.5, + "end": 5912.5, + "probability": 0.443 + }, + { + "start": 5912.52, + "end": 5914.7, + "probability": 0.9075 + }, + { + "start": 5915.56, + "end": 5916.54, + "probability": 0.131 + }, + { + "start": 5916.6, + "end": 5920.74, + "probability": 0.8641 + }, + { + "start": 5921.16, + "end": 5921.62, + "probability": 0.0864 + }, + { + "start": 5922.74, + "end": 5923.31, + "probability": 0.3418 + }, + { + "start": 5923.98, + "end": 5925.16, + "probability": 0.8028 + }, + { + "start": 5926.84, + "end": 5927.14, + "probability": 0.0015 + }, + { + "start": 5927.14, + "end": 5927.14, + "probability": 0.1048 + }, + { + "start": 5927.14, + "end": 5927.9, + "probability": 0.0172 + }, + { + "start": 5927.96, + "end": 5929.58, + "probability": 0.7166 + }, + { + "start": 5929.92, + "end": 5931.54, + "probability": 0.6186 + }, + { + "start": 5931.74, + "end": 5933.9, + "probability": 0.6728 + }, + { + "start": 5934.04, + "end": 5935.78, + "probability": 0.8314 + }, + { + "start": 5936.1, + "end": 5936.73, + "probability": 0.8919 + }, + { + "start": 5937.48, + "end": 5940.74, + "probability": 0.6607 + }, + { + "start": 5941.28, + "end": 5943.1, + "probability": 0.9472 + }, + { + "start": 5943.14, + "end": 5944.86, + "probability": 0.7566 + }, + { + "start": 5945.02, + "end": 5946.88, + "probability": 0.9557 + }, + { + "start": 5946.94, + "end": 5948.6, + "probability": 0.9919 + }, + { + "start": 5948.74, + "end": 5949.52, + "probability": 0.6266 + }, + { + "start": 5949.72, + "end": 5953.82, + "probability": 0.8367 + }, + { + "start": 5953.84, + "end": 5953.84, + "probability": 0.7309 + }, + { + "start": 5953.88, + "end": 5953.88, + "probability": 0.1086 + }, + { + "start": 5953.98, + "end": 5956.22, + "probability": 0.9859 + }, + { + "start": 5956.22, + "end": 5962.6, + "probability": 0.9924 + }, + { + "start": 5963.08, + "end": 5964.22, + "probability": 0.4167 + }, + { + "start": 5964.22, + "end": 5967.22, + "probability": 0.7725 + }, + { + "start": 5967.24, + "end": 5967.48, + "probability": 0.0856 + }, + { + "start": 5967.48, + "end": 5968.08, + "probability": 0.0135 + }, + { + "start": 5968.08, + "end": 5970.16, + "probability": 0.3863 + }, + { + "start": 5970.38, + "end": 5971.54, + "probability": 0.6932 + }, + { + "start": 5971.56, + "end": 5971.64, + "probability": 0.1401 + }, + { + "start": 5971.64, + "end": 5975.1, + "probability": 0.7354 + }, + { + "start": 5975.1, + "end": 5979.54, + "probability": 0.7495 + }, + { + "start": 5979.66, + "end": 5981.08, + "probability": 0.7419 + }, + { + "start": 5981.2, + "end": 5981.8, + "probability": 0.5659 + }, + { + "start": 5981.84, + "end": 5986.26, + "probability": 0.8881 + }, + { + "start": 5986.44, + "end": 5991.06, + "probability": 0.9712 + }, + { + "start": 5992.54, + "end": 5994.29, + "probability": 0.9893 + }, + { + "start": 5994.38, + "end": 5994.98, + "probability": 0.5772 + }, + { + "start": 5995.1, + "end": 5996.1, + "probability": 0.7712 + }, + { + "start": 5997.33, + "end": 6001.58, + "probability": 0.9832 + }, + { + "start": 6001.96, + "end": 6004.62, + "probability": 0.9979 + }, + { + "start": 6004.64, + "end": 6005.28, + "probability": 0.6749 + }, + { + "start": 6005.42, + "end": 6006.88, + "probability": 0.7648 + }, + { + "start": 6007.34, + "end": 6008.32, + "probability": 0.9532 + }, + { + "start": 6008.52, + "end": 6009.52, + "probability": 0.4307 + }, + { + "start": 6009.58, + "end": 6011.18, + "probability": 0.0783 + }, + { + "start": 6011.18, + "end": 6011.9, + "probability": 0.686 + }, + { + "start": 6012.08, + "end": 6014.12, + "probability": 0.7316 + }, + { + "start": 6014.8, + "end": 6020.24, + "probability": 0.9212 + }, + { + "start": 6020.38, + "end": 6021.06, + "probability": 0.5651 + }, + { + "start": 6021.42, + "end": 6022.92, + "probability": 0.8579 + }, + { + "start": 6023.04, + "end": 6024.44, + "probability": 0.9089 + }, + { + "start": 6024.46, + "end": 6025.64, + "probability": 0.3403 + }, + { + "start": 6026.1, + "end": 6029.8, + "probability": 0.8716 + }, + { + "start": 6030.0, + "end": 6031.2, + "probability": 0.6241 + }, + { + "start": 6031.4, + "end": 6032.42, + "probability": 0.8082 + }, + { + "start": 6032.42, + "end": 6037.88, + "probability": 0.9805 + }, + { + "start": 6038.06, + "end": 6038.9, + "probability": 0.9722 + }, + { + "start": 6039.02, + "end": 6039.9, + "probability": 0.6187 + }, + { + "start": 6040.12, + "end": 6044.33, + "probability": 0.9941 + }, + { + "start": 6044.88, + "end": 6048.58, + "probability": 0.9951 + }, + { + "start": 6048.74, + "end": 6050.63, + "probability": 0.7601 + }, + { + "start": 6051.04, + "end": 6052.74, + "probability": 0.8541 + }, + { + "start": 6052.82, + "end": 6057.24, + "probability": 0.9587 + }, + { + "start": 6057.44, + "end": 6059.62, + "probability": 0.8283 + }, + { + "start": 6059.66, + "end": 6060.58, + "probability": 0.0714 + }, + { + "start": 6060.6, + "end": 6061.4, + "probability": 0.2199 + }, + { + "start": 6061.56, + "end": 6067.02, + "probability": 0.8641 + }, + { + "start": 6067.06, + "end": 6067.42, + "probability": 0.75 + }, + { + "start": 6067.5, + "end": 6068.34, + "probability": 0.9017 + }, + { + "start": 6068.7, + "end": 6076.1, + "probability": 0.9417 + }, + { + "start": 6076.38, + "end": 6077.36, + "probability": 0.6335 + }, + { + "start": 6077.46, + "end": 6080.8, + "probability": 0.9526 + }, + { + "start": 6081.08, + "end": 6088.1, + "probability": 0.9922 + }, + { + "start": 6088.4, + "end": 6091.24, + "probability": 0.9973 + }, + { + "start": 6091.34, + "end": 6092.0, + "probability": 0.6421 + }, + { + "start": 6092.44, + "end": 6095.12, + "probability": 0.9333 + }, + { + "start": 6095.54, + "end": 6099.18, + "probability": 0.9913 + }, + { + "start": 6099.5, + "end": 6099.5, + "probability": 0.1704 + }, + { + "start": 6099.5, + "end": 6100.26, + "probability": 0.863 + }, + { + "start": 6100.5, + "end": 6103.3, + "probability": 0.576 + }, + { + "start": 6103.34, + "end": 6104.52, + "probability": 0.4038 + }, + { + "start": 6104.87, + "end": 6106.0, + "probability": 0.0915 + }, + { + "start": 6106.04, + "end": 6107.28, + "probability": 0.571 + }, + { + "start": 6107.62, + "end": 6116.86, + "probability": 0.9904 + }, + { + "start": 6117.5, + "end": 6120.82, + "probability": 0.4716 + }, + { + "start": 6121.16, + "end": 6121.48, + "probability": 0.4694 + }, + { + "start": 6121.62, + "end": 6122.37, + "probability": 0.9272 + }, + { + "start": 6123.18, + "end": 6125.02, + "probability": 0.9787 + }, + { + "start": 6125.42, + "end": 6126.1, + "probability": 0.3084 + }, + { + "start": 6126.3, + "end": 6128.42, + "probability": 0.8463 + }, + { + "start": 6128.94, + "end": 6133.48, + "probability": 0.9675 + }, + { + "start": 6133.5, + "end": 6134.38, + "probability": 0.1834 + }, + { + "start": 6134.8, + "end": 6137.36, + "probability": 0.541 + }, + { + "start": 6137.94, + "end": 6139.72, + "probability": 0.8014 + }, + { + "start": 6140.34, + "end": 6141.58, + "probability": 0.5934 + }, + { + "start": 6142.94, + "end": 6144.08, + "probability": 0.2645 + }, + { + "start": 6146.84, + "end": 6149.02, + "probability": 0.8122 + }, + { + "start": 6149.06, + "end": 6150.88, + "probability": 0.2529 + }, + { + "start": 6150.98, + "end": 6153.68, + "probability": 0.5854 + }, + { + "start": 6153.78, + "end": 6156.02, + "probability": 0.9857 + }, + { + "start": 6156.18, + "end": 6156.4, + "probability": 0.8305 + }, + { + "start": 6156.46, + "end": 6160.8, + "probability": 0.9625 + }, + { + "start": 6161.18, + "end": 6162.18, + "probability": 0.0425 + }, + { + "start": 6162.3, + "end": 6163.02, + "probability": 0.0164 + }, + { + "start": 6163.3, + "end": 6164.62, + "probability": 0.7162 + }, + { + "start": 6164.94, + "end": 6167.86, + "probability": 0.4369 + }, + { + "start": 6168.08, + "end": 6168.9, + "probability": 0.6503 + }, + { + "start": 6168.94, + "end": 6170.5, + "probability": 0.6518 + }, + { + "start": 6170.78, + "end": 6174.18, + "probability": 0.9367 + }, + { + "start": 6174.38, + "end": 6176.84, + "probability": 0.9694 + }, + { + "start": 6177.02, + "end": 6179.44, + "probability": 0.893 + }, + { + "start": 6180.18, + "end": 6182.06, + "probability": 0.697 + }, + { + "start": 6182.5, + "end": 6186.42, + "probability": 0.9882 + }, + { + "start": 6186.42, + "end": 6188.92, + "probability": 0.9644 + }, + { + "start": 6189.72, + "end": 6189.88, + "probability": 0.0163 + }, + { + "start": 6189.88, + "end": 6190.98, + "probability": 0.7126 + }, + { + "start": 6192.7, + "end": 6193.8, + "probability": 0.0028 + }, + { + "start": 6195.98, + "end": 6196.12, + "probability": 0.0093 + }, + { + "start": 6196.12, + "end": 6196.12, + "probability": 0.0417 + }, + { + "start": 6196.12, + "end": 6196.12, + "probability": 0.1047 + }, + { + "start": 6196.12, + "end": 6198.2, + "probability": 0.5408 + }, + { + "start": 6198.42, + "end": 6203.84, + "probability": 0.9565 + }, + { + "start": 6203.84, + "end": 6210.38, + "probability": 0.9932 + }, + { + "start": 6210.94, + "end": 6213.86, + "probability": 0.9625 + }, + { + "start": 6214.02, + "end": 6215.45, + "probability": 0.9635 + }, + { + "start": 6216.2, + "end": 6218.72, + "probability": 0.973 + }, + { + "start": 6219.06, + "end": 6220.62, + "probability": 0.9138 + }, + { + "start": 6220.92, + "end": 6223.5, + "probability": 0.7838 + }, + { + "start": 6224.24, + "end": 6226.16, + "probability": 0.925 + }, + { + "start": 6226.5, + "end": 6227.68, + "probability": 0.6602 + }, + { + "start": 6227.84, + "end": 6230.74, + "probability": 0.9718 + }, + { + "start": 6230.92, + "end": 6235.12, + "probability": 0.752 + }, + { + "start": 6235.3, + "end": 6236.56, + "probability": 0.9603 + }, + { + "start": 6236.82, + "end": 6238.3, + "probability": 0.9874 + }, + { + "start": 6238.77, + "end": 6244.88, + "probability": 0.8293 + }, + { + "start": 6245.04, + "end": 6245.52, + "probability": 0.0134 + }, + { + "start": 6245.52, + "end": 6246.98, + "probability": 0.1708 + }, + { + "start": 6247.9, + "end": 6249.8, + "probability": 0.6298 + }, + { + "start": 6254.04, + "end": 6257.38, + "probability": 0.6202 + }, + { + "start": 6257.92, + "end": 6260.32, + "probability": 0.3519 + }, + { + "start": 6260.4, + "end": 6262.32, + "probability": 0.2719 + }, + { + "start": 6262.4, + "end": 6264.36, + "probability": 0.0763 + }, + { + "start": 6264.54, + "end": 6267.26, + "probability": 0.9949 + }, + { + "start": 6267.42, + "end": 6269.58, + "probability": 0.5238 + }, + { + "start": 6269.7, + "end": 6272.03, + "probability": 0.9173 + }, + { + "start": 6272.36, + "end": 6276.06, + "probability": 0.9215 + }, + { + "start": 6276.2, + "end": 6276.86, + "probability": 0.6145 + }, + { + "start": 6276.94, + "end": 6277.48, + "probability": 0.8776 + }, + { + "start": 6277.64, + "end": 6278.62, + "probability": 0.6905 + }, + { + "start": 6278.78, + "end": 6282.26, + "probability": 0.9331 + }, + { + "start": 6283.97, + "end": 6286.4, + "probability": 0.5257 + }, + { + "start": 6286.48, + "end": 6288.22, + "probability": 0.5577 + }, + { + "start": 6288.76, + "end": 6289.92, + "probability": 0.9385 + }, + { + "start": 6291.0, + "end": 6296.04, + "probability": 0.9874 + }, + { + "start": 6297.08, + "end": 6299.98, + "probability": 0.8101 + }, + { + "start": 6300.32, + "end": 6301.06, + "probability": 0.5846 + }, + { + "start": 6301.28, + "end": 6302.14, + "probability": 0.5719 + }, + { + "start": 6302.78, + "end": 6304.44, + "probability": 0.4057 + }, + { + "start": 6324.26, + "end": 6324.26, + "probability": 0.2872 + }, + { + "start": 6324.26, + "end": 6329.56, + "probability": 0.6982 + }, + { + "start": 6330.0, + "end": 6335.0, + "probability": 0.9427 + }, + { + "start": 6336.66, + "end": 6340.1, + "probability": 0.8304 + }, + { + "start": 6340.26, + "end": 6342.98, + "probability": 0.9229 + }, + { + "start": 6342.98, + "end": 6347.16, + "probability": 0.61 + }, + { + "start": 6349.28, + "end": 6350.3, + "probability": 0.5532 + }, + { + "start": 6350.36, + "end": 6350.92, + "probability": 0.6051 + }, + { + "start": 6350.94, + "end": 6352.22, + "probability": 0.6844 + }, + { + "start": 6353.98, + "end": 6354.5, + "probability": 0.2864 + }, + { + "start": 6358.34, + "end": 6358.48, + "probability": 0.2446 + }, + { + "start": 6359.82, + "end": 6360.26, + "probability": 0.3773 + }, + { + "start": 6361.24, + "end": 6363.0, + "probability": 0.2149 + }, + { + "start": 6363.0, + "end": 6367.22, + "probability": 0.4171 + }, + { + "start": 6368.62, + "end": 6369.86, + "probability": 0.649 + }, + { + "start": 6369.9, + "end": 6373.18, + "probability": 0.9386 + }, + { + "start": 6373.94, + "end": 6377.38, + "probability": 0.9189 + }, + { + "start": 6377.48, + "end": 6378.88, + "probability": 0.8438 + }, + { + "start": 6379.44, + "end": 6381.54, + "probability": 0.6378 + }, + { + "start": 6381.56, + "end": 6382.22, + "probability": 0.5938 + }, + { + "start": 6382.26, + "end": 6383.4, + "probability": 0.8736 + }, + { + "start": 6392.1, + "end": 6393.16, + "probability": 0.7447 + }, + { + "start": 6393.16, + "end": 6397.64, + "probability": 0.1148 + }, + { + "start": 6401.18, + "end": 6402.84, + "probability": 0.2764 + }, + { + "start": 6403.38, + "end": 6405.26, + "probability": 0.2467 + }, + { + "start": 6406.16, + "end": 6408.14, + "probability": 0.8022 + }, + { + "start": 6408.26, + "end": 6410.68, + "probability": 0.9919 + }, + { + "start": 6411.38, + "end": 6412.54, + "probability": 0.9224 + }, + { + "start": 6412.92, + "end": 6415.99, + "probability": 0.8803 + }, + { + "start": 6417.0, + "end": 6417.8, + "probability": 0.3369 + }, + { + "start": 6418.59, + "end": 6421.94, + "probability": 0.6859 + }, + { + "start": 6422.34, + "end": 6425.59, + "probability": 0.989 + }, + { + "start": 6426.28, + "end": 6429.7, + "probability": 0.9572 + }, + { + "start": 6445.24, + "end": 6446.98, + "probability": 0.7018 + }, + { + "start": 6447.7, + "end": 6452.99, + "probability": 0.9113 + }, + { + "start": 6454.02, + "end": 6458.74, + "probability": 0.9032 + }, + { + "start": 6459.88, + "end": 6463.4, + "probability": 0.9892 + }, + { + "start": 6463.96, + "end": 6468.32, + "probability": 0.9315 + }, + { + "start": 6469.16, + "end": 6473.34, + "probability": 0.9797 + }, + { + "start": 6473.96, + "end": 6480.08, + "probability": 0.9716 + }, + { + "start": 6481.04, + "end": 6487.16, + "probability": 0.9924 + }, + { + "start": 6487.16, + "end": 6490.9, + "probability": 0.9983 + }, + { + "start": 6492.36, + "end": 6492.9, + "probability": 0.4817 + }, + { + "start": 6493.08, + "end": 6498.06, + "probability": 0.9971 + }, + { + "start": 6498.06, + "end": 6503.38, + "probability": 0.9873 + }, + { + "start": 6503.76, + "end": 6510.6, + "probability": 0.9982 + }, + { + "start": 6510.62, + "end": 6515.48, + "probability": 0.9915 + }, + { + "start": 6515.48, + "end": 6520.5, + "probability": 0.9881 + }, + { + "start": 6521.18, + "end": 6523.58, + "probability": 0.5869 + }, + { + "start": 6523.9, + "end": 6526.36, + "probability": 0.7326 + }, + { + "start": 6526.64, + "end": 6528.42, + "probability": 0.8343 + }, + { + "start": 6528.9, + "end": 6530.34, + "probability": 0.9833 + }, + { + "start": 6531.38, + "end": 6535.06, + "probability": 0.6923 + }, + { + "start": 6536.58, + "end": 6538.1, + "probability": 0.9702 + }, + { + "start": 6538.12, + "end": 6539.18, + "probability": 0.8223 + }, + { + "start": 6540.04, + "end": 6540.18, + "probability": 0.3427 + }, + { + "start": 6541.2, + "end": 6541.72, + "probability": 0.2817 + }, + { + "start": 6541.8, + "end": 6545.12, + "probability": 0.6761 + }, + { + "start": 6558.76, + "end": 6561.68, + "probability": 0.7205 + }, + { + "start": 6561.74, + "end": 6565.02, + "probability": 0.9355 + }, + { + "start": 6565.74, + "end": 6568.54, + "probability": 0.9823 + }, + { + "start": 6568.7, + "end": 6569.06, + "probability": 0.6102 + }, + { + "start": 6569.88, + "end": 6573.2, + "probability": 0.8216 + }, + { + "start": 6573.52, + "end": 6579.18, + "probability": 0.9426 + }, + { + "start": 6579.68, + "end": 6581.08, + "probability": 0.9197 + }, + { + "start": 6581.44, + "end": 6585.02, + "probability": 0.9878 + }, + { + "start": 6585.02, + "end": 6588.02, + "probability": 0.9792 + }, + { + "start": 6588.62, + "end": 6591.42, + "probability": 0.9834 + }, + { + "start": 6591.54, + "end": 6595.22, + "probability": 0.9896 + }, + { + "start": 6595.22, + "end": 6599.64, + "probability": 0.6789 + }, + { + "start": 6599.8, + "end": 6600.14, + "probability": 0.7236 + }, + { + "start": 6600.72, + "end": 6601.5, + "probability": 0.5931 + }, + { + "start": 6601.58, + "end": 6601.92, + "probability": 0.5681 + }, + { + "start": 6602.08, + "end": 6602.66, + "probability": 0.5152 + }, + { + "start": 6602.74, + "end": 6604.3, + "probability": 0.6266 + }, + { + "start": 6604.34, + "end": 6605.8, + "probability": 0.9696 + }, + { + "start": 6606.58, + "end": 6608.84, + "probability": 0.8713 + }, + { + "start": 6610.18, + "end": 6610.88, + "probability": 0.7334 + }, + { + "start": 6612.88, + "end": 6614.34, + "probability": 0.4952 + }, + { + "start": 6614.34, + "end": 6614.44, + "probability": 0.6501 + }, + { + "start": 6614.72, + "end": 6617.29, + "probability": 0.9346 + }, + { + "start": 6618.82, + "end": 6620.58, + "probability": 0.7185 + }, + { + "start": 6620.66, + "end": 6621.22, + "probability": 0.4327 + }, + { + "start": 6621.44, + "end": 6622.46, + "probability": 0.7988 + }, + { + "start": 6623.8, + "end": 6628.64, + "probability": 0.9715 + }, + { + "start": 6628.64, + "end": 6630.14, + "probability": 0.3931 + }, + { + "start": 6630.44, + "end": 6631.5, + "probability": 0.7587 + }, + { + "start": 6632.0, + "end": 6632.44, + "probability": 0.4794 + }, + { + "start": 6642.52, + "end": 6642.8, + "probability": 0.0002 + }, + { + "start": 6643.74, + "end": 6645.38, + "probability": 0.0567 + }, + { + "start": 6653.76, + "end": 6657.26, + "probability": 0.3252 + }, + { + "start": 6657.78, + "end": 6660.64, + "probability": 0.971 + }, + { + "start": 6662.84, + "end": 6663.36, + "probability": 0.8671 + }, + { + "start": 6663.46, + "end": 6664.76, + "probability": 0.6643 + }, + { + "start": 6664.82, + "end": 6666.58, + "probability": 0.7719 + }, + { + "start": 6668.55, + "end": 6670.88, + "probability": 0.992 + }, + { + "start": 6670.96, + "end": 6675.3, + "probability": 0.8557 + }, + { + "start": 6676.58, + "end": 6678.02, + "probability": 0.7618 + }, + { + "start": 6678.8, + "end": 6678.94, + "probability": 0.0047 + }, + { + "start": 6688.54, + "end": 6691.1, + "probability": 0.2478 + }, + { + "start": 6693.38, + "end": 6694.22, + "probability": 0.0731 + }, + { + "start": 6696.58, + "end": 6699.6, + "probability": 0.597 + }, + { + "start": 6699.7, + "end": 6700.28, + "probability": 0.8823 + }, + { + "start": 6700.48, + "end": 6702.52, + "probability": 0.903 + }, + { + "start": 6702.52, + "end": 6704.06, + "probability": 0.6215 + }, + { + "start": 6704.44, + "end": 6707.5, + "probability": 0.9581 + }, + { + "start": 6708.32, + "end": 6711.86, + "probability": 0.6016 + }, + { + "start": 6711.94, + "end": 6712.28, + "probability": 0.675 + }, + { + "start": 6712.88, + "end": 6714.06, + "probability": 0.7951 + }, + { + "start": 6714.1, + "end": 6715.38, + "probability": 0.7745 + }, + { + "start": 6715.44, + "end": 6716.96, + "probability": 0.7689 + }, + { + "start": 6717.0, + "end": 6720.8, + "probability": 0.9808 + }, + { + "start": 6720.8, + "end": 6723.66, + "probability": 0.7869 + }, + { + "start": 6724.2, + "end": 6727.04, + "probability": 0.7434 + }, + { + "start": 6727.88, + "end": 6728.84, + "probability": 0.9659 + }, + { + "start": 6730.22, + "end": 6737.18, + "probability": 0.9202 + }, + { + "start": 6737.22, + "end": 6737.46, + "probability": 0.7419 + }, + { + "start": 6738.26, + "end": 6739.14, + "probability": 0.5134 + }, + { + "start": 6739.46, + "end": 6743.14, + "probability": 0.9194 + }, + { + "start": 6743.86, + "end": 6745.0, + "probability": 0.5136 + }, + { + "start": 6745.14, + "end": 6749.78, + "probability": 0.9893 + }, + { + "start": 6750.46, + "end": 6750.6, + "probability": 0.5536 + }, + { + "start": 6751.12, + "end": 6751.44, + "probability": 0.7827 + }, + { + "start": 6751.64, + "end": 6752.04, + "probability": 0.4901 + }, + { + "start": 6752.36, + "end": 6752.92, + "probability": 0.9663 + }, + { + "start": 6753.08, + "end": 6753.94, + "probability": 0.8118 + }, + { + "start": 6753.96, + "end": 6754.7, + "probability": 0.9629 + }, + { + "start": 6754.9, + "end": 6755.8, + "probability": 0.8704 + }, + { + "start": 6756.14, + "end": 6759.76, + "probability": 0.8792 + }, + { + "start": 6759.86, + "end": 6760.32, + "probability": 0.4022 + }, + { + "start": 6760.69, + "end": 6763.5, + "probability": 0.9658 + }, + { + "start": 6764.02, + "end": 6767.78, + "probability": 0.9775 + }, + { + "start": 6767.78, + "end": 6770.36, + "probability": 0.9824 + }, + { + "start": 6771.22, + "end": 6773.32, + "probability": 0.9422 + }, + { + "start": 6773.44, + "end": 6776.94, + "probability": 0.8691 + }, + { + "start": 6776.98, + "end": 6777.64, + "probability": 0.8943 + }, + { + "start": 6778.6, + "end": 6780.08, + "probability": 0.4395 + }, + { + "start": 6780.1, + "end": 6782.8, + "probability": 0.8086 + }, + { + "start": 6783.4, + "end": 6785.56, + "probability": 0.8562 + }, + { + "start": 6786.08, + "end": 6787.22, + "probability": 0.5383 + }, + { + "start": 6787.54, + "end": 6791.08, + "probability": 0.759 + }, + { + "start": 6791.6, + "end": 6796.86, + "probability": 0.9916 + }, + { + "start": 6797.78, + "end": 6797.92, + "probability": 0.7128 + }, + { + "start": 6798.44, + "end": 6800.5, + "probability": 0.4413 + }, + { + "start": 6801.14, + "end": 6802.6, + "probability": 0.5752 + }, + { + "start": 6803.2, + "end": 6803.88, + "probability": 0.5399 + }, + { + "start": 6803.96, + "end": 6807.52, + "probability": 0.8026 + }, + { + "start": 6807.72, + "end": 6809.84, + "probability": 0.379 + }, + { + "start": 6810.34, + "end": 6811.58, + "probability": 0.944 + }, + { + "start": 6812.1, + "end": 6815.44, + "probability": 0.9937 + }, + { + "start": 6815.44, + "end": 6819.63, + "probability": 0.9694 + }, + { + "start": 6820.26, + "end": 6821.83, + "probability": 0.7788 + }, + { + "start": 6822.48, + "end": 6823.64, + "probability": 0.6478 + }, + { + "start": 6824.02, + "end": 6828.22, + "probability": 0.6638 + }, + { + "start": 6828.62, + "end": 6828.88, + "probability": 0.8353 + }, + { + "start": 6829.9, + "end": 6830.76, + "probability": 0.6757 + }, + { + "start": 6831.88, + "end": 6834.58, + "probability": 0.9454 + }, + { + "start": 6835.36, + "end": 6837.1, + "probability": 0.5875 + }, + { + "start": 6837.92, + "end": 6840.0, + "probability": 0.9946 + }, + { + "start": 6840.88, + "end": 6843.32, + "probability": 0.9763 + }, + { + "start": 6843.4, + "end": 6843.72, + "probability": 0.8587 + }, + { + "start": 6843.76, + "end": 6844.18, + "probability": 0.4856 + }, + { + "start": 6846.38, + "end": 6847.88, + "probability": 0.6275 + }, + { + "start": 6850.06, + "end": 6854.2, + "probability": 0.8172 + }, + { + "start": 6855.26, + "end": 6856.24, + "probability": 0.2925 + }, + { + "start": 6857.66, + "end": 6859.38, + "probability": 0.734 + }, + { + "start": 6860.44, + "end": 6861.84, + "probability": 0.2307 + }, + { + "start": 6862.58, + "end": 6864.82, + "probability": 0.9656 + }, + { + "start": 6866.96, + "end": 6868.36, + "probability": 0.94 + }, + { + "start": 6869.32, + "end": 6871.18, + "probability": 0.7821 + }, + { + "start": 6880.56, + "end": 6881.2, + "probability": 0.7433 + }, + { + "start": 6888.56, + "end": 6888.7, + "probability": 0.7661 + }, + { + "start": 6891.36, + "end": 6892.56, + "probability": 0.8085 + }, + { + "start": 6893.16, + "end": 6894.18, + "probability": 0.7406 + }, + { + "start": 6895.44, + "end": 6897.58, + "probability": 0.6663 + }, + { + "start": 6898.4, + "end": 6902.86, + "probability": 0.9954 + }, + { + "start": 6904.28, + "end": 6907.76, + "probability": 0.9983 + }, + { + "start": 6908.44, + "end": 6909.04, + "probability": 0.7306 + }, + { + "start": 6910.36, + "end": 6912.2, + "probability": 0.8823 + }, + { + "start": 6912.9, + "end": 6916.36, + "probability": 0.9985 + }, + { + "start": 6918.1, + "end": 6922.42, + "probability": 0.9973 + }, + { + "start": 6922.42, + "end": 6928.7, + "probability": 0.9807 + }, + { + "start": 6930.08, + "end": 6931.92, + "probability": 0.9662 + }, + { + "start": 6932.96, + "end": 6939.58, + "probability": 0.8842 + }, + { + "start": 6940.68, + "end": 6950.0, + "probability": 0.8936 + }, + { + "start": 6950.0, + "end": 6954.94, + "probability": 0.8615 + }, + { + "start": 6955.48, + "end": 6956.42, + "probability": 0.7915 + }, + { + "start": 6957.62, + "end": 6959.48, + "probability": 0.9369 + }, + { + "start": 6960.34, + "end": 6962.06, + "probability": 0.9914 + }, + { + "start": 6963.71, + "end": 6964.84, + "probability": 0.5174 + }, + { + "start": 6964.84, + "end": 6967.16, + "probability": 0.7957 + }, + { + "start": 6967.52, + "end": 6967.98, + "probability": 0.7617 + }, + { + "start": 6968.92, + "end": 6970.92, + "probability": 0.8445 + }, + { + "start": 6972.16, + "end": 6974.42, + "probability": 0.9978 + }, + { + "start": 6975.08, + "end": 6977.0, + "probability": 0.7203 + }, + { + "start": 6977.72, + "end": 6979.62, + "probability": 0.9481 + }, + { + "start": 6980.32, + "end": 6983.74, + "probability": 0.8801 + }, + { + "start": 6984.9, + "end": 6985.52, + "probability": 0.6042 + }, + { + "start": 6986.24, + "end": 6991.9, + "probability": 0.9518 + }, + { + "start": 6992.52, + "end": 6994.68, + "probability": 0.9045 + }, + { + "start": 6995.76, + "end": 6996.9, + "probability": 0.9619 + }, + { + "start": 6997.76, + "end": 7002.68, + "probability": 0.9889 + }, + { + "start": 7003.18, + "end": 7004.34, + "probability": 0.9627 + }, + { + "start": 7005.14, + "end": 7006.02, + "probability": 0.6348 + }, + { + "start": 7006.82, + "end": 7008.46, + "probability": 0.9686 + }, + { + "start": 7009.32, + "end": 7013.92, + "probability": 0.9633 + }, + { + "start": 7014.28, + "end": 7016.64, + "probability": 0.8882 + }, + { + "start": 7016.98, + "end": 7018.16, + "probability": 0.7256 + }, + { + "start": 7018.86, + "end": 7022.84, + "probability": 0.9963 + }, + { + "start": 7023.38, + "end": 7024.46, + "probability": 0.989 + }, + { + "start": 7025.6, + "end": 7028.58, + "probability": 0.9419 + }, + { + "start": 7029.6, + "end": 7030.32, + "probability": 0.407 + }, + { + "start": 7032.06, + "end": 7033.28, + "probability": 0.9638 + }, + { + "start": 7034.12, + "end": 7035.58, + "probability": 0.8784 + }, + { + "start": 7035.94, + "end": 7038.16, + "probability": 0.9718 + }, + { + "start": 7038.54, + "end": 7044.2, + "probability": 0.985 + }, + { + "start": 7045.22, + "end": 7047.98, + "probability": 0.8057 + }, + { + "start": 7048.72, + "end": 7050.54, + "probability": 0.3839 + }, + { + "start": 7051.76, + "end": 7052.8, + "probability": 0.9286 + }, + { + "start": 7053.86, + "end": 7055.96, + "probability": 0.9672 + }, + { + "start": 7056.3, + "end": 7059.52, + "probability": 0.996 + }, + { + "start": 7060.3, + "end": 7064.26, + "probability": 0.9968 + }, + { + "start": 7065.0, + "end": 7067.4, + "probability": 0.7329 + }, + { + "start": 7068.3, + "end": 7070.78, + "probability": 0.3565 + }, + { + "start": 7071.08, + "end": 7072.74, + "probability": 0.8777 + }, + { + "start": 7073.04, + "end": 7075.2, + "probability": 0.9418 + }, + { + "start": 7075.38, + "end": 7077.14, + "probability": 0.918 + }, + { + "start": 7077.56, + "end": 7079.02, + "probability": 0.9747 + }, + { + "start": 7079.14, + "end": 7079.88, + "probability": 0.6984 + }, + { + "start": 7080.62, + "end": 7086.98, + "probability": 0.946 + }, + { + "start": 7087.24, + "end": 7090.32, + "probability": 0.9988 + }, + { + "start": 7090.82, + "end": 7092.06, + "probability": 0.9473 + }, + { + "start": 7092.44, + "end": 7093.94, + "probability": 0.9855 + }, + { + "start": 7094.34, + "end": 7096.62, + "probability": 0.9713 + }, + { + "start": 7097.06, + "end": 7097.96, + "probability": 0.9285 + }, + { + "start": 7098.22, + "end": 7099.84, + "probability": 0.9995 + }, + { + "start": 7100.32, + "end": 7101.92, + "probability": 0.9964 + }, + { + "start": 7101.98, + "end": 7105.22, + "probability": 0.9551 + }, + { + "start": 7105.22, + "end": 7109.72, + "probability": 0.9823 + }, + { + "start": 7110.28, + "end": 7110.98, + "probability": 0.4739 + }, + { + "start": 7111.08, + "end": 7112.82, + "probability": 0.9038 + }, + { + "start": 7115.72, + "end": 7116.28, + "probability": 0.4469 + }, + { + "start": 7118.1, + "end": 7121.74, + "probability": 0.6736 + }, + { + "start": 7129.88, + "end": 7130.78, + "probability": 0.6508 + }, + { + "start": 7131.02, + "end": 7132.1, + "probability": 0.9335 + }, + { + "start": 7132.6, + "end": 7134.46, + "probability": 0.7207 + }, + { + "start": 7135.34, + "end": 7138.6, + "probability": 0.9934 + }, + { + "start": 7139.33, + "end": 7144.44, + "probability": 0.7837 + }, + { + "start": 7144.86, + "end": 7147.38, + "probability": 0.9397 + }, + { + "start": 7148.84, + "end": 7150.28, + "probability": 0.9414 + }, + { + "start": 7150.4, + "end": 7154.56, + "probability": 0.9782 + }, + { + "start": 7154.96, + "end": 7157.38, + "probability": 0.9976 + }, + { + "start": 7157.39, + "end": 7159.76, + "probability": 0.6315 + }, + { + "start": 7159.76, + "end": 7163.02, + "probability": 0.7991 + }, + { + "start": 7163.02, + "end": 7166.62, + "probability": 0.8665 + }, + { + "start": 7166.86, + "end": 7167.42, + "probability": 0.6515 + }, + { + "start": 7167.52, + "end": 7169.42, + "probability": 0.9888 + }, + { + "start": 7169.44, + "end": 7169.78, + "probability": 0.917 + }, + { + "start": 7169.86, + "end": 7172.58, + "probability": 0.9819 + }, + { + "start": 7173.0, + "end": 7174.0, + "probability": 0.7678 + }, + { + "start": 7174.06, + "end": 7177.82, + "probability": 0.9146 + }, + { + "start": 7177.9, + "end": 7180.54, + "probability": 0.7249 + }, + { + "start": 7180.76, + "end": 7182.4, + "probability": 0.8527 + }, + { + "start": 7182.56, + "end": 7183.74, + "probability": 0.8776 + }, + { + "start": 7184.08, + "end": 7185.15, + "probability": 0.7529 + }, + { + "start": 7185.36, + "end": 7186.14, + "probability": 0.9363 + }, + { + "start": 7186.16, + "end": 7186.98, + "probability": 0.9568 + }, + { + "start": 7187.04, + "end": 7188.72, + "probability": 0.7236 + }, + { + "start": 7188.84, + "end": 7191.94, + "probability": 0.9926 + }, + { + "start": 7192.52, + "end": 7194.53, + "probability": 0.9922 + }, + { + "start": 7194.9, + "end": 7196.28, + "probability": 0.9673 + }, + { + "start": 7196.42, + "end": 7198.69, + "probability": 0.7217 + }, + { + "start": 7199.22, + "end": 7202.2, + "probability": 0.8369 + }, + { + "start": 7202.22, + "end": 7204.76, + "probability": 0.8763 + }, + { + "start": 7205.1, + "end": 7208.68, + "probability": 0.9518 + }, + { + "start": 7209.12, + "end": 7214.68, + "probability": 0.9542 + }, + { + "start": 7215.0, + "end": 7221.08, + "probability": 0.9775 + }, + { + "start": 7221.08, + "end": 7225.16, + "probability": 0.7881 + }, + { + "start": 7225.58, + "end": 7229.64, + "probability": 0.8475 + }, + { + "start": 7230.06, + "end": 7232.28, + "probability": 0.6035 + }, + { + "start": 7232.9, + "end": 7233.68, + "probability": 0.8052 + }, + { + "start": 7233.82, + "end": 7234.76, + "probability": 0.9814 + }, + { + "start": 7235.0, + "end": 7236.72, + "probability": 0.9226 + }, + { + "start": 7236.96, + "end": 7237.18, + "probability": 0.9403 + }, + { + "start": 7237.32, + "end": 7237.66, + "probability": 0.9274 + }, + { + "start": 7237.68, + "end": 7239.96, + "probability": 0.8415 + }, + { + "start": 7240.3, + "end": 7240.99, + "probability": 0.5016 + }, + { + "start": 7241.44, + "end": 7242.44, + "probability": 0.7527 + }, + { + "start": 7242.8, + "end": 7246.04, + "probability": 0.987 + }, + { + "start": 7246.08, + "end": 7246.68, + "probability": 0.746 + }, + { + "start": 7247.16, + "end": 7247.86, + "probability": 0.9428 + }, + { + "start": 7248.02, + "end": 7249.66, + "probability": 0.9832 + }, + { + "start": 7249.68, + "end": 7251.74, + "probability": 0.8738 + }, + { + "start": 7252.22, + "end": 7257.06, + "probability": 0.9849 + }, + { + "start": 7257.6, + "end": 7261.0, + "probability": 0.9666 + }, + { + "start": 7261.18, + "end": 7261.7, + "probability": 0.5731 + }, + { + "start": 7261.8, + "end": 7263.48, + "probability": 0.9406 + }, + { + "start": 7263.76, + "end": 7264.94, + "probability": 0.9944 + }, + { + "start": 7265.46, + "end": 7269.88, + "probability": 0.9919 + }, + { + "start": 7269.88, + "end": 7274.44, + "probability": 0.9394 + }, + { + "start": 7274.98, + "end": 7276.68, + "probability": 0.9717 + }, + { + "start": 7277.24, + "end": 7279.2, + "probability": 0.9884 + }, + { + "start": 7279.34, + "end": 7280.38, + "probability": 0.819 + }, + { + "start": 7280.48, + "end": 7282.32, + "probability": 0.7924 + }, + { + "start": 7282.62, + "end": 7282.72, + "probability": 0.6091 + }, + { + "start": 7282.8, + "end": 7283.28, + "probability": 0.9246 + }, + { + "start": 7283.38, + "end": 7284.74, + "probability": 0.9503 + }, + { + "start": 7284.98, + "end": 7285.66, + "probability": 0.7883 + }, + { + "start": 7285.94, + "end": 7286.82, + "probability": 0.5739 + }, + { + "start": 7287.02, + "end": 7289.38, + "probability": 0.8505 + }, + { + "start": 7289.92, + "end": 7291.06, + "probability": 0.6931 + }, + { + "start": 7291.32, + "end": 7291.84, + "probability": 0.7607 + }, + { + "start": 7291.84, + "end": 7293.22, + "probability": 0.9474 + }, + { + "start": 7293.32, + "end": 7294.34, + "probability": 0.8675 + }, + { + "start": 7294.74, + "end": 7296.32, + "probability": 0.9327 + }, + { + "start": 7296.7, + "end": 7297.54, + "probability": 0.9637 + }, + { + "start": 7297.98, + "end": 7301.2, + "probability": 0.9839 + }, + { + "start": 7301.28, + "end": 7302.26, + "probability": 0.7164 + }, + { + "start": 7302.66, + "end": 7306.5, + "probability": 0.9766 + }, + { + "start": 7306.9, + "end": 7309.84, + "probability": 0.8906 + }, + { + "start": 7310.2, + "end": 7312.04, + "probability": 0.9586 + }, + { + "start": 7312.34, + "end": 7313.44, + "probability": 0.9195 + }, + { + "start": 7313.56, + "end": 7315.1, + "probability": 0.9827 + }, + { + "start": 7315.46, + "end": 7318.94, + "probability": 0.9847 + }, + { + "start": 7318.94, + "end": 7319.48, + "probability": 0.7645 + }, + { + "start": 7319.74, + "end": 7322.04, + "probability": 0.9966 + }, + { + "start": 7322.24, + "end": 7325.62, + "probability": 0.991 + }, + { + "start": 7325.74, + "end": 7326.08, + "probability": 0.4616 + }, + { + "start": 7326.1, + "end": 7326.6, + "probability": 0.5147 + }, + { + "start": 7326.98, + "end": 7327.52, + "probability": 0.8062 + }, + { + "start": 7327.56, + "end": 7327.56, + "probability": 0.5407 + }, + { + "start": 7327.56, + "end": 7327.62, + "probability": 0.3136 + }, + { + "start": 7327.92, + "end": 7328.7, + "probability": 0.6294 + }, + { + "start": 7328.8, + "end": 7329.28, + "probability": 0.8677 + }, + { + "start": 7329.3, + "end": 7334.08, + "probability": 0.9544 + }, + { + "start": 7334.16, + "end": 7335.76, + "probability": 0.988 + }, + { + "start": 7335.84, + "end": 7336.22, + "probability": 0.8704 + }, + { + "start": 7337.03, + "end": 7338.98, + "probability": 0.77 + }, + { + "start": 7339.22, + "end": 7339.22, + "probability": 0.147 + }, + { + "start": 7339.22, + "end": 7339.22, + "probability": 0.0164 + }, + { + "start": 7339.22, + "end": 7339.9, + "probability": 0.3084 + }, + { + "start": 7339.96, + "end": 7343.38, + "probability": 0.9508 + }, + { + "start": 7343.68, + "end": 7344.3, + "probability": 0.7715 + }, + { + "start": 7344.34, + "end": 7344.64, + "probability": 0.6 + }, + { + "start": 7344.68, + "end": 7345.06, + "probability": 0.7858 + }, + { + "start": 7345.76, + "end": 7346.44, + "probability": 0.5352 + }, + { + "start": 7346.52, + "end": 7347.66, + "probability": 0.8745 + }, + { + "start": 7349.12, + "end": 7349.62, + "probability": 0.5563 + }, + { + "start": 7351.44, + "end": 7353.0, + "probability": 0.7369 + }, + { + "start": 7354.2, + "end": 7354.88, + "probability": 0.6867 + }, + { + "start": 7355.44, + "end": 7356.28, + "probability": 0.8926 + }, + { + "start": 7359.9, + "end": 7362.0, + "probability": 0.8594 + }, + { + "start": 7364.38, + "end": 7365.1, + "probability": 0.9695 + }, + { + "start": 7366.28, + "end": 7367.98, + "probability": 0.9277 + }, + { + "start": 7368.6, + "end": 7369.4, + "probability": 0.9846 + }, + { + "start": 7371.46, + "end": 7373.88, + "probability": 0.9389 + }, + { + "start": 7375.84, + "end": 7378.62, + "probability": 0.6311 + }, + { + "start": 7389.76, + "end": 7392.48, + "probability": 0.5174 + }, + { + "start": 7393.16, + "end": 7395.02, + "probability": 0.722 + }, + { + "start": 7396.08, + "end": 7396.62, + "probability": 0.3872 + }, + { + "start": 7397.56, + "end": 7398.24, + "probability": 0.9263 + }, + { + "start": 7400.18, + "end": 7403.78, + "probability": 0.8609 + }, + { + "start": 7406.12, + "end": 7409.52, + "probability": 0.9614 + }, + { + "start": 7410.5, + "end": 7411.96, + "probability": 0.8855 + }, + { + "start": 7412.7, + "end": 7413.66, + "probability": 0.8354 + }, + { + "start": 7414.32, + "end": 7416.42, + "probability": 0.8472 + }, + { + "start": 7417.46, + "end": 7417.74, + "probability": 0.5034 + }, + { + "start": 7417.9, + "end": 7423.76, + "probability": 0.9625 + }, + { + "start": 7424.82, + "end": 7429.95, + "probability": 0.9561 + }, + { + "start": 7431.0, + "end": 7434.78, + "probability": 0.9597 + }, + { + "start": 7435.2, + "end": 7437.24, + "probability": 0.9735 + }, + { + "start": 7437.92, + "end": 7439.3, + "probability": 0.8759 + }, + { + "start": 7439.96, + "end": 7440.82, + "probability": 0.7708 + }, + { + "start": 7442.04, + "end": 7443.34, + "probability": 0.938 + }, + { + "start": 7443.86, + "end": 7445.72, + "probability": 0.5378 + }, + { + "start": 7446.34, + "end": 7449.48, + "probability": 0.9614 + }, + { + "start": 7449.62, + "end": 7450.4, + "probability": 0.6624 + }, + { + "start": 7450.82, + "end": 7454.22, + "probability": 0.9844 + }, + { + "start": 7454.72, + "end": 7456.14, + "probability": 0.8525 + }, + { + "start": 7456.68, + "end": 7463.14, + "probability": 0.9724 + }, + { + "start": 7463.48, + "end": 7467.14, + "probability": 0.9761 + }, + { + "start": 7467.76, + "end": 7473.22, + "probability": 0.9909 + }, + { + "start": 7473.92, + "end": 7475.62, + "probability": 0.8351 + }, + { + "start": 7476.18, + "end": 7479.24, + "probability": 0.995 + }, + { + "start": 7479.56, + "end": 7488.06, + "probability": 0.9928 + }, + { + "start": 7488.88, + "end": 7490.52, + "probability": 0.9212 + }, + { + "start": 7491.06, + "end": 7493.15, + "probability": 0.9412 + }, + { + "start": 7493.38, + "end": 7494.5, + "probability": 0.5602 + }, + { + "start": 7494.96, + "end": 7500.36, + "probability": 0.9404 + }, + { + "start": 7502.04, + "end": 7506.52, + "probability": 0.8633 + }, + { + "start": 7507.44, + "end": 7509.22, + "probability": 0.781 + }, + { + "start": 7509.74, + "end": 7515.54, + "probability": 0.9883 + }, + { + "start": 7517.72, + "end": 7521.06, + "probability": 0.939 + }, + { + "start": 7521.5, + "end": 7523.02, + "probability": 0.9581 + }, + { + "start": 7523.46, + "end": 7527.38, + "probability": 0.7283 + }, + { + "start": 7527.84, + "end": 7531.5, + "probability": 0.9872 + }, + { + "start": 7532.12, + "end": 7534.9, + "probability": 0.9976 + }, + { + "start": 7535.28, + "end": 7539.08, + "probability": 0.9574 + }, + { + "start": 7539.64, + "end": 7542.34, + "probability": 0.9722 + }, + { + "start": 7543.26, + "end": 7548.24, + "probability": 0.9771 + }, + { + "start": 7549.14, + "end": 7550.26, + "probability": 0.5711 + }, + { + "start": 7550.76, + "end": 7553.48, + "probability": 0.9312 + }, + { + "start": 7553.48, + "end": 7556.62, + "probability": 0.6673 + }, + { + "start": 7557.02, + "end": 7558.04, + "probability": 0.8267 + }, + { + "start": 7559.22, + "end": 7561.52, + "probability": 0.6002 + }, + { + "start": 7561.94, + "end": 7564.9, + "probability": 0.9735 + }, + { + "start": 7565.22, + "end": 7567.34, + "probability": 0.9953 + }, + { + "start": 7567.64, + "end": 7570.06, + "probability": 0.9592 + }, + { + "start": 7570.18, + "end": 7572.18, + "probability": 0.8167 + }, + { + "start": 7572.42, + "end": 7574.79, + "probability": 0.986 + }, + { + "start": 7575.38, + "end": 7575.62, + "probability": 0.0213 + }, + { + "start": 7575.62, + "end": 7576.72, + "probability": 0.7674 + }, + { + "start": 7577.34, + "end": 7578.92, + "probability": 0.9644 + }, + { + "start": 7579.34, + "end": 7586.06, + "probability": 0.9941 + }, + { + "start": 7586.42, + "end": 7588.84, + "probability": 0.8716 + }, + { + "start": 7589.12, + "end": 7591.6, + "probability": 0.9079 + }, + { + "start": 7591.7, + "end": 7591.76, + "probability": 0.7179 + }, + { + "start": 7591.88, + "end": 7592.58, + "probability": 0.4203 + }, + { + "start": 7592.64, + "end": 7594.26, + "probability": 0.6664 + }, + { + "start": 7594.3, + "end": 7595.0, + "probability": 0.8166 + }, + { + "start": 7602.88, + "end": 7604.18, + "probability": 0.1614 + }, + { + "start": 7620.4, + "end": 7622.24, + "probability": 0.4179 + }, + { + "start": 7623.32, + "end": 7624.66, + "probability": 0.7761 + }, + { + "start": 7625.86, + "end": 7631.92, + "probability": 0.7496 + }, + { + "start": 7633.72, + "end": 7636.76, + "probability": 0.9152 + }, + { + "start": 7639.14, + "end": 7643.0, + "probability": 0.9937 + }, + { + "start": 7644.36, + "end": 7650.36, + "probability": 0.9838 + }, + { + "start": 7651.78, + "end": 7654.88, + "probability": 0.96 + }, + { + "start": 7656.08, + "end": 7659.34, + "probability": 0.9372 + }, + { + "start": 7659.4, + "end": 7660.06, + "probability": 0.9969 + }, + { + "start": 7660.68, + "end": 7661.36, + "probability": 0.9578 + }, + { + "start": 7661.66, + "end": 7662.64, + "probability": 0.9897 + }, + { + "start": 7663.14, + "end": 7664.02, + "probability": 0.98 + }, + { + "start": 7664.24, + "end": 7664.94, + "probability": 0.9756 + }, + { + "start": 7666.36, + "end": 7668.98, + "probability": 0.6575 + }, + { + "start": 7669.66, + "end": 7672.34, + "probability": 0.9873 + }, + { + "start": 7673.94, + "end": 7675.98, + "probability": 0.8572 + }, + { + "start": 7676.26, + "end": 7679.62, + "probability": 0.6535 + }, + { + "start": 7680.62, + "end": 7681.28, + "probability": 0.951 + }, + { + "start": 7682.08, + "end": 7686.08, + "probability": 0.979 + }, + { + "start": 7688.0, + "end": 7693.24, + "probability": 0.7408 + }, + { + "start": 7693.7, + "end": 7698.56, + "probability": 0.8779 + }, + { + "start": 7699.26, + "end": 7699.96, + "probability": 0.8979 + }, + { + "start": 7700.04, + "end": 7701.12, + "probability": 0.9608 + }, + { + "start": 7701.62, + "end": 7705.02, + "probability": 0.9924 + }, + { + "start": 7705.92, + "end": 7710.6, + "probability": 0.9821 + }, + { + "start": 7713.56, + "end": 7714.51, + "probability": 0.8284 + }, + { + "start": 7715.6, + "end": 7721.02, + "probability": 0.8668 + }, + { + "start": 7722.5, + "end": 7724.0, + "probability": 0.9746 + }, + { + "start": 7725.36, + "end": 7726.86, + "probability": 0.9912 + }, + { + "start": 7727.78, + "end": 7729.68, + "probability": 0.7937 + }, + { + "start": 7730.64, + "end": 7737.76, + "probability": 0.9647 + }, + { + "start": 7738.98, + "end": 7742.4, + "probability": 0.9473 + }, + { + "start": 7745.1, + "end": 7746.42, + "probability": 0.9849 + }, + { + "start": 7746.56, + "end": 7747.26, + "probability": 0.5764 + }, + { + "start": 7747.3, + "end": 7749.84, + "probability": 0.7084 + }, + { + "start": 7751.36, + "end": 7756.04, + "probability": 0.9976 + }, + { + "start": 7758.2, + "end": 7761.6, + "probability": 0.8365 + }, + { + "start": 7762.5, + "end": 7769.4, + "probability": 0.9912 + }, + { + "start": 7769.9, + "end": 7774.66, + "probability": 0.9187 + }, + { + "start": 7776.62, + "end": 7779.46, + "probability": 0.9103 + }, + { + "start": 7779.88, + "end": 7780.78, + "probability": 0.834 + }, + { + "start": 7781.58, + "end": 7782.78, + "probability": 0.9026 + }, + { + "start": 7783.76, + "end": 7785.26, + "probability": 0.9652 + }, + { + "start": 7786.28, + "end": 7793.58, + "probability": 0.9748 + }, + { + "start": 7794.68, + "end": 7799.8, + "probability": 0.9932 + }, + { + "start": 7799.8, + "end": 7805.32, + "probability": 0.9959 + }, + { + "start": 7806.62, + "end": 7811.66, + "probability": 0.7757 + }, + { + "start": 7812.82, + "end": 7815.79, + "probability": 0.9229 + }, + { + "start": 7816.54, + "end": 7823.12, + "probability": 0.9922 + }, + { + "start": 7823.12, + "end": 7828.92, + "probability": 0.9971 + }, + { + "start": 7829.08, + "end": 7830.48, + "probability": 0.6706 + }, + { + "start": 7831.04, + "end": 7832.98, + "probability": 0.9606 + }, + { + "start": 7833.44, + "end": 7836.44, + "probability": 0.9927 + }, + { + "start": 7836.62, + "end": 7841.14, + "probability": 0.9759 + }, + { + "start": 7842.02, + "end": 7842.24, + "probability": 0.2799 + }, + { + "start": 7842.24, + "end": 7843.94, + "probability": 0.2549 + }, + { + "start": 7844.8, + "end": 7847.18, + "probability": 0.7307 + }, + { + "start": 7847.64, + "end": 7852.86, + "probability": 0.99 + }, + { + "start": 7852.92, + "end": 7853.62, + "probability": 0.4353 + }, + { + "start": 7853.62, + "end": 7855.42, + "probability": 0.6582 + }, + { + "start": 7872.58, + "end": 7873.62, + "probability": 0.6922 + }, + { + "start": 7874.3, + "end": 7875.36, + "probability": 0.667 + }, + { + "start": 7876.04, + "end": 7880.24, + "probability": 0.9878 + }, + { + "start": 7880.84, + "end": 7881.42, + "probability": 0.9465 + }, + { + "start": 7881.54, + "end": 7882.44, + "probability": 0.937 + }, + { + "start": 7882.62, + "end": 7886.86, + "probability": 0.9976 + }, + { + "start": 7887.82, + "end": 7889.26, + "probability": 0.8989 + }, + { + "start": 7889.42, + "end": 7892.48, + "probability": 0.9978 + }, + { + "start": 7892.88, + "end": 7895.88, + "probability": 0.874 + }, + { + "start": 7896.88, + "end": 7898.42, + "probability": 0.9507 + }, + { + "start": 7898.56, + "end": 7902.18, + "probability": 0.9433 + }, + { + "start": 7902.7, + "end": 7904.2, + "probability": 0.9944 + }, + { + "start": 7904.44, + "end": 7906.02, + "probability": 0.9552 + }, + { + "start": 7906.44, + "end": 7909.4, + "probability": 0.9961 + }, + { + "start": 7910.64, + "end": 7911.58, + "probability": 0.9385 + }, + { + "start": 7911.68, + "end": 7913.98, + "probability": 0.9944 + }, + { + "start": 7913.98, + "end": 7916.58, + "probability": 0.9968 + }, + { + "start": 7917.08, + "end": 7919.56, + "probability": 0.98 + }, + { + "start": 7920.26, + "end": 7924.52, + "probability": 0.9894 + }, + { + "start": 7925.24, + "end": 7928.88, + "probability": 0.9715 + }, + { + "start": 7929.64, + "end": 7930.72, + "probability": 0.9808 + }, + { + "start": 7931.52, + "end": 7933.23, + "probability": 0.6277 + }, + { + "start": 7934.2, + "end": 7937.2, + "probability": 0.9955 + }, + { + "start": 7937.2, + "end": 7940.14, + "probability": 0.9954 + }, + { + "start": 7940.24, + "end": 7945.26, + "probability": 0.9892 + }, + { + "start": 7945.9, + "end": 7949.12, + "probability": 0.9612 + }, + { + "start": 7949.92, + "end": 7952.64, + "probability": 0.9968 + }, + { + "start": 7952.64, + "end": 7956.9, + "probability": 0.9976 + }, + { + "start": 7958.48, + "end": 7959.84, + "probability": 0.9949 + }, + { + "start": 7960.04, + "end": 7960.54, + "probability": 0.9378 + }, + { + "start": 7960.94, + "end": 7969.12, + "probability": 0.9857 + }, + { + "start": 7969.8, + "end": 7971.15, + "probability": 0.9976 + }, + { + "start": 7971.38, + "end": 7974.7, + "probability": 0.9555 + }, + { + "start": 7975.34, + "end": 7977.24, + "probability": 0.9596 + }, + { + "start": 7978.42, + "end": 7979.35, + "probability": 0.9897 + }, + { + "start": 7980.26, + "end": 7982.0, + "probability": 0.7961 + }, + { + "start": 7982.04, + "end": 7984.18, + "probability": 0.9342 + }, + { + "start": 7984.76, + "end": 7986.3, + "probability": 0.9946 + }, + { + "start": 7986.74, + "end": 7989.78, + "probability": 0.9839 + }, + { + "start": 7990.26, + "end": 7990.84, + "probability": 0.9478 + }, + { + "start": 7991.62, + "end": 7993.6, + "probability": 0.9742 + }, + { + "start": 7994.94, + "end": 7995.92, + "probability": 0.9612 + }, + { + "start": 7995.96, + "end": 7998.88, + "probability": 0.975 + }, + { + "start": 7999.06, + "end": 8000.0, + "probability": 0.9255 + }, + { + "start": 8000.78, + "end": 8004.52, + "probability": 0.999 + }, + { + "start": 8005.12, + "end": 8007.3, + "probability": 0.981 + }, + { + "start": 8007.86, + "end": 8010.08, + "probability": 0.992 + }, + { + "start": 8010.52, + "end": 8013.72, + "probability": 0.9974 + }, + { + "start": 8014.08, + "end": 8015.0, + "probability": 0.8894 + }, + { + "start": 8015.1, + "end": 8018.24, + "probability": 0.9625 + }, + { + "start": 8019.28, + "end": 8020.86, + "probability": 0.9867 + }, + { + "start": 8021.74, + "end": 8024.32, + "probability": 0.971 + }, + { + "start": 8024.34, + "end": 8025.84, + "probability": 0.9899 + }, + { + "start": 8026.14, + "end": 8031.16, + "probability": 0.9861 + }, + { + "start": 8032.18, + "end": 8036.9, + "probability": 0.9989 + }, + { + "start": 8038.04, + "end": 8040.58, + "probability": 0.9617 + }, + { + "start": 8041.28, + "end": 8044.28, + "probability": 0.9989 + }, + { + "start": 8044.28, + "end": 8048.38, + "probability": 0.9928 + }, + { + "start": 8048.9, + "end": 8051.16, + "probability": 0.994 + }, + { + "start": 8052.26, + "end": 8054.26, + "probability": 0.991 + }, + { + "start": 8054.74, + "end": 8056.7, + "probability": 0.9988 + }, + { + "start": 8057.12, + "end": 8058.96, + "probability": 0.998 + }, + { + "start": 8059.68, + "end": 8062.36, + "probability": 0.9951 + }, + { + "start": 8062.4, + "end": 8063.66, + "probability": 0.9233 + }, + { + "start": 8064.04, + "end": 8064.44, + "probability": 0.4967 + }, + { + "start": 8064.66, + "end": 8065.04, + "probability": 0.5887 + }, + { + "start": 8065.12, + "end": 8066.12, + "probability": 0.7054 + }, + { + "start": 8066.24, + "end": 8068.34, + "probability": 0.9592 + }, + { + "start": 8068.86, + "end": 8069.72, + "probability": 0.9415 + }, + { + "start": 8070.12, + "end": 8070.64, + "probability": 0.6181 + }, + { + "start": 8070.76, + "end": 8072.72, + "probability": 0.9174 + }, + { + "start": 8097.98, + "end": 8100.32, + "probability": 0.762 + }, + { + "start": 8101.74, + "end": 8106.62, + "probability": 0.9859 + }, + { + "start": 8106.94, + "end": 8107.66, + "probability": 0.9481 + }, + { + "start": 8107.9, + "end": 8112.2, + "probability": 0.9775 + }, + { + "start": 8113.24, + "end": 8116.38, + "probability": 0.966 + }, + { + "start": 8116.58, + "end": 8118.68, + "probability": 0.959 + }, + { + "start": 8118.92, + "end": 8122.18, + "probability": 0.9561 + }, + { + "start": 8123.66, + "end": 8126.12, + "probability": 0.9446 + }, + { + "start": 8126.4, + "end": 8126.8, + "probability": 0.9622 + }, + { + "start": 8127.7, + "end": 8128.57, + "probability": 0.9849 + }, + { + "start": 8129.54, + "end": 8132.14, + "probability": 0.9878 + }, + { + "start": 8132.58, + "end": 8137.0, + "probability": 0.8822 + }, + { + "start": 8137.12, + "end": 8139.7, + "probability": 0.9961 + }, + { + "start": 8140.76, + "end": 8144.14, + "probability": 0.9316 + }, + { + "start": 8144.92, + "end": 8146.72, + "probability": 0.9231 + }, + { + "start": 8147.42, + "end": 8150.12, + "probability": 0.989 + }, + { + "start": 8150.56, + "end": 8155.78, + "probability": 0.9552 + }, + { + "start": 8156.04, + "end": 8157.26, + "probability": 0.6797 + }, + { + "start": 8157.36, + "end": 8161.46, + "probability": 0.9053 + }, + { + "start": 8161.46, + "end": 8163.58, + "probability": 0.9932 + }, + { + "start": 8164.54, + "end": 8166.0, + "probability": 0.9052 + }, + { + "start": 8166.56, + "end": 8166.96, + "probability": 0.9663 + }, + { + "start": 8167.74, + "end": 8169.1, + "probability": 0.7975 + }, + { + "start": 8169.78, + "end": 8172.62, + "probability": 0.9262 + }, + { + "start": 8173.2, + "end": 8173.8, + "probability": 0.7923 + }, + { + "start": 8174.66, + "end": 8179.6, + "probability": 0.9795 + }, + { + "start": 8180.08, + "end": 8181.94, + "probability": 0.761 + }, + { + "start": 8182.78, + "end": 8187.18, + "probability": 0.8466 + }, + { + "start": 8188.0, + "end": 8192.4, + "probability": 0.886 + }, + { + "start": 8193.4, + "end": 8194.92, + "probability": 0.9808 + }, + { + "start": 8195.78, + "end": 8197.58, + "probability": 0.8878 + }, + { + "start": 8197.64, + "end": 8198.64, + "probability": 0.9666 + }, + { + "start": 8199.34, + "end": 8200.6, + "probability": 0.9971 + }, + { + "start": 8201.18, + "end": 8202.86, + "probability": 0.8992 + }, + { + "start": 8203.44, + "end": 8206.64, + "probability": 0.7729 + }, + { + "start": 8207.16, + "end": 8209.84, + "probability": 0.802 + }, + { + "start": 8210.34, + "end": 8211.86, + "probability": 0.908 + }, + { + "start": 8212.64, + "end": 8213.06, + "probability": 0.6019 + }, + { + "start": 8213.6, + "end": 8214.32, + "probability": 0.7252 + }, + { + "start": 8215.32, + "end": 8219.02, + "probability": 0.9193 + }, + { + "start": 8219.72, + "end": 8221.98, + "probability": 0.8237 + }, + { + "start": 8222.88, + "end": 8224.68, + "probability": 0.9302 + }, + { + "start": 8225.3, + "end": 8227.48, + "probability": 0.7361 + }, + { + "start": 8228.0, + "end": 8232.0, + "probability": 0.9824 + }, + { + "start": 8232.46, + "end": 8234.12, + "probability": 0.8896 + }, + { + "start": 8234.5, + "end": 8235.22, + "probability": 0.8428 + }, + { + "start": 8235.46, + "end": 8240.46, + "probability": 0.9696 + }, + { + "start": 8241.8, + "end": 8242.76, + "probability": 0.8641 + }, + { + "start": 8243.52, + "end": 8244.32, + "probability": 0.9851 + }, + { + "start": 8245.92, + "end": 8246.76, + "probability": 0.8752 + }, + { + "start": 8247.66, + "end": 8249.68, + "probability": 0.9948 + }, + { + "start": 8250.2, + "end": 8251.54, + "probability": 0.8161 + }, + { + "start": 8252.58, + "end": 8256.02, + "probability": 0.9285 + }, + { + "start": 8256.92, + "end": 8260.06, + "probability": 0.9854 + }, + { + "start": 8260.9, + "end": 8265.42, + "probability": 0.7646 + }, + { + "start": 8265.78, + "end": 8269.42, + "probability": 0.823 + }, + { + "start": 8269.76, + "end": 8270.6, + "probability": 0.2795 + }, + { + "start": 8270.98, + "end": 8273.04, + "probability": 0.4751 + }, + { + "start": 8273.7, + "end": 8276.78, + "probability": 0.9692 + }, + { + "start": 8276.94, + "end": 8277.38, + "probability": 0.7978 + }, + { + "start": 8278.4, + "end": 8281.62, + "probability": 0.9907 + }, + { + "start": 8281.62, + "end": 8285.62, + "probability": 0.9941 + }, + { + "start": 8285.64, + "end": 8286.44, + "probability": 0.8011 + }, + { + "start": 8287.0, + "end": 8290.06, + "probability": 0.9125 + }, + { + "start": 8290.16, + "end": 8291.52, + "probability": 0.8688 + }, + { + "start": 8291.58, + "end": 8292.96, + "probability": 0.2992 + }, + { + "start": 8293.22, + "end": 8296.36, + "probability": 0.9751 + }, + { + "start": 8296.76, + "end": 8300.0, + "probability": 0.9888 + }, + { + "start": 8300.24, + "end": 8300.5, + "probability": 0.3605 + }, + { + "start": 8300.5, + "end": 8300.96, + "probability": 0.5265 + }, + { + "start": 8301.04, + "end": 8302.18, + "probability": 0.9009 + }, + { + "start": 8302.9, + "end": 8304.3, + "probability": 0.8043 + }, + { + "start": 8317.48, + "end": 8317.84, + "probability": 0.5752 + }, + { + "start": 8319.02, + "end": 8319.08, + "probability": 0.5908 + }, + { + "start": 8319.08, + "end": 8322.45, + "probability": 0.9692 + }, + { + "start": 8323.44, + "end": 8326.22, + "probability": 0.913 + }, + { + "start": 8326.36, + "end": 8327.7, + "probability": 0.9937 + }, + { + "start": 8328.6, + "end": 8331.08, + "probability": 0.9868 + }, + { + "start": 8331.08, + "end": 8334.8, + "probability": 0.7145 + }, + { + "start": 8335.58, + "end": 8342.6, + "probability": 0.9921 + }, + { + "start": 8343.1, + "end": 8345.38, + "probability": 0.999 + }, + { + "start": 8345.38, + "end": 8348.68, + "probability": 0.8406 + }, + { + "start": 8349.18, + "end": 8351.68, + "probability": 0.9824 + }, + { + "start": 8351.86, + "end": 8352.78, + "probability": 0.4067 + }, + { + "start": 8353.02, + "end": 8354.38, + "probability": 0.8955 + }, + { + "start": 8355.12, + "end": 8358.64, + "probability": 0.9537 + }, + { + "start": 8359.14, + "end": 8360.52, + "probability": 0.7505 + }, + { + "start": 8361.1, + "end": 8363.5, + "probability": 0.9777 + }, + { + "start": 8363.62, + "end": 8365.4, + "probability": 0.9474 + }, + { + "start": 8365.56, + "end": 8367.36, + "probability": 0.8452 + }, + { + "start": 8368.8, + "end": 8370.54, + "probability": 0.8135 + }, + { + "start": 8371.28, + "end": 8375.76, + "probability": 0.9695 + }, + { + "start": 8376.48, + "end": 8378.92, + "probability": 0.967 + }, + { + "start": 8379.04, + "end": 8380.32, + "probability": 0.967 + }, + { + "start": 8381.2, + "end": 8385.2, + "probability": 0.8554 + }, + { + "start": 8385.62, + "end": 8386.9, + "probability": 0.6469 + }, + { + "start": 8387.68, + "end": 8388.63, + "probability": 0.9407 + }, + { + "start": 8389.2, + "end": 8394.8, + "probability": 0.9872 + }, + { + "start": 8395.22, + "end": 8399.18, + "probability": 0.9891 + }, + { + "start": 8400.04, + "end": 8402.0, + "probability": 0.9629 + }, + { + "start": 8402.52, + "end": 8403.26, + "probability": 0.5521 + }, + { + "start": 8403.4, + "end": 8403.78, + "probability": 0.918 + }, + { + "start": 8403.82, + "end": 8407.61, + "probability": 0.9859 + }, + { + "start": 8408.48, + "end": 8409.14, + "probability": 0.8881 + }, + { + "start": 8409.3, + "end": 8409.66, + "probability": 0.6992 + }, + { + "start": 8409.7, + "end": 8410.34, + "probability": 0.8455 + }, + { + "start": 8410.98, + "end": 8412.08, + "probability": 0.6702 + }, + { + "start": 8412.52, + "end": 8415.06, + "probability": 0.9272 + }, + { + "start": 8415.44, + "end": 8418.0, + "probability": 0.7798 + }, + { + "start": 8418.38, + "end": 8419.36, + "probability": 0.8339 + }, + { + "start": 8419.42, + "end": 8420.98, + "probability": 0.9979 + }, + { + "start": 8421.58, + "end": 8422.32, + "probability": 0.7776 + }, + { + "start": 8422.6, + "end": 8424.54, + "probability": 0.9653 + }, + { + "start": 8424.82, + "end": 8428.3, + "probability": 0.9793 + }, + { + "start": 8428.54, + "end": 8431.22, + "probability": 0.9885 + }, + { + "start": 8431.32, + "end": 8432.9, + "probability": 0.9314 + }, + { + "start": 8433.44, + "end": 8436.92, + "probability": 0.7702 + }, + { + "start": 8437.74, + "end": 8438.78, + "probability": 0.8008 + }, + { + "start": 8438.86, + "end": 8442.94, + "probability": 0.993 + }, + { + "start": 8443.16, + "end": 8444.78, + "probability": 0.7833 + }, + { + "start": 8445.08, + "end": 8447.5, + "probability": 0.9978 + }, + { + "start": 8447.84, + "end": 8448.28, + "probability": 0.7356 + }, + { + "start": 8449.02, + "end": 8449.8, + "probability": 0.5018 + }, + { + "start": 8449.9, + "end": 8451.4, + "probability": 0.9652 + }, + { + "start": 8451.4, + "end": 8451.96, + "probability": 0.8706 + }, + { + "start": 8470.02, + "end": 8472.36, + "probability": 0.7186 + }, + { + "start": 8474.18, + "end": 8478.8, + "probability": 0.7573 + }, + { + "start": 8479.48, + "end": 8480.48, + "probability": 0.731 + }, + { + "start": 8481.82, + "end": 8483.12, + "probability": 0.9441 + }, + { + "start": 8484.66, + "end": 8485.74, + "probability": 0.9538 + }, + { + "start": 8487.12, + "end": 8488.72, + "probability": 0.8767 + }, + { + "start": 8489.2, + "end": 8490.78, + "probability": 0.9408 + }, + { + "start": 8492.12, + "end": 8495.32, + "probability": 0.9606 + }, + { + "start": 8499.1, + "end": 8500.56, + "probability": 0.8039 + }, + { + "start": 8501.36, + "end": 8503.3, + "probability": 0.3305 + }, + { + "start": 8505.0, + "end": 8506.44, + "probability": 0.9758 + }, + { + "start": 8509.46, + "end": 8511.68, + "probability": 0.989 + }, + { + "start": 8512.4, + "end": 8514.04, + "probability": 0.9966 + }, + { + "start": 8514.16, + "end": 8515.36, + "probability": 0.9399 + }, + { + "start": 8515.76, + "end": 8516.74, + "probability": 0.6516 + }, + { + "start": 8517.64, + "end": 8518.26, + "probability": 0.4791 + }, + { + "start": 8519.5, + "end": 8521.66, + "probability": 0.8116 + }, + { + "start": 8522.84, + "end": 8527.0, + "probability": 0.9514 + }, + { + "start": 8528.6, + "end": 8530.36, + "probability": 0.8787 + }, + { + "start": 8530.52, + "end": 8531.9, + "probability": 0.8079 + }, + { + "start": 8532.04, + "end": 8532.54, + "probability": 0.9102 + }, + { + "start": 8533.0, + "end": 8534.06, + "probability": 0.6143 + }, + { + "start": 8535.2, + "end": 8537.3, + "probability": 0.6667 + }, + { + "start": 8537.88, + "end": 8537.88, + "probability": 0.0608 + }, + { + "start": 8537.88, + "end": 8538.8, + "probability": 0.6628 + }, + { + "start": 8541.03, + "end": 8543.42, + "probability": 0.777 + }, + { + "start": 8544.1, + "end": 8553.22, + "probability": 0.9451 + }, + { + "start": 8554.78, + "end": 8556.78, + "probability": 0.9917 + }, + { + "start": 8558.34, + "end": 8560.88, + "probability": 0.996 + }, + { + "start": 8561.5, + "end": 8563.46, + "probability": 0.9457 + }, + { + "start": 8564.5, + "end": 8565.5, + "probability": 0.5962 + }, + { + "start": 8565.5, + "end": 8565.82, + "probability": 0.943 + }, + { + "start": 8565.84, + "end": 8566.12, + "probability": 0.9008 + }, + { + "start": 8566.22, + "end": 8567.34, + "probability": 0.9907 + }, + { + "start": 8567.38, + "end": 8567.48, + "probability": 0.8978 + }, + { + "start": 8567.74, + "end": 8568.54, + "probability": 0.9094 + }, + { + "start": 8569.14, + "end": 8571.63, + "probability": 0.8207 + }, + { + "start": 8571.9, + "end": 8572.32, + "probability": 0.3546 + }, + { + "start": 8572.42, + "end": 8575.32, + "probability": 0.6931 + }, + { + "start": 8577.32, + "end": 8578.28, + "probability": 0.9619 + }, + { + "start": 8578.3, + "end": 8580.13, + "probability": 0.9718 + }, + { + "start": 8580.72, + "end": 8581.52, + "probability": 0.8132 + }, + { + "start": 8581.78, + "end": 8585.08, + "probability": 0.8643 + }, + { + "start": 8585.22, + "end": 8586.46, + "probability": 0.8845 + }, + { + "start": 8587.46, + "end": 8590.1, + "probability": 0.8544 + }, + { + "start": 8591.62, + "end": 8592.72, + "probability": 0.4199 + }, + { + "start": 8593.38, + "end": 8594.74, + "probability": 0.9695 + }, + { + "start": 8596.94, + "end": 8602.76, + "probability": 0.899 + }, + { + "start": 8603.88, + "end": 8606.4, + "probability": 0.9258 + }, + { + "start": 8606.58, + "end": 8608.72, + "probability": 0.778 + }, + { + "start": 8609.12, + "end": 8612.34, + "probability": 0.8306 + }, + { + "start": 8612.42, + "end": 8613.84, + "probability": 0.9906 + }, + { + "start": 8616.34, + "end": 8620.57, + "probability": 0.9907 + }, + { + "start": 8622.4, + "end": 8624.24, + "probability": 0.9993 + }, + { + "start": 8624.72, + "end": 8626.84, + "probability": 0.9873 + }, + { + "start": 8628.38, + "end": 8631.4, + "probability": 0.9932 + }, + { + "start": 8631.52, + "end": 8632.5, + "probability": 0.7053 + }, + { + "start": 8633.36, + "end": 8635.8, + "probability": 0.8786 + }, + { + "start": 8636.52, + "end": 8639.1, + "probability": 0.9291 + }, + { + "start": 8639.62, + "end": 8641.54, + "probability": 0.8454 + }, + { + "start": 8641.72, + "end": 8643.56, + "probability": 0.9907 + }, + { + "start": 8643.76, + "end": 8644.36, + "probability": 0.641 + }, + { + "start": 8644.5, + "end": 8646.38, + "probability": 0.6748 + }, + { + "start": 8646.84, + "end": 8648.02, + "probability": 0.9546 + }, + { + "start": 8648.86, + "end": 8649.58, + "probability": 0.9766 + }, + { + "start": 8650.26, + "end": 8651.6, + "probability": 0.7751 + }, + { + "start": 8652.18, + "end": 8655.4, + "probability": 0.7682 + }, + { + "start": 8656.56, + "end": 8658.94, + "probability": 0.9243 + }, + { + "start": 8659.98, + "end": 8665.28, + "probability": 0.9678 + }, + { + "start": 8667.38, + "end": 8671.82, + "probability": 0.9941 + }, + { + "start": 8672.0, + "end": 8673.88, + "probability": 0.9932 + }, + { + "start": 8674.44, + "end": 8675.92, + "probability": 0.9958 + }, + { + "start": 8677.22, + "end": 8680.4, + "probability": 0.9601 + }, + { + "start": 8680.86, + "end": 8681.44, + "probability": 0.5904 + }, + { + "start": 8681.58, + "end": 8683.72, + "probability": 0.8294 + }, + { + "start": 8707.68, + "end": 8711.34, + "probability": 0.8487 + }, + { + "start": 8711.98, + "end": 8716.64, + "probability": 0.9426 + }, + { + "start": 8716.74, + "end": 8719.84, + "probability": 0.9537 + }, + { + "start": 8720.38, + "end": 8721.64, + "probability": 0.9909 + }, + { + "start": 8722.34, + "end": 8723.56, + "probability": 0.0778 + }, + { + "start": 8723.56, + "end": 8724.24, + "probability": 0.2236 + }, + { + "start": 8724.62, + "end": 8728.0, + "probability": 0.6506 + }, + { + "start": 8728.68, + "end": 8732.46, + "probability": 0.9824 + }, + { + "start": 8732.6, + "end": 8734.56, + "probability": 0.9399 + }, + { + "start": 8735.06, + "end": 8737.32, + "probability": 0.9813 + }, + { + "start": 8737.86, + "end": 8738.6, + "probability": 0.6226 + }, + { + "start": 8738.76, + "end": 8740.5, + "probability": 0.8897 + }, + { + "start": 8740.86, + "end": 8744.96, + "probability": 0.989 + }, + { + "start": 8745.56, + "end": 8749.8, + "probability": 0.9835 + }, + { + "start": 8750.22, + "end": 8755.5, + "probability": 0.9942 + }, + { + "start": 8755.86, + "end": 8758.56, + "probability": 0.7396 + }, + { + "start": 8758.94, + "end": 8759.66, + "probability": 0.8599 + }, + { + "start": 8759.8, + "end": 8762.68, + "probability": 0.9912 + }, + { + "start": 8762.72, + "end": 8763.94, + "probability": 0.867 + }, + { + "start": 8764.46, + "end": 8765.52, + "probability": 0.6006 + }, + { + "start": 8765.6, + "end": 8766.32, + "probability": 0.733 + }, + { + "start": 8766.34, + "end": 8767.48, + "probability": 0.9888 + }, + { + "start": 8768.16, + "end": 8770.8, + "probability": 0.9796 + }, + { + "start": 8771.08, + "end": 8774.58, + "probability": 0.9683 + }, + { + "start": 8775.0, + "end": 8776.14, + "probability": 0.7448 + }, + { + "start": 8776.14, + "end": 8779.92, + "probability": 0.9389 + }, + { + "start": 8780.0, + "end": 8785.44, + "probability": 0.992 + }, + { + "start": 8786.26, + "end": 8786.76, + "probability": 0.7936 + }, + { + "start": 8786.84, + "end": 8787.9, + "probability": 0.8214 + }, + { + "start": 8788.28, + "end": 8792.88, + "probability": 0.8617 + }, + { + "start": 8793.38, + "end": 8795.06, + "probability": 0.9891 + }, + { + "start": 8795.06, + "end": 8797.92, + "probability": 0.9845 + }, + { + "start": 8798.76, + "end": 8803.36, + "probability": 0.9362 + }, + { + "start": 8803.7, + "end": 8804.78, + "probability": 0.9839 + }, + { + "start": 8804.96, + "end": 8807.32, + "probability": 0.9109 + }, + { + "start": 8807.68, + "end": 8809.33, + "probability": 0.9272 + }, + { + "start": 8810.16, + "end": 8812.64, + "probability": 0.9072 + }, + { + "start": 8813.22, + "end": 8815.6, + "probability": 0.9662 + }, + { + "start": 8815.68, + "end": 8819.22, + "probability": 0.8189 + }, + { + "start": 8819.64, + "end": 8822.2, + "probability": 0.8595 + }, + { + "start": 8822.26, + "end": 8822.84, + "probability": 0.8564 + }, + { + "start": 8822.94, + "end": 8823.9, + "probability": 0.7537 + }, + { + "start": 8824.28, + "end": 8828.38, + "probability": 0.9977 + }, + { + "start": 8828.54, + "end": 8833.28, + "probability": 0.9513 + }, + { + "start": 8833.66, + "end": 8834.2, + "probability": 0.6737 + }, + { + "start": 8834.22, + "end": 8834.3, + "probability": 0.209 + }, + { + "start": 8834.4, + "end": 8836.08, + "probability": 0.8512 + }, + { + "start": 8836.58, + "end": 8838.24, + "probability": 0.9326 + }, + { + "start": 8838.64, + "end": 8839.7, + "probability": 0.9683 + }, + { + "start": 8839.86, + "end": 8841.54, + "probability": 0.8088 + }, + { + "start": 8841.84, + "end": 8844.32, + "probability": 0.9754 + }, + { + "start": 8844.32, + "end": 8847.8, + "probability": 0.9662 + }, + { + "start": 8847.86, + "end": 8848.74, + "probability": 0.8596 + }, + { + "start": 8848.86, + "end": 8854.8, + "probability": 0.9857 + }, + { + "start": 8854.92, + "end": 8857.18, + "probability": 0.8933 + }, + { + "start": 8857.44, + "end": 8862.72, + "probability": 0.9859 + }, + { + "start": 8863.04, + "end": 8864.94, + "probability": 0.889 + }, + { + "start": 8865.8, + "end": 8869.36, + "probability": 0.9683 + }, + { + "start": 8869.38, + "end": 8869.86, + "probability": 0.8045 + }, + { + "start": 8870.34, + "end": 8872.25, + "probability": 0.9971 + }, + { + "start": 8872.42, + "end": 8873.94, + "probability": 0.9937 + }, + { + "start": 8873.98, + "end": 8874.54, + "probability": 0.7773 + }, + { + "start": 8874.82, + "end": 8877.24, + "probability": 0.9908 + }, + { + "start": 8877.54, + "end": 8880.72, + "probability": 0.9199 + }, + { + "start": 8881.22, + "end": 8881.84, + "probability": 0.7994 + }, + { + "start": 8882.16, + "end": 8883.78, + "probability": 0.59 + }, + { + "start": 8883.82, + "end": 8884.06, + "probability": 0.808 + }, + { + "start": 8884.62, + "end": 8885.62, + "probability": 0.3891 + }, + { + "start": 8885.92, + "end": 8888.38, + "probability": 0.9183 + }, + { + "start": 8889.36, + "end": 8889.96, + "probability": 0.5718 + }, + { + "start": 8891.66, + "end": 8893.62, + "probability": 0.9925 + }, + { + "start": 8894.78, + "end": 8895.34, + "probability": 0.6641 + }, + { + "start": 8896.62, + "end": 8897.82, + "probability": 0.941 + }, + { + "start": 8914.7, + "end": 8914.98, + "probability": 0.3596 + }, + { + "start": 8914.98, + "end": 8917.04, + "probability": 0.6789 + }, + { + "start": 8918.78, + "end": 8921.9, + "probability": 0.9984 + }, + { + "start": 8921.9, + "end": 8926.48, + "probability": 0.998 + }, + { + "start": 8926.48, + "end": 8927.34, + "probability": 0.4956 + }, + { + "start": 8927.42, + "end": 8928.86, + "probability": 0.9865 + }, + { + "start": 8929.38, + "end": 8930.46, + "probability": 0.9758 + }, + { + "start": 8930.58, + "end": 8931.26, + "probability": 0.5446 + }, + { + "start": 8931.82, + "end": 8935.72, + "probability": 0.862 + }, + { + "start": 8936.38, + "end": 8937.16, + "probability": 0.6104 + }, + { + "start": 8937.92, + "end": 8939.68, + "probability": 0.8936 + }, + { + "start": 8940.48, + "end": 8943.02, + "probability": 0.949 + }, + { + "start": 8943.56, + "end": 8946.02, + "probability": 0.9912 + }, + { + "start": 8946.46, + "end": 8947.54, + "probability": 0.2631 + }, + { + "start": 8947.62, + "end": 8947.98, + "probability": 0.5973 + }, + { + "start": 8948.34, + "end": 8949.92, + "probability": 0.984 + }, + { + "start": 8950.63, + "end": 8953.0, + "probability": 0.9368 + }, + { + "start": 8953.08, + "end": 8955.38, + "probability": 0.8735 + }, + { + "start": 8955.96, + "end": 8956.46, + "probability": 0.1556 + }, + { + "start": 8958.06, + "end": 8959.74, + "probability": 0.4725 + }, + { + "start": 8960.12, + "end": 8961.38, + "probability": 0.2212 + }, + { + "start": 8961.38, + "end": 8961.78, + "probability": 0.3905 + }, + { + "start": 8961.84, + "end": 8965.12, + "probability": 0.9907 + }, + { + "start": 8966.88, + "end": 8967.8, + "probability": 0.8665 + }, + { + "start": 8967.9, + "end": 8969.42, + "probability": 0.9526 + }, + { + "start": 8969.74, + "end": 8971.92, + "probability": 0.989 + }, + { + "start": 8972.5, + "end": 8973.02, + "probability": 0.9851 + }, + { + "start": 8973.12, + "end": 8973.6, + "probability": 0.8327 + }, + { + "start": 8973.7, + "end": 8975.14, + "probability": 0.9904 + }, + { + "start": 8975.26, + "end": 8976.3, + "probability": 0.9742 + }, + { + "start": 8976.62, + "end": 8978.18, + "probability": 0.9837 + }, + { + "start": 8978.3, + "end": 8979.88, + "probability": 0.9714 + }, + { + "start": 8980.4, + "end": 8980.68, + "probability": 0.7211 + }, + { + "start": 8980.76, + "end": 8981.12, + "probability": 0.9178 + }, + { + "start": 8981.18, + "end": 8984.02, + "probability": 0.9641 + }, + { + "start": 8984.14, + "end": 8984.64, + "probability": 0.6197 + }, + { + "start": 8984.86, + "end": 8985.44, + "probability": 0.3431 + }, + { + "start": 8986.38, + "end": 8993.12, + "probability": 0.9968 + }, + { + "start": 8993.88, + "end": 8995.84, + "probability": 0.9885 + }, + { + "start": 8996.82, + "end": 9001.28, + "probability": 0.9472 + }, + { + "start": 9001.76, + "end": 9004.58, + "probability": 0.9873 + }, + { + "start": 9004.64, + "end": 9005.62, + "probability": 0.8909 + }, + { + "start": 9005.86, + "end": 9008.52, + "probability": 0.8835 + }, + { + "start": 9008.6, + "end": 9009.36, + "probability": 0.7937 + }, + { + "start": 9010.5, + "end": 9011.3, + "probability": 0.8058 + }, + { + "start": 9012.4, + "end": 9014.59, + "probability": 0.9436 + }, + { + "start": 9015.12, + "end": 9017.5, + "probability": 0.9969 + }, + { + "start": 9018.14, + "end": 9022.81, + "probability": 0.9316 + }, + { + "start": 9023.64, + "end": 9024.62, + "probability": 0.6569 + }, + { + "start": 9024.78, + "end": 9029.38, + "probability": 0.8526 + }, + { + "start": 9029.68, + "end": 9030.78, + "probability": 0.9441 + }, + { + "start": 9030.92, + "end": 9031.68, + "probability": 0.8833 + }, + { + "start": 9032.28, + "end": 9038.34, + "probability": 0.9828 + }, + { + "start": 9039.26, + "end": 9042.56, + "probability": 0.9683 + }, + { + "start": 9042.56, + "end": 9044.6, + "probability": 0.999 + }, + { + "start": 9045.28, + "end": 9048.3, + "probability": 0.9982 + }, + { + "start": 9048.82, + "end": 9051.96, + "probability": 0.9836 + }, + { + "start": 9052.98, + "end": 9053.4, + "probability": 0.926 + }, + { + "start": 9054.48, + "end": 9055.68, + "probability": 0.3323 + }, + { + "start": 9056.18, + "end": 9061.64, + "probability": 0.9592 + }, + { + "start": 9061.64, + "end": 9067.02, + "probability": 0.99 + }, + { + "start": 9069.74, + "end": 9071.02, + "probability": 0.7361 + }, + { + "start": 9071.64, + "end": 9076.42, + "probability": 0.7262 + }, + { + "start": 9077.62, + "end": 9078.42, + "probability": 0.6831 + }, + { + "start": 9079.5, + "end": 9080.18, + "probability": 0.9274 + }, + { + "start": 9080.28, + "end": 9080.98, + "probability": 0.8669 + }, + { + "start": 9081.32, + "end": 9081.92, + "probability": 0.7705 + }, + { + "start": 9082.0, + "end": 9082.9, + "probability": 0.717 + }, + { + "start": 9083.94, + "end": 9085.46, + "probability": 0.999 + }, + { + "start": 9086.36, + "end": 9087.96, + "probability": 0.9927 + }, + { + "start": 9089.12, + "end": 9093.04, + "probability": 0.9456 + }, + { + "start": 9093.62, + "end": 9094.58, + "probability": 0.9976 + }, + { + "start": 9095.16, + "end": 9098.2, + "probability": 0.6978 + }, + { + "start": 9099.38, + "end": 9103.28, + "probability": 0.9957 + }, + { + "start": 9103.84, + "end": 9105.92, + "probability": 0.9952 + }, + { + "start": 9105.92, + "end": 9106.22, + "probability": 0.6075 + }, + { + "start": 9106.32, + "end": 9106.6, + "probability": 0.3236 + }, + { + "start": 9106.76, + "end": 9107.78, + "probability": 0.8421 + }, + { + "start": 9108.34, + "end": 9109.58, + "probability": 0.955 + }, + { + "start": 9110.48, + "end": 9112.12, + "probability": 0.9786 + }, + { + "start": 9112.5, + "end": 9114.26, + "probability": 0.9744 + }, + { + "start": 9114.72, + "end": 9115.8, + "probability": 0.9711 + }, + { + "start": 9116.28, + "end": 9118.12, + "probability": 0.9136 + }, + { + "start": 9118.22, + "end": 9119.18, + "probability": 0.8373 + }, + { + "start": 9119.3, + "end": 9119.58, + "probability": 0.6783 + }, + { + "start": 9137.12, + "end": 9137.36, + "probability": 0.3765 + }, + { + "start": 9138.29, + "end": 9141.46, + "probability": 0.4477 + }, + { + "start": 9141.92, + "end": 9142.7, + "probability": 0.6174 + }, + { + "start": 9142.92, + "end": 9144.19, + "probability": 0.6262 + }, + { + "start": 9144.56, + "end": 9148.68, + "probability": 0.9688 + }, + { + "start": 9149.32, + "end": 9153.86, + "probability": 0.9812 + }, + { + "start": 9153.88, + "end": 9155.28, + "probability": 0.8989 + }, + { + "start": 9155.98, + "end": 9158.74, + "probability": 0.7665 + }, + { + "start": 9159.42, + "end": 9161.44, + "probability": 0.955 + }, + { + "start": 9162.34, + "end": 9166.64, + "probability": 0.7818 + }, + { + "start": 9166.64, + "end": 9170.75, + "probability": 0.9448 + }, + { + "start": 9171.76, + "end": 9175.54, + "probability": 0.9256 + }, + { + "start": 9176.22, + "end": 9180.84, + "probability": 0.9954 + }, + { + "start": 9180.84, + "end": 9188.84, + "probability": 0.9897 + }, + { + "start": 9189.42, + "end": 9193.34, + "probability": 0.9561 + }, + { + "start": 9194.18, + "end": 9198.44, + "probability": 0.9633 + }, + { + "start": 9198.56, + "end": 9199.36, + "probability": 0.9682 + }, + { + "start": 9199.7, + "end": 9200.64, + "probability": 0.9352 + }, + { + "start": 9201.12, + "end": 9201.94, + "probability": 0.5832 + }, + { + "start": 9202.44, + "end": 9204.47, + "probability": 0.1015 + }, + { + "start": 9204.78, + "end": 9206.64, + "probability": 0.9165 + }, + { + "start": 9206.7, + "end": 9207.84, + "probability": 0.7018 + }, + { + "start": 9208.62, + "end": 9209.64, + "probability": 0.0351 + }, + { + "start": 9209.64, + "end": 9213.02, + "probability": 0.4144 + }, + { + "start": 9213.34, + "end": 9215.26, + "probability": 0.8823 + }, + { + "start": 9215.4, + "end": 9219.44, + "probability": 0.9617 + }, + { + "start": 9219.44, + "end": 9224.22, + "probability": 0.8807 + }, + { + "start": 9224.46, + "end": 9224.9, + "probability": 0.427 + }, + { + "start": 9225.42, + "end": 9226.58, + "probability": 0.8154 + }, + { + "start": 9227.9, + "end": 9233.54, + "probability": 0.6597 + }, + { + "start": 9233.68, + "end": 9234.52, + "probability": 0.788 + }, + { + "start": 9235.92, + "end": 9243.22, + "probability": 0.9562 + }, + { + "start": 9243.78, + "end": 9243.96, + "probability": 0.6729 + }, + { + "start": 9245.1, + "end": 9245.88, + "probability": 0.4164 + }, + { + "start": 9245.9, + "end": 9249.54, + "probability": 0.7675 + }, + { + "start": 9250.36, + "end": 9252.24, + "probability": 0.9668 + }, + { + "start": 9253.18, + "end": 9253.78, + "probability": 0.9545 + }, + { + "start": 9254.82, + "end": 9256.28, + "probability": 0.9668 + }, + { + "start": 9257.68, + "end": 9258.52, + "probability": 0.7268 + }, + { + "start": 9259.34, + "end": 9260.38, + "probability": 0.9934 + }, + { + "start": 9277.36, + "end": 9277.6, + "probability": 0.7693 + }, + { + "start": 9278.9, + "end": 9281.48, + "probability": 0.6541 + }, + { + "start": 9282.48, + "end": 9284.46, + "probability": 0.8792 + }, + { + "start": 9285.38, + "end": 9287.58, + "probability": 0.5593 + }, + { + "start": 9288.2, + "end": 9292.18, + "probability": 0.9874 + }, + { + "start": 9293.02, + "end": 9295.66, + "probability": 0.9781 + }, + { + "start": 9296.2, + "end": 9301.14, + "probability": 0.9826 + }, + { + "start": 9301.88, + "end": 9304.44, + "probability": 0.7778 + }, + { + "start": 9305.04, + "end": 9310.04, + "probability": 0.9725 + }, + { + "start": 9310.74, + "end": 9315.04, + "probability": 0.9924 + }, + { + "start": 9315.04, + "end": 9320.22, + "probability": 0.9972 + }, + { + "start": 9320.78, + "end": 9324.54, + "probability": 0.942 + }, + { + "start": 9325.32, + "end": 9329.6, + "probability": 0.9965 + }, + { + "start": 9330.28, + "end": 9335.58, + "probability": 0.9578 + }, + { + "start": 9335.58, + "end": 9342.08, + "probability": 0.9714 + }, + { + "start": 9342.78, + "end": 9347.68, + "probability": 0.9874 + }, + { + "start": 9347.9, + "end": 9349.11, + "probability": 0.5889 + }, + { + "start": 9350.14, + "end": 9354.54, + "probability": 0.9927 + }, + { + "start": 9355.14, + "end": 9361.3, + "probability": 0.9821 + }, + { + "start": 9361.4, + "end": 9364.3, + "probability": 0.977 + }, + { + "start": 9365.0, + "end": 9368.24, + "probability": 0.7781 + }, + { + "start": 9368.8, + "end": 9369.74, + "probability": 0.7223 + }, + { + "start": 9369.82, + "end": 9371.56, + "probability": 0.9689 + }, + { + "start": 9372.0, + "end": 9377.4, + "probability": 0.9458 + }, + { + "start": 9378.14, + "end": 9383.2, + "probability": 0.9491 + }, + { + "start": 9384.0, + "end": 9384.42, + "probability": 0.6905 + }, + { + "start": 9384.86, + "end": 9391.46, + "probability": 0.9837 + }, + { + "start": 9391.9, + "end": 9392.68, + "probability": 0.7675 + }, + { + "start": 9393.14, + "end": 9394.32, + "probability": 0.9424 + }, + { + "start": 9394.92, + "end": 9398.16, + "probability": 0.8994 + }, + { + "start": 9398.7, + "end": 9400.22, + "probability": 0.9982 + }, + { + "start": 9400.76, + "end": 9404.0, + "probability": 0.9831 + }, + { + "start": 9404.88, + "end": 9410.38, + "probability": 0.8558 + }, + { + "start": 9410.38, + "end": 9416.5, + "probability": 0.9973 + }, + { + "start": 9417.18, + "end": 9422.16, + "probability": 0.995 + }, + { + "start": 9422.82, + "end": 9427.92, + "probability": 0.9845 + }, + { + "start": 9428.44, + "end": 9433.14, + "probability": 0.981 + }, + { + "start": 9433.84, + "end": 9436.8, + "probability": 0.9949 + }, + { + "start": 9437.32, + "end": 9440.7, + "probability": 0.9789 + }, + { + "start": 9440.8, + "end": 9443.5, + "probability": 0.542 + }, + { + "start": 9443.6, + "end": 9447.64, + "probability": 0.9121 + }, + { + "start": 9448.58, + "end": 9449.6, + "probability": 0.4833 + }, + { + "start": 9450.36, + "end": 9451.26, + "probability": 0.99 + }, + { + "start": 9452.02, + "end": 9452.96, + "probability": 0.8879 + }, + { + "start": 9453.5, + "end": 9458.18, + "probability": 0.9792 + }, + { + "start": 9458.74, + "end": 9461.74, + "probability": 0.9814 + }, + { + "start": 9462.36, + "end": 9466.78, + "probability": 0.9048 + }, + { + "start": 9466.78, + "end": 9470.4, + "probability": 0.9884 + }, + { + "start": 9470.52, + "end": 9470.86, + "probability": 0.7389 + }, + { + "start": 9471.18, + "end": 9473.66, + "probability": 0.969 + }, + { + "start": 9474.18, + "end": 9477.94, + "probability": 0.8296 + }, + { + "start": 9477.94, + "end": 9479.16, + "probability": 0.519 + }, + { + "start": 9480.12, + "end": 9482.02, + "probability": 0.7563 + }, + { + "start": 9490.36, + "end": 9491.12, + "probability": 0.4684 + }, + { + "start": 9496.46, + "end": 9498.36, + "probability": 0.7759 + }, + { + "start": 9498.88, + "end": 9500.48, + "probability": 0.7306 + }, + { + "start": 9501.44, + "end": 9505.24, + "probability": 0.9108 + }, + { + "start": 9506.26, + "end": 9509.06, + "probability": 0.6463 + }, + { + "start": 9509.82, + "end": 9512.46, + "probability": 0.7475 + }, + { + "start": 9513.08, + "end": 9513.84, + "probability": 0.7943 + }, + { + "start": 9514.44, + "end": 9516.26, + "probability": 0.9893 + }, + { + "start": 9518.26, + "end": 9519.98, + "probability": 0.8795 + }, + { + "start": 9520.14, + "end": 9520.56, + "probability": 0.181 + }, + { + "start": 9520.76, + "end": 9524.3, + "probability": 0.9216 + }, + { + "start": 9525.64, + "end": 9528.46, + "probability": 0.6424 + }, + { + "start": 9528.56, + "end": 9530.04, + "probability": 0.656 + }, + { + "start": 9530.76, + "end": 9531.62, + "probability": 0.6732 + }, + { + "start": 9533.34, + "end": 9535.22, + "probability": 0.9764 + }, + { + "start": 9536.08, + "end": 9536.28, + "probability": 0.4165 + }, + { + "start": 9536.98, + "end": 9537.2, + "probability": 0.6816 + }, + { + "start": 9537.2, + "end": 9539.98, + "probability": 0.9434 + }, + { + "start": 9540.36, + "end": 9541.8, + "probability": 0.9372 + }, + { + "start": 9542.58, + "end": 9546.96, + "probability": 0.7765 + }, + { + "start": 9547.5, + "end": 9548.88, + "probability": 0.7523 + }, + { + "start": 9548.88, + "end": 9549.86, + "probability": 0.5329 + }, + { + "start": 9550.24, + "end": 9552.52, + "probability": 0.9927 + }, + { + "start": 9552.58, + "end": 9555.55, + "probability": 0.9955 + }, + { + "start": 9555.68, + "end": 9555.88, + "probability": 0.3328 + }, + { + "start": 9556.14, + "end": 9558.08, + "probability": 0.7944 + }, + { + "start": 9558.34, + "end": 9561.46, + "probability": 0.9954 + }, + { + "start": 9562.54, + "end": 9564.28, + "probability": 0.281 + }, + { + "start": 9564.36, + "end": 9564.36, + "probability": 0.0456 + }, + { + "start": 9564.36, + "end": 9564.36, + "probability": 0.0138 + }, + { + "start": 9564.36, + "end": 9564.82, + "probability": 0.1743 + }, + { + "start": 9564.82, + "end": 9568.32, + "probability": 0.8617 + }, + { + "start": 9569.22, + "end": 9573.66, + "probability": 0.8231 + }, + { + "start": 9575.36, + "end": 9577.4, + "probability": 0.9925 + }, + { + "start": 9578.92, + "end": 9579.76, + "probability": 0.8999 + }, + { + "start": 9580.66, + "end": 9581.58, + "probability": 0.5558 + }, + { + "start": 9581.96, + "end": 9582.9, + "probability": 0.884 + }, + { + "start": 9583.42, + "end": 9584.3, + "probability": 0.8367 + }, + { + "start": 9584.38, + "end": 9585.1, + "probability": 0.7921 + }, + { + "start": 9585.16, + "end": 9586.68, + "probability": 0.7305 + }, + { + "start": 9586.96, + "end": 9587.64, + "probability": 0.6066 + }, + { + "start": 9587.74, + "end": 9588.92, + "probability": 0.9263 + }, + { + "start": 9589.42, + "end": 9590.56, + "probability": 0.9602 + }, + { + "start": 9591.4, + "end": 9593.2, + "probability": 0.9456 + }, + { + "start": 9593.56, + "end": 9593.8, + "probability": 0.3201 + }, + { + "start": 9594.06, + "end": 9595.24, + "probability": 0.9739 + }, + { + "start": 9595.8, + "end": 9597.6, + "probability": 0.5722 + }, + { + "start": 9597.92, + "end": 9600.1, + "probability": 0.9573 + }, + { + "start": 9600.59, + "end": 9601.36, + "probability": 0.5652 + }, + { + "start": 9601.42, + "end": 9602.36, + "probability": 0.7638 + }, + { + "start": 9602.44, + "end": 9603.56, + "probability": 0.7817 + }, + { + "start": 9604.16, + "end": 9606.42, + "probability": 0.9707 + }, + { + "start": 9607.36, + "end": 9609.12, + "probability": 0.6673 + }, + { + "start": 9609.28, + "end": 9609.88, + "probability": 0.9678 + }, + { + "start": 9610.44, + "end": 9611.74, + "probability": 0.3454 + }, + { + "start": 9611.74, + "end": 9612.9, + "probability": 0.9099 + }, + { + "start": 9613.1, + "end": 9615.74, + "probability": 0.7511 + }, + { + "start": 9615.84, + "end": 9618.92, + "probability": 0.9164 + }, + { + "start": 9621.84, + "end": 9622.04, + "probability": 0.052 + }, + { + "start": 9622.04, + "end": 9622.04, + "probability": 0.0777 + }, + { + "start": 9622.04, + "end": 9624.5, + "probability": 0.9028 + }, + { + "start": 9625.02, + "end": 9625.7, + "probability": 0.5745 + }, + { + "start": 9627.88, + "end": 9629.7, + "probability": 0.9868 + }, + { + "start": 9629.7, + "end": 9631.9, + "probability": 0.9868 + }, + { + "start": 9634.3, + "end": 9635.94, + "probability": 0.7974 + }, + { + "start": 9636.38, + "end": 9636.82, + "probability": 0.6346 + }, + { + "start": 9637.52, + "end": 9638.62, + "probability": 0.9688 + }, + { + "start": 9641.1, + "end": 9642.2, + "probability": 0.7814 + }, + { + "start": 9642.28, + "end": 9643.96, + "probability": 0.6128 + }, + { + "start": 9644.96, + "end": 9646.02, + "probability": 0.8398 + }, + { + "start": 9647.74, + "end": 9648.46, + "probability": 0.8462 + }, + { + "start": 9649.36, + "end": 9650.02, + "probability": 0.8842 + }, + { + "start": 9650.44, + "end": 9651.62, + "probability": 0.9689 + }, + { + "start": 9651.76, + "end": 9652.68, + "probability": 0.8251 + }, + { + "start": 9652.92, + "end": 9654.68, + "probability": 0.9806 + }, + { + "start": 9654.74, + "end": 9655.59, + "probability": 0.9788 + }, + { + "start": 9656.38, + "end": 9658.36, + "probability": 0.9888 + }, + { + "start": 9659.84, + "end": 9661.38, + "probability": 0.599 + }, + { + "start": 9663.54, + "end": 9665.4, + "probability": 0.7407 + }, + { + "start": 9666.34, + "end": 9667.98, + "probability": 0.4691 + }, + { + "start": 9668.44, + "end": 9668.84, + "probability": 0.7415 + }, + { + "start": 9668.92, + "end": 9670.22, + "probability": 0.9875 + }, + { + "start": 9670.72, + "end": 9671.89, + "probability": 0.9211 + }, + { + "start": 9672.16, + "end": 9673.48, + "probability": 0.9343 + }, + { + "start": 9673.54, + "end": 9674.1, + "probability": 0.3144 + }, + { + "start": 9674.18, + "end": 9674.56, + "probability": 0.5344 + }, + { + "start": 9675.22, + "end": 9678.72, + "probability": 0.895 + }, + { + "start": 9678.98, + "end": 9681.54, + "probability": 0.7069 + }, + { + "start": 9681.96, + "end": 9683.48, + "probability": 0.7518 + }, + { + "start": 9683.6, + "end": 9685.4, + "probability": 0.9962 + }, + { + "start": 9685.56, + "end": 9686.92, + "probability": 0.4696 + }, + { + "start": 9687.54, + "end": 9690.2, + "probability": 0.9585 + }, + { + "start": 9690.28, + "end": 9691.06, + "probability": 0.5751 + }, + { + "start": 9691.06, + "end": 9691.98, + "probability": 0.459 + }, + { + "start": 9692.26, + "end": 9696.2, + "probability": 0.9883 + }, + { + "start": 9696.54, + "end": 9697.16, + "probability": 0.4821 + }, + { + "start": 9697.38, + "end": 9698.5, + "probability": 0.9876 + }, + { + "start": 9699.98, + "end": 9702.2, + "probability": 0.0608 + }, + { + "start": 9702.2, + "end": 9703.0, + "probability": 0.2001 + }, + { + "start": 9703.06, + "end": 9703.06, + "probability": 0.0098 + }, + { + "start": 9703.06, + "end": 9703.06, + "probability": 0.4217 + }, + { + "start": 9703.16, + "end": 9705.4, + "probability": 0.4716 + }, + { + "start": 9716.1, + "end": 9718.0, + "probability": 0.4933 + }, + { + "start": 9718.7, + "end": 9719.84, + "probability": 0.9691 + }, + { + "start": 9720.86, + "end": 9725.72, + "probability": 0.9946 + }, + { + "start": 9725.72, + "end": 9730.8, + "probability": 0.998 + }, + { + "start": 9732.6, + "end": 9735.5, + "probability": 0.9542 + }, + { + "start": 9735.8, + "end": 9737.72, + "probability": 0.99 + }, + { + "start": 9739.92, + "end": 9740.54, + "probability": 0.75 + }, + { + "start": 9741.32, + "end": 9742.74, + "probability": 0.544 + }, + { + "start": 9743.18, + "end": 9746.24, + "probability": 0.9147 + }, + { + "start": 9746.24, + "end": 9751.18, + "probability": 0.6486 + }, + { + "start": 9751.3, + "end": 9753.38, + "probability": 0.809 + }, + { + "start": 9753.82, + "end": 9757.56, + "probability": 0.8977 + }, + { + "start": 9757.74, + "end": 9758.92, + "probability": 0.9033 + }, + { + "start": 9759.8, + "end": 9762.8, + "probability": 0.8225 + }, + { + "start": 9762.96, + "end": 9763.5, + "probability": 0.737 + }, + { + "start": 9763.6, + "end": 9764.14, + "probability": 0.8895 + }, + { + "start": 9764.6, + "end": 9765.44, + "probability": 0.9028 + }, + { + "start": 9765.54, + "end": 9766.48, + "probability": 0.9925 + }, + { + "start": 9767.2, + "end": 9767.99, + "probability": 0.6721 + }, + { + "start": 9769.0, + "end": 9771.24, + "probability": 0.8273 + }, + { + "start": 9771.84, + "end": 9774.92, + "probability": 0.936 + }, + { + "start": 9775.72, + "end": 9776.44, + "probability": 0.6995 + }, + { + "start": 9776.48, + "end": 9782.46, + "probability": 0.9879 + }, + { + "start": 9782.94, + "end": 9784.98, + "probability": 0.9865 + }, + { + "start": 9785.9, + "end": 9787.4, + "probability": 0.4196 + }, + { + "start": 9788.5, + "end": 9793.7, + "probability": 0.9546 + }, + { + "start": 9794.2, + "end": 9795.94, + "probability": 0.9782 + }, + { + "start": 9796.58, + "end": 9801.48, + "probability": 0.9924 + }, + { + "start": 9801.9, + "end": 9806.44, + "probability": 0.9906 + }, + { + "start": 9807.06, + "end": 9812.04, + "probability": 0.9099 + }, + { + "start": 9812.04, + "end": 9816.42, + "probability": 0.991 + }, + { + "start": 9816.56, + "end": 9817.7, + "probability": 0.9415 + }, + { + "start": 9817.8, + "end": 9818.73, + "probability": 0.7897 + }, + { + "start": 9819.28, + "end": 9819.82, + "probability": 0.5037 + }, + { + "start": 9819.9, + "end": 9820.86, + "probability": 0.7137 + }, + { + "start": 9821.86, + "end": 9824.7, + "probability": 0.9937 + }, + { + "start": 9824.7, + "end": 9827.6, + "probability": 0.9556 + }, + { + "start": 9828.14, + "end": 9828.34, + "probability": 0.5293 + }, + { + "start": 9828.6, + "end": 9835.64, + "probability": 0.9849 + }, + { + "start": 9836.08, + "end": 9838.82, + "probability": 0.9709 + }, + { + "start": 9839.72, + "end": 9842.58, + "probability": 0.9694 + }, + { + "start": 9843.2, + "end": 9845.02, + "probability": 0.9569 + }, + { + "start": 9845.44, + "end": 9848.58, + "probability": 0.901 + }, + { + "start": 9848.64, + "end": 9849.78, + "probability": 0.8758 + }, + { + "start": 9849.98, + "end": 9853.36, + "probability": 0.9845 + }, + { + "start": 9853.92, + "end": 9855.0, + "probability": 0.699 + }, + { + "start": 9855.8, + "end": 9856.83, + "probability": 0.912 + }, + { + "start": 9857.42, + "end": 9860.68, + "probability": 0.9694 + }, + { + "start": 9861.4, + "end": 9863.4, + "probability": 0.9821 + }, + { + "start": 9863.86, + "end": 9866.01, + "probability": 0.948 + }, + { + "start": 9866.5, + "end": 9867.39, + "probability": 0.9968 + }, + { + "start": 9868.09, + "end": 9869.84, + "probability": 0.9663 + }, + { + "start": 9869.84, + "end": 9870.94, + "probability": 0.6693 + }, + { + "start": 9871.48, + "end": 9874.06, + "probability": 0.9844 + }, + { + "start": 9874.92, + "end": 9876.98, + "probability": 0.9795 + }, + { + "start": 9877.52, + "end": 9881.06, + "probability": 0.9856 + }, + { + "start": 9881.9, + "end": 9883.9, + "probability": 0.3157 + }, + { + "start": 9884.56, + "end": 9889.0, + "probability": 0.9946 + }, + { + "start": 9889.0, + "end": 9893.48, + "probability": 0.9674 + }, + { + "start": 9894.16, + "end": 9898.08, + "probability": 0.9942 + }, + { + "start": 9898.58, + "end": 9902.68, + "probability": 0.8124 + }, + { + "start": 9903.53, + "end": 9906.6, + "probability": 0.6668 + }, + { + "start": 9906.7, + "end": 9908.66, + "probability": 0.8249 + }, + { + "start": 9909.08, + "end": 9910.98, + "probability": 0.9646 + }, + { + "start": 9911.44, + "end": 9911.44, + "probability": 0.5497 + }, + { + "start": 9911.44, + "end": 9914.7, + "probability": 0.9638 + }, + { + "start": 9915.1, + "end": 9917.68, + "probability": 0.9814 + }, + { + "start": 9917.68, + "end": 9920.46, + "probability": 0.9978 + }, + { + "start": 9920.82, + "end": 9923.04, + "probability": 0.8955 + }, + { + "start": 9923.5, + "end": 9924.36, + "probability": 0.7 + }, + { + "start": 9924.56, + "end": 9927.9, + "probability": 0.6847 + }, + { + "start": 9949.16, + "end": 9949.16, + "probability": 0.1351 + }, + { + "start": 9949.16, + "end": 9949.16, + "probability": 0.4602 + }, + { + "start": 9949.16, + "end": 9949.34, + "probability": 0.0657 + }, + { + "start": 9950.5, + "end": 9953.66, + "probability": 0.7173 + }, + { + "start": 9953.72, + "end": 9956.5, + "probability": 0.9901 + }, + { + "start": 9956.5, + "end": 9960.06, + "probability": 0.9784 + }, + { + "start": 9960.86, + "end": 9963.18, + "probability": 0.9593 + }, + { + "start": 9963.2, + "end": 9964.66, + "probability": 0.9956 + }, + { + "start": 9965.54, + "end": 9970.82, + "probability": 0.9422 + }, + { + "start": 9971.58, + "end": 9972.62, + "probability": 0.7981 + }, + { + "start": 9973.64, + "end": 9976.62, + "probability": 0.9837 + }, + { + "start": 9977.36, + "end": 9978.48, + "probability": 0.7559 + }, + { + "start": 9978.58, + "end": 9979.4, + "probability": 0.6389 + }, + { + "start": 9979.54, + "end": 9981.28, + "probability": 0.9937 + }, + { + "start": 9982.2, + "end": 9983.74, + "probability": 0.9061 + }, + { + "start": 9984.48, + "end": 9986.62, + "probability": 0.9664 + }, + { + "start": 9986.62, + "end": 9988.96, + "probability": 0.7853 + }, + { + "start": 9989.7, + "end": 9990.52, + "probability": 0.7093 + }, + { + "start": 9991.44, + "end": 9993.82, + "probability": 0.985 + }, + { + "start": 9994.58, + "end": 9997.0, + "probability": 0.9525 + }, + { + "start": 9998.0, + "end": 10000.08, + "probability": 0.9121 + }, + { + "start": 10000.18, + "end": 10001.44, + "probability": 0.999 + }, + { + "start": 10002.18, + "end": 10004.54, + "probability": 0.9938 + }, + { + "start": 10004.54, + "end": 10006.78, + "probability": 0.9985 + }, + { + "start": 10007.6, + "end": 10009.3, + "probability": 0.9749 + }, + { + "start": 10009.72, + "end": 10010.32, + "probability": 0.9263 + }, + { + "start": 10010.82, + "end": 10011.84, + "probability": 0.9377 + }, + { + "start": 10012.28, + "end": 10014.14, + "probability": 0.9847 + }, + { + "start": 10014.46, + "end": 10014.88, + "probability": 0.8914 + }, + { + "start": 10015.66, + "end": 10017.06, + "probability": 0.7297 + }, + { + "start": 10017.2, + "end": 10020.92, + "probability": 0.9951 + }, + { + "start": 10020.92, + "end": 10023.98, + "probability": 0.9995 + }, + { + "start": 10024.88, + "end": 10026.52, + "probability": 0.9976 + }, + { + "start": 10026.52, + "end": 10029.34, + "probability": 0.9996 + }, + { + "start": 10030.12, + "end": 10031.58, + "probability": 0.9125 + }, + { + "start": 10031.9, + "end": 10033.3, + "probability": 0.979 + }, + { + "start": 10033.96, + "end": 10035.74, + "probability": 0.9942 + }, + { + "start": 10035.74, + "end": 10039.44, + "probability": 0.939 + }, + { + "start": 10040.56, + "end": 10042.78, + "probability": 0.9779 + }, + { + "start": 10044.36, + "end": 10049.66, + "probability": 0.9985 + }, + { + "start": 10050.68, + "end": 10051.48, + "probability": 0.5164 + }, + { + "start": 10051.54, + "end": 10052.52, + "probability": 0.9148 + }, + { + "start": 10052.72, + "end": 10053.1, + "probability": 0.9106 + }, + { + "start": 10053.58, + "end": 10055.44, + "probability": 0.9761 + }, + { + "start": 10056.18, + "end": 10057.82, + "probability": 0.74 + }, + { + "start": 10058.38, + "end": 10058.76, + "probability": 0.651 + }, + { + "start": 10059.62, + "end": 10062.82, + "probability": 0.9888 + }, + { + "start": 10063.74, + "end": 10067.36, + "probability": 0.998 + }, + { + "start": 10068.18, + "end": 10070.6, + "probability": 0.8748 + }, + { + "start": 10071.76, + "end": 10073.82, + "probability": 0.9847 + }, + { + "start": 10074.62, + "end": 10076.21, + "probability": 0.9967 + }, + { + "start": 10076.96, + "end": 10082.16, + "probability": 0.9966 + }, + { + "start": 10082.74, + "end": 10084.82, + "probability": 0.9874 + }, + { + "start": 10084.9, + "end": 10086.18, + "probability": 0.9929 + }, + { + "start": 10086.42, + "end": 10087.5, + "probability": 0.9973 + }, + { + "start": 10088.3, + "end": 10092.32, + "probability": 0.9856 + }, + { + "start": 10093.12, + "end": 10096.62, + "probability": 0.9976 + }, + { + "start": 10097.04, + "end": 10098.41, + "probability": 0.9769 + }, + { + "start": 10099.24, + "end": 10103.58, + "probability": 0.9979 + }, + { + "start": 10104.66, + "end": 10106.18, + "probability": 0.8223 + }, + { + "start": 10106.26, + "end": 10109.04, + "probability": 0.8107 + }, + { + "start": 10110.06, + "end": 10110.38, + "probability": 0.9321 + }, + { + "start": 10110.98, + "end": 10111.73, + "probability": 0.8921 + }, + { + "start": 10113.0, + "end": 10113.96, + "probability": 0.752 + }, + { + "start": 10115.92, + "end": 10118.68, + "probability": 0.9631 + }, + { + "start": 10119.3, + "end": 10120.58, + "probability": 0.9718 + }, + { + "start": 10121.64, + "end": 10126.04, + "probability": 0.9695 + }, + { + "start": 10126.66, + "end": 10127.24, + "probability": 0.9943 + }, + { + "start": 10128.66, + "end": 10129.38, + "probability": 0.9376 + }, + { + "start": 10131.12, + "end": 10133.48, + "probability": 0.9697 + }, + { + "start": 10133.48, + "end": 10136.84, + "probability": 0.9922 + }, + { + "start": 10137.22, + "end": 10137.24, + "probability": 0.6528 + }, + { + "start": 10137.36, + "end": 10141.94, + "probability": 0.9902 + }, + { + "start": 10141.94, + "end": 10144.92, + "probability": 0.9965 + }, + { + "start": 10145.56, + "end": 10147.16, + "probability": 0.9987 + }, + { + "start": 10147.6, + "end": 10148.34, + "probability": 0.6685 + }, + { + "start": 10148.5, + "end": 10150.24, + "probability": 0.8915 + }, + { + "start": 10156.76, + "end": 10156.76, + "probability": 0.7144 + }, + { + "start": 10175.3, + "end": 10180.9, + "probability": 0.5946 + }, + { + "start": 10182.9, + "end": 10186.09, + "probability": 0.9914 + }, + { + "start": 10186.76, + "end": 10187.34, + "probability": 0.8838 + }, + { + "start": 10187.98, + "end": 10188.84, + "probability": 0.7205 + }, + { + "start": 10190.2, + "end": 10195.24, + "probability": 0.9982 + }, + { + "start": 10195.98, + "end": 10199.74, + "probability": 0.9983 + }, + { + "start": 10201.34, + "end": 10206.4, + "probability": 0.989 + }, + { + "start": 10207.84, + "end": 10209.64, + "probability": 0.8745 + }, + { + "start": 10211.56, + "end": 10213.34, + "probability": 0.8676 + }, + { + "start": 10215.16, + "end": 10218.5, + "probability": 0.9979 + }, + { + "start": 10219.46, + "end": 10222.9, + "probability": 0.8184 + }, + { + "start": 10224.3, + "end": 10225.84, + "probability": 0.9033 + }, + { + "start": 10228.48, + "end": 10229.48, + "probability": 0.7512 + }, + { + "start": 10230.1, + "end": 10231.14, + "probability": 0.8926 + }, + { + "start": 10231.22, + "end": 10232.48, + "probability": 0.9294 + }, + { + "start": 10232.98, + "end": 10235.06, + "probability": 0.9971 + }, + { + "start": 10235.18, + "end": 10235.66, + "probability": 0.7871 + }, + { + "start": 10236.46, + "end": 10237.18, + "probability": 0.9919 + }, + { + "start": 10238.2, + "end": 10242.96, + "probability": 0.7603 + }, + { + "start": 10244.16, + "end": 10246.72, + "probability": 0.8546 + }, + { + "start": 10246.76, + "end": 10249.72, + "probability": 0.9251 + }, + { + "start": 10251.36, + "end": 10251.76, + "probability": 0.6812 + }, + { + "start": 10252.24, + "end": 10253.16, + "probability": 0.9969 + }, + { + "start": 10255.02, + "end": 10258.72, + "probability": 0.9922 + }, + { + "start": 10258.94, + "end": 10259.41, + "probability": 0.9846 + }, + { + "start": 10262.12, + "end": 10264.54, + "probability": 0.538 + }, + { + "start": 10265.26, + "end": 10266.62, + "probability": 0.8704 + }, + { + "start": 10266.96, + "end": 10267.73, + "probability": 0.8824 + }, + { + "start": 10268.04, + "end": 10270.86, + "probability": 0.9268 + }, + { + "start": 10271.38, + "end": 10275.44, + "probability": 0.989 + }, + { + "start": 10275.96, + "end": 10282.12, + "probability": 0.9531 + }, + { + "start": 10283.82, + "end": 10287.22, + "probability": 0.9993 + }, + { + "start": 10288.02, + "end": 10289.0, + "probability": 0.7846 + }, + { + "start": 10289.82, + "end": 10295.6, + "probability": 0.9961 + }, + { + "start": 10295.9, + "end": 10298.24, + "probability": 0.9006 + }, + { + "start": 10298.8, + "end": 10301.82, + "probability": 0.9924 + }, + { + "start": 10301.82, + "end": 10307.38, + "probability": 0.9973 + }, + { + "start": 10308.34, + "end": 10309.25, + "probability": 0.978 + }, + { + "start": 10310.74, + "end": 10317.74, + "probability": 0.9611 + }, + { + "start": 10318.14, + "end": 10320.92, + "probability": 0.8982 + }, + { + "start": 10321.28, + "end": 10322.96, + "probability": 0.7458 + }, + { + "start": 10323.5, + "end": 10324.6, + "probability": 0.915 + }, + { + "start": 10324.92, + "end": 10327.14, + "probability": 0.9053 + }, + { + "start": 10327.52, + "end": 10328.36, + "probability": 0.6442 + }, + { + "start": 10328.4, + "end": 10334.42, + "probability": 0.9863 + }, + { + "start": 10335.1, + "end": 10335.68, + "probability": 0.6852 + }, + { + "start": 10336.06, + "end": 10336.5, + "probability": 0.8022 + }, + { + "start": 10336.6, + "end": 10338.58, + "probability": 0.9819 + }, + { + "start": 10338.6, + "end": 10339.14, + "probability": 0.8703 + }, + { + "start": 10339.16, + "end": 10341.52, + "probability": 0.9817 + }, + { + "start": 10341.56, + "end": 10343.66, + "probability": 0.9814 + }, + { + "start": 10343.76, + "end": 10345.04, + "probability": 0.9343 + }, + { + "start": 10345.36, + "end": 10346.44, + "probability": 0.8452 + }, + { + "start": 10347.02, + "end": 10349.14, + "probability": 0.9441 + }, + { + "start": 10349.26, + "end": 10349.46, + "probability": 0.6863 + }, + { + "start": 10349.54, + "end": 10351.92, + "probability": 0.9867 + }, + { + "start": 10352.36, + "end": 10353.84, + "probability": 0.9315 + }, + { + "start": 10355.02, + "end": 10355.64, + "probability": 0.6915 + }, + { + "start": 10355.72, + "end": 10357.62, + "probability": 0.98 + }, + { + "start": 10358.1, + "end": 10359.5, + "probability": 0.9712 + }, + { + "start": 10360.44, + "end": 10362.2, + "probability": 0.7456 + }, + { + "start": 10362.74, + "end": 10364.18, + "probability": 0.5219 + }, + { + "start": 10364.18, + "end": 10365.48, + "probability": 0.7023 + }, + { + "start": 10366.36, + "end": 10369.82, + "probability": 0.8813 + }, + { + "start": 10369.9, + "end": 10372.04, + "probability": 0.984 + }, + { + "start": 10372.4, + "end": 10375.28, + "probability": 0.9927 + }, + { + "start": 10375.68, + "end": 10376.8, + "probability": 0.9919 + }, + { + "start": 10377.28, + "end": 10378.62, + "probability": 0.4708 + }, + { + "start": 10379.0, + "end": 10384.26, + "probability": 0.9702 + }, + { + "start": 10384.76, + "end": 10385.38, + "probability": 0.9548 + }, + { + "start": 10386.08, + "end": 10386.64, + "probability": 0.9632 + }, + { + "start": 10386.84, + "end": 10387.77, + "probability": 0.6257 + }, + { + "start": 10388.52, + "end": 10390.68, + "probability": 0.6524 + }, + { + "start": 10393.04, + "end": 10395.0, + "probability": 0.7654 + }, + { + "start": 10398.78, + "end": 10400.34, + "probability": 0.841 + }, + { + "start": 10403.72, + "end": 10404.54, + "probability": 0.5308 + }, + { + "start": 10404.62, + "end": 10406.28, + "probability": 0.6092 + }, + { + "start": 10406.73, + "end": 10409.24, + "probability": 0.7001 + }, + { + "start": 10409.28, + "end": 10413.02, + "probability": 0.9971 + }, + { + "start": 10413.02, + "end": 10416.82, + "probability": 0.9042 + }, + { + "start": 10417.48, + "end": 10419.94, + "probability": 0.9988 + }, + { + "start": 10419.94, + "end": 10422.66, + "probability": 0.9976 + }, + { + "start": 10422.72, + "end": 10424.3, + "probability": 0.6269 + }, + { + "start": 10425.02, + "end": 10426.03, + "probability": 0.3712 + }, + { + "start": 10426.32, + "end": 10427.18, + "probability": 0.8248 + }, + { + "start": 10427.22, + "end": 10429.04, + "probability": 0.8651 + }, + { + "start": 10429.9, + "end": 10431.52, + "probability": 0.9537 + }, + { + "start": 10432.58, + "end": 10434.26, + "probability": 0.7838 + }, + { + "start": 10434.38, + "end": 10436.5, + "probability": 0.7799 + }, + { + "start": 10436.9, + "end": 10438.66, + "probability": 0.881 + }, + { + "start": 10439.16, + "end": 10441.7, + "probability": 0.8839 + }, + { + "start": 10442.06, + "end": 10444.0, + "probability": 0.9335 + }, + { + "start": 10444.12, + "end": 10445.64, + "probability": 0.993 + }, + { + "start": 10445.66, + "end": 10448.98, + "probability": 0.9768 + }, + { + "start": 10449.86, + "end": 10450.36, + "probability": 0.728 + }, + { + "start": 10451.08, + "end": 10455.12, + "probability": 0.9514 + }, + { + "start": 10455.58, + "end": 10458.82, + "probability": 0.9154 + }, + { + "start": 10459.22, + "end": 10460.58, + "probability": 0.9919 + }, + { + "start": 10460.94, + "end": 10462.5, + "probability": 0.936 + }, + { + "start": 10463.24, + "end": 10463.72, + "probability": 0.4487 + }, + { + "start": 10463.82, + "end": 10466.44, + "probability": 0.9492 + }, + { + "start": 10466.64, + "end": 10469.28, + "probability": 0.4599 + }, + { + "start": 10470.48, + "end": 10471.8, + "probability": 0.8986 + }, + { + "start": 10471.98, + "end": 10474.04, + "probability": 0.986 + }, + { + "start": 10474.48, + "end": 10477.9, + "probability": 0.9905 + }, + { + "start": 10478.22, + "end": 10478.9, + "probability": 0.7593 + }, + { + "start": 10479.7, + "end": 10483.91, + "probability": 0.9891 + }, + { + "start": 10484.28, + "end": 10487.47, + "probability": 0.998 + }, + { + "start": 10488.72, + "end": 10489.26, + "probability": 0.7761 + }, + { + "start": 10489.34, + "end": 10492.58, + "probability": 0.983 + }, + { + "start": 10492.98, + "end": 10493.82, + "probability": 0.9893 + }, + { + "start": 10493.88, + "end": 10497.42, + "probability": 0.9827 + }, + { + "start": 10498.06, + "end": 10504.32, + "probability": 0.9231 + }, + { + "start": 10504.38, + "end": 10504.96, + "probability": 0.7017 + }, + { + "start": 10505.32, + "end": 10507.72, + "probability": 0.9173 + }, + { + "start": 10508.1, + "end": 10511.12, + "probability": 0.9827 + }, + { + "start": 10511.68, + "end": 10513.48, + "probability": 0.96 + }, + { + "start": 10513.58, + "end": 10515.38, + "probability": 0.9255 + }, + { + "start": 10516.3, + "end": 10517.14, + "probability": 0.8434 + }, + { + "start": 10517.26, + "end": 10522.22, + "probability": 0.9858 + }, + { + "start": 10522.22, + "end": 10526.54, + "probability": 0.9838 + }, + { + "start": 10527.5, + "end": 10533.44, + "probability": 0.9379 + }, + { + "start": 10534.22, + "end": 10534.78, + "probability": 0.3148 + }, + { + "start": 10534.78, + "end": 10535.84, + "probability": 0.9424 + }, + { + "start": 10537.46, + "end": 10537.82, + "probability": 0.4711 + }, + { + "start": 10538.0, + "end": 10538.28, + "probability": 0.5517 + }, + { + "start": 10538.36, + "end": 10543.2, + "probability": 0.9623 + }, + { + "start": 10543.4, + "end": 10544.14, + "probability": 0.5378 + }, + { + "start": 10544.22, + "end": 10544.74, + "probability": 0.7236 + }, + { + "start": 10544.84, + "end": 10546.2, + "probability": 0.996 + }, + { + "start": 10546.7, + "end": 10550.42, + "probability": 0.9257 + }, + { + "start": 10551.76, + "end": 10553.77, + "probability": 0.8314 + }, + { + "start": 10554.58, + "end": 10555.72, + "probability": 0.9565 + }, + { + "start": 10556.1, + "end": 10557.86, + "probability": 0.9867 + }, + { + "start": 10558.26, + "end": 10560.46, + "probability": 0.962 + }, + { + "start": 10560.86, + "end": 10561.12, + "probability": 0.5732 + }, + { + "start": 10562.0, + "end": 10562.78, + "probability": 0.3075 + }, + { + "start": 10562.94, + "end": 10565.5, + "probability": 0.7798 + }, + { + "start": 10566.1, + "end": 10568.66, + "probability": 0.7732 + }, + { + "start": 10576.9, + "end": 10577.3, + "probability": 0.8485 + }, + { + "start": 10582.7, + "end": 10585.7, + "probability": 0.6587 + }, + { + "start": 10586.28, + "end": 10587.46, + "probability": 0.8605 + }, + { + "start": 10588.58, + "end": 10592.96, + "probability": 0.9976 + }, + { + "start": 10592.96, + "end": 10596.78, + "probability": 0.9932 + }, + { + "start": 10597.98, + "end": 10599.13, + "probability": 0.9923 + }, + { + "start": 10599.62, + "end": 10600.36, + "probability": 0.9106 + }, + { + "start": 10601.14, + "end": 10602.32, + "probability": 0.745 + }, + { + "start": 10602.64, + "end": 10605.8, + "probability": 0.9442 + }, + { + "start": 10606.04, + "end": 10607.12, + "probability": 0.9151 + }, + { + "start": 10607.7, + "end": 10608.94, + "probability": 0.9047 + }, + { + "start": 10609.6, + "end": 10612.4, + "probability": 0.7889 + }, + { + "start": 10613.9, + "end": 10617.72, + "probability": 0.9436 + }, + { + "start": 10620.66, + "end": 10621.72, + "probability": 0.6697 + }, + { + "start": 10622.96, + "end": 10625.72, + "probability": 0.8094 + }, + { + "start": 10626.86, + "end": 10627.68, + "probability": 0.8225 + }, + { + "start": 10629.7, + "end": 10629.92, + "probability": 0.9357 + }, + { + "start": 10630.16, + "end": 10630.98, + "probability": 0.978 + }, + { + "start": 10631.12, + "end": 10632.46, + "probability": 0.9348 + }, + { + "start": 10632.5, + "end": 10634.18, + "probability": 0.9521 + }, + { + "start": 10635.1, + "end": 10636.12, + "probability": 0.9408 + }, + { + "start": 10636.52, + "end": 10637.46, + "probability": 0.9722 + }, + { + "start": 10637.52, + "end": 10638.36, + "probability": 0.9822 + }, + { + "start": 10638.48, + "end": 10639.04, + "probability": 0.5233 + }, + { + "start": 10640.04, + "end": 10642.42, + "probability": 0.9977 + }, + { + "start": 10642.42, + "end": 10645.68, + "probability": 0.9272 + }, + { + "start": 10646.38, + "end": 10648.66, + "probability": 0.9301 + }, + { + "start": 10648.88, + "end": 10650.48, + "probability": 0.9346 + }, + { + "start": 10651.28, + "end": 10652.46, + "probability": 0.9812 + }, + { + "start": 10653.8, + "end": 10655.3, + "probability": 0.76 + }, + { + "start": 10656.12, + "end": 10659.69, + "probability": 0.8706 + }, + { + "start": 10661.74, + "end": 10662.98, + "probability": 0.5107 + }, + { + "start": 10663.88, + "end": 10666.38, + "probability": 0.9755 + }, + { + "start": 10667.06, + "end": 10670.58, + "probability": 0.9159 + }, + { + "start": 10671.3, + "end": 10674.02, + "probability": 0.9671 + }, + { + "start": 10674.6, + "end": 10676.21, + "probability": 0.8748 + }, + { + "start": 10677.26, + "end": 10678.4, + "probability": 0.9194 + }, + { + "start": 10679.1, + "end": 10680.5, + "probability": 0.9858 + }, + { + "start": 10681.56, + "end": 10684.6, + "probability": 0.9729 + }, + { + "start": 10685.56, + "end": 10688.5, + "probability": 0.9903 + }, + { + "start": 10689.38, + "end": 10690.6, + "probability": 0.9142 + }, + { + "start": 10690.78, + "end": 10691.64, + "probability": 0.9356 + }, + { + "start": 10691.7, + "end": 10692.5, + "probability": 0.656 + }, + { + "start": 10692.84, + "end": 10693.7, + "probability": 0.9476 + }, + { + "start": 10694.12, + "end": 10694.65, + "probability": 0.9224 + }, + { + "start": 10695.02, + "end": 10696.56, + "probability": 0.9855 + }, + { + "start": 10696.74, + "end": 10697.98, + "probability": 0.9912 + }, + { + "start": 10698.34, + "end": 10699.22, + "probability": 0.8245 + }, + { + "start": 10699.36, + "end": 10701.62, + "probability": 0.9834 + }, + { + "start": 10701.66, + "end": 10707.4, + "probability": 0.9607 + }, + { + "start": 10707.4, + "end": 10718.5, + "probability": 0.9932 + }, + { + "start": 10720.26, + "end": 10721.3, + "probability": 0.5143 + }, + { + "start": 10721.64, + "end": 10724.32, + "probability": 0.9486 + }, + { + "start": 10724.94, + "end": 10725.76, + "probability": 0.8503 + }, + { + "start": 10727.08, + "end": 10728.72, + "probability": 0.6054 + }, + { + "start": 10731.8, + "end": 10733.24, + "probability": 0.627 + }, + { + "start": 10734.16, + "end": 10736.74, + "probability": 0.2506 + }, + { + "start": 10736.84, + "end": 10736.84, + "probability": 0.6885 + }, + { + "start": 10737.4, + "end": 10739.98, + "probability": 0.6316 + }, + { + "start": 10743.48, + "end": 10744.28, + "probability": 0.2286 + }, + { + "start": 10744.98, + "end": 10747.34, + "probability": 0.8203 + }, + { + "start": 10749.43, + "end": 10752.52, + "probability": 0.7991 + }, + { + "start": 10753.74, + "end": 10755.12, + "probability": 0.5491 + }, + { + "start": 10755.52, + "end": 10756.08, + "probability": 0.8303 + }, + { + "start": 10757.06, + "end": 10758.7, + "probability": 0.9265 + }, + { + "start": 10758.88, + "end": 10759.66, + "probability": 0.9681 + }, + { + "start": 10759.76, + "end": 10760.5, + "probability": 0.9882 + }, + { + "start": 10760.94, + "end": 10761.9, + "probability": 0.9866 + }, + { + "start": 10762.4, + "end": 10763.28, + "probability": 0.9104 + }, + { + "start": 10763.56, + "end": 10764.18, + "probability": 0.9751 + }, + { + "start": 10764.26, + "end": 10765.0, + "probability": 0.63 + }, + { + "start": 10765.4, + "end": 10766.76, + "probability": 0.9722 + }, + { + "start": 10767.52, + "end": 10769.64, + "probability": 0.9559 + }, + { + "start": 10770.36, + "end": 10771.86, + "probability": 0.9457 + }, + { + "start": 10772.0, + "end": 10772.32, + "probability": 0.8045 + }, + { + "start": 10772.4, + "end": 10773.82, + "probability": 0.9677 + }, + { + "start": 10774.16, + "end": 10777.08, + "probability": 0.9952 + }, + { + "start": 10777.2, + "end": 10777.92, + "probability": 0.9726 + }, + { + "start": 10778.86, + "end": 10782.1, + "probability": 0.9985 + }, + { + "start": 10782.22, + "end": 10783.1, + "probability": 0.7376 + }, + { + "start": 10783.82, + "end": 10784.9, + "probability": 0.6966 + }, + { + "start": 10784.98, + "end": 10789.22, + "probability": 0.9896 + }, + { + "start": 10790.12, + "end": 10792.4, + "probability": 0.9956 + }, + { + "start": 10792.88, + "end": 10793.73, + "probability": 0.9091 + }, + { + "start": 10794.64, + "end": 10795.32, + "probability": 0.6272 + }, + { + "start": 10795.38, + "end": 10796.22, + "probability": 0.7172 + }, + { + "start": 10796.24, + "end": 10797.32, + "probability": 0.5158 + }, + { + "start": 10797.34, + "end": 10798.26, + "probability": 0.7412 + }, + { + "start": 10798.36, + "end": 10798.99, + "probability": 0.9165 + }, + { + "start": 10799.24, + "end": 10800.08, + "probability": 0.7877 + }, + { + "start": 10800.16, + "end": 10802.74, + "probability": 0.9514 + }, + { + "start": 10802.8, + "end": 10804.1, + "probability": 0.7616 + }, + { + "start": 10804.5, + "end": 10808.46, + "probability": 0.9666 + }, + { + "start": 10808.74, + "end": 10810.64, + "probability": 0.892 + }, + { + "start": 10811.22, + "end": 10812.5, + "probability": 0.4837 + }, + { + "start": 10812.6, + "end": 10816.98, + "probability": 0.9779 + }, + { + "start": 10817.54, + "end": 10820.82, + "probability": 0.6834 + }, + { + "start": 10820.96, + "end": 10822.54, + "probability": 0.8783 + }, + { + "start": 10823.48, + "end": 10825.88, + "probability": 0.9336 + }, + { + "start": 10826.16, + "end": 10826.32, + "probability": 0.5308 + }, + { + "start": 10826.38, + "end": 10828.0, + "probability": 0.9278 + }, + { + "start": 10828.1, + "end": 10829.0, + "probability": 0.8342 + }, + { + "start": 10829.06, + "end": 10829.76, + "probability": 0.7653 + }, + { + "start": 10830.02, + "end": 10831.08, + "probability": 0.8539 + }, + { + "start": 10831.16, + "end": 10831.92, + "probability": 0.9238 + }, + { + "start": 10832.42, + "end": 10834.56, + "probability": 0.8926 + }, + { + "start": 10834.94, + "end": 10837.34, + "probability": 0.5763 + }, + { + "start": 10837.72, + "end": 10839.12, + "probability": 0.9318 + }, + { + "start": 10839.56, + "end": 10839.86, + "probability": 0.5081 + }, + { + "start": 10839.9, + "end": 10843.12, + "probability": 0.9932 + }, + { + "start": 10843.7, + "end": 10846.12, + "probability": 0.566 + }, + { + "start": 10846.68, + "end": 10848.76, + "probability": 0.9446 + }, + { + "start": 10849.7, + "end": 10850.84, + "probability": 0.9652 + }, + { + "start": 10851.6, + "end": 10856.5, + "probability": 0.9372 + }, + { + "start": 10856.76, + "end": 10860.68, + "probability": 0.769 + }, + { + "start": 10861.02, + "end": 10865.94, + "probability": 0.9569 + }, + { + "start": 10866.2, + "end": 10867.38, + "probability": 0.9812 + }, + { + "start": 10869.54, + "end": 10873.9, + "probability": 0.4211 + }, + { + "start": 10875.15, + "end": 10876.74, + "probability": 0.5762 + }, + { + "start": 10876.84, + "end": 10878.12, + "probability": 0.6955 + }, + { + "start": 10878.22, + "end": 10879.34, + "probability": 0.604 + }, + { + "start": 10879.44, + "end": 10880.96, + "probability": 0.8931 + }, + { + "start": 10881.32, + "end": 10882.8, + "probability": 0.9076 + }, + { + "start": 10883.1, + "end": 10884.16, + "probability": 0.945 + }, + { + "start": 10884.28, + "end": 10885.66, + "probability": 0.8702 + }, + { + "start": 10885.98, + "end": 10886.96, + "probability": 0.8742 + }, + { + "start": 10887.12, + "end": 10889.7, + "probability": 0.9907 + }, + { + "start": 10889.72, + "end": 10890.48, + "probability": 0.8508 + }, + { + "start": 10890.84, + "end": 10891.8, + "probability": 0.9199 + }, + { + "start": 10892.32, + "end": 10892.86, + "probability": 0.8665 + }, + { + "start": 10893.36, + "end": 10894.4, + "probability": 0.9883 + }, + { + "start": 10894.46, + "end": 10895.48, + "probability": 0.8081 + }, + { + "start": 10895.56, + "end": 10900.92, + "probability": 0.9229 + }, + { + "start": 10900.92, + "end": 10905.0, + "probability": 0.9421 + }, + { + "start": 10905.06, + "end": 10905.16, + "probability": 0.8359 + }, + { + "start": 10905.3, + "end": 10909.34, + "probability": 0.9275 + }, + { + "start": 10909.72, + "end": 10910.4, + "probability": 0.9798 + }, + { + "start": 10910.62, + "end": 10911.82, + "probability": 0.9159 + }, + { + "start": 10912.2, + "end": 10917.06, + "probability": 0.9879 + }, + { + "start": 10917.4, + "end": 10919.36, + "probability": 0.9888 + }, + { + "start": 10919.48, + "end": 10921.16, + "probability": 0.8035 + }, + { + "start": 10921.24, + "end": 10922.64, + "probability": 0.6812 + }, + { + "start": 10922.76, + "end": 10925.56, + "probability": 0.9417 + }, + { + "start": 10926.0, + "end": 10927.97, + "probability": 0.9779 + }, + { + "start": 10928.48, + "end": 10931.5, + "probability": 0.7686 + }, + { + "start": 10931.8, + "end": 10933.68, + "probability": 0.9963 + }, + { + "start": 10934.1, + "end": 10934.28, + "probability": 0.3772 + }, + { + "start": 10934.28, + "end": 10938.18, + "probability": 0.8342 + }, + { + "start": 10938.72, + "end": 10941.42, + "probability": 0.8805 + }, + { + "start": 10941.76, + "end": 10944.86, + "probability": 0.9844 + }, + { + "start": 10944.92, + "end": 10946.14, + "probability": 0.6635 + }, + { + "start": 10946.66, + "end": 10947.28, + "probability": 0.5501 + }, + { + "start": 10947.3, + "end": 10948.14, + "probability": 0.9547 + }, + { + "start": 10948.16, + "end": 10950.22, + "probability": 0.9497 + }, + { + "start": 10950.46, + "end": 10953.6, + "probability": 0.7708 + }, + { + "start": 10954.34, + "end": 10955.98, + "probability": 0.8256 + }, + { + "start": 10956.1, + "end": 10956.44, + "probability": 0.4545 + }, + { + "start": 10956.6, + "end": 10957.76, + "probability": 0.8214 + }, + { + "start": 10958.08, + "end": 10962.12, + "probability": 0.9106 + }, + { + "start": 10962.56, + "end": 10963.96, + "probability": 0.7214 + }, + { + "start": 10964.1, + "end": 10964.1, + "probability": 0.3069 + }, + { + "start": 10964.1, + "end": 10964.1, + "probability": 0.0194 + }, + { + "start": 10964.1, + "end": 10966.22, + "probability": 0.8418 + }, + { + "start": 10966.3, + "end": 10966.8, + "probability": 0.4806 + }, + { + "start": 10966.96, + "end": 10971.4, + "probability": 0.9222 + }, + { + "start": 10971.42, + "end": 10972.18, + "probability": 0.7602 + }, + { + "start": 10972.5, + "end": 10973.22, + "probability": 0.752 + }, + { + "start": 10973.3, + "end": 10976.58, + "probability": 0.9898 + }, + { + "start": 10976.88, + "end": 10977.68, + "probability": 0.74 + }, + { + "start": 10977.72, + "end": 10978.74, + "probability": 0.5969 + }, + { + "start": 10979.22, + "end": 10980.08, + "probability": 0.6849 + }, + { + "start": 10980.8, + "end": 10981.24, + "probability": 0.2551 + }, + { + "start": 10981.8, + "end": 10982.82, + "probability": 0.9039 + }, + { + "start": 10982.96, + "end": 10984.46, + "probability": 0.4473 + }, + { + "start": 10984.82, + "end": 10985.54, + "probability": 0.7308 + }, + { + "start": 10985.64, + "end": 10987.1, + "probability": 0.743 + }, + { + "start": 10987.42, + "end": 10989.54, + "probability": 0.6555 + }, + { + "start": 10990.22, + "end": 10990.22, + "probability": 0.1518 + }, + { + "start": 10990.22, + "end": 10992.92, + "probability": 0.4382 + }, + { + "start": 10993.98, + "end": 10996.32, + "probability": 0.5275 + }, + { + "start": 10996.32, + "end": 10997.4, + "probability": 0.8218 + }, + { + "start": 10997.44, + "end": 11000.94, + "probability": 0.9557 + }, + { + "start": 11001.1, + "end": 11001.7, + "probability": 0.3459 + }, + { + "start": 11001.72, + "end": 11001.82, + "probability": 0.5157 + }, + { + "start": 11001.82, + "end": 11002.5, + "probability": 0.4977 + }, + { + "start": 11003.08, + "end": 11007.14, + "probability": 0.9355 + }, + { + "start": 11007.82, + "end": 11009.82, + "probability": 0.9688 + }, + { + "start": 11012.52, + "end": 11016.42, + "probability": 0.0393 + }, + { + "start": 11017.36, + "end": 11017.36, + "probability": 0.0199 + }, + { + "start": 11017.36, + "end": 11017.36, + "probability": 0.0795 + }, + { + "start": 11017.36, + "end": 11022.5, + "probability": 0.7667 + }, + { + "start": 11023.18, + "end": 11024.32, + "probability": 0.8923 + }, + { + "start": 11025.14, + "end": 11028.94, + "probability": 0.8586 + }, + { + "start": 11029.54, + "end": 11030.1, + "probability": 0.9014 + }, + { + "start": 11030.62, + "end": 11033.0, + "probability": 0.9357 + }, + { + "start": 11033.86, + "end": 11036.0, + "probability": 0.9926 + }, + { + "start": 11036.82, + "end": 11038.56, + "probability": 0.9167 + }, + { + "start": 11038.74, + "end": 11041.92, + "probability": 0.8603 + }, + { + "start": 11042.02, + "end": 11045.46, + "probability": 0.9851 + }, + { + "start": 11045.68, + "end": 11046.4, + "probability": 0.54 + }, + { + "start": 11047.33, + "end": 11048.06, + "probability": 0.6645 + }, + { + "start": 11048.08, + "end": 11048.4, + "probability": 0.7177 + }, + { + "start": 11048.54, + "end": 11052.68, + "probability": 0.9897 + }, + { + "start": 11052.96, + "end": 11057.1, + "probability": 0.8279 + }, + { + "start": 11057.62, + "end": 11059.2, + "probability": 0.8395 + }, + { + "start": 11059.98, + "end": 11064.24, + "probability": 0.7981 + }, + { + "start": 11064.76, + "end": 11066.9, + "probability": 0.8184 + }, + { + "start": 11067.04, + "end": 11075.02, + "probability": 0.9698 + }, + { + "start": 11075.32, + "end": 11075.64, + "probability": 0.86 + }, + { + "start": 11076.76, + "end": 11079.32, + "probability": 0.6802 + }, + { + "start": 11079.48, + "end": 11083.2, + "probability": 0.7154 + }, + { + "start": 11083.46, + "end": 11086.56, + "probability": 0.9231 + }, + { + "start": 11087.5, + "end": 11089.64, + "probability": 0.9949 + }, + { + "start": 11089.84, + "end": 11093.6, + "probability": 0.6975 + }, + { + "start": 11094.56, + "end": 11095.16, + "probability": 0.5127 + }, + { + "start": 11095.32, + "end": 11100.28, + "probability": 0.9777 + }, + { + "start": 11100.7, + "end": 11100.9, + "probability": 0.5151 + }, + { + "start": 11101.24, + "end": 11102.08, + "probability": 0.7441 + }, + { + "start": 11102.1, + "end": 11102.38, + "probability": 0.3745 + }, + { + "start": 11102.58, + "end": 11103.08, + "probability": 0.541 + }, + { + "start": 11103.08, + "end": 11103.34, + "probability": 0.5424 + }, + { + "start": 11103.44, + "end": 11103.9, + "probability": 0.9641 + }, + { + "start": 11104.14, + "end": 11104.82, + "probability": 0.6815 + }, + { + "start": 11105.08, + "end": 11108.14, + "probability": 0.8237 + }, + { + "start": 11108.14, + "end": 11110.3, + "probability": 0.4166 + }, + { + "start": 11110.92, + "end": 11112.34, + "probability": 0.9636 + }, + { + "start": 11112.94, + "end": 11114.4, + "probability": 0.5869 + }, + { + "start": 11114.62, + "end": 11115.54, + "probability": 0.5496 + }, + { + "start": 11118.18, + "end": 11118.96, + "probability": 0.2447 + }, + { + "start": 11123.06, + "end": 11124.14, + "probability": 0.2138 + }, + { + "start": 11124.14, + "end": 11124.58, + "probability": 0.0222 + }, + { + "start": 11125.34, + "end": 11125.6, + "probability": 0.0414 + }, + { + "start": 11131.98, + "end": 11132.56, + "probability": 0.2209 + }, + { + "start": 11133.4, + "end": 11133.54, + "probability": 0.0242 + }, + { + "start": 11133.76, + "end": 11137.74, + "probability": 0.6472 + }, + { + "start": 11138.3, + "end": 11140.46, + "probability": 0.9404 + }, + { + "start": 11141.4, + "end": 11143.28, + "probability": 0.9575 + }, + { + "start": 11144.18, + "end": 11148.18, + "probability": 0.6979 + }, + { + "start": 11148.62, + "end": 11149.98, + "probability": 0.4384 + }, + { + "start": 11150.1, + "end": 11151.04, + "probability": 0.8619 + }, + { + "start": 11151.5, + "end": 11155.58, + "probability": 0.9102 + }, + { + "start": 11155.76, + "end": 11156.82, + "probability": 0.7834 + }, + { + "start": 11161.3, + "end": 11163.8, + "probability": 0.0291 + }, + { + "start": 11164.88, + "end": 11165.42, + "probability": 0.2471 + }, + { + "start": 11176.2, + "end": 11180.92, + "probability": 0.4174 + }, + { + "start": 11181.6, + "end": 11182.2, + "probability": 0.6407 + }, + { + "start": 11182.34, + "end": 11184.32, + "probability": 0.9108 + }, + { + "start": 11184.46, + "end": 11186.71, + "probability": 0.9731 + }, + { + "start": 11187.0, + "end": 11189.96, + "probability": 0.7475 + }, + { + "start": 11191.06, + "end": 11194.28, + "probability": 0.9404 + }, + { + "start": 11194.6, + "end": 11195.48, + "probability": 0.7225 + }, + { + "start": 11195.76, + "end": 11196.2, + "probability": 0.5801 + }, + { + "start": 11197.3, + "end": 11201.1, + "probability": 0.9741 + }, + { + "start": 11201.24, + "end": 11203.8, + "probability": 0.9495 + }, + { + "start": 11203.82, + "end": 11205.28, + "probability": 0.6208 + }, + { + "start": 11205.4, + "end": 11210.08, + "probability": 0.8702 + }, + { + "start": 11210.1, + "end": 11213.2, + "probability": 0.8949 + }, + { + "start": 11213.56, + "end": 11213.84, + "probability": 0.4438 + }, + { + "start": 11213.86, + "end": 11217.64, + "probability": 0.9604 + }, + { + "start": 11217.7, + "end": 11218.4, + "probability": 0.7928 + }, + { + "start": 11219.06, + "end": 11224.52, + "probability": 0.991 + }, + { + "start": 11224.52, + "end": 11230.92, + "probability": 0.993 + }, + { + "start": 11231.84, + "end": 11232.74, + "probability": 0.7797 + }, + { + "start": 11232.94, + "end": 11233.71, + "probability": 0.9508 + }, + { + "start": 11234.22, + "end": 11235.56, + "probability": 0.9853 + }, + { + "start": 11235.74, + "end": 11238.04, + "probability": 0.9886 + }, + { + "start": 11238.92, + "end": 11245.32, + "probability": 0.7896 + }, + { + "start": 11246.72, + "end": 11248.41, + "probability": 0.9858 + }, + { + "start": 11248.62, + "end": 11252.26, + "probability": 0.9723 + }, + { + "start": 11252.32, + "end": 11261.72, + "probability": 0.9951 + }, + { + "start": 11263.26, + "end": 11267.34, + "probability": 0.8526 + }, + { + "start": 11269.62, + "end": 11273.74, + "probability": 0.8232 + }, + { + "start": 11274.82, + "end": 11281.08, + "probability": 0.949 + }, + { + "start": 11281.66, + "end": 11284.96, + "probability": 0.9419 + }, + { + "start": 11285.26, + "end": 11285.98, + "probability": 0.2678 + }, + { + "start": 11286.12, + "end": 11286.4, + "probability": 0.3037 + }, + { + "start": 11286.44, + "end": 11288.84, + "probability": 0.9357 + }, + { + "start": 11292.1, + "end": 11296.7, + "probability": 0.476 + }, + { + "start": 11298.29, + "end": 11300.48, + "probability": 0.9978 + }, + { + "start": 11303.28, + "end": 11305.32, + "probability": 0.9665 + }, + { + "start": 11305.42, + "end": 11307.84, + "probability": 0.9902 + }, + { + "start": 11308.46, + "end": 11311.68, + "probability": 0.9606 + }, + { + "start": 11311.68, + "end": 11317.04, + "probability": 0.9741 + }, + { + "start": 11317.36, + "end": 11318.08, + "probability": 0.9568 + }, + { + "start": 11318.24, + "end": 11320.2, + "probability": 0.9311 + }, + { + "start": 11320.42, + "end": 11322.48, + "probability": 0.9286 + }, + { + "start": 11322.58, + "end": 11325.04, + "probability": 0.9883 + }, + { + "start": 11325.04, + "end": 11327.34, + "probability": 0.9513 + }, + { + "start": 11327.5, + "end": 11329.46, + "probability": 0.9688 + }, + { + "start": 11330.61, + "end": 11335.98, + "probability": 0.981 + }, + { + "start": 11337.27, + "end": 11341.44, + "probability": 0.9988 + }, + { + "start": 11341.44, + "end": 11346.24, + "probability": 0.9447 + }, + { + "start": 11348.0, + "end": 11350.29, + "probability": 0.4564 + }, + { + "start": 11350.72, + "end": 11352.8, + "probability": 0.5462 + }, + { + "start": 11352.84, + "end": 11355.18, + "probability": 0.9178 + }, + { + "start": 11356.56, + "end": 11362.46, + "probability": 0.9772 + }, + { + "start": 11362.46, + "end": 11366.54, + "probability": 0.9302 + }, + { + "start": 11367.04, + "end": 11369.02, + "probability": 0.9888 + }, + { + "start": 11369.02, + "end": 11372.0, + "probability": 0.8826 + }, + { + "start": 11372.56, + "end": 11374.34, + "probability": 0.9658 + }, + { + "start": 11374.52, + "end": 11379.02, + "probability": 0.9923 + }, + { + "start": 11380.6, + "end": 11384.2, + "probability": 0.9985 + }, + { + "start": 11384.22, + "end": 11388.3, + "probability": 0.9932 + }, + { + "start": 11388.52, + "end": 11391.98, + "probability": 0.989 + }, + { + "start": 11392.6, + "end": 11399.66, + "probability": 0.9916 + }, + { + "start": 11400.3, + "end": 11403.3, + "probability": 0.9928 + }, + { + "start": 11403.3, + "end": 11406.16, + "probability": 0.9326 + }, + { + "start": 11406.24, + "end": 11410.16, + "probability": 0.9928 + }, + { + "start": 11410.82, + "end": 11411.8, + "probability": 0.685 + }, + { + "start": 11411.94, + "end": 11414.98, + "probability": 0.9965 + }, + { + "start": 11414.98, + "end": 11417.86, + "probability": 0.895 + }, + { + "start": 11418.0, + "end": 11418.64, + "probability": 0.4906 + }, + { + "start": 11419.08, + "end": 11423.14, + "probability": 0.9164 + }, + { + "start": 11423.52, + "end": 11425.18, + "probability": 0.777 + }, + { + "start": 11425.18, + "end": 11427.32, + "probability": 0.9965 + }, + { + "start": 11427.46, + "end": 11430.02, + "probability": 0.9146 + }, + { + "start": 11430.08, + "end": 11434.44, + "probability": 0.9976 + }, + { + "start": 11434.44, + "end": 11438.8, + "probability": 0.9997 + }, + { + "start": 11438.8, + "end": 11443.42, + "probability": 0.9938 + }, + { + "start": 11443.42, + "end": 11449.5, + "probability": 0.9438 + }, + { + "start": 11449.98, + "end": 11452.58, + "probability": 0.9565 + }, + { + "start": 11452.58, + "end": 11456.28, + "probability": 0.9526 + }, + { + "start": 11456.76, + "end": 11461.32, + "probability": 0.9277 + }, + { + "start": 11461.92, + "end": 11464.44, + "probability": 0.831 + }, + { + "start": 11464.44, + "end": 11466.68, + "probability": 0.9779 + }, + { + "start": 11466.86, + "end": 11468.6, + "probability": 0.9478 + }, + { + "start": 11469.16, + "end": 11472.7, + "probability": 0.7126 + }, + { + "start": 11472.88, + "end": 11474.42, + "probability": 0.9782 + }, + { + "start": 11474.92, + "end": 11477.54, + "probability": 0.9937 + }, + { + "start": 11479.1, + "end": 11482.42, + "probability": 0.9938 + }, + { + "start": 11482.42, + "end": 11486.04, + "probability": 0.9751 + }, + { + "start": 11486.56, + "end": 11487.24, + "probability": 0.7458 + }, + { + "start": 11487.26, + "end": 11489.86, + "probability": 0.9787 + }, + { + "start": 11489.86, + "end": 11492.5, + "probability": 0.9913 + }, + { + "start": 11493.06, + "end": 11497.76, + "probability": 0.9871 + }, + { + "start": 11498.04, + "end": 11499.14, + "probability": 0.9478 + }, + { + "start": 11499.26, + "end": 11500.26, + "probability": 0.6969 + }, + { + "start": 11500.38, + "end": 11501.74, + "probability": 0.9401 + }, + { + "start": 11502.3, + "end": 11506.28, + "probability": 0.8993 + }, + { + "start": 11506.68, + "end": 11510.67, + "probability": 0.9821 + }, + { + "start": 11511.02, + "end": 11515.5, + "probability": 0.9752 + }, + { + "start": 11516.0, + "end": 11516.94, + "probability": 0.3359 + }, + { + "start": 11516.94, + "end": 11520.7, + "probability": 0.6872 + }, + { + "start": 11520.94, + "end": 11522.74, + "probability": 0.8183 + }, + { + "start": 11522.74, + "end": 11525.18, + "probability": 0.8826 + }, + { + "start": 11526.02, + "end": 11527.94, + "probability": 0.7703 + }, + { + "start": 11528.02, + "end": 11529.78, + "probability": 0.7556 + }, + { + "start": 11529.9, + "end": 11533.48, + "probability": 0.9598 + }, + { + "start": 11534.06, + "end": 11535.08, + "probability": 0.5912 + }, + { + "start": 11535.72, + "end": 11538.82, + "probability": 0.9725 + }, + { + "start": 11539.88, + "end": 11542.38, + "probability": 0.993 + }, + { + "start": 11542.38, + "end": 11545.02, + "probability": 0.9115 + }, + { + "start": 11545.08, + "end": 11546.44, + "probability": 0.831 + }, + { + "start": 11547.14, + "end": 11549.6, + "probability": 0.9983 + }, + { + "start": 11549.68, + "end": 11554.96, + "probability": 0.9849 + }, + { + "start": 11555.4, + "end": 11559.76, + "probability": 0.9317 + }, + { + "start": 11559.96, + "end": 11562.22, + "probability": 0.9882 + }, + { + "start": 11562.22, + "end": 11565.54, + "probability": 0.9996 + }, + { + "start": 11566.1, + "end": 11569.04, + "probability": 0.7453 + }, + { + "start": 11569.18, + "end": 11569.5, + "probability": 0.4158 + }, + { + "start": 11569.64, + "end": 11573.95, + "probability": 0.973 + }, + { + "start": 11575.15, + "end": 11579.98, + "probability": 0.9151 + }, + { + "start": 11580.5, + "end": 11583.64, + "probability": 0.9565 + }, + { + "start": 11583.64, + "end": 11586.8, + "probability": 0.9478 + }, + { + "start": 11587.34, + "end": 11591.46, + "probability": 0.8347 + }, + { + "start": 11592.0, + "end": 11595.08, + "probability": 0.9183 + }, + { + "start": 11595.08, + "end": 11598.12, + "probability": 0.9914 + }, + { + "start": 11598.2, + "end": 11601.86, + "probability": 0.9244 + }, + { + "start": 11602.5, + "end": 11606.02, + "probability": 0.8783 + }, + { + "start": 11606.28, + "end": 11610.9, + "probability": 0.9403 + }, + { + "start": 11611.4, + "end": 11617.24, + "probability": 0.8646 + }, + { + "start": 11617.8, + "end": 11621.74, + "probability": 0.9388 + }, + { + "start": 11621.82, + "end": 11624.5, + "probability": 0.9872 + }, + { + "start": 11624.62, + "end": 11625.32, + "probability": 0.8645 + }, + { + "start": 11625.9, + "end": 11628.58, + "probability": 0.9962 + }, + { + "start": 11629.2, + "end": 11630.24, + "probability": 0.8005 + }, + { + "start": 11630.36, + "end": 11632.56, + "probability": 0.9553 + }, + { + "start": 11632.7, + "end": 11635.34, + "probability": 0.9464 + }, + { + "start": 11635.96, + "end": 11639.98, + "probability": 0.9794 + }, + { + "start": 11640.1, + "end": 11643.02, + "probability": 0.9333 + }, + { + "start": 11643.6, + "end": 11645.36, + "probability": 0.9591 + }, + { + "start": 11646.0, + "end": 11646.48, + "probability": 0.6493 + }, + { + "start": 11646.48, + "end": 11648.56, + "probability": 0.9622 + }, + { + "start": 11648.62, + "end": 11650.3, + "probability": 0.9372 + }, + { + "start": 11650.38, + "end": 11652.58, + "probability": 0.8749 + }, + { + "start": 11653.32, + "end": 11655.8, + "probability": 0.6883 + }, + { + "start": 11656.82, + "end": 11660.34, + "probability": 0.5704 + }, + { + "start": 11661.64, + "end": 11664.22, + "probability": 0.9844 + }, + { + "start": 11664.22, + "end": 11668.64, + "probability": 0.9752 + }, + { + "start": 11669.12, + "end": 11670.3, + "probability": 0.7924 + }, + { + "start": 11670.38, + "end": 11674.02, + "probability": 0.99 + }, + { + "start": 11674.02, + "end": 11678.68, + "probability": 0.9958 + }, + { + "start": 11679.1, + "end": 11683.0, + "probability": 0.9098 + }, + { + "start": 11683.04, + "end": 11684.76, + "probability": 0.9166 + }, + { + "start": 11685.18, + "end": 11688.88, + "probability": 0.9805 + }, + { + "start": 11688.94, + "end": 11690.48, + "probability": 0.9408 + }, + { + "start": 11690.54, + "end": 11693.68, + "probability": 0.9916 + }, + { + "start": 11693.8, + "end": 11695.1, + "probability": 0.5342 + }, + { + "start": 11695.82, + "end": 11697.84, + "probability": 0.9704 + }, + { + "start": 11697.9, + "end": 11701.38, + "probability": 0.9681 + }, + { + "start": 11701.5, + "end": 11703.36, + "probability": 0.9623 + }, + { + "start": 11703.52, + "end": 11706.54, + "probability": 0.9941 + }, + { + "start": 11706.57, + "end": 11712.42, + "probability": 0.9546 + }, + { + "start": 11713.22, + "end": 11719.1, + "probability": 0.9922 + }, + { + "start": 11719.22, + "end": 11721.08, + "probability": 0.9927 + }, + { + "start": 11721.74, + "end": 11724.56, + "probability": 0.9948 + }, + { + "start": 11724.56, + "end": 11726.76, + "probability": 0.74 + }, + { + "start": 11727.56, + "end": 11729.02, + "probability": 0.6251 + }, + { + "start": 11729.32, + "end": 11732.5, + "probability": 0.9646 + }, + { + "start": 11732.64, + "end": 11734.94, + "probability": 0.9939 + }, + { + "start": 11735.16, + "end": 11736.3, + "probability": 0.8423 + }, + { + "start": 11736.92, + "end": 11740.28, + "probability": 0.9946 + }, + { + "start": 11740.84, + "end": 11743.8, + "probability": 0.995 + }, + { + "start": 11743.88, + "end": 11751.48, + "probability": 0.9971 + }, + { + "start": 11751.78, + "end": 11751.88, + "probability": 0.4673 + }, + { + "start": 11751.9, + "end": 11752.24, + "probability": 0.8854 + }, + { + "start": 11752.38, + "end": 11755.8, + "probability": 0.9808 + }, + { + "start": 11755.98, + "end": 11756.18, + "probability": 0.6772 + }, + { + "start": 11757.06, + "end": 11759.98, + "probability": 0.7347 + }, + { + "start": 11760.36, + "end": 11761.96, + "probability": 0.8145 + }, + { + "start": 11762.3, + "end": 11763.14, + "probability": 0.8714 + }, + { + "start": 11763.14, + "end": 11763.76, + "probability": 0.6464 + }, + { + "start": 11763.8, + "end": 11764.74, + "probability": 0.7816 + }, + { + "start": 11765.1, + "end": 11766.56, + "probability": 0.9205 + }, + { + "start": 11767.1, + "end": 11767.14, + "probability": 0.0172 + }, + { + "start": 11793.54, + "end": 11795.02, + "probability": 0.4419 + }, + { + "start": 11795.16, + "end": 11795.66, + "probability": 0.4988 + }, + { + "start": 11795.66, + "end": 11797.88, + "probability": 0.98 + }, + { + "start": 11798.02, + "end": 11800.28, + "probability": 0.96 + }, + { + "start": 11802.02, + "end": 11804.86, + "probability": 0.9695 + }, + { + "start": 11804.86, + "end": 11808.88, + "probability": 0.9862 + }, + { + "start": 11809.86, + "end": 11811.52, + "probability": 0.9531 + }, + { + "start": 11812.16, + "end": 11816.36, + "probability": 0.8816 + }, + { + "start": 11817.1, + "end": 11817.88, + "probability": 0.8335 + }, + { + "start": 11818.2, + "end": 11821.2, + "probability": 0.988 + }, + { + "start": 11821.88, + "end": 11828.32, + "probability": 0.9938 + }, + { + "start": 11828.38, + "end": 11829.78, + "probability": 0.9084 + }, + { + "start": 11830.4, + "end": 11833.94, + "probability": 0.9041 + }, + { + "start": 11834.44, + "end": 11836.72, + "probability": 0.8275 + }, + { + "start": 11837.38, + "end": 11841.34, + "probability": 0.9893 + }, + { + "start": 11841.34, + "end": 11848.28, + "probability": 0.9914 + }, + { + "start": 11849.2, + "end": 11852.52, + "probability": 0.9951 + }, + { + "start": 11852.78, + "end": 11854.46, + "probability": 0.3275 + }, + { + "start": 11855.88, + "end": 11859.12, + "probability": 0.6723 + }, + { + "start": 11859.68, + "end": 11863.22, + "probability": 0.9912 + }, + { + "start": 11863.42, + "end": 11865.38, + "probability": 0.998 + }, + { + "start": 11865.4, + "end": 11867.18, + "probability": 0.9879 + }, + { + "start": 11867.22, + "end": 11869.6, + "probability": 0.9883 + }, + { + "start": 11870.04, + "end": 11873.58, + "probability": 0.8137 + }, + { + "start": 11874.0, + "end": 11877.1, + "probability": 0.8891 + }, + { + "start": 11878.22, + "end": 11879.55, + "probability": 0.9809 + }, + { + "start": 11880.34, + "end": 11883.84, + "probability": 0.9966 + }, + { + "start": 11884.06, + "end": 11886.0, + "probability": 0.6654 + }, + { + "start": 11886.78, + "end": 11890.34, + "probability": 0.9907 + }, + { + "start": 11891.14, + "end": 11895.56, + "probability": 0.9044 + }, + { + "start": 11896.54, + "end": 11899.58, + "probability": 0.9541 + }, + { + "start": 11899.72, + "end": 11900.72, + "probability": 0.9345 + }, + { + "start": 11900.98, + "end": 11903.34, + "probability": 0.9961 + }, + { + "start": 11903.56, + "end": 11903.8, + "probability": 0.671 + }, + { + "start": 11904.74, + "end": 11906.56, + "probability": 0.9657 + }, + { + "start": 11907.08, + "end": 11907.94, + "probability": 0.73 + }, + { + "start": 11908.22, + "end": 11909.26, + "probability": 0.918 + }, + { + "start": 11909.36, + "end": 11911.14, + "probability": 0.9975 + }, + { + "start": 11911.5, + "end": 11913.64, + "probability": 0.9567 + }, + { + "start": 11913.8, + "end": 11915.84, + "probability": 0.9719 + }, + { + "start": 11916.2, + "end": 11918.14, + "probability": 0.9814 + }, + { + "start": 11919.08, + "end": 11921.06, + "probability": 0.9832 + }, + { + "start": 11921.74, + "end": 11921.74, + "probability": 0.4986 + }, + { + "start": 11921.74, + "end": 11923.1, + "probability": 0.7845 + }, + { + "start": 11923.64, + "end": 11924.64, + "probability": 0.9678 + }, + { + "start": 11924.76, + "end": 11927.59, + "probability": 0.9148 + }, + { + "start": 11928.18, + "end": 11930.52, + "probability": 0.9028 + }, + { + "start": 11930.88, + "end": 11931.42, + "probability": 0.9602 + }, + { + "start": 11931.86, + "end": 11932.22, + "probability": 0.4095 + }, + { + "start": 11932.54, + "end": 11935.8, + "probability": 0.9984 + }, + { + "start": 11936.12, + "end": 11939.3, + "probability": 0.9415 + }, + { + "start": 11940.02, + "end": 11940.68, + "probability": 0.6591 + }, + { + "start": 11940.98, + "end": 11947.38, + "probability": 0.9441 + }, + { + "start": 11947.6, + "end": 11950.92, + "probability": 0.9919 + }, + { + "start": 11951.48, + "end": 11951.54, + "probability": 0.2184 + }, + { + "start": 11951.54, + "end": 11952.74, + "probability": 0.5762 + }, + { + "start": 11953.12, + "end": 11956.88, + "probability": 0.9349 + }, + { + "start": 11956.88, + "end": 11960.18, + "probability": 0.8958 + }, + { + "start": 11960.26, + "end": 11960.74, + "probability": 0.7744 + }, + { + "start": 11960.8, + "end": 11961.63, + "probability": 0.9556 + }, + { + "start": 11965.1, + "end": 11967.06, + "probability": 0.594 + }, + { + "start": 11967.14, + "end": 11972.52, + "probability": 0.9261 + }, + { + "start": 11972.8, + "end": 11976.82, + "probability": 0.9639 + }, + { + "start": 11977.18, + "end": 11977.96, + "probability": 0.8767 + }, + { + "start": 11978.1, + "end": 11979.58, + "probability": 0.876 + }, + { + "start": 11980.08, + "end": 11981.8, + "probability": 0.9594 + }, + { + "start": 11981.94, + "end": 11984.4, + "probability": 0.9957 + }, + { + "start": 11984.66, + "end": 11985.96, + "probability": 0.889 + }, + { + "start": 11986.14, + "end": 11990.84, + "probability": 0.9136 + }, + { + "start": 11990.92, + "end": 11992.02, + "probability": 0.9778 + }, + { + "start": 11992.12, + "end": 11994.32, + "probability": 0.9856 + }, + { + "start": 11994.6, + "end": 11999.72, + "probability": 0.9758 + }, + { + "start": 11999.88, + "end": 12000.12, + "probability": 0.7253 + }, + { + "start": 12000.86, + "end": 12003.08, + "probability": 0.9491 + }, + { + "start": 12003.24, + "end": 12004.64, + "probability": 0.7554 + }, + { + "start": 12017.28, + "end": 12018.06, + "probability": 0.6691 + }, + { + "start": 12019.14, + "end": 12021.64, + "probability": 0.7982 + }, + { + "start": 12023.1, + "end": 12025.5, + "probability": 0.6694 + }, + { + "start": 12027.28, + "end": 12033.08, + "probability": 0.9664 + }, + { + "start": 12034.56, + "end": 12037.5, + "probability": 0.9353 + }, + { + "start": 12038.34, + "end": 12041.88, + "probability": 0.9831 + }, + { + "start": 12043.32, + "end": 12045.82, + "probability": 0.9937 + }, + { + "start": 12047.0, + "end": 12047.8, + "probability": 0.6747 + }, + { + "start": 12049.0, + "end": 12050.1, + "probability": 0.9558 + }, + { + "start": 12051.76, + "end": 12054.38, + "probability": 0.9734 + }, + { + "start": 12055.54, + "end": 12059.12, + "probability": 0.9834 + }, + { + "start": 12060.04, + "end": 12063.7, + "probability": 0.94 + }, + { + "start": 12064.78, + "end": 12067.68, + "probability": 0.9857 + }, + { + "start": 12068.88, + "end": 12070.0, + "probability": 0.9989 + }, + { + "start": 12071.7, + "end": 12074.04, + "probability": 0.9513 + }, + { + "start": 12075.0, + "end": 12077.76, + "probability": 0.989 + }, + { + "start": 12078.4, + "end": 12079.28, + "probability": 0.8476 + }, + { + "start": 12080.6, + "end": 12083.9, + "probability": 0.8717 + }, + { + "start": 12084.56, + "end": 12088.74, + "probability": 0.9838 + }, + { + "start": 12089.88, + "end": 12091.12, + "probability": 0.828 + }, + { + "start": 12092.3, + "end": 12095.68, + "probability": 0.9867 + }, + { + "start": 12096.94, + "end": 12101.58, + "probability": 0.9966 + }, + { + "start": 12102.0, + "end": 12104.5, + "probability": 0.9254 + }, + { + "start": 12105.68, + "end": 12107.34, + "probability": 0.9487 + }, + { + "start": 12108.74, + "end": 12111.08, + "probability": 0.9366 + }, + { + "start": 12112.02, + "end": 12113.58, + "probability": 0.9383 + }, + { + "start": 12114.58, + "end": 12119.96, + "probability": 0.7323 + }, + { + "start": 12120.9, + "end": 12123.26, + "probability": 0.7972 + }, + { + "start": 12124.34, + "end": 12128.4, + "probability": 0.9885 + }, + { + "start": 12128.44, + "end": 12130.0, + "probability": 0.9429 + }, + { + "start": 12130.94, + "end": 12134.78, + "probability": 0.9956 + }, + { + "start": 12135.02, + "end": 12135.96, + "probability": 0.7208 + }, + { + "start": 12136.36, + "end": 12139.36, + "probability": 0.9766 + }, + { + "start": 12140.1, + "end": 12143.09, + "probability": 0.9873 + }, + { + "start": 12144.5, + "end": 12147.26, + "probability": 0.9719 + }, + { + "start": 12148.16, + "end": 12154.88, + "probability": 0.973 + }, + { + "start": 12156.34, + "end": 12160.48, + "probability": 0.9956 + }, + { + "start": 12161.14, + "end": 12165.62, + "probability": 0.9959 + }, + { + "start": 12166.84, + "end": 12169.7, + "probability": 0.981 + }, + { + "start": 12170.94, + "end": 12176.24, + "probability": 0.8515 + }, + { + "start": 12177.24, + "end": 12181.62, + "probability": 0.7004 + }, + { + "start": 12181.96, + "end": 12185.26, + "probability": 0.9612 + }, + { + "start": 12186.52, + "end": 12191.02, + "probability": 0.8549 + }, + { + "start": 12191.64, + "end": 12193.5, + "probability": 0.923 + }, + { + "start": 12194.02, + "end": 12194.74, + "probability": 0.6503 + }, + { + "start": 12195.22, + "end": 12196.12, + "probability": 0.5701 + }, + { + "start": 12196.54, + "end": 12200.08, + "probability": 0.9261 + }, + { + "start": 12200.44, + "end": 12206.1, + "probability": 0.9932 + }, + { + "start": 12206.32, + "end": 12206.86, + "probability": 0.731 + }, + { + "start": 12208.22, + "end": 12210.28, + "probability": 0.8512 + }, + { + "start": 12210.96, + "end": 12213.71, + "probability": 0.7506 + }, + { + "start": 12216.62, + "end": 12218.18, + "probability": 0.9618 + }, + { + "start": 12219.34, + "end": 12220.28, + "probability": 0.637 + }, + { + "start": 12221.06, + "end": 12221.76, + "probability": 0.9976 + }, + { + "start": 12237.72, + "end": 12238.66, + "probability": 0.6029 + }, + { + "start": 12246.9, + "end": 12248.22, + "probability": 0.4273 + }, + { + "start": 12248.3, + "end": 12248.3, + "probability": 0.514 + }, + { + "start": 12248.3, + "end": 12248.9, + "probability": 0.6871 + }, + { + "start": 12249.06, + "end": 12252.38, + "probability": 0.9967 + }, + { + "start": 12253.2, + "end": 12256.58, + "probability": 0.9963 + }, + { + "start": 12258.1, + "end": 12260.18, + "probability": 0.9978 + }, + { + "start": 12260.2, + "end": 12261.3, + "probability": 0.9824 + }, + { + "start": 12261.6, + "end": 12264.54, + "probability": 0.9335 + }, + { + "start": 12264.98, + "end": 12266.44, + "probability": 0.663 + }, + { + "start": 12266.7, + "end": 12267.12, + "probability": 0.4998 + }, + { + "start": 12267.86, + "end": 12270.7, + "probability": 0.9814 + }, + { + "start": 12271.3, + "end": 12273.84, + "probability": 0.7868 + }, + { + "start": 12273.96, + "end": 12277.66, + "probability": 0.9969 + }, + { + "start": 12278.24, + "end": 12281.16, + "probability": 0.9941 + }, + { + "start": 12282.22, + "end": 12284.22, + "probability": 0.7479 + }, + { + "start": 12284.34, + "end": 12287.22, + "probability": 0.99 + }, + { + "start": 12287.52, + "end": 12289.98, + "probability": 0.9939 + }, + { + "start": 12290.6, + "end": 12290.78, + "probability": 0.4067 + }, + { + "start": 12290.78, + "end": 12293.68, + "probability": 0.9591 + }, + { + "start": 12293.68, + "end": 12295.94, + "probability": 0.9888 + }, + { + "start": 12296.4, + "end": 12297.48, + "probability": 0.9814 + }, + { + "start": 12297.66, + "end": 12298.3, + "probability": 0.7543 + }, + { + "start": 12298.46, + "end": 12299.1, + "probability": 0.8244 + }, + { + "start": 12299.28, + "end": 12300.08, + "probability": 0.8972 + }, + { + "start": 12301.06, + "end": 12301.44, + "probability": 0.629 + }, + { + "start": 12301.56, + "end": 12302.12, + "probability": 0.6858 + }, + { + "start": 12302.28, + "end": 12305.14, + "probability": 0.8947 + }, + { + "start": 12305.22, + "end": 12307.33, + "probability": 0.9098 + }, + { + "start": 12308.6, + "end": 12312.96, + "probability": 0.9893 + }, + { + "start": 12313.7, + "end": 12316.7, + "probability": 0.968 + }, + { + "start": 12317.42, + "end": 12318.16, + "probability": 0.8 + }, + { + "start": 12318.24, + "end": 12322.22, + "probability": 0.991 + }, + { + "start": 12322.82, + "end": 12324.96, + "probability": 0.9937 + }, + { + "start": 12325.58, + "end": 12326.52, + "probability": 0.6861 + }, + { + "start": 12327.26, + "end": 12331.3, + "probability": 0.9918 + }, + { + "start": 12331.3, + "end": 12334.71, + "probability": 0.9971 + }, + { + "start": 12335.54, + "end": 12338.3, + "probability": 0.9928 + }, + { + "start": 12338.38, + "end": 12338.84, + "probability": 0.9178 + }, + { + "start": 12338.94, + "end": 12343.0, + "probability": 0.9946 + }, + { + "start": 12343.36, + "end": 12344.6, + "probability": 0.9748 + }, + { + "start": 12344.8, + "end": 12349.02, + "probability": 0.9681 + }, + { + "start": 12349.54, + "end": 12351.84, + "probability": 0.9132 + }, + { + "start": 12352.26, + "end": 12355.3, + "probability": 0.9561 + }, + { + "start": 12356.86, + "end": 12357.66, + "probability": 0.667 + }, + { + "start": 12357.72, + "end": 12361.26, + "probability": 0.9513 + }, + { + "start": 12361.26, + "end": 12364.26, + "probability": 0.8965 + }, + { + "start": 12364.4, + "end": 12366.56, + "probability": 0.6276 + }, + { + "start": 12367.12, + "end": 12372.14, + "probability": 0.9508 + }, + { + "start": 12372.84, + "end": 12374.76, + "probability": 0.9939 + }, + { + "start": 12374.76, + "end": 12379.54, + "probability": 0.8837 + }, + { + "start": 12379.86, + "end": 12383.68, + "probability": 0.9907 + }, + { + "start": 12384.5, + "end": 12386.72, + "probability": 0.994 + }, + { + "start": 12386.98, + "end": 12390.54, + "probability": 0.9868 + }, + { + "start": 12390.66, + "end": 12394.88, + "probability": 0.9199 + }, + { + "start": 12395.28, + "end": 12398.2, + "probability": 0.9656 + }, + { + "start": 12399.04, + "end": 12405.16, + "probability": 0.995 + }, + { + "start": 12405.88, + "end": 12410.62, + "probability": 0.996 + }, + { + "start": 12411.08, + "end": 12411.88, + "probability": 0.9125 + }, + { + "start": 12412.02, + "end": 12412.6, + "probability": 0.6324 + }, + { + "start": 12412.7, + "end": 12414.8, + "probability": 0.9844 + }, + { + "start": 12415.18, + "end": 12418.12, + "probability": 0.9666 + }, + { + "start": 12418.24, + "end": 12422.04, + "probability": 0.9763 + }, + { + "start": 12422.82, + "end": 12424.16, + "probability": 0.9548 + }, + { + "start": 12424.8, + "end": 12429.3, + "probability": 0.9912 + }, + { + "start": 12430.02, + "end": 12431.38, + "probability": 0.6415 + }, + { + "start": 12431.46, + "end": 12432.22, + "probability": 0.9696 + }, + { + "start": 12432.38, + "end": 12434.94, + "probability": 0.9929 + }, + { + "start": 12434.94, + "end": 12437.16, + "probability": 0.9943 + }, + { + "start": 12437.62, + "end": 12442.38, + "probability": 0.9971 + }, + { + "start": 12444.06, + "end": 12444.76, + "probability": 0.6517 + }, + { + "start": 12445.22, + "end": 12447.44, + "probability": 0.9006 + }, + { + "start": 12447.52, + "end": 12449.34, + "probability": 0.9413 + }, + { + "start": 12449.42, + "end": 12449.56, + "probability": 0.7387 + }, + { + "start": 12450.38, + "end": 12452.18, + "probability": 0.6086 + }, + { + "start": 12452.26, + "end": 12453.72, + "probability": 0.9889 + }, + { + "start": 12454.66, + "end": 12455.44, + "probability": 0.8599 + }, + { + "start": 12455.8, + "end": 12457.28, + "probability": 0.9282 + }, + { + "start": 12458.64, + "end": 12459.52, + "probability": 0.3464 + }, + { + "start": 12460.14, + "end": 12461.74, + "probability": 0.9431 + }, + { + "start": 12462.6, + "end": 12463.26, + "probability": 0.7692 + }, + { + "start": 12463.92, + "end": 12465.22, + "probability": 0.9142 + }, + { + "start": 12481.54, + "end": 12482.26, + "probability": 0.7737 + }, + { + "start": 12482.72, + "end": 12482.82, + "probability": 0.41 + }, + { + "start": 12482.82, + "end": 12483.26, + "probability": 0.435 + }, + { + "start": 12483.62, + "end": 12484.32, + "probability": 0.7919 + }, + { + "start": 12485.63, + "end": 12487.28, + "probability": 0.5422 + }, + { + "start": 12489.02, + "end": 12491.74, + "probability": 0.8596 + }, + { + "start": 12492.36, + "end": 12493.68, + "probability": 0.9911 + }, + { + "start": 12495.06, + "end": 12497.52, + "probability": 0.9835 + }, + { + "start": 12498.6, + "end": 12503.98, + "probability": 0.9951 + }, + { + "start": 12505.42, + "end": 12506.34, + "probability": 0.7132 + }, + { + "start": 12506.48, + "end": 12507.24, + "probability": 0.8356 + }, + { + "start": 12507.26, + "end": 12508.16, + "probability": 0.9177 + }, + { + "start": 12508.26, + "end": 12509.0, + "probability": 0.7968 + }, + { + "start": 12510.46, + "end": 12511.34, + "probability": 0.978 + }, + { + "start": 12511.8, + "end": 12512.96, + "probability": 0.9592 + }, + { + "start": 12514.38, + "end": 12514.78, + "probability": 0.6049 + }, + { + "start": 12514.9, + "end": 12515.51, + "probability": 0.7849 + }, + { + "start": 12515.6, + "end": 12516.62, + "probability": 0.7917 + }, + { + "start": 12516.72, + "end": 12519.15, + "probability": 0.9631 + }, + { + "start": 12520.7, + "end": 12521.2, + "probability": 0.6699 + }, + { + "start": 12521.3, + "end": 12521.66, + "probability": 0.8123 + }, + { + "start": 12521.9, + "end": 12523.06, + "probability": 0.7377 + }, + { + "start": 12524.9, + "end": 12525.5, + "probability": 0.1329 + }, + { + "start": 12525.5, + "end": 12525.5, + "probability": 0.2637 + }, + { + "start": 12525.5, + "end": 12526.28, + "probability": 0.0797 + }, + { + "start": 12527.08, + "end": 12529.64, + "probability": 0.4453 + }, + { + "start": 12530.98, + "end": 12533.96, + "probability": 0.6777 + }, + { + "start": 12533.96, + "end": 12537.1, + "probability": 0.7698 + }, + { + "start": 12537.76, + "end": 12541.02, + "probability": 0.998 + }, + { + "start": 12541.6, + "end": 12543.24, + "probability": 0.7582 + }, + { + "start": 12543.32, + "end": 12544.04, + "probability": 0.9244 + }, + { + "start": 12544.4, + "end": 12545.26, + "probability": 0.975 + }, + { + "start": 12545.62, + "end": 12546.34, + "probability": 0.9783 + }, + { + "start": 12546.44, + "end": 12547.76, + "probability": 0.988 + }, + { + "start": 12547.76, + "end": 12549.64, + "probability": 0.9836 + }, + { + "start": 12550.28, + "end": 12551.5, + "probability": 0.8613 + }, + { + "start": 12551.68, + "end": 12553.4, + "probability": 0.9928 + }, + { + "start": 12554.78, + "end": 12555.1, + "probability": 0.7968 + }, + { + "start": 12555.24, + "end": 12556.22, + "probability": 0.6636 + }, + { + "start": 12556.34, + "end": 12561.46, + "probability": 0.9906 + }, + { + "start": 12561.72, + "end": 12562.2, + "probability": 0.7223 + }, + { + "start": 12562.5, + "end": 12564.2, + "probability": 0.998 + }, + { + "start": 12564.78, + "end": 12567.1, + "probability": 0.8511 + }, + { + "start": 12568.18, + "end": 12569.06, + "probability": 0.9868 + }, + { + "start": 12569.24, + "end": 12569.48, + "probability": 0.3298 + }, + { + "start": 12569.62, + "end": 12572.12, + "probability": 0.9512 + }, + { + "start": 12572.84, + "end": 12576.34, + "probability": 0.9961 + }, + { + "start": 12577.76, + "end": 12580.52, + "probability": 0.864 + }, + { + "start": 12581.26, + "end": 12581.64, + "probability": 0.7741 + }, + { + "start": 12581.76, + "end": 12585.2, + "probability": 0.9106 + }, + { + "start": 12585.26, + "end": 12587.4, + "probability": 0.9823 + }, + { + "start": 12587.48, + "end": 12588.72, + "probability": 0.8068 + }, + { + "start": 12589.14, + "end": 12591.88, + "probability": 0.9979 + }, + { + "start": 12592.26, + "end": 12594.08, + "probability": 0.9907 + }, + { + "start": 12594.88, + "end": 12597.34, + "probability": 0.9565 + }, + { + "start": 12598.16, + "end": 12601.58, + "probability": 0.9869 + }, + { + "start": 12602.16, + "end": 12604.78, + "probability": 0.9935 + }, + { + "start": 12605.08, + "end": 12609.22, + "probability": 0.7067 + }, + { + "start": 12609.58, + "end": 12610.54, + "probability": 0.9453 + }, + { + "start": 12611.2, + "end": 12612.06, + "probability": 0.7524 + }, + { + "start": 12612.18, + "end": 12615.5, + "probability": 0.9146 + }, + { + "start": 12615.82, + "end": 12617.22, + "probability": 0.4839 + }, + { + "start": 12617.84, + "end": 12620.76, + "probability": 0.9901 + }, + { + "start": 12621.5, + "end": 12622.6, + "probability": 0.8616 + }, + { + "start": 12622.94, + "end": 12623.76, + "probability": 0.9519 + }, + { + "start": 12623.86, + "end": 12624.54, + "probability": 0.9079 + }, + { + "start": 12625.14, + "end": 12626.92, + "probability": 0.9536 + }, + { + "start": 12627.98, + "end": 12632.62, + "probability": 0.9954 + }, + { + "start": 12633.24, + "end": 12637.5, + "probability": 0.6788 + }, + { + "start": 12637.98, + "end": 12639.32, + "probability": 0.8943 + }, + { + "start": 12639.9, + "end": 12642.32, + "probability": 0.9941 + }, + { + "start": 12642.6, + "end": 12644.08, + "probability": 0.9066 + }, + { + "start": 12644.5, + "end": 12647.62, + "probability": 0.979 + }, + { + "start": 12647.7, + "end": 12650.02, + "probability": 0.9976 + }, + { + "start": 12650.64, + "end": 12651.88, + "probability": 0.6279 + }, + { + "start": 12652.2, + "end": 12652.68, + "probability": 0.788 + }, + { + "start": 12652.74, + "end": 12655.18, + "probability": 0.9723 + }, + { + "start": 12655.76, + "end": 12657.24, + "probability": 0.883 + }, + { + "start": 12657.82, + "end": 12661.14, + "probability": 0.9967 + }, + { + "start": 12661.17, + "end": 12664.98, + "probability": 0.9623 + }, + { + "start": 12665.58, + "end": 12667.56, + "probability": 0.9742 + }, + { + "start": 12668.06, + "end": 12668.26, + "probability": 0.7907 + }, + { + "start": 12668.96, + "end": 12670.88, + "probability": 0.9782 + }, + { + "start": 12670.92, + "end": 12672.34, + "probability": 0.9625 + }, + { + "start": 12673.42, + "end": 12674.12, + "probability": 0.4881 + }, + { + "start": 12674.92, + "end": 12676.82, + "probability": 0.8177 + }, + { + "start": 12690.52, + "end": 12692.13, + "probability": 0.6314 + }, + { + "start": 12692.56, + "end": 12693.36, + "probability": 0.5839 + }, + { + "start": 12693.36, + "end": 12694.58, + "probability": 0.8714 + }, + { + "start": 12694.82, + "end": 12701.36, + "probability": 0.7906 + }, + { + "start": 12702.24, + "end": 12703.34, + "probability": 0.5668 + }, + { + "start": 12703.46, + "end": 12707.86, + "probability": 0.9641 + }, + { + "start": 12707.86, + "end": 12712.28, + "probability": 0.9971 + }, + { + "start": 12712.76, + "end": 12716.36, + "probability": 0.989 + }, + { + "start": 12716.74, + "end": 12719.82, + "probability": 0.9912 + }, + { + "start": 12720.68, + "end": 12726.9, + "probability": 0.9923 + }, + { + "start": 12727.42, + "end": 12728.72, + "probability": 0.6591 + }, + { + "start": 12728.82, + "end": 12729.45, + "probability": 0.896 + }, + { + "start": 12729.66, + "end": 12731.16, + "probability": 0.9707 + }, + { + "start": 12731.64, + "end": 12732.44, + "probability": 0.7776 + }, + { + "start": 12732.56, + "end": 12733.8, + "probability": 0.9811 + }, + { + "start": 12734.08, + "end": 12735.2, + "probability": 0.9828 + }, + { + "start": 12735.82, + "end": 12737.1, + "probability": 0.986 + }, + { + "start": 12737.68, + "end": 12738.6, + "probability": 0.6731 + }, + { + "start": 12738.98, + "end": 12743.9, + "probability": 0.9708 + }, + { + "start": 12744.48, + "end": 12746.68, + "probability": 0.8914 + }, + { + "start": 12747.58, + "end": 12749.08, + "probability": 0.9697 + }, + { + "start": 12749.56, + "end": 12751.92, + "probability": 0.9941 + }, + { + "start": 12752.4, + "end": 12754.78, + "probability": 0.8926 + }, + { + "start": 12755.22, + "end": 12761.06, + "probability": 0.9807 + }, + { + "start": 12761.52, + "end": 12764.78, + "probability": 0.9922 + }, + { + "start": 12766.36, + "end": 12766.82, + "probability": 0.9581 + }, + { + "start": 12767.16, + "end": 12768.3, + "probability": 0.9524 + }, + { + "start": 12768.42, + "end": 12770.5, + "probability": 0.9971 + }, + { + "start": 12771.04, + "end": 12774.54, + "probability": 0.9889 + }, + { + "start": 12774.64, + "end": 12777.56, + "probability": 0.9102 + }, + { + "start": 12778.02, + "end": 12783.06, + "probability": 0.9895 + }, + { + "start": 12783.4, + "end": 12784.72, + "probability": 0.7715 + }, + { + "start": 12784.78, + "end": 12785.84, + "probability": 0.9792 + }, + { + "start": 12786.3, + "end": 12787.46, + "probability": 0.939 + }, + { + "start": 12787.48, + "end": 12789.42, + "probability": 0.9847 + }, + { + "start": 12790.08, + "end": 12794.88, + "probability": 0.9868 + }, + { + "start": 12795.3, + "end": 12797.8, + "probability": 0.968 + }, + { + "start": 12798.3, + "end": 12799.43, + "probability": 0.9711 + }, + { + "start": 12800.22, + "end": 12802.4, + "probability": 0.9667 + }, + { + "start": 12803.06, + "end": 12810.48, + "probability": 0.973 + }, + { + "start": 12811.06, + "end": 12813.26, + "probability": 0.7086 + }, + { + "start": 12813.78, + "end": 12816.08, + "probability": 0.7229 + }, + { + "start": 12816.76, + "end": 12819.9, + "probability": 0.9712 + }, + { + "start": 12820.66, + "end": 12823.26, + "probability": 0.8746 + }, + { + "start": 12823.28, + "end": 12824.83, + "probability": 0.9763 + }, + { + "start": 12825.52, + "end": 12825.98, + "probability": 0.4792 + }, + { + "start": 12826.02, + "end": 12828.04, + "probability": 0.9137 + }, + { + "start": 12828.46, + "end": 12831.54, + "probability": 0.9764 + }, + { + "start": 12831.82, + "end": 12833.14, + "probability": 0.9857 + }, + { + "start": 12833.44, + "end": 12834.94, + "probability": 0.8254 + }, + { + "start": 12835.48, + "end": 12838.4, + "probability": 0.7545 + }, + { + "start": 12839.66, + "end": 12843.56, + "probability": 0.5288 + }, + { + "start": 12843.56, + "end": 12843.56, + "probability": 0.1184 + }, + { + "start": 12843.56, + "end": 12846.82, + "probability": 0.9188 + }, + { + "start": 12847.44, + "end": 12848.0, + "probability": 0.671 + }, + { + "start": 12848.66, + "end": 12849.34, + "probability": 0.7066 + }, + { + "start": 12849.86, + "end": 12856.26, + "probability": 0.8813 + }, + { + "start": 12856.62, + "end": 12859.14, + "probability": 0.9211 + }, + { + "start": 12859.88, + "end": 12862.8, + "probability": 0.8444 + }, + { + "start": 12863.24, + "end": 12865.98, + "probability": 0.6768 + }, + { + "start": 12866.1, + "end": 12867.78, + "probability": 0.8645 + }, + { + "start": 12867.92, + "end": 12868.88, + "probability": 0.4708 + }, + { + "start": 12869.3, + "end": 12870.46, + "probability": 0.926 + }, + { + "start": 12870.5, + "end": 12875.58, + "probability": 0.925 + }, + { + "start": 12875.8, + "end": 12880.12, + "probability": 0.9931 + }, + { + "start": 12880.7, + "end": 12883.08, + "probability": 0.6847 + }, + { + "start": 12883.08, + "end": 12883.08, + "probability": 0.278 + }, + { + "start": 12883.08, + "end": 12883.58, + "probability": 0.7825 + }, + { + "start": 12883.72, + "end": 12884.06, + "probability": 0.79 + }, + { + "start": 12884.48, + "end": 12886.64, + "probability": 0.9014 + }, + { + "start": 12886.76, + "end": 12889.88, + "probability": 0.9441 + }, + { + "start": 12890.54, + "end": 12894.05, + "probability": 0.8564 + }, + { + "start": 12894.96, + "end": 12895.84, + "probability": 0.8959 + }, + { + "start": 12912.0, + "end": 12913.64, + "probability": 0.6843 + }, + { + "start": 12917.4, + "end": 12918.3, + "probability": 0.8725 + }, + { + "start": 12927.96, + "end": 12929.98, + "probability": 0.9178 + }, + { + "start": 12930.96, + "end": 12935.5, + "probability": 0.7859 + }, + { + "start": 12936.32, + "end": 12937.2, + "probability": 0.4464 + }, + { + "start": 12938.08, + "end": 12940.3, + "probability": 0.8937 + }, + { + "start": 12941.1, + "end": 12942.54, + "probability": 0.9258 + }, + { + "start": 12943.3, + "end": 12946.46, + "probability": 0.8278 + }, + { + "start": 12947.38, + "end": 12951.44, + "probability": 0.9564 + }, + { + "start": 12952.2, + "end": 12952.92, + "probability": 0.9526 + }, + { + "start": 12954.64, + "end": 12956.02, + "probability": 0.9634 + }, + { + "start": 12956.72, + "end": 12957.74, + "probability": 0.7417 + }, + { + "start": 12958.24, + "end": 12958.88, + "probability": 0.9432 + }, + { + "start": 12959.72, + "end": 12961.64, + "probability": 0.6813 + }, + { + "start": 12962.38, + "end": 12963.5, + "probability": 0.7529 + }, + { + "start": 12964.26, + "end": 12966.52, + "probability": 0.9914 + }, + { + "start": 12966.66, + "end": 12970.08, + "probability": 0.9062 + }, + { + "start": 12971.14, + "end": 12974.82, + "probability": 0.9907 + }, + { + "start": 12974.91, + "end": 12979.04, + "probability": 0.9884 + }, + { + "start": 12979.92, + "end": 12984.34, + "probability": 0.8335 + }, + { + "start": 12984.46, + "end": 12985.58, + "probability": 0.726 + }, + { + "start": 12985.68, + "end": 12987.6, + "probability": 0.974 + }, + { + "start": 12987.7, + "end": 12992.1, + "probability": 0.9424 + }, + { + "start": 12993.72, + "end": 12996.24, + "probability": 0.6188 + }, + { + "start": 12996.3, + "end": 12996.92, + "probability": 0.2875 + }, + { + "start": 12997.12, + "end": 12997.94, + "probability": 0.598 + }, + { + "start": 12998.02, + "end": 12998.76, + "probability": 0.8694 + }, + { + "start": 12999.36, + "end": 13001.74, + "probability": 0.9223 + }, + { + "start": 13002.4, + "end": 13004.06, + "probability": 0.9125 + }, + { + "start": 13004.82, + "end": 13005.5, + "probability": 0.8834 + }, + { + "start": 13005.68, + "end": 13007.43, + "probability": 0.8177 + }, + { + "start": 13007.86, + "end": 13012.88, + "probability": 0.9333 + }, + { + "start": 13012.92, + "end": 13014.84, + "probability": 0.9214 + }, + { + "start": 13015.94, + "end": 13015.94, + "probability": 0.0268 + }, + { + "start": 13015.94, + "end": 13016.06, + "probability": 0.4291 + }, + { + "start": 13016.16, + "end": 13017.5, + "probability": 0.7329 + }, + { + "start": 13017.64, + "end": 13018.54, + "probability": 0.6982 + }, + { + "start": 13018.64, + "end": 13020.4, + "probability": 0.7173 + }, + { + "start": 13020.8, + "end": 13022.14, + "probability": 0.5894 + }, + { + "start": 13022.54, + "end": 13026.32, + "probability": 0.9269 + }, + { + "start": 13026.88, + "end": 13032.42, + "probability": 0.9883 + }, + { + "start": 13033.48, + "end": 13034.84, + "probability": 0.952 + }, + { + "start": 13035.2, + "end": 13036.65, + "probability": 0.7139 + }, + { + "start": 13036.96, + "end": 13037.9, + "probability": 0.9041 + }, + { + "start": 13038.06, + "end": 13040.52, + "probability": 0.9829 + }, + { + "start": 13040.54, + "end": 13043.99, + "probability": 0.9859 + }, + { + "start": 13044.36, + "end": 13046.34, + "probability": 0.7346 + }, + { + "start": 13046.74, + "end": 13047.52, + "probability": 0.9489 + }, + { + "start": 13048.52, + "end": 13051.18, + "probability": 0.5957 + }, + { + "start": 13051.92, + "end": 13057.52, + "probability": 0.9967 + }, + { + "start": 13058.12, + "end": 13059.44, + "probability": 0.9643 + }, + { + "start": 13060.06, + "end": 13064.88, + "probability": 0.9855 + }, + { + "start": 13066.02, + "end": 13068.82, + "probability": 0.9864 + }, + { + "start": 13069.94, + "end": 13074.88, + "probability": 0.9257 + }, + { + "start": 13075.44, + "end": 13077.84, + "probability": 0.9946 + }, + { + "start": 13078.32, + "end": 13080.98, + "probability": 0.9775 + }, + { + "start": 13081.06, + "end": 13084.94, + "probability": 0.9163 + }, + { + "start": 13085.78, + "end": 13086.92, + "probability": 0.6939 + }, + { + "start": 13087.62, + "end": 13088.6, + "probability": 0.9323 + }, + { + "start": 13088.68, + "end": 13090.56, + "probability": 0.9653 + }, + { + "start": 13091.14, + "end": 13093.23, + "probability": 0.9937 + }, + { + "start": 13093.26, + "end": 13097.96, + "probability": 0.9542 + }, + { + "start": 13098.4, + "end": 13102.52, + "probability": 0.9805 + }, + { + "start": 13103.2, + "end": 13105.16, + "probability": 0.7746 + }, + { + "start": 13105.82, + "end": 13108.36, + "probability": 0.973 + }, + { + "start": 13108.48, + "end": 13111.28, + "probability": 0.96 + }, + { + "start": 13111.38, + "end": 13112.59, + "probability": 0.98 + }, + { + "start": 13112.78, + "end": 13113.18, + "probability": 0.2846 + }, + { + "start": 13114.06, + "end": 13114.74, + "probability": 0.9443 + }, + { + "start": 13114.82, + "end": 13115.62, + "probability": 0.8073 + }, + { + "start": 13116.06, + "end": 13116.56, + "probability": 0.5153 + }, + { + "start": 13116.66, + "end": 13117.74, + "probability": 0.3051 + }, + { + "start": 13118.54, + "end": 13120.08, + "probability": 0.8856 + }, + { + "start": 13120.26, + "end": 13121.22, + "probability": 0.7222 + }, + { + "start": 13121.34, + "end": 13123.26, + "probability": 0.9604 + }, + { + "start": 13123.58, + "end": 13126.76, + "probability": 0.9813 + }, + { + "start": 13127.04, + "end": 13128.96, + "probability": 0.8553 + }, + { + "start": 13128.96, + "end": 13130.38, + "probability": 0.969 + }, + { + "start": 13130.42, + "end": 13130.6, + "probability": 0.749 + }, + { + "start": 13131.42, + "end": 13133.56, + "probability": 0.8948 + }, + { + "start": 13133.68, + "end": 13135.2, + "probability": 0.8758 + }, + { + "start": 13150.66, + "end": 13151.86, + "probability": 0.7208 + }, + { + "start": 13155.56, + "end": 13156.76, + "probability": 0.3627 + }, + { + "start": 13157.92, + "end": 13159.96, + "probability": 0.7318 + }, + { + "start": 13161.56, + "end": 13168.26, + "probability": 0.9629 + }, + { + "start": 13169.24, + "end": 13171.2, + "probability": 0.9686 + }, + { + "start": 13172.3, + "end": 13174.92, + "probability": 0.7801 + }, + { + "start": 13176.18, + "end": 13177.84, + "probability": 0.5889 + }, + { + "start": 13178.42, + "end": 13181.34, + "probability": 0.8333 + }, + { + "start": 13181.58, + "end": 13183.02, + "probability": 0.3113 + }, + { + "start": 13183.1, + "end": 13183.78, + "probability": 0.8418 + }, + { + "start": 13184.4, + "end": 13191.44, + "probability": 0.9348 + }, + { + "start": 13191.7, + "end": 13192.7, + "probability": 0.9938 + }, + { + "start": 13193.6, + "end": 13195.6, + "probability": 0.9961 + }, + { + "start": 13196.96, + "end": 13201.68, + "probability": 0.9909 + }, + { + "start": 13202.74, + "end": 13205.52, + "probability": 0.7466 + }, + { + "start": 13206.44, + "end": 13209.02, + "probability": 0.8953 + }, + { + "start": 13209.98, + "end": 13212.08, + "probability": 0.8148 + }, + { + "start": 13213.7, + "end": 13214.86, + "probability": 0.9134 + }, + { + "start": 13215.0, + "end": 13218.64, + "probability": 0.914 + }, + { + "start": 13219.32, + "end": 13222.3, + "probability": 0.9667 + }, + { + "start": 13223.02, + "end": 13226.6, + "probability": 0.5617 + }, + { + "start": 13227.72, + "end": 13229.52, + "probability": 0.9667 + }, + { + "start": 13229.6, + "end": 13232.36, + "probability": 0.9849 + }, + { + "start": 13233.24, + "end": 13239.28, + "probability": 0.8064 + }, + { + "start": 13239.28, + "end": 13242.44, + "probability": 0.7678 + }, + { + "start": 13243.34, + "end": 13244.38, + "probability": 0.8095 + }, + { + "start": 13244.66, + "end": 13245.24, + "probability": 0.288 + }, + { + "start": 13245.74, + "end": 13246.3, + "probability": 0.8614 + }, + { + "start": 13246.38, + "end": 13251.9, + "probability": 0.9457 + }, + { + "start": 13252.72, + "end": 13257.62, + "probability": 0.7593 + }, + { + "start": 13258.44, + "end": 13262.36, + "probability": 0.8219 + }, + { + "start": 13262.56, + "end": 13269.56, + "probability": 0.9287 + }, + { + "start": 13270.08, + "end": 13277.18, + "probability": 0.9826 + }, + { + "start": 13277.6, + "end": 13281.02, + "probability": 0.6351 + }, + { + "start": 13281.84, + "end": 13282.86, + "probability": 0.847 + }, + { + "start": 13283.56, + "end": 13289.28, + "probability": 0.9828 + }, + { + "start": 13289.8, + "end": 13291.82, + "probability": 0.9186 + }, + { + "start": 13291.92, + "end": 13293.24, + "probability": 0.6907 + }, + { + "start": 13293.38, + "end": 13294.7, + "probability": 0.8781 + }, + { + "start": 13295.84, + "end": 13299.3, + "probability": 0.999 + }, + { + "start": 13299.36, + "end": 13302.14, + "probability": 0.8773 + }, + { + "start": 13302.24, + "end": 13305.2, + "probability": 0.9504 + }, + { + "start": 13305.2, + "end": 13311.6, + "probability": 0.8513 + }, + { + "start": 13312.5, + "end": 13318.16, + "probability": 0.9844 + }, + { + "start": 13318.3, + "end": 13320.48, + "probability": 0.801 + }, + { + "start": 13320.6, + "end": 13321.62, + "probability": 0.6508 + }, + { + "start": 13323.88, + "end": 13326.68, + "probability": 0.9465 + }, + { + "start": 13327.2, + "end": 13331.8, + "probability": 0.9368 + }, + { + "start": 13332.0, + "end": 13332.18, + "probability": 0.6972 + }, + { + "start": 13333.46, + "end": 13335.58, + "probability": 0.5981 + }, + { + "start": 13335.7, + "end": 13339.08, + "probability": 0.7123 + }, + { + "start": 13340.36, + "end": 13342.08, + "probability": 0.8197 + }, + { + "start": 13351.16, + "end": 13352.64, + "probability": 0.8793 + }, + { + "start": 13353.06, + "end": 13353.96, + "probability": 0.6699 + }, + { + "start": 13355.0, + "end": 13355.82, + "probability": 0.932 + }, + { + "start": 13356.02, + "end": 13356.66, + "probability": 0.8346 + }, + { + "start": 13356.84, + "end": 13359.76, + "probability": 0.989 + }, + { + "start": 13360.44, + "end": 13362.86, + "probability": 0.9651 + }, + { + "start": 13363.82, + "end": 13365.38, + "probability": 0.9662 + }, + { + "start": 13365.4, + "end": 13367.96, + "probability": 0.9922 + }, + { + "start": 13368.5, + "end": 13369.9, + "probability": 0.8996 + }, + { + "start": 13372.34, + "end": 13373.51, + "probability": 0.9805 + }, + { + "start": 13374.72, + "end": 13377.82, + "probability": 0.9921 + }, + { + "start": 13378.6, + "end": 13381.1, + "probability": 0.7946 + }, + { + "start": 13382.42, + "end": 13385.64, + "probability": 0.947 + }, + { + "start": 13386.26, + "end": 13393.32, + "probability": 0.8695 + }, + { + "start": 13393.48, + "end": 13394.68, + "probability": 0.9784 + }, + { + "start": 13395.24, + "end": 13397.84, + "probability": 0.9782 + }, + { + "start": 13397.96, + "end": 13400.2, + "probability": 0.6332 + }, + { + "start": 13400.22, + "end": 13400.84, + "probability": 0.9373 + }, + { + "start": 13401.4, + "end": 13403.62, + "probability": 0.9514 + }, + { + "start": 13404.4, + "end": 13408.78, + "probability": 0.9857 + }, + { + "start": 13409.08, + "end": 13411.88, + "probability": 0.9322 + }, + { + "start": 13412.8, + "end": 13414.42, + "probability": 0.7556 + }, + { + "start": 13415.56, + "end": 13417.8, + "probability": 0.9576 + }, + { + "start": 13417.86, + "end": 13418.44, + "probability": 0.7269 + }, + { + "start": 13418.48, + "end": 13419.38, + "probability": 0.9953 + }, + { + "start": 13419.9, + "end": 13422.26, + "probability": 0.9981 + }, + { + "start": 13423.14, + "end": 13426.04, + "probability": 0.9075 + }, + { + "start": 13427.34, + "end": 13428.15, + "probability": 0.9692 + }, + { + "start": 13428.44, + "end": 13429.3, + "probability": 0.9612 + }, + { + "start": 13429.36, + "end": 13430.62, + "probability": 0.994 + }, + { + "start": 13431.47, + "end": 13437.38, + "probability": 0.8706 + }, + { + "start": 13437.6, + "end": 13438.1, + "probability": 0.9023 + }, + { + "start": 13438.16, + "end": 13438.88, + "probability": 0.7128 + }, + { + "start": 13439.9, + "end": 13444.48, + "probability": 0.9641 + }, + { + "start": 13445.28, + "end": 13445.9, + "probability": 0.7963 + }, + { + "start": 13446.02, + "end": 13447.37, + "probability": 0.9955 + }, + { + "start": 13447.58, + "end": 13448.96, + "probability": 0.9302 + }, + { + "start": 13449.06, + "end": 13450.12, + "probability": 0.7406 + }, + { + "start": 13450.16, + "end": 13451.4, + "probability": 0.9528 + }, + { + "start": 13452.22, + "end": 13455.46, + "probability": 0.8203 + }, + { + "start": 13455.78, + "end": 13458.26, + "probability": 0.9463 + }, + { + "start": 13458.32, + "end": 13460.46, + "probability": 0.9961 + }, + { + "start": 13461.5, + "end": 13463.26, + "probability": 0.7431 + }, + { + "start": 13463.86, + "end": 13464.96, + "probability": 0.798 + }, + { + "start": 13465.6, + "end": 13469.88, + "probability": 0.9725 + }, + { + "start": 13469.92, + "end": 13473.26, + "probability": 0.9563 + }, + { + "start": 13473.48, + "end": 13475.56, + "probability": 0.8484 + }, + { + "start": 13475.56, + "end": 13482.48, + "probability": 0.9726 + }, + { + "start": 13482.52, + "end": 13485.2, + "probability": 0.9869 + }, + { + "start": 13485.9, + "end": 13486.18, + "probability": 0.4998 + }, + { + "start": 13488.1, + "end": 13490.36, + "probability": 0.9255 + }, + { + "start": 13492.83, + "end": 13496.24, + "probability": 0.9956 + }, + { + "start": 13496.98, + "end": 13500.5, + "probability": 0.9761 + }, + { + "start": 13500.58, + "end": 13504.42, + "probability": 0.9069 + }, + { + "start": 13504.58, + "end": 13506.68, + "probability": 0.8185 + }, + { + "start": 13506.9, + "end": 13510.2, + "probability": 0.9771 + }, + { + "start": 13511.16, + "end": 13516.3, + "probability": 0.9944 + }, + { + "start": 13516.3, + "end": 13521.02, + "probability": 0.8646 + }, + { + "start": 13522.58, + "end": 13523.68, + "probability": 0.4428 + }, + { + "start": 13524.32, + "end": 13526.02, + "probability": 0.7306 + }, + { + "start": 13526.02, + "end": 13530.86, + "probability": 0.9332 + }, + { + "start": 13531.24, + "end": 13533.52, + "probability": 0.99 + }, + { + "start": 13534.22, + "end": 13535.9, + "probability": 0.9922 + }, + { + "start": 13536.12, + "end": 13538.1, + "probability": 0.9048 + }, + { + "start": 13538.52, + "end": 13540.98, + "probability": 0.8364 + }, + { + "start": 13541.56, + "end": 13542.6, + "probability": 0.9948 + }, + { + "start": 13543.24, + "end": 13544.18, + "probability": 0.7893 + }, + { + "start": 13544.82, + "end": 13546.78, + "probability": 0.9923 + }, + { + "start": 13546.82, + "end": 13547.96, + "probability": 0.958 + }, + { + "start": 13548.06, + "end": 13548.78, + "probability": 0.962 + }, + { + "start": 13549.34, + "end": 13551.48, + "probability": 0.9307 + }, + { + "start": 13551.84, + "end": 13554.72, + "probability": 0.8635 + }, + { + "start": 13555.88, + "end": 13558.74, + "probability": 0.9858 + }, + { + "start": 13559.14, + "end": 13559.66, + "probability": 0.8707 + }, + { + "start": 13560.4, + "end": 13562.24, + "probability": 0.8358 + }, + { + "start": 13563.18, + "end": 13565.72, + "probability": 0.8994 + }, + { + "start": 13581.92, + "end": 13581.94, + "probability": 0.0459 + }, + { + "start": 13581.94, + "end": 13581.94, + "probability": 0.1695 + }, + { + "start": 13588.72, + "end": 13591.64, + "probability": 0.716 + }, + { + "start": 13593.24, + "end": 13597.72, + "probability": 0.9946 + }, + { + "start": 13598.42, + "end": 13601.28, + "probability": 0.7719 + }, + { + "start": 13601.86, + "end": 13602.9, + "probability": 0.9732 + }, + { + "start": 13604.94, + "end": 13606.66, + "probability": 0.9254 + }, + { + "start": 13607.66, + "end": 13608.9, + "probability": 0.9473 + }, + { + "start": 13609.88, + "end": 13611.76, + "probability": 0.9224 + }, + { + "start": 13613.54, + "end": 13615.5, + "probability": 0.6865 + }, + { + "start": 13616.44, + "end": 13618.58, + "probability": 0.8733 + }, + { + "start": 13619.2, + "end": 13622.18, + "probability": 0.9114 + }, + { + "start": 13624.12, + "end": 13624.74, + "probability": 0.761 + }, + { + "start": 13626.08, + "end": 13630.52, + "probability": 0.9381 + }, + { + "start": 13632.58, + "end": 13634.58, + "probability": 0.8718 + }, + { + "start": 13634.62, + "end": 13636.62, + "probability": 0.7255 + }, + { + "start": 13636.78, + "end": 13637.24, + "probability": 0.8682 + }, + { + "start": 13637.68, + "end": 13638.82, + "probability": 0.8896 + }, + { + "start": 13638.9, + "end": 13639.4, + "probability": 0.8879 + }, + { + "start": 13639.96, + "end": 13641.5, + "probability": 0.9436 + }, + { + "start": 13642.62, + "end": 13647.06, + "probability": 0.629 + }, + { + "start": 13648.1, + "end": 13650.08, + "probability": 0.4868 + }, + { + "start": 13651.42, + "end": 13652.38, + "probability": 0.7371 + }, + { + "start": 13653.36, + "end": 13654.6, + "probability": 0.7992 + }, + { + "start": 13655.26, + "end": 13657.48, + "probability": 0.8083 + }, + { + "start": 13658.56, + "end": 13659.32, + "probability": 0.7681 + }, + { + "start": 13660.36, + "end": 13662.12, + "probability": 0.4885 + }, + { + "start": 13662.78, + "end": 13663.4, + "probability": 0.7679 + }, + { + "start": 13664.54, + "end": 13666.18, + "probability": 0.9651 + }, + { + "start": 13668.62, + "end": 13674.18, + "probability": 0.9891 + }, + { + "start": 13674.72, + "end": 13680.74, + "probability": 0.7449 + }, + { + "start": 13681.92, + "end": 13686.46, + "probability": 0.9793 + }, + { + "start": 13687.38, + "end": 13691.06, + "probability": 0.9928 + }, + { + "start": 13691.4, + "end": 13695.62, + "probability": 0.9814 + }, + { + "start": 13695.98, + "end": 13698.56, + "probability": 0.7401 + }, + { + "start": 13699.6, + "end": 13701.7, + "probability": 0.7254 + }, + { + "start": 13703.46, + "end": 13703.96, + "probability": 0.7692 + }, + { + "start": 13704.66, + "end": 13705.96, + "probability": 0.9729 + }, + { + "start": 13706.76, + "end": 13708.9, + "probability": 0.9912 + }, + { + "start": 13709.42, + "end": 13713.12, + "probability": 0.9118 + }, + { + "start": 13713.58, + "end": 13714.66, + "probability": 0.8909 + }, + { + "start": 13714.74, + "end": 13717.24, + "probability": 0.6758 + }, + { + "start": 13717.64, + "end": 13719.7, + "probability": 0.9897 + }, + { + "start": 13720.46, + "end": 13721.86, + "probability": 0.8746 + }, + { + "start": 13723.35, + "end": 13727.28, + "probability": 0.8637 + }, + { + "start": 13727.4, + "end": 13728.66, + "probability": 0.6449 + }, + { + "start": 13728.8, + "end": 13732.08, + "probability": 0.9175 + }, + { + "start": 13732.72, + "end": 13733.04, + "probability": 0.6205 + }, + { + "start": 13733.24, + "end": 13737.66, + "probability": 0.5052 + }, + { + "start": 13738.62, + "end": 13741.96, + "probability": 0.9946 + }, + { + "start": 13743.06, + "end": 13744.66, + "probability": 0.9946 + }, + { + "start": 13745.76, + "end": 13746.8, + "probability": 0.9701 + }, + { + "start": 13747.62, + "end": 13749.9, + "probability": 0.979 + }, + { + "start": 13750.04, + "end": 13753.44, + "probability": 0.9834 + }, + { + "start": 13755.44, + "end": 13756.1, + "probability": 0.8378 + }, + { + "start": 13757.18, + "end": 13757.98, + "probability": 0.7993 + }, + { + "start": 13758.96, + "end": 13764.04, + "probability": 0.9951 + }, + { + "start": 13764.22, + "end": 13766.28, + "probability": 0.8869 + }, + { + "start": 13766.78, + "end": 13772.9, + "probability": 0.9303 + }, + { + "start": 13773.08, + "end": 13773.28, + "probability": 0.1976 + }, + { + "start": 13773.28, + "end": 13776.54, + "probability": 0.9178 + }, + { + "start": 13776.9, + "end": 13777.48, + "probability": 0.5879 + }, + { + "start": 13778.58, + "end": 13781.56, + "probability": 0.6261 + }, + { + "start": 13782.23, + "end": 13783.28, + "probability": 0.9699 + }, + { + "start": 13784.64, + "end": 13786.64, + "probability": 0.8919 + }, + { + "start": 13786.94, + "end": 13791.08, + "probability": 0.7061 + }, + { + "start": 13791.72, + "end": 13793.4, + "probability": 0.8333 + }, + { + "start": 13811.32, + "end": 13812.36, + "probability": 0.5863 + }, + { + "start": 13813.88, + "end": 13817.72, + "probability": 0.7325 + }, + { + "start": 13820.9, + "end": 13828.74, + "probability": 0.8488 + }, + { + "start": 13831.44, + "end": 13832.78, + "probability": 0.601 + }, + { + "start": 13833.92, + "end": 13835.58, + "probability": 0.5988 + }, + { + "start": 13837.1, + "end": 13838.94, + "probability": 0.8094 + }, + { + "start": 13839.72, + "end": 13841.96, + "probability": 0.5012 + }, + { + "start": 13843.04, + "end": 13843.94, + "probability": 0.722 + }, + { + "start": 13846.22, + "end": 13847.82, + "probability": 0.5018 + }, + { + "start": 13849.54, + "end": 13851.72, + "probability": 0.8122 + }, + { + "start": 13853.32, + "end": 13854.32, + "probability": 0.7997 + }, + { + "start": 13855.48, + "end": 13857.22, + "probability": 0.9274 + }, + { + "start": 13858.46, + "end": 13861.31, + "probability": 0.813 + }, + { + "start": 13865.08, + "end": 13869.7, + "probability": 0.819 + }, + { + "start": 13871.62, + "end": 13873.02, + "probability": 0.9242 + }, + { + "start": 13874.76, + "end": 13875.78, + "probability": 0.7925 + }, + { + "start": 13879.12, + "end": 13879.72, + "probability": 0.738 + }, + { + "start": 13880.34, + "end": 13882.33, + "probability": 0.761 + }, + { + "start": 13884.86, + "end": 13887.52, + "probability": 0.8262 + }, + { + "start": 13888.88, + "end": 13894.38, + "probability": 0.5963 + }, + { + "start": 13895.26, + "end": 13896.42, + "probability": 0.5362 + }, + { + "start": 13897.2, + "end": 13899.04, + "probability": 0.5973 + }, + { + "start": 13899.76, + "end": 13902.6, + "probability": 0.7639 + }, + { + "start": 13903.3, + "end": 13905.42, + "probability": 0.4899 + }, + { + "start": 13906.94, + "end": 13909.9, + "probability": 0.7047 + }, + { + "start": 13910.88, + "end": 13912.46, + "probability": 0.9984 + }, + { + "start": 13913.38, + "end": 13914.48, + "probability": 0.9126 + }, + { + "start": 13916.18, + "end": 13920.94, + "probability": 0.9456 + }, + { + "start": 13922.12, + "end": 13927.52, + "probability": 0.9687 + }, + { + "start": 13928.84, + "end": 13930.68, + "probability": 0.9619 + }, + { + "start": 13931.24, + "end": 13932.14, + "probability": 0.7071 + }, + { + "start": 13933.48, + "end": 13936.6, + "probability": 0.9231 + }, + { + "start": 13936.74, + "end": 13941.21, + "probability": 0.9111 + }, + { + "start": 13941.64, + "end": 13946.24, + "probability": 0.9061 + }, + { + "start": 13946.78, + "end": 13947.5, + "probability": 0.6807 + }, + { + "start": 13947.64, + "end": 13948.24, + "probability": 0.9661 + }, + { + "start": 13949.78, + "end": 13953.14, + "probability": 0.7764 + }, + { + "start": 13953.34, + "end": 13953.82, + "probability": 0.7901 + }, + { + "start": 13953.96, + "end": 13954.72, + "probability": 0.9229 + }, + { + "start": 13954.88, + "end": 13955.98, + "probability": 0.5471 + }, + { + "start": 13956.8, + "end": 13957.52, + "probability": 0.8191 + }, + { + "start": 13958.42, + "end": 13960.84, + "probability": 0.5002 + }, + { + "start": 13961.38, + "end": 13964.44, + "probability": 0.798 + }, + { + "start": 13965.42, + "end": 13966.14, + "probability": 0.8244 + }, + { + "start": 13966.22, + "end": 13967.04, + "probability": 0.678 + }, + { + "start": 13967.24, + "end": 13973.12, + "probability": 0.9886 + }, + { + "start": 13974.36, + "end": 13977.8, + "probability": 0.8717 + }, + { + "start": 13979.2, + "end": 13981.88, + "probability": 0.8403 + }, + { + "start": 13982.84, + "end": 13983.66, + "probability": 0.9417 + }, + { + "start": 13984.94, + "end": 13986.55, + "probability": 0.9453 + }, + { + "start": 13986.68, + "end": 13987.42, + "probability": 0.8382 + }, + { + "start": 13987.52, + "end": 13988.88, + "probability": 0.6825 + }, + { + "start": 13989.56, + "end": 13990.72, + "probability": 0.9224 + }, + { + "start": 13992.32, + "end": 13997.98, + "probability": 0.9574 + }, + { + "start": 13998.22, + "end": 13998.86, + "probability": 0.5866 + }, + { + "start": 13999.7, + "end": 14000.8, + "probability": 0.4413 + }, + { + "start": 14001.66, + "end": 14004.21, + "probability": 0.6323 + }, + { + "start": 14004.74, + "end": 14007.96, + "probability": 0.861 + }, + { + "start": 14008.6, + "end": 14011.0, + "probability": 0.4916 + }, + { + "start": 14012.04, + "end": 14013.54, + "probability": 0.9897 + }, + { + "start": 14014.66, + "end": 14015.06, + "probability": 0.5225 + }, + { + "start": 14016.12, + "end": 14016.48, + "probability": 0.9707 + }, + { + "start": 14017.18, + "end": 14021.72, + "probability": 0.9802 + }, + { + "start": 14021.74, + "end": 14022.0, + "probability": 0.3569 + }, + { + "start": 14022.36, + "end": 14023.52, + "probability": 0.9277 + }, + { + "start": 14024.12, + "end": 14024.7, + "probability": 0.9662 + }, + { + "start": 14025.34, + "end": 14026.1, + "probability": 0.5131 + }, + { + "start": 14026.26, + "end": 14026.92, + "probability": 0.7266 + }, + { + "start": 14027.26, + "end": 14030.56, + "probability": 0.9412 + }, + { + "start": 14030.78, + "end": 14031.06, + "probability": 0.6399 + }, + { + "start": 14031.2, + "end": 14036.32, + "probability": 0.1792 + }, + { + "start": 14036.62, + "end": 14037.67, + "probability": 0.331 + }, + { + "start": 14038.92, + "end": 14040.02, + "probability": 0.1884 + }, + { + "start": 14042.56, + "end": 14044.72, + "probability": 0.5134 + }, + { + "start": 14052.76, + "end": 14052.76, + "probability": 0.2748 + }, + { + "start": 14052.84, + "end": 14052.84, + "probability": 0.1033 + }, + { + "start": 14052.84, + "end": 14052.84, + "probability": 0.0562 + }, + { + "start": 14052.84, + "end": 14052.84, + "probability": 0.1082 + }, + { + "start": 14052.84, + "end": 14053.54, + "probability": 0.2889 + }, + { + "start": 14054.14, + "end": 14055.56, + "probability": 0.238 + }, + { + "start": 14055.7, + "end": 14056.18, + "probability": 0.2505 + }, + { + "start": 14056.18, + "end": 14056.82, + "probability": 0.7183 + }, + { + "start": 14056.92, + "end": 14058.56, + "probability": 0.5688 + }, + { + "start": 14059.58, + "end": 14064.82, + "probability": 0.72 + }, + { + "start": 14065.08, + "end": 14070.8, + "probability": 0.867 + }, + { + "start": 14072.26, + "end": 14073.22, + "probability": 0.8542 + }, + { + "start": 14073.34, + "end": 14077.96, + "probability": 0.9285 + }, + { + "start": 14079.08, + "end": 14081.04, + "probability": 0.9523 + }, + { + "start": 14081.08, + "end": 14082.76, + "probability": 0.9762 + }, + { + "start": 14083.24, + "end": 14086.14, + "probability": 0.7925 + }, + { + "start": 14086.6, + "end": 14087.32, + "probability": 0.6914 + }, + { + "start": 14087.5, + "end": 14087.62, + "probability": 0.8269 + }, + { + "start": 14087.62, + "end": 14088.32, + "probability": 0.7844 + }, + { + "start": 14088.54, + "end": 14089.42, + "probability": 0.9135 + }, + { + "start": 14089.96, + "end": 14090.74, + "probability": 0.8884 + }, + { + "start": 14091.16, + "end": 14093.22, + "probability": 0.9977 + }, + { + "start": 14093.34, + "end": 14094.5, + "probability": 0.8826 + }, + { + "start": 14095.1, + "end": 14097.3, + "probability": 0.9827 + }, + { + "start": 14097.4, + "end": 14099.62, + "probability": 0.9399 + }, + { + "start": 14100.18, + "end": 14102.2, + "probability": 0.9692 + }, + { + "start": 14103.18, + "end": 14105.46, + "probability": 0.9819 + }, + { + "start": 14105.98, + "end": 14106.8, + "probability": 0.9481 + }, + { + "start": 14106.84, + "end": 14108.02, + "probability": 0.8021 + }, + { + "start": 14108.14, + "end": 14108.52, + "probability": 0.9075 + }, + { + "start": 14108.84, + "end": 14110.34, + "probability": 0.9516 + }, + { + "start": 14111.18, + "end": 14113.84, + "probability": 0.9624 + }, + { + "start": 14114.74, + "end": 14120.08, + "probability": 0.97 + }, + { + "start": 14120.32, + "end": 14121.08, + "probability": 0.6387 + }, + { + "start": 14121.42, + "end": 14121.86, + "probability": 0.8923 + }, + { + "start": 14122.5, + "end": 14123.76, + "probability": 0.9719 + }, + { + "start": 14124.46, + "end": 14127.06, + "probability": 0.988 + }, + { + "start": 14127.4, + "end": 14129.72, + "probability": 0.9683 + }, + { + "start": 14130.76, + "end": 14134.1, + "probability": 0.9949 + }, + { + "start": 14134.1, + "end": 14136.1, + "probability": 0.9975 + }, + { + "start": 14136.74, + "end": 14137.68, + "probability": 0.8826 + }, + { + "start": 14138.34, + "end": 14144.1, + "probability": 0.9932 + }, + { + "start": 14144.3, + "end": 14146.68, + "probability": 0.9309 + }, + { + "start": 14146.78, + "end": 14147.7, + "probability": 0.8497 + }, + { + "start": 14148.14, + "end": 14152.0, + "probability": 0.9967 + }, + { + "start": 14152.1, + "end": 14153.66, + "probability": 0.9701 + }, + { + "start": 14153.68, + "end": 14154.32, + "probability": 0.8024 + }, + { + "start": 14154.76, + "end": 14156.44, + "probability": 0.9663 + }, + { + "start": 14156.82, + "end": 14160.16, + "probability": 0.8098 + }, + { + "start": 14160.72, + "end": 14163.1, + "probability": 0.9912 + }, + { + "start": 14163.44, + "end": 14164.98, + "probability": 0.6759 + }, + { + "start": 14165.12, + "end": 14167.46, + "probability": 0.8193 + }, + { + "start": 14167.46, + "end": 14170.78, + "probability": 0.8926 + }, + { + "start": 14170.94, + "end": 14171.8, + "probability": 0.6479 + }, + { + "start": 14172.9, + "end": 14177.12, + "probability": 0.9795 + }, + { + "start": 14177.74, + "end": 14178.0, + "probability": 0.6275 + }, + { + "start": 14178.08, + "end": 14178.38, + "probability": 0.6573 + }, + { + "start": 14178.46, + "end": 14181.9, + "probability": 0.9032 + }, + { + "start": 14182.34, + "end": 14183.4, + "probability": 0.7858 + }, + { + "start": 14183.44, + "end": 14184.46, + "probability": 0.7587 + }, + { + "start": 14184.9, + "end": 14187.44, + "probability": 0.9095 + }, + { + "start": 14187.6, + "end": 14189.02, + "probability": 0.6886 + }, + { + "start": 14189.58, + "end": 14192.42, + "probability": 0.978 + }, + { + "start": 14193.34, + "end": 14193.8, + "probability": 0.6169 + }, + { + "start": 14193.88, + "end": 14196.98, + "probability": 0.9822 + }, + { + "start": 14197.02, + "end": 14201.54, + "probability": 0.9626 + }, + { + "start": 14201.54, + "end": 14205.26, + "probability": 0.9473 + }, + { + "start": 14205.58, + "end": 14207.64, + "probability": 0.9854 + }, + { + "start": 14207.96, + "end": 14209.44, + "probability": 0.9941 + }, + { + "start": 14209.9, + "end": 14210.46, + "probability": 0.9087 + }, + { + "start": 14210.56, + "end": 14212.18, + "probability": 0.8399 + }, + { + "start": 14212.58, + "end": 14213.07, + "probability": 0.9902 + }, + { + "start": 14213.92, + "end": 14215.36, + "probability": 0.9597 + }, + { + "start": 14216.06, + "end": 14217.82, + "probability": 0.9578 + }, + { + "start": 14217.9, + "end": 14218.68, + "probability": 0.7009 + }, + { + "start": 14218.76, + "end": 14219.94, + "probability": 0.8364 + }, + { + "start": 14220.3, + "end": 14223.5, + "probability": 0.9548 + }, + { + "start": 14223.92, + "end": 14226.04, + "probability": 0.9746 + }, + { + "start": 14226.62, + "end": 14228.74, + "probability": 0.9985 + }, + { + "start": 14229.12, + "end": 14230.18, + "probability": 0.9896 + }, + { + "start": 14230.26, + "end": 14231.98, + "probability": 0.9226 + }, + { + "start": 14232.44, + "end": 14237.88, + "probability": 0.5202 + }, + { + "start": 14237.92, + "end": 14238.5, + "probability": 0.6749 + }, + { + "start": 14238.6, + "end": 14238.74, + "probability": 0.7446 + }, + { + "start": 14238.82, + "end": 14239.16, + "probability": 0.2751 + }, + { + "start": 14239.24, + "end": 14241.1, + "probability": 0.9546 + }, + { + "start": 14241.44, + "end": 14247.76, + "probability": 0.5758 + }, + { + "start": 14248.14, + "end": 14248.48, + "probability": 0.0704 + }, + { + "start": 14248.94, + "end": 14249.26, + "probability": 0.5455 + }, + { + "start": 14249.9, + "end": 14252.34, + "probability": 0.8303 + }, + { + "start": 14252.56, + "end": 14253.84, + "probability": 0.9388 + }, + { + "start": 14254.78, + "end": 14255.52, + "probability": 0.6716 + }, + { + "start": 14256.08, + "end": 14257.92, + "probability": 0.9456 + }, + { + "start": 14258.44, + "end": 14259.18, + "probability": 0.7532 + }, + { + "start": 14259.64, + "end": 14261.0, + "probability": 0.8873 + }, + { + "start": 14274.86, + "end": 14275.68, + "probability": 0.5377 + }, + { + "start": 14276.68, + "end": 14277.74, + "probability": 0.6768 + }, + { + "start": 14277.8, + "end": 14278.66, + "probability": 0.8794 + }, + { + "start": 14279.08, + "end": 14280.98, + "probability": 0.8749 + }, + { + "start": 14281.54, + "end": 14282.54, + "probability": 0.9995 + }, + { + "start": 14284.02, + "end": 14284.86, + "probability": 0.2099 + }, + { + "start": 14286.88, + "end": 14289.12, + "probability": 0.9928 + }, + { + "start": 14289.5, + "end": 14290.34, + "probability": 0.9586 + }, + { + "start": 14290.82, + "end": 14292.4, + "probability": 0.3919 + }, + { + "start": 14292.6, + "end": 14292.86, + "probability": 0.5764 + }, + { + "start": 14293.06, + "end": 14293.06, + "probability": 0.6125 + }, + { + "start": 14293.38, + "end": 14293.92, + "probability": 0.9791 + }, + { + "start": 14294.06, + "end": 14294.38, + "probability": 0.2807 + }, + { + "start": 14294.52, + "end": 14295.74, + "probability": 0.7815 + }, + { + "start": 14296.24, + "end": 14297.26, + "probability": 0.9434 + }, + { + "start": 14298.1, + "end": 14301.26, + "probability": 0.985 + }, + { + "start": 14302.41, + "end": 14305.22, + "probability": 0.9917 + }, + { + "start": 14305.66, + "end": 14306.12, + "probability": 0.7368 + }, + { + "start": 14306.16, + "end": 14306.84, + "probability": 0.9327 + }, + { + "start": 14307.0, + "end": 14307.58, + "probability": 0.4211 + }, + { + "start": 14307.82, + "end": 14311.12, + "probability": 0.9111 + }, + { + "start": 14311.82, + "end": 14316.42, + "probability": 0.9077 + }, + { + "start": 14316.66, + "end": 14319.92, + "probability": 0.9071 + }, + { + "start": 14320.24, + "end": 14322.46, + "probability": 0.9427 + }, + { + "start": 14322.96, + "end": 14324.12, + "probability": 0.5908 + }, + { + "start": 14324.16, + "end": 14326.2, + "probability": 0.8219 + }, + { + "start": 14326.34, + "end": 14329.24, + "probability": 0.7297 + }, + { + "start": 14329.78, + "end": 14330.16, + "probability": 0.8566 + }, + { + "start": 14330.72, + "end": 14331.08, + "probability": 0.8313 + }, + { + "start": 14331.58, + "end": 14334.38, + "probability": 0.789 + }, + { + "start": 14334.62, + "end": 14338.66, + "probability": 0.848 + }, + { + "start": 14338.84, + "end": 14339.26, + "probability": 0.9123 + }, + { + "start": 14339.78, + "end": 14340.4, + "probability": 0.9244 + }, + { + "start": 14341.02, + "end": 14341.94, + "probability": 0.8807 + }, + { + "start": 14342.5, + "end": 14344.86, + "probability": 0.8835 + }, + { + "start": 14345.58, + "end": 14345.58, + "probability": 0.0442 + }, + { + "start": 14345.7, + "end": 14346.34, + "probability": 0.8212 + }, + { + "start": 14346.4, + "end": 14348.63, + "probability": 0.9867 + }, + { + "start": 14348.78, + "end": 14349.28, + "probability": 0.8787 + }, + { + "start": 14349.64, + "end": 14350.44, + "probability": 0.9495 + }, + { + "start": 14351.06, + "end": 14351.34, + "probability": 0.8802 + }, + { + "start": 14351.46, + "end": 14353.6, + "probability": 0.897 + }, + { + "start": 14353.94, + "end": 14356.26, + "probability": 0.9739 + }, + { + "start": 14356.64, + "end": 14357.38, + "probability": 0.7457 + }, + { + "start": 14358.24, + "end": 14359.2, + "probability": 0.8752 + }, + { + "start": 14359.92, + "end": 14360.98, + "probability": 0.9373 + }, + { + "start": 14361.98, + "end": 14362.66, + "probability": 0.7271 + }, + { + "start": 14363.82, + "end": 14368.4, + "probability": 0.8006 + }, + { + "start": 14369.2, + "end": 14369.54, + "probability": 0.5788 + }, + { + "start": 14371.06, + "end": 14374.06, + "probability": 0.988 + }, + { + "start": 14375.16, + "end": 14377.72, + "probability": 0.9108 + }, + { + "start": 14377.72, + "end": 14379.44, + "probability": 0.9743 + }, + { + "start": 14380.58, + "end": 14381.68, + "probability": 0.8382 + }, + { + "start": 14382.46, + "end": 14385.62, + "probability": 0.8826 + }, + { + "start": 14386.16, + "end": 14389.42, + "probability": 0.75 + }, + { + "start": 14389.42, + "end": 14394.52, + "probability": 0.7698 + }, + { + "start": 14394.98, + "end": 14396.72, + "probability": 0.7696 + }, + { + "start": 14397.26, + "end": 14399.04, + "probability": 0.7724 + }, + { + "start": 14399.4, + "end": 14400.16, + "probability": 0.2774 + }, + { + "start": 14400.32, + "end": 14401.98, + "probability": 0.8982 + }, + { + "start": 14403.38, + "end": 14404.68, + "probability": 0.9417 + }, + { + "start": 14404.96, + "end": 14405.12, + "probability": 0.8572 + }, + { + "start": 14405.64, + "end": 14408.14, + "probability": 0.8811 + }, + { + "start": 14408.76, + "end": 14411.44, + "probability": 0.9033 + }, + { + "start": 14411.74, + "end": 14413.66, + "probability": 0.9784 + }, + { + "start": 14414.3, + "end": 14416.28, + "probability": 0.9845 + }, + { + "start": 14416.42, + "end": 14417.08, + "probability": 0.9612 + }, + { + "start": 14417.22, + "end": 14418.04, + "probability": 0.5192 + }, + { + "start": 14418.1, + "end": 14421.48, + "probability": 0.8489 + }, + { + "start": 14421.86, + "end": 14423.2, + "probability": 0.9498 + }, + { + "start": 14423.64, + "end": 14426.3, + "probability": 0.9927 + }, + { + "start": 14427.38, + "end": 14433.52, + "probability": 0.8818 + }, + { + "start": 14434.2, + "end": 14435.14, + "probability": 0.6399 + }, + { + "start": 14435.8, + "end": 14442.36, + "probability": 0.8594 + }, + { + "start": 14442.84, + "end": 14444.1, + "probability": 0.8982 + }, + { + "start": 14444.66, + "end": 14450.84, + "probability": 0.9717 + }, + { + "start": 14451.4, + "end": 14454.04, + "probability": 0.9908 + }, + { + "start": 14454.5, + "end": 14456.58, + "probability": 0.8751 + }, + { + "start": 14458.0, + "end": 14462.54, + "probability": 0.9679 + }, + { + "start": 14463.18, + "end": 14465.18, + "probability": 0.9222 + }, + { + "start": 14465.18, + "end": 14468.96, + "probability": 0.965 + }, + { + "start": 14469.26, + "end": 14470.4, + "probability": 0.9406 + }, + { + "start": 14470.96, + "end": 14471.56, + "probability": 0.7361 + }, + { + "start": 14472.28, + "end": 14476.4, + "probability": 0.9787 + }, + { + "start": 14477.36, + "end": 14481.92, + "probability": 0.9937 + }, + { + "start": 14482.62, + "end": 14483.46, + "probability": 0.9425 + }, + { + "start": 14484.58, + "end": 14486.48, + "probability": 0.9133 + }, + { + "start": 14486.58, + "end": 14489.88, + "probability": 0.9172 + }, + { + "start": 14490.36, + "end": 14491.84, + "probability": 0.8848 + }, + { + "start": 14505.86, + "end": 14506.04, + "probability": 0.7294 + }, + { + "start": 14506.62, + "end": 14507.56, + "probability": 0.7808 + }, + { + "start": 14508.16, + "end": 14510.24, + "probability": 0.5829 + }, + { + "start": 14511.06, + "end": 14513.04, + "probability": 0.9208 + }, + { + "start": 14513.48, + "end": 14514.76, + "probability": 0.9362 + }, + { + "start": 14516.34, + "end": 14519.44, + "probability": 0.9497 + }, + { + "start": 14519.6, + "end": 14520.64, + "probability": 0.9383 + }, + { + "start": 14521.98, + "end": 14524.86, + "probability": 0.7543 + }, + { + "start": 14525.64, + "end": 14529.48, + "probability": 0.9571 + }, + { + "start": 14530.46, + "end": 14531.84, + "probability": 0.7022 + }, + { + "start": 14532.04, + "end": 14536.64, + "probability": 0.8514 + }, + { + "start": 14537.36, + "end": 14539.27, + "probability": 0.9824 + }, + { + "start": 14539.68, + "end": 14540.16, + "probability": 0.9065 + }, + { + "start": 14540.24, + "end": 14541.89, + "probability": 0.7485 + }, + { + "start": 14543.68, + "end": 14546.36, + "probability": 0.9533 + }, + { + "start": 14547.48, + "end": 14550.58, + "probability": 0.5499 + }, + { + "start": 14551.0, + "end": 14552.52, + "probability": 0.9738 + }, + { + "start": 14552.66, + "end": 14553.14, + "probability": 0.8013 + }, + { + "start": 14553.88, + "end": 14555.84, + "probability": 0.48 + }, + { + "start": 14556.6, + "end": 14562.4, + "probability": 0.8545 + }, + { + "start": 14562.78, + "end": 14562.94, + "probability": 0.5504 + }, + { + "start": 14565.06, + "end": 14566.82, + "probability": 0.2725 + }, + { + "start": 14568.54, + "end": 14569.06, + "probability": 0.7433 + }, + { + "start": 14569.24, + "end": 14570.84, + "probability": 0.6677 + }, + { + "start": 14571.18, + "end": 14575.28, + "probability": 0.9272 + }, + { + "start": 14576.38, + "end": 14579.0, + "probability": 0.9673 + }, + { + "start": 14579.54, + "end": 14583.78, + "probability": 0.9578 + }, + { + "start": 14584.68, + "end": 14585.66, + "probability": 0.5602 + }, + { + "start": 14586.06, + "end": 14586.88, + "probability": 0.7539 + }, + { + "start": 14586.92, + "end": 14587.6, + "probability": 0.8598 + }, + { + "start": 14587.64, + "end": 14589.53, + "probability": 0.9729 + }, + { + "start": 14590.0, + "end": 14591.4, + "probability": 0.9272 + }, + { + "start": 14591.8, + "end": 14595.2, + "probability": 0.994 + }, + { + "start": 14596.0, + "end": 14597.1, + "probability": 0.8002 + }, + { + "start": 14597.92, + "end": 14600.54, + "probability": 0.7874 + }, + { + "start": 14602.08, + "end": 14603.14, + "probability": 0.4293 + }, + { + "start": 14603.32, + "end": 14605.42, + "probability": 0.9766 + }, + { + "start": 14605.76, + "end": 14606.54, + "probability": 0.7467 + }, + { + "start": 14606.86, + "end": 14609.06, + "probability": 0.9824 + }, + { + "start": 14609.14, + "end": 14609.96, + "probability": 0.8454 + }, + { + "start": 14610.26, + "end": 14614.22, + "probability": 0.9854 + }, + { + "start": 14614.38, + "end": 14614.5, + "probability": 0.0682 + }, + { + "start": 14615.0, + "end": 14617.68, + "probability": 0.9948 + }, + { + "start": 14617.7, + "end": 14618.44, + "probability": 0.8986 + }, + { + "start": 14618.5, + "end": 14619.24, + "probability": 0.8754 + }, + { + "start": 14619.5, + "end": 14620.54, + "probability": 0.9067 + }, + { + "start": 14621.26, + "end": 14622.74, + "probability": 0.9404 + }, + { + "start": 14624.88, + "end": 14625.2, + "probability": 0.7496 + }, + { + "start": 14625.36, + "end": 14630.0, + "probability": 0.9782 + }, + { + "start": 14630.92, + "end": 14632.18, + "probability": 0.9949 + }, + { + "start": 14632.28, + "end": 14632.82, + "probability": 0.8242 + }, + { + "start": 14632.86, + "end": 14633.88, + "probability": 0.8837 + }, + { + "start": 14634.2, + "end": 14635.84, + "probability": 0.7636 + }, + { + "start": 14636.9, + "end": 14639.02, + "probability": 0.6449 + }, + { + "start": 14639.94, + "end": 14644.28, + "probability": 0.7764 + }, + { + "start": 14645.02, + "end": 14647.84, + "probability": 0.6753 + }, + { + "start": 14648.54, + "end": 14649.54, + "probability": 0.9896 + }, + { + "start": 14650.82, + "end": 14652.18, + "probability": 0.7137 + }, + { + "start": 14652.52, + "end": 14655.08, + "probability": 0.9966 + }, + { + "start": 14655.52, + "end": 14657.8, + "probability": 0.8806 + }, + { + "start": 14658.12, + "end": 14658.9, + "probability": 0.476 + }, + { + "start": 14659.38, + "end": 14661.46, + "probability": 0.8972 + }, + { + "start": 14661.56, + "end": 14662.52, + "probability": 0.6787 + }, + { + "start": 14662.86, + "end": 14667.62, + "probability": 0.9782 + }, + { + "start": 14668.04, + "end": 14668.26, + "probability": 0.8793 + }, + { + "start": 14669.28, + "end": 14671.74, + "probability": 0.7045 + }, + { + "start": 14671.84, + "end": 14673.34, + "probability": 0.8997 + }, + { + "start": 14674.02, + "end": 14674.72, + "probability": 0.7756 + }, + { + "start": 14675.36, + "end": 14676.84, + "probability": 0.9031 + }, + { + "start": 14677.44, + "end": 14678.1, + "probability": 0.7517 + }, + { + "start": 14678.22, + "end": 14679.82, + "probability": 0.9709 + }, + { + "start": 14698.4, + "end": 14698.88, + "probability": 0.6985 + }, + { + "start": 14699.5, + "end": 14699.92, + "probability": 0.3541 + }, + { + "start": 14700.74, + "end": 14702.18, + "probability": 0.6219 + }, + { + "start": 14703.06, + "end": 14703.88, + "probability": 0.8624 + }, + { + "start": 14705.06, + "end": 14706.16, + "probability": 0.6951 + }, + { + "start": 14707.08, + "end": 14708.28, + "probability": 0.9209 + }, + { + "start": 14708.76, + "end": 14709.94, + "probability": 0.9036 + }, + { + "start": 14710.32, + "end": 14711.98, + "probability": 0.9437 + }, + { + "start": 14713.82, + "end": 14715.64, + "probability": 0.7494 + }, + { + "start": 14716.3, + "end": 14719.62, + "probability": 0.9973 + }, + { + "start": 14720.34, + "end": 14724.72, + "probability": 0.8779 + }, + { + "start": 14724.98, + "end": 14728.18, + "probability": 0.9233 + }, + { + "start": 14728.74, + "end": 14732.98, + "probability": 0.9507 + }, + { + "start": 14733.5, + "end": 14734.18, + "probability": 0.8985 + }, + { + "start": 14734.82, + "end": 14735.44, + "probability": 0.744 + }, + { + "start": 14735.8, + "end": 14741.5, + "probability": 0.969 + }, + { + "start": 14742.06, + "end": 14742.52, + "probability": 0.3997 + }, + { + "start": 14742.66, + "end": 14747.3, + "probability": 0.952 + }, + { + "start": 14748.48, + "end": 14753.62, + "probability": 0.9836 + }, + { + "start": 14754.28, + "end": 14755.42, + "probability": 0.5842 + }, + { + "start": 14757.0, + "end": 14761.08, + "probability": 0.9307 + }, + { + "start": 14762.9, + "end": 14765.86, + "probability": 0.6594 + }, + { + "start": 14766.92, + "end": 14769.1, + "probability": 0.9591 + }, + { + "start": 14770.36, + "end": 14771.72, + "probability": 0.5564 + }, + { + "start": 14771.98, + "end": 14773.38, + "probability": 0.6759 + }, + { + "start": 14773.66, + "end": 14775.1, + "probability": 0.9518 + }, + { + "start": 14775.72, + "end": 14778.4, + "probability": 0.8937 + }, + { + "start": 14779.98, + "end": 14781.1, + "probability": 0.8776 + }, + { + "start": 14781.4, + "end": 14785.1, + "probability": 0.9351 + }, + { + "start": 14786.08, + "end": 14788.26, + "probability": 0.8329 + }, + { + "start": 14788.88, + "end": 14791.88, + "probability": 0.9903 + }, + { + "start": 14793.32, + "end": 14797.3, + "probability": 0.908 + }, + { + "start": 14797.84, + "end": 14801.46, + "probability": 0.6674 + }, + { + "start": 14802.04, + "end": 14803.08, + "probability": 0.8782 + }, + { + "start": 14804.66, + "end": 14806.52, + "probability": 0.817 + }, + { + "start": 14807.08, + "end": 14809.16, + "probability": 0.868 + }, + { + "start": 14809.92, + "end": 14814.66, + "probability": 0.9301 + }, + { + "start": 14814.66, + "end": 14822.86, + "probability": 0.9512 + }, + { + "start": 14823.2, + "end": 14827.44, + "probability": 0.9566 + }, + { + "start": 14827.48, + "end": 14828.88, + "probability": 0.7474 + }, + { + "start": 14828.92, + "end": 14829.6, + "probability": 0.8953 + }, + { + "start": 14829.64, + "end": 14830.62, + "probability": 0.9578 + }, + { + "start": 14831.3, + "end": 14833.12, + "probability": 0.9769 + }, + { + "start": 14833.62, + "end": 14836.3, + "probability": 0.9824 + }, + { + "start": 14836.56, + "end": 14837.18, + "probability": 0.9785 + }, + { + "start": 14837.38, + "end": 14838.06, + "probability": 0.9824 + }, + { + "start": 14838.44, + "end": 14839.38, + "probability": 0.8802 + }, + { + "start": 14839.44, + "end": 14840.24, + "probability": 0.7307 + }, + { + "start": 14840.88, + "end": 14844.96, + "probability": 0.9811 + }, + { + "start": 14845.96, + "end": 14850.06, + "probability": 0.699 + }, + { + "start": 14850.66, + "end": 14851.76, + "probability": 0.9232 + }, + { + "start": 14852.28, + "end": 14852.72, + "probability": 0.9232 + }, + { + "start": 14853.14, + "end": 14855.08, + "probability": 0.9338 + }, + { + "start": 14855.46, + "end": 14856.38, + "probability": 0.9595 + }, + { + "start": 14856.72, + "end": 14859.36, + "probability": 0.7855 + }, + { + "start": 14859.9, + "end": 14866.9, + "probability": 0.98 + }, + { + "start": 14867.28, + "end": 14867.72, + "probability": 0.7492 + }, + { + "start": 14868.68, + "end": 14870.24, + "probability": 0.842 + }, + { + "start": 14870.9, + "end": 14872.9, + "probability": 0.9543 + }, + { + "start": 14875.32, + "end": 14879.32, + "probability": 0.0194 + }, + { + "start": 14884.82, + "end": 14885.8, + "probability": 0.185 + }, + { + "start": 14901.34, + "end": 14903.3, + "probability": 0.7494 + }, + { + "start": 14903.34, + "end": 14904.92, + "probability": 0.8743 + }, + { + "start": 14904.94, + "end": 14906.34, + "probability": 0.8681 + }, + { + "start": 14907.9, + "end": 14909.46, + "probability": 0.9788 + }, + { + "start": 14910.4, + "end": 14913.1, + "probability": 0.9124 + }, + { + "start": 14914.06, + "end": 14914.93, + "probability": 0.861 + }, + { + "start": 14915.14, + "end": 14916.04, + "probability": 0.6997 + }, + { + "start": 14916.56, + "end": 14918.87, + "probability": 0.9736 + }, + { + "start": 14919.64, + "end": 14920.62, + "probability": 0.7622 + }, + { + "start": 14921.84, + "end": 14924.47, + "probability": 0.9552 + }, + { + "start": 14925.18, + "end": 14925.74, + "probability": 0.4436 + }, + { + "start": 14926.06, + "end": 14928.82, + "probability": 0.4454 + }, + { + "start": 14928.92, + "end": 14932.06, + "probability": 0.8355 + }, + { + "start": 14933.0, + "end": 14933.96, + "probability": 0.9956 + }, + { + "start": 14935.34, + "end": 14936.62, + "probability": 0.9316 + }, + { + "start": 14937.6, + "end": 14938.98, + "probability": 0.6644 + }, + { + "start": 14940.32, + "end": 14941.5, + "probability": 0.8943 + }, + { + "start": 14942.7, + "end": 14944.12, + "probability": 0.9192 + }, + { + "start": 14944.22, + "end": 14946.7, + "probability": 0.6941 + }, + { + "start": 14946.78, + "end": 14948.1, + "probability": 0.9246 + }, + { + "start": 14948.82, + "end": 14953.08, + "probability": 0.9102 + }, + { + "start": 14953.76, + "end": 14954.84, + "probability": 0.6464 + }, + { + "start": 14955.88, + "end": 14958.96, + "probability": 0.9949 + }, + { + "start": 14960.56, + "end": 14961.4, + "probability": 0.8069 + }, + { + "start": 14962.5, + "end": 14965.08, + "probability": 0.7433 + }, + { + "start": 14965.26, + "end": 14966.84, + "probability": 0.6777 + }, + { + "start": 14967.5, + "end": 14968.66, + "probability": 0.6731 + }, + { + "start": 14969.48, + "end": 14971.06, + "probability": 0.9164 + }, + { + "start": 14971.38, + "end": 14971.66, + "probability": 0.2563 + }, + { + "start": 14971.82, + "end": 14973.94, + "probability": 0.5797 + }, + { + "start": 14974.1, + "end": 14975.96, + "probability": 0.8446 + }, + { + "start": 14980.18, + "end": 14982.16, + "probability": 0.8225 + }, + { + "start": 14982.34, + "end": 14983.76, + "probability": 0.8522 + }, + { + "start": 14983.86, + "end": 14985.74, + "probability": 0.9814 + }, + { + "start": 14986.04, + "end": 14987.5, + "probability": 0.956 + }, + { + "start": 14988.26, + "end": 14990.18, + "probability": 0.7592 + }, + { + "start": 14990.9, + "end": 14994.44, + "probability": 0.8004 + }, + { + "start": 14995.3, + "end": 14995.74, + "probability": 0.4595 + }, + { + "start": 14996.26, + "end": 14999.02, + "probability": 0.8262 + }, + { + "start": 14999.86, + "end": 15001.6, + "probability": 0.9839 + }, + { + "start": 15002.42, + "end": 15008.98, + "probability": 0.8577 + }, + { + "start": 15009.24, + "end": 15009.56, + "probability": 0.7893 + }, + { + "start": 15010.5, + "end": 15012.82, + "probability": 0.8993 + }, + { + "start": 15013.04, + "end": 15014.52, + "probability": 0.876 + }, + { + "start": 15015.26, + "end": 15017.48, + "probability": 0.8864 + }, + { + "start": 15031.26, + "end": 15032.52, + "probability": 0.8945 + }, + { + "start": 15032.68, + "end": 15033.32, + "probability": 0.762 + }, + { + "start": 15033.32, + "end": 15035.78, + "probability": 0.9387 + }, + { + "start": 15035.98, + "end": 15036.08, + "probability": 0.8461 + }, + { + "start": 15039.08, + "end": 15039.32, + "probability": 0.0031 + }, + { + "start": 15042.46, + "end": 15043.22, + "probability": 0.4882 + }, + { + "start": 15044.4, + "end": 15045.46, + "probability": 0.8229 + }, + { + "start": 15045.64, + "end": 15047.68, + "probability": 0.8277 + }, + { + "start": 15048.66, + "end": 15049.88, + "probability": 0.8793 + }, + { + "start": 15050.86, + "end": 15053.0, + "probability": 0.9565 + }, + { + "start": 15053.14, + "end": 15056.2, + "probability": 0.8776 + }, + { + "start": 15057.1, + "end": 15059.52, + "probability": 0.9742 + }, + { + "start": 15059.62, + "end": 15064.68, + "probability": 0.9722 + }, + { + "start": 15064.95, + "end": 15068.92, + "probability": 0.9821 + }, + { + "start": 15069.68, + "end": 15074.26, + "probability": 0.8796 + }, + { + "start": 15075.42, + "end": 15077.75, + "probability": 0.7325 + }, + { + "start": 15078.52, + "end": 15080.1, + "probability": 0.6761 + }, + { + "start": 15081.06, + "end": 15082.8, + "probability": 0.949 + }, + { + "start": 15083.8, + "end": 15084.72, + "probability": 0.9884 + }, + { + "start": 15085.28, + "end": 15086.86, + "probability": 0.8045 + }, + { + "start": 15087.0, + "end": 15090.82, + "probability": 0.9022 + }, + { + "start": 15090.88, + "end": 15093.84, + "probability": 0.958 + }, + { + "start": 15094.1, + "end": 15098.54, + "probability": 0.8857 + }, + { + "start": 15099.5, + "end": 15101.02, + "probability": 0.8691 + }, + { + "start": 15101.18, + "end": 15106.06, + "probability": 0.9305 + }, + { + "start": 15106.5, + "end": 15110.66, + "probability": 0.9677 + }, + { + "start": 15110.84, + "end": 15111.56, + "probability": 0.7914 + }, + { + "start": 15111.72, + "end": 15112.02, + "probability": 0.5832 + }, + { + "start": 15112.7, + "end": 15114.02, + "probability": 0.9187 + }, + { + "start": 15114.64, + "end": 15117.94, + "probability": 0.9398 + }, + { + "start": 15118.64, + "end": 15119.2, + "probability": 0.2015 + }, + { + "start": 15119.22, + "end": 15120.76, + "probability": 0.7684 + }, + { + "start": 15120.84, + "end": 15121.84, + "probability": 0.8031 + }, + { + "start": 15121.92, + "end": 15122.78, + "probability": 0.9956 + }, + { + "start": 15123.36, + "end": 15125.18, + "probability": 0.9799 + }, + { + "start": 15126.67, + "end": 15129.76, + "probability": 0.943 + }, + { + "start": 15129.82, + "end": 15130.74, + "probability": 0.761 + }, + { + "start": 15130.78, + "end": 15138.94, + "probability": 0.6665 + }, + { + "start": 15139.0, + "end": 15141.28, + "probability": 0.9868 + }, + { + "start": 15141.52, + "end": 15144.04, + "probability": 0.9763 + }, + { + "start": 15144.04, + "end": 15148.4, + "probability": 0.9854 + }, + { + "start": 15148.48, + "end": 15149.2, + "probability": 0.7578 + }, + { + "start": 15149.96, + "end": 15153.42, + "probability": 0.9798 + }, + { + "start": 15153.56, + "end": 15155.04, + "probability": 0.8713 + }, + { + "start": 15155.7, + "end": 15157.84, + "probability": 0.7915 + }, + { + "start": 15157.98, + "end": 15162.16, + "probability": 0.9867 + }, + { + "start": 15162.72, + "end": 15166.64, + "probability": 0.9945 + }, + { + "start": 15166.8, + "end": 15167.58, + "probability": 0.9064 + }, + { + "start": 15167.92, + "end": 15168.18, + "probability": 0.0033 + }, + { + "start": 15169.0, + "end": 15174.1, + "probability": 0.9604 + }, + { + "start": 15174.1, + "end": 15176.86, + "probability": 0.8966 + }, + { + "start": 15176.88, + "end": 15180.1, + "probability": 0.8298 + }, + { + "start": 15180.22, + "end": 15184.68, + "probability": 0.9656 + }, + { + "start": 15187.16, + "end": 15187.88, + "probability": 0.6656 + }, + { + "start": 15188.52, + "end": 15195.32, + "probability": 0.9907 + }, + { + "start": 15195.86, + "end": 15197.68, + "probability": 0.7062 + }, + { + "start": 15197.72, + "end": 15201.82, + "probability": 0.98 + }, + { + "start": 15202.48, + "end": 15203.18, + "probability": 0.6909 + }, + { + "start": 15203.32, + "end": 15203.78, + "probability": 0.5903 + }, + { + "start": 15204.18, + "end": 15204.6, + "probability": 0.5056 + }, + { + "start": 15204.6, + "end": 15205.58, + "probability": 0.7625 + }, + { + "start": 15205.94, + "end": 15206.78, + "probability": 0.5246 + }, + { + "start": 15207.28, + "end": 15209.3, + "probability": 0.9875 + }, + { + "start": 15209.94, + "end": 15211.38, + "probability": 0.9293 + }, + { + "start": 15212.02, + "end": 15212.88, + "probability": 0.9254 + }, + { + "start": 15213.98, + "end": 15214.36, + "probability": 0.5011 + }, + { + "start": 15214.5, + "end": 15218.36, + "probability": 0.8862 + }, + { + "start": 15218.66, + "end": 15219.62, + "probability": 0.9149 + }, + { + "start": 15219.66, + "end": 15221.76, + "probability": 0.7341 + }, + { + "start": 15222.4, + "end": 15229.02, + "probability": 0.896 + }, + { + "start": 15229.5, + "end": 15231.07, + "probability": 0.7227 + }, + { + "start": 15231.84, + "end": 15236.58, + "probability": 0.9295 + }, + { + "start": 15237.1, + "end": 15238.52, + "probability": 0.9939 + }, + { + "start": 15238.96, + "end": 15241.76, + "probability": 0.9745 + }, + { + "start": 15241.76, + "end": 15243.94, + "probability": 0.98 + }, + { + "start": 15244.04, + "end": 15244.4, + "probability": 0.8352 + }, + { + "start": 15244.72, + "end": 15246.58, + "probability": 0.9194 + }, + { + "start": 15247.02, + "end": 15247.94, + "probability": 0.981 + }, + { + "start": 15248.6, + "end": 15250.64, + "probability": 0.8049 + }, + { + "start": 15250.66, + "end": 15251.4, + "probability": 0.8198 + }, + { + "start": 15251.42, + "end": 15252.98, + "probability": 0.8809 + }, + { + "start": 15254.1, + "end": 15257.18, + "probability": 0.8644 + }, + { + "start": 15258.22, + "end": 15259.8, + "probability": 0.9756 + }, + { + "start": 15273.86, + "end": 15276.82, + "probability": 0.633 + }, + { + "start": 15278.44, + "end": 15281.48, + "probability": 0.9725 + }, + { + "start": 15286.42, + "end": 15288.82, + "probability": 0.799 + }, + { + "start": 15288.94, + "end": 15290.48, + "probability": 0.9941 + }, + { + "start": 15290.7, + "end": 15296.3, + "probability": 0.998 + }, + { + "start": 15296.4, + "end": 15302.96, + "probability": 0.9775 + }, + { + "start": 15304.46, + "end": 15308.22, + "probability": 0.8263 + }, + { + "start": 15308.38, + "end": 15310.16, + "probability": 0.9812 + }, + { + "start": 15310.28, + "end": 15312.56, + "probability": 0.9947 + }, + { + "start": 15312.56, + "end": 15313.16, + "probability": 0.764 + }, + { + "start": 15313.36, + "end": 15317.08, + "probability": 0.9702 + }, + { + "start": 15317.3, + "end": 15321.64, + "probability": 0.8524 + }, + { + "start": 15321.8, + "end": 15325.08, + "probability": 0.8625 + }, + { + "start": 15326.52, + "end": 15328.16, + "probability": 0.955 + }, + { + "start": 15328.28, + "end": 15329.84, + "probability": 0.875 + }, + { + "start": 15331.76, + "end": 15333.5, + "probability": 0.8876 + }, + { + "start": 15334.36, + "end": 15336.5, + "probability": 0.9617 + }, + { + "start": 15338.02, + "end": 15341.18, + "probability": 0.9977 + }, + { + "start": 15341.18, + "end": 15343.98, + "probability": 0.9941 + }, + { + "start": 15344.12, + "end": 15345.2, + "probability": 0.6709 + }, + { + "start": 15347.14, + "end": 15350.78, + "probability": 0.9968 + }, + { + "start": 15351.7, + "end": 15353.94, + "probability": 0.6262 + }, + { + "start": 15354.04, + "end": 15356.7, + "probability": 0.9737 + }, + { + "start": 15357.86, + "end": 15363.74, + "probability": 0.649 + }, + { + "start": 15363.92, + "end": 15367.14, + "probability": 0.8586 + }, + { + "start": 15367.22, + "end": 15369.32, + "probability": 0.9803 + }, + { + "start": 15369.5, + "end": 15371.08, + "probability": 0.9238 + }, + { + "start": 15371.36, + "end": 15374.96, + "probability": 0.974 + }, + { + "start": 15375.08, + "end": 15375.12, + "probability": 0.035 + }, + { + "start": 15375.12, + "end": 15375.12, + "probability": 0.1139 + }, + { + "start": 15375.12, + "end": 15379.98, + "probability": 0.9847 + }, + { + "start": 15379.98, + "end": 15385.58, + "probability": 0.9907 + }, + { + "start": 15386.98, + "end": 15389.9, + "probability": 0.5901 + }, + { + "start": 15390.28, + "end": 15394.42, + "probability": 0.994 + }, + { + "start": 15395.72, + "end": 15397.54, + "probability": 0.8192 + }, + { + "start": 15398.44, + "end": 15401.44, + "probability": 0.9412 + }, + { + "start": 15401.88, + "end": 15404.84, + "probability": 0.8982 + }, + { + "start": 15406.04, + "end": 15407.72, + "probability": 0.9055 + }, + { + "start": 15408.14, + "end": 15410.48, + "probability": 0.9161 + }, + { + "start": 15410.54, + "end": 15412.82, + "probability": 0.9989 + }, + { + "start": 15413.44, + "end": 15418.06, + "probability": 0.9397 + }, + { + "start": 15418.06, + "end": 15424.34, + "probability": 0.976 + }, + { + "start": 15424.4, + "end": 15426.16, + "probability": 0.9481 + }, + { + "start": 15428.42, + "end": 15432.02, + "probability": 0.9935 + }, + { + "start": 15433.0, + "end": 15434.88, + "probability": 0.9943 + }, + { + "start": 15434.88, + "end": 15437.56, + "probability": 0.7189 + }, + { + "start": 15437.64, + "end": 15438.06, + "probability": 0.9173 + }, + { + "start": 15440.28, + "end": 15442.12, + "probability": 0.8817 + }, + { + "start": 15442.78, + "end": 15444.28, + "probability": 0.8452 + }, + { + "start": 15444.36, + "end": 15444.48, + "probability": 0.1618 + }, + { + "start": 15444.58, + "end": 15445.42, + "probability": 0.6952 + }, + { + "start": 15445.5, + "end": 15448.76, + "probability": 0.9406 + }, + { + "start": 15450.14, + "end": 15452.08, + "probability": 0.797 + }, + { + "start": 15452.18, + "end": 15453.62, + "probability": 0.9209 + }, + { + "start": 15453.66, + "end": 15456.22, + "probability": 0.928 + }, + { + "start": 15456.5, + "end": 15458.12, + "probability": 0.6461 + }, + { + "start": 15459.22, + "end": 15463.04, + "probability": 0.9775 + }, + { + "start": 15463.9, + "end": 15468.74, + "probability": 0.9926 + }, + { + "start": 15469.04, + "end": 15470.2, + "probability": 0.9818 + }, + { + "start": 15470.3, + "end": 15472.46, + "probability": 0.9962 + }, + { + "start": 15473.24, + "end": 15477.12, + "probability": 0.9989 + }, + { + "start": 15477.12, + "end": 15479.58, + "probability": 1.0 + }, + { + "start": 15480.38, + "end": 15481.61, + "probability": 0.9912 + }, + { + "start": 15482.4, + "end": 15483.12, + "probability": 0.9403 + }, + { + "start": 15483.34, + "end": 15486.38, + "probability": 0.9976 + }, + { + "start": 15486.96, + "end": 15490.78, + "probability": 0.9988 + }, + { + "start": 15491.12, + "end": 15494.5, + "probability": 0.9996 + }, + { + "start": 15495.82, + "end": 15499.88, + "probability": 0.7068 + }, + { + "start": 15500.68, + "end": 15504.46, + "probability": 0.9926 + }, + { + "start": 15504.46, + "end": 15507.18, + "probability": 0.9967 + }, + { + "start": 15508.46, + "end": 15509.7, + "probability": 0.9285 + }, + { + "start": 15509.8, + "end": 15511.35, + "probability": 0.9985 + }, + { + "start": 15512.28, + "end": 15513.26, + "probability": 0.8288 + }, + { + "start": 15513.36, + "end": 15515.76, + "probability": 0.9941 + }, + { + "start": 15516.24, + "end": 15521.9, + "probability": 0.9374 + }, + { + "start": 15522.08, + "end": 15522.96, + "probability": 0.588 + }, + { + "start": 15523.32, + "end": 15525.3, + "probability": 0.9951 + }, + { + "start": 15525.74, + "end": 15528.52, + "probability": 0.9887 + }, + { + "start": 15529.5, + "end": 15532.24, + "probability": 0.7097 + }, + { + "start": 15533.12, + "end": 15536.84, + "probability": 0.5045 + }, + { + "start": 15537.38, + "end": 15539.08, + "probability": 0.9546 + }, + { + "start": 15539.44, + "end": 15540.09, + "probability": 0.9941 + }, + { + "start": 15540.66, + "end": 15542.2, + "probability": 0.9831 + }, + { + "start": 15542.58, + "end": 15545.4, + "probability": 0.7278 + }, + { + "start": 15545.74, + "end": 15548.99, + "probability": 0.8829 + }, + { + "start": 15549.6, + "end": 15551.26, + "probability": 0.9291 + }, + { + "start": 15551.36, + "end": 15554.66, + "probability": 0.972 + }, + { + "start": 15554.84, + "end": 15555.82, + "probability": 0.7466 + }, + { + "start": 15556.4, + "end": 15558.02, + "probability": 0.9849 + }, + { + "start": 15558.48, + "end": 15561.56, + "probability": 0.996 + }, + { + "start": 15562.04, + "end": 15565.62, + "probability": 0.964 + }, + { + "start": 15565.9, + "end": 15568.74, + "probability": 0.9824 + }, + { + "start": 15568.94, + "end": 15572.02, + "probability": 0.9452 + }, + { + "start": 15572.04, + "end": 15573.1, + "probability": 0.6385 + }, + { + "start": 15573.26, + "end": 15573.74, + "probability": 0.684 + }, + { + "start": 15573.78, + "end": 15574.48, + "probability": 0.8722 + }, + { + "start": 15574.54, + "end": 15575.14, + "probability": 0.538 + }, + { + "start": 15575.18, + "end": 15575.74, + "probability": 0.9506 + }, + { + "start": 15576.66, + "end": 15580.78, + "probability": 0.8564 + }, + { + "start": 15581.52, + "end": 15582.76, + "probability": 0.9457 + }, + { + "start": 15582.8, + "end": 15584.14, + "probability": 0.9275 + }, + { + "start": 15584.88, + "end": 15587.5, + "probability": 0.9692 + }, + { + "start": 15588.32, + "end": 15589.84, + "probability": 0.9874 + }, + { + "start": 15589.94, + "end": 15590.98, + "probability": 0.9536 + }, + { + "start": 15591.1, + "end": 15592.3, + "probability": 0.9944 + }, + { + "start": 15592.6, + "end": 15593.8, + "probability": 0.9578 + }, + { + "start": 15593.9, + "end": 15594.36, + "probability": 0.4876 + }, + { + "start": 15594.44, + "end": 15594.98, + "probability": 0.5409 + }, + { + "start": 15595.26, + "end": 15595.52, + "probability": 0.6399 + }, + { + "start": 15595.72, + "end": 15596.04, + "probability": 0.4959 + }, + { + "start": 15596.16, + "end": 15596.64, + "probability": 0.747 + }, + { + "start": 15596.7, + "end": 15598.6, + "probability": 0.9963 + }, + { + "start": 15599.46, + "end": 15601.58, + "probability": 0.999 + }, + { + "start": 15602.32, + "end": 15606.32, + "probability": 0.9949 + }, + { + "start": 15606.32, + "end": 15611.54, + "probability": 0.9941 + }, + { + "start": 15611.62, + "end": 15612.62, + "probability": 0.7262 + }, + { + "start": 15612.62, + "end": 15613.24, + "probability": 0.8665 + }, + { + "start": 15613.36, + "end": 15615.4, + "probability": 0.926 + }, + { + "start": 15615.8, + "end": 15617.1, + "probability": 0.9839 + }, + { + "start": 15617.2, + "end": 15619.46, + "probability": 0.989 + }, + { + "start": 15619.52, + "end": 15621.65, + "probability": 0.9917 + }, + { + "start": 15622.16, + "end": 15624.28, + "probability": 0.9891 + }, + { + "start": 15624.36, + "end": 15631.48, + "probability": 0.9944 + }, + { + "start": 15631.6, + "end": 15637.16, + "probability": 0.9989 + }, + { + "start": 15637.22, + "end": 15638.96, + "probability": 0.9856 + }, + { + "start": 15640.0, + "end": 15642.28, + "probability": 0.9961 + }, + { + "start": 15642.42, + "end": 15642.68, + "probability": 0.5753 + }, + { + "start": 15642.76, + "end": 15643.06, + "probability": 0.8595 + }, + { + "start": 15643.18, + "end": 15645.72, + "probability": 0.9878 + }, + { + "start": 15645.94, + "end": 15646.78, + "probability": 0.6161 + }, + { + "start": 15646.8, + "end": 15649.18, + "probability": 0.9205 + }, + { + "start": 15650.22, + "end": 15652.68, + "probability": 0.9788 + }, + { + "start": 15653.2, + "end": 15655.56, + "probability": 0.9735 + }, + { + "start": 15656.08, + "end": 15659.76, + "probability": 0.9058 + }, + { + "start": 15659.76, + "end": 15663.92, + "probability": 0.9797 + }, + { + "start": 15664.54, + "end": 15666.26, + "probability": 0.8221 + }, + { + "start": 15666.54, + "end": 15667.86, + "probability": 0.918 + }, + { + "start": 15667.9, + "end": 15668.62, + "probability": 0.8476 + }, + { + "start": 15668.68, + "end": 15670.58, + "probability": 0.8825 + }, + { + "start": 15671.04, + "end": 15673.78, + "probability": 0.9946 + }, + { + "start": 15674.5, + "end": 15675.88, + "probability": 0.4742 + }, + { + "start": 15679.54, + "end": 15681.8, + "probability": 0.9971 + }, + { + "start": 15683.0, + "end": 15686.16, + "probability": 0.4005 + }, + { + "start": 15686.22, + "end": 15686.48, + "probability": 0.7771 + }, + { + "start": 15686.77, + "end": 15690.11, + "probability": 0.9235 + }, + { + "start": 15691.26, + "end": 15692.88, + "probability": 0.9814 + }, + { + "start": 15693.96, + "end": 15699.12, + "probability": 0.9641 + }, + { + "start": 15699.2, + "end": 15700.4, + "probability": 0.8869 + }, + { + "start": 15701.22, + "end": 15703.64, + "probability": 0.6232 + }, + { + "start": 15703.78, + "end": 15708.62, + "probability": 0.9884 + }, + { + "start": 15708.68, + "end": 15710.9, + "probability": 0.9529 + }, + { + "start": 15711.22, + "end": 15714.28, + "probability": 0.9868 + }, + { + "start": 15715.0, + "end": 15720.64, + "probability": 0.981 + }, + { + "start": 15721.52, + "end": 15722.52, + "probability": 0.5981 + }, + { + "start": 15722.64, + "end": 15723.08, + "probability": 0.4275 + }, + { + "start": 15723.16, + "end": 15725.42, + "probability": 0.9071 + }, + { + "start": 15725.42, + "end": 15727.54, + "probability": 0.9891 + }, + { + "start": 15728.34, + "end": 15730.52, + "probability": 0.6566 + }, + { + "start": 15731.12, + "end": 15732.22, + "probability": 0.9857 + }, + { + "start": 15732.4, + "end": 15734.0, + "probability": 0.7361 + }, + { + "start": 15734.06, + "end": 15736.72, + "probability": 0.998 + }, + { + "start": 15737.34, + "end": 15740.6, + "probability": 0.7328 + }, + { + "start": 15740.94, + "end": 15742.59, + "probability": 0.9844 + }, + { + "start": 15743.34, + "end": 15744.82, + "probability": 0.9531 + }, + { + "start": 15745.16, + "end": 15747.22, + "probability": 0.9985 + }, + { + "start": 15747.34, + "end": 15750.24, + "probability": 0.93 + }, + { + "start": 15750.82, + "end": 15752.62, + "probability": 0.9966 + }, + { + "start": 15752.62, + "end": 15755.6, + "probability": 0.709 + }, + { + "start": 15756.06, + "end": 15758.42, + "probability": 0.9595 + }, + { + "start": 15758.46, + "end": 15760.04, + "probability": 0.9971 + }, + { + "start": 15760.7, + "end": 15764.58, + "probability": 0.9398 + }, + { + "start": 15764.7, + "end": 15765.68, + "probability": 0.9753 + }, + { + "start": 15765.84, + "end": 15767.18, + "probability": 0.8875 + }, + { + "start": 15767.82, + "end": 15770.5, + "probability": 0.707 + }, + { + "start": 15770.84, + "end": 15771.14, + "probability": 0.7417 + }, + { + "start": 15771.78, + "end": 15774.8, + "probability": 0.5788 + }, + { + "start": 15775.18, + "end": 15777.84, + "probability": 0.5647 + }, + { + "start": 15778.82, + "end": 15782.74, + "probability": 0.8926 + }, + { + "start": 15783.34, + "end": 15789.88, + "probability": 0.8451 + }, + { + "start": 15790.32, + "end": 15791.82, + "probability": 0.3667 + }, + { + "start": 15791.92, + "end": 15793.22, + "probability": 0.8318 + }, + { + "start": 15793.68, + "end": 15794.52, + "probability": 0.6781 + }, + { + "start": 15794.62, + "end": 15795.34, + "probability": 0.9248 + }, + { + "start": 15795.4, + "end": 15796.8, + "probability": 0.7406 + }, + { + "start": 15805.24, + "end": 15806.54, + "probability": 0.2397 + }, + { + "start": 15811.26, + "end": 15812.94, + "probability": 0.0208 + }, + { + "start": 15817.38, + "end": 15821.9, + "probability": 0.6728 + }, + { + "start": 15822.38, + "end": 15823.58, + "probability": 0.3378 + }, + { + "start": 15826.06, + "end": 15830.78, + "probability": 0.7622 + }, + { + "start": 15831.0, + "end": 15834.3, + "probability": 0.1277 + }, + { + "start": 15835.36, + "end": 15838.78, + "probability": 0.4602 + }, + { + "start": 15839.5, + "end": 15842.8, + "probability": 0.0259 + }, + { + "start": 15846.46, + "end": 15848.42, + "probability": 0.0296 + }, + { + "start": 15848.42, + "end": 15848.66, + "probability": 0.025 + }, + { + "start": 15849.1, + "end": 15849.62, + "probability": 0.0825 + }, + { + "start": 15850.13, + "end": 15850.7, + "probability": 0.2269 + }, + { + "start": 15851.82, + "end": 15859.36, + "probability": 0.1752 + }, + { + "start": 15860.87, + "end": 15861.82, + "probability": 0.0359 + }, + { + "start": 15861.82, + "end": 15861.82, + "probability": 0.2067 + }, + { + "start": 15861.82, + "end": 15863.18, + "probability": 0.0513 + }, + { + "start": 15863.2, + "end": 15865.72, + "probability": 0.2402 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.0, + "end": 15919.0, + "probability": 0.0 + }, + { + "start": 15919.3, + "end": 15919.4, + "probability": 0.064 + }, + { + "start": 15919.4, + "end": 15919.4, + "probability": 0.0317 + }, + { + "start": 15919.4, + "end": 15919.4, + "probability": 0.1104 + }, + { + "start": 15919.4, + "end": 15922.16, + "probability": 0.7091 + }, + { + "start": 15922.16, + "end": 15926.78, + "probability": 0.9355 + }, + { + "start": 15927.6, + "end": 15930.62, + "probability": 0.667 + }, + { + "start": 15930.72, + "end": 15933.32, + "probability": 0.9823 + }, + { + "start": 15933.8, + "end": 15936.28, + "probability": 0.9482 + }, + { + "start": 15936.78, + "end": 15938.42, + "probability": 0.7677 + }, + { + "start": 15938.42, + "end": 15940.6, + "probability": 0.8617 + }, + { + "start": 15941.3, + "end": 15942.78, + "probability": 0.821 + }, + { + "start": 15944.06, + "end": 15944.74, + "probability": 0.5356 + }, + { + "start": 15944.82, + "end": 15948.14, + "probability": 0.7249 + }, + { + "start": 15949.1, + "end": 15950.78, + "probability": 0.6946 + }, + { + "start": 15950.78, + "end": 15953.82, + "probability": 0.9542 + }, + { + "start": 15954.32, + "end": 15957.16, + "probability": 0.9747 + }, + { + "start": 15958.42, + "end": 15961.18, + "probability": 0.9324 + }, + { + "start": 15961.3, + "end": 15963.86, + "probability": 0.5623 + }, + { + "start": 15963.86, + "end": 15966.56, + "probability": 0.7727 + }, + { + "start": 15967.02, + "end": 15968.18, + "probability": 0.8752 + }, + { + "start": 15969.08, + "end": 15971.76, + "probability": 0.5088 + }, + { + "start": 15971.84, + "end": 15973.76, + "probability": 0.7594 + }, + { + "start": 15973.78, + "end": 15974.04, + "probability": 0.7863 + }, + { + "start": 15975.26, + "end": 15978.58, + "probability": 0.8787 + }, + { + "start": 15979.02, + "end": 15980.6, + "probability": 0.445 + }, + { + "start": 15981.52, + "end": 15982.9, + "probability": 0.6935 + }, + { + "start": 15983.48, + "end": 15984.14, + "probability": 0.6925 + }, + { + "start": 15984.64, + "end": 15986.02, + "probability": 0.6318 + }, + { + "start": 15986.04, + "end": 15986.7, + "probability": 0.8943 + }, + { + "start": 15986.84, + "end": 15988.62, + "probability": 0.9854 + }, + { + "start": 15988.68, + "end": 15989.62, + "probability": 0.8974 + }, + { + "start": 15990.02, + "end": 15991.56, + "probability": 0.9926 + }, + { + "start": 15992.18, + "end": 15992.96, + "probability": 0.9908 + }, + { + "start": 15993.62, + "end": 15995.15, + "probability": 0.6835 + }, + { + "start": 15995.48, + "end": 15996.92, + "probability": 0.8377 + }, + { + "start": 15998.32, + "end": 16001.46, + "probability": 0.8643 + }, + { + "start": 16001.76, + "end": 16002.68, + "probability": 0.8439 + }, + { + "start": 16003.12, + "end": 16004.94, + "probability": 0.9634 + }, + { + "start": 16008.06, + "end": 16008.72, + "probability": 0.9575 + }, + { + "start": 16009.54, + "end": 16011.06, + "probability": 0.9906 + }, + { + "start": 16011.66, + "end": 16015.62, + "probability": 0.925 + }, + { + "start": 16016.18, + "end": 16019.4, + "probability": 0.8972 + }, + { + "start": 16019.98, + "end": 16022.2, + "probability": 0.8721 + }, + { + "start": 16022.94, + "end": 16023.76, + "probability": 0.9571 + }, + { + "start": 16024.46, + "end": 16026.16, + "probability": 0.8347 + }, + { + "start": 16026.88, + "end": 16027.88, + "probability": 0.9615 + }, + { + "start": 16028.16, + "end": 16029.68, + "probability": 0.9891 + }, + { + "start": 16029.86, + "end": 16030.54, + "probability": 0.3607 + }, + { + "start": 16031.0, + "end": 16033.02, + "probability": 0.8647 + }, + { + "start": 16033.2, + "end": 16034.08, + "probability": 0.9006 + }, + { + "start": 16034.54, + "end": 16035.78, + "probability": 0.9668 + }, + { + "start": 16035.98, + "end": 16036.68, + "probability": 0.8446 + }, + { + "start": 16037.2, + "end": 16038.7, + "probability": 0.8683 + }, + { + "start": 16039.04, + "end": 16039.94, + "probability": 0.9605 + }, + { + "start": 16040.3, + "end": 16041.7, + "probability": 0.9884 + }, + { + "start": 16042.24, + "end": 16042.94, + "probability": 0.584 + }, + { + "start": 16043.38, + "end": 16045.4, + "probability": 0.6418 + }, + { + "start": 16045.6, + "end": 16046.5, + "probability": 0.8917 + }, + { + "start": 16046.82, + "end": 16048.74, + "probability": 0.6641 + }, + { + "start": 16049.0, + "end": 16049.94, + "probability": 0.9597 + }, + { + "start": 16050.28, + "end": 16052.18, + "probability": 0.9023 + }, + { + "start": 16052.82, + "end": 16056.2, + "probability": 0.9867 + }, + { + "start": 16056.84, + "end": 16058.52, + "probability": 0.6931 + }, + { + "start": 16059.04, + "end": 16061.68, + "probability": 0.8278 + }, + { + "start": 16062.3, + "end": 16065.46, + "probability": 0.9565 + }, + { + "start": 16065.98, + "end": 16066.86, + "probability": 0.7405 + }, + { + "start": 16067.42, + "end": 16069.34, + "probability": 0.9153 + }, + { + "start": 16070.12, + "end": 16070.68, + "probability": 0.6254 + }, + { + "start": 16096.3, + "end": 16096.78, + "probability": 0.3783 + }, + { + "start": 16096.82, + "end": 16098.15, + "probability": 0.8135 + }, + { + "start": 16104.18, + "end": 16104.84, + "probability": 0.2261 + }, + { + "start": 16105.94, + "end": 16107.42, + "probability": 0.6923 + }, + { + "start": 16108.52, + "end": 16112.44, + "probability": 0.6211 + }, + { + "start": 16113.52, + "end": 16119.36, + "probability": 0.9916 + }, + { + "start": 16119.72, + "end": 16124.4, + "probability": 0.7543 + }, + { + "start": 16125.04, + "end": 16126.04, + "probability": 0.42 + }, + { + "start": 16126.96, + "end": 16128.4, + "probability": 0.6379 + }, + { + "start": 16128.94, + "end": 16129.86, + "probability": 0.3193 + }, + { + "start": 16131.14, + "end": 16132.54, + "probability": 0.9058 + }, + { + "start": 16133.46, + "end": 16138.44, + "probability": 0.748 + }, + { + "start": 16140.04, + "end": 16141.18, + "probability": 0.3296 + }, + { + "start": 16142.44, + "end": 16145.22, + "probability": 0.9317 + }, + { + "start": 16145.48, + "end": 16146.94, + "probability": 0.8509 + }, + { + "start": 16147.04, + "end": 16148.24, + "probability": 0.8977 + }, + { + "start": 16148.32, + "end": 16149.73, + "probability": 0.6539 + }, + { + "start": 16149.96, + "end": 16151.22, + "probability": 0.7872 + }, + { + "start": 16151.3, + "end": 16153.58, + "probability": 0.8547 + }, + { + "start": 16153.64, + "end": 16156.14, + "probability": 0.9949 + }, + { + "start": 16162.68, + "end": 16163.44, + "probability": 0.6745 + }, + { + "start": 16164.16, + "end": 16165.36, + "probability": 0.8203 + }, + { + "start": 16171.8, + "end": 16172.46, + "probability": 0.714 + }, + { + "start": 16173.32, + "end": 16177.66, + "probability": 0.718 + }, + { + "start": 16177.88, + "end": 16179.78, + "probability": 0.4991 + }, + { + "start": 16179.9, + "end": 16182.84, + "probability": 0.8175 + }, + { + "start": 16182.92, + "end": 16184.44, + "probability": 0.8272 + }, + { + "start": 16184.98, + "end": 16188.28, + "probability": 0.574 + }, + { + "start": 16188.98, + "end": 16191.01, + "probability": 0.8242 + }, + { + "start": 16191.48, + "end": 16194.4, + "probability": 0.6963 + }, + { + "start": 16195.12, + "end": 16195.98, + "probability": 0.6453 + }, + { + "start": 16196.12, + "end": 16201.78, + "probability": 0.929 + }, + { + "start": 16202.32, + "end": 16205.84, + "probability": 0.9508 + }, + { + "start": 16206.06, + "end": 16207.88, + "probability": 0.9045 + }, + { + "start": 16207.94, + "end": 16208.62, + "probability": 0.7975 + }, + { + "start": 16208.82, + "end": 16209.48, + "probability": 0.9156 + }, + { + "start": 16209.76, + "end": 16210.14, + "probability": 0.7958 + }, + { + "start": 16210.24, + "end": 16210.6, + "probability": 0.9495 + }, + { + "start": 16210.8, + "end": 16211.22, + "probability": 0.8981 + }, + { + "start": 16211.74, + "end": 16214.76, + "probability": 0.7362 + }, + { + "start": 16216.72, + "end": 16222.42, + "probability": 0.9524 + }, + { + "start": 16222.6, + "end": 16224.7, + "probability": 0.937 + }, + { + "start": 16224.8, + "end": 16225.7, + "probability": 0.8552 + }, + { + "start": 16225.82, + "end": 16228.52, + "probability": 0.8966 + }, + { + "start": 16229.92, + "end": 16232.6, + "probability": 0.7194 + }, + { + "start": 16232.6, + "end": 16238.42, + "probability": 0.963 + }, + { + "start": 16239.34, + "end": 16241.74, + "probability": 0.7946 + }, + { + "start": 16242.3, + "end": 16245.06, + "probability": 0.845 + }, + { + "start": 16245.58, + "end": 16245.86, + "probability": 0.8345 + }, + { + "start": 16246.84, + "end": 16249.4, + "probability": 0.8845 + }, + { + "start": 16249.62, + "end": 16252.24, + "probability": 0.9076 + }, + { + "start": 16252.76, + "end": 16254.4, + "probability": 0.8283 + }, + { + "start": 16255.1, + "end": 16255.78, + "probability": 0.3543 + }, + { + "start": 16256.4, + "end": 16258.14, + "probability": 0.7092 + }, + { + "start": 16258.8, + "end": 16259.52, + "probability": 0.9186 + }, + { + "start": 16260.28, + "end": 16261.78, + "probability": 0.8225 + }, + { + "start": 16261.88, + "end": 16262.64, + "probability": 0.8894 + }, + { + "start": 16262.74, + "end": 16264.04, + "probability": 0.9656 + }, + { + "start": 16265.52, + "end": 16269.52, + "probability": 0.9805 + }, + { + "start": 16272.66, + "end": 16274.48, + "probability": 0.9824 + }, + { + "start": 16274.48, + "end": 16274.48, + "probability": 0.0823 + }, + { + "start": 16274.48, + "end": 16274.88, + "probability": 0.6206 + }, + { + "start": 16275.0, + "end": 16275.76, + "probability": 0.4629 + }, + { + "start": 16276.16, + "end": 16277.82, + "probability": 0.9237 + }, + { + "start": 16278.88, + "end": 16279.68, + "probability": 0.7144 + }, + { + "start": 16293.9, + "end": 16295.25, + "probability": 0.8554 + }, + { + "start": 16295.84, + "end": 16299.04, + "probability": 0.5605 + }, + { + "start": 16299.66, + "end": 16300.72, + "probability": 0.9187 + }, + { + "start": 16300.84, + "end": 16302.64, + "probability": 0.9937 + }, + { + "start": 16303.78, + "end": 16304.44, + "probability": 0.9752 + }, + { + "start": 16305.54, + "end": 16308.56, + "probability": 0.9873 + }, + { + "start": 16309.38, + "end": 16311.76, + "probability": 0.7327 + }, + { + "start": 16312.94, + "end": 16315.14, + "probability": 0.6783 + }, + { + "start": 16315.68, + "end": 16319.48, + "probability": 0.7976 + }, + { + "start": 16319.7, + "end": 16323.2, + "probability": 0.8525 + }, + { + "start": 16323.2, + "end": 16326.76, + "probability": 0.9827 + }, + { + "start": 16328.32, + "end": 16329.25, + "probability": 0.5081 + }, + { + "start": 16331.84, + "end": 16332.9, + "probability": 0.9759 + }, + { + "start": 16333.2, + "end": 16337.8, + "probability": 0.8735 + }, + { + "start": 16337.92, + "end": 16340.02, + "probability": 0.9856 + }, + { + "start": 16340.86, + "end": 16341.78, + "probability": 0.8772 + }, + { + "start": 16342.36, + "end": 16344.04, + "probability": 0.9329 + }, + { + "start": 16344.38, + "end": 16347.76, + "probability": 0.9583 + }, + { + "start": 16347.86, + "end": 16350.74, + "probability": 0.6515 + }, + { + "start": 16351.46, + "end": 16355.68, + "probability": 0.9095 + }, + { + "start": 16355.86, + "end": 16358.78, + "probability": 0.9932 + }, + { + "start": 16358.98, + "end": 16361.48, + "probability": 0.958 + }, + { + "start": 16362.12, + "end": 16363.7, + "probability": 0.9401 + }, + { + "start": 16363.88, + "end": 16370.0, + "probability": 0.9633 + }, + { + "start": 16370.1, + "end": 16371.6, + "probability": 0.5639 + }, + { + "start": 16372.24, + "end": 16374.44, + "probability": 0.9915 + }, + { + "start": 16374.54, + "end": 16375.84, + "probability": 0.897 + }, + { + "start": 16376.84, + "end": 16380.94, + "probability": 0.7653 + }, + { + "start": 16381.33, + "end": 16385.44, + "probability": 0.9966 + }, + { + "start": 16385.54, + "end": 16386.76, + "probability": 0.8152 + }, + { + "start": 16386.84, + "end": 16386.98, + "probability": 0.6396 + }, + { + "start": 16387.06, + "end": 16387.74, + "probability": 0.8677 + }, + { + "start": 16388.22, + "end": 16388.64, + "probability": 0.658 + }, + { + "start": 16388.72, + "end": 16389.02, + "probability": 0.55 + }, + { + "start": 16389.1, + "end": 16389.8, + "probability": 0.5178 + }, + { + "start": 16389.88, + "end": 16392.84, + "probability": 0.9795 + }, + { + "start": 16393.7, + "end": 16396.4, + "probability": 0.8353 + }, + { + "start": 16396.52, + "end": 16397.8, + "probability": 0.8919 + }, + { + "start": 16397.98, + "end": 16398.26, + "probability": 0.8383 + }, + { + "start": 16398.3, + "end": 16401.68, + "probability": 0.9949 + }, + { + "start": 16401.68, + "end": 16405.28, + "probability": 0.9858 + }, + { + "start": 16405.4, + "end": 16407.24, + "probability": 0.9618 + }, + { + "start": 16407.28, + "end": 16411.92, + "probability": 0.7887 + }, + { + "start": 16412.22, + "end": 16414.68, + "probability": 0.9293 + }, + { + "start": 16414.7, + "end": 16417.0, + "probability": 0.9236 + }, + { + "start": 16417.06, + "end": 16417.54, + "probability": 0.7979 + }, + { + "start": 16419.92, + "end": 16422.08, + "probability": 0.9259 + }, + { + "start": 16422.18, + "end": 16423.54, + "probability": 0.9745 + }, + { + "start": 16445.8, + "end": 16446.9, + "probability": 0.4433 + }, + { + "start": 16447.44, + "end": 16449.6, + "probability": 0.6186 + }, + { + "start": 16451.84, + "end": 16452.78, + "probability": 0.7414 + }, + { + "start": 16453.86, + "end": 16456.94, + "probability": 0.9381 + }, + { + "start": 16459.24, + "end": 16460.35, + "probability": 0.9502 + }, + { + "start": 16461.74, + "end": 16462.68, + "probability": 0.9864 + }, + { + "start": 16463.28, + "end": 16464.54, + "probability": 0.9581 + }, + { + "start": 16466.56, + "end": 16469.04, + "probability": 0.8795 + }, + { + "start": 16470.26, + "end": 16477.66, + "probability": 0.9887 + }, + { + "start": 16478.08, + "end": 16483.43, + "probability": 0.9852 + }, + { + "start": 16485.78, + "end": 16489.24, + "probability": 0.8852 + }, + { + "start": 16489.76, + "end": 16490.5, + "probability": 0.9335 + }, + { + "start": 16491.36, + "end": 16492.1, + "probability": 0.8311 + }, + { + "start": 16494.06, + "end": 16495.14, + "probability": 0.8961 + }, + { + "start": 16495.38, + "end": 16497.41, + "probability": 0.9757 + }, + { + "start": 16498.62, + "end": 16505.68, + "probability": 0.9943 + }, + { + "start": 16506.76, + "end": 16507.18, + "probability": 0.8046 + }, + { + "start": 16507.38, + "end": 16510.8, + "probability": 0.9244 + }, + { + "start": 16510.8, + "end": 16513.9, + "probability": 0.9946 + }, + { + "start": 16515.4, + "end": 16519.32, + "probability": 0.8675 + }, + { + "start": 16522.04, + "end": 16523.36, + "probability": 0.923 + }, + { + "start": 16525.0, + "end": 16526.65, + "probability": 0.7033 + }, + { + "start": 16528.02, + "end": 16528.22, + "probability": 0.6189 + }, + { + "start": 16530.02, + "end": 16536.82, + "probability": 0.979 + }, + { + "start": 16538.46, + "end": 16540.4, + "probability": 0.7307 + }, + { + "start": 16541.92, + "end": 16545.16, + "probability": 0.995 + }, + { + "start": 16546.64, + "end": 16547.4, + "probability": 0.8726 + }, + { + "start": 16548.2, + "end": 16549.88, + "probability": 0.8279 + }, + { + "start": 16553.78, + "end": 16555.96, + "probability": 0.9925 + }, + { + "start": 16556.78, + "end": 16559.96, + "probability": 0.9631 + }, + { + "start": 16560.1, + "end": 16561.38, + "probability": 0.6573 + }, + { + "start": 16561.88, + "end": 16562.62, + "probability": 0.9142 + }, + { + "start": 16563.64, + "end": 16567.66, + "probability": 0.9739 + }, + { + "start": 16568.72, + "end": 16569.54, + "probability": 0.9612 + }, + { + "start": 16570.92, + "end": 16573.72, + "probability": 0.9865 + }, + { + "start": 16574.38, + "end": 16577.74, + "probability": 0.9849 + }, + { + "start": 16578.0, + "end": 16581.3, + "probability": 0.5853 + }, + { + "start": 16583.36, + "end": 16588.4, + "probability": 0.9962 + }, + { + "start": 16588.96, + "end": 16589.62, + "probability": 0.8909 + }, + { + "start": 16590.18, + "end": 16593.62, + "probability": 0.9251 + }, + { + "start": 16594.26, + "end": 16596.68, + "probability": 0.9297 + }, + { + "start": 16597.84, + "end": 16599.46, + "probability": 0.9885 + }, + { + "start": 16600.34, + "end": 16601.62, + "probability": 0.5981 + }, + { + "start": 16602.94, + "end": 16603.24, + "probability": 0.7982 + }, + { + "start": 16604.42, + "end": 16606.18, + "probability": 0.8627 + }, + { + "start": 16606.32, + "end": 16607.86, + "probability": 0.9707 + }, + { + "start": 16626.8, + "end": 16628.06, + "probability": 0.5523 + }, + { + "start": 16628.3, + "end": 16630.0, + "probability": 0.3255 + }, + { + "start": 16630.0, + "end": 16631.52, + "probability": 0.7409 + }, + { + "start": 16631.7, + "end": 16635.36, + "probability": 0.9948 + }, + { + "start": 16635.78, + "end": 16638.6, + "probability": 0.7083 + }, + { + "start": 16638.72, + "end": 16641.52, + "probability": 0.8818 + }, + { + "start": 16642.82, + "end": 16643.72, + "probability": 0.7512 + }, + { + "start": 16644.4, + "end": 16649.9, + "probability": 0.9984 + }, + { + "start": 16650.14, + "end": 16654.12, + "probability": 0.988 + }, + { + "start": 16654.54, + "end": 16656.06, + "probability": 0.8886 + }, + { + "start": 16656.14, + "end": 16656.92, + "probability": 0.8424 + }, + { + "start": 16657.36, + "end": 16658.36, + "probability": 0.7788 + }, + { + "start": 16658.78, + "end": 16661.02, + "probability": 0.9328 + }, + { + "start": 16661.68, + "end": 16664.18, + "probability": 0.1691 + }, + { + "start": 16664.18, + "end": 16667.2, + "probability": 0.4961 + }, + { + "start": 16667.4, + "end": 16667.88, + "probability": 0.7198 + }, + { + "start": 16667.96, + "end": 16668.82, + "probability": 0.8621 + }, + { + "start": 16669.6, + "end": 16669.9, + "probability": 0.7827 + }, + { + "start": 16670.0, + "end": 16670.88, + "probability": 0.9858 + }, + { + "start": 16671.14, + "end": 16673.56, + "probability": 0.9702 + }, + { + "start": 16674.22, + "end": 16675.14, + "probability": 0.7827 + }, + { + "start": 16675.78, + "end": 16677.36, + "probability": 0.9936 + }, + { + "start": 16677.42, + "end": 16679.0, + "probability": 0.9927 + }, + { + "start": 16679.22, + "end": 16682.72, + "probability": 0.8864 + }, + { + "start": 16683.32, + "end": 16684.12, + "probability": 0.8299 + }, + { + "start": 16684.86, + "end": 16686.96, + "probability": 0.7698 + }, + { + "start": 16687.14, + "end": 16687.64, + "probability": 0.6762 + }, + { + "start": 16687.7, + "end": 16689.64, + "probability": 0.8958 + }, + { + "start": 16689.76, + "end": 16694.98, + "probability": 0.9771 + }, + { + "start": 16695.26, + "end": 16697.35, + "probability": 0.9957 + }, + { + "start": 16697.72, + "end": 16699.92, + "probability": 0.8954 + }, + { + "start": 16700.84, + "end": 16702.78, + "probability": 0.4632 + }, + { + "start": 16703.38, + "end": 16706.16, + "probability": 0.9036 + }, + { + "start": 16706.72, + "end": 16709.12, + "probability": 0.9927 + }, + { + "start": 16709.9, + "end": 16713.32, + "probability": 0.8894 + }, + { + "start": 16713.54, + "end": 16717.78, + "probability": 0.7613 + }, + { + "start": 16718.14, + "end": 16718.62, + "probability": 0.6806 + }, + { + "start": 16718.72, + "end": 16720.24, + "probability": 0.8361 + }, + { + "start": 16720.32, + "end": 16723.96, + "probability": 0.9644 + }, + { + "start": 16724.08, + "end": 16725.14, + "probability": 0.9874 + }, + { + "start": 16725.22, + "end": 16725.5, + "probability": 0.9453 + }, + { + "start": 16725.54, + "end": 16726.46, + "probability": 0.7934 + }, + { + "start": 16726.56, + "end": 16726.98, + "probability": 0.9177 + }, + { + "start": 16727.38, + "end": 16728.52, + "probability": 0.9751 + }, + { + "start": 16728.84, + "end": 16732.52, + "probability": 0.939 + }, + { + "start": 16732.86, + "end": 16733.56, + "probability": 0.5909 + }, + { + "start": 16734.06, + "end": 16734.44, + "probability": 0.9493 + }, + { + "start": 16735.08, + "end": 16736.24, + "probability": 0.4782 + }, + { + "start": 16736.98, + "end": 16741.56, + "probability": 0.8314 + }, + { + "start": 16743.1, + "end": 16744.88, + "probability": 0.0582 + }, + { + "start": 16744.88, + "end": 16745.54, + "probability": 0.6912 + }, + { + "start": 16745.68, + "end": 16750.0, + "probability": 0.3478 + }, + { + "start": 16750.34, + "end": 16750.86, + "probability": 0.6774 + }, + { + "start": 16750.92, + "end": 16752.4, + "probability": 0.5838 + }, + { + "start": 16752.54, + "end": 16753.54, + "probability": 0.7478 + }, + { + "start": 16753.76, + "end": 16755.3, + "probability": 0.7709 + }, + { + "start": 16755.48, + "end": 16756.0, + "probability": 0.8748 + }, + { + "start": 16756.2, + "end": 16760.3, + "probability": 0.8032 + }, + { + "start": 16760.66, + "end": 16761.5, + "probability": 0.2572 + }, + { + "start": 16761.8, + "end": 16762.96, + "probability": 0.6873 + }, + { + "start": 16763.06, + "end": 16765.4, + "probability": 0.9602 + }, + { + "start": 16765.54, + "end": 16765.96, + "probability": 0.467 + }, + { + "start": 16766.06, + "end": 16767.34, + "probability": 0.8189 + }, + { + "start": 16767.34, + "end": 16769.74, + "probability": 0.8599 + }, + { + "start": 16770.04, + "end": 16771.06, + "probability": 0.7314 + }, + { + "start": 16771.68, + "end": 16773.54, + "probability": 0.7666 + }, + { + "start": 16773.58, + "end": 16774.32, + "probability": 0.9644 + }, + { + "start": 16774.52, + "end": 16776.24, + "probability": 0.7879 + }, + { + "start": 16776.7, + "end": 16777.78, + "probability": 0.9929 + }, + { + "start": 16777.98, + "end": 16781.85, + "probability": 0.9954 + }, + { + "start": 16782.4, + "end": 16785.94, + "probability": 0.9719 + }, + { + "start": 16786.62, + "end": 16790.24, + "probability": 0.9385 + }, + { + "start": 16790.46, + "end": 16791.1, + "probability": 0.9137 + }, + { + "start": 16791.68, + "end": 16793.64, + "probability": 0.9683 + }, + { + "start": 16793.78, + "end": 16794.44, + "probability": 0.9824 + }, + { + "start": 16794.92, + "end": 16795.64, + "probability": 0.5798 + }, + { + "start": 16796.3, + "end": 16796.82, + "probability": 0.6612 + }, + { + "start": 16796.82, + "end": 16797.56, + "probability": 0.7664 + }, + { + "start": 16797.7, + "end": 16798.28, + "probability": 0.8486 + }, + { + "start": 16798.42, + "end": 16799.6, + "probability": 0.9679 + }, + { + "start": 16799.94, + "end": 16804.0, + "probability": 0.9014 + }, + { + "start": 16804.29, + "end": 16805.18, + "probability": 0.9402 + }, + { + "start": 16805.38, + "end": 16807.46, + "probability": 0.9873 + }, + { + "start": 16807.86, + "end": 16810.74, + "probability": 0.9945 + }, + { + "start": 16810.8, + "end": 16816.14, + "probability": 0.932 + }, + { + "start": 16816.22, + "end": 16818.71, + "probability": 0.9341 + }, + { + "start": 16819.46, + "end": 16820.36, + "probability": 0.875 + }, + { + "start": 16821.22, + "end": 16822.54, + "probability": 0.3961 + }, + { + "start": 16822.54, + "end": 16823.16, + "probability": 0.39 + }, + { + "start": 16824.14, + "end": 16825.44, + "probability": 0.695 + }, + { + "start": 16826.28, + "end": 16828.22, + "probability": 0.8323 + }, + { + "start": 16828.28, + "end": 16830.93, + "probability": 0.9204 + }, + { + "start": 16831.4, + "end": 16832.44, + "probability": 0.9581 + }, + { + "start": 16832.88, + "end": 16835.76, + "probability": 0.984 + }, + { + "start": 16836.08, + "end": 16839.78, + "probability": 0.9258 + }, + { + "start": 16839.9, + "end": 16840.08, + "probability": 0.5826 + }, + { + "start": 16840.52, + "end": 16842.56, + "probability": 0.9839 + }, + { + "start": 16843.26, + "end": 16847.28, + "probability": 0.9445 + }, + { + "start": 16877.36, + "end": 16877.7, + "probability": 0.425 + }, + { + "start": 16878.12, + "end": 16882.04, + "probability": 0.9066 + }, + { + "start": 16882.38, + "end": 16883.04, + "probability": 0.7746 + }, + { + "start": 16883.98, + "end": 16887.54, + "probability": 0.72 + }, + { + "start": 16888.2, + "end": 16894.68, + "probability": 0.8031 + }, + { + "start": 16895.5, + "end": 16897.08, + "probability": 0.9647 + }, + { + "start": 16897.2, + "end": 16899.87, + "probability": 0.5517 + }, + { + "start": 16900.12, + "end": 16902.92, + "probability": 0.8118 + }, + { + "start": 16903.1, + "end": 16903.44, + "probability": 0.8279 + }, + { + "start": 16903.62, + "end": 16905.78, + "probability": 0.9788 + }, + { + "start": 16906.04, + "end": 16908.06, + "probability": 0.7216 + }, + { + "start": 16908.12, + "end": 16911.9, + "probability": 0.8649 + }, + { + "start": 16913.54, + "end": 16914.91, + "probability": 0.9614 + }, + { + "start": 16915.18, + "end": 16921.04, + "probability": 0.8142 + }, + { + "start": 16921.64, + "end": 16924.86, + "probability": 0.8606 + }, + { + "start": 16925.22, + "end": 16928.08, + "probability": 0.6422 + }, + { + "start": 16928.16, + "end": 16928.9, + "probability": 0.876 + }, + { + "start": 16928.96, + "end": 16930.04, + "probability": 0.8869 + }, + { + "start": 16932.02, + "end": 16932.7, + "probability": 0.2028 + }, + { + "start": 16946.52, + "end": 16947.54, + "probability": 0.4456 + }, + { + "start": 16949.1, + "end": 16955.3, + "probability": 0.6887 + }, + { + "start": 16955.74, + "end": 16958.74, + "probability": 0.8504 + }, + { + "start": 16958.84, + "end": 16959.96, + "probability": 0.3276 + }, + { + "start": 16963.16, + "end": 16964.18, + "probability": 0.4677 + }, + { + "start": 16972.78, + "end": 16975.18, + "probability": 0.1717 + }, + { + "start": 16976.16, + "end": 16976.48, + "probability": 0.0511 + }, + { + "start": 16976.48, + "end": 16979.42, + "probability": 0.0741 + }, + { + "start": 16982.52, + "end": 16989.96, + "probability": 0.0589 + }, + { + "start": 16991.2, + "end": 16992.22, + "probability": 0.2033 + }, + { + "start": 16992.22, + "end": 16992.96, + "probability": 0.0608 + }, + { + "start": 16994.06, + "end": 16997.36, + "probability": 0.0699 + }, + { + "start": 17000.8, + "end": 17003.38, + "probability": 0.0585 + }, + { + "start": 17013.74, + "end": 17019.54, + "probability": 0.1455 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17046.0, + "end": 17046.0, + "probability": 0.0 + }, + { + "start": 17056.24, + "end": 17057.02, + "probability": 0.0382 + }, + { + "start": 17059.2, + "end": 17060.52, + "probability": 0.0279 + }, + { + "start": 17060.68, + "end": 17062.4, + "probability": 0.8753 + }, + { + "start": 17062.4, + "end": 17064.54, + "probability": 0.6796 + }, + { + "start": 17065.76, + "end": 17066.76, + "probability": 0.008 + }, + { + "start": 17066.76, + "end": 17069.45, + "probability": 0.0281 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.0, + "end": 17186.0, + "probability": 0.0 + }, + { + "start": 17186.36, + "end": 17187.74, + "probability": 0.5116 + }, + { + "start": 17187.74, + "end": 17190.3, + "probability": 0.6112 + }, + { + "start": 17191.02, + "end": 17193.42, + "probability": 0.7791 + }, + { + "start": 17193.56, + "end": 17195.66, + "probability": 0.8356 + }, + { + "start": 17196.44, + "end": 17199.54, + "probability": 0.8706 + }, + { + "start": 17204.16, + "end": 17207.26, + "probability": 0.5459 + }, + { + "start": 17207.34, + "end": 17209.28, + "probability": 0.7451 + }, + { + "start": 17210.0, + "end": 17212.36, + "probability": 0.97 + }, + { + "start": 17213.06, + "end": 17216.08, + "probability": 0.8927 + }, + { + "start": 17216.08, + "end": 17219.64, + "probability": 0.8898 + }, + { + "start": 17220.24, + "end": 17222.72, + "probability": 0.7042 + }, + { + "start": 17223.0, + "end": 17225.9, + "probability": 0.5404 + }, + { + "start": 17225.94, + "end": 17226.12, + "probability": 0.681 + }, + { + "start": 17226.66, + "end": 17229.02, + "probability": 0.6211 + }, + { + "start": 17229.16, + "end": 17230.6, + "probability": 0.8329 + }, + { + "start": 17230.68, + "end": 17232.22, + "probability": 0.7763 + }, + { + "start": 17233.52, + "end": 17234.24, + "probability": 0.7945 + }, + { + "start": 17237.96, + "end": 17238.62, + "probability": 0.3579 + }, + { + "start": 17238.62, + "end": 17238.62, + "probability": 0.4655 + }, + { + "start": 17238.62, + "end": 17238.62, + "probability": 0.4577 + }, + { + "start": 17238.62, + "end": 17240.24, + "probability": 0.6473 + }, + { + "start": 17240.54, + "end": 17241.84, + "probability": 0.6174 + }, + { + "start": 17243.16, + "end": 17243.6, + "probability": 0.9432 + }, + { + "start": 17249.7, + "end": 17249.88, + "probability": 0.0185 + }, + { + "start": 17249.88, + "end": 17250.54, + "probability": 0.2526 + }, + { + "start": 17250.7, + "end": 17254.38, + "probability": 0.8401 + }, + { + "start": 17256.76, + "end": 17257.88, + "probability": 0.7776 + }, + { + "start": 17258.12, + "end": 17262.02, + "probability": 0.9704 + }, + { + "start": 17262.58, + "end": 17265.14, + "probability": 0.9988 + }, + { + "start": 17265.24, + "end": 17267.6, + "probability": 0.936 + }, + { + "start": 17267.98, + "end": 17273.04, + "probability": 0.9817 + }, + { + "start": 17273.48, + "end": 17275.5, + "probability": 0.954 + }, + { + "start": 17276.12, + "end": 17277.58, + "probability": 0.6677 + }, + { + "start": 17279.31, + "end": 17281.06, + "probability": 0.5431 + }, + { + "start": 17281.22, + "end": 17282.66, + "probability": 0.9375 + }, + { + "start": 17282.74, + "end": 17286.24, + "probability": 0.8629 + }, + { + "start": 17286.9, + "end": 17288.66, + "probability": 0.8462 + }, + { + "start": 17289.1, + "end": 17294.54, + "probability": 0.9788 + }, + { + "start": 17294.68, + "end": 17297.06, + "probability": 0.9974 + }, + { + "start": 17297.58, + "end": 17303.16, + "probability": 0.9938 + }, + { + "start": 17303.2, + "end": 17304.82, + "probability": 0.7897 + }, + { + "start": 17305.24, + "end": 17308.92, + "probability": 0.9602 + }, + { + "start": 17309.28, + "end": 17311.82, + "probability": 0.929 + }, + { + "start": 17311.96, + "end": 17312.74, + "probability": 0.3853 + }, + { + "start": 17313.22, + "end": 17315.0, + "probability": 0.9141 + }, + { + "start": 17315.1, + "end": 17318.18, + "probability": 0.9975 + }, + { + "start": 17318.46, + "end": 17320.22, + "probability": 0.8833 + }, + { + "start": 17321.26, + "end": 17322.72, + "probability": 0.5236 + }, + { + "start": 17323.1, + "end": 17325.16, + "probability": 0.9937 + }, + { + "start": 17325.16, + "end": 17329.06, + "probability": 0.9924 + }, + { + "start": 17329.56, + "end": 17330.98, + "probability": 0.6555 + }, + { + "start": 17331.68, + "end": 17333.46, + "probability": 0.9957 + }, + { + "start": 17333.52, + "end": 17334.37, + "probability": 0.9119 + }, + { + "start": 17335.22, + "end": 17339.94, + "probability": 0.9744 + }, + { + "start": 17340.64, + "end": 17346.2, + "probability": 0.9299 + }, + { + "start": 17346.72, + "end": 17349.3, + "probability": 0.8674 + }, + { + "start": 17349.88, + "end": 17351.34, + "probability": 0.7583 + }, + { + "start": 17351.72, + "end": 17353.66, + "probability": 0.9448 + }, + { + "start": 17353.8, + "end": 17355.28, + "probability": 0.9858 + }, + { + "start": 17357.14, + "end": 17358.86, + "probability": 0.5134 + }, + { + "start": 17358.92, + "end": 17359.76, + "probability": 0.5329 + }, + { + "start": 17359.82, + "end": 17365.56, + "probability": 0.8123 + }, + { + "start": 17366.44, + "end": 17366.44, + "probability": 0.0424 + }, + { + "start": 17366.44, + "end": 17367.64, + "probability": 0.9167 + }, + { + "start": 17367.98, + "end": 17369.42, + "probability": 0.7264 + }, + { + "start": 17369.58, + "end": 17371.04, + "probability": 0.9363 + }, + { + "start": 17371.44, + "end": 17376.2, + "probability": 0.6637 + }, + { + "start": 17376.22, + "end": 17378.12, + "probability": 0.294 + }, + { + "start": 17378.24, + "end": 17378.24, + "probability": 0.0959 + }, + { + "start": 17378.24, + "end": 17382.14, + "probability": 0.2999 + }, + { + "start": 17382.44, + "end": 17386.22, + "probability": 0.8044 + }, + { + "start": 17386.34, + "end": 17392.16, + "probability": 0.5548 + }, + { + "start": 17392.16, + "end": 17392.16, + "probability": 0.5801 + }, + { + "start": 17392.16, + "end": 17392.8, + "probability": 0.1135 + }, + { + "start": 17393.1, + "end": 17395.96, + "probability": 0.6535 + }, + { + "start": 17395.96, + "end": 17395.98, + "probability": 0.6944 + }, + { + "start": 17397.18, + "end": 17397.58, + "probability": 0.0013 + }, + { + "start": 17397.58, + "end": 17397.58, + "probability": 0.2479 + }, + { + "start": 17397.58, + "end": 17397.58, + "probability": 0.0093 + }, + { + "start": 17397.58, + "end": 17402.36, + "probability": 0.2112 + }, + { + "start": 17402.44, + "end": 17403.8, + "probability": 0.8027 + }, + { + "start": 17404.2, + "end": 17405.48, + "probability": 0.9633 + }, + { + "start": 17405.74, + "end": 17406.22, + "probability": 0.8071 + }, + { + "start": 17406.4, + "end": 17407.92, + "probability": 0.8664 + }, + { + "start": 17408.06, + "end": 17409.98, + "probability": 0.9372 + }, + { + "start": 17410.3, + "end": 17410.7, + "probability": 0.6163 + }, + { + "start": 17411.77, + "end": 17412.0, + "probability": 0.2024 + }, + { + "start": 17412.12, + "end": 17414.28, + "probability": 0.5681 + }, + { + "start": 17414.7, + "end": 17415.74, + "probability": 0.8628 + }, + { + "start": 17418.51, + "end": 17419.22, + "probability": 0.45 + }, + { + "start": 17419.22, + "end": 17420.56, + "probability": 0.9533 + }, + { + "start": 17420.82, + "end": 17423.18, + "probability": 0.9688 + }, + { + "start": 17423.44, + "end": 17424.7, + "probability": 0.927 + }, + { + "start": 17426.24, + "end": 17427.96, + "probability": 0.9174 + }, + { + "start": 17428.24, + "end": 17430.62, + "probability": 0.748 + }, + { + "start": 17430.76, + "end": 17433.06, + "probability": 0.8866 + }, + { + "start": 17433.2, + "end": 17435.16, + "probability": 0.9717 + }, + { + "start": 17435.64, + "end": 17435.74, + "probability": 0.3648 + }, + { + "start": 17436.7, + "end": 17439.98, + "probability": 0.6162 + }, + { + "start": 17440.9, + "end": 17442.02, + "probability": 0.3792 + }, + { + "start": 17442.18, + "end": 17445.12, + "probability": 0.7847 + }, + { + "start": 17445.82, + "end": 17448.58, + "probability": 0.9543 + }, + { + "start": 17448.88, + "end": 17450.92, + "probability": 0.8168 + }, + { + "start": 17451.48, + "end": 17452.04, + "probability": 0.6274 + }, + { + "start": 17452.16, + "end": 17454.52, + "probability": 0.8933 + }, + { + "start": 17454.6, + "end": 17458.36, + "probability": 0.8638 + }, + { + "start": 17459.68, + "end": 17461.52, + "probability": 0.9598 + }, + { + "start": 17462.38, + "end": 17462.94, + "probability": 0.7407 + }, + { + "start": 17463.04, + "end": 17464.12, + "probability": 0.8072 + }, + { + "start": 17477.36, + "end": 17479.58, + "probability": 0.152 + }, + { + "start": 17480.46, + "end": 17481.4, + "probability": 0.2082 + }, + { + "start": 17482.36, + "end": 17485.64, + "probability": 0.8786 + }, + { + "start": 17486.22, + "end": 17491.9, + "probability": 0.9128 + }, + { + "start": 17492.76, + "end": 17496.5, + "probability": 0.9963 + }, + { + "start": 17497.54, + "end": 17499.1, + "probability": 0.9554 + }, + { + "start": 17499.62, + "end": 17500.76, + "probability": 0.9602 + }, + { + "start": 17501.32, + "end": 17502.36, + "probability": 0.9767 + }, + { + "start": 17502.96, + "end": 17503.5, + "probability": 0.8927 + }, + { + "start": 17504.12, + "end": 17507.2, + "probability": 0.9854 + }, + { + "start": 17507.3, + "end": 17507.82, + "probability": 0.9901 + }, + { + "start": 17507.9, + "end": 17509.5, + "probability": 0.9951 + }, + { + "start": 17509.96, + "end": 17511.98, + "probability": 0.9886 + }, + { + "start": 17512.32, + "end": 17513.72, + "probability": 0.9971 + }, + { + "start": 17513.82, + "end": 17515.56, + "probability": 0.9629 + }, + { + "start": 17515.94, + "end": 17517.24, + "probability": 0.9025 + }, + { + "start": 17517.34, + "end": 17518.54, + "probability": 0.9683 + }, + { + "start": 17519.38, + "end": 17521.26, + "probability": 0.854 + }, + { + "start": 17521.78, + "end": 17522.46, + "probability": 0.8022 + }, + { + "start": 17522.68, + "end": 17523.62, + "probability": 0.6668 + }, + { + "start": 17523.76, + "end": 17525.32, + "probability": 0.5724 + }, + { + "start": 17526.32, + "end": 17530.86, + "probability": 0.9818 + }, + { + "start": 17532.47, + "end": 17536.14, + "probability": 0.9129 + }, + { + "start": 17536.78, + "end": 17541.78, + "probability": 0.9846 + }, + { + "start": 17542.5, + "end": 17543.31, + "probability": 0.7207 + }, + { + "start": 17544.36, + "end": 17548.0, + "probability": 0.9688 + }, + { + "start": 17548.46, + "end": 17550.06, + "probability": 0.9501 + }, + { + "start": 17550.64, + "end": 17555.12, + "probability": 0.9916 + }, + { + "start": 17555.88, + "end": 17558.78, + "probability": 0.9919 + }, + { + "start": 17559.58, + "end": 17562.1, + "probability": 0.9209 + }, + { + "start": 17562.1, + "end": 17567.62, + "probability": 0.9907 + }, + { + "start": 17568.88, + "end": 17571.06, + "probability": 0.8792 + }, + { + "start": 17571.76, + "end": 17578.52, + "probability": 0.9758 + }, + { + "start": 17579.04, + "end": 17580.34, + "probability": 0.6969 + }, + { + "start": 17581.62, + "end": 17586.26, + "probability": 0.7855 + }, + { + "start": 17587.1, + "end": 17588.32, + "probability": 0.9759 + }, + { + "start": 17590.0, + "end": 17591.34, + "probability": 0.7613 + }, + { + "start": 17591.44, + "end": 17592.18, + "probability": 0.9611 + }, + { + "start": 17592.38, + "end": 17593.58, + "probability": 0.9866 + }, + { + "start": 17593.7, + "end": 17595.02, + "probability": 0.7446 + }, + { + "start": 17595.28, + "end": 17596.38, + "probability": 0.5655 + }, + { + "start": 17596.42, + "end": 17598.56, + "probability": 0.7968 + }, + { + "start": 17598.72, + "end": 17601.32, + "probability": 0.8193 + }, + { + "start": 17601.64, + "end": 17607.18, + "probability": 0.9823 + }, + { + "start": 17608.48, + "end": 17610.78, + "probability": 0.9857 + }, + { + "start": 17611.2, + "end": 17616.03, + "probability": 0.5633 + }, + { + "start": 17617.08, + "end": 17618.06, + "probability": 0.7288 + }, + { + "start": 17618.88, + "end": 17621.26, + "probability": 0.9898 + }, + { + "start": 17621.94, + "end": 17626.32, + "probability": 0.998 + }, + { + "start": 17627.2, + "end": 17631.16, + "probability": 0.9946 + }, + { + "start": 17631.78, + "end": 17632.94, + "probability": 0.8709 + }, + { + "start": 17633.46, + "end": 17637.58, + "probability": 0.9865 + }, + { + "start": 17638.14, + "end": 17639.96, + "probability": 0.9872 + }, + { + "start": 17640.6, + "end": 17641.76, + "probability": 0.6767 + }, + { + "start": 17641.8, + "end": 17645.88, + "probability": 0.9135 + }, + { + "start": 17645.98, + "end": 17647.12, + "probability": 0.3688 + }, + { + "start": 17647.86, + "end": 17650.58, + "probability": 0.9012 + }, + { + "start": 17650.64, + "end": 17651.4, + "probability": 0.7426 + }, + { + "start": 17651.86, + "end": 17653.7, + "probability": 0.9924 + }, + { + "start": 17654.64, + "end": 17659.5, + "probability": 0.9933 + }, + { + "start": 17659.78, + "end": 17660.9, + "probability": 0.9358 + }, + { + "start": 17661.22, + "end": 17662.52, + "probability": 0.8945 + }, + { + "start": 17662.76, + "end": 17665.46, + "probability": 0.9966 + }, + { + "start": 17665.84, + "end": 17666.82, + "probability": 0.3843 + }, + { + "start": 17669.0, + "end": 17670.26, + "probability": 0.9084 + }, + { + "start": 17670.74, + "end": 17670.74, + "probability": 0.0455 + }, + { + "start": 17670.74, + "end": 17670.74, + "probability": 0.0107 + }, + { + "start": 17670.74, + "end": 17672.44, + "probability": 0.63 + }, + { + "start": 17672.78, + "end": 17673.8, + "probability": 0.8219 + }, + { + "start": 17674.1, + "end": 17679.26, + "probability": 0.9852 + }, + { + "start": 17679.5, + "end": 17680.52, + "probability": 0.7734 + }, + { + "start": 17680.74, + "end": 17681.48, + "probability": 0.5669 + }, + { + "start": 17681.86, + "end": 17682.34, + "probability": 0.7067 + }, + { + "start": 17682.34, + "end": 17684.88, + "probability": 0.506 + }, + { + "start": 17685.16, + "end": 17686.9, + "probability": 0.9458 + }, + { + "start": 17687.02, + "end": 17687.58, + "probability": 0.7167 + }, + { + "start": 17687.84, + "end": 17689.38, + "probability": 0.7952 + }, + { + "start": 17689.74, + "end": 17690.72, + "probability": 0.9816 + }, + { + "start": 17691.02, + "end": 17691.52, + "probability": 0.923 + }, + { + "start": 17691.88, + "end": 17693.78, + "probability": 0.742 + }, + { + "start": 17693.9, + "end": 17695.82, + "probability": 0.6592 + }, + { + "start": 17695.98, + "end": 17696.68, + "probability": 0.5574 + }, + { + "start": 17696.84, + "end": 17698.18, + "probability": 0.7811 + }, + { + "start": 17698.24, + "end": 17698.88, + "probability": 0.7838 + }, + { + "start": 17699.5, + "end": 17700.86, + "probability": 0.9869 + }, + { + "start": 17701.02, + "end": 17701.72, + "probability": 0.8655 + }, + { + "start": 17702.16, + "end": 17703.44, + "probability": 0.6345 + }, + { + "start": 17703.58, + "end": 17704.2, + "probability": 0.8665 + }, + { + "start": 17704.82, + "end": 17708.36, + "probability": 0.95 + }, + { + "start": 17710.33, + "end": 17713.84, + "probability": 0.7563 + }, + { + "start": 17714.52, + "end": 17716.0, + "probability": 0.9949 + }, + { + "start": 17723.42, + "end": 17724.87, + "probability": 0.9714 + }, + { + "start": 17724.98, + "end": 17726.28, + "probability": 0.6277 + }, + { + "start": 17734.32, + "end": 17735.18, + "probability": 0.3421 + }, + { + "start": 17735.3, + "end": 17736.96, + "probability": 0.2873 + }, + { + "start": 17736.96, + "end": 17738.04, + "probability": 0.5643 + }, + { + "start": 17738.1, + "end": 17739.14, + "probability": 0.8687 + }, + { + "start": 17739.18, + "end": 17742.66, + "probability": 0.9873 + }, + { + "start": 17743.46, + "end": 17747.14, + "probability": 0.8334 + }, + { + "start": 17747.26, + "end": 17748.82, + "probability": 0.7043 + }, + { + "start": 17749.89, + "end": 17753.24, + "probability": 0.8127 + }, + { + "start": 17753.38, + "end": 17754.96, + "probability": 0.933 + }, + { + "start": 17755.5, + "end": 17756.89, + "probability": 0.9595 + }, + { + "start": 17757.68, + "end": 17759.22, + "probability": 0.8472 + }, + { + "start": 17759.34, + "end": 17762.0, + "probability": 0.9552 + }, + { + "start": 17762.14, + "end": 17762.4, + "probability": 0.4464 + }, + { + "start": 17762.52, + "end": 17763.88, + "probability": 0.7442 + }, + { + "start": 17764.16, + "end": 17764.9, + "probability": 0.8633 + }, + { + "start": 17764.96, + "end": 17766.02, + "probability": 0.482 + }, + { + "start": 17766.14, + "end": 17767.88, + "probability": 0.6603 + }, + { + "start": 17767.98, + "end": 17768.84, + "probability": 0.7536 + }, + { + "start": 17768.9, + "end": 17770.56, + "probability": 0.8515 + }, + { + "start": 17771.12, + "end": 17772.42, + "probability": 0.9429 + }, + { + "start": 17772.78, + "end": 17774.58, + "probability": 0.9932 + }, + { + "start": 17775.12, + "end": 17776.36, + "probability": 0.9924 + }, + { + "start": 17776.42, + "end": 17777.66, + "probability": 0.7551 + }, + { + "start": 17778.18, + "end": 17779.98, + "probability": 0.947 + }, + { + "start": 17780.28, + "end": 17782.38, + "probability": 0.8228 + }, + { + "start": 17782.38, + "end": 17783.02, + "probability": 0.9547 + }, + { + "start": 17783.1, + "end": 17784.12, + "probability": 0.6783 + }, + { + "start": 17784.16, + "end": 17784.7, + "probability": 0.811 + }, + { + "start": 17785.46, + "end": 17788.82, + "probability": 0.9503 + }, + { + "start": 17789.38, + "end": 17791.54, + "probability": 0.9464 + }, + { + "start": 17791.66, + "end": 17793.42, + "probability": 0.9375 + }, + { + "start": 17793.54, + "end": 17795.44, + "probability": 0.823 + }, + { + "start": 17796.2, + "end": 17797.39, + "probability": 0.8018 + }, + { + "start": 17797.66, + "end": 17799.04, + "probability": 0.8932 + }, + { + "start": 17799.36, + "end": 17801.36, + "probability": 0.9751 + }, + { + "start": 17802.02, + "end": 17802.34, + "probability": 0.745 + }, + { + "start": 17803.16, + "end": 17809.94, + "probability": 0.9748 + }, + { + "start": 17810.48, + "end": 17811.66, + "probability": 0.6984 + }, + { + "start": 17811.76, + "end": 17815.98, + "probability": 0.7308 + }, + { + "start": 17816.24, + "end": 17817.12, + "probability": 0.6241 + }, + { + "start": 17817.22, + "end": 17818.3, + "probability": 0.9958 + }, + { + "start": 17819.32, + "end": 17820.84, + "probability": 0.9943 + }, + { + "start": 17821.78, + "end": 17823.32, + "probability": 0.6608 + }, + { + "start": 17823.66, + "end": 17826.16, + "probability": 0.9468 + }, + { + "start": 17826.5, + "end": 17827.06, + "probability": 0.6872 + }, + { + "start": 17827.36, + "end": 17827.82, + "probability": 0.9647 + }, + { + "start": 17827.88, + "end": 17830.3, + "probability": 0.9635 + }, + { + "start": 17830.3, + "end": 17832.22, + "probability": 0.7933 + }, + { + "start": 17832.46, + "end": 17834.58, + "probability": 0.915 + }, + { + "start": 17834.84, + "end": 17835.98, + "probability": 0.8868 + }, + { + "start": 17836.02, + "end": 17836.76, + "probability": 0.8818 + }, + { + "start": 17837.08, + "end": 17838.54, + "probability": 0.9285 + }, + { + "start": 17839.08, + "end": 17840.36, + "probability": 0.7542 + }, + { + "start": 17840.5, + "end": 17841.3, + "probability": 0.7958 + }, + { + "start": 17841.42, + "end": 17842.94, + "probability": 0.7274 + }, + { + "start": 17844.7, + "end": 17845.78, + "probability": 0.9473 + }, + { + "start": 17845.78, + "end": 17846.56, + "probability": 0.1795 + }, + { + "start": 17846.6, + "end": 17851.08, + "probability": 0.9738 + }, + { + "start": 17851.36, + "end": 17852.92, + "probability": 0.7872 + }, + { + "start": 17853.06, + "end": 17854.06, + "probability": 0.6435 + }, + { + "start": 17854.56, + "end": 17855.48, + "probability": 0.8676 + }, + { + "start": 17855.72, + "end": 17856.6, + "probability": 0.8232 + }, + { + "start": 17856.9, + "end": 17858.54, + "probability": 0.9973 + }, + { + "start": 17859.16, + "end": 17861.0, + "probability": 0.9761 + }, + { + "start": 17861.14, + "end": 17861.86, + "probability": 0.735 + }, + { + "start": 17862.24, + "end": 17862.86, + "probability": 0.7372 + }, + { + "start": 17862.94, + "end": 17863.24, + "probability": 0.9837 + }, + { + "start": 17863.34, + "end": 17865.78, + "probability": 0.9287 + }, + { + "start": 17865.82, + "end": 17866.2, + "probability": 0.1342 + }, + { + "start": 17866.2, + "end": 17867.04, + "probability": 0.8949 + }, + { + "start": 17867.16, + "end": 17868.12, + "probability": 0.9824 + }, + { + "start": 17868.24, + "end": 17871.24, + "probability": 0.979 + }, + { + "start": 17871.38, + "end": 17873.99, + "probability": 0.9829 + }, + { + "start": 17874.3, + "end": 17874.84, + "probability": 0.5767 + }, + { + "start": 17874.92, + "end": 17875.65, + "probability": 0.7013 + }, + { + "start": 17875.96, + "end": 17877.1, + "probability": 0.1882 + }, + { + "start": 17877.26, + "end": 17879.92, + "probability": 0.5175 + }, + { + "start": 17880.3, + "end": 17881.78, + "probability": 0.6553 + }, + { + "start": 17882.22, + "end": 17882.6, + "probability": 0.1987 + }, + { + "start": 17882.8, + "end": 17885.2, + "probability": 0.2216 + }, + { + "start": 17885.28, + "end": 17886.92, + "probability": 0.432 + }, + { + "start": 17887.34, + "end": 17891.18, + "probability": 0.8964 + }, + { + "start": 17891.18, + "end": 17891.18, + "probability": 0.0966 + }, + { + "start": 17891.44, + "end": 17891.76, + "probability": 0.5329 + }, + { + "start": 17891.76, + "end": 17893.66, + "probability": 0.5134 + }, + { + "start": 17893.98, + "end": 17894.86, + "probability": 0.1013 + }, + { + "start": 17895.06, + "end": 17896.2, + "probability": 0.098 + }, + { + "start": 17896.2, + "end": 17899.66, + "probability": 0.4923 + }, + { + "start": 17900.06, + "end": 17902.64, + "probability": 0.6285 + }, + { + "start": 17902.64, + "end": 17905.6, + "probability": 0.9956 + }, + { + "start": 17905.76, + "end": 17906.48, + "probability": 0.4317 + }, + { + "start": 17906.68, + "end": 17908.66, + "probability": 0.9731 + }, + { + "start": 17909.0, + "end": 17912.04, + "probability": 0.8934 + }, + { + "start": 17912.34, + "end": 17914.54, + "probability": 0.9808 + }, + { + "start": 17914.9, + "end": 17917.74, + "probability": 0.9942 + }, + { + "start": 17930.76, + "end": 17935.08, + "probability": 0.519 + }, + { + "start": 17935.2, + "end": 17935.68, + "probability": 0.145 + }, + { + "start": 17936.06, + "end": 17936.82, + "probability": 0.1524 + }, + { + "start": 17937.02, + "end": 17937.02, + "probability": 0.0956 + }, + { + "start": 17937.26, + "end": 17937.88, + "probability": 0.3617 + }, + { + "start": 17938.16, + "end": 17938.16, + "probability": 0.1674 + }, + { + "start": 17938.16, + "end": 17938.16, + "probability": 0.1434 + }, + { + "start": 17938.16, + "end": 17938.16, + "probability": 0.0569 + }, + { + "start": 17938.16, + "end": 17938.3, + "probability": 0.3623 + }, + { + "start": 17938.34, + "end": 17938.64, + "probability": 0.3819 + }, + { + "start": 17938.64, + "end": 17939.42, + "probability": 0.7802 + }, + { + "start": 17939.64, + "end": 17943.78, + "probability": 0.4258 + }, + { + "start": 17945.54, + "end": 17950.22, + "probability": 0.9646 + }, + { + "start": 17950.32, + "end": 17951.66, + "probability": 0.8936 + }, + { + "start": 17952.14, + "end": 17954.26, + "probability": 0.9982 + }, + { + "start": 17954.72, + "end": 17957.02, + "probability": 0.9827 + }, + { + "start": 17957.54, + "end": 17960.46, + "probability": 0.8424 + }, + { + "start": 17961.56, + "end": 17962.7, + "probability": 0.8364 + }, + { + "start": 17963.68, + "end": 17965.04, + "probability": 0.7668 + }, + { + "start": 17965.66, + "end": 17972.84, + "probability": 0.9659 + }, + { + "start": 17973.82, + "end": 17975.34, + "probability": 0.9858 + }, + { + "start": 17976.02, + "end": 17978.42, + "probability": 0.9806 + }, + { + "start": 17979.3, + "end": 17980.86, + "probability": 0.8056 + }, + { + "start": 17981.56, + "end": 17982.12, + "probability": 0.861 + }, + { + "start": 17982.2, + "end": 17985.0, + "probability": 0.9541 + }, + { + "start": 17985.0, + "end": 17987.0, + "probability": 0.9951 + }, + { + "start": 17988.2, + "end": 17991.38, + "probability": 0.9911 + }, + { + "start": 17991.46, + "end": 17992.58, + "probability": 0.5722 + }, + { + "start": 17993.7, + "end": 17994.68, + "probability": 0.9703 + }, + { + "start": 17995.86, + "end": 18002.82, + "probability": 0.9905 + }, + { + "start": 18003.48, + "end": 18006.04, + "probability": 0.9956 + }, + { + "start": 18006.54, + "end": 18007.02, + "probability": 0.6505 + }, + { + "start": 18008.11, + "end": 18010.52, + "probability": 0.9963 + }, + { + "start": 18010.98, + "end": 18013.6, + "probability": 0.8855 + }, + { + "start": 18013.72, + "end": 18014.62, + "probability": 0.9756 + }, + { + "start": 18014.68, + "end": 18015.56, + "probability": 0.9323 + }, + { + "start": 18016.44, + "end": 18019.98, + "probability": 0.9428 + }, + { + "start": 18021.26, + "end": 18022.12, + "probability": 0.9575 + }, + { + "start": 18023.02, + "end": 18025.66, + "probability": 0.8049 + }, + { + "start": 18026.68, + "end": 18030.56, + "probability": 0.8202 + }, + { + "start": 18031.1, + "end": 18034.34, + "probability": 0.9725 + }, + { + "start": 18035.52, + "end": 18037.28, + "probability": 0.988 + }, + { + "start": 18037.64, + "end": 18038.28, + "probability": 0.7865 + }, + { + "start": 18039.1, + "end": 18043.14, + "probability": 0.9041 + }, + { + "start": 18043.2, + "end": 18045.2, + "probability": 0.9909 + }, + { + "start": 18046.12, + "end": 18047.56, + "probability": 0.783 + }, + { + "start": 18048.98, + "end": 18051.74, + "probability": 0.9381 + }, + { + "start": 18052.62, + "end": 18055.28, + "probability": 0.9844 + }, + { + "start": 18056.38, + "end": 18057.15, + "probability": 0.994 + }, + { + "start": 18058.14, + "end": 18059.71, + "probability": 0.6121 + }, + { + "start": 18060.48, + "end": 18061.62, + "probability": 0.9871 + }, + { + "start": 18061.78, + "end": 18062.34, + "probability": 0.9253 + }, + { + "start": 18062.54, + "end": 18063.94, + "probability": 0.9973 + }, + { + "start": 18065.18, + "end": 18068.3, + "probability": 0.958 + }, + { + "start": 18068.38, + "end": 18070.5, + "probability": 0.9702 + }, + { + "start": 18070.92, + "end": 18072.44, + "probability": 0.9258 + }, + { + "start": 18073.08, + "end": 18075.16, + "probability": 0.9891 + }, + { + "start": 18076.26, + "end": 18077.08, + "probability": 0.9972 + }, + { + "start": 18077.66, + "end": 18081.0, + "probability": 0.998 + }, + { + "start": 18081.58, + "end": 18083.08, + "probability": 0.8475 + }, + { + "start": 18083.3, + "end": 18084.74, + "probability": 0.8896 + }, + { + "start": 18084.8, + "end": 18086.08, + "probability": 0.6517 + }, + { + "start": 18086.76, + "end": 18090.6, + "probability": 0.9832 + }, + { + "start": 18091.18, + "end": 18094.36, + "probability": 0.9894 + }, + { + "start": 18094.92, + "end": 18098.82, + "probability": 0.9193 + }, + { + "start": 18099.52, + "end": 18100.68, + "probability": 0.6553 + }, + { + "start": 18101.48, + "end": 18106.86, + "probability": 0.9669 + }, + { + "start": 18107.28, + "end": 18107.76, + "probability": 0.7786 + }, + { + "start": 18108.74, + "end": 18109.5, + "probability": 0.9803 + }, + { + "start": 18111.07, + "end": 18111.72, + "probability": 0.0892 + }, + { + "start": 18111.72, + "end": 18111.92, + "probability": 0.3471 + }, + { + "start": 18112.12, + "end": 18117.1, + "probability": 0.9141 + }, + { + "start": 18117.1, + "end": 18120.92, + "probability": 0.7872 + }, + { + "start": 18121.68, + "end": 18123.74, + "probability": 0.9517 + }, + { + "start": 18124.68, + "end": 18128.09, + "probability": 0.9951 + }, + { + "start": 18130.44, + "end": 18130.78, + "probability": 0.0214 + }, + { + "start": 18130.78, + "end": 18132.12, + "probability": 0.6268 + }, + { + "start": 18132.52, + "end": 18135.78, + "probability": 0.8929 + }, + { + "start": 18135.94, + "end": 18140.54, + "probability": 0.9807 + }, + { + "start": 18140.56, + "end": 18141.02, + "probability": 0.8781 + }, + { + "start": 18141.22, + "end": 18143.06, + "probability": 0.7799 + }, + { + "start": 18143.1, + "end": 18145.36, + "probability": 0.8149 + }, + { + "start": 18145.6, + "end": 18147.34, + "probability": 0.7171 + }, + { + "start": 18147.6, + "end": 18148.12, + "probability": 0.3571 + }, + { + "start": 18148.12, + "end": 18149.08, + "probability": 0.2588 + }, + { + "start": 18149.08, + "end": 18156.5, + "probability": 0.9049 + }, + { + "start": 18156.64, + "end": 18160.38, + "probability": 0.7245 + }, + { + "start": 18160.4, + "end": 18161.04, + "probability": 0.804 + }, + { + "start": 18161.14, + "end": 18162.18, + "probability": 0.873 + }, + { + "start": 18181.46, + "end": 18185.38, + "probability": 0.5218 + }, + { + "start": 18185.78, + "end": 18186.68, + "probability": 0.3317 + }, + { + "start": 18187.12, + "end": 18192.2, + "probability": 0.7059 + }, + { + "start": 18192.42, + "end": 18193.2, + "probability": 0.0075 + }, + { + "start": 18196.06, + "end": 18200.56, + "probability": 0.1437 + }, + { + "start": 18200.56, + "end": 18201.22, + "probability": 0.0147 + }, + { + "start": 18208.44, + "end": 18213.96, + "probability": 0.0465 + }, + { + "start": 18215.26, + "end": 18217.68, + "probability": 0.1211 + }, + { + "start": 18217.68, + "end": 18221.3, + "probability": 0.0523 + }, + { + "start": 18222.14, + "end": 18222.14, + "probability": 0.0943 + }, + { + "start": 18225.14, + "end": 18228.54, + "probability": 0.1115 + }, + { + "start": 18228.74, + "end": 18229.78, + "probability": 0.2154 + }, + { + "start": 18230.16, + "end": 18231.76, + "probability": 0.069 + }, + { + "start": 18231.9, + "end": 18231.98, + "probability": 0.6285 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.0, + "end": 18232.0, + "probability": 0.0 + }, + { + "start": 18232.08, + "end": 18234.0, + "probability": 0.782 + }, + { + "start": 18234.58, + "end": 18235.0, + "probability": 0.7548 + }, + { + "start": 18235.08, + "end": 18238.64, + "probability": 0.794 + }, + { + "start": 18238.64, + "end": 18245.1, + "probability": 0.6976 + }, + { + "start": 18247.24, + "end": 18252.28, + "probability": 0.8643 + }, + { + "start": 18253.9, + "end": 18258.46, + "probability": 0.9227 + }, + { + "start": 18259.62, + "end": 18261.94, + "probability": 0.9636 + }, + { + "start": 18279.26, + "end": 18282.2, + "probability": 0.1493 + }, + { + "start": 18282.48, + "end": 18284.56, + "probability": 0.4398 + }, + { + "start": 18284.74, + "end": 18286.24, + "probability": 0.8224 + }, + { + "start": 18286.4, + "end": 18286.98, + "probability": 0.6324 + }, + { + "start": 18288.16, + "end": 18290.04, + "probability": 0.9771 + }, + { + "start": 18290.04, + "end": 18292.56, + "probability": 0.7695 + }, + { + "start": 18293.62, + "end": 18297.3, + "probability": 0.4889 + }, + { + "start": 18297.3, + "end": 18299.86, + "probability": 0.9399 + }, + { + "start": 18300.44, + "end": 18303.76, + "probability": 0.958 + }, + { + "start": 18303.76, + "end": 18307.34, + "probability": 0.7034 + }, + { + "start": 18308.8, + "end": 18312.48, + "probability": 0.527 + }, + { + "start": 18312.48, + "end": 18316.9, + "probability": 0.8948 + }, + { + "start": 18317.68, + "end": 18319.28, + "probability": 0.4482 + }, + { + "start": 18319.48, + "end": 18321.9, + "probability": 0.5128 + }, + { + "start": 18323.4, + "end": 18325.22, + "probability": 0.8665 + }, + { + "start": 18325.78, + "end": 18328.9, + "probability": 0.6121 + }, + { + "start": 18330.12, + "end": 18331.82, + "probability": 0.9604 + }, + { + "start": 18331.94, + "end": 18334.32, + "probability": 0.8112 + }, + { + "start": 18334.32, + "end": 18336.88, + "probability": 0.933 + }, + { + "start": 18337.82, + "end": 18340.36, + "probability": 0.7343 + }, + { + "start": 18340.7, + "end": 18341.94, + "probability": 0.7419 + }, + { + "start": 18342.49, + "end": 18348.22, + "probability": 0.8295 + }, + { + "start": 18349.06, + "end": 18353.18, + "probability": 0.976 + }, + { + "start": 18354.8, + "end": 18358.74, + "probability": 0.6813 + }, + { + "start": 18358.84, + "end": 18359.45, + "probability": 0.9795 + }, + { + "start": 18360.92, + "end": 18362.46, + "probability": 0.386 + }, + { + "start": 18362.98, + "end": 18363.58, + "probability": 0.438 + }, + { + "start": 18363.86, + "end": 18364.5, + "probability": 0.0969 + }, + { + "start": 18364.5, + "end": 18365.0, + "probability": 0.9211 + }, + { + "start": 18365.16, + "end": 18365.66, + "probability": 0.8117 + }, + { + "start": 18368.99, + "end": 18369.18, + "probability": 0.0833 + }, + { + "start": 18369.18, + "end": 18372.16, + "probability": 0.8835 + }, + { + "start": 18372.3, + "end": 18372.98, + "probability": 0.7826 + }, + { + "start": 18373.32, + "end": 18376.66, + "probability": 0.8104 + }, + { + "start": 18377.0, + "end": 18377.08, + "probability": 0.3305 + }, + { + "start": 18377.16, + "end": 18377.54, + "probability": 0.703 + }, + { + "start": 18377.54, + "end": 18379.7, + "probability": 0.7705 + }, + { + "start": 18379.7, + "end": 18382.64, + "probability": 0.9551 + }, + { + "start": 18383.36, + "end": 18386.4, + "probability": 0.8313 + }, + { + "start": 18387.0, + "end": 18389.04, + "probability": 0.8182 + }, + { + "start": 18389.14, + "end": 18391.22, + "probability": 0.7304 + }, + { + "start": 18392.0, + "end": 18392.3, + "probability": 0.237 + }, + { + "start": 18392.34, + "end": 18396.01, + "probability": 0.9613 + }, + { + "start": 18396.34, + "end": 18396.74, + "probability": 0.4594 + }, + { + "start": 18396.82, + "end": 18398.82, + "probability": 0.8747 + }, + { + "start": 18399.74, + "end": 18401.12, + "probability": 0.6779 + }, + { + "start": 18401.18, + "end": 18403.24, + "probability": 0.6473 + }, + { + "start": 18403.78, + "end": 18407.6, + "probability": 0.801 + }, + { + "start": 18408.58, + "end": 18409.34, + "probability": 0.8053 + }, + { + "start": 18409.4, + "end": 18414.26, + "probability": 0.8945 + }, + { + "start": 18420.56, + "end": 18420.94, + "probability": 0.6786 + }, + { + "start": 18421.64, + "end": 18425.26, + "probability": 0.7828 + }, + { + "start": 18425.86, + "end": 18427.36, + "probability": 0.9719 + }, + { + "start": 18427.36, + "end": 18429.88, + "probability": 0.9838 + }, + { + "start": 18430.82, + "end": 18432.3, + "probability": 0.4316 + }, + { + "start": 18432.94, + "end": 18436.39, + "probability": 0.8464 + }, + { + "start": 18437.48, + "end": 18439.34, + "probability": 0.8812 + }, + { + "start": 18440.14, + "end": 18443.88, + "probability": 0.7047 + }, + { + "start": 18444.0, + "end": 18448.94, + "probability": 0.8082 + }, + { + "start": 18450.8, + "end": 18451.3, + "probability": 0.642 + }, + { + "start": 18451.38, + "end": 18452.04, + "probability": 0.5663 + }, + { + "start": 18452.12, + "end": 18454.0, + "probability": 0.6946 + }, + { + "start": 18454.0, + "end": 18456.44, + "probability": 0.8993 + }, + { + "start": 18457.14, + "end": 18457.44, + "probability": 0.4483 + }, + { + "start": 18457.56, + "end": 18460.12, + "probability": 0.7677 + }, + { + "start": 18460.12, + "end": 18463.2, + "probability": 0.4377 + }, + { + "start": 18463.2, + "end": 18463.5, + "probability": 0.889 + }, + { + "start": 18463.58, + "end": 18465.3, + "probability": 0.9662 + }, + { + "start": 18465.3, + "end": 18467.86, + "probability": 0.8154 + }, + { + "start": 18467.9, + "end": 18470.89, + "probability": 0.8233 + }, + { + "start": 18472.1, + "end": 18474.06, + "probability": 0.8955 + }, + { + "start": 18474.12, + "end": 18478.0, + "probability": 0.8961 + }, + { + "start": 18478.0, + "end": 18481.0, + "probability": 0.2448 + }, + { + "start": 18481.1, + "end": 18484.18, + "probability": 0.9048 + }, + { + "start": 18485.82, + "end": 18487.64, + "probability": 0.8487 + }, + { + "start": 18487.64, + "end": 18491.36, + "probability": 0.8525 + }, + { + "start": 18492.68, + "end": 18493.32, + "probability": 0.5845 + }, + { + "start": 18493.34, + "end": 18495.32, + "probability": 0.9091 + }, + { + "start": 18495.32, + "end": 18497.14, + "probability": 0.8106 + }, + { + "start": 18497.64, + "end": 18498.24, + "probability": 0.2895 + }, + { + "start": 18498.96, + "end": 18501.11, + "probability": 0.9454 + }, + { + "start": 18501.98, + "end": 18502.82, + "probability": 0.8849 + }, + { + "start": 18503.12, + "end": 18506.66, + "probability": 0.7377 + }, + { + "start": 18506.66, + "end": 18510.02, + "probability": 0.7163 + }, + { + "start": 18510.18, + "end": 18513.64, + "probability": 0.8336 + }, + { + "start": 18514.28, + "end": 18516.68, + "probability": 0.8977 + }, + { + "start": 18516.68, + "end": 18518.98, + "probability": 0.7355 + }, + { + "start": 18519.92, + "end": 18522.48, + "probability": 0.6213 + }, + { + "start": 18522.48, + "end": 18526.44, + "probability": 0.8359 + }, + { + "start": 18527.78, + "end": 18528.02, + "probability": 0.7197 + }, + { + "start": 18529.04, + "end": 18529.52, + "probability": 0.4692 + }, + { + "start": 18529.68, + "end": 18532.56, + "probability": 0.9936 + }, + { + "start": 18532.7, + "end": 18532.94, + "probability": 0.49 + }, + { + "start": 18534.6, + "end": 18535.86, + "probability": 0.8382 + }, + { + "start": 18537.08, + "end": 18538.22, + "probability": 0.848 + }, + { + "start": 18539.44, + "end": 18540.56, + "probability": 0.9306 + }, + { + "start": 18541.32, + "end": 18541.86, + "probability": 0.7931 + }, + { + "start": 18542.7, + "end": 18543.34, + "probability": 0.9721 + }, + { + "start": 18545.01, + "end": 18546.5, + "probability": 0.9381 + }, + { + "start": 18548.64, + "end": 18550.14, + "probability": 0.7995 + }, + { + "start": 18551.84, + "end": 18552.04, + "probability": 0.4847 + }, + { + "start": 18552.68, + "end": 18553.36, + "probability": 0.6758 + }, + { + "start": 18555.4, + "end": 18556.22, + "probability": 0.7285 + }, + { + "start": 18558.0, + "end": 18558.64, + "probability": 0.7387 + }, + { + "start": 18560.42, + "end": 18561.1, + "probability": 0.9157 + }, + { + "start": 18563.38, + "end": 18564.02, + "probability": 0.9288 + }, + { + "start": 18566.12, + "end": 18566.8, + "probability": 0.87 + }, + { + "start": 18568.7, + "end": 18569.34, + "probability": 0.7362 + }, + { + "start": 18573.06, + "end": 18573.76, + "probability": 0.924 + }, + { + "start": 18574.6, + "end": 18575.42, + "probability": 0.6988 + }, + { + "start": 18576.88, + "end": 18580.62, + "probability": 0.1017 + }, + { + "start": 18586.26, + "end": 18586.36, + "probability": 0.4682 + }, + { + "start": 18595.06, + "end": 18597.94, + "probability": 0.6974 + }, + { + "start": 18599.2, + "end": 18603.94, + "probability": 0.9547 + }, + { + "start": 18603.94, + "end": 18608.32, + "probability": 0.995 + }, + { + "start": 18608.94, + "end": 18609.62, + "probability": 0.8983 + }, + { + "start": 18610.56, + "end": 18612.8, + "probability": 0.9635 + }, + { + "start": 18613.7, + "end": 18617.34, + "probability": 0.9844 + }, + { + "start": 18618.3, + "end": 18624.9, + "probability": 0.9967 + }, + { + "start": 18624.9, + "end": 18633.54, + "probability": 0.9285 + }, + { + "start": 18634.16, + "end": 18638.02, + "probability": 0.9978 + }, + { + "start": 18638.56, + "end": 18644.36, + "probability": 0.8869 + }, + { + "start": 18645.36, + "end": 18646.44, + "probability": 0.908 + }, + { + "start": 18647.22, + "end": 18650.6, + "probability": 0.9792 + }, + { + "start": 18651.6, + "end": 18656.26, + "probability": 0.9986 + }, + { + "start": 18656.7, + "end": 18660.32, + "probability": 0.9105 + }, + { + "start": 18662.08, + "end": 18662.66, + "probability": 0.5869 + }, + { + "start": 18662.8, + "end": 18664.12, + "probability": 0.7879 + }, + { + "start": 18664.58, + "end": 18668.48, + "probability": 0.9905 + }, + { + "start": 18669.64, + "end": 18677.28, + "probability": 0.9487 + }, + { + "start": 18678.34, + "end": 18685.26, + "probability": 0.989 + }, + { + "start": 18685.88, + "end": 18686.76, + "probability": 0.4424 + }, + { + "start": 18687.38, + "end": 18689.94, + "probability": 0.9926 + }, + { + "start": 18690.84, + "end": 18694.66, + "probability": 0.9775 + }, + { + "start": 18695.32, + "end": 18697.2, + "probability": 0.9331 + }, + { + "start": 18697.94, + "end": 18699.38, + "probability": 0.9047 + }, + { + "start": 18699.54, + "end": 18700.18, + "probability": 0.6293 + }, + { + "start": 18700.28, + "end": 18702.92, + "probability": 0.8368 + }, + { + "start": 18703.42, + "end": 18706.7, + "probability": 0.9561 + }, + { + "start": 18707.56, + "end": 18713.24, + "probability": 0.9941 + }, + { + "start": 18713.72, + "end": 18714.66, + "probability": 0.7364 + }, + { + "start": 18714.82, + "end": 18715.6, + "probability": 0.6452 + }, + { + "start": 18716.52, + "end": 18720.4, + "probability": 0.9684 + }, + { + "start": 18721.14, + "end": 18723.08, + "probability": 0.7084 + }, + { + "start": 18723.78, + "end": 18725.1, + "probability": 0.8179 + }, + { + "start": 18725.58, + "end": 18728.08, + "probability": 0.9628 + }, + { + "start": 18728.2, + "end": 18733.78, + "probability": 0.9554 + }, + { + "start": 18734.5, + "end": 18737.82, + "probability": 0.9885 + }, + { + "start": 18738.72, + "end": 18742.28, + "probability": 0.9941 + }, + { + "start": 18742.98, + "end": 18750.2, + "probability": 0.9943 + }, + { + "start": 18750.96, + "end": 18751.72, + "probability": 0.8767 + }, + { + "start": 18752.4, + "end": 18753.96, + "probability": 0.9701 + }, + { + "start": 18754.7, + "end": 18756.36, + "probability": 0.8121 + }, + { + "start": 18757.24, + "end": 18758.46, + "probability": 0.8623 + }, + { + "start": 18759.16, + "end": 18765.38, + "probability": 0.9604 + }, + { + "start": 18767.2, + "end": 18769.12, + "probability": 0.9902 + }, + { + "start": 18769.6, + "end": 18773.2, + "probability": 0.9796 + }, + { + "start": 18773.74, + "end": 18774.7, + "probability": 0.9424 + }, + { + "start": 18775.22, + "end": 18781.52, + "probability": 0.9976 + }, + { + "start": 18782.16, + "end": 18784.5, + "probability": 0.9972 + }, + { + "start": 18785.02, + "end": 18787.16, + "probability": 0.9521 + }, + { + "start": 18787.2, + "end": 18790.08, + "probability": 0.949 + }, + { + "start": 18790.22, + "end": 18792.06, + "probability": 0.6338 + }, + { + "start": 18793.56, + "end": 18793.56, + "probability": 0.0381 + }, + { + "start": 18793.56, + "end": 18800.26, + "probability": 0.9902 + }, + { + "start": 18800.9, + "end": 18802.0, + "probability": 0.7648 + }, + { + "start": 18802.2, + "end": 18807.63, + "probability": 0.9489 + }, + { + "start": 18809.1, + "end": 18811.96, + "probability": 0.9893 + }, + { + "start": 18812.66, + "end": 18815.48, + "probability": 0.9697 + }, + { + "start": 18816.16, + "end": 18818.98, + "probability": 0.8439 + }, + { + "start": 18819.04, + "end": 18819.04, + "probability": 0.2369 + }, + { + "start": 18819.04, + "end": 18819.04, + "probability": 0.0585 + }, + { + "start": 18819.04, + "end": 18819.88, + "probability": 0.7332 + }, + { + "start": 18819.98, + "end": 18827.14, + "probability": 0.9324 + }, + { + "start": 18827.66, + "end": 18830.8, + "probability": 0.9969 + }, + { + "start": 18831.4, + "end": 18835.06, + "probability": 0.7189 + }, + { + "start": 18835.68, + "end": 18841.08, + "probability": 0.9604 + }, + { + "start": 18841.42, + "end": 18843.0, + "probability": 0.713 + }, + { + "start": 18843.16, + "end": 18844.26, + "probability": 0.7812 + }, + { + "start": 18844.34, + "end": 18844.64, + "probability": 0.7623 + }, + { + "start": 18844.7, + "end": 18845.42, + "probability": 0.7925 + }, + { + "start": 18845.48, + "end": 18846.12, + "probability": 0.9348 + }, + { + "start": 18846.24, + "end": 18853.86, + "probability": 0.9981 + }, + { + "start": 18854.38, + "end": 18856.02, + "probability": 0.5828 + }, + { + "start": 18856.14, + "end": 18857.52, + "probability": 0.7325 + }, + { + "start": 18857.96, + "end": 18860.34, + "probability": 0.8027 + }, + { + "start": 18860.48, + "end": 18861.06, + "probability": 0.7969 + }, + { + "start": 18861.24, + "end": 18863.96, + "probability": 0.8721 + }, + { + "start": 18864.24, + "end": 18866.16, + "probability": 0.9775 + }, + { + "start": 18867.38, + "end": 18869.12, + "probability": 0.9934 + }, + { + "start": 18869.12, + "end": 18872.64, + "probability": 0.9924 + }, + { + "start": 18873.18, + "end": 18878.36, + "probability": 0.2081 + }, + { + "start": 18878.58, + "end": 18879.04, + "probability": 0.7892 + }, + { + "start": 18879.16, + "end": 18880.02, + "probability": 0.6025 + }, + { + "start": 18880.06, + "end": 18880.86, + "probability": 0.8173 + }, + { + "start": 18897.18, + "end": 18903.88, + "probability": 0.5117 + }, + { + "start": 18903.88, + "end": 18908.06, + "probability": 0.5019 + }, + { + "start": 18908.9, + "end": 18911.9, + "probability": 0.0793 + }, + { + "start": 18911.9, + "end": 18914.98, + "probability": 0.0009 + }, + { + "start": 18922.74, + "end": 18927.88, + "probability": 0.175 + }, + { + "start": 18928.98, + "end": 18929.58, + "probability": 0.0181 + }, + { + "start": 18930.66, + "end": 18932.9, + "probability": 0.0277 + }, + { + "start": 18944.77, + "end": 18946.66, + "probability": 0.0297 + }, + { + "start": 18948.92, + "end": 18950.78, + "probability": 0.0145 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.0, + "end": 18981.0, + "probability": 0.0 + }, + { + "start": 18981.18, + "end": 18981.3, + "probability": 0.3899 + }, + { + "start": 18981.3, + "end": 18982.92, + "probability": 0.7433 + }, + { + "start": 18983.6, + "end": 18984.46, + "probability": 0.8462 + }, + { + "start": 18984.52, + "end": 18986.66, + "probability": 0.6014 + }, + { + "start": 18986.96, + "end": 18987.86, + "probability": 0.8422 + }, + { + "start": 18989.28, + "end": 18990.96, + "probability": 0.9158 + }, + { + "start": 18991.54, + "end": 18994.92, + "probability": 0.9576 + }, + { + "start": 18995.02, + "end": 18997.4, + "probability": 0.6347 + }, + { + "start": 18997.5, + "end": 18998.4, + "probability": 0.6566 + }, + { + "start": 18998.52, + "end": 19001.3, + "probability": 0.7784 + }, + { + "start": 19001.42, + "end": 19002.24, + "probability": 0.9468 + }, + { + "start": 19003.14, + "end": 19005.52, + "probability": 0.9547 + }, + { + "start": 19007.1, + "end": 19007.58, + "probability": 0.0024 + }, + { + "start": 19007.58, + "end": 19007.82, + "probability": 0.4642 + }, + { + "start": 19007.9, + "end": 19011.14, + "probability": 0.9426 + }, + { + "start": 19011.22, + "end": 19015.0, + "probability": 0.9668 + }, + { + "start": 19015.12, + "end": 19016.2, + "probability": 0.9294 + }, + { + "start": 19016.98, + "end": 19020.02, + "probability": 0.391 + }, + { + "start": 19020.12, + "end": 19021.5, + "probability": 0.5478 + }, + { + "start": 19022.36, + "end": 19022.84, + "probability": 0.4991 + }, + { + "start": 19022.88, + "end": 19024.92, + "probability": 0.7576 + }, + { + "start": 19024.96, + "end": 19025.54, + "probability": 0.7634 + }, + { + "start": 19037.98, + "end": 19042.08, + "probability": 0.0591 + }, + { + "start": 19042.08, + "end": 19043.7, + "probability": 0.0262 + }, + { + "start": 19044.48, + "end": 19044.56, + "probability": 0.041 + }, + { + "start": 19044.56, + "end": 19045.1, + "probability": 0.2114 + }, + { + "start": 19045.12, + "end": 19046.69, + "probability": 0.0946 + }, + { + "start": 19048.16, + "end": 19052.42, + "probability": 0.0817 + }, + { + "start": 19052.76, + "end": 19052.86, + "probability": 0.083 + }, + { + "start": 19054.26, + "end": 19055.82, + "probability": 0.4151 + }, + { + "start": 19061.59, + "end": 19063.08, + "probability": 0.0194 + }, + { + "start": 19063.08, + "end": 19064.32, + "probability": 0.0695 + }, + { + "start": 19064.32, + "end": 19064.98, + "probability": 0.0543 + }, + { + "start": 19065.56, + "end": 19067.6, + "probability": 0.1014 + }, + { + "start": 19067.84, + "end": 19073.52, + "probability": 0.0391 + }, + { + "start": 19079.46, + "end": 19079.54, + "probability": 0.0027 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.0, + "end": 19106.0, + "probability": 0.0 + }, + { + "start": 19106.04, + "end": 19106.78, + "probability": 0.514 + }, + { + "start": 19106.98, + "end": 19109.54, + "probability": 0.8654 + }, + { + "start": 19109.82, + "end": 19110.7, + "probability": 0.5378 + }, + { + "start": 19110.78, + "end": 19111.48, + "probability": 0.6854 + }, + { + "start": 19111.72, + "end": 19113.52, + "probability": 0.9059 + }, + { + "start": 19114.04, + "end": 19117.68, + "probability": 0.1468 + }, + { + "start": 19118.5, + "end": 19123.44, + "probability": 0.75 + }, + { + "start": 19123.6, + "end": 19125.92, + "probability": 0.3739 + }, + { + "start": 19126.46, + "end": 19128.54, + "probability": 0.9236 + }, + { + "start": 19129.2, + "end": 19132.3, + "probability": 0.6779 + }, + { + "start": 19132.36, + "end": 19134.72, + "probability": 0.664 + }, + { + "start": 19135.3, + "end": 19137.8, + "probability": 0.9443 + }, + { + "start": 19138.12, + "end": 19140.78, + "probability": 0.9302 + }, + { + "start": 19141.1, + "end": 19142.74, + "probability": 0.68 + }, + { + "start": 19143.14, + "end": 19144.96, + "probability": 0.9087 + }, + { + "start": 19145.38, + "end": 19147.56, + "probability": 0.875 + }, + { + "start": 19147.98, + "end": 19149.34, + "probability": 0.8539 + }, + { + "start": 19149.36, + "end": 19151.16, + "probability": 0.8777 + }, + { + "start": 19152.62, + "end": 19153.14, + "probability": 0.3446 + }, + { + "start": 19153.22, + "end": 19154.82, + "probability": 0.857 + }, + { + "start": 19155.04, + "end": 19157.46, + "probability": 0.9473 + }, + { + "start": 19158.4, + "end": 19160.54, + "probability": 0.5047 + }, + { + "start": 19161.0, + "end": 19161.72, + "probability": 0.182 + }, + { + "start": 19163.1, + "end": 19164.5, + "probability": 0.8054 + }, + { + "start": 19164.5, + "end": 19165.18, + "probability": 0.8015 + }, + { + "start": 19165.32, + "end": 19165.98, + "probability": 0.7164 + }, + { + "start": 19166.1, + "end": 19166.84, + "probability": 0.6779 + }, + { + "start": 19167.14, + "end": 19169.86, + "probability": 0.2383 + }, + { + "start": 19171.35, + "end": 19173.4, + "probability": 0.0166 + }, + { + "start": 19181.38, + "end": 19181.98, + "probability": 0.0006 + }, + { + "start": 19182.06, + "end": 19182.06, + "probability": 0.0112 + }, + { + "start": 19182.06, + "end": 19182.06, + "probability": 0.186 + }, + { + "start": 19182.06, + "end": 19182.06, + "probability": 0.0532 + }, + { + "start": 19182.06, + "end": 19183.0, + "probability": 0.5498 + }, + { + "start": 19183.12, + "end": 19187.38, + "probability": 0.8442 + }, + { + "start": 19188.96, + "end": 19191.56, + "probability": 0.3407 + }, + { + "start": 19192.44, + "end": 19193.18, + "probability": 0.7667 + }, + { + "start": 19194.1, + "end": 19194.68, + "probability": 0.5745 + }, + { + "start": 19194.78, + "end": 19196.1, + "probability": 0.7409 + }, + { + "start": 19196.14, + "end": 19200.62, + "probability": 0.6986 + }, + { + "start": 19200.76, + "end": 19203.84, + "probability": 0.8287 + }, + { + "start": 19203.92, + "end": 19204.54, + "probability": 0.4302 + }, + { + "start": 19205.12, + "end": 19207.2, + "probability": 0.9203 + }, + { + "start": 19210.66, + "end": 19213.92, + "probability": 0.7051 + }, + { + "start": 19214.0, + "end": 19216.66, + "probability": 0.989 + }, + { + "start": 19221.4, + "end": 19222.56, + "probability": 0.7155 + }, + { + "start": 19223.18, + "end": 19225.68, + "probability": 0.7876 + }, + { + "start": 19227.16, + "end": 19232.78, + "probability": 0.9752 + }, + { + "start": 19232.78, + "end": 19236.92, + "probability": 0.9966 + }, + { + "start": 19237.14, + "end": 19246.24, + "probability": 0.9626 + }, + { + "start": 19246.24, + "end": 19252.06, + "probability": 0.9954 + }, + { + "start": 19252.64, + "end": 19260.66, + "probability": 0.8837 + }, + { + "start": 19261.46, + "end": 19262.84, + "probability": 0.8815 + }, + { + "start": 19262.9, + "end": 19266.5, + "probability": 0.8449 + }, + { + "start": 19267.12, + "end": 19270.52, + "probability": 0.8549 + }, + { + "start": 19271.22, + "end": 19279.46, + "probability": 0.9749 + }, + { + "start": 19279.7, + "end": 19284.84, + "probability": 0.9881 + }, + { + "start": 19285.88, + "end": 19288.06, + "probability": 0.9446 + }, + { + "start": 19288.26, + "end": 19292.34, + "probability": 0.9901 + }, + { + "start": 19292.44, + "end": 19293.16, + "probability": 0.8763 + }, + { + "start": 19294.04, + "end": 19299.88, + "probability": 0.9959 + }, + { + "start": 19300.88, + "end": 19306.52, + "probability": 0.9697 + }, + { + "start": 19307.18, + "end": 19311.1, + "probability": 0.9531 + }, + { + "start": 19311.54, + "end": 19313.46, + "probability": 0.9308 + }, + { + "start": 19313.84, + "end": 19316.58, + "probability": 0.9001 + }, + { + "start": 19316.76, + "end": 19320.06, + "probability": 0.9736 + }, + { + "start": 19320.8, + "end": 19325.6, + "probability": 0.9919 + }, + { + "start": 19325.6, + "end": 19329.39, + "probability": 0.999 + }, + { + "start": 19330.44, + "end": 19334.22, + "probability": 0.8913 + }, + { + "start": 19335.06, + "end": 19335.66, + "probability": 0.4024 + }, + { + "start": 19335.74, + "end": 19341.29, + "probability": 0.9512 + }, + { + "start": 19342.14, + "end": 19347.62, + "probability": 0.9967 + }, + { + "start": 19347.84, + "end": 19351.34, + "probability": 0.9575 + }, + { + "start": 19351.7, + "end": 19352.52, + "probability": 0.675 + }, + { + "start": 19353.36, + "end": 19354.48, + "probability": 0.7643 + }, + { + "start": 19355.08, + "end": 19356.8, + "probability": 0.7608 + }, + { + "start": 19356.98, + "end": 19357.36, + "probability": 0.5782 + }, + { + "start": 19357.72, + "end": 19361.14, + "probability": 0.9908 + }, + { + "start": 19362.34, + "end": 19364.76, + "probability": 0.9841 + }, + { + "start": 19364.94, + "end": 19365.83, + "probability": 0.8707 + }, + { + "start": 19366.2, + "end": 19368.58, + "probability": 0.8911 + }, + { + "start": 19368.74, + "end": 19370.68, + "probability": 0.9271 + }, + { + "start": 19371.48, + "end": 19375.8, + "probability": 0.9338 + }, + { + "start": 19376.54, + "end": 19383.1, + "probability": 0.9418 + }, + { + "start": 19383.3, + "end": 19385.06, + "probability": 0.9404 + }, + { + "start": 19385.72, + "end": 19386.81, + "probability": 0.943 + }, + { + "start": 19387.54, + "end": 19390.24, + "probability": 0.9551 + }, + { + "start": 19390.32, + "end": 19396.67, + "probability": 0.9021 + }, + { + "start": 19397.54, + "end": 19398.52, + "probability": 0.6884 + }, + { + "start": 19398.99, + "end": 19405.94, + "probability": 0.9814 + }, + { + "start": 19405.94, + "end": 19411.78, + "probability": 0.9937 + }, + { + "start": 19411.84, + "end": 19416.26, + "probability": 0.8884 + }, + { + "start": 19416.82, + "end": 19420.36, + "probability": 0.9497 + }, + { + "start": 19420.38, + "end": 19427.82, + "probability": 0.8772 + }, + { + "start": 19428.48, + "end": 19429.76, + "probability": 0.7416 + }, + { + "start": 19429.82, + "end": 19431.02, + "probability": 0.8926 + }, + { + "start": 19431.5, + "end": 19433.98, + "probability": 0.939 + }, + { + "start": 19434.12, + "end": 19435.04, + "probability": 0.8146 + }, + { + "start": 19435.54, + "end": 19436.24, + "probability": 0.8989 + }, + { + "start": 19436.32, + "end": 19437.2, + "probability": 0.9014 + }, + { + "start": 19440.28, + "end": 19445.74, + "probability": 0.9036 + }, + { + "start": 19445.74, + "end": 19449.56, + "probability": 0.9902 + }, + { + "start": 19449.64, + "end": 19450.22, + "probability": 0.8707 + }, + { + "start": 19450.72, + "end": 19455.68, + "probability": 0.996 + }, + { + "start": 19456.3, + "end": 19457.26, + "probability": 0.8667 + }, + { + "start": 19457.7, + "end": 19463.38, + "probability": 0.9925 + }, + { + "start": 19463.94, + "end": 19470.58, + "probability": 0.9945 + }, + { + "start": 19470.58, + "end": 19477.36, + "probability": 0.9968 + }, + { + "start": 19478.08, + "end": 19483.74, + "probability": 0.9686 + }, + { + "start": 19484.64, + "end": 19487.74, + "probability": 0.9897 + }, + { + "start": 19487.84, + "end": 19488.18, + "probability": 0.3978 + }, + { + "start": 19488.28, + "end": 19488.64, + "probability": 0.7755 + }, + { + "start": 19488.74, + "end": 19492.78, + "probability": 0.918 + }, + { + "start": 19493.06, + "end": 19494.2, + "probability": 0.209 + }, + { + "start": 19494.9, + "end": 19495.9, + "probability": 0.0981 + }, + { + "start": 19496.62, + "end": 19497.6, + "probability": 0.0021 + }, + { + "start": 19497.66, + "end": 19498.4, + "probability": 0.3646 + }, + { + "start": 19499.12, + "end": 19499.76, + "probability": 0.7713 + }, + { + "start": 19500.94, + "end": 19503.88, + "probability": 0.9739 + }, + { + "start": 19503.88, + "end": 19506.66, + "probability": 0.8791 + }, + { + "start": 19506.8, + "end": 19511.96, + "probability": 0.9893 + }, + { + "start": 19512.78, + "end": 19517.94, + "probability": 0.988 + }, + { + "start": 19518.14, + "end": 19522.28, + "probability": 0.9718 + }, + { + "start": 19522.4, + "end": 19529.36, + "probability": 0.9911 + }, + { + "start": 19529.46, + "end": 19533.34, + "probability": 0.9906 + }, + { + "start": 19533.34, + "end": 19538.88, + "probability": 0.9937 + }, + { + "start": 19539.44, + "end": 19542.65, + "probability": 0.9788 + }, + { + "start": 19543.46, + "end": 19544.39, + "probability": 0.7629 + }, + { + "start": 19545.44, + "end": 19547.92, + "probability": 0.9869 + }, + { + "start": 19548.08, + "end": 19550.22, + "probability": 0.9088 + }, + { + "start": 19550.58, + "end": 19554.64, + "probability": 0.9803 + }, + { + "start": 19554.64, + "end": 19558.62, + "probability": 0.9978 + }, + { + "start": 19559.16, + "end": 19561.98, + "probability": 0.7734 + }, + { + "start": 19562.86, + "end": 19564.54, + "probability": 0.9937 + }, + { + "start": 19565.14, + "end": 19567.24, + "probability": 0.894 + }, + { + "start": 19567.36, + "end": 19572.58, + "probability": 0.9867 + }, + { + "start": 19573.38, + "end": 19578.88, + "probability": 0.881 + }, + { + "start": 19579.1, + "end": 19579.78, + "probability": 0.4488 + }, + { + "start": 19580.24, + "end": 19580.34, + "probability": 0.3719 + }, + { + "start": 19580.4, + "end": 19580.74, + "probability": 0.7885 + }, + { + "start": 19580.84, + "end": 19585.2, + "probability": 0.9561 + }, + { + "start": 19585.34, + "end": 19586.38, + "probability": 0.5442 + }, + { + "start": 19586.54, + "end": 19591.44, + "probability": 0.9651 + }, + { + "start": 19592.04, + "end": 19595.88, + "probability": 0.9807 + }, + { + "start": 19596.04, + "end": 19602.6, + "probability": 0.9385 + }, + { + "start": 19602.78, + "end": 19606.26, + "probability": 0.9866 + }, + { + "start": 19606.26, + "end": 19610.28, + "probability": 0.9943 + }, + { + "start": 19611.42, + "end": 19613.48, + "probability": 0.8467 + }, + { + "start": 19614.14, + "end": 19616.06, + "probability": 0.9783 + }, + { + "start": 19616.6, + "end": 19618.82, + "probability": 0.8862 + }, + { + "start": 19619.2, + "end": 19621.22, + "probability": 0.9721 + }, + { + "start": 19621.64, + "end": 19623.22, + "probability": 0.9525 + }, + { + "start": 19623.26, + "end": 19625.44, + "probability": 0.9676 + }, + { + "start": 19625.96, + "end": 19628.96, + "probability": 0.997 + }, + { + "start": 19628.96, + "end": 19631.72, + "probability": 0.9997 + }, + { + "start": 19631.86, + "end": 19632.38, + "probability": 0.9665 + }, + { + "start": 19633.2, + "end": 19634.28, + "probability": 0.9462 + }, + { + "start": 19634.56, + "end": 19635.72, + "probability": 0.9797 + }, + { + "start": 19635.98, + "end": 19637.42, + "probability": 0.8681 + }, + { + "start": 19637.48, + "end": 19639.08, + "probability": 0.9989 + }, + { + "start": 19640.14, + "end": 19646.65, + "probability": 0.98 + }, + { + "start": 19648.42, + "end": 19652.06, + "probability": 0.969 + }, + { + "start": 19652.06, + "end": 19657.38, + "probability": 0.937 + }, + { + "start": 19658.16, + "end": 19662.26, + "probability": 0.9745 + }, + { + "start": 19663.0, + "end": 19667.3, + "probability": 0.9966 + }, + { + "start": 19667.4, + "end": 19670.54, + "probability": 0.8741 + }, + { + "start": 19671.14, + "end": 19671.56, + "probability": 0.7297 + }, + { + "start": 19671.72, + "end": 19677.4, + "probability": 0.9384 + }, + { + "start": 19677.88, + "end": 19680.94, + "probability": 0.9518 + }, + { + "start": 19681.08, + "end": 19685.94, + "probability": 0.9656 + }, + { + "start": 19686.68, + "end": 19692.78, + "probability": 0.9117 + }, + { + "start": 19693.3, + "end": 19696.82, + "probability": 0.9601 + }, + { + "start": 19696.9, + "end": 19700.02, + "probability": 0.8496 + }, + { + "start": 19700.7, + "end": 19704.76, + "probability": 0.8333 + }, + { + "start": 19705.26, + "end": 19705.54, + "probability": 0.8086 + }, + { + "start": 19705.68, + "end": 19708.44, + "probability": 0.9817 + }, + { + "start": 19709.6, + "end": 19710.68, + "probability": 0.9547 + }, + { + "start": 19711.68, + "end": 19715.5, + "probability": 0.9873 + }, + { + "start": 19716.04, + "end": 19719.9, + "probability": 0.9993 + }, + { + "start": 19719.9, + "end": 19722.98, + "probability": 0.9985 + }, + { + "start": 19723.54, + "end": 19724.78, + "probability": 0.8948 + }, + { + "start": 19725.04, + "end": 19729.06, + "probability": 0.9923 + }, + { + "start": 19729.38, + "end": 19731.23, + "probability": 0.9126 + }, + { + "start": 19732.1, + "end": 19733.32, + "probability": 0.8621 + }, + { + "start": 19733.36, + "end": 19735.22, + "probability": 0.9915 + }, + { + "start": 19735.88, + "end": 19738.8, + "probability": 0.7686 + }, + { + "start": 19743.06, + "end": 19743.9, + "probability": 0.0373 + }, + { + "start": 19743.9, + "end": 19743.9, + "probability": 0.0847 + }, + { + "start": 19743.9, + "end": 19744.7, + "probability": 0.4765 + }, + { + "start": 19744.84, + "end": 19746.72, + "probability": 0.961 + }, + { + "start": 19747.2, + "end": 19753.8, + "probability": 0.9315 + }, + { + "start": 19754.38, + "end": 19754.72, + "probability": 0.5567 + }, + { + "start": 19754.88, + "end": 19756.22, + "probability": 0.6584 + }, + { + "start": 19756.38, + "end": 19759.22, + "probability": 0.774 + }, + { + "start": 19759.26, + "end": 19762.64, + "probability": 0.8552 + }, + { + "start": 19763.18, + "end": 19765.24, + "probability": 0.7844 + }, + { + "start": 19766.64, + "end": 19770.56, + "probability": 0.9392 + }, + { + "start": 19770.68, + "end": 19773.02, + "probability": 0.901 + }, + { + "start": 19773.7, + "end": 19777.11, + "probability": 0.5905 + }, + { + "start": 19777.18, + "end": 19779.8, + "probability": 0.5592 + }, + { + "start": 19780.34, + "end": 19784.4, + "probability": 0.9656 + }, + { + "start": 19784.4, + "end": 19789.38, + "probability": 0.782 + }, + { + "start": 19789.74, + "end": 19791.58, + "probability": 0.1617 + }, + { + "start": 19794.02, + "end": 19798.02, + "probability": 0.5556 + }, + { + "start": 19798.08, + "end": 19800.04, + "probability": 0.9358 + }, + { + "start": 19800.52, + "end": 19803.74, + "probability": 0.9924 + }, + { + "start": 19804.26, + "end": 19807.3, + "probability": 0.8031 + }, + { + "start": 19808.16, + "end": 19809.12, + "probability": 0.6705 + }, + { + "start": 19809.18, + "end": 19810.38, + "probability": 0.8127 + }, + { + "start": 19810.5, + "end": 19815.48, + "probability": 0.9462 + }, + { + "start": 19815.51, + "end": 19818.96, + "probability": 0.9627 + }, + { + "start": 19819.66, + "end": 19822.88, + "probability": 0.9324 + }, + { + "start": 19822.96, + "end": 19824.5, + "probability": 0.6418 + }, + { + "start": 19825.0, + "end": 19826.46, + "probability": 0.8467 + }, + { + "start": 19827.0, + "end": 19829.32, + "probability": 0.8838 + }, + { + "start": 19829.68, + "end": 19831.84, + "probability": 0.939 + }, + { + "start": 19832.04, + "end": 19832.58, + "probability": 0.929 + }, + { + "start": 19835.5, + "end": 19836.32, + "probability": 0.7846 + }, + { + "start": 19842.68, + "end": 19843.2, + "probability": 0.578 + }, + { + "start": 19844.24, + "end": 19848.1, + "probability": 0.9749 + }, + { + "start": 19848.2, + "end": 19850.62, + "probability": 0.9099 + }, + { + "start": 19851.1, + "end": 19853.74, + "probability": 0.9924 + }, + { + "start": 19855.04, + "end": 19856.26, + "probability": 0.8536 + }, + { + "start": 19856.8, + "end": 19857.18, + "probability": 0.5072 + }, + { + "start": 19857.3, + "end": 19860.16, + "probability": 0.9453 + }, + { + "start": 19860.16, + "end": 19865.32, + "probability": 0.7878 + }, + { + "start": 19866.06, + "end": 19867.22, + "probability": 0.8601 + }, + { + "start": 19868.02, + "end": 19869.32, + "probability": 0.9935 + }, + { + "start": 19869.78, + "end": 19869.88, + "probability": 0.5301 + }, + { + "start": 19869.98, + "end": 19873.26, + "probability": 0.9987 + }, + { + "start": 19874.44, + "end": 19877.08, + "probability": 0.9941 + }, + { + "start": 19878.18, + "end": 19880.32, + "probability": 0.9987 + }, + { + "start": 19880.4, + "end": 19884.94, + "probability": 0.992 + }, + { + "start": 19885.5, + "end": 19892.1, + "probability": 0.9914 + }, + { + "start": 19892.94, + "end": 19894.04, + "probability": 0.8208 + }, + { + "start": 19894.14, + "end": 19895.96, + "probability": 0.9484 + }, + { + "start": 19896.0, + "end": 19897.52, + "probability": 0.95 + }, + { + "start": 19899.25, + "end": 19906.06, + "probability": 0.7115 + }, + { + "start": 19906.3, + "end": 19913.5, + "probability": 0.9971 + }, + { + "start": 19913.5, + "end": 19920.48, + "probability": 0.9862 + }, + { + "start": 19920.88, + "end": 19921.34, + "probability": 0.524 + }, + { + "start": 19921.48, + "end": 19926.36, + "probability": 0.9845 + }, + { + "start": 19926.36, + "end": 19931.08, + "probability": 0.9972 + }, + { + "start": 19931.18, + "end": 19931.62, + "probability": 0.7475 + }, + { + "start": 19932.04, + "end": 19933.28, + "probability": 0.7953 + }, + { + "start": 19933.5, + "end": 19936.3, + "probability": 0.8561 + }, + { + "start": 19937.2, + "end": 19939.21, + "probability": 0.6108 + }, + { + "start": 19941.42, + "end": 19943.96, + "probability": 0.4085 + }, + { + "start": 19954.14, + "end": 19955.58, + "probability": 0.9238 + }, + { + "start": 19955.9, + "end": 19956.12, + "probability": 0.3326 + }, + { + "start": 19956.94, + "end": 19957.64, + "probability": 0.7229 + }, + { + "start": 19958.34, + "end": 19962.46, + "probability": 0.5466 + }, + { + "start": 19966.2, + "end": 19972.2, + "probability": 0.9675 + }, + { + "start": 19973.2, + "end": 19974.28, + "probability": 0.8618 + }, + { + "start": 19976.76, + "end": 19979.5, + "probability": 0.991 + }, + { + "start": 19979.96, + "end": 19980.62, + "probability": 0.8103 + }, + { + "start": 19982.0, + "end": 19982.86, + "probability": 0.6684 + }, + { + "start": 19983.58, + "end": 19986.6, + "probability": 0.9902 + }, + { + "start": 19988.36, + "end": 19990.42, + "probability": 0.9406 + }, + { + "start": 19990.52, + "end": 19991.64, + "probability": 0.5987 + }, + { + "start": 19991.78, + "end": 19992.3, + "probability": 0.7558 + }, + { + "start": 19992.92, + "end": 19995.34, + "probability": 0.99 + }, + { + "start": 19995.94, + "end": 19996.94, + "probability": 0.7773 + }, + { + "start": 19997.98, + "end": 20000.54, + "probability": 0.9346 + }, + { + "start": 20001.2, + "end": 20002.16, + "probability": 0.9832 + }, + { + "start": 20003.94, + "end": 20008.0, + "probability": 0.9963 + }, + { + "start": 20010.44, + "end": 20014.0, + "probability": 0.6558 + }, + { + "start": 20014.6, + "end": 20016.32, + "probability": 0.8344 + }, + { + "start": 20016.92, + "end": 20018.76, + "probability": 0.9899 + }, + { + "start": 20018.84, + "end": 20023.8, + "probability": 0.9696 + }, + { + "start": 20023.8, + "end": 20028.62, + "probability": 0.9229 + }, + { + "start": 20029.4, + "end": 20031.76, + "probability": 0.5114 + }, + { + "start": 20032.54, + "end": 20033.82, + "probability": 0.8517 + }, + { + "start": 20034.88, + "end": 20035.64, + "probability": 0.9712 + }, + { + "start": 20036.9, + "end": 20038.82, + "probability": 0.9722 + }, + { + "start": 20039.66, + "end": 20040.1, + "probability": 0.7215 + }, + { + "start": 20040.9, + "end": 20046.74, + "probability": 0.9678 + }, + { + "start": 20047.74, + "end": 20049.06, + "probability": 0.8201 + }, + { + "start": 20049.94, + "end": 20051.96, + "probability": 0.9321 + }, + { + "start": 20052.5, + "end": 20053.22, + "probability": 0.7868 + }, + { + "start": 20054.02, + "end": 20054.72, + "probability": 0.9624 + }, + { + "start": 20055.34, + "end": 20056.04, + "probability": 0.9618 + }, + { + "start": 20057.22, + "end": 20060.08, + "probability": 0.9873 + }, + { + "start": 20060.52, + "end": 20064.33, + "probability": 0.9758 + }, + { + "start": 20065.28, + "end": 20067.94, + "probability": 0.852 + }, + { + "start": 20068.14, + "end": 20068.68, + "probability": 0.5189 + }, + { + "start": 20069.62, + "end": 20073.2, + "probability": 0.9856 + }, + { + "start": 20073.34, + "end": 20075.2, + "probability": 0.9556 + }, + { + "start": 20075.24, + "end": 20078.84, + "probability": 0.9819 + }, + { + "start": 20079.4, + "end": 20082.4, + "probability": 0.9958 + }, + { + "start": 20082.82, + "end": 20084.46, + "probability": 0.9834 + }, + { + "start": 20084.56, + "end": 20088.88, + "probability": 0.9888 + }, + { + "start": 20089.06, + "end": 20090.65, + "probability": 0.3906 + }, + { + "start": 20091.64, + "end": 20092.82, + "probability": 0.934 + }, + { + "start": 20092.94, + "end": 20093.67, + "probability": 0.9541 + }, + { + "start": 20094.38, + "end": 20099.48, + "probability": 0.9302 + }, + { + "start": 20100.22, + "end": 20101.28, + "probability": 0.7285 + }, + { + "start": 20101.34, + "end": 20102.96, + "probability": 0.9873 + }, + { + "start": 20103.06, + "end": 20103.94, + "probability": 0.5788 + }, + { + "start": 20104.66, + "end": 20105.74, + "probability": 0.9189 + }, + { + "start": 20106.34, + "end": 20107.42, + "probability": 0.8657 + }, + { + "start": 20107.94, + "end": 20108.86, + "probability": 0.9534 + }, + { + "start": 20108.92, + "end": 20109.08, + "probability": 0.8378 + }, + { + "start": 20109.14, + "end": 20112.28, + "probability": 0.988 + }, + { + "start": 20112.48, + "end": 20112.91, + "probability": 0.5758 + }, + { + "start": 20114.22, + "end": 20115.18, + "probability": 0.8012 + }, + { + "start": 20115.78, + "end": 20116.14, + "probability": 0.9979 + }, + { + "start": 20116.68, + "end": 20125.26, + "probability": 0.8828 + }, + { + "start": 20126.4, + "end": 20128.72, + "probability": 0.9833 + }, + { + "start": 20128.72, + "end": 20132.64, + "probability": 0.9326 + }, + { + "start": 20133.22, + "end": 20135.52, + "probability": 0.9823 + }, + { + "start": 20136.14, + "end": 20138.74, + "probability": 0.8609 + }, + { + "start": 20139.04, + "end": 20139.7, + "probability": 0.7651 + }, + { + "start": 20139.78, + "end": 20141.9, + "probability": 0.9889 + }, + { + "start": 20142.3, + "end": 20146.14, + "probability": 0.9904 + }, + { + "start": 20146.44, + "end": 20146.72, + "probability": 0.4301 + }, + { + "start": 20147.1, + "end": 20148.34, + "probability": 0.5147 + }, + { + "start": 20148.34, + "end": 20149.6, + "probability": 0.3265 + }, + { + "start": 20151.04, + "end": 20154.42, + "probability": 0.7792 + }, + { + "start": 20155.64, + "end": 20156.2, + "probability": 0.3027 + }, + { + "start": 20156.52, + "end": 20157.02, + "probability": 0.6273 + }, + { + "start": 20158.26, + "end": 20159.34, + "probability": 0.7279 + }, + { + "start": 20160.86, + "end": 20161.72, + "probability": 0.9435 + }, + { + "start": 20165.28, + "end": 20166.68, + "probability": 0.5619 + }, + { + "start": 20169.71, + "end": 20175.22, + "probability": 0.7119 + }, + { + "start": 20175.22, + "end": 20175.63, + "probability": 0.5408 + }, + { + "start": 20177.12, + "end": 20177.8, + "probability": 0.9746 + }, + { + "start": 20178.72, + "end": 20179.32, + "probability": 0.9681 + }, + { + "start": 20179.46, + "end": 20182.24, + "probability": 0.6934 + }, + { + "start": 20182.24, + "end": 20187.08, + "probability": 0.637 + }, + { + "start": 20187.3, + "end": 20188.56, + "probability": 0.0358 + }, + { + "start": 20190.8, + "end": 20194.44, + "probability": 0.2513 + }, + { + "start": 20196.5, + "end": 20199.02, + "probability": 0.92 + }, + { + "start": 20200.14, + "end": 20201.86, + "probability": 0.56 + }, + { + "start": 20202.02, + "end": 20203.88, + "probability": 0.4644 + }, + { + "start": 20204.02, + "end": 20204.94, + "probability": 0.1943 + }, + { + "start": 20205.42, + "end": 20207.4, + "probability": 0.6875 + }, + { + "start": 20207.56, + "end": 20209.76, + "probability": 0.976 + }, + { + "start": 20209.76, + "end": 20210.14, + "probability": 0.43 + }, + { + "start": 20210.18, + "end": 20212.66, + "probability": 0.6287 + }, + { + "start": 20213.41, + "end": 20217.78, + "probability": 0.9622 + }, + { + "start": 20218.02, + "end": 20221.0, + "probability": 0.9411 + }, + { + "start": 20221.04, + "end": 20222.0, + "probability": 0.8404 + }, + { + "start": 20223.76, + "end": 20227.04, + "probability": 0.9946 + }, + { + "start": 20228.48, + "end": 20231.74, + "probability": 0.9694 + }, + { + "start": 20232.24, + "end": 20233.58, + "probability": 0.9447 + }, + { + "start": 20234.74, + "end": 20236.36, + "probability": 0.7814 + }, + { + "start": 20237.26, + "end": 20240.66, + "probability": 0.9966 + }, + { + "start": 20240.7, + "end": 20241.32, + "probability": 0.8643 + }, + { + "start": 20241.58, + "end": 20245.9, + "probability": 0.8881 + }, + { + "start": 20245.98, + "end": 20250.94, + "probability": 0.8293 + }, + { + "start": 20252.96, + "end": 20256.22, + "probability": 0.8638 + }, + { + "start": 20256.82, + "end": 20259.96, + "probability": 0.8843 + }, + { + "start": 20260.54, + "end": 20262.66, + "probability": 0.9847 + }, + { + "start": 20262.76, + "end": 20263.86, + "probability": 0.674 + }, + { + "start": 20263.94, + "end": 20264.58, + "probability": 0.8393 + }, + { + "start": 20265.8, + "end": 20269.52, + "probability": 0.776 + }, + { + "start": 20270.02, + "end": 20272.4, + "probability": 0.8503 + }, + { + "start": 20273.14, + "end": 20277.92, + "probability": 0.979 + }, + { + "start": 20278.82, + "end": 20280.76, + "probability": 0.9771 + }, + { + "start": 20281.22, + "end": 20286.2, + "probability": 0.9736 + }, + { + "start": 20286.82, + "end": 20290.78, + "probability": 0.9407 + }, + { + "start": 20290.78, + "end": 20292.0, + "probability": 0.3321 + }, + { + "start": 20292.5, + "end": 20292.5, + "probability": 0.0343 + }, + { + "start": 20292.5, + "end": 20292.5, + "probability": 0.4408 + }, + { + "start": 20292.5, + "end": 20293.34, + "probability": 0.0366 + }, + { + "start": 20293.34, + "end": 20295.82, + "probability": 0.0262 + }, + { + "start": 20296.46, + "end": 20296.98, + "probability": 0.1159 + }, + { + "start": 20296.98, + "end": 20296.98, + "probability": 0.0406 + }, + { + "start": 20296.98, + "end": 20300.5, + "probability": 0.7065 + }, + { + "start": 20300.88, + "end": 20301.68, + "probability": 0.1139 + }, + { + "start": 20301.74, + "end": 20303.28, + "probability": 0.7422 + }, + { + "start": 20303.56, + "end": 20305.88, + "probability": 0.7489 + }, + { + "start": 20306.0, + "end": 20312.88, + "probability": 0.9917 + }, + { + "start": 20313.56, + "end": 20317.44, + "probability": 0.9948 + }, + { + "start": 20318.22, + "end": 20322.7, + "probability": 0.8752 + }, + { + "start": 20323.38, + "end": 20324.87, + "probability": 0.7999 + }, + { + "start": 20325.56, + "end": 20327.82, + "probability": 0.9883 + }, + { + "start": 20327.82, + "end": 20331.88, + "probability": 0.9295 + }, + { + "start": 20332.72, + "end": 20338.12, + "probability": 0.6865 + }, + { + "start": 20339.0, + "end": 20339.8, + "probability": 0.5468 + }, + { + "start": 20340.04, + "end": 20343.56, + "probability": 0.9943 + }, + { + "start": 20343.76, + "end": 20345.84, + "probability": 0.6338 + }, + { + "start": 20346.34, + "end": 20351.46, + "probability": 0.9907 + }, + { + "start": 20351.96, + "end": 20352.7, + "probability": 0.4373 + }, + { + "start": 20352.82, + "end": 20354.1, + "probability": 0.8622 + }, + { + "start": 20354.54, + "end": 20356.52, + "probability": 0.8945 + }, + { + "start": 20357.36, + "end": 20363.72, + "probability": 0.7534 + }, + { + "start": 20364.26, + "end": 20366.38, + "probability": 0.9057 + }, + { + "start": 20366.64, + "end": 20367.06, + "probability": 0.013 + }, + { + "start": 20367.2, + "end": 20367.86, + "probability": 0.6254 + }, + { + "start": 20368.16, + "end": 20368.92, + "probability": 0.6301 + }, + { + "start": 20369.34, + "end": 20371.42, + "probability": 0.9922 + }, + { + "start": 20371.5, + "end": 20371.66, + "probability": 0.1847 + }, + { + "start": 20371.92, + "end": 20376.98, + "probability": 0.7537 + }, + { + "start": 20377.18, + "end": 20380.16, + "probability": 0.9921 + }, + { + "start": 20380.16, + "end": 20382.78, + "probability": 0.994 + }, + { + "start": 20383.18, + "end": 20384.48, + "probability": 0.9533 + }, + { + "start": 20385.24, + "end": 20385.56, + "probability": 0.4727 + }, + { + "start": 20385.56, + "end": 20385.96, + "probability": 0.088 + }, + { + "start": 20386.38, + "end": 20388.46, + "probability": 0.1 + }, + { + "start": 20388.58, + "end": 20388.58, + "probability": 0.0555 + }, + { + "start": 20388.58, + "end": 20389.4, + "probability": 0.7545 + }, + { + "start": 20389.48, + "end": 20392.6, + "probability": 0.5845 + }, + { + "start": 20393.28, + "end": 20394.72, + "probability": 0.5889 + }, + { + "start": 20394.82, + "end": 20396.4, + "probability": 0.42 + }, + { + "start": 20396.4, + "end": 20400.14, + "probability": 0.7424 + }, + { + "start": 20400.24, + "end": 20401.1, + "probability": 0.7539 + }, + { + "start": 20401.98, + "end": 20402.73, + "probability": 0.8923 + }, + { + "start": 20403.06, + "end": 20403.78, + "probability": 0.8439 + }, + { + "start": 20403.82, + "end": 20405.18, + "probability": 0.3984 + }, + { + "start": 20405.4, + "end": 20407.48, + "probability": 0.9895 + }, + { + "start": 20407.64, + "end": 20408.2, + "probability": 0.3852 + }, + { + "start": 20408.38, + "end": 20410.38, + "probability": 0.5437 + }, + { + "start": 20410.46, + "end": 20411.25, + "probability": 0.6662 + }, + { + "start": 20412.04, + "end": 20412.04, + "probability": 0.1109 + }, + { + "start": 20412.04, + "end": 20417.12, + "probability": 0.4924 + }, + { + "start": 20417.12, + "end": 20418.16, + "probability": 0.1366 + }, + { + "start": 20418.16, + "end": 20418.5, + "probability": 0.3205 + }, + { + "start": 20420.64, + "end": 20420.92, + "probability": 0.0454 + }, + { + "start": 20420.92, + "end": 20420.92, + "probability": 0.2733 + }, + { + "start": 20420.92, + "end": 20420.92, + "probability": 0.3302 + }, + { + "start": 20420.92, + "end": 20421.16, + "probability": 0.0708 + }, + { + "start": 20421.2, + "end": 20421.74, + "probability": 0.6054 + }, + { + "start": 20422.16, + "end": 20425.24, + "probability": 0.8788 + }, + { + "start": 20425.48, + "end": 20428.72, + "probability": 0.7826 + }, + { + "start": 20429.02, + "end": 20432.5, + "probability": 0.8232 + }, + { + "start": 20432.82, + "end": 20433.34, + "probability": 0.7077 + }, + { + "start": 20433.42, + "end": 20434.58, + "probability": 0.8875 + }, + { + "start": 20435.83, + "end": 20438.62, + "probability": 0.6793 + }, + { + "start": 20438.74, + "end": 20440.58, + "probability": 0.3383 + }, + { + "start": 20440.8, + "end": 20441.7, + "probability": 0.232 + }, + { + "start": 20441.7, + "end": 20442.4, + "probability": 0.3554 + }, + { + "start": 20442.66, + "end": 20442.66, + "probability": 0.0783 + }, + { + "start": 20442.66, + "end": 20442.66, + "probability": 0.2723 + }, + { + "start": 20442.66, + "end": 20443.32, + "probability": 0.4511 + }, + { + "start": 20443.38, + "end": 20444.04, + "probability": 0.396 + }, + { + "start": 20444.06, + "end": 20444.96, + "probability": 0.5585 + }, + { + "start": 20445.88, + "end": 20446.94, + "probability": 0.2512 + }, + { + "start": 20447.08, + "end": 20448.38, + "probability": 0.5079 + }, + { + "start": 20450.04, + "end": 20453.38, + "probability": 0.457 + }, + { + "start": 20454.61, + "end": 20457.04, + "probability": 0.3392 + }, + { + "start": 20471.78, + "end": 20472.76, + "probability": 0.4127 + }, + { + "start": 20472.92, + "end": 20473.7, + "probability": 0.9438 + }, + { + "start": 20474.72, + "end": 20477.56, + "probability": 0.7829 + }, + { + "start": 20478.28, + "end": 20481.62, + "probability": 0.9792 + }, + { + "start": 20482.52, + "end": 20489.82, + "probability": 0.9519 + }, + { + "start": 20491.04, + "end": 20493.62, + "probability": 0.9904 + }, + { + "start": 20494.4, + "end": 20499.3, + "probability": 0.5449 + }, + { + "start": 20500.52, + "end": 20505.94, + "probability": 0.9239 + }, + { + "start": 20506.34, + "end": 20510.28, + "probability": 0.9952 + }, + { + "start": 20510.82, + "end": 20511.66, + "probability": 0.3245 + }, + { + "start": 20513.92, + "end": 20514.64, + "probability": 0.1907 + }, + { + "start": 20514.64, + "end": 20514.64, + "probability": 0.2179 + }, + { + "start": 20514.64, + "end": 20517.0, + "probability": 0.9253 + }, + { + "start": 20517.2, + "end": 20522.72, + "probability": 0.9934 + }, + { + "start": 20522.82, + "end": 20526.6, + "probability": 0.963 + }, + { + "start": 20527.28, + "end": 20529.16, + "probability": 0.9629 + }, + { + "start": 20529.36, + "end": 20529.9, + "probability": 0.662 + }, + { + "start": 20530.0, + "end": 20534.22, + "probability": 0.8429 + }, + { + "start": 20534.3, + "end": 20536.82, + "probability": 0.9976 + }, + { + "start": 20536.82, + "end": 20541.58, + "probability": 0.9809 + }, + { + "start": 20542.22, + "end": 20547.66, + "probability": 0.9924 + }, + { + "start": 20547.66, + "end": 20552.18, + "probability": 0.9309 + }, + { + "start": 20552.32, + "end": 20556.68, + "probability": 0.9277 + }, + { + "start": 20557.46, + "end": 20561.32, + "probability": 0.9717 + }, + { + "start": 20561.6, + "end": 20562.98, + "probability": 0.686 + }, + { + "start": 20563.62, + "end": 20567.06, + "probability": 0.9658 + }, + { + "start": 20567.36, + "end": 20570.8, + "probability": 0.9971 + }, + { + "start": 20570.8, + "end": 20574.72, + "probability": 0.9988 + }, + { + "start": 20574.9, + "end": 20579.74, + "probability": 0.9972 + }, + { + "start": 20579.82, + "end": 20585.44, + "probability": 0.9932 + }, + { + "start": 20585.98, + "end": 20587.98, + "probability": 0.8803 + }, + { + "start": 20588.22, + "end": 20589.12, + "probability": 0.46 + }, + { + "start": 20590.06, + "end": 20594.56, + "probability": 0.7827 + }, + { + "start": 20595.39, + "end": 20598.84, + "probability": 0.857 + }, + { + "start": 20599.34, + "end": 20603.86, + "probability": 0.917 + }, + { + "start": 20603.86, + "end": 20608.62, + "probability": 0.9763 + }, + { + "start": 20609.06, + "end": 20615.4, + "probability": 0.9113 + }, + { + "start": 20616.08, + "end": 20619.83, + "probability": 0.6997 + }, + { + "start": 20620.56, + "end": 20625.16, + "probability": 0.9854 + }, + { + "start": 20625.58, + "end": 20631.7, + "probability": 0.9935 + }, + { + "start": 20632.1, + "end": 20636.04, + "probability": 0.9886 + }, + { + "start": 20636.04, + "end": 20641.9, + "probability": 0.9905 + }, + { + "start": 20642.96, + "end": 20649.92, + "probability": 0.9957 + }, + { + "start": 20650.24, + "end": 20654.56, + "probability": 0.9979 + }, + { + "start": 20654.56, + "end": 20658.82, + "probability": 0.995 + }, + { + "start": 20658.94, + "end": 20660.1, + "probability": 0.8 + }, + { + "start": 20660.24, + "end": 20662.98, + "probability": 0.8333 + }, + { + "start": 20663.14, + "end": 20667.58, + "probability": 0.8725 + }, + { + "start": 20667.7, + "end": 20671.8, + "probability": 0.9938 + }, + { + "start": 20671.8, + "end": 20675.96, + "probability": 0.9624 + }, + { + "start": 20676.96, + "end": 20677.82, + "probability": 0.383 + }, + { + "start": 20677.94, + "end": 20678.64, + "probability": 0.7606 + }, + { + "start": 20679.94, + "end": 20683.0, + "probability": 0.5594 + }, + { + "start": 20690.18, + "end": 20690.22, + "probability": 0.3374 + }, + { + "start": 20690.22, + "end": 20690.22, + "probability": 0.1044 + }, + { + "start": 20690.22, + "end": 20690.22, + "probability": 0.1509 + }, + { + "start": 20690.22, + "end": 20690.22, + "probability": 0.0287 + }, + { + "start": 20706.7, + "end": 20710.7, + "probability": 0.9028 + }, + { + "start": 20712.18, + "end": 20715.02, + "probability": 0.7869 + }, + { + "start": 20715.56, + "end": 20718.04, + "probability": 0.8409 + }, + { + "start": 20719.34, + "end": 20720.48, + "probability": 0.7882 + }, + { + "start": 20721.96, + "end": 20723.22, + "probability": 0.9839 + }, + { + "start": 20724.2, + "end": 20725.04, + "probability": 0.9408 + }, + { + "start": 20726.24, + "end": 20726.92, + "probability": 0.707 + }, + { + "start": 20728.38, + "end": 20729.66, + "probability": 0.8594 + }, + { + "start": 20729.96, + "end": 20731.3, + "probability": 0.4041 + }, + { + "start": 20731.6, + "end": 20733.98, + "probability": 0.8325 + }, + { + "start": 20734.08, + "end": 20738.96, + "probability": 0.7748 + }, + { + "start": 20739.68, + "end": 20744.96, + "probability": 0.7949 + }, + { + "start": 20745.74, + "end": 20746.56, + "probability": 0.5027 + }, + { + "start": 20747.52, + "end": 20748.3, + "probability": 0.6875 + }, + { + "start": 20749.02, + "end": 20749.68, + "probability": 0.9368 + }, + { + "start": 20750.52, + "end": 20751.08, + "probability": 0.7594 + }, + { + "start": 20751.36, + "end": 20756.54, + "probability": 0.9481 + }, + { + "start": 20756.88, + "end": 20758.44, + "probability": 0.8387 + }, + { + "start": 20759.06, + "end": 20759.94, + "probability": 0.6917 + }, + { + "start": 20760.6, + "end": 20762.2, + "probability": 0.9941 + }, + { + "start": 20762.68, + "end": 20764.54, + "probability": 0.9923 + }, + { + "start": 20765.06, + "end": 20769.63, + "probability": 0.981 + }, + { + "start": 20769.9, + "end": 20771.32, + "probability": 0.8828 + }, + { + "start": 20772.46, + "end": 20777.48, + "probability": 0.8212 + }, + { + "start": 20777.72, + "end": 20781.46, + "probability": 0.7383 + }, + { + "start": 20782.28, + "end": 20785.16, + "probability": 0.8066 + }, + { + "start": 20786.66, + "end": 20789.82, + "probability": 0.9952 + }, + { + "start": 20790.4, + "end": 20792.28, + "probability": 0.8164 + }, + { + "start": 20792.8, + "end": 20795.16, + "probability": 0.2165 + }, + { + "start": 20795.6, + "end": 20796.02, + "probability": 0.8718 + }, + { + "start": 20796.1, + "end": 20797.02, + "probability": 0.7313 + }, + { + "start": 20797.38, + "end": 20798.1, + "probability": 0.8782 + }, + { + "start": 20798.14, + "end": 20801.28, + "probability": 0.8987 + }, + { + "start": 20801.34, + "end": 20802.24, + "probability": 0.9108 + }, + { + "start": 20803.02, + "end": 20808.04, + "probability": 0.5834 + }, + { + "start": 20810.92, + "end": 20812.02, + "probability": 0.6748 + }, + { + "start": 20812.88, + "end": 20816.6, + "probability": 0.9899 + }, + { + "start": 20817.22, + "end": 20820.14, + "probability": 0.927 + }, + { + "start": 20820.38, + "end": 20820.54, + "probability": 0.7344 + }, + { + "start": 20821.4, + "end": 20822.18, + "probability": 0.5491 + }, + { + "start": 20822.38, + "end": 20824.22, + "probability": 0.8479 + }, + { + "start": 20826.06, + "end": 20827.22, + "probability": 0.9722 + }, + { + "start": 20828.86, + "end": 20830.26, + "probability": 0.9163 + }, + { + "start": 20831.76, + "end": 20832.28, + "probability": 0.8697 + }, + { + "start": 20833.96, + "end": 20836.84, + "probability": 0.7021 + }, + { + "start": 20837.52, + "end": 20841.34, + "probability": 0.6567 + }, + { + "start": 20845.96, + "end": 20852.74, + "probability": 0.6421 + }, + { + "start": 20852.8, + "end": 20853.5, + "probability": 0.948 + }, + { + "start": 20858.22, + "end": 20859.0, + "probability": 0.7111 + }, + { + "start": 20859.72, + "end": 20860.34, + "probability": 0.7879 + }, + { + "start": 20861.24, + "end": 20865.94, + "probability": 0.9917 + }, + { + "start": 20866.26, + "end": 20866.84, + "probability": 0.581 + }, + { + "start": 20867.26, + "end": 20868.33, + "probability": 0.9558 + }, + { + "start": 20868.68, + "end": 20870.02, + "probability": 0.9255 + }, + { + "start": 20870.3, + "end": 20872.84, + "probability": 0.9103 + }, + { + "start": 20873.96, + "end": 20875.14, + "probability": 0.1524 + }, + { + "start": 20876.6, + "end": 20879.12, + "probability": 0.7411 + }, + { + "start": 20880.04, + "end": 20882.98, + "probability": 0.8904 + }, + { + "start": 20883.62, + "end": 20884.24, + "probability": 0.656 + }, + { + "start": 20884.32, + "end": 20885.64, + "probability": 0.7421 + }, + { + "start": 20885.74, + "end": 20887.08, + "probability": 0.9707 + }, + { + "start": 20887.26, + "end": 20890.24, + "probability": 0.9882 + }, + { + "start": 20890.76, + "end": 20893.52, + "probability": 0.9521 + }, + { + "start": 20894.2, + "end": 20896.94, + "probability": 0.8972 + }, + { + "start": 20897.92, + "end": 20900.52, + "probability": 0.8344 + }, + { + "start": 20901.88, + "end": 20902.72, + "probability": 0.9793 + }, + { + "start": 20903.26, + "end": 20905.82, + "probability": 0.9966 + }, + { + "start": 20906.86, + "end": 20907.64, + "probability": 0.9822 + }, + { + "start": 20908.56, + "end": 20909.92, + "probability": 0.9581 + }, + { + "start": 20910.42, + "end": 20916.76, + "probability": 0.9967 + }, + { + "start": 20917.54, + "end": 20918.51, + "probability": 0.8785 + }, + { + "start": 20920.04, + "end": 20921.68, + "probability": 0.9946 + }, + { + "start": 20922.62, + "end": 20925.04, + "probability": 0.9484 + }, + { + "start": 20925.28, + "end": 20929.98, + "probability": 0.9392 + }, + { + "start": 20931.3, + "end": 20932.5, + "probability": 0.9614 + }, + { + "start": 20934.5, + "end": 20936.62, + "probability": 0.9878 + }, + { + "start": 20937.34, + "end": 20943.34, + "probability": 0.8322 + }, + { + "start": 20944.26, + "end": 20945.8, + "probability": 0.9805 + }, + { + "start": 20946.5, + "end": 20948.02, + "probability": 0.8486 + }, + { + "start": 20948.26, + "end": 20951.16, + "probability": 0.8806 + }, + { + "start": 20952.46, + "end": 20954.56, + "probability": 0.8388 + }, + { + "start": 20955.24, + "end": 20962.24, + "probability": 0.9581 + }, + { + "start": 20963.14, + "end": 20965.48, + "probability": 0.5866 + }, + { + "start": 20965.54, + "end": 20969.3, + "probability": 0.8403 + }, + { + "start": 20970.7, + "end": 20973.92, + "probability": 0.9915 + }, + { + "start": 20974.42, + "end": 20976.68, + "probability": 0.9504 + }, + { + "start": 20977.66, + "end": 20981.62, + "probability": 0.9626 + }, + { + "start": 20982.42, + "end": 20984.74, + "probability": 0.735 + }, + { + "start": 20985.18, + "end": 20988.18, + "probability": 0.9121 + }, + { + "start": 20988.26, + "end": 20988.84, + "probability": 0.9374 + }, + { + "start": 20988.98, + "end": 20989.9, + "probability": 0.8008 + }, + { + "start": 20990.1, + "end": 20995.3, + "probability": 0.6861 + }, + { + "start": 20995.96, + "end": 20998.82, + "probability": 0.9756 + }, + { + "start": 20998.82, + "end": 21001.44, + "probability": 0.9922 + }, + { + "start": 21002.06, + "end": 21003.9, + "probability": 0.9292 + }, + { + "start": 21004.3, + "end": 21007.57, + "probability": 0.9556 + }, + { + "start": 21008.76, + "end": 21013.42, + "probability": 0.9764 + }, + { + "start": 21013.54, + "end": 21014.14, + "probability": 0.5626 + }, + { + "start": 21014.64, + "end": 21015.22, + "probability": 0.3969 + }, + { + "start": 21015.88, + "end": 21019.18, + "probability": 0.9126 + }, + { + "start": 21020.24, + "end": 21024.9, + "probability": 0.9844 + }, + { + "start": 21025.6, + "end": 21026.38, + "probability": 0.9551 + }, + { + "start": 21027.66, + "end": 21028.94, + "probability": 0.959 + }, + { + "start": 21029.06, + "end": 21031.04, + "probability": 0.7391 + }, + { + "start": 21031.86, + "end": 21034.02, + "probability": 0.9929 + }, + { + "start": 21034.52, + "end": 21035.42, + "probability": 0.8001 + }, + { + "start": 21036.1, + "end": 21039.12, + "probability": 0.9734 + }, + { + "start": 21039.96, + "end": 21043.9, + "probability": 0.9193 + }, + { + "start": 21044.84, + "end": 21046.24, + "probability": 0.999 + }, + { + "start": 21047.98, + "end": 21051.7, + "probability": 0.9843 + }, + { + "start": 21052.64, + "end": 21054.32, + "probability": 0.6773 + }, + { + "start": 21055.46, + "end": 21056.9, + "probability": 0.9899 + }, + { + "start": 21057.64, + "end": 21058.9, + "probability": 0.9968 + }, + { + "start": 21059.96, + "end": 21062.8, + "probability": 0.9526 + }, + { + "start": 21063.42, + "end": 21066.52, + "probability": 0.9988 + }, + { + "start": 21066.82, + "end": 21069.86, + "probability": 0.9962 + }, + { + "start": 21070.74, + "end": 21072.64, + "probability": 0.704 + }, + { + "start": 21072.92, + "end": 21073.12, + "probability": 0.7009 + }, + { + "start": 21074.4, + "end": 21075.6, + "probability": 0.5404 + }, + { + "start": 21077.18, + "end": 21079.64, + "probability": 0.9671 + }, + { + "start": 21081.82, + "end": 21086.64, + "probability": 0.9495 + }, + { + "start": 21088.9, + "end": 21089.88, + "probability": 0.7896 + }, + { + "start": 21090.7, + "end": 21091.96, + "probability": 0.7825 + }, + { + "start": 21093.4, + "end": 21097.38, + "probability": 0.9962 + }, + { + "start": 21099.32, + "end": 21099.76, + "probability": 0.8207 + }, + { + "start": 21100.7, + "end": 21103.9, + "probability": 0.9907 + }, + { + "start": 21104.72, + "end": 21106.82, + "probability": 0.9421 + }, + { + "start": 21107.82, + "end": 21112.83, + "probability": 0.9946 + }, + { + "start": 21113.76, + "end": 21118.38, + "probability": 0.999 + }, + { + "start": 21119.28, + "end": 21120.42, + "probability": 0.9491 + }, + { + "start": 21121.12, + "end": 21122.4, + "probability": 0.8795 + }, + { + "start": 21123.32, + "end": 21123.58, + "probability": 0.3755 + }, + { + "start": 21123.6, + "end": 21127.82, + "probability": 0.9455 + }, + { + "start": 21128.26, + "end": 21129.56, + "probability": 0.9951 + }, + { + "start": 21131.56, + "end": 21133.84, + "probability": 0.8229 + }, + { + "start": 21133.94, + "end": 21138.1, + "probability": 0.7753 + }, + { + "start": 21140.54, + "end": 21145.2, + "probability": 0.9833 + }, + { + "start": 21146.0, + "end": 21147.12, + "probability": 0.8495 + }, + { + "start": 21147.68, + "end": 21150.52, + "probability": 0.9931 + }, + { + "start": 21151.58, + "end": 21153.66, + "probability": 0.9727 + }, + { + "start": 21154.56, + "end": 21158.48, + "probability": 0.9971 + }, + { + "start": 21159.0, + "end": 21164.84, + "probability": 0.9946 + }, + { + "start": 21166.1, + "end": 21167.56, + "probability": 0.9606 + }, + { + "start": 21167.8, + "end": 21171.72, + "probability": 0.986 + }, + { + "start": 21171.9, + "end": 21175.74, + "probability": 0.872 + }, + { + "start": 21175.74, + "end": 21181.6, + "probability": 0.9995 + }, + { + "start": 21182.2, + "end": 21183.28, + "probability": 0.9984 + }, + { + "start": 21184.42, + "end": 21186.46, + "probability": 0.9207 + }, + { + "start": 21187.64, + "end": 21188.46, + "probability": 0.6848 + }, + { + "start": 21188.78, + "end": 21193.06, + "probability": 0.9726 + }, + { + "start": 21193.06, + "end": 21196.58, + "probability": 0.9998 + }, + { + "start": 21198.4, + "end": 21199.4, + "probability": 0.9806 + }, + { + "start": 21200.02, + "end": 21201.41, + "probability": 0.9673 + }, + { + "start": 21201.98, + "end": 21204.28, + "probability": 0.9895 + }, + { + "start": 21204.84, + "end": 21206.88, + "probability": 0.8713 + }, + { + "start": 21207.14, + "end": 21209.34, + "probability": 0.4791 + }, + { + "start": 21209.4, + "end": 21211.0, + "probability": 0.9985 + }, + { + "start": 21211.58, + "end": 21212.26, + "probability": 0.7919 + }, + { + "start": 21213.0, + "end": 21213.2, + "probability": 0.6538 + }, + { + "start": 21213.24, + "end": 21214.16, + "probability": 0.7958 + }, + { + "start": 21214.3, + "end": 21215.9, + "probability": 0.8024 + }, + { + "start": 21216.38, + "end": 21218.0, + "probability": 0.9675 + }, + { + "start": 21218.66, + "end": 21222.84, + "probability": 0.9814 + }, + { + "start": 21223.34, + "end": 21227.9, + "probability": 0.997 + }, + { + "start": 21227.9, + "end": 21234.16, + "probability": 0.989 + }, + { + "start": 21234.22, + "end": 21235.4, + "probability": 0.7904 + }, + { + "start": 21236.1, + "end": 21240.02, + "probability": 0.9898 + }, + { + "start": 21240.08, + "end": 21245.12, + "probability": 0.9875 + }, + { + "start": 21245.2, + "end": 21245.72, + "probability": 0.7609 + }, + { + "start": 21246.38, + "end": 21247.54, + "probability": 0.7925 + }, + { + "start": 21247.64, + "end": 21248.58, + "probability": 0.773 + }, + { + "start": 21249.7, + "end": 21250.34, + "probability": 0.3226 + }, + { + "start": 21251.84, + "end": 21253.48, + "probability": 0.8625 + }, + { + "start": 21254.92, + "end": 21260.86, + "probability": 0.9445 + }, + { + "start": 21262.72, + "end": 21262.9, + "probability": 0.377 + }, + { + "start": 21268.1, + "end": 21268.1, + "probability": 0.0028 + }, + { + "start": 21277.62, + "end": 21277.62, + "probability": 0.3442 + }, + { + "start": 21277.62, + "end": 21278.54, + "probability": 0.5192 + }, + { + "start": 21280.68, + "end": 21281.98, + "probability": 0.9966 + }, + { + "start": 21285.42, + "end": 21287.16, + "probability": 0.863 + }, + { + "start": 21288.28, + "end": 21291.26, + "probability": 0.9678 + }, + { + "start": 21292.78, + "end": 21293.68, + "probability": 0.9505 + }, + { + "start": 21296.18, + "end": 21297.78, + "probability": 0.9946 + }, + { + "start": 21298.36, + "end": 21299.92, + "probability": 0.9561 + }, + { + "start": 21301.8, + "end": 21304.36, + "probability": 0.9573 + }, + { + "start": 21305.72, + "end": 21309.36, + "probability": 0.7895 + }, + { + "start": 21309.56, + "end": 21313.08, + "probability": 0.9789 + }, + { + "start": 21314.36, + "end": 21316.38, + "probability": 0.991 + }, + { + "start": 21317.24, + "end": 21322.1, + "probability": 0.8186 + }, + { + "start": 21322.9, + "end": 21327.32, + "probability": 0.9324 + }, + { + "start": 21328.56, + "end": 21333.29, + "probability": 0.9883 + }, + { + "start": 21333.32, + "end": 21335.14, + "probability": 0.9956 + }, + { + "start": 21335.86, + "end": 21341.4, + "probability": 0.9927 + }, + { + "start": 21341.9, + "end": 21343.16, + "probability": 0.9731 + }, + { + "start": 21343.56, + "end": 21347.52, + "probability": 0.9939 + }, + { + "start": 21348.82, + "end": 21351.3, + "probability": 0.8637 + }, + { + "start": 21351.9, + "end": 21356.06, + "probability": 0.9863 + }, + { + "start": 21356.52, + "end": 21359.96, + "probability": 0.9466 + }, + { + "start": 21360.8, + "end": 21362.2, + "probability": 0.7597 + }, + { + "start": 21362.38, + "end": 21366.08, + "probability": 0.7764 + }, + { + "start": 21366.16, + "end": 21368.18, + "probability": 0.8727 + }, + { + "start": 21372.37, + "end": 21376.94, + "probability": 0.7327 + }, + { + "start": 21377.88, + "end": 21378.52, + "probability": 0.7543 + }, + { + "start": 21378.52, + "end": 21379.86, + "probability": 0.7719 + }, + { + "start": 21380.34, + "end": 21382.42, + "probability": 0.9522 + }, + { + "start": 21382.6, + "end": 21385.25, + "probability": 0.9418 + }, + { + "start": 21386.74, + "end": 21390.52, + "probability": 0.9691 + }, + { + "start": 21390.6, + "end": 21393.86, + "probability": 0.9574 + }, + { + "start": 21394.44, + "end": 21394.76, + "probability": 0.9961 + }, + { + "start": 21395.7, + "end": 21397.6, + "probability": 0.9941 + }, + { + "start": 21398.38, + "end": 21399.5, + "probability": 0.7721 + }, + { + "start": 21400.24, + "end": 21402.22, + "probability": 0.9961 + }, + { + "start": 21402.22, + "end": 21405.62, + "probability": 0.9762 + }, + { + "start": 21405.66, + "end": 21406.62, + "probability": 0.7144 + }, + { + "start": 21407.46, + "end": 21410.18, + "probability": 0.9781 + }, + { + "start": 21411.26, + "end": 21413.72, + "probability": 0.8324 + }, + { + "start": 21415.22, + "end": 21416.87, + "probability": 0.7627 + }, + { + "start": 21418.12, + "end": 21422.0, + "probability": 0.9469 + }, + { + "start": 21422.46, + "end": 21425.46, + "probability": 0.8721 + }, + { + "start": 21425.96, + "end": 21429.66, + "probability": 0.9075 + }, + { + "start": 21430.51, + "end": 21435.38, + "probability": 0.8604 + }, + { + "start": 21436.0, + "end": 21437.26, + "probability": 0.8511 + }, + { + "start": 21437.66, + "end": 21442.9, + "probability": 0.9915 + }, + { + "start": 21443.56, + "end": 21445.98, + "probability": 0.9955 + }, + { + "start": 21446.48, + "end": 21448.3, + "probability": 0.9886 + }, + { + "start": 21449.3, + "end": 21451.8, + "probability": 0.8349 + }, + { + "start": 21452.22, + "end": 21459.62, + "probability": 0.9964 + }, + { + "start": 21460.04, + "end": 21461.9, + "probability": 0.9429 + }, + { + "start": 21462.58, + "end": 21463.94, + "probability": 0.9106 + }, + { + "start": 21464.34, + "end": 21466.6, + "probability": 0.9966 + }, + { + "start": 21467.32, + "end": 21468.3, + "probability": 0.9824 + }, + { + "start": 21469.34, + "end": 21470.18, + "probability": 0.4703 + }, + { + "start": 21470.94, + "end": 21473.94, + "probability": 0.9915 + }, + { + "start": 21474.02, + "end": 21474.66, + "probability": 0.8051 + }, + { + "start": 21474.78, + "end": 21475.44, + "probability": 0.8802 + }, + { + "start": 21475.94, + "end": 21477.6, + "probability": 0.9903 + }, + { + "start": 21477.66, + "end": 21484.78, + "probability": 0.9307 + }, + { + "start": 21484.98, + "end": 21485.68, + "probability": 0.43 + }, + { + "start": 21486.32, + "end": 21486.32, + "probability": 0.1794 + }, + { + "start": 21486.34, + "end": 21487.8, + "probability": 0.854 + }, + { + "start": 21488.96, + "end": 21495.84, + "probability": 0.9652 + }, + { + "start": 21496.32, + "end": 21502.28, + "probability": 0.9941 + }, + { + "start": 21502.74, + "end": 21505.06, + "probability": 0.9918 + }, + { + "start": 21505.1, + "end": 21505.44, + "probability": 0.204 + }, + { + "start": 21505.54, + "end": 21505.58, + "probability": 0.2401 + }, + { + "start": 21505.6, + "end": 21506.18, + "probability": 0.6763 + }, + { + "start": 21506.74, + "end": 21509.64, + "probability": 0.9926 + }, + { + "start": 21510.32, + "end": 21512.24, + "probability": 0.9688 + }, + { + "start": 21512.8, + "end": 21513.78, + "probability": 0.9204 + }, + { + "start": 21514.02, + "end": 21515.52, + "probability": 0.8802 + }, + { + "start": 21515.84, + "end": 21518.3, + "probability": 0.9827 + }, + { + "start": 21518.36, + "end": 21519.42, + "probability": 0.6615 + }, + { + "start": 21519.84, + "end": 21523.34, + "probability": 0.995 + }, + { + "start": 21523.36, + "end": 21523.54, + "probability": 0.4438 + }, + { + "start": 21523.7, + "end": 21525.76, + "probability": 0.9974 + }, + { + "start": 21526.42, + "end": 21528.4, + "probability": 0.996 + }, + { + "start": 21528.82, + "end": 21532.86, + "probability": 0.9875 + }, + { + "start": 21533.36, + "end": 21535.0, + "probability": 0.9932 + }, + { + "start": 21535.4, + "end": 21540.56, + "probability": 0.9944 + }, + { + "start": 21540.62, + "end": 21540.62, + "probability": 0.4183 + }, + { + "start": 21540.72, + "end": 21543.44, + "probability": 0.9595 + }, + { + "start": 21543.76, + "end": 21545.14, + "probability": 0.9487 + }, + { + "start": 21545.16, + "end": 21545.9, + "probability": 0.7375 + }, + { + "start": 21547.1, + "end": 21548.48, + "probability": 0.5209 + }, + { + "start": 21548.58, + "end": 21549.66, + "probability": 0.9065 + }, + { + "start": 21549.82, + "end": 21550.34, + "probability": 0.624 + }, + { + "start": 21550.48, + "end": 21551.44, + "probability": 0.9875 + }, + { + "start": 21551.7, + "end": 21552.22, + "probability": 0.7431 + }, + { + "start": 21552.76, + "end": 21553.8, + "probability": 0.9785 + }, + { + "start": 21554.68, + "end": 21556.28, + "probability": 0.9847 + }, + { + "start": 21557.56, + "end": 21558.18, + "probability": 0.7549 + }, + { + "start": 21570.22, + "end": 21571.1, + "probability": 0.1404 + }, + { + "start": 21571.1, + "end": 21571.1, + "probability": 0.1262 + }, + { + "start": 21571.1, + "end": 21571.1, + "probability": 0.156 + }, + { + "start": 21571.1, + "end": 21571.1, + "probability": 0.3046 + }, + { + "start": 21571.1, + "end": 21571.68, + "probability": 0.3268 + }, + { + "start": 21572.7, + "end": 21574.64, + "probability": 0.8497 + }, + { + "start": 21583.18, + "end": 21584.36, + "probability": 0.7074 + }, + { + "start": 21584.56, + "end": 21585.3, + "probability": 0.9608 + }, + { + "start": 21585.46, + "end": 21587.32, + "probability": 0.7053 + }, + { + "start": 21588.9, + "end": 21592.24, + "probability": 0.9028 + }, + { + "start": 21593.5, + "end": 21599.04, + "probability": 0.8519 + }, + { + "start": 21600.16, + "end": 21602.0, + "probability": 0.8997 + }, + { + "start": 21602.66, + "end": 21603.06, + "probability": 0.4294 + }, + { + "start": 21603.1, + "end": 21605.52, + "probability": 0.6324 + }, + { + "start": 21605.58, + "end": 21607.34, + "probability": 0.6742 + }, + { + "start": 21608.12, + "end": 21615.32, + "probability": 0.9431 + }, + { + "start": 21616.12, + "end": 21617.6, + "probability": 0.6675 + }, + { + "start": 21617.68, + "end": 21618.38, + "probability": 0.6681 + }, + { + "start": 21618.46, + "end": 21620.55, + "probability": 0.9863 + }, + { + "start": 21620.7, + "end": 21621.54, + "probability": 0.5491 + }, + { + "start": 21622.54, + "end": 21625.26, + "probability": 0.7573 + }, + { + "start": 21626.56, + "end": 21627.0, + "probability": 0.4619 + }, + { + "start": 21627.12, + "end": 21627.82, + "probability": 0.7409 + }, + { + "start": 21628.0, + "end": 21629.04, + "probability": 0.8442 + }, + { + "start": 21629.18, + "end": 21629.96, + "probability": 0.3136 + }, + { + "start": 21630.9, + "end": 21633.08, + "probability": 0.7416 + }, + { + "start": 21633.7, + "end": 21635.84, + "probability": 0.8341 + }, + { + "start": 21636.81, + "end": 21642.28, + "probability": 0.6625 + }, + { + "start": 21642.92, + "end": 21644.14, + "probability": 0.7946 + }, + { + "start": 21645.16, + "end": 21645.36, + "probability": 0.0274 + }, + { + "start": 21645.36, + "end": 21646.78, + "probability": 0.6564 + }, + { + "start": 21646.84, + "end": 21650.8, + "probability": 0.6806 + }, + { + "start": 21651.0, + "end": 21652.64, + "probability": 0.8195 + }, + { + "start": 21653.28, + "end": 21656.82, + "probability": 0.8928 + }, + { + "start": 21657.18, + "end": 21659.54, + "probability": 0.8719 + }, + { + "start": 21660.1, + "end": 21664.76, + "probability": 0.9941 + }, + { + "start": 21665.34, + "end": 21668.04, + "probability": 0.9345 + }, + { + "start": 21669.36, + "end": 21671.64, + "probability": 0.8318 + }, + { + "start": 21671.68, + "end": 21676.84, + "probability": 0.7868 + }, + { + "start": 21677.72, + "end": 21679.12, + "probability": 0.7281 + }, + { + "start": 21680.14, + "end": 21683.84, + "probability": 0.6234 + }, + { + "start": 21684.4, + "end": 21688.38, + "probability": 0.8835 + }, + { + "start": 21688.52, + "end": 21690.27, + "probability": 0.9242 + }, + { + "start": 21691.38, + "end": 21692.12, + "probability": 0.8644 + }, + { + "start": 21692.3, + "end": 21692.82, + "probability": 0.8748 + }, + { + "start": 21692.94, + "end": 21695.28, + "probability": 0.9426 + }, + { + "start": 21695.84, + "end": 21699.6, + "probability": 0.8635 + }, + { + "start": 21700.6, + "end": 21703.0, + "probability": 0.7005 + }, + { + "start": 21703.68, + "end": 21705.04, + "probability": 0.7528 + }, + { + "start": 21705.26, + "end": 21709.18, + "probability": 0.9641 + }, + { + "start": 21709.84, + "end": 21714.36, + "probability": 0.928 + }, + { + "start": 21714.9, + "end": 21715.22, + "probability": 0.5554 + }, + { + "start": 21715.26, + "end": 21715.62, + "probability": 0.6274 + }, + { + "start": 21715.68, + "end": 21716.32, + "probability": 0.8618 + }, + { + "start": 21716.42, + "end": 21717.64, + "probability": 0.7876 + }, + { + "start": 21718.04, + "end": 21718.9, + "probability": 0.7167 + }, + { + "start": 21718.96, + "end": 21720.94, + "probability": 0.6121 + }, + { + "start": 21721.42, + "end": 21722.8, + "probability": 0.5718 + }, + { + "start": 21723.54, + "end": 21724.33, + "probability": 0.179 + }, + { + "start": 21725.64, + "end": 21728.14, + "probability": 0.6812 + }, + { + "start": 21728.5, + "end": 21729.54, + "probability": 0.4845 + }, + { + "start": 21729.76, + "end": 21731.72, + "probability": 0.9175 + }, + { + "start": 21732.02, + "end": 21732.86, + "probability": 0.4475 + }, + { + "start": 21733.0, + "end": 21734.5, + "probability": 0.7003 + }, + { + "start": 21734.56, + "end": 21735.9, + "probability": 0.6201 + }, + { + "start": 21736.4, + "end": 21738.18, + "probability": 0.8387 + }, + { + "start": 21738.64, + "end": 21739.98, + "probability": 0.6664 + }, + { + "start": 21740.18, + "end": 21742.0, + "probability": 0.7493 + }, + { + "start": 21742.1, + "end": 21743.34, + "probability": 0.7209 + }, + { + "start": 21743.56, + "end": 21745.26, + "probability": 0.7807 + }, + { + "start": 21745.26, + "end": 21747.1, + "probability": 0.9447 + }, + { + "start": 21747.78, + "end": 21750.28, + "probability": 0.8259 + }, + { + "start": 21751.08, + "end": 21754.12, + "probability": 0.6268 + }, + { + "start": 21754.74, + "end": 21756.34, + "probability": 0.7627 + }, + { + "start": 21756.98, + "end": 21760.6, + "probability": 0.9537 + }, + { + "start": 21761.64, + "end": 21767.0, + "probability": 0.6688 + }, + { + "start": 21768.6, + "end": 21770.46, + "probability": 0.6221 + }, + { + "start": 21771.08, + "end": 21774.12, + "probability": 0.9346 + }, + { + "start": 21774.7, + "end": 21775.32, + "probability": 0.7994 + }, + { + "start": 21775.4, + "end": 21777.04, + "probability": 0.7869 + }, + { + "start": 21777.48, + "end": 21785.72, + "probability": 0.9277 + }, + { + "start": 21786.02, + "end": 21787.78, + "probability": 0.5742 + }, + { + "start": 21788.86, + "end": 21790.02, + "probability": 0.1632 + }, + { + "start": 21791.16, + "end": 21793.78, + "probability": 0.9389 + }, + { + "start": 21794.58, + "end": 21796.22, + "probability": 0.9869 + }, + { + "start": 21797.92, + "end": 21798.72, + "probability": 0.8684 + }, + { + "start": 21799.4, + "end": 21800.6, + "probability": 0.9957 + }, + { + "start": 21801.86, + "end": 21802.82, + "probability": 0.7476 + }, + { + "start": 21809.27, + "end": 21811.98, + "probability": 0.6618 + }, + { + "start": 21812.0, + "end": 21814.5, + "probability": 0.8452 + }, + { + "start": 21814.52, + "end": 21818.04, + "probability": 0.9885 + }, + { + "start": 21820.08, + "end": 21820.34, + "probability": 0.1466 + }, + { + "start": 21820.34, + "end": 21821.26, + "probability": 0.6608 + }, + { + "start": 21825.76, + "end": 21828.06, + "probability": 0.7369 + }, + { + "start": 21830.0, + "end": 21831.6, + "probability": 0.7906 + }, + { + "start": 21833.02, + "end": 21833.98, + "probability": 0.9298 + }, + { + "start": 21836.52, + "end": 21838.6, + "probability": 0.0467 + }, + { + "start": 21839.74, + "end": 21841.24, + "probability": 0.1281 + }, + { + "start": 21842.06, + "end": 21843.01, + "probability": 0.2372 + }, + { + "start": 21848.22, + "end": 21851.18, + "probability": 0.084 + }, + { + "start": 21852.64, + "end": 21852.88, + "probability": 0.0004 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.0, + "end": 21942.0, + "probability": 0.0 + }, + { + "start": 21942.14, + "end": 21943.95, + "probability": 0.2601 + }, + { + "start": 21945.28, + "end": 21949.7, + "probability": 0.9346 + }, + { + "start": 21952.2, + "end": 21953.72, + "probability": 0.9987 + }, + { + "start": 21954.28, + "end": 21956.74, + "probability": 0.4643 + }, + { + "start": 21957.74, + "end": 21958.46, + "probability": 0.5899 + }, + { + "start": 21958.58, + "end": 21958.84, + "probability": 0.7149 + }, + { + "start": 21958.88, + "end": 21960.07, + "probability": 0.8148 + }, + { + "start": 21961.12, + "end": 21961.58, + "probability": 0.5017 + }, + { + "start": 21961.6, + "end": 21963.02, + "probability": 0.8694 + }, + { + "start": 21964.46, + "end": 21966.26, + "probability": 0.9351 + }, + { + "start": 21967.84, + "end": 21968.19, + "probability": 0.6045 + }, + { + "start": 21968.96, + "end": 21970.06, + "probability": 0.8512 + }, + { + "start": 21970.88, + "end": 21971.9, + "probability": 0.7334 + }, + { + "start": 21971.9, + "end": 21973.8, + "probability": 0.9893 + }, + { + "start": 21973.94, + "end": 21975.5, + "probability": 0.8711 + }, + { + "start": 21975.96, + "end": 21977.2, + "probability": 0.0307 + }, + { + "start": 21977.6, + "end": 21978.26, + "probability": 0.6216 + }, + { + "start": 21978.82, + "end": 21979.32, + "probability": 0.8174 + }, + { + "start": 21979.7, + "end": 21980.6, + "probability": 0.9485 + }, + { + "start": 21981.98, + "end": 21983.64, + "probability": 0.3584 + }, + { + "start": 21983.72, + "end": 21984.46, + "probability": 0.9946 + }, + { + "start": 21984.84, + "end": 21986.22, + "probability": 0.8991 + }, + { + "start": 21986.96, + "end": 21988.26, + "probability": 0.8061 + }, + { + "start": 21988.26, + "end": 21990.48, + "probability": 0.4977 + }, + { + "start": 21993.26, + "end": 21996.56, + "probability": 0.7493 + }, + { + "start": 21997.24, + "end": 22000.94, + "probability": 0.4337 + }, + { + "start": 22000.94, + "end": 22001.08, + "probability": 0.5424 + }, + { + "start": 22001.08, + "end": 22001.9, + "probability": 0.7616 + }, + { + "start": 22002.38, + "end": 22003.0, + "probability": 0.0204 + }, + { + "start": 22003.48, + "end": 22007.22, + "probability": 0.5072 + }, + { + "start": 22007.22, + "end": 22007.6, + "probability": 0.5556 + }, + { + "start": 22008.1, + "end": 22014.25, + "probability": 0.9097 + }, + { + "start": 22014.72, + "end": 22015.84, + "probability": 0.9901 + }, + { + "start": 22015.92, + "end": 22017.7, + "probability": 0.9915 + }, + { + "start": 22018.48, + "end": 22021.14, + "probability": 0.9854 + }, + { + "start": 22022.52, + "end": 22025.04, + "probability": 0.993 + }, + { + "start": 22025.04, + "end": 22029.26, + "probability": 0.5112 + }, + { + "start": 22029.98, + "end": 22034.42, + "probability": 0.6992 + }, + { + "start": 22035.22, + "end": 22040.58, + "probability": 0.9968 + }, + { + "start": 22041.28, + "end": 22043.48, + "probability": 0.5982 + }, + { + "start": 22043.58, + "end": 22044.3, + "probability": 0.807 + }, + { + "start": 22045.04, + "end": 22046.94, + "probability": 0.6337 + }, + { + "start": 22047.06, + "end": 22048.4, + "probability": 0.9912 + }, + { + "start": 22048.48, + "end": 22052.24, + "probability": 0.98 + }, + { + "start": 22052.52, + "end": 22053.68, + "probability": 0.9583 + }, + { + "start": 22053.82, + "end": 22054.88, + "probability": 0.7782 + }, + { + "start": 22055.62, + "end": 22061.92, + "probability": 0.9766 + }, + { + "start": 22063.0, + "end": 22063.6, + "probability": 0.6026 + }, + { + "start": 22063.86, + "end": 22064.22, + "probability": 0.8771 + }, + { + "start": 22064.34, + "end": 22065.4, + "probability": 0.9569 + }, + { + "start": 22065.48, + "end": 22067.92, + "probability": 0.9512 + }, + { + "start": 22068.34, + "end": 22070.06, + "probability": 0.9941 + }, + { + "start": 22070.68, + "end": 22071.7, + "probability": 0.9944 + }, + { + "start": 22071.96, + "end": 22074.6, + "probability": 0.7543 + }, + { + "start": 22074.7, + "end": 22078.16, + "probability": 0.9969 + }, + { + "start": 22078.16, + "end": 22082.52, + "probability": 0.9996 + }, + { + "start": 22083.56, + "end": 22085.08, + "probability": 0.6126 + }, + { + "start": 22085.72, + "end": 22087.68, + "probability": 0.9474 + }, + { + "start": 22090.28, + "end": 22092.14, + "probability": 0.8833 + }, + { + "start": 22092.58, + "end": 22094.84, + "probability": 0.8638 + }, + { + "start": 22094.96, + "end": 22097.08, + "probability": 0.9628 + }, + { + "start": 22097.62, + "end": 22097.96, + "probability": 0.2964 + }, + { + "start": 22098.12, + "end": 22103.5, + "probability": 0.9835 + }, + { + "start": 22104.02, + "end": 22106.62, + "probability": 0.9968 + }, + { + "start": 22107.0, + "end": 22108.49, + "probability": 0.9833 + }, + { + "start": 22109.6, + "end": 22113.0, + "probability": 0.9711 + }, + { + "start": 22113.44, + "end": 22116.54, + "probability": 0.9357 + }, + { + "start": 22117.04, + "end": 22117.94, + "probability": 0.9601 + }, + { + "start": 22118.34, + "end": 22123.72, + "probability": 0.9443 + }, + { + "start": 22124.18, + "end": 22125.24, + "probability": 0.7344 + }, + { + "start": 22125.3, + "end": 22125.58, + "probability": 0.7584 + }, + { + "start": 22125.66, + "end": 22129.78, + "probability": 0.9351 + }, + { + "start": 22130.2, + "end": 22133.14, + "probability": 0.998 + }, + { + "start": 22133.76, + "end": 22134.5, + "probability": 0.8238 + }, + { + "start": 22134.58, + "end": 22136.58, + "probability": 0.9125 + }, + { + "start": 22136.76, + "end": 22137.42, + "probability": 0.7007 + }, + { + "start": 22137.54, + "end": 22138.82, + "probability": 0.9157 + }, + { + "start": 22138.86, + "end": 22141.0, + "probability": 0.8644 + }, + { + "start": 22141.12, + "end": 22142.02, + "probability": 0.8411 + }, + { + "start": 22142.86, + "end": 22144.24, + "probability": 0.9775 + }, + { + "start": 22144.36, + "end": 22148.36, + "probability": 0.9896 + }, + { + "start": 22148.44, + "end": 22150.34, + "probability": 0.9712 + }, + { + "start": 22150.92, + "end": 22155.04, + "probability": 0.8795 + }, + { + "start": 22155.59, + "end": 22159.14, + "probability": 0.9745 + }, + { + "start": 22159.38, + "end": 22160.6, + "probability": 0.9444 + }, + { + "start": 22161.1, + "end": 22167.18, + "probability": 0.976 + }, + { + "start": 22167.28, + "end": 22168.2, + "probability": 0.9335 + }, + { + "start": 22168.56, + "end": 22171.66, + "probability": 0.9854 + }, + { + "start": 22172.0, + "end": 22173.94, + "probability": 0.9902 + }, + { + "start": 22174.38, + "end": 22177.88, + "probability": 0.9932 + }, + { + "start": 22178.1, + "end": 22179.26, + "probability": 0.9634 + }, + { + "start": 22179.8, + "end": 22180.22, + "probability": 0.8356 + }, + { + "start": 22180.7, + "end": 22182.62, + "probability": 0.485 + }, + { + "start": 22182.62, + "end": 22184.42, + "probability": 0.9868 + }, + { + "start": 22184.62, + "end": 22185.86, + "probability": 0.5721 + }, + { + "start": 22185.98, + "end": 22187.2, + "probability": 0.9528 + }, + { + "start": 22188.06, + "end": 22191.6, + "probability": 0.9913 + }, + { + "start": 22192.54, + "end": 22193.88, + "probability": 0.6415 + }, + { + "start": 22193.96, + "end": 22194.56, + "probability": 0.5381 + }, + { + "start": 22194.78, + "end": 22197.04, + "probability": 0.9692 + }, + { + "start": 22198.8, + "end": 22199.98, + "probability": 0.7463 + }, + { + "start": 22200.02, + "end": 22200.84, + "probability": 0.7257 + }, + { + "start": 22200.84, + "end": 22201.36, + "probability": 0.7332 + }, + { + "start": 22201.4, + "end": 22201.96, + "probability": 0.7249 + }, + { + "start": 22205.5, + "end": 22206.98, + "probability": 0.0048 + }, + { + "start": 22214.82, + "end": 22220.9, + "probability": 0.19 + }, + { + "start": 22222.42, + "end": 22223.0, + "probability": 0.0778 + }, + { + "start": 22224.2, + "end": 22227.54, + "probability": 0.0096 + }, + { + "start": 22228.08, + "end": 22228.32, + "probability": 0.0796 + }, + { + "start": 22229.38, + "end": 22231.68, + "probability": 0.0259 + }, + { + "start": 22232.98, + "end": 22234.44, + "probability": 0.0632 + }, + { + "start": 22234.98, + "end": 22236.82, + "probability": 0.0394 + }, + { + "start": 22237.94, + "end": 22242.32, + "probability": 0.1151 + }, + { + "start": 22243.62, + "end": 22243.96, + "probability": 0.1404 + }, + { + "start": 22245.08, + "end": 22246.5, + "probability": 0.0182 + }, + { + "start": 22248.87, + "end": 22249.32, + "probability": 0.1201 + }, + { + "start": 22249.32, + "end": 22250.12, + "probability": 0.0201 + }, + { + "start": 22265.18, + "end": 22266.58, + "probability": 0.05 + }, + { + "start": 22268.14, + "end": 22270.36, + "probability": 0.0133 + }, + { + "start": 22271.32, + "end": 22274.56, + "probability": 0.1046 + }, + { + "start": 22274.88, + "end": 22277.54, + "probability": 0.2987 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22290.0, + "end": 22290.0, + "probability": 0.0 + }, + { + "start": 22291.24, + "end": 22292.88, + "probability": 0.3406 + }, + { + "start": 22292.88, + "end": 22292.88, + "probability": 0.0357 + }, + { + "start": 22292.88, + "end": 22292.88, + "probability": 0.1447 + }, + { + "start": 22292.88, + "end": 22294.48, + "probability": 0.5124 + }, + { + "start": 22295.08, + "end": 22296.74, + "probability": 0.8335 + }, + { + "start": 22296.92, + "end": 22299.82, + "probability": 0.6926 + }, + { + "start": 22300.78, + "end": 22301.41, + "probability": 0.5061 + }, + { + "start": 22302.02, + "end": 22304.88, + "probability": 0.6657 + }, + { + "start": 22305.64, + "end": 22309.4, + "probability": 0.9385 + }, + { + "start": 22310.32, + "end": 22311.32, + "probability": 0.767 + }, + { + "start": 22311.48, + "end": 22316.98, + "probability": 0.8948 + }, + { + "start": 22317.76, + "end": 22323.02, + "probability": 0.8606 + }, + { + "start": 22324.14, + "end": 22327.62, + "probability": 0.8809 + }, + { + "start": 22328.2, + "end": 22331.94, + "probability": 0.9611 + }, + { + "start": 22332.56, + "end": 22337.42, + "probability": 0.7352 + }, + { + "start": 22338.04, + "end": 22342.3, + "probability": 0.9048 + }, + { + "start": 22344.1, + "end": 22348.86, + "probability": 0.9621 + }, + { + "start": 22349.4, + "end": 22352.68, + "probability": 0.7367 + }, + { + "start": 22354.06, + "end": 22357.32, + "probability": 0.8287 + }, + { + "start": 22358.0, + "end": 22360.44, + "probability": 0.8527 + }, + { + "start": 22361.32, + "end": 22369.78, + "probability": 0.9918 + }, + { + "start": 22370.6, + "end": 22372.88, + "probability": 0.8804 + }, + { + "start": 22373.5, + "end": 22375.54, + "probability": 0.8687 + }, + { + "start": 22376.86, + "end": 22381.94, + "probability": 0.9917 + }, + { + "start": 22382.02, + "end": 22382.5, + "probability": 0.7812 + }, + { + "start": 22382.54, + "end": 22383.0, + "probability": 0.7412 + }, + { + "start": 22384.32, + "end": 22388.56, + "probability": 0.9878 + }, + { + "start": 22389.2, + "end": 22392.44, + "probability": 0.9358 + }, + { + "start": 22392.44, + "end": 22396.5, + "probability": 0.9638 + }, + { + "start": 22399.3, + "end": 22405.0, + "probability": 0.993 + }, + { + "start": 22406.22, + "end": 22408.76, + "probability": 0.9947 + }, + { + "start": 22408.76, + "end": 22412.46, + "probability": 0.9964 + }, + { + "start": 22413.24, + "end": 22417.44, + "probability": 0.8721 + }, + { + "start": 22418.06, + "end": 22423.14, + "probability": 0.9345 + }, + { + "start": 22424.36, + "end": 22427.78, + "probability": 0.9924 + }, + { + "start": 22427.8, + "end": 22431.8, + "probability": 0.9948 + }, + { + "start": 22432.66, + "end": 22436.66, + "probability": 0.9854 + }, + { + "start": 22437.28, + "end": 22441.5, + "probability": 0.9751 + }, + { + "start": 22442.1, + "end": 22447.54, + "probability": 0.7684 + }, + { + "start": 22448.36, + "end": 22455.36, + "probability": 0.8211 + }, + { + "start": 22455.72, + "end": 22456.0, + "probability": 0.6723 + }, + { + "start": 22457.06, + "end": 22459.08, + "probability": 0.6531 + }, + { + "start": 22459.22, + "end": 22461.46, + "probability": 0.9656 + }, + { + "start": 22462.76, + "end": 22463.5, + "probability": 0.7722 + }, + { + "start": 22464.72, + "end": 22465.7, + "probability": 0.7987 + }, + { + "start": 22467.06, + "end": 22467.96, + "probability": 0.2406 + }, + { + "start": 22468.84, + "end": 22469.9, + "probability": 0.3492 + }, + { + "start": 22471.82, + "end": 22473.3, + "probability": 0.8882 + }, + { + "start": 22473.36, + "end": 22476.56, + "probability": 0.9533 + }, + { + "start": 22479.66, + "end": 22481.68, + "probability": 0.4195 + }, + { + "start": 22482.18, + "end": 22483.24, + "probability": 0.1661 + }, + { + "start": 22483.24, + "end": 22483.72, + "probability": 0.0571 + }, + { + "start": 22485.6, + "end": 22486.18, + "probability": 0.7952 + }, + { + "start": 22487.14, + "end": 22487.66, + "probability": 0.9634 + }, + { + "start": 22489.38, + "end": 22490.16, + "probability": 0.5259 + }, + { + "start": 22492.54, + "end": 22493.32, + "probability": 0.9427 + }, + { + "start": 22495.1, + "end": 22495.68, + "probability": 0.8779 + }, + { + "start": 22497.16, + "end": 22498.04, + "probability": 0.7724 + }, + { + "start": 22500.58, + "end": 22501.24, + "probability": 0.9285 + }, + { + "start": 22503.04, + "end": 22505.68, + "probability": 0.4985 + }, + { + "start": 22506.5, + "end": 22506.94, + "probability": 0.4101 + }, + { + "start": 22508.02, + "end": 22508.82, + "probability": 0.7708 + }, + { + "start": 22509.96, + "end": 22510.44, + "probability": 0.401 + }, + { + "start": 22510.86, + "end": 22511.98, + "probability": 0.7394 + }, + { + "start": 22513.88, + "end": 22514.38, + "probability": 0.4485 + }, + { + "start": 22514.44, + "end": 22514.8, + "probability": 0.6248 + }, + { + "start": 22517.48, + "end": 22518.26, + "probability": 0.8376 + }, + { + "start": 22520.64, + "end": 22521.54, + "probability": 0.7501 + }, + { + "start": 22523.14, + "end": 22523.82, + "probability": 0.7806 + }, + { + "start": 22525.34, + "end": 22526.34, + "probability": 0.9951 + }, + { + "start": 22527.22, + "end": 22527.98, + "probability": 0.9875 + }, + { + "start": 22529.08, + "end": 22529.92, + "probability": 0.7931 + }, + { + "start": 22530.98, + "end": 22531.9, + "probability": 0.6186 + }, + { + "start": 22533.84, + "end": 22534.68, + "probability": 0.833 + }, + { + "start": 22535.3, + "end": 22535.44, + "probability": 0.2698 + }, + { + "start": 22535.82, + "end": 22536.1, + "probability": 0.2755 + }, + { + "start": 22536.88, + "end": 22537.4, + "probability": 0.6546 + }, + { + "start": 22537.92, + "end": 22538.48, + "probability": 0.8107 + }, + { + "start": 22538.96, + "end": 22539.38, + "probability": 0.7507 + }, + { + "start": 22539.56, + "end": 22540.58, + "probability": 0.8765 + }, + { + "start": 22543.2, + "end": 22544.06, + "probability": 0.7296 + }, + { + "start": 22549.7, + "end": 22549.78, + "probability": 0.2494 + }, + { + "start": 22549.96, + "end": 22550.32, + "probability": 0.5371 + }, + { + "start": 22550.46, + "end": 22552.14, + "probability": 0.6753 + }, + { + "start": 22552.96, + "end": 22553.32, + "probability": 0.4287 + }, + { + "start": 22553.34, + "end": 22555.12, + "probability": 0.2611 + }, + { + "start": 22555.86, + "end": 22557.3, + "probability": 0.1751 + }, + { + "start": 22557.46, + "end": 22557.7, + "probability": 0.513 + }, + { + "start": 22557.78, + "end": 22560.85, + "probability": 0.9893 + }, + { + "start": 22562.58, + "end": 22562.74, + "probability": 0.9041 + }, + { + "start": 22564.14, + "end": 22564.24, + "probability": 0.774 + }, + { + "start": 22564.24, + "end": 22565.04, + "probability": 0.5899 + }, + { + "start": 22565.14, + "end": 22565.94, + "probability": 0.7101 + }, + { + "start": 22569.28, + "end": 22569.92, + "probability": 0.5406 + }, + { + "start": 22569.96, + "end": 22573.0, + "probability": 0.7849 + }, + { + "start": 22574.5, + "end": 22577.22, + "probability": 0.5784 + }, + { + "start": 22578.56, + "end": 22580.48, + "probability": 0.9339 + }, + { + "start": 22580.68, + "end": 22580.96, + "probability": 0.2804 + }, + { + "start": 22581.12, + "end": 22581.78, + "probability": 0.7261 + }, + { + "start": 22581.82, + "end": 22582.78, + "probability": 0.6085 + }, + { + "start": 22583.32, + "end": 22585.24, + "probability": 0.8918 + }, + { + "start": 22586.88, + "end": 22588.42, + "probability": 0.959 + }, + { + "start": 22588.72, + "end": 22589.0, + "probability": 0.0949 + }, + { + "start": 22589.18, + "end": 22589.32, + "probability": 0.1741 + }, + { + "start": 22589.32, + "end": 22589.78, + "probability": 0.7782 + }, + { + "start": 22589.78, + "end": 22590.68, + "probability": 0.9719 + }, + { + "start": 22590.76, + "end": 22591.22, + "probability": 0.366 + }, + { + "start": 22591.36, + "end": 22592.04, + "probability": 0.6304 + }, + { + "start": 22592.51, + "end": 22594.0, + "probability": 0.4685 + }, + { + "start": 22594.8, + "end": 22597.56, + "probability": 0.7397 + }, + { + "start": 22598.78, + "end": 22599.96, + "probability": 0.7059 + }, + { + "start": 22599.96, + "end": 22600.7, + "probability": 0.7162 + }, + { + "start": 22601.72, + "end": 22604.84, + "probability": 0.7558 + }, + { + "start": 22608.4, + "end": 22608.5, + "probability": 0.3633 + }, + { + "start": 22608.5, + "end": 22615.56, + "probability": 0.8681 + }, + { + "start": 22616.92, + "end": 22620.84, + "probability": 0.954 + }, + { + "start": 22621.62, + "end": 22622.32, + "probability": 0.8839 + }, + { + "start": 22623.86, + "end": 22630.48, + "probability": 0.9792 + }, + { + "start": 22631.54, + "end": 22632.74, + "probability": 0.8376 + }, + { + "start": 22633.98, + "end": 22635.0, + "probability": 0.749 + }, + { + "start": 22635.14, + "end": 22636.28, + "probability": 0.6384 + }, + { + "start": 22637.04, + "end": 22638.1, + "probability": 0.9249 + }, + { + "start": 22639.32, + "end": 22639.76, + "probability": 0.3746 + }, + { + "start": 22639.86, + "end": 22646.5, + "probability": 0.9742 + }, + { + "start": 22646.52, + "end": 22647.18, + "probability": 0.7796 + }, + { + "start": 22650.16, + "end": 22650.9, + "probability": 0.4581 + }, + { + "start": 22651.66, + "end": 22652.16, + "probability": 0.2138 + }, + { + "start": 22654.21, + "end": 22654.56, + "probability": 0.124 + }, + { + "start": 22654.56, + "end": 22656.42, + "probability": 0.1908 + }, + { + "start": 22657.82, + "end": 22658.86, + "probability": 0.5243 + }, + { + "start": 22658.88, + "end": 22660.54, + "probability": 0.4014 + }, + { + "start": 22660.86, + "end": 22665.46, + "probability": 0.7233 + }, + { + "start": 22666.18, + "end": 22669.54, + "probability": 0.9941 + }, + { + "start": 22669.54, + "end": 22672.94, + "probability": 0.9985 + }, + { + "start": 22673.56, + "end": 22676.84, + "probability": 0.9976 + }, + { + "start": 22677.5, + "end": 22678.81, + "probability": 0.992 + }, + { + "start": 22679.12, + "end": 22683.36, + "probability": 0.5975 + }, + { + "start": 22683.88, + "end": 22684.58, + "probability": 0.8488 + }, + { + "start": 22684.68, + "end": 22687.84, + "probability": 0.9896 + }, + { + "start": 22688.28, + "end": 22689.82, + "probability": 0.5105 + }, + { + "start": 22690.12, + "end": 22692.54, + "probability": 0.824 + }, + { + "start": 22693.2, + "end": 22693.82, + "probability": 0.5697 + }, + { + "start": 22694.34, + "end": 22697.84, + "probability": 0.9924 + }, + { + "start": 22697.84, + "end": 22701.38, + "probability": 0.7949 + }, + { + "start": 22702.3, + "end": 22705.04, + "probability": 0.5529 + }, + { + "start": 22705.2, + "end": 22710.04, + "probability": 0.9116 + }, + { + "start": 22710.5, + "end": 22711.32, + "probability": 0.8192 + }, + { + "start": 22711.78, + "end": 22712.88, + "probability": 0.83 + }, + { + "start": 22713.8, + "end": 22718.12, + "probability": 0.9883 + }, + { + "start": 22718.32, + "end": 22723.42, + "probability": 0.9784 + }, + { + "start": 22723.92, + "end": 22724.02, + "probability": 0.1321 + }, + { + "start": 22724.02, + "end": 22730.2, + "probability": 0.9932 + }, + { + "start": 22730.66, + "end": 22731.34, + "probability": 0.8201 + }, + { + "start": 22732.2, + "end": 22735.34, + "probability": 0.8378 + }, + { + "start": 22735.9, + "end": 22737.28, + "probability": 0.7466 + }, + { + "start": 22737.96, + "end": 22739.32, + "probability": 0.9668 + }, + { + "start": 22739.42, + "end": 22739.6, + "probability": 0.7701 + }, + { + "start": 22740.22, + "end": 22741.24, + "probability": 0.6123 + }, + { + "start": 22741.3, + "end": 22744.16, + "probability": 0.8127 + }, + { + "start": 22745.32, + "end": 22748.3, + "probability": 0.6159 + }, + { + "start": 22756.4, + "end": 22758.02, + "probability": 0.0903 + }, + { + "start": 22758.6, + "end": 22759.34, + "probability": 0.0465 + }, + { + "start": 22759.34, + "end": 22759.48, + "probability": 0.0133 + }, + { + "start": 22759.48, + "end": 22760.2, + "probability": 0.1415 + }, + { + "start": 22778.32, + "end": 22785.18, + "probability": 0.6217 + }, + { + "start": 22786.78, + "end": 22790.06, + "probability": 0.9818 + }, + { + "start": 22790.84, + "end": 22792.86, + "probability": 0.8129 + }, + { + "start": 22793.42, + "end": 22794.86, + "probability": 0.8867 + }, + { + "start": 22795.75, + "end": 22799.88, + "probability": 0.5336 + }, + { + "start": 22801.16, + "end": 22804.3, + "probability": 0.9773 + }, + { + "start": 22805.5, + "end": 22807.1, + "probability": 0.8175 + }, + { + "start": 22807.93, + "end": 22812.06, + "probability": 0.5266 + }, + { + "start": 22812.76, + "end": 22813.58, + "probability": 0.2567 + }, + { + "start": 22814.12, + "end": 22817.4, + "probability": 0.9335 + }, + { + "start": 22818.88, + "end": 22821.24, + "probability": 0.9772 + }, + { + "start": 22821.4, + "end": 22826.14, + "probability": 0.9245 + }, + { + "start": 22826.96, + "end": 22830.6, + "probability": 0.7497 + }, + { + "start": 22832.72, + "end": 22835.82, + "probability": 0.7295 + }, + { + "start": 22836.2, + "end": 22836.54, + "probability": 0.6113 + }, + { + "start": 22836.94, + "end": 22839.98, + "probability": 0.9809 + }, + { + "start": 22841.26, + "end": 22848.2, + "probability": 0.9948 + }, + { + "start": 22848.8, + "end": 22851.9, + "probability": 0.9839 + }, + { + "start": 22852.98, + "end": 22858.64, + "probability": 0.981 + }, + { + "start": 22859.34, + "end": 22864.4, + "probability": 0.9935 + }, + { + "start": 22864.64, + "end": 22865.78, + "probability": 0.9773 + }, + { + "start": 22867.64, + "end": 22872.56, + "probability": 0.9043 + }, + { + "start": 22873.5, + "end": 22875.54, + "probability": 0.6208 + }, + { + "start": 22875.7, + "end": 22881.0, + "probability": 0.9778 + }, + { + "start": 22881.72, + "end": 22885.76, + "probability": 0.9861 + }, + { + "start": 22886.3, + "end": 22892.16, + "probability": 0.9859 + }, + { + "start": 22894.22, + "end": 22899.62, + "probability": 0.5438 + }, + { + "start": 22900.58, + "end": 22902.34, + "probability": 0.8997 + }, + { + "start": 22902.4, + "end": 22904.56, + "probability": 0.9277 + }, + { + "start": 22905.08, + "end": 22909.28, + "probability": 0.8582 + }, + { + "start": 22909.44, + "end": 22910.94, + "probability": 0.9509 + }, + { + "start": 22911.86, + "end": 22914.52, + "probability": 0.9965 + }, + { + "start": 22915.56, + "end": 22916.88, + "probability": 0.9128 + }, + { + "start": 22917.3, + "end": 22921.96, + "probability": 0.9935 + }, + { + "start": 22923.12, + "end": 22925.12, + "probability": 0.9353 + }, + { + "start": 22925.24, + "end": 22929.06, + "probability": 0.8961 + }, + { + "start": 22929.62, + "end": 22934.9, + "probability": 0.9951 + }, + { + "start": 22935.96, + "end": 22939.61, + "probability": 0.9993 + }, + { + "start": 22940.36, + "end": 22948.32, + "probability": 0.9861 + }, + { + "start": 22948.84, + "end": 22950.18, + "probability": 0.9084 + }, + { + "start": 22950.7, + "end": 22952.78, + "probability": 0.9722 + }, + { + "start": 22953.4, + "end": 22957.2, + "probability": 0.9802 + }, + { + "start": 22957.26, + "end": 22958.42, + "probability": 0.3836 + }, + { + "start": 22959.42, + "end": 22961.82, + "probability": 0.996 + }, + { + "start": 22961.96, + "end": 22963.18, + "probability": 0.8931 + }, + { + "start": 22963.46, + "end": 22964.78, + "probability": 0.9792 + }, + { + "start": 22965.06, + "end": 22969.26, + "probability": 0.9565 + }, + { + "start": 22969.7, + "end": 22974.16, + "probability": 0.6729 + }, + { + "start": 22974.58, + "end": 22975.8, + "probability": 0.8023 + }, + { + "start": 22976.86, + "end": 22979.02, + "probability": 0.7752 + }, + { + "start": 22979.48, + "end": 22984.64, + "probability": 0.8922 + }, + { + "start": 22985.96, + "end": 22987.26, + "probability": 0.9727 + }, + { + "start": 22988.9, + "end": 22988.94, + "probability": 0.3625 + }, + { + "start": 22988.94, + "end": 22989.44, + "probability": 0.6844 + }, + { + "start": 22991.04, + "end": 22993.98, + "probability": 0.9609 + }, + { + "start": 22994.14, + "end": 22995.86, + "probability": 0.9697 + }, + { + "start": 22996.2, + "end": 22999.46, + "probability": 0.0703 + }, + { + "start": 23000.16, + "end": 23006.32, + "probability": 0.7135 + }, + { + "start": 23007.76, + "end": 23008.78, + "probability": 0.6469 + }, + { + "start": 23009.4, + "end": 23010.76, + "probability": 0.6257 + }, + { + "start": 23010.76, + "end": 23011.68, + "probability": 0.8107 + }, + { + "start": 23012.64, + "end": 23012.88, + "probability": 0.7488 + }, + { + "start": 23013.0, + "end": 23016.1, + "probability": 0.9875 + }, + { + "start": 23016.1, + "end": 23020.84, + "probability": 0.8341 + }, + { + "start": 23026.24, + "end": 23027.52, + "probability": 0.6216 + }, + { + "start": 23027.54, + "end": 23028.26, + "probability": 0.5655 + }, + { + "start": 23028.92, + "end": 23031.1, + "probability": 0.6208 + }, + { + "start": 23037.22, + "end": 23042.4, + "probability": 0.6995 + }, + { + "start": 23043.48, + "end": 23044.7, + "probability": 0.7274 + }, + { + "start": 23046.11, + "end": 23050.22, + "probability": 0.0267 + }, + { + "start": 23050.6, + "end": 23050.74, + "probability": 0.1723 + }, + { + "start": 23050.74, + "end": 23055.58, + "probability": 0.5588 + }, + { + "start": 23056.24, + "end": 23057.08, + "probability": 0.6831 + }, + { + "start": 23057.38, + "end": 23059.88, + "probability": 0.7957 + }, + { + "start": 23060.0, + "end": 23063.7, + "probability": 0.5175 + }, + { + "start": 23064.18, + "end": 23068.02, + "probability": 0.7051 + }, + { + "start": 23068.66, + "end": 23071.16, + "probability": 0.967 + }, + { + "start": 23073.92, + "end": 23075.94, + "probability": 0.7501 + }, + { + "start": 23076.5, + "end": 23082.4, + "probability": 0.6713 + }, + { + "start": 23083.72, + "end": 23086.08, + "probability": 0.9128 + }, + { + "start": 23086.08, + "end": 23086.62, + "probability": 0.5371 + }, + { + "start": 23089.18, + "end": 23091.84, + "probability": 0.9578 + }, + { + "start": 23093.16, + "end": 23099.22, + "probability": 0.9961 + }, + { + "start": 23100.82, + "end": 23105.6, + "probability": 0.7484 + }, + { + "start": 23108.7, + "end": 23108.76, + "probability": 0.1087 + }, + { + "start": 23135.63, + "end": 23137.81, + "probability": 0.7754 + }, + { + "start": 23137.93, + "end": 23140.37, + "probability": 0.9965 + }, + { + "start": 23141.63, + "end": 23145.45, + "probability": 0.9001 + }, + { + "start": 23146.49, + "end": 23146.77, + "probability": 0.1596 + }, + { + "start": 23146.77, + "end": 23148.54, + "probability": 0.3099 + }, + { + "start": 23159.19, + "end": 23163.35, + "probability": 0.7205 + }, + { + "start": 23163.89, + "end": 23166.63, + "probability": 0.8642 + }, + { + "start": 23167.91, + "end": 23170.57, + "probability": 0.8164 + }, + { + "start": 23170.57, + "end": 23173.73, + "probability": 0.9396 + }, + { + "start": 23173.85, + "end": 23174.69, + "probability": 0.8865 + }, + { + "start": 23174.75, + "end": 23176.51, + "probability": 0.6729 + }, + { + "start": 23180.17, + "end": 23183.19, + "probability": 0.7921 + }, + { + "start": 23187.93, + "end": 23189.79, + "probability": 0.7498 + }, + { + "start": 23194.95, + "end": 23198.79, + "probability": 0.7427 + }, + { + "start": 23199.81, + "end": 23200.07, + "probability": 0.3893 + }, + { + "start": 23200.13, + "end": 23201.53, + "probability": 0.7469 + }, + { + "start": 23202.15, + "end": 23204.53, + "probability": 0.976 + }, + { + "start": 23206.17, + "end": 23206.31, + "probability": 0.5339 + }, + { + "start": 23206.31, + "end": 23206.97, + "probability": 0.7818 + }, + { + "start": 23207.01, + "end": 23208.81, + "probability": 0.5018 + }, + { + "start": 23209.01, + "end": 23209.63, + "probability": 0.334 + }, + { + "start": 23209.87, + "end": 23214.13, + "probability": 0.9388 + }, + { + "start": 23215.39, + "end": 23217.13, + "probability": 0.948 + }, + { + "start": 23219.67, + "end": 23223.61, + "probability": 0.0227 + }, + { + "start": 23225.43, + "end": 23227.05, + "probability": 0.1688 + }, + { + "start": 23227.05, + "end": 23227.41, + "probability": 0.0715 + }, + { + "start": 23227.41, + "end": 23227.45, + "probability": 0.1779 + }, + { + "start": 23227.45, + "end": 23228.53, + "probability": 0.5284 + }, + { + "start": 23228.53, + "end": 23232.17, + "probability": 0.8198 + }, + { + "start": 23232.83, + "end": 23234.23, + "probability": 0.9125 + }, + { + "start": 23234.97, + "end": 23236.21, + "probability": 0.7312 + }, + { + "start": 23236.93, + "end": 23239.11, + "probability": 0.8494 + }, + { + "start": 23239.11, + "end": 23240.15, + "probability": 0.7239 + }, + { + "start": 23242.03, + "end": 23243.99, + "probability": 0.219 + }, + { + "start": 23244.65, + "end": 23244.67, + "probability": 0.4955 + }, + { + "start": 23244.73, + "end": 23245.47, + "probability": 0.8089 + }, + { + "start": 23247.01, + "end": 23252.11, + "probability": 0.9902 + }, + { + "start": 23252.11, + "end": 23257.37, + "probability": 0.9902 + }, + { + "start": 23259.47, + "end": 23264.97, + "probability": 0.972 + }, + { + "start": 23264.97, + "end": 23271.01, + "probability": 0.9278 + }, + { + "start": 23271.33, + "end": 23271.81, + "probability": 0.6008 + }, + { + "start": 23272.57, + "end": 23273.51, + "probability": 0.8652 + }, + { + "start": 23277.19, + "end": 23279.87, + "probability": 0.6329 + }, + { + "start": 23280.89, + "end": 23286.69, + "probability": 0.8883 + }, + { + "start": 23286.69, + "end": 23289.53, + "probability": 0.9072 + }, + { + "start": 23290.57, + "end": 23292.91, + "probability": 0.0529 + }, + { + "start": 23292.95, + "end": 23294.49, + "probability": 0.884 + }, + { + "start": 23294.77, + "end": 23297.75, + "probability": 0.5763 + }, + { + "start": 23301.11, + "end": 23301.93, + "probability": 0.7197 + }, + { + "start": 23302.45, + "end": 23303.23, + "probability": 0.7648 + }, + { + "start": 23304.15, + "end": 23308.15, + "probability": 0.963 + }, + { + "start": 23308.15, + "end": 23311.93, + "probability": 0.9784 + }, + { + "start": 23312.83, + "end": 23316.73, + "probability": 0.9954 + }, + { + "start": 23317.47, + "end": 23320.23, + "probability": 0.9642 + }, + { + "start": 23320.73, + "end": 23323.41, + "probability": 0.8472 + }, + { + "start": 23323.75, + "end": 23327.25, + "probability": 0.9927 + }, + { + "start": 23327.25, + "end": 23330.17, + "probability": 0.9729 + }, + { + "start": 23330.77, + "end": 23334.47, + "probability": 0.9393 + }, + { + "start": 23334.73, + "end": 23338.99, + "probability": 0.9535 + }, + { + "start": 23339.87, + "end": 23342.97, + "probability": 0.8512 + }, + { + "start": 23343.75, + "end": 23346.15, + "probability": 0.7613 + }, + { + "start": 23346.71, + "end": 23350.67, + "probability": 0.9939 + }, + { + "start": 23351.23, + "end": 23354.35, + "probability": 0.7101 + }, + { + "start": 23354.47, + "end": 23357.07, + "probability": 0.9819 + }, + { + "start": 23357.75, + "end": 23363.87, + "probability": 0.9798 + }, + { + "start": 23364.41, + "end": 23367.39, + "probability": 0.9825 + }, + { + "start": 23368.07, + "end": 23371.57, + "probability": 0.8093 + }, + { + "start": 23371.57, + "end": 23375.09, + "probability": 0.9287 + }, + { + "start": 23375.89, + "end": 23377.95, + "probability": 0.9341 + }, + { + "start": 23378.17, + "end": 23380.55, + "probability": 0.912 + }, + { + "start": 23380.57, + "end": 23381.79, + "probability": 0.9029 + }, + { + "start": 23382.33, + "end": 23386.17, + "probability": 0.8969 + }, + { + "start": 23386.45, + "end": 23389.59, + "probability": 0.8945 + }, + { + "start": 23391.79, + "end": 23394.75, + "probability": 0.4247 + }, + { + "start": 23395.59, + "end": 23396.83, + "probability": 0.2376 + }, + { + "start": 23397.17, + "end": 23398.17, + "probability": 0.9017 + }, + { + "start": 23399.75, + "end": 23404.59, + "probability": 0.7476 + }, + { + "start": 23406.11, + "end": 23408.33, + "probability": 0.9978 + }, + { + "start": 23408.33, + "end": 23408.83, + "probability": 0.3421 + }, + { + "start": 23408.83, + "end": 23409.77, + "probability": 0.931 + }, + { + "start": 23410.35, + "end": 23410.45, + "probability": 0.562 + }, + { + "start": 23411.13, + "end": 23412.01, + "probability": 0.9879 + }, + { + "start": 23413.27, + "end": 23415.43, + "probability": 0.9829 + }, + { + "start": 23415.61, + "end": 23420.35, + "probability": 0.9297 + }, + { + "start": 23420.43, + "end": 23424.57, + "probability": 0.9849 + }, + { + "start": 23424.79, + "end": 23425.75, + "probability": 0.9037 + }, + { + "start": 23426.85, + "end": 23427.89, + "probability": 0.9344 + }, + { + "start": 23428.63, + "end": 23433.79, + "probability": 0.9737 + }, + { + "start": 23433.95, + "end": 23435.43, + "probability": 0.8316 + }, + { + "start": 23436.59, + "end": 23439.25, + "probability": 0.9836 + }, + { + "start": 23439.45, + "end": 23441.16, + "probability": 0.9797 + }, + { + "start": 23441.65, + "end": 23444.75, + "probability": 0.9907 + }, + { + "start": 23445.41, + "end": 23449.45, + "probability": 0.7416 + }, + { + "start": 23449.97, + "end": 23451.89, + "probability": 0.9089 + }, + { + "start": 23452.15, + "end": 23452.99, + "probability": 0.6572 + }, + { + "start": 23454.01, + "end": 23457.35, + "probability": 0.8071 + }, + { + "start": 23457.47, + "end": 23459.11, + "probability": 0.923 + }, + { + "start": 23460.03, + "end": 23463.26, + "probability": 0.9611 + }, + { + "start": 23464.41, + "end": 23466.01, + "probability": 0.8683 + }, + { + "start": 23466.11, + "end": 23467.47, + "probability": 0.9824 + }, + { + "start": 23468.55, + "end": 23470.4, + "probability": 0.9363 + }, + { + "start": 23471.13, + "end": 23472.89, + "probability": 0.9352 + }, + { + "start": 23473.39, + "end": 23473.89, + "probability": 0.7316 + }, + { + "start": 23473.89, + "end": 23475.43, + "probability": 0.9789 + }, + { + "start": 23475.63, + "end": 23477.01, + "probability": 0.9125 + }, + { + "start": 23477.87, + "end": 23478.91, + "probability": 0.8389 + }, + { + "start": 23479.63, + "end": 23481.25, + "probability": 0.9937 + }, + { + "start": 23482.05, + "end": 23485.17, + "probability": 0.7302 + }, + { + "start": 23486.11, + "end": 23487.99, + "probability": 0.8691 + }, + { + "start": 23489.33, + "end": 23491.55, + "probability": 0.9934 + }, + { + "start": 23492.05, + "end": 23494.15, + "probability": 0.931 + }, + { + "start": 23494.57, + "end": 23497.37, + "probability": 0.8208 + }, + { + "start": 23497.39, + "end": 23498.33, + "probability": 0.6378 + }, + { + "start": 23499.05, + "end": 23500.09, + "probability": 0.9984 + }, + { + "start": 23500.69, + "end": 23501.23, + "probability": 0.6235 + }, + { + "start": 23501.67, + "end": 23505.73, + "probability": 0.9189 + }, + { + "start": 23506.29, + "end": 23508.13, + "probability": 0.8536 + }, + { + "start": 23508.45, + "end": 23509.35, + "probability": 0.7414 + }, + { + "start": 23510.41, + "end": 23510.99, + "probability": 0.9386 + }, + { + "start": 23511.63, + "end": 23511.83, + "probability": 0.7728 + }, + { + "start": 23513.21, + "end": 23513.75, + "probability": 0.694 + }, + { + "start": 23514.83, + "end": 23517.01, + "probability": 0.8754 + }, + { + "start": 23517.19, + "end": 23519.83, + "probability": 0.9515 + }, + { + "start": 23519.89, + "end": 23520.87, + "probability": 0.8542 + }, + { + "start": 23521.45, + "end": 23523.51, + "probability": 0.9522 + }, + { + "start": 23524.73, + "end": 23527.93, + "probability": 0.918 + }, + { + "start": 23529.59, + "end": 23534.79, + "probability": 0.9312 + }, + { + "start": 23535.41, + "end": 23536.49, + "probability": 0.7176 + }, + { + "start": 23537.11, + "end": 23540.55, + "probability": 0.7284 + }, + { + "start": 23540.55, + "end": 23545.95, + "probability": 0.7979 + }, + { + "start": 23545.99, + "end": 23547.51, + "probability": 0.6893 + }, + { + "start": 23551.31, + "end": 23552.21, + "probability": 0.0966 + }, + { + "start": 23552.21, + "end": 23552.69, + "probability": 0.5093 + }, + { + "start": 23552.73, + "end": 23553.61, + "probability": 0.9153 + }, + { + "start": 23554.06, + "end": 23557.23, + "probability": 0.9809 + }, + { + "start": 23557.71, + "end": 23559.61, + "probability": 0.9311 + }, + { + "start": 23559.77, + "end": 23562.83, + "probability": 0.8854 + }, + { + "start": 23563.39, + "end": 23565.41, + "probability": 0.9801 + }, + { + "start": 23566.17, + "end": 23567.69, + "probability": 0.9771 + }, + { + "start": 23567.77, + "end": 23568.37, + "probability": 0.9792 + }, + { + "start": 23568.79, + "end": 23569.45, + "probability": 0.9094 + }, + { + "start": 23569.89, + "end": 23571.29, + "probability": 0.8834 + }, + { + "start": 23571.79, + "end": 23573.49, + "probability": 0.9707 + }, + { + "start": 23574.43, + "end": 23575.99, + "probability": 0.9601 + }, + { + "start": 23576.53, + "end": 23579.03, + "probability": 0.8871 + }, + { + "start": 23579.95, + "end": 23581.43, + "probability": 0.7266 + }, + { + "start": 23581.99, + "end": 23587.97, + "probability": 0.952 + }, + { + "start": 23588.43, + "end": 23589.27, + "probability": 0.871 + }, + { + "start": 23590.09, + "end": 23591.99, + "probability": 0.9562 + }, + { + "start": 23592.41, + "end": 23596.23, + "probability": 0.9659 + }, + { + "start": 23596.69, + "end": 23600.17, + "probability": 0.9639 + }, + { + "start": 23600.63, + "end": 23602.11, + "probability": 0.9464 + }, + { + "start": 23603.55, + "end": 23608.17, + "probability": 0.6641 + }, + { + "start": 23608.47, + "end": 23609.51, + "probability": 0.8529 + }, + { + "start": 23609.91, + "end": 23611.47, + "probability": 0.6596 + }, + { + "start": 23611.87, + "end": 23616.29, + "probability": 0.9149 + }, + { + "start": 23616.29, + "end": 23619.09, + "probability": 0.9976 + }, + { + "start": 23619.45, + "end": 23621.01, + "probability": 0.8921 + }, + { + "start": 23621.09, + "end": 23622.97, + "probability": 0.9453 + }, + { + "start": 23623.19, + "end": 23626.83, + "probability": 0.9907 + }, + { + "start": 23627.05, + "end": 23629.81, + "probability": 0.9831 + }, + { + "start": 23630.25, + "end": 23631.71, + "probability": 0.9868 + }, + { + "start": 23632.21, + "end": 23632.85, + "probability": 0.2778 + }, + { + "start": 23632.99, + "end": 23635.56, + "probability": 0.787 + }, + { + "start": 23636.09, + "end": 23637.73, + "probability": 0.683 + }, + { + "start": 23638.23, + "end": 23639.36, + "probability": 0.7954 + }, + { + "start": 23642.19, + "end": 23642.31, + "probability": 0.0066 + }, + { + "start": 23642.31, + "end": 23643.35, + "probability": 0.239 + }, + { + "start": 23643.69, + "end": 23644.73, + "probability": 0.716 + }, + { + "start": 23644.85, + "end": 23645.35, + "probability": 0.8129 + }, + { + "start": 23645.57, + "end": 23645.99, + "probability": 0.1097 + }, + { + "start": 23645.99, + "end": 23646.83, + "probability": 0.4033 + }, + { + "start": 23646.83, + "end": 23647.13, + "probability": 0.467 + }, + { + "start": 23647.13, + "end": 23647.45, + "probability": 0.0349 + }, + { + "start": 23647.45, + "end": 23649.05, + "probability": 0.6912 + }, + { + "start": 23649.13, + "end": 23649.63, + "probability": 0.631 + }, + { + "start": 23649.69, + "end": 23651.04, + "probability": 0.8732 + }, + { + "start": 23651.81, + "end": 23651.81, + "probability": 0.0454 + }, + { + "start": 23651.81, + "end": 23654.37, + "probability": 0.5333 + }, + { + "start": 23654.91, + "end": 23659.21, + "probability": 0.7681 + }, + { + "start": 23659.51, + "end": 23660.85, + "probability": 0.7706 + }, + { + "start": 23660.85, + "end": 23661.55, + "probability": 0.3117 + }, + { + "start": 23661.75, + "end": 23662.54, + "probability": 0.6902 + }, + { + "start": 23665.01, + "end": 23665.77, + "probability": 0.1043 + }, + { + "start": 23665.77, + "end": 23668.95, + "probability": 0.2768 + }, + { + "start": 23669.03, + "end": 23669.33, + "probability": 0.8764 + }, + { + "start": 23669.47, + "end": 23670.85, + "probability": 0.9353 + }, + { + "start": 23671.05, + "end": 23671.65, + "probability": 0.9639 + }, + { + "start": 23671.71, + "end": 23675.21, + "probability": 0.8396 + }, + { + "start": 23675.67, + "end": 23676.73, + "probability": 0.3998 + }, + { + "start": 23677.17, + "end": 23679.29, + "probability": 0.9523 + }, + { + "start": 23679.65, + "end": 23681.51, + "probability": 0.7382 + }, + { + "start": 23681.71, + "end": 23684.85, + "probability": 0.9329 + }, + { + "start": 23685.07, + "end": 23688.39, + "probability": 0.9917 + }, + { + "start": 23688.75, + "end": 23691.81, + "probability": 0.998 + }, + { + "start": 23691.81, + "end": 23695.83, + "probability": 0.9995 + }, + { + "start": 23696.05, + "end": 23696.31, + "probability": 0.6956 + }, + { + "start": 23696.49, + "end": 23697.63, + "probability": 0.761 + }, + { + "start": 23697.67, + "end": 23698.21, + "probability": 0.3836 + }, + { + "start": 23698.31, + "end": 23699.01, + "probability": 0.7534 + }, + { + "start": 23699.01, + "end": 23700.55, + "probability": 0.7104 + }, + { + "start": 23702.15, + "end": 23702.69, + "probability": 0.4163 + }, + { + "start": 23702.8, + "end": 23704.21, + "probability": 0.9765 + }, + { + "start": 23706.23, + "end": 23707.33, + "probability": 0.9717 + }, + { + "start": 23707.49, + "end": 23708.33, + "probability": 0.9586 + }, + { + "start": 23708.45, + "end": 23709.18, + "probability": 0.9419 + }, + { + "start": 23711.08, + "end": 23712.49, + "probability": 0.9913 + }, + { + "start": 23713.03, + "end": 23714.43, + "probability": 0.9717 + }, + { + "start": 23714.95, + "end": 23717.77, + "probability": 0.9753 + }, + { + "start": 23718.25, + "end": 23720.61, + "probability": 0.9168 + }, + { + "start": 23720.81, + "end": 23722.78, + "probability": 0.8058 + }, + { + "start": 23723.03, + "end": 23723.25, + "probability": 0.7616 + }, + { + "start": 23725.77, + "end": 23728.75, + "probability": 0.5859 + }, + { + "start": 23729.53, + "end": 23730.41, + "probability": 0.9578 + }, + { + "start": 23730.53, + "end": 23735.97, + "probability": 0.9175 + }, + { + "start": 23737.31, + "end": 23741.75, + "probability": 0.6493 + }, + { + "start": 23742.75, + "end": 23745.79, + "probability": 0.6917 + }, + { + "start": 23746.53, + "end": 23749.43, + "probability": 0.03 + }, + { + "start": 23751.97, + "end": 23752.89, + "probability": 0.0003 + }, + { + "start": 23753.03, + "end": 23755.07, + "probability": 0.6849 + }, + { + "start": 23755.45, + "end": 23759.11, + "probability": 0.8723 + }, + { + "start": 23759.11, + "end": 23761.59, + "probability": 0.7909 + }, + { + "start": 23762.03, + "end": 23765.67, + "probability": 0.9772 + }, + { + "start": 23766.01, + "end": 23768.25, + "probability": 0.7106 + }, + { + "start": 23768.87, + "end": 23771.31, + "probability": 0.9942 + }, + { + "start": 23772.09, + "end": 23775.27, + "probability": 0.8103 + }, + { + "start": 23775.65, + "end": 23775.75, + "probability": 0.0892 + }, + { + "start": 23775.87, + "end": 23777.61, + "probability": 0.8657 + }, + { + "start": 23777.91, + "end": 23780.17, + "probability": 0.9589 + }, + { + "start": 23780.27, + "end": 23780.97, + "probability": 0.9484 + }, + { + "start": 23781.39, + "end": 23783.17, + "probability": 0.8103 + }, + { + "start": 23783.59, + "end": 23788.43, + "probability": 0.9571 + }, + { + "start": 23788.43, + "end": 23793.71, + "probability": 0.9709 + }, + { + "start": 23794.23, + "end": 23798.09, + "probability": 0.9958 + }, + { + "start": 23798.39, + "end": 23803.51, + "probability": 0.9984 + }, + { + "start": 23803.73, + "end": 23804.47, + "probability": 0.9876 + }, + { + "start": 23804.81, + "end": 23805.21, + "probability": 0.888 + }, + { + "start": 23805.29, + "end": 23806.26, + "probability": 0.9225 + }, + { + "start": 23806.65, + "end": 23809.11, + "probability": 0.9338 + }, + { + "start": 23809.17, + "end": 23811.47, + "probability": 0.9863 + }, + { + "start": 23811.73, + "end": 23812.27, + "probability": 0.6271 + }, + { + "start": 23812.61, + "end": 23813.45, + "probability": 0.8822 + }, + { + "start": 23813.91, + "end": 23816.79, + "probability": 0.1456 + }, + { + "start": 23818.19, + "end": 23822.85, + "probability": 0.6152 + }, + { + "start": 23823.87, + "end": 23824.55, + "probability": 0.3489 + }, + { + "start": 23824.63, + "end": 23827.31, + "probability": 0.9101 + }, + { + "start": 23827.43, + "end": 23831.29, + "probability": 0.9823 + }, + { + "start": 23831.81, + "end": 23832.37, + "probability": 0.8113 + }, + { + "start": 23832.67, + "end": 23834.48, + "probability": 0.8204 + }, + { + "start": 23834.69, + "end": 23835.69, + "probability": 0.8882 + }, + { + "start": 23836.03, + "end": 23837.45, + "probability": 0.9504 + }, + { + "start": 23837.97, + "end": 23838.15, + "probability": 0.4755 + }, + { + "start": 23838.45, + "end": 23840.89, + "probability": 0.9565 + }, + { + "start": 23840.91, + "end": 23842.07, + "probability": 0.9764 + }, + { + "start": 23842.47, + "end": 23844.69, + "probability": 0.3253 + }, + { + "start": 23845.09, + "end": 23846.19, + "probability": 0.0193 + }, + { + "start": 23846.19, + "end": 23849.31, + "probability": 0.4416 + }, + { + "start": 23849.41, + "end": 23852.95, + "probability": 0.9483 + }, + { + "start": 23853.07, + "end": 23853.55, + "probability": 0.7994 + }, + { + "start": 23854.05, + "end": 23855.18, + "probability": 0.7345 + }, + { + "start": 23855.43, + "end": 23855.53, + "probability": 0.0078 + } + ], + "segments_count": 8568, + "words_count": 40781, + "avg_words_per_segment": 4.7597, + "avg_segment_duration": 1.9736, + "avg_words_per_minute": 102.4632, + "plenum_id": "50421", + "duration": 23880.38, + "title": null, + "plenum_date": "2016-02-22" +} \ No newline at end of file